
U n iv e r s i ty o f A lb e r t a

D y n a m ic A d j a c e n c y L a b e l l i n g S c h e m e s

by

D a v id M o rg a n { g** |

A thesis subm itted to th e Faculty of G raduate Studies and Research in partia l fulfillment
of the requirem ents for the degree of D o c to r o f P h ilo s o p h y .

D epartm ent of C om puting Science

Edm onton, A lberta
Fall 2006

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 W ellington S tre e t
O ttaw a ON K1A 0N4
C a n a d a

Your file Votre reference
ISBN: 978-0-494-23083-1
Our file Notre reference
ISBN: 978-0-494-23083-1

Direction du
Patrimoine de I'edition

395, rue W ellington
O ttaw a ON K1A 0N4
C a n a d a

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Abstract

As defined by Muller [Muller, Ph.D . thesis, Georgia Tech, 1988] and K annan, Naor, and

R udich [Kannan et ah, SIAM J Disc M ath , 1992], an adjacency labelling scheme labels a

graph such th a t the adjacency of two vertices can be deduced im plicitly from their labels.

In general, the labels used in adjacency labelling schemes cannot be tw eaked to reflect small

changes in the graph.

F irs t studied by B rodal and Fagerberg [Brodal and Fagerberg, LNCS 1663, 1999], a

dynamic adjacency labelling scheme is an adjacency labelling scheme th a t requires only small

adjustm ents to the vertex labels when a sm all change is m ade to the graph. M otivated by

th e necessity for further exploration of dynam ic adjacency labelling schemes, we introduce

the concept of error-detection, discuss m etrics for judging the quality of dynam ic schemes,

and develop error-detecting fully dynam ic schemes for several classes of graphs.

O ur dynamic scheme for line graphs uses O (logn) b it labels and updates in 0 (e) tim e,

where e is the num ber of edges added to , or deleted from, th e line graph. As well, our

dynam ic scheme for proper interval graphs uses O (logn) b it labels and handles all operations

in O (n) time.

We also develop a O (r lo g n) b it/la b e l dynam ic adjacency labelling scheme for r-minoes,

which are graphs w ith no vertex in more th a n r m axim al cliques. Edge addition and deletion

can be handled in 0 (r 2D) tim e, vertex addition in 0 (r 2e2) tim e, and vertex deletion in

0 (r 2e) time, where D is the m axim um degree of the vertices in the original graph and e is

the num ber of edges added to , or deleted from, the original graph.

Similar to th is dynam ic scheme for r-m inoes, we develop a O (r lo g n) b it/lab e l dynam ic

adjacency labelling scheme for r-bics, which are graphs w ith no vertex in more th an r

m axim al bicliques. Edge addition and deletion, as well as vertex deletion, can be handled

in 0 (r 2B) time, and vertex addition in 0 (r 2nB) time, where B is the size of the largest

biclique in the original graph.

O ur dynamic labelling schemes for r-m inoes and r-bics lead to 0 (r 2n 3) tim e recognition

algorithm s for both of these classes.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Acknowledgements

First, I would like to acknowledge the support of my wife, Angela, whose confidence in my

abilities far exceeds my own. She is my biggest fan.

As well, I would like to th an k Dr. Lorna S tew art, my doctoral supervisor, for giving

me th e freedom to independently pursue m y own research in terests. A lthough our research

areas are not closely related, her experience offered m any insights into m y work. Moreover,

I would like to thank her for being open to , and supportive of, the idea of finishing my

doctoral studies from over 4000 kilom eters away.

Finally, I would like to th an k NSERC, iCO RE, the Killam Scholarship Program , the

A lberta Scholarship Program , and the University of A lberta for providing financial sup­

port. W ithout financial support from these program s and organizations, I m ight never have

finished; worse yet, I m ight never have s ta rted —

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Table of Contents

1 I n t r o d u c t io n 1

1.1 G raph te rm in o lo g y ... 1

1.2 Overview .. 2

2 B a c k g ro u n d 6

2.1 Adjacency labelling sc h e m e s ... 6

2.1.1 E x a m p le s .. 7

2.1.2 Assessing q u a l i t y ... 10

2.1.3 Two classes of n o t e ... 12

2.1.4 Previous w o rk ... 13

2.1.5 M uller and K annan et a l.. 16

2.2 Inform ative labelling s c h e m e s .. 18

2.2.1 D e f in i t io n .. 18

2.2.2 A pplications .. 19

2.2.3 Previous w o rk ..20

2.2.4 D y n am iza tio n ..22

3 D y n a m ic S c h e m e s 23

3.1 Dynam ic adjacency labelling schem es... 23

3.1.1 D e f in it io n ...23

3.1.2 E x a m p le .. 24

3.1.3 Underlying a s s u m p tio n s ... 24

3.2 Dynam ic inform ative labelling sch em es ..25

3.2.1 D e f in it io n ...25

3.2.2 Assessing q u a l i t y ... 26

3.2.3 G raph r e c o g n i t io n .. 29

3.2.4 Previous w o rk .. 32

3.3 New dynam ic s c h e m e s ...34

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4 L in e g ra p h s 35

4.1 P artition is o m o rp h is m ... 35

4.2 The dynam ic s c h e m e ... 38

4.2.1 V ertex labels, m arker, and d e c o d e r ... 38

4.2.2 R e la b e lle r ...41

4.3 S u m m a r y .. 52

5 r -g ra p h s 54

5.1 The dynam ic scheme for r-m inoes ... 55

5.1.1 Vertex labels and d e c o d e r ... 55

5.1.2 R e la b e lle r ... 57

5.2 The dynam ic scheme for r - b i c s ... 67

5.2.1 Vertex labels and d e c o d e r ... 67

5.2.2 R e la b e lle r ... 70

5.3 S u m m a r y .. 81

6 P r o p e r in te r v a l g r a p h s 82

6.1 Vertex labels, m arker, and d e c o d e r .. 84

6.1.1 R e la b e lle r ... 87

6.2 S u m m a r y ...107

7 C o n c lu s io n 111

B ib lio g ra p h y 114

A D e f in itio n s 118

B C o m p u ta t io n M o d e ls 124

C P s e u d o c o d e 126

C .l Line g r a p h s ... 126

C.1.1 Deleting a v e r t e x ... 126

C .l .2 Adding a vertex ... 128

C.1.3 D eleting an e d g e ... 140

C.1.4 Adding an e d g e ...154

C.2 r -m in o e s .. 155

C.2.1 D eleting a v e r t e x ... 155

C.2.2 Adding a vertex ..157

C.2.3 Deleting an e d g e ... 159

C.2.4 Adding an e d g e ...160

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

C.3 r-bics ... 162

C.3.1 Deleting a v e r t e x ... 162

C.3 .2 A dding a vertex ... 164

C.3.3 D eleting an e d g e ... 167

C.3.4 Adding an e d g e ...170

C.4 P roper interval g r a p h s ..170

C.4.1 D eleting a v e r t e x ... 170

C.4.2 Adding a vertex ... 172

C.4.3 D eleting an e d g e ... 181

C.4.4 Adding an e d g e ... 184

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

List of Tables

2.1 Known results on adjacency labelling s c h e m e s ... 14

2.2 Known results on inform ative labeling schemes for functions o ther th a n ad­

jacency ... 21

4.1 Casewise approach to deletion of an edge (line g r a p h s) .. 49

4.2 P artitio n non-isomorphic bases for edge deletion (line g r a p h s)51

4.3 P artition non-isomorphic bases for edge addition (line g r a p h s)53

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

List of Figures

1.1 I llu s tra tio n of ad jacency labelling (in te rva l g r a p h s) ... 3

2.1 I llu s tra tio n of ad jacency labelling (t r e e s) .. 7

2.2 I llu s tra tio n of ad jacency labelling (tra n s itiv e closures o f t r e e s) 8

2.3 I llu s tra tio n of ad jacency labelling (line g r a p h s) ... 9

2.4 I llu s tra tio n of ad jacency labelling (outdegree-fc g r a p h s) .. 10

3.1 I llu s tra tio n of m od ification excess an d lo c a l i ty ... 28

3.2 A lgorithm s for dynam ic schem e (g raphs of b o u n d ed a r b o r i c i t y)32

4.1 P a r tit io n is o m o r p h is m ..37

4.2 I llu s tra tio n of dynam ic v e rte x labels (line g r a p h s) ..40

4.3 I llu s tra tio n of edge dele tion an d a d d itio n (line g r a p h s) ...42

4.4 I llu s tra tio n of v e rte x de le tio n an d ad d itio n (line g r a p h s) ... 42

4.5 D e l e t e V e r t e x (line g r a p h s) ..43

4.6 A d d V e r t e x (line g r a p h s) ...45

4.7 D e l e t e E d g e (line g r a p h s) ... 50

5.1 I llu s tra tio n of dynam ic v e rte x labels (r - m in o e s) .. 56

5.2 D e l e t e V e r t e x (r - m in o e s) ..59

5.3 A d d V e r t e x (r - m in o e s) ...62

5.4 D e l e t e E d g e (r-m inoes) ... 65

5.5 A d d E d g e (r-m inoes) ...67

5.6 I llu s tra tio n of dynam ic v e rte x labels (r - b ic s) ... 68

5.7 D e l e t e V e r t e x (r - b ic s) ...71

5.8 A d d V e r t e x (r - m in o e s) ...73

5.9 D e l e t e E d g e (r - b i c s) ...78

6.1 A n a s tra l t r i p l e ... 82

6.2 In terv a l rep resen ta tio n s an d b l o c k s ...83

6.3 D eleting a v ertex I (p ro p er in te rval g r a p h s) .. 90

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

6.4 M erging b l o c k s ..91

6.5 L e f t C o m p o n e n tB l o c k St r u c t u r e ... 95

6.6 Adding a vertex I (proper interval g r a p h s) .. 98

6.7 Adding a vertex II (proper interval g r a p h s) ... 99

6.8 Adding a vertex III (proper interval g r a p h s) ... 100

6.9 Adding a vertex IV (proper interval g r a p h s) ...101

6.10 Adding a vertex V (proper interval graphs) ...102

6.11 Adding a vertex VI (proper interval g r a p h s) ...102

6.12 Adding a vertex V II (proper interval graphs) ..108

6.13 Adding a vertex V III (proper interval g r a p h s) ..108

6.14 Deleting an edge (proper interval graphs) .. 109

6.15 Adding an edge (proper interval g r a p h s) ..110

C .l Changing the base I (line g r a p h s) ...134

C .2 Changing the base II (line g r a p h s) ... 134

C.3 Changing the base III (line g r a p h s) .. 136

C.4 Changing th e base IV (line g r a p h s) ...136

C.5 Changing the base V (line g r a p h s) ... 137

C .6 Changing the base VI (line g r a p h s) ... 137

C.7 Deleting an edge I (line g r a p h s) .. 145

C .8 Deleting an edge II (line g r a p h s) ...146

C.9 Deleting an edge III (line g r a p h s) ...146

C.10 Deleting an edge IV (line g r a p h s) ...147

C . l l Deleting an edge V (line g r a p h s) ...148

C .12 Deleting an edge VI (line g r a p h s) ...149

C.13 Deleting an edge VII (line g r a p h s) ..150

C.14 Deleting an edge VIII (line g r a p h s) ..151

C.15 Deleting an edge IX (line g r a p h s) ...152

C.16 Deleting an edge X (line g r a p h s) ...153

C.17 Deleting an edge XI (line g r a p h s) ...155

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

List of Sym bols

The following is a sum m ary of undefined no tation used in the thesis.

General no tation
0 em pty set, em pty graph
n intersection
u union
E sum m ation
o (/(«)) asym ptotically less th an / (n)
0 (f(n)) asym ptotically less th an or equal to f (n)

© (/(")) asym ptotically equal to f (n)
n(f(n)) asym ptotically greater th an or equal to f (n)
w(/(™)) asym ptotically greater th an f (n)
A = > B A implies B
A B A if and only if B
ck cycle on k vertices
deg(u) degree of vertex v
d istc (u , u) distance of vertex v from vertex u in graph G
d istc(u , S) distance of vertex v from set of vertices S in graph G
E g edge set of graph G
/ H function of n
/ : X — > Y a function whose dom ain is X and range is contained in Y
G - v graph formed by deleting vertex v from graph G
G + v graph formed by adding vertex v to graph G
G - e graph formed by deleting edge e from graph G
G + e graph formed by adding edge e to graph G
G Q H C artesian product of graphs G and H
K k complete graph on k vertices
K i j complete b ip a rtite graph (m axim al independent set sizes i and j)
logx logarithm base two of x
L(G) line graph of graph G
m ax{5} m axim um in set S
m in{5} m inimum in set S
N (v) open neighbourhood of vertex v
N[v] closed neighbourhood of vertex v
parent (v) parent of vertex v
Pk path on k vertices
Rfc k- dimensional space over reals

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

|S | cardinality of set S
uv an edge uv
v G vertex set of graph G
[x] floor of x
[xl ceiling of x
y /x square root of x
x\ factorial of x
x e X x belongs to set X
{x \P {x)} set of all elem ents th a t satisfy property P
X -< y x precedes y
x r< y x precedes or is y
x y y x succeeds y
x h y x succeeds or is y
X c Y X is a proper subset of Y
X C Y A is a subset of Y
X d Y X is a proper superset of Y
X D Y A is a superset of Y
X \ Y set A setm inus set Y

Algorithm notation

D e q u e u e (Q) rem o v e fro m h e a d o f q u e u e Q
E n q u e u e (Q) a d d to ta i l o f q u e u e Q
NIL e m p ty s ta c k o r q u eu e
P o p (S) rem o v e fro m to p o f s ta c k S
P u s h (S) a d d to to p o f s ta c k S
x <— y a ss ig n y to x

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 1

Introduction

1.1 G raph term in o logy

Let us begin by revisiting some graph term inology. For the definitions of te rm s used in the

thesis, bu t no t defined herein, the reader should consult W est [57].

An undirected graph G — (Vg , E g) consists of a vertex set Vg , and an edge set E g , where

each mem ber of E g is a subset of Vg having size either one or two. The m em bers of Vg are

known as vertices, and the m em bers of E g are known as edges, where in particu lar, if an

edge consists of only one vertex, it is called a loop.

Given an undirected graph G, tw o vertices u and v are said to be adjacent if the edge

{u, w} belongs to G; moreover, the vertices u and v are said to be incident w ith th e edge

{ u ,v } , and vice-versa. For simplicity, we will denote the edge {u, v} by uv, which is a

common practice in graph theoretical lite ra tu re . Two edges are said to be adjacent if they

share a common vertex.

The open neighbourhood of a vertex v, denoted N (v) , is the set of vertices to which v is

adjacent. The closed neighbourhood of v, denoted N[v], is defined to be N (v) U {u}. W hen

we wish to refer to the closed neighbourhood of a vertex we will do so explicitly; as such,

any references to the neighbourhood of a vertex are to its open neighbourhood. The degree

of a vertex is the cardinality of its open neighbourhood.

A directed graph G = (Vg , E q) consists of a vertex set Vg , and an edge set E q , where

each mem ber of E g is an ordered pair of Vg having size either one or two. A directed

graph is similar to a graph, however, its edges are ordered pairs; thereby, a direction is

im parted to each of its edges. Consequently, the term s defined for undirected graphs, have

directed counterparts such as inneighbourhood, outneighbourhood, indegree, and outdegree.

A graph, undirected or directed, is simple if it contains no loops, and finite if its vertex set

is finite. Our usage of the term graph will refer to a finite simple undirected graph. W hen

deviating from this usage, we will explicitly sta te the type of graph under consideration.

A walk between two vertices u and v is a sequence of edges th a t lead from u to v. A

1

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

walk which visits no vertex twice is known as a path. Indeed, th e te rm p a th is seen more

often th an walk, as the existence of a walk implies the existence of a p a th . A m axim al set

of vertices w ith a pa th betw een each pair of m em bers is called a component. A graph is said

to be connected if the entire vertex set is a component.

Two graphs G \ and G 2 are said to be isomorphic if there exists a bijection / : Vq 1 = >

Vg 2, for which uv £ E g t f (u) f (v) £ E g2 ■ We will used the te rm labelled graph to refer

to a graph G whose vertex set is {1 , 2 , . . . , |Vg|}. A graph is said to be unlabelled if it is not

labelled. Two labelled graphs are said to be distinct if th ey are unequal. Two unlabelled

graphs are said to be distinct if they are not isomorphic.

1.2 O verview

Consider a finite simple undirected graph G = (Vg , E g) w ith n vertices and m edges;

typically, we represent G using an adjacency m atrix , labelling the vertices from 1 to n.

These labels serve only to distinguish between the vertices and do not tell us anything

about the structure of G. In particu lar, th e adjacency of any pair of vertices is determ ined

from the adjacency m atrix , which is usually m aintained as a global resource.

W hat if we could determ ine the adjacency of two vertices of G in a m ore local m anner?

One such way is to use an adjacency list representation which requires 0 ((m + n) log n) bits

to represent a graph. U nfortunately, for dense graphs, an adjacency list representation can

require as m any as 0 (n 2 lo g n) bits, which is much greater th an the 0 (n2) b its required by

an adjacency m atrix representation.

A nother approach is to use an adjacency labelling scheme, as defined by Muller [45] and

K annan, Naor, and R udich [31].

D e f in it io n 1 .1 A n adjacency labelling scheme of a family Q o f finite graphs is a pair of

algorithms, (M , D), satisfying the following.

• M is a vertex labelling algorithm (marker) whose input is a graph G in Q. Note that

M need not be deterministic; accordingly, let M .q be the set o f all vertex labellings o f

Vg which can be assigned by M .

• D is a polynomial time deterministic evaluation algorithm (decoder) whose input is a

pair o f vertex labels. For any graph G in Q, and fo r any labelling M g generated by M ,

we require that D be able to correctly determine the adjacency o f any pair of vertices

of G, using only their labels; we refer to this property by saying that D is adjacency

correct.

In essence, an adjacency labelling scheme is a d istributed d a ta s tru c tu re th a t allows us to

quickly determ ine the adjacency of two vertices from local inform ation. To date, space-

2

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

optim al adjacency labelling schemes have been developed for a variety of graph classes, such

as bounded arboricity graphs, line graphs, and interval graphs [45, 31].

For example, consider the following adjacency labelling scheme for interval graphs [45].

Recall th a t a graph is said to be an interval graph if each vertex can be represented by an

interval of real num bers such th a t tw o vertices are adjacent if and only if the corresponding

intervals have non-em pty intersection. Any such interval represen tation can be m apped

to another interval representation using closed intervals w ith endpoints in { 1 , . . . , 2n}. The

m arker labels each vertex w ith the tw o endpoints of its associated interval while the decoder

determ ines adjacency in 0 (1) tim e by com paring these integers ju s t as it would two intervals.

Each label requires O (logn) b its and th e entire labelling uses O (n lo g n) bits. An example

of an adjacency labelling of an interval g raph is given in Figure 1.1.

1 2 3 4 5 6 7 8 9 10 11

(3,9)

(2,5)

(6 , 10)

(a) An interval represen tation of
a graph.

(b) T he corresponding la­
bels.

Figure 1.1: An adjacency labelling of an interval graph

Adjacency can be replaced by any function / defined on sets of vertices. In tu rn , for

any set S of vertices on which / is defined, D m ust o u tp u t the correct value of / on S

using only the labels of the vertices in S. By setting adjacency labelling schemes in the

larger context of informative labelling schemes, Peleg [47] rejuvenated in terest in the idea

of space efficient d istributed d a ta struc tu res as introduced by M uller [45] and K annan et al.

[31]. To date, informative labelling schemes have been developed for a variety of functions

including distance, routing, center of th ree vertices, ancestor, and nearest common ancestor.

In C hapter 2, we offer a comprehensive look at the theory of inform ative labelling schemes.

In m any applications the underlying topology is constantly changing and we desire algo­

rithm s which can accommodate these changes. At present, algorithm s for finding informative

labelling schemes are static; th a t is, if a graph is changed then the algorithm must devise a

labelling of the new graph from scratch. The dynamic version of adjacency labelling schemes

was m entioned by K annan et al. [31], however, they did not consider th e problem in detail.

A t m ost, the authors suggest th a t the addition or deletion of a vertex or an edge should

3

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

require only a “quick” u p d a te of the labels in order to obtain an adjacency labelling of the

new graph. The first paper to address th is dynam ic problem is th a t of B rodal and Fagerberg

[10] who develop a dynam ic adjacency labelling scheme for graphs of bounded arboricity,

providing the graph operations do not cause the arboricity bound to be violated. More

recently, the papers of K orm an and Peleg [37] and K orm an, Peleg, and Rodeh [39] have

considered the dynam ic problem for trees in the context of d istribu ted com puting. Cohen,

K aplan, and Milo [11] consider dynam ic ancestor labellings of XML trees w ith persistent

labels; th a t is, the label of a vertex cannot be changed once it has been assigned. In contrast,

our labels can change over tim e. By no t using persistent labels it is possible to reduce label

size as we can change the labels as required, or as desired.

As a continuation of the aforem entioned works, we further discuss and develop the theory

of these dynamic schemes. In C hapter 3, we formally define w hat is m eant by a dynam ic

inform ative labelling scheme, as previous lite ra tu re on th is subject has been based exclusively

on our intuitive understanding of how s ta tic problem s are made dynam ic. W hile presenting

th is formal definition, we introduce th e concept of error-detection; th a t is, th e algorithm s

which relabel the graph should recognize when the modified graph is no longer a m em ber

of the family under consideration. In addition to form ally defining these schemes, we also

dem onstrate the connection between error-detection and the graph recognition problem , and

identify and discuss th e qualities th a t m ake a good dynam ic scheme.

T he la tter three chapters of th is thesis develop dynam ic adjacency labelling schemes for

four classes of graphs. Common to the developm ent of dynam ic schemes for all these classes

is th e use of identifiers and circular linked lists to encode inform ation a t the vertex level.

Specifically, each vertex of a graph G is assigned a unique identifier from { 1 , . . . , |Vg|}- For

some substructure S of G, such as a m axim al clique, the label of a m em ber of S will include

the identifier of the next vertex in a circular linked list of vertices in th e substructure. In

fact, we can incorporate a circular doubly linked list w ithout an increase in the asym ptotic

size of the vertex label, as we store two identifiers instead of one. By incorporating these

circular linked lists we can determ ine all the vertices in S from a single vertex of S.

Using this d istribu ted representation of S , we can also include additional inform ation

abou t S in the labels of its mem ber vertices. For example, one of the substructures seen in

C hap ter 5 is a m axim al biclique. For each m axim al biclique B , we use th e circular linked

list technique to d istribu te the representation of B , however, in the label of each mem ber

vertex of B to which we identify which p a rt of the b ipartition of B th e vertex belongs. W ith

th is additional inform ation, we are able to develop a decoder for our dynam ic scheme.

Not only do we develop a technique to d istribu te graph substructures across their member

vertices, but we also develop a technique to distribute pointers. Consider a pointer P which

points from one substructure Si to another substructure S2 . F irst, we select a pointer vertex

4

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

from S i , denoted P (S 1). The label of each m em ber of S i specifies the identifier of P (S i) ,

where th e label of P (S 1) contains a field which holds th e identifier of a vertex in 5 2 - In

tu rn , the label of th a t m em ber of S 2 specifies the identifier of P (S 2), so pointers can be

followed a t will. This technique is used in C hapter 6 , where th e graph substructures have a

linear ordering.

Each of the dynam ic adjacency labelling schemes th a t we develop is fully dynam ic, th a t

is, th e graph operations allowed are the addition or deletion of a vertex (along w ith its

incident edges), and th e addition or deletion of an edge. Moreover, each dynam ic scheme

is error-detecting. In C hap ter 4, we present a dynam ic adjacency labelling scheme for line

graphs, a class of graphs fundam ental in the study of intersection graph theory [8]. Our

dynam ic scheme for line graphs uses O (logn) bit labels and updates in O(e) tim e, where e

is the num ber of edges added to, or deleted from, the line graph. In developing th is dynamic

scheme, we introduce a new concept known as partitio n isomorphism, and develop theory

on th e types of line graphs th a t can be dynam ically altered to produce new line graphs.

In C hapter 5, we present d a ta structures based on m axim al cliques and m axim al bicliques

th a t give rise to dynam ic adjacency labelling schemes for two classes of graphs. Specifically,

we develop an O (r lo g n) b it/la b e l dynam ic adjacency labelling scheme for r-minoes, defined

by M etelsky and Tyshkevich [44] as the class of graphs w ith no vertex in more th a n r maximal

cliques. Edge addition and deletion can be handled in 0 (r 2D) tim e, vertex addition in

0 (r 2e2) time, and vertex deletion in 0 (r 2e) time, where D is the m axim um degree of the

vertices in the original g raph and e is the num ber of edges added to , or deleted from, the

original graph.

Similar to th is dynam ic scheme for r-m inoes, we develop a O (r lo g n) b it/la b e l dynamic

adjacency labelling scheme for r-bics, a new class which we define as the graphs w ith no

vertex in more th a n r m axim al bicliques. Edge addition and deletion, as well as vertex

deletion, can be handled in 0 (r 2B) time, and vertex addition in 0 (r 2nB) tim e, where B is

the size of the largest biclique in the original graph.

Finally, in C hap ter 6 , we present a dynamic adjacency labelling scheme for proper in­

terval graphs, a subclass of interval graphs. Our dynam ic scheme for proper interval graphs

uses O (logn) bit labels and handles all operations in O (n) tim e.

5

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 2

Background

2.1 A d jacen cy lab ellin g schem es

Recall Definition 1.1, the definition of an adjacency labelling scheme. Allowing sufficiently

large labels we can create an adjacency labelling scheme for any family of graphs.

For instance, consider labelling each vertex w ith a unique “identifier” from { l , . . . , n }

(for simplicity, we will refer to vertices by their identifiers), along w ith its corresponding

row of the adjacency m atrix [53]. We can determ ine the adjacency of v\ and V2 , using only

their labels, by looking up th e b it corresponding to V2 in th e row of the adjacency m atrix

found in the label of v\, or vice versa. Each label requires 0 (n) bits, the entire labelling

requires 0 (n2) bits, and adjacency queries require 0 (1) tim e (throughout th is work we

assume a word-level RAM com putation model for th e m arker and decoder, where word

sizes are fl(logn); a com parison between th is and other common com putation models, as

well as a discussion on why th is model was chosen, can be found in A ppendix B).

A nother approach is to label each vertex w ith a unique identifier from {1 , . . . , n}, along

w ith a list of the identifiers of the vertices to which it is adjacent (an adjacency list of

identifiers). We can determ ine the adjacency of v\ and V2 , using only their labels, by

determ ining if V2 is in the adjacency list found in the label of v i , or vice versa. The label of

vertex v requires as m any as 0 (deg(v) logn) C O (n lo g n) b its, the entire labelling requires

as m any as 0 ((m + n) log n) bits, and adjacency queries require O (logn) tim e, provided the

adjacency lists are sorted.

U nfortunately, the adjacency labelling schemes ob tained from adjacency m atrices and

lists are often not space efficient. M any classes of graphs exhibit adjacency labelling schemes

th a t use 0 (log n) b it labels, which is a substantial im provem ent over the 0 (n) and O (n lo g n)

b it labels offered by adjacency m atrices and adjacency lists, respectively.

6

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2.1.1 E xam ples

For m any graph classes, th e defining properties of the class often determ ine an adjacency

labelling scheme. We now present adjacency labelling schemes for a variety of classes, noting

th a t, when we refer to a particu lar graph class we m ean those graphs which are unlabelled;

th a t is, isomorphic copies are not d istinct. W hen we wish to refer to a class of labelled

graphs we will do so explicitly.

T re e s

Perhaps the sim plest adjacency labelling scheme is th e following scheme on trees [31]. Con­

sider a tree T on n vertices. The m arker assigns an a rb itrary root, gives each vertex an

a rb itra ry bu t unique identifier from { 1 , . . . , n}, then assigns to each vertex v of T the label

(v, parent(w)). Each label uses O (logn) b its and the m arker takes 0 (n) tim e to label the

graph. The decoder determ ines the adjacency of two vertices V\ and V2 in 0 (1) time, using

only the ir labels, by checking if Vi = p a r e n t ^) or i '2 = paren t(u i). A n example of an

adjacency labelling of a tree is presented in Figure 2.1.

(3,2) (6 ,2)

(7,6) (5,6)

(a) Identi- (b) Labels of T.
fiers of T.

Figure 2 .1 : An adjacency labelling of a tree

T ra n s it iv e c lo s u re s o f r o o te d t r e e s

The class of graphs which are transitive closures of rooted trees also has an adjacency

labelling scheme [31]. The transitive closure T ' of a rooted tree T is the graph defined by

Vt < = Vt and E t < = {{u,w}jthere is a directed p a th from u to v in T}.

Consider the transitive closure T ' of a rooted tree T on n vertices. Observe th a t the

vertices of T ' are exactly the vertices of T , so we may refer to them interchangeably. Let

the set of descendants of a vertex v in T be denoted D(v). The m arker assigns each vertex

a unique identifier from {1 , . . . , n} by traversing the tree in postorder, then assigns to each

vertex v of T ' the label m in w ,v . Each label uses O (logn) bits and the marker takes
w£D{v)

0 (n) tim e to label the graph. The decoder determ ines the adjacency of two vertices v\ and

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

V2 in 0 (1) tim e using only the ir labels by checking if

m in w < V2 < Vi
w(z.D{v i)

or

m in w < vi < v<2 -
w (z D (v 2)

An example of an adjacency labelling of a transitive closure of a tree is given in Figure 2.2.

(a) Iden­
tifiers of
T

[Id]

[5,5]

[3,3]

(b) L abels of T '

Figure 2.2: A n adjacency labelling of the transitive closure of a tree

L in e g ra p h s

The class of line graphs also has an adjacency labelling scheme. T he definition of a line

graph is as follows [8].

D e f in it io n 2 .1 Given a graph G = (V g , E g), its line graph is the graph L(G) = (E g , E ^ q))

fo r which {u,u} £ E l ^ i f and only i f u and v are adjacent edges in G.

We observe th a t by adding isolated vertices to G we can ob tain infinitely m any graphs which

give rise to the same line graph. As such, if a graph G has no isolated vertices we will refer

to it as a base of L(G). W hitney [58] has shown th a t every connected line graph has a

unique base, up to isom orphism , except for which has two bases, namely, K 3 and K 1 3 .

Consider a line graph L(G), w ith base graph G. To each vertex in G the marker assigns

an a rb itrary b u t unique identifier from {1 , . . . , |Vg|}, then assigns to each vertex v in L(G)

the label (e i ,e 2), where ei and e2 are the identifiers of the endpoints of the edge of G

corresponding to v. Since G has no isolated vertices, |Vg| < 2\E g \ = ^\Vl (G)\, s0 each label

uses 0 (lo g |V b |) = 0 (lo g |l/L(G)|) bits.

We assume th a t the m arker is input w ith G , the base graph, as well as the correspondence

between edges in G and vertices in L(G)\ therefore, the m arker can generate an adjacency

8

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

labelling in Q(n) tim e. If the m arker is inpu t only w ith th e structu re of L(G), perhaps in

the form of an adjacency m atrix , then it m ust use an algorithm like th a t of Lehot [40] or

Roussopoulos [50], which determ ines G from L(G). Each of these algorithm s has running

tim e 0 (to + n), thereby resulting in a running tim e of 0 (m + n) for the marker.

The decoder can determ ine the adjacency of two vertices, w ith labels (epo,epi) and

(ep2 ,ep 3), in 0 (1) tim e by checking if {epo,epi} (~l {ep2,eP3} = 0- An example of an

adjacency labelling of a line graph is given in F igure 2.3.

(1.3)

(2,3)

(3,4)4 3

(a) G. (b) L abels of L(G) .

Figure 2.3: An adjacency labelling of a line graph

O u td eg ree -fc g ra p h s

The class of outdegree-fc graphs also has an adjacency labelling scheme for any fixed constant

fc. An outdegree-fc graph is defined as follows [31].

D e f in it io n 2 .2 A n undirected graph is said to be an outdegree-k graph i f its edges can be

directed such that no vertex has outdegree greater than fc. We will call such an orientation

an outdegree-k orientation.

For any fixed constant fc, consider an outdegree-fc graph G on n vertices and to edges,

subject to some outdegree-fc orientation O. To each vertex th e m arker assigns an a rb itrary

bu t unique identifier from {1 , . . . , n}, then assigns to each vertex v the label (u, Ov), where

O v denotes the set of identifiers of the outneighbours of v. Each label uses O (logn) bits.

We assume th a t the m arker knows the orientation O , so it can generate th is labelling in

0 (n) tim e. If the m arker is only inpu t w ith G, perhaps as an adjacency m atrix, then it m ust

use an algorithm like th a t of Gabow and W esterm ann [18] which determ ines O from G. This

algorithm has a running tim e of Q (kn ^ /m + fcnlogn), resulting in a & (kn ^ /m + kn log n)

running tim e for the m arker.

T he decoder can determ ine the adjacency of two vertices, to and to, in 0 (1) tim e using

only the ir labels by checking if to £ 0 V2 or to & 0 Vl. An exam ple of an adjacency labelling

of an outdegree-2 graph is given in Figure 2.4.

9

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

(4,{5,6 })5 4

(a) O utdegree-2 (b) L abels of G.
orien ta tion and
identifiers of G.

Figure 2.4: An adjacency labelling of an outdegree-2 graph

S u b c la s se s , s u p e rc la s s e s , a n d co -c la sse s

Observe th a t an adjacency labelling scheme for a class Q is also an adjacency labelling

scheme for any subclass of Q\ th e m arker and decoder rem ain th e same, b u t th e inputs to

the m arker are restricted to m em bers of the subclass. Since any tree is an outdegree-1 graph

(arb itrarily assign a roo t and direct each edge tow ard th e paren t vertex), the family of trees

has an adjacency labelling scheme by virtue of it being a subclass of the outdegree-1 graphs.

In fact, the adjacency labelling scheme presented for trees earlier in th is section is exactly

the restriction of the above scheme for outdegree-1 graphs to trees.

T he consequences of the contrapositive of this im plication should also be considered.

Specifically, if a family of graphs Q does not exhibit an adjacency labelling scheme w ith

property P (for example, label size), then th a t is also tru e for any superclass 7i of Q. If

Ti did have such a scheme, then th e restriction of th a t scheme to graphs in Q would be an

adjacency labelling scheme of Q exhibiting property P.

I t should also be observed th a t if a family Q has an adjacency labelling scheme then

so does co-Q, the class of graphs whose complements belong to Q. Specifically the m arker

rem ains the same, bu t the decoder is the “opposite” decoder; th a t is, the decoder for co-Q

determ ines th a t two vertices are adjacent if and only if the decoder for Q determ ines th a t

the vertices are not adjacent.

2.1 .2 A ssessing quality

Consider an adjacency labelling scheme (M, D). There are three ways to assess the quality

of the scheme.

1. The running tim e of M .

2. The running tim e of D.

10

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3. T he labels generated by M .

Trivially, the b e tte r the running tim e of M and D, the b e tte r the adjacency labelling

scheme. Given th a t M m ust assign n vertex labels, th e running tim e of any m arker is f l(n).

As we have seen in Section 2.1.1 w ith line graphs and outdegree-fc graphs, th e running time

of M depends on th e representation of the graph provided to M .

Of greater in terest are the labels generated by M . We define an adjacency labelling

scheme of a family of graphs Q to be space-optimal if there is no o ther adjacency labelling

scheme for Q th a t uses asym ptotically fewer to ta l bits. Since vertex adjacency uniquely

defines a graph, an adjacency labelling scheme of a family of graphs provides a unique

representation for each of the m em bers of th e family. Therefore, the to ta l num ber of bits

required by an adjacency labelling scheme is a t least th e num ber of bits required to represent

all of th e m em bers uniquely; in particu lar, a fam ily of graphs w ith m em bers on n

vertices requires a labelling th a t uses £l(<f>(n)) b its (in to tal, no t per vertex) in order to

uniquely represent each of the m em bers on n vertices [53]. We will say th a t an adjacency

labelling scheme of a family of size 2 @̂ n')'> th a t uses 0 (0 (n)) to ta l b its is strongly space-

optimal. For simplicity, we will occasionally refer to a family w ith 2 ^ n') m em bers on n

vertices as having size 2 ^ n\

For example, there are 2®(nlogri) interval graphs on n vertices [22], so any adjacency

labelling scheme for interval graphs requires f i(n lo g n) to ta l bits. Therefore, th e adjacency

labelling scheme presented for interval graphs in C hap ter 1 is strongly space-optim al. In

contrast, the adjacency labelling schemes created using adjacency m atrices and adjacency

lists, which use 0 (n2) and 0 (n2 logn) to ta l bits, respectively, are not space-optim al for

interval graphs.

A lthough there are many asym ptotic counting results for labelled graph classes, the

same cannot be said for unlabelled graphs. For instance, we know th a t there are 2®(nlogrd

labelled line graphs (hence, there are 2° (nlog”) unlabelled line graphs); however, we do not

know th a t there are 2®(nlogn) unlabelled line graphs. As such, we cannot say th a t M uller’s

adjacency labelling scheme for line graphs, presented in Section 2.1.1, is space-optim al for

unlabelled line graphs. As well, consider th a t there are 2° (n) unlabelled trees (consider a

binary string encoding of a depth first traversal from an a rb itrary root, w here 1 denotes

going down the tree and 0 denotes moving back up) [52]. As such, the adjacency labelling

scheme for trees presented in Section 2.1.1 is not strongly space-optimal for unlabelled line

graphs; however, it may be space-optimal.

Along w ith space-optimality, we are also in terested in the property of balance, th a t

is, we w ant the labels to be of roughly equal size. Specifically, if an adjacency labelling

scheme uses Q (4>(n)) to ta l bits then we would like each vertex label to use O (^ y ^) bits.

For example, the adjacency labelling scheme for interval graphs presented in C hap ter 1 is

11

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

balanced. Likewise, th e adjacency labelling scheme based on adjacency m atrices is balanced

for any class of graphs. In contrast, the adjacency labelling scheme created from adjacency

lists is not balanced for certain classes of graphs. Specifically, th e adjacency list scheme is

not balanced for interval graphs as th is family contains the com plete b ipartite graph

This graph would have one vertex w ith a 0 (n log n) b it label, while the entire labelling would

require 0 (n lo g n) b its in to tal.

Observe th a t the scheme devised from adjacency m atrices is a balanced strongly space-

optim al adjacency labelling scheme (also referred to as a generalized im plicit representation

by Spinrad [53]) for any family of size 2e (” \ Such families include b ipartite graphs, chordal

graphs, and the class of all graphs [26, 45]. As such, we are really only in terested in w hether

classes of size 2 ° ^ 2 ̂ have strongly space-optim al adjacency labelling schemes.

O f the classes of size 2°(" \ balanced strongly space-optim al adjacency labelling schemes

have only been found for families of size 2 e (” log7d . Spinrad [53], presents a space-optim al

representation scheme for chordal b ipartite graphs, which have 2° (nlog2") m em bers on n

vertices; however, adjacency testing cannot be perform ed locally.

E xactly w hat criteria should be used to assess an adjacency labelling scheme is dependent

on the application. It is possible th a t one could not to lerate increasing the running of tim e

of M to create smaller labels th a t allow D to run faster. Commonly, however, applications

th a t involve millions of nodes dem and th a t the focus be on th e size of the labels generated

by M .

2.1.3 Tw o classes o f n o te w ith regard to stron g sp ace-op tim ality

Let us now examine two classes of interest w ith respect to strongly space-optim al adjacency

labelling schemes; specifically, fc-sparse graphs, a class th a t does no t have a balanced strongly

space optim al adjacency labelling scheme, and fc-dot product graphs, a class which rem ains

open w ith respect to the existence of a balanced strongly space-optim al adjacency labelling

scheme.

fc-sparse g ra p h s

The class of fc-sparse graphs is defined as follows [45].

D e f in it io n 2 .3 A graph on n vertices is k-sparse i f it has at most kn edges.

Using a proof by contradiction, M uller [45] showed th a t, for any constant k, the class of fc-

sparse graphs does not have a balanced strongly space-optim al adjacency labelling scheme.

We present a proof similar to th a t of Muller.

For any constant fc, an adjacency list representation uses O (n lo g n) b its to represent a

labelled fc-sparse graph on n vertices; thereby, there are 2° (nlogn) labelled fc-sparse graphs

on n vertices. As such, there are 2° (TllogTd unlabelled fc-sparse graphs on n vertices. Assume

12

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

th a t the class of fc-sparse graphs has a balanced strongly space-optim al adjacency labelling

scheme, th a t is, a scheme th a t uses O (logn) b its per vertex. Now take any graph, G, on n

vertices and add n 2 vertices to it to make it fc-sparse. By our assum ption, th is graph has

an adjacency labelling th a t uses 0 (lo g (n 2 + n)) = 0 (log (n)) b its per vertex. By restricting

any such labelling to G, we ob tain an adjacency labelling scheme of th e class of all graphs

th a t uses O (n lo g n) bits in to ta l. Therefore, there are 2° (nlogTd graphs on n vertices, which

is a contradiction.

W hether or not fc-sparse graphs have a strongly space-optim al adjacency labelling scheme

is unknown.

fc-dot p r o d u c t g ra p h s

Fiduccia, Scheinerman, Trenk, and Zito [17] define a fc-dot p roduct graph as follows.

D e f in it io n 2 .4 A graph G is a k-dot product graph i f there is a function f : Vg — > R fc

such that f (v i) ■ f (v 2) > 1 i f and only i f v \ and V2 are adjacent, where ■ is the standard

inner product of two vectors.

For any constant fc, th e class of fc-dot p roduct graphs rem ains open w ith regards to

having an adjacency labelling scheme th a t uses O (logn) bits per vertex, even though there

are 2 0 (nlogri) m embers on n vertices [17]. T he dot product represen tation itself is almost

such an adjacency labelling scheme, however, there is no upper bound on the num ber of bits

required to represent the m em bers of R. In the same work in which Fiduccia et al. define dot

p roduct graphs, they show th a t the function which defines the do t p roduct representation

can actually be restricted to Q, th e set of rationals; however the sam e problem of unbounded

representation still exists for Q. W hat is needed to achieve an adjacency labelling scheme

w ith O (logn) bits per vertex for th is class is a m apping / : Vq — ► S k , where S is some set

whose m em bers can be represented using O (logn) bits. In their paper, F iduccia et al. sta te

th a t th ey believe th a t no such set S can be found.

2 .1 .4 P revious work

Table 2.1 presents known results on adjacency labellings schemes for a variety of graph

classes. To assist the reader, definitions of these classes can be found in A ppendix A.

In some cases, the upper bound on the size of a class comes from the existence of the

adjacency labelling scheme of a particu lar size. As we have previously discussed in Section

2 .1 .2 , a class exhibiting an adjacency labelling th a t uses 0 (cp(n)) b its in to ta l has size

2 °W ")). For example, there exists an adjacency labelling scheme for outerplanar graphs

th a t uses 0 (n log n) bits [45]; therefore, there are 2 °(n logrd ou terp lanar graphs 011 n vertices.

13

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

In o ther cases, the lower bound on the size of a class is due to th e fact th a t it contains, or

is a co-class of, another class whose size we know. For instance, the class of Cs-free graphs

contains the class of b ipartite graphs, which have size 2e ("2) [45]; therefore, there are 2 n ("2)

C3-free graphs on n vertices. Moreover, we know th a t the class of all graphs, which we

refer to as general graphs, has size 2e (”2); therefore, there are 2 °(« 2) C3-free graphs on n

vertices. In tu rn , we know th a t there are 2e ("2) C3-free graphs on n vertices. Similarly, the

class of cobipartite graphs is the co-class of the b ipartite graphs; therefore, there are 2 @ljl2')

cobipartite graphs on n vertices. A good resource on classes of size 2 ®(n2) is C hap ter 8 of

Efficient Graph Representations by Spinrad [53].

Often an adjacency labelling scheme will result from its containm ent in another class, as

per our discussion of subclasses in Section 2.1.1. For example, the class of proper interval

graphs have a balanced adjacency labelling scheme using O (n lo g n) b its because they are

contained in the class of interval graphs which have a balanced adjacency labelling scheme

using O (n lo g n) bits.

Table 2.1: Known results on adjacency labelling schemes [^number of unlabelled m embers
on n vertices; H otal b its required in th e scheme using asym ptotically fewest to ta l b its (the
scheme is balanced unless otherwise noted); is bounded by a constant; * ind icates th a t
the scheme is the “default” scheme obtained from adjacency m atrices [53]]

C la ss Size^ S chem e^ C o m m e n ts

General graphs 2 0 («2) © (n2)*
C3-free 2©(«C [45] 0 (n2)* superclass of b ipartite
C^C^-free 2J2(nlogn) [53] 0 (n2)*
C'3 ,A 'ii3-free 20 (ny/n) 0 (n lo g n) [53]

AVfree 2®(” 2) [45] 0 (n2)* superclass of b ipartite
ATi3-free 2®("2) [45] 0 (n2)* superclass of cobipartite

K 3,3-free 20 (n2) [45] 0 (n2)* superclass of cobipartite

P 4-free posets 20 (nl0g n) [53] 0 (n2)* no 0 (n lo g n) balanced
scheme [53]

Almost tree(fc)* 2 0 (n log n) 0 (n lo g n) [45]
Arboricity-A:* 20 (n logn) 0 (n lo g n) [31] subclass of outdegree-fc
Asteroidal triple free 20 (rF) [g] 0 (n2)* superclass of cobipartite

A utographs 2 e ("2) [45] 0 (n2)*
Bandwidth-fc* 2 0 (n log n) © (n lo g n) [45] subclass of degree-k

B ipartite 2© C 2) [45] 0 (n2)*
Boxicity-fc* 2 0 (n log n) 0 (n lo g n) [45]
Chain graphs 2 0 (n log n) © (n lo g n) [53]

Chordal 2 ©(nb [45] 0 (n 2)* superclass of split
Chordal com parabil­
ity

2 0 (n log n) © (n lo g n) [42]

continued on next page . . .

14

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

. . . continued from previous page
C lass Size^ Schem e* C o m m e n ts

Circle 2*0(n log n) G (n lo g n) [31, 45]
Circular arc 2 0 (n log n) © (n lo g n) [31, 45]
C obipartite 2©(«') [45] 0 (n 2)* com plem ents of b ipartite

graphs
Cographs 2 0 (n log n) © (n lo g n) [31, 45] subclass of perm utation

Com parability 2 © G D [45] 0 (n 2)* superclass of b ipartite
Containm ent graphs
of paths in a tree

2 0 (n l o g n) 0 (n lo g n) [53]

Convex b ipartite 2 0 (n i o g n) 0 (n lo g n) [45]
Cycles 2 0 (n l o g n) 0 (n lo g n) [45]
/c-decomposable* 2 0 (n l o g n) 0 (n lo g n) [31]
Degree- fc* 2 0 (n log n) 0 (n lo g n) [31, 45] subclass of outdegree-/c,

hered itary degree-fc
Disk intersection 2 0 (n l o g n) [53] 0 (n 2)*
k -dot p roduct* 2 0 (n l o g n) [37] 0 (n 2)*
E P T graphs 2 0 (n log n) 0 (n lo g n) [53]
Forest 2 0 (n lo g n) 0 (n lo g n) [31, 45]
Genus- fc* 2 0 (n lo g n) 0 (n lo g n) [31] subclass of arboricity-fc
H ereditary degree-fc* 2 0 (n log n) 0 (n lo g n) [45] subclass of outdegree-fc
fc-interval* 2 0 (n log n) 0 (n lo g n) [31]
Interval 2 © (n l o g n) [22] 0 (n lo g n) [31, 45] subclass of circular arc
Line graphs 2 0 (n l o g n) 0 (n lo g n) [45]
Outdegree-fc* 2 0 (n l o g n) 0 (n lo g n) [45]
O uterplanar 2 0 (n l o g n) 0 (n lo g n) [45] subclass of boxicity-2
Perm utation 2 0 (n l o g n) 0 (n lo g n) [31, 45] subclass of circle
Planar 2 0 (n l o g n) 0 (n lo g n) [31, 45] subclass of outdegree-fc,

boxicity-3
Posets (dimension
fc)*

2 0 (n l o g n) 0 (n lo g n) [45]

Proper interval 20 (n) [25] © (n logn) [45] subclass of interval
fc-sparse* 2° (" l o g ") [53] 0 (n 2)* no O (n lo g n) balanced

scheme [53]
Threshold 2 0 (n l o g n) 0 (n lo g n) [45] subclass of interval
Threshold tolerance 2 0 (n l o g n) © (n logn) [45]
Transitive closures of
rooted trees

2 0 (n l o g n) © (n logn) [31]

Trees 2 °(n)[52] 0 (n lo g n) [31, 45] subclass of forest
Split 2 ©(«U [45] 0 (n 2)*
Total 2 0 (n b 0 (n 2)* no O (n lo g n) balanced

scheme [53]
Uniformly fc-sparse 2 0 (n l o g n) [53] 0 (n 2)*

15

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2.1.5 M uller and K annan et al.

The seminal works of bo th M uller [45] and K annan et al. [31] independently introduce

a narrower version of adjacency labelling schemes called im plicit representations, a te rm

suggested in the title of the work by K annan et al. [31]. We present the definition of

K annan et al., ra ther th a n M uller’s, which is built from several smaller definitions.

D e f in it io n 2 .5 (K a n n a n e t a l.) A family T of finite graphs has an implicit representa­

tion i f there is a polynomial time Turing machine T and a function I which labels the vertices

o f each graph G in T with distinct labels o /0 (lo g n) bits, n being the number of vertices o f

G, such that, given two vertex labels o f a graph G in T , T will correctly decide adjacency o f

the corresponding vertices in G.

Imm ediately, we notice th a t th is definition uses Turing machines, whereas Definition 1.1

refers to m arker and decoder algorithm s. Essentially, th e Turing m achine T employed in

Definition 2.5 serves as bo th the m arker, M , and the decoder, D.

As well, we note th a t Definition 1 .1 , unlike Definition 2.5, does not require th a t the

vertex labels be distinct. Fortunately, any m arker can be modified to ob tain unique vertex

labels by assigning each vertex an a rb itra ry bu t unique identifier from { l , . . . , n } (as is

commonly seen in Section 2.1.1) and appending it to th e vertex label; th is identifier adds a

te rm of log n to th e num ber of b its required by a vertex label. For any class of size 2n (n log ,

th e addition of th is identifier will no t increase the asym ptotic size of the vertex labels, as

the distinct label requirem ent necessitates th a t each label be of size Q (logn). However, for

classes w ith fewer m em bers, th is requirem ent m ight prevent us from developing strongly

space-optim al adjacency labelling schemes. For th is reason, the distinct label requirem ent

is om itted from Definition 1.1.

We should note th a t there is a small bu t im portan t difference betw een the definitions

found in M uller [45] and K annan et al. [31]. Specifically, M uller only requires the Turing

machine to halt, not to be polynomial, as required by K annan et al. Since the inputs to

the Turing m achine are of size O (logn), th e use of a polynom ial Turing machine guarantees

th a t adjacency testing can be perform ed in polylogarithm ic tim e. In keeping with K annan

et ah, the polynom ial tim e requirem ent has been included in Definition 1 .1 . T h a t being

said, there are no known classes of graphs which “o b ta in” adjacency labelling schemes when

the polynomial tim e requirem ent is dropped [53].

In te r s e c t io n c la sse s a n d in te r s e c t io n n u m b e r

In his doctoral thesis, Muller [45] observes th a t there is an im plicit representation for any

intersection class in which the vertices of graph can be represented by constant size subsets

of { 1 , . . . , n k}, provided k is a constant. We note th a t such an im plicit representation cannot

16

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

be constructed w ithout knowing th e intersection representation, or a t least how to ob tain

th e intersection representation. It is conceivable th a t such a representation exists, b u t we

do not know how to determ ine it.

To illustrate M uller’s observation on intersection classes, consider the line graphs of

simple hypergraphs as defined below [8].

D e f in itio n 2.6 A hypergraph H — {V,£) consists o f a set of vertices V , and a set of

hyperedges £, which are non-empty subsets of V . A hypergraph is said to be simple i f no

edge is properly contained within another. The rank o f H is the value m a x { |e|}.

D e f in it io n 2 .7 The line graph o f a hypergraph H = (V ,£) is the graph L (H) = (£, E) for

which ee' £ E i f and only i f e ^ e' and e fi e' ^ 0.

Consider a line graph of a hypergraph w ith rank a t m ost k, where k is a constant. If th e re are

n vertices in the line graph, th en there are n hyperedges in the hypergraph. Since th e rank

of the hypergraph is bounded above by k, there are a t m ost kn vertices in the hypergraph.

Therefore, the line graph of the hypergraph can be represented by the intersection of subsets

of {1 , . . . , k n } of size a t m ost k. By M uller’s result, th is class of graphs has an im plicit

representation. U nfortunately, th is representation is not easily obtained; specifically, the

only m ethod known for obtaining such a representation is based upon work th a t appears in

C hap ter 5.

Representing the vertices by subsets of { 1 , . . . , n k } is equivalent to saying th a t th e in­

tersection number of these graphs is bounded above by n k . In fact, the intersection num ber

of any graph is in 0 (n 2). Given any graph G on n vertices, we can uniquely label each

edge w ith a num ber in { 1 , . . . , Q)} . Each vertex is then represented by the set of labels

of edges incident w ith the vertex. Since the class of all graphs does no t have an im plicit

representation, the condition th a t th e vertices be represented by constan t size subsets is

critical to M uller’s observation.

W hen we consider M uller’s result in the more general context of adjacency labelling

schemes, we observe th a t any intersection class in which the vertices of a graph of order n

can be represented by 0(A)-subsets of { 1 , . . . ,f>} offers an adjacency labelling scheme w ith

labels using 0 (A lo g <f) bits. Providing A log^ 6 o (n), which is to say th a t (j)X £ 2°<'n\ then

we enjoy a savings over the “default” adjacency labelling scheme obtained using adjacency

m atrices.

As mentioned by M uller, these observations on intersection classes also apply if adjacency

is determ ined by any other binary relation such as containm ent, overlap, or order. For

instance, the adjacency labelling scheme for interval graphs presented in C hapter 1 is not

based so much on intersection of intervals on the real line; ra ther, it is really based upon

2-subsets of {1, . . . , 2n} using the b inary relation, b, given by

17

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

w r , t ,1 x I 0 if a, b < c ,d or a, b > c,d,
b({a, b}, {c, d}) = < .

1 otherwise.

U n iv ersa l graphs

In bo th of the works of M uller [45] and K annan et al. [31], im plicit representations were

shown to have a close relationship to vertex induced universal graphs. These graphs are

defined as follows [31].

D e f in itio n 2 .8 G is a vertex induced universal graph of a set o f graphs S i f all members

of S are vertex induced subgraphs o f G.

Consider a class of graphs C, and let Cn denote th e set of m em bers of C having at m ost

n vertices. I t has been shown by b o th M uller and K annan et al. th a t if C has an implicit

representation, then , for some constan t k, Cn has a vertex induced universal graph on O (nk)

vertices which can be constructed in polynomial tim e. L etting T be th e Turing machine

used in an im plicit represen tation for C, we construct such a universal g raph U as follows.

In the implicit representation of C, the m embers of Cn have labels of length c lo g n , for some

constant c. The vertices of U correspond to each of the 2clos” = n c b it vectors of length

c lo g n . Two vertices in U, represented by bit vectors hi and 62 , are adjacent if and only if

T (b l ,b2) = l.

2.2 In form ative lab ellin g schem es

2.2.1 D efin ition

As mentioned in C hap ter 1 , adjacency can be replaced by any function / th a t acts on sets

of vertices. We present th e definition of an /-labelling scheme as introduced by Peleg [47].

D e f in it io n 2 .9 Consider a function f (S , G) defined on sets of vertices S o f fixed but arbi­

trary finite graphs G. A n informative f-labelling scheme of a family Q o f finite graphs is a

pair (M , D) defined as follows.

• M is a vertex labelling algorithm (marker) whose input is a graph G in Q. Note that

M need not be deterministic; accordingly, let M g be the set of all vertex labellings of

Vq which can be assigned by M .

• D is a polynomial time deterministic evaluation algorithm (decoder) whose input is a

set of vertex labels. Given any labelling L q o fV c , let L s :g denote the subset o f these

labels corresponding to a subset S of Vo- For any graph G in Q, we define L q to be

(D, f)-correct i f D {L s ,g) = f { S ,G) for every subset S of Vq on which, f is defined.

18

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Given this definition, we require that M q he (D, f)-correct fo r all G in Q and fo r all

M q in A4g - Note that D is a function o f the labels only.

For any such function f , an f-labelling scheme is said to be an informative labelling scheme.

To illustrate th is definition, consider th e following ancestor labelling for rooted trees. To

the root the m arker assigns the b it string ‘O’ as its label. For any vertex v, w ith children

v i , . . . ,Vk, the m arker assigns to each child a unique m em ber of a prefix-free k-set of strings

(by prefix-free we m ean th a t no string is a prefix of another; for instance, ‘110’ is a prefix

of ‘1101’, bu t not of ‘111’. One such triv ial set is { 0 ,1 0 ,1 1 0 ,...}) . The m arker then assigns

to each vertex the label consisting of its string from th e prefix-free set concatenated to the

end of the label of its parent. The decoder can determ ine if a vertex v\ is an ancestor of v2,

using only their labels, by checking if the label of v\ is a prefix of the label of v2.

Ju s t as w ith adjacency labelling schemes, we judge the quality of an inform ative labelling

scheme according to the running tim e of M and D, as well as the labels generated by M .

The notions of space-optim ality and balance still apply; however, th e same cannot be said for

strong space-optim ality. Fundam ental to the concept of strong space-optim ality is the fact

th a t adjacency labelling schemes provide a unique represen tation for each m em ber in the

class. Specifically, an adjacency labelling scheme using 0(</>(n)) b its in to ta l is space-optim al

for any family of size 2®Wnb . For any general function / , an /-labelling scheme does not

necessarily provide a unique representation for each m em ber in the class; for instance, let

/ be th e boolean function th a t determ ines if two vertices are connected. T h a t being said,

there are functions which guarantee unique representations, for example, distance, so we are

free to apply the concept of strong space-optim ality to these labelling schemes.

2.2.2 A pp lications

The introduction of inform ative labelling schemes boosted the in terest in the idea of space

efficient d istribu ted d a ta structures as introduced by M uller [45] and K annan et al. [31], given

th a t different functions could be considered depending on the application. We describe three

such applications here; a survey of inform ative labelling schemes can be found in [23], and

fu rther discussion of the ir applications can be found in [46], [32], [1], [4], and [56].

X M L search en g in es

Inform ative labelling schemes have direct applications to the efficiency of XML (Extensible

M arkup Language) search engines [32]. A Web docum ent conforming to the XML standard

can be viewed as a tree w ith nested nodes corresponding to individual words, phrases, or

sections of the docum ent. Using inform ative labelling schemes, an XML search engine can

assign labels to each of these nodes, thereby allowing relationships such as ancestor, parent,

and sibling to be determ ined using only the labels of the nodes. This allows the search engine

19

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

to answer web queries w ithou t repeated ly accessing the file itself. Moreover, by employing

dynam ic schemes the search engine will no longer have to recalculate the labels of the nodes

when a small change is m ade to th e XML docum ent.

