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Abstract

Graphical models are frequently used to explore networks among a set of vari-

ables. Several methods for estimating sparse graphs have been proposed and their

theoretical properties have been explored. There are also several selection crite-

ria to select the optimal estimated models. However, their practical performance

has not been studied in detail. In this work, several estimation procedures (glasso,

bootstrap glasso, adptive lasso, SCAD, DP-glasso and Huge) and several selection

criteria (AIC, BIC, CV, ebic, ric and stars) are compared under various simulation

settings, such as different dimensions or sample sizes, different types of data, and

different sparsity levels of the true model structures. Then we use several eval-

uation criteria to compare the optimal estimated models and discuss in detail the

superiority and deficiency of each combination of estimating methods and selection

criteria.
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Chapter 1

Introduction

Graphical models have been extensively used to explore the underlying relation-

ships between a set of variables, whose nodes represent the variables and the edges

represent the dependence between them. For example, in neuroscience, a network

can be estimated between various functioning regions of the brain (Cribben et al.

[2012]). The portfolio of various financial assets can also be described using a

graphical model where the nodes are the assets and the edges depict the interac-

tion between their rates of return. A sparse graphical model is usually preferred in

practice for its simplicity and ease of interpretation.

The work carried out here is concerned with the estimation of the sparse pre-

cision matrix (inverse of the covariance matrix) Ω = (ωi j)1≤i, j≤p of p variables

Xn×p = (X1, ...,Xp), which can be illustrated by an undirected graphical model. In

the graphical model, the p nodes denote the p variables X1, ...,Xp, respectively, and

the edge between the ith and jth nodes correponds to the (i, j)th entry ωi j of the

precision matrix Ω. The larger the entries in the precision matrix Ω, the thicker

the edges in the undirected graph, indicating stronger conditional dependence be-

tween the corresponding variables. The absence of an edge between two nodes in

the undirected graph indicates conditional independence between the correspond-

ing variables. The entries of the standardized precision matrix are the partial cor-

relations of the set of variables, which quantify their dependence with the influ-

ence from all other variables removed. An example of an 8-dimensional estimated
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graphical model or precision matrix is given in Figure 1. To interpret this graph, for

example, the edge between nodes 3 and 4 is thicker than the edge between nodes

2 and 6, indicating that the conditional dependence between the third and fourth

variables is stronger than the conditional dependence between the second and and

sixth variables. Also, since there is no edge between nodes 1 and 8, we can say that

these two variables are conditionally independent.

Figure 1: An example of an 8-dimensional undirected graph

Pourahmadi [2011] pointed out that precision matrices are of more interest than

covariance matrices. In addition, it has been shown that the regularized precision

matrix is sensitive to capturing the network connection on good quality functional

magenetic resonance imaging (fMRI) data (Smith et al. [2011]). Thus, the cen-

tral theme of this work is the estimation of sparse standardized precision matrices,

whose results can be illustrated by undirected graphs.

There have been many estimating methods for estimating sparse precision ma-

trices and many of them are penalized log-likelihood methods. A foundational work

on this topic is the l1-penalized method glasso introduced by Friedman et al. [2008]

which is very fast, easy to implement, and produces sparse estimates of the pre-

cision matrix. The newly developed algorithm by Mazumder and Hastie [2012b],

called the DP-glasso, differs from glasso in that it solves the primal penalized log-

likelihood while glasso solves the dual problem. The estimating method, the boot-

srap glasso (BG), inspired by the stability selection technique of Meinshausen and

Bühlmann [2010], combines both glasso and bootstrap resampling (Efron and Tib-
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shirani [1993]) to improve the estimation performance. The estimating methods

Adaptive Lasso (AL) and the Smoothly Clipped Absolute Deviation (SCAD) are

modifications of glasso in the sense that the original l1-penalty is replaced respec-

tively by the Adaptive Lasso penalty (Zou [2006]) and the SCAD penalty (Fan and

Li [2001]), both of which are non-convex penalties. In addition, Zhao et al. [2014]

introduced the estimating method High-dimensional Undirected Graph Estimation

(Huge) and a companion R package huge, which integrates many functions about

estimating graphical models such as semiparametric transformation, graph estima-

tion and model selection.

As well as the several estimating methods, there also exist many selection cri-

teria to select the optimal estimate among the candidates. Akaike [1974] proposed

the well-known Akaike Information Criterion (AIC) to select the potential opti-

mal model out of a collection of candidate models. Schwarz [1978] proposed the

Bayesian Information Criterion (BIC) which can consistently select the optimal

model. Also, Fan et al. [2009] employed a K-fold Cross Validation score (see (3.3)

to follow) to conduct selection of the optimal model. Moreover, the method Huge is

accompanied with three selection criteria Rotation Information Criterion (ric, Lysen

[2009]), Extended Bayesian Information Criterion (ebic, Foygel and Drton [2010])

and Stability Approach for Regularization Selection (stars, Liu et al. [2010]), all of

which are provied by the function huge.select() of the package huge (Zhao et al.

[2012] and Zhao et al. [2014]).

The theoretical properties of the aforementioned estimating methods and selec-

tion criteria have been explored thoroughly, however, the practical performance of

the combinations of the estimating methods with selection criteria remains unclear.

More specifically, it is not known which combination performs the best for the

datasets with different sample sizes, dimension, sparsities, and distributions. Also,

no previous comparisons were conducted among the best results that combinations

can provide along a given set of regularization parameters ρs. The previous studies

only focused on the results for several fixed ρs. Therefore, the major contribution of

this work is: (1) to apply all the combinations (of the above estimating methods and

selection criteria) to three types of simulated data: multivariate normal data (MVN
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data), multivariate t-distributed data with 3 and 4 degrees of freedom (MVt3 data

and MVt4 data) and the multivariate normal data with an AR(1) structure (MVN

AR1 data), using 100 regularization parameters ρs, and (2) to conduct a compar-

ative evaluation of the best performance that each combination can produce based

on the 100 ρs, under different simulation scenarios.

The rest of this work is organized as follows. Chapter 2 and Chapter 3 explain

the theoretical background and interesting features of the estimating methods and

selection criteria. Chapter 4 is devoted to the simulation descriptions, and the results

from the simulations are discussed in Chapter 5. Finally, Chapter 6 provides a set

of conclusions based on the simulation results. The chapters are accompanied with

Appendix A Tables and Appendix B Figures which contains a set of tables and

figures from the simulation results.
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Chapter 2

Estimating Methods

Consider a p dimensional dataset

Xn×p = (X1,X2, . . . ,Xp)

with mean μp×1 and a positive definite covariance matrix Σp×p = (σi j)1≤i, j≤p, and

Xi = (Xi1,Xi2, . . . ,Xin), i = 1, ..., p,

where n is the sample size. The (i, j)th entry σi j of a covariance matrix Σp×p is the

covariance between Xi and Xj, where

σi j = Cov(Xi,Xj) = E
(
(Xi −μi)(Xj −μ j)

)
.

The (i, j)th entry of the standardized covariance matrix is the correlation coeffi-

cients between Xi and Xj.

The sample covariance matrix Sp×p =(si j)1≤i, j≤p is an empirical statistic calcu-

lated from a sample dataset Xn×p, whose (i, j)th entry si j is the sample covariance

between the set of observations of Xi and Xj. si j is calculated by

si j =
1

n−1

n

∑
q=1

(xiq − x̄i)(x jq − x̄ j), (2.1)
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where n is the number of observations of Xi and Xj, or the sample size of Xi and

Xj. The precision matrix Ω = (ωi j)1≤i, j≤p is the inverse of the covariance matrix Σ

and the (i, j)th entry of the standardized precision matrix is the partial correlation

between Xi and Xj.

The first step of our work is to estimate the precision matrix Ω = Σ−1, and

we denote the estimates of Ω and Σ as Ω̂ and Σ̂, respectively. Seven methods are

applied in this work, including the sample correlation matrix CS , the sample partial

correlation matrix PS (these two are simply used as reference methods), Graphical

Lasso (glasso), Bootstrape Graphical Lasso (BG), Graphical Lasso with Adaptive

Lasso Penalties (AL), Graphical Lasso with SCAD penalties (SCAD) and High-

dimensional Undirected Graph Estimation (Huge).

glasso, BG, AL and SCAD are all penalized log-likelihood methods, who add

various weighted l1-penalties to the log-likelihood formula. Hence the estimate of

Ω is the solution to the following formula:

max
Ω

logdetΩ− tr(SΩ)−
p

∑
i=1

p

∑
j=1

pρi j

(|ωi j|
)
, (2.2)

where tr denotes the trace of a matrix which is the sum of all elements on the main

diagonal, and pρi j(·) is the penalty function on ωi j with ρi j being the corresponding

regularization parameter that controls the sparsity level.

2.1 Sample (Partial) Correlation Matrix

2.1.1 Sample correlation matrix

The (i, j)th element, ri j, of the sample correl ation matrix CS = (ri j)i, j≤p is the

sample correlation between the ith and the jth variable Xi and Xj, who measures

the direction and strength of the linear relationship between them. ri j is calculated

using

ri j =
∑n

q=1

(
xiq − x̄i

)(
x jq − x̄ j

)√
∑n

q=1

(
xiq − x̄i

)2 ∑n
q=1

(
x jq − x̄ j

)2
, (2.3)
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where n is the sample size of variables Xi and Xj.

2.1.2 Sample Partial Correlation Matrix

The (i, j)th element, γi j, of the sample partial correlation matrix PS is the sample

partial correlation between Xi and Xj, measuring the relationship between them

while controlling for the other variables and indicating the conditional dependence

between these two variables. Partial correlation γi j becomes more essential when

other variables are very likely to have effects on Xi and Xj. In addition, γi j can be

obtained from the corresponding elements in the precision matrix Ω ([Pourahmadi,

2011, pp5]) by

γi j =− ωi j√ωiiω j j
. (2.4)

2.2 Graphical Lasso

2.2.1 Background

The Lasso (l1-) penalty proposed by Tibshirani [1996] has been widely used

to estimate sparse undirected graphs. For example, Meinshausen and Bühlmann

[2006], provided an approximation for the exact problem in equation (2.5) below

which fits a Lasso model to each variable, using the others as predictors. Besides

this approximation, algorithms for the exact problem were also proposed, such as

[Yuan and Lin, 2007, pp1-2], Banerjee et al. [2008] and Dahl et al. [2008]. After

applying the Lasso (l1-) penalty on Ω, the penalized log-likelihood (2.2) becomes

max
Ω

logdetΩ− tr(SΩ)−ρ‖Ω‖1, (2.5)

where ‖Ω‖1 denotes the Lasso (l1-) penalty on Ω, the sum of all absolute values of

the elements of Ω.

Friedman et al. [2008] solved (2.5) using the blockwise coordinate descent ap-

proach (Banerjee et al. [2008]), resulting in a simple, yet extremely fast approach,

the Graphical Lasso (glasso). In the graphical modeling framework, some elements
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of Ω̂ can be shrunk exactly to zeros by the glasso algorithm due to the l1-penalty on

Ω, because in order to maximize (2.5), ρ‖Ω‖1 has to be small so that the sum of all

absolute values of Ω should be small for a fixed ρ , and thereby some entries of Ω

are supposed to be zeros.

2.2.2 glasso algorithm

glasso takes turns to fit a modified lasso regression to each variable, which is

solved by coordinate descent. Friedman et al. [2008] also pointed out that the solu-

tion to (2.5) and its dual problem (2.6) are equivalent :

min
β

{
1

2
‖W1/2

11 β −b‖2 +ρ‖β‖1

}
, (2.6)

where W = Σ̂, b = W−1/2
11 s12, W and S have the partition as

W =

(
W11 ω12

ΩT
12 Ω22

)
, S =

(
S11 s12

sT
12 s22

)
. (2.7)

Then, the glasso algorithm ([Friedman et al., 2008, P5]) works as follows:

Step 1 Start with W = S+ ρI. The diagonal of W remains unchanged in what

follows.

Step 2 For each j = 1,2, . . . , p, solves the lasso problem (the dual problem)

min
β

{
1

2
‖W1/2

11 β −b‖2 +ρ‖β‖1

}
,

which takes as input the inner products W11 and s12. This gives a p− 1 vector

solution β̂ . Fill in the corresponding row and column of W using ω12 = W11β̂ .

Step 3 Continue until convergence.
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2.2.3 The R package glasso

The R package glasso (Friedman et al. [2014]) can be downloaded to conduct

the above glasso algorithm. S and ρ are two of its inputs. One can also specify

the maximum number of iterations of the outer loop (default 10,000), the type of

start (starting values for estimating Σ and Ω, with default cold start being S+ρI;

another option, warm start, provides a customized starting value), and threshold for

convergence (default 1e−4), in the package . The glasso package can return Σ̂, Ω̂,

the maximized value from equation (2.5) and the number of iterations of the outer

loop used by algorithm, and many other outputs.

We denote the estimated precision matrix and covariance matrix from glasso as

Ω̂G and Σ̂G, respectively.

2.2.4 Highlights and deficiencies

Generally, glasso is a simple and an efficient algorithm for estimating a sparse

Ω. In addition, the popular package ’glasso’ in R makes it convenient to im-

plement. More specifically, as discussed in Friedman et al. [2008], glasso provides

sparse estimates, because the l1 penalty shrinks some elements of Ω exactly to zero.

Also, another attractive feature of glasso is its desirable computational speed. For

example, it has been shown in Friedman et al. [2008] that based on an Intel Xeon

2.80GH processor, for example, with 2 to 8 iterations of the outer loop, p = 400

in a sparse Σ case, it only takes glasso 1.23 seconds (the CPU time spent in the C

program since glasso was coded in Fortran and linked to an R language function)

to get the results. Another advantage of glasso is the positive definiteness of each

updated Σ is ensured.

However, as can be seen from its detailed algorithm above, glasso essentially

deals with the dual problem (2.6) in each step, rather than the primal penalized log-

likelihood (2.5) itself. In the dual problem, the optimized variable is Σ rather than Ω.

Thus there are some consequences of operating on the dual problem whose target

is the covariance matrix and some of glasso’s main deficiencies are as follows:

1. The penalized log-likelihood of the primal problem does not monotonically
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increase with the iteration index, whereas the penalized log-likelihood of its

dual problem does. Moreover, divergence of the algorithm may occur with

undesirable warm starts.

2. It is very likely that the converged Ω̂ is not equal to Σ̂−1, which means Ω̂ is

not numerically the inverse of Σ̂ and this undoubtedly contradicts their math-

ematical relationship. It has also been shown that only upon (asymptotic)

convergence, will Ω̂ be equal to Σ−1.

3. Ω̂ is not necessarily positive definite, because the optimized matrix in glasso

algorithms is Σ and Ω̂ is not the exact inverse of Σ̂.

4. Ω̂ need not to be sparse.

5. The positive definiteness of a matrix after every update step does not ensure

the positive definiteness of it after the final update. Here is a short exam-

ple. Adopt the p = 30 tridiagonal matrix with constant a = 0.85 being the

true precision matrix Ω. Then set.seed(136) in R and generate a n = 120

multivariate normal distributed dataset from it (or say from its inverse, the

convariance matrix Σ = Ω−1). Obtain the best glasso estimated matrix by

BIC first, then use it as the initial value for iterations for SCAD algorithm

and selected by BIC. Then at the 5th iteration step for by SCAD penalty, the

estimated covariance matrix from glasso is not positive definite who has a

negative eigenvalue (-0.02189027).

2.2.4.1 Comments and summaries

glasso is a basic and fast algorithm for estimating a sparse Ω. It applies a

l1-penalty to Ω which effectively shrink some ωi j estimates to zero. Moreover,

the glasso package in R makes the algorithm practical. Subsequently, many ap-

proaches have evolved from it. Although Ω̂G shows some undesirable properties,

the advantages and importance of glasso still can not be neglected.

For further improvement and comparison, we introduce several more methods

in the following pages.
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2.3 Bootstrap glasso

2.3.1 Background

The bootstrap glasso (BG) is a hybridized algorithm of glasso and the bootstrap

(resampling scheme), which is inspired by a technique called Stability Selection

(SS) attributing to Meinshausen and Bühlmann [2010]. BG was first introduced in

Cribben et al. [2013] and Cribben [2012]. We will introduce SS and its properties

first, and then introduce our BG algorithm.

2.3.2 Stability selection (SS)

SS combines subsampling with existing high-dimensional structural selection

schemes. Meinshausen and Bühlmann [2010] pointed out that SS is not a new vari-

able selection technique, but simply aims at heightening existing methods, such as

variable selection methods, graphical modeling methods or cluster analysis meth-

ods. However, SS results can not be reconstructed by choosing a proper ρ , since SS

provides a basically new solution.

Unlike traditional approaches, SS does not choose one best model among the

whole regularization path, instead, SS disturbs (e.g. subsampling) the original

dataset a number of times, then keeps structures or variables whose occurrences

reach to a certain threshold level. More specifically, estimates with high selection

probabilities are maintained, namely whose selection probabilities are greater than

a prechosen cutoff 0 < πthr < 1, otherwise they will be abandoned.

SS has many good properties as follows:

1. Error Control Theorem ([Meinshausen and Bühlmann, 2010, Theorem 1]):

Let V denote the number of false selections. Thus E(V ) stands for the ex-

pected value of the number of false selections and V̄ represents the average

number of falsely selected variables.

A strong benefit of SS is that, under certain assumptions, it can choose ρs

such that E(V ) is bounded. Additionally, the assumptions have been justi-

fied that they are either reasonably easy to fulfill, or only slightly weaker
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results will be obtained if some of them are violated. Moreover, one of the

assumptions is only needed for controlling the error and unnecessary for other

advantages of SS. This theorem also indicates that choosing less variables or

increasing πthr will reduce E(V ) with an achievable minimal value of 1/p2.

The bounded expected value for the number of false selections is a very ad-

vantageous property, especially for high-dimensional problems, because a

certain limit for finite sample is more practical than asymptotic properties,

requiring tending to infinity sample sizes, which is almost impossible in real

life.

2. Consistent Variable Selection: Herein, the consistent variable selection for

a procedure Ŝ means that the probability of the procedure Ŝ being the same

as the true procedure S tends to 1, as the sample sizes increase to infinity.

Mathematically, it means

P

(
Ŝ = S

)
→ 1 as n → ∞, (2.8)

where S is the true value and n is the sample size.

For randomized Lasso, a generalisation of the Lasso, where the Lasso pe-

nalises Ω proportional to the sum of all its absolute values with the overall

regularization parameter being ρ , while the randomised Lasso changes the

penalty for each entry of Ω to a randomly chosen value in the range [ρ,ρ/α ],

it has been shown that SS will consistently choose variables even if some

required conditions for consistency selection are violated for the original

method, which means SS will asymptotically choose the correct model when

randomized Lasso can’t.

This is an benefit for the original approach, especially computational effi-

cient ones, because they always can’t select variales consistently in high-

dimensional cases, even in fairly simple settings.
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2.3.3 BG algorithm

We borrow the subsampling idea from SS, applying it to glasso, leading to our BG

algorithm. The notations for BG are as follows:

1. H denotes the resampling time.

2. XB denotes the resampled datasets with Xh
B being the hth resampled dataset,

h = 1,2, . . . ,H.

3. Ω̂h
G is the glasso estimate based on the hth resampled dataset Xh

B , h= 1,2, . . . ,H.

4. Z is the non-zero frequency estimates matrix for each resampled dataset and

Zh is the non-zero estimate frequency matrix for Xh
B defined as

Zh(i, j) =

⎧⎪⎪⎨⎪⎪⎩
1 if Ω̂h

G(i, j) �= 0

0 if Ω̂h
G(i, j) = 0

, h ∈ {1,2, ...,H}, (2.9)

5. which indicates that if the (i, j)th element in the glasso estimate Ω̂h
G for the

hth resampled dataset is non-zero, the corresponding (i, j)th value in hth non-

zero estimate frequency matrix is set to 1, otherwise it is 0. Zh describes

whether each position of Ω is estimated as non-zero or zero, based on the

corresponding resampled dataset Xh
B.

6. F is the overall non-zero frequency matrix, based on all the resampled dataset

Xh
B, h = 1,2, . . . ,H, defined as

F(i, j) =
1

H

H

∑
h=1

Zh(i, j), i, j = 1,2, ..., p. (2.10)

7. F is the average frequency of a non-zero estimate for each position in Ω after
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resampling H times. For example, if F(i, j) = 0.9, then 90% of the glasso

re-estimations are non-zero for Ω(i, j) among all the resamplings.

8. πthr is the prechosen threshold value which is usually set to 0.75 to 0.9.

9. Ω̂BG is the BG estimate for Ω.

The BG algorithm executes the following four steps for each ρi, i = 1, ...,100:

Step 1 Apply glasso to the original dataset Xn×p and obtain glasso estimate Ω̂G.

Step 2 Resample Xn×p H times without changing sample size, obtaining H re-

sampled datasets, say XB = (Xh
B)1≤h≤H .

