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Abstract

The aim of this thesis is to provide an exposition to Mochizuki and Hoshi’s approach to

birational anabelian geometry of mixed characteristic local fields. In the introductory

chapter, we begin by recalling the relevant backgrounds on the Grothendieck conjec-

tures on the étale fundamental groups and their morphisms. Next, we review mixed

characteristic local fields and their local class field theory. This leads us to derive

that many invariants of a mixed characteristic local field can be reconstructed from

its Galois group, but not the field itself. We then set out to demonstrate that isomor-

phisms between mixed characteristic local fields, which preserve certain arithmetic

structures such as the ramification filtration or the class of Hodge-Tate representa-

tion, are induced by isomorphisms between the fields. We provide technical facts on

Galois representations in support of this argument.
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Chapter 1

Introduction

Anabelian geometry is vaguely the study of the extend to which an algebro-geometric

object can be determined by its homotopic data, and in particular, its étale fundamen-

tal group. The anabelian conjectures arose from Grothendieck’s letter to Faltings.1

We begin by discussing some of the backgrounds and motivations, and outlining major

results.

1.1 Basics on Étale Fundamental Groups

Let X be a connected scheme. Denote FétX the category of finite étale covers of

X, with objects finite étale morphisms of schemes Y → X and morphisms over X.

Choose a geometric point x→ X, it determines a fiber functor

Fibx : FétX → Set

defined by mapping a cover Y → X to the set Fibx(Y ) of fibers over x. We define

the étale fundamental group π1(X, x) to be the automorphism group of the functor

Fibx.2 Then the étale fundamental group is naturally a profinite group seen from the

embedding

π1(X, x) ⊂
∏︂
Y→X

Aut (Fibx(Y )) .

1See an English translation in [SL97].
2We shall use π1 to denote the étale fundamental group throughout, not to be confused with the

topological fundamental group.
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Moreover, the functor Fibx factorizes through the category π1(X, x)− FSet of finite

sets equipped with an π1(X, x) action, which in fact yields an equivalence of categories.

Functoriality

Consider the category of schemes Scheme and the category of schemes with chosen

geometric point Scheme∗. For an étale cover Y → X and a morphism of scheme

X ′ → X that preserves geometric base points x′ and x, one has

Fibx′(Y ×X′ X) −→ Fibx(X)

is a bijection. Then an automorphism of the functor Fibx′ induces an automorphism

of the functor Fibx, and thus yielding a map

π1(X
′, x′) −→ π1(X, x).

Thus π1 defines a covariant functor from Scheme∗ to the category Prof of profinite

groups.

The Role of Base points

Now consider the category Scheme◦∗ of connected and pointed schemes. Let x and y

be two different choices of geometric point on connected X, it is shown that they yield

isomorphic fiber functors Fibx and Fiby, and thus the fundamental groups π1(X, x)

and π1(X, y) are isomorphic. Even though such isomorphisms are not canonical,

they differ exactly by inner automorphisms of π1(X, y), essentially due to the fiber

functor being pro-represented. One can thus coarsen the morphisms in the category

by modding out such inner isomorphisms. More percisely, consider the category

Profout, with objects profinite groups, and morphisms between profinite groups G

and H given by

Homout(G,H) = Hom(G,H)/ Inn(H).

2



We check that composition works corectly in this category. Given maps of groups

A
f−→ B

g−→ C and a ∈ A, b ∈ B, c ∈ C. One has

gc ◦ f b(a) = c · g(b · f(a) · b−1) · c−1 = (g ◦ f)c·g(b)(a).

Remark 1. In fact, Inn(G) also acts on Hom(G,H) by conjugating the input. But

conjugating f ∈ Hom(G,H) on the input by g ∈ G coincide with conjugating on the

output by f(g) ∈ H. This is in analogue to the topological situation where a loop is

mapped to a loop.

Then in particular, π1(X, x) and π1(X, y) are canonically isomorphic in this cat-

egory. Fixing a geometric point x for each X ∈ Scheme◦, and define a functor

π1 : Scheme◦ → Profout by

π1(X) = π1(X, x).

Then different choices of base points yield canonically isomorphic functors, which we

denote by abusing notations as π1.

The Case of Fields

In the situation where X = Spec(k) for some field k, choosing an seperable closure

k ↪→ k amounts to choosing a geometric point x : Spec(k) → X. Finite étale covers

of X are exactly the spectra of étale algebras over k. Such algebras are exactly finite

products of finite seperable extensions of k, and the fiber functor Fibx is seen to be

represented by Spec(k). It follows that canonically

π1(X, x) = Gal
(︁
k|k
)︁

From the above discussion, one has

Homout(Gal
(︁
k2|k2

)︁
,Gal

(︁
k1|k1

)︁
) = Hom(Gal

(︁
k2|k2

)︁
,Gal

(︁
k1|k1

)︁
)/Gal

(︁
k1|k1

)︁
and the absolute Galois group of a field can be defined as an object in the category

Profout without an explicit choice of seperable closure.
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We then have a commutative (up to natural isomorphism) diagram of categories:

Scheme◦∗

Fieldop
∗ Prof

Scheme◦

Fieldop Profout

π1(−,−)

π1(−)Spec

Gal(−|−)

Gal(−)

Homotopy Exact Sequence and the Outer Galois Representation

Now fixing some field k together with an seperable closure k ↪→ k. Consider the

category Schemek of schemes over Spec(k), together with the pointed category

Schemek,∗.

There is a natural sequence of schemes

X = X ×Spec(k) Spec(k) −→ X −→ Spec(k).

It is then a fundemental theorem that the following induced sequence on fundemental

groups is exact:

1→ π1(X, x)→ π1(X, x)→ Gal
(︁
k|k
)︁
→ 1.

In particular, π1(X, x) acts on its normal subgroup π1(X, x) by conjugation. We then

have the following commutative diagram with exact rows:

1 π1(X, x) π1(X, x) Gal(k|k) 1

1 Inn(π1(X, x)) Aut(π1(X, x)) Out(π1(X, x)) 1

ρ

When π1(X, x) is center-free, namely when the left vertical arrow is isomorphic, the

group π1(X, x) is the pullback

Aut(π1(X, x))×Out(π1(X,x))
Gal(k|k)

determined by the geometric Galois group π1(X, x) and the outer Galois representa-

tion ρ.
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Geometric Fundamental Groups in characteristic 0

For a scheme X of finite type over the complex numbers C, the étale fundamental

group of X is known to be the profinite completion of the topological fundamental

group of the complex analytic space of X. In particular, the topological fundamental

group of smooth curves over C is well understood.

Theorem 2 ([Sza09]). Let X be an integral proper normal curve over C, and let

U ⊂ X be an open subset. The étale fundamental group π1(U) is isomorphic to the

profinite completion of the group with given generators and relations

⟨a1, b1, . . . , ag, bg, γ1, . . . , γn | [a1, b1] . . . [ag, bg] γ1 · · · γn = 1⟩

where n is the number of points of X lying outside U , and g is the genus of X.

The complex analytic spaces of such U with 2g−2+n > 0 are exactly the hyperbolic

Riemann surfaces.

It is also a fact that base changing from one algebraically closed field of character-

istic 0 to an algebraically closed extension preserves the étale fundemental group, the

above discription applies for all algebraically closed fields of characteristic 0.

In general, hyperbolic k-curves are the smooth k-curves of genus g with at least

2 − 2g + 1 geometric points at infinity. These are precisely the smooth curves with

non-trivial center-free geometric étale fundemental groups. In this sense their étale

fundemental groups are thought of as “far from abelian”, and Grothendieck considered

hyperbolic curves as achitypical “anabelian” objects.

1.2 Anabelian Grothendieck Conjectures

Grothendieck proposed a number of conjectures for conjectural families of “anabelian”

variety, namely varieties where the outer Galois representation sufficiently controls

the geometry of the vairiety.
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1.2.1 Bi-anabelian Conjectures and Results

A bi-anabelian conjecture studies the fully faithfulness of the functor π1. In particular

there are common variation to the forms of the conjecture.

Isom and Hom Form Conjectures

Conjecture 3 (Isom Form Conjecture). For “anabelian” X1 and X2 over k, the

canonical map

Isomk (X1, X2)→ Isomout
Gk

(π1(X1), π1(X2))

is a bijection.

Conjecture 4 (Hom Form Conjecture). For “anabelian” X1 and X2 over k, the

canonical map

Homdom
k (X1, X2)→ Homout,open

Gk
(π1(X1), π1(X2))

is a bijection.

Evidently Hom form conjectures are stronger than Isom form.

Absolute and Relative Forms

It certain situations, it is posible to consider morphisms between fundamental groups

themselves instead of over the absolute Galois group of the base field.

Example of bi-anabelian Results

An early result on hyperbolic curves by Tamagawa says

Theorem 5 (Tamagawa, absolute Isom form [Tam97]). Let k be a finite field, and

let X1, X2 be affine hyperbolic curves over k. Then

Isom (X1, X2)→ Isom (π1(X1), π1(X2))

is a bijection.
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Mochizuki refined the result and eventually proved using p-adic Hodge theory that

Theorem 6 (Mochizuki, relative Hom form [Moc99]). Let k be a field that may be

embedded in a finitely generated extension of Qp, and let X1, X2 be hyperbolic curves

over k. Then

Homdom
k (X1, X2)→ Homout,open

Gk
(π1(X1), π1(X2))

is a bijection.

Remark 7. In fact, Mochizuki showed the theorem holds more generally for X1 arbi-

trary smooth vairety over k, and π1 replaced by its maximal pro-p quotient.

Mochizuki also showed an absolute version

Theorem 8 (Mochizuki, absolute Hom form [Moc99]). Let X1, X2 be hyperbolic

curves over (possiblely different) finitely generated extensions of Q. Then

Isom (X1, X2)→ Homout (π1(X1), π1(X2))

is a bijection.

One can also take the birational perspective and consider the Grothendieck con-

jectures on function fields. It this direction Mochizuki also showed the following

birational analogy to the above theorem

Theorem 9 (Mochizuki, birational relative Hom form [Moc99]). Let k be a field that

may be embedded in a finitely generated extension of Qp, and let K,L be function

fields of arbitrary dimensions (≥ 1) over k. Then

Homk (L,K)→ Homout,open
Gk

(Gal (K) ,Gal (L))

is a bijection.

Remark 10. This result also holds more generally when the Galois groups are replaced

by their maximal pro-p quotients.
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Mochizuki’s birational result can be seen as a relative characteristic 0 generalization

of the following result:

Theorem 11 (Neukirch, Uchida, Iwasawa, Pop [Neu69] [Uch76] [Pop90] [Pop94]).

Let K,L be finitely generated infinite fields over their prime fields. Then

Isom (L,K)→ Isomout (Gal (K) ,Gal (L))

is a bijection.

Remark 12. Using Mochizuki’s result Corry and Pop showed in [CP09] that for func-

tion fields over k the relative pro-p hom form result holds.

In the case of mixed characteristic local fields however, it is known that the bira-

tional Isom form statement does not hold. Namely, there exist outer isomorphisms

that do not arise from field isomorphisms. Nevertheless, using finer invariants of the

fields the following results hold and are of particular interests to this thesis:

Theorem 13 (Mochizuki [Moc97]). Let K,L be mixed characteristic local fields.

Then

Isom (L,K)→ IsomFil,out (Gal (K) ,Gal (L))

is an isomorphism, where IsomFil denote the set of isomorphisms that preserves the

upper ramification filtration, namely mapping Gal (K)(v) to Gal (L)(v).

Hoshi adapted Mochizuki’s argument and proved an Hom form statement:

Theorem 14 (Hoshi [Hos13]). Let K,L be mixed characteristic local fields. Then

Hom (L,K)→ HomHT,out,open (Gal (K) ,Gal (L))

is an isomorphism, where HomHT denote the set of isomorphisms that pullback p-adic

Hodge-Tate representations to Hodge-Tate ones.

Remark 15. Abrashkin used different argument and generalized Mochizuki’s Isom

form result (theorem 13) to local fields (not necessarily of mixed characteristic) and

their pro-p Galois groups with upper ramification filtrations in [Abr10].
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1.2.2 Mono-anabelian Results

Given the étale fundamental group π1 of a scheme X, one hope that using only data of

of the fundamental group one can reconstruct the data of the scheme X in a fuctorial

way. Invariants obtainable this way are called mono-anabelian.

In the ideal situation where the scheme X can be reconstructed, this would imply

the bi-anabelian conjectures. In fact, Hoshi showed that such a stronger statement

holds for number fields, strengthening the result of theorem 11 on number fields:

Theorem 16 (Hoshi [Hos19]). Given the absolute Galois group of a number field

there is a functorial way to reconstruct the algebraic closure of the given number field

equipped with its natural Galois action that gave rise to the given absolute Galois

group.

We shall see many examples of mono-anabelian invariants of mixed characteristic

local fields that plays important role in the proof of the main theorem. However,

since the Isom form bi-anabelian statement does not hold for mixed characteristic

local fields, the absolute Galois group is not mono-anabelian.

1.3 The Main Goal of the Thesis

The main goal of this thesis is to explain the key ingredients that go into the proofs

Mochizuki and Hoshi’s results, and show for the following statement:

Theorem 17 (Main Theorem). Let K, L be mixed characteristic local fields and

α : Gal (L) → Gal (K) be an isomorphism between the Galois groups. The following

are equivalent:

1. There exists an isomorphism of fields β : K → L such that α = π1(β);

2. The isomorphism α preserves the ramification filtration;

3. The isomorphism α is HT-preserving.

9



Namely,

Isom (L,K) = IsomFil,out (Gal (K) ,Gal (L)) = IsomHT,out (Gal (K) ,Gal (L))

in the above notations.

