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Abstract: 

 

Today, Cloud Computing is completely taking over businesses by delivering high-quality computer 

services and solutions over several servers, databases, storage spaces, and various software. It provides 

the required flexibility, agility, and scalability to expand and innovate. All this comes with a cost- Security. 

In this project, we’re going to discuss a method to improve security in the transport level of the network. 

QUIC (Quick UDP Connections) protocol is a fairly new concept which has several advantages and its 

share of shortcomings. While there is no concept of Ack messages once the connection has been 

established, there are high chances of DDoS (Distributed Denial of Service) attacks or data breaches. The 

reason why we are considering a new protocol like QUIC is mainly because it is easier and more effective 

to experiment with a protocol under research rather than using a standardized protocol like TCP 

(Transmission Control Protocol). According to the IETF, Transport Layer Security (TLS) is used to secure 

QUIC. Once the TLS handshake chunk of data has been delivered to QUIC, it is QUIC’s responsibility to 

deliver it reliably. Each block of data that is produced by TLS is correspondingly associated with the 

bunch of keys that TLS is presently using. If QUIC requires to retransmit that data, it must use the same 

keys even if TLS has already updated to newer keys. Additionally, frames associated with transferring 

data can appear only in the 0-RTT and 1-RTT encryption levels. With this project, I’d like to propose a 

tracking system to ensure more security and reliability by introducing a tracking factor along with the 

currently used TLS security architecture on QUIC. According to MA.TTIAS.BE, An eminent 

characteristic of QUIC is FEC or Forward Error Correction. Every packet that gets delivered also 

includes a part data of the other following packets so that when a packet goes missing, it can be 

reconstructed without having to retransmit it. Due to this, there is a trade-off: each UDP packet contains 

more payload than is strictly necessary. With this tracking feature, I’d also like to reduce the rate at which 

packets get retransmitted in case it fails to reach the destination. The underlying idea is to dispense more 

control to the sender of the packet in order for the sender to monitor the route of the sent packet and detect 

any breach or interruptions along the way. 
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Introduction: 

 

Cloud Computing is completely revolutionizing the way businesses today procure computer services. 

Everything is available from anywhere at the snap of the finger. A "Cloud" refers to a set of hosted 

resources delivered to a user through software. Cloud computing infrastructures, along with all the data 

being processed, are dynamic, scalable, and portable. Cloud security controls are required to respond to 

the environmental variables and accompany workloads and data while at rest and in transit, either as 

inherent parts of the workloads (e.g., encryption) or dynamically through an Identity and cloud 

management system and APIs. This aids in protecting the cloud environments from system corruption and 

data loss. In fact, with cloud services such as AWS (Amazon Web Services), we can host serverless 

websites today. 

Well, the major stranglehold for this vast fast-growing technology is a security threat. When you 

transform to the cloud, you’re entrusting a major portion of your business (namely, the organization’s 

intellectual property) to a third party (namely, the cloud service provider). Even the most minute of an 

opening can create unauthorized access, theft, and tremendous financial loss to the organization (A small 

calculation has been given as an example in the Literature Review- Verifying Cloud Services- The present 

and the Future). Cloud is like a reservoir of data today, which means illegal access to this reservoir can 

lead to data breaches and intrusion of privacy. Hence, securing this data takes precedence. 

In this proposed system, we have a tracking system for the TLS security over QUIC protocol used by 

google chrome and now slowly taking over the cloud platform as well. With this project, I’d like to make 

the networking overcloud a lot more secure with lesser payload. The idea is for the client to exercise more 

control over the packets it sends to the server. The ability to track sent packets helps in curbing attacks 

and removes the need for acknowledgments from the receiver, thereby increasing the data rate. This entire 

report is divided into two parts- Understanding Cloud Security today and the security design proposal 

at a protocol level. I saw this interesting picture from an article- The cloud is here- embrace the transition- 

How organizations can stop worrying and learn to “think cloud” by Deloitte depicting the cloud services 

today: 
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Background 

 

With every passing decade, we end up discussing a new technology, its pros, cons, challenges, and 

applications. Well, one such technology is Cloud Computing- that has completely changed the way 

businesses operate today. It has almost become a metaphor for the internet. Ever wondered how the cloud 

came into being in the first place? 

An article in the MIT Technology Review has a picture of George Favaloro in 1996, a Compaq marketing 

executive holding the Compaq business plan that is known to have been the first use of the term ‘Cloud 

Computing.’ George and his colleague, a young technologist, Sean O’Sullivan, envisioned all the business 

software to be moved to the Web, which they named as ‘Cloud computing-enabled applications.’ 

Over the coming years, the use of cloud computing started spreading rapidly since it contributed to a 

historic shift in the IT industry in terms of more computer memory, processing power, and applications 

hosted in remote data centers or what is called as the ‘cloud.’ 

According to the Great Cloud Migration, Wordpress, the following timeline approximately defines the 

evolution of cloud computing over time: 

 

                                     Figure 1 Evolution of Cloud Computing 
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Cloud Computing Services 

 

 

                                    Figure 2 Cloud Services 

Let us see what each of these entails: 

Public Cloud- It basically means renting cloud services, i.e., you wouldn’t have access to the hardware 

that runs your cloud services. It just stores information and resources that can be used by the public. For 

example, we all use google’s free services like Gmail, Google docs, and google drive. So, where do you 

possibly think the data is stored, or the website is hosted? All the content and the websites are stored in 

the cloud, which basically means it is stored in a computer/server elsewhere in the world where they have 

a data center. The public cloud strives to allow users to share resources whilst maintaining the privacy of 

their data. Public cloud architecture is entirely virtualized, thereby providing an environment wherein 

shared resources are leveraged as needed. 

Major advantages of Public Cloud: 

• An important advantage of public cloud architecture is the ubiquity- the ability to access a service 

or an application on any device that is connected to the internet. 

• The next advantage, as I see it is Simplicity. The device by itself performs little to no computation, 
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thereby enabling individuals to conveniently deploy highly complex applications almost anywhere 

and anytime. Therefore, no complex set up and technically skilled (In Cloud Technology) 

engineers are needed.  

• Public cloud is typically designed with built-in redundancies in order to prevent data loss. A 

service provider may store replicated files across several data centers to ensure that the disaster 

recovery is smooth and fast.  

• Finally, Public Cloud is all about unlimited scalability. This is precisely because the Public cloud 

storage providers aid organizations in offloading their physical hardware and the corresponding 

costs, including server maintenance, power, and cooling technology. 

 

Disadvantages of using Public Cloud: 

• The first one that needs to be addressed is Security. Your servers are probably in a whole other 

country governed by a different entity with an entirely different set of security and privacy rules 

and regulations. It is indeed a total loss of control for the organization. 

• The second cause of concern would be Performance issues. Your data transmission might be 

affected by spikes in use across the internet. If applications that are deployed are all heavy duty 

with large amounts of confidential data, then the public cloud is not the most suitable option. 

• The next one is- Lack of customized options. In regard to the services provided, since the public 

cloud providers cater to a large number of customers, the services are rather generic and not very 

application-specific. 

 

Private Cloud- It basically means owning the cloud services for yourself. You will ideally have complete 

access to the hardware that runs your services (data center) and will not have to share the resources with 

any other organization. It is also called the single-tenant environment. It can be created both on and off-

premises.  

Major advantages of Private Cloud: 

• Overcoming the very first disadvantage of the Public Cloud- Better Security. This is certainly 

because you have complete control over your resources (data center) and can thereby employ your 

application-tailored security and privacy policies and regulations to it. 

• Secondly, we talk about a much better performance. Having the data center in your vicinity 
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removes any kind of inconvenience caused due to an internet connection. Also, applications of any 

size and capability can be easily deployed, provided the organization can afford the costs of the 

servers associated with it. 

• The next one in line- More options to customize according to our requirements, size of the 

company, affordability, and the area available. The services can be tailored specifically, and 

options can be added or deleted according to the need of the hour. 

 

The disadvantages of using a private cloud: 

• Affordability. Only big organizations with large chunks of data and big applications in the 

pipeline to be deployed can afford private cloud services. This is because the hardware costs 

(Setting up the data center) are quite hefty  

And require regular maintenance and updates, all of which might prove cumbersome to smaller 

organizations. 

• The second point would be- the need to employ system security engineers and data center 

technicians in order to operate and regulate the private cloud services. This, in turn, leads to higher 

usage of resources and costs. 

 

Hybrid Cloud-  Hybrid cloud is basically a cloud computing environment that uses an amalgamation of 

private cloud, public cloud, on-premises, and third-party services with an orchestration between the two 

platforms. It allows workloads to move to and fro between the private and public clouds as computing 

needs and costs keep changing. When establishing a hybrid cloud, an organization would require the 

following- A public Infrastructure as Service (IaaS) platform, such as Amazon Web Services (AWS), 

Microsoft Azure or a Google Cloud Platform; The construction of the private cloud services through a 

hosted private cloud provider or on-premises and the corresponding Wide Area Network (WAN) 

connectivity between those two environments (IaaS and Private Cloud Services). 

Usually, an enterprise will choose a public cloud to access compute instances, storage resources, or any 

other specific services, such as serverless computing capabilities or big data analytics. However, an 

enterprise has no control over the public cloud’s architecture, so, for a hybrid cloud deployment, the 

organization must architect its private cloud to achieve complete compatibility with the desired public 
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cloud providers. This involves the implementation of a suitable hardware within the data center, including 

storage, a local area network (LAN), load balancers, and servers. 

An enterprise must then deploy a hypervisor or a virtualization layer to create and support virtual machines 

(VMs) and, in some cases, even containers. Thereafter, the IT teams have the responsibility to install and 

employ a private cloud software layer, for example, the OpenStack, on top of the hypervisor to deliver all 

the required cloud capabilities, such as automation and orchestration, self-service, reliability and 

resilience, chargeback and billing. A private cloud architect will create a list of all the local services 

available, such as database instances or compute instances, from which the users can choose the service 

they wish to avail. 

The underlying key to create a successful hybrid cloud is to select the cloud software layers and a 

hypervisor, both of which are entirely compatible with the required/subscribed public cloud services, 

ensuring proper interoperability with that public cloud's services and application programming interfaces 

(APIs). The implementation of compatible software and services also aids cloud instances to migrate 

seamlessly between private and public clouds. A developer can also create advanced applications using a 

mix of services and resources across the public and private platforms (Software Defined Networking). 

Major advantages of using Hybrid cloud: 

• You have complete control over the entire scale of architecture, which further allows the 

organization to customize, create, and deploy services as needed. This also means more flexibility 

and escalating possibilities to scale. 

• Better Security. Since the operations happen right under your nose, security policies can be 

formulated accordingly. 

• Better Speeds. It is much faster to operate even with large applications with large chunks of data. 

 

Major disadvantages are: 

• Organizations incorporating Hybrid cloud services usually incur very large costs of operation 

owing to the entire set up of the hardware and software services. 

• Regular Maintenance is required. With such large scale deployment comes tremendous needs for 

technicians and engineers to regulate and maintain the services. This will, in turn, increase the 
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costs to the company. 

SaaS- Software as A Service- Refers to a software application/service hosted by the service provider on 

their server to be accessed by the users across the internet without facing the hassle of installing it locally 

in their respective computers or the intranet. 

PaaS- Platform as A Service- Refers to a platform that is typically provided with the OS, server software, 

server hardware, and network infrastructure, allowing the users to easily develop and deploy applications. 

IaaS- Infrastructure as a Service- refers to a service wherein you install the OS, software stack, select 

the servers (physical or virtual) and then deploy your applications. 

On that note, in order to understand the concepts of SaaS, PaaS, and IaaS, I found two very interesting 

images to understand this concept entirely: 

 

               Figure 3- Demarcation of Cloud Services with an Analogy (Source: Quora) 
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                  Figure 4- Separation of Responsibilities of Cloud Services (Source: Quora) 

• (Figure 2) In case you’re preparing pizza at home, it means you have an on-premise environment 

where you manage everything, i.e., you cook your own cheese, toppings, pizza dough, you own 

an oven, gas, etc. and you make the entire thing on your own and eat in the comfort of your home. 

You control how good or bad your pizza is. This is the concept of On-premises services. 

• In the case of IaaS, you purchase the raw materials (i.e., your compute environment, storage disks, 

your OS, etc.) from your Cloud Service Provider. The infrastructure would be provided to you by 

the Cloud Provider, and you would not have complete control over it (You will not know where 

exactly your server is, where your disks are, etc.). But you control about how patching is done on 

your OS, what workloads you have on your environment etc. 

• In PaaS, you buy a pizza from a restaurant and eat it at home - i.e., you don’t worry about 

controlling your databases, load balancers, etc. are configured. They are given to you as managed 

services by your cloud service provider. Various major tasks such as backing up databases etc. 

become the service providers’ responsibility, and you can completely focus on building and 

deploying your application on the Cloud. The amount of resources that are controlled by an 

organization reduces one step further. 

• In the SaaS model, the majority of the services are managed by your service provider, and the 
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amount of configuration or set up required at the organization’s end becomes minimal. The amount 

of control an organization has on it’s cloud resources keeps decreasing as we go towards the right 

in the diagram (Highest control on IaaS to least control on SaaS) 

 

Differences in Security Considerations in SaaS, PaaS and IaaS 

 

▪ Organizations focused on SaaS 

The main consideration with relying on Software as a Service would be not to replicate the 

organization as such on the cloud. Large organizations using Cloud services usually face a 

dilemma. If they potentially have say, ten thousands of employees using Cloud services, is it a 

good idea to create that many redundant users on the Cloud platform? The solution to avoid this 

requirement by providing a single sign-on between Cloud (SaaS) and on-premises systems negates 

this requirement. 

However, several users with multiple passwords also prove as a potential security threat to the IT 

Help Desk resources. The costs and risks associated with multiple passwords are especially 

burdening for any large organization making its first attempt into incorporating Cloud Computing 

and leveraging applications or SaaS. For example, if an organization has 20,000 employees, how 

expensive do you think it is to have the IT department assign new passwords to access Cloud 

Services for each individual user? For instance, say, the user forgets their password for the SaaS 

service and eventually resets it; the IT department now has an extra password to take care of. 

By incorporating single sign-on capabilities, an organization can ideally enable a user to access 

both the user's desktops and the Cloud Services via a single password. There are significant 

economic benefits to this approach in addition to preventing security issues. For instance, single 

sign-on users are less likely to lose passwords, thereby condensing the assistance required by IT 

helpdesks. Single sign-on is also very useful for the provisioning and de-provisioning of 

passwords. If a new employee joins or leaves the organization, there is only a single password to 

activate or deactivate as opposed to having several passwords to deal with. Therefore, the danger 

of not having a single sign-on in place for the Cloud is an escalated exposure to security risks 

(Organization being replicated on the cloud) and the potential for escalated IT Help Desk costs, as 
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well as the danger of dangling accounts after certain users leave the organizations, which are then 

open to illegal access/usage. 

▪ Organizations focused on PaaS 

Usage of Cloud Services works on a paid-for basis, which means that the finance department will 

want to store a record of how each of the services is being used. The Cloud Service Providers 

(CSP) themselves provide this information in the form of reports and logs, but in the case of a 

contention, it is always wiser to have an independent audit trail.  For example, Cloud Service 

Providers like Amazon Web Services provides timely reports of your usage with customized 

policies (Snapshot below). 

 

                                           Figure 5 Snapshot of AWS Audit Reporting 

Audit trails usually provide valuable and accurate information about an organization's employees’ 

interactions with the cloud services. In order to create an independent audit trail of its own cloud 

service consumption, the end-user organization could consider a Cloud Service Broker (CSB) 

solution. Once equipped with his/her own records of cloud service activity, the CSO can 

confidently cater to any concerns over billing or to verify employee activity. A CSP should provide 
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the reporting tools to give organizations the power to actively monitor how services are being used. 

