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Abstract

As defined by Muller [Muller, Ph.D . thesis, Georgia Tech, 1988] and  K annan, Naor, and 

R udich [Kannan et ah, SIAM J Disc M ath , 1992], an adjacency labelling scheme labels a 

graph  such th a t the  adjacency of two vertices can be deduced im plicitly from their labels. 

In  general, the labels used in adjacency labelling schemes cannot be tw eaked to  reflect small 

changes in the  graph.

F irs t studied by B rodal and Fagerberg [Brodal and Fagerberg, LNCS 1663, 1999], a 

dynamic adjacency labelling scheme is an  adjacency labelling scheme th a t  requires only small 

adjustm ents to  the vertex labels when a  sm all change is m ade to  the graph. M otivated by 

th e  necessity for further exploration of dynam ic adjacency labelling schemes, we introduce 

the  concept of error-detection, discuss m etrics for judging the quality  of dynam ic schemes, 

and develop error-detecting fully dynam ic schemes for several classes of graphs.

O ur dynamic scheme for line graphs uses O (logn) b it labels and updates in 0 (e )  tim e, 

where e is the num ber of edges added to , or deleted from, th e  line graph. As well, our 

dynam ic scheme for proper interval graphs uses O (logn) b it labels and handles all operations 

in O (n)  time.

We also develop a O (r lo g n )  b it/la b e l dynam ic adjacency labelling scheme for r-minoes, 

which are graphs w ith no vertex in more th a n  r  m axim al cliques. Edge addition  and deletion 

can be handled in 0 ( r 2D ) tim e, vertex  addition in 0 ( r 2e2) tim e, and  vertex  deletion in 

0 ( r 2e) time, where D  is the  m axim um  degree of the vertices in the  original graph and e is 

the  num ber of edges added to , or deleted from, the original graph.

Similar to  th is dynam ic scheme for r-m inoes, we develop a O (r lo g n )  b it/lab e l dynam ic 

adjacency labelling scheme for r-bics, which are graphs w ith no vertex  in more th an  r  

m axim al bicliques. Edge addition and deletion, as well as vertex deletion, can be handled 

in 0 ( r 2B ) time, and vertex addition in 0 ( r 2nB ) time, where B  is the  size of the largest 

biclique in the original graph.

O ur dynamic labelling schemes for r-m inoes and r-bics lead to  0 ( r 2n 3) tim e recognition 

algorithm s for both  of these classes.
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List of Sym bols

The following is a sum m ary of undefined no tation  used in the  thesis. 

General no tation
0 em pty set, em pty graph
n intersection
u union
E sum m ation
o ( /(« ) ) asym ptotically  less th an  / ( n )
0  ( f(n ) ) asym ptotically  less th an  or equal to  f ( n )

© (/(" ) ) asym ptotically  equal to  f ( n )
n(f(n)) asym ptotically  greater th an  or equal to  f ( n )
w(/(™)) asym ptotically  greater th an  f ( n )
A = > B A  implies B
A  B A  if and only if B
ck cycle on k vertices
deg(u) degree of vertex v
d istc (u , u) distance of vertex  v from vertex  u  in graph G
d istc(u , S) distance of vertex  v  from set of vertices S  in graph  G
E g edge set of graph  G
/ H function of n
/  : X  — > Y a function whose dom ain is X  and range is contained in  Y
G - v graph formed by deleting vertex  v from graph G
G + v graph formed by adding vertex v  to  graph G
G - e graph formed by deleting edge e from graph G
G + e graph formed by adding edge e to  graph G
G Q H C artesian  product of graphs G  and H
K k complete graph on k  vertices
K i j complete b ip a rtite  graph (m axim al independent set sizes i and j )
logx logarithm  base two of x
L(G) line graph of graph  G
m ax{5} m axim um  in set S
m in{5} m inimum in set S
N (v ) open neighbourhood of vertex v
N[v] closed neighbourhood of vertex v
parent (v) parent of vertex v
Pk path  on k vertices
Rfc k- dimensional space over reals
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|S | cardinality  of set S
uv an edge uv
v G vertex  set of graph G
[x] floor of x
[xl ceiling of x
y /x square root of x
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Chapter 1

Introduction

1.1 G raph term in o logy

Let us begin by revisiting some graph  term inology. For the  definitions of te rm s used in the 

thesis, bu t no t defined herein, the  reader should consult W est [57].

An undirected graph G — (Vg , E g ) consists of a vertex set Vg , and an edge set E g , where 

each mem ber of E g is a subset of Vg having size either one or two. The m em bers of Vg are 

known as vertices, and the m em bers of E g are known as edges, where in particu lar, if an 

edge consists of only one vertex, it is called a loop.

Given an undirected graph G, tw o vertices u  and v  are said to  be adjacent if the  edge 

{u, w} belongs to  G; moreover, the  vertices u  and v are said to  be incident w ith  th e  edge 

{ u ,v } ,  and vice-versa. For simplicity, we will denote the edge {u, v}  by uv,  which is a 

common practice in graph theoretical lite ra tu re . Two edges are said to  be adjacent if they  

share a common vertex.

The open neighbourhood of a vertex v, denoted N (v ) ,  is the  set of vertices to  which v is 

adjacent. The closed neighbourhood of v, denoted N[v], is defined to  be N (v )  U {u}. W hen 

we wish to  refer to  the  closed neighbourhood of a vertex we will do so explicitly; as such, 

any references to  the  neighbourhood of a vertex  are to  its open neighbourhood. The degree 

of a vertex is the cardinality of its open neighbourhood.

A directed graph G  =  (Vg , E q ) consists of a vertex set Vg , and an  edge set E q , where 

each mem ber of E g is an ordered pair of Vg having size either one or two. A directed 

graph is similar to  a graph, however, its  edges are ordered pairs; thereby, a direction is 

im parted  to  each of its edges. Consequently, the  term s defined for undirected graphs, have 

directed counterparts such as inneighbourhood, outneighbourhood, indegree, and outdegree. 

A graph, undirected or directed, is simple if it contains no loops, and finite  if its vertex  set 

is finite. Our usage of the term  graph  will refer to  a finite simple undirected graph. W hen 

deviating from this usage, we will explicitly sta te  the type of graph under consideration.

A walk between two vertices u  and v  is a sequence of edges th a t lead from u to  v. A

1

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



walk which visits no vertex  twice is known as a path. Indeed, th e  te rm  p a th  is seen more 

often th an  walk, as the  existence of a walk implies the  existence of a  p a th . A m axim al set 

of vertices w ith a pa th  betw een each pair of m em bers is called a component.  A graph is said 

to  be connected if the  entire vertex set is a component.

Two graphs G \  and G 2 are said to  be isomorphic  if there  exists a bijection /  : Vq 1 = >  

Vg 2, for which uv  £ E g t f ( u ) f ( v )  £  E g2 ■ We will used the  te rm  labelled graph to  refer

to  a graph G  whose vertex  set is {1 , 2 , . . . ,  |Vg|}. A graph is said to  be unlabelled if it is not 

labelled. Two labelled graphs are said to  be distinct if th ey  are unequal. Two unlabelled 

graphs are said to  be distinct if they  are not isomorphic.

1.2 O verview

Consider a finite simple undirected graph  G = (Vg , E g ) w ith  n  vertices and m  edges; 

typically, we represent G  using an  adjacency m atrix , labelling the  vertices from 1 to  n. 

These labels serve only to  distinguish between the vertices and do not tell us anything 

about the  structure  of G. In  particu lar, th e  adjacency of any pair of vertices is determ ined 

from the adjacency m atrix , which is usually  m aintained as a global resource.

W hat if we could determ ine the  adjacency of two vertices of G  in a  m ore local m anner? 

One such way is to  use an  adjacency list representation which requires 0 ( (m  +  n) log n) bits 

to  represent a graph. U nfortunately, for dense graphs, an adjacency list representation can 

require as m any as 0 (n 2 lo g n ) bits, which is much greater th an  the  0 (n2) b its required by 

an adjacency m atrix  representation.

A nother approach is to  use an adjacency labelling scheme, as defined by Muller [45] and 

K annan, Naor, and R udich [31].

D e f in it io n  1 .1  A n  adjacency labelling scheme of a family Q o f  finite graphs is a pair of  

algorithms, (M , D ), satisfying the following.

•  M  is a vertex labelling algorithm (marker) whose input is a graph G in Q. Note that 

M  need not be deterministic; accordingly, let M .q be the set o f  all vertex labellings o f  

Vg which can be assigned by M .

• D  is a polynomial time deterministic evaluation algorithm (decoder) whose input is a 

pair o f  vertex labels. For any graph G in Q, and fo r  any labelling M g generated by M , 

we require that D  be able to correctly determine the adjacency o f any pair of vertices 

of G, using only their labels; we refer to this property by saying that D  is adjacency 

correct.

In essence, an adjacency labelling scheme is a d istributed d a ta  s tru c tu re  th a t allows us to  

quickly determ ine the adjacency of two vertices from local inform ation. To date, space-

2
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optim al adjacency labelling schemes have been developed for a variety  of graph  classes, such 

as bounded arboricity graphs, line graphs, and interval graphs [45, 31].

For example, consider the  following adjacency labelling scheme for interval graphs [45]. 

Recall th a t a graph is said to  be an  interval graph if each vertex can be represented by an 

interval of real num bers such th a t  tw o vertices are adjacent if and only if the  corresponding 

intervals have non-em pty intersection. Any such interval represen tation  can be m apped 

to  another interval representation using closed intervals w ith endpoints in { 1 , . . . ,  2n}. The 

m arker labels each vertex w ith the  tw o endpoints of its associated interval while the decoder 

determ ines adjacency in 0 (1 ) tim e by com paring these integers ju s t as it would two intervals. 

Each label requires O (logn) b its and th e  entire labelling uses O (n lo g n )  bits. An example 

of an adjacency labelling of an interval g raph  is given in Figure 1.1.

1 2 3 4 5 6 7 8 9  10 11

(3,9)

(2,5)

(6 , 10 )

(a) An interval represen tation  of 
a  graph.

(b) T he corresponding la­
bels.

Figure 1.1: An adjacency labelling of an interval graph

Adjacency can be replaced by any function /  defined on sets of vertices. In tu rn , for 

any set S  of vertices on which /  is defined, D  m ust o u tp u t the  correct value of /  on S  

using only the labels of the vertices in S.  By setting  adjacency labelling schemes in the 

larger context of informative labelling schemes,  Peleg [47] rejuvenated in terest in the  idea 

of space efficient d istributed d a ta  struc tu res as introduced by M uller [45] and  K annan et al. 

[31]. To date, informative labelling schemes have been developed for a variety of functions 

including distance, routing, center of th ree  vertices, ancestor, and nearest common ancestor. 

In C hapter 2, we offer a comprehensive look at the theory of inform ative labelling schemes.

In  m any applications the underlying topology is constantly  changing and we desire algo­

rithm s which can accommodate these changes. At present, algorithm s for finding informative 

labelling schemes are static; th a t is, if a graph is changed then  the  algorithm  must devise a 

labelling of the  new graph from scratch. The dynamic version of adjacency labelling schemes 

was m entioned by K annan et al. [31], however, they did not consider th e  problem in detail. 

A t m ost, the authors suggest th a t the  addition or deletion of a vertex  or an edge should

3
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require only a “quick” u p d a te  of the  labels in order to  obtain  an adjacency labelling of the 

new graph. The first paper to  address th is dynam ic problem  is th a t of B rodal and Fagerberg 

[10] who develop a dynam ic adjacency labelling scheme for graphs of bounded arboricity, 

providing the graph operations do not cause the  arboricity  bound to  be violated. More 

recently, the papers of K orm an and Peleg [37] and K orm an, Peleg, and  Rodeh [39] have 

considered the dynam ic problem  for trees in  the  context of d istribu ted  com puting. Cohen, 

K aplan, and Milo [11] consider dynam ic ancestor labellings of XML trees w ith  persistent 

labels; th a t is, the label of a vertex cannot be changed once it has been assigned. In contrast, 

our labels can change over tim e. By no t using persistent labels it is possible to  reduce label 

size as we can change the  labels as required, or as desired.

As a continuation of the  aforem entioned works, we further discuss and  develop the theory 

of these dynamic schemes. In C hapter 3, we formally define w hat is m eant by a dynam ic 

inform ative labelling scheme, as previous lite ra tu re  on th is subject has been based exclusively 

on our intuitive understanding of how s ta tic  problem s are made dynam ic. W hile presenting 

th is formal definition, we introduce th e  concept of error-detection; th a t  is, th e  algorithm s 

which relabel the  graph should recognize when the  modified graph is no longer a m em ber 

of the  family under consideration. In  addition to  form ally defining these schemes, we also 

dem onstrate the  connection between error-detection and the  graph recognition problem , and 

identify and discuss th e  qualities th a t  m ake a good dynam ic scheme.

T he la tter three chapters of th is thesis develop dynam ic adjacency labelling schemes for 

four classes of graphs. Common to  the  developm ent of dynam ic schemes for all these classes 

is th e  use of identifiers and circular linked lists to  encode inform ation a t the vertex level. 

Specifically, each vertex  of a graph G  is assigned a unique identifier from { 1 , . . . ,  |Vg|}- For 

some substructure S  of G, such as a m axim al clique, the  label of a m em ber of S  will include 

the identifier of the  next vertex in a circular linked list of vertices in th e  substructure. In 

fact, we can incorporate a circular doubly linked list w ithout an increase in  the  asym ptotic 

size of the vertex label, as we store two identifiers instead of one. By incorporating these 

circular linked lists we can determ ine all the  vertices in S  from a single vertex  of S.

Using this d istribu ted  representation of S , we can also include additional inform ation 

abou t S  in the labels of its mem ber vertices. For example, one of the  substructures seen in 

C hap ter 5 is a m axim al biclique. For each m axim al biclique B , we use th e  circular linked 

list technique to  d istribu te  the  representation of B , however, in the  label of each mem ber 

vertex of B  to  which we identify which p a rt of the b ipartition  of B  th e  vertex belongs. W ith  

th is additional inform ation, we are able to  develop a decoder for our dynam ic scheme.

Not only do we develop a  technique to  d istribu te  graph substructures across their member 

vertices, but we also develop a technique to  distribute pointers. Consider a pointer P  which 

points from one substructure Si to  another substructure  S2 . F irst, we select a pointer vertex

4
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from S i ,  denoted P ( S  1). The label of each m em ber of S i  specifies the identifier of P (S i ) ,  

where th e  label of P ( S  1) contains a field which holds th e  identifier of a vertex  in 5 2 - In 

tu rn , the  label of th a t  m em ber of S 2 specifies the  identifier of P ( S 2 ), so pointers can be 

followed a t will. This technique is used in C hapter 6 , where th e  graph  substructures have a 

linear ordering.

Each of the  dynam ic adjacency labelling schemes th a t  we develop is fully dynam ic, th a t 

is, th e  graph operations allowed are the  addition or deletion of a vertex  (along w ith its 

incident edges), and  th e  addition  or deletion of an edge. Moreover, each dynam ic scheme 

is error-detecting. In  C hap ter 4, we present a dynam ic adjacency labelling scheme for line 

graphs, a class of graphs fundam ental in the study  of intersection graph  theory  [8]. Our 

dynam ic scheme for line graphs uses O (logn) bit labels and updates in O(e) tim e, where e 

is the num ber of edges added to, or deleted from, the  line graph. In developing th is dynamic 

scheme, we introduce a  new concept known as partitio n  isomorphism, and develop theory 

on th e  types of line graphs th a t can be dynam ically altered  to  produce new line graphs.

In C hapter 5, we present d a ta  structures based on m axim al cliques and m axim al bicliques 

th a t give rise to  dynam ic adjacency labelling schemes for two classes of graphs. Specifically, 

we develop an O (r lo g n )  b it/la b e l dynam ic adjacency labelling scheme for r-minoes, defined 

by M etelsky and Tyshkevich [44] as the  class of graphs w ith  no vertex  in more th a n  r  maximal 

cliques. Edge addition  and deletion can be handled in 0 ( r 2D ) tim e, vertex  addition in 

0 ( r 2e2) time, and vertex  deletion in 0 ( r 2e) time, where D  is the  m axim um  degree of the 

vertices in the  original g raph  and e is the  num ber of edges added to , or deleted from, the 

original graph.

Similar to  th is dynam ic scheme for r-m inoes, we develop a  O (r lo g n )  b it/la b e l dynamic 

adjacency labelling scheme for r-bics, a  new class which we define as the  graphs w ith no 

vertex in more th a n  r  m axim al bicliques. Edge addition  and deletion, as well as vertex 

deletion, can be handled in 0 ( r 2B ) time, and vertex addition  in 0 ( r 2nB ) tim e, where B  is 

the size of the largest biclique in the  original graph.

Finally, in C hap ter 6 , we present a dynamic adjacency labelling scheme for proper in­

terval graphs, a subclass of interval graphs. Our dynam ic scheme for proper interval graphs 

uses O (logn) bit labels and  handles all operations in O (n) tim e.

5
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Chapter 2

Background

2.1 A d jacen cy  lab ellin g  schem es

Recall Definition 1.1, the definition of an adjacency labelling scheme. Allowing sufficiently 

large labels we can create an adjacency labelling scheme for any family of graphs.

For instance, consider labelling each vertex w ith  a unique “identifier” from { l , . . . , n }  

(for simplicity, we will refer to  vertices by their identifiers), along w ith its corresponding 

row of the  adjacency m atrix  [53]. We can determ ine the  adjacency of v\ and V2 , using only 

their labels, by looking up th e  b it corresponding to  V2 in th e  row of the  adjacency m atrix  

found in the  label of v\,  or vice versa. Each label requires 0 (n )  bits, the  entire labelling 

requires 0 (n2) bits, and adjacency queries require 0 (1) tim e (throughout th is work we 

assume a word-level RAM com putation model for th e  m arker and decoder, where word 

sizes are fl(logn ); a com parison between th is and other common com putation  models, as 

well as a discussion on why th is model was chosen, can be found in A ppendix B).

A nother approach is to  label each vertex w ith a unique identifier from {1 , . . . ,  n},  along 

w ith a list of the identifiers of the  vertices to  which it  is adjacent (an adjacency list of 

identifiers). We can determ ine the  adjacency of v\  and  V2 , using only their labels, by 

determ ining if V2 is in the  adjacency list found in the  label of v i ,  or vice versa. The label of 

vertex v requires as m any as 0 (deg(v) logn ) C O (n lo g n ) b its, the  entire labelling requires 

as m any as 0 ( (m  +  n) log n) bits, and adjacency queries require O (logn) tim e, provided the  

adjacency lists are sorted.

U nfortunately, the  adjacency labelling schemes ob tained  from adjacency m atrices and 

lists are often not space efficient. M any classes of graphs exhibit adjacency labelling schemes 

th a t use 0 (log  n) b it labels, which is a substantial im provem ent over the 0 (n )  and O (n lo g n ) 

b it labels offered by adjacency m atrices and adjacency lists, respectively.

6
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2.1.1 E xam ples

For m any graph classes, th e  defining properties of the  class often determ ine an adjacency 

labelling scheme. We now present adjacency labelling schemes for a variety of classes, noting 

th a t, when we refer to  a particu lar graph  class we m ean those graphs which are unlabelled; 

th a t is, isomorphic copies are not d istinct. W hen we wish to  refer to  a class of labelled 

graphs we will do so explicitly.

T re e s

Perhaps the sim plest adjacency labelling scheme is th e  following scheme on trees [31]. Con­

sider a tree T  on n  vertices. The m arker assigns an a rb itrary  root, gives each vertex  an 

a rb itra ry  bu t unique identifier from { 1 , . . . ,  n},  then  assigns to  each vertex v  of T  the  label 

(v, parent(w)). Each label uses O (logn) b its  and the  m arker takes 0 (n )  tim e to  label the  

graph. The decoder determ ines the  adjacency of two vertices V\ and V2 in 0 (1 )  time, using 

only the ir labels, by checking if Vi =  p a r e n t ^ )  or i '2 =  paren t(u i). A n example of an  

adjacency labelling of a tree is presented in  Figure 2.1.

(3,2) (6 ,2)

(7,6) (5,6)

(a) Identi- (b) Labels of T.
fiers of T.

Figure 2 .1 : An adjacency labelling of a tree

T ra n s it iv e  c lo s u re s  o f  r o o te d  t r e e s

The class of graphs which are transitive  closures of rooted trees also has an adjacency 

labelling scheme [31]. The transitive closure T '  of a rooted tree T  is the  graph  defined by 

Vt < = Vt  and E t < =  {{u,w}jthere is a directed  p a th  from u  to  v in T}.

Consider the  transitive closure T '  of a rooted  tree T  on n  vertices. Observe th a t the  

vertices of T '  are exactly the  vertices of T ,  so we may refer to  them  interchangeably. Let 

the set of descendants of a vertex v in T  be denoted D(v).  The m arker assigns each vertex 

a unique identifier from {1 , . . . ,  n} by traversing the tree in postorder, then  assigns to  each 

vertex v of T '  the  label m in w ,v  . Each label uses O (logn) bits and the  marker takes
w£D{v)

0 (n) tim e to  label the graph. The decoder determ ines the adjacency of two vertices v\ and
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V2 in 0 (1) tim e using only the ir labels by checking if

m in w  < V2 < Vi
w(z.D{v i)

or

m in w < vi < v<2 -
w ( z D ( v  2 )

An example of an adjacency labelling of a transitive closure of a tree is given in Figure 2.2.

(a) Iden­
tifiers of
T

[ Id ]

[5,5]

[3,3]

(b) L abels of T '

Figure 2.2: A n adjacency labelling of the  transitive  closure of a  tree

L in e  g ra p h s

The class of line graphs also has an adjacency labelling scheme. T he definition of a line 

graph is as follows [8].

D e f in it io n  2 .1  Given a graph G  =  ( V g , E g ),  its line graph is the graph L(G ) = ( E g , E ^ q ) )  

fo r  which {u,u} £ E l ^  i f  and only i f  u and v are adjacent edges in G.

We observe th a t  by adding isolated vertices to  G  we can ob tain  infinitely m any graphs which 

give rise to  the  same line graph. As such, if a graph G  has no isolated vertices we will refer 

to  it as a base of L(G ).  W hitney [58] has shown th a t  every connected line graph has a 

unique base, up to  isom orphism , except for which has two bases, namely, K 3 and K 1 3 .

Consider a line graph  L(G ),  w ith base graph G. To each vertex in G  the  marker assigns 

an a rb itrary  b u t unique identifier from {1 , . . . ,  |Vg|}, then  assigns to  each vertex v in L(G)  

the label ( e i ,e 2), where ei and e2 are the  identifiers of the endpoints of the edge of G 

corresponding to  v. Since G  has no isolated vertices, |Vg| <  2\E g \ = ^\Vl (G)\, s0  each label 

uses 0 (lo g |V b |)  =  0 (lo g |l/L(G)|) bits.

We assume th a t  the  m arker is input w ith G , the  base graph, as well as the  correspondence 

between edges in G  and vertices in L(G)\ therefore, the m arker can generate an adjacency

8
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labelling in Q(n)  tim e. If the  m arker is inpu t only w ith  th e  structu re  of L(G ),  perhaps in 

the  form of an adjacency m atrix , then  it m ust use an  algorithm  like th a t  of Lehot [40] or 

Roussopoulos [50], which determ ines G  from L(G ).  Each of these algorithm s has running 

tim e 0 ( to  +  n), thereby resulting in a running tim e of 0 ( m  +  n)  for the  marker.

The decoder can determ ine the adjacency of two vertices, w ith labels (epo,epi) and 

(ep2 ,ep 3 ), in 0 (1 ) tim e by checking if {epo,epi}  (~l {ep2,eP3} =  0- An example of an 

adjacency labelling of a line graph is given in F igure 2.3.

(1.3)

(2,3)

(3,4)4 3

(a) G.  (b) L abels of L(G) .

Figure 2.3: An adjacency labelling of a line graph

O u td eg ree -fc  g ra p h s

The class of outdegree-fc graphs also has an adjacency labelling scheme for any fixed constant 

fc. An outdegree-fc graph is defined as follows [31].

D e f in it io n  2 .2  A n undirected graph is said to be an outdegree-k graph i f  its edges can be 

directed such that no vertex has outdegree greater than  fc. We will call such an orientation 

an outdegree-k orientation.

For any fixed constant fc, consider an outdegree-fc graph G  on n  vertices and to  edges, 

subject to  some outdegree-fc orientation O. To each vertex th e  m arker assigns an a rb itrary  

bu t unique identifier from {1 , . . . ,  n},  then  assigns to  each vertex v the  label (u, Ov), where 

O v denotes the set of identifiers of the  outneighbours of v. Each label uses O (logn) bits.

We assume th a t the m arker knows the orientation  O , so it  can generate th is  labelling in 

0 (n )  tim e. If the m arker is only inpu t w ith G, perhaps as an adjacency m atrix, then  it m ust 

use an algorithm  like th a t of Gabow and W esterm ann [18] which determ ines O  from G. This 

algorithm  has a running tim e of Q (kn ^ /m  + fcnlogn), resulting in a & (kn ^ /m  + kn  log n)  

running  tim e for the m arker.

T he decoder can determ ine the adjacency of two vertices, to and to, in 0 (1 )  tim e using 

only the ir labels by checking if to £ 0 V2 or to  & 0 Vl. An exam ple of an adjacency labelling 

of an outdegree-2 graph is given in Figure 2.4.

9
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(4,{5,6 })5 4

(a) O utdegree-2 (b) L abels of G.
orien ta tion  and 
identifiers of G.

Figure 2.4: An adjacency labelling of an outdegree-2 graph 

S u b c la s se s , s u p e rc la s s e s , a n d  co -c la sse s

Observe th a t an  adjacency labelling scheme for a class Q is also an adjacency labelling 

scheme for any subclass of Q\ th e  m arker and  decoder rem ain th e  same, b u t th e  inputs to  

the  m arker are restricted  to  m em bers of the  subclass. Since any tree  is an outdegree-1 graph 

(arb itrarily  assign a roo t and direct each edge tow ard th e  paren t vertex), the  family of trees 

has an  adjacency labelling scheme by virtue of it  being a subclass of the  outdegree-1 graphs. 

In fact, the  adjacency labelling scheme presented for trees earlier in th is  section is exactly 

the  restriction of the  above scheme for outdegree-1 graphs to  trees.

T he consequences of the  contrapositive of this im plication should also be considered. 

Specifically, if a  family of graphs Q does not exhibit an adjacency labelling scheme w ith 

property  P  (for example, label size), then  th a t  is also tru e  for any superclass 7i of Q. If 

Ti did have such a scheme, then  th e  restriction  of th a t  scheme to  graphs in Q would be an 

adjacency labelling scheme of Q exhibiting property  P.

I t should also be observed th a t  if a family Q has an adjacency labelling scheme then  

so does co-Q, the  class of graphs whose complements belong to  Q. Specifically the m arker 

rem ains the same, bu t the  decoder is the  “opposite” decoder; th a t  is, the  decoder for co-Q 

determ ines th a t two vertices are adjacent if and only if the  decoder for Q determ ines th a t 

the  vertices are not adjacent.

2.1 .2  A ssessing  quality

Consider an adjacency labelling scheme (M, D).  There are three ways to  assess the quality 

of the scheme.

1. The running tim e of M .

2. The running tim e of D.

10
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3. T he labels generated by M .

Trivially, the  b e tte r  the  running tim e of M  and D, the  b e tte r  the  adjacency labelling 

scheme. Given th a t  M  m ust assign n  vertex  labels, th e  running tim e of any m arker is f l(n). 

As we have seen in Section 2.1.1 w ith  line graphs and outdegree-fc graphs, th e  running time 

of M  depends on th e  representation of the graph provided to  M .

Of greater in terest are the labels generated by M . We define an adjacency labelling 

scheme of a family of graphs Q to  be space-optimal if there is no o ther adjacency labelling 

scheme for Q th a t  uses asym ptotically fewer to ta l bits. Since vertex adjacency uniquely 

defines a graph, an  adjacency labelling scheme of a family of graphs provides a unique 

representation for each of the m em bers of th e  family. Therefore, the  to ta l num ber of bits 

required by an adjacency labelling scheme is a t least th e  num ber of bits required to  represent 

all of th e  m em bers uniquely; in particu lar, a fam ily of graphs w ith  m em bers on n

vertices requires a  labelling th a t uses £l(<f>(n)) b its  (in to tal, no t per vertex) in order to  

uniquely represent each of the  m em bers on n  vertices [53]. We will say th a t  an  adjacency 

labelling scheme of a family of size 2 @̂ n')'> th a t  uses 0 (0 (n)) to ta l b its is strongly space- 

optimal. For simplicity, we will occasionally refer to  a family w ith 2 ^ n') m em bers on n  

vertices as having size 2 ^ n\

For example, there  are 2®(nlogri) interval graphs on n  vertices [22], so any adjacency 

labelling scheme for interval graphs requires f i(n lo g n )  to ta l bits. Therefore, th e  adjacency 

labelling scheme presented for interval graphs in C hap ter 1 is strongly space-optim al. In 

contrast, the adjacency labelling schemes created  using adjacency m atrices and adjacency 

lists, which use 0 (n2) and 0 (n2 logn) to ta l bits, respectively, are not space-optim al for 

interval graphs.

A lthough there  are many asym ptotic counting results for labelled graph  classes, the 

same cannot be said for unlabelled graphs. For instance, we know th a t there  are 2®(nlogrd 

labelled line graphs (hence, there are 2° (nlog” ) unlabelled line graphs); however, we do not 

know th a t  there  are 2®(nlogn) unlabelled line graphs. As such, we cannot say th a t  M uller’s 

adjacency labelling scheme for line graphs, presented in Section 2.1.1, is space-optim al for 

unlabelled line graphs. As well, consider th a t  there  are 2° (n )  unlabelled trees (consider a 

binary  string encoding of a depth  first traversal from an a rb itrary  root, w here 1 denotes 

going down the  tree  and 0 denotes moving back up) [52]. As such, the  adjacency labelling 

scheme for trees presented in Section 2.1.1 is not strongly space-optimal for unlabelled line 

graphs; however, it may be space-optimal.

Along w ith space-optimality, we are also in terested  in the property of balance, th a t 

is, we w ant the  labels to be of roughly equal size. Specifically, if an adjacency labelling 

scheme uses Q (4>(n)) to ta l bits then  we would like each vertex label to  use O (^ y ^ )  bits. 

For example, the  adjacency labelling scheme for interval graphs presented in C hap ter 1 is
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balanced. Likewise, th e  adjacency labelling scheme based on adjacency m atrices is balanced 

for any class of graphs. In contrast, the  adjacency labelling scheme created  from  adjacency 

lists is not balanced for certain  classes of graphs. Specifically, th e  adjacency list scheme is 

not balanced for interval graphs as th is family contains the  com plete b ipartite  graph 

This graph would have one vertex w ith a 0 ( n  log n) b it label, while the  entire labelling would 

require 0 (n lo g n )  b its in to tal.

Observe th a t  the  scheme devised from adjacency m atrices is a  balanced strongly space- 

optim al adjacency labelling scheme (also referred to  as a generalized im plicit representation 

by Spinrad [53]) for any family of size 2e (” \  Such families include b ipartite  graphs, chordal 

graphs, and the  class of all graphs [26, 45]. As such, we are really only in terested  in w hether 

classes of size 2 ° ^ 2  ̂ have strongly space-optim al adjacency labelling schemes.

O f the classes of size 2°(" \  balanced strongly space-optim al adjacency labelling schemes 

have only been found for families of size 2 e (” log7d . Spinrad [53], presents a space-optim al 

representation scheme for chordal b ipartite  graphs, which have 2° (nlog2") m em bers on n  

vertices; however, adjacency testing  cannot be perform ed locally.

E xactly  w hat criteria  should be used to  assess an adjacency labelling scheme is dependent 

on the application. It is possible th a t  one could not to lerate increasing the  running  of tim e 

of M  to  create smaller labels th a t  allow D  to  run  faster. Commonly, however, applications 

th a t involve millions of nodes dem and th a t the  focus be on th e  size of the  labels generated 

by M .

2.1.3 Tw o classes o f  n o te  w ith  regard to  stron g  sp ace-op tim ality

Let us now examine two classes of interest w ith  respect to  strongly space-optim al adjacency 

labelling schemes; specifically, fc-sparse graphs, a class th a t does no t have a balanced strongly 

space optim al adjacency labelling scheme, and fc-dot product graphs, a class which rem ains 

open w ith respect to  the  existence of a balanced strongly space-optim al adjacency labelling 

scheme.

fc-sparse g ra p h s

The class of fc-sparse graphs is defined as follows [45].

D e f in it io n  2 .3  A graph on n  vertices is k-sparse i f  it  has at most kn  edges.

Using a proof by contradiction, M uller [45] showed th a t, for any constant k, the  class of fc- 

sparse graphs does not have a balanced strongly space-optim al adjacency labelling scheme. 

We present a proof similar to  th a t of Muller.

For any constant fc, an adjacency list representation  uses O (n lo g n ) b its to  represent a 

labelled fc-sparse graph on n  vertices; thereby, there are 2° (nlogn) labelled fc-sparse graphs 

on n vertices. As such, there are 2° (TllogTd unlabelled fc-sparse graphs on n  vertices. Assume
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th a t the  class of fc-sparse graphs has a balanced strongly space-optim al adjacency labelling 

scheme, th a t is, a scheme th a t  uses O (logn) b its  per vertex. Now take any graph, G, on n  

vertices and add n 2 vertices to  it  to  make it fc-sparse. By our assum ption, th is graph has 

an adjacency labelling th a t  uses 0 ( lo g (n 2 +  n))  =  0 (log (n )) b its per vertex. By restricting 

any such labelling to  G, we ob tain  an  adjacency labelling scheme of th e  class of all graphs 

th a t  uses O (n lo g n ) bits in to ta l. Therefore, there  are 2° ( nlogTd graphs on n  vertices, which 

is a contradiction.

W hether or not fc-sparse graphs have a strongly space-optim al adjacency labelling scheme 

is unknown.

fc-dot p r o d u c t  g ra p h s

Fiduccia, Scheinerman, Trenk, and  Zito [17] define a fc-dot p roduct graph  as follows.

D e f in it io n  2 .4  A graph G is a k-dot product graph i f  there is a function  f  : Vg  — > R fc 

such that f ( v i )  ■ f ( v 2) >  1 i f  and only i f  v \ and V2 are adjacent, where ■ is the standard 

inner product of two vectors.

For any constant fc, th e  class of fc-dot p roduct graphs rem ains open w ith regards to  

having an  adjacency labelling scheme th a t uses O (logn) bits per vertex, even though there 

are 2 0 (nlogri) m embers on n  vertices [17]. T he dot product represen tation  itself is almost 

such an adjacency labelling scheme, however, there  is no upper bound on the  num ber of bits 

required to  represent the  m em bers of R. In the  same work in which Fiduccia et al. define dot 

p roduct graphs, they show th a t  the  function which defines the  do t p roduct representation 

can actually  be restricted to  Q, th e  set of rationals; however the sam e problem  of unbounded 

representation  still exists for Q. W hat is needed to  achieve an adjacency labelling scheme 

w ith  O (logn) bits per vertex for th is class is a m apping /  : Vq — ► S k , where S  is some set 

whose m em bers can be represented using O (logn) bits. In their paper, F iduccia et al. sta te  

th a t  th ey  believe th a t no such set S  can be found.

2 .1 .4  P revious work

Table 2.1 presents known results on adjacency labellings schemes for a variety of graph 

classes. To assist the reader, definitions of these classes can be found in A ppendix A.

In some cases, the upper bound on the  size of a class comes from the  existence of the 

adjacency labelling scheme of a particu lar size. As we have previously discussed in Section 

2 .1 .2 , a class exhibiting an adjacency labelling th a t uses 0 (cp(n)) b its in to ta l has size 

2 °W ")). For example, there  exists an adjacency labelling scheme for outerplanar graphs 

th a t  uses 0 (n log n) bits [45]; therefore, there  are 2 °(n logrd ou terp lanar graphs 011 n  vertices.
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In o ther cases, the  lower bound on the size of a class is due to  th e  fact th a t  it contains, or 

is a co-class of, another class whose size we know. For instance, the  class of Cs-free graphs 

contains the class of b ipartite  graphs, which have size 2e ("2) [45]; therefore, there  are 2 n ("2) 

C3-free graphs on n  vertices. Moreover, we know th a t  the  class of all graphs, which we 

refer to  as general graphs, has size 2e (”2); therefore, there  are 2 °(« 2) C3-free graphs on n 

vertices. In tu rn , we know th a t  there  are 2e ("2) C3-free graphs on n  vertices. Similarly, the 

class of cobipartite  graphs is the co-class of the b ipartite  graphs; therefore, there  are 2 @ljl2') 

cobipartite graphs on n  vertices. A good resource on classes of size 2 ®(n2) is C hap ter 8 of 

Efficient Graph Representations  by Spinrad [53].

Often an adjacency labelling scheme will result from its containm ent in another class, as 

per our discussion of subclasses in Section 2.1.1. For example, the  class of proper interval 

graphs have a balanced adjacency labelling scheme using O (n lo g n ) b its because they  are 

contained in the  class of interval graphs which have a balanced adjacency labelling scheme 

using O (n lo g n ) bits.

Table 2.1: Known results on adjacency labelling schemes [^number of unlabelled m embers 
on n  vertices; H otal b its required in th e  scheme using asym ptotically  fewest to ta l b its  (the 
scheme is balanced unless otherwise noted); is bounded by a constant; * ind icates th a t 
the  scheme is the  “default” scheme obtained from adjacency m atrices [53]]

C la ss Size^ S chem e^ C o m m e n ts

General graphs 2 0 («2) © (n2)*
C3-free 2©(«C [45] 0 (n2)* superclass of b ipartite
C^C^-free 2J2(nlogn) [53 ] 0 (n2)*
C'3 ,A 'ii3-free 20  (ny/n) 0 (n lo g n )  [53]

AVfree 2®(” 2) [45] 0 (n2)* superclass of b ipartite
ATi3-free 2®("2) [45] 0 (n2)* superclass of cobipartite

K 3,3-free 20 (n2) [45] 0 (n2)* superclass of cobipartite

P 4-free posets 20 (nl0g n) [53 ] 0 (n2)* no 0 (n lo g n )  balanced 
scheme [53]

Almost tree(fc)* 2 0 (n log n) 0 (n lo g n )  [45]
Arboricity-A:* 20  (n logn) 0 (n lo g n )  [31] subclass of outdegree-fc
Asteroidal triple free 20 (rF) [g] 0 (n2)* superclass of cobipartite

A utographs 2 e ("2) [45] 0 (n2)*
Bandwidth-fc* 2 0 (n log n) © (n lo g n ) [45] subclass of degree-k

B ipartite 2© C 2) [45] 0 (n2)*
Boxicity-fc* 2 0 (n log n) 0 (n lo g n )  [45]
Chain graphs 2 0 (n log n) © (n lo g n ) [53]

Chordal 2 ©(nb [45] 0 (n 2)* superclass of split
Chordal com parabil­
ity

2 0 (n log n) © (n lo g n ) [42]

continued on next page . . .
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. . .  continued from previous page
C lass Size^ Schem e* C o m m e n ts

Circle 2*0( n  log n) G (n lo g n ) [31, 45]
Circular arc 2 0 ( n  log n ) © (n lo g n ) [31, 45]
C obipartite 2©(«') [45] 0 ( n 2)* com plem ents of b ipartite  

graphs
Cographs 2 0 ( n  log n ) © (n lo g n ) [31, 45] subclass of perm utation

Com parability 2 © G D  [45 ] 0 ( n 2)* superclass of b ipartite
Containm ent graphs 
of paths in a tree

2 0 ( n  l o g n ) 0 (n lo g n )  [53]

Convex b ipartite 2 0 ( n  i o g n ) 0 (n lo g n )  [45]
Cycles 2 0 ( n  l o g n ) 0 (n lo g n )  [45]
/c-decomposable* 2 0 ( n  l o g n ) 0 (n lo g n )  [31]
Degree- fc* 2 0 ( n  log n) 0 (n lo g n )  [31, 45] subclass of outdegree-/c, 

hered itary  degree-fc
Disk intersection 2 0 ( n l o g n )  [53] 0 ( n 2)*
k -dot p roduct* 2 0 ( n l o g n )  [37] 0 ( n 2)*
E P T  graphs 2 0 ( n  log n ) 0 (n lo g n )  [53]
Forest 2 0 ( n  lo g n ) 0 (n lo g n )  [31, 45]
Genus- fc* 2 0 ( n  lo g n ) 0 (n lo g n )  [31] subclass of arboricity-fc
H ereditary degree-fc* 2 0 ( n  log n) 0 (n lo g n )  [45] subclass of outdegree-fc
fc-interval* 2 0 ( n  log n ) 0 (n lo g n )  [31]
Interval 2 © ( n l o g n )  [22] 0 (n lo g n )  [31, 45] subclass of circular arc
Line graphs 2 0 ( n  l o g n ) 0 (n lo g n )  [45]
Outdegree-fc* 2 0 ( n  l o g n ) 0 (n lo g n ) [45]
O uterplanar 2 0 ( n  l o g n ) 0 (n lo g n )  [45] subclass of boxicity-2
Perm utation 2 0 ( n  l o g n ) 0 (n lo g n )  [31, 45] subclass of circle
Planar 2 0 ( n  l o g n ) 0 (n lo g n )  [31, 45] subclass of outdegree-fc, 

boxicity-3
Posets (dimension 
fc)*

2 0 ( n  l o g n ) 0 (n lo g n )  [45]

Proper interval 20 ( n ) [ 25] © (n logn) [45] subclass of interval
fc-sparse* 2° ( " l o g " )  [53] 0 ( n 2)* no O (n lo g n )  balanced 

scheme [53]
Threshold 2 0 ( n  l o g n ) 0 (n lo g n )  [45] subclass of interval
Threshold tolerance 2 0 ( n  l o g n ) © (n logn) [45]
Transitive closures of 
rooted trees

2 0 ( n  l o g n ) © (n logn) [31]

Trees 2 °(n )[52] 0 (n lo g n )  [31, 45] subclass of forest
Split 2 ©(«U [45 ] 0 ( n 2)*
Total 2 0 ( n b 0 ( n 2)* no O (n lo g n )  balanced 

scheme [53]
Uniformly fc-sparse 2 0 ( n l o g n )  [53] 0 ( n 2)*
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2.1.5 M uller and K annan et al.

The seminal works of bo th  M uller [45] and K annan  et al. [31] independently  introduce 

a  narrower version of adjacency labelling schemes called im plicit representations, a te rm  

suggested in the title  of the work by K annan  et al. [31]. We present the definition of 

K annan  et al., ra ther th a n  M uller’s, which is built from several smaller definitions.

D e f in it io n  2 .5  (K a n n a n  e t  a l.)  A family T  of finite graphs has an implicit representa­

tion i f  there is a polynomial time Turing machine T  and a function I which labels the vertices 

o f each graph G  in T  with distinct labels o /0 ( lo g n )  bits, n  being the number of vertices o f  

G, such that, given two vertex labels o f  a graph G in T  , T  will correctly decide adjacency o f  

the corresponding vertices in G.

Imm ediately, we notice th a t th is definition uses Turing machines, whereas Definition 1.1 

refers to  m arker and decoder algorithm s. Essentially, th e  Turing m achine T  employed in 

Definition 2.5 serves as bo th  the  m arker, M , and the  decoder, D.

As well, we note th a t  Definition 1 .1 , unlike Definition 2.5, does not require th a t  the  

vertex labels be distinct. Fortunately, any m arker can be modified to  ob tain  unique vertex 

labels by assigning each vertex an a rb itra ry  bu t unique identifier from { l , . . . , n }  (as is 

commonly seen in Section 2.1.1) and appending it to  th e  vertex  label; th is identifier adds a 

te rm  of log n  to  th e  num ber of b its required by a vertex label. For any class of size 2n (n log , 

th e  addition of th is identifier will no t increase the asym ptotic size of the  vertex labels, as 

the  distinct label requirem ent necessitates th a t each label be of size Q (logn). However, for 

classes w ith fewer m em bers, th is requirem ent m ight prevent us from  developing strongly 

space-optim al adjacency labelling schemes. For th is reason, the  distinct label requirem ent 

is om itted  from Definition 1.1.

We should note th a t  there is a small bu t im portan t difference betw een the definitions 

found in M uller [45] and  K annan et al. [31]. Specifically, M uller only requires the Turing 

machine to  halt, not to  be polynomial, as required by K annan  et al. Since the inputs to 

the  Turing m achine are of size O (logn), th e  use of a polynom ial Turing machine guarantees 

th a t  adjacency testing  can be perform ed in polylogarithm ic tim e. In  keeping with K annan  

et ah, the  polynom ial tim e requirem ent has been included in Definition 1 .1 . T h a t being 

said, there  are no known classes of graphs which “o b ta in” adjacency labelling schemes when 

the polynomial tim e requirem ent is dropped [53].

In te r s e c t io n  c la sse s  a n d  in te r s e c t io n  n u m b e r

In his doctoral thesis, Muller [45] observes th a t there is an im plicit representation for any 

intersection class in which the vertices of graph can be represented by constant size subsets 

of { 1 , . . . ,  n k}, provided k  is a constant. We note th a t such an im plicit representation cannot
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be constructed w ithout knowing th e  intersection representation, or a t least how to  ob tain  

th e  intersection representation. It is conceivable th a t  such a representation  exists, b u t we 

do not know how to  determ ine it.

To illustrate M uller’s observation on intersection classes, consider the  line graphs of 

simple hypergraphs as defined below [8].

D e f in itio n  2.6 A hypergraph H  — {V,£) consists o f  a set of vertices V ,  and a set of  

hyperedges £, which are non-empty subsets of V .  A hypergraph is said to be simple i f  no 

edge is properly contained within another. The rank o f H  is the value m a x { |e|}.

D e f in it io n  2 .7  The line graph o f  a hypergraph H  = (V ,£ )  is the graph L ( H ) = (£, E )  for  

which ee' £ E  i f  and only i f  e ^  e' and e fi e' ^  0.

Consider a line graph of a hypergraph w ith  rank a t m ost k, where k  is a constant. If th e re  are 

n  vertices in the  line graph, th en  there  are n  hyperedges in the hypergraph. Since th e  rank 

of the  hypergraph is bounded above by k, there are a t m ost kn  vertices in the  hypergraph. 

Therefore, the line graph of the  hypergraph can be represented by the  intersection of subsets 

of {1 , . . . , k n }  of size a t m ost k. By M uller’s result, th is class of graphs has an im plicit 

representation. U nfortunately, th is representation is not easily obtained; specifically, the 

only m ethod known for obtaining such a representation  is based upon work th a t appears in 

C hap ter 5.

Representing the vertices by subsets of { 1 , . . .  , n k } is equivalent to  saying th a t  th e  in­

tersection number of these graphs is bounded above by n k . In fact, the  intersection num ber 

of any graph is in 0 ( n 2). Given any graph G  on n  vertices, we can uniquely label each 

edge w ith a num ber in { 1 , . . . ,  Q )} . Each vertex is then  represented by the  set of labels 

of edges incident w ith the  vertex. Since the class of all graphs does no t have an im plicit 

representation, the condition th a t  th e  vertices be represented by constan t size subsets is 

critical to  M uller’s observation.

W hen we consider M uller’s result in the more general context of adjacency labelling 

schemes, we observe th a t  any intersection class in which the vertices of a graph of order n 

can be represented by 0(A )-subsets of { 1 , . . .  ,f>} offers an adjacency labelling scheme w ith 

labels using 0 (A lo g <f) bits. Providing A log^ 6  o (n), which is to  say th a t  (j)X £ 2°<'n\  then 

we enjoy a savings over the  “default” adjacency labelling scheme obtained  using adjacency 

m atrices.

As mentioned by M uller, these observations on intersection classes also apply if adjacency 

is determ ined by any other binary  relation such as containm ent, overlap, or order. For 

instance, the adjacency labelling scheme for interval graphs presented in C hapter 1 is not 

based so much on intersection of intervals on the  real line; ra ther, it is really based upon 

2-subsets of {1, . . . ,  2n}  using the b inary  relation, b, given by
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w r , t ,1 x I 0 if a, b < c ,d  or a, b > c,d,
b({a, b}, {c, d}) =  < .

1 otherwise.

U n iv ersa l graphs

In bo th  of the works of M uller [45] and K annan et al. [31], im plicit representations were 

shown to  have a close relationship to  vertex induced universal graphs. These graphs are 

defined as follows [31].

D e f in itio n  2 .8  G is a vertex induced universal graph of a set o f  graphs S  i f  all members  

of S  are vertex induced subgraphs o f G.

Consider a class of graphs C, and  let Cn denote th e  set of m em bers of C having at m ost 

n  vertices. I t has been shown by b o th  M uller and K annan  et al. th a t  if C has an implicit 

representation, then , for some constan t k, Cn has a vertex induced universal graph on O (nk ) 

vertices which can be constructed  in polynomial tim e. L etting  T  be th e  Turing machine 

used in an im plicit represen tation  for C, we construct such a universal g raph  U  as follows. 

In  the  implicit representation  of C, the  m embers of Cn have labels of length c lo g n , for some 

constant c. The vertices of U correspond to  each of the  2clos” =  n c b it vectors of length 

c lo g n . Two vertices in U, represented by bit vectors hi and 62 , are adjacent if and only if 

T (b l ,b2) = l.

2.2 In form ative lab ellin g  schem es

2.2.1 D efin ition

As mentioned in C hap ter 1 , adjacency can be replaced by any function /  th a t  acts on sets 

of vertices. We present th e  definition of an /-labelling  scheme as introduced by Peleg [47].

D e f in it io n  2 .9  Consider a function  f ( S , G )  defined on sets of vertices S  o f  fixed but arbi­

trary finite graphs G. A n  informative f-labelling scheme of a family Q o f  finite graphs is a 

pair  (M , D) defined as follows.

•  M  is a vertex labelling algorithm (marker) whose input is a graph G in Q. Note that 

M  need not be deterministic; accordingly, let M g be the set of all vertex labellings of  

Vq which can be assigned by M .

•  D  is a polynomial time deterministic evaluation algorithm (decoder) whose input is a 

set of vertex labels. Given any labelling L q  o fV c ,  let L s :g  denote the subset o f  these 

labels corresponding to a subset S  of Vo- For any graph G in Q, we define L q  to be 

(D,  f)-correct i f  D {L s ,g )  =  f { S ,G )  for  every subset S  of Vq on which, f  is defined.
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Given this definition, we require that M q he (D, f)-correct fo r  all G in  Q and fo r  all 

M q in A4g - Note that D  is a function o f  the labels only.

For any such function  f ,  an f-labelling scheme is said to be an informative labelling scheme.

To illustrate th is  definition, consider th e  following ancestor labelling for rooted trees. To 

the root the m arker assigns the b it string ‘O’ as its label. For any vertex v, w ith children 

v i , . . .  ,Vk, the  m arker assigns to  each child a unique m em ber of a prefix-free k-set of strings 

(by prefix-free we m ean th a t  no string is a  prefix of another; for instance, ‘110’ is a prefix 

of ‘1101’, bu t not of ‘111’. One such triv ial set is { 0 ,1 0 ,1 1 0 ,...} ) . The m arker then assigns 

to  each vertex the  label consisting of its string  from th e  prefix-free set concatenated to  the 

end of the label of its parent. The decoder can determ ine if a vertex v\  is an ancestor of v2, 

using only their labels, by checking if the  label of v\  is a prefix of the  label of v2.

Ju s t as w ith adjacency labelling schemes, we judge the  quality  of an inform ative labelling 

scheme according to  the  running tim e of M  and D, as well as the  labels generated by M .  

The notions of space-optim ality and balance still apply; however, th e  same cannot be said for 

strong space-optim ality. Fundam ental to  the  concept of strong space-optim ality is the  fact 

th a t adjacency labelling schemes provide a unique represen tation  for each m em ber in the 

class. Specifically, an  adjacency labelling scheme using 0(</>(n)) b its  in to ta l is space-optim al 

for any family of size 2®Wnb . For any general function / ,  an /-labelling  scheme does not 

necessarily provide a unique representation for each m em ber in  the  class; for instance, let 

/  be th e  boolean function th a t  determ ines if two vertices are connected. T h a t being said, 

there are functions which guarantee unique representations, for example, distance, so we are 

free to  apply the  concept of strong space-optim ality to  these labelling schemes.

2.2.2 A pp lications

The introduction  of inform ative labelling schemes boosted  the  in terest in the  idea of space 

efficient d istribu ted  d a ta  structures as introduced by M uller [45] and K annan et al. [31], given 

th a t different functions could be considered depending on the  application. We describe three 

such applications here; a survey of inform ative labelling schemes can be found in [23], and 

fu rther discussion of the ir applications can be found in  [46], [32], [1], [4], and [56].

X M L  search  en g in es

Inform ative labelling schemes have direct applications to  the  efficiency of XML (Extensible 

M arkup Language) search engines [32]. A Web docum ent conforming to  the XML standard  

can be viewed as a tree w ith nested nodes corresponding to  individual words, phrases, or 

sections of the docum ent. Using inform ative labelling schemes, an XML search engine can 

assign labels to  each of these nodes, thereby allowing relationships such as ancestor, parent, 

and sibling to  be determ ined using only the labels of the  nodes. This allows the  search engine

19

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



to  answer web queries w ithou t repeated ly  accessing the  file itself. Moreover, by employing 

dynam ic schemes the  search engine will no longer have to  recalculate the  labels of the  nodes 

when a  small change is m ade to  th e  XML docum ent.

R o u tin g  A lg o r ith m s

Informative labelling schemes also have direct application to  routing  algorithm s [51]. Con­

sider sending a  message along the  best rou te  from node V o  to  node V f .  Typically, Vo  consults 

a local routing tab le  to  determ ine the  next node along the  best path , say iq , then  sends 

the message to  tq , which repeats th e  process. Each node has a tab le  consisting of n  entries, 

where n  is the num ber of nodes in th e  network. If we had  an  inform ative labelling scheme 

th a t could determ ine v\  from the  labels of vq and Vf, we could elim inate these routing  tables, 

thereby reducing th e  am ount of local storage required.

B ro a d ca st P r o to c o ls

Informative labelling schemes can also be applied to  broadcast protocols in much the  same 

way th a t we applied them  to  routing  algorithm s [46]. Consider sending a message from 

node V o  to  node V f ,  by m eans of netw ork broadcast, as opposed to  using an optim al rou te  as 

discussed above. Typically, Vo consults a local distance tab le  to  determ ine an upper bound 

on the distance to  v /  so the  broadcast can be term inated  after a certain  am ount of tim e. As 

before, each node has a  tab le  consisting of n  entries, where n  is the num ber of nodes in the 

network. If we had  an inform ative labelling scheme th a t  could determ ine an upper bound 

on the distance betw een Vo and v / ,  then  we could elim inate these distance tables, thereby  

reducing the am ount of local storage required.

2.2.3 P revious work

Inform ative labelling schemes have been studied for a variety of functions besides adjacency; 

such functions include distance, nearest common ancestor and flow. As adjacency is the  

function of prim ary interest in th is treatise, we will not present schemes for o ther functions; 

ra ther, we sum m arize the  known results in Table 2.2. Specifically, Table 2.2 lists asym ptotic 

bounds on the sizes of inform ative labelling schemes. We note th a t Table 2.2 does not 

contain inform ation on schemes which approxim ate a function, nor schemes designed to  

encode m ultiple functions. To assist the  reader, definitions of these classes can be found in 

Appendix A.
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Table 2 .2 : Inform ative labeling schemes for functions o ther th a n  adjacency unless o th ­
erwise indicated, all sizes give num ber of b its per label; * indicates a bound on the to ta l 
num ber of bits for th e  entire labelling)

F u n ction F am ily B o u n d  on  sch em e size!
Ancestor rooted  trees O (logn) [51]
Center trees 0 ( lo g 2 n) [47]

D(log2 n) [47]
Distance binary  trees D(log’z n) [24]

b ipartite  (smaller side of size 
k)

£l(k(n — k) — 0 (n lo g n ) ) I [24]

circular arc O (logn) [22]
cliquewidth-Ac 0 (lo g 2 n) [13]

0 (lo g 2 n) [24]
cycles O (logn) [47]
m axim um  degree 3 D (n5)f [24]
degree- k Q,(y/n) [24]
degree-A; p lanar fl(n^)*  [24]
distance hereditary 0 (log2 n) [21 ]

D(log2 n) [24]
general graphs O (n) [24]

fi(n ) [24]
hypercubes O (logn) [47]
interval O (logn) [22]

D (logn) [22 ]
meshes O (logn) [47]
perm utation 0 (lo g 2 n ) [34]
planar O (V n lo g n ) [24]

Q (n^) [24]
proper interval O (logn) [22]
recursive r(n )-separato r 0 ( r  (n) log n  +  log2 n) [24]
tori 0 (lo g  n) [47]
trees 0 ( lo g 2 n) [24]

D(log2 n) [24]
treewidth-fc O (log^n) [24]

D(log2 n) [24]
weighted binary  trees (edge 
weights in [0, M  — 1])

D (lo g n lo g M ) [24]

weighted c-decomposable 
(constant c; edge weights in 
[0, M  — 1])

0 ( lo g 2 n + log n  log M )  [46]

weighted fc-outerplanar (con­
stan t fc; edge weights in 
[0, M  — 1])

0 (lo g 2 n + log n  log M )  [46]

weighted series-parallel (edge 
weights in [0, M  — 1])

0 (lo g 2 n  +  log n  log M )  [46]

weighted trees (edge weights 
in [0, M  — 1])

0 (lo g 2 n + log n  log M )  [46]

well (a, g)-separated 0 {g {n ) \o g n )  [35]
D istance (at m ost d) trees 0 (lo g  n  +  d\J \og n) [32]
Edge-connectivity general graph 0 (lo g 2 n) [33]

continued on next page . . .
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. . .  continued from previous page
F u n ction F am ily B o u n d

fl(log2 n) [33]
Flow general graph  (m ax edge ca­

pacity w)
0 (lo g 2 n  + log n  ■ log w) [33]

U (log2 n + lo g n  log w) [33]
N earest Common A n­
cestor

rooted trees (re tu rn  identifier) (X log^n) [47]

ft(log2 n) [47]
rooted trees (re tu rn  label) O (logn) [3]

N ext Node R outing forest 0  (n) [51]
tree O (logn) [56]

Reachability planar digraph O (logn) [55]
Separation Level rooted trees 0 (lo g 2 n) [47]

fi(Tog2 n) [47]
Steiner Tree weighted graph, M  b it edge 

weights
0 ( ( M  +  logn) log n ) [47]

fl((M  + lo g n )  lo g n ) [47]
weighted graph, a rb itra ry  
edge weights

0 ( ( M  +  lo g n )lo g n )  [47]

f l (M  +  n lo g n )  [47]
fc-vertex connectivity 
(constant k )

general graph O (logn) [33]

11 (logn) [33]
fc-vertex connectivity 
(k poly log in n)

general graph 12 (fc logn) [33]

2 .2 .4  D ynam ization

A lthough a significant num ber of results have appeared on the  topic of inform ative labelling 

schemes, the  seminal work of K annan, Naor, and  R udich [31] m ade no m ention of th is variant 

of adjacency labelling schemes. Instead, K annan et al. suggested the  dynam ic problem  as 

a direction for fu ture research. U nfortunately, the  au thors did not consider th e  problem in 

detail. A t m ost, K annan et al. suggest th a t  the  addition  or deletion of a vertex  or an  edge 

should require only a “quick” update  of th e  labels in order to  obtain  an adjacency labelling 

of the  new graph.

In  th e  following chapter, we develop the  theory  of dynam ic informative labelling schemes. 

Specifically, we define w hat is m eant by a dynam ic inform ative labelling scheme, introduce 

the concept of error-detection, discuss the  qualities th a t make a good dynam ic scheme, and 

dem onstrate  the  connection between error-detection and the graph recognition problem.
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Chapter 3

Dynam ic Schemes

In m any applications th e  underlying topology is constantly  changing and we desire algo­

rithm s which can accom m odate these changes w ithou t having to  process th e  new topology 

from scratch. By definition, inform ative labelling schemes are static; th a t  is, the  graph 

provided to  th e  algorithm  never changes. By studying th e  dynam ic version of inform ative 

labelling schemes we hope to  expand the  applicability  of inform ative labelling schemes to  

real world problems.

3.1 D yn am ic  ad jacency lab ellin g  schem es

3.1.1 D efin ition

Before we define a dynam ic inform ative labelling scheme, let us consider the  following defini­

tion  of a dynam ic adjacency labelling scheme. T his definition is based more on our intuitive 

understanding of the  dynam ization of a  sta tic  problem; as such, it  will be less precise than  

the  formal definition we will encounter later.

D e fin itio n  3.1 A dynamic adjacency labelling scheme of a family Q o f finite  graphs is a 

tuple (M , D, A, R) fo r  which

• (M , D ) is an adjacency labelling scheme o f Q.

•  A is a set o f  functions which map graphs in  Q to other graphs.

• R  is a polynomial time relabelling algorithm (relabeller) which, using only a vertex 

labelling, maintains an adjacency-correct labelling while a dynamic graph operation 

in  A acts on a member of Q, providing the operation produces another graph in Q. 

Furthermore, R  accesses vertex labels only as required.

Moreover, we say that the dynamic adjacency labelling schem.e is error-detecting if, given 

any input  (6 , L g ), R  is able to determine when 6 (G) 0  Q.
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3.1.2 E xam ple

In a dynam ic inform ative labelling scheme the  vertex labels m ust contain sufficient inform a­

tion to  allow algorithm s to  update  them . In general, the  labels used in a sta tic  scheme do 

not contain enough inform ation to  be used in a dynam ic scheme; however, the  inform ative 

labelling schemes of certain  classes are inherently dynam ic.

Consider the  adjacency labelling scheme described for trees in Section 2.1.1. For sim­

plicity, let us require th a t  th e  roo t no t be deleted. In adding a  new vertex, th e  relabeller 

chooses an  identifier x, the  sm allest available n a tu ra l num ber, th en  labels th e  new vertex 

(.x ,p a r e n t ( x )). In deleting a vertex, the  relabeller sim ply deletes its label from storage. 

