University of Alberta

DyNAMIC ADJACENCY LABELLING SCHEMES

by

David Morgan

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Fall 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-23083-1
Our file Notre référence
ISBN: 978-0-494-23083-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

As defined by Muller [Muller, Ph.D. thesis, Georgia Tech, 1988] and Kannan, Naor, and
Rudich [Kannan et al., STAM J Disc Math, 1992], an adjacency labelling scheme labels a
graph such that the adjacency of two vertices can be deduced implicitly from their labels.
In general, the labels used in adjacency labelling schemes cannot be tweaked to reflect small
changes in the graph.

First studied by Brodal and Fagerberg [Brodal and Fagerberg, LNCS 1663, 1999], a
dynamic adjacency labelling scheme is an adjacency labelling scheme that requires only small
adjustments to the vertex labels when a small change is made to the graph. Motivated by
the necessity for further exploration of dynamic adjacency labelling schemes, we introduce
the concept of error-detection, discuss metrics for judging the quality of dynamic schemes,
and develop error-detecting fully dynamic schemes for several classes of graphs.

Our dynamic scheme for line graphs uses O{log n) bit labels and updates in O(e) time,
where e is the number of edges added to, or deleted from, the line graph. As well, our
dynamic scheme for proper interval graphs uses O(logn) bit labels and handles all operations
in O(n) time.

We also develop a O(rlogn) bit/label dynamic adjacency labelling scheme for r-minoes,
which are graphs with no vertex in more than 7 maximal cliques. Edge addition and deletion
can be handled in O(r?D) time, vertex addition in O(r%e?) time, and vertex deletion in
O(r?e) time, where D is the maximum degree of the vertices in the original graph and e is
the number of edges added to, or deleted from, the original graph.

Similar to this dynamic scheme for r-minoes, we develop a O(rlogn) bit/label dynamic
adjacency labelling scheme for r-bics, which are graphs with no vertex in more than r
maximal bicliques. Edge addition and deletion, as well as vertex deletion, can be handled
in O(r2B) time, and vertex addition in O(r?>nB) time, where B is the size of the largest
biclique in the original graph.

Our dynamic labelling schemes for 7-minoes and r-bics lead to O(r?n?) time recognition

algorithms for both of these classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First, I would like to acknowledge the support of my wife, Angela, whose confidence in my
abilities far exceeds my own. She is my biggest fan.

As well, T would like to thank Dr. Lorna Stewart, my doctoral supervisor, for giving
me the freedom to independently pursue my own research interests. Although our research
areas are not closely related, her experience offered many insights into my work. Moreover,
I would like to thank her for being open to, and supportive of, the idea of finishing my
doctoral studies from over 4000 kilometers away.

Finally, I would like to thank NSERC, iCORE, the Killam Scholarship Program, the
Alberta Scholarship Program, and the University of Alberta for providing financial sup-
port. Without financial support from these programs and organizations, I might never have

finished; worse yet, I might never have started

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction
1.1 Graph terminology

1.2 OVEIVIEW .« o o o o e e e e e e e e e e e e e e e

2 Background

2.1 Adjacency labelling schemes L
211 Examples
2.1.2 Assessing quality oo
213 Twoclassesofnote
214 Previouswork.o e
2.1.5 Muller and Kannanetal.
2.2 Informative labelling schemes o000
2.21 Definition
2.2.2 Applications
223 Previouswork. oo
2.2.4 Dynamization Lo o

3 Dynamic Schemes

3.1 Dynamic adjacency labelling schemes
3.1.1 Definition
312 Example. L e
3.1.3 Underlying assumptions
3.2 Dynamic informative labelling schemes
321 Definition
3.2.2 Assessing quality Lo
3.2.3 Graphrecognition L oL
3.24 Previouswork.
3.3 New dynamic schemes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
12
13
16
18
18
19
20
22

4 Line graphs 35

4.1 Partition isomorphism 35
4.2 The dynamic scheme L 38
4.2.1 Vertex labels, marker, and decoder 38

4.22 Relabeller 41

4.3 SUMMATY o e e e e e e e 52

5 r-graphs 54
5.1 The dynamic scheme for r-minoes 55
5.1.1 Vertex labels and decoder L. 55

51.2 Relabeller L 57

5.2 The dynamic scheme for r-bics 0L 67
5.2.1 Vertex labels and decoder L oo 67

52.2 Relabeller e 70

5.3 SUMIMATY v v v v e e o e e e e e e 81

6 Proper interval graphs 82
6.1 Vertex labels, marker, and decoder 0oL 34
6.1.1 Relabeller e 87

6.2 SUIMATY . . . o v v v v e e e e e et e e e e e e e e e 107

7 Conclusion 111
Bibliography 114
A Definitions 118
B Computation Models 124
C Pseudocode 126
C.1 Linegraphs o o o o 126
C.1.1 Deletingavertex 126

C.1.2 Adding avertex 128

C.1.3 Deletinganedge 140

C.14 Addinganedge 154

C.2 7-miINOES o e e e 155
C.2.1 Deleting a vertex o ottt 155

C.2.2 Adding a vertex 157

C.2.3 Deletinganedge 159

C24 Addinganedge 160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C3 7r-bics . . . o e e 162
C.3.1 Deletingavertex 162
C32 Addingavertex 164
C.3.3 Deletinganedge 167
C34 Addinganedge 170

C.4 Proper interval graphs L. 170
C4.1 Deletingavertex 170
C4.2 Addingavertex 172
C4.3 Deletinganedge 181
C44 Addinganedge 184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Known results on adjacency labelling schemes 14

2.2 Known results on informative labeling schemes for functions other than ad-

JACENICY + o o v o e e 21
4.1 Casewise approach to deletion of an edge (line graphs) 49
4.2 Partition non-isomorphic bases for edge deletion (line graphs) 51
4.3 Partition non-isomorphic bases for edge addition (line graphs) 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1

2.1
2.2
2.3
2.4

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.9
5.6
9.7
5.8
5.9

6.1
6.2
6.3

Illustration of adjacency labelling (interval graphs) 3
Illustration of adjacency labelling (trees) 7
Illustration of adjacency labelling (transitive closures of trees) 8
Tllustration of adjacency labelling (line graphs) 9
Illustration of adjacency labelling (outdegree-k graphs) 10
Tllustration of modification excess and locality 28
Algorithms for dynamic scheme (graphs of bounded arboricity) 32
Partition isomorphism oL 37
Illustration of dynamic vertex labels (line graphs) 40
llustration of edge deletion and addition (line graphs) 42
Lllustration of vertex deletion and addition (line graphs) 42
DELETEVERTEX (line graphs) 43
ADDVERTEX (line graphs) 45
DELETEEDGE (line graphs) 50
Hlustration of dynamic vertex labels (r-minoes) 56
DELETEVERTEX (r-minoes) 59
ADDVERTEX (r-minoes) e 62
DELETEEDGE (r-minoes) 65
ADDEDGE (r-minoes) 67
llustration of dynamic vertex labels (r-bics) 68
DELETEVERTEX (r-bics) 71
ADDVERTEX (F-IINOES) . « ¢ v v 0 v vt i e e e e e e e 73
DELETEEDGE (r-bics) o 78
Anastral triple 82
Interval representations and blocks o000 83
Deleting a vertex I (proper interval graphs) 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Merging blocks 91

6.5 LEFTCOMPONENTBLOCKSTRUCTURE 95
6.6 Adding a vertex I (proper interval graphs) 98
6.7 Adding a vertex II (proper interval graphs) 99
6.8 Adding a vertex IIT (proper interval graphs) 100
6.9 Adding a vertex IV (proper interval graphs) 101
6.10 Adding a vertex V (proper interval graphs) 102
6.11 Adding a vertex VI (proper interval graphs) 102
6.12 Adding a vertex VII (proper interval graphs) 108
6.13 Adding a vertex VIII (proper interval graphs) 108
6.14 Deleting an edge (proper interval graphs) 109
6.15 Adding an edge (proper interval graphs) Lo 110
C.1 Changing the base I (linegraphs) 134
C.2 Changing the base II (line graphs) 134
C.3 Changing the base III (line graphs) 136
C.4 Changing the base IV (line graphs) 136
C.5 Changing the base V (line graphs) 137
C.6 Changing the base VI (line graphs) 137
C.7 Deleting an edge I (line graphs) 145
C.8 Deleting an edge II (line graphs) 146
C.9 Deleting an edge III (line graphs) 146
C.10 Deleting an edge IV (line graphs) 147
C.11 Deleting an edge V (line graphs) 148
C.12 Deleting an edge VI (line graphs) 149
C.13 Deleting an edge VII (line graphs) 150
(.14 Deleting an edge VIII (line graphs) 151
C.15 Deleting an edge IX (line graphs) 152
C.16 Deleting an edge X (line graphs) 153
C.17 Deleting an edge XI (line graphs) 155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols

The following is a summary of undefined notation used in the thesis.

General notation

empty set, empty graph

intersection

union

summation

asymptotically less than f(n)

asymptotically less than or equal to f(n)
asymptotically equal to f(n)

asymptotically greater than or equal to f(n)
asymptotically greater than f(n)

A implies B

A if and only if B

cycle on k vertices

degree of vertex v

distance of vertex v from vertex u in graph G
distance of vertex v from set of vertices S in graph G
edge set of graph G

function of n

a function whose domain is X and range is contained in Y
graph formed by deleting vertex v from graph G
graph formed by adding vertex v to graph G
graph formed by deleting edge e from graph G
graph formed by adding edge e to graph G
Cartesian product of graphs G and H

complete graph on k vertices

complete bipartite graph (maximal independent set sizes ¢ and 7)
logarithm base two of x

line graph of graph G

maximum in set S

minimum in set S

open neighbourhood of vertex v

closed neighbourhood of vertex v

parent of vertex v

path on k vertices

k-dimensional space over reals

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[S] cardinality of set S

Y an edge uv

Ve vertex set of graph G
|z floor of x

[x] ceiling of =

NE square root of z

x! factorial of x

zeX x belongs to set X
{z|P(x)} set of all elements that satisfy property P
z =<y x precedes y

x =Xy x precedes or is y
x>y x succeeds y

TEy x succeeds or is y

XcyYy X is a proper subset of Y
XCY X is a subset of Y

XDY X is a proper superset of Y
X2Y X is a superset of ¥

X\Y set X setminus set Y

Algorithm notation

DEQUEUE(Q) remove from head of queue Q
ENQUEUE(Q) add to tail of queue @

NIL empty stack or queue
Por(S) remove from top of stack S
PusH(S) add to top of stack S
Ty assign y to x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Graph terminology

Let us begin by revisiting some graph terminology. For the definitions of terms used in the
thesis, but not defined herein, the reader should consult West [57].

An undirected graph G = (Vg, Eg) consists of a vertez set Vg, and an edge set E¢, where
each member of Fg is a subset of Vg having size either one or two. The members of Vi are
known as vertices, and the members of Fg are known as edges, where in particular, if an
edge consists of only one vertex, it is called a loop.

Given an undirected graph G, two vertices u and v are said to be adjacent if the edge
{u,v} belongs to G; moreover, the vertices u and v are said to be incident with the edge
{u,v}, and vice-versa. For simplicity, we will denote the edge {u,v} by wv, which is a
common practice in graph theoretical literature. Two edges are said to be adjacent if they
share a common vertex.

The open neighbourhood of a vertex v, denoted N (v), is the set of vertices to which v is
adjacent. The closed neighbourhood of v, denoted N{v], is defined to be N(v) U {v}. When
we wish to refer to the closed neighbourhood of a vertex we will do so explicitly; as such,
any references to the neighbourhood of a vertex are to its open neighbourhood. The degree
of a vertex is the cardinality of its open neighbourhood.

A directed graph G = (Vg, Eg) consists of a verter set Vi, and an edge set E¢, where
each member of Eg is an ordered pair of Vi having size either one or two. A directed
graph is similar to a graph, however, its edges are ordered pairs; thereby, a direction is
imparted to each of its edges. Consequently, the terms defined for undirected graphs, have
directed counterparts such as inneighbourhood, outneighbourhood, indegree, and outdegree.
A graph, undirected or directed, is simple if it contains no loops, and finite if its vertex set
is finite. Our usage of the term graph will refer to a finite simple undirected graph. When
deviating from this usage, we will explicitly state the type of graph under consideration.

A walk between two vertices u and v is a sequence of edges that lead from u to v. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

walk which visits no vertex twice is known as a path. Indeed, the term path is seen more
often than walk, as the existence of a walk implies the existence of a path. A maximal set
of vertices with a path between each pair of members is called a component. A graph is said
to be connected if the entire vertex set is a component.

Two graphs G; and G are said to be isomorphic if there exists a bijection f: Vg, =
Va,, for which wv € Eg, & f(u)f(v) € Eg,. We will used the term labelled graph to refer
to a graph G whose vertex set is {1,2,...,|Vg|}. A graph is said to be unlabelled if it is not
labelled. Two labelled graphs are said to be distinct if they are unequal. Two unlabelled

graphs are said to be distinct if they are not isomorphic.

1.2 Overview

Consider a finite simple undirected graph G = (Vg, Eqg) with n vertices and m edges;
typically, we represent G using an adjacency matrix, labelling the vertices from 1 to n.
These labels serve only to distinguish between the vertices and do not tell us anything
about the structure of GG. In particular, the adjacency of any pair of vertices is determined
from the adjacency matrix, which is usually maintained as a global resource.

What if we could determine the adjacency of two vertices of G in a more local manner?
One such way is to use an adjacency list representation which requires ©((m + n)logn) bits
to represent a graph. Unfortunately, for dense graphs, an adjacency list representation can
require as many as ©(n?logn) bits, which is much greater than the ©(n?) bits required by
an adjacency matrix representation.

Another approach is to use an adjacency labelling scheme, as defined by Muller [45] and
Kannan, Naor, and Rudich [31].

Definition 1.1 An adjacency labelling scheme of a family G of finite graphs is a pair of
algorithms, (M, D), satisfying the following.

e M is a vertex labelling algorithm (marker) whose input is a graph G in G. Note that
M need not be deterministic; accordingly, let M¢ be the set of all vertex labellings of

Vo which can be assigned by M.

e D is a polynomial time deterministic evaluation algorithm (decoder) whose input is a
pair of vertex labels. For any graph G in G, and for any labelling Mqg generated by M,
we require that D be able to correctly determine the adjacency of any pair of vertices
of G, using only their labels; we refer to this property by saying that D is adjacency

correct.

In essence, an adjacency labelling scheme is a distributed data structure that allows us to

quickly determine the adjacency of two vertices from local information. To date, space-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal adjacency labelling schemes have been developed for a variety of graph classes, such
as bounded arboricity graphs, line graphs, and interval graphs [45, 31].

For example, consider the following adjacency labelling scheme for interval graphs [45].
Recall that a graph is said to be an interval graph if each vertex can be represented by an
interval of real numbers such that two vertices are adjacent if and only if the corresponding
intervals have non-empty intersection. Any such interval representation can be mapped
to another interval representation using closed intervals with endpoints in {1,...,2n}. The
marker labels each vertex with the two endpoints of its associated interval while the decoder
determines adjacency in O(1) time by comparing these integers just as it would two intervals.
Each label requires O(logn) bits and the entire labelling uses O(nlogn) bits. An example

of an adjacency labelling of an interval graph is given in Figure 1.1.

(1,6) (3,9)
(2,5) (7,11)
1234567891011 (6,10) (4,8)
(a) An interval representation of (b) The corresponding la-
a graph. bels.

Figure 1.1: An adjacency labelling of an interval graph

Adjacency can be replaced by any function f defined on sets of vertices. In turn, for
any set S of vertices on which f is defined, D must output the correct value of f on §
using only the labels of the vertices in S. By setting adjacency labelling schemes in the
larger context of informative labelling schemes, Peleg [47] rejuvenated interest in the idea
of space efficient distributed data structures as introduced by Muller [45] and Kannan et al.
[31]. To date, informative labelling schemes have been developed for a variety of functions
including distance, routing, center of three vertices, ancestor, and nearest common ancestor.

In Chapter 2, we offer a comprehensive look at the theory of informative labelling schemes.

In many applications the underlying topology is constantly changing and we desire algo-
rithms which can accommodate these changes. At present, algorithms for finding informative
labelling schemes are static; that is, if a graph is changed then the algorithm must devise a
labelling of the new graph from scratch. The dynamic version of adjacency labelling schemes
was mentioned by Kannan et al. [31], however, they did not consider the problem in detail.

At most, the authors suggest that the addition or deletion of a vertex or an edge should

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

require only a “quick” update of the labels in order to obtain an adjacency labelling of the
new graph. The first paper to address this dynamic problem is that of Brodal and Fagerberg
[10] who develop a dynamic adjacency labelling scheme for graphs of bounded arboricity,
providing the graph operations do not cause the arboricity bound to be violated. More
recently, the papers of Korman and Peleg [37] and Korman, Peleg, and Rodeh {39] have
considered the dynamic problem for trees in the context of distributed computing. Cohen,
Kaplan, and Milo {11] consider dynamic ancestor labellings of XML trees with persistent
labels; that is, the label of a vertex cannot be changed once it has been assigned. In contrast,
our labels can change over time. By not using persistent labels it is possible to reduce label
size as we can change the labels as required, or as desired.

As a continuation of the aforementioned works, we further discuss and develop the theory
of these dynamic schemes. In Chapter 3, we formally define what is meant by a dynamic
informative labelling scheme, as previous literature on this subject has been based exclusively
on our intuitive understanding of how static problems are made dynamic. While presenting
this formal definition, we introduce the concept of error-detection; that is, the algorithms
which relabel the graph should recognize when the modified graph is no longer a member
of the family under consideration. In addition to formally defining these schemes, we also
demonstrate the connection between error-detection and the graph recognition problem, and
identify and discuss the qualities that make a good dynamic scheme.

The latter three chapters of this thesis develop dynamic adjacency labelling schemes for
four classes of graphs. Common to the development of dynamic schemes for all these classes
is the use of identifiers and circular linked lists to encode information at the vertex level.
Specifically, each vertex of a graph G is assigned a unique identifier from {1,...,|V¢|}. For
some substructure S of G, such as a maximal clique, the label of a member of S will include
the identifier of the next vertex in a circular linked list of vertices in the substructure. In
fact, we can incorporate a circular doubly linked list without an increase in the asymptotic
size of the vertex label, as we store two identifiers instead of one. By incorporating these
circular linked lists we can determine all the vertices in S from a single vertex of S.

Using this distributed representation of S, we can also include additional information
about S in the labels of its member vertices. For example, one of the substructures seen in
Chapter 5 is a maximal biclique. For each maximal biclique B, we use the circular linked
list technique to distribute the representation of B, however, in the label of each member
vertex of B to which we identify which part of the bipartition of B the vertex belongs. With
this additional information, we are able to develop a decoder for our dynamic scheme.

Not only do we develop a technique to distribute graph substructures across their member
vertices, but we also develop a technique to distribute pointers. Consider a pointer P which

points from one substructure S7 to another substructure S,. First, we select a pointer vertex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from Si, denoted P(S1). The label of each member of Sy specifies the identifier of P(Sy),
where the label of P(S;) contains a field which holds the identifier of a vertex in S». In
turn, the label of that member of S; specifies the identifier of P(S2), so pointers can be
followed at will. This technique is used in Chapter 6, where the graph substructures have a
linear ordering.

Each of the dynamic adjacency labelling schemes that we develop is fully dynamic, that
is, the graph operations allowed are the addition or deletion of a vertex (along with its
incident edges), and the addition or deletion of an edge. Moreover, each dynamic scheme
is error-detecting. In Chapter 4, we present a dynamic adjacency labelling scheme for line
graphs, a class of graphs fundamental in the study of intersection graph theory [8]. Our
dynamic scheme for line graphs uses O(logn) bit labels and updates in O(e) time, where e
is the number of edges added to, or deleted from, the line graph. In developing this dynamic
scheme, we introduce a new concept known as partition isomorphism, and develop theory
on the types of line graphs that can be dynamically altered to produce new line graphs.

In Chapter 5, we present data structures based on maximal cliques and maximal bicliques
that give rise to dynamic adjacency labelling schemes for two classes of graphs. Specifically,
we develop an O(r log n) bit/label dynamic adjacency labelling scheme for r-minoes, defined
by Metelsky and Tyshkevich [44] as the class of graphs with no vertex in more than r maximal
cliques. Edge addition and deletion can be handled in O(r?D) time, vertex addition in
O(r%e?) time, and vertex deletion in O(r2e) time, where D is the maximum degree of the
vertices in the original graph and e is the number of edges added to, or deleted from, the
original graph.

Similar to this dynamic scheme for r-minoes, we develop a O(rlogn) bit/label dynamic
adjacency labelling scheme for r-bics, a new class which we define as the graphs with no
vertex in more than r maximal bicliques. Edge addition and deletion, as well as vertex
deletion, can be handled in O(r?B) time, and vertex addition in O(r?nB) time, where B is
the size of the largest biclique in the original graph.

Finally, in Chapter 6, we present a dynamic adjacency labelling scheme for proper in-
terval graphs, a subclass of interval graphs. Our dynamic scheme for proper interval graphs

uses O(logn) bit labels and handles all operations in O(n) time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 Adjacency labelling schemes

Recall Definition 1.1, the definition of an adjacency labelling scheme. Allowing sufficiently
large labels we can create an adjacency labelling scheme for any family of graphs.

For instance, consider labelling each vertex with a unique “identifier” from {1,...,n}
{for simplicity, we will refer to vertices by their identifiers), along with its corresponding
row of the adjacency matrix [53]. We can determine the adjacency of v; and v, using only
their labels, by looking up the bit corresponding to vs in the row of the adjacency matrix
found in the label of vy, or vice versa. Each label requires ©(n) bits, the entire labelling
requires ©(n?) bits, and adjacency queries require O(1) time (throughout this work we
assume a word-level RAM computation model for the marker and decoder, where word
sizes are §)(logn); a comparison between this and other common computation models, as
well as a discussion on why this model was chosen, can be found in Appendix B).

Another approach is to label each vertex with a unique identifier from {1,...,n}, along
with a list of the identifiers of the vertices to which it is adjacent (an adjacency list of
identifiers). We can determine the adjacency of v; and vz, using only their labels, by
determining if vs is in the adjacency list found in the label of vy, or vice versa. The label of
vertex v requires as many as ©(deg(v)logn) C O(nlogn) bits, the entire labelling requires
as many as ©((m +n)logn) bits, and adjacency queries require O(logn) time, provided the
adjacency lists are sorted.

Unfortunately, the adjacency labelling schemes obtained from adjacency matrices and
lists are often not space efficient. Many classes of graphs exhibit adjacency labelling schemes
that use O(log n) bit labels, which is a substantial improvement over the &(n) and O(nlogn)

bit labels offered by adjacency matrices and adjacency lists, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 Examples

For many graph classes, the defining properties of the class often determine an adjacency
labelling scheme. We now present adjacency labelling schemes for a variety of classes, noting
that, when we refer to a particular graph class we mean those graphs which are unlabelled;
that is, isomorphic copies are not distinct. When we wish to refer to a class of labelled

graphs we will do so explicitly.
Trees

Perhaps the simplest adjacency labelling scheme is the following scheme on trees [31]. Con-
sider a tree T' on n vertices. The marker assigns an arbitrary root, gives each vertex an
arbitrary but unique identifier from {1,...,n}, then assigns to each vertex v of T the label
(v, parent(v)). Each label uses O(logn) bits and the marker takes ©(n) time to label the
graph. The decoder determines the adjacency of two vertices v; and vz in O(1) time, using
only their labels, by checking if v; = parent(vs) or v; = parent(vi). An example of an

adjacency labelling of a tree is presented in Figure 2.1.

(25)
3 6 (3:2) (6,2)
7 5 (7.6) (5,6)
4 1 (4.7) (1,7)
(a) Identi- (b) Labels of 7.

fiers of T.

Figure 2.1: An adjacency labelling of a tree

Transitive closures of rooted trees

The class of graphs which are transitive closures of rooted trees also has an adjacency
labelling scheme [31]. The transitive closure T’ of a rooted tree T is the graph defined by
Vi = Vi and Ep = {{u, v}|there is a directed path from » to v in T'}.

Consider the transitive closure 7" of a rooted tree T on n vertices. Observe that the
vertices of 77 are exactly the vertices of T', so we may refer to them interchangeably. Let
the set of descendants of a vertex v in T be denoted D(v). The marker assigns each vertex
a unique identifier from {1,...,n} by traversing the tree in postorder, then assigns to each
vertex v of 7”7 the label | min w,v|. Each label uses O(logn) bits and the marker takes

weD(v)
O(n) time to label the graph. The decoder determines the adjacency of two vertices v; and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ve in O(1) time using only their labels by checking if

min w < va < U1
weD(v1)

or

min w < v < vo.
weD(vg)

An example of an adjacency labelling of a transitive closure of a tree is given in Figure 2.2.

(a) Iden- (b) Labels of 7’
tifiers of
T

Figure 2.2: An adjacency labelling of the transitive closure of a tree

Line graphs

The class of line graphs also has an adjacency labelling scheme. The definition of a line

graph is as follows [8].

Definition 2.1 Given a graph G = (Ve, Ec), its line graph is the graph L(G) = (Eq, Er))
for which {u,v} € Ep(q)y if and only if u and v are adjacent edges in G.

We observe that by adding isolated vertices to G we can obtain infinitely many graphs which
give rise to the same line graph. As such, if a graph G has no isolated vertices we will refer
to it as a base of L(G). Whitney {58] has shown that every connected line graph has a
unique base, up to isomorphism, except for K3 which has two bases, namely, K3 and K 3.

Consider a line graph L(G), with base graph G. To each vertex in G the marker assigns
an arbitrary but unique identifier from {1,...,{Vg|}, then assigns to each vertex v in L(G)
the label (e1,eq), where e; and ey are the identifiers of the endpoints of the edge of G
corresponding to v. Since G has no isolated vertices, |Vg| < 2|Eg| = 2[V ()], so each label
uses O(log|Vgl|) = O(log|Vi() bits.

We assume that the marker is input with G, the base graph, as well as the correspondence

between edges in G and vertices in L{G); therefore, the marker can generate an adjacency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

labelling in ©(n) time. If the marker is input only with the structure of L(G), perhaps in
the form of an adjacency matrix, then it must use an algorithm like that of Lehot [40] or
Roussopoulos [50], which determines G from L(G). Each of these algorithms has running
time ©(m + n), thereby resulting in a running time of ©(m + n) for the marker.

The decoder can determine the adjacency of two vertices, with labels (epg,epyr) and
(ep2, ep3), in O(1) time by checking if {epp,epi} N {ep2,eps} = 0. An example of an

adjacency labelling of a line graph is given in Figure 2.3.

(1,3)

1 2 (1,2) (2,3)

4 3 (1,4) (3,4)

(a) G. (b) Labels of L(G).

Figure 2.3: An adjacency labelling of a line graph

Outdegree-k graphs

The class of outdegree-k graphs also has an adjacency labelling scheme for any fixed constant

k. An outdegree-k graph is defined as follows [31].

Definition 2.2 An undirected graph is said to be an outdegree-k graph if its edges can be
directed such that no verter has outdegree greater than k. We will call such an orientation

an outdegree-k orientation.

For any fixed constant &, consider an outdegree-k graph G on n vertices and m edges,
subject to some outdegree-k orientation 0. To each vertex the marker assigns an arbitrary
but unique identifier from {1,...,n}, then assigns to each vertex v the label (v, O,), where
O, denotes the set of identifiers of the outneighbours of v. Each label uses O(logn) bits.

We assume that the marker knows the orientation O, so it can generate this labelling in
O(n) time. If the marker is only input with G, perhaps as an adjacency matrix, then it must
use an algorithm like that of Gabow and Westermann [18] which determines O from G. This
algorithm has a running time of ©(kn\/m + knlogn), resulting in a ©(kny/m + knlogn)
running time for the marker.

The decoder can determine the adjacency of two vertices, v; and vs, in O(1) time using
only their labels by checking if v, € O,, or v € O,,. An example of an adjacency labelling

of an outdegree-2 graph is given in Figure 2.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 (1.{2,4}) (2.{3,4})

6 3 (6,{1,2}) (3,{4,5})
5 4 (5!{1’ 2}) (47{57 6})
(a) Outdegree-2 (b) Labels of G.
orientation and

identifiers of G.

Figure 2.4: An adjacency labelling of an outdegree-2 graph

Subclasses, superclasses, and co-classes

Observe that an adjacency labelling scheme for a class G is also an adjacency labelling
scheme for any subclass of G; the marker and decoder remain the same, but the inputs to
the marker are restricted to members of the subclass. Since any tree is an outdegree-1 graph
(arbitrarily assign a root and direct each edge toward the parent vertex), the family of trees
has an adjacency labelling scheme by virtue of it being a subclass of the outdegree-1 graphs.
In fact, the adjacency labelling scheme presented for trees earlier in this section is exactly
the restriction of the above scheme for outdegree-1 graphs to trees.

The consequences of the contrapositive of this implication should also be considered.
Specifically, if a family of graphs G does not exhibit an adjacency labelling scheme with
property P (for example, label size), then that is also true for any superclass H of G. If
'H did have such a scheme, then the restriction of that scheme to graphs in G would be an
adjacency labelling scheme of G exhibiting property P.

It should also be observed that if a family G has an adjacency labelling scheme then
so does co-G, the class of graphs whose complements belong to G. Specifically the marker
remains the same, but the decoder is the “opposite” decoder; that is, the decoder for co-G
determines that two vertices are adjacent if and only if the decoder for G determines that

the vertices are not adjacent.

2.1.2 Assessing quality

Consider an adjacency labelling scheme (M, D). There are three ways to assess the quality

of the scheme.
1. The running time of M.

2. The running time of D.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. The labels generated by M.

Trivially, the better the running time of M and D, the better the adjacency labelling
scheme. Given that M must assign n vertex labels, the running time of any marker is Q(n).
As we have seen in Section 2.1.1 with line graphs and outdegree-k graphs, the running time
of M depends on the representation of the graph provided to M.

Of greater interest are the labels generated by M. We define an adjacency labelling
scheme of a family of graphs G to be space-optimal if there is no other adjacency labelling
scheme for G that uses asymptotically fewer total bits. Since vertex adjacency uniquely
defines a graph, an adjacency labelling scheme of a family of graphs provides a unique
representation for each of the members of the family. Therefore, the total number of bits
required by an adjacency labelling scheme is at least the number of bits required to represent
all of the members uniquely; in particular, a family of graphs with 22(¢(")) members on n
vertices requires a labelling that uses 2(¢(n)) bits (in total, not per vertex) in order to
uniquely represent each of the members on n vertices [53]. We will say that an adjacency
labelling scheme of a family of size 2°(#(")) that uses ©(¢(n)) total bits is strongly space-
optimal. For simplicity, we will occasionally refer to a family with 2/(™ members on n
vertices as having size 2/(?),

For example, there are 29("198m) interval graphs on n vertices [22], so any adjacency
labelling scheme for interval graphs requires Q(nlogn) total bits. Therefore, the adjacency
labelling scheme presented for interval graphs in Chapter 1 is strongly space-optimal. In
contrast, the adjacency labelling schemes created using adjacency matrices and adjacency
lists, which use ©(n?) and ©(n2?logn) total bits, respectively, are not space-optimal for
interval graphs.

Although there are many asymptotic counting results for labelled graph classes, the
same cannot be said for unlabelled graphs. For instance, we know that there are 20(logn)
labelled line graphs (hence, there are 20("1°87) unlabelled line graphs); however, we do not
know that there are 29(®1°87) ynlabelled line graphs. As such, we cannot say that Muller’s
adjacency labelling scheme for line graphs, presented in Section 2.1.1, is space-optimal for
unlabelled line graphs. As well, consider that there are 2°(n) unlabelled trees (consider a
binary string encoding of a depth first traversal from an arbitrary root, where 1 denotes
going down the tree and 0 denotes moving back up) [52]. As such, the adjacency labelling
scheme for trees presented in Section 2.1.1 is not strongly space-optimal for unlabelled line
graphs; however, it may be space-optimal.

Along with space-optimality, we are also interested in the property of balance, that
is, we want the labels to be of roughly equal size. Specifically, if an adjacency labelling
scheme uses ©(¢p(n)) total bits then we would like each vertex label to use O(ﬂ:—)) bits.

For example, the adjacency labelling scheme for interval graphs presented in Chapter 1 is

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

balanced. Likewise, the adjacency labelling scheme based on adjacency matrices is balanced
for any class of graphs. In contrast, the adjacency labelling scheme created from adjacency
lists is not balanced for certain classes of graphs. Specifically, the adjacency list scheme is
not balanced for interval graphs as this family contains the complete bipartite graph K ;.
This graph would have one vertex with a ©(nlogn) bit label, while the entire labelling would
require O(nlogn) bits in total.

Observe that the scheme devised from adjacency matrices is a balanced strongly space-
optimal adjacency labelling scheme (also referred to as a generalized implicit representation
by Spinrad [53]) for any family of size 29(*) . Sych families include bipartite graphs, chordal
graphs, and the class of all graphs {26, 45]. As such, we are really only interested in whether
classes of size 2°("") have strongly space-optimal adjacency labelling schemes.

Of the classes of size 20("2), balanced strongly space-optimal adjacency labelling schemes
have only been found for families of size 2€(*1°6™) Spinrad [53], presents a space-optimal
representation scheme for chordal bipartite graphs, which have 200 log”n) members on n
vertices; however, adjacency testing cannot be performed locally.

Exactly what criteria should be used to assess an adjacency labelling scheme is dependent
on the application. It is possible that one could not tolerate increasing the running of time
of M to create smaller labels that allow D to run faster. Commonly, however, applications
that involve millions of nodes demand that the focus be on the size of the labels generated

by M.

2.1.3 Two classes of note with regard to strong space-optimality

Let us now examine two classes of interest with respect to strongly space-optimal adjacency
labelling schemes; specifically, k-sparse graphs, a class that does not have a balanced strongly
space optimal adjacency labelling scheme, and k-dot product graphs, a class which remains
open with respect to the existence of a balanced strongly space-optimal adjacency labelling

scheme.

k-sparse graphs

The class of k-sparse graphs is defined as follows [45].

Definition 2.3 A graph on n vertices is k-sparse if it has at most kn edges.

Using a proof by contradiction, Muller [45] showed that, for any constant &, the class of k-
sparse graphs does not have a balanced strongly space-optimal adjacency labelling scheme.
We present a proof similar to that of Muller.

For any constant k, an adjacency list representation uses O(nlogn) bits to represent a
labelled k-sparse graph on n vertices; thereby, there are 20?187} Jabelled k-sparse graphs

on n vertices. As such, there are 20?18 7) ynlabelled k-sparse graphs on n vertices. Assume

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the class of k-sparse graphs has a balanced strongly space-optimal adjacency labelling
scheme, that is, a scheme that uses O(logn) bits per vertex. Now take any graph, G, on n
vertices and add n? vertices to it to make it k-sparse. By our assumption, this graph has
an adjacency labelling that uses O(log{n? + n)) = O(log(n)) bits per vertex. By restricting
any such labelling to G, we obtain an adjacency labelling scheme of the class of all graphs
that uses O(n logn) bits in total. Therefore, there are 2°("1987) graphs on n vertices, which
is a contradiction.

Whether or not k-sparse graphs have a strongly space-optimal adjacency labelling scheme

is unknown.

k-dot product graphs
Fiduccia, Scheinerman, Trenk, and Zito [17] define a k-dot product graph as follows.

Definition 2.4 A graph G is a k-dot product graph if there is a function f : Vg — RF
such that f(vi) - f(v2) = 1 if and only if vi and va are adjacent, where - is the standard

inner product of two vectors.

For any constant k, the class of k-dot product graphs remains open with regards to
having an adjacency labelling scheme that uses O(logn) bits per vertex, even though there
are 2°("1°8") members on n vertices [17]. The dot product representation itself is almost
such an adjacency labelling scheme, however, there is no upper bound on the number of bits
required to represent the members of R. In the same work in which Fiduccia et al. define dot
product graphs, they show that the function which defines the dot product representation
can actually be restricted to @Q, the set of rationals; however the same problem of unbounded
representation still exists for (. What is needed to achieve an adjacency labelling scheme
with O(log n) bits per vertex for this class is a mapping f : Vg — S*, where S is some set
whose members can be represented using O(log n) bits. In their paper, Fiduccia et al. state

that they believe that no such set S can be found.

2.1.4 Previous work

Table 2.1 presents known results on adjacency labellings schemes for a variety of graph
classes. To assist the reader, definitions of these classes can be found in Appendix A.

In some cases, the upper bound on the size of a class comes from the existence of the
adjacency labelling scheme of a particular size. As we have previously discussed in Section
2.1.2, a class exhibiting an adjacency labelling that uses O(¢(n)) bits in total has size
20(6(m) " For example, there exists an adjacency labelling scheme for outerplanar graphs

that uses O(n log n) bits [45]; therefore, there are 20" 1°8") guterplanar graphs on n vertices.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In other cases, the lower bound on the size of a class is due to the fact that it contains, or
is a co-class of, another class whose size we know. For instance, the class of Cs-free graphs
contains the class of bipartite graphs, which have size 90(n*) [45]; therefore, there are 20(n?)
Cs-free graphs on n vertices. Moreover, we know that the class of all graphs, which we
refer to as general graphs, has size 29(”2); therefore, there are 20(n*) Cs-free graphs on n
vertices. In turn, we know that there are 20(n?) Cs-free graphs on n vertices. Similarly, the
class of cobipartite graphs is the co-class of the bipartite graphs; therefore, there are 20"
cobipartite graphs on n vertices. A good resource on classes of size 26(n?) jg Chapter 8 of
Efficient Graph Representations by Spinrad [53].

Often an adjacency labelling scheme will result from its containment in another class, as
per our discussion of subclasses in Section 2.1.1. For example, the class of proper interval
graphs have a balanced adjacency labelling scheme using O(nlogn) bits because they are
contained in the class of interval graphs which have a balanced adjacency labelling scheme

using O(nlogn) bits.

Table 2.1: Known results on adjacency labelling schemes [fnumber of unlabelled members
on n vertices; Ttotal bits required in the scheme using asymptotically fewest total bits (the
scheme is balanced unless otherwise noted); *k is bounded by a constant; ®*indicates that
the scheme is the “default” scheme obtained from adjacency matrices [53]]

[Class | Size' | Scheme? l Comments |
General graphs 20(n%) O(n?)*
C;-free 20(n%) [45] O(n?)* superclass of bipartite
C3,Cy-free 2f¥nloen) [53] | ©(n?)*
C3, K1 3-free 20(nvn) O(nlogn) (53]
Ks-free 20(n%) [45] O(n?)* superclass of bipartite
K, 3-free 20(n%) (45 O(n)* superclass of cobipartite
K 3-free 26" [45] o(nt)* superclass of cobipartite
Py-free posets 20 logn) 1531 | Q(n?)* no O(nlogn) balanced
scheme [53]

Almost tree(k)® 20(nlogn) ©(nlogn) [45]
Arboricity-k* 20(nTogn) O(nlogn) [31] subclass of outdegree-k
Asteroidal triple free | 29(%) [g] O(n>)* superclass of cobipartite
Autographs 26(n%) [45) o(n?)*
Bandwidth-k* 20(nlogn) O(nlogn) [45] subclass of degree-k
Bipartite 26(n) [45) O(n?)*
Boxicity-k*® 20(n logn) ©(nlogn) {45]
Chain graphs 20(nlogn) @(nlog n) (53]
Chordal 20(n%) [45] e(n?) superclass of split
Chordal comparabil- | 20(Togn) O(nlogn) [42]
ity

continued on next page ...

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

... continued from previous page

Class [Size' { Scheme? | Comments

Circle 20(nlogn) O(nlogn) |31, 45

Circular arc 20(nlogn) O(nlogn) [31, 45]

Cobipartite 26(n%) [45] O(n?)* complements of bipartite
graphs

Cographs 20(nTogn) ©(nlogn) [31, 45] | subclass of permutation

Comparability 20(n) [45] O(n?)* superclass of bipartite

Containment graphs | 20(logn) O(nlogn) [53]

of paths in a tree

Convex bipartite 20(nlogn) O(nlogn) [45]

Cycles 20(nlogn) O(nlogn) [45]

k-decomposable® 20(nlogn) ©(nlogn) [31]

Degree-k* 20(nlogn) O(nlogn) [31, 45] | subclass of outdegree-k,
hereditary degree-k

Disk intersection 20(nlogn) [53] [©(n?)*

k-dot product® 20(nlogn) [17] | ©(n?)*

EPT graphs 20(nlogn) O(nlogn) [53]

Forest 20(n logn) O(nlogn) (31, 45|

Genus-k* 20(nlogn) O(nlogn) [31] subclass of arboricity-k

Hereditary degree-k® | 20(nlogn) O(nlogn) |45] subclass of outdegree-k

k-interval® 20(nlogn) O(nlogn) [31]

Interval 28(nlogn) 199] | ©(nlogn) [31, 45] | subclass of circular arc

Line graphs 20(nlogn) O(nlogn) [45]

Outdegree-k*® 20(nlogn) ©(nlogn) [45]

Outerplanar 20(nlogn) ©(nlogn) [45] subclass of boxicity-2

Permutation 20(n logn) O(nlogn) [31, 45] | subclass of circle

Planar 20(nlogn) ©(nlogn) [31, 45] | subclass of outdegree-k,
boxicity-3

Posets (dimension | 20(nlogn) ©(nlogn) [45]

k)®

Proper interval 20(n)25] O(nlogn) [45] subclass of interval

k-sparse® 20(nlogn) (531 | Q(n?)* no O(nlogn) balanced
scheme [53]

Threshold 20(nlogn) ©(nlogn) [45] subclass of interval

Threshold tolerance | 20(lgn) ©(nlogn) [45]

Transitive closures of | 20(1ogn) O(nlogn) [31]

rooted trees

Trees 20 [59] O(nlogn) [31, 45] | subclass of forest

Split 20(n) [45] O(n2)*

Total 20(n%) O(n2)%® no O(nlogn) balanced
scheme [53]

Uniformly k-sparse 20(nlogn) 1531 | Q(n?)*

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.5 Muller and Kannan et al.

The seminal works of both Muller [45] and Kannan et al. [31] independently introduce
a narrower version of adjacency labelling schemes called implicit representations, a term
suggested in the title of the work by Kannan et al. [31]. We present the definition of

Kannan et al., rather than Muller’s, which is built from several smaller definitions.

Definition 2.5 (Kannan et al.) A family F of finite graphs has an implicit representa-
tion if there is a polynomial time Turing machine T and a function [which labels the vertices
of each graph G in F with distinct labels of O(logn) bits, n being the number of vertices of
G, such that, given two vertex labels of a graph G in F, T will correctly decide adjacency of

the corresponding vertices in G.

Immediately, we notice that this definition uses Turing machines, whereas Definition 1.1
refers to marker and decoder algorithms. Essentially, the Turing machine T employed in
Definition 2.5 serves as both the marker, M, and the decoder, D.

As well, we note that Definition 1.1, unlike Definition 2.5, does not require that the
vertex labels be distinct. Fortunately, any marker can be modified to obtain unique vertex
labels by assigning each vertex an arbitrary but unique identifier from {1,...,n} (as is
commonly seen in Section 2.1.1) and appending it to the vertex label; this identifier adds a
term of logn to the number of bits required by a vertex label. For any class of size 2" logn)
the addition of this identifier will not increase the asymptotic size of the vertex labels, as
the distinct label requirement necessitates that each label be of size Q(logn). However, for
classes with fewer members, this requirement might prevent us from developing strongly
space-optimal adjacency labelling schemes. For this reason, the distinct label requirement
is omitted from Definition 1.1.

We should note that there is a small but important difference between the definitions
found in Muller [45] and Kannan et al. [31]. Specifically, Muller only requires the Turing
machine to halt, not to be polynomial, as required by Kannan et al. Since the inputs to
the Turing machine are of size O(logn), the use of a polynomial Turing machine guarantees
that adjacency testing can be performed in polylogarithmic time. In keeping with Kannan
et al., the polynomial time requirement has been included in Definition 1.1. That being
said, there are no known classes of graphs which “obtain” adjacency labelling schemes when

the polynomial time requirement is dropped [53].

Intersection classes and intersection number

In his doctoral thesis, Muller [45] observes that there is an implicit representation for any
intersection class in which the vertices of graph can be represented by constant size subsets

of {1,...,n*}, provided k is a constant. We note that such an implicit representation cannot

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be constructed without knowing the intersection representation, or at least how to obtain
the intersection representation. It is conceivable that such a representation exists, but we
do not know how to determine it.

To illustrate Muller’s observation on intersection classes, consider the line graphs of

simple hypergraphs as defined below [8].

Definition 2.6 A hypergraph H = (V,&) consists of a set of vertices V, and a set of
hyperedges £, which are non-empty subsets of V. A hypergraph is said to be simple if no

edge is properly contained within another. The rank of H is the value mag:v{|e|}.
ec

Definition 2.7 The line graph of a hypergraph H = (V,£) is the graph L(H) = (€, E) for
which ee’ € E if and only if e # ¢ andene’ # .

Consider a line graph of a hypergraph with rank at most &, where & is a constant. If there are
n vertices in the line graph, then there are n hyperedges in the hypergraph. Since the rank
of the hypergraph is bounded above by k, there are at most kn vertices in the hypergraph.
Therefore, the line graph of the hypergraph can be represented by the intersection of subsets
of {1,...,kn} of size at most k. By Muller’s result, this class of graphs has an implicit
representation. Unfortunately, this representation is not easily obtained; specifically, the
only method known for obtaining such a representation is based upon work that appears in
Chapter 5.

Representing the vertices by subsets of {1,...,n*} is equivalent to saying that the in-
tersection number of these graphs is bounded above by nF. In fact, the intersection number
of any graph is in O(n?). Given any graph G on n vertices, we can uniquely label each
edge with a number in {1,..., (’2’)} Each vertex is then represented by the set of labels
of edges incident with the vertex. Since the class of all graphs does not have an implicit
representation, the condition that the vertices be represented by constant size subsets is
critical to Muller’s observation.

When we consider Muller’s result in the more general context of adjacency labelling
schemes, we observe that any intersection class in which the vertices of a graph of order n
can be represented by O(\)-subsets of {1,..., ¢} offers an adjacency labelling scheme with
labels using O(Xlog ¢) bits. Providing Alogé € o(n), which is to say that ¢* € 2°(™), then
we enjoy a savings over the “default” adjacency labelling scheme obtained using adjacency
matrices.

As mentioned by Muller, these observations on intersection classes also apply if adjacency
is determined by any other binary relation such as containment, overlap, or order. For
instance, the adjacency labelling scheme for interval graphs presented in Chapter 1 is not
based so much on intersection of intervals on the real line; rather, it is really based upon

2-subsets of {1,...,2n} using the binary relation, b, given by

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 ifae,b<c¢,dora,b>cd,
1 otherwise.

b({a’ b}v {C’ d}> = {

Universal graphs

In both of the works of Muller [45] and Kannan et al. [31], implicit representations were

shown to have a close relationship to vertex induced universal graphs. These graphs are

defined as follows [31].

Definition 2.8 G is a vertex induced universal graph of a set of graphs S if all members

of S are vertex induced subgraphs of G.

Consider a class of graphs C, and let C,, denote the set of members of C having at most
n vertices. It has been shown by both Muller and Kannan et al. that if C has an implicit
representation, then, for some constant &, C,, has a vertex induced universal graph on O(n*)
vertices which can be constructed in polynomial time. Letting T' be the Turing machine
used in an implicit representation for C, we construct such a universal graph U as follows.
In the implicit representation of C, the members of C,, have labels of length clogn, for some
constant ¢. The vertices of I/ correspond to each of the 2¢198™ = n¢ bit vectors of length -

clogn. Two vertices in U, represented by bit vectors b; and bs, are adjacent if and only if
T(by,bs) = 1.

2.2 Informative labelling schemes

2.2.1 Definition

As mentioned in Chapter 1, adjacency can be replaced by any function f that acts on sets

of vertices. We present the definition of an f-labelling scheme as introduced by Peleg [47].

Definition 2.9 Consider a function f(S,G) defined on sets of vertices S of fized but arbi-
trary finite graphs G. An informative f-labelling scheme of a family G of finite graphs is a
pair (M, D) defined as follows.

e M is a vertex labelling algorithm (marker) whose input is a graph G in G. Note that
M need not be deterministic; accordingly, let Mg be the set of all vertex labellings of
Ve which can be assigned by M.

e D is a polynomial time deterministic evaluation algorithm (decoder) whose input is a
set of vertex labels. Given any labelling Lg of Vg, let Ls o denote the subset of these
labels corresponding to a subset S of V. For any graph G in G. we define Lg to be
(D, f)-correct if D(Lg) = f(S,G) for every subset S of Vi on which f is defined.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given this definition, we require that Mg be (D, f)-correct for all G in G and for all
Mg in Mg. Note that D is a function of the labels only.

For any such function f, an f-labelling scheme is said to be an informative labelling scheme.

To illustrate this definition, consider the following ancestor labelling for rooted trees. To
the root the marker assigns the bit string ‘0’ as its label. For any vertex v, with children
v1,.-.,Vk, the marker assigns to each child a unique member of a prefix-free k-set of strings
(by prefix-free we mean that no string is a prefix of another; for instance, ‘110’ is a prefix
of ‘1101’, but not of ‘111°. One such trivial set is {0,10,110,...}). The marker then assigns
to each vertex the label consisting of its string from the prefix-free set concatenated to the
end of the label of its parent. The decoder can determine if a vertex vy is an ancestor of vo,
using only their labels, by checking if the label of vy is a prefix of the label of vy,

Just as with adjacency labelling schemes, we judge the quality of an informative labelling
scheme according to the running time of M and D, as well as the labels generated by M.
The notions of space-optimality and balance still apply; however, the same cannot be said for
strong space-optimality. Fundamental to the concept of strong space-optimality is the fact
that adjacency labelling schemes provide a unique representation for each member in the
class. Specifically, an adjacency labelling scheme using ©(¢(n)) bits in total is space-optimal
for any family of size 29(4(™)_ For any general function f, an f-labelling scheme does not
necessarily provide a unique representation for each member in the class; for instance, let
f be the boolean function that determines if two vertices are connected. That being said,
there are functions which guarantee unique representations, for example, distance, so we are

free to apply the concept of strong space-optimality to these labelling schemes.

2.2.2 Applications

The introduction of informative labelling schemes boosted the interest in the idea of space
efficient distributed data structures as introduced by Muller [45] and Kannan et al. [31], given
that different functions could be considered depending on the application. We describe three
such applications here; a survey of informative labelling schemes can be found in [23], and

further discussion of their applications can be found in [46], [32], [1], [4], and [56].
XML search engines

Informative labelling schemes have direct applications to the efficiency of XML (Extensible
Markup Language) search engines [32]. A Web document conforming to the XML standard
can be viewed as a tree with nested nodes corresponding to individual words, phrases, or
sections of the document. Using informative labelling schemes, an XML search engine can
assign labels to each of these nodes, thereby allowing relationships such as ancestor, parent,

and sibling to be determined using only the labels of the nodes. This allows the search engine

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to answer web queries without repeatedly accessing the file itself. Moreover, by employing
dynamic schemes the search engine will no longer have to recalculate the labels of the nodes

when a small change is made to the XML document.
Routing Algorithms

Informative labelling schemes also have direct application to routing algorithms [51]. Con-
sider sending a message along the best route from node vy to node vy. Typically, v consults
a local routing table to determine the next node along the best path, say vy, then sends
the message to vy, which repeats the process. Each node has a table consisting of n entries,
where n is the number of nodes in the network. If we had an informative labelling scheme
that could determine v from the labels of vg and vy, we could eliminate these routing tables,

thereby reducing the amount of local storage required.
Broadcast Protocols

Informative labelling schemes can also be applied to broadcast protocols in much the same
way that we applied them to routing algorithms [46]. Consider sending a message from
node vp to node vy, by means of network broadcast, as opposed to using an optimal route as
discussed above. Typically, vp consults a local distance table to determine an upper bound
on the distance to vy so the broadcast can be terminated after a certain amount of time. As
before, each node has a table consisting of n entries, where n is the number of nodes in the
network. If we had an informative labelling scheme that could determine an upper bound
on the distance between vy and vy, then we could eliminate these distance tables, thereby

reducing the amount of local storage required.

