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Abstract

The statistical sum distributions of independent Rayleigh, Ricean, and Nakagami random 

variables occur extensively in the modeling and performance analysis of wireless commu­

nication systems. Closed-form expressions do not exist for most of these sum distributions 

and consequently, they are often approximated or calculated numerically. In this thesis, 

accurate closed-form approximations for the Rayleigh, Ricean, and Nakagami sum dis­

tributions and densities are derived. These approximations are demonstrated to be valid 

for a wide range of probability values, statistical parameters, and number of summands. 

The proposed approximations facilitate efficient performance analysis for a broad range 

of applications. One particular application considered in this thesis is equal gain combin­

ing diversity systems. Accurate closed-form expressions for the average error and outage 

probabilities of these systems are derived.
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Chapter 1

Introduction

1.1 Overview

The explosive growth of the wireless communications industry can be attributed to many 

factors. The ongoing replacement of traditional wired telephone service in favor of cellular 

networks, the popularity of wireless services such as broadband Internet, and the dramatic 

improvement in hardware implementation technology are just a few reasons. As the wire­

less industry grows, there are demands for higher data rates, improved quality of service, 

and lower cost communications. These demands have created the need to design new wire­

less communication systems.

A fundamental consideration when designing a communication system is the physical 

channel through which the information is conveyed. This channel is a medium such as a 

wire, a coaxial cable, a waveguide, an optical fiber, or a radio link. In a way, the channel 

acts partly like a filter in that it attenuates and distorts the waveform. In addition, the signal 

is also contaminated along the path by undesirable signals, often tenned as noise. Sources 

of noise include interference from other signals transmitted on nearby channels, human- 

made noise, radiation from various sources, and thermal noise caused by the motion of 

electrons in conductors of electronic devices. The signal-to-noise ratio (SNR) is defined as 

the ratio of signal power to noise power.

1
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Among all the obstacles encountered in wireless system design, the time-varying nature 

of the propagation channel is probably the most difficult [1]. This time-varying nature 

and the associated multipath fading inhibit reliable wireless communications and create 

significant challenges for wireless system design. It is thus important to analyze the effects 

of multipath fading in wireless communications. This often requires the development of 

statistical models to accurately depict the channel conditions. Research must also be done 

on solutions to combat the problems that are caused by multipath fading.

It has been shown that multipath fading causes a degradation in system performance. As 

a result, several solutions have been proposed and implemented [2]. Techniques including 

equalization, channel coding, spread spectrum, and diversity have been deployed in modem 

wireless systems. The degree to which these methods are effective is dependent on the 

wireless environment and complexity of the system architecture. Diversity is a relatively 

simple and effective method to reduce the damaging effects of fading.

The following sections provide more details on multipath fading and diversity.

1.2 The Wireless Channel

The wireless channel may vary from a simple line-of-sight (LOS) path between the trans­

mitter and receiver to one that is severely obstructed by mountains, buildings, and other 

obstacles. Often, a LOS radio link cannot be achieved because the antenna of the mobile 

unit is below various obstacles. Consequently, radio propagation takes place mainly by 

way of reflection, diffraction, and scattering from the obstacles. This results in multiple 

radio waves that arrive simultaneously at the receiver, all with different amplitudes and 

phases. The constructive and destructive combining of these waves at the receiver leads to 

the multipath phenomenon known as fading and its existence makes reliable communica­

tions challenging [3]. In order to study the effects of multipath fading and improve wireless 

systems, accurate modeling of the propagation characteristics of the channel is a necessary 

requirement.

As a result of the randomness or time-varying nature of the wireless channel, modeling

2
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is typically done in a statistical manner. That is, by using theoretical insight or empirical 

measurements, one creates statistical models to describe the effects of the channel on the 

transmitted signal. In addition to accurately depicting the channel’s characteristics, these 

models provide the benefit of being flexible. Many different fading environments may be 

represented by simply changing the statistical parameters. Generally, models are grouped 

into two main categories based on the transmitter and receiver spatial separation being 

considered. These two categories are large-scale or long-term fading and small-scale or 

short-term fading [2],

Large-Scale Fading

Spatial Separation

Fig. 1.1. Small-scale fading superimposed on large-scale fading.

Large-scale fading describes the average signal power decay or the path loss due to 

motion over large areas. This attenuation is caused by the terrestrial and free space losses

3
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1
Spatial Separation 

Fig. 1.2. Small-scale fading.

between the transmitter and receiver. The Okumura-Hata and COST 231-Walfish-Ikegami 

models are commonly used empirical models that have been obtained by curve fitting ex­

perimental data [4]. A popular theoretical model for large-scale fading is the lognormal 

propagation model [5]. This model describes the random shadowing effects due to the 

presence of terrain features such as buildings, foliage, and hills.

Small-scale fading describes the rapid fluctuations of the received signal strength over 

very short travel distances, as small as one-half wavelength. Depending on the nature of 

the propagation environment, different models are used to describe the statistical behavior 

of the multipath fading envelope. The main statistical models for small-scale fading are the 

Rayleigh, Ricean, and Nakagami distributions. To limit the scope of this thesis, only the

4
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effects of small-scale fading are considered in the analysis.

1.2.1 Small-Scale Fading

As mentioned previously, propagation through the wireless channel takes place by way 

of reflection, diffraction, and scattering from the objects in the transmission path. This 

causes multiple signal waves from different directions and with varying time delays to 

arrive simultaneously at the receiver. Small-scale fading refers to the fluctuations in the 

instantaneous received signal amplitude and phase that results over a very short distance, 

typically between a fraction of a wavelength and several wavelengths. Even over these tiny 

distances, dramatic changes in the power of the signal may occur as the received waves add 

constructively and destructively. For example, the received signal power may vary by as 

much as three or four orders of magnitude (30 or 40 dB) when the receiver is moved by only 

a fraction of a wavelength [6]. To further classify small-scale fading, the time dispersion 

and frequency dispersion mechanisms of the fading channel must be considered in relation 

to the nature of the transmitted signal.

The amount of delay spread is used to describe the degree of time dispersion caused 

by the channel. Time dispersion causes distortion in the signal and manifests itself in the 

spreading in time of the modulation symbols. This results in successive data symbols be­

ing smeared into one another, commonly known as intersymbol interference (ISI). In some 

cases, a huge degradation in the performance of the communication system may occur 

when the ISI becomes so severe that the symbols are no longer distinguishable [7]. The 

reciprocal of the delay spread is called the coherence bandwidth of the channel. This band­

width is the range of frequencies where the channel passes all spectral components with 

equal gain and linear phase. The Doppler spread is used to describe the frequency dis­

persive nature of the channel that results whenever relative motion between the transmitter 

and the receiver exists. Doppler spreads will increase or decrease the apparent received 

frequency depending on if the receiver is moving closer or further from the transmitter [6]. 

The reciprocal of the Doppler spread is called the coherence time. This time is the duration

5
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over which two signals will be affected similarly by the channel. The cumulative effect 

of multipath fading, ISI, and Doppler spread severely degrades the performance of wire­

less communication systems. Based on the relative relations between the parameters of the 

fading channel (delay spread and Doppler spread) and the parameters of the transmitted 

signal (signal bandwidth and symbol period), small-scale fading can be classified into four 

categories [6]. The following is a brief summary of the four types of small-scale fading.

Frequency Selective Fading: When a wireless channel exhibits a constant gain and lin­

ear phase response for a bandwidth that is smaller than the transmitted bandwidth, the 

received signal will experience frequency selective fading. This scenario arises when the 

signal bandwidth is large in comparison to the coherence bandwidth.

Flat Fading;. Conversely, when a wireless channel exhibits a constant gain and linear phase 

response for a bandwidth than is larger than the transmitted bandwidth, then the received 

signal will experience flat fading. Flat fading occurs when the signal bandwidth is small in 

comparison to the coherence bandwidth.

Fast Fading: A signal is considered to experience fast fading if the channel response 

changes rapidly within the baseband symbol duration. This occurs when the coherence 

time of the channel is smaller than the symbol period of the transmitted signal.

Slow Fading: On the other hand, if the symbol duration channel impulse response is static 

over one or more symbols, then the received signal will experience slow fading. Slow fad­

ing occurs when the symbol duration is small in comparison to the coherence time.

In this thesis, we focus on slowly-varying flat fading channels. This is done for two rea­

sons. First, fast fading typically occurs only when very low data rates are used. Thus, most 

current terrestrial mobile-radio channels can be characterized as slow fading [2]. Secondly, 

frequency selective fading is much more difficult to model than flat fading. This is because

6
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each multipath signal must be modeled individually and the channel must be considered to 

be a linear filter. Channel measurements or simplified models such as the two-ray Rayleigh 

fading model are generally used to characterize frequency selective fading [6].

1.2.2 Flat Fading Channel Models

Many fading models have been used to describe the multipath propagation effects in wire­

less communication channels. The most common distributions used to describe the fading 

amplitude of a signal in fiat fading channels are the Rayleigh, Ricean, and Nakagami dis­

tributions. The application of these distributions for modeling the wireless channel can be 

better understood by first considering Clarke’s model [8].

Clarke’s Model: In this model it is assumed that a stationary transmitter sends a signal 

to a moving mobile and the electromagnetic field of the received signal is a result of scat­

tering. At the mobile antenna, the incident field consists of N  horizontally traveling plane 

waves of random phase and equal average amplitude. The phase is assumed to be uniformly 

distributed between 0 and 2n. Furthermore, it is assumed that the arriving amplitudes and 

phases are all statistically uncorrelated. The vertical component of the electric field, de­

noted by Ez, can be written as

where Ei and dt respectively represent the amplitude and phase of the i-th arriving wave. 

