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Abstract 

The Earth's plasmasphere is a dense and cold region of the magnetosphere that is 

populated by the outflow of ionospheric plasma along mid- and low-latitude magnetic 

field lines. The plasmasphere is characterized by a sharp decrease in density at its 

boundary, the plasmapause, typically located between 2 and 6 Earth radii. The precise 

position of the plasmapause can vary considerably depending on the solar wind conditions 

and on the activity in the magnetosphere. As a result of this step-like density profile, 

combined with the monotonically increasing dipole magnetic field close to the Earth, 

compressional waves propagating outside the plasmapause can tunnel through and be 

trapped in a narrow layer that acts as a potential well. The wave equations in this well, 

in turn, can be described by the one-dimensional wave equation which is similar to the 

Schrodinger equation. 

In this thesis, the spectrum and the spatial structure of these resonant localized modes 

is discussed for representative plasmasphere parameters. The data from SAMNET and 

IMAGE magnetometer arrays are used to infer representative density profiles in the 

plasmasphere. These data are then used to analyze the existence and properties of 

trapped compressional modes in the plasmapause. 
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Preface 

The Earth has a dipole magnetic field created by currents in its core. This field 

protects the Earth from the effects of the solar wind. When the solar wind reaches the 

Earth, it is deflected around it, forming a standing shock, the bow shock. The solar wind 

is slowed down at the bow shock and kinetic energy of the solar wind is transformed into 

thermal energy. The region between the bow shock and the region of the magnetosphere 

where field lines are closed (the magnetopause) is called magnetosheath. The plasma 

in Earth's magnetosphere consists mainly of ionized protons and electrons, with small 

concentrations of He+, 0+, He++. Moreover, the plasma in the magnetosphere is 

not evenly distributed, forming several distinct regions such as the radiation belts, the 

plasmasphere, the plasma sheet, and the magnetotail lobe. 

The plasmasphere is a cold toroidal plasma region co-rotating with the Earth. It is 

the region of interest in this work. The plasmaspheric plasma originates mainly from 

the ionosphere. Its high density is due, in part, to the fact that the magnetic field lines 

in that region are closed. It is also a region where Earth's gravitational field is strong 

and dominates over the centrifugal force associated with co-rotation. This cold, dense 

plasma region is terminated at a sharp boundary called the plasmapause, after which 

there is a region of plasma with low density called plasmatrough. The sudden drop in 

density at the plasmapause leads to interesting dynamics in the plasmasphere and in the 

magnetosphere. For instance, reflection and transmission of the magnetohydrodynamic 

(MHD) waves in the magnetosphere are significantly affected by the presence of the 

plasmasphere and the plasmapause [4], and compressional MHD waves may be trapped 

or virtually trapped at the plasmapause due to the steep density drop in that region 

[1]. It is also suggested [1] that the possibility of these trapped modes could be the 

explanation of the low latitude Pi^ pulsations which has the frequency range of 2-25 

mHz. 

Even though the possibility of the cavity or trapped modes in the plasmapause has 

been suggested, clear evidence for their existence has not yet been shown. In this the­

sis, using observed steep density profiles from three different geomagnetic storms, it is 

demonstrated that the compressional MHD waves can be trapped in the plasmapause. 

For the purpose of the analysis, profiles are taken at the times of magnetic disturbances 

because the steep density drops are mainly seen during these times. 

There are four chapters in this thesis: In chapter one, a brief review of the Earth's 

magnetosphere, and the plasmasphere is presented. The possibility of the existence of 

the compressional MHD waves and trapped modes is explained. In chapter two, an 



idealized problem is presented, which exhibits the essential features of resonant quasi-

trapped modes in a well with tunneling losses. The problem was then solved analytically 

and numerically. The solution of the problem is compared with analytical solution, as a 

verification of the validity of the numerical approach. In chapter three, a set of equations 

was derived for compressional waves, in the plasmasphere, assuming a 1/i?3 dependence 

for the magnetic field in that region. The resulting potential well was associated with 

the non-monotonicity in the Alfven velocity. These equations were then solved using 

a one-dimensional box model of the magnetosphere. After the wave equation was de­

rived, the solution was found again using a one dimensional central-difference code and 

a fourth order Runge-Kutta method. In this analysis three different data sets were used, 

corresponding to different solar wind conditions and magnetospheric disturbances. The 

corresponding density profiles were inferred from SAMNET and IMAGE magnetome­

ter arrays [9]. All profiles showed evidence of the existence of the trapped or virtually 

trapped compressional modes. In both chapters, two and three, the quality factor, Q, 

which is an important parameter in trapped resonances was calculated numerically. It 

was found that for the peak values of Q (in the graphs as a function of real frequency), 

a clear spatial localization is observed in total energy at the plasmapause position, sug­

gesting the possible existence of the trapped or virtually trapped compressional modes. 

Finally in chapter four the results are summarized and an outlook on possible future 

work is presented. 
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3.24 Effective Potential and Total Energy For High Q; Profile 3, ky ^ 0 . . . . 66 



Chapter 1 

The Earth's Magnetosphere 

1.1 Intro duct ion 

Although most people are not aware of the existence of plasma, the fourth state of 

matter, a large fraction of our universe is in plasma state. Plasma is an ionized gas 

which is generally electrically neutral. In our solar system plasmas are abundant even 

in the neighborhood of the Earth. Indeed, above approximately 80 km of altitude, the 

atmosphere gradually turns into the ionosphere and the magnetosphere, and it has to be 

described in terms of the plasma physics. 

The source of energy and plasma in the near Earth space environment is the solar 

wind and radiation. The solar wind is a highly conducting plasma released by the sun 

at supersonic speeds of ~500 km/s into the interplanetary space. The solar wind is 

produced as a result of the expansion of the solar corona and consists of electrons and 

protons and a low percentage of helium and other minority ions. The Earth's magnetic 

field, approximately a dipole at distances ~ 2RE (Earth radii) [7], is an obstacle to the 

solar wind. The magnetic field of the Earth causes the solar wind to be deflected and 

leads to the formation of a cavity in the solar wind (see figure 1.1). The solar wind hits 

the Earth's magnetic field with supersonic speed and a bow shock wave is generated. At 

this point the plasma is slowed down and the kinetic energy of the particles is converted 

into thermal energy, forming the magnetosheath with hotter and denser plasma and with 

higher magnetic field strength compared to that in the solar wind [5]. The plasma in 

the magnetosheath cannot penetrate the terrestrial field lines. Therefore, there exists a 

boundary between two regions called the magnetopause, and a cavity is formed called 

the magnetosphere. In this chapter a brief overview of the principal components of 

Earth's magnetosphere is given. Trapped magnetohydrodynamic(MHD) waves are then 
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Figure 1.1: Artist rendition of the deflection of the solar wind around the magnetized 
planets and the cavity formation (from www.msfc.nasa.gov/NEWSROOM/news/photos) 

introduced and a literature review of the subject is presented. 

1.2 Coordinate System 

Before reviewing the general structure of the Earth's magnetosphere, it is worth talking 

about its geometry. The Earth's magnetic field could be approximated as a tilted dipole. 

The Earth's dipole magnetic field can be represented using three parameters: L, A, and 

<fi (see figure 1.2), where A is the magnetic latitude, L is called the Mcllwain parameter, 

and (f> is longitude, measured counter-clockwise looking from the north pole. The locus 

http://www.msfc.nasa.gov/NEWSROOM/news/photos
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Figure 1.2: Coordinate system of the Earth's dipole magnetic field. 

of a point on a particular field line is described as; 

r = req cos A 

req = LRE, 

where req is the equatorial distance of a field line, and RE is the Earth's radius (RE = 

6378 km). 

1.3 The Earth's Magnetosphere 

As mentioned earlier, the Earth's magnetosphere is formed due to the interaction between 

the solar wind and the Earth's magnetic field. The solar wind is a highly conducting 

plasma and contains the solar magnetic field which is frozen in it as it moves with the 

solar wind flow. This frozen-in magnetic field, called the interplanetary magnetic field 

(IMF), is typically of the order of 5 nT. As a result of being frozen-in, or captive of the 

solar wind, the IMF cannot penetrate the terrestrial field lines. Thus a boundary called 
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magnetopause is formed separating the two regions. The cavity caused by the terrestrial 

field lines is called magnetosphere [5]. The magnetosphere has complicated dynamics 

and different plasma regions. The outer part of the terrestrial dipole magnetic field is 

Figure 1.3: Plasma regions of the Earth's magnetosphere (from 
http://helios.gsfc.nasa.gov/magnet.html) 

distorted by the solar wind kinetic pressure stretching the nightside and compressing the 

day-side. As a result a tail-like structure is formed on the night-side called magnetotail, 

extending beyond the lunar orbit. The day-side position of the magnetopause extends 

to approximately 8-10 RE and the nightside position, to 100 RE (1 RE = 6378 km) [6]. 

The various parts of the magnetosphere plasma regions are illustrated in figure 1.3. The 

main components include the magnetotail, the plasma sheet, the magnetotail lobe, and 

the plasma sheet boundary layer. Closer to the Earth are the radiation belt, and the 

plasmasphere [7]. 

Most of the plasma in the magnetotail is contained in the plasma sheet, at ~10 RE 

in the tail midplane [5]. The plasma sheet consists of hot particles with particle densities 

of ~ 0.1 — 1 cm~~3 [7]. The plasma sheet is populated mainly by solar wind particles 

during quiet times, and particles originating from the ionosphere during'active times. 

http://helios.gsfc.nasa.gov/magnet.html
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The plasma sheet boundary layer, generally observed as a transition region between 

magnetotail lobes and the hot plasma sheet, is the distant part of the plasma sheet in 

which the ions flow velocity is high with densities of order ~0.1 cm~s. The magnetotail 

lobe is the outer part of the magnetotail with low density plasma; lower than 0.1 cm~3. 

The ions in the tail lobe are believed to be of ionospheric origin [7]. The radiation belts, 

also called Van Allen belts, are structures that lie between 2-6 RE with the energetic 

particles oscillating between two hemispheres. These particles drift azimuthally around 

the earth due to the magnetic field gradient, thus forming the ring current. The number 

density and the energy density of the particles are more intense near the equatorial 

plane and less intense at low latitude since they interact with the neutral atmosphere 

and become lost. There exist two radiation belts, namely an inner and an outer one. 

The characteristic electron density in the radiation belts is ~ 1 cm"3, the temperature is 

~ 5 x 107 K, and the magnetic field strength varies between ~100 and 1000 nT [5]. The 

plasmasphere which will be discussed in more detail in the following section coexists in 

approximately the same region as the radiation belts [7]. 

The ionosphere is also an important region forming the inner edge of the magneto-

sphere. It is formed by the photoionization of high altitude atmospheric molecules by 

UV and X-ray radiation from the sun. At high latitudes, it is also produced by the solar 

wind impinging on the Earth and ionizing part of the neutral atmosphere. A typical 

electron density in the ionosphere is ~ 105 cm~3 and temperatures are of order ~ 103K 

and the magnetic field strength is of order <~ 104 nT. The ionosphere merges into the 

plasmasphere at low and mid-latitudes. 

The plasma in the magnetosphere can also sustain currents that feed back and affect 

the shape of the magnetosphere. Electrons and ions move in different directions produc­

ing electric currents which affects the dynamics of the magnetosphere significantly by 

transporting charge, mass, momentum and energy, and producing magnetic fields. For 

instance, the magnetopause current, the current flowing across the magnetopause sur­

face, causes the compression of the terrestrial field lines on the day-side magnetosphere, 

and the tail-like shape of the night-side magnetosphere is due to the tail current (see 

figure 1.4). In figure 1.4, the ring current which is caused by particles in the Van Allen 

belts is also seen. The ring current flows around the Earth in the westward direction and 

it affects the inner configuration of the magnetosphere. Although electrons drift around 

the Earth eastward they do not have a significant effect on the net westward current, 

due to their relatively low mass, compared to ion masses. There also exist field aligned 

currents mainly formed by the electrons which, have strong effects on the exchange of 

energy and momentum different currents regions. At altitudes of 100-150 km, some cur-
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HMagnetopause Current) 

Figure 1.4: Synopsis of the magnetospheric currents (from www.ngdc.gov/seg/geomag) 

rents exist in the conducting layers of the ionosphere such as the auroral electrojets, and 

the equatorial electro jet [5]. 