2.2.3 Previous work

Informative labelling schemes have been studied for a variety of functions besides adjacency;
such functions include distance, nearest common ancestor and flow. As adjacency is the
function of primary interest in this treatise, we will not present schemes for other functions;
rather, we summarize the known results in Table 2.2. Specifically, Table 2.2 lists asymptotic
bounds on the sizes of informative labelling schemes. We note that Table 2.2 does not
contain information on schemes which approximate a function, nor schemes designed to
encode multiple functions. To assist the reader, definitions of these classes can be found in

Appendix A.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.2: Informative labeling schemes for functions other than adjacency (! unless oth-
erwise indicated, all sizes give number of bits per label; ! indicates a bound on the total
number of bits for the entire labelling)

[Function I Family | Bound on scheme sizel]
Ancestor rooted trees O(logn) [51]
Center trees O(log” n) [4T]

Q(log” n) [47
Distance binary trees Q(log®n) 24
bipartite (smaller side of size | Q(k(n — k) — O(nlogn))*[24]
k)
circular arc O(logn) [22]
cliquewidth-k O(log” n) [13]
Q(log”n) [24]
cycles O(log n) [47]
maximum degree 3 Q(n?)t [24]
degree-k Q(v/n) [24]
degree-k planar Q(n3)t [24]
distance hereditary O(log” n) [21]
Q(log” n) [24]
general graphs O(n) [24]
Q(n) [24]
hypercubes O(logn) [47
interval O(logn) [22
Q(logn) (22
meshes O(logn) (47
permutation O(log” n) [34]
planar O(v/nlogn) [24]
Q) 4]
proper interval O(logn) [22]
recursive r(n)-separator O(r(n)logn + log” n) [24]
tori O(logn) [47]
trees O(log” n) [24]
Q(log”n) [24]
treewidth-% O(log” n) [24]
Q(log?n) [24]
weighted binary trees (edge | Q(lognlog M) [24]

weights in [0, M — 1])
weighted c-decomposable | O(log”n + lognlog M) [46]
(constant ¢; edge weights in
[0’ M — 1})

weighted k-outerplanar (con- | O(log” n + lognlog M) [46]
stant k; edge weights in
[07 M — 1])

weighted series-parallel (edge | O(log”n + lognlog M) [46]
weights in {0, M — 1])
weighted trees (edge weights | O(log” n + lognlog M) [46]

in [0, M - 1))

well (a, g)-separated O(g(n)logn) [35]
Distance (at most d) | trees O(logn + dy/logn) [32]
Edge-connectivity general graph O(log” n) [33]

continued on next page ...

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. continued from previous page

Function | Family | Bound
Q(log” n) [33]
Flow general graph (max edge ca- | O(log”n + logn - logw) [33]
pacity w)

Q(log” n + log nlog w) [33]
Nearest Common An- | rooted trees (return identifier) | O(log” n) [47)

cestor
Qlog” n) [47]
rooted trees (return label) O(logn) [3]
Next Node Routing forest O(n) [51]
tree O(logn) [56
Reachability planar digraph O(logn) [55
Separation Level rooted trees O(log” n) [47]
Q(log” n) [47]
Steiner Tree weighted graph, M bit edge | O((M + logn)logn) [47]
weights

Q((M +logn)logn) [47]
weighted graph, arbitrary | O((M + logn)logn) [47]
edge weights

Q(M + nlogn) [47]
k-vertex connectivity | general graph O(logn) [33]
(constant k)

Q(logn) [33]
k-vertex connectivity | general graph Q(klogn) [33]
(k polylog in n)

2.2.4 Dynamization

Although a significant number of results have appeared on the topic of informative labelling
schemes, the seminal work of Kannan, Naor, and Rudich [31] made no mention of this variant
of adjacency labelling schemes. Instead, Kannan et al. suggested the dynamic problem as
a direction for future research. Unfortunately, the authors did not consider the problem in
detail. At most, Kannan et al. suggest that the addition or deletion of a vertex or an edge
should require only a “quick” update of the labels in order to obtain an adjacency labelling
of the new graph.

In the following chapter, we develop the theory of dynamic informative labelling schemes.
Specifically, we define what is meant by a dynamic informative labelling scheme, introduce
the concept of error-detection, discuss the qualities that make a good dynamic scheme, and

demonstrate the connection between error-detection and the graph recognition problem.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Dynamic Schemes

In many applications the underlying topology is constantly changing and we desire algo-
rithms which can accommodate these changes without having to process the new topology
from scratch. By definition, informative labelling schemes are static; that is, the graph
provided to the algorithm never changes. By studying the dynamic version of informative
labelling schemes we hope to expand the applicability of informative labelling schemes to

real world problems.

3.1 Dynamic adjacency labelling schemes

3.1.1 Definition

Before we define a dynamic informative labelling scheme, let us consider the following defini-
tion of a dynamic adjacency labelling scheme. This definition is based more on our intuitive
understanding of the dynamization of a static problem; as such, it will be less precise than

the formal definition we will encounter later.

Definition 3.1 A dynamic adjacency labelling scheme of a family G of finite graphs is a
tuple (M, D, A, R) for which

o (M, D) is an adjacency labelling scheme of G.
o A is a set of functions which map graphs in G to other graphs.

e R is a polynomial time relabelling algorithm (relabeller) which, using only a vertex
labelling, maintains an adjacency-correct labelling while o dynamic graph operation
i A acts on a member of G, providing the operation produces another graph in G.

Furthermore, R accesses vertex labels only as required.

Moreover, we say that the dynamic adjacency labelling scheme is error-detecting if, given

any input (0, Lg), R is able to determine when §(G) € G.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.2 Example

In a dynamic informative labelling scheme the vertex labels must contain sufficient informa-
tion to allow algorithms to update them. In general, the labels used in a static scheme do
not contain enough information to be used in a dynamic scheme; however, the informative
labelling schemes of certain classes are inherently dynamic.

Consider the adjacency labelling scheme described for trees in Section 2.1.1. For sim-
plicity, let us require that the root not be deleted. In adding a new vertex, the relabeller
chooses an identifier x, the smallest available natural number, then labels the new vertex
(z,parent(z)). In deleting a vertex, the relabeller simply deletes its label from storage.
Each relabelling can be performed in O(1) time (we also assume a word-level RAM compu-
tation model for the relabeller, where word sizes are }(logn)). Unfortunately, this dynamic
scheme is not error-detecting because we cannot tell if the deletion of a vertex creates a
disconnected forest; however, we can make the scheme error-detecting by adding, to each
label, a counter of the number of children. Note that we can tell if the root is being deleted

as parent(v) = NIL => v = 7.

3.1.3 Underlying assumptions

Although the dynamic adjacency labelling scheme presented in Section 3.1.2 seems straight-

forward, there are two underlying problems.

1. Tt is possible to delete too many vertices, thereby causing the remaining labels to be
too large (the point at which one decides that the labels are intolerably large depends

on the application, as well as the family under consideration).

2. When a vertex is added and given an identifier, the relabeller must determine an

acceptably short unused identifier to assign to it.

These problems do not depend on adjacency being the function under consideration; rather,
they are inherent in any dynamic informative labelling scheme.

The obvious way to deal with the first problem is to relabel the graph from scratch
using the marker algorithm. Note that we must initially use the decoder to determine a
representation of the graph that the marker can use as input; for example, an adjacency
matrix. This approach works well provided adjacency is the function under consideration.
Using the decoder we can determine the adjacency of every pair of vertices, allowing us to
reconstruct the graph and provide appropriate input to the marker. But what if the function
under consideration is such that the decoder does not allow us to determine the graph? For
example, what do we do with the boolean function that merely determines if two vertices

are connected?

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The obvious way to deal with the second problem is to maintain a centralized resource
of identifiers that are not in use. Specifically, such a central resource might represent these
identifiers using a list of intervals represented by their endpoints (in much the same manner
as the interval representation presented in Chapter 1). But what if our application involves
a distributed network? - does a new node have to broadcast to a central resource to get an
identifier?

Given that we are approaching dynamic informative labelling schemes from a theoret-
ical standpoint, we make certain assumptions to eliminate the problems discussed above.

Specifically, we assume the following.

1. If n is the number of vertices presently in the graph, then there exists some constant

k such that there has never been more than n* vertices in the graph.

2. If an identifier is needed, a marker or relabeller can obtain the smallest available

identifier in O(1) time.

Again, the validity of such assumptions is highly dependent on the application in which
the dynamic scheme is being used. In our case, we do not want the restrictions of the
application to hinder the development of the scheme. It is hoped that our dynamic schemes
can be modified to work in different applications, with adjusted label sizes and running

times as appropriate.

3.2 Dynamic informative labelling schemes

3.2.1 Definition

Let us now consider the formal definition of a dynamic f-labelling scheme.

Definition 3.2 Consider a function f(S,G) defined on sets of vertices S of fized but arbi-
trary finite graphs G. A dynamic f-labelling scheme of a family G of finite graphs is a tuple
(M, D, A, R) defined as follows.

e (M, D) is an f-labelling scheme of G.
e A is a set of functions which map graphs in G to other graphs.

e R is a polynomial time relabelling algorithm (relabeller) whose input is a pair (8, Lg),
where § € A, G € G, and Lg is a (D, f)-correct labelling of Vo from Lg (defined
shortly). Providing 0(G) € G, R assigns a new (D, f)-correct labelling to Vs by
accessing the labels of L only as required. Note that R need not be deterministic;
accordingly. let Rs 1 be the set of labellings of Vi) which can be assigned by R on
input (8. Le;). For each G in G we define the family Lo of (D, f)-correct labellings of

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ve by Lo € Lg if and only if Lg € Mg or there exists G* in G, § in A, and Lg+ in
L+ such that 6(G*) =G and Lg € R 1.0 -

Moreover, we say that the dynamic f-labelling scheme is error-detecting if, given any input

(6,Le), R is able to determine when 6(G) € G.

In a less formal context, R can be considered as the composition of algorithms required
by the graph operations found in A. For instance, if A permitted the addition or dele-
tion of any edge from a graph, we might consider R to be comprised of two algorithms,
INSERTEDGE(e,L¢;) and DELETEEDGE(e,L¢g), which use a labelling Ly to relabel G + ¢
and G — e, respectively. Again, note that the algorithms INSERTEDGE and DELETEEDGE
do not directly receive G as input, rather, they are given access to the labels of the vertices
of G as required. We are not prepared to maintain an adjacency matrix or adjacency lists
to represent G; the goal of the informative labelling scheme is to efficiently represent G
by doing away with such data structures. If adjacency is the function under consideration
then maintaining an adjacency matrix or adjacency list would obviate the necessity of the
adjacency labelling scheme! Moreover, in practice we are not interested in maintaining a
labélling for every graph in the family; rather, we use the labelling of a graph to determine
a labelling of a slightly modified graph, discarding the labelling of the original graph in the
process. In this sense, we can omit the labelling from the input of the algorithms as these
algorithms are directly modifying the labelling of the graph under consideration; that is,

the above algorithms might be presented as INSERTEDGE(e) and DELETEEDGE(e).

3.2.2 Assessing quality

Just as a static f-labelling scheme can be created for any function f when we allow suffi-
ciently weak choices of M and D, sufficiently weak choices of M, D, A, and R will result
in a dynamic scheme. Specifically, we can assess the quality of a dynamic scheme according

to the following.
1. The quality of the static scheme (M, D) contained within.
2. The operations contained in A.
3. The running time of R.
4. The labels generated by R.
5. The labels modified by R.

Having previously discussed how to assess the quality of a static scheme in Section 2.1.2,
we begin by considering the operations contained in A. Preferably, the labelling scheme will

be fully dynamic; that is, A will contain the addition and deletion of a single edge or vertex

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(along with the edges incident with this vertex). In most cases these operations will allow
us to transform any member of G into any other member of G without escaping the class
G. Specifically, if G is hereditary, that is, any vertex induced subgraph of a member is also
a member, then these four dynamic operations are sufficient to transform any member of G
into any other member of G without escaping G. For each member G of G, there is a sequence
Sg ={Go = 0,G1,...,Gyg|-1,Glvg = G} of members of G for which G;_; = G; — v;,
where v; is a vertex of G; and 1 < ¢ < |Vz|. Thereby, given G, G®? ¢ G, we can construct
G®@ from G by using the vertex deletion relabeller to transform G() into ¢ via the
members of Sy, then using the vertex addition relabeller to transform) into G2 via the
members of Sz .

Along with the range of operations in A, we are also interested in the time taken by R
on input (4, L) relative to the time taken to label 6(G) by the fastest labelling algorithm
of a static f-labelling scheme. Specifically, the purpose of the dynamic scheme is to provide
quick updates of the labels; thereby, if there is a static scheme which can generate the labels
in equal or better time, even from scratch, then there is no advantage gained by using the
dynamic scheme.

As well, we might also judge a dynamic scheme according to the size of the labels gen-
erated by R. Naturally, the size of the labels generated by M is taken into account when
judging the quality of the static scheme (M, D); however, the labels generated by M and R
must be considered together, as labels from both algorithms could be in use at any given
time. In particular, consider that the adjacency labelling scheme developed using adjacency
matrices can be further developed into a dynamic adjacency labelling scheme. Since this dy-
namic scheme uses vertex labels of size O(n), any other dynamic adjacency labelling scheme
using labels of size 2(n) would only be advantageous if it permitted faster updates of the
labels than can be achieved using the dynamic scheme developed from adjacency matrices.
Furthermore, we may wish to consider criteria such as balance and space-optimality, for
appropriate functions f, just as we did for static schemes.

Aside from the size of the labels generated by R, we might also be interested in the
labels that are changed by R. In some sense, this measure is captured in the running time
of R; however, the running time does not give the full picture. In particular, we might like
to know how many labels are changed and how the changes permeate through the graph.
Perhaps, depending on the domain, these metrics could be more important than the label
size. To measure this change, we define two quantities, modification excess and modification
locality.

As we did with the definition of an informative labelling scheme, let us first consider
these definitions intuitively in the context of dynamic adjacency labelling schemes. The

modification excess of R is the maximum value, taken over all operations in A and all

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possible labellings produced in the dynamic adjacency labelling scheme, of the difference
in cardinality between the set of vertices with modified labels and the set with modified
neighbourhoods. In essence, the modification excess measures the number of vertices whose
labels change even though we did not expect them to. The modification locality of R is
the maximum value, taken over all operations in A and all possible labellings produced in
the dynamic adjacency labelling scheme, of the maximum distance to the set of vertices
with modified neighbourhoods from a vertex whose label has been modified, but whose
neighbourhood has not. In essence, the modification locality measures the distance between
the vertices whose labels we expected to change and the vertices whose labels we did not
expect to change.

To illustrate how these measures are calculated, consider the relabelling depicted in
Figure 3.1. Note that, when calculating these values for a dynamic scheme, we must consider
the maximum of the values taken over all possible relabellings; here we consider a single
isolated relabelling strictly for illustrative purposes. The neighbourhoods of b, ¢, and e
change, whereas the labels of h, d, b, and e change. Therefore, the modification excess
of this relabelling is 4 — 3 = 1. Given that the labels of d and h are modified, but their

neighbourhoods do not change, the modification locality of this relabelling is

zggﬁ}{distc(:c, {b,c}) = zgg)}}{l}distﬁg) (z,{b,c,e})}

= distg(h, {b,c})
= di3t5((}')(hv {bv ¢ e})}
=2.

Note that, when adjacency is the function under consideration, the distances in G are the
same as the distances in §(G); however, this need not be the case in general. As such, we
will take the minimum (of the maximum distances) over G and §(G).

Integral to the definition of modification excess and modification locality for dynamic
adjacency labelling schemes are the ideas of modified labels and modified neighbourhoods.

We require analogous terms for arbitrary dynamic schemes, which we define below.

Definition 3.3 Consider an input (5, Lg) for the relabeller, R, of a dynamic f-labelling
scheme (M, D, A, R) of a family G, for which §(G) € G. Recall from Definition 3.2 that R

G 5(G)
a(4) b(—2) a(4) b(0)

h(1 h(7 >3(2)
d(4 %(0) (7 c(0)

Figure 3.1: Adding a vertex to a graph (labels in brackets)

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

need not be deterministic; as such, let Rs 1, denote the set of all possible outputs Ls(c) of
R on input on (6, Lg).

We say that a vertex v in G or 6(G) is f-changed if it belongs to some set of vertices,
S, for which at least one of £(S,G) and f(S,0(G)) is defined but f(S,G) # f(S,8(G)); in
saying that f(S,G) # f(S,6(G)) we include the possibility that one of these expressions is
undefined. We also say that the label of v is modified if at least one of Ly and Ly 50)
is defined but L,y g # L{v},5(c); recall that L,y ¢ denotes the labelling of v in G and note
that in saying Liyy,q # L{v},s(a) we also include the possibility that one of these expressions

is undefined.

Definition 3.4 For each specific input/output pair ((6, L), Lscy), we define its modifica-
tion excess, denoted m.((d,Lg),Ls(a)), to be the difference between the cardinality of the
set of vertices whose labels are modified and the cardinality of the set of vertices that are
f-changed. In turn, we define the modification excess of (8, L), denoted m.(8,Lg), to
be max me((d, La), Lsq)) and the modification excess of R, denoted m(R), to be

Lsicy€ERs,Lg

8, La).
Fexme (6. La)

Definition 3.5 For each specific input/output pair ((6,Lc), L)), we define its modifi-
cation locality, denoted mi((6,Lc), Ls)), to be the minimum over G and 6(G), of the
mazximum over all the distances, from a vertex which is not f-changed, but whose label is
modified, to the set of vertices which are f-changed; if there is no such vertex which is not
f-changed then we let this value be zero. In turn, we define the modification locality of

s(c)ERs,L

of R, denoted my(R), to be maxm;(8, Lg).
(67LG)

(6, Lg), denoted mi(d, Lg), to be | max mi((6, La), Lsizy) and the modification locality
G

Having considered the relabeller to be the composition of several smaller relabelling
algorithms, we can consider its modification locality and excess in terms of these smaller
algorithms. Not only will this help us calculate these quantities, but this will also help us
better understand the effect of specific dynamic changes on the labelling of the graph.

3.2.3 Graph recognition

In general, a graph recognition problem is of the form “Given a property P and a graph
G, does G satisfy P?”. More commonly, we consider questions of the form “Given a class
C and a graph G, does G belong to C?”. Under the right circumstances, polynomial time

recognition algorithms can be used to add error-detection to a dynamic scheme.

Theorem 3.6 Consider a O(B) bit/label dynamic f-labelling scheme, (M, D, A, R), for a
family of graphs G such that the following hold.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o For any graph G in G, f allows us to uniquely determine G from any labelling in Lq

(for example, consider adjacency or distance).

e The recognition problem is polynomial for G; that is, there exists a polynomial algo-

rithm A such that, for any graph G, A determines if G belongs to G.

Then G has an ©(B) bit/label error-detecting dynamic f-labelling scheme.

Proof. On any input (6, L), R can use f to determine, in polynomial time, the structure
of G and, hence, the structure of §(G). In turn, R can incorporate A to determine if 6(G)
is in G, thereby making the dynamic scheme error-detecting. Moreover, there is no increase

in the the number of bits used in a vertex label. O

In practice, the approach taken in the proof of Theorem 3.6 is an inefficient way of adding
error detection to a dynamic scheme as we must incorporate a recognition algorithm into the
relabeller. Rather, given a dynamic scheme, we can use our knowledge about recognition to
inform us that an error-detecting dynamic scheme exists. Ideally, a slight modification of our
dynamic scheme will give us error-detection. In Chapter 4, we develop an error-detecting
dynamic adjacency labelling scheme for line graphs. Since the recognition problem had been
shown polynomial for the class of line graphs [40, 50], we knew that any dynamic adjacency
labelling scheme for line graphs could be made error-detecting. As discussed, our relabeller
does not directly incorporate either of the polynomial recognition algorithms.

Of equal interest is the contrapositive of Theorem 3.6. Namely, if there is a dynamic

f-labelling scheme for G such that

e for any graph G in G, f allows us to determine the structure of G from any labelling

in Lg (for example, adjacency or distance), and
e the relabeller cannot be augmented to make the scheme error-detecting,

then the recognition problem cannot be polynomial for G.
Under the right circumstances, we can also develop recognition algorithms from error-

detecting dynamic schemes.

Theorem 3.7 Consider a family of graphs G for which there exists an error-detecting dy-
namic f-labelling scheme, (M,D, A, R). As well, let there be an algorithm which, for any

graph G in G, determines the following in polynomial time.

e A sequence Sg = {Go = G*,G4,...,Gi_1,Gr = G} of unique members of G for which

1 <k < |Velé, for some constant c.

o A sequence G = {09,01,...,0k_1} of members of A such that 6,(G,) = G;11, for
0<i<k-—1.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e A labelling of G* which belongs to Lg~.

Then graph recognition can be done in polynomial time for G.

Proof. For any graph G in G we can transform the labelling of G* into a labelling for
G-1 using a polynomial number of calls of the polynomial time algorithm R, namely
{Ro,R1,...,Rx—1}, where Ry = R(6¢,L¢g-) and R; = R(d;, R;—1), for 1 <i <k —1. We
can now resolve the membership of G in G according to the action of R when it attempts
to determine a labelling of G from the labelling of Gi_1. If G € G, then R will determine a
labelling of G; otherwise, it will output that G € G since it is an error-detecting algorithm.
O

An interesting corollary of Theorem 3.7 follows when we consider hereditary classes.
Recall that a class of graphs is said to be hereditary if every vertex induced subgraph of

every member is also a member.

Corollary 3.8 Consider a hereditary family of graphs G for which there exists an error-
detecting dynamic f-labelling scheme, (M, D, A, R), where A includes the addition of ver-
tices (along with incident edges), and R adds vertices in O(X) time. Graph recognition can

be done in O(nX) time for G.

Proof. For any graph G, consider a sequence Sg = {Go = 0,G1,...,Gvg-1,Gve = G}
of graphs (the graphs may be disconnected) for which G;_; = G; — v;, where v; is some
vertex of G; and 1 <4 < |Vg|. As well, consider the corresponding sequence Sg; = {Xo =
0,..., X|vg|-1}, where X; is the set of vertices in G; to which v;y; is adjacent. These
sequences can be determined in O(n) time.

Since G is hereditary, G is in G if and only if every G; is in G. Starting with the
empty labelling for #, R can determine a labelling for G;41 from that of G;, in O(X(G))
time. Because our scheme is error-detecting, R will detect if some G; does not belong to G.

Consequently, we have an O(nX) time recognition algorithm for G. O

One might be led to believe that we have just argued that the recognition problem is
polynomial for any hereditary class of graphs, but this is not the case. It is true that all
hereditary families have a dynamic adjacency labelling scheme, namely, the default scheme
obtained from adjacency matrices. However, there is no guarantee that such a scheme is
error-detecting. The fact that the dynamic scheme is error-detecting is critical in the proof
of Corollary 3.8.

We use Corollary 3.8 in Chapter 5 to establish O(r3n?®) time recognition for r-minoes and
7-bics. Although polynomial time recognition has already been established for r-minoes by

Johnson, Yannakakis, and Papadimitriou [30], as well as Metelsky and Tyshkevich [44], our

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approach is faster. A slight modification of the algorithm of Johnson et al. which generates
all maximal cliques in lexicographic order, results in an O(rn*) recognition algorithm. Me-
telsky and Tyshkevich do not explicitly state the asymptotic time they require to perform

recognition, but their forbidden subgraph approach requires ©(n"*2) time.

3.2.4 Previous work

The dynamic version of adjacency labelling schemes was mentioned by Kannan et al. [31], but
they did not consider the problem in detail. The first paper to address this dynamic problem
is that of Brodal and Fagerberg [10] who develop a dynamic adjacency labelling scheme for
graphs of bounded arboricity. Their relabelling algorithm keeps an outneighbourhood list
for each vertex v, similar to that seen in Section 2.1.1, and it also includes a mechanism to
handle outdegree lists which get too big. On a graph with n vertices and arboricity bounded
by ¢, Brodal and Fagerberg’s representation supports adjacency testing in O{c) time, edge
insertions in O(1) time, and edge deletions in O(c+1logn) time. We present their algorithms
for handling the addition and deletion of a single edge from a graph of bounded arboricity
¢ in Figure 3.2 and note that these algorithms are easily modified to handle the addition
and deletion of vertices. Unfortunately, these algorithms are built on the assumption that
the changes to the graph do not cause its arboricity to exceed c; that is, they are not error-
detecting. In their article, Brodal and Fagerberg do describe modified algorithms which are
error-detecting and can handle unspecified arboricities, but these algorithms have higher
asymptotic running times.

INSERT(u, v)
1 w.adj]] — uv.adj] U {v}

2 if |u.adj[]| = 4c+1 then
3 S — {u}
4 while S # 0 do
5 w « PoOP(S)
6 for z € w.adj[| do
7 z.adj[] « z.adj[] U {w}
8 if |z.adj[]| = 4c + 1 then
9 PusH(S, 1)
10 w.adjl] — 0

DELETE(u, v)
1 w.adj] — w.adj[]\ {v}
2 vadj]] « v.adj])\ {u}

Figure 3.2: Algorithms for dynamic adjacency labelling of graphs of bounded arboricity ¢

Since the work of Brodal and Fagerberg[10], there have been few other works to examine
dynamic informative labelling schemes. Cohen, Kaplan, and Milo {11] consider the ancestor
function on rooted trees in which new vertices can be added to the tree. Contrary to the

problem which we are considering, Cohen et al. require that the labels assigned to vertices

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be persistent, that is, the label cannot be changed once it has been assigned. As such,
their vertex labels may be larger than those required using our model, as we have the
freedom to modify inefficient labels. Specifically, the scheme of Cohen et al. uses O(n)
bit labels for arbitrary trees, and O(dlogA) bit labels for trees with maximum depth d
and maximum degree A. In each case they prove these labellings to be optimal, given the
persistency requirement. Although the authors do not explicitly discuss the running time of
their relabeller (which is dramatically simpler, given that vertices cannot be relabelled), it is
O(1) in each case. Additionally, Cohen et al. consider the scenario in which the (re)labeller
is given clues about the future structure of the tree, which lead to smaller labels.

Two interesting results on dynamic distance labelling schemes can be found in a paper by
Korman, Peleg, and Rodeh [39] (an earlier version appears as [38]). First, the authors devise
a dynamic distance labelling for unweighted trees, allowing the addition and deletion of
leaves, that uses O(log® n) bit labels, which is optimal even for the static problem [24]. Like
Cohen et al. [11], Korman et al. do not explicitly state the running time of their relabeller
(which is actually part of a more complicated marker). However, they do discuss the notions
of message complexity and bit complexity, which are the maximum number of messages and
bits, respectively, that must be sent when the graph changes. Specifically, their scheme has
a O(log® n) amortized message complexity and O{log? nloglogn) amortized bit complexity,

thereby, even a relabeller sending sequential messages would run in O(log2 nloglogn) time.

Second, they establish a framework for extending static schemes to dynamic schemes;
this framework can be used for a variety of functions including distance, separation level,
and flow. For the partially dynamic scenario in which vertices can only be added, this
framework causes a Of(logn) multiplicative increase in the label size and the amortized
message complexity (as an increase over the running time of the static marker). If an upper
bound on n is known in advance, then the multiplicative factors on label size and amortized
message complexity reduce to O(log2 n/loglogn) and O(logn/loglogn), respectively. For
the fully dynamic model in which vertices can be added and deleted, there is also an additive
increase in the amortized message complexity (in addition to those multiplicative increases
previously mentioned). The authors do not offer any comment on the change in amortized
bit complexity for either of these scenarios.

As a follow up to Korman et al. [39}, Korman and Peleg [37] consider dynamic schemes
that approximate distances in weighted trees and cycles. Dynamism is achieved by allowing
the weights of the edges to vary, where w is the maximum edge weight. For the increasing
dynamic scenario, in which edge weights can only increase, their schemes use O(log2 n 4+
lognlogw) bit labels, which is optimal even for exact distances in the static setting [24].

Moreover, the message and bit complexities of the relabeller are O(mlog® n + nlognlogm)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and O(m log? nloglogn + nlognlogmlog logn), respectively, where m is the number of
edges whose weights change. For the fully dynamic scenario, in which edge weights can
both increase and decrease, labels require O(log2n + lognlogw) bits, and the message
and bit complexities are O(mA log? n) and O(mA log? nloglog n), respectively, where A =
max{g(—g’i) :d>1,e € Eg} and Ble, d) is the number of vertices at distance at most d from
and endpoint of e. In the fully dynamic scenario, if the graph is a path or cycle, then the

label size reduces to O(log nlog m) bits and the message complexity reduces to O(m log? n).

3.3 New dynamic schemes

Having presented the theory of dynamic informative labelling schemes, the remainder of
the thesis focuses on the development of new dynamic adjacency labelling schemes for a
selection of classes. Our presentation of each of these dynamic schemes carefully describes
the labelling/marker, the decoder, and the relabeller. The relabeller is presented in parts,
one for each of the allowable actions: vertex deletion, vertex addition, edge deletion, and
edge addition. Moreover, in the body of the thesis we describe the relabeller at a high level,
saving the detailed pseudocode for Appendix C.

Specifically, in Chapter 4, we present a dynamfc adjacency labelling scheme for line
graphs. Our dynamic scheme for line graphs; uses O(logn) bit labels and updates in O(e)
time, where e is the number of edges added to, or deleted from, the line graph.

In Chapter 5, we develop a O(r log n) bit/label dynamic adjacency labelling scheme for r-
minoes, graphs with no vertex in more than r maximal cliques. Edge addition and deletion
can be handled in O(r?D) time, vertex addition in O(r2e?) time, and vertex deletion in
O(r?e) time, where D is the maximum degree of the vertices in the original graph and e is
the number of edges added to, or deleted from, the original graph. As well, we develop a
O(rlogn) bit/label dynamic adjacency labelling scheme for r-bics, graphs with no vertex in
more than r maximal bicliques. Edge addition and deletion, as well as vertex deletion, can
be handled in O(r?B) time, and vertex addition in O(r?nB) time, where B is the size of
the largest biclique in the original graph.

Finally, in Chapter 6, we present a dynamic adjacency labelling scheme for proper inter-
val graphs, which are a subclass of interval graphs. Our dynamic scheme for proper interval

graphs uses O(logn) bit labels and handles all operations in O(n) time.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Line graphs

Recall from Section 2.1.1, the definition of a line graph and its base.

Definition 4.1 Given a graph G = (Vg, Eg), its line graph is the graph L(G) = (Eq, Er(g))
for which {u,v} € Er gy if and only if u and v are adjacent edges in G.

In this chapter, we present a dynamic adjacency labelling scheme for line graphs that allows
the addition and deletion of vertices and edges. The labels used in this scheme require
O(logn) bits, and updates require O(e) time, where e is the number of edges added to or
deleted from the line graph. In comparison, the best known (static) adjacency labelling
scheme for line graphs, presented in Section 2.1.1, uses O(log n) bit labels and requires ©(n)
time to generate a labelling [45].

Given the simplicity of their intersection representation, line graphs are perhaps the
most fundamental intersection class. As such, we hope that our dynamic adjacency labelling
scheme for line graphs will offer insight into the development of dynamic schemes for other

intersection classes.

4.1 Partition isomorphism

As mentioned in Section 2.1.1, Whitney [58] has shown that every connected line graph
has a unique base, up to isomorphism, except for K3 which has two bases, namely, K3 and
K 3. Just as a graph “generates” a line graph, we can can say that an edge labelled graph
“generates” a vertex labelled line graph. For this reason, we will also use the term “base” to
refer to an edge labelled graph, with no isolated vertices, that generates a particular vertex
labelled line graph.

Our work on line graphs requires a concept similar to isomorphism, but involving edge
labellings. Given an edge labelling 1 of a graph (in which each label is unique), for each
edge label a, we let PY denote the partition of the labels adjacent to o that is determined
by the endpoints of a. We define two bases of a vertex labelled line graph L(G), having edge

labellings 1/, and 19, to be partition isomorphic if the bases are isomorphic and P¥1 = P¥z,

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for all edge labels . For example, the two bases shown in Figure 4.1(d) are not partition
isomorphic; in one of these bases, the partition corresponding to a is {{b}, {c}}, while in
the other it is {{b, c},0}.

When we consider the theorem of Whitney in the context of labelled line graphs, we

arrive at the following theorem.

Theorem 4.2 Fvery connected vertex labelled line graph, except those shown in Figure
4.1(a), has a unique (edge labelled) base, up to partition isomorphism. For each of the four

exceptions, a vertex labelled graph has two bases that are not partition isomorphic.

Proof. Consider a connected vertex labelled line graph L(G) which has two (edge labelled)
bases, G1 and G, that are not partition isomorphic. Fundamental to this proof is the fact
that the edge adjacencies in G, and G2 are identical, that is, two edges are adjacent in G
if and only if they are adjacent in G.

Let the labellings of G1 and G2 be ¥, and s, respectively, and let a be a label for which
P¥ # PY¥2. Moreover, let P¥1 = {Qy,, Ry, } and P¥2 = {Qy,, Ry,}. Trivially, observe
that |Qy,| + |Ry,| > 2 , otherwise, P¥1 = P¥z.

Now consider when one of |Qy, |, |Ry, | [Qu,|, or |Ry,| is at least three; without loss of
generality, let b,c,d € Qy,. We first consider the case when {b,e,d} C Qy, or {b,c,d} C
Ry,; without loss of generality, assume the former. Since PY¥1 £ PY2 there must be a
label e that belongs to @y, , but not to Qy,, or vice versa; again, without loss of generality,
assume the former. Given that e € Qy,, e is adjacent to each of b, ¢, and d in both Gy
and Ga. Yet e € Ry,, so G2 must contain each of the three cycles of edges abe, ace, and
ade, which is not possible unless b = ¢ = d. Next, consider the case when {b,c,d} Z Qy,
and {b,¢,d} € Ry,; without loss of generality, assume that {b,c} C Qy, and {d} C Ry,. A
similar argument gives that G5 must contain both of the three cycles of edges abd and acd,
which is not possible unless b = c.

Having shown that neither Q.. , Ry,, Qy,, nor Ry, can contain three edges, we observe
that the only way that P¥* # P¥2 is if, without loss of generality, there exist edges b and
¢ such that {b,c} = Qy,, b € Qy,, and ¢ € Ry,. Since b and ¢ are adjacent in G1, they are
also adjacent in Gs; as such, the edges a, b, and ¢ form a K, ;3 in G; and a K3 in Gs.

At this point, we resolve our proof into three cases.

* Qu, ={b,c}, Ry, =0, Qy, = {b}, and Ry, = {c}. If Vi) = {a,b,c}, then G, and

G4 are as shown in Figure 4.1(c), and L(G) = K3, as desired. Moreover, since the set

{b, ¢} exhibits only two distinct partitions, G; and G are the only bases of L(G).

If Viiey D {a, b, c}, then, without loss of generality, there must be some label d adjacent

to both b and ¢, but not a, as the edges a, b, and ¢ form a K3 in GG,. Since the edges

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JARN

(a) The only connected line graphs with two (edge la-
belled) bases that are not partition isomorphic.

o e [oee o £

(b) The base graphs of the four line graphs pictured in Figure

4.1(a).
a a
cI>- >—c4
b b

(¢) Two edge labelled bases of the line graph K3
that are not partition isomorphic.

Ib b '
dcaacx—d*

(d) Two edge labelled bases of the line graph K4 --e
that are not partition isomorphic.

f d c d

(e) Two edge labelled bases of the line graph K5 —
m, where m is a maximal matching, that are not
partition isomorphic.

(f) Two edge labelled bases of the line graph Kg —
m, where m is a maximal matching, that are not
partition isomorphic.

Figure 4.1: Partition isomorphism of graphs

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a, b, and ¢ form a K3 3 in Gy, the edges b, ¢, and d form a K3 in G;. Therefore, d is

the unique label adjacent to both b and ¢, but not a, in Gs.

Now, if Vi(ay D {a,b,c,d}, then, without loss of generality, there must be some label
z adjacent to b and d, but neither a nor ¢, as G is the graph shown in the left hand
side of Figure 4.1(d). However, given the configuration of Go, as shown in the right
hand side of Figure 4.1(d), these adjacencies are impossible.

With V@) = {a,b,c,d}, G1 and G are as shown in Figure 4.1(d), and L(G) = K4 —e,
as desired. Moreover, the partitions P¥* and P¥? fix P/*, PP, P¥1, P¥*, P{*, and
Pj’ . Therefore, since the set {b, ¢} exhibits only two distinct partitions, G; and G5
are the only bases of L(G).

o Qu, = {b,c}, Ry, = {f}, Qu, = {b,f}, and Ry, = {c}. Just as a, b, and ¢ form a K3
in Gy, a, b, and f form a K3 in G;. Therefore, if V(o) = {a,b,c, f}, then L(G) =

Ky — e, as desired. Again, P¥* and PY? fix the remaining partitions, so G; and G,
are the only bases of L(G).

Again, if L(G) contains an additional vertex, then it can only be the vertex d discussed
above. In this case, G1 and Gy are as shown in Figure 4.1(e), and L(G) = K5 —m, as
desired, where m is a maximal matching. Moreover, P¥! and P¥2 fix the remaining
partitions. Therefore, since the set {b, ¢} exhibits only two distinct partitions, G; and

G are the only bases of L(G).

o Qu, ={b,c}, Ry, ={f, h}, Qu, = {b, f}, and Ry, = {¢, h}. Just as a, b, and ¢ form
a K3 in G4 and a, b, and f form a K3 in G4, a, ¢, and h form a K3 in G; and a, f,

and h form a K3 in Ga. Therefore, if Vi (g) = {a,b,c, f,h}, then L(G) = K5 —m,

as desired, where m is a maximal matching. Again, P¥* and P¥? fix the remaining

partitions, therefore, G; and G» are the only bases of L(G).

Again, if L(G) contains an additional vertex, then it can only be the vertex d discussed
above. In this case, G; and Gz are as shown in Figure 4.1(f), and L(G) = Kg — p,
as desired, where m is a maximal matching. Moreover, the partitions P¥* and Pz
fix the remaining partitions. Therefore, since the set {b, ¢} exhibits only two distinct

partitions, G; and G are the only bases of L(G).

4.2 The dynamic scheme
4.2.1 Vertex labels, marker, and decoder

Our dynamic adjacency labelling scheme for line graphs builds upon the adjacency labelling

scheme for line graphs found in Section 2.1.1. Given a line graph L(G), each vertex of the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

line graph is assigned a unique identifier from {1,..., V() |}. These vertex identifiers give
rise to an edge labelling of some base G, from which we will derive the remainder of our
labelling. Like the adjacency labelling scheme of Muller [45], we also assign each vertex of G

a unique identifier from {1, ..., |Vg|}. For simplicity, we refer to vertices by their identifiers.

Our dynamic scheme uses graph substructures and circular doubly linked lists to dis-
tribute information about the neighbourhood of a vertex in the line graph over the labels
of the neighbours. Specifically, for each vertex in the base, we maintain a circular doubly
linked list of the edges incident with that vertex. For each edge v in G, the circular doubly
linked lists associated with its endpoints partition the edges adjacent to v, exactly as seen in
our discussion of partition isomorphism, with the singular exception of v itself. Moreover,
the union of the two circular doubly linked lists associated with the endpoints of v, give the
vertices adjacent to v (in L(G)).

Given a vertex v, its label will consist of the following information (in addition to its

identifier).

v.epg, v.ep1: Considered as an edge in the base, v has two endpoints; v.epg and v.ep; are

the identifiers of these endpoints.

v.nng,v.nny: The values of |N(v.epg)| and |N(v.epy)| (in the base), respectively, where

N(zx) denotes the open neighbourhood of the vertex z.

v.prevy, U.prevy, v.nxg, v.nry: With v as the current edge in the circular doubly linked
list about v.ep;, the identifiers of the previous and next edges are v.prev; and v.nz;,

respectively.

In particular, the label of a vertex is (v: v.epg; v.ep;; v.nng; v.nny; v.prevy; v.nZy;
v.prevy; v.nx;), as illustrated in Figure 4.2. Like the static scheme of Muller, we assume
that the marker knows the structure of G, so that it can generate an initial labelling in
©(n + m) time, using a breadth first search. Otherwise, the marker must use an algorithm
like that of Lehot [40] or Roussopoulos [50} to determine G from L(G). Also like the static
scheme of Muller, the decoder can determine the adjacency of v; and ve in O(1) time, using
only their labels, by checking if {vy.epo,vi.ep1} N {va.epo, v2.ep1} = .

Consider a line graph with n vertices. If string denotes the number of bits required to

represent string then the number of bits used in the label of v is

1
v+ Z (v.epi +v.nn; +v.prev; + Unxl)
=0

In Section 3.1.3, we observed that if the deletion of vertices is permitted, it may result in

the identifiers of the remaining vertices not being space-optimal. The same is true for any

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a:1;3;3;3;b;¢;d;¢)

{'4-1 ‘ b 2‘ (b:1;2;3;2;e;a;5¢;¢)
o 7 (c:2;3;23;b;b; a; d)
€ c
23:-4-3:2:ca:e:
| v Y (d:3;4;3;2;c5a5€5€)
~4 L d R (e:1;4;3;2;a;b;d; d)
(a) G (O denotes the order of the (b) Labels of L(G).

circular linked list).

Figure 4.2: Our dynamic adjacency labelling scheme for line graphs

labelling in which identifiers are assigned. As such, let the largest identifier of a vertex in the
line graph be L, and let the largest identifier of a vertex in the base graph be Ly. Thereby,
{v),l(v.prev,), l(v.nz;) € O(log Ly) and l(v.ep;) € O(log Ls). Moreover, since the base has
no isolated vertices, |Vg| < 2|Eg| < 2|V (g)| < 2n; therefore, I(v.nn;) € O(logn), and the
label of v uses O(log Ly + log Ly + log n) bits. If Ly and Ly are polynomial in n, which we
stated as an assumption in Section 3.1.3, then the label size of v reduces to O(logn). In
turn, the graph is represented using O(nlogn) bits.

Using an argument found in a recent text of Spinrad [53] (p. 18), we can show that there
are 2°4n1027) abelled line graphs on n vertices. Thereby, the dynamic scheme is strongly
space-optimal for labelled line graphs. Consider a graph with % disjoint edges, each of which
has one endpoint in {1,..., %} and the other in {F +1,...,n}. There are (3)! such graphs,
each of which is a line graph, yet

ny
(g_)! > Gt > (3% = 9% los(d) ¢ pR(nlogn),

This scheme may also be space-optimal for unlabelled line graphs; however, this lower bound
has not yet been established in the unlabelled case.

The success of our dynamic scheme lies in the ability to change the labelling of a graph
to reflect another partition non-isomorphic base, when necessary. In particular, if a line
graph has a connected component with two bases that are not partition isomorphic, then
it is possible that the labelling derived from one of these bases will permit certain dynamic
operations while the other will not. For instance, consider the two bases depicted in Figure
4.1(d). If we wish to add a new vertex v to the corresponding line graph such that its
neighbours are a and b, then the equivalent operation in the base is the addition of an edge
that is adjacent to only the edges labelled a and b. This can be done using one of the bases,
but not the other. Again, we note that in any informative labelling scheme we have access

to the vertex labels only. Consequently, when we say that we change the base, we ultimately

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mean that we change the labelling of the graph so as to reflect a new base.

Even more critical to the success of our dynamic scheme is the inclusion of sufficient
information in the labels to deduce, at least partially, the structure of the base. Upon
modification of the line graph, our knowledge of the original base will allow us to determine
the base of the new line graph and, hence, the labels of the new line graph. To illustrate this
need for knowledge about the base, consider the line graphs presented in Figure 4.3. Even
though the line graph §(L(G)) is formed by deleting a single edge from L(G}), the change in
the base, from G to G/, is substantial; in particular, the required change affects much more
than just the edges of the base that correspond to the endpoints of the deleted edge in the
line graph. If our dynamic scheme were to use the labels of the static scheme of Muller [45],
then it would be impossible to deduce the neighbourhood of a vertex v without checking
the label of every vertex u to see if the edges of the base corresponding to u and v share a
common endpoint.

Of particular interest is how we can use the vertex labels to traverse circular doubly
linked lists. For any edge v of G, we know that the next vertex in the circular doubly linked
list £ about v.ep; is v.nz;. Let u = v.nx,. Ideally, the next vertex in £ after u would be
u.nx;, however, it could be either u.nzg or u.nz;. Consequently, before we proceed, we
must determine which of u.epp and u.ep; is v.ep;; fortunately, this simple test requires O(1)
time. As such, £ can be traversed in O(v.nn;) time. For simplicity, we will say that £ can

be traversed in O{|£]) time, where |L| is the number of edges in L.

4.2.2 Relabeller

In the remainder of this chapter, we present the relabeller that belongs to our dynamic
adjacency labelling scheme for line graphs. For each graph operation, a “gentler” version
of the relabelling algorithm will be discussed in this chapter, with detailed pseudocode
appearing in Appendix C.

For simplicity, we will refer to §(L(G)) as L(G’), the line graph with base G', yet we
implore the reader to recognize that it is the graph L(G) to which the operation § is being
applied. We are not applying § to G to get G’, rather, G’ is the resulting base graph of
L(G")y = §(L(@Q)).

Deleting a vertex

As with all of our graph modifications, it is imperative to understand how a change in the
line graph causes a change in the base. By deleting a vertex from the line graph, we delete
the corresponding edge in the base, as depicted in Figure 4.4.

Let v be the vertex to be deleted, and let X be the neighbours of v in L(G). For each

endpoint v.ep; of v (in (), DELETEVERTEX, the algorithm presented in Figure 4.5, first

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) G. (b) L(G).

(c) G- (d) L(G') = §(L(G))-

Figure 4.3: An edge is deleted from (or added to) a line graph. The use of ellipses indicates
that the graph extends arbitrarily from the indicated vertex

(b) The corresponding change in G. The set S
is a valid set

Figure 4.4: A vertex is deleted from (or added to) the line graph

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determines whether v is the only edge incident with v.ep;. It does this in O(1) time by testing
the condition v.nn; = 1. If v is the only edge incident with v.ep;, then DELETEVERTEX
frees the identifier of v.ep;, which takes O(1) time.

If there are other edges incident with wv.ep;, then DELETEVERTEX traverses L;, the
circular doubly linked lists about v.ep;, decrementing the .nn counter that corresponds to
L; by one, for every vertex [(in L(G)) in £;. Traversing £; to decrement these counters
takes ©(|L;]) time. Once these counters have been adjusted, v is removed from £,, which
takes O(1) time.

Once both endpoints of v have been addressed, v is deleted and its identifier is freed for
future use. This elimination takes O(1) time. Since, |£1] 4+ |L2| = |X|+ 2, DELETEVERTEX
runs in O(|X]) € O(n) time. Moreover, DELETEVERTEX accesses O(]|X|) vertex labels,
requiring a total of (| X|) bits; therefore, the running time of DELETEVERTEX is polynomial
in the size of its inputs. Moreover, DELETEVERTEX is error-detecting because the class of

line graphs is hereditary.

DELETEVERTEX(L(G), v)

Input: An adjacency labelling of a line graph L(G) (that is, the labels thereof) created
using our dynamic scheme, and a vertex v in V). Note that the labels of L(G) are only
accessed as required.

Output: An adjacency labeling of a graph L(G’) (again, the labels thereof) formed by
deleting v from L(G), providing L{G’) is a line graph. If L(G’) is not a line graph, then the
output indicates as such.

1 fori—0toldo

2 if v is the only edge incident with v.ep; then

3 free the identifier of v.ep;

4 else £; « the circular doubly linked list about v.ep;

5 forl e L; do

6 decrement {’s counter of the number of edges in £; by 1
7 remove v from £;

8 delete v and free its identifier

Figure 4.5: The relabeller DELETEVERTEX which relabels the line graph when a vertex is
deleted

Proposition 4.3 The modification excess and modification locality of DELETEVERTEX are

ZEeTro.

Proof. First, observe that the set of vertices whose neighbourhoods change is X U {v}. If
the label of a vertex x is modified, then its corresponding edge in the base had been in one of
the circular linked lists about an endpoint of v {(in G). That is, z € X U {v}. Therefore, the
set of vertices with modified labels is a subset of the set of vertices whose neighbourhoods

change, giving the desired result. 0

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adding a vertex

Adding a vertex to the line graph, along with its incident edges, is equivalent to adding an
edge to the base graph, as shown in Figure 4.4. Let v be the vertex to be added to L(G),
and let X be the set of vertices to which v will be made adjacent. The endpoints of v (in
the base) must cover X (as edges in the base), moreover, these endpoints must be incident
with only these edges.

If X = @, then ADDVERTEX, the algorithm presented in Figure 4.6, creates two new
vertices, by and bo, in the base, and puts v between them. Creating b; and by takes O(1)
time; however, placing v between b; and by requires that we establish circular doubly linked
lists for each of these vertices. Since each of these circular doubly linked lists contains only
v, setting the .ep, .nx, .prev, and .nn values of v to represent the new circular doubly linked
lists takes O(1) time.

If X # (), then we are looking for a set S of vertices in the base for which each of the

following conditions hold.
e 1< 5| <2.
e cach edge of X (in the base) has exactly one endpoint in S.
e 1o edge of the base not in X has an endpoint in S.

We will call such a set S valid. This concept is illustrated in Figure 4.4.

To find a valid set, ADDVERTEX calls FINDVALID. FINDVALID selects an edge of the
base, edgey, from X and tries to include edgeg.epy in a valid set. Letting X be the subset
of edges in X that are not incident with edgey.epg, we observe that if we require another
vertex in the valid set, then it must come from an edge in Xy. We initially set Xg to X,
then traverse the circular doubly linked list about edgeg.epp to eliminate edges from Xj.
If at any point we find an edge which does not belong to X, then edgey.epy cannot be in
the valid set, so we backtrack and try edgeg.ep;. If edgeg.ep; is similarly problematic, then
the base will not yield a valid set. However, before concluding that v cannot be added to
the line graph, we must determine if the component of the line graph containing edgey has
another base which is not partition isomorphic. If so, we repeat our efforts on edgey using
this new base.

Providing some endpoint of edgey can be added to the valid set, FINDVALID now selects
an edge, edge;, from Xy and tries to include edge;.epp in the valid set. Letting X; be
the subset of edges of Xy that are not incident with edge;.epy, we observe that edge;.epy
can be added to complete the valid set if and only if all of the edges found in the circular
doubly linked list about edge;.epp belong to Xg, and X; = #. We determine X; in a

manner similar to that described for finding Xy above, then backtrack if necessary. By

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

backtracking, FINDVALID exhausts all combinations of bases and endpoints in finding a
valid set. In particular, backtracking first tries a new endpoint, then, if necessary, a new
base.

From Theorem 4.2, we see that any component of the line graph with two bases that
are not partition isomorphic has O(1) vertices. Therefore, FINDVALID requires at most one
base change, where each base change takes O(1) time. Moreover, for each possible base,
there are at most four selections of edge;.ep;, where FINDVALID stops traversing the circular
doubly linked list about edge;.ep; as soon as it finds some vertex not in X /Xo. Therefore,
FINDVALID takes O(|X]) time.

If a valid set S is found, then we add v to the base graph using the vertices in §. If
S = {51}, then ADDVERTEX creates a new vertex by (in G), which takes O(1) time, and
places v between s; and b;. Setting the .ep values of v takes O(1) time and, as we have
discussed, the creation of the circular doubly liked list about by takes O{1) time. However,
the addition of v to the circular doubly linked list, £y, about s; is more complicated.
Inserting v into £, after edgey takes only O(1) time, but we must also adjust the .nn
counters of every vertex in £;. Adjusting these counters takes ©(|£1]) € O(JX]) time.

If S = {s1,52}, then ADDVERTEX places v between s; and s;. Again, setting the
.ep values of v takes O(1) time, and the addition of v to the circular doubly linked lists
takes ©(|L1| + |L2]) time, where £; is the circular doubly linked list about s;. However,
IL1] +1L2| = |X], so O(|L1] + | £2]) € O(X]).

