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Abstract

The structural integrity of underground excavations, resource extrac-

tion processes, and the overall safety of geotechnical operations hinge on

a comprehensive understanding of brittle rock failure mechanisms and the

distribution of internal stress within these formations. This research sheds

light on the underexplored aspects of geomechanics, showing the complexi-

ties of brittle rock behavior under stress, specifically focusing on the internal

force distributions that precipitate failure.

This thesis consists of three parts. First, validating the efficacy of the

Bonded Particle Method (BPM) through the simulation of elastic wave

propagation in response to a single point force excitation. This verifica-

tion process underscores the method’s reliability and accuracy, establishing

a solid foundation for its application in subsequent analyses. Second, the

BPM is applied to create a Particle Flow Code (PFC) 2D model of Lac du

Bonnet granite. We demonstrate the material genesis procedures, model

calibration, and delineate the general characteristics of the granite model

and showcase the practical application of the BPM in understanding rock

behavior. Third, we explore the rock failure and internal force networks

within brittle intact rocks. We investigate the crack development under

compressive loading, discover five distinct internal force networks and crit-

ical angles within the cemented granular system, and find that the failure

occurs along the force subgroups with high force gradient. These findings

from this thesis not only advance our understanding of brittle rock failure

mechanisms but also have significant implications for geotechnical engineer-

ing, mining, and petroleum extraction industries. This thesis represents a
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stride forward in geomechanics, offering a comprehensive analysis of brit-

tle rock failure mechanisms that bridge theoretical concepts with practical

applications.
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Chapter 1

Introduction

This chapter lays the groundwork by providing an overview of the topic,

examining previous academic research, and explaining the reasons and con-

tributions of the current study. The goal of this thesis is to increase our

understanding of the mechanisms and distribution of internal forces that

cause brittle rocks to fail. This knowledge will provide fresh perspectives

on fracturing processes and aid in mitigating associated risks.

1.1 Background

Brittle rock failure significantly influences the stability of subterranean

structures, the productivity of resource extraction, and the overall safety of

geotechnical operations. By employing numerical simulations, we deepen

our understanding of the mechanisms behind rock failure, providing essen-

tial insights that aid in the planning and analysis of geotechnical operations,

including hydraulic fracturing. (Fink, 2013). Hydraulic fracturing creates a

network of cracks, making it easier for trapped hydrocarbons to flow and be

extracted to the surface. As a result, it allows access to oil and natural gas
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reserves that were previously inaccessible. Hydraulic fracturing has com-

pletely transformed energy production, significantly impacting the energy

industry, particularly in North America. Hydraulic fracturing has played a

crucial role in the energy sector revolution over the past few decades, greatly

influencing the economies of the United States and Canada (Soeder, 2018).

However, despite its benefits, hydraulic fracturing has also received sub-

stantial criticism and concern, including its potential impact of the tech-

nique on air and water quality, as well as the potential for induced earth-

quakes (Keranen and Weingarten, 2018; Shirzaei et al., 2016; Lee, 2002).

In the future, it is likely that hydraulic fracturing technique will continue

to evolve, with a focus on improving its environmental impact and min-

imizing the seismic risks. Most human-induced seismicity involves rock

fracturing caused by various geological operations, including but not lim-

ited to hydraulic fracturing (Maxwell, 2014), such as wastewater injection

(Ellsworth, 2013) and mining (Gibowicz, 1994). Thus, gaining knowledge

about the mechanics of brittle rock failures becomes fundamental and cru-

cial for these practices. In our research, we will provide insights into its

fracturing geomechanics and its correlated internal stress distribution that

can promote the development of optimizing hydraulic fracturing while en-

suring its safe and sustainable use in the future.

1.2 Microseismicity and Acoustic Emissions

There are two types of hydraulic-fracturing-induced seismicities: micro-

seismicity and ”felt” higher-magnitude seismicity (Bao and Eaton, 2016;

Clarke et al., 2014; Shipton, 2012). Microseismicity or microseismic events

are typically characterized by magnitudes of Mw ≤ 3, and are usually not
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felt at the Earth’s surface. These occurrences are frequently within the

−3.0 ≤ Mw ≤ 0 (Warpinski et al., 2012). However, larger magnitude seis-

mic events can be created in the vicinity of the stimulated well when there

are pre-existing faults, and some of these may reach magnitudes of Mw > 3

and be felt at the surface.

Over the past decade, microseismic monitoring has emerged as a highly

effective technique for hydraulic fracture diagnostics and control (Cipolla

and Wright, 2000). The microseismic monitoring technique can be used

for detecting and imaging the geometry of fracture networks and evaluat-

ing the distribution of stimulated reservoir volume (Rutledge and Phillips,

2003), which can provide valuable insights into the behaviour of subsurface

reservoirs and the efficiency of hydraulic fracturing treatments.

The theoretical foundation of microseismic monitoring is based on acous-

tic emission (AE) and seismology principles. While field-scale hydraulic

fracturing stimulation is a common source of microseismicity, microseis-

micity can also be induced through laboratory-scale stimulation, which is

called acoustic emission (AE). In recent years, there has been an increase in

laboratory experiments aimed at investigating fracture behaviour (Li et al.,

2017; Wang et al., 2018), to improve our understanding of the mechanical

properties of fractures and enhance the effectiveness of field-scale stimula-

tion.

Collecting AE events in modern laboratories depends on computer-based

detection, signal conversion, and localization (Labuz et al., 2001; Lock-

ner, 1993). However, AE events may not be detected by acoustic emission

sensors for various reasons, such as the low amplitude of the event, back-

ground noise levels, limited sensor coverage, signal attenuation, and insuffi-
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cient sensor sensitivity. Analyzing the rock fracture behaviours in laborato-

ries is challenging because of the constrained measurements, unreproducible

rock specimen, and complex and interactive micromechanical processes in-

volved. However, numerical simulations are becoming increasingly sophis-

ticated with new algorithms and software tools that can handle complex

geometries and loading conditions. Finite element numerical models have

been applied to study these complex fracture patterns (Shah et al., 1997;

Warpinski et al., 1994; Vandamme and Curran, 1989) while similar labora-

tory experiments also have conducted (Scott Jr et al., 2000; Groenenboom

and Dam, 2000). A comparison of laboratory observations with numerical

simulations produces some disagreements in terms of fracture patterns and

fracture type to some extent. For a real failure and cracks to occur, interac-

tions between micro-cracks (Okui and Horii, 1995) must occur. Therefore,

because of its nature, the Discrete Element Method(DEM) has become

more common in recent years to explain the micro-mechanical behaviour

of rocks further. Numerous studies have shown that the Discrete Element

Method, can accurately model emergent non-linear stress-strain behaviours

at different confining pressures (Cundall and Strack, 1979a; Hazzard and

Young, 2004). Furthermore, the DEM has proven to be a successful tool

for studying various aspects of rock mechanics. For instance, it has been

utilized to investigate rock fracture (Hunt et al., 2003; Young et al., 2000;

Donzé et al., 1997; van der Baan and Chorney, 2019), crack propagation

and coalescence (Hadi et al., 2014; Camones et al., 2013), as well as acoustic

emission activity (Hazzard et al., 2000; Khazaei et al., 2015).
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1.3 Motivation

1. Supporting Academic Advancements. There are considerable knowl-

edge gaps in terms of how the internal force distribution changes in

brittle rocks. This thesis is dedicated to numerically simulating the

changing internal force distribution in brittle rocks, presenting new

data and insight that will fundamentally change the way geoscientists

and engineers approach the understanding, modeling, and manage-

ment of subsurface rocks.

2. Optimize resource extraction technology. In mining and hydraulic

fracturing, understanding the distribution of internal forces can help

improve mining methods. This knowledge helps plan efficient and

safer mining strategies by guiding drilling patterns, using fracturing

fluids, and predicting fracture paths, thereby increasing production

and reducing environmental and safety hazards.

3. Mitigating earthquake risks. The study of how internal forces are

distributed in brittle rocks is also relevant to induced seismicity (the

human-induced earthquakes produced by hydraulic fracturing, geother-

mal energy recovery, and disposal of wastewater). Knowing how in-

ternal stresses change when our activity disturbs the ground could

allow us to reduce the potential for triggering large earthquakes.

Overall, studying the brittle failure of rocks is important because it helps us

understand the process of rock failure and helps mitigate seismic activity.
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1.4 Contributions

Our complete analysis of brittle rock failure that bridges theory and practice

helps to advance our understanding of rock behavior under compression.

The main contributions of this analysis are the following:

1. Identification the Characteristics of Catastrophic Failure. We found

that the catastrophic failure occurs after the peak stress is reached,

accompanied by the most significant stress drop, the largest acoustic

emission size, the highest crack formation rate, the highest acoustic

emission rate and the highest shear-tensile crack ratio.

2. Discovery of Five Distinct Subgroup Forces. A key finding of this work

is the identification of five distinct force subgroups within the overall

internal force distribution: Weak, Strong A, Strong B, Horizontal

and Vertical force subgroups. This differentiation allows for a more

detailed analysis of the forces and facilitates a deeper understanding

of their individual and collective impacts on rock failure. This thesis

also identifies critical angles that delineate the boundaries between

the identified force subgroups.

3. Determination of Relationship between Internal Forces and Failure.

Catastrophic failure occurs in areas with a high force gradient, ori-

ented according to the critical angle identified between the Strong A

and B subgroups. Thus, this critical predicts the orientation of the

final catastrophic failure if the loading persistently escalates. Simul-

taneously, the critical angle observed between the Strong B and Weak

force subgroups delineates the foundational angular threshold for the

occurrence of shearing.
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1.5 Thesis structure

The study is carried out in the next six chapters:

1. Chapter 1: Introduction. It introduces the fundamental concepts

required to understand the thesis. This chapter also provides an

overview of the scope of the study, the motivations behind investigat-

ing brittle rock failure mechanisms and internal stress distributions.

2. Chapter 2: Fundamentals of Geomechanics. Chapter 2 offers a ge-

omechanics review. It covers topics such as stress and strain in geo-

logical materials, fracture mechanics, Sibson’s fault reactivation and

the Mohr Circle.

3. Chapter 3: Numerical Modelling and Bonded Particle Method. In

this chapter, the focus is on introducing the bonded particle method

and the linear parallel bonds, as well as discussing the Particle Flow

Code (PFC) software formulation. This chapter provides an overview

of how numerical modeling contributes to our understanding of rock

behavior.

4. Chapter 4: Validation of the Bonded Particle Method. Chapter 4

aims to verify the bonded particle method’s effectiveness through nu-

merical and analytical/semi-analytical methods. The chapter focuses

on simulating elastic wave propagation by exciting a particle with a

single point force, demonstrating the method’s accuracy and reliabil-

ity in modeling complex geomechanical processes.

5. Chapter 5: Material Genesis and Calibration. This chapter shows

the application of the bonded particle method by preparing a Particle
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Flow Code (PFC) 2D model of Lac du Bonnet granite, which is the

most studied type of granite in this area of research. It covers the

material genesis procedures and model calibration and discusses the

general characteristics of the granite model. The main objective is to

illustrate the process of model preparation and calibration, providing

a blueprint for similar future studies.

6. Chapter 6: Analysis of Crack Development and Force Networks Evo-

lution. Chapter 6 further investigates rock failure mechanisms and

internal force networks in brittle intact rocks. It brings new insights

into crack development under compressive loading and the dynamics

of internal force networks within the brittle cemented granular sys-

tem. It also demonstrates the relationship between crack formation

and internal force distributions. This chapter represents the core of

the thesis, presenting key findings that contribute significantly to the

field of geomechanics.

7. Chapter 7: Conclusions and Future Directions. This chapter sum-

marizes the key findings of the thesis and emphasizes the contribu-

tions made to understanding brittle rock failure and internal stress

distributions. Also, it discusses the implications of the research for

geotechnical engineering, mining, and other relevant fields. Finally,

it outlines potential directions for future research, suggesting ways to

build upon the work presented in this thesis.
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Chapter 2

Geomechanics

2.1 Overview

The purpose of rock mechanics is to understand the mechanical responses

of soil and rock and why they deform as a sporadic or catastrophic event.

How rock fails is a key element in civil, geotechnical and petroleum engi-

neering practices and is gaining interest within the oil and gas industry.

To ensure the successful development of an unconventional reservoir, the

deformation mechanism and fracture distribution must be fully understood

and investigated. A rock mass can comprise both intact rock and various

types of discontinuities. The discontinuities are commonly known to play

a significant role in the deformability and mechanical behaviour of rock

masses (Wang et al., 2013).

In this chapter, we will describe two major topics in Geomechanics:

continuum mechanics and fracture mechanics.
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2.2 Continuum Mechanics

Continuum mechanics use mathematics to describe the behaviour of ma-

terials in terms of deformation and stress. It assumes that materials are

continuous and homogeneous, isotropic, i.e., the material is considered a

continuous substance rather than a collection of discrete particles. At the

microscale, the matter is discontinuous. However, the macroscopic appear-

ance of solid objects appears continuous, with their properties changing

gradually without disruption. By studying continuum mechanics, we can

gain insight into the physical behaviour of matter on larger scales while

considering its fundamental discrete composition. Within the framework of

Continuum Mechanics, stress and strain are used to describe the mechanical

behaviour of geological materials.

2.2.1 Stress

For a force perpendicularly acting on a certain area, the Area is A, and the

force is denoted F, then the stress σ is defined as:

σ = F/A (2.1)

The sign of the stress σ is not uniquely defined, and in rock mechanics,

the sign convention suggests positive signs for compressive stresses and vice

versa. This is because the stresses dealt with in the applied scenario are

mostly compressive, and this sign convention simplifies the problem.

A structure can be subjected to two types of stress: normal stress σn

and shear stress σs. The normal stress is the component of stress σn per-

pendicular to a surface. The shear stress σs is the portion of the stress
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parallel to a surface. The overall stress on the surface is the vector sum of

normal and shear stress.

Stress tensor

In order to describe the complete stress state acting on a point, it is nec-

essary to identify stresses on the surfaces oriented in all three orthogonal

directions. The stresses related to a surface perpendicular to the x-axis may

be denoted σ11, σ12 and σ13, representing the normal stress, shear stresses

in y-directions and the z-direction, respectively. Similarly, stresses related

to a surface perpendicular to the y-axis are denoted σ21, σ22 and σ23, and

stresses related to a surface perpendicular to the y-axis are denoted σ31,

σ32 and σ33. These nine stress components give the stress tensor a com-

plete description of the stress state at the point. The first index indicates

the surface’s normal direction for stress components, and the second index

indicates the force direction.

σij =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.2)

It is also worth noting that no stress components are independent. For

an object, an equilibrium state implies that no net translational or rota-

tional force is acting on it, and forces on opposite faces must be equal and
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opposite. In other words, the equilibrium state requires that:

σ12 = σ21

σ13 = σ31

σ23 = σ32

(2.3)

Therefore, only half of the shear stress components are independent; to-

gether with the normal stress components, six of the stress components are

independent.

Principal stresses

There will be three special planes perpendicular to each other that expe-

rience only normal and no shear stress. The poles of these planes are the

stress axes, and according to the magnitude of stress acting along the axes,

they are called the principal stresses. σ1 > σ2 > σ3.
σ1 0 0

0 σ2 0

0 0 σ3

 (2.4)

It is important to remember that the primary stresses are the eigenvalues

of the stress tensor, while the stress axes correspond to its eigenvectors. The

stress condition is triaxial if two of the three primary stresses are greater

than zero. The stress is biaxial if two of the primary stresses are non-zero

and one of them is zero. The state of stress is referred to as uniaxial if two

of the primary stresses are zero.
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Effective stress

Effective stress is the resultant stress transmitted between a geological ma-

terial’s solid grains. It is the difference between the total stress and the

pore fluid pressure. When fluid has an abundant presence, the pore fluid

pressure would significantly reduce the effect of normal stress on the mineral

grains, leaving the shear stresses unaffected.

2.2.2 Strain

Strain is the relative change in the position of points within a body that has

undergone deformation. Given the stress tensor expressing forces acting in-

side a solid body, the corresponding strain tensor expresses the deformation

of the body in reaction to these forces.

ϵij =


ϵ11 ϵ12 ϵ13

ϵ21 ϵ22 ϵ23

ϵ31 ϵ32 ϵ33

 (2.5)

where ϵij(i, j = 1, 2, 3) represent the components of the strain tensor ϵij.

