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A BSTRA CT

In my thesis, I apply the recently developed equivariant degree theory to study the 

properties of solutions in symmetric systems of van der Pol equations and to classify 

the Hopf bifurcations in symmetric systems of functional differential equations. The 

existence of periodic solutions or the occurence of Hopf bifurcation in symmetric 

dynamical systems can be determined by means of the so-called primary equivari­

ant degree associated with the considered problem, which provides with an alge­

braic invariant containing equivariant topological information about the existence 

of solutions and their symmetric properties. The equivariant degree computational 

techniques are based on the reduction to the so-called basic maps (on irreducible 

representations) and the usage of the splitting lemma and multiplicativity property. 

In my work, I establish the algebraic basis for the computations of the equivariant 

degree for the groups G = T x 5 1, with T being dihedral, tetrahedral, octahedral 

and icosahedral groups. Based on the obtained tables the existence and bifurca­

tion results are formulated in terms of the equivariant degree. Multiplicativity of 

solutions is also discussed.
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IN TR O D U C TIO N

Classical degree theory became an important tool of nonlinear analysis for the de­
tection of single and multiple solutions of nonlinear equations. Its effectiveness and 
universality rely on its standard properties, which can be considered as the axioms 
of the degree theory: existence, additivity, homotopy, suspension and normalization 
properties. In simple words, the degree of a map /  means an “algebraic count” of 
solutions in a set Q, to the equation f (x)  = 0 (additivity), which does not depend 
on perturbations of /  (homotopy). There are numerous applications of the degree 
theory in differential equations and functional differential equations (cf. [36]) to 
establish the existence and multiplicity results for nonlinear equations.

For a long time, there were many attempts made in order to create a similar 
degree theory to study nonlinear equations for equivariant maps. These efforts were 
motivated by symmetries in dynamical systems. Many such systems were studied 
in physics, chemistry, biology, engineering, etc.

The impact of symmetry can result in large varieties of different solutions with 
various symmetric properties, complicated bifurcations and pattern formations, re­
quiring the usage of sophisticated mathematical tools.

The idea of the equivariant degree is based on a desire to “count algebaically” 
the orbits of solutions to f (x)  =  0 for an equivariant map / .

Several names should be mentioned in this place; In 1976 R. Rubinsztein pub­
lished a paper on S^-equivariant degree (cf. [44]), and E. N. Dancer (cf. [14]) in 
1980’s studied S 1 equivariant variational problems using a specific variant of S 1- 
degree. A more general degree theory (without free parameter) was introduced in 
1988 by H. Ulrich (cf [48]), who also generalized the notion of Burnside ring used as 
the range for this degree. An important contribution was made by a group of Polish 
mathematicians, Dylawerski, G§ba, Jodel, and Marzantowicz (cf. [15]), who pub­
lished in 1991 a paper introducing a one-parameter S^-degree. This degree theory 
turned out to be fundamental for the computations of the general G-degree (with 
one free parameter).

The general G-degree was introduced by J. Ize, Massabo, and Vignoli (cf. [30]), 
and this definition is the basis for the equivariant degree theory. Although the 
work of Ize and his collaborator, was concentrated on the abelian group actions, 
for which they established computational formulae, this framework can also be used 
for general non-abelian group actions. Independently of Ize, in 1990’s, following 
a different construction (using normal approximations) another degree theory (for

1
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non-abelian actions) was introduced by Geba, Krawcewicz, and Wu (cf. [21]). This 
degree theory, turned out to be a part of the G-degree which was introduced by Ize. 
I will refer in my work to this degree as the so-called primary degree. In the recent 
years, there was a large progress made in the development of the equivariant degree 
theory for non-abelian groups.

The main advantage of using the primary degree for non-abelian group actions 
lies in the fact that computations related to such situations can be standarized. 
More precisely, it is possible to establish the so-called multiplicativity property for the 
primary degree (with one parameter) for the twisted orbit types (with G =  T x S 1), 
and use the reduction technique to basic maps, in order to establish computational 
tables for the G-degree.

Since in the case of a non-abelian group G, the G-equivariant degree theory 
requires very particular computational techniques, depending on the specific prop­
erties of the group G (lattice of conjugacy classes of subgroups in G, irreducible 
representations of G, and other requirements), there is a need for creating a stan­
dard approach to the computation of G-degree.

For this purpose, in my work, I have explored the idea of basic maps (the most 
elementary equivariant maps) and the algebraic properties of the primary equivari­
ant degree in order to establish standard tables needed for these computations. 
These tables can be used practically, even without knowledge of the definition of 
the G-degree, to compute the degree of equivariant maps associated with the studied 
applied problems.

2
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Chapter 1 

Preliminaries

1.1 Topological Degree
It has been about one hundred years since the topological methods, such as degree 
theory, were introduced to study nonlinear equations, mainly to prove the existence 
and multiplicity of solutions.

Consider an open bounded set C and a continuous map f  : R N —> R N 
such that f (x)  ^  0 for x  <E (such a map is called Q-admissible). We will call the 
pair (/, Q) admissible. It is easy to observe that knowing the values of the map /  
on the boundary dCl may be sufficient to predict the existence of a solution x  € ft 
of the equation f (x)  = 0. Indeed, for instance if /  : [a, b] —> R is a continuous 
map such that f (a)f(b)  < 0, then by the Intermediate Value Theorem there exists 
a point x\  6 (a, b) such that f ( x i) = 0 (see Figure 1.1).

Figure 1.1: Existence of a solution to f (x)  = 0.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We denote by M  the set of all admissible pairs (/, fi). There is an integer-valued 
function deg : M  —► Z, called the local Brouwer degree, satisfying the following 
properties:

PI: ( E x i s t e n c e 1) If deg( /, Q) ^  0 then there exists x  € Q. such that f (x) = 0.

P2: (H o m o t o p y 2) If h : [0,1] x R N —*• R N is a continuous map such that h{t, x) ^  0
for all (t , x) € [0,1] x dVl (we will call such h an Q-admissible homotopy or 
deformation) then deg{h(t, •), Q) =  constant.

P3: (Excision3) Let 0.o be an open subset of Q such that / -1 (0) n  Q C 0.o, then 
deg ( / , ft) =  deg ( / , ft0).

P4: (Additivity4) Let fti and D2 be two disjoint open subsets of ft such that 
/ -1 (0) n  ft C fti U ft2. Then

deg ( / , ft) = deg ( / ,  ftx) +  deg(/, Q2).

P5: ( N o r m a l iz a t io n 0) Let f (x)  = x — a, where a £ dCl. Then

deg(/,Q ) =  { 1 i f a G “Q’
oW ; [0  i f a ^ a

It can be proved (cf. [36]) that there exists only one such function ( / ,  Q) ^  
deg(/,£ !) € 7L satisfying the properties (P l)-(P5). There are many ways to con­
struct the degree deg(/,Q ). For example, if /  is an ^admissible C1 map such that 
zero is a regular value of / |o -  Then

deg(/, Q) =  ^ 2  sign det D f ( x k)
Xfc€/- 1(0) no

where ^  over an empty set is defined an zero.

We recall that zero is a regular value of a smooth map f \n,  if either /  1 (0) n  Q = 0, 
or for each x  E / -1(0) fl Cl we have det Df(x)  ^  0.

1The Existence Property is used to establish the existence of a solution to the equation f (x)  =  0.
2The Homotopy Property is used to deform a complicated map f (x)  =  h(0,x)  to a rather 

simpler map / (x )  =  h( 1, x), for which the computation of degree is possible, and if deg(/, O) #  0, 
then deg( / ,  O) =  deg( / ,  £1) r= 0, and the existence of a solution for / (x )  =  0 can be established.

3The Excision Property means simply that the degree of /  depends on the location of zeros of 
/  and not the set Cl.

4The Additivity Property is useful to establish the existence of multiple solutions of the equation 
/ (x )  =  0. It also expresses the fact that the degree is a kind of an algebraic count of zeros of / .

5The Normalization Property guarantees the non-triviality of the degree (and its uniqueness).

4
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E xam ple 1 .1 .1 . ,4s an illustration, we can give a degree-theoretical proof of the 
fundamental theorem of algebra: Every polynomial

.P(z) — zn -r On—izn 1 +  . . .  a\z +  flo­

ras at least one complex zero i f n >  1, where ai, 0 <  i < n —1. are complex numbers. 
To prove this, we first identify the complex plane with R2. then P  defines a mapping 
from R2 into R2. Let e > 0 be given and define

H[t , z)  =  zn — e +  t{an- \ z n 1 +  • • • +  a\z  +  ao +  e)

for t  £ [0,1]. It is easy to show that if e is sufficiently small and R > 0 is sufficiently 
large, then H  is Cl-admissible homotopy with Q =  Br (0). Consequently,

deg (P, Q) =  deg(tf(l, •), ft) = deg(if (0, •), ft)

Clearly, H(0, -) : R2 —*■ R2 is a C\-map and

H{0, •)- 1(0) =  {e^ • e*2*™  | 0 < j  < n -  1}

and detDH(0, z)|__£x eip*/n)j > 0- Therefore, zero is a regular value of H{0, -)|n and

n—1
deg(iT(0, •), ft) = J 2  ̂  det D H =  71

j = 0

Consequently, deg(P, Q) =  n > 0 and the conclusion follows from the existence 
property of the degree.

1.2 G-actions and G-spaces
D efinition 1.2.1. A Lie group is a smooth manifold G, which is also a group such 
that the group multiplication ■ : G x G —» G and the inverse map u : G —* G, 
u(g) = g~l , are smooth.

Exam ple 1 .2 .2 . The unit circle S 1 =  {z € C| |z| =  1}, viewed as a multiplicative 
subgroup of C, is a compact Lie group.

Throughout this section, we assume that G is a compact Lie group.

D efinition 1.2.3. Let X  be a Hausdorff topological space. By a topological trans­
formation group we mean a triple (G, X , tp), where p : G x X  —* X  is a continuous 
map such that

5
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(i) ip(g, <p(h, x)) =  ip(gh, x) for all g,h  € G and x G X ,

(ii) l ,x) =  x for all x  G X , where 1 is the identity of G.

For a toplogical transformation group (G, X , p), we call the map an action of 
G on X  and the space X , under the action of G. a G-space. The action is 
called free if <p{g,x) ^  x  for all g ^  1 e G and x G X .  For A  C X ,  we put 
G(A) =  {gx | g G G,x  G A}. A set A  C X  is said to be G-invariant, or simply 
invariant, i fG(A) = A.

We will denote by Z C  S 1 the cyclic subgroups of S 1 of order k, k = 1.2. • • • , i.e. 
Zfc := {z G C| zk =  1 },i.e. Z* =  {1, 7 , 72, • • • , 7 fc_1} where 7 =  e ^ . Recall that 
two closed subgroups H  and K  of G are said to be conjugate subgroups in G, denoted 
by H  ~  K , if H  =  gKg~l for some g 6 G. The relation ~  is an equivalence relation 
and the equivalence class of H, denoted by (H), is called the conjugacy class of H  
in G. We denote by §(G) the set of all conjugacy classes. The set $((?) is partially 
ordred by the relation < defined as follows

(.H ) < ( K ) ^ 3 g e G  gHg - 1 C K.

1.3 Elements of Representation Theory

1.3.1 Definitions
Let V  be a vector space over the field C of complex numbers (respectively, over the 
field R of real numbers) and let GL(V)  be the group of isomorphisms of V  onto 
itself. An element A  of GL(V)  is a linear mapping of V  into V  which has an inverse 
A~l . Assume that dim V  = n, by choosing a basis (ef), each linear map A : V  —► V  
can be represented by a square matrix (a,j) of order n. In such a case saying that A  
is an isomorphism is equivalent to the fact that the determinant det (A) of A  is not 
zero. In this way the group GL(V)  can be identified with the group of invertible 
square matrices of order n.

Suppose G is a compact He group, with identity element 1 and with compositon 
[g, h) —* gh. A complex (respectively, real) linear representation of G in complex 
(respectively, real) vector space V  is a continuous homomorphism T  from the group
G into the group GL(V).  In other words, we associate with each element g € G an
element Tg of GL(V),  and we have the equalities

T9192 = Tgi o T92 for gi, g2 6 G,

6
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and

7i =  Id.

For a given homomorphism T. we say that V  is the complex (repectively, real) 
representation space of G. Suppose dim  V  = n, then n is called the dimension of 
the complex (respectively, real) representation V.

Let T  and T' be two complex (respectively, real) representations of the same 
group G in the complex (respectively, real) vector spaces Vi and V2. These two 
representations axe said to be equivalent if there exists a linear isomorphism A : 
Vi —► V2 that satisfies the identity

A  O Tg =  T' O A  for all g € G.

1.3.2 Basic Examples
(a) A complex representation of dimension 1 of a group G is given by the repre­

sentation space V  =  C and a homomorphism T  : G —> C’, where C* denotes 
the multiplicative group of nonzero complex numbers. If we take T(g) =  1 
for all g € G, then the obtained representation of G is called trivial (unit) 
representation of G.

(b) Assume that G is finite and let n  be the order of G. Let V  be a complex 
(respectively, real) vector space of dimension n, with a basis (eg)gec indexed 
by the elements g of G. For g e  G, let Tg : V  —>• V  be a linear map of V" into V 
which sends eh to egh, for all h G V. This defines a complex (respectively, real) 
Tinpji.r representation, which is called the complex (respectively, real) regular 
representation of G.

(c) More generally, suppose that G acts on a finite set X , which means that for 
each g € G there is a permutation X  —> X  which takes x  to gx, satisfying the 
identities

lx  = x, g{hx) =  (gh)x, g,h  e  G, x e X.

Let V  be a complex (respectively, real) vector space having a basis {ex)xex  
indexed by the elements of X .  For g € G let Tg be a linear map of V  into V 
which sends ex to egx for all x  € X.  The obtained in this way linear representa­
tion of G is called the complex (respectively, real) permutation representation 
associated with X .

7
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1.3.3 Subrepresentation
Let T  : G —» GL(V)  be a complex (respectively, real) linear representation and 
let W  be a complex (respectively, real) vector subspace of V. Suppose that W  is 
invariant under the action of G, or in other words, w E  W  implies that Tg(w) E  W  
for all g E  G, w E  W.  The restriction Tgw of Tg to W  is an isomorphism of W  
onto itself, and we have = T™ ■ T™ thus T™ : G —*■ GL(W)  is also a complex 
(respectively, real) linear representation of G in W. In such a case W  is said to be 
a complex (repectively, real) subrepresentation of V.

Exam ple 1.3.1. Let V  be the complex (respectively, real) regular representation 
of a finite group G and let W  be the subspace of dimension 1  of V  spanned by the 
element x  =  Y  eg- ^  ^  clear that we have Tg(x) — x for all g E G. Consequently W

gSG
is a complex (respectively, real) subrepresentation of V,  isomorphic to the complex 
(respectively, real) trivial (unit) representation.

T heorem  1.3.2. (cf. [36]) Le tT  : G —*• GL(V) be a complex (respectively, real) 
linear representation of G in V  and let W  be a complex (respectively, real) vector 
subspace of V  invariant under G. Then there exists an algebraic complement W c of 
W  in V  which is invariant under G and V  =  W  © W c.

1.3.4 Irreducible Representations
Let T  : G —> GL(V) be a complex (respectively, real) linear representation of G, 
we say that it is irreducible or simple if no vector subspace of V  is invariant under 
G, except of {0} and V. In other words V  is irreducible if it is not the direct 
sum of two proper subrepresentations. Note that any complex (respectively, real) 
representation of dimension 1 is evidently irreducible.

Exam ple 1.3.3. Every irreducible complex representation of an abelian group is 
one dimensional. 1

Theorem  1.3.4. (Complete Reducibility Theorem) (cf. [36])

Every representation is a direct sum of irreducible representations.

D efinition 1.3.5. Let V  be a finite dimensional complex (respectively, real) rep­
resentation of G. An Hermitian inner product (respectively, inner product), (-, •} : 
V x V  —► C (respectively, (-,•): V xV  —► E), is called G-invariant if (gu, gv) = (u, v) 
for all g E  G,u,v  E  V. A representation together with a G-invariant inner product 
is called an unitary (respectively, orthogonal) representation.

:Tius fact results directly from the Schur’s lemma

8
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1.3.5 Character Theory
Let V  be a vector space having a basis (e*) of n  elements, and let A be a linear 
map of V  into itself, with matrix (of?)- By the trace of A we mean the scalar

Tr(A)  =  E  an.
i= 1

Let T  : G —r GL(V) be a linear complex (respectively, real) representation of 
a finite group G in the complex (respectively, real) vector space V.  We define the 
function xt  • G —*■ C such that Xr(g) =  Tr(Tg) for all g € G. This complex (respec­
tively, real) valued function xt  on G is called the character of the representation 
T. The importance of this function comes primarily from the fact that it allows to 
characterize the irreducible representations T  of G.

P roposition  1.3.6. (cf. [46]) I f  x  is the character of a unitary representation T  of 
dimension n, then we have;

(i) x ( l ) = n ,

(H) x (s_1) =  x(s)L for g e G

(iii) x ( p ^ -1) =  X{h), for g , h e G .

D efinition  1.3.7. Let Vi and V2 be two complex representations of the group G. A 
morphism A : Vi —»• V2 is a linear map that is equivariant, i.e. A{gv) = gA{y) for 
g £ G, v 6  Vi. We denote by Lg(Vi, V2) the set of all equivariant morphisms from 
Vi to V2.

P ro p o sitio n  1.3.8. (cf. [46]) Let T\ : G —*■ GL(Vi) and T2 : G —* GL(y2) 
be two linear complex representations of G, and let x i a n 6  X2 be their characters 
respectively. Then the character x  of the direct sum representation Vi © V2 is equal 
to Xi +X 2-

P ro p o sitio n  1.3.9. S c h u r ’s  l e m m a  (cf. [36]) Let Vi and V2 be two irreducible 
complex representations of G. Then we have the following:

(i) A morphism A : Vj —» V2 is either zero or an isomorphism,

(ii) Let A : Vi —► Vi be a morphism. Then there exists A € C such that A(u) =  Xv 
for every v G Vi.

9
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Assume that G is a finite group and and \I/ are two complex-valued functions 
on G, we put

geG
n  being the order of G. This function satisfies the properties of an Hermitian inner 
product in the vector space of all complex-valued characters from G to C.

T heorem  1.3.10. (cf. [46])

(i) I f  X the character of an irreducible complex representation of G, we have 
i x\x)=l  (i-e- X is of norm 1),

(ii) I f  x  &nd x] ore the characters of two non-isomorphic irreducible complex 
representations, then we have (x\x!) =  0 (i.e. x  ond x! ore orthogonal).

Theorem  1.3.11. (cf. [46]) Let V  be a linear complex representation of G, with 
character <£>, and suppose V  can be decomposed into a direct sum of irreducible 
complex subrepresentations W2, ■ • • , Wk. i.e.

V  = Wi ® • • • ® Wk.

Then i fW  is an irreducibe complex representation with character x> the number of 
Wi isomorphic to W  is equal to the inner product ($|x)-

Corollary 1.3.12. Suppose X w "  i Xn ore the distinct characters of N  irreducible 
complex representations Wi, ■ ■ ■ , WN. then V  = m \W \ © • • • © m NWN for any com­
plex representation V of G, where m W  =  W  ® — • ® and the character of V,

m
i~ N

$  =  m i X i  +  • • • +  m hX N ,  m i  =  ($|x*)» a n d  ($1$) =  E  m ] 2 .
t = l

C orollary 1.3.13. Let T  be a linear complex representation with the character 
X■ Then the number of trivial (unit) subrepresentations contained in T  is equal to
(xlI) = i  E x ( 9) , t i =  \G\.

geG

1.3.6 Decom position of Regular Com plex Representations
Proposition  1.3.14. (cf.[46]) The character x  of the regular complex representation 
V of G is given by the formulas:

(i) x(g) = 0 , g=£ 1

(ii) x(l)  = n  = |G|=dim V.

10
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C orollary  1.3.15. Suppose that Wi, W2, • • • , W* are all irreducible complex repre­
sentations of G and dim W{ =  ru and l e t n =  \G\. Then

(a) Every irreducible complex representation Wi is contained in the regular complex 
representation of G with multiplicity equal to its dimension ni}

N
(b) The dimensions rii of the complex representation W\ satisfy the relation Y  n? —

i= 1n,

N
(c) For g e  G, g ^  1, we have Y  UiXi{g) =  0.

i=l

1.3.7 Number of Irreducible Complex Representations
T heorem  1.3.16. (cf.[46]) The number of irreducible complex representations ofG  
is equal to the number of the conjugacy classes in G.

P roposition  1.3.17. (cf [46]) Let g 6  G, and let C(g) be the number of elements 
in the conjugacy class of g. Then

(a) Ex-:(5)*Xi(p) =  cfev

N
(b) For h e  G not conjugate to g, we have Y  X-:(p)*X-:(̂ ) =  0-

i=i

1.3.8 Isotypical Decom position of Complex Representations
Let T : G —»■ GLiV)  be a linear complex representation of G. We are going to define 
a unique direct sum of certain representations of V.

Let Xii • • • , Xn be distinct characters of the irreducible complex subrepresenta­
tions Wi, • • • , WN of G and ni, • • • , their dimensions. Let V  = Ui © • • ■ © Um be 
a decomposition of V  into a direct sum of irreducible complex representations. For 
i = i s. - • , N  denote by Vi the direct sum of those Ui which are isomorphic to Wi. 
We put Vi = {0} if there is no such component Vj. Clearly we have

vr =  y1®-- - ©v> ,  (i.i)
the composition (1.1) (which is unique) is called the isotypical decomposition of 
V  and Vt is called the isotypical component of V  associated with the irreducible 
representation W).

11
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R em ark  1.3.18. Here we are discussing the case of complex representations, but in 
the real case, of course, a similar construction leads to the isotypical decomposition 
of real representations.

1.3.9 Examples
D ihedral group Dhj:  The dihedral group D .v of order 2N ,  is the sy m m etry
group of IV-sided regular polygon for N  > 1. We consider the elements of Lfy to be

real 2 x 2-matrices (e.g. the element 7  =  a + ib represents the matrix ° ^
0 o j

The dihedral group Lfy is generated by Z.v, the cyclic group of order N, which the

generators being the rotation 7  =  together with the reflection k = J ^

Let’s classify the irreducible representation for some dihedral groups Dn , and use 
them to describe the isotypical decomposition of some representations of Lfy.

(i) D 3

The dihedral group D3 =  {1, 7 , y2. k, K'y, K-y2} has three conjugacy classes: 
Xi =  {1}, X2 =  {y,72}, and x3 =  {«, *7 , «y3}. The characters of D3 are 
presented in Table 1.1.

X i X i % 2 £ 3

X i 1 1 1

X 2 1 1 -1

X3 2 - 1 0

Table 1.1: Representations of D3.

There exist three non-isomorphic complex irreducible representations Vi,V2 
with dimension 1, and Vz with dimension 2. The isotypical decomposition of 
the regular representation V  of D 2 is:

V = V1 @V2 @ V3.

12
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(ii) D4

The dihedral group D4 =  {1, 7 , 72, 7s, k, «7 , «72, K73} has 5 conjugacy classes: 
Xi = {1}, £2 =  {7,73}, 2-3 =  { t2}, ^4 =  {«, «72}, and £5 =  {K7 .K73}. The 
characters of D4 are presented in Table 1.2.

Xi X i X2 £ 3 X4 £ 5

X i 1 1 1 1 i

X2 1 1 1 - 1 - 1

X3 1 - 1 1 1 - 1

X4 1 - 1 1 - 1 1

Xo 2 0 - 2 0 0

Table 1.2: Representations of D4.

There exist five non-isomorphic irreducible complex representations Vi, V2, V3, V4 
with dimension 1 and V5 with dimension 2. The isotypical decomposition of 
the regular representation V  of D4 is

V =  Vi©V2©V3©V4© V5.

(iii) D 5

The dihedral group D 5 =  {1,7, T2,73, 74, «7 , «72, «73, «74} has 4 conjugacy
classes: £1 =  {1}, £2 =  {7,74}, *3 = {72,7 3}, *4 = {«, «7, «72, ^T3, «74}- 
The characters of £>5 are presented in Table 1.3.

There exist four non-isomorphic irreducible complex representations Vi,V^ 
with dimension 1 and Vz, V4 with dimension 2. The isotypical decomposition 
of the regular representation V  of D$ is

V  =  Vi © V2 © V3 © V4.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



y/5—1

V5+1

Table 1.3: Representations of D5.

(iv) A4

The alternating group A 4 is the group of even permutations of four symbols 
{1,2,3,4}. This group is also called the tetrahedral group, because it is iso­
morphic to the group of symmetries (preserving orientation) of a regular tetra­
hedron. Every permutation a € A4 can be written as a composition of cycles 
(■nin2 - ■ ■ rik), (k = 1,2,3). By using this notation, we divide the elements of 
A4 into four conjugacy classes:

=  {(1)}, *2 = {(12)(34),(13)(24),(14)(23)},

x , =  {(123), (142), (134), (243)}, x, =  {(132), (124), (143), (234).
The following is the character table of A4:

X i X i *£3 X 4

X i 1 1 1 1

X 2 1 1 U to 2

X s 1 1 u 2 u

X 4 3 -1 0 0

Table 1.4: Representations of A 4

where u  =  e ~ . There exist four non-isomorphic irreducible complex repre­
sentations Vi, V2, V3 with dimension 1 and V4 with dimension 3. The isotypical

14
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decomposition of the permutation representation V of A4 is

V = VX®V 2 @VZ© V4.

(v) S4

The permutation group S4 of four symbols {1,2,3,4} is isomorphic to the oc­
tahedral group of symmetries (preserving orientation) of a regular cube. By 
using the notation of elements in as compositions of cycles, we can list the 
following five conjugacy classes of elements in S4:
Xl = {(!)}, z2 =  {(12), (13), (14), (23), (24), (34)}, 
x 3 =  {(12)(34),(13)(24),(14)(23)},
x4 =  {(123), (142), (134), (243), (132), (124), (143), (234)}, and 
rr5 =  {(1234), (1342), (1324), (1243), (1423), (1432)}.

The following is the character table of S4:

Xi Xl £2 X3 £4 x 5

Xi 1 1 1 1 1

X2 1 -1 1 1 -1

X3 2 0 2 -1 0

X4 3 1 -1 0 -1

X5 3 -1 -1 0 1

Table 1.5: Representations of S 4

There exist five non-isomorphic irreducible complex representations Vi, Vj with 
dimension 1, V3 with dimension 2 and V4. V5 with dimension 3. The isotypical 
decomposition of the permutation representation V  of S4 is

V =  Vi © V2 © V3 © V4 © V5.

15
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(vi) A5

The alternation group A$ is the group of even permutations of five symbols 
{1,2,3,4,5}, which is isomorphic to the icosahedral group I consisting of the 
symmetries (preserving orientation) of a regular icosahedron. The group A-0 
has 60 elements. There are five conjugacy classes of the elements in A5, which 
are listed explicitely in Table 1.6.

#1 #2 # 3 #4 77-u
(1) (12)(35), (13)(25) (123), (125) (12345) (21345)

(12)(35), (13)(45) (132), (152) (12354) (21354)
(12)(45), (14)(23) (124), (234) (12435) (21435)
(13) (24), (14)(25) (142), (243) (12453) (21453)
(14)(35), (15)(23) (235), (253) (12534) (21534)
(14)(25), (14)(35) (345), (354) (12543) (21543)
(15)(23), (15)(34) (134), (143) (13425) (31425)
(15)(24), (25)(34) (135), (153) (13524) (31524)
(24) (35), (23) (45) (145), (154) (14325) (41325)

(245), (254) (14523) (41523)
(15324) (51324)
(15423) (51423)

Table 1.6: Conjugacy classes of elements in A 5. 

The following is the character table of A 5:

Xi X i 2 2 23 X 4 25

Xi 1 1 1 1 1

X2 4 0 1 -1 -1

X3 5 1 -1 0 0

X4 3 -1 0 1+V5
2

1—/5  
2

X5 3 -1 0 l - y / 5
2

l+y/5
2

Table 1.7: Representations of A 5.
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There exist five non-isomorphic irreducible complex representations Vi with 
dimension 1, Vi wdth dimension 4, V3 with dimension 5 and V4, V5 with dimen­
sion 3. The isotypical decomposition of the permutation representation V  of 
As is

V  =  Vi © Vi © V3 © V4 © Vs-

1.3.10 Irreducible Real Representations o f T x S l

Let T be a finite group and Vk be a complex irreducible representation of T. Since 
the group S1 c C  acts on Vk by complex multiphcation, the irreducible complex 
representation Vk of T leads to a real representation of T x S1, with the action of 
T x S 1 defined by (7 , z)v =  7 (zJ • v) for j  > 1, where (7 , z) € T x S1, v G Vk. The 
space 14 equipped with this action of F x S'1, will be denoted by Vkj.

17
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Chapter 2

Equivariant Degree Theory: 
Construction and Basic Properties

In this chapter we present a construction of the G-equivariant degree theory with 
one free parameter for G =  F x S1, where T is a finite group. This construction can 
be generalized to the case of any compact he group G (cf. [28]) but we do not need 
such generality in this thesis. We also introduce the definition of the Burnside ring 
A(G), and provide several examples.

2.1 Construction of Equivariant Degree
Let U be an Euclidean space and X  a subset in JJ. We will use the following 
notations throughout this section:

B(X)  =  {X e  x  i INI <  l} ,  

B(X)  =  {x  6  X  I INI <  1}, 

S(X) = {z € X I INI = 1}.

Assume that V  is an orthogonal G-representation, and consider the space W  := 
R © V, where G acts trivially on R. Let Q, C W  be an open bounded G-invariant 
set.

Let /  : W  —»• V  be an admissible G-equivariant map, i.e. f(gx) = g f(x ) for 
x 6 W  and g E G, then there exists a G-invariant neighborhood J\f of dCl such that 
f(x )  7̂  0 for all x  G N .  We put Gm := Q U Af  and suppose that R > 0 is a real 
number such that fV  C Br{0) := {x G W  \ ||x|| < R}. Assume that tj : B R(0) R

18
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Figure 2.1: Invariant Set fi and Equivariant Map /

is an G-invariant Urysohn function such that (cf. Figure 2.1)

, N , o if x € n. .
V(x)=< ‘ 2.1)

1 1 if x  f. Qjv.

We define F : [ - 1, 1] x B r ( 0) —► R @ V' by

F(t,x) = {t + 2r){x)J{x)): ( t j ) 6 [ - U ] x 5 j j ( 0 ) .  (2.2)

Since F  ^0,0) = {0} x ( /  x(0)nQ), by identifying [ - 1, 1] x B r {0) with ^(R 2©!/), 
we get the equivariant map

F: (B{R2® V ),S{R 2@V)) -► ( R @ K I e  V \  {0}).
Now by taking the equivariant homotopy class of F  (denoted by [F]). we obtain the 
element

[F] e [B(R2 © V), S(R 2 © V); R © K R © V \  { 0 } f  =: n f ;
where by [X, A:Y. B}G we denote the set of all G-equivariant homotopy classes 
of maps from (X.A)  to (Y. B ). It is well known (cf. [29]) that the suspension

homomorphism f  from 11$ := [ f (R a'+1 © V), S(RN+1 © V): R N e  V, R N © V \  {0}]

to n $ +1 := [F (R ^ + 2 © V), S(RN+2 © V); R N+l © V,RN+1 © V \  {0}1 ° defined by 
f([F]) =  [Id® x F], is an isomorphism (by Freudenthal Theorem (cf. [32])) for N  
sufficiently large. We put IIG := IIG. The group n G, which is the stable equivariant 
homotopy group of sphere, is the range for the equivariant degree.
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By taking the class of N  — 1-suspension of F, we define

degG(/,ft) := [Mrn- i x F], (2.3)

and we call it G-equivariant degree of /  in ft. The equivariant degree introduced 
above satisfies all the properties expected from any reasonable degree theory. In 
particular, we have the following result:

T heorem  2.1.1. (cf. [32]) The G-equivariant degree degG(/, ft) has the following 
properties:

(i) E x i s t e n c e : J/degG(/. ft) ^  0 then there exists x  £ ft such that f (x )  = 0.

(ii) A d d i t i v i t y :  I f  j - 1 ( 0 )  f l  f t  C  f t i  U f t 2 , where f t i  and f t 2 are two disjoint open 
invariant subsets of ft then

degG(/, ft) =  degG(/, ft2) +  degG(/, ft2),

(Hi) H o m o t o p y : I f  f t : [0,1] x V  —► W  is an equivariant homotopy of ft-admissible
maps then degG(/t,ft) =  constant,

(iv) S u s p e n s io n : degG(Id x / ,  (—1,1) x ft) =  degG(/, ft),

(v) E x c is io n : I f  f ~ l {0) f l  ft C  ft0, where ftc C  ft is an invariant open subset of 
ft, then

deg G(/,ft)  =  degG(/ ,f t0),

(vi) H o p f  P r o p e r t y .- Assume ft =  B(V) is the unit ball in V  and / 2, f 2 are two 
B(V)-admissible G-equivariant maps with degG( /1; B{V)) =  degG(/2, B(V)). 
Then for N  big enough, M r n x F i andIdRNxF2 are G-equivariantly homotopic 
by a B (RN) ® B(V)-admissible homotopy.