ADDVERTEX(L(G), X)

Input: An adjacency labelling of a line graph L(G) (that is, the labels thereof) created
using our dynamic scheme, and a subset X of V(). Note that the labels of L(G) are only
accessed as required.

Output: Let L(G’) be the graph formed by adding a new vertex v to L(G), where v is
adjacent to exactly those vertices in X. Providing L(G’) is a line graph, the output is an
adjacency labelling of L(G') (again, the labels thereof). If L(G’) is not a line graph, the
output indicates as such.

create a new vertex v (in L(G))
if X =0 then
create two new vertices by and by (in G)
V blbg
else S «— FINDVALID(X)
if S =0then
error no longer a line graph
elseif |S| =1 then
create a new vertex by (in G)
V — 81b1
else v « 5159

= O O 00 =10 Ut i W

—

Figure 4.6: The relabeller ADDVERTEX which relabels the line graph when a vertex is added.
The vertices s; and sg, of the base, are the members of the valid set S

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In total, ADDVERTEX runs in O(]X|) time. Given that ADDVERTEX is input with the
labels of each vertex in X, the running time of ADDVERTEX is polynomial in the size of the
input. Moreover, ADDVERTEX is error-detecting since our use of backtracking guarantees

that a valid set will be found, providing one exists.

Proposition 4.4 The modification excess and modification locality of ADDVERTEX are

ZETO0.

Proof. First, observe that the set of vertices whose neighbourhoods change is X U {v}. If
the label of a vertex z is modified, then its corresponding edge in the base had been in one
of the circular linked lists about an endpoint of edge in the valid set. That is, z € X U {v}.
Therefore, the set of vertices with modified labels is a subset of the set of vertices whose

neighbourhoods change, giving the desired result. O

Deleting an edge

Consider the act of deleting an edge from a line graph, as depicted in Figure 4.3. This dele-
tion is equivalent to “pulling apart” two adjacent edges in the base. If there are additional
edges incident with the vertex of the base at which these two adjacent edges were joined,
then it becomes increasingly difficult to determine the new base graph. Fortunately, there
are a finite number of cases to be considered; we enumerate these cases as a corollary of the

following theorem.

Theorem 4.5 Let L(G) and L(G’) be line graphs, where L(G’) = L(G) — ab. Moreover,
let the edges of G corresponding to a and b be wx and wy, respectively. The following are

properties of G.
1. The degree of w is at most four.
2. If d =zy is an edge of G, then deg(w) < 3.

3. Let ¢ = wz be an edge of G, where ¢ # a,b. If f = zt is an edge of G, where f # c,

then either t =z ort =1y.

4. If d = zy and ¢ = wz are edges of G, where ¢ # a,b, then there can be no edges

adjacent to ¢ other than a and b.

5. If c =wz and f = zx are edges of G, where ¢ # a,b, then deg(z) < 3. Moreover,
if deg(x) = 3, then z is adjacent to an edge g = xp, where p # w, z,y, such that
deg(p) < 2. As well, if deg(p) = 2, then the edge i = pw belongs to G.

6. Let c = wz be an edge of G, where ¢ # a,b. If there exist distinct edges f = zt; and
= ztp, where ¢ % f, h, then {t1,t2} = {x,y}. Moreover, deg(x) = deg(y) = 2.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. If H is a subgraph of G, then L(H) — ab is a line graph.

Proof. Fundamental to the proofs of each of these observations is the fact that the only edge
adjacencies that changes from G to G’ is that of a and b which are adjacent in G but not in G’.
To aid in the visualization of these proofs, the reader is encouraged to consult the diagrams
in Table 4.1. It should be noted that, although there is a direct correspondence between
edges of G and G’, the same correspondence cannot be made between the vertices of G and
G’ as it is only the edge adjacencies which are important, not the specific vertices at which
edges are adjacent. Consequently, any references to vertices in the following arguments will

be in the context of the graph G.

1. Assume that w is incident with at least five edges in G, say a, b, ¢, i, and j. Now
¢, 1, and 7 must be adjacent to both a and b in G’ because they had been so in G.
However, in a simple graph, any set of three edges between two disjoint edges, such
as a and b in G/, must also contain two disjoint edges. Without loss of generality, let
these disjoint edges be ¢ and j. This implies that ¢ and j were not adjacent in G,

which is a contradiction, as they were both incident with w.

2. Assume that w is incident with at least four edges in G, say a, b, ¢. and i. Now d
must be adjacent to both a and b in G’ because it had been so in G. Yet a and b are
disjoint in G, so G’ must contain the path adb of edges. Similarly, ¢ must be adjacent
to both a and b in G’ because it had been so in G. Yet a and b are disjoint in G', so G’
must contain the path acb of edges. Additionally, ¢ must be disjoint from d in G’ as
it had been so in G; thereby, G’ must contain the four cycle adbe of edges. However,
G’ must contain the four cycle adbi of edges as the arguments made for ¢ can also be

made for :. Thereby, ¢ = i, which is a contradiction.

3. Using an argument identical to that made for the edge d in (2), G’ must contain the
path acb of edges. Yet f must be adjacent to ¢ in G’ because it had been so in G.
Therefore, f is adjacent to at least one of a or b in both G’ and G. Without loss of
generality, let f be adjacent to a. If t = w, then f = ¢; therefore, t = z, as desired.

This scenario is depicted in case E of Table 4.1.

4. By (2), the only edges adjacent to ¢ at w (in G) are a and b, thereby, it remains to
show that deg(z) = 1. Assume that there is another edge adjacent to ¢ at z, namely
f=zt. By (3), t € {z,y}, so, without loss of generality, let ¢t = z. Using the argument
found in (2), we know that G’ contains the four cycle adbc of edges as shown in case
B of Table 4.1. However, G’ must also contain the four cycle fdbc of edges, as the

arguments made for a can also be made for f. Thereby, f = a, which is a contradiction.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Consider when deg(x) > 2, that is, there exists some edge g = zp for which p & {w, z},
that is, g # f,a. From (4), we know that p # y, that is, g # d. Since p & {w,z}, g is
not adjacent to ¢ in G, nor in . Yet, g must be adjacent to both ¢ and f in G’ as it
had been so in G; thereby, G’ contains the thee cycle of edge afg, as shown in case F

of Table 4.1. The uniqueness of this three cycle gives deg(z) < 3.

Finally, consider when deg(p) > 1, that is, there exists some edge ¢ = ps for which
i # g. Now 7 must be adjacent to g in G’ as it had been so in G. But G’ coutains the
three cycle afg of edges, as depicted in case F of Table 4.1, so, ¢ must be adjacent to

either @ or f in G’ and, subsequently, in G.

If ¢ is adjacent to f in G, then i # g gives s = z, so, ¢ is adjacent to ¢, f, and g,
but neither a nor b in G and, subsequently, in G’. However, the configuration of G’
depicted in case F of Table 4.1 requires that either ¢ = a or ¢ is adjacent to b, both
of which are contradictions. On the other hand, if ¢ is adjacent to @ in G, then i # ¢
gives s == w, as seen in case J of Table 4.1. Moreover, the uniqueness of the edge

i = pw gives deg(p) < 2.

6. The first part of this statement follows directly from (3), thereby, deg(z), deg(y) > 2.
Without loss of generality, let f = zx and let h = zy. Now f is adjacent to a and h,
but not b, in G’, as it had been so in G; similarly, A must be adjacent to b and f, but
not a, in G’, as it had been so in G. Thereby, G’ must contain the path a, f, h,b of
edges. As well, ¢ must be adjacent to each of a, b, f, and h as it had been so in G,
therefore, G’ is as depicted in case G of Table 4.1. Note, in particular, that the edges

¢, f, and h form a three cycle in G'.

Assume that deg(z) > 2. From (5), we know that x is incident with some edge g = zp,
where z # w,y,z. Consequently, g is adjacent to f, but neither ¢ nor h in G and,
subsequently, G’. Yet, the edges ¢, f, and h form a triangle in G’, so g cannot be
adjacent to f in G’ as it is adjacent to neither ¢ nor h in G’. This contradiction gives

deg(z) < 2. A similar argument gives that deg(y) < 2.

7. Given that H is a subgraph of G, L(H) is an induced subgraph of L(G). However,
L(G") = L(G) — ab, so L(H) -- ab is an induced subgraph of L{(G’). Since the family
of line graphs is hereditary, L(H) — ab is a line graph.

O

Corollary 4.6 Let L(G) and L(G’) be line graphs where L(G') = L{(G) — ab. Table 4.1
classifies all of the possible base graphs, G, up to symmetry.

Since the circular linked list structure distributes the information about the neighbour-

hood of a vertex across the labels of its neighbourhood, the vertex labels are sufficient to

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1: Possible cases for deleting an edge from (or adding an edge to) a line graph. In
each case the edge ab is deleted from the line graph. The use of ellipses indicates that the
graph extends arbitrarily from the indicated vertex

| Case | A | B | C |

G

G’ dh d c

L | D E F | G |
N {
G b
h
e ' >f-
b h

jasi
o

G/

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determine the local structures depicted in Table 4.1 (in fact, we can perform both depth
first and breadth first search on the line graph and its base). Consequently, DELETEEDGE,
the algorithm presented in Figure 4.7, needs only identify if G has one of the structures
shown in Table 4.1.

DELETEEDGE(L(G), a, b)

Input: An adjacency labelling of a line graph L(G) (that is, the labels thereof) created using
our dynamic scheme, and two distinct vertices a and b of V) for which ab € Ep(gy. Note
that the labels of L(G) are only accessed as required.

Output: An adjacency labeling of a graph L(G’) (again, the labels thereof) formed by
deleting the edge ab from L(G), providing L(G’) is a line graph. If L{G’) is not a line graph,
then the output indicates as such.

1 examine the neighbourhood surrounding a and b (in G) to determine which of the
cases in Table 4.1 applies to G

2 if none of the cases in Table 4.1 applies to G then

3 error no longer a line graph

4 else change the vertex labels of a, b, ¢, d, f, g, h, and i, as necessary, to reflect the
new base graph G’

Figure 4.7: The relabeller DELETEEDGE which relabels the line graph when an edge is
deleted

Given that DELETEEDGE is only concerned with the interaction between the edges a,
b, c, d, f, g, h, and i, it can determine if G has one of the structures shown in Table 4.1
in O(1) time. If G does have one of the structures shown in Table 4.1, then DELETEEDGE
needs only to change the interaction between a, b, ¢, d, f, g, h, and 1, as necessary, to reflect
G'. From the cases shown in Table 4.1, observe that the change in the labels should not
affect any endpoint of a or b that has arbitrary adjacency. Therefore, DELETEEDGE can
relabel the graph in O(1) time. As per our comments earlier in this section, the running
time of DELETEEDGE is polynomial in the size of the input.

Unlike the addition of a new vertex, the choice of base is irrelevant when it comes to
deleting an edge from the line graph. Specifically, given a component of a line graph with
two bases that are not partition isomorphic, if in one base the deleted edge leads to one of the
configurations presented in Table 4.1, then so too will this edge in the other base. Therefore,
given Corollary 4.6, DELETEEDGE is error-detecting as it will exhaustively determine if G
satisfies any of the cases shown in Table 4.1. In Table 4.2 we present all such pairs of bases
that are not partition isomorphic in which the edge ab is to be deleted from the line graph,

as well as the corresponding case of Table 4.1 to which each base belongs.

Proposition 4.7 The modification excess and modification locality of DELETEEDGE are

four and one, respectively.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: Pairs of partition non-isomorphic bases in which the edge ab is to be deleted from
the line graph

| Case in Table 4.1 I Base 1 “ Base 2 [Case in Table 4.1 ’

D

none none

none none

D¢ ¢ Y| ¥
D0V IY]Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. First, observe that the set of vertices whose neighbourhoods change is {a,b}. From
Table 4.1, we see that any edge whose endpoints change belongs to the set {a, b, ¢,d, f, 9, h,i}.
In particular, the largest such subset belongs to case J, where the set of edges with changed
endpoints is {a,b,¢, f,¢,i}. Therefore, the modification excess is four. Moreover, each of
the edges in {a,b,¢,d, f,g,h,i} corresponds to a vertex that is adjacent to either a or b in

the line graph. Therefore, the modification locality of DELETEEDGE is one. O

Adding an edge

The act of adding an edge to a line graph is depicted in Figure 4.3. Since the process
of adding an edge is exactly the reverse of deleting an edge, Table 4.1 enumerates all the
possibilities.

Just as we saw with the deletion of an edge, the choice of base is irrelevant when it comes
to adding a new edge to the line graph. Specifically, given a component of a line graph with
two bases that are not partition isomorphic, if in one base the added edge leads to one of
the configurations presented in Table 4.1, then so too will this edge in the other base. In
Table 4.3 we present all such pairs of bases that are not partition isomorphic in which the
edge ab is to be added to the line graph, as well as the corresponding case of Table 4.1 to
which each base belongs.

Again, the labels of the vertices in the line graph are sufficient to determine the local
structures as depicted in Table 4.1 so the algorithm for updating the labels needs only
identify the structure of the base, then alter the labels to represent the structure of the
new base. Like DELETEEDGE, ADDEDGE runs in O(1) time, is error-detecting, has a

modification excess of four, and has a modification locality of one.

4.3 Summary

In this chapter, we have developed an error-detecting dynamic adjacency labelling scheme
for line graphs by using circular doubly linked lists to encode information about the base
graph in the vertex labels. Our dynamic scheme for line graphs uses O(log) bit labels and
updates can be performed in O(e) time, where e is the number of edges added to, or deleted
from, the line graph.

In developing this dynamic scheme, we also defined the concept of partition isomorphism,
and developed theory on the types of line graphs that can be modified to produce new line

graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3: Pairs of partition non-isomorphic bases in which the edge ab is to be added to
the line graph

[Case in Table 4.1 | Base 1 I Base 2 | Case in Table 4.1 |

nomne none

none none

IEAR
V| &Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

r-graphs

In this chapter, we develop error-detecting dynamic adjacency labelling schemes for classes
of graphs defined using maximal cliques and maximal bicliques, namely, r-minoes and r-
bics, respectively. Our interest in r-minoes and r-bics lies not so much with the classes
themselves, rather, more with the maximal cliques and bicliques, which are structures com-
monly discussed in graph theory. A recent paper of Stix [54] offers a dynamic algorithm for
maintaining maximal cliques in fuzzy clustering applications such as music and semantic
clustering. A recent paper of Driskell, Ané, Burleigh, McMahon, O’Meara, and Sanderson
[15] applies maximal bicliques to the field of genetics.

Metelsky and Tyshkevich [44] define a graph to be an r-mino if none of its vertices
belongs to more than r maximal cliques. This notion of an r-mino is an extension of the
idea of a domino, as defined by Kloks, Kratch, and Miiller [36], in which each vertex belongs
to at most two maximal cliques. In their work, Metelsky and Tyshkevich show that the
class of r-minoes is the same as the class of line graphs of Helly hypergraphs with rank at
most 7; recall Definitions 2.6 and 2.7, regarding line graphs of hypergraphs. A hypergraph
H = (V,£) is said to satisfy the Helly property if every pairwise intersecting subset £’ of £
is such that (.cg e # 0 [8].

Consistent with the definition of Prisner {48, a biclique is a complete bipartite vertex
induced subgraph. We define a graph to be an r-bic if none of its vertices belongs to more
than r maximal bicliques.

Using O(rlogn) bit labels, our dynamic schemes allow the addition and deletion of
vertices and edges. Observe that it is impractical to consider » € 2(n/logn). As discussed
in Section 2.1.1, a simple adjacency labelling scheme using ©(n) bit labels can be developed
from the rows of adjacency matrices; moreover, this scheme can be maintained dynamically.
Given that our labels can use O(rlogn) bits, we cannot improve upon this simple scheme
if r € Q(n/logn).

For r-minoes, our relabeller handles edge addition and deletion in O(r?D) time, vertex

addition in O(r2e?) time, and vertex deletion in O(r2e) time, where D is the maximum

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

degree of the vertices in the original graph, and e is the number of edges added to, or deleted
from, the original graph. Unfortunately, if r € w(1), then our vertex deletion relabeller is
not error-detecting. Similarly, if r € o(1), then our vertex addition relabeller is not error
detecting.

For r € Q(1), our error-detecting vertex addition algorithm leads to an O(r?n?®) time
recognition algorithm for r-minoes. This result offers an improvement over the O(rn?)
algorithm that can be extended from work of Johnson, Yannakakis, and Papadimitriou [30],
as well as the O(n"*2) algorithm resulting from Metelsky and Tyshkevich’s characterization
using forbidden subgraphs [44].

For r-bics, our relabeller handles edge addition and deletion, as well as vertex deletion, in
O(r?B) time, and vertex addition in O(r?nB) time, where B is the size of the largest biclique
in the original graph. As with r-minoes, our error-detecting vertex addition algorithm leads
to O(r2n?) time recognition algorithm for r-bics. Unlike r-minoes, our relabeller will always

be error-detecting.

5.1 The dynamic scheme for r-minoes

5.1.1 Vertex labels and decoder

Like the dynamic scheme for line graphs presented in Chapter 4, our dynamic adjacency
labelling scheme for r-minoes uses graph substructures and circular doubly linked lists to

- distribute information about neighbourhoods across the vertices in the neighbourhoods. In
the case of r-minoes, the important substructures are the maximal cliques. As such, we use
the vertex labels to maintain a circular doubly linked list of the vertices in each maximal
clique.

Given an r-mino on m vertices, each vertex is assigned a unique identifier; similarly,
each maximal clique is assigned a unique identifier. For simplicity, we refer to vertices
and maximal cliques by their identifiers. Given a vertex v, its label will also consist of
the following information; exactly how the marker initially determines these labels will be

addressed later.
v.cin: The number of maximal cliques in which v is contained.

v.cl: An array of triples with an entry for each maximal clique in which v is contained.
Each member v.cl; is a triple of the form (num, nz, prev), as follows, where the index

i ranges from 1 to v.cin.

e num is the unique identifier assigned to the maximal clique.

e nz is a pair (id, indez), where id is the identifier of the next vertex after v in the

circular doubly linked list of the vertices in maximal clique v.cl, . num, and index

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is the value j for which id.cl; . num = v.cl;.num.

e prev is a pair (id, index), where id is the identifier of the vertex before v in the
circular doubly linked list of the vertices in maximal clique v.cl;.num, and index

is the value j for which id.cl;.num = v.cl;.num.

In particular, the label of a vertex is (v: v.cin; v.cl) as illustrated in Figure 5.1.

Given the labels of two vertices, v; and vq, the decoder can determine the adjacency of
vy and vg in O(vy.cin + ve.cin) € O(r) time, by comparing the .num entries of vy.cl and
vy.cl to see if the vertices share a common maximal clique. To this effect, let C, denote
{v.cl;. num|1l < i < wv.cin}, the set of all maximal cliques containing v. We observe that C,
can be obtained in O(v.cin) € O(r) time, where |C,| = v.cin < r. The vertices v; and v
are adjacent if and only if C, NC, # 0.

To check the condition C, NC, # @, we use a reciprocal pointer technique suggested in a
text by Aho, Hopcroft, and Ullman [2] (exercise 2.12). Consider two subsets S; and S» of
S. To determine in O(|S1| + |S2|) time if S; NSy # @, we require a block B; of memory to
hold a stack of |S1| words, and a block By of memory indexed by the elements of S. First,
we initialize By to 0. Then, for each element s of S;, we push a pointer P} onto the stack
at B, and initialize a pointer P} in position s{ of Bj, such that P{ points to P and vice
versa. If, for some element s% of So, position 372' of By holds a pointer (J; that points to a
pointer @, in our stack, such that @1 points back to Qa, then S; N Sy # §. Observe that
similar approaches can be used to determine S1 N Sy and S; U Sy in O(1S1] + | S2]) time as
well.

Of particular interest is how we can use the vertex labels to traverse the circular doubly
linked list of vertices in a maximal clique. For any maximal clique C, if we know some
vertex s in C, as well as the value ¢ for which s.cl;.num = C, then the next vertex in the
circular doubly linked list is s.cl;.nz.id and the .cl entry of s.cl;.nz.id that corresponds to C
is s.cl;.nz.index. Moreover, s.cl;.nx.id and s.cl;.nx.index can be determined in O(1) time.
As such, the circular doubly linked list of vertices in C can be traversed in O(]C]) time.
For simplicity, we will say that we traverse C, although we really mean that we traverse the

circular doubly linked list of vertices in C.

o (¢:1:((0.(a. 1), (a, 1))])
(b 1:[(1, (e, 1), (d, 2))])
{ex 1 {1, (d, 1), (B, 1))
(d: 2:((2:{e.1), (e, 1)), (L, (B, 1), (e, D)
(e L[(2:(d, 1), (d, 1))])

Figure 5.1: A labelling of 2-mino (domino) obtained using our labelling scheme

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As well, we should address how we manage the .cl arrays. When a vertex v is added
to a maximal clique, we simply create a new entry at the end of the array v.cl. When v is
removed from a maximal clique, we delete the corresponding entry in v.cl. If a deleted entry
had not been the last in the array, then we move the last entry to the position of the deleted
entry; consequently, we must adjust the .index values for the previous and next vertices in
the circular doubly linked list corresponding to the moved entry. In either case, we are able
to maintain a contiguous array of v.cin entries in O(1) time.

If string denotes the number of bits required to represent string, then the size of the
label of v is

v.cin
v+v.cin+ Z (U.cli.num+v.cli.prev.id+ v.cli.prev.inde$+v.cli.naz.id+v.cli.na;.indea:>.
i=1

Recall an earlier discussion in Section 3.1.3, where we observed that the dynamic nature
of the graph might prevent the vertex and clique identifiers from being space-optimal.

As such, let the largest identifier of a vertex in the graph be L, and let the largest

identifier of a maximal clique be Ls. Thereby, 7,v.cl;.prev.id,v.cl;nz.id € OlogLy)
and v.cl.num € O(log Lz). Moreover, each vertex is in at most r maximal cliques, so
v.cin, v.cly.prev.index, v.cl,.nx.index < r, and the label of v uses O(log L +logr+7log Lo+
rlogr + rlog Ly) € O(rlog Ly + rlog L) bits. If L; and Ly are polynomial in n, which we
stated as an assumption in Section 3.1.3, then the label size of v reduces to O(rlogn). In
turn, the graph is represented using O(rn logn) bits.

Using the same argument of Spinrad [53] (p. 18) found in Section 4.2.1, we can show that
there are 2°(n1087) Jabelled 1-minoes on n vertices. Yet, for v/ > r, an r-mino is an r’-mino;
thereby, there are 22(?1°6™) Jabelled r-minoes on n vertices. Therefore, our dynamic scheme
for r-minoes is space-optimal when r € O(1). For r € w(1), we cannot offer comment on
optimality as we have no additional lower bounds. We also cannot offer comment on the
optimality in the unlabelled case, when r € O(1), as the 22187 Jower bound has not yet

been established on the number of unlabelled r-minoes on n vertices.

5.1.2 Relabeller

Let us now examine the relabellers included in our dynamic scheme. As with the dynamic
scheme presented for line graphs in Chapter 4, detailed pseudocode appears in Appendix C.
In the following discussion, G is the original graph and G’ is the changed graph.

Deleting a vertex.

Before we describe the relabeller, it is important to understand how the deletion of a vertex

affects the maximal cliques in the graph. To this effect, consider the following lemma.

o7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 5.1 Consider a graph G’ formed by deleting a vertex v from a graph G. Let J be
the set of cliques {C|C is a mazimal clique of G and v & C}. The set of mazimal cliques of
G’ can be partitioned as J U {C\ {v}{C is a mazimal cliqgue of G, v € C, and C\ {v} € J,
forall J € J}.

Proof.

Consider an element Jy of J and consider a set of the form C\ {v} where C is a maximal
clique of G, v € C, and C \ {v} € J, for all J € J. By definition, C \ {v} # J, for all
J € J; therefore, C'\ {v} # Jo, which guarantees that the two sets of the claimed partition
are disjoint.

Since Jp is a clique of G, it is also a clique of G’. If Jy is not a maximal clique of G/,
then there exists some clique C* of G’ for which Jy C C*. Since v is deleted from G, we
know that v ¢ C*; thereby, C* is a clique in G, which contradicts the maximality of Jy in
G. Therefore Jy is a maximal clique of G”.

Since C is a clique in G, so too is C\ {v} in G'. If C'\ {v} is not a maximal clique of G’,
then there exists some clique C* of G’ for which C \ {v} C C*. Since v is deleted from G,
we know that v & C*; thereby, C* is also a clique of G. Consequently, C'\ {v} C C* C J*,
for some J* in 7, which is a contradiction. Therefore, C \ {v} is a maximal clique of G’.

Having shown that the described sets are disjoint, and that their members are maximal
cliques of G, it remains to show that these sets contain all the maximal cliques of G'. To
this effect, let X denote the neighbourhood of v in G.

Consider a maximal clique Cp of G'. If Cy € X, then Cy € J. On the other hand, if
Co C X, then CyU{v} is a maximal clique of G. Moreover, if there exists some J* in J, such
that Cy C J*, then Cp C J*, as J* € X (otherwise, the clique J* U {v} would contradict
the maximality of J* in G). Yet, J* is a clique of G’, thereby, Cy C J* contradicts the
maximality of Cg in G’. Therefore, for all J in J, Cy € J, as desired. O

Lemma 5.1, and its proof, suggest the design of our relabeller, DELETEVERTEX, as
presented in Figure 5.2. All the maximal cliques of G that do not contain v will continue
to be maximal in G’. However, for each maximal clique C of G, where v € C, we must
consider the possibility of C'\ {v} being contained in some maximal clique of J.

The relabeller, DELETEVERTEX, first determines if v is an isolated vertex, which is to
say that v.cin = 1 and v.cl;.nx = v. If v is isolated, the algorithm frees the identifier of the
maximal clique {v} for future use. This case can be identified and addressed in O(1) time.

Providing v is not isolated, DELETEVERTEX obtains C = C,, the set of maximal cliques
containing v. As discussed, C, can be determined in ©(v.cin) time, where |C,| = v.cin.
Recall that, to efficiently extract information about a maximal clique from the circular

doubly linked list of its vertices, we must know the identifier of some vertex that belongs to

o8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DELETEVERTEX(G, v)

Input: An adjacency labelling of an r-mino G (that is, the labels thereof) created using
our dynamic scheme, and a vertex v in Viz. Note that the labels of G are only accessed as
required.

Output: An adjacency labeling of a graph G’ (again, the labels thereof) formed by deleting
v from G, providing G’ is an r-mino. If G’ is not an r-mino, then the output indicates as
such.

1 if v is an isolated vertex then

2 free the identifier of {v}

3 else C — {C|C is a maximal clique containing v}

4 for C € C do

5 if the only maximal clique of G containing C'\ {v} is C then
6 remove v from C

7 else eliminate C

8 delete v and free its identifier

Figure 5.2: The relabeller DELETEVERTEX which relabels an r-mino when a vertex is deleted

the maximal clique, as well as the index of the corresponding .cl entry. Consequently, for
each entry v.cl;.num in C, we assume that we also retain a reference to 1.

For each maximal clique C of C, the clique C" = C\ {v} is examined to determine if it
is maximal in G'. Where X denotes the neighbourhood of v in G, |C] < |X| + 1 and C’
can be determined in ©(|C|) € O(]X|) time, by traversing C. Specifically, C’ is maximal in
G’ if and only if the only maximal clique of G containing C’ is C, which is to say that the
set A =[\yeo Cer \ C is empty. Each set Co \ C can be determined in ©(c’.cin) € O(r),
so A can be determined in ©(}" . ¢.cin) € O3 oy x.cin) € O(r|X]) time, as per our
discussion in Section 5.1.1.

If C’ is maximal in G’, then DELETEVERTEX merely removes v from C by removing
v from the circular doubly linked list of vertices in C, eliminating the .cl entry of v that
corresponds to C, and decrementing the v.cin counter by one. This removal of v from C can
be done in O(1) time. On the other hand, if C’ is not maximal in G’ then DELETEVERTEX
eliminates C by traversing C to decrease the .cin counters and delete the corresponding
.cl entries, then freeing the identifier of C' for future use. This elimination of C takes
O(IC]) € O(JX|) time.

Once all of the entries of C have been examined, DELETEVERTEX deletes v and frees
its identifier for future use. So far, DELETEVERTEX has taken O(v.cin - Y .y x.cin) €
O(r?|X|) time, where @([X|) labels have been accessed. These ©(|X|) vertex labels require
Qv.cin +) ¢ x T.cin) bits, so the running time of DELETEVERTEX is polynomial in the
size of its inputs.

If r € O(1), then DELETEVERTEX is error-detecting because the class is hereditary.

However, if r is a strictly increasing function of n, then it is possible that the deletion of v

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

might cause another vertex to be in more than r,,_; maximal cliques.

Proposition 5.2 The modification excess and modification locality of DELETEVERTEX are

ZEro.

Proof. First, observe that the set of vertices whose neighbourhoods change is X U {v}. If
the label of a vertex z is modified, then x belongs to some maximal clique containing v.
That is, z € X U {v}. Therefore, the set of vertices with modified labels is a subset of the

set of vertices whose neighbourhoods change, giving the desired result. 0

Adding a vertex.

Consider the following lemma which describes how the addition of a vertex affects the

maximal cliques in the graph.

Lemma 5.3 Consider a graph G’ formed by adding a vertex v to a graph G, where X
denotes the neighbourhood of v. Let T be the set of cligues {C N X|C is a mazimal clique of
G}. The set of mazimal cliques of G’ can be partitioned as {I U{v}|I is a mazimal element

of ZYU{CIC is a mazimal clique of G and C € X}.

Proof. Consider a set of the form IU{v}, where [is a maximal element of Z, and consider
a set C, where C' is a maximal clique of G and C' € X. By definition, v € I U {v}, however,
v is not a vertex of G; therefore, v € C. Consequently, the two sets are disjoint.

Since I is a clique of G, where I C X, IU{v} is a clique of G'. If TU{v} is not a maximal
clique of G’, then there exists some clique C* of G’ for which I U {v} C C*. Since v € C*
and C* is a clique in G', we know that C* \ {v} C X and I C C*\ {v}, which contradicts
the maximality of I in Z. Therefore, I U {v} is a maximal clique of G'.

Since C is a clique in G, it is also a clique in G’. If C is not a maximal clique of G’, then
there exists some clique C* of G’ for which C C C*. However, C € X, therefore, C* € X.
If C* = {v}, then C = @, which is a contradiction. On the other hand, if C* # {v}, then
C* € X gives v € C*, as C* is a clique. Since v ¢ C*, C* is also a clique in G, which
contradicts the maximality of C in G. Therefore, C is a maximal clique of G’.

Having shown that the described sets are disjoint, and that their members are maximal
cliques of G’, it remains to show that these sets contain all the maximal cliques of G'.

Consider a maximal clique Cy of G'. If v & Cyp, then (p is maximal in G. Moreover,
Co & X, otherwise, the existence of the clique Cp U {v} in G’ contradicts the maximality of
Coin G".

On the other hand, if v € Cp, consider the clique Iy = Cp\ {v} of G. Since Iy C X, there
must be some maximal element I*, of Z, that contains Iy. If Iy C I*, then Cy = Iy U {v} C
I* U {v}, contradicting the maximality of Cy in G’. Therefore, Iy is a maximal element of

7, as desired. L

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 5.3, and its proof, suggest the design of our relabeller, ADDVERTEX, as presented
in Figure 5.3. Specifically, the maximal cliques in G’ of the form (C N X) U {v}, where C
is a maximal clique of G and C C X, are achieved by adding v to C. On the other hand,
those maximal cliques of the form (C' N X) U {v}, where C is a maximal clique of G and
C ¢ X, are achieved by creating an entirely new maximal clique. By creating new maximal
cliques in these situations, we carry forward all those maximal cliques of the form C, where
C is a maximal clique of G and C Z X.

The relabeller, ADDVERTEX, first establishes the new vertex v. It does this in O(1)
time by assigning an identifier to v and setting v.cin to 0. If X = @, then v is an isolated
vertex; therefore, the only new maximal clique in G’ is {v}. How ADDVERTEX creates new
rhaximal cliques is discussed shortly.

Providing X # 0, ADDVERTEX first obtains C = U,cxC,, the set of maximal cliques that
contain some member of X. The set C contains no more than > . x.cin entries. Since
z.cin <71, oy z.cin < r|X|. Moreover, C can be determined in ©(3 ¢ x z.cin) € O(r|X|)
time using a reciprocal pointer technique like that presented in Section 5.1.1. Recall that to
efficiently extract information about a maximal clique from the circular doubly linked list of
its vertices we must know the identifier of some vertex that belongs to the maximal clique,
as well as the index of the corresponding .cl entry. ‘ Consequently, for each entry z.cl;.num
in C, we assume that we also retain a reference to x and i.

For each maximal clique C in C, we entertain the possibility of C'=CnX being a
maximal element of the set Z, seen in Lemma 5.3. As discussed in Section 5.1.1, CN X can
be computed in O(|C| + | X|) time, however, |C| could be as large as n; as such, we prefer
to determine C' N X in ©(}_x x.cin) € O(r|X|) time by searching for the identifier of C
in the .num entries of each element of X. If C’ is a subclique of some maximal clique C*
remaining in C (observe that ADDVERTEX removes C from C when it is selected), then we
do nothing as C* N X will present itself later. Specifically, if C' € C* N X, then C’ is not
a maximal element of I; otherwise, if C’ = C* N X, then we avoid possible duplication of
maximal cliques. Similarly, if C’ is a subclique of some maximal clique C* in D, the set of
maximal cliques D for which (D N X) U {v} has been made a maximal clique of G’, then
C' ¢ C* N X (given that C* is selected from C before C’, the addition of C* to D was
contingent on C* N X ¢ C).

The clique C’ is a subclique of some maximal clique remaining in C U D if and only if
(NerecrCer) N (C U D) # B. Since no vertex is contained in more than r maximal cliques,
NerecCe can be computed in O3, e ¢ .cin) € O(F oy z.cin) € O(r|C'|) € O(r|X})
time. In turn, the condition (NyecCo) N (CUD) # B can be checked in O3, x x.cin) €
O(r|X1) time, as |D| < |C] < ¥ cx x.cin < 7| X[

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADDVERTEX(G, X)

Input: An adjacency labelling of an r-mino G (that is, the labels thereof) created using
our dynamic scheme, and a subset X of Vz. Note that the labels of G are only accessed as
required.

Output: Let G’ be the graph formed by adding a new vertex v to G, where v is adjacent to
exactly those vertices in X. Providing G’ is an r-mino, the output is an adjacency labelling
of G’ (again, the labels thereof). If G’ is not an r-mino, the output indicates as such.

1 create a new vertex v
2 if X =0 then
3 make a new maximal clique {v}
4 else C — {C|C is a maximal clique containing a vertex of X}
5 D~
6 for CcC do
7 C—C\{C}
8 if C N X is not contained in any of the maximal cliques in C or D then
9 D—DU{C}
10 if CNnX = C then
11 add v to C
12 else make a new maximal clique (CNX)U {v}

Figure 5.3: The relabeller ADDVERTEX which relabels an r-mino when a vertex is added

Now, if C’ is not contained in any maximal clique of C U D, then we make a maximal
clique of C’ U {v}. Exactly how we make a maximal clique of C'tJ {v} depends on whether
C’ = C, that is, whether C C X; note that this condition can be checked while computing
C’'. If ¢’ = C, then we simply add v to C, as C will no lo’nger be maximal in G’. Specifically,
ADDVERTEX inserts v into the circular doubly linked list for C, then increases the value
of v.cin by 1. This can be done in O(1) time. Otherwise, if C' # C, then we form a new
maximal clique, C’'U{v}, as C will continue to be maximal in G’. Specifically, ADDVERTEX
increases the value of the .cin counter of each of the vertices in C’ U {v} by one, establishes
a circular doubly linked list of the vertices in C’ U {v}, and creates a new .cl entry for
each member of C" U {v} while establishing the circular doubly linked list; forming this
new maximal clique takes O(|C’|) € O(|X|) time. Whenever a .cin counter is increased,
we check that its value is no greater than r. Therefore, ADDVERTEX is error-detecting,
providing r € Q(1).

Having carefully examined ADDVERTEX, we observe that the algorithm runs in
O((X,ex x-cin)?) € O(r%X|?) € O(r’n?) time, where O(|X|) vertex labels have been
accessed. These O(]X|) vertex labels require Q(v.cin 4+).\ z.cin) bits, so the running

time of ADDVERTEX is polynomial in the size of its input.

Proposition 5.4 The modification excess and modification locality of ADDVERTEX are

Zero.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. First, observe that the set of vertices whose neighbourhoods change is X U {v}. If
the label of a vertex z is modified, then = belongs to some maximal clique containing v.
That is, z € X U {v}. Therefore, the set of vertices with modified labels is a subset of the

set of vertices whose neighbourhoods change, giving the desired result. 0

Given Corollary 3.8, ADDVERTEX gives polynomial time recognition for r-minoes.

Theorem 5.5 For any graph G on n wvertices, we can determine if G is an r-mino in

O(r?n®) time.

Furthermore, observe that we can use ADDVERTEX, just as we did in the proof of Theorem

3.6, to create a O(r2n?) time marker for our dynamic scheme.

Deleting an edge.

Consider the following lemma, which describes how the deletion of an edge affects the

maximal cliques in the graph.

Lemma 5.6 Consider a graph G’ formed by deleting an edge wv from a graph G. Let L be
the set of cliqgues {C|C is a mazimal clique of G, andv & C oru & C}. The set of mazimal
cliques of G' can be partitioned as LU {C \ {u}|C is a mazimal cliqgue of G, u,v € C, and
C\{u} € L, for all L € LYU{C\{v}|C is a mazimal clique of G, u,v € C, and C\{v} € L,
forall L € L}.

At the heart of Lemma 5.6 is the fact that the maximal cliques of G that do not contain
both » and v will continue to be maximal in G’. However, for each maximal clique C of
G containing both u and v, we must consider the possibility of C' \ {u} or C\ {v} being

contained in some other maximal clique of L.

Proof. Consider an element Lo of £, a set of the form C, \ {u}, where C, is a maximal
clique of G, u,v € Cy, and Cy \ {u} € L, for all L € £, and a set of the form C\ {v}, where
C, is a maximal clique of G, u,v € C,, and C, \ {v} € L, for all L € L. By definition, for
all L € £, Cy \ {u},C, \ {v} # L; moreover, v € C, \ {u} and u € C, \ {v}, so the three
sets are disjoint.

Since Lg is a clique of G, it is also a clique of G'. If Ly is not a maximal clique of G,
then there exists some clique C* of G’ for which Ly C C*. Since C* is a clique, at least
one of u and v does not belong to C* as the edge uv does not belong to G'. Thereby, C*
is a clique in G, which contradicts the maximality of Ly in G. Therefore, Lj is a maximal
clique of G'.

Since C,, is a clique, so too is Cy, \ {u} in G'. If C, \ {u} is not a maximal clique of G’,
then there exists some clique C* of G’ for which C, \ {u} C C*. Since C* is a clique. at

least one of u and ¢ does not belong to C* as the edge uv does not belong to G'; thereby,

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C* is also a clique of G. Consequently, Cy, \ {u} C C* C J*, for some J* in J, which is a
contradiction. Therefore, Cy, \ {u} is a maximal clique of G’. A similar argument gives that
Cy, \ {v} is a maximal clique of G’.

Having shown that the described sets are disjoint, and that their members are maximal
cliques of G’, it remains to show that these sets contain all the maximal cliques of G’.

Consider a maximal clique Cy of G'. If u,v € Cy, then Cy € L. Similarly, if u € Cy,
v & Cy, and Cy € X, then Cp € L.

If u e Co, v Cp, and Cy C X, then Cp U {v} is a maximal clique of G. Moreover,
if there exists some L* in £, such that Co C L*, then Cy C L*, as L* Z X, (otherwise,
the clique L* U {v} would contradict the maximality of L* in G). Yet, L* is a clique of G’,
thereby, Cq C L* contradicts the maximality of Cp in G’. Therefore, for all Lin £, Cy € L,
as desired.

When v € Cy and u ¢ Cyp, we can use similar arguments to show that Cy has one of the

desired forms. O

Lemma 5.6, and its proof, suggest the design of our relabeller, DELETEEDGE, as pre-
sented in Figure 5.4. Just as Lemma 5.6 resembles Lemma 5.1, so too does DELETEEDGE
resemble DELETEVERTEX.

The relabeller, DELETEEDGE, first obtains C = C, N C,, the set of maximal cliques
containing both u and v, where C,, and C, can be determined in ©(u.cin) and O(v.cin) time,
respectively. Since |Cy| = u.cin and |Cy| = v.cin, C can be determined in O(u.cin 4 v.cin) €
O(r) time. For each maximal clique C of C, the cliques C|, = C \ {u} and C, = C\ {v}
are examined to determine if they maximal in G’. Letting X denote the intersection of
the neighbourhoods of w and v in G, |C| < {X| + 2, so C), and C) can be determined in
O(lC|) € O(JX]) time, by traversing C. For a € {u,v}, C/, is maximal in G’ if and only if
the set A, = nc'ecg (Co \ C) is empty. As per our discussion in Section 5.1.1, A, can be
determined in O(Zc/ecg d.cin) € O3 cx 7-cin) € O(r|X|) time.

First, let us assume that exactly one of C'\ {u} and C \ {v} is a maximal clique in G’;
without loss of generality, let the maximal clique be C\ {v}. We develop this maximal clique
by removing v from C, just as we did in DELETEVERTEX, using O(1) time. As a second
possibility, consider if neither C'\ {u} nor C'\ {v} is a maximal clique in G’. In this case, we
eliminate the maximal clique C, just as we did in DELETEVERTEX, using O(|C|) € O(JX{)
time. Finally, if both C'\ {u} and C'\ {v} are both maximal in G’, then we develop C\ {v}
by removing v from C, using O(1) time; however, C'\ {u} must be developed by establishing
a new maximal clique, just as we did in ADDVERTEX, requiring O(|C.]) € O(]X|) time.

Whenever a .cin counter is increased during the creation of the new maximal clique, we
check that its value is no greater than . Thereby, DELETEEDGE is error-detecting. Since C

contains at most min{u.cin, v.cin} maximal cliques, the total running time of DELETEEDGE

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DELETEEDGE(G, u, v)

Input: An adjacency labelling of an r-mino G (that is, the labels thereof) created using our
dynamic scheme, and two distinct vertices v and v of Vg for which uv € Eg. Note that the
labels of G are accessed only as required.

Output: An adjacency labeling of a graph G’ (again, the labels thereof) formed by deleting
the edge uv from G, providing G’ is an r-mino. If G’ is not an r-mino, then the output
indicates as such.

1 €+« {C|C is a maximal clique containing both u and v}

2 forCeCdo

3 if the only maximal clique of G containing C \ {v} is C then

4 remove v from C

5 if the only maximal clique of G containing C \ {u} is C then
6 make a new maximal clique of C'\ {u}

7 elseif the only maximal clique of G countaining C \ {u} is C then
8 remove u from C

9 else eliminate C

Figure 5.4: The relabeller DELETEEDGE which relabels an r-mino when an edge is deleted

is O(min{u.cin, v.cin} - 3¢ ¢ z.cin) € O(r?|X]), where ©(|X|) labels are accessed. Given
that these labels require Q(u.cin 4 v.cin + .y x.cin) bits, the running time of DELE-

TEEDGE is polynomial in the size of its input.
Proposition 5.7 The modification locality of DELETEEDGE is one.

Proof. First, observe that the set of vertices whose neighbourhoods change is {u, v}. If the
label of a vertex x is modified, then = belongs to some maximal clique of G containing u

and v, giving the desired result. O

Adding an edge.

Consider the following lemma, which describes how the addition of an edge affects the .

maximal cliques in the graph.

Lemma 5.8 Consider a graph G’ formed by adding an edge wv to a graph G. Let X denote
the neighbourhood of v in G’ and let K be the set of cliques {C N X|C is a mazimal clique
of G and u € C}. The set of mazrimal cliques of G’ can be partitioned as {K U{v}K is a
mazimal element of K} U {C|C is a mazimal cliqgue of G, C € X, and C # {v}}.

Proof. Consider a set of the form K U {v}, where K is a maximal element of X, and
consider a set C, where C is a maximal clique of G, C € X, and C # {v}. By definition,
u,v € K U {v}; however, if v € C, then v ¢ C, as the edge uv does not belong to G.
Therefore, the two sets are disjoint.

Since K is a clique of G, where K C X. KU {v} is a clique of G'. If K U {v} is not a

maximal clique of G’, then there exists some clique C* of G’ for which KU {v} € C*. Since

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v € C* and C* is a clique in G’, we know that C* \ {v} C X and K C C*\ {v}, which
contradicts the maximality of K in K. Therefore, K U {v} is a maximal clique of G'.

Since C is a clique in G, it is also a clique in G'. If C is not a maximal clique of G’, then
there exists some clique C* of G’ for which C ¢ C*. However, C € X, therefore, C* ¢ X.
If C* = {v}, then C = @, which is a contradiction. On the other hand, if C* # {v}, then
C* ¢ X gives v & C* as C* is a clique. Since v g€ C*, C* is also a clique in G, which
contradicts the maximality of C in G. Therefore, C is a maximal clique of G'.

Having shown that the described sets are disjoint, and that their members are maximal
cliques of (', it remains to show that these sets contain all the maximal cliques of G'.

Consider a maximal clique Cy of G'. If u & Cy or v & Cy, then Cp is maximal in G.
Moreover, Co € X, otherwise, the existence of the clique Cp U {v} in G’ contradicts the
maximality of Cp in G’. Similarly, Cp # {v}, otherwise, the existence of the clique Cp U {u}
in G’ contradicts the maximality of Cy in G'.

On the other hand, if u,v € Cy, consider the clique Ko = Cp \ {v} of G. Since Ky C X,
there must be some maximal element K*, of K, that contains Ko. If Ky C K*, then
Co = Ko U {v} C K* U {v}, contradicting the maximality of Cy in G’. Therefore, Kj is a

maximal element of K, as desired. g

When forming a maximal clique of G’ that contains both u and v, we can view it as either
adding v to some clique containing w, or vice versa. In designing our relabeller, we have
chosen the former viewpoint. The relabeller, ADDEDGE, presented in Figure 5.5, closely
resembles ADDVERTEX, just as Lemma 5.8 closely resembles Lemma 5.3.

The relabeller, ADDEDGE, first determines if v is an isolated vertex in G. If v is isolated,
then the algorithm eliminates the maximal clique {v}, as we will later include v in some
maximal clique containing u. As discussed in Section 5.1.2, this case can be identified and
addressed in O(1) time.

Providing v is not an isolated vertex, ADDEDGE obtains X, the neighbourhood of v in
G’. The neighbourhood of v in G can be determined by traversing each of the maximal
cliques in C,. Since no vertex in G belongs to more than » maximal cliques, where the size
of the largest maximal clique containing v is | X| — 1, the neighbourhood of v in G can be
determined in O(v.cin - | X|) € O(r|X|) time. By adding u to the neighbourhood of v in G,
we obtain X.

As well, ADDEDGE obtains C = C,, the set of maximal cliques containing u; again, for
each element u.cl;. num, we retain a reference to 7. For each maximal clique C in C, we
process the subclique G’ = C'N X as we did in ADDVERTEX. In ADDVERTEX, [C] < r|X],
however, in ADDEDGE, [C} = wu.cin < r. Therefore, the running time of ADDEDGE is
O(u.cin - v.cin - | X|) € O(r?|X|), where ©(|X|) labels are accessed. Given that these labels

require Q(u.cin +v.cin+3__ .y T.cin) bits, the running time of ADDEDGE is polynomial in

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADDEDCE(G, u,v)

Input: An adjacency labelling of an r-mino G (that is, the labels thereof) created using our
dynamic scheme, and two distinct vertices v and v of Vi for which uv € E¢. Note that the
labels of G are only accessed as required.

Output: An adjacency labeling of a graph G’ (again, the labels thereof) formed by adding
the edge uv to G, providing G’ is an -mino. If G’ is not an r-mino, then the output indicates
as such.

1 if v is an isolated vertex (in G) then

2 eliminate the maximal clique {v}

3 X « {z|z is a neighbour of v (in G')}

4 €« {C|C is a maximal clique containing u}
5 D0
6

7

8

for C €C do
C«—C\{C}
if C N X is not contained in any of the maximal cliques in C or D then
9 D~ DU{C}
10 if CN X = then
11 add v to C
12 else make a new maximal clique (C N X) U {v}

Figure 5.5: The relabeller ADDEDGE which relabels an r-mino when an edge is added

the size of its input. Just as we did in ADDVERTEX, whenever a vertex is added to a new
maximal clique we check that it does not belong to more than r maximal cliques. Therefore,

ADDEDGE is error-detecting.
Proposition 5.9 The modification locality of ADDEDGE is one.

Proof. First, observe that the set of vertices whose neighbourhoods change is {u,v}. If the
label of a vertex x is modified, then z will belong to some maximal clique of G’ containing

v, giving the desired result. O

5.2 The dynamic scheme for r-bics

The dynamic adjacency labelling scheme that we develop for r-bics will be very similar to
the one previously developed for r-minoes in Section 5.1. Before presenting our work on
r-bics we note that the class of r-minoes does not include the class of r-bics, and vice versa.

For example, K1 3 is a 1-bic, but not a 1-mino, and K3 is a 1-mino, but not a 1-bic.

5.2.1 Vertex labels and decoder

Like the dynamic scheme for r-minoes presented in Section 5.1, our dynamic adjacency
labelling scheme for r-bics uses graph substructures and circular doubly linked lists to dis-
tribute information about neighbourhoods across the vertices in the neighbourhoods. In

the case of r-bics, the important substructures are the maximal bicliques. As such, we use

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the vertex labels to maintain a circular doubly linked list of the vertices in each maximal
biclique.

Given an r-bic on n vertices, each vertex is assigned a unique identifier, similarly, each
maximal biclique is assigned a unique identifier. For simplicity, we refer to vertices and max-
imal bicliques by their identifiers. Given a vertex v, its label will also consist of the following

information; exactly how the marker initially determines these labels will be addressed later.
v.bin: The number of maximal bicliques in which v is contained.

v.bicl: An array of 4-tuples with an entry for each maximal biclique in which v is contained.
Each member v.cl; is a 4-tuple of the form (num, part, nx, prev), as follows, where the

index i ranges from 1 to v.bin.

e num is the unique identifier assigned to the maximal biclique.

e part is a value, either 0 or 1, used to indicate the part of the bipartition to which

v belongs.

e nz is a pair (id, index), where id is the identifier of the next vertex after v in the
circular doubly linked list of the vertices in maximal biclique v.bicl;.num, and

index is the value j for which id.bicl;.num = v.bicl;. num.

e prev is a pair (id, index), where id is the identifier of the vertex before v in the
circular doubly linked list of the vertices in maximal biclique v.bicl;.num, and

index is the value j for which id.bicl;. num = v.bicl;. num.

In particular, the label of a vertex is (v: v.bin; v.bicl) as illustrated in Figure 5.6.

Given the labels of two vertices, v; and vq, the decoder can determine the adjacency of
vy and v by comparing the .num and .part entries of v1.bicl and vq.bicl to see if the vertices
belong to distinct parts of some common maximal biclique. To this effect, let B, denote
{v.bicl;num|l < j < v.bin}, the set of maximal bicliques containing v, and, for ¢ € {0,1},
let B! denote {v.biclj.num|l < j < v.bin,v.bicl;.part = i}, the set of maximal bicliques
containing v, where v belongs to the i*h part of the bipartition. Clearly, B% and B} partition

B,, where B, = v.bin.