The strain tensor is also symmetric, and only six components are indepen-

dent. Symmetry requires that:

ϵ21 = ϵ12

ϵ31 = ϵ13

ϵ23 = ϵ32

(2.6)

The strain tensor also can be expressed in terms of relative displacement

when the displacements of the material particles are assumed to be much
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smaller than the dimension of the body:

ϵij ≡
1

2

(
∂ui

∂xj

+
∂uj

∂xi

,

)
(2.7)

where ui(i = 1, 2, 3) is the relative displacement. The geometric equation

is the relationship between strain ϵij and relative displacement ui. Written

out in matrix notation, this index equation becomes


ϵ11 ϵ12 ϵ13

ϵ21 ϵ22 ϵ23

ϵ31 ϵ32 ϵ33

 =


∂u1

∂x1

1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
1
2

(
∂u1

∂x3
+ ∂u3

∂x1

)
1
2

(
∂u2

∂x1
+ ∂u1

∂x2

)
∂u2

∂x2

1
2

(
∂u2

∂x3
+ ∂u3

∂x2

)
1
2

(
∂u3

∂x1
+ ∂u1

∂x3

)
1
2

(
∂u3

∂x2
+ ∂u2

∂x3

)
∂u3

∂x3


(2.8)

Normal strains mean a direct length change of an object along the uni-

axial direction resulting from normal stress. Based on Equation 2.7, the

normal strain along the i-th direction can be expressed as:

ϵi =
∂ui

∂xi

(2.9)

And the shear strain ϵij is acting along the j-th direction on the plane

perpendicular to xj axis and expressed as:

ϵij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.10)

2.3 Fracture Mechanics

Both tensile and compressive failures start at local tensile stresses around

discontinuities. In general, cracks initiate when the material’s intermolec-

ular bonds are stretched and can break when the cohesive bond strength
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is exceeded. Cracks propagate and extend unstably if excess energy is re-

leased by an incremental crack growth that is more than the energy required

for producing that increment, resulting in residual energy. The cohesive

strength and energy criterion must be met for a crack to elongate. In the

case of tension, the intermolecular bonds are stretched and can break when

the cohesive strength is exceeded, and this tension strength is easy to be

exceeded. Therefore, the propagation depends on whether the second crite-

rion is met. However, compressing those bonds deforms them rather than

breaks them in compression, and the strain energy stored in the material

could be enormous, but the cracks do not propagate. Hence, in compression

cases, the fulfillment of the first criterion dictates cracking, not the second

one.

Another significant difference between tensile and compressive failures of

the brittle rocks is the cracking pattern. When a tensile load is applied, the

crack initiates at the flaw tip and propagates perpendicular to the applied

external load, and the area resisting the applied force decreases. However,

when a compressive load is applied, the crack propagates parallel to the

applied load, and there is no decrease in the resisting area.

2.3.1 The problem at hand

Griffith (1921) proposed that when the tensile stress at or near the tip of

the inherent open crack exceeds the material’s cohesive strength, the tensile

crack will grow, and the failure process is initiated. The equation governs

the tensile failure initiation in a biaxial compressive stress field is expressed

as follows:

σ1 =
−8σt

(
1 + σ3

σ1

)
(1− σ3/σ1)

2 (2.11)
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where the σt is the uniaxial tensile strength of the material. Griffith’s stress

model (Griffith, 1924) was used for decades to study crack initiation. It

suggests that a crack will start propagating from the tips of minute defects

when the tensile stress exceeds the cohesive bond strength.

Following Griffith’s stress model theory, significant advancements have

been made in understanding tensile fracture and enhancing its predictabil-

ity. Engineers have been using Linear Elastic Fracture Mechanics (Irwin,

1957, 1960) and Non-Linear Fracture Mechanics (include using methods

such as Crack Opening Displacement (Wells, 1961; Burdekin and Stone,

1966), J-Integral (Rice, 1968; Rice et al., 1968)) to predict and describe the

tensile fracture behaviour of various materials subjected to diverse load-

ing conditions. In tension, general equations are available, applicable and

highly accurate, conforming to experimental results and verified over the

years. On the other hand, unfortunately, our understanding of the frac-

ture process in brittle materials under compression has not developed at a

comparable pace. There is no well-established theory for compressive fail-

ure, and as a result, engineering design practices often rely on empirical

guidelines.

Under a compressive stress field, the applicability of Griffith’s stress

model was evaluated experimentally by Lajtai (1971); he found that the

tensile fracture first appeared at the point of maximum tensile stress, and

the crack later adjusted its direction to propagate parallel to the applied

compression stress. Also, Lajtai et al. (1989) argued that the assumptions

and simplifications made in the stress model make this theory unsatisfac-

tory for solving brittle fracture in compression critical in predicting the

strengths and failure of rock and brittle materials in geotechnical applica-
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tions. One significant constraint of stress-based theories is their assumption

of a thin crack, often called the Griffith crack, which ignores the crack clo-

sure phenomenon in case of compression. Also, Griffith’s stress model can

not explain the stepped path followed by propagating cracks. In general,

Griffith’s theory is applicable to describe the initiation of open microcracks.

However, a complete model is required to fully understand the growing pro-

cess of the cracks within the rock under compressive stresses.

2.3.2 Initiation of a Microcrack

Rocks are naturally heterogeneous, and those pre-existing heterogeneities

lead to various source defects that lead to the local stress concentrations

where a microcrack starts to initiate. At the source defects, a ”sliding

crack” micromechanical model has been analyzed (Brace and Bombolakis,

1963; Brace et al., 1966; Fairhurst and Cook, 1966). In this model, the

cracks are assumed to be closed under compressive loading. It considers

the tensile stress concentrates at the tips of inclined pre-existing cracks

(Figure 2.1) with length 2c and oriented at angle γ to σ1, the maximum

principal compressive stress.

When compressive stress is applied, it generates a shearing stress along

the plane of the crack. If this shear stress is strong enough to surpass the

frictional resistance of the closed crack, it will cause a frictional slippage,

leading to concentrated tensile stress at both ends of the sliding crack. This

tensile stress may trigger the formation of ”wing cracks” at the two tips.

As the stress acting on a material increases, wing cracks can form. The

driving force for initiating wing crack is determined by the stress intensity

factor KI. Once the value of KI reaches a critical value of KIc, wing cracks
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will begin to form. According to a study by Rawling et al. (2002), if the

preferred orientation is given by the angle β, which is between the weakness

plane and the principal stress σ1, then the wing cracks are more likely to

nucleate from sliding cracks that are oriented at this angle beta at a stress

that is:

σ1 =
sin 2β + µ(1 + cos 2β)

sin 2β − µ(1− cos 2β)
σ3 +

√
3

sin 2β − µ(1− cos 2β)

KIc√
πc

(2.12)

In addition to the sliding crack model, a range of possible models were

developed to describe the crack growth initiated at different types of mi-

crostructural heterogeneities, e.g. cylindrical pores (Sammis and Ashby,

1986) and elastic mismatch (Dey and Wang, 1981). As there are certain

shared characteristics among all of these models, it is possible that a generic

model can capture the fundamental aspects of crack growth. According to

studies by Rudnicki and Chau (1996); Costin (1983, 1985), a generic model

can be developed to describe stress-induced cracking without specifying the

microstructural heterogeneity. They introduced the proportionality factor

f ′ to characterize the tensile stress concentrations. The relationship be-

tween the principal stresses for penny-shaped cracks at the initiation of

crack growth can be described by the following equation:

σ1 =

(
3

f ′ + 1

)
σ3 +

3π

2f ′
KIc√
πa0

(2.13)

where a0 is the initial crack length. Values of f ′ vary depending on the

rock type,e.g. granite typically has a value of 1.14 for f ′, while marble has a

higher value of 2.09 and tuff has a value of 1.28 (Rudnicki and Chau, 1996).
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The models mentioned above predict that there is a linear relationship

between the principal stresses that are present when wing crack growth

initiates. Experimental data has also been found to support the presence

of this linear relationship (Ashby and Sammis, 1990).

2.3.3 Microcrack Propagation and interaction

According to the sliding crack model, one of the consequences of wing crack

growth is the formation of stress-induced extendable cracks that propagate

parallel to the largest principal stress (σ1) as the stress increases. Further-

more, as the applied stress increases, shorter and less favourably oriented

sliding cracks are likely to become active, resulting in the nucleation and

initiation of new wing cracks distributed throughout the material. As the

number and dimensions of wing cracks grow, the interaction among the var-

ious cracks and their associated stress fields becomes increasingly complex

(Horii and Nemat-Nasser, 1983). Due to the complex nature of interactions

of cracks and their stress fields, analyzing a single primary crack using tra-

ditional fracture mechanics has yet to be deemed adequate.

There are two primary approaches used to analyze the mechanics of

crack interaction. The first approach relies on continuum damage mechan-

ics (Krajcinovic, 1995). Continuum mechanics address inelastic and failure

behaviours by monitoring the evolution of internal variables under loading.

The internal variables represent the current microstructural arrangement

(Rice, 1975). In this micromechanics-based damage model, the term ”dam-

age” refers to an internal variable that reflects the density and geometry of

numerous microcracks and pores within the brittle rock.

The second approach is a stochastic method that involves extensive nu-
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merical computation of a system of cracks with geometric properties fol-

lowing specific statistical distributions. Our research will employ this latter

method to simulate the interactions among microcracks.

2.3.4 Rock Failure

Mohr’s Circle

Mohr’s circle is a graphical representation of the transformation equations

for plane stress problems, named after the German Civil Engineer Otto

Mohr. He also developed the graphical technique for drawing the circle in

1882. Mohr’s circle is useful in visualizing the relationships between the

normal and shear stresses acting on various inclined planes at a point in

a stressed body. We can also calculate principal stresses, maximum shear

stresses, and stresses on inclined planes using Mohr’s Circle.

The idea behind Mohr’s Circle is that if normal stress is plotted on the

x-axis, and shear stress is plotted on the y-axis, then the circle represents all

possible combinations of normal and shear stress fall inside with interception

on the x-axis at σ1 and σ3. With that, Mohr’s Circle can be used to calculate

the shear and normal stress on any plane, and it is possible to predict the

orientation of the failure plane where the failure strength of the rock is

exceeded. A failure envelope can represent the failure condition. When

differential stress σd is increasing, σd = σ1−σ3 , the Mohr’s circles increase

and eventually intersect the failure envelope and fracture occurs at the

intersection with certain normal stress, shear stress and orientation.

A more general and frequently used failure criterion is the Mohr-Coulomb

criterion which is represented by the solid red line in Figure2.2 and can be
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expressed as follows:

σs = σn tanϕ+ c0 (2.14)

c0 is the cohesion. ϕ is the internal friction angle of the rock and is related

to the coefficient of internal friction µ by µ = tanϕ. Figure 2.2 show the

angle 2θ, which gives the position of the point where Mohr’s circle touches

the failure line. θ and ϕ are related by:

ϕ+
π

2
= 2θ (2.15)

From Eq.2.15, we have

θ =
π

4
+

ϕ

2
(2.16)

The allowable range for ϕ is from 0◦ to 90◦, and therefore, it is clear that θ

may vary between 45◦ and 90◦.

In this case of Mohr-Coulomb criterion (Figure 2.2), Mohr’s circle in-

tersects the failure envelope and fracture occurs at the intersection P, the

failure plane, with certain normal stress σn,P , shear stress σs,P and angle θ

which is between failure plane P and σ3.

2.3.5 Sibson’s Fault Reactivation

Sibson (1990) identified the failure plane as favourably oriented, unfavourably

oriented or severely misoriented based on the failure plane orientation to

the principle stresses. The favourable orientation for fault reactivation is

where the stress ratio, R = (σ1/σ3) = (1 + µ cot θr)/(1 − µ tan θr), is low,

where θr is the angle of reactivation between failure plane and σ1 (Figure

2.3). This stress ratio R reaches a minimum positive value at the optimum

angle for reactivation given by θ∗r =
1
2
tan−1(1/µ) and the stress ratio will be
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R∗ =
(√

1 + µ2 + µ
)2
. This stress ratio R reaches infinity when θr = 2θ∗r ,

so-called the potential ”locked-up” angle, indicating that the stress ratio

needed for failure plane reactivation goes to infinity. When θr > 2θ∗r , i.e.,

the ”locked-up” angle is exceeded, failure plane reactivation would not oc-

cur unless the minimum principal stress becomes tensile σ3 < 0 or pore

fluid press Pf > σ3.

Therefore, according to Sibson (1990), for typical rock friction coeffi-

cients, it is unlikely that normal faults will be reactivated as high-angle

reverse faults or thrusts as low-angle normal faults unless the effective least

principal stress is tensile. In the previous section, we talked about the Mohr

Circle, and it is worth noting that the θ used in Mohr’s Circle is the be-

tween failure plane and σ3 while the θr used in Sibson’s reactivation angle

is the angle between failure plane and σ1. We can link Sibson’s optimum

reactivation angle with the idea of Mohr’s circle: the optimum condition for

fault reactivation is exactly where the Mohr’s Circle is touching the failure

envelope (Figure 2.2), i.e., the angle of failure plane given by the Mohr’s

circle is same as the Sibson’s optimum reactivation angle, θ∗r = 90◦ − θ.
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Figure 2.1: The process of nucleation and propagation of a wing crack from
the tip of a sliding crack with length 2c, with the directions of the maximum
and minimum principal stresses indicated. The sliding crack and wing crack
are oriented at angles of γ and θ relative to the σ1 direction. Modified after
Rawling et al. (2002).
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Figure 2.2: The Mohr diagram with the solid red line represents the Mohr-
Coulomb criterion. c0 is the cohesion. ϕ is the internal friction angle of the
rock. Plane P represents the failure plane, σn,P and σs,P are the normal
stress and shear stress on the failure plane P, θ represents the angle between
failure plane P and σ3. Modified after van der Pluijm and Marshak (2004).
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Figure 2.3: Stress ratio, R = σ1/σ3, required for frictional reactivation
versus reactivation angle, θr for rock with friction coefficient µ = 0.75.
The region of favourably oriented, unfavourably oriented (UO) or severely
misoriented for fault reactivation is indicated in the diagram. Reproduced
from Sibson (1990) with permission of Seismological Society of America.
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Chapter 3

Numerical Modelling and the

Bonded Particle Method

3.1 Introduction

In this chapter, the different types of numerical modelling methods will be

introduced, followed by a discussion of the bonded particle method, software

formulation, moment tensor and numerical damping.

The study of rock mechanics can be carried by physical, analytical and

as well as numerical approaches. Thanks to the increased computing power

and development of modelling methodology, we can conduct repeatable nu-

merical simulations to investigate the geomechanical behaviour of brittle

rocks with particle numbers comparable to those found in laboratory spec-

imens. The Bonded Particle Method had been widely applied to rock and

soil mechanics research in recent years (Cundall and Strack, 1979a; Cho

et al., 2007; Kazerani and Zhao, 2010; Ivars et al., 2011; Potyondy et al.,

2012a). In the mining, oil and gas extraction industries, the detailed physics

of the rock deformation process is highly relevant to enhance productivity
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and equipment design while ensuring the operations are safe.

3.2 Numerical Modelling

In general, the numerical modelling methods of acoustic emissions and de-

formation analysis associated with failure processes in brittle rocks fall into

two categories: 1) continuum modelling and 2) discontinuum modelling

(Jing and Hudson, 2002).

3.2.1 Continuum Modelling

Rock is a complex and discontinuous material. The continuum modelling

method, e.g. the Finite Element Method (FEM), can simulate the variabil-

ity in material types and non-linear constitutive behaviour in rock masses.

Therefore, it allows accurate representation of complex geometries and in-

clusion of dissimilar materials.

For continuum modelling, the rock and soil mass model follow the as-

sumption of continuity. The model is represented as a continuum divided

into a set of simple geometrical mesh made by elements and nodes. Ele-

ments are the sub-domains; nodes are points at which exact solutions are

calculated. Between nodes of a single element,The FEM exploits approx-

imations to the connectivity of elements and continuity of displacements

between elements, and the solutions are estimated through interpolation.

However, when simulating the process of fracturing in brittle rocks,

the continuum modelling method is constrained by the requirement of the

continuum assumption. Since continuity is required between neighbour-

ing nodes, element sizes should be small, and the elements are limited to
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small movement. Therefore, discontinuous features with large displace-

ments, e.g. joints, are impossible to deal with (Nikolić et al., 2016). The

FEM models require continuous re-meshing in order to simulate fracture

growth. Therefore, the modelling of discontinuous features, including rock

failures, fracture propagation and damage-induced failures in brittle rocks,

becomes very restrictive and less efficient (Ibrahimbegovic, 2009; Wriggers,

2008). In contrast, natural discontinuities can be simulated in the discontin-

uum models; interactions between elements are constantly changing during

the deformation processes.

3.2.2 Discontinuum modelling

Most physical materials and systems are discontinuous, and rock is an ob-

vious example of it. At the microscopic scale, rock is made of numerous

amount of discrete grains. In discontinuum modelling, the rock mass is

treated as an assemblage of interacting bodies subjected to external loads

and undergoes significant motion with time and follows linear or non-linear

stress-strain laws (Stead et al., 2006).