2.2 Regular Normal Approximation o f Equivari­
ant Mappings

2.2.1 Norm al Maps: Definition and Examples
Assume that V is a real, finite-dimensional, orthogonal ^-representation and W  = 
M © V, where G acts on R trivially. For x € W, we denote by Gx the subgroup of 
G defined by Gx \= {g € £ | gx = x}. The subgroup Gx is a  closed subgroup of G 
and is called the isotropy group of x. The set G(x) := {gx\g £ is called the orbit
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of x. The orbit G(x) is homeomorphic to G/G~. Since Ggx =  g~lGxg it follows that 
the conjugacy class (Gx) of Gx describes the orbit G(x).

In what follows, for a given x £ W, we will call (Gx) the orbit
easy to verify that V G := {x £ V; gx =  x for all g £ G} is a linear
called the subspace of G-fixed points.

For a G-invariant set fl C W  and a closed subgroup F  of G, we 

f\H := {x £ fl| hx = x  for all h £ F} , 

n H := {x € fl| Gx = F}, 

fl<"> := {x £ fl| (Gx) > (H)},
:= {x € fl| (Gx) =  (F)},

F(fl) :={(G x) | x G.Q}C$(G).
The set F(fl) is called the set of the orbit types in fl, and (F) for a subgroup F  C G 
such that F  =  Gx, for some x £ fl is called an orbit type in fl. It is well known 
that flh is open and dense in QH (cf. [9]). Moreover, Jifil) is a finite set, partially 
ordered by the relation < defined for the set <3>(G) (see section 1.2). It is also well 
known (see [9]) that the set fl(#) is a submanifold of W. We will denote by r(fl(#)) 
the tangent bundle to f l^ )  and by ^(fl^)) the normal bundle to f\ h) in W.

D efinition 2.2.1. Let fl C W  be an open bounded G-invariant set and /  : W  —+ V  
an fl-admissible G-equivariant map. We say that /  satisfies the normality condition 
at x e  fl if there exists 5X > 0 such that for all v € i/x(fl(H)) i-e. v±rx(Cl(H')), where 
F  =  Gx, with ||u|| < 6X and x + v € fl, we have

/(x  +  v) = f(x )  +  v. (2.4)

D efinition 2 .2 .2 . Let fl C W  be an open, bounded, G-invariant set and f  : W  —>V 
an fl-admissible G-map, We say that f  is normal if for every a  = (F ) £ J {  fl) and 
every x £ f ~ 1(O)flfl(^), the a —normality condition a tx  is satisfied (see Figure 2.2); 
i.e. there exists Sx > 0 such that for all v £ ^ (^ (h )), \\v\\ < $x, then

f i x  + v) = f{x) + v = v. (2.5)

Similarly, an Q-admissible G-homotopy h : [0,1] x W  —► V  is called a normal 
homotopy in Cl, if for every (F) £ F (fl) and for every {t, x) £ /i_1(0)n([0, l j x f l ^ ) ,  
the following a-normality condition at (t,x) is satisfied, i.e. there exists <5(t,x) > 0 
such ihat for all v £ z/(*,x)([0, 1] x fl(i/)) with ||u|| < 5(t,x),

h{t, x + v) = hit, x) +  v = v. (2.6)
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Figure 2.2: Normal Map

Exam ple 2.2.3. Consider the antipodal action of G =  Z2 on the space V = R. 
Then the map /  : V  —»• V  defined by

is a G-equivariant normal map. Indeed, there are only two orbit types in V: {H), (K ) 
with H = Z2 and K  = {1}. Since (V H)± = R and for |x| < 1 we have that f ix )  = x, 
it follows that /  satisfies (Z2)-normality condition. On the other hand {VK)± — {0}, 
thus it also satisfies the (K )-normality condition.

In the following, we consider an orthogonal representation V of G and its set of 
orbit types

To simplify the notation, we put (Hk) =  a* for k =  1, 2, . . . , / .

T heorem  2.2.4. ( N o r m a l  A p p r o x im a t io n  T h e o r e m ) (cf. [36]) Assume that Q C  W 
is a bounded open G-invariant subset and let f  : W  —>• V be an Q-admissible G- 
equivariant map. Then for every 77 > 0 there exists a normal (in Q) G-equivariant 
map f  : W —* V such that

Theorem 2.2.4 can be extended to the case of Q-admissible homotopies.

T heorem  2.2.5. ( N o r m a l  A p p r o x im a t io n  T h e o r e m  f o r  H o m o t o p i e s ) (cf. [36])
Let Q C  W  be an open bounded invariant set and h : [0.1] x W —► V be an Q- 
admissible homotopy. Then for every 77 > 0 there exists a normal G-homotopy

f { x )=  — x  if x  > 1,
■(2 + x) if x  < — 1

sup f{x) -  f{x) < 77.
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h,: [0,1] x W  —»■ V in Q such that sup \\h(t,x) — h(t,x)\\ < 77 . In addition, if
ori] xn

ho := h(0, •) and hi := h{ 1, •) are normal in then ho = ho and hi =  hi.

2.2.2 Regular Norm al Approximations
D efinition 2.2.6. Let Q C W  be an open bounded G-invariant set and let f  :W  —>
V  be an Q-admissible G-equivariant map. We say that /  is a regular normal map
in Q if:

(i) /  is of class C1,

(ii) /  is normal in Q,

(iii) for every a £ J { f ~ l {0) HQ), a — (if), zero is a regular value of

I h '■= f\na :0.H ~ ^V H.

where Q-h =  LIHWh - Notice that ClH is not G-invariant, in general, but it is JV(ff)- 
invariant. Therefore, it is W (if)-invariant, where W (H ) := is called the Weyl 
group of i f  in G.

Similarly, an Q-admissible G-equivariant homotopy h : [0,1] x W  —* V  is called 
regular normal homotopy in Q if:

(i) h is of class C1,

(ii) h is a normal homotopy in Q,

(iii) for every a £ J{h~ l {0) n  [0,1] x fi) , a = (i f ), zero is a regular value of the 
maps hH, {1io)h and {hi)H, where

hH 
{ho ) h  

{h)H

=  • [0, 1] x —5" V H,
= ho\nH ■ —> V H >
=  hi\ciH : Oh —»■ V H.

Theorem  2.2.7. ( R e g u l a r  N o r m a l  A p p r o x im a t io n  T h e o r e m ) ( c/ .  [36]) Let f t  C  W
be an open bounded G-invariant set and f  : W  —*V an ft-admissible G-equivariant
map. Then for every 77 >  0 there exists a regular normal (inQ.) G-equivariant map
f  : W  —► V  such that sup ||/(x) — /(x )|| < r). Similarly, if h : [0, l] x W  —» V  is

xen
an H-admissible G-equivariant homotopy, then for every 77 >  0 there exists a regular
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normal (in fI) G-homotopy h : [0,1] x W  —»■ V swch that sup ||h(x,t) —
(t,r)e[o,i]xn

h(x, t)|| < 77. /n  addition, if ho and hi are regular normal in CL, then ho = ho and 
hi = hi.

2.3 Com putation and Decom position of the 
Group nG

The goal of this section is to describe the group IIG. We will look at the group IIG 
as the set of values for the G-equivariant degree, so we can describe the equivariant 
homotopy classes in IIG, by studying the G-equivariant degree of regular normal 
representatives of these classes. Notice that, by the definition of IIG, we are, in fact, 
dealing with free equivariant homotopy classes, which are very awkward for studying 
the group structure of IIG. However, the equivariant degree, and in particular, its 
additivity property, provides us with a geometric method for the computation of the 
(abstract) group structure of IIG.

2.3.1 Equivariant Degree Techniques
A: Let a e TIG and /  : © W  —»■ R N © V  be a B(RN © W)-admissible map
such that the equivariant homotopy class of /  is exactly a. In what follows we will 
always assume that N  is large enough. Then obviously, from the construction of 
the G-equivariant degree, the class a is equal to degG(/, B (R*v © W)). Now we can 
take advantage of the equivariant degree properties. Suppose that Z  := / -1(0) and 
let K  be a compact invariant subset of Z  such that there exists an open invariant 
subset Cl of B (RN © W) satisfying C lnZ  = K. Since the map /  is Q-admissible, we 
can apply the construction described in section 2.1 as follows:

(i) Choose an invariant neighborhood f f  of dCl in B(M.N © W) such that f{x) 7̂  0 
for x  E M.

(ii) Find an invariant Urysohn function rj: B (R N © W) —> [0,1] satisfying

f 0 if x  € f l  
~  {1 if x <£Nl) Cl.

(iii) We can identify [—1,1] x B(R N © W) with B(R N+1 © W)  and define the
G-equivariant map F  : [—1,1] x B(RN © W)  —*■ R © (M.N © V ) , by

F{t,x) = {t + 2n(x),f{x)), (2.7)

where (£, x) € [—1,1] x B(RN © W).
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Notice that

(a) F (t, x) = 0 -4=> t =  0 and x  G K.

(b) If /  is regular normal in Q, then F  is regular normal in B(RNJrl © W).

(c) If K  = Z  then degG(F, B(RN+1 © W)) = degG(/, B{RN © W)) =  a.

We will call the map F  a localization of /  about the set fl.

B: Notice that for two elements a and b G IIG, it is always possible to find two 
representatives f a, fb '■ B(RN © W) —» R N © V  such that /^ (O ) fl / 6- 1(0) =  0. 
Indeed, suppose that / ' ,  /£ : B(RN' © W) —» R-v' © V be two representatives of a 
and b, then we can define f a, f b : [—1,1] x 5(R-V' © W) —»■ R © (R-v' © V) by

/ a(£, x) =  (t -  /a(*)), /bfo S) = (t +  /b(x)),

where (£, x) 6  [—1,1] x B(RN' © W). Clearly, the zeros of f a and fb are separated. 
We will call this procedure a separation of zeros. Notice that if / '  and f h are regular 
normal, then f a and fb axe also regular normal.

C: If f a, fb : B (R N © W) —*■ RA © V  axe such that f ~ 1(0) H / 6-1(0) =  0 then we 
can find two open invariant sets fla and flb such that /~ 1(0) C fla, / fe- 1(0) C fib and 
fla fl fib =  0. Then we put fl =  fla U fib and define the map /  : fl —► RA © V by

f n  =  / if x G 5 ’
\/b (x) if x 6 fib.

The map /  can be extended equivariantly to B (R N © W). Let F  be a localization 
of /  about fl, then clearly, by the additivity and suspension properties,

degG(F, J3(R" +1 © W)) =  degG(F, ( - 1, 1) x fl) =  degG(/, fl)
=  degG(/0, fla) +  degG(/b, fl6) =  a +  b.

D: Suppose that h : [0,1] x B(RN © W) —> RA" © V  is a regular normal homotopy 
of B (R N © W)-admissible maps. Since the set Z  = {(£, x) : h(t,x) =  0} C [0,1] x 
B (R N © W)  is compact and invariant, it follows that the set K  =  where
7r : [0,1] x B (R N © W) —*• B(RN © W) is the natural projection, is also compact and 
invariant. Let J (Z )  = {(Hi), (Hf), ■ ■ ■, (Ffc)}- Since h is regular normal, the sets 
Z(h,) are compact, so the set K  can be represented as a union K  =  (J*=1 K ^ ) ,  where 
each of the sets is compact and invariant. Therefore, there exist invariant
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disjoint open neighborhoods ftj of the sets K ^ ty  Let ft := (jf=1 ft/. Notice that 
Z  C [—1,1] x ft, and £(#,) C [—1,1] x ft/ for Z =  1 , . . . ,  k, so h is also an ft-admissible 
regular normal homotopy and ft;-admissible homotopy for each I = 1 ,.. .  ,k. We will 
call this procedure restricting a regular normal homotopy to an orbit type {Hi).

2.3.2 Decom position of the Group n G
D efinition 2.3.1. For every orbit type (H ) in W  we define the subset 11(H) of Ua 
which consists of all elements a G IIG such that there exists a regular normal map 
/  : M.N © W  —> RN © V, with the following properties:

(i) /  is B(RN © W)-admissible,

(ii) /-HO) n  B ( r n  © W) =  (/-HO) n b ( r *  © w))m ,

(iii) deg G(f ,B (R N @ W ))= a.

Since a constant non-zero equivariant map clearly satisfies the conditions (i)-(iii) 
of Definition 2.3.1, the element 0 belongs to 11(H) for every orbit type (H) in W. 
We have the following:

T heorem  2.3.2. (cf. [5]) For every orbit type a =  (H) in W:

(a) the set U(H) is a subgroup ofUG,

(b) n(H ) =  {0} ifd im W (H ) > 1,

(c) n ° =  ®  n  (H).
dim W ( H ) < 1

In what follows, we will denote by a^u) the II(H)-component of a G IIG 
also write

desa(f,a)  =  S ®  n(H).
( H )  (H )

P roposition  2.3.3. (cf. [5]) Let f  : W  —*■ V  be an Cl-admissible map such that 
degg(/, ft) =  a r  0, i.e. â H) r1 0 for some (H). Then there exists x  G ftff such 
that f(x )  = 0. In other words, the equation f(x )  = 0 has a solution x in ft with 
symmetries at least H, i.e. GX D H.
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2.4 Burnside Ring A(G)
In this section we introduce the definition of the Burnside ring A(G), and provide 
several examples. Let <&(G) denote the set of conjugacy classes (H ) such that the 
Weyl group W (H ) is finite. We denote by -4(G) the free abelian group generated 
by (H ) E $(G). There is a multiplication operation on -4(G) defining in A(G) a 
structure of a ring with identity. The multiplication is given by

( H ) -{ K )=  n^ L)’
(i)e* (G )

where 

nL = n (L ,H )-n (L ,K ) \W (H ) \- \W (K ) \ -  £  n(L, L)nz \W(L)\\/\W(L)\,
(L)>(i)

and the integer n(L, H) denotes the number of conjugate copies of H  containing the 
subgroup L.

Exam ple 2.4.1. Dihedral group Dn

(a) n  =  3

In this case, the subgroups of the group

Ai =  {L7>72,k ,k7 ,k72},

where 7  =  E C, are represented by

Z, =  {1}, Zs =  {1 , 7 , 7 2}, Di =  { l , 4 ~ { W ~ { l . * - r 2}-

It is easy to notice that in this case N(Di) =  Di and N{Jjz) — N(%i) =  Dz, which 
implies that W{Di) = TL\, W {Z3) =  Z2, and W{Z  1) =  Dz-

Following is the lattice of conjugacy classes in jD3:
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Figure 2.3: Lattice of Conjugacy Classes in D2.

L H n(L,H )
Z i D s 1

D 1 D z 1
Z 3 D z 1

Z i Z 3 1

Z i D 1 3

Table 2.1: Numbers n(L,H) f°r subgroups of D2.
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(A) (A ) (2a) (2i)
m (A ) (A ) (2a) (A)
(A ) (A ) (A )  +  (2i) (A) 3(A)
(2a) (2a) (2i) 2(A) 2(A)
(2i) (2i) 3(A) 2(A) 6(A)

Table 2.2: Multiplication Table for the Burnside Ring A(D3).

(b) n  = 4 

In this case, The subgroups of

D4 =  {1, i, —1, —i, k, Ki, —k, —ni},

are exactly:
Z4 =  { l,i, —1, —i},
Z 2 = { ! , - ! } ,
Zi = {!},
D i =  {1, —1, —«},
rv

D2=
Di =  {1, k} ~  {1, —«},PS/
25i= {l,«i} ~  {1, — «*}.

Notice that, N (D k) = D2k and N (D k) =D2k, where Ar =  1,2 and N (Z k) 
k = 1,2,4, which implies that W (Zk) =  D « and W(Dfc) =  W(£)fc) =  Z2. 
the following lattice of the conjugacy classes of subgroups in DA\

=  Da for 
We have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Zi)

Figure 2.4: Lattice of Conjugacy Classes in A -

L H n{L,H) L n(L, H)

Zi A 1 Zi a 1
A A 1 Z2 Z4 1
Z2 A 1 Zi Z4 1

D 1 A 1 Zi A 1
A A 1 Z2 A 1
Z4 A 1 A A 1
rv
? 2 A 1 Zi A 2

a A 1 Zi Z 2 1

A 1 Zi A 2

Table 2.3: Numbers n(L,H) f°r subgroups of A -
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(A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) 2(A) (A) (A) 2(A) (A) 2(A) 2(A)
(Z4) (Z4) (A) 2(A) (A) (A) (A) 2(A) 2(A)
(A) (A) (A) (A) 2(A) (A) 2(A) 2(A) 2(A)
(A) (A) 2(A) (A) (A) 2(A) + (A) 2(A) 2(A) 4(A)
(A) (A) (A) (A) 2(A) 2(A) 2(A) + (A) 2(A) 4(A)
(A) (Za) 2(A) 2(A) 2(A) 2(A) 2(A) 4(A) 4(A)
(A) (A) 2(A) 2(A) 2(A) 4(A) 4(A) 4(A) 8(A)

Table 2.4: Multiplication Table for the A(A )-

(c) n  =  5 
We have the following subgroups of

A  = {1 ,  7 , 7 2, 7 3, 7 4, « 7 ,  « 7 2, « 7 3, « 7 4},

where 7 =  :

Zi = {!}, A  = {1, k} ~  {1, *7} ~  {1, «72} ~  {1, «73} ~  {1, «74},

A  =  { 1 , 7 > 7 2>73>74}-

In this case, iV(A) =  A  and N (Z5) =  iV(Zi) =  A ,  which implies that W (A ) =  
Zi, W(Zi) =  A  and W(Z5) = Z2. The lattice of subgroups in A  is shown on 
Figure 2.5.
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Figure 2.5: Lattice of Conjugacy Classes in D5.

L H n(L.H)
h A 1
D1 A 1
S3 A 1
A Z5 1
A A 5

Table 2.5: Numbers n(L, H) for subgroups of D5.

(A) (A ) (A) (A)
(A ) (A) (A ) (Z») (A)
m (A) (A ) + 2(A) (Zi) 5(A)
(AO (AO (Zi) 2(ZS) 2(A)
(Zi) (A) 5(A) 2(A) 10(A)

Table 2.6: Multiplication Table for the Burnside Ring A(D5).
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E xam ple  2.4.2. Tetrahedral Group A4

We have the following representatives for the conjugacy classes of the subgroups H  
in A ^see Section 1.3.9)

H 1(H) 1
Zi =  {(1 )} 1

Z 2  =  {(1),(12)(34)} 3
Za =  {(1), (123), (132)} 4

V4  =  {(1),(12)(34),(13)(24),(14)(23)} 1

Table 2.7: Subgroups of A4 and the order of each conjugacy class.

The lattice of subgroups in A4 is shown on Figure 2.6.

(■̂ 4)

Figure 2.6: lattice of conjugacy classes in A 4 .

In addition, JV(V4) =  A4 , N (Z3) =  Z3, Nifaz) 
W{V4) = Z3, W{Z3) = Z i.^ Z a )  = Z2 , and W{Zi) 
numbers of n(L, if).

V4, and iV(Zi) =  A4, so 
A4. Now we can find the
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L H n(L ,H )
Zi a 4 1

a 4 1

Z3 a 4 1

V4 a 4 1

Zi V4 1

V4 1

Zi Z3 4
Zi Z2 3

Table 2.8: Numbers n(L , H) for subgroups of A}.

(^ 4 ) (14) (Z3) (Zs) (Zi)

(^4 ) (14) (Zs) (Zs) (Zi)
04) (Va) 3(14) (Zi) 3(Zs) 3(Zi)
(Zs) (Zs) (Zi) (Z3 ) -f- (Zi) 2(Zi) 4 (20
(Zs) (Zs) 3(Za) 2(Zi) 2(Zs) +  2(Zi) 6 (Zi)
(Zi) (Zi) 3(Zj) 4(Zi) 6 (Z!) 12(Zj)

Table 2.9: Multiplication table for the Burnside ring A(Aj).
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E xam ple  2.4.3. Octahedral Group S4

Since A 4 is a subgroup of S4, it is clear that all the subgroups of .44, including V4, Z3 , 
Z2 , and Zi are also subgroups of S4. In addition, there are the following subgroups 
in S4 (up to the conjugacy class)-(see Section 1.3.9)

D4 = {(1), (1324), (12)(34), (1423), (34), (14)(23), (12), (13)(24)},
Z4 =  {(1), (1324), (12)(34), (1423)},
Dz = {(1), (123), (132), (12), (12)(23), (13)},
£ 2 =  {(1),(12)(34),(12),(34)},
A  =  {(1) ,(12)}-

These subgroups are shown in Figure 2.7.

(S i)

Figure 2.7: Lattice of Conjugacy Classes in S4.

Let us notice that the subgroup D4, which is composed of the elements j ( l )  

(1324), (12)(34), (1423), (34), (14)(23), (12), (13)(24)| has the normalizer N(D4) = 
D4. The conjugacy class (D4) contains three elements, corresponding to the sym­
metry subgroups of the three pairs of parallel faces of the cube. The normalizer of 
the subgroup A^ is N(A4 ) = S4. The group Dz consists of the elements j ( l ) ,  (123),
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(132), (12), (23), (13) j .  The conjugacy class (Dz) contains four subgroups corre­
sponding to the symmetries of the cube around each of four pairs of opposite vertices 
of the cube. In addition N(Dz) =  Dz- The subgroup Z4 consisting of the rotations 
belonging to D4, has the normalizer N (Z4) =  D4. There are three subgroups in the 
conjugacy class (Z4), which correspond to the rotations of the three pairs of the 
parallel faces of the cube. The normalizer of V4 is N(V4) =  S4, the subgroup D2 has 
the normalizer N(D2) =  D4, and the subgroup D\ has the normalizer N(D\)  = D2. 
Finally, the subgroup Z2 has the normalizer N (Z2) =  D4.

The following table shows the numbers of n(L, H).

H L n(L,H) L K n(L,H)
A 4 s 4 1 d 2 d 4 1
v4 s 4 1 Di d 4 1
Z3 s 4 1 Zi d 4 3
z 2 S4 1 D1 Dz 2
Zi s 4 1 Z3 Dz 1
d 4 s 4 1 Zi Dz 4
z ; S4 1 %2 v4 1
Dz s 4 1 Zi v4 3
d 2 s 4 1 Di d 2 1
D i s 4 1 Z2 d 2 1
V4 A4 1 Zi d 2 1
Z3 a 4 1 Zi D1 6
Z2 a 4 1 Z2 Z4 1
Zi a 4 1 Zi Z4 3

d 4 3 Zi Z3 4
Z4 d 4 1 Zi Z2 3
z 2 d 4 3

Table 2.10: Numbers n(L, H) for Subgroups of S4.
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Table 2.11: Multiplication Table for the Burnside ring A(S4).
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E x am p le  2.4.4. Alternating Group As

Let us list the representatives of the conjugacy classes of the subgroups in A5:

Z2 =  {(1), (12)(34)},
Z3 =  {(1),(123), (132)},
V4 =  {(1), (12)(34), (13)(24), (23)(14)},
Z5 =  {(1), (12345), (13524), (14253), (15324)},
Ds = {{1), (123), (132), (12)(45), (13)(45), (23)(45)},
A 4 = {(1), (12)(34), (123), (132), (13)(24), (14)(23), (124), (142), (134),

(143), (234), (243)},
D5 = {(1), (12345), (13524), (15432), (14253), (12)(35), (13)(54), (14)(23),

(15)(24), (25)(34)}.

The conjugacy classes of the subgroups of As can be classified as follows: there are 
15 elements in the conjugacy class of the subgroup Z2 , 10 elements in the conjugacy 
class of the subgroup Z3 , 5 elements in the conjugacy class of the subgroup V4 , 6  

elements in the conjugacy class of Z5 , 1 0  elements in the conjugacy class of Dz, 5 
elements in the conjugacy class of A4, and 6 elements in the conjugacy class of the 
subgroup .Do.

The lattice of the conjugacy subgroups in A 5 is shown in Figure 2.8.

(^ 5)

Figure 2.8: Lattice of the Conjugacy Classes for A$.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L H n(L, H) L S' n(L , S )
Z3 A5 1 Z2 A4 1
Z2 As 1 Zi A4 1
Zi As 1 Z\ Z3 10
a 4 As 1 Z5 S 5 1
Zo As 1 7L% S 5 2
v4 As 1 Zi Dz 6
Dz As 1 Z3 Dz 1
Dz As 1 Z2 Dz 2
Va A4 1 Zi Dz 10
Z3 A4 2 Z2 V4 1

Z2 15 Zi v4 5
Zi Z5 6

Table 2.12: Numbers n(L,H)  for Subgroups of A5.

In addition N(Dz) =  N(Z3) =  Dz, A7(Z5) = N(D 5) =  Dz, and N (A 4) = A4. 
the subgroup V4 has the normalizer N(V4) =  A4. Finally, the subgroup Z2 has the 
normalizer N(Zz) =  V4.

2.5 Subgroups of T x 5 1 and Twisted Subgroups
In this section we introduce the definition of twisted subgroups of Tx S'1, and provide 
several examples.

Let T be a finite group and consider the group G =  F x S 1. In order to classify 
the subgroups H  of T x S 1 we consider the following diagram

H

where tti and 7T2 axe projections (homomorphisms) on T and S 1 respectively. Let 
K  := and consider ker tti =  HC\{e} x S1, where e denotes the neutral element
of r.
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Table 2.13: Multiplication Table for the Burnside ring A(As).
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If ker tti = {e} x S 1, then simply H  =  K  x S 1,i.e. H  is a  “product” subgroup 
and

N(H)  = N{ K  x S 1) =  N( K)  x S \

therefore
W{H)  . m .  x 5 ‘ =  HMD. = W( K ) .

v 1 H  K x S 1 K  1 ’
Consequently, we obtain that dim W  (H ) =  dim W  (K) =  0 since K  C T and T is 
finite.
If ker tti =  {e} x Zm, for some m  >  1, then we are dealing with "twisted” subgroup 
and in this case still we have Hf  ker 7Ti C T x S1, thus we can consider the diagram 
below.

if/ker 7Tj

K  - -

Since 7Ti : if/ker 7Tx —̂ iiT is one-to-one and onto, we can define the homomorphism 
<p 7T2 o  tt/ 1 : .ff —*• 5 1, and consequently the subgroup H /ker tti is the graph of (p, 
i.e.

tf/ker 7rx := { ( 7 ,z) e T x  S 1^ )  =  2}, 

and since the subgroup H  is the inverse image (H/ker 7Ti), we obtain:

i f  =  {(7 , z ) e r x S > ( 7) =  2"}.

In this case we will call the subgroup H  a twisted (by p) m-folded subgroup which 
will be denoted by K 9,m. Let us describe the normalizer N ( H ) of the group H.  
Notice that

N{H) = N{K*'m) =  { (7 , z) e T x  S 1 : (7 , z)K*'m(7- 1, z"1) =  ^ ’m}

=  { (7 ,2 )  €  T x  S 1 : ^ ( 7 * 7 - 1) =  <p(/c) Vfc €
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=  { 7 6  N( K)  : (p(,yk'y~1) = ip{k) Vfc € K }  x S1 := N  x S1.

That means N  is finite and W(H)  =  W ^K 9'™) =  . Consequently, we obtain
that dim W (if) =  dim W (K*’m) =  1.

2.5.1 Exam ples and Com putations
In this section we consider several examples of groups T and the product groups 
G =  T x S'1, for which we classify their conjugacy classes of twisted subgroups and 
determine the values of the numbers n(L, H) and their Weyl groups.

E xam ple 2.5.1. G  =  D 3 x S1

By Example 2.4.1, we know the subgroups of Dz are represented by

Z i  =  {1 } ,  Z3 =  { 1 , 7 , 7 2} ,  D i =  { 1 , k }  ~  { 1 , « 7 >  ~  { 1 , « 7 2}-

On the other hand, besides all the listed above subgroups of Dz (up to conjugacy 
class), which are clearly also the subgroups of Dz x S1, we have the following twisted 
(one-folded) subgroups of G =  Dz x S 1

=  { ( 1 , 1 ) ,  (7 , 7 ), (72, 7 2) }  ~  { ( 1 , 1 ) , ( 7 , 7 2) , ( t 2, 7 ) } ,

D\ =  {(1,1),  (k, - 1 ) }  ~  {(1,1), («7, - 1 ) }  ~  {(1, 1), («72, - 1 ) } ,

Dl  =  {(1,1): (7,1), (72, 1), («, -1 ), («7, -1 ). (*72, -I)} -
Additional properties of these subgroups are listed in Tables 2.14 and 2.15. The 
lattice of the conjugacy classes of subgroups in Dz x S 1 is shown on Figure 2.9.

II * $ K <p{K) Ker ip N(H) W{H)

Ds Dz Zi Dz Dz x S1 S l
D 1 D l Zi Dx Dx x S1 s1
Z3 Z3 Zi Z3 Dz x S 1 Z2 X s1
Zi Zi Zi Zi Dz x Sl D s x S 1

Dl Dz Z2 Z3 Dz x S1 s1
Z | Z3 Z 3 Zi Zz x S1 S 1
D{ D x Z2 Zi Dx x 51 Sl

Table 2.14: Twisted Subgroups of Dz x S1.
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(Dz x S1)

(£>j) (Dz) ( 4 )

(Zi)

Figure 2.9: Lattice of the conjugacy classes of twisted subgroups in £>3 x S1.

£ JET n(£, H) £ i f n(£ , i f )

Zi £>3 1 1
Di Dz 1 Zi Z| 2
Z3 Dz 1 Zi 3
Zi Z3 1 Zi A 3
Zi ^ 1 1 Zi Z3 1

Table 2.15: Numbers n(£, H) for Twisted Subgroups in D3 x S l .

The complete list of numbers n(L. H ) for the twisted subgroups of Dz x S 1 is 
given.

E xam ple 2.5.2. D4 x S1

As we know the subgroups of

D 4  =  { 1 ,  i ,  — 1 , —i ,  k , K,i, — k , — K i } ,

classifying the conjugacy classes (H ) are exactly 
Z4 =  { l,i, —1, —i},
Z2 =  {1,-1},
Zi =  {1},
D2 =  { 1 ,-1 ,« ,-« } ,
IV

£>2= {1, -« * } ,
Di =  {1,«} ~  {1, —«},
£ ) i =  { 1, ~  { 1, — K i } .
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Then, in addition to the above subgroups of G = D4 x S 1, there are the following 
twisted (one-folded) subgroups of G:
ZJ =  {(1, 1), ( - 1, - 1)},
^4 =  {(1, 1), (M), ( - 1, - 1), ( - i ,  - i)}  ~  {(x>!). (*> “ *)> ( - 1, - 1): (-*,*)}.
Zt =  { ( l , l ) , ( i , - l ) ,  ( - 1, 1), ( - i , - l ) } ,
Dl =  {(1, 1), (k , - 1)} ~  {(1, 1), ( -« ,  - 1)},
D l  =  { ( 1 , 1 ) ,  ( K i ,  - 1 ) }  ~  { ( 1 , 1 ) ,  ( - K i ,  - 1 ) } ,

Dl =  {(1, 1), ( - 1, 1), ( k , - 1), ( - k , - 1)},
Dl =  {(1, 1), (-1 , 1), ( K i ,  -1 ), ( ~ K i ,  -1)},
Dd2 =  { ( 1 , 1 ) ,  ( - 1 ,  - 1 ) ,  ( k , 1 ) ,  ( - « ,  - 1 ) } ,

Di = {(1,1), (-1 , -1 ), ( k , -1 ), ( - K ,  1)},
Di =  {(1, 1), (-1 , -1 ), ( Ki ,  1), ( - K i ,  -1)},
Di = {(1, 1), (-1 , -1 ), ( Ki ,  -1 ), ( ~ K i ,  1)},
Dl = {(1, 1), ( i ,  1), (-1 , 1), (-1, 1), (K,  -1 ), ( K i ,  -1 ), ( - K ,  -1 ) , ( - K i ,  -1)},
Di = {(1, 1), ( i ,  -1 ), (-1 , 1), ( ~ i ,  -1 ), (K,  1), ( K i ,  - 1) ,  ( - K ,  1), ( - K i ,  -1)},
Di =  { ( 1 , 1) ,  ( i ,  - 1) ,  ( - 1, 1) ,  ( - i ,  - 1) ,  ( K , - 1) ,  ( Ki ,  1) ,  ( - K ,  - 1) ,  ( - K i ,  1) } .

All the twisted subgroups of D4 x S 1 (up to their conjugacy class), their normalizers 
and Weyl groups, are listed in Table 2.16. The lattice of the conjugacy classes of 
the twisted subgroups in D4 x S 1 is shown in Figure 2.10. The numbers n(L ,H ) for 
twisted subgroups in D4 x S l are listed in Table 2.17.