(0 4:0(1,0.(b.1), (4, 1)), 2,1, (5,2), (£,2)), (3,0, (e, 1), (£.3)- (4.0.(¢-2). (¢ 2))])
(03011, (2, 1)), (2,0,(e,1).(2,2)), (5,0, (¢ 3), (¢ 3))])
(c:3:(3.1.(d,2), (2,3)), (4,1, (a,4), (/. 9), (5,1, (0,3). (.3)))
(d:3:((1.1.0.1). (£, 1), (3. 1,(£:3), (1)), (6, 1, (e,3), {e.3)1])
(e 1 3:[(2.0.(£.2). (0.2)). (4,1,(/,4), (2, 4)), (6,0, (d,3). (d. 3))])

(f 401 L (e 1).(6.1)),(2,0, (0, 2), (6, 1)), (3,1, (2, 3). (. 2)). (4. 1. (. 2). (€.2))])

Figure 5.6: A labelling of a 4-bic obtained using our labelling scheme

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For any vertex v, B,, B, and B., can be determined simultaneously in ©(v.bin) € O(r)
time. Therefore, the adjacency of two vertices v; and vy can be determined in O(vy.bin +
va.bin) € O(r) time by testing the condition (B N B) U (BL N BY)) # 0, using the
reciprocal pointer technique described in Section 5.1.1.

Using an approach identical to that seen in Section 5.1.1 for r-minoes, we are able to
traverse the circular doubly linked list of vertices in a maximal biclique B in O(|B|) time
(again, we will say that we traverse B, although we really mean that we traverse the circular
doubly linked list of vertices in B). While traversing B, we are also able to determine B;,
the vertices of B belonging to part i, where i € {0,1}. As well, we can use the approach
seen in Section 5.1.1 to maintain v.bicl as a contiguous array of v.bin entries in O(1) time.

If string denotes the number of bits required to represent string, then the size of the
label of v is

v.cin

T+ v.bin + E (v.bicli.num + v.bicl;.part+

i=1

v.bicl;.prev.id + v.bicl;.prev.index + v.bicl;.nx.id + v.bicli.n.’n.indew) .

Recall an earlier discussion in Section 3.1.3, where we observed that the dynamic nature of
the graph might prevent the vertex and biclique identifiers from being space-optimal. As

such, let the largest identifier of a vertex in the graph be L, and let the largest identi-

fier of a maximal biclique be Ls. Thereby, T, v.bicl;.prev.id, v.bicl;. nz.1d € O(log Ly) and
v.bicl;.num € O(log Ly). Moreover, each vertex is in at most 7 maximal bicliques; there-
fore, v.bin,v.bicl;.prev.index, v.bicl; .nz.index < r, and the label of v uses O{log L1 +logr+
rlog Ls + rlogr + rlog Ly) € O(rlog Ly + rlog Ly) bits. If Ly and Ly are polynomial in
n, which we stated as an assumption in Section 3.1.3, then the label size of v reduces to
O(rlogn). In turn, the graph is represented using O(rnlogn) bits.

Observe that a 1-bic is a complete bipartite graph. Given that the number of labelled
and unlabelled complete bipartite graphs on n vertices are 2"~! and |2l |, respectively,
our dynamic scheme is not space optimal for » = 1. As such, we implicitly assume that
r> 2.

Using an argument similar to that found in Section 4.2.1, we can show that, for r > 2,
there are 24(n1ogn) Jahelled r-bics on n vertices, thereby, our dynamic scheme for r-bics is
space-optimal when r € O(1). Consider a graph consisting of a complete bipartite subgraph
on n — 1 vertices and one vertex v adjacent to each of the n — 1 vertices in the complete
bipartite subgraph. There are n2"~2 ¢ 29(198n) gych graphs, each of which is a 2-bic. Yet,
for 7’ > r, an r-bic is also an ’-bic; thereby, there are 2371987 Jabelled r-bics on n vertices.

For r € w(1), we cannot offer comment on optimality as we have no additional lower

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bounds. We also cannot offer comment on the optimality in the unlabelled case, when
r € O(1), as the 241%™ lower bound has not yet been established on the number of

unlabelled r-bics on n vertices.

5.2.2 Relabeller

Let us now examine the relabellers included in our dynamic scheme. As with the dynamic
schemes presented for line graphs and r-minoces, detailed pseudocode appears in Appendix

C. In the following discussion, G is the original graph and G’ is the changed graph.

Deleting a vertex from the graph

Consider the following lemma, which describes how the deletion of a vertex affects the

maximal bicliques in the graph.

Lemma 5.10 Consider a graph G’ formed by deleting a vertex v from a graph G, where X
denotes the neighbourhood of v in G. Let T be the set of bicliques { B| B is a mazimal biclique
of G and v & B}. The set of mazimal bicliques of G’ can be partitioned as J U {B\ {v}|B
is a mazximal biclique of G, v € B, and B\ {v} € J, for all J € J}.

Lemma 5.10, whose proof is identical to that of Lemma 5.1, suggests the design of our
relabeller, DELETEVERTEX, as presented in Figure 5.7. As expected, DELETEVERTEX is
almost identical to its sister algorithm presented in Section 5.2.

Despite their similarities, these two sister algorithms have some differences. Observe
that every vertex in Vg belongs to some maximal biclique containing v. Therefore, we
are able to determine Vi while determining if the only maximal biclique of G containing
B\ {v} is B, for each biclique B € B. Consequently, if € w(1), then we can ensure that
DELETEVERTEX is error-detecting by checking all vertex labels to confirm that each vertex
belongs to at most 7 maximal cliques. This requires ©(n) time, where n < > 5. |B|.

In the case of r-minoes, the size of each maximal clique containing v was bounded
by |X|, thereby leading to a running time of O(v.cin -y .y z.cin) € (O(r}X|). In
the case of r-bics, the size of each maximal biclique containing v is bounded only by B,
the size of the largest maximal biclique in G. As such, for r-bics, DELETEVERTEX runs
in O(v.bin - TIrngf{ZbeB b.bin}) € O(r?B) time. Observe that DELETEVERTEX accesses
@(@gf{IBH) labels, which require Q(3_ 5, e g b-bin) bits in total. Therefore, the running
time of DELETEVERTEX is polynomial in the size of its inputs.

Furthermore, in the case of r-bics, the modification locality of DELETEVERTEX is un-
bounded, as it is possible that some maximal bicliques of G containing v may have been

independent sets.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DELETEVERTEX(G, v)

Input: An adjacency labelling of an r-bic G (that is, the labels thereof) created using our
dynamic scheme, and a vertex v in Viz. Note that the labels of G are only accessed as
required.

Output: An adjacency labeling of a graph G’ (again, the labels thereof) formed by deleting
v from G, providing G’ is an r-bic. If G’ is not an r-bic, then the output indicates as such.

B « {B|B is a maximal biclique containing v}
for Be€ B do
if the only maximal biclique of G containing B\ {v} is B then
remove v from B
else eliminate B
delete v and free its identifier
if r € w(1) then
if some vertex belongs to more than r» maximal bicliques then
error no longer an r-mino

O 00O Ui W=

Figure 5.7: The relabeller DELETEVERTEX which relabels an r-bic when a vertex is deleted

Adding a vertex.

Consider a vertex v which is to be added to a graph G, where X denotes the neighbourhood
of v. For each biclique B of G, let {Pf, PP} be the partition of B defined by b € PP if and
onlyifb€ X and b ¢ B;, or b ¢ X and b € B;. By adding v to the subset of B; belonging to
PB . we obtain a biclique of the new graph. The maximality of such bicliques is addressed
by the following lemma, which describes how the addition of a vertex affects the maximal

bicliques in the graph.

Lemma 5.11 Consider a graph G’ formed by adding a vertez v to a graph G, where X
denotes the neighbourhood of v. Let I be the set of bicliques {Pf,Pf|B is a mazimal
biclique of G}. The set of mazimal bicliques of G' can be partitioned as {I U {v}|I is a
mazimal element of T} U {B|B is a mazimal biclique of G and P2, PE + B}.

Specifically, the maximal bicliques in G’ of the form PP U {v}, where P? = B, are

2

achieved by adding v to PP. On the other hand, those maximal bicliques of the form
PB U {v}, where P2 # B, are achieved by creating an entirely new maximal biclique. By
creating new maximal bicliques in these situations, we carry forward all those maximal

bicliques of the form B, where B is a maximal biclique of G and PZ, PP # B.

Proof. Consider a set of the form TU {v}, where I is a maximal element of Z, and consider
a set of the form B, where B is a maximal biclique of G and P, PP # B. By definition,
v € T U {v}, however, v is not a vertex of G. Therefore, v ¢ B. Consequently, the two sets
of the claimed partition are disjoint.

Since [is a biclique of G, where, without loss of generality, I = P{, we know that T U{v}

is a biclique of G'. If JU {v} is not a maximal biclique of G’, then there exists some biclique

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B* of G' for which I U {v} € B*. Since v € B*, we know that I € B*\ {v} and, without
loss of generality, B* \ {v} = P¥", which contradicts the maximality of I in Z. Therefore,
I'U {v} is a maximal biclique of G'.

Since B is a biclique in G, it is also a biclique in G’. If B is not a maximal biclique
of G', then there exists some biclique B* of G’ for which B C B*. But P, PP # B, so
By 7 PlB* # B*, which gives v ¢ B*, as B* is a biclique. Since v ¢ B*, B* is also a biclique
in G, which contradicts the maximality of B in G. Therefore, B is a maximal biclique of
G

Having shown that the described sets are disjoint, and that their members are maximal
bicliques of G, it remains to show that these sets contain all the maximal bicliques of G’.

Consider a maximal biclique B’ of G'. If v ¢ B’, then B’ is maximal in G. More-
over, PP, PB # B’, otherwise, the existence of the biclique B’ U {v} in G’ contradicts the
maximality of B’ in G'.

On the other hand, if v € B’, consider the biclique I’ = B’ \ {v} of G. Since I' &
{PI',Pl'}, there must be some maximal element I*, of Z, that contains I'. If I’ C I*
then B’ = I' U {v} C I* U {v}, contradicting the maximality of B’ in G’. Therefore, I’ is a

maximal element of 7, as desired. 0

Lemma 5.11, and its proof, suggést the design of our relabeller, ADDVERTEX, as pre-
sented in Figure 5.8. Perhaps the greater challenge in designing ADDVERTEX lies in how to
identify the maximal bicliques of G that do not contain any vertices of X, as we will need
to determine these bicliques via the vertices of X.

To improve the running time of our algorithm, we insist that ADDVERTEX represents X,
the set of vertices to which v is made adjacent, in the same manner that S; was represented
in our discussion of the reciprocal pointer technique found in Section 5.1.1. This one-time
effort requires ©(|X|) time, but will pay dividends later on.

The relabeller, ADDVERTEX, first establishes the new vertex v. It does this in O(1) time
by assigning an identifier to v and setting v.bin to 0. If G = @, then Vis: = {v}, therefore, the
only new maximal biclique in G’ is {v}. How ADDVERTEX creates new maximal bicliques
is discussed shortly.

Providing G # 0, ADDVERTEX first obtains B = Uyev, By, the set of maximal bicliques
of G. Let z* be a member of X. Since every vertex in Vi belongs to some maximal
biclique containing x*, we can traverse each of the x*.bin bicliques of 2* to determine Vg.
Where B is the size of the largest biclique in G, determining Vi in this manner takes
O(z*.bin - B) € O(rB) time.

Each B, can be determined in ©(u.bin) € O(r) time, where {B,| < r. Therefore, B con-
tains no more than) .. uw.bin < rn entries, and can be determined in O(}, ¢y, u.bin) €

O(rn) time. Recall that, to efliciently extract information about a maximal biclique from

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADDVERTEX(G, X)

Input: An adjacency labelling of an r-bic G (that is, the labels thereof) created using our
dynamic scheme and a subset X of V3. Note that the labels of G are accessed only as
required.

Output: Let G’ be the graph formed by adding a new vertex v to G, where v is adjacent to
exactly those vertices in X. Providing G’ is an r-bic, the output is an adjacency labelling
of G’ (again, the labels thereof). If G’ is not an 7-bic, the output indicates as such.

1 create a new vertex v
2 if G=0 then :
3 make a new maximal biclique {v}
4 else B — {B|B is a maximal biclique of G}
5 D0
6 for B € Bdo
7 B« B\ {B}
8 for i € {0,1} do
9 if PP is not contained in any of the maximal bicliques in B or D then
10 if PP = B then
11 add v to B
12 else make a new maximal biclique P2 U {v}
13 if either P2 or PZ was not contained in any of the maximal bicliques in B
or D then
14 D — DU{B}
15 if r € o(1) then
16 if some vertex belongs to more than » maximal cliques then

Figure 5.8: The relabeller ADDVERTEX which relabels an r-bic when a vertex is added

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the circular doubly linked list of its vertices, we must know the identifier of some vertex
that belongs to the maximal biclique, as well as the index of the corresponding .bicl entry.
Consequently, for each entry w.bicl;.num in B, we assume that we also retain a reference to
u and 1.

Just as we insisted that X be represented with reciprocal pointers, we also insist that B
be represented with reciprocal pointers.The only difference between these reciprocal pointer
representations is that the representation for B will need to be maintained dynamically. As
a biclique B is chosen from B we remove it from B; this removal from the reciprocal pointer
representation takes O(1) time.

For each maximal biclique B in B, we entertain the possibility of P? and P being
maximal elements of the set Z, seen in Lemma 5.11. For each element b in B, the membership
of bin X and the value of b.bicl;.part, where b.bicl;.num = B, determine whether b belongs
to P or PP. Given the representation of X with reciprocal pointers, determining the
membership of b in X requires O(1) time; moreover, the index j for which b.bicl;.num = B
is known from the previous vertex in the circular doubly linked list about B. Therefore,
traversing B to determine P and PP requires O(|B|) time.

If PP is contained in some maximal biclique B* remaining in B, then we do nothing as
P53 will present itself later. Specifically, if P? C PJB *, then P28 is not a maximal element of
Z, and if PiB = PJB*, then we avoid possible duplication of maximal bicliques. Similarly, if
PP is contained in some maximal clique B* in D, the set of bicliques D for which D U {v}
has been made a maximal biclique of G, then P? C B* (given that B* is selected from B
before B, the addition of B* to D was contingent on B* ¢ P5).

The biclique PP is contained in some maximal biclique in B or D if and only if N, P (BuN
(BUD)) # 0. Since |By| = u.bin, and B and D are represented using reciprocal pointers,
each set B, N (B U D) can be determined in B(u.bin) € O(r) time. In turn, the condition
Nuepz (Bu N (BN D)) # B can be checked in O(u.bin - |PE|) € O(r|PE|) € O(r|B|) time
using the reciprocal pointer technique discussed in Section 5.1.1.

Now if PP is not contained in any maximal bicliques of BU D, then we make a maximal
biclique of P2 U {v}. Exactly how we make a maximal biclique of PB U {v} depends
on whether P? = B; note that this condition can be checked while computing PZ. If
PP = B, then we simply add v to B, as B will no longer be maximal in G’. Specifically,
ADDVERTEX inserts v into the circular doubly linked list for B such that the .part value
of the corresponding v.biel entry is 7, then increases the value of v.bin by one. This can be
done in O(1) time. Otherwise, if PP # B, then we form a new maximal biclique, P? U {v},
as B will continue to be maximal in G’. Specifically, ADDVERTEX increases the value of
the .bin counter of each of the vertices in PE U {v} by one, establishes a circular doubly

linked list of the vertices in PP U {v}, and creates a new .bicl entry for each member of

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PP U {v} (mirroring the .part values seen in B, and setting the appropriate .part value of v
to i) while establishing the circular doubly linked list. Forming this new maximal biclique
takes O(|PE|) € O(|B}) time.

Whenever a .bin counter is increased, we check that its value is no greater than r, thereby,
ADDVERTEX is error-detecting. Moreover, if r € o(1), then our previous determination of
Vg can be used to check all labels to ensure that each vertex belongs to at most r maximal
cliques. The time required to do this is ©(n).

The total running time of ADDVERTEX is O(z*.bin - B - > .y u.bin) € O(r*nB) €
O(r?n?). Given that ADDVERTEX accesses the entire labelling, its running time is polyno-
mial in the size of its input.

From Corollary 3.8, we see that ADDVERTEX gives polynomial time recognition for r-

bics.

Theorem 5.12 For any graph G onn vertices, we can determine if G is an r-bic in O(r?*n?)

time.

Furthermore, observe that we can use ADDVERTEX, just as we did in the proof of Theorem

3.6, to create a O(r?n®) time marker for our dynamic scheme.
Deléting an edge.

Consider the following lemma, which describes how the deletion of an edge affects the

maximal bicliques in the graph.

Lemma 5.13 Consider a graph G’ formed by deleting an edge wv from a graph G, where
Vo # {u,v}. Let X, and X, denote the neighbourhoods of u and v in G’, respectively,
and let W denote the vertices of G for which w € W if and only if w € X, & w € X,,.
Furthermore, let £y be {B|B is a mazimal bicliqgue of G, B ¢ W, and |{u,v} N B| = 1},
let Lo be {B|B is a mazimal biclique of G and u,v & B}, and let K be the set of bicliques
{(B\{v})n WI|B is a mazimal biclique of G, u € B}.

The set of mazimal bicliques of G' can be partitioned as L1UL2U{B\{u}|B is a mazimal
biclique of G, u,v € B, B # {u,v}, and B\ {u} ¢ Bi, for all mazimal bicliques By of G,
By # B}U{B\ {v}|B is a mazimal biclique of G, u,v € B, B # {u,v}, and B\ {v} ¢ By,
for all maximal bicliques By of G, By # B} U{K U {v}|K is a mazrimal element of K}.

Unlike Lemma 5.1 which tells us that maximal cliques can only be destroyed when an
vertex is deleted, Lemma 5.10 indicates that the deletion of an edge can cause bicliques to be
both created and destroyed. As such, DELETEEDGE has the flavour of both ADDVERTEX,
an algorithm in which maximal bicliques get created, and DELETEVERTEX, an algorithm in
which maximal bicliques get destroyed.

In Lenuna 5.10, £, and Lo are the sets of maximal bicliques that are unaltered.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For any maximal biclique B of G containing u and v, where B # {u,v}, we need to
consider whether B\ {u} and B\ {v} will continue to be maximal in G’. Specifically, if they
are properly contained in another maximal biclique besides B, then they will no longer be
maximal in G', and must be destroyed.

For any maximal biclique of the form ((B\ {v}) N W)U {v} = (BN W)U {v}, where
u € B, we consider four cases. If B C W and v € B, then B = {u, v}, so we merely switch
the value of v.part that corresponds to B. If B C W and v ¢ B, then (BNW)U {v} will be
created by adding v to B such that v and v belong to different parts of B. If B ¢ W and
v € B, then B no longer remains maximal, so we change B into (BN W) U {v} = {u,v}.
Finally, if B ¢ W and v ¢ B, then we create a new maximal biclique (BN W)U {v}, as B

will continue to remain maximal in G’.

Proof. Consider the following items.

¢ An element L of L.

An element Ly of L.

A set of the form K U {v}, where K is a maximal element of K.

©

A set B, \ {u}, where B, is a maximal biclique of G, u,v € B,, B, # {u,v}, and
B, \ {u} ¢ By, for all maximal bicliques B; of G for which B # B,,.

A set B, \ {v}, where B, is a maximal biclique of G, u,v € B,, B, # {u,v}, and
B, \ {v} ¢ By, for all maximal bicliques B; of G for which By # B,,.

First, observe that u € W. Therefore, u,v € K U {v}, which is also to say that {{u,v} N
(K U{v})| = 2. By definition, |{u,v} N L1| =1 and |{u, v} N Lg| = 0, therefore, Ly, Lo, and
K U {v} are pairwise unequal. As well, v € B, \ {u} and v € B,, \ {v}; therefore, B, \ {u},
B,\{v}, and KU{v} are pairwise unequal. Moreover, both L, and Ly are maximal bicliques
of G, whereas B, \ {v} and B, \ {v} are not, as they are contained in bicliques B, and B,,
respectively. Therefore, L, La, B, \ {v}, and B, \ {v} are pairwise unequal. Consequently,
the sets of the claimed partition are disjoint.

Since K is a biclique of G, where K C W, K U {v} is a biclique of G'. If K U {v} is not
a maximal biclique of G’, then there exists some biclique B* of G’ for which K U {v} C B*.
Since u,v € K U{v}, we know that u,v € B*; therefore, B*\ {v} C W, where B*\ {v} is a
biclique of G. But K € B* \ {v}, which contradicts the maximality of K in IC. Therefore,
K U {v} is a maximal biclique of G'.

Since Lp is a biclique in G and |{u,v} N Li| = 1, it is also a biclique in G’. If L, is
not a maximal biclique of G’, then there exists some biclique B* of G’ for which L, C B*.

Since L1 € W, we know that B* ¢ W; therefore, at least one of u and v does not belong

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to B*. This gives that B* is a biclique of G, which contradicts the maximality of L; in G.
Therefore, L7 is a maximal biclique of G’.

Since Ly is a biclique in G and |{u,v} N Ly| = 0, it is also a biclique in G'. If Ly is not a
maximal biclique of G’, then there exists some biclique B* of G’ for which L, ¢ B*. If at
least one of u and v does not belong to B*, then B* is biclique of G, which contradicts the
maximality of Ly in G. On the other hand, if both v and v belong to B*, then Ly C B*\{u},
as u,v ¢ Ly. But B*\ {u} is a biclique of G, which contradicts the maximality of Ls in G.
Therefore, Lo is a maximal biclique of G’.

Since B, is a biclique in G, so too is B, \ {u} in G’. If B, \ {u} is not a maximal
biclique of G, then there exists some biclique B* of G’ for which B, \ {u} C B*. Given
that u,v € By, we know that B, N W = {u,v} as the edge uv belongs to G. However, by
definition, B,, # {u,v}; therefore, B, must contain some vertex y which does not belong to
W. Since By, \ {u} C B*, B* also contains y and v, which means that B* cannot contain
u. Therefore, B* is a biclique in G, where B* # B,,, yet this contradicts the definition of
B, \ {u}. Therefore, B, \ {u} is a maximal biclique of G’. A similar argument gives that
B, \ {v} is a maximal biclique of G’.

Having shown that the described sets are disjoint, and that their members are maximal
bicliques of G’, it remains to show that these sets contain all the maximal bicliques of G’.

Consider a maximal clique B’ of G'. If w,v ¢ B’, then B’ is maximal in G, where
B' € L,. |

Ifue B',v¢g B, and B’ € W, then v cannot be added to B’ to get a larger biclique in
(. That is, B’ is maximal in G, where B’ € £;. Similarly, if u g B’,v € B’, and B’ ¢ W,
then B’ is maximal in G, where B’ € L.

fueB,vg B, and B' C W, then B’ U {v} is a maximal biclique of G. Moreover,
B # {u,v}, as B’ # {u} (a vertex cannot be in a biclique by itself). Similarly, if v ¢ B’,
v € B, and B’ C W, then B’ U {u} is a maximal biclique of G, where B # {u,v}.

If u,v € B’, then B’ \ {v} is a biclique of G, where B’ \ {v} € W and B’ \ {v} is
contained in some maximal biclique B* of G. Now B’ \ {v} C B*\ {v} and B’ \ {v} C W,
so B'\ {v} C (B*\ {v})nW. If B'\ {v} C (B*\ {v})NW, then there exists some element
w of B* for which w € W and w € B*\ {v} (therefore, w # v), but w & B’ \ {v}. However,
the existence of the biclique B’ U {w} in G’ contradicts the maximality of B’. Therefore,
B\ {v} = (B*\ {u})) N W.

Moreover, if there exist some K* in K, such that B’ \ {v} C K*, then there exists some
element w of K* (therefore, w € W, w # v), but w ¢ B’ \ {v}. Again, the existence of the
biclique B’ U {w} in G’ contradicts the maximality of B’. Therefore, B’ = K U {v}, where

K is a maximal element of K, as desired. O

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 5.10, and its proof, suggest the design of our relabeller, DELETEEDCGE, as pre-

sented in Figure 5.9.

DELETEEDGE(G, u, v)

Input: An adjacency labelling of an r-bic G (that is, the labels thereof) created using our
dynamic scheme, and two distinct vertices v and v of Vg for which uv € Eg. Note that the
labels of GG are only accessed as required.

Output: An adjacency labeling of a graph G’ (again, the labels thereof) formed by deleting
the edge uv from G, providing G’ is an r-bic. If G’ is not an r-bic, then the output indicates

as such.
1 B« {B|B is a maximal biclique containing both v and v and B # {u,v}}
2 C « {B|B is a maximal biclique containing u}
3 for BeBdo
4 if the only maximal biclique of G containing B\ {v} is B then
5 remove v from B
6 if the only maximal biclique of G containing B \ {u} is B then
7 make a new maximal biclique of B\ {u}
8 elseif the only maximal biclique of G containing B \ {«} is B then

9 remove u from B
10 else eliminate B
11 X, « {z|z is a neighbour of u (in G')}
12 X, « {z!z is a neighbour of v (in G')}
13 We{wweVgandwe X, &we X,}
14 D90 '
15 forBeCdo
16 C—C\{B}
17 if (B\ {v})NW is not contained in any of the maximal bicliques in C or D then
18 D —DU{B}
19 if BC W then
20 if v € B then
21 switch the maximal biclique B = {{u}, {v}} to {{u,v},0}
22 else add v to B such that v belongs to the same part as u
23 elseif v € B then
24 B — {{u,v},0}
25 else create a new maximal biclique (BN W)U {v}

Figure 5.9: The relabeller DELETEEDGE which relabels an r-bic when an edge is deleted

The relabeller, DELETEEDGE, first obtains B = B, N B, the set of maximal bicliques
containing both u and v. Since B, and B, can be determined in ©(u.bin) € O(r) and
©(v.bin) € O(r) time, respectively, where |B,| = u.bin < and {B,| = v.bin < r, B can be
determined in O{u.bin+v.bin) € O(r) time using the reciprocal pointer technique discussed
in Section 5.1.1.

As well, DELETEEDGE, also obtains C = B,,, the set of maximal bicliques containing wu,
which can be determined while obtaining 5. We insist that C be represented using dynamic

reciprocal pointers, which take ©(u.bin) € O(r) time to establish.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each maximal clique B of B, providing B # {u,v}, the bicliques B \ {u} and
B\ {v} are examined to determine if they maximal in G’. For a € {u,v}, B\ {a} can
be determined in O(|B|) time by traversing B; moreover, while determining B \ {«a}, we
can confirm that B # {u,v}. The biclique B\ {a} is maximal in G’ if and only if the
set A, = ﬂb,eB\{a} (By \ B) is empty. As per our discussion in Section 5.1.1, A, can be
determined in O(}_; ¢ p\ (o} ¥'-bin) € O(r|B\ {a}|) € O(r|B|) time.

First, let us assume that exactly one of B\ {u} and B\ {v} is a maximal biclique in G';
without loss of generality, let the maximal biclique be B\ {v}. We develop this maximal
biclique by removing v from B, just as we did in DELETEVERTEX, using O(1) time. As a
second possibility, consider if neither B \ {u} nor B\ {v} is a maximal clique in G’. In this
case, we eliminate the maximal clique B, just as we did in DELETEVERTEX, using O(|B])
time. Finally, if B\ {u} and B\ {v} are both maximal in G’, then we develop B\ {v} by
removing v from C, using O(1) time; however, B \ {u} must be developed by establishing
a new maximal biclique, just as we did in ADDVERTEX, requiring O(|B.|) € O(|B|) time.
Whenever a .bin counter is increased during the creation of the new maximal biclique, we
check that its value is no greater than r, thereby, the efforts of DELETEEDGE on B are
error-detecting. Since B contains at most min{u.bin,v.bin} maximal bicliques, the running
time of DELETEEDGE on B is O(min{u.bin,v.bin} - %%%{Z%B b.bin}) € O(r’B).

For each maximal clique B of C, we entertain the possibility of B’ = (B\ {v}) "W being
a maximal element of the set X, seen in Lemma 5.13. The biclique B’ can be computed in
O(|B|) time by traversing B and testing adjacency with u and v to determine membership
in W.

If B’ is contained in some maximal biclique B* remaining in C (observe that DELE-
TEEDGE removes B from C when it is selected), then we do nothing as B’ will present
itself later. Specifically, if B’ C B*', then B’ is not a maximal element of K; otherwise,
if B’ = B*, then we avoid possible duplication of maximal bicliques. Similarly, if B’ is
contained in some maximal clique B* in D, the set of bicliques D for which D’ U {v} has
been made a maximal biclique of G/, then B’ C B*' (given that B* is selected from C before
B, the addition of B* to D was contingent on B*' ¢ B’). Just as C is represented using
dynamic reciprocal pointers, we insist that D also be represented using dynamic reciprocal
pointers.

The biclique B’ is contained in some maximal biclique in € or D if and only if Ny ¢ g/ (By N
(CUD)) # 0. Since [By| = b'.bin, and C and D are represented using reciprocal pointers,
each set By \ (C U D) can be determined in ©(b'.bin) € O(r) time. In turn, the condition
Npep (By M(CND)) # b can be checked in O(Y 5 b'.bin) € O(r|B'|) € O(r|B]) time

using the reciprocal pointer technique discussed in Section 5.1.1.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now if B’ is not contained in any maximal biclique remaining in B, then we make a
maximal biclique of B'U{v}. Exactly how we make a maximal biclique of B’ U {v} depends
on whether B C W and v € B. These conditions can be checked while computing B’.

If BC W and v € B, then B = {u,v}, so we merely switch the value of v.part that
corresponds to B. If B C W and v ¢ B, then we simply add v to B as B will no longer be
maximal in G’. Specifically, DELETEEDGE inserts v into the circular doubly linked list for
B, increases the value of v.bin by 1, and sets the value of v.bicl;.part to that of u.bicl;.part
for the values of i and j that correspond to B. This can be done in O(1) time. If B Z W
and v € B, then B no longer remains maximal, so we change B into (BN W) = {u,v}.
Specifically, DELETEEDGE removes all the vertices except u and v from the circular doubly
linked list for B, while decreasing their .bin values by 1, then sets the value of v.bicl;.part
to that of u.bicl;.part for the values of i and j that correspond to B. This can be done
in O(|B|) time. Finally, if B € W and v ¢ B, then we create a new maximal biclique
(BNW)U{v}, as B will continue to remain maximal in G’. Specifically, DELETE increases
the value of the .bin counter of each of the vertices in B’ U {v} by one, establishes a circular
doubly linked list of the vertices in B’U {v}, and creates a new .bicl entry identical to that
found in B, for each member of B’ U {v} while establishing the circular doubly linked list
(in the case of v it sets the value of v.bicl;.part to that of u.bicl;.part for the values of ¢ and |
j that correspond to B’ U {v}); forming this new maximal clique takes O(|B’]) € O(|B|)
time.

Whenever a .bin counter is increased, we check that its value is no greater than r, thereby,
the efforts of DELETEEDGE cn C are error-detecting. Since |C| = u.bin < r, the running
time of DELETEEDGE on C is O(u.bin - @gﬁ’{ZbeB b.bin}) € O(r?B). Therefore, the total
running time of DELETEEDGE is O(u.bin - %lgf{zbeB b.bin} + v.bin - @gf{ZbeB b.bin}) €
O(r?B). Observe that DELETEEDGE accesses @(rggg:{|3|}) vertex labels which require
Q(v.bin + > o, pep b-bin}) bits in total. Thereby, the running time of DELETEEDGE is

polynomial in the size of its inputs.
Adding an edge.

Consider the following lemma, which describes how the addition of an edge affects the

maximal bicliques in the graph.

Lemma 5.14 Consider a graph G’ formed by adding an edge wv to a graph G, where Vg #
{u,v}. Let X, and X, denote the neighbourhoods of u and v in G', respectively, and let W
denote the vertices of G for which w € W if and only if w € X, & w € X,,. Furthermore,
let L1 be {B|B is a maximal bicliqgue of G, B Z W, and |{u,v} N B| = 1}, let Lo be {B|B
is a mazimal biclique of G and u,v ¢ B}, and let K be the set of bicliques {(B\ {v})NW|B

is o mazimal biclique of G, u € B}.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The set of mazimal bicliqgues of G' is L1 U L2 U {B\ {u}|B is a mazimal biclique of
G, u,v € B, B # {u,v}, and B\ {u} ¢ By, for all mazimal bicliques B, of G, By #
B} U {B\ {v}|B is a mazimal biclique of G, u,v € B, B # {u,v}, and B\ {v} ¢ By, for
all maximal bicligues By of G, By # B} U {K U{v}|K is a mazimal element of K}.

The similarity between Lemmas 5.13 and 5.14, which differ only in their definition of the
set W, suggest a relabeller ADDEDGE that is virtually identical to that of DELETEEDGE.

As such, ADDEDGE would also be error-detecting and have a running time of O(r?B).

5.3 Summary

In this chapter, we apply the circular doubly linked list technique seen in Chapter 4 to
maximal cliques and maximal bicliques in order to develop error-detecting dynamic adja-
cency labelling schemes for r-minoes and r-bics, respectively. Both dynamic schemes use
O(rlogn) bit labels.

In the case of r-minoes, edge addition and deletion can be handled in O(r2D) time, vertex
addition in O(r?e?) time, and vertex deletion in O(r2e) time, where D is the maximum
degree of the vertices in the original graph and e is the number of edges added to, or deleted
from, the original graph. Unfortunately, if » € w(1), then our vertex deletion relabeller is
not error-detecting. Similarly, if r € o(1), then our vertex addition relabeller is not error
detecting.

In the case of r-bics, edge addition and deletion, as well as vertex deletion can be handled
in O(r?B) time, and vertex addition in O(r?nB) time, where B is the size of the largest
biclique in the original graph. Given these running times, one might be led to believe that
vertex addition could just as easily be performed by adding an isolated vertex, then adding

individual edges. However, by doing so the graph may escape the class of r-bics.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Proper interval graphs

In this chapter, we develop a dynamic adjacency labelling scheme for proper interval graphs
that allows the addition and deletion of vertices and edges. The labels used in this scheme
require O(logn) bits, and updates require in O(n) time. In comparison, the best known
(static) adjacency labelling scheme for proper interval graphs is the scheme presented for
interval graphs in Chapter 1 [45], which uses O(logn) bit labels and requires as much as
©(n + m) time to generate a labelling (here we presume that the marker is input with
only the proper interval graph, perhaps as an adjacency matrix, and must use a O(n + m)
time algorithm like that of Corneil, Kim, Natarjan, Olariu, and Sprague [12] to determine
the proper interval representation from the graph itself.) Proper interval graphs have been
shown useful in the study of problems in genetics and psychology; a good starting point for
information on the application of proper interval graphs is the text of McKee and McMorris
[43].

A graph is a proper interval graph if it has an interval representation in which no interval
contains another interval. Proper interval graphs can also be characterized using structures
known as astral triples. An astral triple is a set of three vertices for which each pair are
connected by a path in which no two consecutive vertices belong to the closed neighbourhood

of the third vertex. In the graph shown in Figure 6.1, the bold vertices form an astral triple.

Figure 6.1: An astral triple. The bold vertices indicate the astral triple

Perhaps the simplest example of an astral triple is K 3, often referred to as a claw. In
the case of K 3, the three pendant vertices form the astral triple. The relationship between
proper interval representations and astral triples is explicitly addressed in the following

theorems.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 6.1 [28] A graph is a proper interval graph if and only if it contains no astral
triple.

Theorem 6.2 [/9] An interval graph is proper if and only if it contains no induced K, 3.

Another characterization of interval graphs is based on the notion of blocks [14]. For
any graph G, consider the equivalence relation R, on Vi, defined by uwRwv if and only if
Nlu] = N[v]. This equivalence relation partitions the vertices into equivalence classes
known as blocks. For example, the blocks of the proper interval graph represented in Figure
6.2(a) are {a}, {b,d}, and {c}. Ultimately, we can consider each block as a “mega-interval”,
as depicted in Figure 6.2(b).

Two blocks B and B’ of a graph Gare said to be adjacent if there exists an edge bb’ of
G for which b is in B and ¥ is in B’ (consequently, if B is adjacent to B’, then, for all b in
B and all ¥ in B’, b is adjacent to b’). In an extension of conventional graph terminology,
we say that the (open) neighbourhood of a block is the set of blocks that are adjacent to it,
and that its closed neighbourhood is its open neighbourhood unioned with itself. Similarly,
we say that the degree of a block is the cardinality of its open neighbourhood, where deg(B)
denotes the degree of B.

d b,d
LG | c LG : c

| | Lo b | : - :
I t frm———————— I 1 1 ¥ I 1 1
1 t 1 I i] 1 t 1 1 I t 1 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6

(a) A proper interval represen- (b) Blocks as “mega-intervals”.

tation.

a c d
b

1 2 3 4 5 6 7 8

(¢) An interval representa-
tion, which is not, and can-
not be, proper.

Figure 6.2: Interval representations and blocks

As preliminary observations, consider the following properties of blocks.
Lemma 6.3 The induced subgraph formed on the vertices of a block is a clique.

Proof. Consider any two vertices u and v belonging to the same block of a graph. By

definition, N{u] = NJ|v]. therefore, u and v are adjacent. The result follows. O

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 6.4 No component of a graph can be comprised of only two blocks.

Proof. Consider a component C consisting of two blocks B; and By. If B; is not adjacent
to By, then B; is a component itself, thereby, C is not a component. If By is adjacent to

By, then By U B, forms a clique. Therefore, B; = By, which is also a contradiction. J
Lemma 6.5 No two blocks can be adjacent to the same set of blocks.

Proof. Consider two blocks B; and B, which are adjacent to the same set of blocks.
For any vertices by in By and by in Bs, N{b;] = Nl[bs]. Therefore, By = By, which is a

contradiction. O

A straight enumeration of a graph is a linear ordering of its blocks such that, for every
block, the blocks in its closed neighbourhood are consecutive. In the case of the proper inter-
val graph represented in Figure 6.2(a), the straight enumerations are ® = {a} < {b,d} < {c}
and &% = {c} < {b,d} < {a}, where ®F denotes the reversal of the straight enumeration
®. The following theorem characterizes proper interval graphs in terms of straight enumer-

ations.

Theorem 6.6 [14] A graph is a proper interval graph if and only if it has a straight enu-
meration. Moreover, a connected proper interval graph has a unique straight enumeration

(up to reversal).

Hell, Shamir, and Sharan [27], on whose work we will heavily rely, refer to a straight enu-
meration of a connected proper interval graph as a contig.

Fundamental to our entire work on proper interval graphs is the following lemma, referred
to as the “umbrella property”. Given the frequency with which we use Lemma 6.7, we will
only explicitly reference this lemma in the beginning of our discussion, or when the use of

the lemma is not entirely obvious.

Lemma 6.7 [41] Consider a straight enumeration ® of a connected proper interval graph
G. If B, Ba, and B3 are blocks of G, such that By < Bs < Bz in ® and B is adjacent to
Bs, then By is adjacent to By and to Bs.

6.1 Vertex labels, marker, and decoder

Our scheme closely resembles a dynamic representation of proper interval graphs due to
Hell, Shamir, and Sharan [27] (their representation does not permit implicit adjacency
testing from vertex labels). For each component of the proper interval graph, they maintain
a data structure to represent a contig. In each contig, the first and last blocks are called end

blocks and their members are end vertices; all other blocks are referred to as inner blocks

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and their members are inner vertices. Specifically, the data structure used by Hell et al.

consists of the following.
e For each vertex, they maintain the name of its block.

e For each block, they maintain the following information.

— The size of the block.

— Left and right near pointers which point to the adjacent blocks immediately to

the left and right, respectively, in the straight enumeration.

— Left and right far pointers which point to the furthest adjacent blocks to the left

and right, respectively, in the straight enumeration.
— Left and right self pointers which point to the block itself.

— An end pointer which is null if the block is an inner block of its contig, otherwise,

it points to the other end block in the contig.

Unfortunately, we do not have the liberty of using pointers at the block level, rather,
we must do so at the vertex level. To this effect, we select a pointer vertex P(B) from each
block B. If we wish to include:a pointer) from block B to block B’, then we include that
pointer in the label of P(B), such that Q(P(B)) = b/, where ¥ € B’. In essence, we create
a “distributed” pointer.

Specifically, our labelling scheme is as follows.
e For each vertex v, we maintain the following.

~ A unique identifier for each vertex. Letting £ be the number of bits required
to represent the largest identifier, the uniqueness of the identifiers ensures that
L € Q(logn). Given our assumption on the size of identifiers, as stated in Section

3.1.3, L € O(logn).

— The identifier of the block to which it belongs. Although we do not differentiate
between a vertex and its identifier, we will differentiate between a block and its
identifier, as the identifier of a block may change over time while we maintain a
straight enumeration. To this effect, we denote the block containing v by B(v),
and denote the identifier of B(v) by b(v).

Just as we required a unique identifier for each vertex, we require a unique iden-
tifier for each block. Where B is the size of the largest identifier, we ensure that
B € O(logn).

- The identifiers of the furthest adjacent blocks to the left and right of B(v),

denoted fi(v) and fr(v), respectively. This information requires O(B) bits.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e For each block B, we encode the following information via the vertex labels.

— The vertices in each block. This information is represented using a circular doubly
linked list of the vertices in each block, mirroring the technique used previously
in Chapters 4 and 5. This circular doubly linked list adds O(L) bits to the label
of each vertex. For each vertex v, we denote the next and previous vertices in
the circular doubly linked list of B(v) by nz(v) and prev(v), respectively. Again,
we will say that we traverse B, although we really mean that we traverse the

circular doubly linked list of vertices in B.

— A pointer vertex, denoted P(B). The label of the pointer vertex must contain a

bit to denote that it is a pointer vertex. All other vertices in the block, contain
the identifier of P(B), as well as a bit to denote that they are not the pointer
vertex of B. This information adds O(1) bits to the label of the pointer vertex,
and O(L) bits to the label of all other vertices.
To clarify how these distributed pointers are used at the vertex level, let us
consider a pointer @ and a vertex v. The label of v will contain the identifier of
P(B(v)), the pointer vertex of the block containing v (assuming v # P(v)); for
simplicity, we will shorten P(B{v)) to P(v). The label of P(v) will contain the
identifier of Q(P(v)), which we will similarly shorten to @Q(v). For any vertex v
and pointer @, Q{v) can be “followed” in O(1) time using the labels of v and
P(v).

— A pointer to the blocks immediately to the left and right of B, denoted by I(B)
and Ig(B), respectively. Both Iy (B) and Ir(B) are artificial constructs, as they
are achieved by including Iy, and I pointers in the label of P(B), as per the
pointer technique described above. These pointers add O(L) bits to the label of

the pointer vertex only.

— A pointer to the furthest adjacent blocks to the left and right of B, denoted by
Fp(B) and Fgr(B), respectively. These pointers are achieved using the pointer
technique described above, and add O(L) bits to the label of the pointer vertex
only.

— The size of B, denoted s(B). This value is kept in the label of the pointer vertex,
adding O(logn) bits to its label.

We observe that the total size for each label is O(L + B) € O(logn). Furthermore, we can
determine the adjacency of two vertices v and v in O(1) time, using only their labels, by
checking if fr(v) < b(u) < fr(v).

In comparison to the data structure used by Hell et al., our vertex labels do not include

self pointers or end pointers. Self pointers become obsolete in our vertex centered setting,

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and end pointers, although useful, have proven difficult to maintain. Furthermore, for every
block B, Hell and al. point to the adjacent blocks immediately to the left and right of B,
whereas, we include a similar pointer that omits the adjacency condition. By dropping
the adjacency condition we are able to maintain additional information about the straight
enumeration without sacrificing asymptotic space or running times.

Although it is much easier to discuss pointers and values at a block level, we must always
ensure that these items can be observed at the vertex level. For instance, a vertex v is an
end vertex if and only if Fr(B(v)) = B(v) or Fr(B(v)) = B(v). However, to determine this
condition, we must check to see if fr(v) = b(v) or fr(v) = b(v). As such, in the ensuing
discussion we maintain the convention of offsetting the vertex level condition in square
brackets, for example, “Fr(B{v)) = B(v) [fr(v) = b(v)]”. Nearly all of the conditions
mentioned herein can be tested in O(1) time. As such, we will only comment on the time
required to check a condition if it takes w(1) time to check the condition.

When discussing such conditions, we maintain the convention that pointers acting on
a block produce a block, and pointers acting on a vertex produce a vertex. For example,
Fr(B(v)) is a block, whereas, Fr(v) is a vertex in theé block Fp(B(v)). As previously
discussed, Fr(B(v)) is an artificial construct.

Although we have given significant consideration to the labels of the dynamic scheme,
we have not yet discussed the marker. Deng, Hell, and Huang [14] provide an O(n+m) time
algorithm for generating a straight enumeration of a proper interval graph from, presumably,
an adjacency list representation (actually, their algorithm presents a vertex ordering, but
minor bookkeeping will give a straight enumeration of blocks). Where B is the number
of blocks in the straight enumeration, we can use the straight enumeration to establish
the B circular doubly linked lists in ©(n) time. Next, establishing pointer vertices and
block identifiers, as well as the b, fr, and fr values requires a further O(n) time. Finally,
establishing the various pointers requires an additional ©(B) € O(n) time. Therefore,
if provided with the straight enumeration, the marker requires ©(n) time; otherwise, the

marker requires O(n + m) time.

6.1.1 Relabeller

For the most part, we will discuss the relabelling algorithm at the block level, including the
vertex-level discussion in Appendix C. In the ensuing discussion, G is the original graph
and G’ is the new graph.

Given the linear nature of the straight enumeration, the limiting factor inherent in our
labelling scheme is the maintenance of the b, f; and fr values. When the graph is modified,
our first task is to modify blocks, pointer vertices, and pointers, as necessary, in order to

maintain a straight enumeration. Once this is complete, we can traverse I;, and I pointers

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to determine the entire straight enumeration. Knowing the entire straight enumeration, one
pass through the ordering (from least to greatest) is sufficient to re-assign optimal block
identifiers by traversing the circular linked list of vertices in each block. Having assigned
these optimal block identifiers, a second pass is sufficient to assign the fr and fr values,
which depend on the block identifiers, to the vertices in each block.

Regardless of the graph operation under consideration, the maintenance of the b, fi,
and fr values takes as much as ©(n) time. Because this approach can be used to maintain
optimal b values, we did not employ the assumption on the size of the identifiers, as stated
in Section 3.1.3, to B, the size of the largest block identifier.

Unlike our work with r-minoes and r-bics, seen in Chapter 5, we will not use the existence
of an error-detection dynamic adjacency labelling scheme to establish a recognition result,
even though proper interval graphs are hereditary. As discussed, our relabeller can take
as much as O(n) time to handle vertex addition, therefore, the recognition time offered by
Theorem 3.7 could be as high as ©(n?). In comparison, Corneil et al. [12], among others,

have already established O(n + m) recognition of proper interval graphs.

Deleting a vertex

Let v be the vertex to be deleted, where X denotes the neighbourhood of v in G. As well,
let the contig containing B(v) be By X ... 2 B, 2 ... X By % ... = B; = ... X By,
where B; = B(v), B; = F(B;), and B; = Fg(B;). The action of the relabeller depends on
whether B, = {v} [nz(v) = v].

The following lemma addresses how the straight enumeration changes when B; # {v}.

Lemma 6.8 Let G’ be a proper interval graph formed by deleting a vertez v from a proper
interval graph G, where B(v) # {v}. If B’ is a block in G’, then either B’ is a block in G,
or B"U {v} is a block in G.

Proof. Assume the contrary, that is, neither B’ nor B’ U {v} is a block in G. Since B’ is

not a block in G, one of the following statements must be hold.
e There exists by and b in B’ for which Ng[b1] # Ng[be].

e There exists some b* in Vz \ B’ for which Ng[b*] = Ng[b], for all b in B’, where Ng
denotes the neighbourhood in G (as opposed to G').

If the former condition holds, then consider that the only vertex adjacencies which change
from G to G’ are those with v. Since N¢v[b1] = Ngv[bo], exactly one of Ng[bi] and Ng[bs]
contains v. Without loss of generality, assume that v € Ng[by]. Since B(v) # {v}, there
exists some additional vertex v* in B(v). Therefore, v* € N¢[b1], but v* & Nglbs]. Since

v* £ v, v* € Ner|by], yet v* & Ner[be], so B’ is not a block in G’, which is a contradiction.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Assuming the latter condition holds, we need to consider two cases. First, if b* = v,
then consider that B’ C B(v) \ {v} as Ng[v] = Ng[bl, for all b in B’. Moreover, for all v*
in B(v)\ {v} and for all b in B’, Ng[v*] = Ng[v*]\ {v} = Ng[b] \ {v} = Ng'[b]. Therefore,
B(v)\ {v} C B’, which gives B’ = B(v) \ {v}. That is, B’ U {v} is a block of G, which is a
contradiction.

Secondly, if b* # v, then b* € V. But b* € B’, where B’ is a block of G’, therefore,
Ngi[b*] # Ngi[b], for all b in B’. Specifically, there exists some b** € Ng/[b*] for which
b** € Ng[b], for all b in B’, where b** # v. Therefore, Ng[b*] # Ng[b], for all bin B’, which

is a contradiction. O

Where B, contains another vertex besides v, Lemma 6.8 tells us that a straight enumer-
ation for G’ can be obtained from a straight enumeration of G by removing v from B;. This

scenario is depicted in Figure 6.3. Specifically, our labelling is amended as follows.

e Remove all references to v.

— We must change all references to v as a pointer vertex. Specifically, if v = P(v),
then we make nxz(v) the pointer vertex by changing its label to reflect the pointers,
and changing the labels of all the vertices in By to reflect that nz(v) is the new
pointer vertex. This change can be done in O(|B;|) € O(|X|) time by traversing
By, beginning at v. Let ¢ be the resulting pointer vertex of B;.

-- 'We must change all references to v in Iy, and Ir pointers. Providing It {B;) # NIL
[IL(q) # N1L], set Ir(I1(g)) to g. Similarly, providing Ir(B;) # NIL, set I1.(Ir(q))
to g. These changes take O(1) time.

— We must change all references to v in Fy, and Fgr pointers. Specifically, for any
block B, if F(P(B)) or Fr(P(B)) is v, then we change its value to g. Now, if
Fr(P(B)) = v, then, by Lemma 6.7 (umbrella property), B; < B < By; similarly,
if Fr.(P(B)) = v, then B; < B < B;. Assuch, we can recursively follow Iy, and I
pointers to determine all such blocks B. These changes take O(deg(B;)) € O(|X])

time.

— We must remove v from the circular doubly linked list of the vertices in B;. This

removal takes O(1) time.
e Decrease the value of s(B;) [s(¢)] by one. This operation takes O(1) time.

e Delete v. This deletion takes O(1) time.
The following lemma addresses how the straight enumeration changes when B; = {v}.

Lemma 6.9 Let G’ be a proper interval graph formed by deleting a verter v from a proper
interval graph G, where B(v) = {v}. If B’ 1s a block in G', then either B’ is a block in G,
or B' = B, U Bg, where Bo and Bg are blocks in G.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B B\ {n
—_— delete v L Ao}
_—

Figure 6.3: Deleting a vertex v, where B; = B(v) # {v}

Proof. Assume the contrary, that is, B’ is not a block of G and B’ # B, U Bg, where
B, and By are distinct blocks in G. Since B’ is not a block in G, one of the following

statements must be hold.

o There exists by and by in B’ for which Ng[b1] # Nglbs].
o There exists some b* in Vi \ B’ for which Ng[b*] = Ng[b}, for all b in B’.

If the latter condition holds, arguments identical to those seen in the proof of Lemma
6.8 will lead to contradictions. However, there is a difference in the contradiction achieved
when b* = v, as B’ C B(v) \ {v} gives B’ = 0.

Assuming the former condition holds, then consider that the only vertex adjacencies
which change from G to G’ are those with v. Since Ng-[b1] = Ng b2, exactly one of Ng[by]
and Ng[bs] contains v. Without loss of generality, assume that v € Ng[b1]. Moreover, since
Ng:[b! is unique for all b in B’, the uniqueness of v allows us to partition the members of
B’ into Bf and Bj, where b € Bj if and only if v € Ngl[b].

Since Ngv[b] is unique for all b € Bj, so too is Ng[b]. Therefore, BS C B, for some
block B, of G. Observe that B, # B(v), otherwise, B(v) = {v} contradicts the existence
of by. Now, for all b, in B, Ng[bs] = Ng:[ba] = Ng' [ba] = Ng[ba], so B, C Bj. Therefore,
B} = B,.