R o u tin g A lg o r ith m s

Informative labelling schemes also have direct application to routing algorithm s [51]. Con­

sider sending a message along the best rou te from node V o to node V f . Typically, Vo consults

a local routing tab le to determ ine the next node along the best path , say iq , then sends

the message to tq , which repeats th e process. Each node has a tab le consisting of n entries,

where n is the num ber of nodes in th e network. If we had an inform ative labelling scheme

th a t could determ ine v\ from the labels of vq and Vf, we could elim inate these routing tables,

thereby reducing th e am ount of local storage required.

B ro a d ca st P r o to c o ls

Informative labelling schemes can also be applied to broadcast protocols in much the same

way th a t we applied them to routing algorithm s [46]. Consider sending a message from

node V o to node V f , by m eans of netw ork broadcast, as opposed to using an optim al rou te as

discussed above. Typically, Vo consults a local distance tab le to determ ine an upper bound

on the distance to v / so the broadcast can be term inated after a certain am ount of tim e. As

before, each node has a tab le consisting of n entries, where n is the num ber of nodes in the

network. If we had an inform ative labelling scheme th a t could determ ine an upper bound

on the distance betw een Vo and v / , then we could elim inate these distance tables, thereby

reducing the am ount of local storage required.

2.2.3 P revious work

Inform ative labelling schemes have been studied for a variety of functions besides adjacency;

such functions include distance, nearest common ancestor and flow. As adjacency is the

function of prim ary interest in th is treatise, we will not present schemes for o ther functions;

ra ther, we sum m arize the known results in Table 2.2. Specifically, Table 2.2 lists asym ptotic

bounds on the sizes of inform ative labelling schemes. We note th a t Table 2.2 does not

contain inform ation on schemes which approxim ate a function, nor schemes designed to

encode m ultiple functions. To assist the reader, definitions of these classes can be found in

Appendix A.

20

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Table 2 .2 : Inform ative labeling schemes for functions o ther th a n adjacency unless o th ­
erwise indicated, all sizes give num ber of b its per label; * indicates a bound on the to ta l
num ber of bits for th e entire labelling)

F u n ction F am ily B o u n d on sch em e size!
Ancestor rooted trees O (logn) [51]
Center trees 0 (lo g 2 n) [47]

D(log2 n) [47]
Distance binary trees D(log’z n) [24]

b ipartite (smaller side of size
k)

£l(k(n — k) — 0 (n lo g n)) I [24]

circular arc O (logn) [22]
cliquewidth-Ac 0 (lo g 2 n) [13]

0 (lo g 2 n) [24]
cycles O (logn) [47]
m axim um degree 3 D (n5)f [24]
degree- k Q,(y/n) [24]
degree-A; p lanar fl(n^)* [24]
distance hereditary 0 (log2 n) [21]

D(log2 n) [24]
general graphs O (n) [24]

fi(n) [24]
hypercubes O (logn) [47]
interval O (logn) [22]

D (logn) [22]
meshes O (logn) [47]
perm utation 0 (lo g 2 n) [34]
planar O (V n lo g n) [24]

Q (n^) [24]
proper interval O (logn) [22]
recursive r(n)-separato r 0 (r (n) log n + log2 n) [24]
tori 0 (lo g n) [47]
trees 0 (lo g 2 n) [24]

D(log2 n) [24]
treewidth-fc O (log^n) [24]

D(log2 n) [24]
weighted binary trees (edge
weights in [0, M — 1])

D (lo g n lo g M) [24]

weighted c-decomposable
(constant c; edge weights in
[0, M — 1])

0 (lo g 2 n + log n log M) [46]

weighted fc-outerplanar (con­
stan t fc; edge weights in
[0, M — 1])

0 (lo g 2 n + log n log M) [46]

weighted series-parallel (edge
weights in [0, M — 1])

0 (lo g 2 n + log n log M) [46]

weighted trees (edge weights
in [0, M — 1])

0 (lo g 2 n + log n log M) [46]

well (a, g)-separated 0 {g {n) \o g n) [35]
D istance (at m ost d) trees 0 (lo g n + d\J \og n) [32]
Edge-connectivity general graph 0 (lo g 2 n) [33]

continued on next page . . .

21

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

. . . continued from previous page
F u n ction F am ily B o u n d

fl(log2 n) [33]
Flow general graph (m ax edge ca­

pacity w)
0 (lo g 2 n + log n ■ log w) [33]

U (log2 n + lo g n log w) [33]
N earest Common A n­
cestor

rooted trees (re tu rn identifier) (X log^n) [47]

ft(log2 n) [47]
rooted trees (re tu rn label) O (logn) [3]

N ext Node R outing forest 0 (n) [51]
tree O (logn) [56]

Reachability planar digraph O (logn) [55]
Separation Level rooted trees 0 (lo g 2 n) [47]

fi(Tog2 n) [47]
Steiner Tree weighted graph, M b it edge

weights
0 ((M + logn) log n) [47]

fl((M + lo g n) lo g n) [47]
weighted graph, a rb itra ry
edge weights

0 ((M + lo g n)lo g n) [47]

f l (M + n lo g n) [47]
fc-vertex connectivity
(constant k)

general graph O (logn) [33]

11 (logn) [33]
fc-vertex connectivity
(k poly log in n)

general graph 12 (fc logn) [33]

2 .2 .4 D ynam ization

A lthough a significant num ber of results have appeared on the topic of inform ative labelling

schemes, the seminal work of K annan, Naor, and R udich [31] m ade no m ention of th is variant

of adjacency labelling schemes. Instead, K annan et al. suggested the dynam ic problem as

a direction for fu ture research. U nfortunately, the au thors did not consider th e problem in

detail. A t m ost, K annan et al. suggest th a t the addition or deletion of a vertex or an edge

should require only a “quick” update of th e labels in order to obtain an adjacency labelling

of the new graph.

In th e following chapter, we develop the theory of dynam ic informative labelling schemes.

Specifically, we define w hat is m eant by a dynam ic inform ative labelling scheme, introduce

the concept of error-detection, discuss the qualities th a t make a good dynam ic scheme, and

dem onstrate the connection between error-detection and the graph recognition problem.

22

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 3

Dynam ic Schemes

In m any applications th e underlying topology is constantly changing and we desire algo­

rithm s which can accom m odate these changes w ithou t having to process th e new topology

from scratch. By definition, inform ative labelling schemes are static; th a t is, the graph

provided to th e algorithm never changes. By studying th e dynam ic version of inform ative

labelling schemes we hope to expand the applicability of inform ative labelling schemes to

real world problems.

3.1 D yn am ic ad jacency lab ellin g schem es

3.1.1 D efin ition

Before we define a dynam ic inform ative labelling scheme, let us consider the following defini­

tion of a dynam ic adjacency labelling scheme. T his definition is based more on our intuitive

understanding of the dynam ization of a sta tic problem; as such, it will be less precise than

the formal definition we will encounter later.

D e fin itio n 3.1 A dynamic adjacency labelling scheme of a family Q o f finite graphs is a

tuple (M , D, A, R) fo r which

• (M , D) is an adjacency labelling scheme o f Q.

• A is a set o f functions which map graphs in Q to other graphs.

• R is a polynomial time relabelling algorithm (relabeller) which, using only a vertex

labelling, maintains an adjacency-correct labelling while a dynamic graph operation

in A acts on a member of Q, providing the operation produces another graph in Q.

Furthermore, R accesses vertex labels only as required.

Moreover, we say that the dynamic adjacency labelling schem.e is error-detecting if, given

any input (6 , L g), R is able to determine when 6 (G) 0 Q.

23

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3.1.2 E xam ple

In a dynam ic inform ative labelling scheme the vertex labels m ust contain sufficient inform a­

tion to allow algorithm s to update them . In general, the labels used in a sta tic scheme do

not contain enough inform ation to be used in a dynam ic scheme; however, the inform ative

labelling schemes of certain classes are inherently dynam ic.

Consider the adjacency labelling scheme described for trees in Section 2.1.1. For sim­

plicity, let us require th a t th e roo t no t be deleted. In adding a new vertex, th e relabeller

chooses an identifier x, the sm allest available n a tu ra l num ber, th en labels th e new vertex

(.x ,p a r e n t (x)). In deleting a vertex, the relabeller sim ply deletes its label from storage.

Each relabelling can be perform ed in 0 (1) tim e (we also assum e a word-level RAM compu­

ta tio n model for the relabeller, w here word sizes are fl(lo g n)). U nfortunately, th is dynam ic

scheme is not error-detecting because we cannot tell if the deletion of a vertex creates a

disconnected forest; however, we can make the scheme error-detecting by adding, to each

label, a counter of the num ber of children. Note th a t we can tell if the root is being deleted

as parent(v) = NIL = > v = r.

3.1.3 U n d erly in g assu m p tion s

Although the dynam ic adjacency labelling scheme presented in Section 3.1.2 seems straigh t­

forward, there are two underlying problems.

1. I t is possible to delete too m any vertices, thereby causing the rem aining labels to be

too large (the point a t which one decides th a t the labels are intolerably large depends

on the application, as well as the family under consideration).

2. W hen a vertex is added and given an identifier, the relabeller m ust determ ine an

acceptably short unused identifier to assign to it.

These problems do not depend on adjacency being the function under consideration; ra ther,

they are inherent in any dynam ic inform ative labelling scheme.

The obvious way to deal w ith the first problem is to relabel the graph from scratch

using the marker algorithm . Note th a t we m ust initially use th e decoder to determ ine a

representation of the graph th a t the m arker can use as input; for example, an adjacency

m atrix . This approach works well provided adjacency is the function under consideration.

Using the decoder we can determ ine the adjacency of every pair of vertices, allowing us to

reconstruct the graph and provide appropriate input to the m arker. B ut w hat if the function

under consideration is such th a t th e decoder does not allow us to determ ine the graph? For

example, w hat do we do w ith the boolean function th a t merely determ ines if two vertices

are connected?

24

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The obvious way to deal w ith th e second problem is to m ain tain a centralized resource

of identifiers th a t are not in use. Specifically, such a central resource m ight represent these

identifiers using a list of intervals represented by their endpoints (in much the same m anner

as the interval representation presented in C hap ter 1). B ut w hat if our application involves

a distributed network? - does a new node have to broadcast to a central resource to get an

identifier?

Given th a t we are approaching dynam ic inform ative labelling schemes from a theoret­

ical standpoint, we make certain assum ptions to elim inate the problem s discussed above.

Specifically, we assume the following.

1. If n is the num ber of vertices presently in the graph, then th ere exists some constant

k such th a t there has never been more th a n n k vertices in th e graph.

2. If an identifier is needed, a m arker or relabeller can o b ta in the smallest available

identifier in 0 (1) tim e.

Again, the validity of such assum ptions is highly dependent on th e application in which

the dynam ic scheme is being used. In our case, we do not w ant th e restrictions of the

application to hinder the developm ent of the scheme. It is hoped th a t our dynam ic schemes

can be modified to work in different applications, w ith ad justed label sizes and running

tim es as appropriate.

3.2 D yn am ic in form ative lab ellin g sch em es

3.2.1 D efin ition

Let us now consider the formal definition of a dynam ic /-labelling scheme.

D efin itio n 3 .2 Consider a function f (S , G) defined on sets o f vertices S of fixed but arbi­

trary finite graphs G. A dynamic f-labelling scheme o f a family Q o f finite graphs is a tuple

(M , D, A , R) defined as follows.

• (M , D) is an f-labelling scheme o f Q.

• A is a set of functions which map graphs in Q to other graphs.

• R is a polynomial time relabelling algorithm (relabeller) whose input is a pair (5, L q),

where S £ A. G E Q, and L g is a (D, f)-correct labelling o f Vq from Cq (defined

shortly). Providing S(G) £ Q, R assigns a new (D, f)-correct labelling to V ^ q) by

accessing the la.bels o f L q only as required. Note that R need not be deterministic;

accordingly, let TZs.l g be the set o f labellings o f Vj(G) which can be assigned by R on

input (<5, La). For each G in Q we define the family Co o f (D, f)-correct labellings of

25

with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

V g by L q € C-g i f and only i f L q 6 M g or there exists G* in Q, S in A , and L q - in

C g * such that S(G*) — G and L q € T Z s , l g . ■

Moreover, we say that the dynamic f-labelling scheme is error-detecting if, given any input

(■5 , L g), R is able to determine when 5(G) Q.

In a less formal context, R can be considered as the com position of algorithm s required

by the graph operations found in A. For instance, if A perm itted the addition or dele­

tion of any edge from a graph, we m ight consider R to be com prised of two algorithms,

lNSERTEDGE(e,Z/G) and D e l e t e E d g e ^ L g) , which use a labelling L q to relabel G + e

and G — e, respectively. Again, note th a t th e algorithm s I n s e r t E d g e and D e l e t e E d g e

do not directly receive G as input, ra ther, they are given access to th e labels of the vertices

of G as required. We are not prepared to m ain tain an adjacency m atrix or adjacency lists

to represent G; the goal of the inform ative labelling scheme is to efficiently represent G

by doing away w ith such d a ta structures. If adjacency is the function under consideration

then m aintain ing an adjacency m atrix or adjacency list would obviate the necessity of the

adjacency labelling scheme! Moreover, in practice we are not in terested in m aintaining a

labelling for every graph in the family; ra ther, we use the labelling of a graph to determ ine

a labelling of a slightly modified graph, discarding th e labelling of th e original graph in the

process. In th is sense, we can om it the labelling from the input of the algorithm s as these

algorithm s are directly modifying the labelling of the graph under consideration; th a t is,

the above algorithm s m ight be presented as iN SERTED G E(e) and D EL E T E E D G E (e).

3.2.2 A ssessin g quality

Ju st as a sta tic /-labelling scheme can be created for any function / when we allow suffi­

ciently weak choices of M and D, sufficiently weak choices of M , D, A, and R will result

in a dynam ic scheme. Specifically, we can assess the quality of a dynam ic scheme according

to the following.

1. The quality of the sta tic scheme (M , D) contained within.

2. T he operations contained in A.

3. T he running tim e of R.

4. The labels generated by R.

5. T he labels modified by R.

Having previously discussed how to assess the quality of a sta tic scheme in Section 2.1.2,

we begin by considering the operations contained in A. Preferably, the labelling scheme will

be fully dynamic; th a t is, A will contain the addition and deletion of a single edge or vertex

26

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

(along w ith the edges incident w ith th is vertex). In m ost cases these operations will allow

us to transform any m em ber of Q into any other m em ber of Q w ithout escaping the class

Q. Specifically, if Q is hereditary , th a t is, any vertex induced subgraph of a m em ber is also

a m em ber, then these four dynam ic operations are sufficient to transform any m em ber of Q

into any o ther m em ber of Q w ithou t escaping Q. For each m em ber G of Q, there is a sequence

S g — {Go = 0, G i , . . . , G |vg |_ i ,G |v g | = G} of m em bers of Q for which G j_ i = Gi — v,;,

where Vi is a vertex of Gi and 1 < i < \ Vg\- Thereby, given G ^ \ G ^ € Q, we can construct

G*'2) from G^1) by using the vertex deletion relabeller to transform G ^ in to 0 v ia the

members of S q (i> , then using the vertex addition relabeller to transform 0 in to G*-2 ̂ via the

members of S q (2) •

Along w ith the range of operations in A , we are also interested in the tim e taken by R

on inpu t (5, L q) relative to th e tim e taken to label 5(G) by the fastest labelling algorithm

of a sta tic /-labelling scheme. Specifically, th e purpose of the dynam ic scheme is to provide

quick updates of the labels; thereby, if there is a sta tic scheme which can generate th e labels

in equal or be tte r tim e, even from scratch, then there is no advantage gained by using the

dynam ic scheme.

As well, we m ight also judge a dynam ic scheme according to the size of th e labels gen­

erated by R. N aturally, th e size of the labels generated by M is taken into account when

judging the quality of th e s ta tic scheme (M , D)\ however, the labels generated by M and R

m ust be considered together, as labels from b o th algorithm s could be in use a t any given

time. In particular, consider th a t the adjacency labelling scheme developed using adjacency

m atrices can be fu rther developed into a dynam ic adjacency labelling scheme. Since th is dy­

namic scheme uses vertex labels of size 0 (n), any other dynam ic adjacency labelling scheme

using labels of size i l(n) would only be advantageous if it perm itted faster updates of the

labels th an can be achieved using the dynam ic scheme developed from adjacency m atrices.

Furtherm ore, we may wish to consider criteria such as balance and space-optim ality, for

appropriate functions / , ju s t as we did for s ta tic schemes.

Aside from the size of the labels generated by R, we m ight also be in terested in the

labels th a t are changed by R. In some sense, th is m easure is captured in the running tim e

of R\ however, the running tim e does not give the full picture. In particular, we m ight like

to know how m any labels are changed and how the changes perm eate through the graph.

Perhaps, depending on th e dom ain, these m etrics could be more im portan t th an th e label

size. To measure th is change, we define two quantities, modification excess and modification

locality.

As we did w ith the definition of an inform ative labelling scheme, let us first consider

these definitions intuitively in the context of dynam ic adjacency labelling schemes. The

m odification excess of R is the m axim um value, taken over all operations in A and all

27

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

possible labellings produced in th e dynam ic adjacency labelling scheme, of th e difference

in cardinality between the set of vertices w ith modified labels and the set w ith modified

neighbourhoods. In essence, the m odification excess measures th e num ber of vertices whose

labels change even though we did no t expect them to. The m odification locality of R is

the m axim um value, taken over all operations in A and all possible labellings produced in

the dynam ic adjacency labelling scheme, of the m axim um distance to th e set of vertices

w ith modified neighbourhoods from a vertex whose label has been modified, bu t whose

neighbourhood has not. In essence, the m odification locality m easures th e distance between

the vertices whose labels we expected to change and the vertices whose labels we did not

expect to change.

To illustrate how these m easures are calculated, consider th e relabelling depicted in

Figure 3.1. Note th a t, when calculating these values for a dynam ic scheme, we m ust consider

the m axim um of the values taken over all possible relabellings; here we consider a single

isolated relabelling stric tly for illustrative purposes. The neighbourhoods of b, c, and e

change, whereas the labels of h, d, b, and e change. Therefore, the m odification excess

of th is relabelling is 4 — 3 = 1. Given th a t the labels of d and h are modified, b u t their

neighbourhoods do not change, the m odification locality of th is relabelling is

m ax { d i s t c i x , {b, c}) = max d i s t $ i G) (x , {b, c, e})}
x£{d,h} x€{d,h}

= dis tc{h , {b, c})

= d is tS(G)(h, {b,c, e})}

= 2 .

Note th a t, when adjacency is the function under consideration, th e distances in G are the

same as the distances in 5(G)\ however, th is need not be the case in general. As such, we

will take the m inimum (of th e m axim um distances) over G and 5(G).

Integral to the definition of m odification excess and m odification locality for dynam ic

adjacency labelling schemes are the ideas of modified labels and modified neighbourhoods.

We require analogous term s for a rb itra ry dynam ic schemes, which we define below.

D e f in it io n 3 .3 Consider an input (5, L q) fo r the relabeller, R , o f a dynamic f-labelling

scheme (M , D , A , R) o f a family Q, fo r which 5(G) G Q. Recall from Definition 3.2 that R

G 5(G)
a (4) a (4) ______6(0)

Figure 3.1: Adding a vertex to a graph (labels in brackets)

28

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

need not be determ inistic; as such, let R s , l g denote the set o f all possible outputs Lg;g) of

R on input on (5 ,L q)■

We say that a vertex v in G or 5(G) is f-changed i f it belongs to some set of vertices,

S , fo r which at least one o f f (S , G) and f (S ,5 (G)) is defined but f (S , G) / f (S ,5 (G)) ; in

saying that f (S , G) / f (S ,5 (G)) we include the possibility that one o f these expressions is

undefined. We also say that the label o f v is modified i f at least one o f L ^ q and -h{„}j(5(G)

is defined but £{„},g / L{v},<5(G)/ recall that i{„},G denotes the labelling o f v in G and note

that in saying £.{„},G / ^{v},s(G) we a ŝo include the possibility that one o f these expressions

is undefined.

D efin it io n 3 .4 For each specific inpu t/ou tpu t pair ((5, L g) , Ls(G)), we define its modifica­

tion excess, denoted m e((5,La),Lg^G)), to be the difference between the cardinality o f the

set o f vertices whose labels are modified and the cardinality o f the set o f vertices that are

f -changed. In turn, we define the modification excess o f (5, L g) , denoted m e(5,LG), to

be m ax m e((5, L g), L s(G)) and the modification excess o f R , denoted m e(R), to be
L s (g)S.T^s , l g

m ax m e (5, L g) .
C,Lg)

D e fin itio n 3.5 For each specific inpu t/ou tput pair ((5 , L g) , Lg(G))> we define its modifi­

cation locality, denoted mi((5, L g) , L>s(G))> to be the m in im um over G and 5(G), o f the

m axim um over all the distances, from a vertex which is not f -changed, but whose label is

modified, to the set o f vertices which are f -changed; i f there is no such vertex which is not

f -changed then we let this value be zero. In turn, we define the modification locality of

(5 , L g) , denoted m / 5 , L g) , to be m ax mi((5, L q) , L$;g)) and the modification locality
i5 (G) € 7 ? . j ,_ L G

of R , denoted m A R) , to be m ax m A S , L g).
(s,l g)

H aving considered the relabeller to be the composition of several smaller relabelling

algorithm s, we can consider its m odification locality and excess in te rm s of these smaller

algorithm s. N ot only will this help us calculate these quantities, b u t th is will also help us

b e tte r understand the effect of specific dynam ic changes on the labelling of the graph.

3.2 .3 G raph recognition

In general, a graph recognition problem is of the form “Given a p roperty P and a graph

G, does G satisfy P I ”. More commonly, we consider questions of th e form “Given a class

C and a graph G, does G belong to C?” . Under the right circum stances, polynomial time

recognition algorithm s can be used to add error-detection to a dynam ic scheme.

T h e o r e m 3 .6 Consider a Q(B) bit/label dynamic f-labelling scheme, (M, D, A, R), fo r a

family o f graphs Q such that the following hold.

29

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

• For any graph G in Q, f allows us to uniquely determine G from any labelling in Cg

(fo r example, consider adjacency or distance).

• The recognition problem is polynomial fo r Q; that is, there exists a polynomial algo­

rithm A such that, fo r any graph G, A determines i f G belongs to Q.

Then Q has an 0 (B) bit/label error-detecting dynamic f-labelling scheme.

P ro o f. On any inpu t (5 ,L g), R can use / to determ ine, in polynom ial tim e, the struc tu re

of G and, hence, the stru c tu re of 5(G). In tu rn , R can incorporate A to determ ine if 5(G)

is in Q, thereby m aking th e dynam ic scheme error-detecting. Moreover, there is no increase

in the the num ber of b its used in a vertex label. □

In practice, the approach taken in th e proof of Theorem 3.6 is an inefficient way of adding

error detection to a dynam ic scheme as we m ust incorporate a recognition algorithm in to the

relabeller. R ather, given a dynam ic scheme, we can use our knowledge abou t recognition to

inform us th a t an error-detecting dynam ic scheme exists. Ideally, a slight m odification of our

dynamic scheme will give us error-detection. In C hap ter 4, we develop an error-detecting

dynam ic adjacency labelling scheme for line graphs. Since the recognition problem had been

shown polynomial for th e class of line graphs [40, 50], we knew th a t any dynam ic adjacency

labelling scheme for line graphs could be m ade error-detecting. As discussed, our relabeller

does not directly incorporate either of th e polynom ial recognition algorithm s.

Of equal in terest is th e contrapositive of Theorem 3.6. Namely, if there is a dynam ic

/-labelling scheme for Q such th a t

• for any graph G in G, f allows us to determ ine the structu re of G from any labelling

in Cg (for example, adjacency or distance), and

• the relabeller cannot be augm ented to make th e scheme error-detecting,

then the recognition problem cannot be polynom ial for Q.

Under the right circum stances, we can also develop recognition algorithm s from error-

detecting dynamic schemes.

T h eo rem 3 .7 Consider a family o f graphs Q fo r which there exists an error-detecting dy­

namic f-labelling scheme, (M , D , A , R) . A s well, let there be an algorithm, which, fo r any

graph G in Q, determines the following in polynomial time.

• A sequence S g = {Go = G* , G i , . . . , G k - 1, Gk = G} o f unique members of Q fo r which

I < k < \Vg \c, fo r some constant c.

• A sequence G A = {<So, #i> • ■ •, <^c-i} of members of A such that 5t (G,) = Gi+i, fo r

0 < i < k - 1.

30

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• A labelling o f G* which belongs to Cg * ■

Then graph recognition can be done in polynomial time fo r Q.

P ro o f . For any graph G in Q we can transform th e labelling of G* into a labelling for

G k~i using a polynom ial num ber of calls of the polynom ial tim e algorithm R , nam ely

{i?o, R i , ■ ■ ■ ,-Rfc-i}, w here f?o = R{So, Tg*) and Ri = R(5i, for 1 < i < k — 1 . We

can now resolve th e m em bership of G in Q according to the action of R when it a ttem p ts

to determ ine a labelling of G from th e labelling of G k - 1- If G G Q, th en R will determ ine a

labelling of G; otherwise, it will o u tp u t th a t G $ Q since it is an error-detecting algorithm .

□

An interesting corollary of Theorem 3.7 follows when we consider hereditary classes.

Recall th a t a class of graphs is said to be hereditary if every vertex induced subgraph of

every member is also a m em ber.

C o ro lla ry 3 .8 Consider a hereditary family o f graphs Q fo r which there exists an error-

detecting dynamic f -labelling scheme, (M , D , X , R) , where A includes the addition o f ver­

tices (along with incident edges), and R adds vertices in O (X) time. Graph recognition can

be done in 0 (n X) time fo r Q.

P ro o f. For any graph G , consider a sequence S q = {Go = 0, G i , . . . , G\vg \ - i >̂ \ v G\ = G]

of graphs (the graphs m ay be disconnected) for which G^_i = Gi — Vi, where rq is some

vertex of Gi and 1 < i < |Vg|- As well, consider the corresponding sequence S'G = {Xq =

0 , . . . ,X |v G|_ 1}, where X t is th e set of vertices in G , to which v*+1 is adjacent. These

sequences can be determ ined in O (n) time.

Since Q is hereditary, G is in Q if and only if every Gi is in Q. S tarting w ith the

em pty labelling for 0, R can determ ine a labelling for G j+ i from th a t of Gi, in 0 (X (G))

tim e. Because our scheme is error-detecting, R will detect if some Gi does not belong to Q.

Consequently, we have an O (n X) tim e recognition algorithm for Q. □

One might be led to believe th a t we have ju st argued th a t th e recognition problem is

polynomial for any hered itary class of graphs, bu t th is is not th e case. I t is true th a t all

hereditary families have a dynam ic adjacency labelling scheme, namely, the default scheme

obtained from adjacency m atrices. However, there is no guarantee th a t such a scheme is

error-detecting. T he fact th a t the dynam ic scheme is error-detecting is critical in the proof

of Corollary 3.8.

We use Corollary 3.8 in C hap ter 5 to establish 0 (r3n 3) tim e recognition for r-m inoes and

r-bics. Although polynom ial tim e recognition has already been established for r-m inoes by

Johnson, Yannakakis, and Papadim itriou [30], as well as M etelsky and Tvshkevich [44], our

31

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

approach is faster. A slight m odification of the algorithm of Johnson et al. which generates

all m axim al cliques in lexicographic order, results in an 0 (r n 4) recognition algorithm . Me-

telsky and Tyshkevich do not explicitly s ta te th e asym ptotic tim e they require to perform

recognition, bu t the ir forbidden subgraph approach requires 0 (n r+2) time.

3.2 .4 P rev ious work

The dynam ic version of adjacency labelling schemes was m entioned by K annan et al. [31], bu t

they did not consider th e problem in detail. The first paper to address this dynam ic problem

is th a t of Brodal and Fagerberg [10] who develop a dynam ic adjacency labelling scheme for

graphs of bounded arboricity. T heir relabelling algorithm keeps an outneighbourhood list

for each vertex v, sim ilar to th a t seen in Section 2.1.1, and it also includes a mechanism to

handle outdegree lists which get too big. O n a graph w ith n vertices and arboricity bounded

by c, Brodal and Fagerberg’s representation supports adjacency testing in 0 (c) tim e, edge

insertions in 0 (1) tim e, and edge deletions in 0 (c + lo g n) tim e. We present the ir algorithm s

for handling th e addition and deletion of a single edge from a graph of bounded arboricity

c in Figure 3.2 and note th a t these algorithm s are easily modified to handle the addition

and deletion of vertices. U nfortunately, these algorithm s are bu ilt on the assum ption th a t

the changes to the graph do not cause its arboricity to exceed c; th a t is, they are not error-

detecting. In their article, Brodal and Fagerberg do describe modified algorithm s which are

error-detecting and can handle unspecified arboricities, bu t these algorithm s have higher

asym ptotic running times.

I n s e r t (u , v)

1 u.adj\\ <— u.ad j[] U {u}
2 if |u.ac(7'[]| = 4 c + 1 th e n
3 S <- {u}
4 w h ile S ^ 0 do
5 w <— P o p (S)
6 for x <£ w.adj[] do
7 x.adj[] <— x.adj[] U {u>}
8 if Ix.adjf]! = 4c + 1 th en
9 P u s h (S, x)

10 w.adj[] <— 0

D e l e t e (u , v)
1 u.adj[] <— u.adj[} \ {v}
2 v.adj[} <— v.adj[} \ {u}

Figure 3.2: A lgorithm s for dynam ic adjacency labelling of graphs of bounded arboricity c

Since the work of Brodal and Fagerberg[10], there have been few other works to examine

dynam ic inform ative labelling schemes. Cohen, K aplan, and Milo [11] consider the ancestor

function on rooted trees in which new vertices can be added to the tree. C ontrary to the

problem which we are considering, Cohen et al. require th a t the labels assigned to vertices

32

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

be persistent, th a t is, the label cannot be changed once it has been assigned. As such,

their vertex labels m ay be larger th a n those required using our model, as we have the

freedom to modify inefficient labels. Specifically, the scheme of Cohen et al. uses O(n)

b it labels for a rb itra ry trees, and O (d lo g A) b it labels for trees w ith m axim um dep th d

and maxim um degree A . In each case th ey prove these labellings to be optim al, given the

persistency requirem ent. A lthough the au thors do not explicitly discuss th e running tim e of

their relabeller (which is dram atically sim pler, given th a t vertices cannot be relabelled), it is

0 (1) in each case. Additionally, Cohen et al. consider the scenario in which th e (re)labeller

is given clues abou t th e fu ture struc tu re of the tree , which lead to smaller labels.

Two interesting results on dynam ic d istance labelling schemes can be found in a paper by

K orm an, Peleg, and Rodeh [39] (an earlier version appears as [38]). F irst, th e au thors devise

a dynam ic distance labelling for unweighted trees, allowing the addition and deletion of

leaves, th a t uses 0 (lo g 2 n) b it labels, which is optim al even for the sta tic problem [24]. Like

Cohen et al. [11], K orm an et al. do not explicitly s ta te the running tim e of th e ir relabeller

(which is actually p a rt of a more com plicated m arker). However, they do discuss th e notions

of message com plexity and bit complexity, which are the m axim um num ber of messages and

bits, respectively, th a t m ust be sent when the graph changes. Specifically, th e ir scheme has

a 0 (log2 n) am ortized message com plexity and 0 (log2 n log lo g n) am ortized b it complexity,

thereby, even a relabeller sending sequential messages would run in 0 (log2 n log log n) tim e.

Second, they establish a framework for extending sta tic schemes to dynam ic schemes;

this framework can be used for a variety of functions including distance, separation level,

and flow. For the partia lly dynam ic scenario in which vertices can only be added, this

framework causes a O (logn) m ultiplicative increase in the label size and th e am ortized

message complexity (as an increase over the running tim e of the static m arker). If an upper

bound on n is known in advance, then the m ultiplicative factors on label size and am ortized

message complexity reduce to 0 (lo g 2 n j log log n) and O (lo g n /lo g logn), respectively. For

the fully dynam ic m odel in which vertices can be added and deleted, there is also an additive

increase in the am ortized message com plexity (in addition to those m ultiplicative increases

previously m entioned). The authors do not offer any comment on the change in am ortized

bit complexity for either of these scenarios.

As a follow up to K orm an et al. [39], K orm an and Peleg [37] consider dynam ic schemes

th a t approxim ate distances in weighted trees and cycles. Dynam ism is achieved by allowing

the weights of th e edges to vary, where w is th e m axim um edge weight. For th e increasing

dynam ic scenario, in which edge weights can only increase, their schemes use 0 (log2 n 4 -

log n log w) b it labels, which is optim al even for exact distances in the sta tic setting [24].

Moreover, the message and bit complexities of th e relabeller are O (m log2 n + n lo g n log m)

33

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

and 0 (m log2 n log lo g n + n log n log ra log lo g n), respectively, where m is the num ber of

edges whose weights change. For the fully dynam ic scenario, in which edge weights can

bo th increase and decrease, labels require 0 (log2 n + log n lo g n ;) bits, and the message

and b it complexities are 0 (m A lo g 2 n) and 0 (m A log2 n log lo g n), respectively, where A =

m ax{- - ^ '^ : r f > l , e £ E q } and B (e , d) is the num ber of vertices a t d istance a t m ost d from

and endpoint of e. In th e fully dynam ic scenario, if the graph is a p a th or cycle, then the

label size reduces to O (lo g n lo g m) b its and th e message com plexity reduces to 0 (m lo g 2 n).

3.3 N ew d yn am ic schem es

Having presented the theory of dynam ic inform ative labelling schemes, th e rem ainder of

the thesis focuses on the developm ent of new dynam ic adjacency labelling schemes for a

selection of classes. O ur presentation of each of these dynam ic schemes carefully describes

the labelling/m arker, the decoder, and the relabeller. The relabeller is presented in parts,

one for each of the allowable actions: vertex deletion, vertex addition, edge deletion, and

edge addition. Moreover, in th e body of the thesis we describe th e relabeller a t a high level,

saving th e detailed pseudocode for A ppendix C.

Specifically, in C hap ter 4, we present a dynam ic adjacency labelling scheme for line

graphs. Our dynam ic scheme for line graphs uses O (logn) b it labels and updates in 0 (e)

tim e, w here e is the num ber of edges added to , or deleted from, the line graph.

In C hapter 5, we develop a 0 (r log n) b it/lab e l dynam ic adjacency labelling scheme for r-

minoes , graphs w ith no vertex in more th an r m axim al cliques. Edge addition and deletion

can be handled in 0 (r 2D) tim e, vertex addition in 0 (r 2e2) tim e, and vertex deletion in

0 (r 2e) tim e, where D is th e m axim um degree of th e vertices in th e original graph and e is

the num ber of edges added to , or deleted from, the original graph. As well, we develop a

O (r lo g n) b it/lab e l dynam ic adjacency labelling scheme for r-bics , graphs w ith no vertex in

more th a n r m axim al bicliques. Edge addition and deletion, as well as vertex deletion, can

be handled in 0 (r 2B) tim e, and vertex addition in 0 (r 2nB) tim e, where B is the size of

the largest biclique in the original graph.

Finally, in C hapter 6 , we present a dynam ic adjacency labelling scheme for proper inter­

val graphs, which are a subclass of interval graphs. Our dynam ic scheme for proper interval

graphs uses O (logn) b it labels and handles all operations in O (n) time.

34

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 4

Line graphs

Recall from Section 2.1.1, the definition of a line graph and its base.

D e f in i t io n 4 .1 Given a graph G = (Vg , E g), its line graph is the graph L(G) = (E g , E ^ g))

fo r which G ^ l(G) */ and only */ u and v are adjacent edges in G.

In th is chapter, we present a dynam ic adjacency labelling scheme for line graphs th a t allows

the addition and deletion of vertices and edges. The labels used in th is scheme require

O (logn) bits, and updates require 0 (e) tim e, where e is the num ber of edges added to or

deleted from the line graph. In com parison, the best known (static) adjacency labelling

scheme for line graphs, presented in Section 2.1.1, uses O (logn) bit labels and requires 0 (n)

tim e to generate a labelling [45].

Given the simplicity of their intersection representation, line graphs are perhaps the

m ost fundam ental intersection class. As such, we hope th a t our dynam ic adjacency labelling

scheme for line graphs will offer insight in to th e developm ent of dynam ic schemes for other

intersection classes.

4.1 P a rtitio n isom orphism

As m entioned in Section 2.1.1, W hitney [58] has shown th a t every connected line graph

has a unique base, up to isomorphism, except for K 3 which has two bases, namely, K% and

Ad,3 . J u s t as a graph “generates” a line graph, we can can say th a t an edge labelled graph

“generates” a vertex labelled line graph. For th is reason, we will also use the te rm “base” to

refer to an edge labelled graph, w ith no isolated vertices, th a t generates a particu lar vertex

labelled line graph.

O ur work on line graphs requires a concept sim ilar to isomorphism, b u t involving edge

labellings. Given an edge labelling if of a graph (in which each label is unique), for each

edge label a , we let Pfj denote the partitio n of the labels adjacent to a th a t is determ ined

by th e endpoints of a. We define two bases of a vertex labelled line graph L(G), having edge

labellings i/b and t/>2 , to be partition isomorphic if the bases are isomorphic and P f l = Pfj2,

35

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

for all edge labels a. For example, th e two bases shown in Figure 4.1(d) are not partition

isomorphic: in one of these bases, the partition corresponding to a is {{6}, {e}}, while in

the o ther it is {{6 , c } ,0 }.

W hen we consider the theorem of W hitney in th e context of labelled line graphs, we

arrive a t the following theorem .

T h eo rem 4 .2 Every connected vertex labelled line graph, except those shown in Figure

4..1(a), has a unique (edge labelled) base, up to partition isomorphism. For each of the four

exceptions, a vertex labelled graph has two bases that are not partition isomorphic.

P ro o f. Consider a connected vertex labelled line graph L{G) which has two (edge labelled)

bases, G \ and G 2 , th a t are not partition isomorphic. Fundam ental to th is proof is the fact

th a t the edge adjacencies in G \ and G 2 are identical, th a t is, two edges are adjacent in G i

if and only if they are adjacent in G 2 -

Let th e labellings of G i and G 2 be ipi and '</,'2, respectively, and let o be a label for which

P f 1 ^ P $ 2■ Moreover, let P ,f1 = {Q ^ , R and P jf2 — {Q ^ 2 , R ^ 2). Trivially, observe

th a t | Q ^ \ + | > 2 , otherwise, P ^ 1 = P ^ 2.

Now consider when one of jQ ^ J , |Q i/>2|, or I a t least three; w ithout loss of

generality, let b ,c ,d £ Q^,1. We first consider the case when {b, c, d} C Q ^ 2 or {b, c, d} C

Rip2; w ithout loss of generality, assume the former. Since P ^ 1 7 ̂ P(f2, there m ust be a

label e th a t belongs to Qy,1, bu t not to Q ^ 2, or vice versa; again, w ithout loss of generality,

assume the former. Given th a t e £ Q,in , e is adjacent to each of b, c, and d in bo th G \

and G 2 . Yet e £ P ,/,2, so G 2 m ust contain each of th e three cycles of edges abe, ace, and

ade, which is no t possible unless b = c = d. N ext, consider th e case when {b, c, d} <2 Q ^ 2

and {b,c, d} (t R ^ 2; w ithout loss of generality, assume th a t {b, c} C Q ^ 2 and {d} C P^,2. A

similar argum ent gives th a t G 2 m ust contain bo th of the three cycles of edges abd and acd,

which is not possible unless b = c.

Having shown th a t neither Q ^ 1 , R ^ ,1 , Q ^ 2 , nor P ^ 2 can contain th ree edges, we observe

th a t the only way th a t P$ '1 7 ̂ P<f2 is if, w ithou t loss of generality, there exist edges b and

c such th a t {b, c] = Q^>1, b £ Q ^ 2, and c £ Rg,2. Since b and c are adjacent in G i, they are

also adjacent in G 2 ; as such, the edges a, b, and c form a K 13 in G\ and a K% in G 2-

At th is point, we resolve our proof into th ree cases.

• Q = {b,c}, R tj, 1 - 0, Q ^ 2 = {6}, and R ^ 2 = {c}. If VL{G) = {a ,b ,c} , then G i and

G 2 are as shown in Figure 4.1(c), and L(G) = K-z, as desired. Moreover, since the set

{6 , c] exhibits only two d istinct partitions, G i and G i are the only bases of L(G).

If Vl (g) 3 {a, b, c}, then, w ithout loss of generality, there m ust be some label d adjacent

to both b and c, bu t not a, as the edges a, b, and c. form a AT3 in G i. Since the edges

36

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

(a) T he only connected line graphs w ith two (edge la­
belled) bases th a t are no t p a rtitio n isomorphic.

(b) T he base graphs of th e four line g raphs p ictu red in F igure
4.1(a).

(c) Two edge labelled bases of th e line graph Kg
th a t are no t p a rtitio n isomorphic.

(d) Tw o edge labelled bases of th e line g raph K 4 — e
th a t a re no t p a rtitio n isomorphic.

(e) Tw o edge labelled bases of th e line graph K-} —
m , where m is a m axim al m atching, th a t are not
p a rtitio n isom orphic.

(f) Two edge labelled bases of th e line graph Kg —
m, where m is a m axim al m atching, th a t are not
p a rtitio n isom orphic.

Figure 4.1: P artition isomorphism of graphs

37

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

a, b, and c form a K \ 3 in G 1, the edges b, c, and d form a K 3 in G±. Therefore, d is

the unique label adjacent to bo th b and c, bu t not a, in G 2 .

Now, if Vjrqc) D {a ,b ,c ,d } , then , w ithou t loss of generality, there m ust be some label

z adjacent to b and d, bu t neither a nor c, as G \ is th e graph shown in the left hand

side of Figure 4.1(d). However, given th e configuration of G 2 , as shown in the right

hand side of Figure 4.1(d), these adjacencies are impossible.

W ith = {a, b, c, d}, G 1 and G i are as shown in Figure 4.1(d), and L(G) = K 3 — e,

as desired. Moreover, the partitions P$ '1 and P f 2 fix P^ 1, P f 2, P f 1, P f 2, P^ 1, and

P$ 2. Therefore, since the set {b, c} exhibits only tw o distinct partitions, G\ and G i

are the only bases of L(G).

• Qi> 1 = {b,c}, = { /} , Q ^ 2 = { b , f } , and R ^ 2 = {c}. Ju s t as a, b, and c form a K 3

in G i, a, b, and / form a K 3 in G \. Therefore, if V ^ q) = {a,b, c, / } , then L{G) =

K 4 — e, as desired. Again, /jif1 and P^ 2 fix the rem aining partitions, so G’i and G i

are the only bases of L(G).

Again, if L(G) contains an additional vertex, th en it can only be th e vertex d discussed

above. In th is case, G 1 and G i are as shown in Figure 4.1(e), and L{G) = Kr, — m, as

desired, where m is a m axim al m atching. Moreover, P f 1 and P f ’2 fix the remaining

partitions. Therefore, since the set {b, c} exhibits only two distinct partitions, G\ and

G i are the only bases of L(G).

• Qiji 1 = {b,c}, R ^ 1 = { / , h}, Qjj, 2 = { b , f } , and R ^,2 = {c ,h } . Ju st as a, b, and c form

a K 3 in G i and a, b, and / form a K 3 in G i, a, c, and h form a K 3 in G \ and a , / ,

and h form a K 3 in G i. Therefore, if V ^ c) = {a ,b ,c , f , h } , then L(G) = K$ — m ,

as desired, where m is a m axim al m atching. Again, Ptf 1 and P{f 2 fix the remaining

partitions, therefore, G i and G i are th e only bases of L(G).

Again, if L{G) contains an additional vertex, th en it can only be the vertex d discussed

above. In this case, G 1 and G i are as shown in Figure 4.1(f), and L(G) = K§ - p,

as desired, where m is a maximal m atching. Moreover, the partitions P ' f 1 and Pjf2

fix the rem aining partitions. Therefore, since the set {6, c} exhibits only two distinct

partitions, G 1 and G i are the only bases of L(G).

□

4.2 T h e dynam ic schem e

4.2 .1 V ertex labels, marker, and decoder

O ur dynam ic adjacency labelling scheme for line graphs builds upon the adjacency labelling

scheme for line graphs found in Section 2.1.1. Given a line graph L{G), each vertex of the

38

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

line graph is assigned a unique identifier from { 1 , . . . , |F l(G) I}- These vertex identifiers give

rise to an edge labelling of some base G, from which we will derive th e rem ainder of our

labelling. Like th e adjacency labelling scheme of M uller [45], we also assign each vertex of G

a unique identifier from { 1 , . . . , |Vg|}. For simplicity, we refer to vertices by th e ir identifiers.

O ur dynam ic scheme uses graph substructu res and circular doubly linked lists to dis­

trib u te inform ation about th e neighbourhood of a vertex in the line graph over the labels

of the neighbours. Specifically, for each vertex in the base, we m aintain a circular doubly

linked list of th e edges incident w ith th a t vertex. For each edge v in G, th e circular doubly

linked lists associated w ith its endpoints p a rtitio n th e edges adjacent to v, exactly as seen in

our discussion of partition isomorphism, w ith th e singular exception of v itself. Moreover,

th e union of th e two circular doubly linked lists associated w ith the endpoints of v, give the

vertices adjacent to v (in L(G)).

Given a vertex v, its label will consist of the following inform ation (in add ition to its

identifier).

v.epo,v.epi: Considered as an edge in the base, v has two endpoints; v.epo and v.epi are

the identifiers of these endpoints.

v .nna ,v .nn \: The values of \N(v.epo)\ and \N(v.epi)\ (in the base), respectively, where

N {x) denotes th e open neighbourhood of the vertex x.

v .prevQ ,v.prev\,v .nxQ ,v.nx\\ W ith v as th e current edge in the circular doubly linked

list about v.epi, th e identifiers of the previous and next edges are v.previ and v .n x i ,

respectively.

In particular, the label of a vertex is (v\ v.epo', v .epi; v .nno ; v.rnit; v.prevo; v .nxo ;

v . p r e v v . n x j) , as illustrated in Figure 4.2. Like the sta tic scheme of M uller, we assume

th a t the m arker knows the structu re of G, so th a t it can generate an in itia l labelling in

0 (n + m) tim e, using a b read th first search. O therwise, the m arker m ust use an algorithm

like th a t of Lehot [40] or Roussopoulos [50] to determ ine G from L{G). Also like the sta tic

scheme of Muller, the decoder can determ ine the adjacency of v\ and V2 in 0 (1) tim e, using

only their labels, by checking if {v \ .epo ,v i .ep i} fl {v2 -epo, V2 .ep{\ = 0 .

Consider a line graph w ith n vertices. If s tr in g denotes the num ber of b its required to

represent str ing then the num ber of bits used in the label of v is

l
v + (v.epi + v .m ii + v.previ + v .n x ^ j .

i = 0

In Section 3.1.3, we observed th a t if the deletion of vertices is perm itted , it may result in

the identifiers of the rem aining vertices not being space-optimal. The sam e is true for any

39

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2 ,

3 /

(a : 1; 3; 3; 3; b\ e; d; c)

(b : 1; 2; 3; 2; e; a; c; c)

(c : 2; 3; 2; 3; 6; &; a; d)

(d : 3; 4; 3; 2; c; a; e; e)

(e : 1; 4; 3; 2; a; &; d; d)

(a) G (O denotes the order o f the
circular linked list).

(b) Labels of L(G).

Figure 4.2: O ur dynam ic adjacency labelling scheme for line graphs

labelling in which identifiers are assigned. As such, let th e largest identifier of a vertex in the

line graph be L i , and let the largest identifier of a vertex in th e base graph be 1,2 • Thereby,

l(v) , l (v .p rev i) , l (v .nx i) £ O (lo g L i) and l(v.epi) £ 0 (logZ,2). M oreover, since the base has

no isolated vertices, \Va\ < 2 \Eq \ < 2|Vj,(G)| < 2n; therefore, l{v.nrii) £ O (logn), and the

label of v uses 0 (lo g L i + logZ /2 + lo g n) bits. If L \ and 1/2 are polynom ial in n, which we

sta ted as an assum ption in Section 3.1.3, then the label size of v reduces to O (logn). In

tu rn , the graph is represented using O (n lo g n) bits.

Using an argum ent found in a recent tex t of Spinrad [53] (p. 18), we can show th a t there

are 2n (" logO labelled line graphs on n vertices. Thereby, the dynam ic scheme is strongly

space-optim al for labelled line graphs. Consider a graph w ith ^ disjoint edges, each of which

has one endpoint in { 1 , . . . , ^} and th e o ther in + 1 , . . . ,n } . There are ([))! such graphs,

each of which is a line graph, yet

f > (2)• > j f = 2 ? log(f) c on (" los n)
V (f) ! V

This scheme may also be space-optim al for unlabelled line graphs; however, th is lower bound

has not yet been established in th e unlabelled case.

T he success of our dynam ic scheme lies in the ability to change th e labelling of a graph

to reflect another partition non-isom orphic base, when necessary. In particular, if a line

graph has a connected com ponent w ith two bases th a t are not p a rtitio n isomorphic, then

it is possible th a t the labelling derived from one of these bases will perm it certain dynam ic

operations while the o ther will not. For instance, consider the two bases depicted in Figure

4.1(d). If we wish to add a new vertex v to the corresponding line graph such th a t its

neighbours are a and b, th en the equivalent operation in the base is th e addition of an edge

th a t is adjacent to only the edges labelled a and b. This can be done using one of the bases,

bu t not the other. Again, we note th a t in any informative labelling scheme we have access

to the vertex labels only. Consequently, when we say th a t we change th e base, we ultim ately

40

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

m ean th a t we change the labelling of the graph so as to reflect a new base.

Even more critical to the success of our dynam ic scheme is th e inclusion of sufficient

inform ation in the labels to deduce, a t least partially, the s tru c tu re of the base. U pon

m odification of the line graph, our knowledge of the original base will allow us to determ ine

the base of the new line graph and, hence, th e labels of th e new line graph. To illustrate this

need for knowledge about the base, consider the line graphs presented in Figure 4.3. Even

though the line graph 5(L(G)) is form ed by deleting a single edge from L(G), the change in

th e base, from G to G ', is substantial; in particular, the required change affects much more

th a n ju s t the edges of th e base th a t correspond to the endpoints of th e deleted edge in the

line graph. If our dynam ic scheme were to use the labels of the sta tic scheme of Muller [45],

th en it would be impossible to deduce th e neighbourhood of a vertex v w ithout checking

the label of every vertex u to see if the edges of th e base corresponding to u and v share a

com m on endpoint.

O f particu lar in terest is how we can use the vertex labels to traverse circular doubly

linked lists. For any edge v of G, we know th a t the next vertex in th e circular doubly linked

list £ about v.epi is v.nxi. Let u = v .nx i . Ideally, the next vertex in £ after u would be

u .n x i , however, it could be either u .n x o or u . n x Consequently, before we proceed, we

m ust determ ine which of u.epo and u.epi is v.epp, fortunately, th is sim ple te s t requires 0 (1)

tim e. As such, £ can be traversed in O (u.nrq) tim e. For simplicity, we will say th a t £ can

be traversed in 0 (|£ |) tim e, where |£ | is the num ber of edges in £ .

4 .2 .2 R elabeller

In th e rem ainder of th is chapter, we present the relabeller th a t belongs to our dynam ic

adjacency labelling scheme for line graphs. For each graph operation, a “gentler” version

of the relabelling algorithm will be discussed in th is chapter, w ith detailed pseudocode

appearing in A ppendix C.

For simplicity, we will refer to S(L(G)) as L (G '), the line graph w ith base G', yet we

im plore the reader to recognize th a t it is the graph L(G) to which th e operation <5 is being

applied. We are not applying S to G to get G ', ra ther, G' is th e resulting base graph of

L(G ') = S(L(G)).

D e le t in g a v er tex

As w ith all of our graph modifications, it is im perative to understand how a change in the

line graph causes a change in the base. By deleting a vertex from th e line graph, we delete

the corresponding edge in the base, as depicted in Figure 4.4.

Let v be the vertex to be deleted, and let X be the neighbours of v in L(G). For each

endpoint v.epi of v (in G), D e l e t e V e r t e x , the algorithm presented in Figure 4.5, first

41

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

/

(a) G. (b) L(G).

(c) G'. (d) L (G ') = S(L(G)).

Figure 4.3: An edge is deleted from (or added to) a line graph. The use of ellipses indicates
th a t the graph extends arb itrarily from th e indicated vertex

(a) A vertex is deleted from (or added to) L(G)

- - - - - ' • -s
A .-!

v / ' - V -V
* *

(b) T he corresponding change in G. T he set S
is a valid set

Figure 4.4: A vertex is deleted from (or added to) the line graph

42

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

determ ines w hether v is th e only edge incident w ith v.epi. I t does th is in 0 (1) tim e by testing

the condition v.nrii = 1. If v is the only edge incident w ith v .ep i , th en D e l e t e V e r t e x

frees the identifier of v.epi, which takes 0 (1) time.

If there are o ther edges incident w ith v.epi, then D e l e t e V e r t e x traverses Li, the

circular doubly linked lists abou t v.epi, decrem enting th e ,n n counter th a t corresponds to

Li by one, for every vertex I (in L(G)) in L i . Traversing Li to decrem ent these counters

takes 0 (|£ j |) tim e. Once these counters have been ad justed , v is removed from Li, which

takes 0 (1) time.

Once bo th endpoints of v have been addressed, v is deleted and its identifier is freed for

future use. This elim ination takes 0 (1) time. Since, |£ i | + |>C2 1 = |V | + 2 , D e l e t e V e r t e x

runs in 0 (|X |) e 0 (n) tim e. Moreover, D e l e t e V e r t e x accesses 0 (|X |) vertex labels,

requiring a to ta l of f l(|V |) bits; therefore, the running tim e of D e l e t e V e r t e x is polynomial

in the size of its inputs. M oreover, D e l e t e V e r t e x is error-detecting because the class of

line graphs is hereditary.

D e l e t e V e r t e x (L (G) , v)

Input: An adjacency labelling of a line graph L(G) (th a t is, the labels thereof) created
using our dynam ic scheme, and a vertex v in Vl (G)- N ote th a t the labels of L(G) are only
accessed as required.

O utput: An adjacency labeling of a graph L(G ') (again, th e labels thereof) formed by
deleting v from L(G), providing L(G ') is a line graph. If L(G ') is no t a line graph, then the
o u tp u t indicates as such.

1 for i <— 0 to 1 d o
2 if v is th e only edge incident w ith v.epi th e n
3 free the identifier of v.epi
4 e lse Li <— the circular doubly linked list abou t v.epi
5 for I e L i d o
6 decrem ent Vs counter of the num ber of edges in L, by 1
7 remove v from Li
8 delete v and free its identifier

Figure 4.5: The relabeller D e l e t e V e r t e x which relabels the line graph when a vertex is
deleted

P ro p o s i t io n 4 .3 The modification excess and modification locality of D e l e t e V e r t e x are

zero.

P ro o f . F irst, observe th a t the set of vertices whose neighbourhoods change is X U {u}. If

the label of a vertex x is modified, then its corresponding edge in the base had been in one of

the circular linked lists about an endpoint of v (in G). T h a t is, x e X U {?;}. Therefore, the

set of vertices w ith modified labels is a subset of the set of vertices whose neighbourhoods

change, giving the desired result. □

43

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

A d d in g a v e r te x

Adding a vertex to the line graph, along w ith its incident edges, is equivalent to adding an

edge to the base graph, as shown in Figure 4.4. Let v be the vertex to be added to L(G),

and let X be the set of vertices to which v will be m ade adjacent. The endpoints of v (in

the base) m ust cover X (as edges in th e base), moreover, these endpoints m ust be incident

w ith only these edges.

If X = 0, then A d d V e r t e x , th e algorithm presented in Figure 4.6, creates two new

vertices, fq and 62, in th e base, and pu ts v between them . C reating fq and b2 takes 0 (1)

time; however, placing v betw een fq and 62 requires th a t we establish circular doubly linked

lists for each of these vertices. Since each of these circular doubly linked lists contains only

v, setting the .ep, .n x , .prev, and .nn values of v to represent the new circular doubly linked

lists takes 0 (1) time.

If X ^ 0 , then we are looking for a set S of vertices in the base for which each of the

following conditions hold.

• 1 < |S | < 2.

• each edge of X (in the base) has exactly one endpoint in S.

• no edge of the base not in X has an endpoint in S.

We will call such a set S valid. This concept is illustra ted in Figure 4.4.

To find a valid set, A d d V e r t e x calls F in d Va l id . F in d Va l id selects an edge of the

base, edgeo, from X and tries to include edgeo-epo in a valid set. L etting Xq be the subset

of edges in X th a t are not incident w ith edgeo.epo, we observe th a t if we require another

vertex in the valid set, th en it m ust come from an edge in X 0. We initially set Vo to X ,

then traverse the circular doubly linked list about edgeo .epo to elim inate edges from Vo.

If at any point we find an edge which does no t belong to X , then edgeo .epo cannot be in

the valid set, so we backtrack and try edgeo-epi ■ If edgeo-ePi is sim ilarly problem atic, then

the base will not yield a valid set. However, before concluding th a t v cannot be added to

the line graph, we m ust determ ine if the com ponent of the line graph containing edgeo has

another base which is not partition isomorphic. If so, we repeat our efforts on edgeo using

this new base.

P rov id ing some en d p o in t of edgeo can b e ad d ed to th e valid se t, F in d V a l id now selects

an edge, edgej, from Vo an d trie s to inc lude edgej.epo in th e valid se t. L e ttin g V i be

th e su b se t of edges of Vo th a t are n o t in c id en t w ith edgej.epo, we observe th a t edgej.epo

can be added to com plete th e valid set if an d only if all o f th e edges found in th e c ircu lar

doub ly linked list a b o u t edgej.epo belong to Vo, an d X \ = 0. W e d e term ine X \ in a

m anner sim ilar to th a t described for finding Xq above, th e n back track if necessary. B y

44

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

backtracking, F i n d V a l i d exhausts all com binations of bases and endpoints in finding a

valid set. In particu lar, backtracking first tries a new endpoint, then , if necessary, a new

base.

From Theorem 4.2, we see th a t any com ponent of the line graph w ith tw o bases th a t

are not partition isom orphic has 0 (1) vertices. Therefore, F i n d V a l i d requires a t m ost one

base change, w here each base change takes 0 (1) tim e. Moreover, for each possible base,

there are a t m ost four selections of edgei.epj , where F i n d V a l i d stops traversing the circular

doubly linked list abou t edgei.epj as soon as it finds some vertex not in X / X q. Therefore,

F i n d V a l i d takes 0 (|X |) tim e.

If a valid set S is found, then we add v to the base graph using the vertices in S. If

S = { s i} , then A d d V e r t e x creates a new vertex bx (in G), which takes 0 (1) tim e, and

places v between s i and b\. Setting the .ep values of v takes 0 (1) tim e and, as we have

discussed, the creation of th e circular doubly liked list about bx takes 0 (1) tim e. However,

the addition of v to th e circular doubly linked list, £ i , about s i is m ore complicated.

Inserting v in to £ i after edgeo takes only 0 (1) tim e, b u t we m ust also ad just the .nn

counters of every vertex in C\. A djusting these counters takes 0 (|£ i |) £ 0 (|X |) time.