Exam ple 2.5.3. D 5 x S1

We have the following subgroups (up to conjugacy class) of

D5 =  { 1 , 7 , 72 , 73, 74 , * 7 : « 72, « 7 3, « 74}>

_ 2iri
where 7 =  e s :

Z i  =  { 1 } ,  D i  =  { 1 ,  k }  ~  { 1 ,  K7 }  ~  { 1 ,  « 7 2 }  ~  { 1 ,  « 7 3 }  ~  { 1 ,  « 7 4} ,

Z 5  =  { 1 , 7 , 7 2 , 7 3 5 7 4 } 5

Ds =  { 1 , 7 , 7 2 , 7 3 , 7 4 , « 7 , k j 2 , k j 3 , K7 4} .
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H =  K*'1 K <p(K) Ker N(H) W'(ff)
d 4 D4 Zi D a D a x S1 S1
d 2 d 2 Zi d 2 £>4 x S1 Z2 x 51
Z4 z 4 Zi Z4 £4 x S1 £1 x S 1
d 2 Do Zi £2 £>4 x 51 Z2 x S1
Di Di Zi £1 Do x S1 Z2 x S1
Z2 Zi Z2 D4XS1 £2 x S 1
Di Di Zi £1 D2 x S l Zs x S1
Zi Zi Zi Zi D a x S 1 D a x S 1

Dl D4 Z2 z 4 £)4 x S1 S 1
Df D a Z2 £ 2 D a x S1 S 1
Dt D a Z2 £ 2 £>4 x S1 s1
Dl d 2 Z2 Z2 D a x S1 Z2 x S 1
Dl d 2 Z2 Z2 £>4 x S1 Z2 x S1
Di d 2 Z2 Di £>2 x S1 s 1
Dd2 d 2 Z2 Di D o x S 1 sl
D\ Di TLo Zi D 2 x S 1 Z2 X S1
Dl Di Z2 Zr £2 x S 1 Z2 X5 1
z  i Z4 Z2 Z2 £4 x S1 £1 x S 1
z\ Z4 Z4 Zi Z4 x S1 S'1
Z2- Z2 Z2 Zi £4 x S1 D o x S 1

Table 2.16: Twisted Subgroups of D4 x S 1. 
(£ 4 x S1)

Figure 2.10: Conjugacy Classes of Twisted Subgroups in Z)4 x S 1.
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L H n(L, H) L H n(L,ff)  || L * n(L. H) || L n{L.H)

Zi D4 1 m Df 1 Di d 2 1 Zi z* 1
Di D , 1 z  i D i 1 z 2- D i 2 Di -D2 1
Z2 Di 1 d 2 Di 1 Zi D i 2 z 2 Do 1
Di Di 1 Z2 Di 1 Di D d2 1 Z: Do 1
d 2 Di 1 Di Di 1 z 2 D i 2 Z2 Z4 1

Di 1 Zi Di 1 Zi D i 2 Zi Z4 1
d 2 D i 1 z  i Di 1 Di d -2 1 5 i Do 1
m D% 1 d 2 Di 1 Z2 d i 1 Z2 Do 1
d 2 Dl 1 Z2 Di 1 Zi Dl 1 Za 5 2 1
D i Dl 1 Di Di 1 D\ 1 Zi 2
Di D l 1 Zi Di 1 Z2 D l 1 Zi D i 2
z 2 D l 1 Z2- z i 2 Zi D l 1 Zi Dl 2
Zi
Zi

D l
Di

1
2

Zi
Zi

Zi
Z2-

2
1

Z2 z i 1 Zi Z2 1

Table 2.17: Numbers n{L ,H ) for Twisted Subgroups in D4 x S 1.

Then, in addition to the above, the twisted (one-folded) subgroups of D$ x S1 are:

D \ =  { (1, 1), (k , - 1)} ~  { (1, 1), («7 , - 1)} ~  { (1, 1), («72, - 1)},

~  { ( 1 , 1 ) ,  ( k 7 3 , - 1 ) }  ~  { ( 1 , 1 ) ,  ( « 7 4 , - 1 ) } ,

Z 5 1 =  { ( 1 , 1 ) , ( 7 , 7 ) , ( 7 2 , 7 2 ) , ( 7 3 ! 7 3 ) , ( 7 4 , 7 4 ) }

~  { ( 1 , 1 ) ,  ( 7 , 7 4) ,  ( 7 2 , 7 3 ) ; ( 7 3 , 7 ) ,  ( 7 4 , 7 2 ) } ,

Z 5 2  =  { ( 1 , 1 ) , ( 7 , 7 2 ) 5 ( 7 2 , 7 4 ) : ( 7 3 , 7 ) , ( 7 4 , 7 3) }

~  { ( 1 , 1 ) ,  ( 7 , 7 3) ,  ( 7 2 , 7 4 ) ,  ( 7 3 , 7 3 ) ,  ( 7 4 , 7 ) } ,

D l =  { ( 1 , 1 ) ,  ( 7 , 1 ) ,  ( 7 2 , 1 ) ,  ( 7 3 , 1 ) ,  ( 7 4 : 1 ) ,  («, - 1 ) ,  («7, - 1),
(/C72, - 1), («73, - 1) ,  ( « 7 4, - I ) } -

All the twisted subgroups of D$ x S 1 (up to conjugacy class), their normalizers and 
Weyl groups, are listed in Table 2.18. The lattice of the conjugacy classes of the 
twisted subgroups in D$ x S 1 is shown in Figure 2.11. The numbers n(L,H ) for 
twisted subgroups in D$ x S 1 are listed in Table 2.19.
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tq II t-* K <P{K) Ker tp N(H)
d 5 d 5 Zx Ds Dz x S 1 S1
Zs z5 Zx Zx D5 x S 1 Z2 x S1
Di Di Zx Zx I?x x 51 S 1
Zx Zi Zx Zx Ds x S1 D s x S 1

Dg D5 Z2 z5 D s x S 1 S1
Zp Z5 Z2 Zx Z5 x S l s 1
D i Di Z2 Zx Di x S 1 s 1
z£* z5 Z2 Zx Z5 x 51 s1

Table 2.18: Twisted Subgroups of D$ x S 1.

L i? n(L ,H )

Zi 1
Z5 ^5 1
A ^5 1
Zi As 1
Zi m 1
Zi zS1 2
Zi 5
Zi z ? 2

Table 2.19: Numbers n(L,H ) for Twisted Subgroups in O5 x S1.
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Figure 2.11: Conjugacy Classes of Twisted Subgroups in D$ x Sl .

Exam ple 2.5.4. A4 x S1

Let us consider the group A4. We already know the subgroups H  of A4 (up 
conjugacy class):

Z1 =  {(1)}, Z2 =  {(1),(12)(34)},
Z3 =  {(1), (123), (132)}, V4 = {(1), (12)(34), (13)(24), (14)(23)},
A4 =  {(1), (12)(34), (123), (132), (13)(24), (142), (124), (14)(23), (134), (143), 

(243), (234)}.
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The additional twisted (one-folded) subgroups of A* x S1 are

2?  =  {((1),1),((12)(34),-1)},
Z^={((l),l),((123),7),((132),-r2)},
Z|’ =  {((1),1),((123),72),((132),7)},
VT =  {((1). 1). ((12)(34), 1), ((13)(24), - 1), ((14)(23), - 1)},

=  {((1), 1), ((12)(34), 1), ((13)(24), 1), {(14)(23), 1), ((123), 7 ),
((132),t 2), ((142), 7), ((124),t 2), ((134),7 ), ((143), 72),
((243), 7), ((234), T2)},

A'i =  {((1), 1), ((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123), 72),
((132),7 ), {(142),t 2), ((124),7 ), ((134), 72), ((143), 7 ),
((243),T2), ((234), 7 )},

where 7  =  e2̂ .  Additional properties of these groups are listed in Tables 2.20 and 
2.21. The lattice of the conjugacy classes of subgroups in A4 x S 1 is shown on Figure 
2 . 12.

H  = K <P(K) Ker ip N(H) W  (H ) Comments
A4 A4 Zi A4 A4 x S1 S1
v4 v4 Z: v4 A4 x S1 Z3 x S1
Z3 Z3 Zi Z3 Z3 x S1 s 1
Z2 Z2 Zi Z2 F4 x S1 Z2 x S1
Zi Zi Zi Zx A4 x S 1 Aj x S 1

A\k k =  1,2 A4 Z3 f4 A4 x S1 S1
vr v4 Z2 Z2 V4 X S1 S1
Z2 Z2 Z2 Zi V i x S 1 Z2 x S1
Zf, k = 1,2 Z3 Z3 Zi Z3 x S1 S1 y>(s) =

Table 2.20: Twisted Subgroups of At x S 1.

The complete list of numbers n(L, H) for the twisted subgroups of A 4 x S 1 is 
given in Table 2.21.
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Figure 2.12: Lattice of the conjugacy classes of twisted subgroups in A4 x S1.

H L n(L,H ) | L * n(L,H) J f z n{L, H) H L n(L,H)

Z i A. 1 Zi f4- 1 Zi 1 Zi 3
Z2 ^4 1 Z2 f4 1 v4 A k 1 Z2 K 1
Z 3 Ai 1 Z l Z3 4 In K k 1 27 VT 2

4̂
Z l

M
Zq

1
3

Zi Z2 3 Z*3fc 4? 1 Zi A k 4

Table 2.21: Numbers n(L, H) for Twisted Subgroups in A 4 x  S 1 (k =  1,2).
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E x a m p le  2.5.5. S4 x S1

In addition to the listed subgroups in Example 5.2.3, there axe the following 
twisted (one-folded) subgroups in £4 x S 1, representing conjugacy classes:

ZJ =  { ((1 ) ,1 ) ,( (1 2 )(3 4 ) ,-1 )} ,

Z |  =  {((1 ),1 ),((1 2 3 ),7 ) ,( (1 3 2 ),7 2)} ,

ZS =  {((1). 1). ((1324),i), ((12)(34), -1 ) , ((1423), - i)} ,
Z," =  {((1),1), ((1324),-1),((12)(34),1), ((1423),-!)},
D l =  {((!),!), ((12), - 1)},
V  =  {((1). 1), ((12)(34), 1), ((13){24), - 1), ((14)(23), -1)},
£ 4  = {((1), 1), ((12)(34), -1 ) , ((12), 1), ((34), -1)} ,
D i =  {((1), 1), ((12)(34), 1), ((12), -1 ), ((34), -1)} ,
Di = {((1), 1), ((123), 1), ((132), 1), ((12), -1 ) , ((12)(23), -1 ) , ((13), -1)},
A ‘t = {((1), 1), ((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123),7 ),

((132), t2), ((142), 7), ((124), T2), ((134), 7), ((143), T2),
((243), 7), ((234), 72)},

D i =  {((1), 1), ((1324), - 1), «12)(34), 1), ((1423), - 1), ((34), 1), 
((14)(23),-1),((12),1),((13)(24),-1)},

D f =  {((1), 1), ((1324), -1 ), ((12)(34), 1), ((1423), - 1), ((34), -1),
((14)(23), 1), ((12), —1), ((13)(24), 1)},

Di = {((1), 1), ((1324), 1), ((12)(34), 1), ((1423), 1), ((34), -1 ),
«14)(23), -1 ), ((12), -1 ), ((13){24), -1)},

SZ  =  {((1). 1). ((12), -1 ) , «12)(34), 1), ((123), 1), ((1234), -1 ), ((13), -1 ),
((13)(24), 1), ((132), 1), ((1342), -1 ) , ((14), -1 ) , ((14)(23), 1), ((142), 1), 
((1324), -1 ), ((23), -1 ) , ((124), 1), ((1243), -1 ), ((24), -1 ), ((134), 1), 
((1423), -1 ), ((142), 1), ((34), - 1), ((143), 1), ((1432), -1 ), ((243), 1), 
((234), 1)}.

The properties of the twisted subgroups in S4 x S 1 are listed in Table 2.22.
The numbers n(L, H) for the twisted subgroups in S4 x S 1, which can be again 

established by inspection, axe given in Table 2.23.
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H* Ker Im<p N(H*) W(H*) Comments

s~4 a 4 Z2 S4 x S4 S1
Z4 Z2 D 4 xS1 s1

Dt d 2 Z2 D 4 x S 1 s1
Di v4 Z2 £4  x S1 s1
4̂ v4 Z3 A4 X S1 s1

Dl Z3 Z2 D3 x S x s1
Dl Z2 Z2 A  x S 1 Z2 x S 1
D* D 1 Z2 £2  x S 1 sl
VZ Z2 Z2 £4  x S1 Z2 x S 1
D\ Zl Z2 £2  x S 1 Z2 x S1
Z4- Z2 Z2 £4  x S 1 Z2 x S1

Zl Z4 Z4 x S1 s1 <P(9) = 9
n Zl Z3 Z3 x S 1 s1 <P(9) = 9
Z2 Zi Z2 £4  x S 1 Z2 © Z2 x S1

Table 2.22: Twisted Subgroups in S4 x  S 1, where p : H  —>• S 1 is a homomorphism.

H L n(L,J?) | L K  1n{L,H)  1 H L n{L,H)  | L n[L, H)

JU $7 1 ZJ zs 2 Dl Di 1 D l m 1
v 4 54" 1 Zi Zc4 6 Z< Di 1 d 2 Dl 1
Z3 S4~ 1 Z4- D t 1 V* Di 3 Z4 Dl 1
Z2 •57 1 Vi" D i 1 Z2 Di 3 ^4" Dl 1
Zl •?4" 1 Z2 D i 2 Dl Di 1 ZJ Dl 2
Df S4~ 1 d 2 Di 1 Zi Di 3 Dl Dl 1
zr S4 1 D 1 D i 1 v4 Ai 2 Zi Dl 3
KT s 4 1 Z2 D i 1 z ‘ A* 1 Z2 z 4- 2
z 2 s: 1 Zl Di 3 Z2 2 Zi zr 3
Z2 v4- Z3 Dl 1 Zl A\ 1 z 2 D i 2
Z2 v4- 1 D \ Dl 2 Dl m 1 D l D i 1
Zl Z | Zi Dl 4 Z2 Dl 1 D l Di 1
v4 A4 1 V4 d 4 3 Z3 Dz 1 Zs z 4 1
Z3 A4 1 z 4 d 4 1 Z>1 Dz 2 Zi z 4 3
Z2 A4 1 Z>2 d 4 1 Zl Dz 4 Zi Z3 4
Zl Ai 1 A d 4 1 Z2 v4 1 Di d 2 1
Zl 1 Z2 d 4 3 Zl v4 3 Zo d 2 1
Zl 6 Zl d 4 3 Zl Di 6 Zl d 2 1
Zl z 2 1 Zl Z2 3

Table 2.23: Numbers n(L, H) for Twisted Subgroups in S4 x S 1.
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Figure 2.13: Lattice of Conjugacy Classes in S4 x S 1.
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E xam ple 2.5.6. A5 x S1 Let us list, up to conjugacy class, the twisted subgroups 
H v of A5 x 5 1, where H  is a subgroup of As, *-p : H —*■ S 1 a group homomorphism, 
and H* = {(A, z) e  H  x S 1 : <p(h) =  2}:

2?  = { ( ( ! ) , ! ) ,  ((12)(34),-1)},

V T =  { ( ( ! ) .! ) . ((12)(34),-1), ((13)(24),-1), (23)(14),l)},

=  {((1), 1), ((12345),?2*), ((13524),?“ ), ((14253),?"), ((15324),?*)},

Z l=  {((1),1), ((123),7 ), ((132),72)}  ~  {((1), 1), ((132),7 ), ((123),-v2) },

■D|= { ( ( l ) . l ) .  ((123),1) , ((132),1), ((12)(45)), ((13)(45),-l),

((23) (45), —l ) },

A'i =  { ( ( ! ) ,! ) , ((12)(34), l) , ((123),7), ((132),t 2), ((13)(24), l ) , ((14)(23), l) , 

((124),72), ((142),7 ), ((134),7), ((143),t 2), ((234),72), ((243),7 )} .

4=  =  {((1),1), ((12)(34), l) , ((123),T2), ((132),7), ((13)(24), 1), ((14)(23),1), 

((124),7 ), ((142),72), ((134),t 2), ((143),7 ), ((234),7), ((243),72)} ,

Df =  { ( ( l ) , l ) ,  ((12345),1), ((13524),1), ((154323), 1) , (14253),l ) ,  

((12)(35),-1), ((13)(54), —1), ((14)(23), —l) , ((15)(24), - l ) ,  

((25)(34),-l)} ,

where k =  1, 2. £ =  e ^ ,  7 = e2̂ 1.

There are 15 elements in the conjugacy class of the subgroup Z J , 15 elements in 
the conjugacy class of 12 elements in the conjugacy class of Z^, (k — 1, 2), 20 
elements in the conjugacy classes of Z3, 10 elements in the conjugacy class of D |, 
5 elements in the conjugacy classes of A ^, (k =  1, 2), 6 elements in the conjugacy 
class of -Df.

All the twisted subgroups of A 5 x S 1 (up to their conjugacy class), their normal­
izes and Weyl groups, are listed in Table 2.24. The lattice of the conjugacy classes 
of the twisted subgroups in As x S'1 is shown in Figure 2.14. The numbers n(L, H ) 
for twisted subgroups in As x S 1 are listed in Table 2.25.
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H * Im<p Ker ip N (H *) W{H*) Comments
A5 Zi As A s x S 1 s 1
Ds Zi Ds D5 x S1 s 1
A4 Zl A4 A4 x Si s 1
Dz Zl Dz Ds x Si s 1
z5 Zl z5 Ds x S\ Z2 X s 1

Zl A4X Si Z 3X S1
Z3 Zl Z3 Ds x Si Z2 X s 1
Z2 Zl Z2 VA x Si Z2 x S1
Zl Zl Zl As x Si A5 x S 1

v<- Z2 Z2 ^4 x S 1 s 1
Di Z2 Z5 D5 x S1 s 1
A k Z3 v4 A4 x S1 s 1 C

l

HII

d i Z2 Z3 Ds x S 1 s 1
Z| Z3 Zl Z s x S 1 s 1
n Z5 Zl Z5 x S1 s 1 k = 1,2
z2~ Z2 Zl v; x s 1 Z2 X S 1

Table 2.24: Twisted Subgroups H 9  in A 5 x S 1, where cp : H  S 1 is a homomor­
phism.

{As x S1)

(Zl)

Figure 2.14: Conjugacy Classes of Twisted Subgroups in A 5 x  S 1.
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L H n(L, H) L H n(L, H) L n{L, H) L H n(L, H)
z 5 Dl 1 A1? 1 Z3 As 1 Zi Di 10
z 2 Dl 2 Zl 5 Z2 As 1 Zi 4* 12
Zl Dl 6 4 4 1 2 Zl As 1 Zl Z2 15
Z5 Ds 1 v , 1 Z2- v r 2 A4 1
1*2 d 5 2 Z2 A 1 1 Z, ^4" 1 Z3 A4 2
Zi d 5 6 Zl 5 Zl VZ 15 1*2 A4 1
z $ A442 2 A4 A5 1 Z3 Dz 1 Zl A4 5
V4 A‘2 1 ^4 A5 1 1*2 Dz 2 Zl Z3 20
Zl Dz 10 Zl Z5 6 Z3 D\ 1 Zl Z3 10
Z2 Dl 2 1*2 v4 1 Zl Vi 5 Zl 1*2 15

Table 2.25: Numbers n(L, H) for Twisted Subgroups in A5 x S 1.
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Chapter 3 

Computation of Equivariant 
Degree

3.1 Equivariant Degree: Definitions and Proper­
ties

We vary the groups II (H) defined in the previous section according to the values of 
dim W(H).  More precisely,

D efinition  3.1.1. Let 11(17) be a subgroup described in Definition 2.3.1. II(if) is 
called primary (resp. secondary) group if dim W(H)  =  1 (resp. dim W(H)  =  0).

R em ark  3.1.2. Notice that if{H) is an orbit type in R© V  such that dim W(H) > 
1 , then by Theorem 2.3.2, we obtain thatH(H) = {0}. In other words

n c =  ©  n(j?),
dim tV(t f )<l

where the summation is taken over the orbit types (H ) in R © V .

In what folloivs, we will assume that G = F x S 1, where F is a finite group, and 
denote by $ i (G) the set of all the conjugacy classes (17) of subgroups H  such that 
dim W  (17) = 1. Then we have the following theorem.

T heorem  3.1.3. (cf. [9]) I f  {H) is an orbit type inR ©  V  such that (H ) € $i(G), 
then n(i?) = Z.

It will be convenient to write the elements in 11(17) in a form of finite
dim W { H ) = 1
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sums, indexed by the orbit types (H) G $i(G). i.e. a  G n (if) can be
dim W(H)=\

written as a = J 2 nH ■ (# ). nn  € Z.
( B )

Let us denote by 7r the natural projection of IIG onto II(f?).
dim W (if )= l

D efinition 3.1.4. If /  : R © V  —► V  is an Q-admissible, G-equi variant map and 
an open, bounded and G-invariant set, we put

G-Deg ( /, Q) := ?r(degG(f, Q)),

and write

G-Deg ®  n (if )  c  n c . (3.1)
dim W(H)=1 dim W (iir)=l

The G-Deg (/, Vt) is called primary degree of /  in 0..

Clearly, since G-Deg (/, Q) is a “projection” of the G-equi variant degree, it sat­
isfies the existence, additivity, homotopy and suspension properties.

R em ark  3.1.5. Let us point out that (H ) G $i(G) if and only if H  is a twisted 
m-folded subgroup, i.e. there exists K  C T and a homomorphism : K  —* S 1 such 
that

H  = K *’m = {(7 , 2) G K  x S11 v>(7) =  zm}.
One of the advantages of using the primary degree is that it is possible to consider, 
as a range of this degree, the free Z-module Ai(G) generated by the orbit types 
(if) G $i(G), i.e. A\(G) =  Z [$ i((?)]. Thus Z-module does not depend on the 
representation V, which will allow us to explore additional properties of the primary 
degree, such as multiplicativity property.

Before we establish the computational formula for the primary degree, we need to 
discuss the equivariant degree introduced by H. Ulrich (cf. [48]) in the case without 
free parameter.

3.2 T-Equivariant Degree without Free Parame­
ter

The equivariant degree T-Deg(/, fi) can be computed using appropriate recurrence 
formula. Since in this case II (if) =  Z for any orbit (H ) in V  such that dim W  (H) =
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0. so we have IIr C A(T), where A(T) denotes the Burnside ring of T. The fact that 
A(T) is a ring with identity is very important for this degree. The T-Deg (/, <T) has 
additional property, called the multiplicativity property, which is formulated below.

T heorem  3.2.1. ( M u l t i p l i c a t i v i t y  P r o p e r t y )  (cf. [35]) Let V  and W  be two T- 
representations. Suppose Qx C V. Q2 C W  be two T-invariant open bounded sets, 
f  : V  —► V  an Qx-admissible map and g : W  —► W an Q2-admissible map. Then

T-Deg ( /  x g, fix x f22) =  T-Deg (/, fix) • T-Deg {g, Q2),

where the multiplication is taken in the Burnside ring A(T).

Suppose /  : V  —r V  is an Q-admissible, T-equivariant map, where Q C V  is 
bounded, open and T-invaxiant, T is a finite group. Recall that IIr =  © Tl(if).

dim W ( H ) = 0

We will discuss the computational technique for T-Deg (/, Q) for two cases.

Case 1: /  is a  regular norm al m ap: Since /  is a regular normal map, for
every orbit type (K) in Q, we have that f K : V K VK is Q/f-admissible and 
W (.R)-equivariant. Since f K\nk has zero as a regular value and

( /^ ) -1( o) n nK =  w ( K ) x x u • • • u w ( K ) xm.

It is clear that Vq € W  (K) we have

siga.detDfK (xi) =  signdetD /^ (qrj).

In this case we obtain:

T heorem  3.2.2. I f  f  is a regular normal, T-invariant, Vi-admissible map from V  
to V, then

r-Deg ( /,£ !)=  T  n x (K),
dim W { K ) = Q

m
where u k  = Yf, sign det D f K(xi) and { fK)~1 {0) Pi VLk =  W{K)xi  U • • • U VT(RT);rm.

i= l

Notice that

£  sign det D f K(x) 
xe(fK)~H o)nnK deg [ fn , LlK)

n K ~  \W(K)\ ~  \W(K)\ '
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where deg( fK, fix) is the local Brower degree.

Case 2: /  is an  a rb itra ry  T-maps: (not necessary a regular normal map)
Let

J7(Q) =  {(if) | K  = TX for some x E  f i } .

Let us begin with an explanation of the computational method applied to a simplified 
situation, where the only orbit types in Q are (F l0), (ivx), (K2), and (A'o), with the 
lattice of the orbit types illustrated in the diagram below.

(E (K2)

Figure 3.1: Lattice of isotropies.

Then the maximal orbit type in Cl is K 0 and

n Ko =  {x s  a  | rx d  k 0} = ciKo = {x  s  ci | rx =  k 0},

We consider a regular normal approximation /  of / ,  which is T-homotopic to /  
(notation: /  ~  / ) .  By the regular normal approximation theorem for homotopies, 
we have that for all (K) E  J ’(Q), f K ~  f Kin ClK, therefore

deg(fKo, ClKo) _  deg(/*°, QK°) _  deg(fK°,QK°)
K‘ \W(Ko)\ |W(K0)| 1 • '’

Now, let us illustrate the computation of nx 1 • Since K\ C Kq then ClKl D Q,x1 and 
ClK° C Cl*'. Let x  E ( / iri) - 1(0) fl Qx0 then by normality of / ,

det D f Kl (x) = det(D fK°(x) x Id)(r) = det D f K°(x),

so
_  deg(fKl, Qxi ) _  deg(fKl,ClKl) ~  n(Ki,  K 0) deg( f K°, ClKo) 

nx ' ~  \W(K,)\ ~  |W(K,)\

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and by homotopy

_  deg(fKl, Q^1) — n (K i, K q) deg(fK°,ClK°)
I W{KX)\

thus, by Equation (3.2)

deg(/*‘ n (Ki , K 0 )nKe\lV(Ko)|
"*■ = ------------------- \ W M \ ----------------------' (3'3)

The same idea can be applied to compute tlk2 and then n/r3, i.e.

- ■ £ n ( K i , K t )nKt\W{Kk)\

n*‘ =  w m \  '

In the general case, by applying a simple induction over the orbit types in Q, we 
can easily prove the following recurrence formula:

degCfL,ClL) ~  E  n{L,K)nK\W{K)\
„  ____________ (y)>w________________

L \W(L)\ ' ( ^

Let us illustrate these computations on several examples.

E xam ple 3.2.3. T =  D 4

Assume V  =  C is the orthogonal irreducible ^-representation, with the action of 
D4 on V,  given by 72 =  7  • 2 (complex multiplication) and kz — 2. We define the 
map /  : C —> C by f (z)  = —z, which is clearly not normal. Suppose Cl = B is the 
unit ball, then

and the following is the lattice of isotropy groups:
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Figure 3.2: Lattice of isotropies.

Da-Deg (/, B ) =  nDi (D4) +  nDl (DJ  +  (Di) +  nZl (Zi).

Clearly, V D< = {(0,0)}, V Zl = C, V Dl = E, and V Dl =  E. By using tabels 2.16 
and 2.17 we have

deg(/,Bfl{(o,o)}) _  (~ i)°  _  ,
™D4 — |W(jD4)| “  1 — 1>

_  cfep(/,BnR)-n(0ll.D4)niDJVV(JD4)l _  (-l)i-l(i)d) _  .,
TLDi ~  \ W(Di ) \  ~  2 — ^

_  deg(f ,BriR. ) -n(D1, p il)nDA\W{D^)\  _  (—1)1 —1(1)(1) _  .

A |W(A)I _  2 _
_  *»(/,SriR 2)-n(Zi,I?4)nI,4|W(i34)|-n(Zi,i?i)ni,1|W(jDi)|-n(Zi,5'i)nB^|W (5‘1)|

n z i ~  |W(2i)|
_  ( - 1 ) 2-1 ( 1 ) (1 ) - 2 ( -1 ) (2 ) -2 ( -1 ) ( 2 )  _  ,

8 —

Then ^
D4-D eg (/,5 ) =  [Da) -  (D,) -  (Dx) +  (Z,).

Exam ple 3.2.4. T — A4

Let us consider V  = E 4 to be the permutation representation of A4, where A 4 acts 
on E 4 by permuting the coordinates of vectors. Then V  =  © V0 where
is the fixed point space of A4, which is spanned by (1, 1, 1, 1), and VQ =  (V •44)J" = 
{(mi, X2 , X3 , xa) ■ Xi + X2 +  xz + x 4 =  0}. The orbit types in V  are (A4), (Z2), (Z3), 
and (Zi), which can be illustrated by the following lattice:
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Figure 3.3: Lattice of isotropies.

Clearly, dimW44 =  1, dim V22 =  dim V'Z3 = 2, and dim V Zl =  4. Supposed B  
is the unit ball and let /  be —Id . Then

A4-Deg (—Id , B ) =  (_A4) +  nz3(Zs) +  ^ 22(^2) +  ^Zi (2i),

then by using Tables 2.20 and 2.21 we obtain:

_  deg(/.BnR) _  (-1)1 _
~  |W(Ai)| — 1 ~  15

_  <fes(/,Br®2)-n(Z3,A4)nA4|W(.A4)| _  (—I)2—1(—1)(1) _  0
|W(Z3)1 ~  1 ~

_ efefl(/,BnR2)-n(Z2,Ai)n^4|W(J44)| _  (_i)2_1(_1)(1) _  7
nz2 — |W(Z2)| — 2 ~

_ £2ep(/,BnR4)-n(Zi,.44)nAJW(Ai)|-n(Z1,Z3)n23|VS'-(Z3)!-n(Z1,Z2)nz0|Vl/(Z2)|
nzi -  iwxzoi— -------------------- ---------_ (—1)̂ —(—l ) ( l ) f l ) —2(4)(1)—1(3)(2) _

12 —

Thus:
Ai-Deg( / ,B) = ~ (A4) + 2(Z3) + (Z2) -  (Zx).

3.3 5 1-Equivariant Degree
We start with a particular case of the primary degree for the group G = T x S 1, 
where T =  {1} i.e. G =  S 1. We denote by Ai(5J), the free Z-module generated by 
the symbols (Z *), /c =  1,2 ,3 ,—  Consider an orthogonal 5 1-represent at ion V,  an
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open S 1-invariant bounded set ft C R© V, and an ft-admissible S'1-equivariant map 
/  : R © V  —>• V.  Then the primary degree 5 1-Deg (/, ft), which we will simply call 
the S l -equivariant degree, is an element in -4i(S'1) which can be written as

S l-Deg (/, ft) =  ^ n fc(Zfc) =  nkl (Zfcl) +  n k2 {Zk2) +  • • • +  nfcp(Zfcr), (3.5)
k

where nk G Z.

The S1-degree can be introduced axiomatically, based on its fundamental prop­
erties only, (its existence follows from the general construction) and we can use the 
axioms for its computations.

3.3.1 B asic and m-Folding Maps

We denote by Vk, k = 1 ,2 ,3 ...., the (non-trivial) fc-th real irreducible representation 
of the group S1, i.e. 14 is the space R2 =  C with the Fraction given by j z  := 7* • z, 
7 6  5 \  z £ C, and define the set

fcft := j ( i ,z )  G R ©  Vfc| | t |< l ,  i < | z | < 2 j ,  (3.6)

and b : R 0  Vfc —»• Vfc by

b(t, z) := (l -  \z\ +  it) - 2 , (£, z) G R x Vfc, (3.7)

where denotes the complex multiplication in V* =  C. It is clear that the map b 
is 5 1-equivariant and fcft-admissible. We will call the map b the S 1-basic map on 
fcft (or simply basic map if it will be clear from the context what representation is 
involved).

Further, for every integer m = 1 ,2 ,3 ,..., we define the homomorphism 6 m ■ 
S l —> S l (called m-folding), by 9m(j) =  7m, 7 G 5 1, and define the induced by 6 m 
homomorphism ©m : A ^ S 1) — ^ ( F 1), by

©m(Zfc) := (Zkm), k =  1 ,2 ,3 ,..., (3.8)

i.e. ©m(Zfc) =  Zfc)), where (Zk) are the free generators of Ai(S1).

Notice that if /  : R© V —»• V  is an ft-admissible map for a certain open bounded 
^-invariant subset ft C R © V, then for every integer m  =  1, 2,3 , . . . ,  we can, first,
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define the associated m-folded ^-representation mV, which is the same vector space 
V  with the S^-action “ • ” given by

7 • v := 6 m{~i)v =  7mv, 7 G S'1, v € V. (3.9)

Next, the map /  considered from R © mV  to mV , is S1-equivaxiant as well. The set 
f2 considered as an S1-subset of R © mV  will be denoted by mO. In what follows, we 
will say that the pair ( f , mO) is the m-folded admissible pair associated with (/, f2).