The Discrete Element Method is a discontinuum approach that effi-

ciently explores the dynamic interactions of discontinuous objects. The

Discrete Element Method’s calculation procedure formulates and solves the

dynamic equation of equilibrium for an assemblage of deformable rigid par-

ticles until the boundary conditions and motion laws are satisfied. As in the

Finite Element Method, the Discrete Element Method accounts for complex

non-linear interaction phenomena between bodies. We distinguish a discon-

tinuous medium from a continuous medium through contacts or interfaces

between the discrete bodies that comprise the system. Cundall and Hart
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(1992) proposed that the definition of a Discrete Element Method applies

to a computer program only if it: (a) allows finite displacements and rota-

tions of discrete bodies, including complete detachment; and (b) recognizes

new contacts automatically as the calculation progresses. Therefore, it pro-

vides the capability to represent discontinuities and the rotation of distinct

bodies. However, it also implies that it requires an efficient algorithm for

detecting and classifying the contacts between interacting bodies.

3.3 Bonded Particle Method

Both soil and rock are materials composed of mineral grains. They could

be very similar in their chemical composition, while they are very differ-

ent in physical forms. For soils, those grains are readily disintegrated and

mixed with water, air, and organic matter. However, the mineral grains in

rocks are strongly bonded together only to be separated when a relatively

considerable force is applied.

Cundall and Strack (1979b) implement the Discrete Element Method

and apply disks and spheres to simulate the mechanical behaviour of un-

bonded particles. Since there is no cohesion between disks and spheres, such

a system behaves like a granular material, such as soil. Nevertheless, accord-

ing to the nature of rocks, we require a proper model to replicate the bonds

between the mineral grains. Cundall and Strack (1979a) extend the Dis-

crete Element Model to incorporate bonding between grains and argue that

such a model’s mechanical behaviour is similar to brittle rock’s response.

Such a modelling methodology is called the bonded particle method.

Since Cundall and Strack (1979a) firstly introduced the bonded particle

method, it has been progressively improved and developed. The bonded-
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particle modelling methodology now offers different microstructural models

to simulate different forms of bonded material, e.g. incorporating clumped

material (Cho et al., 2007) to mimic a group of glued particles that behave

as a single rigid body, adding the smooth-joint contact model to mimic pre-

existing large-scale joint (Mas Ivars et al., 2008) and flat-jointed contact

model (Potyondy et al., 2012b) to mimic the microstructure of angular,

interlocked grains.

3.3.1 Linear Parallel Bond Model

Cundall and Strack (1979a) propose a model for a rock represented by dense

packing of non-uniform sized grains bonded together with parallel bonds at

their contact point. This contact model is called the linear parallel bond

model based on the author’s two main arguments:

• Rock behaves like a cemented granular material of complex-shaped

grains. Both the grains and the cement are breakable and deformable.

• The bonded particle model can mimic this system; circular discs of

unit thickness directly mimic each grain, and the parallel bonds mimic

the mechanical behaviour of a finite-sized piece of cement-like mate-

rial.

This numerical grain-cement system (Figure 3.1), in principle, can repli-

cate every aspect of the mechanical behaviours, and therefore demonstrate

emergent behaviours and properties that match well with those of physical

rock.

The linear parallel bond contact model provides the behaviour of two

interfaces:
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Figure 3.1: The grain-cement system based on the linear parallel bond
contact model. The gray circular discs represent the grain, and each red
bar mimics a cement entity as a parallel bond. The blue bars indicate
the contacts which connect the grain centers and are perpendicular to the
parallel bonds. The width of the blue bar is proportional to the magnitude
of contact force.

• Parallel bond: a finite-size, linear elastic, and a bonded interface that

describes the cement behaviour. The parallel bond carries forces and

moments and resists tension and relative rotation. When the parallel

bond interface is bonded, it is parallel with the linear contact interface

(Figure 3.2). It is linearly elastic until the strength limit is exceeded

and the bond breaks making it unbonded.

• Linear contact: an infinitesimal, linear elastic and frictional interface

that describes the state of unbonded grains. The interface carries

compressive and shear forces, but it does not resist tension and relative

rotation. After the bond breaks, the parallel bond is removed. The

unbonded linear parallel bond model is equivalent to the linear contact

model.

When grains are bonded by cement, the grain behaviour is described
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Figure 3.2: Rheological components (top) and behavior (bottom) of the lin-
ear parallel bond model. Left: The linear Parallel Bond Model before the
bond breakage. The edged-threadlike lines are notional surfaces represent-
ing the parallel bond between the grains (red for the upper grain and green
for the lower one). The force-displacement at the parallel bond contact is
described by the normal k̄n stiffness, shear stiffness k̄s, the tensile strength
σ̄c, cohesion c̄ and the friction angle ϕ. The short and thick lines represent
the linear contact between the grains. The force-displacement at the lin-
ear contact is described by the normal stiffness and shear stiffness, kn and
ks, the friction coefficient µ and the surface gap gs. Right: Linear contact
model after the bond breakage. Reproduced from Itasca Consulting Group
(2008) with permission of Itasca International, Inc.

by both parallel bond and linear contact interfaces. The parallel bonds

can resist tension as well as transfer torques and moments. When the

shear stress acting on the parallel bond exceeds the shear strength, or the

tensile strength is exceeded, the parallel bond will break, and two grains

become unbonded (Figure 3.2). Once the parallel bond breaks, it can not

be healed. The bond material will be removed from the model along with

its accompanying assigned properties, force and moment. Meanwhile, a

micro-crack will form at the cement, replacing the parallel bond. In an

unbonded state, grain behaviour is equivalent to that of the linear contact
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model where the grains can still be in contact but are allowed to move freely.

3.4 Model Formulation

The Discrete Element Model’s formulation is an explicit, time-stepping solu-

tion by executing a series of calculation cycles. During this cycling process,

the interactions of bodies and emergent behaviours are continuously mon-

itored. Each calculation cycle consists of a sequence of operations, termed

cycle sequence. Figure 3.3 below shows a simplified cycle sequence that

includes force-displacement law, contact detection and the law of motion.

Figure 3.3: The primary operations that occur during each cycle sequence.

In the 2D model, the out-of-plane force component are not consid-

ered in the force-displacement law and the equations of motion. The two-

dimensional grains can be considered as a collection of variable-radius cylin-

ders with unit thickness.

33



3.4.1 Force-Displacement Law

The force-displacement law for the linear parallel bond 2D model updates

the contact force and moment. It consists of the following steps (Cundall

and Strack, 1979a):

1. Update the bond cross-sectional properties:

R = λ

 min
(
R(1), R(2)

)
, ball-ball

R(1), ball-wall
(3.1)

A = 2R̄, (3.2)

I = 2
3
R̄3, (3.3)

where λ is the radius multiplier used to set the parallel-bond radii.

The particle size is non-uniformly distributed. The radii of the two

particles R(1) and R(2) determine the parallel-bond radius R. A is the

cross-section area, and I is the moment of inertia of the parallel bond

cross-section. The bond cross-section is a rectangle in 2D with unit

thickness.

2. Update the parallel bond force F, normal force F̄n and shear force Fs

components:

F = −F̄nn̂+ Fs, (3.4)

F̄n := F̄n + k̄nĀ∆δn, (3.5)

Fs := Fs − ksA∆δδδs, (3.6)

where tensile normal force is considered positive, and compressive

force negative. n̂ is the unit normal vector. k̄n and k̄s are the normal
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stiffness and shear stiffness of the cement. ∆δn is the relative normal-

displacement increment and ∆δs is the relative shear-displacement

increment.

3. Update parallel bond moment M, twisting moment M̄t and bending

moment Mb

M = M̄tn̂+Mb, (3.7)

M t := 0, (3.8)

Mb := Mb − knI∆θθθb, (3.9)

where twisting moment M̄t is always zero for 2D model. ∆θt is the

relative twist-rotation increment and ∆θθθb is the relative bend-rotation

increment.

4. Update the maximum normal σ and shear stresses τ acting on the

periphery of a parallel bond:

σ =
F n

A
+

∥∥Mb

∥∥R
I

, (3.10)

and

τ =

∥∥Fs

∥∥
A

. (3.11)

5. Update bond breakage. If the maximum tensile stress exceeds the

tensile strength (σ > σc) or the maximum shear stress exceeds the

shear strength (τ > τ c), the parallel bond breaks in tension or shear.

The shear strength τ c = c − σ tanϕ, where c̄ is the cohesion and

σ = F n/A. σ is the average normal stress acting on the parallel bond
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cross-section area. The parallel bond is removed from the model along

with its accompanying force, moment and stiffness by returning their

values to zeros.

With the force and moment updated for each contact, the next move-

ment of grain can be predicted by applying Newton’s law of motion.

3.4.2 Law of Motion

The resultant force and moment acting upon a rigid particle determine the

motion. Combining the forces and moments of the linear contact and the

parallel bond component, we can update the resultant force and moment

acting on a particle in the linear parallel bond model:

F = Fl + F, M = M, (3.12)

where F is the resultant force, Fl is the linear contact force, and F is

the parallel-bond force. M is the resultant moment, and it equals to the

parallel-bond moment M since the linear contact has no moment. The lin-

ear contact force Fl is updated as in the linear contact model. The force

F and moment M in the parallel bond are updated as described force-

displacement law (Equations 3.4 and 3.7). With the updated forces and

moments, the motion can be calculated in translational and rotational mo-

tion, as explained next.

Translational Motion

The translational motion can be described by its position x, velocity ẋ

and acceleration ẍ, which can be solved from the equation of translational
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motion:

F = m(ẍ− g), (3.13)

where F is the resultant force, m is the mass of the grain, g is the gravi-

tational loading. This translational equations of motion are solved via the

second order Velocity Verlet algorithm (Verlet, 1967). Given resultant force

solved at time t and calculation timestep ∆t, the velocity at half timestep

is calculated as:

ẋ(t+∆t/2) = ẋ(t) +
1

2

(
F(t)

m
+ g

)
∆t, (3.14)

Using the half step velocity, we can obtain the position of grain at time

t+∆t:

x(t+∆t) = x(t) + ẋ(t+∆t/2)∆t. (3.15)

Rotational Motion

The translational motion can be expressed by its angular velocity ωωω, angular

acceleration ω̇ωω:

L = Iωωω, (3.16)

where L is the angular momentum, I is the inertia tensor. By taking the

time derivative we obtain the resultant moment M acting on the rigid body:

M = L̇ = Iω̇ωω +ωωω × L, (3.17)

For a disk-shaped 2D body with radius R, the rotational axis remains in

the out-of-plane direction. Therefore, the x-component and y-component
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of the angular velocities and moment are zero:

ωx = ωy ≡ 0, Mx = My ≡ 0. (3.18)

The resultant moment M is equivalent to the z-component moment. Equa-

tion 3.17 reduces to:

Mz = Iω̇z, (3.19)

where the moment of inertia I = 1
2
mR2. The half step angular velocity is

obtained at time t+∆t/2:

ωωω(t+∆t/2) = ωωω(t) +
1

2

(
M

(t)
z

I

)
∆t. (3.20)

According to the updated motion of grains, we can then detect the

contact between the grains according to their new position. The force-

displacement law is applied again to solve for the contact forces, therefore

establishing a complete operation cycle with timestep ∆t.

The sections above describe the basics of the numerical modelling and

bonded particle method. In the following sections of this chapter, we will in-

troduce the additional concepts that play a significant role in implementing

the numerical modelling.

3.5 Moment Tensor

Definition of Moment Tensor

A seismic source in the Earth is usually modelled as a slip on a fault which

is a discontinuous surface in displacement in the elastic media. To describe

the fault slip, we must consider the relationship between the slip and forces
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within the Earth. We could have a force couple consists of two force vectors

of magnitude f (Figure 3.4), acting in opposite directions and separated by

a distance d perpendicular or along the force direction. The case with

the distance d perpendicular to the force direction generates net torques,

and the angular momentum is not conserved. For natural earthquakes, the

source mechanism could only result from internal forces acting in opposing

directions on a fault, so that momentum would be conserved. Therefore, it

implies that there must have a complementary force couple to balance the

momentum for natural earthquakes, and the resulting two force couples are

called a double couple.

Figure 3.4: The two forms of single force couple. The left one has two forces
f offset by distance d such that a torque is exerted. The other force dipole
exerts no torque. Modified after Stein and Wysession (2009).

A force couple in a 3D Cartesian coordinate system with axes 1, 2, 3,

consists of two forces acting together. For example, M12 consists of two

forces of magnitude f acting on opposite directions along the 1-axis, sepa-

rated by a distance d along the 2-axis. The magnitude of the force couple

is fd with unit of dyn · cm or N ·m Aki and Richards (2002). Combining

these nine force couples of different orientations into a matrix, we obtain
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the seismic moment tensor Mij:

Mij =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 (3.21)

The moment tensor represents a seismic source by a set of equivalent

forces that produce the same displacements at the Earth’s surface as the

actual forces active at the source. Thus, it can precisely describe complex

fault geometries of internal seismic sources via its force couple components.

From the moment tensor, we also obtain the size of an earthquake from its

seismic moment M0. It is a scalar parameter that quantifies the amplitude

of a moment tensor.

M0 =
1√
2

(∑
M2

ij

) 1
2
, (3.22)

Kanamori (1977) introduced the concept of moment magnitude Mw,

which is a logarithmic scale defined in terms of the seismic moment of the

earthquake.

Mw =
2

3
log10 (M0)− 6. (3.23)

Simulative Approach

A bond breakage in the modelling represents a single micro-crack. When

the bond breaks, the two source particles on either side of the crack will

move. Therefore, a change in force will be induced around the source. If

each micro-crack is considered a single seismic event, then almost all the

recorded events would have similar magnitude. This is unrealistic since the

seismic magnitude generally follows a power law distribution. Therefore,
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when multiple bond breakages occur at a connected time and location,

those micro-cracks are identified as part of the same rupturing event. In this

case, the centroid of the acoustic emission is its geometric center. For one

crack event, the event centroid is simply assumed to be the location of the

previously bonded contact. Figure 3.5 shows an example of a seismic event

caused by the formation of a tensile crack and its corresponding moment

tensor. Then a summation operation is performed over the source surface

S enclosing the event to calculate components of the moment tensor from

the force changes and contact locations (Hazzard and Young, 2002):

Mij =
∑
S

∆FiRj (3.24)

where ∆Fi is the i th component change in contact force, and Rj is the j

th component of the distance between the event centroid and the contact

point.

3.6 Numerical Damping

When a fault ruptures, a stress change is induced near the fault. This stress

change results from both transient (dynamic) and permanent (static) stress

perturbations. The dynamic stress perturbations are associated with a pas-

sage of transient seismic waves (Hill et al., 1993; Brodsky et al., 2000). The

dynamic stress perturbations are easier to observe at a seismic station since

it has a more extended range interaction with a delay in time. Measuring

the static stress perturbation is much more challenging. The static stress

perturbation due to the permanent displacement attenuates much faster

than the dynamic stress perturbation. Therefore, it is only observable in
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the near-field. However, the static and dynamic stress perturbations are

difficult to distinguish between in the near field since they co-exist in the

same time and space.

In this numerical study, we can control the system’s static and dynamic

stress perturbations by adjusting the numerical damping level. Therefore,

the static stress perturbations can be isolated by eliminating the dynamic

stress perturbation in the system. We can execute static and dynamic

failure modes by assigning high and low numerical damping coefficients

(Table 3.1), respectively.

In the dynamic mode, the model is run with low damping to mimic a re-

alistic attenuation level resulting from internal friction and wave scattering

(Hazzard et al., 2000). Thus, each time a bond breaks, a micro-crack forms.

The stored strain energy partially converts to kinetic energy released in the

form of seismic waves so that realistic dynamic stress perturbations in nat-

ural rocks can be simulated. However, in the static mode, models can run

with a high level of numerical damping; the equation of motion is damped

heavily to reach a force equilibrium state as quickly as possible. The high

numerical damping makes the model absorb and store most of the energy

in the bond. Therefore, the seismic waves are mostly eliminated from the

static system. The stress perturbation is solely related to the permanent

static deformation from a slipping crack.

The magnitude of the damping force F d is proportional to the unbal-

anced force Fnet to stabilize particles:

F d = −α|F | sign(v) (3.25)

where F d is the fictitious damping force, α is the damping parameter deter-
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mining the damping level, f is the magnitude of the unbalanced force and

sign(v) is the sign (positive or negative) of the velocity of the particle. In

natural materials, the internal friction and wave scattering dissipate kinetic

energy. A common measure of damping and attenuation is described as the

seismic quality factor Q. The quality factor is defined as 2π times the ratio

of stored energy to dissipated energy in one wavelength:

Q = 2π(W/∆W ), (3.26)

where W is the energy, and ∆W is the loss of the energy. For a single degree

of freedom system, α can be expressed in terms of energy loss in one cycle

by (Hazzard et al., 2000)

4α = ∆W/W, (3.27)

Combining Equation 3.26 and 3.27 yields

Q = π/2α. (3.28)

Mode Quality Factor Q Damping Coefficient α

Static 2.2 0.7
Dynamic 220 0.015

Table 3.1: Numerical damping of static and dynamic mode.