Now if N  is sufficiently large, Ez is approximately a Gaussian random variable (RV) as 

a result of the Central Limit Theorem. Thus, the in-phase and quadrature components, 

denoted by X  and Y  respectively, are also Gaussian RVs with means and variances given

N
Ez = % E iei0‘ = X + jY (1.1)

i= i

by

(1.2a)

(1.2b)

7
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where E[-] denotes the expectation operation and c 2 is a constant.

Rayleigh Fading: When the channel impulse response is modeled as a zero-mean complex­

valued Gaussian random process as in Clarke’s model, the received envelope R = y/X2+ Y2 

at any time instant is Rayleigh distributed [9]. Thus, the magnitude of the received complex 

envelope has a Rayleigh probability density function (PDF)

=  r > °  (i-3)

where (2 — n /2 )c 2 is the variance of the density. This fading model is commonly used in

environments where no LOS path exists between the transmitter and receiver.

Ricean Fading: In certain environments, where there exists a specular or LOS component 

in addition to random scatterers, the channel impulse response will have a nonzero-mean 

value and the envelope of the received signal will follow a Ricean density [9]

r " °  a 4 )

where 70(-) is the zeroth-order modified Bessel function of the first kind, a 2 is the variance

of the Gaussian scatter component, and s2 is the noncentrality parameter. To describe the 

degree of fading, it is often convenient to define the Rice factor as the ratio of specular 

power to scattered power, that is, K  =  s2f i d 2. When K =  0, the channel has no specular 

component and (1.4) reduces to the Rayleigh PDF. On the other hand, when K  =  <*>, the 

channel does not exhibit any fading. If £2 =  Efr2] =  s2+ 2c2 is used to denote the average 

power of the received signal, then the PDF of R  can be written as

Figure 1.3 shows the Ricean density for several values of K.

Nakagami Fading: The Nakagami distribution (m-distribution) [10] is a generalized distri­

bution which can accurately model different fading environments. Moreover, the versatility

8
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Fig. 1.3. The Ricean PDF for several values of K  and SI =  1.

of the Nakagami distribution allows it to fit some urban wireless channel data better than 

the commonly used Rayleigh, Ricean, or lognormal distributions [11], [12]. The magnitude 

of the received envelope in Nakagami fading is described by the density

2rnmr2m~1 /  m 2\
/ t W  =  T W ! F “ p ( - Q ; ) ’ (L 6 )

where m > 0.5, Q, =  E[R2] controls the spread of the distribution, and T(-) is the gamma 

function. In the context of the Nakagami fading model, the constant m  is the fading severity 

parameter and Q. is the average power of the received signal. The Rayleigh (m =  1) and 

one-sided Gaussian (m =  0.5) distributions are special cases of the Nakagami distribution, 

as is the nonfading case (m =  <»). In addition, the Rice distribution can sometimes be 

approximated with a Nakagami distribution by using the following relationship between

9
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the Rice factor K  and the Nakagami shape factor m [10]

y/m2—m
K  =

m — y/nP- — Tn 

( K + 1)2

m > 1

m —

(1.7)

2K+1 ' (L8)

Caution must be exercised in using this approximation as the tails of the Ricean distribution 

decrease at a different rate than the tails of the Nakagami distribution when m ^ l .  Figure

1.4 shows the Nakagami density for several values of m.

—  m = 0.5
—  m = 1 
 m = 3
—  m = 5
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0.5 1.5
r

2.5

Fig. 1.4. The Nakagami PDF for several values of m and £2=1.
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1.3 Diversity

Diversity is an effective technique to mitigate the deleterious effects of multipath fading 

[3], [13]. To understand the basic concept underlying diversity, consider a system where L 

independently faded replicas of the transmitted signal arrive at the receiver. If p denotes the 

probability that the instantaneous SNR of each of the copies is below a critical threshold, 

then p^ is the probability that the instantaneous SNR is below the same critical threshold for 

all L  copies. In general, p^ will be much less than p, resulting in a substantial improvement 

in the reliability of the communication system.

To obtain multiple copies of the transmitted signal, methods such as frequency diversity, 

time diversity, and spatial or antenna diversity have been proposed [14]. The common 

theme behind these methods is to produce multiple versions of the transmitted signal at 

the receiver, each of which have experienced unconelated fading. In frequency diversity, 

the same signal is sent over multiple channels that are sufficiently spaced. lim e diversity is 

obtained by transmitting the same signal at multiple time periods that are suitably separated. 

Spatial or antenna diversity uses multiple antennas and relies on the fact that the received 

signals are essentially uncorrelated if the antennas are separated by one-half wavelength or 

more apart

13.1 Diversity Combining

Provided that the receiver is able to obtain uncorrelated faded replicas of the original infor­

mation bearing signal, there are several methods of combining these signals. Here, we will 

focus on linear diversity combining techniques. In these methods, the signals on each of the 

L diversity branches are first weighted and then summed together as shown in Figure 1.3. 

If the combining occurs at radio frequency, then it is called predetection combining. On the 

other hand, postdetection combining occurs when the combining is done at baseband. In 

many cases, predetection and postdetection methods will yield the same performance [4]. 

In this thesis, the predetection combining diversity receiver is considered.

If the signal sm(t) is transmitted, then the signal on the i-th branch at any time t can be

11
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Fig. 1.5. The L-branch linear diversity combiner.
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expressed as

(1.9)

where

(1.10)

are the complex fading gains and nf(t) is additive white Gaussian noise (AWGN) with 

power spectral density N0/2. AWGN models the thermal noise that is present at the front- 

end of the receiver and is assumed to be independent of the fading amplitudes. The resultant 

signal at the output of the linear combiner can be expressed as

where wt is the combining weight used on the i-th branch. These weights are determined 

by the type of combining used and are directly related to the complexity and performance 

of the system. The most widely considered linear combining techniques are as follows.

Selective Combining (SC): SC operates on the principle that the diversity branch which 

yields the highest SNR is always selected. That is, the weighting factors are all zero except 

for the branch with the largest SNR. Thus, the diversity combiner simply yields the output

where yi is the instantaneous SNR of the i-th diversity branch. Since SC requires continu­

ous and instantaneous measurement of all diversity branches, the signal fading rate must be 

sufficiently slow to allow the selection circuitry adequate time to select the correct branch.

Maximal Ratio Combining (MRC): In MRC, the diversity branches are first weighted by 

the complex conjugate of their respective fading gains and then combined. Thus, the com­

biner first generates the weights

L
z(t) =  2  >■%.(*) ( i .i i )

i=i

SNR

(1.12)

(1.13)

13
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and then produces the sum

zMRc(f) =  E V \ ( 0 -  (1-14)
Z=1

The envelope of the composite signal component after weighting and combining is

=  « -15>
i= 1

The weighted sum of the branch noise powers is

° mrc =  S  $  (1.16)
z t= 1

where N0f  2 is the noise power on each of the diversity branches. Thus, the output SNR of 

the diversity combiner is

n2 L p2 L
/ « * c = ^ = E |  =  X r ;. a .i7 )

MRC i=l iV0 i=l

For an AWGN channel, MRC is the optimum combining technique in the sense that it pro­

vides a maximum-likelihood receiver. However in some cases, MRC may not be practical 

due to the complexity in obtaining the channel gains on each diversity branch.

Equal Gain Combining (EGC): In EGC, the diversity branches are co-phased as in MRC, 

however, the branch weights are not weighted by the fading gains prior to combining. Thus, 

the combiner first generates the weights

w. =  eW, (1.18)

and then produces the sum

ZEGci*) =  (1-19)
2=1

The envelope of the composite signal component after co-phasing and combining is

* E G C = £ * i  (1 2 0 )
2=1

and the weighted sum of the branch noise powers is

°£GC =  ^~ 2 ' (1.21)

14
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This results in an output SNR of

.(I*-)recc =  J p  =  ^ r ^ -  (1-22)
EGC 0

Despite offering suboptimum performance, EGC is often used in practice because it is 

less complex than MRC. This is because EGC does not require knowledge of the fading 

amplitudes, whereas, in MRC, the fading amplitudes in each signal branch must be known. 

Thus, EGC is commonly used when noncoherent modulation or modulation techniques 

involving equal energy symbols are employed [4]. These types of modulation typically do 

not require complete knowledge of the fading gains for demodulation.

As seen in (1.20) and (1.22), if Rayleigh, Ricean, or Nakagami fading is assumed, then 

the envelope and SNR at the combiner output of an EGC system will involve a sum of 

Rayleigh, Ricean, or Nakagami RVs, respectively. Under these assumptions, the cumula­

tive distribution function (CDF) or PDF for REGC and Ye g c  not exist in closed-forms for 

most cases. For the specific case when L  =  2 and Rayleigh fading is assumed, closed-form 

solutions for the CDF and PDF of REGC and yEGC are given in [15] and [4], respectively.

1.4 Literature Review

This review provides a summary of the key references used in this thesis.

