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Abstract

In this thesis, we study the problem of detecting moving objects from an image

sequence using low-rank and sparse representation concepts. The identification

of changing or moving areas in the field of view of a camera is a fundamental

step in visual surveillance, smart environments, and video retrieval. Recent

methods based on low-rank representation have been successfully employed for

change detection; however, they still have difficulties in handling the following

situations. First, the existing methods rely on a batch formulation whose

computational complexity grows with the size of the input data. Secondly, they

are not able to deal with significant illumination change including shadow and

abrupt or discontinuous change in illumination. This thesis proposes solutions

to the above two problems, with the end goal of developing a reliable low-

rank and sparse decomposition to perform an efficient and accurate change

detection method in such cases, especially for the moving object detection

tasks.

To cope with the computational complexity of the low-rank methods for

change detection, we propose a sequential solution using contiguous sparsity

constraint. We formulate the problem of moving object detection under inte-

gration of online robust PCA and low-rank matrix approximation with con-

tiguous sparse outliers. This combination enables us to extract foreground

objects in the case of online and long-term continuous tasks, which cannot be

achieved by the batch formulation.

To deal with discontinuous change in illumination, we first propose a robust
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representation of images against illumination, which can be used in classifi-

cation, place recognition, and change detection applications. We then build

a prior map from the invariant representation, and formulate a low-rank and

invariant sparse decomposition (LISD) method by incorporating the original

representations and the obtained prior maps. This joint framework empow-

ers the accuracy of object detection by separating the sparse outliers into

real changes and illumination change matrices. We also propose an iterative

version of LISD (ILISD) to improve the performance of LISD by updating

the prior map. Experiments on challenging benchmark datasets demonstrate

the superior performance of the proposed method under complex illumination

changes.

As the second solution to deal with discontinuous change in illumination

and to boost the accuracy of foreground detection, we propose a robust solu-

tion based on the multilinear (tensor) data low-rank and sparse decomposition

framework. In this method we first introduce a way to provide multiple in-

variant representations of an image as priors that can characterize the changes

in the image sequence due to illumination. To deal with concurrent, two

types of changes, we employ two regularization terms, one for detecting mov-

ing objects and the other for accounting for illumination changes, in a novel

unified framework named tensor low-rank and invariant sparse decomposition

(TLISD). Extensive experiments on challenging datasets demonstrates a re-

markable ability of the proposed formulation to detect moving objects under

discontinuous change in illumination.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Moving object segmentation from an image sequence or a video stream is

a fundamental problem in computer vision with such applications as visual

surveillance [121], traffic monitoring [24], [107]–[109], vehicle tracking [126],

medical imaging [154], avian protection [111], object-based video encoding and

social signal processing [130] where the accuracy of segmentation is critical to

the solution of the application.

Moving object detection is a well studied field of research and many tra-

ditional methods have been proposed, which can be grouped into two major

categories. Motion-based methods [29], [129] use motion information of the

image pixels to separate the foreground from the background. These methods

work based on the assumption that foreground objects move differently from

the background. Therefore it is possible for these methods to classify pixels

according to their movement characteristics. However, these methods require

point tracking to identify the foreground [89], which can be difficult especially

with dynamic background or noisy data [127].

Another popular category for moving object detection methods is back-

ground subtraction [5], [8], [33], [93], [104], [105], [110], [117], [135], [142],

which compares the pixels of an image with a background model and consid-

ers those that differ from the background model as moving objects. These

methods model the background for each pixel independently and so they are

not robust against global variations such as illumination changes. Although
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some region-based methods [54], [58], [88], [100] have been proposed to take

advantage of inter-pixel relations for identifying foreground objects from im-

age regions, they can only obtain rough shapes of foreground objects and they

are still vulnerable to significant illumination changes that arise in outdoor

applications [142].

Recent years have seen the development of a new category of methods,

based on low-rank and sparse decomposition, under one major assumption that

images in a sequence are correlated. Methods in this category follow the basic

idea from [90], where the principal component analysis (PCA) for background

modeling was proposed. Extending this idea, current methods exploit the fact

that the background model in an image sequence can be defined as a low-

rank matrix by those pixels that are temporally correlated [21]. The last few

years have witnessed fast development on low-rank and sparse representation

methods and great success has been demonstrated in different computer vision

applications including background modelling and detecting moving object as

foreground [11].

Methods for background modelling and foreground detection attempt to

decompose a matrix D of the observed image sequence into a low-rank matrix

L and a sparse matrix S so as to recover background and foreground [11]. The

problem can be solved by the well known robust principal component analysis

(RPCA) [21], which has been widely studied.

Although recent methods based on low-rank representation have been suc-

cessfully employed for change detection, they still have difficulties in handling

the following situations.

• First, the existing methods rely on a batch formulation whose computa-

tional complexity grows with the size of the input data. To address this

issue, we propose a contiguous outliers representation method via online

low-rank approximation (COROLA) [106]. In particular, our proposed

method uses the sparsity and connectedness terms as the prior infor-

mation for moving objects and estimates the background model using

sequential low-rank approximation with the help of online robust PCA
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(OR-PCA). Combining the sparsity and connectedness terms with the se-

quential low-rank approximation within a single optimization framework,

enables us to detect moving objects in the case of long-term continuous

tasks with dynamic background or noisy data.

• Secondly, low-rank based methods are not able to deal with significant il-

lumination change including shadow and abrupt or discontinuous change

in illumination. Currently, many surveillance systems, specifically those

that use security cameras and wildlife monitoring cameras, capture a

scene using a motion trigger sensor or timer-lapse photography in order

to detect moving objects of interest or changes over time. Since captured

images by these cameras are in different time of a day with different il-

lumination and weather conditions, their processing is challenging.

Current solutions are vulnerable to complex illumination changes that

frequently occur in practical situations and real environments, especially

when the changes are discontinuous in time. In such cases, current meth-

ods are often not able to distinguish between illumination changes (in-

cluding those due to shadow), and changes caused by moving objects in

the scene.

In general, outdoor illumination conditions are uncontrolled, making

moving object detection a difficult and challenging problem. This is a

common problem for many surveillance systems in industrial or wildlife

monitoring areas in which a motion triggered camera or a time-lapse

photography system is employed for detecting objects of interest over

time. Fig. 1.1 shows an example of this kind of images and illustrates

the problem of object detection under significant illumination changes.

Due to significant and complex changes in illumination and independent

changes of the moving objects between images of the sequences, detection

of the moving objects is extremely challenging

In this thesis, we investigate how this problem can be addressed, by intro-

ducing different priors incorporated into the low-rank framework. As the

first solution, we propose a low-rank and invariant sparse decomposition
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(LISD) method [103] to separate an input data matrix into three matri-

ces: low-rank matrix as the estimated background, and the sparse real

changes and illumination change matrices. In particular, we first pro-

pose a robust representation of images against illumination, which can

be used in classification [40], visual place recognition [101], and change

detection [103] applications. Then we compute a prior map from the in-

variant representation and propose a unified framework by incorporating

the prior map and the original representations. This unified framework

enables us to distinguish between foreground changes and illumination

change through the optimization and can separate the sparse outliers

into real changes and illumination change matrices.

As the second solution to deal with discontinuous change in illumination,

we introduce a new formulation for moving object detection under the

framework of low-rank tensor approximation. In particular, we first pro-

pose a method to create a set of prior maps for each image in the image

sequence and treat it as a tensor. These prior maps enable us to use two

regularization terms to distinguish between moving objects and illumi-

 

Figure 1.1: Selected images from the image sequences captured by (First three
rows): a motion triggered camera for railway and wildlife monitoring, (Last
two rows): a time triggered camera for industrial area monitoring.
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nation changes. Then we formulate the regularization terms in a unified

framework named tensor low-rank and invariant sparse decomposition

(TLISD) [102].

It should be pointed out, inspired by the significant success of deep neural

networks in computer vision, another group of background subtraction and

moving object detection methods based on deep neural network have been

proposed [3], [15], [27], [99], [144], [147]. However, these learning-based meth-

ods need supervised training with pixel-wise ground-truth masks of moving

objects, which are not practical in real applications. Furthermore, these meth-

ods only learn the background variations, due to the lack of labeled data for

illumination. Therefore, in the problem that we described in 1.1, these meth-

ods need to be learned with all of discontinuous variations, which is roughly

impossible.

1.2 Contributions

The contributions of this thesis are as follows.

• In Chapter 3 we propose an online formulation of the low-rank approxi-

mation algorithm for foreground object detection. In particular, we use

the sparsity and connectivity of moving objects as prior information in

online low-rank approximation. We combine these prior information with

the sequential low-rank approximation in a unified optimization frame-

work, which enables us to detect moving objects in the case of long-term

continuous task. Extensive experiments on benchmark datasets demon-

strate the effectiveness and reliability of the proposed formulation in

comparison with other existing online methods, especially in dynamic

background scene or noisy environments.

• In Chapter 4 we propose a novel low-rank and invariant sparse decom-

position, based on a new illumination regularization term to distinguish

between illumination changes and real changes as moving objects. Based
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on our proposed method, for the first time we are able to separate discon-

tinuous change in illumination from real changes which we call moving

objects. Extensive experimental evaluations on different datasets illus-

trate the superior performance of our proposed method in comparison

with all other existing methods.

The main contributions in this chapter are as follows.

(a) We propose a robust representation of images against illumination,

which is used in visual place recognition, classification, and change de-

tection.

(b) We introduce an illumination regularization term using the proposed

illumination invariant representation in (a)

(c) We propose a joint optimization framework by incorporating the illu-

mination regularization term and the low-rank and sparse decomposition

framework.

• In Chapter 5 we propose a new low-rank tensor decomposition using

group sparsity and k-support norm as two regularization terms to sepa-

rate moving objects and illumination variations that undergo discontin-

uous changes. Our algorithm evaluation demonstrate the power of in-

corporating the group sparsity norm with the k-support norm, to detect

moving objects accurately under discontinuous change in illumination.

The main contributions in this chapter are as follows.

(a) We define a method for creating multiple priors that characterize

the complex variation of illumination in a video sequence

(b) We define a unique tensor structure different from all existing meth-

ods, and encapsulate the prior maps in the tensor

(c) We propose to use the k-support norm to capture uncorrelated illumi-

nation variations, and we evaluate the effect of this norm in comparison

with L1 norm.

(d) We introduce a unified optimization framework by exploiting the
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prior maps with group sparsity and k-support norm as two regularization

terms to distinguish between moving objects and illumination variations.

• Due to the lack of a comprehensive dataset with various illumination and

shadow changes in a real environment, We introduce a new benchmark

dataset with over 80k real images captured by industrial security cameras

and wildlife monitoring systems during three years in Chapters 4 and 5.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we provide an

overview of low-rank approximation, the background and related works to our

research for moving object detection, and illumination invariant representation

methods. In Chapter 3, we propose an incremental contiguous outlier repre-

sentation method to deal with the batch formulations of low-rank frameworks.

Then in Chapters 4 and 5 we study the problem of discontinuous change in

illumination and separating them from moving objects as real changes. In par-

ticular, we propose a novel low-rank and invariant sparse decomposition using

illumination regularization term and evaluate the method with extensive ex-

perimental results in Chapter 4. In Chapter 5, we propose a unique tensor by

creating multiple illumination priors for images, and introduce our tensor low-

rank and sparse decomposition method to separate illumination changes from

moving objects. In these chapters, we also introduce a comprehensive chal-

lenging real image dataset, captured by industrial security cameras or wildlife

monitoring systems. The conclusion of this thesis and directions for future

works are explained in Chapter 6.
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Chapter 2

Background

In Chapter 1, we explained the capability of low-rank and sparse decomposition

methods in comparison with the traditional methods, to detect moving objects.

Since low-rank approximation methods work based on the correlation between

images in a sequence, they are more robust against global variations than the

traditional methods. However, these methods still have difficulties in dealing

with

• long-term continuous tasks due to the batch processing and computa-

tional cost, and

• significant illumination changes, especially for the sequences that are

discontinuous in time.

In this chapter, we provide relevant background material related to our re-

search for the above two problems. We first provide an overview of low-

rank approximation in Section 2.1, and then we study the background and

related works of moving object detection using low-rank based methods in

Section 2.2 to deal with both computational cost and discontinuous illumi-

nation change. Since we will introduce an illumination regularization term

in Chapter 4, we also review relevant illumination invariant representation

methods in Section 2.3.
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2.1 Low-Rank Approximation

In the recent years, low-rank matrix recovery, which effectively separates sparse

outliers from corrupted observations, has been successfully applied to a variety

of computer vision applications, such as face recognition [31], [84], [133], [136],

image classification [39], [53], [149], images alignment [92], image restoration

and denoising [64], [73], [81], [148], [156], subspace clustering [79], [112], [128],

data compression [21], [56], [146] and background subtraction [10], [11], [156].

Methods in the category of background subtraction and moving object de-

tection follow the basic idea from [90], where the principal component analysis

(PCA) for background modeling was proposed. It is based on the observation

that the underlying background images should be linearly correlated and the

composed matrix of vectorized background images can be naturally modeled

as a low-rank matrix.

Algebraically speaking, if an image is vectorized in a column and all images

of a sequence are concatenated into a 2D matrix, then the columns are depen-

dent and its low-rank approximation matrix represents the background model

of the images. As a result, the background modeling problem is converted to

the low-rank approximation problem.

In general, by decomposing an input matrix D of vectorized images into

a low-rank matrix L and a sparse matrix S, the background and foreground

objects can be recovered.

The basic form of this method is as follows.

min
L,S
‖L‖∗ + λ‖S‖1 s.t. D = L+ S (2.1)

where ‖L‖∗ denotes the nuclear norm of matrix L - i.e., the sum of its singular

values - and ‖S‖1 = Σi|Si| is the l1-norm of S.

The overview of this decomposition is shown in Fig. 2.1. One popular

method to solve (2.1) is augmented Lagrangian method (ALM) [77] as follows.

L(L, S, Y, µ) = ‖L‖∗ + λ‖S‖1+ < Y,D − L− S > +
µ

2
‖D − L− S‖2F (2.2)
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Figure 2.1: Overview of low-rank decomposition by RPCA [21]

where Y is the Lagrange multiplier, µ is a positive constant and < ∆1,∆2 >=

tr(∆T
1 ∆2) is the inner product. Lin et al . [77] proposed two ALM algorithms

to solve (2.2); namely exact and inexact ALM. Each iteration of the exact

ALM to update L an S, solves the following sub-problem, which needs couple

of iterations to converge.

(L∗k+1, S
∗
k+1) = arg min

L,S
L(L, S, Y ∗k , µk) (2.3)

Lin et al . [77] also showed updating L and S once when solving (2.3) is suf-

ficient to converge to the optimal solution, thereby yielding the inexact ALM

algorithm, which has been summarized in Algorithm 2.1. In this algorithm,

SVD is singular value decomposition, and Ωε[.] is the soft-thresholding (shrink-

age) operator, defined as follows.

Ωε[x] =


x− ε if x > ε

x+ ε if x < −ε
0 otherwise

(2.4)
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Algorithm 2.1 Inexact ALM Algorithm for Equation 2.2 [77]

Input: Observation matrix D,λ.

1: Initialize Y, µ > 0, ρ ≥ 1 .

2: While not converged

//Lines 3-4 solve Lk+1 = arg minL L(L, Sk, Yk, µk)

3: (U,Σ, V ) = SV D(D − Sk + µ−1k Yk)

4: Lk+1 = U Ωµ−1
k

[Σ]V T

//Line 5 solves Sk+1 = arg minS L(Lk+1, S, Yk, µk)

5: Sk+1 = Ωλµ−1
k

[D − Lk+1 + µ−1k Yk]

6: Updating Y : Yk+1 = Yk + µk (D − Lk+1 − Sk+1)

7: Updating µ: µ = ρµ

8: k ← k + 1

9: end
10: Output: (Lk, Sk)

2.1.1 Low-Rank Approximation of Tensors

Real world data are ubiquitously in multi-dimensional way such as color im-

ages, image sequences or videos. Converting them into a matrix form usually

leads to the information loss. Recently, multi-way or tensor data analysis

has attracted much attention and has been successfully used in many appli-

cations [42], [70], [80], [86], [150]. Formally and without loss of generality,

denote a 3-way tensor by D ∈ Rn1×n2×n3 . Low-rank tensor methods attempt

to decompose D ∈ Rn1×n2×n3 into a low-rank tensor L and an additional sparse

tensor S [45]. The overview of low-rank tensor and sparse decomposition is

shown in 2.2. This decomposition is applicable in solving many computer

vision problems, including moving object detection.

The main challenge for low-rank tensor estimation is the definition of tensor

rank [41]. Several tensor low-rank decomposition methods have been proposed

based on the definition of tensor rank such as CPrank [70], sum of nuclear

norms (SNN) rank [43], [80], [113], [122], and Tucker rank [97]. Zhang et

al. [67] proposed a tensor tubal rank based on a new tensor decomposition
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Figure 2.2: Overview of low-rank tensor decomposition [83]

scheme in [16], [68], which is referred as tensor SVD (t-SVD). The t-SVD is

based on a new definition of tensor-tensor product which uses many similar

properties as the matrix case.

One of the most recent methods relevant to our research is proposed by

Lu et al. [83]. A tensor nuclear norm based on a tensor SVD (t-SVD) [68] was

used to estimate the rank of tensor data and RPCA was extended from 2D to

3D to formulate the following tensor robust PCA (TRPCA):

min
L,S
‖L‖∗ + λ‖S‖1 s.t. D = L+ S (2.5)

where ‖L‖∗ is the tensor nuclear norm of L, i.e. the average of the nuclear

norm of all the frontal slices (‖L‖∗ = 1
n3

Σn3
p=1‖L:,:,p‖∗). [83] showed that the

tensor nuclear norm on tensor data can appropriately capture higher order

relations in data than the nuclear norm on 2D matrices.

 

Figure 2.3: Illustration of the t-SVD of an n1× n2× n3 tensor [67]
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2.2 Low-Rank based Methods for Moving Ob-

ject Detection

In this section, we specifically review the current solution to deal with both

computational cost and dynamic scenes, the two mentioned problems in Chap-

ter 1, for moving object detection.

2.2.1 Methods to Deal with Computational Cost

Due to batch processing, the following two problems occur: memory storage

and time complexity. In continuous monitoring tasks or video processing, if

matrix D is built with a large number of images, memory storage will be a

problem [19]. In addition, by increasing the size of the input matrix D, time

complexity for the matrix decomposition is also increasing.

To address the problem of time complexity, some efficient algorithms have

been proposed [96], [152], [153]. Rodrigues and Wohlberg proposed a fast

PCP [96] algorithm to reduce the computation time of SVD in inexact ALM

(IALM). The “Go Decomposition” (GoDec) method, proposed by Zhou et

al. computes RPCA using bilateral random projections (BRP) [153]. Semi-

Soft GoDec (SSGoDec) and Greedy SSGoDec methods [152] are extensions

of GoDec to speed it up. Although these algorithms reduce the computation

time of low-rank approximation, they are still not satisfactory for applications

such as visual surveillance and robot navigation due to their batch formula-

tion. In many applications, online processing is critical and batch methods are

infeasible.

To overcome the limitations of batch processing methods, incremental and

online robust PCA methods have been developed [9], [25], [34], [51], [52], [95],

[131], [140]. He et al. [51] proposed Grassmannian robust adaptive subspace

tracking algorithm (GRASTA), which is an incremental gradient descent algo-

rithm on Grassmannian manifold for solving the robust PCA problem. This

method incorporates the augmented Lagrangian of l1-norm loss function into

the Grassmannian optimization framework to alleviate the corruption by out-

liers in the subspace update at each gradient step. Following the idea of
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GRASTA, He et al. [52] proposed transformed GRASTA (t-GRASTA), which

iteratively performs incremental gradient descent constrained to the Grass-

mann manifold in order to simultaneously decompose a sequence of images

into three parts: a low-rank subspace, foreground objects, and a transforma-

tion such as rotation or translation of the image. This method can be regarded

as an extension of GRASTA and RASL [92] (robust alignment by sparse and

low-rank decomposition) by computing the transformation and solving the de-

composition with incremental gradient optimization framework. To improve

the accuracy of online subspace updates especially for dynamic backgrounds,

Xu et al. [140] developed an online Grassmannian subspace update algorithm

with structured-sparsity (GOSUS) via an alternating direction method of mul-

tipliers (ADMM) [12].

