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ABSTRACT

In my thesis, I apply the recently developed equivariant degree theory to study the
properties of solutions in symmetric systems of van der Pol equations and to classify
the Hopf bifurcations in symmetric systems of functional differential equations. The
existence of periodic solutions or the occurence of Hopf bifurcation in symmetric
dynamical systems can be determined by means of the so-called primary equivari-
ant degree associated with the considered problem, which provides with an alge-
braic invariant containing equivariant topological information about the existence
of solutions and their symmetric properties. The equivariant degree computational
techniques are based on the reduction to the so-called basic maps (on irreducible
representations) and the usage of the splitting lemma and multiplicativity property.
In my work, I establish the algebraic basis for the computations of the equivariant
degree for the groups G = I x S, with I" being dihedral, tetrahedral, octahedral
and icosahedral groups. Based on the obtained tables the existence and bifurca-
tion results are formulated in terms of the equivariant degree. Multiplicativity of

solutions is also discussed.
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INTRODUCTION

Classical degree theory became an important tool of nonlinear analysis for the de-
tection of single and multiple solutions of nonlinear equations. Its effectiveness and
universality rely on its standard properties, which can be considered as the axioms
of the degree theory: existence, additivity, homotopy, suspension and normalization
properties. In simple words, the degree of 2 map f means an “algebraic count” of
solutions in a set €2 to the equation f(z) = 0 (additivity), which does not depend
on perturbations of f (homotopy). There are numerous applications of the degree
theory in differential equations and functional differential equations (cf. [36]) to
establish the existence and multiplicity results for nonlinear equations.

For a long time, there were many attempts made in order to create a similar
degree theory to study nonlinear equations for equivariant maps. These efforts were
motivated by symmetries in dynamical systems. Many such systems were studied
in physics, chemistry, biology, engineering, etc.

The impact of symmetry can result in large varieties of different solutions with
various symmetric properties, complicated bifurcations and pattern formations, re-
quiring the usage of sophisticated mathematical tools.

The idea of the equivariant degree is based on a desire to “count algebaically”
the orbits of solutions to f(z) = 0 for an equivariant map f.

Several names should be mentioned in this place; In 1976 R. Rubinsztein pub-
lished a paper on S'-equivariant degree (cf. [44]), and E. N. Dancer (cf. [14]) in
1980’s studied S! equivariant variational problems using a specific variant of S*-
degree. A more general degree theory (without free parameter) was introduced in
1988 by H. Ulrich (cf [48]), who also generalized the notion of Burnside ring used as
the range for this degree. An important contribution was made by a group of Polish
mathematicians, Dylawerski, Geba, Jodel, and Marzantowicz (cf. [15]), who pub-
lished in 1991 a paper introducing a one-parameter S'-degree. This degree theory
turned out to be fundamental for the computations of the general G-degree (with
one free parameter).

The general G-degree was introduced by J. Ize, Massabé, and Vignoli (cf. [30]),
and this definition is the basis for the equivariant degree theory. Although the
work of Ize and his collaborator, was concentrated on the abelian group actions,
for which they established computational formulae, this framework can also be used
for general non-abelian group actions. Independently of Ize, in 1990’s, following
a different construction (using normal approximations) another degree theory (for

1
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non-abelian actions) was introduced by Geba, Krawcewicz, and Wu (cf. [21]). This
degree theory, turned out to be a part of the G-degree which was introduced by Ize.
I will refer in my work to this degree as the so-called primary degree. In the recent
years, there was a large progress made in the development of the equivariant degree
theory for non-abelian groups.

The main advantage of using the primary degree for non-abelian group actions
lies in the fact that computations related to such situations can be standarized.
More precisely, it is possible to establish the so-called multiplicativity property for the
primary degree (with one parameter) for the twisted orbit types (with G =T x S*),
and use the reduction technique to basic maps, in order to establish computational
tables for the G-degree.

Since in the case of a non-abelian group G, the G-equivariant degree theory
requires very particular computational techniques, depending on the specific prop-
erties of the group G (lattice of conjugacy classes of subgroups in G, irreducible
representations of G, and other requirements), there is a need for creating a stan-
dard approach to the computation of G-degree.

For this purpose, in my work, I have explored the idea of basic maps (the most
elementary equivariant maps) and the algebraic properties of the primary equivari-
ant degree in order to establish standard tables needed for these computations.
These tables can be used practically, even without knowledge of the definition of
the G-degree, to compute the degree of equivariant maps associated with the studied
applied problems.
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Chapter 1

Preliminaries

1.1 Topological Degree

It has been about one hundred years since the topological methods, such as degree
theory, were introduced to study nonlinear equations, mainly to prove the existence
and multiplicity of solutions.

Consider an open bounded set Q C RY and a continuous map f : RV — RV
such that f(z) # 0 for z € 9 (such a map is called Q-admissible). We will call the
pair (f,Q) admissible. It is easy to observe that knowing the values of the map f
on the boundary 92 may be sufficient to predict the existence of a solution z € Q
of the equation f(x) = 0. Indeed, for instance if f : [a,b] — R is a continuous
map such that f(a)f(b) < 0, then by the Intermediate Value Theorem there exists
a point z;1 € (a,b) such that f(z,) = 0 (see Figure 1.1).

Figure 1.1: Existence of a solution to f(z) = 0.
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We denote by M the set of all admissible pairs (f,2). There is an integer-valued
function deg : M — Z, called the local Brouwer degree, satisfying the following
properties:

P1: (Existence') If deg(f,Q) # 0 then there exists z € Q such that f(z) = 0.