Each relabelling can be perform ed in 0 (1 )  tim e (we also assum e a word-level RAM  compu­

ta tio n  model for the  relabeller, w here word sizes are fl(lo g n )). U nfortunately, th is dynam ic 

scheme is not error-detecting because we cannot tell if the  deletion of a vertex creates a 

disconnected forest; however, we can make the scheme error-detecting by adding, to  each 

label, a counter of the  num ber of children. Note th a t we can tell if the  root is being deleted 

as parent(v)  =  NIL = >  v = r.

3.1.3 U n d erly in g  assu m p tion s

Although the dynam ic adjacency labelling scheme presented in Section 3.1.2 seems straigh t­

forward, there  are two underlying problems.

1. I t  is possible to  delete too  m any vertices, thereby causing the  rem aining labels to  be 

too  large (the point a t which one decides th a t the labels are intolerably large depends 

on the  application, as well as the  family under consideration).

2. W hen a vertex is added and  given an identifier, the  relabeller m ust determ ine an 

acceptably short unused identifier to  assign to  it.

These problems do not depend on adjacency being the function under consideration; ra ther, 

they  are inherent in any dynam ic inform ative labelling scheme.

The obvious way to  deal w ith the  first problem is to  relabel the  graph from scratch 

using the  marker algorithm . Note th a t  we m ust initially use th e  decoder to  determ ine a 

representation of the graph th a t the  m arker can use as input; for example, an  adjacency 

m atrix . This approach works well provided adjacency is the function under consideration. 

Using the  decoder we can determ ine the  adjacency of every pair of vertices, allowing us to  

reconstruct the graph and provide appropriate input to  the  m arker. B ut w hat if the  function 

under consideration is such th a t th e  decoder does not allow us to  determ ine the  graph? For 

example, w hat do we do w ith the  boolean function th a t merely determ ines if two vertices 

are connected?
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The obvious way to  deal w ith  th e  second problem  is to  m ain tain  a centralized resource 

of identifiers th a t are not in use. Specifically, such a central resource m ight represent these 

identifiers using a list of intervals represented by their endpoints (in much the same m anner 

as the interval representation  presented in C hap ter 1). B ut w hat if our application involves 

a distributed  network? - does a new node have to  broadcast to  a central resource to  get an 

identifier?

Given th a t we are approaching dynam ic inform ative labelling schemes from a theoret­

ical standpoint, we make certain  assum ptions to  elim inate the  problem s discussed above. 

Specifically, we assume the  following.

1. If n  is the  num ber of vertices presently in the  graph, then  th ere  exists some constant 

k  such th a t there  has never been more th a n  n k vertices in th e  graph.

2. If an identifier is needed, a m arker or relabeller can o b ta in  the  smallest available 

identifier in 0 (1) tim e.

Again, the  validity of such assum ptions is highly dependent on th e  application in which 

the  dynam ic scheme is being used. In our case, we do not w ant th e  restrictions of the 

application to  hinder the  developm ent of the  scheme. It is hoped th a t  our dynam ic schemes 

can be modified to  work in different applications, w ith ad justed  label sizes and running 

tim es as appropriate.

3.2 D yn am ic in form ative lab ellin g  sch em es

3.2.1 D efin ition

Let us now consider the  formal definition of a dynam ic /-labelling  scheme.

D efin itio n  3 .2  Consider a function f ( S , G )  defined on sets o f  vertices S  of fixed but arbi­

trary finite graphs G. A dynamic f-labelling scheme o f a family Q o f  finite graphs is a tuple 

(M , D, A , R) defined as follows.

•  (M , D ) is an f-labelling scheme o f  Q.

•  A is a set of functions which map graphs in Q to other graphs.

•  R  is a polynomial time relabelling algorithm (relabeller) whose input is a pair (5, L q ), 

where S £ A. G  E Q, and L g is a (D, f)-correct labelling o f Vq from Cq (defined 

shortly). Providing S(G) £ Q, R  assigns a new (D, f)-correct labelling to V ^ q ) by 

accessing the la.bels o f L q only as required. Note that R  need not be deterministic; 

accordingly, let TZs.l g be the set o f  labellings o f  Vj(G) which can be assigned by R  on 

input (<5, La).  For each G in Q we define the family Co o f  (D, f)-correct labellings of
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V g  by L q  € C-g i f  and only i f  L q  6  M g  or there exists G* in Q, S in  A , and L q - in  

C g * such that S(G*) —  G and L q  € T Z s , l g .  ■

Moreover, we say that the dynamic f-labelling scheme is error-detecting if, given any input 

(■5 , L g ), R  is able to determine when 5(G) Q.

In  a less formal context, R  can be considered as the  com position of algorithm s required 

by the  graph operations found in A. For instance, if A perm itted  the  addition or dele­

tion of any edge from a graph, we m ight consider R  to  be com prised of two algorithms, 

lNSERTEDGE(e,Z/G) and D e l e t e E d g e ^ L g ) ,  which use a labelling L q  to  relabel G + e 

and G  — e, respectively. Again, note th a t th e  algorithm s I n s e r t E d g e  and  D e l e t e E d g e  

do not directly  receive G  as input, ra ther, they  are given access to  th e  labels of the  vertices 

of G as required. We are not prepared to  m ain tain  an adjacency m atrix  or adjacency lists 

to  represent G; the  goal of the  inform ative labelling scheme is to  efficiently represent G 

by doing away w ith  such d a ta  structures. If adjacency is the  function under consideration 

then  m aintain ing an adjacency m atrix  or adjacency list would obviate the  necessity of the 

adjacency labelling scheme! Moreover, in practice we are not in terested  in m aintaining a 

labelling for every graph in the  family; ra ther, we use the  labelling of a  graph  to  determ ine 

a labelling of a slightly modified graph, discarding th e  labelling of th e  original graph in the 

process. In th is sense, we can om it the  labelling from the input of the  algorithm s as these 

algorithm s are directly modifying the  labelling of the  graph under consideration; th a t is, 

the above algorithm s m ight be presented as iN SERTED G E(e) and D EL E T E E D G E (e).

3.2.2 A ssessin g  quality

Ju st as a sta tic  /-labelling  scheme can be created for any function /  when we allow suffi­

ciently weak choices of M  and D, sufficiently weak choices of M , D,  A, and R  will result 

in a dynam ic scheme. Specifically, we can assess the  quality of a dynam ic scheme according 

to  the  following.

1. The quality of the  sta tic  scheme (M , D ) contained within.

2. T he operations contained in A.

3. T he running tim e of R.

4. The labels generated by R.

5. T he labels modified by R.

Having previously discussed how to  assess the  quality  of a sta tic  scheme in Section 2.1.2, 

we begin by considering the operations contained in A. Preferably, the labelling scheme will 

be fully dynamic; th a t is, A will contain the addition and deletion of a single edge or vertex
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(along w ith the edges incident w ith  th is vertex). In m ost cases these operations will allow 

us to transform  any m em ber of Q into any other m em ber of Q w ithout escaping the  class 

Q. Specifically, if Q is hereditary , th a t  is, any vertex  induced subgraph of a  m em ber is also 

a m em ber, then  these four dynam ic operations are sufficient to  transform  any m em ber of Q 

into any o ther m em ber of Q w ithou t escaping Q. For each m em ber G of Q, there is a sequence 

S g  — {Go =  0, G i , . . . ,  G |vg |_ i ,G |v g | =  G} of m em bers of Q for which G j_ i =  Gi — v,;, 

where Vi is a vertex of Gi  and 1 <  i < \ Vg\- Thereby, given G ^ \ G ^  €  Q, we can construct 

G*'2) from G^1) by using the  vertex deletion relabeller to  transform  G ^  in to  0  v ia the 

members of S q (i> , then  using the vertex addition relabeller to  transform  0 in to  G*-2  ̂ via the 

members of S q (2) •

Along w ith the  range of operations in A , we are also interested in the  tim e taken  by R  

on inpu t (5, L q ) relative to  th e  tim e taken to  label 5(G) by the  fastest labelling algorithm  

of a sta tic  /-labelling  scheme. Specifically, th e  purpose of the  dynam ic scheme is to  provide 

quick updates of the  labels; thereby, if there  is a sta tic  scheme which can generate th e  labels 

in equal or be tte r tim e, even from scratch, then  there  is no advantage gained by using the 

dynam ic scheme.

As well, we m ight also judge a dynam ic scheme according to  the  size of th e  labels gen­

erated by R. N aturally, th e  size of the  labels generated by M  is taken  into account when 

judging the  quality  of th e  s ta tic  scheme (M , D)\ however, the  labels generated by M  and R  

m ust be considered together, as labels from b o th  algorithm s could be in use a t  any given 

time. In particular, consider th a t  the adjacency labelling scheme developed using adjacency 

m atrices can be fu rther developed into a dynam ic adjacency labelling scheme. Since th is dy­

namic scheme uses vertex labels of size 0 (n), any other dynam ic adjacency labelling scheme 

using labels of size i l(n )  would only be advantageous if it perm itted  faster updates of the 

labels th an  can be achieved using the  dynam ic scheme developed from adjacency m atrices. 

Furtherm ore, we may wish to  consider criteria such as balance and space-optim ality, for 

appropriate functions / ,  ju s t as we did for s ta tic  schemes.

Aside from the size of the  labels generated by R,  we m ight also be in terested  in the 

labels th a t  are changed by R.  In some sense, th is m easure is captured in the  running  tim e 

of R\ however, the running tim e does not give the  full picture. In particular, we m ight like 

to  know how m any labels are changed and how the  changes perm eate through the  graph. 

Perhaps, depending on th e  dom ain, these m etrics could be more im portan t th an  th e  label 

size. To measure th is change, we define two quantities, modification excess and modification 

locality.

As we did w ith the definition of an inform ative labelling scheme, let us first consider 

these definitions intuitively in the context of dynam ic adjacency labelling schemes. The 

m odification excess of R  is the  m axim um  value, taken over all operations in A and all

27

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



possible labellings produced in th e  dynam ic adjacency labelling scheme, of th e  difference 

in cardinality  between the  set of vertices w ith  modified labels and  the  set w ith modified 

neighbourhoods. In essence, the  m odification excess measures th e  num ber of vertices whose 

labels change even though we did no t expect them  to. The m odification locality of R  is 

the m axim um  value, taken  over all operations in A and all possible labellings produced in 

the dynam ic adjacency labelling scheme, of the m axim um  distance to  th e  set of vertices 

w ith modified neighbourhoods from a vertex whose label has been modified, bu t whose 

neighbourhood has not. In essence, the  m odification locality m easures th e  distance between 

the vertices whose labels we expected to  change and the vertices whose labels we did not 

expect to  change.

To illustrate  how these m easures are calculated, consider th e  relabelling depicted in 

Figure 3.1. Note th a t, when calculating these values for a dynam ic scheme, we m ust consider 

the m axim um  of the  values taken  over all possible relabellings; here we consider a single 

isolated relabelling stric tly  for illustrative purposes. The neighbourhoods of b, c, and e 

change, whereas the  labels of h, d, b, and e change. Therefore, the  m odification excess 

of th is relabelling is 4 — 3 =  1. Given th a t  the  labels of d and h are modified, b u t their 

neighbourhoods do not change, the  m odification locality of th is  relabelling is

m ax { d i s t c i x ,  {b, c}) =  max d i s t $ i G ) ( x , {b, c, e})}
x£{d,h}  x€{d,h}

=  dis tc{h , {b, c})

= d is tS(G)(h, {b,c, e})}

=  2 .

Note th a t, when adjacency is the  function under consideration, th e  distances in G  are the 

same as the  distances in 5(G)\ however, th is  need not be the case in general. As such, we 

will take the m inimum (of th e  m axim um  distances) over G  and  5(G).

Integral to  the definition of m odification excess and m odification locality for dynam ic 

adjacency labelling schemes are the ideas of modified labels and  modified neighbourhoods. 

We require analogous term s for a rb itra ry  dynam ic schemes, which we define below.

D e f in it io n  3 .3  Consider an input (5, L q ) fo r  the relabeller, R ,  o f  a dynamic f-labelling  

scheme (M , D , A , R ) o f  a family Q, fo r  which 5(G) G Q. Recall from  Definition 3.2 that R

G 5(G)
a (4) a ( 4 ) ______6(0)

Figure 3.1: Adding a vertex to a graph (labels in brackets)
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need not be determ inistic; as such, let R s , l g denote the set o f all possible outputs Lg;g) of 

R  on input on (5 ,L q )■

We say that a vertex v in G or 5(G) is f-changed i f  it  belongs to some set of vertices,

S ,  fo r  which at least one o f  f ( S , G )  and f ( S ,5 ( G ) )  is defined but f ( S , G )  /  f ( S ,5 (G ) ) ;  in

saying that f ( S , G ) /  f ( S ,5 (G ) )  we include the possibility that one o f  these expressions is 

undefined. We also say that the label o f  v is modified i f  at least one o f  L ^  q and -h{„}j(5(G) 

is defined but £{„},g  /  L{v},<5(G)/ recall that i{„},G denotes the labelling o f v in G and note 

that in saying  £.{„},G /  ^{v},s(G) we a ŝo include the possibility that one o f  these expressions 

is undefined.

D efin it io n  3 .4  For each specific inpu t/ou tpu t  pair  ((5, L g ) ,  Ls(G)), we define its modifica­

tion excess, denoted m e((5,La),Lg^G)), to be the difference between the cardinality o f  the 

set o f  vertices whose labels are modified and the cardinality o f  the set o f  vertices that are 

f  -changed. In  turn, we define the modification excess o f  (5, L g ) ,  denoted m e(5,LG), to

be m ax m e((5, L g ), L s(G)) and the modification excess o f  R ,  denoted m e(R), to be
L s ( g )S.T^s , l g

m ax m e (5, L g ) .
C,Lg )

D e fin itio n  3.5  For each specific inpu t/ou tput pair ( ( 5 , L g ) ,  Lg(G))> we define its modifi­

cation locality, denoted mi((5, L g ) ,  L>s(G) )> to be the m in im um  over G and 5(G), o f  the 

m axim um  over all the distances, from a vertex which is not f  -changed, but whose label is 

modified, to the set o f  vertices which are f  -changed; i f  there is no such vertex which is not 

f -changed then we let this value be zero. In  turn, we define the modification locality of  

( 5 , L g ) ,  denoted m / 5 ,  L g ) , to be m ax mi((5, L q ) ,  L$;g)) and the modification locality
i5 (G ) € 7 ? . j ,_ L G

of R , denoted m A R ) ,  to be m ax m A S ,  L g ).
(s,l g)

H aving considered the relabeller to  be the  composition of several smaller relabelling 

algorithm s, we can consider its m odification locality and excess in te rm s of these smaller 

algorithm s. N ot only will this help us calculate these quantities, b u t th is will also help us 

b e tte r  understand  the effect of specific dynam ic changes on the  labelling of the graph.

3.2 .3  G raph recognition

In  general, a graph recognition problem  is of the form “Given a p roperty  P  and a graph 

G, does G  satisfy P I ”. More commonly, we consider questions of th e  form “Given a class 

C and a graph G, does G  belong to  C?” . Under the  right circum stances, polynomial time 

recognition algorithm s can be used to  add error-detection to  a dynam ic scheme.

T h e o r e m  3 .6  Consider a Q(B) bit/label dynamic f-labelling scheme, (M, D, A, R), fo r  a 

family o f  graphs Q such that the following hold.
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•  For any graph G in Q, f  allows us to uniquely determine G from  any labelling in  Cg 

(fo r  example, consider adjacency or distance).

•  The recognition problem is polynomial fo r  Q; that is, there exists a polynomial algo­

rithm A  such that, fo r  any graph G, A  determines i f  G belongs to Q.

Then Q has an 0 ( B )  bit/label error-detecting dynamic f-labelling scheme.

P ro o f. On any inpu t (5 ,L g ), R  can use /  to  determ ine, in polynom ial tim e, the struc tu re  

of G  and, hence, the  stru c tu re  of 5(G). In  tu rn , R  can incorporate A  to  determ ine if 5(G) 

is in Q, thereby m aking th e  dynam ic scheme error-detecting. Moreover, there  is no increase 

in the  the num ber of b its used in a vertex  label. □

In practice, the  approach taken  in th e  proof of Theorem  3.6 is an inefficient way of adding 

error detection to  a dynam ic scheme as we m ust incorporate a recognition algorithm  in to  the 

relabeller. R ather, given a dynam ic scheme, we can use our knowledge abou t recognition to  

inform us th a t an error-detecting  dynam ic scheme exists. Ideally, a  slight m odification of our 

dynamic scheme will give us error-detection. In C hap ter 4, we develop an error-detecting 

dynam ic adjacency labelling scheme for line graphs. Since the recognition problem had  been 

shown polynomial for th e  class of line graphs [40, 50], we knew th a t  any dynam ic adjacency 

labelling scheme for line graphs could be m ade error-detecting. As discussed, our relabeller 

does not directly incorporate either of th e  polynom ial recognition algorithm s.

Of equal in terest is th e  contrapositive of Theorem  3.6. Namely, if there  is a dynam ic 

/-labelling  scheme for Q such th a t

•  for any graph G  in G, f  allows us to  determ ine the  structu re  of G  from any labelling 

in Cg (for example, adjacency or distance), and

•  the relabeller cannot be augm ented to  make th e  scheme error-detecting,

then  the recognition problem  cannot be polynom ial for Q.

Under the right circum stances, we can also develop recognition algorithm s from error- 

detecting dynamic schemes.

T h eo rem  3 .7  Consider a family o f graphs Q fo r  which there exists an error-detecting dy­

namic f-labelling scheme, ( M , D , A , R ) .  A s  well, let there be an algorithm, which, fo r  any 

graph G in Q, determines the following in polynomial time.

•  A sequence S g =  {Go = G* , G i , . . . ,  G k - 1, Gk = G} o f  unique members of Q fo r  which 

I < k < \Vg \c, fo r  some constant c.

•  A sequence G A =  {<So, #i> • ■ •, <^c-i} of members of A  such that 5t (G,) = Gi+i, fo r  

0 < i < k  -  1.
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•  A labelling o f G* which belongs to Cg * ■

Then graph recognition can be done in polynomial time fo r  Q.

P ro o f .  For any graph  G  in Q we can transform  th e  labelling of G* into a labelling for 

G k~i  using a polynom ial num ber of calls of the  polynom ial tim e algorithm  R , nam ely 

{i?o, R i ,  ■ ■ ■ ,-Rfc-i}, w here f?o =  R{So, Tg*) and Ri =  R(5i, for 1 <  i < k — 1 . We

can now resolve th e  m em bership of G  in Q according to  the  action of R  when it a ttem p ts 

to  determ ine a labelling of G  from th e  labelling of G k - 1- If G  G Q, th en  R  will determ ine a 

labelling of G; otherwise, it will o u tp u t th a t G $  Q since it is an  error-detecting  algorithm . 

□

An interesting corollary of Theorem  3.7 follows when we consider hereditary  classes. 

Recall th a t a class of graphs is said to  be hereditary if every vertex  induced subgraph of 

every member is also a m em ber.

C o ro lla ry  3 .8  Consider a hereditary family o f graphs Q fo r  which there exists an error- 

detecting dynamic f -labelling scheme, ( M , D , X , R ) ,  where A  includes the addition o f ver­

tices (along with incident edges), and R  adds vertices in O (X )  time. Graph recognition can 

be done in 0 ( n X )  time fo r  Q.

P ro o f. For any graph  G , consider a sequence S q  =  {Go =  0, G i , . . . ,  G\vg \ - i >̂ \ v G\ = G]  

of graphs (the graphs m ay be disconnected) for which G^_i =  Gi — Vi, where rq is some 

vertex of Gi and 1 <  i <  |Vg|- As well, consider the  corresponding sequence S'G = {Xq =  

0 , . . . ,X |v G|_ 1}, where X t is th e  set of vertices in G , to  which v*+1 is adjacent. These 

sequences can be determ ined in O (n) time.

Since Q is hereditary, G  is in Q if and only if every Gi is in Q. S tarting w ith the  

em pty  labelling for 0, R  can determ ine a labelling for G j+ i from th a t  of Gi, in 0 (X (G ))  

tim e. Because our scheme is error-detecting, R  will detect if some Gi does not belong to  Q. 

Consequently, we have an O (n X )  tim e recognition algorithm  for Q. □

One might be led to  believe th a t we have ju st argued th a t  th e  recognition problem is 

polynomial for any hered itary  class of graphs, bu t th is is not th e  case. I t is true th a t all 

hereditary  families have a dynam ic adjacency labelling scheme, namely, the  default scheme 

obtained from adjacency m atrices. However, there is no guarantee th a t  such a scheme is 

error-detecting. T he fact th a t  the  dynam ic scheme is error-detecting is critical in the  proof 

of Corollary 3.8.

We use Corollary 3.8 in C hap ter 5 to  establish 0 ( r3n 3) tim e recognition for r-m inoes and 

r-bics. Although polynom ial tim e recognition has already been established for r-m inoes by 

Johnson, Yannakakis, and Papadim itriou  [30], as well as M etelsky and Tvshkevich [44], our
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approach is faster. A slight m odification of the  algorithm  of Johnson et al. which generates 

all m axim al cliques in lexicographic order, results in an  0 ( r n 4) recognition algorithm . Me- 

telsky and Tyshkevich do not explicitly s ta te  th e  asym ptotic tim e they  require to  perform  

recognition, bu t the ir forbidden subgraph approach requires 0 (n r+2) time.

3.2 .4  P rev ious work

The dynam ic version of adjacency labelling schemes was m entioned by K annan et al. [31], bu t 

they did not consider th e  problem in detail. The first paper to  address this dynam ic problem 

is th a t of Brodal and  Fagerberg [10] who develop a dynam ic adjacency labelling scheme for 

graphs of bounded arboricity. T heir relabelling algorithm  keeps an outneighbourhood list 

for each vertex v, sim ilar to  th a t seen in Section 2.1.1, and it also includes a mechanism to  

handle outdegree lists which get too  big. O n a  graph  w ith  n  vertices and arboricity bounded 

by c, Brodal and  Fagerberg’s representation  supports  adjacency testing  in 0 (c )  tim e, edge 

insertions in 0 (1 )  tim e, and edge deletions in 0 ( c + lo g n )  tim e. We present the ir algorithm s 

for handling th e  addition  and deletion of a single edge from a graph of bounded arboricity 

c in Figure 3.2 and  note th a t these algorithm s are easily modified to  handle the addition 

and deletion of vertices. U nfortunately, these algorithm s are bu ilt on the  assum ption th a t 

the  changes to  the  graph do not cause its arboricity  to  exceed c; th a t is, they  are not error- 

detecting. In their article, Brodal and Fagerberg do describe modified algorithm s which are 

error-detecting and  can handle unspecified arboricities, bu t these algorithm s have higher 

asym ptotic running  times.

I n s e r t (u , v )

1 u.adj\\ <— u.ad j[] U {u}
2 if |u.ac(7'[]| =  4 c +  1 th e n
3 S  <- {u}
4 w h ile  S  ^  0 do
5 w  <— P o p (S)
6 for x  <£ w.adj[] do
7 x.adj[] <— x.adj[] U {u>}
8 if  Ix.adjf]! =  4c +  1 th en
9 P u s h (S, x )

10 w.adj[] <— 0

D e l e t e ( u ,  v )
1 u.adj[] <— u.adj[} \  {v}
2 v.adj[} <— v.adj[} \  {u}

Figure 3.2: A lgorithm s for dynam ic adjacency labelling of graphs of bounded arboricity c

Since the work of Brodal and Fagerberg[10], there  have been few other works to  examine 

dynam ic inform ative labelling schemes. Cohen, K aplan, and Milo [11] consider the ancestor 

function on rooted trees in which new vertices can be added to  the  tree. C ontrary  to  the 

problem which we are considering, Cohen et al. require th a t the  labels assigned to  vertices

32

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



be persistent, th a t  is, the  label cannot be changed once it has been assigned. As such, 

their vertex labels m ay be larger th a n  those required using our model, as we have the 

freedom to modify inefficient labels. Specifically, the  scheme of Cohen et al. uses O(n)  

b it labels for a rb itra ry  trees, and O (d lo g A ) b it labels for trees w ith m axim um  dep th  d 

and maxim um  degree A . In each case th ey  prove these labellings to  be optim al, given the  

persistency requirem ent. A lthough the  au thors do not explicitly discuss th e  running tim e of 

their relabeller (which is dram atically  sim pler, given th a t  vertices cannot be relabelled), it is 

0 (1 ) in each case. Additionally, Cohen et al. consider the  scenario in which th e  (re)labeller 

is given clues abou t th e  fu ture struc tu re  of the  tree , which lead to  smaller labels.

Two interesting results on dynam ic d istance labelling schemes can be found in a paper by 

K orm an, Peleg, and  Rodeh [39] (an earlier version appears as [38]). F irst, th e  au thors devise 

a dynam ic distance labelling for unweighted trees, allowing the  addition and  deletion of 

leaves, th a t uses 0 (lo g 2 n) b it labels, which is optim al even for the  sta tic  problem  [24]. Like 

Cohen et al. [11], K orm an et al. do not explicitly s ta te  the  running tim e of th e ir relabeller 

(which is actually  p a rt of a more com plicated m arker). However, they  do discuss th e  notions 

of message com plexity and  bit complexity, which are the  m axim um  num ber of messages and 

bits, respectively, th a t  m ust be sent when the  graph  changes. Specifically, th e ir  scheme has 

a 0 (log2 n) am ortized message com plexity and  0 (log2 n  log lo g n ) am ortized b it complexity, 

thereby, even a relabeller sending sequential messages would run  in 0 (log2 n  log log n)  tim e.

Second, they  establish a framework for extending sta tic  schemes to  dynam ic schemes; 

this framework can be used for a variety of functions including distance, separation  level, 

and flow. For the  partia lly  dynam ic scenario in which vertices can only be added, this 

framework causes a  O (logn) m ultiplicative increase in the  label size and  th e  am ortized 

message complexity (as an increase over the  running tim e of the  static  m arker). If an  upper 

bound on n  is known in advance, then  the m ultiplicative factors on label size and  am ortized 

message complexity reduce to  0 (lo g 2 n j  log log n ) and O ( lo g n /lo g  logn), respectively. For 

the fully dynam ic m odel in which vertices can be added and deleted, there is also an additive 

increase in the am ortized message com plexity (in addition to  those m ultiplicative increases 

previously m entioned). The authors do not offer any comment on the change in  am ortized 

bit complexity for either of these scenarios.

As a follow up to  K orm an et al. [39], K orm an and Peleg [37] consider dynam ic schemes 

th a t approxim ate distances in weighted trees and cycles. Dynam ism  is achieved by allowing 

the weights of th e  edges to  vary, where w  is th e  m axim um  edge weight. For th e  increasing 

dynam ic scenario, in which edge weights can only increase, their schemes use 0 (log2 n  4 - 

log n  log w) b it labels, which is optim al even for exact distances in the sta tic  setting  [24]. 

Moreover, the  message and bit complexities of th e  relabeller are O (m log2 n  +  n  lo g n  log m )
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and 0 (m log2 n  log lo g n  +  n  log n  log ra log lo g n ), respectively, where m  is the  num ber of 

edges whose weights change. For the  fully dynam ic scenario, in  which edge weights can 

bo th  increase and decrease, labels require 0 (log2 n  +  log n lo g n ;) bits, and  the message 

and b it complexities are 0 (m A lo g 2 n) and 0 (m A  log2 n  log lo g n ), respectively, where A =  

m ax{- - ^ '^  : r f > l , e £  E q } and B ( e , d) is the  num ber of vertices a t d istance a t m ost d from 

and endpoint of e. In th e  fully dynam ic scenario, if the  graph is a p a th  or cycle, then  the 

label size reduces to  O (lo g n lo g m ) b its and  th e  message com plexity reduces to  0 (m lo g 2 n).

3.3  N ew  d yn am ic schem es

Having presented the  theory  of dynam ic inform ative labelling schemes, th e  rem ainder of 

the thesis focuses on the  developm ent of new dynam ic adjacency labelling schemes for a 

selection of classes. O ur presentation  of each of these dynam ic schemes carefully describes 

the labelling/m arker, the  decoder, and the  relabeller. The relabeller is presented in parts, 

one for each of the  allowable actions: vertex deletion, vertex  addition, edge deletion, and 

edge addition. Moreover, in th e  body of the  thesis we describe th e  relabeller a t a high level, 

saving th e  detailed pseudocode for A ppendix C.

Specifically, in C hap ter 4, we present a  dynam ic adjacency labelling scheme for line 

graphs. Our dynam ic scheme for line graphs uses O (logn) b it labels and  updates in 0 (e )  

tim e, w here e is the  num ber of edges added to , or deleted from, the  line graph.

In  C hapter 5, we develop a 0 ( r  log n) b it/lab e l dynam ic adjacency labelling scheme for r-  

minoes , graphs w ith no vertex in more th an  r m axim al cliques. Edge addition  and deletion 

can be handled in 0 ( r 2D ) tim e, vertex addition in  0 ( r 2e2) tim e, and vertex  deletion in 

0 ( r 2e) tim e, where D  is th e  m axim um  degree of th e  vertices in th e  original graph and e is 

the  num ber of edges added to , or deleted from, the  original graph. As well, we develop a 

O (r lo g n )  b it/lab e l dynam ic adjacency labelling scheme for r-bics , graphs w ith  no vertex in 

more th a n  r  m axim al bicliques. Edge addition and deletion, as well as vertex  deletion, can 

be handled in 0 ( r 2B ) tim e, and vertex addition in 0 ( r 2nB ) tim e, where B  is the size of 

the largest biclique in the  original graph.

Finally, in C hapter 6 , we present a dynam ic adjacency labelling scheme for proper inter­

val graphs, which are a subclass of interval graphs. Our dynam ic scheme for proper interval 

graphs uses O (logn) b it labels and handles all operations in O (n) time.
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Chapter 4

Line graphs

Recall from Section 2.1.1, the  definition of a  line graph and its base.

D e f in i t io n  4 .1  Given a graph G =  (Vg , E g ), its line graph is the graph L(G) = (E g , E ^ g)) 

fo r  which G ^ l(G ) */ and only */ u  and v are adjacent edges in  G.

In th is chapter, we present a dynam ic adjacency labelling scheme for line graphs th a t  allows 

the  addition and deletion of vertices and edges. The labels used in th is scheme require 

O (logn) bits, and updates require 0 (e )  tim e, where e is the  num ber of edges added to  or 

deleted from the line graph. In com parison, the  best known (static) adjacency labelling 

scheme for line graphs, presented in Section 2.1.1, uses O (logn) bit labels and requires 0 (n )  

tim e to  generate a labelling [45].

Given the  simplicity of their intersection representation, line graphs are perhaps the 

m ost fundam ental intersection class. As such, we hope th a t  our dynam ic adjacency labelling 

scheme for line graphs will offer insight in to  th e  developm ent of dynam ic schemes for other 

intersection classes.

4.1 P a rtitio n  isom orphism

As m entioned in Section 2.1.1, W hitney [58] has shown th a t  every connected line graph 

has a unique base, up to  isomorphism, except for K 3 which has two bases, namely, K% and 

Ad,3 . J u s t as a graph “generates” a line graph, we can can say th a t an edge labelled graph 

“generates” a vertex labelled line graph. For th is  reason, we will also use the te rm  “base” to  

refer to  an edge labelled graph, w ith no isolated vertices, th a t  generates a particu lar vertex 

labelled line graph.

O ur work on line graphs requires a concept sim ilar to  isomorphism, b u t involving edge 

labellings. Given an edge labelling if  of a graph (in which each label is unique), for each 

edge label a ,  we let Pfj  denote the  partitio n  of the  labels adjacent to  a  th a t  is determ ined 

by th e  endpoints of a. We define two bases of a vertex labelled line graph L(G ),  having edge 

labellings i/b and t/>2 , to  be partition isomorphic  if the bases are isomorphic and P f l = Pfj2,
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for all edge labels a.  For example, th e  two bases shown in Figure 4.1(d) are not partition  

isomorphic: in one of these bases, the  partition  corresponding to  a is {{6}, {e}}, while in 

the o ther it is {{6 , c } ,0 }.

W hen we consider the  theorem  of W hitney  in th e  context of labelled line graphs, we 

arrive a t the  following theorem .

T h eo rem  4 .2  Every connected vertex labelled line graph, except those shown in Figure 

4..1(a), has a unique (edge labelled) base, up to partition isomorphism. For each of the four  

exceptions, a vertex labelled graph has two bases that are not partition isomorphic.

P ro o f. Consider a connected vertex labelled line graph L{G)  which has two (edge labelled) 

bases, G \  and G 2 , th a t are not partition  isomorphic. Fundam ental to  th is  proof is the  fact 

th a t the  edge adjacencies in G \  and G 2 are identical, th a t  is, two edges are adjacent in G i 

if and only if they  are adjacent in  G 2 -

Let th e  labellings of G i and G 2 be ipi and '</,'2, respectively, and  let o be a label for which 

P f 1 ^  P $ 2■ Moreover, let P ,f1 =  {Q ^ , R and P jf2 — {Q ^ 2 , R ^ 2). Trivially, observe 

th a t | Q ^  \ +  | >  2 , otherwise, P ^ 1 =  P ^ 2.

Now consider when one of jQ ^ J ,  |Q i/>2|, or I a t least three; w ithout loss of

generality, let b ,c ,d  £  Q^,1. We first consider the  case when {b, c, d} C Q ^ 2 or {b, c, d} C 

Rip2; w ithout loss of generality, assume the  former. Since P ^ 1 7  ̂ P(f2, there  m ust be a 

label e th a t belongs to  Qy,1, bu t not to  Q ^ 2, or vice versa; again, w ithout loss of generality, 

assume the  former. Given th a t e £ Q,in , e is adjacent to  each of b, c, and d in bo th  G \  

and G 2 . Yet e £  P ,/,2, so G 2 m ust contain each of th e  three cycles of edges abe, ace, and 

ade, which is no t possible unless b = c = d. N ext, consider th e  case when {b, c, d} <2 Q ^ 2 

and {b,c, d} (t R ^ 2; w ithout loss of generality, assume th a t {b, c} C Q ^ 2 and {d}  C P^,2. A 

similar argum ent gives th a t G 2 m ust contain bo th  of the  three cycles of edges abd and acd, 

which is not possible unless b = c.

Having shown th a t neither Q ^ 1 , R ^ ,1 , Q ^ 2 , nor P ^ 2 can contain th ree  edges, we observe 

th a t the  only way th a t P$ '1 7  ̂ P<f2 is if, w ithou t loss of generality, there  exist edges b and 

c such th a t {b, c] = Q^>1, b £ Q ^ 2, and c £ Rg,2. Since b and c are adjacent in G i, they  are 

also adjacent in G 2 ; as such, the  edges a, b, and c form a K 13  in G\  and a K% in G 2- 

At th is point, we resolve our proof into th ree cases.

• Q =  {b,c}, R tj, 1 -  0, Q ^ 2 =  {6}, and R ^ 2 =  {c}. If VL{G) = {a ,b ,c} ,  then  G i and 

G 2 are as shown in Figure 4.1(c), and L(G ) = K-z, as desired. Moreover, since the  set 

{6 , c] exhibits only two d istinct partitions, G i and G i  are the  only bases of L(G).

If Vl (g ) 3  {a, b, c}, then, w ithout loss of generality, there m ust be some label d adjacent 

to  both  b and c, bu t not a, as the  edges a, b, and c. form a AT3 in G i.  Since the edges
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(a) T he only connected  line graphs w ith  two (edge la­
belled) bases th a t  are no t p a rtitio n  isomorphic.

(b) T he base graphs of th e  four line g raphs p ictu red  in F igure 
4.1(a).

(c) Two edge labelled bases of th e  line graph  Kg  
th a t  are  no t p a rtitio n  isomorphic.

(d) Tw o edge labelled bases of th e  line g raph  K 4  — e 
th a t  a re  no t p a rtitio n  isomorphic.

(e) Tw o edge labelled bases of th e  line graph K-} — 
m ,  where m  is a  m axim al m atching, th a t  are not 
p a rtitio n  isom orphic.

(f) Two edge labelled bases of th e  line graph Kg — 
m,  where m  is a  m axim al m atching, th a t  are not 
p a rtitio n  isom orphic.

Figure 4.1: P artition  isomorphism of graphs
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a, b, and c form a K \  3 in G 1, the  edges b, c, and d  form  a K 3 in G±. Therefore, d is

the  unique label adjacent to  bo th  b and  c, bu t not a, in G 2 .

Now, if Vjrqc) D {a ,b ,c ,d } ,  then , w ithou t loss of generality, there  m ust be some label 

z adjacent to  b and d, bu t neither a nor c, as G \  is th e  graph shown in the  left hand 

side of Figure 4.1(d). However, given th e  configuration of G 2 , as shown in the  right 

hand side of Figure 4.1(d), these adjacencies are impossible.

W ith  =  {a, b, c, d}, G 1 and G i  are as shown in Figure 4.1(d), and  L(G )  =  K 3 — e, 

as desired. Moreover, the  partitions P$ '1 and  P f 2 fix P^ 1, P f 2, P f 1, P f 2, P^ 1, and 

P$ 2. Therefore, since the set {b, c} exhibits only tw o distinct partitions, G\  and G i  

are the  only bases of L(G).

•  Qi> 1 =  {b,c}, =  { /} , Q ^ 2 = { b , f } ,  and R ^ 2 =  {c}. Ju s t as a, b, and c form a K 3

in G i, a, b, and /  form a K 3 in G \.  Therefore, if V ^ q )  = {a,b, c, / } ,  then  L{G) = 

K 4 — e, as desired. Again, /jif1 and P^ 2 fix the  rem aining partitions, so G’i and G i  

are the  only bases of L(G).

Again, if L(G)  contains an additional vertex, th en  it can  only be th e  vertex  d discussed 

above. In  th is  case, G 1 and G i  are as shown in Figure 4.1(e), and  L{G)  =  Kr, — m,  as 

desired, where m  is a m axim al m atching. Moreover, P f 1 and P f ’2 fix the  remaining 

partitions. Therefore, since the  set {b, c} exhibits only two distinct partitions, G\  and 

G i  are the  only bases of L(G).

•  Qiji 1 =  {b,c}, R ^ 1 =  { / ,  h}, Qjj, 2 = { b , f } ,  and R ^,2 = {c ,h } .  Ju st as a, b, and c form 

a K 3 in G i  and a, b, and /  form a K 3 in G i, a, c, and  h form a K 3 in G \  and a , / ,  

and h form a K 3 in G i.  Therefore, if V ^ c )  =  {a ,b ,c , f , h } ,  then  L(G )  =  K$ — m , 

as desired, where m  is a m axim al m atching. Again, Ptf 1 and P{f 2 fix the  remaining 

partitions, therefore, G i and G i  are th e  only bases of L(G).

Again, if L{G)  contains an additional vertex, th en  it can only be the  vertex  d discussed 

above. In this case, G 1 and G i  are as shown in Figure 4.1(f), and L(G )  =  K§ -  p, 

as desired, where m  is a maximal m atching. Moreover, the partitions P ' f 1 and Pjf2 

fix the  rem aining partitions. Therefore, since the set {6, c} exhibits only two distinct 

partitions, G 1 and G i  are the only bases of L(G).

□

4.2  T h e dynam ic schem e

4.2 .1  V ertex  labels, marker, and decoder

O ur dynam ic adjacency labelling scheme for line graphs builds upon the adjacency labelling 

scheme for line graphs found in Section 2.1.1. Given a line graph L{G), each vertex of the
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line graph is assigned a unique identifier from { 1 , . . . ,  |F l(G ) I}- These vertex identifiers give 

rise to  an edge labelling of some base G, from  which we will derive th e  rem ainder of our 

labelling. Like th e  adjacency labelling scheme of M uller [45], we also assign each vertex of G  

a unique identifier from { 1 , . . . ,  |Vg|}. For simplicity, we refer to  vertices by th e ir identifiers.

O ur dynam ic scheme uses graph substructu res and circular doubly linked lists to  dis­

trib u te  inform ation about th e  neighbourhood of a vertex in the line graph  over the labels 

of the  neighbours. Specifically, for each vertex  in the  base, we m aintain a circular doubly 

linked list of th e  edges incident w ith th a t  vertex. For each edge v in G, th e  circular doubly 

linked lists associated w ith its  endpoints p a rtitio n  th e  edges adjacent to  v, exactly  as seen in 

our discussion of partition  isomorphism, w ith  th e  singular exception of v  itself. Moreover, 

th e  union of th e  two circular doubly linked lists associated w ith the  endpoints of v, give the 

vertices adjacent to  v  (in L(G)).

Given a vertex v, its label will consist of the  following inform ation (in add ition  to  its 

identifier).

v.epo,v.epi: Considered as an edge in the  base, v has two endpoints; v.epo and  v.epi  are 

the  identifiers of these endpoints.

v .nna ,v .nn \:  The values of \N(v.epo)\ and  \N(v.epi)\  (in the  base), respectively, where 

N {x )  denotes th e  open neighbourhood of the  vertex x.

v .prevQ ,v.prev\,v .nxQ ,v.nx\\  W ith  v  as th e  current edge in the circular doubly linked 

list about v.epi, th e  identifiers of the  previous and next edges are v.previ  and v .n x i , 

respectively.

In  particular, the  label of a vertex is (v\ v.epo', v .epi; v .nno ; v.rnit; v.prevo; v .nxo ; 

v . p r e v v . n x j ) ,  as illustrated  in Figure 4.2. Like the sta tic  scheme of M uller, we assume 

th a t  the m arker knows the  structu re  of G, so th a t it can generate an in itia l labelling in 

0 ( n  +  m )  tim e, using a b read th  first search. O therwise, the m arker m ust use an  algorithm  

like th a t of Lehot [40] or Roussopoulos [50] to  determ ine G  from L{G). Also like the  sta tic  

scheme of Muller, the decoder can determ ine the  adjacency of v\  and V2 in 0 (1 )  tim e, using 

only their labels, by checking if {v \ .epo ,v i .ep i}  fl {v2 -epo, V2 .ep{\ =  0 .

Consider a line graph w ith n  vertices. If s tr in g  denotes the  num ber of b its  required to  

represent str ing  then the num ber of bits used in the  label of v is

l
v + (v.epi + v .m ii  + v.previ +  v .n x ^ j .

i = 0

In Section 3.1.3, we observed th a t if the  deletion of vertices is perm itted , it  may result in 

the identifiers of the rem aining vertices not being space-optimal. The sam e is true for any
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2 ,

3 /

(a : 1; 3; 3; 3; b\ e; d; c) 

(b : 1; 2; 3; 2; e; a; c; c) 

(c : 2; 3; 2; 3; 6; &; a; d) 

(d : 3; 4; 3; 2; c; a; e; e) 

(e : 1; 4; 3; 2; a; &; d; d)

(a) G (O  denotes the order o f  the 
circular linked list).

(b) Labels of L(G ).

Figure 4.2: O ur dynam ic adjacency labelling scheme for line graphs

labelling in which identifiers are assigned. As such, let th e  largest identifier of a vertex in the 

line graph be L i ,  and let the  largest identifier of a vertex  in th e  base graph  be 1,2 • Thereby, 

l(v ) , l (v .p rev i) , l (v .nx i)  £ O (lo g L i) and  l(v.epi) £ 0 (logZ,2). M oreover, since the base has 

no isolated vertices, \Va\ < 2 \Eq \ <  2|Vj,(G)| <  2n; therefore, l{v.nrii) £  O (logn), and the 

label of v  uses 0 ( lo g L i +  logZ /2 +  lo g n ) bits. If L \  and 1/2 are polynom ial in n, which we 

sta ted  as an assum ption in Section 3.1.3, then  the  label size of v  reduces to  O (logn). In 

tu rn , the  graph is represented using O (n lo g n )  bits.

Using an argum ent found in a recent tex t of Spinrad [53] (p. 18), we can show th a t  there 

are 2n ( " logO labelled line graphs on n  vertices. Thereby, the  dynam ic scheme is strongly 

space-optim al for labelled line graphs. Consider a graph w ith ^  disjoint edges, each of which 

has one endpoint in { 1 , . . . ,  ^}  and th e  o ther in +  1 , . . .  ,n } .  There are ([))! such graphs, 

each of which is a line graph, yet

f >  ( 2 )• >  j f  =  2 ? log( f ) c  on (" los n)
V  ( f ) !  V

This scheme may also be space-optim al for unlabelled line graphs; however, th is lower bound 

has not yet been established in th e  unlabelled case.

T he success of our dynam ic scheme lies in the ability to  change th e  labelling of a graph 

to  reflect another partition  non-isom orphic base, when necessary. In  particular, if a  line 

graph has a connected com ponent w ith  two bases th a t are not p a rtitio n  isomorphic, then 

it is possible th a t the labelling derived from one of these bases will perm it certain dynam ic 

operations while the  o ther will not. For instance, consider the two bases depicted in Figure 

4.1(d). If we wish to  add a new vertex  v to the corresponding line graph such th a t  its 

neighbours are a and b, th en  the equivalent operation in the base is th e  addition of an edge 

th a t is adjacent to  only the  edges labelled a and b. This can be done using one of the  bases, 

bu t not the  other. Again, we note th a t  in any informative labelling scheme we have access 

to  the vertex labels only. Consequently, when we say th a t we change th e  base, we ultim ately
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m ean th a t  we change the  labelling of the  graph so as to  reflect a new base.

Even more critical to  the  success of our dynam ic scheme is th e  inclusion of sufficient 

inform ation in the  labels to  deduce, a t least partially, the  s tru c tu re  of the  base. U pon 

m odification of the  line graph, our knowledge of the  original base will allow us to  determ ine 

the  base of the  new line graph and, hence, th e  labels of th e  new line graph. To illustrate this 

need for knowledge about the  base, consider the line graphs presented in Figure 4.3. Even 

though  the  line graph  5(L(G))  is form ed by deleting a  single edge from  L(G ),  the change in 

th e  base, from G  to  G ', is substantial; in particular, the  required change affects much more 

th a n  ju s t the edges of th e  base th a t  correspond to  the  endpoints of th e  deleted edge in the 

line graph. If our dynam ic scheme were to  use the  labels of the  sta tic  scheme of Muller [45], 

th en  it would be impossible to  deduce th e  neighbourhood of a vertex  v  w ithout checking 

the  label of every vertex u  to  see if the  edges of th e  base corresponding to  u  and v share a 

com m on endpoint.

O f particu lar in terest is how we can use the vertex labels to  traverse  circular doubly 

linked lists. For any edge v  of G, we know th a t  the  next vertex in th e  circular doubly linked 

list £  about v.epi is v.nxi.  Let u =  v .nx i .  Ideally, the  next vertex in  £  after u  would be

u .n x i , however, it could be either u .n x o or u . n x Consequently, before we proceed, we 

m ust determ ine which of u.epo and u.epi  is v.epp, fortunately, th is sim ple te s t requires 0 (1) 

tim e. As such, £  can be traversed in O (u.nrq) tim e. For simplicity, we will say th a t £  can 

be traversed in 0 ( |£ |)  tim e, where |£ | is the  num ber of edges in £ .

4 .2 .2  R elabeller

In  th e  rem ainder of th is chapter, we present the  relabeller th a t  belongs to  our dynam ic 

adjacency labelling scheme for line graphs. For each graph operation, a “gentler” version 

of the  relabelling algorithm  will be discussed in th is  chapter, w ith  detailed pseudocode 

appearing in A ppendix C.

For simplicity, we will refer to  S(L(G))  as L (G '), the  line graph  w ith  base G', yet we 

im plore the reader to  recognize th a t it is the  graph L(G)  to  which th e  operation <5 is being 

applied. We are not applying S to  G  to  get G ', ra ther, G' is th e  resulting  base graph of

L(G ')  = S(L(G)).

D e le t in g  a  v er tex

As w ith  all of our graph modifications, it is im perative to  understand  how a change in the 

line graph  causes a change in the base. By deleting a vertex from th e  line graph, we delete 

the  corresponding edge in the base, as depicted in Figure 4.4.

Let v  be the vertex to  be deleted, and let X  be the neighbours of v in L(G). For each 

endpoint v.epi of v  (in G), D e l e t e V e r t e x , the algorithm  presented in Figure 4.5, first
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/

(a) G. (b) L(G).

(c) G'. (d) L (G ') =  S(L(G)).

Figure 4.3: An edge is deleted from (or added to) a line graph. The use of ellipses indicates 
th a t the graph extends arb itrarily  from th e  indicated vertex

(a) A vertex is deleted from (or added  to) L(G)

- - - - -  ' •  - .............................s
A .-!

v / ' - V  -V 
* *

(b) T he corresponding change in G. T he set S  
is a  valid set

Figure 4.4: A vertex is deleted from (or added to) the line graph
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determ ines w hether v  is th e  only edge incident w ith v.epi. I t  does th is in 0 (1 )  tim e by testing 

the condition v.nrii =  1. If v  is the  only edge incident w ith  v .ep i , th en  D e l e t e V e r t e x  

frees the  identifier of v.epi,  which takes 0 (1) time.

If there are o ther edges incident w ith v.epi, then  D e l e t e V e r t e x  traverses Li,  the  

circular doubly linked lists abou t v.epi, decrem enting th e  ,n n  counter th a t  corresponds to  

Li  by one, for every vertex  I (in L(G))  in L i . Traversing Li  to  decrem ent these counters 

takes 0 ( |£ j |)  tim e. Once these counters have been ad justed , v is removed from Li,  which 

takes 0 (1) time.

Once bo th  endpoints of v  have been addressed, v  is deleted and its identifier is freed for 

future use. This elim ination takes 0 (1 ) time. Since, |£ i |  +  |>C2 1 =  |V | +  2 , D e l e t e V e r t e x  

runs in 0 ( |X |)  e  0 ( n )  tim e. Moreover, D e l e t e V e r t e x  accesses 0 ( |X |)  vertex labels, 

requiring a to ta l of f l( |V |)  bits; therefore, the running tim e of D e l e t e V e r t e x  is polynomial

in the  size of its inputs. M oreover, D e l e t e V e r t e x  is error-detecting because the class of

line graphs is hereditary.

D e l e t e V e r t e x ( L ( G ) ,  v )

Input: An adjacency labelling of a line graph L(G)  ( th a t is, the  labels thereof) created 
using our dynam ic scheme, and a vertex v  in Vl (G)- N ote th a t  the  labels of L(G)  are only 
accessed as required.

O utput: An adjacency labeling of a graph L(G ')  (again, th e  labels thereof) formed by 
deleting v  from L(G ),  providing L(G ')  is a line graph. If L(G ')  is no t a line graph, then  the 
o u tp u t indicates as such.

1 for i <— 0 to  1 d o
2 if  v is th e  only edge incident w ith v.epi th e n
3 free the  identifier of v.epi
4 e lse  Li  <— the  circular doubly linked list abou t v.epi
5 for I e  L i  d o
6 decrem ent Vs  counter of the num ber of edges in L,  by 1
7 remove v from Li
8 delete v and free its  identifier

Figure 4.5: The relabeller D e l e t e V e r t e x  which relabels the  line graph when a vertex is 
deleted

P ro p o s i t io n  4 .3  The modification excess and modification locality of  D e l e t e V e r t e x  are 

zero.

P ro o f . F irst, observe th a t the set of vertices whose neighbourhoods change is X  U {u}. If 

the  label of a vertex x  is modified, then  its corresponding edge in the  base had been in one of 

the circular linked lists about an endpoint of v (in G). T h a t is, x  e  X  U {?;}. Therefore, the 

set of vertices w ith modified labels is a subset of the set of vertices whose neighbourhoods 

change, giving the desired result. □
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A d d in g  a v e r te x

Adding a vertex to  the line graph, along w ith  its incident edges, is equivalent to  adding an 

edge to  the base graph, as shown in Figure 4.4. Let v be the  vertex to  be added to  L(G ),  

and let X  be the set of vertices to  which v  will be m ade adjacent. The endpoints of v  (in 

the  base) m ust cover X  (as edges in th e  base), moreover, these endpoints m ust be incident 

w ith only these edges.

If X  =  0, then A d d V e r t e x , th e  algorithm  presented in Figure 4.6, creates two new 

vertices, fq and  62, in th e  base, and pu ts  v  between them . C reating fq and b2 takes 0 (1 )  

time; however, placing v  betw een fq and 62 requires th a t  we establish circular doubly linked 

lists for each of these vertices. Since each of these circular doubly linked lists contains only 

v, setting  the .ep, .n x , .prev, and .nn  values of v to  represent the new circular doubly linked 

lists takes 0 (1 ) time.

If X  ^ 0 ,  then  we are looking for a set S  of vertices in  the  base for which each of the  

following conditions hold.

•  1 <  |S | <  2.

•  each edge of X  (in the  base) has exactly  one endpoint in S.

•  no edge of the  base not in X  has an endpoint in S.

We will call such a set S  valid. This concept is illustra ted  in Figure 4.4.

To find a valid set, A d d V e r t e x  calls F in d Va l id . F in d Va l id  selects an  edge of the  

base, edgeo, from X  and tries to  include edgeo-epo in a valid set. L etting  Xq  be the subset 

of edges in X  th a t are not incident w ith edgeo.epo, we observe th a t  if we require another 

vertex in the  valid set, th en  it m ust come from an edge in  X 0. We initially  set Vo to  X ,  

then  traverse the circular doubly linked list about edgeo .epo to  elim inate edges from Vo. 

If at any point we find an edge which does no t belong to  X , then  edgeo .epo cannot be in 

the  valid set, so we backtrack and try  edgeo-epi ■ If edgeo-ePi is sim ilarly problem atic, then  

the base will not yield a valid set. However, before concluding th a t v cannot be added to

the line graph, we m ust determ ine if the  com ponent of the  line graph containing edgeo has

another base which is not partition  isomorphic. If so, we repeat our efforts on edgeo using 

this new base.

P rov id ing  some en d p o in t of edgeo can  b e  ad d ed  to  th e  valid  se t, F in d V a l id  now selects 

an  edge, edgej, from  Vo an d  trie s to  inc lude edgej.epo in  th e  valid  se t. L e ttin g  V i be 

th e  su b se t of edges of Vo th a t  are n o t in c id en t w ith  edgej.epo, we observe th a t  edgej.epo  

can  be added  to  com plete th e  valid set if  an d  only  if all o f th e  edges found  in  th e  c ircu lar 

doub ly  linked list a b o u t edgej.epo belong  to  Vo, an d  X \  =  0. W e d e term ine  X \  in  a 

m anner sim ilar to  th a t  described for finding Xq  above, th e n  back track  if necessary. B y
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backtracking, F i n d V a l i d  exhausts all com binations of bases and endpoints in  finding a 

valid set. In particu lar, backtracking first tries  a new endpoint, then , if necessary, a  new 

base.

From Theorem  4.2, we see th a t any com ponent of the  line graph  w ith tw o bases th a t 

are not partition  isom orphic has 0 (1 ) vertices. Therefore, F i n d V a l i d  requires a t m ost one 

base change, w here each base change takes 0 (1 )  tim e. Moreover, for each possible base, 

there are a t m ost four selections of edgei.epj , where F i n d V a l i d  stops traversing the  circular 

doubly linked list abou t edgei.epj as soon as it finds some vertex not in X / X q. Therefore, 

F i n d V a l i d  takes 0 ( |X |)  tim e.

If a valid set S  is found, then  we add v  to  the base graph using the vertices in S.  If 

S  = { s i} , then  A d d V e r t e x  creates a new vertex bx (in G), which takes 0 (1 )  tim e, and 

places v between s i and b\. Setting the .ep values of v takes 0 (1 ) tim e and, as we have 

discussed, the  creation of th e  circular doubly liked list about bx takes 0 (1 )  tim e. However, 

the addition of v  to  th e  circular doubly linked list, £ i ,  about s i is m ore complicated. 

Inserting v in to  £ i  after edgeo takes only 0 (1 )  tim e, b u t we m ust also ad just the  .nn  

counters of every vertex in C\.  A djusting these counters takes 0 ( |£ i | )  £ 0 ( |X |)  time.

If S  =  { s i ,S 2 } , then  A d d V e r t e x  places v between s i  and S2. A gain, setting  the 

.ep values of v  takes 0 (1) tim e, and the  addition of v  to  the  circular doubly linked lists 

takes 0 ( |£ i |  +  (£2 !) tim e, where £ j is th e  circular doubly linked list abou t s*. However, 

|£ i |  +  |£ 2| =  |X |, so ©( j£r |  +  |£ 2|) G 9 ( |X |) .

A d d V e r t e x  (L(G), A )

Input: An adjacency labelling of a line graph  L(G)  ( th a t is, the  labels thereof) created 
using our dynam ic scheme, and  a subset X  of V l(g ) .  Note th a t the labels of L ( G ) are only 
accessed as required.

O utput: Let L (G ')  be the  graph formed by adding a new vertex v  to  L (G ),  where v is 
adjacent to  exactly  those vertices in X .  P roviding L(G')  is a line graph, th e  o u tp u t is an  
adjacency labelling of L(G ')  (again, the labels thereof). If L(G ')  is not a line graph, the 
ou tpu t indicates as such.

1 create a new vertex v (in L(G))
2 i f  X  =  0 th e n
3 create two new vertices bx and 62 (in G )
4 v  6162
5 e ls e  S  F in d V a l id (X )
6 i f  S  = 0 t h e n
7 error no longer a line graph
8 e ls e if  \S\ — 1 th e n
9 create a new vertex bx (in G)

10 v  <— S1&1
11 e lse  v  <— s i s 2

Figure 4.6: T he relabeller A d d V e r t e x  which relabels the  line graph when a vertex is added. 
The vertices Si and S2 , of the  base, are the  m em bers of the  valid set S
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In to ta l, A d d V e r t e x  runs in 0 ( |X |)  tim e. Given th a t  A d d V e r t e x  is inpu t w ith the 

labels of each vertex in X ,  the  running tim e of A d d V e r t e x  is polynom ial in the  size of the 

input. Moreover, A d d V e r t e x  is error-detecting since our use of backtracking guarantees 

th a t a  valid set will be found, providing one exists.

P ro p o s i t io n  4 .4  The modification excess and modification locality o f  A d d V e r t e x  are 

zero.

P ro o f .  F irst, observe th a t  the  set of vertices whose neighbourhoods change is X  U {v}. If 

the label of a vertex x  is modified, then  its corresponding edge in the base had  been in one 

of the  circular linked lists abou t an endpoint of edge in the  valid set. T h a t is, x  6  X  U {v}. 

Therefore, the  set of vertices w ith modified labels is a subset of the  set of vertices whose 

neighbourhoods change, giving the desired result. □

D e le tin g  a n  e d g e

Consider the act of deleting an edge from a line graph, as depicted in Figure 4.3. This dele­

tion  is equivalent to  “pulling a p a rt” two adjacent edges in th e  base. If there are additional 

edges incident w ith the vertex  of the  base a t which these two adjacent edges were joined, 

then  it becomes increasingly difficult to  determ ine the  new base graph. Fortunately, there 

are a finite num ber of cases to  be considered; we enum erate these cases as a corollary of the 

following theorem.

T h e o re m  4 .5  Let L{G) and L{G') he line graphs, where L{G')  =  L (G ) — ab. Moreover, 

let the edges o f G corresponding to a and b be w x  and w y, respectively. The following are 

properties o fG .

1. The degree o f w  is at most four.

2. I f  d = x y  is an edge o f G, then deg(w) <  3.

3. Let c =  w z be an edge of G, where c a,b. I f  f  = z t  is an edge o f  G, where f  c,

then either t — x  or t = y.

4- I f  d =  x y  and c =  w z are edges of G, where c a, b, then there can be no edges

adjacent to c other than a and b.

5. I f  c = w z  and f  = z x  are edges of G, where c a,b, then deg(x) <  3. Moreover,

i f  deg(x) = 3, then x  is adjacent to an edge g = xp, where p w, z, y, such that 

deg(p) <  2. A s well, i f  deg{p) = 2, then the edge i =  pw belongs to G.

6 . Let c = w z  be an edge of G, where c a,b. I f  there exist distinct edges f  = z t \  and 

h =  z t2 , where c f , h ,  then { t i f i? }  = { x ,y}. Moreover, deg(x) = deg(y) = 2.
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7. I f  H  is a subgraph of G, then L( H)  — ab is a line graph.

P ro o f .  Fundam ental to  th e  proofs of each of these observations is th e  fact th a t  the  only edge 

adjacencies th a t changes from  G to  G' is th a t  of a and b which are adjacent in G  b u t not in G '. 

To aid in the visualization of these proofs, the reader is encouraged to  consult the  diagrams 

in Table 4.1. I t should be noted  th a t,  although there  is a direct correspondence between 

edges of G  and G ', the  sam e correspondence cannot be m ade betw een the  vertices of G  and 

G' as it  is only the edge adjacencies which are im portan t, not th e  specific vertices a t which 

edges are adjacent. Consequently, any references to  vertices in th e  following argum ents will 

be in the  context of the  graph  G.

1. Assume th a t w  is incident w ith  a t least five edges in G, say a, b, c, i, and j .  Now 

c, i, and j  m ust be adjacent to  b o th  a and b in G' because they  had  been so in G. 

However, in a simple graph, any set of th ree edges between two disjoint edges, such 

as a and b in G', m ust also contain two disjoint edges. W ithou t loss of generality, let 

these disjoint edges be c and  j .  This implies th a t c and j  were not adjacent in G, 

which is a contradiction, as th ey  were b o th  incident w ith w.

2. Assume th a t  w  is incident w ith  a t least four edges in G, say a, b, c. and  i. Now d 

m ust be adjacent to  b o th  a and  b in G ' because it had been so in G. Yet a and b are 

disjoint in G ', so G ' m ust contain the  p a th  adb of edges. Similarly, c m ust be adjacent 

to  bo th  a and b in G'  because it had been so in G. Yet a and b are disjoint in G ', so G' 

m ust contain th e  p a th  acb of edges. Additionally, c m ust be disjoint from  d  in G ' as 

it had been so in G; thereby, G' m ust contain the  four cycle adbc of edges. However, 

G' m ust contain the four cycle adbi of edges as the argum ents m ade for c can also be 

made for i. Thereby, c =  i, which is a contradiction.