If S = { s i ,S 2 } , then A d d V e r t e x places v between s i and S2. A gain, setting the

.ep values of v takes 0 (1) tim e, and the addition of v to the circular doubly linked lists

takes 0 (|£ i | + (£2 !) tim e, where £ j is th e circular doubly linked list abou t s*. However,

|£ i | + |£ 2| = |X |, so ©(j£r | + |£ 2|) G 9 (|X |) .

A d d V e r t e x (L(G), A)

Input: An adjacency labelling of a line graph L(G) (th a t is, the labels thereof) created
using our dynam ic scheme, and a subset X of V l(g) . Note th a t the labels of L (G) are only
accessed as required.

O utput: Let L (G ') be the graph formed by adding a new vertex v to L (G), where v is
adjacent to exactly those vertices in X . P roviding L(G') is a line graph, th e o u tp u t is an
adjacency labelling of L(G ') (again, the labels thereof). If L(G ') is not a line graph, the
ou tpu t indicates as such.

1 create a new vertex v (in L(G))
2 i f X = 0 th e n
3 create two new vertices bx and 62 (in G)
4 v 6162
5 e ls e S F in d V a l id (X)
6 i f S = 0 t h e n
7 error no longer a line graph
8 e ls e if \S\ — 1 th e n
9 create a new vertex bx (in G)

10 v <— S1&1
11 e lse v <— s i s 2

Figure 4.6: T he relabeller A d d V e r t e x which relabels the line graph when a vertex is added.
The vertices Si and S2 , of the base, are the m em bers of the valid set S

45

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

In to ta l, A d d V e r t e x runs in 0 (|X |) tim e. Given th a t A d d V e r t e x is inpu t w ith the

labels of each vertex in X , the running tim e of A d d V e r t e x is polynom ial in the size of the

input. Moreover, A d d V e r t e x is error-detecting since our use of backtracking guarantees

th a t a valid set will be found, providing one exists.

P ro p o s i t io n 4 .4 The modification excess and modification locality o f A d d V e r t e x are

zero.

P ro o f . F irst, observe th a t the set of vertices whose neighbourhoods change is X U {v}. If

the label of a vertex x is modified, then its corresponding edge in the base had been in one

of the circular linked lists abou t an endpoint of edge in the valid set. T h a t is, x 6 X U {v}.

Therefore, the set of vertices w ith modified labels is a subset of the set of vertices whose

neighbourhoods change, giving the desired result. □

D e le tin g a n e d g e

Consider the act of deleting an edge from a line graph, as depicted in Figure 4.3. This dele­

tion is equivalent to “pulling a p a rt” two adjacent edges in th e base. If there are additional

edges incident w ith the vertex of the base a t which these two adjacent edges were joined,

then it becomes increasingly difficult to determ ine the new base graph. Fortunately, there

are a finite num ber of cases to be considered; we enum erate these cases as a corollary of the

following theorem.

T h e o re m 4 .5 Let L{G) and L{G') he line graphs, where L{G') = L (G) — ab. Moreover,

let the edges o f G corresponding to a and b be w x and w y, respectively. The following are

properties o fG .

1. The degree o f w is at most four.

2. I f d = x y is an edge o f G, then deg(w) < 3.

3. Let c = w z be an edge of G, where c a,b. I f f = z t is an edge o f G, where f c,

then either t — x or t = y.

4- I f d = x y and c = w z are edges of G, where c a, b, then there can be no edges

adjacent to c other than a and b.

5. I f c = w z and f = z x are edges of G, where c a,b, then deg(x) < 3. Moreover,

i f deg(x) = 3, then x is adjacent to an edge g = xp, where p w, z, y, such that

deg(p) < 2. A s well, i f deg{p) = 2, then the edge i = pw belongs to G.

6 . Let c = w z be an edge of G, where c a,b. I f there exist distinct edges f = z t \ and

h = z t2 , where c f , h , then { t i f i? } = { x ,y}. Moreover, deg(x) = deg(y) = 2.

46

with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

7. I f H is a subgraph of G, then L(H) — ab is a line graph.

P ro o f . Fundam ental to th e proofs of each of these observations is th e fact th a t the only edge

adjacencies th a t changes from G to G' is th a t of a and b which are adjacent in G b u t not in G '.

To aid in the visualization of these proofs, the reader is encouraged to consult the diagrams

in Table 4.1. I t should be noted th a t, although there is a direct correspondence between

edges of G and G ', the sam e correspondence cannot be m ade betw een the vertices of G and

G' as it is only the edge adjacencies which are im portan t, not th e specific vertices a t which

edges are adjacent. Consequently, any references to vertices in th e following argum ents will

be in the context of the graph G.

1. Assume th a t w is incident w ith a t least five edges in G, say a, b, c, i, and j . Now

c, i, and j m ust be adjacent to b o th a and b in G' because they had been so in G.

However, in a simple graph, any set of th ree edges between two disjoint edges, such

as a and b in G', m ust also contain two disjoint edges. W ithou t loss of generality, let

these disjoint edges be c and j . This implies th a t c and j were not adjacent in G,

which is a contradiction, as th ey were b o th incident w ith w.

2. Assume th a t w is incident w ith a t least four edges in G, say a, b, c. and i. Now d

m ust be adjacent to b o th a and b in G ' because it had been so in G. Yet a and b are

disjoint in G ', so G ' m ust contain the p a th adb of edges. Similarly, c m ust be adjacent

to bo th a and b in G' because it had been so in G. Yet a and b are disjoint in G ', so G'

m ust contain th e p a th acb of edges. Additionally, c m ust be disjoint from d in G ' as

it had been so in G; thereby, G' m ust contain the four cycle adbc of edges. However,

G' m ust contain the four cycle adbi of edges as the argum ents m ade for c can also be

made for i. Thereby, c = i, which is a contradiction.

3. Using an argum ent identical to th a t m ade for the edge d in (2), G' m ust contain the

pa th acb of edges. Yet / m ust be adjacent to c in G' because it had been so in G.

Therefore, / is adjacent to a t least one of a or b in bo th G' and G. W ithout loss of

generality, let / be adjacent to a. If t = w, then / = c; therefore, t = x , as desired.

This scenario is depicted in case E of Table 4.1.

4. By (2), the only edges adjacent to c a t w (in G) are a and b, thereby, it remains to

show th a t deg(z) = 1 . Assume th a t there is another edge adjacent to c a t z, namely

/ = zt. By (3), t £ {x, y}, so, w ithout loss of generality, let t — x. Using the argum ent

found in (2), we know th a t G' contains the four cycle adbc of edges as shown in case

B of Table 4.1. However, G' m ust also contain the four cycle fdbc of edges, as the

argum ents m ade for a can also be made for / . Thereby, f = a, which is a contradiction.

47

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. Consider when deg{x) > 2 , th a t is, there exists some edge g = xp for which p 0 {w, z} ,

th a t is, g ^ f , a . From (4), we know th a t p ^ y, th a t is, g ^ d. Since p £ {w, z} , g is

not adjacent to c in G, nor in G '. Yet, g m ust be adjacent to b o th a and / in G' as it

had been so in G; thereby, G' contains the thee cycle of edge a fg , as shown in case F

of Table 4.1. T he uniqueness of th is three cycle gives deg(x) < 3.

Finally, consider when deg(p) > 1, th a t is, there exists some edge i = ps for which

i ^ g. Now i m ust be adjacent to g in G' as it had been so in G. B u t G' contains the

three cycle a f g of edges, as depicted in case F of Table 4.1, so, i m ust be adjacent to

either a or / in G' and, subsequently, in G.

If % is adjacent to / in G, th en i g gives s = z, so, i is adjacent to c, / , and g,

bu t neither a nor b in G and, subsequently, in G '. However, th e configuration of G'

depicted in case F of Table 4.1 requires th a t either i — a or i is adjacent to b, bo th

of which are contradictions. O n the o ther hand, if i is ad jacent to a in G, then i A g

gives s = w, as seen in case J of Table 4.1. Moreover, th e uniqueness of the edge

i = pw gives deg(p) < 2 .

6 . The first p a rt of th is sta tem ent follows directly from (3), thereby, deg(x) ,deg(y) > 2.

W ithout loss of generality, let f — z x and let h = zy. Now / is adjacent to a and h,

bu t not b, in G ', as it had been so in G; similarly, h m ust be adjacent to b and / , bu t

not a, in G ', as it had been so in G. Thereby, G' m ust contain the p a th a , f , h , b of

edges. As well, c m ust be adjacent to each of a, b, / , and h as it had been so in G,

therefore, G' is as depicted in case G of Table 4.1. Note, in particular, th a t the edges

c, / , and h form a three cycle in G '.

Assume th a t deg(x) > 2. From (5) , we know th a t x is incident w ith some edge g = xp,

where x w , y , z . Consequently, g is adjacent to / , b u t neither c nor h in G and,

subsequently, G '. Yet, the edges c, / , and h form a triangle in G ', so g cannot be

adjacent to / in G' as it is adjacent to neither c nor h in G '. This contradiction gives

degix) < 2. A sim ilar argum ent gives th a t deg{y) < 2 .

7. Given th a t H is a subgraph of G, L (H) is an induced subgraph of L(G). However,

L(G ') = L (G) — ab, so L (H) — ab is an induced subgraph of L{G'). Since the family

of line graphs is hereditary, L (H) — ab is a line graph.

□

C o ro lla ry 4 .6 Let L(G) and L(G ') be line graphs where L(G ') = L(G) — ab. Table 4-1

classifies all of the possible base graphs, G, up to symmetry.

Since the circular linked list struc tu re d istributes the inform ation about the neighbour­

hood of a vertex across the labels of its neighbourhood, the vertex labels are sufficient to

48

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Table 4.1: Possible cases for deleting an edge from (or adding an edge to) a line graph. In
each case the edge ab is deleted from the line graph. The use of ellipses indicates th a t the
graph extends a rb itrarily from the indicated vertex

C ase A B c

G d
aX .
y / " C

G'

X X .S \ a d\
S I b •

y
6

•X

151 a T
r

i., b 1

s * a

X b •

D E F G

G
* ^ X

G'

/ --------X

^ “]c
: > 6 1

’ ° V '
: > i 1

a /
c

> - A- i

• • C f ,
• 6 i - X

s

49

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

determ ine the local s tructures depicted in Table 4.1 (in fact, we can perform b o th depth

first and bread th first search on th e line graph and its base). Consequently, D e l e t e E d g e ,

the algorithm presented in F igure 4.7, needs only identify if G has one of th e s truc tu res

shown in Table 4.1.

D e l e t e E d g e (L (G), a, b)

Input: An adjacency labelling of a line graph L(G) (th a t is, the labels thereof) created using
our dynam ic scheme, and two d istinc t vertices a and b of Fl(G) f°r w hich ab £ E l(G)- Note
th a t the labels of L(G) are only accessed as required.

O utput: An adjacency labeling of a graph L(G ') (again, the labels thereof) form ed by
deleting the edge ab from L(G), providing L (G r) is a line graph. If L(G ') is no t a line graph,
then the ou tpu t indicates as such.

1 examine the neighbourhood surrounding a and b (in G) to determ ine which of the
cases in Table 4.1 applies to G

2 i f none of the cases in Table 4.1 applies to G t h e n
3 e r r o r no longer a line graph
4 e ls e change the vertex labels of a, b, c, d, / , g, h, and i, as necessary, to reflect the

new base graph G'

F igu re 4.7: T he re labeller D e l e t e E d g e w hich re labels th e line g ra p h w hen an edge is
dele ted

Given th a t D e l e t e E d g e is only concerned w ith the interaction betw een th e edges a,

b, c, d, / , g, h, and i, it can determ ine if G has one of the struc tu res shown in Table 4.1

in 0 (1) tim e. If G does have one of th e structures shown in Table 4.1, th en D e l e t e E d g e

needs only to change the in teraction betw een a, b, c, d, / , g. h, and i , as necessary, to reflect

G ' . From the cases shown in Table 4.1, observe th a t the change in th e labels should not

affect any endpoint of a or b th a t has a rb itra ry adjacency. Therefore, D e l e t e E d g e can

relabel the graph in 0 (1) tim e. As p er our com m ents earlier in th is section, the running

tim e of D e l e t e E d g e is polynom ial in the size of the input.

Unlike the addition of a new vertex, the choice of base is irrelevant when it comes to

deleting an edge from the line graph. Specifically, given a com ponent of a line graph w ith

two bases th a t are not partition isom orphic, if in one base the deleted edge leads to one of the

configurations presented in Table 4.1, th en so too will th is edge in th e o ther base. Therefore,

given Corollary 4.6, D e l e t e E d g e is error-detecting as it will exhaustively determ ine if G

satisfies any of the cases shown in Table 4.1. In Table 4.2 we present all such pairs of bases

th a t are not partition isomorphic in which the edge ab is to be deleted from the line graph,

as well as the corresponding case of Table 4.1 to which each base belongs.

P r o p o s i t i o n 4 .7 The modification excess and modification locality o f D e l e t e E d g e are

four and one, respectively.

50

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Table 4.2: Pairs of partition non-isomorphic bases in which the edge ab is to be deleted from
the line graph

Case in Table 4.1 Base 1 Base 2 Case in Table 4.1

A K* > - D

E • A

G <[> > A

none <> none

none & none

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

P r o o f . First, observe th a t the set of vertices whose neighbourhoods change is {a, b}. From

Table 4.1, we see th a t any edge whose endpoints change belongs to the set {a, b, c, d, / , g , h , j}.

In particular, the largest such subset belongs to case J , w here the set of edges w ith changed

endpoints is {a,b,c, Therefore, th e m odification excess is four. Moreover, each of

the edges in {a ,b ,c ,d , f , g , h , i } corresponds to a vertex th a t is adjacent to either a or b in

the line graph. Therefore, the m odification locality of D e l e t e E d g e is one. □

A d d i n g a n e d g e

The act of adding an edge to a line graph is depicted in Figure 4.3. Since the process

of adding an edge is exactly the reverse of deleting an edge, Table 4.1 enum erates all the

possibilities.

Ju st as we saw w ith the deletion of an edge, the choice of base is irrelevant when it comes

to adding a new edge to the line graph. Specifically, given a com ponent of a line graph w ith

two bases th a t are not partition isom orphic, if in one base the added edge leads to one of

th e configurations presented in Table 4.1, then so too will th is edge in the other base. In

Table 4.3 we present all such pairs o f bases th a t are no t partition isom orphic in which the

edge ab is to be added to the line graph, as well as the corresponding case of Table 4.1 to

which each base belongs.

Again, the labels of the vertices in th e line graph are sufficient to determ ine the local

struc tu res as depicted in Table 4.1 so th e algorithm for updating the labels needs only

identify the structu re of the base, then alter the labels to represent th e struc tu re of the

new base. Like D e l e t e E d g e , A d d E d g e runs in 0 (1) tim e, is error-detecting, has a

modification excess of four, and has a m odification locality of one.

4.3 Sum m ary

In th is chapter, we have developed an error-detecting dynam ic adjacency labelling scheme

for line graphs by using circular doubly linked lists to encode inform ation about the base

graph in the vertex labels. O ur dynam ic scheme for line graphs uses O (logn) b it labels and

updates can be performed in 0 (e) tim e, where e is the num ber of edges added to , or deleted

from, the line graph.

In developing this dynam ic scheme, we also defined th e concept of partition isomorphism,

and developed theory on the types of line graphs th a t can be modified to produce new line

graphs.

52

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Table 4.3: Pairs of partition non-isomorphic bases in which the edge ab is to be added to
the line graph

Case in Table 4.1 Base 1 Base 2 Case in Table 4.1

H “b*7* ‘Î V* H

none •4b <D> none

none none

53

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 5

r-graphs

In th is chapter, we develop error-detecting dynam ic adjacency labelling schemes for classes

of graphs defined using m axim al cliques and m axim al bicliques, namely, r-m inoes and r-

bics, respectively. O ur in terest in r-m inoes and r-b ics lies no t so much w ith the classes

themselves, ra ther, m ore w ith the m axim al cliques and bicliques, which are structures com­

m only discussed in graph theory. A recent paper of S tix [54] offers a dynam ic algorithm for

m aintaining m axim al cliques in fuzzy clustering applications such as music and sem antic

clustering. A recent paper of Driskell, Ane, Burleigh, M cM ahon, O ’M eara, and Sanderson

[15] applies m axim al bicliques to the field of genetics.

M etelsky and Tyshkevich [44] define a graph to be an r-m ino if none of its vertices

belongs to more th a n r m axim al cliques. This notion of an r-m ino is an extension of the

idea of a domino, as defined by Kloks, K ratch, and M uller [36], in which each vertex belongs

to at m ost two m axim al cliques. In the ir work, M etelsky and Tyshkevich show th a t the

class of r-m inoes is th e same as the class of line graphs of Helly hypergraphs w ith rank a t

most r; recall Definitions 2.6 and 2.7, regarding line graphs of hypergraphs. A hypergraph

H — (V, £) is said to satisfy the Helly property if every pairwise intersecting subset £ ' of £

is such th a t f j ee£' e ^ ® [®] •

Consistent w ith the definition of P risner [48], a bichque is a com plete b ipartite vertex

induced subgraph. We define a graph to be an r-bic if none of its vertices belongs to more

th an r m axim al bicliques.

Using O (r lo g n) b it labels, our dynam ic schemes allow the addition and deletion of

vertices and edges. Observe th a t it is im practical to consider r G f f (n / lo g n) . As discussed

in Section 2.1.1, a simple adjacency labelling scheme using O (n) b it labels can be developed

from the rows of adjacency matrices; moreover, th is scheme can be m aintained dynamically.

Given th a t our labels can use 0 (r lo g n) bits, we cannot improve upon th is simple scheme

if r G 0 (n / lo g n) .

For ?-minoes, our relabeller handles edge addition and deletion in 0 (r 2D) time, vertex

addition in 0 (r 2e2) tim e, and vertex deletion in 0 (r 2e) tim e, where D is the m axim um

54

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

degree of the vertices in the original graph, and e is the num ber of edges added to , or deleted

from, the original graph. U nfortunately, if r € w (l) , then our vertex deletion relabeller is

not error-detecting. Similarly, if r € o (l) , then our vertex addition relabeller is not error

detecting.

For r € U (l) , our error-detecting vertex addition algorithm leads to an O (r2n 3) tim e

recognition algorithm for r-m inoes. T his result offers an im provem ent over the 0 (r n 4)

algorithm th a t can be extended from work of Johnson, Yannakakis, and P apad im itriou [30],

as well as the 0 (n r+2) algorithm resulting from M etelsky and Tyshkevich’s characterization

using forbidden subgraphs [44].

For r-bics, our relabeller handles edge addition and deletion, as well as vertex deletion, in

0 (r 2B) tim e, and vertex addition in 0 (r 2n B) tim e, where B is the size of the largest biclique

in the original graph. As w ith r-m inoes, our error-detecting vertex addition algorithm leads

to O (r2n 3) tim e recognition algorithm for r-bics. Unlike r-m inoes, our relabeller will always

be error-detecting.

5.1 T h e d ynam ic schem e for r-m inoes

5.1.1 V ertex labels and decoder

Like the dynam ic scheme for line graphs presented in C hapter 4, our dynam ic adjacency

labelling scheme for r-m inoes uses graph substructu res and circular doubly linked lists to

d istribu te inform ation about neighbourhoods across th e vertices in the neighbourhoods. In

the case of r-m inoes, the im portan t substructures are the m axim al cliques. As such, we use

the vertex labels to m aintain a circular doubly linked list of the vertices in each m axim al

clique.

Given an r-m ino on n vertices, each vertex is assigned a unique identifier; similarly,

each m axim al clique is assigned a unique identifier. For simplicity, we refer to vertices

and m axim al cliques by the ir identifiers. Given a vertex v, its label will also consist of

the following inform ation; exactly how the m arker initially determ ines these labels will be

addressed later.

v.cin: The num ber of m axim al cliques in which v is contained.

v.cl: An array of triples w ith an entry for each m axim al clique in which v is contained.

Each member v.cli is a trip le of the form (n u m , n x ,p rev), as follows, where the index

i ranges from 1 to v.cin.

• num is the unique identifier assigned to the m axim al clique.

• m is a pair (id, index), where id is the identifier of the next vertex after v in the

circular doubly linked list of the vertices in m axim al clique r .c l , .num , and index

55

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

is the value j for which id .c l j .num = v.cli.num.

• prev is a pair (id, index), where id is the identifier of the vertex before v in the

circular doubly linked list of th e vertices in m axim al clique v .c li .num , and index

is the value j for which id .c l j .num = v.c li .num.

In particular, the label of a vertex is (ic v.cin; v.cl) as illu stra ted in F igure 5.1.

Given the labels of two vertices, V\ and v 2 , th e decoder can determ ine th e adjacency of

Wi and t>2 in 0 (v \ .c in + V2 -dn) € 0 (r) tim e, by com paring th e .num entries of V\.cl and

V2 -cl to see if the vertices share a common m axim al clique. To th is effect, let Cv denote

{v.cli.num\l < i < v.cin), the set of all m axim al cliques containing v. We observe th a t Cv

can be obtained in Q (v.cin) e O (r) tim e, where \CV\ = v.cin < r. The vertices tq and iq

are adjacent if and only if Cu fl Cv yf 0.

To check the condition Cu n C v / 0, we use a reciprocal po in ter technique suggested in a

tex t by Aho, Hopcroft, and Ullm an [2] (exercise 2.12). Consider two subsets S i and S 2 of

S. To determ ine in 0 (|S i | + IS2I) tAne if Sf H S2 7̂ 0, we require a block B \ of memory to

hold a stack of |S i| words, and a block £>2 of m em ory indexed by th e elem ents of S. F irst,

we initialize B 1 to 0. T hen, for each elem ent sj of S i, we push a pointer P{ onto the stack

a t B \ and initialize a pointer P) in position s\ of B 2, such th a t P{ points to P) and vice

versa. If, for some elem ent s \ of S2 , position s2 of B 2 holds a pointer Q 2 th a t points to a

pointer Q \ in our stack, such th a t Q 1 points back to Q 2 , th en Si fl So 0. Observe th a t

similar approaches can be used to determ ine S i H S2 and S i U S2 in 0 (|S i | + IS2I) tim e as

well.

Of particu lar in terest is how we can use th e vertex labels to traverse the circular doubly

linked list of vertices in a m axim al clique. For any m axim al clique C , if we know some

vertex s in C, as well as the value i for which s .c li .num = C , th en the next vertex in the

circular doubly linked list is s.cli.nx.id and th e .cl en try of s .c li .nx .id th a t corresponds to C

is s .c li.nx.index. Moreover, s .cli .nx.id and s.c li .nx .index can be determ ined in 0 (1) time.

As such, the circular doubly linked list of vertices in C can be traversed in 0 (|C |) time.

For simplicity, we will say th a t we traverse C, although we really m ean th a t we traverse the

circular doubly linked list of vertices in C.

• (« : 1:1(0, (a, 1), (a, 1))])

. (b : 1; [(1, (c, 1), (d, 2))])

L (c: l;[(l,(d,l),(M))])
\ , [d : 2; [(2. (e. 1). (e, 1)). (1. {b, 1), (c, 1))])

(,■: l;[(2,(rf,l),(d,l))])
Figure 5.1: A labelling of 2-mino (domino) obtained using our labelling scheme

56

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

As well, we should address how we m anage the .cl arrays. W hen a vertex v is added

to a maximal clique, we sim ply create a new en try a t th e end of the array v.cl. W hen v is

removed from a m axim al clique, we delete the corresponding en try in v.cl. If a deleted entry

had not been the last in th e array, th en we move the last en try to the position of the deleted

entry; consequently, we m ust ad ju st the .index values for th e previous and next vertices in

the circular doubly linked list corresponding to the moved entry. In either case, we are able

to m aintain a contiguous array of v .cin entries in 0 (1) tim e.

If str ing denotes the num ber of b its required to represent s t r in g , then th e size of the

label of v is

v.cin
v + v .c in+ '^ 2 (v .c l i .num + v .c li .prev .id+ v .c li .prev .index+ v.c li .nx .id + v .c l i .nx .index 'j .

Recall an earlier discussion in Section 3.1.3, where we observed th a t the dynam ic nature

of the graph m ight prevent th e vertex and clique identifiers from being space-optim al.

As such, let the largest identifier of a vertex in th e graph be L \ , and let the largest

identifier of a m axim al clique be L 2. Thereby, v ,v .c li .prev .id ,v .c li .nx .id £ © (logL j)

and v.c li .num £ O (logL 2). Moreover, each vertex is in a t m ost r m axim al cliques, so

v. t in , v.cli.prev. index, v.clt.nx. index < r, and th e label o fv uses 0 (lo g L i+ lo g r 4- r lo g L 2 +

r log r + r log L \) £ 0 (r log L \ + r log L 2) bits. If L \ and L 2 are polynomial in n, which we

s ta ted as an assum ption in Section 3.1.3, then th e label size of v reduces to O (r lo g n) . In

tu rn , the graph is represented using O (rn lo g n) bits.

Using the same argum ent of Spinrad [53] (p. 18) found in Section 4.2.1, we can show th a t

there are 2n (" log") labelled 1 -m inoes on n vertices. Yet, for r ' > r , an r-m ino is an r'-m ino;

thereby, there are 2fd " log;rd labelled r-m inoes on n vertices. Therefore, our dynam ic scheme

for r-m inoes is space-optim al when r £ 0 (1) . For r £ w (l), we cannot offer com m ent on

optim ality as we have no additional lower bounds. We also cannot offer com m ent on the

optim ality in th e unlabelled case, when r £ 0 (1), as the 2n Oi°g«) lower bound has not yet

been established on the num ber of unlabelled r-m inoes on n vertices.

5.1.2 R elabeller

Let us now examine the relabellers included in our dynam ic scheme. As w ith the dynamic

scheme presented for line graphs in C hapter 4, detailed pseudocode appears in A ppendix C.

In the following discussion, G is the original graph and G’ is the changed graph.

D e l e t i n g a v e r t e x .

Before we describe the relabeller, it is im portan t to understand how the deletion of a vertex

affects the m axim al cliques in the graph. To th is effect, consider the following lemma.

57

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

L e m m a 5.1 Consider a graph G' formed by deleting a vertex v from a graph G. Let J be

the set of cliques {C \C is a maximal clique o f G and v £ C } . The set o f maximal cliques of

G' can be partitioned as J U (G \ {v} \C is a maximal clique o f G, v £ C, and C \ {u} % J j

for all J £ J } .

P r o o f .

Consider an elem ent Jo of J and consider a set of the form C \ {u} where C is a m axim al

clique of G, v £ C, and C \ {u} % J , for all J £ J . By definition, C \ {w} ^ J , for all

J £ J \ therefore, C \ {u} ^ Jo, which guarantees th a t the two sets of the claim ed partition

are disjoint.

Since Jo is a clique of G, it is also a clique of G '. If Jo is not a m axim al clique of G '.

then there exists some clique C* of G' for which Jq £ C * . Since v is deleted from G, we

know th a t v $ C*; thereby, C* is a clique in G, which contradicts the m axim ality of Jo in

G. Therefore Jo is a m axim al clique of G '.

Since C is a clique in G, so too is C \ {u} in G '. If G \ {u} is not a m axim al clique of G ',

then there exists some clique C* of G' for which G \ {v} c G*. Since v is deleted from G,

we know th a t v C*; thereby, G* is also a clique of G. Consequently, G \ { v } C G* C J* ,

for some J* in J -, which is a contradiction. Therefore, G \ {;;} is a m axim al clique of G '.

Having shown th a t th e described sets are disjoint, and th a t the ir m em bers are m axim al

cliques of G ', it rem ains to show th a t these sets contain all the m axim al cliques of G '. To

this effect, let X denote th e neighbourhood of v in G.

Consider a m axim al clique Go of G '. If Go 2 then Go £ J ■ O n the o ther hand, if

Go C X , then Co U {w} is a m axim al clique of G. Moreover, if there exists some J* in J , such

th a t Go C J* , then Co C J * , as J* <2 X (otherwise, the clique J* U {V} would contradict

the m axim ality of J* in G). Yet, J* is a clique of G ', thereby, Go C J* contradicts the

m axim ality of Go in G '. Therefore, for all J in J , Go % J , as desired. □

Lemma 5.1, and its proof, suggest the design of our relabeller, D e l e t e V e r t e x , as

presented in Figure 5.2. All the m axim al cliques of G th a t do not contain v will continue

to be maximal in G '. However, for each m axim al clique C of G, where v £ G, we m ust

consider the possibility of C \ {w} being contained in some m axim al clique of J .

The relabeller, D e l e t e V e r t e x , first determ ines if v is an isolated vertex, which is to

say th a t v.cin = 1 and v .c l \ .n x = v. If v is isolated, the algorithm frees the identifier of the

maximal clique {u} for fu ture use. This case can be identified and addressed in 0 (1) time.

Providing v is not isolated, D e l e t e V e r t e x obtains C = CVl the set of m axim al cliques

containing v. As discussed, Cv can be determ ined in O (v.cm) tim e, where \CV\ = v.cin.

Recall th a t, to efficiently ex trac t inform ation abou t a m axim al clique from the circular

doubly linked list of its vertices, we m ust know the identifier of some vertex th a t belongs to

58

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

D e l e t e V e r t e x (G , v)

In p u t: A n ad jacen cy labelling of an r -m in o G (th a t is, th e labe ls th e reo f) c re a te d using
our dynam ic schem e, an d a v e rte x v in Va- N o te th a t th e labels of G are on ly accessed as
required .

O u tp u t: A n ad jacency labeling of a g rap h G' (aga in , th e labels th e re o f) form ed by deleting
v from G , p rov id ing G' is an r-m ino . I f G' is n o t a n r-m in o , th e n th e o u tp u t in d ica tes as
such.

1 i f v is an iso la ted v ertex t h e n
2 free th e identifier o f {u}
3 e l s e C <— { C |C is a m ax im al clique co n ta in in g w}
4 f o r C G C d o
5 i f th e on ly m ax im al clique of G co n ta in in g C \ {(,’} is G t h e n
6 rem ove v from C
7 e l s e e lim ina te C
8 delete v an d free its iden tifier

F igu re 5.2: T h e re labe lle r D e l e t e V e r t e x w hich re la b e ls an r-m in o w hen a v e rte x is deleted

th e m ax im al clique, as well as th e index of th e co rrespond ing .cl en try . C onsequently , for

each e n try v .c l i .n u m in C, we assum e th a t we also re ta in a reference to i.

For each m axim al clique C of C, the clique C ' = C \ {u} is exam ined to determ ine if it

is m axim al in G '. W here X denotes the neighbourhood of v in G, |C | < |A j -I- 1 and C'

can be determ ined in 0 (|C |) G 0 (|X |) tim e, by traversing C. Specifically, C ' is m axim al in

G' if and only if the only m axim al clique of G containing C' is C, which is to say th a t the

set A = f lc 'e c ' ^ c' \ ^ emPty- Each set Cc< \ C can be determ ined in Q(c'.cin) G O (r),

so A can be determ ined in 0 (^ c'eC ' c' ■c*n) e x -c*n) G 0 (r |X |) tim e, as per our

discussion in Section 5.1.1.

If C ' is m ax im al in G ', th e n D e l e t e V e r t e x m ere ly rem oves v from G by rem oving

v from th e c ircu lar doub ly linked lis t o f vertices in G , e lim ina ting th e .cl e n try of v th a t

co rresponds to G, an d decrem enting th e v.cin c o u n te r b y one. T h is rem oval of v from G can

be done in 0 (1) tim e. O n th e o th e r hand , if C ' is n o t m ax im al in G' th e n D e l e t e V e r t e x

e lim inates G by travers ing G to decrease th e .cin coun ters an d delete th e co rresponding

.cl en tries, th e n freeing th e identifier o f G for fu tu re use. T h is e lim ina tion of G takes

©(IC'D G 0 (|V |) tim e.

O nce all of th e en tries o f C have been exam ined , D e l e t e V e r t e x deletes v an d frees

its iden tifier for fu tu re use. So far, D e l e t e V e r t e x has tak en O (v.cin ■ ’}Z x € X x -c^n) e

0 (r 2 |V |) tim e, w here 0 ([V |) labels have been accessed. T hese 0 (|V |) v ertex labels require

Q(v.cin + x -cin) b its , so th e ru n n in g tim e of D e l e t e V e r t e x is po lynom ial in th e

size of i ts inpu ts .

If r G 0 (1) , th e n D e l e t e V e r t e x is e rro r-d e tec tin g because th e class is hered itary .

H owever, if r is a s tr ic tly increasing function of n , th e n it is possible th a t th e deletion of v

59

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

m ight cause another vertex to be in m ore th a n r „ _ i m axim al cliques.

P r o p o s it io n 5.2 The modification excess and modification locality of D e l e t e V e r t e x are

zero.

P ro o f. F irst, observe th a t the set of vertices whose neighbourhoods change is X U {v}. If

the label of a vertex x is modified, th en x belongs to some m axim al clique containing v.

T h a t is, x £ X U {u}. Therefore, th e set of vertices w ith modified labels is a subset of the

set of vertices whose neighbourhoods change, giving the desired result. □

A d d in g a v er tex .

Consider the following lem m a which describes how the addition of a vertex affects the

m axim al cliques in th e graph.

L em m a 5.3 Consider a graph G ' form ed by adding a vertex v to a graph G, where X

denotes the neighbourhood o fv . Let I be the set o f cliques { C n X \ C is a maximal clique of

G}. The set o f maximal cliques of G' can be partitioned as { /U { u } |/ is a maximal element

o fT } U {CIC is a maximal clique o f G and C ^ X } .

P ro o f. Consider a set of th e form I U {v}, where I is a m axim al element of I , and consider

a set G, where G is a m axim al clique of G and C % X . By definition, v £ I U {)/}, however,

v is no t a vertex of G; therefore, v C. Consequently, the two sets are disjoint.

Since I is a clique of G, where I C X , I U {v} is a clique of G '. If /U { u } is no t a m axim al

clique of G ', then there exists some clique C* of G' for which I U { v } C G*. Since v £ C*

and G* is a clique in G ', we know th a t C* \ {u} C X and I C C* \ {V}, which contradicts

the m axim ality of I in X. Therefore, I U {V} is a m axim al clique of G'.

Since G is a clique in G, it is also a clique in G '. If G is not a m axim al clique of G ', then

there exists some clique G* of G' for which G C G*. However, C ^ I , therefore, G* % X .

If G* — {«}, then G = 0, which is a contradiction. On the other hand, if G* {i>}, then

G* <2 X gives v ef C*, as C* is a clique. Since v 0 C*, C* is also a clique in G, which

contradicts the m axim ality of C in G. Therefore, C is a maximal clique of G '.

Having shown th a t the described sets are disjoint, and th a t their m em bers are m axim al

cliques of G', it rem ains to show th a t these sets contain all the m axim al cliques of G '.

Consider a maximal clique Go of G '. If v Go, then Go is m axim al in G. Moreover,

Go % X , otherwise, the existence of th e clique Go U {«} in G ' contradicts the m axim ality of

G0 in G '.

On the o ther hand, if v £ Co, consider th e clique Iq = Go \ {v} of G. Since Iq C X , there

m ust be some maximal element I*, of X, th a t contains Jo- If Iq C I*, then Go = Iq U { v } C

I* U {«}, contradicting the m axim ality of Go in G '. Therefore, Iq is a m axim al elem ent of

X, as desired. □

60

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Lem m a 5.3, and its proof, suggest th e design of our relabeller, A d d V e r t e x , as presented

in Figure 5.3. Specifically, th e m axim al cliques in G' of the form (C H X) U {v}, w here C

is a maximal clique of G and C C X , are achieved by adding v to C. O n the o ther hand,

those m axim al cliques of th e form (C fl X) U {u}, where C is a m axim al clique of G and

C 2 A , are achieved by creating an entirely new m axim al clique. B y creating new m axim al

cliques in these situations, we carry forward all those m axim al cliques of th e form C, where

C is a m axim al clique of G and C % X .

The relabeller, A d d V e r t e x , first establishes the new vertex v. I t does th is in 0 (1)

tim e by assigning an identifier to v and setting v.cin to 0. If X = 0, th en v is an isolated

vertex; therefore, the only new m axim al clique in G' is {u}. How A d d V e r t e x creates new

m axim al cliques is discussed shortly.

Providing I / ® , A d d V e r t e x first obtains C = Ux e xCx> the set of m axim al cliques th a t

contain some m em ber of X . The set C contains no more th an X X ex x -c m entries. Since

x .cin < r, J 2 x e x x -c ^ n ^ r l ^ l - Moreover, C can be determ ined in. © (X X e x x -c i n) £ © (r l^ 1)

tim e using a reciprocal pointer technique like th a t presented in Section 5.1.1. Recall th a t to

efficiently ex trac t inform ation about a m axim al clique from the circular doubly linked list of

its vertices we m ust know the identifier of some vertex th a t belongs to th e m axim al clique,

as well as the index of the corresponding .cl entry. Consequently, for each en try x .c l i .num

in C, we assume th a t we also re ta in a reference to x and i.

For each m axim al clique C in C, we en terta in the possibility of C ' = C fl X being a

m axim al elem ent of th e set J , seen in Lem m a 5.3. As discussed in Section 5.1.1, C fl X can

be com puted in 0 (|C | + |X |) tim e, however, \C\ could be as large as n; as such, we prefer

to determ ine C n X in @ (XXex x -&n) £ 0 (r |AF|) tim e by searching for the identifier of C

in the .n u m entries of each element of X . If C ' is a subclique of some m axim al clique C*

rem aining in C (observe th a t A d d V e r t e x removes C from C when it is selected), th en we

do nothing as C* fl X will present itself later. Specifically, if C ' C C* fl X , then C ' is not

a m axim al elem ent of X; otherwise, if C ' = C* fl X , then we avoid possible duplication of

m axim al cliques. Similarly, if C 1 is a subclique of some m axim al clique C* in V , the set of

m axim al cliques D for which (D fl V) U {v} has been made a m axim al clique of G ', then

C' C C* fl X (given th a t C* is selected from C before C ', the addition of C* to T> was

contingent on C* fl X % C').

The clique C ' is a subclique of some m axim al clique rem aining in C U T> if and only if

(n c/6c 'C c ') H (C U P) ,£ 0 . Since no vertex is contained in more th a n r m axim al cliques,

fV e C 'C c ' can be com puted in Q { ^ 2 c, eC , c’.cin) G 0 (X ^ ie x x -c^n) £ © (H ^ l) £ 0 (t- |JV|)

time. In tu rn , the condition (rV gc'C c') fl (C U V) ^ 0 can be checked in 0 (X X g x x -c in) e

0 (r |X |) tim e, as \T>\ < \C\ < X z e x x -d n < r |V j.

61

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

A d d V e r t e x (G , X)

Input: An adjacency labelling of an r-m ino G (th a t is, the labels thereof) created using
our dynam ic scheme, and a subset X of Vq - N ote th a t the labels of G are only accessed as
required.

O utput: Let G' be the graph formed by adding a new vertex v to G, where v is adjacent to
exactly those vertices in X . Providing G' is an r-m ino, th e o u tp u t is an adjacency labelling
of G' (again, the labels thereof). If G' is not an r-m ino, the o u tp u t indicates as such.

1 create a new vertex v
2 i f X = 0 th en
3 make a new m axim al clique {w}
4 e lse C <— {C \C is a m axim al clique containing a vertex of X }
5 V <— 0
6 for C £ C do
7 C ^ - C \ { C }
8 if C fl X is not contained in any of the m axim al cliques in C or V th e n
9 V ^ V \ J { C }

10 if C n X = C th e n
11 add v to C
12 e lse make a new m axim al clique (C f l X) U {v}

Figure 5.3: The relabeller A d d V e r t e x which relabels an r-m ino w hen a vertex is added

Now, if C' is not contained in any m axim al clique of C U XL th en we make a m axim al

clique of C' U {u}. Exactly how we m ake a m axim al clique of C ' U {u} depends on w hether

C ' = C , th a t is, whether C C X ; note th a t th is condition can be checked while com puting

C ' . If O' = C , then we simply add v to C, as C will no longer be m axim al in G '. Specifically,

A d d V e r t e x inserts v into the circular doubly linked list for C, th en increases th e value

of v.cin by 1 . This can be done in 0 (1) tim e. O therwise, if C ' ^ C, then we form a new

m axim al clique, C"U{u}, as C will continue to be m axim al in G '. Specifically, A d d V e r t e x

increases the value of the . t in counter of each of the vertices in C ' U {v} by one, establishes

a circular doubly linked list of th e vertices in C' U {u}, and creates a new .cl en try for

each m em ber of C' U {u} while establishing the circular doubly linked list; forming this

new m axim al clique takes 0 (|C '|) £ 0 (|X |) tim e. W henever a . t in counter is increased,

we check th a t its value is no greater th a n r. Therefore, A d d V e r t e x is error-detecting,

providing r £ f l(l) .

Having carefully examined A d d V e r t e x , we observe th a t the algorithm runs in

x .c in)2) £ 0 (r 2]X |2) £ O (r2n 2) tim e, where 0 (|X |) vertex labels have been

accessed. These 0 (j X|) vertex labels require Q (v.cin + J2xe x x -c^n) ^ s ' so running

tim e of A d d V e r t e x is polynomial in the size of its input.

P r o p o s i t i o n 5.4 The modification excess and modification locality o f A d d V e r t e x are

zero.

62

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

P ro o f. First, observe th a t th e set of vertices whose neighbourhoods change is X U {«}. If

the label of a vertex x is modified, th en x belongs to some m axim al clique containing v.

T h a t is, x £ X U {v}. Therefore, th e set of vertices w ith modified labels is a subset of the

set of vertices whose neighbourhoods change, giving the desired result. □

Given Corollary 3.8, A ddV e r t e x gives polynomial tim e recognition for r-m inoes.

T h eo rem 5.5 For any graph G on n vertices, we can determine i f G is an r-m ino in

0 (r2n 3) time.

Furtherm ore, observe th a t we can use A d dV e r t e x , ju s t as we did in th e proof of Theorem

3.6, to create a 0 (r 2n 3) tim e m arker for our dynam ic scheme.

D e le t in g an ed g e .

Consider the following lemma, which describes how the deletion of an edge affects the

m axim al cliques in the graph.

L em m a 5.6 Consider a graph G' formed by deleting an edge uv from a graph G. Let £ be

the set of cliques {C jC is a maximal clique o f G, and v £ C or u 2 C }. The set of m.aximal

cliques of G' can be partitioned as £ U { C \ {u) \C is a maximal clique o f G, u , v £ C, and

C '\{u } <2 L, fo r all L £ £ } U { G \{ u } |C is a maximal clique o fG , u , v £ C, and G \{ u } 2 L,

fo r all L £ £} .

A t the heart of Lem m a 5.6 is th e fact th a t the m axim al cliques of G th a t do not contain

bo th u and v will continue to be m axim al in G". However, for each m axim al clique C of

G containing both u and v, we m ust consider the possibility of C \ {u} or C \ {u} being

contained in some other m axim al clique of £ .

P ro o f . Consider an elem ent L q of £ , a set of the form Cu \ {u}, w here Cu is a m axim al

clique of G, u, v £ Cu , and Cu \ {u} <2 L, for all L £ £ , and a set of th e form C \ {v}, where

Cv is a maximal clique of G, u , v £ Cv , and Cv \ {u} 2 L, for all L £ £ . By definition, for

all L £ £ , Cu \ {u}, Cv \ {i>} 2 L] moreover, v £ Cu \ {u} and u £ Cv \ {u}, so the three

sets are disjoint.

Since L q is a clique of G, it is also a clique of G '. If L q is not a m axim al clique of G ',

then there exists some clique C* of G' for which L q C C *. Since C* is a clique, a t least

one of u and v does not belong to C* as the edge uv does not belong to G '. Thereby, C*

is a clique in G, which contradicts th e m axim ality of L q in G. Therefore, L q is a m axim al

clique of G '.

Since Cu is a clique, so too is C u \ {u} in G '. If Cu \ {«} is not a m axim al clique of G',

then there exists some clique C* of G' for which Cu \ {u} C G*. Since C* is a clique, at

least one of u a n d v does not belong to C* as the edge uv does not belong to G'; thereby,

63

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

C* is also a clique of G. Consequently, Cu \ {u} C C* C J * , for some J * in J , which is a

contradiction. Therefore, C u \ {u} is a maximal clique of G ' . A similar argument gives tha t

Cv \ {u} is a maximal clique of G ' .

Having shown th a t the described sets are disjoint, and th a t their members are maximal

cliques of G', it remains to show th a t these sets contain all the maximal cliques of G '.

Consider a maximal clique Co of G ' . If u ,v ^ Co, then Co £ £. Similarly, if u £ Co,

v 0 Co, and Co <2 X v , then Co £ £ .

If u £ Co, v Co, and Co C X v , then Co U {w} is a maximal clique of G . Moreover,

if there exists some L* in £ , such that Co C L * , then Co C L * , as L* <2 X v (otherwise,

the clique L* U {u} would contradict the maximality of L* in G). Yet, L* is a clique of G',

thereby, Co C L* contradicts the maximality of Co in G ' . Therefore, for all L in £, Co (2 A,

as desired.

When v £ Co and u ^ Co, we can use similar arguments to show th a t Co has one of the

desired forms. □

Lemma 5.6, and its proof, suggest the design of our relabeller, D e l e teE dge , as pre­

sented in Figure 5.4. Just as Lemma 5.6 resembles Lemma 5.1, so too does D eleteE dge

resemble Del e teV ertex .

The relabeller, D e l e t e E d g e , first obtains C = Cu fl Cv , th e set of m axim al cliques

containing bo th u and v, where Cu and Cv can be determ ined in Q(u.cin) and Q(v.cin) time,

respectively. Since \CU \ = u.cin and \CV\ = v .c in , C can be determ ined in O (u.cin + v.cin) £

O (r) tim e. For each m axim al clique C of C, the cliques C'u = C \ {«} and C ' = C \ {u}

are exam ined to determ ine if they maximal in G '. L etting X denote th e intersection of

the neighbourhoods of u and v in G, |C | < |X | + 2 , so C'u and C'v can be determ ined in

0 (]C |) £ 0 (|.X j) tim e, by traversing C. For a £ { u ,v } , C'a is m axim al in G' if and only if

the set A a = flc 'eC ' (^c' \ C) is empty. As per our discussion in Section 5.1.1, A a can be

determ ined in 0 (J] c,6C, d .c in) £ 0 (^ xgX x.cin) £ 0 (r |Y |) time.

First, let us assume th a t exactly one of C \ {u} and C \ {v} is a maximal clique in G'\

without loss of generality, let the maximal clique be C \ {u}. We develop this maximal clique

by removing v from C, just as we did in D e le te V e r te x , using 0(1) time. As a second

possibility, consider if neither C \{ u) nor C \ {u} is a maximal clique in G ' . In this case, we

eliminate the maximal clique C, just as we did in D e le te V e r te x , using 0 (|C |) £ 0 (jA |)

time. Finally, if both C \ {n} and C \ {w} are both maximal in G', then we develop C \ {a}

by removing v from G, using 0(1) time; however, C \{ u } must be developed by establishing

a new maximal clique, just as we did in A d d V e rte x , requiring 0 (|C 4 |) £ 0 (|Y |) time.

Whenever a .cin counter is increased during the creation of the new maximal clique, we

check th a t its value is no greater than r. Thereby, D e l e teE dge is error-detecting. Since C

contains at most m in{u.cin, v.cin} maximal cliques, the to tal running time of D eleteE dge

64

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

D e l e t e E d g e (G , u , v)

Input: An adjacency labelling of an r-m ino G (th a t is, th e labels thereof) created using our
dynam ic scheme, and two distinct vertices u and v of Vq for which uv G Eg- Note th a t the
labels of G are accessed only as required.

O utpu t: An adjacency labeling of a graph G' (again, th e labels thereof) formed by deleting
the edge uv from G, providing G' is an r-m ino. If G' is no t an r-m ino, then the o u tp u t
indicates as such.

1 C <— {G \C is a m axim al clique containing bo th u and v}
2 f o r C G C d o
3 i f the only m axim al clique of G containing C \ {u} is C t h e n
4 remove v from C
5 i f the only m axim al clique of G containing C \ {it} is C t h e n
6 make a new m axim al clique of C \ {it}
7 e l s e i f the only m axim al clique of G containing C \ {«} is C t h e n
8 remove u from C
9 e l s e elim inate C

Figure 5.4: The relabeller D e l e t e E d g e which relabels an r-m ino when an edge is deleted

is 0 (m in {u.cin, v.cin} ■ J 2 x e x x -c^n) e 0 (r 2|.Xj), where 0 (|A j) labels are accessed. Given

th a t these labels require Q(u.cin + v.cin + Y h x e x x -Ĉ n) bits, the running time of D e l e -

t e E d g e is polynomial in the size of its input.

P r o p o s i t i o n 5 .7 The modification locality o f D e l e t e E d g e is one.

P r o o f. First, observe th a t the set of vertices whose neighbourhoods change is {it, v}. If the

label of a vertex x is modified, then x belongs to some m axim al clique of G containing u

and v, giving the desired result. □

A d d i n g a n e d g e .

Consider the following lemma, which describes how th e addition of an edge affects the

m axim al cliques in th e graph.

L e m m a 5.8 Consider a graph G' formed by adding an edge uv to a graph G . Let X denote

the neighbourhood of v in G' and let 1C be the set o f cliques {C PI X \ C is a maximal clique

of G and u G C }. The set of maximal cliques of G' can be partitioned a s { K U { v } \K is a

maximal element of K.} U {C jC is a maximal clique o f G, C % X , and C ^ {n}}.

P r o o f. Consider a set of the form K U {?>}, where K is a m axim al element of K., and

consider a set C , where C is a m axim al clique of G, C % X , and C ^ {u}. By definition,

u ,v G K U {v}; however, if it G C, then v $ C, as th e edge uv does not belong to G.

Therefore, the two sets are disjoint.

Since A is a clique of G , where K C X . K U {u} is a clique of G'. If K U {i;} is not a

m axim al clique of G', then there exists some clique C* of G' for which K U {v} C C *. Since

65

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

v G C* and G* is a clique in G ', we know th a t C* \ {w} C X and K C C* \ {u}, which

contradicts th e m axim ality of K in 1C. Therefore, K U {i;} is a m axim al clique of G '.

Since C is a clique in G, it is also a clique in G '. If C is not a m axim al clique of G ', then

there exists some clique C* of G' for which C C C*. However, C ^ X , therefore, G* <2 X .

I f C* = {v}, th en C = 0, which is a contradiction. O n the o ther hand, if C* ^ {u}, then

C* % X gives v 2 C* as C* is a clique. Since v 2 C*, C* is also a clique in G, which

contradicts th e m axim ality of C in G. Therefore, G is a m axim al clique of G '.

H a v in g sh o w n t h a t th e d e sc r ib e d s e ts a re d is jo in t, a n d t h a t th e i r m e m b e rs a re m a x im a l

c liq u es o f G', i t re m a in s to show t h a t th e s e s e ts c o n ta in all th e m a x im a l c liq u e s o f G '.

Consider a m axim al clique Go of G '. If u 0 Go or v £ Go, th en Go is m axim al in G.

Moreover, Go <2 X , otherwise, the existence of the clique Go U {i>} in G' contradicts the

m axim ality of Go in G '. Similarly, Go ^ {v}, otherwise, the existence of th e clique Go U {u}

in G' contradicts the m axim ality of Go in G '.

On th e o ther hand, if u , v G Go, consider th e clique Kq = Go \ {v} of G. Since Kq C X ,

there m ust be some m axim al elem ent K * , of 1C, th a t contains Kq. If Kq C K *, then

Go = Kq U {u} C K* U {v}, contradicting the m axim ality of Go in G '. Therefore, Kq is a

m axim al element of 1C, as desired. □

W hen forming a m axim al clique of G' th a t contains bo th u and v , we can view it as either

adding v to some clique containing u, or vice versa. In designing our relabeller, we have

chosen the former viewpoint. The relabeller, A d d E d g e , presented in F igure 5.5, closely

resembles A d d V e r t e x , ju s t as Lem m a 5.8 closely resembles Lem m a 5.3.

T he relabeller, A d d E d g e , first determ ines if v is an isolated vertex in G. If v is isolated,

then the algorithm elim inates the m axim al clique {i>}, as we will la ter include v in some

maxim al clique containing u. As discussed in Section 5.1.2, th is case can be identified and

addressed in 0 (1) tim e.

P ro v id in g v is n o t a n is o la te d v e r te x , A d d E d g e o b ta in s X , th e n e ig h b o u rh o o d o f v in

G '. T h e n e ig h b o u rh o o d o f v in G c a n b e d e te rm in e d b y tr a v e rs in g e a c h o f th e m a x im a l

c liq u es in Cv . S ince n o v e r te x in G b e lo n g s to m o re t h a n r m a x im a l c liq u es, w h e re th e size

o f th e la rg e s t m a x im a l c liq u e c o n ta in in g v is \X \ — 1 , th e n e ig h b o u rh o o d o f v in G ca n be

d e te rm in e d in Oiv.c in ■ |A |) G 0 (r |A |) t im e . B y a d d in g u to th e n e ig h b o u rh o o d o f v in G,

w e o b ta in X .

As well, A d d E d g e obtains C = Cu , the set of m axim al cliques containing u; again, for

each element u .c l i .num , we retain a reference to i. For each m axim al clique G in C, we

process the subclique C' = G n X as we did in A d d V e r t e x . In A d d V e r t e x , |C| < r\X \ ,

however, in A d d E d g e , \C\ — u.cin < r. Therefore, the running tim e of A d d E d g e is

O (u.cin ■ v.cin ■ |X |) G 0 (r 2 |X |) , where 0 (|A |) labels are accessed. Given th a t these labels

require Cl(u.cin + v.cin + J2 xex x -cin) bits, the running tim e of A d d E d g e is polynomial in

66

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

A d d E d g e (G ,u , u)

Input: A n adjacency labelling of an r-m ino G (th a t is, the labels thereof) created using our
dynam ic scheme, and two d istinct vertices u and v of Vq for which uv ^ E g - Note th a t the
labels of G are only accessed as required.

O utput: An adjacency labeling of a graph G' (again, the labels thereof) form ed by adding
the edge uv to G, providing G' is an r-m ino. If G' is no t an r-m ino, then th e o u tp u t indicates
as such.

1 if v is an isolated vertex (in G) th e n
2 elim inate th e m axim al clique {v}
3 X <— {x \x is a neighbour of v (in G ')}
4 C <— {G |G is a m axim al clique containing u}
5 P ^ 0
6 for G £ C do
7 C ^ - C \ { C)
8 i f G fl X is no t contained in any of th e m axim al cliques in C or P th en
9 P e - P U {G}

10 if G n X = C th e n
11 add v to C
12 e lse make a new m axim al clique (G fl A) U {u}

F ig u re 5.5: T h e re lab e lle r A d d E d g e w hich re lab e ls an r -m in o w hen an edge is added

the size of its input. Ju s t as we did in A d d V e r t e x , whenever a vertex is added to a new

m axim al clique we check th a t it does not belong to more th an r m axim al cliques. Therefore,

A d d E d g e is error-detecting.

P r o p o s it io n 5 .9 The modification locality o f A d d E d g e is one.

P ro o f. First, observe th a t the set of vertices whose neighbourhoods change is {u , u}. If the

label of a vertex x is modified, then x will belong to some m axim al clique of G ' containing

v, giving the desired result. □

5.2 T he d ynam ic schem e for r-b ics

The dynamic adjacency labelling scheme th a t we develop for r-bics will be very similar to

the one previously developed for r-minoes in Section 5.1. Before presenting our work on

r-bics we note tha t the class of r-minoes does not include the class of r-bics, and vice versa.

For example, K \ ^ is a 1-bic, but not a 1-mino, and K 3 is a 1-mino, but not a 1-bic.

5.2.1 V ertex labels and decoder

Like the dynamic scheme for r-minoes presented in Section 5.1, our dynamic adjacency

labelling scheme for r-bics uses graph substructures and circular doubly linked lists to dis­

tribute information about neighbourhoods across the vertices in the neighbourhoods. In

the case of r-bics, the im portant substructures are the maximal bicliques. As such, we use

67

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

the vertex labels to m ain tain a circular doubly linked list of the vertices in each maximal

biclique.

Given an r-bic on n vertices, each vertex is assigned a unique identifier, similarly, each

m axim al biclique is assigned a unique identifier. For simplicity, we refer to vertices and max­

imal bicliques by the ir identifiers. Given a vertex v, its label will also consist of th e following

information; exactly how th e m arker initially determ ines these labels will be addressed later.

v .b in: The num ber of m axim al bicliques in which v is contained.

v.bicl: An array of 4-tuples w ith an en try for each m axim al biclique in which v is contained.

Each m em ber v.ck is a 4-tuple of the form (num.,part, n x ,p r e v), as follows, where the

index i ranges from 1 to v.bin.

• num. is the unique identifier assigned to th e m axim al biclique.

• part is a value, either 0 or 1 , used to indicate th e p a rt of the b ipartition to which

v belongs.

• nx is a pair (id, index), where id is the identifier of the next vertex after v in the

circular doubly linked list of the vertices in m axim al biclique v.bicli.num, and

index is th e value j for which id .b iclj.num = v.bicli.num.

• prev is a pair (id, index), where id is th e identifier of the vertex before v in the

circular doubly linked list of the vertices in m axim al biclique v.bicli.num, and

index is th e value j for which id .b iclj .num = v.bicli.num.

In particular, the label of a vertex is (u: v.bin; v.bicl) as illustrated in Figure 5.6.

Given the labels of two vertices, iq and rq, the decoder can determ ine the adjacency of

iq and V2 by com paring the .n u m and .part entries of v\.bicl and rq -bicl to see if the vertices

belong to distinct p a rts of some common m axim al biclique. To th is effect, let Bv denote

{v.b iclj .num \l < j < v.bin}, the set of m axim al bicliques containing v, and, for i £ {0 , 1},

let B lv denote {v .b ic lj .num \l < j < v.bin, v .b id v part = i}, the set of m axim al bicliques

containing v, where v belongs to the i th p a rt of th e b ipartition . Clearly, and B * partition

Bv , where Bv = v.bin.

(a : 4; [(1,0. (6. 1), (d, 1)), (2,1, (6,2), (/ , 2)), (3,0, (c, 1), (/ , 3)). (4.0. (<■. 2). (c, 2))])

(b : 3; [(1.1, (/ , 1), [a, 1)), (2,0, (e, 1), (a, 2)), (5,0, (c,3), (c, 3))])

(c. : 3; [(3.1. (rf,2), (a, 3)), (4, 1, (a ,4), (/ , 4)), (5,1, (6,3), (6.3))])

(d : 3: [(1,1, («, 1), (/, 1)), (3,1, (/ , 3), (c, 1)), (6 ,1, (e, 3), (e. 3))|)

(e : 3; [(2, 0, (/ . 2), (6, 2)), (4,1, (/ , 4), (a, 4)), (6,0, (d, 3), (d. 3))])

(/ : 4; [(1. 1, (d. 1). (6,1)), (2,0, (a, 2), (e, 1)), (3,1, (a, 3). (d. 2)). (4.!.(,-. 2). (e. 2))])

Figure 5.6: A labelling of a 4-bic obtained using our labelling scheme

68

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

For any vertex v, B v , £>°, and B \ , can be determ ined sim ultaneously in Q(v.bin) E 0 (r)

time. Therefore, the adjacency of two vertices v\ and v2 can be determ ined in 0 (v \ .b in +

V2 -bin) E 0 (r) tim e by testing the condition (B ^ fl B„2) U (B ^ fl £?°2) =/= 0, using the

reciprocal pointer technique described in Section 5.1.1.