3.3.2 Axiom atic Definition o f 5 1-D egree

T heorem  3.3.1. (cf.[4]) There exists a unique function, denoted by S 1-Deg, as­
signing to each admissible pair (/, Q) an element S 1-Deg(f, 0)  G A ^ S 1) satisfying 
the following properties:

(Pi)  ( E x i s t e n c e ) If  S 1-Deg(f,0) — ^^rifc(Zfc) is such that nk0 #  0 for some
k

k0 = 1 ,2 ,. . . ,  then there exists x  G Cl with f (x)  =  0 and Gx D 7Lka ■

(P2) ( A d d i t i v i t y )  Assume that and 0 .2  are two S 1 -invariant open disjoint 
subsets of 0  such that f~ l (0) n  C Q i  U Q 2 - Then

S 1 -Deg(f, 0) = S '- D e g t fM  + S ' -Deg&S22).

(P3) ( H o m o t o p y )  Suppose that h : [0 , l] x R x V  —*• V is an O-admissible S l - 
equivariant homotopy (i.e. h\ h(A, •,•) is O-admissible for all A G [0 , l ]).
Then

S 1-Deg(hx,0) =  constant.

(P4) (S u s p e n s io n ) Suppose that W  is another orthogonal S 1 -representation and 
let U be an open, bounded S 1-invariant neighborhood of origin in W . Then

S l --Deg { f  x Id , 0  x U) = S 1 -Deg {f ,0) .

(P5) (N o r m a l iz a t io n ) For the basic map b : R © V i —»■ V i ,  we have

S 1 -Deg(b,10) = { Z l ), 

and i f V  is a trivial S 1 -representation, then

S 1-Deg(f ,Q)= 0.

(P6) ( F o l d in g ) Let mV  be the m-folded representation associated with V , and
( f , mO) the m-folded admissible pair associated with (/, 0). Then

S 1 -Deg (/, = ©m [S1 -Deg (/, Q)].
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3.3.3 Com putation of S^-Degree via Reduction to  Basic and 
C-Complementing Maps

In order to use the primary degree without referring to its topological construction, 
we need the definition of C-complementing maps and splitting lemma.

3.3.4 C-Complementing Maps
Let V = Vk be a k-th irreducible ^-representation. We define on Vk a complex 
structure “sensitive” to the S e c tio n  as follows: for 2 € C we put z = i\z \, where 
7  =  ex0 for some 6  € [0,2ir). The complex multiplication of v € Vfc by the number 2 
is defined by

z - v := \ z \ e ^v .  (3.10)

We call this complex structure on Vk by a natural complex structure.

D efinition 3.3.2. Let b : R © Vfc —>• Vfe be the fc-th basic map and let kQ. be a 
subset of E  S  V*. Assume, further, that Vk is equipped with the natural complex 
structure and O is given by (3.11). Suppose, finally, that /  : C © 14 —► R © 14 is 
defined by / ( X,v) = ^|A|(||u|| — 1) + ||u|| + 1, A-uj ,  where A € C, v € W-. Then the 
pair (/, O) is called a C-complementing pair to (b, kQ,).

Figure 3.4: The admissible pair ( bk Q).
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Figure 3.5: The admissible pair (f , 0 ).

It is clear that (/, O) and (b,kQ) are admissible pairs (see Figures 3.4 and 3.5). 

Lem m a 3.3.3. Splitting Lem m a(cf [4])

Let G be a compact Lie group. V\ and V2 orthogonal G-representations. V  = Vi ©Vo.
Assume that the isotypical decomposition of V contains only components modeled
on irreducible G-representations of complex type. Suppose that Oj : S 1 —*■ GL°(Vj). 
j  =  1.2. are two continuous maps and a: S1 —> GLC(V) is given by

a(A) =  aj(A) ®flo(A): A € S b

Let

O j  : =  ((A.Uj) €  C©V)| IIVjII <  2. i  < |A| < 4) ,

0 : = { ( A ,w ) s C e l A |  H  <  2, 1 <  |A| < 4}, (3.11)

Define the maps f aj ■ O j —»• R  ®  Vj. j  =  1 .2 .  f a : O  —>■ R  © V  by

l a , ( A.fj) =  (|Al(||Uj!| -  1) + Hull +  l.a,- ( J A  iA  . j  =  1.2,

U X , v )  =  ( m \ v \ \  -  1) +  ||r|| +  l , a  ( V )  s )  ,

where Vj € V). j  = 1.2. v € V and  ̂ < |A| < 4. Then

G-Deg (fa, O)) = G-Deg(/ai,C?i) + G-Deg(/a2, 0 2). (3.12)
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By using the splitting lemma we can provide the following proposition.

P roposition  3.3.4. (cf.[4]) Let (/, O) be a C-complementing pair to (b. kCl). Then

S 1 -Deg (/, O) = S l -Deg{b,kQ) = (Zk).

3.4 Basic Maps for Irreducible Representations of
g  =  r  x s 1

Assume that T is a finite group and V* is a complex irreducible representation of F. 
We define an action of z £ S l on 14 by formula

zv := zJ' -v, z € S 1, v € V*, j  6 N,

where denotes the usual complex multiplication in 14. The obtained real irre­
ducible representation of the group G =  T x S 1 we will denote by Vk,j. The following 
definition provides two examples of the simplest possible G-equivariant maps with 
non-zero primary degree.

D efinition 3.4.1.

(a) Let O c l ©  Vj,k be the set

O =  {(r, v) e R 0  Vjtfc| \  < ||u|| < 2, - 1  < t < 1},

and b : O —> Vjjk be defined by

b(t,u) =  (1 — |H | +  it) ■ v, ( t v )  € O. (3.13)

Then the map b is called a basic map on O, and the pair (b, O) is called a 
basic pair for the irreducible G-representation V^;

(b) Let f2 =  {(A, v) € C © Vj,k\ ||u|| < 2 . |  < |A| < 4} and /  : Q. —*■ R © Vj,k be 
defined as

f ( \ v )  = (|A|(|M| -  1) +  IHI +  LA- u) ,  (A,u)€f t ,  (3.14)

where A • v denotes the usual complex multiplication of v by A. Then the 
map /  is called a C-complementing map on Q, and the pair (/. Q) is called a 
C-complementing pair for the irreducible G-representation Vjjk.
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R em ark  3.4.2. Notice that the basic map b and the C-complementing map /  (see 
section 3.3) are G-equi variant. Moreover, b is O-admissible. Indeed, since for all 
(t,v) e  O, v 7̂  0, it follows from the equality

0 =  b(t, v) = (1 -  ||u|| +  it) ■ v.

that 1 — \\v\\ + it =  0 , which is equivalent to ||u|| =  1 and t = 0. Consequently, we 
have

b-1(0) = {(0 ,»)| M  = i } c o .

The map b is illustrated below on Figure 3.6.

Figure 3.6: Basic Map b.

Similarly, the map /  is Q-admissible. Indeed, since A ^  0 we have for (A, v) € 
that the equality

0 =  / ( X,v) =  (|A|(|M| -  1) + ||u|| + 1, A-u),  

implies that v = 0 and |A| = 1. Consequently,

r 1(0) = {(A,0)| |A| = l }  c  a

The basic map b seems to be the simplest G-equivariant map for which the 
primary G-degree on O may be non-zero. On the other hand, the definition of /  
was motivated by the applications to the bifurcation theory. Although, these two 
maps are essentially different, their primary G-equi variant degrees are equal, (cf.
[4]))
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3.5 Computational Formula for Basic Maps with­
out Parameter and Examples

Let Vk be an irreducible T-representation, and b : Vk —► Vk be simply the map b = 
—Id . The map b will be called basic for the equivariant degree without parameter.

Consider the set <Lo(r. 14) of all orbit types (L) in Vk such that dim W(L) =  0. 
We can assume that the partial order in $o(L, 14) is extended to the total order,
i.e. $ 0(r,Vjfe) = {(Li) , (L2), - ■■ ,(Ln)}, (Li) < (L2) < ••• < (Ln). Then the 
F-equivariant degree

r - D e g ( - I d , f t ) =  Yi
o(r.Vfe)

where Bk denotes the unit ball in V*, can be computed from the formula

nLi = 

where rij — dim V Lj.

k= 1
i W(Lj)\

(3.15)

In this section we present several examples of computations of the equivariant 
degree for the basic maps in the case of various groups T. These results will be used 
later to concrete applied problems. Notice that to compute the equivariant degree 
we need the isotropy lattice for each irreducible representation and the dimension 
of the fixed point space for each subgroup K  of F. For this purpose we can use the 
following theorem.

Figure 3.7: C-complementing Map / .
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T heorem  3.5.1. (cf. [18]) L e tT  be a complex (resp. real) representation of the 
finite group T in a space V . then

' ' h£H

for any subgroup H  C I\

3.5.1 Degrees of Basic M aps for the Dihedral Group D3

(i) There is a one-dimensional trivial representation Vo- In this case we have

degVo =  ~(D2).

(ii) There is a one-dimensional representation Vi, given by the homomorphism 
c : Dz —> 1*2. such that ker c =  Z3. Let us obtain the corresponding degree of 
the basic map by using Theorem 3.5.1. Table 1.1, and Formula 3.15.

dim V^3 =  |( x 2(l) +  2^ 2(7 ) +  3x2 («)) =  |(1  +  2(1) +  3(—1)) = 0, 
dimyf3 = l(x2(l) + 2x2(7 )) = f(l + 2(1)) = 1.

m

(Zs)

[0]

[1]

Figure 3.8: Isotropy lattice for Vi-

And
degVl =  ( j D 3 )  ~ (Z3).

(iii) There is one two dimensional representation V2 of Dz on C given by

72 := 7  • z, for 7  6 Z3 and 2 € C,
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K Z  : =  2 ,

where 7-2 denotes the usual complex multiplication. Then by applying Theorem 
3.5.1, and Table 1.1 we obtain

dimVj03 =  |(X3(1) +  2^ 3(7) +  3x3(«)) =  |(2  +  2(—1) +  3(0)) =  0, 
dim Vf3 =  |(x s(l)  + 2x3(7)) =  §(2 +  2( - l ) )  =  0,
d im V f1 =  I(x 3(1) +  X3(«)) =  5 (2 + 0) =  1,
d im V f = i ( x 3(l)) =  2.

(■Ds) [0]

(A )  [1]

(Zi) [2]

Figure 3.9: Isotropy lattice for V2.

By Formula 3.15 we have the following degree of the basic map:

degV2 = (D3) - 2(A )  +  (Z1).

3.5.2 Degrees of Basic M aps for the Dihedral Group D4

(i) There is a one-dimensional trivial representation Vo- In this case we have

degVo =

(ii) There is a one-dimensional representation Vi, given by the homomorphism 
c : D4 —»■ Z2 such that ker c =  Z4. Then by applying Theorem 3.5.1, and 
Table 1.2 we obtain

dim =  |(X 2(1) +  2x2(7 ) +  X2(72) +  2x2 («) +  2x2(«7 ))
=  |(1  + 2(1) +  l +  2( - l )  + 2(—1)) =  0,
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[0]

(Zi) W

Figure 3.10: Isotropy lattice for Vi.

(£>„) [0]

m  Hi

Figure 3.11: Isotropy lattice for V2. 

dim Vf4 =  J(X2(1) +  2X2(7) +  X2(72)) =  K 1 +  2(1) +  !) =  L

And
degVl =  {Da) -  (Z4).

(iii) There is an irreducible representation V2, given by the homomorphism d : 
D4 —> Z2 such that ker d = D2. Then by applying Theorem 3.5.1, and Table 
1.2 we obtain

dim V̂ 4 =  |(x s (l)  +  2X3(7) +  X3(72) +  2X3(«) +  2x3(«7))
=  |(1  +  2(—1) +  1 +  2(1) +  2(—1)) =  0,

dimVj24 =  J (x s(l) +  2X3(7) +  X3(72)) =  K 1 +  2(_ 1 ) +  X) =  °> 
dim y2I?2 =  |(X3(1) +  X3(72) +  2xs(«)) =  K 1 +  1 +  2W ) =
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( f t )  [0]

m  [i]

Figure 3.12: Isotropy lattice for V3.

And
degVa = (Da) ~ (D2).

(iv) There is an irreduciblejrepresentation V2, given by the homomorphism 
d : D4 —* Z2 such that ker d = D^- Then we obtain

dim Vf* = | ( x 4(l) +  2^ 4(7) +  Xa(i 2) + 2xa(k) +  2x4 («7))
=  i ( l  +  2( - l )  +  l + 2( - l )  +  2( l ) ) = 0, 

dim Vf4 =  }(xa(1 ) + 2  * 4(7 ) + X4( t2)) =  K 1 +  2(_1) + 1) =  0, 
d i m V f 2 =  j ( x 4( l )  +  X a ( 7 2 ) +  2x 4( k ) )  =  ±(1 +  1 +  2 ( - l ) )  =  0, 

dim V3D2 = \(xa(1 ) + X4(72) + 2x4(k)) =  *(1 +  1 + 2(1)) =  1.

And
deg^ =  (£>,) -  (5 2).

(v) There is an orthogonal two dimensional representation V2 of D4 on C given 
by

72 := 7 • 2, for 7 6 Z4 and z EC,  

k z  := 2,

where 7  • 2 denotes the usual complex multiplication.Then

dim V/3* =  |(x s(l)  +  2x 5(7) +  Xs(72) +  2xs («) +  2xs(«7))
=  |(2  +  2(0) +  ( - 2) +  2(0) +  2(0)) =  0, 

dim i f 4 =  J(x 5(l) + 2X5(7) + Xs(72)) =  ; ( 2 +  2(0) +  (~2)) =  0, 
dim V f2 =  i(x s(l) +  Xs(72) +  2xs(«)) =  K2 + (~2) +  2(°)) =  °>

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.13: Isotropy lattice for V4.

dim V f2 =  J(X5(1) +  Xs(72) +  2^5 («7)) =  J(2 +  (_2) +  2(0)) =  °>
dim V?» =  i ( X5(l) +  Xs(72)) =  |(2  + (-2)) =  0,
dim =  5(x5(l) +  Xs(k)) =  5(2 +  0) =  1,
dim V f 1 =  |(X5(1) +  Xs(«7 )) = §(2 +  0) = 1,
dimV^Zl =  y(Xo(1)) =  2.

By Formula (3.15) we have the following degree of the basic map: 

degv4 =  (A) -  (A) -  (A) + (A).

3.5.3 Degrees of Basic Maps for the Dihedral Group £>5

(i) There is a one-dimensional trivial representation Vo- In this case we have

degVo = -(A )-

(ii) There is a one-dimensional representation Vi, given by the homomorphism 
c : —> Z2 such that ker c =  Z5. Let us obtain the corresponding degree of 
the basic map by applying Theorem 3.5.1. Table 1.3, and Formula (3.15).

dim V ° ‘ =  3j(X2(l) +  2x 2(7 ) +  2x2(72) +  5X2M ), 
=  i ( l  +  2 ( l ) + 2 ( l ) + 5 ( - l ) ) = 0  

dim VZs =  i(x 2(l) +  2x2(7 ) +  2X2(72)) =  |(1  +  2(1) +  2(1)) =  1.

And
degvj = (A) -  (Z5).
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[0]

(Z») [1]

Figure 3.14: Isotropy lattice for Vi.

m

( A ) [ l ]

(Zi) [2]

Figure 3.15: Isotropy lattice for V2.

(iii) There is one two dimensional representation V2 of D$ on C given by

72 := 7  • z, for 7 6 Z5 and 2 6 C,

k z  := 2,

where 7  • z denotes the usual complex multiplication. Then we obtain

dim V f s =  i f e ( l )  +  2x3(t) +  2x 3(72) +  5x3 M )
=  i ( 2  + 2(4=1) +  2 ( - ^ t l ) )  +  5(0)) =  0, 

dim i f 5 =  i(X3(l) +  2X3(7) +  2X3<72)) =  4(2 +  2 ( ^ )  +  2 { - ^ ) )  =  0, 
dim V f '  =  l(xs(l) +  XsM) =  4(2 +  0) =  1, 
dim V f =  1(X3(1)) =  2.
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[0]

m [i]

(Zi) [2]

Figure 3.16: Isotropy lattice for V3.

degV2 = (D5)-2(A ) + (Zi).
(iv) There is one two dimensional representation V3 of D$ on C given by

7z := 72 • z, for 7  € Z5 and 2 € C,

:= z,

where j 2 ■ z denotes the usual complex multiplication. Then

dim V?5 = ^(xs(l) + 2^(7) +  2X3<Ti +  5x3 W )
=  i ( 2  +  2 ( - ^ f i )  +  2(4=1) +  5(0)) =  0, 

dim V f  = l(xs(l) +  2xs(7) +  2X3( t2)) =  I (2 +  2 ( - 4 ± l )  +  2(4=1)) = 0, 
dimKP1 =  |(X3(1) +  X3W) =  |(2  +  0) =  1, 
dim V f =  l (x s ( l) )= 2 .

By Formula 3.15 we have the following degree of the basic map:

degV3 =  (D5) - 2 ( A )  +  (Z1).

3.5.4 Degrees o f Basic M aps for the A lternating Group A 4

To compute basic degree, we describe real irreducible .^-representations. Using 
the homomorphism ip : A 4 —»■ ^  ^  Z3, we obtain the one-dimensional trivial 
representation Vo and the two-dimensional Vi, V2, which are associated with the
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Figure 3.17: Isotropy lattice for V3 .

Z3-actions axe on R2 ~  C given by 7Z =  7fc • 2, k = 1, 2, respectively. There is also 
one three-dimensional natural representation V3 of A -

The computation of the basic degrees, related to the representations Vo, Vi, V2 and 
V3 is a strightforward application of Theorem 3.5.1, and formula (3.15). (as we did 
for the dihedral groups)

degVo =  -  (At), degVl =  degv, = (A<).

Following is the isotropy lattice for V3:

degy3 =  (A ) ~  2(Z3) — (Z2) +  (Zi).

3.5.5 Degrees of Basic M aps for the Permutation Group S4

There are exactly five real (and also complex) irreducible representations of S4: The 
trivial representation Vo, the one-dimensional representation Vi corresponding to the 
homomorphism <p : S4 —»■ Z2, where ker tp =  A ,  the two dimensional representation 
V2 corresponding to the homomorphism ip : S4 S4/V4 = Ss — D3 , and two 
different three-dimensional representations of £4, one of them being the natural 
representation V3 of £4 , while the other V4 being the tensor product Vi <gs V3 of 
the natural three-dimensional representation with the non-trivial one-dimensional 
representation. Following we obtain the isotropy lattice of each representation and 
the corresponding basic degree. 
degVo =  - (S 4 ) ,  
degVl =  (54) -  2(D4), 
degv2 = (S4) ~ 2(A) + (̂ 4),
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(SO

(00

[0]

[1]

Figure 3.18: Isotropy lattice for Vi-

(SO [0]

P O [i]

(VO [2]
Figure 3.19: Isotropy Lattice for Vz-
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Figure 3.20: Isotropy Lattice for V3.

[0]

[1]

[3]
Figure 3.21: Isotropy Lattice for V4 .
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deg„5 =  (St ) -  2(D3) -  (B2) +  3{Oi) -  <Zj), 
degy4 =  (^4) — (Z4) — (-Di) — (Z3) +  (Zi).

3.5.6 D egrees o f Basic Maps for the A lternating Group A5

There are exactly 5 irreducible representations of A$: Vo -  the trivial representation. 
Vi -  the natural 4-dimensional representation of .4s, V2 -  5-dimensional representa­
tion of A5, and two 3-dimensional representations V3 and V4.

Clearly, for the representation Vo we have the basic degree deg0 =  — (A5). We
have the following isotropy lattice for the representation V2 (the dimension of the 
fixed point spaces is marked on the left of each row) and the basic degree deg2:

(4 ) 10]

(At) SD3) [1]

1 > < 1(Zi f  (2 s) [2]
\  /

(Zi) W
Figure 3.22: Isotropy Lattice for Vx- 

degVl =  (A5) -  2(A4) -  2(Ds) +  3(Z2) +  3(ZS) -  2(Zx).

We have the following lattice of isotropies and the basic degree for the 5-dimensional 
representation V2:

degV2 =  (As) -  2(Z>S) -  2{D3) +  3(Za) -  (Zx).

We have the following lattice of isotropies and the basic degree for the 3-dimensional 
representations V3 and V4:
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Figure 3.23: Isotropy Lattice for V2. 

(-4s) [0]
/  I \

(Z5) (Z3) (Z2) [1]

(Zi) [3]

Figure 3.24: Isotropy Lattice for V3 and V4.

degV3 =  deg4 =  (A5) -  (Z5) -  (Z3) -  (Z2) +  (Zi).

3.6 Computational Formula for Basic Maps with 
One Parameter and Examples

The equivariant degree F x S1-Deg(/, P.), where /  : M ® V  —* V  is an Q-admissible 
map, can be also computed by applying a recurrence formula. Let us discuss the 
following cases.
Suppose /  is a regular normal map (otherwise, we consider a regular normal approx­
imation map /  of / ) ,  then for every orbit type (H) in P (we assume dim W(H)  =  1), 
the map f H\n„ has zero as a regular value, thus

0) n P H = W(H)xi  U • • • U W{H)xm,

on the other hand, since H  is a twisted subgroup, i.e. H  =  K^'m = { (7 ,2 )  € 
K  x S'11 tp(7 ) =  zm} for some K  C T and ip : K  —> S 1 being a homomorphism.
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Then there exists a natural homomorphism S 1 —+ W (H ), denned as follows:

We have N(H) = N 0 x S 1, where Ar0 =  {g G N(K) \ <p{gig~l) = tp(j) for all 7  G K}, 
so we have the composition

S 1 -> No x S 1 = N(H) ^  W{H),

denoted by p which has a kernel Zm. We define this homomorphism by j ,

7T
W{H)

S l/Zm = S l

and j  : S l —* W(H)  is an injective homomorphism.

So, we can consider S 1 as a subgroup of W(H).  Since f H is W (W)-equivariant, it 
is also S'1-equivariant. Then we get

degjCf K , Q K )
nx  =  \w (hY\ ’

I s1 I

where deg1( / if, Qk ) is the first coefficient of 5 X-Deg ( f K, Qk ) corresponding to the 
orbit type (Zi).

By applying the induction over orbit types we get the recurrence formula

deg ! ( /x ,Q k ) -  £  n { K ,L ) - n L - \ ^ f i \ 
m < ( i )nK = ----------------------- --------------------------------• (3-16)

I s1 I

Now, consider the representation (we consider here Vfcjfor simplicity but the 
general case Vkj for j  > 1 can also be analyzed in the same way). We consider a 
basic map b : R x 14 —> 14, and we put G-Deg (b, O) =  degVfc 1. We will show how 
to compute these degrees.
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By recurrence formula degVfc 1 — Y^nL'  (L), where
( L )

nL = 1
W(L) i
s1 I

Ml
o ~ n iL ^ ) - n z

W{L)
S l (3.17)

and Ml =  dim V k .

3.6.1 Degrees of Basic M aps for Group Dz x  S 1

There axe three complex irreducible ZVrepresentations

(i) The representation Vq defined on C.

(ii) The representation Vf  defined on C © C by

l ( zii zz) := (7 • zi ,  l ~ l ■ Z2 ), for 7  € Z3, and zls z2 € C,
k(z1sz2) :=  (z2,zi)-

(iii) The representation VJ defined by c : £>3 —»• Z2, such that kerc = Z3.

For j=0,l,2, we define the action of 5 1 on VJ by zv = z ■ v, for z £ 5 1 and v £ VJ, 
where the product is the usual complex multiplication. In this way we obtain a 
real irreducible representation for D3 x S 1. which we denote by V^i. For each of the 
representations V;-,i of D3 x S l , we can compute the degv jOf the associated basic 
maps on Vjti, by using the isotropy lattice for V^i and the Formula (3.17). (the 
numbers located on the right side of the isotropy lattice denote the real dimension 
of the fixed-point space).

Clearly, degVo i =  (D3) and degV21 = (£f).

degVli, =  (Z|) +  (£>i) + (Di) -  (Z,).
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(A> x S 1) [0]

P I))

Figure 3.25: Isotropy Lattice for V2,:

(A  x S1) [0]

m ( A ) (4 )  [2]

(Zi) [4]

Figure 3.26: Isotropy Lattice for Vi,i.
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(D4 x S1)

PI)

Figure 3.27: Isotrpy lattice for Vo,i-

3.6.2 Degrees of Basic Maps for Group D4 x S 1

There are five complex irreducible ^-representations

(i) The representation Vq defined on C.

(ii) The representation V* defined on C © C by

7 (21, 22) := (7 ‘ z i,7 -1 • 22), for 7 € Z4, and zu z2 e C ,
«(«i, 22) := (22, 21).

(iii) The representation V| defined by c : D4 —*• Z2, such that kerc =  Z4.

(iv) The representation Vf defined by d : DA Z2. such that kerd =  Do.

(v) The representation V| defined by d : D4 —> Z2, such that kerd =  Do.

The same as the first example we obtain five real irreducible representation for 
D4 x S l which we denote by Vyi, j  =  0, • • • ,4. For each of the representations Vyi 
of D4 x 5 1, we can compute the degv of the associated basic maps on Vjj. by using 
the isotropy lattice for Vyi and the equation (3.17).

It is clear degVo 1 = (D4) and

deov2,i =  P l)>  deSv3,i =  (Bt), degV41 =  (Df).

degVl>1 =  ( A )  +  ( £ 2) +  ( 4 )  -  (Zi)- 
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(D4 X Sl )

(■Dt)

Figure 3.28: Isotrpy lattice for V3J.

{D4 x S1) [0]

(Di) [2]

Figure 3.29: Isotrpy lattice for V^i.

(Da x S 1) [0]

(20 [4]

Figure 3.30: Isotropy Lattice for Vi,i-
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(A> x S1) [0]

m

Figure 3.31: Isotropy Lattice for V2,i.

3.6.3 Degrees o f B asic M aps for Group D 5 x S 1

There are four complex irreducible D5-representations

(i) The representation V£ defined on C.

(ii) The representation Vf  defined on C © C by

7 (21, z2) := ( j -zx ,  7 -1 • z2), for 7 G Z5, and zu z2 G C, 
k ( z x , z 2 ) : =  ( z 2 , z i ) .

(iii) The representation V2C defined on C © C by

7 (21, *2 ) := (72 • zi, 7 -2 • 22), for 7 G Z5, and zi, c2 € C, 
k ( z i , z 2 ) : =  ( z 2 , Z ! ) .

(iv) The representation Vf defined by c : D5 —*■ Z2, such that kerc =  Z5 .

We obtain four real irreducible representations for D5 x S'1 which we denote by 
Vj,i, j  = 0, - ■ ■ ,3. For each of the representations Vp of D$ x S 1, we can compute 
the degy. l of the associated basic maps on Vp, by using the isotropy lattice for Vp 
and the equation (3.17).

It is clear degV(U = (Z?5) and degVlJ =  (D|).

degvi, = (Zs*) + (A) + (A ) -  (A)- 

degvil = (Z'=) + (A) + (A ) -  (A)- 
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(A> X S1) [0]

( 4 2) (A ) (Df) [2]

(Zi) [4]

Figure 3.32: Isotropy Lattice for V3(1.

3.6.4 Degrees of Basic M aps for Group A 4  x S 1

There axe four irreducible real representation Vjj of A 4 x  S 1. Let us discuss the 
isotropy lattices for the representations j  = 0 ,1, 2,3. Of course, the only 
twisted orbit type for Vo,i is (A4). For j  =  1, or j  =  2, there is also only one twisted 
isotropy class (A* ) in Vjj determined by the homomorphism <pj : A4 —̂  A4/ldj ~

Z3 — >• Z3. To obtain the lattice for V3j ,  consider the action of A4 on C permuting 
the coordinates of the vectors z = (zj, z2, 23, x4) and let 5 1 act by the complex 
multiplication. The subspace {{z ,z ,z ,z )  : 2 E C } is the fixed-point subspace for 
the action of A4. and its complement is equivalent to the representation Vf. Let us 
choose the following basis in this subspace: V\ =  (1, —1, 1, —1), v2 =  (1, 1, —1, - 1), 
and v$ =  (—1,1,1, —1). Notice that the vectors Vi, v2, and u3 have the isotropy 
groups (with respect to G =  A4 x S1) belonging to the class (V̂ - ).

Indeed:

=  { ( ( 1 ) ,1 ) , ( ( 1 3 ) (2 4 ) ,1 ) , ( ( 1 2 ) (3 4 ) , - 1 ) , ( (1 4 ) (2 3 ) , -1 ) } ,

Gft =  { ( (1 ) ,  1), ((12)(34), 1), ((13)(24),- 1 ) ,  ( (1 4 ) (2 3 ) , -1 ) } ,

G% =  { ( (1 ) ,1 ) , ( ( 1 4 ) (2 3 ) ,1 ) , ( ( 1 2 ) (3 4 ) , - 1 ) , ( (1 3 ) (2 4 ) , -1 ) } .

Next, notice that the vectors x = v\ +v2 =  (0,2,0, —2) and y = v\ — v2 =  (2,0, -2,0) 
have the isotropy group H  = j ( ( l ) ,  l) , ((13)(24), — l) j ,  which belongs to the class
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(A4) [0]

(Zs) (Za) [1]

(Z i)  [3]

Figure 3.33: Isotropy lattice for V3.

( Z £ )

[6]

Figure 3.34: Isotropy lattice for V34.
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(Z j). The elements v\ +  Vo +  £3. Vi +  €2 — v\ — V2 — £3, and —vi 4- v<i — vz
have the isotropy group belonging to the class of the subgroup (Z3). Let u  =  e^r.
Then the elements w\ =  (l,w, u 2,0), w\ =  0, ur) 1F3 = (1,0, u , J 2), and
w\ =  (0,1, ui, ur) have the isotropy groups belonging to the class (Z31), and 
w{ =  (l,u;2, u, 0), W2 =  (l,u;2, 0, u), it;2 =  (1. 0, w2,w), and w\ =  (0, l,u;2,tj) have 
the isotropy groups belonging to the class (Z32). The isotropy lattices for V3 (as the 
representation of A4) and V34 (as the representation of A 4 x S 1) are shown on the 
diagram above.

Finally, we can list all the A4 x S 1 -degrees of the basic mappings associated with 
these representations:

degvoa =  (^)>  deSvi: =  (A41),
degV2,  =  ( 4 2), degV31 =  (Z*) +  (Z?) +  (V4~) + (Z3) -  (h ) .

3.6.5 Degrees o f Basic M aps for Group S 4  x S 1

There axe exactly five real irreducible representations of S4, which described in 
section 3.5.5. We consider the complexifications VJ of the representations Vj, j  =  0, 
1, 2, 3, 4, and define the Fraction on VJ by 71; =  j 1 ■ v , where I = 0 ,1 ,2 ,...;  
7  € S 1 , v G VJ. We will denote the obtained irreducible S4 x  ^-representations by 
Vjtl, j  = 0, 1, 2, 3, 4 and £ =  0 ,1, 2,3, —

The representation Vo,i contains two orbit types: (64 x S 1) and {S4), so we 
have degVoi = (S4). For the representations Vi,i there are also two classes of the 
isotropy groups: (S4 x  S l ) and (S4 ), so we have degVll =  {S4 ). In the case of the 
representations V2,i, we have the following lattice of the isotropy groups:

(54 X S1) [0]

Figure 3.35: Isotropy Lattice for V2J.
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Figure 3.36: Isotropy Lattice for V3>i.

For the representation V2,i we obtain that the corresponding S4 x 5 1-degree of 
the basic map is

degv2>1 =  (AS) +  (D,) +  -  (Vt ).
Now, let us consider the representation V3,i of S4 x S l , which is obtained by taking 
the complexification of V3 and defining the action of S 1 by complex multiplication. 
The isotropy lattice for the natural representation V34 of S4 x S l is shown in the 
following diagram. Notice that the isotropy group Gx of x = vi is represented by 
Df,  for x = vi + v2 it is D%, for x  =  Vi + v2 +  u3 it is D2. for x  =  vi +  2u2 it is Z J , 
for x =  V\ 4- 7F2 +  1 2v2, where 7  € S 1 is the third root of 1, it is Z3, and finally for 
x  =  vi +  2v 2 + 3v 3 , it is Zj.

By applying the standard computational formulae, we obtain the following value of 
the G-equivariant degree for the basic map on the representation Vz,i-

degv31 =  (Df) +  (.Dl) +  (D3) +  (ZS) +  (Z‘3) -  (Z2") -  {D1).

By taking the complexification of V4 and defining the action of z £ S 1 by the complex 
multiplication, we obtain the irreducible representation V4,i of the group S4 x S 1.

Notice that the isotropy group Gx of x  =  v\ is represented by Z>|, for x  = v i+ v 2 

it is £>2’ for x  = vi +V2 +V3 it is Df, for x  =  Vi+2v2 it isZ J, for x = vi +'yv2 + j 2V3 , 
where 7  £ S1 is the third root of 1, it is Z |, and finally for x  =  vi +  2v2 -I- 3vz, it 
is Zj. By applying the standard computational formulas, we obtain the following 
value of the G-equivariant degree for the basic map on the representation V4j

degV4il =  {Dl) + (.Dl) + (Z‘) +  (£ i)  +  (Z|) -  (Z2“ ) -  (DO-
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Figure 3.37: Isotropy Lattice for V4j .