To deal with noisy conditions and dynamic background scene, Wang et

al. [131] proposed a probabilistic approach to robust matrix factorization

(PRMF) and its online extension for sequential data to obtain improved scala-

bility. This model is based on the empirical Bayes approach and can estimate

better background model than GRASTA.

Recently, Feng et al. [34] proposed an online robust principal component

analysis via stochastic optimization (OR-PCA), and [63] used it for foreground

detection. [34] does not need to remember all the past samples and uses one

sample at a time by a stochastic optimization. OR-PCA reformulates a nu-

clear norm objective function by decomposing it to an explicit product of

two low-rank matrices, which can be solved by a stochastic optimization al-

gorithm. We benefit from this approach in our proposed method to provide a

sequential solution for moving object detection using low-rank approximation

in Chapter 3.

2.2.2 Methods to Deal with Dynamic Scenes

Low-rank and sparse decomposition methods attempt to decompose an ob-

served matrix D of vectorized images into the low-rank matrix L and the

sparse matrix S, which correspond to the background and moving objects,

respectively. Since moving objects are not linearly correlated in an image
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sequence, they are grouped into the sparse matrix, and so the accuracy of de-

tected moving objects is highly related to the quality of the sparse matrix S.

Regarding this fact, low-rank based methods can be categorized into different

groups, based on different constraints on sparse matrix S. Candes et al. [21]

used l1-norm to constrain the sparse matrix. Following this approach, Wang et

al. [131] proposed a probabilistic matrix factorization (PRMF) using Laplace

error and Gaussian prior, which correspond to an l1 loss and l2 regularizer,

respectively.

To improve the performance of moving object detection, some other con-

straints have been recently imposed on sparse matrix S using prior knowledge

of spatial continuity of objects [30], [48], [49], [118]. These methods use a

block sparsity as a spatio-temporal constraint to detect the foreground. For

example, Guyon et al. [48], [49] proposed the low-rank and block sparse matrix

decomposition (RPCA-LBD) using l2,1-norm as a spatial continuity to enforce

the block-sparsity of the foreground.

Although these methods are more robust than conventional RPCA in the

presence of illumination changes, the block-sparsity property is unable to

model sparse outliers or filter out significant illumination changes and moving

shadows. Besides, in the case of time-lapse video or low frame rate image

sequences, where consecutive frames are captured with a large time-interval,

the position of an object in each frame is discontinuous from other frames and

l2,1-norm cannot handle the situation.

Recently, tensor data analysis has attracted much attention for background

subtraction and foreground detection in frame-rate sequences, and many meth-

ods based on the idea of spatial continuity using tensor decomposition has been

proposed [22], [57], [60], [75], [114]. These methods stack two dimensional im-

ages into a three dimensional data structure, using which tensor decomposition

can capture moving object due to the continuity of object positions in the third

dimension. Obviously, these methods still suffer from the same issue of the

matrix-based methods, and are not applicable to time-lapse image sequences

with discontinuous changes in both object location and illumination.

Another group of methods used the connectivity constraint on moving ob-
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jects [82], [106], [132], [138], [140], [155]. Xu et al. [140] proposed an online

subspace update method GOSUS that defines an objective function with a su-

perpixel method to achieve sparsity of the groups. Wang et al. [132] proposed

a full Bayesian robust matrix factorization (BRMF). They further extended

it by assuming that the outliers form clusters with close within-group spatial

proximity which correspond to moving objects. This is achieved by placing a

first-order Markov random field (MRF) [76], and the method is referred to as

Markov BRMF or MBRMF. Zhou et al. [155] proposed DECOLOR by assum-

ing the moving objects are connected components and relatively small. They

also incorporated these priors using MRF.

Following the connectivity constraint, [44] proposed a method by incor-

porating a spatial contiguity prior in the form of blocks and motion saliency

map to detect moving objects. Liu et al. [82] improved it using a structured

sparsity norm for the spatial contiguity. Liu et al. [82] proposed a method

using a structured sparsity norm [85] based on 3×3 overlapping-patch groups.

Since the foreground is usually spatially contiguous in each image, comput-

ing the maximum values of each group promotes the structural distribution

of sparse outliers during the minimization. They also used a motion saliency

map to distinguish the foreground object from background motion. Using

this saliency map, the method is robust in the case of background motion

and sudden illumination changes in the image sequence. However [82] cannot

handle discontinuous change in illumination or moving shadows, especially in

time-lapse videos where the foreground objects are completely stochastic as

are shadow and illumination changes.

Inspired by the concept of the group sparsity structure, recently, Ebadi

et al. [32] proposed an approach by employing structured sparsity norm in

the context of tree-structured groups [69], where each group is a superpixel

region. The structured sparsity norm of their optimization framework decides

whether each region belongs to foreground or must be classified as background.

The regions belonging to background are left-off, while the regions hinting

foreground elements are divided into two smaller regions once again to form

the shape of foreground during the minimization. Although [32] can detect
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moving objects accurately in frame-rate sequences with moderate illumination

changes, [32] still vulnerable to discontinuous change in illumination, especially

in time-lapse videos.

Based on the idea of spatial constraint, recently, a new approach us-

ing multi-scale structured sparsity for background subtraction has been pro-

posed [151]. [151] explores the structured smoothness with both appearance

consistency and spatial compactness in the low-rank and sparse decomposition

framework. This methods assumes that the foregrounds are generally consis-

tent in appearance and so, foreground pixels are homogeneous in the same

concept of spatial region, such as the same superpixel. Then, [151] encourages

this structure of spatial compactness on the foregrounds at different scales.

Coarse scale with smaller number of superpixels imposes global structure of

the pattern such as the whole body in a single superpixel, while fine scale

captures local structure. Finally, [151] integrates the multi-scale cues into a

unified structured low-rank and sparse decomposition framework to capture

the structure of the foregrounds.

In general, although the low-rank framework is well-known to be robust

against moderate illumination changes in frame-rate sequences, the existing

methods are still not able to handle discontinuous change in illumination and

shadow, especially in time-lapse sequences, where the foreground objects are

completely stochastic as are shadow and illumination changes.

To deal with this problem, in Chapter 4 we first propose a robust represen-

tation of images against illumination. Then we propose a low-rank and invari-

ant sparse decomposition method by incorporating the original and invariant

representations. As a second solution to deal with discontinuous illumination

change, in Chapter 5 we first propose a method to create a set of prior maps

to build a tensor data structure. Then we formulate the problem of moving

object detection in a unified framework named tensor low-rank and invariant

sparse decomposition with the help of two regularization terms to distinguish

between moving objects and illumination changes.

17



2.3 Illumination Invariant Representation Meth-

ods

Dealing with illumination changes is a well-studied area in computer vision and

many methods have been proposed [157], [47], [55], [116], [119], [120], [134] for

different applications. The first group of these methods relies on learning clas-

sifiers on color and intensity of an image. However, these methods usually focus

on shadow removal and cannot produce illumination invariant representation

at different times of a day [157], [47]. The other group of methods follows

the idea of [6], where the definition of “intrinsic images” was introduced, and

models the process of image formation [7], [116], [119], [120], [134]. These

methods decompose an image into two separate component images: one for

describing reflectance of the scene and the other for explaining the variation

in the illumination across the scene.

Following the above definition, an illumination invariant method attempts

to remove the effects of illumination on the color and the intensity of an image.

This can be achieved by deriving invariant quantities which remain unchanged

under illumination changes [37], [38], [36]. One can use a transformation from

RGB to an invariant 2D log-chromaticity space, and then find a special direc-

tion in a 2D chromaticity feature space to produce a grayscale image which is

approximately invariant to intensity and color of scene illumination. To com-

pute the special direction which is called invariant direction, [38] uses a camera

calibration method, and [36] derives it from the image itself using entropy min-

imization. [36] is relatively fast and popular due to find the invariant direction

from the image itself. This approach is used originally for removing shadow

from single images. However, [28] used this approach to provide illumination

invariant representation for localization and place recognition. Since we take

benefit of this approach in our proposed methods, we summarize obtaining

intrinsic images using entropy minimization as follows.

Finlayson et al. in [36], [37] adopt a Lambertian model of image formation

with a power spectral density E(λ, x, y), surface reflectance function S(λ, x, y),

and the spectral sensitivity of the kth camera sensor - where k = 1, 2, 3 for
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red, green and blue channels of the camera - as follows.

ρk(x, y) = σ(x, y)

∫
E(λ, x, y)S(λ, x, y)Qk(λ)dλ (2.6)

where σ(x, y) is a constant factor and denotes the Lambertian shading term

at a given pixel. If the camera sensitivities are Dirac delta functions, Qk(λ) =

qkδ(λ− λk) and illumination can be modeled by Plank’s Law [137], then (2.6)

becomes:

ρk = σE(λk)S(λk)qk, (2.7)

Restricting illumination to Planckian, an illuminant power spectral density E

can be parameterized by its color temperature T .

E(λ, T ) = Jc1λ
−5e−

c2
Tλ (2.8)

where J is a variable to control the overall intensity of the light, and c1 and c2

are constant. Now, for removing the effect of illumination, [36] computes the

two-vector chromaticity χ = [χ1, χ2] as follows.

χ1 =
ρ2
ρ1
, χ2 =

ρ3
ρ1

(2.9)

Substituting (2.7) and (2.8) into (2.9) and taking the logarithm χ
′

from χ, we

obtain:

χ
′
= s+

1

T
e (2.10)

where sk = λ−5k S(λk)qk, and s = [s1, s2] is a two-vector which depends on the

scene surface and the camera, but is independent of illumination. e is a two-

vector which is independent of the scene surface, but depends on the camera.

T changes when illumination changes and χ
′
obtained from (2.10) moves along

a straight line roughly. Direction of this line belongs to e and is independent

of the surface and illumination. So, to remove the effect of illumination and

to determine a 1D illumination invariant representation, we can easily project

the log-chromaticity vector χ
′

onto the vector orthogonal to e as follows.

I ′ = χ′e⊥, (2.11)

where I ′ is a grayscale illumination invariant image. For finding the invari-

ant projection direction without calibration, [36] showed by quantization and
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Figure 2.4: Overview of the obtained illumination invariant representation
using [36], and intuition for finding best invariant direction via minimizing the
entropy.

minimizing Shannon’s entropy, where can estimate the best direction of vector

e. Since the direction is independent of the illuminant and the surface, in the

ideal case the direction should not change. The overview of this method is

shown in Fig. 2.4.
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Chapter 3

Contiguous Outlier
Representation via Online
Low-Rank Approximation

3.1 Introduction

Extracting moving objects from a video sequence and estimating the back-

ground of each individual image are fundamental issues in many practical

applications, and could be a challenging task due to background variations,

shadows and illumination changes. As explained in the previous chapters,

many methods have been proposed to detect moving objects from image se-

quences. Among them, a new group of methods based on low-rank and sparse

decomposition could outperform the traditional methods in terms of handling

variations of a scene. Since most of them work in a batch processing form,

they cannot be applied in real time application or long duration tasks. To ad-

dress this issue, some online methods have been proposed; however, existing

online methods fail to provide satisfactory results under challenging conditions

such as dynamic background scene and noisy environments. We extensively

discussed these methods in Chapter 2.2.1.

In this chapter, we offer an algorithm for the detection of moving objects

named Contiguous Outliers Representation via Online Low-rank Approxima-

tion (COROLA). It solves the challenges of memory storage and time complex-

ity of [155] with a comparable accuracy, and can provide even more accurate

results in noisy environments. COROLA is also able to extract moving ob-
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jects using a moving camera on a continuous basis, which cannot be achieved

in general by a batch processing method especially in the case of large camera

motion.

It should be underlined that recently many incremental low-rank and sparse

decomposition methods for moving object detection have been proposed [61],

[62], [91]. These methods use constraints based on properties of the moving

objects to improve the accuracy of detection in a sequential form. Since the

objects are structurally connected component and their locations are tempo-

rally correlated between frames, structured sparsity constraint [61], [62], and

saliency map [91] are used to detect objects. [66] proposed a method using

weighted low-rank to handle the background variations better than regular

low-rank methods. [23] proposed a pan-tilt invariant method with an incre-

mental PCP method to detect objects in the case of pan-tilt camera motion.

It should be pointed out that all of these incremental methods have been

proposed after our method.

3.1.1 Relation of Our Method to Other Methods

Since our COROLA method uses the sparsity and connectedness terms of DE-

COLOR method [155] and estimates the background model using sequential

low-rank approximation with the help of OR-PCA [34], we present a sum-

mary of these two methods and in the next Section we describe our COROLA

method that extends the two methods.

DECOLOR

DECOLOR is a formulation that integrates the outlier support and the es-

timated low-rank matrix in a single optimization problem, for joint object

detection and background learning. Specifically, it works by solving the fol-

lowing minimization:

min
L,S

1

2
‖PS⊥(D − L)‖2F + β2‖S‖1 + γ‖Φ(S)‖1

s.t. rank(L) ≤ r,
(3.1)
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where D, L, and S are the matrix of vectorized images, estimated background

images, and outlier support, respectively. S in (3.1) is binary and its elements

are 1 for outliers. S⊥ is the complement of S and its elements are 1 for back-

ground pixels of the images. Φ(S) means the difference between neighboring

pixels and therefore the last term of the above minimization encourages con-

nectedness of outliers. Zhou et al. [155] solved the first term of (3.1) with

its constraint using an alternating algorithm (SOFT-IMPUTE) [87]. They

then solved the rest of the minimization problem by Markov Random Field

(MRF) [76]. This two-step optimization is iterated until convergence. Al-

though this method provides promising results, it still suffers from memory

storage and time complexity problems in large datasets and, due to batch pro-

cessing, it is not appropriate to operate on a continuous basis. Furthermore, in

the case of a moving camera, DECOLOR only works for short video sequences

with small camera motion and cannot deal with a moving camera in general.

OR-PCA

OR-PCA [34] decomposes an input matrix into low-rank and sparse matrices

sequentially, processing one sample at a time and producing a solution that

is equivalent to that of the batch RPCA. As a result, its computation cost is

independent of the number of samples. To compute the low-rank via online

optimization, OR-PCA uses an equivalent form of the nuclear norm for the

matrix L where rank is upper bounded by r [94], as follows.

‖L‖∗ = inf
U∈Rm×r,V ∈Rr×n

{
1

2
‖U‖2F +

1

2
‖V ‖2F : L = UV

}
(3.2)

where U and V are the basis and coefficients of the low rank matrix. Us-

ing this equivalent form for low rank matrix, OR-PCA solves the following

minimization problem:

min
U,V

1

2
‖(D − UV − E)‖2F +

λ1
2

(‖U‖2F + ‖V ‖2F ) + λ2‖E‖1 (3.3)

where E is sparse error matrix. Feng et al. [34] solved (3.3) in an online manner

for one sample per time by two iterative updating parts. First, the coefficients
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and the sparse error for each new sample is updated by the previous basis.

Then, the basis is updated using the new sample, updated coefficients, and

sparse errors.

In the next section, extending the work of DECOLOR with the help of

OR-PCA for updating U and V , we introduce a novel non-convex closed-

form formulation for detection of moving objects named contiguous outliers

representation via online low-rank approximation (COROLA).

3.2 Online Moving Object Detection by

COROLA

In this section, we focus on online detection of moving objects for static cam-

eras and then we show that the method can be easily extended to the case of

moving cameras. We first formulate the problem of background modelling and

foreground object detection and then describe in detail our COROLA algo-

rithm, which computes the low-rank approximation and foreground detection

sequentially.

3.2.1 Notations and Formulation

Let X ∈ Rm be a vectorized image, and Xj be the jth image in a sequence,

expressed as a column vector of m pixels. Then, D = [X1, ..., Xn] ∈ Rm×n is a

matrix of n images and the ith pixel in each observed image X is denoted as

xi. To indicate foreground for an observed image j, we use a binary indicator

vector s = [s1, s2, ..., sm]T as the foreground support where

si =

{
0 if i is background

1 if i is foreground
(3.4)

and matrix S = [s1, s2, ..., sn] shows a binary matrix of all images in D. Also,

we use the function PS(X) to construct a vector of at most m foreground pixels

of image X. S⊥ is the complement of S and its elements are 1 for background

pixels of the images, where PS(X) + P⊥S (X) = X. Now, let L = UV . The
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objective function in (3.1) can be rewritten as follows.

min
U,V,S

1

2
‖PS⊥(D − UV )‖2F + β2‖S‖1 + γ‖Φ(S)‖1

s.t. rank(U) = rank(V ) ≤ r,
(3.5)

With the above notations and equations, we relax the constraints of (3.5)

based on [34], and so the problem of background modelling and foreground

object detection via sequential low-rank approximation and contiguous outlier

representation solves the following optimization problem for each observed

image.

min
U,v,s

1

2
‖PS⊥(X − Uv)‖2F +

β1
2

(‖U‖2F + ‖v‖2F ) + β2‖s‖1 + γ‖Φ(s)‖1 (3.6)

where X ∈ Rm is an observed image, r is the upper bound on the rank of

the basis matrix U ∈ Rm×r, and v ∈ Rr is a coefficient vector. Φ(s) means

the difference between neighboring pixels and it is computed by ‖Φ(s)‖1 =∑
(i,k)∈E

|si− sk| and E is the neighborhood clique. Note that the objective func-

tion defined in (3.6) is non-convex and involves both continuous and discrete

variables. Since (3.6) is our online formulation for each input image, the loss

over all data would be the cumulative for each image. The first three terms try

to compute the low-rank representation of input image X by first expressing it

as a linear combination of the background basis U and its coefficient vector v

using extraction function PS⊥ . The last two terms of (3.6) find continuous and

small outliers to represent the foreground mask. Specifically, the fourth term

imposes a sparsity constraint on the foreground mask s; i.e., the foreground

pixels should be low in number. The last term imposes a connectivity con-

straint on mask s to account for correlation between neighboring pixels of an

image. By minimizing (3.6) we can estimate the low-rank representation of an

input image and detect foreground objects, concurrently. We use a two-step

alternating optimization procedure by separating it to a low-rank approxima-

tion step involving U and v, and then a contiguous sparse optimization step

involving s to obtain background estimation and foreground detection, alter-

natively. In the first step we use the same rule as OR-PCA method to update

U and v. In the second step, minimization over s is conducted. In this step,
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we use the combination of Gaussian Mixture Model (GMM) and first order

Markov Random Field (MRF) with binary labels to improve the foreground

detection performance.

3.2.2 Online Low-Rank Approximation

For solving the first step of (3.6), we describe in this section our sequential

method to compute the low rank background model of an image sequence and

the foreground as its sparse outliers, in a way that is suitable for continuous

and real time operation. In our sequential formulation, we adopt an online

updating approach for optimization over U and v. Therefore (3.6) can be

rewritten as:

min
U,v

1

2
‖PS⊥(X − Uv)‖2F +

β1
2

(‖U‖2F + ‖v‖2F ) (3.7)

Initialization Step: With a small number of images at the beginning of

a sequence no fewer than the rank of the background model, we initialize U

with a batch method. This enables us to estimate the rank r roughly for the

images in the rest of the sequence. Since this step is performed only once, the

complexity of using a batch formulation is not an issue. After the initialization

of U , for each input sample X, we use an incremental approach to solve (3.7)

by the following two parts, repeatedly. These two parts update v, and then U

for each sample to build the background model incrementally as follows:

Part 1: Because every two consecutive images in a sequence are similar, we

can update coefficient vector v (or U) for the current image via background

model U (or v) computed for the previous image. To update v with the fixed

U , (3.7) becomes:

v̂ = argmin
v

1

2
‖X̂ − Ûv‖2F +

β1
2
‖v‖2F (3.8)

where X ∈ Rm is the current image, X̂ = PS⊥(X), and Û = PS⊥(U). By

fixing Û , (3.8) is a least squares problem and can be solved by

v̂ = (ÛT Û + βI)†ÛT X̂ (3.9)
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where (.)† is the Moore Penrose pseudoinverse [152].