In particular, the implications (1) =⇒ (2) =⇒ (3) are shown in theorem 58 of

chapter 3 after we study the mono-anabelian invariants of mixed characteristic local

fields, and (3) =⇒ (1) in theorem 138 of chapter 5 after we review the technical

results from p-adic representations and p-adic Hodge theory.
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Chapter 2

Mixed Characteristic Local Fields
and Their Class Field Theory

2.1 Basic Invariants of Mixed Characteristic Local
Fields

Definition 18 (Mixed Characteristic Local Fields). A mixed characteristic local field

is a finite extension of Qp for some prime p.

In particular, associated to K are the following objects:

• OK ⊆ K denotes the ring of integers of K,

• mK ⊆ OK denotes the maximal ideal of OK ,

• kK = OK/mK denotes the residue field of OK ,

• For n ≥ 1, U (n)
K = 1 +mn

k ⊆ O×
k for the n-th unit group of K,

• pK = char(kK) for the residue characteristic of K,

• dK = [kK : QpK ] for the degree of K over QpK ,

• fK = [kK : FpK ] for the degree of the residue extension,

• qK = pfKK , the size of kK ,

• eK for the ramification index of K over QpK .

11



Lemma 19. There is a topological isomorphism

K× ∼=
(︂
Z/
(︂
pfKK − 1

)︂
Z
)︂
⊕ (Z/paKZ)⊕ (ZpK )

⊕dK ⊕ Z

which satisfies the following properties:

1. The projection onto the last component agrees with the normalized discrete val-

uation vK : K× → Z on K,

2. O×
K corresponds to the sub-group

(︂
Z/
(︂
pfKK − 1

)︂
Z
)︂
⊕(Z/paKZ)⊕(ZpK )

⊕dK under

the isomorphism,

3. The principle unit group U
(1)
K corresponds to (Z/paKZ) ⊕ (ZpK )

⊕dK under the

isomorphism, and in particular is the pro-pK Sylow sub-group of K×,

4. The roots of unity µK ⊂ K× are the torsion elements corresponding to the sum(︂
Z/
(︂
pfKK − 1

)︂
Z
)︂
⊕ (Z/paKZ).

Let K be a mixed characteristic local field, we mention definitions and properties

of its logarithmic and exponential function for later applications.

Proposition 20 ([Neu99, Proposition 2.5.4, 2.5.5]). The power series

log(1 + x) = x− x2

2
+
x3

3
− · · ·

is convergent on U
(1)
K .

The power series

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·

is convergent on mn
K for n > e

p−1
, with image in U

(n)
K .

Definition 21. Let n > e
p−1

. Define the logarithmic function

log : U
(1)
K → K

and the exponential function

exp : mn
K → U

(n)
K

by the above power series.

12



Proposition 22 ([Neu99, Proposition 2.5.5]). The maps log and exp are both con-

tinuous group homomorphism. Further for n > e
p−1

they yield isomorphisms

U
(n)
K mn

K

log

exp

that are inverse to each other.

Finally, one can show that the kernel of the logarithmic function is finite, and thus

exactly the roots of unity in U (1)
K .

Theorem 23 (Strassman’s Theorem [Mur02, Theorem 3.3.4]). Let

f(x) =
∞∑︂
n=0

anx
n

be a non-zero power series with an ∈ K. Suppose an → 0 as n → ∞ so that f(x)

converges for x ∈ OK. Then, the function f : OK → K given by x ↦→ f(x) has finite

many zeros.

Let π ∈ K× be an uniformizer and apply the theorem to

− log(1− πx) =
∞∑︂
n=1

πn

n
xn,

one has that indeed Ker(log) is finite.

It is natural to extend log to OK , taking value 0 for the prime to pK roots of unity.

Lemma 24. Consider the natural bilinear map

O×
K ⊗Z Q −→ K+

where Q is endowed with the discrete topology. The map is a topological group iso-

morphism, where K+ is the underlying topological additive group.

Proof. The map is injective, as it is shown that ker(log) are all torsions.

The map is surjective as the following: Let π be some uniformizer of K. Note that

(pk) = (π)eK . We know mn
K = (π)n is contained in the image, where n can be assume

13



to be prime to eK . Then by dividing powers of pK in mn
K , we have the OK module

Q ·mn
K containing elements of valuations j for all j ∈ Z.

It then follows

Q ·mn
K = (OK)π = K

and the map is indeed surjective.

The map is a homeomorphism essentially follows from log restricts to a homeo-

morphism.

Finally we comment on the fuctoriality of the isomorphism. Note that the definition

of log and exp does not depend on K. Thus for an extension L of K the following

natural diagram is commutative.

O×
K ⊗Z Q O×

L ⊗Z Q

K+ L+

∼ ∼

2.2 Galois Groups of Mixed Characteristic Local Fields

Letting K be some fixed algebraic closure of K, we further have the following Galois

theoretic objects:

• GK = Gal(K|K) for the absolute Galois group of tower K|K,

• IK ⊆ GK for the inertia subgroup, corresponding to maximal unramified exten-

sion Kur under the Galois correspondence,

• FrobK ∈ GK/IK for the Frobenius element, which under the canonical isomor-

phism GK/IK ≃ Gk acts as the Frobenius map on the residue field,

• PK ⊆ IK for the wild inertia subgroup of GK , corresponding to maximal tamely

ramified extension Ktr under the Galois correspondence,

14



• The roots of unity µK ⊂ K
×, considered as a multiplicative group with a GK-

action.

We have the following facts:

1. GK/IK ≃ Gal(Kur|K) ≃ Gal(kK |kK) ≃ ˆ︂FrobZ
K . In particular Kur|K is abelian,

and Kur lies in the maximal abelian extension Kab.

2. Since Kur contains all the prime to pK-th roots of unity lifted from the residue

extension, and Ktr is the composite of all (necessarily totally ramified) finite

extension of Kur with degree prime to pK , these are all Kummer extensions.

Thus they are extensions adjoining e-th roots of some uniformizer for all e

prime to pK . Then there is an isomorphism

IK/PK
∼−→ Hom((Ktr)×/(Kur)×, kK

×
)

given by

g ↦−→ (a ↦→ g(a)

a
).

Identifying ∆ =
⋃︁
p∤n

1
n
Z as the value group of Ktr and Z as the value group of

Kur, we have

(Ktr)×/(Kur)× = ∆/Z = (Q/Z)(p′)

where (Q/Z)(p
′
K) is the quotient by the pro-pK Sylow sub-group of Q/Z.

Further notice the isomorphism is GK/IK-equivariant:

σgσ−1 ↦−→
(︃
a ↦→ σgσ−1(a)

a
= σ(

g(σ−1(a))

σ−1(a)
) = σ(

g(a)

a
)

)︃
(where we abuse notation and take σ to be an arbitrary element in its coset.)

In particular, the action of FrobK on IK/PK is exactly multiplication by pfKK

(written additively as an abelian group.)

Remark 25. In particular, Ktr is already not abelian over K. As above all finite

extension in Ktr|Kur is of the form adjoining e-th roots of some uniformizer for e

15



prime to pK . But one see from local class field theory that only those e that divides

pfKK − 1 yields abelian and tamely ramified extension over K.

2.3 Main Results of Local Class Field Theory

Theorem 26 (Local Reciprocity Map). Given a local field K, there exists a unique

homomorphism

ϕK : K× −→ Gal
(︁
Kab|K

)︁
such that

1. for every uniformizer π of K and every finite unramified extension L of K,ϕK(π)

acts on L as FrobL/K,

2. for every finite abelian extension L of K, the image of the norm map NL/K (L×)

is contained in the kernel of a ↦→ ϕK(a)|L, and ϕK induces an isomorphism

ϕL/K : K×/NL/K

(︁
L×)︁→ Gal(L/K).

Theorem 27 (Local Existence Theorem [Mil20, Theorem 3.5.1]). The norm groups

in K× are exactly the open subgroups of finite index.

There are multiple approaches to arrive at the local reciprocity map, see [Mil20,

Section 1.1] and [FV93, Section 4.7]. Following [Mil20, Chapter 3], we outline the

cohomological approach to construct the reciprocity maps, and compare it to the

Hilbert symbol, which is used for a proof of the local existence theorem for mixed

characteristic local fields.

2.3.1 Tate’s Theorem

Theorem 28 (Tate’s Theorem). Let G be a finite group, A a G-module. Assume

that for each subgroup H ⊆ G, we have the following properties on Tate cohomology

groups:

16



• Ĥ
1
(H,A) = 0,

• Ĥ
2
(H,A) is cyclic of order |H|.

Then there is an isomorphism

Ĥ
q
(G,Z) −→ Ĥ

q+2
(G,A)

induced by taking cup-product with a generator of the group Ĥ
2
(G,A).

In particular, forK a mixed characteristic local field, the pair G = GK and A = K×

satisfy the above assumptions. Then at q = −2 Tate’s Theorem yields a canonical

isomorphism between the abelianization Gab ∼= Ĥ
−2
(G,Z) of G and the norm residue

group AG/NGA = Ĥ
0
(G,A) :

Gal(L|K)ab = K×/NL/K

(︁
L×)︁ .

Remark 29. This canonical isomorphism from Tate’s Theorem can be seen as a state-

ment on the G module A. One can thus axiomatize these cohomological condition

in the so called abstract class field theory of class formations. For a reference, see

[Neu99, Chapter 4].

More precisely, cup product from group cohomology yields a bilinear map for finite

extension L/F

H0
(︁
Gal(L/F ), L×)︁×H2(Gal(L/F ),Z)→ H2

(︁
Gal(L/F ), L×)︁ .

Further consider the boundary homomorphism

H1(Gal(L/F ),Q/Z)→ H2(Gal(L/F ),Z)

from the exact sequence

0→ Z→ Q→ Q/Z→ 0.

Taking appropriate limit we have a bilinear pairing of profinite cohomology groups:

H0
(︂
GF , F

×
)︂
×H1(GF ,Q/Z)→ H2

(︂
GF , F

×
)︂

17



where canonically

H0
(︂
GF , F

×
)︂
= F×,

H1(GF ,Q/Z) = Hom(GF ,Q/Z)

since the action is trivial, and

H2
(︂
GF , F

×
)︂
= Q/Z

by the calculation of Brauer group for local fields in reference to [NSW08, Corol-

lary 7.1.9].

In summary, we have a bilinear pairing

F× × Hom(GF ,Q/Z)→ Q/Z.

Then one shows that the left kernel is zero, and arrives at an isomorphism from F×

to Hom(Hom(GF ,Q/Z),Q/Z) = Gab
F by Pontryagin duality. This is exactly the local

reciprocity map ϕL.

2.3.2 Functorial Properties of the Local Reciprocity Map

The reciprocity map satisfies the following functorial properties:

Proposition 30 ([FV93, Lemma 4.4.2]). Let L|K be a finite extension of local fields,

we have commuting diagram
K× L×

Gab
K Gab

L

ϕK ϕL

VerL/K

where VerL/K is the transfer map, and

K× L×

Gab
K Gab

L

ϕK ϕL

NL/K

where NL/K is the norm map.
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Further, Let K be some algebraic closure of K, K ′ some algebraic closure of K ′,

and σ is an isomorphism of tower as the following

K K ′

K K ′

∼

∼

σ

we have the following commuting diagram

K× K ′×

Gal(K|K)ab Gal(K ′|K ′)ab

σ

ϕK ϕK′

g ↦→σgσ−1

In particular, let L|K be a finite extension of local fields and σ ∈ Gal
(︁
K|K

)︁
, we

have
K K

L σ(L)

K

∼

∼

σ

L× σ(L)×

Gal(K|L)ab Gal(K|σ(L))ab

σ|L

ϕL ϕσ(L)

g ↦→σgσ−1

2.3.3 Hilbert Symbol

Let F be a local field. Consider the Kummer exact sequence

1 −→ µn −→ F
× x ↦→xn−→ F

× −→ 1.

Form the long exact sequence in cohomology we have

H0
(︂
GF , F

×
)︂
−→ H0

(︂
GF , F

×
)︂
−→ H1 (GF , µn) −→ H1

(︂
GF , F

×
)︂

where H0
(︂
GF , F

×
)︂
= F×, and H1

(︂
GF , F

×
)︂
= 0 by Hilbert’s 90. Thus canonically

H1 (GF , µn) = F×/F×n.
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Also we have

H1
(︂
GF , F

×
)︂
−→ H2 (GF , µn) −→ H2

(︂
GF , F

×
)︂
−→ H2

(︂
GF , F

×
)︂

where again H1
(︂
GF , F

×
)︂
= 0, H2

(︂
GF , F

×
)︂
= Q/Z. Thus canonically

H2 (GF , µn) = (Q/Z)[n].

Now assume µn ⊂ F , that is F contains primitive n-th roots of unity. Then

F×/F×n = H1 (GF , µn) = Hom (GF , µn) = Hom
(︁
Gab
F /(G

ab
F )n, µn

)︁
which yields a

bilinear map

F×/F×n ×Gab
F /(G

ab
F )n −→ µn.

By tracing through the cohomological calculation, we see this is exactly the Kummer

pairing for the maximal abelian exponent n extension, namely maximal n-Kummer

extension.

Finally, from cup product

H0 (GF , µn)×H2 (GF , µn) −→ H2 (GF , µn ⊗ µn)

there is a canonical isomorphism

µn = H0 (GF , µn) ≃ H2 (GF , µn ⊗ µn) .