There are a plethora of reasons as to why an organization may want a record of Cloud activity, the 

main one being – To understand how the ‘cloud platform’ is being used for the organization’s 

business requirements, budgeting, and financial analysis. 

▪ Organizations focussed on IaaS 

The most important security consideration when the business is focussed on IaaS is protecting 

yourself from problematic cloud usage and redundant cloud providers. This is where Governance 

in Cloud computing becomes important. For instance, the organization may want to ensure that a 

user working in sales can only access specific sales and marketing leads and does not have access 

to other restricted departments/areas. Another example is that an organization, big or small, may 

wish to control how many virtual machines can be spun up by their employees, and, indeed, are 

the same machines spun down later when they are no longer needed. Instances wherein an 

employee is setting up their own accounts for using a particular cloud service needs to be 

monitored, detected, and brought under an appropriate governance umbrella. The image below 

from an organization account created in the Amazon Web Services gives an idea about how the 

access can be limited. The Root admin has the rights to decide which user is allowed to access the 

services: 

                       Figure 6 Snapshot of resource access (Resource Management) 
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While the Cloud Service providers (CSPs) provide different degrees of cloud service monitoring, 

an organization must consider implementing its own Cloud service monitoring and governance 

framework. The requirement for this independent control is of great benefit when an organization 

is using multiple SaaS providers, i.e., HR services, ERP, and CRM systems. However, in such a 

scenario, it is important to be aware that different Cloud Providers have unique methods of 

accessing and drilling information. They also have various security models on top of that to make 

sure that the data is secure. 

Some use REST, SOAP, and so on. For security, some use certificates, and some use API keys. 

Some users simply use basic HTTP authentication. The main problem that needs solving is that 

these cloud service providers (CSPs) all present themselves very differently and uniquely. Hence, 

in order to use multiple Cloud Providers, organizations have to overcome the fact they are all 

different at a technical level. 

Again, that brings us to the solution provided by a Cloud Broker, which brokers the several 

connections and essentially softens over the distinctions existing between the connections. This 

means organizations can now make use of several services together. Only in situations wherein 

there is something relatively commoditized like storage as a service; the services can be deployed 

interchangeably. This provides a solution for the issue solves of what to do if a cloud provider goes 

down or becomes unreliable. In fact, according to Mark O’Neil, CTO of Vordel, organizations 

should never have to get into the technical weeds of being able to comprehend, understand, or 

mitigate between different interfaces. They should be able to move up a level according to their 

requirements when they are actually using the Cloud mainly for the benefits of saving money. 

▪ For Businesses focussed on SaaS, PaaS, and IaaS 

Several Cloud services are accessed using simple REST Web Services interfaces. These are 

commonly called "APIs (Application Programming Interfaces)."They are analogous to the more 

heavyweight C++ or Java APIs used by programmers, but they are much lighter to incorporate 

from a Web page or from a mobile phone, hence their increasing universality. Another 

characteristic of using API keys is that they do not have a backend server. This means they do not 

identify the user or application making the API request, so there is absolutely no way to restrict 

access to specific users/accounts. How do they work? In order to identify authenticated users, the 
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user is pre-authenticated and issued an API key. The API requests include the API key, usually in 

a request header. They enable organizations to access the Cloud Provider like the AWS. For 

example, if an organization is using a SaaS service, it will often be provided with API Keys. 

Nevertheless, the protection of these keys is very important. Just like passwords, API keys must 

be regularly be rotated to prevent a compromised key from being abused. 

Consider a good example of Google Apps. If an organization requires to enable single sign-on to 

their Google Apps ( just so that their users can access their emails without actually having to log 

in a second time), then this access is given via API Keys. But if these keys were to be stolen, then 

an attacker would have access to the email of every person in that organization, and that could 

prove catastrophic for the organization. 

Some systems have a way to issue API keys on demand. These keys may only be valid for hours 

or minutes, thereby limiting the exposure of a compromised key. Another method to protect API 

Keys is by encrypting them while storing them within a Hardware Security Module (HSM), or 

when they are stored on the file system.                                                 

The screenshot below shows us the options Amazon Web Services gives us to manage the API 

keys effectively. You can opt for self-management of the keys or entrust the job to the cloud 

provider.  
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                         Figure 7 Snapshot of API Key management in AWS 

CogniCrypt 

One such method to secure API keys efficiently has been discussed in a research paper- 

CogniCrypt[134]. This proposed concept is typically described for programmers/developers, but I 

suggest the idea can be extended to securing API keys with the cloud providers as well. To begin 

with, the research paper aims to fulfill the following walloping gaps: 

a. Generate secure implementations for common programming tasks that involve cryptography 

(e.g., Data encryption). [134] 

b. Analyzes developer code and generates alerts for misuses of cryptographic APIs.[134] 
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The method: 

The method for CogniCrypt has been devised on a series of surveys conducted among 

developers who found the usage of cryptographic APIs really difficult due to several reasons. 

The main reason was the usage of only a low-level cryptographic algorithm rather than more 

functionally oriented APIs. In the following flowchart, I have described the method 

CogniCrypt follows but customized it more for the usage in cloud services rather than 

programming. This step by step description (Figure 8), followed by the screenshots provided 

in the research paper, provides us a way to encrypt the APIs more efficiently and thereby 

increasing the security when using them. 

Data related tasks supported by the CogniCrypt are: 

• Symmetric Encryption 

• Password Storage 

• Secure Communication 

• Secure Long-term storage. 

• Secure Multi-party Computation 
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                             Figure 8 Flowchart- CogniCrypt method for Cloud Services 

 

Attached below are two screenshots that portray the step 2 and step 4 of this process. The list of algorithms 

can be provided with a description of its usage so as to enable employees with a minimum knowledge in 

cryptography to understand what is best for the service they’re trying to employ. This is, of course, in 

addition to a default algorithm selection by the CogniCrypt itself, describing why it is deemed the best fit 

for the application/service. 

The user selects on the 

CogniCrypt button in Eclipse’s 

tool bar in order to generate the 

code. 

In the dialog box, the user can 

select the Target project/service 

and the ENC (Encrypt Data using 

Secret key) 

The user then answers a small 

questionnaire for the selected 

cloud service 

According to the answers, the 

Cognicrypt provides the user 

with a list of algorithms in 

different configurations to select 

from (including a default 

selection that it deems as best fit 

for the service). 
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                                                Figure 9 Selecting a Service 

In the figure above, instead of selecting a development project, we could use a similar module to select a 

cloud service. 

 

 

 

 

 

 

 

 

 

 

 

                                    Figure 10 Selecting a cryptographic configurator 

 

One other important feature of this method would be to report misuses as Eclipse error markers that can 

be rectified. The next question would be- How do we manage these cryptographic algorithms efficiently? 

The answer lies in deploying a Cloud API key management system. The provider employs a cloud-hosted 
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key management service that lets you manage encryption for your cloud services the same way you do 

on-premises. You can generate, use, rotate, and destroy cryptographic keys. In Google Cloud, a Cloud 

Key Management Service (Cloud KMS is) integrated with Cloud Identity and Access Management and 

Cloud Audit Logs so that the organizations can manage permissions on individual keys and monitor how 

they are used. 
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Understanding Cloud Computing 

The National Institute of Standards and Technology in the United States defines cloud computing as “a 

model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable 

computing resources that can be rapidly supplied and released with minimal management effort or 

service-provider interaction.”  

Common characteristics of cloud computing include (Source: Deloitte [2])  

 

1. Measured service  

Cloud systems automatically control, monitor, and optimize resources, and they can also report usage, 

which provides transparency for both the Cloud Service Provider (CSP) and the consumer 

(Organization/business). Turn-key computing solutions shorten the ideation-to-implementation cycle. 

There are services provided by the AWS for monitoring, observing, and optimizing the hosted 

applications- Amazon CloudWatch Services. Bonus: These Cloud solutions operate on a subscription 

basis (either annually or quarterly), so there is no stress of long-term capital investments. Below is the 

screenshot of Amazon CloudWatch Services monitoring my usage and resources: 

 

 

                                            Figure 11 Snapshot of CloudWatch Metrics in AWS 
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There are several metrics that the CloudWatch covers- Latency, Time to live(TTL), system errors, write 

capacity, throttled write requests and events etc. 

 

2. Rapid elasticity  

Based on demand, resources need to be supplied and scaled rapidly. By being able to provide the extra 

technology resources whenever needed, organizations can accommodate sudden spikes in demand. 

Typically, there are two types of scaling that can be done: 

- Horizontal Scaling- Adding or removing nodes, servers, or instances to or from a pool like a 

cluster. This is the most popular kind of scaling because it is more dynamic. For example, adding 

a load balancer for distributing requests to a web server. 

- Vertical Scaling- Adding or removing resources to an existing node, server, or instance in order 

to increase the capacity of the node, server, or instance. This is the less used type of scaling since 

it is less dynamic owing to frequent reboots of systems, adding physical components to the servers, 

etc. 

Today, we have three types of scaling- Manual, semi-automated, and fully automated(elastic). AWS 

provides services such as Amazon S3, Amazon Aurora, and Amazon SQS that provide elasticity as a part 

of their service for certain services/aspects of the services that are not elastic by design. Elasticity can be 

specifically implemented using AWS Auto Scaling or Application Auto Scaling. This is a fully automated 

type of scaling. It involves absolutely no manual labor to increase or decrease capacity. Below is the 

screenshot of the AWS Scaling Strategies available for my DynamoDB application service. According to 

my requirements, I can select the strategy: 

   

                           Figure 12 Snapshot of selection of Scaling Strategy in AWS                      
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Once you’ve selected the scaling strategy and the metrics required for your application, a scaling plan is 

created that is customized to your needs. In addition to creating a plan and monitoring it (see figure 13), 

you can also add this scaling plan to your CloudWatch dashboard so as to monitor all your resources in a 

single place.  

 

 

   

                        Figure 13 Snapshot of CloudWatch Dashboard in AWS                            
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3. On-demand self-service  

Users can go on to provide their own computing capabilities as required with each service provider, with 

absolutely no need for human interaction. The ongoing and fast-evolving nature of cloud expenditures 

encourages organizations to focus all their time, energy, and effort, resources on using IT services rather 

than conducting extensive planning exercises to secure funding and/or implement IT infrastructure [2].  

 

4. Broad network access via all platforms 

A complete access is available over the network and through various client platforms such as mobile 

phones, tablets, laptops, and workstations).  

 

5. Resource-pooling in Cloud 

The Cloud Service provider’s computing resources are pooled to serve multiple consumers, with resources 

reassigned and customized according to demand. Cloud Service Providers (CSPs) introduce new features 

and functions in the market on a very regular basis; in fact, some have known to have launched over a 

thousand features annually. Additionally, they give organizations the leverage and freedom to redirect IT 

roles toward developing capabilities in such areas as machine learning, the Internet of things (IoT), and 

artificial intelligence (AI) rather than focus on operations [2]. Amazon Web Services (AWS) provides 

what is called AWS Resource Groups to organize and automate all the AWS resources at a time. 

In this image below, I have created a resource group in the Amazon Web Services, selected three 

resources, and an API key (tag) with the value-cost. Several such resource groups can be created, and 

access can be restricted/permitted based on the tags used. 

 

                                          Figure 14 Snapshot of Resource Groups- AWS           



 

31  

Case Studies on security breaches: 

 

Below are some top security breaches that have affected big companies in the past leading to loss of data 

from the cloud. (Source: Cyber Security hub [26]) 

Company/Industry 

type 

Records exposed Type of attack What can we do better? 

Capital One-BFSI 1066 Million Cloud Vulnerability Regular assessments of 

firewalls and restricted 

access to configuration 

settings 

State Farm Insurance-

BFSI 

N/A Credential Stuffing Augment security 

awareness training as 

to why ‘unique 

credentials’ are 

important, Implement 

multiple forms of 

authentication. 

Dunkin Donuts- 

Restaurants and 

Hospitality. 

N/A Credential Stuffing Implement Good 

password hygiene and 

two-factor 

authentications. 
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Biostar 2- software and 

Technology 

1 million  Cloud Vulnerability Third-party risk 

assessments for SaaS 

and PaaS providers 

make alternate 

authentication methods 

available. 
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Understanding Cloud Security and Data Privacy 

These days, businesses have completely shifted from assessing whether they should use cloud computing 

to plan how they are going to incorporate it as an important part of their IT infrastructure. Regardless of 

all the advantages of storing data in the cloud, it is highly critical to understand, realize, and mitigate risks 

related to moving corporate data out of a carefully built and secure on-premise environment. Losing 

complete operational control of such data may make it vulnerable to external security breaches and privacy 

threats, if adequate safeguards and threat controls are not put into place. Furthermore, public cloud 

architectures are dynamic in nature, which can make security and privacy measures, both cumbersome 

and expensive. 

Main Causes for Security Breaches: 

 

Limited organizational control of cloud consumption  

It is possible for stakeholders to procure cloud services with little to absolutely no oversight from their IT 

and procurement teams, which has led to several organizations assuming a greater level of risk than with 

traditional IT procurements. Cloud systems are typically characterized by the providers having control 

over the physical premises, hardware, software, and networks and not particularly dedicated to a single 

business/ customer. Common operational, technical standards, and security policies are used for all 

customers/businesses. SaaS applications are all pre-configured and are difficult to customize to the 

particular needs of a business. Due to this lack of control and inability to directly control the used services, 

it is not a herculean task for an attacker to breach into a company’s data [2]. 

 

Limited negotiation with cloud service providers 

Cloud Service Providers (CSP) are typically not very open to negotiating and explaining their standard 

terms and conditions entirely. Various kinds of clients use public cloud environments for different 

services, and providers don’t still offer services customized for unique or specialized requirements of the 

users. This thereby contributes further to the inability to control security regulations [2]. 

 

Rapidly changing landscape 

With a relatively new market offering, cloud solutions are still maturing in terms of industry standards 
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and operating models. Regulators are also continuously evolving, and many providers don’t still provide 

clear guidance regarding cloud computing and its services. As various industry groups, alliances, and 

government agencies continue to develop their own unique standards, organizations must make sure that 

CSPs are keeping pace with compliance and regulatory changes. For instance, the Internet of Things (IoT), 

BlockChain technology require more customization and focus on the back end of cloud computing [2]. 

 

Inability to Monitor data in transit 

This is, by far, one of the major drawbacks in cloud computing. This provides a platform for the attackers 

to compromise data while in transit. Attacks like Man-in-the-middle (MITM), MITM Secure Sockets 

Layer, DNS Spoofing, and several overflow-based attacks are all common attacks affecting the cloud 

services today. 

 

Inability to prevent insider theft 

For security regarding sensitive business data and sanctioned enterprise cloud applications, Insider Threat, 

a threat that comes from an individual/employee with a legally authorized access to an organization’s IT 

systems becomes a natural priority. Whether malicious or accidental, security incidents involving insiders 

can put large amounts of highly sensitive data at risk leading to a great financial burden for businesses to 

recover from. Even when IT security teams may consider data “secure” within sanctioned cloud 

applications, it may not really be the case. According to MacAfee, Grand Theft Data: Data Exfiltration 

Study, Insiders are responsible for 43% of all data breaches, but there is a general consensus across the 

security industry that breaches attributed to insiders tend to be more harmful to the organization. The 

majority of the breaches from insider threats involve malicious intent, while only 28% are really 

accidental. This area of risk most frequently involves current and former employees/users, but external 

contractors, auditors, and consultants can also put data at risk. Given the high economic losses and 

difficulty of detecting incidents, addressing Insider Threat is a key element of any organization’s cloud 

security strategy. 

 

Studying the Cloud Security with an example- Amazon Web Services 

 

Below are some of the tactics and techniques representing the MITRE ATT&CK Matrix for Enterprise 
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covering cloud-based techniques, particularly in Amazon Web Services: 

 

 

 

 

                                             Figure 15 List of Attacks on Cloud 

 

We will now discuss some of these attacks in detail and understand how it affects the cloud security. 