In his classic diversity paper [3], Brennan describes the difficulty of computing the 

distribution of a sum of independent Rayleigh RVs. Nevertheless, by numerically integrat­

ing the convolutional formula for the distribution of a sum of independent Rayleigh RVs, 

he publishes accurate values for these distribution functions. These values were used as 

the standard reference for more than 30 years until an efficient Fourier series solution was 

proposed. This approximate method proposed by Beaulieu [16] involves using an infinite 

series to compute the CDF of a sum of independent Rayleigh RVs. The lack of closed-form 

solutions for the distribution and density of a sum of Rayleigh RVs has also resulted in the 

development of various numerical routines and approximations. A relatively simple and

15
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widely used small argument approximation (SAA) for the sum PDF of Rayleigh RVs was 

proposed by Stein [14]. This approximation was derived based on the observation that at 

small SNRs, there is an essentially constant ratio between EGC and MRC statistics.

The literature on EGC performance is meager in comparison to what is available for 

other popular diversity methods. In fact, after Brennan’s quantitative analysis of EGC [3], 

the first comprehensive paper giving precise analysis of EGC with digital modulation did 

not appear until the early 1990s. The infinite series technique is employed in [17], [18], 

and [19] to analyze the performance of EGC in Ricean and Nakagami fading. Other studies 

on EGC diversity systems in fading channels are found in [20], [21], and [22]. Despite 

providing accurate analysis, these results are somewhat complex since they require the 

computation of an infinite series or numerical integration. In [1] and [5], the performance of 

EGC diversity systems in Rayleigh fading is approximated by utilizing the SAA to simplify 

the analysis.

1.5 Thesis Outline and Contributions

This thesis is organized as follows. In this chapter, an overview of the time-varying prop­

agation channel and some typical methods of modeling the wireless channel were given. 

The multipath fading environment is explained and the distinction between large-scale and 

small-scale fading is made. Next, the four types of small-scale fading are defined. In this 

thesis, only small-scale fading on slowly-varying flat channels will be considered. The 

most common statistical models for flat fading are subsequently described. An introduc­

tion to diversity and linear combining techniques concluded this chapter. The necessity 

of finding approximations for the sum distributions and densities of Rayleigh, Ricean, and 

Nakagami RVs was demonstrated in the context of EGC diversity systems.

Chapter 2 begins by introducing the problem of finding the distribution and density of 

a sum of independent Rayleigh RVs and the various approaches that have been proposed 

to handle this problem. A widely used SAA for the sum density is considered and shown 

to be accurate if only values in the lower tail of the density are considered. If values near
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the mean or in the upper tail of the density are required, then this approximation lacks 

sufficient accuracy. In order to achieve accuracy over a wide range of arguments, the SAA 

is modified and an accurate closed-form approximation to the Rayleigh sum distribution is 

proposed. In addition, an accurate closed-form approximation to the Rayleigh sum PDF is 

derived.

Approximations for the distribution and density of a sum of independent Ricean RVs 

is the focus of Chapter 3. Using insight provided by considering the SAA to the PDF of 

a Rayleigh sum, accurate closed-form approximations to the Ricean sum CDF and PDF 

are derived. These approximations are based on modifying the sum distribution of squared 

Ricean RVs.

Chapter 4 uses a similar argument as Chapter 3 to derive approximations for the distri­

bution and density of a sum of independent Nakagami RVs. Accurate closed-form approxi­

mations to the Nakagami sum CDF and PDF are derived by modifying the sum distribution 

of squared Nakagami RVs.

The performance analysis of EGC diversity systems is the focus of Chapter 5. In par­

ticular, the approximations developed in Chapter 4 are applied to determine simple approx­

imate solutions for the performances of these systems in Nakagami fading. Closed-form 

expressions for the average error and outage probabilities are derived and compared with 

the solutions found using numerical integration or simulation.

Chapter 6 concludes the thesis with a summary of contributions.

17
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Chapter 2

Accurate Closed-Form Approximations 
to Rayleigh Sum Distributions and 

Densities

2.1 Sum of Rayleigh RVs

A longstanding problem in statistics is to determine the PDF, or equivalently, the CDF, of 

a sum of L  independent Rayleigh RVs. In fact, this problem can be traced back to Lord 

Rayleigh himself, but has never been solved in terms of tabulated functions for L > 3 [1]. 

Finding the sum distribution of independent Rayleigh RVs will be useful for several prac­

tical wireless communication applications. For example, such sums occur in the measure­

ment of SNR for handoff and in the evaluation of EGC diversity systems when determining 

the error or outage probabilities [3]. For the case when L  =  2, Altman and Sichak have 

found the PDF in closed-form [15]. However, for an arbitrary sum, there is no closed-form 

solution. As a result, numerical evaluations and approximations have been developed.

Several approaches have been proposed to compute the distribution and density of a 

sum of Rayleigh RVs. A well known approach [16] involves using an infinite series rep­

resentation to obtain the CDF precisely. Prior to the publication of this method, curves

18
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and tables of the distribution of a sum of Rayleigh RVs for eight or fewer summands were 

published, for example, in [3] and [23]. These results rely on numerical integration of the 

convolutional formula for the distribution of a sum of independent Rayleigh RVs. A recent 

well known text proposes and explains the use of Rayleigh graph paper for calculating re­

ceiver noise figures [24]. In this method, the Rayleigh sum CDF is determined graphically.

A relatively simple and widely used SAA for the sum PDF was derived in [14]. Let 

r j , r2, ..., rL be the amplitudes of L statistically independent RVs, which follow the Rayleigh 

density
r. - 4

A M  =  5? ,  ',  > 0  (2.1)
/

where (2 — n /2 )o f  is the variance of the density. Without loss of generality, consider the 

normalized (scaled) RV Xt =  R J o ^  Then

fX;(Xi)=Xie Xi ^  0- (2-2)

Let
L

Z = X x j =  X1+ ^ + . . .+ X i  (23)
i=l

be a sum of L  independent and identically distributed (iid) Rayleigh RVs. The SAA to the 

PDF of a Rayleigh sum is

9/  |

/&4a(0 =  2L~lbL( L - 1)!’ (2'4a)

£ = ^ [ ( 2 L —l)!!]1/1 (2.4b)
Li

where (2L— 1)!! =  (2 L - 1)(2L — 3 )---3 -1 and t —x/y/L  is the normalized argument. 

This SAA originates from [14]; to the best of the author’s knowledge, the accuracy of the 

SAA in (2.4) has not been reported in the open literature. Despite this, the SAA has gained 

acceptance for describing and examining the statistics of sums of multiple iid Rayleigh 

fading sources [1], [5], [10]. Interestingly, the PDF approximation (2.4) has the form of

the Nakagami density. This is consistent with, and indeed related to, the fact that the

statistics of EGC are well approximated by the statistics of MRC with an appropriately
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scaled argument, for small values of the argument [14]. The exact PDF and the SAA for 

L =  3,8, and 16 are shown in Figures 2.1-2.3. The solid lines show the exact PDF and 

the dashed lines represent the SAA. One observes that this approximation is accurate if one 

considers only values in the lower tail of the density. If values near the mean or in the upper 

tail of the density are required, then this approximation lacks sufficient accuracy.

In this chapter, an accurate closed-form approximation to the Rayleigh sum distribution 

is presented. In addition, an accurate closed-form approximation to the Rayleigh sum PDF 

is derived. These approximations are based on modifying the SAA so that it is accurate for 

a wide range of arguments.

0.7
— Exact 
-  -  SAA

0.6
L = 3
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0.4

0.3
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2.5 4.50.5 1.5 3.5
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Fig. 2.1. The PDF of a sum of L  Rayleigh RVs and the SAA for L  =  3.
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Fig. 2.2. The PDF of a sum of L Rayleigh RVs and the SAA for L =  8.
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Fig. 2.3. The PDF of a sum of L  Rayleigh RVs and the SAA for L =  16.
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2.2 Rayleigh Sum CDF Approximation

Integration of (2.4) yields a SAA to the CDF of a Rayleigh sum given by

=  V -  (2-5)
fc=0 K-

which has the form of a simple finite sum. The symbols in Figure 2.4 show the SAA CDF 

of Z and the solid lines show the exact CDF for values of L  =  3,5,8,12, and 16 plotted on 

normal probability paper. One observes from Figure 2.4 that the approximation is excellent 

for small values of t. However, for medium and large values of t, the approximation is not as 

good. For example, when the complementary CDF is 2.0 x 10-5 , the SAA complementary 

CDF is 2.3 x 10-6 and 1.5 x 10-6 for L  =  8 and L  =  16, respectively. These SAA values 

correspond to an overestimate of the exact complementary CDF by more than 8 times for 

L  =  8 and more than 13 times for L  =  16. The SAA is best for the L  =  3 case and becomes 

less accurate as L  increases. This is expected since the approximation is exact for all values 

of the argument when L =  1.

Improved closed-form approximations to the CDF and PDF of Rayleigh sums will be 

useful for many applications, including error rate and outage calculations for wireless sys­

tems. In order to improve the SAA, the error between the exact CDF and the SAA CDF 

was first examined. Figure 2.5 shows the error of the small argument CDF approximation 

for L = 3,8,12, and 16. It was found empirically that for all values of L considered, the 

difference is well approximated by a function which has the general form

, «A'-<b)2
a j t  — ( u r ^ ' e — 2 >

(2-6)

where a0,av  and are constants to be determined and b is again given by (2.4b). Al­

though ad-hoc, the mathematical form of FErrvr(t) in (2.6) is intuitive. It approximates 

the derivative of FSAA(t) multiplied by r; the constant permits shifting the mode of the 

approximation to align with the mode of the true PDF; constants Oq and ax allow scaling 

the amplitude and the spread, respectively, of the correction function to best match the true 

error.
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Fig. 2.4. The CDF of a sum of L Rayleigh RVs and the SAA for L  = 3 ,5 ,8 ,1 2 , and 16. 