1.4 Plasmasphere and Plasmapause 

The plasmasphere was discovered through whistler waves, which are very low frequency 

waves generated by lightning, and which which propagate along the lines of force of the 

Earth's magnetic field [8]. The observation of the whistler waves showed that there is 

a region of cold plasma particles, mainly protons and a small fraction of H+ and He+ 

[11], with high densities ~ 103 cm~3 and energies ~ 1 — 2eV . 0+ is also an observed ion 

species enhanced especially during the recovery time, following high geomagnetic activity 

periods [9]. Two simultaneous studies by K.I. Gringauz using satellite measurements and 

http://www.ngdc.gov/seg/geomag
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Figure 1.5: Schematic illustration of the Earth's plasmasphere (from 
www.windows.ucar. edu/tour/link=/glossary /plasmasphere.html) 

D.L.Carpenter using ground-based measurement have showed that this region of dense 

and cold plasma is frequently terminated by a sharp boundary called plasmapause [7]. 

The position of the plasmapause is typically between 3 and 5 RE- It is closer to Earth 

during high geomagnetic activities and extends up to 6-7 RE during low activity times. It 

has a bulge formation due to solar wind disturbances (see figure 1.5). Although from the 

data collected with the ISEE satellite the plasmasphere is observed to be approximately 

circular, bulges on the dusk sector are also observed mostly at earlier local times during 

high solar wind disturbances and at later local times during quiet times [11]. 

Just outside of the plasmapause, there is a low density plasma region called the 

plasmatrough which is populated by plasma particles with densities of order 1 — 10 

cm~3. 

Around the Earth there is an approximate co-rotation flow of the plasma and, further 

from the Earth there is a convective flow towards the sun. The co-rotating plasma forms 

the plasmasphere. As a result of heating from solar UV radiation, and energization from 

electric fields induced by magnetospheric activity, plasma particles from the ionosphere 

escape along the magnetic field lines to form the plasmasphere [36]. 

The plasmasphere and the plasmapuse are highly dynamic regions and they are af-

http://www.windows.ucar
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fected by the solar wind interactions with the Earth. During geomagnetic storms the 

outer region of the plasmasphere can be transported outward and sunward to the mag-

netopause (see figure 1.6). During the onset of geomagnetic disturbances, the night-side 

plasmapause shows an inward motion with the distance at a velocity of approximately 

0.5 RE per hour, and a stripping of plasma towards the sun [11]. This erosion is related 

to the turning of the interplanetary magnetic field (IMF) southward, and the instanta­

neous rotation velocity of the plasmapause is enhanced by the strength of the IMF [11]. 

It has been suggested that the sudden density drop at the plasmapause is due to this 

enhancement of the velocity [8]. 

The plasmaspheric bulge also changes its shape by moving noon-ward and decreas­

ing its width at high geomagnetic disturbances [10]. During high magnetospheric ac­

tivity, the strong convection ablates the outer plasmasphere flux tubes, thus causing 

the plasmapause to get closer to the Earth [7]. Once magnetospheric activity ceases 

the plasmasphere depleted flux tubes are gradually refilled from the ionosphere [9]. Ion 

temperatures are higher in the inner plasmasphere than those of the plasmapause [7]. 

1.4.1 Formation of the P lasmasphere and P lasmapause 

Of the different theories of the formation of the plasmapause and plasmasphere, the 

simplest one is that it is formed by the large-scale electric field interactions. In this model, 

the terrestrial magnetic field is assumed to be a centred dipole and the magnetosphere 

is in steady state. The plasma in the dipole magnetic field is assumed to be cold and 

the solar wind velocity to be constant [12]. 

The cold plasma and the field lines in the magnetosphere are influenced by two major 

energy sources, namely the solar wind kinetic energy in the outer magnetosphere and 

daily rotation of the Earth in the inner magnetosphere [5]. As stated before, the field 

lines of the Earth are stretched by the solar wind flow down the magnetotail. Plasma 

in the magnetosphere is transported together with the magnetic field lines since it is 

frozen-in with them. Basically, the magnetic field lines are connected to the IMF on the 

day-side. They are swept down to the magnetotail and reconnected on the night-side. 

After this reconnection these field lines move back to their dipole position completing 

the cycle by sunward flow of plasma in the inner magnetosphere. The simultaneous drift 

of the plasma with the field lines is referred to as convection which, in turn, is associated 

with a convection electric field [5]. Reconnection occurs when the IMF is southward, as 

previously stated. The solar wind and IMF generates a convection electric field which is 
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Figure 1.6: Depletion of the plasmasphere during high geomagnetic activity is shown 
in an ultraviolet image, taken by NASA's IMAGE satellite. The bulge of the plas­
masphere towards the sun is clearly seen. The photo is taken by the IMAGE satel­
lite. The bulge had been postulated before, but the picture above was the first ever 
taken made of its actual shape. IMAGE remains in operation to this date and it 
continues to study how geomagnetic storms effect the Earth's magnetosphere (from 
http://apod. nasa.gov/ apod/image/0101/,Jan,2001) 

http://apod
http://nasa.gov/
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directed from dawn to dusk as described by, 

Ecn = ~VSW X BiMF, 

where Vsw is the solar wind velocity and B J M F is the interplanetary magnetic field 

strength. 

There is also a co-rotation electric field caused by the rotation of the Earth, which 

is defined as 

^Cr = - V o X Bd i p o;e , 

where Vcy is the Earth's co-rotational velocity and TSdipole 1S t f l e dipole magnetic field 

of the Earth. The plasmasphere is formed due to large scale interactions of the above 

electric fields. If convection is stable then d'B/dt = 0, and hence V x E = 0. Thus, the 

convection electric field can be expressed as 

where $cn is the convection potential defined to be 

$>Cn = -BCULRE sin(<f>) 

in the equatorial plane, where <p is azimuthal angle, and LRE is the radial distance. 

On the other hand, the co-rotation electric field could be written as 

E o = - ( w x r) x Bdipoie, 

where u = 7.29 x 10_ 5rd/s is the angular velocity of the rotation of the Earth and r is 

the radial distance from the Earth's centre. On the equatorial plane 

UBBRE 
ECr - — £ 5 — . 

where BE = 3.11 x 10~3 T is the equatorial magnetic field on the surface of the Earth. 

As can be seen from the above equation the co-rotation electric field decreases as 

\JI? and, in the equatorial plane, it is directed radially inward. The equatorial plane 

electric potential can also be calculated using the relation E o = — V<f>(>7 which gives 
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The streamlines of the convection potential are open straight lines directed towards the 

sun and the co-rotational equi-potentials are closed circles (see figure 1.7). Inside the 

magnetosphere the motion of the plasma is affected by both the convection and the 

co-rotation electric field. The total electric potential in the equatorial plane is 

C T T> • (M\ WEBERE 

= EcnLREsm.{4>) -—2- . 

As can be seen from the above total electric potential, close to the Earth co-rotation 

dominates and the plasma co-rotates with the Earth. As a result, the equi-potential 

contours are closed circles. Farther away, on the other hand, equi-potential contours 

are open and convection dominates. As mentioned before, the co-rotation electric field 

points radially inward in the equatorial plane and the convection electric field points from 

dawn to dusk. Two classes of streamlines cross each other on one contour that supports 

zero electric field at 1800 local time and separates the closed and open streamlines (see 

figure 1.7). This equi-potential contour is the position where the plasmapause is formed. 

Within the plasmapause, plasma is frozen-in and co-rotates with the Earth forming 

the plasmasphere [12]. Outside the plasmapause the streamlines goes to the day-side 

magnetopause and day-side reconnection causes the flux tubes to open and plasma is 

then lost to the solar wind. 

In addition to the convection and co-rotation electric field theory, it is also proposed 

that the plasmapause is the stripped part of the post-midnight sector due to the magnetic 

flux tubes interchange motion driven by the Roche-limit surface. The Roche-limit is the 

surface where the gravitational and centrifugal forces balance each other in the local 

magnetic field direction [18]. Figure 1.8 illustrates the plasmapause position following 

this viewpoint. At L > 4.5 the centrifugal (or inertial) forces are dominant, the plasma-

sphere is peeled off and the plasmapause is formed. The plasmasphere will be bounded 

by a surface which almost matches the equi-potential that is tangent to the Roche-limit 

surface at its deepest penetration point if the electric field distribution does not change 

for around 24 hours or more [18]. In this model the position of the plasmapause is 

described as the minimum radial distance of the Roche-limit surface. 

1.4.2 Pos i t ion of the P lasmapause 

The separatrix at which the convection and co-rotation streamlines cross each other is 

called the Alfven layer. The Earth rotates eastward, therefore the sunward convection 

flow and the co-rotation flow are in the same direction on the dawn side and in the 
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Figure 1.7: Electric equi-potential lines in the equatorial plane. Small figures on the 
top and in the middle, figure (a) shows convection and co-rotation lines respectively and 
the direction of the corresponding electric fields. Figure (b) illustrates the superposition 
of the total equi-potential lines and particle drift motion with the red line representing 
intersection of the closed and open equi-potential lines.The sun is located on the left 
[15]. 
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Figure 1.8: Illustration of the plasmapause formation with the effect of the balance 
between the gravitational and centrifugal forces at the Roche limit surface. The solid line 
is the equatorial section of the Roche limit surface, the dashed lines are the equi-potential 
lines and the boundary of the outer shaded region is the last closed equi-potential line; 
that is, the Alfven layer [18]. 

opposite direction on the dusk side. This configuration produces a lower drift on the 

dusk side and a higher drift on the dawn side, causing the Alfven layer to be closer to 

Earth on the dawn and farther on the dusk regions (see figure 1.9) [13]. At the point 

on the dusk side of the Alfven layer where the plasmasphere has a bulge, the eastward 

co-rotation and westward convection cancel each other. Thus at this point, referred to as 

the stagnation point, the plasma flow velocities vanish. The distance of the stagnation 

point from the Earth could be found by using the relation <&cn = $cv and sin(<p) = 1, 

which gives 

(u)EBBRE\^ 
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showing clearly that the distance of the stagnation point is inversely proportional to the 

convection electric field. 

The above definition of the plasmapause as the position of the last closed equi-

potential assumes that the magnetospheric electric field distribution is stationary in time. 

The solar wind, however, is hardly ever stationary. As a result, the convection electric 

field is also usually changes in time. The general enhancement of solar wind flux and the 

fluctuations in the IMF affects the convection electric field which determines the position 

of the Alfven layer, and thus of the plasmapause, and cause them to change continually. 

Once the convection electric field becomes stronger, during geomagnetic storms, then 

the plasma in the outer plasmasphere will flow along the streamlines of this enhanced 

electric field and will be lost to the magnetosphere. This process causes the position of the 

plasmapause to change continually [8]. The plasma that is parted from the plasmasphere 

is sometimes transported to the magnetotail and eventually into the plasma sheet with a 

small probability of escape into the solar wind. At the end, the convection electric field 

weakens and 10-30% of the swept plasma becomes trapped between the plasmasphere 

and the magnetopause. After several days of recovery following a storm, some of'the 

eroded plasma becomes tied to the plasmasphere and begins to rotate with the Earth. 