Using an approach identical to th a t seen in Section 5.1.1 for r-m inoes, we are able to

traverse the circular doubly linked list of vertices in a m axim al biclique B in 0 (|I? |) tim e

(again, we will say th a t we traverse B , although we really m ean th a t we traverse th e circular

doubly linked list of vertices in B). W hile traversing B , we are also able to determ ine Bi,

the vertices of B belonging to p a rt i, where i £ {0,1}. As well, we can use th e approach

seen in Section 5.1.1 to m ain tain v.bicl as a contiguous array of v.bin entries in 0 (1) time.

If s tr ing denotes the num ber of b its required to represent s tr ing , then the size of the

label of v is

v.cin
v + v .b in + (v .b ic li .num + v.bicli.part+

i= 1

v.bicli.prev.id + v.bicli.prev.index + v.bicli.nx.id + v .b ic l i .n x . in d e x j .

Recall an earlier discussion in Section 3.1.3, where we observed th a t the dynam ic natu re of

the graph m ight prevent the vertex and biclique identifiers from being space-optim al. As

such, let the largest identifier of a vertex in the graph be L \ , and let th e largest identi­

fier of a m axim al biclique be L 2. Thereby, v, v.bicli.prev.id, v.bicli.nx.id £ O (lo g L i) and

v.bicli.num £ 0 (logL 2). Moreover, each vertex is in at m ost r m axim al bicliques; there­

fore, v.bin, v.bicli.prev.index, v .bicli .nx.index < r, and the label of v uses 0 (logL i + lo g r +

r lo g Z /2 + t lo g r + r log L \) £ 0 (r lo g L i + rlog-L 2) bits. If L i and L 2 are polynom ial in

n, which we s ta ted as an assum ption in Section 3.1.3, then the label size of v reduces to

O (r lo g n) . In tu rn , the graph is represented using O (rn lo g n) bits.

Observe th a t a 1-bic is a com plete b ipartite graph. Given th a t th e num ber of labelled

and unlabelled com plete b ipartite graphs on n vertices are 2n_1 and \ IL̂ \ , respectively,

our dynam ic scheme is not space optim al for r = 1 . As such, we im plicitly assume th a t

r > 2 .

Using an argum ent sim ilar to th a t found in Section 4.2.1, we can show th a t, for r > 2 ,

there are 2n lnlogn) labelled r-bics on n vertices, thereby, our dynam ic scheme for r-bics is

space-optim al when r £ 0 (1) . Consider a graph consisting of a com plete b ipartite subgraph

on n — 1 vertices and one vertex v adjacent to each of the n — 1 vertices in the complete

b ipartite subgraph. There are n2" - 2 £ 2n (n l° s ri) such graphs, each of which is a 2-bic. Yet,

for r ' > r , an r-bic is also an r'-b ic; thereby, there are 2n (nl°g«) labelled r-bics on n vertices.

For r £ w(l) , we cannot offer comment on optim ality as we have no additional lower

69

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

bounds. We also cannot offer com m ent on th e optim ality in the unlabelled case, when

r G 0 (1) , as the 2n (n l°g") lower bound has no t yet been established on th e num ber of

unlabelled r-bics on n vertices.

5.2.2 R elabeller

Let us now examine the relabellers included in our dynam ic scheme. As w ith th e dynam ic

schemes presented for line graphs and r-m inoes, detailed pseudocode appears in A ppendix

C. In the following discussion, G is th e original graph and G' is the changed graph.

D e le t in g a v e r te x from th e grap h

Consider the following lemma, which describes how the deletion of a vertex affects the

m axim al bicliques in the graph.

L em m a 5.10 Consider a graph G' form ed by deleting a vertex v from a graph G, where X

denotes the neighbourhood o fv in G. Let J be the set o f bicliques { B \B is a maximal biclique

of G and v $ B } . The set of maximal bicliques o f G ' can be partitioned as i 7 U { B \ {v} \B

is a maximal biclique o f G , v € B , and B \ {u} <2 J , fo r all J G J } .

Lem m a 5.10, whose proof is identical to th a t of Lem m a 5.1, suggests the design of our

relabeller, D e l e t e V e r t e x , as presented in F igure 5.7. As expected, D e l e t e V e r t e x is

almost identical to its sister algorithm presented in Section 5.2.

Despite the ir sim ilarities, these two sister algorithm s have some differences. Observe

th a t every vertex in Vq belongs to some m axim al biclique containing v. Therefore, we

are able to determ ine Vq while determ ining if the only m axim al biclique of G containing

B \ {i>} is B , for each biclique B G B. Consequently, if r G w(l) , then we can ensure th a t

D e l e t e V e r t e x is error-detecting by checking all vertex labels to confirm th a t each vertex

belongs to a t m ost r m axim al cliques. This requires 0 (n) time, where n < ^ 2 B3v \B\.

In th e case of r-m inoes, the size of each m axim al clique containing v was bounded

by |V |, thereby leading to a running tim e of O (v.cin ■ Y l x e x x -c'in) € (0 (r 2 |V |) . In

the case of r-bics, the size of each m axim al biclique containing v is bounded only by B ,

the size of the largest maximal biclique in G. As such, for r-bics, D e l e t e V e r t e x runs

in O (v.bin ■ rn a x{Y fbtzB b.bin}) G 0 (r 2B) tim e. Observe th a t D e l e t e V e r t e x accesses

0 (m a x { |B |}) labels, which require Ll(Y^,B3v beB b.bin) b its in to ta l. Therefore, the running
B 3 v ’

tim e of D e l e t e V e r t e x is po lynom ial in th e size of its inpu ts .

Furtherm ore, in the case of r-bics, the m odification locality of D e l e t e V e r t e x is un­

bounded, as it is possible th a t some m axim al bicliques of G containing v m ay have been

independent sets.

70

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

D e l e t e V e r t e x (G , v)

Input: An adjacency labelling of an r-b ic G (th a t is, the labels thereof) created using our
dynamic scheme, and a vertex v in Vq - N ote th a t the labels of G are only accessed as
required.

O utput: An adjacency labeling of a graph G' (again, the labels thereof) form ed by deleting
v from G, providing G' is an r-bic. If G' is no t an r-bic, then the o u tp u t indicates as such.

1 B <— { B \B is a m axim al biclique containing v}
2 fo r B £ B d o
3 if the only m axim al biclique of G containing B \ {w} is B t h e n
4 remove v from B
5 e lse elim inate B
6 delete v and free its identifier
7 if r G w (l) t h e n
8 if some vertex belongs to more th a n r m axim al bicliques t h e n
9 e r r o r no longer an r-m ino

Figure 5.7: The relabeller D e l e t e V e r t e x which relabels an r-b ic when a vertex is deleted

A d d in g a v e r te x .

Consider a vertex v which is to be added to a graph G, where X denotes th e neighbourhood

of v. For each biclique B of G, let {Pq , P f \ be the partition of B defined by b G P f if and

only i ib £ X and b £ B i, or b fe' X and b £ B t . By adding v to the subset of B t belonging to

P [‘‘. we obtain a biclique of the new graph. The m axim ality of such bicliques is addressed

by th e following lem m a, which describes how the addition of a vertex affects the m axim al

bicliques in th e graph.

L e m m a 5.11 Consider a graph G' formed by adding a vertex v to a graph G, where X

denotes the neighbourhood of v. Let X be the set of bicliques {P q , P f \ B is a maximal

biclique of G}. The set o f maximal bicliques o f G' can be partitioned as { I U {u} |J is a

maximal element o f I } U { B \B is a maximal biclique o f G and P ^ , P f yl B } .

Specifically, the m axim al bicliques in G ' of the form P P U {v}, where P P = B , are

achieved by adding v to P P . On the o ther hand, those m axim al bicliques of the form

P f U {u}, where P P ŷ B , are achieved by creating an entirely new m axim al biclique. By

creating new m axim al bicliques in these situations, we carry forward all those m axim al

bicliques of the form B , where B is a m axim al biclique of G and Pq , P f ŷ B .

P ro o f . Consider a set of the form I U {v}, where I is a m axim al elem ent of X, and consider

a set of the form B , where B is a m axim al biclique of G and Pq , P f yl B . By definition,

v £ I U {u}, however, v is not a vertex of G. Therefore, v ^ B . Consequently, the two sets

of the claimed partition are disjoint.

Since I is a biclique of G, where, w ithout loss of generality, I = Pq , we know th a t I U {w}

is a biclique of G '. If I U {t>} is not a m axim al biclique of G ', then there exists some biclique

71

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

B* of G' for which I U {u} C B*. Since v G B*, we know th a t I C B* \ {v} and, w ithout

loss of generality, B* \ {v} = Pq , which contradicts the m axim ality of I in T. Therefore,

I U {v} is a m axim al biclique of G '.

Since B is a biclique in G, it is also a biclique in G '. If B is not a m axim al biclique

of G ', then there exists some biclique B* of G' for which B C B * . B ut P f , P f f B , so

Pq * , P f3’ B *, which gives v g B*, as B* is a biclique. Since v ^ B * , B* is also a biclique

in G, which contradicts th e m axim ality of B in G. Therefore, B is a m axim al biclique of

G'.

Having shown th a t th e described sets are disjoint, and th a t the ir m em bers are maximal

bicliques of G ', it rem ains to show th a t these sets contain all th e m axim al bicliques of G '.

Consider a m axim al biclique B ' of G '. If v ^ B ' , th en B ' is m axim al in G. More­

over, Pq , P f / B !, otherwise, the existence of the biclique B ' U {u} in G ' contradicts the

m axim ality of B ' in G".

O n the o ther hand, if v G B ', consider th e biclique I ' = B ' \ {u} of G. Since I ' G

[P f ' , P { }, there m ust be some m axim al elem ent /* , of X, th a t contains I 1. If I ' C /* ,

then B ' — I ' U {v} C I* U {u}, contradicting th e m axim ality of B ' in G '. Therefore, I ' is a

m axim al element of I , as desired. □

Lem m a 5.11, and its proof, suggest the design of our relabeller, A d d V e r te x , as pre­

sented in Figure 5.8. Perhaps the greater challenge in designing A d d V e r te x lies in how to

identify the m axim al bicliques of G th a t do not contain any vertices of V , as we will need

to determ ine these bicliques via th e vertices of X .

To improve the running tim e of our algorithm , we insist th a t A d d V e r te x represents X ,

the set of vertices to which v is m ade adjacent, in th e same m anner th a t S i was represented

in our discussion of the reciprocal pointer technique found in Section 5.1.1. This one-time

effort requires 0 (|X |) tim e, bu t will pay dividends la ter on.

T he relabeller, A d d V e r te x , first establishes the new vertex v. I t does th is in 0 (1) time

by assigning an identifier to v and setting v .bm to 0. If G = 0, then V c = {v}, therefore, the

only new m axim al biclique in G ' is {u}. How A d d V e r te x creates new m axim al bicliques

is discussed shortly.

Providing G ^ 0, A d d V e r te x first obtains B = Uu€yGBu , th e set of m axim al bicliques

of G. Let x* be a mem ber of X . Since every vertex in Vg belongs to some maximal

biclique containing x*, we can traverse each of the x*.bin bicliques of x* to determ ine Vg -

W here B is the size of the largest biclique in G, determ ining Vq in th is m anner takes

O {x*.bin -B) G O (rB) time.

Each Bu can be determ ined in O (u.bin) G O (r) tim e, where \BU\ < r. Therefore, B con­

ta ins no more th an Y luevG u - ^ n — r n entries, and can be determ ined in 0 (^ ngl/G u.bin) G

O (rn) tim e. Recall th a t, to efficiently ex tract inform ation abou t a m axim al biclique from

72

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

A d d V e r t e x (G, X)

Input: An adjacency labelling of an r-b ic G (th a t is, the labels thereof) created using our
dynam ic scheme and a subset X of Vq - N ote th a t th e labels of G are accessed only as
required.

O utput: Let G' be the graph form ed by adding a new vertex v to G, where v is adjacent to
exactly those vertices in X . Providing G' is an r-bic, the ou tp u t is an adjacency labelling
of G' (again, the labels thereof). If G' is no t an r-bic, the ou tpu t indicates as such.

1 c rea te a new vertex v
2 i f G = 0 th e n
3 m ake a new m ax im al b ic lique {u}
4 e l s e B <— {B \B is a m ax im a l b ic lique of G}
5
6 fo r B e B d o
7 B ± - B \ { B }
8 fo r i G {0 , 1} d o
9 i f Pp‘ is n o t co n ta in e d in an y of th e m axim al b ic liques in 6 o r P t h e n

10 i f P f = B t h e n
11 ad d v to B
12 e ls e m ake a new m ax im a l biclique P P U {?;}
13 i f e ith e r Pq or P f w as n o t co n ta in ed in any of th e m ax im a l b icliques in B

or V t h e n
14 V ^ V U { B}
15 i f r € o (l) t h e n
16 i f som e vertex belongs to m ore th a n r m axim al cliques t h e n

Figure 5.8: The relabeller A d d V e r t e x which relabels an r-bic when a vertex is added

73

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

the circular doubly linked list of its vertices, we m ust know th e identifier of some vertex

th a t belongs to th e m axim al biclique, as well as the index of th e corresponding .bid entry.

Consequently, for each en try u .b id i .n u m in B, we assum e th a t we also re ta in a reference to

u and i.

Just as we insisted th a t X be represented w ith reciprocal pointers, we also insist th a t B

be represented w ith reciprocal pointers.The only difference between these reciprocal pointer

representations is th a t the representation for B will need to be m aintained dynamically. As

a biclique B is chosen from B we remove it from B\ th is removal from th e reciprocal pointer

representation takes 0 (1) tim e.

For each m axim al biclique B in B, we enterta in th e possibility of P 8 and P 8 being

maximal elements of th e set X, seen in Lem m a 5.11. For each elem ent b in B , the m em bership

of b in X and the value of b.b id j .par t , where b .b id j .num = B , determ ine w hether b belongs

to Pq or P 8 . Given th e representation of X w ith reciprocal pointers, determ ining the

membership of b in X requires 0 (1) time; moreover, th e index j for which b .b id j .n u m = B

is known from th e previous vertex in the circular doubly linked list abou t B . Therefore,

traversing B to determ ine P ,8 and P 8 requires 0 (|B |) tim e.

If P 8 is contained in some m axim al biclique B* rem aining in B, then we do nothing as

P p will present itself later. Specifically, if P 8 C P p , th en P 8 is no t a m axim al elem ent of

X, and if P 8 = P 8 , th en we avoid possible duplication of m axim al bicliques. Similarly, if

P 8 is contained in some m axim al clique B* in T>, the set of bicliques D for which D U {v}

has been m ade a m axim al biclique of G ' , then P 8 C B* (given th a t B* is selected from B

before B , the addition of B* to V was contingent on B* $7 P 8)-

The biclique P 8 is contained in some maximal biclique in B or P if and only if DuePB (Bufl

(B U V)) ^ 0. Since \BU\ = u.bin, and B and V are represented using reciprocal pointers,

each set Bu fl (B U V) can be determ ined in Q(u.bin) G 0 (r) tim e. In tu rn , the condition

flu £ P b (B u n (B n V)) ^ 0 can be checked in 0 (u.bin - |P 8 |) £ 0 (r |P 8 |) G 0 (r |B |) time

using the reciprocal pointer technique discussed in Section 5.1.1.

Now if PtB is not contained in any maximal bicliques of B U T>, th en we make a m axim al

biclique of P 8 U {u}. E xactly how we make a m axim al biclique of P 8 U {u} depends

on whether P 8 = B \ note th a t th is condition can be checked while com puting P 8 . If

P 8 = B , then we sim ply add v to B , as B will no longer be m axim al in G ' . Specifically,

A d d V e r t e x inserts v in to the circular doubly linked list for B such th a t the .part value

of the corresponding v .b id en try is i, then increases the value of v.bin by one. This can be

done in 0 (1) time. O therw ise, if P 8 ^ B , then we form a new m axim al biclique, P 8 U {v},

as B will continue to be m axim al in G ' . Specifically, A d d V e r t e x increases the value of

the .bin counter of each of th e vertices in P 8 U {v} by one, establishes a circular doubly

linked list of the vertices in P 8 U {u}, and creates a new .bid en try for each mem ber of

74

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

P P U {u} (m irroring the .part values seen in B , and setting the appropriate .part value of v

to i) while establishing th e circular doubly linked list. Form ing th is new m axim al biclique

takes 0 (\P ^ \) £ 0 (|B |) tim e.

W henever a .bin counter is increased, we check th a t its value is no greater th an r , thereby,

A d d V e r t e x is error-detecting. Moreover, if r £ o (l) , th en our previous determ ination of

Vq can be used to check all labels to ensure th a t each vertex belongs to a t m ost r m axim al

cliques. The tim e required to do th is is 0 (n) .

The to ta l running tim e of A d d V e r t e x is O {x* .bin ■ B • J2ueva u - ^ n) e 0 (r 2n B) £

O (r2n 2). Given th a t A d d V e r t e x accesses the entire labelling, its running tim e is polyno­

m ial in the size of its input.

From Corollary 3.8, we see th a t A d d V e r t e x gives polynom ial tim e recognition for r-

bics.

T h e o r e m 5 .12 For any graph G o n n vertices, we can determine i f G is an r-bic in O (r2n 3)

time.

Furtherm ore, observe th a t we can use A d d V e r t e x , ju s t as we did in the proof of Theorem

3.6, to create a 0 (r 2n 3) tim e m arker for our dynam ic scheme.

D e le t in g a n e d g e .

Consider the following lem m a, which describes how th e deletion of an edge affects the

m axim al bicliques in the graph.

L e m m a 5.13 Consider a graph G' formed by deleting an edge uv from a graph G, where

Vq {w,u}. Let X u and X v denote the neighbourhoods o f u and v in G ', respectively,

and let W denote the vertices o f G fo r which w £ W i f and only i f w £ X u w £ X v .

Furthermore, let C\ be { B \B is a maximal biclique o f G, B W , and |{u, v} fl B\ = 1},

let £ 2 be { B \B is a maximal biclique of G and u , v 0 B } , and let 1C be the set o f bicliques

{(B \ {u})fl W \B is a maximal biclique o f G, u £ B } .

The set of maximal bicliques o f G' can be partitioned as £ i U £ 2 U{.B\{u}|.B is a m.aximal

biclique of G, u . v £ B , B {m,u}, and B \ {u} (f B \ , fo r all maximal bicliques B \ of G,

B \ 7 ̂ B } U {B \ is a maximal biclique of G, u , v € B , B { u ,v } , and B \ {u} B \ ,

fo r all maximal bicliques B \ of G, B \ 7 ̂ B } U { K U { v } \K is a maximal element o f X } .

Unlike Lemma 5.1 which tells us th a t m axim al cliques can only be destroyed when an

vertex is deleted. Lem m a 5.10 indicates th a t the deletion of an edge can cause bicliques to be

b o th created and destroyed. As such, D e l e t e E d g e has the flavour of both A d d V e r t e x ,

an algorithm in which m axim al bicliques get created, and D e l e t e V e r t e x , an algorithm in

which m axim al bicliques get destroyed.

In Lemma 5.10, C\ and £ 2 are the sets of m axim al bicliques th a t are unaltered.

75

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

For any m axim al biclique B of G containing u and v, where B ^ {u ,u} , we need to

consider w hether B \ {it} and B \ {u} will continue to be maximal in G ' . Specifically, if they

are properly contained in another m axim al biclique besides B , then they will no longer be

m axim al in G ' , and m ust be destroyed.

For any m axim al biclique of th e form ((B \ {u}) fl W) U {v} = (B fl W) U {v}, where

u £ B , we consider four cases. If B C W and v £ B , then B = {tt, u}, so we merely switch

the value of v.part th a t corresponds to B . If B C W and v £ B , then (B fl W) U {u} will be

created by adding v to B such th a t u and v belong to different parts of B . If B % W and

v £ B , then B no longer rem ains m axim al, so we change B into (B fl W) U {v} = {w, u}.

Finally, if B % W and v B , th en we create a new maximal biclique (B fl W) U {v}, as B

will continue to rem ain m axim al in G '.

P ro o f . Consider the following item s.

• An element Ly of C\ .

• An element L 2 of £ 2 .

• A set of the form K U {v}, where A" is a m axim al element of K.

a A set B u \ {tt}, where B u is a m axim al biclique of G, u ,v £ B u , B u ^ {u, ? ;} , and

B v \ {u} (f. B 1, for all m axim al bicliques B \ of G for which By / B u .

• A set B v \ {u}, where B v is a m axim al biclique of G, u ,v G B v , B v ^ {u,u}, and

B v \ {i1} <£_ By, for all m axim al bicliques By of G for which By ^ B v .

First, observe th a t u G W . Therefore, u, v G K U {v}, which is also to say th a t |{u, w} fl

(K U {u})| = 2. By definition, |{u, v} fl L i | = 1 and |{u, u} fl L 2 I = 0 , therefore, Ly, L 2 , and

K U {u} are pairwise unequal. As well, v G B u \ {-u} and u G B v \ {u}; therefore, B u \ {u},

jBu \{u} , and ATU{u} are pairwise unequal. Moreover, bo th Ly and L 2 are m axim al bicliques

of G, whereas B u \ {u} and B v \ {u} are not, as they are contained in bicliques B u and B v ,

respectively. Therefore, Ly, L 2 , B u \ {u}, and B v \ {u} are pairwise unequal. Consequently,

the sets of the claimed partition are disjoint.

Since K is a biclique of G, where K C W , K U {u} is a biclique of G ' . If K U {v} is not

a maximal biclique of G ', then there exists some biclique B* of G' for which K U {u} C B * .

Since u , v G K Li {v}, we know th a t u , v G B*\ therefore, B* \ {u} C W , w here B* \ {v} is a

biclique of G. B ut K C B* \ {u}, which contradicts the m axim ality of K in JC. Therefore,

K U {a} is a m axim al biclique of G '.

Since Ly is a biclique in G and |{u ,v} f l Ly\ = 1 , it is also a biclique in G ' . If Ly is

not a maximal biclique of G ' , then there exists some biclique B* of G' for which Ly C B * .

Since Ly g W , we know th a t B* % W ; therefore, at least one of u and v does not belong

76

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

to B*. This gives th a t B* is a biclique of G, which contradicts the m axim ality of L \ in G.

Therefore, L \ is a m axim al biclique of G '.

Since L 2 is a biclique in G and |{u,i>} n £ 2) = 0, it is also a biclique in G '. If £ 2 is not a

m axim al biclique of G ', then there exists some biclique B* of G' for which L 2 C B*. If at

least one of u and v does not belong to B*, then B* is biclique of G, which contradicts the

m axim ality of L 2 in G. On the o ther hand, if b o th u and v belong to B * , th en L 2 C B * \ { u } ,

as u, v Z/2- B u t B* \ {11} is a biclique of G, which contradicts the m axim ality of L 2 in G.

Therefore, L2 is a m axim al biclique of G '.

Since B u is a biclique in G, so too is B u \ {11} in G '. If B u \ {u } is no t a maximal

biclique of G ', th en there exists some biclique B* of G' for which B u \ {it} C B*. Given

th a t u ,v G B u , we know th a t B u fl W = { u ,v } as the edge uv belongs to G. However, by

definition, B u 7 ̂ {u, v}; therefore, B u m ust contain some vertex y which does not belong to

W . Since B u \ {it} C B *, B* also contains y and v, which m eans th a t B* cannot contain

u. Therefore, B* is a biclique in G, where B* / B u , yet this contradicts th e definition of

B u \ {u}. Therefore, B u \ {u} is a m axim al biclique of G '. A sim ilar argum ent gives th a t

B v \ {u} is a m axim al biclique of G '.

Having shown th a t th e described sets are disjoint, and th a t the ir m em bers are maximal

bicliques of G", it rem ains to show th a t these sets contain all th e m axim al bicliques of G '.

Consider a m axim al clique B ' of G '. If it, v £ B \ then B ' is m axim al in G, where

B ' G £ 2.

If u G B ', v 0 B ', and B ' <2 W . then v cannot be added to B ' to get a larger biclique in

G. T h a t is, B ' is m axim al in G, where B ! G £ 1. Similarly, if u $ B 1, v G B 1, and B ' % W ,

then B ’ is m axim al in G, where B ' G £ i-

If u G B r, v g B ' , and B ' C W , then B ' U {f} is a m axim al biclique of G. Moreover,

B 7 ̂ {u, u}, as B ' 7 ̂ {u} (a vertex cannot be in a biclique by itself). Similarly, if u 0 B ' ,

v G B and B 1 C W , then B ' U {u} is a m axim al biclique of G, where B 7 ̂ {it, u}.

If u ,v G B !, th en B ' \ {u} is a biclique of G, where B ' \ {1;} C W and B ' \ {u} is

contained in some m axim al biclique B* of G. Now B ' \ {w} C B * \ {u} and B ' \ {u} C W ,

so B ' \ {1;} C (B* \ {u}) n W . If B ' \ {it} C (B* \ {u}) fl W , then there exists some element

w of B* for which w G W and w £ B * \ {«} (therefore, w 7 ̂ v), b u t w ^ B ' \ {1;}. However,

the existence of the biclique B ' U {w j in G' contradicts the m axim ality of B ' . Therefore,

B ' \ {«} = (B* \ {v}) n W .

Moreover, if there exist some K* in K,, such th a t B ' \ {v} C K *, th en there exists some

element w of K* (therefore, w G W , w 7̂ v), bu t w B ' \ {i>}. Again, the existence of the

biclique B ' U {ir} in G' contradicts the m axim ality of B ' . Therefore, B ' = K U {u}, where

A" is a maximal elem ent of AH, as desired. □

77

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Lem m a 5.10, and its proof, suggest the design of our relabeller, D e l e t e E d g e , as pre­

sented in Figure 5.9.

D e l e t e E d g e (G , u , v)

Input: An adjacency labelling of an r-bic G (th a t is, the labels thereof) created using our
dynam ic scheme, and two distinct vertices u and v of Vq for which uv G Eg- Note th a t the
labels of G are only accessed as required.

O utpu t: An adjacency labeling of a graph G' (again, th e labels thereof) formed by deleting
the edge uv from G, providing G' is an r-bic. If G' is not an r-bic, then the ou tpu t indicates
as such.

1 B <— { B \B is a m axim al biclique containing b o th u and v and B ^ {u, u}}
2 C <— { B \B is a m axim al biclique containing u}
3 fo r B G B d o
4 i f the only m axim al biclique of G containing B \ {?;} is B th e n
5 remove v from B
6 if th e only m axim al biclique of G containing B \ {u} is B t h e n
7 make a new m axim al biclique of B \ {u}
8 e ls e if the only m axim al biclique of G containing B \ {«} is B t h e n
9 remove u from B

10 e lse elim inate B
11 X u <— {rr|rc is a neighbour of u (in G ')}
12 X v <— {x \x is a neighbour of v (in G ')}
13 W <— {tu|u; G Vq and w G X u w G
14 D <— 0
15 fo r B G C d o
16 C ^ C \ { B }
17 i f (B \ {u }) fl W is no t contained in any of th e m axim al bicliques in C or V t h e n
18 P e - P U { B }
19 if B C W t h e n
20 i f v G B t h e n
21 switch the m axim al biclique B = {{u}, {u}} to {{w,u},0}
22 e lse add v to B such th a t v belongs to th e same p a rt as u
23 e ls e if v G B t h e n
24 5 ^ { { u , u } , 0 }
25 e lse create a new m axim al biclique (B fl W) U {u}

Figure 5.9: The relabeller D e l e t e E d g e which relabels an r-b ic when an edge is deleted

T he relabeller, D e l e t e E d g e , first obtains B = Bu fl B v , the set of maximal bicliques

containing bo th u and v. Since Bu and Bv can be determ ined in Q(u.bin) G 0 (r) and

Q{v.bin) G 0 (r) tim e, respectively, where \BU\ = u.bin < r and \BV\ = v.bin < r , B can be

determ ined in 0 (u .b in + v.bin) G 0 (r) tim e using th e reciprocal pointer technique discussed

in Section 5.1.1.

As well, D e l e t e E d g e , also obtains C = Bu , the set of m axim al bicliques containing u,

which can be determ ined while obtaining B. We insist th a t C be represented using dynam ic

reciprocal pointers, which take Q(u.bin) G 0 (r) tim e to establish.

78

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

For each m axim al clique B of B, providing B ^ { u ,v } , the bicliques B \ {u} and

B \ {v} are exam ined to determ ine if they m axim al in G '. For a G {it, v}, B \ {a } can

be determ ined in 0 (|B |) tim e by traversing B; moreover, while determ ining B \ {a}, we

can confirm th a t B A {u, v}. T he biclique B \ {a} is m axim al in G' if and only if th e

set A a = nb'£-B\{a}(^’i>' \ -®) is empty. As per our discussion in Section 5.1.1, A a can be

determ ined in 0(X V s.B \{a} b'.bin) G 0 (r \ B \ {a} |) G 0 (r |£ ? |) tim e.

F irst, let us assume th a t exactly one of B \ {it} and B \ {u} is a m axim al biclique in G ';

w ithout loss of generality, let the m axim al biclique be B \ {v}. We develop this m axim al

biclique by removing v from B , ju s t as we did in D e l e t e V e r t e x , using 0 (1) tim e. As a

second possibility, consider if neither B \ {11} nor B \ {t>} is a m axim al clique in G '. In th is

case, we eliminate the m axim al clique B , ju s t as we did in D e l e t e V e r t e x , using 0 (|B |)

tim e. Finally, if B \ {u} and B \ {?;} are bo th m axim al in G", th en we develop B \ {v} by

removing v from G, using 0 (1) tim e; however, B \ {it} m ust be developed by establishing

a new maximal biclique, ju s t as we did in A d d V e r t e x , requiring 0 (|B { |) G 0 (|S |) tim e.

W henever a .bin counter is increased during the creation of th e new m axim al biclique, we

check th a t its value is no greater th a n r , thereby, the efforts of D e l e t e E d g e on B are

error-detecting. Since B contains a t m ost m m {u.b in , v .bin} m axim al bicliques, the running

tim e of D e l e t e E d g e on B is Q(m.m{u.bin, v.bin} ■ m a x {Y^bes b.bin}) G 0 (r 2B).

For each m axim al clique B of C, we en terta in th e possibility of B ' -= (B \ {i>}) fl W being

a m axim al element of the set 1C, seen in Lem m a 5.13. T he biclique B ' can be com puted in

0 (|B |) tim e by traversing B and testing adjacency w ith u and v to determ ine m em bership

in W .

If B ' is contained in some m axim al biclique B* rem aining in C (observe th a t D e l e ­

t e E d g e removes B from C when it is selected), then we do nothing as B ' will present

itself later. Specifically, if B ' C B * ', th en B ' is not a m axim al element of /C; otherwise,

if B ' = B * ', then we avoid possible duplication of m axim al bicliques. Similarly, if B ' is

contained in some m axim al clique B* in V , the set of bicliques D for which D ' U {v} has

been made a m axim al biclique of G ', then B ' C B*' (given th a t B* is selected from C before

B , the addition of B* to T> was contingent on B*' <2 B ') . Ju s t as C is represented using

dynam ic reciprocal pointers, we insist th a t V also be represented using dynam ic reciprocal

pointers.

The biclique B ' is contained in some m axim al biclique in C or V if and only if fV gB ' (By H

(C U V)) ^ 0. Since \By \ — b'.bin, and C and V are represented using reciprocal pointers,

each set Bb> \ (C U T>) can be determ ined in 0 (6 '.bin) G 0 (r) tim e. In tu rn , the condition

rV €B '(£>{/ n (C f l V)) A 0 can be checked in 0(X){/6b ' b'.bin) G 0 (r |S ' |) G 0 (r |B |) tim e

using the reciprocal pointer technique discussed in Section 5.1.1.

79

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Now if B ' is n o t co n ta in ed in any m ax im a l b ic lique rem a in in g in B , th e n we m ake a

m ax im al biclique of B ' U {v}. E x ac tly how we m ake a m ax im a l b ic lique o f B ' U {n} depends

on w h e th e r B C W an d v £ B . T hese cond itions can b e checked w hile co m p u tin g B ' .

If B C W an d v £ B , th e n B = {w, u } , so we m ere ly sw itch th e value o f v.part th a t

co rresponds to B . If B C W an d v £ B , th e n we s im p ly ad d v to B as B will no longer be

m ax im al in G ' . Specifically, D e l e t e E d g e in se rts v in to th e c ircu lar d oub ly linked lis t for

B , increases th e value o f v.bin by 1, an d se ts th e value o f v.bicli.part to th a t o f u.biclj.part

for th e values of i an d j th a t correspond to B . T h is can b e done in 0 (1) tim e. If B % W

an d v £ B , th e n B no longer rem ains m ax im al, so we change B in to (B 0 W) = { u ,u} .

Specifically, D e l e t e E d g e rem oves all th e vertices excep t u an d v from th e c ircu lar doubly

linked lis t for B , w hile decreasing th e ir .bin values by 1, th e n se ts th e value o f v.bicli.part

to th a t o f u.biclj.part for th e values of i a n d j th a t co rresp o n d to B . T h is can be done

in 0 (|B |) tim e. F inally , if B W an d v $. B , th e n we c re a te a new m ax im al biclique

(B fl W) U {u}, as B will con tinue to rem a in m ax im a l in G ' . Specifically, D e l e t e increases

th e value of th e .bin co u n te r o f each of th e v ertices in B ' U {v} by one, es tab lishes a c ircu lar

doub ly linked lis t of th e vertices in B ' U {u}, a n d c re a te s a new .bicl e n try id en tica l to th a t

found in B , for each m em ber of B ' U {v} w hile es tab lish in g th e c ircu lar d o u b ly linked list

(in th e case o f v i t se ts th e value of v.bicli.part to t h a t of u.biclj.part for th e values of i and

j th a t co rrespond to B ' U {v}); form ing th is new m ax im al clique tak es 0 (|-B '|) £ 0 (|I ? |)

tim e.

W henever a .bin co u n te r is increased, we check th a t its value is no g re a te r th a n r, thereby,

th e efforts o f D e l e t e E d g e on C a re e rro r-d e tec tin g . Since |C| = u.bin < r, th e runn ing

tim e of D e l e t e E d g e on C is 0 (u.bin ■ rna x {J2beB b.bin}) £ 0 (r 2B). T herefo re, th e to ta l

ru n n in g tim e of D e l e t e E d g e is 0 (u.bin ■ fn a x {^2 beB b.bin} + v.bin ■ rnax{J2beB b.bin}) £

0 (r 2B) . O bserve th a t D e l e t e E d g e accesses © (m ax{ |£> |}) v ertex labels w hich require
B3u

Cl(v.bin + b es b.bin}) b its in to ta l. T hereby , th e ru n n in g tim e o f D e l e t e E d g e is

po lynom ial in th e size o f i ts inpu ts .

A d d in g an ed g e .

C onsider th e following lem m a, w hich describes how th e ad d itio n of an edge affects th e

m ax im al b icliques in th e g raph .

L e m m a 5 .14 Consider a graph G' formed by adding an edge uv to a graph G, where Vq ^

{u,u}. Let X u and X v denote the neighbourhoods o f u and v in G ' , respectively, and let W

denote the vertices o f G fo r which w £ W i f and only i f w £ X u <=> w ^ X v . Furthermore,

let C\ be { B \B is a maximal biclique of G, B 2 W , and |{u ,u} (T B\ = 1}, let £ 2 be { B \B

is a maximal biclique of G and u , r ^ B } , and let 1C be the set of bicliques {(B \ {u}) fl W \B

is a maximal biclique o f G , u £ B } .

80

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The set of maximal bicliques o f G' is C \ U £ 2 U { B \ is a maximal biclique o f

G, u , v £ B , B ^ { u ,r} , and B \ {«} <£_ B \ , fo r all maximal bicliques B \ o f G, B 1 ^

B } U { B \ {v } \B is a maxim,al biclique o f G , u , v £ B , B ^ {u ,u}, and B \ {u} <£_ B \ , fo r

all maximal bicliques B \ o f G, B 1 7 ̂ B } U { K U { v } \K is a maximal element o f K.}.

T he sim ilarity between Lemmas 5.13 and 5.14, w hich differ only in their definition of the

set Iff, suggest a relabeller A d d E d g e th a t is v irtually identical to th a t of D e l e t e E d g e .

As such, A d d E d g e would also be error-detecting and have a running tim e of 0 (r 2B).

5.3 Sum m ary

In th is chapter, we apply the circular doubly linked list technique seen in C hap ter 4 to

m axim al cliques and m axim al bicliques in order to develop error-detecting dynam ic adja­

cency labelling schemes for r-m inoes and r-bics, respectively. Both dynam ic schemes use

O (r lo g n) b it labels.

In the case of r-m inoes, edge addition and deletion can be handled in 0 (r 2D) tim e, vertex

addition in 0 (r 2e2) tim e, and vertex deletion in 0 (r 2e) tim e, where D is th e m axim um

degree of the vertices in th e original graph and e is th e num ber of edges added to , or deleted

from, th e original graph. U nfortunately, if r £ w (l), th en our vertex deletion relabeller is

not error-detecting. Similarly, if r £ o (l) , th en our vertex addition relabeller is no t error

detecting.

In th e case of r-bics, edge addition and deletion, as well as vertex deletion can be handled

in 0 (r 2B) time, and vertex addition in 0 (r 2?iB) tim e, where B is the size of the largest

biclique in the original graph. Given these running tim es, one m ight be led to believe th a t

vertex addition could ju s t as easily be perform ed by adding an isolated vertex, then adding

individual edges. However, by doing so th e graph m ay escape the class of r-bics.

81

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 6

Proper interval graphs

In th is chapter, we develop a dynam ic adjacency labelling scheme for proper interval graphs

th a t allows the addition and deletion of vertices and edges. T he labels used in th is scheme

require O (logn) bits, and updates require in O (n) tim e. In com parison, the best known

(static) adjacency labelling scheme for proper interval graphs is the scheme presented for

interval graphs in C hap ter 1 [45], which uses O (logn) b it labels and requires as much as

0 (n + m) tim e to generate a labelling (here we presum e th a t the m arker is inpu t w ith

only th e proper interval graph, perhaps as an adjacency m atrix , and m ust use a 0 (n + m)

tim e algorithm like th a t of Corneil, Kim, N atarjan , O lariu, and Sprague [12] to determ ine

the proper interval representation from th e graph itself.) Proper interval graphs have been

shown useful in the study of problem s in genetics and psychology; a good sta rtin g point for

inform ation on the application of proper interval graphs is the tex t of McKee and McMorris

[43].

A graph is a proper interval graph if it has an interval representation in which no interval

contains another interval. P roper interval graphs can also be characterized using structures

known as astral triples. A n astral trip le is a set of th ree vertices for which each pair are

connected by a p a th in which no two consecutive vertices belong to the closed neighbourhood

of the th ird vertex. In the graph shown in Figure 6.1, the bold vertices form an astra l triple.

Figure 6.1: An astral triple. The bold vertices indicate th e astra l trip le

Perhaps the simplest example of an astra l trip le is K 1 3 , often referred to as a claw. In

the case of the three pendant vertices form the astra l triple. T he relationship between

proper interval representations and astra l triples is explicitly addressed in the following

theorem s.

82

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

T h e o re m 6.1 [28] A graph is a proper interval graph i f and only i f it contains no astral

triple.

T h e o re m 6 .2 [49] A n interval graph is proper i f and only i f it contains no induced K \

A nother characterization of interval graphs is based on the notion of blocks [14]. For

any graph G, consider the equivalence relation R , on Vg , defined by u R v if and only if

N[u\ = N [i>]. This equivalence relation partitions the vertices into equivalence classes

known as blocks. For example, the blocks of the proper interval graph represented in Figure

6.2(a) are {a}, {b, d}, and {c}. Ultim ately, we can consider each block as a “m ega-interval” ,

as depicted in Figure 6.2(b).

Two blocks B and B ' of a graph G are said to be adjacent if there exists an edge bb' of

G for which b is in B and b' is in B ' (consequently, if B is adjacent to B 1, then , for all b in

B and all b' in B ' , b is adjacent to b'). In an extension of conventional graph terminology,

we say th a t the (open) neighbourhood of a block is the set of blocks th a t are adjacent to it,

and th a t its closed neighbourhood is its open neighbourhood unioned w ith itself. Similarly,

we say th a t the degree of a block is th e card inality of its open neighbourhood, where deg(B)

denotes the degree of B.

d
c | a | c

------------ 1 i I i i I I

2 . 3 4 5 6 7 8 1 2 3 4 5 6

(a) A proper interval represen- (b) Blocks as “m ega-intervals” .
tation .

1 2 3 4 5 6 7 8

(c) An in terval represen ta­
tion, which is not, and can­
no t be, proper.

Figure 6.2: Interval representations and blocks

As prelim inary observations, consider the following properties of blocks.

L e m m a 6 .3 The induced subgraph formed on the vertices o f a block is a clique.

P ro o f . Consider any two vertices u and v belonging to the same block of a graph. By

definition, N[u] = therefore, u and v are adjacent. The result follows. □

83

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

L e m m a 6.4 No component o f a graph can be comprised of only two blocks.

P ro o f . Consider a com ponent C consisting of two blocks B \ and £>2 . If B \ is not adjacent

to B 2, then B \ is a com ponent itself, thereby, C is not a com ponent. If B \ is adjacent to

£>2 , then B \ U B% forms a clique. Therefore, B \ — B 2 , which is also a contradiction. □

L e m m a 6.5 No two blocks can be adjacent to the same set o f blocks.

P ro o f . Consider two blocks B \ and Bo. which are adjacent to th e same set of blocks.

For any vertices b\ in B \ and 62 in B 2, iV[i>i] = ^ [62]. Therefore, B \ = B 2, which is a

contradiction. □

A straight enumeration of a graph is a linear ordering of its blocks such th a t, for every

block, the blocks in its closed neighbourhood are consecutive. In the case of th e proper in ter­

val graph represented in F igure 6.2(a), the stra igh t enum erations are $ = {a} -< {6, d} -<■ {c}

and 4>w = {c} -< {b, d} -< {a}, w here denotes th e reversal of th e stra igh t enum eration

<I>. The following theorem characterizes proper interval graphs in te rm s of straigh t enum er­

ations.

T h e o re m 6 .6 [14] A gm ph is a proper interval graph i f and only i f it has a straight enu­

meration. Moreover, a connected proper interval graph has a unique straight enumeration

(up to reversal).

Hell, Shamir, and Sharan [27], on whose work we will heavily rely, refer to a s tra igh t enu­

m eration of a connected proper interval graph as a contig.

Fundam ental to our entire work on proper interval graphs is the following lemma, referred

to as the “um brella property” . Given the frequency w ith which we use Lem m a 6.7, we will

only explicitly reference th is lem m a in the beginning of our discussion, or when th e use of

the lemma is not entirely obvious.

L e m m a 6 .7 [f l] Consider a straight enumeration $ of a connected proper interval graph

G. I f B \ , B 2, and B 2 are blocks o f G, such that B \ -< B 2 -< S 3 in $ and S i is adjacent to

S 3, then B 2 is adjacent to B 1 and to S 3 .

6.1 V ertex lab els , m arker, and decoder

O ur scheme closely resembles a dynam ic representation of proper interval graphs due to

Hell, Shamir, and Sharan [27] (their representation does not perm it im plicit adjacency

testing from vertex labels). For each com ponent of the proper interval graph, they m aintain

a d a ta structure to represent a contig. In each contig, the first and last blocks are called end

blocks and their members are end vertices; all o ther blocks are referred to as inner blocks

84

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

and their m em bers are inner vertices. Specifically, th e d a ta s tru c tu re used by Hell et al.

consists of the following.

• For each vertex, they m ain tain the nam e of its block.

• For each block, they m ain tain the following inform ation.

- The size of the block.

- Left and right near pointers which point to the adjacent blocks im m ediately to

the left and right, respectively, in the stra igh t enum eration.

- Left and right fa r pointers which point to th e fu rthest adjacent blocks to the left

and right, respectively, in the stra igh t enum eration.

- Left and right self pointers which point to the block itself.

- An end pointer which is null if the block is an inner block of its contig, otherwise,

it po in ts to th e o ther end block in the contig.

Unfortunately, we do not have the liberty of using pointers a t the block level, rather,

we m ust do so a t th e vertex level. To this effect, we select a pointer vertex P (B) from each

block B . If we wish to include 'a pointer Q from block B to block B ' . then we include th a t

pointer in the label of P (B), such th a t Q (P (B)) = b', w here b' € B ' . In essence, we create

a “d istributed” pointer.

Specifically, our labelling scheme is as follows.

• For each vertex v, we m ain tain the following.

- A unique identifier for each vertex. L etting £ be the num ber of bits required

to represent the largest identifier, the uniqueness of th e identifiers ensures th a t

£ e fl(lo g n). Given our assum ption on th e size of identifiers, as s ta ted in Section

3.1.3, £ 6 0 (lo g n) .

- The identifier of the block to which it belongs. A lthough we do not differentiate

betw een a vertex and its identifier, we will differentiate between a block and its

identifier, as the identifier of a block may change over tim e while we m aintain a

stra igh t enum eration. To this effect, we denote the block containing v by B (v) ,

and denote the identifier of B (v) by b(v).

Ju s t as we required a unique identifier for each vertex, we require a unique iden­

tifier for each block. W here B is the size of th e largest identifier, we ensure th a t

B e 0 (lo g n).

- T he identifiers of the furthest adjacent blocks to the left and right of B (v),

denoted / l (c) and fn (v) , respectively. This inform ation requires 0 (B) bits.

85

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• For each block B , we encode the following inform ation v ia th e vertex labels.

— The vertices in each block. T his inform ation is represented using a circular doubly

linked list of the vertices in each block, m irroring th e technique used previously

in C hapters 4 and 5. This circular doubly linked list adds 0 (C) b its to the label

of each vertex. For each vertex v, we denote the next and previous vertices in

the circular doubly linked list of B (v) by nx(v) and p re v (v), respectively. Again,

we will say th a t we traverse B , although we really m ean th a t we traverse the

circular doubly linked list of vertices in B.

— A pointer vertex, denoted P (B) . T he label of the pointer vertex m ust contain a

bit to denote th a t it is a pointer vertex. All o ther vertices in the block, contain

the identifier of P (B), as well as a b it to denote th a t they are not the pointer

vertex of B . This inform ation adds 0 (1) b its to th e label of th e pointer vertex,

and 0 (£) b its to the label of all o ther vertices.

To clarify how these d istribu ted pointers are used a t th e vertex level, let us

consider a pointer Q and a vertex v. The label of v will contain the identifier of

P (B (v)) , the pointer vertex of the block containing v (assum ing v ^ P(v)); for

simplicity, we will shorten P (B (v)) to P (v) . The label of P (v) will contain the

identifier of Q (P(v)) , which we will sim ilarly shorten to Q(v). For any vertex v

and pointer Q, Q(v) can be “followed” in 0 (1) tim e using the labels of v and

P(v).

— A pointer to the blocks im m ediately to the left and right of B , denoted by I i (B)

and I r (B), respectively. B oth I l (B) and I r (B) are artificial constructs, as they

are achieved by including I l and I r pointers in th e label of P (B) , as per the

pointer technique described above. These pointers add 0 (C) b its to the label of

the pointer vertex only.

— A pointer to the furthest adjacent blocks to the left and right of B , denoted by

F l (B) and F r (B), respectively. These pointers are achieved using the pointer

technique described above, and add 0 (£) bits to the label of the pointer vertex

only.

— The size of B , denoted s (B) . This value is kept in the label of the pointer vertex,

adding O (logn) bits to its label.

We observe th a t the to ta l size for each label is 0 (£ + B) G O (logn). Furtherm ore, we can

determ ine the adjacency of two vertices u and v in 0 (1) tim e, using only their labels, by

checking if f L(v) < b(u) < fn (v) .

In comparison to the d a ta s truc tu re used by Hell et al., our vertex labels do not include

self pointers or end pointers. Self pointers become obsolete in our vertex centered setting,

86

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

and end pointers, although useful, have proven difficult to m aintain. Furtherm ore, for every

block B , Hell and al. point to the ad jacent blocks im m ediately to the left and right of B ,

whereas, we include a sim ilar pointer th a t om its th e adjacency condition. B y dropping

the adjacency condition we are able to m ain tain additional inform ation abo u t th e straigh t

enum eration w ithout sacrificing asym pto tic space or running times.

A lthough it is much easier to discuss pointers and values at a block level, we m ust always

ensure th a t these item s can be observed a t the vertex level. For instance, a vertex v is an

end vertex if and only if FL (B (v)) = B (v) or F r (B (v)) = B (v) . However, to determ ine this

condition, we m ust check to see if / l (u) = b(v) or f i i (v) — b(v). As such, in th e ensuing

discussion we m ain tain the convention of offsetting the vertex level condition in square

brackets, for example, uF r (B (v)) = B (v) = b(v)]”. N early all of th e conditions

m entioned herein can be tested in 0 (1) tim e. As such, we will only com m ent on the tim e

required to check a condition if it takes w (l) tim e to check the condition.

W hen discussing such conditions, we m aintain the convention th a t pointers acting on

a block produce a block, and pointers acting on a vertex produce a vertex. For example,

F r (B (v)) is a block, whereas, F r (v) is a vertex in the block F r (B (v)). As previously

discussed, F l (B (v)) is an artificial construct.

A lthough we have given significant consideration to the labels of the dynam ic scheme,

we have not yet discussed the m arker. Deng, Hell, and Huang [14] provide an 0 (n + m) tim e

algorithm for generating a straigh t enum eration of a proper interval graph from, presumably,

an adjacency list representation (actually, their algorithm presents a vertex ordering, bu t

m inor bookkeeping will give a stra igh t enum eration of blocks). W here B is the num ber

of blocks in the stra igh t enum eration, we can use the straigh t enum eration to establish

the B circular doubly linked lists in 0 (n) time. Next, establishing poin ter vertices and

block identifiers, as well as the b, f l , and J r values requires a fu rther O (n) tim e. Finally,

establishing the various pointers requires an additional 0 (B) G O (n) tim e. Therefore,

if provided w ith th e stra igh t enum eration, the m arker requires 0 (n) tim e; otherwise, the

m arker requires 0 (n + m) time.

6.1.1 R elabeller

For the most part, we will discuss the relabelling algorithm at the block level, including the

vertex-level discussion in A ppendix C. In the. ensuing discussion, G is the original graph

and G' is the new graph.

Given the linear n a tu re of the stra igh t enum eration, the lim iting factor inherent in our

labelling scheme is the m aintenance of the b, f i and Jr values. W hen the graph is modified,

our first task is to modify blocks, pointer vertices, and pointers, as necessary, in order to

m aintain a straight enum eration. Once this is complete, we can traverse I r and I r pointers

87

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

to determ ine the entire s tra igh t enum eration. Knowing the en tire stra igh t enum eration, one

pass through the ordering (from least to greatest) is sufficient to re-assign optim al block

identifiers by traversing the circular linked list of vertices in each block. Having assigned

these optim al block identifiers, a second pass is sufficient to assign the and Jr values,

which depend on the block identifiers, to the vertices in each block.

Regardless of th e graph operation under consideration, the m aintenance of the b,

and / r values takes as m uch as 0 (n) tim e. Because th is approach can be used to m aintain

optim al b values, we did not employ the assum ption on th e size of the identifiers, as sta ted

in Section 3.1.3, to B, th e size of the largest block identifier.

Unlike our work w ith r-m inoes and r-bics, seen in C hap ter 5, we will not use the existence

of an error-detection dynam ic adjacency labelling scheme to establish a recognition result,

even though proper in terval graphs are hereditary. As discussed, our relabeller can take

as m uch as 0 (n) tim e to handle vertex addition, therefore, th e recognition tim e offered by

Theorem 3.7 could be as high as 0 (n 2). In comparison, Corneil e t al. [12], among others,

have already established 0 (n + m) recognition of proper interval graphs.

D e le t in g a v e r te x

Let v be the vertex to be deleted, where X denotes the neighbourhood of v in G. As well,

let th e contig containing B (v) be B \ A . . . < B i A . . . ■< Bi A . . . A B j A . . . A Bk,

where Bi — B (v) , B i = F r (B i), and B j = F r (B i). The action of th e relabeller depends on

w hether Bi = {v} [nx(v) = u].

The following lem m a addresses how the straigh t enum eration changes when Bi ^ {v}.

L e m m a 6 .8 Let G' be a proper interval graph formed by deleting a vertex v from a proper

interval graph G, where B (v) 7 ̂ {u}. I f B ' is a block in G ' , then either B ' is a block in G,

or B ' U {u} is a block in G.

P ro o f . Assume the contrary, th a t is, neither B ' nor B ' U {w} is a block in G. Since B ' is

not a block in G, one of th e following statem ents m ust be hold.

• There exists b\ and 62 in B ' for which 1Vg[&i] 7 ̂ No[b2].

• There exists some b* in V q \ B ' for which Nc[b*} = IVg[&], for all b in B r, where N q

denotes the neighbourhood in G (as opposed to G').

If th e former condition holds, then consider th a t the only vertex adjacencies which change

from G to G' are those w ith v. Since IVg'^i] = AT(3'[&2], exactly one of IVg^i] and iVc[&2]

contains v. W ithout loss of generality, assume th a t v G IVg[6 i]. Since B (v) 7̂ {w}, there

exists some additional vertex v* in B{v). Therefore, v* G Ag[&i], bu t v* (f [62]- Since

v* 7 ̂ v, v* G i'Vc'f&i], yet v* A g 'M , so B ' is not a block in G', which is a contradiction.

88

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Assuming the la tte r condition holds, we need to consider tw o cases. F irst, if b* = v,

then consider th a t B ' C B (v) \ {v} as N g [v] = [6], for all b in B '. Moreover, for all v*

in B (v) \ {w} and for all b in B ' , N c [u*] = N g [v *] \ {v} = Nc[b] \ {u} = Nclb}- Therefore,

B (v) \ {u} C B ' , which gives B ' = B (v) \ {u}. T h a t is, B ' U {u} is a block of G, which is a

contradiction.

Secondly, if b* ^ v, then b* G V c ■ B u t b* ^ B ', w here B ' is a block of G ', therefore,

Ncib*} 7- Na'[b], for all b in B ' . Specifically, there exists some b** G Nclb*} for which

b** # N c [6], for all b in B ' , w here b** v. Therefore, No[b*} 7 ̂ A G[&], for all b in B \ which

is a contradiction. □

W here Bi contains another vertex besides v, Lem m a 6 .8 tells us th a t a straigh t enum er­

ation for G' can be obtained from a stra igh t enum eration of G by removing v from B i . This

scenario is depicted in Figure 6.3. Specifically, our labelling is am ended as follows.

• Remove all references to v.

— We m ust change all references to v as a pointer vertex. Specifically, if v = P (v),

then we make nx(y) the pointer vertex by changing its label to reflect the pointers,

and changing the labels of all the vertices in Bi to reflect th a t nx(v) is the new

pointer vertex. T his change can be done in 0 (|R ; |) G 0 (|X |) tim e by traversing

Bi, beginning at v. Let q be the resulting pointer vertex of Bi.

— We m ust change all references to v in I i and I r pointers. Providing I l { B i) 7 ̂ NIL

[h (q) 7̂ n il], set lR (lL (q)) to q. Similarly, providing I r (B {) 7 ̂ n i l , set I L {IR {q))

to q. These changes take 0 (1) tim e.

— We m ust change all references to v in Fr and Fr pointers. Specifically, for any

block B , if Fl (P (B)) or F r (P (B)) is v, th en we change its value to q. Now, if

Fr (P (B)) = v, then , by Lem m a 6.7 (um brella p roperty), Bi < B ^ Bi\ similarly,

if F r (P (B)) = v, then Bi -< B < B j . As such, we can recursively follow I r and I r

pointers to determ ine all such blocks B . These changes take O (deg(Bi)) G 0 (|X |)

tim e.

— We m ust remove v from the circular doubly linked list of the vertices in B i . This

removal takes 0 (1) tim e.

• Decrease the value of s(B i) [s(g)] by one. This operation takes 0 (1) time.

• Delete v. This deletion takes 0 (1) time.

The following lemma addresses how the stra igh t enum eration changes when Bi = {u}.

L e m m a 6.9 Let G' be a proper interval graph formed by deleting a vertex v from a proper

interval graph G, where B{v) = {v}. I f B ' is a block in G ' , then either B ' is a block in G,

or B ' = B a U Bp, where B a and Bp are blocks in G.

89

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

B, Bi \ M
d ele te v

Figure 6.3: Deleting a vertex v, w here Bi = B (v) 7 ̂ {u}

P ro o f . Assume th e contrary, th a t is, B ' is not a block of G and B ' ^ B a U Bp, where

B a and Bp are d istinc t blocks in G. Since B ' is no t a block in G, one of the following

statem ents m ust be hold.

• There exists b\ and 62 in B ' for which ATg[&i] 7 ̂ATgI^]-

• There exists some b* in Vq \ B ' for which Nc[b*] = Nc[b\, for all b in B ' .

If the la tte r condition holds, argum ents identical to those seen in the proof of Lem m a

6.8 will lead to contradictions. However, there is a difference in th e contradiction achieved

when b* — v, as B ' C B (v) \ {u} gives B ' = 0.

Assuming th e form er condition holds, th en consider th a t the only vertex adjacencies

which change from G to G' are those w ith v. Since N c [61] = N c [62j, exactly one of rV c^i]

and N q [62] contains v. W ithou t loss of generality, assum e th a t v G jVgt[i>i] - Moreover, since

Nc[b] is unique for all b in B ' , the uniqueness of v allows us to partition the m em bers of

B ' into B[and B '2 , w here b G B j if and only if v G N q [fr].

Since Nc[b] is unique for all b G B 2, so too is AY;[Y• Therefore, B '2 C B a . for some

block B a of G. Observe th a t B a f- B (v) , otherwise, B (v) = {u} contradicts the existence

of f>2- Now, for all ba in B a , ATg[6q] = NG'[ba} = A Tq/^] = N g [62], so B a C B 2. Therefore,

B '2 = B a .

Since iV<3/[6] is unique for all b G B [, so too is Therefore, B[C Bp, for some

block Bp of G. Observe th a t Bp 7 ̂ B (v) , otherwise, B (v) = {u} contradicts the existence

of b\. Furtherm ore, observe th a t Bp 7 ̂ B a , as iVo[6i] 7 ̂ N q ^ } - N ow , for all bp in Bp,

A^g[bp] = No'lbp] U {u} = No'lbi} U {w} = A1g[6i], so B p C B[. Therefore, B[= B p and

the result follows. □

From Lemma 6.9, we see th a t a block of G' can be formed by m erging two blocks of G.

The following theorem addresses which two blocks are merged.

L e m m a 6 .1 0 Let G' be a proper interval graph formed by deleting a vertex v from a proper

interval graph G, where B (v) — {i>}. I f B ' = B a U B p is a block in G ' , where B a and Bp

are distinct blocks in G, then { B a , B p j is either { B i _ i , B i } or { B j , B j +i } .