In the following chapters, we will apply the bonded particle method and

perform numerical simulations either statically or dynamically to investigate

the geomechanical behaviour of brittle rocks.
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Figure 3.5: An example seismic event caused by formation of a tensile
crack. (a) Light arrows represents the particle velocities while the heavy
arrows represent the contact force changes after the bond breakage. The
sub-vertical black line between the dark grey source particles represents the
crack. (b) Its corresponding moment tensor. Reproduced from Hazzard
and Young (2002) with permission of Elsevier.
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Chapter 4

Semi-analytical and Numerical

Simulation of Stress

Summary

I thoroughly discussed the numerical modelling and the bonded particle

method in the previous chapter. Before creating the rock specimen and

conducting numerical simulations, it is necessary to first verify the bonded

particle method. This chapter uses numerical methods and analytical/semi-

analytical methods to simulate the elastic wave propagation by exciting a

particle with a single point force. The semi-analytical approach is used

to verify whether the numerical method is valid and assess how accurate

the numerical simulation is in computing displacement and stress fields of

microseismicity. The numerical simulation is conducted using a discrete

element model based on the bonded particle method, namely PFC, in 2D.

The numerical simulation result of that single force excitation is compared

with the corresponding semi-analytical result, and an excellent agreement

was found between the two.
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4.1 Introduction

A single point source of force is applied to trigger wave propagation in

both the semi-analytical and numerical simulations. First, I will demon-

strate how to use the Elasticity Theorem to obtain the displacement field

induced by an event source, followed by deriving the stress field by using a

semi-analytical approach. I will also demonstrate the numerical simulation

procedures to show how to obtain the displacement field and stress field

induced by the same source. Finally, I will then compare the simulation

results obtained from the two approaches, verify the performance of the

numerical simulation, and discuss the characteristics of wave propagation

in the discrete element model.

4.2 Method

4.2.1 Test Setup

In both the semi-analytical and numerical simulations, the tests will take

place in a 200 mm × 200mm homogeneous and isotropic medium. The

single point force applied for excitation is a pulse defined by a half-period

of a 1000k Hz sine wave. The direction of force points up in the positive

y-direction at the center of the homogeneous medium (see Figure 4.1).

4.2.2 Semi-analytical Approach

The semi-analytical solution of the single point force source will serve as the

reference for the numerical simulations. The computation workflow follows

the relationship among displacement, strain and stress, as summarized in
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Figure 4.1: Excitation of the single point force and location of the source.
The yellow arrow represents the force in the positive y-direction. The red
dot represents the source location, where the force acts on. The point force
is an impulsive function defined by a half-period of a 1000k Hz sine wave.

Figure 4.2. The computation procedures are generalized into three steps:

1. computation of displacement field u resulting from the single point

force source that is applied in the positive y-direction

2. computation of strain eij based on the displacement.

3. computation of stress σij based on the strain.

Figure 4.2: Workflow for obtaining semi-analytical solution of the stress
field.

The detailed computation processes will be demonstrated below.
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The Displacement Field

I start with calculating the exact solution of the displacement field u. A

point force Fp is applied in the p direction at the origin of a homogeneous,

isotropic and unbounded medium. Aki and Richards (2002) provide an

exact analytical 3D solution to such a point source un, the resulting n

component of displacement u, is defined as the convolution of source Fp

and Green’s function Gnp:

un(x, t) = Fp ∗Gnp

=
1

4πρ
(3γnγp − δnp)

1

r3

∫ r
β

r
α

τFp(t− τ)dτ

+
1

4πρα2
(γnγp)

1

r
Fp(t−

r

α
)

− 1

4πρβ2
(γnγp − δnp)

1

r
Fp(t−

r

β
),

(4.1)

in which τ is the time dummy variable, and t is time. r is the source-

receiver distance, given by r = |x − ξ|. ξ is the spatial origin which is set

to be (0, 0, 0). x is the 3D location coordinate in vector format. δnp is the

Kronecker delta function of directions n and p, and γi is the direction cosine

for vector x, so that γi=xi/r. α and β are the P-wave and S-wave velocities

respectively, ρ represents the density of the medium (Table 4.1).

Parameter Value Unit

Grain density 3169 kg/m3

P-wave Velocity 5525 m/s
S-wave Velocity 3310 m/s

Table 4.1: Seismic properties of the granite assembly.

The relative magnitude of different terms depends upon the source-

receiver distance r. The first term in Equation 4.1 containing r−3 dominates
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as r → 0. Therefore, the first term is called the near-field term. The

remaining terms containing r−1 become dominant as r → ∞, and these two

terms are named as far-field P and far-field S terms, respectively. Most of

the seismic data are collected in the far-field. The near-field effect plays a

key role in the final static offset due to faulting at the source location.

The displacement solution derived from Aki and Richards (2002) is in

3D; however, in 2D DEM models, the force transfer in the out-of-plane

direction is not considered, neither is the particle movement in the out-of-

plane direction. Since the numerical simulation is in 2D, I will simplify the

problem by extracting the corresponding 2D plane from the 3D result. The

final displacement result is the xy-plane taken from the 3D result at z = 0.

However, differences in magnitude of displacement should be expected due

to the limitation of 2D modelling.

Strain

The strain field contains the spatial derivative of the displacement field. The

relationship between the displacement field and strain filed is represented by

the Geometric Law describing the deformation. For the elastic displacement

u(x, t) in a 2D coordinate system with axes x and y, the corresponding

symmetric strain tensor resulting from u(x, t) is eij, ij ∈ x, y:

eij =
1

2
(ui,j + uj,i) , (4.2)

where the ui,j, ij ∈ x, y, represents the partial derivative of Cartesian com-

ponent ui with respective to j. In matrix form it is expressed as:
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eij =

exx exy

eyx eyy

 . (4.3)

Then, using 4.2, every strain tensor component becomes:

exx = ux,x,

eyy = uy,y,

exy =
1

2
(ux,y + uy,x),

eyx =
1

2
(uy,x + ux,y).

(4.4)

And the strain tensor is reformatted to:

eij =

 ux,x
1
2
(ux,y + uy,x)

1
2
(uy,x + ux,y) uy,y

 . (4.5)

Due to the complexity of the original displacement function, solving the

partial differential equation in the analytical form is cumbersome. There-

fore, we use a semi-analytical solution technique for solving the strain ten-

sor component involving partial derivatives. Solving this semi-analytical

solution involves the following steps: 1) discretizing the spatial domain;

2) decomposing the displacement field into ux and uy ; 3) computing the

second order derivatives ux,x, uy,y, ux,y and uy,x, the directional gradient of

the ux and the uy with respect to either the x or the y directions using the

forward derivatives. These second order derivatives are calculated by using

the forward difference method:

f ′(x, y) =
f(x+ h, y)− f(x, y)

h
, (4.6)
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where the f is the first derivative ux or uy, h is the x- or y-increment.

The strain tensor eij will then be used in the next step to obtain each

stress tensor σij.

Stress

The Elastic Constitutive Law describes the relationship between strain and

stress in isotropic media. It represents the material properties, including

material strength and stiffness. In our case of 2D plane stress, i.e, there

is no force and stress exerted in the z-direction, the stress tensor can be

expressed as σij, ij ∈ x, y:

σij = λekkδij + 2µeij. (4.7)

The two constant components λ and µ are the Lamé parameters. ekk is the

volumetric strain, also called the dilation. It is measured as the change in

volume per unit volume associated with the deformation. The dilatation

ekk is given by the sum of extension or contraction in each of the x and y

directions:

∆V

V
= ekk = ux,x + uy,y. (4.8)

By inserting the 4.8 into 4.8, every stress tensor component is obtained:

σxx = (λ+ 2µ)ux,x + λuy,y,

σyy = (λ+ 2µ)uy,y + λux,x,

σyx = σxy = 2µuy,x.

(4.9)
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and therefore, the stress tensor can be reformatted to:

σij =

σxx σxy

σyx σyy


=

(λ+ 2µ)ux,x + λuy,y 2µuy,x

2µuy,x (λ+ 2µ)uy,y + λux,x


(4.10)

The stress fields are directly computed based on the numerical values in

the displacement field using the forward difference approximation. There-

fore, the stress field computed here is a semi-analytical solution.

4.2.3 Numerical Approach

Same as the semi-analytical approach, a half-period of a 1000k Hz sine wave

will be applied as the single point force for excitation. The single point

force points in the positive y-direction and originates from the center of the

experiment area. The first step is to construct the Lac du Bonnet granite

specimen. There are two distinct regions, which are the inner observation

region and the outer damping region (Figure 4.3). The total dimension of

the granite assembly is 300 mm * 300 mm. The thickness of the damping

region is 50 mm, so the observation region’s dimension is 200 mm * 200

mm. The damping region is set up to eliminate the influence of energy and

wave reflecting back from the boundaries. For numerical simulations, the

Particle Flow Code applies the force-displacement law and law of motion to

solve the wave propagation induced by the single point force (see chapter 3

for details). The resultant displacement and stress fields will be analyzed.

The first step of the numerical simulation is to generate particles within

the 300 mm * 300 mm box to achieve this model setup. There are approxi-

52



Figure 4.3: Model setup of assembly. The inner square represents the obser-
vation region assigned with a realistic low damping parameter. The outer
square ring represents the damping region assigned with a high damping
parameter to absorb energy reflected from boundaries.

mately 18000 grains, and the grain radii are randomly distributed between

1 mm and 1.5 mm. Then, different damping parameters α are assigned to

both regions. A higher damping parameter α indicates higher energy loss

due to the damping. A much higher damping parameter, 0.7, is assigned to

the damping region, while a realistic damping parameter of Lac du Bonnet

granite based on lab measurements, 0.0157, is assigned to the observation

region instead.

Following the material genesis procedures described in Chapter 3, I

create the square granite assembly with specified damping. The micro-

properties of the granite particles and the bonds are listed in Table 4.2.
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Except for the damping parameter, the properties of the material in the

observation region and damping region are kept the same.

Parameter Value Unit

Grain density 3169 kg/m3

Minimum grain size (radius) 2 mm
Rmax/Rmin grain size ratio 1.5 N/A

Friction coefficient 0.5 N/A
Parallel bond Young’s modulus 65 GPa
Stiffness ratio for parallel bond 2.5 N/A

Table 4.2: Micro-properties of granite assembly

In PFC2D, the displacement of each particle can be directly computed

at the end of the calculations cycle, but the stress data can not be directly

obtained. However, we can obtain the corresponding high-resolution stress

map by utilizing a ”measurement region.” Measurement regions return av-

erage values computed over objects in the measurement region. The quan-

tities available for measurement include but are not limited to stress. Each

measurement region is created with the same radius of the corresponding

particle at the same position. Therefore, every particle in the assembly has

one stress measurement, and the stress measurements of all the particles

will make up a high-resolution numerical stress field. Then, the numerical

stress field will be compared with the semi-analytical stress field.

4.3 Result

4.3.1 Displacement field

For a force applied in the positive y-direction at the center, Figure 4.4

shows the different displacement components derived from the first term,

second term, and third term of Equation 4.1, respectively. By decomposing
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the displacement vectors along the x and y axes, we can obtain the x-

components (first column) and y-components (second column), respectively,

for the total displacement field and the displacement of the near-field wave,

far-field P wave and far-field S.

For the x-components (first column), all the terms have a circular pat-

tern splitting into four lobes with an alternating sign within four quadrants,

and y = x and y = −x are the two axes of symmetry. The near-field and

far-P wave terms have the same polarities, but the far-S wave terms have

opposite polarities with the other. The entire x-component displacement

field is simply the summation of three displacement field components. It

appears to have two layers of distinct circular patterns. This is because the

far-S wave travels slower than the others and leads to the formation of the

inner circle. For the y-components (second column), the axes of symmetry

of the y-components are the x and y axes. Instead of having alternating

patterns within four quadrants, the entire y-component displacement field

is dominated by the positive y-displacement. The positive displacement

appears to be more diffusive at the top and bottom but more concentrated

as two crescents at the sides. The corresponding far-field P and S displace-

ment fields are compared with the Aki and Richard’s solution (Figure 4.5

and 4.6), which show the radiation patterns of the far-field P wave and S

wave. Our analytical results are consistent with their solutions in terms of

amplitude and direction.

For the validation test, an identical single point force is applied to the

center of the numerical model. For numerical simulations, the observation

is the total field, the summation of all the wave fields. Figure 4.7 shows

the entire displacement fields obtained by the numerical (first column) and
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analytical methods (second column). The analytical solution provides the

theoretical result by assuming the medium is perfectly isotropic and homo-

geneous; however, PFC2D tries to replicate the real rock specimen, which is

naturally flawed and heterogeneous and leads to a lower resolution. The or-

der of magnitude of results obtained from two approaches are different, and

it could be caused by two reasons: 1. PFC2D is a idealized 2D model while

the analytical solution is 3D-based. 2. Dissipation of energy in PFC2D’s

granular system. Generally, the results simulated by PFC2D are very sim-

ilar to the analytic solutions in the polarity and patterns.

The excitation force applied at the center in the positive y-direction

pushes out the top region from the center and pulls in the bottom region to

the center. This point force deforms the surrounding region with permanent

deformation, represented by the near field term. Both x and y components

show that the P-wave propagates faster than the S-wave, but the latter has a

more substantial magnitude. The P wave component pushes the top region

and pulls the bottom region. Therefore it facilitates the compression at the

top and dilation at the bottom. Thus, the P wave creates the alternating

pattern of x-displacement due to the point force source originating from the

center and two strong positive crescent-like patterns at the top and bottom

of the y-displacement. In an S wave, particles slide past one another and

undergo shearing along with force. Therefore, shearing motion wraps the

source and moves in the same direction as the point force. The shearing

around the source creates the alternating pattern of x-displacement and two

strong crescent-like patterns of y-displacement at the two sides.
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4.3.2 Stress field

In Figure 4.8, different stress fields are shown on rows, in order, display-

ing the total stress field, the stress of the near-field wave, far-field P wave

and far-field S wave. The columns display the horizontal σxx, vertical σyy,

and shear σyx components of the stress fields. Stress fields are composed

of multiple layers of alternating lobes due to the second order forward dif-

ferentiation involved in the computation processes of stress. For horizontal

σxx and vertical σyy stress fields, the axis of symmetry is the y-axis. They

are also symmetric about the x-axis in terms of the pattern but with the

opposite sign. For shear σyx stress field, the axis of symmetry is the y-axis,

and they are also symmetric about the y-axis, but values have the oppo-

site sign. Like the displacement field, the far-field S displacement is more

dominant than the near-field and far-field P displacement components. The

total stress field is the summation of the three displacement fields.

Comparing the semi-analytical with the numerical results (Figure 4.9)

for validation purposes, all the stress field are more disordered compared

with the displacement field with a persistent irregular pattern, particu-

larly at the central regions, in the numerical simulations. The irregularities

are created by wave scattering due to the random packing of the bonded

particles. In general, the numerical PFC results of the stress fields agree

with the semi-analytical results in terms of pattern, polarity and symmetry.

Figure 4.9 shows the horizontal σxx and vertical σyy components have two

stronger inner loops splitting into four quadrants with opposite polarities.

The stronger inner loops are wrapped by weaker outer loops. The shear

stress σyx also has two stronger inner loops and two weaker outer loops

with opposite signs, but instead of splitting into four quadrants, four loops
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split two portions placed at the sides with alternating signs.

4.4 Discussion

The analytical solution of displacement and semi-analytical solution of

stress is based on the assumption of a homogeneous, isotropic and elas-

tic medium. Nevertheless, in numerical simulations with PFC, we have

an inhomogeneous and damped system consisting of individual grains con-

nected by cement. So noticeable differences between these two solutions

should be expected.

For the displacement field, as the two solutions are shown at the same

time and space instance (Figure 4.7), the major difference is the magnitude

of displacement in the two results. The magnitude of displacement in PFC

simulations is smaller than the analytical results due to the damping of the

numerical system. We see some irregularities resulting from the irregular

wave scattering in the central region. Despite these two points, the PFC

results show a remarkable degree of matching with the analytic solutions.