The plasmasphere is refilled by ionospheric plasma outflow. Figure 1.9 illustrates the 

evolution of the Alfven layer after an enhancement of the convection electric field. The 

fastest changes at the plasmapause position arise near the dusk sector. After 6-10 hours 

from the disturbance, the plasmapause moves to a new equilibrium position closer to 

the Earth [13]. The erosion could last from hours to tens of hours, after which follows 

the refilling of the plasmasphere which requires several days, and the thermalization of 

the counter-streaming plasmas. These phenomena are still the subject of active research 

[14]. Statistical and case studies of the events that follow a magnetic disturbance have 

shown that the refilling of the plasmasphere generally takes place on a long time scale 

[16]. 

At the extreme of magnetic activity, geomagnetic storms cause the location of the 

plasmapause to vary significantly, with an outer boundary as close as 2.5 RE during high 

activity times, compared to ~ 6 — 7RE during quiet times. 

1.4.3 Dens i ty Profile 

The sharp density drop at the plasmapause is the result of the solar wind disturbances. 

The plasmapause position moves closer to the Earth just after a geomagnetic storm. As 

a result of this, a sharp density decline is observed at the plasmapause. The density in 

the quiet plasmasphere falls off with L more slowly [8]. Figure 1.10 clearly shows the 
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Figure 1.9: Computed plasmapause position after an enhanced convection electric field. 
The labels show the different positions of the plasmapause at different times of the 
enhancement. l.,2, 10 shows the computed positions after corresponding hours of the 
enhancements and 0 represents the Alfven layer. The dotted line labeled 'FINAL' shows 
the steady-state plasmapause position after a long period of time [13]. 

effect of the solar wind disturbances on the density profile of the plasmapause. In figure 

1.10 the solar wind disturbance strength is expressed in terms of the Kp index. This 

index is a measure of the mean maximum fluctuations (relative to the average on a quiet 

day) in the horizontal component of the Earth's magnetic field over a three-hour interval, 

obtained from a number of magnetometer stations around the world [34]. During strong 

solar wind disturbances the fluctuations in the geomagnetic field components are larger, 

thus the Kp index is larger and the plasmapause density drop is sharper. For instance, 

no sharp boundary was observed when the solar wind was quiet, Kp < 1 + . When the 

solar wind was active, however, the plasmasphere boundary is sharp and well defined. 

These points are illustrated in figure 1.10, where the position of the plasmapause is seen 

to be closer to the Earth as the disturbance gets stronger. It is inferred from whistler 
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Figure 1.10: Density profile of the plasmasphere at different Kp indices. High Kp in­
dex represent a higher level of magnetic activity; that is, the solar wind disturbances 
strength(http://www.new.ss.ncu.edu.tw/ lyu/). 
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wave data that the reduction in the main plasmasphere size at the time of disturbances is 

generally accompanied by a decrease in the electron density by a factor of ~ 1.2 —3 in the 

outside of the eroded parts. The whistler waves are caused by the lightning discharges 

and the name whistler comes from the nature of their dispersion relation [7]. 

The plasmapause density gradient can vary azimuthally, and can be sharp or shallow 

depending on the conditions [9]. The density discontinuity is mostly seen on electron 

and H+ density profiles; heavy ions do not contribute much and their effect is mostly 

neglected. The density profile of the plasmapause can be very sharp at most local times 

[17]. The scale of the density drop at the plasmapause varies but it could be approximated 

as O.IRE on the nightside and 0.2RE on the day-side. In this thesis the electron number 

density is used to characterize the steep decline at the plasmapause. Once the electron 

number density is known, assuming a pure hydrogen plasma for simplicity, the plasma 

mass density can be inferred [9]. Figure 1.11 illustrates the change in the electron 

number density profile with the geomagnetic activity measured by using the Dst index. 

Dst is a disturbance storm time index measuring the horizontal component of the Earth's 

magnetic field which is inversely proportional to the energy content of the ring current 

which increases during geomagnetic storms [14]. Thus the Dst index decreases during 

the geomagnetic storms. 

In quiet times the plasmapause moves further away from the Earth and does not have 

a steep density decline anymore, as pointed out before. The sharp decline of the density 

profile at the plasmapause and the resulting non monotonic profile in the Alfven velocity 

are responsible for the appearance of an effective potential well capable of trapping 

compressional waves. This constitutes the main interest of this project. 

1.4.4 Waves Associated with the Plasmasphere and the Plasmapause 

Interesting incidences of wave phenomena, believed to be associated with the abrupt 

density decline at the plasmapause, have been observed or theorized at or in the vicinity 

of the plasmapause. The steep density drop could be a source of boundary waves at the 

plasmapause; a unique kind of whistler wave mode is observed just beyond the steep 

decline of the plasmapause density profile. This region is also suggested to be the region 

for kilometric continuum radiation [19]. Non-monotonic change of the Alfven velocity due 

to steep density drop acts as a resonator affecting the structure of the hydromagnetic 

waves in the inner magnetosphere [20]. During geomagnetic disturbances, energetic 

particles are transported to the plasmapause region by convection flow and they cause 

ion cyclotron instabilities with wavelengths of the order 102 — 103m [21]. The two MHD 

modes, compressional and shear modes, are decoupled in a cold uniform plasma, but 
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Figure 1.11: Electron number density profile during two active geomagnetic storms of 
10 days period. The Dst index is plotted for the time interval with the drops indicating 
geomagnetic storms. A steep drop is seen with the onset of storm(line 2 corresponding 
£2), after the quieting, the plasmasphere refills and density in the eroded region increases. 
A second storm interrupts the refilling process and a steep drop is seen again at L=4.2 
(line 5) [14] 

they are coupled in the non-uniform magnetosphere. The shear modes, also called Alfven 

waves, and two types of the compressional wave modes, the fast and slow modes, are 

possible. The irregularity at the plasmapause is a crucial issue in wave coupling in the 

magnetosphere. It is also proposed that there is an abrupt increase in the frequency of 

the upper hybrid resonance band at the plasmapause [27]. 

Finally, the plasmasphere and plasmapause are suggested to be effective in mode 

trapping in the magnetosphere. MHD wave trapping is also suggested in between the 

inner plasmapause boundary and outer magnetopause boundary. The reflection and the 

transmission of the MHD waves is significantly affected by the presence of the plasma­

pause [4]. It is also discussed in [4] that the Alfven speed barrier caused by the steep 
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decline in density at the plasmapause plays an important role on the reflection and 

transmission of the compressional waves in the inner magnetosphere. Since the Alfven 

speed crest represents the boundary between the outer magnetosphere and the plas-

masphere, it has significant effects on wave phenomena. It is also proposed that wave 

trapping in the cavity between high density magnetopause and plasmapause regions gen­

erates the terrestrial continuum radiation which is observed in the plasmatrough region 

with frequencies higher than the local plasma frequency [26]. Continuum radiation is 

trapped in the magnetospheric cavity and dispersed uniformly due to repeated reflec­

tions at the cavity walls. Observations showed evidence of the standing compressional 

MHD modes bouncing to and fro between the magnetopause and the plasmapause. The 

sudden density drop causes the oscillation frequency, which is inversely proportional to 

the square-root of the density, to peak just outside the plasmapause [22]. 

ULF(Ultra Low Frequency) pulsations are fluctuations of the Earth's surface mag­

netic field [5]. They have two classification types: continuous(Pcl —5) and irregular(Pjl — 

2) [8] [5]. Pc pulsations have periods in the range from several minutes to hours and wave­

lengths of several RE, and they can be observed over a large latitudinal and longitudinal 

range [5]. There are two possible explanation of the generation of the Pc pulsation; they 

are generated by the surface waves that are a result of the Kelvin-Helmholtz instability 

caused by the solar wind flow around the magnetopause, or compressional waves enter­

ing the magnetosphere at its nose [5]. Pi pulsations have shorter periods and are more 

localized. They are thought to be associated with geomagnetic storms [5]. There also 

exist unexplained low and mid-latitude pulsations for which different possibilities of the 

generation has been suggested. With the combination of data and observation it has 

been suggested that the damped sinusoidal oscillations observed at mid-latitudes can be 

related to an MHD surface eigenmode excited at the sharp plasmapause density gradient 

[23] [24]. The possibility of the plasmasphere acting as a resonant cavity for ULF waves 

has been explored [28], where it was concluded that plasmaspheric cavity resonance pe­

riods would be the most likely mechanism for the mid-latitude P%2 pulsation. However, 

the existence of the cavity modes at the plasmapause has not been proven thus far. Sur­

face waves is another possibility that is proposed for the cause of the low latitude ULF 

pulsation of Pc3 —5 [23] [30]. However, the possibility of surface waves was ruled out later 

on by several studies [28] [2] where more emphasis was given to the possibility of cavity 

or waveguide modes [2]. Other papers were written in support of surface waves possi­

bilities against trapped modes [22] [31] [32] . In the present thesis, the suggestions that 

cavity modes can exist at the plasmapause is supported and shown numerically with the 

calculation of the total energy and dispersion relation of the compressional MHD modes. 
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1.4.5 Trapped Compressional M H D Waves in the P lasmapause 

Compressional MHD waves can convey energy across the magnetic field lines, thus they 

play a crucial role in ULF wave properties [3]. The behavior of the compressional MHD 

waves in the inhomogeneous magnetosphere has been given much attention in the past 

([4] [2][3] [29][1]). In order to conceptualize compressional MHD modes an analogy is now 

presented between these waves and quantum mechanics. The similarity between the 

MHD wave equation and the Schrodinger equation is quite useful to grasp the idea of 

compressional MHD modes and their trapping or virtual trapping in the plasmapause. 

As is well known in quantum mechanics, if a potential barrier is present, waves can be 

trapped, virtually trapped, they can tunnel or scatter, depending on the wave and the 

potential barrier properties (see figure 1.12). In situations where the potential well has a 

structure such as illustrated in figure 1.12a, it is found that wave energy can be confined 

spatially in the region of the potential well. The corresponding trapped modes would 

be localized spatially in the region of potential through. In the situation illustrated in 

figure 1.12b, on the other hand, a wave coming from outside the region of potential 

crest would be scattered away from it. In figures 1.12c and 1.12d it is possible to have 

virtually trapped resonances depending on the frequency of the waves and the shape of 

the potential well. Waves with relatively low frequencies would be quasi-trapped modes. 

The waves with higher frequencies are no longer trapped forming virtual scattering res­

onances [3]. It can be seen that the density characteristics at the plasmapause leads 

to a profile in the Alfven speed across the magnetosphere that corresponds to figures 

1.12c and 1.12d, with the crest corresponding the region of the sharp density drop. It 

therefore follows that trapped or quasi-trapped modes might exist in the region of this 

Alfven speed valleys. 

Let us now make the analogy between compressional waves and the Schrodinger 

equation more precise [3]. The Schrodinger equation for a one dimensional potential 

barrier can be written as; 

. t a^(x , t ) / 7i2V2 _., A ,, ^ 
,ft-V = (^+"(T(x'f)' 

where V(x) is the potential barrier, h is the Plank's constant, and ip(x., t) is the wave func­

tion. If it is assumed that the wave function, ip(x,t), is proportional to e*(fevS'+fc**--E/>i<)) 

the above equation turns into 

g + £«.-vW)*-a 
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where E„ = E — | ^ (fc| + k%) is the effective energy. Arranging the above equation, 

-^ + K*(x)^ = 0, (1.1) 

is obtained, where K% = ^ (£"„ — V) is a function of the effective energy, and of the 

potential, V(x). 

Similarly, the MHD wave equation, for spatially uniform wave, for electric field com­

ponents is 

where VA is the Alfven speed and E± is the transverse electric field component. Again, for 

the purpose of making the analogy, the wave is assumed to be of the form E(x)el^y+kl,z~U}t^ 

and the constant Alfven speed is formally replaced by VA(X) with x, y and z represent­

ing the radial, azimuthal and north-south directions respectively, the above equation 

becomes 

dx2 \V%(x) y J 

This equation can now be written as 

^-2+kl(x)^E = 0. (1.2) 

where k\ = fa — k% — &f. In the following, only perturbations corresponding to com-

pressional waves propagating across magnetic field lines are considered. 