P ro o f . F irst, let us assume th a t Bp ~< Bi. Since th e neighbours of B a and Bp will be

identical upon deletion of v, F i (B a) = F i{B p) , and either F a (B p) = Bi and Fr (B u) =

f?;_ 1, or vice versa; w ithou t loss of generality, we assume the former. By Lem m a 6.7

90

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

(umbrella property), B a -< B i and Bi A Bp. Now if B i -< B p , then FR (Bp) = Bi com bined

w ith Lemma 6.7 (um brella property), gives F R (Bi) = £?; = FR (Bp). Therefore, by Lem m as

6.4 and 6.7 (um brella property), F i{ B i) -< F R{Bp). Yet, by Lem m a 6.7 (um brella property),

F i (B a) A F i{B i) , thereby, Fl (B u) ^ FR(Bp), which is a contradiction. Therefore, Bp =

B i .

Furtherm ore, FR (B a) = B t- i and FL (Bi) = B i give F R (B i - i) = B i- 1 = FR (B a). Yet,

B a ^ B i - i -< B p and FL (B a) = FL {Bp), give FL (B a) = F L (B i- 1). Thereby, N [B a] =

N [B i_ i], which is to say th a t B a = B i_ \ .

Using sim ilar argum ents we can show th a t, for Bi -< B p , Bp = B j and B a — B j +\. □

W here Bi contains only v, Lem m a 6.9 can be used to ob tain a straight enum eration of

G '. We remove all references to v, and merge blocks as per Lemma 6.10, as depicted in

Figure 6.4. Recall th a t two blocks are m erged if and only if the deletion of v causes their

neighbourhoods to be the same.

------------- 2 * ------------ ^ ----- d e le te v -----------
B a __________ ^ B a U B g ________

Figure 6.4: M erging blocks, w here the vertex v is deleted from th e graph

Specifically, our labelling is changed as follows.

. I f l < i < l [fL (v) ? f L (FL(v)) and f L (v) ± b(v)}, F L (B i - i) = FL (B t) [fL (IL(FL (v))) =

f i (F L (v))], and FR { B i- \) = R /_ i \ fn { lL {F L (v))) = b(IL (v))}, then merge B i in to

B i - 1.

- Add the value of s(B i) to s (R ,_ i) [add s (P (F R(v))) to s (P (I l (Fl (v))))]. This

operation takes 0 (1) time.

- Set I R (B i - i) to B i+i [IR {IL (FL (v))) to I R (FL (v))\ and IL (Bi+i) to B i - i [Il (I r (Fl {v)))

to I l {Fl (v))]. These assignm ents take 0 (1) tim e.

— U pdate the labels of the vertices of Bi to reflect th e fact th a t P (B i - i) [P(/x,(F£,(n)))]

is the pointer vertex of the m erged block. T his update can be done in 0 (|i? i |) €

0 (|X |) tim e by traversing Bi, beginning a t F l (v).

— Merge the two circular doubly linked lists, using P (B i - i) [P (I l {Fl {v)))] and

P {B i) [P(Fl (v))] as reference points. This m erge takes 0 (1) tim e.

• If I < j < k, Fr (Bj) = FR (B j +j) , and F i (B j +1) = -B;+i then merge B j into -Bj+i-

This merge takes 0 (|B j |) G 0 (|A [) time.

91

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• Providing I l {B i) ^ n i l [h (v) n i l], set I R (IL (B[)) to I r (B [) [Ir {Il (v)) to Ir{v) \ .

Similarly, providing Ir{B {) n i l , set I r (I r (B i)) to Ir (B [) . These assignm ents take

0 (1) time.

• For each block B in { B i , . . . ,B [_ i } , if Fr (B) = Bi \ fR (P (B)) = 6(f)], then set F r (B)

to B i - i \Fr (P{B)) to I l {v)\- As well, for each block B in { F > ; + i , . . . , B j } , if F r {B) =

Bi, then set Fl (B) to Bi+\. These assignm ents can be done in O (deg(Bi)) £ 0 (|X |)

tim e, by recursively following I r and I r pointers to determ ine all such blocks B .

• Delete v. This deletion takes 0 (1) tim e.

• Relabel the blocks and adjust the b, f i , and f R values as previously discussed. Given

th a t there can be as m any as 0 (n) blocks, th is operation can take as much as 0 (n)

tim e.

The correctness, a t least the block level, of our algorithm is due to th e correctness of

Lemmas 6.8, 6.9, and 6.10, and the exhaustiveness of th e cases considered. E nsuring th a t

the algorithm does w hat we w ant it to do, in term s of pointers and vertex labels, is a m a tte r

of verification.

For th e rem aining graph operations: adding a vertex, deleting an edge, and adding an

edge, we will no t present the same level of rigour as seen in Lemmas 6.8, 6.9, and 6.10, unless

the change to the stra igh t enum eration is not obvious. However, for each of these rem aining

operations, we will be careful to enum erate all possible cases, including those which prevent

G' from being a proper interval graph.

A d d in g a v e r te x

Let v be the vertex to be added, w here X denotes the neighbourhood of v in G '. We will

say th a t v is adjacent to a block B if B n X 0, fully adjacent to B if B C X , and partia lly

adjacent to B if it is adjacent, bu t not fully adjacent.

Given a stra igh t enum eration $ of a connected proper interval graph G, $ can be though t

of as a weak linear order -<$ of Vg, where V\ <̂j> v i if and only if B (v i) -< B (v 2) in $. Hell

et al. [27] say th a t is a refinement of <F, if for every v i ,V 2 £ Vq, v\ -<$ V2 = > v\ -<$' V2 ,

or for every V\,V2 £ Vg, v\ «2 = > W -<$' Vi. Observe th a t in th e la tte r case, <3?'̂ is

also a refinement, where for every v\, V2 £ Vg, v\ -<$ V2 = > v\ -<$' 0 2 -

The following lem m a partially addresses how the stra igh t enum eration of G' com pares

to the straight enum eration of G, when G' is a proper interval graph.

L e m m a 6 .11 [27] I f G is a connected induced subgraph of a proper interval graph H , where

$G a contig o f G and is a straight enumeration of H , then T // is a refinement of$>c-

92

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

In essence, Lem m a 6.11 tells us th a t there is a stra igh t enum eration of G' th a t is much

like the straigh t enum eration of G, except th a t some blocks are fu rther “refined” . To

specifically address th is “refinem ent” of certain blocks, Hell et al. observe th a t whenever v

is partia lly adjacent to a block B of G, B will be split into B n N (v) and B \ N (v) in G'.

Furtherm ore, they argue th a t, in any stra igh t enum eration of G ', B fl N (v) and B \ N (v)

occur consecutively. As well, th ey observe th a t whenever v is not p a rtia lly adjacent to a

block B of G, e ither B or B U {v} will be a block of G '.

To sum m arize, if G' is a proper interval graph, th en it has some stra igh t enum eration

which looks much like th a t of G bu t w ith some blocks split and, possibly, one block which

now has v added to it. In determ ining exactly when th e addition of v m aintains a proper

interval graph, we consider the following lemmas.

L e m m a 6 .1 2 [27] Let G be a proper interval graph. I f G + v is a proper interval graph

then v can have neighbours in at most two components o f G.

L e m m a 6 .13 Consider a proper interval graph G, to which a new vertex v is added. Let

C be a component of G containing vertices o f N (v) and let { B i , . . . , B k } be the set o f blocks

in C containing members o f N (v) , where, in a contig o f C , B \ -< . . . -< Bk- I f G + v is a

proper interval graph, then the following properties are satisfied.

1 . [27] B \ , . . . , Bk are consecutive in the contig of C .

2 . [27] I f k > 3, then v is fully adjacent to B z , . . . , B k - 1-

3. I f k > 3, then { S i, ...,.£?*} does not contain three pairwise non-adjacent blocks.

4- I f k = 2 , then v m ust be fully adjacent to at least one o f B \ and Bz-

5. [27] I f v is adjacent to a single block B \ in C , then B \ is an end block.

6 . [27] I f v is adjacent to more than one block in C and has neighbours in another

component, then B i is adjacent to Bk , and one o f B i or Bk is an end block to which

v is fully adjacent, while the other is an inner block.

P ro o f, (of condition 3) Assume the contrary, th a t is, { B \ , . . . ,B k } contains three pairwise

non-adjacent blocks B i , , B i2, and B i3. For each B j , 1 < j < k, let Vj be a vertex in block

B j n N (v) . In G + v, the induced graph on {v, v , , , Vi2, Uj3} forms an induced K \ ^ , therefore,

G + v is not a proper interval graph.

(of condition 4) Assume th a t v is fully adjacent to neither B i nor Bz- As such, consider

vertices bi and bz, from B \ and Bz, respectively, to which v is adjacent, and vertices b[and

&(,, from B \ and Bz, respectively, to which v is not adjacent.

93

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

From cond ition 1 of L em m a 6.13, we know th a t B \ an d B 2 are ad jacen t. F rom L em m a

6.5, we know th a t B 1 c a n n o t have th e sam e neig h b o u rs as B 2. W ith o u t loss of generality ,

assum e th a t B \ is a a d jac en t to som e block B to w hich B 2 is n o t ad jacen t. B y L em m a 6.7

(um bre lla p ro p erty), we know th a t B < B 1, so v is n o t ad jacen t to B . W here 6 is a m em ber

o f B , th e induced g rap h on {b \ , v , b'2, 5} is a K i ^ . T herefo re , G + v is a n o t a p ro p e r in te rva l

g raph . □

For any v ertex ad d itio n , we claim th a t we can d e te rm in e in O (n) tim e w h e th e r Lem ­

m as 6.12 and 6.13 are sa tisfied . Before describ ing how th is is done, consider th e following

o p era tio n s of w hich we can avail.

• G iven a se t o f v ertices S an d a v e rte x u, we can d e term in e in 0 (|S '|) tim e w hether

B (u) C S by trav e rs in g B (u) , beg inn ing a t u, u n til we find a v ertex n o t in S. M ore­

over, given vertices u \ , . . . , Uk belonging to d is tin c t blocks B i , . . . , B ^ , we can use th is

approach to d e te rm in e w hich blocks are su b se ts o f S in 0 (k + |S j) tim e. If each Ui

belongs to S, th e n th is tim e reduces to 0 ([5 j) .

• G iven a se t of v ertices S a n d vertices u \ , . . . , U k belonging to d is tin c t b locks B \ , . . . , Bk ,

for w hich B t C S, we can d e term in e S \ (UBi) in 0 (S |B i |) G 0 (|S |) tim e b y trav e rs in g

each Bi , beg inn ing a t rtj.

• G iven a set of vertices S an d a v e rtex u, we can d e te rm in e S \ B (u) an d S ft B { u) in

0(1.51) tim e by com paring th e b value of each v e rte x in S w ith th a t of u.

T h e afo rem entioned o p e ra tio n s are used by th e a lg o rith m L e f t C o m p o n e n t B l o c k -

STRUCTURE, show n in F ig u re 6.5, to ev a lu a te th e cond itions of L em m as 6.12 an d 6.13.

L e f t C o m p o n e n t B l o c k S t r u c t u r e first exam ines X to d e term in e a v e rte x i>i whose

block, B \ , is th e le ftm ost of all b locks con ta in ing m em bers of X \ th a t is, has th e m in im al

b value over all vertices in X . T h e v ertex v\ , an d hence B \ , can b e de te rm in ed in 0 (|W |)

tim e. R egard ing B \ , we m ake n o te of th e following.

• T h e vertex v\ .

• T h e ad jacency of v, full o r p a rtia l, w ith B 1. As d iscussed previously, we can d e term ine

w h e th e r B \ C X in 0 (|A j) tim e.

• W h e th e r B \ is an end block [/ l (p 1) = b(vx) or J r { v 1) = &(^i)]-

• T h e vertices in X C \ B \ . As d iscussed previously, th is se t can be d e te rm in ed in 0 (|A |)

tim e.

L et C i deno te th e com ponen t con tain ing v\ . P rov ided X \ B 1 ^ 0 an d F r (B 1) ^ B \

1) 7 ̂ 6 (^ i)], we o b ta in sim ilar in fo rm ation a b o u t B 2 = I r { B \) (using v2 = I r (v 1) as

94

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

L e f t C o m p o n e n t B l o c k S t r u c t u r e (G , X)

Input: An adjacency labelling of a graph G created using our dynam ic scheme, and a subset
X of VG.

O utput: Let $ be the stra igh t enum eration of G employed in th e dynam ic scheme, and let
C be the leftm ost com ponent in $ containing a vertex in X . Furtherm ore, where G + v is
the graph formed by adding a new vertex v to G such th a t v is adjacent to exactly those
vertices in X , let the blocks of C be denoted as per the hypothesis of Lem m a 6.13.
Providing G satisfies conditions 1 th rough 3 of Lem m a 6.13, th e algorithm o u tp u ts certain
inform ation about the s truc tu re of G. If G + v does not satisfy these criteria, th e ou tpu t
indicates as such.

1 vi <— a leftm ost vertex in X
2 <— the block containing i>i
3 clawblock <— B \
4 cl aw count <— 1
5 i <-- 1
6 endblock 0
7 adjacent <— 1
8 w h ile X \ U)Z-\Bj =/= 0 and endblock = 0 and adjacent =
9 i f v is no t adjacent to B i th e n

10 if C n (X \ U / 0 th e n
11 error no longer a proper interval graph
12 e lse i — i — 1
13 adjacent <— 0
14 e lse if % > 3 and v is no t fully adjacent to B ^ i th e n
15 error no longer a proper interval graph
16 e lse record the vertex Vi
17 record the adjacency (full or partia l) of v w ith Bi
18 record w hether B i is an end block
19 record (X \ Ulj l \ B j) fl Bi
20 if Bi is not adjacent to clawblock th e n
21 clawblock <— Bi
22 clawcount <— clawcount + 1
23 i f clawcount = 3 th e n
24 error no longer a proper interval graph
25 if F R (B i) = Bi th e n
26 endblock 1
27 e lse i i + 1
28 Vi <- I n i v i ^ i)
29 B t <— the block containing Vi
30 record the value of k as i
31 record the set Y

Figure 6.5: The algorithm L e f t C o m p o n e n t B l o c k S t r u c t u r e used to test th e criteria of
Lem m as 6.12 and 6.13

95

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

a sta rting point for th e vertices in B 2)\ however, we now need to know if X \ 7 ̂ 0.

This calculation is done in the order (X \ B 1) \ B 2, where X \ B i has been determ ined

in 0 (|X |) tim e, as discussed above. This process is repeated, setting Vi = I f i (v i - i) and

Bi = B (v i) = I r { B ^ 1) until one of th e following occurs.

• T erm in a tio n ev en t 1 (v is not adjacent to B , , X \ U lj= 1B j / 0, and there are vertices

in X \ U*= 1jBj th a t belong to C\): In th is case, condition 1 of Lemma 6.13 is violated.

Exactly how to determ ine if there are vertices in X \ U t h a t belong to C\ requires

some consideration. Specifically, we traverse th e F r pointers from Bi to determ ine the

other end block B end of C \, th en check to see if there is some vertex u in X \ (| J *=1 B j) ,

for which B (u) -<; B end [b(u) < b(vend), w here v end is a vertex of B end\. Checking each

vertex u in A l \ (U j = i B j) t o see ^ B (u) ^ B end takes only 0 (|X \ (| J *=1 B j) |) e 0 (|X |)

tim e, however, it takes as much as 0 (n) tim e to traverse th e F r pointers to determ ine

Bend-

• T erm in a tio n ev en t 2 (i > 3, v is adjacent to B i, and v is not fully adjacent to 1):

In this case, condition 2 of Lem m a 6.13 is violated.

• T erm in a tio n ev en t 3 (the variable clawcount has value 3): In th is case, v is adjacent

to three blocks which are pairwise non-adjacent. Therefore, condition 3 of Lem m a 6.13

is violated.

• T erm in a tio n ev en t 4 (v is not adjacent to Bi , X \ \Jj = 1B 3 ^ 0, and there are no

vertices in X \ \S:J=XB 3 th a t belong to C\): In th is case, th e com ponent C 1 containing

v\ satisfies conditions 1 through 3 of Lem m a 6.13, otherwise, the selection of Bi as

lR (B i _ i) guaranteed th a t we would have encountered one of the first th ree term ination

events. M oreover, we can test conditions 4 and 5 in 0 (1) tim e, as we have noted the

value of k, th e adjacency of v w ith B \ and Bk, and w hether B \ is an end block.

Of greater interest, however, is the fact th a t not all the vertices of X belong to the

same com ponent. As such, we m ust also confirm th a t C\ satisfies condition 6 of Lemma

6.13. Given th a t we have noted the vertices v\ and Vk, the adjacency of v w ith B 1 and

Bk, and w hether B \ and Bk are end blocks, we can test th is condition in 0 (1) time.

As well, we m ust verify th a t the vertices JA \U) - \ B j belong to exactly one com ponent,

C2, th a t satisfies conditions 1 through 6 of Lem m a 6.13. We verify these criteria by

using L e f t C o m p o n e n t B l o c k S t r u c t u r e on the set X \ Uj= 1Bj .

• T erm in a tio n ev en t 5 (A \U * =1B j 7 ̂ 0, b u t F r (B z) = Bi): In this case, the vertices

of X belong to more than one com ponent, however, FR(Bi) = Bi gives th a t there are

no vertices in X \ U%j = \B j th a t belong to th e com ponent containing v\. As such, this

term ination event is handled in the same m anner as term ination event 4.

96

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• T erm in a tio n e v e n t 6 (X \ U) = \ B j = 0): In th is case, th e v ertices of X all belong to

th e sam e com ponen t. T h e co m ponen t C \ co n ta in in g iq satisfies cond itions 1 th ro u g h 3

of L em m a 6.13, o therw ise , we w ould have en co u n te red one of th e first th re e te rm in a tio n

events. M oreover, we can te s t con d itio n s 4 a n d 5 in 0 (1) tim e , as we have n o te d th e

value of k , th e ad jacency of v w ith B i a n d B *., an d w h e th e r B \ is an en d block.

L em m a 6.12 an d cond ition 6 of L em m a 6.13 are n o t applicable.

G iven th a t C \ is fin ite , te rm in a tio n even ts 5 a n d 6 g u aran tee th a t th e a lg o rith m L e f t -

C o m p o n e n t B l o c k S t r u c t u r e w ill te rm in a te . T h e exhaustiveness of th e te rm in a tio n

events, along w ith th e careful co n s id era tio n of th e ir connections to L em m as 6.12 a n d 6.13,

ensure th a t we can d e term in e w h e th e r L em m as 6.12 an d 6.13 are sa tisfied .

Now consider th a t term ination event 2 guarantees th a t there are a t m ost th ree values

of i for which B i is exam ined and found not fully adjacent to v . namely, B \ , Bk and Bk+1-

As discussed, each of these adjacencies can be determ ined in 0(1X1) tim e. Furtherm ore,

X \ B \ can be determ ined in 0 (|X |) tim e. For k > 3, each of B 2 , . . . , B k - 1 is a subset

of X \ B \ (each of these blocks is fully adjacent to v); therefore, (X \ B 1) \ U ^ ^ B j =

X \ U kj Z \ B j can also be determ ined in 0 (2 ^ 2 1 B j I) e 0 (|X \ T?i |) G 0 (|X |) tim e. Finally,

(X \ Uj ^ i B j) \ B k = X \ Ukj= \B j can be determ ined in 0 (|X \ Bj\) G 0 (|X |) time.

T h a t is, the to ta l tim e required to determ ine X \ Uj =1B j , from X is 0 (|X |) .

U nfo rtuna te ly , th e ru n n in g tim e o f L e f t C o m p o n e n t B l o Ck S t r u c TURE is do m in a ted

by th e possib le 0 (n) tim e requ ired to d is tin g u ish betw een te rm in a tio n even ts 1 and 3. Specif­

ically, th e ru n n in g tim e of L e f t C o m p o n e n t B l o c k S t r u c t u r e , hence, th e tim e requ ired

to verify th e con d itio n s of L em m as 6.12 an d 6.13 could b e as m uch as 0 (n) .

H ereafter, we assum e th a t L em m as 6.12 an d 6.13 are sa tisfied by ou r v e rtex add ition .

N o te th a t , w hile verify ing th a t L em m as 6.12 an d 6.13 are satisfied, we have reco rded a g rea t

deal a b o u t th e s tru c tu re of th e blocks. T h is in fo rm atio n will b e u sed to help us re lab el th e

vertices.

In describ ing th e relabelling , le t us first consider w hen th e m em bers o f X belong to one

com ponen t, C. As in th e hypo thesis of L em m a 6.13, le t { B \ , . . . , B k } d en o te th e se t of

blocks in C th a t are ad jac en t to v, such th a t in th e contig of C, B i -< . . . -< Bk- W e consider

th ree cases, depend ing on th e value of k.

1. k = 1. B y L em m a 6.13, B \ is an end block. W ith o u t loss of generality , assum e th a t

H i x B , for any block B in C.

If v is fully ad jacen t to B \ , an d C = B\ [f f t (v 1) = 6 (fi)] , th e n we ad d v to B \ , as

dep ic ted in F ig u re 6.6(a). If v is fully ad jacen t to B 1, b u t C ^ B 1, th e n we ad d th e

block {n} im m ed ia te ly before B 1, as dep ic ted in F igure 6 .6(b). F inally , if v is n o t fully

ad jacen t to B 1; th e n we p a r ti tio n B i U {;;} in to {w} -< X -< B \ \ X , as dep ic ted in

97

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure 6.6(c).

add v r ,
B i ' B x U { (;}

(a) v is fully adjacen t to B \ , and th e vertices of B \ form
a com ponent

Madd v ------
B i B i

(b) v is fully adjacen t to B \ , and th e vertices of B \ do not
form a com ponent

add v
B i * W B j \ X _______

(c) v is not fully ad jacen t to B \

Figure 6 .6 : Adding th e vertex v, where v is adjacent only to B \ . W ithou t loss of generality,
B \ is assum ed to be the leftm ost block in its com ponent

2. k = 2 . By condition 4 of Lem m a 6.13, v m ust be fully adjacent to a t least one of

B i and B 2. W ithou t loss of generality, assum e th a t v is fully adjacent to B \ . Let

B i = Fl (B i) and B j = Fr (B i).

Assume first th a t B i = B \ [/l (u i) = &(r>i)]- N ote th a t Lem m a 6.4 guarantees th a t

B 2 -< F r (B 2). If v is fully adjacent to B 2 and B j = B 2 [fR (v i) = b(v2)}, then

add v to B \ , as shown in Figure 6.7(a). If v is fully adjacent to B 2, b u t B 2 -< B j

[b(v2) = f R {vi)], then add the block {r;} im m ediately before B i, as shown in Figure

6.7(b). Finally, if v is not fully adjacent to B 2, then we partitio n B \ U B 2 U {u} into

{u} -< B i -< B 2 fl X -< B 2 \ X , as shown in F igure 6.7(c).

Now assume th a t B i -< B \ [/l (v i) < h(ui)] As such, if G' is to be a proper interval

graph, then the block containing v in the stra igh t enum eration of G' m ust be ordered to

• the right of any resultant block of G' th a t contains a m em ber of B \ \ for simplicity, we

indicate this by saying th a t, B \ -< B{ v) . If B 2 -< B j [6(^2) < f R (v 1)], then B (v) -< B\;

th is contradiction tells us th a t G' is not a p roper interval graph. Consequently, assume

th a t B j :< B 2, which is to say th a t B 0 = B 2 [fR (v 1) = 6(^2)]- Furtherm ore, if v is

not fully adjacent to B 2, then B \ adjacent to B 2 gives B 2 -< B (v) , yet, w ith v not

fully adjacent to B 2 and v adjacent to B 1, B (v) -< B 2, which is another contradiction.

Therefore, assume th a t v is also fully adjacent to B 2.

Given B, B \ , B j = B 2, and v fully adjacent to B 2, if F l (B 2) -< B \ [/ l (u 2) = b(ui)],

98

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

(a) v is fully adjacent to £ 2 , and F r (B 1) = £2

M
Bo

£1
ad d v

Bo

B\

(b) v is fully ad jacen t to £ 2 , and £ 2 -< F r (B 1)

Bo
a d d v

Bo n x

{«} B 2 \ X

B 1

(c) v is no t fully adjacent to B2

Figure 6.7: Adding the vertex v, w here v is adjacent only to B \ and B 2 and FR(B 1) = B \ .
W ithout loss of generality, we have assum ed th a t v is fully adjacent to B \

then B 2 < B (v) . If, furtherm ore, B 2 -< FR (B 2) [b{v2) < f R (v2)], then B (v) -< B 2,

which is a contradiction. On th e o ther hand, if F R (B 2) = B 2 [fR (v2) = b(v2)}, then

we add the block {v} im m ediately after B 2, as depicted in Figure 6.8(a).

Finally, given Bi -< B \ , B j = B 2, v fully adjacent to B 2, and F R(B 2) = B 1, if

F r { B 2) — B 2 [fR (v2) = ^(^2)], th en we need only add v to B 2 , as depicted in Figure

6.8(b). However, if B 2 -< FR {B2) [b(v2) < f R (v2)], then we add the block {u} between

B \ and B 2 , as depicted in Figure 6.8(c).

3. k > 3. By Lemma 6.13, v is fully adjacent to B 2, . . . , B k - 1- Let B a = FR{B 1) and

B f3 = FR{Bk)- As well, let ba be some vertex in B a , and bp be some vertex in Bp.

Observe th a t B \ -< B a and Bp -< Bk, otherwise, B \ and Bk do no t belong to the same

component. Moreover, by definition, F R(B a) p< B \ and Bk rl FR {Bp). Furtherm ore, if

B a ■< Bp, then there cannot be another block B for which B a < B < Bp [b(IR (ba)) yf

b (b p)] . Otherwise, condition 3 of Lem m a 6.13 is violated. N ote th a t the algorithm

L e f t C o m p o n e n t B l o c k S t r u c t u r e would have detected th is violation.

We consider four cases.

(a) v is fully adjacent to Bk, and partially adjacent to B \ . In th is case, B a -< B (y)

as B a is adjacent to B \ . Since B a is adjacent to FR (B a), B (v) is also adjacent

to FR (B a), so we m ust ensure th a t FR (B a) y< Bk [f R . (b a) < b(vk)\; otherwise, G'

is not a proper interval graph.

99

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Bi_____

~2
add v

B i _______________

 w
B2______

(a) FL (B 2) < B i

Bl j jadd v
B2 B 2 U {u}

(b) F L (B 2) = B l and FR {B2) = B 2

M
B 1

B 2
add v

B 1

B 2

(c) F r {B 2) = B i and B 2 -< F R (B 2)

Figure 6.8: Adding th e vertex v, where v is adjacent only to B \ and B 2 and F l{ B \) -< B \ .
W ithout loss of generality, we have assum ed th a t v is fully adjacent to B \

Now B i -< F L (lR (B a)), therefore, B a -< B (v) -< I R (B a). Yet v is adjacent to Bk,

so we m ust also ensure th a t Bk ^ FR (Iii(Ba)) [b(vk) < f r (IR.(ba))}', otherwise,

G' is not a p roper interval graph. To create the new contig, we partition B \ into

B i \ X -< B i fl X and insert the block {u} im m ediately after B a , as depicted

Figure 6.9(a).

(b) v is fully adjacent to B 1, and partially adjacent to Bk- In th is case, B (v) ^ Bp

as B k is adjacent to B p . Since B p is adjacent to F l (B p) , B (v) is also adjacent

to F l(B p) , so we m ust ensure th a t B i -< F L (Bp) [f r (u i) < fL{bp)}\ otherwise, G'

is not a proper interval graph.

Now F r (I l (B p)) -< Bk , therefore, I i { B p) < B (v) -< B p . Yet v is adjacent to f?i,

so we m ust also ensure th a t F r (I l (B p)) ^ B i [fL(lL(bp)) < &(ui)]; otherwise,

G' is no t a proper interval graph.

To create the new contig we partition Bk into B k fl X -< B k \ X , and insert the

block B c = {w} im m ediately before Bp. This scenario is v irtually identical to

the case when v was fully adjacent to Bk and partia lly adjacent to B i , and is

depicted in F igure 6.9(b).

(c) v is partia lly adjacent to b o th B 1 and Bk- As we have seen, these conditions ne­

cessitate th a t B a -< B (v) and B (v) -< Bp. As such, if B p < B„ \b(bp) < b(ba)},

then G' cannot be a proper interval graph.

From the previous cases, we also require th a t F R (B a) F B k [//?(?>«) < b(vk)}

100

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

and B \ -< F R{Bp) [&(fi) < / i (b /3)]. However, given th a t v is partially adjacent

to b o th B 1, and B k , we actually have a slightly stronger requirem ent, namely,

Fr (B c) B k [fR (ba) < b(vk)] and B x -< F L (Bp) [6(ui) < / l (M] - Providing

B a -< B t3, bo th of these conditions are satisfied.

In essence, th is scenario requires th e “com bination” of th e two previous rela­

bellings. T h a t is, we partition B 1 in to B \ \ X -< B \ fl X , we partition B k into

B k CiX -< B k \ X , and we insert the block {u} between B a and Bp. This scenario

is depicted in Figure 6.9(c).

Ba

AA B ' n Xadd v
Bk ► By

(a) v is fully adjacent to B k and p a rtia lly adjacen t to B 1

S i.
Ba Bi Bk n x
— add V — ---------------------- — --------

Bi_________ Bk________ ~ W ___________ Bk \ X

(b) v is fully adjacent to B 1 and p a rtia lly adjacen t to B k

Bq______ Ba
Bq add v B\ fl X Bf.C\X

Bi ________Bk______ B y \ X W __________ Bk \ X

(c) v is partia lly adjacent to b o th B \ and Bk

Figure 6.9: Adding th e vertex v, w here v is ad jacen t to B \ th rough B k (k > 3)

(d) v is fully adjacent to bo th B \ and B k . We consider three further cases.

i. B q Bp \b(ba) < b(bp)}. Using an earlier argum ent, we know th a t there can­

not be a block B for which B a -< B -< Bp [b(Ifi(ba)) b(bp)]. Now if

B (v) ^ B a , then B a -< Bp gives th a t B (v) is not adjacent to B k , which is a

contradiction. Similarly, if Bp ^ B (v) , th en B a -< Bp gives th a t B (v) is not

adjacent to B 1, which is a contradiction. Thereby, B a ~< B(v) -< Bp, so we

add the block {t>} between B a and Bp, as shown in Figure 6.10.

ii. B a = Bp [6(6a) = b{bp)}. We consider four cases.

• FL (B a) = B 1 [fL (ba) = b(v 1)] and F R (B a) = B k [fR (ba) = 6(dfc)]. Since

B a has the same adjacency as v, we add v to B a , as depicted in Figure

6 .1 1 (a).

101

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

M ___________
Bp Bp________________

 Ba add v Ba
Bi Bk___________ Bi________________ Bk________________

Figure 6.10: Adding th e vertex v, where v is fully adjacent to B \ th rough Bk (fc > 3), and
B a = Fr (B i) -< FL(Bk) = Bp

• FL (B a) -< B x [fLjbg) < b{vi)} and F R (B a) = B k [fR (ba) = b{vk)]. Since

Fl {B o) -< B i , B a -< B (v) . Furtherm ore, observe th a t B \ -< F i (I R (B a)),

so B (v) -< I R (B a). As such, we m ust insert the block {w} im m ediately

after B a , as shown in Figure 6.11(b).

• FL (B a) = B i [fL (ba) = b(ui)j and B k -< FR (B a) [b(vk) < f R (ba)]. A n a r-

gum ent sim ilar to the preceding one gives th a t the block { v \ m ust be

inserted im m ediately before B a , as shown in Figure 6.11(c).

• FL (B a) ^ B \ [fhibg) < b(vi)] and B k -< F R (B a) [b(vk) < f R {ba)]. From

the previous cases, we see th a t B a -< B (v) and B (v) -< B a , which is a

contradiction. Thereby, G' is not a proper interval graph.

B,
Bq — Bp

B k

add v B a U { » }

Bi_____ Bk

(a) F L (B a) = B i , and F R (B a) = B k

{r}
B a = Bp add v

B\ B k
B q

Bi Bk

(b) F L (B q) -< B i , and F R (B a) = B k

M
Bq — Bp add v B q

Bi B k Bi Bk

(c) F L (B q) = B i , and B k ■< F R (B a)

Figure 6.11: Adding the vertex v, where v is fully adjacent to B \ th rough B k (k > 3), and
B a = F r {B i) — F l { B i~) — Bp

iii. Bp B a [b(bp) < b(ba)}. By definition, F k (B a) ^ B \ and B k < FR (Bp),

therefore, Fi,{Bp) ^ B \ and B k < F R {B a). We consider four cases.

• FL (Bp) = B j { fijbp) = fr(vi)] and F R (B a) = B k [fR (ba) — b(vk)\. Since

F l (B p) = B i , Ff,{Bp) < F l (B a) gives B i < FL {Ba), so FL (B a) =

102

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

F i(B p) = B i . Similarly, FR (B 0) = F R (B a) = B k , so B a = Bp. This

contradiction tells us th a t this case cannot occur.

• Fl (B p) -< B x [fL (bp) < fe(t7i)] and F R (B a) = B k j fR (ba) = b(vk)}. Since

FL {Bp) < B i , Bp < B (v) . As such, F R (B p) ^ B k [f R (bp) < b(vk)},

otherwise, G' is not a proper interval graph.

Now if F R{B a) = B \ [/ l (6 q) = &(ui)], th en B a has th e sam e adjacency

as v so we add v to B a , as illu stra ted in F igure 6.12(a). Otherwise, if

F l (B o) -< B \ [fi,(ba) < b(ui)]> we m ust insert th e block {u} immediately

after B a , as illustrated in Figure 6.12(b), because B i -< F R(IR(B a)).

• FL(Bp) = B x {fL (bp) = b(ui)] and B k -< F R (B a) {b(vk) < f R (ba)]. This case

is v irtua lly identical to the previous one. As such, we we m ust check th a t

B i r< FL (B a) [B(Vl) < f L (b*)}.

If F R {Bp) = B k [f R (bp) = b(vk)}, th en we add v to Bp, as shown in Fig­

ure 6.12(c). O therwise, if B k -< F R (Bp) [b(vk) < f R (bp)], we m ust insert

the block {v} im m ediately before Bp, as illu stra ted in F igure 6.12(d).

• FL(B p) ^ B \ [f L (bp) < b(vi)] and B k -< F R (B a) [b(vk) < f R (ba)}. Since

B k -< FR (B a), B (v) ~< B a . Now if F L (B a) -< B x \ fL {ba) < b{vi)], then

B a -< B (v) , which is a contradiction th a t tells us th a t G' is not a proper

interval graph. Therefore, FR(B a) = B x. Similarly, FR (B p) = B k , and

we m ust verify th a t FR (Bp) ^ B k [fR {bp) < b(vk)}.

Now consider FR {IL {B X)). Since F l (Fr (Il (B i))) < (IL (B x)) -< B x,

Fr {Il {B \)) -< B (v) . Similarly, B (v) -< F L (IR (B k)). As such, we m ust

check the condition F r (Il (B i)) ■< FL (IR (B k)) [fR (IL (v i)) < / l ^ h K))] -

Since Fk (Bp) -< B x, we also know th a t Bp ■< Fr (Ir (B i))\ similarly,

FL{IR {Bk)) < B a .

If there exists a block B such th a t Fr (Il (B x)) -< B -< F R{IR {Bk)), then

B \ < Fl (B) and F r (B) ^ B k . Yet Bp -< B , where F R (Bp) = B k ,

therefore, F r (B) = B k . Similarly, B x = FR{B), so we m ust add v to B

as shown in Figure 6.12(e). Note th a t we have clearly defined FR{B) and

FR {B), therefore, there is only one such block B.

If there does not exist a block B such th a t F r (Il (B x)) -< B < F i (I R (B k)),

then we m ust add the block {u} betw een F r (I i (B j)) and F i (I R (B k)).

This scenario is also shown in Figure 6.12(e).

Now let us consider when the m embers of X belong to two distinct components. From

condition 5 of Lemma 6.13 we know th a t each segment m ust contain an end block to which

v is fully adjacent. We add v by merging the two contigs and placing the block {v} between.

Let the contigs containing the two segments be <E> = B \ B k and = B[-< . . . -<

103

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

B [, where, w ithout loss of generality, $ -< <F. N ote th a t we can follow I I and I r pointers, as

necessary, to determ ine the end blocks of $ and flu If Bk and B[are the end blocks to which

v is fully adjacent, then the new m erged contig will be $ -< {u} -< \k, however, we note th a t

it may also be necessary to split some of th e blocks in th e m erged contig. C onstruction of

th is new m erged contig requires us to move $ over to \IL

Let B i be the leftm ost block in $ to which v is adjacent, and let B '■ be th e rightm ost

block in 'L to which v is adjacent. If v is partia lly adjacent to Bi, then we m ust partition

B i in to B i \ X -< B i f] X . Similarly, if v is partia lly adjacent to B p then we m ust partition

B j into B j fl X -< B ' j \ X . The change in th e straigh t enum eration is illu stra ted in Figure

6.13 which considers when the end blocks to which v is fully adjacent are B k and B[, w ith

v fully adjacent to B p bu t not Bi.

Similar merges are done for the o ther scenarios in which the end blocks fully adjacent

to v are Bk and B[, B \ and B [, and B \ and B[. In the case where the end blocks are fully

adjacent w ith v are Bk and B[, the m erged contig is T -< {)/} -< th is merge am ounts to

a move and “flip” of <F.

As we have seen, the algorithm L e f t C o m p o n e n t B l o c k S t r u c t u r e allows to deter­

mine a great deal of inform ation abou t th e contigs containing m em bers of X . The cor­

rectness, a t least the block level, of our algorithm is due to the careful consideration of the

exhaustive cases which can be identified according to inform ation obtained from L e f t C o m ­

p o n e n t B l o c k S t r u c t u r e , as well as specific vertex-level inform ation. Again, ensuring

th a t the algorithm does w hat we w ant it to do, in term s of pointers and vertex labels, is

a m a tte r of verification w ithin each individual case. Recall th a t m any of th e vertex-level

instructions are presented in A ppendix C.

D e le t in g a n e d g e

Let uv be the edge to be deleted, where X u and X v denote the neighbourhoods of u and v

in G , respectively. As well, let B i and B j be th e blocks containing u and v, respectively, in

the contig B \ Bk of the com ponent C containing uv. W ithou t loss of generality, let

1 < i < j < k.

The following theorem addresses the case where i = j .

L e m m a 6 .1 4 [27] Let u and v be two adjacent vertices in a proper interval graph G. I f

N[u\ = N[v], then G — uv is a proper interval graph i f and only i f the component containing

u and v is a clique.

Consequently, if i = j [b(u) = b(v)}, then i = j = k — 1 = / r (v)]; otherwise, G' is

not a proper interval graph. In th is case, we partition the contig B i to create a new contig

{u} -< B \ \ { u ,v } {u}, as depicted in Figure 6.14(a).

104

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

On the o ther hand, if i j , then the relabelling is slightly more com plicated. In th is

case, the following lem m a applies.

L e m m a 6 .15 [27] Let u and v be adjacent vertices o f a proper interval graph G. A s well,

let B \ ■< . . . < B k be a contig o f G, such that u G B i and v G B j, fo r some 1 < i < j < k.

The graph G — uv is a proper interval graph i f and only i f FR (B i) = B j and F i (B j) = B i.

Consequently, if i ± j , th en FR (B i) — B j \ fR (u) = b(v)} and FL (B j) = B i [/ l (u) =

&(«)]; otherwise, G' is no t a proper interval graph. Observe th a t if 1 < i [/ l (zz) ^ b(u)],

B j = {u} [ni(t)) = u], FL (B i - 1) = FL (B i) [/ l (/ l (w)) = / l (u)] , and FR (B i - i) = B j - 1

[/fi(^i(w)) = 6 (/l(u))] , th en we m ust move u into B i - 1. Similarly, if j < k, B i = {zt},

FR (B j+1) = FR (B j) , and F L {BJ+\) = B i+\, th en we m ust move v in to B j +1.

Exactly how the labelling is changed depends on w hether u is moved in to B i - 1, v is

moved into B j+ 1, B i = {u }. and B j = {?/}. We consider each case, w ith respect to u,

separately, noting th a t th e sam e considerations m ust also be given for v.

• If u is to be moved into B i - 1, th en th e straigh t enum eration changes as shown in

Figure 6.14(b).

• If u was no t moved into B ,-] and B i = {'«}, then the stra igh t enum eration changes

as shown in F igure 6.14(c).

• If u was not moved into jB,_i and B i contains vertices o ther than u , then we m ust

partition B i into {zt} -< B i \ {zz} (in th e case of v, we would partition B j in to B j \ {u} -<

{u}). This scenario is depicted in F igure 6.14(d).

The correctness, a t least the block level, of our algorithm is due to the careful consider­

ation of the exhaustive cases. Again, ensuring th a t the algorithm does w hat we w ant it to

do, in term s of pointers and vertex labels, is a m atte r of verification.

A d d in g a n e d g e

Let uv be the edge to be added, where X u and X v denote the neighbourhoods of u and v

in G, respectively. The following lemmas characterize when G' is a proper interval graph.

L e m m a 6 .16 [27] I f u and v are in d istinct components o f a proper interval graph G,

then G + uv is a proper interval graph i f and only i f u and v are end vertices in a straight

enumeration o f G.

L e m m a 6 .17 [27] Let u and v be non-adjacent vertices belonging to the sam e component

o f a proper interval graph G. As well, let B i -< . . . < Bk be a contig o f that component,

where u £ B i and v € Bj , fo r some 1 < i < j < k. The graph. G + uv is a proper interval

graph i f and only i f FR (Bi) = B j - 1 and F i (B j) = B i + \.

105

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

W ithou t loss of generality, let us assume th a t b(u) < b(v). W hile considering the addition

of a vertex, we saw th a t, by traversing Fr pointers beginning at u, we can determ ine, in

0 (n) tim e, w hether u and v belong to the same com ponent. If u and v belong to the

same com ponent, th e conditions Fr (B i) = B j - 1 [/i?(u) = 6(/ l(u))] and Fl (B j) = B i + 1

[Il (v) = 6(/h (u))] m ust be satisfied; otherwise, G ' is no t a proper interval graph. O n the

other hand, if u and v do no t belong to th e same com ponent, u and v m ust be end vertices

[/ i (u) = K u) or / f l (w) = b(u), and / l (v) = b{v) or fn (v) = b(v)]m, otherwise, G' is no t a

proper interval graph.

Having determ ined w hether G ' is a proper interval graph, we consider th e following

cases.

1. The vertices u and v belong to distinct com ponents. In th is case we will need to know

inform ation abou t all th e blocks in the com ponents containing u and v. Specifically, we

determ ine all the blocks by following Fr and Fr pointers, keeping a reference vertex

Vi from each block B , . G athering th is inform ation can take as much as 0(?i) tim e.

Let $ = B \ -k . . . -k Bk be the contig of the com ponent containing u. and let 'L =

B[-k . . . B'{ be th e contig of the com ponent containing v. If u £ B k and v £ B[,

then the new m erged contig will be $ -k T; however, we note th a t it m ay also be

necessary to split some of the blocks in the m erged contig. Specifically, if Bk ^ {u}

[nx(u) 7̂ u], th en we m ust partition B k in to B k \ {u} -k {«}; similarly, if B{ ^ {u}

[nx(v) ^ u], th en we m ust partition B[into {u} -< B [\ {u}. Similar merges and splits

are done for the o ther scenarios in which u G B k and v € B[, u £ B \ and v G B [, and

u £ B i and v € B[.

The change in the stra igh t enum eration is illustrated in Figure 6.15(a) which considers

when u £ Bk and v £ B [, w ith B[= {u} bu t no t B k 7 ̂ {w}.

2. T he vertices u and v belong to the same com ponent. As per the hypothesis of Lemma

6.17, let B i -k . . . -k B k be the contig of the com ponent containing u and v, where

u £ B i and v £ B j , for some 1 < i < j < k. We consider two further cases.

(a) B i and B j are end blocks [/l(m) = b(u) and / r (v) = &(«)]■ In this case, X u =

X v . By Lem m a 6.7 (um brella property), the contig contains three blocks, namely,

{«} -k X u -k {«}. The new com ponent will consist of a single block, formed by

merging the th ree blocks into one new block, as shown in Figure 6.15(b).

(b) A t least one of B t and B j is not an end block [f i{ u) ^ b(u) or / r (v) ^ b(v)]. In

th is case, X u / X v . If B i = {«} \nx(u) = u], F r {B3- 1) = F R (B j) [/n (/ i (n)) =

/ r {v)] and F c (B j„ 1) = B i [}l {Il (v)) = 6(w)], then we move v from B j into B j - 1.

Similarly, if B j = {n} [nx(v) = v], FL {B i+1) = F L(B t) [fL (lR {u)) = f L (u)}

106

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

and FR (B i+i) = B 3 [/ i ? (/ f l (u)) = b(v)}: th en we move u from B l into B i+\.

This moving of u and v is v irtua lly identical to one of the cases discussed when

considering the deletion of a edge.

If u was not moved, and B i contains vertices o ther th a t u, then we p a rtitio n Bi

into B i \ { u } -< {u}. Similarly, if v was no t moved, and B j contains vertices o ther

th a t v, then we partition B j in to {v} -< B j \ {u}.

E xactly how th e labelling is changed depends on w hether u is moved into B i+1,

v is moved into B j^ i , B i = {u}, and B j = {u}. We consider each case, w ith

respect to u , separately, noting th a t th e same considerations m ust also be given

for v.

• If u is to be moved into B i+ i, th en the straight enum eration changes as

shown in Figure 6.15(c).

• If u was not moved into B l+\ and B i = {'«}, then the straigh t enum eration

changes as shown in F igure 6.15(d).

• If u was not moved into B l+i and B i contains vertices o ther th a n u, th en we

m ust partition B t in to B i \ {u} -< {?/} (in the case of v, we would partition

B j into {u} -< B j \ {?;}). This scenario is depicted in Figure 6.15(e).

The correctness, a t least the block level, of our algorithm is due to the careful consider­

ation of the exhaustive cases. Again, ensuring th a t the algorithm does w hat we w ant it to

do, in term s of pointers and vertex labels, is a m a tte r of verification.

6.2 Sum m ary

In th is chapter, we apply a d istribu ted pointer technique, along w ith the circular doubly

linked list technique seen in C hapters 4 and 5, in order to develop error-detecting dynam ic

adjacency labelling schemes for proper interval graphs. Our dynam ic scheme, which is

largely based on a centralized scheme of Hell, Sham ir, and Sharan [27], uses O (logn) bit

labels and handles all operations in O (n) tim e.

107

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Bg________________ Bj,________________

Ba add v 5a U {t?}

B, Bk ^ Si_________ Bk________

(a) F L {Bp) -< B i , FR (B a) = B k , and FL (B a) = B \

I ^ Z H Z _ iiL
Ba add v Ba

Bi__________ Bk_______ B!

(b) FL (Bp) -< B \ , F R {B a) = B k , and F L (B a) -< B i

 Bg U {■»}
B„ add v

B_________ Bk_________ B,_________ Bk

(c) Fl (B p) = B i , B k -< F R (B a), and F R (Bp) = B k

~ ~ ~ ~ W________

Ba add v__ Ba
Bi Bk B,

(d) FL {Bp) = B i , B k -< FR (B a), and B k -< F R (B g)

B_____________ B u f f}
Bg Bg

add v Ba
Bi_________________ Bk________________ B i_________________ Bk

(e) FR (Bp) -< B \ and B k -< F R (B a). N ote th a t th e block B m ay be em pty

Figure 6.12: Adding the vertex v, where v is fully adjacent to B i th rough B k (k > 3), and
Bp = F L (B k) -< Fr (B \) — B a

4> A {'(.'} A fl_____________

add r / " — > I /?. \ A" {#}
 ̂ ' - __

Figure 6.13: Adding the vertex v, where the neighbours of c span more than one component.
In th is case, v is fully adjacent w ith B i+1, . . . , B k and B [,. . . , B j , and partia lly adjacent
w ith Bi

108

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Bi \ { u , v }
Bi______ delete uv- M ___ M

(a) N[u] = iV[i)]

Bi Bj+i Bi \ {u} Bj+1
------------------ —*----- dele te uv '

g j - i Bj = {?;} »• -Bj-i U {u}Bj = M

(b) JV[u] / N[v], u is m oved into B i - i , and v is not m oved in to B j +1

L Sia delelem S i^ k L M
B j + 1

B < - i Bj B j - i Bi \ M

(c) JV[u] ^ lV[n], u is not moved in to B i - 1, and B i = {u}

B A M
Bj \ M

(u
d e le te uv

Bi B i + 1 {u}__________ H _

B j-1 ______ _______ _ B j.! g i+i

(d) JV[u] 5̂ IV[v], u is not moved into B i - 1, and Bi =£ {u}

Figure 6.14: Deleting the edge uv

109

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

$ -< $

Bk Q
add uv Bk \ M c; = M

Bj - M _ {«}

(a) T he vertices u and v belong to d istin c t com ponents. In th is case, u € B v € B[, B k ^ {u},
and B j = {u}

X u = x v
— ——— — , , a d d uv

B j = { u } B j = {tt} ------------- ^ U {m, d}

(b) T h e vertices u and v belong to th e
sam e com ponent. In th is case, b o th B j
and B j are end blocks

Bj'7-1

Bj+1 , , Bi+1U {u}
--------------------------------- a d d u v —— ----------------

Bi_______ Bj = {u} ~ Bj \ {u} Bj = {u}

(c) T he vertices u and v belong to th e sam e com ponent. In th is case, a t least
one of Bi and Bj is an end block, u is moved into B i+ i, and v is no t m oved into
B j -1

B j - ^
B ^ _ B ,

B i+1
Bj = M Si.

a d d uv
Bj

Bj = {u}

(d) T he vertices u and v belong to th e sam e com ponent. In th is case, a t least one of Bi and Bj is an end
block, u is not moved into B j+ i , and B i = {n}

Bii+l
B, +i

Bt Bj = M
a d d uv M

Bi \ M Bj = 111}

(e) T he vertices u and v belong to th e sam e com ponent. In th is case, a t least one of Bi and B3 is an
end block, u is not moved into B i+ i , and B j ^ {u}

Figure 6.15: Adding the edge uv

110

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Chapter 7

Conclusion

In order to increase the applicability of inform ative labelling schemes to real world problems

in which the underlying topology is constantly changing, we have form ally defined the

concept of a dynam ic inform ative labelling scheme. There have been earlier publications on

th is subject, bu t these works have been based exclusively on our in tu itive understanding

of how sta tic problem s are dynamized. W hile presenting th is definition, we introduced the

concept of error-detection, in which the relabeller recognizes when th e modified graph is

no longer a m em ber of the family under consideration. A dditionally, we dem onstrated the

connection between error-detection and the graph recognition problem , and identified and

discussed the qualities th a t make a good dynam ic scheme.

The la tte r half of our work was dedicated to the developm ent of error-detecting dynam ic

adjacency labelling schemes for four classes of graphs. Common to th e development of

dynam ic schemes for all these classes was the use of a technique th a t employed circular

doubly linked lists to encode inform ation about graph substructures a t the vertex level.

Moreover, for one of the classes we developed a technique to d istribu te pointers. Each of

the dynam ic adjacency labelling schemes th a t we developed was fully dynam ic, th a t is, the

allowed graph operations were the addition or deletion of a vertex (along w ith its incident

edges), and the addition or deletion of an edge.

In the case of line graphs, our dynam ic scheme used O (logn) bit labels and updates

could be perform ed in 0 (e) tim e, where e was the num ber of edges added to , or deleted

from, the line graph. In developing th is dynam ic scheme, we in troduced a new concept

known as partition isomorphism, and developed theory regarding the types of line graphs

th a t can be changed to produce new line graphs.

In the cases of r-m inoes, defined by M etelsky and Tyshkevich [44] as the class of graphs

w ith no vertex in more th an r m axim al cliques, our dynam ic scheme used O (r lo g n) bit

labels. Edge addition and deletion were handled in 0 (r 2D) tim e, vertex addition in 0(?’2e2)

tim e, and vertex deletion in 0 (r 2e) tim e, where D was the m axim um degree of the vertices

in the original graph and e was the num ber of edges added to, or deleted from, the original

111

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

graph.

In the case of r-bics, a new class which we defined to be the graphs w ith no vertex

in more than r m axim al bicliques, our dynam ic schemes used O (rTogn) b it labels. Edge

addition and deletion, as well as vertex deletion, were handled in 0 (r 2B) tim e, and vertex

addition in 0 (r 2n B) tim e, where B was the size of th e largest biclique in the original graph.

Finally, in the case of proper interval graphs, our dynam ic scheme used O (logn) b it

labels and handled all operations in O (n) tim e.

O ur work on dynam ic inform ative labelling schemes leaves several open questions.

1. W hat general m echanism s can be developed for creating dynam ic schemes from sta tic

schemes (besides recreating the graph and running th e m arker each tim e the graph is

changed)? T he work of K orm an, Peleg, and Rodeh [39], offers such a technique for th e

dynamic weighted trees, when considering any function / th a t satisfies th e following

properties.

• For any two vertices u and v, f (u , v) depends entirely on the p a th between them .

• For any three vertices u, v , and w , where w is on the path between u and v,

f (u ,v) can be calculated in polynom ial tim e from f (u ,w) and f (w ,v) .

Such functions include routing, distance, separation level, and flow. Instead of fixing

the graph class and developing m echanism s for different functions, can we fix the

function and develop m echanisms for different graph classes?

2. Is there a dynam ic adjacency labelling scheme for proper interval graphs th a t uses

o(logn) b it labels. We know th a t there are 2 °(n) proper interval graphs on n vertices

[22], so there could be a dynam ic scheme w ith labels th a t use 0 (1) bits. T he existence

of such a dynam ic scheme would im ply the the existence of an adjacency labelling

scheme th a t uses 0 (1) b it labels.

3. Is there a dynam ic adjacency labelling scheme for proper interval graphs th a t uses

© (logn) bit labels, yet allows relabelling in o(n) tim e? U nfortunately, the dynam ic

scheme presented for proper interval graphs in C hap ter 6 is ham pered by the fact th a t

we must m aintain the stra igh t enum eration, which necessitates using as much as 0 (n)

time for each graph operation.

4. Is there a dynam ic adjacency labelling scheme for interval graphs th a t uses O (logn)

b it labels. Interval graphs, which are no t all th a t different from proper interval graphs,

exhibit an adjacency labelling scheme th a t uses O (logn) bit labels [45], It makes sense

th a t the dynam ic scheme for proper interval graphs presented in C hapter 6 m ight be

extended to give a dynam ic scheme for interval graphs.

112

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

5. C an we devise dynam ic inform ative labelling schemes for functions o ther th an adja­

cency, over and above the work th a t has already been done on trees [37, 39]? The

class of trees, although relevant to m any applications, is typically th e easiest family

on which to consider a graph theoretical problem. Are we able to devise such dynam ic

schemes for classes of size)?

113

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Bibliography

[1] S. A biteboul, H. K aplan, and T. Milo. C om pact labeling schemes for ancestor queries.
In Proceedings o f the Twelfth Annual A C M -S IA M Sym posium on Discrete Algorithms
(W ashington, D .C ., USA), pages 547-556, 2001.

[2] A. V. Aho, J. E. Hopcroft, and J . D. Ullm an. The Design and Analysis o f Computer
Algorithms. Addison-Wesley, Reading, 1974.

[3] S. A lstrup, C. Gavoille, H. K aplan, and T . R auhe. Identifying nearest common ancestors
in a d istribu ted environm ent. IT-C Technical R eport Series 2001-6, The IT University
of Copenhagen, 2001.

[4] S. A lstrup, C. Gavoille, H. K aplan, and T . R auhe. N earest common ancestors: A
survey and a new d istributed algorithm . In Proceedings o f the Fourteenth A nnual A C M
Sym posium on Parallel Algorithms and Architectures (Winnipeg, Canada), pages 258-
264, 2002.

[51 S. A lstrup, C. Gavoille, H. K aplan, and T. R auhe. N earest common ancestors: A survey
and a new algorithm for a d istribu ted environm ent. Theory o f Computing System s,
Online firs t:O F l-O F 16 , 2004.

[6] S. A lstrup and T. Rauhe. Small induced-universal graphs and com pact implicit graph
representations. In 43rd Annual Sym posium on Foundations o f Com puter Science (Van­
couver, Canada), pages 53-62. IE E E , 2002.

[7] R. B. Borie, R. G. Parker, and C. A. Tovey. Recursively constructed graphs. In J. L.
Gross and J. Yellen, editors, Handbook o f Graph Theory, pages 99-108. CRC Press,
New York, 2003.

[8] A. B ranstad t, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM M onographs
on Discrete M athem atics and A pplications. SIAM, Philadelphia, 1999.

[9] R. C. Brigham . Bandw idth. In J. L. Gross and J. Yellen, editors, Handbook o f Graph
Theory, pages 922-944. CRC Press, New York, 2003.

[10] G. S. B rodal and R. Fagerberg. D ynam ic representation of sparse graphs. In A l­
gorithms and Data Structures, Proceedings o f the 6 th International Workshop (Van­
couver, Canada), volume 1663 of Lecture N otes in Computer Science, pages 342-351.
Springer-Verlag, 1999.

[11] E. Cohen, H. K aplan, and T. Milo. Labeling dynam ic XML trees. In Proceedings o f
the 21st A C M Symposium on Principles o f Database System s (Madison, USA), pages
271-281. ACM, 2002.

[12] D. G. Corneil, H. Kim, S. N atarajan , S. O lariu, and A. P. Sprague. Simple linear tim e
recognition of un it interval graphs. In form ation Processing Letters, 55:99-104, 1995.

[13] B. Courcelle and R. Vanicat. Query efficient im plem entation of graphs of bounded
clique-width. Discrete Applied M athematics, 131:129-150, 2003.

[14] X. Deng, P. Hell, and J. Huang. L inear-tim e representation algorithm s for proper
circular-arc graphs and proper interval graphs. S IA M Journal on Computing, 25:390-
403, 1996.

114

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[15] A. C. Driskell, C. Ane, J. G. Burleigh, M. M. M cM ahon, B. C. O ’M eara, and M. J.
Sanderson. P rospects for building the tree of life from large sequence databases. Science,
306:1172-1174, 2004.

[16] F . Fich. CSC 2429 - Advaced D a ta Structures: Lecture 1, 2000.
w w w .cs.to ron to .edu /~ fich /D S course /lec tu re l.ps.

[17] C. M. Fiduccia, E . R. Scheinerman, A. Trenk, and J. S. Zito. Dot p roduct representa­
tions of graphs. Discrete M athem atics, 181:113-138, 1998.

[18] H. N. Gabow and H. H. W esterm ann. Forests, frames, and games: A lgorithm s for
m atroid sums and applications. Algorithmica, 7:465-497, 1992.

[19] C. Gavoille, M. K atz , N.A. K atz , C. Paul, and D. Peleg. A pproxim ate distance labeling
schemes. In Proceedings o f the 9th European Sym posium on A lgorithm s , volume 2161
of Lecture N otes in C om puter Science, pages 476-487. Springer-Verlag, 2001.

[20] C. Gavoille and C. Paul. Small universal d istance m atrices. Technical R eport RR-1263-
01, Laboratoire Bordelais de Recherche en Inform atique, 2001.

[21] C. Gavoille and C. Paul. D istance labeling scheme and split decom position. Discrete
M athematics, 273:115-130, 2003.

[22] C. Gavoille and C. Paul. O ptim al d istance labeling for interval and circular-arc graphs.
In Proceedings o f the 11th European Sym posium on Algorithms, volume 2832 of Lecture
N otes in Com puter Science, pages 254-265. Springer-Verlag, 2003.