 

Valid Accounts- Initial Access 

The credentials of a specific user or a service/business account can be stolen by an attacker using 

Credential Access techniques or capture credentials through social engineering for means of gaining Initial 

Access. What are some techniques used for gaining Credential Access, and how can they be mitigated in 

order to nip it at the bud? The following table explains three main techniques: 

Name of the Attack Description Mitigation 

Link-Local Multicast Name 

Resolution 

(LLMNR/NetBIOS-Name 

Service(NBT-NS) Poisoning 

LLMNR/NBT-NS provides 

information for internal 

systems that may not be easily 

accessible. Poisoning this 

service can easily allow the 

Improving password policy, 

Ensuring SMB signing is 

enabled, putting security 

policies in place to combat any 

issues in the LLMNR/NBT-NS 
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attacker to gain access to the 

credentials. 

traffic. 

Kerberoasting  Kerberos is a windows 

network authentication 

protocol that utilizes tickets to 

allow strong authentication 

between devices. Within a 

windows environment, there 

are Service Principal Names 

(SPNs), which are utilized to 

identify each instance of a 

Windows Service. Attackers 

can request service tickets for 

any SPNs from a domain 

controller. The service ticket 

that is generated contains the 

hashed password for the 

service accounts associated 

with the SPN. The ticket can 

then be subjected to offline 

password recovery attacks to 

gain the credentials to that 

service account, after which 

the attacker can easily escalate 

his/her privileges.  

Enabling strong encryption 

algorithms specifically for 

Kerberos, ensuring service 

accounts have only a minimum 

level of access, implementing 

strong password conditions. 



 

37  

Credential dumping Credential Dumping is the 

means of gaining access to the 

account login and password 

either in cleartext or hashed 

format from a system that has 

been compromised. For 

Windows, attackers usually try 

to manipulate the registry that 

interacts with the NTLM 

credentials within the memory. 

For Linux, the attacker tries to 

scrape live memory out of 

other programs running in the 

system. 

Up to date operating system 

and software patches, complex 

passwords for the root access, 

Protection of the Security 

Account Manager (SAM) 

database. 

 

Accounts that an attacker may be classified into fall into three main categories: default, local, and domain 

accounts. Default accounts are defined as those accounts which are built-into an OS such as a default 

factory set accounts on other types of software, systems, or devices or a simple Guest or Administrator 

account on Windows systems. Local accounts are those configured by an organization for use by users, 

remote support, services, or administration on a single system or service. Domain accounts are those 

accounts that are managed by Active Directory Domain Services wherein the permissions and accesses 

are configured across services and systems that are part of that domain. Domain accounts can cover 

administrators, users, and services[38]. 

 Credentials that are compramised can be used to bypass access controls that are placed on various 

resources within the systems in the network and may even be used for persistent/redundant access to 

externally available services and remote systems, such as Outlook Web Access, VPNs and remote desktop. 

Compromised credentials may also allow an attacker increased privilege to specific systems. Attackers 

may also utilize publicly disclosed private keys, or stolen private keys, to legitimately connect to remote 

environments via Remote services.  
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The overlap of all the account access, credentials, and permissions across a network of systems is of a 

major concern because the attacker may be able to gain across accounts and systems to reach a high level 

of access (i.e., domain or enterprise administrator)  and can then easily bypass access controls set within 

the enterprise leading to a major data breach and huge financial losses. 

Mitigation: 

Apart from using multi-factor authentication and strong password policies, we have something known as 

Filter Network traffic, which is one of the effective ways to combat this type of attack in the cloud. It 

involves whitelisting IP addresses on the cloud along with user account management to ensure that the 

data access is restricted only to legitimate users. This method makes sure that the ‘legitimate’ users are 

from the expected IP range only, thus, serving as a second round of a check post. 

One example of implementing the Filter Network traffic on Amazon Web Services is given below: 

This shows how to whitelist IP addresses to access the Amazon API Gateway. The procedure is very 

simple: 

a. You choose an API (HTTP, WebSocket, REST) 

b. You can then choose “Create Method.” You can choose from POST, DELETE, PATCH, etc. 

c. You can then need to create a resource policy that describes how you want your filter to work- 

permit/restrict IP addresses. 
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                                      Figure 16 Snapshot of a Resource Policy code-AWS 

This is a policy written to allow access to the mentioned IP address. You can also give a range of 

addresses in the Classless Interdomain Routing format. 

d. Save the policy and deploy the API. 

This deployed API then makes sure to filter access to the services based on the policy.  

Redundant Access- Persistence 

If one kind of illegal access tool has been detected, blocked and removed by an organization in response 

to a security breach attempt but the organization did not completely understand the attacker’s tools and 

access methods, then the attacker can retain access to the network services. This is known as Redundant 

Access. External Remote Services such as external VPN can be used to maintain access to some valid 

accounts despite interruptions. Another method used by the attackers to maintain access is using Web 

Shell. 

“A Web Shell is a web script that is placed on an openly accessible web server as a gateway to the 

network.” A Web shell provides a set of functions that can be executed or a command-line interface (CLI) 
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on the system that ideally hosts the Web server. In addition to a server-side script, a Web shell may also 

have an additional client interface program that is utilized to talk to the Web server directly. One real-life 

example of this would be the China Chopper.  

The China Chopper is said to be just 4kb in size with a very easily modifiable payload. It has two main 

components that are run by different adversaries- the China Chopper Client (run directly by the attacker) 

and the China Chopper Server (installed on the victim’s web server- more like a tracking chip, installed 

in plaintext). This server will be controlled by the attacker but indirectly through the victim’s web server. 

It can issue commands and manage everything on the victim’s server. In fact, it’s hash is publicly 

available: 

Web shell client (caidao.exe) == 5001ef50c7e869253a7c152a638eab8a (MD5 hash) 

One of the basic ways to prevent this intrusion would be to regulate timely patch and software updates. 

Mitigation 

Redundant Access can be prevented by a method known as Network Intrusion Prevention. This method 

uses network signatures to identify traffic for a specific type of malware. Each family of malware uses 

unique signatures within their protocols. The signatures are generally of two types: 

• Atomic Signatures- it is the simplest type of signature that is triggered on a single event. Thy do 

not ideally need the intrusion system to maintain state, and the inspection does not require the 

knowledge of past or future activities. For example, the LAND attack- a type of DDoS attack, by 

inspecting a single packet, the network/host-based intrusion system can identify the attack because 

no state information is needed. 

• Stateful Signatures- They, on the other hand, are triggered on a sequence of events that ideally 

require the Intrusion Prevention System (IPS) to maintain state. 

Revert Cloud Instance- Defense Evasion 

An attacker may regress the changes made to a cloud instance after they have successfully performed 

malicious/illegal activities in an attempt to bypass the detection and erase any evidence of their presence. 

In highly virtualized environments like the cloud-based infrastructure, this may be easily done using 
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restoration from a Virtual Machine or data storage screenshots through the cloud services management 

dashboard itself. Another use of this technique is to take advantage of temporary storage, which is attached 

to the compute instance. Most cloud providers provide various types of storage, including persistent, local, 

and/or ephemeral, with the latter types often reset upon stop/restart of the Virtual Machine. 

 

Mitigation 

The best way to prevent this attack would be to establish centralized logging of instance activity and 

subscribe to regular reports from the provider, which can be used to monitor and review system events 

even after reverting to a screenshot, rolling back changes, or changing persistence/type of storage. Monitor 

specifically for events related to screenshots, rollbacks, and Virtual Machine configuration changes, that 

are usually occurring out of the ordinary. To reduce the false positives, valid change management and 

incident management procedures could benefit by introducing a known identifier (tag) that is logged with 

the change (e.g., tag or header) if supported by the cloud provider, to help differentiate between valid, 

expected actions from malicious ones. 

 

Below is the example of one such monitoring and reviewing system with Amazon web Services- Amazon 

CloudTrail. You can view the consolidated list of events encountered in the selected time period, the 

source address, and the users. You can view it in the form of tables or trails. This feature also gives us 

insights on the usage. It also employs the use of tag and access keys to ensure effective change 

management. 
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                                                Figure 17 Snapshot of amazon CloudTrail events- AWS 

 

The screenshot below is the CSV file you can download from the cloudTrail in order to save your tracked 

event information offline. 

 

                                  Figure 18 CSV file of the CloudTrail logs from AWS 
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Basic Preventive Measures to Avoid Security Breaches in Cloud 

Well-defined organizational controls related to cloud purchases and use  

With an enterprise risk-management perspective in mind, companies should develop and implement 

cloud-specific procurement guidelines with required and preferable terms and conditions of the cloud 

provider as well as create the important necessary mechanisms to enable a well-engineered transformation 

to the cloud [2].  

Cloud vendor landscape evaluations 

Organizations must authorize the fundamental guidelines around regulatory and compliance requirements 

for the services offered by the cloud, which will thereby provide a baseline for several vendor evaluations. 

It’s extremely important to understand what to look for in terms and conditions and determine and agree 

upon what constitutes an acceptable level of risk based on business priorities and the organization’s 

resources. When evaluating cloud vendors, the organization must look into baseline compliance 

requirements such as data protection and incident response, user identity and access management, 

and data residency requirements, among others [2][1]. 

Update your Bring Your Own Device (BYOD) Policy 

Nowadays, It has become a norm and rather ‘cool’ to bring your own devices to work. In many cases, 

businesses(like small startups, small scale businesses) can benefit from this as they don’t have the 

responsibility to supply as many tech devices for employees. However, by permitting these ‘outside’ 

devices into the workplace, you are also unknowingly opening the door for data security breaches and 

loopholes through several new end-point devices. Updating the BYOD (bring your own device) policy 

will go a long way in ensuring that that all devices brought into the organization premises are following 

the same data security procedures as your in-house tech. It is clearly important to be aware of any work-

related information that might get shared on personal email accounts, as this can lead to leakage of 

sensitive information intentionally or unintentionally. 

 

Social Engineering Training 
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Social Engineering is defined as a practice of manipulating people in order to get them to give out 

information or take action. Even the most tech-savvy employees in the organization can easily fall for 

social engineering attacks if done smartly. 

Suppose A hacker has a set of email addresses then he can possibly send some luring messages like “Hello, 

Mr. XYZ, We are glad to inform you that you have won 1200$. Only one step far for claiming this reward. 

Register your email id with us and claim your reward”. This is a type of phishing method to retrieve 

details. This email will be made to look like it has been sent from a well-known organization or even from 

your own company. But in reality, it leads the user to a malicious link. Clicking on that link may land you 

in a page that may look like a legitimate Facebook page, and people might actually end up submitting the 

required details to that fake page. This is known as “Spoofing Attack.” If a person’s computer is not 

secured with a firewall, it becomes extremely easy for the attacker. This is exactly how social engineering 

works. 

 As users have gotten much smarter and more cautious about online scams, hackers have had to up their 

game. Sharing the details of professional lives should be significantly addressed in the workplace as its 

the primary way of collecting data by the hackers. 

Have a well thought through and executable emergency plan 

You may think that a data breach can never take place in your organization owing to the security 

regulations you currently have in place and that you may have the tightest data security services deployed, 

but the reality is if you do not have an emergency plan, you leave yourself vulnerable. It is extremely 

crucial to have a security plan in place. This is known as Cyber Risk Assessment (CRA) coined by the 

National Institute of  Standards and Technology (NIST). The main idea behind incorporating CRA is to 

support proper risk responses. Informed decisions need to be taken by the company in order to prevent or 

combat such situations. It is usually based on the following points:  

- Researching about the relevant and plausible threats to the organization. 

- The vulnerabilities of the organization- both internal and external. 

- The impact analysis of the vulnerabilities if ever exploited. 

- The probability of the vulnerabilities being exploited. 
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Another prime reason to incorporate the CRA is that it is mandatory if you want to get cyber 

insurance without which companies can be put out of business too. Sometimes, it is also 

compulsory under the organization’s compliance regulations. Usually, every company documents 

all the emergency response preparedness rules to be followed and circulates the guide to its 

employees. One such breach incident response guide by DLA PIPER lists some very basic 

preparedness guidelines that one can follow to understand [47]: 

▪ Assemble an Incident/Breach Response Team (consisting of a first responder). 

▪ Contact the council both inside and outside to establish an entirely privileged communication and 

reporting channel. 

▪ Co-ordinate with the legal counsel to bring in forensic examiners and cybersecurity 

experts(Forensic Experts) 

▪ Stop any kind of additional data loss. 

▪ Secure Evidence (tokens, key cards, building credentials, logs and surveillance tapes) 

▪ Preserve Computer logs (log files, including firewall, VPN, mail, network, client: web, server, and 

intrusion detection system logs). 

▪ Document the breach. 

▪ Contact the law enforcement. 

▪ Define legal obligations. 

▪ Conduct interviews of personnel involved. 

▪ Reissue or Force Security Access Changes. 

▪ Do Not Probe Computers and Affected Systems. 

▪ Do Not Image or Copy Data, or Connect Storage Devices/Media, to Affected Systems. 

▪ Do Not Run Antivirus Programs or Utilities. 

▪ Do Not Reconnect Affected Systems. 
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Listed above is just a consolidated list of basic guidelines to be followed in case of an emergency breach 

by that particulatr industry [47]. Most organizations circle around the same ideas customized according to 

the size of the company. 

 

To understand the current scenario and the future of cloud security, let us rummage into the literature 

review, wherein, we discuss some research papers slowly leading into the possible ways to increase the 

security in the protocol level: 

Literature Review 

1. Verifying Cloud Services- Present and the Future 

 

Introduction 

Since the underlying idea of the proposed method of this project deals with allocating more control over 

the sent packets to the sender, let us begin with a research paper that focuses primarily on identifying gaps 

in the existing cloud technology in terms of verification tools provided to the users. Very limited tools are 

currently available for clients to monitor and evaluate the provided cloud services. It is only equitable for 

the consumers who subscribe and pay for a service to expect it to be (among other features) available, 

secure, and reliable. 

In this paper, they had given us an example of Amazon Elastic Cloud that faced an outage in 2011 when 

it crashed due to creating too many new backups of its storage volumes. Many large customers of Amazon, 

such as Reddit and Quora, were down for more than one day (Profit/loss calculation can be found in the 

discussion section). 

Intuit experienced repeated similar outages in 2010 and 2011. No explanation had been provided to 

customers, who, for long, could not access their financial data. 

Problems of Authentication and authorization have also given sleepless nights to companies: in 2011, 

DropBox admitted that a bug in their authentication mechanisms had disabled password authentication; 

hence, for four hours, the accounts of Dropbox's 25 million users could be accessed with literally any 

random password. Similar authorization issues have affected other cloud service providers, including 

Google[1].  
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What do you suggest is the best approach to tackle this problem? I would suggest Identity and Access 

Management (IAM). This particular practice provides effective security, authentication, authorization, 

and provisioning of storage and verification. I came across this Flow diagram that depicts the taxonomy 

of cloud services security- You can also see the several authentication methods that are incorporated : 

 

                                   Figure 19 Taxonomy of Cloud Services Security [27] 

Users could benefit from knowing to what extent a cloud provider delivers the promised service. More 

concretely, the contract between the cloud and its users should be verifiable (to some extent), and the sheer 

ability to detect failures, without relying entirely on the cloud provider's report, can be useful to the users. 

For example, it may be important to promptly and find out that a service does not respect its functional 

specification; or that it generously shares personal data with the world, or that it is down, underperforms, 

or if its basic security controls seem to be failing. This information can be especially helpful for critical 
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applications such as medicine or banking and facilitate their process of adopting cloud technologies. In 

addition, verification tools to check these aspects can help consumers pick and choose a particular cloud 

provider. 