3.6.6 D egrees of Basic M aps for Group A 5 x S 1

Let us present the computations of the basic A5 x S1-degrees for the representations 
Vi.i, V2,i, V3;x and V4ii. In the case of the representations Vi,i and V2,i we have the 
following lattice of twisted subgroups:

The basic degree for this representation is given by:

degVlI =  (A,) + (Di) +  (D|) +  (VT) + (A )  +  ( A )  +  ( A )
-(Zj) -  (Z3) -  (ZJ),

The basic degree for this representation is given by:

degv„  =  (Dt ) + (AO + (A%) +  (A‘?) +  (v;-) + (Z‘>) +  (Z‘i)  -  2(Zj).

For the representations and V4ii, we have the isotropy lattice of twisted sub­
groups:

The basic degrees for these two representations are equal to:

degv„  = (Df) +  (VT) +  (Dl) +  (Z£) +  (Z|) -  2(ZJ), 
degv,., = (Dl) + OV) +  (Dl) + (A 1) + ( A )  -  2 (A ) -
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[0]

[2]

[4]

[8]

Figure 3.38: Isotropy lattice for Vi,i

(z %) (vr) (41) (42)

[o]

[2]

[4]

[6]

[10]

Figure 3.39: Isotropy lattice for Vo,i- 
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(.45 x S 1) [0]

( D ( l ^ T ^ l )  [2]

W

(Zi) PI

Figure 3.40: Isotropy lattice for V^i-

(As x S 1) [0]

(Zi) t6]

Figure 3.41: Isotropy lattice for V44.
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Chapter 4

A(T)-Module Structure on
Ai(r x S'1) and the Multiplication
Tables

In this section we consider several paticular cases of the group T, for which we present 
the computations of the A(r)-module structure of Ai(T x S 1) the multiplication 
tables. Recall that the Z-module Ai(T x S1) is generated by all the conjugacy classes 
of twisted subgroups (H*'1) in F x S1. The A(r)-multiplication on the generators 
(.K ) £ A(T) and (H*'1) £ A i(r x S 1), is defined by the formula

(JO -tfl*1) =  ■ (£*J),
{L)

where the number n i  are computed using the recurrence formula 

n (L ,K ) \W {K ) |n ( i> - H*’1) \ |  -
nL = |H ^ ) |

(4.1)
where for a set Y, we denote by \Y\ the number of elements in Y.

4.1 Examples of A(r)-Modules Ai(r x Sl)

We devote this section to several examples of the multiplication tables for the A(T)- 
Modules A i(r x S1).
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4.1.1 A(Ds)-M odule A\(Dz x S 1)
Let us consider the A(Dz)-modvle Ai(Do x S 1). We will use the notation and 
the computations of the numbers n(L, H) that were presenteed in section 2.4. By 
applying formula (4.1), it is an easy task to derive the multiplication table for the 
A(Z?3)-module A(D3 x S1), which is shown in Table 4.1.

(AO (A) (A) (A) |
(A) (A) (A) (A) (A)
(A) (A) + (A) (A) 3(A) (A)
(A) (A) 2(A) 2(A) (A)
(A) 3(A) 2(A) 6(A) (A)
(3 ) (A) 2(Z|) 2(A) (A)
(A) (A) (A) (A) (A)
(A) (A) (A) 3(A) (A)

Table 4.1: Multiplication Table for A(T>3)-module A\(Dz x S 1). 

4.1.2 A(D4)-M odule Ai(D 4 x S 1)

(A) (A) (A) (A) (A) (A) (A) (A) 1
(A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) 2(A) (A) 2(A) (A) (A) 2(A) 2(A) (DO
(A) (A) 2(A) (A) 2(A) (A) 2(A) 2(A) (DO
(A) 2(A) (A) 2(A) + (20 2(A) (A) 2(A) 4(A) (DO
(A) (A) 2(A) 2(A) 2(A) + (A) (A) 2(A) 4(A) (A)
(A) (A) (A) (A) (20 2(A) 2(A) 2(A) (A)
(A) 2(A) 2(A) 2(A) 2(Z0 2(A) 4(A) 4(A) (A)
(A) 2(20 2(A) 4(20 4(A) 2(A) 4(A) 8(A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (Dj)
(A) (A) (A) (A) (A) (2?) (A) (20 (Df)
(A) (A) (A) (A) (A) (2?) (A) (A) (D?)
(A) 2(A) (A) (A) + (A) (A) (AT 2(A) 2(A) (D?)
(A) (A) 2(A) (A) (A) + (A) (AT 2(A) 2(A) (D?)
(A) 2(A) (A) 2(A) (A) (A) 2(A) 2(20 (D|)
(A) (22) 2(A) (A) 2(A) (A) 2(A) 2(A) (D|)
(A) 2(A) (A) 2(A) + (20 2(A) (A) 2(20 4(A) (Df)
(A) (A) 2(A) 2(A) 2(A) + (A) (A) 2(A) 4(A) (Df)
(A) (A) (AT (A) (A) 2(2‘) 2(A) 2(A) (Z‘0
(2?) (A) (A) (A) (A) 2(2?) 2(A) 2(A) (2?)
(A) 2(A) 2(A) 2(A) 2(A) 2(A) 4(A) 4(A) (A)

Table 4.2: Multiplication Table for the A(D4)-module A\{D^ x S1).
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4.1.3 A(L>5)-M odule A 1{D5 x S 1)

m m (Zs) (Zi)
m (A ) (Zr) (Zi) m
p o (Di )  +  2(Z0 (Zi) 5 (Zi) (Dl )
(Zs) (Zi) 2(Z5) 2(ZX) (Zs)
(Zi) 5(Zx) 2(Zi) io(Zx) (Zi)
(4 1) (Zi) 2(Z s) 2(Z0 (ẑ 1)
m (Zi) 2(Z*2) 2(Zx) (Ẑ 2)
m m (Zs) (Zi) (£g)
m (Df) + 2(Zx) (Zi) 5(ZX) m

Table 4.3: Multiplication. Table for A(Do)-module A1(1)5 x 5 1).

4.1.4  A(A4)-M odule Ai (A4 x S1)
By applying the standard reccurence formula (4.1) one can easily establish the 
A(A4)-multiplication table for the generators of A i (A4 x S1), which is shown in 
Table 4.4.

(Vi) (Zs) (Zs) (Zi)
(■̂ 4) W) (Z3) (Z2) (Zi) (̂■4)
(Vi) 3(V4) (Zi) 3(Za) 3(Zx) (Vi)
(Z3) (Zi) (Z3) +  (Zx) 2(Zx) 4(Zi) (Zs)
(Z2) 3(Za) 2(Zx) 2(Z2)+2(Zx) 6(Zx) (Zs)
(Zi) 3(Zi) 4(Zx) 6(Zx) 12(Zx) (Zi)
(A?) (V4) (Z43fc) (Zs) (Zi) (Af)
(vr) 3(vr) (Zi) 2(Z2) +  (Z2) 3(Zx) (VT)
(Z|fc) (Zi) (Z‘3fc) +  (Zx) 2(Zx) 4(Zx) (zSfc)
(Z2-) 3(Z2) 2(Zx) 2(Z2) +  2(Zx) 6(Zx) (Z2)

Table 4.4: Multiplication Table for A(A4)-module Ai(A4 x 5 3).
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4.1.5 A(54)-M odule A i (S4 x S1)
The multiplication table for the A ^J-m odule Ai(S4 x S'1) (and implicitly for the 
Burnside ring A(5i)) is given in Table 4.5.

a iS M S S lil! !  5 8 S # i l i i i i | a | g

§

I i f § I l f £ s s g i t g

 § -
EZ3~ZS.&£SZ~ 

a = 5  5 -
“  w sr sr

a ----- §■-----

-  £

 a -£ ~ § ~ ~
3zksz{ f~ kzk§

s i m i i i u i

£Z k |g t?z£Z Z §
£ s  s  £§•

 I _  g„s„.
s - k z - k k z k k s

£ O '  

s s I I S l I I J § I

- f W ¥
3S3£££3kk£!£

S g f» £ £ z ----------»~
^ ^ z a £ £ £ | a z &
c 3 cs £ss -  a‘  ̂rT~ sr

g g „  - J K I L i L J
- -k k £ z z z ~ £ ~ k § z  
§ i ” s

 __
i i i g z s g s s i : a l s §  

s£ g

ggsL_S§SS~£~~S 
-z z j£ S z z V z s z s § r  
aiasS SSI§ S "s

g § g „ ~ £ £ g g » £ „ £ g  
z z z k a - A - z g z g z z  
£ £ £  ‘ H I S 'S  gS

sT ?
E l f f z f z f i z S S L - J  

a a S' |
£ E r J I I g | g f | I s I

£ i£ „ ~ E £ v g ~ ~ J I l
g s f - s l r l ^ € l l

EsTffiifgisg ifg
Table 4.5: Multiplication Table for A(S4)-module Ai(5,4 x S 1).
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4.1.6 A(.45)-M odule Ax{A-0 x S1)
In the case of the Icosahedral group A5, the structure of the A (A5)-module on 
Ai (A5 x S 1), which contains (implicitly) the multiplication formulae for the Burnside 
ring A(A5), is described in Table 4.6. Notice that this table contains (implicitly) 
also the multiplication formulae for the Burnside ring A(A5).

s ,js  Ei
g

jT
cm'  cm r o cm”

S 3
s + s Si + 3 3 3 ^

P i  N

'■?XCN‘ =
3Z 3 pS3

5

-£pS,_i_+pi-+-‘r-i-3

•S s* **■ 3 ■(*'-"'S'—'CM^CSCM-^WC N N

’€£S,€c5>pi’— pjpi’s

" s  *N C  i .”

5* f£s 3U5 o" tp J2 «  K  N  N  P i P i

2 2 2 gifS”

N  P i  oT cm" *7 
-r -r

5?33-X 
 ̂s'

-r 3 3  -rrz ® ® h s ̂3 sT

n 33_5-1 o o ^
1 N S + t N

s
P i  S

■*■ + S ~
~ ~ ” ir 5s.-? n

N
3333 -ri r3” n S” o’ "T*

s s + 3  jn
P i

S S

3  ̂  ̂333cT c** c** ̂ r * 0"
S?3
cm- cm

& N
Pi Pi’_,«.
TTs3

-rs s ^ 
WW s’

■*• 333n ~
! i  3 .  Ni_ ■*■ 4* “

CM P ?  ^  £ - .

. T>f p-f 3

5J,$£̂ 3 
iz.3X 
33 ^

^ „3 ~
33i*~-

c?3
w '  CM

^Tcfir

s s s
+ nnI I  +
^ s£ Î?

CM CM 2 *

^  33~^.§' + + p? s + ,
CM C ^ C ^ C M  CM 7 X

P i  P i  P i

*2 P i  P i  S  P i P i

Table 4.6: Multiplication Table for A(As)-module Ai(A5 x S 1). The upper ha.lf of 
the table describes the multiplication in the Burnside Ring A(A$).
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4.2 M ultiplicativity Property for th e Primary 
Equivariant Degree

The following multiplicativity property of the primary degree plays an important 
role in practical computations of the primary degree.

Let T be a compact Lie group, V  (resp. W) be an orthogonal representation of 
G := T x S 1 (resp. of T), Q C R. © V  (resp. U C W) an invariant open bounded 
set and /  : R © V  —>■ V  (resp. g : W  —*■ W) an fl-admissible (resp. W-admissible) 
equivariant map. Then

G-Deg ( /  x g, a  x U) =  T-Deg {g, U) ■ G-Deg (/, Q),

where the multiplication is taken in the A(T)-module j4 i (T  x  S 1). (See[3])

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Application of Equivariant Degree 
to Symmetric Systems of Van Der 
Pol Equations

In this chapter we set up a standard framework for analyzing the van der Pol systems 
with symmetries and introduce several examples of symmetric van der Pol systems 
based on the geometric symmetries of regular polygons, tetrahedron, octahedron and 
dodecahedron. Later on, we present a series of results for these systems, describing 
and classifying the sy m m etry  types of different periodic solutions occuring in these 
systems, which can be deduced from properties of the linearized systems. Finally, 
the necessary algebraic computations for the considered groups D3, D4, £>5, A4, S4 
and A 5 are presented.

5.1 Definitions and Some Basic Facts
D efinition 5.1.1. Let V  be a real (resp. complex) Banach space, and G be a 
compact Lie group. We say that V  is a real (resp. complex) Banach representation 
of G or Banach G-representation if the space V  is a G-space such that the translation 
map Tg : V  V, defined by Tg(v) =  gv for v e  V, is a bounded K-linear (resp. 
C-linear) operator for every g € G.

Clearly, every finite-dimensional G-representation is a Banach G-representation.

We say that a Banach G-representation V  is isometric if for each g G G, the 
translation operator Tg : V —»• V  is an isometry, i.e. !|Tsf  || =  ||u|| for all v € V* and 
we call the norm ||-j| a G-invariant norm.
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T heorem  5.1.2. (cf. [36]) Let V  be a Banach G-representation. Then for every 
irreducible G-representation Vj. there exists a closed subspace Vj C V  satisfying:

(i) I f  Wo C V is an irreducible subrepresentation o fV  equivalent io Vj. then 
Wo C Vj.

(ii) I f  W] c V  is an irreducible subrepresentation o fV  not equivalent to Vj. then 
W j n V j  =  {0}.

(Hi) The set = QjVjis dense i n V  i.e. V  — ®fVj.

(iv) There exists G-equivariant, projection P3 :V  Vj.

D efinition 5.1.3. The Sobolev space of order 1 on [a. b] is defined by 

i f 1 ([a, &]; Rn) =  {u  e  L2 ([a, b\;Rn)| v! e L2([a, &]; W1)}.

The space i f 1 ([a, 6]; Rn) can be equipped with scalar product
b b

u » v  =  / u(t) ■ v(t)dt +  / u'(t) ■ v'(t)dt, (5.1)
a  c l

and ||w||i,2 =  s/u»u .  Notice that i f 1 ([a,6];Rn) is a Hilbert space for the inner 
product defined by (5.1).

D efinition 5.1.4. Let X  and Y  be two Banach spaces. A linear operator A  : X  —► Y  
is called compact, if A{B) C Y  is relatively compact, (B is the unit ball in X).

T heorem  5.1.5. (cf. [10]) The natural imbedding

j  : f fJ([a,6];Rn) — C([a,6];R"), 

defined by j(u) =  u is a compact operator.

C orollary  5.1.6. The natural imbedding 

is a compact operator.

D efinition 5.1.7. Let /  : [a, b] x Rn —*• Rn be a continuous map. We define the 
map

N f  : C ( M ;  Rn) — C([a, 6];Rn), 
which is called Nemysky Operator associated with / ,  by Nf(u)(t) = f ( t .  u(t)). 

Notice that N j  is a continuous map.
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5.2 Systems of van der Pol Equations with Sym­
metries

The van der Pol equations are related to the so-called self-excited dynamical systems 
arising in many models of mechanics, electronics and biology. For more information
on van der Pol oscillators and related results, we refer to [3].

We are interested in systems of coupled identical van der Pol equations of the 
type

i l l  +  — O’) i l l  +  C n U i +  C12U2 -i-------- !- C inlln  =  0
U2 +  — a)il2 +  C21U1 + C22u 2 +  • ■ • +  C2n^n = 0
: : : : : : ^

^ i l n  c{un “h C n l l l i  -F On2'Xl2  "h ' ' ' "b d n n t tn — 0

where a > 0, e > 0, admitting certain “spatial” symmetries. The system (5.2) can 
be reformulated using the vector “multiplication”:

uv =

UiVi Ui V\
U2V2

, where u =
U2

and v =
V>2

V*nVn 'li-n . Vn .

in the following form

where

u + e(u2 — a)u +  Cu =  0 (5.3)

£  =

e
e

, a =

a
a

, u2 =

1CNi-iCS<N

1

, c =
e a .  Un .

C l 1 C l2 Cl3 • C \ ti

C21 C22 C23 • C 2n

C n l C n2 CrtZ C n n

There are many possible examples of symmetric van der Pol systems of the type 
(5.3), where the matrix C is equvariant with respect to a certain group F acting on 
u = (ui, U2 , • • • , un) by permuting its coordinates. Let us discuss some of them.

Exam ple 5.2.1. We consider a ring of n identical van der Pol oscillators where the 
interaction takes place only between the neighboring oscillators (see Figure 5.1). i.e. 
in this case the matrix C is of the type
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Figure 5.1: System with dihedral symmetries.

c d 0 . . 0 d '
d c d . . 0 0

d 0 0 . . d c

It is clear that the system (5.3) has the dihedral group Dn of symmetries.

In the subsequent examples, we present the concrete systems of van der Pol 
equations modelled on three regular polyhedrons: tetrahedron, octahedron and do­
decahedron. In each case, the symmetry group T of the system is composed of the 
orthogonal symmetries of the corresponding polyhedron. To simplify the presenta­
tion, we have considered only those orthogonal symmetries T for which detT = 1. 
This assumption is not essential, and in the general case, similar results can be easily 
derived based on the already obtained computations.

Exam ple 5.2.2. Let us consider four identical inter-connected van der Pol oscilla­
tors having exactly the same linear interaction with all the other oscillators. In this 
case, the matrix C in the system (5.3) can be written as:

c d d d 
d c d d 
d d c d 
d d d c

C = (5.4)

The situation is illustrated on Figure 5.2, where the vertices of the tetrahedron 
symbolize the oscillators and its edges correspond to the connections between the
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Figure 5.2: System with tetrahedral symmetries.

oscillators, indicating the interaction between them. It is clear that this system of 
differential equations is symmetric with respect to the tetrahedral group T =  A4.

Exam ple 5.2.3. Suppose that the van der Pol oscillators are arranged in a con­
figuration corresponding to the vertices of a cube. We assume that the interaction 
takes place between those oscillators that are connected by an edge of the cube (see 
Figure 5.3). We assume that all the oscillators are identical.

The eight identical van der Pol oscillators, which are inter-connected, illustrated 
on Figure 5.3, lead to the system of equations with the matrix C of the following 
type:

c d 0 d 0 d 0 0
d c d 0 0 0 d 0
0 d c d 0 0 0 d
d 0 d c d 0 0 0
0 0 0 d c d 0 d
d 0 0 0 d c d 0
0 d 0 0 0 d c d
0 0 d 0 d 0 d c

It is clear that the system of van der Pol equations (5.3) is symmetric with respect 
to the octahedral symmetry group O which is isomorphic to the symmetric group
SA.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ui U2

Figure 5.3: System with octahedral symmetries.

Exam ple 5.2.4. Let us consider an arrangement of van der Pol oscillators based 
on the inter-connections given by the edges of a dodecahedron (see Figure 5.4). It 
is clear that the group of symmetries of the dodecahedron, which is the icosahedral 
group I, is the symmetry group of the system (5.3). Let us point out that the 
icosahedral group I is isomorphic to the alternating group A5. In this case we have 
the system (5.3) composed of 20 equations, where the matrix C is given by:
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Figure 5.4: System with icosahedral symmetries.

c d 0 0 d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 '

d c d 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0
0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0
0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0
d 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0
0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0
d 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0
0 d 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 d 0
0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 d
0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0
0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 d
0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0
0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0
0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 d c d
0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 d 0 0 d c
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5.3 Reformulation of the Problem as an Equivari­
ant Fixed-Point Problem w ith One Parameter

In this section we discuss a general strategy based on the application of the equi vari­
ant degree allowing us to study symmetric periodic solutions for (5.3).

5.3.1 Preliminaries
Notice that in the all examples discussed above, the space V  := Rn was an orthogonal 
representation of a certain finite group T, acting on vectors u  E R n by permuting 
their components, the matrix C commuted with the action of T on V, and det(C') --
0. In addition C was symmetric, i.e.

where u • v denotes the usual inner product in Rn.

By replacing the independent variable t by ^ r ,  where p > 0, the equation (5.3) 
can be rewritten as

Since, we are looking for a 27r-periodic solution, the boundary conditions for the 
system (5.7) are

The equation (5.10), together with the periodic boundary conditions, can be refor­
mulated as a non-linear operator equation in an appropriate Hilbert representation 
of the group G = T x S1, where F denotes the symmetry group of the system (5.8).

Cu • v =  u • Cv, u, v E Rn,

u(0) =  u( 2tt) and u(0) =  u(27t). 

Let us put a := so the equation (5.7) can be rewritten as

u ae(u2 — a)u + o?Cu = 0. (5.8)

Set

(5.9)

Then the equation (5.8) becomes

dt
(5.10)
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We will need another technical assumption, which is used later to establish a 
priori  bounds for the periodic solutions. We will restrict our analysis to the solutions 
u  of (5.3) satisfying the following additional condition:

u(t +  7r) =  —u(t), for all t  E  R.

In this way, we transform (5.8) into the following system

{ —u =  as(u2 — a)u +  a 2 Cu , u(t) G V
, \ (5-11)

U(t +  7r) =  —u(t).

5.3.2 Setting in Functional Spaces

Let us introduce the functional spaces, which are appropriate for studying (5.11). 
First we define the subspace H0 of the Sobolev space iif_(R  V) of 277-periodic, 
twice-differentiable, If-valued functions such that u and u G L2(R, V ), defined as

M0 =  {u E i?|_(R, VO | u(t + tt) =  -u ( t) , V t € R}.

We will also identify V  with the space of all constant V'-valued functions. The space 
H0 can be equipped with an inner product, given by

r r2-i: p2 tr

(u, v)m0 = /  u(t) • v(t)dt + / u (t)* u (t)d t+  / u(t)»v(t)dt.
Jo Jo Jo

In addition, we define the subspace L0 c  L2([0. 2tt]; V') by L0 := L(H0), where 
Lu =  — u. It is clear that L : H0 —»■ L0 is an isomorphism. Let us define

M := y © M 0, L := V @ L 0.

We put
i r277

i f  : H —» L, ifu  = —  u(t)dt.
2tt y0

It is clear that the operator i f  is an orthogonal projection on the subspace V  of 
constant functions and L + K  : H —> L is an isomorphism such that (L +  if)|v  =  Id 
and (L+if)|H0 =  L|h0- Given u € M, denote by u (resp. u0) its orthogonal projection 
of u on V  (resp. H0).

The space i/frO^; V) is a Hilbert representation of the group T x S 1, where the 
element (7 , eir) e T x S 1 acts on a function u e  i f |7r(R: V) by the formula

(7 , e1T)u(t) = j(u(t  +  r)), for all t 6  R, 7 6  T, elT E 5 1. (5.12)
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The SMsotypical components of the space Ho- (R; V) axe the subspaces V)c, I =
1 , 2 , . . . ,  and the subspace of constant functions V  (which is the S 1-fixed-point sub­
space), where

Vi = {a; cos (It) -i- bi sin(Zt)| ai, bi £ V}.

A function u £ V)c, u(t) = ai cos(lt) +  bi sin (It), can be identified with

u(t) =  edt (xi + iy ij ,

where xi = and yi =  so the action of ellr £ S l on u(t) is simply the 
complex multipfication by ellr, i.e. ellr ■ u(t) =  -f iyi). It is clear that V)c
are G-invariant subspaces of Wf_(R: V'); in addition, Vf (considered as a complex 
linear space) is 5 1-isomorphic to the complexification of V. Let D(u)(t) =  u(t), 
then for u(t) = eUt(xi + iy i) we have

D {u )= i lu , and L(u) = l2u, (5-13)

so L and D preserve V)c, I = 1,2,3,----

Notice that V)c, / =  1 ,3 ,5 ,.... are the SMsotvpical components of M0.

5.3.3 Operator Reformulation and Setting for the Equivari- 
ant D egree Treatment

Let us now reformulate the problem (5.11) as a parameterized G-equi variant fixed 
point problem in the space Ho, where G =  T x S 1.

We consider the following (infinite dimensional) representation of the group G:

C0 := {u : R —* V; [o,27r] £ Gx([0, 2tt], V), u(t +  7r) =  —u(t) V t £ R},

where u(t+2-R) =  u(t), u(t+2tt) =  u(t). Let us define C := V'@C0, notice that u is a 
continuous periodic function for every function u £ C, in particular u(t +  7r) =  —u{t) 
for all t £ R, therefore the map N  : C —* L2([0, 2tt]; V) defined by

N{u)(t) =  (u2 (t) — a)u(t), t £ R,

satisfies
N(u)(t + ?r) = —N(u)(t), 

thus N  : C —*■ L. It is clear that N  is a  continuous map.

I l l
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We also define the operators:

j  :H C, j { u )= u ,
A :C —*• L, (Au)(t) =  C(u(t)),
D :C -^ L ,  (Du)(t) =  u(t).

The relations between the operators L, j ,  D, N  and A  axe illustrated in the following 
diagram.

C

Notice that the linear operator j  is compact, and A is a bounded linear operator. 
In addition, all the above operators are G-equi variant, where the G-action on all the 
above functional spaces is defined by (5.12). The equation Lu = —u can be written 
in the following operator form:

L(u) = asN(j(u )) +  arA(j(u)), u € H. (5-14)

5.3.4 Com putations of the Equivariant Degree
We are going to introduce additional parameters to the original system of differential 
equations to allow its deformation to a “linear” system. Then, by applying a priori 
bounds to parameterized systems, the existence result can be obtained by using the 
homotopy property of the degree.

Let us introduce additional parameters 5 e  [0,1] and A 6 1  to the equation 
(5.11):

{ —u =  5ae(u2 — a)u +  o?Cu — \apii, u(t) € V
( o . l 5 )

u(t + 7r) =  —u(t) 

where p = ea (see [27]).
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Assume for a moment that there exists an increasing positive function m(-) such 
that every solution u 0 of the system (5.15) for A = 0, which by the imposed condi­
tions belongs to H0, satisfies the inequality (cf. Lemma 5.5.1)

\\uo\\eo < m(a)-

Given a > 0, take M  > m(a), and choose m  < m(a) to be small enough. We 
define 77: M —»■ [0,1] by

!0 if t < m,
if m < t < M ,

1 if t > M,

and 9 : Mo -» [0,1] by 9(u0) =  77 , where u0 e H0. We modify the problem
(5.15) as follows

-u =  8 ac(u2 — a)u -I- a 2 $(u0)Cu — Xapu. u(t) G V  .
, . (o.lo)

u(t-i- 7r) =  —u(t).
The problem (5.16) can be reformulated as the following parameterized equation 

in the functional space M =  V  © H0

Lu 0 = 5aeN(j{u0)) + a 2 0{uo)A{j(uo)) -  AapD{j(u0)). 
0 =  a2 9(u0)Au.

Notice that the equation (5.17) can be written as

(5.17)

(L +  K )u  =  5asN{j{u0)) +  a 2 6 (u0 )A(j(u0)) +  q?0{uo)Au
- \a p D ( j(u 0 ) )+ K (u ) ,  (5.18)

and since L + K  is a G-equivariant isomorphism, (5.18) is equivalent to

u =  (L +  K)~l 5aeN(j(u0)) +  a 2 Q{u0)A(j(u0)) +  cr9(u0)Au

-A apD{j{u0)) + K{u) . (5.19)

Consequently, the equation (5.19) can be represented as the system of equations

u 0 =  8 a£L~lN(j{u0)) +  c^9{u0)L~lA{j{u0)) -  Aa pL -l D{j{u0)) ^  ^
u = a2 9(u0)Au + u.
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We define G(a, 5, •, -) : R x H 0 —*■ H 0, by

G(a,5,\,u0) := 6 asL 1N{j(u0)) + a2 6 (u0)L lA{j{u0) ) - \a p L  1D(j(u0)), (5.21)

and G(a, 6 , -, •) : R x H —► H, by

G(a, 5, A, u) = (u +  a2 9(u0)A(u), G(a, 5, A, u0 , u = u + u0, u G.V, u0 e  M0.
(5.22)

Clearly, G(a, 6 , A, u) is a completely continuous (?-equivariant map.

R em ark  5.3.1. Notice that, the original van der Pol equation (5.11) corresponds to 
the case A =  0 and 5 = 1 , except for the nonlinear factor 9{u0) in (5.17). However, if 
IÎ oIIho > M, then 9{u0) =  1 so the solution u0 of (5.17) is also a solution of (5.11).

R em ark  5.3.2. In the case of one free parameter, the simplest equivariant maps 
(needed for the computations of the equivariant degree) turn out to be the so-called
basic maps, which on the isotypical components have a form

b(\,v) = ^1 — ||u|| -i- ipX^v, A 6 R, p > 0. (5.23)

In section 5.4, we will show that the term —AapL~l D(j{u0)) in the system (5.20) 
corresponds to the term i3Xv in (5.23), while (1 — ||u||)u corresponds to u0 — 
a2 9(u0)L~1A(j(u0)), i.e. the basic maps (5.23) “emerge” from the “linearized sys­
tem”. However, the “linearized system” can not be connected by an admissible 
homotopy to the original van der Pol system! The “breaking” of the homotopy 
occurs for those solutions u0 with | | u 0 | |h 0 = which axe in fact the solutions of 
the original van der Pol system, so the existence results still can be obtained (see 
section 5.5).

We define

ft := {(A,u) € R x H | A e  (-A 0, A0), m < | | m 0 | | e i o  < M, j | u | |  <  1},

ft0 := {(A, u0) e  K x i 0 | A 6 (—Ac, A,,), m < 11^1^ < M},

B(0,1) := { » e v |  | |» | |< i} ,

where u = u +  ua, u0 G H0, u E V  and the constant A0 > 0 is a fixed number, 
which will be specified later. Notice that the set ft is a product of ft0 C M x M0 and 
B (0,1) C V. The boundary 9ft0 is composed of three parts

dm ■= {(A,Uo) E fto | !|w0||ho =  m},
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d0 {(A,u0) G Qo I |A| — A0}.
It is possible to show that for appropriate values of a  and M, the homotopy 
G(a, 6 , A, u0) with respect to 5 E [0, (where SQ will be chosen to be large enough) 
has no fixed points in dm U d0. Notice that for 5 =  0 the equation (5.20) can be 
written as

u0 =  a2 9{u0)L~l A{j{u0)) -  AapL~l D{j(u0)): uQ E H0. (5.24)

In addition, the equation (5.24) has no solutions in 8 m- Let us put

T ( \ ,u ,u 0) =  (u + cr8(u0)A(u),a?9(uo)L~lA(j(uo)) -  AapL~lD(j{u0)))
E V  x  M0. (5.25)

It is possible to show that the primary equivaxiant degree

G-Deg (Id -  T , Q) = nH (H), (5.26)

is different from zero. In the next section we will reduce the computations of (5.26) 
to studying the equivaxiant degrees of the basic maps related to irreducible T- and 
G-representations.

On the other hand, it is possible to apply a G-equivariant homotopy Id —
tf(s, A,u). s e  [0,1], to the map Id -  G(a, 5OJ A, u), where

u — ^(0, A, u) = u — G(a, 50, A, u) for (A ,u)gQ , 
u — \l/(s, A, u) 0, for (A, u) £ 8 Q,.

and the map Id — ^ ( l ,  •, •) satisfies

G-Deg (Id -  \&(1, •, •), Q) =  0.

By using the standard argument, it will follow that for every orbit type (H0) in Q 
for which is different from zero, there exist 5 > 0 and uq g 8 m satisfying

—u0 =  6 as(ul -  a)ii0 +  a 29(u0)Cu0 -  Aapu0, u0 (t) G V
U 0 ( t  +  7C) = — U 0 ( t ) ,

and having a symmetry at least H0. Since u0 G 8 m, we have 9(u0) =  1, so u0 is a 
solution of the equation

—u0 =  5ae(u2 -  a)u0 +  a 2Cu0 — Aapu0, u0 (t) G V
u0{t +  7r) =  - u 0(t).
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D efinition 5.3.3. Let V  be a finite-dimensional or Banach representation of T x S 1 

and let Vo be the G-invariant complement of V s1  in V. We will call an orbit type 
(H ) in V  to be dominating, if (H) is a maximal isotropy type in Vo\{0} with respect 
to the usual order relation.

5.4 Computations of the Equivariant Degree: Re­
duction to Basic Maps

In this section we reduce the computation of the G-equi variant degree G-Deg (Id — 
T , Cl), where T  is defined by (5.25), to the computation of the degrees of basic maps.

5.4.1 Finite-D im ensional Reduction
We, first, study the solution set for the equation

wc =  u0) ■<=*> u0 =  a 29(u0 )L~1A(j(u0)) -  AapL~lD(J(u0)), u0 e  H0
(5.27)

(in particular, we will show that the solution set is finite-dimensional). The above 
equation (5.27) can be rewritten as follows:

u0 -h a2 9(u0 )Cu0 -  Xapu0 =  0, u0 (t) e V
Uo(t + 7r) = —u 0 (t).