[23] C. Gavoille and D. Peleg. C om pact and localized d istribu ted d a ta structures. Journal
o f Distributed Computing, 16:111-120, 2003.

[24] C. Gavoille, D. Peleg, S. Perennes, and R. Raz. Distance labeling in graphs. In Proceed­
ings of the Twelfth A nnual A C M -S IA M Sym posium on Discrete A lgorithm s (W ashing­
ton, D.C., USA), pages 210-219. ACM, 2001.

[25] P. Hanlon. C ounting interval graphs. Transactions o f the Am erican M athematical
Society, 272:383-426, 1982.

[26] F. H arary and E.M . Palm er. Graphical Enum eration. Academic Press, New York, 1973.

[27] P. Hell, R. Sham ir, and R. Sharan. A fully dynam ic algorithm for recognizing and
representing proper interval graphs. S IA M Journal on Computing, 31(l):289-305, 2001.

[28] Z. Jackowski. A new characterization of proper interval graphs. Discrete M athematics,
105:103-109, 1992.

[29] T. Jiang, M. Li, and B. R avikum ar. Basic notions in com putational complexity. In
M. J. A tallah, editor, Algorithm s and Theory o f Computation Handbook, chapter 24.
CRC Press, New York, 1998.

[30] D. S. Johnson, M. Yannakakis, and C. H. Papadim itriou. On generating all m axim al
independent sets. In form ation Processing Letters, 27:119-123, 1988.

[31] S. Kannan, M. Naor, and S. Rudich. Im plicit representation of graphs. S IA M Journal
on Discrete M athem atics, 5(4):596-603, 1992.

[32] H. Kaplan and T. Milo. Short and simple labels for small distances and o ther func­
tions. In Algorithms and Data Structures, Proceedings o f the 7th In ternational W ork­
shop (Providence, USA), volume 2125 of Lecture Notes in Com puter Science, pages
246-257. Springer-Verlag, 2001.

[33] M. Katz, N. A. K atz, A. K orm an, and D. Peleg. Labeling schemes for flow and con­
nectivity. In Proceedings o f the Thirteenth A nnual A C M -SIA M Sym posium on Discrete
Algorithms (San Francisco, USA), pages 927-936. ACM, 2002.

[34] M. Katz, N. A. K atz, and D. Peleg. D istance labeling schemes for well-separated graph
classes. Technical R eport TRM CS99-26, The W eizmann Institu te of Science, 1999.

115

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

http://www.cs.toronto.edu/~fich/DScourse/lecturel.ps

[35] M. K atz, N. A. K atz , and D. Peleg. D istance labeling schemes for well-separeated
graph classes. In Proceedings o f the 17th A nnual Sym posium on Theoretical Aspects o f
Computer Science (Lille, France), volume 1770 of Lecture Notes in C om puter Science,
pages 516-528. Springer-Verlag, 2000.

[36] T . Kloks, D. K ratsch , and H. Muller. Dominoes. In Graph Theoretic Concepts in Com­
puter Science, Proceedings o f the 20th In ternational W orkshop (Herrsching, Germany),
volume 903 of Lecture Notes in Computer Science, pages 106-120. Springer-Verlag,
1995.

[37] A. K orm an and D. Peleg. Labeling schemes for weighted dynam ic trees. In Automata,
Languages and Programming, Proceedings o f the 30th In ternational Colloquium (Eind­
hoven, The Netherlands), volume 2719 of Lecture N otes in Com puter Science, pages
369-383. Springer-Verlag, 2003.

[38] A. K orm an, D. Peleg, and Y. Rodeh. Labeling schemes for dynam ic tree networks. In
Proceedings o f the 19th A nnual Symposium on Theoretical Aspects o f C om puter Science
(Antibes - Juan les P ins, France), volume 2285 of Lecture Notes in Com puter Science,
pages 76-87. Springer-Verlag, 2002.

[39] A. K orm an, D. Peleg, and Y. Rodeh. Labeling schemes for dynam ic tree networks.
Theory o f Com puting System s, 37:49-75, 2004.

[40] P. G. H. Lehot. A n optim al algorithm to detect a line graph and ou tp u t its root graph.
Journal o f the Association o f Computing Machines, 21(4):569-575, 1974.

[41] P. J . Looges and S. O lariu. O ptim al greedy algorithm s for indifference graphs. Com­
puters and M athem atics with Applications, 25:15-25, 1993.

[42] T.-H . M a and J . Spinrad. Cycle-free partia l orders and chordal com parability graphs.
Order, 8:49-61, 1991.

[43] T . A. McKee and F. R . McMorris. Topics in Intersection Graph Theory. SIAM Mono­
graphs on D iscrete M athem atics and A pplications. SIAM, Philadelphia, 1999.

[44] Y. M etelsky and R. Tyshkevich. Line graphs of Helly hypergraphs. S IA M Journal on
Discrete M athem atics, 16(3):438-448, 2003.

[45] J. H. Muller. Local structure in graph classes. PhD thesis, Georgia In s titu te of Tech­
nology, M arch 1988.

[46] D. Peleg. Proxim ity-preserving labeling schemes and th e ir applications. In Graph The­
oretic Concepts in Com puter Science, Proceedings o f the 25th In ternational Workshop
(Ascona, Switzerland), volume 1665 of Lecture Notes in C om puter Science, pages 30-41.
Springer-Verlag, 1999.

[47] D. Peleg. Inform ative labeling schemes for graphs. In M athematical Foundations o f
Computer Science, Proceedings of the 25th In ternational Sym posium (Bratislava, Slo­
vakia), volume 1893 of Lecture Notes in Com puter Science, pages 579-588. Springer-
Verlag, 2000.

[48] E. Prisner. Bicliques in graphs I: Bounds on their num ber. Combinatorica, 20(1):109-
117, 2000.

[49] F. S. R oberts. Indifference graphs. In F. H arary, editor, Proof Techniques in Graph
Theory, pages 139-146. Academic Press, New York, 1969.

[50] N. D. Roussopoulos. A m ax{m , n} algorithm for determ ining the graph H from its line
graph G. Inform ation Processing Letters, 2:108-112, 1973.

[51] N. Santoro and R. K hatib . Labelling and im plicit rou ting in networks. The Computer
Journal, 28:5-8, 1985.

[52] J. Spinrad. personal communication.

[53] J. Spinrad. E fficient Graph Representation. Fields In s titu te M onographs. AMS, Prov­
idence, 2003.

116

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

[54] V. Stix. F inding all m axim al cliques in dynam ic graphs. Computational Optimization
and Applications, 27:173-186, 2004.

[55] M. T horup. Com pact oracles for reachability and approxim ate distances in planar
digraphs. In 42nd A nnual Sym posium on Foundations o f Com puter Science (Las Vegas,
USA), pages 242-251. IEEE, 2001.

[56] M. T horup and U. Zwick. Com pact rou ting schemes. In Proceedings o f the Thirteenth
Annual A C M Sym posium on Parallel A lgorithm s and Architectures (Heraklion, Greece),
pages 1-10. ACM, 2001.

[57] D. B. W est. Introduction to Graph Theory, second edition. P rentice Hall, Toronto,
2000 .

[58] H. W hitney. C ongruent graphs and th e connectivity of graphs. Am erican Journal o f
M athematics, 54:150-168, 1932.

117

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

A ppendix A

Definitions

The following are the definitions of a variety of term s pertain ing to graph classes seen in

th is thesis; by no m eans is th is list of definitions m eant to be self-contained, ra ther, the

definitions are in tended to jog the m em ory of the reader. Unless otherw ise indicated, the

definitions are taken from B randstad t, Le, and Spinrad [8].

H -free A graph is H -free if it does no t contain H as an induced subgraph.

A lm o st tree(fc) A graph is an alm ost tree(k) if there are at m ost k edges no t in a spanning

tree of each biconnected component.

I F* i
A rb o r ic ity [31] The arboricity of a graph is th e m axim um value of taken over all

vertex induced subgraphs H .

A stero id a l tr ip le A set of three vertices such th a t, for every pair of th e th ree vertices,

there is a p a th connecting the pair th a t avoids the neighbourhood of th e rem aining

vertex.

A stra l tr ip le A set of three vertices such th a t, for every pair of the th ree vertices, there

is a pa th connecting the pair th a t does not contain two consecutive vertices in the

neighbourhood of the rem aining vertex.

A u to g ra p h [45] A graph G is an autograph if there is a bisection / from Vq to some set

S of n positive integers such th a t uv G E g <==> \ f (u) — f (v) | G S.

B a n d w id th The bandw idth of a graph G is th e m inim um value for which G is a subgraph

of the k th power of P\vG\, the p a th on |Vg| vertices.

r -b ic (defined in C hap ter 5) A graph w ith no vertex in more than r m axim al bicliques.

B ic liq u e A com plete b ipartite subgraph.

B in a ry t r e e [57] A rooted tree in which no vertex has more than two children.

118

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

B o x ic ity The boxicity of a graph is the m inim um value d for which it is th e intersection

graph of boxes in d-dimensional space.

C h ain grap h For simplicity, we define a graph to be a chain graph if it is a P$-free con­

nected b ip a rtite graph [53]; a m ore involved definition can be found in [8]

C h ord al b ip a r tite g rap h A b ipartite graph which contains no induced cycles of length

greater th an four.

C h ord al graph A graph is chordal if it contains no induced cycles of length g reater than

three.

C ircle g rap h A graph is a circle graph if it is th e intersection graph of some family of

chords in a circle.

C ircu lar arc grap h A graph is a circular arc graph if it is the intersection graph of some

family of arcs of a circle.

C law A claw is a

C liq u ew id th [7] Let [fc] denote the set { 1 , . . . , k} and let l(v) denote the label of a vertex

v. A cliquewidth-fc graph is defined recursively as follows.

• Any graph G w ith Vq = {^} and l(v) € [k] is a cliquewidth-fc graph.

• Let G i and G 2 be cliquewidth-fc graphs, and let % and j belong to [fc]. The

following are also cliquewidth-fc graphs.

— The disjoint union of G \ and G-2 -

— The graph formed from G \ by switching the labels of all vertices w ith label

i to label j .

— The graph formed from G \ by adding all edges V1V2 , where /(iq) = i and

l { v 2) = j -

T he cliquewidth of a graph is the m inim um value of fc for which it is a cliquewidth-fc

graph.

C o b ip a r tite graph A graph is cobipartite if its complement is b ipartite .

C og ra p h For simplicity, we define a graph to be a cograph if it can be reduced to an

edgeless graph by repeatedly tak ing com plem ents w ithin com ponents [43]; a more

involved definition can be found in [8].

C o m p a ra b ility graph A graph is a com parability graph if th e edges have a transitive

orientation.

119

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

C o n ta in m en t c lass A class Q of graphs is an containm ent class if there is a set S of sets

such th a t every graph G in Q is th e containm ent graph of a family S ' of sets from S

(a family allows the sets to occur w ith repetition).

C o n ta in m en t graph For a given fam ily of sets S , the containm ent graph of th is family is

th e graph w ith vertex set S such th a t two vertices are adjacent if and only if the set

corresponding to one vertex is a subset of the other.

C o n v ex b ip a r tite [45] A b ip artite graph w ith b ipartition (X , Y) is convex if, w ithou t loss

of generality, there is a to ta l order on the vertices of X such th a t if y in Y is adjacent

to X\ and X2 in X , then i t is also adjacent to all the vertices betw een X\ and x-i in the

to ta l ordering.

^ -d ecom p osab le [31] A graph is fc-decomposable if, for all subgraphs H w ith m ore than

k vertices, there exists k vertices whose deletion causes H to be disconnected w ith no

com ponent containing m ore th a n vertices.

D isk in ter sec tio n grap h [53] A graph is a disk intersection graph if it is the intersection

graph of some family of disks in the plane.

D ista n c e h ered ita ry A graph is distance hered itary if it is connected and all th e induced

paths have the same length.

fc-dot p ro d u ct graph A graph G is a fc-dot p roduct graph if each vertex v can be assigned

a vector v of length k such th a t V1V2 € E q <==> v\ -v 2 > 1, where • is the standard

inner product of two vectors.

E P T grap h A graph is an E P T graph if it is the intersection graph of nontriv ial simple

paths in a tree, where the intersection of paths is considered using edges.

F orest A graph with no cycles.

G en u s (o f a graph) The genus of a graph is the sm allest genus of a surface in which the

graph has a crossing-free embedding.

H ered ita ry p ro p erty A graph property P is hereditary if, for any graph G satisfying P,

every induced subgraph of G satisfies P.

H ered ita ry degree-/,: grap h A graph is hereditary degree-A' if each vertex induced sub­

graph has a vertex of degree a t m ost k.

H y p e r c u b e [9] The fc-dimensional hypercube is th e graph on 2k vertices, each labelled

w ith a distinct binary string of length k, where two vertices are adjacent if and only

if their corresponding strings differ in exactly one position.

120

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

H y p erg ra p h A hypergraph H is a pair of sets (V, £), where £ is a fam ily of subsets of V .

T he rank of H is the value m a x{je|}.

In tersec tio n c la ss A class Q of graphs is an intersection class if there is a set S of sets

such th a t every graph G in Q is the intersection graph of a fam ily S ' of sets from S

(a family allows the sets to occur w ith repetition).

In tersec tio n grap h For a given family of sets S , the intersection graph of th is family is

the graph w ith vertex set S such th a t two vertices are ad jacent if and only if the

intersection of the ir corresponding sets is nonempty.

In terva l grap h A graph is an interval graph if it is the in tersection graph of some family

of intervals on the real line.

fc-interval grap h A graph is a fc-interval graph if it is the intersection graph of some family

of sets of fc intervals on the real line.

In terva l nu m b er The interval num ber of a graph is the sm allest num ber k for which it is

a fc-interval graph.

Line grap h (o f a h yp erg ra p h) Given a hypergraph H = (V ,£), its line graph is the

graph L (H) = (£, E L^) for which ee' S E L^ if and only if e ^ e' and e fl e' / 0.

Line grap h (o f a s im p le graph) Given a graph G = (V g ,E g), its line graph is the graph

L(G) = (E g , E L(G)) for which {u, u} s -El(G) if and only if u and v are adjacent edges

in G.

M esh As intended by Peleg [47], a mesh is the Cartesian product of two paths.

r-m in o (defined in C hap ter 5) A graph w ith no vertex in more th a n r m axim al cliques.

O utdegree-fc A graph is an outdegree-fc graph if the edges can be oriented such th a t no

vertex has outdegree greater th an fc.

O u terp lan ar A graph is ou terp lanar if it has a crossing-free em bedding in the plane such

th a t all vertices are on the same face.

fc-outerplanar A graph is 1-outerplanar if it is outerplanar. For fc > 1, a graph is fc-

ou terp lanar provided it has a planar em bedding such th a t if all the vertices on the

exterior face are deleted, the connected com ponents of the rem aining graph are all

(fc — l)-ou terp lanar.

P a rtia l ord er A binary relation is a partial order on a set if it reflexive, transitive, and

antisym m etric.

121

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

P e r m u ta tio n grap h A graph is a permutation graph if it is the intersection graph of some

family of lines that intersect two parallel lines.

P la n a r A graph is planar if it has a crossing-free em bedding in the plane.

P o se t A poset P is a pair (V, A) for which X is a partia l order on V . A poset is often

represented by an acyclic digraph.

An ordering (t q , . . . ,v n) of V is a linear extension of P if, for all i , j e { 1 , . . . , n},

Vi d Vj => i < j . A family of posets Uf=0Pi, where Pi = realizes P if

va ^ Vb => va ■<i Vb, for all i G { 1 , . . . , k } . T he dim ension of P is the sm allest num ber

of linear extensions of P th a t realize P .

P ro p er in terva l grap h A graph is a proper in terval graph if it is th e intersection graph

of some family of intervals th a t do not contain one another.

R ecu rsiv e r(n)-sep ara tor [24] A class of graphs Q has a recursive r(n)-sep ara to r if, for

every G in Q, there exists a subset S of vertices such th a t |Sj < r(|V<3 |), and every

connected com ponent G' of G \ S belongs to Q and has a t m ost vertices.

R o o te d tree A tree which has a single vertex denoted as root. Typically, a roo ted tree is

considered as a directed graph, where edges are directed away from the root.

S eries-p ara lle l A m ultigraph G is series-parallel if i t has an orientation for which, for every

pair of edges, G does not contain a cycle th a t m eets the edges in the same direction

and another th a t m eets th e edges in opposite directions.

fc-sparse A graph G is fc-sparse if \ E g \ < fc|Vc|-

S p lit A graph is split if there is a partition of its vertices into a clique and an independent

set.

T h resh o ld g rap h A graph is a threshold graph if it is a threshold tolerance graph w ith a

constant tolerance function.

T h resh o ld to lera n ce grap h A graph G is a threshold tolerance graph if there is a weight

function w : Vq — > R + and a tolerance function t : Vq — > R + such th a t uv €

E g <s=̂ > w u + wv > m in(iu , t v).

T orus As intended by Peleg [47], a torus is the C artesian product of two cycles.

T ota l graph Given a graph G, its to ta l graph T (G) is defined by Vt(G) = Vg U E q and

u ,v G E g if and only u and v are adjacent in G or u and v are incident in G.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

T ran sitive c lo su re o f a ro o te d tree Given a rooted tree T , its transitive closure is the

graph G defined by Vq = V t and uv G E q if and only if there is a p a th from u to v

in T , th a t does not pass th rough the root.

T reew id th The treew id th of a graph G is the m inim um value of w(G') — 1 taken over all

triangulations G' of G, where to(H) denotes the size of the largest clique.

T riangle A cycle on th ree vertices.

U n iform ly fc-sparse [53] A graph G is said to be uniformly fc-sparse if no subgraph H has

m ore th a n t i M h s l M e d g e ,
log |Vff|

U n it in terva l grap h See proper interval graph.

V ertex in d u ced u n iv ersa l g rap h A graph G is a vertex induced universal graph of a set

of graphs S if all m em bers of S are vertex induced subgraphs of G.

W ell (a , g)-sep a ra ted Given th e com plexity of th is definition, the reader is advised to

consult K atz, K atz, and Peleg [35].

123

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Appendix B

Com putation M odels

T he m ajority of algorithm s found in th is thesis (m arkers, decoders, and relabellers) employ

a word-level RAM (random access machine; for m ore on th is topic see, for example, Aho,

H opcroft, and IJllm an [2]) com putational model. P resen ted below is a sum m ary of th ree well

known com putation models, namely, unit-cost RAM , log-cost RAM , and word-level RAM

[2, 16, 29], followed by a justification of why th e la tte r was chosen as th e com putational

model for th is thesis.

U n it-c o s t R A M Words can contain an unlim ited num ber of bits, as such, any size in­

pu t can be represented by a single word. Each operation (addition, m ultiplication,

comparison, m em ory addressing, bitwise and, bitwise or, e tcetera) costs one un it of

time.

L o g -co st R A M W ords can contain an unlim ited num ber of bits, as such, any size input

can be represented by a single word. Unlike unit-cost RAM, in which each operation

costs one un it of tim e, the cost of each operation is proportional to th e num ber of bits

in the operands; for example, the num ber n requires log n b its to store, so it requires

0 (lo g n) tim e to calculate n 2.

W ord -lev e l R A M Algorithm s th a t receive A b it inpu ts use 0(A) bit words; for example,

an algorithm w ith O (logn) b it inputs uses O (logn) b it words. T he cost of each

operation is proportional to the num ber of words used by the operands.

The unit-cost RAM model is simple to understand and results in straightforw ard cal­

culations of the running tim e of algorithms; however, th is model m isrepresents the actual

tim e required to perform certain operations, such as m ultiplication, on large operands. In

contrast, the log-cost RAM model accurately represents the perform ance of a machine on

large input; however, th is model leads to cum bersom e calculations of the running tim e, as

basic operations like m em ory addressing/pointer referencing cannot be performed in con­

stan t time. B oth the unit-cost RAM and log-cost RAM models make m emory too potent,

124

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

as an entire d a ta struc tu re can fit in one word.

Word-level RAM offers a tradeoff betw een unit-cost RAM and log-cost RAM in th a t

the calculation of running tim es of algorithm s rem ains straightforw ard, while the size of

words does not get unreasonably large. C urren t publications on d a ta s truc tu res often use a

word-level RAM com putational model; in particu lar, the m ajority of papers on inform ative

labelling schemes calculate running tim es using this model, even if no m ention of com puta­

tion models appears in the paper. A rticles on inform ative labelling schemes th a t explicitly

discuss the use of word-level RAM com putation m odels include A biteboul, K aplan, and

Milo [1], A lstrup, Gavoille, K aplan, and R auhe [5], A lstrup and R auhe [6], Gavoille and

Pau l [20], Gavoille and Peleg [23], Gavoille, K atz, K atz , Paul, and Peleg [19], and K aplan

and Milo [32].

125

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Appendix C

Pseudocode

The following is pseudocode th a t can be used to im plem ent m any of th e high level algorithm s

presented in th is thesis. In presenting the pseudocode, we try to m ain ta in the convention

th a t stacks are represented using overline notation; for example, S would be a stack, whereas

S would be a set.

C .l Line graphs

C . l . l D e le tin g a vertex

Recall the algorithm D e l e t e V e r t e x , found in Figure 4.5, which is used to relabel a line

graph when a vertex is deleted. The following pseudocode can be used to implement

D e l e t e V e r t e x .

D e l e t e V e r t e x (L (G) , v)

Input: An adjacency labelling of a line graph L (G) (th a t is, the labels thereof) created using
our dynam ic scheme, and a vertex v in Vl(G)-

O utput: An adjacency labeling of a line graph L (G ') (again, th e labels thereof) formed by
deleting v from L (G) .

1 f o r i <— 0 t o 1 d o
2 i f v.rnii = 1 t h e n
3 F R E E B A S E (u . e p l)

4 e l s e Z~i <— G e t I n c i d e n t N e i g h b o r s (u , i)
5 D E C R E M E N T N N (£ j)

6 R e m o v e F r o m L i s t (u , i)
7 F r e e L i n e (v)

1: For each i in {0,1}, we m ust determ ine the effect th a t th e deletion of v has on the

endpoint v.epi in the base.

2,3: If v.epi is incident only w ith v, then it will become an isolated vertex once v is deleted.

The function F r e e B a s e frees the identifier of v.epi for fu ture use.

1 2 6

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

4-6: If v.epi is incident w ith edges o ther th an v, th en we m ust remove v from the circular

doubly linked list about v.epi and upd a te th e label of each edge in th is circular doubly

linked list.

7: Once all the vertex labels have been changed to reflect the new graph, we delete v using

F reeL in e , which frees its prelabel for future use.

G E T lN C ID E N T N E IG H B O U R S (t, tend)
Inpu t: A pair (t , t e n d), where t is and edge in the base and ten d is a value, either 0 or 1,
used to denote and endpoint of t.

O utpu t: A stack S consisting of all pairs of th e form (s, send), where s.epaen<i = t.ep tend-

1 S * - NIL
2 s <— t
3 send *— ten d
4 P u s h (S ,(s ,s e n d))
5 w h ile s .n x sen(i ^ t do
6 s < s .n x seri(i
7 send ^ - E n d (s , t.eptend)
8 P u s h (S', (s , send))
9 r e t u r n S

D e c r e m e n t N N (S)

Input: A stack S of pairs of the form (s, send) w here s is an edge in the base and send is a
value, either 0 or 1, used to denote an endpoint of s.

O utpu t: For each pair (s, send) in S , D e c r e m e n t N N decrem ents the value of s .n n send by
one.

1 w h i l e S ^ N i l d o
2 (s ,s e n d) <— P o p (5)
3 s .nnserL(i < s ,nnsen(i 1

REM O V EFRO M LlST(y, yend)
Input: A pair (y ,y e n d), where y is an edge in th e base graph, and yend is a value, either 0
or 1, which denotes an endpoint of y.
O utput: R emoveF romL ist removes y from th e circular doubly linked list about y.epyenci.

1 w <- y.prevyend
2 z < - y.nxyend
3 w end *— E n d (u;, y.epyend)
4 zend <— E n d (z , y.epyend)
5 w .n xwend * z
6 z.p revzend *- w

E nd (t,w)
Input: A pair (t ,w), where t is an edge of the base th a t has w as one of its endpoints.
O utpu t: E nd re tu rns the value of i for which t.epi = w.

1 i f t.epo = w t h e n
2 r e t u r n 0
3 e l s e r e t u r n 1

127

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

C .1.2 A dding a v ertex

Recall the algorithm A d d V e r t e x , found in F igure 4.6, which is used to relabel a line graph

when a vertex is added. The following pseudocode can be used to im plem ent A d d V e r t e x .

A d d V e r t e x (L (G) , X)
Input: An adjacency labelling of a line graph L (G) created using our dynam ic scheme, and
a subset X of E l(g)-

O utput: Let L (G ') be the graph formed by adding a new vertex v to L (G), where v is
adjacent to exactly those vertices in X . P roviding L{G ') is a line graph, the o u tp u t is an
adjacency labelling of L (G r). If L (G ') is no t a line graph, the ou tp u t indicates as such.

1 v <— G e t I d e n t i f i e r L i n e ()
2 s w i t c h
3 c a s e |X | = 0 :
4 N o N e i g h b o u r s 1i !,0)
5 N o N e i g h b o u r s (v , 1)
6 c a s e |A j > 1:
7 (valido , vpto, va lid i , v p t i , good) <— F i n d V a l id (X)
8 i f good = 1 t h e n
9 E s t a b l i s h E d g e I n B a s e (v a lid o , vpto, valid j , vpt}, v)

10 e l s e e r r o r th is is no longer a line graph

1: As the new vertex does not yet have an identifier, the function G e t I d e n t i f i e r L in e

is used to assign one. Recall th a t in Section 3.1.3 we assumed th a t such an identifier

could be ob tained in 0 (1) tim e.

3-5: The new vertex is isolated, so a new isolated edge m ust be added to th e core.

6-10: The new vertex has a t least one neighbour, so we m ust try to find a valid set. If a

valid set is found, th en we use the valid set to represent the new vertex. O therwise, if

no valid set is found, the new graph is no t a line graph.

N o N e i g h b o u r s (L te n d)

Input: A pair (f ,ten d), where t is an edge in the base and tend is a value, either 0 or 1,
used to denote and endpoint of t.
O utput: NoNElGHBOURS establishes t as the only edge of the base th a t is incident w ith
t-&Ptend‘

1 t . ep tend G e t I d e n t i f i e r B a s e Q
2 t .n n tend *— 1
3 t.UXtend * t
4 t.prevtend <— t

F i n d V a l i d (X)

Input: A set X of edges in the base.
O utput: The five-tuple (ed g eo ,en d o ,ed g e i,en d i,va l) w ith values as follows.

128

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• If X has a valid set then v a l will have value 1, otherwise it will have value 0.

• If X has a valid set of size two, then e d g e o - e p end„ and e d ge j .epend, are th e vertices in
the valid set. If the valid set is of size one, th en the valid set consists of the vertex
e d g e o . e p e nd0 , where e d ge j = e n d j = NIL.

1 edgeo <— som e m em ber of X
2 endo <— 0
3 t r ychangedo <— 0
4 w h i l e endo < 1 d o
5 (X o , f a i l) <— E l i m i n a t e (X , edgeo, en do)
6 i f f a i l = 0 t h e n
7 i f Xo = 0 t h e n
8 r e t u r n (edgeo, en do , NIL, NIL, 1)
9 e l s e edgej <— som e m em ber of Xo

10 e n d j <— 0
11 t r y chang ed j <— 0
12 w h i l e e n d j < 1 d o
13 (X i, f a i l) <— E l i m i n a t e (X o , edge j , e n d j)
14 i f f a i l = 0 and X i = 0 t h e n
15 r e t u r n (edgeo j e n d o , edg e i , e n d j , 1)
16 e l s e e n d j <— e n d j + 1
17 i f t r y chan ged j = 0 and e n d j = 2 t h e n
18 (C, c h a n g e d) * - CHANGEBASE(ed^e1)
19 t r y changed j *— 1
20 i f c h a n g e d = 1 t h e n
21 i f edgeo £ C t h e n
22 (C , c h a n g e d) <— CHANGEBASE(ed(/ei)
23 e l s e e n d j <— 0
24 e n d 0 <— endo + 1
25 i f endo = 2 t h e n
26 i f tr ychangedo = 1 t h e n
27 r e t u r n (n i l , NIL, NIL, NIL, 0)
28 e l s e (C, c h a n g e d) <— CHANGEBASE(edgeo)
29 trychangedo 1
30 i f c h a n g e d = 1 t h e n
31 endo 0

1: If X has a valid set then every m em ber of X will have exactly one endpoin t in the valid

set. As such, we choose a m em ber of X , nam ely edg eo , so as to include one of its

endpoints in the valid set.

2: We first try to include e d g e o . e p o , in the valid set. If we later determ ine th a t edgeo- epo

cannot be included in any valid set, then we will try to include e d g e o - e p i instead. The

value of e n d o indicates w hether we are considering edgeo -epo o r edg eo - e p i -

3: In C hap ter 4 we discussed how a com ponent of a line graph can have two bases which

are partition not-isomorphic; in particular, for a given set of vertices, one of the bases

m ay yield a valid set while the o ther may not. It may be necessary to change the

base of a com ponent in order to find a valid set. The variable t r y c h a n g e d o is used to

indicate if we have a ttem pted to change the base of the com ponent containing edgeo-

If t r y c h a n g e d o = 1, then we have previously a ttem pted to change th e base; otherwise,

t r y c h a n g e d o = 0 and we have not tried to change the base. Recall th a t, when we say

129

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

th a t a base is changed, we u ltim ate ly m ean th a t the labelling of the line graph has

been changed so as to reflect the new base.

4-31: As previously mentioned, we continue to look for a valid set, providing there is a t

least one of edgeo.epo and edgeo -ePi which we have not tried to include in a valid set.

5: L etting X 0 be the subset of edges in X th a t are not incident w ith edgeo . e p end0 , we

observe th a t if there is another vertex in the valid set, then it m ust come from an edge

in Xq. In order to determ ine Xo, F i n d V a l i d uses the function E l i m i n a t e . If the

circular doubly liked list about edgeo ■ e p end0 contains an edge which is no t in X then

E l i m i n a t e will set f a i l to 1; otherw ise, it will set f a i l to 0 and re tu rn Xo.

6-23: If f a i l = 0, then the circular doubly liked list about edgeo . e p end0 did no t contain any

edges not in X . As such, we m ay continue try ing to place e d g e o . e p end0 in the valid

set.

7,8: Given th a t we have not yet found any reason to exclude e d g e o . e p end0 from th e valid

set, if Xq = 0 then all of th e edges in X are incident w ith edgeo . e p end0 . Therefore,

{ e d g e o - e p e n d g } is a valid set.

9-23: If Xo / 0, then there are m em bers of X which are not incident w ith edgeo.epend0 so

we m ust include a second vertex in th e valid set.

9-11: As we did w ith edgeo, we choose an edge e d g e j from X 0 and try to include one of

its endpoints in the valid set. Like e d g eo , e d g e j has corresponding variables e n d j and

t r y c h a n g e d j .

12-23: As we did w ith edgeo, we continue to look for a valid set, providing there is a t least

one of edgej.epo and edgej.epj w hich we have not tried to include in the valid set.

We first check if {edgeo-epend0, edgej .epo} is a valid set, if it is not th en we will try

{edge0■ epend0, edge j.ep j).

13: L e ttin g X j be th e subse t o f edges in X q th a t are n o t inc iden t w ith e d g e j , e p end , , we

observe th a t { e d g e o . e p end0 , e d g e j . e p end , } is a valid set if an d only if X \ = 0 a n d th e

c ircu lar doub ly linked list a t e d g e j . e p end, does n o t co n ta in any edges w hich are n o t in

X q . To d eterm ine X i , F in d V a l id uses E l i m i n a t e ju s t as it d id to d e te rm in e Xo.

14-23: If f a i l = 0 and X i = 0 th en { e d g e o . e p end0 , e dge j . e p end , } is a valid set. Otherwise,

{ e d g e o . e p end0 , e dgej . e p ^ d , } is no t a valid set, so we will need to try another endpoint

of e d g e j or perhaps another base for the com ponent containing e d g e j .

17-23: If e n d j = 2, then we have already tried to include e d g e j . e p j in the valid set so

we m ust now try changing the base of the com ponent containing e d g e j . This is only

allowed if the base has not been changed, th a t is, if t r y c h a n g e d j = 0.

130

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

18: To change the base of th e com ponent containing edgej, F in d V a l id relies on a function

called C h a n g e B a s e . We let C be the set of vertices in the sam e com ponent as edgej,

where changed is a variable used to represent w hether or no t th e base was changed.

19: We set trychangedj to 1 in order to indicate th a t an a ttem p t was m ade to change

the base of the com ponent containing edgej. The reader should note th e distinction

between changed and trychangedj try changed merely indicates th a t an a ttem p t was

made to change the base, whereas changed indicates if a change was actually made.

20-23: If the base of th e com ponent containing edgej was changed, there are two possibili­

ties; either C contains edgeo or it does not. If it does, th en we change th e base of the

com ponent containing edgej back to its original s ta te as we do not wish to change the

base of the com ponent containing edgeo a t th is tim e; if it does no t, then we set endj

to 0 and repeat th e process of try ing to include an endpoint of edgej in the valid set

along w ith edge0 .ependo.

24-31: If line 24 is reached, then either th e call of E l im in a t e in line 6 found an edge in the

circular doubly linked list a t edgeo.epend0 which was not in X or, in choosing an edge

edgej from Xo, neither endpoint of edgej could be pu t in a valid set w ith edgeo-epend0

regardless of the base used to represent the com ponent containing edgej. E ither way,

edgeo-epend0 cannot belong to a valid set using the present base. This segment of the

algorithm is sim ilar to th a t involving edgej in lines 17 though 25.

E l im in a t e (T, t, tend)
Input: A triple (T ,t ,te n d) , where T is a set of edges in the base, t is a m em ber of T , and
tend is a value, either 0 or 1, used to denote an endpoint of t.
O utput: Let £ denote the set of edges in the circular linked list abou t t.eptend- EL IM IN A TE
ou tpu ts a pair (T ',v a l), where, if C <2 T , then val has value 1. O therwise, if C C T , then
val has value 0, and T ' — T \ C .

1 w < r ~ t

2 w end <— tend
3 T ^ ~ T \ { w }
4 w h ile w .n x wend ^ t d o
5 w < w .nxwerid
6 w end <— E n d (u>, t.eptend)
7 if w £ T t h e n
8 T ^ T \ { w }
9 e lse r e t u r n (T, 1)

10 r e t u r n (T, 0)

C h a n g e B a s e (<2)

Input: An edge a of the base graph.
O utput: Let C be the com ponent of the base containing a. If C does no t have another p arti­
tion non-isomorphic base, C h a n g e B a s e outpu ts the pair (comp, changed), where changed
has value 0. Otherwise, if C does have another partition non-isom orphic base, C h a n g e -
B a se changes the base of C , and ou tp u ts the pair (comp, changed), where comp is the set
of vertices in C and changed has value 0.

131

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

1 changed <— 0
2 s w i tc h
3 c a s e a.nno = 2 an d a.nn i = 2:
4 b <— a.nap
5 eb <— 1 — E n d (&, a.epo)
6 c «— a.nxi
7 ec <— 1 — E n d (c, a . e p j)
8 if b.epeh = c.epec t h e n
9 i f b.nnef, = 2 t h e n

10 S w iT C H K 3 T o K 1 3 (a , b, c)
11 comp <— {a, b, c}
12 changed <— 1
13 e l s e i f b.nneb = 3 t h e n
14 i f c = b.nxeb t h e n
15 d <— c.nxec
16 e l s e d <— b.nxej
17 ed <— 1 — END(d, b.epeb)
18 i f d .n n ed = 1 t h e n
19 Sw iTC H (a, d)
20 com p <— {a, b, c, d}
21 changed <— 1
22 c a s e (a.nno = 3 a n d a.nn i = 1) or (a.nno — 1 an d a .nn i — 3):
23 i f a.nno = 3 t h e n
24 ea = 0
25 e ls e ea = 1
26 b 4— a.nxea
27 eb <— 1 — E n d (6, a.epea)
28 c <— b.nxj.eb
29 ec <— 1 — E n d (c, a.epea)
30 i f b.nnet, — 1 an d c .nnec = 1 t h e n
31 Sw it c h K 1 3 T o K 3 (o , 6, c)
32 comp <— {a, 6, c}
33 changed *— 1
34 e l s e i f b.nnet, = 2 an d c .n n ec = 2 t h e n
35 d <— b.nxeb
36 ed <— 1 — END(d, b.epeb)
37 i f d.eped = c.epec t h e n
38 Sw iTC H (a, d)
39 comp <— {a, b, c, d}
40 changed <— 1
41 c a s e (a.nno = 3 an d a .nn i = 2) or (a.nno = 2 an d a .nn i = 3):
42 i f a.nno — 3 t h e n
43 ea = 0
44 e ls e ea = 1
45 b <— a.nxea
46 ed «— 1 — E n d (6, a.epea)
47 c <— b .n x i . eb
48 ec «— 1 — E n d (c, a.epea)
49 / «- a .n x j.ea
50 e / 1 — E n d (/ , a.epi_ea)
51 i f f .e p ef = b.epeb t h e n
52 if b.nneb = 2 an d c.nnec = 1 t h e n
53 S w it c h (c , /)
54 comp <r-{a ,b ,c , f }
55 changed <— 1
56 e l s e i f b.nneb = 3 an d c .nnec = 2 t h e n
57 d = c.nxec
58 ed END(d, c.epec)
59 if d.epi_ed = b.epeb t h e n
60 S w it c h (c, /)
61 comp <— {a, b, c, d, / }
62 changed <— 1
63 e l s e i f f .e p ef = c.epec t h e n
64 if b.nneb = 1 and c .nnec = 2 t h e n

132

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

65 S w i t c h (&,/)
66 comp <— {a, 6, c, /}
67 changed <— 1
68 e l s e i f b .nneb = 2 a n d c .n n ec = 3 t h e n
69 d = b.nxe\,
70 ed <— 1 — E N D (d, b.epeb)
71 i f d.eped = c.epec t h e n
72 S w i t c h (6 , /)
73 comp <— {a, b, c, d, / }
74 changed 1
75 c a s e a.nno = 3 a n d a .nn i = 3:
76 b <— a .n x o
77 eft <— 1 — E n d (6, a.epo)
78 c <— b . n x i . eb
79 ec <— 1 — E n d (c, a.epo)
80 / <— a.nxi
81 e / <— 1 — E n d (/ , a .ep i)
82 h <- f . n x u ef
83 e h <— 1 — E n d (/i , a .e p i)
84 i f f .e p ef = b.epeb a n d h .epeh = c.epec t h e n
85 i f b.nneb — 2 a n d c .n n ec = 2 t h e n
86 S w i t c h (c, /)
87 comp <— {a, 6, c, / , /i}
88 changed <— 1
89 e l s e i f b .nneb = 3 a n d c .n n ec = 3 t h e n
90 i f / = b.nxeb t h e n
91 d <— f .n x ef
92 e l s e d <— b.nxeb
93 ed <— 1 — E N D (d, b.epeb)
94 i f d.eped = c.epec t h e n
95 S w i t c h (c, /)
96 com p <— {a, b, c , d , / , ft}
97 changed <— 1
98 e l s e i f f .e p ef = c.epec a n d h .epeb = b.epeb t h e n
99 i f b.nneb = 2 and c .n n ec = 2 t h e n

100 S w i t c h (c, ft)
101 comp <— (a , o, c, / , ft}
102 changed <— 1
103 e l s e i f b.nneb = 3 a n d c .nnec = 3 t h e n
104 i f ft = b.nxeb t h e n
105 d <— h .nxeh
106 e l s e d <— b.nxeb
107 ed <— 1 — E N D (d, b.epeb)
108 i f d.eped = c.epec t h e n
109 S w i t c h (c, ft)
110 comp <— {a, b , c , d , f , h }
111 changed <— 1
112 r e t u r n (comp, changed)

1: As m entioned, the variable changed is used to indicate if the base of C has been changed.

T he default value of changed is 0 and will be set to 1 when the base of C is changed.

2-112: In determ ining if the base of C can be changed, we consider a series of cases based

upon the degrees of the endpoints of a.

3-21: In this case, each endpoint of a is incident w ith exactly one other edge besides a.

4-7: We let b and c be the edges, o ther th an a. incident w ith a.epo and a .e p i , respectively.

T he endpoints b.epeb and c.epec are set to be the endpoints of b and c, respectively,

which are furthest from a.

133

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

8-21: E ither b.epeb and c.epec are the same vertex or they are not. If they are not, then

the condition a.nno = a.nni = 2 guarantees th a t the base of C has an induced P4 or

C 4 . Since none of the bases of the graphs found in Theorem 4.2 (th a t is, the graphs

in Figure 4.1(b)) has an induced P4 or C 4 , the base of C cannot be changed.

9-12: If b.nneb — 2, then b.epeh is incident only w ith b and c. Thereby, th e base of C is

th e K 3 shown in Figure C .l(a) so we use the function S w i t c h K 3 T o K 1 3 to change

it to the K 13 shown in Figure C .l(b).

(a) (b)

Figure C .l: Two partition non-isom orphic bases of C

13-21: If b.nneb = 3, then b.epeb is incident w ith b, c, and another vertex which we will

call d. Observe th a t if b.nneb > 3, then the base of C cannot be changed as none of

th e graphs found in in Figure 4.1(b) has a vertex of degree greater th a n three.

15-17: We ensure th a t d is distinct from b and c, th en set d.epecl to be the endpoint of d

th a t is fu rthest from b.

18-21: If d .nned = 1, then the base of C is as shown in Figure C .2(a). Using the function

S w i t c h , we change the base of C to the graph depicted in Figure C.2(b). Furtherm ore,

observe th a t if d .nned > 1, then the conditions a.nno = 2 and b.nneb = 3 guarantee

th a t the base of C has an induced P 4 which prevents the base from being changed.

(a) (b)

Figure C .2 : Two partition non-isomorphic bases of C

22-40: We now consider the case when one endpoint of a is incident w ith two additional

edges besides a, and the other endpoint is incident w ith only a itself.

23-25: We set a.epea to be the endpoint of a w ith degree three.

134

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

26-29: We let b and c be the edges, o ther th a n a, th a t are incident w ith a.epea. Moreover,

we let b.epe), and c.epec be the endpoints of b and c, respectively, th a t are furthest

from a.

30-40: Given th a t a.nn,i_ea = 1 and a .nnea — 3, the only way th a t the base of C can be

changed is if b.nneb = c .nnec = 1 or if b .nneb = c .nnec = 2. O therwise, the the base

of C has an induced Pi which prevents it from being changed.

30-33: In th is case, the base of C is the shown in Figure C .l(b) , so we change it to

the K$ shown in Figure C .l(a).

34-40: In this case, bo th b.epet and c.epec are incident w ith another edge besides b and c,

respectively.

35,36: We let d be the edge, o ther th a n b, th a t is incident w ith b.epeb. Moreover, we let

d.eped be the endpoint of d th a t is fu rthest from b.

37-40: If d.eped ^ c.epec, then the condition a .n n i .ea = 1 guarantees th a t the base of

C has an induced P4 which prevents it from being changed. O n the o ther hand, if

d.eped = c.epec, then the base of C is as shown in Figure 0 .2 (b) so we change it to

the base shown in Figure C .2(a).

41-74: We now consider the case when one endpoint of a is incident w ith two additional

edges besides a, and the o ther endpoint is incident w ith one additional edge besides

a.

42-44: We set a.epea to be the endpoint of a w ith degree three.

45-48: We let b and c be the edges, o ther th an o, th a t are incident w ith a.epea. Moreover,

we let b.epeb and c.epec be the endpoints of b and c, respectively, th a t are furthest

from a.

49,50: We let / be the edge, o ther th a n a, th a t is incident w ith a.epi_ea. Moreover, we let

f . e p ef be the endpoint of / th a t is fu rthest from a.

51-74: If neither b.epeb = f . e p ef , nor c.epec = f . e p ef , then the base of C has an induced

Pi which prevents it from being changed.

52-62: Given th a t a.nnea = 3, the only way th a t the base of C can be changed is if

b.nneb = 2 and c.nnec = 1 or if b.nneb = 3 and c .nnec = 2. O therwise, the the base

of C has an induced Pi which prevents it from being changed.

52-55: If b.nneb = 2 and c.nnec = 1 , then there are no additional edges in the graph. The

base of C is as shown in Figure 0 .3 (a) so we change it to the base shown in Figure

0 .3(b).

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure C.3: Two partition non-isomorphic bases of C

56-62: In th is case, b o th b.epeb and c.epec are incident w ith ano ther edge besides b and c,

respectively.

57-58: We let d be the edge, o ther th a n c, th a t is incident w ith c.epec. Moreover, we let

d.eped be the endpoint of d th a t is closest to c.

59-62: If d.epi_ed ^ b.epeb, then the condition a.nnea = 3 guarantees th a t the base of

C has an induced P4 which prevents it from being changed. O n the other hand, if

d.epi-ed = b.epeb, th en the base of C is as shown in Figure C .4(a), so we change it to

the base shown in F igure 0 .4 (b).

(a) (b)

Figure C.4: Two partition non-isomorphic bases of C

63-74: This case is analogous to th a t found in lines 51 th rough 62, except th a t c.epec =

f . e p ef , no t b.epeb = f . e p e f .

75-111: We now consider the case when bo th endpoints of a are incident w ith two additional

edges besides a.

76-83: We let b and c be th e edges, o ther th an a, th a t are incident w ith a.epo• Moreover,

we let b.epeh and c.epec be the endpoints of b and c, respectively, th a t are furthest

from a. The edges / and h are defined similarly for a .e p i .

84-111: If b.epei ^ f . e p ef or c.epec ^ h.epeh, and b.epeb ± h.epeh or c.epec ^ f . e p ef then

the base of C has an induced P4 or C 4 which prevents it from being changed.

84-97: Given th a t a.nno = a-nni = 3, the only way th a t the base of C can be changed

is if b.nneb = c.nnec = 2 or if b.nneb = c.nnec = 3. O therw ise, th e base of C has an

induced P4 which prevents it from being changed.

136

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

85-88: If b.nneb — c .nnec = 2 , then there are no additional edges in th e graph. The base

of C is as shown in Figure C .5(a), so we change it to the base shown in Figure C.5(b).

(a) (b)

Figure C.5: Two partition non-isom orphic bases of C

89-97: In this case, b o th b.epeb and c.epec are incident w ith another edge besides b and c,

respectively.

91-93: We let d be the edge, other th an b and / , th a t is incident w ith b.epeb. Moreover,

we let d.epeii be the endpoint of d th a t furthest from b.

94-97: If d .e p i .ed / c.epec, then the base of C has an induced F\ which prevents it from

being changed. O n the o ther hand, if d.epi_ed = c.epec, th en the base of C is as shown

in Figure C .6 (a), so we change it to the base shown in Figure C .6 (b).

(a) GO

Figure C .6 : Two partition non-isom orphic bases of C

98-111: This case is analogous to th a t found in lines 84 through 97, except th a t c.epec =

f . e p ef and b.epeb = h.epeh not b.epeb = f . e p ef and c.epec = h.epeh.

158: W hen C h a n g e B a s e is finished it re turns the pa ir {comp, changed),

S w it c h K 3 T o K 1 3 (w , y, z)
Input: A triple (w , y , z) of edges in the base th a t co n stitu te a com ponent in the form of a
K 3.
O utput: S w i t c h K 3 T o K 1 3 changes the labels of w, y, and 2 so th a t they form a K 1 3 .

1 FREEBA SE(w .ep0)
2 F R E E B A S E (w . e p i)
3 FREEBA SElp.epo)
4 F R E E B A S E (j / . e p i)

5 FREEBASE(z.epo)
6 F R E E B A SE (z.ep ;)

1 3 7

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

7 w.epo <— G e t I d e n t if ie r B a s e ()
8 w.epi <— G e t I d e n t if ie r B a s e Q
9 y-epo <- w.epo

10 y -e p r <- G e t I d e n t if ie r B a s e ()
11 z.epo <- w.epo
12 z .e p j < - G e t I d e n t if ie r B a s e ()
13 w.nxo <—■ 2

14 w.prevo <- y
15 y .nx0 <- w
16 y.prevo <— z
17 z.nxo <— y
18 z.prevo <■— U>
19 w.nxx <—- u;
20 w.prevj <— m
21 y.nxj <- y
22 y.previ <- y
23 z . n i j «— z
24 z.previ <— z
25 w.nno - 3
26 y .n n 0 <- 3
27 2.7i7lo <— 3
28 w.nnj <-- 1
29 y . n n j <— 1
30 z .n n j <— 1

S w itchK 13T oK 3(w , y , z)
Input: A triple (w , y , z) of edges in the base th a t constitute a component in the form of a

Output: S w itch K 1 3 T o K 3 changes the labels of w , y , and 2 so that they form a A'3 .

1 F R E E B A S E lw .epo)
2 F R E E B A S E (w .ep j)
3 F R E E B A S E (y .ep0 f
4 F r e e B a s e l y . e p i)
5 F r e e B a s e ! z .ep o)
6 F R E E B A S E (z .ep j)
7 w.epo <— G e t I d e n t i f i e r B a s e ()
8 w.epi <— G e t I d e n t i f i e r B a s e ()
9 y-epo <— w.epo

10 y-epi * - G e t I d e n t i f i e r B a s e ()
11 z.epo w.epi
12 z.epi <- y.epj
13 ui.nxo <— y
14 w.prevo <— y
.15 y.nxo ±— w
16 y.prevo <— w
17 y.nxj *— 2
18 y.previ <— 2
19 2.n x j <— y
20 z.preci <— y
21 w.nxi 2
22 w.previ <— 2
23 z.raxo <— w
24 z.prevo <— w
25 w.nno <— 2
26 y -nno <— 2
27 z .n n o <— 2
28 w.nni <— 2
29 y .nn i <— 2
30 z .n r i j <— 2

S w i t c h (w 0 , w i)

138

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Input: A pair (w0, w i) of edges in the base whose com ponent has a partitio n non-isomorphic
base th a t can be form ed by switching wq and w\.
O utput: S w i t c h changes base of the com ponent containing wq and w \ , by switching wq
and w i.

1 fo r j <— 0 t o 1 d o
2 fo r i <— 0 t o 1 d o
3 t e m p j <— G e t I d e n t i f i e r L i n e ()
4 I n s e r t I n t o L is t ^ - , i, t e m p j , i)
5 t e m p j . n n i <— Wj.nni
6 R e m o v e F r o m L is t ^Wj , i)
7 fo r j <— 0 t o 1 d o
8 fo r i <— 0 t o 1 d o
9 iN S E R T lN T O L lS T ^ e ra p j , i, W i - j , i)

10 w i - j . n n i <— tem p j .n n i
11 R e m o v e F r o m L is t (te m p j , i)
12 F r e e B a s e (t e m p j . e p i)

1-6: For each j in {0,1}, we replace Wj w ith a tem porary edge t e m p j .

7-12: For each j in {0,1}, we replace t e m p j w ith w \ - j .

EsTABLiSHEDGElNBASE(ed9e0 , end0 , edget , end1 : t)

Input: A 5-tuple (e d g e o ,e n d o ,e d g e x ,e n d i , t) , where t is a vertex of th e line graph and, for
i in {0,1}, endi is an endpoint of edgei, an edge of the base. I t is perm issible for edge i to
have value n i l , in which case en d \ will also have value n i l .

O utput: Provided ed g e \ ^ NIL, E s t a b l i s h E d g e I n B a s e changes the vertex labels to reflect
the addition of the edge t between vertices edgeo.epend0 and ed g e \ .ep end1 of the base. If
edge \ = n i l , E s t a b l i s h E d g e I n B a s e creates a new vertex in th e base and changes the
vertex labels to reflect the addition of the edge t between vertex edge0.ependo and the new
vertex.

1 i f edgei = NIL t h e n
2 size <— 1
3 NoNEIGHBOURS(f,.l)
4 e ls e size <— 2
5 f o r i <— 0 t o size — 1 d o
6 lNSERTlNToLiST(ed9 ei ,e n d l , t , i)
7 S <— GETlNCIDENTNEIGHBORS(f,i)
8 I n c r e m e n tN N (5)

I n s e r t I n t o L i s t (u ; , w e n d , y, y e n d)

Input: A 4-tuple (w, w end , y , yend) , where w and y are edges of the base graph, and w e n d
and y e n d are values, either 0 or 1, which denote endpoints of w and y, respectively.
O utput: I n s e r t I n t o L i s t adds y to the circular doubly linked list of edges abou t w .epwend,
such th a t y.epyend = w .ep wend-

1 y.epyend * IT-epwend.
2 z < w . n x wend
3 ze n d <— E n d (z , w .ep wend)
4 w . n x wend <— y
5 y.prevyend <- w
6 y . n x yend *
7 z.prevzend <- y

139

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

I n c r e m e n t N N (S)

Inpu t: A stack S of pairs of the form (s, send) w here s is an edge in the base and send is a
value, either 0 or 1, used to denote an endpoint of s.

O utpu t: For each pair (s, send) in S, I n c r e m e n t N N increm ents the value of s .n n send by
one.

1 w h ile S 7 ̂ n i l d o
2 (s, send) <— P o p (S j
3 S .T lT ls e n d < S .T l7 lSen d “hi

C .1 .3 D e letin g an edge

Recall the algorithm D e l e t e E d g e , found in F igure 4.7, which is used to relabel a line graph

when an edge is deleted. The following pseudocode can be used to im plem ent D e l e t e E d g e .

D e l e t e E d g e (<z, b)
Inpu t: An adjacency labelling of a line graph L(G) created using our dynam ic scheme, and
two distinct vertices a and b of Vu g) for which ab € E L(g > ■

O utpu t: An adjacency labeling of a graph L(G ') form ed by deleting the edge ab from L{G),
providing L(G') is a line graph. If L(G ') is no t a line graph, then the o u tp u t indicates as
such.

1 f o r k <— 0 t o 1 d o
2 f o r I <— 0 t o 1 d o
3 i f a.epk = b.epi t h e n
4 ea <— k
5 eb <— I
6 s w i t c h
7 c a s e a .nnea = 2:
8 C a s e A C ()
9 c a s e a .n n ea = 3:

10 i f a.nxea = b t h e n
11 c <— b.nxei,
12 e l s e c <— a.nxea
13 ec <— 1 — End(c, a.epea)
14 s w i t c h
15 c a s e c .nnec = 1
16 C a s e B D ()
17 c a s e c .nnec = 2
18 / 4- c .nxec
19 e f < - 1 — E n d (/, c.epec)
20 s w i t c h
21 c a s e f . e p ef = a.epj_ea
22 s w i t c h
23 c a s e f . n n ef > 4
24 e r r o r this is no longer a line graph
25 c a s e / .nnef = 3:
26 i f f . n x ef = a t h e n
27 9 < ^ 1 - ea
28 e l s e g <— f ,nxej
29 eg 1 - E nd(g , f .e p ef)
30 i f g.nneq = 1 t h e n
31 C a s e F Q
32 e l s e e r ro r this is no longer a line graph
33 c a s e f . n n Pf = 2:

140

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

34 C a s e E Q
35 c a s e f . e p ef = b.epUeb
36 s w i t c h
37 c a s e f .nnej > 4
38 e r r o r th i s is no lo n g e r a lin e g r a p h
39 c a s e f . n n ef = 3:
40 i f / .nxef = b t h e n
41 g ^ b . n x t - e b
42 e l s e g <— f . n x ef
43 eg <r— 1 — E n d (g j . e p ef)
44 i f g .n n eg = 1 t h e n
45 C a s e F S y m m e t r i c Q
46 e l s e e r r o r th i s is n o lo n g e r a lin e g ra p h
47 c a s e f . n n ef = 2:
48 C a s e E S y m m e t r i c ()
49 c a s e f . e p ef = a .ep t _ea a n d f . e p ef = b.epUeb:
50 e r r o r th i s is n o lo n g e r a lin e g r a p h
51 c a s e c .nnec = 3:
52 i f a . n n ^ e a ^ 2 o r 6 .nn_(.e(, ^ 2 t h e n
53 e r r o r th i s is n o lo n g e r a lin e g r a p h
54 e ls e / <— a .n x i _ ea
55 h <— b.nxi_eb
56 ef <— E n d (/ , a.ep1_ea)
57 eh <— E n d (/i , b.ep1_eb)
58 i f / - e p j . e/ ^ c.epec o r h .ep j_e?l ^ c .e p ec t h e n
59 e r r o r th i s is n o lo n g e r a lin e g r a p h
60 e l s e C a s e G ()
61 c a s e c.nnec > 3:
62 e r r o r th i s is n o lo n g e r a lin e g ra p h
63 c a s e a.nnea = 4:
64 i f a.nxea ^ b t h e n
65 c <— a.nxea
66 e l s e c <— b.nxeb
67 ec <— 1 — E n d (c , a.epea)
68 i f a.nxec ^ b o r a.nxec ^ c t h e n
69 i *— a.nxea
70 e l s e i f b.nxeb ^ a o r b.nxeb ^ e t h e n
71 i <— b.nxeb
72 e l s e i <— c .n x b_ec
73 ei <— 1 — E n d (j , a.epea)
74 s w i t c h
75 c a s e c.nnec > 2 o r i .n n ei > 2
76 e r r o r th i s is n o lo n g e r a lin e g ra p h
77 c a s e c .nnec = 1 a n d i .n n ei = 1
78 i f a .n n j . ea = 1 t h e n
79 C a s e H Q
80 e l s e i f b .n n b. eb = 1 t h e n
81 C a s e H S y m m e t r i c ()
82 e l s e e r r o r th i s is n o lo n g e r a lin e g ra p h
83 c a s e c.nnec = 2 a n d i .n n ei = 2
84 / < - c .nxec
85 g <— i .n x ei
86 e / <— l — E n d (/ , c . e p e c)
87 eg <— E n d (p , i.epei)
88 i f f - e p ef = g.epi_eg = a .ep1_ea a n d f . n n ef — 3 t h e n
89 C a s e J ()
90 e l s e i f f . e p ef = g.epi-eg — b.ep1_eb a n d f . n n ef = 3 t h e n
91 C a s e J S y m m e t r i c ()
92 e ls e e r r o r th is is no lo n g e r a lin e g ra p h
93 c a s e i .n n ei = 1 a n d c .nnec = 2:
94 / < - c.nxec
95 ef <— 1 — E n d (c , c.epec)
96 i f f . e p e f = a - s p i - e a ancl / -n n e f = 2 t h e n
97 C a s e I()

141

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

98 e l s e i f f . e p ef = b . e p 1 _eb and f . n n ef = 2 t h e n
99 C a s e I S y m m e t r i c ()

100 e l s e e r r o r th is is no longer a line graph
101 c a s e i . n n ei = 2 and c . n n ec — 1:
102 g <— i . n x e i
103 e g <— E N D (g : i . e p e i)
104 i f g . e p i „ eg = h.ep; _e;) and g . n n 1 _eg = 2 t h e n
105 C a s e I S y m m e t r i c Q
106 e l s e i f g . e p i , eg = a . e p 1_ea and g . n n i _ eg = 2 t h e n
107 C a s e I S y m m e t r i c ()
108 e l s e e r r o r th is is no longer a line graph
109 c a s e a . n n ea > 4
110 e r r o r th is is no longer a line graph

1-5: We m ust first determ ine the vertex of the base a t which a and b in tersect. In particular,

we set a.epea and b.epeb to be the endpoints a t which a and b in tersect. L ater we will

introduce the variables ec, ef, eg, eh, ei, ej, to denote particu lar endpoints o f c, f , g,

h, i, and j , respectively.