However, this paper delves into the idea that cloud users may benefit from understanding in breadth, rather 

than only in-depth, whether they could verify service provisions in the cloud. They discuss recent research 

advances and propose directions for future research to help and bridge those gaps. They consider two main 

types of cloud customers- service providers deploying their software for execution in the cloud (with 

Platform-as-a-Service or Infrastructure-as-a-Service), and cloud users, who use a software or storage 

service executing in the cloud, be it provided by a third party software provider or by the cloud provider[1]. 

Methods implemented- 

 

▪ Verification of strong service identities:  

This is done by creating a possible path towards enabling service providers to analyze the deployed 

services and check for compliance with their original service implementation. The idea is to bind 

a strong service identity to the service instances on the cloud such that this unique association is 

preserved throughout the entire service lifecycle, from deployment to decommissioning. The 

authors focus on a promising implementation of this idea based on Trusted Computing and trusted 

servers. Cloud nodes run special software stacks -trusted software systems that can host the service 

instances in special environments, isolated from both the administrator and other tenants. 

Cloud nodes are also equipped with commodity trusted computing hardware, which validates the 

integrity of the software stack upon boot and enables service providers to verify that the nodes are 

running a trusted software system. If this is the case, service identity is preserved. 

They have implemented this by the following algorithm: 

S=  the service software implementation produced by the service provider 

S0= an instance of the mentioned software service S that is hosted in the cloud. 

A Service Identity is said to be strong if and only if the invariant S = S0 holds constant for the 

entire lifecycle of S and in all the nodes where S is instantiated. 

The lifecycle of a service spans the period between its deployment until its decommissioning. 

Throughout this lifecycle's length of time, the service might be migrated or replicated across 

various nodes on the cloud.  
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In Infrastructure-as-a-Service (IaaS), the service is generally deployed as a Virtual Machine Image 

(VMI) and instantiated in virtual machines (VMs). 

In Platform-as-a-Service (PaaS), the service is shipped as an application package and instantiated 

into objects in application containers. A cloud platform utilizes and provides trusted containers to 

enforce a strong service identity. 

The state of a service instance hosted by a trusted container, usually in isolation from other tenants 

and from the cloud administrator. This protection is enforced throughout the lifecycle of the 

service. While replicating or migrating service instances to other nodes, the trusted container 

transmits any relevant data and service code to the sink over an encrypted channel after verifying 

that the verifies that the sink is also a trusted container. The cloud service provider also has the 

capability to verify that the target host offers trusted container protections before deploying the 

service. 

A trusted software system is crafted in such a way that neither the tenants nor the administrator 

has any access to the service instances' state, which offers a specific hosting abstraction. To prevent 

man-in-the-middle attacks, the TPM (Trusted Platform Module) signs the registers' content with 

the private part of a cryptographic key pair that never leaves the TPM in plaintext. The remote 

party can then verify the signature and the content of the TPM registers using a public key 

certificate given by the cloud provider: If the trusted software system boots on the cloud node, its 

respective hash will show up in the TPM's registers. 

 

▪ Verifying Functional properties on Cloud Services: 

The authors propose a new approach allowing the users to verify service integrity in a scalable 

fashion without relying on either a centralized certification authority or access to the actual 

implementation code. Their approach is based on the decomposition of the verification process 

into three separate phases namely: test suite generation, test suite execution, and validation of the 

results, wherein each phase can be performed at a separate location in order to maximize 

exhaustiveness and the performance of the verification process. Their current proposal for 

incorporating the test suite generation is entirely based on the black-box testing techniques that 

generate test suites examining all the described functionalities. 
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▪ Verifying performance and Dependability properties: 

The authors call for a new cloud model that integrates service levels and SLA (Service Level 

Agreement) effectively into the cloud. This proposed approach intents to guarantee and combine 

multiple cloud service level objectives in a flexible and consistent way. It allows us to engage in a 

better cloud QoS (Quality of Service) via a control-theoretic approach for controlling and modeling 

SLA-oriented cloud services. This paper also further discusses the ways to assess cloud service 

QoS guarantees and also help several system designers build and deploy SLA-oriented clouds that 

can be easily controlled. 

▪ Verifying Security policies: 

Cloud providers and consumers are often made to believe to consider encryption as the only 

security tool for sufficient protection while using the cloud services. Yet, encryption is not the 

solution for everything: resources and data are shared, schemes implemented to control the access 

to these resources at times fall short in the face of malicious insiders, applications are outsourced, 

or system misconfigurations take place. Moreover, when any of this happens, users are often 

expected to provide proof of the security violations they incurred. The authors, therefore, strongly 

believe that users may benefit from adding some tools that may allow them to 

 (1) Comprehend the security policy according to their needs. 

(2) Have access to ways to gain evidence in case violations happen. 

 And (3) given an option to choose a better provider in case such violations are too frequent. 

 

Discussion: 

This research paper ideally answers the following questions and thus aims to fill in the gaps in the 

operation of cloud technology: 

1. What may the delivery parameters of a cloud service be of interest to consumers? 

From the discussion in this research paper, I would conclude the primary delivery parameters to 

be availability, reliability, security, and functional correctness and preferably in this particular 

order. Why, you ask? Let us take the example mentioned in the introduction section about big 

businesses such as Reddit or Quora going down for more than a day- ). For the sake of discussion, 
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let us roughly calculate how much loss is incurred by a company when such a mishap takes place 

let's say, you have 4 hours of peak traffic per day, and the company generates about $800,000 of 

total profits per week (say, 4 peak hours *7 days of the week= 28 hours). By dividing the total 

profit of $800,000 by the number of peak hours/day, which says 4 hours in our case, you get 

approximately $114,285 per day during peak hours only. When a large-scale business is down for 

over a day, you can imagine the amount of loss they have to incur. This example clearly goes to 

shows how critical Availability and reliability is for a service. 

 

2. How can cloud providers guarantee a strong identity between the service implementation 

and the software running on the cloud nodes? 

I came across this diagram used in this research paper that depicts the verification framework for 

services in a cloud. 

 

                                  Figure 20 Proposed Verification framework for service Identities 

Here, the service implementation is provided by the SaaS (Software as a Service). It advertises the 

service specifications to the user who, in turn, selects the one closest to his/her requirements. The 

selected specification is analyzed by the Test suite Generator to generate the best suite, which in 

turn is then given to the testing harness to deploy the service on the execution platform (Cloud). 

The results are stored in the cloud storage facilities. In this way, the users seem to get more control 

of what service they use and how it is implemented. 
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3. How can clients assure that their data is still stored somewhere in the cloud and not lost by 

a provider trying to cut storage costs?  

A bigger business would mean more data to store. Downloading all the data from the services 

locally is not a pragmatic solution. In the 2009 ACM Workshop on Cloud Computing Security, 

Proofs of Retrievability (POR) was presented, which is defined as “A compact proof by a file 

system to a client that a target file, F is intact, and the client can fully recover it. Ideally, the client 

submits requests for the target data (In the form of encoded data blocks) and verifies server 

responses. 

 

4. How to provide better than heuristics-based and best-effort cloud QoS? 

The solution here would be to build cloud services that are controllable, i.e., we should be able to 

observe the behavior of the services online and monitor QoS. The Observed results can be analyzed 

using benchmarking tools based on realistic workloads, data loads, fault loads, and attack loads. 

Furthermore, their impact on the actual performance, dependability, and security of the service can 

be measured. 

 

The underlying idea is to provide more power to the users to understand and operate through their 

data. The design proposal which we will be studying is on the grounds of providing more power 

to the sender but on the protocol level rather than on a generic level such as this. 
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2. The QUIC Transport Protocol: Design and Internet-Scale Deployment: 

Introduction:  

In this section. We will be discussing about the protocol in consideration here- QUIC ( QUIC UDP 

Internet Connections). This figure below depicts QUIC in the HTTPS stack. 

 

 

                                             Figure 21 QUIC protocol [3] 

 

Let’s begin with, what is QUIC protocol? 

According to Cloudfare, ‘QUIC (Quick UDP Internet Connections) is a new encrypted-by-default 

Internet transport protocol, that provides a number of improvements designed to accelerate HTTP 

traffic as well as make it more secure, with the intended goal of eventually replacing TCP and TLS on 

the web.’ 

 

Major advantages of QUIC: 

 

1. Built-in performance and security 

One of QUIC’s profound deviations from the currently standardized TCP, is the dire need and 

importance of designing a transport protocol which is secure by default. How does QUIC stand 

true to this revelation? It does so by providing security features, like encryption and 

authentication, that are incorporated by a higher layer security protocol (like TLS-Transport 
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Layer Security). During the connection establishment phase, the initial QUIC handshake combines 

the usual three-way handshake followed by the TCP, along with the TLS 1.3 handshake, that 

incorporates the negotiation of cryptographic parameters as well as the authentication of the 

endpoints. QUIC basically replaces the TLS record layer (in the header format) with its own 

framing format, whilst keeping the TLS handshake messages exactly the same. We will delve into 

the details of the QUIC architecture in the sessions to come.  

Although the generic nature and the standardized security features of TCP and TLS continue to 

aid in the progression of the internet technology evolution, the costs associated with the layering 

have been quite visible with the ever-increasing latency dependence on the HTTPS stack. TCP 

connections are generally said to incur at least one RTT delay of connection establishment time 

before any application data can be forwarded. Furthermore, TLS adds two more round trips to this 

delay. Most of the connections on the Internet today, and certainly most of the transactions on the 

world wide web being short transfers, are most impacted by unnecessary handshake round trips. 

So how does QUIC overcome the above-mentioned challenge? The typical QUIC handshake 

only takes a single RTT between the client and server to complete the connection 

establishment phase as opposed to two round-trips required for the TCP and TLS 1.3 

handshakes combined. Given below are two figures to compare the connection establishment 

between TCP and QUIC [3]. 
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                             Figure 22 HTTP request over TCP+TLS (source: Quora) 

 

                         Figure 23 HTTP request over QUIC Protocol (source: Quora) 

 

          Head of line Blocking                        

QUIC goes a bit deeper implements multiplexing in such a way that different HTTP streams can 

be mapped to various QUIC transport streams whilst sharing the same QUIC connection. Hence, 

no additional handshakes are needed, and the congestion state is shared. QUIC streams are usually 

delivered independently, i.e., the loss of packets in one stream doesn't affect other streams. This 

can dramatically cut down the time required to, for instance, render complete web pages (with 

JavaScript, CSS, images, etc.), especially when crossing through highly congested networks with 

high packet loss rates. 

In order to reduce overhead costs of using multiple TCP connections and latency, HTTP/1.1 

suggests that we limit the number of connections initiated by a client to any server [3]. 

Furthermore, in order to reduce transaction latency, HTTP/2 multiplexes objects, and recommends 

that we use a single TCP connection to any server. TCP’s byte stream abstraction, however, 



 

56  

prevents applications from controlling the framing of their communications and enforces what is 

called as a "latency tax" on application frames that depend upon retransmissions of previously lost 

TCP segments for their delivery. In general, the incorporation of transport modifications for the 

web requires the transport stack in server and/or client OSes,  changes to web servers and clients, 

and often to some intervening middleboxes. Deploying changes to all three components requires 

incentivizing and coordinating between OS vendors, application developers, the network 

operators, and the middlebox vendors. QUIC builds transport functions atop UDP and 

encrypts transport headers, thereby avoiding any sort of dependence on network operators 

and vendors. 

 

2. Security 

As we know, QUIC is an encrypted transport protocol: packets are encrypted and authenticated; 

therefore, limiting ossification and preventing any kind of modification of the protocol by 

middleboxes. QUIC uses known server credentials on repeat connections and removes any 

redundant handshake-overhead at the network stack to reduce the handshake latency incurred for 

most connections. Additionally, it also makes use of a cryptographic handshake. By using 

lightweight data-structuring abstraction streams, QUIC eliminates head-of-line blocking delays. 

In order to restrict the blocking of streams to only the data in the packet that faces any kind of 

packet loss,  the abstraction streams are multiplexed within a single connection [3]. 

Applications of QUIC today: 

On the server-side, QUIC is deployed at Google’s front-end servers, which simultaneously handle 

a huge network traffic- billions of requests a day from various web browsers and mobile 

applications spanning across a wide range of services. On the client-side, QUIC is deployed in 

Google Chrome, in the very popular mobile video streaming YouTube application, and in the 

Google Search app on Android. QUIC’s latency advantages have been studied, and the conclusions 

drawn give us the following statistics- QUIC is known to reduce the Google Search latency 

responses by 8.0% for desktop users and by 3.6% for mobile users. Furthermore, it reduces the 

YouTube rebuffer rates by 18.0% for desktop users and 15.3% for mobile users. It currently 

accounts for over 30% of Google’s total egress traffic in bytes and, consequently, an estimated 7% 
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of global Internet traffic[3][1]. The latest technology to implement this protocol is THE CLOUD- 

Quic.cloud (We will discuss more about it in the coming sections). 

 

Design and Implementation: 

 

The main goals of this protocol- Deployability, Security, Reduction in handshake, and head of line 

blocking delays. Let us take a peek into the basic steps involved in the working of the QUIC 

protocol[3]: 

1. Connection Establishment Phase: 

QUIC relies on a combined transport and cryptographic handshake for regulating a secure 

transport connection. For a successful handshake, a client usually caches information about the 

origin. On subsequent connections being made to the same origin, the client can thereby enforce 

an encrypted connection with no additional RTTs, and the application data can be sent 

immediately following the client handshake packet without waiting for a reply from the server. 

QUIC provides a reliable and dedicated stream ( the streams are described in Figure 24) for 

performing the cryptographic handshake. 

 

 Figure 24 Timeline of QUIC’s initial 1-RTT handshake, a subsequent successful 0-RTT 

handshake, and a failed 0-RTT handshake. 
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Initial handshake: In the beginning, the client has no absolutely no information about the 

server, and hence, before a handshake is initiated, the client sends across an inchoate client 

hello (CHLO) message to the server in order to evoke a reject (REJ) message. The REJ 

message from the server contains: 

(i) a server configuration that includes the server’s Diffie-Hellman public value, 

(ii) a certificate chain to authenticate the server, 

(iii) Using the private key from the leaf certificate of the chain, a signature of the server config 

is obtained 

 and (v) a source-address token: an authenticated-encryption block that consists of the client’s 

public IP address and the server’s timestamp. In the later handshakes, the client then sends this 

token back to the server, thereby demonstrating ownership of its IP address. Upon receiving 

the server configuration, the client authenticates the configuration by verifying the whole chain 

and sends a complete CHLO that contains the client’s transitory Diffie-Hellman public 

value[3]. 

The Final (and repeat) handshake phase: All keys for a connection are calculated using the 

Diffie-Hellman process. On sending across a complete CHLO, the client is now in possession 

of the initial keys needed for the connection since with that in hand; it can effectively determine 

the shared value from its own ephemeral Diffie-Hellman private key and the server’s long-

term Diffie- Hellman public value, Right after this, the client can start sending application data 

to the server. The client can send the data by encrypting it with its initial keys ahead of waiting 

for the reply from the server if it wishes to achieve 0-RTT latency for data. Upon a successful 

handshake, the server returns a Server Hello (SHLO) message. This message contains the 

server’s transitory Diffie-Hellman public value and is encrypted using the initial keys. With 

the peer’s transitory public value in hand, both sides can now determine the forward-secure 

keys or final keys or for the connection. After sending the SHLO message, the server 

immediately starts sending packets by encrypting it with the forward-secure keys.  
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Therefore, there are two levels of secrecy provided by QUIC’s cryptography: the initial client 

data is encrypted using initial keys, and the subsequent server data and client data use the 

forward-secure keys for encryption. Hence, from the process, we understand how both, the 

initial keys and the forward-secure keys aid in providing greater protection. In case of a repeat 

connection to the same origin, the client uses the cached server config and source-address token 

to start the connection with a complete CHLO. The client, without having the need to wait for 

the server’s response, can now send data encrypted with the initial keys to the server. What 

happens if eventually the server config or the source address token expires, or the server ends 

up changing the certificates resulting in a handshake failure? Well, in such cases, the server 

simply replies with a REJ message, like it replies when it receives; it’s first inchoate CHLO 

from the client, and the handshaking process proceeds from there. 