Since the matrix G is nonsingular, symmetric and T-equivariant, it is diagonalizable 
and every eigenspace is a T-invariant subspace. Let a(G) =  {/rs} denote the spec­
trum of G and assume that for every v £ V  we have a decomposition v = Y^s vs. 
where vs is an eigenvector corresponding to the eigenvalue /j ,s . Then, we can split 
the system (5.28) into

ils +  a 29{u0)ixsus -  Xapus =  0, u0 =  u* ^  9g^
Us(t +  7r) =  —lts(t).

Since (5.29) is a system with constant coefficients, it follows that (5.29) has 2tt- 
periodic solutions us satisfying us(t +  7r) =  —us(t) if

a 29(u0)iJis =  (2r -  l)2 and A =  0 (5.30)

for some r  =  1 ,2 ,3 ,  By construction, the function u 0 lives in therefore
9{u0) G (0,1) (see the definition of $(•) and requirements on Q0). From this it
follows that (5.30) can be satisfied only if

Us > -K > 0- (5.31)
O r
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By the same argument, the requirement for possible values of a  should be

a   ̂ for all fis, r  =  1 ,2 ,3 ,----  (5.32)
v s

Bearing in mind the isotypical decomposition of H0, formulae (5.13) and the second 
inequality from (5.31), the solution set to (5.29) satisfies the following equations in
e o:

9(u0)fj.sa2 .
^s,r ^  USyr — 0, (o.33)

where r  =  1 ,2 ,3 ,... and us r̂(t) = ê 2r~1')lt(xr+iyr), for some ^-eigenvectors x r and 
yT of C. Thus (5.30) and (5.33) give rise to anon-zero solution for (5.29) if (5.31) and
(5.32) are satisfied. In particular, since there are only finitely many such r  > 0, the 
solution set to (5.33) (and respectively, to (5.29)), is finite-dimensional. Combining 
the above argument with the suspension property of the equivariant degree, one 
obtains that G-Deg (Id — F0, fl0) =  G-Deg (Id — F0 , Qi), where

F0(A,u) =  cc29(\\v\\)Av + XTv, (A,u) 6 l x [ / ,

U is a, finite-dimensional G-representation such that US1 = {0}, Qi =  Qq fl (R x U) 
(see Figure 5.5), A  : U —s- U is a G-equivariant nonsingular linear operator with 
spectrum

g ( X ) = { ( 2 r - V ; r  =  1' 2> " " t ’ ^

The Hnear operator T  : U —>■ U is diagonal with respect to the eigenvectors of A, 
with all its diagonal entries being positive multiples of i. Notice that since A  is 
G-equivariant, one may consider A  as a complex linear operator. In particular, the 
set (Id — i ro)-1(0) D is composed of finitely many 5 1-orbits S 1(^o)! • • •;

5.4.2 Isotypical Decom position and Basic M aps
In order to compute the G-degree G-Deg (Id — Fo,0,i), we need to consider the 
following S l-isotypical decomposition of the space U:

U = U\ ® U2 © • • • © Ok,

where Ui denotes the isotypical 5 ’■-component of U with the Fraction given by 
the complex multiplication ( 7 ,  v) t—> 7 ’ • v, ( 7 ,  v) € S l x U[, and the product 
denotes a complex multiplication. Every subspace Ui is invariant with respect to 
the T-action. We can consider the T-isotypical decomposition of Ui, which w-e denote 
by Ui =  Uq,i © Uij © • • • © 0\i, where each of the components Ujti, j  = 0 , . . . ,  k,
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Figure 5.5: The set fii

is modelled on the complex irreducible F-rep resent at ion Vj, j  = 1. .. . ,k ,  and Vq 
being the trivial representation of F. It is clear that the space VJ equipped with the 
above F x S 1-action is a real irreducible representation of G = F x S 1, which we 
will denote by Vjj. Consequently, we obtain the following isotypical decomposition 
of the space U with respect to the G'-action:

U = ^ ^ U j ti. Ujj modelled on 
ii

For an orthogonal irreducible representation Vjj of G = F x S 1 such that Vj/ 1 = {0}, 
we put

o  = j(A,u) e E x  VjU : ^ < \\v\\ < 2 , -1  < A < 1}.

The simplest (9-admissible map is b : O —► Vjj, by

b(A, v) = (1 -  ll̂ ll + iX) - v,

where (A, v) s i x  Vjj. Notice that b(A, v) = 0 if and only if 1 — ||u|| + iX = 0,
i.e. A =  0, ||u|| =  1. In what follows, for every G'-irreducible representation Vjj, on 
which S 1 acts non-trivially, we denote by (b, O) the so-called Vjj-basic pair, and we 
define

degv .; =  G '-D eg (b ,0 )eJ41( r x S 1).

Similarly, let Vj be an irreducible representation of F and Bj be the unit ball in Vj. 
The simplest (in some sense non-trivial) £>j-admissible map is —Id : Vj —• Vj, which 
we denoted by (—Id.B j)  the so-called Vj-basic pair. We put

degv . :=r-Deg(—I d , ^ ) 6 .4 ( r ) .
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5.4.3 Product Formula
Return to the computations of G-Deg (Id — F0,Qi) and, respectively, G-Deg (Id — 
!F, ft) (see (5.25)). Let £ £ c(A) be an eigenvalue of the G-equivariant linear operator 
A : U —»■ U. Then the eigenspace E{£) =  {v  £ U : Av =  is a G-invariant 
subspace of U. Clearly, the subspace E(£) can be represented as the direct sum of 
its G-isotypical components

E (0  =  © % (£ )>  E jM )  modelled on Vjti.

We will call the number

:= dimEjjffi/dxmVjj,

the Vjj-multiplicity of the eigenvalue £. Consider the T-equivariant map Id — F : 
V  —»• V, (Id — F)(v) =  —q t 9 ( v 0) C ( v ) ,  v  £  V  (cf. the second equation in system 
(5.20)). Let B =  B ( 0 . 1) in V. Then the T-equivariant degree T-deg(Id — F,B)  £ 
4(T) can be computed as follows: for every eigenvalue p0 6 <?{C) such that fi0 > 
we consider the T-isotypical decomposition of the associated with (j,0 eigenspace 
E(p0) = @ Ej(po)-  We put 

j

rij(fi0) = dim Ej(jj,0)/dim  Vj.

Then we have , %
—  T T  /  \  ^ j \ f * s  )

r - d e g ( I d - F ,£ )  =  n ( deSv,)
j'S

where the product is taken in the Burnside ring A(T) and we assume that ( degv.)° = 
(T)1.

Define Id -  F  : R x  V x U V  x  U by 

(Id -  F )( \ ,v ,v )  =  a 29(v0)C(v),v -  a 2 Q(v)Av -  XTv'j, (X,v,v) £ R x V x U,

and put n 2 =  ^ n ^ R  x V  x U^. By the argument given in subsection 5.4.1, 
G-Deg (Id — E, ft) =  G-Deg (Id -  F ,ft2). In the statement following below, we 
present the result for the computation of G-Deg (Id - F , f t 2)

1Notice that we always have ( degVv ) =  (T)
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P ro p o s itio n  5.4.1. Under the notations of previous subsections we have

G-Deg (Id -  F, Sk) = n  ( degy, ) "* E E  njAO  degy,-.,
£€f(.4) j,l

(5.35)

where the product denotes the .4 (r) multiplication on the Z-module .4 i(r x S1) 
generated by the twisted orbit types (H) inT  x S 1.

Proof: By using the homotopy invariance, we can modify the operator A  (using
a small perturbation) in such a  way that each eigenvalue £ G a (A) is “simple”, i.e. 
there exists exactly one (j.l) such that n3ti (£) =  1. Let us consider an eigenvalue 
£ G a (A) and suppose that E(f) = Ejti(f) for some isotypical component Ujj. By
(5.33), for every eigenvector v G Fj,z(0 we have that (Id -  F0)( \ ,v )  =  0 if A =  0 
and o20(u)£ =  1. Put K3-,i(0 = (Id -  F*,)'1̂ )  n ^  n E ^ ) .  The sets Ku (0  
are compact and it is possible to separate them by choosing small open G-invariant 
neighborhoods %/(£) in E  x U. Notice that for every neighborhood %,;(£) the map 
Id -  F0 is G-homotopic to a map, which is normal to Ehi{£). Consequently, by the 
additivity and suspension properties of the G-equivariant degree, we obtain

G-Deg (Id -  F0, fti) =  2 3  G-Deg (Id -  F0, fy,i(f))

= ^ 2  G-Deg ((Id -  F0)|£^(£), Q̂ (0 n EjACl) ■

On the other hand, it can be easily verified that the map (Id -  Fc)|£v I(̂ )noj ^  
is G-homotopic to a basic map on V j j , .  This reduction to basic maps is fundamental 
for the computations of the primary degree. Consequently,

G-Deg ((Id -  F0)\EiA® ,tyA Q  n  EjAO) = deSw,j •

Therefore, by applying the homotopy and additivity properties again, wre get 

G-Deg (Id —F , n , ) =  Y ,  E % ' ® deSv,.,-
fSo-(A) j , l

On the other hand, since Id — F  is a product of two maps Id — F  : V —*■ V 
(T-equivariant) and Id — F0 : E  x U -+ U (G-equivariant), it follows from the 
multiplicativity property (section 4.2) that

G-Deg (Id -  F, Q2) = T-deg (Id -  F, B) ■ G-Deg (Id -  F0, fij).
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Finally, since the map Id — F  =  - a 29(v0)C : V ^ V  (notice that since 9(v0) > 0, 
we can simply consider it to be equal to 1) can be represented by a diagonal-block 
matrix on the eigenspaces of C, one has

and the result follows. □

5.5 Existence of Symmetric Periodic Solutions in 
Van Der Pol Systems

Let us recall that we consider the space V  =  R”, a group T C and a n n x n  
non-singulax matrix C commuting with the T-action on V. Throughout this section 
we continue to keep the same notations as in section 5.3. We consider a solution 
to (5.10) as a function living in the (7-space H =  V  x H0, where G = F x S 1, V  is 
identified with the F-space of constant functions.

As it was indicated in section 5.3, in order to provide the equivariant degree 
treatment to system (5.10) (see also (5.11)), one needs to obtain a priori estimates 
for the solutions.

5.5.1 A  Priori Estim ate
The required a priori estimates are provided by the two lemmas following below.

L em m a 5.5.1. There exists an increasing function m : R + —*■ R+ such that for each 
S € (0,1], a € R+ and for each solution u £ H0 of the system

Proof: Let us fix a  € R+ and S 6 (0,1] and assume that u  is a solution of (5.36). 
Bearing in mind that C is symmetric and using integration by parts we have

u +  6 ae—F(u) + a2Cu = 0,dt
(5.36)

where F  is given by (5.9), we have

I N I *

and (5.37)
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Thus, by multiplying (5.36) by u and integrating over [0, 2tt] we obtain that

0 =  J  (u + 5 a s^F (u )  + a2Cuj • udt

/•27T
=  5as / (u2 — a)ii • u d t

Jo
f*27T

.2 ^  -2=  8 ole J  [u • ii — au» uj dt.

Therefore,
/•2t  r2-K

/  u2 »u2dt = /  au*udt  = a\\u\\\. (5.38)
Jo Jo

Since for u  E H0, u(t) =  - u(tt + 1 ), for each component uk(t) of w(£), there exists
s fc E [0,27r] such that uk(sk) =  0. Consequently, using integration by parts one
easily obtains for every t  E [0, 2t>] satisfying t > sk:

u2k(t) < i f  lufcttfcl dt < 2 f  \ukuk\dt. (5.39)
J Sk Jo

Using (5.38) and (5.39) one obtains (by the Cauchy Schwartz inequality)

r 2 tt n  p 2 r   / r 2 ir ^  2

||u||| = j  u » u d t  < 4 7 r ' ^ 2 j  \ukuk\ dt <  4 x V '2 m r  i ^ j  u2 9u2j  dt

= 2 2 TT^y/na\\u\\2

On the other hand, if we multiply (5.36) by u and again integrate over [0, 2t t ],  we 
get

F2̂  f  d \
0 =  J \il + 5ole—F(u) +  a2Cuj »udt

= — J  u » u d t  — S ole J  — • u d t  + a2 J  Cu » ud t

< - | | u | | 2  +  a 2 ||C'|| M l ,  

where ||C|| denotes the operator norm of C. So, we obtain

N i22 < a 2| |C | |H 2. (5.41)

1 2 2
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Then, by (5.40) and (5.41), we get

||u ||| < 2 ^7^^^/an\\u\\2 < 2=7^ y/ana\/\\C\\ ||u||2

so
IMh < 2 2 7 T2 ay/na\\C\\ and ||u||2 < 2=7r2a2||C ||v'ria. (5.42)

Notice that if u £ H0 is a solution to (5.36), then it is clearly of class C2. By 
multiplying the equation (5.36) by u and integrating it from 0 to 2tt we obtain by
(5.37) and (5.39)

/>27T
\\u\\l < das / u2 (t)u(t) • u(t)dt +  a 2 \\C\\ ||u|

< 2do;£||u||2||u||i||ti||2 4- a 2||C|| ||u |||,

so

(5.43)

w||2 < <Jqc||w||2||u||2 +  J  {das|M|2||u ||l)2 +  a 2||C ||||u||l

<  2<5at||u||2||u||2 + Q\/jiC|[||u||2.

Since the norms ||u||2 and ||u||2 are bounded, it follows from (5.42) that

||ii||2 < 2T7rfda6s||C ||l(na)i +2l7riQ 3V ^ ||C ||§ .

Therefore, it is to observe that

IMIe. < m(a),

where

m(a) := 2§7r§aN/^ i jC |I ( l  +  a||C ||s + 2 6 nZSa5£\\C fna  +  a 2||C||).

Notice that m(o;) is clearly increasing. □

Lem m a 5.5.2. For every a  > 0 there exists di(o) > 0 such that the equation (5.36) 
has no non-zero solution in H0 for all a £ (0,5) and 5 > 5i (5).

Proof: Fix 5 > 0 and take a £ (0, d). Let m(-) be a function provided by Lemma
5.5.1. Let u £ H0 be a solution to (5.36). By multiplying (5.36) by u and integrating 
it over [0, 2tt] , we get

/•2r
0 =  (fos / {u2 — a)u • udt. (5.44)

Jo
Combining (5.44) with the condition u(t + tt) =  —u(t) for all t, and using the 
standard continuity argument, one can find t0 £ [0,2tt] and k £ {1,2,... ,n} such
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that Uk{to) =  Va and Uk(tq) < 0. Notice, in particular, that ||ii||oo > %/a. Since 
w(f) =  —u(t — 7r), u(t) = —u(t — 7r), and F(u) is an odd function, we have

r t 0 /  J  »

0 =  / (u  -i- (Jas—F(u) +  orCu)dt 
Jta-Tz ^ dt )

= u(to) — u(to — 7r) +  6 aeF(u)

rio
= 2u{to) + 25a£F(u(to)) F a 2 Cudt. 

Jto-TT
Consequently,

0 >  Uk(to)

to

to—It
■to

Jf t o
C udt

to—TT

v2 rlo

> a

> Q;

|d c a i -  £  r  
.3 2 y£o_r

|<5ea§ -  I^IICIH Iull

(Cu)kdt

Ill'll IK*) ||oo dt

> aHo fea i -  ^v/7r|!C'||ra(S)3 ”  5

where ||w(t)||oo stands for m ax{|ui(t)|,. . . ,  |u„(t)|}. Therefore, it is sufficient to take

3a v /7r||C'||m(a)
4saz

□

5.5.2 Existence Result: Formulation
Take a function m : 1R+ —»■ M+ provided by Lemma 5.5.1 and let a > 0 be a fixed 
number such that a 2 #  (2r~^2 for all G a (C) and S ( a )  :=  | / z  G cr(C) | /x >  ^

0. Let J  : H0 —> C(S1;V ) be the natural injection. We choose m  > 0 such that 
m < p | .  Then for every u G H0 such that ||u||Ho < m  we have

I M l o o  =  l l - W I U  <  || J\\  H u I I h .  <  l l ^ l l m  <  V a .

Notice that for any solution u of the equation (5.11) we have | | u | | o o  > \Z& (see the 
proof of Lemma 5.5.2), thus there is no solution u such that Utilise =  m. Next, we 
choose M  > m(a) and the numbers AD and 6 0 to be large enough in order to have

50 m 2 |  
m(o:)2 J ’
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Next, we define Cl, Cl0, dm, 8 m and 8 0 according to formulas in subsection 5.3.4.

We are now in a position to formulate the existence theorem providing a general 
framework for the classification of periodic solutions to (5.2) according to their 
symmetries.

(Of 1)̂
T heorem  5.5.3. Let a  > 0 be such that a2 —---------for all u £ er(C) and

V
r =  1 ,2 ,3 ,... and assume that S(o) := £ cr(C') I h  > |  Is not empty.

(i) Suppose that for a certain orbit type (H0) in Cl. the coefficient n ^ 0 of the 
equivariant degree (5.26) is non-zero. Then the van der Pol system of equations
(5.10) has a Ina-periodic solution u such that GUD H0.

(ii) I f  in addition, the orbit type (H0) is dominating, then the system (5.10) has
at least \G/H 0 \ŝ  different Tna-periodic solutions, where |A'|si stands for the
number of different S 1-orbits in X .

Proof: (i) The idea of the proof of the first part of Theorem 5.5.3 is based on the
following fact: Let Id — IF1 be a homotopy of two equivariant maps Id — J70 and 
Id -  T l such that G-Deg (Id — IFfCl) =  J2njH(H), j  = 0 ,1. Ifn°Ho f- n lHo, then 
there exists to £ (0 ,1) such that the map IF10 has a fixed point in dClHo. We present 
only a sketch of the proof. For more details see [27].

Let _
S 0 := |(A, u) : u =  G{a, 6 , A, u ) for some 6  £ [0, £0] j ,

where G (a,6 ,-,-) : R x —► M0 is defined by (5.21). We can show that

S0 n  (do U =  0 .

Notice that if (A, u) £ S 0 n 8 m, then 9{u) =  1 and 5 -r A > 0 and (by Lemma 3.5 in
[27]) the function w = satisfies the equation

w + ( 6  + X)ae{w2 — a)w -I- cfiCw =  0. (5.45)

In particular, that means the function w is a 27r-periodic solution of equation (5.11) 
with e replaced by (5 +  A)e.

Following [27], define the parameterized nonlinear operators Fs : V  —»■ V  by 

Fs(u) := -  (1 -  s)au, s £ [0,1],
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and consider the following family of parameterized differential equations

—u =  d0a s^ F ${u) +  ard(u0)Cu — Xaeaii, u(t) 6  V', 

u(t +  7r) =  — u(t).

Again, we can reformulate the above system using the setting in the functional space 
Ho- We define H (a,s,-,-) : l x  H0 —*■ by

H(a, s, A, uo) := 6 0aeL~lNs{j{uQ)) + a 2 &(uo)L~1A (j(u0)) -  XasaL~lD(j{uo)), 

and H(a, s, •, •) : R x H —»• H, by

H(a. s , A, u) = (u + a 2B(u0 )A(u), H(a, s, A, u0)J , u = u +  ua, u € V, u0 G H0.

where

Ns^  = = It ( ^ 3 s^u) = ~ ^ u e Mo-
The map Id — H(o>,s,-,-) is a G-equivariant homotopy. Using Lemmas 5.5.1 and
5.5.2, one can show that:

(a) the homotopy Id — H (a, s.-. •) has no zeros in the set d0 U dm:

(b) the map Id — H(cx, 1, •, •) has no zeros in f20 (in particular, by the existence 
property of the G-equivariant degree, G-Deg (Id — H(a, 1, •, •), fl) =  0).

Next, we can define the following G-equivariant homotopy Id — T(r, •, -) by

x > (G(a,2rS0 ,X,u), for (A ,u )eD , r  £ [0, A] ,
(r, for (A,u) € H ,  r € [ i , l ] .

As it was explained in section 5.4, the solution set to the equation (5.33) is non­
empty only if conditions (5.31) and (5.32) axe satisfied. Therefore, these conditions 
are necessary for the equivariant degree to be different from zero. Assume (according 
to the Theorem 5.5.3 conditions) that nHo #  0. Suppose that u -  &(r, A, u) =£■ 0 for 
all (A, u) £ 80.. Then, by the homotopy property of the G-equivariant degree, we 
would also have that the (Lf0)-coefficient of G-Deg (Id -  H(a, 1, -, •), 0 o) is non-zero, 
what is impossible. Since for u — u+u0 € V  xH 0, the equation u =  $ (r , A, u) implies 
that - a 2 8 (u0)C(u) =  0, thus u =  0, therefore, there exists (A,u) =  (A,u 0) e  80o 
such that u =  T(r, A, u) for some r  € [0,1]. However, the equation u — ̂ ( r , A, u) = 0 
has no solution u  in d0 Udm. Consequently, it has a solution u in 8 m- By applying a 
standard transformation, we obtain a solution for the equation (5.11), for the value 
of s replaced by another (appropriate) value, with the period equal to 2tt.

(ii) Assume now that (H0) is a dominating orbit type. Then, we obtain the 
existence of at least \G/H0\Si different 27r-periodic solutions. □
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5.6 Conclusions and Applications
In this section we will show how the existence Theorem 5.5.3 in combination with the 
computations related to the basic maps and the equivariant degree product formula 
provided by Proposition 5.4.1, allow us to study symmetric periodic solutions to 
concrete van der Pol equations. In particular, we will discuss the examples 5.2.1,
5.2.2, 5.2.3 and 5.2.4

Let us recall that for each of the discussed systems of van der Pol equations, we 
have the following associated G-equivariant degree (G = T x S 1):

G-Deg (Id -  ^(0 , -, •), H) =  Y ,  nL ^ ’1),

where (L9,£) are the generators of Ai(T x S1), I c T ,  and T  is given in (5.25). Al­
though the entire value of the degree G-Deg (Id —1^(0, •, •), Q) should be considered 
as the equivariant invariant classifying the solutions of the corresponding equations, 
in order to simplify our exposition, we will restrict our computations to the coef­
ficients nLV,i , which will be called first coefficients (the corresponding part of the 
eqivariant degree will be denoted by G-Deg (Id — d(0, •, •), Q)i). As it follows from 
Theorem 5.5.3(i), if nL*,i 0, then system (5.11) has at least one periodic solution 
u with symmetry Gu D  I d 1. However (see theorem 5.5.3(ii)), only dominating orbit 
types occuring in eigenspaces, relevant to suitable eigenvalus of G, give a possibility 
to estimate a precise number of periodic solutions with the corresponding symmetry.

In addition, we will assume here, that the value of the parameter a was al­
ways chosen in the most favorable way, i.e. the set E(a) contains all the positive 
eigenvalues of the matrix G.

5.6.1 Conclusions for the Dihedral Group Djq

Let us consider again the system describing the ring of identical van der Pol oscilla­
tors, which was discussed in Example 5.2.1. This system has the group of symmetries 
T =  Dn. Let us describe explicitly the Lfy-action on V = R-v . its isotypical de­
composition and the spectrum of the linear operator C. We denote by £ := e ^ " 1 the 
generator of Zs-  Notice that £ acts on a vector x = {xq.Xi, . . . ,  r.v_i) by sending 
the k-th  coordinate of x to the k+ l  (mod N ) coordinate. It is convenient to consider 
this G,v-action on the complex space U := CN. Notice that we have the following 
Z^r-isotypical decomposition of U

U = Uq © U\ ® • • • © U s-1,
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oA

degv, degVj.i
j  =  0 - ( D n ) (Dn ) |

0 <  j  < N/2 
m is odd

(Dn ) ~  2(1)/,) 4- (Zk) (Z%) +  (Dh) +  ( D i ) - ( Z h)

0 <  j  <  N/2 
N  is even and to =  2 (mod 4)

(DN) - ( D h) - ( D k) +  (Zh) ( Z % ) - r ( D ^ ) - ( Z 2 h)

0 < j  < N/2 
N  is even and m =  0 (mod 4)

(Dn ) -  (Dk) -  (Dh) +  (Zfc) ( Z % ) + ( B * h) - ( Z 2h)

j  =  JN +  1 
N  is even

{DN) - { D » ) (D%)

Table 5.1: Values of degv. and degVl corresponding to Aj  > 0, where j.\- = [(.V 4- 
l)/2], h = gcd(N ,j) and m  =  N /h.

where Uj =  span ((1, Since k sends Uj onto U-j (where —j  is
taken (mod N)),  thus the .D.v-isotopical components of U are

Uo = U0, Uj Uj ® U-j, 0  < j  < N / 2 ,

and, in addition, if N  is even there is also the component

Ua := Ln .
2 2

It is easy to check that the isotypical component Uj, 0 < j  < N/2,  is equivalent 
with the irreducible representation VJ of -D.v, and Un (for N  even) is equivalent to 
VJvH_1. The subspace Uj is also an eigenspace of the matrix C corresponding to the
eigenvalue A j := c-f2d cos We put S  (C) := |A j | Aj  > 0 j .  Then by Proposition 
5.4.1 we have:

G-Deg (Id -  ^ (0 , •, •), =  [ J  deSv3-
A,-6S(C)

de§v,a
X,€S(C)

(5.47)

Moreover, for an eigenvalue Aj > 0 the values of degVj and degVj 1 are listed in Table
5.1, where h =  gcd{j, N).

Let us illustrate these results for the particular cases IV =  3, 4 and 5.

In the case N  = 3, the spectrum c(C) of the matrix C  is |Ao =  c+ 2d, Ai =  c—d j  
and the dominating orbit types (occuring in V°) are (Z|), (D3) and (Df). If a
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coefficient n i  is standing by a dominating orbit type, then there is an orbit of 
periodic solutions of the system (5.3) composed of exactly \G/L\s^ periodic solutions. 
In particular, for the orbit type (Z|) there are 2 distinct periodic solutions, for 
(.Df) there are 3 periodic solutions, and 1 periodic solution for (Df). If ri£>3 =  0, 
then still one more periodic solution can be detected as long as t- 0 for some 
(L) < (Df). The number of periodic solutions for the equation (5.3) in the case 
N  — 3 is summarized in the following table:

P o ssib le  C ases for N  — 3

E(C) G-Deg (Id Minimal of Solutions
0 0 0

{,c - d } ( Z |) - ( .D r ) - ( D i )  +  3(Zi) 6
{c +  2d} ~ ( D f 1

{c +  2d, c — d} - (Z t3) +  ( D f ) - ( D 3) +  3(D1) - 2(Z1) 6

In the case N  = 4, the spectrum a(C) of the matrix C is |Ao = c +  2d, Ai = 

c, A2 =  c—2d j1 and the dominating orbit types (occuring in V c) are (Z f ,  {Df), {Df),

{Df) and ( D a ) .  For the orbit type (Z\) there are 2 distinct periodic solutions, for 
{Df) there is 1 periodic solutions, for {Df) and {Df) there are 2 periodic solutions, 
and there is 1 periodic solution for (Df). We also have' 2

degVo =  —(Df), degVl =  (Df) — (Di) — (D\) 4- (Zi), degVa = ( D f ) - ( D 2) 

degv0,i =  ( D a ) ,  degVii =  ( Z f  + (Df) + (Df) -  (Z j), degv-3a = (Df).

The number of periodic solutions for the equation (5.3) in the case Ar =  4 is sum­
marized in the following table:

2* Notice that for N  =  4 we have D f  =  D f  (cf. Table 5.1).

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Possible Cases for N  = 4

S (C) G-Deg (Id - ^ ( 0,- ,- ) ,A i Minimal #  of Solutions
0 0 0

{c + 2d} - ( A ) 1
{c — 2d} (A) 1

{c +  2d, c} -(Z i)  -  (Di) -  (Di)  -  (A )  + (A") +  (A) +  (A *) 
+ 2( A )  +  2( A ) - 3(Zi)

7

{c -  2d, c} (A) +  (A) +  (£>2) +  ( Z I )  + (A~) -  ( A )  -  2( A ‘ )
- 2( A )  -  ( A )  -  ( A )  -  2(ZT) +  3(Zi)

8

{c -f 2d , c — 2d, c} - ( A )  -  (Di) -  (Di)  -  (Di) -  (Zi) + 3(A )  
+(A) +  2( A )  +  2(A ) +  (Z2- )  -  4(Zx)

S

In the case N  =  5, the spectrum cr(C') of the matrix C is |Ao =  c +  2d, X\ =

c + 2 d ^ ^ ,  X2 =  c — and the dominating orbit types are (Z51). (Z52), (£>5)
and (AO- We have the following equivariant degrees of the basic maps related to 
the eigenspaces of C

degVo = —(A), degVl = (£>5) — 2(A) + (Zx), degVa = (A ) — 2(A) + (Zi) 
degVoj =  (A), degVu =  (Z*‘) +  (Df )  + (A) -  (Zi), 

degv„  =  (Z£) + (A) + (A) -  (Zi).

For the orbit types (Z51) and (Z52) there are 2 distinct periodic solutions, for (A ) 
there are 5 periodic solutions, and 1 periodic solution for (A)- The number of 
periodic solutions for the equation (5.3) in the case N  =  5 is summarized in the 
following table:

P ossib le  Cases for N  =  5

E(C) G-Deg (Id - m - , - ) , A i Minimal #  
of Solutions

0 0 0
{c  +  2d} - ( A ) 1

{ c - 2 d ^ } ( Z | * ) - ( A ) - ( A )  +  (Zx) 8

j c  +  2d ^ , c - 2 d ^ - } (Zt51) +  (Zi=) +  2(D i) +  2 ( A ) - 2 ( Z 1) 10

j c - r 2 d ^ - , c  +  2d} - ( Z i1) +  (A )  -  (A )  +  3(A )  -  6(Zi) 8

j c  +  2d, c +  2d ^ ,  c -  2d ^ F 1 } -(Z g1) -  (Z i3) -  ( A )  -  2( A )  -  2(A )  +  2(Zi) 10
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5.6.2 Conclusions for the Tetrahedral Group T

Let us consider the system of van der Pol oscillators with the tetrahedral symmetry 
group, which was studied in Example 2.2. Here, the tetrahedral group A4 acts on 
the space V  =  R4 by permuting the coordinates of vectors. The subspace Vo of the 
fixed-points of this action is spanned by the vector (1, 1, 1, 1), and its orthogonal 
complement V3 is the natural three-dimensional representation of A4, which was in 
section 6 denoted by V3. These two subspaces are the eigenspaces of the matrix C: 
the subspace Vo corresponds to the eigenvalue c +  3d and V3 to the eigenvalue c — d. 
The dominating orbit types in V c axe (.44), (Z31), (Zy), and (VT). For non-zero 
first coefficient corresponding to the orbit type (A4) there is at least one periodic 
solution, for (Z31) or (Z|2) — at least 4 periodic solutions, and for (V4~) there exist 
at least 3 periodic solutions.

In order to compute the equivariant degree A4 x S'1-Deg(Id — ^(0,-,-), Q)i, we 
apply the computational formula (5.47). Depending on the set S(C), we need the 
basic degrees: degVo G A(A4) (if c +  3d > 0), degree degv-3 G A(A4) (if c -  d > 0), 
degVoi G Ai(A4 x  S 1) (if c +  3d > 0), degV34 G Aj(A4 x S 1) (if c -  d > 0). The 
related to this formula basic degrees are presented below:

Rep. Basic Degrees degVi or degVj 1 Eigenvalue of C

Vo -(A O c +  3d >  0
v3 ( A O -  2(Z3) -  (Z2) +  (Zi) c  — d  >  0

Vo,i (AO c t  3d >  0
V3 .1 (Z£) +  (Z32) +  (V4“ ) +  (Z3) +  (Zi) c — d >  0

By using the established multiplication tables for the A(A4)-module Ai(A4 x S 1), 
and applying the formula (5.47), we obtain the following first coefficients of the 
equivaxiant degrees A 4 x 5 1-Deg(Id — ^(0 , •, •), Q):

S(C) A4 x 5 1-Deg(Id -«r(0,-,-)»fi)i tt Solutions
c +  3d -(^U) 1

c — d ~(Zl') -  (Z‘i )  + ( V )  -  (Zs) -  m  +  2(Z,) 12
c + 3d,c — d ( P i )  +  P i )  -  (A,) -  (V4-)  + 3(Z ,) +  2(Zi) -  3(Z,) 12

5.6.3 Conclusions for th e Octahedral Group O
Let us discuss the system of van der Pol equations described in Example 2.3. Here 
we have the group S4 is acting on the eight-dimensional space V  := R8 by permut­
ing the coordinates of the vectors in the same way as the symmetries of the cube
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in R3 permutes the eight vertices of the cube. It can be easily verified, that the 
representation V  can be decomposed into a direct sum of four subspaces:

V = Vq © © Vj1 © tg",

where

K )=  span {(1, 1, 1, 1, 1, 1, 1, 1)},

Vi =  span {{1, - 1, 1, - 1, 1, - 1, 1, - 1) ,)} ,

Vi =  span {(1, 1, - 1, - 1, 1, - 1, - 1, 1), (1, - 1, 1, - 1, - 1, 1, - 1, 1),

( - 1, 1, 1, - 1, 1, 1, - 1, - 1)},

V i = span {(1, - 1, - 1, 1, 1, 1, - 1, - 1), (1, 1, 1, 1, - 1, - 1, - 1, - 1),

( - 1, - 1, 1, 1, 1, - 1, - 1, 1)}.