From the general properties of second order ordinary differential equations, it is clear 

that the solution to equation 1.1 is oscillatory when K% > 0, and that the solution 

to equation 1.2 will also be oscillatory when k% > 0. More specifically, for these two 

equations, the condition for having an oscillatory solution corresponds to En > V(x) for 

equation 1.1, and u> > VA{x)\lk2 + k\ for equation 1.2. The waves become evanescent 

when K2 < 0 and k\ < 0. Therefore, En and V(x) in the Schrodinger equation are 

analogous to u and VA{X) in the MHD wave equation respectively. Hence, the Alfven 

velocity valley produced by the plasmapause density drop is mathematically analogous 

to the effective potentials shown in figures 1.12. Looking at the equation of the Alfven 

speed, 
VA{X) = Bolxl a 

profile similar to figures 1.12c and 1.12d would be expected 
ypoww 

which would support quasi trapped resonances. 
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(c)quasi trapped resonances (d)vtrtual scattering resonances 

Figure 1.12: Illustrations of several possible potentials in wave mechanics. The energy 
En and potential V(x) are analogous to the frequency, u, and the Alfven speed, VA, 
respectively for compressions! waves described in the MHD approximation. 
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Chapter 2 

Ideal Case: Toy Problem 

In this chapter, the problem is idealized by using a fictitious potential well that supports 

the existence of quasi-trapped modes, as introduced in the previous chapter. For sim­

plicity, a step function is assumed as the potential barrier, as illustrated in figure 2.1. 

This constitutes an idealization of the compressional wave problem of interest here. As 

a starting point, the mode trapping is addressed by solving the wave equations assuming 

an incoming wave from the right, with unit amplitude. By considering the amplitude 

of the solution in the potential well (region 1 in figure 2.1), as a function of the wave 

frequency, it is then possible to identify resonance conditions corresponding to nearly 

trapped solutions. Then a second approach to the solution is taken consisting of solving 

the wave equations as an eigenvalues problem, with boundary conditions corresponding 

to purely outgoing propagation at the right boundary. This formulation of the problem 

has the advantage of providing a straightforward calculation of the quality factor asso­

ciated with the cavity, in terms of the mode decay rate and real frequency. The quality 

factor is proportional to the ratio between the wave period and its decay time. 

Following the second approach, the wave equations are then solved fully numerically 

and the solutions are compared with those obtained from the analytic solution. This 

comparison is useful in testing the validity of the results obtained with the numerical 

solution of the wave equations. This is of interest, considering that the same technique 

is used in the next chapter, in the solution of the more realistic box-model description 

of mode trapping at the plasmapause. 
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Figure 2.1: Representative of the effective potential. 

2.1 Construction of the Wave Function 

2.1.1 Cont inuous spec trum wi th an incoming wave of unit ampl i tude 

The first solution considered is for the wave amplitude in the well region (region 1 in 

figure 2.1) as a function of the wave frequency. This is calculated for a wave coming 

from the right with a unit amplitude. This idealized problem is constructed because it 

is readily amenable to analytic and numerical solutions. This model problem consists of 

solving a one dimensional wave equation similar to the Schrodinger equation. 

The model wave equation used is; 

cPip(x,t) 
dx2 + I -o- - sign(k2,k) i>(x,t) = 0, (2.1) 

where the potential, V(x), is defined as ^ — sign(k2, k), c is the speed of light, and UJ is 

wave frequency . The function sign(k2, k) is equal to \k2\sign(k), and k is the parameter 
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determining the depth of the potential well (see figure 2.1). The values fci, k2, and £3 in 

the figure 2.1 represent the k values in regions 1, 2 and 3. 

The boundary conditions are taken to be; 

1. The incident wave amplitude is equal to 1, or ^ 3 / = 1 in region 3, where the initial 

wave is coming from, 

2. The wave function is equal to 0 at x = 0, ip(x,t)\x_0 = 0; 

Equation 2.1 will have a solution of the type; 

^(x,t)=Ae*™x, (2.2) 

where A is the amplitude, and a = J ^- — sign(k2, k). Looking at the above expression, 

it can be seen that the solution will be oscillatory when ^ > sign(k2,k), and that it 

will be non-oscillatory, decaying or growing when %- < sign(k2,k). 

Assuming a time dependence of the form e_Krf , the solution of the wave equation in 

each region is written as, 

1. Region 1, from x = 0 to x = x\; 

(A1Te-iaiX + A1Reiaix) e~iujt, 

2. Region 2, from x = x\ to x — x2; 

{A2Te-ia2X + A2Reioi2X) e~iuit, 

3. Region 3, for x > x2; 

(A3Ie-ia3X + AZReia3X) e ^ ' . 

In these expressions, without the loss of generality, a±, a2, and 03 are assumed to be 

positive; that is, 

ai = y ^ - sign(k\,ki), 

ot2 = y ^ - sign{kl,k2), 

OLZ = y/^-signal, k3). 

With this convention, it follows that AIT, A2T, ^ r a r e amplitudes of waves propagating 

to the left and Am, A2R, A ^ R are the amplitudes of the waves propagating to the right. 

Then the above boundary conditions 1 and 2 along with the fact that the solution and 
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its first derivative must be continuous, lead to the following set of algebraic equation: 

A1R(eiaiXl - e~iaixi) - A2Reia*Xl - A2Te-ia2xi = 0 

aiAlR{eia^ + e~ia^) - a2A2Reia^ + aa^e-** 2 * 1 = 0 

A2Rei0l2X2 + A2Te~ia2X2 - Ameici3X2 = e-**3*2 

a2A2Reia2X2 - a2A2Te-ia2X2 - azAzReia3X* = -a3e'ia3X2. 

After arranging the set of equations above into a matrix form below equation 

/ (« ,«ain l) 
ai(eiaiX1 +e~iaiXl) 

0 

0 

- a 2 C 

a2e
ia201 

XCt2Xl 

e 

a2e 

e 

-ai2e 

*a2^2 

ia2^2 

0 

0 
_pict3X2 

-a3e' 203^3 

^ / MR \ 
A2R 

A2T 

/ \A3R J 
(0 

0—iat3X2 

\ -OL%e~ ) 

(2.3) 

is obtained. Equation 2.3 is then solved using LU decomposition [33] for a given set of 

hi, k2, &3, xi, and x2 values. Trapped modes are searched by arranging the k values in 

each region, which in turn determines the characteristics of the potential (see figure 2.1). 

In the case considered here, x± and x2 are set to 3.141 and 4 respectively, c is set to unity, 

and the values of k\, k2, k^ are set to -1 , 4, and -1 . In figure 2.2 the maximum amplitude 

in region 1 is plotted as a function of the frequency, u>. The peaks are expected to 

correspond to frequency values associated with quasi-trapped modes. Note that in this 

analysis, the wave frequency is assumed to be purely real, and it is varied continuously; 

that is, the waves considered have a continuous spectrum. In the following, the wave 

frequency will be assumed to be complex, and the resulting spectrum will be discrete. 

2.1.2 Discrete spectrum and quality factor - analytic solution 

In the study of cavity modes, the quality factor, Q, is a useful parameter to characterize 

the cavity. The Q factor is proportional to the ratio between the wave period and its 

decay time: Q — K(T/T), where T is the wave decay time and T is its oscillation period. 

Using 1/T = / = ojr/27c, the Q factor is expressed as; 

Q = 
UJrT 
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Figure 2.2: Maximum Amplitude A in region 1 as a function of frequency, u. In this 
plot the frequency is purely real and continuous. The values of the frequency where the 
amplitude peaks are seen, are expected to be the resonance frequencies. 

and using the relation Wj = 1/r Q factor equation is obtained as; 

2w« 
(2.4) 

where, the frequency, to, is now set to be complex and Ui is the imaginary part, ujr is 

the real part. Equation 2.4 will be used the calculate the Q factor values in the current 

problem. 

Cavity resonances are observed if waves are confined to a finite region of space which 

is delimited by two classical turning points. This incident can be observed in the assumed 

potential well if the resonant frequency condition is satisfied. Therefore, in order to find 

the cavity modes in the potential well the Q factor should be sufficiently high, so that 

the waves do not decay in a short time, before reaching the potential walls. A high 

Q factor means that the peak width of the frequency response is narrow and damping 
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is very small. The decay rate is also associated with the wave tunneling through the 

barrier. 

As stated earlier, the wave equation is solved as a discrete eigenvalue problem. Specif­

ically, the boundary conditions are now assumed to be 

1. a vanishing amplitude at the left boundary, 

2. a purely outgoing wave propagation at the right boundary 

More specifically, in the notation of the previous subsection, the boundary conditions 

are 

Ayr + MR = 0 
A3i = 0. 

The spectrum of the eigenvalue problem is calculated numerically using a root finder. 

Figure 2.5 shows a plot of imaginary part of the frequency as a function of the real part. 

The corresponding Q factors can then be calculated, using equation 2.4. The results 

are shown in figure 2.5 with the stars representing the solutions obtained with the present 

approach. These results are independent of the length of the system or the position of the 

right boundary. It is worth emphasizing that in figure 2.5, high values of Q correspond 

to frequencies of the amplitude peaks in figure 2.2, where the amplitude is plotted as a 

function of the continuous frequency. Figure 2.3 illustrates the solution for the two lower 

values of the mode frequency, corresponding to the two highest values of Q. This figure 

clearly shows the spatial localization of the mode in the well region, and the relatively 

low amplitude of the leaking (tunneling) wave. For comparison, figure 2.4 shows a wave 

corresponding to a low Q. From the expression for the Q factor in equation 2.4, it is 

seen that the high value means low w,, which gives longer decay time. 

2.1.3 Discrete spec trum and quality factor - numerical solut ion 

In this section the wave equation, equation 2.1, is solved fully numerically using a fourth 

order Runge-Kutta method. The wave equation has the form 

y"+(^-sign(k2,k))y = 0. (2.5) 
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Figure 2.3: Wave function as a function of distance for two different frequencies that 
correspond to a high Q factor from the analytical solution. The values used are; ur — 
1.55, LJi = -4.020 x 10~3, Q = 1937.8 for figure (a), and UJT = 2.57, wi = -1.60 x 10~3 

and Q = 801.7 for figure (b). These correspond to the two largest values of Q in figure 
2.5. 
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Figure 2.4: Wave function as a function of distance for a frequency that corresponds to 
a low Q factor. The mode considered corresponds to ur = 7.31, Wi — —0.247 x 10~3, 
and Q = 14.7. This is a low Q value chosen from figure 2.5. 

In order to apply the Runge-Kutta method to the wave equation, the wave function ip, 

and its first derivative, ?/>', are expressed as, 

i> = 2/1, 

i> = 2/2, 

thus, the equation 2.1 is rewritten as a set of coupled first order ordinary differential 

equations as, 

dyi 
-to = y2' 

t - -(^(^)>i. 



CHAPTER 2. IDEAL CASE: TOY PROBLEM 31 

The boundary conditions are the same as in subsection 2.2.2. They correspond to a 

vanishing amplitude at x = 0, and a purely outgoing wave at the right boundary. In 

order to solve with Runge-Kutta integration, it is now necessary to assume some initial 

conditions which are specified at x = 0. They are 

•ft = 0 (same as one of the boundary conditions) and, 

dip/dx = j/2 = l. 

The solution is then integrated up to the right boundary and the eigenfrequencies are 

determined using a standard root finder, so as to satisfy the right boundary condition 

ip(x, t)' - ia3il){x, t) = 0. (2.6) 

It should be noted that the initial condition, 2/2 = 1, is of no consequence in this linear 

eigenvalue problem, as the solution is defined up to an arbitrary multiplicative constant. 