3. Using an argum ent identical to  th a t  m ade for the  edge d in (2 ), G' m ust contain the 

pa th  acb of edges. Yet /  m ust be adjacent to  c in G' because it had been so in G. 

Therefore, /  is adjacent to  a t least one of a or b in bo th  G' and G. W ithout loss of 

generality, let /  be adjacent to  a. If t  = w, then  /  =  c; therefore, t = x ,  as desired. 

This scenario is depicted in case E  of Table 4.1.

4. By (2), the  only edges adjacent to  c a t w  (in G) are a and b, thereby, it remains to  

show th a t deg(z) =  1 . Assume th a t there is another edge adjacent to  c a t z, namely 

/  =  zt.  By (3), t £ {x, y},  so, w ithout loss of generality, let t — x. Using the  argum ent 

found in (2 ), we know th a t G' contains the four cycle adbc of edges as shown in case 

B of Table 4.1. However, G' m ust also contain the four cycle fdbc  of edges, as the 

argum ents m ade for a can also be made for / .  Thereby, f  = a, which is a  contradiction.
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5. Consider when deg{x) >  2 , th a t  is, there  exists some edge g =  xp  for which p 0  {w, z} ,  

th a t is, g ^  f , a .  From  (4), we know th a t p  ^  y, th a t is, g ^  d. Since p £  {w, z} , g is 

not adjacent to  c in G, nor in G '. Yet, g m ust be adjacent to  b o th  a and /  in G' as it 

had been so in G; thereby, G' contains the  thee cycle of edge a fg ,  as shown in case F 

of Table 4.1. T he uniqueness of th is three cycle gives deg(x)  <  3.

Finally, consider when deg(p) > 1, th a t  is, there  exists some edge i = ps  for which 

i ^  g. Now i m ust be adjacent to  g in G' as it had been so in G. B u t G' contains the 

three cycle a f g  of edges, as depicted in case F  of Table 4.1, so, i m ust be adjacent to  

either a or /  in G' and, subsequently, in G.

If % is adjacent to  /  in G, th en  i g gives s  =  z,  so, i is adjacent to  c, / ,  and g, 

bu t neither a nor b in G and, subsequently, in G '. However, th e  configuration of G' 

depicted in  case F  of Table 4.1 requires th a t  either i — a or i is adjacent to  b, bo th  

of which are contradictions. O n the o ther hand, if i is ad jacent to  a in G, then  i A g 

gives s =  w, as seen in case J of Table 4.1. Moreover, th e  uniqueness of the  edge 

i = pw  gives deg(p) <  2 .

6 . The first p a rt of th is sta tem ent follows directly  from (3), thereby, deg(x) ,deg(y)  >  2. 

W ithout loss of generality, let f  — z x  and let h =  zy.  Now /  is adjacent to  a and h, 

bu t not b, in G ', as it had been so in G; similarly, h m ust be adjacent to  b and / ,  bu t 

not a, in G ', as it had been so in G. Thereby, G' m ust contain the  p a th  a , f , h , b  of 

edges. As well, c m ust be adjacent to  each of a, b, / ,  and h  as it had been so in G, 

therefore, G' is as depicted in case G of Table 4.1. Note, in particular, th a t  the  edges 

c, / ,  and h  form  a three cycle in G '.

Assume th a t  deg(x)  >  2. From  ( 5) ,  we know th a t  x  is incident w ith  some edge g = xp, 

where x  w , y , z .  Consequently, g is adjacent to  / ,  b u t neither c nor h  in G and, 

subsequently, G '. Yet, the  edges c, / ,  and h  form a triangle  in G ', so g  cannot be 

adjacent to  /  in G' as it is adjacent to  neither c nor h in  G '. This contradiction gives 

degix)  <  2. A sim ilar argum ent gives th a t deg{y) < 2 .

7. Given th a t H  is a subgraph of G, L (H )  is an induced subgraph of L(G ).  However, 

L(G ') =  L ( G ) — ab, so L (H )  — ab is an induced subgraph of L{G'). Since the  family 

of line graphs is hereditary, L (H )  — ab is a line graph.

□

C o ro lla ry  4 .6  Let L(G) and L(G ')  be line graphs where L(G ')  = L(G) — ab. Table 4-1 

classifies all of the possible base graphs, G, up to symmetry.

Since the  circular linked list struc tu re  d istributes the inform ation about the  neighbour­

hood of a vertex  across the labels of its neighbourhood, the vertex labels are sufficient to
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Table 4.1: Possible cases for deleting an edge from (or adding an edge to) a line graph. In 
each case the edge ab is deleted from the  line graph. The use of ellipses indicates th a t  the 
graph extends a rb itrarily  from the indicated vertex
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determ ine the local s tructures depicted  in Table 4.1 (in fact, we can perform  b o th  depth  

first and bread th  first search on th e  line graph and its base). Consequently, D e l e t e E d g e , 

the  algorithm  presented in F igure 4.7, needs only identify if G  has one of th e  s truc tu res 

shown in Table 4.1.

D e l e t e E d g e (L (G ), a, b)

Input: An adjacency labelling of a line graph  L(G)  ( th a t is, the labels thereof) created  using 
our dynam ic scheme, and two d istinc t vertices a and b of Fl(G) f°r w hich ab £  E l(G )- Note 
th a t the  labels of L(G)  are only accessed as required.

O utput: An adjacency labeling of a  graph  L(G ')  (again, the  labels thereof) form ed by 
deleting the edge ab from L(G ),  providing L (G r) is a line graph. If L(G ')  is no t a line graph, 
then  the ou tpu t indicates as such.

1 examine the  neighbourhood surrounding a and b (in G) to  determ ine which of the 
cases in Table 4.1 applies to  G

2 i f  none of the cases in Table 4.1 applies to  G  t h e n
3 e r r o r  no longer a line graph
4 e ls e  change the  vertex labels of a, b, c, d, / ,  g, h, and i, as necessary, to  reflect the 

new base graph G'

F igu re  4.7: T he re labeller D e l e t e E d g e  w hich re labels th e  line g ra p h  w hen an  edge is 
dele ted

Given th a t D e l e t e E d g e  is only concerned w ith  the interaction betw een th e  edges a, 

b, c, d, / ,  g, h, and i, it can determ ine if G  has one of the struc tu res shown in Table 4.1

in 0 (1 ) tim e. If G  does have one of th e  structures shown in Table 4.1, th en  D e l e t e E d g e

needs only to  change the  in teraction betw een a, b, c, d, / ,  g. h, and i , as necessary, to  reflect 

G ' . From the  cases shown in Table 4.1, observe th a t  the change in th e  labels should not 

affect any endpoint of a or b th a t  has a rb itra ry  adjacency. Therefore, D e l e t e E d g e  can 

relabel the graph in 0 (1 )  tim e. As p er our com m ents earlier in th is  section, the  running 

tim e of D e l e t e E d g e  is polynom ial in  the  size of the  input.

Unlike the  addition of a new vertex, the choice of base is irrelevant when it comes to 

deleting an edge from the line graph. Specifically, given a com ponent of a line graph w ith 

two bases th a t are not partition  isom orphic, if in one base the deleted edge leads to  one of the 

configurations presented in Table 4.1, th en  so too  will th is edge in th e  o ther base. Therefore, 

given Corollary 4.6, D e l e t e E d g e  is error-detecting as it will exhaustively determ ine if G 

satisfies any of the cases shown in Table 4.1. In Table 4.2 we present all such pairs of bases 

th a t  are not partition  isomorphic in which the edge ab is to  be deleted from the  line graph, 

as well as the corresponding case of Table 4.1 to  which each base belongs.

P r o p o s i t i o n  4 .7  The modification excess and modification locality o f  D e l e t e E d g e  are 

four  and one, respectively.
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Table 4.2: Pairs of partition non-isomorphic bases in which the edge ab is to  be deleted from
the line graph

Case in Table 4.1 Base 1 Base 2 Case in  Table 4.1

A K* > - D

E • A

G <[> > A

none <> none

none & none
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P r o o f .  First, observe th a t the  set of vertices whose neighbourhoods change is {a, b}. From 

Table 4.1, we see th a t  any edge whose endpoints change belongs to  the  set {a, b, c, d, / ,  g , h , j}. 

In particular, the  largest such subset belongs to  case J , w here the set of edges w ith changed 

endpoints is {a,b,c,  Therefore, th e  m odification excess is four. Moreover, each of

the  edges in {a ,b ,c ,d ,  f , g , h , i }  corresponds to  a vertex  th a t is adjacent to  either a or b in 

the  line graph. Therefore, the  m odification locality of D e l e t e E d g e  is one. □

A d d i n g  a n  e d g e

The act of adding an edge to  a line graph  is depicted in Figure 4.3. Since the process 

of adding an edge is exactly  the  reverse of deleting an edge, Table 4.1 enum erates all the  

possibilities.

Ju st as we saw w ith the  deletion of an  edge, the  choice of base is irrelevant when it comes 

to  adding a new edge to  the  line graph. Specifically, given a  com ponent of a line graph w ith 

two bases th a t are not partition  isom orphic, if in one base the added edge leads to  one of 

th e  configurations presented in Table 4.1, then  so too  will th is edge in the  other base. In 

Table 4.3 we present all such pairs o f bases th a t are no t partition  isom orphic in which the 

edge ab is to  be added to  the line graph, as well as the corresponding case of Table 4.1 to  

which each base belongs.

Again, the labels of the vertices in th e  line graph are sufficient to  determ ine the  local 

struc tu res as depicted in Table 4.1 so th e  algorithm  for updating  the  labels needs only 

identify the  structu re  of the  base, then  alter the  labels to  represent th e  struc tu re  of the 

new base. Like D e l e t e E d g e , A d d E d g e  runs in 0 (1 )  tim e, is error-detecting, has a 

modification excess of four, and has a m odification locality of one.

4.3  Sum m ary

In  th is  chapter, we have developed an error-detecting dynam ic adjacency labelling scheme 

for line graphs by using circular doubly linked lists to  encode inform ation about the  base 

graph  in the vertex labels. O ur dynam ic scheme for line graphs uses O (logn) b it labels and 

updates can be performed in 0 (e) tim e, where e is the  num ber of edges added to , or deleted 

from, the line graph.

In  developing this dynam ic scheme, we also defined th e  concept of partition  isomorphism, 

and developed theory on the  types of line graphs th a t can be modified to  produce new line 

graphs.
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Table 4.3: Pairs of partition non-isomorphic bases in which the edge ab is to be added to
the line graph

Case in Table 4.1 Base 1 Base 2 Case in Table 4.1

H “b*7* ‘Î V* H

none •4b <D> none

none none
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Chapter 5 

r-graphs

In  th is chapter, we develop error-detecting dynam ic adjacency labelling schemes for classes 

of graphs defined using m axim al cliques and m axim al bicliques, namely, r-m inoes and r- 

bics, respectively. O ur in terest in r-m inoes and r-b ics lies no t so much w ith the classes 

themselves, ra ther, m ore w ith  the m axim al cliques and  bicliques, which are structures com­

m only discussed in graph  theory. A recent paper of S tix  [54] offers a  dynam ic algorithm  for 

m aintaining m axim al cliques in fuzzy clustering applications such as music and sem antic 

clustering. A recent paper of Driskell, Ane, Burleigh, M cM ahon, O ’M eara, and Sanderson 

[15] applies m axim al bicliques to  the field of genetics.

M etelsky and Tyshkevich [44] define a graph to  be an  r-m ino  if none of its vertices 

belongs to  more th a n  r  m axim al cliques. This notion of an r-m ino is an extension of the  

idea of a domino, as defined by Kloks, K ratch, and M uller [36], in which each vertex belongs 

to  at m ost two m axim al cliques. In the ir work, M etelsky and Tyshkevich show th a t  the 

class of r-m inoes is th e  same as the class of line graphs of Helly hypergraphs w ith rank a t 

most r; recall Definitions 2.6 and 2.7, regarding line graphs of hypergraphs. A hypergraph 

H  — (V, £)  is said to  satisfy the Helly property  if every pairwise intersecting subset £ '  of £  

is such th a t f j ee£' e ^  ® [®] •

Consistent w ith the  definition of P risner [48], a bichque is a com plete b ipartite  vertex 

induced subgraph. We define a graph to  be an r-bic  if none of its vertices belongs to  more 

th an  r  m axim al bicliques.

Using O (r lo g n )  b it labels, our dynam ic schemes allow the  addition and deletion of 

vertices and edges. Observe th a t it is im practical to  consider r  G f f (n / lo g n ) . As discussed 

in Section 2.1.1, a simple adjacency labelling scheme using O (n) b it labels can be developed 

from the rows of adjacency matrices; moreover, th is scheme can be m aintained dynamically. 

Given th a t our labels can use 0 ( r lo g n )  bits, we cannot improve upon th is simple scheme 

if r G 0 (n / lo g n ) .

For ?-minoes, our relabeller handles edge addition and deletion in 0 ( r 2D ) time, vertex 

addition in 0 ( r 2e2) tim e, and vertex deletion in 0 ( r 2e) tim e, where D  is the m axim um
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degree of the vertices in the  original graph, and e is the  num ber of edges added to , or deleted 

from, the original graph. U nfortunately, if r €  w (l) , then  our vertex deletion relabeller is 

not error-detecting. Similarly, if r  € o ( l) , then  our vertex addition relabeller is not error 

detecting.

For r  € U (l) , our error-detecting vertex addition  algorithm  leads to  an  O (r2n 3) tim e 

recognition algorithm  for r-m inoes. T his result offers an im provem ent over the  0 ( r n 4) 

algorithm  th a t can be extended from work of Johnson, Yannakakis, and P apad im itriou  [30], 

as well as the  0 ( n r+2) algorithm  resulting from M etelsky and Tyshkevich’s characterization 

using forbidden subgraphs [44].

For r-bics, our relabeller handles edge addition  and deletion, as well as vertex deletion, in 

0 ( r 2B ) tim e, and vertex addition in 0 ( r 2n B ) tim e, where B  is the  size of the  largest biclique 

in the  original graph. As w ith  r-m inoes, our error-detecting vertex  addition algorithm  leads 

to  O (r2n 3) tim e recognition algorithm  for r-bics. Unlike r-m inoes, our relabeller will always 

be error-detecting.

5.1 T h e d ynam ic schem e for r-m inoes

5.1.1 V ertex  labels and decoder

Like the dynam ic scheme for line graphs presented in C hapter 4, our dynam ic adjacency 

labelling scheme for r-m inoes uses graph  substructu res and circular doubly linked lists to  

d istribu te  inform ation about neighbourhoods across th e  vertices in the neighbourhoods. In 

the case of r-m inoes, the  im portan t substructures are the m axim al cliques. As such, we use 

the  vertex labels to  m aintain  a circular doubly linked list of the  vertices in each m axim al 

clique.

Given an r-m ino on n  vertices, each vertex is assigned a unique identifier; similarly, 

each m axim al clique is assigned a unique identifier. For simplicity, we refer to  vertices 

and m axim al cliques by the ir identifiers. Given a vertex v, its label will also consist of 

the following inform ation; exactly how the  m arker initially determ ines these labels will be 

addressed later.

v.cin: The num ber of m axim al cliques in which v  is contained.

v.cl: An array of triples w ith  an  entry for each m axim al clique in which v  is contained. 

Each member v.cli is a trip le of the  form (n u m , n x ,p rev ), as follows, where the index 

i ranges from 1 to  v.cin.

•  num  is the  unique identifier assigned to  the  m axim al clique.

•  m  is a pair (id, index),  where id  is the  identifier of the next vertex after v  in the 

circular doubly linked list of the  vertices in m axim al clique r .c l , .num ,  and index

55

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



is the value j  for which id .c l j .num  =  v.cli.num.

•  prev is a pair (id, index),  where id is the  identifier of the  vertex  before v in the  

circular doubly linked list of th e  vertices in m axim al clique v .c li .num ,  and index  

is the  value j  for which id .c l j .num  = v.c li .num.

In particular, the  label of a vertex  is (ic v.cin; v.cl)  as illu stra ted  in F igure 5.1.

Given the  labels of two vertices, V\ and  v 2 , th e  decoder can determ ine th e  adjacency of 

Wi and t>2 in 0 (v \ .c in  +  V2 -dn)  € 0 ( r )  tim e, by com paring th e  .num  entries of V\.cl and 

V2 -cl to  see if the  vertices share a common m axim al clique. To th is effect, let Cv denote 

{v.cli.num\l < i < v.cin),  the  set of all m axim al cliques containing v. We observe th a t Cv 

can be obtained in Q (v.cin) e  O (r) tim e, where \CV\ = v.cin < r. The vertices tq and iq 

are adjacent if and only if Cu fl Cv yf 0.

To check the condition Cu n C v /  0, we use a reciprocal po in ter technique suggested in a 

tex t by Aho, Hopcroft, and Ullm an [2] (exercise 2.12). Consider two subsets S i  and S 2 of

S. To determ ine in 0 ( |S i |  +  IS2I) tAne if Sf H S2 7̂  0, we require a block B \  of memory to  

hold a stack of |S i| words, and  a block £>2 of m em ory indexed by th e  elem ents of S.  F irst, 

we initialize B 1 to  0. T hen, for each elem ent sj of S i, we push a pointer P{ onto the  stack 

a t B \  and initialize a pointer P) in position s\  of B 2, such th a t  P{ points to  P) and vice 

versa. If, for some elem ent s \  of S2 , position s2 of B 2 holds a  pointer Q 2 th a t  points to  a 

pointer Q \  in our stack, such th a t  Q 1 points back to  Q 2 , th en  Si fl So 0. Observe th a t 

similar approaches can be used to  determ ine S i H S2 and S i U S2 in 0 ( |S i |  +  IS2I) tim e as 

well.

Of particu lar in terest is how we can use th e  vertex labels to  traverse the  circular doubly 

linked list of vertices in a m axim al clique. For any m axim al clique C , if we know some 

vertex s in C, as well as the  value i  for which s .c li .num  =  C , th en  the  next vertex in the  

circular doubly linked list is s.cli.nx.id  and th e  .cl en try  of s .c li .nx .id  th a t corresponds to  C  

is s .c li.nx.index. Moreover, s .cli .nx.id  and s.c li .nx .index  can be determ ined in 0 (1 ) time. 

As such, the  circular doubly linked list of vertices in C  can be traversed in 0 ( |C |)  time. 

For simplicity, we will say th a t we traverse C, although we really m ean th a t we traverse the 

circular doubly linked list of vertices in C.

•  (« : 1:1(0, (a, 1), (a, 1))])

.  (b : 1; [(1, (c, 1), (d, 2))])

L  (c:  l;[(l,(d,l),(M))])
\ ,  [d : 2; [(2. (e. 1). (e, 1)). (1. {b, 1), (c, 1))])

(,■: l;[(2,(rf,l),(d,l))])
Figure 5.1: A labelling of 2-mino (domino) obtained using our labelling scheme

56

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



As well, we should address how we m anage the .cl arrays. W hen a vertex  v is added 

to  a maximal clique, we sim ply create a new en try  a t th e  end of the  array v.cl.  W hen v is 

removed from a m axim al clique, we delete the corresponding en try  in v.cl. If a deleted entry 

had not been the  last in th e  array, th en  we move the  last en try  to  the  position of the  deleted 

entry; consequently, we m ust ad ju st the  .index  values for th e  previous and next vertices in 

the circular doubly linked list corresponding to  the  moved entry. In either case, we are able 

to  m aintain a contiguous array  of v .cin  entries in 0 (1) tim e.

If str ing  denotes the  num ber of b its required to  represent s t r in g , then  th e  size of the 

label of v is

v.cin
v + v .c in+  '^ 2  (v .c l i .num  + v .c li .prev .id+ v .c li .prev .index+  v.c li .nx .id  + v .c l i .nx .index 'j .

Recall an earlier discussion in Section 3.1.3, where we observed th a t  the dynam ic nature 

of the  graph m ight prevent th e  vertex and clique identifiers from being space-optim al. 

As such, let the  largest identifier of a vertex in th e  graph  be L \ ,  and let the largest 

identifier of a m axim al clique be L 2. Thereby, v ,v .c li .prev .id ,v .c li .nx .id  £  © (logL j) 

and v.c li .num  £  O (logL 2). Moreover, each vertex  is in a t m ost r  m axim al cliques, so 

v. t in ,  v.cli.prev. index, v.clt.nx. index  < r, and th e  label o fv  uses 0 ( lo g L i+ lo g r 4- r lo g L 2 +  

r  log r  +  r  log L \ )  £  0 ( r  log L \ + r  log L 2) bits. If L \  and L 2 are polynomial in  n, which we 

s ta ted  as an assum ption in Section 3.1.3, then  th e  label size of v  reduces to  O (r lo g n ) . In 

tu rn , the  graph is represented using O (rn lo g n )  bits.

Using the same argum ent of Spinrad [53] (p. 18) found in Section 4.2.1, we can show th a t 

there are 2n (" log") labelled 1 -m inoes on n  vertices. Yet, for r '  >  r ,  an r-m ino is an r'-m ino; 

thereby, there are 2fd " log;rd labelled r-m inoes on n  vertices. Therefore, our dynam ic scheme 

for r-m inoes is space-optim al when r  £  0 (1 ) . For r  £  w (l), we cannot offer com m ent on 

optim ality  as we have no additional lower bounds. We also cannot offer com m ent on the 

optim ality  in th e  unlabelled case, when r  £  0 (1), as the 2n Oi°g«) lower bound has not yet 

been established on the num ber of unlabelled r-m inoes on n  vertices.

5.1.2 R elabeller

Let us now examine the  relabellers included in our dynam ic scheme. As w ith  the dynamic 

scheme presented for line graphs in C hapter 4, detailed pseudocode appears in A ppendix C. 

In the  following discussion, G  is the original graph and G’ is the  changed graph.

D e l e t i n g  a  v e r t e x .

Before we describe the relabeller, it is im portan t to  understand  how the deletion of a vertex 

affects the  m axim al cliques in the  graph. To th is  effect, consider the following lemma.
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L e m m a  5.1 Consider a graph G' formed by deleting a vertex v  from a graph G. Let J  be 

the set of cliques {C \C  is a maximal clique o f G and v £  C } . The set o f  maximal cliques of  

G' can be partitioned as J  U (G  \  {v} \C  is a maximal clique o f  G, v £ C, and C  \  {u} % J  j 

for  all J  £ J } .

P r o o f .

Consider an elem ent Jo of J  and consider a set of the  form C \  {u} where C  is a m axim al 

clique of G, v £ C, and C  \  {u} % J ,  for all J  £ J .  By definition, C  \  {w} ^  J ,  for all 

J  £ J \  therefore, C  \  {u} ^  Jo, which guarantees th a t  the  two sets of the  claim ed partition  

are disjoint.

Since Jo is a clique of G, it is also a clique of G '. If Jo is not a m axim al clique of G '. 

then  there exists some clique C* of G' for which Jq £  C * . Since v is deleted from G, we 

know th a t v $  C*; thereby, C* is a clique in  G, which contradicts the  m axim ality  of Jo in 

G. Therefore Jo is a m axim al clique of G '.

Since C  is a  clique in G, so too  is C  \  {u} in  G '. If G \  {u} is not a m axim al clique of G ', 

then there exists some clique C* of G' for which G \  {v} c  G*. Since v  is deleted from G, 

we know th a t v  C*; thereby, G* is also a clique of G. Consequently, G \  { v }  C  G* C  J* , 

for some J* in J -, which is a contradiction. Therefore, G \  {;;} is a  m axim al clique of G '.

Having shown th a t  th e  described sets are disjoint, and th a t  the ir m em bers are m axim al 

cliques of G ', it  rem ains to  show th a t these sets contain all the  m axim al cliques of G '. To 

this effect, let X  denote th e  neighbourhood of v  in G.

Consider a m axim al clique Go of G '. If Go 2  then  Go £ J ■ O n the  o ther hand, if 

Go C X ,  then  Co U {w} is a  m axim al clique of G. Moreover, if there exists some J* in J , such 

th a t Go C  J* , then  Co C  J * , as J* <2 X  (otherwise, the  clique J* U {V} would contradict 

the m axim ality of J* in G). Yet, J* is a clique of G ', thereby, Go C  J* contradicts the  

m axim ality of Go in G '. Therefore, for all J  in J , Go % J ,  as desired. □

Lemma 5.1, and its proof, suggest the  design of our relabeller, D e l e t e V e r t e x ,  as 

presented in Figure 5.2. All the m axim al cliques of G th a t do not contain v  will continue 

to  be maximal in G '. However, for each m axim al clique C  of G, where v £  G, we m ust 

consider the possibility of C  \  {w} being contained in some m axim al clique of J .

The relabeller, D e l e t e V e r t e x ,  first determ ines if v  is an isolated vertex, which is to  

say th a t  v.cin  =  1 and v .c l \ .n x  = v. If v is isolated, the  algorithm  frees the  identifier of the 

maximal clique {u} for fu ture use. This case can be identified and addressed in 0 (1 ) time.

Providing v  is not isolated, D e l e t e V e r t e x  obtains C = CVl the  set of m axim al cliques 

containing v. As discussed, Cv can be determ ined in O (v.cm ) tim e, where \CV\ = v.cin. 

Recall th a t, to  efficiently ex trac t inform ation abou t a m axim al clique from the  circular 

doubly linked list of its vertices, we m ust know the  identifier of some vertex th a t  belongs to
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D e l e t e V e r t e x ( G ,  v )

In p u t: A n ad jacen cy  labelling  of an  r -m in o  G  ( th a t  is, th e  labe ls  th e reo f) c re a te d  using 
our dynam ic schem e, an d  a  v e rte x  v in  Va- N o te  th a t  th e  labels of G  are on ly  accessed as 
required .

O u tp u t: A n ad jacency  labeling  of a  g rap h  G' (aga in , th e  labels th e re o f)  form ed by  deleting  
v from  G , p rov id ing  G' is an  r-m ino . I f  G' is n o t a n  r-m in o , th e n  th e  o u tp u t in d ica tes  as 
such.

1 i f  v is an  iso la ted  v ertex  t h e n
2 free th e  identifier o f {u}
3 e l s e  C <— { C |C  is a  m ax im al clique co n ta in in g  w}
4 f o r  C  G C d o
5 i f  th e  on ly  m ax im al clique of G  co n ta in in g  C  \  {(,’} is G  t h e n
6 rem ove v  from  C
7 e l s e  e lim ina te  C
8 delete  v  an d  free its  iden tifier

F igu re  5.2: T h e  re labe lle r D e l e t e V e r t e x  w hich  re la b e ls  an  r-m in o  w hen a  v e rte x  is deleted

th e  m ax im al clique, as well as th e  index  of th e  co rrespond ing  .cl en try . C onsequently , for 

each e n try  v .c l i .n u m  in  C, we assum e th a t  we also  re ta in  a  reference to  i.

For each m axim al clique C  of C, the  clique C '  =  C  \  {u} is exam ined to  determ ine if it 

is m axim al in G '. W here X  denotes the  neighbourhood of v in G, |C | <  |A j -I- 1 and C'  

can be determ ined in 0 ( |C | )  G 0 ( |X |)  tim e, by traversing C. Specifically, C '  is m axim al in 

G' if and only if the  only m axim al clique of G  containing C'  is C, which is to  say th a t  the 

set A  =  f lc 'e c ' ^ c' \  ^  emPty- Each set Cc< \  C  can be determ ined in Q(c'.cin) G O (r), 

so A  can be determ ined in 0 ( ^ c'eC ' c' ■c*n ) e  x -c*n ) G 0 ( r |X |)  tim e, as per our

discussion in Section 5.1.1.

If  C '  is m ax im al in  G ', th e n  D e l e t e V e r t e x  m ere ly  rem oves v  from  G  by  rem oving 

v from  th e  c ircu lar doub ly  linked lis t o f vertices in  G , e lim ina ting  th e  .cl e n try  of v  th a t  

co rresponds to  G, an d  decrem enting  th e  v.cin  c o u n te r  b y  one. T h is  rem oval of v  from  G  can 

be done in  0 ( 1 )  tim e. O n th e  o th e r hand , if  C '  is n o t m ax im al in  G' th e n  D e l e t e V e r t e x  

e lim inates G  by  travers ing  G  to  decrease th e  .cin  coun ters  an d  delete  th e  co rresponding  

.cl en tries, th e n  freeing th e  identifier o f G  for fu tu re  use. T h is  e lim ina tion  of G  takes 

©(IC'D G 0 ( |V |)  tim e.

O nce all of th e  en tries o f C have been  exam ined , D e l e t e V e r t e x  deletes v an d  frees 

its  iden tifier for fu tu re  use. So far, D e l e t e V e r t e x  has tak en  O (v.cin ■ ’}Z x € X x -c^n ) e  

0 ( r 2 |V |)  tim e, w here 0 ( [ V |)  labels have been  accessed. T hese 0 ( |V |)  v ertex  labels  require 

Q(v.cin  +  x -cin) b its , so th e  ru n n in g  tim e  of D e l e t e V e r t e x  is po lynom ial in  th e

size of i ts  inpu ts .

If  r  G 0 ( 1 ) ,  th e n  D e l e t e V e r t e x  is e rro r-d e tec tin g  because th e  class is hered itary . 

H owever, if r  is a s tr ic tly  increasing function  of n , th e n  it is possible th a t  th e  deletion  of v
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m ight cause another vertex to  be in m ore th a n  r „ _ i  m axim al cliques.

P r o p o s it io n  5.2 The modification excess and modification locality of  D e l e t e V e r t e x  are 

zero.

P ro o f. F irst, observe th a t the  set of vertices whose neighbourhoods change is X  U {v}. If 

the  label of a vertex x  is modified, th en  x  belongs to  some m axim al clique containing v. 

T h a t is, x  £ X  U {u}. Therefore, th e  set of vertices w ith  modified labels is a subset of the 

set of vertices whose neighbourhoods change, giving the desired result. □

A d d in g  a  v er tex .

Consider the  following lem m a which describes how the  addition of a  vertex  affects the 

m axim al cliques in th e  graph.

L em m a 5.3  Consider a graph G ' form ed by adding a vertex v to a graph G, where X  

denotes the neighbourhood o fv .  Let I  be the set o f  cliques { C n X \ C  is a maximal clique of  

G}. The set o f  maximal cliques of G' can be partitioned as { /U  { u } |/ is a maximal element 

o fT }  U {CIC is a maximal clique o f  G and C  ^  X } .

P ro o f. Consider a set of th e  form I U {v},  where I  is a m axim al element of I ,  and  consider 

a set G, where G is a m axim al clique of G and  C  % X .  By definition, v £ I U {)/}, however, 

v is no t a vertex of G; therefore, v C. Consequently, the  two sets are disjoint.

Since I  is a clique of G, where I  C X ,  I U {v} is a clique of G '. If /U { u }  is no t a m axim al 

clique of G ', then  there exists some clique C* of G' for which I  U { v }  C  G*. Since v £  C* 

and G* is a clique in G ', we know th a t  C* \  {u} C  X  and I  C C* \  {V}, which contradicts 

the m axim ality of I  in X. Therefore, I  U {V} is a m axim al clique of G'.

Since G is a clique in G, it is also a clique in G '. If G is not a m axim al clique of G ', then 

there exists some clique G* of G' for which G C G*. However, C ^ I ,  therefore, G* % X .  

If G* — {«}, then  G =  0, which is a contradiction. On the other hand, if G* {i>}, then 

G* <2 X  gives v ef C*, as C* is a  clique. Since v 0  C*, C* is also a clique in G, which 

contradicts the  m axim ality of C  in  G. Therefore, C  is a maximal clique of G '.

Having shown th a t the  described sets are disjoint, and th a t their m em bers are m axim al 

cliques of G', it rem ains to  show th a t these sets contain all the m axim al cliques of G '.

Consider a maximal clique Go of G '. If v  Go, then  Go is m axim al in G. Moreover, 

Go % X ,  otherwise, the existence of th e  clique Go U {«} in G ' contradicts the  m axim ality  of 

G0 in G '.

On the  o ther hand, if v £  Co, consider th e  clique Iq =  Go \  {v}  of G. Since Iq C  X ,  there 

m ust be some maximal element I*, of X, th a t contains Jo- If  Iq C I*, then  Go =  Iq U { v } C 

I* U {«}, contradicting the m axim ality of Go in G '. Therefore, Iq is a m axim al elem ent of 

X, as desired. □
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Lem m a 5.3, and its proof, suggest th e  design of our relabeller, A d d V e r t e x , as presented 

in Figure 5.3. Specifically, th e  m axim al cliques in G' of the form (C  H X ) U {v}, w here C  

is a maximal clique of G  and  C  C X ,  are achieved by adding v  to  C.  O n the  o ther hand, 

those m axim al cliques of th e  form ( C  fl X )  U {u}, where C  is a m axim al clique of G  and 

C  2  A , are achieved by creating an entirely new m axim al clique. B y creating  new m axim al 

cliques in these situations, we carry forward all those m axim al cliques of th e  form C,  where 

C  is a m axim al clique of G  and C  % X .

The relabeller, A d d V e r t e x , first establishes the  new vertex  v. I t  does th is in 0 (1 ) 

tim e by assigning an identifier to  v and  setting  v.cin  to  0. If X  =  0, th en  v  is an isolated 

vertex; therefore, the  only new m axim al clique in G' is {u}. How A d d V e r t e x  creates new 

m axim al cliques is discussed shortly.

Providing I / ® ,  A d d V e r t e x  first obtains C =  Ux e xCx> the  set of m axim al cliques th a t 

contain some m em ber of X .  The set C contains no more th an  X X ex  x -c m  entries. Since 

x .cin  < r, J 2 x e x  x -c ^ n  ^  r l ^ l -  Moreover, C can be determ ined in. © ( X X e x  x -c i n ) £  © (r l^ 1 ) 

tim e using a reciprocal pointer technique like th a t  presented in Section 5.1.1. Recall th a t to  

efficiently ex trac t inform ation about a  m axim al clique from the  circular doubly linked list of 

its vertices we m ust know the  identifier of some vertex th a t belongs to  th e  m axim al clique, 

as well as the index of the  corresponding .cl entry. Consequently, for each en try  x .c l i .num  

in C, we assume th a t  we also re ta in  a reference to  x  and i.

For each m axim al clique C  in C, we en terta in  the  possibility of C ' =  C  fl X  being a 

m axim al elem ent of th e  set J ,  seen in Lem m a 5.3. As discussed in Section 5.1.1, C  fl X  can 

be com puted in 0 ( |C | +  |X |)  tim e, however, \C\ could be as large as n; as such, we prefer 

to  determ ine C  n  X  in @ (XXex x -&n) £ 0 ( r  |AF|) tim e by searching for the  identifier of C  

in the  .n u m  entries of each element of X .  If C '  is a  subclique of some m axim al clique C* 

rem aining in C (observe th a t A d d V e r t e x  removes C  from C when it  is selected), th en  we 

do nothing as C* fl X  will present itself later. Specifically, if C '  C  C* fl X ,  then  C '  is not 

a m axim al elem ent of X; otherwise, if C '  =  C* fl X ,  then  we avoid possible duplication of 

m axim al cliques. Similarly, if C 1 is a subclique of some m axim al clique C* in V ,  the  set of 

m axim al cliques D  for which (D  fl V ) U {v} has been made a m axim al clique of G ', then 

C'  C C* fl X  (given th a t C* is selected from C before C ', the  addition  of C* to  T> was 

contingent on C* fl X  % C').

The clique C '  is a subclique of some m axim al clique rem aining in C U T> if and only if 

( n c/6c 'C c ')  H (C U P )  ,£ 0 . Since no vertex is contained in more th a n  r  m axim al cliques, 

fV e C 'C c ' can be com puted in Q { ^ 2 c, eC , c’.cin) G 0 ( X ^ ie x  x -c^n ) £  © ( H ^ l )  £  0 (t- |JV|) 

time. In tu rn , the  condition (rV gc'C c') fl (C U V )  ^  0 can be checked in 0 (X X g x  x -c in ) e  

0 ( r |X |)  tim e, as \T>\ < \C\ <  X z e x  x -d n  < r |V j.
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A d d V e r t e x (G , X )

Input: An adjacency labelling of an  r-m ino G (th a t is, the  labels thereof) created using 
our dynam ic scheme, and a subset X  of Vq - N ote th a t  the  labels of G  are only accessed as 
required.

O utput: Let G' be the  graph formed by adding a new vertex v  to  G, where v  is adjacent to  
exactly those vertices in X .  Providing G' is an r-m ino, th e  o u tp u t is an  adjacency labelling 
of G' (again, the  labels thereof). If G' is not an r-m ino, the o u tp u t indicates as such.

1 create a new vertex v
2 i f  X  =  0 th en
3 make a new m axim al clique {w}
4 e lse  C <— {C \C  is a m axim al clique containing a vertex of X }
5 V  <— 0
6 for C  £ C do
7 C ^ - C \ { C }
8 if  C  fl X  is not contained in any of the  m axim al cliques in C or V  th e n
9 V ^ V \ J { C }

10 if  C  n X  =  C  th e n
11 add v to  C
12 e lse  make a new m axim al clique ( C f l X ) U  {v}

Figure 5.3: The relabeller A d d V e r t e x  which relabels an r-m ino w hen a vertex is added

Now, if C'  is not contained in  any m axim al clique of C U XL th en  we make a m axim al 

clique of C'  U {u}. Exactly  how we m ake a m axim al clique of C '  U {u} depends on w hether 

C '  =  C , th a t is, whether C C X ;  note  th a t th is  condition can be checked while com puting 

C ' . If O' =  C , then  we simply add v  to  C,  as C  will no longer be m axim al in G '. Specifically, 

A d d V e r t e x  inserts v into the circular doubly linked list for C,  th en  increases th e  value 

of v.cin  by 1 . This can be done in  0 (1 )  tim e. O therwise, if C ' ^  C, then  we form a new 

m axim al clique, C"U{u}, as C  will continue to  be m axim al in G '. Specifically, A d d V e r t e x  

increases the  value of the . t in  counter of each of the  vertices in C '  U {v}  by one, establishes 

a circular doubly linked list of th e  vertices in C'  U {u}, and creates a new .cl en try  for 

each m em ber of C' U {u} while establishing the  circular doubly linked list; forming this 

new m axim al clique takes 0 ( |C '|)  £  0 ( |X |)  tim e. W henever a . t in  counter is increased, 

we check th a t its value is no greater th a n  r. Therefore, A d d V e r t e x  is error-detecting, 

providing r  £ f l( l) .

Having carefully examined A d d V e r t e x , we observe th a t the  algorithm  runs in

x .c in )2) £ 0 ( r 2 ]X |2) £ O (r2n 2) tim e, where 0 ( |X |)  vertex labels have been 

accessed. These 0 ( j X| )  vertex labels require Q (v.cin +  J2xe x  x -c^n ) ^ s ' so running 

tim e of A d d V e r t e x  is polynomial in the  size of its input.

P r o p o s i t i o n  5.4  The modification excess and modification locality o f  A d d V e r t e x  are 

zero.
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P ro o f. First, observe th a t th e  set of vertices whose neighbourhoods change is X  U {«}. If 

the  label of a vertex x  is modified, th en  x  belongs to  some m axim al clique containing v. 

T h a t is, x  £ X  U {v}. Therefore, th e  set of vertices w ith modified labels is a subset of the 

set of vertices whose neighbourhoods change, giving the  desired result. □

Given Corollary 3.8, A ddV e r t e x  gives polynomial tim e recognition for r-m inoes.

T h eo rem  5.5  For any graph G on n  vertices, we can determine i f  G is an r-m ino  in 

0 ( r2n 3) time.

Furtherm ore, observe th a t  we can use A d dV e r t e x , ju s t as we did in th e  proof of Theorem

3.6, to  create a 0 ( r 2n 3) tim e m arker for our dynam ic scheme.

D e le t in g  an  ed g e .

Consider the following lemma, which describes how the  deletion of an  edge affects the  

m axim al cliques in the  graph.

L em m a 5.6 Consider a graph G' formed by deleting an edge uv from  a graph G. Let  £  be 

the set of cliques {C jC  is a maximal clique o f G, and v £  C  or u  2  C }. The set of m.aximal 

cliques of G' can be partitioned as £  U { C  \  {u ) \C  is a maximal clique o f  G, u , v  £ C, and 

C '\{u }  <2 L, fo r  all L  £ £ } U { G \{ u } |C  is a maximal clique o fG , u , v  £  C, and  G \{ u }  2  L, 

fo r  all L  £ £} .

A t the  heart of Lem m a 5.6 is th e  fact th a t  the  m axim al cliques of G  th a t  do not contain 

bo th  u  and v will continue to  be m axim al in G". However, for each m axim al clique C  of 

G  containing both  u  and v, we m ust consider the  possibility of C  \  {u} or C  \  {u} being 

contained in some other m axim al clique of £ .

P ro o f .  Consider an elem ent L q of £ ,  a set of the  form Cu \  {u}, w here Cu is a m axim al 

clique of G, u, v £ Cu , and Cu \  {u} <2 L,  for all L  £ £ , and a set of th e  form C  \  {v}, where 

Cv is a maximal clique of G, u , v  £ Cv , and Cv \  {u} 2  L, for all L  £ £ . By definition, for 

all L  £ £ , Cu \  {u}, Cv \  {i>} 2  L] moreover, v  £ Cu \  {u} and u  £ Cv \  {u}, so the  three 

sets are disjoint.

Since L q is a clique of G, it is also a clique of G '. If L q is not a m axim al clique of G ', 

then  there exists some clique C* of G' for which L q C C *. Since C* is a clique, a t least 

one of u  and v does not belong to  C* as the  edge uv  does not belong to  G '. Thereby, C* 

is a clique in G, which contradicts th e  m axim ality of L q in G. Therefore, L q is a m axim al 

clique of G '.

Since Cu is a clique, so too  is C u \  {u}  in G '. If Cu \  {«} is not a m axim al clique of G', 

then  there exists some clique C* of G' for which Cu \  {u} C G*. Since C* is a  clique, at 

least one of u a n d  v does not belong to  C* as the edge uv  does not belong to  G'; thereby,
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C* is also a clique of G. Consequently, Cu \  {u} C C* C J * ,  for some J *  in J ,  which is a 

contradiction. Therefore, C u \  {u} is a maximal clique of G ' . A similar argument gives tha t 

Cv \  {u} is a maximal clique of G ' .

Having shown th a t the described sets are disjoint, and th a t their members are maximal 

cliques of G', it remains to show th a t these sets contain all the maximal cliques of G '.

Consider a maximal clique Co of G ' . If u ,v  ^  Co, then Co £ £. Similarly, if u  £ Co, 

v 0 Co, and Co <2 X v , then Co £ £ .

If u  £  Co, v Co, and Co C X v , then Co U {w} is a maximal clique of G .  Moreover, 

if there exists some L*  in £ , such that Co C L * ,  then Co C L * , as L*  <2 X v (otherwise, 

the clique L*  U {u} would contradict the maximality of L*  in G).  Yet, L*  is a clique of G', 

thereby, Co C L*  contradicts the maximality of Co in G ' . Therefore, for all L  in £, Co (2 A, 

as desired.

When v £  Co and u  ^  Co, we can use similar arguments to  show th a t Co has one of the 

desired forms. □

Lemma 5.6, and its proof, suggest the design of our relabeller, D e l e teE dge , as pre­

sented in Figure 5.4. Just as Lemma 5.6 resembles Lemma 5.1, so too does D eleteE dge 

resemble Del e teV ertex .

The relabeller, D e l e t e E d g e , first obtains C =  Cu fl Cv , th e  set of m axim al cliques 

containing bo th  u  and  v, where Cu and Cv can be determ ined in Q(u.cin)  and  Q(v.cin)  time, 

respectively. Since \CU \ =  u.cin  and \CV\ =  v .c in , C can be determ ined in O (u.cin + v.cin) £ 

O (r) tim e. For each m axim al clique C of C, the  cliques C'u = C  \  {«} and  C ' =  C  \  {u} 

are exam ined to  determ ine if they  maximal in G '. L etting  X  denote th e  intersection of 

the neighbourhoods of u  and v  in G, |C | <  |X | +  2 , so C'u and  C'v can be determ ined in 

0 (]C |)  £  0 (|.X j) tim e, by traversing C. For a  £ { u ,v } ,  C'a is m axim al in G' if and only if 

the  set A a =  flc 'eC ' (^c' \  C)  is empty. As per our discussion in Section 5.1.1, A a can be 

determ ined in 0 ( J ] c,6C, d .c in )  £  0 ( ^ xgX x.cin) £  0 ( r |Y |)  time.

First, let us assume th a t exactly one of C \  {u} and C \  {v} is a maximal clique in G'\ 

without loss of generality, let the maximal clique be C \  {u}. We develop this maximal clique 

by removing v  from C, just as we did in D e le te V e r te x ,  using 0(1) time. As a second 

possibility, consider if neither C \{ u )  nor C \  {u} is a maximal clique in G ' . In this case, we 

eliminate the maximal clique C, just as we did in D e le te V e r te x ,  using 0 ( |C |)  £ 0 (jA |) 

time. Finally, if both C  \  {n} and C \  {w} are both maximal in G', then we develop C \  {a} 

by removing v from G, using 0(1) time; however, C \{ u }  must be developed by establishing 

a new maximal clique, just as we did in A d d V e rte x , requiring 0 (|C 4 |) £  0 ( |Y |)  time.

Whenever a .cin counter is increased during the creation of the new maximal clique, we 

check th a t its value is no greater than r. Thereby, D e l e teE dge is error-detecting. Since C 

contains at most m in{u.cin, v.cin}  maximal cliques, the to tal running time of D eleteE dge
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D e l e t e E d g e (G , u ,  v )

Input: An adjacency labelling of an r-m ino G  ( th a t is, th e  labels thereof) created using our 
dynam ic scheme, and two distinct vertices u  and v  of Vq  for which uv  G Eg-  Note th a t  the  
labels of G  are accessed only as required.

O utpu t: An adjacency labeling of a graph  G' (again, th e  labels thereof) formed by deleting 
the  edge uv  from G, providing G' is an  r-m ino. If G' is no t an r-m ino, then  the o u tp u t 
indicates as such.

1 C <— {G \C  is a m axim al clique containing bo th  u  and  v}
2 f o r  C  G C d o
3 i f  the  only m axim al clique of G  containing C  \  {u} is C  t h e n
4  remove v  from C
5 i f  the  only m axim al clique of G  containing C  \  {it} is C  t h e n
6 make a new m axim al clique of C  \  {it}
7 e l s e i f  the  only m axim al clique of G  containing C  \  {«} is C  t h e n
8 remove u  from C
9 e l s e  elim inate C

Figure 5.4: The relabeller D e l e t e E d g e  which relabels an  r-m ino when an edge is deleted

is 0 (m in {u.cin, v.cin} ■ J 2 x e x  x -c^n ) e  0 ( r 2|.Xj), where 0 ( |A j)  labels are accessed. Given 

th a t these labels require Q(u.cin  +  v.cin  + Y h x e x x -Ĉ n ) bits, the running time of D e l e -

t e E d g e  is polynomial in the size of its input.

P r o p o s i t i o n  5 .7  The modification locality o f  D e l e t e E d g e  is one.

P r o o f. First, observe th a t the  set of vertices whose neighbourhoods change is {it, v}.  If the  

label of a vertex x  is modified, then  x  belongs to  some m axim al clique of G  containing u  

and v, giving the desired result. □

A d d i n g  a n  e d g e .

Consider the following lemma, which describes how th e  addition of an edge affects the  

m axim al cliques in th e  graph.

L e m m a  5.8 Consider a graph G' formed by adding an edge uv  to a graph G . Let X  denote  

the neighbourhood of v in G' and let 1C be the set o f  cliques {C  PI X \ C  is a maximal clique 

of G and u G C }. The set of maximal cliques of G' can be partitioned a s  { K  U { v } \K  is a 

maximal element of K.} U {C jC  is a maximal clique o f  G, C  % X ,  and C  ^  {n}}.

P r o o f. Consider a set of the  form K  U {?>}, where K  is a  m axim al element of K., and 

consider a set C , where C  is a m axim al clique of G, C  % X ,  and C  ^  {u}. By definition, 

u ,v  G K  U {v}; however, if it G C, then  v $  C, as th e  edge uv  does not belong to  G. 

Therefore, the  two sets are disjoint.

Since A  is a clique of G , where K  C X . K  U {u} is a clique of G'. If K  U {i;} is not a 

m axim al clique of G', then  there exists some clique C* of G' for which K  U {v} C C *. Since
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v G C* and G* is a clique in G ', we know th a t  C* \  {w} C X  and K  C C* \  {u}, which 

contradicts th e  m axim ality  of K  in 1C. Therefore, K  U {i;} is a m axim al clique of G '.

Since C  is a clique in G, it is also a clique in G '. If C  is not a m axim al clique of G ', then 

there exists some clique C* of G' for which C  C C*. However, C ^ X ,  therefore, G* <2 X .  

I f  C* =  {v}, th en  C  =  0, which is a contradiction. O n the  o ther hand, if C* ^  {u}, then 

C* % X  gives v  2  C* as C* is a clique. Since v 2  C*, C* is also a clique in G, which 

contradicts th e  m axim ality of C  in G. Therefore, G is a m axim al clique of G '.

H a v in g  sh o w n  t h a t  th e  d e sc r ib e d  s e ts  a re  d is jo in t, a n d  t h a t  th e i r  m e m b e rs  a re  m a x im a l 

c liq u es  o f  G', i t  re m a in s  to  show  t h a t  th e s e  s e ts  c o n ta in  all th e  m a x im a l c liq u e s  o f  G '.

Consider a m axim al clique Go of G '. If u  0  Go or v £  Go, th en  Go is m axim al in G. 

Moreover, Go <2 X ,  otherwise, the  existence of the  clique Go U {i>} in G' contradicts the 

m axim ality of Go in G '. Similarly, Go ^  {v}, otherwise, the  existence of th e  clique Go U {u} 

in G' contradicts the  m axim ality of Go in G '.

On th e  o ther hand, if u , v  G Go, consider th e  clique Kq = Go \  {v}  of G. Since Kq  C X ,  

there  m ust be some m axim al elem ent K * ,  of 1C, th a t contains Kq.  If Kq  C K *, then 

Go =  Kq  U {u} C K*  U {v}, contradicting the  m axim ality of Go in G '. Therefore, Kq  is a 

m axim al element of 1C, as desired. □

W hen forming a m axim al clique of G' th a t  contains bo th  u  and  v , we can view it as either 

adding v to  some clique containing u, or vice versa. In designing our relabeller, we have 

chosen the  former viewpoint. The relabeller, A d d E d g e , presented in F igure 5.5, closely 

resembles A d d V e r t e x , ju s t as Lem m a 5.8 closely resembles Lem m a 5.3.

T he relabeller, A d d E d g e , first determ ines if v  is an isolated vertex  in G. If  v  is isolated, 

then  the algorithm  elim inates the  m axim al clique {i>}, as we will la ter include v in some 

maxim al clique containing u. As discussed in Section 5.1.2, th is  case can be identified and 

addressed in 0 (1) tim e.

P ro v id in g  v  is n o t a n  is o la te d  v e r te x , A d d E d g e  o b ta in s  X ,  th e  n e ig h b o u rh o o d  o f  v in  

G '. T h e  n e ig h b o u rh o o d  o f  v in  G c a n  b e  d e te rm in e d  b y  tr a v e rs in g  e a c h  o f  th e  m a x im a l 

c liq u es  in  Cv . S ince  n o  v e r te x  in  G b e lo n g s  to  m o re  t h a n  r  m a x im a l c liq u es, w h e re  th e  size 

o f  th e  la rg e s t m a x im a l c liq u e  c o n ta in in g  v  is \X \ — 1 , th e  n e ig h b o u rh o o d  o f  v  in  G ca n  be  

d e te rm in e d  in  Oiv.c in  ■ |A |)  G 0 ( r |A |)  t im e . B y  a d d in g  u  to  th e  n e ig h b o u rh o o d  o f  v  in  G, 

w e o b ta in  X .

As well, A d d E d g e  obtains C = Cu , the  set of m axim al cliques containing u; again, for 

each element u .c l i .num , we retain  a reference to  i. For each m axim al clique G in C, we 

process the subclique C'  =  G n  X  as we did in A d d V e r t e x . In A d d V e r t e x , |C| <  r\X \ ,  

however, in A d d E d g e , \C\ — u.cin < r. Therefore, the running tim e of A d d E d g e  is 

O (u.cin ■ v.cin ■ |X |)  G 0 ( r 2 |X |) , where 0 ( |A |)  labels are accessed. Given th a t  these labels 

require Cl(u.cin + v.cin  +  J2 xex  x -cin ) bits, the running tim e of A d d E d g e  is polynomial in
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A d d E d g e ( G ,u , u )

Input: A n adjacency labelling of an r-m ino G (th a t is, the  labels thereof) created  using our 
dynam ic scheme, and two d istinct vertices u  and v of Vq  for which uv  ^  E g - Note th a t the 
labels of G  are only accessed as required.

O utput: An adjacency labeling of a graph G' (again, the  labels thereof) form ed by adding 
the edge uv  to  G, providing G' is an r-m ino. If G' is no t an r-m ino, then  th e  o u tp u t indicates 
as such.

1 if  v is an isolated vertex (in G) th e n
2 elim inate th e  m axim al clique {v}
3 X  <— {x \x  is a neighbour of v (in G ')}
4 C <— {G |G  is a m axim al clique containing u}
5 P ^ 0
6 for G £ C do
7 C ^ - C \ { C )
8 i f  G fl X  is no t contained in any of th e  m axim al cliques in C or P  th en
9 P e - P U  {G}

10 if  G n X  =  C  th e n
11 add v  to  C
12 e lse  make a new m axim al clique (G fl A ) U {u}

F ig u re  5.5: T h e  re lab e lle r A d d E d g e  w hich re lab e ls  an  r -m in o  w hen an  edge is added

the  size of its  input. Ju s t as we did in A d d V e r t e x , whenever a vertex is added to  a new

m axim al clique we check th a t  it does not belong to  more th an  r  m axim al cliques. Therefore, 

A d d E d g e  is error-detecting.

P r o p o s it io n  5 .9  The modification locality o f  A d d E d g e  is one.

P ro o f. First, observe th a t  the  set of vertices whose neighbourhoods change is {u , u}. If the

label of a vertex x  is modified, then  x  will belong to  some m axim al clique of G ' containing

v, giving the desired result. □

5.2 T he d ynam ic schem e for r-b ics

The dynamic adjacency labelling scheme th a t we develop for r-bics will be very similar to 

the one previously developed for r-minoes in Section 5.1. Before presenting our work on 

r-bics we note tha t the class of r-minoes does not include the class of r-bics, and vice versa. 

For example, K \ ^  is a 1-bic, but not a 1-mino, and K 3 is a 1-mino, but not a 1-bic.

5.2.1 V ertex  labels and decoder

Like the dynamic scheme for r-minoes presented in Section 5.1, our dynamic adjacency 

labelling scheme for r-bics uses graph substructures and circular doubly linked lists to dis­

tribute information about neighbourhoods across the vertices in the neighbourhoods. In 

the case of r-bics, the im portant substructures are the maximal bicliques. As such, we use
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the vertex labels to  m ain tain  a circular doubly linked list of the vertices in each maximal 

biclique.

Given an r-bic on n  vertices, each vertex is assigned a unique identifier, similarly, each 

m axim al biclique is assigned a unique identifier. For simplicity, we refer to  vertices and max­

imal bicliques by the ir identifiers. Given a vertex v, its label will also consist of th e  following 

information; exactly how th e  m arker initially  determ ines these labels will be addressed later.

v .b in: The num ber of m axim al bicliques in which v  is contained.

v.bicl: An array of 4-tuples w ith an en try  for each m axim al biclique in which v is contained. 

Each m em ber v.ck  is a 4-tuple of the  form (num.,part, n x ,p r e v ), as follows, where the 

index i ranges from 1 to  v.bin.

•  num. is the  unique identifier assigned to  th e  m axim al biclique.

• part  is a  value, either 0  or 1 , used to  indicate th e  p a rt of the  b ipartition  to  which 

v belongs.

•  nx is a pair (id, index),  where id  is the  identifier of the  next vertex after v  in the  

circular doubly linked list of the  vertices in m axim al biclique v.bicli.num,  and 

index  is th e  value j  for which id .b iclj.num =  v.bicli.num.

•  prev is a pair (id, index),  where id  is th e  identifier of the  vertex before v  in the 

circular doubly linked list of the  vertices in m axim al biclique v.bicli.num,  and 

index  is th e  value j  for which id .b iclj .num = v.bicli.num.

In particular, the  label of a vertex is (u: v.bin; v.bicl) as illustrated  in Figure 5.6.

Given the labels of two vertices, iq and rq, the  decoder can determ ine the  adjacency of 

iq and V2 by com paring the .n u m  and .part entries of v\.bicl and rq -bicl to  see if the  vertices 

belong to  distinct p a rts  of some common m axim al biclique. To th is  effect, let Bv denote 

{v.b iclj .num \l < j  < v.bin}, the  set of m axim al bicliques containing v, and, for i £  {0 , 1},

let B lv denote {v .b ic lj .num \l < j  < v.bin, v .b id v part = i}, the  set of m axim al bicliques

containing v, where v belongs to the  i th p a rt of th e  b ipartition . Clearly, and B * partition  

Bv , where Bv = v.bin.

(a : 4; [(1,0. (6. 1), (d, 1)), (2,1, (6,2), ( / ,  2)), (3,0, (c, 1), ( / ,  3)). (4.0. (<■. 2). (c, 2))])

(b : 3; [(1.1, ( / ,  1), [a, 1)), (2,0, (e, 1), (a, 2)), (5,0, (c,3), (c, 3))])

(c. : 3; [(3.1. (rf,2), (a, 3)), (4, 1, ( a ,4), ( / ,  4)), (5,1, (6,3), (6.3))])

(d : 3: [(1,1, («, 1), ( /,  1)), (3,1, ( / ,  3), (c, 1)), (6 ,1, (e, 3), (e. 3))|)

(e : 3; [(2, 0, ( / .  2), (6, 2)), (4,1, ( / ,  4), (a, 4)), (6,0, (d, 3), (d. 3))])

( /  : 4; [(1. 1, (d.  1). (6,1)), (2,0, (a, 2), (e, 1)), (3,1, (a, 3). (d. 2)). (4.!.(,-. 2). (e. 2))])

Figure 5.6: A labelling of a 4-bic obtained using our labelling scheme
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For any vertex v, B v , £>°, and B \ ,  can be determ ined sim ultaneously in Q(v.bin) E 0 (r) 

time. Therefore, the  adjacency of two vertices v\  and v2 can be determ ined in 0 (v \ .b in  +  

V2 -bin) E 0 (r) tim e by testing  the  condition ( B ^  fl B„2) U ( B ^  fl £?°2) =/= 0, using the 

reciprocal pointer technique described in Section 5.1.1.

Using an approach identical to  th a t seen in Section 5.1.1 for r-m inoes, we are able to  

traverse the circular doubly linked list of vertices in a  m axim al biclique B  in 0 ( |I? |)  tim e 

(again, we will say th a t  we traverse B , although we really m ean th a t  we traverse th e  circular 

doubly linked list of vertices in B ).  W hile traversing B , we are also able to  determ ine Bi,  

the  vertices of B  belonging to  p a rt i, where i £ {0,1}. As well, we can use th e  approach 

seen in Section 5.1.1 to  m ain tain  v.bicl as a contiguous array of v.bin  entries in 0 (1 )  time.

If s tr ing  denotes the  num ber of b its required to  represent s tr ing ,  then  the  size of the 

label of v  is

v.cin
v + v .b in  + (v .b ic li .num  + v.bicli.part+

i= 1

v.bicli.prev.id + v.bicli.prev.index + v.bicli.nx.id + v .b ic l i .n x . in d e x j .

Recall an earlier discussion in Section 3.1.3, where we observed th a t  the dynam ic natu re  of 

the graph  m ight prevent the  vertex and biclique identifiers from being space-optim al. As 

such, let the largest identifier of a vertex in the  graph be L \ ,  and let th e  largest identi­

fier of a m axim al biclique be L 2. Thereby, v, v.bicli.prev.id, v.bicli.nx.id  £ O (lo g L i) and 

v.bicli.num  £ 0 (logL 2). Moreover, each vertex is in at m ost r  m axim al bicliques; there­

fore, v.bin, v.bicli.prev.index, v .bicli .nx.index < r, and  the label of v  uses 0 (logL i + lo g r  +  

r lo g Z /2 +  t lo g r  +  r  log L \)  £ 0 ( r lo g L i  +  rlog-L 2) bits. If L i  and L 2 are polynom ial in 

n, which we s ta ted  as an assum ption in Section 3.1.3, then  the  label size of v  reduces to  

O (r lo g n ) . In  tu rn , the graph is represented using O (rn lo g n )  bits.

Observe th a t a 1-bic is a com plete b ipartite  graph. Given th a t  th e  num ber of labelled 

and unlabelled com plete b ipartite  graphs on n  vertices are 2n_1  and \ IL̂ \ ,  respectively, 

our dynam ic scheme is not space optim al for r  =  1 . As such, we im plicitly assume th a t 

r  >  2 .

Using an argum ent sim ilar to  th a t  found in Section 4.2.1, we can show th a t, for r  >  2 , 

there  are 2n lnlogn) labelled r-bics on n  vertices, thereby, our dynam ic scheme for r-bics is 

space-optim al when r  £ 0 (1 ) . Consider a graph consisting of a com plete b ipartite  subgraph 

on n  — 1 vertices and one vertex v adjacent to  each of the  n — 1 vertices in the complete 

b ipartite  subgraph. There are n2" - 2  £ 2n (n l° s ri) such graphs, each of which is a 2-bic. Yet, 

for r '  >  r ,  an r-bic is also an r'-b ic; thereby, there are 2n (nl°g«) labelled r-bics on n  vertices.

For r  £ w(l ) ,  we cannot offer comment on optim ality  as we have no additional lower
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bounds. We also cannot offer com m ent on th e  optim ality  in the  unlabelled case, when

r  G 0 (1 ) , as the  2n (n l°g") lower bound has no t yet been established on th e  num ber of

unlabelled r-bics on n  vertices.