Version Negotiation: The process of Version Negotiation is performed by the QUIC clients 

and servers during the connection establishment phase to avoid unnecessary delays. However, 

the version negotiation packets are not protected like the other QUIC packets. The whole 

process is pretty simple: 

- The QUIC Client sends the very first packet of the connection housing the ‘version’ 

that it proposes to use. In fact, it encodes the rest of the handshake using the same 

proposed version. 

- Now, what if the client and server do not speak the same version? In that case, the 

server sends back a version negotiation packet to the client enlisting all the supported 

versions, thereby causing one RTT delay before connection establishment. This latency 

can be eliminated if both the client and the server speak the same version, thus saving 

time that would be required by the client to deploy the newer versions. 

- In order to prevent downgrade attacks, the list of versions supported by the server and 

the initial version requested by the client are both fed into the key-derivation function 

(KDF) at both the client and the server while the final keys are generated [3]. 

 

2. Stream Multiplexing: 

QUIC streams are a lightweight abstraction that provides a reliable bidirectional byte stream. 

Streams can be used for framing application messages of arbitrary size. A size of up to 264 
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bytes, which are extremely lightweight, can be easily transferred on a single stream. Due to its 

lightweight property, a new stream can reasonably be used for each one when sending a series 

of small messages, Streams are identified by stream IDs. The allotment arrangement is very 

simple- even IDs for server-initiated streams and odd IDs for client-initiated streams in order 

to avoid collisions. Stream creation usually constant while sending the first bytes on an unused 

stream. The stream closing is indicated to the peer on the other end by setting a "FIN" bit on 

the last stream frame. If the data on a stream is determined by either the sender or the receiver 

that it is no longer required, then the stream can be revoked/eliminated without having to tear 

down the entire QUIC connection. Although, streams are said to be reliable abstractions, QUIC 

does not retransmit data for a stream that has been revoked[3]. 

 

Figure 25 Structure of a QUIC packet, as of version 35 of Google’s QUIC implementation. 

Red is the authenticated but unencrypted public header; green indicates the encrypted body. 

A QUIC packet is composed of a common header followed by one or more frames, as shown 

in Figure 9. QUIC stream multiplexing is enforced by encapsulating the stream data in one or 

more stream frames. A single QUIC packet can also carry stream frames from multiple streams. 
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3. Authentication and Encryption phase 

QUIC packets are mostly encrypted and fully authenticated, barring a few reset packets and 

few early handshake packets. The structure of a QUIC packet is illustrated in figure 25. The 

parts of the QUIC packet header outside the cover of encryption are required either for routing 

or for decrypting the packet: Flags, Connection ID, Version Number, Diversification Nonce, 

and Packet Number. Flags encode the presence of the Packet Number field length and the 

connection ID field. The Connection ID serves routing and identification purposes; it is used 

by load balancers to direct the connection’s traffic to the right server and by the server to locate 

the connection state. The diversification nonce is generated by the server and sent to the client 

in the SHLO packet in order to add entropy into key generation. The diversification nonce 

fields and the version number and are only present in early packets [3]. 

 

4. Loss Recovery in QUIC 

How does QUIC deal with loss recovery better than the TCP? To begin with, let us define the 

“retransmission ambiguity” problem in TCP. TCP sequence numbers represent the order in 

which bytes are to be delivered at the receiver, thereby ensuring reliability. But the 

retransmitted TCP segment carries the same sequence numbers as the original packet, which 

causes the ambiguity problem. The receiver of a TCP ACK cannot really determine whether 

the ACK was sent for a retransmission of the original transmission. In addition, the loss of a 

retransmitted segment is usually detected via an expensive timeout. How does QUIC overcome 

the ambiguity problem? Every QUIC packet carries a new and unique packet number, 

including the packets carrying the retransmitted data. This arrangement does away with the 

need for a separate mechanism to distinguish the ACK of an original transmission from that of 

a retransmission, thus overcoming the TCP’s retransmission ambiguity problem. QUIC 

employs the packet number to represent an explicit time-ordering, which enables much more 

accurate and simpler detection of lost packets as compared to the way it is dealt with in TCP. 

The delay between receiving the packet and its corresponding acknowledgment being sent is 

explicitly encoded by the QUIC Ack. Together with monotonically increasing packet numbers, 

this allows for precise network round-trip time (RTT) estimation, which aids in loss detection. 

Accurate RTT estimation can also help the delay-sensing congestion controllers such as BBR 

and PCC with the required information. QUIC’s acknowledgments support up to 256 ACK 
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blocks, making QUIC more resilient to reordering and loss than TCP with SACK. Furthermore, 

QUIC can keep several more bytes on the wire than the TCP in the presence of reordering or 

loss[3]. 

 

5. Flow Control in QUIC 

Flow control generally limits the buffer size that the receiver must maintain when an 

application reads data slowly from QUIC’s receive buffers. Consume The entire connection’s 

receive buffer can be consumed by a slowly draining system, thereby blocking the sender from 

sending data on to other streams. QUIC mitigates the potential of head-of-line blocking by 

setting a buffer limit on what a single stream can consume. QUIC thereby employs two types 

of flow-control, namely, a stream-level flow control- to set a buffer limit for the sender to 

consume on any given stream and a connection-level flow control- to set the aggregate buffer 

limit that a sender can consume at the receiver across all streams. Similar to HTTP/2, QUIC 

employs credit-based flow control. This means the absolute byte offset is advertised within 

each stream up to which the receiver is ready to receive the data. In order to increase the 

advertised offset limit for a particular stream, the receiver periodically sends window update 

frames. This allows the peer to send more data on the same stream [3]. 

 

6. Congestion Control 

The QUIC protocol does not rely on a specific congestion control algorithm, and the suggested 

implementation has a pluggable interface to allow experimentation. In the subsequent 

deployment, TCP and QUIC both use Cubic as the congestion controller, with one difference 

worth noting. For video playback on both desktop and mobile devices, the non-QUIC clients 

use two TCP connections to the video server to video and audio data. The connections are not 

designated as audio or video connections; each chunk of audio and video arbitrarily uses one 

of the two connections. Since the audio and video streams are sent over two streams in a single 

QUIC connection, QUIC uses a variant of mulTCP for Cubic during the congestion avoidance 

phase to attain parity in flow-fairness with the use of TCP[3]. 

 

7. NAT Rebinding and Connection Migration in QUIC 
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QUIC connections are usually identified by a 64-bit Connection ID. The function of this 

Connection ID is that it helps the connections to survive any changes to the client’s IP and port 

(For example, migration). Such changes can easily be due to NAT timeout and rebinding 

(which is said to be much more aggressive for UDP as compared to TCP) or by the client 

simply changing his/her network connectivity to a new IP address (Migration). The major 

advantage of using the connection ID to identify connections is to suppress the problem of 

NAT rebinding. However, client-initiated connection migration has a limited deployment scale 

as of today [3]. 

8. QUIC over HTTPS 

A client does not know a priori whether a given server speaks QUIC. When our client makes 

an HTTP request to an origin for the first time, it sends the request over TLS/TCP. Our servers 

advertise QUIC support by including an "Alt-Svc" header in their HTTP responses. This header 

tells a client that connections to the origin may be attempted using QUIC. The client can now 

attempt to use QUIC in subsequent requests to the same origin. On a subsequent HTTP request 

to the same origin, the client races a QUIC and a TLS/TCP connection, but prefers the QUIC 

connection by delaying connecting via TLS/TCP by up to 300 ms. Whichever protocol 

successfully establishes a connection first ends up getting used for that request. If QUIC is 

blocked on the path, or if the QUIC handshake packet is larger than the path’s MTU, then the 

QUIC handshake fails, and the client uses the fallback TLS/TCP connection. 

 

Comparison of Handshake Latency for QUIC and TCP: 
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                                         Figure 26 Comparison of handshake latency[3] 

The time taken to establish a secure transport connection is called the handshake latency. In 

TLS/TCP, this includes the time taken for both the TCP and TLS handshakes to be completed. 

In this paper, they measured handshake latency at the server as the time from receiving the first 

TCP SYN or QUIC client hello packet to the point at which the handshake is considered 

complete. In the case of a QUIC 0-RTT handshake, latency is measured as 0 ms. Figure 10 

shows the impact of QUIC’s 0-RTT and 1-RTT handshakes on handshake latency. With 

increasing RTT, average handshake latency for TCP/TLS trends upwards linearly, while QUIC 

stays almost flat. QUIC’s handshake latency is largely insensitive to RTT due to the fixed 

(zero) latency cost of 0-RTT handshakes, which constitute about 88% of all QUIC handshakes. 

The slight increase in QUIC handshake latency with RTT is due to the remaining connections 

that do not successfully connect in 0-RTT. Note that even these remaining connections 

complete their handshake in less time than the 2- or 3-RTT TLS/TCP handshakes. 

Comparison of TCP and QUIC in terms of- Mean Search Latency, Mean Video Latency, and 

Mean Rebuffer rate : 
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                                 Figure 27 Comparison between TCP and QUIC[3] 

The Y-axis is normalized against the maximum value in each dataset. 

 

Server CPU Utilization 

 

The QUIC implementation was initially written with a focus on rapid feature development and 

ease of debugging, not CPU efficiency. When the authors in this paper started measuring the 

cost of serving YouTube traffic over QUIC, they found that QUIC’s server CPU-utilization 
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was about 3.5 times higher than TLS/TCP. The three major sources of QUIC’s CPU cost were: 

cryptography, sending and receiving of UDP packets, and maintaining internal QUIC state. To 

reduce cryptographic costs, they employed a hand-optimized version of the ChaCha20 cipher 

favored by mobile clients. To reduce packet receive costs, they used asynchronous packet 

reception from the kernel via a memory-mapped application ring buffer (Linux’s 

PACKET_RX_RING). Finally, to reduce the cost of maintaining state, we rewrote critical 

paths and data-structures to be more cache-efficient. With these optimizations, they decreased 

the CPU cost of serving web traffic over QUIC to approximately twice that of TLS/TCP, which 

has allowed us to increase the levels of QUIC traffic we serve.  While QUIC will remain more 

costly than TLS/TCP, further reductions are possible. Specifically, a general kernel bypass 

seems like a promising match for a user-space transport [3]. 

 

Experiment Conducted: 

The authors performed a simple experiment to choose an appropriate maximum packet size for 

QUIC. They performed a wide-scale reachability experiment using Chrome’s experimentation 

framework. They tested a range of possible UDP payload sizes, from 1200 bytes up to 1500 

bytes, in 5-byte increments. For each packet size, approximately 25,000 instances of Chrome 

would attempt to send UDP packets of that size to an echo server on our network and wait for 

a response. If at least one response was received, this trial counted as a reachability success, 

otherwise it was considered to be a failure. Figure 13 shows the percentage of clients unable to 

reach the servers with packets of each tested size. The rapid increase in unreachability after As 

a result of the total packet size— QUIC payload combined with UDP and IP headers(1450 bytes 

), there is a rapid increase in unreachability, thereby exceeding the 1500-byte Ethernet MTU. 

Based on this data, 1350 bytes has been chosen as the default payload size for QUIC. 
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                                                      Figure 28 Unreachability of packet payloads 

 

Some Take away points: 

 

▪ The QUIC protocol combines its cryptographic and transport handshakes to minimize setup 

RTTs.  

▪ It multiplexes multiple requests/responses over a single connection by providing each with its 

own stream, so that no response can be blocked by another.  

▪ It encrypts and authenticates packets to avoid tampering by middleboxes and to limit the 

ossification of the protocol.  

▪ It improves loss recovery by using unique packet numbers to avoid retransmission ambiguity 

and by using explicit signaling in ACKs for accurate RTT measurements. 

▪ It allows connections to migrate across IP address changes by using a Connection ID to 

identify connections instead of the IP/port 5-tuple.  

▪ It provides flow control to limit the amount of data buffered at a slow receiver and ensures 

that a single stream does not consume all the receiver’s buffer by using per-stream flow control 

limits.  
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▪ This implementation provides a modular congestion control interface for experimenting with 

various controllers. Clients and servers negotiate the use of the protocol without additional 

latency. 

 

 

3. How Secure and quick is QUIC? Provable Security and Performance 

Analyses. 

 

Introduction: 

This research paper introduces a security model for analyzing performance-driven protocols such 

as QUIC and studies and analyze the results to ideally understand where we can possibly improve. 

One of the most upcoming protocols is QUIC, a secure transport protocol developed by Google 

and implemented in Google Chrome in 2013. QUIC amalgamates ideas from TCP, TLS, and 

DTLS- implements congestion control comparable with TCP, provides security functionality 

comparable to TLS,  as well as focuses on minimal RTT costs during the connection setup and in 

response to packet loss scenarios. 

QUIC does not rely on TCP  to eliminate redundant communication, and it uses a set of initial keys 

to establish a faster connection. QUIC has been seen as being conceptualized for mobile 

applications and web content delivery. It may eventually be deployed outside of Google servers. 

Therefore, it is highly critical to provide an accurately provable security analysis and to understand 

the performance guarantees when faced with an attack before it becomes more widely used. 

This paper considers an attacker who is assumed to know all the servers' public keys, can, drop, 

intercept, disorder, or modify the contents of the packets that are exchanged and can initiate and 

observe the communications between honest parties. DoS attacks such as IP spoofing is also 

considered as a possibility. The attacker can adeptly corrupt servers, learn parties' initial and final 

session keys, and also learn their persisting secret states and keys. The attacker is also assumed to 

have a partial knowledge of the data that the parties exchange. The attackers know that the sender 

authentication can be achieved in a single-way, since only the servers hold public keys. The 
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security model discussed formally captures the different levels of security guaranteed for data 

encrypted under the initial and final session keys.  

The attacker can actually make honest parties to agree on distinct initial keys (something that is 

not possible with only TLS). However, the data exchanged under either of the keys is protected. 

As per the session keys in TLS: which implies that if one party sets the key, the other party also 

sets the same key since the key is supposedly ‘good enough’ to securely exchange data. QUIC’s 

final session keys are no different.  

Finally, the concept of forward secrecy is also considered. QUIC provides certain forward secrecy 

guarantees (unlike TLS-RSA, which is currently the most commonly deployed mode of TLS). This 

means that when the attacker corrupts a server during one time period, it does not break/breach the 

security of the data sent in the previous time periods. They are independent of each other. There 

is, however, one loophole in this arrangement. Since the initial keys that are used for the initial 

data exchange are derived using parameters that tend to change only once per time period, QUIC 

cannot effectively ensure forward secrecy guarantees against attacks that may breach the server 

after (although in the same period that the data was sent). 

The authors then analyze the security of the cryptographic core of QUIC. They try to prove that 

QUIC satisfies the following security models to enhance security and reliability: 

- The security model with an assumed unforgeability of the underlying signature scheme. 

- The security of the underlying symmetric authenticated encryption scheme with associated 

data (AEAD). 

- The random oracle model with a strong Diffie-Hellman assumption. 

             Finally, the authors delve into QUIC's latency goals in the presence of attackers[4]. 
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Attacks under consideration: 

         

Table- The attacks listed are implemented in python using scapy library[4] 

Here is a brief discussion about the Replay and Manipulation Attacks[4]: 

Replay Attacks: 

Once a client creates a session with a particular server, an attacker could learn the source-address 

token value stk that corresponds to that particular client during their respective validity periods 

and the public values of that server's safe (used to configure the socket). The attackers could then 

play a double-sided attack: replay the source-address token stk to the server and the server's safe 

to the client thereby, misleading the other entity. However, in order to be able to launch both the 

attacks, the attacker will need to have access to the main communication channel. 