Part 2: To update U , (3.7) can be rewritten as:

min
U

1

2
‖PS⊥(X − Uv)‖2F +

β1
2
‖U‖2F (3.10)

Assuming Uv = PS⊥(Uv) + PS(Uv), (3.10) can be rewritten as follows.

min
U

1

2
‖PS⊥(X) + PS(Uv)− Uv‖2F +

β1
2
‖U‖2F (3.11)

= min
U

1

2
‖Z − Uv‖2F +

β1
2
‖U‖2F

where Z = PS⊥(X)+PS(Uv). [87] showed that using this approach iteratively,

the optimal U can be obtained. According to Frobenius norm properties, (3.11)

can be solved by:

Û = argmin
U

1

2
Tr[U(A+ β1I)UT ]− Tr(UTB) (3.12)

where A = vvT and B = ZvT . (3.12) has a solution in [34], where the basis

U minimizes a cumulative loss w.r.t the previously estimated coefficients v.

3.2.3 Online Foreground Detection

Let current X and its corresponding L be Xj and Lj, respectively. Also Sj is

the indicator vector s for the jth image. Now we investigate how to compute

the foreground mask s given the residual Ej = Xj − Lj (Lj is computed

in background modeling in the previous section for the jth observed image).

The goal now is to find the indicator vector Sj on Ej. Assuming that the

foreground objects are relatively small connected components, we can model

the foreground mask Sj by a Markov Random Field (MRF) [76]. Specifically,

let graph G = (V , E) where V is the set of vertices that correspond to the pixels

of an image and E is the set of edges that connect neighboring pixels. Then,

by defining an energy function of Sj

β2
∑
i∈V

(si) +
∑

(i,k)∈E

γi,k|si − sk| (3.13)

we can derive the foreground mask Sj. β2 is the cost of assigning the label si

to the ith pixel. γi,k is also the cost of assigning the labels si and sk to the

adjacent pixels i and k.
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Figure 3.1: The effects of using GMM on outliers obtained from low rank
approximation on noisy and dynamic background. The left figure shows an
input image, and the middle and right figures show the obtained outliers E
and Ê, respectively.

The first and the second terms impose sparsity and continuity on Sj, in

a way that is similar to the last two terms of (3.6) and shows that Sj can

be modeled using MRF [76]. However, extracting foreground objects from E,

which is combination of outliers and noise, would not be accurate especially

in noisy environment like dynamic backgrounds. In most cases we need to

separate reliable outliers representing true foreground from noise in estimating

foreground support Sj. In most applications, noise comes from a complicated

and dynamic background such as waving trees or sea waves, which should be

classified as background.

Here, we describe outliers with a Gaussian model N (µ, σ2). Using this

model of the outliers enables us to control the complexity of the background

variations and also recognize true outliers in the presence of noise. In our

method, adaptive Gaussian Mixture Model (GMM) [158] is used for each com-

ponent of E to separate the true outliers Ê from noise. Fig. 3.1 shows the effect

of using GMM on E for dynamic backgrounds.

Now for solving the second step of our optimization problem that extracts

moving objects from outliers, (3.6) can be rewritten as the following objec-

tive function to minimize the energy over Sj via obtained outliers Ê, similar

to [155].
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min
S

1

2
‖PS⊥(Ê)‖2F + β2‖Sj‖1 + γ‖Φ(Sj)‖1

=
1

2

∑
i

Ê2
i (1− si) + β2

∑
i

si + γ‖Φ(Sj)‖1

=
∑
i

(β2 −
1

2
Ê2
i )si + γ‖Φ(Sj)‖1 + C

(3.14)

where C = 1
2

∑
i

Ê2
i is a constant. (3.14) is the first order MRF with binary

labels (the same as (3.13)), which can be solved using graph-cut [14], [71].

The result of (3.14) is the binary mask Sj, which indicates the foreground

pixels of Xj. So far, the first iteration of (3.6) is completed and, based on

mask Sj, the next iteration starts from (3.8). In our experiments, COROLA

converges in approximately r iterations where r is the rank of data in the

sequence. Our convergence criterion is similar to [155] and we use (energyprev−

energy)/energy < 10−4, where energy = 1
2
‖(Xj − Uv)‖2F + β2‖Sj‖1. In this

formulation, the first and the second terms show the error of background

model, and the foreground object size. The algorithm is considered to have

converged if the error of background model and the size of the foreground

object stabilize.

3.3 Convergence and Time Complexity of

COROLA

In this section, we explain the convergence criteria of COROLA. In general,

our main objective function (3.6) is non-convex and we solve it by alternating

between two steps. In step one for low-rank approximation, we always mini-

mize a single lower-bounded energy function by two sub-problems to update

U and v, which have closed form solutions. In the second step for outlier

detection, we use MRF and its convergence has been discussed in [14]. Using

these two steps, the algorithm must converge to a local minimum. Further-

more, [155] showed that this combinatorial optimization decreases the energy

monotonically through iterations and can converge to acceptable results in

background modeling and moving object applications.
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3.3.1 Time Complexity

• The complexity of our sequential low-rank approximation by COROLA con-

sists of contributions from two major parts. The computational complexity

of the first part is O(mr). The second part of the low-rank approximation

in our model are O(r2 + mr) + O(mr2). Therefore, the overall complexity

of COROLA for the low-rank approximation step is O(r2 +mr2).

• The online foreground detection part is the first order MRF with binary

labels, which is solved using graph-cut. Since the labels are binary, the

solution can be found in polynomial time by computing a minimum cost cut

on the graph, which its complexity is bounded by O(km2) [13]. m is the

number of nodes and k is the number of edges in the graph. Since we use

4-neighborhood connectivity and each edge is bidirectional, the maximum

edges is 2 ×m. Therefore, time complexity of online foreground detection

part is O(m3). However, we use GMM on outliers, which boosts the true

outliers and (3.14) can converge much faster than its time complexity.

Thus the overall time complexity of the optimization problem (3.6) is

O(r2 +mr2 +m3) per iteration.

3.4 Online Moving Object Detection with a

Moving Camera

In this part, we extend our moving object detection method to the case of

a moving camera. As we mentioned in Section 3.1, due to the dissimilarity

between the first and the last images in a sequence, a batch method is not

able to deal with continuous processing using a moving camera. However, in

online methods the background model evolves with time and similarity between

the first and the current image is not required. In our method, we build

the background model for the current image and based on a transformation

function between the current and the new image, the model is transformed to

be matched with the new image. Then we can update it for the new image to

detect the foreground objects. Note that the background model is transformed
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through time. So the key in foreground detection using a moving camera is

the transformation of the low-rank structure to the new input image.

Let τj be a transformation that maps Xj−1 to Xj. This transformation is

obtained from an affine transformation estimated from the two 2D images. We

also assume Xj−1 = Uj−1vj−1 and there is no changes into both last two images

except for affine transformation so that Xj = τ ◦Xj−1. For the sake of brevity,

we state without proof that the following equation allows us to reconstruct the

current view Xj from the background model and the registration transform τj.

Xj = τj ◦Xj−1 = (τj ◦ Uj−1)vj−1 (3.15)

From (3.15) the transformation only changes U where Ūj−1 = τ ◦ Uj−1.

Based on the above assumptions and (3.15), Uj = Ūj−1 and vj = vj−1. After

the transformation, some elements of Ūj−1, which are related to the pixels on

the border of the current image, have no corresponding pixels and we have to

estimate them using other pixels. Using Xj and vj−1 we estimate missing pixels

of Ūj−1 by replacing them by the corresponding values obtained from [152], as

follows.

Ūj−1 = Xjv
T
j−1(vj−1v

T
j−1)

† (3.16)

Based on the experimental results, this approach can estimate missing

pixels of U after transformation. In addition, the location of GMM parameters

for the previous Ej−1 should be transformed via τ to match with the current

Ej. After all of these transformations, we can apply the COROLA method

for a static camera to build the background model and detect the foreground

objects. Fig. 3.2 shows a sample image, its computed background model and

extracted moving object via COROLA, together with the intermediate results.

3.5 Experimental Results

In this section, we compare COROLA with competing algorithms in the liter-

ature. We perform two sets of experiments on synthetic data and real bench-
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Figure 3.2: An example of COROLA for a moving camera. (a) input image
from a sequence (b) background model (c) E, (d) Ê, (e) S, and (f) extracted
foreground object using mask S. Red lines show the processing area.

mark datasets and show quantitative and qualitative results. For quantitative

evaluation where ground truth is available, we use pixel-level precision and

recall, defined as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
(3.17)

where TP, FP, TN, and FN are the numbers of true positives, false positives,

true negatives and false negatives, in pixels, respectively. Also, instead of using

precision-recall curves, we use F-measure to show the overall accuracy [18].

F-measure = 2
precision× recall
precision+ recall

(3.18)

In all experiments β1 = 0.1. For coefficients β2 and γ, we use the same

strategy as [155]. We set β2 = 0.02 for each input image, and decrease β by a

factor of 2 in each iteration with a lower bound of 0.002. We also set γ = 5β2.

3.5.1 Synthetic Data

In this set of experiments, we use synthetic data to control noise and to show

the capability of COROLA. The synthesized images are 30× 100 pixels (m =
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(a)                                        (b)                                        (c) 

Figure 3.3: An example of synthetic data. (a) shows matrix L ∈ R3000×200,
with m = 3000, n = 200, and rank r = 5, where L = UV , U ∈ R3000×5, and
V ∈ R5×200. (b) shows some sample images from selected column of L, where
an object is superimposed each of them. The object is represented by a red
box in the first image in (b). other images show the movement of the object to
left and right of the image, frequently. (c) shows a sample of generated matrix
D as the input data.

3000). We use n = 200 images. Zhou et. al. [155] used the similar scheme to

investigate the robustness of their method against outliers.

To visualize the results we show all images in a 2D matrix where each

column shows one image of the sequence. We generate the input data D by

adding a foreground to a background matrix L. For generating the foreground

and background we use the same approach as DECOLOR. The background

matrix L = UV is generated via U ∈ Rm×r and V ∈ Rr×n with random

samples from a standard normal distribution. An object with a small size is

superimposed on each image in matrix L, and shifts from left to right of the

images by one pixel per image, until the right border of the image. The motion

direction of the object is then reversed, and the process repeats. Fig. 3.3(b)

shows some selected images. The intensity of this object is independently

sampled from a uniform distribution. Also, we add i.i.d Gaussian noise ε to D

with the corresponding signal-to-noise ratio defined as

SNR =

√
var(L)

var(ε)
(3.19)

Figs. 3.3(a), (b) and (c) show an example of generated L, the movement of

generated foregrounds and the obtained matrix D.

We test the COROLA method and compare it with leading online meth-
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ods such as GRASTA, OPRMF, ORPCA and DECOLOR, one of the best

batch methods, in terms of different SNR ratios, different ranks of matrix, and

different sizes of the foreground object. One sample of our experiments with

different SNR ratios between COROLA and all mentioned methods is shown

in Fig. 3.4. In the first row of Fig. 3.4, with SNR = 10, COROLA, OPRMF

and DECOLOR methods have roughly the same results for extracting the

foreground object, but when we increase noise in the second row (SNR = 1),

COROLA method works better than all other methods including DECOLOR

in extracting the moving object. That is mainly attributed to using GMM

to compute the coefficients of outliers to separate the foreground object from

noise. Tuning up the outliers coefficient via GMM enables us to separate noise

and outliers especially in a noisy environment and the result becomes more

and more accurate over time.

To evaluate COROLA in comparison with GRASTA, OPRMF, ORPCA,

and DECOLOR methods, we tested the effects of some scene parameters such

as SNR, rank of matrix D, and size of the object. The quantitative results

of this comparison in terms of F-measure are provided in Fig. 3.5. The first

column of Fig. 3.5 illustrates the effect of noise in all methods, when we change

the SNR ratio from 8 to 1 in different ranks. The rows from top to bottom show

our experiments in different ranks of 1, 3, and 5. Since one of the advantages

of DECOLOR method is high accuracy of object detection with different sizes,

 Input Matrix D      Ground Truth          GRASTA                  OR-PCA    OPRMF    DECOLOR       COROLA 

 

Figure 3.4: Comparison of COROLA, GRASTA, ORPCA, OPRMF and DE-
COLOR with different SNR ratio. The first row and the second row show the
results of the methods with SNR = 10, and SNR = 1, respectively.
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Figure 3.5: First column: the comparison in terms of F-measure between
COROLA and other methods with different signal-to-noise (SNR) ratio. Sec-
ond column: the comparison of F-measure between COROLA and DECOLOR
with different object size. The three rows show three different ranks at 1, 3,
and 5 respectively.

the second column of Fig. 3.5 shows the accuracy of COROLA in comparison

with DECOLOR to extract the moving object of different sizes. This result

demonstrates that the capability of our method is comparable with DECOLOR

in terms of average F-measure. Although, the result of DECOLOR method is

more accurate than COROLA for large objects, by reducing the size of object,

COROLA generates a better result than DECOLOR even when we increase

the rank of matrix D from 1 to 5.
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3.5.2 Real Data

In this section, we use real benchmark datasets to conduct quantitative and

qualitative evaluation of COROLA. The real datasets used are popular in mov-

ing object detection and publicly available1, and they include “2014 Change

Detection” [46], “Perception or I2R” [74], and “Wallflower” [124] image se-

quences. Table 3.1 provides the length and image size of the sequences used

in our experiments.

Table 3.1: Details of all sequences used in our experiments for stationary
camera

Dataset Sequences Size × #frames

I2R Water surface [160,128] × 48

Fountain [160,128] × 523

Curtain [160,128] × 2964

Hall [176,144] × 1927

Campus [160,128] × 372

Escalator [160,130] × 824

Lobby [160,128] × 138

ShoppingMall [320,256] × 433

Change Detection Canoe [320,240] × 1189

Fall [180,120] × 1500

Fountain02 [216,144] × 720

Overpass [320,240] × 3000

Wallflower Waving trees [160,120] × 287

ForegroundAperture [160,120] × 489

TimeOfDay [160,120] × 1850

Evaluation by accuracy

Figs. 3.6, 3.7, and 3.8 show the qualitative results of COROLA for background

estimation and foreground detection for all sequences of Table 3.1 from three

datasets I2R, Change Detection, and Wallflower, respectively. Figs. 3.6, 3.7,

1https://sites.google.com/site/backgroundsubtraction/test-sequences
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      (a)                   (b)                  (c)                   (d)                  (e)                   (f)    

Figure 3.6: The results of COROLA on 8 sequences from I2R dataset. Columns
(a) and (b) show the original query image and the ground truth (GT) for the
foreground. Columns (c) and (f) show the results of COROLA for estimat-
ing the background L, and the detected foreground objects S, respectively.
Columns (d) and (e) show intermediate results for outliers E, and Ê, respec-
tively.

and 3.8 also shows the role of GMM to separate outliers from noise. These

results are shown in columns (d) and (e) as E, and Ê, respectively. The

results in Figs. 3.6, 3.7, and 3.8 demonstrate the capability of COROLA to

detect moving objects and background modeling accurately. The estimated

background in the first row of Fig. 3.6 has some ghost because the input

image is the 23rd of the sequence and the parameters have not been learned

well enough to build an accurate background. In general, for short sequences

the computed background model by a batch method such as DECOLOR is

more accurate than COROLA because online methods need sufficient samples
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Figure 3.7: The results of COROLA on 4 sequences from Change Detec-
tion dataset. Columns (a) and (b) show the original query image and the
ground truth (GT) for the foreground. Columns (c) and (f) show the results
of COROLA for estimating the background L, and the detected foreground
objects s, respectively. Columns (d) and (e) show intermediate results for
outliers E, and Ê, respectively.

for training to be stable. However, for long sequences COROLA can provide

comparable results with batch methods.

We also compare COROLA quantitatively with competing online and batch

methods. However, by tuning the parameters of GMM, which is common in

online methods, COROLA can provide even more accurate results. Table 3.2

compares COROLA with MOG, GRASTA, OPRMF, and ORPCA in terms

of F-measure. In most of the cases COROLA works much better than all

other online methods, specifically in very noisy and dynamic scenes such as

Fountain, Campus, Canoe, Fall, and Fountain02 sequences. Because in these

sequences moving parts of background are often classified as foreground in

other online methods. In contrast, COROLA is able to deal with the difficult

background conditions. By using GMM the difference between outliers and

the rest of pixels is boosted and this allows COROLA to detect intermittently

moving objects better than other competing online methods.

Table 3.3 compares COROLA with IALM, FPCP, GoDec, SSGODec, APG,

and DECOLOR, which are fast and accurate batch methods in the literature,

in terms of F-measure. For some sequences such as Fountain, Campus, Canoe,
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     (a)                   (b)                  (c)                   (d)                  (e)                  (f)    

Figure 3.8: The results of COROLA on 3 sequences from Wallflower dataset.
Columns (a) and (b) show the original query image and the ground truth
(GT) for the foreground. Columns (c) and (f) show the results of COROLA
for estimating the background L, and the detected foreground objects S, re-
spectively. Columns (d) and (e) show intermediate results for outliers E, and
Ê, respectively.

Fountain02, Overpass, and TimeOfDay COROLA works much better than

other methods. Because in some of these sequences, background is very noisy

(i.e. Campus and Fountain02), the constraints of connectedness and sparse-

ness on the subspace of images prove to be useful, which both DECOLOR and

COROLA methods exploit leading to much better results than other methods.

Further, in some cases the objects move very slowly (i.e. Canoe) or stop for a

long time (Overpass, Fountain, and TimeOfDay) none of the competing meth-

ods can produce accurate results. In contrast, COROLA produces acceptable

results for these challenging sequences for the same reasons as for the results of

Table 3.2, i.e., using GMM the difference between outliers and the rest of pixels

is boosted and so COROLA can detect intermittently moving objects better

than other methods. In summary, Tables 3.2 and 3.3 convincingly demon-

strate that our method outperforms the state-of-the-art online methods, and

provides comparable results with the batch methods in terms of F-measure.

Computational Cost

COROLA is implemented in Matlab and C++. We run all experiments on

a PC with a 3.4 GHz Intel i7 CPU and 16 GB RAM. To show the impor-

tance of online methods in continuous operation we compare the scalability of
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Table 3.2: Comparison of F-measure score between COROLA and online meth-
ods

Sequence MOG GRASTA OPRMF ORPCA COROLA

WaterSurface 0.4723 0.7531 0.5483 0.6426 0.9129

Fountain 0.7766 0.4978 0.2393 0.2870 0.8833

Curtain 0.7709 0.7046 0.4199 0.8504 0.8236

Hall 0.5802 0.7471 0.7215 0.7329 0.7808

Campus 0.4510 0.1885 0.1700 0.1893 0.7177

Escalator 0.3869 0.5474 0.5179 0.4452 0.7858

Lobby 0.5628 0.8231 0.6728 0.6336 0.8128

ShoppingMall 0.5275 0.6816 0.6621 0.5541 0.7494

Canoe 0.5114 0.5386 0.4400 0.5152 0.7403

Fall 0.5420 0.5057 0.4929 0.4030 0.8422

Fountain02 0.7801 0.3569 0.2926 0.4684 0.8205

Overpass 0.5095 0.5609 0.5105 0.6079 0.7732

WavingTrees 0.6639 0.7354 0.5259 0.6315 0.8475

ForegroundAperture 0.2601 0.6757 0.5628 0.6118 0.6401

TimeOfDay 0.6147 0.5645 0.5258 0.6315 0.8291

COROLA with DECOLOR under varying spatial resolution and the number

of images.

Unlike DECOLOR, the computational cost of COROLA is independent of

the number of images because the dominant cost of DECOLOR comes from

the computation of SVD in each iteration. By increasing the size of the matrix

D, the computation time of DECOLOR grows at least linearly with respect to

the number of images. We compare the computation time of COROLA with

DECOLOR after convergence of both methods in Table 3.4. In this table, the

average time for processing of each frame by DECOLOR increases where it is

an order of magnitude slower than COROLA for sequences longer than 1000

images.