Since N« [b] is unique for all b € Bj, so too is Ng[b]. Therefore, B C Bg, for some
block Bg of G. Observe that Bg # B(v), otherwise, B(v) = {v} contradicts the existence
of b;. Furthermore, observe that Bg # B,, as Ng[bi] # Ng[b2]. Now, for all bg in Bjg,
Nglbg) = Nar{bg) U {v} = N/ [b1] U {v} = Ng[hi], so Bg C Bi. Therefore, By = B and
the result follows. a

From Lemma 6.9, we see that a block of G’ can be formed by merging two blocks of G.

The following theorem addresses which two blocks are merged.

Lemma 6.10 Let G’ be a proper interval graph formed by deleting a vertez v from a proper
interval graph G, where B(v) = {v}. If B’ = B, U Bg is a block in G', where By and Bg
are distinct blocks in G, then {B,, Bg} is either {B;_1, B;} or {B;, Bji1}.

Proof. First, let us assume that Bg < B;. Since the neighbours of B, and Bg will be
identical upon deletion of v, F1(B,) = Fr(Bg), and either Fr(Bg) = B; and Fr(B,) =

By_,, or vice versa; without loss of generality, we assume the former. By Lemma 6.7

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(umbrella property), By < B; and B; < Bg. Now if B; < Bg, then Fr(Bg) = B; combined
with Lemma 6.7 (umbrella property), gives Fr(B;) = B; = Fr(Bg). Therefore, by Lemmas
6.4 and 6.7 (umbrella property), Fr(B;) < Fr(Bg). Yet, by Lemma 6.7 (umbrella property),
Fr(Ba) = FL(By), thereby, Fr(By) # Fr(Bg), which is a contradiction. Therefore, Bg =
B;.

Furthermore, Fr(B,) = By and F(B;) = B; give Fr(B;_1) = Bi_1 = Fr(B,). Yet,
Bo = Bi—1 < Bg and F(B,) = Fr(Bg), give F(Bs) = Fp(B;—1). Thereby, N[B,] =
N|[B;_1], which is to say that B, = B;_1.

Using similar arguments we can show that, for B; < Bg, Bg = B; and B, = Bj;. O

Where B, contains only v, Lemma 6.9 can be used to obtain a straight enumeration of
G’'. We remove all references to v, and merge blocks as per Lemma 6.10, as depicted in
Figure 6.4. Recall that two blocks are merged if and only if the deletion of v causes their

neighbourhoods to be the same.

Ba
{U } delete) ———
T

Bg By U B

Figure 6.4: Merging blocks, where the vertex v is deleted from the graph

Specifically, our labelling is changed as follows.

o Ifl < i <I[fL(v) # fL(FL(v)) and fr(v) # b(v)], FL(Bi-1) = FL(B:) [fL(IL(FL(v))) =
fo(Fr(v))], and Fgr(B;—1) = Bi—1 {fr(I1(FL(v))) = b(IL(v))], then merge B; into
Bi——1~

— Add the value of s(B;) to s(B;—1) [add s(P(FL(v))) to s(P(IL(Fr(v))))]. This
operation takes O(1) time.

- Set IR(Bi—l) to Bi+1 [IR(IL(FL(U))) to IR(FL (’U))] and IL(Bi+1) to Bi—l [IL(IR(FL(’U)))
to It (Fr(v)})]. These assignments take O(1) time.

— Update the labels of the vertices of B; to reflect the fact that P(B;_;) [P(IL(FL(v)))]
is the pointer vertex of the merged block. This update can be done in O(|B;]) €
O(]X]) time by traversing B;, beginning at Fp(v).

— Merge the two circular doubly linked lists, using P(B;—1) [P(IL(FL(v)))] and
P(B;) [P(FL(v))] as reference points. This merge takes O(1) time.

o If] <« 7 < k, FR(BJ> = FR(Bj+1), and FL(Bj+1) = Bl+1 then merge Bj into Bj+1.
This merge takes O(|B;]) € O(|X!) time.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Providing I, (B;) # NIL [IL(U) 4 NIL], set Ir(I(By)) to Ir(By) UR(IL(U)) to IR(U)}.
Similarly, providing Ir(B)) # NIL, set I, (Ir(B;)) to Ir(B;). These assignments take
O(1) time.

e For each block Bin {B;,...,B;_1}, if Fr(B) = B; [fr(P(B)) = b(v)], then set Fr(B)
to B;_1 [Fr(P(B)) to I (v)]. As well, for each block B in {By41,...,B;}, if F(B) =
By, then set Fr(B) to Byy1. These assignments can be done in O(deg(B;)) € O(|X])

time, by recursively following I}, and Ig pointers to determine all such blocks B.
o Delete v. This deletion takes O(1) time.

e Relabel the blocks and adjust the b, f1,, and fr values as previously discussed. Given
that there can be as many as ©(n) blocks, this operation can take as much as O(n)

time.

The correctness, at least the block level, of our algorithm is due to the correctness of
Lemmas 6.8, 6.9, and 6.10, and the exhaustiveness of the cases considered. Ensuring that
the algorithm does what we want it to do, in terms of pointers and vertex labels, is a matter
of verification.

For the remaining graph operations: adding a vertex, deleting an edge, and adding an
edge, we will not present the same level of rigour as seen in Lemmas 6.8, 6.9, and 6.10, unless
the change to the straight enumeration is not obvious. However, for each of these remaining
operations, we will be careful to enumerate all possible cases, including those which prevent

G’ from being a proper interval graph.

Adding a vertex

Let v be the vertex to be added, where X denotes the neighbourhood of v in G'. We will
say that v is adjacent to a block B if BN X #), fully adjacent to B if B C X, and partially
adjacent to B if it is adjacent, but not fully adjacent.

Given a straight enumeration ® of a connected proper interval graph G, ® can be thought
of as a weak linear order <¢ of Viz, where v; <4 v if and only if B(v;) < B{v2) in ®. Hell
et al. [27] say that @' is a refinement of ®, if for every vy, vs € Vg, v1 <¢ Uy = v <g’ V2,
or for every v1,vs € Vi, v1 <@ v2 ==> vy <’ v;. Observe that in the latter case, 'R is
also a refinement, where for every vy, vs € Vg, v1 <@ v2 = vy <’ Vz.

The following lemma partially addresses how the straight enumeration of G’ compares

to the straight enumeration of G, when G’ is a proper interval graph.

Lemma 6.11 [27] If G is a connected induced subgraph of a proper interval graph H, where

D¢ is a contig of G and Py is a straight enumeration of H, then Oy is a refinement of ®g.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In essence, Lemma 6.11 tells us that there is a straight enumeration of G’ that is much
like the straight enumeration of G, except that some blocks are further “refined”. To
specifically address this “refinement” of certain blocks, Hell et al. observe that whenever v
is partially adjacent to a block B of G, B will be split into BN N(v) and B\ N(v) in G.
Furthermore, they argue that, in any straight enumeration of G’, BN\ N(v) and B \ N(v)
occur consecutively. As well, they observe that whenever v is not partially adjacent to a
block B of G, either B or B U {v} will be a block of G'.

To summarize, if G’ is a proper interval graph, then it has some straight enumeration
which looks much like that of G but with some blocks split and, possibly, one block which
now has v added to it. In determining exactly when the addition of v maintains a proper

interval graph, we consider the following lemmas.

Lemma 6.12 [27] Let G be a proper interval graph. If G + v is a proper interval graph

then v can have neighbours in at most two components of G.

Lemma 6.13 Consider a proper interval graph G, to which a new verter v is added. Let
C' be a component of G containing vertices of N(v) and let {B1,..., By} be the set of blocks
in C containing members of N(v), where, in a contig of C, By < ... < By. If G+visa

proper interval graph, then the following properties are satisfied.

1. [27] By, ..., By are consecutive in the contig of C.

[27] If k > 3, then v is fully adjacent to Ba, ..., By_;.

oo

3. If k >3, then {By,...,Bg} does not contain three pairwise non-adjacent blocks.
4. If k =2, then v must be fully adjacent to at least one of By and Bs.
5. [27] If v is adjacent to a single block By in C, then By is an end block.

6. [27] If v is adjacent to more than one block in C' and has neighbours in another
component, then By is adjacent to By, and one of By or By is an end block to which

v is fully adjacent, while the other is an inner block.

Proof. (of condition 3) Assume the contrary, that is, {Bi,. .., Bi} contains three pairwise
non-adjacent blocks B;,, B;,, and B;,. For each B;, 1 < j < k, let v; be a vertex in block
B;NN(v). In G+v, the induced graph on {v,v;,, vy, v;, } forms an induced K 3, therefore,
G + v is not a proper interval graph.

(of condition 4) Assume that v is fully adjacent to neither By nor B;. As such, consider
vertices by and be, from B; and Bs, respectively, to which v is adjacent, and vertices b} and

b, from By and Bs, respectively, to which v is not adjacent.
2

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From condition 1 of Lemma 6.13, we know that B; and By are adjacent. From Lemma
6.5, we know that B; cannot have the same neighbours as B,. Without loss of generality,
assume that Bj is a adjacent to some block B to which B, is not adjacent. By Lemma 6.7
(umbrella property), we know that B < By, so v is not adjacent to B. Where b is a member
of B, the induced graph on {b;,v,b;,b} is a K1 3. Therefore, G+ v is a not a proper interval
graph. 0

For any vertex addition, we claim that we can determine in O(n) time whether Lem-
mas 6.12 and 6.13 are satisfied. Before describing how this is done, consider the following

operations of which we can avail.

o Given a set of vertices S and a vertex u, we can determine in O(|S]) time whether
B(u) C S by traversing B(u), beginning at w, until we find a vertex not in S. More-
over, given vertices uq, - .., ux belonging to distinct blocks By, ..., Bg, we can use this
approach to determine which blocks are subsets of S in O(k + [S]) time. If each v,
belongs to S, then this time reduces to O(|S]).

o Given a set of vertices S and vertices u1, . . . , ug belonging to distinct blocks By, ..., By,
for which B; C S, we can determine S\ (UB;) in O(XZ]B;|) € O(]S]) time by traversing

each B;, beginning at ;.

o Given a set of vertices S and a vertex u, we can determine S\ B(u) and SN B(u) in

0O(]S]) time by comparing the b value of each vertex in S with that of u.

The aforementioned operations are used by the algorithm LEFTCOMPONENTBLOCK-
STRUCTURE, shown in Figure 6.5, to evaluate the conditions of Lemmas 6.12 and 6.13.
LEFTCOMPONENTBLOCKSTRUCTURE first examines X to determine a vertex v1 whose
block, By, is the leftmost of all blocks containing members of X; that is, v; has the minimal
b value over all vertices in X. The vertex v;, and hence By, can be determined in O(]X|)

time. Regarding B;, we make note of the following.

The vertex v;.

The adjacency of v, full or partial, with By. As discussed previously, we can determine

whether B; € X in O(|X]) time.

Whether By is an end block [fr(v1) = b{v1) or fr(v1) = b(v1)].

The vertices in X N B;. As discussed previously, this set can be determined in O(| X)

time.

Let C; denote the component containing v;. Provided X \ By # § and Fr(B1) # By

[fr(v1) # b(v1)], we obtain similar information about By = Ir(B;) (using ve = Ig(v1) as

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LErTCOMPONENTBLOCKSTRUCTURE(G, X)

Input: An adjacency labelling of a graph G created using our dynamic scheme, and a subset

X of Vg.

Output: Let ® be the straight enumeration of G employed in the dynamic scheme, and let
C be the leftmost component in @ containing a vertex in X. Furthermore, where G + v is
the graph formed by adding a new vertex v to G such that v is adjacent to exactly those
vertices in X, let the blocks of C' be denoted as per the hypothesis of Lemma 6.13.

Providing G satisfies conditions 1 through 3 of Lemma 6.13, the algorithm outputs certain
information about the structure of G. If G 4+ v does not satisfy these criteria, the output

indicates as such.

© o0~y U W

29
30
31

Figure 6.5: The algorithm LEFTCOMPONENTBLOCKSTRUCTURE used to test the criteria of

v1 «— a leftmost vertex in X
By < the block containing v;
clawblock — B,
clawcount — 1
11
endblock — 0
adjacent «— 1
while X \ U'Z] B; # 0 and endblock = 0 and adjacent = 1 do
if v is not adjacent to B; then
if CN (X \UZ]B;) # 0 then
error no longer a proper interval graph
elsei=1i—1
adjacent — 0
elseif i > 3 and v is not fully adjacent to B;_; then
error 1o longer a proper interval graph
else record the vertex v;
record the adjacency (full or partial) of v with B;
record whether B; is an end block
record {X \ U;;lBj) N B;
if B; is not adjacent to clawblock then
clawblock < B;
clawcount — clawcount + 1
if clawcount = 3 then
error no longer a proper interval graph
if Fr(B;) = B; then
endblock « 1
else i« 1+ 1
Ui IR('Uz%l)
B; — the block containing v;
record the value of k as ¢
record the set Y

Lemmas 6.12 and 6.13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

a starting point for the vertices in Bs); however, we now need to know if X \ U]zlej # ().
This calculation is done in the order (X \ Bj) \ B2, where X \ B; has been determined
in O(]X|) time, as discussed above. This process is repeated, setting v; = Ir(v;—1) and

B; = B(v;) = Ir(B;-1) until one of the following occurs.

e Termination event 1 (v is not adjacent to B;, X \Uj»: 1Bj # 0, and there are vertices

in X \U)_, B; that belong to C}): In this case, condition 1 of Lemma 6.13 is violated.

Exactly how to determine if there are vertices in X \U;lej that belong to C requires
some consideration. Specifically, we traverse the Fr pointers from B; to determine the
other end block B.,q of C1, then check to see if there is some vertex u in X \(U;:1 B;),
for which B(u) < Beng [b(t) < b(Vend), Where veynq is a vertex of Bepq]. Checking each
vertex u in X\ (Ui, B;) to see if B(u) < Bena takes only O(|X\(Uj—; B;)|) € O(1X])
time, however, it takes as much as ©(n) time to traverse the Fr pointers to determine

Bend-

¢ Termination event 2 (i > 3, v is adjacent to B;, and v is not fully adjacent to B,-1):

In this case, condition 2 of Lemma 6.13 is violated.

e Termination event 3 (the variable clawcount has value 3): In this case, v is adjacent
to three blocks which are pairwise non-adjacent. Therefore, condition 3 of Lemma 6.13

is violated.

e Termination event 4 (v is not adjacent to B;, X \ U§=1Bj # 0, and there are no
vertices in X \ U§:1Bj that belong to C1): In this case, the component C; containing
vy satisfles conditions 1 through 3 of Lemma 6.13, otherwise, the selection of B; as
Ir(B;_1) guaranteed that we Would have encountered one of the first three termination
events. Moreover, we can test conditions 4 and 5 in O(1) time, as we have noted the

value of k, the adjacency of v with B; and By, and whether By is an end block.

Of greater interest, however, is the fact that not all the vertices of X belong to the
same component. As such, we must also confirm that C satisfies condition 6 of Lemma
6.13. Given that we have noted the vertices v; and vy, the adjacency of v with B; and

By, and whether B; and By, are end blocks, we can test this condition in O(1) time.

As well, we must verify that the vertices X\ U;‘:lBj belong to exactly one component,
C», that satisfies conditions 1 through 6 of Lemma 6.13. We verify these criteria by

using LEFTCOMPONENTBLOCKSTRUCTURE on the set X \ U;?:lBj.

e Termination event 5 (X \ U;lej # (), but Fr(B;) = B;): In this case, the vertices
of X belong to more than one component, however, Fr(B;) = B; gives that there are
no vertices in X \ Uélej that belong to the component containing v;. As such, this

termination event is handled in the same manner as termination event 4.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Termination event 6 (X \ U;lej = (): In this case, the vertices of X all belong to
the same component. The component C; containing v, satisfies conditions 1 through 3
of Lemma 6.13, otherwise, we would have encountered one of the first three termination
events. Moreover, we can test conditions 4 and 5 in O(1) time, as we have noted the
value of k, the adjacency of v with By, and By, and whether B; is an end block.

Lemma 6.12 and condition 6 of Lemma 6.13 are not applicable.

Given that C; is finite, termination events 5 and 6 guarantee that the algorithm LEFT-
COMPONENTBLOCKSTRUCTURE will terminate. The exhaustiveness of the termination
events, along with the careful consideration of their connections to Lemmas 6.12 and 6.13,
ensure that we can determine whether Lemmas 6.12 and 6.13 are satisfied.

Now consider that termination event 2 guarantees that there are at most three values
of 7 for which B; is examined and found not fully adjacent to v, namely, By, By and Bjy41.
As discussed, each of these adjacencies can be determined in O(|X|) time. Furthermore,
X \ By can be determined in O(|X|) time. For k& > 3, each of Bj,...,Br_1 is a subset
of X \ B; (each of these blocks is fully adjacent to v); therefore, (X \ B1) \ U?;QlBj =
X \ USZ1B; can also be determined in O(S¥23|B;]) € O(|X \ By|) € O(|X|) time. Finally,
(X \ Uf;llBj) \Br = X\ U?lej can be determined in O(| X \ Uf;llBjD € O(]X]) time.
That is, the total time required to determine X \ Uf'lej, from X is O(]X}).

Unfortunately, the running time of LEFTCOMPONENTBLOCKSTRUCTURE is dominated
by the possible ©(n) time required to distinguish between termination events ! and 3. Specif-
ically, the running time of LEFTCOMPONENTBLOCKSTRUCTURE, hence, the time required
to verify the conditions of Lemmas 6.12 and 6.13 could be as much as ©(n).

Hereafter, we assume that Lemmas 6.12 and 6.13 are satisfied by our vertex addition.
Note that, while verifying that Lemmas 6.12 and 6.13 are satisfied, we have recorded a great
deal about the structure of the blocks. This information will be used to help us relabel the
vertices.

In describing the relabelling, let us first consider when the members of X belong to one
component, C. As in the hypothesis of Lemma 6.13, let {B1,..., Bx} denote the set of
blocks in C that are adjacent to v, such that in the contig of C, By < ... < By. We consider

three cases, depending on the value of k.
1. k=1. By Lemma 6.13, B; is an end block. Without loss of generality, assume that
By < B, for any block B in C.

If v is fully adjacent to By, and C = Bi [fr(v1) = b(v1)], then we add v to By, as
depicted in Figure 6.6(a). If v is fully adjacent to Bj, but C # By, then we add the
block {v} immediately before By, as depicted in Figure 6.6(b). Finally, if v is not fully
adjacent to Bj, then we partition B; U {v} into {v} < X < B; \ X, as depicted in

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.6(c).

add v
B —_— By U {v}

(a) v is fully adjacent to By, and the vertices of By form
a component

{v}
— add v
By > By

(b) v is fully adjacent to By, and the vertices of By do not
form a component

X
B, e) B\ X

(¢) v is not fully adjacent to By

Figure 6.6: Adding the vertex v, where v is adjacent only to B;. Without loss of generality,
B is assumed to be the leftmost block in its component

2. k=2. By condition 4 of Lemma 6.13, v must be fully adjacent to at least one of
By and B;. Without loss of generality, assume that v is fully adjacent to B;. Let
Bi = FL(BI) and Bj = FR(Bl)

Assume first that B; = B; [fr(v1) = b(v1)]. Note that Lemma 6.4 guarantees that
By < Fr(B). If v is fully adjacent to By and B; = By [fr(vi) = b(v2)], then
add v to B, as shown in Figure 6.7(a). If v is fully adjacent to By, but Ba < B;
[b(v2) = fr(v1)], then add the block {v} immediately before B, as shown in Figure
6.7(b). Finally, if v is not fully adjacent to Bg, then we partition By U B U {v} into
{v} < By < BanNX < B\ X, as shown in Figure 6.7(c).

Now assume that B; < By {fr(v1) < b(v1)] As such, if G’ is to be a proper interval
graph, then the block containing v in the straight enumeration of G’ must be ordered to
- the right of any resultant block of G’ that contains a member of Bj; for simplicity, we
indicate this by saying that, By < B(v). If By < Bj [b(ve) < fr(v1)], then B(v) < By;
this contradiction tells us that G’ is not a proper interval graph. Consequently, assume
that B; < Bs, which is to say that B; = By [fr(v1) = b(v2)]. Furthermore, if v is
not fully adjacent to Bs, then B; adjacent to By gives Bo < B(v), yet, with v not
fully adjacent to By and v adjacent to By, B(v) < Bs, which is another contradiction.

Therefore, assume that v is also fully adjacent to Bs.

Given B; < B, B; = By, and v fully adjacent to Bs, if FL(B2) < By [fr(v2) = b(v1)],

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B, By
——— add) ————————
B, = B U{v}

(a) v is fully adjacent to Bz, and Fgr(B1) = B2

{v}
B B
2 add v 2
B, — By

(b) v is fully adjacent to Bz, and By < Fr(B1)

BonNX

Bz {’U} Bz \ X
_— add v
By E—— B,

(c) v is not fully adjacent to Bs

Figure 6.7: Adding the vertex v, where v is adjacent only to By and By and Fr(B;) = B;.
Without loss of generality, we have assumed that v is fully adjacent to B,

then By < B(v). If, furthermore, By < Fr(Bs) [b(v2) < fr(v2)], then B(v) < B,
which is a contradiction. On the other hand, if Fr(Bs) = B2 [fr(v2) = b(vs)], then
we add the block {v} immediately after By, as depicted in Figure 6.8(a).

Finally, given B; < By, B; = B,, v fully adjacent to By, and Fr(By) = By, if
FRr(Bs) = By [fr(v2) = b(v2)], then we need only add v to Bj, as depicted in Figure
6.8(b). However, if By < Fgr{Baz) [b(v2) < fr(v2)], then we add the block {v} between
B, and Ba, as depicted in Figure 6.8(c).

3. k > 3. By Lemma 6.13, v is fully adjacent to Bs,...,By_1. Let B, = Fr(B;) and
Bg = Fr(Bg). As well, let by be some vertex in By, and bg be some vertex in Bg.
Observe that By < B, and Bg < By, otherwise, By and By do not belong to the same
component. Moreover, by definition, F1,(B,) < By and By = Fr(Bg). Furthermore, if
B, =< Bg, then there cannot be another block B for which B, < B < By [b(Ir(by)) #
b(bg)]. Otherwise, condition 3 of Lemma 6.13 is violated. Note that the algorithm

LErFTCOMPONENTBLOCKSTRUCTURE would have detected this violation.

We consider four cases.

(a) v is fully adjacent to By, and partially adjacent to B;. In this case, B, < B{(v)

as B, is adjacent to B;. Since B, is adjacent to Fr(B,), B(v) is also adjacent
to Fr(Ba), so we must ensure that Fr(Bgy) < Bk [fr(ba) < b(vg)]; otherwise, G’

is not a proper interval graph.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bl Bl

add v v}
B, E—— B,

(a) Fr(Bz2) < B1

By By
e add v =
B, e B, U {v}

(b) Fr(B2) = Bi and Fr(B2) = B

v}

Bl Bl
add v
B, —_— B;

(C) FL(BQ) = Bj and By < FR(Bz)

Figure 6.8: Adding the vertex v, where v is adjacent only to B; and B and Fr(B;) < Bi.
Without loss of generality, we have assumed that v is fully adjacent to B;

Now By < Fr(Ir(B,)), therefore, B, < B(v) < Ir(Bqs). Yet v is adjacent to By,
so we must also ensure that By < Fr(Ir(Bu)) [0(vk) < frR(Ir(ba))]; otherwise,
G’ is not a proper interval graph. To create the new contig, we partition B; into
B;\ X < B;N X and insert the block {v} immediately after B,, as depicted
Figure 6.9(a).

(b) v is fully adjacent to By, and partially adjacent to By. In this case, B(v) = Bg

as By is adjacent to Bg. Since Bg is adjacent to Fr(Bg), B(v) is also adjacent
to Fr,(Bg), so we must ensure that By < F1,(Bg) [b(v1) < fr(bg)]; otherwise, G’
is not a proper interval graph.
Now Fr(IL(Bg)) < Bk, therefore, I1,(Bg) < B(v) < Bg. Yet v is adjacent to By,
so we must also ensure that Fp(I1(Bg)) = By [fr(Ir(bs)) < b(v1)]; otherwise,
G’ is not a proper interval graph.
To create the new contig we partition By into By N X < By \ X, and insert the
block B, = {v} immediately before Bg. This scenario is virtually identical to
the case when v was fully adjacent to By and partially adjacent to B, and is
depicted in Figure 6.9(b).

(¢) v is partially adjacent to both By and Bj. As we have seen, these conditions ne-

cessitate that B, < B(v) and B(v) < Bg. As such, if Bg < B, [b(bs) < b(ba)],

then G’ cannot be a proper interval graph.

From the previous cases, we also require that Fr(B,) = By [fr(bs) < bluy)]

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and By <X Fr(Bg) [b(v1) < fr(bs)]- However, given that v is partially adjacent
to both Bj, and By, we actually have a slightly stronger requirement, namely,
Fr(Ba) < Bi [fr(ba) < b(ug)] and By < Fr(Bg) [b{v1) < fr(bg)]. Providing
B, < Bg, both of these conditions are satisfied.

In essence, this scenario requires the “combination” of the two previous rela-
bellings. That is, we partition By into B; \ X < B; N X, we partition By into
ByNX < B\ X, and we insert the block {v} between B, and Bs. This scenario
is depicted in Figure 6.9(c).

Bs
B B,
B, BinX By

add v
B, By —_— B\ X {v}

(a) v is fully adjacent to By, and partially adjacent to B

Bg
B/’ By

By ad B, B,nX
a v
B, Bx _ {v} B\ X

(b) v is fully adjacent to B; and partially adjacent to By

B
Bs Ba -
B, add v BiNX BynX
B, B, B\ X {v} B\ X

(c) v is partially adjacent to both By and By

Figure 6.9: Adding the vertex v, where v is adjacent to By through By (k > 3)

(d) v is fully adjacent to both B; and Bjy. We consider three further cases.

i. Ba < By [b{bs) < b(bg)]. Using an earlier argument, we know that there can-
not be a block B for which B, < B < Bg [b(Ir(bs)) # b(bg)]. Now if
B(v) = B, then B, < Bg gives that B(v) is not adjacent to By, which is a

contradiction. Similarly, if Bg < B(v), then B, < Bg gives that B(v) is not
adjacent to By, which is a contradiction. Thereby, B, < B(v) < Bg, so we
add the block {v} between B, and Bg, as shown in Figure 6.10.
ii. By = Bg [b(by) = b(bg)]. We consider four cases.
o Fi(By) =B [fr(ba) = b(v1)] and Fr(B,) = By [fr(ba) = b(vi)]. Since
B, has the same adjacency as v, we add v to B, as depicted in Figure

6.11(a).

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bs By
B, add v B,
B By B, B

Figure 6.10: Adding the vertex v, where v is fully adjacent to By through By (k > 3), and
B, = FR(Bl) = FL(Bk) = B,g

o Fr(By) < By [fr(by) < b(v1)] and Fr(Bu) = Bx [fr(ba) = b(vg)]- Since
Fr(By) = Bi, By < B(v). Furthermore, observe that B; < Fr(Ir(B,)),

so B(v) < Ip(B,). As such, we must insert the block {v} immediately
after By, as shown in Figure 6.11(b).
o Fi(B,) = B [fr(by) =b(v1)] and By < Fr(Bgy) [b{vr) < fr(bs)]. An ar-

gument similar to the preceding one gives that the block {v} must be

inserted immediately before By, as shown in Figure 6.11(c).

o Fr(Bo) < B1 [f1(ba) <b(v1)] and By < Fr(By) [b(vr) < fr(ba)]- From
the previous cases, we see that B, < B(v) and B(v) < B,, which is a

contradiction. Thereby, G’ is not a proper interval graph.

B, =B; add v B, U {v}
B, By B, By

(a) FL(Ba) = Bl, and FR(BQ) = Bk

{v}
B, = Bg add v B,
B, By By By,
(b} Fp(B«) < B1, and Fg(Ba) = By
{v}
B, =By add v B,
Bl Bk Bl B/c

(c) Fr(Ba) = Bi, and By < Fr(Ba)

Figure 6.11: Adding the vertex v, where v is fully adjacent to B; through By (k > 3), and
By = Fg(B1) = F(By) = Bg

ili. Bg < Bq [b(bg) < b(b,)]. By definition, Fr(B,) < B and By < Fgr(Bg),
therefore, F1,(Bg) < B and By <X Fr(B,). We consider four cases.

o Fr(Bg) =B [fL(by) = b(v1)] and Fr(Ba) = Bk [fr(ba) = b(vg)]. Since

FL(Bg) = Bl, F[A<B/j) j FL(Ba) gives Bl j FL(BQ), SO FL(BQ) =

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F1(Bg) = By. Similarly, Fr(Bg) = Fr(Ba) = Bk, so By = Bg. This
contradiction tells us that this case cannot occur.

o [(Bg) < By [fr(bg) < b(v1)] and Fr(By) = By [fr(ba) = b(vg)]. Since

F(Bg) < B1, Bg < B(v). As such, Fr(Bg) = B [fr(bg) < b(vg)],
otherwise, G’ is not a proper interval graph.
Now if Fr,(B,) = B1 [f1.(b,) = b(v1)], then B, has the same adjacency
as v so we add v to B,, as illustrated in Figure 6.12(a). Otherwise, if
Fr(By) < B1 {fr(bs) < b(v1)], we must insert the block {v} immediately
after By, as illustrated in Figure 6.12(b), because By < Fr,(Ig(B,)).

o F1(Bg) = By [fr(bg) = b(v1)] and By < Fr(Bg) [b(ve) < fr(ba)]- This case
is virtually identical to the previous one. As such, we we must check that
By = Fu(Ba) [B(v1) < fi(ba))-

If Fr(Bg) = Bi, [fr(bg) = b(vk)], then we add v to Bg, as shown in Fig-
ure 6.12(c). Otherwise, if By < Fr(Bg) [b(vk) < fr(bg)], we must insert

the block {v} immediately before Bg, as illustrated in Figure 6.12(d).

o F(Bg) < By [fr(bs) < b(v1)] and By < Fr(Ba) [b(vk) < fr(ba)]. Since
By < Fr(B,), B(v) < By. Now if F,(B,) < B1 [fr(ba) < b(v1)], then
B, < B(v), which is a contradiction that tells us that G’ is not a proper
interval graph. Therefore, F1,(B,) = Bj. Similarly, Fr(Bg) = B, and
we must verify that Fg(Bg) < By [fr(bg) < b(vg)].

Now consider Fr(I;(B1)). Since Fr(Fr(IrL(B1))) = (IL(B1)) < By,
Fr(IL(B1)) < B(v). Similarly, B(v) < Fr(Ir(Bg)). As such, we must
check the condition Fr(I1(B1)) 2 FrL(Ir(By)) [fr(IL(v1)) < fL(Ir(w))].
Since Fr(Bg) < Bi, we also know that Bs = Fg(I5(B1)); similarly,
Fr(Ir(By)) % Ba-

If there exists a block B such that Fr(Ir(B1)) < B < F(Ir(Bk)), then
By = Fp(B) and Fgr(B) = Bj. Yet Bg < B, where Fr(Bg) = By,
therefore, Fr(B) = By. Similarly, By = Fr(B), so we must add v to B
as shown in Figure 6.12(e). Note that we have clearly defined F(B) and

Fr(B), therefore, there is only one such block B.
If there does not exist a block B such that Fr(IL(B1)) < B < Fr(Ig(By)),
then we must add the block {v} between Fr(IL(B1)) and Fi(Ir(Bg)).

This scenario is also shown in Figure 6.12(e).

Now let us consider when the members of X belong to two distinct components. From
condition 5 of Lemma 6.13 we know that each segment must contain an end block to which
v is fully adjacent. We add v by merging the two contigs and placing the block {v} between.

Let the contigs containing the two segments be ® = By < ... < By and ¥ = B} < ... <

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bj, where, without loss of generality, ® < ¥. Note that we can follow I, and /g pointers, as
necessary, to determine the end blocks of ® and W. If By, and Bj are the end blocks to which
v is fully adjacent, then the new merged contig will be ® < {v} < ¥, however, we note that
it may also be necessary to split some of the blocks in the merged contig. Construction of
this new merged contig requires us to move ® over to ¥.

Let B; be the leftmost block in ® to which v is adjacent, and let B;- be the rightmost
block in ¥ to which v is adjacent. If v is partially adjacent to B;, then we must partition
B; into B; \ X < B; N X. Similarly, if v is partially adjacent to B}, then we must partition
B} into B;N X < B} \ X. The change in the straight enumeration is illustrated in Figure
6.13 which considers when the end blocks to which v is fully adjacent are By and Bj, with
v fully adjacent to Bj, but not B;.

Similar merges are done for the other scenarios in which the end blocks fully adjacent
to v are By and Bj, B, and Bf, and B; and Bj. In the case where the end blocks are fully
adjacent with v are By and B!, the merged contig is ¥ < {v} < ®%; this merge amounts to
a move and “flip” of ®.

As we have seen, the algorithm LEFTCOMPONENTBLOCKSTRUCTURE allows to deter-
mine a great deal of information about the contigs containing members of X. The cor-
rectness, at least the block level, of our algorithm is due to the careful consideration of the
exhaustive cases which can be identified according to information obtained from LEFTCOM-
PONENTBLOCKSTRUCTURE, as well as specific vertex-level information. Again, ensuring
that the algorithm does what we want it to do, in terms of pointers and vertex labels, is
a matter of verification within each individual case. Recall that many of the vertex-level

instructions are presented in Appendix C.

Deleting an edge

Let uv be the edge to be deleted, where X,, and X, denote the neighbourhoods of © and v
in G, respectively. As well, let B; and B; be the blocks containing » and v, respectively, in
the contig B; < ... < By of the component C containing uv. Without loss of generality, let
1<i<j<k.

The following theorem addresses the case where 7 = j.

Lemma 6.14 [27] Let u and v be two adjacent vertices in a proper interval graph G. If
Nlu] = Nv], then G—uv is a proper interval graph if and only if the component containing

u and v is a clique.

Consequently, if i = j [b(u) = b(v)], then i = 5 = k =1 [f(v) = fr(v)]; otherwise, G’ is
not a proper interval graph. In this case, we partition the contig B; to create a new contig

{u} < By \ {u,v} < {v}, as depicted in Figure 6.14(a).

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On the other hand, if i 3 j, then the relabelling is slightly more complicated. In this

case, the following lemma applies.

Lemma 6.15 [27] Let u and v be adjacent vertices of a proper interval graph G. As well,
let By < ... =< By be a contig of G, such that v € B; and v € B;, for some 1 <1 < j < k.
The graph G — wv is a proper interval graph if and only if Fr(B;) = B; and Fr(B;) = B;.

Consequently, if i # j, then Fr(B;) = B, [fr(u) = b(v)] and Fr(B;) = B; [fr(v) =
b(u)]; otherwise, G’ is not a proper interval graph. Observe that if 1 < @ [fg(u) # b(uw)],
B; = {v} [nz(v) = v], Fr(Bi-1) = Fr(Bi) [fo(L(u)) = fr(u)], and Fr(Bi-1) = Bj_1
[fr(IL(u)) = b(IL(v))], then we must move w into B;_;. Similarly, if j < k, B; = {u},
Fr(Bj41) = Fr(Bj), and Fr(Bjt1) = Bi;1, then we must move v into B; ;.

Exactly how the labelling is changed depends on whether u is moved into B;—1, v is
moved into Bjy1, B; = {u}, and B; = {v}. We consider each case, with respect to u,

separately, noting that the same considerations must also be given for v.

e If v is to be moved into B;_1, then the straight enumeration changes as shown in

Figure 6.14(b).

o If u was not moved into B;_; and B; = {u}, then the straight enumeration changes

as shown in Figure 6.14(c).

o If © was not moved into B;_1; and B; contains vertices other than u, then we must
partition B; into {u} < B;\{u} (in the case of v, we would partition B; into B;\{v} <
{v}). This scenario is depicted in Figure 6.14(d).

The correctness, at least the block level, of our algorithm is due to the careful consider-
ation of the exhaustive cases. Again, ensuring that the algorithm does what we want it to

do, in terms of pointers and vertex labels, is a matter of verification.
Adding an edge

Let uv be the edge to be added, where X,, and X,, denote the neighbourhoods of v and v

in G, respectively. The following lemmas characterize when G’ is a proper interval graph.

Lemma 6.16 [27] If u and v are in distinct components of a proper interval graph G,
then G + wv is a proper interval graph if and only if u and v are end vertices in a straight

enumeration of G.

Lemma 6.17 [27] Let u and v be non-adjacent vertices belonging to the same component
of a proper interval graph G. As well, let By < ... < By be a contig of that component,
where u € B; and v € Bj, for some 1 <1 < j < k. The graph G + uv is a proper interval
graph if and only if Fr(B;) = B;_1 and Fr(B;) = Biy1.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Without loss of generality, let us assume that b(u) < b(v). While considering the addition
of a vertex, we saw that, by traversing F'r pointers beginning at u, we can determine, in
O(n) time, whether u and v belong to the same component. If u and v belong to the
same component, the conditions Fr(B;) = Bj_1 [fr(u) = b(Ir(v))] and Fr(B;) = B;y1
[fo(v) = b(Igr(v))] must be satisfied; otherwise, G’ is not a proper interval graph. On the
other hand, if u and v do not belong to the same component, u and v must be end vertices
[fo{uw) = b(u) or fr{u) = b(u), and fr(v) = b(v) or fr(v) = b(v)]; otherwise, G’ is not a
proper interval graph.

Having determined whether G’ is a proper interval graph, we consider the following

cases.

1. The vertices u and v belong to distinct components. In this case we will need to know

information about all the blocks in the components containing v and v. Specifically, we
determine all the blocks by following Fr, and Fr pointers, keeping a reference vertex

v; from each block B;. Gathering this information can take as much as ©(n) time.

Let ® = By < ... < By, be the contig of the component containing u, and let ¥ =
Bj < ... < Bj be the contig of the component containing v. If u € B and v € B,
then the new merged contig will be ® < ¥; however, we note that it may also be
necessary to split some of the blocks in the merged contig. Specifically, if By # {u}
[nz(u) # u], then we must partition By into By \ {u} < {u}; similarly, if B} # {v}
[nz(v) # v], then we must partition B into {v} < Bj\ {v}. Similar merges and splits
are done for the other scenarios in which u € By, and v € B}, v € B; and v € B{, and

u € By and v € Bj.

The change in the straight enumeration is illustrated in Figure 6.15(a) which considers

when u € By and v € B{, with B} = {v} but not By, # {u}.

2. The vertices u and v belong to the same component. As per the hypothesis of Lemma

6.17, let B; < ... < By be the contig of the component containing v and v, where

u € B, and v € By, for some 1 <i <7 < k. We consider two further cases.

(a) B; and Bj are end blocks [fr(u) = b(u) and fr(v) = b(v)]. In this case, X, =

X,. By Lemma 6.7 (umbrella property), the contig contains three blocks, namely,
{u} < Xy < {v}. The new component will consist of a single block, formed by

merging the three blocks into one new block, as shown in Figure 6.15(b).

(b) At least one of B; and B; is not an end block [fL(u) # b(u) or fr(v) # b(v)]. In
this case, X, # X,. If By = {u} [nz(v) = u], Fr(B,_1) = Fr(By) [fr(IL(v)) =
fr(v)) and Fr(Bj-1) = B; [fL(IL(v)) = b(u)], then we move v from B, into B;_1.
Similarly, if B, = {v} [nz(v) = v], FL(Bi+1) = Fo(B;) [fr(Ir(w)) = fr(u)]

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and Fgr(B;y+1) = Bj [fr(Ir(u)) = b(v)], then we move u from B; into Bjy1.
This moving of u and v is virtually identical to one of the cases discussed when

considering the deletion of a edge.

If u was not moved, and B; contains vertices other that u, then we partition B;
into B;\ {u} < {u}. Similarly, if v was not moved, and B; contains vertices other
that v, then we partition B; into {v} < B; \ {v}.

Exactly how the labelling is changed depends on whether % is moved into B;41,
v is moved into Bj_1, B; = {u}, and B; = {v}. We consider each case, with
respect to u, separately, noting that the same considerations must also be given

for v.

e If u is to be moved into B;;i, then the straight enumeration changes as
shown in Figure 6.15(c).

e If u was not moved into B;y1 and B; = {u}, then the straight enumeration
changes as shown in Figure 6.15(d).

e If u was not moved into B;;+; and B; contains vertices other than u, then we
must partition B; into B; \ {u} < {u} (in the case of v, we would partition

B; into {v} < B; \ {v}). This scenario is depicted in Figure 6.15(e).

The correctness, at least the block level, of our algorithm is due to the careful consider-
ation of the exhaustive cases. Again, ensuring that the algorithm does what we want it to

do, in terms of pointers and vertex labels, is a matter of verification.

6.2 Summary

In this chapter, we apply a distributed pointer technique, along with the circular doubly
linked list technique seen in Chapters 4 and 5, in order to develop error-detecting dynamic
adjacency labelling schemes for proper interval graphs. Our dynamic scheme, which is
largely based on a centralized scheme of Hell, Shamir, and Sharan [27], uses O(logn) bit

labels and handles all operations in O(n) time.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B/j BZ}
B, add v B, U {v}
B, By B, By

(a) Fr(Bg) < B1, Fr(Bqa) = Bk, and Fr{Ba) = B1

{v}
Bg Bgs
B, add v B,
B By B, By,
(b) FL(BE)<BlvFR(BQ):Bk$and FL(Ba)'<Bl
B/] BBU {U}
B, add v B,
By By B, By
() FL(Bg> = By, By < FR(BQ), and FR(Bg) = By
{v}
B _ B
B, add v B,
By B;, B, By

(d) FL(Bg) = Bl, Bk =< FR(BQ)’ and Bk =< FR(Bg)

B BU{v
Bgs Bg
B, add v By
B, By B, Bj

(e) FL(Bg) < By and By, < Fr(Ba). Note that the block B may be empty

Figure 6.12: Adding the vertex v, where v is fully adjacent to B; through Bj (k > 3), and
Bﬂ = FL(Bk) = FR(Bl) = Ba

add v
—_

Figure 6.13: Adding the vertex v, where the neighbours of v span more than one component.
In this case, v is fully adjacent with B;ys,...,Bx and Bi,.. .,B;, and partially adjacent

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B\ {u, v}

_ B, . delete uv . {u} {v} _
(a) N(u] = N[v]
B; Bj1 delete uv B\ {u} Bji1
B4 Bj = {U} _— B; U {’U}B] = {’U}

(b) N[u] # N[v], u is moved into B;1, and v is not moved into Bj1

By

— B. B; = {1
Bi={u} Ll delete uv {u} {o}

Bi_1 Bj ——— B;_1 Bj \ {U}

(c) N[u] # N[v], u is not moved into B;_1, and B; = {u}

B\ {v}
B Bin delete uv {u) {v}
Bi_, B, — B, BZ'“

(d) Nlu] # N[v], u is not moved into B;_1, and B; # {u}

Figure 6.14: Deleting the edge uv

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) The vertices u and v belong to distinct components. In this case, v € By, v € BY, Bi # {u},

and By = {v}
X, =X
= L add uv
B; = {u} B;={v} X, U {u, v}
(b) The vertices u and v belong to the
same component. In this case, both B;
and B; are end blocks
BZ'“I BZ-_I
By Biy U {u}
add wv
B; B; ={v} — = B\ {u} B; = {v}

(c) The vertices u and v belong to the same component. In this case, at least
one of B; and Bj; is an end block, u is moved into B;.t1, and v is not moved into

Bj_l
B;_1
Bj—l Bi+1
B, B;
= add uv _— L
B; = {u} B; . > B; = {u}

(d) The vertices u and v belong to the same component. In this case, at least one of B; and B; is an end
block, u is not moved into B;t+1, and B; = {u}

B; ; By
= add uv {u}
B, B, — {v) S AT B, = {v}

(e) The vertices u and v belong to the same component. In this case, at least one of B; and Bj is an
end block, u is not moved into B;11, and B; # {u}

Figure 6.15: Adding the edge wv

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion

In order to increase the applicability of informative labelling schemes to real world problems
in which the underlying topology is constantly changing, we have formally defined the
concept of a dynamic informative labelling scheme. There have been earlier publications on
this subject, but these works have been based exclusively on our intuitive understanding
of how static problems are dynamized. While presenting this definition, we introduced the
concept of error-detection, in which the relabeller recognizes when the modified graph is
no longer a member of the family under consideration. Additionally, we demonstrated the
connection between error-detection and the graph recognition problem, and identified and
discussed the qualities that make a good dynamic scheme.

The latter half of our work was dedicated to the development of error-detecting dynamic
adjacency labelling schemes for four classes of graphs. Common to the development of
dynamic schemes for all these classes was the use of a technique that employed circular
doubly linked lists to encode information about graph substructures at the vertex level.
Moreover, for one of the classes we developed a technique to distribute pointers. Each of
the dynamic adjacency labelling schemes that we developed was fully dynamic, that is, the
allowed graph operations were the addition or deletion of a vertex (along with its incident
edges), and the addition or deletion of an edge.

In the case of line graphs, our dynamic scheme used O(logn) bit labels and updates
could be performed in O(e) time, where e was the number of edges added to, or deleted
from, the line graph. In developing this dynamic scheme, we introduced a new concept
known as partition isomorphism, and developed theory regarding the types of line graphs
that can be changed to produce new line graphs.

In the cases of r-minoes, defined by Metelsky and Tyshkevich [44] as the class of graphs
with no vertex in more than r» maximal cliques, our dynamic scheme used O(rlogn) bit
labels. Edge addition and deletion were handled in O(r?D) time, vertex addition in O(r2e?)
time, and vertex deletion in O(r2e) time, where D was the maximum degree of the vertices

in the original graph and e was the number of edges added to, or deleted from, the original

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graph.

In the case of r-bics, a new class which we defined to be the graphs with no vertex
in more than r maximal bicliques, our dynamic schemes used O(rlogn) bit labels. Edge
addition and deletion, as well as vertex deletion, were handled in O(r?B) time, and vertex

addition in O(r?nB) time, where B was the size of the largest biclique in the original graph.

Finally, in the case of proper interval graphs, our dynamic scheme used O(logn) bit
labels and handled all operations in O(n) time.

Our work on dynamic informative labelling schemes leaves several open questions.

1. What general mechanisms can be developed for creating dynamic schemes from static
schemes (besides recreating the graph and running the marker each time the graph is
changed)? The work of Korman, Peleg, and Rodeh [39], offers such a technique for the
dynamic weighted trees, when considering any function f that satisfies the following

properties.
e For any two vertices v and v, f(u,v) depends entirely on the path between them.
e For any three vertices u, v, and w, where w is on the path between u and v,

f(u,v) can be calculated in polynomial time from f(u,w) and f(w,v).

Such functions include routing, distance, separation level, and flow. Instead of fixing
the graph class and developing mechanisms for different functions, can we fix the

function and develop mechanisms for different graph classes?

ro

Is there a dynamic adjacency labelling scheme for proper interval graphs that uses
o{logn) bit labels. We know that there are 29(n) proper interval graphs on n vertices
[22], so there could be a dynamic scheme with labels that use O(1) bits. The existence
of such a dynamic scheme would imply the the existence of an adjacency labelling

scheme that uses O(1) bit labels.

3. Is there a dynamic adjacency labelling scheme for proper interval graphs that uses
©(logn) bit labels, yet allows relabelling in o(n) time? Unfortunately, the dynamic
scheme presented for proper interval graphs in Chapter 6 is hampered by the fact that
we must maintain the straight enumeration, which necessitates using as much as ©(n)

time for each graph operation.

4. Is there a dynamic adjacency labelling scheme for interval graphs that uses O(logn)
bit labels. Interval graphs, which are not all that different from proper interval graphs,
exhibit an adjacency labelling scheme that uses O(logn) bit labels [45]. It makes sense
that the dynamic scheme for proper interval graphs presented in Chapter 6 might be

extended to give a dynamic scheme for interval graphs.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Can we devise dynamic informative labelling schemes for functions other than adja-
cency, over and above the work that has already been done on trees [37, 39]7 The
class of trees, although relevant to many applications, is typically the easiest family
on which to consider a graph theoretical problem. Are we able to devise such dynamic

schemes for classes of size 2¢(™)?

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor queries.
In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms
(Washington, D.C., USA), pages 547-556, 2001.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, 1974.

[3] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Identifying nearest common ancestors
in a distributed environment. IT-C Technical Report Series 2001-6, The IT University
of Copenhagen, 2001.

[4] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A
survey and a new distributed algorithm. In Proceedings of the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures (Winnipeg, Canada), pages 258-
264, 2002.

[5] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A survey
and a new algorithm for a distributed environment. Theory of Computing Systems,
Online first:OF1-OF16, 2004.

[6] S. Alstrup and T. Rauhe. Small induced-universal graphs and compact implicit graph

representations. In /3¢ Annual Symposium on Foundations of Computer Science (Van-
couver, Canada), pages 53-62. IEEE, 2002.

[7] R. B. Borie, R. G. Parker, and C. A. Tovey. Recursively constructed graphs. In J. L.
Gross and J. Yellen, editors, Handbook of Graph Theory, pages 99-108. CRC Press,
New York, 2003.

[8] A.Branstadt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia, 1999.

[9] R. C. Brigham. Bandwidth. In J. L. Gross and J. Yellen, editors, Handbook of Graph
Theory, pages 922-944. CRC Press, New York, 2003.

[10] G. S. Brodal and R. Fagerberg. Dynamic representation of sparse graphs. In Al-

gorithms and Data Structures, Proceedings of the 6 International Workshop (Van-
couver, Canada), volume 1663 of Lecture Notes in Computer Science, pages 342-351.
Springer-Verlag, 1999.

[11] E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. In Proceedings of

the 2150 ACM Symposium on Principles of Database Systems (Madison, USA), pages
271-281. ACM, 2002.

{12] D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague. Simple linear time
recognition of unit interval graphs. Information Processing Letters, 55:99-104, 1995.

[13] B. Courcelle and R. Vanicat. Query efficient implementation of graphs of bounded
clique-width. Discrete Applied Mathematics, 131:129-150, 2003.

[14] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM Journal on Computing, 25:390-
403, 1996.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[15] A. C. Driskell, C. Ané, J. G. Burleigh, M. M. McMahon, B. C. O’Meara, and M. J.
Sanderson. Prospects for building the tree of life from large sequence databases. Science,
306:1172-1174, 2004.

[16] F. Fich. CSC 2429 - Advaced Data Structures: Lecture 1, 2000.
www.cs.toronto.edu/~fich/DScourse/lecturel.ps.

[17] C. M. Fiduccia, E. R. Scheinerman, A. Trenk, and J. S. Zito. Dot product representa-
tions of graphs. Discrete Mathematics, 181:113-138, 1998.

[18] H. N. Gabow and H. H. Westermann. Forests, frames, and games: Algorithms for
matroid sums and applications. Algorithmica, 7:465-497, 1992.

19] C. Gavoille, M. Katz, N.A. Katz, C. Paul, and D. Peleg. Approximate distance labeling

schemes. In Proceedings of the 9" European Symposium on Algorithms, volume 2161
of Lecture Notes in Computer Science, pages 476—487. Springer-Verlag, 2001.

[20] C. Gavoille and C. Paul. Small universal distance matrices. Technical Report RR-1263-
01, Laboratoire Bordelais de Recherche en Informatique, 2001.

[21] C. Gavoille and C. Paul. Distance labeling scheme and split decomposition. Discrete
Mathematics, 273:115-130, 2003.

[22] C. Gavoille and C. Paul. Optimal distance labeling for interval and circular-arc graphs.

In Proceedings of the 11" European Symposium on Algorithms, volume 2832 of Lecture
Notes in Computer Science, pages 254-265. Springer-Verlag, 2003.

[23] C. Gavoille and D. Peleg. Compact and localized distributed data structures. Journal
of Distributed Computing, 16:111-120, 2003.

[24] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. In Proceed-
ings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (Washing-
ton, D.C., USA), pages 210-219. ACM, 2001.

[25] P. Hanlon. Counting interval graphs. Transactions of the American Mathematical
Society, 272:383-426, 1982.

[26] F.Harary and E.M. Palmer. Graphical Enumeration. Academic Press, New York, 1973.

[27) P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and
representing proper interval graphs. SIAM Journal on Computing, 31(1):289-305, 2001.