P2: (Homorory?) Ifh:[0,1]xRY — R¥ is a continuous map such that h(t,z) # 0
for all (t,z) € [0,1] x 09 (we will call such h an Q-admissible homotopy or
deformation) then deg(h(t,-), ) = constant.

P3: (Excision®) Let Q, be an open subset of  such that f~1(0) N Q C Q,, then
deg(f, ) = deg(f, Q0)-

P4: (Appimivity?) Let Q) and Q; be two disjoint open subsets of Q such that
FHO)NQ C Q Uy, Then

deg(f,2) = deg(f, ) + deg(f, ).
P5: (NormauizaTion’) Let f(z) = z — a, where a ¢ 6Q. Then

degl,) = {1 recs

0 ifaéfd
It can be proved (cf. [36]) that there exists only one such function (f,) —
deg(f,Q) € Z satisfying the properties (P1)~(P5). There are many ways to con-
struct the degree deg(f,Q). For example, if f is an Q-admissible C* map such that
zero is a regular value of f|q. Then

deg(f, Q)= )  signdetDf(x:)
xkef"l(O)nQ

where Y over an empty set is defined an zero.

We recall that zero is a regular value of a smooth map f|q, if either f~1(0)NQ =0,
or for each z € f~1(0) N Q we have det Df(z) # 0.

1The Existence Property is used to establish the existence of a solution to the equation f(z) = 0.

2The Homotopy Property is used to deform a complicated map f(z) = h(0,z) to a rather
simpler map f (z) = h(1,z), for which the computation of degree is possible, and if deg(f,2) # 0,
then deg(f,2) = deg(f, Q) # 0, and the existence of a solution for f(z) = 0 can be established.

3The Excision Property means simply that the degree of f depends on the location of zeros of
f and not the set Q.

4The Additivity Property is useful to establish the existence of multiple solutions of the equation
f(z) = 0. It also expresses the fact that the degree is a kind of an algebraic count of zeros of f.

5The Normalization Property guarantees the non-triviality of the degree (and its uniqueness).

4
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Example 1.1.1. As an illustration, we can give a degree-theoretical proof of the
fundamental theorem of algebra: Every polynomial

P(z) = 2" +@p12"t + ... 432 + ap.

has at least one complex zero if n > 1, wherea;, 0 <1 < n—1, are complex numbers.
To prove this, we first identify the compler plane with R?, then P defines a mapping
from R? into R%. Let e > 0 be given and define

H(t,2) = 2" —e+t(an12"  +---+az+ag+¢)

fort € [0,1]. It is easy to show that if € is sufficiently small and R > 0 is sufficiently
large, then H is Q-admissible homotopy with Q = Bgr(0). Consequently,

deg(P, Q) = deg(H (1,-),Q) = deg(H(0,-), Q)
Clearly, H(0,-) : R? — R? is a C;-map and

1

H(0,)730) = {en - ®*/M | 0 < j < n—1}
and detDH(0,2)|__ 1 izejmy; > 0- Therefore, zero is a regular value of H (0,)]q and

n—1

deg(H(0,), Q) = Y _sign det DH(0,2)| _1 orm; =7
j=0

Conseguently, deg(P,2) = n > 0 and the conclusion follows from the existence
property of the degree.

1.2 (G-actions and G-spaces

Definition 1.2.1. A Lie group is a smooth manifold G, which is also a group such
that the group multiplication - : G X G — G and the inverse map v : G — G,
v(g) = g7, are smooth.

Example 1.2.2. The unit circle S' = {z € C| |z| =1}, viewed as a multiplicative
subgroup of C, is a compact Lie group.

Throughout this section, we assume that G is a compact Lie group.

Definition 1.2.3. Let X be a Hausdorff topological space. By a topological trans-
formation group we mean a triple (G, X, ), where p: G x X — X is a continuous
map such that
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(i) ©(g,0(h,z)) = o(gh,z) forallg,h € G and z € X,

(%) o(l,z) =z for all z € X, where 1 is the identity of G.

For a toplogical transformation group (G,X,¢), we call the map ¢ an action of
G on X and the space X, under the action of G, a G-space. The action ¢ is
called free if p(g,z) # z forallg # 1 € G andz € X. For A C X, we put
G(A) = {g9z| g€ G,z € A}. A set A C X is said to be G-invariant, or simply
invariant, if G(A) = A.

We will denote by Zi, C S the cyclic subgroups of S* of order k, k=1,2,---, i.e.
Zi = {z €C| z¥=1}ie Zy = {1,7,7% - - ,Y"!} where vy = e¥. Recall that
two closed subgroups H and K of G are said to be conjugate subgroups in G, denoted
byH ~ K, if H=gKg™! for some g € G. The relation ~ is an equivalence relation
and the equivalence class of H, denoted by (H), is called the conjugacy class of H
in G. We denote by ®(G) the set of all conjugacy classes. The set ®(G) is partially
ordred by the relation < defined as follows

(H) < (K) &L 3geG gHg ' C K.

1.3 Elements of Representation Theory
1.3.1 Definitions

Let V be a vector space over the field C of complex numbers (respectively, over the
field R of real numbers) and let GL(V) be the group of isomorphisms of V' onto
itself. An element A of GL(V) is a linear mapping of V into V' which has an inverse
A~}. Assume that dim V' = n, by choosing a basis (e;), each linear map A: V — V
can be represented by a square matrix (a;;) of order n. In such a case saying that A
is an isomorphism is equivalent to the fact that the determinant det(A4) of A is not
zero. In this way the group GL(V) can be identified with the group of invertible
square matrices of order n.