Step 3 Apply glasso to each resampled dataset Xh
B and obtain a new glasso esti-

mate Ω̂h
G, h = 1,2, . . . ,H.

Step 4 The estimate Ω̂BG by BG is obtained by setting

Ω̂BG(i, j) =

⎧⎨⎩Ω̂G(i, j), if F(i, j)≥ πthr

0, if F(i, j)< πthr

, (2.11)

where F is the overall non-zero frequency matrix calculated by (2.10).

Intuitively, Ω̂BG is at least as sparse as Ω̂G, since Ω̂BG only retains those non-zero

elements of Ω̂G which are always estimated as non-zeros, and abandons those esti-

mates in Ω̂G that are estimated as zeros with relatively high frequencies, which can

reasonably be believed as zeros in the true matrix.
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2.3.4 Summary and comments

Instead of choosing the best regularization parameter, SS offers a new view

for structural estimations by combining subsampling with primal methods, produc-

ing many desirable properties. We use glasso to be the initial structure estimation

method, then apply SS to it, resulting in our new algorithm Bootstrap glasso (BG).

Based on the above theoretical properties of SS, we have the following expectations

for BG:

1. The results for BG won’t vary much with πthr.

2. The percentage of false estimates (estimates for zeros being non-zeros, or

estimates for non-zeros being zeros) is controlled, or bounded.

3. BG provides accuracy improvements over the primal method (glasso).

4. However, a disadvantage is that it is more time consuming than the original

estimation method (glasso).

2.4 glasso with Adaptive Lasso and SCAD penalties

2.4.1 Background

2.4.1.1 Motivations

Sparse precision matrices are used to explore network structures. Two major

challenges for estimating a sparse precision matrix are the requirement of positive

definiteness of Ω when optimizing the penalized log-likelihood, and the reduction

of the biases arising from the penalties. For example, our first method glasso using

the Lasso penalty on Ω, it has been shown in Fan and Li [2001] that the Lasso

penalty increases linearly with the magnitude of the regression coefficients, thus a

mass of biases will be induced when having a lot regression coefficients. To remedy

this, the nonconcave Smoothly Clipped Absolute Deviation (SCAD) penalty and the

Adaptive Lasso (AL) penalty, were proposed in Fan and Li [2001] and Zou [2006],

respectively.
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2.4.1.2 Improved properties by AL and SCAD penalties

Although glasso can achieve sparsity for the estimated precision matrix, it pro-

duces substantial biases. However, improvements can be achieved by the two newly

proposed penalties, the AL penalty and the SCAD penalty, which achieve the fol-

lowing three desirable properties simultaneously:

1. sparse estimations

2. consistent model selections

3. unbiased estimates for large coefficients

Necessary conditions can be found in Fan and Li [2001] for any penalty functions

that achieve the above three properties.

The optimal estimate of Ω by AL, along a given regularization path, is denoted

by Ω̂AL and the best SCAD estimate is denoted by Ω̂SCAD.

2.4.2 Adaptive Lasso

The AL assigns various weights to each Ω element, which depend on the mag-

nitude of elements of a particularly chosen consistent estimate Ω̂. Here the larger

the element the smaller the weight. Thus essentially the AL is a properly weighted

version of glasso.

After applying the AL penalty, mathematically the penalized log-likelihood be-

comes

max
Ω

logdetΩ− tr(SΩ)−ρ
p

∑
i=1

p

∑
j=1

ωi j
(|ωi j|

)
, (2.12)

where wi j is the adaptive weight function (penalty function) and ω̂i j is an estimate

for Ω(i, j). Fan et al. [2009] defined the adaptive weights to be

wi j = 1/|ω̃i j|γ (2.13)
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for some tuning parameters γ > 0, where ω̃i j is the (i, j)th entry for any consistent

estimate Ω̃ = (ω̃i j)1≤i, j≤p.

AL has good asymptotic properties. Fan and Li [2001] showed the following

oracle property of AL:

1. Asymptotically, the estimate Ω̂ of Ω has the same sparsity pattern as Ω.

2. The nonzero entries in Ω̂ are
√

n-consistent and asymptotically normal.

[Fan et al., 2009, Theorem 5.3] showed that when
√

nρ = Oρ(1) and ρ
√

naγ
n →

∞, the above oracle property is achieved by the AL penalty with weights being

(2.13) for some γ > 0 and any estimate Ω̃ = (ω̃i j)1≤i, j≤p that is an-consistent, i.e.

an(Ω̃−Ω) = Oρ(1).

2.4.3 SCAD penalty

By applying the approach of local linear approximation (LLA, Zou and Li

[2008]) to the SCAD penalty, the original nonconcave penalized log-likelihood

is transformed into a series of weighted Lasso penalized log-likelihood problems,

where the weights are controlled by the derivative of the SCAD penalty function.

Thus, optimizing the penalized log-likelihood subject to a positive definite Ω can

be nicely solved by our efficient first algorithm glasso iteratively. Consequently, the

bias is well controlled without losing computational efficiency.

Mathematically, the SCAD penalty is symmetric and a quadratic spline on [0,∞),

whose first order derivative is

SCAD′
ρ,a(x) = ρ

(
I (|x| ≤ ρ)+

(aλ −|x|)+
(a−1)ρ

I (|x|> ρ)
)
, (2.14)

for x ≥ 0, where I is an indicator function, with ρ > 0 and a > 2 being two tuning

parameters. If a = ∞, (2.14) becomes the Lasso penalty.

Applying the SCAD penalty, the log-likelihood (2.2) becomes

max
Ω

logdetΩ− tr(SΩ)−
p

∑
i=1

p

∑
j=1

SCADρ ,a
(|ωi j|

)
, (2.15)
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where we use ρi j = ρ for convenience.

For SCAD, the original penalized log-likelihood (2.15) is iteratively optimized.

In each step, in order to take the advantage of glasso, the SCAD penalty is locally

linearly approximated (LLA). By the Taylor expansion, for any ω0, pρ(|ω|) can be

approximated in a neighborhood of |ω0| by

pρ(|ω|)≈ pρ(|ω0|)+ p′ρ(|ω0|)(|ω |− |ω0|), (2.16)

where p′ρ(|ω |) = ∂
∂ω pρ(ω). Note that (2.16) is nonnegative for ω ∈ [0,∞).

At step k, denoting the glasso estimated precision matrix by Ω̂(k)
G , the penalized

log-likelihood is up to a constant,

max
Ω

logdetΩ− tr(SΩ)−
p

∑
i=1

p

∑
j=1

p
′
ρ(|ω̂(k)

i j |), (2.17)

where ω̂(k)
i j is the (i, j)-element of Ω̂(k)

G . glasso can solve the above function effi-

ciently that lead to sparse solutions.

For SCAD, an estimated zero in Ω̂ in one step does not necessarily mean it is a

zero in the next iteration step, whereas for AL, zero estimates will remain zeros for

in each iteration step, hence the initial value is always denser the estimates.

[Fan et al., 2009, Theorem 5.1] showed that for a differentiable concave penalty

function on [0,∞), the penalized log-likelihood function monotonically increases

with iteration indexes by LLA algorithm, which is the aforementioned algorithm

applied to the SCAD penalty when maximize the penalized log-likelihood itera-

tively.

[Fan et al., 2009, Theorem 5.2] showed that when ρ → 0 and
√

nρ → ∞ as

n → ∞, the oracle property of AL estimates in Subsection 2.4.2 also holds for the

SCAD estimate Ω̂SCAD which optimizes (2.15).
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2.4.4 Summary and comments

The AL and SCAD penalties are considered improvements over the Lasso penalty.

AL and SCAD can achieve sparse estimates, consistent model selection and unbi-

ased estimates simultaneously, some of are not achieved by glasso. However, the

basic yet fast glasso algorithm can still be applied to AL and SCAD penalties to

estimate sparse Ω conveniently, as long as the SCAD penalty is locally linearly

approximated.

2.5 DP-glasso

2.5.1 Background

As already noted, glasso is a popular and efficient algorithm for estimating undi-

rected graphs. However, glasso operates on the dual problem of (2.5) with the target

estimation matrix being the covariance matrix Σ, rather than the primal problem it-

self, which results in many undesirable outcomes. Consequently, Mazumder and

Hastie proposed a new method called DP-glasso in Mazumder and Hastie [2012b],

which also operates by block coordinate descent, yet directly solves the primal

problem whose optimized matrix is the precision matrix Ω, not the covariance ma-

trix. Several advantages come from this new algorithm. Additionally, a R package

called dpglasso allows us to implement this algorithm, and compare it with the

other existing methods.

In the glasso package, the input regularization parameter ρ can be a scalar and

a matrix, thus the AL and SCAD methods can be implemented easily by glasso.

However, unlike glasso, the regularization parameter required by dpglasso pack-

age has to be a scalar (matrices unallowed), which means the AL and SCAD cannot

take advantage of DP-glasso algorithm directly. Therefore, under the constraint of

inputting ρ , in order to see the improvements for AL and SCAD by the DP-glasso

algorithm, we use the DP-glasso estimated precision matrices as initial values for

AL and SCAD, while the glasso() function is used in inner steps of AL and SCAD,

leading to another two evolved algorithms, called DP-AL and DP-SCAD. For BG,
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dpglasso() is applied in every step where estimating precision matrices is needed,

resulting in another algorithm DP-BG.

2.5.2 Algorithm and properties

The algorithm of DP-glasso ([Mazumder and Hastie, 2012b, Algorithm 3]) is as

follows:

Step 1 Initialize Ω = diag(S+ρI)−1.

Step 2 Cycle around the columns repeatedly, performing the following steps till

convergence:

Step 2-1 Rearrange the rows/columns so that the target column is last (implic-

itly).

Step 2-2 Solve (2.18) for γ̃ and update

Ω̂12 =−Ω11(s12 + γ̃)/w22,

min
γ∈Rp−1

1

2
(s12 + γ)′Ω11(s12 + γ); subject to ‖γ‖∞ ≤ ρ ,

(2.18)

where Ω11 is the left top part of the partition of Ω:

Ω =

(
Ω11 Ω12

Ω21 Ω22

)
(2.19)

Step 2-3 Solve for ω22 using

Ω̂22 =
1− (s12 + γ̃)′Ω̂12

w22
. (2.20)

Step 2-4 Update the working covariance w12 = s12 + γ̃ .

We denote the precision matrix estimated by DP-glasso as Ω̂DP.



21

By using DP-glasso, the primal optimization problem (2.5) is tackled and the

precision matrix Ω becomes the target now. Unlike glasso, DP-glasso returns a

sparse and positive definite estimated precision matrix even if the row/column up-

dates are mistakenly stopped early. The precision matrix Ω is assured to be positive

definite after every row/column iteration. For warm starts of DP-glasso, as shown

in [Mazumder and Hastie, 2012b, Lemma 4], by starting the DP-glasso with a pos-

itive definite matrix Φ, every row/column iteration of the working precision matrix

is positive definite, or DP-glasso will certainly converge from any positive definite

warm start, thanks to the unconstrained primal problem (2.5).

The working covariance matrix obtained by DP-glasso is not necessarily the ex-

act inverse of the precision matrix. For large regularization values, similar compu-

tational time is consumed by the glasso and DP-glasso algorithms. For smaller reg-

ularization parameters, DP-glasso is more appealing. For DP-glasso, O(p(p− k))

operations per full cycle is needed, where k is the number of non-zeros in Ω̂. How-

ever for glasso, the consumption is O(p2) per cycle.

For DP-glasso, in every row/column updates, varying number of updates are

demanded in order to converge. Thus it is difficult to analyze every factor and

conclude accurate convergence rates for the overall algorithm. However, Mazumder

and Hastie have observed that with warm starts, along a relatively dense series

of ρs, the computation costs given above are pretty much accurate for DP-glasso,

especially when small/moderate accuracy is of interest.

By the experiments of Mazumder and Hastie [2012b], the DP-glasso with warm-

start outperforms all the other combinations, including DP-glasso with cold start,

glasso with warm start and glasso with cold start, across all the different simula-

tions. For example, the simulation study included eight p > n scenarios, with two

types of covariance structures respectively. More specifically, large regularization

parameters lead to faster convergence, while smaller ρs will slow down the conver-

gence. For large p small ρ cases, algorithms converge slowly. Additionally, warm

starts are not always helpful to accelerate the convergence of glasso, which may

further affirm that the warm starts for glasso should be chosen cautiously to speed

up convergence.
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2.5.3 Summary and comments

The newly developed algorithm DP-glasso is similar to our first approach glasso,

except its optimization variable is the precision matrix and it deals with the primal

problem rather than the dual problem. Additionally, starting with any positive def-

inite matrices, DP-glasso will produce sparse and positive definite precision ma-

trix estimates. However, for neither glasso nor DP-glasso, one member of the pair

(Ω,Σ) is not the inverse of the other. Moreover, not only theoretically but also ex-

perimentally, it has been shown that DP-glasso is computationally more efficient

than glasso.

2.6 High-dimensional Undirected Graph Estimation

(Huge)

2.6.1 Background

The Huge approach employed many suggestions from Friedman et al. [2007],

Friedman et al. [2008] and Friedman et al. [2010], which aims at high-dimensional

undirected graph estimation and integrates many functions together, such as data

generating, graph estimation, model selection, estimation visualization, etc. More

specifically, it merges many up-to-date proposals and results, such as nonparanor-

mal and correlation screening approaches for estimating graphs (Liu et al. [2009]

and Fan and Lv [2008]), as well as the StARS approach for stability-based graph-

ical model selection (Liu et al. [2010]), etc. Additionally, two screening rules are

offered, lossless screening (Witten et al. [2011] and Mazumder and Hastie [2012a])

and lossy screening. The method Huge we use comes from an R package, called

’huge’.

2.6.2 Features and properties

The following features are provided by huge:
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1. The package huge is coded in C, which makes the code more portable and

easier to modify, rather than in Fortran, which glasso was coded in.

2. Besides estimating Gaussian graphical models, huge can also fit high-dimensional

semiparametric Gaussian copula models.

3. More functions are included in huge besides graph estimation, such as data

generator, model selection, neighborhood screening and graph visualization,

etc.

4. A minor divergence problem in glasso R package was fixed, regarding to

warm start settings.

5. huge offers two screening rules to scale up large scale problems, making a

tradeoff between computational and statistical efficiency.

The optimal estimated Ω̂ by huge, along the given regularization parameter path, is

denoted by Ω̂Huge.

Many functions are provided in the package huge. The first, huge(), is used

to estimate high-dimensional undirected graphs and the second, huge.select(),

selects the best estimated graph along the whole regularization path, based on three

embedded selection criteria, namely ric, ebic and stars.

Three graph estimation methods are available in huge(): the Meinshausen-

Bühlmann approximation (mb) (see Meinshausen and Bühlmann [2006]), the Graph-

ical Lasso algorithm (glasso) (Friedman et al. [2008] and Banerjee et al. [2008]),

and the correlation thresholding graph estimation (ct). In addition, the first two

methods can be further speeded up by the lossy screening rule which prechooses

each variable’s nearby variables by correlation thresholding before graph estima-

tion (via scr argument in huge()) , and the third method is computational efficient

and has been widely used in biomedical research Langfelder and Horvath [2008].

The function huge.select() selects the best estimate of the high-dimensional

undirected graph, via three regularization parameter selection criteria: the stabil-

ity approach for regularization selection (StARS) (Liu et al. [2010]); a modified
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rotation information criterion (RIC) (Lysen [2009]); and the extended Bayesian in-

formation criterion (ebic) (Foygel and Drton [2010]). The detailed properties of

these three selection criteria will be discussed in Chapter 3.

huge.npn() applies the nonparanormal method in Liu et al. [2009] for estimat-

ing a semiparametric Gaussian copula model by truncated normal or normal score.

It implements Gaussianization to Xn×p to help relax the normality assumption.

2.6.3 huge computational requirements

Based on the simulation results in [Zhao et al., 2012, Table 1 and Table 2] (with

sample sizes and dimensions being (n, p)∈{(100,1000),(150,2000),(200,3000),(300,4000)}),

the authors found that for Meinshausen-Bühlmann approximation (mb), huge is

faster than glasso, also the lossy screening rule in huge can accelerate the com-

putation up to 400%. Specifically, after applying lossy screening rule, each Lasso

problem with dimension p is reduced to its sample size n, thus leading to greater

efficiencies for p � n cases. With Graphical Lasso (glasso) being the method ar-

gument, the computation is reduced a lot by the lossless screening rule (Witten et al.

[2011] and Mazumder and Hastie [2012a]) provided by huge, especially when the

estimator is very sparse. In addition, the lossy screening rule can also accelerate the

algorithm.

2.6.4 Expectations for huge

Therefore we have the following expectations for huge based on the above proper-

ties:

1. less time consumed than the glasso package even without applying lossy

screening rule (at least for p � n scenarios )

2. it may suffer from overselected or underselected results due to the defects of

ric, ebic and stars.
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Chapter 3

Selection Criteria

All the methods used in this work are penalized log-likelihood methods, which

require regularization parameters to control the sparsity of the precision matrix.

However, it is unknown which value of the regularization parameter is optimal to

give the best estimate. Hence, we use several selection criteria to choose the opti-

mal regularization parameter among all the possible values for each method under

each graphical structure setting. The selection criteria AIC, BIC and 5-fold Cross

Validation are applied to the methods glasso, BG, AL, SCAD, DP-glasso, DP-BG,

DP-AL and DP-SCAD. For the method Huge, we apply criteria ric (rotation in-

formation criterion, Lysen [2009]), ebic (extended Bayesian information criterion,

Foygel and Drton [2010]) and stars (stability approach for regularization selection,

Liu et al. [2010]) which are embedded in the package huge.

3.1 Selection criteria for all methods other than Huge

3.1.1 Akaike information criterion (AIC)

The AIC formula is

AICρ = 2k−2ln(L) , (3.1)
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where 2k is be the number of non-zeros in Ω̂ and ln(L) is the log-likelihood, namely

(2.5) without the penalized term ρ‖Ω̂‖1. The regularization parameter correspond-

ing to the minimum AIC value reports the best estimation selected by AIC.

AIC has the asymptotic optimality property (under the average squared error

loss) for regression, that is, if the true model is not contained in the estimating mod-

els, and if the number of same-dimensional models does not grow fast in dimension,

then the average squared error of the AIC-selected model is asymptotically equiv-

alent to the smallest error among all candidate models can possibly provide (e.g.

Shibata [1983], Li [1987], Polyak and Tsybakov [1990], Shao [1997] and Yang

[2005]). However, AIC cannot choose models consistently.

Hereafter, let ρa denote the optimal regularization parameter selected by AIC.

3.1.2 Bayesian information criterion (BIC)

The formula for BIC is

BICρ = k · ln(n)−2ln(L) , (3.2)

where n is the sample size, 2k is be the number of non-zeros in Ω̂ and ln(L) is the

log-likelihood (Schwarz [1978]). The minimum BIC value reports the best ρ who

gives the optimal estimate selected by BIC.

The assumptions of BIC are that observations should be independent and identi-

cally distributed (Schwarz [1978]). BIC consistently selects regression models, that

is, if the true model is among the estimating regression models, the probability of

selecting the true model by BIC approaches 1 as n → ∞ (Nishii [1984]). For linear

regression models, due to the heavier penalty, the model chosen by BIC is either

the same or simpler than that chosen by AIC (Shao [1997]).

Hereafter, let ρb be the optimal regularization parameter selected by BIC.
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3.1.3 K-fold Cross Validation (CV)

The K-fold Cross Validation score

CV(ρ) =
K

∑
k=1

(
nk log |Ω̂−k (ρ) |− ∑

i∈Tk

(
x(i)

)T
Ω̂−k (ρ)x(i)

)
(3.3)

is addressed in [Fan et al., 2009, pp527], where nk is the size of kth fold Tk and

Ω̂−k (ρ) is the estimate based on the sample
(⋃K

k=1 Tk
)\Tk (the training data). The

minimum CV value reports the ρ providing the best estimate selected by cross

validation. In our work, we use 5-fold Cross Validation to choose the optimal regu-

larization parameter (different from the 6-fold cross-validation scheme used in Fan

et al. [2009]).

Asymptotically, minimizing AIC is equivalent to minimizing CV, which is true

for any model, not just linear models (Stone [1977]). Generally, Cross Valida-

tion does not select models consistently (Shao [1993]). Cross Validation performs

poorly for high-dimensional data, sometimes dramatically ([Meinshausen and Bühlmann,

2010, P21]).

Hereafter, let ρc be the optimal regularization parameter selected by Cross Val-

idation.