[28] Z. Jackowski. A new characterization of proper interval graphs. Discrete Mathematics,
105:103-109, 1992.

[29] T. Jiang, M. Li, and B. Ravikumar. Basic notions in computational complexity. In
M. J. Atallah, editor, Algorithms and Theory of Computation Handbook, chapter 24.
CRC Press, New York, 1998.

[30] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal
independent sets. Information Processing Letters, 27:119-123, 1988.

[31] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. SIAM Journal
on Discrete Mathematics, 5(4):596-603, 1992.

[32] H. Kaplan and T. Milo. Short and simple labels for small distances and other func-

tions. In Algorithms and Data Structures, Proceedings of the 7" International Work-
shop (Providence, USA), volume 2125 of Lecture Notes in Computer Science, pages
246-257. Springer-Verlag, 2001.

[33] M. Katz, N. A. Katz, A. Korman, and D. Peleg. Labeling schemes for flow and con-
nectivity. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (San Francisco, USA), pages 927-936. ACM, 2002.

[34] M. Katz, N. A. Katz, and D. Peleg. Distance labeling schemes for well-separated graph
classes. Technical Report TRMCS99-26, The Weizmann Institute of Science, 1999.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.toronto.edu/~fich/DScourse/lecturel.ps

[35] M. Katz, N. A. Katz, and D. Peleg. Distance labeling schemes for well-separeated

graph classes. In Proceedings of the 17" Annual Symposium on Theoretical Aspects of
Computer Science (Lille, France), volume 1770 of Lecture Notes in Computer Science,
pages 516-528. Springer-Verlag, 2000.

[36] T.Kloks, D. Kratsch, and H. Miiller. Dominoes. In Graph Theoretic Concepts in Com-

puter Science, Proceedings of the 20™* International Workshop (Herrsching, Germany),
volume 903 of Lecture Notes in Computer Science, pages 106-120. Springer-Verlag,
1995.

[37] A. Korman and D. Peleg. Labeling schemes for weighted dynamic trees. In Automata,

Languages and Programming, Proceedings of the 30 International Colloquium (Eind-
hoven, The Netherlands), volume 2719 of Lecture Notes in Computer Science, pages
369-383. Springer-Verlag, 2003.

[38] A. Korman, D. Peleg, and Y. Rodeh. Labeling schemes for dynamic tree networks. In

Proceedings of the 19" Annual Symposium on Theoretical Aspects of Computer Science
(Antibes - Juan les Pins, France), volume 2285 of Lecture Notes in Computer Science,
pages 76-87. Springer-Verlag, 2002.

[39] A. Korman, D. Peleg, and Y. Rodeh. Labeling schemes for dynamic tree networks.
Theory of Computing Systems, 37:49-75, 2004.

[40] P. G. H. Lehot. An optimal algorithm to detect a line graph and output its root graph.
Journal of the Association of Computing Machines, 21(4):569-575, 1974.

[41] P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Com-
puters and Mathematics with Applications, 25:15-25, 1993.

[42] T.-H. Ma and J. Spinrad. Cycle-free partial orders and chordal comparability graphs.
Order, 8:49-61, 1991.

[43] T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. SIAM Mono-
graphs on Discrete Mathematics and Applications. STAM, Philadelphia, 1999.

[44] Y. Metelsky and R. Tyshkevich. Line graphs of Helly hypergraphs. SIAM Journal on
Discrete Mathematics, 16(3):438-448, 2003.

[45] J. H. Muller. Local structure in graph classes. PhD thesis, Georgia Institute of Tech-
nology, March 1988.

[46] D. Peleg. Proximity-preserving labeling schemes and their applications. In Graph The-

oretic Concepts in Computer Science, Proceedings of the 25" International Workshop
(Ascona, Switzerland), volume 1665 of Lecture Notes in Computer Science, pages 30-41.
Springer-Verlag, 1999.

[47} D. Peleg. Informative labeling schemes for graphs. In Mathematical Foundations of

Computer Science, Proceedings of the 25 International Symposium (Bratislava, Slo-
vakia), volume 1893 of Lecture Notes in Computer Science, pages 579-588. Springer-
Verlag, 2000.

[48] E. Prisner. Bicliques in graphs I: Bounds on their number. Combinatorica, 20(1):109-
117, 2000.

[49] F. S. Roberts. Indifference graphs. In F. Harary, editor, Proof Techniques in Graph
Theory, pages 139-146. Academic Press, New York, 1969.

[50] N. D. Roussopoulos. A max{m,n} algorithm for determining the graph H from its line
graph G. Information Processing Letters, 2:108-112, 1973.

[51] N. Santoro and R. Khatib. Labelling and implicit routing in networks. The Computer
Journal, 28:5-8, 1985.

[52] J. Spinrad. personal communication.

[53] J. Spinrad. Efficient Graph Representation. Fields Institute Monographs. AMS, Prov-
idence, 2003.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[54] V. Stix. Finding all maximal cliques in dynamic graphs. Computational Optimization
and Applications, 27:173-186, 2004.

[65] M. Thorup. Compact oracles for reachability and approximate distances in planar

digraphs. In 42™ Annual Symposium on Foundations of Computer Science (Las Vegas,
USA), pages 242-251. IEEE, 2001.

[56] M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the Thirteenth
Annual ACM Symposwum on Parallel Algorithms and Architectures (Heraklion, Greece),
pages 1-10. ACM, 2001.

[67] D. B. West. Introduction to Graph Theory, second edition. Prentice Hall, Toronto,
2000.

[58] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54:150-168, 1932.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Definitions

The following are the definitions of a variety of terms pertaining to graph classes seen in
this thesis; by no means is this list of definitions meant to be self-contained, rather, the
definitions are intended to jog the memory of the reader. Unless otherwise indicated, the

definitions are taken from Brandstédt, Le, and Spinrad [§].

H-free A graph is H-free if it does not contain H as an induced subgraph.

Almost tree(k) A graph isan almost tree(k) if there are at most k edges not ina spanning

tree of each biconnected component.

|EH|

W_l taken over all
| —

Arboricity [31] The arboricity of a graph is the maximum value of

vertex induced subgraphs H.

Asteroidal triple A set of three vertices such that, for every pair of the three vertices,
there is a path connecting the pair that avoids the neighbourhood of the remaining

vertex.

Astral triple A set of three vertices such that, for every pair of the three vertices, there
is a path connecting the pair that does not contain two consecutive vertices in the

neighbourhood of the remaining vertex.

Autograph [45] A graph G is an autograph if there is a bijection f from Vz to some set
S of n positive integers such that uv € Eg <= |f(u) — f(v)l € S.

Bandwidth The bandwidth of a graph G is the minimum value for which G is a subgraph

of the k*" power of Ply,/, the path on |Vg| vertices.
r-bic (defined in Chapter 5) A graph with no vertex in more than r maximal bicliques.
Biclique A complete bipartite subgraph.

Binary tree [57] A rooted tree in which no vertex has more than two children.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Boxicity The boxicity of a graph is the minimum value d for which it is the intersection

graph of boxes in d-dimensional space.

Chain graph For simplicity, we define a graph to be a chain graph if it is a Ps-free con-

nected bipartite graph [53]; a more involved definition can be found in [8]

Chordal bipartite graph A bipartite graph which contains no induced cycles of length

greater than four.

Chordal graph A graph is chordal if it contains no induced cycles of length greater than

three.

Circle graph A graph is a circle graph if it is the intersection graph of some family of

chords in a circle.

Circular arc graph A graph is a circular arc graph if it is the intersection graph of some

family of arcs of a circle.
Claw A claw is a K3

Cliquewidth (7] Let [k] denote the set {1,...,k} and let I(v) denote the label of a vertex

v. A cliquewidth-k graph is defined recursively as follows.

o Any graph G with Vo = {v} and I(v) € [k] is a cliquewidth-k graph.
o Let G; and G; be cliquewidth-k graphs, and let i and j belong to [k]. The
following are also cliquewidth-k graphs.
— The disjoint union of Gy and Ga.

— The graph formed from Gy by switching the labels of all vertices with label
1 to label j.

— The graph formed from G; by adding all edges vjvg, where I(v;) = ¢ and
Uva) = J.

The cliquewidth of a graph is the minimum value of k for which it is a cliquewidth-%

graph.
Cobipartite graph A graph is cobipartite if its complement is bipartite.

Cograph For simplicity, we define a graph to be a cograph if it can be reduced to an
edgeless graph by repeatedly taking complements within components [43]; a more

involved definition can be found in [8].

Comparability graph A graph is a comparability graph if the edges have a transitive

orientation.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Containment class A class G of graphs is an containment class if there is a set S of sets
such that every graph G in G is the containment graph of a family &’ of sets from S

(a family allows the sets to occur with repetition).

Containment graph For a given family of sets S, the containment graph of this family is
the graph with vertex set 8 such that two vertices are adjacent if and only if the set

corresponding to one vertex is a subset of the other.

Convex bipartite [45] A bipartite graph with bipartition (X,Y) is convex if, without loss
of generality, there is a total order on the vertices of X such that if y in Y is adjacent
to z1 and x9 in X, then it is also adjacent to all the vertices between z; and z2 in the

total ordering.

k-decomposable [31] A graph is k-decomposable if, for all subgraphs H with more than
k vertices, there exists k vertices whose deletion causes H to be disconnected with no

. 2|H| .
component containing more than =3 vertices.

Disk intersection graph [53] A graph is a disk intersection graph if it is the intersection

graph of some family of disks in the plane.

Distance hereditary A graph is distance hereditary if it is connected and all the induced

paths have the same length.

k-dot product graph A graph G is a k-dot product graph if each vertex v can be assigned
a vector T of length &k such that vivy € Eg <= 77 - U3 > 1, where - is the standard

inner product of two vectors.

EPT graph A graph is an EPT graph if it is the intersection graph of nontrivial simple

paths in a tree, where the intersection of paths is considered using edges.
Forest A graph with no cycles.

Genus (of a graph) The genus of a graph is the smallest genus of a surface in which the

graph has a crossing-free embedding.

Hereditary property A graph property P is hereditary if, for any graph G satisfying P,
every induced subgraph of G satisfies P.

Hereditary degree-k graph A graph is hereditary degree-k if each vertex induced sub-

graph has a vertex of degree at most k.

Hypercube [9] The k-dimensional hypercube is the graph on 2% vertices, each labelled
with a distinct binary string of length &, where two vertices are adjacent if and only

if their corresponding strings differ in exactly one position.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hypergraph A hypergraph H is a pair of sets (V,), where £ is a family of subsets of V.

The rank of H is the value magz{le|}.
ec

Intersection class A class G of graphs is an intersection class if there is a set S of sets
such that every graph G in G is the intersection graph of a family S’ of sets from S

(a family allows the sets to occur with repetition).

Intersection graph For a given family of sets S, the intersection graph of this family is
the graph with vertex set S such that two vertices are adjacent if and only if the

intersection of their corresponding sets is nonempty.

Interval graph A graph is an interval graph if it is the intersection graph of some family

of intervals on the real line.

k-interval graph A graph is a k-interval graph if it is the intersection graph of some family

of sets of k intervals on the real line.

Interval number The interval number of a graph is the smallest number k for which it is

a k-interval graph.

Line graph (of a hypergraph) Given a hypergraph H = (V,&), its line graph is the
graph L(H) = (€, E(gy) for which ee’ € Epyy if and only if e # €’ and ene’ # 0.

Line graph (of a simple graph) Given a graph G = (Vz, Eg), its line graph is the graph
L(G) = (Eg, Er(c)) for which {u,v} € Ey () if and only if v and v are adjacent edges
in G.

Mesh As intended by Peleg [47], a mesh is the Cartesian product of two paths.
r-mino (defined in Chapter 5) A graph with no vertex in more than r maximal cliques.

Outdegree-k A graph is an outdegree-k graph if the edges can be oriented such that no

vertex has outdegree greater than k.

Outerplanar A graph is outerplanar if it has a crossing-free embedding in the plane such

that all vertices are on the same face.

k-outerplanar A graph is l-outerplanar if it is outerplanar. For k > 1, a graph is k-
outerplanar provided it has a planar embedding such that if all the vertices on the
exterior face are deleted, the connected components of the remaining graph are all

(k — 1)-outerplanar.

Partial order A binary relation is a partial order on a set if it reflexive, transitive, and

antisymmetric.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Permutation graph A graph is a permutation graph if it is the intersection graph of some

family of lines that intersect two parallel lines.
Planar A graph is planar if it has a crossing-free embedding in the plane.

Poset A poset P is a pair (V, =) for which < is a partial order on V. A poset is often
represented by an acyclic digraph.

An ordering (vy,...,v,) of V is a linear extension of P if, for all i,5 € {1,...,n},
v, 2 v; = i < 4. A family of posets UfZOPl, where P, = (V, =), realizes P if
Vg = vy = Vg =y W, forall i € {1,...,k}. The dimension of P is the smallest number

of linear extensions of P that realize P.

Proper interval graph A graph is a proper interval graph if it is the intersection graph

of some family of intervals that do not contain one another.

Recursive r(n)-separator [24] A class of graphs G has a recursive r(n)-separator if, for

every G in G, there exists a subset S of vertices such that |S| < r(|Vg]), and every

2|V, .
l 3G| vertices.

connected component G’ of G \ S belongs to G and has at most

Rooted tree A tree which has a single vertex denoted as root. Typically, a rooted tree is

considered as a directed graph, where edges are directed away from the root.

Series-parallel A multigraph G is series-parallel if it has an orientation for which, for every
pair of edges, G does not contain a cycle that meets the edges in the same direction

and another that meets the edges in opposite directions.
k-sparse A graph G is k-sparse if |Eqg| < k|Vg|.

Split A graph is split if there is a partition of its vertices into a clique and an independent

set.

Threshold graph A graph is a threshold graph if it is a threshold tolerance graph with a

constant tolerance function.

Threshold tolerance graph A graph G is a threshold tolerance graph if there is a weight
function w : Vo —— RT and a tolerance function ¢ : Vg — RT such that uv €

E¢ <= wy + w, = min(ty, ty,).
Torus As intended by Peleg [47], a torus is the Cartesian product of two cycles.

Total graph Given a graph G, its total graph T'(G) is defined by Vpg) = Ve U Eg and

u,v € Eg if and only u and v are adjacent in GG or 4 and v are incident in G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transitive closure of a rooted tree Given a rooted tree T, its transitive closure is the
graph G defined by Vg = Vp and uv € Eg if and only if there is a path from u to v
in T, that does not pass through the root.

Treewidth The treewidth of a graph G is the minimum value of w(G') — 1 taken over all

triangulations G’ of G, where w(H) denotes the size of the largest clique.
Triangle A cycle on three vertices.
Uniformly k-sparse [53] A graph G is said to be uniformly k-sparse if no subgraph H has

k|Vi|(log [Va|)

more than
log |Vi|

edges.
Unit interval graph See proper interval graph.

Vertex induced universal graph A graph G is a vertex induced universal graph of a set

of graphs S if all members of S are vertex induced subgraphs of G.

Well (a, g)-separated Given the complexity of this definition, the reader is advised to
consult Katz, Katz, and Peleg [35].

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Computation Models

The majority of algorithms found in this thesis (markers, decoders, and relabellers) employ
a word-level RAM (random access machine; for more on this topic see, for example, Aho,
Hopcroft, and Ullman [2]) computational model. Presented below is a summary of three well
known computation models, namely, unit-cost RAM, log-cost RAM, and word-level RAM
[2, 16, 29], followed by a justification of why the latter was chosen as the computational

model for this thesis.

Unit-cost RAM Words can contain an unlimited number of bits, as such, any size in-
put can be represented by a single word. Each operation {addition, multiplication,
comparison, memory addressing, bitwise and, bitwise or, etcetera) costs one unit of

time.

Log-cost RAM Words can contain an unlimited number of bits, as such, any size input
can be represented by a single word. Unlike unit-cost RAM, in which each operation
costs one unit of time, the cost of each operation is proportional to the number of bits
in the operands; for example, the number n requires log n bits to store, so it requires

O(logn) time to calculate nZ.

Word-level RAM Algorithms that receive A bit inputs use O(}) bit words; for example,
an algorithm with O(logn) bit inputs uses O(logn) bit words. The cost of each

operation is proportional to the number of words used by the operands.

The unit-cost RAM model is simple to understand and results in straightforward cal-
culations of the running time of algorithms; however, this model misrepresents the actual
time required to perform certain operations, such as multiplication, on large operands. In
contrast, the log-cost RAM model accurately represents the performance of a machine on
large input; however, this model leads to cumbersome calculations of the running time, as
basic operations like memory addressing/pointer referencing cannot be performed in con-

stant time. Both the unit-cost RAM and log-cost RAM models make memory too potent,

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as an entire data structure can fit in one word.

Word-level RAM offers a tradeoft between unit-cost RAM and log-cost RAM in that
the calculation of running times of algorithms remains straightforward, while the size of
words does not get unreasonably large. Current publications on data structures often use a
word-level RAM computational model; in particular, the majority of papers on informative
labelling schemes calculate running times using this model, even if no mention of computa-
tion models appears in the paper. Articles on informative labelling schemes that explicitly
discuss the use of word-level RAM computation models include Abiteboul, Kaplan, and
Milo [1], Alstrup, Gavoille, Kaplan, and Rauhe [5], Alstrup and Rauhe [6], Gavoille and
Paul [20], Gavoille and Peleg [23], Gavoille, Katz, Katz, Paul, and Peleg [19], and Kaplan
and Milo [32].

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Pseudocode

The following is pseudocode that can be used to implement many of the high level algorithms
presented in this thesis. In presenting the pseudocode, we try to maintain the convention
that stacks are represented using overline notation; for example, S would be a stack, whereas

S would be a set.
C.1 Line graphs

C.1.1 Deleting a vertex

Recall the algorithm DELETEVERTEX, found in Figure 4.5, which is used to relabel a line
graph when a vertex is deleted. The following pseudocode can be used-to implement

DELETEVERTEX.

DELETEVERTEX(L(G), v)

Input: An adjacency labelling of a line graph L(G) (that is, the labels thereof) created using
our dynamic scheme, and a vertex v in V(-

Output: An adjacency labeling of a line graph L(G’) (again, the labels thereof) formed by
deleting v from L(G).

fori— 0to1ldo
if v.nn; =1 then
FREEBASE(v.ep;)

1

2

3 —

4 else £; — GETINCIDENTNEIGHBORS(v, 1)
5

6

7

DECREMENTNN(L;)
REMOVEFROMLIST(v, 1)
FREELINE(v)

1: For each ¢ in {0,1}, we must determine the effect that the deletion of v has on the

endpoint v.ep; in the base.

2,3: If v.ep; is incident only with v, then it will become an isolated vertex once v is deleted.

The function FREEBASE frees the identifier of v.ep; for future use.
126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4-6: If v.ep; is incident with edges other than v, then we must remove v from the circular
doubly linked list about v.ep; and update the label of each edge in this circular doubly
linked list.

7: Once all the vertex labels have been changed to reflect the new graph, we delete v using

FREELINE, which frees its prelabel for future use.

GETINCIDENTNEIGHBOURS(, tend)

Input: A pair (¢, tend), where t is and edge in the base and tend is a value, either 0 or 1,
used to denote and endpoint of .

Output: A stack S consisting of all pairs of the form (s, send), where s.epseng = t.€prend-

S« NIL
s 1
send «— tend
PusH(S, (s, send))
while s.nxsnq #t do
8 «— 8$.NTsend
send «— END(s, t.ePiend)

PusH(S, (s, send))

return S

O 00 UL W

DECREMENTNN(S)

Input: A stack S of pairs of the form (s, send) where s is an edge in the base and send is a
value, either 0 or 1, used to denote an endpoint of s.

Output: For each pair (s, send) in S, DECREMENTNN decrements the value of s.1nn,enq by
one.

1 while S # NiL do _
2 (s, send) «— Pop(S5)
3

8. NMMNgend — S.MMgend —1
REMOVEFROMLIST(y, yend)

Input: A pair (y,yend), where y is an edge in the base graph, and yend is a value, either 0
or 1, which denotes an endpoint of y.

Output: REMOVEFROMLIST removes y from the circular doubly linked list about y.epyend.

1w y.prevyendg

2z YNTyend

3 wend + END(w, y.epyend)
4 zend «— END{z,y.epyend)
5 WNTyend — 2

6 z.previend «— w

END(¢, w)
Input: A pair (¢, w), where t is an edge of the base that has w as one of its endpoints.
Output: END returns the value of ¢ for which t.ep; = w.

1 if t.epy = w then
2 return 0
3 else return 1

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.1.2 Adding a vertex

Recall the algorithm ADDVERTEX, found in Figure 4.6, which is used to relabel a line graph

when a vertex is added. The following pseudocode can be used to implement ADDVERTEX.

ADDVERTEX(L(G), X)

Input: An adjacency labelling of a line graph L(G) created using our dynamic scheme, and
a subset X of Vi(q).

Output: Let L(G’') be the graph formed by adding a new vertex v to L(G), where v is
adjacent to exactly those vertices in X. Providing L(G’) is a line graph, the output is an
adjacency labelling of L(G"). If L(G’) is not a line graph, the output indicates as such.

v < GETIDENTIFIERLINE()
switch
case | X| = 0:
NONEIGHBOURS(v, 0)
NONEIGHBOURS(v, 1)
case | X| > IL:
(validg , vpty, validy , vpt;, good) «+ FINDVALID(X)
if good =1 then
ESTABLISHEDGEINBASE(validy , vpty, valid; , upts ,v)
else error this is no longer a line graph

QWU W

[ury

1: As the new vertex does not yet have an identifier, the function GETIDENTIFIERLINE
is used to assign one. Recall that in Section 3.1.3 we assumed that such an identifier

could be obtained in O(1) time.
3-5: The new vertex is isolated, so a new isolated edge must be added to the core.

6-10: The new vertex has at least one neighbour, so we must try to find a valid set. If a
valid set is found, then we use the valid set to represent the new vertex. Otherwise, if

no valid set is found, the new graph is not a line graph.

NONEIGHBOURS(t, tend)

Input: A pair (¢,tend), where t is an edge in the base and tend is a value, either 0 or 1,
used to denote and endpoint of ¢.

Output: NONEIGHBOURS establishes ¢ as the only edge of the base that is incident with
t-eptend-

1 t.epiend «— GETIDENTIFIERBASE()
2 tnNgepnd — 1

3 tNTiend — t

4 tprevieng — t

FINDVALID(X)
Input: A set X of edges in the base.
Output: The five-tuple (edgey, endy, edger, endy, val) with values as follows.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e If X has a valid set then val will have value 1, otherwise it will have value 0.

o If X has a valid set of size two, then edgey.epenq, and edge;.epenq, are the vertices in
the valid set. If the valid set is of size one, then the valid set consists of the vertex
edgeg.€Pend,, Where edge; = end; = NIL.

1 edgep «+ some member of X
2 endyp —0
3 trychangedy «— 0
4 while endy <1 do
5 (Xo, fail) «— ELIMINATE(X, edgey, endp)
6 if fail = 0 then
7 if Xo =0 then
8 return (edgeg, endg, NIL, NIL, 1)
9 else edge; «— some member of X
10 end; «— 0
11 trychanged; «— 0
12 while end; <1 do
13 (X1, fail) «— ELIMINATE(X, edge; , end;)
14 if fail =0 and X; = 0 then
15 return (edgep, endp, edgey, endy, 1)
16 else end; «— end; +1
17 if trychanged; = 0 and end; = 2 then
18 (C,changed) — CHANGEBASE(edge;)
19 trychanged; «— 1
20 if changed =1 then
21 if edgey € C then
22 (C, changed) «— CHANGEBASE(edge;)
23 else end; — 0
24 endg — endg +1
25 if endp = 2 then
26 if trychangedy =1 then
27 return (NIL, NIL, NIL, NIL, 0)
28 else (C, changed) — CHANGEBASE(edgeg)
29 trychangedy — 1
30 if changed =1 then
31 endg «— 0

1: If X has a valid set then every member of X will have exactly one endpoint in the valid
set. As such, we choose a member of X, namely edgey, so as to include one of its

endpoints in the valid set.

2: We first try to include edgey.epyp, in the valid set. If we later determine that edgeg.epg
cannot be included in any valid set, then we will try to include edgeg.ep; instead. The

value of endy indicates whether we are considering edgey.epg or edgep.ep;.

3: In Chapter 4 we discussed how a component of a line graph can have two bases which
are partition not-isomorphic; in particular, for a given set of vertices, one of the bases
may yield a valid set while the other may not. It may be necessary to change the
base of a component in order to find a valid set. The variable trychanged, is used to
indicate if we have attempted to change the base of the component containing edge,.
If ¢trychangedy = 1, then we have previously attempted to change the base; otherwise,

trychangedy = 0 and we have not tried to change the base. Recall that, when we say

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that a base is changed, we ultimately mean that the labelling of the line graph has

been changed so as to reflect the new base.

4-31: As previously mentioned, we continue to look for a valid set, providing there is at

least one of edgeg.epy and edgey.ep; which we have not tried to include in a valid set.

5: Letting Xy be the subset of edges in X that are not incident with edgep.ependg,, we
observe that if there is another vertex in the valid set, then it must come from an edge
in Xy. In order to determine Xy, FINDVALID uses the function ELIMINATE. If the
circular doubly liked list about edgeg.epend, contains an edge which is not in X then

ELIMINATE will set fail to 1; otherwise, it will set fail to 0 and return Xp.

6-23: If fail = 0, then the circular doubly liked list about edgey.epenq, did not contain any
edges not in X. As such, we may continue trying to place edgep.epend, in the valid

set.

7,8: Given that we have not yet found any reason to exclude edgep.epend, from the valid
set, if Xo = 0 then all of the edges in X are incident with edgey.epeng,. Therefore,

{edgeg.epend, } is a valid set.

9-23: If Xy # 0, then there are members of X which are not incident with edgep.epend, so

we must include a second vertex in the valid set.

9-11: As we did with edgey, we choose an edge edge; from Xy and try to include one of
its endpoints in the valid set. Like edgeg, edge; has corresponding variables end; and

trychanged; .

12-23: As we did with edgey, we continue to look for a valid set, providing there is at least
one of edge;.epy and edgey.ep; which we have not tried to include in the valid set.
We first check if {edgep.epend,, edge;.epp} is a valid set, if it is not then we will try
{edgep.epend,, edges.epy }.

13: Letting X; be the subset of edges in X that are not incident with edge;.epend,, we
observe that {edgey.epend,, edge;s.€peng, } is a valid set if and only if X; = 0 and the
circular doubly linked list at edge;.epenq, does not contain any edges which are not in

Xp. To determine X;, FINDVALID uses ELIMINATE just as it did to determine Xj.

14-23: If fail = 0 and X; = 0 then {edgep.epena,, €dge; .€Pend, } is a valid set. Otherwise,
{edgep.epend,, edges .€Deng, } is not a valid set, so we will need to try another endpoint

of edge; or perhaps another base for the component containing edge; .

17-23: If end; = 2, then we have already tried to include edge;.ep; in the valid set so
we must now try changing the base of the component containing edge;. This is only

allowed if the base has not been changed, that is, if trychanged; = 0.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18: To change the base of the component containing edge;, FINDVALID relies on a function
called CHANGEBASE. We let C' be the set of vertices in the same component as edge;,

where changed is a variable used to represent whether or not the base was changed.

19: We set trychanged; to 1 in order to indicate that an attempt was made to change
the base of the component containing edge;. The reader should note the distinction
between changed and trychanged; trychanged merely indicates that an attempt was

made to change the base, whereas changed indicates if a change was actually made.

20-23: If the base of the component containing edge; was changed, there are two possibili-
ties; either C contains edgey or it does not. If it does, then we change the base of the
component containing edge; back to its original state as we do not wish to change the
base of the component containing edgey at this time; if it does not, then we set end;
to 0 and repeat the process of trying to include an endpoint of edge; in the valid set

along with edgey.epend,-

24-31: If line 24 is reached, then either the call of ELIMINATE in line 6 found an edge in the
circular doubly linked list at edgep.epend, which was not in X or, in choosing an edge
edge; from Xy, neither endpoint of edge; could be put in a valid set with edgep.epend,
regardless of the base used to represent the component containing edge;. Either way,
edgey.epend, cannot belong to a valid set using the present base. This segment of the

algorithm is similar to that involving edge; in lines 17 though 25.

BLIMINATE(T, t, tend)

Input: A triple (T,t,tend), where T is a set of edges in the base, ¢ is a member of T, and
tend is a value, either 0 or 1, used to denote an endpoint of £.

Output: Let £ denote the set of edges in the circular linked list about t.€pieng. ELIMINATE
outputs a pair (77, val), where, if £ € T, then val has value 1. Otherwise, if £ C T, then
val has value 0, and 77 =T\ L.

1 wet

2 wend «— tend

3 TeT\{w}

4 while w.nZyeng #t do

5 W WNLwend

6 wend — END(w, t.€ptend)
7 if we T then

8 T« T\ {w}

9 else return (7,1)
0 return (T,0)

CHANGEBASE(a)
Input: An edge a of the base graph.

Output: Let C be the component of the base containing a. If C does not have another parti-
tion non-isomorphic base, CHANGEBASE outputs the pair (comp, changed), where changed
has value 0. Otherwise, if C' does have another partition non-isomorphic base, CHANGE-
BASE changes the base of C, and outputs the pair (comp, changed), where comp is the set
of vertices in C' and changed has value 0.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 changed «+ 0
2 switch
3 case a.nng = 2 and a.nn; = 2:
4 b +— a.nxp
5 eb«— 1 —END(b, a.epy)
6 C «— a.nIy
7 ec— 1 — END(c, a.ep;)
8 if b.epep, = c.epec then
9 if b.nn., = 2 then
10 SwitcHK3ToK13(a,b,)
11 comp — {a,b,c}
12 changed «— 1
13 elseif b.nn., = 3 then
14 if ¢ = b.nz., then
15 d — C.NTy
16 else d — b.nz.y
17 ed — 1 — END(d, b.epep)
18 if d.nn.q =1 then
19 SWITCH(a, d)
20 comp — {a,b,c,d}
21 changed — 1
22 case (a.nng = 3 and a.nny = 1) or (a.nng =1 and a.nn; = 3):
23 if a.nnyg = 3 then
24 ea =0
25 else ea =1
26 b ¢ 4.NTeq
27 eb «— 1 — END(b, a.€peq)
28 c— bnziep
29 ec — 1 — END(c, a.epeq)
30 if b.nne, = 1 and c.nne. = 1 then
31 SwitcuK13ToK3(a, b, c)
32 comp — {a,b,c}
33 changed — 1
34 elseif b.nne, = 2 and c.nn.. = 2 then
35 d— b.nzxep
36 ed «- 1 — END(d, b.epep)
37 if d.epeq = c.epec then
38 SwiTcH(a, d)
39 comp «— {a,b,c,d}
40 changed «— 1
41 case (a.nnp = 3 and a.nny = 2) or (a.nng = 2 and a.nny = 3):
42 if a.nng = 3 then
43 ea =0
44 else ea =1
45 b a.N%Teq
46 eb «— 1 — END(b, a.epe,)
47 ¢ — b.nxy g
48 ec « 1 — END(c, a.epe,)
49 feancy g
50 ef <~ 1 —END(f, a.eps_cq)
51 if f.eper = b.epep then
52 if b.nne, =2 and c.nne. = 1 then
53 SwITCH(c, f)
54 comp «— {a,b,c, f}
55 changed — 1
56 elseif b.nn. = 3 and c.nn.. = 2 then
57 d = C.NTec
58 ed « END(d, c.epe.)
59 if d.ep;_.q = b.epep then
60 SwiTcH(c, f)
61 comp «— {a,b,c,d, f}
62 changed — 1
63 elseif f.ep.s = c.epe. then
64 if b.nng, = 1 and ¢.nne.. = 2 then

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65 SWITCH(), f)

66 comp — {a,b,c, f}
67 changed 1
68 elseif b.nn., = 2 and c.nn.. = 3 then
69 d = b.nxe
70 ed — 1 —END(d, b.epep)
71 if d.epeg = c.ep.. then
72 SwWITCH(b, f)
73 comp — {a,b,¢,d, f}
74 changed « 1
75 case a.nnyg = 3 and a.nn; = 3:
76 b— a.nxy
77 eb — 1 — END(b, a.epy)
78 c— b.nri_qp
79 ec — 1 — END(c, a.epy)
80 f — a.nx;
81 ef —1—END(f,a.eps)
82 h— f.nzief
83 eh «— 1 —END(h, a.epy)
84 if f.epes = b.epey and h.epep, = c.epec then
85 if b.nng, = 2 and c.nn.. = 2 then
86 SWITCH(c, f)
87 comp — {a,b,¢c, f,h}
88 changed — 1
89 elseif b.nn., = 3 and c.nn,. = 3 then
90 if f = b.nz., then
91 d — f.nzes
92 else d «— b.nz.
93 ed — 1 —END(d, b.epep)
94 if d.epeq = c.ep.. then
95 SwiTcH(c, f)
96 comp — {a,b,c,d, f,h}
97 changed «— 1
98 elseif f.ep.s = c.epec and h.epep, = b.epey then
99 if b.nng, = 2 and c.nn.. = 2 then
100 SWITCH(¢, h)
101 comp « {a,b,c, f,h}
102 changed «— 1
103 elseif b.nne, = 3 and c.nne. = 3 then
104 if h = b.nz., then
105 d «— h.nzep
106 else d «— b.nze
107 ed « 1 — END(d, b.epes)
108 if d.epeq = c.epe. then
109 SwiTcCH(c, h)
110 comp — {a,b,c,d, f,h}
111 changed «— 1

112 return (comp, changed)

1: As mentioned, the variable changed is used to indicate if the base of C has been changed.

The default value of changed is 0 and will be set to 1 when the base of C is changed.

2-112: In determining if the base of C can be changed, we consider a series of cases based

upon the degrees of the endpoints of a.
3-21: In this case, each endpoint of a is incident with exactly one other edge besides a.

4-7: We let b and ¢ be the edges, other than a, incident with a.epy and a.ep;, respectively.
The endpoints b.epe, and c.epe. are set to be the endpoints of b and ¢, respectively,

which are furthest from a.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8-21: Either b.ep., and c.ep.. are the same vertex or they are not. If they are not, then
the condition a.nng = a.nn; = 2 guarantees that the base of C' has an induced P, or
C4. Since none of the bases of the graphs found in Theorem 4.2 (that is, the graphs
in Figure 4.1(b)) has an induced Py or Cy, the base of C cannot be changed.

9-12: If b.nne, = 2, then b.epep is incident only with b and ¢. Thereby, the base of C is
the K3 shown in Figure C.1(a) so we use the function SWITCHK3T0OK13 to change
it to the K 3 shown in Figure C.1(b).

a a
¢ > > c
b b
(a) (b)

Figure C.1: Two partition non-isomorphic bases of C

13-21: If b.nn. = 3, then b.epey is incident with b, ¢, and another vertex which we will
call d. Observe that if b.nng, > 3, then the base of C cannot be changed as none of

the graphs found in in Figure 4.1(b) has a vertex of degree greater than three.

15-17: We ensure that d is distinct from b and ¢, then set d.epey to be the endpoint of d
that is furthest from b.

18-21: If d.nneg = 1, then the base of C is as shown in Figure C.2(a). Using the function
SwITCH, we change the base of C to the graph depicted in Figure C.2(b). Furthermore,
observe that if d.nngg > 1, then the conditions a.nny = 2 and b.nne, = 3 guarantee

that the base of C has an induced P4 which prevents the base from being changed.

Figure C.2: Two partition non-isomorphic bases of C'

22-40: We now consider the case when one endpoint of a is incident with two additional

edges besides a, and the other endpoint is incident with only a itself.

23-25: We set a.ep., to be the endpoint of a with degree three.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26-29: We let b and ¢ be the edges, other than a, that are incident with a.ep.,. Moreover,
we let b.ep.p, and c.ep.. be the endpoints of b and ¢, respectively, that are furthest

from a.

30-40: Given that a.nn; ., = 1 and a.nn., = 3, the only way that the base of C' can be
changed is if b.nneg, = c.nne. = 1 or if b.nng, = c.nne. = 2. Otherwise, the the base

of C has an induced P; which prevents it from being changed.

30-33: In this case, the base of C is the K; 3 shown in Figure C.1(b), so we change it to
the K3 shown in Figure C.1(a).

34-40: In this case, both b.ep., and c.epe. are incident with another edge besides b and c,

respectively.

35,36: We let d be the edge, other than b, that is incident with b.epe,. Moreover, we let
d.epeg be the endpoint of d that is furthest from b.

37-40: If d.epeq # c.€pec, then the condition a.nnj_., = 1 guarantees that the base of
C has an induced P; which prevents it from being changed. On the other hand, if
d.epey = C.€Dee, then the base of C is as shown in Figure C.2(b) so we change it to

the base shown in Figure C.2(a).

41-74: We now consider the case when one endpoint of a is incident with two additional
edges besides a, and the other endpoint is incident with one additional edge besides

a.
42-44: We set a.ep., to be the endpoint of ¢ with degree three.

45-48: We let b and ¢ be the edges, other than a, that are incident with a.epe,. Moreover,
we let b.epe; and c.ep.. be the endpoints of b and ¢, respectively, that are furthest

from a.

49,50: We let f be the edge, other than a, that is incident with a.ep;_.,. Moreover, we let
f.eper be the endpoint of f that is furthest from a.

51-74: If neither b.epepr = f.epef, nor c.epec = f.epes, then the base of C has an induced

Py which prevents it from being changed.

52-62: Given that a.nn., = 3, the only way that the base of C can be changed is if
b.nne, = 2 and c.nng = 1 or if b.nn., = 3 and c.nn.. = 2. Otherwise, the the base

of C has an induced Py which prevents it from being changed.

52-55: If b.nn., = 2 and c.nne. = 1, then there are no additional edges in the graph. The
base of C is as shown in Figure C.3(a) so we change it to the base shown in Figure

C.3(b).

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I: b I: b
f a ¢ ¢ a
(@) (»)

Figure C.3: Two partition non-isomorphic bases of C

56-62: In this case, both b.ep., and c.ep.. are incident with another edge besides b and ¢,

respectively.

57-58: We let d be the edge, other than ¢, that is incident with c.ep... Moreover, we let
d.epeq be the endpoint of d that is closest to c.

59-62: If d.eps.oq # b.€pey, then the condition a.nn.,, = 3 guarantees that the base of
C has an induced P; which prevents it from being changed. On the other hand, if
d.epi.eq = b.epep, then the base of C is as shown in Figure C.4(a), so we change it to

the base shown in Figure C.4(b).
f d c Ad
a c
(a) (b)

Figure C.4: Two partition non-isomorphic bases of C

63-74: This case is analogous to that found in lines 51 through 62, except that c.epe. =
f.epef, not b.epey = f.epes.

75-111: We now consider the case when both endpoints of a are incident with two additional

edges besides a.

76-83: We let b and ¢ be the edges, other than a, that are incident with a.epy. Moreover,
we let b.ep., and c.epe. be the endpoints of b and ¢, respectively, that are furthest

from a. The edges f and h are defined similarly for a.ep;.

84-111: If b.epep # f.€Pef OF C.€Pec # h.€Den, and b.epgy # h.epey, or c.ep.. # f.epes then

the base of C has an induced Py or Cy which prevents it from being changed.

84-97: Given that a.nny = a.nn; = 3, the only way that the base of ' can be changed
is if b.nnep = c.nnee = 2 or if b.nney = c.nn.. = 3. Otherwise, the base of C has an

induced P; which prevents it from being changed.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85-88: If b.nn., = c.nne = 2, then there are no additional edges in the graph. The base

of C is as shown in Figure C.5(a), so we change it to the base shown in Figure C.5(b).

(a) (®)

Figure C.5: Two partition non-isomorphic bases of C

89-97: In this case, both b.epey and c.epe. are incident with another edge besides b and ¢,

respectively.

91-93: We let d be the edge, other than b and f, that is incident with b.epe;. Moreover,
we let d.epeg be the endpoint of d that furthest from b.

94-97: If d.epy_cq # c.€Pec, then the base of C has an induced Py which prevents it from
being changed. On the other hand, if d.ep;_.q = c.epe., then the base of C is as shown
in Figure C.6(a), so we change it to the base shown in Figure C.6(b).

<o
= Q.

(a) (b)

Figure C.6: Two partition non-isomorphic bases of C

98-111: This case is analogous to that found in lines 84 through 97, except that c.ep.. =
[.epep and b.eper, = h.epep not b.epey = f.epes and c.epec = h.epen.

158: When CHANGEBASE is finished it returns the pair (comp, changed).

SwiTcHK3ToK13(w, y, 2)

Tnput: A triple (w,y, z) of edges in the base that constitute a component in the form of a
K;.
Output: SWITCHK3T0K13 changes the labels of w, y, and z so that they form a Kj 3.

FREEBASE(w.epy)
FREEBASE(w.ep;)
FREEBASE(y.epg)
FREEBASE(y.ep;)
FREEBASE(z.epy)
6 FREEBASE(z.ep;)

ST o —

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 w.epp «— GETIDENTIFIERBASE()
8 w.ep; < GETIDENTIFIERBASE()
9 y.epp «— w.epy

10 y.ep; +— GETIDENTIFIERBASE()

11 z.epg «— w.epp

12 z.ep; — GETIDENTIFIERBASE()
13 w.nzy «— 2

14 w.prevy «—y

15 y.nzg —w

16 y.prevyg «— z

17 znxg — vy

18 z.prevg «— w

19 w.nry «—w

20 w.prevy —w

21 y.nzy —y

22 y.prevy «—y

23 z.nxy — 2z

24 z.prevy; «— z

25 w.nng « 3

26 y.nng «— 3

27 z.nng < 3

28 w.nng «— 1

29 y.nng «— 1

30 z.nng 1

SwitcHK13ToK3(w, y, z)

Input: A triple (w,y,z) of edges in the base that constitute a component in the form of a
1,3-
Output: SwITCHK13T0K3 changes the labels of w, y, and z so that they form a K3.

FREEBASEéw.epg)
FREEBASE(w.epy)
FREEBASE(y.epgg
FREEBASE(y.ep;
FREEBASE(z.epg)
FREEBASE(z.€p;)

w.epg «— GETIDENTIFIERBASE()
w.ep; «+ GETIDENTIFIERBASE()
Y-€po — W.€pg

10 y.ep; +— GETIDENTIFIERBASE()
11 z.epp «— w.ep;

12 z.ep; «— y.ep;

13 w.onzp —y

14 w.prevyp +—y

15 y.nzp «—w

16 y.prevy «— w

17 y.nzp «— z

18 y.prevy «— z

19 z.nzp vy

20 z.precy «—y

21 w.nry «— 2

22 w.prevy; «— z

23 z.onxp —w

24 z.prevy «— w

25 w.nng «— 2

26 y.nng «— 2

27 z.nng «— 2

28 w.nny «— 2

29 y.nng «— 2

30 z.ang «— 2

OO Ut Wi

SWITCH(wo, w1)

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input: A pair (wg, w;) of edges in the base whose component has a partition non-isomorphic
base that can be formed by switching wo and w;.

Output: SWITCH changes base of the component containing we and wi, by switching wo
and wy.

1 forj—0toldo

2 fori—0to1ldo

3 temp; < GETIDENTIFIERLINE()
4 INsERTINTOLIST(W;, 1, temp;, 1)
) temp;.nn; «— w;.nn;
6 REMOVEFROMLIST(wj, 1)

7 forj«—0toldo

8 fori— 0to1ldo

9 INSERTINTOLIST(temp;, i, wi—j,1)

10 Wi—j.nn; « temp;.nng
11 REMOVEFROMLIST (temp;, 1)
12 FREEBASE(temp;.ep;)

1-6: For each j in {0,1}, we replace w; with a temporary edge temp;.
7-12: For each j in {0,1}, we replace temp; with wi_;.

ESTABLISHEDGEINBASE(edgey, endy, edges, end; , t)

Input: A 5-tuple (edgeq, endo, edges, endy,t), where t is a vertex of the line graph and, for
i in {0, 1}, end; is an endpoint of edge;, an edge of the base. It is permissible for edge; to
have value NIL, in which case end; will also have value NIL.

Output: Provided edge; # NiL, ESTABLISHEDGEINBASE changes the vertex labels to reflect
the addition of the edge t between vertices edgeg.€pend, and edgey.epenqd, of the base. If
edge; = NIL, ESTABLISHEDGEINBASE creates a new vertex in the base and changes the
vertex labels to reflect the addition of the edge ¢ between vertex edgeg.€pend, and the new
vertex.

if edge; = NIL then
size «— 1
NONEIGHBOURS(t, 1)

else size — 2

for i «— 0 to size —1 do
INSERTINTOLIST(edge;, end;, t, 1)
S «— GETINCIDENTNEIGHBORS(t,)
INCREMENTNN(S)

0 N OUTE Wk =

INSERTINTOLIST(w, wend, y, yend)

Input: A 4-tuple (w,wend,y, yend), where w and y are edges of the base graph, and wend
and yend are values, either 0 or 1, which denote endpoints of w and y, respectively.

Output: INSERTINTOLIST adds y to the circular doubly linked list of edges about w.epyend,
such that y.epyend = W.€Pwend-

1 y.ePyend — W.€Pwend

2 24— WNTyend

3 zend « END(z,w.ePyend)
4 WNTywend < Y

O Y.prevyend «— W

6 YNTyend «— 2

7 Z.Ppr€Vzend Y

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INCREMENTNN(S)

Input: A stack S of pairs of the form (s, send) where s is an edge in the base and send is a
value, either 0 or 1, used to denote an endpoint of s.

Output: For each pair (s, send) in S, INCREMENTNN increments the value of s.nnsenq by
one.

1 while S # NiL do _
2 (s, send) — Popr(S)
3 $.NMNgend < S-NMMgend +1

C.1.3 Deleting an edge

Recall the algorithm DELETEEDGE, found in Figure 4.7, which is used to relabel a line graph

when an edge is deleted. The following pseudocode can be used to implement DELETEEDGE.

DELETEEDGE(a, b)

Input: An adjacency labelling of a line graph L(G) created using our dynamic scheme, and
two distinct vertices a and b of V() for which ab € Ep(g).

Output: An adjacency labeling of a graph L(G’) formed by deleting the edge ab from L(G),
providing L(G’) is a line graph. If L(G’) is not a line graph, then the output indicates as

such.
1 fork+—0toldo
2 for| —0toldo
3 if a.ep, = b.ep; then
4 ea — k
5 eb —1
6 switch
7 case a.NNg, = 2:
8 CAsSEAC()
9 case a.nNg, = 3:
10 if a.nz., = b then
11 c « b.nze
12 else ¢ «— a.nz,
13 ec — 1 — END(c, a.€peq)
14 switch
15 case C.NMNeg. = 1
16 CAseEBD()
17 case C. NNy = 2
18 f & C.NTee
19 ef — 1 — END(f, c.epec)
20 switch
21 case f.epy = a.ep, .,
22 switch
23 case f.nng > 4
24 error this is no longer a line graph
25 case f.nneg = 3
26 if f.nz.; = a then
27 g Q.NT1 eq
28 else g — f.nzes
29 eg — 1 — END(g, f.epes)
30 if g.nne, =1 then
31 CaseF()
32 else error this is no longer a line graph
33 case f.nn. = 2

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34 CaseE()

35 case f.eper = b.epy_

36 switch

37 case f.nn, > 4

38 error this is no longer a line graph
39 case f.nng = 3

40 if f.nzs = b then

4] g — bnxiep

42 else g — f.nzey

43 eg < 1 — END(g, f.epes)

44 if g.nn,y =1 then

45 CASEFSYMMETRIC()

46 else error this is no longer a line graph
47 case f.nngs = 2

48 CaAseESYMMETRICY)

49 case f.ep,s = a.ep; ., and f.eps = b.ep; o:
50 error this is no longer a line graph
51 case ¢.nNe. = 3:

52 if a.nnq.qq #2o0r b.nnj o # 2 then

53 error this is no longer a line graph
54 else f — anx;_q

55 h« bnxri e

56 ef «— END(f,a.epl_ea;

57 eh — END(h,b.ep;_.p

58 if f.ep; of # C.€Pec OT h.€p; o # c.€pec then
59 error this is no longer a line graph
60 else CASEG()

61 case C.NnNe. > 3:

62 error this is no longer a line graph

63 case ¢.Nne, = 4:

64 if a.nz., # b then

65 C— Q.NTeyg

66 else ¢ — b.nz.

67 ec — 1 — END{c, a.epe,)

68 if a.nz.. # b or a.nze. # c then

69 1 0.NTeq

70 elseif b.nz., # a or b.nxe, # ¢ then

71 i b.nTep

72 else i «— c.nNT i e

73 ei — 1 — END(4, a.epeg)

74 switch '

75 Case C.NNege > 2 0T 1.1y > 2

76 error this is no longer a line graph

77 case ¢.nNe. = 1 and i.nng =1

78 if a.nn;_ ., =1 then

79 CaseH()

80 elseif b.nn;_., =1 then

81 CASEHSYMMETRIC()

82 else error this is no longer a line graph
83 case ¢.NNe. = 2 and .nNg; = 2

84 [c.nxee

85 g — 1.NTe;

36 ef «- 1 — END(f, c.€ePec)

87 eg — END(g, i.epe;i)

88 if f.epesr = g.€p1.eg = 0.€p;_,, and f.nng = 3 then
89 CasgeJ()

90 elseif f.eper = g.epr.eg = b.ep;_,;, and f.nng = 3 then
91 CASEJSYMMETRIC()

92 else error this is no longer a line graph
93 case ©.nMe; = 1 and c.nne, = 2:

94 [~ c.nxe.

95 ef «— 1 — END(c¢, ¢c.epec)

96 if f.eper = a.ep,_,, and f.nn, =2 then
97 Casel()

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98 elseif f.epes = b.ep; ., and f.nne = 2 then

99 CASEISYMMETRIC()
100 else error this is no longer a line graph
101 case i.nn.; = 2 and c.nn.. = 1:
102 g — 1.NTe;
103 eg — END(g,1.epe;)
104 if g.epy.eg = b.€p; o and g.nns o, =2 then
1056 CASEISYMMETRIC()
106 elseif g.epscy = 0.€p;_,, and g.nn; ¢ =2 then
107 CASEISYMMETRIC()
108 else error this is no longer a line graph
109 case a.nMg, >4
110 error this is no longer a line graph

1-5: We must first determine the vertex of the base at which a and b intersect. In particular,
we set a.epeq and b.epep to be the endpoints at which a and b intersect. Later we will
introduce the variables ec, ef, eg, eh, ei, e, to denote particular endpoints of ¢, f, g,

h, i, and 7, respectively.

6-110: We determine the structure of the base surrounding a and b through a series of case
statements that allow us to determine which of the cases in Table 4.1 we must deal

with.

7,8: If the only edges of the base incident with ¢.ep., are ¢ and b themselves, then we are

dealing with case A or C. Both cases are handled by the function CASEAC.

9-62: There is exactly one additional edge incident with a.ep., other than a and b them-

selves. We call this edge ¢ and set c.ep.. to be the endpoint of ¢ closest to a.
10-12: We determine ¢ using the circular doubly linked list at a.epeq-

15,16: If ¢ is the only edge incident with c.epe., then we are dealing with case B or D.
Both cases are handled by the function CASEBD.

17-50: There is exactly one other edge incident with c.epe., other than c itself. We call
this edge f and set f.ep.s to be the endpoint of f closest to c. The possibility exists
that the modified graph is not a line graph, however, if it is a line graph, then we are

dealing with case E or F, or symmetric variants thereof.

21-34: The edge f is adjacent to both ¢ and a where, in particular, f.epsy = a.ep;_,.
Again, the possibility exists that the modified graph is not a line graph, however, if it

is a line graph, then we are dealing with case E or F.

23,24: If there are more than three edges incident with f.ep.s then the modified graph is
not a line graph, as the structure of G does not resemble any of the cases depicted in

Table 4.1.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25-32: There is exactly one other edge incident with f.ep.s, other than a and f themselves.
We call this edge g and set g.ep.y to be the endpoint of g closest to f. The possibility
exists that the modified graph is not a line graph, however, if it is a line graph, then

we are dealing with case F.