Suppose G is a compact lie group, with identity element 1 and with compositon
(g,h) — gh. A complex (respectively, real) linear representation of G in complex
(respectively, real) vector space V' is a continuous homomorphism T from the group
G into the group GL(V). In other words, we associate with each element g € G an
element T, of GL(V'), and we have the equalities

Tpgo =Tg, 0T, for g1,92 €G,

6
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and
T1 = Id

For a given homomorphism T, we say that V is the compler (repectively, real)
representation space of G. Suppose dim V' = n, then n is called the dimension of
the complex (respectively, real) representation V.

Let T and T" be two complex (respectively, real) representations of the same
group G in the complex (respectively, real) vector spaces V; and V,. These two
representations are said to be equivalent if there exists a linear isomorphism A :
Vi — V5 that satisfies the identity

AoTy=T oA forall g € G.

1.3.2 Basic Examples

(a) A complex representation of dimension 1 of a group G is given by the repre-
sentation space V = C and a homomorphism T : G — C*, where C* denotes
the multiplicative group of nonzero complex numbers. If we take T(g) = 1
for all g € G, then the obtained representation of G is called trivial (unit)
representation of G.

(b) Assume that G is finite and let n be the order of G. Let V' be a complex
(respectively, real) vector space of dimension n, with a basis (eg)4ec indexed
by the elements g of G. For g € G, let T, : V' — V be a linear map of V into V
which sends ej, t0 egp, for all h € V. This defines a complex (respectively, real)
linear representation, which is called the complez (respectively, real) regular
representation of G.

(c) More generally, suppose that G acts on a finite set X, which means that for
each g € G there is a permutation X — X which takes z to gz, satisfying the
identities

lz=1z, g(hz)=(gh)z, 9,heG, zeX.
Let V' be a complex (respectively, real) vector space having a basis (e;)zex
indexed by the elements of X. For g € G let T, be a linear map of V into V
which sends e, to ey for all z € X. The obtained in this way linear representa-
tion of G is called the complez (respectively, real) permutation representation
associated with X.
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1.3.3 Subrepresentation

Let T : G — GL(V) be a complex (respectively, real) linear representation and
let W be a complex (respectively, real) vector subspace of V. Suppose that W is
invariant under the action of G, or in other words, w € W implies that T,(w) € W
for all g € G, w € W. The restriction T}” of T, to W is an isomorphism of W
onto itself, and we have Ty =T}" - T,V thus T% : G — GL(W) is also a complex
(respectively, real) linear representation of G in W. In such a case W is said to be
a complez (repectively, real) subrepresentation of V.

Example 1.83.1. Let V be the complex (respectively, real) regular representation
of a finite group G and let W be the subspace of dimension 1 of V' spanned by the

elementz = > 4. Itis clear that we have Ty(z) = x for all g € G. Consequently W
geG

is a complez (respectively, real) subrepresentation of V, isomorphic to the complex
(respectively, real) trivial (unit) representation.

Theorem 1.3.2. (¢f. [36]) LetT : G — GL(V) be a complex (respectively, real)
linear representation of G in V and let W be a complez (respectively, real) vector
subspace of V' invariant under G. Then there ezists an algebraic complement W€ of
W in V which is tnvariant under G and V =W @ W*.

1.3.4 Irreducible Representations

Let T : G — GL(V) be a complex (respectively, real) linear representation of G,
we say that it is irreducible or stmple if no vector subspace of V' is invariant under
G, except of {0} and V. In other words V is irreducible if it is not the direct
sum of two proper subrepresentations. Note that any complex (respectively, real)
representation of dimension 1 is evidently irreducible.

Example 1.3.3. Every irreducible complex representation of an abelian group s
one dimensional. !

Theorem 1.3.4. (Complete Reducibility Theorem) (cf. [36])

Every representation is a direct sum of irreducible representations.

Definition 1.3.5. Let V be a finite dimensional complez (respectively, real) rep-
resentation of G. An Hermitian inner product (respectively, inner product), (-,-)
VXV — C (respectively, (-,-) : VxV — R), is called G-invariant if (gu, gv) = (u,v)
for all g € G,u,v € V. A representation together with a G-invariant inner product
is called an unitary (respectively, orthogonal) representation.

1This fact results directly from the Schur’s lemma

8
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1.3.5 Character Theory

Let V be a vector space having a basis (e;) of n elements, and let A be a linear
map of V into itself, with matrix (a;;). By the trace of A we mean the scalar

T‘T'(A) = Zn: a;;.

i=1

Let T : G — GL(V) be a linear complex (respectively, real) representation of
a finite group G in the complex (respectively, real) vector space V. We define the
function xr : G — C such that x7(g) = Tr(T,) for all g € G. This complex (respec-
tively, real) valued function xr on G is called the characier of the representation
T. The importance of this function comes primarily from the fact that it allows to
characterize the irreducible representations T of G.

Proposition 1.3.6. (c¢f. [{6]) If x is the character of a unitary representation T of
dimension n, then we have;

(i)  x(1)=mn,
(i)  x(g7) = x{9)", for g€ G

(i)  x(ghg™) =x(h), forg,heG.