3.2 Selection criteria for Huge

The function huge.select() (Zhao et al. [2012] and Zhao et al. [2014]) pro-

vides three selection criteria to choose the best estimation by the method Huge,

including ric, ebic and stars.
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3.2.1 ric

ric is a newly developed and very efficient selection criterion. It directly es-

timates the best ρ based on some random rotations rather than finding the best ρ

over the whole regularization path by some time consuming techniques such as

cross validation or subsampling. More specifically, the variables for each sample

are randomly rotated several times so that the minimum ρ which generates all zeros

estimated by using the rotated data will be selected.

Thus far, there is no theoretical proof for the consistent selection by ric. Also, ric

suffers from overselection and especially underselection frequently. Hence, there

is a suggestion in [Zhao et al., 2014, pp17] that if desirable false negative levels

(few missing selections) are expected, then the number of rotations for ric should

be raised, or stars should be applied to make the selection. Moreover, ric is available

for all three estimation methods provided by huge.

3.2.2 ebic

ebic is also denoted as BICγ , where 0 ≤ γ ≤ 1 is called the ebic parameter.

The original BIC is equivalent to BIC0 (γ = 0). γ is the input ebic.gamma in the

function huge.select() which can be tuned accordingly. γ = 0.5 is set as default

in huge.select() and all our simulation results for ebic criteria stick to this value.

It has been shown in Chen and Chen [2008] that BIC1 (γ = 1) is consistent as

long as the dimension p does not grow exponentially with the sample size. BIC0.5

(γ = 0.5) is consistent when κ < 1 and p = O(nκ); the original BIC (BIC0) is con-

sistent when κ < 0.5. [Foygel and Drton, 2010, Main Theorem] showed, under

certain conditions ([Foygel and Drton, 2010, (3)]), that if ebic is applied to all de-

composable models containing the true model, then the probability of choosing the

smallest true model tends to one as the sample size tends to infinity. Non-zero en-

tries are easily discovered for small γs, while false discoveries are better controlled

for larger γs. In huge, glasso is the only available estimation method for ebic.
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3.2.3 stars

stars selects the best estimated graph by similar techniques to subsampling so it

is not very efficient. Under certain regularity condition, stars is shown to be partially

consistent. This criterion suffers from the problem of overselection in estimating

Gaussian graphical models while its performance also depends on the regularization

parameters used. Moreover, stars can be used for all three estimation methods in

huge, which are Meinshausen-Bühlman approximation (mb), glasso (glasso) and

correlation thresholding estimation (ct).
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Chapter 4

Simulations

There has been many theoretical conclusions about the estimating methods and

the selection criteria described in Chapter 2 and Chapter 3. However, not all of them

has experimental results and, more importantly, they have never been compared

together under different model settings. Our work organizes all these methods and

criteria together and compare their performance under various model dimensions,

sample sizes and underlying distributions, etc. Even datasets with autocorrelation

structure are included in our analyses. The next section explains the procedure of

our simulation. Section 4.2 introduces the evaluation standards for comparing the

estimating methods and selection criteria. Moreover, many important details about

our simulation are elaborated in Section 4.3.

4.1 The procedure of simulation

We list the basic procedure of simution below in order to help a better under-

standing of our work:

Step 1 Generate the original dataset Xn×p (or a real dataset Xn×p).

Step 2 Fix 100 equally spaced regularization parameters ρ ∈ (0.01,1] and ρi =

i×0.01, i = 1, . . . ,100.



31

Step 3 Apply each estimating method to Xn×p and obtain 100 estimated matrices

Ω̂Mq(ρ1),Ω̂Mq(ρ2), ...,Ω̂Mq(ρ100) (4.1)

corresponding to 100 regularization parameters ρ1, ...,ρ100. In (4.1), Mq denotes

the qth estimating method. For example, M1 denotes the sample correlation ma-

trix method, M3 represents the glasso algorithm, M4 denotes the bootstrap glasso

algorithm and so forth. Then, Ω̂Mq(ρi) denotes the precision matrix estimated by

method Mq with regularization parameter ρi, i = 1, ...,100, q = 1, . . . ,11. For ex-

ample, Ω̂M3
(ρ2) represents the best estimated precision matrix estimated by glasso

when the regularization parameter is 0.02.

Step 4 For each method Mq, q = 1, . . . ,11, let C1, C2, C3, C4, C5 and C6 denote

the selection criteria AIC, BIC, CV, ric, ebic and stars, respectively.

Step 5 Apply different selection criteria Cc, c = 1, . . .6 to the estimated matrices

Ω̂Mq(ρ1), Ω̂Mq(ρ2), ..., Ω̂Mq(ρ100) in Step 2, choosing the estimate which minimizes

the selection criteria formula. Let Ω̂Cc
Mq
(ρi) denote the precision matrix estimated

by method Mq and selected by Cc criterion when the regularization parameter is

ρi. Then, ρ(Mq �Cc) denotes the best regularization parameter among ρ1, ...,ρ100,

i.e. Ω̂Cc
Mq
(ρ(Mq �Cc)) is the best estimate produced by estimating method Mq and

selected by criterion Cc.

Step 6 For each method Mq, q = 1, . . . ,11, use ρ(Mq �Cc) to re-estimate the pre-

cision matrix for the original dataset. Then, the resulting estimated precision matrix

Ω̂(Mq �Cc) is considered to be the best estimate for estimating method Mq and se-

lection criterion Cc.

Step 7 For each method Mq and selection criterion Cc, repeat the above selec-

tion and re-estimating procedure L times. Then, we get L best estimated precision

matrices for each combination of estimating method and selection criterion.



32

Step 8 Use these L estimated precision matrices to evaluate the performance of

estimating methods and selection criteria.

4.2 Evaluation Standards

All the estimated precision matrices are compared under three evaluation stan-

dards. The first two standards called True Positives (TPs) and True Negatives (TNs)

are numeric, measuring the estimation accuracy. The third standard, called the Av-

erage Sparsity Pattern Plot (ASP), is a plot that provides a visually depiction of

the sparsity levels of the estimated matrices. Our definitions of TPs and TNs are

different from the definitions used in Fan et al. [2009] and may lead to different

conclusions. In the mean time, our definition of ASP is adapted from Fan et al.

[2009].

4.2.1 True Positives

Our definition of the True Positives (TPs) is

TP =

(
∑L

l=1

(
∑1≤i, j≤p,i �= j Ωt p

l (i, j)
))

/L
N2 − p

, (4.2)

where L is the repetition time and N2 is the number of non-zeros in the true precision

matrix. The True Positives Matrix Ωt p
l for the lth repetition is defined by

Ωt p
l (i, j)�

⎧⎨⎩1, if Ω(i, j) �= 0,Ω̂l(i, j) �= 0,

0, otherwise,
, (4.3)

where Ω̂l is the estimated precision matrix in the lth repetition.

The definition of the True Positives Matrix indicates that for each repetition,

if both the true and estimated entry in (i, j)th position are non-zeros, the (i, j)th

entry of the True Positives Matrix will be defined as 1, otherwise it is 0. Thus each

True Positives Matrix Ωt p
l records whether each non-zero true entry is successfully
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detected in each repetition, for each method and selection criterion. Note that(
L

∑
l=1

(
p

∑
i, j=1

Ωt p
l (i, j)

))
/L (4.4)

is the percentage of estimating each non-zero entry correctly over all repetitions.

For example, if the (i, j)th entry of (2.7) is 0.85, then 85% of the time among all the

repetitions the (i, j)th non-zero entry is estimated as non-zero. Consequently, TP is

a number between 0 and 1 and reflects the average proportion of how many times

each estimated precision matrix estimates non-zero entries correctly.

The larger the TP, the better the method. TP = 1 means that all the non-zero

entries in Ω were estimated as non-zeros in every repetition. TP = 0 indicates

that none of the real non-zero entries were estimated correctly (all of them were

estimated as zeros in every repetition). TP �= 1 indicates some non-zero entries are

wrongly estimated as zeros, or from a graphical model perspective, that some edges

are missing in the estimated graphs. Generally, the larger the TP is, the estimates

are closer to the truth, and the estimated graphs (matrices) are denser.

4.2.2 True Negatives

The second standard True Negatives (TNs) is defined similarly by

TN =

(
∑L

l=1

(
∑p

i, j=1 Ωtn
l (i, j)

))
/L

N1
, (4.5)

where N1 is the number of zeros in Ω. The True Negatives Matrix Ωtn
l for the lth

repetition is defined by

Ωtn
l (i, j)�

⎧⎨⎩1, if Ω(i, j) = Ω̂l(i, j) = 0,

0, otherwise,
. (4.6)

Similar to the True Positives Matrix, the True Negatives Matrix marks down

whether each zero entry in Ω is successfully estimated to be zero. TN tells us how

often zero entries are estimated as zeros. TN is also a numeric value between 0
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and 1, with higher values indicating a better method. For example, TN = 0.87

indicates that on average, 87% of the zero entries were estimated as zeros among

all repetitions. TN �= 1 means that some zero entries are estimated as non-zeros, or

that there are some mistakenly added edges in the estimated graphs. Thus typically,

larger TN means sparser estimated graphs (matrices).

4.2.3 Average Sparsity Pattern Plot

The Average Sparsity Pattern (ASP) Plot is obtained by plotting the Overall

Average Sparsity Matrix ASPp×p. For each i, j = 1, ..., p, ASP(i, j) is defined by

ASP(i, j) =
∑L

l=1 ASPl(i, j)
L

, (4.7)

and the Average Sparsity Matrix ASPl(i, j) of the lth repetition is defined by

ASPl(i, j)�

⎧⎨⎩1, if Ω̂l(i, j) �= 0

0, otherwise,
, l = 1, . . . ,L. (4.8)

Hence, the Overall Average Sparsity Matrix shows the percentage of times each

element is estimated as non-zero among all the repetitions. We plot this matrix in

Matlab, leading to our Average Sparsity Pattern Plot, with each rectangular area

corresponding to an element of the ASP matrix. The larger the ASP value is, the

darker the corresponding rectangular area becomes. So, the denser the estimated

precision matrices are, the darker the Average Sparsity Pattern Plot is. This is an

intuitive and clear way to show the overall sparsity levels of the precision estimates.
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4.3 Simulation details

4.3.1 Settings for the estimating methods

4.3.1.1 Parameters of BG

When comparing BG to other estimating methods, we fix the number of resam-

ples to be 50 and the threshold value πthr = 0.9.

4.3.1.2 Parameters and initial values of AL

We use γ = 0.5 in the AL penalty (2.12) in all our simulations, which is the same

as the choice in Fan et al. [2009]. They recommended γ = 0.5 because according

to their numerical experience, there are no obvious differences among estimates by

different γ .

Since the initial values of the AL penealty need to be any consistent estimates,

in our simulations, we choose the glasso estimated precision matrices Ω̂G to be its

initial values, which means Ω̃ = Ω̂G and ω̃i j = Ω̂G(i, j), 1 ≤ i, j ≤ p in the AL

penalty (2.12). More specifically, Fan et al. [2009] pointed out that Ω̃ can be the

inverse sample covariance matrix S−1 in the low dimensional cases (p < n). Ω̂G

can be the candidate in the high dimensional cases (p ≥ n). However, S−1 might

be inconsistent if p increases in pace with n. Thus we choose Ω̂G to be our initial

matrices for AL in all our cases. This requirement for a consistent initial value is

one of the drawback of AL.

The R package glasso makes it is convenient to implemente the AL algorithm.

In our simulations, we get the Adaptive Lasso penalty matrix for each ρ first, which

contains the penalties for all the elements of the Ω, then apply this penalty matrix

as the rho argument in the package glasso to conduct the estimations by the AL

method. The following estimation procedures are the same as glasso, including

estimating and selecting as well.
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4.3.1.3 Parameter and initial values of SCAD

In order to minimize the Bayes risk, a = 3.7 was recommended in Fan and

Li [2001], which will also be used in all our simulations. The glasso estimated

precision matrices Ω̂G is employed to be the initial value of iterations for SCAD in

our simulations.

The estimation by SCAD can also take the advantage of the package glasso. In

our simulations, we obtain the SCAD penalty matrix for each ρ first, also set it as

the rho argument in the package glasso. Then we choose the best ρ that minimize

the selection criteria and use this optimal ρ to iteratively obtain new estimated pre-

icision matrices by using the glasso estimated precision matrices Ω̂G as the initial

value to get the new penalty matrix and the re-estimated precision matrices itera-

tively. We stop the iterations when the differences of the sum of the absolute values

between the next two estimated precision matrices are less than a threshold, which

we set it to be 1e−04.

4.3.1.4 Settings for Huge

In the package huge, the function huge() only estimates the graphs along the

whole regularization path without selecting the optimal estimate, while the function

huge.select() helps to pick out the best estimate among all the results provided

by the regularization parameters.

In the function huge(), we choose glasso in the method argument and set

scr = FALSE, indicating that we use the glasso algorithm to estimate graphs and

the lossy screening rule will not be applied to preselect the neighborhood before

graph estimation. After implementing the function huge(), an object with the S3

class will be returned, named Results huge for example, containing values includ-

ing icov, a list of p× p estimated precision matrices corresponding to the regular-

ization path, and loglik, a length(ρ) dimensional vector containing log-likelihood

values along the regularization path and so on.

To implement huge.select(), its first argument is required to be an S3 class

object. Thus we set it to be the returned value Results huge from huge(). Accord-
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ingly, this means we use the selection function huge.select() to pick the best esti-

mate among all the estimates obtained by the estimating function huge() along the

regularization path. All three criteria (ric, ebic, stars) provided by huge.select()

will be applied in our simulation. Afterwards, $opt.icov shows the optimal esti-

mated precision matrices by the Huge algorithm, corresponding to each selection

criterion (ric, ebic, stars).

Additionally, we also study the effect of the nonparanormal transformation

function huge.npn() provided in the package huge, which relaxes the assumption

of the normal distributions of the given datasets. Thus we apply this function to

our t-distributed datasets first in both low and high dimensions, and then let all the

combinations operate on the transformed datasets to see how this function works

practically, which is expected to improve the estimates for the non-normally dis-

tributed datasets

4.3.2 Settings for the data samples

The repetition time N is fixed to be 100 in all our simulations. To be specific, we

apply each combination of estimating method and selection criteria under each sim-

ulation scenario to 100 datasets, and then observe how the combinations perform

on average based on the 100 repetitions.

In order to reveal the differences between the combinations better, we set N =

100 fixed different seeds in R so that in each repetition, all the different combina-

tions operate on the same 100 datasets under each simulatio scenario. In so doing,

the randomness of the data samples is removed and, hence, the differences among

the results only arise from the estimating methods and selection criteria themselves.

4.3.3 Settings for the regularization path

In all our simulations, 100 equally spaced regularization parameters ρs are used,

namely ρ ∈ (0.01,1] and ρi = i×0.01, i = 1, . . . ,100.

The regularization parameters we use in our simulations are all between 0.01

and 1, thus the smallest value we can reach is 0.01 and 1 is the largest. One possi-
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ble drawback of setting ρ ∈ (0.01,1] is that there may exist some smaller ρs (less

than 0.01, e.g. 0.002) that could provide superior estimates than the best estimate

that ρ ∈ (0.01,1] can provide. Another drawback is that our testing regularization

parameters are discrete. Hence, it is also likely that some other ρs which are not a

multiple of 0.01 (e.g. 0.233) could produce better estimates.

Nevertheless, we believe our regularization parameter choices and working pro-

cedures are convincing and the estimating methods are comparable. Although there

are two deficiencies mentioned above, all the methods are applied to the same path

of ρs and they are working under the same level of parameter precision and carry-

ing out the same operations. Also, our working regularization parameters lie in a

relatively dense and pretty wide range, which makes the results more meaningful.

4.3.4 Low dimensional simulations

For the low dimensional cases (p = 5), we fix only one true precision matrix Ω,

apply all the estimating methods and selection criteria to various datasets, and see

how they perform to estimate this fixed Ω under different types of data. The true

precision matrix Ω we are going to estimate is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0.6 0.5

0 1 0.4 0 0

0 0.4 1 0 0.6

0.6 0 0 1 0

0.5 0 0.6 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.9)

The various datasets we use in the low dimensional cases include the multi-

variate normally distributed data (the MVN data), the multivariate t-distributed

data with degrees of freedom (df for short) being 3 and 4 (the MVt3 data and MVt4

data), and the multivariate normally distributed data of which every variable has the

AR1 auto-correlation structure (MVN AR1 data). Additionally, we apply the non-

paranormal transformation function huge.npn() in the package huge to the MVt4

data to see how it performs to ease the violation of the normality assumption of the
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datasets. All the datasets are studied in four sample sizes (100,200,500,1000) to

see how the variations of the sample size affect the estimating results.

4.3.5 High dimensional simulations

For the high dimensional cases (p = 30), we study three different true precision

matrices instead of a fixed Ω and evaluate how each combination performs. The

three types of true precision matrices are the tridiagonal matrices, the exponential

decay matrices and the general matrices as is suggested in Fan et al. [2009]. The

detailed schemes of generating these matrices are introduced in the next subsection.

Similarly to the low dimensional cases, for each of the three true Ωs, we apply all

the combinations to the various types of data and then compare the performances

of all the combinations among the various datasets as well as the different Ωs.

The types of the datasets we use for the high dimensional cases are the same as

the low dimensional cases, which are the MVN data, the MVt3 data and MVt4 data,

MVN AR1 data and the transformed MVt4 data (apply to the function huge.npn()).

The only differences are that the datasets herein are of dimension 30 and generated

from three different precision matrices rather than a fixed matrix. In addition, we

fix the sample size n to be 100 for all the high dimensional datasets.

4.3.6 Matrix Generating Scheme and Parameter Choices

For the three Ω in the high dimensional cases, we employ the same matrix

generating scheme as [Fan et al., 2009, 4. Monte Carlo simulation]:

4.3.6.1 Tridiagonal case

The (i, j)th element of Ω is defined to be

ωi j = exp
(−a

∣∣si − s j
∣∣) , (4.10)
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where a is a positive constant and si,s j are random values such that s1 < s2 < · · ·<
sp and

si − si−1
i.i.d.∼ Unif(0.5,1), i = 2, . . . , p. (4.11)

Obviously, larger a will produce smaller off-diagonal elements in Ω.

In the high dimensional case, after trying a number of different values for a, we

found that the value 0.85 is the smallest constant that is able to generate a positive

definite matrix very quickly. In other words, a= 0.85 efficiently produces a positive

definite matrix with the largest entries, or this tridiagonal matrix is on the edge of

satisfying positive definiteness. Thus for the tridiagonal case with dimension being

30, one matrix is generated by setting a = 0.85, whose non-zero entries are between

0.4 and 0.5, with several entries near 0.6. Besides this tridiagonal matrix with

large off-diagonal entries, we also employ another tridiagonal matrix with a = 1.7.

By changing the constant to 1.7, non-zero entries in the precision matrix become

smaller, which are closer to 0.3. The summaries of these two tridiagonal matrices

are given in Table 1and Table 2, respectively.

4.3.6.2 Exponential decay case

No element of the precision matrix is exactly zero, but Ω contains a number

of entries close to 0. The (i, j)th element of the true exponential decay precision

matrix is defined to be

ωi j = exp(−2 | i− j |), (4.12)

which can be extremely small when | i− j | is large.

Since none of the entries of the exponential decay true matrix Ω are exactly

zero, if we don’t apply a threshold to the matrix, TN will be reported to be NA

and TP will be dramatically small as well. This does not effectively reflect the

estimation procedure. Thus we set a threshold of 1e−03 when calculating TP and

TN in this case, but the exact Ω without thresholding is still used to generate the

original dataset. Also in the Average Sparsity Pattern Plots, a threshold is applied

to the true Ω and Ω̂ via different estimating methods. The summary of entries of

the 30-dimensional exponential decay matrix we will use in our simulation is given
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in Table 3.

General matrix case

We generate an upper triangular matrix first. Each element in the upper triangu-

lar matrix is generated uniformly over [−1,−0.5]∪ [0.5,1]. By symmetrizing this

upper triangular matrix, we get a matrix with main diagonals being 0s. We set the

(i, i)th entry in this symmetric matrix to be a multiple of the sum of the absolute

values of the ith row elements. Here we choose a multiple of 2, which is the same

as in Fan et al. [2009], in order to ensure the resulting Ω is positive definite.

For the general case, we also set the threshold to be 1e− 03 when calculating

TPs and TNs, as well as for Average Sparsity Pattern Plots. After thresholding,

most entries in Ω are between 0.1 and 1e− 02, and the second majority of entries

are between 1e− 02 and 1e− 03, while just a small amount of entries are larger

than 0.1. On average, the entries are much smaller than the tridiagonal case and the

summary of its entries is displayed in Table 4.

Summary of entries

The following tables give a summary of the entries of the three precision matri-

ces generated as above.