The wave is assumed to be initiated in region 1 in the figure 2.1, and the eigen-values 

which satisfy the boundary condition in the region 3 is found. Then the Q factor is 

calculated using these frequencies, in the same way as with the analytical solutions. 

The results obtained with this fully numerical approach are in excellent agreement with 

those presented in subsection 2.2.2 as is apparent from figure 2.5. The number of eigen­

frequencies is the same in both approaches, in the entire frequency interval considered. 

The maximum relative difference in these frequencies is found to be of the of order 10~5. 

For comparison the frequency and Q factor graphs from both subsections are superposed 

in figure 2.5. The agreement between the results obtained is this section and those of 

subsection 2.2.2. is a useful test of the numerical approach to be used in the next chap­

ter. The work done in this chapter, showed that with a symbolic potential of the figure 

2.1 it is possible to obtain trapped modes of the compressional waves. 
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Figure 2.5: Superposed graphs of frequency spectrums, figure (a), and Q as a function of 
real frequency(wr), figure(b), from analytical and numerical solutions. The good match 
demonstrates the consistency of the numerical method which will be used in chapter 
three for a more realistic solution of the problem. 
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Chapter 3 

First Approximation: Box Model 

In this chapter the problem of compressional mode trapping in the plasmapause is ex­

plored with physically more realistic set of equations. For that purpose, a one dimensional 

approximate model, the box model, is used. First a governing wave equation is derived 

in the ideal MHD approximation. This derivation is based on Maxwell's equations, the 

plasma continuity equation and the equation of momentum conservation. The plasma 

in the plasmasphere and plasmapause is assumed to be cold, thus pressure effects are 

neglected. The resulting wave equation is a second order ordinary differential equation. 

Using a standard technique, this equation can then be transformed into a second or­

der differential equation of the form 2.1, from which an effective potential can readily 

be identified. The wave equation, combined with the appropriate boundary conditions, 

then constitutes an eigenvalue problem as in 2.2.3. A numerical solution of this equation 

then yields discrete mode frequencies from which Q factors can be calculated, as in the 

previous chapter. 

3.1 Construction of the Velocity Wave Function 

In this section, an equation is derived for the velocity components of the plasma, in 

the MHD approximation. The plasma in the plasmasphere and the plasmapause can be 

approximated as cold. Under these conditions, the thermal pressure, P, is equal to 0. 
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The set of equations used are; 

^ M + V - b ( r , t ) V ( r , t ) ] = 0, (3.1) 

jt[p(r,t)V(r,t)} = J(r,t)xB(r,t), (3.2) 

V x E M ) = - * ? £ * > , (3.3) 

V x B ( r . t ) = MoJ(r,t) + € o / i o ^ ^ , (3.4) 

and ideal MHD condition for the electric field; 

E(r , t ) = - V ( r , t ) x B ( r , t ) . (3.5) 

Where r = (x,y,z) is the position vector, t is the time, E is the electric field, B is the 

magnetic field, J is the current density, p is the mass density, /xo = 47r x 10~7 N/A2 

is the permeability of free space, and eo = 8.85 x 10~12C2/Nm2 is the permittivity of 

the free space. Charge neutrality, ne = rii, is also assumed, thus no electric-field force is 

present the equation of motion 3.2. In the following, all equations are solved in the linear 

approximation. Specifically, dependent variables are assumed to be the superposition of 

an equilibrium value, say go, and a perturbed value g\; g(r,t) = go(r,t) +gi(r,t), where 

g represents an arbitrary dependent variable. All first order perturbations are assumed 

to depend on time according to g(r,t) = g(r)e~lut\ where u> is the mode frequency. 

Linearization: 

Equations 3.1, 3.2, 3.3, 3.4, and 3.5 are then linearized using the following ansatz; 

E == Eo -)- Ei 

V = Vo + Vi 

B = Bo + Bx (3.6) 

P = Po + Pi 

J = J 0 + J i 

Prom this point on, for simplicity, p and V are used instead of p(r,t) and V(r , i ) respec­

tively and the same is used with the other variables, E, B, and J . 

Starting with equation 3.1, the continuity equation, first the values of mass density, 
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p, and velocity, V, are replaced from the set of equation 3.6 to yield 

^ ( P o + pO + V-Kpo + PiXVo + Vi)] = 0, 

^ + ^ + V-[/>oVo + p o V i + p 1 V 0 + p1V1] = 0. 

Using the facts that po is constant in time, dpo/dt = 0, Vo = 0, and neglecting second 

order term, the above equation becomes; 

^ L + V - ( p 0 V 1 ) = 0. (3.7) 

Then the equation of motion, 3.2, is linearized following the same approach as above; 

d 

d 

A-[(po + Pi)(Vo + Vi)] = (J0 + J i ) x ( B 0 + B1) , 

,. [poV0 + poVi + piV0 + piVi] = Jo x B 0 + J o x B i + J i x B o + J i x B i . 

The the zeroth and the second order terms are neglected. The values Vo = 0, and BQ and 

po are constant in time, dBo/dt = 0 and dpo/dt = 0, are used. In order to approximate 

an actual dipole geometry, the value V x Bo is assumed to vanish, thus Jo = 0 which 

results in 
dVj T „ 

PO—TT = J l X B 0 . 

dt 

Then with the reminder that, d(Vi)/dt is the convective derivative, that is; 

I t v o - ^ + Cv.vov,, 

and neglecting the non-linear term, (V-Vi)Vi, the final version of the linearized equation 

of motion is obtained as, 

Po~- = J i x B 0 . (3.8) 

Finally, following the same steps, the linearized forms of Ampere's law, Faraday's 

law, and the ideal MHD law, the equations 3.3, 3.4, and 3.5 respectively, are obtained 

as; 

V x E x = - ^ 1 , (3.9) 

VxBi = fioJi + e0no~, (3.10) 
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and, 

Ex = - V i x Bo. (3.11) 

After the linearization, the value of J i is obtained from the equation 3.10 as; 

1 / „ „ S E A 
J i = 

and replaced in the equation 3.8, the linearized equation of motion, which becomes 

SVi 1 
po-

(„ „ 0EA „ 
(VxBi-eo^o-^J xB0. dt no 

With the replacement of Ei from the linearized form of equation 3.11 

OVi 1 / _ „ dCVi x B 0 ) \ _ 

is obtained. Then using the equations 3.9 and 3.11 the value Bi is obtained as; 

9Bi 

(3.12) 

at 
l- = V x Ei = - V x (Vi x B0) . 

Using the assumption; 

g(x,y,z,t) we (3.13) 

the value d/dt is replaced by —iu. After this replacement the perturbation field, Bi , is 

found as; 

-iwB1 = V x (Vi x B0) 

Bj = - - [ V x ( V l X B 0 ) ] 
IU! 

(3.14) 

Equation 3.14 is substituted in the equation 3.12 and the result is; 

-itjpoVi = 
Mo 

V x f - r j [ V x (Vi x B0)] J + e0Mo 
S(Vi x B0) 

&t 
x B n (3.15) 

The equation 3.15 is arranged as; 

-iwpodVt = — (V x [V x (Vi x Bo)] x B0) + e0 (^
Vl * B ° ^ x B 0 , 

IMflu \ at J 
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Dividing each side by po and using the fact that Bo is constant in time 

^ X i = L _ (V x [V x (Vx x B0)] x Bo) + — (-icoV1 x B0) x B 0 (3.16) 
at Hopoiu) po 

is obtained. Equation 3.16 is then rewritten using the vector relation, 

V x (A x B) = A(V • B) - B(V • A) + (B • V)A - (A • V)B. 

Equation 3.16 for the perturbed velocity can then be written component by component 

to yield a system of three coupled partial differential equations in three dimensions. 

When combined with the appropriate boundary conditions, this then constitutes a three 

dimensional eigenvalue problem which could be solved numerically. For simplicity, how­

ever, we now adopt a common approximation used in the context of magnetospheric 

wave dynamics: the box model (see figures 3.1 and 3.2). In this approximation, mag-

Figure 3.1: Illustration of the coordinate system for the box model of the magnetosphere. 
The Cartesian coordinates, x, y, and z are representing the dipole coordinates, L, A, </> 
respectively. The magnetic field lines are approximated to be constant along z, the 
north-south direction. 
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HJ%-

\BQ(x)z\ 

Figure 3.2: Cartesian coordinates, x, y, and z are shown above with the straightened 
magnetic field lines of the box model. The wave drawn represents the compressional 
wave traveling across the magnetic field lines. 

netic field lines are treated as if they were straight, and all of the same length and only 

the variation of the magnetic field intensity in the direction perpendicular to the B is 

taken into account. The problem can then be formulated in rectangular geometry, with 

B oriented along the z coordinate and the magnitude of B varying in the x coordinate as 

in figure 3.2, where x, y , z coordinates correspond to radial, azimuthal and north-south 

coordinates respectively as in figure 3.1. None fo the equilibrium physical quantities are 

assumed to vary in the y and z directions; that is, these coordinates are ignorable. As a 

result, the dependence of perturbed quantities in these variables may be assumed to be 

of the form 

gi(x,ytz)*>g1(x)e«k>>v+k"\ 

Equation 3.16 is rewritten by replacing the operator V by; 

V — ( ,iky,ikz 

for the velocity. As for the values Bo and po the x dependence in the magnetosphere will 

be used and as mentioned before they are assumed to be constant in y, z, and t. Making 
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use of these assumptions, equations for V\x, Vyy , and V\z are written separately as; 

X component; 

^ V l x / I^f l dBo(x±\dVlx ( V2k2 V2 V2 1 &Bo(xy 
LJ2 B0(x) dx J dx \ OJ2 c2

 UJ2 Bo(x) dx2 

Y component; 

Z component; 

Vu = 0 

where, 5o(a;) is the background magnetic field on the equatorial plane, Bo(x) = BE/L3, 

BE = 3.11 x 10_ 5T is the equatorial magnetic field on the surface of the Earth, L is the 

equatorial distance from the centre of the Earth in terms of Earth radii(i?£;), and VA is 

the Alfven speed, VA = -Bo(aO/\/PoMo- The z component is found to be equal to zero as 

expected in the cold plasma approximation. 

With a change of variables; 

vx = Vix, 

vy = iViy, 

vz - iVu, 

equation 3.17 then turns into; 

Vl9"vx | / 2 V 2 1 dB0(x)\dvx + / V2k2
 | V\ | V\ 1 d"B0(xy 

U!2 dx2 \ ui2 Bo(x) dx J dx \ w2 c2 ui2
 BQ(X) dx2 

+ky^~dx1 + ky^Bo(x) dx Vy = °' ( 3 - 1 9 ) 

and equation 3.18 is first multiplied by —i and then the change of variable is applied 

which gives the result as; 
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Equations 3.19 and 3.20 are then written symbolically as; 

Aiv'l + A2v'x + A3vx + AAv'y + A5vy = 0 (3.21) 

Biv'x + B2vx + B3vy = 0 (3.22) 

Where Ai, A2, A%, A$, A&, Bi, B2, and B3 are as follows: 

VA 
1 = W 2 ' 

A - l (2V
2 1 dB^x) 

M ~ ^{2VAB0(X) dx 

u>2 c2 to2 Bo(x) dx2 ' 

V2 

AA — h --A-

Bx = fcy-4, 

'yV^2jBo(x) dx 
2 
4 
2 ' 

V2 1 SB0(z) 
S 2 ~ kv\uj2Bo(x) dx 

o;2 53 = -£(** + **) - - ^ - 1 . 

As a last step, the velocity wave function, the y component of the velocity, vy, and 

its first derivative, v'y, are written in terms of vx, v'x, and vx, using equation 3.22 and 

substituted in the equation 3.21. The final equation for the x component of the velocity, 

vx, becomes; 

£>i< + D2v'x + D3vx = 0 (3.23) 

where, 

A = A1 + A1X1, 

D2 = A2 + A4(x'1 + X2) + A5Xi, 

D3 = ^3 + ^4X2 + ^5X2, 
_Bi 

Xl BZ> 
B-2 
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I am interested in the component vx since it corresponds to the compressional mode. 