Scalability in spatial resolution is another advantage of online method

against batch processing methods. Increasing the resolution of images sig-
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Table 3.3: Comparison of F-measure score between COROLA and batch meth-
ods

Sequence IALM FPCP GoDec SSGoDec APG DECOLOR COROLA

WaterSurface 0.3519 0.4910 0.4304 0.4473 0.5907 0.9022 0.9129

Fountain 0.1633 0.1894 0.1531 0.2574 0.2641 0.2075 0.8833

Curtain 0.3184 0.5290 0.3706 0.4344 0.7260 0.8700 0.8236

Hall 0.5716 0.7295 0.7128 0.5713 0.7601 0.8169 0.7808

Campus 0.1660 0.1701 0.1640 0.1649 0.1979 0.7811 0.7177

Escalator 0.5066 0.5192 0.1316 0.5075 0.5440 0.8205 0.7858

Lobby 0.3213 0.7188 0.7393 0.6194 0.7286 0.6579 0.8128

ShoppingMall 0.6093 0.6256 0.6143 0.5880 0.7057 0.6382 0.7494

Canoe 0.5072 0.5169 0.5107 0.3091 0.4193 0.1603 0.7403

Fall 0.4112 0.4191 0.4137 0.4236 0.5232 0.8760 0.8422

Fountain02 0.2553 0.3066 0.2713 0.2714 0.3204 0.8327 0.8205

Overpass 0.5492 0.5528 0.5454 0.5517 0.5698 0.3573 0.7732

WavingTrees 0.5130 0.5130 0.5113 0.1829 0.7031 0.8845 0.8475

F-A 0.3233 0.3238 0.3238 0.6854 0.7200 – 0.6401

TimeOfDay 0.1523 0.2187 0.1630 0.1664 0.6808 0.4683 0.8291

nificantly affects DECOLOR method. Using high resolution images results in

a huge matrix D so that decomposing D becomes very expensive. On the other

hand, COROLA is an online method and is independent from the number of

images, i.e., we do not have to deal with a large D and its computation time

grows only with the image resolution.

3.5.3 Experiments on a Moving Camera

In this section, we test our method on real public sequences for moving cameras

namely “Berkeley motion segmentation dataset” [125]. Table 3.5 shows the

details of four sequences that we use in our experiments.

We compare our method with DECOLOR as the leading method based on

low-rank approximation that can handle the problem of object detection with

a moving camera in a short sequence. Fig. 3.9 shows the qualitative results of
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Table 3.4: Time evaluation of COROLA with DECOLOR method

Methods Resolution × #images Low Rank (s) MRF (s) Total (s)

[320× 240]× 200 0.1036 0.0828 0.1864

[320× 240]× 400 0.1531 0.1297 0.2828

DECOLOR [320× 240]× 600 0.1687 0.1601 0.3279

[320× 240]× 800 0.2016 0.1825 0.3841

[320× 240]× 1000 0.3948 0.3191 0.7139

COROLA [320× 240]× 1000 0.0231 0.0605 0.0836

COROLA in comparison with DECOLOR method for moving object detection

using a moving camera. First two experiments have been performed on short

sequences “cars7”, “people1” and the results from COROLA are comparable

with those from DECOLOR method. For the last two sequences “marple13”

and “Tennis”, DECOLOR has a problem to align images when the last images

are not similar with the first images of these sequences. This is common in

continuous processing and all of batch methods have problem with this. To

show the result of DECOLOR on marple13 and tennis sequences (in the last

two rows of Fig. 3.9), we used last 30 images of the sequences, which have less

camera motion. Since the last images in the sequence are no longer similar

to the initial ones in the matrix, DECOLOR failed, as expected. In contrast,

since COROLA works online and only considers the last two images it can

process the last two sequences of Table 3.5 without any problems and provides

acceptable results in comparison with DECOLOR.

Table 3.5: Details of all sequences used in our experiments for moving camera

Dataset Sequences Size × #frames

cars7 [320,240] × 24

Berkeley motion segmentation people1 [320,240] × 40

tennis [320,240] × 200

marple13 [320,240] × 75
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               (a)                                   (b)                                    (c)                                    (d)  

Figure 3.9: Comparison of foreground objects between DECOLOR and
COROLA. columns (a) and (b) show the input image and its ground truth.
columns (c) and (d) show the obtained foreground mask for DECOLOR and
COROLA methods, respectively.

Table 3.6: Comparison of F-measure score between DECOLOR and COROLA

Sequence DECOLOR COROLA

cars7 0.8441 0.8296

people1 0.9666 0.9113

tennis — 0.8184

marple13 — 0.7943

Table 3.6 shows the quantitative evaluation of COROLA in comparison

with DECOLOR. Experiments over all four sequences show that the results

of COROLA is comparable with DECOLOR but has the advantage in terms

of its ability for real-time continuous processing. With more than 30 images

in a sequence, DECOLOR can no longer produce a valid result due to the

significant dissimilarity of the images later in the sequence from the initial

ones. In contrast, our sequential method is always able to produce a valid

result.
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3.6 Summary

In this chapter, we proposed a novel online method named COROLA to detect

moving objects in a video using the framework of low-rank matrix approxima-

tion. Our online framework works iteratively on each image of the video to

extract foreground objects accurately. The key to our online formulation is to

exploit the sequential nature of a continuous video of a scene where the back-

ground model does not change discontinuously and can therefore be obtained

by updating the background model learned from preceding images. We have

applied COROLA to the case of a moving camera. Since our method works

online and is independent of the number of images, it is suitable for real-time

object detection in continuous monitoring tasks. Our method overcomes the

problems of batch methods in terms of memory storage, time complexity, and

camera motion. Also important to the success of COROLA is using Gaussian

model to separate noise from outliers, especially in the case of dynamic back-

ground. Based on our extensive experiments on synthetic data and real data

sequences, we are able to establish that COROLA achieves the best perfor-

mance in comparison with the state-of-the-art online methods. COROLA also

outperforms most of the batch evaluated methods, and provides comparable

results to DECOLOR.

Despite its satisfactory performance in all of our experiments, COROLA

shares one disadvantage with DECOLOR. Since both methods have non-

convex formulations, they might converge to a local minimum with results

depending on initialization of parameters; however, for the case of background

modeling, images are roughly similar and parameters do not change signif-

icantly. Therefore, the issue of local minimum has not affected successful

object detection in our experiments. A challenge facing COROLA is severe

illumination changes and this is a problem of all online and batch methods.

In the next chapter, we will propose a method that can work under severe

illumination changes.
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Chapter 4

Low-Rank and Invariant Sparse
Decomposition

4.1 Introduction

As explained in Chapter 1, existing low-rank based methods for the problem of

moving object detection have two difficulties to deal with long term continuous

tasks and significant change in illumination. Although our proposed method

in Chapter 3, can address the first issue, it is still vulnerable to significant

illumination changes that arise in certain applications, which is a problem for

all existing online and batch methods. The problem is particularly challeng-

ing when the frames of the image sequence are not continuous in time as the

result of the capturing process, such as in motion-triggered or time-lapse pho-

tography as explained in Chapter 1. This challenge arises primarily from the

significant illumination variation among the frames of the sequence that con-

fuses appearance change due to object motion and that due to illumination.

In the rest of this thesis, we focus on this challenge and we are interested in

moving object detection in applications involving time-lapse image sequences

for which current methods mistakenly group moving objects and illumination

changes into foreground.

As discussed in Section 2.2.2, current methods use temporal and spatial

constraints on the sparse outliers, and they could improve the performance

of moving object detection in frame-rate sequences. However, those are not

able to distinguish between discontinuous changes caused by illumination and
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those caused by moving objects in the scene, especially in time-lapse image

sequences due to the discontinuous change in both illumination and object

location. In other words, there is no solution in the literature to detect mov-

ing objects under significant illumination change that can occur in time-lapse

image sequences including shadow and abrupt or discontinuous change in illu-

mination.

To address this issue, in this chapter, we propose a method using low-rank

and sparse decomposition framework that not only decomposes the images into

low-rank and sparse outliers but is also able to further separate the sparse out-

liers into those due to moving objects, and those due to illumination. However,

separating the sparse outliers into two sparse matrices is an ill-posed prob-

lem. We address this challenge by proposing a robust representation of images

against illumination, which can serve as prior information in our formulation.

Since changes due to illumination and shadow are easily lumped with mov-

ing objects and detected as the sparse outliers in the low-rank formulation, we

then compute a prior map using the obtained illumination invariant repre-

sentation of images to provide information about the effect of illumination.

Finally, we define two penalty terms based on the prior map to decompose

an image into three parts: the background model, illumination changes, and

moving objects or real changes.

The key to our solution is incorporating the prior information in the low-

rank approximation (LRA) framework to form our proposed low-rank and

invariant sparse decomposition (LISD) method. We also propose an iterative

version of LISD (ILISD) to improve the performance of LISD by updating

the prior map. Since we use two representations (grayscale and illumination

invariant representations), the prior map in ILISD is updated iteratively from

the results of each representation that is used as a constraint in another rep-

resentation.
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4.2 Robust Image Representation Against Il-

lumination

In this section we propose a method to provide an illumination invariant rep-

resentation of an image, which can be used in both indoor and outdoor ap-

plications. We use this invariant image representation to obtain the prior

information, which enables us to distinguish between moving objects and il-

lumination changes. As discussed in Chapter 2.3, illumination invariant and

shadow free images have been well studied and many methods have been pro-

posed [36], [38], [47], [157]. One of the most popular and fastest methods for

this task is proposed by Finlayson et al. [36]. This method assumes the camera

sensor sensitivities are Dirac delta functions and illumination can be modeled

by Planck’s law. For removing the effect of illumination, [36] computes the

two-vector log-chromaticity χ
′

using red, green and blue channels. Finlayson

et al. [36] showed that by changing illumination, χ
′

moves along a straight

line e roughly. Projecting the vector χ
′

onto the vector orthogonal to e, which

is called invariant direction, the invariant representation I is computed as

follows.

I = χ
′
e⊥ (4.1)

The best direction for e can be found by minimizing Shannon’s entropy [36].

Fig. 4.1 shows the details of this concept. Although this method works with the

mentioned assumptions for some real images, in case of significant illumination

changes, specially if the assumptions do not hold, χ′ necessarily does not move

along a straight line. This issue causes two major problems in the invariant

representation I.

P1 : First, in the process of projection onto the orthogonal direction of

illumination variation, some pixels with the same log-chromaticity but

from different objects are projected to the same location in the orthog-

onal vector, and the invariant representation removes much meaningful

information about the image, especially around edges.

P2 : Secondly, χ′ vectors of the same material under different illumination
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Figure 4.1: Illumination invariant representation of an image using [36]

are not projected to the same location in the orthogonal vector and

therefore, the method cannot remove the effect of illumination accurately.

In the next section, we propose a solution for the first issue (P1) with some

experimental results of the method. By solving the first issue, the obtained

invariant representation becomes appropriate to use in our formulation for

detecting moving object. Since the second issue can be solved by a low-rank

decomposition, we will discuss on P2 separately, in Section 4.3.1.

4.2.1 Solution to Preserve the Structural Information
of Illumination Invariant Representation

To alleviate the effect of the first issue (P1) for preserving the structural in-

formation of images, we extract invariant features Ĩ from each image using

Wiener filter [50], which has been used successfully for face recognition in [26].

Wiener filter decomposes a signal into its components from two stationary pro-

cesses with different autocorrelation functions, where the Fourier transform of

the autocorrelation function is the power spectral density in the frequency do-

main. One reason to use wiener filter is that this method retains features at
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Figure 4.2: Columns from left to right: two images with extreme illumination

changes, their corresponding invariant image I, and their corresponding final

invariant representation Iinv.

every frequency [26]. We add Ĩ to the invariant image I, which is obtained

from (4.1). This final invariant representation is called Iinv.

Fig. 4.2 shows the effect of adding the invariant features Ĩ to the invariant

representation I. First column shows two images from one scene with the light

switch on/off and the second column shows the corresponding invariant image

I. Last column illustrates Iinv, the results of adding invariant features Ĩ to

the invariant image I. To combine Ĩ and I, we use simple weighted averaging.

All details of this process are explained as follows.

According to [6], an image can be represented as

I(x, y) = R(x, y)L(x, y) (4.2)

where I(x, y), R(x, y), and L(x, y) are the intensity, the reflectance, and the

illuminance of the pixel location (x, y), respectively. By taking the logarithm

of I and transforming the model into an additive form we have:

f(x, y) = ν(x, y) + µ(x, y) (4.3)

where ν = logR and µ = logL. Let f, ν, and µ be drawn from three wide-sense

stationary processes and assume the latter two are uncorrelated. Although the

estimation of µ and ν is highly ill-posed, [26] showed that we can estimate µ
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from a single image by Wiener filter with the optimal filtering setting and then

produce the log reflectance by ν = f − µ. The stationary condition of natural

images is only satisfied in the one-dimensional case, unfortunately, and severely

violated in the two-dimensional case [26], [98]. To overcome this difficulty, since

x and y directions are two dominant directions in a two dimensional power

spectrum, we restrict ourselves to the one-dimensional power spectrum to filter

an image in the x and y direction separately.

Let both µ and ν follow power law spectrum as follows.

Pµ(ω) ∝ ω−αµ , Pν(ω) ∝ ω−αν (4.4)

where Pµ and Pν are the power spectral densities of µ and ν, respectively, and

αν and αµ are positive real numbers.

Now, consider the Wiener filter in the frequency domain:

F{l}(ω) =
Pµ(ω)

Pµ(ω) + Pν(ω)
=

λ

λ+ ωγ
(4.5)

where l is the Wiener filter in the spatial domain, λ is the ratio of power

spectra Pµ and Pν at the frequency ω = 1, and γ = αµ − αν . To obtain a

satisfactory illumination invariant image we need to estimate γ by estimating

the power spectrum of µ and ν.

Let fs,t denote the logarithm of the image from scene s under illumination

condition t. Now, let us assume that the scene is fixed and that the illumi-

nation changes, so that the autocorrelation of the sequence fs,1, ..., fs,T (T is

the number of illumination conditions) can be approximated by the autocor-

relation of the sequence µs,1, ..., µs,T where νs,1 = νs,2 = ... = νs,T and the

autocorrelation of the sequence ν should be close to 0. On the other hand,

if we consider S different scenes with the same illumination, (f1,t, ..., fS,t),

then we can approximate the autocorrelation of the sequence ν1,t, ..., νS,t where

µ1,t = µ2,t = ... = µS,t. Since the power spectrum density is the Fourier trans-

form of autocorrelation, we can obtain an estimation for Pµ and Pν .

Although computing Pµ and Pν enables us to solve (4.4) directly to estimate

µ, and therefore ν can also be computed, such computation needs data from

different scenes and different illuminations. Training data of this kind may
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be available in some applications such as classification tasks, in most of the

computer vision or robotics applications we do not have such information in

general (for example for moving object detection or place recognition), and we

would still like to evaluate (4.5) with a single image.

(4.5) can be evaluated if we can estimate γ and λ. In order to estimate γ,

Torralba et. al. [123] showed for a large range of natural images γ is around

2. Since in most of computer vision and robotics applications all images are

natural, we set γ = 2. Next, in order to estimate µ, we express (4.5) directly

in the spatial domain similar to [26] as follows.

λl[fx] +
∂2

∂x2
(l[fx]) = λfx (4.6)

λl[fy] +
∂2

∂y2
(l[fy]) = λfy (4.7)

where fx and fy are a row and a column of the input image, respectively. (4.6)

and (4.7) can be solved after discretization as follows.

(λI +DTD)µ = λf (4.8)

where f = (f1, ..., fn)T is fx or fy, µ = (µ1, ..., µn)T is µx or µy, and D is

a (n − 1) × n difference matrix: Di,j = −1 if i = j, Di,j = 1 if i = j − 1,

and Di,j = 0 otherwise. Since we approximate γ by 2, λ could no longer be

the ratio of power spectra and need to be chosen empirically [26]. For all

experiments we set λ = 0.5.

Fig. 4.3 shows two sample invariant images against illumination obtained

from a day image and a night image. Fig. 4.3(b) shows the obtained invariant

features and Fig. 4.3(c) is the original invariant representation I. Since the

obtained ν is sparse, we are not able to use it for moving object detection

where the vlaue of all pixels is required. In addition, chromaticity information

of the image has been removed from ν. For example the chromaticity of the

tree in the second column of Fig. 4.3 is removed by Wiener filter although it

has useful details. Therefore we add illumination invariant features ν to the

invariant representation I. Since for dim regions of an image, the obtained

invariant representation I cannot generate information from the image, we
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(a)                                          (b)                                          (c) 

Figure 4.3: Illumination invariant images. First column shows the original
images and the second column shows their illumination invariant features of
images at two different times (day and night). Last column shows the obtained
invariant images from [36].

normalize the original observed image X between [0, 1] and use it as a mask.

Then for the pixels close to zero in ν (0 ≤ |ν| ≤ 0.1) which have not meaningful

information we use the following simple equation.

Iinv(x, y) = ν(x, y)× (1−X(x, y)) + I(x, y)×X(x, y) (4.9)

where for dim regions of an image, the effect of ν is enhanced as a result in

order to build an accurate invariant image. Using I enables us to use the

chromaticity of the image in the final invariant image that has been removed

from ν. So, combining invariant features ν with I from the second row of

Fig. 4.3 using (4.9) provides Fig. 4.4(c) which can recover details of an image

through chromaticity information at the same time.

4.2.2 Implementation Details and Execution Time

To summarize, to build an illumination invariant representation of an image:

• First we compute µx and µy using (4.6) and (4.7), respectively by solv-

ing (4.8) twice for the two directions.
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(a)                                          (b)                                          (c) 

Figure 4.4: Illumination invariant images. (a) original image, (b) the obtained
ν, and (c) Our proposed illumination invariant representation

• Then we obtain ν = νx + νy where νx = fx − µx and νy = fy − µy.

• Next, we compute the invariant representation I using [36] as discussed

in Chapter 2.3.

• Finally, we use (4.9) to compute the final illumination invariant repre-

sentation Iinv of an image.

Following this procedure, the computational cost of generating the illu-

mination invariant representation of an image is extremely low. In real time

terms, we test our method in Matlab 2015a on a 3.40GHz i7 processor with

16GB RAM. The illumination invariant representation for an image with the

resolution of 640× 480 pixels can be computed in 45 ms.

4.2.3 Experimental Results

In this section, we perform a set of experiments to demonstrate the capability

of the proposed method to provide a robust image representation against severe

illumination changes. In particular, we evaluate the accuracy of the proposed

method and compare it with [28], which uses the initial model of [36]. For

the experiments, we use UACampus dataset where the images are captured

by a Clearpath Husky robot on University of Alberta campus. UACampus

dataset has five sequences of images of the same route taken from morning

to night with different illumination and weather conditions: Sunny, Cloudy,
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Figure 4.5: Sample images of the same place in UACampus in five different
times of a day and different weather conditions. Images were captured at 6:00
am, 10:00 am, 2:20 pm, 4:40 pm and 10:15 pm from left to right.

Rainy, and Night. Fig. 4.5 shows one set of sample images from one location

in the dataset.

(a) Qualitative Results

In the first set of experiments, we test our method on different image sequences

captured at different times of a day and compare them with illumination in-

variant method presented in [28]. Figs. 4.6 and 4.7 show the results of illumi-

nation invariant images from [28] and our proposed method in the second and

the third rows, respectively. Columns (a) and (b) show the results of invariant

representation from [28] and our method in cloudy and sunny weather under

heavy shadow in the UACampus dataset. Although the two methods pro-

duce qualitatively different outputs that are difficult to compare visually, in

these two situations, the proposed method is able to remove the shadow while

preserving more details of the images such as edges that could be very im-

portant in different applications (e.g., feature detectors in place recognition).