5.2.2 R elabeller

Let us now examine the  relabellers included in our dynam ic scheme. As w ith  th e  dynam ic 

schemes presented for line graphs and  r-m inoes, detailed pseudocode appears in A ppendix 

C. In the  following discussion, G  is th e  original graph  and  G' is the  changed graph.

D e le t in g  a v e r te x  from  th e  grap h

Consider the following lemma, which describes how the  deletion of a vertex  affects the 

m axim al bicliques in the  graph.

L em m a 5.10  Consider a graph G' form ed by deleting a vertex v from a graph G, where X  

denotes the neighbourhood o fv  in G. Let J  be the set o f  bicliques { B \B  is a maximal biclique 

of G and v $  B } .  The set of maximal bicliques o f G ' can be partitioned as i 7 U { B  \  {v} \B

is a maximal biclique o f G , v €  B ,  and B  \  {u} <2 J , fo r  all J  G J } .

Lem m a 5.10, whose proof is identical to  th a t  of Lem m a 5.1, suggests the  design of our 

relabeller, D e l e t e V e r t e x , as presented in  F igure 5.7. As expected, D e l e t e V e r t e x  is 

almost identical to  its sister algorithm  presented in Section 5.2.

Despite the ir sim ilarities, these two sister algorithm s have some differences. Observe 

th a t every vertex in Vq belongs to  some m axim al biclique containing v. Therefore, we 

are able to  determ ine Vq while determ ining if the  only m axim al biclique of G  containing 

B  \  {i>} is B , for each biclique B  G B. Consequently, if r  G w(l ) ,  then  we can ensure th a t 

D e l e t e V e r t e x  is error-detecting by checking all vertex  labels to  confirm th a t  each vertex 

belongs to  a t m ost r  m axim al cliques. This requires 0 (n )  time, where n  < ^ 2 B3v \B\.

In  th e  case of r-m inoes, the size of each m axim al clique containing v  was bounded 

by |V |, thereby leading to  a running tim e of O (v.cin ■ Y l x e x  x -c'in ) € ( 0 ( r 2 |V |) . In 

the  case of r-bics, the  size of each m axim al biclique containing v is bounded only by B , 

the  size of the  largest maximal biclique in G. As such, for r-bics, D e l e t e V e r t e x  runs 

in O (v.bin ■ rn a x{Y fbtzB b.bin}) G 0 ( r 2B ) tim e. Observe th a t D e l e t e V e r t e x  accesses 

0 (m a x { |B |} )  labels, which require Ll(Y^,B3v beB b.bin) b its in to ta l. Therefore, the  running
B 3 v  ’

tim e of D e l e t e V e r t e x  is po lynom ial in  th e  size of its  inpu ts .

Furtherm ore, in the  case of r-bics, the  m odification locality of D e l e t e V e r t e x  is un­

bounded, as it is possible th a t some m axim al bicliques of G  containing v  m ay have been 

independent sets.
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D e l e t e V e r t e x ( G ,  v )

Input: An adjacency labelling of an r-b ic G  (th a t is, the  labels thereof) created  using our 
dynamic scheme, and  a vertex v in Vq - N ote th a t  the labels of G  are only accessed as 
required.

O utput: An adjacency labeling of a graph G' (again, the  labels thereof) form ed by deleting 
v from G, providing G' is an r-bic. If G' is no t an r-bic, then  the  o u tp u t indicates as such.

1 B  <— { B \B  is a m axim al biclique containing v}
2 fo r B  £ B  d o
3 if  the  only m axim al biclique of G  containing B  \  {w} is B  t h e n
4 remove v  from B
5 e lse  elim inate B
6 delete v and free its  identifier
7 if  r  G w (l) t h e n
8 if  some vertex belongs to  more th a n  r  m axim al bicliques t h e n
9 e r r o r  no longer an r-m ino

Figure 5.7: The relabeller D e l e t e V e r t e x  which relabels an  r-b ic  when a vertex is deleted 

A d d in g  a  v e r te x .

Consider a vertex v  which is to  be added to  a graph G, where X  denotes th e  neighbourhood 

of v. For each biclique B  of G, let {Pq , P f \  be the  partition  of B  defined by b G P f  if and 

only i ib  £ X  and b £  B i,  or b fe' X  and b £  B t . By adding v  to  the  subset of B t belonging to  

P [‘‘. we obtain a biclique of the  new graph. The m axim ality of such bicliques is addressed 

by th e  following lem m a, which describes how the  addition of a vertex affects the  m axim al 

bicliques in th e  graph.

L e m m a  5.11 Consider a graph G' formed by adding a vertex v to a graph G, where X  

denotes the neighbourhood of v. Let X  be the set of bicliques {P q , P f \ B  is a maximal 

biclique of  G}. The set o f  maximal bicliques o f  G' can be partitioned as { I  U {u} |J is a 

maximal element o f I } U { B \B  is a maximal biclique o f  G and P ^ , P f  yl B } .

Specifically, the  m axim al bicliques in G ' of the  form P P  U {v}, where P P  = B , are 

achieved by adding v to  P P . On the o ther hand, those m axim al bicliques of the  form 

P f  U {u}, where P P  ŷ  B ,  are achieved by creating an entirely new m axim al biclique. By 

creating new m axim al bicliques in these situations, we carry forward all those m axim al 

bicliques of the form B ,  where B  is a m axim al biclique of G and Pq , P f  ŷ  B .

P ro o f . Consider a set of the  form I U {v}, where I  is a m axim al elem ent of X, and consider 

a set of the  form B , where B  is a m axim al biclique of G and Pq , P f  yl B .  By definition, 

v £ I  U {u}, however, v is not a vertex of G. Therefore, v  ^  B .  Consequently, the  two sets 

of the claimed partition  are disjoint.

Since I  is a biclique of G, where, w ithout loss of generality, I  = Pq , we know th a t  I U {w} 

is a biclique of G '. If I U {t>} is not a m axim al biclique of G ', then  there exists some biclique
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B*  of G' for which I  U {u} C B*.  Since v  G B*,  we know th a t  I  C B* \  {v} and, w ithout 

loss of generality, B* \  {v} =  Pq , which contradicts the  m axim ality  of I  in  T. Therefore, 

I  U {v} is a m axim al biclique of G '.

Since B  is a biclique in G, it is also a biclique in G '. If B  is not a m axim al biclique 

of G ', then  there exists some biclique B* of G' for which B  C B * . B ut P f , P f  f  B ,  so 

Pq * , P f3’ B *, which gives v g  B*,  as B* is a biclique. Since v  ^  B * , B* is also a biclique 

in G, which contradicts th e  m axim ality  of B  in G. Therefore, B  is a m axim al biclique of 

G'.

Having shown th a t  th e  described sets are disjoint, and th a t  the ir m em bers are maximal 

bicliques of G ', it rem ains to  show th a t  these sets contain all th e  m axim al bicliques of G '.

Consider a m axim al biclique B '  of G '. If v  ^  B ' , th en  B '  is m axim al in G. More­

over, Pq , P f  /  B !, otherwise, the existence of the  biclique B '  U {u} in G ' contradicts the 

m axim ality of B '  in G".

O n the  o ther hand, if v  G B ', consider th e  biclique I '  = B '  \  {u} of G. Since I '  G 

[ P f ' , P {  }, there m ust be some m axim al elem ent /* , of X, th a t  contains I 1. If I '  C /* , 

then  B '  — I '  U {v} C I* U {u}, contradicting th e  m axim ality  of B '  in G '. Therefore, I '  is a 

m axim al element of I ,  as desired. □

Lem m a 5.11, and its proof, suggest the  design of our relabeller, A d d V e r te x ,  as pre­

sented in Figure 5.8. Perhaps the  greater challenge in designing A d d V e r te x  lies in how to  

identify the m axim al bicliques of G th a t do not contain any vertices of V , as we will need 

to  determ ine these bicliques via th e  vertices of X .

To improve the  running tim e of our algorithm , we insist th a t  A d d V e r te x  represents X ,  

the  set of vertices to  which v  is m ade adjacent, in th e  same m anner th a t  S i was represented 

in our discussion of the  reciprocal pointer technique found in Section 5.1.1. This one-time 

effort requires 0 ( |X |)  tim e, bu t will pay dividends la ter on.

T he relabeller, A d d V e r te x ,  first establishes the  new vertex v. I t  does th is in 0 (1 ) time 

by assigning an identifier to  v and setting  v .bm  to  0. If G =  0, then  V c  =  {v},  therefore, the 

only new m axim al biclique in G ' is {u}. How A d d V e r te x  creates new m axim al bicliques 

is discussed shortly.

Providing G ^  0, A d d V e r te x  first obtains B  =  Uu€yGBu , th e  set of m axim al bicliques 

of G. Let x* be a mem ber of X .  Since every vertex in Vg belongs to  some maximal 

biclique containing x*, we can traverse each of the x*.bin  bicliques of x* to  determ ine Vg - 

W here B  is the size of the  largest biclique in G, determ ining Vq in th is  m anner takes 

O {x*.bin -B ) G O (rB ) time.

Each Bu can be determ ined in O (u.bin) G O (r) tim e, where \BU\ < r. Therefore, B  con­

ta ins no more th an  Y luevG u - ^ n  — r n  entries, and can be determ ined in 0 ( ^ ngl/G u.bin) G 

O (rn ) tim e. Recall th a t, to  efficiently ex tract inform ation abou t a m axim al biclique from
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A d d V e r t e x (G, X )

Input: An adjacency labelling of an r-b ic  G  ( th a t is, the  labels thereof) created  using our 
dynam ic scheme and a subset X  of Vq - N ote th a t  th e  labels of G  are accessed only as 
required.

O utput: Let G' be the graph form ed by adding a new vertex v to  G, where v  is adjacent to  
exactly those vertices in X .  Providing G' is an  r-bic, the  ou tp u t is an  adjacency labelling 
of G' (again, the  labels thereof). If G' is no t an r-bic, the  ou tpu t indicates as such.

1 c rea te  a  new  vertex  v
2 i f  G =  0 th e n
3 m ake a  new  m ax im al b ic lique {u}
4 e l s e  B  <— {B \B  is a  m ax im a l b ic lique of G}
5
6 fo r B  e  B  d o
7 B ± - B \ { B }
8 fo r  i G {0 , 1} d o
9 i f  Pp‘ is n o t co n ta in e d  in  an y  of th e  m axim al b ic liques in  6  o r  P  t h e n

10 i f  P f  =  B  t h e n
11 ad d  v  to  B
12 e ls e  m ake a  new  m ax im a l biclique P P  U {?;}
13 i f  e ith e r Pq or P f  w as n o t co n ta in ed  in  any of th e  m ax im a l b icliques in B  

or V  t h e n
14 V ^ V U  { B}
15 i f  r  €  o ( l )  t h e n
16 i f  som e vertex  belongs to  m ore th a n  r  m axim al cliques t h e n

Figure 5.8: The relabeller A d d V e r t e x  which relabels an r-bic when a vertex is added
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the  circular doubly linked list of its vertices, we m ust know th e  identifier of some vertex 

th a t belongs to  th e  m axim al biclique, as well as the index of th e  corresponding .bid  entry. 

Consequently, for each en try  u .b id i .n u m  in B, we assum e th a t  we also re ta in  a reference to  

u  and i.

Just as we insisted th a t  X  be represented w ith  reciprocal pointers, we also insist th a t  B  

be represented w ith  reciprocal pointers.The only difference between these reciprocal pointer 

representations is th a t  the  representation  for B  will need to  be m aintained dynamically. As 

a biclique B  is chosen from B  we remove it from B\ th is  removal from  th e  reciprocal pointer 

representation takes 0 (1 ) tim e.

For each m axim al biclique B  in B, we enterta in  th e  possibility of P 8  and P 8  being 

maximal elements of th e  set X, seen in Lem m a 5.11. For each elem ent b in  B ,  the  m em bership 

of b in X  and the  value of b.b id j .par t , where b .b id j .num  =  B ,  determ ine w hether b belongs 

to  Pq or P 8 . Given th e  representation  of X  w ith  reciprocal pointers, determ ining the 

membership of b in X  requires 0 (1 ) time; moreover, th e  index j  for which b .b id j .n u m  =  B  

is known from th e  previous vertex in the  circular doubly linked list abou t B .  Therefore, 

traversing B  to  determ ine P ,8  and P 8  requires 0 ( |B |)  tim e.

If P 8  is contained in some m axim al biclique B*  rem aining in  B, then  we do nothing as 

P p  will present itself later. Specifically, if P 8  C P p  , th en  P 8  is no t a  m axim al elem ent of 

X, and if P 8  =  P 8  , th en  we avoid possible duplication of m axim al bicliques. Similarly, if 

P 8  is contained in  some m axim al clique B* in T>, the  set of bicliques D  for which D  U {v} 

has been m ade a m axim al biclique of G ' , then  P 8  C B*  (given th a t  B*  is selected from B  

before B ,  the  addition of B*  to  V  was contingent on B*  $7 P 8 )-

The biclique P 8  is contained in some maximal biclique in B  or P  if and only if DuePB (Bufl 

(B U V ))  ^  0. Since \BU\ = u.bin, and B  and V  are represented using reciprocal pointers, 

each set Bu fl (B  U V )  can be determ ined in Q(u.bin) G 0 ( r )  tim e. In tu rn , the  condition 

flu £ P b ( B u n  (B  n  V ))  ^  0 can be checked in 0 (u.bin  - |P 8 |) £  0 ( r |P 8 |) G 0 ( r |B |)  time 

using the reciprocal pointer technique discussed in Section 5.1.1.

Now if PtB is not contained in any maximal bicliques of B  U T>, th en  we make a m axim al 

biclique of P 8 U {u}. E xactly  how we make a m axim al biclique of P 8  U {u} depends 

on whether P 8  =  B \  note th a t th is condition can be checked while com puting P 8 . If 

P 8  =  B ,  then  we sim ply add v  to  B ,  as B  will no longer be m axim al in G ' . Specifically, 

A d d V e r t e x  inserts v in to  the  circular doubly linked list for B  such th a t  the  .part value 

of the corresponding v .b id  en try  is i, then  increases the  value of v.bin  by one. This can be 

done in 0 (1 ) time. O therw ise, if P 8  ^  B ,  then  we form a new m axim al biclique, P 8  U {v}, 

as B  will continue to  be m axim al in G ' . Specifically, A d d V e r t e x  increases the value of 

the  .bin counter of each of th e  vertices in P 8  U {v} by one, establishes a circular doubly 

linked list of the vertices in P 8  U {u}, and creates a new .bid  en try  for each mem ber of
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P P  U {u} (m irroring the  .part  values seen in  B , and setting  the appropriate .part value of v 

to  i ) while establishing th e  circular doubly linked list. Form ing th is new m axim al biclique 

takes 0 ( \P ^ \ )  £ 0 ( |B |)  tim e.

W henever a .bin counter is increased, we check th a t  its value is no greater th an  r ,  thereby, 

A d d V e r t e x  is error-detecting. Moreover, if r  £ o ( l) ,  th en  our previous determ ination of 

Vq can be used to  check all labels to  ensure th a t  each vertex  belongs to  a t m ost r  m axim al 

cliques. The tim e required to  do th is is 0 (n ) .

The to ta l running tim e of A d d V e r t e x  is O {x* .bin ■ B  • J2ueva u - ^ n ) e  0 ( r 2n B ) £ 

O (r2n 2). Given th a t  A d d V e r t e x  accesses the  entire labelling, its running tim e is polyno­

m ial in the size of its input.

From Corollary 3.8, we see th a t A d d V e r t e x  gives polynom ial tim e recognition for r- 

bics.

T h e o r e m  5 .12  For any graph G o n n  vertices, we can determine i f G  is an r-bic in  O (r2n 3) 

time.

Furtherm ore, observe th a t  we can use A d d V e r t e x , ju s t as we did in the  proof of Theorem

3.6, to  create a 0 ( r 2n 3) tim e m arker for our dynam ic scheme.

D e le t in g  a n  e d g e .

Consider the following lem m a, which describes how th e  deletion of an edge affects the  

m axim al bicliques in the  graph.

L e m m a  5.13  Consider a graph G' formed by deleting an edge uv  from a graph G, where 

Vq {w,u}. Let X u and X v denote the neighbourhoods o f u  and v in G ', respectively, 

and let W  denote the vertices o f  G  fo r  which w  £ W  i f  and only i f  w  £ X u w £  X v . 

Furthermore, let C\ be { B \B  is a maximal biclique o f  G, B  W ,  and  |{u, v}  fl B\ =  1}, 

let £ 2  be { B \B  is a maximal biclique of G and u , v  0  B } ,  and let 1C be the set o f  bicliques 

{(B  \  {u})fl W \B  is a maximal biclique o f G, u  £ B } .

The set of maximal bicliques o f  G' can be partitioned as £ i U £ 2 U{.B\{u}|.B is a m.aximal 

biclique of G, u . v  £ B , B  {m,u}, and B  \  {u} (f B \ ,  fo r  all maximal bicliques B \  of G, 

B \  7  ̂ B }  U {B  \  is a maximal biclique of G, u , v  €  B ,  B  { u ,v } ,  and B  \  {u} B \ ,

fo r  all maximal bicliques B \  of G, B \  7  ̂ B } U { K  U { v } \K  is a maximal element o f  X } .

Unlike Lemma 5.1 which tells us th a t m axim al cliques can only be destroyed when an 

vertex is deleted. Lem m a 5.10 indicates th a t the deletion of an edge can cause bicliques to  be 

b o th  created and destroyed. As such, D e l e t e E d g e  has the  flavour of both A d d V e r t e x , 

an algorithm  in which m axim al bicliques get created, and D e l e t e V e r t e x , an algorithm  in 

which m axim al bicliques get destroyed.

In Lemma 5.10, C\ and £ 2  are the  sets of m axim al bicliques th a t  are unaltered.
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For any m axim al biclique B  of G  containing u  and v, where B  ^  {u ,u} , we need to  

consider w hether B  \  {it} and B  \  {u} will continue to  be maximal in G ' . Specifically, if they 

are properly contained in another m axim al biclique besides B , then  they  will no longer be 

m axim al in G ' , and m ust be destroyed.

For any m axim al biclique of th e  form ((B  \  {u}) fl W )  U {v}  =  (B  fl W )  U {v}, where 

u  £ B ,  we consider four cases. If B  C W  and v £ B ,  then  B  =  {tt, u}, so we merely switch 

the  value of v.part  th a t corresponds to  B .  If B  C W  and v £  B ,  then  (B  fl W )  U {u} will be 

created by adding v to  B  such th a t  u  and  v  belong to  different parts  of B .  If B  % W  and 

v £ B ,  then B  no longer rem ains m axim al, so we change B  into (B  fl W )  U {v} =  {w, u}. 

Finally, if B  % W  and v B ,  th en  we create a new maximal biclique (B  fl W ) U {v}, as B  

will continue to  rem ain m axim al in  G '.

P ro o f .  Consider the following item s.

•  An element Ly of C\ .

• An element L 2 of £ 2 .

•  A set of the  form K  U {v}, where A" is a  m axim al element of K.

a A set B u \  {tt}, where B u is a m axim al biclique of G, u ,v  £  B u , B u ^  {u, ? ;} , and 

B v \  {u} (f. B 1, for all m axim al bicliques B \  of G  for which By  /  B u .

•  A set B v \  {u}, where B v is a m axim al biclique of G, u ,v  G B v , B v ^  {u,u}, and 

B v \  {i1} <£_ By,  for all m axim al bicliques By  of G  for which By  ^  B v .

First, observe th a t  u  G W .  Therefore, u, v G K  U {v}, which is also to  say th a t |{u, w} fl 

(K  U {u})| =  2. By definition, |{u, v}  fl L i | =  1 and |{u, u} fl L 2 I = 0 ,  therefore, Ly, L 2 , and 

K  U {u} are pairwise unequal. As well, v  G B u \  {-u} and u  G B v \  {u}; therefore, B u \  {u}, 

jBu \{u} , and ATU{u} are pairwise unequal. Moreover, bo th  Ly and L 2 are m axim al bicliques 

of G, whereas B u \  {u} and B v \  {u} are not, as they are contained in bicliques B u and B v , 

respectively. Therefore, Ly, L 2 , B u \  {u}, and B v \  {u} are pairwise unequal. Consequently, 

the  sets of the claimed partition  are disjoint.

Since K  is a biclique of G, where K  C W , K  U {u} is a biclique of G ' . If K  U {v} is not 

a  maximal biclique of G ', then  there exists some biclique B* of G' for which K  U {u} C B * . 

Since u , v  G K  Li {v}, we know th a t u , v  G B*\ therefore, B* \  {u} C W ,  w here B* \  {v} is a 

biclique of G. B ut K  C B* \  {u}, which contradicts the m axim ality of K  in  JC. Therefore, 

K  U {a} is a m axim al biclique of G '.

Since Ly is a biclique in G  and |{u ,v}  f l  Ly\  =  1 , it is also a biclique in G ' . If Ly is 

not a maximal biclique of G ' , then  there  exists some biclique B*  of G'  for which Ly C B * . 

Since Ly g  W , we know th a t B* % W ;  therefore, at least one of u  and v does not belong
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to  B*. This gives th a t  B*  is a biclique of G, which contradicts the  m axim ality  of L \  in G. 

Therefore, L \  is a m axim al biclique of G '.

Since L 2 is a biclique in G  and  |{u,i>} n  £ 2 ) =  0, it is also a biclique in G '. If £ 2  is not a 

m axim al biclique of G ', then  there  exists some biclique B*  of G' for which L 2 C B*. If at 

least one of u  and  v  does not belong to  B*, then  B* is biclique of G, which contradicts the 

m axim ality of L 2 in G. On the  o ther hand, if b o th  u  and v  belong to  B * , th en  L 2 C B * \ { u } ,  

as u, v  Z/2- B u t B* \  {11} is a biclique of G, which contradicts the  m axim ality  of L 2 in G. 

Therefore, L2 is a  m axim al biclique of G '.

Since B u is a biclique in G, so too  is B u \  {11} in G '. If B u \  {u } is no t a maximal 

biclique of G ', th en  there  exists some biclique B* of G' for which B u \  {it} C B*. Given 

th a t u ,v  G B u , we know th a t B u fl W  = { u ,v }  as the  edge uv  belongs to  G. However, by 

definition, B u 7  ̂ {u, v}; therefore, B u m ust contain some vertex y  which does not belong to  

W .  Since B u \  {it} C B *, B*  also contains y  and  v, which m eans th a t  B*  cannot contain

u. Therefore, B*  is a biclique in G, where B*  /  B u , yet this contradicts th e  definition of 

B u \  {u}. Therefore, B u \  {u} is a m axim al biclique of G '. A sim ilar argum ent gives th a t 

B v \  {u} is a m axim al biclique of G '.

Having shown th a t  th e  described sets are disjoint, and  th a t  the ir m em bers are maximal 

bicliques of G", it  rem ains to  show th a t  these sets contain all th e  m axim al bicliques of G '.

Consider a m axim al clique B '  of G '. If it, v £  B \  then  B '  is m axim al in G, where 

B '  G £ 2.

If u  G B ',  v  0  B ',  and B '  <2 W . then  v cannot be added to  B '  to  get a larger biclique in 

G. T h a t is, B '  is m axim al in G, where B ! G £ 1. Similarly, if u  $  B 1, v  G B 1, and B '  % W ,  

then  B ’ is m axim al in G, where B '  G £ i-

If u  G B r, v  g  B ' , and B '  C W ,  then  B '  U {f} is a m axim al biclique of G. Moreover, 

B  7  ̂ {u, u}, as B '  7  ̂ {u} (a vertex cannot be in a biclique by itself). Similarly, if u  0  B ' , 

v G B and B 1 C W ,  then  B '  U {u} is a m axim al biclique of G, where B  7  ̂ {it, u}.

If u ,v  G B !, th en  B '  \  {u} is a biclique of G, where B '  \  {1;} C W  and B ' \  {u} is 

contained in some m axim al biclique B* of G. Now B '  \  {w} C B * \  {u} and  B '  \  {u} C W ,  

so B ' \  {1;} C (B* \  {u}) n  W .  If B '  \  {it} C (B* \  {u}) fl W ,  then  there  exists some element 

w  of B*  for which w  G W  and w £ B * \  {«} (therefore, w  7  ̂ v), b u t w  ^  B '  \  {1;}. However, 

the existence of the  biclique B '  U {w j  in G' contradicts the m axim ality  of B ' . Therefore, 

B ' \  {«} =  (B* \  {v}) n  W .

Moreover, if there  exist some K*  in K,, such th a t  B '  \  {v} C K *,  th en  there  exists some 

element w  of K*  (therefore, w  G W , w  7̂  v), bu t w B '  \  {i>}. Again, the  existence of the 

biclique B '  U {ir} in G' contradicts the m axim ality of B ' . Therefore, B '  = K  U {u}, where 

A" is a maximal elem ent of AH, as desired. □
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Lem m a 5.10, and  its proof, suggest the  design of our relabeller, D e l e t e E d g e , as pre­

sented in Figure 5.9.

D e l e t e E d g e ( G ,  u , v )

Input: An adjacency labelling of an r-bic G (th a t is, the  labels thereof) created using our 
dynam ic scheme, and two distinct vertices u  and v  of Vq  for which uv  G Eg-  Note th a t the  
labels of G  are only accessed as required.

O utpu t: An adjacency labeling of a graph  G' (again, th e  labels thereof) formed by deleting 
the  edge uv from G, providing G' is an  r-bic. If G' is not an r-bic, then  the  ou tpu t indicates 
as such.

1 B  <— { B \B  is a m axim al biclique containing b o th  u  and v  and B  ^  {u, u}}
2 C <— { B \B  is a m axim al biclique containing u}
3 fo r B  G B  d o
4 i f  the  only m axim al biclique of G  containing B  \  {?;} is B  th e n
5 remove v from B
6 if  th e  only m axim al biclique of G  containing B  \  {u} is B  t h e n
7 make a new m axim al biclique of B \  {u}
8 e ls e if  the  only m axim al biclique of G  containing B  \  {«} is B  t h e n
9 remove u  from B

10 e lse  elim inate B
11 X u <— {rr|rc is a neighbour of u  (in G ')}
12 X v <— {x \x  is a  neighbour of v  (in G ')}
13 W  <— {tu|u; G Vq  and w  G X u w  G
14 D  <— 0
15 fo r B  G C d o
16 C ^ C \  { B }
17 i f  (B  \  {u }) fl W  is no t contained in any of th e  m axim al bicliques in C or V  t h e n
18 P e - P U { B }
19 if  B  C W  t h e n
20 i f  v G B  t h e n
21 switch the  m axim al biclique B  =  {{u}, {u}} to  {{w,u},0}
22 e lse  add v  to  B  such th a t v belongs to  th e  same p a rt as u
23 e ls e if  v  G B  t h e n
24 5 ^ { { u , u } , 0 }
25 e lse  create a new m axim al biclique (B  fl W )  U {u}

Figure 5.9: The relabeller D e l e t e E d g e  which relabels an  r-b ic when an edge is deleted

T he relabeller, D e l e t e E d g e ,  first obtains B = Bu fl B v , the  set of maximal bicliques 

containing bo th  u  and v. Since Bu and Bv can be determ ined in Q(u.bin)  G 0 ( r )  and 

Q{v.bin) G 0 ( r )  tim e, respectively, where \BU\ = u.bin < r  and \BV\ =  v.bin < r ,  B  can be 

determ ined in 0 (u .b in  + v.bin)  G 0 ( r )  tim e using th e  reciprocal pointer technique discussed 

in Section 5.1.1.

As well, D e l e t e E d g e ,  also obtains C = Bu , the  set of m axim al bicliques containing u, 

which can be determ ined while obtaining B. We insist th a t  C be represented using dynam ic 

reciprocal pointers, which take Q(u.bin) G 0 ( r )  tim e to  establish.
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For each m axim al clique B  of B, providing B  ^  { u ,v } ,  the  bicliques B  \  {u} and 

B  \  {v}  are exam ined to  determ ine if they  m axim al in G '. For a  G {it, v}, B  \  {a }  can 

be determ ined in 0 ( |B |)  tim e by traversing B;  moreover, while determ ining B  \  {a}, we 

can confirm th a t B  A  {u, v}. T he biclique B  \  {a} is m axim al in G' if and only if th e  

set A a =  nb'£-B\{a}(^’i>' \  -®) is empty. As per our discussion in Section 5.1.1, A a can be 

determ ined in 0(X V s.B \{a} b'.bin) G 0 ( r \ B  \  {a} |) G 0 (r |£ ? |)  tim e.

F irst, let us assume th a t  exactly  one of B  \  {it} and B  \  {u} is a m axim al biclique in G '; 

w ithout loss of generality, let the  m axim al biclique be B  \  {v}. We develop this m axim al 

biclique by removing v  from B ,  ju s t  as we did in D e l e t e V e r t e x ,  using 0 (1 ) tim e. As a 

second possibility, consider if neither B  \  {11} nor B  \  {t>} is a m axim al clique in G '. In th is 

case, we eliminate the  m axim al clique B ,  ju s t as we did in  D e l e t e V e r t e x ,  using 0 ( |B |)  

tim e. Finally, if B  \  {u} and B  \  {?;} are bo th  m axim al in  G", th en  we develop B  \  {v}  by 

removing v from G, using 0 (1 )  tim e; however, B  \  {it} m ust be developed by establishing 

a new maximal biclique, ju s t as we did in A d d V e r t e x ,  requiring 0 ( |B { |)  G 0 ( |S |)  tim e. 

W henever a .bin counter is increased during the creation of th e  new m axim al biclique, we 

check th a t its value is no greater th a n  r ,  thereby, the  efforts of D e l e t e E d g e  on B  are 

error-detecting. Since B  contains a t m ost m m {u.b in , v .bin}  m axim al bicliques, the  running 

tim e of D e l e t e E d g e  on B  is Q(m.m{u.bin, v.bin} ■ m a x  {Y^bes b.bin}) G 0 ( r 2B ).

For each m axim al clique B  of C, we en terta in  th e  possibility of B '  -= (B  \  {i>}) fl W  being 

a m axim al element of the  set 1C, seen in Lem m a 5.13. T he biclique B '  can be com puted in 

0 ( |B |)  tim e by traversing B  and testing  adjacency w ith  u  and v  to  determ ine m em bership 

in W .

If B '  is contained in some m axim al biclique B* rem aining in C (observe th a t D e l e ­

t e E d g e  removes B  from C when it is selected), then  we do nothing as B '  will present 

itself later. Specifically, if B '  C B * ', th en  B '  is not a m axim al element of /C; otherwise, 

if B '  =  B * ', then  we avoid possible duplication of m axim al bicliques. Similarly, if B '  is 

contained in some m axim al clique B*  in V ,  the  set of bicliques D  for which D '  U {v} has 

been made a m axim al biclique of G ', then  B '  C B*'  (given th a t  B*  is selected from C before 

B , the  addition of B*  to  T> was contingent on B*'  <2 B ') .  Ju s t as C is represented using 

dynam ic reciprocal pointers, we insist th a t V  also be represented using dynam ic reciprocal 

pointers.

The biclique B '  is contained in some m axim al biclique in C or V  if and only if fV gB ' (By  H 

(C U V ))  ^  0. Since \By \ — b'.bin, and C and V  are represented using reciprocal pointers, 

each set Bb> \  (C U T>) can be determ ined in 0 (6 '.bin) G 0 ( r )  tim e. In tu rn , the  condition 

rV €B '(£>{/ n ( C f l  V ))  A  0 can be checked in 0(X ){/6b ' b'.bin) G 0 ( r |S ' | )  G 0 ( r |B |)  tim e 

using the reciprocal pointer technique discussed in Section 5.1.1.
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Now if B '  is n o t co n ta in ed  in  any  m ax im a l b ic lique rem a in in g  in  B , th e n  we m ake a 

m ax im al biclique of B '  U {v}. E x ac tly  how we m ake a  m ax im a l b ic lique o f B '  U {n} depends 

on w h e th e r B  C W  an d  v £ B .  T hese cond itions can  b e  checked w hile co m p u tin g  B ' .

If B  C  W  an d  v  £  B ,  th e n  B  =  {w, u } , so we m ere ly  sw itch  th e  value o f v.part  th a t  

co rresponds to  B .  If  B  C  W  an d  v £  B ,  th e n  we s im p ly  ad d  v  to  B  as B  will no  longer be 

m ax im al in  G ' . Specifically, D e l e t e E d g e  in se rts  v  in to  th e  c ircu lar d oub ly  linked lis t for 

B ,  increases th e  value o f v.bin  by 1, an d  se ts  th e  value  o f v.bicli.part to  th a t  o f u.biclj.part 

for th e  values of i an d  j  th a t  correspond  to  B .  T h is  can  b e  done in  0 (1 )  tim e. If  B  % W  

an d  v £ B ,  th e n  B  no longer rem ains m ax im al, so we change B  in to  (B  0  W )  =  { u ,u} . 

Specifically, D e l e t e E d g e  rem oves all th e  vertices excep t u  an d  v  from  th e  c ircu lar doubly  

linked lis t for B ,  w hile decreasing  th e ir  .bin values by  1, th e n  se ts  th e  value o f v.bicli.part 

to  th a t  o f u.biclj.part  for th e  values of i a n d  j  th a t  co rresp o n d  to  B .  T h is  can  be done 

in  0 ( |B |)  tim e. F inally , if  B  W  an d  v $. B ,  th e n  we c re a te  a new  m ax im al biclique 

(B  fl W )  U {u}, as B  will con tinue to  rem a in  m ax im a l in  G ' . Specifically, D e l e t e  increases 

th e  value  of th e  .bin co u n te r o f each of th e  v ertices in  B '  U {v}  by one, es tab lishes  a  c ircu lar 

doub ly  linked lis t of th e  vertices in  B '  U {u}, a n d  c re a te s  a  new  .bicl e n try  id en tica l to  th a t  

found in  B ,  for each  m em ber of B '  U {v} w hile es tab lish in g  th e  c ircu lar d o u b ly  linked list 

(in th e  case o f v  i t  se ts  th e  value of v.bicli.part to  t h a t  of u.biclj.part  for th e  values of i and  

j  th a t  co rrespond  to  B '  U {v}); form ing th is  new  m ax im al clique tak es  0 ( |-B '|)  £  0 ( |I ? |)  

tim e.

W henever a  .bin co u n te r is increased, we check th a t  its  value  is no g re a te r  th a n  r, thereby, 

th e  efforts o f D e l e t e E d g e  on C a re  e rro r-d e tec tin g . Since |C| =  u.bin < r, th e  runn ing  

tim e of D e l e t e E d g e  on  C is 0 (u.bin ■ rna x {J2beB b.bin}) £  0 ( r 2B ). T herefo re, th e  to ta l 

ru n n in g  tim e of D e l e t e E d g e  is 0 (u.bin ■ fn a x {^2 beB b.bin} +  v.bin ■ rnax{J2beB b.bin}) £  

0 ( r 2B ) . O bserve th a t  D e l e t e E d g e  accesses © (m ax{ |£> |}) v ertex  labels  w hich require
B3u

Cl(v.bin +  b es  b.bin}) b its  in  to ta l. T hereby , th e  ru n n in g  tim e o f D e l e t e E d g e  is

po lynom ial in  th e  size o f i ts  inpu ts .

A d d in g  an  ed g e .

C onsider th e  following lem m a, w hich describes how th e  ad d itio n  of an  edge affects th e  

m ax im al b icliques in  th e  g raph .

L e m m a  5 .14  Consider a graph G' formed by adding an edge uv to a graph G, where Vq ^  

{u,u}. Let X u and X v denote the neighbourhoods o f  u  and v in G ' , respectively, and let W  

denote the vertices o f G fo r  which w £ W  i f  and only i f  w £ X u <=> w  ^  X v . Furthermore, 

let C\ be { B \B  is a maximal biclique of G, B  2  W , and  |{u ,u} (T B\ = 1}, let £ 2  be { B \B  

is a maximal biclique of G and u , r  ^  B } ,  and let 1C be the set of bicliques {(B  \  {u}) fl W \B  

is a maximal biclique o f G , u £ B } .
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The set of maximal bicliques o f  G' is C \  U £ 2  U { B  \  is a maximal biclique o f

G, u , v  £ B , B  ^  { u ,r} , and B  \  {«} <£_ B \ ,  fo r  all maximal bicliques B \  o f  G, B 1 ^  

B }  U { B  \  {v } \B  is a maxim,al biclique o f  G , u , v  £ B , B  ^  {u ,u}, and B  \  {u} <£_ B \ ,  fo r  

all maximal bicliques B \  o f  G, B 1 7  ̂ B }  U { K  U { v } \K  is a maximal element o f  K.}.

T he sim ilarity between Lemmas 5.13 and 5.14, w hich differ only in their definition of the 

set Iff, suggest a relabeller A d d E d g e  th a t  is v irtually  identical to  th a t  of D e l e t e E d g e . 

As such, A d d E d g e  would also be error-detecting  and have a running tim e of 0 ( r 2B ).

5.3 Sum m ary

In th is chapter, we apply the circular doubly linked list technique seen in C hap ter 4 to  

m axim al cliques and m axim al bicliques in order to  develop error-detecting dynam ic adja­

cency labelling schemes for r-m inoes and r-bics, respectively. Both dynam ic schemes use 

O (r lo g n )  b it labels.

In the  case of r-m inoes, edge addition and deletion can be handled in 0 ( r 2D ) tim e, vertex 

addition in 0 ( r 2e2) tim e, and vertex deletion in  0 ( r 2e) tim e, where D  is th e  m axim um  

degree of the  vertices in th e  original graph  and e is th e  num ber of edges added to , or deleted 

from, th e  original graph. U nfortunately, if r  £ w (l), th en  our vertex deletion relabeller is 

not error-detecting. Similarly, if r  £ o ( l) , th en  our vertex  addition relabeller is no t error 

detecting.

In  th e  case of r-bics, edge addition and deletion, as well as vertex deletion can be handled 

in 0 ( r 2B ) time, and vertex addition in 0 ( r 2?iB) tim e, where B  is the size of the  largest 

biclique in the  original graph. Given these running tim es, one m ight be led to  believe th a t 

vertex addition could ju s t as easily be perform ed by adding an isolated vertex, then  adding 

individual edges. However, by doing so th e  graph  m ay escape the  class of r-bics.
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Chapter 6

Proper interval graphs

In th is chapter, we develop a dynam ic adjacency labelling scheme for proper interval graphs 

th a t allows the  addition and  deletion of vertices and  edges. T he labels used in th is scheme 

require O (logn) bits, and  updates require in O (n) tim e. In com parison, the  best known 

(static) adjacency labelling scheme for proper interval graphs is the  scheme presented for 

interval graphs in C hap ter 1 [45], which uses O (logn) b it labels and requires as much as 

0 (n +  m )  tim e to  generate a labelling (here we presum e th a t the  m arker is inpu t w ith 

only th e  proper interval graph, perhaps as an adjacency m atrix , and m ust use a 0 (n +  m)  

tim e algorithm  like th a t  of Corneil, Kim, N atarjan , O lariu, and Sprague [12] to  determ ine 

the proper interval representation  from th e  graph itself.) Proper interval graphs have been 

shown useful in the study  of problem s in genetics and psychology; a  good sta rtin g  point for 

inform ation on the  application of proper interval graphs is the tex t of McKee and McMorris 

[43].

A graph is a proper interval graph if it  has an interval representation in which no interval 

contains another interval. P roper interval graphs can also be characterized using structures 

known as astral triples. A n astral trip le  is a set of th ree vertices for which each pair are 

connected by a p a th  in which no two consecutive vertices belong to  the  closed neighbourhood 

of the  th ird  vertex. In the  graph shown in Figure 6.1, the  bold vertices form an  astra l triple.

Figure 6.1: An astral triple. The bold vertices indicate th e  astra l trip le

Perhaps the  simplest example of an astra l trip le is K 1 3 , often referred to  as a claw. In 

the  case of the three pendant vertices form the astra l triple. T he relationship between 

proper interval representations and astra l triples is explicitly addressed in the  following 

theorem s.
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T h e o re m  6.1  [28] A  graph is a proper interval graph i f  and only i f  it  contains no astral 

triple.

T h e o re m  6 .2  [49] A n  interval graph is proper i f  and only i f  it  contains no induced K \

A nother characterization of interval graphs is based on the  notion of blocks [14]. For 

any graph G, consider the  equivalence relation  R ,  on Vg , defined by u R v  if and only if 

N[u\ = N  [i>]. This equivalence relation partitions the  vertices into equivalence classes 

known as blocks. For example, the  blocks of the  proper interval graph  represented in Figure 

6.2(a) are {a}, {b, d}, and {c}. Ultim ately, we can consider each block as a “m ega-interval” , 

as depicted in Figure 6.2(b).

Two blocks B  and B '  of a graph  G are said to  be adjacent if there  exists an edge bb' of 

G for which b is in B  and b' is in B '  (consequently, if B  is adjacent to  B 1, then , for all b in 

B  and all b' in B ' , b is adjacent to  b'). In  an extension of conventional graph  terminology, 

we say th a t the  (open) neighbourhood of a block is the  set of blocks th a t  are adjacent to  it, 

and th a t  its closed neighbourhood is its  open neighbourhood unioned w ith itself. Similarly, 

we say th a t the  degree of a block is th e  card inality  of its open neighbourhood, where deg(B)  

denotes the  degree of B.

d
c | a | c

------------ 1 i I i i I I

2 . 3  4 5 6 7  8 1 2 3 4 5  6

(a) A proper interval represen- (b) Blocks as “m ega-intervals” .
tation .

1 2 3 4 5 6 7 8

(c) An in terval represen ta­
tion, which is not, and can­
no t be, proper.

Figure 6.2: Interval representations and blocks

As prelim inary observations, consider the  following properties of blocks.

L e m m a  6 .3  The induced subgraph formed on the vertices o f a block is a clique.

P ro o f . Consider any two vertices u  and v  belonging to  the same block of a graph. By 

definition, N[u] = therefore, u  and  v are adjacent. The result follows. □
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L e m m a  6.4  No component o f  a graph can be comprised of only two blocks.

P ro o f .  Consider a com ponent C  consisting of two blocks B \  and £>2 . If B \  is not adjacent 

to  B 2, then  B \  is a com ponent itself, thereby, C  is not a com ponent. If B \  is adjacent to  

£>2 , then  B \  U B% forms a clique. Therefore, B \  — B 2 , which is also a contradiction. □

L e m m a  6.5 No two blocks can be adjacent to the same set o f  blocks.

P ro o f .  Consider two blocks B \  and  Bo. which are adjacent to  th e  same set of blocks. 

For any vertices b\ in B \  and  62 in B 2, iV[i>i] =  ^ [ 62]. Therefore, B \  =  B 2, which is a 

contradiction. □

A straight enumeration  of a graph  is a linear ordering of its blocks such th a t, for every 

block, the blocks in its closed neighbourhood are consecutive. In  the  case of th e  proper in ter­

val graph represented in F igure 6.2(a), the  stra igh t enum erations are $  =  {a} -< {6, d}  -<■ {c} 

and 4>w =  {c} -< {b, d} -< {a}, w here denotes th e  reversal of th e  stra igh t enum eration 

<I>. The following theorem  characterizes proper interval graphs in  te rm s of straigh t enum er­

ations.

T h e o re m  6 .6  [14] A  gm ph is a proper interval graph i f  and only i f  it  has a straight enu­

meration. Moreover, a connected proper interval graph has a unique straight enumeration  

(up to reversal).

Hell, Shamir, and Sharan [27], on whose work we will heavily rely, refer to  a s tra igh t enu­

m eration of a connected proper interval graph as a contig.

Fundam ental to  our entire work on proper interval graphs is the  following lemma, referred 

to  as the “um brella property” . Given the frequency w ith which we use Lem m a 6.7, we will 

only explicitly reference th is lem m a in the beginning of our discussion, or when th e  use of 

the  lemma is not entirely obvious.

L e m m a  6 .7  [ f l ]  Consider a straight enumeration  $  of a connected proper interval graph 

G. I f  B \ ,  B 2, and B 2 are blocks o f  G, such that B \  -< B 2 -< S 3 in  $  and  S i  is adjacent to 

S 3, then B 2 is adjacent to B 1 and to S 3 .

6.1 V ertex  lab els , m arker, and decoder

O ur scheme closely resembles a dynam ic representation of proper interval graphs due to  

Hell, Shamir, and Sharan [27] (their representation does not perm it im plicit adjacency 

testing from vertex labels). For each com ponent of the  proper interval graph, they  m aintain 

a d a ta  structure to  represent a contig. In each contig, the first and last blocks are called end 

blocks and their members are end vertices; all o ther blocks are referred to  as inner blocks

84

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



and their m em bers are inner vertices. Specifically, th e  d a ta  s tru c tu re  used by Hell et al. 

consists of the following.

• For each vertex, they  m ain tain  the nam e of its block.

•  For each block, they  m ain tain  the  following inform ation.

-  The size of the  block.

-  Left and right near pointers  which point to  the  adjacent blocks im m ediately to  

the left and right, respectively, in the  stra igh t enum eration.

-  Left and  right fa r  pointers  which point to  th e  fu rthest adjacent blocks to  the  left 

and right, respectively, in  the  stra igh t enum eration.

-  Left and  right self pointers which point to  the  block itself.

-  An end pointer  which is null if the  block is an  inner block of its contig, otherwise, 

it po in ts to  th e  o ther end block in the  contig.

Unfortunately, we do not have the liberty of using pointers a t the  block level, rather, 

we m ust do so a t th e  vertex level. To this effect, we select a pointer vertex P ( B )  from each

block B .  If we wish to  include 'a  pointer Q  from block B  to  block B ' . then  we include th a t

pointer in the  label of P ( B ), such th a t  Q (P (B ))  = b', w here b' €  B ' .  In  essence, we create 

a “d istributed” pointer.

Specifically, our labelling scheme is as follows.

•  For each vertex v, we m ain tain  the following.

-  A unique identifier for each vertex. L etting  £  be the  num ber of bits required 

to  represent the largest identifier, the  uniqueness of th e  identifiers ensures th a t 

£  e  fl(lo g n ). Given our assum ption on th e  size of identifiers, as s ta ted  in Section 

3.1.3, £  6  0 ( lo g n ) .

-  The identifier of the  block to  which it belongs. A lthough we do not differentiate 

betw een a vertex and  its  identifier, we will differentiate between a block and its 

identifier, as the identifier of a block may change over tim e while we m aintain a 

stra igh t enum eration. To this effect, we denote the  block containing v by B (v) ,  

and denote the  identifier of B (v)  by b(v).

Ju s t as we required a unique identifier for each vertex, we require a unique iden­

tifier for each block. W here B  is the  size of th e  largest identifier, we ensure th a t 

B  e  0 ( lo g  n).

-  T he identifiers of the  furthest adjacent blocks to  the  left and right of B (v),  

denoted / l ( c )  and fn ( v ) ,  respectively. This inform ation requires 0 (B )  bits.
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•  For each block B ,  we encode the  following inform ation v ia th e  vertex  labels.

— The vertices in each block. T his inform ation is represented using a circular doubly 

linked list of the  vertices in each block, m irroring th e  technique used previously 

in C hapters 4 and 5. This circular doubly linked list adds 0 (C )  b its to  the  label 

of each vertex. For each vertex  v, we denote the  next and previous vertices in 

the circular doubly linked list of B (v )  by nx(v )  and p re v (v ), respectively. Again, 

we will say th a t we traverse B ,  although we really m ean th a t we traverse the 

circular doubly linked list of vertices in  B.

— A pointer vertex, denoted P (B ) .  T he label of the  pointer vertex m ust contain  a 

bit to  denote th a t it is a pointer vertex. All o ther vertices in the block, contain 

the identifier of P ( B ), as well as a b it to  denote th a t  they  are not the  pointer 

vertex of B .  This inform ation adds 0 (1 )  b its to  th e  label of th e  pointer vertex, 

and 0 (£ ) b its to  the  label of all o ther vertices.

To clarify how these d istribu ted  pointers are used a t th e  vertex level, let us 

consider a pointer Q  and a vertex  v. The label of v will contain the  identifier of 

P (B (v ) ) ,  the  pointer vertex  of the  block containing v  (assum ing v  ^  P(v));  for 

simplicity, we will shorten  P (B (v ) )  to  P (v) .  The label of P (v)  will contain the 

identifier of Q (P(v)) ,  which we will sim ilarly shorten to  Q(v).  For any vertex v 

and pointer Q, Q(v)  can be “followed” in 0 (1 )  tim e using the labels of v  and 

P(v).

— A pointer to  the  blocks im m ediately to  the left and right of B ,  denoted by I i ( B )  

and I r (B),  respectively. B oth  I l ( B ) and I r (B)  are artificial constructs, as they 

are achieved by including I l and  I r  pointers in th e  label of P (B ) ,  as per the 

pointer technique described above. These pointers add 0 (C )  b its to  the  label of 

the pointer vertex only.

— A pointer to  the furthest adjacent blocks to  the left and right of B ,  denoted by 

F l ( B )  and F r ( B ), respectively. These pointers are achieved using the pointer 

technique described above, and add 0 (£ ) bits to  the  label of the pointer vertex 

only.

— The size of B ,  denoted s (B ) .  This value is kept in the label of the pointer vertex, 

adding O (logn) bits to  its label.

We observe th a t the to ta l size for each label is 0 ( £  +  B) G O (logn). Furtherm ore, we can 

determ ine the adjacency of two vertices u  and v  in 0 (1) tim e, using only their labels, by 

checking if f L(v) < b(u) < fn (v ) .

In comparison to the  d a ta  s truc tu re  used by Hell et al., our vertex labels do not include 

self pointers or end pointers. Self pointers become obsolete in our vertex centered setting,
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and end pointers, although useful, have proven difficult to  m aintain. Furtherm ore, for every 

block B ,  Hell and al. point to  the  ad jacent blocks im m ediately to  the  left and right of B ,  

whereas, we include a sim ilar pointer th a t  om its th e  adjacency condition. B y dropping 

the  adjacency condition we are able to  m ain tain  additional inform ation abo u t th e  straigh t 

enum eration w ithout sacrificing asym pto tic  space or running times.

A lthough it is much easier to  discuss pointers and values at a block level, we m ust always 

ensure th a t these item s can be observed a t the vertex level. For instance, a vertex  v is an 

end vertex if and only if FL (B (v))  = B (v )  or F r ( B ( v )) = B (v) .  However, to  determ ine this 

condition, we m ust check to  see if / l ( u )  =  b(v) or f i i (v )  — b(v). As such, in th e  ensuing 

discussion we m ain tain  the  convention of offsetting the vertex level condition in square 

brackets, for example, uF r ( B ( v )) = B (v )  = b(v)]”. N early all of th e  conditions

m entioned herein can be tested  in  0 (1 )  tim e. As such, we will only com m ent on the  tim e 

required to  check a  condition if it  takes w (l) tim e to  check the condition.

W hen discussing such conditions, we m aintain  the convention th a t  pointers acting on 

a block produce a block, and  pointers acting on a vertex  produce a vertex. For example, 

F r ( B ( v )) is a block, whereas, F r (v ) is a vertex in the block F r ( B ( v )). As previously 

discussed, F l ( B ( v )) is an artificial construct.

A lthough we have given significant consideration to  the  labels of the  dynam ic scheme, 

we have not yet discussed the  m arker. Deng, Hell, and Huang [14] provide an  0 ( n  +  m) tim e 

algorithm  for generating a straigh t enum eration of a proper interval graph from, presumably, 

an adjacency list representation  (actually, their algorithm  presents a vertex  ordering, bu t 

m inor bookkeeping will give a stra igh t enum eration of blocks). W here B  is the  num ber 

of blocks in the stra igh t enum eration, we can use the  straigh t enum eration  to  establish 

the  B  circular doubly linked lists in 0 (n )  time. Next, establishing poin ter vertices and 

block identifiers, as well as the b, f l ,  and J r  values requires a fu rther O (n) tim e. Finally, 

establishing the various pointers requires an additional 0 (B )  G O (n) tim e. Therefore, 

if provided w ith th e  stra igh t enum eration, the  m arker requires 0 (n) tim e; otherwise, the 

m arker requires 0 (n +  m )  time.

6.1.1 R elabeller

For the  most part, we will discuss the  relabelling algorithm  at the  block level, including the 

vertex-level discussion in A ppendix C. In the. ensuing discussion, G  is the  original graph 

and G' is the new graph.

Given the linear n a tu re  of the  stra igh t enum eration, the lim iting factor inherent in our 

labelling scheme is the  m aintenance of the b, f i  and Jr  values. W hen the graph  is modified, 

our first task is to  modify blocks, pointer vertices, and pointers, as necessary, in order to 

m aintain a straight enum eration. Once this is complete, we can traverse I r  and I r  pointers
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to  determ ine the  entire s tra igh t enum eration. Knowing the en tire stra igh t enum eration, one 

pass through the  ordering (from least to  greatest) is sufficient to  re-assign optim al block 

identifiers by traversing the  circular linked list of vertices in each block. Having assigned 

these optim al block identifiers, a second pass is sufficient to  assign the and Jr  values, 

which depend on the  block identifiers, to  the  vertices in each block.

Regardless of th e  graph  operation  under consideration, the  m aintenance of the b, 

and / r  values takes as m uch as 0 (n )  tim e. Because th is approach can be used to  m aintain 

optim al b values, we did not employ the  assum ption on th e  size of the  identifiers, as sta ted  

in Section 3.1.3, to  B, th e  size of the  largest block identifier.

Unlike our work w ith  r-m inoes and r-bics, seen in C hap ter 5, we will not use the existence 

of an error-detection dynam ic adjacency labelling scheme to  establish a recognition result, 

even though proper in terval graphs are hereditary. As discussed, our relabeller can take 

as m uch as 0 (n) tim e to  handle vertex addition, therefore, th e  recognition tim e offered by 

Theorem  3.7 could be as high as 0 ( n 2). In  comparison, Corneil e t al. [12], among others, 

have already established 0 (n  +  m )  recognition of proper interval graphs.

D e le t in g  a  v e r te x

Let v  be the vertex to  be deleted, where X  denotes the  neighbourhood of v  in G. As well, 

let th e  contig containing B (v )  be B \  A . . .  < B i  A . . .  ■< Bi  A . . .  A B j  A . . .  A Bk,  

where Bi — B (v) ,  B i  =  F r (B i ), and B j  = F r (B i). The action of th e  relabeller depends on 

w hether Bi = {v} [nx(v) =  u].

The following lem m a addresses how the  straigh t enum eration changes when Bi ^  {v}.

L e m m a  6 .8  Let G' be a proper interval graph formed by deleting a vertex v from a proper 

interval graph G, where B (v )  7  ̂ {u}. I f  B '  is a block in G ' , then either B '  is a block in G, 

or B '  U {u} is a block in G.

P ro o f .  Assume the  contrary, th a t is, neither B '  nor B '  U {w} is a block in G. Since B '  is 

not a  block in G, one of th e  following statem ents m ust be hold.

• There exists b\ and 62 in  B '  for which 1Vg[&i] 7  ̂ No[b2].

• There exists some b* in V q  \  B '  for which Nc[b*} =  IVg[&], for all b in B r, where N q

denotes the  neighbourhood in G  (as opposed to  G').

If th e  former condition holds, then  consider th a t the only vertex adjacencies which change 

from G  to  G' are those w ith v. Since IVg'^i] =  AT(3'[&2], exactly  one of IVg^i] and iVc[&2] 

contains v. W ithout loss of generality, assume th a t v G IVg[6 i]. Since B (v )  7̂ {w}, there

exists some additional vertex v* in B{v).  Therefore, v* G Ag[&i], bu t v* (f [62]- Since

v* 7  ̂ v, v* G i'Vc'f&i], yet v* A g 'M ,  so B '  is not a block in G',  which is a contradiction.
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Assuming the  la tte r condition holds, we need to  consider tw o cases. F irst, if b* =  v, 

then  consider th a t B '  C B (v )  \  {v} as N g [v ] =  [6], for all b in B '.  Moreover, for all v*

in B (v)  \  {w} and for all b in B ' , N c  [u*] =  N g [v *] \  {v} =  Nc[b] \  {u} =  Nclb}-  Therefore, 

B (v )  \  {u} C B ' , which gives B '  =  B (v )  \  {u}. T h a t is, B '  U {u} is a block of G, which is a 

contradiction.

Secondly, if b* ^  v, then  b* G V c  ■ B u t b* ^  B ',  w here B '  is a block of G ', therefore, 

Ncib*}  7- Na'[b], for all b in B ' . Specifically, there  exists some b** G Nclb*}  for which 

b** #  N c  [6], for all b in B ' , w here b** v. Therefore, No[b*} 7  ̂ A G[&], for all b in B \  which 

is a contradiction. □

W here Bi contains another vertex besides v, Lem m a 6 .8  tells us th a t a straigh t enum er­

ation for G' can be obtained from a stra igh t enum eration of G by removing v from B i . This 

scenario is depicted in Figure 6.3. Specifically, our labelling is am ended as follows.

•  Remove all references to  v.

— We m ust change all references to  v  as a pointer vertex. Specifically, if v = P (v),  

then  we make nx(y )  the  pointer vertex by changing its  label to  reflect the  pointers, 

and changing the  labels of all the  vertices in  Bi  to  reflect th a t nx(v )  is the new 

pointer vertex. T his change can be done in 0 ( |R ; |)  G 0 ( |X |)  tim e by traversing 

Bi,  beginning at v. Let q be the  resulting pointer vertex  of Bi.

— We m ust change all references to  v  in I i  and I r  pointers. Providing I l { B i )  7  ̂ NIL 

[h (q )  7̂  n il], set lR (lL (q ))  to  q. Similarly, providing I r (B { )  7  ̂ n i l ,  set I L {IR {q)) 

to  q. These changes take 0 (1 )  tim e.

— We m ust change all references to  v in Fr and Fr  pointers. Specifically, for any 

block B ,  if Fl (P (B ))  or F r (P (B ) )  is v, th en  we change its value to  q. Now, if 

Fr (P (B ))  = v, then , by Lem m a 6.7 (um brella p roperty), Bi < B  ^  Bi\ similarly, 

if F r (P (B ))  = v, then  Bi -< B  < B j .  As such, we can recursively follow I r and I r  

pointers to  determ ine all such blocks B .  These changes take O (deg(Bi))  G 0 ( |X |)  

tim e.

— We m ust remove v  from the  circular doubly linked list of the vertices in B i . This 

removal takes 0 (1) tim e.

•  Decrease the value of s(B i)  [s(g)] by one. This operation  takes 0 (1 ) time.

•  Delete v. This deletion takes 0 (1 ) time.

The following lemma addresses how the  stra igh t enum eration changes when Bi = {u}.

L e m m a  6.9 Let G' be a proper interval graph formed by deleting a vertex v from a proper 

interval graph G, where B{v) =  {v}. I f  B '  is a block in G ' , then either B '  is a block in G, 

or B '  =  B a U Bp, where B a and Bp are blocks in G.
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B, Bi \ M
d ele te  v  .....

Figure 6.3: Deleting a vertex v, w here Bi = B (v )  7  ̂ {u}

P ro o f .  Assume th e  contrary, th a t  is, B '  is not a block of G  and B '  ^  B a U Bp,  where 

B a and Bp  are d istinc t blocks in G. Since B '  is no t a  block in G, one of the following 

statem ents m ust be hold.

•  There exists b\ and  62 in B '  for which ATg[&i] 7  ̂ATgI^]-

•  There exists some b* in Vq \  B '  for which Nc[b*] = Nc[b\,  for all b in  B ' .

If the  la tte r condition holds, argum ents identical to  those seen in the  proof of Lem m a 

6.8  will lead to  contradictions. However, there is a difference in  th e  contradiction achieved 

when b* — v, as B '  C B (v )  \  {u} gives B '  =  0.

Assuming th e  form er condition holds, th en  consider th a t  the  only vertex adjacencies 

which change from G  to  G' are those w ith v. Since N c  [61] =  N c  [62j, exactly one of rV c^i] 

and N q  [62] contains v. W ithou t loss of generality, assum e th a t  v  G jVgt[i>i] - Moreover, since 

Nc[b]  is unique for all b in B ' , the  uniqueness of v  allows us to  partition  the m em bers of 

B '  into B[  and B '2 , w here b G B j if and only if v  G N q  [fr].

Since Nc[b]  is unique for all b G B 2, so too is AY;[Y• Therefore, B '2 C B a . for some 

block B a of G. Observe th a t  B a f- B (v) ,  otherwise, B (v )  =  {u} contradicts the existence 

of f>2- Now, for all ba in B a , ATg[6q] =  NG'[ba} =  A Tq/^] =  N g [ 62], so B a C B 2. Therefore, 

B '2 = B a .

Since iV<3/[6] is unique for all b G B [ , so too  is Therefore, B[  C Bp,  for some

block Bp  of G. Observe th a t  Bp  7  ̂ B (v) ,  otherwise, B (v )  =  {u} contradicts the  existence 

of b\. Furtherm ore, observe th a t Bp  7  ̂ B a , as iVo[6i] 7  ̂ N q ^ } -  N ow , for all bp in  Bp,  

A^g[bp] =  No'lbp] U {u} =  No'lbi}  U {w} =  A1g[6i], so B p  C  B[.  Therefore, B[ =  B p  and 

the result follows. □

From Lemma 6.9, we see th a t a block of G' can be formed by m erging two blocks of G. 

The following theorem  addresses which two blocks are merged.

L e m m a  6 .1 0  Let G' be a proper interval graph formed by deleting a vertex v from a proper 

interval graph G, where B (v )  — {i>}. I f  B '  =  B a U B p is a block in G ' , where B a and Bp  

are distinct blocks in G, then { B a , B p j  is either { B i _ i , B i }  or { B j , B j +i } .

P ro o f .  F irst, let us assume th a t Bp ~< Bi. Since th e  neighbours of B a and Bp  will be 

identical upon deletion of v, F i ( B a ) = F i{B p) ,  and either F a (B p )  = Bi and Fr ( B u ) =  

f?;_ 1, or vice versa; w ithou t loss of generality, we assume the  former. By Lem m a 6.7
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(umbrella property), B a -< B i  and Bi  A Bp.  Now if B i -< B p ,  then  FR (Bp) = Bi com bined 

w ith Lemma 6.7 (um brella property), gives F R (Bi)  =  £?; =  FR (Bp). Therefore, by Lem m as

6.4 and 6.7 (um brella property), F i{ B i )  -< F R{Bp). Yet, by  Lem m a 6.7 (um brella property), 

F i ( B a ) A F i{B i) ,  thereby, Fl (B u) ^  FR(Bp),  which is a  contradiction. Therefore, Bp =  

B i .