Consider the cup product

H1 (GF , µn)×H1 (GF , µn) −→ H2 (GF , µn ⊗ µn)

which yields a bilinear map under above canonical isomorphisms:

F×/F×n × F×/F×n −→ µn.

This is the so-called Hilbert symbol, which among its other properties, also describes

the reciprocity map for the maximal n-Kummer extension. More precisely, by tracing

through the cohomological calculations we have

ϕ(a)
(︂

n
√
b
)︂
= (a, b)

n
√
b.

The Hilbert symbol and its properties can be found in [Mil20, Section 3.4]. In

particular, it plays a key role in the proof of the local existence theorem.
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2.4 Explicit Local Class Field Theory via Lubin-Tate
Formal Group Laws

For each uniformizer π ofK, Lubin-Tate theory explicitly constructs a maximal totally

ramified abelian extension Kπ ⊂ Kab that is the fixed subfield of ϕK(π), and explicitly

describes the Galois group Gal (Kπ|K).

First we define formal group laws as a formal analogue of one-dimensional algebraic

groups.

Definition 31 (Formal Group Law). A one-parameter commutative formal group

law over OK is a power series F ∈ OK [[X, Y ]] such that

1. F (X, Y ) = X + Y+ terms of degree ≥ 2,

2. F (X,F (Y, Z)) = F (F (X, Y ), Z),

3. there exists a unique iF (X) ∈ XA[[X]] such that F (X, iF (X)) = 0,

4. F (X, Y ) = F (Y,X).

Note that one can substitute a formal power series without constant term into

another formal power series. Thus one can define

Definition 32 (Morphisms for Formal Group Laws). Let F (X, Y ) and G(X, Y ) be

formal group laws. A homomorphism F → G is a power series h ∈ T · OK [[T ]] such

that

h(F (X, Y )) = G(h(X), h(Y )).

When there exists a homomorphism h′ : G→ F such that

h ◦ h′ = T = h′ ◦ h,

then h′ is said to be an inverse to h, and h is called an isomorphism. A homomorphism

h : F → F is called an endomorphism of F .
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Let F be a formal group law. For any f, g ∈ T · OK [[T ]], one define

f +F g = F (f(T ), g(T ))

Lemma 33 (Ring Structure on End(F ) [Mil20, Lemma 2.8]). Given a formal group

law F , the set End(F ) of endomorphisms of F can be endowed a (not necessarily

commutative) ring structure with +F as addition and composition ◦ as multiplication.

Next we choose a uniformizer π ∈ K×, from which we define a special class of

Lubin-Tate power series Fπ. Any such Lubin-Tate power series can be realized as

an endomorphism of uniquely associated formal group laws. Such a group law would

then admit an action from O×
K , with π acting exactly as the corresponding Lubin-

Tate power series. Further, different choices of Lubin-Tate power series in Fπ result

in isomorphic formal group laws.

Definition 34 (Lubin-Tate Power Series). Let Fπ be the set of f(X) ∈ OK [[X]] such

that

• f(X) = πX+ terms of degree ≥ 2,

• f(X) ≡ Xq mod π.

We call Fπ the Lubin-Tate power series for uniformizer π.

Theorem 35 (Lubin-Tate Formal Group Laws [Mil20, Proposition 1.2.12]). For every

f ∈ Fπ, there is a unique formal group law Ff with coefficients in OK admitting f as

an endomorphism.

Definition 36. We call Ff the Lubin-Tate formal group law associated to the Lubin-

Tate power series f .

Definition 37. We say a ring OK acts faithfully on a formal group law F when there

is an injective ring homomorphism

ρF : OK ↪→ End(F ).
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An isomorphism h between two formal group laws F and G with OK action is said

to be OK equivariant if

ρG(a) ◦ h = h ◦ ρF (a)

for all a ∈ OK .

Theorem 38 ([Mil20, Corollary 1.2.17]). For each a ∈ OK there exists a unique

[a]f ∈ End(Ff ) such that

1. [a]f = aT+ terms of degree ≥ 2,

2. [a]f commutes with f under composition.

Moreover, the map

OK ↪→ End(Ff )

a ↦→ [a]f

is a ring homomorphism and thus endows Ff a faithful OK action.

Theorem 39 ([Mil20, Corollary 1.2.16, Remark 1.2.19(c)]). For f, g ∈ Fπ, there

exists isomorphisms between formal group laws Ff and Fg that is OK equivariant.

Consider some algebraic closure K of K. The discrete valuation on K extends to a

non-discrete valuation on K. From the formal group law one can define functorially

a new additive group structure on the maximal ideal m of OK . Then the OK action

on the group law yields an OK action on the newly defined abelian group.

Definition 40 (From Formal Group Ff to Group
(︁
m,+Ff

)︁
). Let Ff =

∑︁∞
i,j aijX

iY j

be the Lubin-Tate formal group law associated to f over OK . For every x, y ∈ m so

that they have positive valuations, aijxiyj → 0 as (i, j)→∞, and so the series

Ff (x, y) =
∑︂

aijx
iyj

converges to an element x+F y of m. In this way, m becomes a abelian group (mK ,+F ).

Further, this process is seen to be functorial in the formal group F . Thus (mK ,+F )

is seen to be an OK module, independent of f up to canonical isomorphism.
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For n ∈ N, the πn-torsions Ker([πn]f ) of this newly defined OK module
(︁
m,+Ff

)︁
would then be exactly the zeros of n-fold composition f (n) := f ◦ f ◦ · · · ◦ f in K.

Theorem 41 ([Mil20, Proposition 1.3.4]). For n ∈ N the OK module Ker([πn]f ) is

isomorphic to OK/ (πn). Then End(Ker([πn]f )) ≃ OK/ (πn) and Aut(Ker([πn]f )) ≃

(OK/ (πn))×.

Definition 42 (Lubin-Tate Tower). For n ∈ N let

Kπ,n = K(Ker([πn]f )).

Noting that f has no constant term, one has Kπ,n ⊆ Kπ,n+1. Let

Kπ =
⋃︂
n∈N

Kπ,n.

Let f and g be two Lubin-Tate power series, by noting that the any isomorphism

between
(︁
mK ,+Ff

)︁
and

(︁
mK ,+Fg

)︁
that comes from an isomorphism between formal

group laws is given by OK power series, we have

Theorem 43 ([Sch17, Remark 1.3.7]). The fields Kπ,n and Kπ are independent to

the choice of Lubin-Tate power series.

Since one is free to choose arbitrary Lubin-Tate power series, one can let f = πT +

T q where q is the size of residue field of K. Noting that f is a Eisenstein polynomial,

generate totally ramified Galois extensions of K, with Galois group identified by

(OK/πn)×.

Theorem 44 ([Mil20, Theorem 1.3.6]). For n ∈ N one has

1. Kπ,n/K is totally ramified of degree (q − 1)qn−1, where q is the size of residue

field of K.

2. The action of OK on ker([πn]f ) defines an isomorphism

(OK/(πn))× −→ Gal (Kπ,n/K)
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that is independent of the choice of Lubin-Tate power series. In particular,

Kπ,n/K is an abelian extension.

3. The uniformizer π is a norm from Kπ,n.

By passing to the limit, one has an isomorphism

ψπ : O×
K −→ Gal (Kπ/K)

that is independent of the choice of Lubin-Tate power series.

One also has

Theorem 45 (Local Kronecker-Weber Theorem [Mil20, Theorem 1.4.8]). For every

uniformizer π of K,

Kπ ·Kur = Kab.

It follows that Kπ is a maximal totally ramified abelian extension of K. (Note that

totally ramified abelian extensions are not closed under composites, so such maximal

ones need not be unique.)

Finally, one explicitly recovers the local reciprocity map, and reinterpret the OK

module as a Galois representation.

Noting that Kπ ∩Kun = K, one has Gab
K = Gal (Kπ|K)×Gal (Kun|K). We define

a homomorphism

ϕπ : K× −→ Gab
K = Gal (Kπ|K)×Gal (Kun|K)

u× πn ↦−→
(︁
ψπ(u

−1),Frobn
)︁
.

Theorem 46 ([Mil20, Theorem 1.3.9, Section 1.1.4]). The map ϕπ is independent to

the choice of π. Further, ϕπ agrees with the local reciprocity map.

Remark 47. Let π be a uniformizer of K. With local class field theory in mind, one

see that K̂
×
≃ Gab

K is generated by ˆ︂πZ and O×
K . Their fixed subfields in Kab are

(Kab)π = Kπ
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and

(Kab)
ˆ︂πZ

= Kur

respectively. We can identify the Galois group as in the diagram via the local reci-

procity map.
Kab

Kπ Kur

K

ˆ︂πZ O×
K (via LCF Theory)

O×
K (via LT Theory)

Then the Galois group Gal (Kπ|K) is abstractly isomorphic to O×
K , as a quotient

of Gab
K depending on the choice of π. It is not a canonical object associated to K.

Further more, the map

O×
K ↪→ K× ↠ Gal (Kπ|K)

ψ−1
π−−→
∼
O×
K

is an isomorphism, and from the above discussion pertaining to local reciprocity map

it is seen to be the map taking multiplicative inverse.
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Chapter 3

Anabelian Geometry of Mixed
Characteristic Local Fields

3.1 Mono-anabelian Results

Let K be a mixed characteristic local field with absolute Galois group G = GK .

Recall that

K× ≃
(︂
Z/
(︂
pfKK − 1

)︂
Z
)︂
⊕ (Z/paKZ)⊕ (ZpK )

⊕dK ⊕ Z

and further via the local reciprocity map ˆ︁K× ≃ Gab.

In particular,

Tor(Gab) ≃
(︂
Z/
(︂
pfKK − 1

)︂
Z
)︂
⊕ (Z/paKZ)

and
Gab

Tor(Gab)
≃ (ZpK )

⊕dK ⊕ ˆ︁Z
This allows us to recover certain invariants ofK from its (abelianized) Galois group.

Proposition 48 ([Hos22]). We have the following mono-anabelian invariants:

1. The residue characteristic p(G) is the unique prime number such that

logp(G)

(︃
♯

(︃
Gab

Tor(Gab)
/p(G) · Gab

Tor(Gab)

)︃)︃
≥ 2.

2. The degree over Qp is

d(G) = logp(G)

(︃
♯

(︃
Gab

Tor(Gab)
/p(G) · Gab

Tor(Gab)

)︃)︃
− 1.

27



The residue degree is

f(G) = logp(G)

(︂
1 + ♯

(︂(︁
Tor(Gab)

)︁(p(G)′)
)︂)︂

where we write
(︁
Tor(Gab)

)︁(p(G)′) for the quotient of (finite abelian) Tor(Gab) by

the its p(G)-Sylow subgroup.

The ramification index is

e(G) = d(G)/f(G).

3. The inertia subgroup is

I(G) =
⋂︂
N⊆G

N

where N ranges over the normal open subgroups of G such that e(N) = e(G).

Note it has the natural profinite topology.

4. The wild inertia subgroup is

P (G) =
⋂︂
N⊆G

N,

where N ranges over the normal open subgroups of G such that e(N)/e(G) is

prime to p(G). Note it has the natural profinite topology.

Alternatively, P (G) is the maximal pro-p(G) submodule of I(G).

5. The Frobenius element

Frob(G) ∈ G/I(G) = Gab/I(G)ab

is the unique element of G/I(G) such that the action of Frob(G) on I(G)/P (G)

by conjugation is given by multiplication by p(G)f(G).

6. The set of uniformizers is

Π(G) = {g ∈ Gab | g · I(G) = Frob(G) · I(G)}.
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7. The topological multiplicative group of the ring of integers is

O×(G) = I(G)ab ⊆ Gab.

8. The topological group of principal units is

U1(G) = P (G)ab ⊆ Gab.

Alternatively, U1(G) is the maximal pro-p(G) submodule of O×(G).

9. The multiplicative group of residue field is

k×(G) = O×(G)/U1(G)

10. The topological multiplicative group of the field is

K×(G) = Gab ×G/I(G) Frob(G)
Z ⊆ Gab,

that is, all g ∈ Gab that acts on abelian group G/I(G) by conjugation as multi-

plication by integer multiples of p(G)f(G).

Alternatively, K×(G) can be taken as the subgroup of Gab that is generated by

either

• an arbitrary uniformizer from Π(G) together with O×(G), or

• the set of all uniformizers Π(G).

11. The topological additive group of the field

K+(G) = O×(G)pf

Using the functorial properties of the various map, many constructions can be

naturally passed to limits.

Proposition 49 ([Hos22]). We further have mono-anabelian invariants
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1. We have topological G modules

O×
(G) = lim−→

H⊆G
O×(H)

U
1
(G) = lim−→

H⊆G
U1(H)

k
×
(G) = lim−→

H⊆G
k×(H)

K
×
(G) = lim−→

H⊆G
K×(H)

K+(G) = lim−→
H⊆G

K+(H)

where the limits are taken over open subgroups1, and transition maps for H ⊆

H ′ ⊆ G induced from transfer maps Ver : H ′ −→ H and the functoriality of

constructions 7 to 11.

2.

µ(G) = Tor(K
×
(G))

and in particular, we can construct the p-adic Tate module

T (G) = lim←−
n

µ(G)[p(G)n]

Noting that as a Zp(G)[G] module T (G) is (non-canonically) isomorphic to Zp(G)(1),

by choosing an arbitrary basis we also have the cyclotomic character

χ(G) : G −→ Z×
p(G).