Definition 1.3.7. LetV; and Va be two complex representations of the group G. A
morphism A : Vi — V, is a linear map that is equivariant, i.e. A(gv) = gA(v) for
g € G, veV,. We denote by Lg(V1,V2) the set of all equivariant morphisms from
Vi to Va.

Proposition 1.3.8. (¢f. [46]) LetTy : G — GL(W1) and To : G — GL(V2)
be two linear compler representations of G, and let x1 and xo be their characters
respectively. Then the character x of the direct sum representation V1 @ Va is equal

to x1 + Xo-
Proposition 1.3.9. Scuur’s LEmma (cf. [36]) Let Vi and V; be two irreducible
complex representations of G. Then we have the following:

(i) A morphism A:Vy — Va is either zero or an isomorphism,

(i) Let A:V; — Vi be a morphism. Then there ezists A € C such that A(v) = lv
for every v € V1.
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Assume that G is a finite group and ® and ¥ are two complex-valued functions
on G, we put

(®%) = = 3 2(g)¥(e)",
geG

n being the order of G. This function satisfies the properties of an Hermitian inner
product in the vector space of all complex-valued characters from G to C.

Theorem 1.3.10. (¢f. [46])

(i) If x is the character of an wrreducible complez representation of G, we have
(xIx)=1 (i.e. x is of norm 1),

(i) If x and X' are the characters of two non-isomorphic irreducible complez
representations, then we have (x|x') = 0 (i.e. x and X' are orthogonal).

Theorem 1.3.11. (¢f. [46]) Let V be a linear complez representation of G, with
character ®, and suppose V' can be decomposed into a direct sum of irreducible
complez subrepresentations Wy, Wo, - -+ , Wk, i.e.

V=W & ---&W,..

Then if W is an irreducibe complez representation with character x, the number of
W; isomorphic to W is equal to the inner product (®|x).

Corollary 1.3.12. Suppose x1,--- , XN are the distinct characters of N irreducible

complez representations Wy,--- , Wy, then V =m;W; @--- @ myWy for any com-
plex representation V of G, where mW = W & --- & W, and the character of V,

™ =N
® =myx; + -+ mrxn, mi = (P|x:), and (B|®) = Z m;2.

i=]
Corollary 1.3.13. Let T be a linear complez representation with the character
X- Then the number of trivial (unit) subrepresentations contained in T is equal to
i) =3 % x(9), n=1Gl.
9€G

1.3.6 Decomposition of Regular Complex Representations

Proposition 1.3.14. (cf.[46]) The character x of the reqular complez representation
V of G is given by the formulas:

(i) x(g) =0, g#1
(1t) x(1) =n = |G|=dim V.

10
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Corollary 1.3.15. Suppose that Wy, Ws, - -+, Wy are all irreducible complez repre-
sentations of G and dim W; = n; and let n = |G|. Then

(a) Every irreducible complez representation W; is contained in the regular complezr
representation of G with multiplicity equal to its dimension n;,

N
(b) The dimensions n; of the complez representation W; satisfy the relation Y n;2 =
i=1

n,

N
(c) Forge€ G, g#1, we have >_ n;x:(g9) = 0.

i=1

1.3.7 Number of Irreducible Complex Representations

Theorem 1.3.16. (c¢f.[46]) The number of irreducible complex representations of G
is equal to the number of the conjugacy classes in G.

Proposition 1.3.17. (c¢f. [46]) Let g € G, and let C(g) be the number of elements
in the conjugacy class of g. Then

N

(0) 2 x:(9)"x:(0) = oy
N *

(b) For h € G not conjugate to g, we have y x:(g9) x:(h) = 0.
1=1

1.3.8 Isotypical Decomposition of Complex Representations

Let T : G — GL(V) be a linear complex representation of G. We are going to define
a unique direct sum of certain representations of V.

Let xi,--- ,Xn be distinct characters of the irreducible complex subrepresenta-
tions Wy,--- ,Wx of G and ny, - -+ ,ny their dimensions. Let V =U; &--- & Uy, be
a decomposition of V into a direct sum of irreducible complex representations. For
i=1,---,N denote by V; the direct sum of those U, which are isomorphic to W;.
We put V; = {0} if there is no such component U;. Clearly we have

V=@ Vy, (1.1)

the composition (1.1) (which is unique) is called the isotypical decomposition of
V and V; is called the isotypical component of V' associated with the irreducible
representation W;.

11
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Remark 1.3.18. Here we are discussing the case of complez representations, but in
the real case, of course, a similar construction leads to the isotypical decomposition
of real representations.

1.3.9 Examples

Dihedral group Dy:  The dihedral group Dy of order 2N, is the symmetry
group of N-sided regular polygon for NV > 1. We consider the elements of Dy to be
a =b

b a )
The dihedral group Dy is generated by Zy, the cyclic group of order NV, which the

real 2 X 2-matrices (e.g. the element v = a + ib represents the matrix

generators being the rotation v = ¥, together with the reflection & = [ é _01 ] i

Let’s classify the irreducible representation for some dihedral groups Dy, and use
them to describe the isotypical decomposition of some representations of Dy.

(1) D3

The dihedral group D3 = {1,7,7% &, K7, /~:72} has three conjugacy classes:
z; = {1}, 72 = {7,7*}, and z3 = {k,xv,57*}. The characters of D are
presented in Table 1.1.

Xi I T2 I3
X1 1 1 1
X2 1 1 -1
Y3 2 -1 0

Table 1.1: Representations of Ds.