Furtherm ore, FR (B a ) =  B t- i  and FL (Bi) = B i  give F R ( B i - i )  =  B i- 1 = FR (B a ). Yet, 

B a ^  B i - i  -< B p  and FL (B a ) = FL {Bp), give FL (B a ) =  F L (B i- 1). Thereby, N [ B a] = 

N [ B i_ i], which is to  say th a t  B a = B i_ \ .

Using sim ilar argum ents we can show th a t,  for Bi  -< B p , Bp = B j  and B a — B j +\. □

W here Bi contains only v, Lem m a 6.9 can be used to  ob tain  a straight enum eration of 

G '. We remove all references to  v, and merge blocks as per Lemma 6.10, as depicted in 

Figure 6.4. Recall th a t  two blocks are m erged if and  only if the deletion of v  causes their 

neighbourhoods to  be the  same.

-------------  2 * ------------  ^ -----  d e le te  v -----------
B a __________  ^  B a U B g ________

Figure 6.4: M erging blocks, w here the  vertex  v  is deleted from th e  graph

Specifically, our labelling is changed as follows.

.  I f l  < i < l  [fL (v) ?  f L (FL(v)) and f L (v) ±  b(v)}, F L ( B i - i )  = FL (B t ) [fL (IL(FL (v))) =  

f i ( F L (v))], and FR { B i- \ )  =  R /_ i \ fn { lL {F L (v)))  =  b(IL (v))}, then  merge B i  in to  

B i - 1.

-  Add the  value of s(B i)  to  s (R ,_ i)  [add s ( P (F R(v)))  to  s ( P ( I l (Fl (v ))))].  This 

operation takes 0 (1 )  time.

-  Set I R ( B i - i )  to  B i+i [IR {IL (FL (v))) to  I R (FL (v))\ and IL (Bi+i) to  B i - i  [Il ( I r (Fl {v ))) 

to  I l {Fl (v ))]. These assignm ents take 0 (1 )  tim e.

— U pdate  the  labels of the  vertices of Bi  to  reflect th e  fact th a t P ( B i - i )  [P(/x,(F£,(n)))] 

is the  pointer vertex of the m erged block. T his update  can be done in 0 ( |i? i |)  € 

0 ( |X |)  tim e by traversing Bi,  beginning a t F l (v ).

— Merge the two circular doubly linked lists, using P ( B i - i )  [P ( I l {Fl {v )))] and 

P {B i)  [P(Fl (v ))] as reference points. This m erge takes 0 (1 ) tim e.

• If I < j  < k, Fr (Bj ) = FR ( B j +j) , and F i ( B j +1) =  -B;+i then merge B j  into -Bj+i- 

This merge takes 0 ( |B j |)  G 0 ( |A [)  time.
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•  Providing I l {B i) ^  n i l  [ h (v )  n i l ], set I R (IL (B[)) to  I r (B [ )  [Ir {Il (v)) to  Ir{v) \ .  

Similarly, providing Ir{B {)  n i l , set I r ( I r ( B i ) )  to  Ir (B [) .  These assignm ents take 

0 (1 ) time.

•  For each block B  in  { B i , . . .  ,B [ _ i } ,  if Fr (B)  =  Bi \ fR (P (B ) )  =  6(f)], then  set F r (B)  

to  B i - i  \Fr (P{B ))  to  I l {v )\- As well, for each block B  in { F > ; + i , . . .  , B j } ,  if F r {B) = 

Bi, then  set Fl (B)  to  Bi+\.  These assignm ents can be done in O (deg(Bi))  £ 0 ( |X |)  

tim e, by recursively following I r  and  I r  pointers to  determ ine all such blocks B .

•  Delete v. This deletion takes 0 (1 )  tim e.

•  Relabel the  blocks and adjust the  b, f i ,  and f R values as previously discussed. Given 

th a t there can be as m any as 0 ( n )  blocks, th is operation  can take  as much as 0 (n )  

tim e.

The correctness, a t least the block level, of our algorithm  is due to  th e  correctness of 

Lemmas 6.8, 6.9, and  6.10, and the exhaustiveness of th e  cases considered. E nsuring th a t 

the algorithm  does w hat we w ant it to  do, in term s of pointers and vertex  labels, is a m a tte r 

of verification.

For th e  rem aining graph  operations: adding a vertex, deleting an edge, and adding an 

edge, we will no t present the same level of rigour as seen in Lemmas 6.8, 6.9, and 6.10, unless 

the change to  the  stra igh t enum eration is not obvious. However, for each of these rem aining 

operations, we will be careful to  enum erate all possible cases, including those which prevent

G' from being a  proper interval graph.

A d d in g  a  v e r te x

Let v be the vertex to  be added, w here X  denotes the neighbourhood of v in G '. We will 

say th a t v is adjacent to  a block B  if B  n  X  0, fully adjacent to  B  if B  C X ,  and partia lly  

adjacent to  B  if it is adjacent, bu t not fully adjacent.

Given a stra igh t enum eration $  of a connected proper interval graph G, $  can be though t

of as a weak linear order -<$ of Vg, where V\ <̂j> v i  if and only if B ( v i) -< B ( v 2) in $ . Hell 

et al. [27] say th a t  is a refinement of <F, if for every v i ,V 2 £ Vq, v\  -<$ V2 = >  v\ -<$' V2 , 

or for every V\,V2 £ Vg, v\  «2 = >  W -<$' Vi. Observe th a t in th e  la tte r  case, <3?'̂  is 

also a refinement, where for every v\, V2 £  Vg, v\  -<$ V2 = >  v\  -<$' 0 2 -

The following lem m a partially  addresses how the stra igh t enum eration of G' com pares 

to  the straight enum eration of G, when G'  is a proper interval graph.

L e m m a  6 .11  [27] I f  G is a connected induced subgraph of a proper interval graph H ,  where 

$G a contig o f  G and is a straight enumeration of H , then T // is a refinement of$>c-
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In essence, Lem m a 6.11 tells us th a t there  is a stra igh t enum eration  of G' th a t is much 

like the  straigh t enum eration of G, except th a t  some blocks are fu rther “refined” . To 

specifically address th is “refinem ent” of certain  blocks, Hell et al. observe th a t  whenever v 

is partia lly  adjacent to  a block B  of G, B  will be split into B  n  N (v )  and B  \  N (v )  in G'. 

Furtherm ore, they  argue th a t, in any stra igh t enum eration of G ', B  fl N ( v )  and B  \ N ( v )  

occur consecutively. As well, th ey  observe th a t  whenever v  is not p a rtia lly  adjacent to  a 

block B  of G, e ither B  or B  U {v} will be a block of G '.

To sum m arize, if G' is a proper interval graph, th en  it has some stra igh t enum eration 

which looks much like th a t  of G  bu t w ith some blocks split and, possibly, one block which 

now has v  added to  it. In determ ining exactly  when th e  addition of v  m aintains a proper 

interval graph, we consider the  following lemmas.

L e m m a  6 .1 2  [27] Let G be a proper interval graph. I f  G +  v is a proper interval graph 

then v can have neighbours in at most two components o f  G.

L e m m a  6 .13  Consider a proper interval graph G, to which a new vertex v is added. Let 

C  be a component of G containing vertices o f  N (v )  and let { B i , . . . ,  B k }  be the set o f  blocks 

in C  containing members o f N (v ) ,  where, in a contig o f  C , B \  -< . . .  -< Bk- I f  G + v is a 

proper interval graph, then the following properties are satisfied.

1 . [27] B \ , . . . ,  Bk  are consecutive in  the contig of C .

2 . [27] I f  k > 3, then v is fully adjacent to B z , . . . ,  B k - 1-

3. I f  k > 3, then  { S i, ...,.£?*} does not contain three pairwise non-adjacent blocks.

4- I f  k = 2 , then v m ust be fully adjacent to at least one o f  B \  and Bz-

5. [27] I f  v is adjacent to a single block B \  in C , then B \  is an end block.

6 . [27] I f  v is adjacent to more than one block in C  and has neighbours in another 

component, then B i  is adjacent to Bk , and one o f  B i  or Bk is an end block to which 

v is fully adjacent, while the other is an inner block.

P ro o f, (of condition 3) Assume the contrary, th a t  is, { B \ , . . .  ,B k }  contains three pairwise 

non-adjacent blocks B i , ,  B i2, and B i3. For each B j ,  1 <  j  < k, let Vj be a vertex in block 

B j  n N ( v ) .  In  G + v, the  induced graph on {v, v , , , Vi2, Uj3} forms an induced K \ ^ ,  therefore, 

G  +  v  is not a proper interval graph.

(of condition 4) Assume th a t v is fully adjacent to  neither B i  nor Bz- As such, consider 

vertices bi and bz, from B \  and Bz,  respectively, to  which v is adjacent, and vertices b[ and 

&(,, from B \  and Bz,  respectively, to  which v  is not adjacent.
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From  cond ition  1 of L em m a 6.13, we know  th a t  B \  an d  B 2 are  ad jacen t. F rom  L em m a 

6.5, we know th a t  B 1 c a n n o t have th e  sam e neig h b o u rs  as B 2. W ith o u t loss of generality , 

assum e th a t  B \  is a a d jac en t to  som e block  B  to  w hich B 2 is n o t ad jacen t. B y  L em m a 6.7 

(um bre lla  p ro p erty ), we know  th a t  B  < B 1, so v is n o t ad jacen t to  B .  W here  6 is a  m em ber 

o f B ,  th e  induced  g rap h  on  {b \ , v ,  b'2, 5} is a  K i ^ .  T herefo re , G  +  v is a  n o t a  p ro p e r in te rva l 

g raph . □

For any  v ertex  ad d itio n , we claim  th a t  we can  d e te rm in e  in  O (n ) tim e  w h e th e r  Lem ­

m as 6.12 and  6.13 are  sa tisfied . Before describ ing  how  th is  is done, consider th e  following 

o p era tio n s of w hich we can  avail.

•  G iven a  se t o f v ertices S  an d  a  v e rte x  u,  we can  d e term in e  in  0 ( |S '|)  tim e  w hether 

B ( u )  C  S  by trav e rs in g  B ( u ) ,  beg inn ing  a t  u,  u n til we find a  v ertex  n o t in  S.  M ore­

over, given vertices u \ , . . . ,  Uk belonging  to  d is tin c t blocks B i , . . . ,  B ^ ,  we can  use th is  

approach  to  d e te rm in e  w hich blocks are su b se ts  o f S  in  0 (k +  |S j) tim e. If  each Ui 

belongs to  S,  th e n  th is  tim e  reduces to  0 ( [5 j ) .

•  G iven a se t of v ertices S  a n d  vertices u \ , . . . , U k  belonging  to  d is tin c t b locks B \ , . . . ,  Bk ,  

for w hich B t C  S,  we can  d e term in e  S \ (UBi)  in  0 ( S |B i |)  G 0 ( |S |)  tim e  b y  trav e rs in g  

each  Bi ,  beg inn ing  a t  rtj.

•  G iven a set of vertices S  an d  a  v e rtex  u,  we can  d e te rm in e  S  \  B ( u )  an d  S  ft B { u ) in  

0(1.51) tim e  by  com paring  th e  b value of each  v e rte x  in  S  w ith  th a t  of u.

T h e  afo rem entioned  o p e ra tio n s  are used by  th e  a lg o rith m  L e f t C o m p o n e n t B l o c k -  

STRUCTURE, show n in F ig u re  6.5, to  ev a lu a te  th e  cond itions of L em m as 6.12 an d  6.13. 

L e f t C o m p o n e n t B l o c k S t r u c t u r e  first exam ines X  to  d e term in e  a  v e rte x  i>i whose 

block, B \ ,  is th e  le ftm ost of all b locks con ta in ing  m em bers of X \  th a t  is, has th e  m in im al 

b value over all vertices in  X .  T h e  v ertex  v\ ,  an d  hence B \ ,  can  b e  de te rm in ed  in  0 ( |W |)  

tim e. R egard ing  B \ , we m ake n o te  of th e  following.

•  T h e  vertex  v\ .

•  T h e  ad jacency  of v,  full o r p a rtia l, w ith  B 1. As d iscussed  previously, we can  d e term ine  

w h e th e r B \  C  X  in 0 ( |A j )  tim e.

•  W h e th e r  B \  is an end  block [ / l ( p  1) =  b(vx) or J r { v  1) =  &(^i)]-

•  T h e  vertices in  X C \ B \ .  As d iscussed previously, th is  se t can  be d e te rm in ed  in  0 ( |A |)  

tim e.

L et C i deno te  th e  com ponen t con tain ing  v\ .  P rov ided  X  \  B 1 ^ 0  an d  F r ( B  1) ^  B \  

1) 7  ̂ 6 (^ i)], we o b ta in  sim ilar in fo rm ation  a b o u t B 2 = I r { B \ )  (using v2 =  I r ( v  1) as
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L e f t C o m p o n e n t B l o c k S t r u c t u r e ( G , X )

Input: An adjacency labelling of a  graph  G created  using our dynam ic scheme, and  a subset 
X  of VG.

O utput: Let $  be the  stra igh t enum eration of G  employed in th e  dynam ic scheme, and let 
C  be the  leftm ost com ponent in $  containing a vertex  in X .  Furtherm ore, where G + v  is 
the graph formed by adding a  new vertex v to  G  such th a t v is adjacent to  exactly  those 
vertices in X ,  let the  blocks of C  be denoted as per the  hypothesis of Lem m a 6.13. 
Providing G satisfies conditions 1 th rough 3 of Lem m a 6.13, th e  algorithm  o u tp u ts  certain 
inform ation about the  s truc tu re  of G. If G + v  does not satisfy these criteria, th e  ou tpu t 
indicates as such.

1 vi <— a leftm ost vertex  in X
2 <— the  block containing i>i
3 clawblock <— B \
4 cl aw count <— 1
5 i <-- 1
6 endblock 0
7 adjacent <— 1
8 w h ile  X  \  U)Z-\Bj =/= 0 and endblock =  0 and  adjacent =
9 i f  v  is no t adjacent to  B i  th e n

10 if  C  n  ( X  \  U /  0 th e n
11 error no longer a proper interval graph
12 e lse  i — i — 1
13 adjacent <— 0
14 e lse if  % >  3 and v is no t fully adjacent to  B ^ i  th e n
15 error no longer a proper interval graph
16 e lse  record  the  vertex Vi
17 record  the adjacency (full or partia l) of v w ith Bi
18 record  w hether B i  is an  end block
19 record  ( X  \  Ulj l \ B j )  fl Bi
20 if  Bi  is not adjacent to  clawblock th e n
21 clawblock <— Bi
22 clawcount <— clawcount +  1
23 i f  clawcount =  3 th e n
24 error no longer a proper interval graph
25 if  F R (B i ) =  Bi  th e n
26 endblock 1
27 e lse  i i + 1
28 Vi <- I n i v i ^ i )
29 B t <— the block containing Vi
30 record  the  value of k  as i
31 record  the  set Y

Figure 6.5: The algorithm  L e f t C o m p o n e n t B l o c k S t r u c t u r e  used to  test th e  criteria of 
Lem m as 6.12  and 6.13

95

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



a sta rting  point for th e  vertices in B 2)\ however, we now need to  know if X  \  7  ̂ 0.

This calculation is done in the  order (X  \  B 1) \  B 2, where X  \  B i  has been determ ined 

in 0 ( |X |)  tim e, as discussed above. This process is repeated, setting  Vi = I f i ( v i - i )  and 

Bi  =  B (v i)  =  I r { B ^  1) until one of th e  following occurs.

•  T erm in a tio n  ev en t 1 (v is not adjacent to  B , , X \ U lj= 1B j  /  0, and there  are vertices 

in X  \  U*= 1jBj th a t belong to  C\): In  th is  case, condition 1 of Lemma 6.13 is violated.

Exactly how to  determ ine if there  are vertices in X \ U t h a t  belong to  C\ requires 

some consideration. Specifically, we traverse th e  F r  pointers from Bi  to  determ ine the 

other end block B end of C \,  th en  check to  see if there  is some vertex u  in X \ ( | J *=1 B j ) ,  

for which B ( u ) -<; B end [b(u) <  b(vend), w here v end is a vertex of B end\. Checking each 

vertex u  in  A l \ ( U j = i  B j ) t o  see ^ B ( u )  ^  B end takes only 0 ( |X \ ( | J *=1 B j ) | )  e  0 ( |X |)  

tim e, however, it  takes as much as 0 ( n )  tim e to  traverse th e  F r  pointers to  determ ine 

Bend-

•  T erm in a tio n  ev en t 2 (i > 3, v  is adjacent to  B i,  and v  is not fully adjacent to  1): 

In this case, condition 2 of Lem m a 6.13 is violated.

•  T erm in a tio n  ev en t 3 (the variable clawcount  has value 3): In th is case, v  is adjacent 

to  three blocks which are pairwise non-adjacent. Therefore, condition 3 of Lem m a 6.13 

is violated.

•  T erm in a tio n  ev en t 4 (v  is not adjacent to  Bi ,  X  \  \Jj = 1B 3 ^  0, and there  are no 

vertices in X  \  \S:J=XB 3 th a t belong to  C\ ): In  th is case, th e  com ponent C 1 containing 

v\  satisfies conditions 1 through 3 of Lem m a 6.13, otherwise, the selection of Bi  as 

lR ( B i _ i )  guaranteed th a t we would have encountered one of the  first th ree term ination  

events. M oreover, we can test conditions 4 and  5 in 0 (1 ) tim e, as we have noted the 

value of k, th e  adjacency of v  w ith  B \  and Bk,  and w hether B \  is an end block.

Of greater interest, however, is the  fact th a t  not all the  vertices of X  belong to  the 

same com ponent. As such, we m ust also confirm th a t C\ satisfies condition 6 of Lemma 

6.13. Given th a t  we have noted the vertices v\  and Vk, the  adjacency of v  w ith  B 1 and 

Bk,  and w hether B \  and Bk  are end blocks, we can test th is  condition in 0 (1 )  time.

As well, we m ust verify th a t the  vertices JA \U ) - \ B j  belong to  exactly one com ponent, 

C2, th a t satisfies conditions 1 through 6 of Lem m a 6.13. We verify these criteria  by 

using L e f t C o m p o n e n t B l o c k S t r u c t u r e  on the  set X  \  Uj= 1Bj .

•  T erm in a tio n  ev en t 5 (A \U * =1B j 7  ̂ 0, b u t F r (B z) =  Bi): In this case, the  vertices 

of X  belong to  more than  one com ponent, however, FR(Bi)  =  Bi  gives th a t  there  are 

no vertices in X  \  U%j = \B j  th a t  belong to  th e  com ponent containing v\.  As such, this 

term ination  event is handled in the same m anner as term ination event 4.
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•  T erm in a tio n  e v e n t 6 (X  \  U) = \ B j  =  0): In  th is  case, th e  v ertices of X  all belong  to  

th e  sam e com ponen t. T h e  co m ponen t C \  co n ta in in g  iq  satisfies cond itions 1 th ro u g h  3 

of L em m a 6.13, o therw ise , we w ould  have en co u n te red  one of th e  first th re e  te rm in a tio n  

events. M oreover, we can  te s t  con d itio n s 4 a n d  5 in  0 (1 )  tim e , as we have n o te d  th e  

value of k , th e  ad jacency  of v  w ith  B i a n d  B *., an d  w h e th e r  B \  is an  en d  block. 

L em m a 6.12 an d  cond ition  6 of L em m a 6.13 are  n o t applicable.

G iven th a t  C \  is fin ite , te rm in a tio n  even ts 5 a n d  6 g u aran tee  th a t  th e  a lg o rith m  L e f t -  

C o m p o n e n t B l o c k S t r u c t u r e  w ill te rm in a te . T h e  exhaustiveness of th e  te rm in a tio n  

events, along w ith  th e  careful co n s id era tio n  of th e ir  connections to  L em m as 6.12 a n d  6.13, 

ensure  th a t  we can  d e term in e  w h e th e r  L em m as 6.12 an d  6.13 are  sa tisfied .

Now consider th a t  term ination  event 2 guarantees th a t  there are a t m ost th ree values 

of i for which B i  is exam ined and found not fully adjacent to  v . namely, B \ ,  Bk  and Bk+1- 

As discussed, each of these adjacencies can be determ ined in 0(1X1) tim e. Furtherm ore, 

X  \  B \  can be determ ined in 0 ( |X |)  tim e. For k >  3, each of B 2 , . . . ,  B k - 1 is a subset 

of X  \  B \  (each of these blocks is fully adjacent to  v); therefore, ( X  \  B 1) \  U ^ ^ B j  = 

X  \  U kj Z \ B j  can also be determ ined in 0 ( 2 ^ 2 1 B j  I) e  0 ( |X  \  T?i |) G 0 ( |X |)  tim e. Finally, 

(X  \  Uj ^ i B j )  \  B k  = X  \  Ukj= \B j  can be determ ined in 0 ( |X  \  Bj\)  G 0 ( |X |)  time.

T h a t is, the  to ta l tim e required to  determ ine X  \  Uj =1B j ,  from X  is 0 ( |X |) .

U nfo rtuna te ly , th e  ru n n in g  tim e  o f L e f t C o m p o n e n t B l o Ck S t r u c TURE is do m in a ted  

by  th e  possib le 0 ( n )  tim e  requ ired  to  d is tin g u ish  betw een  te rm in a tio n  even ts 1 and  3. Specif­

ically, th e  ru n n in g  tim e  of L e f t C o m p o n e n t B l o c k S t r u c t u r e , hence, th e  tim e  requ ired  

to  verify  th e  con d itio n s of L em m as 6.12 an d  6.13 could  b e  as m uch as 0 ( n ) .

H ereafter, we assum e th a t  L em m as 6.12 an d  6.13 are sa tisfied  by  ou r v e rtex  add ition . 

N o te  th a t ,  w hile verify ing th a t  L em m as 6.12 an d  6.13 are satisfied, we have reco rded  a  g rea t 

deal a b o u t th e  s tru c tu re  of th e  blocks. T h is  in fo rm atio n  will b e  u sed  to  help  us re lab el th e  

vertices.

In  describ ing  th e  relabelling , le t us first consider w hen  th e  m em bers o f X  belong to  one 

com ponen t, C.  As in  th e  hypo thesis  of L em m a 6.13, le t { B \ , . . . ,  B k }  d en o te  th e  se t of 

blocks in  C  th a t  are ad jac en t to  v,  such th a t  in  th e  contig  of C,  B i  -< . . .  -< Bk-  W e consider 

th ree  cases, depend ing  on th e  value of k.

1. k  =  1. B y L em m a 6.13, B \  is an  end  block. W ith o u t loss of generality , assum e th a t

H i x  B ,  for any  block B  in  C.

If  v  is fully ad jacen t to  B \ ,  an d  C  = B\  [f f t (v  1) =  6 (fi)] , th e n  we ad d  v  to  B \ ,  as 

dep ic ted  in  F ig u re  6.6(a). If  v  is fully ad jacen t to  B 1, b u t C  ^  B 1, th e n  we ad d  th e  

block {n} im m ed ia te ly  before B 1, as dep ic ted  in  F igure  6 .6(b). F inally , if v  is n o t fully 

ad jacen t to  B  1; th e n  we p a r ti tio n  B i  U {;;} in to  {w} -< X  -< B \  \ X , as dep ic ted  in
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Figure 6.6(c).

add v r ,
B i    '  B x U { (;}

(a) v  is fully adjacen t to  B \ ,  and  th e  vertices of B \  form 
a com ponent

Madd v ------
B i     B  i

(b) v  is fully adjacen t to  B \ , and  th e  vertices of B \  do  not 
form a  com ponent

add v
B i      *  W   B j \ X  _______

(c) v  is not fully ad jacen t to  B \

Figure 6 .6 : Adding th e  vertex v, where v  is adjacent only to  B \ .  W ithou t loss of generality, 
B \  is assum ed to  be the leftm ost block in its com ponent

2. k  =  2 . By condition 4 of Lem m a 6.13, v  m ust be fully adjacent to  a t least one of 

B i  and B 2. W ithou t loss of generality, assum e th a t  v is fully adjacent to  B \ .  Let 

B i =  Fl ( B i ) and B j  = Fr ( B i ).

Assume first th a t B i  =  B \  [/l ( u i) =  &(r>i)]- N ote th a t Lem m a 6.4 guarantees th a t 

B 2 -< F r (B 2). If v  is fully adjacent to  B 2 and  B j  = B 2 [fR (v i)  =  b(v2)}, then  

add v to  B \ , as shown in Figure 6.7(a). If v is fully adjacent to  B 2, b u t B 2 -< B j  

[b(v2) = f R {vi )], then  add the  block {r;} im m ediately before B i, as shown in Figure 

6.7(b). Finally, if v is not fully adjacent to  B 2, then  we partitio n  B \  U B 2 U {u} into 

{u} -< B i  -< B 2 fl X  -< B 2 \ X ,  as shown in F igure 6.7(c).

Now assume th a t B i  -< B \  [/l ( v i) <  h(ui)] As such, if G' is to  be a proper interval 

graph, then  the block containing v  in the  stra igh t enum eration of G'  m ust be ordered to  

• the  right of any resultant block of G' th a t contains a m em ber of B \  \ for simplicity, we 

indicate this by saying th a t, B \  -< B{ v) .  If B 2 -< B j  [6(^2) <  f R (v  1)], then  B ( v )  -< B\;  

th is contradiction tells us th a t G'  is not a p roper interval graph. Consequently, assume 

th a t B j  :< B 2, which is to  say th a t B 0 =  B 2 [fR (v 1) =  6(^2)]- Furtherm ore, if v  is 

not fully adjacent to  B 2, then  B \  adjacent to  B 2 gives B 2 -< B ( v ) ,  yet, w ith v not 

fully adjacent to  B 2 and v  adjacent to  B 1, B ( v )  -< B 2, which is another contradiction. 

Therefore, assume th a t v  is also fully adjacent to  B 2.

Given B, B \ ,  B j  = B 2, and v  fully adjacent to  B 2, if F l ( B 2) -< B \  [ / l ( u 2) =  b(ui)],

98

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



(a) v is fully adjacent to £ 2 , and F r (B  1) =  £2

M
Bo

£1
ad d  v

Bo

B\

(b) v  is fully ad jacen t to  £ 2 , and  £ 2  -< F r (B  1)

Bo
a d d  v

Bo n x

{«} B 2 \ X

B 1

(c) v  is no t fully adjacent to  B2

Figure 6.7: Adding the vertex v, w here v  is adjacent only to  B \  and B 2 and FR(B  1) =  B \ .  
W ithout loss of generality, we have assum ed th a t v  is fully adjacent to  B \

then  B 2 < B (v ) .  If, furtherm ore, B 2 -< FR (B 2) [b{v2) < f R (v2)], then  B (v )  -< B 2, 

which is a contradiction. On th e  o ther hand, if F R (B 2) = B 2 [fR (v2) = b(v2)}, then 

we add the  block {v} im m ediately after B 2, as depicted in Figure 6.8(a).

Finally, given Bi  -< B \ ,  B j  = B 2, v fully adjacent to  B 2, and  F R(B 2) = B 1, if 

F r { B 2) — B 2 [fR (v2) =  ^(^2)], th en  we need only add v to  B 2 , as depicted in Figure 

6.8(b). However, if B 2 -< FR {B2) [b(v2) < f R (v2)], then  we add the  block {u} between 

B \  and B 2 , as depicted in Figure 6.8(c).

3. k  >  3. By Lemma 6.13, v  is fully adjacent to  B 2, . . . ,  B k - 1- Let B a = FR{B  1) and 

B f3 =  FR{Bk)- As well, let ba be some vertex in B a , and bp be some vertex in Bp. 

Observe th a t B \  -< B a and Bp -< Bk,  otherwise, B \  and Bk  do no t belong to  the  same 

component. Moreover, by definition, F R(B a ) p< B \  and Bk  rl FR {Bp). Furtherm ore, if 

B a ■< Bp,  then there cannot be another block B  for which B a < B  < Bp [b(IR (ba )) yf 

b ( b p ) ] .  Otherwise, condition 3 of Lem m a 6.13 is violated. N ote th a t  the algorithm  

L e f t C o m p o n e n t B l o c k S t r u c t u r e  would have detected th is  violation.

We consider four cases.

(a) v is fully adjacent to  Bk,  and partially  adjacent to  B \ .  In th is case, B a -< B (y )  

as B a is adjacent to  B \ .  Since B a is adjacent to  FR (B a ), B (v )  is also adjacent 

to  FR (B a ), so we m ust ensure th a t FR (B a ) y< Bk [ f R . ( b a )  < b(vk)\; otherwise, G' 

is not a proper interval graph.
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Bi_____

~2
add v

B i _______________

  w
B2______

(a) FL ( B 2) < B i

Bl  j jadd v
B2     B 2 U {u}

(b) F L ( B 2) =  B l and FR {B2) =  B 2

M
B 1

B 2
add v

B 1

B 2

(c) F r {B 2) =  B i  and B 2 -< F R ( B 2)

Figure 6.8: Adding th e  vertex  v, where v  is adjacent only to  B \  and B 2 and F l{ B \ )  -< B \ .  
W ithout loss of generality, we have assum ed th a t v  is fully adjacent to  B \

Now B i  -< F L ( lR (B a)), therefore, B a -< B (v )  -< I R (B a ). Yet v  is adjacent to  Bk,  

so we m ust also ensure th a t Bk  ^  FR (Iii(Ba)) [b(vk) <  f r (IR.(ba ))}', otherwise, 

G' is not a p roper interval graph. To create the  new contig, we partition  B \  into 

B i \  X  -< B i  fl X  and insert the  block {u} im m ediately after B a , as depicted 

Figure 6.9(a).

(b) v is fully adjacent to  B 1, and partially  adjacent to  Bk-  In  th is  case, B ( v )  ^  Bp  

as B k  is adjacent to  B p .  Since B p  is adjacent to  F l ( B p ) ,  B ( v ) is also adjacent 

to F l(B p ) ,  so we m ust ensure th a t B i  -< F L ( Bp )  [ f r ( u i )  <  fL{bp)}\ otherwise, G'  

is not a proper interval graph.

Now F r ( I l ( B p )) -< Bk ,  therefore, I i { B p )  < B ( v )  -< B p .  Yet v  is adjacent to  f?i, 

so we m ust also ensure th a t F r ( I l ( B p ) )  ^  B i  [fL(lL(bp))  <  &(ui)]; otherwise, 

G' is no t a proper interval graph.

To create the  new contig we partition  Bk  into B k  fl X  -< B k \ X ,  and insert the 

block B c =  {w} im m ediately before Bp.  This scenario is v irtually  identical to  

the case when v  was fully adjacent to  Bk  and partia lly  adjacent to  B i ,  and is 

depicted in F igure 6.9(b).

(c) v is partia lly  adjacent to  b o th  B 1 and Bk- As we have seen, these conditions ne­

cessitate th a t  B a -< B ( v )  and B ( v )  -< Bp.  As such, if B p  < B„ \b(bp) < b(ba )}, 

then  G' cannot be a proper interval graph.

From the previous cases, we also require th a t  F R ( B a ) F B k  [//?(?>«) < b(vk)}
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and B \  -< F R{Bp) [&(fi) <  / i ( b /3)]. However, given th a t v  is partially  adjacent 

to b o th  B 1, and B k , we actually  have a slightly stronger requirem ent, namely, 

Fr (B c ) B k [fR (ba ) <  b(vk)] and B x -< F L (Bp)  [6(ui) <  / l ( M ] -  Providing 

B a -< B t3, bo th  of these conditions are satisfied.

In essence, th is  scenario requires th e  “com bination” of th e  two previous rela­

bellings. T h a t is, we partition  B 1 in to  B \  \  X  -< B \  fl X ,  we partition  B k into 

B k CiX -< B k \ X ,  and we insert the  block {u} between B a and  Bp.  This scenario 

is depicted in Figure 6.9(c).

Ba

AA B ' n Xadd v
Bk  ►  By

(a) v  is fully adjacent to  B k and  p a rtia lly  adjacen t to  B 1

S i.
Ba Bi Bk n x
—   add V — ---------------------- — --------

Bi_________ Bk________   ~ W ___________ Bk \ X

(b) v  is fully adjacent to  B 1 and p a rtia lly  adjacen t to  B k

Bq______   Ba
Bq add v B\ fl X  Bf.C\X

Bi ________Bk______ B y \ X  W __________  Bk \ X

(c) v  is partia lly  adjacent to  b o th  B \  and Bk

Figure 6.9: Adding th e  vertex v, w here v  is ad jacen t to  B \  th rough B k (k  >  3)

(d) v is fully adjacent to  bo th  B \  and B k . We consider three further cases.

i. B q Bp \b(ba ) < b(bp)}. Using an earlier argum ent, we know th a t there can­

not be a block B  for which B a -< B  -< Bp [b(Ifi(ba )) b(bp)]. Now if

B (v )  ^  B a , then B a -< Bp  gives th a t B (v )  is not adjacent to  B k , which is a 

contradiction. Similarly, if Bp  ^  B (v ) ,  th en  B a -< Bp  gives th a t B (v)  is not 

adjacent to  B 1, which is a contradiction. Thereby, B a ~< B(v)  -< Bp,  so we 

add the block {t>} between B a and Bp,  as shown in Figure 6.10.

ii. B a = Bp  [6(6a ) =  b{bp)}. We consider four cases.

•  FL (B a ) = B 1 [fL (ba ) =  b(v 1)] and F R (B a ) =  B k [fR (ba ) =  6(dfc)]. Since 

B a has the same adjacency as v, we add v  to  B a , as depicted in Figure 

6 .1 1 (a).
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M ___________
Bp  Bp________________

  Ba add v Ba
Bi Bk___________  Bi________________  Bk________________

Figure 6.10: Adding th e  vertex  v, where v is fully adjacent to  B \  th rough Bk  (fc >  3), and 
B a =  Fr (B i ) -< FL(Bk) =  Bp

•  FL (B a ) -< B x [fLjbg) < b{vi)} and  F R ( B a) = B k [fR (ba ) =  b{vk)]. Since 

Fl {B o) -< B i ,  B a -< B (v ) .  Furtherm ore, observe th a t  B \  -< F i ( I R (B a )), 

so B (v )  -< I R (B a ). As such, we m ust insert the  block {w} im m ediately 

after B a , as shown in Figure 6.11(b).

•  FL (B a ) =  B i  [fL (ba ) =  b(ui)j and  B k -< FR (B a ) [b(vk) < f R (ba )]. A n a r-  

gum ent sim ilar to  the  preceding one gives th a t the  block { v \  m ust be 

inserted  im m ediately before B a , as shown in Figure 6.11(c).

•  FL (B a ) ^  B \  [fhibg) <  b(vi)] and B k -< F R (B a ) [b(vk) < f R {ba )]. From  

the  previous cases, we see th a t  B a -< B (v )  and B (v)  -< B a , which is a 

contradiction. Thereby, G' is not a  proper interval graph.

B,
Bq — Bp 

B k

add v   B a U { » }

Bi_____  Bk

(a) F L ( B a )  =  B i ,  and  F R ( B a ) =  B k

{r}
B a =  Bp add v

B\ B k
B q

Bi Bk

(b) F L ( B q )  -< B i ,  and  F R ( B a )  =  B k

M
Bq — Bp add v B q

Bi B k Bi Bk

(c) F L ( B q )  =  B i ,  and B k  ■< F R ( B a )

Figure 6.11: Adding the  vertex v, where v is fully adjacent to  B \  th rough B k (k > 3), and 
B a =  F r {B i ) — F l { B i~) — Bp

iii. Bp B a [b(bp) < b(ba )}. By definition, F k (B a ) ^  B \  and B k < FR (Bp),  

therefore, Fi,{Bp) ^  B \  and B k < F R {B a ). We consider four cases.

•  FL (Bp)  =  B j  { fijbp) = fr(vi)] and F R (B a ) =  B k [fR (ba ) — b(vk )\. Since 

F l ( B p ) =  B i ,  Ff,{Bp) < F l (B a ) gives B i  < FL {Ba ), so FL (B a ) =
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F i(B p )  = B i .  Similarly, FR (B 0 ) = F R (B a ) =  B k , so B a = Bp.  This 

contradiction tells us th a t  this case cannot occur.

•  Fl (B p ) -< B x [fL (bp) <  fe(t7i)] and F R ( B a ) = B k j fR (ba ) = b(vk )}. Since

FL {Bp) < B i ,  Bp < B (v) .  As such, F R (B p ) ^  B k [f R (bp) <  b(vk)}, 

otherwise, G' is not a proper interval graph.

Now if F R{B a ) =  B \  [ / l ( 6 q ) =  &(ui)], th en  B a has th e  sam e adjacency 

as v  so we add  v to  B a , as illu stra ted  in  F igure 6.12(a). Otherwise, if 

F l (B o) -< B \  [fi,(ba ) < b(ui)]> we m ust insert th e  block {u} immediately 

after B a , as illustrated  in Figure 6.12(b), because B i -< F R(IR(B a )).

•  FL(Bp) =  B x {fL (bp) =  b(ui)] and B k -< F R ( B a ) {b(vk) <  f R (ba)]. This case 

is v irtua lly  identical to  the  previous one. As such, we we m ust check th a t

B i  r< FL ( B a ) [B(Vl) < f L (b*)}.

If F R {Bp) =  B k [f R (bp) =  b(vk)}, th en  we add v  to  Bp,  as shown in Fig­

ure 6.12(c). O therwise, if B k -< F R (Bp) [b(vk) <  f R (bp)], we m ust insert 

the block {v} im m ediately before Bp,  as illu stra ted  in  F igure 6.12(d).

•  FL(B p ) ^  B \  [f L (bp) < b(vi)] and B k -< F R (B a ) [b(vk ) < f R (ba )}. Since 

B k -< FR ( B a ), B (v )  ~< B a . Now if F L (B a ) -< B x \ fL {ba ) < b{vi)], then  

B a -< B (v ) ,  which is a contradiction th a t  tells us th a t  G'  is not a proper 

interval graph. Therefore, FR(B a ) =  B x. Similarly, FR (B p ) =  B k , and 

we m ust verify th a t FR (Bp)  ^  B k [fR {bp) < b(vk)}.

Now consider FR {IL {B X)). Since F l (Fr ( Il ( B i ))) < ( IL ( B x)) -< B x, 

Fr {Il {B \))  -< B (v) .  Similarly, B (v )  -< F L (IR (B k)). As such, we m ust 

check the condition F r (Il (B i )) ■< FL (IR (B k)) [fR ( IL (v i))  <  / l ^ h K ) ) ] -  

Since Fk (Bp)  -< B x, we also know th a t  Bp ■< Fr (Ir ( B i ))\ similarly, 

FL{IR {Bk) ) < B a .

If there  exists a block B  such th a t  Fr ( Il ( B x)) -< B  -< F R{IR {Bk)), then  

B \  < Fl (B )  and F r (B)  ^  B k . Yet Bp -< B ,  where F R (Bp) = B k , 

therefore, F r (B )  = B k . Similarly, B x = FR{B),  so we m ust add v  to  B  

as shown in Figure 6.12(e). Note th a t  we have clearly defined FR{B)  and 

FR {B),  therefore, there is only one such block B.

If there  does not exist a  block B  such th a t  F r  ( Il (B x )) -< B  < F i ( I R (B k)),

then  we m ust add the block {u} betw een F r ( I i ( B j)) and F i ( I R (B k)). 

This scenario is also shown in Figure 6.12(e).

Now let us consider when the m embers of X  belong to  two distinct components. From

condition 5 of Lemma 6.13 we know th a t each segment m ust contain an end block to  which 

v is fully adjacent. We add v  by merging the two contigs and placing the block {v} between.

Let the contigs containing the two segments be <E> =  B \  B k and =  B[ -< . . .  -<
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B [, where, w ithout loss of generality, $  -< <F. N ote th a t we can follow I I  and I r  pointers, as 

necessary, to  determ ine the end blocks of $  and  flu If Bk  and B[  are the end blocks to  which 

v is fully adjacent, then  the new m erged contig will be $  -< {u} -< \k, however, we note th a t 

it may also be necessary to  split some of th e  blocks in th e  m erged contig. C onstruction of 

th is new m erged contig requires us to  move $  over to  \IL

Let B i  be the  leftm ost block in $  to  which v is adjacent, and let B '■ be th e  rightm ost 

block in 'L to  which v is adjacent. If v is partia lly  adjacent to  Bi,  then  we m ust partition  

B i  in to  B i \ X  -< B i f ]  X .  Similarly, if v is partia lly  adjacent to  B p  then  we m ust partition  

B j  into B j  fl X  -< B ' j \ X .  The change in th e  straigh t enum eration is illu stra ted  in Figure 

6.13 which considers when the  end blocks to  which v is fully adjacent are B k  and B[,  w ith 

v fully adjacent to  B p  bu t not Bi.

Similar merges are done for the  o ther scenarios in which the end blocks fully adjacent 

to  v  are Bk  and  B[, B \  and B [ , and  B \  and  B[. In  the  case where the end blocks are fully 

adjacent w ith v  are Bk  and B[, the  m erged contig is T -< {)/} -< th is merge am ounts to  

a move and “flip” of <F.

As we have seen, the  algorithm  L e f t C o m p o n e n t B l o c k S t r u c t u r e  allows to  deter­

mine a great deal of inform ation abou t th e  contigs containing m em bers of X .  The cor­

rectness, a t least the  block level, of our algorithm  is due to  the  careful consideration of the 

exhaustive cases which can be identified according to  inform ation obtained from  L e f t C o m ­

p o n e n t B l o c k S t r u c t u r e ,  as well as specific vertex-level inform ation. Again, ensuring 

th a t the  algorithm  does w hat we w ant it  to  do, in term s of pointers and vertex  labels, is 

a m a tte r of verification w ithin each individual case. Recall th a t  m any of th e  vertex-level 

instructions are presented in A ppendix C.

D e le t in g  a n  e d g e

Let uv  be the  edge to  be deleted, where X u and X v denote the  neighbourhoods of u  and v 

in G , respectively. As well, let B i  and B j  be th e  blocks containing u  and v, respectively, in 

the contig B \  Bk  of the  com ponent C  containing uv. W ithou t loss of generality, let

1 <  i < j  <  k.

The following theorem  addresses the  case where i = j .

L e m m a  6 .1 4  [27] Let u and v be two adjacent vertices in a proper interval graph G. I f  

N[u\ =  N[v], then G  — uv is a proper interval graph i f  and only i f  the component containing 

u and v  is a clique.

Consequently, if i = j  [b(u) =  b(v)}, then  i = j  =  k — 1 =  / r (v )]; otherwise, G' is

not a proper interval graph. In th is case, we partition  the  contig B i to  create a new contig 

{u} -< B \  \  { u ,v }  {u}, as depicted in Figure 6.14(a).
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On the o ther hand, if i j ,  then  the  relabelling is slightly more com plicated. In th is  

case, the following lem m a applies.

L e m m a  6 .15  [27] Let u  and v  be adjacent vertices o f a proper interval graph G. A s well, 

let B \  ■< . . .  < B k be a contig o f G, such that u  G B i and v G B j, fo r  some 1 <  i < j  < k. 

The graph G — uv is a proper interval graph i f  and only i f  FR (B i) = B j and F i ( B j )  =  B i.

Consequently, if i ±  j , th en  FR (B i) — B j \ fR (u) = b(v)} and FL (B j)  = B i [ / l (u )  =  

&(«)]; otherwise, G' is no t a proper interval graph. Observe th a t  if 1 <  i [ / l (zz) ^  b(u)], 

B j =  {u} [ni(t)) =  u], FL ( B i - 1) =  FL (B i) [ / l ( / l ( w ) )  =  / l ( u ) ] ,  and FR ( B i - i) =  B j - 1  

[/fi(^i(w )) =  6 ( /l(u ))] , th en  we m ust move u  into B i - 1. Similarly, if j  < k, B i =  {zt}, 

FR (B j+1) =  FR (B j) , and  F L {BJ+\) =  B i+\,  th en  we m ust move v  in to  B j +1.

Exactly  how the  labelling is changed depends on w hether u  is moved in to  B i - 1, v  is 

moved into B j+ 1, B i =  {u }. and B j  =  {?/}. We consider each case, w ith  respect to  u, 

separately, noting th a t  th e  sam e considerations m ust also be given for v.

•  If u  is to  be moved into B i - 1, th en  th e  straigh t enum eration changes as shown in 

Figure 6.14(b).

•  If u  was no t moved into B ,-]  and B i =  {'«}, then  the  stra igh t enum eration changes 

as shown in F igure 6.14(c).

•  If u  was not moved into jB,_i and B i  contains vertices o ther than  u , then  we m ust 

partition  B i into {zt} -< B i \ {zz} (in th e  case of v, we would partition  B j  in to  B j \  {u} -< 

{u}). This scenario is depicted in F igure 6.14(d).

The correctness, a t least the  block level, of our algorithm  is due to  the careful consider­

ation of the  exhaustive cases. Again, ensuring th a t  the algorithm  does w hat we w ant it to  

do, in term s of pointers and vertex labels, is a m atte r of verification.

A d d in g  a n  e d g e

Let uv be the  edge to  be added, where X u and  X v denote the  neighbourhoods of u  and v 

in G, respectively. The following lemmas characterize when G' is a proper interval graph.

L e m m a  6 .16  [27] I f  u  and v are in d istinct components o f a proper interval graph G, 

then G  +  uv is a proper interval graph i f  and only i f  u and v are end vertices in  a straight 

enumeration o f G.

L e m m a  6 .17  [27] Let u and v be non-adjacent vertices belonging to the sam e component 

o f a proper interval graph G. As well, let B i  -< . . .  < Bk be a contig o f that component, 

where u £ B i and v  € Bj ,  fo r  some 1 <  i < j  <  k. The graph. G +  uv is a proper interval 

graph i f  and only i f  FR (Bi )  =  B j - 1  and F i ( B j )  =  B i + \.
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W ithou t loss of generality, let us assume th a t b(u) < b(v). W hile considering the addition 

of a vertex, we saw th a t, by traversing Fr  pointers beginning at u, we can determ ine, in 

0 (n )  tim e, w hether u  and v belong to  the  same com ponent. If u  and v  belong to  the  

same com ponent, th e  conditions Fr (B i ) =  B j - 1  [/i?(u) =  6( / l(u ) ) ]  and Fl (B j ) = B i + 1 

[Il (v ) =  6(/h (u ))] m ust be satisfied; otherwise, G ' is no t a proper interval graph. O n the 

other hand, if u  and v do no t belong to  th e  same com ponent, u  and v  m ust be end vertices 

[ / i ( u ) =  K u ) or / f l (w) =  b(u), and / l ( v )  =  b{v) or fn ( v )  =  b(v)]m, otherwise, G' is no t a 

proper interval graph.

Having determ ined w hether G ' is a proper interval graph, we consider th e  following 

cases.

1. The vertices u  and  v  belong to  distinct com ponents. In th is  case we will need to  know 

inform ation abou t all th e  blocks in the  com ponents containing u  and v. Specifically, we 

determ ine all the  blocks by following Fr  and Fr  pointers, keeping a reference vertex 

Vi from each block B , . G athering th is inform ation can take as much as 0(?i) tim e.

Let $  =  B \  -k . . .  -k Bk  be the  contig of the  com ponent containing u. and let 'L =  

B[  -k . . .  B'{ be th e  contig of the  com ponent containing v. If u  £  B k  and v  £  B[,

then  the  new m erged contig will be $  -k T; however, we note th a t it m ay also be 

necessary to  split some of the  blocks in the m erged contig. Specifically, if Bk ^  {u} 

[nx(u)  7̂  u], th en  we m ust partition  B k  in to  B k \  {u} -k {«}; similarly, if B{ ^  {u} 

[nx(v) ^  u], th en  we m ust partition  B[ into {u} -< B [ \  {u}. Similar merges and splits 

are done for the o ther scenarios in which u  G B k  and  v €  B[, u  £ B \  and v G B [, and 

u £ B i and v  € B[.

The change in the  stra igh t enum eration is illustrated  in Figure 6.15(a) which considers 

when u £ Bk  and v £ B [, w ith  B[  =  {u} bu t no t B k  7  ̂ {w}.

2. T he vertices u  and v  belong to  the same com ponent. As per the  hypothesis of Lemma 

6.17, let B i  -k . . .  -k B k  be the contig of the  com ponent containing u  and v, where 

u £ B i and v £ B j ,  for some 1 <  i < j  < k. We consider two further cases.

(a) B i and B j  are end blocks [/l(m ) =  b(u) and / r (v ) =  &(«)]■ In this case, X u =  

X v . By Lem m a 6.7 (um brella property), the  contig contains three blocks, namely, 

{«} -k X u -k {«}. The new com ponent will consist of a single block, formed by 

merging the  th ree blocks into one new block, as shown in Figure 6.15(b).

(b) A t least one of B t and B j  is not an end block [ f i{ u ) ^  b(u) or / r (v ) ^  b(v)]. In 

th is case, X u /  X v . If B i = {«} \nx(u) = u], F r {B3-  1) =  F R (B j)  [ /n ( / i (n ) )  =  

/ r {v )] and F c (B j„  1) =  B i [}l {Il (v )) =  6(w)], then  we move v from B j  into B j - 1. 

Similarly, if B j = {n} [nx(v) = v], FL {B i+1) =  F L(B t ) [fL (lR {u)) = f L (u)}
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and FR (B i+i) =  B 3 [ / i ? ( / f l ( u ) )  =  b(v)}: th en  we move u  from B l into B i+\. 

This moving of u and v is v irtua lly  identical to  one of the  cases discussed when 

considering the  deletion of a edge.

If u  was not moved, and B i  contains vertices o ther th a t u, then  we p a rtitio n  Bi 

into B i \ { u }  -< {u}. Similarly, if v  was no t moved, and B j  contains vertices o ther 

th a t v, then  we partition  B j  in to  {v} -< B j \  {u}.

E xactly  how th e  labelling is changed depends on w hether u  is moved into B i+1, 

v  is moved into B j^ i ,  B i =  {u}, and B j =  {u}. We consider each case, w ith 

respect to  u , separately, noting  th a t  th e  same considerations m ust also be given 

for v.

•  If u  is to  be moved into B i+ i, th en  the  straight enum eration changes as 

shown in Figure 6.15(c).

•  If u  was not moved into B l+\ and B i  =  {'«}, then  the  straigh t enum eration 

changes as shown in F igure 6.15(d).

•  If u  was not moved into B l+i and B i  contains vertices o ther th a n  u, th en  we 

m ust partition  B t in to  B i \  {u}  -< {?/} (in the  case of v, we would partition  

B j  into {u} -< B j \  {?;}). This scenario is depicted in Figure 6.15(e).

The correctness, a t least the  block level, of our algorithm  is due to  the  careful consider­

ation of the  exhaustive cases. Again, ensuring th a t  the  algorithm  does w hat we w ant it to 

do, in term s of pointers and vertex labels, is a m a tte r of verification.

6.2 Sum m ary

In th is chapter, we apply a d istribu ted  pointer technique, along w ith the circular doubly 

linked list technique seen in C hapters 4 and 5, in order to  develop error-detecting dynam ic 

adjacency labelling schemes for proper interval graphs. Our dynam ic scheme, which is 

largely based on a centralized scheme of Hell, Sham ir, and Sharan [27], uses O (logn) bit 

labels and handles all operations in O (n) tim e.
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Bg________________  Bj,________________

Ba add v 5a U {t?}

B, Bk ^  Si_________  Bk________

(a) F L {Bp) -< B i ,  FR ( B a ) =  B k , and  FL (B a ) =  B \

I  ^ Z H Z _  iiL
Ba add v Ba

Bi__________  Bk_______  B!

(b) FL (Bp) -< B \ ,  F R {B a ) =  B k , and  F L ( B a ) -< B i 

    Bg U {■»}
B„ add v

B\_________  Bk_________  B,_________  Bk

(c) Fl (B p ) =  B i ,  B k -< F R ( B a ), and  F R (Bp) =  B k

~ ~ ~ ~  W________

Ba add v__  Ba
Bi Bk B,

(d) FL {Bp) =  B i ,  B k -< FR ( B a ), and  B k -< F R ( B g )

B_____________ B u f f}
Bg Bg

add v   Ba
Bi_________________ Bk________________  B i_________________ Bk

(e) FR (Bp) -< B \  and B k -< F R ( B a ). N ote th a t  th e  block B  m ay be em pty

Figure 6.12: Adding the  vertex v, where v  is fully adjacent to  B i th rough B k (k  >  3), and 
Bp = F L (B k) -< Fr (B \)  — B a

4> A {'(.'} A fl_____________

add r / " — > I /?. \  A" {#}
 ̂ ' -   __

Figure 6.13: Adding the vertex v, where the  neighbours of c span more than  one component. 
In th is case, v is fully adjacent w ith B i+1, . . . ,  B k and B [ ,. . . , B j ,  and partia lly  adjacent 
w ith Bi
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Bi \  { u , v }
Bi______  delete uv-  M ___ M

(a) N[u] =  iV[i)]

Bi Bj+i Bi \  {u} Bj+1
------------------  —*-----  dele te  uv    '

g j - i  Bj  =  {?;}  »• -Bj-i U {u}Bj =  M

(b) JV[u] /  N[v], u  is m oved into B i - i ,  and  v  is not m oved in to  B j +1

L Sia  delelem S i^ k L  M
B j + 1

B < - i  Bj      B j - i  Bi \  M

(c) JV[u] ^  lV[n], u  is not moved in to  B i - 1, and B i  =  {u}

B A M
Bj  \  M

(u
d e le te  uv

Bi   B i + 1   {u}__________  H _

B j-1 ______  _______ _ B j.! g i+i

(d) JV[u] 5̂  IV[v], u  is not moved into B i - 1, and Bi =£ {u}

Figure 6.14: Deleting the edge uv
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$ -< $

Bk Q
add uv Bk \ M c; =  M

Bj -  M  _ {«}

(a) T he vertices u  and v  belong to  d istin c t com ponents. In th is case, u  €  B v  € B[,  B k ^  {u}, 
and  B j  =  {u}

X u = x v
— ——— —  , , a d d  uv

B j  =  { u } B j  =  {tt} ------------- ^  U {m, d}

(b) T h e  vertices u  and v belong to  th e  
sam e com ponent. In th is case, b o th  B j  
and  B j  are  end blocks

Bj'7-1

Bj+1 , , Bi+1U {u}
---------------------------------    a d d  u v  —— ----------------

Bi_______  Bj =  {u}  ~ Bj \  {u} Bj  =  {u}

(c) T he vertices u  and  v  belong to  th e  sam e com ponent. In th is  case, a t  least 
one of Bi  and Bj  is an  end block, u  is moved into B i+ i, and v is no t m oved into 
B j -1

B j - ^
B ^ _ B ,

B i+1
Bj =  M Si.

a d d  uv
Bj

Bj =  {u}

(d) T he vertices u  and v  belong to  th e  sam e com ponent. In th is case, a t  least one of Bi  and Bj  is an end 
block, u  is not moved into B j+ i , and  B i  =  {n}

Bii+l
B, +i

Bt Bj =  M
a d d  uv M

Bi \  M Bj  =  111}

(e) T he vertices u  and v  belong to  th e  sam e com ponent. In th is case, a t least one of Bi  and B3 is an 
end block, u  is not moved into B i+ i ,  and  B j  ^  {u}

Figure 6.15: Adding the edge uv
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Chapter 7 

Conclusion

In order to  increase the applicability of inform ative labelling schemes to  real world problems 

in which the underlying topology is constantly  changing, we have form ally defined the 

concept of a dynam ic inform ative labelling scheme. There have been earlier publications on 

th is  subject, bu t these works have been based exclusively on our in tu itive understanding 

of how sta tic  problem s are dynamized. W hile presenting th is  definition, we introduced the 

concept of error-detection, in  which the  relabeller recognizes when th e  modified graph is 

no longer a m em ber of the  family under consideration. A dditionally, we dem onstrated  the 

connection between error-detection and the  graph recognition problem , and  identified and 

discussed the  qualities th a t  make a good dynam ic scheme.

The la tte r half of our work was dedicated to  the  developm ent of error-detecting dynam ic 

adjacency labelling schemes for four classes of graphs. Common to  th e  development of 

dynam ic schemes for all these classes was the  use of a technique th a t  employed circular 

doubly linked lists to  encode inform ation about graph  substructures a t the  vertex level. 

Moreover, for one of the classes we developed a technique to  d istribu te  pointers. Each of 

the  dynam ic adjacency labelling schemes th a t we developed was fully dynam ic, th a t is, the 

allowed graph operations were the  addition or deletion of a vertex (along w ith  its incident 

edges), and the addition or deletion of an edge.

In the case of line graphs, our dynam ic scheme used O (logn) bit labels and updates 

could be perform ed in 0 (e )  tim e, where e was the  num ber of edges added to , or deleted 

from, the line graph. In developing th is dynam ic scheme, we in troduced a new concept 

known as partition  isomorphism, and developed theory  regarding the  types of line graphs 

th a t can be changed to  produce new line graphs.

In the cases of r-m inoes, defined by M etelsky and Tyshkevich [44] as the  class of graphs 

w ith  no vertex in more th an  r  m axim al cliques, our dynam ic scheme used O (r lo g n )  bit 

labels. Edge addition and deletion were handled in 0 ( r 2D ) tim e, vertex addition in 0(?’2e2) 

tim e, and vertex deletion in 0 ( r 2e) tim e, where D  was the  m axim um  degree of the vertices 

in the original graph and e was the num ber of edges added to, or deleted from, the original
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graph.

In the case of r-bics, a new class which we defined to  be the graphs w ith  no vertex  

in more than  r  m axim al bicliques, our dynam ic schemes used O (rTogn) b it labels. Edge 

addition and deletion, as well as vertex deletion, were handled in 0 ( r 2B ) tim e, and vertex  

addition in 0 ( r 2n B ) tim e, where B  was the  size of th e  largest biclique in the  original graph.

Finally, in the  case of proper interval graphs, our dynam ic scheme used O (logn) b it 

labels and handled all operations in O (n) tim e.

O ur work on dynam ic inform ative labelling schemes leaves several open questions.

1. W hat general m echanism s can be developed for creating dynam ic schemes from sta tic  

schemes (besides recreating the  graph  and running th e  m arker each tim e the graph  is 

changed)? T he work of K orm an, Peleg, and Rodeh [39], offers such a technique for th e  

dynamic weighted trees, when considering any function /  th a t satisfies th e  following 

properties.

•  For any two vertices u and v, f ( u ,  v) depends entirely  on the p a th  between them .

• For any three vertices u, v , and w , where w  is on the path  between u  and  v, 

f ( u ,v )  can be calculated in polynom ial tim e from f ( u ,w )  and f ( w ,v ) .

Such functions include routing, distance, separation  level, and flow. Instead  of fixing 

the graph class and  developing m echanism s for different functions, can we fix the  

function and develop m echanisms for different graph  classes?

2. Is there a dynam ic adjacency labelling scheme for proper interval graphs th a t  uses 

o(logn) b it labels. We know th a t there  are 2 °(n) proper interval graphs on n  vertices

[22], so there could be a dynam ic scheme w ith labels th a t  use 0 (1 ) bits. T he existence 

of such a dynam ic scheme would im ply the the  existence of an adjacency labelling 

scheme th a t uses 0 (1 )  b it labels.

3. Is there a dynam ic adjacency labelling scheme for proper interval graphs th a t  uses 

© (logn) bit labels, yet allows relabelling in o(n) tim e? U nfortunately, the dynam ic 

scheme presented for proper interval graphs in C hap ter 6 is ham pered by the fact th a t  

we must m aintain the stra igh t enum eration, which necessitates using as much as 0 (n )  

time for each graph operation.

4. Is there a dynam ic adjacency labelling scheme for interval graphs th a t uses O (logn) 

b it labels. Interval graphs, which are no t all th a t different from proper interval graphs, 

exhibit an adjacency labelling scheme th a t uses O (logn) bit labels [45], It makes sense 

th a t the dynam ic scheme for proper interval graphs presented in C hapter 6 m ight be 

extended to  give a dynam ic scheme for interval graphs.
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5. C an we devise dynam ic inform ative labelling schemes for functions o ther th an  adja­

cency, over and above the work th a t  has already been done on trees [37, 39]? The 

class of trees, although relevant to  m any applications, is typically  th e  easiest family 

on which to  consider a graph theoretical problem. Are we able to  devise such dynam ic 

schemes for classes of size )?
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A ppendix A

Definitions

The following are the  definitions of a  variety  of term s pertain ing to  graph  classes seen in

th is thesis; by no m eans is th is list of definitions m eant to  be self-contained, ra ther, the

definitions are in tended to  jog the  m em ory of the  reader. Unless otherw ise indicated, the

definitions are taken  from B randstad t, Le, and Spinrad [8].

H -free  A graph is H -free if it does no t contain H  as an  induced subgraph.

A lm o st tree(fc) A graph is an alm ost tree(k) if there  are at m ost k edges no t in  a spanning 

tree  of each biconnected component.

I F* i
A rb o r ic ity  [31] The arboricity of a graph  is th e  m axim um  value of taken over all

vertex induced subgraphs H .

A stero id a l tr ip le  A set of three vertices such th a t, for every pair of th e  th ree vertices, 

there  is a p a th  connecting the  pair th a t  avoids the  neighbourhood of th e  rem aining 

vertex.

A stra l tr ip le  A set of three vertices such th a t, for every pair of the  th ree  vertices, there 

is a pa th  connecting the  pair th a t  does not contain two consecutive vertices in the 

neighbourhood of the rem aining vertex.

A u to g ra p h  [45] A graph G  is an autograph  if there is a bisection /  from Vq  to  some set 

S  of n  positive integers such th a t  uv  G E g  <==> \ f ( u )  — f ( v )  | G S.