The stress field is more complex than the displacement field. The semi-

analytical solutions and PFC simulation of the stress field show similar

results in terms of patterns and polarity of stress (Figure 4.9). However,

the irregularities at the central region is much more significant than that

observed in the numerical simulation. The irregularities mainly affect the

innermost loop clearly visible in the semi-analytical solutions. The irreg-

ularities in the stress field results from discretized grains, leading to wave

scattering and stress heterogeneity in the central region after waves pass

through.
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4.5 Conclusion

The agreement between semi-analytical and numerical simulation of the dis-

placement field and the stress field verifies that the bonded-particle methods

can reliably generate the displacement and stress responses comparable to

analytical and semi-analytical solutions. This verification provides us with

a good starting point to investigate in detail the influence of force and stress

on rock failures.
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Figure 4.4: Analytical solution of displacement field results in unit of m.
From top to bottom, it shows the complete, near-field, far-field P, and far-
field S displacement fields at the time of 1e-5 sec. The left column shows
the x-displacement, and right column shows the y-displacement.
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Figure 4.5: Comparison of far-field P displacement field results in unit of
m. The results on the left is the far-field P result from Aki and Richards
(2002). On the right is our analytical far-field P displacement field obtained
and decomposed into x- (top left) and y-directions (bottom left).
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Figure 4.6: Comparison of far-field S displacement field results in unit of
m. The results on the left is the far-field S result from Aki and Richards
(2002). On the right is our analytical far-field S displacement field obtained
and decomposed into x- (top left) and y-directions (bottom left).
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Figure 4.7: Comparison of the complete displacement fields of the analytical
and numerical simulations at the time of 1e-5 sec in unit of m. The top
row represents the x-component of the complete displacement field, and the
bottom row represents for the y-component. The results on the left are the
numerical results from PFC2D. The results on the left are the analytical
solutions.
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Figure 4.8: Semi-analytical solution of stress in unit of Nm−2. From top to
bottom, it shows the complete, near-field, far-field P, and far-field S stress
fields at the time of 1e-5 sec. From left to right, each column shows the σxx

component, σyy component, σyx component of stress, respectively.
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Figure 4.9: Comparison of the complete stress fields of the semi-analytical
and numerical simulations at the time of 1e-5 sec in unit of Nm−2. The
top row represents the x-component of the complete stress field, and the
bottom row represents the y-component. The results on the left are the nu-
merical results from PFC2D. The results on the left are the semi-analytical
solutions.
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Chapter 5

Material-genesis and

Calibration of the Bonded

Particle Models

5.1 Introduction

In this chapter, we will utilize the bonded particle method to prepare a

PFC2D model of Lac du Bonnet granite, followed by a discussion of the

calibration and general characteristics of the granite model. The main

objectives of this chapter are to describe the material genesis procedures

and calibrate the model for the following simulations.

5.2 Procedures of Material Genesis

The material genesis procedure is defined in Cundall and Strack (1979a) and

extended in Potyondy (2014). The procedures occur within a material vessel

and produce a rock specimen consisting of a well-connected grain assembly
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with a specified non-zero material pressure. The geomechanical behaviour

of the Lac du Bonnet granite has been studied extensively in the laboratory

and field (Martin, 1993) as well as in numerical simulations (Potyondy et al.,

1996; Al-Busaidi et al., 2005; Hazzard et al., 2000). Therefore, the Lac du

Bonnet Granite is chosen to be modelled for this study.

In our experiment, a 25.2 * 63 cm sample (Figure 5.1) of Lac du Bonnet

granite consists of particles that are drawn from a uniform size distribution

with radii ranging from 2 to 3 mm. This sample size is commonly used in the

mechanical experiments conducted by Atomic Energy of Canada Limited

in their studies of Lac du Bonnet (Hazzard et al., 2000). The particle size

is chosen to be approximately comparable to the size of the actual mineral

grains of the Lac du Bonnet granite (Kelly et al., 1993).

5.2.1 Step 1 Compact initial assembly

Material genesis occurs within a material vessel, which is a rectangle bounded

by four planar frictionless walls for PFC2D (Figure 5.1). The wall normal

stiffnesses are set just higher than the average particle normal stiffness to

ensure that the particle-wall overlap remains small.

The first step is compacting the initial assembly. The packing is achieved

by a grain-scaling method. The grain-scaling procedure produces a dense

packing of a granular material that will subsequently become a bonded

material. Grains are created within the material vessel. The number of

particles is determined such that the overall porosity, the proportion of

void spaces, of the PFC2D model is 16% (Cundall and Strack, 1979a). The

particle radii satisfy a uniform size distribution bounded by Rmin = 2mm

and Rmax = 3mm. The particles are arbitrarily placed to fill the vessel
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such that they may have grain-grain overlaps and large internal stresses. In

order to eliminate the large grain overlaps, and to provide an isotropic and

dense-packed state, the material friction coefficient remains equal to zero

throughout the entire packing process. The friction-less system will allow

the grains to rearrange the positions liberally until either static-equilibrium

is obtained or the mean stress is near zero. The mean stress for the 2D

model is defined as the average of the in-plane stresses. These stresses

are measured by dividing the average of the total force acting on opposing

walls by the area of the corresponding specimen cross-section. Stresses in

the PFC2D models are computed, assuming that each particle is a disk of

unit thickness.

Figure 5.1: PFC2D model of 25.2 cm x 63 cm Lac du Bonnet granite and
the distribution of grains. The material vessels are indicated by the four
blue lines surrounding the granite.
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5.2.2 Step 2 Install specified material pressure

Then, the radii of all particles are re-scaled iteratively until the measured

mean stress achieves the target material pressure, and static equilibrium is

obtained (Itasca Consulting Group, 2008). The material pressure is typ-

ically set to a low value for a bonded material relative to the material

strength. To install the specified material pressure, the mean stress is set

equal to approximately 1% of the uniaxial compressive strength (Cundall

and Strack, 1979a) of the granite to achieve a low material pressure. This

step helps to reduce the magnitude of the locked-in forces in the rock. The

locked-in forces are the residual force within an object, even though the

object is free of external forces. Without installing the material initial

pressure, locked-in forces will significantly develop after the parallel bond

installation in the next step. The locked-in forces also occur and develop

when the specimen model is removed from the material vessel and relaxed.

These locked-in forces can significantly affect the internal stress distribution

and interrupt the following simulations of rock behaviour.

5.2.3 Step 3 Reduce the floating particles

In an assembly of non-uniform-sized circular particles, typically 10% to

15% of the total number of particles could be floating particles (Cundall

and Strack, 1979a). Floating particles have less than three contacts in an

assembly of randomly placed particles with a non-uniform radius. We wish

to obtain a densely packed and well-connected assembly to mimic granite

with highly interlocked grains and fewer voids in our granite models. There-

fore, it is necessary to have fewer floating particles so that the assembly will

achieve a denser network of bonds in the next bond installation step.
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The elimination procedures are described as follows. We first identify

all the floaters that have less than three contacts. Next, all the particles

except the identified floaters are fixed, and then the floaters are expanded

by a sufficient amount (30%) so that they have contacts with all of their

neighbouring particles. Then, the size of the floaters is reduced until the

mean contact normal force is small enough (one-tenth of the mean contact

normal force of assembly). The floaters will be reduced considerably after

executing expansions and contractions iteratively on every particle.

However, if there are still many floaters in the specimen, the elimination

procedures can be repeated a few more times for a better elimination result.

We obtain a bonded assembly for which nearly all particles away from the

specimen boundaries have at least three contacts.

5.2.4 Step 4 Install parallel bonds and assign micro-

properties

During this process, parallel bonds are installed between grains close to each

other throughout the assembly. The micro-properties of parallel bonded

material will be assigned to the grain-grain contacts. The installation of

parallel bonds obeys the general rule on the installation gap. That is, only

those grain-grain contacts with a gap less than or equal to the specified

installation gap are bonded. Increasing the installation gap indicates more

qualified grain-grain contacts. In our simulations, we set the installation

gap to be 10−6 times the mean radius of the two-grain particles (Cundall

and Strack, 1979a) to ensure the particles that have parallel bonds installed

are nearby. The parallel bonds are installed, and it is the only time that

the parallel bonds installed (see Chapter 3 for more detail on installation
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of parallel bonds).

5.2.5 Step 5 Remove the specimen from the material

vessel

The material genesis is completed by removing the specimen from the ma-

terial vessel and allowing the assembly to relax. This is done by deleting

the vessel walls and calming the specimen. During this relaxation process,

the specimen expands, releases internal stresses, and generates a set of self-

equilibrating locked-in forces similar to those in a free specimen of bonded

rock. Finally, the assembly is ready for calibration.

5.3 Calibration of Lac du Bonnet BPMModel

After the material genesis is complete, appropriate micro-parameters need

to be determined. The micro-parameters govern the mechanical responses of

a bonded particle model. Selecting the optimal micro-parameters to achieve

the desired macroscopic mechanical response is not intuitive. No model is

complete or fully verifiable, but the model’s validity is demonstrated by

comparing model behaviour with measured and observed responses of Lac

du Bonnet granite at the laboratory. Therefore, the micro-parameters have

to be adjusted so that the model matches experimental macro properties,

including Young’s Modulus, unconfined compressive strength (UCS), Pois-

son’s ratio, cohesion and frictional angle.
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5.3.1 Young’s Modulus, unconfined compressive strength

and poison’s ratio

First, the technique is to conduct uniaxial tests to match the sample’s

Young’s modulus, compressive strength and Poisson’s ratio. The micro-

properties properties are adjusted in such a way that they generate desired

macroproperties. The final adjusted micro-properties are listed in Table

5.1. The microproperties are the small-scale, inherent characteristics of

materials that govern their interactions and behavior at the particle level.

ρ represents the density to describe the particle packing. Rmax and Rmin

are the minimum and maximum particle sizes. Existing research shows that

the size dependence (specimen size/particle size) has a small influence on

a Discrete Element Model specimen if the ratio is sufficiently large (Yang

et al., 2006; Fakhimi and Villegas, 2007). The default parallel bond radius

multiplier λ̄ is set to be 1, which simply means that the parallel bond fills

the gap between the two particles. Ec and Ēc are Young’s moduli of the

grains and cement, respectively. kn/ks and k̄n/k̄s are the ratios of normal

to shear stiffness of the grains and cement, respectively. In most simula-

tions, Young’s moduli and the ratios of normal to shear stiffness for both

the particles and the cement are set to be the same value to reduce the

number of free parameters (Cundall and Strack, 1979a; Yang et al., 2006).

µ is the friction coefficient of the grain. Due to the complex mechanics

involved in simulations, a friction coefficient of 0.5 is recommended as a

reasonable value for the simulation of a bonded particle model (Cundall

and Strack, 1979a). σ̄c and τ̄c are the tensile and shear strength of the ce-

ment, respectively. In PFC modelling, the shear strength is set to cohesion.

In soil mechanics, cohesion is equivalent to the shear strength when the
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compressive stresses are equal to zero (Yokoi, 1968).

Grains Cement

Rmax = 3 mm
Rmin = 2 mm λ̄ = 1
Ec = 60 GPa Ēc = 60 GPa
kn/ks = 2.5 k̄n/k̄s = 2.5
µ = 0.5 σ̄c= 200 MPa
ρ = 2630 kg/m3 τ̄c = 220 MPa

Table 5.1: Micro properties used to calibrate the Lac du Bonnet granite
model, where Rmax and Rmin are the minimum and maximum particle ra-
dius; λ̄ is the radius multiplier; Ec and Ēc are the Young’s moduli of the
grains and cement; kn/ks and k̄n/k̄s are the ratios of normal to shear stiff-
ness of the grains and cement; µis the friction coefficient of the grain; ρ
represents the density; σ̄c and τ̄c are the tensile and shear strength of the
cement, respectively.

The Young’s modulus and unconfined compressive strength are cali-

brated to match the laboratory parameters conducted by Martin (1993),

which is E = 69 GPa and σc = 205 MPa (Figure 5.2(b)). After several

uniaxial tests, while tweaking various micro parameters listed in Table 5.1,

the sample is calibrated to a peak stress of 189.0 MPa, Young’s modu-

lus E = 68.6 GPa. The poison’s ratio is v = 0.27 which is well matched

with the Lac du Bonnet granite poison’s ratio from the published literature

(Stone et al., 1989; Read and Martin, 1996).

Figure 5.2 shows the stress-strain curve from the unconfined uniaxial

test. The shapes of the curves are very similar, and the strength and stiffness

of the Lac du Bonnet granite are approximately reproduced. The curve

shows elastic deformation of the sample until abrupt brittle failure occurs

as the axial stress rapidly drops. The elastic regime of the curve is very

stiff, showing minimal hardening at the beginning of the simulation.

73



The most apparent difference between the model and rock response is the

lack of initial curvature observed during the laboratory tests at low-stress

levels. This curvature is absent from the model response because the nu-

merical model is intact and has no pre-existing cracks (Hazzard et al., 2000;

Zhang et al., 2019). On the other hand, the voids and cracks in the natural

rock specimen lead to the formation of the initial curvature. Secondly, no

post-peak information was recorded due to the sample failure’s explosive

nature in the laboratory tests. Therefore, comparisons cannot be made

with the model results over the post-peak part of the stress-strain curve.

However, in the numerical simulations, we observe a dramatic strength re-

duction and crack number surge observed in the model curve (Figure 5.2(a))

after the peak stress, indicating brittle explosive failure.

5.3.2 Failure Criterion, Cohesion and Frictional An-

gle

Four additional biaxial compressive tests under different confining condi-

tions are conducted. The Mohr failure criterion is determined by experi-

mental data rather than theoretical calculations. Using the experimental

data, we can investigate the effect of confining pressure on rock behaviour,

construct the Mohr circles, and assess the calibrated model’s failure crite-

rion. Cohesion and internal friction angle are the macro-properties obtained

from the failure criterion. In the next chapter, they are particularly useful

for model verification and provide supportive information for future failure

and force distribution analysis.

Including the unconfined compressive test, we obtain five datasets from

five compressive tests for the PFC2D Lac du Bonnet granite model. The
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confining pressures are 0, 10, 20, 30, and 60 MPa. The confining pres-

sure is the pressure exerted on the sidewalls of the vessel. Loadings are

exerted by the top and bottom platens’ incremental movement while keep-

ing the confining pressure constant during the experiment. Both platens

move at a constant strain rate (the time rate of change of the rock-vessel

length) of 0.002 s−1. The strain rate would have a minor effect on the

modelled sample as long as it is slow enough that no transient waves are

being produced (Hazzard et al., 2000). The stress-strain response history

was recorded during the tests (Figure 5.3). The wedges at the bottom of

the curves represent the preparation stage for the biaxial tests, and the

cut-off points are the corresponding confining pressures. The wedges exist

because the model will be compressed first, and once the model achieves

the desired confining pressure, the strain deformation will be reset to zero.

In Figure 5.3, deviations from the ideally linear elastic behaviour can be

seen in the stress-strain curves, and the effect is more obvious at higher

confinements. The stress-strain curve becomes nonlinear when the stress

is beyond the material’s yield point. Plastic deformation induced by the

stress will be stored in the material until a localized failure occurs to release

the energy. Also, a higher axial loading is required to deform the rock and

make it fail as the confining pressure increases. It implies that the strength

of the model increases with the confining pressure. Moreover, for Young’s

modulus, the slope of the stress-strain curve, no clear tendency on slope

change can be detected when comparing the slopes at different confining

pressure. Therefore, the Young’s modulus is found to be unchanged with

increasing confining pressure. These findings are consistent with the labo-

ratory experiment (Hokka et al., 2016) and numerical simulation on granite
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rocks (Cundall and Strack, 1979a; Hazzard et al., 2000).

For biaxial compressive tests, the compressive rock strength (the peak

stress along the axial loading direction at failure) is the first principal stress

σ1; the confining pressure is the second and third principal stresses σ3 =

σ2. From these five compressive tests (Table 5.2), the Mohr circles and

the failure criterion of the granite model is constructed (Figure 5.4). The

Mohr-Coulomb criterion is the best-known method to describe intact rock

failure (Byerlee, 1978; Al-Ajmi and Zimmerman, 2006). It is based on the

relationship between shear stress and normal stress acting on the failure

plane. The Mohr-Coulomb failure envelope has a relatively curved shape,

but it is usually normalized on the linear equation:

σs = σn tanϕ+ c0, (5.1)

where σs is shear strength, c0 is cohesion, ϕ is the angle of internal

friction, and σn is the normal stress on the failure envelope.

σ3 (MPa) σ1 (MPa)

0 189.0
10 236.1
20 292.8
30 310.2
60 372.2

Table 5.2: Failure compressive strength σ1 for Lac du Bonnet granite model
under different confining pressure σ3 .

In our research, only low confining pressure conditions (10 MPa) are

involved. Therefore, the linearized Mohr-Coulomb criterion (Figure 5.4)

will be adequate for predicting the failure condition of brittle rocks involving
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low confining pressure. Based on the equation 5.1, we can find the cohesion

c = 40MPa, internal angle of friction in the numerical model is 39.6 ◦, and

therefore the coefficient of friction is 0.83 (Figure 5.4), and these values

are consistent with laboratory measurements (Wyllie, 2017). Similar to

the other laboratory tests, a nonlinearity is observed in the granite model

under high confining pressure (Murrell, 1965; Hobbs, 1966; Patton et al.,

1966; Byerlee, 1967; Engelder and Marshak, 1988). It occurs in the intact

rocks under high confining pressure (Barton, 1976) and even low confining

pressure Mogi (1974) if the rock is weak.