Table 1: Summary of the entries of the tridiagonal matrix with a = 0.85

smallest largest 0.1 to 1 0.01 to 0.1 less than 0.01

0.431 (except 0) 0.65 0.067 0 0.933

Table 2: Summary of the entries of the tridiagonal matrix with a = 1.7

smallest largest 0.1 to 1 0.01 to 0.1 less than 0.01

0.192 (except 0) 0.425 0.067 0 0.933
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Table 3: Summary of the entries of the exponential decay matrix

smallest largest 0.1 to 1 0.01 to 0.1 less than 0.01

6.47·e−26 0.135 0.067 0.064 0.869

Table 4: Summary of the entries’ absolute values of the general matrix

smallest largest 0.1 to 1 0.01 to 0.1 less than 0.01

1.11·e−16 0.181 0.037 0.726 0.259
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Chapter 5
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Results

5.1 Results for Normally Distributed Data

5.1.1 Low dimensional cases

Table 5: The TPs for the MVN data (p = 5) at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1

PCM 1 1 1 1

glasso 1 1 1 1 1 1 1 1 1 1 1 1

AL 1 1 1 1 1 1 1 1 1 1 1 1

SCAD 0.999 1 0.993 0.995 0.996 0.999 1 1 1 1 1 1

DP

glasso 1 1 1 1 1 1 1 1 1 1 1 1

AL 1 1 1 1 1 1 1 1 1 1 1 1

SCAD 0.999 0.998 0.998 0.996 0.996 0.999 1 1 1 1 1 1

BG

H = 50 1 1 1 1 1 1 1 1 1 1 1 1

DP-boo 1 1 1 1 1 1 1 1 1 1 1 1

Huge

ric 1 1 1 1

stars 1 1 1 1

ebic 1 1 1 1
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Table 5 displays the True Positives (TPs) for the multivariate normally dis-

tributed dataset (MVN data for short hereafter) with dimension p = 5 and four

different sample sizes. From Table 5 we can see that large value non-zero entries

are easily estimated correctly, especially when the sample size n is large, with less

than 1% false detections.

Among all the estimating methods, SCAD is the only method that occasionally

provides zero estimates for non-zero entries for the low dimensional MVN data.

In terms of TPs for the low dimensional MVN data, all the other methods perform

fairly well and all selection criteria perform similarly in their abilities of estimat-

ing non-zeros. In addition, we do not observe obvious improvements for glasso,

AL, SCAD and BG when applying the newly proposed DP-glasso algorithm. For

such a low dimensional case (p = 5), n = 100 should be large enough to estimate

large value non-zero entries. Moreover, increasing sample size does not appear to

improve the estimates.
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Table 6: The TNs for the MVN data (p = 5) at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0

PCM 0 0 0 0

glasso 0.213 0.333 0.335 0.143 0.295 0.242 0.193 0.353 0.249 0.24 0.353 0.25

AL 0.499 0.647 0.678 0.52 0.673 0.649 0.687 0.815 0.73 0.843 0.854 0.843

SCAD 0.708 0.9 0.855 0.75 0.91 0.868 0.937 0.982 0.943 0.955 0.977 0.963

DP

glasso 0.213 0.33 0.335 0.143 0.297 0.245 0.193 0.352 0.248 0.242 0.352 0.252

AL 0.499 0.645 0.678 0.52 0.672 0.648 0.687 0.815 0.73 0.842 0.853 0.842

SCAD 0.708 0.902 0.857 0.755 0.912 0.868 0.937 0.982 0.943 0.955 0.977 0.963

BG

H = 50 0.672 0.858 0.558 0.595 0.836 0.496 0.7 0.877 0.695 0.828 0.893 0.83

DP-boo 0.673 0.858 0.56 0.593 0.837 0.5 0.702 0.878 0.697 0.702 0.878 0.697

Huge

ric 0.252 0.17 0.172 0.175

stars 0.243 0.29 0.353 0.374

ebic 0.4 0.338 0.353 0.374

Table 6 presents the True Negatives (TNs) for the low dimensional MVN data

for all sample sizes. It is clear that the zero entries of the true precision matrix Ω are

much more difficult to estimate than the non-zero entries, even for low dimensional

MVN data with large sample sizes.

Generally, increasing the sample size can effectively enhance the chances of

estimating zeros correctly, especially when the ratio of the sample sizes to the di-

mension is over 100. Among all the estimating methods, the SCAD method has the

strongest power to detect zero entries, especially when the estimates are selected by
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BIC. AL and BG are a little weaker than SCAD. More specifically, BG selects more

zeros than AL when n ≤ 500, while AL starts to outperform BG when the sample

size is greater than 500. glasso is always a lot worse at capturing zero entries than

AL, BG and SCAD. In addition, there appear to be no obvious improvements due

to the application of the DP-glasso algorithm to glasso, AL, SCAD and BG. Huge

becomes better at estimating zero entries when n increases from 200, yet it is still

always worse than glasso. Typically, all estimating methods perform better when

the sample size increases.

The BIC criterion selects estimates with the largest number of correct zero en-

tries for the glasso, BG, AL and SCAD methods (as well as DP-glasso, DP-BG, DP-

AL and DP-SCAD) in almost all situations, with the only exception being glasso

and AL methods at n = 100, where CV selects slightly more zeros than BIC. With

regards to AIC, it always selects less zero entries than BIC and CV for all sample

sizes for glasso, AL and SCAD methods. However, BG behaves differently with

AIC selecting more zeros than CV when n < 1000, while still being much inferior

to BIC.

Generally, the ebic criterion provides the estimates with the most zeros among

all three selection criteria for Huge, which are slightly better than glasso estimates.

There is no noticeable improvements in the TNs of Huge�ric results as sample size

increases. Notice also that the TN decreases when sample size increases from 100

to 200 for Huge�ric. stars is the only criterion in Huge that the TNs increase with

the sample size. Another interesting fact is that stars and ebic have exactly the same

TNs when n ≥ 500. Also they both are greater than the TNs of ric.

To conclude, in terms of TNs, SCAD is the best method compared to glasso,

AL, BG and Huge. AL is regarded as the second best approach if considering

computational time. BG provides competitive estimates to AL, while glasso and

Huge are less effective than other methods. As for selection criteria, BIC selects

the best estimates for glasso, BG, AL and SCAD most of the time (with the most

zero entries). ebic can be considered as the best criterion for Huge. In the view of

combinations of estimating methods with selection criteria, SCAD with any of the

AIC, BIC or CV criterion outperforms all other combinations, except BG�BIC per-
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forms better than SCAD�AIC when n ≤ 200, which is an indication that sometimes

the superiority of a selection criterion can remedy the inefficiency of an estimating

method.

5.1.2 High dimensional cases

In order to better understand the average sparsity pattern (ASP) plots of the

estimates for all methods and selection criteria combinations, we will introduce the

sparsity patterns of the three true precision matrices first.

Figure 2: The sparsity pattern plot of the tridiagonal matrix with a = 0.85 and
a = 1.7

Figure 2 shows the sparsity patterns of the tridiagonal matrices with the constant

a being 0.85 and 1.7 in (2.19). Since the sparsity pattern only measures whether an

entry is zero or non-zero, rather than the exact value, the sparsity pattern plots of

the two tridiagonal matrices (with a being 0.85 and 1.7) are the same.

Figure 3: The sparsity pattern plots of the exponential decay matrix
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Figure 3 corresponds to the exponential decay matrix. If a 1e− 03 threshold

is applied to the original matrix, it indicates that some non-zero entries of the new

metrix are between 0.001 and 0.01. Accordingly, if the threshold is 1e−02, all the

non-zero entries will be larger than 0.01.

Figure 4: The sparsity pattern plots of the general matrix

Figure 4 illustrates the sparsity patterns of the general matrix, where the first

plot has a 1e− 02 threshold and the latter one has a 1e− 01 threshold. Thus the

first plot shows the spread of non-zeros of the general matrix which are greater than

0.01 and the second plot shows where entries > 0.1 are located.

Figure 5: The ASPs of the sample correlation matrix and the sample partial corre-
lation matrix

Figure 5 displays the ASPs of the estimates for the sample correlation matrices

(CM) and the sample partial correlation matrices (PCM), which are identical for all

dimensions, Ω types and sample sizes. Thus we will not show these two ASP plots

for CM and PCM hereafter. It is obvious from Figure 5 that all the entries of the

sample correlation matrices and the sample partial correlation matrices are always
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non-zero, which is a strong reason that these two matrices are improper to be used

as effective estimates of the true precision matrix Ω.
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Figure 6: The ASP plots for the MVN data (p = 30) generated from the tridiagonal
matrix with a = 1.7

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the AIC

criterion. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected

by the BIC criterion. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the CV criterion.
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Figure 6 contains all ASP plots of a MVN data generated from the a = 1.7 tridi-

agonal true precision matrix, corresponding to all the combinations of the estimat-

ing methods and the selection criteria. As can be seen from Figure 6, SCAD�BIC

and SCAD�CV produce the sparsest estimates without losing the true graphical

structure, where nearly 90% of zero entries are successfully captured. BG�BIC

performs slightly worse than the best combinations, which can be regarded as the

second best combination with about 85% correct detections of zeros. AL�BIC,

glasso�BIC, glasso�CV, BG�CV and AL�CV result in denser estimates than the

second best combination with 80% correctly estimated zeros and we see them as the

third best choices to estimate Ω. SCAD�AIC is the only combination that doesn’t

lead to fairly dense estimates among all estimates selected by AIC. AL�AIC results

in much denser estimates than AL�BIC and AL�CV do. Additionally, BG�AIC

and glasso�AIC estimates are too dense to see the true graphical structure, espe-

cially glasso�AIC.

In terms of non-zero estimates, all combinations work well in that they hardly

miss any of the non-zero entries. This may indicate that non-zero entries greater

than 0.19 are large enough to be always sensitively detected by glasso, BG, AL and

SCAD, where 0.19 is the smallest value of the tridiagonal matrix with a = 1.7.

In terms of the estimation accuracies for the DP-glasso algorithm, DP-glasso

performs almost the same as glasso, as does DP-BG and BG , DP-AL and AL,

DP-SCAD and SCAD.

Huge estimates are either excessively dense or excessively sparse. Huge�ebic

shrinks the original entries so much that all of their estimates are zeros, thus it

completely loses the true model structure. Since 0.425 is the largest non-zero en-

try of the tridiagonal matrix, Huge�ebic ASPs show that 0.425 may be not large

enough to be successfully detected by Huge�ebic. Contrarily, Huge�stars produces
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too many non-zero estimates and it is only able to estimate 11.6% of zero entries

accurately, which makes the estimated matrices extremely dense. Huge�ric has a

stronger ability to detect non-zero entries than Huge�ebic and 58.2% of non-zeros

are correctly estimated by it. As can be seen from its ASP, the dark areas in the

first row above and below the main diagonal have actually relatively large non-zero

values (> 0.25). This reflects the fact that Huge�ric has the strongest power of dis-

tinguishing zeros and non-zero entries correctly among all three criteria for Huge.

However, it only has the power to discover relatively large non-zero entries (e.g.

> 0.25) and other smaller non-zero entries (e.g. less than 0.25) are often missed by

Huge�ric, similar to Huge�ebic. More specifically, we find that if an entry is larger

than 0.31, it is very likely that this entry will never be missed by Huge�ric.
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Figure 7: The ASP plots for the MVN data (p = 30) generated from the tridiagonal
matrix with a = 0.85.

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the AIC

criterion. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected

by the BIC criterion. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the CV criterion.
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Figure 7 are the ASP plots of the MVN data generated from the tridiagonal

true precision matrix with a = 0.85. Compared to Figure 6, we found that the

Huge combinations produce the biggest difference of the results between the two

tridiagonal matrices with different as.

For the MVN data generated from the tridiagonal matrix with a= 0.85, we can-

not get estimates of Huge�ric, since there is no return value from this combination

in R, which does not happen to the MVN data generated from the tridiagonal matrix

with smaller entries (a = 1.7). In contrast, the other two Huge combinations, the

Huge�ebic and Huge�stars, provide much better results than the tridiagonal matrix

with a = 1.7, and are able to capture the true graphical structure now. More specif-

ically, the estimation of zero entries of Huge�stars and the estimation of non-zero

entries of Huge�ebic are dramatically boosted, which outperform glasso�AIC/BIC

combinations with Huge�ebic even being competitive with AL combinations. In

other words, if the true precision matrix is on the edge of being positive definite

(containing many large entries and barely satisfying the requirement of positive

definiteness), the Huge combinations will either perform well (such as Huge�stars

and Huge�ebic), providing much better estimates than the true precision matrix

with small entries, or the Huge combination is not able to provide estimates, such

as the Huge�ric. This implies that the level of the positive definiteness (how close

it is to be not positive definite) of the true precision matrix will indeed significantly

affect the estimation of the Huge combinations. More specifically, if a Huge com-

bination can produce estimates, they will be significantly better for a matrix with

larger entries than the matrix with smaller entries. However, in the meanwhile, a

combination is also possibly unable to provide estimates, as a matrix with larger

entries is closer to be not positive definite and cause estimation problems, such as

the Huge�ric combination.

For the glasso, AL, BG and SCAD combinations, all the non-zero entries are

estimated better, while the majority of the zero entry estimates becomes worse than

the tridiagonal matrix with a= 1.7, with only AL�CV, SCAD�BIC, SCAD�CV and

BG�AIC providing better results. This tells us that the stronger true connections are

detected better, but in the meanwhile, there are also more wrongly estimated zero



56

entries for most of the combinations, which implies that even though the entries are

larger, the whole graphical structure is not necessarily to be captured more accurate,

possibly due to the closeness of the true precision matrix being not positive definite.

The DP-glasso algorithm is again only able to slightly improve the estimates,

which means the estimates of DP-glasso, DP-AL and DP-SCAD algorithms are

only slightly better than the glasso, AL and SCAD results. An interesting phe-

nomenon happened to the tridiagonal matrix with a = 0.85 is that the DP-BG algo-

rithm will get stuck after several times of repetition, so that the remaining estima-

tion procedure (other repetitions) can not proceed (but we randomly set the same

seeds in R for all the simulation scenarios). Thus we can see that besides the worse

or better estimates, the closeness to be not positive definite can also result in the

inapplicability of some estimating methods, such as DP-BG.
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Figure 8: The ASP plots for the MVN data (p = 30) generated from the exponential
decay matrix

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the AIC

criterion. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected

by the BIC criterion. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the CV criterion.

Figure 8 are the ASPs of the exponential decay matrix, which are very similar

to tridiagonal case. In the exponential decay matrix, 0.1353 is the only non-zero
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entry that is larger than 0.1. As can be seen from Figure 8, SCAD�BIC, AL�BIC,

BG�BIC, glasso�BIC and SCAD�CV work the best, providing very sparse esti-

mates, with only entries in the first row next to the main diagonal being estimated

to be non-zeros at times, where the real entry is 0.1353. AL�CV, BG�CV and

glasso�CV perform similarly well, leading to slightly denser estimates than the

best combinations, with about 20% of correctly detected non-zeros and nearly

90% detections of zero entries. These methods achieve a pretty good sparsity

level and maintain the true graphical structure, since the majority of the missed

non-zero entries are fairly small ones (e.g. < 0.1). SCAD�AIC is the third best

combination without losing the true structure. AL�AIC estimates are even denser

than the SCAD�AIC results, just about keeping the basic structure. BG�AIC and

glasso�AIC produce pretty dense estimates that lose the actual graphical structure,

especially glasso�AIC.

Thus we can deduce that entries of the order of 0.1 are hard to accurately

estimate using glasso, BG, AL and SCAD, especially when selected by BIC or

CV, which tend to produce sparse estimates. AIC is able to detect non-zero en-

tries around 0.1, however, it provides many unnecessarily estimated non-zeros and

makes the matrices very dense.

Another noticeable fact is that for estimates with many improperly estimated

non-zeros, it seems that the false non-zeros are randomly spread throughout Ω.

Hence, any entry smaller than a threshold (say, 0.08) has an equal chance to be

estimated as zero or non-zero, regardless of its exact difference from the threshold.

Additionally, the DP-glasso algorithm hardly improves the glasso results, as

well as the DP-BG, DP-AL and DP-SCAD methods.

Huge�ebic seriously underselects non-zero entries and leads to the identity ma-

trix being estimated all the time. Huge�ric also suffers from severe underselection

problems, which is slightly better than Huge�ebic with about 3.6% of correct detec-

tions, compared to the zero correct estimates for Huge�ebic. This may confirm the

conclusion we get from the tridiagonal case that 0.1353 is too small for Huge�ebic

and Huge�ric to sensitively detect. Huge�stars suffers from a severe overselection

again, resulting in extremely dense estimates. All Huge estimates lose the true
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graphical structure.
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Figure 9: The ASP plots for the MVN data (p = 30) generated from the general
matrix

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the AIC

criterion. [Middle Panel] The ASP plots of the glasso, BG ,AL, SCAD and Huge estimates selected

by the BIC criterion. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the CV criterion.

Figure 9 corresponds to all the ASPs for the general matrix. Most of the non-

zero entries of this general matrix are less than 0.1 and its largest value is 0.1812,
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and all entries are randomly spread.

Results from the general matrix show very similar conclusions to the expo-

nential decay estimates. Again, SCAD�BIC, AL�BIC, BG�BIC, glasso�BIC and

SCAD�CV provide the sparsest estimates, with around 10% detections of the non-

zeros and 95% for the zero entries, providing non-zero estimates only for the rela-

tively large entries, such as entries larger than 0.1. AL�CV, BG�CV and glasso�CV

lead to slightly denser estimates than the sparsest results, with larger frequencies

of estimating non-zero entries, thus those large values (> 0.1) are estimated cor-

rectly more often. BG�AIC and AL�AIC results are still very dense, yet they are

able to maintain the basic graphical structure, giving about 60% of accurately esti-

mated non-zeros and 50% detections of the zero entries. glasso�AIC estimates are

so dense that the original structure is lost. Additionally, the DP-glasso algorithm

slightly reduces the TPs and TNs over glasso, with decreases in TPs and TNs also

occurring in DP-BG, DP-AL and DP-SCAD.

Huge�ebic and Huge�ric suffer from severe underselections again with only

approximately 2.2% and 3.45% of non-zeros are correctly estimated, respectively.

Nevertheless, almost all zero entries are detected. Huge�stars still greatly overse-

lects non-zeros so that only 10.4% zero entries are correctly estimated. All of them

lose the true model structure.



62

Table 7: The TPs and TNs for the tridiagonal matrix with a = 1.7 for the MVN data
(p = 30)

Ω tri a = 1.7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.995 0.958 0.967 0.172 0.783 0.741

AL 0.983 0.95 0.958 0.452 0.819 0.798

SCAD 0.961 0.915 0.925 0.661 0.908 0.897

DP

glasso 0.995 0.958 0.967 0.172 0.783 0.741

AL 0.983 0.95 0.958 0.452 0.819 0.798

SCAD 0.958 0.915 0.925 0.684 0.908 0.897

BG

H = 50 0.989 0.932 0.962 0.267 0.855 0.756

DP-boo 0.965 0.9 0.948 0.497 0.9 0.799

Huge

ric 0.582 0.998

stars 0.997 0.116

ebic 0 1
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Table 8: The TPs and TNs for the exponential decay matrix and the general matrix
for the MVN data (p = 30)

Ω exp gen

TP TN TP TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 0 1 0

PCM 1 0 1 0

glasso 0.838 0.128 0.235 0.209 0.951 0.877 0.838 0.128 0.235 0.209 0.951 0.877

AL 0.626 0.123 0.219 0.472 0.954 0.893 0.626 0.123 0.219 0.472 0.954 0.893

SCAD 0.428 0.074 0.134 0.692 0.98 0.951 0.428 0.074 0.134 0.692 0.98 0.951

DP

glasso 0.838 0.1278 0.235 0.209 0.951 0.877 0.813 0.105 0.178 0.203 0.947 0.875

AL 0.626 0.123 0.219 0.472 0.955 0.893 0.563 0.101 0.162 0.459 0.953 0.894

SCAD 0.428 0.074 0.134 0.692 0.981 0.951 0.351 0.065 0.097 0.681 0.977 0.949

BG

H = 50 0.731 0.084 0.182 0.295 0.958 0.881 0.577 0.102 0.224 0.509 0.966 0.888

DP-boo 0.577 0.102 0.224 0.509 0.966 0.888 0.521 0.08 0.164 0.498 0.963 0.886

Huge

ric 0.036 0.994 0.035 0.993

stars 0.924 0.098 0.906 0.104

ebic 0 1 0.022 1

Table 7 and Table 8 are the exact TPs and TNs based on the high dimensional

MVN data with n = 100 estimated by each combination, showing the proportions

of correctly estimated non-zero and zero entries, corresponding to different Ωs,

respectively. The TP and TN table of the tridiagonal matrix with a = 0.85 can be

found in the appendix. The tables show consistent conclusions to the ASP plots.