Notice that these subspaces are irreducible representations of S4, where V31 is equiv­
alent to the natural three-dimensional representation V3  of S4, and V i is equivalent 
to the another three-dimensional irreducible representation V4 of S4. The subspace 
Vo is the fixed-point space of the action of S4. The subspaces Vo, Vi, V3 1  and V32  are 
eigenspaces for the matrix C. Indeed, it is easy to check that:

Subspace Eigenvalue of C Type of Representation Dimension

V0 c “r 3d Trivial 1
V: c -  3d Representation Vi 1
V31 c +  d Natural V3 3
V32 c  — d Representation V4 3

In order to compute the equivariant degree S4 x 5'1-Deg(Id — T(0, •, •), fl), we 
will apply the computational formula (5.47). All the related to this formula degrees 
of the basic maps are presented in the following table:

Rep. Basic Degree degVj or degv ^ Eigenvalue of C

Vo - (S < ) c +  3d > 0
Vi (S4) - 2 ( D 4) c — 3d > 0
v3 (S4) - 2(D3) - ( D 2) +  3(Z>1) - ( Z 1) c - t  d>  0
v4 (S4) -  (Z4) -  (DO -  (Z3) +  (Z!) c — d >  0

Vo,i (S4) c +  3d > 0
Vi,i (S7) c — 3d > 0
V3,l (Df) +  (Di)  +  (D a) +  (Z|) -  (Z2") -  (DO +  (Z |) c +  d > 0
V4.1 (D\)  +  (Dd2) +  (Di) +  (Z |) -  (ZJ) -  (DO +  (Zi) c — d > 0
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Let us list the dominating orbit types: ( S f  (orbit contains one periodic solu­
tion), (Sf)  (orbit contains one periodic solution), ( D f  (orbit contains 3 periodic 
solutions), ( D f  (orbit contains 3 periodic solutions) , (D f  (orbit contains 6 periodic 
solutions), ( Z f  (orbit contains 6 periodic solutions), ((Z|) (orbit contains 8 peri­
odic solutions),(Z4 ) (orbit contains 6 periodic solutions) and ( D f  (orbit contains 3 
periodic solutions).

By using the above equivariant degrees of the basic maps, as well as the multi­
plications table for the .4 (S,4)-module .4i(S’4 x S’1) we obtain the following values of 
S4 x 5 x-Deg(Id — ^(0, •, •), Q)i, for all the possible distributions of the eigenvalues 
of the matrix C.

E(C) S4 x 5 1-Deg(Id - ^ ( 0 , - , -),^)i #  Sol.
c + Zd -(Si) 1

c — Zd (S-) -  2(Df 4
c + d,c + Zd - 4 (Df -  4(Di) -  4(Zf  -  4 (4 ) -  (S f  

-4(D 3 )+4(D1)+4(Z^)
18

c — d ,c—Zd - 2 (D f  -  ( D f  + ( D f  -  ( D f  -  2(1/4-) 
- ( Z f  + (S;) + 2(Df  

+(ZJ) -  (A f  + (Z4) -  2(Z3) + 4(Za) 
+(£>1) -4 (Z 1) + 5(ZJ)

34

c -  d,c-+ d,c+ Zd - ( D f - ( D f  + ( D f  + ( D f  
+ 2 ( D * ) - 2 ( Z l f - ( D f  

+(Z4) -  ( S f  A 3(Ds) + 2(D2) + 2 ( Z f  + 2(Z4) 
—3(Z3) -  3(Za) -  3(A )

+3(Zi) -  2(ZJ)

33

c + d, c — d, c — Zd - 2 (Dj) -  (D f  -  (D f  -  3(DI) + 2 (Df  
+ 2( D f - 4 ( V 4-) + 2(Zf  

-2(ZJ) + (S4 ) + 3 ( D f  + 2(Z4 ) -  (D3) 
+2(Z%) + (D f A (Zi)

+3(Z3) -  3(Z2) + (Pi) -  3(ZX)

36

c — Zd,c — d,c + d, 

c + 3d

2(D f + (D f + (D f + 2(Df  + 3(Df) -  2(Df  
- 2 ( D f  + 4 (V f ) -2(Zi )  

+2(Z3 ) - ( S f ) - Z ( D f - 2 ( Z 4 )
- ( SA) + Z(Dz) - 2 ( D 2 ) - 2 ( Z f  

—2(Z4) -  4(Z3) + 4(Zz) -  3(A ) + 4(ZX)

37
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5.6.4 Conclusions for the Icosahedral Group I
Finally we consider the system of van der Pol equations with icosahedral sym m etry  
group described in Example 5.2.4. Here we have the group A5 acting on the twentv- 
dimensional space V  := R20 by permuting the coordinates of the vectors in the same 
way as the symmetries in M3 permutes the vertices of the dodecahedron. It can be 
verified, that the matrix C, defined by (5.6) in Example 5.2.4 has the following 
eigenvalues:

c(C) := |Ao =  c +  3d, Ai =  c — 2d, Ao =  c +  d, A3 = c +  \ / 5dj-

and there is the following decomposition of V  into the eigenspaces of C:

V =  Vo © Vi © V£ © V3,

where Vo is a one dimensional subspace of V, with a trivial action of A$ (i.e. Vo = 
V As), and

V! — Vi © Vi, Vi — V2, V3 ~  V3 © V3, 

where Vi, Vi and V3 are irreducible representations of A5.

In order to compute the equivariant degree A 5 x 5 1-Deg(Id -  ^(0, •, •), V>)i, we 
will apply the computational formula:

G-Deg ( i d - * ( 0 ,  ■,•),«) =  f t  deS%
1 ^es(C)

S  deSv,a
x ,e s ( C )

(5.48)

where rrij denotes the “multiplicity” of the eigenvalue Aj ,  which is 2 in the case of 
Aj and A3.

We need the basic degrees degVj. 6  -4(A5) and degVj. l G Ai(A5 x S1) (in the case 
the eigenvalue corresponding to the irreducible representation Vj is positive). All 
the related to this formula degrees of the basic maps axe presented in the following 
table:
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Rep. Basic Degree degv . or degV l Eigenvalue of C

Vo -(A s) c +  3d > 0
Vi (As) -  2(A4) -  2(D3) +  3(Z2) +  3(Z3) -  2(ZX) c -  2d > 0
v2 (A s)-2 (D 5) - 2 ( D 3)+ 3 (Z 2) - ( Z 1) c -F d > 0
v3 (As) -  (Z5) -  (Z3) -  (Za) +  (Zi) c -f n/5 d > 0

Vo.i (-^s) c +  3d > 0
Vi,x (A4) +  (D3) + (Df) +  {VT) + (A)  +  ( 4 1) c -  2d > 0

+(Z |2) -  (Z2) -  (Z3) -  (ZJ)
V2)i (D5) +  (D3) +  (A41) +  (A*2) +  (Zf1) +  (Z52) -  2(Z*) +  (VT) C -r d > 0
V3,i m  +  (V4-)  +  (Df) +  (Z*) -r (Zf) -  2(Z,-) c + \/5d > 0

Let us list the dominating orbit types: (A41) and (A42) (orbit contains 5 periodic 
solutions), (As) (orbit contains 1 periodic solution), (V4- ) (orbit contains 15 periodic 
solutions), (Df) (orbit contains 6 periodic solutions), (Df) (orbit contains 10 periodic 
solutions), (Z51) and (Z52) (orbit contains 12 periodic solutions).

By using the above equivariant degrees of the basic maps, as well as the multi­
plications table for the A(A5)-module Ai(As x S 1) we obtain the following values of 
A5 x S1-Deg(Id — ^(0, -, •), Q)i, for the possible distributions of the eigenvalues of 
the matrix C.
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E(C) As x S1-Deg(Id -  ^ ( 0, •, - ) ^ ) i #  Sol.
c +  3d - (-4o) 1
c - 2 d 2CA4) + 2(V'4_) +  2 (D$) + 2(Zg ) 

+ 2 (4 )  — 2(ZJ) + 2(Z|) 
+2(D3) - 2 ( Z 3)-2(Z2)

45

c + 3d , c+  y/Ed -2 (D |)-2 (V 4-)-2 (Z > I)-2 (4> )
-2 (Z |)+ 4 (Z 2- ) - ( A 5)

29

c — 2d,c-r d ( 4 i) + ( 4 2) +  3(y4- ) - 2 P 3*)
~  3(Zg ) -  3(Zg2)

- 6(4 ) -  4 (ZJ) +  2(.44) -  3(D3) -  (D-0) -  2(Z3) 
—3(Zo) +  7(Zi)

45

c +  y/Ed, c +  3d, c +  d - ( 4 1) - ( 4 2) +  2(Z?I)
~3(Vr4- ) + 2(£>§) +  (Z52) +  3(Z£)

+ 6(Zt3) -  (.45) +  3(AO +  3(D3) 4- 2(Z2 ) -  4(ZX)

51

c + d , c — 2d,c +  y/Ed - ( jD5) +  (4 1) + (4 2) - (Z > | )  
+4(y4-)-3 (D 5 ) +  3(Z‘2)

+ 4 (4 0  + 3 (4 ) + 2{A/) -  3(A ) + 4(Z3) 
+4(ZJ) + 4(Z2) - 8 ( Z 1)+2(Z 5)

51

c +  Zd,c—2d,c + y/Ed, c +  d - ( 4 o - ( 4 2) +  2(Pg)-5(y4-) 
+4(I?|) + 5(Zg ) + 3(Zg2)

+ 8(4 ) + 4 ( 4 )  -  (-45) +  3(A) -  2{M) 
+5(A ) + 2(Z3) +  2 (4 ) -  8(Zi)

51
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Chapter 6

Symmetric Hopf Bifurcation for 
Functional Differential Equations

The equivaxiant degree theory provides the most effective and complete method 
for studying the symmetric Hopf bifurcation problems. It allows to directly trans­
late the equivaxiant spectral properties of the characteristic operator (associated 
with the system) into a topological invariant containing the information related to 
the occurences of the Hopf bifurcation, the symmetric structure of the bifurcating 
branches of non-constant periodic solutions, and their multiplicity.

In this chapter we will apply the equivaxiant degree method to a Hopf bifurcation 
problem for a system of symmetric functional differential equations. As examples, 
symmetric configurations of identical oscillators, with dihedral, tetrahedral, octahe­
dral, and icosahedral symmetries, axe analyzed.

6.1 Symmetric Hopf Bifurcation for Delayed Func­
tional Differential Equations

Let us discuss a general setting for studying symmetric Hopf bifurcation problems 
for delayed functional differential equations, with a finite group T of symmetries.

6.1.1 Idea o f Bifurcation
By a nonlinear eigenvalue problem means the problem of finding appropriate solu­
tions of a nonlinear equation of the form

F(u,  A) =  0. (6.1)
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Figure 6.1:

F  is a nonlinear operator, depending upon the parameter A, which operates on the 
unknown function or vector u. The questions are:

(i) Whether or not the equation (6.1) has any solution u for a given values of A?

(ii) If it does, how many solutions?

(iii) How this numbers varies with A?

Of interest is the process of bifurcation whereby a given solution of (6 .1) splits
into two or more solutions as A passes throught a critical value Ao, called a bifurcation 
point

To illustrate bifurcation, let us consider the linear eigenvalue problem

Lu =  Xu. (6.2)

L is a linear operator acting on vector u in some normed linear space and A is a 
real number. For any value of A a solution of (6.2) is u = 0. Suppose that there is 
a sequence of eigenvalues X\ < A2 < • • • and corresponding normalized eigenvectors 
ui,U2 , - "  such that

Luj = XjUj ||uj|| = 1. j  — 1, 2, • • •

Then if c is any real number, other solutions of (6.2) are given by u — cuj j  =
1, 2, ■ • • with ||uj|| = |c|. A graph of these solutions is shown in Figure 6.1.
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one branch two branches no branch a secondary bifurcation

Figure 6.2:

As the figure shows, the solution u = 0 splits into two branches at each of 
eigenvalues Aj, therefore the points u — 0, A =  Aj are bifurcation points of (6.2).

We now consider the nonlinear eigenvalue problem (6.1) which has equation (6.2) as 
its linearization. An illustrative plot of ||u|| versus A, called the responses diagram, 
is shown in Figure 6.2.

6 .1.2 Bifurcation Setting for Delayed Functional Differen­
tial Equation

Let U be an orthogonal representation of the group T, and let r  > 0 be a given 
constant. We denote by Cu,r the Banach space of continuous functions from [— r, 0] 
into U equipped with the usual supremum norm

1 M I  = sup [p{9)\, y e C UtT-
- T < 0 < 0

In what follows, if x  : [—r, A] —> U is a continuous function with A > 0 and if 
t € [0, A], then xt € Cu,T is defined by

x t(0) = x(t  +0), 9 € [—t, 0].

Also, for any x € U we denote by x  the constant mapping from [—7,0] into U with 
the value x  e  U.
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Consider the following one parameter family of delayed functional differential 
equations

x = f ( a , x t), (6.3)
where x(t) G U, a £ l ,  /  : R x Cb- —*• U is a continuously differentiable and com­
pletely continuous mapping. Clearly, the P-action on U induces a natural isometric 
Banach representation of T on the space Cu-  with the action • : P x Cu,r —*■ 
given by:

( 7 <p)(9) := 7 7  e r ,  6  G [ - t , 0].

We make the following assumptions 

(Al) The mapping /  is P-equivariant, i.e.

f (a,  7 ip)  =  7 f (a,  i p) ,  p  G Cu,r, Q 6 R, 7  G T.

(A2) / ( a ,  0) =  0 for all a  G R, i.e. (a, 0) is a stationary solution of (6.3) for every
q GR.

Consider the P-isotypical decomposition of U

U =  Uq © U\ © • • • © Ur. (6-4)

where U0 = UT and Uj is modeled on the irreducible P-representation Vj and Vo 
stands for the trivial irreducible P-representation.

6.1.3 Characteristic Equation

An element (a0. x 0) G R x U is called a stationary solution of (6.3) if f ( a 0, x 0) = 0. A 
complex number A G C is said to be a characteristic value of the stationary solution 
( q 0 , x 0 ) if it is a root of the following characteristic equation

detc A (ao,Xo) (A) =  0, (6.5)

where
A(Qo,x0)(A) := Aid -  Dxf ( a 0 , x 0 )(ex'Id).

A stationary solution (a0 , x Q) is called nonsingular if A =  0 is not a characteristic 
value of (a0 , x 0), and a nonsingular stationary point (a0 , x0) is called a center if it 
has a purely imaginary characteristic value. We will call (a0, x 0) an isolated center 
if it is the only center in some neighborhood of (a 0 , x0) in R x U.

We now make the following assumption:
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(A3) There is a nonsingular stationary solution (a0 , 0) which is an isolated center 
such that A =  i(30, (30 > 0, is a characteristic value of (a0, 0).

Let B  := (0, Si) x (30 — So, 30 +  So) C C. Under assumption (A3), the constants 
S\ > 0. <52 > 0 and s > 0 can be chosen such that the following condition is satisfied:

(A4) For every a a 0 £ [a0 — e, a 0 + e], the characteristic value of (a, 0) does 
not belong to dB.

Note that A Q(A) := A(Qi0)(A) is analytic in A £ C and continuous (see [25]) in 
a  € [a0 — £, a 0 4- s}. It follows that detc AQois(A) ^  0 for A £ dB.

Since the mapping /  is T-equivariant, for every a  £ K and A £ C the operator 
Aq(A) : Uc —► Uc is T-equi variant and consequently for every isotypical component 
Uj of Uc we have AQ(A){Uf) C U? for j  = 0 ,1 ,.. . ,  r. Thus, we can put

Aay-(A) := Aa (A)|tfe.

Let A be a complex root of the characteristic equation detc A (Qoio)(A) =  0. In 
what follows, we will use the following notations

E(A) := ker A(Qo,o) C U°,
Ej(X) := E (A) n U;c, 
mj(A) := dimc-Ej(A)/dimcVj.

The integer m,j(A) will be called the Vj-multiplicity of the characteristic root A.

6.1.4 Crossing Num bers
We define

t;,i(a»> Po) := deg(detc AQo_£;j (•), B) -  deg(detc A ao+£.j (•), B ) (6.6)

for 0 < j  < r. The number tj,i(a0 ,Po) is called the first Vj-isotypical crossing 
number for the isolated center (a0, 0) corresponding to the characteristic value ij30, 
where V7- is the T-irreducible representation on which is modeled the isotypical com­
ponent Uj. The crossing number tjj  has a very simple interpretation. In the case 
detc(AQoy(i/?0)) =  0 (i.e. i/30 is a U?-characteristic value), the number := 
deg(detc A ao- ey (■), B)  counts in the set B  all the LU-chaxacteristic values (with mul­
tiplicity) before a crosses the value a0, and the number := deg(detcAQo+£;j (■), B)
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Figure 6.3: The Vj-isotypical crossing number.

counts the (/^-characteristic values in B  after a crosses a 0. The difference, which 
is exactly the number tre p re se n ts  the net number of the (/^-characteristic values 
which 'escaped’ (if t j j  is positive) or 'entered’ (if t;ii is negative) the set B  when a 
was crossing a0. This situation is illustrated on Figure 6.3.

Since 10O, where / > 1 is an integer, may also be an jr'-th isotypical characteristic 
value of (a0. 0), we put

f t o )  ■— t?, 1 (&0: I f i o ) -

In order to establish the existence of small amplitude periodic solutions bifurcat­
ing from the stationary point (aQ, 0), i.e. the existence of Hopf bifurcations at the 
stationary point (q0, 0), and to associate with (ao, 0) a local bifurcation invariant, 
we apply the standard steps for the degree-theoretical approach.
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6.1.5 N orm alization of the Period
Normalization of the period is obtained by making the following change of variable 
u(t) — for t G R. We obtain the following, equivalent to (6.3), equation

* ( * )  =  : r - / ( a , u  a r ) ,  (6. 7)Z7T p

where u 2* € Cu,r is defined by
’ p

u t 2* ( 6 ) = u ( t  +  f e ) ,  0 € [ - r ,O ] .
’ p

Evidently, u(t) is an 27r-periodic solution of (6.7) if and only if x(t) is a p-periodic
solution of (6.3). We can also introduce p  := ^  into the equation (6.7) to get

u(t) =  -5 / ( 0 , utj) ,  (6-8)
P

6.1.6 T x 5 1-Equivariant Setting in Functional Spaces

We use the standard identification S l =  R/27tZ and we introduce the operators 
L : H 1 (S lm, U) -  t f iS '-M ), Lu(t) =  u(r), and K  : H l (Sl ;U) -  L ^ S ^ U )  by 
K u  = ±  f 027r u(s) ds, u  € t € R, where t f1(S'1;£7) denotes the first
Sobolev space of 27r-periodic [/-valued functions. Put R+ := R x R+. It can be 
easily shown that (L + K)~l : L2 (Sl \U) —► exists and the map JE :
R2 x H l {S \  U) -  J5T1 (S1; [/) defined by

^ ( a ,  /?, u) = {L + K ) - 1 [Ku  +  J  N>(a, /?, u)] (6-9)

is completely continuous, where Nj  : R~_ x C (51; U) —* L2 (Sl ; U) is defined by

N/(a,P,u)  (t) =  f (a,ut , 0 ), 

where el£ € S'1, ( a ,/?, n) € R+ x //).

We put W := H l (S lm, U). The space W is an isometric Hilbert representation of 
the group G =  T x S l with the action being given by

(7 , d)u{t) = 7 (u(t +  6 )), e* ei£ € S 1, 7  6 I \  u € W.

The nonlinear operator T  is clearly G-equi variant.
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Notice that. (a , P, u) G R i x W  is a 27r-periodic solution of (6.8) if and only if 
u =  T{a,  p, u). Consequently, the occurences of a Hopf bifurcation at (a0 , 0) for the 
equation (6.3) is equivalent to a bifurcation of 27T-periodic solutions for (6.8) from 
(a0, P0 ,0) for some p0 > 0. On the other hand, the necessary condition for the oc­
curences of a bifurcation at (a0, po, 0) G R i x W  for (6.8) implies that, in such a case, 
the operator Id — DuiF(ao, Po, 0) : W  —*■ W  is not an isomorphism, or equivalently, 
iPo is a purely imaginary characteristic value of (a0, 0), i.e. detc Aao{iP0) =  0.

6.1.7  Sufficient Conditions for H opf Bifurcation
It is convenient to identify R+ with a subset of C, i.e. an element (a, p) G R i will
be written as A =  a -t-iP, and we put A0 =  a 0 +  ip0- By assumption (A3), (<a0, 0) is
an isolated center, thus there exists r) > 0  such that

a(A) := Id -  DUF (  A, 0 ) : W - > W  (6.10)

is an isomorphism for 0 < |A—A0| < 77. Consequently, by Implicit Function Theorem, 
there exists r, min{l,?7} > r > 0, such that for (A, u) satisfying |A — A0| =77 and 
0 < \\u\\ < r, we have u — u) A 0. We define the subset Cl C R i x W  by

fl := |(A , u) G R i x W  : [A — A0[ < 77, \\u\\ < r}  (6.11)

and put

do := Cl fl (R+ x {0}) and dr := {(A, u) G Cl: ||u|| =  r}.

We introduce an auxiliary function 9 : Cl —► R, which is a G-invariant function
satisfying the conditions

j9 {A, u) > 0 for (A, u ) G dT,
|5(A,u) < 0 for (A,u) G do.

Such a function 9 can be easily constructed, (see Figure 6.4), for example by 

6 (\, u) = |A -  AoKIHI -  r) +  ||u[| -  (A, u) G Cl.

We define the map 3$ := Cl —> R ® W , by

5re(A ,u)= (0 (A ,u ) ,u -^ (A ,u )) , (A,u) Gfi, (6.12)

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6.4: Auxiliary Function for Hopf Bifurcation.

Since th?(A.u) ^  0 for (A.u) G 9Q, thus is an Q-admissible G-equi variant 
compact field. Therefore, the standard Leray-Schauder extension of the primary 
G-equivariant degree can be applied to the admissible pair (#g,Q). We put

oj{X0) -= G-Deg(5^,f2) G Ai(G), (6.13)

and we will call w(A0) the local F x S 1-invariant for the T-symmetric Hopf bifurcation 
at the point (A0, 0).

We have the following

T heorem  6.1.1. ( S u f f i c i e n t  C o n d i t i o n  f o r  H o p f  B i f u r c a t i o n ) Suppose that (cto,0) 
is an isolated center for (6.3) satisfying the above assumptions. I f

u;(A„) =  £ > *
[H)

and nn0 ^  0 for some (Ha) G $i(G). then there exists a branch of non-constant 
periodic solutions (A, u) of (6.1) bifurcating from (Ao,0) such that Gu D H0.

6.1.8 Linearization of the Problem

We define
9(\,u) -  |A -  A0|(||u|| — r) + ||u|| + (A, u ) G
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and the map
^ (A ,u) =  ^#(A.u),u  — F( \ ,u ) ^ ,  (A,u) € fI. (6-14)

It is clear that and ^  axe homotopic by an Q-admissible (linear) homotopy, thus

G-Deg (&, Q) = G-Deg (3* fi). (6.15)

Notice that for |A — Ac| < ^ and \\u\\ < r we have

9(A,a) =  W  +  ^ - | A - A 0|(r- | |u| | )
?yr 7]r r/r rjr _r]r  

— ~2 4~ ~  ~2 ~ 4 ~ ~ 4 >

Put
:= {(A,u) e l 2+ x W  : |M| < r, |  < |A -  A0| < 77}.

By excision property of the G-equivariant degree, we obtain

G-Deg (3~ Q) =  G-Deg (S^, Qi). (6.16)

We define (y := Gj —► M © W  by

$ (\.u )  := (#(A, u),u — DU!F{\, 0)u), (A.u) € Qi. (6-17)

By standard linearization argument, it is easy to show that

G-Deg (3* QO =  G-Deg (3, Q,) = G-Deg (& ft). (6.18)

6.1.9 Representation of $  on T x S^Isotypical Com ponents

With respect to the restricted P x Fraction on W. we have the usual isotypical 
decomposition of the space W

W  = U0 ® Ux © • • • 0  Ur © ©  Vx,
jl

where Uj is the T-isotypical component of U modeled on Vy-, and Ujj, j  =  0 ,1 ,. . . ,  r, 
I =  0 ,1 ,2 ,.. . ,  are T x GMsotypical components modeled on Vjj (see [3] for more 
details).

For every j  =  0 ,1 ,. . . ,  r and I =  0 ,1 ,2 ,... we define 

ajV(A) := Id -  (L +  K)~l \k  +  %DuNf {a, /?, 0) , A =  a  +  i/5,
Uu
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where |A — A0| <rj.

We observe that, for I > 0,

(.L + K)~l (eu'(x +  iy)^j = J ed'{x + iy), x ,y  e U,

and since 

we obtain

a*z(A) =  Id -  (L +  K y 1 \ D uNf {a, P, 0)

ajii(X)e u = Id -  (L +  K)~l %e*Dnf{a,  0) ( e ^ >
■ i

Uj3

Consequently,

Notice in addition that
~ ii0 A(a,o) (.HP)- 

HoW  = - ^ A J (M ) |d v

(6.19)

6.1.10 Com putation of G-Deg®,f2)
By applying the standard finite dimensional reduction, we can assume without loss 
of generality that W  is finite dimensional. We represent the set fi as a product 
B x Q0 C K2 © W, where B is the unit ball in W sl = U.

The computation of G-Deg (fo, Q) =  G-Deg (£, Q) can be reduced to computa­
tion of primary degrees of the basic maps, associated with the problem (6.3) (see 
Chapter 3).

More precisely, we consider the operator £  := —■^Dxf ( a 0, 0) : U U. which
is clearly T-equivariant. Put W0 := ® n>0 and Q0 =  G n  E2 © W0 and define

: Q0 -*■ E © W0 by

5r0(A, u0) = (0(A, u0), u0 -  DUT {A, 0 )uo), (A, ua) e Cl0-

It is easy to verify that the product map #  x is homotopic to £, therefore we have

G-Deg Q) = G-Deg (£ x $ 0, B x  Q0).

By applying the multiplicativity property of the equivariant degree (see section 4.2) 
we obtain that

G-Deg ( ? x ^ , B x f l 0) =  T-Deg (£, B) • G-Deg (£,, 0 ,) . (6.20)
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C om puta tion  of F-Deg (S, B). For every negative eigenvalue ji of the linear T- 
equivariant operator S, which is clearly a positive eigenvalue of the operator A := 
Dxf(ct0 , 0), we consider the T-isotypica! decomposition of the eigenspace E(fj)

E(fj) =  Eo(fx) © Ei(fj) © • • • © Er{ii),

where the component Ej(fj) is modeled on the irreducible T-representation Vj.

Let a-  =  {hi, fi2 - • • •, /it} denote the set of all negative eigenvalues of S- Then, 
we define the element

n n K , r “
1=1 1 = 0

where degv stands for the T-equivariant degree of the operator —Id : Vj — Vj on the 
unit ball in Vj, and rrij(fMi) is the Vy-multiplicity of /x;. Then, by the multiplicativity 
property of the T-equivariant degree (in the case without parameter) we obtain

r-Deg(5,B) =  n n  ( d e g v , (6.21)
1=1 j=o

C om puta tion  of G-Deg (So, fl0). We put

n ol := {(A,Uo) e l ^ x  We : |jw0|| < r, |  < jA -  A0| < 77},

and define So : f̂ o -*■ K © Wa by

So(A,u 0) := |̂A — Ao|(j|u0|| — r) +  ||u0|| +  a(A)u0̂  , (A,u 0 ) € fl0i,

where a(A) := a ^A0 +  2^x - \0\ ') ^  a (^) : W° W° is given by (6.10). By the 
excision and homotopy properties of the equivariant degree, we have

G-Deg (So, D0) = G-Deg (So, ^oi) =  G-Deg (So, ^oi)-

Let us consider the isotypical decomposition

=  (6.22)

Then, we have the following representation of the map a with respect to this repre­
sentation

a(A )= ® a,,,(A ). (6.23)
11
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where o^A ) := a^i ( \ 0 -f By applying the Splitting Lemma, we obtain
that __ __

G-Deg (&,, -Q0i) =  £  G-Deg {Sj.i, fy.t) (6.24)

where 3y,z : ty,i — M © Uj,i, with

:= {(A, v) € Ml x Ujti : ||u|| < r, |  < |A -  A0| < 77},

:= (|A -  A0|(|M| — r) +  ||u|| +  ^ - ,a 3-,z(A)u  ̂ , (A,u) € Qjj.

The degrees G-Deg (3y,/, Qj,i) can be easily computed.

We consider the complexification

Uc =  f/0c © Uf ® • • • © L'rc (6.25)

of the isotypical decomposition (6.4) and, for j  = 0 ,1 ,2 , . . . ,  r, the set {i(30, i(3\, . . . ,  i,5m} 
of all the purely imaginary roots A of the equation

detc Aao.j (A) =  0,

and assume that

|  ip0, iliPo, . . . .  ilsp0} C ji/?0,

where Ik > 1 axe integers, is the subset composed of all the integer multiples of i30.
Then, for every j  and I = Ik we have that

G-Deg = t j,i{a0,p0) degy^

where the numbers tj,i(a0,Po) = Wo) axe the V^-isotypical crossing numbers
at (a0,/3o,0), and degv.< denotes the primary G-degree of the so-called basic map 
(see [3] for more details) on Vj,z given by

fjti(t, v) = (1 -  ||t;|| +  it) ■ v , (i, v) € Oj,i, (6.26)

where Ojti C M © Vjj is the set

OjjL =  {(<,«) : \  < IMI < 2, - 1  < t < 1}.

(Notice that the space Vj,z admits a complex structure induced by the action of S 1.)
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Consequent!}', we obtain that

G-Deg (£,, ft0) =  2 3  h i(ao, 0o) degVj>J -

In this way. we have obtained that
At 7*  ̂̂  ^

G-Deg (£, Q) = n  n  ( deSv, ) ' W ■ Y 1  &>) deSvJ,; - (6.27)
i = l  j = 0  j , l

6 . 2  Hopf Bifurcation in Symmetric Configurations 
of Identical Oscillators

Let us begin with several examples. Consider n  identical cells coupled symmetrically 
by diffusion between certain selected couples of the cells. We will denote by (t ), say 
for example, the concentration of the chemical species in the j-th  cell. We assume 
that the coupling is taking plane between adjacent cells connected by the edges of 
a regular polygon or polyhedron, symbolizing geometrically this configuration of 
the cells. More precisely, the coupling strength between cells is represented by the 
mapping K  from E  to the space of bounded linear operators l ( c ([—t,0];E),E^, 
which is continuously differentiable. In our case, the linear operator K(a)  will 
represent the coupling strength K (a)(a^_1 — xPt) between the adjacent cells and 
xK This term is supported by the ordinary law of diffusion, which simply means 
that the chemical substance moves from a region of greater concentration to a region 
of less concentration, at the rate proportional to the gradient of the concentration. 
Since, in general, the coupling strength between the j  — 1-th and j -th cell may be 
nonlinear and depend on the concentration x \  we will assume that it is of the form

Hx{t))(g{a,ai) -

where h : E  —»• E is continuously differentiable function, h(t) ^  0 for all t G E, and 
g : E x  G([—t, 0];E) —► E, r  > 0, a continuously differentiable map, g{a, 0) =  0. 
We will also suppose that the kinetic law obeyed by the concentration x> in every 
cell is described by a certain function /  : E x  G([—r, 0];E) —► E, r  > 0, which is 
continuously differentiable.

As it will be shown on several examples below, a dynamical system describing 
such a configuration of cells, is of the type

^-x(t) = F (a , x t) + H(x(t)) ■ C(G(a,xt)), (6.28)
at
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where

X 1 A f(a::x lt )

X  =
X2

, x t = A , F (a ,x t) = f l ^ A )
, G (a,xt) =

5 (a ,x2)

xn .  / ( a ,  A )  . 1 Q l

/i(xx)
h[x2)

X 1

X2
1r-* 

C
l

1

x ly l
9  9x-y-

h(xn)

H II

xn . y n . _ xnyn _

and C is a symmetric non-singular n x n-matrix.

Suppose, in addition, that the geometrical configuration of these cells has a 
symmetry group R  The group T permutes the vertices of the related polygon or 
polyhedron, which means it acts on Rn by permuting the coordinates of the vectors 
r £ R " .  Clearly, the system (6.28) is symmetric with respect to this action of the 
group T on U := E n. In this way, we are dealing here with a T-symmetric system 
of FDEs.

We will assume that 

(Hi) f (a ,  0) =  0 for a  € R, i.e. (a, 0) is a stationary solution of (6.28).