B a n d w id th  The bandw idth  of a graph G  is th e  m inim um  value for which G  is a subgraph 

of the k th power of P\vG\, the  p a th  on |Vg| vertices.

r -b ic  (defined in C hap ter 5) A graph w ith  no vertex in more than  r  m axim al bicliques.

B ic liq u e  A com plete b ipartite  subgraph.

B in a ry  t r e e  [57] A rooted tree in which no vertex  has more than  two children.

118

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



B o x ic ity  The boxicity of a graph is the  m inim um  value d for which it is th e  intersection 

graph of boxes in d-dimensional space.

C h ain  grap h  For simplicity, we define a graph to  be a chain graph  if it is a P$-free con­

nected b ip a rtite  graph  [53]; a m ore involved definition can be found in [8]

C h ord al b ip a r tite  g rap h  A b ipartite  graph  which contains no induced cycles of length 

greater th an  four.

C h ord al graph  A graph  is chordal if it contains no induced cycles of length g reater than  

three.

C ircle  g rap h  A graph  is a circle graph if it is th e  intersection graph of some family of 

chords in a circle.

C ircu lar arc grap h  A graph is a circular arc graph  if it is the intersection graph  of some 

family of arcs of a circle.

C law  A claw is a

C liq u ew id th  [7] Let [fc] denote the  set { 1 , . . . ,  k}  and  let l(v) denote the  label of a vertex 

v. A cliquewidth-fc graph is defined recursively as follows.

•  Any graph G  w ith  Vq =  {^} and  l(v) €  [k] is a cliquewidth-fc graph.

•  Let G i and G 2 be cliquewidth-fc graphs, and let % and j  belong to  [fc]. The 

following are also cliquewidth-fc graphs.

— The disjoint union of G \ and  G-2 -

— The graph formed from G \ by switching the  labels of all vertices w ith label 

i to  label j .

— The graph formed from G \ by adding all edges V1V2 , where /(iq ) =  i and 

l { v  2 )  =  j -

T he cliquewidth of a graph is the  m inim um  value of fc for which it is a cliquewidth-fc 

graph.

C o b ip a r tite  graph  A graph is cobipartite  if its complement is b ipartite .

C og ra p h  For simplicity, we define a graph  to  be a cograph if it can be reduced to  an 

edgeless graph by repeatedly tak ing  com plem ents w ithin com ponents [43]; a more 

involved definition can be found in [8].

C o m p a ra b ility  graph  A graph is a com parability  graph if th e  edges have a transitive 

orientation.
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C o n ta in m en t c lass A class Q of graphs is an containm ent class if there  is a  set S  of sets 

such th a t every graph G  in Q is th e  containm ent graph of a  family S '  of sets from S  

(a family allows the  sets to  occur w ith  repetition).

C o n ta in m en t graph For a  given fam ily of sets S , the  containm ent graph  of th is  family is 

th e  graph w ith vertex  set S  such th a t  two vertices are adjacent if and only if the set 

corresponding to  one vertex  is a subset of the  other.

C o n v ex  b ip a r tite  [45] A b ip artite  graph  w ith  b ipartition  (X , Y) is convex if, w ithou t loss 

of generality, there is a to ta l order on the  vertices of X  such th a t  if y  in Y  is adjacent 

to  X\ and X2 in X ,  then  i t  is also adjacent to  all the  vertices betw een X\ and x-i in the 

to ta l ordering.

^ -d ecom p osab le  [31] A graph  is fc-decomposable if, for all subgraphs H  w ith  m ore than  

k  vertices, there exists k  vertices whose deletion causes H  to  be disconnected w ith  no 

com ponent containing m ore th a n  vertices.

D isk  in ter sec tio n  grap h  [53] A graph  is a disk intersection graph if it  is the  intersection 

graph of some family of disks in  the  plane.

D ista n c e  h ered ita ry  A graph is distance hered itary  if it is connected and  all th e  induced 

paths have the same length.

fc-dot p ro d u ct graph A graph G  is a  fc-dot p roduct graph if each vertex v  can be assigned 

a  vector v  of length k  such th a t  V1V2 €  E q  <==> v\ -v 2 >  1, where • is the  standard  

inner product of two vectors.

E P T  grap h  A graph is an E P T  graph  if it is the  intersection graph  of nontriv ial simple 

paths in a tree, where the  intersection of paths is considered using edges.

F orest A graph with no cycles.

G en u s (o f  a  graph) The genus of a graph  is the sm allest genus of a  surface in which the 

graph has a crossing-free embedding.

H ered ita ry  p ro p erty  A graph property  P  is hereditary if, for any graph  G  satisfying P, 

every induced subgraph of G  satisfies P.

H ered ita ry  degree-/,: grap h  A graph  is hereditary  degree-A' if each vertex  induced sub­

graph has a vertex of degree a t m ost k.

H y p e r c u b e  [9] The fc-dimensional hypercube is th e  graph on 2k vertices, each labelled 

w ith  a distinct binary string of length k, where two vertices are adjacent if and only 

if their corresponding strings differ in exactly one position.
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H y p erg ra p h  A hypergraph H  is a pair of sets (V, £), where £  is a fam ily of subsets of V . 

T he rank of H  is the  value m a x{je|}.

In tersec tio n  c la ss A class Q of graphs is an intersection class if there  is a set S  of sets 

such th a t every graph  G  in Q is the intersection graph of a fam ily S '  of sets from S  

(a family allows the  sets to  occur w ith repetition).

In tersec tio n  grap h  For a  given family of sets S ,  the  intersection graph of th is  family is 

the  graph w ith vertex set S  such th a t two vertices are ad jacent if and  only if the 

intersection of the ir corresponding sets is nonempty.

In terva l grap h  A graph  is an  interval graph if it is the  in tersection graph of some family 

of intervals on the  real line.

fc-interval grap h  A graph  is a fc-interval graph if it is the intersection graph of some family 

of sets of fc intervals on the  real line.

In terva l nu m b er The interval num ber of a graph is the sm allest num ber k for which it is 

a fc-interval graph.

Line grap h  (o f  a h yp erg ra p h ) Given a hypergraph H  = (V ,£ ),  its line graph is the 

graph L (H ) =  (£, E L^ )  for which ee' S E L^  if and only if e ^  e' and e fl e' /  0.

Line grap h  (o f  a s im p le  graph) Given a graph G  =  (V g ,E g ), its line graph is the  graph 

L(G ) =  (E g , E L(G)) for which {u, u} s  -El(G) if and only if u  and  v are adjacent edges 

in G.

M esh  As intended by Peleg [47], a mesh is the Cartesian product of two paths.

r-m in o  (defined in C hap ter 5) A graph w ith no vertex in more th a n  r m axim al cliques.

O utdegree-fc A graph is an outdegree-fc graph if the  edges can be oriented such th a t no 

vertex has outdegree greater th an  fc.

O u terp lan ar A graph is ou terp lanar if it has a crossing-free em bedding in the  plane such 

th a t all vertices are on the same face.

fc-outerplanar A graph is 1-outerplanar if it is outerplanar. For fc >  1, a graph is fc- 

ou terp lanar provided it has a planar em bedding such th a t  if all the  vertices on the 

exterior face are deleted, the  connected com ponents of the  rem aining graph are all 

(fc — l)-ou terp lanar.

P a rtia l ord er A binary relation is a partial order on a set if it reflexive, transitive, and 

antisym m etric.
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P e r m u ta tio n  grap h  A graph is a permutation graph if it is the intersection graph of some 

family of lines that intersect two parallel lines.

P la n a r  A graph is planar if it has a crossing-free em bedding in the  plane.

P o se t  A poset P  is a pair (V, A) for which X is a partia l order on V . A poset is often 

represented by an  acyclic digraph.

An ordering ( t q , . . .  ,v n) of V  is a linear extension of P  if, for all i , j  e  { 1 , . . . ,  n},

Vi d  Vj => i < j .  A  family of posets Uf=0Pi, where Pi =  realizes P  if

va ^  Vb => va ■<i Vb, for all i G { 1 , . . . ,  k } . T he dim ension of P  is the  sm allest num ber 

of linear extensions of P  th a t  realize P .

P ro p er  in terva l grap h  A graph is a proper in terval graph if it is th e  intersection graph 

of some family of intervals th a t  do not contain one another.

R ecu rsiv e  r(n )-sep ara tor  [24] A class of graphs Q has a  recursive r(n )-sep ara to r if, for 

every G  in Q, there  exists a subset S  of vertices such th a t  |Sj <  r(|V<3 |), and every 

connected com ponent G' of G \  S  belongs to  Q and has a t m ost vertices.

R o o te d  tree  A tree which has a  single vertex denoted as root. Typically, a roo ted  tree is

considered as a directed graph, where edges are directed away from the  root.

S eries-p ara lle l A m ultigraph G  is series-parallel if i t  has an orientation for which, for every 

pair of edges, G  does not contain a cycle th a t  m eets the  edges in the same direction 

and another th a t  m eets th e  edges in opposite directions.

fc-sparse A graph G  is fc-sparse if \ E g \  <  fc|Vc|-

S p lit A graph is split if there is a partition  of its vertices into a clique and an independent 

set.

T h resh o ld  g rap h  A graph is a threshold graph  if it is a threshold tolerance graph w ith a 

constant tolerance function.

T h resh o ld  to lera n ce  grap h  A graph G  is a threshold tolerance graph if there is a weight 

function w : Vq — > R + and a tolerance function t  : Vq  — > R + such th a t uv € 

E g  <s=̂ > w u + wv > m in(iu , t v ).

T orus As intended by Peleg [47], a torus is the  C artesian  product of two cycles.

T ota l graph Given a graph G, its to ta l graph T (G )  is defined by Vt(G) =  Vg U E q  and 

u ,v  G E g  if and only u and v  are adjacent in G  or u  and v  are incident in G.
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T ran sitive  c lo su re  o f  a  ro o te d  tree  Given a rooted tree T , its transitive  closure is the 

graph G  defined by Vq = V t  and uv  G E q  if and only if there  is a p a th  from u to  v 

in T , th a t  does not pass th rough the  root.

T reew id th  The treew id th  of a graph G  is the  m inim um  value of w(G') — 1 taken over all 

triangulations G' of G, where to(H) denotes the  size of the largest clique.

T riangle A cycle on th ree  vertices.

U n iform ly  fc-sparse [53] A graph  G  is said to  be uniformly fc-sparse if no subgraph H  has

m ore th a n  t i M h s l M  e d g e ,
log |Vff|

U n it  in terva l grap h  See proper interval graph.

V ertex  in d u ced  u n iv ersa l g rap h  A graph G  is a vertex induced universal graph of a set 

of graphs S  if all m em bers of S  are vertex induced subgraphs of G.

W ell (a , g)-sep a ra ted  Given th e  com plexity of th is definition, the  reader is advised to  

consult K atz, K atz, and  Peleg [35].
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Appendix B

Com putation M odels

T he m ajority  of algorithm s found in th is thesis (m arkers, decoders, and  relabellers) employ 

a word-level RAM  (random  access machine; for m ore on th is topic see, for example, Aho, 

H opcroft, and IJllm an [2]) com putational model. P resen ted  below is a sum m ary of th ree well 

known com putation  models, namely, unit-cost RAM , log-cost RAM , and  word-level RAM 

[2, 16, 29], followed by a justification of why th e  la tte r  was chosen as th e  com putational 

model for th is thesis.

U n it-c o s t  R A M  Words can contain an unlim ited num ber of bits, as such, any size in­

pu t can be represented by a single word. Each operation (addition, m ultiplication, 

comparison, m em ory addressing, bitwise and, bitwise or, e tcetera) costs one un it of 

time.

L o g -co st R A M  W ords can contain an unlim ited num ber of bits, as such, any size input 

can be represented by a  single word. Unlike unit-cost RAM, in which each operation 

costs one un it of tim e, the  cost of each operation  is proportional to  th e  num ber of bits 

in the  operands; for example, the num ber n  requires log n  b its  to  store, so it requires 

0 ( lo g n )  tim e to  calculate n 2.

W ord -lev e l R A M  Algorithm s th a t receive A b it inpu ts use 0(A ) bit words; for example, 

an algorithm  w ith O (logn) b it inputs uses O (logn) b it words. T he cost of each 

operation is proportional to  the  num ber of words used by the  operands.

The unit-cost RAM model is simple to  understand  and results in straightforw ard cal­

culations of the running tim e of algorithms; however, th is  model m isrepresents the actual 

tim e required to  perform  certain operations, such as m ultiplication, on large operands. In 

contrast, the  log-cost RAM  model accurately represents the perform ance of a machine on 

large input; however, th is model leads to  cum bersom e calculations of the  running tim e, as 

basic operations like m em ory addressing/pointer referencing cannot be performed in con­

stan t time. B oth  the unit-cost RAM and log-cost RAM  models make m emory too potent,

124

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



as an entire d a ta  struc tu re  can fit in one word.

Word-level RAM  offers a tradeoff betw een unit-cost RAM and log-cost RAM  in th a t 

the  calculation of running tim es of algorithm s rem ains straightforw ard, while the  size of 

words does not get unreasonably large. C urren t publications on d a ta  s truc tu res often use a 

word-level RAM com putational model; in particu lar, the  m ajority  of papers on inform ative 

labelling schemes calculate running tim es using this model, even if no m ention of com puta­

tion  models appears in the  paper. A rticles on inform ative labelling schemes th a t explicitly 

discuss the use of word-level RAM  com putation  m odels include A biteboul, K aplan, and 

Milo [1], A lstrup, Gavoille, K aplan, and R auhe [5], A lstrup and R auhe [6], Gavoille and 

Pau l [20], Gavoille and Peleg [23], Gavoille, K atz, K atz , Paul, and Peleg [19], and K aplan 

and Milo [32].
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Appendix C

Pseudocode

The following is pseudocode th a t  can be used to  im plem ent m any of th e  high level algorithm s 

presented in th is thesis. In  presenting the  pseudocode, we try  to  m ain ta in  the  convention 

th a t stacks are represented using overline notation; for example, S  would be a stack, whereas 

S  would be a set.

C .l  Line graphs

C . l . l  D e le tin g  a vertex

Recall the  algorithm  D e l e t e V e r t e x , found in Figure 4.5, which is used to  relabel a line 

graph when a vertex  is deleted. The following pseudocode can be used to  implement 

D e l e t e V e r t e x .

D e l e t e V e r t e x ( L ( G ) ,  v )

Input: An adjacency labelling of a line graph L (G )  ( th a t is, the labels thereof) created using 
our dynam ic scheme, and  a  vertex v  in Vl(G)-

O utput: An adjacency labeling of a line graph L (G ' )  (again, th e  labels thereof) formed by 
deleting v  from L (G ) .

1 f o r  i <— 0 t o  1 d o
2 i f  v.rnii  =  1 t h e n
3  F R E E B A S E ( u . e p l )

4 e l s e  Z~i <— G e t I n c i d e n t N e i g h b o r s ( u , i )
5  D E C R E M E N T N N ( £ j )

6 R e m o v e F r o m L i s t (u , i )
7 F r e e L i n e (v )

1: For each i in {0,1}, we m ust determ ine the effect th a t th e  deletion of v has on the 

endpoint v.epi in the  base.

2,3: If v.epi  is incident only w ith v,  then  it will become an isolated vertex once v  is deleted. 

The function F r e e B a s e  frees the identifier of v.epi  for fu ture use.

1 2 6
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4-6: If v.epi is incident w ith edges o ther th an  v, th en  we m ust remove v  from the  circular 

doubly linked list about v.epi and upd a te  th e  label of each edge in th is circular doubly 

linked list.

7: Once all the vertex labels have been changed to  reflect the new graph, we delete v using 

F reeL in e , which frees its prelabel for future use.

G E T lN C ID E N T N E IG H B O U R S (t, tend)
Inpu t: A pair (t , t e n d ), where t is and edge in the  base and ten d  is a value, either 0 or 1, 
used to  denote and endpoint of t.

O utpu t: A stack S  consisting of all pairs of th e  form (s, send), where s.epaen<i =  t.ep tend-

1 S  * -  NIL
2 s <— t
3 send *— ten d
4 P u s h  (S ,( s ,s e n d ) )
5 w h ile  s .n x sen(i ^  t do
6 s < s .n x seri(i
7 send  ^ - E n d (s , t.eptend)
8 P u s h (S', (s , send))
9 r e t u r n  S

D e c r e m e n t N N  (S )

Input: A stack S  of pairs of the form (s, send) w here s  is an edge in the base and send  is a 
value, either 0 or 1, used to  denote an endpoint of s.

O utpu t: For each pair (s, send) in S , D e c r e m e n t N N  decrem ents the  value of s .n n send by 
one.

1 w h i l e  S  ^  N i l  d o
2 (s ,s e n d ) <— P o p (5)
3 s .nnserL(i < s ,nnsen(i 1

REM O V EFRO M LlST(y, yend)
Input: A pair (y ,y e n d ), where y is an edge in th e  base graph, and yend  is a value, either 0 
or 1, which denotes an endpoint of y.
O utput: R emoveF romL ist removes y from th e  circular doubly linked list about y.epyenci.

1 w  <- y.prevyend
2  z  < -  y.nxyend
3 w end *— E n d (u;, y.epyend)
4 zend  <— E n d ( z , y.epyend)
5 w .n xwend * z
6 z.p revzend *- w

E nd (t,w )
Input: A pair (t ,w ), where t is an edge of the  base th a t  has w  as one of its endpoints. 
O utpu t: E nd re tu rns the  value of i for which t.epi = w.

1 i f  t.epo = w  t h e n
2 r e t u r n  0
3 e l s e  r e t u r n  1
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C .1.2 A dding a v ertex

Recall the algorithm  A d d V e r t e x , found in F igure 4.6, which is used to  relabel a line graph 

when a vertex is added. The following pseudocode can be used to  im plem ent A d d V e r t e x .

A d d V e r t e x (L (G ) , X )
Input: An adjacency labelling of a line graph L (G )  created using our dynam ic scheme, and 
a subset X  of E l(g)-

O utput: Let L (G ')  be the  graph formed by adding a new vertex v to  L (G ), where v is 
adjacent to  exactly  those vertices in X .  P roviding L{G ') is a line graph, the  o u tp u t is an 
adjacency labelling of L (G r). If L (G ')  is no t a line graph, the  ou tp u t indicates as such.

1 v <—  G e t I d e n t i f i e r L i n e ( )
2 s w i t c h
3 c a s e  |X | = 0 :
4 N o N e i g h b o u r s 1i !,0)
5 N o N e i g h b o u r s (v , 1)
6 c a s e  |A j  >  1:
7 (valido , vpto, va lid i , v p t i , good) <— F i n d V a l id (X )
8 i f  good =  1 t h e n
9 E s t a b l i s h E d g e I n B a s e (  v a lid o , vpto, valid j , vpt}, v)

10 e l s e  e r r o r  th is is no longer a line graph

1: As the new vertex does not yet have an  identifier, the  function G e t I d e n t i f i e r L in e  

is used to  assign one. Recall th a t  in Section 3.1.3 we assumed th a t  such an identifier 

could be ob tained in 0 (1 ) tim e.

3-5: The new vertex  is isolated, so a new isolated edge m ust be added to  th e  core.

6-10: The new vertex  has a t least one neighbour, so we m ust try  to  find a  valid set. If a 

valid set is found, th en  we use the valid set to  represent the  new vertex. O therwise, if 

no valid set is found, the  new graph is no t a line graph.

N o N e i g h b o u r s ( L  te n d )

Input: A pair (f ,ten d ), where t is an edge in the  base and tend  is a value, either 0 or 1, 
used to  denote and endpoint of t.
O utput: NoNElGHBOURS establishes t  as the  only edge of the  base th a t is incident w ith 
t-&Ptend‘

1 t . ep tend  G e t I d e n t i f i e r B a s e Q
2 t .n n tend *— 1
3 t.UXtend * t
4 t.prevtend <— t

F i n d V a l i d (X )

Input: A set X  of edges in the base.
O utput: The five-tuple (ed g eo ,en d o ,ed g e i,en d i,va l)  w ith  values as follows.
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• If X  has a valid set then  v a l  will have value 1, otherwise it will have value 0.

• If X  has a valid set of size two, then  e d g e o - e p end„ and e d ge j  .epend, are th e  vertices in 
the  valid set. If the  valid set is of size one, th en  the  valid set consists of the  vertex 
e d g e o . e p e nd0 , where e d ge j  =  e n d j  =  NIL.

1 edgeo <— som e m em ber of X
2 endo  <— 0
3 t r ychangedo  <— 0
4 w h i l e  endo  <  1 d o
5 ( X o , f a i l )  <— E l i m i n a t e ( X ,  edgeo, en do )
6 i f  f a i l  =  0  t h e n
7 i f  Xo = 0 t h e n
8 r e t u r n  (edgeo, en do ,  NIL, NIL, 1)
9 e l s e  edgej <— som e m em ber of Xo

10 e n d j  <— 0
11 t r y  chang ed  j <— 0
12 w h i l e  e n d j  <  1 d o
13 (X i, f a i l )  <— E l i m i n a t e ( X o ,  edge j , e n d j )
14 i f  f a i l  =  0 and  X i  =  0 t h e n
15 r e t u r n  (edgeo  j e n d o , edg e  i , e n d j , 1)
16 e l s e  e n d j  <— e n d j  + 1
17 i f  t r y  chan ged  j =  0  and e n d j  =  2 t h e n
18 (C, c h a n g e d )  * -  CHANGEBASE(ed^e1)
19 t r y  changed  j  *— 1
20 i f  c h a n g e d  =  1 t h e n
21 i f  edgeo  £  C  t h e n
22 (C , c h a n g e d )  <— CHANGEBASE(ed(/ei)
23 e l s e  e n d j  <— 0
24 e n d 0 <— endo  + 1
25 i f  endo =  2 t h e n
26 i f  tr ychangedo  =  1 t h e n
27 r e t u r n  ( n i l ,  NIL, NIL, NIL, 0)
28 e l s e  (C, c h a n g e d )  <— CHANGEBASE(edgeo)
29 trychangedo  1
30 i f  c h a n g e d  =  1 t h e n
31 endo  0

1: If X  has a valid set then  every m em ber of X  will have exactly one endpoin t in the  valid 

set. As such, we choose a m em ber of X , nam ely edg eo ,  so as to  include one of its 

endpoints in the valid set.

2: We first try  to  include e d g e o . e p o ,  in the  valid set. If we later determ ine th a t  edgeo- epo  

cannot be included in any valid set, then  we will try  to  include e d g e o - e p i  instead. The 

value of e n d o  indicates w hether we are considering edgeo -epo  o r  edg eo  - e p i -

3: In  C hap ter 4 we discussed how a com ponent of a line graph can have two bases which 

are partition  not-isomorphic; in particular, for a given set of vertices, one of the  bases 

m ay yield a valid set while the  o ther may not. It may be necessary to  change the 

base of a com ponent in order to  find a valid set. The variable t r y c h a n g e d o  is used to 

indicate if we have a ttem pted  to  change the base of the com ponent containing edgeo-  

If t r y c h a n g e d o  =  1, then we have previously a ttem pted  to  change th e  base; otherwise, 

t r y c h a n g e d o  = 0 and we have not tried  to  change the base. Recall th a t, when we say

129

R ep ro d u ced  with p erm issio n  o f th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



th a t  a base is changed, we u ltim ate ly  m ean th a t the  labelling of the  line graph has 

been changed so as to  reflect the  new base.

4-31: As previously mentioned, we continue to  look for a valid set, providing there  is a t 

least one of edgeo.epo and edgeo -ePi which we have not tried  to  include in a valid set.

5: L etting  X 0 be the  subset of edges in X  th a t are not incident w ith edgeo  . e p end0 , we 

observe th a t if there  is another vertex  in the  valid set, then  it m ust come from an edge 

in  Xq. In order to  determ ine Xo, F i n d  V a l i d  uses the  function E l i m i n a t e .  If the  

circular doubly liked list about edgeo  ■ e p end0 contains an edge which is no t in X  then  

E l i m i n a t e  will set f a i l  to  1; otherw ise, it  will set f a i l  to  0 and re tu rn  Xo.

6-23: If f a i l  =  0, then  the circular doubly liked list about edgeo . e p end0 did no t contain any 

edges not in X .  As such, we m ay continue try ing  to  place e d g e o . e p end0 in the  valid 

set.

7,8: Given th a t  we have not yet found any reason to  exclude e d g e o . e p end0 from th e  valid 

set, if Xq =  0 then  all of th e  edges in X  are incident w ith  edgeo  . e p end0 . Therefore, 

{ e d g e o - e p e n d g }  is a  valid set.

9-23: If Xo  /  0, then  there are m em bers of X  which are not incident w ith  edgeo.epend0 so 

we m ust include a second vertex  in  th e  valid set.

9-11: As we did w ith  edgeo,  we choose an  edge e d g e j  from X 0 and try  to  include one of 

its  endpoints in the valid set. Like e d g eo ,  e d g e j  has corresponding variables e n d j  and 

t r y c h a n g e d j .

12-23: As we did w ith edgeo, we continue to  look for a valid set, providing there  is a t least 

one of edgej.epo  and edgej.epj w hich we have not tried  to  include in the  valid set. 

We first check if {edgeo-epend0, edgej .epo} is a valid set, if it is not th en  we will try  

{edge0■ epend0, edge j.ep j).

13: L e ttin g  X j  be th e  subse t o f edges in  X q  th a t  are n o t inc iden t w ith  e d g e j  , e p end , , we 

observe th a t  { e d g e o . e p end0 , e d g e j . e p end , } is a valid set if an d  only  if X \  =  0 a n d  th e  

c ircu lar doub ly  linked list a t  e d g e j  . e p end, does n o t co n ta in  any  edges w hich  are n o t in  

X q .  To d eterm ine  X i ,  F in d V a l id  uses E l i m i n a t e  ju s t  as it  d id  to  d e te rm in e  Xo.

14-23: If f a i l  =  0 and X i =  0 th en  { e d g e o . e p end0 , e dge j  . e p end , } is a valid set. Otherwise, 

{ e d g e o . e p end0 , e dgej  . e p ^ d ,  } is no t a valid set, so we will need to  try  another endpoint 

of e d g e j  or perhaps another base for the  com ponent containing e d g e j .

17-23: If e n d j  =  2, then we have already tried  to  include e d g e j . e p j  in the  valid set so 

we m ust now try  changing the  base of the  com ponent containing e d g e j . This is only 

allowed if the base has not been changed, th a t is, if t r y c h a n g e d j  =  0.
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18: To change the  base of th e  com ponent containing edgej, F in d V a l id  relies on a function 

called C h a n g e B a s e . We let C  be the set of vertices in the  sam e com ponent as edgej, 

where changed  is a variable used to  represent w hether or no t th e  base was changed.

19: We set trychangedj to  1 in order to  indicate th a t  an  a ttem p t was m ade to  change 

the base of the  com ponent containing edgej. The reader should note th e  distinction 

between changed  and  trychangedj try changed merely indicates th a t  an  a ttem p t was 

made to  change the  base, whereas changed  indicates if a  change was actually  made.

20-23: If the base of th e  com ponent containing edgej was changed, there  are two possibili­

ties; either C  contains edgeo or it does not. If it does, th en  we change th e  base of the 

com ponent containing edgej back to  its original s ta te  as we do not wish to  change the 

base of the com ponent containing edgeo a t th is tim e; if it does no t, then  we set endj 

to  0 and repeat th e  process of try ing  to  include an endpoint of edgej in  the valid set 

along w ith edge0 .ependo.

24-31: If line 24 is reached, then  either th e  call of E l im in a t e  in line 6 found an  edge in  the 

circular doubly linked list a t edgeo.epend0 which was not in X  or, in choosing an edge 

edgej from Xo, neither endpoint of edgej could be pu t in a valid set w ith  edgeo-epend0 

regardless of the  base used to  represent the com ponent containing edgej. E ither way, 

edgeo-epend0 cannot belong to  a valid set using the  present base. This segment of the  

algorithm  is sim ilar to  th a t  involving edgej in lines 17 though 25.

E l im in a t e (T, t, tend)
Input: A triple (T ,t ,te n d ) ,  where T  is a  set of edges in the  base, t is a m em ber of T , and 
tend  is a value, either 0 or 1, used to  denote an endpoint of t.
O utput: Let £  denote the  set of edges in the  circular linked list abou t t.eptend- EL IM IN A TE  
ou tpu ts a pair (T ',v a l ), where, if C <2 T , then  val has value 1. O therwise, if C C T , then 
val has value 0, and T ' — T \ C .

1 w < r ~ t

2 w end  <— tend
3 T ^ ~ T \ { w }
4 w h ile  w .n x wend ^  t  d o
5 w  < w .nxwerid
6 w end  <— E n d (u>, t.eptend)
7 if  w £ T  t h e n
8 T ^ T \ { w }
9 e lse  r e t u r n  (T, 1)

10 r e t u r n  (T, 0)

C h a n g e B a s e (<2)

Input: An edge a of the  base graph.
O utput: Let C  be the com ponent of the  base containing a. If C  does no t have another p arti­
tion non-isomorphic base, C h a n g e B a s e  outpu ts the  pair (comp, changed), where changed  
has value 0. Otherwise, if C  does have another partition  non-isom orphic base, C h a n g e - 
B a se  changes the base of C , and ou tp u ts  the pair (comp, changed), where comp  is the  set 
of vertices in C  and changed  has value 0.
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1 changed <— 0
2 s w i tc h
3 c a s e  a.nno =  2 an d  a.nn i =  2:
4 b <— a.nap
5 eb <— 1 — E n d (&, a.epo)
6 c «— a.nxi
7 ec <— 1 — E n d (c, a . e p j )
8 if  b.epeh = c.epec t h e n
9 i f  b.nnef, =  2 t h e n

10 S w iT C H K 3 T o K 1 3 (a , b, c)
11 comp <— {a, b, c}
12 changed <— 1
13 e l s e i f  b.nneb =  3 t h e n
14 i f  c =  b.nxeb t h e n
15 d <— c.nxec
16 e l s e  d <— b.nxej
17 ed <— 1 — END(d, b.epeb)
18 i f  d .n n ed =  1 t h e n
19 Sw iTC H (a, d)
20 com p <— {a, b, c, d}
21 changed <— 1
22 c a s e  (a.nno  =  3 a n d  a.nn i =  1) or ( a.nno — 1 an d  a .nn i — 3):
23 i f  a.nno =  3 t h e n
24 ea =  0
25 e ls e  ea =  1
26 b 4— a.nxea
27 eb <— 1 — E n d (6, a.epea)
28 c <— b.nxj.eb
29 ec <— 1 — E n d (c, a.epea)
30 i f  b.nnet, — 1 an d  c .nnec =  1 t h e n
31 Sw it c h K 1 3 T o K 3 ( o , 6, c)
32 comp <— {a, 6, c}
33 changed *— 1
34 e l s e i f  b.nnet, =  2 an d  c .n n ec =  2 t h e n
35 d <— b.nxeb
36 ed <— 1 — END(d, b.epeb)
37 i f  d.eped =  c.epec t h e n
38 Sw iTC H (a, d)
39 comp <— {a, b, c, d}
40 changed <— 1
41 c a s e  (a.nno =  3 an d  a .nn i =  2) or ( a.nno =  2 an d  a .nn i =  3):
42 i f  a.nno — 3 t h e n
43 ea =  0
44 e ls e  ea =  1
45 b <— a.nxea
46 ed «— 1 — E n d (6, a.epea)
47 c <— b .n x i . eb
48 ec «— 1 — E n d (c, a.epea)
49 /  «- a .n x j.ea
50 e /  1 — E n d ( / ,  a.epi_ea)
51 i f  f .e p ef  = b.epeb t h e n
52 if  b.nneb =  2 an d  c.nnec =  1 t h e n
53 S w it c h  ( c , / )
54 comp <r-{a ,b ,c , f }
55 changed <— 1
56 e l s e i f  b.nneb =  3 an d  c .nnec =  2 t h e n
57 d =  c.nxec
58 ed END(d, c.epec)
59 if  d.epi_ed = b.epeb t h e n
60 S w it c h (c, / )
61 comp <— {a, b, c, d, / }
62 changed <— 1
63 e l s e i f  f .e p ef  = c.epec t h e n
64 if  b.nneb =  1 and c .nnec =  2 t h e n
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65 S w i t c h (&,/ )
66 comp <— {a, 6, c, /}
67  changed <— 1
68 e l s e i f  b .nneb =  2 a n d  c .n n ec =  3 t h e n
69 d = b.nxe\,
70  ed <— 1 — E N D (d, b.epeb)
71 i f  d.eped =  c.epec t h e n
72 S w i t c h ( 6 , / )
73 comp <— {a, b, c, d, / }
74 changed 1
75 c a s e  a.nno =  3 a n d  a .nn i =  3:
76 b <— a .n x o
77 eft <— 1 — E n d (6, a.epo)
78 c <— b . n x i . eb
79  ec <— 1 — E n d (c, a.epo)
80  /  <— a.nxi
81 e /  <— 1 — E n d ( / ,  a .ep i)
82 h <- f . n x u ef
83 e h  <— 1 — E n d (/i , a .e p i)
84  i f  f .e p ef  = b.epeb a n d  h .epeh = c.epec t h e n
85 i f  b.nneb — 2 a n d  c .n n ec =  2 t h e n
86 S w i t c h ( c, / )
87  comp <— {a, 6, c, / ,  /i}
88 changed <— 1
89 e l s e i f  b .nneb =  3 a n d  c .n n ec =  3 t h e n
90 i f  /  =  b.nxeb t h e n
91 d <— f .n x ef
92 e l s e  d <— b.nxeb
93 ed <— 1 — E N D (d, b.epeb)
94 i f  d.eped = c.epec t h e n
95 S w i t c h ( c, / )
96 com p <— {a, b, c , d , / ,  ft}
97  changed <— 1
98 e l s e i f  f .e p ef  =  c.epec a n d  h .epeb = b.epeb t h e n
99  i f  b.nneb =  2 and c .n n ec =  2 t h e n

100 S w i t c h ( c, ft)
101 comp <— (a , o, c, / ,  ft}
102 changed <— 1
103 e l s e i f  b.nneb = 3 a n d  c .nnec =  3 t h e n
104 i f  ft =  b.nxeb t h e n
105 d <— h .nxeh
106 e l s e  d <— b.nxeb
107 ed <— 1 — E N D (d, b.epeb)
108 i f  d.eped = c.epec t h e n
109 S w i t c h ( c, ft)
110 comp <— {a, b , c , d , f , h }
111 changed <— 1
112 r e t u r n  (comp, changed)

1: As m entioned, the  variable changed is used to  indicate if the  base of C  has been changed. 

T he default value of changed is 0 and will be set to  1 when the  base of C  is changed.

2-112: In determ ining if the  base of C  can be changed, we consider a series of cases based 

upon the degrees of the  endpoints of a.

3-21: In this case, each endpoint of a is incident w ith exactly one other edge besides a.

4-7: We let b and c be the edges, o ther th an  a. incident w ith a.epo and a .e p i , respectively. 

T he endpoints b.epeb and c.epec are set to  be the endpoints of b and c, respectively, 

which are furthest from a.
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8-21: E ither b.epeb and c.epec are the  same vertex or they  are not. If they  are not, then 

the  condition a.nno  =  a.nni  =  2 guarantees th a t  the base of C  has an  induced P4 or 

C 4 . Since none of the  bases of the  graphs found in Theorem  4.2 ( th a t is, the  graphs 

in Figure 4.1(b)) has an induced P4 or C 4 , the  base of C  cannot be changed.

9-12: If b.nneb — 2, then  b.epeh is incident only w ith  b and c. Thereby, th e  base of C  is 

th e  K 3 shown in Figure C .l(a )  so we use the function S w i t c h K 3 T o K 1 3  to  change 

it to  the K 13 shown in Figure C .l(b ).

(a ) (b)

Figure C .l: Two partition  non-isom orphic bases of C

13-21: If b.nneb =  3, then  b.epeb is incident w ith b, c, and another vertex  which we will 

call d. Observe th a t  if b.nneb > 3, then  the  base of C  cannot be changed as none of 

th e  graphs found in in Figure 4.1(b) has a vertex of degree greater th a n  three.

15-17: We ensure th a t d is distinct from b and c, th en  set d.epecl to  be the  endpoint of d 

th a t  is fu rthest from b.

18-21: If d .nned =  1, then  the  base of C  is as shown in Figure C .2(a). Using the  function 

S w i t c h , we change the base of C  to  the  graph depicted in Figure C.2(b). Furtherm ore, 

observe th a t  if d .nned > 1, then  the conditions a.nno =  2 and b.nneb =  3 guarantee 

th a t the base of C  has an induced P 4 which prevents the  base from being changed.

(a) (b)

Figure C .2 : Two partition  non-isomorphic bases of C

22-40: We now consider the  case when one endpoint of a is incident w ith two additional 

edges besides a, and the  other endpoint is incident w ith only a itself.

23-25: We set a.epea to  be the endpoint of a w ith degree three.
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26-29: We let b and c be the  edges, o ther th a n  a, th a t  are incident w ith a.epea. Moreover, 

we let b.epe), and c.epec be the  endpoints of b and c, respectively, th a t are furthest 

from a.

30-40: Given th a t  a.nn,i_ea =  1 and a .nnea — 3, the  only way th a t  the  base of C  can be

changed is if b.nneb =  c .nnec =  1 or if b .nneb =  c .nnec =  2. O therwise, the  the  base

of C  has an  induced Pi  which prevents it from being changed.

30-33: In th is  case, the base of C  is the shown in Figure C .l(b ) , so we change it  to

the K$ shown in Figure C .l(a ).

34-40: In this case, bo th  b.epet and  c.epec are incident w ith another edge besides b and c, 

respectively.

35,36: We let d be the  edge, o ther th a n  b, th a t  is incident w ith b.epeb. Moreover, we let 

d.eped be the  endpoint of d  th a t  is fu rthest from b.

37-40: If d.eped ^  c.epec, then  the condition a .n n i .ea =  1 guarantees th a t  the base of 

C  has an  induced P4 which prevents it from being changed. O n the  o ther hand, if 

d.eped = c.epec, then  the  base of C  is as shown in Figure 0 .2 (b ) so we change it to  

the  base shown in Figure C .2(a).

41-74: We now consider the  case when one endpoint of a is incident w ith two additional 

edges besides a, and the o ther endpoint is incident w ith one additional edge besides

a.

42-44: We set a.epea to  be the endpoint of a w ith  degree three.

45-48: We let b and c be the edges, o ther th an  o, th a t are incident w ith a.epea. Moreover, 

we let b.epeb and c.epec be the  endpoints of b and c, respectively, th a t are furthest 

from a.

49,50: We let /  be the  edge, o ther th a n  a, th a t  is incident w ith a.epi_ea. Moreover, we let 

f . e p ef  be the endpoint of /  th a t is fu rthest from a.

51-74: If neither b.epeb = f . e p ef ,  nor c.epec = f . e p ef ,  then  the base of C  has an induced 

Pi which prevents it from being changed.

52-62: Given th a t a.nnea =  3, the  only way th a t the  base of C  can be changed is if

b.nneb = 2 and c.nnec =  1 or if b.nneb =  3 and c .nnec =  2. O therwise, the the  base 

of C  has an induced Pi which prevents it from being changed.

52-55: If b.nneb = 2 and c.nnec =  1 , then  there are no additional edges in the graph. The 

base of C  is as shown in Figure 0 .3 (a) so we change it to  the  base shown in Figure 

0 .3(b).

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Figure C.3: Two partition  non-isomorphic bases of C

56-62: In th is case, b o th  b.epeb and c.epec are incident w ith  ano ther edge besides b and c, 

respectively.

57-58: We let d be the  edge, o ther th a n  c, th a t is incident w ith  c.epec. Moreover, we let 

d.eped be the  endpoint of d th a t  is closest to  c.

59-62: If d.epi_ed ^  b.epeb, then  the condition a.nnea =  3 guarantees th a t  the base of 

C  has an  induced P4 which prevents it from being changed. O n the  other hand, if 

d.epi-ed =  b.epeb, th en  the  base of C  is as shown in Figure C .4(a), so we change it to  

the base shown in F igure 0 .4 (b ).

(a) (b)

Figure C.4: Two partition  non-isomorphic bases of C

63-74: This case is analogous to  th a t  found in lines 51 th rough 62, except th a t  c.epec = 

f . e p ef ,  no t b.epeb = f . e p e f .

75-111: We now consider the  case when bo th  endpoints of a are incident w ith two additional 

edges besides a.

76-83: We let b and c be th e  edges, o ther th an  a, th a t are incident w ith  a.epo• Moreover, 

we let b.epeh and c.epec be the endpoints of b and c, respectively, th a t are furthest 

from a. The edges /  and  h are defined similarly for a .e p i .

84-111: If b.epei ^  f . e p ef or c.epec ^  h.epeh, and b.epeb ±  h.epeh or c.epec ^  f . e p ef then  

the base of C  has an induced P4  or C 4 which prevents it from being changed.

84-97: Given th a t a.nno  =  a-nni = 3, the  only way th a t  the  base of C  can be changed 

is if b.nneb =  c.nnec =  2 or if b.nneb = c.nnec = 3. O therw ise, th e  base of C  has an 

induced P4  which prevents it from being changed.
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85-88: If b.nneb — c .nnec =  2 , then  there are no additional edges in th e  graph. The base 

of C  is as shown in Figure C .5(a), so we change it  to  the base shown in Figure C.5(b).

(a) (b)

Figure C.5: Two partition  non-isom orphic bases of C

89-97: In  this case, b o th  b.epeb and c.epec are incident w ith  another edge besides b and c, 

respectively.

91-93: We let d  be the edge, other th an  b and / ,  th a t  is incident w ith b.epeb. Moreover, 

we let d.epeii  be the  endpoint of d th a t furthest from  b.

94-97: If d .e p i .ed /  c.epec, then  the  base of C  has an induced F\  which prevents it from 

being changed. O n the  o ther hand, if d.epi_ed = c.epec, th en  the  base of C  is as shown 

in Figure C .6 (a), so we change it to  the  base shown in Figure C .6 (b).

(a) GO

Figure C .6 : Two partition  non-isom orphic bases of C

98-111: This case is analogous to  th a t found in lines 84 through 97, except th a t c.epec =  

f . e p ef  and b.epeb = h.epeh not b.epeb = f . e p ef  and  c.epec = h.epeh.

158: W hen C h a n g e B a s e  is finished it re turns the  pa ir {comp, changed),

S w it c h K 3 T o K 1 3 ( w , y, z)
Input: A triple (w , y , z ) of edges in the base th a t co n stitu te  a com ponent in the form of a
K 3.
O utput: S w i t c h K 3 T o K 1 3  changes the labels of w, y, and  2 so th a t they form a K 1 3 .

1 FREEBA SE(w .ep0 )
2 F R E E B A S E ( w . e p i )
3 FREEBA SElp.epo)
4  F R E E B A S E ( j / . e p i )

5 FREEBASE(z.epo)
6 F R E E B A SE (z.ep ;)

1 3 7
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7 w.epo <— G e t I d e n t if ie r B a s e ()
8 w.epi <— G e t I d e n t if ie r B a s e Q
9 y-epo  <- w.epo

10 y -e p r  <- G e t I d e n t if ie r B a s e ()
11 z.epo <- w.epo
12 z .e p j < - G e t I d e n t if ie r B a s e ()
13 w.nxo  <—■ 2

14 w.prevo <- y
15 y .nx0 <- w
16 y.prevo <— z
17 z.nxo <— y
18 z.prevo <■— U>
19 w.nxx <—- u;
20 w.prevj <— m
21 y.nxj  <- y
22 y.previ <-  y
23 z . n i j  «— z
24 z.previ <— z
25 w.nno - 3
26 y .n n 0 <- 3
27 2.7i7lo <— 3
28 w.nnj  <-- 1
29 y . n n j  <— 1
30 z .n n j  <— 1

S w itchK 13T oK 3(w , y ,  z)
Input: A triple (w ,  y ,  z )  of edges in the base th a t constitute a component in the form of a

Output: S w itch K 1 3 T o K 3  changes the labels of w ,  y ,  and 2  so that they form a A'3 .

1 F R E E B A S E lw .epo )
2 F R E E B A S E (w .ep j)
3 F R E E B A S E (y .ep0 f
4 F r e e B a s e  l y . e p i )
5 F r e e B a s e ! z .ep o )
6 F R E E B A S E (z .ep j)
7  w.epo <— G e t I d e n t i f i e r B a s e ()
8 w.epi <— G e t I d e n t i f i e r B a s e ()
9 y-epo <— w.epo

10 y-epi * -  G e t I d e n t i f i e r B a s e ( )
11 z.epo w.epi
12 z.epi  <- y.epj
13 ui.nxo <— y
14 w.prevo <— y
.15 y.nxo ±— w
16 y.prevo <— w
17 y.nxj  *— 2
18 y.previ <— 2
19 2.n x j <— y
20 z.preci <— y
21 w.nxi  2
22 w.previ <— 2
23 z.raxo <— w
24 z.prevo <— w
25 w.nno <— 2
26 y -nno  <— 2
27 z .n n o  <— 2
28 w.nni  <— 2
29 y .nn i  <— 2
30 z .n r i j  <— 2

S w i t c h ( w 0 , w i )
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Input: A pair (w0, w i)  of edges in the  base whose com ponent has a partitio n  non-isomorphic 
base th a t  can be form ed by switching wq and w\.
O utput: S w i t c h  changes base of the  com ponent containing wq and  w \ ,  by switching wq
and  w  i.

1 fo r  j  <— 0 t o  1 d o
2 fo r  i <— 0 t o  1 d o
3 t e m p j  <— G e t I d e n t i f i e r L i n e ( )
4 I n s e r t I n t o L is t ^ -  , i, t e m p j , i)
5 t e m p j . n n i  <— Wj.nni
6 R e m o v e F r o m L is t ^Wj , i)
7 fo r  j  <— 0 t o  1 d o
8 fo r  i <— 0 t o  1 d o
9 iN S E R T lN T O L lS T ^ e ra p j ,  i, W i - j ,  i)

10 w i - j . n n i  <— tem p j .n n i
11 R e m o v e F r o m L is t  ( te m p j , i )
12 F r e e B a s e  ( t e m p j . e p i )

1-6: For each j  in {0,1}, we replace Wj w ith a tem porary  edge t e m p j .

7-12: For each j  in {0,1}, we replace t e m p j  w ith  w \ - j .

EsTABLiSHEDGElNBASE(ed9e0 , end0 , edget , end1 : t)

Input: A 5-tuple ( e d g e o ,e n d o ,e d g e x ,e n d i , t ) ,  where t  is a vertex of th e  line graph and, for 
i in {0,1}, endi  is an  endpoint of edgei,  an edge of the  base. I t  is perm issible for edge i to  
have value n i l ,  in  which case en d \  will also have value n i l .

O utput: Provided ed g e \ ^  NIL, E s t a b l i s h E d g e I n B a s e  changes the  vertex  labels to  reflect 
the addition of the  edge t  between vertices edgeo.epend0 and ed g e \ .ep end1 of the base. If 
edge \ =  n i l ,  E s t a b l i s h E d g e I n B a s e  creates a new vertex in th e  base and  changes the 
vertex labels to  reflect the  addition of the  edge t  between vertex edge0.ependo and the new 
vertex.

1 i f  edgei =  NIL t h e n
2 size <— 1
3 NoNEIGHBOURS(f,.l)
4 e ls e  size <— 2
5 f o r  i <— 0 t o  size — 1 d o
6 lNSERTlNToLiST(ed9 ei ,e n d l , t , i )
7 S  <— GETlNCIDENTNEIGHBORS(f,i)
8 I n c r e m e n tN N ( 5 )

I n s e r t I n t o L i s t ( u ; ,  w e n d ,  y, y e n d )

Input: A 4-tuple (w, w end ,  y ,  yend) ,  where w  and y  are edges of the  base graph, and w e n d  
and y e n d  are values, either 0 or 1, which denote endpoints of w  and y,  respectively.
O utput: I n s e r t I n t o L i s t  adds y  to  the circular doubly linked list of edges abou t w .epwend, 
such th a t  y.epyend = w .ep wend-

1 y.epyend * IT-epwend.
2 z < w . n x wend
3 ze n d  <— E n d (z ,  w .ep wend)
4 w . n x wend <— y
5 y.prevyend  <- w
6 y . n x yend *
7 z.prevzend <- y
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I n c r e m e n t N N (S )

Inpu t: A stack S  of pairs of the  form (s, send ) w here s is an edge in the base and send  is a 
value, either 0 or 1, used to  denote an endpoint of s.

O utpu t: For each pair (s, send) in S,  I n c r e m e n t N N  increm ents the  value of s .n n send by 
one.

1 w h ile  S  7  ̂ n i l  d o
2 (s, send)  <— P o p (S j
3 S .T lT ls e n d  < S .T l7 lSen d  “hi

C .1 .3  D e letin g  an edge

Recall the  algorithm  D e l e t e E d g e , found in F igure 4.7, which is used to  relabel a  line graph 

when an edge is deleted. The following pseudocode can be used to  im plem ent D e l e t e E d g e .

D e l e t e E d g e (<z, b)
Inpu t: An adjacency labelling of a line graph  L(G )  created  using our dynam ic scheme, and 
two distinct vertices a and b of Vu g ) for which ab €  E L(g > ■

O utpu t: An adjacency labeling of a graph  L(G ')  form ed by deleting the edge ab from L{G), 
providing L(G')  is a line graph. If L(G ')  is no t a  line graph, then  the o u tp u t indicates as
such.

1 f o r  k  <— 0 t o  1 d o
2 f o r  I <— 0 t o  1 d o
3 i f  a.epk =  b.epi t h e n
4 ea <— k
5 eb <—  I
6 s w i t c h
7 c a s e  a .nnea =  2:
8 C a s e A C ( )
9 c a s e  a .n n ea =  3:

10 i f  a.nxea =  b t h e n
11 c <— b.nxei,
12 e l s e  c <— a.nxea
13 ec <— 1 — End(c, a.epea)
14 s w i t c h
15 c a s e  c .nnec = 1
16 C a s e B D ( )
17 c a s e  c .nnec =  2
18 /  4-  c .nxec
19 e f  < - 1 — E n d (/, c.epec)
20 s w i t c h
21 c a s e  f . e p ef  = a.epj_ea
22 s w i t c h
23 c a s e  f . n n ef  > 4
24 e r r o r  this is no longer a line graph
25 c a s e  /  .nnef  =  3:
26 i f  f . n x ef  =  a t h e n
27 9 < ^ 1 - ea
28 e l s e  g <— f  ,nxej
29 eg 1 -  E nd(g , f .e p ef)
30 i f  g.nneq =  1 t h e n
31 C a s e F Q
32 e l s e  e r ro r  this is no longer a line graph
33 c a s e  f . n n Pf =  2:
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34 C a s e E Q
35 c a s e  f . e p ef =  b.epUeb
36 s w i t c h
37 c a s e  f  .nnej  > 4
38 e r r o r  th i s  is no  lo n g e r  a  lin e  g r a p h
39 c a s e  f . n n ef  =  3:
40  i f  / .nxef  =  b t h e n
41 g ^ b . n x t - e b
42 e l s e  g <—  f . n x ef
43 eg <r— 1 —  E n d ( g j . e p ef)
44 i f  g .n n eg =  1 t h e n
45 C a s e F S y m m e t r i c Q
46 e l s e  e r r o r  th i s  is n o  lo n g e r  a  lin e  g ra p h
47  c a s e  f . n n ef  =  2:
48 C a s e E S y m m e t r i c ()
49  c a s e  f . e p ef = a .ep t _ea a n d  f . e p ef =  b.epUeb:
50 e r r o r  th i s  is n o  lo n g e r  a  lin e  g r a p h
51 c a s e  c .nnec = 3:
52 i f  a . n n ^ e a  ^  2 o r  6 .nn_(.e(, ^  2 t h e n
53 e r r o r  th i s  is n o  lo n g e r  a  lin e  g r a p h
54 e ls e  /  <— a .n x i _ ea
55 h <— b.nxi_eb
56 ef <—  E n d ( / ,  a.ep1_ea)
57 eh <— E n d (/i , b.ep1_eb)
58 i f  / - e p j . e/ ^  c.epec o r  h .ep j_e?l ^  c .e p ec t h e n
59 e r r o r  th i s  is n o  lo n g e r  a  lin e  g r a p h
60 e l s e  C a s e G ()
61 c a s e  c.nnec > 3:
62 e r r o r  th i s  is  n o  lo n g e r  a  lin e  g ra p h
63 c a s e  a.nnea =  4:
64 i f  a.nxea ^  b t h e n
65 c <— a.nxea
66 e l s e  c <— b.nxeb
67  ec <— 1 — E n d (c , a.epea)
68  i f  a.nxec ^  b o r a.nxec ^  c t h e n
69 i *— a.nxea
70 e l s e i f  b.nxeb ^  a o r  b.nxeb ^  e  t h e n
71 i <— b.nxeb
72  e l s e  i <— c .n x b_ec
73 ei <— 1 — E n d (j , a.epea)
74 s w i t c h
75 c a s e  c.nnec >  2 o r  i .n n ei >  2
76 e r r o r  th i s  is n o  lo n g e r  a  lin e  g ra p h
77 c a s e  c .nnec =  1 a n d  i .n n ei =  1
78 i f  a .n n j . ea =  1 t h e n
79 C a s e H Q
80 e l s e i f  b .n n b. eb =  1 t h e n
81 C a s e H S y m m e t r i c ()
82 e l s e  e r r o r  th i s  is n o  lo n g e r  a  lin e  g ra p h
83 c a s e  c.nnec =  2 a n d  i .n n ei =  2
84 /  < - c .nxec
85 g <— i .n x ei
86 e /  <— l  — E n d ( / ,  c . e p e c )
87 eg <— E n d (p , i.epei)
88 i f  f - e p ef  =  g.epi_eg =  a .ep1_ea a n d  f . n n ef  —  3 t h e n
89 C a s e J ( )
90 e l s e i f  f . e p ef  =  g.epi-eg —  b.ep1_eb a n d  f . n n ef  =  3 t h e n
91 C a s e J S y m m e t r i c ()
92 e ls e  e r r o r  th is  is no  lo n g e r  a  lin e  g ra p h
93 c a s e  i .n n ei =  1 a n d  c .nnec =  2:
94 /  < - c.nxec
95 ef  <— 1 — E n d ( c ,  c.epec)
96 i f  f . e p e f  =  a - s p i - e a  ancl / -n n e f  =  2 t h e n
97 C a s e I( )
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98 e l s e i f  f . e p ef  =  b . e p 1 _eb and f . n n ef  =  2 t h e n
99 C a s e I S y m m e t r i c ()

100 e l s e  e r r o r  th is is no longer a line graph
101 c a s e  i . n n ei  =  2 and c . n n ec —  1:
102 g  <— i . n x e i
103 e g  <— E N D ( g : i . e p e i )
104 i f  g . e p i „ eg =  h.ep; _e;) and g . n n 1 _eg =  2 t h e n
105 C a s e I S y m m e t r i c Q
106 e l s e i f  g . e p i , eg =  a . e p 1_ea and g . n n i _ eg =  2 t h e n
107 C a s e I S y m m e t r i c ( )
108 e l s e  e r r o r  th is  is no longer a line graph
109 c a s e  a . n n ea >  4
110 e r r o r  th is is no longer a line graph

1-5: We m ust first determ ine the  vertex  of the  base a t which a and  b in tersect. In  particular, 

we set a.epea and b.epeb to  be the  endpoints a t which a and  b in tersect. L ater we will 

introduce the  variables ec, ef, eg, eh, ei, ej, to  denote particu lar endpoints o f c, f ,  g, 

h, i, and j ,  respectively.

6-110: We determ ine the  structu re  of th e  base surrounding a and  b th rough  a series of case 

sta tem ents th a t allow us to  determ ine which of th e  cases in  Table 4.1 we m ust deal 

w ith.

7,8: If the only edges of th e  base incident w ith a.epea are a and b them selves, th en  we are 

dealing w ith  case A or C. B oth  cases are handled by the  function C aseA C .

9-62: There is exactly one additional edge incident w ith  a.epea o ther th a n  a and b them ­

selves. We call th is edge c and set c.epec to  be the  endpoint of c closest to  a.

10-12: We determ ine c using the circular doubly linked list a t a.epea.

15,16: If c is the only edge incident w ith  c.epec, then  we are dealing w ith  case B or D.

B oth  cases are handled by the  function C a s e B D .

17-50: There is exactly one o ther edge incident w ith c.epec, o ther th a n  c itself. We call 

th is edge /  and set f .e p ef  to  be the  endpoint of /  closest to  c. T he possibility exists 

th a t the modified graph is not a line graph, however, if it is a line graph, then  we are 

dealing w ith case E or F , or sym m etric variants thereof.

21-34: The edge /  is adjacent to  b o th  c and a where, in particu lar, f . e p ef  = a.ep1_ea. 

Again, th e  possibility exists th a t  the  modified graph is not a line graph, however, if it 

is a line graph, then  we are dealing w ith case E or F.

23,24: If there are more th an  three edges incident w ith f . e p ef  then  the modified graph is 

not a line graph, as the struc tu re  of G  does not resemble any of th e  cases depicted in 

Table 4.1.
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25-32: There is exactly  one other edge incident w ith  f . e p ej ,  other th a n  a and /  themselves. 

We call th is  edge g and set g.epeg to  be th e  endpoin t of g closest to  / .  The possibility 

exists th a t  the  modified graph is not a line graph, however, if it is a line graph, then  

we are dealing w ith  case F.

30-32: If g is th e  only edge incident w ith g.epeg, th en  we are dealing w ith case F, which is 

handled by th e  function C a s e F .  Otherw ise, th e  modified graph  is no t a line graph.

33-34: If the  only edges incident w ith  f . e p ef  are a and  /  themselves, then  we are dealing 

w ith case E , which is handled by the  function C a s e E .

35-48: The edge /  is adjacent to  bo th  c and b where, in particular, f . e p ef  =  b.ep1_eb. This 

case is analogous to  th a t  found in lines 21 th rough  34.

49,50: The edge /  is adjacent to  c, b u t neither a nor b. Consequently, th e  modified graph 

is not a line graph.

51-60: There are exactly two additional edges incident w ith c.epec other th a n  c itself. If 

the  modified graph  is still a line graph, th en  th e  base m ust resemble case G.

52,53: The base resembles case G only if a.nn^_ea =  b.miuek  =  2. O therwise, the modified 

graph is no t a line graph.

54-57: Providing a.nni„ea =  b.nnt_eb =  2, we le t /  be the edge incident w ith a.ep1_ea, 

o ther th a n  a , and we let h be the  edge incident w ith  b.ep1_eb, o ther th an  b. Moreover, 

we set f . e p ef  to  be the endpoint of /  fu rthest from  a, and set h.epeh to  be the endpoint 

of /  fu rthest from  b.

58-60: The base resembles case G if and only if f . e p 1_ej  =  h .ep1_eh = c.epec. Providing 

this condition holds, it is handled by th e  function C a s e G ; it it does not hold, then 

the modified graph is not a line graph.

61,62: If there are more th an  three edges incident w ith  c.epec then  the modified graph is 

not a line graph.

63-108: There are exactly two additional edges incident w ith a,.epea, besides a and b 

themselves. T he possibility exists th a t the  modified graph is no t a line graph, however, 

if it is then  we are dealing w ith cases H, I, or J, or sym m etric variants thereof.

64-73: We let c  and i be the edges incident w ith  a.epea, o ther th an  a and b themselves. 

The circular linked list a t a.epea is used to  determ ine c  and i where, moreover, we set

c.epec and i .epei to  be the endpoints of c and  i, respectively, th a t are closest to  a.

143

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



74-76: We require th a t  c.epec and i .epei be incident w ith  a t m ost one edge other th a n  c 

and i them selves, otherwise, the  modified graph is not a line graph.

77-82: We first consider when c.epec and i .epei are incident only w ith c and i, respectively. 

The possibility exists th a t  the modified graph  is no t a  line graph, however, if it is then  

we are dealing w ith  case H or a sym m etric varian t thereof.

78-82: The modified graph  is a line graph  if and only if a t least one of a .n n j . ea =  1 or

b .n n i .eb =  1. If a .n n i . ea = 1, th en  we are dealing w ith  case H, which is handled by the 

function C a se H . If a .M j .eo >  T  b u t b .nnb. eb =  1, then  the situation  is sym m etric 

to  case H.

83-92: We now consider when c.epec and i .epei are b o th  incident w ith exactly one edge 

in addition to  c and i, respectively. T he possibility exists th a t th e  modified graph is 

not a line graph, however, if it is a line graph, th en  we are dealing w ith  case J  or a 

sym m etric varian t thereof.

84-87: We let /  and g be the  edges incident w ith  c.epec and i.epei, respectively, other th an  

c and i them selves. The circular linked lists a t c.epec and i.epei are used to  determ ine 

/  and g where, moreover, we set f . e p ef  to  be th e  endpoint of /  fu rthest from c, and 

set g.epeg to  be th e  endpoint of g closest to  i.

88-92: The modified graph  is a line graph if and only if either f . e p ef  =  g .ep j .eg =  b.ep1_eb, 

where f . n n ef  = 3, or f . e p ef  = g.epi_eg = a .ep1_ea, where / .n n e/  =  3. If th e  la tte r 

holds then  we are dealing w ith Case J, which is handled by the  function C a s e J . If the 

la tte r does not hold bu t the former does, then  th e  situation  is sym m etric to  Case J.

93-100: We now consider when i .epei is incident only w ith  i itself and c.epec is incident 

w ith  exactly one edge o ther th an  c. T he possibility exists th a t the  modified graph is 

not a line graph, however, if it is a line graph, then  we are dealing w ith case I or a 

sym m etric variant thereof.

94,95: We let /  be the  edge incident w ith c.epec, other th a n  c itself. The circular linked 

list at c.epec is used to  determ ine /  where }.epef  is set to  be the  endpoint of /  closest 

to  c.

96-100: The modified graph is a line graph if and only if either f . e p ej  — a .epUea, where 

a.nni.ea  =  2 , or f . e p ef  = b.epj_eb, where b .n n j .eb =  2. If the  la tte r holds, then  we 

are dealing w ith Case I, which is handled by th e  function C a se I. If the la tte r does 

not hold, but the  former does, then the  situation  is sym m etric to  Case I.
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101-108: We now consider when c.epec is incident only w ith c itself and i .e p ei is incident 

w ith exactly one edge o ther th an  i. This case is sim ilar to  th a t  found in lines 93 

through 100.