Alternatively, Mochizuki has the following argument in [Moc97]: Suppose that

M is a Zp-module of finite length equipped with a continuous GK-action. Then

one has a natural isomorphism of Galois cohomology modules

H i(K,M) ∼= H2−i (K,M∨(1))
∨

for i ≥ 0. Here, with (1) denoting a Tate twist, and the duality is the "Pontr-

jagin dual" Hom (−,Qp/Zp). Suppose that M is isomorphic as a Zp-module to
1namely subgroups of finite index
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Z/pnZ for some n ≥ 1. Then from the above isomorphism one has M is iso-

morphic as a GK-module to Z/pnZ(1) if and only if H2(K,M) ∼= Z/pnZ. This

is a group-theoretic condition on M . Thus, one conclude that the isomorphism

class of the ΓK-module Zp(1) can be recovered from GK.

3.2 Bi-anabelian Results

In this section we study the birational anabelian results for mixed characteristic local

fields. Motivated by the Neukirch–Uchida theorem on number fields, given local fields

K and L one studys the following map induced by the absolute Galois group functor

π1 : Isom(L,K) −→ Isomout(Gal (K) ,Gal (L))

The following two theorems verify that mixed characteristic local fields indeed has

certain anabelian features.

Theorem 50 ([Hos22]). The absolute Galois group Gk is centre free.

Theorem 51. The map above map is injective, namely the absolute Galois group

functor π1 is faithful on isomorphisms.

Proof. This follows from the functoriality of the local reciprocity isomorphism. In

particular see the diagrams in proposition 30.

In the last section, one see that from Gal (k) one can functorially recover the mul-

tiplicative and additive structure of k. However, one cannot realize the multiplicative

and additive structure on the same set, so maps between the fundamental groups

induces both multiplicative and additive maps that may not be consistent. In gen-

eral this ramifies as π1 fails being surjective on isomorphisms as seen in the following

example.

Theorem 52. The field Qp is rigid, namely Aut(Qp) = {id}
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Proof. The following lemma says that Z×
p must be preserved by an field automor-

phism.

Lemma 53. Let x ∈ Q×
p . Then the following properties are equivalent:

1. x is a unit;

2. xp−1 possesses nth roots for infinitely many values of n.

Noting that Q is rigid, it follows a field automorphism must preserve the valuation,

and thus the p-adic topology. Then the field automorphism must be the identity by

the density of Q.

Theorem 54 ([NSW08]). Gal (Qp) has nontrivial outer automorphisms.

Together we see that mixed characteristic local fields cannot induce every isomor-

phism between their Galois group, namely the naive bi-anabelian statement is false.

On the other hand, the Galois group of a local field has finer structures from the

arithmetic of the field.

Definition 55 (Ramification Group). Let k be a local field with normalized valuation

v and Galois group G = Gal (k). Let i be an integer ≥ −1, then i-th ramification

group of G is defined to be the group

Gi = {g ∈ G | v(g(x)− x) ≥ i+ 1 ∀x ∈ k}.

The characteristic ramification subgroups then yields a filtration on the Galois

group.

Definition 56. LetK, L be mixed characteristic local fields, an isomorphism between

the Galois groups α : Gal (L) → Gal (K) is said to preserve the lower ramification

filtration if

α(Gal (L)i) = Gal (K)i

for all integer i ≥ −1.
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The lower numbering filtration is compatible with subgroups (extensions), and the

data of the full filtration is sufficient to define an upper numbering filtration that is

compatible with quotients.

The full knowledge of either the upper or the lower numbering filtration allows one

to construct the Herbrand’s function and its inverse, and thus yielding a description

of the other filtration. In particular, an isomorphism between Galois group that

preserves either filtration preserves the other. A reference can be found in [Ser79,

Section 2.3].

There also exists a class of finite dimensional Qp representation of the Galois groups

that will be studied in the next chapter.

Definition 57. LetK, L be mixed characteristic local fields, an isomorphism between

the Galois groups α : Gal (L) → Gal (K) is said to be HT-preserving (Hodge-Tate

preserving) if for any Hodge-Tate representation

ρ : Gal (K) −→ GLQp(V )

the composite

ρ ◦ α : Gal (L) −→ GLQp(V )

is also a Hodge-Tate representation.

The set of such isomorphisms is denoted IsomHT(Gal (L) ,Gal (K)).

Theorem 58. Let K, L be mixed characteristic local fields and α : Gal (L)→ Gal (K)

be an isomorphism between the Galois groups. The following are equivalent:

1. There exists an isomorphism of fields β : K → L such that α = π1(β);

2. The isomorphism α preserves the ramification filtration;

3. The isomorphism α is HT-preserving.

Proof. (1) =⇒ (2) is trivial.
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(2) =⇒ (3): First we show that one can recover the additive module OK+.

With the full ramification filtration, one recover the ramification groups in upper

numberings Gal (K)(v), and thus the higher units U (v)
K via local reciprocity map. Also

note that one can determine from the Galois group the ramification index eK of K.

Then the submodule

p−1 · U eK
K ⊆ UK ⊗Zp Qp

corresponds to the additive module OK+ of the ring of integers under the isomorphism

induced by the p-adic logarithm.

Since the ramification groups are compatible with finite extensions by taking inter-

sections, the above discussion also applies. One can thus recover the additive modules

of rings of integers for finite extensions of K. The union is then the additive module

OK+.

Let ˆ︃OK+ be the p-adic completion of OK+, and

ˆ︁K+ =ˆ︃OK+ ⊗Zp Qp.

In total, The Gal (K) module ˆ︁K+ is then re-constructed from the group-theoretic data

of the Galois group and its full ramification filtration. And thus α induces exactly

the pullback between the Galois modules ˆ︁K+ and ˆ︁L+.

Recall that one can also reconstruct the cyclotomic character from the Galois group.

These ingredients together sufficiently characterize Hodge-Tate representation, as one

shall see in the next chapter. Thus such α that preserves ramification filtration is

necessarily HT-preserving.

(3) =⇒ (1) will be proved as the main theorem in chapter 5 after relevant

background on Galois representations is reviewed.

3.3 Invariants Not Determined by the Galois Group

A mixed characteristic local field is not determined by their absolute Galois group.

The following theorem characterize a certain case where isomorphic Galois groups
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arises.

Theorem 59 (Jarden, Ritter). Let K, L be mixed characteristic local fields. Assume

K has residue characteristic p, and contains a primitive p-th root of unity ζp (and ζ4

in the case where p = 2). Then K and L have isomorphic Galois group if and only if

the following hold:

1. The maximal abelian subfield contained in K and L are isomorphic;

2. [K : Qp] = [L : Qp].

Let p be an odd prime. Let K = Q
(︁
ζp, p
√
p
)︁

and L = Q
(︁
ζp, p
√
1 + p

)︁
. Then by

verifying the above conditions, one has K and L are non isomorphic local fields with

isomorphic Galois groups.

From the above bi-anabelian results, we can further specified other invariants that

are not mono-anabelian.

Theorem 60. The following invariants of a mixed characteristic local field are not

in general recoverable from its absolute Galois group:

1. The ramification filtration on the absolute Galois group;

2. The additive group of the ring of integers O+;

3. The additive topological group K+ of the algebraic closure of the field together

with p-adic topology.

Remark 61. For a mixed characteristic local field K and E a finite extension of K, we

have seen that one can indeed reconstruct the additive topological group E+ together

with the p-adic topology. However, the topological limit

lim←−E+

algebraically isomorphic to K is topologized much finer than the p-adic topology. The

following example from Hoshi verifies this fact.
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Consider the map

Tr : K+ −→ K+

well defined by mapping a ∈ E+ ⊂ K+ to 1
[E:K]

· TrE/K(a) ∈ K+ for E a finite

extension of K contained in K. Since the restriction of the map Tr to each finite

extension of K contained in K is continuous with respect to the respective p-adic

topologies, the map Tr is continuous with respect to the topology on the limit lim←−E+

and the p-adic topology on K+.

For each positive integer n write Kn ⊆ K for the (uniquely determined) unramified

finite extension of K such that [Kn : K] = pn. By the surjectivity of the trace map

with respect to a finite extension of finite fields, there exists an element an ∈ (OKn)+

such that TrKn/K (an) ∈ O×
K . Then it is immediate that the sequence (pn · an)n≥1

converges to 0 ∈ K+ with respect to the p-adic topology on K+.

On the other hand,

Tr (pn · an) =
1

pn
· TrKn/K (pn · an) = TrKn/K (an) ∈ O×

K ,

and thus the sequence (Tr (pn · an))n≥1 does not converge to Tr(0) = 0 ∈ K+. In

particular, the map Tr is not continuous with respect to the p-adic topology on K+

and the p-adic topology on K+.

Thus, we conclude that the p-adic topology on K+ does not coincide with the

topology on the topological limit lim←−E+.

For more detail on the normalized trace map and its significance see [Ban+22] and

[And+19, Section 4.3.2]
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Chapter 4

Galois Representations of Mixed
Characteristic Local Fields

4.1 Galois Representations

Let K be a mixed characteristic local field with residue characteristic p. Let Cp be

the completion of some fixed algebraic closure K of K. The Galois action of GK on

K extends continuously to an action on the completion Cp. We have the following

category:

Definition 62 (RepL(GK)). Let L be a field such that Qp ⊆ L ⊆ Cp, and further

assume L is stable under the GK action. Common choices for L would be finite

extensions of Qp in K, finite Galois extensions of K, finite Galois extensions of ˆ︃Kur

the completion of the maximal unramified extension of K, and Cp.

A L-representation ofGK is a finite-dimensional L-vector space V with a continuous

semilinear GK-action, namely

GK × V −→ V

satisfies the following condition:

(g, a · v) ↦−→ g(a) · g(v) ∀g ∈ GK , a ∈ L, and v ∈ V.

Such objects together with L linear GK-equivariant maps forms an abelian category

denoted RepL(GK).

In particular, when L is a subfield of K, the action of GK is L linear.
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One common way to construct GK representations is by characters.

Definition 63 (Representation from Character). Let ϕ : GK −→ L× be a continuous

homomorphism. Then one has L(ϕ) ∈ RepL(GK) which as a L module is identify by

L, with the GK action given by

GK × L −→ L

(g, a) ↦−→ ϕ(g) · a.

Now if L′ ⊆ Cp is some extension of L, ϕ can naturally be thought of as a character

mapping to L′× as well. Abusing notation and also denote it as ϕ. Then it follows

that

L′(ϕ) ≃ L′ ⊗L L(ϕ)

in RepL′(GK).

Definition 64 (Twist by Character). Let V ∈ RepL(GK), we define V (ϕ) ∈ RepL(GK),

which is identified as a L vector space by V , but with the GK semilinear action given

by:

(g, v) ↦−→ vg := ϕ(g) · g(v)

for g ∈ GK and v ∈ V .

Alternatively, V (ϕ) can be seen to be isomorphic to V ⊗L L(ϕ) ∈ RepL(GK).

Definition 65. Given two characters ϕ, ϕ′ : GK −→ Cp, we say that

ϕ ∼ ϕ′

if there exists an x ∈ Cp such that for all g ∈ GK ,

g(x) =
ϕ(g)

ϕ′(g)
· x.

Proposition 66 ([Ser97, Section 3.A.2]). The characters satisfy ϕ ∼ ϕ′ if and only

if the Cp representations Cp(ϕ) and Cp(ϕ
′) are isomorphic.
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Proof. By noting ϕ ∼ ϕ′ if and only if ϕ · ϕ′−1 ∼ 1 and (Cp(ϕ))(ϕ
′) = Cp(ϕ · ϕ′), it

suffices to show for ϕ′ = 1.

Assuming that ϕ ∼ 1 so that there is a x ∈ Cp such that

g(x) = ϕ(g) · x

Consider the Cp linear map

γ : Cp(ϕ) −→ Cp

c ↦−→ c · x.

This map is GK equivariant, since

γ(c)g = g(c · x)

= g(c) · g(x),

while

γ(cg) = γ(ϕ(g) · g(c))

= ϕ(g) · g(c) · x

= g(c) · (ϕ(g) · x)

= g(c) · g(x).

The converse is true by tracing back the argument.

Definition 67 (V {ϕn}). Let V ∈ RepL(GK). Given a character ϕ : GK → L×, we

can define the LGK sub-spaces of V (ϕn) where GK acts as powers of ϕ. More precisely,

we have a functor to LGK vector space

V ↦−→ V {ϕn}K = V (ϕn)GK ≃
{︁
v ∈ V | g(v) = ϕ(g)−q · v for all g ∈ GK

}︁
.

Note that when K ⊆ L, we have LGK = K.
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Now when L is a finite extension of K (resp. L is a finite extension of ˆ︃Kur), we

have GL ⊆ GK is a open subgroup of finite index (resp. GL ⊆ IK is a open subgroup

of finite index). Then there is a natural functor

RepCp
(GK) −→ RepCp

(GL)

and also natural K linear inclusions

V {ϕn}K = V (ϕn)GK ↪−→ V (ϕn)GL = V {ϕn}L.

It is not immediate that the K dimension of V {ϕn}K is finite, but when it is (for

example when V = Cp and ϕ is χ the cyclotomic character as will be shown soon) it

has the following important descent property:

Theorem 68 (Descent [BC09]). Let L be a finite extension of K or ˆ︃Kur, and W ∈

RepCp
(GK) such that WGK has finite K dimensions. The natural map

WGK ⊗K L −→ WGL

is an L linear isomorphism.