Thus, the proposed modified approximation for the CDF of Z is given as

^ ,( 0  =  FsAa (*) ~ ^E rro r(t )

£=0
(2.7)

A nonlinear least squares method based on the interior-reflective Newton method de­

scribed in [25] is used to optimize the constants a0,a j, and in (2.6). These constants 

are given in Table 2.1. Figure 2.6 compares the new closed-form CDF approximation rep­

resented by the symbols with the exact CDF represented by the solid lines. Observe that 

the approximation is excellent for a very wide range of probabilities and for all values of L 

considered.
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Fig. 2.5. The small argument CDF approximation error for L -  3 ,8 ,12, and 16.
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Fig. 2.6. The CDF of a sum of L Rayleigh RVs and the modified closed-form approxima­

tion for L  = 3 ,5 ,8 ,12 , and 16.
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2.3 Rayleigh Sum PDF Approximation

A new approximation to the PDF of Z can be formally derived from the CDF approximation 

by using the following relationship

where f L(t) is the PDF approximation.

In general, differentiating an accurate approximation to the CDF will not necessarily 

lead to an accurate approximation of the PDF. For example, consider a Fourier approxi­

mation to a square wave, the derivative for the Fourier approximation is finite at a positive 

transition point while the actual derivative at the transition point is infinite. In this case, 

however, taking the derivative of the CDF approximation in (2.7) yields an accurate PDF 

approximation while using the same coefficients given in Table 2.1, as seen in Figures 2.7- 

2.9. The solid lines show the exact PDF and the circles represent the modified closed-form 

approximation. The proposed approximation to the PDF of a Rayleigh sum is then

An accurate closed-form approximation to the Rayleigh sum distribution based on modify­

ing the SAA to the PDF of a Rayleigh sum was introduced in this chapter. It was observed 

that the new approximation is accurate over a wide range of probabilities and number of 

summands. Furthermore, by differentiating the CDF approximation, it is possible to obtain 

a closed-form PDF approximation that is also accurate over the same large range.

(2.8)

a0[b(2Lt a j 2]. (2.9)

2.4 Sin tary
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Fig. 2.7. The PDF of a sum of L Rayleigh RVs and the modified closed-form approxima­

tion for L -  3.
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Fig. 2.8. The PDF of a sum of L  Rayleigh RVs and the modified closed-form approxima­

tion for L = 8.
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Fig. 2.9. The PDF of a sum of L Rayleigh RVs and the modified closed-form approxima­

tion for L -  16.
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TABLE 2.1

Coefficients for the Rayleigh sum CDF and PDF approximations.

-a?)2
F, (0 =  1 -  e ~ i L£  - t  le~ ^

k=Q

A M  =  -  «j) -  M '  -  °2?]

L ao a i *2
3 0.0164 0.3060 0.9928

4 0.0198 0.2413 0.9760

5 0.0221 0.1972 0.9654

6 0.0236 0.1645 0.9583

7 0.0248 0.1386 0.9531

8 0.0257 0.1172 0.9491

9 0.0264 0.0989 0.9460

10 0.0270 0.0829 0.9434

11 0.0275 0.0686 0.9412

12 0.0279 0.0557 0.9393

13 0.0283 0.0440 0.9377

14 0.0286 0.0330 0.9363

15 0.0288 0.0229 0.9350

16 0.0291 0.0133 0.9338
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Chapter 3 

Accurate Closed-Form Approximations 
to Ricean Sum Distributions and 

Densities

3.1 Sum of Ricean EVs

The analytical evaluation of the performance of a wireless communication system requires 

that the signal statistics at the receiver be known. Hence, for some systems, there is a need 

for the accurate computation of the CDF and the PDF of a sum of L  statistically independent 

Ricean RVs. For example, in wireless channels where there exists a LOS between the 

transmitter and receiver, such sums occur in the evaluation of EGC diversity systems when 

determining the error probability, level crossing rate, and average fade duration [17], [18].

Despite its wide applicability, few published results on the sum distribution exist This 

lack may be attributed to the difficulty in numerically calculating the distribution since 

there is no closed-form expression for the characteristic function (CHF) of a Ricean RV.

Several approaches have been proposed to compute the distribution of a sum of Ricean 

RVs. A precise infinite series representation of the CDF is presented in [17]. In [20], the 

Ricean CHF is written as a finite-range integral and then approximated with a truncated
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series. However, due to the computational complexity in determining the sum distribution, 

approximations are often used. One common approach is to use a Nakagami distribution to 

approximate the Ricean distribution [10], [26], [27]. This substitution is done because the 

CHF of the Nakagami distribution is known in a tractable closed-form whereas the CHF of 

the Ricean is no t The Nakagami distribution substitution often leads to convenient closed- 

form analytical expressions; however, it is shown in [17] and [27] that this simplifying 

approximation can be inaccurate.

Let r j,r 2 ,...,r£ be the amplitudes of L  statistically independent RVs, each of which 

follows the Ricean density

=  r. ^ °  (31>

where o f is the variance of the Gaussian scatter component and sf is the noncentrality 

parameter of each RV. To describe the degree of fading, the Rice factor is defined as the 

ratio of specular power to scattered power, that is, Kt =  sf/2 o f. If the channel has no 

specular component, K  =  0 and (3.1) reduces to the Rayleigh PDF. On the other hand, 

when K  =  the channel does not exhibit any fading. It was reported in [28] that a typical 

value of K  for a microcellular environment is about 7 dB. If Q.t =  E[rf] = s f+2c f  is used to 

denote the average power of each individual Ricean RV, then the PDF of can be written 

as

Lastly, let
L

Z=Y,Ri=R\+R2 + '"+RL (3-3>
i=l

be a sum of L  iid Ricean RVs. Note that Z may be used to describe the envelope of the 

signal component at the combiner output of an EGC system in Ricean fading.

Much insight into formulating an accurate approximation to the distribution of Z in 

(3.3) can be gained by considering the SAA to the PDF of a Rayleigh sum derived in [14]. 

As outlined in Section 2.1, an approximation to the density of Rayleigh sums based on the 

density of sums of squared Rayleigh RVs has been proposed. This approximation is moti-
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vated by the observation that at small SNRs, there is an essentially constant ratio between 

EGC and MRC statistics. Consequently, for small values of the argument, the statistics 

of EGC are expected to be well approximated by the statistics of MRC with appropriately 

scaled arguments [14]. Results presented here indicate that this may also be true for large

bi this chapter, an accurate closed-form approximation to the Ricean sum distribution 

is presented. In addition, an accurate closed-form approximation to the Ricean sum PDF 

is derived. These approximations are based on modifying the sum distribution of squared 

Ricean RVs.

3.2 Ricean Sum CDF Approximation

First consider the RV
L

» = £ * ?  =  * ! + /£  +  •••+ «£ (3-4)
1=1

where the R-’s are iid Ricean RVs with PDFs given by (3.1). The RV, H,  has a noncentral 

chi-square distribution with 2L degrees of freedom. Thus the PDF of H  is [7]

where s2 =  sf  and /L-1 (•) is the (L — l)th-order modified Bessel function of the first 

kind. Integration of (3.5) yields the CDF of H  given by

where Ql (-, •) is the generalized Marcum Q-fim ction. Just as the RV Z describes the enve­

lope of the signal component at the combiner output of an EGC system in Ricean fading, 

here, the RV H  represents the envelope of the signal component at the combiner output of 

a MRC system in Ricean fading.

Now using the same observation in [14], that is, that the EGC statistics follow ap­

propriately scaled MRC statistics, it may be possible to align the distributions by using

SNRs.

(3.6)
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appropriate scaling factors. Thus, the proposed approximation for the CDF of Z is given as

where dl and are constants and t = r /  y/L is the normalized aigument.

A nonlinear least squares method based on the interior-reflective Newton method de­

scribed in [25] is used to optimize the constants dl and d^ in (3.7). These constants are 

given in Table 3.1 for practical values of K , L, and for normalized power, £2= 1. When 

K  =  0, that is, Rayleigh fading, the approximation in (3.7) reduces to a form that is similar 

to the SAA proposed in [14] but with different scaling factors. Figures 3.1-3.4 compare 

the new closed-form CDF approximation represented by the symbols with the exact CDF 

represented by the solid lines. Observe that the approximation is very accurate for a very 

wide range of probabilities and for all values of Rice factors and L  considered. It was found 

empirically that high accuracy is obtained for all values of K >  0.5. Other approximations, 

may be needed for accurate estimation when K < 0.5 and, in particular for K  =  0. In these 

cases, the approximations developed in Chapter 2 can be used.