109,110: Finally, we consider w hen there  are exactly a t least th ree additional edges incident 

w ith a.epea, other th a n  a and b them selves. In th is case, the  modified graph is not a 

line graph.

C a s e A C Q

Inpu t: None, however, th e  algorithm  will work globally on the  labels seen in  D e l e t e E d g e .

O utpu t: C a s eA C  relabels the  vertices of th e  component containing a and b to  reflect the 
transitions illustrated  in Figures C.7 and C.8.

1 F r e e B a s e I n .epea)
2 F r e e B a s e ( 6. ep e j)
3 a . e p ea <- G e t I d e n t i f i e r B a s e ( )
4 b.epeb <— G e t I d e n t i f i e r B a s e Q
5 a.nxea <— a
6 a.prevea <- a
7 b.nxeb <— b
8 b.prevgt, <— b
9 a.nnea <— 1

10 <1.71711 -e a  * a.nni
11 b.nneb 1
12 b .7 l7 l2 ~ e b  *— b.nni.

Figure C.7: Deleting the  edge {a ,b}  from th e  line graph L(G)  (case A of Table 4.1). The 
vertices labelled ex  in G  are as prescribed in the  algorithm  D e l e t e E d g e ;  the vertices 
labelled ex  in G' are as prescribed in the  algorithm  C a s e A C

C a s e B D ()
Inpu t: None, however, the algorithm  will work globally on the  labels seen in  D e l e t e E d g e .

O utput: C a s e B D  relabels th e  vertices of the component containing a and b to  reflect the 
transitions illustrated  in Figures C.9 and C.10.

1 F r e e B a s e ( a. epea)
2 F R EE B A S E (6 .ep ei )
3 FREEBASE(c.epec)
4 FREEB ASE( C. CPi -ec)
5 a . ep ea <— G e t I d e n t i f i e r B a s e Q
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b

(a) G (b) G'

Figure C.8: Deleting the edge {a, 6} from the line graph L(G) (case C of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G'  are as prescribed in the algorithm C aseA C

6 b.epeb <- G e t I d e n t i f i e r B a s e ()
7 c.epec < - &Pea
8 C . 6 p  i - ec t -  b.epeb
9 Q .Y lX ea  < - c

10 a.prevea c
11 c.nxec a
12 c.prevec <— a
13 b ■ nxeb <-- c
14 b.preveb c
15 C .TIX  i - e c <r~ b
16 c.prev j <— b
17 d .7 lT lea  *-- 2
18 (2.T171 < a .T iT i

19 b.nneb <— 2
20 b .TITl i - e b < b .71712 -e b
21 C-TlTlec - 2
22 C.TITI <- 2

Figure C.9: Deleting the edge {a, b} from the line graph L{G) (case B of Table 4.1). The 
vertices labelled ex  in G  are as prescribed in the  algorithm  D e l e t e E d g e ; the vertices 
labelled ex  in G ’ are as prescribed in the algorithm  C a s e B D

C a s e E ()

Input: None, however, the algorithm  will work globally on the  labels seen in D e l e t e E d g e .

O utpu t: C a s e E  relabels the  vertices of the com ponent containing a and b to  reflect the 
transition  illustrated  in Figure C .l l .
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Figure C.10: Deleting the edge {a, b} from the line graph L(G)  (case D of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in the algorithm C a s e B D

1 F r e e B a s e ! a. epea)
2 F r e e B a s e I a .ep i_ea)
3 F r e e B a s e ( 6. epef))
4 F r e e B a s e I c.epec)
5 F r e e B a s e ( c .  epi-ec)
6  F R E E B A S E ( / .e p e /)
7 F R E E B A S E (/ .e p i_ e/ )
8 a.epea <— G e t I d e n t if ie r B a s e ()
9 a.ep1_ea <— G e t I d e n t if ie r B a s e ()

10 b.epeb <— G e t I d e n t i f i e r B a s e Q
11 f . e p ef  <— G e t I d e n t i f i e r B a s e ( )
12 c.epec *- a.epea
13 C.ept-ec <- b.epeb
14 f .e p i .e f  a.epea
15 b.nxeb *— c
16 b.preveb <— c
17 c.nxi_ec <— b
18 c.prev 1_ec <- b
19 c.nxec <— a
20 c.prevec <- /
21 a.nxea <- /
22 a.prevea <— c
23 f . n x 1_ef  <— c
24 f . p r e v j . e f  <- a
25 / .n x e/  <- /
26 f .p revef <- f
27 a .n x i .ea <— a
28 a.prev1_ea <— a
29 a.nnea <— 3
30 a .n r i j , ea <— 1
31 b.nneb <— 2
32 b.nni.eb b .nn i_eb
33 c.nnec <— 3
34 c.nni_ec <— 2
35 f . n n ef  <— 1
36 f - n n t _ej  <— 3

C a s e E S y m m e t r i c ()

Input: None, however, the  algorithm  will w o r k  globally on the  labels seen in D e l e t e E d g e .

O utpu t: C a s e E S y m m e t r i c  relabels the v e r t i c e s  of the  com ponent containing a and 6 to  
reflect the transition  illustrated  in Figure C.12.
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(b) G

Figure C .ll: Deleting the edge {a, b} from the line graph L(G) (case E of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G'  are as prescribed in the algorithm C a s e E

1 FREEBA SEfa.epea)
2 F r e e B a s e I fc.epe(,)
3 F r e e B a s e I  b. epi-ei,)
4 F r e e B a s e i  c.epec)
5 F r e e B a s e I c.ep j_ec)
6 FR EEB A SE(/.epe/ )
7 FR EEB A SE(/.epj_e/)
8 a.epea <— G e t I d e n t i f i e r B a s e O
9 b.epeb <— G e t I d e n t i f i e r B a s e O

10 6. epUeb <— G e t I d e n t i f i e r B a s e O
11 f . e p ef  <— G e t I d e n t i f i e r B a s e O
12 c.epec <- a.epea
13 c.ept-ec <— b.epeb
14 f . e p i - ef  *- a.epea
15 b.nxeb <— c
16 b.preveb <— /
17 c .n x i .e c < - f
18 c.prevUec <— b
19 f . n x j _ ef  <— b
20 } .prevUef <- c
21 c.nxec <— a
22 c.prevec <— a
23 a.nxea <— c
24 a.prevea <— c
25 f . n x ef <- f
26 / .prevef  <- f
27 6. n r <— b
28 b.prevt _eb <— 6
29 a.nnea <— 2
30 a.nnj_ea <— «.rm ^_ea
31 b.nneb <— 3
32 b .nni_eb <— 1
33 c.nnec <— 2
34 c .n n j .ec <— 3
35 f - n n ef  <— 1
36 f . n n 1_ej  <— 3

C a s e F ( )

Input: None, however, th e  algorithm  will work globally on the labels seen in D e l e t e E d g e .

O utput: C a s e F  relabels the  vertices of the com ponent containing a  and b to  reflect the 
transition  illustrated in Figure C.13.
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— *— U - ^ efeb

c

(a) G (b) G'

Figure C.12: D eleting the  edge {a,b}  from the  line graph  L(G )  (sym m etric to  case E  of 
Table 4.1). T he vertices labelled ex  in G  are as prescribed in the  algorithm  D e l e t e E d g e ; 
the vertices labelled ex  in G' are as prescribed in th e  algorithm  C a s e E S y m m e t r i c

1  F R E E B A S E ( a . e p e o )

2 F R E E B A S E la .e p i_ ea)
3 FREEBASE(&.epei>)
4 F r e e B a s e I  C.epec)
5  F R E E B A S E ( c . e p i . e c )

6 F R E E B A S E ( / .e p e/ )
7 F r e e B a s e ( / .  e p i - e / )
8 F R E E B A S E (p .e p eg)
9 F R E E B A S E ( p . e p ; _ e 5 )

10 a . e p e a  G e t I d e n t i f i e r B a s e O
11 d.ep i _ea <— G e t I d e n t i f i e r B a s e O
12 b.epeb <— G e t I d e n t i f i e r B a s e Q
13 f . e p ef  <— G e t I d e n t i f i e r B a s e Q
14 c.epec <— a.epea
15 C.epi.ec ■*— b.epeb
16 f .e p u e f  <- a.epea
17 g.epeg *— a.epuea
18 g.epi-eg <- f .ep e f
19 b.nxeb <— c
20 b.preveb <— c
21 c.nxi.ec b
22 c.prev 1_ec <- b
23 c.nxec <— a
24 c.prevec <— /
25 a.nxea <— /
26 a.prevea <— c
27 f . n x j . ef <- c
28 / .prevUef *- a
29 /.n rre/  <- p
30 f .p re v ef  g
31 g -nxUeg <- /
32 g .p r e v j . ^  <- /
33 g-nxeg <— a
34 g.preveg <— a
35 d.TlXi-ea <— p
36 a.prevj_ea <— p
37 a .nnea <— 3
38 a.nnx-eu ~ 2
39 b.nneb <— 2
40 b.nni_eb <— b.nni_eb
41 c.nnec <— 3
42 c .n n i_ec <— 2
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43
44
45
46

f . n n ef  <- 2
f - n n l - e f  3 
g .nneg <- 2
9 - n n i - e g  2

i  9
a

c
ec

(a ) G (b) G"

Figure C.13: D eleting the edge {a, 6} from the  line graph  L(G)  (case F  of Table 4.1). The 
vertices labelled ex  in G  are as prescribed in the  algorithm  D e l e t e E d g e ; the  vertices 
labelled ex  in G' are as prescribed in the  algorithm  C a s e F

C a s e G ( )

Input: None, however, th e  algorithm  will work globally on the  labels seen in D e l e t e E d g e .

O utput: C a s e G  relabels the  vertices of the  com ponent containing a and b to  reflect the 
transition  illustrated  in Figure C.14.

1 FR EEB A SE(a.epea)
2 F r e e B a s e (<i .epi_ea)
3 FREEBASEf&.epeb)
4 FREEBASEf C.epec)
5 FREEBA SE(C.epi.ec)
6 F r e e B a s e  ( f .epe f)
7 F R E E B A S E (/.ep i.e /)
8 F r e e B a s e  lh .e p eh)
9 F r e e B a s e (/i . epi-e^)

10 a.epea <— G e t I d e n t if ie r B a s e O
11 a.ep j _ea <— G e t I d e n t i f i e r B a s e O
12 b.epeb <— G e t I d e n t if ie r B a s e O
13 b.ep 1_eb <— G e t I d e n t i f i e r B a s e O
14 f . e p ef  <— G e t I d e n t i f i e r B a s e O
15 C.epec <— tt-epea
16 c .ep 1_ec <— b.epi.eb
17 / - eP i - e /  a .epea
18 h .ep eh <— f . e p ef
19 h .ep t _eh <- b.epeb
20 b.nxeb <— c
21 b.preveb <— h
22  c .n x j_ ec <—  h
23 c.prevj_ec <— b
24 h . n x i - eh b
25 h.prev 1 _ e h  <— c
26 c .nxec +— a
27 c.prevec <- /
28 Q,.nxea < y
29 a.prevea <— c
30 f  .n x t _ef *— c
31 f . p r e v j . e f t - a
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34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

nxeh < -  /  

preveh < -  /

1 - e a  * ^

vrevi_ea <- a
rerj.eb <- b
P r e v l - e b  < -  & 
n n ea <-
T1711 _ e a

n n e& <-
H'Tl l - e b
nnec < -

W'Tl 1 _ e c

nnef
n n l - e f

.nneh < -

• 1 -e/i * 3

(I & 1, CO

ea, ec

e / ,  e/i

(a) G (b) G'

Figure C.14: D eleting th e  edge {a, 6} from th e  line graph T(G ) (case G of Table 4.1). The 
vertices labelled ex in G  are as prescribed in the  algorithm  D e l e t e E d g e ; the vertices 
labelled ex in G'  axe as prescribed in the  algorithm  C a s e G

C a s e H ()

Input: None, however, the  algorithm  will work globally on the labels seen in  D e l e t e E d g e .

O utput: C a s eH  relabels th e  vertices of the  com ponent containing a and b to  reflect the  
transition  illustrated  in  Figure C.15.

1 FREEBA SE(a.epeQ)
2 FREEBASE(a.epj_ea)
3 F r e e B a s e ( 6. epeb)
4 F r e e B a s e ( C.epec)
5 FREEBASE(c.epi_ec)
6 F r e e B a s e ( i . epej)
7 FREEBA SE(i.epj_ej)
8 a.epea <— G e t I d e n t i f i e r B a s e O
9 a - e P i ~ e a  _ G e t I d e n t i f i e r B a s e O

10 b.epeb <— G e t I d e n t if ie r B a s e O
11 C - ^ P e c   ̂ Q ' ^ P e a
12 C . 6 p i - e c  * b ' & P e b
13 i.epei <- a .ep i .ea
14 i - Z P l - e i  < b- ^ p l - e b
15 b.nxe{, i
16 b.preveb c
17 i.TlXi-ei C
18 i .prevt _ei <— b
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23 a.nxea *— c
24 a.prevea c
25 i .nxei <— a
26 i.prevei <— a
27 a.nxi_ea <— i
28 a-prevUea <-
29 a.nnea <- 2
30 a.nnj.ea  <— 2
31 b.nneb <— 3
32 b.nni_eb <— b.
33 c.nnec *— 2
34 c.nnj-ec <- 3
35 i .n n ei <— 2
36 <— 3

(a) G (b) G'

Figure C.15: D eleting the edge {a, 6} from th e  line graph L(G)  (case H of Table 4.1). The 
vertices labelled ex  in G are as prescribed in the algorithm  D e l e t e E d g e ; the vertices 
labelled ex  in G' are as prescribed in the  algorithm  C a s e H

C a s e I ( )

Input: None, however, th e  algorithm  will work globally on the labels seen in  D e l e t e E d g e .

O utpu t: C a s e I  relabels the vertices of the  com ponent containing a and  b to  reflect the 
transition  illustra ted  in Figure C.16.

1 F r e e B a s e (  a . e p ea)
2 F r e e B a s e I o . e p j . ea)
3 F r e e B a s e ) 6. e p ef>)
4 F r e e B a s e ) c.epec)
5 FREEBASE) C . e p i _ e c )

6 F r e e B a s e ) / .  epe/ )
7 F r e e B a s e ) / .  ep /_e/ )
8 FREEBASE(z.ePei)
9 F R E E B A S E (iep j.ei)

10 a . e p ea <— G e t I d e n t i f i e r B a s e O
11 a .ep 1 _ e a  <— G e t I d e n t i f i e r B a s e O
12 b.epeb <— G e t I d e n t i f i e r B a s e Q
13 f - e p ef  <— G e t I d e n t i f i e r B a s e Q
14 c .e p ec <— a.epea
15 c.epj.ec <— b.epeb
16 i.epei *• a.epi_ea
17 i .epuei  <- b.ept.eb
18 f - e p u e j  <— a.epea
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27 i .nxei < r - a
28 i.prevei <— a
29 c.nxec <—■ a
30 c.prevec < - /
31 a.nxea <-- /
32 a.prevea c
33 f . nx l e f c
34 f  .pvev j - _e f  <- a
35 f . n x ef +-- /
36 f-prevef < - /
37 (L.TlTlea  '-  3
38 (L.TITI i - ea <- 2
39 b.nneb <-- 3
40 b . n n i . e b b.nn
41 c.nnec <-- 3
42 C.71TI i-Q c <- 3
43 } .n n ef <-- 1
44 f - n n i-ef <- 3
45 i .n n ei <—- 2
46 %. TlTl i  _ ej 3

ei t a . e c f  ef

y *  I  eb

(a) G  (b) G'

Figure C.16: Deleting the  edge {a, b} from the line graph  L(G)  (case I of Table 4.1). The 
vertices labelled ex  in G  are as prescribed in the  algorithm  D e l e t e E d g e ; the  vertices 
labelled ex  in G' are as prescribed in the  algorithm  C a s e I

C a s e J ( )

Input: None, however, th e  algorithm  will work globally on the labels seen in D e l e t e E d g e .

O utpu t: C a s e J  relabels the  vertices of the com ponent containing a and b to  reflect the 
transition  illustrated in Figure C.17.

1 F r e e B a s e (  a . e p e a )

2  F r e e B a s e !  a.epi_ea)
3  F r e e B a s e (  6 .  e p e i , )

4 F r e e B a se( c.epec)
5  F R E E B A S E ( c . e p p _ e c )

6  F R E E B A S E ( / . e p e/ )

7 F R E E B A S E ( / . e p i _ e / )

8  F r e e B a s e ( p  . epeg)
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9 F R E E B A SE ^.ejq .g ,,)
10 F r e e B  ASE( i . e p e i )
11 F R E E B A S E ( i .  ep^_ej)
12 a.epea *-  G e t I d e n t i f i e r B a s e O
13 a.epUea *— G e t I d e n t i f i e r B a s e O
14  b.epeb <— G e t I d e n t i f i e r B a s e Q
15 J-epef <— G e t I d e n t i f i e r B a s e Q
16 c.epec <— a.epea
17 c.epuec <- b.epeb
18 i.epel <- a.epuea
19 i . e p i - ei <— b .e p i-eb
20 /•  epi~ef <- a.epea
21 g . e p eg <— / . e p e/
22 g-epi-eg <— i . e p ei
23 b.nxeb <— i
24 b.preveb <— c
25 i . n x i - ei <— c
26 i .prevt _ei <— 6
27 c.nxi_ec b
28 c.prev j_ec i
29 c.nxec <— a
30 c.prevec <— /
31 a .n iga <— /
32 a.prevea <— c
33 f  .nxj_ef  <— c
34 f  .prevUef <— a
35 i.nnei <— g
36 i.prevei <— a
37 g-nxUeg <- a
38 g-prevt _eg *— i
39 a.nxj_ea <— i
40 a.prevUea <- g
41 g.nxeg <- /
42 g.preveg <- f
43 f . n x ef <- 5
44 f .p revef  <- g
45 a.nnea <— 3
46 CL. 71712 -  ea  * 3
47 b.nneb <— 3
48 b.Tin}_ e b  ^ b.nn
49 c.nnec <— 3
50 c .n n 2 - e c  * 3
51 f . n n ej  < -  2
52 f . n n Uef < - 3
53 g.nneg < -  2
54 g .n n Ueg <- 3
55 i .n n ei <— 3
56 i . T l T l  2 - e i  * 3

-e 6

C .1.4  A dding an edge

As discussed in Section 4.2.2, given th a t the  addition of an edge is the opposite of the 

deletion of an edge, the  pseudocode required to  add an edge would comprise a case analysis 

similar to  th a t presented in Section C.1.3.
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ef, eg

(a) G (b) G'

Figure C.17: D eleting the  edge {a ,b}  from th e  line graph  L (G ) (case J  of Table 4.1). The 
vertices labelled ex  in G  are as prescribed in  the  algorithm  D e l e t e E d g e ; the  vertices 
labelled ex  in G' are as prescribed in th e  algorithm  C a s e J

C.2 r-m inoes  

C .2.1 D e letin g  a vertex

Recall th e  algorithm  D e l e t e V e r t e x , found in  Figure 5.2, which is used to  relabel a r-m ino 

when a vertex is deleted. The following pseudocode can be used to  im plem ent D e l e t e V - 

e r t e x .

D e l e t e V e r t e x ( G ,  v )

Input: An adjacency labelling of an r-m ino G created using our dynam ic scheme, and a
vertex u in  Vq - Here we presume th a t r  G 0 (1 ) , thereby ensuring error-detection.

O utput: An adjacency labeling of an r-m ino G' formed by deleting v  from G.

1 i f  v .c l i .n x  =  v  t h e n
2 F r e e C l i q u e ( u .  c l i . n u m )
3 f o r  i <-_l t o  v.cin  d o
4 (C , C)  <— G e t C l i q u e M e m b e r s (u , i)
5 C 7 <— NIL
6 w h i l e  C  ^  NIL d o
7 (x ,xc l)  <— P o p (C')
8 i f  x  ^  v  t h e n
9 P U S H ^ jX )9

10
11
12
13

if  G e t C o m m o n C l iq u e s (C ')  =  {v .c li .num }  t h e n
R e m o v e F r o m C l iq u e ( u ,  i)

e ls e  E l im in a te C l iq u e ( u ,  i)
F r e e V e r t e x (u)

1-2: If v  is an isolated vertex, then  we free the  identifier of the m axim al clique {r} for 

fu ture use.

3-9: For each m axim al clique C  containing v, we obtain  the clique C' = C  \  {n}.

10-12: If the m em bers of C'  share another m axim al clique besides C, then  we eliminate C. 

Otherwise, we simply remove v  from C.
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13: We free the identifier of v  for fu ture use.

G E T C L IQ U E M E M B E R S ( t ,  td )
Input: A pair (t , t c l ), where t is a vertex  of G  and  t d  is an index between 1 and  t.cin. 
O utpu t: Let S  denote th e  set of all vertices in the  m axim al clique t . d tci-num.  G e t C l i q u e - 
M e m b e r s  re tu rns the pair (S, S ), where S  is a  stack consisting of all pairs of th e  form 
(s, s d ), where s . d sci .n u m  =  t .d td -n u m .

1 S< -%
2 S  4-  NIL
3 s <~-  t
4 s d <— t d
5 P u s h (S \  ( s ,  sd))
6 S<-  S U { s }
7 w h ile  s .d sci. nx.id A t  d o
8 y  <— s .d sci.nx.id
9 s d  <— s.dsci.nx.index

10 s * y _
11 P u s h ( S ,  (s , sd))
12 S < -  S U { s }
13 r e t u r n  (S’, S)

G e t C o m m o n C l iq u e s (S )

Input: A non-em pty stack S  of vertices.

O utput: For each vertex s in S,  let Cs denote the  set of m axim al cliques containing s. 
G e t C o m m o n C l iq u e s  re tu rns f l s e s ^ -

1 s <-_Po p (S )
2 (A, A) <— G e tC l iq u e s ( { s } )
3 w h ile  S  7  ̂ NIL d o
4 s <— P o p (S )
5 ( W ,W )  <— G e t C l iq u e s ({s })
6 A ^  A n W
7 r e t u r n  A

G e t C l i q u e s (S )

Input: A non-em pty set of vertices S.
O utput: Let C3 denote the  set of all m axim al cliques containing a vertex s, and let C denote 

G e t C l i q u e s  re tu rns the  pair (C ,T),  w here T  is a stack containing an element of 
the form for each en try  t .d i .n u m  of C.

1 T  «- 0
2 T  <- NIL
3 fo r s € S  d o
4 fo r  i *— 1 to  s.cin  d o
5 if  s .d i .n u m  0  T  t h e n
6 T  <— T  U {x s .d i .n u m }
7 P u s h (T ,  (s,i))
8 r e t u r n  (T, T)

R e m o v e F r o m C l i q u e ^ ,  y d )
Input: A pair (y . y d ), where y  is a vertex of G  and y d  is an index between 1 and y.cin. 
Moreover, y . d yci .nx .id  A V-
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O utput: R e m o v e F r o m C l iq u e  elim inates y  from the  m axim al clique y.clyci.num.

1 w <— y.clyd.prev.id
2 wcl <— y .clyd .prev.index
3 z  <— y.c lyd .nx .id
4 zcl <— y .d y d .n x . in d e x
5 y - d y d  <- n i l
6 w.clxci.nx.id  <— z
7 w . d xci .nx .index  <— zcl
8 z . d zci.prev.id  <— w
9 z . d zci .prev.index  <— wcl

ELIMINATECLIQUE(t, t d )
Input: A pair ( t , t d ) ,  where t  is a vertex of G  and t d  is an index betw een 1 and  t.cin. 
O utput: E l im in a t e C l iq u e  elim inates the m axim al clique t .d td - n u m  from G.

1 w h i le  t .d td - n x  ^  t  d o
2 R e m o v e F r o m C l iq u e (1 .d tci-nx, t .d td  .nx.index)
3 F r e e C l iq u e  ( t .d td -n u m )
4 t .d td  <— NIL

C .2.2 A dd ing a vertex

Recall the algorithm  A d d V e r t e x , found in Figure 5.3, which is used to  relabel an r-m ino 

when a vertex is added. The following pseudocode can be used to  im plem ent A d d V e r t e x .

A d d V e r t e x (G , X )
Input: An adjacency labelling of an  r-m ino G  created using our dynam ic scheme, and a 
subset X  o i V G.
O utput: Let G' be the  graph  formed by adding a new vertex v  to  G, where v is adjacent to 
exactly those vertices in X .  Providing G' is an r-m ino, the o u tp u t is an adjacency labelling 
of G '. If G' is not an r-m ino, the  o u tp u t indicates as such.

1 v <r~ G e t I d e n t i f i e r V e r t e x ( )
2 i f  X_ =  0 t h e n
3 /  <- NIL
4 P u s h ( / , v)
5 M a k e N e w C l iq u e (J)
6 e ls e  (C.C)G e t C l iq u e s (A )
7 V  <- 0

9
10
11
12
13
14

8 w h ile  C ^  NIL d o
(,T, xcl) P O P ( C )

C <—■ C \  {x .d x c i .n u m }
(C .C )  <— GETCLIQUEMEMBERS(a:,xd) 
C 7 NIL 
subset ±  1 
w h ile  C  =/=■ NIL d o

15
16
17
18
19
20 
21

(c,ccl) <- P o p ( G )

if  c G X  t h e n
P u s h (C / , c)

e ls e  subset <— 0
if  G e t C o m m o n C l iq u e s (C /) g C u P  t h e n

D f - D U  { x . d x c i . n u m }
i f  subset  =  1 t h e n
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22 A d d T o C l iq u e (w, x , xcl)
23 e ls e  PUSH (C ',v )
24 M a k e N e w C l iq u e (C ')

1: We obtain  an identifier for the  new vertex.

2-5: If v  is an isolated vertex, th en  it  belongs to  exactly  one m axim al clique, {u}.

6: We determ ine C, the  set of m axim al cliques th a t  contain a vertex of X .

7-24: For each m axim al clique C  in  C, we wish to  know if C 1 U {w} is a m axim al clique of 

G', where C '  =  C  ft X .  W hen we select a m em ber C  from C, we discard it from C, 

however, if C'  U {t>} is a m axim al clique, th en  we add C  to  T>.

8-11: We select C  from C, remove C  from C, and determ ine the  vertices in C.

12-18: We determ ine C '  =  C  fl X .  W hile doing so, we determ ine if C  C X .

19-24: The clique C '  U {?;} is m axim al if and  only if it is no t contained in any maximal 

clique in C or T>. If C'  U {u} is m axim al and  C  C X ,  th en  we add v  to  C,  as C  will 

no longer be m axim al in G'. If C '  U {n} is m axim al and G % X ,  then  we make a new 

m axim al clique of C '  U {V}, as C  will continue to  be m axim al in G '.

M a k e N e w C l iq u e (S')

Input: A non-em pty stack S  of vertices.

O utpu t: A m axim al clique consisting of the  vertices in S.

1 t <- P O P ( S )
2 A D D T o C L I Q U E ( f ,£ ,  NIL)

3 w h ile  S  +  N i l  d o
4 s <— P o p (S)
5 A d d T o C l iq u e (s , t , t .c in )

A d d T o C l iq u e ( t / ,  w , wcl)

Input: A triple (y , w , w d ), where w  and y  are vertices. If w  ^  y,  then  1 <  wcl < w .c in , 
otherwise, wcl — NIL.

O utput: If w  7  ̂ y, then  A d d T o C l i q u e  adds the  vertex y  to  th e  m axim al clique w.clwci .num .  
Otherwise, A d d T o C l iq u e  in itiates a new m axim al clique {y}.

1 y .c in  <— y .c in  +  1
2 C H E C K R C L IQ U E S (y )
3 ycl  <— y .c in
4 if w  =  y  t h e n
5 c l iq u e n u m  <— G e t I d e n t i f i e r C l i q u e ( )
6 y . d y d . n u m  <— cliquenum.
7 y.c lyci .prev .id  <— y
8 y.c lyd  .p rev . in d e x  <— ycl
9 y . c l y d . n x . i d  <—  y

10 y .c ly d .n x . in d e x  <— ycl
11 e l s e  y.biclybici-num w.bic lwbiCi..num
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12 z <— w.clwci.nx .id
13 zcl <— w.clwci .nx . index
14 w .d wci.n x . id  <— y
15 w.clwci .n x . in d e x  <—- y d
16 y.clyd.prev.id  <— w
17 y.dyci.prev .index  *— wcl
18 y.c lyd .nx .id  z
19 y .c lyd .nx .index  <— zcl
20 z.clz d .prev.id  <— y
21 z.clzci .prev.index  <--  y d

C h e c k R C l i q u e s (£)

Input: A vertex t.
O u tp u t :  C h e c k R C l i q u e s  e n s u r e s  t h a t  t  b e lo n g s  t o  n o  m o re  t h a n  r  m a x i m a l  c liques.

1 i f  t.cin > r  t h e n
2 e r r o r  t h e  g r a p h  is no  lo n g e r  a n  r - m in o

C .2.3 D eletin g  an  edge

Recall the  algorithm  D e l e t e E d g e , found in Figure 5.4, which is used to  relabel an r-m ino 

when an edge is deleted. T he following pseudocode can be used to  im plem ent D e l e t e E d g e .

D e l e t e E d g e ( G ,  u , v )

Input: An adjacency labelling of a r-m ino G  created using our dynam ic scheme, and  two 
distinct vertices u  and  v  of Vq for which uv  £ E g -
O utput: An adjacency labeling of a graph G' formed by deleting the  edge uv  from G, 
providing G' is an r-m ino. If G' is not an r-m ino, then  the  o u tp u t indicates as such.

1 (Cu ,C l)  <— G e tC l iq u e s ( { m } )
2 (Cv ,C l)  <— G e tC l iq u e s ( { u } )
3 t  <— NIL_
4 w h ile  Cv ^  n i l  d o
5 (x ,  x d )  <— P o p (G ,)
6 i f  x . d xci . n u m  £  Cu t h e n
7 P u sh (C , ( x , x d ) )
8 w h ile  C ^  NIL d o
9 (x , x d ) <— P o p (C )

10 (C ,C ) <— G e tC l iq u e M e m b e r s ( x ,x c Z )
11 <— NIL
12 C l  <- NIL
13 w h ile  C  ^  NIL d o
14 (c , c d ) <— P o p (C )
15 i f  c ^ u  t h e n
16 P u s h (C ^, c)
17 e ls e  u d  <— c d
18 i f  c ^  v  t h e n
19 P u s h ( C ' , c)
20 e ls e  v d  <— c d  __
21 i f  G e tC o m m o n C l iq u e s ( C ')  =  { x . d x c i . n u m }  t h e n
22 R e m o v e F r o m C l iq u e ( u ,  vcl)
23 i f  G e tC o m m o n C l iq u e s ( C 'J  =  {x .c lxc[ .n u m }  t h e n
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24 M a k e N e w C l iq u e (C4)
25 e l s e i f  G e t C o m m o n C l iq u e s ( C ' ) =  {x.clxci .n u m }  t h e n
26 R e m o v e F r o m C l iq u e (m, ucl)
27 e ls e  E l im in a t e C l iq u e (x , xcZ)

1,2: We determ ine Cu and Cv , the  set of m axim al cliques th a t  contain  u  and v, respectively.

3-7: We ob tain  C =  Cu D Cv .

8-27: For each m axim al clique G in C, let C'u =  C  \  {u }, and let C'v =  C  \  {a}. Since G 

will no longer be a clique, we wish to  know w hether C'u and C'v are m axim al in G '.

8-20: We calculate G'u and C'v . The values ucl and vcl are the  indices for which u.cluci.num  = 

v.c lyd .num  = x.clxci.num .

21-27: The cliques C'u and  C'v are maximal if and only if it th ey  are no t contained in a 

m axim al clique of G, o ther th an  C. If only 6" is m axim al in G ', we develop this 

m axim al clique by removing u  from G; similarly, if only C'v is m axim al in G', we 

develop th is  m axim al clique by removing v from C. If neither C'u nor C'v is a maximal 

clique in G', we elim inate the  maximal clique C . If bo th  C'u and C"v are maximal in 

G ', then  we develop C'v by removing v  from G, however, C'u m ust be developed by 

establishing a new m axim al clique.

C .2.4  A dd ing an edge

Recall th e  algorithm  A d d E d g e , found in Figure 5.5, which is used to  relabel an r-m ino 

when an edge is added. T he following pseudocode can be used to  im plem ent A d d E d g e .

A d d E d g e ( G ,  u , v )

Input: A n adjacency labelling of an r-m ino G created  using our dynam ic scheme, and two 
distinct vertices u  and v of Vg for which uv  ^  E g -
O utput: An adjacency labeling of a graph G ' formed by adding the  edge uv  to  G, providing 
G' is an r-m ino. If G' is not an r-m ino, then the  o u tp u t indicates as such.

1 i f  v .c l \ .nx  = v t h e n
2  E l i m i n a t e C l i q u e ( w ,  1)
3 X  * -  G e t N e i g h b o u r s ( u )  U {u}

4 (C,C) <— G e t C l i q u e s ({ u })
5 V  0 _
6 w h i l e  C ^  n i l  d o
7 (x, xcl)  <— P o p (C)
8 C <— C \  {x.clxci .num }
9 ( G , G )  < -  G e t C l i q u e M e m b e r s ( x ,  x c l )

10 C'  <-- NIL
11 su b se t jt— 1
12 w h i l e  C  7  ̂ NIL d o
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13 (c, c d )  <— P o p (C )
14 if  c £ X  th en
15 P u s h (C " ,c)
16 e lse  subset  <— 0 __
17 i f  G e tC o m m o n C liq u e s IC " )  g  C U V  th e n
18 V  <— T> U { x .d xci .n u m j
19 if  subset =  1 th e n
20 A d d T o C l iq u e ( v ,  x , xcl)
21 e lse  P u s h ( C ' ,  v )

22 M a k e N e w C l iq u e (C ')

1-2: If v is an isolated vertex in G , th en  {u ,v }  will be a clique in G '. We elim inate the 

m axim al clique {u} now, bu t will la ter add  v to  some m axim al clique containing u.

3: We let X  be the  set of neighbours of v in G '.

4: We determ ine C, the  set of m axim al cliques th a t  contain u.

5-22: For each m axim al clique C  in C, we wish to  know if C'  U {v} is a m axim al clique of 

G ', where C ' = C  C\ X . W hen we select a m em ber C  from C, we discard it from  C, 

however, if C'  U {«} is a  m axim al clique, th en  we add C  to  V.

6-9: We select C  from C, remove C  from C, and determ ine the  vertices in C.

10-16: We determ ine C' — C  H X .  W hile doing so, we determ ine if C  C X

17-22: The clique C '  U {u} is m axim al if and only if it  is not contained in any m axim al 

clique in C or V .  If C'  U {v} is m axim al and  C  C X ,  then  we add v to  C , as C  will 

no longer be m axim al in G '. If C  U {?;} is m axim al and C  % X ,  then  we make a new 

m axim al clique of C'  U {v}, as C  will continue to  be maximal in G '.

GETNEIGHBOURS(f)

Input: A vertex t  of G.
O utput: The set S  of neighbours of t  in G.

1 (W,W)  * -  G ETC LIQ U ES({t})
2 S  <- 0 _
3 w h i l e  W  ^  NIL d o
4 (w , w c l ) <— P o p ( W )
5 (Y ,F )  <- G e t C l iq u e M e m b e r s (w , w cl)
6 5 « - S U F
7 r e t u r n  S
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C .3 r-b ics

C .3.1 D e le tin g  a  v ertex

Recall the algorithm  D e l e t e V e r t e x , found in  Figure 5.7, which is used to  relabel a r-b ic 

when a vertex is deleted. T he following pseudocode can be used to  im plem ent D e l e t e V -  

e r t e x .

D e l e t e V e r t e x ( G ,  v )

Input: An adjacency labelling of an r-b ic G  created using our dynam ic scheme, and a vertex 
v in Vg - Here we presum e th a t  r  £  0 (1 ) , thereby ensuring error-detection.

O utput: An adjacency labeling of an r-b ic G' formed by deleting v  from G.

1 fo r  % <-^_l t o  v .b in  d o
2 ( B , B )  <— G e t B ic l iq u e M e m b e r s (u , i )
3 R 7  <— NIL
4 w h i le  B  ^  NIL d o
5 (b, bbicl) <— P o p ( R )
6 bpart  <— b.biclbbid-Pa r t
7 i f  t h e n
8 P u s h ( R / , (b, bpart))
9 i f  G e tC o m m o n B ic l iq u e s ( R ')  =  {v .b ic l i .n u m }  t h e n

10 R e m o v e F r o m B ic l iq u e ( u ,  i)
11 e ls e  E l i m in a t e B i c l iq u e ( u ,  i)
12 F r e e V e r t e x (u)

1-8- For each m axim al clique B  containing v , we ob tain  the  biclique B '  =  B  \  {r}. The 

variable bpart denotes the  part of th e  partition  of B  to  which b belongs.

9-11: If the m em bers of B '  share another m axim al biclique besides B .  then  we elim inate 

B .  O therwise, we sim ply remove v from B .

12: We free the  identifier of v  for fu ture use.

G e t B i c l i q u e M e m e b e r s (£, tbicl)
Input: A pair (t, tbicl), w here t is a vertex of G  and tbicl is an index between 1 and t.bin. 
O utput: Let S  denote the set of all vertices in the m axim al biclique t.bicltbicl-num. G e t -  
B i c l i q u e M e m b e r s  re tu rns the pair (S, S) ,  where S  is a  stack consisting of all pairs of the  
form (s,sbicl), w here s.biclsbiCi-num  =  t.bicltbiCi-num.

1 S < -  0
2 S  <- NIL
3 s <— t
4 sbicl <r-tbid
5 P u s h (S , (s , sbicl))
6 S ^ S U { s }
7 w h ile  s.biclsbid-nx.id ^  t d o
8 y <- s .b id Sbid-nx.id
9 sbicl <— s .b id s b i d -nx.index

10 s<r~y _
11 PUSH)^, ( s , sbicl))
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12 S  <— S  U_{s}
13 r e t u r n  (S, S)

G e t C o m m o n B ic l i q u e s (S )

Input: A non-em pty stack S  of pairs of the  form (s , t),  where s is a vertex, and t is a value, 
either 0 or 1.
O utpu t: For each vertex s in S, let B s denote the  set of m axim al bicliques containing s. 
G e t C o m m o n B i c l iq u e s  re tu rns f ls e s ^ s -

1 Pop (S)
2 ( A , A )  <— G e t B i c l i q u e s ( { s })

3 w h i l e  S  ^  n il  d o
4 P O P (S )
5 ( Y , Y )  < -  G e t B i c l i q u e s ( { s })
6 A ^ A n Y
7 r e t u r n  A

G e t B ic l iq u e s (S )

Inpu t: A non-em pty set of vertices S.
O utpu t: Let B s denote the set of all m axim al bicliques containing a vertex s, and let B  
denote (Jsgs  G e t B ic l iq u e s  re tu rns the  pair (B , T ), where T  is a stack containing an 
elem ent of the  form (t, i), for each en try  t .bicl i .num  of B.

1 T < -  0
2 T  <— NIL
3 fo r  s £ S  d o
4 fo r  i 1 t o  s.bin do
5 if  s.bicl i .num g  T  th e n
6 T  <— T  U {s.bicl i .num}
7 P ush  (T , ( s , i ) )
8 r e t u r n  (T, T)

R e m o v e F r o m B i c l i q u e (i/, ybicl)
Input: A pair (y, ybicl), where y  is a vertex of G  and  ybicl  is an index between 1 and y.bin.  
Moreover, y.bidybid..nx.id ^  y.
O utpu t: R e m o v e F r o m B i c l i q u e  elim inates y  from the  m axim al biclique y .b idyu ci-num.

1 t  <— y.bidybici-prev.id
2 tbicl <— y.biclvbici-Wev -index
3  z <— y.b idybid -nx.id
4 zbicl <— y.bidybid-nx. index
5 y.bidybid  < -  NIL
6 t.biclxbid-n x -id z
7 t .b idXbid-n x -index  <— zbicl
8 z.biclzbid-Pr ev -'id, t
9 z .b id Zbid-Pr e v -index <— tbicl

E l im in a t e B ic l iq u e (L tbicl)
Inpu t: A pair (t, tbicl), where t is a vertex of G  and tbicl is an index between 1 and t.bin. 
O utpu t: E l im in a t e B ic l iq u e  elim inates the  m axim al biclique t . b i d tbid-num  from G.

1 w h ile  t.bicltbid-n x  / I d o
2 REMOVEFROMBlCLlQUE(t.6ic/(i,iC(.na:, t .bicltbid-nx-index)
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3 F r e e B ic l iq u e  (t.bidtbici-num)
4 t . b i c l t b i c i  <- n i l

C.3.2 A dding a v ertex

Recall the algorithm  A d d V e r t e x , found in F igure 5.8, which is used to  relabel an r-b ic 

when a vertex is added. T he following pseudocode can be used to  im plem ent A d d V e r t e x .

A d d V e r t e x (G , X )
Input: An adjacency labelling of an r-b ic G  created  using our dynam ic scheme, and a subset 
X  of Vc- Here we assum e th a t  X  yf 0.
O utput: Let G'  be the  graph formed by adding a new vertex v to  G, w here v  is adjacent to  
exactly those vertices in  X .  Providing G'  is an  r-b ic, the  ou tpu t is an adjacency labelling 
of G ' . If G'  is not an  r-b ic, the  o u tp u t indicates as such.

1 v < -  G e t I d e n t i f i e r V e r t e x Q
2 x  <^_some m em ber of X
3 (B, B) <—  G e t A l l B i c l i q u e s ( x )
4 £> e -  0 _
5 w h i l e  B  ^  NIL d o
6 (c, cbicl) <— P o p (£>)
7 B  <— B \ { c . b i d cbid-num.}
8 ( B , B )  <— G e t B ic l i q u e M e m b e r s (c, cbid)
9 P ^  < - NIL

10 <— NIL
11 equalo <— 1
12 equali  <— 1
13 w h i l e  B  ^  n il  d o
14 (b,bbid) P o p (B )
15 bpart  <— b.bidbbici-pad
16 i f  b £  X  t h e n
17 PUSH { P ? _ b p a r v  (b, bpart))
18 e q u a l b p g r t  <— 0

19 e l s e  P u S H ( P ^ a r t , (6, bpart))
20 equali^bpart * 0
21 in d u d e  <— 0
22 f o r  i <— 0 t o  1 d o  ___
23 i f  G e t C o m m o n B i c l i q u e s ^ 5 ) %  B  U V  t h e n
24 in d u d e  <— 1
25 i f  subset  =  1 t h e n
26 A d d T o B i c l i q u e (v , i ,c,  cbid)
27 e l s e  P u s h (PtB , {v, i))
28 M A K E N EW B lC L IQ U E (PiS )
29 i f  include =  1 t h e n
30 V  <— T> U {c.bidcbici-num}

1: We obtain an identifier for the new vertex.

2,3: We determ ine B , the  set of m axim al bicliques of G.

4-30: For each m axim al biclique B  in B , let {Bo, H i} be the b ipartition  of B,  and let 

{ P q , P i }  denote the partition  of B  defined by b G  P f  if and only if b G  X  and
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b Bi,  or b £  X  and b £ Bi.  We wish to  know if P B U {u} is a m axim al biclique of

G ' .

W hen we select a m em ber B  from B , we discard it from B , however, if either P B U {w} 

or P B U {u} is a  m axim al biclique, then  we add  B  to  V.

5-8: We select B  from  B , remove B  from B, and determ ine th e  vertices in B .

9-20: We determ ine P B and P B . The variables equalo and equal\  are used to  let us know 

if P B = B  or P f  =  B ,  respectively.

21-30: The biclique P B U {u} is m axim al if and only if it is no t contained in  any m axim al 

biclique in  B  or V .  If P B U {?;} is m axim al and  P[s = B ,  then  we add  v to  B,  as 

B  will no longer be m axim al in G ' . If P B U {v } is m axim al and  P f  ^  B,  th en  we 

make a new m axim al biclique of P B U {?;}, as B  will continue to  be m axim al in CP. 

Specifically, in th e  new biclique th e  vertices of P B will belong to  the  sam e p a rt of the 

b ipartition  th a t  they  belonged to  in B,  while v  will be added to  the  i th part of the 

b ipartition.

29,30: Recall th a t  B  is added to  V  if either P<f U {w} or P B U {v}  is m axim al in G ' .

G ETA LLB lC LIQ U ES(f)

In p u t :  A v e r te x  t.
O u tp u t:  L e t B s d e n o te  th e  s e t o f a ll m a x im a l b ic liq u e s  c o n ta in in g  a  v e r te x  s, a n d  le t B  
d e n o te  U se v G G e t A l l B i c l i q u e s  r e tu rn s  th e  p a ir  (£>, T ) ,  w h e re  T  is a  s ta c k  c o n ta in in g  
a n  e le m e n t o f th e  fo rm  fo r e ach  e n try  t .bicl i .num  o f B.

1 ( 5 ,5 )  <— G E T A LL V ER T IC E S({t})
2 T  <— 0
3 T  <- NIL
4 w h i le  5  NIL d o
5 s <— P o p (5)
6 f o r  i <— 1 t o  s.bin  d o
7 i f  s.bicl i .num  ^  T  t h e n
8 T  <— T  U {s.bicli .num}
9 P u s h ( T ,  ( s , i ) )

10 r e t u r n  (T , T)

G ETA LLV ER TIC ES(t)

In p u t:  A v e r te x  t.

O u tp u t:  T h e  p a ir  ( V g , V g ) .

1 ( Z ,Z )  <— G E T B lC L IQ U E S({t})
2 5  <— 0
3 5 < -  NIL
4 w h i le  Z  ^  NIL d o
5 (z , z b i c l ) <— P o p ( Z )
6  <— G e t B i c l i q u e M e m b e r s ( z ,  zbicl)
7  w h i l e  Y  ^  NIL d o
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8 (y, yb id)  <— P o p (y )
9 i f  y & S  t h e n

10 S  <- S U  {y}
11 P u s h  (S ,y )
12 r e t u r n  (S, S)

1-12: Using a single vertex t, we obtain  S  = Vq  by tak ing  the  union of th e  vertices in all 

the  bicliques in which it is contained.

1: We first ob ta in  Bt , the  set of all m axim al bicliques containing t.

2-6: For each m axim al biclique of Bt,  we ob ta in  its  vertices.

A D D ToB iC L lQ U E (t/, ypart,  t, tbicl)
Input: A 4-tuple (y, ypart,  t, tbicl), where t  and  y  are vertices and ypart  is a value, either 0 
or 1. If t  ^  y, th en  1 <  tbicl < t.bin,  otherwise tbicl =  NIL.

O utpu t: If t  ^  y,  then  A d d T o B i c l i q u e  adds th e  vertex y  to  the  ypar t ih part of the 
b ipartition  of th e  m axim al biclique t.bicltbiCi-n u m ■ O therw ise, A d d T o B i c l i q u e  in itiates a 
new m axim al biclique {y}.

1 y.bin <— y.bin +  1
2 CHECKRBlCLIQUES(y)
3 ybicl <— y.bin
4 y.biclybid .part  <— ypart
5 i f  t =  y  th e n
6 bicl iquenum  <- G e t I d e n t i f i e r B i c l i q u e ()
7 y.biclybid .num  <— bicl iquenum
8 y.biclybid .prev.id <—  y
9 y.biclybid -prav.index *— ybicl

10  y.biclybid - n x -id <—  y
11  y.biclybid-nx.index  <—  ybicl
12 e lse  y.biclybid-num t.bicltbid-num
13 z  <— t.bicltbid-ax.id
14 zbicl <— t .bidtbid-nx. index
15 t.bicltbid-nx.id <— y
16 t .bicltbid-nx.index  <— ybicl
17 y.biclybid -prev.id «— t
18 y-biclybid -prev.index  <— tbicl
19 y.biclybid-nx.id <— z
20  y.biclybid-nx.index  <—  zbicl
21  z.biclzbid-prev.id <—  y
22  z.biclzbid-prev-index  <—  ybicl

C h e c k R B i c l i q u e s  (t)
Input: A vertex t.
O utpu t: C h e c k R B i c l i q u e s  ensures th a t t belongs to  no more th an  r  m axim al bicliques.

1 i f  t.bin >  r  t h e n
2 e r r o r  the graph is no longer an  r-b ic

M a k e N e w B i c l i q u e (S )

Input: A non-em pty stack S  of pairs of the  form (s, spart) ,  where s is a vertex and spart  is 
a value, either 0 or 1.
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O utput: A m axim al biclique consisting of th e  vertices in S,  where a vertex  s is placed in 
the spart th p a rt of the bipartition .

1 (t , t p a r t ) Pop(iS ')
2 ADDToBiCLiQUE(t, t part ,  t ,  n i l )
3 w h ile  S  N il  d o
4 (s, spar t )  <— P o p (5 ')
5 A d d T o B ic l iq u e  (s, spar t ,  t,  t .bin)

C .3.3 D eletin g  an edge

R ecall th e  a lg o rith m  D e l e t e E d g e , found  in  F ig u re  5.9, w hich is used  to  re lab e l a  r-b ic  

w hen an  edge is deleted . T h e  following p seudocode  can be used to  im p lem en t D e l e t e E d g e .

D e l e t e E d g e ( G ,  u , v )

Input: An adjacency labelling of an  r-b ic  G  created using our dynam ic scheme, and two 
distinct vertices u  and v  of Vq for which u v  G E g -
O utpu t: An adjacency labeling of a  graph  G'  formed by deleting th e  edge u v  from G, 
providing G' is an r-bic. If G'  is no t an r-b ic, th en  the ou tpu t indicates as such.

1 (C,C) G e t B i c l iq u e s ({ « } )
2 (C „,Z Q  <— G e t B i c l i q u e s ({ u})
3 B 0
4  B  <— NIL_
5 w h i l e  Cv ^  NIL do
6 (x ,xb i c l ) <— P o p (Cv )
7 i f  x  G C t h e n
8 B  v-  B_U {a:}
9 P u s h (B , ( x ,  xbid) )

10 w h i l e  B  ^  NIL do
11 (x ,xb ic l ) <— P o p (B )
12 ( B ,B )  <— G e t B i c l iq u e M e m b e r s (x , zircd)
13 i f  B  ^  { u ,v }  t h e n
14 <— NIL
15 ~WV v -  NIL
16 w h i l e  B  NIL do
17 (b,bbicl) <— P o p (B )
18 bpart <—  b.biclbbici-Part
19 i f  b ^  u  t h e n
20 P u s h (B[,  (6, bpart))
21 e l s e  ubicl <— bbicl
22 i f  b ^  v t h e n
23 P u s h  (B'v , (b,bpart))
24 e l s e  vbicl <— bbicl ___
25 i f  G e t C o m m o n B i c l i q u e s ( B ( , )  =  {x . b i c l xbl, d - n u m } t h e n
26 R e m o v e F r o m B i c l i q u e (w, vbicl)
27 i f  G e t C o m m o n B i c l i q u e s ( P ^ )  =  {x .b idxbici .num }  t h e n
28 M a k e N e w B i c l i q u e (R 4 )

29 e l s e i f  G e tC o m m o n B i l i q u e s ( 7 ? 4 )  =  {x . b i d x b i c i - n u m } t h e n
30 R e m o v e F r o m B i c l i q u e (w, ubicl)
31 e l s e  E LlM lN A T E B lC L lQ U E (x,a:b id)
32 (V, F )  <— G e t A l l V e r t i c e s (u )
33 X u <— G e t N e ig h b o u r s (-u) \  {u}
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34 X v <— GetNEIGHBOURS(x) \  {u }
35 W  <- 0 _
36 w h i le  V  ^  NIL d o
37 x  <- P o p (V)
38 i f  (x 6 X u and  x  £  X v ) or (x ^  and x  0  A „) t h e n
39 W  <— W  U {x}
40 V  <- 0 _
41 w h i le  C ^  NIL d o
42 (c, cbicl) <— P o p (C)
43 C <— C \  {c.biclcbici-num)
44 ( B , B )  <— G e tB ic l iq u e M e m b e r s ( c ,  cb id )
45 S '  <— n il
46 subset  <— 1
47 /ia sx  ^ _ 0
48 w h i le  B  ^  NIL d o
49 {b,bbicl) <— P o p (B )
50 bpart <— b.biclbbid-Par t
51 i f  b £  W  t h e n
52 i f  b = u  t h e n
53 u p a r t  «— b.biclbbid-part
54 i f  b =  v  t h e n
55 u p a r t  <— b.biclbbid-part
56 vbicl <— bbicl
57 /iasw <— 1
58 e ls e  P u s h (B ',  (6, bpart))
59 e ls e  subset  <— 0 __
60 i f  G e tC o m m o n B ic l iq u e s ( jB/) % C U V  t h e n
61 V  <— V  U {c.bic lcbid-num}
62 i f  subset  =  1 t h e n
63 i f  hasv  =  1 t h e n
64 v.biclybid-part  =  1 — vpar t
65 e l s e  A d d T o B ic l iq u e (v, upart,  c1 cbicl)
66 e l s e i f  hasv  =  1 t h e n
67 E l im in a t e B ic l iq u e (c, cbicl)
68 P u s h  ( W , ( v ,  upar t ) )
69 M a k e N e w B ic l iq u e (B ')
70 e ls e  P u s h ( B ' , ( v ,  upart ) )
71 M a k e N e w B ic l iq u e (B ')

1-9: W here Bx denotes th e  set of all m axim al bicliques containing x, we first determine 

C = Bu and B  = Bu fl B v. For now, B  m ay contain the  m axim al biclique consiting of 

only u  and v.

10-24: If any m axim al biclique in B  consist of only u  and v, th en  we ignore it. Henceforth, 

for any B  in B , we can assume th a t B  ^  {u, v}

For each m axim al biclique B  in B , let B'u =  B  \  {u}  and let B'v =  B \  {u}. Since B  

will no longer be a biclique, we wish to  know w hether B'u and B'v are m axim al in G ' .

14-24: We calculate B'u and B'v . The values ubicl and vbid  are th e  indices for which 

u.biclybid-num =  v. biclybid-num = x.biclxbiCi-num.

25-31: The bicliques B'u and B'v are m axim al if and only if it th ey  are not contained in 

a m axim al biclique of G.  o ther th an  B.  If only B'u is m axim al in G',  we develop 

th is  maximal biclique by removing u  from B;  similarly, if only B'v is m axim al in G 1,
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we develop this m axim al biclique by rem oving v  from B.  If neither B'u nor B ’v is a 

m axim al biclique in G ' , we elim inate th e  m axim al biclique B .  If bo th  B ’u and B'v 

are m axim al in G", then  we develop B'v by removing v from B ,  however, B'u m ust be 

developed by establishing a  new m axim al biclique.

32-39: Let X u and X v denote the  neighbourhoods of u  and v  in G ', respectively. We 

calculate W ,  the  subset of Vg for which w  £ W  \i  and only if w  G X u w  G X v .

40-71: For each m axim al biclique B  in C, we wish to  know if B '  U {u} is a m axim al biciique 

of G ', where B '  =  ( B \  {u}) fl W .  W hen we select a m em ber B  from C, we discard it 

from C, however, if B '  U {?;} is a m axim al biclique, then  we add B  to  V.

42-44: We select B  from C, remove B  from C, and determ ine th e  vertices in B.

45-59: We determ ine B '  = (B  \  {u}) fl W .  The value vbicl is the index for which 

v.biclybid.num = x.biclxbid-n u m ■ The values upar t  and vpart  are th e  parts of the 

biparition of B  th a t u  and v  belong to , respectively. W hile determ ining B',  we are 

also able to  determ ine if B '  C W  and if v £ B .

60-71: The biclique B '  U {v} is m axim al if and only if it is not contained in any m axim al 

biclique in C or P . If B  C W  and v  G B ,  then  B  =  so we m erely switch the

value of v.part  th a t corresponds to  B .  If 5  C W  and  v  ^  £?, then  we sim ply add v to  B  

as B  will no longer be m axim al in G ' . If B  £  W  and v £ B ,  then  B  no longer rem ains 

m axim al, so we replace B  w ith  B '  U {v}. In  th is  case, B '  U {u} =  B  0  W  — {u ,v } ,  

where u  and v will belong to  the  same p a rts  of the  b ipartition . Finally, if B  g  W  and 

v  0  B,  then  we create a new m axim al biclique B '  U {?;}, as B  will continue to  rem ain 

m axim al in G ' .

G e t N e ig h b o u r s (<)

Input: A vertex t of G.
O utpu t: The set 5  of neighbours of t in G.

1 ( Z , Z ) < -  G E T B lC L IQ U E S ({ f} )
2 S ^ - 0 _
3 w h ile  Z  /  NIL d o
4 (z, zcl) P o p (Z)
5 (F ,F )  <— G e t B ic l iq u e M e m b e r s (z , zcl)
6 S ^ S B Y
7 r e t u r n  S
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C .3.4 A dd ing  an  edge

As discussed in Section 5.2.2, the pseudocode required to  add an edge would be sim ilar to  

th a t presented in Section C.3.3, differing only in the definition of W ,  and the  fact u  and  v 

will now need to  belong to  different p a rts  of any common biclique.

C .4 P rop er in terval graphs

As we did in C hapter 6, we m ain tain  th e  convention of offsetting vertex  level conditions 

in square brackets, for exam ple, “F l ( B ( v )) = B{v) [ f i{v )  = b(v)]”. As well, recall th a t 

nearly all of th e  conditions m entioned herein can be tested  in  0 (1 )  tim e. As such, we will 

only comment on the  tim e required to  check a  condition if it takes w (l) tim e to  check the 

condition. Furtherm ore, recall th a t, for any vertex v and pointer Q, Q ( P ( B ( v ) ) )  can be 

“followed” in 0 (1 ) tim e, using the  labels of v and P(B( v ) ) .  For simplicity, when referring 

to  the vertex P ( B ( v ) ) ,  we will use the  m ore com pact notation  P(v);  in tu rn , when referring 

to  the  vertex Q(P(v) ) ,  we will use th e  no ta tion  Q(v).

W hen we discussed th e  relabeller in  C hap ter 6, we saw several instances w here additional 

criteria had to  be tested  in order to  confirm  th a t G'  was a proper interval graph. The reader 

should consult C hapter 6 to  see when such additional criteria m ust be tested . In  the  ensuing 

discussion, we focus on th e  specific actions of the  relabeller when we know th a t  G'  is a proper 

interval graph.

C .4.1 D e letin g  a v ertex

Let v be the  vertex to  be deleted, w here X  denotes the neighbourhood of v  in G. As well, 

let the  contig containing B ( v )  be B \  ^  . . .  Bi  -< . . .  r< -B; ■< . . .  ^  B j  . . .  ■< Bk,  

where Bi = B(v) ,  B i  = F r ( B i ), and B j  — Fr ( B i). The action of the  relabeller depends on 

whether Bi = {v} \nx(y)  =  u].

If Bi  contains another vertex besides v, then  the  straight enum eration rem ains the same, 

however, v  is removed from Bi.  Specifically, our labelling is am ended as follows.

•  Remove all references to  v.

— We m ust change all references to  v as a pointer vertex. Specifically, if v = P(v) ,  

then we make nx (v )  the  pointer vertex by changing its label to  reflect the  pointers, 

and changing the  labels of all the  vertices in B[ to  reflect th a t n x { v)  is the new 

pointer vertex. This change can be done in 0 ( |f? i|)  G 0 ( |X |)  tim e by traversing 

Bi,  beginning a t v. Let q be the  resulting pointer vertex of Bi.

— We m ust change all references to  v  in I r  and I r  pointers. Providing I l ( B i )  /  NIL 

[IiAq) /  n i l ] ,  set I R (IL (q)) to  q. Similarly, providing I r ( B i )  yf NIL, set I L ( I R (q)) 

to  q. These changes take 0 (1 ) time.
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— We m ust change all references to  v  in Fl  and  Fr  pointers. Specifically, for any 

block B ,  if Fl (P{B))  or Fr (P(B))  is v,  th en  we change its value to  q. Now, if 

Fr (P(B))  = v , then, by Lem m a 6.7 (um brella property), B i <  B  ■< B i ; similarly, 

if Fl {P(B))  = v,  then  Bi  ^  B  ^  B j .  As such, we can recursively follow I r and I r 

pointers to  determ ine all such blocks B.  These changes take 0 (deg(Bi))  £ 0 ( |X |)  

tim e.

— We m ust remove v  from th e  circular doubly linked list of the  vertices in B r This 

removal takes 0 (1 ) time.

•  Decrease the  value of s(Bi)  [s(g)J by one. T his operation takes 0 (1 )  time.

•  Delete v. This deletion takes 0 (1 ) tim e.

If v  is in a block by itself, we again remove all references to  v, however, we m ay also 

have to  merge blocks, as depicted in F igure 6.4. Specifically, if v  is in a block by itself, our 

labelling is changed as follows.

.  If 1 <  i < I [fL (v) ±  Sl {Fl {v )) and f L (v) + b(v)}, FL ( B i - i )  =  F i (B i ) \ f L ( IL(FL (v))) =  

f d F d v ) ) } ,  and  FR ( B i - i) =  B t- i  [fr ( Il (FL {v))) = b(IL (v))], th en  merge B t into 

B i - 1-

— Add th e  value of s(JB») to  s (B i_ i)  [add s (P(Fl (v))) to  s (P( I l {Fl (v))))]. This 

operation  takes 0 (1 )  time.

— Set I R { B i - 1) to  B i+ 1 [I r (Il {Fl (v ))) to  I r (Fl (v))] and l L ( B i+1) to  B i -1  [I L (IR (FL (v))) 

to  I l (Fl {v ))}. These assignm ents take 0 (1 )  tim e.

— U pdate  th e  labels of the  vertices of Bi  to  reflect the  fact th a t  P ( B i - i )  [P( I l {Fl (v )))] 

is th e  pointer vertex of the  m erged block. This update  can be done in 0(|£?i|) G 

O d A j) tim e by traversing Bi,  beginning a t F L (v).