There exist three non-isomorphic complex irreducible representations Vi, V5
with dimension 1, and V3 with dimension 2. The isotypical decomposition of
the regular representation V' of Dj is:

V=VieV,eV.
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(i) D,

The dihedral group Ds = {1,7,7%,7°, &, &7, 672, £7°} has 5 conjugacy classes:
I = {1}3 T2 = {73 73}~ Z3 = {72}7 Ty = {K'a &’72}7 and T = {Kf}’, 573}- The
characters of D, are presented in Table 1.2.

Xi I Z2 I3 T4 L5
X1 1 1 1 1 1
X2 1 1 1 -1 -1
X3 1 -1 1 1 -1
X4 1 -1 1 -1 1
X5 2 0 -2 0 0

Table 1.2: Representations of Djy.

There exist five non-isomorphic irreducible complex representations V;, V5, V3, V4
with dimension 1 and V; with dimension 2. The isotypical decomposition of
the regular representation V' of Dy is

V=ViehoV;eV,eVs.

(iii) Ds

The dihedral group Ds = {1,7, 7% 7% 7%, &, K7, 677, &7°, 7%} has 4 conjugacy
classes: 71 = {1}, 7o = {7,7*}, 73 = (¥4} 24 = {K, k7, 672 67, kY4
The characters of Dy are presented in Table 1.3.

There exist four non-isomorphic irreducible complex representations Vi, Vs
with dimension 1 and V3, V, with dimension 2. The isotypical decomposition
of the regular representation V' of Ds is

V=V1olhoV:e Vi

13
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Xi L1 L2 Z3 Ty
X1 1 1 1 1
X2 1 1 1 -1
X3 2 Vel — Y3+l 0
X4 2 _ \/54-5-1 \/54—1 0
Table 1.3: Representations of Ds.
(iv) Ay

The alternating group A4 is the group of even permutations of four symbols
{1,2,3,4}. This group is also called the tetrahedral group, because it is iso-
morphic to the group of symmetries (preserving orientation) of a regular tetra-
hedron. Every permutation ¢ € A, can be written as a composition of cycles
(ning---ni), (k = 1,2,3). By using this notation, we divide the elements of
Ay into four conjugacy classes:

1= {(1)}, 72 = {(12)(34), (13)(24), (14)(23)},
z3 = {(123), (142), (134), (243)}, zs = {(132), (124), (143), (234).
The following is the character table of A4:

Xi L1 L2 I3 T4
X2 1 1 w w?
X3 1 1 w? w
e 13 1 0 0

Table 1.4: Representations of A4
where w = e’F. There exist four non-isomorphic irreducible complex repre-
sentations Vi, V, V3 with dimension 1 and V; with dimension 3. The isotypical

14
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decomposition of the permutation representation V' of A, is

V=WelheV;oV.

) Sq

The permutation group Sy of four symbols {1, 2, 3,4} is isomorphic to the oc-
tahedral group of symmetries (preserving orientation) of a regular cube. By
using the notation of elements in S, as compositions of cycles, we can list the
following five conjugacy classes of elements in Sy:

I = {(1)}? T2 = {(12)’ (13)7 (14)7 (23)3 (24)7 (34)}’

zs = {(12)(34), (13)(24), (14)(23)},

x4 = {(123), (142), (134), (243), (132), (124), (143), (234)}, and

zs = {(1234), (1342), (1324), (1243), (1423), (1432)}.

The following is the character table of Sy:

Xi T T2 I3 Ly L5
X1 1 1 1 1 1
X2 1 -1 1 1 -1
X3 2 0 2 -1 0
X4 3 1 -1 0 -1
X5 3 -1 -1 0 1

Table 1.5: Representations of Sy

There exist five non-isomorphic irreducible complex representations V3, V, with
dimension 1, V5 with dimension 2 and V}, V5 with dimension 3. The isotypical
decomposition of the permutation representation V' of S; is

V=VieV,olzoV,8 Vs

15
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(vi) As

The alternation group As is the group of even permutations of five symbols
{1,2,3,4, 5}, which is isomorphic to the icosahedral group I consisting of the
symmetries (preserving orientation) of a regular icosahedron. The group As
has 60 elements. There are five conjugacy classes of the elements in A5, which

are listed explicitely in Table 1.6.

| #1 ] #3 | #4 #5
(1) | (12)(35), (13)(25) | (123), (125) | (12345) | (21345)
(12)(35), (13)(45) | (132), (152) | (12354) | (21354)
(12)(45), (14)(23) | (124), (234) | (12435) | (21435)
(13)(24), (14)(25) | (142), (243) | (12453) | (21453)
(14)(35), (15)(23) | (235), (253) | (12534) | (21534)
(14)(25), (14)(35) | (345), (354) | (12543) | (21543)
(15)(23), (15)(34) | (134), (143) | (13425) | (31425)
(15)(24), (25)(34) | (135), (153) | (13524) | (31524)
(24)(35), (23)(45) | (145), (154) | (14325) | (41325)
(245), (254) | (14523) | (41523)

(15324) | (51324)

(15423) | (51423)

Table 1.6: Conjugacy classes of elements in As.

The following is the character table of As:

Xi Z1 2 L3 Ty Zs5
X1 1 1 1 1 1
X2 4 0 1 -1 -1
X3 5) 1 -1 0 0
X4 8 -1 0 Lr 58
T
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There exist five non-isomorphic irreducible complex representations V; with
dimension 1, V5 with dimension 4, V3 with dimension 5 and V}, V5 with dimen-
sion 3. The isotypical decomposition of the permutation representation V of
As is

V=helhelVz,oV,o.