5.4 Conclusion

Based on the numerical simulation results, we found that the compressive

rock strength increases with confining pressure while the Young’s modulus

remains the same. Laboratory experiment results were used to verify the

calibration method. The micromechanical parameters of Lac du Bonnet

granite were calibrated, and we found that the macroscopic parameters of

the calibrated numerical model are similar to the laboratory sample. The

results show that the calibrated model is reliable. In future simulation and

analysis, this calibrated specimen of intact Lac du Bonnet granite will be

used in the final numerical model.
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Figure 5.2: The stress-strain response and accumulative number of cracks
occurring during unconfined loading of the Lac du Bonnet granite model (a)
compared to (b) a similar laboratory test. Modified from source: Martin
(1993).
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Figure 5.3: Stress-strain curve of the model under different confining con-
ditions.

Figure 5.4: Compressive rock strength and failure criterion of Lac du Bonnet
granite model expressed as Mohr circles at failure. The red stars indicate
where the failures occur along the failure criterion. The black dashed line
indicates the linearized Mohr-Coulomb failure criterion.
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Chapter 6

Analysis of Crack Formation

and Internal Force Networks

6.1 Introduction

A failure will occur when a piece of rock is subject to sufficiently large

stresses. This implies that the rock changes its shape permanently and

possibly falls apart. Brittle rock failure can significantly affect many natural

and engineered systems, including mining, civil engineering, and the oil and

gas industries. Therefore, it is useful to predict under which conditions a

rock is likely to fail. However, due to rock inhomogeneities, rock failure is

a complex phenomenon that is still not fully understood.

Researchers have devoted efforts to investigating the mechanical prop-

erties, constitutive relation, mechanical models and calculation methods of

rock failure. Previous studies (Radjai et al., 1996, 1999; Liu et al., 1995;

Kondic et al., 2012) suggested that understanding the internal force distri-

bution within a rock mass can be used to predict the failure behaviour of

a rock mass. These studies have found that the internal force distribution
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is influenced by several factors, such as rock properties, loading conditions,

and the presence of pre-existing fractures, which can influence the failure

behaviour of a rock mass.

Physical, analytical and numerical approaches can be used to study rock

mechanics. Numerical modelling nowadays has become a widely used ap-

proach in rock mechanics to investigate the geomechanical behaviour of rock

masses under various loading conditions with particle numbers comparable

to those found in laboratory specimens while obtaining a complete data set

on a microscopic scale.

This chapter will use the bonded particle method to numerically explore

the rock failure and internal force networks in brittle intact rocks further.

We then bring new insights into 1) crack development under compressive

loading, 2) internal force networks within the cemented granular system,

and 3) the relationship between the formation of cracks and internal force

networks.

6.2 Background

6.2.1 Deformation stages

In addition to the microseismic event detection and monitoring, we also

track axial stress and strain changes. The deformation of brittle rocks

generally consists of four deformation stages, each of which is the elastic,

strain-hardening, peak stress and strain-softening phases (post-peak).

In the elastic phase, the deformation is reversible if the force or load is

removed. Elastic deformation is commonly seen at low strains. The elastic

deformation can be described by Hooke’s Law, which can be demonstrated
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by its linear slope, where the stress in the material is always proportional to

the strain. If the loading applied to the material increases, it will produce

a stress-strain curve that rises continuously but becomes flattered until it

reaches its maximum peak stress. This section of the stress-strain curve is

called strain-hardening. In this phase, the deformation is plastic and non-

reversible, leading to a permanent change in shape that is distinct from the

reversible elastic deformation. Next, the stress reaches its maximum peak

value at peak stress, immediately followed by a large stress drop. After the

peak stress, the strain-softening phase is characterized by decreasing axial

stress, indicating that the sample is continuously weakened.

6.2.2 Internal Force Networks

It has been well recognized that defects such as flaws or openings strongly

affect the internal stress distribution within samples (Hoek, 1968; Chester

and Fletcher, 1997). Under external loading, the stress around flaws and

openings gradually evolves. The evolution depends on the arrangement

of flaws and openings, e.g., the flaw inclination angle. In bonded-particle

models, since the grain particles are randomly placed, this randomness of

actual particle packing creates heterogeneity of the internal force distri-

butions. Scholz (1968) postulates that strong stress heterogeneity exists

within rock samples subjected to triaxial deformation tests to explain the

observed tensile failure mechanisms. Liu et al. (1995) presented large force

inhomogeneities in stationary random bead packs. In their model, the force

inhomogeneities are affected by the variations in the contact angle.

Several studies have examined internal force networks within the non-

cohesive granular system under compression (Kondic et al., 2012; Radjai
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et al., 1996, 1998, 1999). Previous studies have subdivided evolving force

populations into strong- and weak- forces to analyze the internal force net-

works, Radjai et al. (1998) discovered the weak- and strong-force networks

in the granular sample. The strong-force network has chain-like connected

contacts carrying shearing forces stronger than the average force. In the

isotropic state, the weak-force network appears to be more dissipative and

weaker than the average force. Radjai et al. (1998) also found that most

grain-sliding occurs within the weak-force network, whereas the strong-force

network is responsible for the major deformation. Van der Baan and Chor-

ney (2019) found out that in the sandstone model, the cracks and acoustic

emissions predominantly occur within the weak force network, and the ma-

jor failure of the rock is only related to the collapse of the strong force

network. However, limited studies have focused on the development of

force networks within a cohesive, cemented granular system. Also, com-

prehensive studies have yet to focus on the evolution of the internal force

networks regarding the angular distribution. Therefore, this study will de-

liver new insights into rock failure processes by analyzing the orientation

and distribution of the cracks and internal force networks.

6.3 Workflow

The model is subjected to confining pressure at 10 MPa. The top and bot-

tom are loaded at a constant strain rate of 0.01/sec. For other information

about the experiment setup, please refer to the Chapter 5.
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6.3.1 Tracking crack development

In order to understand the crack development process, the axial stress and

strain, quantity, time and type of the cracks, and moment magnitude of

acoustic emissions are continuously monitored during the simulation. Four

observation windows are available at 30% peak stress, 70% peak stress, peak

stress and 60% peak stress (post-peak). At observation windows, we use

rose diagrams to compare and analyze the crack characteristics at different

deformation stages: elastic, strain-hardening, peak and strain-softening.

The crack characteristics expressed using the rose diagram will be quantity

(length of the bar), orientation (azimuth of the bar), and tensile or shear

(colour of the bar).

In many numerical studies of cracks, only the formation time and quan-

tity of cracks are analyzed (Cundall and Strack, 1979a; Van der Baan and

Chorney, 2019). However, in this chapter, we also bring crack type and

orientation together to generate the rose diagrams, allowing us to visualize

the angular distribution of tensile and shear cracks.

6.3.2 Identifying properties of the three distinct force

networks

Previous research conducted by Van der Baan and Chorney (2019) demon-

strated two distinct internal force networks that force magnitudes can dis-

tinguish. In this study, there are actually three distinct force networks in

compressive force regimes. Also, in addition to the regular force analysis

done by plotting quantity versus force magnitude, we examine the angular

dependence of force magnitude to see if tensile and compressive forces tend

to concentrate on certain angles. Therefore, the force distribution diagrams
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be two-dimensional polar plots. The radius of the polar plot represents

the force magnitude, azimuth represents the force orientation, and colour

represents the quantity.

6.3.3 Identify the failure mechanism, the relationship

between the formation of cracks and force net-

works

Combining the results of crack development and force networks, we then

be able to analyze the results and see how the crack formation is linked to

the internal force networks. This allows us to understand the formation of

microseismicity and the failure mechanism of macro events.

6.4 Results

6.4.1 Crack Development

Stress drops and associated brittle deformation

Recall that a bond breakage in the modelling represents a single micro-crack.

When multiple bond breakages occur at a connected time and location,

those micro-cracks are identified as part of the same rupturing event, which

is an AE event. The top section of Figure 6.1 shows the changes in axial

stress and AE event magnitude (orange circles) as strain increases with

loading. The bottom section demonstrates the corresponding cracks formed

in terms of their type and quantity. Four observation windows are indicated

as red dots at 30% peak stress, 70% peak stress, peak stress and strain-

hardening stress (60% peak stress). Each observation window is randomly
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selected from the deformation phases: elastic, strain-hardening, peak and

strain-softening.

Figure 6.1: Top diagram: histories of stress-strain (blue line), moment ten-
sor (orange circles) with four observation windows (red dots) 30% peak
stress, 70% peak stress, peak stress and 60% peak stress (post-peak). Each
observation window is selected from the middle of each deformation phase:
elastic, strain-hardening, peak and strain-softening. Bottom diagram: mon-
itoring the type and quantity of the cracks.

The left y-axis of the top section of Figure 6.1 is the axial stress in MPa.

The x-axis is the axial strain in percentage (10−2). The axial stress linearly

increases in the elastic phase until bonds break and form cracks. Then, it en-

ters the strain-hardening phase, where the stress slope gradually decreases.

The cracks form when stress is released, and strain energy is converted to

kinetic energy. After a temporary stress drop, stress increases due to the

constant loading. The peak stress occurs at the second stress drop, where

the strain is 0.0027. After reaching the peak stress, the rock abruptly fails,
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accompanied by a significant drop in stress and the generation of numerous

cracks, and this deformation stage is called strain-softening.

The right y-axis of the top section of Figure 6.1 is the moment magnitude

of the AEs indicated as the orange circles. When multiple bond breakages

occur at a connected time and location, those cracks resulting from the

bond breakages are identified as part of the same AE. The first acoustic

emission indicates that the deformation phase transitions from the elastic

to strain-hardening phase. In the strain-hardening phase, the axial strain

and stress consistently accumulate. We observe the abundant number of

AEs occurring at the peak stress. After the peak stress, we have a short

time of temporary silence. The stress increases until it eventually reaches

the major failure, where we see a significant cluster of AEs and the biggest

AE event, whose moment magnitude is about -3.8 Mw.

The lower section of Figure 6.1 shows the monitoring of cracks and the

crack type, either the tensile or shear crack. Like the AEs distribution, no

crack formed in the elastic phase until entering the strain-hardening phase.

In general, the majority of the cracks are tensile. Tensile cracks initiate

first, and then the shear cracks occur later in the strain-hardening stage.

The first crack that appears is a tensile crack at the axial strain of 0.00142,

followed by a few scattered tensile cracks. The first shear crack manifests at

a strain of 0.00225. Furthermore, Figure 6.1 also demonstrates that the last

two stress drops have a much larger portion of shear failures than previous

AEs.
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Crack Analysis

Based on the relationship among rock stress, times of AE events, and de-

formation phases, we show that stress, cracks, and AE events are all con-

nected. Then, we further investigate the properties of the crack orientation

to complete the crack analysis.

Figure 6.2 records the development of cracks, and it contains the rose

diagrams showing the quantity and orientation of the cracks at each obser-

vation window. The elastic phase is at the point where 30% of the peak

stress is reached. The observation window for strain hardening occurs at

70% of the peak stress. The peak stress itself is identified at the moment

when the maximum stress is achieved. Lastly, the strain softening phase is

at 60% of the peak stress. Since no cracks are formed in the elastic stage,

only the strain-hardening, peak and strain-softening (post-peak) windows

have crack data available. The length of the bar represents the quantity of

the cracks, and the azimuth represents the orientation of the cracks. The

orientation angle of the cracks is predominantly steep, indicating that they

are most nearly vertical. The cracks formed in the strain-softening stage

are significantly more than in the peak stage, indicating that most of the

cracks formed are due to the final catastrophic failure.

In Figure 6.2, we can see the evolution of the crack distribution in terms

of the orientation. No crack has yet been formed in the elastic phase.

In the strain hardening phase, most cracks have an inclination angle, not

exactly vertical but close to 90◦. In our analysis, 90◦ represents the vertical

angle and 0◦ and 180◦ indicate the angles are horizontal. This observation

indicates that these cracks are likely tensile, which is also consistent with

the previous results in Figure 6.1. The longest bar in the histograms does
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Figure 6.2: Rose diagrams at observation windows representing the strain-
hardening, peak and strain-softening (post-peak) phases. The length of the
bar represents the quantity of the cracks, and the azimuth represents the
orientation of the cracks.
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not change its orientation during the compressive test when the strain-

hardening phase is compared with the post-peak phase. However, this angle

is steeper than the orientation of the final catastrophic failure, implying

other factors lower the orientation of final catastrophic failure, and there

is no direct correlation between the orientation of tensile cracks and final

catastrophic failure.

6.4.2 Internal Force Networks

Radjai et al. (1998) identified two distinct force networks within the gran-

ular sample: one with a chain-like network carrying strong, above-average

forces and another with weaker-than-average forces. Similarly, Topin et al.

(2007) explored a granular medium with cemented contacts, finding an un-

even stress field and a division between strong- and weak-force networks.

Cundall and Strack (1979a) also reported the presence of strong and weak

force networks in a bonded-particle sample. Furthermore, Van der Baan

and Chorney (2019) not only confirmed the existence of these networks but

also determined that the macro-failure stems from the breakdown of the

strong-force network.

In order to understand the force network within the rock, we need to

decompose the forces, based on PFC2D, into linear parallel bond model

composed of linear contact forces and parallel bonded forces. The linear

contact interface carries compressive and shear forces, but it does not resist

tension and relative rotation. The parallel bonded interface describes the

cement behaviour. The parallel bond carries forces and moments and resists

tension and relative rotation. When the parallel bond interface is bonded,

it is linearly elastic until the strength limit is exceeded and the bond breaks,
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making it unbonded. After the bond breaks, the parallel bond is removed.

The unbonded linear parallel bond model is equivalent to the linear contact

model. Please refer to the linear parallel bond model explained in Chapter

3 for a detailed explanation.

Spatial Distribution of Forces

Figure 6.3 shows the force chain of total forces for 10 MPa confining pressure

at different deformation stages. The total force is the result of linear contact

forces (Figure 6.4), and parallel bond forces (Figure 6.5), which also can be

categorized into compressive parallel bond forces and tensile parallel bond

forces (Figure 6.6).

1-D Force Distribution

Similar to what is found in earlier studies (Van der Baan and Chorney,

2019), we noticed that all the forces in the different deformation stages

have exponential distributions with linear or bi-linear slopes in the loga-

rithmic domain. For all forces, the slope decreases due to a faster decline

in the quantity of forces as the force magnitude increases. The tensile par-

allel bond forces have higher absolute logarithmic gradients than the other

compressive forces for all deformation states. This implies a faster decay

in the distribution of tensile parallel bond forces than for the compressive

ones, yet tensile forces exist in all deformation stages.

The evolution of the resultant total force is illustrated in Figure 6.7.

Upon comparison with the linear contact forces (Figure 6.8), compressive

parallel bond forces (Figure 6.9), and tensile parallel bond forces (Figure

6.10), it becomes apparent that these two factors predominantly influence
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Figure 6.3: Spatial evolution of total force at elastic, strain-hardening, peak
and strain-softening (post-peak) deformation stages in unit of N . The col-
ored veins represent the forces in the bonds. The colour of the vein indicates
the force magnitude. The tensile forces are in blue, and the compressional
forces are in red.

the resultant total forces. This dominance is attributed to the lesser abun-

dance and weaker force magnitude of tensile parallel bond forces.
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Figure 6.4: Spatial evolution of linear contact forces at elastic, strain-
hardening, peak and strain-softening (post-peak) deformation stages in unit
of N . The colored veins represent the linear contact forces in the bonds.
The colour of the vein indicates

From elastic to peak phases, all total forces, linear contact forces and

parallel bond forces continuously grow. The linear contact forces and com-

pressive parallel bond forces are both compressive. Compressive forces pre-

dominantly exist within the sample, and the absolute magnitude of the
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Figure 6.5: Spatial evolution of parallel bond forces at elastic, strain-
hardening, peak and strain-softening (post-peak) deformation stages in unit
of N . The colored veins represent the parallel bond forces in the bonds.
The colour of the vein indicates the force magnitude.

maximum compressive parallel bond force is about twice that of the max-

imum tensile parallel bond force. Both compressive forces, linear contact

forces and compressive parallel bond forces, clearly show a stronger force

subgroup indicated by a significantly larger force magnitude accompanied

with a wider base (Figure 6.8 and Figure 6.9). After the peak stress is
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Figure 6.6: Spatial distribution of compressive parallel bond forces and
tensile parallel bond forces at elastic, strain-hardening, peak and strain-
softening (post-peak) deformation stages in unit of N . The colored veins
represent the parallel bond forces in the bonds. The thickness of the vein
indicates the force magnitude. The tensile forces are in red, and the com-
pressional forces are in light blue.

reached, all the forces, regardless of compressive and tensile, show some

degree of recession; however, the compressive forces (linear contact force

and compressive parallel bond forces) decline more than the tensile parallel
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Figure 6.7: Evolution of total force for elastic, strain-hardening, peak and
strain-softening (post-peak) deformation stages in unit of N . The x-axis
represents the force magnitude. The y-axis represents the count of occur-
rence in a natural logarithmic scale.

bond forces, as shown in the strain-softening phase.