Equation 3.23 is than solved numerically which is explained explicitly in section 3.3. In 

order to solve for vx, a fit is made for the plasmasphere density profile as explained in 

section 3.2. 

3.1.1 Calculat ion of the energy densi ty 

A calculation of the total energy density is needed so as to better parameterize the 

trapped compressional modes. When the total energy density is plotted as a function 

of distance from the Earth, L, a localization in the region of plasmapause would show 

clearly the existence of trapped or quasi-trapped modes. If there exist trapped modes in 

the region, the total energy would accumulate as a result of repeated reflections of the 

mode. 

The energy density is calculated using the equations; 

Uemg = \e0E
2 + ^ - (3.24) 

for the electromagnetic energy, and; 

Ukin = \pv2, (3.25) 

for the kinetic energy density. The total energy density would be, 

"tot ~ Uemg ~r Ufcin 

= o€0£2 + 
B2 1 2 

+ o/W • 2 u 2^0 2f 

With the help of equations 3.6 the total energy density, is linearized as; 

Utot = \ {t*E\ + ^[Bl + B\\ + p0Vf 

Only the perturbed energy density, which is the part associated with the wave, is con­

sidered, and thus the term associated with Bo is not included, and the above equation 

becomes 

Utot = \ (e0E
2 + -B2 + p0V

2) . (3.26) 

Then E\ is replaced by — Vi x Bo from equation 3.11, and the real part of the E and B 

values are used for energy density calculation. The real part of the electric field is found 
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to be 

E\x(real) = ~B0(x)Vly COs(ut), 

Ely(real) = B0(x)Vlx COs(ut), 

Elz{real) = 0, 

and the value needed for the total energy density calculation, E2, is calculated as; 

El(real) = COS2(u;t)B2(x)(y2
x + V2

y). 

B\ is found using equation 3.9 and the real par t of it is calculated as, 

Blx{recd) = -[B0(x)VlxCOs(ujt)], 

k 
Bly(real) = -[B0(x)Viy COs((jt)], 

B\z{reai) = --^{B0(x)Vix]sw(ujt) +—[B0(x)Viycos(u;t)}, 

and the values Bw „ is calculated as 

Boreal) = ^[Bo(xfcos2{oA)(y2
x + V2

y)} + ± (J-[B0(x)Vlxty s in 2 M) 

2 / Q \ k2 

- ^ ( fa [Bo(x)Vlx]kyB0(x)Vly cos(ujt) sin(o;£) J + -^BQ(x)2V?ycos2(uit). 

The values E2,als and B2,* are substituted in the equation 3.26. The total energy 

density is then 

Utot = l[e0B0(x)2 cos2(ut)(v2
x + v2)] + ^ - ^ [k2

zB0(x)2 cos2(wt)(v2
x + v2

y)} 

1 
+ 2/iow2 £*>(*)*. r) 

sin2(a;£) — 2—[Bo(x)vx]kyvyBo(x)cos(ujt)sm(ut) 

+ ^~^KB^xfvl cos2(u>t)] + \\pQ{x){v2
x + v2

y + v2
z)}. 

In the equation above the velocity components, Vix, Viy, and F^are replaced by, vx,vy, 

and vz respectively, and V2 is replaced by, v2+vy+v2. Also as with the components of 

t he electric and magnetic fields, only the real pa r t s of the velocity values are used. 
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As a result the time-averaged energy density is obtained as 

(Utot) = l[eoB0(X)\vl + vl)] + -^[k2
zB0(x)\vt + vl) + k2

yB0(x)2vl] (3.27) 
8/XQO; 

+ 8fiouj2 

\dB0(x)l 
dx 

2 ~dvx 

dx 
Bo(xf)+j[po(x)(vl + vl + vl)]. 

The sign (} is used to denote the time average over a complete cycle. The average of 

cos2(ujt) and sin2(u;i) over a complete cycle is 1/2, and average of cos(utf) and sin(wi) 

over a complete cycle are 0. 

3.1.2 Calculat ion of t h e effective potent ia l 

The wave equation, equation 3.23, derived above is a second order differential equation 

with a non zero term multiplying the first derivative. Using a change of dependent 

variable, it is possible to reduce this equation to one where the first derivative term is 

absent. By analogy with equation 2.1 it is then possible to identify an effective potential. 

The change of dependent variable is obtained by first representing the perturbed velocity 

vx as a product of two unknown functions, 

vx = gh. 

Then the first and the second derivatives of vx are found as 

v'x = g'h + h'g, 

< = h"g + g"h + 2g'ti. 

After substituting equations 3.28, 3.29, and 3.30 in 3.23, one finds 

Dl9h" + (2Dl9' + D2g)ti + (Dl9" + D2g' + D3g)h = 0. 

In order to obtain an equation of the form 2.1, g is assumed to satisfy 

2Dl9' + D2g = 0. 

The wave equation is then of the form 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

h" — Vp0th — 0 
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where Vpot is the effective potential function, expressed as 

Vpot = — = J - ( I V + D2g' + D3g)h. (3.32) 

The function g in 3.32 is obtained from solving the equation 3.31 above. The result is 

/
•x D2 J / 

y _ c ^0 2Dj a x 

where XQ is an arbitrary position. 

3.2 Fitting a Function to a Plasmasphere Density Profile 

The representation of the aforementioned abrupt drop of the density, po, is conveniently 

obtained with an analytical fit of the density profile in the plasmapause. The function 

used is 

Po(x) = pinW(x) + Pout[l - W(x)}, (3.33) 

where, pin — Mine~x/50, p^t = Moute~x/5, and M{n, M^t represent the mass density 

inside and just outside the plasmasphere respectively. The function W(x), 

W(x) = i 1 — tank ' (3.34) 

is the weight function providing the sharp decline at the plasmapause. The value x is the 

distance from the Earth, i?o is the plasmapause position and S is an adjustable transition 

length;that is, the length over which the sudden density drop is observed. Distances are 

expressed in terms of RE, i-e L value. The values Mj„ and M^t are expressed as 

Min = Ninmpe
Xi"/50, (3.35) 

Min = Noutmpe
x^l5 (3.36) 

where Nin and N^t are the number densities Xin and Xout are the scale lengths for inside 

and outside of the plasmasphere respectively, and mp is the proton mass. These are 

adjustable parameters, together with Ro and 5, are used to fit a certain density profile 

in the numerical program described in section 3.3. As an illustration of the use of the 

density function, 3.33, a set of value is taken from curve 2 in figure 1.11, and fitted with 

the expression in equation 3.33. The resulting mass density is plotted as a function of L 

in figure 3.3 which is a good approximation (See figure 1.11 profile 2 for comparison). 
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Figure 3.3: Illustration of function 3.33 is used to fit the density profile of the plas-
masphere. The values in equations 3.35 and 3.36 are set to , Nin — 1000, Nout = 10, 
Xin = 2.5, XQUJ = 3.8, Ro = 3, and S = 0.2, corresponding approximately to profile 2 in 
figure 1.11. 

3.2.1 T h e Alfven veloc i ty profile 

With the density profile illustrated in figure 3.3, the Alfven velocity is plotted as a 

function of L to investigate the profile that would possibly support trapped modes. 

Therefore in the Alfven velocity equation, 

VA(x) 
BQ(X) 

the equation 3.33 is used for po, and B${x) — BE/L3. The resulting plot, shown in 

figure 3.4, is a profile that supports quasi-trapped modes as illustrated in figure 1.12 c 

and d. The strong similarity with the potential profiles in figures 1.12 c and d of chapter 

1 section 1.4.5 is obvious in figure 3.4. Thus, depending on the frequency of the waves, 

quasi trapped modes of the compressional wave is expected (see explanation in section 

1.4.5). This work is done numerically in the following section. 
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Figure 3.4: Alfven velocity as a function of L values for the density profile of the figure 
3.33. The profile is similar to that of the potential well in figure 1.12 c and d section 
1.4.5. Thus the quasi trapped modes are possible in the plasmapause depending on the 
frequency of the waves. 

3.3 Numerical Solution 

In this section the final equation, 3.23, for the compressional wave, is solved numerically 

using a Runge-Kutta integration. Boundary conditions corresponding to outgoing waves 

are imposed, as in section 2.2.2, using the WKB approximation for the solution at the 

right boundary. Equation 3.23, 

Dxv"x + D2v'x + D3vx = 0, 

is formally rewritten as, 

DlV'i + -D2v'x + -»Davx = 0 

where e represent a small parameter. Then a solution of a type 

vx = exp (e^goix) + e°gi(x) + e1g2(x) + ...) 

(3.37) 

(3.38) 
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is assumed and v'x, v" are calculated. Subsituting vx, v'x and vx in 3.37 and including 

the terms up to first order then yields 

Di -9o(x)" + gi(x)"j + l-go(xy + 9i(xYj vx + -D2 (-goixY + giix)'] vx 

+-zD3vx = 0. 

Rewriting this equation order by order, starting with the dominant terms in the asymp­

totic expansion then yields 

1 

e 
(Di|«»,(a;)f + D29o(x)'+ D3) = 0, (3.39) 

-e(D1go(x)" + 2Dlgo(xyg1(x), + D2g1(xy) = 0. (3.40) 

Equation 3.40 is solved for the function g\(x)' in terms of go(x)" and go(x)' as 

«W—ET?Tv (3-41) 

%+2g0{x)' 
Equation 3.39 is solved for go(x)' using quadratic formula, 

9o(x)' = 
-£>2±VA 

2£>I 

where 

A = D\ - 4DXD3. 

The second derivative, go(x)", is calculated numerically using central differences and 

these values are used to determine the values g\(x)' in equation 3.41. 

In setting the boundary value, the wave is assumed to be initiated in region 1, cor­

responding to the plasmapause in figure 3.4 and the boundary value is set in region 3, 

corresponding to an outgoing wave with the help of equation 3.38. Prom the derivative 

of vx in equation 3.38, 

v'x = f -go(x)' + gi(x)' j vx, 

the boundary condition is set as 

v'x~ ( -9o(x)'+9i(x)') va = 0. (3.42) 
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In order to prevent the singularities the mathematical expressions in equation 3.23, as 

in section 1.2.3, the frequency is considered to be complex, CJ = ur + iu>i- The numerical 

program used to find the results first calculates the functions Di, D2, D3, po(x), BQ(X), 

and VA(X). Then go(x)', gi(x)' are calculated using D\, D2, and D3. Equation 3.23 

is solved using a fourth order Runge-Kutta method, and the complex frequencies that 

satisfy the boundary condition, are calculated using a root finder. Since the frequency is 

complex, all values that depend on it are also complex. Finally, the roots of the boundary 

value problem, equation 3.42, are used to calculate the Q factor from Q = u)r/2u)i. 

The same analysis is applied to three different density profiles obtained from IMAGE 

and SAMNET magnetometer arrays during geomagnetic storms of September 1998, May 

2001, and October 2003 [9]. This is explained briefly in following sections. 

3.4 Case Studies 

In this section three different profiles of the plasmapause are examined for the possibility 

of trapped compressional waves. The results of the numerical solutions of section 3.3 

is presented for each profile for different sets of parameters. The parameters in this 

problem are the ky and kz wave numbers. In the box model, waves produce standing 

patterns with wave numbers quantized as 

U n-K 
^2 ~ 3Ro ' 

where m and n are integer numbers and i?o is the radius of the plasmapause. The values 

of ky and kz, m and n are adjustable parameters in the numerical program and RQ has 

changed depending on the particular profile considered. All the data points used are 

from the SAMNET and IMAGE magnetometer arrays in Northern Europe [9]. 