The ability of our method in preserving the details is particularly obvious in

Column (c) of Figs. 4.6 and 4.7 for the two images at night. This experiment

is a challenging example where the source of illumination is changed from the

sun to indoor lights. None of the previous methods can recover illumination

invariant representations of images captured at night, but still the proposed

method is feasible in this case and the results are roughly similar to the in-

variant representation at day hours. Although the proposed method provides

satisfactory results at night, the recovered invariant image has not the same

quality as images in (a) and (b) in Figs. 4.6 and 4.7. The reason is that the

intensity of the original image for some regions of the night images is almost
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(a)                                                  (b)                                                  (c) 

Figure 4.6: Illumination invariant representation of sample images under three
different illumination conditions. (a) cloudy weather (b) sunny weather with
heavy shadow and (c) dark image at night with different source of light. The
second and the third rows are the results of method [28] and our illumination
invariant representation, respectively.

[0;0;0] and obviously no method can produce results in such a situation.

(b) Similarity matrices

In this experiment, we use the UACampus dataset at five places. Recall that

for each place, five images from different times of a day are available. One

set of such images is shown in Fig. 4.5 where the last image was captured at

night. We compute the zero-mean normalized cross correlation (ZNCC) [145]

between images as the measure of their similarity, and the results are shown

in Fig. 4.8 for different methods of constructing illumination invariant images.

Fig. 4.8(a) shows the result of using original images where due to change in

illumination at each place, similarity between the five images of the same place
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(a)                                           (b)                                           (c) 

Figure 4.7: Illumination invariant representation of sample images under three
different illumination conditions. (a) cloudy weather (b) sunny weather with
heavy shadow and (c) dark image at night with different source of light. The
second and the third rows are the results of method [28] and our illumination
invariant representation, respectively.

(in a 5×5 diagonal block) can be quite low. Figs. 4.8(b), and (c) show the

similarity matrices for the method in [28], and the proposed invariant image

Iinv, respectively. By observing the diagonal blocks of these similarity matrices,

it is clear that images from the same location in the proposed invariant space

Iinv are more similar to each other and more dissimilar to images of other places

compared to original images column(a) and the invariant method of [28].

4.2.4 Other Applications

In addition to the problem of change detection, we used the obtained robust

image representation against illumination in more applications. Since the focus
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                    (a)                                                       (b)                                                         (c) 

Original invariant images I Proposed Invariant images Iinv Original images 

Figure 4.8: Similarity matrix for five places, each place has five images with
different illumination from 6:00 am to 10:00 pm. This figure shows image
similarity of (a) original images (b) invariant images I and (c) illumination
invariant representation Iinv after adding invariant feature ν for all 25 images.

of this thesis is on the application of moving object detection using low-rank

framework, we only give a brief summary of the other applications as follows.

(a) Visual place recognition: In [101] we proposed a method based on

this approach for visual place recognition. Our experiments on different chal-

lenging images validate the superiority of our proposed method, for measuring

similarity between images and for keypoint matching, in comparison with the

existing competing methods in the place recognition application.

(b) Multi-modal face recognition: We also used the obtained invariant

representation as the second representation of an image for the face recogni-

tion application [40]. We used the original and invariant representation of im-

ages into a joint dictionary learning and low-rank framework and showed that

the representation of illumination invariant images combining with structured

sparse low-rank representation empowers the method. Experimental results

indicate that our method is robust, achieving state-of-the-art performance in

the presence of illumination change.

In the rest of this chapter, we only focus on the problem of moving object

detection and compute a prior map using the obtained invariant representation

of images to incorporate in the LRA framework.
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4.3 Low-Rank and Invariant Sparse Decompo-

sition

As discussed in Chapter 2.2.2, all existing methods for moving object detec-

tion decompose the matrix of all observed images into the low-rank and the

sparse matrices. Therefore, in the case of abrupt or discontinuous change in

illumination, all the variations are grouped into the sparse matrix. In such

cases, all of the existing methods fail to detect moving object. To address this

problem, our proposed formulation seeks to decompose a data matrix D into

a low-rank background matrix L, sparse illumination change matrix C, and

sparse foreground matrix S as follows.

D = L+ C + S (4.10)

In (4.10), C and S are considered as outliers. Since both of them are stochastic

especially in time-lapse video or low frame rate image sequences, separating

them is an ill-posed problem. We address this challenge by using our pro-

posed illumination invariant representation of an image, which serves as a

prior for outliers in our formulation. This prior enables us to have a pattern

for estimating C and S through the optimization as will be detailed in Sec-

tion 4.3.1. Using the obtained prior map, we introduce our formulation to

detect moving objects under significant illumination changes in Section 4.3.2

and in Section 4.3.3 we describe a solution to the formulation.

4.3.1 Initialization of the Prior Map

In this section we focus on obtaining the prior information, which enables us

to distinguish between moving objects and illumination changes in our pro-

posed formulation. In the case of time-lapse images, shadows and illumination

changes are unstructured phenomena and most of the time they are mistakenly

considered as moving objects. To distinguish between changes caused by illu-

mination and those caused by moving objects, we construct a prior map using

the illumination invariant representation, proposed in the previous section. In

particular, we first address the second issue of the invariant representations as
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Figure 4.9: Log-chromaticity vectors of pixels from one material in different

illumination condition.

discussed in Section 4.2, and then we initialize the prior map.

(a) Solution to the variations of robust representations against illu-
mination

As discussed in Section 4.2, chromaticity vectors χ′ of the same material under

different illumination are not projected to the same location in the orthogonal

vector and therefore, the method cannot remove the effect of illumination

accurately. Fortunately, this issue would be problematic for an individual

image to be accurate enough for the application of moving object detection.

We realized that if we have an image sequence, corresponding pixels of the

images in invariant representation are correlated to each other and therefore

those pixels can be captured in a low-rank matrix.

Fig 4.9 shows the details of this concept. Four different locations but

from one material are selected. Sample points with the same color show log-

chromaticity of corresponding pixels from the selected locations in a sequence

of images with different illumination. Assuming that the camera is fixed, the

invariant direction between images is roughly similar. Black circles in Fig 4.9

show the projected pixels of the same material from all images to the average

invariant directions of all images, where corresponding pixels of all images

with different illumination are projected to one coordinate or are close to each

other in invariant representation. In other words, the corresponding pixels

of all images under different illumination are correlated. This means if we
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decompose the matrix of all vectorized invariant images, we can assume all

illumination variations can be captured into the low-rank matrix.

(b) Generation of the prior map

To construct the prior map formally, let D ∈ Rm×n be an observed matrix (an

image sequence in our problem), where each column of matrix D is a vectorized

image from the sequence with m pixels, and n is the total number of images in

the sequence. Then the following function convert all Di images i = 1, 2, .., n

to the invariant representation Dinv.

Dinv = Ω(D) (4.11)

where Dinv ∈ Rm×n be a matrix of all vectorized invariant representations.

We can decompose matrix Dinv into low-rank matrix Linv and sparse matrix

Sinv using optimization, so that all illumination variations are absorbed into

the low-rank matrix Linv.

min
Linv ,Sinv

‖Linv‖∗ + λinv‖Sinv‖1 s.t.Dinv = Linv + Sinv (4.12)

To solve (4.12) we use inexact augmented Lagrangian multiplier (ALM) [77].

Optimization problem (4.12) can account for most of the illumination and

shadow changes with the low-rank part and for the moving objects with the

sparse part Sinv. Finally, we can use Sinv to build the prior map Φ as follows.

Φ =
1

1 + e−α(|Sinv |−σ)
(4.13)

where σ shows the standard deviation of corresponding pixels in Dinv, and α

is a constant. We use the prior map Φ, to define two penalty terms in the

LRA framework to extract the invariant sparse outliers as moving object, as

will be explained in the next section.
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4.3.2 LISD Formulation

To detect moving objects in time-lapse videos under severe illumination changes,

standard low-rank method is insufficient because we need to separate illumi-

nation changes and moving shadows from real changes and both of them are

sparse outliers. To do so, we define a constraint based on the prior knowledge

from illumination invariant representation introduced in the previous section.

In particular, real changes should be included in the subspace that is orthog-

onal to the illumination change subspace. Since outliers are completely inde-

pendent in different frames of a low frame-rate image sequence, real changes

in the ith frame should satisfy the following properties.

(Φ⊥i )T |Si| = 0, ΦT
i |Ci| = 0 (4.14)

where Φ⊥i = [1]m×1 − Φi, is the complement of Φi. Sparse S and C are the

detected objects and illumination changes in the grayscale domain.

To formalize the prior knowledge from illumination invariant representation

on the outliers, we combine the two properties of (4.14) into one function, and

propose Low-rank and Invariant Sparse Decomposition (LISD) method, as

follows.

min
L,S,C

‖L‖∗ + λ(‖S‖1 + ‖C‖1) + γΨ(S,C,Φ)

s.t. D = L+ S + C
(4.15)

where ‖L‖∗ is the nuclear norm, i.e. the sum of the singular values, and it

approximates the rank of L. S and C are detected foreground and illumina-

tion changes, respectively. The last term in (4.15) is the geometric constraint

function Φ as follows.

Ψ(S,C,Φ) =
∑
i

(Φ⊥i )T |Si|+
∑
i

ΦT
i |Ci| i = 1, ..., n (4.16)

To make the problem more tractable, the geometric constraint Ψ can be

relaxed to the penalty terms Σi‖GiCi‖2F , and Σi‖G⊥i Si‖2F so that (4.15) be-
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comes

min
L,S,C

‖L‖∗ + λ(‖S‖1 + ‖C‖1) + γ
∑
i

(
‖GiCi‖2F + ‖G⊥i Si‖2F

)
s.t. D = L+ S + C

(4.17)

where λ and γ are positive parameters and Gi = diag[
√

Φ1i;
√

Φ2i; ...;
√

Φmi].

We optimize (4.17) by updating each of the variables L, S, and C in turn, iter-

atively until convergence. The error is computed as ‖D−Lk−Sk−Ck‖F/‖D‖F .

The loop stops when the error reaches the value lower than 10−5.

4.3.3 Optimization Algorithm

In order to solve (4.17), we use inexact ALM method [77], and start by com-

puting the augmented Lagrangian function L(L, S, C, Y ;µ), given by

L(L, S, C, Y ;µ) = ‖L‖∗ + λ(‖S‖1 + ‖C‖1) + γ
∑
i

(
‖GiCi‖2F

+‖G⊥i Si‖2F
)
+ < Y,D − L− S − C >

+
µ

2
‖D − L− S − C‖2F

= ‖L‖∗ + λ(‖S‖1 + ‖C‖1)−
1

2µ
‖Y ‖2F

+h(L, S, C, Y, µ)

(4.18)

where < A,B >= trace(ATB), µ is a positive scalar, Y is a Lagrangian

multiplier matrix, and h(L, S, C, Y, µ) is a quadratic function as follows.

h(L, S, C, Y, µ) =
∑
i

(
µ

2
‖Di − Li − Si − Ci +

Yi
µ
‖2F + γ‖GiCi‖2F + γ‖G⊥i Si‖2F

)
(4.19)

We optimize (4.18) by updating each of the variables L, S, C, and Y in turn,

iteratively until convergence, which solves the following four sub-problems:
Lk+1 = arg minL L(Lk, Sk, Ck, Y k;µ)

Sk+1 = arg minS L(Lk+1, Sk, Ck, Y k;µ)

Ck+1 = arg minC L(Lk+1, Sk+1, Ck, Y k;µ)

Y k+1 = Y k + µ(D − Lk+1 − Sk+1 − Ck+1)

(4.20)
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Updating Lk+1: From (4.18), the augmented Lagrangian reduces to the fol-

lowing form:

Lk+1 = arg min
L
‖L‖∗ +

µ

2
‖Lk − (D − Sk − Ck +

Y k

µ
)‖2F (4.21)

The subproblem (4.21) has the closed-form solution by applying the singular

value thresholding algorithm [20], with the soft-thresholding shrinkage opera-

tor Sε(x), which is defined as

Sε(x) = max(0, x− ε) x ≥ 0 ε ≥ 0 (4.22)

Updating Sk+1: From (4.18), the augmented Lagrangian reduces to

min
S
λ‖S‖1 + h(L, S, C, µ) (4.23)

Since h(L, S, C, µ) is a quadratic function, it is convenient to use the lineariza-

tion technique of the LADMAP method [78] to update Sk+1 by replacing the

quadratic term h with its first order approximation, computed at iteration k

and add a proximal term giving the following update.

Sk+1 = arg min
S
λ‖S‖1 +

∑
i

(
ηµ

2
‖Si − Ski + [−µ(Di − Lk+1

i

−Ski − Ck
i +

Y k
i

µ
) + 2γ(G⊥i )TG⊥i S

k
i ]/(ηµ)‖2F

)
(4.24)

Updating Ck+1: From (4.18), the augmented Lagrangian reduces to

min
S
λ‖C‖1 + h(L, S, C, µ) (4.25)

Similar to (4.23) we use the LADMAP method to update Ck+1 by giving the

following update

Ck+1 = arg min
C
λ‖C‖1 +

∑
i

(
ηµ

2
‖Ci − Ck

i + [−µ(Di − Lk+1
i

−Sk+1
i − Ck

i +
Y k

µ
) + 2γGT

i GiC
k
i ]/(ηµ)‖2F

)
(4.26)

The error is computed as ‖D−Lk−Sk−Ck‖F/‖D‖F . The loop stops when the

error reaches the value lower than 10−5. All details about LISD are described

in Algorithm 4.1.
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Algorithm 4.1 Low-rank and Invariant Sparse Decomposition via Inexact
ALM (LISD)

Input: Observation matrix D, Parameters λ,γ,η,

1: computing invariant representation Dinv according to Section 4.2

2: solve (4.12) via inexact ALM to obtain Sinv

3: compute Φ according to (4.13)

4: [L, S, C] = LISD(D,Φ, λ, γ, µ, η)

//following lines compute LISD

function [Lk, Sk, Ck] = LISD(D,Φ, λ, γ, µ, η)

5: while not converged do

6: (U,Σ, V )=svd(D−Sk−Ck + µ−1Y k) //lines 2-7 solve (4.21)

7: Lk+1 = US(1/µ)(Σ)V T

8: Compute for all coulmns i //lines 4-10 solve (4.24)

9: tempSi = Ski + [µ(Di − Lk+1
i − Ski − Ck

i + µ−1Y k
i )

−2γ(G⊥i )TG⊥i S
k
i ]/(ηµ)]

10: Sk+1 = Sλ/(ηµ)(tempS), tempS = [tempS1, ..., tempSn]

11: Compute for all coulmns i //lines 7-8 solve (4.26)

12: tempCi = Ck
i + [µ(Di − Lk+1

i − Sk+1
i − Ck

i + µ−1Y k
i )

−2γGT
i GiC

k
i ]/(ηµ)]

13: Ck+1= Sλ/(ηµ)(tempC), tempC= [tempC1, ..., tempCn]

14: Y = Y + µ(D − Lk+1 − Sk+1 − Ck+1)

15: µ = ρµ; k = k + 1

16: end while

Output Lk, Sk, Ck

4.4 Iterative Version of LISD

In our proposed LISD method, we first compute a prior map from illumination

invariant representation of images and then use the map to separate foreground

from background and illumination changes in the grayscale representation of

images. Although LISD provides satisfactory results in our experiments, still

we can improve the performance by updating the prior map (4.13) iteratively.
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We refer to this iterative version as Iterative LISD (ILISD). In ILISD, the

first step is exactly similar to LISD where we compute the prior map in one

representation and use it in another representation. Ideally, moving object in

both representations should build similar prior maps. Using this assumption,

we compute the second prior map Φinv from the result of LISD to use in illu-

mination invariant representation. To do it, we rewrite (4.12) similar to (4.15)

as follows.

min
Linv ,Sinv ,Cinv

‖Linv‖∗ + λinv(‖Sinv‖1 + ‖Cinv‖1) + γΨ(Sinv, Cinv,Φinv)

s.t. Dinv = Linv + Sinv + Cinv (4.27)

where Ψ is defined the same as (4.15) but for illumination invariant represen-

tation. Φinv is computed similar to (4.13) using the obtained S from LISD

method. Generally speaking in ILISD the obtained map from each representa-

tion is used into another representation in the next iteration until convergence.

The convergence criterion is ‖Sj+1 − Sj‖F/‖Sj‖F < 10−5. All details about

ILISD are described in Algorithm 4.2.

Algorithm 4.2 Iterative Low-rank and Invariant Sparse Decomposition (IL-
ISD)

Input: Observation matrix D, Φinv = [1]m×n, Parameters λ,γ

1: Computing invariant representation matrix Dinv according to Section 4.2

2: while not converged do

//Solve (4.27)

3: [Lj+1
inv , S

j+1
inv , C

j+1
inv ] = LISD(Dinv,Φinv, λ, γ, µinv)

4: compute Φ according to (4.13) using Sj+1
inv

//Solve (4.15)

5: [Lj+1, Sj+1, Cj+1] = LISD(D,Φ, λ, γ, µ)

6: compute Φinv according to (4.13) using Sj+1

7: j = j + 1

8: end while

9: Output Lj, Sj, Cj
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4.5 Time Complexity

In this section, we compute time complexity of the proposed method by ana-

lyzing the main three sub-problems of LISD as follows.

• For the first subproblem (4.21) to update L, the main complexity depends on

SVD computations with the time complexity of O[min(mn2, nm2)], where

m and n are the dimensions of the data matrix.

• For the second and the third subproblems (4.24) and (4.26) to update S

and C, we use LADMAP [78], which is an accelerated version of linearized

alternating direction method (LADM) [143]. The time complexity for each

of the subproblems is O(rmn), where r is the rank of the data matrix. Since

r is always less than m and n, O(rmn) can be removed from the total time

complexity of LISD.

Thus, the total complexity of our proposed method, ILISD, is O(j×min[mn2, nm2]),

where j is the number of iterations in Algorithm 4.2.

4.6 Experimental Results and Discussion

Our main application of interest is moving object detection in time-lapse videos

with varying illumination. Therefore, we evaluate our method under two in-

creasingly difficult conditions. First, we use datasets that contain moving

objects and significant illumination changes or shadows but in real-time se-

quences with continuous object motion. Secondly, we use a challenging dataset

that contains moving objects, illumination, and shadows, where images are

captured via time-lapse or motion-trigger photography with large inter-image

time intervals. In this case, the position of an object between two consecu-

tive images may not be continuous. This is a common phenomenon in many

long-term surveillance applications such as wildlife monitoring, as explained

in Chapter 1. Since real benchmark datasets only contain the first condition,

we have built a new dataset which contains the second condition and use it in

this thesis. Then we perform two sets of experiments on benchmark and the

newly proposed dataset.
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4.6.1 Experimental Setup

Benchmark datasets: We evaluate our proposed method on selected se-

quences from the CDnet dataset [46], Wallflower dataset [124], and I2R [74]

dataset. Since the goal of the experiments is to illustrate the ability of our

method to detect real changes from illumination changes, we select sequences

with varying illumination or moving shadows. From CDnet dataset four se-

quences are in this category depicting indoor and outdoor scenes exhibiting

moderate illumination changes and moving shadows. These sequences are

“Backdoor”, “CopyMachine”, “Cubicle”, and “PeopleInShade”. We also use

sequences “Camouflage” and “LightSwitch” from Wallflower dataset and im-

age sequence “Lobby” from I2R dataset, which include images with global and

sudden illumination changes. Fig. 4.10 shows sample images of the mentioned

sequences.

Illumination change dataset (ICD): In this section we introduce the dataset
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(c) I2R dataset 

Camouflage LightSwitch 

(b) Wallflower dataset 

Backdoor CopyMachine Cubicle PeopleInShade 

(a) CDnet dataset 

Figure 4.10: sample images from the selected sequences of the benchmark
datasets.
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Figure 4.11: Selected images from each sequence of ICD.

that we have built, which includes five image sequences with severe illumina-

tion changes. Selected images from these sequences are shown in Fig. 4.11,

and the number of images and the image size of each sequence are described

in Table 4.1. Some of these images are without any object and just illumi-

nation change. The sequences of ICD are divided into two groups. The first

three sequences are captured using a motion triggered camera for the wildlife

monitoring application on different days. The last two sequences are taken

with time-lapse photography of a large time interval to record changes of a

scene that take place over time, which is common for many surveillance ap-

plications. Moving objects in the first sequence are under extreme sunlight or

heavy shadow. Color of the objects in the second sequence are similar to the

background or shadow and since illumination is changing, separating them is a

difficult task. The third sequence shows objects with different size under vary-

ing illumination. The fourth sequence shows global illumination changes with

moving shadows and the last row shows the sequence of images with moving

objects while a strong moving sunbeam changes illumination of the scene.
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Table 4.1: Details of all sequences of ICD.