Then in particular, Assume V {ϕn}K is a finite dimensional K vector space as

above, and L is a finite extension of K or ˆ︃Kur. The natural map

V {ϕn}K ⊗K L −→ V {ϕn}L

is an isomorphism.

Next we discuss the two characters that are of importance to our application.

Definition 69 (Cyclotomic Character). Let K be a mixed characteristic local field

with residue characteristic p. The cyclotomic character encodes the action of GK on

the p power roots of unity. (Note that these come from a Lubin-Tate tower in the

case that K = Qp.)
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More precisely, let µpn be the group of pn-th roots of unity in K, whereby non-

cannically

µpn
(︁
K
)︁
≃ Z/pnZ.

Such groups fit in an inverse system given by

µpn+1 −→ µpn

a ↦−→ ap.

The inverse limit defines the so called Tate module of the multiplicative group Gm

of K

Tp (Gm) = lim←−µpn .

One see that Tp (Gm) is isomorphic to a free Zp module of rank 1. In particular, there

is a canonical isomorphism

Aut(Tp (Gm)) = Z×
p

and thus a canonical map which defines the so called p-adic cyclotomic character

χ : GK −→ Z×
p .

Define Zp(1) as the Zp module identified by Zp, further with a GK action

GK × Zp −→ Zp

(g, a) ↦−→ χ(g) · a.

Then letting e be an arbitrary generator of Tp (Gm), there is a GK-equivariant Zp

linear isomorphism

Zp(1) −→ Tp (Gm)

1 ↦−→ e

which is not canonical, depending on the choice of generator e.
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Remark 70. The significance of the above Tate module is that it is the first p-adic

homology (or equivalently the étale fundamental group) of Gm = A1\{0}, the multi-

plicative group scheme. It is free of rank 1, and the first p-adic cohomology group of

Gm is the dual of Zp(1), that is to say, Zp(−1).

Definition 71 (Lubin-Tate Character). Let E be a finite extensions of Qp, and let

π be a uniformizer of E. One define

χLT
E,π : GE −→ E×

for the Lubin-Tate character discussed in section 2.4 on explicit class field theory .

Further let k be a finite extension of E. Let σ : E ↪→ k be an embedding. One

define

χLT
σ,π : Gk −→ E×

for the restriction of a to the subgroup Gk ⊂ GE.

In summary, the above continuous characters are induced from the following com-

mutative diagram:

Gk

GE

Gab
k Gab

E Gal(Eπ|E)×Gal(Eur|E) Gal(Eπ|E)

ˆ︂k× ˆ︂E× O×
E × ˆ︂⟨π⟩ O×

E O×
E

∼

ϕ

∼

ϕπ

e ↦→e−1

ϕ

Nσ

ψπ

χLT
E,π

χLT
σ,π

where ϕ is the local reciprocity map, Nσ is the norm with respect to the embedding

σ.

Remark 72. In particular, the Lubin-Tate character χLT
Qp,p

is exactly the cyclotomic

character χ.

We make the following definition:
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Definition 73 (Inertial Equivalence). Two representations ρ1, ρ2 of some fixed mixed

characteristic local field are said to be inertially equivalent if they agree on some open

subgroup of the inertia group. We denote the equivalence relation by

ρ1 ∼ ρ2

Now note that in particular, the above composites are independent of the choice of

π when restricted to the respective inertia subgroups. and thus the inertial equivalence

classes of χLT
E,π and χLT

σ,π do not depend on the choice of π ∈ OE. Thus, we write χLT
E

and χLT
σ when in references to the equivalence classes.

Remark 74. Letting σ : E ↪−→ k be as above, and Fπ the Lubin-Tate formal group law

for E. The absolute value on E induced by the valuation extends to E. Then we have

an OE action on elements with absolute value strictly lesser than 1. In particular, the

πn (and respectively pn) torsions, where π acts as some fixed Lubin-Tate polynomial,

is a Gk module isomorphic to OE/mn
E (and respectively OE/(p)n). The Tate module

is then

Tp(Fπ) = lim←−OE/(p)
n = lim←−OE/m

n
E = OE

with automorphisms

Aut (Tp(Fπ)) = O×
E .

The Gk action is then given by the Lubin-Tate character χLT
σ,π. This picture is clarified

when we study p-divisible group in a later section.

4.2 Group Cohomology and Representations

First we recall some facts on non-abelian group cohomology.

Definition 75. Let G be a topological group, and M a topological group that is

not necessarily abelian, with group operation written multiplicatively. Assume M is

equipped with a continuous G action x ↦→ xg.
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Defined the 0-th cohomology by taking invariants:

H0(G,M) =MG.

To define H1, we first define the set of continuous 1-cocycles Z1(G,M) to be the

set of continuous maps f : G −→M such that

f(gh) = f(g)f(h)g

for all g, h ∈ G. Next we say that f, f ′ ∈ Z1(G,M) are cohomologous if there exists

an element x ∈M such that

f ′(g) = x−1f(g)xg

for all g ∈ G. This defines an equivelence relation on Z1(G,M) and we define

H1(G,M) to be the quotient.

The non-abelian group cohomology is not defined for n ≥ 2, but it does behave

analogously for H0 and H1. In particular, it is functorial, induces a long exact

sequence, and has a inflation-restriction sequence. For detail see [FY, Section 1.4].

Note that this definition agrees with the usual group cohomology when M is

abelian, thus the notation is consistent.

One significant application of this definition is the following:

Proposition 76 ([FY, Proposition 3.7]). Let d ≥ 1, G some topological group

and L some topological field with a continuous G action. There is a bijection be-

tween isomorphism classes of d dimensional G-semilinear representation over L, and

H1(G,GLd(L)). Moreover the representation is trivial if and only if the corresponding

class of cocycle is trivial.

Now we return to the case where K is a mixed characteristic local field, L some

subfield of Cp stable under the action of Galois group GK . Consider ϕ : GK −→ C×
p

some character and Cp(ϕ) the associated 1-dimensional representation in RepL(GK).
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After tracing through the theorem, one see that the isomorphism class of Cp(ϕ) cor-

responds exactly to the element in H1(GK ,GL1(L)) = H1(GK , L
×) represented by ϕ

as a cocycle.

Furthermore, we shall see that ϕ ∼ ϕ′ if and only if Cp(ϕ) ≃ Cp(ϕ
′).

4.3 Motivating Fontaine’s Approach

Fontaine’s approch to study p-adic Galois representation can be motivated by the

following geometric example.

Example 77 (De Rham Cohomology, De Rham Theorem and Hodge Decomposi-

tion). Let X be a projective smooth scheme over C. Then the associated complex

analytic space Xan is a compact Kähler manifold.

Then Xan has the following cohomology theories:

• The singular cohomology Hn
top(X

an,Z),

• The De Rham cohomology Hn
dR(X

an).

They are classically related in the following ways:

Theorem 78 (De Rham Comparison Theorem).

Hn
dR(X

an) ≃ Hn
top(X

an,Z)⊗Z C

This isomorphism can be obtained by considering a pairing obtained by integrating

differential forms in the algebraic de Rham cohomology over cycles in the singular

cohomology. Such an integration generally yields a complex number, and explains why

the singular cohomology must be tensored to C. Then C can be thought of as the

so called period ring, containing all the periods necessary to express the isomorphism

comparing algebraic de Rham cohomology with singular cohomology.

Letting Ωq be the sheaves of complex differential q forms, we have
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Theorem 79 (Hodge Decomposition).

Hn
dR(X

an) ≃
⨁︂
p+q=n

Hp (Xan,Ωq)

where the right hand side are sheaf cohomology groups.

In particular, the complex de Rham cohomology Hn
dR(X

an) can be seen as the

sheaf cohomology calculated from a resolution of the constant sheaf by the complex

Ω•. One can analogously define sheaves of algebraic differentials Ω•
alg on X, which is

shown in [Gro66] to yield the same sheaf cohomology and satisfy the corresponding

decomposition.

In summary, we have

Hn
top(X

an,Z)⊗Z C ≃
⨁︂
p+q=n

Hp
(︁
X,Ωq

alg

)︁
.

Now instead consider X a proper smooth scheme over a mixed characteristic local

field K, we shall replace the singular cohomology by the ℓ-adic étale cohomology

Hn
et (XK ,Zp) Then there is the following theorem:

Theorem 80 (Faltings).

Cp ⊗Zp H
n
et (XK ,Zp) ≃

⨁︂
p+q=n

(︂
Cp(−q)⊗K Hp

(︂
X,Ωq

X/K

)︂)︂
.

This isomorphism can be interpreted as stating Hn
et (XK ,Zp) is Hodge-Tate, and

giving the explicit decomposition.

4.4 Fontaine’s Formalism and Period Rings

We first discuss the general formalism.

Definition 81 (Period Rings). Let F be a topological field, and G a topological

group that acts trivially on F . Let B be a F algebra with a G action. One says that

B is (F,G) regular if the following conditions hold:
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1. B is a domain,

2. (FracB)G = BG ⊇ F ,

3. if b ∈ B, b ̸= 0 and the F -line b · F is stable under G, then b ∈ B×.

Lemma 82. BG is a field.

Proof. For all b ∈ BG, b ̸= 0, the line b ·F is clearly stable under G. Thus b has to be

invertible in B, with an inverse that is also fixed by G.

Definition 83. Let W be a B module with a semilinear G action. The comparison

homomorphism is defined to be the natural map

αW : B ⊗BG WG → W.

Proposition 84 ([FY, Theorem 3.14]). When W is free of finite rank over B, the

comparison homomorphism αW is injective.

In particular, any W of the form B ⊗F V where V is a finite dimensional F

representation of G satisfies the condition.

Definition 85 (B-Admissible Representations). Let V be a d-dimensional F repre-

sentation of G. Then V is said to be B-admissible if the B module W = B⊗F V with

semilinear G action is isomorphic to a finite product of B. We also say W is trivial

in this case.

Proposition 86 ([caruso_introduction_2019] [FY, Theorem 3.6, 3.14] [Ber04,

Section 1.2.3]). The followings are equivalent:

1. V is B-admissible,

2. The comparison homomorphism αW is an isomorphism,

3. dimBG WG = dimF V = d,
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4. There is a G invariant basis of W ,

5. The class [W ] in H1 (G,GL(d,B)) that corresponds to the isomorphism class of

W , which is the image of [V ] in H1 (GK ,GL (d, F )) under the natural map, is

trivial.

Corollary 87. If B ⊆ B′, then B-admissible representations are B′-admissible.

In our application, G will be the Galois group of some mixed characteristic local

field K, and F will be some subfield of K. We explore some classical choices of B.

4.4.1 The case for B = K

Proposition 88 (Hilbert’s Theorem 90 [FY, Theorem 1.114]). Let L be a field and

K be a Galois extension of L. Assuming the field K is discrete, and the Galois

group has the natural profinite topology. Then for all n ≥ 1, H1 (Gal (K|L) ,GLn(K))

is trivial.

Remark 89. This can be seen as the reformulation the classical Galois descent for

vector space. See [Mil17, Section A.64].

Now for K an extension of mixed characteristic local field L, it comes equipped

with a topology. Nevertheless one can apply the above result when the Galois group

acts discretely, which recall is the following equivalent condition:

Proposition 90 ([NSW08, Proposition 1.1.8]). Let G be a profinite group and let M

be an abstract G-module. Then the following conditions are equivalent:

1. M is a discrete G-module, i.e. the action G ×M → M is continuous for the

discrete topology on M .

2. For every m ∈M the stabilizer subgroup {g ∈ G | g(m) = m} is open.

Proposition 91 ([FY, Proposition 4.12]). Let L ⊆ K be mixed characteristic local

fields and V a L representation for GK. Let ρ : GK → AutL(V ) the be corresponding

representation map. Let W = K ⊗L V . The following are equivalent:
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1. V is K-admissible,

2. W is a discrete GK vector space over K,

3. Ker(ρ) is open in GK,

4. V is a discrete GK vector space over L.

Proof. 1 =⇒ 2: Given V ⊗L K is trivial, it has a GK invariant basis. Then the

stabilizer for a vector is the finite intersection of the open Galois stabilizer of the

coefficients.

2 =⇒ 1: Given the action is discrete, Hilbert’s 90 applies and the representation

is trivial.

1 and 2 =⇒ 3: Let {vi}i be a basis of V over L. Then {ei = 1⊗ vi}i is a basis

of W over K. Then the stabilizers of the ei’s are open in GK , with intersection being

the kernel of ρ.

3 =⇒ 4: For any g ∈ GK , v ∈ V such that g(v) = v, there is an open neighbour-

hood g ·Ker(ρ)× {v} that maps to v.

4 =⇒ 2: For any a ⊗ v ∈ W = L ⊗L V , let StabV (v) be the open stabilizer in

GK for V , and StabL(a) the stabilizer in GK for L. Then their open intersection is a

neighbourhood for any stabilizer of a⊗ v.

4.4.2 The case for B = ˆ︃Kur

Now note that ˆ︃Kur is stable under GK , with Gˆ︃Kur = Gal
(︂ˆ︃Kur|ˆ︃Kur

)︂
= IK .

Proposition 92 ([FY, Proposition 4.14]). Let L ⊆ K be mixed characteristic local

fields and V a L representation for GK. Let ρ : GK → AutL(V ) the be corresponding

representation map. Let W = ˆ︃Kur ⊗L V . The following are equivalent:

1. V is ˆ︃Kur-admissible,

2. W is a discrete IK vector space over ˆ︃Kur,
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3. Ker(ρ) ∩ IK is open in IK,

4. V is a discrete IK vector space over L.

Proof. The implications follow from exactly the same arguments as in the caseB = K,

except for

2 =⇒ 1: Note that ˆ︃Kur is not a Galois extension of L! (There exists transcen-

dentals in the competition.) So we can not directly apply the Hilbert’s 90 argument.