Generally, the larger the TPs are, the darker the ASP plots become and the denser

the estimates are. Similarly, the larger the TNs are, the lighter the ASP plots show

and the sparser the estimates become.
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5.2 Results for t-distributed Data

5.2.1 Low dimensional cases

5.2.1.1 df=3

Table 9: The TPs for the MVt3 data (p = 5) at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1

PCM 1 1 1 1

glasso 0.995 0.995 0.988 0.998 0.998 0.993 1 1 1 1 1 1

AL 0.995 0.99 0.983 0.998 0.998 0.985 1 1 0.998 1 1 1

SCAD 0.99 0.98 0.871 0.99 0.988 0.878 1 1 0.974 0.998 0.998 0.978

new AIC BIC

glasso 0.995 0.993 0.988 0.998 0.998 0.993 1 1 1 1 1 1

AL 0.993 0.99 0.983 0.998 0.998 0.985 1 1 0.998 1 1 1

SCAD 0.96 0.956 0.871 0.964 0.939 0.878 0.999 0.994 0.974 0.985 0.969 0.978

DP

glasso 0.995 0.995 0.988 0.998 0.998 0.993 1 1 1 1 1 1

AL 0.995 0.99 0.983 0.998 0.998 0.985 1 1 0.996 1 1 1

SCAD 0.99 0.98 0.869 0.99 0.985 0.8775 1 1 0.974 0.998 0.998 0.978

BG

H = 50 0.99 0.983 0.985 0.993 0.985 0.993 1 1 1 1 1 1

new A/BIC 0.99 0.978 0.985 0.998 0.99 0.993 1 1 1 1 1 1

DP-boo 0.99 0.99 0.985 0.993 0.985 0.993 1 1 1 1 1 1

Huge

ric 0.747 0.886 0.99 1

stars 0.995 0.998 1 1

ebic 0.995 0.998 1 1
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Table 9 illustrates the TP values for each combination operating on a 5 di-

mensional t-distributed dataset (MVt data for short) with the degrees of freedom

with 3 (MVt3 data for short), at sample sizes from 100 to 1000. As discussed

in the Simulation section, we apply both the wrong and correct log-likelihood

of the t-distribution (corresponding to the multivariate normal distribution and t-

distribution, respectively) to the AIC formula (3.1) and BIC formula (3.2) and pro-

vide in Table 9 both the estimating results using the wrong and correct AIC/BIC

formula. The results using the correct log-likelihood in the AIC and BIC formulae

are denoted as new AIC BIC in Table 9, corresponding to the optimal results of

glasso, BG, AL and SCAD methods selected by the corrected AIC/BIC formula.

It can be seen from Table 9 that though there are decreases in all TPs compared

to the MVN data, most of them still remain at a pretty high level (> 99%), espe-

cially when n ≥ 500. Almost all non-zero entries can be effectively estimated by

any combination. SCAD�CV produces slightly less non-zeros than other combi-

nations of glasso, BG, AL and SCAD. Using the DP-glasso algorithm again does

not affect the estimation results, neither does using DP-BG, DP-AL and DP-SCAD

algorithms.

It is also noticeable that the corrected AIC/BIC formula has the strongest in-

fluence on SCAD in terms of the reductions of its TPs, though not much, 3% for

SCAD�AIC and SCAD�BIC when n = 100, SCAD�AIC when n = 200, as well

as 5% for SCAD�BIC when n = 200, which means the estimates of the non-zero

entries by SCAD is affected most by changing the AIC/BIC formula, especially for

SCAD�BIC.

Compared to the MVN data Huge results, Huge�ric shows the most dramatic

drop of TPs when n ≤ 200. Huge still provides fairly desirable estimates for the

non-zeros in other situations. Also, all three criteria have higher power of de-

tecting non-zeros when the sample size increases. More specifically, Huge�stars

and Huge�ebic have the same ability of estimating non-zeros at all four sample

sizes (100,200,500,1000), with more than 99.5% of the non-zeros detected when

n ≤ 200 Moreover, no non-zeros will be missed when n ≥ 500. Huge�ric has less

power of detecting non-zeros than these two, with 74.7% discoveries of the non-
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zeros when n= 100 and 88.6% when n= 200, 99% when n= 500 and all non-zeros

are revealed when n increases to 1000.
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Table 10: The TNs for the MVt3 data (p = 5) at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0

PCM 0 0 0 0

glasso 0.107 0.177 0.367 0.072 0.145 0.343 0.075 0.157 0.305 0.0583 0.142 0.29

AL 0.273 0.363 0.682 0.213 0.343 0.675 0.24 0.387 0.65 0.25 0.388 0.715

SCAD 0.417 0.592 0.884 0.412 0.567 0.845 0.504 0.643 0.839 0.681 0.746 0.896

new AIC BIC

glasso 0.083 0.23 0.367 0.038 0.115 0.343 0.032 0.083 0.305 0.037 0.0467 0.29

AL 0.297 0.432 0.682 0.203 0.375 0.675 0.208 0.32 0.65 0.252 0.307 0.715

SCAD 0.833 0.895 0.884 0.78 0.921 0.845 0.888 0.963 0.839 0.933 0.963 0.896

DP

glasso 0.107 0.177 0.367 0.073 0.145 0.343 0.075 0.157 0.305 0.058 0.142 0.29

AL 0.273 0.363 0.682 0.213 0.343 0.675 0.24 0.387 0.65 0.25 0.388 0.715

SCAD 0.415 0.592 0.886 0.412 0.566 0.843 0.504 0.643 0.839 0.681 0.753 0.896

BG

H = 50 0.373 0.636 0.508 0.284 0.597 0.463 0.253 0.591 0.421 0.17 0.547 0.416

new A/BIC 0.368 0.72 0.508 0.137 0.522 0.463 0.053 0.302 0.421 0.073 0.116 0.416

DP-boo 0.378 0.642 0.508 0.292 0.597 0.462 0.257 0.59 0.422 0.18 0.553 0.417

Huge

ric 0.67 0.532 0.315 0.198

stars 0.153 0.15 0.217 0.226

ebic 0.28 0.228 0.227 0.226

Table 10 shows the TN values for all estimation combinations corresponding

to the 5-dimensional MVt data with df = 3 (MVt3 data for short). Similar to

the MVN data, the zero entries are harder to estimate accurately than the non-

zero entries, especially compared to the large non-zeros. Moreover, applying the
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estimating methods to a t-distributed dataset will diminish the power of detecting

true zero entries, even for the low dimensional dataset or given a large number of

samples.

Before correcting the AIC/BIC formula, for glasso, AL and SCAD, CV selects

noticeable more zeros than BIC and AIC at all sample sizes. However, for BG, BIC

still selects the most sparse estimates at all sample sizes. Among all combinations,

SCAD�CV is the best at estimating zero entries, leading to over 84% of success-

fully detected zeros when the sample size lies in 100 to 1000. AL�CV and BG�BIC

perform the second best when n ≤ 200 with over 60% discoveries of zeros, while

AL�CV and SCAD�BIC become the second best combinations with about 65%

detections when n = 500 and more than 70% detections when n = 1000. More

specifically, SCAD�BIC outperforms AL�CV when n = 1000, yet it is still worse

than the best combination SCAD�CV. SCAD�AIC can be seen as the third best

choice which has around 40% of correct estimations when n ≤ 200, increasing to

50% and 68% when n rises. glasso�CV, AL�BIC and AL�AIC have 20% to 36.7%

chance of successful detection. Specifically, the TNs for glasso�CV drop as n in-

creases, while the TNs for AL�BIC and AL�AIC decrease when n increases from

100 to 200 and start to increase when n rises from 200 to 1000. Lastly, glasso�BIC

and glasso�AIC are two worst combinations in terms of the TNs, with lower than

17.6% detections for glasso�BIC and lower than 10% for glasso�AIC.

Another interesting fact is that all TNs for the three combinations of BG (BG�AIC,

BG�BIC and BG�CV) decline when the sample size increases. In contrast, there is

not any significant monotone trend for other combinations when n varies.

In addition, the DP-glasso series algorithms (DP-glasso, DP-BG, DP-AL and

DP-SCAD) still have no noticeable effects on glasso series algorithms (glasso, BG,

AL and SCAD).

Using the wrong AIC/BIC formula, which adopts the log-likelihood of the MVN

data, all combinations of glasso, BG, AL and SCAD with the AIC/BIC perform sig-

nificantly worse for the MVt3 data than the MVN data, for all sample sizes. How-

ever, about half of the CV selected estimates contain more correctly estimated zeros

for all sample sizes compared to the MVN data. These estimates are glasso�CV
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and BG�CV at all four sample sizes, AL�CV when n = 100,200 and SCAD�CV

at n = 100. This implies that it is possible for CV to work better when there are

misuses, such as the variations of the distributions of the dataset. This happens be-

cause there is no requirement for any particular distribution of the dataset in CV’s

formula. By contrast, AIC and BIC are based on the exact log-likelihood of the

dataset which is related to the distributions of the dataset. Thus the power of AIC

and BIC are more likely to be affected by the changes of the distributions of the

dataset. Additionally, the SCAD�CV results for the MVt3 data are fairly desir-

able with at least 83.9% correct estimations for the zero entries at any sample sizes,

which means that even if the dataset is not normally distributed and we do not re-

place the log-likelihood of the AIC/BIC formula with the correct one, we can still

obtain satisfying estimates via SCAD�CV.

After modifying the AIC/BIC formula with the correct log-likelihood for the

MVt data, significantly more zeros are correctly estimated by the SCAD combi-

nations (SCAD�AIC, SCAD�BIC and SCAD�CV) compared to the misspecified

AIC/BIC formula. Additionally, the TNs of glasso�BIC at n = 100, AL�AIC at

n = 10,1000, AL�BIC at n = 100,200 and BG�BIC at n = 100 increase as well.

Unexpectedly, less zero entries are correctly estimated for the rest of the combina-

tions and sample sizes.

In conclusion, for the low dimensional MVt3 data, estimates selected by the true

AIC/BIC formula are not necessarily more accurate than using the log-likelihood of

the MVN data, unless we are applying the SCAD method to conduct estimation. In

other words, the corrected estimates are not certainly sparser than the original ones.

When using the correct log-likelihood of the MVt3 data in the AIC/BIC cal-

culations, the majority of the TNs statistics are still worse than the results using

the MVN data log-likelihood. AL�AIC, AL�BIC, glasso�AIC and glasso�BIC

suffer from dramatic deterioration, reducing TNs to less than half from using the

MVN data log-likelihood. The increases of the TNs are very tiny, which appear in

glasso�CV at all four sample sizes, AL�CV when n = 100,200, SCAD�CV when

n = 100, SCAD�AIC when n = 100,200 and SCAD�BIC when n = 200. How-

ever, interestingly, those TN decreases of SCAD are very minor. More specifically,
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SCAD�BIC has the slightest reduction, while SCAD�CV results in the most obvi-

ous deterioration among all three selection criteria for SCAD. This tells us that even

if the dataset is not normally distributed, by adopting the correct log-likelihood for

AIC/BIC, SCAD method can still provide pretty satisfying estimates, especially by

SCAD�BIC, which leads to more than 90% correct detections of the zero entries at

any sample size.

The TNs for the MVt3 data in all four sample sizes for Huge�ric are higher

than them for the MVN data, while there is a decreasing trend as the sample size

increases. Both Huge�stars and Huge�ebic lead to decreases of TNs compared to

the MVN data for all sample sizes. Interestingly, TNs of Huge�stars and Huge�ebic

become exactly the same again when n = 1000, which also happens to them for the

MVN data with p = 5 and n = 1000. In addition, the TNs for Huge�stars slightly

increase with the sample size, while they slightly decrease with the sample size for

Huge�ebic.
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5.2.1.2 df=4

Table 11: The TPs for the MVt4 data (p = 5) at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1

PCM 1 1 1 1

glasso 1 1 1 1 1 1 1 1 1 1 1 1

AL 1 1 1 1 1 1 1 1 1 1 1 1

SCAD 0.995 0.99 0.955 1 0.995 0.965 0.999 0.998 0.985 0.999 0.995 0.994

new AIC BIC

glasso 1 1 1 1 1 1 1 1 1 1 1 1

AL 1 1 1 1 1 1 1 1 1 1 1 1

SCAD 0.983 0.966 0.955 0.986 0.97 0.965 0.991 0.976 0.985 0.991 0.984 0.994

DP

glasso 1 1 1 1 1 1 1 1 1 1 1 1

AL 1 1 1 1 1 1 1 1 1 1 1 1

SCAD 0.995 0.99 0.953 1 0.995 0.968 0.999 0.998 0.985 0.999 0.995 0.994

BG

H = 50 0.998 0.99 1 1 0.998 1 1 1 1 1 1 1

new A/BIC 0.998 0.988 1 1 1 1 1 1 1 1 1 1

DP-boo 0.998 0.99 1 1 0.998 1 1 1 1 1 1 1

Huge

ric 0.884 0.988 1 1

stars 1 1 1 1

ebic 1 1 1 1
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Table 12: The TPs for the MVt4 data (p = 5) at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0

PCM 0 0 0 0

glasso 0.12 0.198 0.376 0.093 0.2 0.34 0.075 0.157 0.3 0.085 0.182 0.258

AL 0.311 0.458 0.662 0.3 0.448 0.688 0.325 0.457 0.678 0.399 0.508 0.693

SCAD 0.493 0.684 0.861 0.505 0.74 0.86 0.655 0.761 0.872 0.832 0.883 0.922

new AIC BIC

glasso 0.107 0.227 0.376 0.048 0.157 0.34 0.045 0.107 0.3 0.075 0.1 0.258

AL 0.334 0.52 0.662 0.28 0.493 0.688 0.313 0.433 0.678 0.393 0.445 0.693

SCAD 0.844 0.942 0.861 0.901 0.969 0.86 0.939 0.99 0.872 0.955 0.995 0.922

DP

glasso 0.12 0.198 0.377 0.093 0.2 0.342 0.075 0.157 0.3 0.087 0.182 0.258

AL 0.311 0.458 0.662 0.3 0.448 0.688 0.325 0.457 0.678 0.4 0.508 0.693

SCAD 0.497 0.684 0.863 0.505 0.74 0.86 0.656 0.761 0.872 0.833 0.883 0.922

BG

H = 50 0.473 0.725 0.548 0.402 0.728 0.474 0.288 0.683 0.458 0.334 0.688 0.458

new A/BIC 0.46 0.78 0.548 0.205 0.69 0.474 0.149 0.509 0.458 0.237 0.383 0.458

DP-boo 0.478 0.725 0.548 0.403 0.728 0.477 0.292 0.678 0.458 0.342 0.69 0.462

Huge

ric 0.555 0.328 0.22 0.163

stars 0.156 0.221 0.243 0.312

ebic 0.301 0.319 0.253 0.312
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Table 11 and Table 12 are the TPs and TNs for the 5-dimensional MVt data

with df= 4 (MVt4 data for short). They have very similar results, as well as almost

the same variation trends, to the low dimensional MVt3 data , thus here we do not

explain them detailedly again. The major differences between the MVt4 data and

MVt3 data are that almost all the TPs and TNs of the MVt4 data are slightly higher

than the MVt3 data for glasso, BG, AL and SCAD methods selected by any of the

three criteria. This means higher estimating accuracies (both non-zeros and zeros)

are achieved by glasso, BG, AL and SCAD when the dataset is t-distributed with

a higher df. This is consistent with the fact that the t-distributions are closer to

the normal distributions as their degrees of freedom increase and these estimating

algorithms are developed based on the normal distributions. However, the TNs of

Huge�ric at all four sample sizes are lower than those of the 5-dimensional MVt3

data. Huge�stars and Huge�ebic show slightly better estimates for zeros and non-

zeros when the degrees of freedom increases, and interestingly, their TNs coincide

again when n = 1000.
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5.2.2 High dimensional cases

5.2.2.1 df=3

glasso

BG

AL

SCAD

Huge

Figure 10: The ASP plots for the MVt3 data (p= 30) generated from the tridiagonal
matrix with a = 1.7, using the wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the wrong BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and

Huge estimates selected by the CV criterion.
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glasso

BG

AL

SCAD

Figure 11: The ASP plots for the MVt3 data (p= 30) generated from the tridiagonal
matrix with a = 1.7, using the correct AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by the correct AIC

formula. [Middle Panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by

the correct BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL and SCAD estimates

selected by the CV criterion.
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glasso

BG

AL

Huge

Figure 12: The ASP plots for the MVt3 data (p= 30) generated from the tridiagonal
matrix with a = 0.85, using the wrong AIC/BIC formula.

[Left panel] The ASP plots of the glasso, BG, AL and Huge estimates selected by the wrong AIC

formula. [Middle Panel] The ASP plots of the glasso, BG, AL and Huge estimates selected by the

wrong BIC formula.[Right Panel] The ASP plots of the glasso, BG, AL and Huge estimates selected

by the CV criterion.
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glasso

BG

Figure 13: The ASP plots for the MVt3 data (p= 30) generated from the tridiagonal
matrix with a = 0.85, using the correct AIC/BIC formula.

[Left panel] The ASP plots of the glasso and BG estimates selected by the correct AIC formula.

[Middle Panel] The ASP plots of the glasso and BG estimates selected by the correct BIC formula.

[Right Panel] The ASP plots of the glasso and BG estimates selected by the CV criterion.
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glasso

BG

AL

SCAD

Huge

Figure 14: The ASP plots for the MVt3 data (p= 30) generated from the exponential
decay matrix, using the wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the wrong BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and

Huge estimates selected by the CV criterion.
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glasso

BG

AL

SCAD

Figure 15: The ASP plots for the MVt3 data (p= 30) generated from the exponential
decay matrix, using the correct AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by the correct AIC

formula. [Middle Panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by

the correct BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL and SCAD estimates

selected by the CV criterion.
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glasso

BG

AL

SCAD

Huge

Figure 16: The ASP plots for the MVt3 data (p = 30) generated from the general
matrix, using the wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the wrong BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and

Huge estimates selected by the CV criterion.
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glasso

BG

AL

SCAD

Figure 17: The ASP plots for the MVt3 data (p = 30) generated from the general
matrix, using the correct AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by the correct AIC

formula. [Middle Panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by

the correct BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL and SCAD estimates

selected by the CV criterion.

Figures 10, 11, 14, 15, 16 and 17 are the ASPs for all the estimation combina-

tions for the high dimensional MVt3 data corresponding to the three true precision

matrices, including the tridiagonal matrix with a = 1.7, the exponential decay ma-

trix and the general matrix. As we do for the the low dimensional MVt3 data, we

present the ASPs for the glasso, BG, AL and SCAD methods using both the wrong

(log-likelihood for the MVN data) and correct log-likelihood (log-likelihood for the

MVt3 data ) in their AIC and BIC formulae. Thus, each of the three matrices has
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two ASPs figures accordingly, with the first figure being the glasso, BG, AL, SCAD

and Huge results using the misspecified AIC/BIC formula and the latter figure being

the ASPs for the glasso, BG, AL and SCAD results using the correct formulae.

Using the MVN data log-likelihood In terms of the principal and basic trends, be-

fore applying the correct log-likelihood to AIC/BIC, all combinations for the high

dimensional MVt3 data perform the same as their behaviors for the high dimen-

sional MVN data, which indicates that the change of the distributions of the dataset

does not affect the nature behaviors of the estimating methods and the selection

criteria. More specifically, SCAD again generally produces the most accurate and

sparsest estimates without losing the true graphical structure. glasso�AIC results

are always too dense to see the actual structure. BIC always selects sparser esti-

mates than AIC does. Huge�stars estimates are always excessively dense, while

Huge�ric and Huge�ebic are always severely sparse and all of the Huge estimates

lose the original graphical structure.

Besides the similarities to the MVN data performance, there are also some dis-

tinct behaviors of the estimating methods and the selection criteria for the MVt3

data.

Using the MVN data log-likelihood, the first obvious difference for the high

dimensional MVt3 data is that the AIC results of glasso, BG and AL methods are

extremely dense so that the true graphical structure is lost. Among all the methods

AIC is applied to, SCAD is the only method whose results are not excessively dense,

even if use the log-likelihood of the MVN data for AIC when the dataset is actually

t-distributed. This fact further implies the superiority or the stability of SCAD over

the other estimating methods.

Another obvious difference is that CV selects much sparser estimates for the

high dimensional MVt3 data than BIC does, while BIC selects sparser estimates

than CV for the high-dimensional MVN data.

We recall that for the low dimensional MVt3 data, although CV selects much

sparser estimates for glasso, AL and SCAD, BIC selects the most sparse estimates

for BG at all sample sizes. However, for the high dimensional MVt3 data, the
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sparsest estimates of BG are selected by CV, instead of BIC, which makes CV

produce the sparsest results for all glasso, BG, AL and SCAD methods with respect

to all three precision matrices, provided that the correct log-likelihood is not applied

to the AIC/BIC formula.