Sequences Size × No. of frames

Wildlife1 [508,358] × 194

Wildlife2 [508,358] × 225

Wildlife3 [508,358] × 136

WinterStreet [460,240] × 75

MovingSunlight [640,360] × 237

Evaluation metrics: For quantitative evaluation, we use pixel-level preci-

sion, recall, and F-measure as defined in Chapter 3.5.

4.6.2 Evaluation on Benchmark Datasets

In the first set of experiments we use the sequences from benchmark datasets

corresponding to Section 4.6.1 to evaluate the proposed method. We compare

LISD as an intermediate results of our method and ILISD with the six related

RPCA algorithms, namely SemiSoft GoDec (SSGoDec) [152], PRMF [131],

PCP [21], Markov BRMF [132], DECOLOR [155], and LSD [82].

Table 4.2 shows performance of LISD and ILISD in comparison with the

competing methods in terms of F-measure. The proposed method obtains

the best average F-measure against all the other methods, and for the all

sequences our method ranked among the top two of all methods. The first

four rows of Table 4.2 are from CDnet dataset and our method has superior

performance. The last three rows of Table 4.2 are from “Wallflower” and “I2R”

datasets. For the “Camouflage” sequence a large object comes to the scene and

therefore the global illumination is changed. In this case, only DECOLOR,

LSD and our method detect the foreground object relatively well. LSD uses a

structured sparsity term by selecting a maximum value of outliers in a specific

neighborhood for pixels in each iteration. So it can keep the connectivity of

outliers and classifies the foreground better than our method. Although we

can use the structured sparsity term in our formulation instead of l1-norm,

the solution becomes significantly slow. For two sequences “Camouflage” and

“LightSwitch” only one frame has ground-truth and the results are based on
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Table 4.2: Comparison of F-measure score between our proposed method and
other compared methods on benchmark sequences (best F-measure: bold, sec-
ond best F-measure: underline).

Sequence SSGoDec PRMF Decolor PCP BRMF LSD LISD ILISD

Backdoor 0.6611 0.7251 0.7656 0.7594 0.6291 0.7603 0.8015 0.8150

CopyMachine 0.5401 0.6834 0.7511 0.6798 0.3293 0.8174 0.7832 0.8179

Cubicle 0.3035 0.3397 0.5503 0.4978 0.3746 0.4232 0.7201 0.6887

PeopleInShade 0.2258 0.5163 0.5559 0.6583 0.3313 0.6168 0.6733 0.8010

Camouflage 0.6452 0.6048 0.8125 0.3388 0.6048 0.9456 0.8605 0.8663

LightSwitch 0.3804 0.2922 0.5782 0.8375 0.2872 0.6640 0.6904 0.7128

Lobby 0.0831 0.6256 0.7983 0.6240 0.3161 0.7313 0.7830 0.7849

just one frame and cannot be reliable for the whole sequence; however, our

method still is in the second place. For the “lobby” sequence ground-truth is

available for some selected frames, but none of them show the ground-truth

while illumination is changing. In this sequence the accuracy of our method is

still in the second place and the accuracy of DECOLOR is a little better than

ours.

4.6.3 Evaluation of Separate Performance Metrics

We investigate the reliability of ILISD on “Cubicle” sequence from CDnet

dataset. We choose “Cubicle” as a sample because size of the object is changing

through the sequence and at the same time, illumination and shadows are

also changing. In this sequence the size of the object is decreased as the

frame number increases. Fig. 4.12 shows precision, recall, false-positive, and

F-measure for 50 consecutive frames of the sequence “Cubicle” which contain

a moving object (i.e. person). Fig. 4.12(a) shows the precision of the proposed

method against all other methods, and as shown ILISD has highest precision

and the difference with other methods is more significant when the size of

the object becomes smaller because the effect of illumination changes and

shadow increases. Fig. 4.12(b) illustrates that the recall of SSGoDec, MBRMF,
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Figure 4.12: Precision, Recall, False positive and F-measure comparisons of
sequence “Cubicle” from CDnet dataset.

DECOLOR, and LSD are higher than our method when the size of the object

is large. The reason is that DECOLOR, MBRMF, and LSD use MRF and

structural information. This helps the large object to be connected component

and therefore recall increases. Although these methods provide higher recall

than our method, they also produce lots of false positives in comparison with

our method which is shown in Fig. 4.12(c). We also show the F −measure

of the results of methods on all 50 frames, that shows the reliability of the

proposed method.

4.6.4 Effect of Sudden Illumination Changes

As explained in Section 4.6.2, ground-truth of the “lobby” sequence is avail-

able for some selected frames, but the ground-truth is not provided while
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Figure 4.13: Comparison of number of false positives between the proposed
method and the competing methods for sequence “Lobby” from I2R dataset.

illumination is changing. Based on Table 4.2, the accuracy of our method on

this sequence is in the second place after DECOLOR. Here, we consider one

more evaluation to show the reliability of our method against DECOLOR and

all other competing methods on the “Lobby” sequence as a sample sequence

with sudden illumination change. we select 50 consecutive frames while il-

lumination is changing. These frames have no objects and any foreground

pixel is considered as false positive. Fig. 4.13 compares the false positives of

ILISD with all other methods. Fig. 4.13 clearly shows that ILISD and PCP

produce much smaller number of false positives while illumination is changing.

Therefore, although DECOLOR shows a little better accuracy on some specific

ground-truth frames, unlike our method, it is not reliable while illumination

is changing.

4.6.5 Evaluation on ICD

In the second set of experiments we evaluate our proposed method on the

sequences from ICD which has the most challenging condition and compare

them with competing methods. Fig. 4.14 shows the results of our method to

detect objects and separating them from illumination changes. In the first row

of each subfigure in Fig. 4.14, two samples per sequence are shown where real

changes and illumination changes occur at the same time. The second and the

third rows show the sparse outliers of C and S, respectively. Based on our
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experiments most of illumination changes can be classified as the outliers C

and the real changes are separated into matrix S.

To show the capability of the proposed method, we compare qualitatively

and quantitatively the results of our method with the results of the competing

six sparse decomposition methods. We show the comparison of qualitative re-

sults on selected images of sequences “Wildlife1”, “Wildlife2”, and “Wildlife3”.

 

 

 

 

 

 

 

 

 

 

 

 

                                 (a)                                                                                 (b)      

                                 (c)                                                                                 (d)      

Figure 4.14: First row: two sample images with different illumination for each

sequence. Second row: sparse outliers C. Third row: detected objects S.
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Figure 4.15: Comparison of qualitative results between our method and six
competing methods. a) input, b) ground truth, c) SSGoDec, d) PRMF, e)
PCP, f) MBRMF, g) DECOLOR, h) LSD, i) ILISD

                                                                                                                                      

 

 

 

 

 

                 

                

    (a)                              (b)                              (c)                               (d)                            (e)                               (f)                               (g)                              (h)                             (i)      

Figure 4.16: Comparison of qualitative results between our method and six
competing methods. a) input, b) ground truth, c) SSGoDec, d) PRMF, e)
PCP, f) MBRMF, g) DECOLOR, h) LSD, i) ILISD

Since the illumination variations in the time-lapse image sequences are signif-

icant, we show five images of the sequences in Figs. 4.15, 4.16, and 4.17 to

provide a better comparison.

The first two rows of Fig. 4.15 depict heavy illumination changes, and

only the results of LSD and PCP are comparable with ILISD; however, those

methods still have many false positives. The third row shows the results of all

methods when the illumination is relatively unchanged and the results of all

methods are comparable with ILISD. In the last two rows of Fig. 4.15, although

LSD has not many false positive, its recall is too low, and only PCP is compa-

rable with our method. Fig. 4.16 demonstrates that in sequence “Wildlife2”
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     Input              Ground-truth          SSGoDec                PRMF                    PCP                  MBRMF             DECOLOR                 LSD                      ILISD      

 

 

Figure 4.17: Comparison of qualitative results between our method and six
competing methods on selected images of sequence “Wildlife3”.

       Input             Ground-truth         SSGoDec                 PRMF                   PCP                    MBRMF             DECOLOR                  LSD                      ILISD      

 

Figure 4.18: Comparison of qualitative results between our method and six
competing methods on selected images of sequence “WinterStreet”.

only the results of PCP is comparable with our method. In Fig. 4.17, the sec-

ond and the fourth rows show heavy illumination changes, and all competing

methods fail to detect objects. In the first, the third, and the last rows, where

the illumination is relatively unchanged, PCP and DECOLOR can show rel-

atively meaningful results. However, both of them are not reliable over the

entire sequence.

We also compare the results of ILISD with the results of other competing

methods on two more sequences “WinterStreet” and “MovingSunlight”. For

the first one, global illumination changes and for the second one, sunbeam is

moving. The comparison results of these two sequences are shown in Figs. 4.18

and 4.19, respectively. Fig. 4.18 shows that only DECOLOR can be compara-

75



       Input             Ground-truth         SSGoDec                 PRMF                   PCP                    MBRMF             DECOLOR                  LSD                      ILISD      

 

Figure 4.19: Comparison of qualitative results between our method and com-
peting methods on selected images of sequence “MovingSunlight”

ble with our method for sequence “WinterStreet” and all other methods fail.

As Fig. 4.19 shows, although all competing methods can detect the foreground

in the last row the same as our method, all of them make many false positives

and even cannot show meaningful results for the first four rows.

For quantitative evaluation on all sequences of ICD, Table 4.3 shows the

F-measure of the competing methods. For each sequence we also compute

standard deviations of all results that can show the reliability of each method

for clear conclusions on the performance of the proposed method. The numer-

ical results demonstrate that our method can provide better performance in

handling such illumination changes than other competing methods.

4.7 Summary

In this chapter, we proposed a novel method named LISD to detect moving

objects under discontinuous change in illumination such as time-lapse video

sequences, using the framework of low-rank and sparse decomposition. In our

proposed method, first a prior map is built based on an illumination invari-

ant representation and then the obtained prior map is used in the proposed

low-rank and invariant sparse decomposition framework to extract foreground

under severe illumination changes. We also proposed an iterative version of

LISD by updating the prior map in one representation and impose it as a
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Table 4.3: Comparison of F-measure score between our method and other
methods on ICD sequences (best F-measure: bold, second best F-measure:
underline).

Sequence Wildlife1 Wildlife2 Wildlife3 WinterStreet MovingSunlight

SSGoDec 0.2826 ± 0.2113 0.2585 ± 0.1369 0.0753 ± 0.0722 0.1120 ± 0.0752 0.2926 ± 0.1927

PRMF 0.2586 ± 0.2000 0.4141 ± 0.2324 0.0754 ± 0.0745 0.1677 ± 0.1433 0.2925 ± 0.1732

PCP 0.5968 ± 0.2042 0.6430 ± 0.0996 0.3124 ± 0.2656 0.1766 ± 0.1021 0.3451 ± 0.1387

MBRMF 0.2679 ± 0.2117 0.2654 ± 0.1410 0.0510 ± 0.0441 0.0871 ± 0.0440 0.2426 ± 0.1403

DECOLOR 0.3409 ± 0.2834 0.3517 ± 0.2200 0.1019 ± 0.0929 0.4575 ± 0.2509 0.3466 ± 0.2590

LSD 0.6480 ± 0.1302 0.3899 ± 0.1659 0.0871 ± 0.0825 0.1604 ± 0.1086 0.3593 ± 0.2426

LISD 0.7747 ± 0.0557 0.7168 ± 0.0625 0.7318 ± 0.1269 0.6869 ± 0.0824 0.6163 ± 0.1393

ILISD 0.8033 ± 0.0416 0.7277 ± 0.0298 0.7398 ± 0.1234 0.6931 ± 0.0928 0.6475 ± 0.1601

constraint into the LISD formulation with another representation. Based on

our extensive experiments on real data sequences from public datasets, we are

able to establish that LISD and ILISD achieve the best performance in com-

parison with all evaluated methods including the state-of-the-art methods. We

also constructed novel datasets involving time-lapse sequences with significant

illumination changes, which are publicly available in [59].

Despite its satisfactory performance in all our experiments, a challenge fac-

ing our proposed method is dynamic background. The reason is our proposed

method uses l1-norm for outliers without any structural constraint. In the fu-

ture work chapter, we will explain an extended version of LISD that can work

with dynamic background.
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Chapter 5

Tensor Low-Rank and Invariant
Sparse Decomposition

5.1 Introduction

In this chapter, we propose a solution to the problem of moving object detec-

tion within the tensor low-rank framework that specifically enables us to distin-

guish between illumination changes (including those due shadow), and changes

caused by moving objects in the scene. In chapter 4 we offered a solution called

LISD to effectively separate discontinuous changes due to moving objects and

those due to illumination [103]. This method relies on an illumination regu-

larization term combined with the low-rank framework to explicitly separate

the sparse outliers into sparse foreground objects and illumination changes.

Although this regularization term can significantly improve the performance

of object detection under significant illumination changes, LISD relies on two

restrictive assumptions. LISD assumes (a) the invariant representation of all

images in a sequence are modeled by only one invariant direction and (b) all

illumination variations are removed in the invariant representation of images,

which are still vulnerable to complex illumination changes that arise in certain

practical situations, and can lead to sub-optimal performance.

To address these issues, we formulate the problem in a unified framework

named Tensor Low-rank and Invariant Sparse Decomposition (TLISD) [102].

Particularly, we first compute multiple prior maps as illumination invariant

representations of each image to build a tensor data structure. These prior
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maps provide us with information about the effect of illumination in differ-

ent parts of an image. Then we define two specific regularization terms us-

ing these prior maps to distinguish between moving objects and illumination

changes. Finally, we introduce our TLISD formulation for moving object de-

tection under the framework of low-rank tensor representation, which is able

to decompose an image into background model, illumination changes and fore-

ground objects. We demonstrate that the two regularization terms within our

proposed method significantly improves the performance of moving object de-

tection in the case of discontinuous changes in illumination, a problem that

none of the existing methods in the literature can handle effectively.

5.2 Tensor Low-Rank and Invariant Sparse De-

composition

Recently, multi-way or tensor data analysis has attracted much attention and

has been successfully used in many applications. Formally and without loss of

generality, denote a 3-way tensor by D ∈ Rn1×n2×n3 . Our proposed formulation

seeks to decompose tensor data D into a low-rank tensor L, an illumination

change tensor C, and a sparse foreground tensor S as follows.

D = L+ S + C (5.1)

In (5.1), both S and C are stochastic in time-lapse image sequences due to

discontinuous change in object locations and illumination changes, and sepa-

rating them is an ill-posed problem. To solve this issue, we compute a set of

prior maps using multiple representations of an image, which are more robust

against illumination change than RGB images. These prior maps enable us to

find higher order relations between the different invariant representations and

the intensity images, in both space and time. These relations are exploited

as the basis for separating S from C as will be detailed in Section 5.2.1. It is

worth mentioning that on one hand, illumination changes are related to the

material in a scene, which is invariant in all frames leading to a correlation be-

tween them. On the other hand, these changes are also related to the source of
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lighting, which is not necessarily correlated between frames. Consequently, il-

lumination changes should be accounted for by both the low-rank part and the

sparse part in an image decomposition. In our method, we model the highly

correlated part of illumination with the low-rank tensor L as background, and

we model the independent changes in illumination as the foreground, while

recognizing that uncorrelated illumination changes are not necessarily sparse.

To accomplish such illumination modeling, we propose to use a balanced norm

or k−support norm [1], [72]. We introduce our formulation in details in Sec-

tion 5.2.2, and we describe a solution to the formulation in Section 5.2.3.

5.2.1 Generation of Prior Maps and Tensor Data D

In this section we focus on obtaining the prior information that will enable us to

distinguish between moving objects and illumination changes in our proposed

formulation. As explained in Chapter 4, in the case of discontinuous change

in illumination, which is common in time-lapse image sequences, variation

of shadows and illumination are unstructured phenomena and they are often

mistakenly considered by all methods as moving objects. We addressed this

problem through creating an illumination-invariant prior, which is described

extensively in chapter 4.2.

In a nutshell, [36] computes the two-vector log-chromaticity χ′ using red,

green and blue channels and showed that with changing illumination, χ′ moves

along a straight line e roughly. Projecting the vector χ′ onto the vector or-

thogonal to e, which is called invariant direction, an invariant representation

I = χ′e⊥ can be computed. This method works well when the assumptions de-

fined above hold true but in practice these assumptions never hold exactly, i.e.,

χ′ does not move along a straight line. As a result, the correspond invariant

representation is flawed.

In the previous chapter, we assumed that the invariant directions of the

images are roughly similar and used the average of all the directions in cre-

ating the invariant representation. Then, we showed that in the case of an

image sequence, corresponding pixels of the images in their invariant repre-

sentations are correlated to each other and therefore this correlation among
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the corresponding pixels can be captured in a low-rank matrix. For the first

time, this approach could solve the problem of moving object detection un-

der discontinuous change in illumination. However, the assumption about the

similarity between invariant directions is not always accurate, and can lead to

sub-optimal performance as demonstrated in Fig. 5.1.

Fig. 5.1 shows an example of the variability of the illumination invariant

direction in an image sequence and its impact on generating a illumination-

invariant image representation. Fig. 5.1(a) shows the invariant directions of

an image sequence of 200 frames while illumination changes, one direction for

each image, varying mostly between −4o and 13o. Fig. 5.1(b) shows a selected

image from the sequence, which is image 11 and corresponds to the red line in

Fig. 5.1(a). The invariant direction for this image is found to be 13◦ while the

average invariant direction of the sequence is around 5◦, the direction we used

in the previous chapter to create invariant representations for all images in

the sequence. Fig. 5.1(c) compares the two invariant representations created

with invariant directions of 5◦ and 13◦, respectively, and Fig. 5.1(d) shows the

detected foreground objects using these two different representations from the

RPCA method where the use of the optimal invariant direction (13o) produces

much more desirable result than that of the sub-optimal direction (5o). This

example clearly shows the importance of the choice of the invariant direction

in creating the invariant representations, and the undesirable outcome when

these representations are created with a sub-optimal invariant direction.

Our idea to account for the difference in the invariant direction among

the images in the sequence, is to first estimate the image-specific invariant

directions for the sequence, and then use a clustering algorithm to identify

the dominant directions. Subsequently, for each image, we create multiple

invariant representations, one for each dominant direction, and these multiple

representations serve as multiple prior maps for the image. Details of the

above explanation can be detailed in the following steps.

• First, for each image in an image sequence, we use the method in [36]

to determine its best invariant direction. With n2 images in an image
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Figure 5.1: (a): Best invariant direction of each image in a sequence obtained
by minimizing Shannon’s entropy (with x-axis being the image index and the
y-axis the angle of the invariant directions e⊥ in degrees). (b): 11th image in
the sequence as shown with a red line in (a), where its best invariant direction
is 13◦. (c): The first and the second rows show the invariant representations
of the selected image using the average direction of the sequence (5◦) and
its best direction (13◦), respectively. (d): Obtained outliers of the invariant
representations.

sequence, this results in n2 invariant directions where n2 = 200 in the

example in Fig. 5.1(a).

• Second, we use k-means [2] to identify k = 10 clusters of the n2 invariant

directions.

• Third, we choose the centroid of a cluster as a dominant invariant direc-

tion if the cluster has support by at least 10% of the images or contains

at least 20 images in the example of Fig. 5.1(a). By definition, there are

no more than 10 dominant invariant directions.
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Now, using the obtained dominant invariant directions, we propose a spe-

cific tensor structure D, different from all existing tensor in the literature. To

construct the tensor D ∈ Rn1×n2×n3 formally, let D(:, :, 1) be an observed im-

age sequence in our problem, where each column of D(:, :, 1) is a vectorized

image from the sequence with n1 pixels, and n2 is the number of images in

the sequence. pth frontal slice D(:, :, p), p = 2, ..., n3 is a corresponding prior

map, generated with a dominant invariant direction. The constructed tensor

D is shown in Fig. 5.2. Based on this tensor data structure, we are ready to

present our new tensor low-rank and invariant sparse decomposition (TLISD)

to extract the invariant sparse outliers as moving objects, as will be explained

in the next section.