But it does follow that ˆ︃Kur ⊗ˆ︃Kur W
IK −→ W

is an isomorphism.

Consider the
(︂ˆ︃Kur

)︂IK
= ˆ︃Kur vector space W ′ = W IK and note that it is a natural

Gk = GK/IK representation. It suffices to prove that such ˆ︃Kur-representation W ′ of

Gk is trivial.

Let E = k, the cohen ring of E is then the Witt vectors OE = W (k), with fraction

field E = K0, the maximal unramified extension of Qp in K. Taking limits of the

above constructions over finite separable extensions of k, one has Eur =
⋃︁
E E . Letˆ︂Eur be its competition, one has ˆ︂Eur = Kur

0 .

It then follows from the theory of étale φ module that

ˆ︂Eur ⊗E (W
′)Gk = Kur

0 ⊗K0 (W
′)Gk −→ W ′

is an isomorphism, and thus W ′ is trivial over Kur
0 . It then follows W ′ is trivial overˆ︃Kur as claimed.

4.4.3 The case for B = Cp

Noting that K ⊂ ˆ︃Kur ⊂ Cp, one has that two representation are isomorphic over

Cp if they agree on some open subgroup of the inertia, namely they are inertially

equivalent.
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In fact, the converse also holds. Let K∞/K be a totally ramified Zp-extension.

Denote Γ = Gal (K∞|K) and H = Gal
(︁
K|K∞)︁. In this section we give an overview

to Sen’s method to study Cp representations without proof.

Firstly, by almost étale descent, one has

Theorem 93 ([FY, Proposition 4.18], [Ban+22, Proposition 4.2.8]). H1 (H,GLd(C)) =

1.

Then from the inflation-restriction sequence

1 −→ H1
(︁
Γ,GLd

(︁
CH
p

)︁)︁
−→ H1 (G,GLd(Cp)) −→ H1 (H,GLd(Cp))

it follows that

Theorem 94. The inflation map yields a bijection

H1 (Gal (K) ,GLd(Cp)) −→ H1(Γ,GLd(ˆ︃K∞)).

This reduces the study of H1 (Gal (K) ,GLd(Cp)) to the study of H1(Γ,GLd(ˆ︃K∞)).

Remark 95. Here more generally K∞/K can be assumed to be a "deeply ramified"

extension. For precise definition see [Ban+22].

Further by a decompletion technique, one has

Theorem 96 ([FY, Proposition 4.23]). The inclusion GLd (K
∞) ↪→ GLd(ˆ︃K∞) in-

duces a bijection

H1 (Γ,GLd (K
∞)) −→ H1(Γ,GLd(ˆ︃K∞)).

One can then show the fact that

Theorem 97 ([And+19]). Let V be a Qp-linear finite dimensional representation of

GK. Then V is Cp-admissible if and only if the inertia subgroup of GK acts on V

through a finite quotient.

Remark 98. An alternative approach is by studying the so called Sen’s operator Θ

associated to the Cp-representations, see [FY, Section 4.4].
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We also record the following important cohomological fact:

Theorem 99 (Ax-Tate-Sen [FY, Proposition 4.46]). One has

1. Hn (GK ,Cp(i)) = 0 for i ̸= 0 or n ≥ 2;

2. H0 (GK ,Cp) = K, and H1 (GK ,Cp) is a 1-dimensional K-vector space generated

by log ◦χ =
(︂
GK

χ−→ Z×
p

log−→ Zp
)︂
∈ H1 (GK , K0).

4.4.4 The case for B = BHT

Definition 100. The Hodge-Tate period ring BHT is defined to be

BHT =
⨁︂
i∈Z

Cp(i) = Cp

[︃
t,
1

t

]︃
where the element c⊗ 1 ∈ Cp(i) = Cp ⊗Zp Zp(i) is identified by cti ∈ Cp

[︁
t, 1

t

]︁
.

One readily verifies that BHT satisfies the conditions for a period ring.

Definition 101 (Hodge-Tate Representation). A p-adic representation V of GK is

called Hodge-Tate if it is BHT-admissible.

Let V be any p-adic representation, define

DHT(V ) :=
(︁
BHT ⊗Qp V

)︁GK .

The by the Fontain formalism, there is the canonical comparison map

αV : BHT ⊗K DHT(V ) −→ BHT ⊗Qp V

which is always injective and

dimK DHT(V ) ≤ dimQp V.

Then V is Hodge-Tate exactly when the map is an isomorphism and the dimensions

equal.
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Denote W = Cp ⊗Qp V , one has

BHT ⊗K DHT(V ) =

(︄⨁︂
i

Cp(i)

)︄
⊗K

(︄⨁︂
j

Cp(j)⊗Qp V

)︄GK

=
⨁︂
i,j

Cp(i)⊗K
(︁
Cp(j)⊗Qp V

)︁GK

=
⨁︂
i,j

Cp(i)⊗K
(︁
Cp(j)⊗Cp W

)︁GK

and

BHT ⊗Qp V =

(︄⨁︂
i

Cp(i)

)︄
⊗Qp V

=
⨁︂
i

Cp(i)⊗Qp V

=
⨁︂
i

Cp(i)⊗Cp W.

Now denote

Wi = Cp(−i)⊗K
(︁
Cp(i)⊗Cp W

)︁GK ⊂ BHT ⊗K DHT(V )

Under such identifications the comparison map is given by

αV :
⨁︂
i,j

Cp(i)⊗K
(︁
Cp(j)⊗Cp W

)︁GK −→
⨁︂
i

Cp(i)⊗Cp W

a⊗ (b⊗ w) ↦−→ (a · b)w

where for a ∈ Cp(i), b ∈ Cp(j) the group GK acts on a · b as the element in Cp(i+ j).

Then we see that Wi’s are exactly the summands that are mapped to Cp(0) ⊗Cp W

on the right.

Noting that dimCp(Wi) = dimK

(︂(︁
Cp(i)⊗Cp W

)︁GK

)︂
, one has

dimCp

(︄⨁︂
i

Wi

)︄
=
∑︂
i

dimCp(Wi)

=
∑︂
i

dimK

(︂(︁
Cp(i)⊗Cp W

)︁GK

)︂

= dimK

⎛⎝(︄⨁︂
i

Cp(i)⊗Cp W

)︄GK

⎞⎠
= dimK DHT(V ).
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The comparison map αV restricts to an injective map

ξW :

(︄⨁︂
i

Wi

)︄
−→ Cp(0)⊗Cp W = W

which when V is Hodge-Tate, the equality

dimK DHT(V ) = dimQp V = dimCp W

yields that ξW is an isomorphism.

It is easy to verify that ξW being isomorphic implies V is conversely Hodge-Tate.

Recall that

V {ϕn}K := V (ϕn)GK ≃
{︁
v ∈ V | g(v) = ϕ(g)−nv for all g ∈ GK

}︁
.

This way one arrives at the following classical formulation of Hodge-Tate representa-

tion, which generalize to coefficients larger than Qp.

Definition 102. A representation W in RepCp
(GK) is said to be Hodge-Tate if

ξW :
⨁︂
i

(Cp(−i)⊗K W{i}K)→ W

is an isomorphism.

Further V in RepL (GK) is said to be Hodge-Tate if Cp⊗LV ∈ RepCp
(GK) is Hodge-

Tate. All the Hodge-Tate representations in RepL (GK) form a full subcategory,

denoted RepHT
L (GK).

Definition 103 (Hodge-Tate Weights and Multiplicities). For any W ∈ RepHT
Cp

(GK)

we define the Hodge-Tate weights of W to be those i ∈ Z such that W{χi}K is

nonzero. Also we call hi := dimKW{i}K ≥ 1 the multiplicity of i as a Hodge-Tate

weight of W .

One defines the Hodge-Tate weights and multiplicities for representations over

other coefficients by base changing to Cp first.

Note that i ∈ Z is a Hodge-Tate weight of W precisely when there is an injection

Cp(−i) ↪→ W in RepCp
(GK). For example, Cp(i) has −i as its unique Hodge-Tate

weight.
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Example 104. Let E be an elliptic curve over K, then Vp(E) = Qp ⊗Zp Tp(E) is a

2-dimensional Hodge-Tate representation, and

dimK

(︁
Cp ⊗Qp Vp(E)

)︁GK = dimK

(︁
Cp(−1)⊗Qp Vp(E)

)︁GK = 1.

We shall give an overview for Hodge-Tate representations arising from étale coho-

mology of abelian varieties with good reduction in the next section.

Remark 105. The Hodge-Tate weights are the eigenvalues for Sen’s operator Θ, for

which being semi-simple and having such integral eigenvalues characterizes Hodge-

Tate representations. See [FY, Proposition 6.5].

Remark 106. In particular, when W is Hodge-Tate W{χi}K are all of finite K di-

mensions. One can apply a descent argument to show that for L a finite extension of

K or ˆ︃Kur, it holds that W ∈ RepHT
K (GK) if and only if W ∈ RepHT

L (GK), and the

natural functor

RepCp
(GK) −→ RepCp

(GL)

restricts to an equivalence between RepHT
K (GK) and RepHT

L (GK). For detail argu-

ments see [BC09].

This again verifies the fact that Cp-representation depends only on the Galois

action restricted to open subgroup of the inertia.

4.5 p-divisible Groups and Their Hodge-Tate Repre-
sentations

In this section we follow exposition from [Hon20] and [Sti12b] on the background

and results of [Tat67]. We define p-divisible groups, show that they are categorically

equivalent to certain Galois representation. Using structures of p-divisible groups

one has that all such representation are Hodge-Tate. Further, p-divisible formal

group laws induce many such representations, and provide rich applications in both

arithmetic and geometry.
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Definition 107 (p-divisible Group). A p-divisible group G over R is an inductive

system

G1
i1−→ · · · −→ Gv

iv−→ . . .

of finite flat group schemes over Spec(R) indexed by the natural numbers v ∈ N such

that there is a natural number h, called the height such that

1. Gv has order phv, and

2. for each v we have an exact sequence

0→ Gv
iv−→ Gv+1

[pv ]−→ Gv+1

where [pv] is the multiplication by pv map.

Morphisms between p-divisible group are morphisms between the level groups that

are compatible with the inductive system.

Definition 108 (Cartier Duality). Let G = (Gv) be a p-divisible group over R. For

each v, we have an exact sequence

Gv+1
[pv ]−→ Gv+1

jv−→ Gv −→ 0

The Cartier duality yields maps

j∨v : G∨
v −→ G∨

v+1

which can be shown to yield a p-divisible group G∨ = (G∨
v ) over R of the same height.

Proposition 109 ([Hon20], [Sti12b]). Let G be a p-divisible group of height h over

R. Let d and d∨ denote the dimensions of G and G∨, respectively. Then h = d+ d∨.

Definition 110 (The p-adic Tate Module and Tate Comodule). Let G = (Gv) be a

p-divisible group over OK . We define the Tate module of G by

Tp(G) := lim←−
v

Gv(K),
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and the Tate comodule of G by

Φp(G) := lim−→
v

Gv(K).

Proposition 111. Let G be a p-divisible group G over OK, one has natural Gal (K)-

equivariant isomorphisms

Tp(G) ∼= HomZp (Tp (G
∨) ,Zp(1))

and

Φp(G) ∼= HomZp

(︁
Tp (G

∨) , µp∞(K)
)︁

by Cartier duality.

Theorem 112 ([Hon20], [Sti12b]). A finite flat group scheme over R with order

invertible in R is étale.

Theorem 113 ([Hon20], [Sti12b]). Assume that R = K is a field with characteristic

not equal to p. There is an equivalence between the categories of p-divisible groups

over K and (finite free) Gal (K) representations over Zp given by G⇝ Tp(G).

A formal group law over R amounts to a underlying group structure on the formal

scheme Spf(R [[X1, . . . , Xd]]).

Definition 114 (p-divisible formal group laws). We say that a formal group law is

p-divisible if the multiplication by p map is a finite flat on the underlying formal

scheme.

Definition 115. Let G = (Gv) be a p-divisible group over R. We say that G is

connected if each Gv is connected, and étale if each Gv is étale.

Theorem 116 (Serre-Tate [Hon20], [Sti12b]). There exists an equivalence between the

categories of p-divisible formal group laws over R and connected p-divisible groups

over R.
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Definition 117 (Tangent Space). Let G = (Gv) be a (connected) p-divisible group

over OK and

OK [[X1, . . . , Xd]]

with augmentation ideal I = (X1, . . . , Xd) be the OK-algebra representing the p-

divisible formal group associated to (the connected part of) G.

Let L be a field extension of K. The tangent space of G at the unit section with

values in a OK-algebra L is the d = dim(G) dimensional L vector space of continuous

OK-derivations

tG(L) = DerOK
(OK [[X1, . . . , Xd]] , L) = HomOK

(︁
I/I2, L

)︁
.

The cotangent space of G with values in the OK-algebra L is the d = dim(G)

dimensional L vector space

t∗G(L) = I/I2 ⊗OK
L = HomL (tG(L), L) .

Example 118. The p-divisible group

µp∞ = Gm [p∞]

has level groups Gv = µpv = Gm [pv] with transfer maps induced by the inclusions

into Gm. The height of µp∞ is 1. The group has Cartier dual Qp/Zp of height 1 and

dimension 0 . The group corresponds to the p-adic cyclotomic character

χ : Gal (K) −→ Z×
p .