When we consider t-distributed data, the estimation precision of some of the

combinations is also affected. Firstly, the smallest non-zero value that can be de-

tected by CV increases the most, which means a decrease in the estimation precision

in estimating non-zeros. Although CV is the best selection criterion which provides

the sparsest estimates, it loses the power of detecting non-zero entries, which is

what it can achieve for the MVN data. More specifically, for example in the tridi-

agonal matrix with a = 1.7, where the smallest entry is 0.19 and the largest one

is 0.425, all methods selected using CV at times fail to detect the non-zero entries

which are less than 0.32. For the entries between 0.19 and 0.32, smaller entries have

smaller frequencies of detection. However, all entries in this tridiagonal matrix can

always be successfully detected by all combinations of CV for the MVN data. This

may indicate that for the MVt3 data, CV may shrink the entries more than for the

MVN data, leading to not only sparser estimates, but also over shrinkage for some

relatively small entries (e.g. ≤ 0.32). For the exponential decay matrix, where the

largest off diagonal entry is 0.1353, the non-zero entries are very hard to estimate.

Moreover, it seems that since all the non-zero entries are smaller than the lowest

limit that CV combinations can detect, all the estimated non-zeros are randomly lo-

cated. This is consistent with the conclusions from the MVN data results. Similarly,

for the general matrix with the largest entry being 0.1811, all its non-zero entries

can only be detected occasionally, with slightly higher frequencies of detections for

entries which are larger than 0.15 compared to other smaller entries.

Using the wrong log-likelihood formula while calculating the AIC/BIC, all their

results become denser for the MVt3 data than the MVN data. For BIC results

in the tridiagonal case with a = 1.7, there is no obvious changes in the power to

detect non-zeros, which may due to the fact that its non-zero entries are larger than

the other two matrices. For the exponential decay matrix and the general matrix,

relatively large non-zero values (e.g. 0.1353 for the exponential decay matrix and
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≥ 0.12 for the general matrix) can be estimated more often by BIC, but at the

same time results in more false estimations of non-zeros in other positions, which

makes the estimates much denser but the basic structure is maintained. However,

interestingly, even though AIC leads to extremely dense estimates that the original

structure is lost for glasso, BG and AL methods, the lowest limit of the non-zero

entries that can be sensitively detected by AIC seems decrease slightly, so that some

relatively large values in the exponential decay matrix and the general matrix (e.g.

0.1353 for the exponential decay matrix and ≥ 0.14 for the general matrix) are

detected less often than what can be estimated for the MVN data. On the other

hand, the non-zero entries in the tridiagonal matrix with a = 1.7 are not affected.

There are significantly more false estimations of the non-zeros for both AIC and

BIC results, where glasso�AIC, BG�AIC and AL�AIC lose their abilities to reflect

the true graphical model.

Huge�stars still provides excessively dense estimates, while Huge�ebic and

Huge�ric suffers from severe underselection problems. All of them lose the true

graphical structure.

Using the MVt data log-likelihood Using the correct AIC/BIC formula, there

appears to be many more differences in the results than the low dimensional MVt3

data. Both AIC and BIC results become significantly sparser than the results based

on the wrong log-likelihood. As a result, the BIC provides sparser estimates than

CV again, just as we saw for the MVN data. Additionally, after applying the correct

log-likelihood, BIC is still sparser than AIC, which is to be expected.

However, the price paid for sparser results is that the ability of correctly esti-

mating non-zeros is also diminished. In other words, the smallest value that can

always be successfully detected rises. Consequently, in the tridiagonal matrix with

a = 1.7, the frequencies of some of the non-zeros (e.g. between 0.19 and 0.32)

decline, resulting in a very similar level to the Huge�ric results for the high dimen-

sional MVN data. The most dramatic decreases occur to the BG method, compared

to glasso, AL and SCAD methods. The power of AIC to detect non-zeros is not

affected much for the tridiagonal matrix. This may be due to the nature of AIC to
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produce many non-zero estimates and the relatively large non-zero entries of the

tridiagonal matrix compared to the other two matrices. For the exponential decay

matrix and the general matrix with smaller non-zero entries than the tridiagonal ma-

trix, their estimation results are even sparser than the estimates without using the

correct formula, consequently, they almost lose the true graphical structure. This is

especially true for BIC.

Using the correct AIC/BIC formula, BG and SCAD provide sparser estimates

than glasso and AL, for both AIC and BIC cases. In addition, the estimates selected

by AIC are at almost the same sparsity levels as the CV results. Thus if the true

entries consist of many large values, such as values greater than 0.4, we recommend

to use glasso�BIC, AL�BIC, SCAD�AIC or SCAD�BIC. However, if the majority

of the true entries are small, say < 0.2, the BIC combinations are strongly not

recommended because they will fail to capture the original structure due to the

excessively high sparsity invoked in its estimates. Instead, the AIC combinations

are recommended, especially the SCAD�AIC and BG�AIC if one is expecting more

sparsity.
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Figure 12 contains all the ASP plots of all the combinations that can produce

estimates and finish all the repetitions, without being stuck on the way. For all the

provided results of the MVt3 data, they show very similar trends to the MVN data ,

while comparing the results of the two tridiagonal matrices (with a being 1.7 and

0.85, respectively).

The Huge results still vary the most among all the combinations, while chang-

ing the constant a in the tridiagonal matrix. Instead of providing either exces-

sively sparse or excessively dense estimates for the tridiagonal matrix with a = 1.7,

Huge�stars and Huge�ebic combinations are able to capture the true graphical

structure now. The performance of estimating non-zeros are dramatically improved

for Huge�ebic, though the ability of correctly detecting zero entries weakens a bit.

Also, the sparsity of the Huge�stars estimates is greatly boosted, with a lot more

correctly estimated zeros. In addition, there are still no return values of the Huge�ric

combination for the MVt3 data generated from the tridiagonal matrix with a= 0.85,

which is the same situation as the MVN data .

For the glasso, AL, BG and SCAD combinations using the wrong AIC/BIC

formula, all the non-zero entries are estimated better, which is the same as the

MVN data case. In terms of the zero entry detection, only AL�CV performs bet-

ter. What’s different from the MVN data is that the SCAD method gets stuck on a

repetition and can not finish all the estimation, making SCAD is not applicable to

the MVt3 data.

If the correct AIC/BIC formula is used for the glasso, AL, BG and SCAD com-

binations, AL and SCAD methods get stuck halfway the estimation. For the ob-

tained glasso and BG results, all the non-zero entries are estimated better, while all

the zero entries are detected worse. All the AIC and BIC results using the correct

formula are much sparser than those using the wrong formulae, which is the same

behaviour as the MVN data .

The above results tell us that the tridiagonal matrix with a = 0.85, which con-

tains many large entries and is very clsoe to be not positive definite, will cause more

problems for the MVt3 data than the MVN data , with more estimation combina-

tions become inapplicable. Also, the correct AIC/BIC formula increases the risk
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of getting stuck for the MVt3 data, resulting in more inapplicable combinations.

In terms of the results that can be obtained from the MVt3 data, they present very

similar trends to the MVN data , between two tridiagonal matrices.
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Table 13: The TPs and TNs for the tridiagonal matrix with a = 1.7 for the MVt3
data (p = 30)

Ω tri a = 1.7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.993 0.971 0.723 0.049 0.242 0.768

AL 0.972 0.942 0.683 0.218 0.422 0.8278

SCAD 0.904 0.874 0.535 0.541 0.675 0.927

new

glasso 0.849 0.525 0.723 0.635 0.881 0.768

Adaptive 0.801 0.488 0.683 0.753 0.919 0.828

SCAD 0.664 0.353 0.535 0.898 0.969 0.927

DP

glasso 0.993 0.971 0.723 0.049 0.243 0.768

AL 0.972 0.941 0.683 0.218 0.423 0.827

SCAD 0.903 0.873 0.535 0.541 0.675 0.927

BG

H = 50 0.974 0.947 0.693 0.185 0.387 0.87

new A/BIC 0.777 0.181 0.693 0.845 0.998 0.87

DP-boo 0.974 0.947 0.693 0.185 0.39 0.869

Huge

ric 0.005 1

stars 0.985 0.124

ebic 0.008 0.996
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Table 14: The TPs and TNs for the exponential decay matrix and the general matrix
for the MVt3 data (p = 30)

Ω exp gen

TP TN TP TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 0 1 0

PCM 1 0 1 0

glasso 0.945 0.726 0.188 0.059 0.303 0.839 0.941 0.7 0.185 0.054 0.283 0.837

AL 0.799 0.595 0.16 0.223 0.455 0.869 0.784 0.562 0.156 0.205 0.428 0.868

SCAD 0.53 0.374 0.089 0.525 0.681 0.932 0.497 0.352 0.093 0.493 0.653 0.941

new AIC BIC

glasso 0.213 0.102 0.188 0.817 0.913 0.839 0.216 0.11 0.185 0.8 0.916 0.837

Adaptive 0.158 0.051 0.16 0.87 0.962 0.869 0.166 0.064 0.156 0.855 0.956 0.868

SCAD 0.076 0.013 0.089 0.944 0.991 0.932 0.095 0.032 0.093 0.935 0.991 0.941

DP

glasso 0.944 0.726 0.188 0.06 0.304 0.839 0.941 0.7 0.185 0.054 0.283 0.838

AL 0.799 0.596 0.16 0.223 0.454 0.869 0.784 0.562 0.156 0.205 0.428 0.868

SCAD 0.53 0.373 0.089 0.525 0.681 0.932 0.497 0.353 0.093 0.493 0.653 0.941

BG

H = 50 0.829 0.59 0.127 0.193 0.456 0.904 0.812 0.558 0.123 0.19 0.436 0.912

new A/BIC 0.105 0.002 0.127 0.929 1 0.904 0.105 0.023 0.123 0.93 1 0.912

DP-boo 0.829 0.59 0.127 0.193 0.457 0.904 0.813 0.558 0.123 0.188 0.438 0.912

Huge

ric 0.002 0.998 0.023 0.999

stars 0.905 0.103 0.897 0.102

ebic 0 1 0.022 1

Table 13 and Table 14 detail the TPs and TNs for the high dimensional MVt3

data , corresponding to the three precision matrices respectively. Each of the dataset

is estimated by all the combinations, and the results selected by the correct AIC/BIC
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formula (applying the log-likelihood of MVt3 data to the formula) are also in-

cluded. The TPs and TNs for the MVt3 data generated from the tridiagonal matrix

with a= 0.85 are displayed in the appendix. The tables show consistent conclusions

with the ASP plots, thus we don’t explain them in detail again.
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5.2.2.2 df=4

Table 15: The TPs and TNs for the tridiagonal matrix with a = 1.7 for the MVt4
data (p = 30)

Ω tri a = 1.7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.993 0.969 0.779 0.062 0.343 0.768

AL 0.97 0.937 0.741 0.252 0.506 0.827

SCAD 0.911 0.869 0.595 0.576 0.73 0.926

new

glasso 0.874 0.487 0.779 0.658 0.925 0.768

Adaptive 0.837 0.482 0.741 0.756 0.941 0.827

SCAD 0.738 0.395 0.595 0.886 0.973 0.926

DP

glasso 0.993 0.969 0.779 0.062 0.341 0.768

AL 0.97 0.937 0.741 0.252 0.506 0.827

SCAD 0.911 0.869 0.595 0.576 0.73 0.926

BG

H = 50 0.967 0.929 0.749 0.242 0.511 0.856

new A/BIC 0.809 0.155 0.749 0.833 0.999 0.856

DP-boo

Huge

ric 0.033 1

stars 0.989 0.117

ebic 0 1
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Table 16: The TPs and TNs for the tridiagonal matrix with a = 1.7 for the MVt4
data (p = 30)

Ω exp gen

TP TN TP TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 0 1 0

PCM 1 0 1 0

glasso 0.934 0.581 0.184 0.071 0.463 0.862 0.93 0.57 0.177 0.065 0.434 0.863

AL 0.769 0.508 0.16 0.257 0.548 0.885 0.753 0.485 0.15 0.249 0.531 0.886

SCAD 0.501 0.324 0.103 0.561 0.75 0.935 0.468 0.277 0.094 0.547 0.749 0.939

new AIC BIC

glasso 0.184 0.057 0.184 0.854 0.958 0.862 0.181 0.069 0.177 0.856 0.958 0.863

Adaptive 0.151 0.04 0.16 0.887 0.974 0.885 0.154 0.054 0.15 0.888 0.973 0.886

SCAD 0.098 0.013 0.103 0.936 0.994 0.935 0.01 0.031 0.094 0.935 0.993 0.939

DP

glasso 0.934 0.582 0.184 0.071 0.463 0.862 0.93 0.569 0.177 0.065 0.433 0.863

AL 0.769 0.508 0.16 0.257 0.548 0.885 0.753 0.485 0.15 0.249 0.527 0.886

SCAD 0.501 0.324 0.103 0.562 0.75 0.935 0.468 0.277 0.094 0.547 0.747 0.939

BG

H = 50 0.775 0.446 0.138 0.249 0.616 0.907 0.758 0.423 0.128 0.233 0.598 0.912

new A/BIC 0.107 0.001 0.138 0.932 1 0.907 0.101 0.022 0.128 0.933 1 0.912

DP-boo 0.775 0.447 0.138 0.249 0.616 0.907 0.758 0.422 0.128 0.233 0.598 0.913

Huge

ric 0.006 0.996 0.026 0.996

stars 0.911 0.1 0.905 0.102

ebic 0 1 0.022 1

Table 15 and Table 16 are the TPs and TNs for the high dimensional MVt4 data,

corresponding to the same three precision matrices as the MVt3 data. The MVt4

data shows very similar estimation results and almost the same trends as the MVt3
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data does. Also their results are so close that the ASPs are very similar and thus

can hardly reflect their differences, so we don’t include the ASPs for the MVt4 data

here, but include them in the appendix. All the plots and tables of the MVt4 data

generated from the tridiagonal matrix with a = 0.85 are shown in the appendix too.

However, we can still find the small differences between the MVt4 data and the

MVt3 data using their TP and TN tables. Using the incorrect log-likelihood for

the AIC/BIC formula, all the TPs reduce while all the TNs increase for all AIC and

BIC combinations (with glasso, BG, AL and SCAD methods), which means the

estimated graphs become slightly sparser.

Using the correct log-likelihood, all the TPs of the AIC combinations (with

glasso, BG, AL and SCAD methods) increase and all the TNs decrease for the

tridiagonal matrix with a = 1.7, indicating denser estimates than the MVt3 data

results. However, for the BIC combinations for this matrix, all the TPs decline and

all the TNs rise, indicating sparser estimates when the degrees of freedom (df for

short) increases. For the exponential decay matrix and the general matrix, all the

TPs become smaller and all TNs are larger for all the glasso and AL combinations

with AIC or BIC, which are the same behaviors of AIC and BIC using the incorrect

log-likelihood. If we apply SCAD to these two matrices, the estimated graphs will

become denser if selected by AIC and sparser when selected by BIC. For BG�BIC,

the estimates are slightly sparser. However, for BG�AIC, both the TP and TN

increase for the exponential decay matrix and both of them decrease for the general

matrix.

For the tridiagonal matrix with a = 1.7, all the TPs increase and all the TNs

decrease for all the CV combinations, which is completely the opposite of the

AIC/BIC behaviors for all three precision matrices. Thus the estimates of the tridi-

agonal matrix selected by CV will become slightly denser when the df increases.

However, for the exponential decay matrix and the general matrix, there are both

increases and decreases for the TPs and the TNs of glasso, AL and SCAD, while

there are only increases of TPs and TNs for BG.

For Huge, the ric and stars estimates for the MVt4 data become denser than the

MVt3 data for all three precision matrices, since their TPs rise and TNs drop. The
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ebic estimates remain almost unchanged for all three cases.

Although what changes are small, we can still conclude that the df is indeed

an influential factor on the results, especially for the tridiagonal matrix which leads

to the same variation patterns for all methods. Also for most of the estimating

methods and the true precision matrices, after correcting the log-likelihood, the

AIC estimates tend to be denser and the BIC estimates become sparser than the

dataset with the smaller df. Thus we believe it is reasonable to conjecture that the

changes will be magnified when the df is further increased.
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5.2.3 Nonparanormal transformation effects (for MVt4 data)

5.2.3.1 The low dimensional cases

Table 17: The TPs for the MVt4 data (p = 5) using the nonparanormal transfor-
mation function huge.npn() at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1

PCM 1 1 1 1

glasso 1 1 1 1 1 1 1 1 1 1 1 1

AL 1 1 1 1 1 1 1 1 1 1 1 1

SCAD 1 1 0.998 1 1 1 1 0.999 0.999 1 1 1

BG

H = 50 1 1 1 1 1 1 1 1 1 1 1 1

Huge

ric 1 1 1 1

stars 1 1 1 1

ebic 1 1 1 1

Table 17 contains the TPs at all four sample sizes for the low dimensional MVt4

data to which applied the nonparanormal transformation function huge.npn() pro-

vided in the package Huge in R is applied.

On comparing the results to the original dataset, all the TPs increase for all

combinations at all four sample sizes. This implies that the nonparanormal trans-

formation function is indeed helpful in improving the ability of detecting non-zero

entries for the low dimensional MVt4 data with sample sizes from 100 to 1000, no

matter which method or criterion is adopted.
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Table 18: The TNs for the MVt4 data (p = 5) using the nonparanormal transfor-
mation function huge.npn() at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0

PCM 0 0 0 0

glasso 0.218 0.237 0.298 0.238 0.245 0.244 0.299 0.299 0.299 0.347 0.347 0.347

AL 0.565 0.57 0.6 0.663 0.663 0.665 0.815 0.815 0.815 0.867 0.867 0.867

SCAD 0.646 0.81 0.863 0.788 0.898 0.888 0.809 0.873 0.866 0.823 0.823 0.823

BG

H = 50 0.712 0.737 0.72 0.758 0.758 0.758 0.865 0.865 0.865 0.857 0.857 0.857

Huge

ric 0.265 0.295 0.31 0.308

stars 0.218 0.238 0.302 0.347

ebic 0.352 0.327 0.32 0.347

Table 18 consists of the TN values corresponding to all methods and criteria

combinations based on the 5-dimensional transformed MVt4 data using the function

huge.npn().

Generally, most of the TNs become larger for all the combinations at all sample

sizes, indicating more zero entries are correctly estimated in most of the cases. We

found that the most dramatic increases of the TNs are more likely to occur to the

combinations with the TNs between 0.3 to 0.5, and their TNs are often doubled to

between 0.7 and 0.867 after applying the function huge.npn(). This means that if

one combination can only detect less than half of the zero entries (but no less than

30%), the function huge.npn() is very likely to be effective in improving the esti-

mation results, leading to a fairly desirable sparsity level of the estimates. However,

if the original TN value is relatively large (e.g. more than 0.64) or fairly small (e.g.

less than 0.2) before applying the transformation function, the improvements are

more likely to be insignificant. For example, a TN= 0.12 is only increased to 0.218
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(glasso�AIC at n = 100), and a TN= 0.761 is increased to 0.873 (SCAD�BIC at

n = 500).

However, there are also decreases in the TNs, which are the glasso�CV and

AL�CV at n= 100,200, SCAD�CV at n= 500,1000, SCAD�AIC/BIC at n= 1000

and Huge�ric at n = 200. An interesting fact behind these decreases is that they ei-

ther happen to the CV combinations with glasso or AL at moderate sample sizes

(100 and 200), or they happen to SCAD combinations at large sample sizes (500

and 1000). The former situation illustrates the different behaviors of CV from

AIC/BIC, or the less desirable cooperations of CV than AIC/BIC with the trans-

formation function when the ratio of the sample size to the dimension is no larger

than 40 (p = 5, n = 100,200). The latter situation is more interesting, since the

original TNs in those situations are pretty large (more than 0.832), thus this indi-

cates that if most of the zero entries are already successfully detected (e.g. more

than 83% of them are captured), the function huge.npn() may not be helpful to

further improve the estimates, and sometimes the results can get slightly worse if

applying the transformation function.

Moreover, the only decrease in the TN for Huge method occurs to Huge�ric at

n = 200, from 0.328 to 0.295, yet the reduction is obviously not due to the original

high level of detecting zeros (one of the reasons for decreases in AIC/BIC results).
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5.2.3.2 The high dimensional cases

glasso

BG

AL

SCAD

Huge

Figure 18: The ASP plots for the MVt4 data (p= 30) generated from the tridiagonal
matrix with a = 1.7, using the nonparanormal transformation function huge.npn()
and the wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula, based on the transformed data. [Middle Panel] The ASP plots of the glasso, BG,

AL, SCAD and Huge estimates selected by the wrong BIC formula, based on the transformed data.

[Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the CV

criterion, based on the transformed data.



102

glasso

BG

AL

SCAD

Huge

Figure 19: The ASP plots for the MVt4-data (p= 30) generated from the tridiagonal
matrix with a= 0.85, using the nonparanormal transformation function huge.npn()
and the wrong AIC/BIC formula.

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula, based on the transformed data. [Middle Panel] The ASP plots of the glasso, BG,

AL, SCAD and Huge estimates selected by the wrong BIC formula, based on the transformed data.

[Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the CV

criterion, based on the transformed data.
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glasso

BG

AL

SCAD
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Figure 20: The ASP plots for the MVt4 data (p= 30) generated from the exponential
decay matrix, using the nonparanormal transformation function huge.npn() and
the wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula, based on the transformed data. [Middle Panel] The ASP plots of the glasso, BG,

AL, SCAD and Huge estimates selected by the wrong BIC formula, based on the transformed data.

[Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the CV

criterion, based on the transformed data.
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glasso

BG

AL

SCAD
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Figure 21: The ASP plots for the MVt4 data (p = 30) generated from the gen-
eral matrix, using the nonparanormal transformation function huge.npn() and the
wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula, based on the transformed data. [Middle Panel] The ASP plots of the glasso, BG,

AL, SCAD and Huge estimates selected by the wrong BIC formula, based on the transformed data.

[Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the CV

criterion, based on the transformed data.



105

Figures 18, 20 and 21 display the ASP plots after applying the nonparanormal

transformation function to the MVt4 data with dimensions 30.

After transforming the original MVt data, all the TPs are smaller and all the

TNs become larger for all the AIC/BIC combinations with respect to all three pre-

cision matrices, which indicates all the estimated graphs selected by AIC or BIC

become sparser than before. This tells us that if the original dataset is not normally

distributed, the function huge.npn() can effectively help to provide sparser esti-

mates without losing the actual graphical structure if we use the combinations of

AIC/BIC. Moreover, the estimates based on the transformed dataset are still denser

(no better) than the estimates based on the original dataset selected by the corrected

AIC/BIC formula, which means the corrected formula is the most powerful way to

increase the sparsity levels of the estimates, if one accepts slight over-shrinkage.

However, the CV combinations behave differently from the AIC/BIC combi-

nations. Almost all the TPs increase for all the CV combinations with respect to

all the three precision matrices. However, all the TNs of the CV combinations be-

come smaller for the tridiagonal matrix with a = 1.7. For the exponential decay

matrix and the general matrix, all the TNs of the CV combinations with glasso,

AL and SCAD either become slightly larger or remain unchanged, while the TNs

of BG�CV become smaller. Thus most of the estimated graphs selected by CV

become slightly denser after applying the transformation function.

All the TPs of Huge�ric and Huge�stars become larger and their TNs are smaller

for all three true precision matrices. More specifically, the TPs of Huge�ric increase

remarkably, especially for the tridiagonal matrix, and its TNs decrease negligibly.

Thus the estimated graphs uisng Huge�ric contain more correct estimated non-zero

entries, with only a very small loss of detections of correct zero entries. Although

Huge�stars has the same results as Huge�ric to the function huge.npn(), its results

change little, remaining excessively dense. Also, the Huge�ebic results seem to be

insensitive to the transformation function, resulting in excessively sparse graphs.

This may reflect the superiority of Huge�ric over Huge�ebic and Huge�stars. Even

if the original dataset is not normally distributed, Huge�ric can still be effective to

estimate the graph if the function huge.npn() is applied, especially if the matrix has
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moderate entry values (e.g. larger than 0.2).

The effects of the transformation function huge.npn() on the MVt4-data gener-

ated from the tridiagonal matrix with a = 0.85 are basically the same as the a = 1.7

tridiagonal matrix case, where the sparsity of the AIC and BIC estimates is greatly

increased, making the BG combinations providing the sparest results, the AL and

SCAD combinations with similar sparsity and the glasso results still being the dens-

est among all the results based on the transformed data.

An interesting thing happened to the tridiagonal matrix with a = 0.85 using

thetransformation function huge.npn() on the MVt4-data is that huge.npn() cured

the absence of retuen value of the Huge�ric combination, which means the combi-

nation is able to provide estimates for all repetitions if the function huge.npn() is

applied to the data. This may tell us that huge.npn() can not only help to improve

the sparsity of the estimates of some combinations, but also help to ease the prob-

lem due to the closeness of the true precision matrix to be not positive definite. In

addition, the zero entry estimates of the Huge�stars and Huge�ebic become slightly

less and slightly more than the results before applying the huge.npn() function.
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Table 19: The TPs and TNs for the tridiagonal matrix with a = 1.7 for the MVt4
data (p = 30) using the nonparanormal transformation function huge.npn()

Ω tri a = 1.7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.991 0.939 0.9 0.112 0.594 0.75

AL 0.959 0.923 0.881 0.42 0.681 0.806

SCAD 0.914 0.866 0.818 0.655 0.827 0.893

BG

H = 50 0.916 0.884 0.862 0.595 0.769 0.831

Huge

ric 0.651 0.968

stars 0.991 0.107

ebic 0 1
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Table 20: The TPs and TNs for the exponential decay matrix and the general ma-
trix for the MVt4 data (p = 30) using the nonparanormal transformation function
huge.npn()

Ω exp gen

TP TN TP TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 0 1 0

PCM 1 0 1 0

glasso 0.901 0.244 0.195 0.115 0.825 0.875 0.894 0.217 0.166 0.089 0.816 0.879

AL 0.663 0.22 0.185 0.393 0.841 0.885 0.631 0.201 0.155 0.368 0.831 0.897

SCAD 0.455 0.155 0.112 0.624 0.903 0.938 0.409 0.136 0.099 0.611 0.901 0.939

BG

H = 50 0.541 0.187 0.173 0.519 0.879 0.893 0.505 0.163 0.144 0.507 0.866 0.901

Huge

ric 0.057 0.973 0.058 0.976

stars 0.921 0.093 0.909 0.077

ebic 0 1 0.022 1

Table 19 and Table 20 show the TPs and the TNs of the high dimensional t4-

data which applied the non-paranormal transformation function. The table of the

tridiagonal matrix with a = 0.85 is displayed in the appendix. They also show

consistent conclusions to the ASP plots.
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5.3 AR1 Auto-correlated N-Data (MVN AR1 data)

5.3.1 Low dimensional cases

Table 21: The TPs for the MVN AR1 data (p = 5) at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1

PCM 1 1 1 1

glasso 1 1 0.99 1 1 1 1 1 1 1 1 1

AL 0.99 0.988 0.973 0.998 0.998 0.998 1 1 1 1 1 1

SCAD 0.983 0.963 0.865 0.998 0.995 0.94 1 0.998 0.998 1 0.998 0.996

BG

H = 50 0.988 0.97 0.978 0.998 0.998 0.998 1 1 1 1 1 1

Huge

ric 0.393 0.419 0.648 0.938

stars 1 1 1 1

ebic 1 1 1 1

Table 21 contains the TPs of the low dimension MVN data with an AR1 auto-

correlation structure added to each of its variables (MVN AR1 data for short here-

after), at four different sample sizes from 100 to 1000. As expected, there are indeed

decreases in the TPs for some combinations at some sample sizes. The decreases

mainly happen to the AL combinations at n = 100,200, SCAD combinations (es-

pecially selected by CV) and Huge�ric at all four sample sizes. However, when n

increases, the decreases of TPs become smaller, or increasing the sample sizes will

lessen the losses of power to detect the non-zeros because of the auto-correlation

within each variable.
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Table 22: The TNs for the MVN AR1 data (p = 5) at 4 different sample sizes

n = 100 n = 200 n = 500 n = 1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0

PCM 0 0 0 0

glasso 0.083 0.14 0.387 0.067 0.125 0.367 0.083 0.17 0.313 0.074 0.173 0.263

AL 0.192 0.288 0.675 0.202 0.333 0.707 0.247 0.388 0.677 0.275 0.427 0.683

SCAD 0.358 0.518 0.858 0.386 0.593 0.902 0.532 0.668 0.846 0.777 0.845 0.885

BG

H = 50 0.314 0.473 0.528 0.335 0.518 0.501 0.369 0.544 0.418 0.339 0.556 0.382

Huge

ric 0.905 0.883 0.83 0.568

stars 0.145 0.17 0.238 0.288

ebic 0.204 0.228 0.243 0.288

Table 22 consists of the TNs for the low dimension MVN AR1 data, at four

sample sizes.

All the AIC/BIC combinations have smaller TNs at all four sample sizes than

the MVN data and a number of them are reduced to around half of the original

values. Also, generally, the TNs of the MVN AR1 data increase with the sample

sizes for all the AIC/BIC combinations. More specifically, the SCAD method seems

to perform the best, or it is the most resistant method to the AR1 auto-correlation,

at all sample sizes. Since AL provides pretty desirable estimates for the original

MVN data with relatively high level TNs, though its reduced TNs are still higher

than glasso’s, they suffer from the most severe declines in TNs, especially for AIC.

Moreover, both AL and BG provide similarly good estimates for the original MVN

data when n is large, however, for the MVN AR1 data, BG provides much better

results than AL. Thus for now, SCAD still performs the best, followed by BG,

AL and glasso. In terms of the selection criteria, BIC selects better results (more
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correctly estimated zeros) than AIC.

With regard to CV, glasso�CV at all sample sizes, AL�CV at n= 200, SCAD�CV

at n = 100,200 have higher TNs for the MVN AR1 data than the MVN data. This

indicates that if the samples of each variable are not independently collected, which

violates the independency assumption for the estimating methods, CV combina-

tions detect more zero entries at times than the normally distributed dataset with

independent samples. However, interestingly, BG�CV has lower TNs at all sample

sizes, which may indicate that the resampling procedure can neutralize the advan-

tage of CV.

Huge�ric has larger TNs at all sample sizes with a decreasing trend (the TNs de-

crease with the sample sizes), while the TNs of Huge�ebic and Huge�stars become

smaller at all four sample sizes with an increasing trend. Huge�ric correctly esti-

mates much more zero entries than Huge�ebic and Huge�stars at all sample sizes.

Moreover, the TNs of Huge�ebic and Huge�stars become exactly the same again,

just as they do for the low dimensional MVN data case.
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5.3.2 High dimensional case

glasso

BG

AL

SCAD

Huge

Figure 22: The ASP plots for the MVN AR1 data (p = 30) generated from the
tridiagonal matrix with a = 1.7

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the AIC

criterion. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected

by the BIC criterion. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the CV criterion.
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glasso

AL

Huge

Figure 23: The ASP plots for the tridiagonal matrix with a = 0.85 for the MVN
AR1 data (p = 30)

[Left panel] The ASP plots of the glasso, AL and Huge estimates selected by the AIC criterion.

[Middle Panel] The ASP plots of the glasso, AL and Huge estimates selected by the BIC criterion.

[Right Panel] The ASP plots of the glasso, AL and Huge estimates selected by the CV criterion.
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glasso

BG

AL

SCAD

Huge

Figure 24: The ASP plots for the MVN AR1 data (p = 30) generated from the
exponential decay matrix

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the AIC

criterion. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected

by the BIC criterion. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the CV criterion.
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glasso

BG

AL

SCAD

Huge

Figure 25: The ASP plots for the MVN AR1 data (p = 30) generated from the
general matrix

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the AIC

criterion. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected

by the BIC criterion. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the CV criterion.

Figures 22, 24 and 25 are ASPs corresponding to the high dimensional MVN

AR1 data with respect to the tridiagonal matrix with a = 1.7, the exponential de-
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cay matrix and the general matrix, respectively. Figure 23 contains all the ASP

plots we can get from the tridiagonal matrix with a = 0.85, where the rest of the

combinations get stuck halfway.

For the tridiagonal matrix with a = 1.7, the exponential decay matrix and the

general matrix, all the estimates of AIC and BIC combinations become signifi-

cantly denser based on the MVN AR1 data . BIC can provide both accurate and

sparse estimates for the high dimensional MVN data, however, when the samples

are not independently collected, BIC results deteriorate dramatically, with matrices

almost as dense as the AIC matrix and it also loses some of the true graphical struc-

ture, even for the tridiagonal matrix which contains many large entries. Among all

AIC/BIC combinations, SCAD combinations are the only ones that do not com-

pletely lose the actual model structure. However, both of their abilities of detecting

non-zeros and zeros are spoiled. Only the basic structure can be captured by the

SCAD combinations. Also, the matrices with large entries are easier to estimate,

such as the tridiagonal matrix, while the general matrix structure is almost lost, even

if it is estimated by SCAD�AIC/BIC.

However, almost all of the TPs of CV combinations go down and all of the

TNs increase for all the three precision matrices, leading to sparser estimates for

the MVN AR1 data when compared to the MVN data. More specifically, for the

tridiagonal matrix with a = 1.7, the ability of CV to detect non-zeros declines the

most. It not only declines more than the AIC/BIC, but also declines the most among

all three precision matrices, which indicates that when the dataset is not indepen-

dently collected, CV is more inclined to over shrink the entries, even for relatively

large entries, or CV loses some power of detecting non-zeros. This may confirm

again that CV is more resistant to misuses, i.e. CV results are likely to be sparser.

Moreover, for all the CV combinations, SCAD�CV is still the sparsest one.

For Huge estimates on the MVN AR1 data, Huge�ebic results are still always

excessively sparse and Huge�stars results remain excessively dense. However,

for Huge�ric, an interesting observation is that there is no returned values from

the package Huge in R for all the 100 repetitions, which means that we cannot

get the estimated precision matrices from Huge�ric by the package Huge. This
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never happened in other scenarios, even for the high dimensional MVt data. This

may indicate that the auto-correlation is more devastating to the results than the

t-distribution, at least for Huge�ric.

For the MVN AR1 data generated from the tridiagonal matrix with a = 0.85,

it is noticed that the BG and SCAD methods can not finish all the repetions, while

they were able to provide estimates for the MVN data generated from this preci-

sion matrix. Thus the AR(1) auto correlation structure will also cause estimation

problems for some of the combinations, making them inapplicable. Also, again, the

Huge�ric combination can not return estimates for the MVN AR1 data generated

from the tridiagonal matrix with a = 0.85.

Among all the results we can get for the MVN AR1 data generated from the

tridiagonal matrix with a= 0.85, AL�CV provides the best estimates and glasso�CV

can be regarded as the second best choice. Though the Huge�ebic and Huge�stars

results are slightly denser than the best two combinations, they are still able to cap-

ture the true graphical structure. However, the estimates of glasso�AIC, glasso�BIC,

AL�AIC and AL�BIC are so dense that the true graphical structure is completely

lost.

Compared to the results of the MVN data generated from the tridiagonal matrix

with a = 0.85, the results of the glasso�AIC, glasso�BIC, AL�AIC and AL�BIC

combinations are significantly denser, which lose the true graphical structure. On

the contrary, the glasso�CV and AL�CV results become slightly sparser than the

MVN data results, which is the same as the other three precision matrices. In addi-

tion, the Huge�ebic and Huge�stars combinations produce slightly denser estimates

for the MVN AR1 data than the MVN data .
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Table 23: The TPs and TNs for the tridiagonal matrix with a = 1.7 for the MVN
AR1 data (p = 30)

Ω tri a = 1.7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.991 0.982 0.62 0.049 0.078 0.792

AL 0.951 0.944 0.552 0.217 0.253 0.857

SCAD 0.87 0.844 0.397 0.483 0.545 0.945

BG

H = 50 0.943 0.936 0.6 0.247 0.269 0.849

Huge

ric NA NA

stars 0.976 0.123

ebic 0 1
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Table 24: The TPs and TNs for the exponential decay matrix and the general matrix
for the MVN AR1 data (p = 30)

Ω exp gen

TP TN TP TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 0 1 0

PCM 1 0 1 0

glasso 0.956 0.919 0.175 0.049 0.093 0.854 0.953 0.904 0.173 0.052 0.102 0.853

AL 0.808 0.754 0.143 0.218 0.277 0.886 0.789 0.738 0.142 0.228 0.286 0.878

SCAD 0.566 0.491 0.491 0.481 0.556 0.947 0.542 0.468 0.077 0.49 0.569 0.943

BG

H = 50 0.777 0.748 0.147 0.249 0.285 0.881 0.755 0.72 0.145 0.253 0.294 0.88

Huge

ric NA NA NA NA

stars 0.903 0.108 0.897 0.115

ebic 0 1 0.022 1

Table 23 and Table 24 contain the detailed TPs and TNs for the high dimen-

sional MVN AR1 data , they show identical conclusions to their corresponding

ASP plots. The TPs and TNs of the tridiagonal matrix with a = 0.85 can be found

in the appendix.
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Chapter 6

Conclusions

Using the same notations as in the Results section, the combination of an es-

timating method Mq with the selection criterion Cc is denoted as Mq �Cc. For ex-

ample, if one uses the glasso algorithm to estimate the precision matrix, then apply

AIC to select the best estimate, this combination is denoted as glasso�AIC.

6.1 Computational speed comparisons

In this subsection we illustrate the computational speed of each estimation com-

bination, as the cost of time is also an important issue that should be considered for

practical reasons. When recording the computational time for each combination

Mq �Cc, we fix the repetition time N to be 100 and the sample size n = 100 for

all cases, then apply 100 regularization parameters ρs to each combination with

ρ = 0.01× i for i = 1, . . . ,100. For the BG and DP-BG methods, we fix the resam-

pling number H to be 50 and the threshold to be πthr = 0.9. For the low dimensional

cases (p = 5) the computational time for each combination is shown in Table 25 (in

seconds):
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Table 25: The computational time of each combination for the MVN data (p = 5)
and the MVt3 data (p = 5) using an Intel(R) Core(TM) i3-2350 M 2.30GHz CPU

Methods MVN data MVt Data Methods MVN data MVt Data

glasso�AIC 3.44 3.61 DP-G�AIC 76.8 119.51

glasso�BIC 3.44 3.54 DP-G�BIC 76.66 119.53

glasso�CV 37.48 38.47 DP-G�CV 394.09 616.71

BG�AIC 170.31 117.87 DP-BG�AIC 3973.94 6440.35

BG�BIC 171.83 177.70 DP-BG�BIC 3971.14 6430.92

BG�CV 2021.85 2054.96 DP-BG�CV 24129.8 38605.94

AL�AIC 8.65 7.22 DP-AL�AIC 80.84 121.51

AL�BIC 9.17 9.00 DP-AL�BIC 80.64 121.55

AL�CV 80.35 98.30 DP-AL�CV 431.15 644.83

SCAD�AIC 15.82 16.77 DP-SCAD�AIC 82.34 122.12

SCAD�BIC 14.57 16.19 DP-SCAD�BIC 82.27 123.56

SCAD�CV 107.16 86.44 DP-SCAD�CV 432.75 644.38

Huge�ric 115.64 116.27 Huge�ebic 87.77 90.50

Huge�stars 1981.21 2021.82

Each of the times in Table 25 corresponds to the time cost to finish N = 100

repetitions of the whole estimating and selection procedure for each combination

Mq �Cc. More specifically, the whole procedure is the time to estimate the true

precision matrix Ω 100 times (based on N = 100 different datasets) by each Method

Mq and then select the best estimate by its Criterion Cc among all the 100 estimated

precision matrices produced by the 100 regularization parameters.

6.2 The choice of πthr and H in the BG algorithm

Next we study the optimal choice for the key parameters for BG, the number

of resampling iterations H and the threshold πthr. Then, we chose the values that

provide desirable estimates and are computational friendly as well.



122

Table 26: The TNs for the MVN data (p = 5 and n = 200) using glasso and BG for
H = 50,100,150,200, πthr = 0.75 and selection criteria AIC, BIC and CV

AIC BIC CV

πthr n H glasso BG glasso BG glasso BG

0.75 200

50 0.143 0.145 0.295 0.465 0.242 0.242

100 0.143 0.145 0.295 0.473 0.242 0.242

150 0.143 0.143 0.295 0.442 0.242 0.242

200 0.143 0.143 0.295 0.448 0.242 0.242

Table 27: The TNs for the MVN data (p = 5 and n = 200) using glasso and BG for
H = 50,100,150,200, πthr = 0.8 and selection criteria AIC, BIC and CV

AIC BIC CV

πthr n H glasso BG glasso BG glasso BG

0.8 200

50 0.143 0.203 0.295 0.61 0.242 0.252

100 0.143 0.162 0.295 0.605 0.242 0.242

150 0.143 0.158 0.295 0.618 0.242 0.242

200 0.143 0.15 0.295 0.619 0.242 0.242

Table 28: The TNs for the MVN data (p = 5 and n = 200) using glasso and BG for
H = 50,100,150,200, πthr = 0.85 and selection criteria AIC, BIC and CV

AIC BIC CV

πthr n H glasso BG glasso BG glasso BG

0.85 200

50 0.143 0.3 0.295 0.714 0.242 0.305

100 0.143 0.319 0.295 0.743 0.242 0.288

150 0.143 0.272 0.295 0.735 0.242 0.265

200 0.143 0.275 0.295 0.748 0.242 0.267
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Table 29: The TNs for the MVN data (p = 5 and n = 200) using glasso and BG for
H = 50,100,150,200, πthr = 0.9 and selection criteria AIC, BIC and CV

AIC BIC CV

πthr n H glasso BG glasso BG glasso BG

0.9 200

50 0.143 0.595 0.295 0.836 0.242 0.496

100 0.143 0.591 0.295 0.855 0.242 0.486

150 0.143 0.595 0.295 0.848 0.242 0.465

200 0.143 0.599 0.295 0.852 0.242 0.463

Table 30: The TNs for the MVN data (p = 5 and n = 200) using glasso and BG for
H = 50,100,150,200, πthr = 0.95 and selection criteria AIC, BIC and CV

AIC BIC CV

πthr n H glasso BG glasso BG glasso BG

0.95 200

50 0.143 0.777 0.295 0.907 0.242 0.738

100 0.143 0.852 0.295 0.932 0.242 0.794

150 0.143 0.814 0.295 0.932 0.242 0.76

200 0.143 0.837 0.295 0.935 0.242 0.781

Since all the TPs of our 5-dimensional datasets are 1, we only show the TNs

here to see the variations of the glasso and BG results. Tables 26, 27, 28, 29 and 30

illustrate the TNs of glasso and BG combinations (with AIC, BIC and CV), with the

5 πthrs being 0.75,0.8,0.85,0.9,0.95. For each value of πthr, there are 4 different

resampling iterations H = 50,100,150,200 corresponding to a fixed sample size

n = 200.