3.4.1 Profile 1 

The first profile considered is from the geomagnetic storm of Halloween 2003. This event 

was an extreme storm event. The storm took place on 29 October 2003. The steep 

plasmapause density gradient occurred on 1 November, following plasmaspheric erosion. 

The data used is for one density profile from the morning sector. Data values are listed 

in table 3.1; 
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L 
2.39 
2.79 
3.15 
3.32 
3.60 
3.84 
5.10 

Mass density [amu/cc] 
1415.732 
781.877 
385.849 
287.000 
238.690 
290.703 
80.959 

Table 3.1: Data of Halloween 2003 

Analytic Fit of the Density Profile 

The data of table 3.1 are matched with the following set of parameters appearing in 

equations 3.35, 3.36 and 3.34. 

Nin = 1415.732, xin = 2.39, for pin 

Naut = 80.959, Xout = 5.10, for /oout 

RQ = 3.1, 

and 

6 = 0.2. 

In these expressions, pin is the density inside the plasmasphere, pout is the density outside, 

RQ is the position of the plasmapause and 5 is the transition length over which a sharp 

density decline is observed. These values are set so as to provide a good fit of the data 

in table 3.1. The unit of density amu/cc. Figure 3.5 shows a fit of the data in table 3.1 

together with the analytic fit. The small structure in the density profile seen at L ~ 3.6 

is due plasma irregularities at the plasmapause boundary layer, which is another area of 

research [35], and is out of the scope of this thesis. Therefore this structure is ignored in 

the analytic fit of the density profile. The corresponding Alfven velocity profile is also 

plotted in figure 3.6 for the same density profile. 

Calculation of the Q factor and trapped modes: 

Following the numerical method explained in section 3.3 the discrete values of complex 

frequencies are calculated for various values of ky and kz. For the parameters m — 0, 

and n = 5 the result for the imaginary part of the frequency, Wi and the corresponding 

Q values are plotted as a function of the real frequency, ur, in figure 3.7 The frequency 

range considered is between 0.01 Hz and 0.5 Hz. All the frequency values in this section 

and in the following sections are in the units of hertz. The L value, distance from the 
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Figure 3.5: 1 November 2003 density data and the fitted profile with equation 3.33 with 
Nin = 1415.732, xin = 2.39 for pin and AU t = 80.959, xout = 5.10 for Pemt, R0 = 3.1 and 
5 = 0.2. The stars show the measured data and the line shows the fitted profile. 

Earth, ranges between 1 — 25. Lmax — 25 is chosen to be far enough from Earth so that 

the WKB approximation is applicable. 

With m set to 0, equivalently ky = 0, the Alfven and compressional modes are 

decoupled. That is equations 3.19 and 3.20 could be written as two separate equation 

and solved independently. The total energy density and effective potential function are 

calculated for the frequencies of the high Q values in the bump region. It is found that 

as long as the frequency values in the bump region are chosen, confining potentials and 

a good localization in the total energy densities are observed thus demonstrating the 

quasi-trapped modes in the plasmapause. Whereas, farther away from the bump region, 

none of the values provided a confining potential graph or localization in the energy 

density graph. An example of potential graph and energy localization corresponding to 

a high Q factor value of the bump region are shown in figure 3.8. The range of frequency 

where of quasi-trapped modes are obtained is from u)r = 0.283 Hz, u)i = —1.450 x 10~3 

Hz to ujr = 0.351 Hz, Ui = -1.500 x 10~3 Hz. Outside this range trapped modes are 

not present anymore. Anywhere outside the bump region and surrounding frequency 
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Figure 3.6: Alfven velocity profile for the data of 01 November 2003. 

values, no interesting features are found in the effective potential or in the total energy 

density. Figure 3.9 shows the total energy as a function of L for a low Q value frequency, 

uir = 0.269 Hz, u)i = -1.44 x 10~3 Hz, and Q = 93.3. It is also noted that for high 

Q factor not included in the bump region no significant features are obtained, and the 

total energy density plot does not show any localization at the plasmapause. Figure 

3.10 showsi'an example of the result found using one of the highest Q frequency value, 

u>r — 0.365 Hz, uji — —1.510 x 10~3 Hz, and Q — 120.8. For very low frequency values 

the energy decays before penetrating into the plasmasphere or at the plasmapause, and 

the effective potential profile is shallow and does not support trapped modes. Figure 

3.10 illustrates an example of the results where a value of the frequency corresponding 

to one of the lowest Q factors is chosen; u>r = 0.101 Hz, Wj = —1.23 x 10 - 3 Hz, and 

0 = 41.1. 

Calculation of coupled modes,ky ^ 0 

When the parameter m is set to an integer value other than 0, ky is not zero anymore 

and coupled modes are obtained. The graphs of u)r versus Wi and Q factor versus ur 
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Figure 3.7: Imaginary part of the frequency, w« and Q factor as a function of the real 
part, ur for the profile of figure 3.5, with frequencies in units of Hertz. These results are 
obtained with m = 0 and n = 5. These values correspond to ky = 0 and kz = 57r/3i?o-
The interval in L was 1 < L < 25, and frequency values are 0.01 to 0.5. 

are included in figure 3.11 for m = 1 and n — 5. The range of frequencies and L are 

the same as in the calculations of the decoupled modes. The results are similar to the 

results obtained with the decoupled modes. In particular, there is spatial localization in 

the total energy density graph and a nice confining potential profile for the frequencies 

corresponding to Q values of the bump region. These features are not seen for frequencies 

outside the bump region. The Q factor as a function of real frequency however has a 

second sharp structure right after the broader bump region (see figure 3.11). There is no 

localization in the energy density at or around this second peak region, which is caused by 

coupling between the compressional and the Alfven modes. There are sharp structures 

in the graphs of total energy and potential as well, due to coupling of the Alfven and 

compressional modes. An example of total energy and corresponding effective potential 

as a function of L is presented in figure 3.12 for a frequency value corresponding to a 

Q factor of the broader bump region, the first bump in the graph 3.7. For the coupled 

modes; the parameters set as n = 1 and m = 5. A sharp localization in the total energy 

100 % 

(0 

O 



CHAPTER 3. FIRST APPROXIMATION: BOX MODEL 53 

0.14 

0.12 

r-, 0.1 

o 
ZL 0 0 8 

i_ 

^ 0.06 
L±J 

0.04 

0.02 

0 

1 2 3 4 5 6 
L 

Figure 3.8: Potential function and total energy density as a funtion of L for a frequency 
corresponding to a high Q factor of bump region for profile 1; Q = 108.9, and UJT = 0.310 
Hz 

density occurs at the same position as those in the ' potential function graph (see figure 

3.12). If the potential funtion is scaled a confining potential well is still observed at 

the plasmapause, thus causing the trapped modes. Therefore for Â  > 0 coupling and 

trapping at the plasmapause occurs simultaneously. In the case of coupled modes the 

frequency range where the total energy localization at the plasmapause is observed is 

from ur = 0.283 Hz, uji = -1.44 x 10~3 Hz to ur = 0.345 Hz, ut = -1.42 x 10~3. These 

values of frequency corresponds to the first bump in the Q factor as a function of ur 

graph, as for decoupled modes. 

The above results show that trapping is essentially the same for coupled and decou­

pled modes for a particular type of density profile at the plasmapause. However due to 

coupling between shear and compressional modes extra features are present in the graphs 

of effective potential and the total energy as a function of L. Coupling is obtained only if 

the parameter m ^ 0 in which case near singularities are found in the effective potential 

and the total energy density graphs (see figure 3.12). 
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Figure 3.9: Illustration of the energy density as a function of L for one of the frequency 
values corresponding to a low Q factor of profile 1, for m — 0 and n = 5. The frequency 
used for above graph is tor = 0.269 Hz, corresponding to Q = 93.3 from figure 3.7. 

3.4.2 Profile 2 

This profile is taken from the event of 14 May 2001. This was a moderate geomagnetic 

storm of prolonged interval 5-17 May 2001. 14 May 2001 was a particularly interesting 

day where the second recovery started after renewed geomagnetic activity during the 

recovery phase of a geomagnetic storm of May 07 2001, described fully in [19]. The data 

points are provided from the day-side and listed in table 3.2; 

Analytic Fit of the Density Profile 

Following the same approach as in section 3.4.1 the data of table 3.2 are matched with 

the following set of the parameters in equation 3.33. 

Nin = 2031.472, xin = 2.39 for pin, 

Nout = 52.702, Xout = 5.35 for pMt, 

Ro = 2.92, 
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Figure 3.10: Total energy density and corresponding effective potential as a function of 
L for profile 1, with m = 0 and n = 5. Figure (a) illustrates the results of a high Q and 
figure (b) low Q. The frequencies are, uir = 0.365 Hz for the higher Q, and UJT = 0.101 
Hz for the lower one. These frequencies correspond to Q = 120.8 and Q = 41.1 in figure 
3.7. It is readily seen from the above graphs that the wave penetrates into the inner 
plasmasphere and that no trapping is present for the higher frequency and that it decays 
before reaching to the plasmasphere for the lower one. 

and 

5 = 0.2. 

Figure 3.13 shows a fit of the data in table 3.2 together with the analytical fit. The value 

of the Alfven speed is also plotted as a function of L for the profile of figure 3.13 which 

resulted again with a profile which could support quasi-trapped modes (see figure 3.14). 

Calculation of the Q factor and trapped modes: 

The Q factor is calculated for profile 2 using the same numerical approach as in section 

3.3. The results are similar to the results of profile 1. First decoupled solutions with 

the set of parameters as m = 0, i.e ky = m/Ro = 0, and m = 3, are presented in figure 

3.15. The range of L and frequency is the same as with profile 1; L is from 1 to 25 

and ujr is from 0.01 to 0.5 in the units of Hertz. It is worth to note that contrary to 

what was found with profile 1 with n = 0 and n = 5, the Q factor and the frequency 

spectrum does not provide the quasi-trapped modes in the plasmasphere, for profile 2. 

The important structure of bumps in the graphs are not obtained and correspondingly 

no trapped modes are obtained. However, the set of parameters n = 0 and m = 3 

provides good results for the current profile, as shown in figure 3.15. The similarities 
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Figure 3.11: Illustration of imaginary frequency, Wj, and Q factor as a function of wr(Hz) 
for profile 1. The parameters are m = 1, n = 5 which correspond to coupled modes. A 
second sharp variation occured in addition to the first one obtained for decoupled modes 
where m = 0. This second sharp structure is due to mode coupling leading to a near 
singularity. 

between figures 3.7 and 3.15 are easily seen, only the frequency range where the sharp 

structure is seen slightly differs. 

The investigation of the quasi-trapped modes of profile 2 is done the same as profile 

1. The results of the energy localization region and potential function as a function 

of L values are also analogous to those found with profile 1. Only the bump region 

of figure 3.15 produces quasi-trapped modes, and high and low frequency values again 

give totally penetrating modes and modes that do not tunnel through the plasmapause 

region respectively. The plasmapause is at L = 2.92 for profile 2, corresponding to 14 

May 2001 event. Figure 3.16 is included as an example of the result of a frequency value 

of the bump region. Different results for low and high frequencies are not included since 

they are also very similar to those included for the profile 1, 14 November 2003 event 

profile (see figures 3.8 3.9, 3.10). The frequency range where a nice localization in the 

total energy density is obtained for is, between wr = 0.229 Hz, w, — —1.63 x 10~3 Hz, 
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Figure 3.12: Total energy and potential as a function of L for one of the real frequency 
values corresponding to a high Q factor for m — 1 and n = 5, of Profile 1. The real 
frequency value used for the above plots is UJr = 0.313 Hz, corresponding to Q — 121.5 
from figure 3.11. 

and ur = 0.260 Hz, u>i = —1.66 x 10 3 Hz which is within the bump region as seen in 

graph 3.15. 