 

Server Config Replay Attack 

In the attempt to snoof, an attacker can replicate a server's public scfg to all the clients sending an 

initial connection request to that server whilst keeping the server in the dark about the existence of 
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such requests from those clients. Hence, these clients end up establishing an initial key with what 

they think of as the ‘server’ but without the server's knowledge. Now when they try to 

communicate with the server, the server will not be familiar with any of them and would thus, 

reject all their packets. Although, the data confidentiality is not entirely affected, the clients would 

waste computational resources deriving an initial key experience unnecessary and additional 

latencies. 

 

Source-Address Token Replay Attack in QUIC 

An attacker can pretend to a client and produce the source-address token stk of that particular client 

to the server that issued that token several times to establish any number of additional connections. 

This action would cause the server to believe that it is the concerned client, and it ends up 

establishing the final forward-secure keys and the initial keys for each connection all along without 

the knowledge of the client in reality. This can amplify and completely exhaust the server’s 

computational and memory resources since any further steps in the handshake will most certainly 

fail. Furthermore, an attacker can generate a DoS attack on the server by creating several other 

connections replicating many different clients. 

The irony here is that, the very parameters that aimed to minimize latency end up as the source for 

such attacks. These attacks are really subtle as compared to deliberately dropping QUIC handshake 

packets. These attacks mislead at least one party into believing that everything is going perfectly 

fine whilst causing a complete waste of time and resources deriving the initial keys. What can be 

done to resolve this? One obvious solution would be to reduce scfg and stk parameters to a one-

time use, since if these parameters remain active for more than a single connection, they could be 

utilized by the attacker to generate multiple fake connections while seeming completely valid. The 

downside, however, would be, it will prohibit QUIC from achieving the 0-RTT connection 

establishment that stands out as one of its key features. 

 

Packet Manipulation Attacks in QUIC 

The QUIC packet fields are all not adequately protected against adversarial manipulation. If an 

attacker gains access to the communication channel that is used by two parties to establish a 

session, he can also gain access to some of the unprotected parameters such as cid (connection id) 

and the source address token stk. This could eventually lead the client and the server to derive 
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different initial keys, which would result in a failed connection establishment. For a successful 

attack, the adversary has to make sure that all parameters modified in this way seem consistent 

across all sent and received packets with respect to any single party but inconsistent from the 

perspective of both parties participating in the handshake. 

This type of attack does not raise concerns over the confidentiality and authenticity of 

communication that is encrypted and authenticated under the initial key, because even though the 

initial keys are different, they are not known by the adversary. Note also that if parties do not agree 

on an initial key, they cannot establish a session key in QUIC because the final server hello packet 

is encrypted and authenticated under the initial key. Therefore, these attacks also do not 

compromise the confidentiality and authenticity of communication encrypted and authenticated 

under the final key. 

These packet manipulation attacks are smarter than just dropping QUIC handshake packets 

because the client and server progress through the handshake while having a mismatched 

conversation, resulting in the establishment of inconsistent keys. This causes both parties to waste 

time and resources deriving keys and another connection state. In particular, the server performs 

all the processing required for a successful connection, unlike in attacks that simply drop QUIC 

handshake packets. 

A simple strategy for mitigating this type of attack would be to have the server sign all such 

modifiable fields in its s reject and s hello packets (CID is unencrypted). However, this would 

incur the cost of computing a digital signature over all such modifiable parameters, which would, 

in turn, open another opportunity for a DoS attack in which the adversary, with IP spoofing, could 

send many initial connection requests on behalf of as many clients as it desires. 

 

 

 

 

 

 

 

 

 



 

73  

4. This final paper we discuss is by far the closest to the design proposal in the report. It is called - 

“Multi-Hop Packet Tracking for Experimental Facilities.” 

 

Introduction: 

The Internet has become a complex system with increasing numbers of end-systems, 

applications, protocols, and types of networks. Although there is a good understanding of how 

data is transferred over the network, we cannot observe what happens with the data after 

sending and before receiving it - how packets traverse through the network and with which 

QoS characteristics remain unknown. Towards this objective, in this research paper, the 

authors have developed a multi-hop packet tracking system intended to be used in experimental 

facilities to begin with, such as PlanetLab, where they have made their very first tests. This 

paper describes the packet tracking realization and the results from the prototype 

implementation. 

This multi-hop packet tracking method passively monitors the paths that packets take 

throughout the network and also records detailed hop-by-hop metrics like delay and loss. These 

measurements can be used, for example, for traffic engineering, for the validation of routing 

algorithms or traffic distribution protocols (multi-cast). Furthermore, packet tracking enables 

measurements of environmental conditions like cross-traffic and its influence 

on the user or experimenter traffic. Tracking single packets through the network supports trace-

back systems by deriving the source of malicious traffic and revealing the location of the 

adversary. Resource limitations usually prevent us from tracking all packets in a network. 

Therefore, this system uses a hash-based packet selection technique that ensures a consistent 

selection throughout the network while maintaining statistically desired features of the sample 

[6]. 
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Architecture: 

   

                          

 

 

 

        

 

 

 

 

 

                                                    Figure 29 Multi-hop packet analysis architecture 

 

Tracking architecture consists of: 

1) Multiple passive measurement probes deployed in the network. 

2) A packet matcher with an IPFIX collector that correlates the probe's measurements. 

3) A measurement controller to co-ordinate set up and control of measurement parameters. 

4) A visualization tool to facilitate analysis of processed data.  

They use the IPFIX protocol to transfer packet tracking data from the probes to the matcher. IP-

FIX was primarily developed to export flow information, but also allows the reporting of per-

packet information. It uses a template-based approach that assists in the definition of new 

information elements and also defines a standardized file format for storing measurement data 

(RFC5644). The probes export to the collector, at least a packet ID, and either the TTL or an arrival 

timestamp for each observed packet. Based on the packet ID, the packet matcher can correlate the 
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observations and determine the packet's direction by the TTL or timestamp. The exported 

timestamps can also be used for calculating the one-way delay between the observation points, 

which further requires that the measurement nodes' clocks are synchronized. While designing the 

packet tracking architecture, they have concentrated on: 

1. Efficient export of measurement results. They use the IPFIX protocol and standardized 

Information Elements. 

2. Choice of suitable packet ID generation functions. They evaluated different functions for 

observation correlation and decided to use the BOB hash function. 

3. Reduction of measurement traffic. They use hash-based packet selection, a deterministic filter 

based on a hash over the packet content that synchronizes the selection of packets at different 

observation points. The evaluations show that hash-based packet selection can emulate random 

sampling when using the BOB hash function. 

4. Synchronization of the sampling fractions in the network. In the case of bandwidth depletion in 

the network, the sampling fraction of packets should be adjusted in order to reduce the 

measurement traffic. To support this process,  node information like bandwidth, CPU, and RAM 

usage are exported via IPFIX. 

5. Visualization of measurement results. They use a Java visualization, which makes use of 

OpenStreetMap in order to visualize packet paths, their hop-to-hop characteristics, and information 

about the nodes[6]. 

 Methodology: 

In order to make use of the packet tracking architecture, they create a routing overlay so that the hosts 

also work as intermediate routers, and the authors can track packets over multiple hops. They visualize 

the packet path in a Java application using OpenStreetMap and a Java animation framework. An 

aggregate number of packets taking the same path will be visualized as a moving light dot. For the 

packets' paths, they used cubic splines in order to differentiate between packets that travel the same links 

but have different ingress and egress nodes. They use different layers to visualize node properties (CPU, 

RAM, sampling fraction) and link characteristics (delay). Popups over the nodes and links show a 

graphical representation of the data in a time window.  
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                                                  Figure 30 Snapshot of the Demonstrator 

1. impd4e - a small open-source measurement probe intended for embedded systems 

2. OpenMP - an open-source measurement platform including probes and measurement controllers 

3. libIPFIX - an open-source C-library for exporting measurement results via the IPFIX standard 

4. Packet Tracking Visualization - a Java visualization tool based on OpenStreetMap and several other 

open-source projects[6]. 

 

Discussion: 

 

This is a very experimental research paper that aims to provide a holistic view of the network into 

consideration. A holistic view will aid in tracking packets throughout the network. This approach uses a 

GPS-like tracking method, thus aiding in creating a map (See Figure ). One of the main disadvantages I 
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observe with this idea would be the restriction is the selection of packets. A hash-based selection algorithm 

is used in order to selectively track the packets, whereas it is important to have the tracking ability for all 

the packets in the network in order to increase security, accuracy, and latency. In the further sections, we 

shall discuss an extension of one such system that enables us to track all the packets, thereby erasing the 

need for acknowledgments. 
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QUIC Application in Cloud: 

QUIC.cloud 

What is it, and why is it faster? 

According to their website, QUIC.cloud, by LiteSpeed Technologies, is the very first Content Delivery 

Network (CDN) (which is LSCache enabled) with the underlying ability to cache dynamic WordPress 

pages. It is currently in the beta version and is available worldwide free of charge (up to a limit- 20GB). 

Using QUIC as the transport protocol, QUIC.cloud aims to make websites much faster and more secure 

than the ones in existence today. 

They strive to reduce transmission time to all users irrespective of their location. The website is 

potentially located across the globe from its users but with QUIC. Cloud, the content is completely 

cached on servers all around the world. When a visitor requests content directly from the website, a 

copy is served from the server location in the visitor’s vicinity. By transmitting both the static and 

dynamic content traffic from the closest server, instead of requesting it all the way from the main server, 

QUIC.cloud dramatically speeds up the site. This is one of the best options for users with a slow network 

connection, packet loss, and high latency. 

All web servers, including Apache, Nginx, openLiteSpeed, etc., are compatible with QUIC. 

Cloud.QUIC. Cloud acts as a CDN only and does not take the place of any web server[13]. 

In order to deploy this service to our systems, there are only two requirements: 

1. QUIC requires HTTPS Connection to work, and most of the users generally have SSL installed 

automatically on their site by the system. Even if your website does not provide a private SSL/TLS 

certificate, it will be served using the standard HTTP protocol. 

2. Either of the two browsers- Google Chrome or Opera since these are the only two browsers that 

support QUIC as of today. 

 

Anti-DDoS features: 

If you enable the RECAPTCHA protection inside of the QUIC. Cloud panel for the domain, they will 

detect if there is a high influx of connections going to your domain. If so, a verification is carried out 

using RECAPTCHA, which ideally helps protect against Layer 7 attacks. They also have many security-

related features working behind the scenes to protect against DDoS attacks, such as blocking down bad 
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IPs and preventing WordPress brute force attacks [13]. 

 

With more such QUIC based applications being used in the Cloud, the need to tighten the security and 

fill in the gaps becomes top priority. Let us discuss about one such design proposal in the next session. 

   Here are a few screenshots of the working of QUIC.cloud: 

1. Generating the API key: 

 

2. To make sure, our connections are secure, QUIC.cloud gives us two options. If the Frontend Force 

HTTPS is set to OFF, both request types are forwarded to the backend server (depending upon 

how Connection type to origin is configured). 

 



 

80  

                                  

 

                                      

3. Since certain browsers do not support QUIC, this option has been given. This is just to specify 

priority. In case the QUIC option is not available, it will use the default option. However, using a 

QUIC connection will ensure greater transmission speeds. 

 

 

                                       

4. The option below is given to strengthen security and employ CDN. 

 



 

81  

                                         

After setting up all the security requirements above according to the services needed, we go on to create 

a ReCaptcha site key for both the client and the server’s side. Here, we also need to select the version 

of reCAPTCHA. I selected V2 in this case. These two keys have been generated for the domain created 

using QUIC.cloud: 

 

6LdrzegUAAAAAJR2cwHQym5IiXcjUFpUbYW_uDZX- reCAPTCHA client 

6LdrzegUAAAAACwdPaG0y9h-AOV1XZ1KDVGlC7Eu- reCAPTCHA server 

 

 

 

5. Finally, the domain name and my domain IP address are created with a monthly traffic limit of 

20GB. 

 

                            Figure 31 Snapshot of the Domain created on QUIC.cloud 
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Observations: 

 

After having used a well-known cloud platform like Amazon Web Services (AWS) and experimenting 

with QUIC.cloud, these are certain observations made: 

▪ It uses a very simple, straightforward, and user-friendly approach. It makes the whole process 

of creating a domain easy and less time-consuming. Most of the important modules like the API 

key, reCAPTCHA, security requirements can be set using a click of a button.  

▪ It exhibits faster transmission rates as compared to the conventional providers. 

▪ Although in the beta stage, it employs some security modules like IP whitelisting and 

blacklisting. This Anti-DDOS feature will be very useful for resource and service management 

in organizations (Please see the screenshot below). 

 

                                    Figure 32 Snapshot of the Anti-DDOS features of the QUIC.cloud 

 

▪ Another feature is- Several domains can be created and left to run at a time. 

▪ There are still miles to go for QUIC.cloud to incorporate several other features since the features 

are quite limited at the moment. 

▪ QUIC.cloud requires that your DNS maps your domain to a domain provided during setup which 

means, the DNS provider must support domain to domain mapping for the root domain. Since 

this is not a standard feature, if not available in our case, we must switch to a DNS provider that 

is capable of this feature (For Example- Cloudflare’s DNS). 
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Theory- Track your Track: 

Introduction: 

Track your Track simply means, in regard to networking, a tracking facility to track the sent packets in 

a network. Why would one want to track the sent packet? Well, ideally, it is to make sure the packet 

reaches the required destination, to be able to detect any illegal reroutes, improve latency by removing 

the need for acknowledgments (whether it is about the packet received or about asking for a “resend”). 

This is analogous to one tracking their Uber ride. The more control the sender has over the sent packet, 

the more secure it is. Before we delve into further details of the proposed design, it is important to 

understand the working of the TLS (TLS 1.3) security architecture in securing the QUIC protocol. This 

understanding is completely based on the latest IETF document that explicates the whole security 

mechanism. This graph below represents the Cloud CDN throughput of a google project after enabling 

QUIC as recorded by Cedexis benchmarking: 

 

  

                                               Figure 33 Graph- Cloud CDN Throughput 
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What is TLS? 

TLS stands for Transport Layer Security. It implements two endpoints with a way to establish a means 

of communication over an untrusted medium (that is, the Internet) that makes sure that messages that 

are exchanged cannot be observed, forged, or modified. 

 

                                                           Figure 34 Structure of TLS 

Every handshake layer message (e.g., Handshake, Application Data, and Alerts) is imported as a series 

of typed TLS records by the  TLS Record layer. Individual Records are cryptographically protected, 

after which it is transmitted over a reliable transport (like TCP) that provides packet guaranteed delivery 

and sequencing. 

The TLS authenticated key exchange process occurs between two endpoints:  the client and the server. 

The client commences the exchange of keys, and the server responds. If the key exchange is completed 

successfully, both the client and server will come to terms on a secret. The TLS supports both Pre-

Shared Key (PSK) and the Diffie-Hellman key over either finite fields or elliptic curves ((EC)DHE) key 

exchanges.  

After performing the TLS handshake, the client usually learns and authenticates an identity for the 

server, and the server is optionally able to authenticate and learn about the client’s identity. 

The TLS key exchange is usually less susceptible to tampering by attackers, and thus produces shared 

secrets that may not be regulated by either participating peers. 

   TLS implements two very basic handshake modes of interest to QUIC[15]:¶ 

https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#section-2.1-8
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• One full RTT handshake (1-RTT) in which the client is effective in being able to send the application 

data after one whole round trip, and the server is able to immediately respond right after receiving 

the first handshake message from the client. 

• A 0-RTT handshake in which the client makes use of the information it has gained about the server 

in order to dispatch application data immediately. This application data can be easily replayed by an 

attacker. Hence, it should not carry any kind of self-contained trigger for any ineligible action. Below 

is an example of how a TLS Handshake looks like with a zero round trip (0-RTT). 