6.2.1 How the resampling iterations H effects BG

From the above tables we can see that for the 5 dimensional dataset with the

sample size n = 200, by increasing the number of resampling iterations from 50 to

200, we did not improve the estimates of BG. Moreover, resampling too many times

can also harm the results. We found that the largest H should not be greater than
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the sample size n. However, a larger H will lead to noticeably more computational

time, especially for the high dimensional datasets. In conclusion, increasing H can

slightly boost the precision of the estimate, but also consumes significantly more

time.

Since we fix n= 100 in our high dimensional datasets and n= 100,200,500,1000

in our low dimensional datasets, for simplicity, we fix H = 50 in all of our simu-

lations of BG. This H is at most half of the sample sizes but we believe it can

effectively improve the estimates without requiring too much computational time.

However, H = 50 may be not large enough for those datasets with large sample

sizes. Indeed, for the datasets with a large number of samples, we believe that in-

creasing H can produce better estimates for BG, but we do not think it is worth

obtaining those small improvements by sacrificing the computational time.

6.2.2 How the threshold value πthr effects BG

From the above tables it is evident that πthr is much more influential on the BG

estimates than the choice of H. Only slightly increasing the value of πthr leads to a

major improvement. However, we believe that if one chooses an excessively large

πthr, the non-zero estimate frequencies will have a hard time becoming larger than

the threshold. Thus many estimated entries will be set to be zeros and the estimated

graphs will be very sparse with many false estimated zeros.

Another appealing feature of πthr is that no additional computational time is re-

quired. As a consequence, we choose πthr = 0.9 in all our BG simulations, which

is believed to effectively improve the estimates without the risk of providing inor-

dinately sparse results.

6.3 Estimation Accuracy Comparisons

6.3.1 Preliminaries

We discuss in this section the precision of the estimates for all the datasets con-

sidered in Chapter 4, including the MVN data, the MVt data and the MVN AR1
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data. We indicate their closeness to the truth and also their desirable sparsities. It

should be noted that the accuracy and the sparsity of an estimate are not equivalent

to each other. Sometimes an estimate can be very sparse but it is unnecessarily

sparse in that it can not effectively reveal the true graphical structure, which is re-

garded as undesirable. On the other hand, an estimate may be denser than another

one, but it can be closer to the true graph, which we believe can be regarded as the

better estimate. The reason that the sparsity and the accuracy are not equivalent to

each other is that non-zero entries are easy to correctly estimate most of the time,

however, in many cases zero entries are mistakenly estimated. Thus, provided that

almost all non-zeros are estimated correctly, a sparser estimated graph indicates

more zero entries are estimated correctly, which will be more accurate and closer

to the true graph. Additionally, the results of an estimating method/selection crite-

rion in this section represent the best estimated precision matrices (or the estimated

undirected graphs) that this method/selection criterion can reveal, under the restric-

tion that certain reasonable parameters were chosen, such as the 100 ρs, H and πthr,

etc. Accordingly, one method Mq is better than another Ml if the best estimates Mq

provides are better than the best estimates Ml can provide. The same representations

are used for selection criteria as well.

As our results are based on the parameters we choose, it is also possible that

the best results of a method are further improved if some parameters are properly

changed. However, the results may become worse with some undesirable settings,

such as choosing a narrow range of ρs or only one fixed ρ , using a too small πthr,

and using too little or too many resampling iterations.

6.3.2 Overall Conclusions

In general, for all dimensions and types of datasets, we have the following con-

clusions:

1. SCAD > AL > BG > glasso > Huge.

2. The DP-glasso algorithm is not effective in improving the estimates. In other

words, DP-glasso has very similar results to glasso, and so does DP-BG to
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BG, DP-AL to AL and DP-SCAD to SCAD.

3. BIC always chooses the sparser estimates than AIC. CV is sparser than AIC

most of the time. All of them are able to keep the true graphical structure,

and the only differences occur in the sparsities of the estimated graphs.

4. Typically, SCAD�BIC provides the best estimates for all the cases. AL�BIC

or BG�BIC or AL�CV are the second best choices most of the time. glasso�AIC

and Huge always provide undesirable estimates.

5. Some of the combinations can produce negative estimates on the main di-

agonal of an estimated precision matrix occasionally, which is unallowed.

Thus we record the frequencies for the simulation scenarios where this kind

of mistake happens. The frequency tables can be found in Appendix .

6.3.3 Conclusions for the multivariate normal data

For the MVN data, in both low dimensional and high dimensional cases, when

n is of moderate size, SCAD�BIC or SCAD�CV performs the best, when n is large,

we recommend using SCAD�BIC, SCAD�CV, AL�BIC, AL�CV and BG�BIC.

For the low dimensional MVN data, the least recommended methods are the glasso

and Huge combinations. For the high dimensional cases, we also suggest not to use

glasso�AIC, Huge�ebic and Huge�stars.

By increasing the dimensions of the MVN data, we do not see a deterioration

in the estimation of glasso, AL, BG or SCAD. On the contrary, with increasing

dimensions we find remarkably better detections of the zero entries by glasso�BIC,

glasso�CV, along with the moderate increases by AL�BIC, AL�CV and BG�CV.

However, Huge does not perform as well as glasso, AL, BG and SCAD as the

dimension increases. Huge�ric is recommended only if the true precision matrix

contains many large value non-zeros. Otherwise, all the three Huge combinations

should not be adopted, due to their incapability of maintaining the true graphical

structures.
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If the dataset is normally distributed, through properly chosen combinations,

such as SCAD�BIC, SCAD�CV or BG�BIC, accurate estimates can be achieved.

For example, more than 90% of all the entries of the true precision matrix can be

succesfully detected.

Note that glasso, AL, BG and SCAD have a stronger ability of detecting smaller

non-zero entries than Huge. In other words, the estimation precisions of glasso, AL,

BG and SCAD are better than Huge. Thus, if the connections within a model are

not very intense, glasso, AL, BG and SCAD are better choices than Huge, with

SCAD being the strongest recommendation.

Moreover, the tridiagonal matrix with large entries are more likely to get worse

estimates for most of the glasso, AL, BG and SCAD combinations, with only

AL�CV, SCAD�BIC, SCAD�CV and BG�AIC results being better. The tridiagonal

matrix with large entries (close to be not positive definite) also causes estimation

problems for the Huge�ric combination, which can not provide any estimate for any

of the repetition. However, the other two Huge combinations provide much better

results than the tridiagonal matrix with smaller entries.

6.3.4 Conclusions for the t-distributed data

The major trends (see Subsection 6.3.2) of the estimating methods and selec-

tion criteria will not be changed when the distributions of the datasets are altered.

In general, SCAD is the most resistant estimating method to the abuses of the dis-

tributions of the datasets. CV is more stable against the changes of the distributions

of the datasets than AIC and BIC.

Changing the distribution of the datasets from the normal distribution to the t-

distribution will definitely harm all the AIC/BIC combinations results and brings

about much denser estimates. In particular, the AIC results suffer from devastat-

ing decreases of sparsities in which only the SCAD�AIC combination does not

completely lose the graphical structure. In contrast, some of the CV combina-

tions produce better estimates for the MVt data than the MVN data. In particular,

SCAD�CV provides the best estimates if the AIC and BIC use the wrong log-
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likelihood in their formulas. In the low dimensional case, Huge�ric detects more

zero entries for the MVt data than the MVN data, while Huge�stars and Huge�ebic

detect slightly less zeros for the MVt data than the MVN data. All of these three

combinations maintain the true graphical structure. When the dimension of the

MVt data increases, Huge is very likely to provide very poor estimates and lose

the original graphical structures.

Using the correct log-likelihood in the AIC/BIC formula, SCAD is the only

method which dramatically increases its ability of estimating zero entries using

both the AIC and BIC in all sample sizes for the low dimensional MVt data. In

other words, the correct AIC/BIC formula show either small improvements or per-

form slightly worse using the other methods. However, when the dimension of the

MVt data increases, the effects of the correct AIC/BIC formula are magnified. The

sparsities of all the AIC/BIC results using all methods are dramatically increased,

resulting in significantly sparser estimated graphs, which enables AIC results to

be at the same sparsity levels as the CV results, and the BIC results are the spars-

est. However, BIC leads to somewhat excessively sparse estimates so that the true

structures are lost, especially when the true entries are relatively small.

The effect of df on the estimates are concluded as follows. Generally, the results

of MVt3 data and MVt4 data are very similar, in both low and high dimensional

cases. However, higher dimensional datasets lead to slightly sparser estimates using

the AIC/BIC combinations before correcting the AIC/BIC formula. For CV, if the

true entries are not very small, the estimates become slightly denser for the MVt4

data. After applying the corrected AIC/BIC formula, if the true entries are relatively

large in the high dimensional case, AIC leads to denser estimates for the MVt4 data

than the MVt3 data, while BIC produces sparser estimates for MVt4 data than the

MVt3 data. If the true entries are relatively small, glasso and AL combinations

(with both AIC and BIC) produce sparser estimates for the MVt4 data than the

MVt3 data. SCAD�AIC will produce denser estimates for the MVt4 data than the

MVt3 data and SCAD�BIC will produce sparser estimates for the MVt4 data than

the MVt3 data. The effect of df on BG estimates is ambiguous. Moreover, Huge�ric

and Huge�stars produce denser estimates for the MVt4 data than the MVt3 data,
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while Huge�ebic results remain almost the same.

In addition, we also studied the effect of the nonparanormal transformation

function huge.npn() on the MVt4 data. In the low dimensional case, all the combi-

nations have stronger power of detecting non-zeros. As for the zero entries, if the

original estimates for the non-transformed MVt4 data are moderately good (e.g.

30% to 50% correct detections), then the estimates will benefit the most from us-

ing the transformation function huge.npn(). In this case, the correct estimation

proportions are always doubled (e.g. to nearly 70% to 87%). If the original detec-

tions of the non-transformed MVt4 data are already relatively good (e.g. more than

64%) or fairly poor (e.g. less than 20%), then there will be only minor improve-

ments. However, there is also a deterioration in results due to the transformation

function huge.npn(), which can either happen to the combinations glasso�CV and

AL�CV at moderate sample sizes or the SCAD combinations at large sample sizes.

The latter case has one feature in that all the original performances of the SCAD

combinations are pretty good (e.g. more than 83% detections) before transforming

the dataset. To be more specific, if the original estimates are already good before

transforming the dataset, the transformation function huge.npn() may help little to

improve them or even make them worse. In addition, almost all the Huge results

are improved by the transformation function huge.npn().

For the high dimensional MVt4 data, all the AIC/BIC results for the MVt4 data

using the transformation function huge.npn() are notably sparser than those for

the non-transformed results, while they are still denser than the results for non-

transformed MVt4 data using the correct AIC/BIC formula. This indicates that the

correct AIC/BIC formula has the stronger power to produce sparse estimates than

huge.npn(). In contrast to AIC/BIC, huge.npn() makes most of the CV estimates

slightly denser. Moreover, if the entries of the true precision matrices are relatively

large (e.g. > 0.2), Huge�ric results are improved a lot after applying huge.npn(),

which is the only case that a Huge combination can effectively estimate the graphi-

cal model without losing its structure.
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6.3.5 Conclusions for the multivariate normal data with AR1

autocorrelation structure

In general, SCAD is the most stable estimating method against autocorrelation

and it produces the best estimates among all the estimating methods. AL suffers

the most from correctly estimating zero among all the estimating methods. CV is

the most resistant selection criterion to the auto-correlation structure. Furthermore,

the ability of correctly detecting the true entries of all estimating methods increases

with the sample sizes.

For the low dimensional MVN AR1 data, the top recommendations are SCAD�CV

and AL�CV at any sample size, and SCAD�BIC is also recommended at large sam-

ple sizes. For the Huge combinations on the low dimensional MVN AR1 data, the

Huge�ric performs much better than the other combinations. The power of detect-

ing the zero entries by Huge�ric dramatically rises, while its ability of estimating

non-zeros is seriously weaken, especially for small sample sizes, which indicates

that the estimated graphs by Huge�ric will become much sparser for the MVN AR1

data. In contrast, Huge�ebic and Huge�stars estimates are slightly denser. All of

them maintain the true graphical structure.

For the high dimensional MVN AR1 data, AL�CV, BG�CV and glasso�CV

are suggested for the matrices with relatively small entries, since SCAD�CV will

over shrink entries and lead to excessively sparse estimates. If the true entries are

relatively large, SCAD�CV is recommended due to its property of achieving more

sparsity than other combinations. Compared to the low dimensional case, the Huge

combinations have quite different performance in the high dimensional case. In-

terestingly, no values are returned for the Huge�ric combination from the package

huge for all the three precision matrices, thus we obtain no estimated precision ma-

trices by Huge�ric. Huge�stars and Huge�ebic still produced excessively denser

and sparse estimates as they do for other high dimensional datasets.

Conclusively, the major influence of the AR1 autocorrelation structure added

to each variable of the dataset is that it remarkably reduce the sparsities of the

estimated graphs. In other words, for both low and high dimensions, not only the
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results of the MVN AR1 data are much denser than the MVN data estimates but also

the ability of correctly estimating both non-zeros and zeros become much weaker.

The excessively dense graph estimated by most of the methods for this data type

and the problems with Huge�ric indicate that the autocorrelation structure inherent

in the data cause more harm to the estimates than assuming a wrong distribution for

the data.

Moreover, the AR(1) auto correlation structure disenable the SCAD and BG

methods to conduct estimation, which will get stuck halfway through the repeti-

tions. Among all the obtained results, AIC and BIC results become too dense to

capture the true graphical structure, while the CV results become slightly sparser

than the MVN data estimates. Also, there is no return value of Huge�ric for any

of the repetition and the other two Huge combinations become slightly denser than

the MVN data .
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A.1 Results for the tridiagonal matrix with a = 0.85

A.1.1 MVN data (p = 30) results

Table 31: The TPs and TNs for the tridiagonal matrix with a = 0.85 for the MVN
data (p = 30)

Ω tri a = 0.85

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

Glasso 1 1 1 0.139 0.53 0.58

AL 1 1 1 0.415 0.786 0.827

SCAD 1 1 1 0.581 0.947 0.97

DP

Glasso 1 1 1 0.14 0.53 0.58

AL 1 1 1 0.416 0.782 0.827

SCAD 1 1 1 0.584 0.948 0.972

BG

H = 50 1 1 1 0.486 0.815 0.732

DP-boo stuck

Huge

ric NA NA

stars 1 0.558

ebic 1 0.712



141

A.1.2 MVt3 data (p = 30) results

Table 32: The TPs and TNs for the tridiagonal matrix with a = 0.85 for the MVt3
data (p = 30)

Ω tri a = 0.85

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

Glasso 1 1 1 0.048 0.174 0.626

AL 1 1 0.995 0.211 0.376 0.838

SCAD stuck

new AIC BIC

Glasso 1 1 1 0.439 0.625 0.626

AL stuck

SCAD stuck

BG

H = 50 1 1 0.999 0.183 0.316 0.827

new A/BIC 0.999 1 0.999 0.725 0.961 0.827

Huge

ric NA NA

stars 1 0.483

ebic 1 0.62
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A.1.3 MVt4 data (p = 30) results

Table 33: The TPs and TNs for the tridiagonal matrix with a = 0.85 for the MVt4
data (p = 30)

Ω tri a = 0.85

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

Glasso 1 0.999 1 0.06 0.238 0.618

AL 0.769 0.508 0.16 0.257 0.548 0.885

SCAD 0.5 0.324 0.103 0.561 0.75 0.935

new AIC BIC

Glasso 1 1 1 0.453 0.643 0.618

AL 0.999 0.999 0.999 0.703 0.859 0.836

SCAD stuck

BG

H = 50 1 0.999 0.999 0.238 0.412 0.805

new A/BIC 0.999 0.998 0.999 0.708 0.964 0.805

Huge

ric NA NA

stars 1 0.492

ebic 1 0.65
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Table 34: The TPs and TNs for the tridiagonal matrix with a = 0.85 for the MVt4
data (p = 30) using the nonparanormal transformation function huge.npn()

Ω tri a = 0.85

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 1 1 1 0.477 0.477 0.564

AL 1 1 1 0.848 0.848 0.86

SCAD 1 0.999 1 0.839 0.871 0.938

BG

H = 50 0.999 0.999 0.999 0.942 0.942 0.942

Huge

ric 1 0.711

stars 1 0.477

ebic 1 0.696
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A.1.4 MVN AR1 data (p = 30) results

Table 35: The TPs and TNs for the tridiagonal matrix with a = 0.85 for the MVN
AR1 data (p = 30)

Ω tri a = 0.85

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 1 1 0.999 0.048 0.075 0.637

AL 0.998 0.998 0.997 0.211 0.231 0.843

SCAD stuck

BG

H = 50 stuck

Huge

ric NA NA

stars 1 0.458

ebic 1 0.575
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A.2 Negative estimates frequencies

Table 36: The frequencies of getting negative estimates on the main diagonal for
the low dimensional datasets

n

MVN AR1 data (p = 5)

100 Huge�ric 0.93

200 Huge�ric 0.63

500 Huge�ric 0.12

MVt3 data (p = 5)

100 SCAD�CV 0.01

100 Huge�ric 0.12

200 Huge�ric 0.01

MVt4 data (p = 5)
100 SCAD�CV 0.01

100 Huge�ric 0.03
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Table 37: The frequencies of getting negative estimates on the main diagonal for
the high dimensional datasets

Ω

MVN data (p = 30) tri 0.85

SCAD�BIC 0.01

DP-SCAD�BIC 0.01

DP-SCAD�CV 0.01

Huge�ric 1

MVN AR1 data (p = 30)

tri 0.85 Huge�ric 1

tri 1.7 Huge�ric 1

exp Huge�ric 1

gen Huge�ric 1

MVt3 data (p = 30)

tri 0.85 Huge�ric 1

tri 1.7 Huge�ric 0.11

exp SCAD�CV 0.01

exp Huge�ric 0.03

gen Huge�ric 0.05

MVt4 data (p = 30)
tri 0.85 Huge�ric 1

tri 1.7 Huge�ric 0.01
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Figure 26: The ASP plots for the MVt4 data (p= 30) generated from the tridiagonal
matrix with a = 1.7, using the wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the wrong BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and

Huge estimates selected by the CV criterion.
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Figure 27: The ASP plots for the MVt4 data (p= 30) generated from the tridiagonal
matrix with a = 1.7, using the correct AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by the correct AIC

formula. [Middle Panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by

the correct BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL and SCAD estimates

selected by the CV criterion.
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Figure 28: The ASP plots for the MVt4 data (p= 30) generated from the exponential
decay matrix, using the wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the wrong BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and

Huge estimates selected by the CV criterion.
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Figure 29: The ASP plots for the MVt4 data (p= 30) generated from the exponential
decay matrix, using the correct AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by the correct AIC

formula. [Middle Panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by

the correct BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL and SCAD estimates

selected by the CV criterion.
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Figure 30: The ASP plots for the MVt4 data (p = 30) generated from the general
matrix, using the wrong AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates selected by the wrong

AIC formula. [Middle Panel] The ASP plots of the glasso, BG, AL, SCAD and Huge estimates

selected by the wrong BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL, SCAD and

Huge estimates selected by the CV criterion.
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Figure 31: The ASP plots for the MVt4 data (p = 30) generated from the general
matrix, using the correct AIC/BIC formula

[Left panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by the correct AIC

formula. [Middle Panel] The ASP plots of the glasso, BG, AL and SCAD estimates selected by

the correct BIC formula. [Right Panel] The ASP plots of the glasso, BG, AL and SCAD estimates

selected by the CV criterion.