(3.7b)
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Fig. 3.1. The CDF of a sum of L  Ricean RVs and the closed-form approximation for L = 

2 ,4 ,6 , and 8 with Rice factorK = l  dB.
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3.3 Ricean Sum PDF Approximation

A new PDF approximation for Z can be formally derived from the CDF approximation as

h (') -  (3.8)

Taking the derivative of the CDF approximation given in (3.7) yields an accurate ap­

proximation to the PDF that uses the same coefficients given in Table 3.1, as seen in Figures

3.5-3.7. The solid lines show the exact PDF and the circles represent the closed-form ap­

proximation. The proposed approximation to the PDF of a Ricean sum is then

m - i  ( S )  ' exp t e )  • (3-9)

3.4 Summary

An accurate closed-form approximation to the Ricean sum distribution was introduced in 

this chapter. This approximation is based on modifying the sum distribution of squared 

Ricean RVs. It was observed that the new approximation is accurate over a large range 

of argument values. Furthermore, by simply differentiating the CDF approximation, it is 

possible to obtain a closed-form PDF approximation that is also accurate over the same 

large range.
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Fig. 3.5. The PDF of a sum of L  Ricean RVs and the closed-form approximation for L  =  2 

with Rice factor K  -  1 dB.
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TABLE 3.1

Coefficients for the Ricean sum CDF and PDF approximations. 

AW = % {&) exP " S*) 7z.-i ( f t )

K - ldB £  = 2dB £  = 3dB K = 46B

L dz *1 di dx dz dx dz
2 0.5194 0.4746 0.4782 0.4438 0.4395 0.4131 0.4019 0.3819

3 0.5411 0.4770 0.4958 0.4468 0.4518 0.4150 0.4113 0.3837

4 0.5507 0.4772 0.5032 0.4471 0.4580 0.4157 0.4157 0.3843

5 0.5589 0.4783 0.5086 0.4478 0.4621 0.4165 0.4187 0.3849

6 0.5634 0.4786 0.5122 0.4482 0.4646 0.4168 0.4205 0.3851

7 0.5675 0.4791 0.5149 0.4485 0.4668 0.4172 0.4221 0.3854

8 0.5699 0.4793 0.5163 0.4485 0.4680 0.4173 0.4232 0.3857

K - 5dB K = 6dB K = 7dB K = 8dB

L dx dx dz dx dz dx dz
2 0.3657 0.3509 0.3313 0.3205 0.2992 0.2914 0.2694 0.2638

3 0.3726 0.3524 0.3363 0.3217 0.3027 0.2922 0.2721 0.2646

4 0.3761 0.3530 0.3389 0.3223 0.3048 0.2928 0.2734 0.2650

5 0.3782 0.3534 0.3406 0.3227 0.3058 0.2931 0.2743 0.2652

6 0.3796 0.3537 0.3416 0.3229 0.3066 0.2933 0.2749 0.2654

7 0.3806 0.3539 0.3424 0.3231 0.3073 0.2935 0.2752 0.2654

8 0.3815 0.3541 0.3430 0.3233 03076 0.2936 0.2753 0.2654
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Chapter 4

Accurate Closed-Form Approximations 
to Nakagami Sum Distributions and 

Densities

4.1 Sum of Nakagami RVs

Many different statistical models have been used to describe the multipath fading effects 

in wireless communication channels. The Nakagami distribution (m-distribution) [10] is a 

generalized distribution which can accurately model different fading environments. More­

over, the versatility of the Nakagami distribution allows it to fit some urban wireless channel 

data better than the commonly used Rayleigh, Ricean, or lognormal distributions [11], [12]. 

In the analysis of certain communication systems, there is a need for the accurate compu­

tation of the CDF and the PDF of a sum of L statistically independent Nakagami RVs. For 

example, such sums are required in determining the error probabilities of EGC diversity 

systems in Nakagami fading [19].

The lack of a closed-form solution for the distribution of a sum of Nakagami RVs 

has led to several computational approaches and approximations. One well known ap­

proach [16], [19] involves using an infinite series representation to obtain the CDF pie-
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cisely. However, the use of an infinite series results in a tradeoff between computational 

complexity and truncation errors. Other approaches involve numerical integration which 

are often computationally complex.

Let rv r2,...,rL be the amplitudes of L statistically independent RVs, each of which 

follows the Nakagami density

where mi >  0.5 and =  £[R?] controls the spread of the distribution. The degree of fading

and average power can be changed by varying the mt- and respectively. The Rayleigh 

(m = 1) and one-sided Gaussian (m =  0.5) distributions are special cases of the Nakagami 

distribution, as is the nonfading case (m =  °o). The sum of L iid Nakagami RVs is then 

given by
L

Z = 2 * /  =  * i + * 2 + -" + « i - (4.2)
i=  1

Note that Z may be used to describe the envelope of the signal component at the combiner 

output of an EGC system in Nakagami fading.

Much insight into formulating an accurate approximation to the distribution of Z in

(4.2) can be gained by once again considering the SAA to the PDF of a Rayleigh sum 

derived in [14]. This approximation is motivated by the near parallelism between the EGC 

and MRC statistics at small SNRs. Thus, for small values of the argument, the statistics 

of EGC should have a form very similar to the statistics of MRC with appropriately scaled 

arguments. From this observation, an approximation to the density of Rayleigh sums based 

on the density of sums of squared Rayleigh RVs was proposed.

In this chapter, an accurate closed-form approximation to the Nakagami sum distribu­

tion is presented. In addition, an accurate closed-form approximation to the Nakagami 

sum PDF is derived. These approximations are based on modifying the sum distribution of 

squared Nakagami RVs.
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4.2 Nakagami Sum CDF Approximation

First consider the RV
L

H =  X « ? = * l+ « 2  +  -" + K l (4.3)
1=1

where the R.’s are Nakagami RVs with PDFs given by (4.1). The R?’s are iid gamma RVs, 

thus, H  is also a gamma distributed RV with PDF [29]

* w = © " l S exp( ” i r) ’ r - ° -  (44)

Integration of (4.4) yields the CDF of H  given by

w - ' - ’- W -

where y (v ) is the incomplete gamma function. Just as the RV Z describes the envelope 

of the signal component at the combiner output of an EGC system in Nakagami fading, 

here, the RV H  represents the envelope of the signal component at the combiner output of 

a MRC system in Nakagami fading.

Now using the same observation in [14], that is, that the EGC statistics follow ap­

propriately scaled MRC statistics, it may be possible to align the distributions by using 

appropriate scaling factors. Thus, the proposed approximation for the CDF of Z is given as

where Cj and c2 are constants and t = r/y/L  is the normalized argument

A nonlinear least squares method based on the interior-reflective Newton method de­

scribed in [25] is used to optimize the constants cx and c2 in (4.6). These constants are 

given in Table 4.1 for practical values of m, L, and for normalized power, £2= 1. When 

m = 1, that is, Rayleigh fading, the approximation has a form similar to the SAA proposed 

in [14] but with different constants. Figures 4.1-4.5 compare the new closed-form CDF ap­

proximation represented by the symbols with the exact CDF represented by the solid lines. 

Observe that the approximation is very accurate for a very wide range of probabilities and 

for all values of fading severity parameters and L  considered. It has been observed that
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high accuracy is obtained for values of m > 1.0. For values of m <  1.0, the approxima­

tion is still accurate over a slightly smaller range. Note that for m = 1, the Nakagami sum 

approximation reduces to a Rayleigh sum approximation. Comparing this approximation 

with the Rayleigh sum approximation derived in Chapter 2, it was found that the Nakagami 

sum approximation with m =  1 is slightly less accurate but benefits from not having an 

additional correction term.
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Fig. 4.1. The CDF of a sum of L  Nakagami RVs and the closed-form approximation for L 

-  2 ,4 ,6 , and 8 with fading severity parameter m = 1.
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Hg. 4.2. The CDF of a sum of L Nakagami RVs and the closed-form approximation for L 

= 2 ,4 ,6 , and 8 with fading severity parameter m = 2.
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Fig. 4.3. The CDF of a sum of L  Nakagami RVs and the closed-fonn approximation for L 

= 2 ,4 ,6 , and 8 with fading severity parameter m = 3.
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Fig. 4.4. The CDF of a sum of L  Nakagami RVs and the closed-form approximation for L 

= 2 ,4 ,6 , and 8 with fading severity parameter m -  4.
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Fig. 4.5. The CDF of a sum of L Nakagami RVs and the closed-form approximation for L 

= 2 ,4 ,6 , and 8 with fading severity parameter m -  5.
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4.3 Nakagami Sum PDF Approximation

A new PDF approximation for Z can be formally derived from the CDF approximation as

= (4-7)

In this case, taking the derivative of the CDF approximation in (4.6) yields an accurate 

PDF approximation while using the same coefficients given in Table 4.1, as seen in Figures

4.6-4.8. The solid lines show the exact PDF and the circles represent the closed-form 

approximation. The proposed approximation to the PDF of a Nakagami sum is then

,  , .  _ /c7m\cxmL t2cimL~1 t c7m , \
AW = 2 (-a) rx^Z)exp (“V ) • (4-8)

4.4 Summary

An accurate closed-form approximation to the Nakagami sum distribution was introduced 

in this chapter. This approximation is based on modifying the sum distribution of squared 

Nakagami RVs. It was observed that the new approximation is accurate over a large range 

of argument values. In addition, the closed-form PDF approximation obtained by differen­

tiating the CDF approximation is also accurate over the same large range.
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Fig. 4.6. The PDF of a sum of L  Nakagami RVs and the closed-foim approximation for 

L — 2 with fading severity parameter m = 1.
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Fig. 4.7. The PDF of a sum of L  Nakagami RVs and the closed-form approximation for 

L  =  4 with fading severity parameter m = 3.
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Fig. 4.8. The PDF of a sum of L  Nakagami RVs and the closed-form approximation for 

L  =  8 with fading severity parameter m -  5.
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TABLE 4.1

Coefficients for the Nakagami sum CDF and PDF approximations.