30-32: If ¢ is the only edge incident with g.epq, then we are dealing with case F, which is
handled by the function CASEF. Otherwise, the modified graph is not a line graph.

33-34: If the only edges incident with f.ep.s are a and f themselves, then we are dealing
with case E, which is handled by the function CASEE.

35-48: The edge f is adjacent to both ¢ and b where, in particular, f.ep.s = b.ep;_,,. This

case is analogous to that found in lines 21 through 34.

49,50: The edge f is adjacent to ¢, but neither a nor b. Consequently, the modified graph

is not a line graph.

51-60: There are exactly two additional edges incident with c.epe. other than c itself. If
the modified graph is still a line graph, then the base must resemble case G.

52,53: The base resembles case G only if a.nny_, = b.nn;_p = 2. Otherwise, the modified

graph is not a line graph.

54-57: Providing a.nnj.e, = b.nni = 2, we let f be the edge incident with a.ep, ..,
other than a, and we let h be the edge incident with b.ep,_.;, other than b. Moreover,
we set f.epey to bé the endpoint of f furthest from a, and set h.epep, to be the endpoint
of f furthest from b.

58-60: The base resembles case G if and only if f.ep; s = h.ep; o, = c.€pec. Providing
this condition holds, it is handled by the function CASEG; it it does not hold, then

the modified graph is not a line graph.

61,62: If there are more than three edges incident with c.ep.. then the modified graph is

not a line graph.

63-108: There are exactly two additional edges incident with a.ep.,, besides a and b
themselves. The possibility exists that the modified graph is not a line graph, however,

if it is then we are dealing with cases H, I, or J, or symmetric variants thereof.

64-73: We let ¢ and 7 be the edges incident with a.ep.,, other than a and b themselves.
The circular linked list at a.ep., is used to determine ¢ and 7 where, moreover, we set

c.epec and 1.epe; to be the endpoints of ¢ and 17, respectively, that are closest to a.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74-76: We require that c.epe. and i.epe; be incident with at most one edge other than ¢

and ¢ themselves, otherwise, the modified graph is not a line graph.

77-82: We first consider when c.ep.. and i.ep¢; are incident only with ¢ and ¢, respectively.
The possibility exists that the modified graph is not a line graph, however, if it is then

we are dealing with case H or a symmetric variant thereof.

78-82: The modified graph is a line graph if and only if at least one of a.nn; . = 1 or
bonni e = 1. If a.nnj.o = 1, then we are dealing with case H, which is handled by the
function CASEH. If a.nnj_eq > 1, but b.nnjy ¢ = 1, then the situation is symmetric

to case H.

83-92: We now consider when c.epe. and i.ep.; are both incident with exactly one edge
in addition to ¢ and i, respectively. The possibility exists that the modified graph is
not a line graph, however, if it is a line graph, then we are dealing with case J or a

symmetric variant thereof.

84-87: We let f and g be the edges incident with c.epe. and i.ep.;, respectively, other than
¢ and 7 themselves. The circular linked lists at c.epe. and i.ep,; are used to determine
f and g where, moreover, we set f.ep.s to be the endpoint of f furthest from ¢, and

set g.epeg to be the endpoint of g closest to 1.

88-92: The modified graph is a line graph if and only if either f.epef = g.€p1.¢g = b.€D;_0p,
where f.nng = 3, or f.epes = g.epi.eg = a.€p; ., Where f.nng = 3. If the latter
holds then we are dealing with Case J, which is handled by the function CAsEJ. If the

latter does not hold but the former does, then the situation is symmetric to Case J.

93-100: We now consider when i.ep.; is incident only with 4 itself and c.epe. is incident
with exactly one edge other than c¢. The possibility exists that the modified graph is
not a line graph, however, if it is a line graph, then we are dealing with case I or a

symmetric variant thereof.

94,95: We let f be the edge incident with c.epe., other than ¢ itself. The circular linked
list at c.ep.. is used to determine f where f.ep.s is set to be the endpoint of f closest

to c.

96-100: The modified graph is a line graph if and only if either f.epes = a.ep,_.,, where
.MM cq = 2, OF f.epes = b.epy oy, Where b.nn; oy = 2. If the latter holds, then we
are dealing with Case I, which is handled by the function CASEL. If the latter does

not hold, but the former does, then the situation is symmetric to Case 1.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101-108: We now consider when c.ep.. is incident only with ¢ itself and i.ep.; is incident
with exactly one edge other than i. This case is similar to that found in lines 93

through 100.

109,110: Finally, we consider when there are exactly at least three additional edges incident
with a.epe,, other than a and b themselves. In this case, the modified graph is not a

line graph.

CASEAC()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEAC relabels the vertices of the component containing a and b to reflect the
transitions illustrated in Figures C.7 and C.8.

FREEBASE(a.epe,)
FREEBASE(b.€pep)

a.epey +— GETIDENTIFIERBASE()
b.epep +— GETIDENTIFIERBASE()
A.NTeg <— A

Q.PTeVeq < Q

b.nweb —b

b.prevey — b

. NMMeg — 1

QNN eq < QNN _eq

b.nng, «— 1

b.nnqop — b.nng_gp

—_
ORI UT WD

—
DN =

(a) G (b) G’

Figure C.7: Deleting the edge {a,b} from the line graph L(G) (case A of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm CASEAC

CASEBD()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEBD relabels the vertices of the component containing a and b to reflect the
transitions illustrated in Figures C.9 and C.10.

FREEBASE(a.€peq)
FREEBASE(b.ep.p)
FREEBASE(c.epec)
FREEBASE(c.ep;_ec)

a.epe, +— GETIDENTIFIERBASE()

Ttk Wb+

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) G (b) G

Figure C.8: Deleting the edge {a,b} from the line graph L(G) (case C of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm CASEAC

b.epep — GETIDENTIFIERBASE()

C.€Pec < G.€Peq
C.€D1ec < b.€pep
A.NTey — C

Q.PTeve, «— C

C.NTee +— a

C.PTeVe; «— @

b.nzep «— ¢

b.prevey, «— ¢
CNTi e ¢— b
c.prev . — b

A NNeg — 2
BNN_eq < G.NN] _eq
b.nng, «— 2

b.nn ey — b.nN1_ep
CNNep +— 2

CNNy_ee — 2

(2) G (b) ¢

Figure C.9: Deleting the edge {a,b} from the line graph L(G) (case B of Table 4.1). The
vertices labelled exr in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm CaseBD

CaseE()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEE relabels the vertices of the component containing a and b to reflect the
transition illustrated in Figure C.11.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(@) G (b) G

Figure C.10: Deleting the edge {a,b} from the line graph L(G) (case D of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm CASEBD

FREEBASE
FREEBASE
FREEBASE
FREEBASE
FREEBASE(C.€p;_ec)
FREEBASE(f.epey)
FREEBASE(f.eps-ef)

a.€peq +— GETIDENTIFIERBASE()
a.ep;_., — GETIDENTIFIERBASE()
10 b.epey — GETIDENTIFIERBASES
11 f.epes < GETIDENTIFIERBASE i
12 C.€Pec ¢~ (.€Peq

13 c.epioec «— b.epep

14 f'epl-ef «— 0.€Pea

15 b.nxe, «—

16 b.prevey, <

17 cnxjec b

18 coprevy . <« b

19 cnxe —a

20 c.preve — f

21 anxe, — f

22 a.preve, <+ ¢

23 fnxg e

24 f.prevs . —a

25 f.n:cef — f

26 f.preves «— f

27 ANTi.eq — a

28 a.prev; ., < a

29 a.nne < 3

30 annge — 1

31 b.nneb — 2

32 b.Tl’ﬂ].eb Lo b.nn1_eb

33 Cc.nNee — 3

34 g — 2

35 f.nne <1

36 fonng g3

a.€Peq)
0.P1 eq)
b.epep)
C.€Pec)

O~ OHUtWN =

CASEESYMMETRIC()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEESYMMETRIC relabels the vertices of the component containing e and b to
reflect the transition illustrated in Figure C.12.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) G (b) G’

Figure C.11: Deleting the edge {a, b} from the line graph L(G) (case E of Table 4.1). The
vertices labelled ez in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm CASEE

FREEBASE(a.epeg)
FREEBASE{b.epep)
FREEBASE(b.ep;._p)
FREEBASE(cC.epec)
FREEBASE(c.epj_ec)
FREEBASE(f.epef)
FREEBASE(f.ep;.ef)

a.epeq — GETIDENTIFIERBASE()
b.epey +— GETIDENTIFIERBASE()
10 b.ep; o, — GETIDENTIFIERBASE()
11 f.epes — GETIDENTIFIERBASE()
12 c.epec < G.€Deu

13 c.eprec +— D.epep

14 f.epjef < G.€Peq

15 b.nzep < ¢

16 b.prevey — f

17 enZiee — f

18 c.prevy ., «— b

19 fonzg e —

20 f.prevy g —c

21 CNTee — a

22 C.pPreve. — G

23 a.nTey — C

24 a.preve, — ¢

25 fonze — f

26 f.preves — f

27 bnxj.ep — b

28 b.prevy_ o — b

29 a.nneg, —

30 a.MNgg ¢ G.NN1_eq

31 b.ang «— 3

32 b.'ll'fl,l_eb —1

33 N — 2

34 cnNjee — 3

35 f.onneg —1

36 f.nnl_ef —3

OO0~ DUk WNH

CaseF()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEF relabels the vertices of the component containing a and b to reflect the
transition illustrated in Figure C.13.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure C.12: Deleting the edge {a,b} from the line graph L(G) (symmetric to case E of
Table 4.1). The vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE;
the vertices labelled ex in G’ are as prescribed in the algorithm CASEESYMMETRIC

FREEBASE(a.€epe,)
FREEBASE(a.€p;1_eq)
FREEBASE(b.epep)
FREEBASE(c.epec)
FREEBASE(c.€p;_¢c)
FREEBASE(f.epef)
FREEBASE(f.ep;.ef)
FREEBASE(g.€peg)
FREEBASE(g.€p1-¢g)
10 a.epeq <~ GETIDENTIFIERBASE()
11 a.ep; ., — GETIDENTIFIERBASE()
12 b.epep — GETIDENTIFIERBASE
13 f.epey — GETIDENTIFIERBASEé;
14 c.€Pec < G.€Peq

15 c.ePi-ec — b.epep

16 f.epief < G.€Peq

17 §.€Peg <~ @.€P1. eqa

18 g.€D1-eg < f'epef

19 b.onzey, «— ¢

20 b.prevey «— ¢

21 ¢NTiec+ b

22 c.prevy_ < b

23 CNTee — G

24 c.preve. «— f

25 A.NTeq — f

26 a.prevey «— ¢

27 f.nzl_ef —c

28 f.prev; .« a

29 fnzee—g

30 f.preves g

31 G-NT f.eg < f

32 gprevy ., — f

33 g.nTey —a

34 g.preveg v a

35 G.NTieq — ¢

36 a.prevy ., — 9

37T a.nneg «— 3

38 amnge, — 2

39 b.nngy «— 2

40 b.nngep — b.nngep
41 c.nne «— 3

42 cnNgiee — 2

O OOk W

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43 f.nneg «— 2
44 f.nnl_ef «— 3
45 g.nneg «— 2
46 g.nng ., — 2

(@) G (b) G

Figure C.13: Deleting the edge {a, b} from the line graph L(G) (case F of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm CASEF

CAsEG()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEG relabels the vertices of the component containing o and b to reflect the
transition illustrated in Figure C.14.

FREEBASE(a.epe,)
FREEBASE(¢.€p1-cq)
FREEBASE(b.epep)
FREEBASE(¢.€pec)
FREEBASE(c.ep;...)
FREEBASE(f.eper)
FREEBASE(f.ep;._cf)
FREEBASE(h.epep)
FREEBASE(h.€ps_en)

10 a.epey — GETIDENTIFIERBASE()
11 a.ep,; ., — GETIDENTIFIERBASE()
12 b.epep — GETIDENTIFIERBASE()
13 b.ep, ., «— GETIDENTIFIERBASE()
14 f.epes — GETIDENTIFIERBASE()
15 C.éPec — G.€Deq

16 c.epy oo — b.epies

17 f.epef < G.€Peq

18 h.epen < f.epes

19 h.ep; . «— b.epey
20 b.nzep

21 b.prevey, «— h
22 CcNTi.ec— h
23 cprevy b
24 h.nxg.ep <

25 h.prev, ., — ¢
26 C.NTee — @

27 c.preve, — f
28 a.nze, «— f

29 a.preve, — ¢
30 finzg g ec
3L f.prev; g —a

OO0~ UL W

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32 fonxeg —h

33 f.preve — h
34 hongep — f

35 h.prevep, — f
36 anNTieq—a
37 a.prev,,, —a
38 b.'ﬂl’]_eb —

39 b.oprevy ., — b
40 a.nng, «—

41 anng e — 1
42 b.nne, — 3

43 bonngep 1
44 c.nng «— 3

45 CNNjoee — 3
46 f.nng «— 2

47 fonng e <3
48 h.TL’neh — 2

49 h.angep < 3

ea, ec

ef ,eh

eb

(a) G (b) &’

Figure C.14: Deleting the edge {a,b} from the line graph L(G) (case G of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm CASEG

CaseH()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEH relabels the vertices of the component containing a and b to reflect the
transition illustrated in Figure C.15.

FREEBASE(a.€pe,)
FREEBASE(a.€p;_cq)
FREEBASE(b.epep)
FREEBASE(c. epec)
FREEBASE(c.€p;_ec)
FREEBASE(i.€pe;)
FREEBASE(i.€ps_ei)

a.€Peq + GETIDENTIFIERBASE()
a.ep, ., — GETIDENTIFIERBASE()
10 b.epep «— GETIDENTIFIERBASE()
11 C.€Pec ¢ A-€Peq

12 c.epjec — b.epep

13 i.ePei «— Q.€P1_cq

14 i~ep1—ei — b-€P1~eb

15 b.nzey «— i

16 b.preve — ¢

17 inz e «— ¢

18 i.prev, , b

[Malo JIEN Ne Ny i SNRVLE N3

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19 cnTi.ece b
20 c.prevy, 1
21 ¢.nTee — a

22 C.preve. — a
23 a.NTe — C

24 a.preve, «—c
25 i.nTe —a

26 1.preve; «— a
27T AN eq — 0
28 a.prevy ., <1
29 a.nng, «— 2

30 a.nnjie, «— 2
31 b.nneg «— 3

32 b.nMgep «— b.nng_ep
33 c.nng +— 2

34 e — 3
35 t.nme — 2

36 .M — 3

ea, ec
p

() G (b) &'

Figure C.15: Deleting the edge {a,b} from the line graph L(G) (case H of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ez in G’ are as prescribed in the algorithm CAseH

CasEel()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEI relabels the vertices of the component containing @ and b to reflect the
transition illustrated in Figure C.16.

FREEBASE(a.epe,)
FREEBASE(a.€p;_cq)
FREEBASE(b.epes)
FREEBASE(c. epec)
FREEBASE(cC.ep;_ec)
FREEBASE(f. epes)
FREEBASE(f.eps_ef)
FREEBASE(%.€p,;)
FREEBASE(7.€p;_¢;)

10 a.ep, — GETIDENTIFIERBASE()
11 a.ep;.., — GETIDENTIFIERBASE()
12 b.epep «— GETIDENTIFIERBASE ;
13 f.epes — GETIDENTIFIERBASEE
14 c.epec «— G.€Pen

15 C.ePi.ec < b.epey

16 1.€Pe; «— @.€D1-cq

17 i.epl_ei 4 b.epj_eb

18 f.epief < Q-€Pea

OO0 = O Tt = QDD

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19 b.m:eb — 1

20 b.prevey «— ¢
21 1nT e —C
22 d.prevy , b
23 cnTie —

24 coprevy . —1
25 AN g — 1
26 a.prev;_ ., 1
27 1.nTe ¢ a

28 i.preve; —a
20 enge —a

30 c.preve. — f
31 a.nze, —

32 0.prevey «— ¢
33 finz g c
34 f.prev, . < a
35 fonzeg — f

36 f.preveg — f
37 a.nne, «— 3
38 a.nng.e, — 2
39 b.nne «— 3

40 b.nng.ep «— b.nngep
41 c.nng «— 3

42 N — 3
43 fonng 1

44 fonng <3
45 i.nng «— 2

46 i.nn;.ei — 3

(a) G (b) G

Figure C.16: Deleting the edge {a,b} from the line graph L(G) (case I of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm Casgl

CaselJ()
Input: None, however, the algorithm will work globally on the labels seen in DELETEEDGE.

Output: CASEJ relabels the vertices of the component containing a and b to reflect the
transition illustrated in Figure C.17.

FREEBASE(a.€peq)
FREEBASE(a.€p;_cq)
FREEBASE(b.€pey)
FREEBASE(c. epec)
FREEBASE(c.ep;_ec)
FREEBASE(f.epes)
FREEBASE(f.ep;. ef
FREEBASE(g.ep.,)

NN OOUT W

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 FREEBASE(g.epi.¢)
10 FREEBASE(i.epe;)
11 FREEBASE(i.ep;_e;)
12 a.epe, «+— GETIDENTIFIERBASE()
13 a.ep; ., < GETIDENTIFIERBASE()
14 b.epep — GETIDENTIFIERBASE
15 f.epes — GETIDENTIFIERBASE%%
16 c.ePec ¢~ G.€Peq
17 c.eprec < b.epep
18 d.epe; <~ G.€P1-¢q
19 depiei — b.epirep
20 f-BPI-ef = (.€Peq
21 g.epeg « f.€pes
22 g.epieg < 1.€Dg;

23 b.nze, — @

24 b.prevep, «— ¢
25 iNTi.e — C
26 dprev, , < b
27 CNTi.ec < b
28 c.prevy .. —1
20 cnZe. — a

30 c.preve. — f
3l a.nzey — f
32 a.preve, — ¢
33 fonm g —c
34 f.prev, o —a
35 1.NTe — g

36 i.preve; «— a
37 g.nT; . —a
38 g.prev ., 1
39 anNZieq —
40 a.prevy ., — ¢
41 gonxe, — f

42 g.preveg +— f
43 fonze — g

44 f.preves — g
45 a.nng, «— 3

46 a.nnNg_eq «— 3
47 b.nng — 3

48 b.nngep «— bonng_ep
49 c.nne. — 3

50 cnngee — 3
51 f.nng 2

52 fnng g <3
53 §.MNeg — 2

54 G NNy g — 3
95 t.nng — 3

56 i.nn1_ei —3

C.1.4 Adding an edge

As discussed in Section 4.2.2, given that the addition of an edge is the opposite of the
deletion of an edge, the pseudocode required to add an edge would comprise a case analysis

similar to that presented in Section C.1.3.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

() G (b) G’

Figure C.17: Deleting the edge {a,b} from the line graph L(G) (case J of Table 4.1). The
vertices labelled ex in G are as prescribed in the algorithm DELETEEDGE; the vertices
labelled ex in G’ are as prescribed in the algorithm CAsgJ

C.2 r-minoes
C.2.1 Deleting a vertex

Recall the algorithm DELETEVERTEX, found in Figure 5.2, which is used to relabel a r-mino
when a vertex is deleted. The following pseudocode can be used to implement DELETEV-

ERTEX.

DELETEVERTEX(G, v)

Input: An adjacency labelling of an r-mino G created using our dynamic scheme, and a
vertex v in V5. Here we presume that r € O(1), thereby ensuring error-detection.

Output: An adjacency labeling of an r-mino G’ formed by deleting v from G.

1 if v.ely.nzx = v then
2 FREECLIQUE(v.cly.num)
3 fori—1towv.cindo
4 (C,C) «— GETCLIQUEMEMBERS(v, 1)
5 C’ «— NIL
6 while C # NIL do
7 (z,zcl) — Por(C)
8 if # v then
9 Pusu(C’, z)
10 if GETCoMMONCLIQUES(C’) = {v.cl;.num} then
11 REMOVEFROMCLIQUE(v, 7)
12 else ELIMINATECLIQUE(v, %)

13 FREEVERTEX(v)

1-2: If v is an isolated vertex, then we free the identifier of the maximal clique {v} for

future use.
3-9: For each maximal clique C containing v, we obtain the clique C' = C'\ {v}.

10-12: If the members of C’ share another maximal clique besides C, then we eliminate C.

Otherwise, we simply remove v from C.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13: We free the identifier of v for future use.

GETCLIQUEMEMBERS(, tcl)
Input: A pair (t,tcl), where ¢ is a vertex of G and tcl is an index between 1 and t.cin.

Output: Let S denote the set of all vertices in the maximal clique ¢.cly.num. GETCLIQUE-

MEMBERS returns the pair (S,5), where S is a stack consisting of all pairs of the form
(s, scl), where s.clse.num = t.clye.num.

S0

S « NIL

s 1

scl — tcl

PusH(S, (s, scl))

S — SuU{s}

while s.cl,o.nz.id # t do
y — s.clse.nx.id
scl +— s.clgep.nx.index
§S—y

11 PusH(S, (s, scl))

12 S—SuU {S}

13 return (S, S)

—
[seRNeNo LN KerRo I ARGUN

GETCOMMONCLIQUES(S)
Input: A non-empty stack S of vertices.

Output: For each vertex s in S, let C, denote the set of maximal cliques containing s.
GETCOMMONCLIQUES returns {),.5Cs.

1 s« Pop(S)

2 (A,A4) — GETCLIQUES({s})

3 while S # niL do

4 s « Pop(9)

5 (W, W) — GeETCLIQUES({s})
6 A—ANnW

7 return A

GETCLIQUES(S)
Input: A non-empty set of vertices S.

Output: Let C, denote the set of all maximal cliques containing a vertex s, and let C denote
Uses Cs. GETCLIQUES returns the pair (C,7'), where T' is a stack containing an element of
the form (t,1), for each entry t.cl;.num of C.

T—0
T ~ NIL
for s € S do
for i +~ 1 to s.cin do
if s.cl;num ¢ T then
T « T U{zs.cli.num}
PusH(T, (s, 1))
return (T, T)

oo~ UL W

REMOVEFROMCLIQUE(y, ycl)

Input: A pair (y, ycl), where y is a vertex of G and ycl is an index between 1 and y.cin.
Moreover, y.cl,q.nx.ad # y.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output: REMOVEFROMCLIQUE eliminates y from the maximal clique y.clye.num.

w «— y.clye.prev.id

wel — y.clyeq .prev.index
z — y.clya.nz.id

zcl — y.clyg.nz.index
y.clyer +— NIL
w.clye.nxid « 2z
w.cly.nr.index «— zcl
z.cl g .previd — w
z.clyep.prev.inder — wcl

LoD U= W —

ELIMINATECLIQUE(t, tcl)
Input: A pair (t,tcl), where ¢ is a vertex of G and ¢cl is an index between 1 and t.cin.
Output: ELIMINATECLIQUE eliminates the maximal clique t.cl;;.num from G.

1 while t.cly.nz #t do

2 REMOVEFROMCLIQUE(¢.clycp.nz, t.clie . nx.index)
3 FREECLIQUE(t.cly.num)

4 t.clyy +— NIL

C.2.2 Adding a vertex

‘Recall the algorithm ADDVERTEX, found in Figure 5.3, which is used to relabel an r-mino

when a vertex is added. The following pseudocode can be used to implement ADDVERTEX.

ADDVERTEX(G, X)

Input: An adjacency labelling of an r-mino G created using our dynamic scheme, and a
subset X of V.

Output: Let G’ be the graph formed by adding a new vertex v to GG, where v is adjacent to
exactly those vertices in X. Providing G’ is an r-mino, the cutput is an adjacency labelling
of G'. If G’ is not an r-mino, the output indicates as such.

v« GETIDENTIFIERVERTEX()
if X =0 then

I« NIL

PusH({I,v)
MAKENEWCLIQUE(J)

sl A PR RS 4

P P s S A 1 v
else (C,C) « GETCLIQUES(X)

vatfl_le C #NIL do
(z,zcl) « PoP(C)
C — C\ {z.clye-num}

(C.C) — GETCLIQUEMEMBERS(z, zcl)
subset «— 1
while C # NIL do
(¢, ccl) — Popr(C)
if ce X then
PusH(C,¢)
else subset « 0
if GETCOMMONCLIQUES(C') € CU D then
D« DUA{z.clye.num}
21 if subset =1 then

1
2
3
4
5
6
7
]
9
10
11
12 " « NIL
13
14
15
16
17
18
19
20

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22 ADDTOQ_,IQUE(U, x, xcl)
23 else PusH(C’,v) L
24 MAKENEWCLIQUE(C")

1: We obtain an identifier for the new vertex.
2-5: If v is an isolated vertex, then it belongs to exactly one maximal clique, {v}.
6: We determine C, the set of maximal cliques that contain a vertex of X.

7-24: For each maximal clique C' in C, we wish to know if C' U {v} is a maximal clique of
G', where C' = C N X. When we select a member C from C, we discard it from C,

however, if C' U {v} is a maximal clique, then we add C to D.
8-11: We select C from C, remove C from C, and determine the vertices in C.
12-18: We determine C’ = C N X. While doing so, we determine if C C X.

19-24: The clique C’ U {v} is maximal if and only if it is not contained in any maximal
clique in C or D. If ¢’ U {v} is maximal and C C X, then we add v to C, as C will
no longer be maximal in G'. If C’ U {v} is maximal and C ¢ X, then we make a new

maximal clique of C' U {v}, as C" will continue to be maximal in G’.

MAKENEWCLIQUE(S)
Input: A non-empty stack S of vertices.

Output: A maximal clique consisting of the vertices in S.

1t Pop(S)

2 AppToOCLIQUE(t, £, NIL)

3 while S # N1L do

4 s « Pop(S)

5 ApDTOCLIQUE(s, t, t.cin)

ADDTOCLIQUE(y, w, wel)

Input: A triple (y,w,wdl), where w and y are vertices. If w # y, then 1 < wel < w.cin,
otherwise, wel = NIL.

Output: Ifw # y, then ADDTOCLIQUE adds the vertex y to the maximal clique w.cly, . num.
Otherwise, ADDTOCLIQUE initiates a new maximal clique {y}.

y.cin — y.cin+ 1

CHECKRCLIQUES(y)

ycl « y.cin

if w =y then
cliqguenum «— GETIDENTIFIERCLIQUE()
y.Clyer.num « cliquenum
y.clyc.prev.id — y
y.clyer.prev.index «— ycl
y.Clyag.nr.id «y
y.clye.nz.index — yel

else y.biclypic.num «— w.biclypic.num

HOOQWOIO Uk W -

— =

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12 z — w.clye.nx.id

13 zel « w.clyer-ne.index
14 W.Clyer NT.Ad — Yy

15 w.clye.ne.index — ycl
16 y.clya.prev.id «— w

17 y.clyq.prev.index «— wel
18 y-clya-nz.id «— z

19 y.clya.nz.index «— zcl
20 z.cl,q.previd «— y

21 z.clye.previandex «— ycl
CHECKRCLIQUES(t)

Input: A vertex t.
Output: CHECKRCLIQUES ensures that ¢ belongs to no more than r» maximal cliques.

1 if t.cin > r then
2 error the graph is no longer an r-mino

C.2.3 Deleting an edge

Recall the algorithm DELETEEDGE, found in Figure 5.4, which is used to relabel an r-mino

when an edge is deleted. The following pseudocode can be used to implement DELETEEDGE.

DELETEEDGE(G, u, v)

Input: An adjacency labelling of a r-mino G created using our dynamic scheme, and two
distinct vertices u and v of Vg for which uv € Eg.

Output: An adjacency labeling of a graph G’ formed by deleting the edge uv from G,
providing G’ is an r-mino. If G’ is not an r-mino, then the output indicates as such.

1 (Cy,Cu) — GETCLIQUES({u})
2 (G,Cy) « GETCLIQUES({v})
3 Ce—NIL_
4 whileC, #NIL do
5 (z,zcl) «— PoP(C,)
6 if z.clze.num € Cy then
7 PusH(C, (x, zcl))
8 whileC#NILdo _
9 (z,zcl) — Popr(C)
10 (C,C) «+ GETCLIQUEMEMBERS(z, zcl)
11 C7 « NIL
12 C! « NIL
13 while C # NIL do__
14 (¢, ccl) — Por(C)
15 if ¢ # u then
16 PusH(C!,, ¢)
17 else ucl — ccl
18 if ¢ # v then
19 PusH(C!, ¢)
20 else vel «— ccl .
21 if GETCOMMONCLIQUES(C?) = {z.clyq.num} then
22 REMOVEFROMCLIQUE(v, vel)
23 if GETCOMMONCLIQUES(C?) = {z.clyci.num} then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24 MAKENEWCLIQUE(CY,)

25 elseif GETCOMMONCLIQUES(C.) = {z.clyq.num} then
26 REMOVEFROMCLIQUE(u, ucl
27 else ELIMINATECLIQUE(z, zcl)

1,2: We determine C, and C,, the set of maximal cliques that contain u and v, respectively.
3-7: We obtain C =C, NC,.

8-27: For each maximal clique C in C, let C;, = C \ {u}, and let C}, = C\ {v}. Since C

will no longer be a clique, we wish to know whether C;, and C], are maximal in G’.

8-20: We calculate C), and C]. The values ucl and vel are the indices for which u.clyq.num =

v.Clye.num = x.cly.num.

21-27: The cliques C}, and C! are maximal if and only if it they are not contained in a
maximal clique of G, other than C. If only C), is maximal in G’, we develop this
maximal clique by removing v from C; similarly, if only C/ is maximal in G', we
develop this maximal clique by removing v from C. If neither C; nor C] is a maximal
clique in G’, we eliminate the maximal clique C. If both C! and C/ are maximal in
G', then we develop C| by removing v from C, however, C; must be developed by

establishing a new maximal clique.

C.2.4 Adding an edge

Recall the algorithm ADDEDGE, found in Figure 5.5, which is used to relabel an r-mino

when an edge is added. The following pseudocode can be used to implement ADDEDGE.

ADDEDGE(G, u,v)

Input: An adjacency labelling of an r-mino G created using our dynamic scheme, and two
distinct vertices v and v of Vz for which uv ¢ F¢.

Output: An adjacency labeling of a graph G’ formed by adding the edge wv to G, providing
G’ is an r-mino. If G’ is not an r-mino, then the output indicates as such.

1 if v.ely.nz = v then

2 ELIMINATECLIQUE(v, 1)

3 X « GETNEIGHBOURS(v) U {u}
4 (C,C) « GETCLIQUES({u})

5 De§_

6 whileC #NILdo

7 (z,zcl) — Pop(C)

8 C — C\ {z.clyer.num}

9 (C,C) «+ GETCLIQUEMEMBERS(z, zcl)
10 C7 — NIL
11 subset — 1
12 while C # NIL do
160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13 (¢, ccl) « Popr(C)

14 if c € X then

15 Pusa(C’,c)

16 else subset — 0 o

17 if GETCOMMONCLIQUES(C') € C U D then
18 D — DU {z.clye.num

19 if subset =1 then

20 ADDTOQJIQUE(U, z, zcl)

21 else PusH(C’,v) .

22 MAKENEWCLIQUE(C")

1-2: If v is an isolated vertex in G, then {u,v} will be a clique in G’. We eliminate the

maximal clique {v} now, but will later add v to some maximal clique containing w.
3: We let X be the set of neighbours of v in G'.
4: We determine C, the set of maximal cliques that contain w.

5-22: For each maximal clique C in C, we wish to know if C' U {v} is a maximal clique of
G’, where C' = C N X. When we select a member C from C, we discard it from C,

however, if C' U {v} is a maximal clique, then we add C to D.
6-9: We select C from C, remove C from C, and determine the vertices in C.
10-16: We determine C' = C N X. While doing so, we determine if C C X

17-22: The clique C’ U {v} is maximal if and only if it is not contained in any maximal
clique in C or D. If C' U {v} is maximal and C' C X, then we add v to C, as C will
no longer be maximal in G'. If C" U {v} is maximal and C' € X, then we make a new

maximal clique of C’ U {v}, as C will continue to be maximal in G’.

GETNEIGHBOURS(?)
Input: A vertex t of G.
Output: The set S of neighbours of £ in G.

(W, W) « GETCLIQUES({t})

S0 __

while W # NILdo
(w,wel) — Pop(W)
(Y,Y) « GETCLIQUEMEMBERS(w, wcl)
S—SUY

return S

SO OT s W

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.3 r-bics
C.3.1 Deleting a vertex

Recall the algorithm DELETEVERTEX, found in Figure 5.7, which is used to relabel a r-bic

when a vertex is deleted. The following pseudocode can be used to implement DELETEV-

ERTEX.

DELETEVERTEX(G, v)

Input: An adjacency labelling of an r-bic G created using our dynamic scheme, and a vertex
v in V. Here we presume that r € O(1), thereby ensuring error-detection.

Output: An adjacency labeling of an r-bic G’ formed by deleting v from G.

for i — 1 to v.bin do

(B, B) «— GETBICLIQUEMEMBERS(v,)

B’ « NIL
while B # NIL do

(b, bbicl) — Popr(B)

bpart « b.biclyyier-part

if b # v then

PusuH(B/, (b, bpart))

if GETCOMMONBICLIQUES(B’) = {v.bicl;.num} then
10 REMOVEFROMBICLIQUE(v, 1)
11 else ELIMINATEBICLIQUE(v, i)
12 FREEVERTEX(v)

R JOOU =W N

©

1-8: For each maximal clique B containing v, we obtain the biclique B’ = B\ {v}. The

variable bpart denotes the part of the partition of B to which b belongs.

9-11: If the members of B’ share another maximal biclique besides B, then we eliminate

B. Otherwise, we simply remove v from B.

12: We free the identifier of v for future use.

GETBICLIQUEMEMEBERS(t, thicl)
Input: A pair (¢, tbicl), where ¢ is a vertex of G and tbicl is an index between 1 and ¢.bin.

Output: Let S denote the set of all vertices in the maximal biclique t.biclip;e.num. GET-

BICLIQUEMEMBERS returns the pair (S, S), where S is a stack consisting of all pairs of the
form (s, sbicl), where s.biclspicr.num = t.biclp;e.num.

S0

S« NIL

s—1

sbicl — thicl

PusH(S, (s, sbicl))

S — Su{s}

while s.biclgp;e;.nx.id # t do
y «— s.biclspicne.id
sbicl «— s.biclgpic.nx.index
sy

PusH(S, (s, sbicl))

— O OO T W

—

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12 S — SU{s}
13 return (S, S)

GETCOMMONBICLIQUES(S)

Input: A non-empty stack S of pairs of the form (s,¢), where s is a vertex, and ¢ is a value,
either 0 or 1.

Output: For each vertex s in S, let Bs denote the set of maximal bicliques containing s.
GETCOMMONBICLIQUES returns (), 5 Bs.

1 (s,t) « Popr(S)

2 (A, A) — GETBICLIQUES({s})

3 while S # NIL do

4 (s,t) « PoP(S)

5 (Y,Y) «— GETBICLIQUES({s})
6 A—ANnY

7 return A

GETBICLIQUES(S)
Input: A non-empty set of vertices S.

Output: Let B; denote the set of all maximal bicliques containing a vertex s, and let B
denote | J,. g Bs. GETBICLIQUES returns the pair (B,T), where T is a stack containing an
element of the form (¢, 1), for each entry t.bicl;.num of B.

T 0
T « NIL
for s€ S do
for i — 1 to s.bin do
if s.bicl;.num ¢ T then
T « T U {s.bicl;,.num}

PusH(T, (s,1))
return (T, T)

00 ~J OOk W=

REMOVEFROMBICLIQUE(y, ybicl)

Input: A pair (y, ybicl), where y is a vertex of G and ybicl is an index between 1 and y.bin.
Moreover, y.biclypici-ne.id # y.

Output: REMOVEFROMBICLIQUE eliminates y from the maximal biclique y.biclyp;cr.num.

t « y.biclypici-prev.id

thicl — y.biclypici.prev.index
z « y.biclypie.nz.id

zbicl — y.ziclybid.nx.mdex
y~biClybicl «— NIL
t.biclzbicl.nﬂj.id — Z
t.bicl o nx.indexr — zbicl
z.bicl pier-prevaid «— t

z.bicl picr. prev.index — thicl

QOO WN —

ELIMINATEBICLIQUE(?, thicl)
Input: A pair (¢,tbicl), where t is a vertex of G and tbicl is an index between 1 and t.bin.
Output: ELIMINATEBICLIQUE eliminates the maximal biclique t.bicl;p;; . num from G.

1 while t.biclyp;c;.nx # t do
2 REMOVEFROMBICLIQUE(#.biclipicr.nx, t.biclpicr.nx.index)

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 FREEBICLIQUE(t.bicltpic.num)
4 t.biclipier +— NIL

C.3.2 Adding a vertex

Recall the algorithm ADDVERTEX, found in Figure 5.8, which is used to relabel an r-bic

when a vertex is added. The following pseudocode can be used to implement ADDVERTEX.

ADDVERTEX(G, X)

Input: An adjacency labelling of an r-bic G created using our dynamic scheme, and a subset
X of V. Here we assume that X # ().

Output: Let G’ be the graph formed by adding a new vertex v to G, where v is adjacent to
exactly those vertices in X. Providing G’ is an r-bic, the output is an adjacency labelling
of G'. If G’ is not an r-bic, the output indicates as such.

1 v« GETIDENTIFIERVERTEX()
2 < some member of X
3 (B,B) — GETALLBICLIQUES(x)
4 —
5 while B # NIL do
6 (¢, chicl) « Por(B)
7 B — B\ {e.biclcpicr-num}
8 (B, B) «— GETBICLIQUEMEMRBERS(c, cbicl)
9 PP — niL
10 PE —nN1IL
11 equaly « 1
12 equal; — 1
13 while B # NIL do
14 (b, bbicl) «— Por(B)
15 bpart «— b.biclpp;c.part
16 if b € X then
17 PUSH(PlB_bpart, (b, bpart))
18 equalppart — 0
19 else Pusn(Py ... (b, bpart))
20 equaly_ppart — 0
21 tnclude — O
22 for i —0to1ldo _
23 if GETCOMMONBICLIQUES(P) Z BUD then
24 include — 1
25 if subset = 1 then
26 ADDTOBICLIQUE(v, i, ¢, cbicl)
27 else Pusn(PP, (v,1))
28 MAKENEWBICLIQUE(PF)
29 if include = 1 then
30 D «— DU {c.biclepicr.num}

1: We obtain an identifier for the new vertex.
2,3: We determine B, the set of maximal bicliques of G.

4-30: For each maximal biclique B in B, let {Bg, B} be the bipartition of B, and let
{P£, PP} denote the partition of B defined by b € PP if and only if b € X and

K

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b B;,orb¢ X and b € B;. We wish to know if PP U {v} is a maximal biclique of
G

When we select a member B from B, we discard it from B, however, if either POB U{v}

or PZ U {v} is a maximal biclique, then we add B to D.
5-8: We select B from B, remove B from B, and determine the vertices in B.

9-20: We determine P? and PP. The variables equaly and equal; are used to let us know

if PP = B or PP = B, respectively.

21-30: The biclique PiB U {v} is maximal if and only if it is not contained in any maximal
biclique in B or D. If PP U {v} is maximal and P? = B, then we add v to B, as
B will no longer be maximal in G’. If PP U {v} is maximal and P? # B, then we
make a new maximal biclique of P2 U {v}, as B will continue to be maximal in G’.
Specifically, in the new biclique the vertices of P2 will belong to the same part of the
bipartition that they belonged to in B, while v will be added to the it? part of the

bipartition.
29,30: Recall that B is added to D if either P U {v} or PP U {v} is maximal in G'.

GETALLBICLIQUES(?)
Input: A vertex t.

Output: Let B; denote the set of all maximal bicliques containing a vertex s, and let B
denote |y, Bs- GETALLBICLIQUES returns the pair (B3, T), where T is a stack containing
an element of the form (t,1), for each entry t.bicl;.num of B.

(S,5) « GETALLVERTICES({t})
T
T « NIL
while S # NIL do
s+ Pop(S)
for i — 1 to s.bin do
if s.bicl;, num € T then
T — T U {s.bicl;.num}
Pusn(T, (s,1))
return (T,T)

O WO =IO U LW

GETALLVERTICES(t)
Input: A vertex t.

Output: The pair (Va, V).

(Z,Z) — GETBICLIQUES({t})

S0

S «— NIL

while Z # NI do
(z, zbicl) — Por(Z)
(Y,Y) «— GETBICLIQUEMEMBERS(z, zbicl)
while Y # NIL do

~ Oy U W

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 (y, ybicl) «— Pop(Y)

9 if y ¢ S then
10 S —Su{y}
11 PusH(S,y)

12 return (S,5)

1-12: Using a single vertex t, we obtain S = Vs by taking the union of the vertices in all

the bicliques in which it is contained.
1: We first obtain B;, the set of all maximal bicliques containing ¢.

2-6: For each maximal biclique of B;, we obtain its vertices.

ADDTOBICLIQUE(y, ypart, t, thicl)

Input: A 4-tuple (y, ypart, t,tbicl), where t and y are vertices and ypart is a value, either 0
or 1. If t # y, then 1 < thicl < t.bin, otherwise thicl = NIL.

Output: If ¢ # vy, then ADDTOBICLIQUE adds the vertex y to the ypart'®h part of the
bipartition of the maximal biclique ¢.biclipicr.num. Otherwise, ADDTOBICLIQUE initiates a
new maximal biclique {y}.

1 ybine—ybin+1
2 CHECKRBICLIQUES(y)
3 ybicl — y.bin
4 y.biclypier.part « ypart
5 if t=y then
6 bicliquenum «— GETIDENTIFIERBICLIQUE()
7 y.biclypser num — bicliguenum
8 y.biclypia.prev.id «— y
9 y.biclypicr.prev.index « ybicl
10 y.biclypicr . nz.id — y
11 y.biclypic . nz.inder — ybicl
12 else y.biclyp;cr.num «— t.biclpia.num
13 z «— t.biclpie . nx.id
14 zbiel « t.biclypq.nz.index
15 t.biCltbiCl.TLI.’id — Y
16 t.biclipicr.nz.index — ybicl
17 y.biclypici.prev.id 1
18 y.biclypic prev.index — tbicl
19 y.biclypicinz.id — z
20 y.biclypicr nx.index «— zbicl
21 z.bicl pier-prev.id «— y
22 z.biclpicr.prev.index «— ybicl
CHECKRBICLIQUES(t)

Input: A vertex t.
Output: CHECKRBICLIQUES ensures that ¢ belongs to no more than » maximal bicliques.

1 if t.bin > r then
2 error the graph is no longer an r-bic

MAKENEWBICLIQUE(S)

Input: A non-empty stack S of pairs of the form (s, spart), where s is a vertex and spart is
a value, either 0 or 1.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output: A maximal biclique consisting of the vertices in S, where a vertex s is placed in
the spart'h part of the bipartition.

(t,tpart) «— Por(S)
ADDTOBICLIQUE(, tpart, t, NIL)
while S # NIL do
(s, spart) — PopP(S)
ADDTOBICLIQUE(s, spart, t, t.bin)

Uk W N =

C.3.3 Deleting an edge

Recall the algorithm DELETEEDGE, found in Figure 5.9, which is used to relabel a r-bic

when an edge is deleted. The following pseudocode can be used to implement DELETEEDGE.

DELETEEDGE(G, u, v)

Input: An adjacency labelling of an r-bic G created using our dynamic scheme, and two
distinct vertices u and v of Vg for which uv € Eg.

Output: An adjacency labeling of a graph G’ formed by deleting the edge uv from G,
providing G’ is an r-bic. If G’ is not an r-bic, then the output indicates as such.

1 (C,C) « GETBICLIQUES({u})
2 (C,,C,) — GETBICLIQUES({v})
3 B«
4 B« NIL
5 while C, # NIL do
6 (z,zbicl) «— Pop(C,)
7 if z € C then
8 B— BU{z}
9 PusH(B, (x, zbicl))
10 while B # NiL do
11 (z, zbicl) — Por(B)
12 (B, B) «— GETBICLIQUEMEMBERS(z, zbicl)
13 if B # {u,v} then
14 B! « NIL
15 B/« NIL
16 while B # NIL do
17 (b, bbicl) «— Pop(B)
18 bpart — b.biclyyicr.part
19 if b # u then
20 Pusu(B., (b, bpart))
21 else ubicl — bbicl
22 if b # v then
23 PusH(B!, (b, bpart))
24 else vbicl — bbicl .
25 if GETCOMMONBICLIQUES(B!,)) = %a:.bz‘cllbm.num} then
26 REMOVEFROMBICLIQUE(v, vbicl
27 if GETCOMMONBICLIQUES(B!,) = {z.biclp;c;.num} then
28 MAKENEWBICLIQUE(B!,)
29 elseif GETCOMMONBILIQUES(BL,) = {x.bicl pic;-num} then
30 REMOVEFROMBICLIQUE(u, ubicl)
31 else ELIMINATEBICLIQUE(z, xbicl)

32 (V,V) « GETALLVERTICES(u)
33 X, « GETNEIGHBOURS{u) \ {v}

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34 X, — GETNEIGHBOURS(v) \ {u}

3 W—0_

36 while V # NIL do

37 xz « Pop(V)

38 if (reX,andze X,)or(z¢ X, and z ¢ X,) then
39 W — WU {z}

40 D—§_

41 while C # NIL do

42 (c, cbicl) — Popr{C)

43 C — C\ {c.biclcpici-num}

44 (B, B) «— GETBICLIQUEMEMBERS(c, cbicl)
45 B’ «+ NIL

46 subset «— 1

47 hasv — 0

48 while B # NIL do

49 (b, bbicl) — PoP(B)

50 bpart «— b.biclppic-part

51 if b € W then

52 if b = u then

53 upart «— b.biclyp;cr.part

54 if b =v then

55 upart « b.biclpy;cr-port

56 vbicl « bbicl

57 hasv «— 1

58 else PusH(B’, (b, bpart))

59 else subset «+— 0 .

60 if GETCoMMONBICLIQUES(B’) Z CUD then
61 D « DU {c.biclcpic.num}

62 if subset =1 then

63 if hasv =1 then

64 v.biclypicr-part = 1 — vpart

65 else ADDTOBICLIQUE(v, upart, ¢, chicl)
66 elseif hasv =1 then

67 ELIMINATEBICLIQUE(c, cbicl)

68 PusH(B’, (v, upart))

69 MAKENEWBICLIQUE(B’)

70 else PusH(B’, (v, upart))

71 MAKENEWBICLIQUE(B)

1-9: Where B, denotes the set of all maximal bicliques containing z, we first determine
C = B, and B = B, N B,. For now, B may contain the maximal biclique consiting of

only u and v.

10-24: If any maximal biclique in B consist of only « and v, then we ignore it. Henceforth,

for any B in B, we can assume that B # {u, v}

For each maximal biclique B in B, let B], = B\ {u} and let B}, = B\ {v}. Since B

will no longer be a biclique, we wish to know whether B!, and B, are maximal in G'.

14-24: We calculate B, and B]. The values ubicl and wvbicl are the indices for which

w.biclypicr - num = v.bicl,pic-num = x.bicl pie.num.

25-31: The bicliques B!, and B], are maximal if and only if it they are not contained in
a maximal biclique of G, other than B. If only B! is maximal in G’, we develop

this maximal biclique by removing u from B; similarly, if only B] is maximal in G’,

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we develop this maximal biclique by removing v from B. If neither B, nor Bj is a
maximal biclique in G’, we eliminate the maximal biclique B. If both B] and B,
are maximal in G’, then we develop B] by removing v from B, however, B], must be

developed by establishing a new maximal biclique.

32-39: Let X, and X, denote the neighbourhoods of u and v in G’, respectively. We
calculate W, the subset of Vg for which w € W if and only if w € X,, & w € X,,.

40-71: For each maximal biclique B in C, we wish to know if B’ U{v} is a maximal biclique
of G’ where B’ = (B\ {v}) N W. When we select a member B from C, we discard it

from C, however, if B’ U {v} is a maximal biclique, then we add B to D.
42-44: We select B from C, remove B from C, and determine the vertices in B.

45-59: We determine B’ = (B \ {v}) N W. The value vbicl is the index for which
v.biclypic. num = z.biclzpic-num. The values upart and vpart are the parts of the
biparition of B that u and v belong to, respectively. While determining B’, we are

also able to determine if B’ C W and if v € B.

60-71: The biclique B’ U {v} is maximal if and only if it is not contained in any maximal
biclique in C or D. If B C W and v € B, then B = {u, v}, so we merely switch the
value of v.part that corresponds to B. If B C W and v ¢ B, then we simply add v to B
as B will no longer be maximal in G’. If B Z€ W and v € B, then B no longer remains
maximal, so we replace B with B’ U {v}. In this case, B'U {v} = BNW = {u,v},
where ¢ and v will belong to the same parts of the bipartition. Finally, if B ¢ W and
v & B, then we create a new maximal biclique B’ U {v}, as B will continue to remain

maximal in G’.

GETNEIGHBOURS(?)
Input: A vertex t of G.
Output: The set S of neighbours of t in G.

1 (Z,Z) + GETBICLIQUES({t})

2 S — (Z)_

3 ile Z # NIL do

4 (2, zcl) « Popr(Z)

5 (Y — GETBICLIQUEMEMBERS(Z, zcl)
6 —SUu

7 retur S

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.3.4 Adding an edge

As discussed in Section 5.2.2, the pseudocode required to add an edge would be similar to
that presented in Section C.3.3, differing only in the definition of W, and the fact v and v

will now need to belong to different parts of any common biclique.

C.4 Proper interval graphs

As we did in Chapter 6, we maintain the convention of offsetting vertex level conditions
in square brackets, for example, “Fr(B(v)) = B(v) [fr(v) = b(v)]”. As well, recall that
nearly all of the conditions mentioned herein can be tested in O(1) time. As such, we will
only comment on the time required to check a condition if it takes w(1) time to check the
condition. Furthermore, recall that, for any vertex v and pointer Q, Q(P{B(v))) can be
“followed” in O(1) time, using the labels of v and P(B(v)). For simplicity, when referring
to the vertex P(B(v)), we will use the more compact notation P(v); in turn, when referring
to the vertex Q(P{v)), we will use the notation Q(v).

When we discussed the relabeller in Chapter 6, we saw several instances where additional
criteria had to be tested in order to confirm that G’ was a proper interval graph. The reader
‘ should consult Chapter 6 to see when such additional criteria must be tested. In the ensuing
discussion, we focus on the specific actions of the relabeller v(zhen we know that G’ is a proper

interval graph.

C.4.1 Deleting a vertex

Let v be the vertex to be deleted, where X denotes the neighbourhood of v in G. As well,
let the contig containing B(v) be By < ... X B; 2 ... 2 By X ... 2 B; X ... % By,
where B; = B(v), B; = F(By), and B; = Fr(B;). The action of the relabeller depends on
whether B; = {v} [nz(v) = v].

If B; contains another vertex besides v, then the straight enumeration remains the same,

however, v is removed from B;. Specifically, our labelling is amended as follows.

o Remove all references to v.

— We must change all references to v as a pointer vertex. Specifically, if v = P(v),
then we make nz(v) the pointer vertex by changing its label to reflect the pointers,
and changing the labels of all the vertices in B to reflect that nz(v) is the new
pointer vertex. This change can be done in O(|B;]) € O(]X|) time by traversing

By, beginning at v. Let q be the resulting pointer vertex of B;.

— We must change all references to v in I, and I pointers. Providing I (B;) # NIL
[11(q) # N1L}, set Tr(IL(q)) to q. Similarly, providing Ir(B;) # NIL, set It (Ir(q))
to ¢. These changes take O(1) time.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— We must change all references to v in Fr, and Fgr pointers. Specifically, for any
block B, if Fr(P(B)) or Fr(P(B)) is v, then we change its value to ¢. Now, if
Fr(P(B)) = v, then, by Lemma 6.7 (umbrella property), B; < B = By; similarly,
if FL(P(B)) = v, then B; < B < B;. Assuch, we can recursively follow Iy and I
pointers to determine all such blocks B. These changes take O(deg(By)) € O(1X|)
time.

— We must remove v from the circular doubly linked list of the vertices in B;. This

removal takes O(1) time.
e Decrease the value of s(B;) [s(q)] by one. This operation takes O(1) time.
e Delete v. This deletion takes O(1) time.