6-110: We determ ine the structu re of th e base surrounding a and b th rough a series of case

sta tem ents th a t allow us to determ ine which of th e cases in Table 4.1 we m ust deal

w ith.

7,8: If the only edges of th e base incident w ith a.epea are a and b them selves, th en we are

dealing w ith case A or C. B oth cases are handled by the function C aseA C .

9-62: There is exactly one additional edge incident w ith a.epea o ther th a n a and b them ­

selves. We call th is edge c and set c.epec to be the endpoint of c closest to a.

10-12: We determ ine c using the circular doubly linked list a t a.epea.

15,16: If c is the only edge incident w ith c.epec, then we are dealing w ith case B or D.

B oth cases are handled by the function C a s e B D .

17-50: There is exactly one o ther edge incident w ith c.epec, o ther th a n c itself. We call

th is edge / and set f .e p ef to be the endpoint of / closest to c. T he possibility exists

th a t the modified graph is not a line graph, however, if it is a line graph, then we are

dealing w ith case E or F , or sym m etric variants thereof.

21-34: The edge / is adjacent to b o th c and a where, in particu lar, f . e p ef = a.ep1_ea.

Again, th e possibility exists th a t the modified graph is not a line graph, however, if it

is a line graph, then we are dealing w ith case E or F.

23,24: If there are more th an three edges incident w ith f . e p ef then the modified graph is

not a line graph, as the struc tu re of G does not resemble any of th e cases depicted in

Table 4.1.

142

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

25-32: There is exactly one other edge incident w ith f . e p ej , other th a n a and / themselves.

We call th is edge g and set g.epeg to be th e endpoin t of g closest to / . The possibility

exists th a t the modified graph is not a line graph, however, if it is a line graph, then

we are dealing w ith case F.

30-32: If g is th e only edge incident w ith g.epeg, th en we are dealing w ith case F, which is

handled by th e function C a s e F . Otherw ise, th e modified graph is no t a line graph.

33-34: If the only edges incident w ith f . e p ef are a and / themselves, then we are dealing

w ith case E , which is handled by the function C a s e E .

35-48: The edge / is adjacent to bo th c and b where, in particular, f . e p ef = b.ep1_eb. This

case is analogous to th a t found in lines 21 th rough 34.

49,50: The edge / is adjacent to c, b u t neither a nor b. Consequently, th e modified graph

is not a line graph.

51-60: There are exactly two additional edges incident w ith c.epec other th a n c itself. If

the modified graph is still a line graph, th en th e base m ust resemble case G.

52,53: The base resembles case G only if a.nn^_ea = b.miuek = 2. O therwise, the modified

graph is no t a line graph.

54-57: Providing a.nni„ea = b.nnt_eb = 2, we le t / be the edge incident w ith a.ep1_ea,

o ther th a n a , and we let h be the edge incident w ith b.ep1_eb, o ther th an b. Moreover,

we set f . e p ef to be the endpoint of / fu rthest from a, and set h.epeh to be the endpoint

of / fu rthest from b.

58-60: The base resembles case G if and only if f . e p 1_ej = h .ep1_eh = c.epec. Providing

this condition holds, it is handled by th e function C a s e G ; it it does not hold, then

the modified graph is not a line graph.

61,62: If there are more th an three edges incident w ith c.epec then the modified graph is

not a line graph.

63-108: There are exactly two additional edges incident w ith a,.epea, besides a and b

themselves. T he possibility exists th a t the modified graph is no t a line graph, however,

if it is then we are dealing w ith cases H, I, or J, or sym m etric variants thereof.

64-73: We let c and i be the edges incident w ith a.epea, o ther th an a and b themselves.

The circular linked list a t a.epea is used to determ ine c and i where, moreover, we set

c.epec and i .epei to be the endpoints of c and i, respectively, th a t are closest to a.

143

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

74-76: We require th a t c.epec and i .epei be incident w ith a t m ost one edge other th a n c

and i them selves, otherwise, the modified graph is not a line graph.

77-82: We first consider when c.epec and i .epei are incident only w ith c and i, respectively.

The possibility exists th a t the modified graph is no t a line graph, however, if it is then

we are dealing w ith case H or a sym m etric varian t thereof.

78-82: The modified graph is a line graph if and only if a t least one of a .n n j . ea = 1 or

b .n n i .eb = 1. If a .n n i . ea = 1, th en we are dealing w ith case H, which is handled by the

function C a se H . If a .M j .eo > T b u t b .nnb. eb = 1, then the situation is sym m etric

to case H.

83-92: We now consider when c.epec and i .epei are b o th incident w ith exactly one edge

in addition to c and i, respectively. T he possibility exists th a t th e modified graph is

not a line graph, however, if it is a line graph, th en we are dealing w ith case J or a

sym m etric varian t thereof.

84-87: We let / and g be the edges incident w ith c.epec and i.epei, respectively, other th an

c and i them selves. The circular linked lists a t c.epec and i.epei are used to determ ine

/ and g where, moreover, we set f . e p ef to be th e endpoint of / fu rthest from c, and

set g.epeg to be th e endpoint of g closest to i.

88-92: The modified graph is a line graph if and only if either f . e p ef = g .ep j .eg = b.ep1_eb,

where f . n n ef = 3, or f . e p ef = g.epi_eg = a .ep1_ea, where / .n n e/ = 3. If th e la tte r

holds then we are dealing w ith Case J, which is handled by the function C a s e J . If the

la tte r does not hold bu t the former does, then th e situation is sym m etric to Case J.

93-100: We now consider when i .epei is incident only w ith i itself and c.epec is incident

w ith exactly one edge o ther th an c. T he possibility exists th a t the modified graph is

not a line graph, however, if it is a line graph, then we are dealing w ith case I or a

sym m etric variant thereof.

94,95: We let / be the edge incident w ith c.epec, other th a n c itself. The circular linked

list at c.epec is used to determ ine / where }.epef is set to be the endpoint of / closest

to c.

96-100: The modified graph is a line graph if and only if either f . e p ej — a .epUea, where

a.nni.ea = 2 , or f . e p ef = b.epj_eb, where b .n n j .eb = 2. If the la tte r holds, then we

are dealing w ith Case I, which is handled by th e function C a se I. If the la tte r does

not hold, but the former does, then the situation is sym m etric to Case I.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

101-108: We now consider when c.epec is incident only w ith c itself and i .e p ei is incident

w ith exactly one edge o ther th an i. This case is sim ilar to th a t found in lines 93

through 100.

109,110: Finally, we consider w hen there are exactly a t least th ree additional edges incident

w ith a.epea, other th a n a and b them selves. In th is case, the modified graph is not a

line graph.

C a s e A C Q

Inpu t: None, however, th e algorithm will work globally on the labels seen in D e l e t e E d g e .

O utpu t: C a s eA C relabels the vertices of th e component containing a and b to reflect the
transitions illustrated in Figures C.7 and C.8.

1 F r e e B a s e I n .epea)
2 F r e e B a s e (6. ep e j)
3 a . e p ea <- G e t I d e n t i f i e r B a s e ()
4 b.epeb <— G e t I d e n t i f i e r B a s e Q
5 a.nxea <— a
6 a.prevea <- a
7 b.nxeb <— b
8 b.prevgt, <— b
9 a.nnea <— 1

10 <1.71711 -e a * a.nni
11 b.nneb 1
12 b .7 l7 l2 ~ e b *— b.nni.

Figure C.7: Deleting the edge {a ,b} from th e line graph L(G) (case A of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in the algorithm C a s e A C

C a s e B D ()
Inpu t: None, however, the algorithm will work globally on the labels seen in D e l e t e E d g e .

O utput: C a s e B D relabels th e vertices of the component containing a and b to reflect the
transitions illustrated in Figures C.9 and C.10.

1 F r e e B a s e (a. epea)
2 F R EE B A S E (6 .ep ei)
3 FREEBASE(c.epec)
4 FREEB ASE(C. CPi -ec)
5 a . ep ea <— G e t I d e n t i f i e r B a s e Q

145

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

b

(a) G (b) G'

Figure C.8: Deleting the edge {a, 6} from the line graph L(G) (case C of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in the algorithm C aseA C

6 b.epeb <- G e t I d e n t i f i e r B a s e ()
7 c.epec < - &Pea
8 C . 6 p i - ec t - b.epeb
9 Q .Y lX ea < - c

10 a.prevea c
11 c.nxec a
12 c.prevec <— a
13 b ■ nxeb <-- c
14 b.preveb c
15 C .TIX i - e c <r~ b
16 c.prev j <— b
17 d .7 lT lea *-- 2
18 (2.T171 < a .T iT i

19 b.nneb <— 2
20 b .TITl i - e b < b .71712 -e b
21 C-TlTlec - 2
22 C.TITI <- 2

Figure C.9: Deleting the edge {a, b} from the line graph L{G) (case B of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G ’ are as prescribed in the algorithm C a s e B D

C a s e E ()

Input: None, however, the algorithm will work globally on the labels seen in D e l e t e E d g e .

O utpu t: C a s e E relabels the vertices of the com ponent containing a and b to reflect the
transition illustrated in Figure C .l l .

146

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Figure C.10: Deleting the edge {a, b} from the line graph L(G) (case D of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in the algorithm C a s e B D

1 F r e e B a s e ! a. epea)
2 F r e e B a s e I a .ep i_ea)
3 F r e e B a s e (6. epef))
4 F r e e B a s e I c.epec)
5 F r e e B a s e (c . epi-ec)
6 F R E E B A S E (/ .e p e /)
7 F R E E B A S E (/ .e p i_ e/)
8 a.epea <— G e t I d e n t if ie r B a s e ()
9 a.ep1_ea <— G e t I d e n t if ie r B a s e ()

10 b.epeb <— G e t I d e n t i f i e r B a s e Q
11 f . e p ef <— G e t I d e n t i f i e r B a s e ()
12 c.epec *- a.epea
13 C.ept-ec <- b.epeb
14 f .e p i .e f a.epea
15 b.nxeb *— c
16 b.preveb <— c
17 c.nxi_ec <— b
18 c.prev 1_ec <- b
19 c.nxec <— a
20 c.prevec <- /
21 a.nxea <- /
22 a.prevea <— c
23 f . n x 1_ef <— c
24 f . p r e v j . e f <- a
25 / .n x e/ <- /
26 f .p revef <- f
27 a .n x i .ea <— a
28 a.prev1_ea <— a
29 a.nnea <— 3
30 a .n r i j , ea <— 1
31 b.nneb <— 2
32 b.nni.eb b .nn i_eb
33 c.nnec <— 3
34 c.nni_ec <— 2
35 f . n n ef <— 1
36 f - n n t _ej <— 3

C a s e E S y m m e t r i c ()

Input: None, however, the algorithm will w o r k globally on the labels seen in D e l e t e E d g e .

O utpu t: C a s e E S y m m e t r i c relabels the v e r t i c e s of the com ponent containing a and 6 to
reflect the transition illustrated in Figure C.12.

147

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

(b) G

Figure C .ll: Deleting the edge {a, b} from the line graph L(G) (case E of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in the algorithm C a s e E

1 FREEBA SEfa.epea)
2 F r e e B a s e I fc.epe(,)
3 F r e e B a s e I b. epi-ei,)
4 F r e e B a s e i c.epec)
5 F r e e B a s e I c.ep j_ec)
6 FR EEB A SE(/.epe/)
7 FR EEB A SE(/.epj_e/)
8 a.epea <— G e t I d e n t i f i e r B a s e O
9 b.epeb <— G e t I d e n t i f i e r B a s e O

10 6. epUeb <— G e t I d e n t i f i e r B a s e O
11 f . e p ef <— G e t I d e n t i f i e r B a s e O
12 c.epec <- a.epea
13 c.ept-ec <— b.epeb
14 f . e p i - ef *- a.epea
15 b.nxeb <— c
16 b.preveb <— /
17 c .n x i .e c < - f
18 c.prevUec <— b
19 f . n x j _ ef <— b
20 } .prevUef <- c
21 c.nxec <— a
22 c.prevec <— a
23 a.nxea <— c
24 a.prevea <— c
25 f . n x ef <- f
26 / .prevef <- f
27 6. n r <— b
28 b.prevt _eb <— 6
29 a.nnea <— 2
30 a.nnj_ea <— «.rm ^_ea
31 b.nneb <— 3
32 b .nni_eb <— 1
33 c.nnec <— 2
34 c .n n j .ec <— 3
35 f - n n ef <— 1
36 f . n n 1_ej <— 3

C a s e F ()

Input: None, however, th e algorithm will work globally on the labels seen in D e l e t e E d g e .

O utput: C a s e F relabels the vertices of the com ponent containing a and b to reflect the
transition illustrated in Figure C.13.

148

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

— *— U - ^ efeb

c

(a) G (b) G'

Figure C.12: D eleting the edge {a,b} from the line graph L(G) (sym m etric to case E of
Table 4.1). T he vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ;
the vertices labelled ex in G' are as prescribed in th e algorithm C a s e E S y m m e t r i c

1 F R E E B A S E (a . e p e o)

2 F R E E B A S E la .e p i_ ea)
3 FREEBASE(&.epei>)
4 F r e e B a s e I C.epec)
5 F R E E B A S E (c . e p i . e c)

6 F R E E B A S E (/ .e p e/)
7 F r e e B a s e (/ . e p i - e /)
8 F R E E B A S E (p .e p eg)
9 F R E E B A S E (p . e p ; _ e 5)

10 a . e p e a G e t I d e n t i f i e r B a s e O
11 d.ep i _ea <— G e t I d e n t i f i e r B a s e O
12 b.epeb <— G e t I d e n t i f i e r B a s e Q
13 f . e p ef <— G e t I d e n t i f i e r B a s e Q
14 c.epec <— a.epea
15 C.epi.ec ■*— b.epeb
16 f .e p u e f <- a.epea
17 g.epeg *— a.epuea
18 g.epi-eg <- f .ep e f
19 b.nxeb <— c
20 b.preveb <— c
21 c.nxi.ec b
22 c.prev 1_ec <- b
23 c.nxec <— a
24 c.prevec <— /
25 a.nxea <— /
26 a.prevea <— c
27 f . n x j . ef <- c
28 / .prevUef *- a
29 /.n rre/ <- p
30 f .p re v ef g
31 g -nxUeg <- /
32 g .p r e v j . ^ <- /
33 g-nxeg <— a
34 g.preveg <— a
35 d.TlXi-ea <— p
36 a.prevj_ea <— p
37 a .nnea <— 3
38 a.nnx-eu ~ 2
39 b.nneb <— 2
40 b.nni_eb <— b.nni_eb
41 c.nnec <— 3
42 c .n n i_ec <— 2

149

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

43
44
45
46

f . n n ef <- 2
f - n n l - e f 3
g .nneg <- 2
9 - n n i - e g 2

i 9
a

c
ec

(a) G (b) G"

Figure C.13: D eleting the edge {a, 6} from the line graph L(G) (case F of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in the algorithm C a s e F

C a s e G ()

Input: None, however, th e algorithm will work globally on the labels seen in D e l e t e E d g e .

O utput: C a s e G relabels the vertices of the com ponent containing a and b to reflect the
transition illustrated in Figure C.14.

1 FR EEB A SE(a.epea)
2 F r e e B a s e (<i .epi_ea)
3 FREEBASEf&.epeb)
4 FREEBASEf C.epec)
5 FREEBA SE(C.epi.ec)
6 F r e e B a s e (f .epe f)
7 F R E E B A S E (/.ep i.e /)
8 F r e e B a s e lh .e p eh)
9 F r e e B a s e (/i . epi-e^)

10 a.epea <— G e t I d e n t if ie r B a s e O
11 a.ep j _ea <— G e t I d e n t i f i e r B a s e O
12 b.epeb <— G e t I d e n t if ie r B a s e O
13 b.ep 1_eb <— G e t I d e n t i f i e r B a s e O
14 f . e p ef <— G e t I d e n t i f i e r B a s e O
15 C.epec <— tt-epea
16 c .ep 1_ec <— b.epi.eb
17 / - eP i - e / a .epea
18 h .ep eh <— f . e p ef
19 h .ep t _eh <- b.epeb
20 b.nxeb <— c
21 b.preveb <— h
22 c .n x j_ ec <— h
23 c.prevj_ec <— b
24 h . n x i - eh b
25 h.prev 1 _ e h <— c
26 c .nxec +— a
27 c.prevec <- /
28 Q,.nxea < y
29 a.prevea <— c
30 f .n x t _ef *— c
31 f . p r e v j . e f t - a

150

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

nxeh < - /

preveh < - /

1 - e a * ^

vrevi_ea <- a
rerj.eb <- b
P r e v l - e b < - &
n n ea <-
T1711 _ e a

n n e& <-
H'Tl l - e b
nnec < -

W'Tl 1 _ e c

nnef
n n l - e f

.nneh < -

• 1 -e/i * 3

(I & 1, CO

ea, ec

e / , e/i

(a) G (b) G'

Figure C.14: D eleting th e edge {a, 6} from th e line graph T(G) (case G of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' axe as prescribed in the algorithm C a s e G

C a s e H ()

Input: None, however, the algorithm will work globally on the labels seen in D e l e t e E d g e .

O utput: C a s eH relabels th e vertices of the com ponent containing a and b to reflect the
transition illustrated in Figure C.15.

1 FREEBA SE(a.epeQ)
2 FREEBASE(a.epj_ea)
3 F r e e B a s e (6. epeb)
4 F r e e B a s e (C.epec)
5 FREEBASE(c.epi_ec)
6 F r e e B a s e (i . epej)
7 FREEBA SE(i.epj_ej)
8 a.epea <— G e t I d e n t i f i e r B a s e O
9 a - e P i ~ e a _ G e t I d e n t i f i e r B a s e O

10 b.epeb <— G e t I d e n t if ie r B a s e O
11 C - ^ P e c ̂ Q ' ^ P e a
12 C . 6 p i - e c * b ' & P e b
13 i.epei <- a .ep i .ea
14 i - Z P l - e i < b- ^ p l - e b
15 b.nxe{, i
16 b.preveb c
17 i.TlXi-ei C
18 i .prevt _ei <— b

151

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

23 a.nxea *— c
24 a.prevea c
25 i .nxei <— a
26 i.prevei <— a
27 a.nxi_ea <— i
28 a-prevUea <-
29 a.nnea <- 2
30 a.nnj.ea <— 2
31 b.nneb <— 3
32 b.nni_eb <— b.
33 c.nnec *— 2
34 c.nnj-ec <- 3
35 i .n n ei <— 2
36 <— 3

(a) G (b) G'

Figure C.15: D eleting the edge {a, 6} from th e line graph L(G) (case H of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in the algorithm C a s e H

C a s e I ()

Input: None, however, th e algorithm will work globally on the labels seen in D e l e t e E d g e .

O utpu t: C a s e I relabels the vertices of the com ponent containing a and b to reflect the
transition illustra ted in Figure C.16.

1 F r e e B a s e (a . e p ea)
2 F r e e B a s e I o . e p j . ea)
3 F r e e B a s e) 6. e p ef>)
4 F r e e B a s e) c.epec)
5 FREEBASE) C . e p i _ e c)

6 F r e e B a s e) / . epe/)
7 F r e e B a s e) / . ep /_e/)
8 FREEBASE(z.ePei)
9 F R E E B A S E (iep j.ei)

10 a . e p ea <— G e t I d e n t i f i e r B a s e O
11 a .ep 1 _ e a <— G e t I d e n t i f i e r B a s e O
12 b.epeb <— G e t I d e n t i f i e r B a s e Q
13 f - e p ef <— G e t I d e n t i f i e r B a s e Q
14 c .e p ec <— a.epea
15 c.epj.ec <— b.epeb
16 i.epei *• a.epi_ea
17 i .epuei <- b.ept.eb
18 f - e p u e j <— a.epea

152

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

27 i .nxei < r - a
28 i.prevei <— a
29 c.nxec <—■ a
30 c.prevec < - /
31 a.nxea <-- /
32 a.prevea c
33 f . nx l e f c
34 f .pvev j - _e f <- a
35 f . n x ef +-- /
36 f-prevef < - /
37 (L.TlTlea '- 3
38 (L.TITI i - ea <- 2
39 b.nneb <-- 3
40 b . n n i . e b b.nn
41 c.nnec <-- 3
42 C.71TI i-Q c <- 3
43 } .n n ef <-- 1
44 f - n n i-ef <- 3
45 i .n n ei <—- 2
46 %. TlTl i _ ej 3

ei t a . e c f ef

y * I eb

(a) G (b) G'

Figure C.16: Deleting the edge {a, b} from the line graph L(G) (case I of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in the algorithm C a s e I

C a s e J ()

Input: None, however, th e algorithm will work globally on the labels seen in D e l e t e E d g e .

O utpu t: C a s e J relabels the vertices of the com ponent containing a and b to reflect the
transition illustrated in Figure C.17.

1 F r e e B a s e (a . e p e a)

2 F r e e B a s e ! a.epi_ea)
3 F r e e B a s e (6 . e p e i ,)

4 F r e e B a se(c.epec)
5 F R E E B A S E (c . e p p _ e c)

6 F R E E B A S E (/ . e p e/)

7 F R E E B A S E (/ . e p i _ e /)

8 F r e e B a s e (p . epeg)

153

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

9 F R E E B A SE ^.ejq .g ,,)
10 F r e e B ASE(i . e p e i)
11 F R E E B A S E (i . ep^_ej)
12 a.epea *- G e t I d e n t i f i e r B a s e O
13 a.epUea *— G e t I d e n t i f i e r B a s e O
14 b.epeb <— G e t I d e n t i f i e r B a s e Q
15 J-epef <— G e t I d e n t i f i e r B a s e Q
16 c.epec <— a.epea
17 c.epuec <- b.epeb
18 i.epel <- a.epuea
19 i . e p i - ei <— b .e p i-eb
20 /• epi~ef <- a.epea
21 g . e p eg <— / . e p e/
22 g-epi-eg <— i . e p ei
23 b.nxeb <— i
24 b.preveb <— c
25 i . n x i - ei <— c
26 i .prevt _ei <— 6
27 c.nxi_ec b
28 c.prev j_ec i
29 c.nxec <— a
30 c.prevec <— /
31 a .n iga <— /
32 a.prevea <— c
33 f .nxj_ef <— c
34 f .prevUef <— a
35 i.nnei <— g
36 i.prevei <— a
37 g-nxUeg <- a
38 g-prevt _eg *— i
39 a.nxj_ea <— i
40 a.prevUea <- g
41 g.nxeg <- /
42 g.preveg <- f
43 f . n x ef <- 5
44 f .p revef <- g
45 a.nnea <— 3
46 CL. 71712 - ea * 3
47 b.nneb <— 3
48 b.Tin}_ e b ^ b.nn
49 c.nnec <— 3
50 c .n n 2 - e c * 3
51 f . n n ej < - 2
52 f . n n Uef < - 3
53 g.nneg < - 2
54 g .n n Ueg <- 3
55 i .n n ei <— 3
56 i . T l T l 2 - e i * 3

-e 6

C .1.4 A dding an edge

As discussed in Section 4.2.2, given th a t the addition of an edge is the opposite of the

deletion of an edge, the pseudocode required to add an edge would comprise a case analysis

similar to th a t presented in Section C.1.3.

154

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

ef, eg

(a) G (b) G'

Figure C.17: D eleting the edge {a ,b} from th e line graph L (G) (case J of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm D e l e t e E d g e ; the vertices
labelled ex in G' are as prescribed in th e algorithm C a s e J

C.2 r-m inoes

C .2.1 D e letin g a vertex

Recall th e algorithm D e l e t e V e r t e x , found in Figure 5.2, which is used to relabel a r-m ino

when a vertex is deleted. The following pseudocode can be used to im plem ent D e l e t e V -

e r t e x .

D e l e t e V e r t e x (G , v)

Input: An adjacency labelling of an r-m ino G created using our dynam ic scheme, and a
vertex u in Vq - Here we presume th a t r G 0 (1) , thereby ensuring error-detection.

O utput: An adjacency labeling of an r-m ino G' formed by deleting v from G.

1 i f v .c l i .n x = v t h e n
2 F r e e C l i q u e (u . c l i . n u m)
3 f o r i <-_l t o v.cin d o
4 (C , C) <— G e t C l i q u e M e m b e r s (u , i)
5 C 7 <— NIL
6 w h i l e C ^ NIL d o
7 (x ,xc l) <— P o p (C')
8 i f x ^ v t h e n
9 P U S H ^ jX)9

10
11
12
13

if G e t C o m m o n C l iq u e s (C ') = {v .c li .num } t h e n
R e m o v e F r o m C l iq u e (u , i)

e ls e E l im in a te C l iq u e (u , i)
F r e e V e r t e x (u)

1-2: If v is an isolated vertex, then we free the identifier of the m axim al clique {r} for

fu ture use.

3-9: For each m axim al clique C containing v, we obtain the clique C' = C \ {n}.

10-12: If the m em bers of C' share another m axim al clique besides C, then we eliminate C.

Otherwise, we simply remove v from C.

155

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

13: We free the identifier of v for fu ture use.

G E T C L IQ U E M E M B E R S (t , td)
Input: A pair (t , t c l), where t is a vertex of G and t d is an index between 1 and t.cin.
O utpu t: Let S denote th e set of all vertices in the m axim al clique t . d tci-num. G e t C l i q u e -
M e m b e r s re tu rns the pair (S, S), where S is a stack consisting of all pairs of th e form
(s, s d), where s . d sci .n u m = t .d td -n u m .

1 S< -%
2 S 4- NIL
3 s <~- t
4 s d <— t d
5 P u s h (S \ (s , sd))
6 S<- S U { s }
7 w h ile s .d sci. nx.id A t d o
8 y <— s .d sci.nx.id
9 s d <— s.dsci.nx.index

10 s * y _
11 P u s h (S , (s , sd))
12 S < - S U { s }
13 r e t u r n (S’, S)

G e t C o m m o n C l iq u e s (S)

Input: A non-em pty stack S of vertices.

O utput: For each vertex s in S, let Cs denote the set of m axim al cliques containing s.
G e t C o m m o n C l iq u e s re tu rns f l s e s ^ -

1 s <-_Po p (S)
2 (A, A) <— G e tC l iq u e s ({ s })
3 w h ile S 7 ̂ NIL d o
4 s <— P o p (S)
5 (W ,W) <— G e t C l iq u e s ({s })
6 A ^ A n W
7 r e t u r n A

G e t C l i q u e s (S)

Input: A non-em pty set of vertices S.
O utput: Let C3 denote the set of all m axim al cliques containing a vertex s, and let C denote

G e t C l i q u e s re tu rns the pair (C ,T), w here T is a stack containing an element of
the form for each en try t .d i .n u m of C.

1 T «- 0
2 T <- NIL
3 fo r s € S d o
4 fo r i *— 1 to s.cin d o
5 if s .d i .n u m 0 T t h e n
6 T <— T U {x s .d i .n u m }
7 P u s h (T , (s,i))
8 r e t u r n (T, T)

R e m o v e F r o m C l i q u e ^ , y d)
Input: A pair (y . y d), where y is a vertex of G and y d is an index between 1 and y.cin.
Moreover, y . d yci .nx .id A V-

156

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

O utput: R e m o v e F r o m C l iq u e elim inates y from the m axim al clique y.clyci.num.

1 w <— y.clyd.prev.id
2 wcl <— y .clyd .prev.index
3 z <— y.c lyd .nx .id
4 zcl <— y .d y d .n x . in d e x
5 y - d y d <- n i l
6 w.clxci.nx.id <— z
7 w . d xci .nx .index <— zcl
8 z . d zci.prev.id <— w
9 z . d zci .prev.index <— wcl

ELIMINATECLIQUE(t, t d)
Input: A pair (t , t d) , where t is a vertex of G and t d is an index betw een 1 and t.cin.
O utput: E l im in a t e C l iq u e elim inates the m axim al clique t .d td - n u m from G.

1 w h i le t .d td - n x ^ t d o
2 R e m o v e F r o m C l iq u e (1 .d tci-nx, t .d td .nx.index)
3 F r e e C l iq u e (t .d td -n u m)
4 t .d td <— NIL

C .2.2 A dd ing a vertex

Recall the algorithm A d d V e r t e x , found in Figure 5.3, which is used to relabel an r-m ino

when a vertex is added. The following pseudocode can be used to im plem ent A d d V e r t e x .

A d d V e r t e x (G , X)
Input: An adjacency labelling of an r-m ino G created using our dynam ic scheme, and a
subset X o i V G.
O utput: Let G' be the graph formed by adding a new vertex v to G, where v is adjacent to
exactly those vertices in X . Providing G' is an r-m ino, the o u tp u t is an adjacency labelling
of G '. If G' is not an r-m ino, the o u tp u t indicates as such.

1 v <r~ G e t I d e n t i f i e r V e r t e x ()
2 i f X_ = 0 t h e n
3 / <- NIL
4 P u s h (/ , v)
5 M a k e N e w C l iq u e (J)
6 e ls e (C.C)G e t C l iq u e s (A)
7 V <- 0

9
10
11
12
13
14

8 w h ile C ^ NIL d o
(,T, xcl) P O P (C)

C <—■ C \ {x .d x c i .n u m }
(C .C) <— GETCLIQUEMEMBERS(a:,xd)
C 7 NIL
subset ± 1
w h ile C =/=■ NIL d o

15
16
17
18
19
20
21

(c,ccl) <- P o p (G)

if c G X t h e n
P u s h (C / , c)

e ls e subset <— 0
if G e t C o m m o n C l iq u e s (C /) g C u P t h e n

D f - D U { x . d x c i . n u m }
i f subset = 1 t h e n

157

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

22 A d d T o C l iq u e (w, x , xcl)
23 e ls e PUSH (C ',v)
24 M a k e N e w C l iq u e (C ')

1: We obtain an identifier for the new vertex.

2-5: If v is an isolated vertex, th en it belongs to exactly one m axim al clique, {u}.

6: We determ ine C, the set of m axim al cliques th a t contain a vertex of X .

7-24: For each m axim al clique C in C, we wish to know if C 1 U {w} is a m axim al clique of

G', where C ' = C ft X . W hen we select a m em ber C from C, we discard it from C,

however, if C' U {t>} is a m axim al clique, th en we add C to T>.

8-11: We select C from C, remove C from C, and determ ine the vertices in C.

12-18: We determ ine C ' = C fl X . W hile doing so, we determ ine if C C X .

19-24: The clique C ' U {?;} is m axim al if and only if it is no t contained in any maximal

clique in C or T>. If C' U {u} is m axim al and C C X , th en we add v to C, as C will

no longer be m axim al in G'. If C ' U {n} is m axim al and G % X , then we make a new

m axim al clique of C ' U {V}, as C will continue to be m axim al in G '.

M a k e N e w C l iq u e (S')

Input: A non-em pty stack S of vertices.

O utpu t: A m axim al clique consisting of the vertices in S.

1 t <- P O P (S)
2 A D D T o C L I Q U E (f ,£ , NIL)

3 w h ile S + N i l d o
4 s <— P o p (S)
5 A d d T o C l iq u e (s , t , t .c in)

A d d T o C l iq u e (t / , w , wcl)

Input: A triple (y , w , w d), where w and y are vertices. If w ^ y, then 1 < wcl < w .c in ,
otherwise, wcl — NIL.

O utput: If w 7 ̂ y, then A d d T o C l i q u e adds the vertex y to th e m axim al clique w.clwci .num .
Otherwise, A d d T o C l iq u e in itiates a new m axim al clique {y}.

1 y .c in <— y .c in + 1
2 C H E C K R C L IQ U E S (y)
3 ycl <— y .c in
4 if w = y t h e n
5 c l iq u e n u m <— G e t I d e n t i f i e r C l i q u e ()
6 y . d y d . n u m <— cliquenum.
7 y.c lyci .prev .id <— y
8 y.c lyd .p rev . in d e x <— ycl
9 y . c l y d . n x . i d <— y

10 y .c ly d .n x . in d e x <— ycl
11 e l s e y.biclybici-num w.bic lwbiCi..num

158

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

12 z <— w.clwci.nx .id
13 zcl <— w.clwci .nx . index
14 w .d wci.n x . id <— y
15 w.clwci .n x . in d e x <—- y d
16 y.clyd.prev.id <— w
17 y.dyci.prev .index *— wcl
18 y.c lyd .nx .id z
19 y .c lyd .nx .index <— zcl
20 z.clz d .prev.id <— y
21 z.clzci .prev.index <-- y d

C h e c k R C l i q u e s (£)

Input: A vertex t.
O u tp u t : C h e c k R C l i q u e s e n s u r e s t h a t t b e lo n g s t o n o m o re t h a n r m a x i m a l c liques.

1 i f t.cin > r t h e n
2 e r r o r t h e g r a p h is no lo n g e r a n r - m in o

C .2.3 D eletin g an edge

Recall the algorithm D e l e t e E d g e , found in Figure 5.4, which is used to relabel an r-m ino

when an edge is deleted. T he following pseudocode can be used to im plem ent D e l e t e E d g e .

D e l e t e E d g e (G , u , v)

Input: An adjacency labelling of a r-m ino G created using our dynam ic scheme, and two
distinct vertices u and v of Vq for which uv £ E g -
O utput: An adjacency labeling of a graph G' formed by deleting the edge uv from G,
providing G' is an r-m ino. If G' is not an r-m ino, then the o u tp u t indicates as such.

1 (Cu ,C l) <— G e tC l iq u e s ({ m })
2 (Cv ,C l) <— G e tC l iq u e s ({ u })
3 t <— NIL_
4 w h ile Cv ^ n i l d o
5 (x , x d) <— P o p (G ,)
6 i f x . d xci . n u m £ Cu t h e n
7 P u sh (C , (x , x d))
8 w h ile C ^ NIL d o
9 (x , x d) <— P o p (C)

10 (C ,C) <— G e tC l iq u e M e m b e r s (x ,x c Z)
11 <— NIL
12 C l <- NIL
13 w h ile C ^ NIL d o
14 (c , c d) <— P o p (C)
15 i f c ^ u t h e n
16 P u s h (C ^, c)
17 e ls e u d <— c d
18 i f c ^ v t h e n
19 P u s h (C ' , c)
20 e ls e v d <— c d __
21 i f G e tC o m m o n C l iq u e s (C ') = { x . d x c i . n u m } t h e n
22 R e m o v e F r o m C l iq u e (u , vcl)
23 i f G e tC o m m o n C l iq u e s (C 'J = {x .c lxc[.n u m } t h e n

159

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

24 M a k e N e w C l iq u e (C4)
25 e l s e i f G e t C o m m o n C l iq u e s (C ') = {x.clxci .n u m } t h e n
26 R e m o v e F r o m C l iq u e (m, ucl)
27 e ls e E l im in a t e C l iq u e (x , xcZ)

1,2: We determ ine Cu and Cv , the set of m axim al cliques th a t contain u and v, respectively.

3-7: We ob tain C = Cu D Cv .

8-27: For each m axim al clique G in C, let C'u = C \ {u }, and let C'v = C \ {a}. Since G

will no longer be a clique, we wish to know w hether C'u and C'v are m axim al in G '.

8-20: We calculate G'u and C'v . The values ucl and vcl are the indices for which u.cluci.num =

v.c lyd .num = x.clxci.num .

21-27: The cliques C'u and C'v are maximal if and only if it th ey are no t contained in a

m axim al clique of G, o ther th an C. If only 6" is m axim al in G ', we develop this

m axim al clique by removing u from G; similarly, if only C'v is m axim al in G', we

develop th is m axim al clique by removing v from C. If neither C'u nor C'v is a maximal

clique in G', we elim inate the maximal clique C . If bo th C'u and C"v are maximal in

G ', then we develop C'v by removing v from G, however, C'u m ust be developed by

establishing a new m axim al clique.

C .2.4 A dd ing an edge

Recall th e algorithm A d d E d g e , found in Figure 5.5, which is used to relabel an r-m ino

when an edge is added. T he following pseudocode can be used to im plem ent A d d E d g e .

A d d E d g e (G , u , v)

Input: A n adjacency labelling of an r-m ino G created using our dynam ic scheme, and two
distinct vertices u and v of Vg for which uv ^ E g -
O utput: An adjacency labeling of a graph G ' formed by adding the edge uv to G, providing
G' is an r-m ino. If G' is not an r-m ino, then the o u tp u t indicates as such.

1 i f v .c l \ .nx = v t h e n
2 E l i m i n a t e C l i q u e (w , 1)
3 X * - G e t N e i g h b o u r s (u) U {u}

4 (C,C) <— G e t C l i q u e s ({ u })
5 V 0 _
6 w h i l e C ^ n i l d o
7 (x, xcl) <— P o p (C)
8 C <— C \ {x.clxci .num }
9 (G , G) < - G e t C l i q u e M e m b e r s (x , x c l)

10 C' <-- NIL
11 su b se t jt— 1
12 w h i l e C 7 ̂ NIL d o

160

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

13 (c, c d) <— P o p (C)
14 if c £ X th en
15 P u s h (C " ,c)
16 e lse subset <— 0 __
17 i f G e tC o m m o n C liq u e s IC ") g C U V th e n
18 V <— T> U { x .d xci .n u m j
19 if subset = 1 th e n
20 A d d T o C l iq u e (v , x , xcl)
21 e lse P u s h (C ' , v)

22 M a k e N e w C l iq u e (C ')

1-2: If v is an isolated vertex in G , th en {u ,v } will be a clique in G '. We elim inate the

m axim al clique {u} now, bu t will la ter add v to some m axim al clique containing u.

3: We let X be the set of neighbours of v in G '.

4: We determ ine C, the set of m axim al cliques th a t contain u.

5-22: For each m axim al clique C in C, we wish to know if C' U {v} is a m axim al clique of

G ', where C ' = C C\ X . W hen we select a m em ber C from C, we discard it from C,

however, if C' U {«} is a m axim al clique, th en we add C to V.

6-9: We select C from C, remove C from C, and determ ine the vertices in C.

10-16: We determ ine C' — C H X . W hile doing so, we determ ine if C C X

17-22: The clique C ' U {u} is m axim al if and only if it is not contained in any m axim al

clique in C or V . If C' U {v} is m axim al and C C X , then we add v to C , as C will

no longer be m axim al in G '. If C U {?;} is m axim al and C % X , then we make a new

m axim al clique of C' U {v}, as C will continue to be maximal in G '.

GETNEIGHBOURS(f)

Input: A vertex t of G.
O utput: The set S of neighbours of t in G.

1 (W,W) * - G ETC LIQ U ES({t})
2 S <- 0 _
3 w h i l e W ^ NIL d o
4 (w , w c l) <— P o p (W)
5 (Y ,F) <- G e t C l iq u e M e m b e r s (w , w cl)
6 5 « - S U F
7 r e t u r n S

161

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

C .3 r-b ics

C .3.1 D e le tin g a v ertex

Recall the algorithm D e l e t e V e r t e x , found in Figure 5.7, which is used to relabel a r-b ic

when a vertex is deleted. T he following pseudocode can be used to im plem ent D e l e t e V -

e r t e x .

D e l e t e V e r t e x (G , v)

Input: An adjacency labelling of an r-b ic G created using our dynam ic scheme, and a vertex
v in Vg - Here we presum e th a t r £ 0 (1) , thereby ensuring error-detection.

O utput: An adjacency labeling of an r-b ic G' formed by deleting v from G.

1 fo r % <-^_l t o v .b in d o
2 (B , B) <— G e t B ic l iq u e M e m b e r s (u , i)
3 R 7 <— NIL
4 w h i le B ^ NIL d o
5 (b, bbicl) <— P o p (R)
6 bpart <— b.biclbbid-Pa r t
7 i f t h e n
8 P u s h (R / , (b, bpart))
9 i f G e tC o m m o n B ic l iq u e s (R ') = {v .b ic l i .n u m } t h e n

10 R e m o v e F r o m B ic l iq u e (u , i)
11 e ls e E l i m in a t e B i c l iq u e (u , i)
12 F r e e V e r t e x (u)

1-8- For each m axim al clique B containing v , we ob tain the biclique B ' = B \ {r}. The

variable bpart denotes the part of th e partition of B to which b belongs.

9-11: If the m em bers of B ' share another m axim al biclique besides B . then we elim inate

B . O therwise, we sim ply remove v from B .

12: We free the identifier of v for fu ture use.

G e t B i c l i q u e M e m e b e r s (£, tbicl)
Input: A pair (t, tbicl), w here t is a vertex of G and tbicl is an index between 1 and t.bin.
O utput: Let S denote the set of all vertices in the m axim al biclique t.bicltbicl-num. G e t -
B i c l i q u e M e m b e r s re tu rns the pair (S, S) , where S is a stack consisting of all pairs of the
form (s,sbicl), w here s.biclsbiCi-num = t.bicltbiCi-num.

1 S < - 0
2 S <- NIL
3 s <— t
4 sbicl <r-tbid
5 P u s h (S , (s , sbicl))
6 S ^ S U { s }
7 w h ile s.biclsbid-nx.id ^ t d o
8 y <- s .b id Sbid-nx.id
9 sbicl <— s .b id s b i d -nx.index

10 s<r~y _
11 PUSH)^, (s , sbicl))

162

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

12 S <— S U_{s}
13 r e t u r n (S, S)

G e t C o m m o n B ic l i q u e s (S)

Input: A non-em pty stack S of pairs of the form (s , t), where s is a vertex, and t is a value,
either 0 or 1.
O utpu t: For each vertex s in S, let B s denote the set of m axim al bicliques containing s.
G e t C o m m o n B i c l iq u e s re tu rns f ls e s ^ s -

1 Pop (S)
2 (A , A) <— G e t B i c l i q u e s ({ s })

3 w h i l e S ^ n il d o
4 P O P (S)
5 (Y , Y) < - G e t B i c l i q u e s ({ s })
6 A ^ A n Y
7 r e t u r n A

G e t B ic l iq u e s (S)

Inpu t: A non-em pty set of vertices S.
O utpu t: Let B s denote the set of all m axim al bicliques containing a vertex s, and let B
denote (Jsgs G e t B ic l iq u e s re tu rns the pair (B , T), where T is a stack containing an
elem ent of the form (t, i), for each en try t .bicl i .num of B.

1 T < - 0
2 T <— NIL
3 fo r s £ S d o
4 fo r i 1 t o s.bin do
5 if s.bicl i .num g T th e n
6 T <— T U {s.bicl i .num}
7 P ush (T , (s , i))
8 r e t u r n (T, T)

R e m o v e F r o m B i c l i q u e (i/, ybicl)
Input: A pair (y, ybicl), where y is a vertex of G and ybicl is an index between 1 and y.bin.
Moreover, y.bidybid..nx.id ^ y.
O utpu t: R e m o v e F r o m B i c l i q u e elim inates y from the m axim al biclique y .b idyu ci-num.

1 t <— y.bidybici-prev.id
2 tbicl <— y.biclvbici-Wev -index
3 z <— y.b idybid -nx.id
4 zbicl <— y.bidybid-nx. index
5 y.bidybid < - NIL
6 t.biclxbid-n x -id z
7 t .b idXbid-n x -index <— zbicl
8 z.biclzbid-Pr ev -'id, t
9 z .b id Zbid-Pr e v -index <— tbicl

E l im in a t e B ic l iq u e (L tbicl)
Inpu t: A pair (t, tbicl), where t is a vertex of G and tbicl is an index between 1 and t.bin.
O utpu t: E l im in a t e B ic l iq u e elim inates the m axim al biclique t . b i d tbid-num from G.

1 w h ile t.bicltbid-n x / I d o
2 REMOVEFROMBlCLlQUE(t.6ic/(i,iC(.na:, t .bicltbid-nx-index)

163

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

3 F r e e B ic l iq u e (t.bidtbici-num)
4 t . b i c l t b i c i <- n i l

C.3.2 A dding a v ertex

Recall the algorithm A d d V e r t e x , found in F igure 5.8, which is used to relabel an r-b ic

when a vertex is added. T he following pseudocode can be used to im plem ent A d d V e r t e x .

A d d V e r t e x (G , X)
Input: An adjacency labelling of an r-b ic G created using our dynam ic scheme, and a subset
X of Vc- Here we assum e th a t X yf 0.
O utput: Let G' be the graph formed by adding a new vertex v to G, w here v is adjacent to
exactly those vertices in X . Providing G' is an r-b ic, the ou tpu t is an adjacency labelling
of G ' . If G' is not an r-b ic, the o u tp u t indicates as such.

1 v < - G e t I d e n t i f i e r V e r t e x Q
2 x <^_some m em ber of X
3 (B, B) <— G e t A l l B i c l i q u e s (x)
4 £> e - 0 _
5 w h i l e B ^ NIL d o
6 (c, cbicl) <— P o p (£>)
7 B <— B \ { c . b i d cbid-num.}
8 (B , B) <— G e t B ic l i q u e M e m b e r s (c, cbid)
9 P ^ < - NIL

10 <— NIL
11 equalo <— 1
12 equali <— 1
13 w h i l e B ^ n il d o
14 (b,bbid) P o p (B)
15 bpart <— b.bidbbici-pad
16 i f b £ X t h e n
17 PUSH { P ? _ b p a r v (b, bpart))
18 e q u a l b p g r t <— 0

19 e l s e P u S H (P ^ a r t , (6, bpart))
20 equali^bpart * 0
21 in d u d e <— 0
22 f o r i <— 0 t o 1 d o ___
23 i f G e t C o m m o n B i c l i q u e s ^ 5) % B U V t h e n
24 in d u d e <— 1
25 i f subset = 1 t h e n
26 A d d T o B i c l i q u e (v , i ,c, cbid)
27 e l s e P u s h (PtB , {v, i))
28 M A K E N EW B lC L IQ U E (PiS)
29 i f include = 1 t h e n
30 V <— T> U {c.bidcbici-num}

1: We obtain an identifier for the new vertex.

2,3: We determ ine B , the set of m axim al bicliques of G.

4-30: For each m axim al biclique B in B , let {Bo, H i} be the b ipartition of B, and let

{ P q , P i } denote the partition of B defined by b G P f if and only if b G X and

164

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

b Bi, or b £ X and b £ Bi. We wish to know if P B U {u} is a m axim al biclique of

G ' .

W hen we select a m em ber B from B , we discard it from B , however, if either P B U {w}

or P B U {u} is a m axim al biclique, then we add B to V.

5-8: We select B from B , remove B from B, and determ ine th e vertices in B .

9-20: We determ ine P B and P B . The variables equalo and equal\ are used to let us know

if P B = B or P f = B , respectively.

21-30: The biclique P B U {u} is m axim al if and only if it is no t contained in any m axim al

biclique in B or V . If P B U {?;} is m axim al and P[s = B , then we add v to B, as

B will no longer be m axim al in G ' . If P B U {v } is m axim al and P f ^ B, th en we

make a new m axim al biclique of P B U {?;}, as B will continue to be m axim al in CP.

Specifically, in th e new biclique th e vertices of P B will belong to the sam e p a rt of the

b ipartition th a t they belonged to in B, while v will be added to the i th part of the

b ipartition.

29,30: Recall th a t B is added to V if either P<f U {w} or P B U {v} is m axim al in G ' .

G ETA LLB lC LIQ U ES(f)

In p u t : A v e r te x t.
O u tp u t: L e t B s d e n o te th e s e t o f a ll m a x im a l b ic liq u e s c o n ta in in g a v e r te x s, a n d le t B
d e n o te U se v G G e t A l l B i c l i q u e s r e tu rn s th e p a ir (£>, T) , w h e re T is a s ta c k c o n ta in in g
a n e le m e n t o f th e fo rm fo r e ach e n try t .bicl i .num o f B.

1 (5 ,5) <— G E T A LL V ER T IC E S({t})
2 T <— 0
3 T <- NIL
4 w h i le 5 NIL d o
5 s <— P o p (5)
6 f o r i <— 1 t o s.bin d o
7 i f s.bicl i .num ^ T t h e n
8 T <— T U {s.bicli .num}
9 P u s h (T , (s , i))

10 r e t u r n (T , T)

G ETA LLV ER TIC ES(t)

In p u t: A v e r te x t.

O u tp u t: T h e p a ir (V g , V g) .

1 (Z ,Z) <— G E T B lC L IQ U E S({t})
2 5 <— 0
3 5 < - NIL
4 w h i le Z ^ NIL d o
5 (z , z b i c l) <— P o p (Z)
6 <— G e t B i c l i q u e M e m b e r s (z , zbicl)
7 w h i l e Y ^ NIL d o

165

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

8 (y, yb id) <— P o p (y)
9 i f y & S t h e n

10 S <- S U {y}
11 P u s h (S ,y)
12 r e t u r n (S, S)

1-12: Using a single vertex t, we obtain S = Vq by tak ing the union of th e vertices in all

the bicliques in which it is contained.

1: We first ob ta in Bt , the set of all m axim al bicliques containing t.

2-6: For each m axim al biclique of Bt, we ob ta in its vertices.

A D D ToB iC L lQ U E (t/, ypart, t, tbicl)
Input: A 4-tuple (y, ypart, t, tbicl), where t and y are vertices and ypart is a value, either 0
or 1. If t ^ y, th en 1 < tbicl < t.bin, otherwise tbicl = NIL.

O utpu t: If t ^ y, then A d d T o B i c l i q u e adds th e vertex y to the ypar t ih part of the
b ipartition of th e m axim al biclique t.bicltbiCi-n u m ■ O therw ise, A d d T o B i c l i q u e in itiates a
new m axim al biclique {y}.

1 y.bin <— y.bin + 1
2 CHECKRBlCLIQUES(y)
3 ybicl <— y.bin
4 y.biclybid .part <— ypart
5 i f t = y th e n
6 bicl iquenum <- G e t I d e n t i f i e r B i c l i q u e ()
7 y.biclybid .num <— bicl iquenum
8 y.biclybid .prev.id <— y
9 y.biclybid -prav.index *— ybicl

10 y.biclybid - n x -id <— y
11 y.biclybid-nx.index <— ybicl
12 e lse y.biclybid-num t.bicltbid-num
13 z <— t.bicltbid-ax.id
14 zbicl <— t .bidtbid-nx. index
15 t.bicltbid-nx.id <— y
16 t .bicltbid-nx.index <— ybicl
17 y.biclybid -prev.id «— t
18 y-biclybid -prev.index <— tbicl
19 y.biclybid-nx.id <— z
20 y.biclybid-nx.index <— zbicl
21 z.biclzbid-prev.id <— y
22 z.biclzbid-prev-index <— ybicl

C h e c k R B i c l i q u e s (t)
Input: A vertex t.
O utpu t: C h e c k R B i c l i q u e s ensures th a t t belongs to no more th an r m axim al bicliques.

1 i f t.bin > r t h e n
2 e r r o r the graph is no longer an r-b ic

M a k e N e w B i c l i q u e (S)

Input: A non-em pty stack S of pairs of the form (s, spart) , where s is a vertex and spart is
a value, either 0 or 1.

166

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

O utput: A m axim al biclique consisting of th e vertices in S, where a vertex s is placed in
the spart th p a rt of the bipartition .

1 (t , t p a r t) Pop(iS ')
2 ADDToBiCLiQUE(t, t part , t , n i l)
3 w h ile S N il d o
4 (s, spar t) <— P o p (5 ')
5 A d d T o B ic l iq u e (s, spar t , t, t .bin)

C .3.3 D eletin g an edge

R ecall th e a lg o rith m D e l e t e E d g e , found in F ig u re 5.9, w hich is used to re lab e l a r-b ic

w hen an edge is deleted . T h e following p seudocode can be used to im p lem en t D e l e t e E d g e .

D e l e t e E d g e (G , u , v)

Input: An adjacency labelling of an r-b ic G created using our dynam ic scheme, and two
distinct vertices u and v of Vq for which u v G E g -
O utpu t: An adjacency labeling of a graph G' formed by deleting th e edge u v from G,
providing G' is an r-bic. If G' is no t an r-b ic, th en the ou tpu t indicates as such.

1 (C,C) G e t B i c l iq u e s ({ « })
2 (C „,Z Q <— G e t B i c l i q u e s ({ u})
3 B 0
4 B <— NIL_
5 w h i l e Cv ^ NIL do
6 (x ,xb i c l) <— P o p (Cv)
7 i f x G C t h e n
8 B v- B_U {a:}
9 P u s h (B , (x , xbid))

10 w h i l e B ^ NIL do
11 (x ,xb ic l) <— P o p (B)
12 (B ,B) <— G e t B i c l iq u e M e m b e r s (x , zircd)
13 i f B ^ { u ,v } t h e n
14 <— NIL
15 ~WV v - NIL
16 w h i l e B NIL do
17 (b,bbicl) <— P o p (B)
18 bpart <— b.biclbbici-Part
19 i f b ^ u t h e n
20 P u s h (B[, (6, bpart))
21 e l s e ubicl <— bbicl
22 i f b ^ v t h e n
23 P u s h (B'v , (b,bpart))
24 e l s e vbicl <— bbicl ___
25 i f G e t C o m m o n B i c l i q u e s (B (,) = {x . b i c l xbl, d - n u m } t h e n
26 R e m o v e F r o m B i c l i q u e (w, vbicl)
27 i f G e t C o m m o n B i c l i q u e s (P ^) = {x .b idxbici .num } t h e n
28 M a k e N e w B i c l i q u e (R 4)

29 e l s e i f G e tC o m m o n B i l i q u e s (7 ? 4) = {x . b i d x b i c i - n u m } t h e n
30 R e m o v e F r o m B i c l i q u e (w, ubicl)
31 e l s e E LlM lN A T E B lC L lQ U E (x,a:b id)
32 (V, F) <— G e t A l l V e r t i c e s (u)
33 X u <— G e t N e ig h b o u r s (-u) \ {u}

167

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

34 X v <— GetNEIGHBOURS(x) \ {u }
35 W <- 0 _
36 w h i le V ^ NIL d o
37 x <- P o p (V)
38 i f (x 6 X u and x £ X v) or (x ^ and x 0 A „) t h e n
39 W <— W U {x}
40 V <- 0 _
41 w h i le C ^ NIL d o
42 (c, cbicl) <— P o p (C)
43 C <— C \ {c.biclcbici-num)
44 (B , B) <— G e tB ic l iq u e M e m b e r s (c , cb id)
45 S ' <— n il
46 subset <— 1
47 /ia sx ^ _ 0
48 w h i le B ^ NIL d o
49 {b,bbicl) <— P o p (B)
50 bpart <— b.biclbbid-Par t
51 i f b £ W t h e n
52 i f b = u t h e n
53 u p a r t «— b.biclbbid-part
54 i f b = v t h e n
55 u p a r t <— b.biclbbid-part
56 vbicl <— bbicl
57 /iasw <— 1
58 e ls e P u s h (B ', (6, bpart))
59 e ls e subset <— 0 __
60 i f G e tC o m m o n B ic l iq u e s (jB/) % C U V t h e n
61 V <— V U {c.bic lcbid-num}
62 i f subset = 1 t h e n
63 i f hasv = 1 t h e n
64 v.biclybid-part = 1 — vpar t
65 e l s e A d d T o B ic l iq u e (v, upart, c1 cbicl)
66 e l s e i f hasv = 1 t h e n
67 E l im in a t e B ic l iq u e (c, cbicl)
68 P u s h (W , (v , upar t))
69 M a k e N e w B ic l iq u e (B ')
70 e ls e P u s h (B ' , (v , upart))
71 M a k e N e w B ic l iq u e (B ')

1-9: W here Bx denotes th e set of all m axim al bicliques containing x, we first determine

C = Bu and B = Bu fl B v. For now, B m ay contain the m axim al biclique consiting of

only u and v.

10-24: If any m axim al biclique in B consist of only u and v, th en we ignore it. Henceforth,

for any B in B , we can assume th a t B ^ {u, v}

For each m axim al biclique B in B , let B'u = B \ {u} and let B'v = B \ {u}. Since B

will no longer be a biclique, we wish to know w hether B'u and B'v are m axim al in G ' .

14-24: We calculate B'u and B'v . The values ubicl and vbid are th e indices for which

u.biclybid-num = v. biclybid-num = x.biclxbiCi-num.

25-31: The bicliques B'u and B'v are m axim al if and only if it th ey are not contained in

a m axim al biclique of G. o ther th an B. If only B'u is m axim al in G', we develop

th is maximal biclique by removing u from B; similarly, if only B'v is m axim al in G 1,

168

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

we develop this m axim al biclique by rem oving v from B. If neither B'u nor B ’v is a

m axim al biclique in G ' , we elim inate th e m axim al biclique B . If bo th B ’u and B'v

are m axim al in G", then we develop B'v by removing v from B , however, B'u m ust be

developed by establishing a new m axim al biclique.

32-39: Let X u and X v denote the neighbourhoods of u and v in G ', respectively. We

calculate W , the subset of Vg for which w £ W \i and only if w G X u w G X v .

40-71: For each m axim al biclique B in C, we wish to know if B ' U {u} is a m axim al biciique

of G ', where B ' = (B \ {u}) fl W . W hen we select a m em ber B from C, we discard it

from C, however, if B ' U {?;} is a m axim al biclique, then we add B to V.

42-44: We select B from C, remove B from C, and determ ine th e vertices in B.

45-59: We determ ine B ' = (B \ {u}) fl W . The value vbicl is the index for which

v.biclybid.num = x.biclxbid-n u m ■ The values upar t and vpart are th e parts of the

biparition of B th a t u and v belong to , respectively. W hile determ ining B', we are

also able to determ ine if B ' C W and if v £ B .

60-71: The biclique B ' U {v} is m axim al if and only if it is not contained in any m axim al

biclique in C or P . If B C W and v G B , then B = so we m erely switch the

value of v.part th a t corresponds to B . If 5 C W and v ^ £?, then we sim ply add v to B

as B will no longer be m axim al in G ' . If B £ W and v £ B , then B no longer rem ains

m axim al, so we replace B w ith B ' U {v}. In th is case, B ' U {u} = B 0 W — {u ,v } ,

where u and v will belong to the same p a rts of the b ipartition . Finally, if B g W and

v 0 B, then we create a new m axim al biclique B ' U {?;}, as B will continue to rem ain

m axim al in G ' .

G e t N e ig h b o u r s (<)

Input: A vertex t of G.
O utpu t: The set 5 of neighbours of t in G.

1 (Z , Z) < - G E T B lC L IQ U E S ({ f})
2 S ^ - 0 _
3 w h ile Z / NIL d o
4 (z, zcl) P o p (Z)
5 (F ,F) <— G e t B ic l iq u e M e m b e r s (z , zcl)
6 S ^ S B Y
7 r e t u r n S

169

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

C .3.4 A dd ing an edge

As discussed in Section 5.2.2, the pseudocode required to add an edge would be sim ilar to

th a t presented in Section C.3.3, differing only in the definition of W , and the fact u and v

will now need to belong to different p a rts of any common biclique.

C .4 P rop er in terval graphs

As we did in C hapter 6, we m ain tain th e convention of offsetting vertex level conditions

in square brackets, for exam ple, “F l (B (v)) = B{v) [f i{v) = b(v)]”. As well, recall th a t

nearly all of th e conditions m entioned herein can be tested in 0 (1) tim e. As such, we will

only comment on the tim e required to check a condition if it takes w (l) tim e to check the

condition. Furtherm ore, recall th a t, for any vertex v and pointer Q, Q (P (B (v))) can be

“followed” in 0 (1) tim e, using the labels of v and P(B(v)) . For simplicity, when referring

to the vertex P (B (v)) , we will use the m ore com pact notation P(v); in tu rn , when referring

to the vertex Q(P(v)) , we will use th e no ta tion Q(v).