5.2.2 TLISD Formulation

To separate real changes due to moving objects from those due to illumination,

we use multiple prior illumination-invariant maps, introduced in Section 5.2.1,

as constraints on real changes and illumination changes. In particular, real

changes should appear in all frontal slices. Furthermore, lateral slices are

completely independent from each other in a time-lapse sequence, but the

different representations in each lateral slice (see Fig. 5.2) are from one image

and therefore, the locations of real changes should be exactly the same in

each lateral slice. Now, based on these observations, real changes in each

frame should satisfy the group sparsity constraint, which is modeled with the

 

 

D 

jth lateral slice  
pth frontal slice  

Figure 5.2: Left: sample images with their corresponding illumination invari-
ant representations as prior maps. Right: Tensor D. Frontal slices show pth

representation of the images in the sequence. Lateral slices show different
representation of each image in the sequence.
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minimization of the l1,1,2−norm defined as:

n1∑
i=1

n2∑
j=1

‖Si,j,:‖2 (5.2)

As discussed, illumination changes in an image sequence should be ac-

counted for by both the low-rank part and the sparse part. The highly cor-

related part of illumination can be modeled with the low-rank tensor L as

background, but the independent changes in illumination are grouped as the

foreground. To capture these uncorrelated illumination and shadow changes,

and separate them from real changes, we recognize that they are not necessar-

ily sparse.

Fig. 5.3 shows two sample images in a time-lapse image sequence with

discontinuous change in illumination. Based on Fig. 5.3, it is easy to under-

stand that illumination changes are on entire image and so, those uncorrelated

changes are not completely sparse. In other words, discontinuous illumination

changes between frames may affect all or a large part of an image, especially

in time-lapse image sequences. Fig. 5.3 shows such a situation where changes

occur on a large area of an image. As a result, those changes are not always

completely sparse. These properties can be conveniently modeled with the

k−support norm [1], [72], which is a balanced norm and defined as:

‖C:,:,p‖spk =
( k−r−1∑

m=1

(|c|↓m)2 +
1

r + 1
(

d∑
m=k−r

|c|↓m)2
) 1

2
(5.3)

where C:,:,p and |c|↓m denote the pth frontal slice of C and the mth largest ele-

ment in |c|, respectively. c = vec(C:,:,p) represents the vector constructed by

concatenating the columns of C:,:,p and d = n1 × n2 is the dimension of the

 

Figure 5.3: Two sample images and their corresponding illumination changes
captured by our proposed method
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frontal slice. Parameter r ∈ {0, 1, ..., k − 1} is an integer that is computed

automatically by the method presented in [72]. The k-support norm has two

terms: l2-norm penalty for the large component, and l1-norm penalty for the

small components. k is a parameter of the cardinality to achieve a balance be-

tween the l2-norm and the l1-norm (k = n1 in our experiments). The k-support

norm provides an appropriate trade-off between model sparsity and algorith-

mic stability [139], and yields more stable solutions than the l1-norm [72]. In

this chapter we show that the k-support norm can estimate the illumination

changes in an image sequence accurately. Joining of this norm and (5.2) as two

constraints in one optimization framework enables us to separate real changes

from illumination changes.

To summarize, we propose the Tensor Low-rank and Invariant Sparse De-

composition (TLISD) method, as follows.

min
L,S,C

‖L‖∗ + λ1‖S‖1,1,2 + λ2(‖C‖spk )2

s.t. D = L+ S + C (5.4)

where ‖L‖∗ is the tensor nuclear norm, i.e. the average of the nuclear norm of

all the frontal slices (‖L‖∗ = 1
n3

∑n3

p=1 ‖L:,:,p‖∗), and it approximates the rank

of tensor L. S and C are detected moving objects and illumination changes,

respectively.

5.2.3 Optimization Algorithm

In order to solve (5.4), we use the standard inexact augmented Lagrangian

method (ALM) with the augmented Lagrangian function H(L,S, C,Y ;µ)

whose main steps are described in this section for completeness.

H(L,S, C,Y ;µ) = ‖L‖∗ + λ1‖S‖1,1,2 + λ2(‖C‖spk )2+ < Y ,D − L− S − C >

+
µ

2
‖D − L − S − C‖2F (5.5)

where Y is a Lagrangian multiplier, µ is a positive auto-adjusted scalar, and

< A,B >= trace(ATB). λ1 = 1/
√
max(n1, n2)n3 and λ2 is a positive scalar.

Since different values for λ’s affect the overall accuracy of our method, We

85



will discuss on the effect of the λ values in the experimental results. Now we

solve the problem through alternately updating L,S, and C in each iteration

to minimize H(L,S, C,Y ;µ) with other variables fixed until convergence as

follows.

Updating Lt+1: From (5.5), the augmented Lagrangian reduces to the fol-

lowing form:

min
L
‖L‖∗ +

µ

2
‖Lt − (D − S t − Ct +

Y t

µ
)‖2F (5.6)

which has a closed form solution in [83].

Updating St+1: From (5.5), the augmented Lagrangian reduces to

min
S
λ1‖S‖1,1,2 +

µ

2
‖St − (D − Lt+1 − Ct +

Y t

µ
)‖2F (5.7)

which has a closed form solution [150].

Updating Ct+1: From (5.5), the augmented Lagrangian reduces to

min
C
λ2(‖C‖spk )2 +

µ

2
‖Ct − (D − Lt+1 − St+1 +

Y t

µ
)‖2F (5.8)

The subproblem (5.8) has an efficient solution in [72].

Updating Yk+1: From (5.5),

Y t+1 = Y t + µ(D − Lt+1 − Ct+1 − St+1) (5.9)

where µ = min(ρµ, µmax). The error is computed as ‖D−Lt−St−Ct‖F/‖D‖F .

The loop stops when the error reaches the value lower than a threshold (10−5

in our experiments). Details of the solutions for (5.6), (5.7), and (5.8) are in

Algorithms 5.1 and 5.2.

5.3 Time Complexity and Convergence Anal-

ysis of TLISD

5.3.1 Time Complexity

• In TLISD, we use sub-problems (5.6) and (5.7) to update L and S, which

have closed form solutions. In these two steps the main cost per-iteration
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Algorithm 5.1 Tensor Low-rank and Invariant Sparse Decomposition
(TLISD)

Input: Tensor data D, Parameters λ1 = 1/
√
max(n1, n2)n3,

λ2 = 0.03, k = n1, ρ = 1.2, µ = 10−3

1: while not converged do

2: Lt+1 =prox-tnn(D−S t−Ct + µ−1Y t) //solves (8) in the paper

3: Stemp = Lt+1 + Ct −D + µ−1Y t

4: for each row i and lateral slice j //lines 3-5 solve (9) in the paper

5: St+1(i, j, :) =
(

1− λ1
µ‖Stemp(i,j,:)‖F

)
+
Stemp(i, j, :)

6: Ctemp = Lt+1 + St+1 −D + µ−1Y t

7: for each frontal slice p //lines 6-8 solve (10) in the paper

8: Ct+1(:, :, p) = ksp(Ctemp(:, :, p), k, µ−1λ2) //Algorithm 2

9: Y = Y + µ(D − Lt+1 − St+1 − Ct+1)

10: µ = ρµ; t = t+ 1

11: end while

Output Lt,St, Ct

function prox-tnn(A)

12: M← fft(A, [ ], 3)

13: for i = 1 : n3

14: [U, S, V ] = SV D(M(:, :, i))

15: Û(:, :, i) = U ; Ŝ(:, :, i) = S; V̂(:, :, i) = V

16: Updating t-rank using soft thresholding operator S(1/µ) //Similar to [16]

17: End for

18: U ← ifft(Û(:, 1 :t-rank, :), [ ], 3);

Σ← ifft(Ŝ(1 :t-rank, 1 :t-rank, :), [ ], 3);

V ← ifft(V̂(:, 1 :t-rank, :), [ ], 3);

19: for i = 1 : n3

20: X (:, :, i) = (U(:, :, i)Σ(:, :, i))VT (:, :, i)

21: End for

22: return X

lies in the update of Lt+1, by computing tensor SVD (t-SVD). [83] showed

that t-SVD can be efficiently computed based on the matrix SVD in Fourier

domain, which requires computing FFT [17] and n3 SVDs of n1×n2 matrices.

Thus, time complexity of the first two steps per-iteration is O(n1n2n3logn3+
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Algorithm 5.2 Solving k−support norm [72]

function ksp(W,k, γ)

1: β = 1/γ, ν = vec(W ) where ν ∈ Rd, d = n1 × n2 //size of each frontal
slice

2: z = |ν|↓, z0 = +∞, zd+1 = −∞
3: for r = k − 1 : 0

4: Obtain l by BinarySearch(z,k-r,d)

5: Tr,l =
∑l

i=k−r zi

6: If 1
β+1

zk−r−1 >
Tr,l

l−k+r+1+β(r+1)
≥ 1

β+1
zk−r

7: break;

8: End If

9: End for

10: For i = 1 : d

11: calculate qi =

{ β
β+1

zi if i = 1, ..., k − r − 1

zi −
∑l
i=k−r zi

l−k+r+1+β(r+1)
if i = k − r, ..., l

0 if i = l + 1, ..., d

12: wi = sign(νi)qi

13: End for

14: Output : W

function BinarySearch(z, low, high)

15: If zlow = 0

16: return l = low

17: End If

18: While low < high− 1

19: mid = p low+high
2

q //pxq represents the smallest integer which is larger than x

20: If zmid >
∑mid
i=k−r zi

mid−k+r+1+β(r+1)

21: low = mid

22: Else

23: high = mid− 1

24: End If

25: End While

26: return l = low

n(1)n
2
(2)n3), where n(1) = max(n1, n2) and n(2) = min(n1, n2) [83].

• To update Ct+1, we use an efficient solution based on binary search where
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                       (a)                                                   (b)                                                   (c) 

Figure 5.4: Convergence of TLISD on sequence Wildlife3 with (a) λ1 = 0.001,
(b) λ1 = 0.003, and (c) λ1 = 0.005.

the time complexity is reduced to O((n1n2 + k)log(n1n2)) for each frontal

slice per-iteration [72].

Therefore, the total time complexity of the optimization problem (5.4) is

O(n1n2n3logn3 + n(1)n
2
(2)n3 + (n1n2 + k)n3log(n1n2)). We also evaluate the

running time of TLISD, that will be discussed in the experimental section.

5.3.2 Convergence Analysis

Although our proposed TLISD in (5.4) is a non-convex formulation, the con-

vergence of each sub-problem is guaranteed. For updating sub-problems (5.6)

and (5.7), we use inexact ALM as demonstrated in Algorithm 5.1. The con-

vergence of inexact ALM with at most two blocks has been well studied and a

proof to demonstrate its convergence property can be found in [77]. [1] showed

k-support norm is a convex relaxation of the matrix sparsity combined with the

l2-norm penalty, and so the convergence of Sub-problem (5.8) is guaranteed.

In addition, we demonstrate the convergence properties of our algorithm

in practice. To verify the convergence of TLISD, we examine TLISD on

“Wildlife3” sequence with different values of λ1 and λ2. Fig. 5.4 shows the

convergence curves of the proposed TLISD on the sequence. It can be ob-

served that TLISD efficiently converges, and after few iterations the value of

objective function becomes stable.
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5.4 Experimental Results and Discussion

In this section, we provide an experimental evaluation of our proposed method,

TLISD. We first evaluate the effect of each term in (5.4) and their λ coeffi-

cients. Then, we evaluate TLISD on benchmark frame-rate image sequences or

those that are captured via time-lapse or motion-triggered photography. We

also extend our introduced illumination change dataset (ICD), which includes

more than 80k images captured by industrial security cameras and wildlife

monitoring systems during three years, and evaluate our method on this ex-

tended dataset.

5.4.1 Experiment Setup

• Existing datasets: We evaluate our TLISD method on eleven selected

sequences from the CDnet dataset [46], Wallflower dataset [124], I2R

dataset [74], and our proposed ICD [103], introduced in the previous

chapter, which include illumination change and moving shadows. All

the sequences are described in Chapter 4.6.1.

• Extended Illumination Change (EIC) dataset: Due to the lack of

a comprehensive dataset with various illumination and shadow changes

in a real environment, and since ICD only includes five sequences, we

have created more sequences and introduce extended illumination change

dataset (EIC) with around 80k images in 15 sequences, captured via

available surveillance systems in wildlife and industrial applications. Par-

ticularly, ten sequences are captured via wildlife monitoring systems, and

five sequences from industrial applications, with three railway sequences

and two construction site sequences. All sequences of this dataset and

image size of each sequence are shown in Fig. 5.5 and Table 5.1, respec-

tively. To provide a consistent names for this dataset with ICD, where

has three wildlife sequences, we started the names of wildlife sequences

with “Wildlife4”. We evaluate our method on these sequences and com-

pare them with the results of competing methods.
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                                    (a)                                                                                  (b)     

I 

II 

III 

IV 
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                                  (c) 

I 

II 

III 

IV 

V 

Figure 5.5: Three selected images from each sequence of EIC dataset, captured
via surveillance systems in wildlife and industrial applications. Rows in (a) and
(b) show 10 wildlife sequences. Rows in (c) show 5 sequences from industrial
applications including construction sites and railways sequences

Table 5.1: Name and image size of EIC sequences correspond to the rows in
Fig. 5.5

Sequence Image size Sequence Image size Sequence Image size

Fig. 5.5(a) I. Wildlife4 [358,508] Fig. 5.5(b) I. Wildlife9 [358,508] Fig. 5.5(c) I. Industrial area1 [350,450]

II. Wildlife5 [358,508] II. Wildlife10 [358,508] II. Industrial area2 [350,450]

III. Wildlife6 [358,508] III. Wildlife11 [358,508] III. Railway1 [350,450]

IV. Wildlife7 [358,508] IV. Wildlife12 [358,508] IV. Railway2 [350,450]

V. Wildlife8 [358,508] V. Wildlife13 [358,508] V. Railway3 [350,450]
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• Evaluation metric: For quantitative evaluation, pixel-level F-measure

= 2 recall×precision
recall+precision

is used. We also compare the different methods in

execution time in seconds.

5.4.2 Algorithm Evaluation: The effect of term C

In the first set of experiments, we evaluate the effect of term C in TLISD

when we set different values for λ1, in comparison with TLISD without term

C, where (5.4) becomes

min
L,S
‖L‖∗ + λ1‖S‖1,1,2 s.t. D = L+ S (5.10)

Fig. 5.6(a) shows (5.10) can achieve around 70% accuracy with a well-tuned

λ1 = 0.002. Although the result shows the importance of multiple priors and

the effect of group sparsity on them, the accuracy of (5.10) is still far below

the accuracy of proposed TLISD by at least 10%, even with a well-tuned λ1.

Fig. 5.6(a) also shows that adding term C and k− support norm increases the

robustness of our algorithm against tuning λ1. In fact, in (5.10) all illumination

variations would be assigned to either of L or S. In this case, those variations

should be assigned to the background (L); however, they do not actually

belong to background (e.g. moving shadows). As a result, the rank would

be increased to absorb these changes into L and naturally some parts of the

moving objects S would be also absorbed into the background. Fig. 5.6(b)

supports the conclusion and shows the obtained rank through the iterations

of the optimization. Between iterations 15 and 20, the rank of our method

without term C significantly increases to absorb all variations into L, and to

complete the conclusion, Fig. 5.6(f) shows that around the same iterations,

the residual error of the method without term C is significantly reduced. This

means, illumination variations and shadow changes must grouped into either

of L or S, for (5.10) to converge. Estimated rank in Fig 5.6(c) shows the

proof of this concept. Obviously, with a very small λ1, the estimated rank

of L for (5.10) is small and all illumination variations are easily lumped with

moving objects in S. This causes less accuracy and sometimes even cannot
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Figure 5.6: Self evaluation of TLISD. (a) Average F-measure with different
values for λ1 on all ICD sequences between TLISD and (5.10), (b) Estimated
rank of TLISD and (5.10) through iterations on sequence “Wildlife3”, (c) Es-
timated rank of sequence “Wildlife3” with different values for λ1, (d) Average
F-measure with different values for λ1 and λ2 on all ICD sequences between
TLISD and (5.11), (e) Average number of iterations to converge TLISD, (5.10)
and (5.11) on all ICD sequences, (f) Convergence curves of minimization error
for TLISD, (5.10) and (5.11) on sequence “Wildlife3”.
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provide meaningful results. In contrast, TLISD can estimate a balanced rank

and classify illumination variations into term C with k − support norm on it

instead of increasing the rank to absorb them into L.

To justify the use of k − support norm on C in TLISD, we also compare

the method with the other potential term on C, which is l1-norm to absorb

outliers, i.e., define (5.4) as

min
L,S,C

‖L‖∗ + λ1‖S‖1,1,2 + λ2‖C‖1 s.t.D = L+ S + C (5.11)

For this experiment, we evaluate our method with both l1 and k− support

norms on C under different values of λ1 and λ2. Fig. 5.6(d) illustrates the

accuracy of our method with either of regularizers. Although l1-norm can

increase the accuracy and robustness of the moving object detection in com-

parison with (5.10) that we showed in Fig. 5.6(a), the obtained accuracy is

still less than TLISD. In addition, the number of iterations to converge, for

both (5.10) and (5.11) is much more than that of in TLISD. Fig. 5.6(e) shows

the average number of iterations for all three possible methods with different

setup for λ1 on all ICD sequences. For both TLISD and (5.11), λ2 = 0.03,

which produces robust results over different values of λ1(refer to Fig. 5.6(d)).

As discussed in Section 5.2, illumination changes are not necessarily sparse and

can be found throughout an image. Therefore, l1-norm is not a suitable regu-

larizer to capture illumination changes. In such cases, the same issue as (5.10)

happens when the optimizer increases the rank to minimize the residual error.

Fig. 5.6(f) shows the error of all three methods through iterations. For (5.11),

the same pattern as (5.10) is seen to decrease the error while the rank increases

through optimization.

5.4.3 Evaluation on Benchmark Sequences

In this section we evaluate our method on the eleven benchmark sequences

described in Section 5.4.1. Fig. 5.7 shows the qualitative results of TLISD on

“Cubile” and “Backdoor”. The second and the third columns of Figs. 5.7(a)

and (b) illustrate the first frontal slice of C and S, corresponding to illu-
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(a) (b) 

Figure 5.7: Columns from left to right show sample image, illumination
changes, and detected moving objects for (a) cubicle and (b) backdoor se-
quences

mination changes and moving objects, respectively. The high-quality of our

detection result S is clearly visible.

Figs. 5.8(a)and (b) show qualitative results of our method on two sample

sequences of ICD, which has the most challenging conditions in terms of il-

lumination changes. To appreciate the significant variations of illumination

we show two images from each sequence. The second and the third rows of

each sub-figure show the first frontal slice of C and S, respectively. The re-

sults show the proposed method can accurately separate the changes caused

by illumination and shadows from real changes.

We then compare TLISD quantitatively with two online and eight related

 

(b) (a) 

Figure 5.8: First row: two sample images from (a) Wildlife1, (b) Wildlife3
sequences. Second row: illumination changes obtained from the first frontal
slice of C. Third row: detected objects from the first frontal slice S.
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RPCA batch methods. From online methods we select GMM [158] as a base-

line method and GRASTA [51] as an online method that uses the framework of

low-rank and sparse decomposition. Also among batch methods, we select SS-

GoDec [153], PRMF [131], PCP [21], Markov BRMF [132], DECOLOR [155],

LSD [82], ILISD [103], and TRPCA [83]. For all the competing methods we

use their original settings through LRS Library [115], which resulted in the

best performance. For quantitative evaluation of RPCA-related methods, a

threshold criterion is required to get the binary foreground mask. Similarly,

we adopt the same threshold strategy as in [115] to obtain the binary mask O.