— Merge the  two circular doubly linked lists, using P ( B i - 1) [P(Il (Fl {v)))} and 

P{Bi)  [P(Fl (v ))] as reference points. T his merge takes 0 (1 ) time.

•  If I < j  < k, Fr (Bj ) — FR (B j+1), and FL (B j+ i) = B i+ 1 then  merge B j  into B j+1.

This merge takes 0 ( |I? j |)  £ 0 ( |X |)  tim e.

•  Providing I l (B i) n i l  [I r {v) ^  n i l ] ,  set I r (Il {Bi)) to  I r (B i) \Ir (Il (v)) to  I r {v)]. 

Similarly, providing I r {Bi) ^  NIL, set I l (Ir (B i)) to  I l {Bi). These assignments take 

0 (1 ) tim e.

•  For each block B  in { B i , . . .  if Fr {B) = Bi  [f R { P { B )) =  i>(u)], then  set Fr (B)

to  B i - i  [Fr ( P( B) )  to  I l (v )]- As  well, for each block B  in {Bi +1 , . . . ,  Bj } ,  if FL (B)  =

Bi,  then  set F r (B)  to  Bi+ These assignm ents can be done in O (deg(B[))  G 0 ( |X |)  

time, by recursively following I r and I r  pointers to  determ ine all such blocks B.
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•  Delete v. This deletion takes 0 (1 )  time.

•  Relabel the  blocks and  adjust the  b, f i ,  and Jr  values. This operation  takes O (n)

time.

C .4.2 A dding a  v ertex

Let v  be the vertex to  be added, where X  denotes th e  neighbourhood of v in G ' . H ereafter, 

we assume th a t Lem m as 6.12 and 6.13 are satisfied by our vertex addition. Recall th a t, 

while verifying th a t Lem m as 6.12 and 6.13 are satisfied, we learn a  great deal about the 

structure  of the  blocks. T his inform ation can be used to  help us relabel th e  vertices.

In  describing the  relabelling, let us first consider when the m em bers of X  belong to  one 

component, C.  As in th e  hypothesis of Lem m a 6.13, let {£?!,...,£?*,} denote the set of 

blocks in C  th a t  are adjacent to  v, such th a t  in the  contig of C, B \  -< . . .  -< Bk-  We consider 

three cases, depending on th e  value of k.

1. k = 1. By Lem m a 6.13, B \  is an end block. W ithou t loss of generality, assume th a t

B \  -< B ,  for any block B  in C.

If v  is fully adjacent to  B \ ,  and C  =  B \  ( [ //j(u i)  =  fr(vi)], then  we add v to  B \ .  

Specifically, we do th e  following.

•  Add v to  th e  circular doubly linked list of vertices in B \ , using v\  as a reference 

point. This addition  takes 0 (1 )  tim e.

•  Establish the  label of v  to  reflect the  pointer vertex for B i ,  P ( v i) , while setting 

its b, f i ,  and  / r  values to  those of iq . Establishing th e  label of v  takes 0 (1 ) 

time.

•  Increase the  value of s(-Bi) [s(P (u i)) | by one. This ad justm ent requires 0 (1 ) 

time.

If v  is fully adjacent to  B \ ,  bu t C  B i ,  then  we add the  block B a =  {u} im m ediately 

before B \ .  Specifically, we do the  following.

• Establish th e  triv ial circular doubly linked list for B a. E stablishing this circular 

doubly linked list takes 0 (1 ) time.

•  Establish v as the  pointer vertex of B a. For now, assign the pointer values of 

P ( v i) to  v. Establishing th is pointer vertex takes 0 (1 ) time.

• Providing I l { B \ )  n i l  [IL (v i) n i l ], set I R (IL (B{))  to  B a [ I r ( I l {vi))  to  v\. 

This assignm ent takes 0 (1 ) time.

Once this I r  pointer has been assigned, set I r {Bo) to  B \  [I r (v ) to  Vi] and I i ( B i) 

to  B a [IL (v i)  to  «]. These assignm ents take 0 (1 ) time.
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•  Set FL (Ba) to  B a [F l (v) to  v\, F R (B a) to  B b [F r(u ) to  r?i], and F L{B{)  to  B a 

[Fl (v i) to  v\. These assignm ents take 0 (1 )  time.

•  Set s ( B a) [s(w)] to  one. This assignm ent takes 0 (1 )  tim e.

•  Relabel the  blocks and ad just th e  b, f R , and  f R values. This operation can be 

done in 0 (n )  tim e.

If v  is not fully adjacent to  B i, then  we partition  B \  U {u} in to  B a -< B b -< B c, where 

B a =  {u}, B b = X , and B c = B \  \  X .  Specifically, we do th e  following.

•  Establish the  triv ia l circular doubly linked list for B a. E stablishing th is circular 

doubly linked list takes 0 (1 )  time.

•  Establish v as the  po in ter vertex  of B a. For now, assign th e  pointer values of 

P{vi )  to  v. E stablish ing th is pointer vertex  takes 0 (1 )  tim e.

•  Remove vertices in X  from th e  circular doubly linked list of vertices in B \  to  

produce the circular doubly linked list of vertices in B b and  B c. W hile doing so, 

make note of one vertex  qc from B c. P roducing these circular doubly linked lists 

takes 0(|-Bb|) €  0 ( |W |)  tim e.

•  If P (u i)  G X ,  then  we establish qc as the  new pointer vertex  for B c. Otherwise, 

if P { B i )  £  X ,  then  we establish v\  as the  new pointer vertex  for B b. Let qb and 

qc be the resulting pointer vertices of B b and B c, respectively. For now, assign 

the  pointer values of P ( v i)  to  qb and qc. E stablishing these new pointer vertex 

takes 0 ( \ B b\ + \BC\) e  0 (n )  time.

•  Providing I l ( B i ) ^  NIL [I L (qc) ¥= NILh set I r {Il {B i )) to  B a [IR (IL (qc)) to  

v). Similarly, providing I r (B i )  ±  NIL [IR (qc) ^  n i l ] ,  set I L (IR {B{)) to  B c 

[Il (Ir {Qc)) to  qc\. These assignm ents take 0 (1 )  time.

Once the above /;  and  I R pointers have been assigned, set I R (B a) to  B b [I R(v) 

to  qb), h ( B b )  to  B a [I L (qb) to  u], I R {Bb) to  B c {I R (qb) to  qc], and I L {BC) to  B b

{IR(qc) to  qb\. These assignm ents also take 0 (1 ) tim e.

• Set FL (Ba ) to  B a [Fl (v ) to  u], F R ( B a) to  B b [P r(u ) to  qb\, F L ( B b) to  B a [FL (qb) 

to  u], and FR( B C) to  B b [FR{qc) to  qb\. These assignm ents take 0 (1 )  time.

•  For each block B  in { I r (Bc), . . . , F R ( B C)},  set FL (B)  to  B b [FL { P ( B )) to  qb). 

These assignments can be m ade in 0 (d e g ( B \ ) )  tim e, which could be as large as 

0 (n )  time, by traversing I R pointers.

• Set s ( B a) [s(u)] to  one, s ( B b) [s(9b)] to  |X |, and s ( B c) to  s ( B i )  — |X | [subtract

|.Xj from s(5c)]. These assignm ents take 0 (1 )  time.

• Relabel the blocks and ad just the b, f R, and f R values. This operation can be 

done in 0 (n )  time.

173

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



2. k  =  2. By condition 4 of Lem m a 6.13, v m ust be fully adjacent to  a t least one of 

B \  and B 2. W ithou t loss of generality, assum e th a t  v  is fully adjacent to  B \ .  Let 

Bi  = Fl ( B i ) and B j  = Fr ( B i ).

Recall th a t  we resolved the  relabeller into four cases: adding v to  £>i (or B 2), adding 

the block {w} im m ediately before B i ,  adding the  block {u} betw een B i and B 2, and 

partition ing  B \  U B 2 U {u} into {u} -< B \  -< B 2 fl X  -< B 2 \  X .  This resolution took 

0 (1 ) time.

If v is added to  B i, then  we do th e  following.

•  Add v  to  the  circular doubly linked list of vertices in B ± , using v\  as a reference 

point. This addition takes 0 (1 )  tim e.

•  E stablish  the label of v  to  reflect the  pointer vertex for B i, P ( v i) , while setting  

its b, J l , and f R values to  those of V\. Establishing th e  label of v can be done in 

0 (1 ) tim e.

•  Increase the  value of s (B i)  [s(P (v i))] by one. This takes 0 (1 )  tim e.

If the block B a =  {-(/} is added im m ediately before B \  in its contig, then  we do the

following.

•  E stablish  the triv ial circular doubly linked list for B a. E stablishing th is circular 

doubly linked list takes 0 (1 ) tim e.

•  E stablish  v  as the  pointer vertex  of B a. For now, assign the  pointer values of 

P (m ) to  v. Establishing th is  pointer vertex  takes 0 (1 )  tim e.

•  Providing I l ( B i )  £  n i l  [/L( o )  ^  n i l ], set I r (I l (B i ) )  to  B a [ I r ( I l ( tb )) to  u]. 

This assignment takes 0 (1 )  tim e.

Once th is  I r pointer has been assigned, set I R (B a) to  B i [I R (v ) to  Ui] and I r (B\ )

to  B a [Il {v i) to  v]. These assignm ents take 0 (1 ) tim e.

•  Set F L ( B a) to  B a [F L (y) to  n], FR ( B a) to  B 2 [FR (v) to  v2], F l (Bi )  to  B a [FL {vi) 

to  v\, and F r ( B 2 ) to  B a [Fr(v2) to  u]. These assignm ents take 0 (1 ) tim e.

•  Set s ( B a) [s(u)] to  one. This assignm ent takes 0 (1 ) time.

•  Relabel the  blocks and ad just the  b, f i ,  and f R values. This operation can be 

done in 0 (n )  time.

If B xU B 2 U{v}  is partitioned into B a -< B i  -< Bb -< B e, where B a = {u}, Bb — B 2 f ) X  

and B c = B 2 \  X , we do the following.

•  E stablish  the trivial circular doubly linked list for B a. Establishing this circular 

doubly linked list takes 0 (1 ) time.
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•  E stab lish  v  as the  pointer vertex of B a. For now, assign the pointer values of 

P ( v i)  to  v. Establish ing th is pointer vertex  takes 0 (1 )  time.

• Remove vertices in X  from the  circular doubly linked list of vertices in B 2 to  

produce th e  circular doubly linked list of vertices in B b and B c. W hile doing so, 

make no te  of one vertex  qc from B c. Producing these circular doubly linked lists 

takes 0 ( |S b |)  G 0 ( |X |)  time.

• If P ( v 2) €  X , th en  we establish qc as th e  new pointer vertex for B c. O therwise, 

if P ( v 2) ^  X , th en  we establish v 2 as th e  new pointer vertex for B b . Let qb and 

qc be th e  resulting  pointer vertices of Bb and B c, respectively. For now, assign 

the po in ter values of P ( v 2) to  qb and qc. Establishing th is new pointer vertex  

takes 0(|B& | +  |B C|) G O (n) tim e.

•  Providing I l ( B \ )  ^  n i l  [Il (v 1) ±  n i l ], set I r ( I l (B i ) )  to  B a [ I r{ I l { v  1)) to  v]. 

As well, set I L {IR {B2)) to  B c [IL (IR (qc)) to  qc\. These assignm ents take  0 (1 )  

tim e.

Once th e  above I I  and I r  pointers have been assigned, set I R {Ba) to  B \  [Ir (v ) 

to  ui], I l ( B i ) to  B a [Il (v i ) to  u], I r {B{)  to  B b [Ir (v 1) to  qb], l R { B b) to  B c 

[IR (qb) to  qc], and I l ( B c) to  B b [Il {Qc) to  qb}. These assignm ents also take 0 (1 )  

time.

•  Set F L ( B a) to  B a [Fl {v ) to  u], FR (B a) to  B b [Fr (v ) to  qb], Fl { B i ) to  B a [Fl (v i ) 

to u], and  FL (B b) to  B a [FL (qb) to  u]. As well, if F r {B i ) = B b [ .P (F r(u i)) =  qb], 

then  set F r (B  1) to  B c [F/e(ui) to  qc]. These assignm ents take 0 (1 ) time.

•  For each block B  in { I r (B c), .. . , F R ( B C)}, if F L (B)  = B c [f L ( P ( B )) = b{v2)}, 

then  set F l (B)  to  B b [Fl ( P (B ))  to  qb\. These assignm ents can be m ade in 

0 ( d e g ( B 2)) tim e, which could be as large as 0 (n )  tim e, by traversing I R pointers.

•  Set s ( B a ) [s(u)j to  one, s ( B b) [s(gb)] to  \B2 D X |, and s ( B c) to  s ( B 2) -  \B2 P lX | 

[subtract s(qb) from s(qc)]. These assignm ents take 0 (1 )  time.

•  Relabel th e  blocks and adjust the  b, f R: and f R values. This operation can be 

done in  0 ( n )  tim e.

If the block B a =  {v} is added between B \  and B 2 we do the following.

•  E stablish  th e  triv ial circular doubly linked list for B a■ Establishing th is circular 

doubly linked list takes 0 (1 ) time.

• E stablish  v  as the  pointer vertex of B a. For now, assign the pointer values of 

P ( v 2) to  v. Establishing this pointer vertex takes 0 (1 )  time.

•  Set I r ( B i )  to  B a [IR (v 1) to  u], / l ( B 0) to  B i  [Il {v ) to  n ] ,  I R {Ba) to  B 2 [IR (v)  

to v 2], and  I l { B 2) to B a [Il {v 2) to  u]. These assignm ents take 0 (1 ) time.
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• Set Ff t{ Ba) to  B 2 [F r ( v ) to  v2\. This assignm ent takes 0 (1 )  time.

•  Set s ( B a) [s(u)] to  one. This assignm ent takes 0 (1 )  tim e.

• R elabel the  blocks and adjust th e  b, f R , and  f R values. This operation can be 

done in O (n) time.

3. fc >  3. By Lem m a 6.13, v is fully adjacent to  B 2 , ■ ■ ■, -B/t-i- Let B a = FR (B  1) and let 

B p = FjJ(Bk)-  As well, let ba be some vertex  in B a and let bp be some vertex in Bp

(a) v is fully adjacent to  Bk,  bu t no t B x. To create the  new contig, we partition  B x 

into B a < Bb , where B a = B \  \  X  and B b = B i  C'l X ,  and insert the  block 

B c =  {v} im m ediately after B a . Specifically, we do the  following.

•  E stab lish  the  trivial circular doubly linked list for B c. Establishing this 

circular doubly linked list takes 0 (1 )  tim e.

•  E stab lish  v as the  pointer vertex  of B c. For now, assign the  pointer values 

of P(ba ) to  v. Establishing th is  pointer vertex  takes 0 (1 )  time.

•  Remove vertices in X  from the  circular doubly linked list of vertices in  B x to  

produce the circular doubly linked list of vertices in B a and Bb- W hile doing 

so, m ake note of one vertex qa from B a. P roducing these circular doubly 

linked lists takes 0 ( |X |)  tim e.

•  If P ( v i )  £ X ,  then  we establish qa as the  new pointer vertex for B a. O th ­

erwise, if P ( v i)  ^  X ,  then  we establish v\  as th e  new pointer vertex for B b. 

Let qa and qb be the  resulting pointer vertices of B a and  Bb, respectively. 

For now, assign the pointer values of P ( v  1) to  qa and qb. Establishing this 

new pointer vertex takes 0(|JBa | +  |T?t,|) £  O (n) time.

•  Providing I L( B x) ±  NIL [I L(qa) ±  n i l ], set I r ( I l { B i ) )  to  B a [IR {IL {qa)) to  

qa]■ Similarly, providing I R {Ba ) ^  n i l  [I R (ba ) ^  n i l ], set / i ( / f i ( R „ ) )  to  B c 

[l L ( I R (ba )) to  w]. These assignm ents take 0 (1 )  time.

Once the above I I  and I r  pointers have been assigned, set I R (Ba) to  Bb 

[I R (qa) to qb\, I L{Bb) to  B a [I L {qb) to  qa\, I L {B2) to  B b {I L (v2) to  qb], I R (B a ) 

to  B c [I R (ba ) to  u], and I l {B c) to  B a [I R{y) to  ba]. These assignments also 

take  0 (1 ) time.

.  For each block B  in {FL (B a ) , . . . ,  I L ( B a)}, if FR (B)  = B x [f R( P ( B )) =  

6(ui)], then  set FR (B)  to  B b [F R{ P { B )) to  qb\. These assignm ents can be 

m ade in 0(d eg (B i ) )  £ O (n) tim e, by traversing I R pointers.

•  For each block B  in {B b, • ■ ■, B a }, if F l (B)  = B x \ f R( P (B ) )  =  6(uj)], then 

set F i ( B )  to  B„ [Fi (P (B))  to  qa\. These assignm ents can be made in 0 ( |X j)  

tim e, by traversing I R pointers.
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•  For each block B  in { B b , . . .  , B a }, if F r ( B ) = B a \Jr {P{B))  = b(ba )}, then  

set Fr (B)  to  B c [F r ( P ( B )) to  v\. These assignments can be m ade in 0 ( |X |)  

tim e, by traversing I r  pointers.

•  Set F l ( B c) to  B b [Fr {v ) to  qb}. As well, if B a = B k \b(FR (qa)) -  b(vk)], 

th en  set Fr {Bc) to  B c [Fr (v ) to  u], otherwise, B a -< B k , so set Fr ( B c) to  

Bk [Fr (v ) to  vk}. These assignm ents take 0 (1 ) time.

•  For each block B  in { I r ( B c), . . . ,  B k}, if F L (B)  =  I r {Bc) \b{IL {FL {P{B)))  = 

6(6a )], then  set Fr {B)  to  B c [F r ( P ( B )) to  u]. These assignm ents can be 

m ade in 0 ( |A j)  tim e, by traversing I r  pointers.

•  Set s ( B c) [s(u)[ to  one, s ( B b) [«(?{>)] to  |.B in A j, and s ( B a) to  s ( B i )  — \B\C\X\  

[subtract s(qb) from s(ga )]. These assignm ents take 0 (1 ) tim e.

•  Relabel the  blocks and  ad just th e  b, Jl , and f R values. This operation can 

be done in 0 (n )  tim e.

(b) v is fully adjacent to  B i, b u t no t B k . To create the new contig we partitio n  B k 

into Bg -i, B e, where B,i = B k fl X  and B e = B k \  X ,  and insert the  block 

B c =  {u} im m ediately before Bg.  T his scenario is v irtually  identical to  the  case 

when v  was fully adjacent to  B k b u t not B \ .

(c) v is fully adjacent to  neither B i  nor B k . In  essence, this scenario requires the 

‘com bination’ of the  two previous relabellings. T ha t is, we partitio n  B \  into 

B a -< B b, where B a = B  i \ X  and  B b = B \  fl X ,  we partition  B k in to  B,i -< B e, 

where Bg = B k C\ X  and B e = B k \  X ,  and  we insert B c =  {u} between B a 

and Bg.  As the  com bination of th e  previous two relabellings we can ob tain  the 

labelling of G'  in 0 (n )  time.

(d) v is fully adjacent to  bo th  B \  and  B k. We consider three further cases.

i. B a -< Bg  [b(ba ) < b{bg)\. We add  the  block B a = {u} between B a and Bg.  

Specifically, we do the following.

•  Establish the triv ial circular doubly linked list for B a. E stablishing this 

circular doubly linked list takes 0 (1 )  time.

•  Establish v as the pointer vertex  of B a. For now, assign the  pointer 

values of P(ba ) to  v. E stablishing th is  pointer vertex takes 0 (1 ) tim e.

•  Set I R {Ba ) to  B a \IR {ba ) to  u], I L {Ba) to  B a [IL (v) to  ba], and I L {Bg)  

to  B a \Ii{ba ) to  v]. These assignm ents take 0 (1 ) time.

•  Set F L(Ba) to  B i  \Fl (v ) to  rq], F R {Ba) to  B k [FR (v) to  v k}. These 

assignments take 0 (1 )  tim e.

•  For each block B  in { B i , . . . , B a }, if Fr (B)  = B a [fR ( P ( B ) )  — b(ba )}, 

then  set Fr (B)  to  B a [Fr ( P ( B ) )  to  v}. These assignm ents can be done
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in 0 ( |X |)  tim e by following I R pointers.

.  For each block B  in { B p , .. , , B k }, if FL(B)  = Bp \ f L {P{B))  = b(bp)], 

th en  set F r (B)  to  B a [Fr ( P (B ) )  to  w]. These assignm ents can be done 

in  0 ( |X |)  tim e by following I r pointers.

•  Set s ( B a) [s(u)] to  one. This assignm ent takes 0 (1 )  tim e.

•  R elabel the  blocks and adjust the  b, f R , and f R values. T his operation 

can be done in 0 ( n )  time.

ii. B a =  Bp [b(ba ) = b(bp)]. We consider four cases.

•  F L ( B a ) = B x [fL (ba ) =  6(ui)] and FR (B a ) =  B k [f R (ba ) =  fr(ufc)]. Since 

B a has the  sam e adjacency as v,  we add v to  B a . Specifically, we do the 

following.

— A dd v  to  the  circular doubly linked list of vertices in  B a using ba as a 

reference point. This addition takes 0 (1 ) tim e.

— E stablish  the label of v  to  reflect the  pointer vertex  for B a , P(ba ), 

while setting  its  b, J r ,  and f R values to  those of ba . E stablishing the 

label of v  can be done in 0 (1 )  time.

— Increase the  value of s ( B a ) [s(P(6a ))] by one. T his takes 0 (1 )  time.

•  FL ( B a ) -< B i  [fRjbg) < b(ui)] and FR {Ba ) =  B k \ f R (ba ) =  b(vk)]. In th is 

case, we m ust insert the  block B a =  {c} im m ediately after B a . Specifi­

cally, we do the following.

— E stablish  the  triv ial circular doubly linked list for B a. Establishing 

th is circular doubly linked list takes 0 (1 ) tim e.

— E stablish  v as the  pointer vertex of B a. For now, assign the pointer 

values of P(ba ) to  v. Establishing th is  pointer vertex  takes 0 (1 ) time.

— Set I L ( IR (B a )) to  B a [lL{IR (ba )) to  i>]. This assignm ent takes 0 (1 ) 

time.

Once th is I r pointer has been assigned, set I R ( B a ) to  B a [IR (ba ) to  

u] and I r ( B o) to  B a [Ir {v) to  ba]. These assignm ents also take 0 (1 ) 

tim e.

— Set FL (B a) to  B i  [Fl (v ) to  r>i], FR {Ba) to  B k [FR (v) to  vk\. These 

assignm ents take 0 (1 ) time.

— For each block B  in { B l , . . . ,  B a }, if FR (B)  -  B a [fR ( P ( B ) )  = b(ba )], 

then  set FR (B)  to  B a [FR ( P (B ) )  to  u]. These assignm ents can be done 

in 0 ( |X |)  tim e by following I R pointers.

— Set s ( B a) [s(v)] to  one. This assignment takes 0 (1 )  tim e.
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— Relabel the blocks and ad just th e  b, f p ,  and  f R values. This operation 

can be done in O (n) tim e.

•  FL ( B a) = B i  [fl (ba ) =  fr(ui)] and B k < F R ( B a ) [b(vk) <  /fl(feg)]- In th is 

case, the  block B a = {u} m ust be inserted  im m ediately  before B a .

•  F L ( B a) -< B i  [fL {ba ) <  b(ui)] and B k -< F R ( B a ) \b(vk) <  M M ] -  Recall 

th a t  G'  is not a proper interval graph.

hi. Bp  -< B a [b(bp) <  b(ba )\. B y definition, FL ( B a ) ^  B x and B k ■< F R (Bp).

Therefore, Fp(Bp)  ^  B \  and B k ^  FR ( B a ). We consider four cases.

•  F L (Bp)  =  B i  \ fL {bp) = b(vi)] and  FR ( B a ) =  B k [f R (ba ) =  b(vk)\. Recall 

th a t  th is  case cannot occur.

•  FL (Bp) B i  [ f i jbp)  < b(vi)] and FR( B a ) — B k [f R (ba ) =  b(vk)}. Now if 

F l ( B 0) =  B i [ / l ( M  =  M i)]>  then  B a has th e  same adjacency as v so 

we add v  to  B n \ adding v  to  B a is done in exactly  the  same m anner 

as when B a = Bg,  F k (B a ) =  By,  and  FR ( B a ) = B k. Otherwise, if 

F l ( B c )  ~< B i [ / l ( M  <  fc('i'i)], we m ust insert th e  block B a =  {w} im­

m ediately after B a as B i -< FL(IR ( B a )).  T his insertion of the  block B a 

is done in exactly the sam e m anner as when B a = Bg,  F k (B0 ) -< B j, 

and Fr ( B q ) =  B k .

•  F L (Bg)  =  B i [fpjbp) =  b(ui)] and B k -< FR ( B a ) \b{vk) < f R (ba )\. This case 

is virtually  identical to  the  previous one. If F R {Bp)  =  B k [f R (bp) =  

b(vk)]: then  we add  v to  Bp.  O therw ise, ifB *  -< FR (Bp) [b(vk) <  f R (bp)],

we m ust insert the  block B a =  {w} im m ediately before Bp.

•  F L (B P) -< B i [fL (bp) <  M i) ]  and B k -< F R ( B a ) [b{vk ) < f R (ba)}. If there 

exists a block B , such th a t  F R ( I p { B i)) -< B  -< F p ( I R ( B k)), then  we m ust 

add u to  B . We have previously seen how to  add  v to  an existing block.

If there  does not exist a block B  such th a t  FR ( I p ( B  i)) -< B  ~< Fp ( IR (B k)), 

then  we m ust add the  block B 0 =  {u} between FR (IL (B \ ) )  and Fp( IR (B k)). 

This can be done in a m anner sim ilar to  the  placem ent of B a = {u} be­

tween B a and Bp  in the  case where B a -< Bp.

Now let us consider when the m embers of X  belong to  two distinct components. Let 

the  contigs of the  two components be $  =  By -< . . .  < B k and T  =  B[ B[, where,

w ithou t loss of generality, $  -< He As well, let By be the  leftm ost block in $  to  which v is 

ad jacent, and let B ' be the rightm ost block in to  which v  is adjacent.

To dem onstrate the action of the  relabeller, we consider the  scenario in which the  end 

blocks to  which v is fully adjacent are B k and B[,  w ith v is fully adjacent to  B ' but not Bi.

Let B a be the  split block By \  A , Bb be the split block By n  X ,  and B c be the block {w}.
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The labelling is changed as follows.

•  If I R (B k) ^  B[  [b(IR (vk )) =  b(v[)], th en  move $  over to  VR

-  Set I r (Il (B[))  to  I r {B[) [Ir ^Ir ^v])) to  I r {v[)} and I r {B[) to  I R {Bk ) \Ir {v[) 

to  I R (vk)}. As well, providing I r (B[) ±  n i l  [Ir (v[) ±  n il] , set I r (Ir {B[)) to  

I r {B[) [Ir {Ir {v[)) to  I l (v'i )\- These assignm ents can be m ade in 0 (1 )  time. 

Once the above I r and I r  pointers have been assigned, set l R { B k) to  B[ [lR(vk) 

to  uj], and I r ( B j) to  B k [Ir {v[) to  v k). These assignm ents also take 0 (1 ) time.

-  Relabel the  blocks and ad just th e  b, / r , and f R values. T his operation  can be 

done in 0 (n )  tim e.

•  Insert B c and split Bi  to  reflect th e  stra igh t enum eration of G ’.

-  Establish the triv ia l circular doubly linked list for B c. E stablishing th is circular 

doubly linked list takes 0 (1 )  tim e.

-  Establish v  as the  pointer vertex  of B c. For now, assign th e  pointer values of 

P{vk). Establishing th is  po in ter vertex  takes 0 (1 ) time.

-  Remove vertices in X  from th e  circular doubly linked list of vertices in  Bi  to  

produce th e  circular doubly linked list of vertices in B„ and  Bb. W hile doing so, 

make note of one vertex qa from  B a. P roducing these circular doubly linked lists 

takes 0 ( |X |)  tim e.

-  If P{Bi)  e  X,  then  we establish qa as the new pointer vertex for B a. Otherwise, 

if P(Bi) ^  X , then  we establish v\  new pointer vertex for Bb- Let qa and % 

be the resulting pointer vertices of B a and Bb, respectively. For now, assign the 

pointer values of P(v i)  to  qa and qb. Establishing these new pointer vertex takes 

0(|£M ) e  0 ( |X |)  time.

-  Providing lR{Bi )  ^  NIL ^  NIL], set I R {I i {Bi ) )  to  B a [/^ (//.(ija )) to  qa}.

This assignm ent takes 0 (1 )  tim e.

Once the above I r  pointer has been assigned, set / ^ ( R a) to  Bb [lR(qa) to  <?&], 

and I L( B b) to  B a [IL {qb) to  qa\. As well, if B t =  B k [b(vi) =  b(vk)}, then  set 

Jfl(B t) to  B c [lR(qb) to  v] and I r ( Bc) to  B b [I r (v) to  qb}. O therwise, set I r (Bc) 

to  B k \Ir {v ) to  vk\. These assignm ents also take 0 (1 ) time.

-  Set Fr {Bc) to  Bb [Fr {v) to  qb] and Fr {Bc) to  £?' [Fr (v) to  v ']. These assignm ents 

take 0 (1 ) tim e.

-  For each block B  in {Fr {Bo), . . .  , B a }, if Fr ( B ) = Bi [fR ( P ( B ) )  = b(vi), then 

set Fr (B)  to  Bb [Fr (P(B))  to  g^]. These assignments can be done in 0 ( jX |)  

tim e by following I r  pointers.
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— For each block B  in {B b , . . . ,  I l ( B c)},  set F r ( B ) to  B c [F r ( P ( B ) )  to  u]. These 

assignm ents can be done in 0 ( |X |)  tim e by following I r  pointers.

— For each block B  in { B a, . . .  , I L (B C)}, if F l ( B )  = B t [fL ( P ( B ) )  =  b{vi), then  set 

F l ( B )  to  B a [F l ( P ( B )) to  qa\. These assignm ents can be done in  0 ( |X |)  time 

by following I r  pointers.

— For each block B  in { I r { B c), . . . ,  B{},  set F r ( B )  to  B c [F r( P (B ) )  to  n]. These 

assignm ents can be done in 0 ( |X j)  tim e by following I r  pointers.

— Set s ( B c) [s (w)[ to  one, s(Bb)  [s(®>)] to  \Bi  fl X |,  and s ( B a) to  s(-Bj) — |Bi fl X\  

[subtract s(qb) from s(q'a)]- These assignm ents take 0 (1 )  tim e.

— Relabel th e  blocks and ad just the  b, Jr , and / r  values. This operation  can be 

done in O (n) time.

C .4.3 D e letin g  an  edge

Let uv  be the edge to  be deleted, w here X u and X v denote th e  neighbourhoods of u  and v, 

respectively, in G. As well, let Bi  and  B j  be the blocks containing u  and  v, respectively, in 

the contig B \  -< . . .  ~< Bk  of the  com ponent C  containing uv.  W ith o u t loss of generality, let 

1 <  i < j  <  k.

If i =  j .  then  i =  j  =  k  =  1 and there  are two case to  be considered.

•  B \  contains ano ther vertex besides u  and v. We partition  the  contig B \  to  create a 

new contig B a -< Bb B c, where B a =  {u}, B b = B i \  { u , v \ ,  and  B c =  (n ). 

Specifically, we am end the labelling as follows.

— If u  or v  is th e  pointer vertex of B \  [P{v) 6 {u,  u}], th en  establish a new pointer 

vertex for B \ ,  w ith  pointer values identical to  those of P { B \) .  Specifically, use 

whichever of nx (v )  or prev(v)  is not u.  This reassignm ent takes 0 ( \ B ( u , v ) \ )  € 

0 ( |X „ |)  =  0 ( |X „ |)  tim e. Let q be the  resulting pointer vertex  of B \ .

— Remove u  and v from the  circular doubly linked list of vertices in B \  to  produce 

the circular doubly linked list of vertices in Bb- This removal takes 0 (1 )  time.

— Establish  the  triv ial circular doubly linked lists for B a and B c. These circular 

doubly linked lists can be created in 0 (1 ) time.

— Establish  u  as the  pointer vertex of B a and v as the  pointer vertex  of B c. For 

now assign the  pointer values of q to  u  and v. These pointer vertices can be 

established in 0 (1 ) tim e.

— Providing I l { B i ) NIL [IL {q) 7̂  n il] , set I R {IL {B{))  to  B a [IR {IL {q)) to  u}. 

Similarly, providing I r ( B i ) /  NIL, set I r ( Ir ( B i )) to  B c [ I ^ lR ^ q ) )  to  v\. These 

assignm ents take 0 (1 ) time.
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Once the  above I I  and I r  poin ters have been set, set I n ( B a) to  Bb [I r ( u ) to  g], 

h { B b )  to  B a [IL(q) to  it], I R ( B b) to  B c [I R {q) to  i>], and I L {BC) to  B b [IL (v) to  

g]. These assignm ents also take 0 (1 )  tim e.

— Set F L (B a) to  B a [F l (u) to  u], F R ( B a) to  B b [F R (u) to  q], FL ( B b) to  B a [FL {q) 

to  it], F R ( B b) to  B c [FR {q) to  i>], FL ( B C) to  B b [FL (v) to  q], and F R ( B C) to  B c 

\Fr (v ) to  it]. These assignm ents take 0 (1 )  time.

— Set s ( B a) [s(u)] and s ( B c) [s(u)] to  one, and set s ( B b) to  s ( B i) — 2 [subtract two 

from s(g)]. These assignm ents take  0 (1 )  time.

— Relabel th e  blocks and ad just th e  b, f i ,  and f R values. This operation can be 

done in O (n) time.

• B i  contains only u  and v. We p a rtitio n  th e  contig B \  to  create two new contigs B„ 

and B c, where B„ =  {«}. B c =  {u}, and B„ -< B c. W ithou t loss of generality, let us 

assume th a t  v  was the  pointer vertex  of B \ .  We change the labelling as follows.

— Establish  the  triv ial circular doubly linked lists for B a and B c. E stablishing these 

circular doubly linked lists takes 0 (1 ) time.

— E stablish  u  as the  pointer vertex  of Ba. For now, assign the  pointer values of v 

to  it. Establishing th is pointer vertex  takes 0 (1 )  tim e.

— Providing I l ( B i )  ±  n i l  [Il{v)  ^  n i l ], set I r ( I l { B i ) )  to  B a {IR (IL (v)) to  u}. 

Similarly, providing I r ( B x )  ^  NIL, set I l ( I r (B i ) )  to  B c [IL ( IR (v)) to  u]. These 

assignm ents take 0 (1 ) time.

Once th e  above I r and I R pointers have been set, set I R (B a) to  B c [Ir (u ) to  v], 

I l ( B c) to  B a [I l (v ) to  u]. These assignm ents also take 0 (1 )  time.

— Set F L (B a) to  B a [F l (u) to  u], F R (B a) to  B a [FR (u) to  u], F L (B C) to  B c [FL (v) 

to v], and F r ( B c) to  B c [F]r(u) to  u]. These assignm ents take 0 (1 ) tim e.

— Set s ( B a) [s(tt)] and s ( B c) [s(u)] to  one. These assignm ents take 0 (1 )  tim e.

— Relabel the  blocks and ad just th e  b, f R, and f R values. This operation  can be 

done in 0 (n )  time.

Now let us consider when i ^  j .  Observe th a t if 1 <  i [/ l (u ) ^  b(u)], B j  — {u} [nx(v) =  

v], FL ( B i - 1) =  F L(Bi) l f L ( h ( u ) )  = f L (u ) ], and FR (Bi_ x) =  [f R ( IL (u )) = b( IL (v))},

then  we m ust move u  into i- Similarly, if j  < k, B^ =  {u,}, F r ( B j + i)  =  F r ( B j ), and 

F i { B j + 1) =  B l+1, then we m ust move v into B j +\.

Exactly  how the labelling is changed depends on w hether u  is moved into R ,_ i, v  is 

moved into B J + i, Bi  =  {it}, and B j  =  {u}. We consider each case, w ith respect to  it, 

separately, noting th a t the same considerations m ust also be given for v.
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• If u  is to  be moved into B i -1  and Bi  =  {u} [nx(u) = u], then  we merge Bi  in to  B i - \ .  

As we saw earlier when adding a vertex, such a merge takes 0 (1 )  time.

•  If u  is to  be moved into B i - 1  bu t Bi  contains vertices o ther th a n  u [nx(u)  A u], then  

we perform the following.

— If u  is the pointer vertex of B i  [P(u) = it], then  establish n x { u ) as th e  new pointer 

vertex for B i , w ith  pointer values identical to  those of u. T his reassignm ent takes 

0(|.B i|) £ 0 ( |X U|) tim e. Let q be th e  resulting pointer vertex  of Bi.

— Remove u  from th e  circular doubly linked list of the  vertices in Bi  and add u  to  

the circular doubly linked list of th e  vertices in B i - 1, using P (B j_ i)  \P( IR(u))} 

as a reference point. This move takes 0 (1 )  time.

— Change the  label of u  to  reflect th a t  P ( B i - i )  [P(IR(q))} is the  new pointer vertex 

of its block. This change takes 0 (1 )  time.

— For each B  in { F i ( P j ) , . . . ,  B i - i } ,  if FR (P (B) )  =  u  th en  set Fl ( P (B ) )  to  q. 

These assignm ents can be done in O (deg(Bi))  £ 0 ( |X „ j)  tim e, by recursively 

following I I  pointers to  determ ine all such blocks B.

— Decrease the value of s(B-i) [6’(</)j by one and increase the  value of s (P ;_ i)  

[s(P(u))] by one. These ad justm en ts take 0 (1 ) time.

•  If u  was not moved into P ,_ i  and  B t =  {u}, th en  we need do nothing yet.

•  If u  was not moved in to  B ,;-i and Bi  contains vertices o ther th a n  u,  then  we m ust 

partition  Bi  into B a -< Bb, w here B a =  ( u )  and B}, ~  B,  \  {?/} (in the  case of v , we 

would partition  B j  into B a -< Bb, where B a =  B j  \  {u} and Bb =  {u}). Specifically, 

the  labelling changes as follows.

— If u  is the  pointer vertex of B i  [P(u) = u ], then  establish nx{u)  as th e  new pointer 

vertex for Bi ,  w ith  pointer values identical to  those of u. T his reassignm ent takes 

0 ( |D (u ) |)  £ 0 ( |X „ |)  tim e. Let q be the  resulting pointer vertex of Bi.

— Remove u  from the  circular doubly linked list of vertices in Bi  to  produce the 

circular doubly linked list of vertices in Bb- This removal takes 0 (1 )  time.

— Establish the  triv ial circular doubly linked list for B a. E stablishing th is circular 

doubly linked list takes 0 (1 ) time.

— Establish u  as the pointer vertex of B a. For now, assign the  pointer values of q 

to  u. Establishing this pointer vertex takes 0 (1 ) tim e.

— Providing / l (P » )  ^  NIL [h iq )  A n il], set I R (IL (Bi))  to  B a [.IR {IL (q)) to  u\. As 

well, set 7 l ( / r ( P , ) )  to  Bb [Il ( I r (q)) to  q\. These assignm ents take 0 (1 ) time.

183

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Once these I r and  I r  pointers have been assigned, set I n { B a ) to  Bb [I r (u) to  q] 

and I]b(Bb) to  B a [Il {q) to  u\. These assignments also take 0 (1 )  time.

— For each block B  in  { F l (B i), . . .  , B j_ i} , if F r ( P ( B ) )  — u, th en  set Fr ( P ( B ) )  

to  q. As well, for each block B  in { B i + 1 , . . .  , B j } ,  if P ( F r ( P ( B ) ) )  =  q then  set 

Fr {B)  to  B a [F r ( P ( B )) to  u\. These assignm ents can be done in O (deg(Bi))  G 

0 ( |X U|) tim e, by recursively following I r  and I r  pointers to  determ ine all such 

blocks B.

— Set s{B a) [s(u)J to  one and S(Bb)  to  s(Bi)  — 1 [subtract one from  s(q)]. This 

takes 0 (1 ) tim e.

Once the above actions involving it and  v  have been com pleted, we set Fr (B( u)) to  

I r {B{v)) [Fr (u) to  I r {v)] and Fl (B( v)) to  I r (B( u)) [Fr (v) to  I r (u )]. These pointers can 

be set in 0 (1 ) tim e. We th en  relabel the  blocks and ad just the  b, /n ,  and / r  values. These 

values can be adjusted in 0 ( n )  time.

C .4.4  A dding an edge

Let uv  be the edge to  be added, where X u and  X v denote th e  neighbourhoods of u  and 

v,  respectively, in G. W ith o u t loss of generality, let us assume th a t  b(u) < b(v). W hile 

considering the addition of a  vertex, we saw th a t, by traversing Fr  pointers beginning a t u, 

we can determ ine, in 0 (n )  tim e, w hether u  and v belong to  the  same com ponent.

We consider the  following cases.

1. T he vertices u  and v  belong to  d istinct com ponents. In th is case we will need to  know 

inform ation about all th e  blocks in th e  com ponents containing u  and  v. Specifically, we 

determ ine all the  blocks by following Fl and Fr  pointers, keeping a  reference vertex 

Vi from each block Bi.  G athering th is inform ation can take as much as 0 (n )  time. 

Let $  =  B \  -< . . .  -< Bk  be the contig of the com ponent containing it, and let =  

B[ B[ be th e  contig of the  com ponent containing v. To dem onstrate the

action of the  relabeller, we consider the  scenario in which u  €  Bk  and v € B[,  with 

B[ =  {v} bu t not Bk  ^  {it}. Let B a be the  split block Bk  \  {u}, and Bb be the block 

{it}. O ur labelling changes as follows.

•  If I R {Bk) B[ [b(IR (Vk)) = fr(v i)]> then  move $  over to  T .

-  Set / r ( / l ( 5 { ) )  to  I r {B\) [Ir (Il (v[)) to  I R{v[)} and I R{B[) to  IR (Bk) [.IR{v[) 

to  IR(vk)\. As well, providing I r {B[) ^  NIL [I R{v[) ±  n il] , set /^ (/^ (I? ,'))  to  

I l (B[) [Il {Ir {v ' i)) to  I l {v[)]. These assignm ents can be m ade in 0 (1 ) time. 

Once the above I r and I r pointers have been assigned, set l R ( Bk) to  B[ 

{Iii{vk) to  w}], and I r (B\ ) to  B k [Il {vj) to  vk]- These assignm ents also take 

0 (1 ) tim e.
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— Relabel th e  blocks and adjust the b, f i ,  and  f R values. This operation can 

be done in O (n) tim e.

•  Split Bk  to  reflect the  stra igh t enum eration of G ' .

— If u  is the  pointer vertex of Bk \P(u) = u], then  establish nx{u)  as the  new 

pointer vertex  for B a . This reassignm ent takes 0 ( |R (m )|)  £ 0 ( |X U|) time. 

Let qa be th e  resulting pointer vertex  of B a.

— Remove u  from th e  circular doubly linked list of vertices in Bk  to  produce 

the circular doubly linked list of vertices in B a and  Bt,. P roducing these 

circular doubly  linked lists takes 0(|B fc |) £ 0 ( |X U|) time.

— Establish u  as the  pointer vertex  of B b and give its pointers the same values 

as qa. E stablishing th is pointer vertex takes 0 (1 )  tim e.

— Providing I L ( B k) #  n i l  [ / i ( g a ) 7^ n i l ], set I R ( lL(Bk) )  to  B a [IR (lL(qa)) to  

q„\. This assignm ent takes 0 (1 )  tim e.

Once th e  above I I  and I r  pointers have been assigned, set I R (B a) to  Bb 

[■lR(<la) to  u], I L {Bb) to  B a [Il {u) to  qa], and I l {B[) to  B b \IL(v) to  u]. 

These assignm ents also take 0 (1 )  time.

— Set FR (B b) to  B[ \FR (u) to  u], and F r (B[)  to  B b [F r (v ) to  u\. These 

assignments take 0 (1 )  tim e.

— For each block B  in {Fr{Bo) ,  . . .  , B a}, set F r { B )  to  B b [F r(P(B ))  to  it]. 

These assignm ents can be done in 0 ( |X U|) tim e by following I r pointers.

— Set s ( B b) [s(u)] to  one, and sub trac t one from the  value of s ( B a) [s(ga )]- 

These assignm ents take 0 (1 )  tim e.

— Relabel th e  blocks and ad just the  b, f i ,  and f a  values. This operation  can 

be done in 0 (n )  tim e.

2. The vertices u  and v  belong to  the same com ponent. Let B \  -< . . .  -< B k be the contig 

of the component containing u  and v, where it £ Bi  and v  £ B j ,  for some 1 <  i < j  < k. 

We consider two fu rther cases.

(a) Bi  and B j  are end blocks \ f i { u ) = b(u) and f a ( v )  =  6(u)]. In th is case, X u — 

X v . By Lem m a 6.7 (um brella property), the  contig contains three blocks, namely, 

{it} -< X u -< {i;}. The new com ponent will consist of a single block, formed by 

merging the th ree  blocks into one new block B a.

Letting q be the  pointer vertex of the block X u , the  labelling changes as follows.

•  Providing I l ( { u } )  ^  n i l  \IL {u) ^  n i l ] ,  set I R ( IL ({u}) )  to  B a [IR {IL (u)) to  

q}. Similarly, providing I R {{v}) =£ NIL [IR (v) + NIL], set I L ( IR ({v}))  to  B a 

[I l ( I r ( v )) to  q2 \. These assignm ents take 0 (1 ) tim e.
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• E stab lish  the  circular linked list for B a by adding u  and v  to  the circular 

doubly linked list of vertices in X u, using q as a reference. Moreover, change 

th e  labels of u  and v to  reflect th a t they  are no longer pointer vertices, and 

q is th e  pointer vertex of their new block. These changes take 0 (1 ) tim e.

•  Set th e  value of s(Ba) to  s(X „) +  2 [add two to  th e  value of s(q)]. This 

add ition  takes 0 (1 ) tim e.

•  R elabel the  blocks and  adjust th e  b, f R , and f R values. T his operation  can 

be done in 0 (n) tim e.

(b) At least one of Bi  and B j  is not an end block ] / l ( u )  ^  b(u) or f R {v) ^  &(u)]. In 

this case, X u ±  X v . If B i  =  {u} [nx(u) = u], FR ( B j - i)  =  FR ( Bj )  [f R ( IR(v)) =  

f R (v)} and  F i ( B j _ i )  =  Bi  [ / l ( / l ( u ) )  =  b(u)], then  we move v from B j  into B j - 1. 

Similarly, if B j  =  {u} [nx{v) = v], FL ( B i+ 1) =  FL (Bi)  [ / l ( ^ ( w ) )  =  / l ( u ) ]  

and FR ( B i+ \)  =  B j  \ fR ( IR (u)) =  b(v)], th en  we move u  from Bi  into B{+ 

This m oving of u  and  v  is v irtually  identical to  one of th e  cases discussed when 

considering the  deletion of a edge.

O ur labelling is modified according to  w hether or no t u  and v  are moved.

•  If  ?/ is to  be moved into B i+-[ and  Bi =  {u} \nx(u) =  it], th en  we merge Bi 

in to  Bi+1- As we saw earlier when adding a vertex, such a merge takes 0 (1 ) 

tim e.

•  If  it is to  be moved into R j+ i bu t Bi  contains vertices o ther th a n  u [nx(u) ^  

u], then  we perform  th e  following.

— If u  is the  pointer vertex of Bi \P(u) =  it], th en  establish nx(u)  as the 

new pointer vertex for Bi,  w ith  pointer values identical to  those of it. 

This reassignm ent takes 0(|-B i|) € 0 ( |X U|) tim e. Let q be the resulting 

pointer vertex of Bi.

— Remove it from th e  circular doubly linked list of the vertices in Bi  and 

add u  to  the  circular doubly linked list of the  vertices in R i+ i, using 

P(Bi- |_i) [P(IR(u))} as a reference point. T his move takes 0 (1 ) tim e.

— Change th e  label of u  to  reflect th a t R (R i+ 1) [P(IR(qj)] is the  new pointer 

vertex of its block. This change takes 0 (1 )  time.

— For each B  in {Bi+1, . . . ,  FR(Bi)},  if Fl {P(B))  =  u, th en  set FR(P(B)) 

to  q. These assignm ents can be done in O (deg(Bi))  £ 0 ( |X „ |)  tim e by 

recursively following IR pointers to  determ ine all such blocks B.

— Decrease the value of s(R^) [s(g)] by one and increase the  value of s(R ,+ i) 

[s(P(u))} by one. These ad justm ents take 0 (1 )  time.

•  If it was not moved into B i+j and Bi  =  {u}, then  we need do nothing yet.
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•  If  u  was not moved into B i +\ and  B i  contains vertices o ther th an  u, then  

we m ust partition  Bi  into B a -< Bb, w here B a = Bi \  {u} and Bb =  {u}

(in th e  case of v, we would partitio n  B j  in to  B a -< Bb, where B a =  {w} and 

Bb =  B j  \  {u}). Specifically, the  labelling changes as follows.

— If it is the  pointer vertex of Bi  [P ( u ) =  u ], then  establish nx (u )  as th e  new 

pointer vertex for B i} w ith  po in ter values identical to  those of u.  This 

reassignm ent takes 0 ( |i? ( ii) |)  £ 0 ( |X U|) tim e. Let q be the  resulting 

pointer vertex of Bi.

— Remove u  from the circular doubly linked list of vertices in Bi  to  produce 

the  circular doubly linked list of vertices in B a ■ T his removal takes 0 (1 )  

tim e.

— E stablish  the triv ial circular doubly linked list for Bb- Establishing th is 

circular doubly linked list takes 0 (1) tim e.

— E stablish  u  as the pointer vertex  of B a. For now, assign the  pointer 

values of q to  u. Establishing th is  pointer vertex takes 0 (1 )  time.

— Providing I L (B i ) ±  NIL [/^(g) ±  n il] , set I R ( IL {Bi))  to  B a \IR ( IL (q)) 

to  qj. As well, set I i i l R i B i ) )  to  Bb [Il {Ir (q)) to  u]. These assignm ents 

take 0 (1) time.

Once these I I  and I R pointers have been assigned, set I R (Ba ) to  Bb 

{Ir (i ) to  u], and Ijj iBb)  to  B a \Il {u) to  g]. These assignm ents also take 

0 (1) time.

— For each block B  in { F ^ B i ) , . . . ,  B t }, if P ( F R (P (B) ) )  =  q, th en  set 

Fr ( P (B ) )  to  u. As well, for each block B  in {Bj+ i , . . . ,  i} , if Fl ( P ( B ) )  = 

u  then  set Fl(-B) to  B a [Fl ( P ( B )) to  g]. These assignm ents take 0 ( |X U|) 

tim e.

— Set s(Bb)  [s(n)] to  one and S ( B a) to  s(_B;) — 1 [subtract one from s(g)]. 

This takes 0 (1 ) time.

Once th e  above actions involving u  and  v  have been completed, we set FR (B(u) )  

to  B ( v )  [Ffi(u) to  v] and Fl {B(v )) to  B ( u )  [Fl (v ) to  u}. These pointers can be 

set in 0 (1 )  tim e. We then  relabel the  blocks and adjust the b, f i ,  and f R values. 

These values can be adjusted in 0 (n )  tim e.
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Index

adjacency labelling scheme, 3, see im plicit 
representation 

alm ost trees(fc), 14 
arboricity-fc graphs, 3, 14, 15 
asteroidal trip le  free graphs, 14 
autographs, 14 
balanced, 12, 14, 15 
bandwidth-fc graphs, 14 
b ipartite  graphs, 12, 14, 15 
boxicity-fc graphs, 14, 15 
chain graphs, 14
chordal com parability  graphs, 14 
chordal graphs, 12, 14 
circle graphs, 15 
circular arc graphs, 15 
cobipartite  graphs, 14, 15 
cographs, 15 
com parability graphs, 15 
containm ent graphs, 15 
convex b ipartite  graphs, 15 
cycles, 15
fc-decomp os able graphs, 15
degree-A; graphs, 14, 15
disk intersection graphs, 15
k -dot product graphs, 13, 15
E P T  graphs, 15
forests, 15
C'3-free graphs, 14
C 3 ,C4-free graphs, 14
C'3 ,/t'i,3-free graphs, 14
Ad a-free graphs, 14
R a^-free graphs, 14
R s-free graphs, 14
P 4-free graphs, 14
from adjacency lists, 6
from adjacency m atrix , 6 , 12, 17, 54
general graphs, 14
genus-k graphs, 15
hereditary  degree-fc graphs, 15
interval graphs, 3, 11, 14, 15
fc-interval graphs, 15
line graphs, 3, 8-9, 15
outdegree-fc graphs, 9-10, 14, 15
outerp lanar graphs, 13, 15
perm utation  graphs, 15
planar graphs, 15
posets of dimension-fc, 15
proper interval graphs, 14, 15
quality, 10 -12
space-optim al, 11
fc-sparse graphs, 12-13, 15
split graphs, 14, 15
strongly space-optim al, 1 1 , 12 , 16
threshold graphs, 15

threshold tolerance graphs, 15 
to ta l graphs, 15
transitive closures of rooted trees, 7 -  

8 , 15 
trees, 7, 10, 11, 15 
uniform ly fc-sparse graphs, 15 

adjacency list, 2 , 6 
adjacency m atrix , 2 , 6 
adjacent, 1
alm ost tree(fc), 14, 118 
arboricity, 118
arboricity-fc graph, 3, 4, 14, 15, 32, 33 
asteroidal triple, 118 
asteroidal trip le free graph, 14 
astra l triple, 82, 83, 118 
autograph, 14, 118

bandw idth , 118 
bandwidth-fc graph, 14 
base graph, see line graph, base 
biclique, 54, 118

m axim al, 4, 5, 34, 54. 6 8 , 81, 112, 118 
r-b ic , 5, 34, 54, 55, 67-81, 81, 112, 118 
b inary  tree, 2 1 , 118 
b ip a rtite  graph, 12, 14, 15, 21, 119 
block, 83-84 
boxicity, 119 
boxicity-fc graph, 14, 15 
broadcast protocols, 20

chain graph, 14, 119
chordal b ipartite  graph, 12, 119
chordal com parability graph, 14
chordal graph, 12, 14, 119
circle graph, 15, 119
circular arc graph, 15, 21, 119
circular doubly linked list, 39, 55, 6 8 , 86
circular linked list, 4, 111
claw, 119
clique

maximal, 5, 34, 54, 56, 81, 112, 121 
cliquewidth, 119 
cliquewidth-fc graph, 21, 119 
closed neighbourhood, 1 
co-class, 10, 14 
cobipartite  graph, 14, 15, 119 
cograph, 15, 119 
com parability graph, 15, 119 
com ponent, 2 
com putation  model

log-cost RAM, see log-cost RAM  
unit-cost RAM, see unit-cost RAM 
word-level RAM, see word-level RAM  

connected graph, 2
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containm ent class, 18, 120 
containm ent graph, 15, 1 2 0  
contig, 84, 85
convex b ipartite  graph, 15, 120

decoder, 3, 7-12, 16, 19, 39, 56, 68, 86, 
124

fc-decomposable graph, 15 
^-decomposable, 120 
degree, 1
degree-fc graph, 14, 15, 21 
degree-fc p lanar graph, 21 
degree-3 graph, 21 
directed graph, 1 
disk intersection graph, 15, 120  
distance hereditary  graph, 21, 120 
distinct graphs 

labelled, 2 
unlabelled, 2 

domino, 5 4 , 56
fc-dot p roduct graph, 13 , 13, 15, 1 2 0  
dynamic adjacency labelling scheme, see 

dynam ic labelling scheme, ad ja­
cency

dynam ic inform ative labelling scheme, see 
dynam ic labelling scheme 

dynamic labelling scheme, 22-34, 112, 113 
adjacency, 23

arboricity-fc graphs, 4, 32, 33 
r-bics, 5, 34, 55, 67-81, 112 
line graph, 34 
line graphs, 5, 38-52, 111 
r-m inoes, 5, 34, 81, 112 
r-m inoes, 55-67
proper interval graphs, 5, 82-107, 

112 
trees, 24 

ancestor
rooted trees, 4, 33 

assum ptions, 24-25, 57, 69 
distance 

trees, 4, 33 
weighted cycles, 34 
weighted trees, 34, 112 

flow
weighted trees, 112 

inform ative, 26
m odification excess, s e e  modification 

excess
m odification locality, s e e  modification 

locality 
quality, 4, 26-29, 111 
routing

weighted trees, 112 
separation  level 

weighted trees, 112

edge, 1 
edge set, 1 
end pointer, 85, 87 
E P T  graph, 15, 120
error-detection, 4, 2 3 , 26 . 29-32, 63, 75, 

111

far pointer, 85

finite graph, 1 
forest, 15, 22, 1 2 0  
C3-free graph, 14 
C3 ,C4-free graph, 14 
C 3 , ^ i , 3-free graph, 14 
H-  free, 11 8  
Itd^-free, 14 
K^^- tree  graph, 14 
K^-ixee graph, 14 
P 4-free graph, 14

genus, 120 
genus-fc graph, 15 
graph, 1
graph recognition, 29-32

hereditary  degree-fc graph, 15, 1 2 0  
hereditary  property, 120 
hypercube, 21, 120 
hypergraph, 17, 121

line graph of, 17, 121 
rank, 17, 1 2 1

identifier, 4, 6-10, 24, 39, 56, 68, 86 
im plicit representation, 16 , 16-18 
incident, 1
inform ative labelling scheme, 3, 19, 18- 

19, 125
adjacency, see adjacency labelling scheme 
ancestor, 3, 20

rooted  trees, 19, 21 
applications, 19-20 
bounded distance 

trees, 21 
center of th ree  vertices, 3 

trees, 21 
distance, 3, 20 

binary  trees, 21 
b ipartite  graphs, 21 
circular arc graphs, 21 
cliquewidth-fc graphs, 21 
cycles, 21
degree-fc graphs, 21 
degree-fc p lanar graphs, 21 
degree-3 graphs, 21 
distance hered itary  graphs, 21 
general graphs, 21 
hypercubes, 21 
interval graphs, 21 
meshes, 21
perm utation  graphs, 21
planar graphs, 21
proper in terval graphs, 21
recursive r(n )-sep a ra to r  graphs, 21
tori, 21
trees, 21
treewidth-fc graphs, 21 
weighted b inary  trees, 21 
weighted c-decom posable graphs, 21 
weighted fc-outerplanar graphs, 21 
weighted series parallel graphs, 21 
weighted trees, 21 
well (a , g )-separa ted  graphs, 21 

edge-connectivity 
general graphs, 21
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flow, 20
general graphs, 22 

nearest com m on ancestor, 3, 20 
rooted trees, 22 

parent, 20 
quality, 19 
reachability

planar digraphs, 22 
routing, 3, 20 

forests, 22 
trees, 22 

separation level 
rooted trees, 22 

sibling, 20 
Steiner tree

weighted graphs, 22 
fc-vertex connectivity 

general graphs, 22 
intersection class, 17, 35, 121 
intersection graph, 121 
intersection num ber, 17 
interval graph, 3, 11, 14, 15, 21, 83, 112, 

121
interval num ber, 121 
fc-interval graph, 15, 121 
isomorphic graphs, 2

labelled graph, 2
line graph, 3, 5, 8, 8-9, 15, 34, 35, 38-52, 

111, 121, see hypergraph, line 
graph  of 

base, 8, 35, 39 
log-cost RAM, 124 
loop, 1

m arker, 3, 7-12, 16, 19, 63, 82, 87, 124 
mesh, 21, 121
r-m ino, 5, 34, 54, 55-67, 81 , 112, 121 
modification excess, 29, 27-29, 43, 46, 52, 

60, 63
modification locality, 29, 27-29, 43, 46, 

52, 60, 63, 65, 67

near pointer, 85 
neighbourhood, 1 

of a  block, 83

open neighbourhood, 1
outdegree-fc graph, 9, 9-10, 14, 15, 121
outerp lanar graph, 13, 15, 121
fc-outerplanar, 121
outneighbour, 9
overlap class, 18

p artia l order, 121
partition  isom orphism , 36, 35-38, 41 
path , 2
perm utation  graph, 15, 21, 122
persistent labels, 4, 33
planar digraph, 22
planar graph, 15, 21, 122
pointer vertex, 85, 85-87
poset, 15, 122
prefix-free b inary  string, 19

proper in terval graph, 5, 14, 15, 21, 82, 
82-107, 112, 1 2 2

reciprocal pointer, 56 
recognition, 63, 75, 88 
recursive r(n )-sep ara to r graph, 21, 122 
relabeller, 2 3 , 26, 27, 41-52, 57-67, 70- 

81, 87-107, 124 
rooted tree, 4, 19, 21, 22, 33, 122  
rou ting  algorithm s, 20

self pointer, 85, 87 
series parallel graph, 122 
simple graph, 1
fc-sparse graph, 12, 12-13, 15, 122 
split graph, 14, 15, 12 2  
stra igh t enum eration, 8 4 , 84, 112 
subclass, 10, 14 
superclass, 10, 14

threshold  graph, 15, 1 2 2  
threshold  tolerance graph, 15, 122 
torus, 21, 122 
to ta l graph, 15, 12 2
transitive  closure of roo ted  tree, 7-8, 15, 

1 2 3
tree , 4, 7, 10, 11, 15, 21, 22, 24, 33 
treew id th , 1 2 3  
treewidth-fc graph, 21 
triangle, 1 2 3

undirected  graph, 1 
uniform ly fc-sparse graph, 15, 123 
unit interval graph, 1 2 3  
unit-cost RAM , 124 
universal graph, 18, 1 2 3  
unlabelled graph, 2

valid set, 4 4  
vertex, 1 
vertex  set, 1

walk, 2
weak linear order, 92
weighted b inary  tree, 21
weighted cycle, 34
weighted c-decomposable graph, 21
weighted graph, 22
weighted fc-outerplanar graph, 21
weighted series parallel graph, 21
weighted tree, 21, 34, 112
well (a,  g )-separated  graph, 21, 123
word-level RAM , 6, 11, 124

XML search engine, 20
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