2-D Force Distribution

1-D force analysis directly visualizes the quantitative distribution of strong

and weak force networks regarding the force magnitude. We create a two-

dimensional diagram to examine how the weak and strong force networks

vary with angle and to display the abundance of forces of varying magni-

tudes. Figure 6.11 displays the total force distribution at various deforma-

tion stages. The azimuth presents the linear parallel bond orientation, the

radius represents the force magnitude of the linear parallel bonds, and the

colour represents the occurrence count.
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Figure 6.8: Evolution of linear contact force for elastic, strain-hardening,
peak and strain-softening (post-peak) deformation stages in unit of N . The
x-axis represents the force magnitude. The y-axis represents the count of
occurrence in a natural logarithmic scale. The linear contact forces are
compressive only.

While Figure 6.11 shows a 2D total force distribution, Figures 6.12 -

6.14 show the linear contact forces, compressive parallel bond forces and

tensile parallel bond forces, respectively.

In Figure 6.11, the total forces show evident and consistent angular

preference throughout the deformation stages. We discovered that clear

boundaries separate the force network, and these two angles that separate

the three force subgroups are identified as critical angles. We named them

as force subgroups: Strong A, Strong B, and Weak Force subgroups. We

see the development of the Strong force subgroups A and B throughout the

first three deformation stages. The top ”rays” in Figure 6.11 represent the
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Figure 6.9: Evolution of compressive parallel bond forces for elastic, strain-
hardening, peak and strain-softening (post-peak) deformation stages in unit
of N . The x-axis represents the force magnitude. The y-axis represents the
count of occurrence in a natural logarithmic scale.

Strong A force subgroup consisting of the group of bonds that has a larger

force in it, and the middle ”rays” are the Strong B force subgroup with

an intermediate magnitude of force in it. The bottom ”fan” represents the

Weak force subgroup. These two Strong force subgroups are not present in

the elastic phase, but the central ”fan” expands and grows in azimuth and

magnitude in the strain-hardening phase until the peak stress is reached.

In the strain-softening (post-peak) phase, the strong force network starts

to decline and shrinks in size, indicating the collapse of the force subgroups

in terms of its force magnitude. Also, we notice that the Strong A, Strong

B and Weak force subgroups are separated by critical angles, which can be
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Figure 6.10: Evolution of tensile parallel bond forces for elastic, strain-
hardening, peak and strain-softening (post-peak) deformation stages in unit
of N . The x-axis represents the force magnitude. The y-axis represents the
count of occurrence in a natural logarithmic scale.

clearly shown in the peak stage (Figure 6.11).

In Figure 6.11, we can see that the critical angle between Weak and

Strong B is at 38◦, and the critical angle separating Strong A and B is 64◦.

These two critical angles are also can be found in the other two compres-

sive force regimes, the compressive linear contact forces (Figure 6.12) and

compressive parallel bond forces (Figure 6.13).

Figure 6.11 displays the resultant total force acting within the rock. It is

evident that this resultant total force is notably shaped by two compressive

force networks: the linear contact forces (Figure 6.12) and the compressive

parallel bond forces (Figure 6.13). These compressive networks exhibit sim-
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Figure 6.11: The 2D total force distribution for the elastic, strain-hardening,
peak and post-peak phases for the elastic, strain-hardening, peak and post-
peak phases. There are three force subgroups: Strong A, Strong B, and
Weak Force subgroups. The critical angles are the boundaries between force
subgroups. Radius represents the force magnitude. The azimuth presents
the dipping of the linear parallel bond, and the colour represents the count
of occurrence.

ilar force progression and align with identical critical angles, contributing

substantially to the resultant force.

In terms of the tensile parallel bond forces (Figure 6.14), there is no

Strong force subgroup. They are only associated with one Weak force net-

work, as found in one-dimensional force results. The two ”fans” below the

critical inclinations represent the weak forces. For the tensile forces, the only

weak force network mainly concentrates in the horizontal zone between 0◦

and 38◦.
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Figure 6.12: The 2D linear contact force distribution for the elastic, strain-
hardening, peak and post-peak phases for the elastic, strain-hardening, peak
and post-peak phases. There are three force subgroups: Strong A, Strong B,
and Weak Force subgroups. The critical angles are the boundaries between
force subgroups. Radius represents the force magnitude. The azimuth
presents the dipping of the linear parallel bond, and the colour represents
the count of occurrence.

6.4.3 Final failure plane and spatial distribution of

forces

Figure 6.15 shows the spatial distribution of the resultant force network and

cracks. The left graph shows the spatial distribution of the resultant total

force network, represented by the veins. The colour of the vein indicates

the force magnitude in the bonds. The red line segments represent the

cracks formed in the granite specimen. The right graph shows the spatial

distribution of acoustic emissions, and the crosses represent the moment

magnitude of the acoustic emissions.
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Figure 6.13: The 2D compressive parallel bond force distribution for the
elastic, strain-hardening, peak and post-peak phases for the elastic, strain-
hardening, peak and post-peak phases. There are three force subgroups:
Strong A, Strong B, and Weak Force subgroups. The critical angles are
the boundaries between force subgroups. Radius represents the force mag-
nitude. The azimuth presents the dipping of the linear parallel bond, and
the colour represents the count of occurrence.

Both internal force and moment tensor graphs in Figure 6.15 show the

shearing plane, indicated by the linearly clustered cracks and acoustic emis-

sions. From Figure 6.15, we found that the shearing plane occurs at 64◦.

The shearing plane is indicated by a high force gradient, i.e., a sudden

change in force magnitude colors. To be more specific, the shearing plane is

located in weak forces and adjacent to the strong force network. Also, the

shearing plane angle well matches the orientation of the critical angle we

previously found between Strong A and B in Figure 6.11, and by its nature,

we know that this critical angle is exactly where the force gradient is high.
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Figure 6.14: The 2D tensile parallel bond force distribution for the elas-
tic, strain-hardening, peak and post-peak phases for the elastic, strain-
hardening, peak and post-peak phases. For tensile forces, there is only one
Weak force subgroup with critical angle 38◦. Radius represents the force
magnitude. The azimuth presents the dipping of the linear parallel bond,
and the colour represents the count of occurrence.

6.5 Discussion

6.5.1 Crack Development

Stress Drop

Similar to earthquake stress drop (Kanamori, 1977, 1978; Kanamori and

Brodsky, 2004; Scholz, 2019), we notice that every stress drop is also accom-

panied by acoustic emission and crack formation on a microscopic scale. In

a sequence of events involving foreshocks, the mainshock, and aftershocks,

the mainshock is typically where the most substantial decrease in stress
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Figure 6.15: The total force and acoustic emissions after peak pressure. On
the left graph, veins in the background are forces in bonds with colour-coded
magnitudes and the thick dashed lines represent the location of the major
shearing plane. On the right graph, the crosses represent the moment tensor
of acoustic emissions. The size of the cross is proportional to the magnitude,
which is also color-coded.

occurs (Van der Baan and Chorney, 2019).

Van der Baan and Chorney (2019) also found that the largest stress

drop ∆σmain changes with different confining pressure applied and that the

largest stress drop is inversely proportional to confining stress. Confining

pressure increases the viscous component of deformation and the rock’s

ductility. The increase in ductility occurs because the confining pressure

prevents the opening of cracks and fissures during deformation, effectively

forcing the rock to change shape rather than rupture. In our simulation, 10

MPa is applied as the confining pressure, which is considered low to increase

the ductility of brittle granite rock models. With low confining pressure,
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our models experience a large stress drop at the mainshock with a steep

angle, indicating low ductility.

Additionally, as Van der Baan and Chorney (2019) found, we observe

that (Figure 6.1): 1. the mainshock occurs where the stress drop is most

significant; 2. the cracks and acoustic emissions accelerate during the strain-

hardening stage, but very few acoustic emissions occur during the elastic

phase; 3. the largest acoustic emission event occurs after the peak stress

reached; 4. after the largest event, the subsequent event rate continuously

decreases during the following strain-softening phase. In addition to the

above, from the relationship between stress-strain and moment tensors of

acoustic emissions, we also found that the most significant stress drop in-

dicates the mainshock and is accompanied by the largest acoustic emission

size, the highest crack formation rate and the highest acoustic emission rate.

In seismology, the stress drop ∆σfault relates to the energy of the radiated

seismic wave (Kanamori, 1977; Kanamori and Brodsky, 2004). When a

bond breaks, leading to crack formation, a reduction in stress is anticipated

due to the release of accumulated strain energy in the form of seismic waves.

Consequently, the most significant decrease in stress suggests a considerable

sudden release of strain energy, marked by numerous and intensive seismic-

ities. The largest observed acoustic emission size, the highest rate of crack

formation, and the highest acoustic emission rate evidence this.

Shear-tensile Distribution

The lower section of Figure 6.1 shows tensile and shear cracks. Zhang et al.

(2019) argues that under low-stress levels, the initially formed cracks are

predominantly tensile and have little influence on the stress redistribution
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of the sample. The stress redistribution and concentration phenomenon will

be more obvious with the increased number of broken bonds. The specimen

damage increases shear movement and accelerates the crack propagation

(Zhang et al., 2019). The shear-tensile distribution shows that tensile crack

is always dominant during failure. Shear cracks only occupy a minor portion

of the crack formation rate, which is about 12.7%. Also, we found that only

tensile cracks formed at the beginning (Figure 6.1). The cracks before peak

stress are mainly tensile, and there were a few shear cracks during the late

strain-hardening phase. The first local shear crack occurs when the stress is

high, around 150 MPa, and the shear crack becomes obvious after passing

the peak stress. Furthermore, the highest shear-tensile crack ratio is found

where the major failure is. As the tensile and shear microcracks propagate

and nucleate, they further develop into a larger shearing plane as the final

stage of specimen failure.

Crack Orientation

In Figure 6.2, we can see the evolution of the crack distribution in terms

of the orientation. No crack has yet been formed in the elastic phase. In

studying the fracture of brittle materials subjected to tension, a fracture

is usually expected to form and propagate in a direction perpendicular to

the normal stress and parallel to the shear stress (Hoek and Bieniawski,

1965). In the uniaxial compressive test, the tensile stresses in the directions

perpendicular to the compression axis are not being suppressed by com-

pression. As the compressive loading proceeds, these tensile stresses get

stronger and cause propagation of preferably oriented pre-existing defects

or parts of wing cracks (Dyskin and Sahouryeh, 1997). As a result, the
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dilation occurs along the tensile stresses, as the wing cracks align with the

direction of the maximum compression (Bobet and Einstein, 1998). This

explains why we observe the orientation of cracks are mostly close to verti-

cal with some degrees of inclination (Figure 6.2). This observation indicates

that these cracks are likely tensile, consistent with the previous results in

Figure 6.1.

Orientation of Failure

Based on the modified Griffith theory previously mentioned in Chapter

2, Sibson (1990) identified the failure plane as favourably oriented, un-

favourably oriented or severely misoriented based on the failure plane ori-

entation to the principle stresses. The favourable orientation for fault reac-

tivation is where the stress ratio, R = (σ1/σ3) = (1+µ cot θr)/(1−µ tan θr),

is low, where θr is the angle of reactivation between failure plane and σ1

(Figure 2.3). This stress ratio R reaches a minimum positive value at the

optimum angle for reactivation given by θ∗r = 1
2
tan−1(1/µ) and the stress

ratio will be R∗ =
(√

1 + µ2 + µ
)2
. This stress ratio R reaches infinity

when θr = 2θ∗r , so-called the potential ”locked-up” angle, indicating that

the stress ratio needed for failure plane reactivation goes to infinity. When

θr > 2θ∗r , i.e., the ”locked-up” angle is exceeded, failure plane reactivation

would not occur unless the minimum principal stress becomes tensile σ3 < 0

or pore fluid press Pf > σ3.

Therefore, according to Sibson (1990), for typical rock friction coeffi-

cients, it is unlikely that normal faults will be reactivated as high-angle

reverse faults or thrusts as low-angle normal faults unless the effective least

principal stress is tensile. In Chapter 2, we discussed the Mohr Circle. It is
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worth noting that the θ used in Mohr’s circle is between the failure plane

and σ3 while the θr used in Sibson’s reactivation angle is the angle between

the failure plane and σ1. We can link Sibson’s optimum reactivation angle

with the idea of Mohr’s circle: the optimum condition for fault reactivation

is exactly where the Mohr’s circle is touching the failure envelope (Figure

2.2), i.e., the angle of failure plane given by the Mohr’s circle is same as the

Sibson’s optimum reactivation angle, θ∗r = 90◦ − θ.

From the Mohr Circle analysis detailed in Chapter 5, the friction coef-

ficient of the granite sample is determined to be µ = 0.83. Using this value

in Equation of optimum angle for reactivation θ∗r = 1
2
tan−1(1/µ), the θ∗r

for our granite sample is calculated to be 25.2◦. Since this θ∗r is the angle

from the direction of the σ1, it is equivalent to 64.8◦ from the horizontal

direction. This closely aligns with the final failure plane orientation and

our Mohr Circle Analysis, suggesting that the optimum reactivation angle

may serve as a reliable estimate for the final failure orientation angle.

6.5.2 Internal Force Distribution

Force Subgroups

In previous studies conducted by Van der Baan and Chorney (2019), they

identified the presence of both a weak and a strong force network within

the rock. They also discovered a phenomenon of slope change in the 1D

force distribution from the elastic stage to the final strain-softening stage.

Our experiment also found these phenomena, prompting us to investigate

these observations further.

We analyze the 1D force distribution by breaking it down according

to the critical angles previously identified in 2D force distributions at 38◦
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and 64◦. These critical angles can be found in all linear contact forces,

compressive parallel bond forces, and the resultant total force, as these two

compressive force networks notably shape the resultant total force. These

critical angles also can be found in Figure 6.16 for total forces, in Figure

6.17 for linear contact forces and in Figure 6.18 for the compressive parallel

bond forces. For tensile parallel bond forces (Figure 6.19), the critical angle

is 38◦ .

Our observation and analysis show that five distinct force subgroups

are present within the brittle rocks under compression. There are three

subgroups present in the compressive forces (Figure 6.12 and Figure 6.13):

the Weak force group is oriented between 0◦ and 38◦, the Strong B subgroup

is between 38◦ and 64◦, and the Strong A subgroup between 64◦ and 90◦.

There are two subgroups present in the tensile parallel bond forces (Figure

6.14), and the horizontal force group is oriented between 0◦ and 38◦, and

the vertical subgroup between 38◦ and 90◦.

Once the critical angles and force subgroups are identified, it becomes

possible to isolate the 1D force distribution of each force subgroup from

the total forces (Figures 6.20 - 6.22). They illustrates the progression of

various total force subgroups at each deformation stage. Firstly, there is

noticeable growth observed in all Weak, Strong B, and Strong A subgroups,

with particular emphasis on the Strong A subgroup. Secondly, both the

Strong B and Strong A subgroups experience an initial increase followed by

a decline after reaching their peak stages, suggesting occurrences of events

and energy release. These patterns are also observable in the linear contact

forces (See Figures Figures 6.23-6.25) and compressive parallel bond forces

(See Figures 6.26-6.28).
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Figure 6.16: Decomposition of total force distribution according to the crit-
ical angles at the peak stage. a) The 2D force distribution with critical
angles, 38◦ and 64◦, indicated by dashed lines of yellow and blue respec-
tively. b) The angular distribution of forces is colour-coded by different force
subgroups according to the critical angles. c) The 1D force distribution of
different force subgroups.

Similar patterns are observed in the horizontal subgroup forces of ten-

sile parallel bond forces (Figure 6.29). However, this consistency does not

extend to tensile vertical forces (Figure 6.30), where no discernible trend is
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Figure 6.17: Decomposition of linear contact force distribution according
to the critical angles at the peak stage. a) The 2D force distribution with
critical angles, 38◦ and 64◦, indicated by dashed lines of yellow and blue
respectively. b) The angular distribution of forces is colour-coded by dif-
ferent force subgroups according to the critical angles. c) The 1D force
distribution of different force subgroups.

evident throughout the deformation stages.

Figures 6.26-6.28 illustrate the evolution of compressive parallel bond
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Figure 6.18: Decomposition of compressive parallel bond force distribution
according to the critical angles at the peak stage. a) The 2D force distri-
bution with critical angles, 38◦ and 64◦, indicated by dashed lines of yellow
and blue respectively. b) The angular distribution of forces is colour-coded
by different force subgroups according to the critical angles. c) The 1D
force distribution of different force subgroups.

force subgroups, displaying a consistent log-normal distribution across all

deformation stages. This distribution pattern is also reflected in the hori-

zontal subgroup of tensile parallel bond forces (Figures 6.30 - 6.29). Addi-

tionally, the Strong A and B force subgroups of linear contact forces (Figures
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Figure 6.19: Decomposition of tensile parallel bond force distribution ac-
cording to the critical angles at the peak stage. a) The 2D force distribution
with critical angles at 38◦, indicated by dashed blue line. b) The angular
distribution of forces is colour-coded by different force subgroups accord-
ing to the critical angles. c) The 1D force distribution of different force
subgroups.