£2 = 1

m = 0.5 m = 1.0 m = 1.5

L ci c2 ci C2 cl C2
2 0.9691 1.1927 0.9688 1.0879 0.9734 1.0542

3 0.9477 1.2590 0.9538 1.1154 0.9621 1.0710

4 0.9338 1.2909 0.9464 1.1301 0.9560 1.0791

5 0.9243 1.3095 0.9396 1.1361 0.9521 1.0839

6 0.9174 1.3214 0.9356 1.1409 0.9495 1.0871

7 0.9119 1.3294 0.9329 1.1445 0.9477 1.0893

8 0.9079 1.3355 0.9312 1.1477 0.9462 1.0910

m = 2.0 m - 2.5 m - 3.0

L ci c2 c\ c2 cl c2
2 0.9777 1.0388 0.9806 1.0297 0.9832 1.0242

3 0.9687 1.0508 0.9733 1.0392 0.9771 1.0321

4 0.9639 1.0566 0.9694 1.0438 0.9736 1.0356

5 0.9614 1.0605 0.9671 1.0465 0.9717 1.0380

6 0.9590 1.0624 0.9655 1.0483 0.9703 1.0394

7 0.9581 1.0647 0.9643 1.0496 0.9695 1.0407

8 0.9564 1.0652 0.9635 1.0506 0.9689 1.0415
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in = 3.5 m = 4.0 m = 4.5

L ci c2 c\ C2 ci c2
2 0.9850 1.0203 0.9874 1.0184 0.9879 1.0154

3 0.9796 1.0268 0.9818 1.0232 0.9835 1.0203

4 0.9768 1.0300 0.9794 1.0260 0.9813 1.0228

5 0.9751 1.0319 0.9778 1.0271 0.9800 1.0243

6 0.9739 1.0332 0.9768 1.0287 0.9791 1.0252

7 0.9731 1.0341 0.9761 1.0295 0.9784 1.0259

8 0.9725 1.0348 0.9755 1.0301 0.9780 1.0265

m - 5.0 m = 5.5 m - 6.0

L ci C2 cl c2 ci c2
2 0.9889 1.0137 0.9898 1.0124 0.9906 1.0113

3 0.9856 1.0182 0.9862 1.0164 0.9873 1.0149

4 0.9831 1.0204 0.9844 1.0184 0.9856 1.0167

5 0.9819 1.0217 0.9833 1.0196 0.9846 1.0178

6 0.9810 1.0225 0.9826 1.0203 0.9839 1.0185

7 0.9804 1.0232 0.9820 1.0209 0.9834 1.0191

8 0.9800 1.0237 0.9816 1.0213 0.9830 1.0194
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Chapter 5

Performance Analysis of EGC Diversity 

Systems in Nakagami Fading Channels

5.1 System Model and Performance Measures

Diversity is a commonly used technique for combating signal fading in wireless commu­

nication systems. EGC diversity receivers are of considerable interest since they offer 

comparable performance to the optimum MRC scheme with reduced complexity [1]. EGC 

applies equal weights to the diversity branches and as a result, no knowledge of the branch 

SNR is required. This translates to a simpler receiver structure that is hardware feasible 

and cheaper to implement. Despite its practicality, few published results exist for the per­

formance of EGC diversity systems in fading channels. This lack may be attributed to 

the difficulty in deriving the PDF of the SNR at the diversity combiner output which in­

volves a sum of random fading amplitudes. Indeed, the performance evaluation of EGC is 

known to be a much more difficult task in comparison to other popular diversity combining 

schemes. In fact, in his classic diversity paper [3], Brennan acknowledges that the problem 

of computing the distribution of a sum of independent Rayleigh RVs is “frightful.”

In [16], an infinite series technique for computing the PDF of a sum of independent 

RVs was derived. Applying this technique, the error rate performance of EGC diversity
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systems in Nakagami fading channels was analyzed in [19]. A moment-based approach to 

the performance analysis of EGC in Nakagami fading is presented in [30]. This method 

relies on numerically approximating the moment-generating function of the SNR at the 

combiner output. Other studies on EGC diversity systems in Nakagami fading are found 

in [20], [21], and [22]. Despite providing accurate analysis, these results are somewhat 

complex since they require the computation of an infinite series or numerical integration. 

Hence, closed-form approximate expressions for the performance of EGC diversity systems 

in Nakagami fading will be useful because they allow for rapid evaluation of system per­

formance. In this chapter, the performance of EGC diversity systems in Nakagami fading 

channels is approximated with closed-form expressions. Since the Rayleigh distribution is 

a special case of the more general Nakagami distribution, the performance of EGC diversity 

systems in Rayleigh fading is also included. The closed-form approximations to the CDF 

and PDF of a sum of Nakagami RVs derived in Chapter 4 will be used to derive closed- 

form expressions for the error probabilities when coherent and noncoherent modulations 

are used. In addition, a closed-form expression for the outage probability of EGC systems 

in Nakagami fading will be derived. The approximate error rates and outage probabilities 

will be compared to the solutions found by numerical integration or simulation.

Consider the L-branch EGC diversity receiver shown in Figure 5.1. In this analysis, it 

is assumed that each of the diversity channels experience slow and fiat Nakagami fading. 

In addition, the fading processes among the diversity channels are iid and each channel is 

corrupted by AWGN. The noise components are assumed to be independent of the signals, 

unconelated with each other, and have identical autocorrelation functions. Thus, if sm(t) is 

transmitted, the signal on the z'-th diversity branch can be written as

are the complex fading gains and n^t) is AWGN with power spectral density N0/2. The

Zi(t) = & (0*»(0 +  »,•(*)» i = h ' , L (5.1)

where

(5.2)
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11,(0 n2(t) « ,( 0 nL(t)

zX t)

EGC Output

Rg. 5.1. The L-branch EGC diversity receiver.
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resultant signal at the output of the combiner can be expressed as

L
*egc(0 =  I > & ( 0  (5-3)

i= l

where w{- is the combining weight used on the z'-th diversity branch. In EGC, the received 

signals are co-phased by setting the weights equal to

W|. =  eM, z =  l , - , L  (5.4)

and as a result,

%gc(0 =  I X M O -  (5.5)
i=i

In this analysis, it is assumed that a perfect phase reference is available at the receiver

for co-phasing. The envelope of the composite signal component after co-phasing and

combining is

*E G C = I« , (5.6)
1=1

and the weighted sum of the branch noise powers is

°EGC  =  (5-7)

This results in a combiner output SNR of

_  (!*■)
* « - 2 (58)

Kgt
r2
JEGC

Observe that since Nakagami fading is assumed, the /?•’s are Nakagami distributed RVs and 

the PDF of a sum of Nakagami RVs is required to determine the SNR or envelope PDFs at 

the output of the combiner.

The performance of a communication system is often measured by its error probability, 

that is, the likelihood that the intended message at the transmitter is incorrectly detected 

at the receiver. For digital communications, the error performance is given by the average 

symbol error probability (SEP) or average bit error probability (BEP). If the channel fad­

ing is assumed to be slowly-varying and flat, then this measure can be obtained for any
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modulation scheme by averaging the error probability of the particular modulation in a 

time-invariant channel over the fading distribution. Hence, the average error probability 

for a diversity system can be expressed as [7]

where Ps{e\Yo) denotes the SEP for an arbitrary modulation scheme conditioned on a spe­

cific SNR at the combiner output and f Yo(y) is the PDF of the SNR at the output of the 

combiner. The SNR at the output of the combiner is given by

ing and combining. In some cases, it may be more convenient if the conditional error 

probability is expressed in terms of the combined signal amplitude and is averaged over the 

faded signal amplitude. Thus, the average error probability for a diversity system can also 

be expressed as

where PS(£\R0) denotes the SEP for an arbitrary modulation scheme conditioned on a spe­

cific signal amplitude value at the combiner output and / rJ j )  is the PDF of the combined 

output envelope. As shown in (5.6), if the fading is assumed to be Nakagami, then f Ro (r) 

is the PDF of a sum of Nakagami RVs. This particular approach is used in this analysis 

since the Nakagami sum PDF approximation derived in Chapter 4 can be readily utilized.

Another useful measure of performance for diversity systems operating in fading chan­

nels is the outage probability. This criterion is defined as the probability that the instanta­

neous SNR at the output of the linear combiner falls below a certain specified threshold, yth. 

If the PDF of the SNR at the output of the combiner is f Yo(y), then the outage probability 

is given by

(5.9)
o

where R0  and o$ are the faded signal envelope and noise power, respectively, after weight-

(5.10)

00
(5.11)

0

(5.12)
o
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In the following sections, closed-form expressions for the error and outage probabilities 

of L-branch EGC diversity systems in Nakagami fading are derived. The main benefit of 

these results is that they allow for efficient evaluation of system performance by saving the 

time and effort required to perform complex numerical calculations and simulations.

5.2 Closed-Form Expressions for the Average Error Prob­

ability of EGC Diversity Systems in Nakagami Fading

5.2.1 Coherent Binary Signalling

Coherent demodulation requires that the carrier phase be recovered at the receiver. Here, 

coherent phase-shift keying (CPSK) and coherent frequency-shift keying (CFSK) are con­

sidered.