 

The Application Data is usually protected using a number of encryption levels, namely[15]: 

• Initial Keys 

• Early Data (0-RTT) Keys 

• Handshake Keys 

• Application Data (1-RTT) Key 
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What is QUIC? 

 
QUIC stands for Quick UDP Connections. Google Chromium describes QUIC being nothing but, 

TCP+TLS+HTTP/2 implemented on UDP. 

The key advantages of the protocol include: 

• Connection Establishment Latency 

• No OS requirements and fast-evolving 

• Forward Error Correction 

• Connection Migration 

• Improved Congestion Control 

• Multiplexing without Head of Line Blocking 

When we talk about reduced connection establishment latency, it does so because, the first time 

QUIC connects to a server, the client performs a 1- roundtrip handshake wherein it acquires the 

necessary information to complete the handshake. The client sends an empty client hello for which 

the server responds with the information the client requires to make forward progress (Including 

source address token and the server certificate). The second time the client sends an empty hello 

packet to the server, it uses the cached credentials from the previous connection to send encrypted 

requests, thereby reducing the connection establishment time. 

When we talk about Congestion Control, QUIC provides pluggable Congestion Control. Each 

packet (Both retransmitted and the original one) carries a sequence number, which is generally 

new. This usually allows a QUIC sender to distinguish ACKs (Acknowledgments) for 

retransmissions from the ACKs for original transmissions and thereby avoid the TCP’s 

retransmission ambiguity problem. QUIC Acknowledgements also definitively carry the delay 

between the receipt of a packet and its acknowledgment being sent, all together with the 

monotonically increasing sequence numbers. This kind of arrangement allows for an accurate 

round trip calculation. Additionally, QUIC’s ACK frames give a support of up to 256 NACK 

ranges, so QUIC is more generally resilient towards reordering of packets than TCP (with SACK) 

is. Hence, it is also able to place more bytes on the wire when a reordering or loss takes place. The 

client and the server now have a more precise picture of the number of packets received by the 
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peer. 

QUIC is designed from scratch for exercising multiplexing. The packets that are carrying data for 

an individual stream generally only impact that specific stream even if they are lost. Each frame 

of the stream can be immediately stimulated to that corresponding stream on arrival, so streams 

without loss can continue to be reassembled and make forward progress in the application. 

 

 

 

                    

 

                                         Figure 35 Source- Google Developers Live- QUIC (Slide 14) 

 



 

88  

When we talk about Forward Error Correction, in order to recover from lost packets without 

waiting for a retransmission, QUIC can complement a group of packets with an FEC packet. The 

FEC packet contains sent with what is called as the FEC group contains the parity of all the packets 

in that group. Even if one of the many packets in the group is corrupted/lost, the FEC packet can 

help in recovering the contents of that packet, as well as the other packets in the group. Consider 

the diagram below by the Google developers live: 

 

                                          Figure 36 Forward Error Correction-Google Developers Live 

 

Coming to Connection Migration- QUIC connections generally identified by a 64- bit connection 

ID randomly generated by the client. On the other hand, TCP connections are identified by a 4-

tuple of source address, source port, destination address, and destination port. This means that if a 

client changes IP addresses (for example, by moving out of Wi-Fi range and switching over to 

cellular) or ports (if a NAT box loses and rebinds the port association), any active TCP connections 

are no longer valid. When a QUIC client changes IP addresses, it can continue to use the old 

connection ID from the new IP address without interrupting any in-flight requests. 

 

QUIC Latency 

QUIC considerably reduces the number of roundtrips required to set up a connection, as we have 
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already seen. In the recent times, Companies like Uber have started incorporating QUIC protocol 

in their applications. They claim to have observed a reduction of 10-30 percent in tail-end latencies 

for HTTP traffic at scale in their rider and driver apps as compared to using TCP for the same. 

Comparing latencies between TCP, TCP+TLS, and QUIC as observed by the developers at 

Google: 

 

                                 

                     Figure 37 Comparison of latencies-Google Developers Live 

 

As for the TCP+TLS and the QUIC protocol, the first value corresponds to the latency in 

case of a repeat connection, and the second value corresponds to the latency in case of a 

brand-new connection. 
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           Figure 38 QUIC Packet Format (Source: Blackhat) 

 

The UDP Packet and the QUIC Public Header is unencrypted and authenticated. The remaining 

part of the header is encrypted and authenticated. 

This header format consists of the frames inside a QUIC frame packet, which is, in turn, found 

inside a QUIC packet. 

 

We are now going to discuss how QUIC can be enabled in our browsers in order and then study 

how the traffic is recorded. 

Below are some screenshots outlining the procedure and analyzing the traffic: 

1. Since QUIC is an experimental protocol, you can find the option to enable/disable QUIC in the 

experiment section of the google chrome- chrome://flags. On e another browser that supports 

QUIC protocol is the Opera browser, but I stuck to Google Chrome for these results. 
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2. Once QUIC is enabled, we are now moving on to observing the network. For this, you must first 

create a log of all the network traffic. This can be saved as a JSON file format on your local 

computer using an IDE like Visual Code Studio. It contains all the processes logged in order- 

crypto, handshaking, header protection. 

3. In order to analyze the log file, we enter the Netlog viewer (This works like an inferior version of 

Wireshark). Wireshark is not used here because it is not very capable of demarcating QUIC and 

UDP packets. This Netlog viewer provides us with statistics on all the QUIC events line by line. 

Once you enter the Netlog viewer (https://netlog-viewer.appspot.com/#import), you can import the 

saved log file. Once this is done, you can stop capturing the network traffic. 

The imported file gets logged in a tabular format like in the screenshot below: 

This chrome-net-export-log.json file is broken into, and the following information is displayed- Export 

date, build, OS info, Command line, and Active Field trial groups. You can, however, disable the field 

trials by typing: 

--disable-field-trial-config in the Command-line interface. 

 

https://netlog-viewer.appspot.com/#import
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                                            Figure 39 snapshot of the import network logs- quic 

 

4. Below is the screenshot of the QUIC options that are available for my connection. In the list, you 

will notice something known as Alt-Svc on QUIC errors. It is called the alternate service header, 

and its corresponding ALT-SVC HTTP/2 frame is not created specifically. Interestingly, it was a 

mechanism created for a server to tell a client that it runs the same service on the so and so host 

using a so and so protocol on the so and so port. A client that receives such a response is then 

advised to connect to that other given host in parallel in the background using the specified 

protocol, and if it is successful, it can switch its operations over to that instead of the initial 

connection. Hence, it behaves more like a substitute. 

For example: Alt-Svc: h3=”:60801.” 

The above example indicates that HTTP/3 is available on UDP port 60801 in the same hostname 

that was used to get this response. 

Generally, for QUIC, Alt-Svc:quic= “:443”; v=”32,33” where ‘v’ parameter is used for Alt-svc 

defined to carry Version Negotiation hints (see Figure)  You can also see how the idle connection 
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timeout for QUIC is so much lesser than what it would be for a TCP connection. The maximum 

packet length is given as 1350 for this connection. 

       

                          Figure 40 Snapshot of the QUIC options 

As we had discussed above, below is the screenshot for all the alternate service mappings for QUIC via 

port 443. 
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                         Figure 41 Snapshot of the alternate Service Mappings 

 

5. Below is the screenshot (figure 42) wherein you select the events you want to view. For instance, 

I have selected the QUIC_SESSION for which the logs appear on the right-hand side of the screen 

(screenshots attached below figure ). If you observe, one of the options is QUIC_SESSION, which 

is described using static. This is another domain name used to reduce bandwidth usage and 

increase the network performance of the end-user. As the name suggests, it holds static content 

(offloaded JavaScript code, images, and CSS). This is used for the second QUIC_SESSION. 

Figure 43  shows us the active QUIC connections made during the time we logged the network 

traffic. All of the traffic, as you can see, uses the port number 443. QUIC uses the traditional 

HTTP ports of 80 and 443, but that is the end of similarities. The supporting browsers and servers 

support this new protocol and thereby process its web traffic, but the network device in between 

cannot certainly differentiate between the application protocols and hence, switches to treating it 

like any generic layer 4 UDP traffic. 
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                                            Figure 42 Event Selection- QUIC network logs 

 

 

                                    Figure 43 QUIC Active Connections log  
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6. As you can see, right above is the screenshot capturing the whole QUIC process of establishing a 

session -starting from sending packets and acknowledgments to receiving packets, header 

protection, AEAD. The screenshot below is a form of a request to the server (like the content of 

san HTML form). It generally specifies the content size (261 in our case). It is a ‘POST’ request, 

which means the data is being pushed to the server (creating a source). To achieve in-order 

delivery, priority frames are sent on the control stream (quic_priority= 1 in our case). An endpoint 

usually keeps a limit on the cumulative number of incoming streams a peer that can be opened, in 
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order to control Concurrency. The limiting factor is : 

(stream ID) < (max_stream *4 + initial_stream_id_for_type) 

 

 

7. The screenshot below depicts the certificate transparency- a standard for auditing and monitoring 

digital certificates. There are three ways that this can be done-  

1. Through an Embedded SCT (like in our case). 

2. Through an OCSP (Online Certificate Status Protocol) response. 

3. Through a TLS extension. 

You can also see the encryption algorithm used here is the SHA-256 hash algorithm. 
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The screenshot below depicts how the encrypted version of the certificate looks like when retrieved: 
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                                         Figure 44 Transport Socket Pool logs 

Lastly, what you see above is the transport socket pool listing all the active websites (Active =1) and 

(Active=0) for the inactive ones. All the sites use UDP QUIC port number 443. 

 

 Using TLS FOR QUIC 

QUIC takes responsibility for the integrity and confidentiality protection of packets. To 

accommodate this, it uses TLS handshake derived keys, but instead of carrying TLS records over 

QUIC (as with TCP), TLS Handshake and Alert messages are carried directly over the QUIC 

transport, which takes over the responsibilities of the TLS record layer. 

 

                                                       Figure 45 Using TLS for QUIC (IETF) 

QUIC also relies on TLS for negotiation of parameters and authentication since they are critical to 

performance and security.¶ 

Rather than adopting a strict layering, the two protocols cooperate well: 

https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#section-3-3
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- QUIC makes use of the TLS handshake; 

-  TLS makes use of the reliability, the record layer, and the ordered delivery by QUIC. 

At a prominent level, there exist two main interactions between the QUIC and TLS components: 

• With QUIC giving a reliable stream abstraction to TLS, The TLS component sends and receives 

messages via its component. 

• The TLS component provides the QUIC component with a series of updates, such as (a) new 

packet protection keys to install (b) state changes such as the server certificate, handshake 

completion, etc. 

 

 

                                      Figure 46 Interactions between QUIC and TLS (IETF) 

 

The QUIC applications send data as QUIC STREAM frames rather than sending it through TLS 

"application_data" records (like in TLS over TCP). These are then carried in QUIC packets. 

Thus, the interface from TLS to QUIC consists of four primary functions [15]: 

• Exchange of handshake messages. 

• Processing stored application and transport state from an already resumed session and 

determining if it is valid to accept early data. 
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• Rekeying (both transmitting and receiving) 

• Updates of handshake states. 

 

   Handshaking process: 

 

 

The screenshot above shows how the initial Client Hello (CHLO) looks like during a network 

transmission. The packet contains a server configuration with it’s Diffie Hellman public value, a 

certification chain authenticating the server etc. In order to process the handshake, TLS depends on 

being able to exchange handshake messages. Their basic functions on this interface are: one where 

QUIC provides handshake packets and one where QUIC requests handshake messages. QUIC 

provides TLS with the transport parameters that it wishes to carry right before starting the handshake. 
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At first, a QUIC client requests handshake bytes from TLS. Therefore, the client gets the required 

handshake bytes right before sending its first packet. A QUIC server begins with the process by 

providing the client's handshake bytes to TLS. The TLS stack at an endpoint would have a current 

sending and receiving encryptions, respectively, at any time. Each encryption level that is reliably 

transmitted to the peer in CRYPTO frames is associated with a different flow of bytes. When 

handshake bytes to be sent are provided by the TLS, any packet that includes the CRYPTO frame is 

protected using keys from the corresponding encryption level, and the handshake bytes are appended 

to the current flow. The unprotected content of TLS handshake records is taken by QUIC as the 

content of CRYPTO frames. The CRYPTO frames are assembled into QUIC packets, and these 

packets are protected using QUIC packet protection. TLS record protection is not specifically used 

by QUIC. 

QUIC’s capability of conveying TLS handshake records is limited to CRYPTO frames.  

When a QUIC packet containing a CRYPTO frame is received by the endpoint from the network, it 

proceeds as follows [15]: 

• Sequence the data into an input flow if the packet was a part of the TLS receiving encryption 

level. The offset is utilized to find the proper location in the data sequence with all stream 

frames. If this process results in discovering the availability of new data, then that data is 

delivered to TLS in order. 

• The packet from a previously installed encryption level should not contain data that extends past 

the end of the previously received data in that flow. Implementations should treat any violations 

of this sort as a connection error of type PROTOCOL_VIOLATION. 

• If the packet is a part of a new encryption level, it is then saved for later processing by TLS. The 

saved data can be provided only if the TLS moves to ‘receive’ from this encryption level. While 

providing data from any new encryption level to TLS, it is important to check whether there is 

data from a previous encryption level that TLS has not consumed. If so, this should be treated 

as a connection error of type PROTOCOL_VIOLATION. 

The TLS and QUIC are continuously communicating. When TLS is provided with new data, new 

handshake bytes are requested from TLS immediately after. TLS may not be able to provide any 

bytes if the received handshake messages are incomplete, or it simply has no data to send. Once the 

TLS handshake is completed, QUIC is informed about it, along with any remaining final handshake 
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bytes that TLS may need to send. The Transport parameters advertised by the peer during the 

handshake are also provided to QUIC by TLS[15]. 

 

Encryption Levels: 

TLS provides QUIC with the keys for the new encryption levels as they become available. 

Furthermore, TLS indicates to QUIC that reading or writing keys at that encryption level is available 

when keys at a given encryption level become available to TLS. These events always occur right 

after the TLS is provided with new handshake bytes, or after TLS itself produces handshake bytes. 

Hence, these events are not asynchronous. ¶ 

As a new encryption level becomes available, TLS provides QUIC with three items [15]: 

• A secret function. 

• An Authenticated Encryption with Associated Data (AEAD) function for protection. 

• A Key Derivation Function (KDF) 

 

 

https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#section-4.1.4-1
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http_stream_job corresponds to httpStreamFactory Job- one request can have multiple jobs. It includes 

the DNS and proxy lookups. HTTP_STREAM_JOB log events are separate from URL_REQUEST 

because two-stream jobs can be created at a time and races against each other, in our case- one for QUIC 

and one from TCP. 
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A Gist of the Entire Connection establishment process (0-RTT and 1-RTT) 

1. ClientHello 

The client’s first Initial packet contains the start of the first cryptographic handshake message, 

which is ClientHello for TLS. QUIC packet and the associated framing add at least 36 bytes of 

overhead to the ClientHello message. If a connection ID without zero length is chosen by the client, 

that overhead increases [15]. 

2. Peer authentication 

TLS permits the server to request client authentication and provides server authentication.¶The 

identity of the server must be authenticated by the client. This requires that the certificate is issued 

by a trusted entity and that the verification involving the identity of the server is a part of the 

certificate [15]. 