In the subsequent examples, we present concrete configurations of such identical 
cells coupled symmetrically by diffusion between adjacent cells, modeled on the reg­
ular n-gon, tetrahedron, octahedron, and dodecahedron. In each case, the symmetry 
group T of the system is composed of the orthogonal symmetries corresponding to 
the given n-gon or polyhedron. To simplify the presentation, in the case of a sym­
metry group modeled on the above polyhedrons, we consider only those orthogonal 
symmetries T  for which det T  =  1. This assumption is not essential, and in the 
general case, similar results can be easily derived based on the already obtained 
computations.

D ihedra l Configurations of Identical Oscillators. We consider a ring of n 
identical oscillators where the interaction takes place only between the neighboring
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oscillators. In this case the matrix C is of the type

C =

c d 0 . . 0 d '
d c d . . 0 0

d 0 0 . . d c

(6.29)

It is easy to check that the system (6.28) is symmetric with respect to the action 
of dihedral group Dn.

T etrahed ra l Configuration of Identical Oscillators We consider four iden­
tical inter-connected oscillators having exactly the same linear interaction between 
all the other oscillators. In this case, the matrix C  is of the type

C =

c d d d 
d c d d 
d d c d 
d d d c

(6.30)

It is also clear that this system of differential equations (6.28) is symmetric with 
respect to the tetrahedral group T =  Aj.

O ctahedral C onfiguration of Identical Oscillators Suppose that the identical 
cells (oscillators) are arranged in a configuration corresponding to the vertices of a 
cube. We assume that the interaction takes place between those oscillators that are 
connected by an edge of the cube. We assume that all the oscillators are identical. 
These identical oscillators, with such inter-connections lead to the system of eight 
equations with the matrix C  of the type

C =

c d 0 d 0 d 0 0
d c d 0 0 0 d 0
0 d c d 0 0 0 d
d 0 d c d 0 0 0
0 0 0 d c d 0 d
d 0 0 0 d c d 0
0 d 0 0 0 d c d
0 0 d 0 d 0 d c

(6.31)

It is clear that the system of equations (6.28) is symmetric with respect to the 
octahedral symmetry group O which is isomorphic to the symmetric group £4.
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Icosahedral C onfiguration of Identical O scillators Let us consider an arrange­
ment of identical oscillators based on the inter-connections given by the edges of a 
dodecahedron. It is clear that the group of sym m etries of the dodecahedron, which 
is the icosahedral group I, is the symmetry group of the system (6.28). Let us point 
out that the icosahedral group I is isomorphic to the alternating group A$. In this 
case we have the system (6.28) composed of 20 equations, where the matrix C is of 
the type

c d 0 0 d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 "

d c d 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0
0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0
0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0
d 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0
0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0
d 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0
0 d 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 d 0
0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 d
0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0
0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 d
0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0
0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0
0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 d c d
0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 d 0 0 d c

Of course, other configurations of identical oscillators could also be considered, 
for example based on octahedron, icosahedron or other higher dimensional polyhe- 
dra.

6.2.1 Characteristic Equation for a Symmetric Configura­
tion  of Identical Oscillators

The linearization of the system (6.28) at (a, 0) is simply the system

4-x(t) = DxF{a . 0 )xt +  h{0)C(DxG(a, 0)xt). (6.33)
at

Since DxG(a, 0) is diagonal and C has constant coefficients, CDxG{a, 0) = DxG(a, 0)C. 
We put K (a ) := h(0)DxG(a.0), i.e. the linearized system can be written as
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^ z ( r )  =  DxF(a, Q)xt + K{a) C(xt), (6.34)

therefore, a  number A £ C is a characteristic value of the stationary solution (a, 0) £ 
R © U if there exists a nonzero vector z £ Uc such that

A a{X)z := Xz -  DxF(cx,0){ex-)z -  K{a)C{ex'z) = 0. (6.35)

Therefore, we have the following characteristic equation for the bifurcation problem
(6.28)

detc A q (A) = 0. (6.36)

Since the matrix C is symmetric (and non-singular), it is completely diagonal- 
izable by using a basis composed of its eigenvectors. Thus, suppose that cr(C) =  
{6 , €2, • • •, Cn} is the set of all eigenvalues of C and let 21, z2, . . . ,  zn € Uc denote 
the corresponding eigenvectors. Then we have the following formula:

P roposition  6 .2 .1 . A number A £ C is a characteristic value of the stationary 
solution (a, 0) for the system (6.28) if and only if

n
detc A q (A) =  [J [a -  Dxf ( a , 0)ev -  &K(a)ex' , (6.37)

1=1

where £1, £2, . . . ,  £n are the eigenvalues of the matrix C.

Of course, the characteristic operator A a(A) : Uc —s- Uc is T-equivariant, so its 
eigenspaces are T-invariant.

In order to satisfy the necessary condition for the occurences of Hopf bifurcation, 
we need to make the following assumption

(H2) There exists a 0 6 R such that (aQ, 0) £ R © U is an isolated center of (6.28) 
such that detc AQo (i/30) =  0 for some (30 > 0.

(H3) The system (6.28) has no constant periodic solution.

6.2.2 Application of the Equivariant D egree M ethod
By following the steps, which were explained in section 6.1, we associate with the 
point (a0, Po) a local bifurcation invariant u(aQ, 8 0, 0) := G-Deg (Fe, D), where G = 
T x S'1, (defined by (6.11)) is an open neighborhood of (a0, 30, 0) in the space
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R l  x W , and T q : R+ x W  —► R @ W  (defined by a similar formula to (6.9)), 
W  := f?1(5i ; U), is the mapping associated with the bifurcation problem (6.28). 
This bifurcation invariant can be evaluated by applying the standard steps, which 
were explained in subsection 6.1.10.

Put A  := DxF{a0 ,0) + K (a0)C : U U, and consider the real spectrum a (A) 
of the operator A. It is easy to check that a number (x belongs to a (A) if and only 
if for some eigenvalue £ of the matrix C  we have

(i -  k(ato) -  €f'x(a0 , 0) = 0, i.e. fx = k(a0) +  £ / ' (aQ, 0),

where k(a0) =  J£T(ck0) (1) and f x(a0 , 0) =  Dxf{ a 0 , 0)(1) are constants. Consequently, 
we obtain

a{A) = |/xi : ixi := k(a0) +  §  / ' (a*, 0), 1 = 1 ,2 ,.. . ,  n | .

To every eigenvalue jx £ cr {A) (fx = /xi, for some I =  1, 2, . . . ,n )  corresponds an 
eigenvector xi £ U of the matrix C associated with £ cr(C).

Let cr+(A) =  {/xi,. . . ,  ixk} denote all the positive eigenvalues of A. Then we put
k  r myitis( \ 5

degVj J
s = l  j= Q

We consider the isotypical decomposition (6.4) and the set {i$0, ip \ . . . . ,  ipm} of all 
the purely imaginary roots A of the equation

detc &aoj (A) = 0> 3 = 0,1,2, • • •, r.
We assume that

\if3o, ihPo,  • • • j J  C i(3i, • • •, :

where ki>  1 are integers, is the subset composed of all the integer multiples of ip0. 
The element deg1(aC), j30) £ M{G) is given by

degi {ol0, (30) = deg lifc0(ao,/?e) +  degltfcl (a0, (30) +  • • • +  degl!fcs(a0, ft),

where ko =  1 and
r

deg1M{a0J 0) = '}2 tj,1 (a0 ,kip0) degv.fc; 
j =o

where the numbers tj,i(a0, kL30) = tjM (a0,P0) are the V^-isotypical crossing num­
bers at (q0, fio).

Then, under the above assumptions we obtain

G-Deg {Fe, 31) =  deg0(ao, 30) degx (a0, P0)• (6.38)
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6.3 Hopf Bifurcation Results for Configurations 
of Identical Oscillators

In this section and its subsections, we will present the computations of the degree 
G-Deg (Fe, fl) for concrete models of symmetric configurations of identical oscilla­
tors.

More precisely, we consider the following system of delayed functional differential 
equations

A (6.39)—x(t) = —ax(t) -  aH(x(t)) ■ C(G(x(t — 1))), 
at

where
X 1 ^(x1) g iz1)

X  =
x2

, H(x} =
h(x )

, G(x) = g{ z )

xn h(xn) .  9{zn) _

and the product is defined on the vector by component-wise multiplication, i.e.

x - y  =

the functions A, g : R —► K are continuously differentiable, h(i) 0 and g(0) = 0, 
g'(0 ) > 0. and C is a non-singular symmetric n x n-matrix. Such a system can 
be obtained from (6.28) by rescaling the time and making an appropriate change of 
variable.

X 1 ■ 1
 t—*

__ 
I

x ly l
X 2 y 1 =

2 2 x y~

x n i
.. 

£
1 x nyn

The linearization of the system (6.39) at (ce, 0) is

—x(t) = -a x ( t)  -  ah{0)g'(0)C (G(x(t -  1))), 
at

(6.40)

and
A q(A) = (A +  a)Id +aA(0)s'(0)e-AC.

Therefore, by Proposition 6.2.1, a number A 6  C is a characteristic value of the 
stationary solution if and only if

detc A q (A) =  IA +  a +  ah(0)gf(0)£ie A = 0, (6.41)
i=i
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where £1, £2, • ••, £n are the eigenvalues of the matrix C.

We put 77 := h(0)g'(0). In order to find the characteristic values A € C for the 
stationary point (a,0) of the system (6.39) we need to solve the following equation

X + a  + ar)£0e~x =  0. (6.42)

where £0 is an eigenvalue of C. The equation (6.42) can be written as the system

u + a  +  ocrĵ 0e~u cos v =  0
c • n (6.43)v — ccq^0e smu =  0.  ̂ '

where A =  u +  iv.

Since we are interested in purely imaginary eigenvalues A = ip0, by substituting 
u = 0 and v = p  into the system (6.43), we obtain

a  -i- arj^ 0 cos 5 = 0
I P — arj^o sin P = 0, (6-44)

which can be easily transformed to

cos P =
1 o (6-45)

If ^  < 1 , then there exists Pa € (0,7r) such that cos p0 = - 4 - ,  and, in addition,

it is possible to find a unique a 0 r  0 such that a0 = vc~3s°npo- Therefore, we obtain
a pair of solutions (a0, p0).

In order to determine the value of the crossing number associated with this purely 
imaginary characteristic value A0 =  ip0, we vail compute (by implicit differentiation) 
^u(q')|q=Qo. By differentiating the system (6.43) with respect to a  we obtain

u '(l -  ari^0e~u cosv) -  v'(ari£0e~usinv) = -r}^0e~u cosv -  1 
^u1 (o7]t;0e~u sinv) + z/(l — arj^0 e~u cos v) = sinu,

which, by (6.43), leads to

7/(1 +  u + a) —v'v = H±2- — 1
, ^   ̂ v (6-47)u v  +  v‘(1 + u + a) =
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By substituting a  =  a0, u =  0 and v =  3a into the system (6.47), we get

u'(l 4- <y.0 ) -  v ' p o  = 0 
u ’fio  4- v ' ( l  4- a 0) —

The system (6.48) yields

d_ | = _______0 %
ddUla=ao Ob(0g + ( 1 +fio)

(6.48)

sign —  u\a=ao = sign a 0. (6.50)
ad

R em ark  6.3.1. The equivariant degree T x S^-Deg (J$g, Q) provides a complete de­
scription of the symmetric Hopf bifurcation at (d0, 0), i.e. every non zero coefficient 
nH0 in

T x 5 1-Deg (fo, Q) =  (H), (6.51)
( H )

indicates a “topological obstruction” resulting in the existence of a branch of non­
trivial periodic solutions to (6.39) of the orbit type at least (H0) (with respect to the 
indicated partial order). Although, the entire value of the degree G-Deg (Id —J-&, Vi) 
should be considered as the equivariant invariant classifying the symmetric Hopf 
bifurcation, in order to simplify the exposition (by reducing the number of additional 
cases) we will restrict our computations to the coefficients nn 0 =  , which will be
called first coefficients, and we wall denote the corresponding part of the eqivariant 
degree (6.51) by G-Deg (Id — Te)i-

6.3.1 Positive Eigenvalues
We will use the same notation as in section 6.2. We have A  =  —aid  — dh(0)g'(0)C =  
—aid  — drjC, so

a {A) =  j/Xj : & = - a  -  a ^ - ,  € cr(C)}.

Let us consider an eigenvalue € c(G) such that ^  < 1 . Then, there exists a 
purely imaginary characteristic root ifii, fit > 0, of the characteristic equation (6.41) 
for d  =  di, where

1 0cos Pi = — , di = —T-.
Vb V&smpL
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We always assume in what follows that h{0) > 0 and, consequently, 77 > 0. There­
fore, sign cti =  sign Therefore, we have

if a i > 0  then fy) = —m ^ipi)
if ai < 0 then

In order to determine all the positive eigenvalues of the operator A, we divide 
the spectrum cr(C) into two parts oa{C) and crb{C)

°a{C) = f a  € a(C) : -1  < 77̂ }
°b(C) =  f a  €  a ( C )  : 77^ <  - 1 }

Since we assume here that A  is an isomorphism, the condition l+ p^j ^  0 is satisfied
by all the eigenvalues ^  of C,  thus a(C)  =  aa(C) U ab(C). Therefore, if we put

v ( r \ — I aa^  if a  < 0
( ( a 6(C) if a  > 0

then the set <7+(A) of all positive eigenvalues of A can be identified as 

<r+(A) = {pj : Pj = - a ( l  +  77̂ ,  & € E(C)}.

Consequently, we can apply the equivariant degree method described in subsec­
tion 6.2.2 with (ao,/?0) =  (az,/?z), and we obtain

r  S

T x S^-Deg^e, ^ )i =  n n( degv,)"1* *  ■ { h i f a ’Pi) de§y,,i) • (6-52)
fijec+^A) i=0 j=0

Now we are in the position to discuss the concrete examples of the system (6.39), 
where the matrix C  is symmetric with respect to a certain finite group of symmetries
r.

6.3.2 H opf Bifurcation in a System  w ith  Dihedral Symme­
tries

We consider here the system of equations (6.28) with the matric C  of the type
(6.29). This system is symmetric with respect to the dihedral group T =  Dn action 
on U =  Rn. We denote by p := e'W the generator of Zn. Notice that p acts on a
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vector x = (x°, x 1, . . . ,  x71-1) by sending the k-th coordinate of x to the k + 1 (mod 
n) coordinate. It is convenient to consider this Dn-action on the complex space 
Uc : = C n. We have the following Zn-isotypical decomposition of Uc

Uc = Uq © U\ © • • • © Un—\ ,

where Uj = span ((1, fP, p2f . . . .  p̂ n_1h')). Since k sends Uj onto U-j  (where —j  is
taken (mod n)). thus the Dn-isotypical components of U are

UQ =  Uq, Uj := Uj © U-j: 0 < j <  n/2,

and, in addition, if n is even, there is also the component

Jj 2. =  Us..° 2

It is easy to check that the isotypical component Uj, 0 <  j  < n/2, is equivalent to 
the irreducible representation VJ of Dn, and Us (for n  even) is equivalent to VJn+1 
(see [3] for more details). The subspace Uj is also an eigenspace of the matrix C
corresponding to the eigenvalue := c +  2d cos =&. We put cr{C) := : 0 < j  <

[n/2]}.

It seems to be a difficult task to completely evaluate the Dn x S l -equivariant 
degree Dn x S^-Deg (3e, ty i  for an arbitrary n. However, in the case of the Hopf 
bifurcation with the symmetry group Dn, it is possible to determine the coefficients 
nHo of the degree Dn x 5'1-D eg(^, f2)i =  Y1(h) nH{H) corresponding to the domi­
nating orbit types {H0}. For this purpose, we need the following

Lem m a 6.3.2. Under the above assumptions, if (H0) is a dominating orbit type 
in Uc (see [3]), then for all j  such that 0 < j  < n / 2  the coefficient of (H0) in 
degv> '(H0) is non-zero.

Proof: Suppose that H0 =  and consider degVj. =  (Dn) +  (K ) +  —  It is clear
that the product (K)(K%) may contain a term a(H0), with a ^  0, only if K 0 c  K. 
This is exactly the case when a cancelation of the coefficients of (H0) can take place. 
For example (Zn)(Z%) =  2(Zj?). We put h =  gcd(j, n) and m = n/h , according to 
the list of basic degrees degVj (given in [3]) we have the following cases:

The case m  is odd, (H0) =  (Dzh) or (H0) =  (%n), and degVj =  (Dn) -  2(Dh)+ other 
terms. We have

degy. -(Dzh) =  (Df) -  2(Dff) +  other terms =  ~ (D zh) +  other terms,
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thus, in this case, the coefficients of (Dff) in the above product do not reduce to 
zero. Of course, we also have

d e g y .  -(Z£) =  (Z%) t  other terms.

There axe no other possibilities for the cancelation.

The case m  is even. The following orbit types (H0) should be considered in this case: 
(Pih)i (-^2/1)> iPih) an(i (Jju). The same argument, as in the previous case, can be 
used for the orbit type (Zn). Assume that H0 = Dih (for the subgroups Dih and 
D*2h the same argument can be applied). If there exists another j '  (0 < j '  < n/2) 
such that h! =  gcd(j',n) and h' =  2 h, then n /h ' must be odd (or otherwise (H0) 
could not be dominating), and in this case we have that degv., = (Dn) — 2(£>2/l)+ 
other terms. Therefore,

degy., •(Z)2/l) =  {Dih) ~  2 (^ 4 ) +  other terms =  +  other terms,

and again we obtain that the cancelation is not possible.

The case j  =  n/2. Assume that (H0) = (D%). In this case, the cancelation is clearly 
not possible. □

As an immediate consequence of Lemma 6.3.2 we have

P roposition  6.3.3. Let T =  Dn. Under the above assumptions, if the crossing 
number tjt 1 7̂  0, standing in (6.52), then every dominating orbit type appearing in 
degy. with non-zero coefficient, will also appear with non-zero coefficient in Dn x 
S1-Deg(&,Q)

R em ark  6.3.4. Let us point out that Proposition 6.3.3 is not true for an arbitrary 
group T. In fact, it is shown in the subsequent examples, cancelation of coefficients 
standing by dominating orbit types is possible. Therefore, it is necessary to use the 
complete degree T x S1-Deg(5e, Q)i to detect branches of solutions and classify their 
symmetries.

We are now in a position to present the following general result (cf. [35])

T heorem  6.3.5. Suppose that 6 cr(C') is such that 
p0 > 0 and a 0 satisfying

, * _  1 _  Po
COS Po , OL0 c q

vtj VSi sm fi0

< 1. Then, there exists

(6.53)
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such that the equation (6.39) has a Hopf bifurcation at (a0, 0). More precisely, there 
exists a branch of non-constant y -periodic solutions (fa —̂ fa0 as a —> a0) of (6.39) 
bifurcating from (a0 , 0). In addition

(I) U j  =  0, then there exists at least one branch of non-constant periodic solu­
tions of the orbit type (Dn),

(ii) I f  0 < j  < %, and n is odd then there exists at least: 2  branches of non­
constant periodic solutions of the orbit type (Z n), ^ branches of the orbit type 
(Dffa (where h =  gcd(n,j)), and one branch of the orbit type larger or equal 
than (Dn),

(Hi) I f  0 < j  < j i ,  n is even and m  =  2 (mod 4) (where m  =  f ), then there 
exists at least: 2  branches of non-constant periodic solutions of the orbit type 
(Zn), ^  branches of the orbit type (D f̂a), and ^  branches of the orbit type

(D L ), '

(iv) I f  0 < j  < | ,  n is even and m  =  0 (mod 4)■ then there exists at least: 2
branches of the orbit type (Zn), ^  branches of the orbit type (Difa), and ^
branches of the orbit type (D ^),

(v) I f  j  = |  (forn  even) then there exists at least one branch of non-constant 
periodic solutions of the orbit type (D f).

Let us discuss several examples of dihedral groups, for which we obtain a com­
plete classification of the symmetric Hopf bifurcation, in terms of the equivariant 
degree.

6.3.3 H opf Bifurcation w ith D 3 Sym m etries
In this case we have o(C) =  {£0 = c-r 2d, £1 = c — d}. To each of the eigenvalues 
I = 0, 1, corresponds the pair (a*, fa) such that ifa is a purely imaginary character­
istic value for (a/, 0). Then we can apply the equivariant degree Dz x S'1-Deg(5rs, Q) 
to classify the Hopf bifurcation at the point (<0.7,0). We summarize in Table 6.1 the 
topological invariants Dz x S'1-Deg(5:s! fl)i corresponding to elements in S(C), and 
under the condition that <27 < 0 (for a* > 0, one should simply reverse the signum 
of the listed degree for — 07). The dominating orbit types in this case are (Dz), (Z3) 
(we write here simply t instead fi), and (Dj).
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ai 2(C) D 3 X S 1- Deg(5#,n), #  Branches
a0 0 (Dz) 1
a0 {£0} - ( Dz ) 1
ao {£>} ( D z ) - 2(DI) +  (Zl ) 1
ao {£o-£i} —(Dz) +  2(Di) — (Ej) 1
ai 0 (2&) +  (Ci) +  (C f ) - (Z , ) 6
ai {£0} -(ZD  -  (Di) -  (Di) +  (Zi) 6
ai {£1} ( Z | ) - ( D , ) - ( D f )  + (Z,) 6
ai {£o,£i} - ( z y  +  (Di) +  (D f ) - (Z , ) 6

Table 6.1: Equivariant classification of the Hopf bifurcation with D3 symmetries.

6.3.4 H opf Bifurcation w ith  At Symmetries
We summarize in Table 6.2 the corresponding results for D4-symmetric Hopf bifur­
cation. Here we have a(C ) =  j<fo =  c -r 2 d,£i =  c, & =  c — 2d|  and the dominating
orbit types in this case are: (Z\) (here we simply write t instead of b j, (Df), (Di), 
(Di), and (D4 ).

a, 2 (C) Dt x ■S'I-Deg(5»,f2)1 #  Br.
ao {0} (Da) 1
a 0 {£0} - ( D a) 1
ao {£2} (Da) 1

ao {£0, £1} -(D <) +  (A )  +  ( D ,) - ( Z ,) 1
a 0 {£1.6} (Da) - ( D : ) - ( D 1) + (Z1) 1
ao {£0, £ 1; £2} - ( D a) + (D:) + ( D : ) - ( Z i) 1
ai {0} (z<) +  (Di) + (Dt) -  (ZT) 6
ai {£0} - ( Z ‘) -  (Dt) -  (Dt) +  (Zi) 6
ai {&} (zj) +  (D*) + (5y  -  (ZT) 6
ai {£o,£i} -(Z‘) -  (Dt) -  (Di) + (Zi) + (Df) +  (Df) -  2(Z,) + (D.) +  (5 .) 6
ai l£i ̂  £2} (ZD + (Di) + (DS) -  (D.) -  (5 ,) -  (Z2-)  +  2(Za) -  (Df) -  (Df) 6
ai {£0, £1, £2} -(ZD  -  (D£) -  (Di) +  (Zi) + (Df) +  (Df) -  2(Zj) +  (D ,) +  (5 ,) 6
a 2 {0} (Dt) 1
a 2 {£0} ~(Di) 1
a 2 {£2} (Di) 1
a 2 {£o:£.} —(Di) +  (Di) +  (Df) — (Zi) 1
a 2 {£i ,£2> (Di) — (Di) — (Df) +  (Z\) 1
a 2 {£0: £l. €2} -(D ?) + (DI) + ( b f ) - ( 2,) 1

Table 6.2: Equivariant classification of the Hopf bifurcation with D4 symmetries.
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6.3.5 H opf Bifurcation w ith D$ Symmetries

The topological invariants D$ x 5 1-Deg(5'e, Q)i corresponding to elements in E(C). 
and cci < 0, are summarized in Table 6.3. Here we have <j {C) =  |<;o =  c -f 2d. =

c 4- 2dv̂ ,~1. £2 =  c — |  and the dominating orbit types in this case are:

(Z ^ ),(4 2) ,(A0, and (D l).

Ql S(C) A  x S^Degtfo.fl)] #  Branches

ao {0} (AO 1
Qo {so} - ( A ) 1
Qo {&} ( A ) - 2 ( A )  + (Z,) 1
Q0 {&>.&} - ( A )  +  2 ( A ) - ( Z i ) 1
Qo {&,&} (A ) 1
ao { & . 6 .6 1 ~(Ds) 1
Ql {0} (Z |') +  (Af) +  ( A ) - ( Z , ) 8
ai {&} - ( Z | ‘) - ( A f ) - ( A )  +  (Z.) 8
Ql {61 ( Z | « ) - ( I * ) - ( A ) +  (Z,) 8
Qi {Co, Cl} - (^ ■ )  + ( A )  + ( A ) - ( Z i ) 8
Qi {Ci, Ca} ( Z £ ) - ( 0 f ) - ( A )  +  (Z 1) 8
»i {Co, Ci, C2 } - ( 2 j ' ) - ( A f ) - ( A )  +  (Zi) 8
q 2 {0} (Z‘=) +  (Af) + (A )  -  (Z.) 8
Q2 {Co} - ( Z £ ) - ( D f ) - ( A )  + (Zi) 8
q 2 {&} ( Z ' q - P j ) - ( A ) - r ( Z , ) S
q 2 {Co,Ci> - ( Z ‘=) +  (A?) + ( A )  -  (Z>) 8
q 2 {Ci,Ca} (Z£) +  (A?) +  ( A ) - ( Z i) 8
q 2 {Co, Ci, C2 } —(Z5 ) -  (Df) -  (Di) + (Zj) 8

Table 6.3: Equivariant classification of the Hopf bifurcation with D$ symmetries.

6.3.6 H opf Bifurcation in a System w ith  Tetrahedral Sym­
m etries

We consider here the system of equations (6.28) with the matrix C of the type (6.30). 
This system is symmetric with respect to the tetrahedral group T =  A 4 action on 
U =  R”, which acts on the space V' =  R4 by permuting the coordinates of vectors. 
We have a{C) =  {£0 =  c+3d, £3 =  c -d } . The subspace Vo of the fixed-points of this 
action is spanned by the vector (1,1,1,1), and its orthogonal complement V3 is the 
natural three-dimensional representation of A4, which was denoted by V3. These two 
subspaces are the eigenspaces of the matrix C: the subspace Vo corresponds to the 
eigenvalue £0 =  c+3d and V3 to the eigenvalue £3 = c - d .  In addition V0 © V3 is the 
isotypical decomposition of V, where Vo is modeled on the trivial ^-representation 
Vo and V3 is modeled on the natural ^-representation V3. The dominating orbit
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types axe (A4) (orbit contains 1 periodic solution), (Z3 1 ) (orbit contains 2 periodic 
solutions), (Z|2) (orbit contains 4 periodic solutions), and (V4_) (orbit contains 3 
periodic solutions). The equivariant degree .44 x 5 1-Deg(5re ,^)i, can be evaluated 
using the computational formula (6.52).

We summarize in Table 6.4 the topological invariants A4 x 5 1-Deg(^e, Vl) 1 cor­
responding to elements in T,{C), and ai < 0. Table 6.4 provides us with an example 
of a situation where a non-zero coefficient in degV3, corresponding to a dominating 
orbit type, gets canceled after multiplication.

Qi E(C) At  x S'-Deg (So.-Q): =S= Branches
Q0 {0} 1
Qo {£0} - A ) 1
Qo {£3} (.44) - 2(Z8) - ( Z I) + (2 1) 1
Qo {£0, £3} -(A .)  +  2(Za) (Za) -  (Z,) 1
Q3 {0} (2 2 ) + ( 2£ )  + (V<-) + (Z3) - ( 2 ,) 12
Q3 {£0} -(Z £ > )-(Z ? )-(V 5T ) - ( Z 3) +  (Z,) 12
q3 {£3} -(Z J ) -  (Z£) + (VD -  (Zs) -  2(Zo) + (Z,) 12
Q3 {£o,£3l (4«) + Z£) -  (VT) + (Zs) + 2(Zs) -  (Zs) 12

Table 6.4: Equivariant classification of the Hopf bifurcation with A4 symmetries.

6.3.7 H opf Bifurcation in a System  with Octahedral Sym­
m etries

Here we have the group S4 is acting on the eight-dimensional space V  := Rs by 
permuting the coordinates of the vectors in the same way as the symmetries of the 
cube in R3 permutes the eight vertices of the cube. It can be easily verified, that 
the representation V  can be decomposed into a direct sum of four subspaces:

y  =  Vo e  Vi ® V31 e  T42,
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where

Vo =  span {<1,1,1,1,1,1,1,1)}

VI =  span {(1, -1 ,1 , —1.1, -1 ,1 , -1 ) ,)}

V/ =  span {(1,1, -1 , -1 ,1 , -1 , -1 , 1), (1, -1 ,1 , -1 , -1 ,1 , -1 ,1 ),

( -1 ,1 ,1 ,-1 ,1 ,1 ,-1 ,-1 )}

V i = span {(1, -1 , -1 ,1 ,1 ,1 , -1 , -1 ) , (1,1,1,1, - 1 , - 1 ,  -1 , -1 ),

( - 1, - 1, 1, 1, 1, - 1, - 1, 1)}

Notice that these subspaces are irreducible representations of S4. where V̂1 is equiv­
alent to the natural three-dimensional representation V3 of 54, and Kj2 is equivalent 
to the another three-dimensional irreducible representation V4 of S4. The subspace 
Vo is the fixed-point space of the action of S4. The subspaces Vo, VI, V} and V̂2, 
which are the isotypical component of V , are eigenspaces for the matrix C. We have

Subspace Eigenvalue of C Type of Representation Dimension

Vo c +  3 d Trivial 1
V1 c — 3d Representation Vi 1
v i c +  d Natural V3 3
v i c — d Representation V4 3

Let us list the dominating orbit types: (54) (orbit contains one periodic solu­
tion), (5^) (orbit contains one periodic solution), (Df) (orbit contains 3 periodic 
solutions), (£>2) (orbit contains 6 periodic solutions), (Z|) (orbit contains 8 periodic 
solutions), {D\) (orbit contains 3 periodic solutions), (£>|) (orbit contains 4 periodic 
solutions), and (Z4).

We summarize in Table 6.5 the topological invariants S 4 x S1-Deg(2re, 0)i cor­
responding to elements in S(C), and ai < 0.
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Table 6.5: Equivariant classification of the Hopf bifurcation with S4 symmetries.5
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6.3.8 H opf Bifurcation in a System  w ith Icosahedral Sym­
metries

Finally we consider the system (6.28) with icosahedral symmetry group. Here we 
have the group A 5 anting on the twenty-dimensional space V  := R20 by permuting 
the coordinates of the vectors in the same way as the symmetries in R3 permutes 
the vertices of the dodecahedron. It can be verified, that the matrix C, defined by 
(6.32) has the following eigenvalues:

a {C) := j&j =  c +  3d, =  c — 2d, £2 =  c +  d, £3 =  c +  \/o d |

and there is the following decomposition of V  into the eigenspaces of C:

v = vQ®vl ev2® v3,
where Vo is a one dimensional subspace of V, with a trivial action of As (i.e. Vo = 
V * ) ,  and

Vi ~  Vi © Vi, V2 ^  V2, V3 ~  v3 ® v3,
where Vi, V2 and V3 are irreducible representations of A 5 (see [3]).

Let us list the dominating orbit types: (A43) and (A42) (orbit contains 5 periodic 
solutions), (As) (orbit contains 1 periodic solution), (V̂ - ) (orbit contains 15 periodic 
solutions), (.Df) (orbit contains 6 periodic solutions), (Dj) (orbit contains 10 periodic 
solutions), (Z5 1 ), (Z52) (orbit contains 12 periodic solutions), (D3), and (Z3 ).

We summarize in Table 6.6 and the topological invariants As x S^DegdJe, R)i 
corresponding to elements in E(C), and a 1 < 0.
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Table 6.6: Equivariant classification of the Hopf bifurcation with A$ symmetries.
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R em ark 6.3.6. Let us explain briefly how to read the information provided by the 
equivariant degree u (a o,(30) := T x  S 1-Deg(!$$,Q)i. Consider for example the case 
A; =  A3, E(C') =  {£0}) and cto < 0, listed in Table 6.4 for T =  A4. In this case we 
have

u(a0,p0) = — (Z3 1) -  (Z3 2) -  0 0  -  (Z3) + (Zi).

The dominating orbit types in u(cc0,/30) with non-zero coefficients are (Z3 ), (Z32), 
and (V4~). Therefore, there is a Hopf bifurcation taking place with non-constant 
branches of periodic solutions with exactly these orbit type. That means we can 
expect the occurences of at least four branches of periodic solutions with the orbit 
type (Z3 1), four branches with the orbit type (Z32), and three branches of the orbit 
type (KT). Since u (a opo) has also non-zero coefficients corresponding to (Z3) and 
(Zi), there must be also another branch of non-trivial solutions with the isotropy 
group larger or equal than Z3. In this way we can predict the existence of at least 12 
branches of non-trivial periodic solutions. We illustrate this situation on a diagram 
below.
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