1.3.10 Irreducible Real Representations of I x S*

Let T be a finite group and Vj be a complex irreducible representation of I'. Since
the group S* C C acts on Vi by complex multiplication, the irreducible complex
representation Vi of I' leads to a real representation of I' x S?, with the action of
' x 5! defined by (v, z)v = y(27 - v) for j > 1, where (v,2) € I' x S, v € V;. The
space Vi equipped with this action of I' x S?, will be denoted by V4 ;.

17
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Chapter 2

Equivariant Degree Theory:
Construction and Basic Properties

In this chapter we present a construction of the G-equivariant degree theory with
one free parameter for G = I' x §?, where T" is a finite group. This construction can
be generalized to the case of any compact lie group G (cf. [28]) but we do not need
such generality in this thesis. We also introduce the definition of the Burnside ring
A(G), and provide several examples.

2.1 Construction of Equivariant Degree

Let U be an Euclidean space and X a subset in U. We will use the following
notations throughout this section:

BX)={zeX ||zl <1},
BX)={reX ||zl <1},
S(x)={ze X | |lz] = 1}.
Assume that V is an orthogonal G-representation, and consider the space W :=

R @V, where G acts trivially on R. Let Q C W be an open bounded G-invariant
set.

Let f: W — V be an Q-admissible G-equivariant map, i.e. f(gz) = gf(z) for
z € W and g € G, then there exists 2 G-invariant neighborhood N of 9 such that
f(z) # 0 for all z € N. We put QO := QUN and suppose that R > 0 is a real
number such that Qy C Br(0) := {z € W | ||z|| < R}. Assume that 7 : Br(0) — R

18
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Figure 2.1: Invariant Set 2 and Equivariant Map f

is an G-invariant Urysohn function such that (cf. Figure 2.1)

0 ifzeq,
— : 2.1
(=) {1 itz ¢ Q. (2-1)

We define F': [~1,1] x Br(0) = R& V by

F(t,z) = (t+2n(z), f(2)), (t.2) € [-1,1] x Bg(0). (2.2)

Since F~1(0,0) = {0} x (f~*(0)NR), by identifying [-1, 1] x Br(0) with B(R*&V),
we get the equivariant map

F:(BR*aV),SR*aV))— R&V,RsV\{0}).

Now by taking the equivariant homotopy class of F' (denoted by [F]), we obtain the
element

[Fle BR*aV),SR*a V);Re V.ReV \ {0}]° =: IT¢.

where by [X, 4;Y, B]G we denote the set of all G-equivariant homotopy classes
of maps from (X, A) to (Y. B). It is well known {cf. [29]) that the suspension

— . G
homomorphism € from 11§, = [BRY* & V), SRV '@ V): RV e V.RV &V \ {0}]

— . G
to %, == |BRY"Z 2 V), S®R¥ 2 @ VRV & VRV & V\ {0} defined by
&([F]) = [Idgr x FJ, is an isomorphism (by Freudenthal Theorem (cf. [32])) for N
sufficiently large. We put I1¢ := II$. The group 1, which is the stable equivariant
homotopy group of sphere, is the range for the equivariant degree.

19
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By taking the class of N — 1-suspension of F, we define
degc(f, Q) = [IdRN-I X F], (23)

and we call it G-equivariant degree of f in §2. The equivariant degree introduced
above satisfies all the properties expected from any reasonable degree theory. In
particular, we have the following result:

Theorem 2.1.1. (cf. [32]) The G-equivariant degree degg(f,Y) has the following
properties:

(i) Existence: If degq(f, ) # 0 then there ezists z € Q such that f(z) =0,

(i) Aporrvity: If F7HO)YNQ C Oy UQ,, where 4 and Qe are two disjoint open
invariant subsets of 1 then

degG(fv Q) = degG(f’ Ql) + degG(f: Q2)s

(i) Homotory: If f; : [0,1]x V — W is an equivariant homotopy of 2-admissible
maps then degg(fi, ) =constant,

(iv) Susepension: dego(Id x f, (—1,1) x Q) = degg(f,€2),

(v) Excsion: If f7H{0)NQ C Q,, where Q, C Q is an invariant open subset of
Q, then
dege(f,Q2) = dega (S, ),

(vi)  Hopr ProperTY: Assume )= B(V) is the unit ball in V and f1, f2 are two
B(V)-admissible G-equivariant maps with degg(f1, B(V)) = degg(fz, B(V))-
Then for N big enough, Idgy X Fy and Idgny X Fy are G-equivariantly homotopic
by a B(RN) @ B(V)-admissible homotopy.

2.2 Regular Normal Approximation of Equivari-
ant Mappings

2.2.1 Normal Maps: Definition and Examples

Assume that V is a real, finite-dimensional, orthogonal G-representation and W =
R ® V, where G acts on R trivially. For z € W, we denote by G, the subgroup of
G defined by G := {g € G| gz = z}. The subgroup G is a closed subgroup of G
and is called the isotropy group of . The set G(z) := {gz|g € G} is called the orbst

20
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of z. The orbit G(z) is homeomorphic to G/G,. Since Gy = g~ G.g it follows that
the conjugacy class (G;) of G, describes the orbit G(z).