6.23 - 6.25) also exhibit a clear log-normal distribution. Consequently, the

Strong A and B force subgroups of total forces (Figures 6.20 - 6.22) are

similarly pronounced.

When the 1D force subgroups aggregate based on the deformation stages,

they assemble to compose the 1D force distribution for each deformation

stage, as depicted previously in Figures 6.7, 6.8, 6.9, and 6.10. This inte-

gration explains the changes in slope observed in the earlier 1D force dis-

tribution plots. The variation in slope, as reported by both the prior study

and our research, is essentially a result of the development and cumulative
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Figure 6.20: The development of the Weak subgroup of total forces through-
out the deformation stages: elastic, strain-hardening, peak, and strain-
softening.

effect of the force subgroups.

We show that the brittle rock internally comprises five unique force

subgroups under compression, three force subgroups in compressive forces

regimes and two force subgroups in tensile forces regimes. The Strong force

subgroups are confined to compressive forces between specific critical angles

and are characterized by their substantial magnitude, setting them apart
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Figure 6.21: The development of the Strong B subgroup of total forces
throughout the deformation stages: elastic, strain-hardening, peak, and
strain-softening.

from the Weak force subgroup. The Strong force subgroups’ growth and

decline significantly correlate with the incidence of brittle failure events.

Also, we found that the Strong force subgroup heavily depends on the

orientation of forces within the bonds. We will continue our exploration of

internal force distribution by thoroughly examining the interaction between

the crack and internal force networks.
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Figure 6.22: The development of the Strong A subgroup of total forces
throughout the deformation stages: elastic, strain-hardening, peak, and
strain-softening.

6.5.3 Relationship between Cracks and Internal Force

Networks

For both compressive and tensile forces (Figure 6.31 and 6.32), the linear

parallel bonds are evenly distributed at every angle. Figure 6.2 demon-

strates a diverse angular distribution of cracks. However, when we separate
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Figure 6.23: The development of the Weak subgroup of linear contact forces
throughout the deformation stages: elastic, strain-hardening, peak, and
strain-softening.

the cracks based on whether they are shear or tensile, we can see that the

cracks also have a strong angular dependency similar to what we found in

internal force networks. In contrast, linear parallel bonds are uniformly

distributed at every angle with a relatively equal amount.
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Figure 6.24: The development of the Strong B subgroup of linear contact
forces throughout the deformation stages: elastic, strain-hardening, peak,
and strain-softening.

Compressive forces

A comparison between the spatial force distribution (Figure 6.15) and the

2D force distribution (Figure 6.11) graph highlights the shearing plane’s

angle closely aligning with the force boundaries between Strong A and B

in the 2D force plot where a high force gradient is evident. This results
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Figure 6.25: The development of the Strong A subgroup of linear contact
forces throughout the deformation stages: elastic, strain-hardening, peak,
and strain-softening.

in major failures at points where the force gradient is most acute, and the

failure plane’s angle coincides with the force boundary between Strong A

and B force subgroups at 64◦. This failure angle is also consistent with the

conclusions from the Mohr circle analysis from Chapter 5.

We suggest that the critical angles we previously found in the 2D force
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Figure 6.26: The development of the Weak subgroup of compressive parallel
forces throughout the deformation stages: elastic, strain-hardening, peak,
and strain-softening.

distribution are the optimum reactivation angle θ∗r (Sibson, 1990) discussed

in Chapter 2. θ∗r = 1
2
tan−1(1/µ), and from the Mohr Circle Analysis, we

obtained that the friction coefficient µ = 0.83. Therefore, we can calculate

that the optimum reactivation angle for our granite sample is 25.2◦. Recall

that θ∗r = 90◦ − θ, θ represents the angle between failure plane P and σ3.

Therefore, θ is 64.8, consistent with the critical angle marking the boundary
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Figure 6.27: The development of the Strong B subgroup of compressive
parallel forces throughout the deformation stages: elastic, strain-hardening,
peak, and strain-softening.

between Strong A and Strong B subgroups.

Also, recall that when stress ratio R = (σ1/σ3) reaches infinity when

θr = 2θ∗r , so-called the potential ”locked-up” angle, indicating that the

stress ratio needed for failure plane reactivation goes to infinity. Shearing

is unlikely unless the minimum principal stress becomes tensile σ3 < 0 or

pore fluid press Pf > σ3. In our case of friction coefficient µ = 0.83, the
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Figure 6.28: The development of the Strong A subgroup of compressive
parallel forces throughout the deformation stages: elastic, strain-hardening,
peak, and strain-softening.

”locked-up” angle will be 2θ∗r = 2 ∗ 25.2◦ = 50.4◦, and the corresponding

angle between this ”locked-up” and σ3 is 39.6
◦, which is also align with the

other critical angle at 38◦ that is between the compressive weak and Strong

A force subgroups.

Cracks oriented outside the ”locked-up” angles are considered severely

misoriented, requiring an infinity stress ratio R to induce shearing. Hence,
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Figure 6.29: The development of the horizontal subgroup of tensile parallel
forces throughout the deformation stages: elastic, strain-hardening, peak,
and strain-softening.

failure is unlikely to happen if the system remains compressive. Observa-

tions from Figure 6.31 corroborate this, showing no evident cracks below

this ”locked-up” angle, thereby supported by Sibson’s theory.

The Strong A subgroup depicted in the 2D force diagrams is the most

robust force subgroup, primarily oriented vertically. This is attributed to

the necessity for a more substantial force at a higher but unfavourably

oriented angle to cause the failure of compressive bonds, resulting in an
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Figure 6.30: The development of the vertical subgroup of tensile parallel
forces throughout the deformation stages: elastic, strain-hardening, peak,
and strain-softening.

observed escalation of force magnitude from Strong B to Strong A force

groups as the angle increases to surpass the critical angle at 64.8◦. The

spatial distribution of the failure shows that the shearing plane is indicated

by a high force gradient and a sudden change in force magnitude; failure is

located in relatively weak forces but adjacent to the strong force network.

This critical angle of 64.8◦ separating the Strong B force group from the
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Strong A force group indicates the specific orientation of the highest force

gradient and, therefore, predicts the orientation of the final catastrophic

failure.

Combining the spatial result of internal force and final failure location

(64◦), 2D force distribution analysis (64◦), Mohr’s circle analysis (65◦), and

Sibson’s fault reactivation theory(64.8◦), it is likely that the critical angles

we found are the same as Sibson’s fault reactivation theory. The critical

angle found between Strong A and B subgroups predicts the orientation of

the final catastrophic failure if the loading persistently escalates. Simulta-

neously, the critical angle observed between the Strong B and Weak force

subgroups delineates the foundational angular threshold for the occurrence

of shearing.

Tensile forces

In scenarios involving tensile forces, those originating solely from parallel

bond forces, it appears that forces oriented between 38◦ and 142◦ vanish

from the 2D force diagram. This absence is attributed to compressive load-

ing, wherein the tensile bonds positioned within the 38◦ to 142◦ range are

misaligned for the formation of tensile cracks. Bonds oriented horizontally

below 38◦ are more prone to initiating tensile cracks. Consequently, as

shown in the tensile crack graph (Figure 6.32), the horizontal force zone

below 38◦ or above 142◦ predominantly contributes to vertically oriented

tensile crack formation. This suggests that tensile crack formation corre-

lates with the collapse of the weak tensile network. The weak tensile forces

transpire at any orientation; however, the horizontal segment of the tensile

force network, situated below 38◦ or above 142◦, stands out as the primary
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Figure 6.31: Compressive bonds, total forces and shear cracks at the peak
phase. Top: Orientation and count of the bonds under compression. Radius
represents the count. The azimuth presents the orientation of the linear
parallel bond, and the colour represents the count of occurrence. Middle:
2D total force distribution. Radius represents the force magnitude. The
azimuth presents the orientation of the force in the linear parallel bond, and
the colour represents the count of occurrence. Bottom: Angular distribution
of shear cracks. The azimuth presents the orientation of the shear cracks,
and the colour represents the count of occurrence.

driver behind the creation of vertically oriented tensile cracks.
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Figure 6.32: Tensile bonds, tensile parallel bond forces and shear cracks at
the peak phase. Top: Orientation and count of the bonds under tension.
Radius represents the count. The azimuth presents the orientation of the
tensile parallel bond, and the colour represents the count of occurrence.
Middle: 2D tensile parallel bond force distribution. Radius represents the
force magnitude. The azimuth presents the orientation of the force in the
linear parallel bond, and the colour represents the count of occurrence.
Bottom: Angular distribution of tensile cracks. The azimuth presents the
orientation of the tensile cracks, and the colour represents the count of
occurrence.
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6.6 Conclusion

In conclusion, this study comprehensively explores the rock failure and in-

ternal force networks in brittle intact rocks, leveraging the bonded particle

method. The diligent observation and analysis of crack development and

internal force networks illuminated significant insights into the behaviour

of rocks under compressive loading. It was observed that the mainshock

and largest acoustic emission events notably occur where the stress drop is

most substantial. Moreover, identifying five distinct force subgroups within

brittle rocks under compression provides a more nuanced understanding

of the internal force networks. The analysis of the orientations and magni-

tudes of these force subgroups and their relationship with crack development

substantiates the notion that the orientation and type of forces contribute

significantly to the formation of cracks and eventual failure of the rock

mass. The critical angles identified in this study align with Sibson’s fault

reactivation theory, reinforcing the predictive capability of this study for

assessing the likelihood of catastrophic failure under continued loading. Un-

derstanding the angular dependence of internal forces and its implications

on rock failure mechanisms opens avenues for improved predictive models.

It reinforces the utility of numerical methods in rock mechanics research,

potentially contributing to enhanced safety and efficiency in related fields

such as mining, civil engineering, and seismology.

128



Chapter 7

Conclusion

7.1 Summary of Results

This thesis demonstrates a progression in geomechanics research, with an

emphasis on investigating the mechanisms behind brittle rock failure and

the patterns of internal stress. It fills the knowledge gaps of the behavior of

internal forces under compressive stresses. This is the final chapter summa-

rizes the contributions of the chapters and possible industrial implications

and suggests areas for further research.

Chapter 4 aims to verify the bonded particle method (BPM) as a reliable

tool for simulating the complex behavior of brittle rocks under compression.

The contributions of this chapter are:

1. Bridging theory and practice by combining both numerical and analytical/semi-

analytical methods to validate the bonded particle method.

2. Proving BPM reliability by focusing on the simulation of elastic wave

propagation. This chapter demonstrates the BPM’s capability to

replicate real-world phenomena accurately. This verification process
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increases the reliability of BPM for future research and practical ap-

plications in rock failure analysis.

Chapter 5 focuses on using the bonded particle method (BPM) to model

the behaviour of Lac du Bonnet granite, a well-documented rock material.

The main goal of this chapter is to describe the material generation process

and calibrate the model for the following simulations. The contributions of

this chapter are:

1. Outlining the detailed procedure for creating a Particle Flow Code

(PFC) 2D model of the Lac du Bonnet granite.

2. Providing micro-mechanical parameters to match the physical prop-

erties and behavior of Lac du Bonnet granite.

Chapter 6 represents the cumulative effort to explore complex rock fail-

ure mechanisms and internal force networks in brittle rocks. This chapter

advances the understanding of internal force networks:

1. Identifying the characteristics of a catastrophic failure. We found that

catastrophic failure occurs after peak stress is reached, accompanied

by the most significant stress drop, the largest acoustic emission size,

the highest crack formation rate, the highest acoustic emission rate,

and the highest shear-tensile crack ratio.

2. Five distinct subgroups of forces within the overall internal force dis-

tribution are discovered: Weak, Strong A, Strong B, horizontal and

vertical force subgroups. This distinction allows for a detailed anal-

ysis of the forces and contributes to a further understanding of their

individual and collective effects on rock failure. This chapter also
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determines the critical angles separating the boundaries between the

identified force subgroups.

3. Determine the relationship between internal forces and catastrophic

failure. Failure occurs in regions with high force gradients, oriented

according to the critical angle that is between the Strong A and B

subgroups. Therefore, this critical value can predict the orientation

of catastrophic failure. At the same time, the critical angle observed

between the Strong B force subgroup and the Weak force subgroup

shows the angular threshold of shearing. This insight is important

for predicting failures in geotechnical applications and designing in-

terventions that enhance rock stability.

7.2 Industry Implications

1. Predicting Catastrophic Failure in Mining, Hydraulic Fracturing and

Geothermal Extraction. The identification of catastrophic failure

characteristics, such as stress-drop conditions and acoustic emission

rates which can be measured and monitored on the field, can improve

monitoring systems within geotechnical operations. This enables the

prediction and prevention of collapses or other hazardous incidents,

thereby safeguarding workers and infrastructure.

2. Optimizing Resource Extraction Techniques. Given that catastrophic

failure occurs in areas of high force gradients at specific critical angles,

intentionally creating minor geological weaknesses away from these

critical angles could optimize extraction processes in the oil, gas, and

geothermal sectors. This approach enhances both stability and safety.
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By focusing on the strategic targeting of weak points for extraction.

Utilizing this insight to develop innovative strategies can decrease

operational costs and boost efficiency while ensuring safe operations.

3. Mitigating Induced Seismicity. The relationship between internal

forces and catastrophic failure, especially the orientation of failure

according to critical angles, is crucial for industries that induce stress

in the crust, such as hydraulic fracturing and geothermal energy ex-

traction. By predicting the orientation and conditions of potential

failure, these industries can adjust their operations to mitigate the

risks of induced seismicity. Therefore protecting nearby communities

and infrastructure.

4. Guiding Environmental and Regulatory Policies. These insights can

guide environmental and regulatory policies by identifying the con-

ditions that could lead to rock failure and pose potential risks. This

knowledge can help to reduce environmental impacts, particularly in

ecologically sensitive regions and populated areas.

7.3 Suggested future research

Still, a more comprehensive analysis is required to further understand the

failure mechanism and internal forces. Here, we outline some potential

directions for future investigation:

1. Extension to Three-Dimensional Modeling. The current study pri-

marily utilizes two-dimensional BPM simulations to explore the be-

havior of brittle rocks under stress. Future research could extend
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these simulations to three-dimensional models, offering a more com-

prehensive understanding of the spatial complexities involved in rock

failure. Three-dimensional modeling would provide insights into out-

of-plane forces and fracture propagation paths that are not captured

in two-dimensional simulations, enhancing the predictive accuracy of

rock failure mechanisms.

2. Investigation of Anisotropic Rock Behavior. Rocks in nature often

exhibit anisotropic mechanical properties due to their formation pro-

cesses, mineral composition, and existing stress fields (Garcia-Teijeiro

and Rodriguez-Herrera, 2014). Future studies could focus on incorpo-

rating anisotropy into BPM simulations to investigate its impact on

rock failure behavior. Understanding how anisotropy influences crack

initiation, propagation, and the distribution of internal forces would

contribute to more accurate models of natural rock behavior.

3. Integration with Machine Learning Techniques. The integration of

machine learning techniques with BPM simulations presents an ex-

citing avenue for future research. Machine learning algorithms could

be employed to analyze simulation data, identify patterns in rock

failure mechanisms, and predict rock behavior under various loading

conditions. This approach could significantly enhance the efficiency

and accuracy of geomechanical models, paving the way for real-time

monitoring and predictive analytics in geotechnical applications.

4. Experimental Validation Under Dynamic Loading Conditions. While

this thesis provides a thorough experimental validation of BPM under

static loading conditions, future research could explore the behavior
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of brittle rocks under dynamic loading conditions. This would involve

conducting experiments to simulate seismic events, shock loading, and

other transient stress conditions. Such studies would offer valuable

insights into the rock’s response to dynamic stresses (Hulse, 1959),

which is relevant for understanding natural hazards like earthquakes.

5. Exploration of Fluid-Rock Interactions. The interaction between flu-

ids and rock plays a critical role in many geotechnical processes, in-

cluding hydraulic fracturing and enhanced geothermal systems. Fu-

ture research could focus on simulating fluid-rock interactions using

BPM to investigate how fluid pressure, flow rate, and fluid properties

influence rock failure and fracture propagation. This research would

be particularly relevant for optimizing hydraulic fracturing techniques

and understanding subsurface fluid migration.

6. Studies on Rock Failure Mitigation Strategies. Future research could

focus on designing and evaluating rock failure mitigation strategies.

This could include the development of novel rock bolting techniques,

the use of engineered fluids to stabilize fractures, or the application of

external stress fields to prevent failure. Such studies would have direct

implications for improving the safety and sustainability of geotechni-

cal operations.
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