In CPSK, a binary signal m{t) consisting of symbols 1 and 0 are represented by constant 

levels of +1 and -1, respectively, for a time duration of T  seconds. This signaling is said 

to be antipodal and the average energy in a signal pulse is Emg. To transmit the digital 

signal over a wireless channel, the information in m(t) is multiplied by a sinusoidal carrier 

wave cos(27r f ct), where f c is the carrier frequency, and t is time. Assuming the two signals 

are equally likely, the received signal from the matched filter demodulator in an AWGN 

channel with no fading is

—y/Eavg + n for symbol 0

where n represents AWGN with zero-mean and variance N j2 .  The error probability for 

CPSK in a time-invariant channel is found to be [7]

where Q(-) is the (2-function and y = Emg/NQ is the SNR per symbol. For an EGC diversity 

system, using (5.8) and (5.14), the conditional error probability when CPSK is used can be

R =
y/Eavg+n for symbol 1

(5.13)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



written as

f i  W  =  Q I t / ^ F  I • (5.15)

Next, define the normalized signal envelope as

Rmn» = ~ - jr -  (5-16)

Thus, the average error probability for an EGC diversity system in Nakagami fading when 

CPSK is used can be expressed
oo /

(5.17)Norm

where f R (r) is the normalized approximation derived in (4.8), namely,Norm
. . n /C7m\CimL . c m  ,

K J * = 2 ( i t )  r W exp * (5'18)

Evaluating the integral in (5.17), the average BEP of a L-branch EGC diversity system in 

Nakagami fading with CPSK signalling can be approximated as

/ I  I 3 y a \
izc2m r(cj/nL ) \ 2  2 2 c2m J

where 2Fj (-,•;•;•) denotes the Gauss hypergeometric function. Figures 5.2-5.4 show the 

BEP curves as a function of branch SNR for varying diversity orders and fading severi­

ties. The solid lines represent the exact BEP obtained by numerical integration and the 

symbols represent the approximate BEP obtained by the closed-form expression in (5.19). 

Observe that the approximate BEP is very close to the exact BEP for all values of L and m 

considered.

This analysis is now repeated for CFSK modulation. In CFSK, orthogonal signal wave­

forms that differ in frequency are used to represent the binary signals. For a given signal 

power, the effective distance-squared between orthogonal signals is a factor of two less 

than the distance-squared between antipodal signals. Thus, the error probability for CFSK 

in a time-invariant channel is found to be [7]

- ° ( M -f t ( e |y ) = f i |y - ^ ) = e ( V r ) .  (5.20)
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Fig. 5.2. The BEP estimated using the closed-fonn approximation of a L-branch EGC 

diversity system with CPSK signalling, for L  = 2, 4, 6, and 8 with fading severity 

parameter m = 1 and normalized power £2=1.
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Fig. 5.3. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with CPSK signalling, for L = 2, 4, 6, and 8 with fading severity 

parameter m = 3 and normalized power Q =  1.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B
EP

o L=2 
+ L=4 
0 L=6 
* L=8

m = 5
::: ::

r.: : : : : : : : : : : : : :  : t : : : : : : : : : :: : : : : : : : : : : : : : ::: : : :  r : : : : : : : : : : : : : : : : : :  r.

: : : : : : : : : :

:

Branch SNR [dB]

Fig. 5.4. The BEP estimated using the closed-foim approximation of a L-branch EGC 

diversity system with CPSK signalling, for L  = 2, 4, 6, and 8 with fading severity 

parameter m = 5 and normalized power £2=1.
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Again, using (5.8), (5.16), and (5.20), the conditional error probability for an EGC diversity

system when CFSK is used can be written as

Thus, the average error probability for an EGC diversity system in Nakagami fading when 

CFSK is used can be expressed as

Pe
0

Norm= /e U k  k * - (r)dr- ( 5 -2 2 )

Using the same approximation for f R (r) as in (5.18) and evaluating the integral in
Norm

(5.22), the average BEP of a L-branch EGC diversity system in Nakagami fading with 

CFSK signalling can be approximated as

1 / ra r ( j + C|1»t)' /I  1 3 yQ \
2 Y 2nc2m r(c,mL) 2 1  \ 2 ’2 +  ' ' 2 ’ 2c2m ) '  ( )

Figures 5.5-5.7 show the BEP curves as a function of branch SNR for varying diversity 

orders and fading severities. The solid lines represent the exact BEP obtained by numerical 

integration and the symbols represent the approximate BEP obtained by the closed-form 

expression in (5.23). Observe that the approximate BEP is very close to the exact BEP for 

all values of L and m considered.

5.2.2 Noncoherent Binary Signalling

In time-varying fading channels, the carrier phase may be difficult to recover. Therefore, it 

is often more practical to use noncoherent modulations. Two common forms of noncoher­

ent modulation are differential phase-shift keying (DPSK) and noncoherent FSK (NCFSK).

In DPSK, the phase of the previous bit is used as a reference for the detection of the 

current bit. The error probability for DPSK in a time-invariant channel is found to be [7]
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Fig. 5.5. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with CFSK signalling, for L  = 2, 4, 6, and 8 with fading severity 

parameter m -  1 and normalized power £2=1.
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Fig. 5.6. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with CFSK signalling, for L = 2, 4, 6, and 8 with fading severity 

parameter m = 3 and normalized power £2=1.
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Fig. 5.7. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with CFSK signalling, for L = 2, 4, 6, and 8 with fading severity 

parameter m -  5 and normalized power £2=1.
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For an EGC diversity system, using (5.8), (5.16), and (5.24), the conditional error proba­

bility when DPSK is used can be written as

1 1  * k o rm
Ps(e\R0) = - e  ^  =  T  (5.25)

Thus, the average error probability for an EGC diversity system in Nakagami fading when 

DPSK is used can be expressed as

r2l  - £

0

where f R (r) is the normalized approximation given in (5.18). Evaluating the integral
Norm

in (5.26), the average BEP of a L-branch EGC diversity system in Nakagami fading with 

DPSK signalling can be approximated as

Figures 5.8-5.10 show the BEP curves as a function of branch SNR for varying diversity 

orders and fading severities. The solid lines represent the exact BEP obtained by numerical 

integration and the symbols represent the approximate BEP obtained by the closed-form 

expression in (5.27). Observe that the approximate BEP is very close to the exact BEP for 

all values of L and m considered.

Lastly, this analysis is repeated for NCFSK modulation. In NCFSK, the transmitted 

signals are orthogonal with minimum frequency separation that is twice as large as that 

required for CFSK. The error probability for NCFSK in a time-invariant channel is found 

to be [7]

ftM r) =  = \ ‘ ~l - (5.28)

Again, using (5.8), (5.16), and (5.28), the conditional error probability for an EGC diversity 

system when NCFSK is used can be written as

1  * l c e  1 R%prm
Ps(e\R0) = =  (5.29)
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Fig. 5.8. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with DPSK signalling, for L  = 2, 4, 6, and 8 with fading severity 

parameter m = 1 and normalized power £2=1.
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Fig. 5.9. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with DPSK signalling, for L  = 2, 4, 6, and 8 with fading severity 

parameter m = 3 and normalized power £2=1.
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Fig. 5.10. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with DPSK signalling, for L -  2, 4, 6, and 8 with fading severity 

parameter m = 5 and normalized power £2=1.
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Thus, the average error probability for an EGC diversity system in Nakagami fading when 

NCFSK is used can be expressed as

A
dr. (5.30)

i  - d -

o

Using the same approximation for fnNorm(r) as in (5.18) and evaluating the integral in 

(5.30), the average BEP of a L-branch EGC diversity system in Nakagami fading with 

NCFSK signalling can be approximated as

„ 1 f  2c2m \ c,mL
  . (5.31)2 \yQ.+2c2m)

Figures 5.11-5.13 show the BEP curves as a function of branch SNR for varying diversity 

orders and fading severities. The solid lines represent the exact BEP obtained by numerical 

integration and the symbols represent the approximate BEP obtained by the closed-form 

expression in (5.31). Observe that the approximate BEP is very close to the exact BEP for 

all values of L and m considered.

5.2.3 Coherent M-ary Signalling

In this section, the SEP for coherent M-ary phase-shift keying (MPSK) is considered. 

MPSK uses M  different phases of the carrier to transmit M  possible information symbols. 