Oi,j =

{
1 if S2

i,j > σ2,

0 otherwise
(5.12)

where S = S:,:,1 is the first frontal slice of S, and σ is the standard deviation of

all pixels in S. In TLISD, we set λ1 = 1/
√
max(n1, n2)n3 and λ2 = 0.03. The

value for λ1 is similar to TRPCA, to have a fair comparison between TLISD

and TRPCA.

Table 5.2 shows the performance of TLISD in comparison with the com-

peting methods in terms of F-measure on frame-rate benchmark sequences.

For all the sequences TLISD ranked among the top two of all methods, and

achieves the best average F-measure in comparison with all other methods.

Although DECOLOR, PCP, LSD, and ILISD work relatively well, Only IL-

ISD method, which is proposed in the previous chapter, is comparable with

TLISD due to the use of illumination regularization terms in ILISD.

Table 5.3 illustrates the performance of TLISD in comparison with the

competing methods in terms of F-measure on time-lapse ICD sequences. In

this experiment, almost all existing methods fail to detect moving objects un-

der discontinuous illumination change, and only ILISD is comparable with or

TLISD method. This evaluation shows the effectiveness of multiple prior maps

and k − support norm as two regularization terms for separating moving ob-

jects from sudden or significant illumination changes, and boosting the overall

performance of object detection in comparison with ILISD.

Fig. 5.9 shows qualitative comparison of our method with all batch meth-

ods of Table 5.3. Most methods failed to detect moving objects under sig-
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Table 5.2: Comparison of F-measure score between our proposed method and
other compared methods on benchmark frame-rate sequences (best F-measure:
bold, second best F-measure: underline)

Sequence Backdoor CopyMachine Cubicle PeopleInShade LightSwitch Lobby

GMM 0.6512 0.5298 0.3410 0.3305 0.4946 0.3441

GRASTA 0.6822 0.6490 0.4113 0.5288 0.5631 0.6727

SSGoDec 0.6611 0.5401 0.3035 0.2258 0.3804 0.0831

PRMF 0.7251 0.6834 0.3397 0.5163 0.2922 0.6256

DECOLOR 0.7656 0.7511 0.5503 0.5559 0.5782 0.7983

PCP 0.7594 0.6798 0.4978 0.6583 0.8375 0.6240

BRMF 0.6291 0.3293 0.3746 0.3313 0.2872 0.3161

LSD 0.7603 0.8174 0.4233 0.6168 0.6640 0.7313

ILISD 0.8150 0.8179 0.6887 0.8010 0.7128 0.7849

TRPCA 0.7022 0.6805 0.5329 0.5683 0.6924 0.6383

TLISD 0.8276 0.8445 0.7350 0.7961 0.7429 0.8012

Table 5.3: Comparison of F-measure score between our proposed method and
other compared methods on ICD sequences (best F-measure: bold, second
best F-measure: underline)

Sequence Wildlife1 Wildlife2 Wildlife3 WinterStreet MovingSunlight

GMM 0.2374 0.2880 0.0635 0.1183 0.0717

GRASTA 0.3147 0.3814 0.2235 0.2276 0.1714

SSGoDec 0.2912 0.2430 0.0951 0.1215 0.2824

PRMF 0.2718 0.3991 0.07012 0.2108 0.2932

DECOLOR 0.3401 0.3634 0.1202 0.4490 0.3699

PCP 0.5855 0.6542 0.3003 0.1938 0.3445

BRMF 0.2743 0.2812 0.0735 0.0872 0.2408

LSD 0.6471 0.3790 0.0871 0.1604 0.3593

ILISD 0.8033 0.7277 0.7398 0.6931 0.6475

TRPCA 0.4382 0.3926 0.2854 0.2721 0.3018

TLISD 0.8862 0.8065 0.8010 0.7092 0.7122
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Figure 5.9: Comparison of qualitative results between our method (TLISD)
and eight rpca-related methods on two selected images of sequences (a) “Mov-
ingSunLight”, (b) “Wildlife2”, and (c) “Wildlife3”
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nificant illumination changes, and only the results of ILISD are comparable

with TLISD. However, based on this qualitative results and Tables 5.2 and 5.3,

TLISD outperforms all competing methods by a clear performance margin.

5.4.4 Discussion on Failure Cases of ILISD

Based on Tables 5.2 and 5.3, since ILISD is the the only method with compara-

ble results to our new method, we examine TLISD and ILISD qualitatively and

show three failure cases of ILISD which TLISD can successfully handle. For

these three cases, Fig. 5.10 shows the quality of detected objects from ILISD

and TLISD in the second and the third columns respectively. In these cases,

due to use of an inaccurate prior map and the same norm for both illumination

and real changes, ILISD generates false positive detections. Since TLISD uses

multiple prior maps and two different norms for separating real changes from

illumination changes, it can correctly classify those false positive pixels into

C as illumination changes. Furthermore, in the second row of Fig. 5.10(d),

some of the foreground pixels are mistakenly classified as illumination changes

due to inaccurate prior map where TLISD can classify them correctly as mov-

ing object. Figs. 5.10(d) and (e) show the corresponding changes detected as

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) (c) (d) (e) 

Figure 5.10: Detected objects from ILISD and TLISD in (b) and (c), and their
corresponding illumination changes captured in C in (d) and (e), respectively.
Rows from top to bottom shows MovingSunight, Wildlife2, and Wildlife3 se-
quences.
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illumination changes, captured in C.

5.4.5 Evaluation of TLISD on EIC Dataset

In this section, we evaluate TLISD on the introduced EIC dataset. Three

selected sequences of EIC are shown in Fig. 5.11, which includes one chal-

 

(a) 

(b) 

(c) 

Figure 5.11: First row of each subfigure: Three selected images of sequences (a)
wildlife, (b) railway, and (c) construction sites. Second row of each subfigure:
Detected moving objects using TLISD.
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lenging sequence from wildlife and two sequences from industrial applications

in construction site and railway monitoring system. To understand the sig-

nificant variations of illumination and shadow, we show three images from

each sequence in Figs. 5.11(a), (b), and (c). Second row of each subfigure

shows the detected objects using TLISD. The results demonstrate the pro-

posed method can accurately detect real changes (moving objects) under dis-

 

             (a)                               (b)                                (c)                                (d) 

Figure 5.12: (Columns (a) and (b): two selected images of each sequence, (c)
and (d): illumination changes captured in C, and detected objects of images
in (b), respectively
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continuous change in illumination.

To examine the capability of TLISD for separating real changes from il-

lumination changes, six sample sequences of EIC are shown in Fig. 5.12. To

appreciate the significant variations of illumination and shadow, we show two

images from each sequence in Figs. 5.12(a) and (b). Columns (c) and (d) show

the first frontal slices of C and S obtained by TLISD for the images in column

(b), in order to capture illumination changes and to detect moving objects.

Table 5.4 shows the capability of TLISD in comparison with the four best com-

petitive methods (based on Table 5.2) in terms of F-measure, where TLISD

can outperform the other methods by a clear performance margin. Fig. 5.13

also compares TLISD with ILISD (the second best method in Table. 5.4) qual-

itatively. This qualitative comparison shows that one prior map only is not

always sufficient for removing the effect of illumination variations and shadow.

As discussed in Section 5.2.1, due to the variation in the invariant direction

for images in a sequence, in some conditions separating illumination changes

and shadows from real changes is roughly impossible and selecting multiple

prior maps is essential.

For the sake of completeness, we show qualitative results obtained from

the rest of EIC wildlife sequences. Fig. 5.14 shows one sample image from the

sequences of “Wildlife7” to “Wildlife13” from EIC dataset. The second and

the third columns of Fig. 5.14 illustrate the results of our method obtained

from the first frontal slice of C, and S, corresponding to illumination changes

Table 5.4: Comparison of F-measure score between our proposed method and
other compared methods on EIC dataset

Sequence Wildlife4 Wildlife5 Wildlife6 Railway1 Railway2 Industrial area1

PCP 0.4150 0.4016 0.3092 0.3634 0.4086 0.2869

DECOLOR 0.3475 0.2010 0.2604 0.2853 0.3021 0.3242

ILISD 0.6020 0.6104 0.6170 0.5983 0.5414 0.5626

TRPCA 0.2934 0.3082 0.2855 0.3447 0.2805 0.2914

TLISD 0.7508 0.8049 0.7522 0.7241 0.7116 0.7035
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Figure 5.13: Comparison of qualitative results between TLISD and ILISD on
four sequences of EIC dataset. Top to bottom: Sample Image, Ground Truth,
ILISD, and TLISD

and moving objects, respectively.

5.4.6 Execution Time of TLISD

Based on Tables 5.2 and 5.4, since ILISD is the only method with comparable

results to our new method, we examine both ILISD and TLISD methods in

terms of computation time. Table. 5.5 compares the execution time of both

methods on seven sequences. Regarding the computation time of the proposed

method, our tensor-based method needs more time than ILISD [103] for each

iteration, which is normal due to use of the tensor structure. However, the

number of iterations in TLISD is less than that of ILISD. Fig. 5.15 shows the

number of iterations to converge for both ILISD and TLISD methods. As

explained in Chapter 4.4, ILISD has two independent optimization formulae:

one for providing a prior map and the other for separating moving objects

from illumination changes, and they have independent numbers of iterations
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              (a)                                     (b)                                   (c)  

Figure 5.14: Qualitative results of our method (TLISD) on seven wildlife se-
quences captured by a motion-triggered camera. (a) sample image (b) corre-
sponding illumination changes (c) detected moving objects.
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Table 5.5: Comparison of execution time (in sec.) per image between TLISD
and ILISD on seven sample sequences

Sequence Backdoor Lobby Cubicle Wildlife1 Wildlife2 Wildlife3 MovingSunlight

ILISD 0.49 0.53 0.74 1.24 1.33 1.18 2.2

TLISD 0.98 2.38 1.79 2.52 4.26 4.08 5.16

to converge. After convergence, the optimized values are interchangeably used

in an outer loop, and hence the total number of iterations is much more than

that of our method which involves one optimization formula. As discussed

in Section 5.3, the dominant time in our method is SVD decomposition for

frontal slices, which are independent from each other, and so can be solved in

parallel on a GPU to speed up the computation. Therefore, the total time of

TLISD is at least comparable with ILISD and can be even faster due to the

fewer number of iterations using GPU.

5.5 Summary

In this chapter, we proposed a novel method based on tensor low-rank and

invariant sparse decomposition to detect moving objects under discontinuous

changes in illumination, which frequently happen in video surveillance applica-
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Figure 5.15: Number of iterations to converge ILISD and TLISD methods on
twelve sequences
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tions. In our proposed method, first we compute a set of illumination invariant

representations for each image as prior maps, which provide us with cues for

extracting moving objects. Then we model illumination changes in an image

sequence using a k-support norm and derive a new formulation to effectively

capture illumination changes and separate them from detected foregrounds.

As explained in Chapter 1, many surveillance systems, especially security

and wildlife monitoring cameras, use motion triggered sensors and capture im-

age sequences with significant illumination changes. Our proposed method can

solve the problem with a performance that is superior to the state-of-the-art

solutions. Our method is also able to extract natural outdoor illumination as

labeled data for learning-based methods, which can be an effective alternative

to optimization based methods such as ours, but with a sequential formulation,

to detect illumination changes and moving objects from image sequences.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

According to the low-rank and sparse representation theory, linear correlation

among the images of a sequence has great power to represent the background

model of the sequence. Regarding this fact, different background subtraction

and moving object detection methods using low-rank and sparse decomposition

have been proposed. In this thesis, we presented a comprehensive study of

low-rank and sparse representation based methods, with two special interests

in a) solving the problem of moving object detection in a sequential manner

with a connectivity constraint on moving objects, and b) solving the problem

of moving object detection under discontinuous change in illumination which

is a challenging task in computer vision. We also extensively explored the

capability of our proposed algorithms, which are summarized as follows.

First, we proposed a sequential framework, namely contiguous outliers rep-

resentation via online low-rank approximation (COROLA), to detect moving

objects and learn the background model at the same time. Since many of the

existing methods using low-rank and sparse decomposition work in a batch

manner, they are not being applied in real time and long-term continuous

tasks. Considering this challenge, we proposed our method, in which we bor-

row a continuity constraint from batch methods, and solve the problem with

the help of online robust PCA. To handle local variations of the background

as well as global variations, we also use GMM on the obtained sparse outliers.

The experimental results reveal that proposed COROLA method performs well
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to detect moving objects in comparison with the other sequential methods.

Second, we proposed a method that can deal with discontinuous illumina-

tion change and shadow to detect moving object. As discussed in Chapter 1,

many surveillance systems in industrial or wildlife monitoring areas use a mo-

tion triggered camera or a time-lapse photography system for monitoring the

areas and provide time-lapse image sequences. Due to significant and com-

plex changes in illumination and independent changes of the moving objects

between images of the sequences, detection of the moving objects is extremely

challenging. In such cases the problem of moving object detection cannot be

solved by existing methods and almost all of them fail. To address this chal-

lenge, we first introduced an illumination regularization term, by proposing

a new prior map obtained by illumination invariant representation of images.

Then, we proposed a low-rank and invariant sparse decomposition method

using the prior map to detect moving objects under significant illumination

changes. We also proposed an iterative version of LISD by updating the prior

map in one representation and impose it as a constraint into the LISD formu-

lation with another representation. Experiments on challenging benchmark

datasets demonstrate the superior performance of our proposed method under

complex illumination changes where all other existing methods fail.

Third, we proposed a novel formulation that can capture illumination vari-

ations and can separate them from moving objects in an image sequence. In

this method, we first showed that only one prior map is not sufficient for mod-

eling illumination variations, and then proposed a way to build a set of prior

maps from each single image. Then we defined a specific tensor structure us-

ing the prior maps and the original grayscale images. Finally, we proposed a

new formulation based on low-rank tensor decomposition using group sparsity

and k-support norm as two regularization terms to separate moving objects

and illumination variations. This formulation solves the problem of moving

object detection with a great improvement in separating moving objects from

illumination variations that undergo discontinuous changes.

Finally, through this thesis we introduced a new benchmark dataset for

the problem of moving object detection in real applications. As discussed,

108



many surveillance systems use images which are captured by a motion trig-

gered camera or with a time-lapse photography system. Therefore, current

benchmarks are not suitable for evaluating the solutions for these systems.

In this thesis, we first introduce an illumination change dataset (ICD), with

five challenging sequences, and then we extend it as an extended illumination

change (EIC) dataset, with fifteen more sequences captured from industrial

and wildlife areas.

6.2 Limitations and Future Directions

There are several potential future research directions that can be explored

to build upon the contributions of this thesis. We describe some of them as

follows.

• In Chapter 3, we proposed COROLA method, which can be potentially

improved in two ways. First, in COROLA we already use GMM on out-

liers, which is not a part of our optimization framework. This becomes

more interesting if we integrate it into the optimization formulation rather

than using it separately. Secondly, in COROLA we use a simple fixed affine

transformation, which is not involved in the optimization and may not be

accurate enough for complicated scenes. In the case of image alignment us-

ing low-rank framework, many methods used the transformation parameter

into the minimization framework and showed promising results for image

alignments [92], [155]. We are interested in exploring this approach in the

case of moving cameras.

• Our proposed LISD method has been implemented and evaluated on chal-

lenging datasets in Chapter 4. Although the proposed method shows satis-

factory results, it can be improved as follows.

Structured LISD: In LISD we simply use l1-norm to constrain the sparse

matrices and to detect moving objects. The l1-norm treats each entry (pixel)

independently and does not consider the spatial connection of the foreground

sparse pixels. While in many practical scenarios, foreground objects usu-
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ally have the structural properties of spatial contiguity. To take advantage

of this prior knowledge, we consider a structured sparsity-inducing norm

which involves overlapping groups of variables, inspired by recent advances

in structured sparsity [65], [85]. This structured sparsity norm is defined as

follows.

Γ(S) =
n∑
i=1

∑
g∈G

‖sig‖∞ (6.1)

where S ∈ Rm×n, and the ith column Si ∈ Rm in S has m variables with

indices {1, ...,m}. These indices can be partitioned into overlapping groups,

and each group g ∈ G contains a subset of these indices. We define 3 × 3

overlapping-patch groups similar to [85], and each group overlaps 6 pixels

with its neighbors. ‖.‖∞ denotes the maximum value of the pixels in a

group.

The foreground is usually spatially contiguous and assumed to occupy a

portion of the scene. Therefore, it will be highly appropriate to model the

foreground using the structured sparsity norm, because it can reflect the

spatial distribution of nonzero variables and thus promote the structural

distribution of sparse outliers during the minimization [82]. To formalize

the structured sparsity on the outlier S, we propose the structured LISD

method by replacing ‖S‖1 with Γ(S) and so (5.4) can be converted to (6.2),

as follows.

min
L,S,C

‖L‖∗ + λ(Γ(S) + ‖C‖1) + γΨ(S,C,Φ)

s.t. D = L+ S + C
(6.2)

Solving (6.2) enables us to detect moving objects and real changes as spatial

contiguous objects and separate them from illumination changes through

optimization.

Sequential LISD: One limitation of LISD is that the method works in a

batch optimization framework. As discussed in Chapter 3, batch methods

suffer from large image sequences and are not able to apply on real time

applications. To deal with this issue, we are interested in solving our LISD

method in a sequential manner. LISD has two main steps. First we need
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to obtain illumination invariant representation of images and then solve the

optimization framework. The illumination invariant representation of each

image is computed sequentially for each image independently. The low-rank

and sparse decomposition part of LISD also can be solved sequentially with

the help of OR-PCA method [35]. Also, the structured sparsity term Γ(S)

is a cumulative function over all images and works for each image inde-

pendently. Therefore, we are interested in investigating a sequential struc-

tured LISD method with the help of OR-PCA, which enables us to use it in

an online surveillance system under sudden and discontinuous illumination

changes.

• Our proposed TLISD method in Chapter 5 also can be improved using struc-

tured sparsity. Recently, methods using spatio-temporal structured sparsity

have been proposed to detect moving objects in the frame-rate image se-

quences [62]. Since moving objects are spatially connected components and

their locations are temporally correlated in the frame-rate image sequences,

spatio-temporal constraint improves the quality of detection, even in noisy

environments. However, in the case of time-lapse video sequences, which

are of interest in this thesis, the spatio-temporal constraint does not work

in the form of matrix decomposition due to discontinuous change in object

location. In our tensor-based method with the proposed tensor structure,

we have useful information about the location of objects in each lateral slice,

which can help us to take advantage of spatio-temporal structured sparsity

constraint. Since each lateral slice in the proposed tensor D includes the

original and all invariant representations of one image, all moving objects

should be highly correlated in the third dimension. Therefore, we can treat

each lateral slice of tensor D as a 2D matrix and so the spatio-temporal

structured sparsity is perfectly fit on it to detect moving objects.

• Inspired by the significant success of deep neural networks in computer vi-

sion, recently, many background subtraction and moving object detection

methods based on deep neural network have been proposed [3], [15], [27],

[99], [144], [147]. However, these learning-based methods need supervised
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training with pixel-wise ground-truth masks of moving objects, which are

not practical in real applications. Due to this fact, unsupervised neural net-

works like autoencoders are used to tackle the problem of moving object

detection [4], [141]. Although [4] proposed a method following our LISD

method to handle illumination variation in frame-rate sequences, it still suf-

fers from discontinuous changes in illumination.

In general, outdoor illumination variation labeled data is not available, and

therefore all methods only learn the background and its variations. So, in

the case of discontinuous change in illumination, they still are not able to

distinguish between changes caused by illumination and those caused by

moving objects in the scene.

Since our TLISD method is able to extract natural outdoor illumination, we

can use them as labeled data for learning-based methods to learn outdoor

illumination variations, which can be applied as priors in unsupervised neu-

ral network. This approach may be an effective alternative to optimization

based methods such as ours, but with a sequential formulation, to detect

illumination changes and moving objects from image sequences.
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