Definition 119 (Formal Points on Formal Group). Let G = (Gv) be a p-divisible

group over OK . For the p-adic completion L of an algebraic extension of K with

p-adically completed ring of integers OL the set of OL-valued points of G is defined
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to be the Zp-module

G (OL) := lim←−
i

lim−→
v

Gv

(︁
OL/miOL

)︁
= HomOK -formal

(︄
Spf (OL) , Spf

(︄
lim←−
v

Av

)︄)︄

= HomOK -continuous

(︄
lim←−
v

Av,OL

)︄
where Gv = Spec (Av).

Proposition 120 ([Hon20], [Sti12b]). Let G be a p-divisible group over OK. We have

an exact sequence

0 −→ Φp(G) −→ G
(︁
OCp

)︁ logG−→ Cp −→ 0.

Example 121. For G = µp∞ we recover the exact sequence for the p-adic logarithm.

0 −→ µp(K) −→ 1 +mCp

logµp∞−→ Cp −→ 0.

Proposition 122 ([Hon20], [Sti12b]). Every p-divisible group G over OK gives rise

to a commutative diagram of exact sequences

0 Φp(G) G(OCp) tG(Cp) 0

0 Hom (Tp (G
∨) ,Φp (µp∞)) Hom (Tp (G

∨) , µp∞(OC)) Hom
(︁
Tp (G

∨) , tµp∞ (C)
)︁

0

logG

logµp∞

Proof. The first row is the lorgerithmetic exact sequence. The second row is from the

lorgerithmetic exact sequence for the p-divisible group µp∞ , and noting that Tp (G∨)

is free.

Now the first vertical arrow is the aforementioned isomorphism.

To construct the last two vertical arrows, first we have that

Tp (G
∨) = lim←−

v

G∨
v (K)

∼= lim←−
v

G∨
v

(︁
OCp

)︁
= lim←−

v

HomOCp -group

(︂
(Gv)OCp

, (µpv)OCp

)︂
= Homp-divisible group

(︂
G×OK

OCp , (µp∞)Cp

)︂
.
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The by applying the functor of OCp-valued formal points and the functor of tangent

space with values in K, we have the maps

Tp (G
∨) −→ Hom

(︁
G
(︁
OCp

)︁
, µp∞

(︁
OCp

)︁)︁
and

Tp (G
∨) −→ Hom

(︁
tG(Cp), tµp∞(Cp)

)︁
.

Then the two vertical arrows are maps induced by the above.

The left square is commutative by observing that the second vertical arrow restricts

to the first. To see the right square is commutative it suffices to note that the

logarithm map yields a natural transformation between the functor of OCp-valued

formal points and the functor of tangent space with values in K.

Theorem 123 ([Hon20], [Sti12b]). Let G be a p-divisible group over OK. The re-

striction of the second and third vertical arrows to the Gal (K)-invariant elements

yield bijective maps

G (OK) −→ HomZp[GK ]

(︁
Tp (G

∨) , 1 +mCp

)︁
and

tG(K) −→ HomZp[GK ] (Tp (G
∨) ,Cp) .

It follows that

d = dimK

(︁
HomZp[Gal(K)] (Tp (G

∨) ,Cp)
)︁

= dimK

(︂
HomZp (Tp (G

∨) ,Cp)
Gal(K)

)︂
= dimK

(︂(︁
HomZp (Tp (G

∨) ,Zp(1))⊗Zp Cp(−1)
)︁Gal(K)

)︂
= dimK

(︂(︁
Tp(G)⊗Zp Cp(−1)

)︁Gal(K)
)︂

Theorem 124 ([Hon20], [Sti12b]). Let G be a p-divisible group over OK. There is a

canonical isomorphism of Gal (K)-representations over Cp

HomZp (Tp(G),Cp) ∼= tG∨ (Cp)⊕ t∗G (Cp) (−1).
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Proof. From above we have natural isomorphisms

tG (Cp) = HomZp (Tp (G
∨) ,Cp)

Gal(K) ⊗K Cp

and

tG∨ (Cp) = HomZp (Tp (G) ,Cp)
Gal(K) ⊗K Cp.

By the Catier duality we have a Gal (K)-equivariant perfect pairing of Zp-modules

Tp(G)× Tp (G∨) −→ Zp(1)

which induces the perfect pairing

HomZp (Tp(G),Cp)× HomZp (Tp (G
∨) ,Cp)→ Cp(−1).

Taking Gal (K) invariants one has tG (Cp) and tG∨ (Cp) are orthogonal complements

for the pairing. Further more, one has dimension equality

dimCp (tG (Cp)) + dimCp (tG∨ (Cp)) = dimCp

(︁
HomZp (Tp(G),Cp)

)︁
.

Therefore one has an exact sequence

0 −→ tG∨ (Cp) −→ HomZp (Tp(G),Cp) −→ t∗G (Cp) (−1) −→ 0

It follows from cohomological calculation that this sequence uniquely split.

Theorem 125 ([Hon20], [Sti12b]). For every p-divisible group G over OK, the ratio-

nal Tate-module

Vp(G) := Tp(G)⊗Zp Qp

is a Hodge-Tate p-adic representation of Gal (K).

Proof. As the Cp-duals of tG∨ (Cp) and t∗G (Cp) are respectively t∗G∨ (Cp) and tG (Cp),

the above isomorphism yields a decomposition

Vp(G)⊗Qp Cp
∼= t∗G∨ (Cp)⊕ tG (Cp) (1)
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Then for each n we have

(︁
Vp(G)⊗Qp Cp(n)

)︁Gal(K) ∼=

⎧⎪⎨⎪⎩
t∗G∨ (Cp) if n = 0

tG (Cp) if n = −1
0 otherwise

Proposition 126 ([Hon20], [Sti12b]). Let A be an abelian variety over K with good

reduction. Then we have a canonical ΓK-equivariant isomorphism

Hn
et (AK ,Qp)⊗Qp Cp

∼=
⨁︂
i+j=n

H i
(︂
A,Ωj

A/K

)︂
⊗K Cp(−j).

Proof. Let A∨ denote the dual abelian variety of A. Since A has good reduction,

there exists an abelian scheme A over OK with AK ∼= A. Then we have Tp (A [p∞]) =

Tp (A [p∞]) by definition, and A∨ [p∞] ∼= A [p∞]∨. In addition, we have the following

standard facts:

1. There is a canonical isomorphism

H1
et (AK ,Qp) ∼= HomZp (Tp (A [p∞]) ,Zp)⊗Zp Qp.

2. The formal completion of A along the unit section gives rise to the same formal

group law as from the p-divisible group A [p∞]

3. There are canonical isomorphisms

H0
(︁
A,Ω1

A/K

)︁ ∼= t∗e(A)

and

H1 (A,OA) ∼= te (A
∨)

where t∗e(A) and te(A) respectively denote the cotangent space of A and tangent

space of A∨ (at the unit section).
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4. We have identifications

Hn (AK ,Qp) ∼=
n⋀︂
H1 (AK ,Qp)

and

H i
(︂
A,Ωj

A/K

)︂
∼=

i⋀︂
H1 (A,OA)⊗

j⋀︂
H0
(︁
A,Ω1

A/K

)︁
.

The statements (2) and (3) together yield identifications

H0
(︁
A,Ω1

A/K

)︁ ∼= t∗A[p∞](K)

and

H1 (A,OA) ∼= tA∨[p∞](K).

Hence there is a canonical Gal (K)-equivariant isomorphism

H1
et (AK ,Qp)⊗Qp Cp

∼=
(︁
H1 (A,OA)⊗K Cp

)︁
⊕
(︁
H0
(︁
A,Ω1

A/K

)︁
⊗K Cp(−1)

)︁
.

One then obtain the desired isomorphism.

4.6 Lubin-Tate Character and its Hodge-Tate Rep-
resentation

Let E, k be finite extensions of Qp such that k contain the Galois closure of E. Let

ϕ : Gk −→ E× be a character. In this section we study the representation E(ϕ) ∈

RepQp
(Gk), and show that in the case where ϕ = χLT

E , we have E(χLT
E ) ∈ RepHT

Qp
(Gk).

Let HomQp(E, k) be the set of field embeddings. In particular it is a finite set of

size n = [E : Qp]. Then E ⊗Qp Cp, which is the underlying n dimensional Cp vector

space of E(ϕ)QpCp ∈ RepCp
(Gk) is identified by the following isomorphism

E ⊗Qp Cp −→
⨁︂

σ∈HomQp (E,k)

Cp.

e⊗ c ↦−→ (c · σ(e))σ∈HomQp (E,k)
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Now Gk acts on both of E(ϕ) and Cp. One see that the above isomorphism is

actually Gk equivariant, and thus in RepCp
(Gk)

E(ϕ)⊗Qp Cp −→
⨁︂

σ∈HomQp (E,k)

Cp(σ ◦ ϕ)

is an isomorphism.

Further more, from the E action one can recover the summands as following: Let

W = E(ϕ)⊗Qp Cp. (Note that E acts on the factor E(ϕ) on the left while C❘ acts on

the factor C❘ on the right.)

For all x ∈ E define

ax : W −→ W

e⊗ c ↦−→ (x · e)⊗ c

to be the E action of x.

Then

Wσ = {w ∈ W | ax(w) = σ(x) · w for all x ∈ E}

is exactly the summand Cp(σ ◦ ϕ) under the above isomorphism.

Proposition 127. Let σ ∈ HomQp(E, k)

• If σ is the identity embedding id, one has

id ◦ χLT
E = χLT

E ∼ χ

• On the other hand, if σ is not the identity embedding, one has

σ ◦ χLT
E ∼ 1

Proof. Let π be a uniformizer of E. Let T be the Tate module associated to the

Lubin-Tate p-divisible formal group for π. Recall that T ≃ OE as a module over Zp

(and in fact is an OE module). As a Gal (E) representation one has

T ≃ OE(χLT
E,π).
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Now consider the Cp representation

W = T ⊗Zp Cp.

As is shown in the last section, W is Hodge-Tate, with decomposition

W = W0 ⊕W1.

Recall that the p-divisible Lubin-Tate formal group is of height n with dimension 1.

It then implies as GE representations over Cp

W0 ≃ Cn−1
p

and

W1 ≃ Cp(1).

Now instead consider W as a Gal (k) representation over Cp. By the above discus-

sion we have

W ≃
⨁︂

σ∈HomQp (E,k)

Cp(σ ◦ χLT
E ) =

⨁︂
σ∈HomQp (E,k)

Wσ

Note that by descent W is still Hodge-Tate with the same decomposition W = W0⊕

W1. Now recall the E action on W = E(χLT
E,π)⊗Qp Cp is visible from the Hodge-Tate

decomposition

W = (t∗G(K)⊗K Cp(−1))⊕ (tGD(K)⊗K Cp) .

In particular,

Wid = (t∗G(K)⊗K Cp(−1)) = W1.

Thus

Cp(χ
LT
E ) ≃ Cp(1)

and

χLT
E ∼ χ

as claimed.
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Now for σ ̸= id, Wσ corresponds to the other summands contained in W0 ≃ Cn−1
p .

Thus

Wσ ≃ Cp

and

σ ◦ χLT
E ∼ 1

as claimed.

Proposition 128. Now assume E is Galois over Qp. Denote σ◦ : E ↪→ k the

embedding. Let ϕ : Gk −→ E× be a character. Assuming E(ϕ) is a Hodge-Tate

Gk representation over Qp, one has that ϕ is inertially equivalent to the following

character ∏︂
σ∈Gal(E/Qp)

(︁
χLT
σ◦◦σ

)︁nσ
: Gk −→ E×

for some nσ ∈ Z.

Proof. Let W = E(ϕ)⊗Qp Cp. For σ ∈ Gal (E/Qp) define

Wσ = {w ∈ W | ax(w) = σ(x) · w for all x ∈ E}

as above, whereby Wσ is exactly a summand Cp(σ ◦ ϕ) of W , which by Hodge-Tate

assumption is isomorphic to Cp(nσ) for some nσ ∈ Z. Namely, we have

σ ◦ ϕ ∼ χnσ

for all σ ∈ Gal (E/Qp).

On the other hand,

σ ◦

⎛⎝ ∏︂
σ′∈Gal(E/Qp)

(︁
χLT
σ◦◦σ′

)︁nσ′

⎞⎠ =
∏︂

σ′∈Gal(E/Qp)

(︁
σ ◦ χLT

σ◦◦σ′

)︁nσ′ ∼ χnσ

for all σ ∈ Gal (E/Qp) from discussion on χLT
E .

Then the proposition follows from the following cohomological calculation result

using Ax-Sen-Tate theorem.
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Lemma 129 ([Ser97, Porposition 3 on page III-38]). The following are equivalent:

1. σ ◦ ϕ1 ∼ σ ◦ ϕ2 for all σ ∈ Gal (E/Qp);

2. ϕ1 ∼ ϕ2.
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Chapter 5

Proof of the Main Theorem

Recall our main theorem 17:

Theorem 130 (Main Theorem). Let K, L be mixed characteristic local fields and

α : Gal (L) → Gal (K) be an isomorphism between the Galois groups. The following

are equivalent:

1. There exists an isomorphism of fields β : K → L such that α = π1(β);

2. The isomorphism α preserves the ramification filtration;

3. The isomorphism α is HT-preserving.

We have shown the implication (1) =⇒ (2) =⇒ (3) in theorem 58.