The error probability for MPSK in a time-invariant channel is found to be [7]

itjM

fi(e|y) =  l -  /  UWMr, (5.32)
—n/M

where f Qr{dr) is the PDF of the phase fluctuation due to AWGN and is given by

f e (6r) =  ^ ^ c o s0 e -ys“2e +  1̂ — v/7fpcos0e7COs20erfc(v/ycos0)j (5.33)

where erfc(-) is the complementary error function, fa general, (5.32) does not reduced to 

a closed-form expression except for the cases when M  =  2 or M  =  4. Consequently, upper
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Rg. 5.11. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with NCFSK signalling, for L -  2 ,4 ,6, and 8 with fading severity 

parameter m -  1 and normalized power £2=1.
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Rg. 5.12. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with NCFSK signalling, for L = 2 ,4 ,6 , and 8 with fading severity 

parameter m -  3 and normalized power £2=1.
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Fig. 5.13. The BEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with NCFSK signalling, for L = 2 ,4 , 6, and 8 with fading severity 

parameter m = 5 and normalized power £2=1.
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and lower bounds or approximations for the SEP have been used extensively. In [31], a 

tight approximation for the SEP of coherent MPSK is obtained as

ft(e |r)  a  erfc (,/y sin  ( £ ) )  -  ̂ t a n  ( £ )  +  ^ I ta n  ( £ )  erfc(Vr). (534)

For an EGC diversity system, using (5.8), (5.16), and (5.34), the conditional error proba­

bility when MPSK is used can be approximated as

PMR0) = erfc( \ § si”© ) - £- ? ,an©

Q
erfc

R2 ' EGC
L N n

+ 1
R l
-^ 2 L ta n (^ )e rfc  
Nnn \M J

R2' Norm
Nn

(5.35)

Thus, the average error probability for an EGC diversity system in Nakagami fading when 

MPSK is used can be expressed as

+’,^ tan© f R (r)d r
Norm '

(5.36)

where f Rfi (r) is the normalized approximation given in (5.18). Evaluating the integral 

in (5.36), the average SEP of a L-branch EGC diversity system in Nakagami fading with 

MPSK signalling can be approximated as

P  -  i *” *(») 17 c2m V 1/wL, F p i i r m f 3 ^
e n  VyS2+c2/nJ +  c2 2F i ^ 2 ’1 + c imL’2 ’ c2m )\y S l+ c 2m J

_  f  1 1 r 3 y&sin2 (£ )  \  . /  n  \  / n
2F, ( -+ c ,m L ,  ) 2stn ( - )  -  tan ( -

yQ, r ( j  +  CjmL) 
nc2m T {c^rnL)

(5.37)
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Hg. 5.14. The SEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with MPSK signalling, for L  = 2, 4, 6, and 8 with fading severity 

parameter m = 1, normalized power £2=1, and M  = 8.

Figures 5.14-5.19 show the SEP curves as a function of branch SNR for varying diversity 

orders, fading severities, and for a fixed number of modulation symbols. The solid lines 

represent the exact SEP obtained by simulation and the symbols represent the approximate 

SEP obtained by the closed-form expression in (5.37). Observe that the approximate SEP 

is very close to the simulated SEP for all values of L, m, and M  considered.
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Fig. 5.15. The SEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with MPSK signalling, for L -  2, 4, 6, and 8 with fading severity 

parameter m = 3, normalized power £2=1, and M  = 8.
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Fig. 5.16. The SEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with MPSK signalling, for L -  2, 4, 6, and 8 with fading severity 

parameter m = 5, normalized power 52 =  1, and M -  8.
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Fig. 5.17. The SEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with MPSK signalling, for L = 2, 4, 6, and 8 with fading severity 

parameter m = 1, normalized power £2=1, and M  = 16.
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Fig. 5.18. The SEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with MPSK signalling, for L -  2 ,4 , 6, and 8 with fading severity 

parameter m -  3, normalized power £2=1, and M  -  16.
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Fig. 5.19. The SEP estimated using the closed-form approximation of a L-branch EGC 

diversity system with MPSK signalling, for L  = 2, 4, 6, and 8 with fading severity 

parameter m -  5, normalized power 0 = 1 ,  and M  = 16.
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5.3 A Closed-Form Expression for the Outage Probability 

of EGC Diversity Systems in Nakagami Fading

As mentioned previously, outage probability is another criterion that is often used to evalu­

ate the performance of diversity receivers. Recall that the SNR at the output of the combiner 

is given by (5.10), namely
Roro= (5-38)
zoN

Instead of using a threshold SNR, a combined signal envelope threshold can be defined as

R,k = =  v ^ o -  (5-39)

Then the outage probability can be equivalently found as

=  I  f eJ r )d r  (5.40)Pom
0

where fn0(r) is the PDF of the combined output envelope. Since the diversity branches 

are iid and using the normalized signal envelope in (5.16), the outage probability can be 

expressed as
R.h

Norm

p»“ =  /  (5-41> 
0

where / Rn (r) is the normalized approximation given in (5.18) and RtllN =  Rth/y/L  is 

the normalized signal envelope threshold. Observe that Pom in (5.41) is simply the CDF 

of RNorm, evaluated at Rth . Thus, the outage probability of a L-branch EGC diversity
Norm

systems in Nakagami fading can be approximated as

r ( c |* J ,c 2g tf v J  y (CimI , C2§ ^ )  

out T(clmL) r(cjm L) * K )

As expected, the outage probability of an EGC system is solely a function of the threshold 

SNR and SNR per diversity branch. Figures 5.20-5.22 show the outage probability curves 

as a function of the threshold SNR for varying diversity orders, fading severities, and for a
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Fig. 5.20. The outage probability estimated using the closed-form approximation of a 

L-branch EGC diversity system, for L -  2 ,4 ,6 , and 8 with fading severity parameter 

m = 1, normalized power £2=1, and fixed SNR y =  0 dB.

fixed SNR y =  0 dB. The solid lines represent the exact outage probability obtained by nu­

merical integration and the symbols represent the approximate outage probability obtained 

by the closed-form expression in (5.42). Observe that the approximate outage probability 

is very close to the exact outage probability for all values of L, m, and y considered.
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Fig. 5.21. The outage probability estimated using the closed-form approximation of a 

L-branch EGC diversity system, for L -  2 ,4 ,6 , and 8 with fading severity parameter 

m = 3, normalized power £2=1, and fixed SNR y =  0 dB.
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Fig. 5.22. The outage probability estimated using the closed-form approximation of a 

L-branch EGC diversity system, for L -  2 ,4 ,6 , and 8 with fading severity parameter 

m -  5, normalized power £2=1, and fixed SNR y =  0 dB.
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5.4 Summary

In this chapter, the performance of EGC diversity systems in Nakagami fading was ana­

lyzed. Closed-form expressions for the error probabilities were derived. Both coherent 

binary and Af-ary, as well as noncoherent binary signalling were considered. In addition, 

a closed-form expression for the outage probability of EGC systems in Nakagami fading 

was also derived. These expressions are derived by using the closed-form approximations 

to the CDF and PDF of a sum of Nakagami RVs derived in Chapter 4. It was observed that 

the approximate error rates and outage probabilities are in excellent agreement with the 

solutions found by numerical integration or simulation. For example, at a SEP or outage 

probability of 10~6, the worst case approximation error is 0.8 dB. This occurs when dual 

branch diversity in Rayleigh fading is considered. For most other cases, at a SEP or outage 

probability of 10-6 , the approximation error is less than 0.1 dB. It should also be noted 

that although this method of analysis may not provide closed-form solutions for the error 

probability of all modulation schemes, the PDF sum approximations generally eliminate 

several orders of integration while providing accurate approximations for the error rates of 

EGC diversity systems.
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Chapter 6

Conclusion

Determining the sum distributions and densities of independent Rayleigh, Ricean, and Nak­

agami RVs is a longstanding problem in wireless communications. These sums have wide 

applicability in the modeling and performance analysis of wireless systems, in particular, 

EGC diversity systems. However, because closed-form expressions for the sum distribu­

tions and densities do not exist, there are relatively few published results in this area. The 

lack of closed-form expressions has resulted in several computational approaches which, 

despite providing accurate results, are often complex and time consuming. Thus, it is 

important to develop accurate and efficient methods for the computation of the sum distri­

butions and densities.

In this thesis, new approximations for the sum distributions and densities of indepen­

dent Rayleigh, Ricean, and Nakagami RVs were derived. It was demonstrated that the 

approximations are accurate for a wide range of probability values, statistical parameters, 

and number of summands. These results facilitate efficient performance analysis for a 

broad range of applications including wireless, satellite, and terrestrial communication sys­

tems. For example, analytical expressions for the performance of EGC diversity systems 

in Nakagami fading are derived in this thesis. Finally, it should be noted that although the 

approximations developed in this thesis were for iid RVs, the analysis can be extended to 

non-iid cases such as sums of correlated RVs or sums where each RV has arbitrary statisti-
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cal parameters. The contributions of this thesis are summarized as follows:

1. For the Rayleigh sum distribution, a widely used SAA for the density is shown to 

be accurate if one considers only values in the lower tail of the density. If values near the 

mean or in the upper tail of the density are required, then this approximation lacks sufficient 

accuracy. In this thesis, a closed-form approximation to the Rayleigh sum distribution 

based on modifying the SAA to the PDF of a Rayleigh sum was derived. It was observed 

that the approximation is accurate over a wide range of probabilities. In addition, the 

closed-form PDF approximation derived from the CDF approximation is also accurate over 

the same large range.

2. The generic approach for determining a sum distribution of independent RVs via 

the CHF is somewhat difficult for Ricean RVs. This is because the Ricean RV does not 

have a closed-form CHF. Accurate closed-form approximations to the Ricean sum CDF 

and PDF are presented in this thesis. These approximations are based on modifying the 

sum distribution of squared Ricean RVs.

3. Next, accurate closed-form approximations to the Nakagami sum CDF and PDF are 

derived. These approximations are based on modifying the sum distribution of squared 

Nakagami RVs. The proposed approximations allow for efficient performance analysis for 

a broad range of applications.

4. Closed-form expressions for the average error and outage probabilities of EGC di­

versity systems in Nakagami fading channels were derived. These analytical expressions 

make use of the Nakagami sum CDF and PDF approximations proposed in this thesis. 

When compared to the solutions found by numerical integration and simulation, it is clear 

that the closed-form approximations are accurate. The benefit of these results is that they 

allow for rapid evaluation of the performance of EGC diversity communication systems. 

This will assist designers when making decisions on system parameters in order to achieve 

quality of service demands.
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