In what follows, for a given z € W, we will call (G,) the orbit type of z. It is
easy to verify that V¢ := {z € V; gz = z for all g € G} is a linear subspace of V,
called the subspace of G-fized points.

For a G-invariant set @ C W and a closed subgroup H of G, we put
OF :={zecQ hz=zforall he H},
Qg :={z €| G, =H},
Q) .= [z e Q| (Gz) > (H)},
Qary = {z € 9| (Gz) = (H)},
J(Q) = {(G2)] z € 2} C 2(G).

The set J () is called the set of the orbit types in Q, and (H) for a subgroup H C G
such that H = G, for some z € Q is called an orbit type in Q. It is well known
that Qp is open and dense in Q¥ (cf. [9]). Moreover, J(Q) is a finite set, partially
ordered by the relation < defined for the set ®(G) (see section 1.2). It is also well

known (see [9]) that the set Q) is a submanifold of W. We will denote by 7(Qz))
the tangent bundle to gy and by v(Q)) the normal bundle to Q) in W.

Definition 2.2.1. Let Q C W be an open bounded G-invariant set and f : W — V'
an §2-admissible G-equivariant map. We say that f satisfies the normality condition
at z € Q if there exists d; > 0 such that for all v € vz(Qx)) i.e. vL7(Q)), where
H = G, with ||v]| < §; and z + v € 2, we have

flz+v) = f(z) +v. (2.4)

Definition 2.2.2. Let 2 C W be an open, bounded, G-invariant setand f : W — V
an 2-admissible G-map, We say that f is normal if for every a = (H) € J(Q) and
every z € f~H(0)NQ sy, the a—normality condition at z s satisfied (see Figure 2.2);
i.e. there ezists §; > 0 such that for allv € vz(Q), |lv]| < 0z, then

flz+v) =flz)+v="1. (2.5)
Similarly, an Q-admissible G-homotopy h : [0,1) X W — V is called a normal
homotopy in S, if for every (H) € J(2) and for every (t,z) € R (0)N([0, 1]x Qs ,

the following a-normality condition at (t,7) is satisfied, i.e. there ezists dyzy > 0
such that for all v € vz ([0, 1] X Q) with [[v]| < 8¢.z),

h(t,z +v) = h(t,z) +v="0. (2.6)

21
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Figure 2.2: Normal Map

Example 2.2.3. Consider the antipodal action of G = Z, on the space V = R.
Then the map f: V — V defined by

T if |z| < 1,
flx)=<2-2 ifx>1,
—-2+4+z2) ifz<-1,

is a G-equivariant normal map. Indeed, there are only two orbit types in V; (H), (K)
with H = Z, and K = {1}. Since (V#)* = R and for |z| < 1 we have that f(z) = z,
it follows that f satisfies (Zo)-normality condition. On the other hand (V¥)* = {0},
thus it also satisfies the (K)-normality condition.

In the following, we consider an orthogonal representation V' of G and its set of
orbit types

To simplify the notation, we put (Hy) = ar for k=1,2,...,1.

Theorem 2.2.4. (NoRMAL APPROXIMATION THEOREM) (c¢f. [96]) Assume thatQ C W
s a bounded open G-invariant subset and let f : W — V' be an Q-admissible G-
equivariant map. Then for every n > 0 there exisis a normal (in Q) G-equivariant
map f: W — V such that

sup Hf(x) - f(x)H <.

€N

Theorem 2.2.4 can be extended to the case of Q2-admissible homotopies.

Theorem 2.2.5. (NoRMAL APPROXIMATION THEOREM FOR HoMoToPIES) (cf. [36])
Let Q C W be an open bounded invariant set and h : [0,1] x W — V be an Q-
admissible homotopy. Then for every n > 0O there exists a normal G-homotopy
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h:[0,1]x W —V in Q such that  sup (At z) — h(t,z)|| < 1. In addition, if
(t,z)€[0,11xQ

ho := h(0,-) and hy := h(1,-) are normal in Q, then hy = hg and Ay = hy.
2.2.2 Regular Normal Approximations

Definition 2.2.6. Let 2 C W be an open bounded G-invariant set and let f : W —

V be an Q-admissible G-equivariant map. We say that f is a regular normal map
in Q if:

(i) fis of class C*,
(i) f is mormalin £,
(ii) for every @ € J(F7*(0)NQ), a = (H), zero is a regular value of

fo = fiag :Qu — VEH,

where Qx = QNWg. Notice that Qg is not G-invariant, in general, but it is N(H)-
invariant. Therefore, it is W(H)-invariant, where W (H) := ﬁ%{f_) is called the Weyl
group of H in G.

Similarly, an Q-admissible G-equivariant homotopy h : [0,1] x W — V is called
regular normal homotopy in  if:

(i) & is of class C*,
(ii) A is a normal homotopy in 2,

(iil) for every @ € J(R71(0)N[0,1] x Q), a = (H), zero is a regular value of the
maps hg, (ho)x and (hi)y, where
hH = h)[o,l]xQH . [0, l] X QH - VH,

(ho) = hojy : 0 — V7,
(hl)H = hl!QH : QH — VH

Theorem 2.2.7. (REGULAR NORMAL APPROXIMATION THEOREM) (cf. [36]) LetQQ C W
be an open bounded G-invariant set and f : W — V' an Q-admissible G-equivariant
map. Then for everyn >0 there exists a regular normal (in Q) G-equivariant map
f:W =V such that sup 1f(@) = f(@)|| < 7. Similarly, if h: [0,1] x W — V is

an Q-admissible G- eqmvcmant homotopy, then for everyn > 0 there exists a reqular
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normal (in Q) G-homotopy h : [0,1] x W — V such that sup ||h(z,t) —
(t,:)E[O,l]i(vQ

z_z.(:c, )|l < n. In addition, if ho and hy are regular normal in Q, then hg = hy and
h]_ = h]_.