Investigating coupled modes; ky ^ 0 

Coupled modes in profile 2 are also investigated, and it is found again that results are 

similar to those of profile 1. Similar to profile 1, a second sharp structure is observed in 

the Q factor as a function of wr plot (see figure 3.17). This second sharp structure does 

not provide any significant effect on the effective potential and the total energy density 

graphs as a function of L. A localization in the total energy density and nice confining 

effective potential are found around the bump region corresponding to approximately 

the same region of the decoupled modes. An example of the total energy density as a 

function of L is included in figure 3.18 for a high Q value frequency in the bump region 

of figure 3.17. The frequency range where a nice localization of total energy observed 

for coupled modes is from wr = 0.205 Hz, o>j = -1.608 x 10~3 Hz, to u>r = 0.274 Hz , 
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L 
2.39 
2.67 
2.78 
2.80 
2.92 
3.08 
3.16 
3.34 
3.58 
3.60 
3.63 
3.80 
3.90 
3.92 
4.12 
4.76 
4.97 
5.20 
5.35 
5.49 
5.82 
5.89 
6.15 
6.46 
6.54 

M a s s density [amu/cc] 
2031.472 
1414.097 
1307.400 
1390.533 
1000.504 
625.856 
419.811 
308.049 
158.683 
204.82 
138.483 
97.975 
84.465 
82.817 
89.136 
76.431 
71.342 
56.924 
52.702 
41.343 
40.786 
37.002 
35.199 
51.880 
38.553 

Table 3.2: Data of May 2001 

u>i = -1.55 x 10~3 Hz. 

3.4.3 Profile 3 

The data of profile 3 was from the event of September 1998. This was an extreme 
magnetic storm that took place on September 25 . The steep plasmapause density profiles 
were observed on the 27th and 28th September. Data is provided for the morning sector 
of September 27th and shown in table 3.3. 
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Figure 3.13: Illustration of the density profile for the data of 14 May 2001, table 3.2. 
The stars show the measured data and the line shows the fit obtained with equation 3.33 
computed with Nin = 2031.472, xin = 2.39 for pin and N^t = 52.702, x^t = 5.35for 
Pout, Ro = 2.92 and d = 0.2. 

Analytic Fit of the Density Profile 

For the 27 September 1998, the parameters in equation 3.33 are set to; 

Nin = 927.39, xin = 2.81 for pin 

Nout = 18-92, xout = 6.12 for / W 

Ro = 3.56, 

and 

S = 0.2. 

The match is shown in figure 3.19, and the Alfven speed profile is shown in figure 3.20. 

Similar to what was found with profiles 1 and 2 a profile capable of supporting trapped 

modes is also found here. 
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Figure 3.14: Illustration of the Alfven speed as a function of L for the data of 14 
May 2001. It can be seen that the quasi-trapped modes are possible with the above 
characteristics of the Alfven speed profile. 

Calculation of the Q factor and trapped modes: 

The Q factor is calculated for different sets of parameters for profile 3 as well, and again 

results are similar to those of profiles 1 and 2. For decoupled modes the mode parameters 

are set t o m = 0 and n = 3 and for the coupled modes they are set to m — 1 and n — 3. 

As with profile 2, the set of parameters n = 0 , m = 5 and n = 1 , m = 5 does not lead 

to mode localization. The frequency spectrum and the Q factor as a function of ur are 

shown in figure 3.21 for decoupled modes and in figure 3.22 for coupled modes. For the 

coupled modes, a second peak to the right is also obtained as seen in figure 3.22 where 

energy localization is not present. This is similar to what was obtained with profiles 1 

and 2. For energy localization, which is analogous to the results of profiles 1 and 2, two 

graphs are provided as examples in figures 3.23 and 3.24, for two high Q values within 

the bump region corresponding to coupled and decoupled modes. The frequency range 

where a good localization is obtained is from uir = 0.142 Hz, un = —2.18 x 10~3 Hz to 

u)r = 0.188 Hz, uji = -2.307 x 10~3 Hz for decoupled modes, and from wr = 0.142 Hz, 
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Figure 3.15: Frequency spectrum and Q factor as a function of wr(Hz), for Profile 2 (14 
May 2001 event), and n = 0, and m = 3. This corresponds to decoupled modes, ky = 0. 
Features are found to be quite similar to those of figure 3.7 for profile 1. 

Figure 3.16: Plots of the total energy and effective potential as a function of L for a 
frequency value corresponding to the local maximum in Q in figure 3.15, for the 14 
May 2001 event (profile 2). The frequency for this particular graph is ujr = 0.245 Hz, 
corresponding to Q = 76.5. The values outside of the local maximum provided neither 
a nice confining potential nor a localized total energy density similar to the results of 
profile 1. 
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Figure 3.17: w» and Q factor as a function of u;r(in units of Hz) for the coupled modes 
of profile 2. These curves are obtained with; m = 1 and n = 3. 
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Figure 3.18: Plots of the total energy and effective potential as a function of L for a 
frequency value corresponding to the peak region of Q in figure 3.17, profile 2. The 
frequency used for this particular graph is UJT = 0.241 Hz, corresponding to Q = 99. 
Frequencies outside of this first bump region do not correspond a good localization in 
the total energy density low mode confinement. 
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L 
2.81 
3.58 
3.79 
4.74 
5.19 
5.33 
5.56 
5.70 
5.73 
6.08 
6.12 
6.44 
6.51 
8.18 

Mass density[amu/cc] 
927.39 
402.27 
193.29 
39.66 
35.25 
19.20 
20.07 
35.06 
15.69 
19.25 
18.92 
12.96 
12.32 
12.28 

Table 3.3: Data of September 1998 

Wi = -2.16 x 10~3 Hz to ujr = 0.177 Hz, Wi = -2.108 x 10"3 Hz for coupled modes. 

The frequency range leading to quasi-trapped modes, and energy density localization, is 

approximately the same, and it corresponds to the lower frequency peak in the Q factor 

as a function of L for both coupled and decoupled modes. 
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Figure 3.19: Matched density profile for data of the 27 September 1998 given in table 
3.2, stars show the actual data and the line shows the fitted profile from equation 3.33 
with Nin = 927.39, xin = 2.81 for pin and N^t = 18.92, a w = 6.12, for pout. Also 
RQ — 3.56 and 5 — 0.2 for this profile. 
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Figure 3.20: Alfven speed as a function of L for the data of 27 September 1998. The 
profile suggests here again the possible trapping at the plasmapause. 
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Figure 3.21: Q factor and u>i as a function of real frequency wr(in units of Hz) for the 
data of 27 September 1998 for m — 0 and n = 3. It is easily seen that the characteristics 
are quite similar to those of profiles 1 and 2 (see figures 3.7 and 3.15). 

S" 

-0.0014 

-0.0016 

-0.0018 

-0.002 

-0.0022 

-0.0024 

-0.0026 

• 

• 

• 

•• .. 

,-"" 
»" 

• 

• ' 

* 

«KKtt 
** „"-

* 

, 

."" 

i 

••' 

'frequency' • 
'Q' • 

• 

0.1 0.15 0.2 0.25 

ox 

80 

70 

60 

50 & 

40 

0.3 0.35 

30 

20 

Figure 3.22: Frequency spectrum and Q factor for the coupled modes of profile 3. cor­
responding to ra = 1 and m — 3. As with the graphs of profile 1 and 2, two bumps 
axe observed in the coupled modes frequency (in units of Hz) and Q factor spectrum for 
profile 3 (27 September 1998 event). 
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Figure 3.23: Total energy density and effective potential as a function L for m = 0, 
n = 3 for the 27 September 1998 event. The frequency is u>r = 0.161 Hz corresponding 
to a Q = 40.56 of figure 3.21. 
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Figure 3.24: Total energy density and effective potential as a function L for m = 1, n = 3 
for the 27 September 1998 event. The frequency used is ujr = 0.163 Hz corresponding to 
a Q = 57.3 of figure 3.22. 
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Chapter 4 

Conclusion and Future Work 

4.1 Concluding Remarks 

The results presented in this thesis embody a contribution to the understanding of mode 

trapping in the plasmapause. This work is based on a numerical approach to demonstrate 

the possibility of quasi-trapped or trapped modes in the plasmapause due to its particular 

density profile; a sharp decline especially during and after geomagnetic storms. 

Chapter 2 introduces an ideal case for investigating trapping or quasi-trapping in a 

potential well that is analogous to the potential at the plasmapause. In this chapter 

the analysis is done using a one dimensional wave equation similar to the Schrodinger 

equation. A model wave function is derived and trapping is investigated for a continuous 

spectrum with an incoming wave with unit amplitude. The graph of the maximum 

amplitude in the well region, as a function of the frequency, shows sharp peaks suggesting 

trapping. The wave equation is then solved as an eigenvalue problem resulting in a 

discrete frequency spectrum. This second approach is formulated in terms of a boundary 

condition that corresponds to an outgoing wave in the region outside the well. The Q 

factor is calculated and plotted as a function of discrete frequencies. High values of Q 

are obtained for frequency values that correspond to peaks in amplitude in the previous 

section. The wave function is plotted as a function of distance using frequency values 

corresponding to high Q factor and localization is observed in the potential well region 

suggesting possible trapping. First, the problem is formulated analytically in terms of 

a set of linear algebraic equations. It is solved using LU decomposition. It is then 

formulated numerically in terms of a second order ordinary differential equation with 

prescribed boundary conditions. The comparison between the results obtained with 

these two approaches is useful for the purpose of testing the validity of the numerical 
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approach that is used in the more realistic problem of chapter 3. Both appraoches gave 

perfectly superposing results, proving that the numerical approach used is appropriate. 

In chapter 3, quasi-trapped compressional modes in the plasmapause is investigated 

using a box model of the magnetosphere. The wave equation for compressional modes is 

derived and solved using a fourth order Runge-Kutta method. The waves are assumed 

to be initiated in the region of the plasmapause. The velocity wave function is assumed 

to vanish on the left boundary corresponding to the surface of the Earth. A discrete 

frequency spectrum is then found using a root finder. Prom there, the values of the Q 

factor are calculated for three different density profiles observed during three different 

geomagnetic storms, the storms of 01 November 2003, 14 May 2001 and 27 September 

1998. 

The results obtained with these three profiles have similarities in their Q factors, 

and frequency spectra, the total energy densities and potential functions. For decoupled 

modes the Q factor as a function of wr is characterized by a bump in a certain region of 

frequency for all three profiles. In this region, localization in the total energy density, in 

other words quasi-trapped modes, is present. With the coupled shear and compressional 

modes an extra peak appears in the Q factor and in the frequency spectrum. This is 

observed for all three profiles considered. However, this peak does not correspond to 

any special feature; that is, no localization in total energy density is obtained. For the 

coupled modes, sharp peaks are also seen in the energy and potential function graphs as 

a function of L besides the localization. 

Quasi-trapped modes are obtained for all the profiles with the appropriate set of pa­

rameters, that suggest possible trapping in the plasmapause region. The frequency range 

for which a good energy localization is observed are slightly different for each profile, 

suggesting a change of frequency range for different density profiles of the plasmapause. 

Overall, this thesis has shown that trapping of compressional modes is possible in 

the plasmapause due to Alfven velocity valley associated with the sharp density gradient 

occurs after geomagnetic storms, and the frequency range where trapping is observed 

depends on the density profile considered. 

4.2 Future Work 

Future work may include a thorough investigation of the coupled modes of the three 

profiles. The extra peak in the Q factor as a function of real the frequency is not fully 

understood, thus more work on the coupled modes could possibly be useful to understand 

this feature. Also the same analysis could be done on different density profiles of the 
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plasmapause. Moreover trapped modes in the plasmasphere could be further investigated 

as a possible cause for the low latitude ULF pulsations. 

More realistic results could be observed if a better magnetospheric model is used 

such as a dipole model. A more advanced approach could be to look at the problem in 

two and three dimensions. 
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