W hen we discussed th e relabeller in C hap ter 6, we saw several instances w here additional

criteria had to be tested in order to confirm th a t G' was a proper interval graph. The reader

should consult C hapter 6 to see when such additional criteria m ust be tested . In the ensuing

discussion, we focus on th e specific actions of the relabeller when we know th a t G' is a proper

interval graph.

C .4.1 D e letin g a v ertex

Let v be the vertex to be deleted, w here X denotes the neighbourhood of v in G. As well,

let the contig containing B (v) be B \ ^ . . . Bi -< . . . r< -B; ■< . . . ^ B j . . . ■< Bk,

where Bi = B(v) , B i = F r (B i), and B j — Fr (B i). The action of the relabeller depends on

whether Bi = {v} \nx(y) = u].

If Bi contains another vertex besides v, then the straight enum eration rem ains the same,

however, v is removed from Bi. Specifically, our labelling is am ended as follows.

• Remove all references to v.

— We m ust change all references to v as a pointer vertex. Specifically, if v = P(v) ,

then we make nx (v) the pointer vertex by changing its label to reflect the pointers,

and changing the labels of all the vertices in B[to reflect th a t n x { v) is the new

pointer vertex. This change can be done in 0 (|f? i|) G 0 (|X |) tim e by traversing

Bi, beginning a t v. Let q be the resulting pointer vertex of Bi.

— We m ust change all references to v in I r and I r pointers. Providing I l (B i) / NIL

[IiAq) / n i l] , set I R (IL (q)) to q. Similarly, providing I r (B i) yf NIL, set I L (I R (q))

to q. These changes take 0 (1) time.

170

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

— We m ust change all references to v in Fl and Fr pointers. Specifically, for any

block B , if Fl (P{B)) or Fr (P(B)) is v, th en we change its value to q. Now, if

Fr (P(B)) = v , then, by Lem m a 6.7 (um brella property), B i < B ■< B i ; similarly,

if Fl {P(B)) = v, then Bi ^ B ^ B j . As such, we can recursively follow I r and I r

pointers to determ ine all such blocks B. These changes take 0 (deg(Bi)) £ 0 (|X |)

tim e.

— We m ust remove v from th e circular doubly linked list of the vertices in B r This

removal takes 0 (1) time.

• Decrease the value of s(Bi) [s(g)J by one. T his operation takes 0 (1) time.

• Delete v. This deletion takes 0 (1) tim e.

If v is in a block by itself, we again remove all references to v, however, we m ay also

have to merge blocks, as depicted in F igure 6.4. Specifically, if v is in a block by itself, our

labelling is changed as follows.

. If 1 < i < I [fL (v) ± Sl {Fl {v)) and f L (v) + b(v)}, FL (B i - i) = F i (B i) \ f L (IL(FL (v))) =

f d F d v)) } , and FR (B i - i) = B t- i [fr (Il (FL {v))) = b(IL (v))], th en merge B t into

B i - 1-

— Add th e value of s(JB») to s (B i_ i) [add s (P(Fl (v))) to s (P(I l {Fl (v))))]. This

operation takes 0 (1) time.

— Set I R { B i - 1) to B i+ 1 [I r (Il {Fl (v))) to I r (Fl (v))] and l L (B i+1) to B i -1 [I L (IR (FL (v)))

to I l (Fl {v))}. These assignm ents take 0 (1) tim e.

— U pdate th e labels of the vertices of Bi to reflect the fact th a t P (B i - i) [P(I l {Fl (v)))]

is th e pointer vertex of the m erged block. This update can be done in 0(|£?i|) G

O d A j) tim e by traversing Bi, beginning a t F L (v).

— Merge the two circular doubly linked lists, using P (B i - 1) [P(Il (Fl {v)))} and

P{Bi) [P(Fl (v))] as reference points. T his merge takes 0 (1) time.

• If I < j < k, Fr (Bj) — FR (B j+1), and FL (B j+ i) = B i+ 1 then merge B j into B j+1.

This merge takes 0 (|I? j |) £ 0 (|X |) tim e.

• Providing I l (B i) n i l [I r {v) ^ n i l] , set I r (Il {Bi)) to I r (B i) \Ir (Il (v)) to I r {v)].

Similarly, providing I r {Bi) ^ NIL, set I l (Ir (B i)) to I l {Bi). These assignments take

0 (1) tim e.

• For each block B in { B i , . . . if Fr {B) = Bi [f R { P { B)) = i>(u)], then set Fr (B)

to B i - i [Fr (P(B)) to I l (v)]- As well, for each block B in {Bi +1 , . . . , Bj } , if FL (B) =

Bi, then set F r (B) to Bi+ These assignm ents can be done in O (deg(B[)) G 0 (|X |)

time, by recursively following I r and I r pointers to determ ine all such blocks B.

171

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• Delete v. This deletion takes 0 (1) time.

• Relabel the blocks and adjust the b, f i , and Jr values. This operation takes O (n)

time.

C .4.2 A dding a v ertex

Let v be the vertex to be added, where X denotes th e neighbourhood of v in G ' . H ereafter,

we assume th a t Lem m as 6.12 and 6.13 are satisfied by our vertex addition. Recall th a t,

while verifying th a t Lem m as 6.12 and 6.13 are satisfied, we learn a great deal about the

structure of the blocks. T his inform ation can be used to help us relabel th e vertices.

In describing the relabelling, let us first consider when the m em bers of X belong to one

component, C. As in th e hypothesis of Lem m a 6.13, let {£?!,...,£?*,} denote the set of

blocks in C th a t are adjacent to v, such th a t in the contig of C, B \ -< . . . -< Bk- We consider

three cases, depending on th e value of k.

1. k = 1. By Lem m a 6.13, B \ is an end block. W ithou t loss of generality, assume th a t

B \ -< B , for any block B in C.

If v is fully adjacent to B \ , and C = B \ ([//j(u i) = fr(vi)], then we add v to B \ .

Specifically, we do th e following.

• Add v to th e circular doubly linked list of vertices in B \ , using v\ as a reference

point. This addition takes 0 (1) tim e.

• Establish the label of v to reflect the pointer vertex for B i , P (v i) , while setting

its b, f i , and / r values to those of iq . Establishing th e label of v takes 0 (1)

time.

• Increase the value of s(-Bi) [s(P (u i)) | by one. This ad justm ent requires 0 (1)

time.

If v is fully adjacent to B \ , bu t C B i , then we add the block B a = {u} im m ediately

before B \ . Specifically, we do the following.

• Establish th e triv ial circular doubly linked list for B a. E stablishing this circular

doubly linked list takes 0 (1) time.

• Establish v as the pointer vertex of B a. For now, assign the pointer values of

P (v i) to v. Establishing th is pointer vertex takes 0 (1) time.

• Providing I l { B \) n i l [IL (v i) n i l], set I R (IL (B{)) to B a [I r (I l {vi)) to v\.

This assignm ent takes 0 (1) time.

Once this I r pointer has been assigned, set I r {Bo) to B \ [I r (v) to Vi] and I i (B i)

to B a [IL (v i) to «]. These assignm ents take 0 (1) time.

172

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• Set FL (Ba) to B a [F l (v) to v\, F R (B a) to B b [F r(u) to r?i], and F L{B{) to B a

[Fl (v i) to v\. These assignm ents take 0 (1) time.

• Set s (B a) [s(w)] to one. This assignm ent takes 0 (1) tim e.

• Relabel the blocks and ad just th e b, f R , and f R values. This operation can be

done in 0 (n) tim e.

If v is not fully adjacent to B i, then we partition B \ U {u} in to B a -< B b -< B c, where

B a = {u}, B b = X , and B c = B \ \ X . Specifically, we do th e following.

• Establish the triv ia l circular doubly linked list for B a. E stablishing th is circular

doubly linked list takes 0 (1) time.

• Establish v as the po in ter vertex of B a. For now, assign th e pointer values of

P{vi) to v. E stablish ing th is pointer vertex takes 0 (1) tim e.

• Remove vertices in X from th e circular doubly linked list of vertices in B \ to

produce the circular doubly linked list of vertices in B b and B c. W hile doing so,

make note of one vertex qc from B c. P roducing these circular doubly linked lists

takes 0(|-Bb|) € 0 (|W |) tim e.

• If P (u i) G X , then we establish qc as the new pointer vertex for B c. Otherwise,

if P { B i) £ X , then we establish v\ as the new pointer vertex for B b. Let qb and

qc be the resulting pointer vertices of B b and B c, respectively. For now, assign

the pointer values of P (v i) to qb and qc. E stablishing these new pointer vertex

takes 0 (\ B b\ + \BC\) e 0 (n) time.

• Providing I l (B i) ^ NIL [I L (qc) ¥= NILh set I r {Il {B i)) to B a [IR (IL (qc)) to

v). Similarly, providing I r (B i) ± NIL [IR (qc) ^ n i l] , set I L (IR {B{)) to B c

[Il (Ir {Qc)) to qc\. These assignm ents take 0 (1) time.

Once the above /; and I R pointers have been assigned, set I R (B a) to B b [I R(v)

to qb), h (B b) to B a [I L (qb) to u], I R {Bb) to B c {I R (qb) to qc], and I L {BC) to B b

{IR(qc) to qb\. These assignm ents also take 0 (1) tim e.

• Set FL (Ba) to B a [Fl (v) to u], F R (B a) to B b [P r(u) to qb\, F L (B b) to B a [FL (qb)

to u], and FR(B C) to B b [FR{qc) to qb\. These assignm ents take 0 (1) time.

• For each block B in { I r (Bc), . . . , F R (B C)}, set FL (B) to B b [FL { P (B)) to qb).

These assignments can be m ade in 0 (d e g (B \)) tim e, which could be as large as

0 (n) time, by traversing I R pointers.

• Set s (B a) [s(u)] to one, s (B b) [s(9b)] to |X |, and s (B c) to s (B i) — |X | [subtract

|.Xj from s(5c)]. These assignm ents take 0 (1) time.

• Relabel the blocks and ad just the b, f R, and f R values. This operation can be

done in 0 (n) time.

173

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

2. k = 2. By condition 4 of Lem m a 6.13, v m ust be fully adjacent to a t least one of

B \ and B 2. W ithou t loss of generality, assum e th a t v is fully adjacent to B \ . Let

Bi = Fl (B i) and B j = Fr (B i).

Recall th a t we resolved the relabeller into four cases: adding v to £>i (or B 2), adding

the block {w} im m ediately before B i , adding the block {u} betw een B i and B 2, and

partition ing B \ U B 2 U {u} into {u} -< B \ -< B 2 fl X -< B 2 \ X . This resolution took

0 (1) time.

If v is added to B i, then we do th e following.

• Add v to the circular doubly linked list of vertices in B ± , using v\ as a reference

point. This addition takes 0 (1) tim e.

• E stablish the label of v to reflect the pointer vertex for B i, P (v i) , while setting

its b, J l , and f R values to those of V\. Establishing th e label of v can be done in

0 (1) tim e.

• Increase the value of s (B i) [s(P (v i))] by one. This takes 0 (1) tim e.

If the block B a = {-(/} is added im m ediately before B \ in its contig, then we do the

following.

• E stablish the triv ial circular doubly linked list for B a. E stablishing th is circular

doubly linked list takes 0 (1) tim e.

• E stablish v as the pointer vertex of B a. For now, assign the pointer values of

P (m) to v. Establishing th is pointer vertex takes 0 (1) tim e.

• Providing I l (B i) £ n i l [/L(o) ^ n i l], set I r (I l (B i)) to B a [I r (I l (tb)) to u].

This assignment takes 0 (1) tim e.

Once th is I r pointer has been assigned, set I R (B a) to B i [I R (v) to Ui] and I r (B\)

to B a [Il {v i) to v]. These assignm ents take 0 (1) tim e.

• Set F L (B a) to B a [F L (y) to n], FR (B a) to B 2 [FR (v) to v2], F l (Bi) to B a [FL {vi)

to v\, and F r (B 2) to B a [Fr(v2) to u]. These assignm ents take 0 (1) tim e.

• Set s (B a) [s(u)] to one. This assignm ent takes 0 (1) time.

• Relabel the blocks and ad just the b, f i , and f R values. This operation can be

done in 0 (n) time.

If B xU B 2 U{v} is partitioned into B a -< B i -< Bb -< B e, where B a = {u}, Bb — B 2 f) X

and B c = B 2 \ X , we do the following.

• E stablish the trivial circular doubly linked list for B a. Establishing this circular

doubly linked list takes 0 (1) time.

174

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• E stab lish v as the pointer vertex of B a. For now, assign the pointer values of

P (v i) to v. Establish ing th is pointer vertex takes 0 (1) time.

• Remove vertices in X from the circular doubly linked list of vertices in B 2 to

produce th e circular doubly linked list of vertices in B b and B c. W hile doing so,

make no te of one vertex qc from B c. Producing these circular doubly linked lists

takes 0 (|S b |) G 0 (|X |) time.

• If P (v 2) € X , th en we establish qc as th e new pointer vertex for B c. O therwise,

if P (v 2) ^ X , th en we establish v 2 as th e new pointer vertex for B b . Let qb and

qc be th e resulting pointer vertices of Bb and B c, respectively. For now, assign

the po in ter values of P (v 2) to qb and qc. Establishing th is new pointer vertex

takes 0(|B& | + |B C|) G O (n) tim e.

• Providing I l (B \) ^ n i l [Il (v 1) ± n i l], set I r (I l (B i)) to B a [I r{ I l { v 1)) to v].

As well, set I L {IR {B2)) to B c [IL (IR (qc)) to qc\. These assignm ents take 0 (1)

tim e.

Once th e above I I and I r pointers have been assigned, set I R {Ba) to B \ [Ir (v)

to ui], I l (B i) to B a [Il (v i) to u], I r {B{) to B b [Ir (v 1) to qb], l R { B b) to B c

[IR (qb) to qc], and I l (B c) to B b [Il {Qc) to qb}. These assignm ents also take 0 (1)

time.

• Set F L (B a) to B a [Fl {v) to u], FR (B a) to B b [Fr (v) to qb], Fl { B i) to B a [Fl (v i)

to u], and FL (B b) to B a [FL (qb) to u]. As well, if F r {B i) = B b [.P (F r(u i)) = qb],

then set F r (B 1) to B c [F/e(ui) to qc]. These assignm ents take 0 (1) time.

• For each block B in { I r (B c), .. . , F R (B C)}, if F L (B) = B c [f L (P (B)) = b{v2)},

then set F l (B) to B b [Fl (P (B)) to qb\. These assignm ents can be m ade in

0 (d e g (B 2)) tim e, which could be as large as 0 (n) tim e, by traversing I R pointers.

• Set s (B a) [s(u)j to one, s (B b) [s(gb)] to \B2 D X |, and s (B c) to s (B 2) - \B2 P lX |

[subtract s(qb) from s(qc)]. These assignm ents take 0 (1) time.

• Relabel th e blocks and adjust the b, f R: and f R values. This operation can be

done in 0 (n) tim e.

If the block B a = {v} is added between B \ and B 2 we do the following.

• E stablish th e triv ial circular doubly linked list for B a■ Establishing th is circular

doubly linked list takes 0 (1) time.

• E stablish v as the pointer vertex of B a. For now, assign the pointer values of

P (v 2) to v. Establishing this pointer vertex takes 0 (1) time.

• Set I r (B i) to B a [IR (v 1) to u], / l (B 0) to B i [Il {v) to n] , I R {Ba) to B 2 [IR (v)

to v 2], and I l { B 2) to B a [Il {v 2) to u]. These assignm ents take 0 (1) time.

175

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• Set Ff t{ Ba) to B 2 [F r (v) to v2\. This assignm ent takes 0 (1) time.

• Set s (B a) [s(u)] to one. This assignm ent takes 0 (1) tim e.

• R elabel the blocks and adjust th e b, f R , and f R values. This operation can be

done in O (n) time.

3. fc > 3. By Lem m a 6.13, v is fully adjacent to B 2 , ■ ■ ■, -B/t-i- Let B a = FR (B 1) and let

B p = FjJ(Bk)- As well, let ba be some vertex in B a and let bp be some vertex in Bp

(a) v is fully adjacent to Bk, bu t no t B x. To create the new contig, we partition B x

into B a < Bb , where B a = B \ \ X and B b = B i C'l X , and insert the block

B c = {v} im m ediately after B a . Specifically, we do the following.

• E stab lish the trivial circular doubly linked list for B c. Establishing this

circular doubly linked list takes 0 (1) tim e.

• E stab lish v as the pointer vertex of B c. For now, assign the pointer values

of P(ba) to v. Establishing th is pointer vertex takes 0 (1) time.

• Remove vertices in X from the circular doubly linked list of vertices in B x to

produce the circular doubly linked list of vertices in B a and Bb- W hile doing

so, m ake note of one vertex qa from B a. P roducing these circular doubly

linked lists takes 0 (|X |) tim e.

• If P (v i) £ X , then we establish qa as the new pointer vertex for B a. O th ­

erwise, if P (v i) ^ X , then we establish v\ as th e new pointer vertex for B b.

Let qa and qb be the resulting pointer vertices of B a and Bb, respectively.

For now, assign the pointer values of P (v 1) to qa and qb. Establishing this

new pointer vertex takes 0(|JBa | + |T?t,|) £ O (n) time.

• Providing I L(B x) ± NIL [I L(qa) ± n i l], set I r (I l { B i)) to B a [IR {IL {qa)) to

qa]■ Similarly, providing I R {Ba) ^ n i l [I R (ba) ^ n i l], set / i (/ f i (R „)) to B c

[l L (I R (ba)) to w]. These assignm ents take 0 (1) time.

Once the above I I and I r pointers have been assigned, set I R (Ba) to Bb

[I R (qa) to qb\, I L{Bb) to B a [I L {qb) to qa\, I L {B2) to B b {I L (v2) to qb], I R (B a)

to B c [I R (ba) to u], and I l {B c) to B a [I R{y) to ba]. These assignments also

take 0 (1) time.

. For each block B in {FL (B a) , . . . , I L (B a)}, if FR (B) = B x [f R(P (B)) =

6(ui)], then set FR (B) to B b [F R{ P { B)) to qb\. These assignm ents can be

m ade in 0(d eg (B i)) £ O (n) tim e, by traversing I R pointers.

• For each block B in {B b, • ■ ■, B a }, if F l (B) = B x \ f R(P (B)) = 6(uj)], then

set F i (B) to B„ [Fi (P (B)) to qa\. These assignm ents can be made in 0 (|X j)

tim e, by traversing I R pointers.

176

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• For each block B in { B b , . . . , B a }, if F r (B) = B a \Jr {P{B)) = b(ba)}, then

set Fr (B) to B c [F r (P (B)) to v\. These assignments can be m ade in 0 (|X |)

tim e, by traversing I r pointers.

• Set F l (B c) to B b [Fr {v) to qb}. As well, if B a = B k \b(FR (qa)) - b(vk)],

th en set Fr {Bc) to B c [Fr (v) to u], otherwise, B a -< B k , so set Fr (B c) to

Bk [Fr (v) to vk}. These assignm ents take 0 (1) time.

• For each block B in { I r (B c), . . . , B k}, if F L (B) = I r {Bc) \b{IL {FL {P{B))) =

6(6a)], then set Fr {B) to B c [F r (P (B)) to u]. These assignm ents can be

m ade in 0 (|A j) tim e, by traversing I r pointers.

• Set s (B c) [s(u)[to one, s (B b) [«(?{>)] to |.B in A j, and s (B a) to s (B i) — \B\C\X\

[subtract s(qb) from s(ga)]. These assignm ents take 0 (1) tim e.

• Relabel the blocks and ad just th e b, Jl , and f R values. This operation can

be done in 0 (n) tim e.

(b) v is fully adjacent to B i, b u t no t B k . To create the new contig we partitio n B k

into Bg -i, B e, where B,i = B k fl X and B e = B k \ X , and insert the block

B c = {u} im m ediately before Bg. T his scenario is v irtually identical to the case

when v was fully adjacent to B k b u t not B \ .

(c) v is fully adjacent to neither B i nor B k . In essence, this scenario requires the

‘com bination’ of the two previous relabellings. T ha t is, we partitio n B \ into

B a -< B b, where B a = B i \ X and B b = B \ fl X , we partition B k in to B,i -< B e,

where Bg = B k C\ X and B e = B k \ X , and we insert B c = {u} between B a

and Bg. As the com bination of th e previous two relabellings we can ob tain the

labelling of G' in 0 (n) time.

(d) v is fully adjacent to bo th B \ and B k. We consider three further cases.

i. B a -< Bg [b(ba) < b{bg)\. We add the block B a = {u} between B a and Bg.

Specifically, we do the following.

• Establish the triv ial circular doubly linked list for B a. E stablishing this

circular doubly linked list takes 0 (1) time.

• Establish v as the pointer vertex of B a. For now, assign the pointer

values of P(ba) to v. E stablishing th is pointer vertex takes 0 (1) tim e.

• Set I R {Ba) to B a \IR {ba) to u], I L {Ba) to B a [IL (v) to ba], and I L {Bg)

to B a \Ii{ba) to v]. These assignm ents take 0 (1) time.

• Set F L(Ba) to B i \Fl (v) to rq], F R {Ba) to B k [FR (v) to v k}. These

assignments take 0 (1) tim e.

• For each block B in { B i , . . . , B a }, if Fr (B) = B a [fR (P (B)) — b(ba)},

then set Fr (B) to B a [Fr (P (B)) to v}. These assignm ents can be done

177

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

in 0 (|X |) tim e by following I R pointers.

. For each block B in { B p , .. , , B k }, if FL(B) = Bp \ f L {P{B)) = b(bp)],

th en set F r (B) to B a [Fr (P (B)) to w]. These assignm ents can be done

in 0 (|X |) tim e by following I r pointers.

• Set s (B a) [s(u)] to one. This assignm ent takes 0 (1) tim e.

• R elabel the blocks and adjust the b, f R , and f R values. T his operation

can be done in 0 (n) time.

ii. B a = Bp [b(ba) = b(bp)]. We consider four cases.

• F L (B a) = B x [fL (ba) = 6(ui)] and FR (B a) = B k [f R (ba) = fr(ufc)]. Since

B a has the sam e adjacency as v, we add v to B a . Specifically, we do the

following.

— A dd v to the circular doubly linked list of vertices in B a using ba as a

reference point. This addition takes 0 (1) tim e.

— E stablish the label of v to reflect the pointer vertex for B a , P(ba),

while setting its b, J r , and f R values to those of ba . E stablishing the

label of v can be done in 0 (1) time.

— Increase the value of s (B a) [s(P(6a))] by one. T his takes 0 (1) time.

• FL (B a) -< B i [fRjbg) < b(ui)] and FR {Ba) = B k \ f R (ba) = b(vk)]. In th is

case, we m ust insert the block B a = {c} im m ediately after B a . Specifi­

cally, we do the following.

— E stablish the triv ial circular doubly linked list for B a. Establishing

th is circular doubly linked list takes 0 (1) tim e.

— E stablish v as the pointer vertex of B a. For now, assign the pointer

values of P(ba) to v. Establishing th is pointer vertex takes 0 (1) time.

— Set I L (IR (B a)) to B a [lL{IR (ba)) to i>]. This assignm ent takes 0 (1)

time.

Once th is I r pointer has been assigned, set I R (B a) to B a [IR (ba) to

u] and I r (B o) to B a [Ir {v) to ba]. These assignm ents also take 0 (1)

tim e.

— Set FL (B a) to B i [Fl (v) to r>i], FR {Ba) to B k [FR (v) to vk\. These

assignm ents take 0 (1) time.

— For each block B in { B l , . . . , B a }, if FR (B) - B a [fR (P (B)) = b(ba)],

then set FR (B) to B a [FR (P (B)) to u]. These assignm ents can be done

in 0 (|X |) tim e by following I R pointers.

— Set s (B a) [s(v)] to one. This assignment takes 0 (1) tim e.

178

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

— Relabel the blocks and ad just th e b, f p , and f R values. This operation

can be done in O (n) tim e.

• FL (B a) = B i [fl (ba) = fr(ui)] and B k < F R (B a) [b(vk) < /fl(feg)]- In th is

case, the block B a = {u} m ust be inserted im m ediately before B a .

• F L (B a) -< B i [fL {ba) < b(ui)] and B k -< F R (B a) \b(vk) < M M] - Recall

th a t G' is not a proper interval graph.

hi. Bp -< B a [b(bp) < b(ba)\. B y definition, FL (B a) ^ B x and B k ■< F R (Bp).

Therefore, Fp(Bp) ^ B \ and B k ^ FR (B a). We consider four cases.

• F L (Bp) = B i \ fL {bp) = b(vi)] and FR (B a) = B k [f R (ba) = b(vk)\. Recall

th a t th is case cannot occur.

• FL (Bp) B i [f i jbp) < b(vi)] and FR(B a) — B k [f R (ba) = b(vk)}. Now if

F l (B 0) = B i [/ l (M = M i)]> then B a has th e same adjacency as v so

we add v to B n \ adding v to B a is done in exactly the same m anner

as when B a = Bg, F k (B a) = By, and FR (B a) = B k. Otherwise, if

F l (B c) ~< B i [/ l (M < fc('i'i)], we m ust insert th e block B a = {w} im­

m ediately after B a as B i -< FL(IR (B a)). T his insertion of the block B a

is done in exactly the sam e m anner as when B a = Bg, F k (B0) -< B j,

and Fr (B q) = B k .

• F L (Bg) = B i [fpjbp) = b(ui)] and B k -< FR (B a) \b{vk) < f R (ba)\. This case

is virtually identical to the previous one. If F R {Bp) = B k [f R (bp) =

b(vk)]: then we add v to Bp. O therw ise, ifB * -< FR (Bp) [b(vk) < f R (bp)],

we m ust insert the block B a = {w} im m ediately before Bp.

• F L (B P) -< B i [fL (bp) < M i)] and B k -< F R (B a) [b{vk) < f R (ba)}. If there

exists a block B , such th a t F R (I p { B i)) -< B -< F p (I R (B k)), then we m ust

add u to B . We have previously seen how to add v to an existing block.

If there does not exist a block B such th a t FR (I p (B i)) -< B ~< Fp (IR (B k)),

then we m ust add the block B 0 = {u} between FR (IL (B \)) and Fp(IR (B k)).

This can be done in a m anner sim ilar to the placem ent of B a = {u} be­

tween B a and Bp in the case where B a -< Bp.

Now let us consider when the m embers of X belong to two distinct components. Let

the contigs of the two components be $ = By -< . . . < B k and T = B[B[, where,

w ithou t loss of generality, $ -< He As well, let By be the leftm ost block in $ to which v is

ad jacent, and let B ' be the rightm ost block in to which v is adjacent.

To dem onstrate the action of the relabeller, we consider the scenario in which the end

blocks to which v is fully adjacent are B k and B[, w ith v is fully adjacent to B ' but not Bi.

Let B a be the split block By \ A , Bb be the split block By n X , and B c be the block {w}.

179

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

The labelling is changed as follows.

• If I R (B k) ^ B[[b(IR (vk)) = b(v[)], th en move $ over to VR

- Set I r (Il (B[)) to I r {B[) [Ir ^Ir ^v])) to I r {v[)} and I r {B[) to I R {Bk) \Ir {v[)

to I R (vk)}. As well, providing I r (B[) ± n i l [Ir (v[) ± n il] , set I r (Ir {B[)) to

I r {B[) [Ir {Ir {v[)) to I l (v'i)\- These assignm ents can be m ade in 0 (1) time.

Once the above I r and I r pointers have been assigned, set l R { B k) to B[[lR(vk)

to uj], and I r (B j) to B k [Ir {v[) to v k). These assignm ents also take 0 (1) time.

- Relabel the blocks and ad just th e b, / r , and f R values. T his operation can be

done in 0 (n) tim e.

• Insert B c and split Bi to reflect th e stra igh t enum eration of G ’.

- Establish the triv ia l circular doubly linked list for B c. E stablishing th is circular

doubly linked list takes 0 (1) tim e.

- Establish v as the pointer vertex of B c. For now, assign th e pointer values of

P{vk). Establishing th is po in ter vertex takes 0 (1) time.

- Remove vertices in X from th e circular doubly linked list of vertices in Bi to

produce th e circular doubly linked list of vertices in B„ and Bb. W hile doing so,

make note of one vertex qa from B a. P roducing these circular doubly linked lists

takes 0 (|X |) tim e.

- If P{Bi) e X, then we establish qa as the new pointer vertex for B a. Otherwise,

if P(Bi) ^ X , then we establish v\ new pointer vertex for Bb- Let qa and %

be the resulting pointer vertices of B a and Bb, respectively. For now, assign the

pointer values of P(v i) to qa and qb. Establishing these new pointer vertex takes

0(|£M) e 0 (|X |) time.

- Providing lR{Bi) ^ NIL ^ NIL], set I R {I i {Bi)) to B a [/^ (//.(ija)) to qa}.

This assignm ent takes 0 (1) tim e.

Once the above I r pointer has been assigned, set / ^ (R a) to Bb [lR(qa) to <?&],

and I L(B b) to B a [IL {qb) to qa\. As well, if B t = B k [b(vi) = b(vk)}, then set

Jfl(B t) to B c [lR(qb) to v] and I r (Bc) to B b [I r (v) to qb}. O therwise, set I r (Bc)

to B k \Ir {v) to vk\. These assignm ents also take 0 (1) time.

- Set Fr {Bc) to Bb [Fr {v) to qb] and Fr {Bc) to £?' [Fr (v) to v ']. These assignm ents

take 0 (1) tim e.

- For each block B in {Fr {Bo), . . . , B a }, if Fr (B) = Bi [fR (P (B)) = b(vi), then

set Fr (B) to Bb [Fr (P(B)) to g^]. These assignments can be done in 0 (jX |)

tim e by following I r pointers.

180

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

— For each block B in {B b , . . . , I l (B c)}, set F r (B) to B c [F r (P (B)) to u]. These

assignm ents can be done in 0 (|X |) tim e by following I r pointers.

— For each block B in { B a, . . . , I L (B C)}, if F l (B) = B t [fL (P (B)) = b{vi), then set

F l (B) to B a [F l (P (B)) to qa\. These assignm ents can be done in 0 (|X |) time

by following I r pointers.

— For each block B in { I r { B c), . . . , B{}, set F r (B) to B c [F r(P (B)) to n]. These

assignm ents can be done in 0 (|X j) tim e by following I r pointers.

— Set s (B c) [s (w)[to one, s(Bb) [s(®>)] to \Bi fl X |, and s (B a) to s(-Bj) — |Bi fl X\

[subtract s(qb) from s(q'a)]- These assignm ents take 0 (1) tim e.

— Relabel th e blocks and ad just the b, Jr , and / r values. This operation can be

done in O (n) time.

C .4.3 D e letin g an edge

Let uv be the edge to be deleted, w here X u and X v denote th e neighbourhoods of u and v,

respectively, in G. As well, let Bi and B j be the blocks containing u and v, respectively, in

the contig B \ -< . . . ~< Bk of the com ponent C containing uv. W ith o u t loss of generality, let

1 < i < j < k.

If i = j . then i = j = k = 1 and there are two case to be considered.

• B \ contains ano ther vertex besides u and v. We partition the contig B \ to create a

new contig B a -< Bb B c, where B a = {u}, B b = B i \ { u , v \ , and B c = (n).

Specifically, we am end the labelling as follows.

— If u or v is th e pointer vertex of B \ [P{v) 6 {u, u}], th en establish a new pointer

vertex for B \ , w ith pointer values identical to those of P { B \) . Specifically, use

whichever of nx (v) or prev(v) is not u. This reassignm ent takes 0 (\ B (u , v) \) €

0 (|X „ |) = 0 (|X „ |) tim e. Let q be the resulting pointer vertex of B \ .

— Remove u and v from the circular doubly linked list of vertices in B \ to produce

the circular doubly linked list of vertices in Bb- This removal takes 0 (1) time.

— Establish the triv ial circular doubly linked lists for B a and B c. These circular

doubly linked lists can be created in 0 (1) time.

— Establish u as the pointer vertex of B a and v as the pointer vertex of B c. For

now assign the pointer values of q to u and v. These pointer vertices can be

established in 0 (1) tim e.

— Providing I l { B i) NIL [IL {q) 7̂ n il] , set I R {IL {B{)) to B a [IR {IL {q)) to u}.

Similarly, providing I r (B i) / NIL, set I r (Ir (B i)) to B c [I ^ lR ^ q)) to v\. These

assignm ents take 0 (1) time.

181

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Once the above I I and I r poin ters have been set, set I n (B a) to Bb [I r (u) to g],

h { B b) to B a [IL(q) to it], I R (B b) to B c [I R {q) to i>], and I L {BC) to B b [IL (v) to

g]. These assignm ents also take 0 (1) tim e.

— Set F L (B a) to B a [F l (u) to u], F R (B a) to B b [F R (u) to q], FL (B b) to B a [FL {q)

to it], F R (B b) to B c [FR {q) to i>], FL (B C) to B b [FL (v) to q], and F R (B C) to B c

\Fr (v) to it]. These assignm ents take 0 (1) time.

— Set s (B a) [s(u)] and s (B c) [s(u)] to one, and set s (B b) to s (B i) — 2 [subtract two

from s(g)]. These assignm ents take 0 (1) time.

— Relabel th e blocks and ad just th e b, f i , and f R values. This operation can be

done in O (n) time.

• B i contains only u and v. We p a rtitio n th e contig B \ to create two new contigs B„

and B c, where B„ = {«}. B c = {u}, and B„ -< B c. W ithou t loss of generality, let us

assume th a t v was the pointer vertex of B \ . We change the labelling as follows.

— Establish the triv ial circular doubly linked lists for B a and B c. E stablishing these

circular doubly linked lists takes 0 (1) time.

— E stablish u as the pointer vertex of Ba. For now, assign the pointer values of v

to it. Establishing th is pointer vertex takes 0 (1) tim e.

— Providing I l (B i) ± n i l [Il{v) ^ n i l], set I r (I l { B i)) to B a {IR (IL (v)) to u}.

Similarly, providing I r (B x) ^ NIL, set I l (I r (B i)) to B c [IL (IR (v)) to u]. These

assignm ents take 0 (1) time.

Once th e above I r and I R pointers have been set, set I R (B a) to B c [Ir (u) to v],

I l (B c) to B a [I l (v) to u]. These assignm ents also take 0 (1) time.

— Set F L (B a) to B a [F l (u) to u], F R (B a) to B a [FR (u) to u], F L (B C) to B c [FL (v)

to v], and F r (B c) to B c [F]r(u) to u]. These assignm ents take 0 (1) tim e.

— Set s (B a) [s(tt)] and s (B c) [s(u)] to one. These assignm ents take 0 (1) tim e.

— Relabel the blocks and ad just th e b, f R, and f R values. This operation can be

done in 0 (n) time.

Now let us consider when i ^ j . Observe th a t if 1 < i [/ l (u) ^ b(u)], B j — {u} [nx(v) =

v], FL (B i - 1) = F L(Bi) l f L (h (u)) = f L (u)], and FR (Bi_ x) = [f R (IL (u)) = b(IL (v))},

then we m ust move u into i- Similarly, if j < k, B^ = {u,}, F r (B j + i) = F r (B j), and

F i { B j + 1) = B l+1, then we m ust move v into B j +\.

Exactly how the labelling is changed depends on w hether u is moved into R ,_ i, v is

moved into B J + i, Bi = {it}, and B j = {u}. We consider each case, w ith respect to it,

separately, noting th a t the same considerations m ust also be given for v.

182

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• If u is to be moved into B i -1 and Bi = {u} [nx(u) = u], then we merge Bi in to B i - \ .

As we saw earlier when adding a vertex, such a merge takes 0 (1) time.

• If u is to be moved into B i - 1 bu t Bi contains vertices o ther th a n u [nx(u) A u], then

we perform the following.

— If u is the pointer vertex of B i [P(u) = it], then establish n x { u) as th e new pointer

vertex for B i , w ith pointer values identical to those of u. T his reassignm ent takes

0(|.B i|) £ 0 (|X U|) tim e. Let q be th e resulting pointer vertex of Bi.

— Remove u from th e circular doubly linked list of the vertices in Bi and add u to

the circular doubly linked list of th e vertices in B i - 1, using P (B j_ i) \P(IR(u))}

as a reference point. This move takes 0 (1) time.

— Change the label of u to reflect th a t P (B i - i) [P(IR(q))} is the new pointer vertex

of its block. This change takes 0 (1) time.

— For each B in { F i (P j) , . . . , B i - i } , if FR (P (B)) = u th en set Fl (P (B)) to q.

These assignm ents can be done in O (deg(Bi)) £ 0 (|X „ j) tim e, by recursively

following I I pointers to determ ine all such blocks B.

— Decrease the value of s(B-i) [6’(</)j by one and increase the value of s (P ;_ i)

[s(P(u))] by one. These ad justm en ts take 0 (1) time.

• If u was not moved into P ,_ i and B t = {u}, th en we need do nothing yet.

• If u was not moved in to B ,;-i and Bi contains vertices o ther th a n u, then we m ust

partition Bi into B a -< Bb, w here B a = (u) and B}, ~ B, \ {?/} (in the case of v , we

would partition B j into B a -< Bb, where B a = B j \ {u} and Bb = {u}). Specifically,

the labelling changes as follows.

— If u is the pointer vertex of B i [P(u) = u], then establish nx{u) as th e new pointer

vertex for Bi , w ith pointer values identical to those of u. T his reassignm ent takes

0 (|D (u) |) £ 0 (|X „ |) tim e. Let q be the resulting pointer vertex of Bi.

— Remove u from the circular doubly linked list of vertices in Bi to produce the

circular doubly linked list of vertices in Bb- This removal takes 0 (1) time.

— Establish the triv ial circular doubly linked list for B a. E stablishing th is circular

doubly linked list takes 0 (1) time.

— Establish u as the pointer vertex of B a. For now, assign the pointer values of q

to u. Establishing this pointer vertex takes 0 (1) tim e.

— Providing / l (P ») ^ NIL [h iq) A n il], set I R (IL (Bi)) to B a [.IR {IL (q)) to u\. As

well, set 7 l (/ r (P ,)) to Bb [Il (I r (q)) to q\. These assignm ents take 0 (1) time.

183

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Once these I r and I r pointers have been assigned, set I n { B a) to Bb [I r (u) to q]

and I]b(Bb) to B a [Il {q) to u\. These assignments also take 0 (1) time.

— For each block B in { F l (B i), . . . , B j_ i} , if F r (P (B)) — u, th en set Fr (P (B))

to q. As well, for each block B in { B i + 1 , . . . , B j } , if P (F r (P (B))) = q then set

Fr {B) to B a [F r (P (B)) to u\. These assignm ents can be done in O (deg(Bi)) G

0 (|X U|) tim e, by recursively following I r and I r pointers to determ ine all such

blocks B.

— Set s{B a) [s(u)J to one and S(Bb) to s(Bi) — 1 [subtract one from s(q)]. This

takes 0 (1) tim e.

Once the above actions involving it and v have been com pleted, we set Fr (B(u)) to

I r {B{v)) [Fr (u) to I r {v)] and Fl (B(v)) to I r (B(u)) [Fr (v) to I r (u)]. These pointers can

be set in 0 (1) tim e. We th en relabel the blocks and ad just the b, /n , and / r values. These

values can be adjusted in 0 (n) time.

C .4.4 A dding an edge

Let uv be the edge to be added, where X u and X v denote th e neighbourhoods of u and

v, respectively, in G. W ith o u t loss of generality, let us assume th a t b(u) < b(v). W hile

considering the addition of a vertex, we saw th a t, by traversing Fr pointers beginning a t u,

we can determ ine, in 0 (n) tim e, w hether u and v belong to the same com ponent.

We consider the following cases.

1. T he vertices u and v belong to d istinct com ponents. In th is case we will need to know

inform ation about all th e blocks in th e com ponents containing u and v. Specifically, we

determ ine all the blocks by following Fl and Fr pointers, keeping a reference vertex

Vi from each block Bi. G athering th is inform ation can take as much as 0 (n) time.

Let $ = B \ -< . . . -< Bk be the contig of the com ponent containing it, and let =

B[B[be th e contig of the com ponent containing v. To dem onstrate the

action of the relabeller, we consider the scenario in which u € Bk and v € B[, with

B[= {v} bu t not Bk ^ {it}. Let B a be the split block Bk \ {u}, and Bb be the block

{it}. O ur labelling changes as follows.

• If I R {Bk) B[[b(IR (Vk)) = fr(v i)]> then move $ over to T .

- Set / r (/ l (5 {)) to I r {B\) [Ir (Il (v[)) to I R{v[)} and I R{B[) to IR (Bk) [.IR{v[)

to IR(vk)\. As well, providing I r {B[) ^ NIL [I R{v[) ± n il] , set /^ (/^ (I? ,')) to

I l (B[) [Il {Ir {v ' i)) to I l {v[)]. These assignm ents can be m ade in 0 (1) time.

Once the above I r and I r pointers have been assigned, set l R (Bk) to B[

{Iii{vk) to w}], and I r (B\) to B k [Il {vj) to vk]- These assignm ents also take

0 (1) tim e.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

— Relabel th e blocks and adjust the b, f i , and f R values. This operation can

be done in O (n) tim e.

• Split Bk to reflect the stra igh t enum eration of G ' .

— If u is the pointer vertex of Bk \P(u) = u], then establish nx{u) as the new

pointer vertex for B a . This reassignm ent takes 0 (|R (m)|) £ 0 (|X U|) time.

Let qa be th e resulting pointer vertex of B a.

— Remove u from th e circular doubly linked list of vertices in Bk to produce

the circular doubly linked list of vertices in B a and Bt,. P roducing these

circular doubly linked lists takes 0(|B fc |) £ 0 (|X U|) time.

— Establish u as the pointer vertex of B b and give its pointers the same values

as qa. E stablishing th is pointer vertex takes 0 (1) tim e.

— Providing I L (B k) # n i l [/ i (g a) 7^ n i l], set I R (lL(Bk)) to B a [IR (lL(qa)) to

q„\. This assignm ent takes 0 (1) tim e.

Once th e above I I and I r pointers have been assigned, set I R (B a) to Bb

[■lR(<la) to u], I L {Bb) to B a [Il {u) to qa], and I l {B[) to B b \IL(v) to u].

These assignm ents also take 0 (1) time.

— Set FR (B b) to B[\FR (u) to u], and F r (B[) to B b [F r (v) to u\. These

assignments take 0 (1) tim e.

— For each block B in {Fr{Bo) , . . . , B a}, set F r { B) to B b [F r(P(B)) to it].

These assignm ents can be done in 0 (|X U|) tim e by following I r pointers.

— Set s (B b) [s(u)] to one, and sub trac t one from the value of s (B a) [s(ga)]-

These assignm ents take 0 (1) tim e.

— Relabel th e blocks and ad just the b, f i , and f a values. This operation can

be done in 0 (n) tim e.

2. The vertices u and v belong to the same com ponent. Let B \ -< . . . -< B k be the contig

of the component containing u and v, where it £ Bi and v £ B j , for some 1 < i < j < k.

We consider two fu rther cases.

(a) Bi and B j are end blocks \ f i { u) = b(u) and f a (v) = 6(u)]. In th is case, X u —

X v . By Lem m a 6.7 (um brella property), the contig contains three blocks, namely,

{it} -< X u -< {i;}. The new com ponent will consist of a single block, formed by

merging the th ree blocks into one new block B a.

Letting q be the pointer vertex of the block X u , the labelling changes as follows.

• Providing I l ({ u }) ^ n i l \IL {u) ^ n i l] , set I R (IL ({u})) to B a [IR {IL (u)) to

q}. Similarly, providing I R {{v}) =£ NIL [IR (v) + NIL], set I L (IR ({v})) to B a

[I l (I r (v)) to q2 \. These assignm ents take 0 (1) tim e.

185

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• E stab lish the circular linked list for B a by adding u and v to the circular

doubly linked list of vertices in X u, using q as a reference. Moreover, change

th e labels of u and v to reflect th a t they are no longer pointer vertices, and

q is th e pointer vertex of their new block. These changes take 0 (1) tim e.

• Set th e value of s(Ba) to s(X „) + 2 [add two to th e value of s(q)]. This

add ition takes 0 (1) tim e.

• R elabel the blocks and adjust th e b, f R , and f R values. T his operation can

be done in 0 (n) tim e.

(b) At least one of Bi and B j is not an end block] / l (u) ^ b(u) or f R {v) ^ &(u)]. In

this case, X u ± X v . If B i = {u} [nx(u) = u], FR (B j - i) = FR (Bj) [f R (IR(v)) =

f R (v)} and F i (B j _ i) = Bi [/ l (/ l (u)) = b(u)], then we move v from B j into B j - 1.

Similarly, if B j = {u} [nx{v) = v], FL (B i+ 1) = FL (Bi) [/ l (^ (w)) = / l (u)]

and FR (B i+ \) = B j \ fR (IR (u)) = b(v)], th en we move u from Bi into B{+

This m oving of u and v is v irtually identical to one of th e cases discussed when

considering the deletion of a edge.

O ur labelling is modified according to w hether or no t u and v are moved.

• If ?/ is to be moved into B i+-[and Bi = {u} \nx(u) = it], th en we merge Bi

in to Bi+1- As we saw earlier when adding a vertex, such a merge takes 0 (1)

tim e.

• If it is to be moved into R j+ i bu t Bi contains vertices o ther th a n u [nx(u) ^

u], then we perform th e following.

— If u is the pointer vertex of Bi \P(u) = it], th en establish nx(u) as the

new pointer vertex for Bi, w ith pointer values identical to those of it.

This reassignm ent takes 0(|-B i|) € 0 (|X U|) tim e. Let q be the resulting

pointer vertex of Bi.

— Remove it from th e circular doubly linked list of the vertices in Bi and

add u to the circular doubly linked list of the vertices in R i+ i, using

P(Bi- |_i) [P(IR(u))} as a reference point. T his move takes 0 (1) tim e.

— Change th e label of u to reflect th a t R (R i+ 1) [P(IR(qj)] is the new pointer

vertex of its block. This change takes 0 (1) time.

— For each B in {Bi+1, . . . , FR(Bi)}, if Fl {P(B)) = u, th en set FR(P(B))

to q. These assignm ents can be done in O (deg(Bi)) £ 0 (|X „ |) tim e by

recursively following IR pointers to determ ine all such blocks B.

— Decrease the value of s(R^) [s(g)] by one and increase the value of s(R ,+ i)

[s(P(u))} by one. These ad justm ents take 0 (1) time.

• If it was not moved into B i+j and Bi = {u}, then we need do nothing yet.

186

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

• If u was not moved into B i +\ and B i contains vertices o ther th an u, then

we m ust partition Bi into B a -< Bb, w here B a = Bi \ {u} and Bb = {u}

(in th e case of v, we would partitio n B j in to B a -< Bb, where B a = {w} and

Bb = B j \ {u}). Specifically, the labelling changes as follows.

— If it is the pointer vertex of Bi [P (u) = u], then establish nx (u) as th e new

pointer vertex for B i} w ith po in ter values identical to those of u. This

reassignm ent takes 0 (|i? (ii) |) £ 0 (|X U|) tim e. Let q be the resulting

pointer vertex of Bi.

— Remove u from the circular doubly linked list of vertices in Bi to produce

the circular doubly linked list of vertices in B a ■ T his removal takes 0 (1)

tim e.

— E stablish the triv ial circular doubly linked list for Bb- Establishing th is

circular doubly linked list takes 0 (1) tim e.

— E stablish u as the pointer vertex of B a. For now, assign the pointer

values of q to u. Establishing th is pointer vertex takes 0 (1) time.

— Providing I L (B i) ± NIL [/^(g) ± n il] , set I R (IL {Bi)) to B a \IR (IL (q))

to qj. As well, set I i i l R i B i)) to Bb [Il {Ir (q)) to u]. These assignm ents

take 0 (1) time.

Once these I I and I R pointers have been assigned, set I R (Ba) to Bb

{Ir (i) to u], and Ijj iBb) to B a \Il {u) to g]. These assignm ents also take

0 (1) time.

— For each block B in { F ^ B i) , . . . , B t }, if P (F R (P (B))) = q, th en set

Fr (P (B)) to u. As well, for each block B in {Bj+ i , . . . , i} , if Fl (P (B)) =

u then set Fl(-B) to B a [Fl (P (B)) to g]. These assignm ents take 0 (|X U|)

tim e.

— Set s(Bb) [s(n)] to one and S (B a) to s(_B;) — 1 [subtract one from s(g)].

This takes 0 (1) time.

Once th e above actions involving u and v have been completed, we set FR (B(u))

to B (v) [Ffi(u) to v] and Fl {B(v)) to B (u) [Fl (v) to u}. These pointers can be

set in 0 (1) tim e. We then relabel the blocks and adjust the b, f i , and f R values.

These values can be adjusted in 0 (n) tim e.

187

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

Index

adjacency labelling scheme, 3, see im plicit
representation

alm ost trees(fc), 14
arboricity-fc graphs, 3, 14, 15
asteroidal trip le free graphs, 14
autographs, 14
balanced, 12, 14, 15
bandwidth-fc graphs, 14
b ipartite graphs, 12, 14, 15
boxicity-fc graphs, 14, 15
chain graphs, 14
chordal com parability graphs, 14
chordal graphs, 12, 14
circle graphs, 15
circular arc graphs, 15
cobipartite graphs, 14, 15
cographs, 15
com parability graphs, 15
containm ent graphs, 15
convex b ipartite graphs, 15
cycles, 15
fc-decomp os able graphs, 15
degree-A; graphs, 14, 15
disk intersection graphs, 15
k -dot product graphs, 13, 15
E P T graphs, 15
forests, 15
C'3-free graphs, 14
C 3 ,C4-free graphs, 14
C'3 ,/t'i,3-free graphs, 14
Ad a-free graphs, 14
R a^-free graphs, 14
R s-free graphs, 14
P 4-free graphs, 14
from adjacency lists, 6
from adjacency m atrix , 6 , 12, 17, 54
general graphs, 14
genus-k graphs, 15
hereditary degree-fc graphs, 15
interval graphs, 3, 11, 14, 15
fc-interval graphs, 15
line graphs, 3, 8-9, 15
outdegree-fc graphs, 9-10, 14, 15
outerp lanar graphs, 13, 15
perm utation graphs, 15
planar graphs, 15
posets of dimension-fc, 15
proper interval graphs, 14, 15
quality, 10 -12
space-optim al, 11
fc-sparse graphs, 12-13, 15
split graphs, 14, 15
strongly space-optim al, 1 1 , 12 , 16
threshold graphs, 15

threshold tolerance graphs, 15
to ta l graphs, 15
transitive closures of rooted trees, 7 -

8 , 15
trees, 7, 10, 11, 15
uniform ly fc-sparse graphs, 15

adjacency list, 2 , 6
adjacency m atrix , 2 , 6
adjacent, 1
alm ost tree(fc), 14, 118
arboricity, 118
arboricity-fc graph, 3, 4, 14, 15, 32, 33
asteroidal triple, 118
asteroidal trip le free graph, 14
astra l triple, 82, 83, 118
autograph, 14, 118

bandw idth , 118
bandwidth-fc graph, 14
base graph, see line graph, base
biclique, 54, 118

m axim al, 4, 5, 34, 54. 6 8 , 81, 112, 118
r-b ic , 5, 34, 54, 55, 67-81, 81, 112, 118
b inary tree, 2 1 , 118
b ip a rtite graph, 12, 14, 15, 21, 119
block, 83-84
boxicity, 119
boxicity-fc graph, 14, 15
broadcast protocols, 20

chain graph, 14, 119
chordal b ipartite graph, 12, 119
chordal com parability graph, 14
chordal graph, 12, 14, 119
circle graph, 15, 119
circular arc graph, 15, 21, 119
circular doubly linked list, 39, 55, 6 8 , 86
circular linked list, 4, 111
claw, 119
clique

maximal, 5, 34, 54, 56, 81, 112, 121
cliquewidth, 119
cliquewidth-fc graph, 21, 119
closed neighbourhood, 1
co-class, 10, 14
cobipartite graph, 14, 15, 119
cograph, 15, 119
com parability graph, 15, 119
com ponent, 2
com putation model

log-cost RAM, see log-cost RAM
unit-cost RAM, see unit-cost RAM
word-level RAM, see word-level RAM

connected graph, 2

188

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

containm ent class, 18, 120
containm ent graph, 15, 1 2 0
contig, 84, 85
convex b ipartite graph, 15, 120

decoder, 3, 7-12, 16, 19, 39, 56, 68, 86,
124

fc-decomposable graph, 15
^-decomposable, 120
degree, 1
degree-fc graph, 14, 15, 21
degree-fc p lanar graph, 21
degree-3 graph, 21
directed graph, 1
disk intersection graph, 15, 120
distance hereditary graph, 21, 120
distinct graphs

labelled, 2
unlabelled, 2

domino, 5 4 , 56
fc-dot p roduct graph, 13 , 13, 15, 1 2 0
dynamic adjacency labelling scheme, see

dynam ic labelling scheme, ad ja­
cency

dynam ic inform ative labelling scheme, see
dynam ic labelling scheme

dynamic labelling scheme, 22-34, 112, 113
adjacency, 23

arboricity-fc graphs, 4, 32, 33
r-bics, 5, 34, 55, 67-81, 112
line graph, 34
line graphs, 5, 38-52, 111
r-m inoes, 5, 34, 81, 112
r-m inoes, 55-67
proper interval graphs, 5, 82-107,

112
trees, 24

ancestor
rooted trees, 4, 33

assum ptions, 24-25, 57, 69
distance

trees, 4, 33
weighted cycles, 34
weighted trees, 34, 112

flow
weighted trees, 112

inform ative, 26
m odification excess, s e e modification

excess
m odification locality, s e e modification

locality
quality, 4, 26-29, 111
routing

weighted trees, 112
separation level

weighted trees, 112

edge, 1
edge set, 1
end pointer, 85, 87
E P T graph, 15, 120
error-detection, 4, 2 3 , 26 . 29-32, 63, 75,

111

far pointer, 85

finite graph, 1
forest, 15, 22, 1 2 0
C3-free graph, 14
C3 ,C4-free graph, 14
C 3 , ^ i , 3-free graph, 14
H- free, 11 8
Itd^-free, 14
K^^- tree graph, 14
K^-ixee graph, 14
P 4-free graph, 14

genus, 120
genus-fc graph, 15
graph, 1
graph recognition, 29-32

hereditary degree-fc graph, 15, 1 2 0
hereditary property, 120
hypercube, 21, 120
hypergraph, 17, 121

line graph of, 17, 121
rank, 17, 1 2 1

identifier, 4, 6-10, 24, 39, 56, 68, 86
im plicit representation, 16 , 16-18
incident, 1
inform ative labelling scheme, 3, 19, 18-

19, 125
adjacency, see adjacency labelling scheme
ancestor, 3, 20

rooted trees, 19, 21
applications, 19-20
bounded distance

trees, 21
center of th ree vertices, 3

trees, 21
distance, 3, 20

binary trees, 21
b ipartite graphs, 21
circular arc graphs, 21
cliquewidth-fc graphs, 21
cycles, 21
degree-fc graphs, 21
degree-fc p lanar graphs, 21
degree-3 graphs, 21
distance hered itary graphs, 21
general graphs, 21
hypercubes, 21
interval graphs, 21
meshes, 21
perm utation graphs, 21
planar graphs, 21
proper in terval graphs, 21
recursive r(n)-sep a ra to r graphs, 21
tori, 21
trees, 21
treewidth-fc graphs, 21
weighted b inary trees, 21
weighted c-decom posable graphs, 21
weighted fc-outerplanar graphs, 21
weighted series parallel graphs, 21
weighted trees, 21
well (a , g)-separa ted graphs, 21

edge-connectivity
general graphs, 21

189

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

flow, 20
general graphs, 22

nearest com m on ancestor, 3, 20
rooted trees, 22

parent, 20
quality, 19
reachability

planar digraphs, 22
routing, 3, 20

forests, 22
trees, 22

separation level
rooted trees, 22

sibling, 20
Steiner tree

weighted graphs, 22
fc-vertex connectivity

general graphs, 22
intersection class, 17, 35, 121
intersection graph, 121
intersection num ber, 17
interval graph, 3, 11, 14, 15, 21, 83, 112,

121
interval num ber, 121
fc-interval graph, 15, 121
isomorphic graphs, 2

labelled graph, 2
line graph, 3, 5, 8, 8-9, 15, 34, 35, 38-52,

111, 121, see hypergraph, line
graph of

base, 8, 35, 39
log-cost RAM, 124
loop, 1

m arker, 3, 7-12, 16, 19, 63, 82, 87, 124
mesh, 21, 121
r-m ino, 5, 34, 54, 55-67, 81 , 112, 121
modification excess, 29, 27-29, 43, 46, 52,

60, 63
modification locality, 29, 27-29, 43, 46,

52, 60, 63, 65, 67

near pointer, 85
neighbourhood, 1

of a block, 83

open neighbourhood, 1
outdegree-fc graph, 9, 9-10, 14, 15, 121
outerp lanar graph, 13, 15, 121
fc-outerplanar, 121
outneighbour, 9
overlap class, 18

p artia l order, 121
partition isom orphism , 36, 35-38, 41
path , 2
perm utation graph, 15, 21, 122
persistent labels, 4, 33
planar digraph, 22
planar graph, 15, 21, 122
pointer vertex, 85, 85-87
poset, 15, 122
prefix-free b inary string, 19

proper in terval graph, 5, 14, 15, 21, 82,
82-107, 112, 1 2 2

reciprocal pointer, 56
recognition, 63, 75, 88
recursive r(n)-sep ara to r graph, 21, 122
relabeller, 2 3 , 26, 27, 41-52, 57-67, 70-

81, 87-107, 124
rooted tree, 4, 19, 21, 22, 33, 122
rou ting algorithm s, 20

self pointer, 85, 87
series parallel graph, 122
simple graph, 1
fc-sparse graph, 12, 12-13, 15, 122
split graph, 14, 15, 12 2
stra igh t enum eration, 8 4 , 84, 112
subclass, 10, 14
superclass, 10, 14

threshold graph, 15, 1 2 2
threshold tolerance graph, 15, 122
torus, 21, 122
to ta l graph, 15, 12 2
transitive closure of roo ted tree, 7-8, 15,

1 2 3
tree , 4, 7, 10, 11, 15, 21, 22, 24, 33
treew id th , 1 2 3
treewidth-fc graph, 21
triangle, 1 2 3

undirected graph, 1
uniform ly fc-sparse graph, 15, 123
unit interval graph, 1 2 3
unit-cost RAM , 124
universal graph, 18, 1 2 3
unlabelled graph, 2

valid set, 4 4
vertex, 1
vertex set, 1

walk, 2
weak linear order, 92
weighted b inary tree, 21
weighted cycle, 34
weighted c-decomposable graph, 21
weighted graph, 22
weighted fc-outerplanar graph, 21
weighted series parallel graph, 21
weighted tree, 21, 34, 112
well (a, g)-separated graph, 21, 123
word-level RAM , 6, 11, 124

XML search engine, 20

190

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