If v is in a block by itself, we again remove all references to v, however, we may also
have to merge blocks, as depicted in Figure 6.4. Specifically, if v is in a block by itself, our

labelling is changed as follows.

e Ifl <i<l[fr(v) # fu(Fr(v)) and fr(v) # b(v)], FL(Bi—1) = Fr(B;) [fe(IL(FL(v))) =
fo(FL(@))], and Fr(B;—1) = Bi_1 [fr(I1(FL(v))) = b(IL(v))], then merge B; into
Bi--l-

— Add the value of 5(B;) to s(B;-1) [add s(P(FL(v))} o s(P(I(Fr(v))))]. This
operation takes O(1) time.

— Set Ir(B;_1) to Biy1 [[r{(IL(FL(v))) to Ir(Fr(v))] and Ir(Bit1) to Bs—1 [IL(Jr(FL(v)))
to I (FL(v))]- These assignments take O(1) time.

— Update the labels of the vertices of B; to reflect the fact that P(B;_1) [P(I1(F1(v)))]
is the pointer vertex of the merged block. This update can be done in O(|B;}) €
O(|X|) time by traversing B;, beginning at Fy (v).

— Merge the two circular doubly linked lists, using P(B;_1) [P(IL(FL(v)))] and
P(B;) [P(FL(v))] as reference points. This merge takes O(1) time.

o If | < j <k, Fr(Bj) = Fr(Bj;1), and F(Bj1) = By, then merge B; into Bjy;.
This merge takes O(|B;|) € O(|X]) time.

e Providing I;,(B;) # NIL {I(v) # NIL], set Tr(IL(By)) to Ir(By) [Ir(IL(v)) to Ir(v)].
Similarly, providing Ig(B;) # NIL, set I (Ir(By)) to I (B;). These assignments take
O(1) time.

e For each block B in {B;,...,Bi_1}, if Fr(B) = By [fr(P(B)) = b(v)], then set Fr(B)
to By [Fr(P(B)) to Ip(v)]. As well, for each block B in {By;1,...,B;}, if F1(B) =
By, then set Fr(B) to Byy;. These assignments can be done in O(deg(B;)) € O(]X])

time, by recursively following [and I pointers to determine all such blocks B.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Delete v. This deletion takes O(1) time.

o Relabel the blocks and adjust the b, f, and fr values. This operation takes O{n)

time.

C.4.2 Adding a vertex

Let v be the vertex to be added, where X denotes the neighbourhood of v in G’. Hereafter,
we assume that Lemmas 6.12 and 6.13 are satisfied by our vertex addition. Recall that,
while verifying that Lemmas 6.12 and 6.13 are satisfied, we learn a great deal about the
structure of the blocks. This information can be used to help us relabel the vertices.

In describing the relabelling, let us first consider when the members of X belong to one
component, C. As in the hypothesis of Lemma 6.13, let {By,..., Bx} denote the set of
blocks in C that are adjacent to v, such that in the contig of C, By < ... < Bj. We consider

three cases, depending on the value of k.

1. k=1. By Lemma 6.13, B; is an end block. Without loss of generality, assume that
B; < B, for any block B in C.

If v is fully adjacent to B, and C = By ([fr(v1) = b(v1)], then we add v to Bj.
Specifically, we do the following.

e Add v to the circular doubly linked list of vertices in By, using vy as a reference

point. This addition takes O(1) time.

e Establish the label of v to reflect the pointer vertex for By, P(v1)}, while setting
its b, fr, and fr values to those of v;. Establishing the label of v takes O(1)

time.

e Increase the value of s(B;) [s(P(v1))} by one. This adjustment requires O(1)

time.

If v is fully adjacent to Bj, but C # By, then we add the block B, = {v} immediately
before By. Specifically, we do the following.

o Establish the trivial circular doubly linked list for B,. Establishing this circular
doubly linked list takes O(1) time.

e Establish v as the pointer vertex of B,. For now, assign the pointer values of

P(v1) to v. Establishing this pointer vertex takes O(1) time.

e Providing I, (B1) # NIL [I1(v1) # NIL|, set Ir(Ip(B1)) to B, [Ir(IL(v1)) to v].
This assignment takes O(1) time.

Once this I pointer has been assigned, set Ir(B,) to By [Ir(v) to v1] and I (Bj)
to By [I(v1) to v]. These assignments take O(1) time.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Set Fr(B,) to By [Fr(v) to v}, Fr(B,) to By [Fr(v) to v1], and FL(B1) to B,

[Fr(vy) to v]. These assignments take O(1) time.
o Set s(Bg) [s(v)] to one. This assignment takes O(1) time.

¢ Relabel the blocks and adjust the b, f1, and fg values. This operation can be

done in O(n) time.

If v is not fully adjacent to By, then we partition B; U {v} into B, < By < B., where
B, ={v}, By = X, and B, = B; \ X. Specifically, we do the following.

o Establish the trivial circular doubly linked list for B,. Establishing this circular
doubly linked list takes O(1) time.

o Establish v as the pointer vertex of B,. For now, assign the pointer values of
P(v1) to v. Establishing this pointer vertex takes O(1) time.

e Remove vertices in X from the circular doubly linked list of vertices in B; to
produce the circular doubly linked list of vertices in B, and B.. While doing so,
make note of one vertex ¢, from B.. Producing these circular doubly linked lists
takes O(|By|) € O(|X]) time.

o If P(v1) € X, then we establish ¢, as the new pointer vertex for B.. Otherwise,
if P(By) ¢ X, then we establish v; as the new pointer vertex for By. Let ¢, and
q. be the resulting pointer vertices of By and B, respectively. For now, assign
the pointer values of P(v1) to g, and ¢.. Establishing these new pointer vertex
takes O(|By| + |Be|) € O(n) time.

e Providing I (B;) # NIL [Ir(g.) # NIL|, set Ir(IL(B1)) to B, [Ir(IL(g.)) to
v]. Similarly, providing Ir(B:1) # NIL [Ir(g.) # NiL], set IL(Ir(B1)) to B,
[IL(Ir(g:)) to gc). These assignments take O(1) time.

Once the above I; and Ir pointers have been assigned, set Ir(B,) to By [Ir(v)
to gy}, IL(Bs) to Ba [IL(gs) to v], Ir(By) to Be [Ir(gs) to gc], and I(B,) to By
[Ir{gc) to gp). These assignments also take O(1) time.

o Set Fr(B,) to By [Fr(v) to v, Fr(B,) to By [Fr(v) to gs], Fr(Bp) to By [Fr(gs)
to v], and Fr(B.) to By [FL{g.) to g5]. These assignments take O(1) time.

e For each block B in {Ir(B.),...,Fr(B.)}, set Fr(B) to By [FL(P(B)) to g).
These assignments can be made in O(deg(B1)) time, which could be as large as
O(n) time, by traversing I'r pointers.

o Set s(B,) [s(v)] to one, s(By) [s(gp)] to |X], and s(B.) to s(B1) — |X| [subtract
| X] from s(g.)]- These assignments take O(1) time.

e Relabel the blocks and adjust the b, fi, and fr values. This operation can be

done in O(n) time.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. k= 2. By condition 4 of Lemma 6.13, v must be fully adjacent to at least one of
B, and B;. Without loss of generality, assume that v is fully adjacent to By. Let
Bi = FL(Bl) and Bj = FR(Bl)

Recall that we resolved the relabeller into four cases: adding v to By (or Bs), adding
the block {v} immediately before By, adding the block {v} between B; and Bs, and
partitioning By U By U {v} into {v} < By < BaNX < By \ X. This resolution took
O(1) time.

If v is added to Bj, then we do the following.
e Add v to the circular doubly linked list of vertices in By, using v; as a reference
point. This addition takes O(1) time.

¢ Establish the label of v to reflect the pointer vertex for By, P(v1), while setting
its b, fr, and fg values to those of v;. Establishing the label of v can be done in
O(1) time.

¢ Increase the value of s(B1) {s(P(v1))] by one. This takes O(1) time.

If the block B, = {v} is added immediately before B; in its contig, then we do the

following.

¢ Establish the trivial circular doubly linked list for B,. Establishing this circular
doubly linked list takes O(1) time.

e Establish v as the pointer vertex of B,. For now, assign the pointer values of

P(v1) to v. Establishing this pointer vertex takes O(1) time.
e Providing I1,(B1) # NIL [I1(v1) # NIL], set Ir(I(B1)) to By [Ir({L(v1)) to v].
This assignment takes O(1) time.

Once this I, pointer has been assigned, set Ig(B,) to By [Ig(v) to v1] and I'r,(By)
to B, [Ir(v1) to v]. These assignments take O(1) time.

e Set Fy,(B,) to B, [Fr(v) tov], Fr(B,) to Ba [Fr{v) to va], Fr(B1) to B, [Fr(v1)
to v}, and F1(Bg) to B, [FL(v2) to v]. These assignments take O(1) time.

e Set s(B,) [s(v)] to one. This assignment takes O(1) time.

e Relabel the blocks and adjust the b, f;, and fr values. This operation can be

done in O(n) time.

If ByU By U {v} is partitioned into B, < By < By < Be, where B, = {v}, By = BaNX
and B. = By \ X, we do the following.

e Establish the trivial circular doubly linked list for B,. Establishing this circular
doubly linked list takes O(1) time.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Establish v as the pointer vertex of B,. For now, assign the pointer values of
P(v1) to v. Establishing this pointer vertex takes O(1) time.

e Remove vertices in X from the circular doubly linked list of vertices in Bs to
produce the circular doubly linked list of vertices in By and B.. While doing so,
make note of one vertex ¢, from B.. Producing these circular doubly linked lists
takes O(|By|) € O(jX|) time.

o If P(u2) € X, then we establish g, as the new pointer vertex for B.. Otherwise,
if P(v2) € X, then we establish vo as the new pointer vertex for By. Let g, and
g. be the resulting pointer vertices of B, and B,, respectively. For now, assign
the pointer values of P(vs) to g, and g.. Establishing this new pointer vertex
takes O(|By| + | Bc|) € O(n) time.

e Providing I (B;) # NiL [IL(v1) # NIL}, set Ir(IL(B1)) to By [Ir(IL(v1)) to v].

As well, set I (Ig(B2)) to B, [IL(Ir(q.)) to ¢q;]. These assignments take O(1)
time.
Once the above I, and I pointers have been assigned, set Ig(B,) to By [Ir(v)
to v1], I(B1) to B, [Ir(v1) to v], Ir(B1) to By [Ir(v1) to gb], Ir(Bs) to B
[Ir(gp) to qc|, and IL(B) to By [IL(gc) to gp]. These assignments also take O(1)
time.

e Set F1(Bg,) to By [FiL(v) to v], Fr(Ba) to By [Fr(v) to], Fr(B1) to B, [Fr(v1)
to v], and FL(By) to B, [Fr{gy) to v]. As well, if Fr(B1) = By [P(Fr(v1)) = gb),
then set Fr(B;) to B. [Fr(v1) to ¢.). These assignments take O(1) time.

e For each block B in {Ig(B,),...,Fr(B.)}, if Fr.(B) = B. [f.(P(B)) = b(v2)],
then set Fp(B) to By [FL(P(B)) to gs]. These assignments can be made in
O(deg(B>)) time, which could be as large as ©(n) time, by traversing Ir pointers.

o Set s(B,) [s(v)] to one, s(By) [s{gp)] to |B2 N X|, and s{B.) to s(Ba) — |B2 N X]|
[subtract s(gs) from s{g.)]. These assignments take O(1) time.

e Relabel the blocks and adjust the b, f, and fg values. This operation can be

done in O(n) time.
If the block B, = {v} is added between B; and By we do the following.

e Establish the trivial circular doubly linked list for B,. Establishing this circular
doubly linked list takes O(1) time.

e Establish v as the pointer vertex of B,. For now, assign the pointer values of

P(v3) to v. Establishing this pointer vertex takes O(1) time.

o Set Ir(B1) to B, [Ig(v1) to v], I(B,) to By [IL(v) to v1]. Ir(B.) to By [Ir(v)
to vs], and I (Bs) to B, [IL(v2) to v]. These assignments take O(1) time.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Set Fgr(B,) to Bz [Fr(v) to v3]. This assignment takes O(1) time.

e Set s(B,) [s(v)] to one. This assignment takes O(1) time.

e Relabel the blocks and adjust the b, fr, and fr values. This operation can be

done in O(n) time.

3. k> 3. By Lemma 6.13, v is fully adjacent to By, ..., Bg-1. Let B, = Fr(B;) and let

Bg = Fy,(By). As well, let b, be some vertex in B, and let bg be some vertex in Bg

(a) v is fully adjacent to By, but not B;. To create the new contig, we partition B

into B, < By, where B, = By \ X and By, = B; N X, and insert the block

B. = {v} immediately after B,. Specifically, we do the following.

Establish the trivial circular doubly linked list for B.. Establishing this
circular doubly linked list takes O(1) time.

Establish v as the pointer vertex of B.. For now, assign the pointer values
of P(b,) to v. Establishing this pointer vertex takes O(1) time.

Remove vertices in X from the circular doubly linked list of vertices in By to
produce the circular doubly linked list of vertices in B, and By. While doing
so, make note of one vertex g, from B,. Producing these circular doubly
linked lists takes O(] X1|) time.

If P(vy) € X, then we establish ¢, as the new pointer vertex for B,. Oth-
erwise, if P{v;) € X, then we establish v, as the new pointer vertex for By.
Let g, and g, be the resulting pointer vertices of B, and By, respectively.
For now, assign the pointer values of P(v1) to g, and gp. Establishing this
new pointer vertex takes O(|B,| + |Bp|) € O(n) time.

Providing I(B1) # NIL [I1(g,) # NIL], set Ir{I.(B1)) to B, [Ir(IL(gs)) to
qg]. Similarly, providing Ig(By) # NIL [[g(bs) # NIL], set I (Ir(B,)) to B,
[Ir(Ir(by)) to v]. These assignments take O(1) time.

Once the above Ij, and Ig pointers have been assigned, set Ig(B,) to By
[1r(ga) to qo], IL(Bs) to Ba [I1(g) to qal, IL(B2) to By [IL(v2) to @], Ir(Ba)
to B [Ir(bs) to v, and I(B.) to By [IL(v) to by]. These assignments also
take O(1) time.

For each block B in {Fr(B,),...,1.(B.)}, if Fr(B) = By [fr(P(B)) =
b{v1)], then set Fr(B) to By [FL(P(B)) to g5]. These assignments can be
made in O(deg(B1)) € O(n) time, by traversing I pointers.

For each block B in {By,..., By}, if FL(B) = By [fL(P{B)) = b(v1)], then
set Fr(B) to B, [FL(P(B)) to ¢s]. These assignments can be made in O(|X|)

time, by traversing Ig pointers.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e For each block B in {By,...,Bu}, if Fr(B) = By [fr(P(B)) = b(ba)], then
set Fr(B) to B, [Fr(P(B)) to v]. These assignments can be made in O(} X})
time, by traversing Ir pointers.

e Set Fp(B.) to By [Fr(v) to g). As well, if B, = By [b(Fr(q.)) = b(ug)],
then set Fr(B.) to B, [Fr(v) to v}, otherwise, B, < By, so set Fgr(B,.) to
By [Fr(v) to vg]. These assignments take O(1) time.

e For each block Bin {Ig(B.),..., Bk}, if Fp(B) = Ip(B.) [b(IL(FL(P(B))) =
b(by)], then set Fp(B) to B. [FL(P(B)) to v]. These assignments can be
made in O(|X|) time, by traversing Ir pointers.

e Set s(B.) [s(v)] to one, s(Bs) [s(gp)] to |[B1NX]|, and s(B,) to s(B1)—|B1NX|
[subtract s(gs) from s(g,)]- These assignments take O(1) time.

e Relabel the blocks and adjust the b, fr, and fr values. This operation can

be done in O(n) time.

(b) v is fully adjacent to By, but not By. To create the new contig we partition By,
into By < B., where By = By N X and B, = B; \ X, and insert the block

B = {v} immediately before Bg. This scenario is virtually identical to the case

when v was fully adjacent to By but not B;.

(c) v is fully adjacent to neither By nor By. In essence, this scenario requires the

‘combination’ of the two previous relabellings. That is, we partition B; into
B, < By, where B, = B; \ X and B, = By N X, we partition By into By < Be,
where By = By N X and B, = B \ X, and we insert B, = {v} between B,
and Bg. As the combination of the previous two relabellings we can obtain the

labelling of G’ in O(n) time.

(d) v is fully adjacent to both B; and Bj. We consider three further cases.

i. By < Bg [b(bs) < b(bg)]. We add the block B, = {v} between B, and Bg.
Specifically, we do the following.

e Establish the trivial circular doubly linked list for B,. Establishing this
circular doubly linked list takes O(1) time.

e Establish v as the pointer vertex of B,. For now, assign the pointer

values of P(b,) to v. Establishing this pointer vertex takes O(1) time.
e Set Ig(Ba) to B, [Ir(ba) to v], I(B,) to By [I1(v) to by], and I1(Bg)
to B, [I1.(bo) to v]. These assignments take O(1) time.
e Set Fr(B,) to By [Fr{v) to v1], Fr(B,) to By [Fr(v) to vg]. These

assignments take O(1) time.
e For each block B in {By,..., By}, if Fr(B) = B, [fr(P(B)) = b(by)],
then set Fr(B) to B, [Fr(P(B)) to v]. These assignments can be done

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in O(] X1) time by following Ir pointers.

e For each block B in {Bg,..., B}, if FL(B) = Bs {fL(P(B)) = b(bg)],
then set F(B) to B, [F(P(B)) to v]. These assignments can be done
in O(]X|) time by following I; pointers.

e Set s(B,) [s(v)] to one. This assignment takes O(1) time.

e Relabel the blocks and adjust the b, fr, and fr values. This operation

can be done in O(n) time.
ii. By = Bg [b{ba) = b(bg)]. We consider four cases.
e Fr(By) = B; [fr.(ba) = b(v1)] and Fr(B,) = B [fr(ba) = b(vr)]. Since

B, has the same adjacency as v, we add v to Bg. Specifically, we do the

following.

— Add v to the circular doubly linked list of vertices in B,, using b, as a
reference point. This addition takes O(1) time.

— Establish the label of v to reflect the pointer vertex for B,, P(b,),
while setting its b, f1, and fgr values to those of b,. Establishing the
label of v can be done in O(1) time.

— Increase the value of s(By) [s(P(ba))] by one. This takes O(1) time.

o FL(By) < B [f1(ba) < b(v1)] and Fr(Ba) = B [fr(ba) = b(vi)]. In this

case, we must insert the block B, = {v} immediately after B,. Specifi-

cally, we do the following.

— Establish the trivial circular doubly linked list for B,. Establishing
this circular doubly linked list takes O(1) time.

— Establish v as the pointer vertex of B,. For now, assign the pointer
values of P(b,) to v. Establishing this pointer vertex takes O(1) time.

— Set I (Ig(Bys)) to By [IL{(Ir(by)) to v]. This assignment takes O(1)
time.
Once this I, pointer has been assigned, set Ir(Bq) to By [[r(bs) to
v] and I(B,) to By [IL(v) to by]. These assignments also take O(1)
time.

— Set F(B,) to By [FL(v) to 1], Fr(B,) to Bg [Fr(v) to vg]. These
assignments take O(1) time.

— For each block B in {B1,..., B,}, if Fr(B) = By [fr(P(B)) = b(by)],
then set Fr(B) to B, [Fr(P(B)) to v]. These assignments can be done
in O(] X]) time by following Ir pointers.

— Set s(B,) [s(v)] to one. This assignment takes O(1) time.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— Relabel the blocks and adjust the b, fr, and fr values. This operation
can be done in O(n) time.
e F1(By.) = Bi1 [fr(ba) = b(v1)] and By < Fr(B,) [b(vk) < fr(by)]- In this
case, the block B, = {v} must be inserted immediately before B,,.

e Fr(B,) < By [fr(ba) < b(v1)] and By < Fr(Ba) [b(vk) < fr(by)]. Recall
that G’ is not a proper interval graph.

iii. Bg < By [b(bg) < b(by)]. By definition, Fj(B,) < By and By < Fr(Bg).
Therefore, F1,(Bg) < By and By, = Fr(B,). We consider four cases.

[FL(Bg) = Bl [fL(bﬁ) = b(”l)l)] and FR(Ba) = Bk [fR(ba) = b('l)k)] Recall
that this case cannot occur.

[FL(Bg) < B [fL(bﬁ) < b(Ul)] and FR(BQ) = By [fR(ba) = b(vk)]. Now if
Fr(Ba) = By [fr(ba) = b(v1)], then B, has the same adjacency as v so

we add v to B,; adding v to B, is done in exactly the same manner
as when B, = Bg, Fr(B,) = Bi, and Fr(By) = Bi. Otherwise, if
Fr(By) < By [fo(ba) < b(v1)], we must insert the block B, = {v} im-
mediately after By as By < F(Ir(By)). This insertion of the block B,
is done in exactly the same manner as when B, = Bg, F1(B,) < By,

and FR(BQ) = By.
o F1(Bg) = By [fr(bs) = b(v1)] and By < Fr(B,) [b(ve) < fr(bs)]- This case

is virtually identical to the previous one. If Fr(Bg) = By [fr(bs) =
b(vg)], then we add v to Bg. Otherwise, if By < Fr(Bg) [b(vk) < fr(bg)],
we must insert the block B, = {v} immediately before Bg.

o F(Bg) < By [fr(bg) < b(v1)] and By < Fr(By) [b(vk) < fr(by)]- If there
exists a block B, such that Fr(I.{B1)) < B < F,(Ir(Bk)), then we must

add v to B. We have previously seen how to add v to an existing block.
If there does not exist a block B such that Fr(IL(B1)) < B < Fr(Ir(By)),
then we must add the block B, = {v} between Fr(Iy(B)) and Fy, (Ig(Bg)).
This can be done in a manner similar to the placement of B, = {v} be-

tween B, and Bg in the case where B, < Bp.

Now let us consider when the members of X belong to two distinct components. Let
the contigs of the two components be ® = B; < ... < By and ¥ = B} < ... < Bj, where,
without loss of generality, ® < ¥. As well, let B; be the leftmost block in ® to which v is
adjacent, and let B’ be the rightmost block in ¥ to which v is adjacent.

To demonstrate the action of the relabeller, we consider the scenario in which the end
blocks to which v is fully adjacent are By and Bj, with v is fully adjacent to B’ but not B;.
Let B, be the split block B; \ X, By be the split block B; N X, and B, be the block {v}.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The labelling is changed as follows.
o If Ir(By) # Bj [b({r(vk)) = b(v])], then move ® over to W.

— Set Ir(I(BY)) to Ir(Bj) [Ir(IL(v})) to Ir(v))] and Ig(B]) to Ir(By) [Ir(v;)
to Ir(vk)]. As well, providing Ir(Bj) # NIL [Ir(v]) # NIL], set Iy (Ir(B])) to
IL(B)) IL(Ir(v])) to Ir(v})]. These assignments can be made in O(1) time.
Once the above I1, and I pointers have been assigned, set Ir(By) to B} [Ir{vk)

to v}], and I, (B}) to By [IL(v}) to vk]. These assignments also take O(1) time.

— Relabel the blocks and adjust the b, fr, and fr values. This operation can be

done in O(n) time.
o Insert B, and split B; to reflect the straight enumeration of G'.

— Establish the trivial circular doubly linked list for B.. Establishing this circular
doubly linked list takes O(1) time.

— Establish v as the pointer vertex of B.. For now, assign the pointer values of

P(vi). Establishing this pointer vertex takes O(1) time.

— Remove vertices in X from the circular doubly linked list of vertices in B; to
produce the circular doubly linked list of vertices in B, and B,. While doing so,
make note of one vertex q, from B,. Producing these circular doubly linked lists

takes O(|X1) time.

- If P(B;) € X, then we establish g, as the new pointer vertex for B,. Otherwise,
if P(B;) ¢ X, then we establish v; new pointer vertex for By. Let q, and g
be the resulting pointer vertices of B, and By, respectively. For now, assign the
pointer values of P(v1) to ¢, and gp. Establishing these new pointer vertex takes
O(|B;]) € O(|X]|) time.

— Providing I1,(B;) # NIL [I(v;) # NIL), set Tr(I1(B;)) to By [Tr(I1(4a)) tO qa).
This assignment takes O(1) time.

Once the above I, pointer has been assigned, set Ir(B,) to By [Ir(gs) to g,

%

and I1,(By) to By [IL(gs) to qu). As well, if B; = By [b(v;) = b(vg)], then set
Ir(By) to B. [Ir(gs) to v] and I1(B.) to By [I1(v) to gp). Otherwise, set Ir(B.)
to By [I1(v) to vg]. These assignments also take O(1) time.

— Set F.(Be) to By [FL(v) to gs] and Fr(B.) to B} [Fr(v) to vj]. These assignments
take O(1) time.

— For each block B in {F1(B,),...,B.}, if Fr(B) = B; [fr(P(B)) = b(v;), then
set Fr(B) to By [FL(P(B)) to). These assignments can be done in O(]X])

time by following I'r pointers.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— For each block B in {Bs,...,IL(B)}, set Fr(B) to B, [Fr(P(B)) to v]. These

assignments can be done in O(|X|) time by following I pointers.

J

For each block B in {B,,...,I51(B:)}, if Fr(B) = B; [fL(P(B)) = b(v;), then set
F(B) to B, [FL(P(B)) to g4]. These assignments can be done in O(]X]) time

by following I pointers.

For each block B in {Ig(B.),...,B}}, set FL(B) to B, [FL(P(B)) to v]. These

assignments can be done in O(|X{) time by following I pointers.

l

Set s(B.) [s(v)] to one, s(By) [s(gp)] to |B; N X|, and s(B,) to s(B;) — |B; N X]|
[subtract s(gp) from s(gs)]. These assignments take O(1) time.

— Relabel the blocks and adjust the b, f;, and fr values. This operation can be

done in O(n) time.

C.4.3 Deleting an edge

Let uv be the edge to be deleted, where X,, and X, denote the neighbourhoods of u and v,
respectively, in G. As well, let B; and B; be the blocks containing u and v, respectively, in
the contig By < ... < By of the component C' containing uv. Without loss of generality, let
1<i<j<k.

If i = 7, then i = j = k = 1 and there are two case to be considered.

e B4 contains another vertex besides u and v. We partition the contig B; to create a

new contig B, < By < B, where B, = {u}, By = By \ {u,v}, and B, = {v}.

Specifically, we amend the labelling as follows.

— If u or v is the pointer vertex of By [P(v) € {u,v}], then establish a new pointer
vertex for By, with pointer values identical to those of P(B;). Specifically, use
whichever of nz(v) or prev(v) is not u. This reassignment takes O(|B(u,v)|) €

O(|X,) = O(|X,]) time. Let g be the resulting pointer vertex of Bj.

— Remove u and v from the circular doubly linked list of vertices in B; to produce

the circular doubly linked list of vertices in Bp. This removal takes O(1) time.

— Establish the trivial circular doubly linked lists for B, and B.. These circular
doubly linked lists can be created in O(1) time.

— Establish u as the pointer vertex of B, and v as the pointer vertex of B.. For
now assign the pointer values of ¢ to v and v. These pointer vertices can be

established in O(1) time.

— Providing I,(B;) # NIL [{1(q) # NiL], set Ir(I.(B1)) to B, [Ir(IL(q)) to u].
Similarly, providing Ir(B1) # NIL, set I1.(Ir(B1)) to B [IL(Ir(q)) to v]. These

assignments take O(1) time.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once the above I;, and I pointers have been set, set Ir(B,) to By [Ir(u) to g,
IL(By) to B, [I1(q) to u|, Ir(Bs) to B, [Ir(g) to v], and IL(B,) to By [I1(v) to
q]. These assignments also take O(1) time.

— Set F(B,) to B, [Fr(u) to u|, Fr(B,) to By [Fr(u) to q], Fr(By) to B, [FL(q)
to u), Fr(Bs) to B. [Fr(q) to v}, FL(B¢) to By [FL(v) to ¢, and Fr(B,.) to B,
[Fr(v) to v]. These assignments take O(1) time.

— Set s(B,) [s(u)] and s(B.) [s(v)] to one, and set s(By) to s(By) — 2 [subtract two

from s(g)]. These assignments take O(1) time.

— Relabel the blocks and adjust the b, fr, and fg values. This operation can be

done in O(n) time.

e B; contains only u and v. We partition the contig B; to create two new contigs B,

and B,, where B, = {u}, B. = {v}, and B, < B.. Without loss of generality, let us

assume that v was the pointer vertex of B;. We change the labelling as follows.

— Establish the trivial circular doubly linked lists for B, and B.. Establishing these
circular doubly linked lists takes O(1) time.

— Establish u as the pointer vertex of B,. For now, assign the pointer values of v

to u. Establishing this pointer vertex takes O(1) time.

— Providing Ir.(B1) # NIL [Ir(v) # NIL|, set Ir(I1(B1)) to B, [[r(IL(v)) to u].
Similarly, providing Ir(B1) # NIL, set I, (Ir(B1)) to B, [I(Ig(v)) to v]. These
assignments take O(1) time.

Once the above I7, and Ir pointers have been set, set Ir(B,) to B, [[r(u) to v],
IL(B.) to B [IL(v) to u]. These assignments also take O(1) time.

— Set Fp(B,) to B, [Fr(u) to u], Fr(B,) to B, [Fr(u) to u], FL(B.) to B, [Fr(v)

to v}, and Fgr(B¢) to B, [Fr(v) to v]. These assignments take O(1) time.

— Set $(Bg) [s(u)] and s(B.) [s(v)] to one. These assignments take O{1) time.

— Relabel the blocks and adjust the b, f1, and fr values. This operation can be

done in O(n) time.

Now let us consider when ¢ # j. Observe that if 1 <1 [f7(u) # b(u)], B; = {v} [nz(v) =
v, FL(Bio1) = Fr(Bs) [fo(L(vw)) = fo(w)], and Fr(Bi—1) = B;-1 [fr({L(u)) = b(IL(v))],
then we must move v into B;_;. Similarly, if 7 < k, B; = {u}, Fr(Bj+1) = Fr(B;), and
F1(Bj+1) = Bit1, then we must move v into Bj4;.

Exactly how the labelling is changed depends on whether u is moved into B;_;, v is
moved into B;.;, B; = {u}, and B; = {v}. We consider each case, with respect to u,

separately, noting that the same considerations must also be given for v.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e If u is to be moved into B;_; and B; = {u} [nz(u) = u|, then we merge B; into B;_.

As we saw earlier when adding a vertex, such a merge takes O(1) time.

o If u is to be moved into B;_; but B; contains vertices other than u [nz(u) # u], then

we perform the following.

— If u is the pointer vertex of B; [P(u) = u], then establish nxz(u) as the new pointer
vertex for B;, with pointer values identical to those of u. This reassignment takes
O(|B;]) € O(|X4|) time. Let ¢ be the resulting pointer vertex of B;.

— Remove u from the circular doubly linked list of the vertices in B; and add u to
the circular doubly linked list of the vertices in B;_1, using P(B;_1) [P(I1(u))]
as a reference point. This move takes O(1) time.

~ Change the label of u to reflect that P(B,_1) [P(I.(g))] is the new pointer vertex
of its block. This change takes O(1) time.

— For each B in {Fr(B;),...,Bi—1}, if Fr(P(B)) = u then set F.(P(B)) to q.
These assignments can be done in O(deg(B;)) € O(|X,|) time, by recursively

following Iy, pointers to determine all such blocks B.

-- Decrease the value of s(B;) [s(g)] by one and increase the value of s(B;-1)

[s(P(u))] by one. These adjustments take O(1) time.
e If u was not moved into B;_; and B; = {u}, then we need do nothing yet.

e If u was not moved into B;_1 and B; contains vertices other than u, then we must
partition B; into B, < By, where B, = {u} and By = B; \ {u} (in the case of v, we
would partition B; into B, < By, where B, = B; \ {v} and B, = {v}). Specifically,

the labelling changes as follows.

— If u is the pointer vertex of B; [P(u) = u], then establish nz(u) as the new pointer
vertex for B;, with pointer values identical to those of u. This reassignment takes

O(|B(uw)}) € O(1X,]) time. Let ¢ be the resulting pointer vertex of B;.

— Remove u from the circular doubly linked list of vertices in B; to produce the

circular doubly linked list of vertices in Bp. This removal takes O(1) time.

— Establish the trivial circular doubly linked list for B,. Establishing this circular
doubly linked list takes O(1) time.

— Establish u as the pointer vertex of B,. For now, assign the pointer values of ¢

to u. Establishing this pointer vertex takes O(1) time.
— Providing I(B;) # NIL [I1(q) # NIL|, set Ir(IL(B;)) to B, [Ir(IL(q)) to u]. As

well, set Ir,(Ir(B;)) to By [IL(Ir(q)) to q]. These assignments take O(1) time.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once these I, and Ig pointers have been assigned, set Ig(B,) to By [Ir(u) to ¢
and I, (Bp) to B, [IL(q) to u]. These assignments also take O(1) time.

— For each block B in {F(B;),...,Bi—1}, if Fr(P(B)) = u, then set Fr(P(B))
to g. As well, for each block B in {B;y1,...,B;}, if P(FL(P(B))) = ¢ then set
Fr(B) to B, [FL(P(B)) to u]. These assignments can be done in O(deg(B;)) €
O(|X,|) time, by recursively following /;, and Ig pointers to determine all such

blocks B.

— Set s(B,) [s(u)] to one and S(Bs) to s(B;) — 1 [subtract one from s{g)]. This
takes O(1) time.

Once the above actions involving v and v have been completed, we set Fr(B(u)) to
IL(B(v)) [Fr(u) to IL{v)] and Fr(B(v)) to Ir(B(u)) {F(v) to Ir(u)]. These pointers can
be set in O(1) time. We then relabel the blocks and adjust the b, fi,, and fg values. These

values can be adjusted in O(n) time.

C.4.4 Adding an edge

Let uv be the edge to be added, where X, and X, denote the neighbourhoods of u and
v, respectively, in G. Without loss of generality, let us assume that b(u) < b(v). While
considering the addition of a vertex, we saw that, by traversing Fr pointers beginning at u,
we can determine, in O(n) time, whether u and v belong to the same component.

We consider the following cases.

1. The vertices u and v belong to distinct components. In this case we will need to know

information about all the blocks in the components containing v and v. Specifically, we
determine all the blocks by following F;, and Fg pointers, keeping a reference vertex

v; from each block B;. Gathering this information can take as much as ©(n) time.

Let ® = By < ... < By be the contig of the component containing u, and let ¥ =
B{ < ... < Bj be the contig of the component containing v. To demonstrate the
action of the relabeller, we consider the scenario in which v € By and v € Bj, with
B} = {v} but not By # {u}. Let B, be the split block By \ {u}, and B} be the block
{u}. Our labelling changes as follows.

o If Ip(By) # By [b(Ir(vk)) = b(v})], then move & over to U.

— Set Ir(I(B1)) to Ir(B]) [Ir(IL(v})) to Ir(vy)] and Ir(B]) to Ir(Bs) [{r(v))
to Ir(vk)]. As well, providing Ir(B]) # NIL [[r(v]) # NIL], set I ([r(B])) to
I1(B1) [Ir.(Ir(v])) to I (v])]. These assignments can be made in O(1) time.
Once the above I, and I pointers have been assigned, set Ir(By) to Bj
[Tr(vg) to vi], and I (B}) to By [I(v]) to uvg]. These assignments also take
O(1) time.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— Relabel the blocks and adjust the b, fr, and fr values. This operation can

be done in O(n) time.
e Split By to reflect the straight enumeration of G'.

— If w is the pointer vertex of By [P(u} = u], then establish nz(u) as the new
pointer vertex for B,. This reassignment takes O(|B(u)]) € O(]X,|) time.
Let ¢, be the resulting pointer vertex of B,.

— Remove u from the circular doubly linked list of vertices in By to produce
the circular doubly linked list of vertices in B, and Bj. Producing these
circular doubly linked lists takes O(|Bg|) € O(|X,]) time.

— Establish u as the pointer vertex of By, and give its pointers the same values
as q,. Establishing this pointer vertex takes O(1) time.

— Providing I (Bg) # NIL [I1(gq) # NIL}, set Ir(IL(Byi)) to B, [{r(IL(qa)) to
¢o]- This assignment takes O(1) time.

Once the above Ij, and Ir pointers have been assigned, set Ir(B,) to By
[Ir(qa) to u], I(Bs) to B, [IL(u) to gq,), and Ir(B]) to By [IL(v) to u].
These assignments also take O(1) time.

— Set Fr(Bp) to Bi [Fr(u) to v], and Fr(Bj}) to By [Fr{v) to u]. These
assignments take O(1) time.

— For each block B in {Fr(B,),...,Ba}, set Fr(B) to By [Fr(P(B)) to ul.
These assignments can be done in O(|X,]) time by following I pointers.

— Set s(Bp) [s(u)] to one, and subtract one from the value of s(Bg) [s(¢a)]-
These assignments take O(1) time.

— Relabel the blocks and adjust the b, f1, and fr values. This operation can

be done in O(n) time.

2. The vertices v and v belong to the same component. Let By < ... < By, be the contig

of the component containing v and v, where u € B;andv € B;, forsome 1 <i < j < k.

We consider two further cases.

(a) B; and Bj; are end blocks [fr(u) = b(u) and fr(v) = b(v)]. In this case, X, =

X,. By Lemma 6.7 (umbrella property), the contig contains three blocks, namely,
{u} < X, < {v}. The new component will consist of a single block, formed by

merging the three blocks into one new block B,.

Letting g be the pointer vertex of the block X, the labelling changes as follows.

o Providing Iy ({u}) # NIL [I1(u) # NIL}, set Ir(IL({u})) to B, [ITr(IL(u)) to
q]. Similarly, providing Ir({v}) # NIL [Ir(v) # NIL], set Iy (Ir{{v})) to B,
[Ir(Ir(v)) to gs]. These assignments take O(1) time.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Establish the circular linked list for B, by adding v and v to the circular

doubly linked list of vertices in X,,, using g as a reference. Moreover, change

the labels of 4 and v to reflect that they are no longer pointer vertices, and

g is the pointer vertex of their new block. These changes take O(1) time.

e Set the value of 5(B,) to s(X,) + 2 [add two to the value of s(q)]. This
addition takes O(1) time.

e Relabel the blocks and adjust the b, fr, and fr values. This operation can

be done in O(n) time.

(b) At least one of B; and B, is not an end block [fz(u) # b(u) or fr(v) # b(v)]. In

this case, Xy, # X,. If B; = {u} [na(u) = u|, Fr(Bj—1) = Fr(B;) [fr(IL(v)) =
fr(v)] and Fr(Bj_1) = B; [fr({1{v)) = b(u)], then we move v from B; into B;_1.
Similarly, if B; = {v} [nx(v) = v], FL(Biy1) = Fr(B;) [fr(Ir(w) = fr(u))]
and Fr(Bi+1) = B; [fr(Ir(u)) = b(v)], then we move u from B, into Bjy1.

This moving of » and v is virtually identical to one of the cases discussed when

considering the deletion of a edge.

Our labelling is modified acccrding to whether or not u and v are moved.

e If u is to be moved into B;y1 and B; = {u} [nz(u) = u|, then we merge B;

into B;y1. As we saw earlier when adding a vertex, such a merge takes O(1)

time.

o If u is to be moved into B;;; but B; contains vertices other than u [nx(u) #

u], then we perform the following.

If u is the pointer vertex of B; [P(u) = u], then establish nz(u) as the
new pointer vertex for B;, with pointer values identical to those of wu.
This reassignment takes O(|B;|) € O(|X,]) time. Let g be the resulting
pointer vertex of B;.

Remove u from the circular doubly linked list of the vertices in B; and
add u to the circular doubly linked list of the vertices in B;1q, using
P(Bit1) [P(Ir(u))] as a reference point. This move takes O(1) time.
Change the label of u to reflect that P(B;1) [P(Ir(q))] is the new pointer
vertex of its block. This change takes O(1) time.

For each B in {Bjt1,...,Fr(B;)}, if FL(P(B)) = u, then set Fr(P(B))
to gq. These assignments can be done in O{deg(B;)) € O(|X,]|) time by
recursively following I pointers to determine all such blocks B.
Decrease the value of s(B;) [s(q)] by one and increase the value of s(B; 1)

[s(P(u))] by one. These adjustments take O(1) time.

e If u was not moved into B;;; and B; = {u}, then we need do nothing yet.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e If v was not moved into B;;; and B; contains vertices other than u, then
we must partition B; into B, < By, where B, = B; \ {u} and B, = {u}
(in the case of v, we would partition B; into B, < By, where B, = {v} and
By = Bj \ {v}). Specifically, the labelling changes as follows.

— If u is the pointer vertex of B; [P(u) = u], then establish nxz(u) as the new
pointer vertex for B;, with pointer values identical to those of u. This
reassignment takes O(|B(u)|) € O(|X,|) time. Let g be the resulting

pointer vertex of B;.

— Remove u from the circular doubly linked list of vertices in B; to produce
the circular doubly linked list of vertices in B,. This removal takes O(1)
time.

— Establish the trivial circular doubly linked list for B,. Establishing this
circular doubly linked list takes O(1) time.

— Establish v as the pointer vertex of B,. For now, assign the pointer
values of ¢ to u. Establishing this pointer vertex takes O(1) time.

— Providing Ip(B;) # NIL [I(q) # NI1L], set Tr(IL(B:)) to B [Ir(IL(q))
to q]. As well, set I, (Ir(B;)) to By [IL(Ir(q)) to u]. These assignments
take O(1) time.

Once these Iy, and Ip pointers have been assigned, set Ir(B,) to By
Ur(q) to u], and I (Bp) to B, [I1(u) to g]. These assignments also take
O(1) time.

~ For each block B in {FL(B;),...,B;}, if P(Fr(P(B))) = g, then set
Fr(P(B))tou. Aswell, for each block Bin {B;1,...,B;_1},if F,(P(B)) =
u then set Fi(B) to B, [FL(P(B)) to g]. These assignments take O(]X,,|)
time.

~ Set s(By) [s(u)] to one and S(B,) to s(B;) — 1 [subtract one from s(g)].
This takes O(1) time.

Once the above actions involving ¢ and v have been completed, we set Fr(B(u))
to B(v) [Fr(u) to v] and Fr,(B(v)) to B(u) [FL(v) to u]. These pointers can be
set in O(1) time. We then relabel the blocks and adjust the b, f, and fr values.

These values can be adjusted in O(n) time.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index

adjacency labelling scheme, 3, see implicit

representation

almost trees(k), 14

arboricity-k graphs, 3, 14, 15

asteroidal triple free graphs, 14

autographs, 14

balanced, 12, 14, 15

bandwidth-k graphs, 14

bipartite graphs, 12, 14, 15

boxicity-k graphs, 14, 15

chain graphs, 14

chordal comparability graphs, 14

chordal graphs, 12, 14

circle graphs, 15

circular arc graphs, 15

cobipartite graphs, 14, 15

cographs, 15

comparability graphs, 15

containment graphs, 15

convex bipartite graphs, 15

cycles, 15

k-decomposable graphs, 15

degree-k graphs, 14, 15

disk intersection graphs, 15

k-dot product graphs, 13, 15

EPT graphs, 15

forests, 15

Cs-free graphs, 14

C3,Cy-Tree graphs, 14

C5,K s3-free graphs, 14

K 3-free graphs, 14

K3 3-free graphs, 14

Kx-free graphs, 14

P,-free graphs, 14

from adjacency lists, 6

from adjacency matrix, 6, 12, 17, 54

general graphs, 14

genus-k graphs, 15

hereditary degree-k graphs, 15

interval graphs, 3, 11, 14, 15

k-interval graphs, 15

line graphs, 3, 8-9, 15

outdegree-k graphs, 9-10, 14, 15

outerplanar graphs, 13, 15

permutation graphs, 15

planar graphs, 15

posets of dimension-k, 15

proper interval graphs, 14, 15

quality, 10-12

space-optimal, 11

k-sparse graphs, 12-13, 15

split graphs, 14, 15

strongly space-optimal, 11, 12, 16

threshold graphs, 15

188

threshold tolerance graphs, 15
total graphs, 15
transitive closures of rooted trees, 7-
8, 15
trees, 7, 10, 11, 15
uniformly k-sparse graphs, 15
adjacency list, 2, 6
adjacency matrix, 2, 6
adjacent, 1
almost tree(k), 14, 118
arboricity, 118
arboricity-k graph, 3, 4, 14, 15, 32, 33
asteroidal triple, 118
asteroidal triple free graph, 14
astral triple, 82, 83, 118
autograph, 14, 118

bandwidth, 118
bandwidth-k graph, 14
base graph, see line graph, base
biclique, 54, 118
maximal, 4, 5, 34, 54, 68, 81, 112, 118
r-bic, 5, 34, 54, 55, 67-81, 81, 112, 118
binary tree, 21, 118
bipartite graph, 12, 14, 15, 21, 119
block, 83-84
boxicity, 119
boxicity-k graph, 14, 15
broadcast protocols, 20

chain graph, 14, 119
chordal bipartite graph, 12, 119
chordal comparability graph, 14
chordal graph, 12, 14, 119
circle graph, 15, 119
circular arc graph, 15, 21, 119
circular doubly linked list, 39, 55, 68, 86
circular linked list, 4, 111
claw, 119
clique
maximal, 5, 34, 54, 56, 81, 112, 121
cliquewidth, 119
cliquewidth-£ graph, 21, 119
closed neighbourhood, 1
co-class, 10, 14
cobipartite graph, 14, 15, 119
cograph, 15, 119
comparability graph, 15, 119
component, 2
computation model
log-cost RAM, see log-cost RAM
unit-cost RAM, see unit-cost RAM
word-level RAM, see word-level RAM
connected graph, 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

containment class, 18, 120
containment graph, 15, 120
contig, 84, 85

convex bipartite graph, 15, 120

decoder, 3, 7-12, 16, 19, 39, 56, 68, 86,
124
k-decomposable graph, 15
k-decomposable, 120
degree, 1
degree-k graph, 14, 15, 21
degree-k planar graph, 21
degree-3 graph, 21
directed graph, 1
disk intersection graph, 15, 120
distance hereditary graph, 21, 120
distinct graphs
labelled, 2
unlabelled, 2
domino, 54, 56
k-dot product graph, 13, 13, 15, 120
dynamic adjacency labelling scheme, see
dynamic labelling scheme, adja-
cency
dynamic informative labelling scheme, see
dynamic labelling scheme
dynamic labelling scheme, 22-34, 112, 113
adjacency, 23
arboricity-k graphs, 4, 32, 33
r-bics, 5, 34, 55, 67-81, 112
line graph, 34
line graphs, 5, 38-52, 111
r-minoes, 5, 34, 81, 112
r-minoes, H5-67
proper interval graphs, 5, 82-107,
112
trees, 24
ancestor
rooted trees, 4, 33
assumptions, 24-25, 57, 69
distance
trees, 4, 33
weighted cycles, 34
weighted trees, 34, 112
flow
weighted trees, 112
informative, 26
modification excess, see modification
excess
modification locality, see modification
locality
quality, 4, 26-29, 111
routing
weighted trees, 112
separation level
weighted trees, 112

edge, 1

edge set, 1

end pointer, 85, 87

EPT graph, 15, 120

error-detection, 4, 23, 26, 29-32, 63, 75,
111

far pointer, 85

finite graph, 1

forest, 15, 22, 120
Cjs-free graph, 14
C3,Cy-free graph, 14
C3,K s-free graph, 14
H-free, 118

K 3-free, 14

K 3-free graph, 14
Ki-free graph, 14
Py-free graph, 14

genus, 120

genus-k graph, 15
graph, 1

graph recognition, 29-32

hereditary degree-k graph, 15, 120
hereditary property, 120
hypercube, 21, 120
hypergraph, 17, 121

line graph of, 17, 121

rank, 17, 121

identifier, 4, 6-10, 24, 39, 56, 68, 86
implicit representation, 16, 16-18
incident, 1
informative labelling scheme, 3, 19, 18-
19, 125
adjacency, see adjacency labelling scheme
ancestor, 3, 20
rooted trees, 19, 21
applications, 19-20
bounded distance
trees, 21
center of three vertices, 3
trees, 21
distance, 3, 20
binary trees, 21
bipartite graphs, 21
circular arc graphs, 21
cliquewidth-k graphs, 21
cycles, 21
degree-k graphs, 21
degree-k planar graphs, 21
degree-3 graphs, 21
distance hereditary graphs, 21
general graphs, 21
hypercubes, 21
interval graphs, 21
meshes, 21
permutation graphs, 21
planar graphs, 21
proper interval graphs, 21
recursive r(n)-separator graphs, 21
tori, 21
trees, 21
treewidth-k graphs, 21
weighted binary trees, 21
weighted c-decomposable graphs, 21
weighted k-outerplanar graphs, 21
weighted series parallel graphs, 21
weighted trees, 21
well (a, g)-separated graphs, 21
edge-connectivity
general graphs, 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flow, 20
general graphs, 22
nearest common ancestor, 3, 20
rooted trees, 22
parent, 20
quality, 19
reachability
planar digraphs, 22
routing, 3, 20
forests, 22
trees, 22
separation level
rooted trees, 22
sibling, 20
Steiner tree
weighted graphs, 22
k-vertex connectivity
general graphs, 22
intersection class, 17, 35, 121
intersection graph, 121
intersection number, 17
interval graph, 3, 11, 14, 15, 21, 83, 112,
121
interval number, 121
k-interval graph, 15, 121
isomorphic graphs, 2

labelled graph, 2
line graph, 3, 5, 8, 8-9, 15, 34, 35, 38-52,
111, 121, see hypergraph, line
graph of
base, 8, 35, 39
log-cost RAM, 124
loop, 1

marker, 3, 7--12, 16, 19, 63, 82, 87, 124

mesh, 21, 121

r-mino, 5, 34, 54, 55-67, 81, 112, 121

modification excess, 29, 27-29, 43, 46, 52,
60, 63

modification locality, 29, 27-29, 43, 46,
52, 60, 63, 65, 67

near pointer, 85
neighbourhood, 1
of a block, 83

open neighbourhood, 1

outdegree-k graph, 9, 9-10, 14, 15, 121
outerplanar graph, 13, 15, 121
k-outerplanar, 121

outneighbour, 9

overlap class, 18

partial order, 121

partition isomorphism, 36, 35-38, 41
path, 2

permutation graph, 15, 21, 122
persistent labels, 4, 33

planar digraph, 22

planar graph, 15, 21, 122

pointer vertex, 85, 85-87

poset, 15, 122

prefix-free binary string, 19

190

proper interval graph, 5, 14, 15, 21, 82,
82-107, 112, 122

reciprocal pointer, 56

recognition, 63, 75, 88

recursive r(n)-separator graph, 21, 122

relabeller, 23, 26, 27, 41-52, 57-67, 70—
81, 87-107, 124

rooted tree, 4, 19, 21, 22, 33, 122

routing algorithms, 20

self pointer, 85, 87

series parallel graph, 122

simple graph, 1

k-sparse graph, 12, 12-13, 15, 122
split graph, 14, 15, 122

straight enumeration, 84, 84, 112
subclass, 10, 14

superclass, 10, 14

threshold graph, 15, 122

threshold tolerance graph, 15, 122

torus, 21, 122

total graph, 15, 122

transitive closure of rooted tree, 7-8, 15,
123

tree, 4, 7, 10, 11, 15, 21, 22, 24, 33

treewidth, 123

treewidth-k graph, 21

triangle, 123

undirected graph, 1

uniformly k-sparse graph, 15, 123
unit interval graph, 123

unit-cost RAM, 124

universal graph, 18, 123
unlabelled graph, 2

valid set, 44
vertex, 1
vertex set, 1

walk, 2

weak linear order, 92

weighted binary tree, 21

weighted cycle, 34

weighted c-decomposable graph, 21
weighted graph, 22

weighted k-outerplanar graph, 21
weighted series parallel graph, 21
weighted tree, 21, 34, 112

well (o, g)-separated graph, 21, 123
word-level RAM, 6, 11, 124

XML search engine, 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