For this chapter let k◦ and k• be two mixed characteristic local fields. Denote

Gk◦ and Gk• their absolute Galois groups. We shall show the final implication

(3) =⇒ (1), namely any continuous group isomorphism Gk◦ → Gk• that is Hodge-

Tate preserving is induced by a field isomorphism k• → k◦ in theorem 138.

Definition 131. (Inertial Compatibility) Let

α : Gk◦ −→ Gk•

be a continuous group isomorphism and

β : k• −→ k◦
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a field isomorphism. We say that α and β are inertially compatible if there exists

an open subgroup S◦ ⊂ Gk◦ whose isomorphic images commute the square in the

following diagram ˆ︂k×• ˆ︂k×◦
Gab
k•

Gab
k◦

∼

αab

∼

ˆ︁β

where αab is the isomorphism induce by α on the abelianizations, and ˆ︁β is the iso-

morphism induce by β on the completions.

Lemma 132. Let S ⊆ O×
k be an open subgroup, then the Qp-vector space generated

by S in k is equal to k.

Proof. Given S ⊆ O×
k is open, it contains some higher unit group Un

k = 1+mn
k . Then

the Qp-vector space generated by S contains mn
k . Assume that [k : Qp] = d. Now

mn
k is isomorphic to Ok as Zp module with rank d. It follows that the Qp subspace it

generates has dimension d and thus is equal to k.

It immediately follows that

Proposition 133. Let α be as above, then there exists at most one such β such that

they are inertially compatible. Further more, if such a β exists, it induces α by the

faithfulness of the functor Gal (−), and the above isomorphism diagram commutes.

Lemma 134. Let α : Gk◦ → Gk• be an open continuous isomomorphism. The

following are equivalent:

1. α is HT-preserving.

2. For every pair of respective finite extensions k′◦ ⊂ k◦, k′• ⊂ k• of k◦, k• such

that α (Gk′◦) ⊂ Gk′•, the restriction α|Gk′◦
: Gk′◦ → Gk′• is HT-preserving.

Proof. This essentially follows from the fact that Hodge-Tate representations are pre-

served when base changed to finite extensions.
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In particular, noting that Lubin-Tate characters are Hodge-Tate, the above lemma

yields that

• For every pair of respective finite extensions k′◦ ⊂ k◦, k′• ⊂ k• of k◦, k• such that

α (Gk′◦) ⊂ Gk′• ,

• for every finite Galois extension E of Qp that admits a pair of embeddings

σ◦ : E ↪→ k′◦, σ• : E ↪→ k′•,

the composite

Gk′◦

α|G
k′0−→ Gk′•

χLT
σ•−→ E×

is Hodge-Tate.

First we show for the special case:

Proposition 135. Let α : Gk◦ → Gk• be an open continuous isomorphism. Let k◦

be Galois over Qp. Then there exists an isomorphism of fields β : k• → k◦ that is

inertially compatible with α.

Proof. Let E be an finite Galois extension of Qp that embeds into both k• and k◦.

Denote the images as E• and E◦ respectively and further assume we have k• ⊂ E•

and k◦ ⊂ E◦.

Let k′◦ be some finite Galois extension of k◦ that contains E◦. Then the corre-

sponding Galois group Gal
(︁
k◦|k′◦

)︁
is mapped to a open sub-group α(Gal

(︁
k◦|k′◦

)︁
) ⊂

Gal
(︁
k•|k•

)︁
and thus induces a sub-field k′• ⊂ k•. by enlarging k′◦ if necessary, we

can further assume that then E• is a sub-field of k′•. Denote the embeddings as

σ◦ : E◦ ↪−→ k′◦ and σ• : E• ↪−→ k′•.
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In summary, we have the following diagram:

k• k◦

k′• k′◦

E• E E◦

k• k◦

Qp

fin. Galois

β

∼∼

fin. Galoisfin.

σ◦σ•

fin. Galois

Now consider the equivalence class of characters from the following composite

Gk′◦

α|G
k′◦−→ Gk′•

χLT
σ•−→ E×

•
∼←− E× ∼−→ E×

◦ .

Given α is HT-preserving, the composite is also Hodge-Tate. Further, since E◦ is

Galois over Qp, we also have that the composite inertially equivalent to

∏︂
σ∈Gal(E◦|Qp)

(︁
χLT
σ◦◦σ

)︁nσ
: Gk′◦ −→ E×

◦

for some integers nσ by proposition 128.

To get inertial equivalence classes of characters on Gk• and Gk◦ , we need further

pullback the characters by the functorial transfer maps Verk′◦/k◦ and Verk′•/k• respec-

tively. Note that the transfer map sends inertial subgroups to inertial subgroups, and

thus it makes sense to pullback inertial equivalence class with them.

Explicitly then there is an open subgroup S◦ in the inertial subgroup Ik◦ ⊂ Gk◦

on which our two representations of the same equivalent class agree. Denote its

isomorphic image in the inertial subgroup Ik• ⊂ Gk• under α by S•. We then have
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the following diagram where the outer square commutes:

S◦ Ik◦ Gk◦ Gk′◦ E×
◦

E×

S• Ik• Gk• Gk′• E×
•

Verk′◦/k◦

Verk′•/k•

∏︁
σ∈Gal(E◦|Qp)(χ

LT
σ◦◦σ)

nσ

χLT
σ•

∼

∼

α α|G
k′◦

α|S◦ α|Ik◦

Now abelianize the diagram and identify the groups under the functorial reciprocity

map. By abusing notations we denote also S◦ and S• the open subgroups in O×
◦ and

O×
• the corresponding images of the reciprocity map. We have the following diagram

where the outer square commutes:

S◦ O×
◦ k◦̂

×
k′◦
ˆ ×

E×
◦ E×

◦

E×

S• O×
• k•̂

×
k′•
ˆ ×

E×
• E×

•

∏︁
σ∈Gal(E◦|Qp)(σ

−1◦Nk′◦/E◦)
nσ

Nk′•/E•

∼ ∼∼ ∼

∼

∼

·↦→·−1

·↦→·−1

Let Im(S◦) and Im(S•) denote the images in rightmost E×
◦ and E×

• respectively.

Lemma 136. Im(S◦) ⊂ k×◦

Proof. Let s ∈ S◦, we have

Im(s)−1 =
∏︂

σ∈Gal(E◦|Qp)

(︁
σ−1 ◦ Nk′◦/E◦

)︁nσ
(s)

=
∏︂

σ∈Gal(E◦|Qp)

σ−1
(︂
snσ ·[k′◦:E◦]

)︂
∈ k×◦

given k◦ is Galois over Qp and thus every σ ∈ Gal (E◦|Qp) preserves k◦.

Lemma 137. Im(S•) ⊂ k×• and it is open in O×
•
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Proof. Let s ∈ S•, we have

Im(s)−1 = Nk′•/E•(s)

= s[k
′
•:E•].

∈ k×•

Thus Im(S•) = S
[k′•:E•]
• is open.

Now let β be the Qp linear map induced by the above isomorphism between Im(S•)

and Im(S◦). By the discussion at the beginning of the chapter we have that β is an

isomorphism of fields k• −→ k◦ that is by definition inertially compatible with α.

We can now drop the Galois condition and finally show for the final implication in

our main theorem 17.

Theorem 138. Let α : Gk◦ → Gk• be an open continuous isomorphism. Then there

exists an isomorphism of fields β : k• → k◦ that induces the isomorphism α on Galois

groups.

Proof.
k• k◦

k′• k′◦

k• k◦

Qp

finfin. fin. Galois

β′

β

Let k′◦ ⊂ k◦ be a finite extension of k′◦ that is Galois over Qp. Denote k′• ⊂ k•

the finite Galois extension of k′• corresponding to the open subgroup α (Gk′◦) ⊂ Gk• .

Then it follows from above that there exists an isomorphism of fields β′ : k′•
∼→ k′◦

that induces the map on Galois groups α|Gk′◦
: Gk′◦ → Gk′• . Then β′ restricts to an

isomorphism

β : k• −→ k◦
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that induces α and we are done.
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Chapter 6

Future Work

The fields Qp and Fp((T )) shares striking similarities: they are both equipped with

a discrete valuation, together with a multiplicative section from the multiplicative

group of residue field to the ring of integers, namely the Teichmuller lifts. This allows

one to write elements in their rings of integer as power series in the uniformizers p

and T respectively, with coefficients from the group of Teichmuller lifts.

In the characteristic p case one immediately recovers Fp[[T ]] from the power series

representation, essentially due to the multiplicative Teichmuller lifts also respect the

additive structure. On the other hand, the ring structure of Zp is not obvious from

the power series representation, as addition involves "carrying" when the coefficients

of powers of p interacts.

Nevertheless, the coefficients of sums and products can be worked out explicitly.

That is, when one represent elements of Zp by a series of elements in the residue

field via the power series representation and Teichmuller lifts, the arithmetic of Zp

itself can be determined entirely by the arithmetic of the residue field, together with

a fixed set of inductive rules. This is in general the construction of p-typical Witt

vectors, which in fact yields an equivalence of category between perfect Fp-algebras

and the so called strict prings which are p-adically complete, p-torsionless with perfect

Fp-algebra as mod p quotient.

In particular, given a characteristic p perfect field k, the Witt vectors W (k) is
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a characteristic 0 discretely valued complete ring with p as a uniformizer. By tak-

ing fraction field, one has an equivalence between characteristic p perfect fields and

characteristic 0 discretely valued complete fields with p as uniformizers.

6.1 Fontaine-Wintenberger Theorem and the Fields
of Norm

However, one shall note that the above algebraic comparison between Qp and Fp((T ))

only goes so far. In particular, it can be shown that the cohomological dimension of

the absolute Galois group of Qp is 2, and that of Fp((T )) is 1. Geometrically this sug-

gests that the étale site of the spectrum of Qp is bigger than that of Fp((T )). Evidently

the above equivalence using Witt vectors allows for only unramified extensions.

A deeper comparison is achieved by Fontaine and Wintenberger in the study of

so called arithmetically profinite extensions, essentially extensions that have finite

indexed ramification filtration.

Example 139. Typical examples of arithmetically profinite extensions are totally

ramified Zp extensions of mixed characteristic local fields. In particular, infinite

arithmetically profinite extensions are deeply ramified.

Theorem 140 (Field of Norms). Let L/F be an infinite arithmetically profinite ex-

tension. Define

X(L/K) = lim←−
F⊂E⊂L

E× ∪ {0}

where the limit is taken with respect to the norm maps. Let α = (αE)E and β = (αE)E

be elements in X(L/K). Define addition and multiplication by the following:

(αβ)E := αEβE

(α + β)E := lim
E⊂E′⊂L

NE′/E (αE′ + βE′) .

Then αβ := ((αβ)E)E and α+β := ((α + β)E)E are well-defined elements of X(L/K).

With addition and multiplication defined as above X(L/K) is a field of characteristic

p.
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Let L0 be the maximal unramified subextension of L/K. Define the valuation on

X(L/K) by

v(α) = vE (αE)

for any L0 ⊂ E ⊂ L. Then X(L/K) is furthermore a local field, with residue field

canonically isomorphic to kL, the residue field of L.

For any ξ ∈ kL, let [ξ] denote its Teichmuller lift. For each L0 ⊂ E ⊂ L set:

ξE := [ξ]1/[E:K1]

Then the map

kL −→ X(L/K)

ξ ↦−→ (ξE)E

is a canonical embedding.

In particular, by noting that the multiplicative groups of extensions of a fixed

mixed characteristic local field are mono-anabelian, together with the norm map

corresponding to the natural inclusion on subgroups, one has that the multiplicative

group of the field of norm is mono-anabelian as well.

Theorem 141 (Fontaine-Wintenberger). Let L/K be an arithemtically profinite ex-

tension, and M/L be a finite extension. Then X(M/K)/X(L/K) is a separable

extension of degree [M : L]. If M/L is Galois, then the natural action of Gal(M/L)

on X(M/K) induces an isomorphism

Gal(M/L) ≃ Gal(X(M/K)/X(L/K)).

Furthermore, taking field of norms establishes a canonical one-to-one correspon-

dence between finite extensions of L and finite separable extensions of X(L/K), which

is compatible with the Galois correspondence. Namely, the spectra of L and X(L/K)

has isomorphic étale sites.

In particular, the extension Qp(p
1/p∞)/Qp is arithmetically profinite. The corre-

sponding characteristic p field of norm is X(Qp(p
1/p∞)/Qp) = Fp((t1/p

∞
)).
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6.2 Perfectoid Fields and Their Tilts

Recall that the results of Fontaine-Wintenberger says that for any arithmetically

profinite algebraic extension K of Qp, the Galois group of K and its norm field are

isomorphic. The theory of perfectoid fields generalize and clarify the phenomena by

defining a new class of so called perfectoid fields. Then given a perfectoid field of

characteristic 0, tilting yields a correspondence between the étale site of K and the

étale site of its characteristic p tilt K♭. For a arithmetically profinite extension K,

the completion of K is perfectoid, with its tilt isomorphic to the completed perfect

closure of its field of norm. This way one recovers the classical correspondence.

In particular, one has Qp (µp∞) and its completion have the same Galois group; on

the other hand, Fp((t)), its perfect closure, and the completion of its perfect closure

all have the same Galois group.

Furthermore, there exists a geometric space of moduli of untilts called the Fargue

Fontaine curve, which has the same fundamental group as the spectra of Qp and is

shown to be K(π, 1). It puts many interesting results in p-adic Hodge theory into a

geometric context.

In light of the above modern developments, it would be natural to further study

them from an anabelian perspective.
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