3. 0-RTT 

Servers usually send a NewSessionTicket message containing the "early_data" extension with a 

max_early_data_size of 0xffffffff to communicate their willingness to process 0-RTT data. There 

is a set limit on the amount of data that can be sent by the client in 0-RTT. This is controlled by 

the "initial_max_data" transport parameter supplied by the server. By sending an ‘early_data 

extension’ in the EncryptedExtensions, the server accepts the 0-RTT. The server then 

acknowledges and processes the 0-RTT packets received by it. A 0-RTT is rejected by the server 

by sending the EncryptedExtensions without an early_data extension. If the 0-RTT is rejected, all 

connection characteristics such as transport parameters, choice of application protocol, and any 

application configuration assumed by the client may be incorrect. Therefore, the client should reset 

the state of all it’s streams, including application states that are bound to those streams [15]. 

 

4. Errors 

When you convert the one-byte alert description into a QUIC error code, a TLS alert is turned into 

a QUIC connection. The alert description is then made a part of the 0x100 to produce a QUIC error 

code. This is done from the range reserved for CRYPTO_ERROR. The resulting value is sent in 

as a QUIC CONNECTION_CLOSE frame[15]. 

https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#section-4.4-1
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Packet Protection and Design Protection: 

 

                                        Figure 47 Packet protection in QUIC 

 

Packet protection keys in QUIC: 

According to the latest version of the IETF documentation on QUIC, QUIC is said to derive packet 

protection keys similar to how the TLS derives record protection keys. Each encryption level is 

said to have separate secret values for the protection of packets sent in each direction. These traffic 

secrets which are are used by QUIC for all encryption levels except the Initial encryption level is 

derived by TLS. The secrets required for the Initial encryption level are calculated entirely based 

on the client's initial Destination Connection ID. 

Below is the screenshot of how the initial encryption level is logged when the network traffic is 

analyzed. This is part of the QUIC session packet that is sent. 
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The packet protection keys are computed using the KDF provided by TLS from the TLS secrets. 

The HKDF Expand Label Function is used to calculate client in, server in, quic key, quic iv, and 

quic hp values. This function is ideally used to expand  the generated output of a random input ( 

such as an existing shared key) into a much larger cryptographically independent output, thereby 

producing multiple keys from that initial shared key, such that the same process may reproduce 

the same secret keys really safely on several devices, as long as the same inputs are used [15]. 

The label “quic key” and the current encryption level secret are extremely important inputs to the 

KDF to produce the AEAD key; the label "quic iv" is used to derive the IV. The header protection 

key makes use of the "quic hp" label. The use of these labels provides key separation between 

QUIC and TLS. 

The KDF used for initial secrets in the case of TLS Architecture is always the HKDF-

Expand-Label function from TLS 1.3. The keys produced as a result of this function look 

something like the following: 

The example labels generated by the HKDF-Expand-Label function are [15]: 

client in: 00200f746c73313320636c69656e7420696e00¶ 

server in: 00200f746c7331332073657276657220696e00 

quic key: 00100e746c7331332071756963206b657900 

quic iv: 000c0d746c733133207175696320697600 

quic hp: 00100d746c733133207175696320687000 

The initial secret is common: 

initial _secret = HKDF-Extract(initial_salt, cid) 

    = 524e374c6da8cf8b496f4bcb696783507aafee6198b202b4bc823ebf7514a423 

https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#section-a.1-2.2
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The secrets for protecting client packets are: 

client_initial_secret 

    = HKDF-Expand-Label(initial_secret, "client in", _, 32) 

    = fda3953aecc040e48b34e27ef87de3a6 

      098ecf0e38b7e032c5c57bcbd5975b84 

 

key = HKDF-Expand-Label(client_initial_secret, "quic key", _, 16) 

    = af7fd7efebd21878ff66811248983694 

 

iv  = HKDF-Expand-Label(client_initial_secret, "quic iv", _, 12) 

    = 8681359410a70bb9c92f0420 

 

hp  = HKDF-Expand-Label(client_initial_secret, "quic hp", _, 16) 

    = a980b8b4fb7d9fbc13e814c23164253d 

The secrets for protecting server packets are: 

server_initial_secret 

    = HKDF-Expand-Label(initial_secret, "server in", _, 32) 

    = 554366b81912ff90be41f17e80222130 

      90ab17d8149179bcadf222f29ff2ddd5 

 

key = HKDF-Expand-Label(server_initial_secret, "quic key", _, 16) 

    = 5d51da9ee897a21b2659ccc7e5bfa577 

 

iv  = HKDF-Expand-Label(server_initial_secret, "quic iv", _, 12) 

    = 5e5ae651fd1e8495af13508b 
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hp  = HKDF-Expand-Label(server_initial_secret, "quic hp", _, 16) 

    = a8ed82e6664f865aedf6106943f95fb8 

AEAD (Authentication Encryption with Associated Data) Protection: 

Packets are generally protected prior to applying header protection. The packet header that is 

unprotected is part of the associated data (A), which is sent. When removing packet protection, the 

receiver endpoint first removes the header protection. Prior to establishing a shared secret between 

the two communicating parties, packets are protected with AEAD_AES_128_GCM and a key 

derived from the Destination Connection ID in the client's first Initial packet. All QUIC packets 

other than the Version Negotiation and Retry packets are protected with an AEAD algorithm, 

which is actually a drawback offered by this protocol. 

The IV and the key for the packet are calculated using the current encryption-level secret and the 

label, “quic key.”  

Here, the nonce, N= Packet protection IV + packet number 

When the QUIC packet number is reconstructed, the 62 bits of that packet number in a network 

byte order are all left-padded with zeros to the size of the packet protection IV. 

AEAD nonce= padded packet number (Exclusive OR) Packet Protection IV 

.The ‘A’ (Associated data) for the AEAD is nothing but the contents of the QUIC header, starting 

from the flags byte in either the long or short header, including and up to the unprotected packet 

number. The ‘P’(input plaintext) for the AEAD is the payload of the QUIC packet. The output ‘C’ 

(Ciphertext) of the AEAD is transmitted in place of P [15]. 

Header Protection: 

Certain parts of QUIC packet headers, particularly the Packet Number field, are protected using a 

key that is derived separately to the IV and the packet protection key. Protection of confidentiality 

for those fields that are not completely exposed to on-path elements is provided by the keys derived 

using the “quic.hp” label. 

This protection ideally applies to the least-significant bits of the first byte, plus the Packet Number 

field. The four least-significant bits of the very first byte are protected for packets with long 

headers; on the other hand, the five least significant bits (LSB) of the first byte are protected for 



 

111  

packets with short headers. For both the types of header forms used, this covers the reserved bits 

and the Packet Number Length field; and For packets with a short header, the Key Phase bit is also 

completely protected. 

In order for the header protection to be used to protect the key phase, the same header protection 

key is used for the entire duration of the connection with the value unaffected even after a key 

update. 

Referring to the last research paper, we discussed in the previous section (), the proposed packet 

tracking architecture consists of multiple passive measurement probes deployed in the network. 

The proposed idea here is to deploy one such measurement probe (like impd4e) within the 

header protection of a sent packet. In this way, each and every sent packet can be tracked, 

overcoming the disadvantage of their proposed architecture- Only a certain number of packets 

(selected by a hash algorithm) can be tracked. 

Header protection is followed by packet protection. The encryption algorithm uses the sampled 

ciphertext of the packet as the input. The encryption algorithm selected depends upon the 

negotiated AEAD. 

The output of this algorithm is a 5-byte mask which undergoes an exclusive OR operation with the 

protected header fields. The least significant bits (LSB) of the first mask byte masks the least 

significant bits of the first byte of the packet, and the remaining bytes mask the packet number. ¶ 

Given below is a sample algorithm from the latest IETF document outlining the concepts of QUIC 

and TLS [15] for applying header protection (long and short headers). Removing the header 

protection differs in the order in which the packet number length (pn_length) is determined. 

 

mask = header_protection(hp_key, sample) 

            pn_length = (packet[0] & 0x03) + 1 

if (packet[0] & 0x80) == 0x80: 

   # Long header: 4 bits masked 

   packet[0] ^= mask[0] & 0x0f 

else: 

https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#section-5.4.1-2
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   # Short header: 5 bits masked 

   packet[0] ^= mask[0] & 0x1f 

              # pn_offset is the start of the Packet Number field. 

   packet[pn_offset:pn_offset+pn_length] ^= mask[1:1+pn_length] 

 

Below is the screenshot of the analysis of the QUIC protocol in operation. The QUIC session logged all 

the events that contribute to the transmission of the QUIC packets. The two snapshots below describe 

how the short and long header packets are recorded during an actual network transmission. The long 

header packet is 0-RTT protected, and the short header packet contains the application data. 
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Now let's jump into the proposed idea. The idea here is to use the measurement probe along with the 

hp_key: 

mask = header_protection(hp_key, sample, probe_function) 

When removing the packet protection, an endpoint first removes this element and the header protection. 

This way, the client will know if the packet has reached the destination without being tampered with or 

not. 

Let us now consider using a specific AEAD algorithm, such as AEAD_CHACHA20_POLY1305. When 

this is in use, header protection uses the raw ChaCha20 function. This algorithm makes use of 16 bytes 

and a 256-bit key sampled from the packet protection output. The sampled ciphertext contains the block 

counter in its first 4 bytes. The byte sequence is portrayed as a little-endian value only in one case- when 

a ChaCha20 implementation takes a 32-bit integer in place of a byte sequence. 

The remaining 12 bytes of the packet protection output is used as the nonce. The nonce bytes are portrayed 

as a sequence of 32-bit little-endian integers only in one case- when a  ChaCha20 implementation might 

take an array of three 32-bit integers in place of a byte sequence. 

The encryption mask is composed by imploring ChaCha20 to protect 5 zero bytes. Involving the 

measurement probe in the pseudocode: 

counter = sample[0..3] 

nonce = sample[4..15] 

mask = ChaCha20(hp_key, probe_function, counter, nonce, {0,0,0,0,0}) 
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Header protection Analysis of the packets: 

NAN() analyzes the authenticated encryption algorithms that provide the required nonce privacy, referred 

to as "Hide Nonce" (HN) transforms. The general-header protection construction discussed in this report 

is one of the Hide Nonce transforms algorithms (HN1). Header protection utilizes the output of the packet 

protection AEAD (Authenticated Encryption with Associated Data) to produce a sample, and then 

encrypts the entire header field with the help of a pseudorandom function (PRF): 

protected_field = field XOR PRF(hp_key, sample)  

The header protection types considered here use a pseudorandom permutation (PRP) in place of a generic 

PRF. However, since all PRPs are also PRFs, these variants are not much different from the HN1 

construction. As hp_key is completely different from the packet protection key, it follows that header 

protection, therefore, guarantees the privacy of the field and the protected packet header. To ensure 

equivalent security guarantees, future header protection variants based on this construction MUST use a 

PRF. 

Usage of the same key and ciphertext sample more than once risks compromising the entire header 

protection leading to security issues. In order to get the exclusive OR value of the protected fields, it is 

suggested to protect two different headers with the same ciphertext and the same key.  

To prevent the packet headers from being modified by an attacker, authentication using packet protection 

is applied to the header transitorily. This means that the entire packet header is included in the 

authenticated additional data too. Only once the packet protection is removed, the protection fields that 

are modified or falsified are detected. 

The packet measurement probe to be used will be similar to that of impd4e used in the last discussed 

research paper (). It will consist of a small network probe that will allow us to monitor the network path. 

The code for the imd4e is open source and uses simple C programming. It can be therefore tailored to our 

need to incorporate it with the header protection like a tracker. For ease, the code can also be modified 

using python programming. Using the IPFIX protocol, it can export packet IDs and relevant information 

to the sender (the sender will host a library for exporting measurement results via the IPFIX standard). 
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Challenges: 

 

1. Increased payload- One of the main downsides of this proposal will be increased payload 

due to the measurement probe function and a library to extract the location information.  

2. Problems in specificity- Each network is unique in terms of the number of users, devices, 

traffic, usage, etc. Therefore, it will be a challenge to come up with a customizable code 

that caters to tracking in networks big and small. 

3. Increased Complexity- Since we are suggesting an addition to the already existing 

architecture, complexity is bound to increase. This is one of the reasons why this proposal 

is limited to the QUIC protocol for the time being. It being a fairly new protocol, is open 

to new research. 

4. Ambiguity and scattered documentation- QUIC is an experimental protocol that is 

currently being used only in very few applications, mainly due to the underlying security 

issues and ambiguity because of a number of scattered documentations. 

5. QUIC is very fast-evolving- With the advent of technology and plenty of resources out 

there, every day is a step towards bug fixes, improvements in the architecture, etc. Google 

held its very first QUIC working group meeting in the year 2016. These 4 years since then 

have seen the biggest leap in its usage. Developing a complex system over such as fast-

evolving protocol will not be easy at all. 
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Why TyT then? 

Given the above challenges, one can get skeptical about using this concept, but again every technology 

comes with a trade-off. Security is one of the major issues we are facing today. With TyT, issues related 

to Security and Latency problems are getting a common solution. Initially, this proposal has been limited 

to the QUIC protocol only because it is a fairly new protocol, and hence, it can be experimented with 

before standardizing it. 

According to Mattias Geniar, if QUIC features prove effective, those features should migrate into a later 

version of TCP. Imagine TCP with no three-way handshakes and no requirement of acknowledgments. 

This could mean faster processing speeds and transmission rates. I reiterate, the idea is to provide more 

control to the sender, to understand how the sent packet traverses, detect attacks like man in the middle, 

DDoS, and get a clearer picture of what happens to your sent packet.   

Since the advent of Software Defined Networking, all the major processes are transforming into a software 

version. A programmed measurement probe, such as, the imped4e is a Light OpenSource network 

measurement probe that uses pcap to generate packetID for traversing packets for packet tracking and 

hop-by-hop delay measurements. Hash-based packet selection is also supported, and results are exported 

via IPFIX. The idea here is not to develop a map (like google maps) but rather learn as you traverse 

through the network. This imped4e is available openly on the GitHub, and the source code is in an easy 

to understand C language. By using python, we could make this code even simpler and cater to our needs 

of inserting it with the header protection in the transport layer. It's never a far-fetched idea when the 

security of a network is at stake. 
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Conclusion: 

Cloud Computing is entirely changing the way businesses today consume computer services. 

Approximately 75% of the businesses today operate over the cloud. Everything is available from 

anywhere at the snap of the finger. Well, the major stranglehold for this vast technology is a 

security threat. Cloud is like a reservoir of data today, which means illegal access to this reservoir 

can lead to data breaches and intrusion of privacy.  Hence, securing this data takes is of prime 

importance. 

In this project, we first discussed what cloud computing is, the security threats it faces in today’s 

world, and then we went on to discuss a few attacks and the corresponding mitigation techniques 

in place. We then went on to ponder over some research ideas in the areas of cloud security, QUIC 

protocol, and it’s security. One of the newest discussions was the idea of using QUIC in cloud- 

QUIC.cloud.  It is still in the nascent stage and has a lot of evolving to do. It has the potential to 

be a stringent competitor in the market of cloud providers owing to its simplicity and transmission 

speeds. We also go on to understand the working, architecture, and security considerations of the 

QUIC protocol with an analysis of the network traffic. According to Google, on mobile Android 

devices, it is claimed that QUIC has helped to reduce the latency of Google Search responses by 

3.6% and YouTube video buffering by 15.3%. With this track record and many more security 

glitches being fixed over time, we can only expect the rise of this particular protocol. In fact, it 

may become a good choice over TCP, although this might take several decades. Finally, before 

jumping into the main idea, we try to understand how the TLS Security Architecture is 

incorporated in the QUIC protocol. 

Solving the issue of Security at a protocol level is what this capstone project goes for.  The key 

idea is to improve efficiency, security (combat attacks like Man in the Middle, DDoS), improve 

latency, and to provide more control to the sender of a packet. By extending and using the concept 

of Multi-Hop Packet tracking in experimental facilities in the TLS architecture used to secure 

protocols like QUIC, we can achieve all of the above. Today, with the advent of Software Defined 

Networking, coding a measurement probe to track packets does seem like a not-so-far reality. 
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