2.3 Computation and Decomposition of the
Group II¢

The goal of this section is to describe the group II¢. We will look at the group II¢
as the set of values for the G-equivariant degree, so we can describe the equivariant
homotopy classes in II¢, by studying the G-equivariant degree of regular normal
representatives of these classes. Notice that, by the definition of II®, we are, in fact,
dealing with free equivariant homotopy classes, which are very awkward for studying
the group structure of II¢. However, the equivariant degree, and in particular, its
additivity property, provides us with a geometric method for the computation of the
(abstract) group structure of IIC.

2.3.1 Equivariant Degree Techniques

A:LetaeI®and f: RV @& W — RV @ V be a B(RY @ W)-admissible map
such that the equivariant homotopy class of f is exactly a. In what follows we will
always assume that N is large enough. Then obviously, from the construction of
the G-equivariant degree, the class a is equal to deg(f, B(RY & W)). Now we can
take advantage of the equivariant degree properties. Suppose that Z := f~1(0) and
let K be a compact invariant subset of Z such that there exists an open invariant
subset 2 of B(RY @ W) satisfying QN Z = K. Since the map f is Q-admissible, we
can apply the construction described in section 2.1 as follows:

(i) Choose an invariant neighborhood AV of 852 in B(RY @ W) such that f(z) # 0
forzeN.

(ii) Find an invariant Urysohn function 7 : B(RN @ W) — [0, 1] satisfying

(z) = 0 if z€Q,
=1 i zENUQ.

(iii) We can identify [~1,1] x B(RN @ W) with B(R¥+! @ W) and define the
G-equivariant map F: [-1,1]x BRN o W) - Ra& (R¥ V), by

F(t,z) = (t + 2n(z), f(2)), (2.7)
where (t,z) € [-1,1] x BRN @ W).
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Notice that
(a) Ft,z) =0<=t=0andz € K.
(b) If f is regular normal in Q, then F is regular normal in B(RN+! @ W).
(c) If K = Z then degg(F, B(RN*! @ W)) = degs(f, BRN & W)) = a.
We will call the map F a localization of f about the set .

B: Notice that for two elements a and b € IIC, it is always possible to find two
representatives fo, f : BRY @ W) — RY & V such that 7;71(0) N £;71(0) = 0.
Indeed, suppose that ., fi : BRN @ W) — RY &V be two representatives of a
and b, then we can define f,, f,: [-1,1] x BRY e W) = Ro (R V) by

o)== fi@), A9 = 64556,

where (t,z) € [-1,1] x B(RM & W). Clearly, the zeros of f, and f;, are separated.
We will call this procedure a separation of zeros. Notice that if f, and f; are regular
normal, then f, and f; are also regular normal.

C:If fo, /o : BRN®W) — RN @V are such that f71(0) N 7,71 (0) = 0 then we
can find two open invariant sets 2, and Q such that f7(0) C Q, f, *(0) C Q5 and
Q. N = 0. Then we put Q =, U, and define themap f: Q - RV &V by

| folz) iz E Q.
fle) = {fb(:c) if z € .

The map f can be extended equivariantly to B(RYN @ W). Let F be a localization
of f about 2, then clearly, by the additivity and suspension properties,

dego(F, BRN ™ @ W)) = degg(F, (—1,1) x Q) = degg(£,Q)
= degg(fa, ) + dege(fi, %) = a + 0.

D: Suppose that k: [0,1] x BRN @ W) — RY @V is a regular normal homotopy
of B(RN @ W)-admissible maps. Since the set Z = {(t,z) : h(t,z) = 0} C [0,1] x
B(RYM @ W) is compact and invariant, it follows that the set K = w(Z), where
7:[0,1] x B(RN @ W) — B(RN @W) is the natural projection, is also compact and
invariant. Let J(Z) = {(H1), (H2),...,(Hx)}. Since h is regular normal, the sets
Z(x,) are compact, so the set K can be represented as a union K = U?=1 K(#,), where
each of the sets Ky, is compact and invariant. Therefore, there exist invariant
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disjoint open neighborhoods €2; of the sets K(y,). Let Q := Uf=1 ;. Notice that
ZC[-1,1]xQ,and Zm,y C [-1,1]xQfor i =1,...,k, so h is also an Q-admissible
regular normal homotopy and ;-admissible homotopy foreach [ = 1,..., k. We will
call this procedure restricting a regular normal homotopy to an orbit type (Hy).

2.3.2 Decomposition of the Group II¢

Definition 2.3.1. For every orbit type (H) in W we define the subset II(H) of II¢
which consists of all elements a € II® such that there exists a regular normal map
f:RNoW — RN @V, with the following properties:

(i) fis B(RN ® W)-admissible,
i) FFH)NBRYNeW)=(f0)NnBRY & W))(H),
(i) dege(f, BRY @ W))=a.

Since a constant non-zero equivariant map clearly satisfies the conditions (i)—(iii)

of Definition 2.3.1, the element 0 belongs to II(H) for every orbit type (H) in W.
We have the following:

Theorem 2.3.2. (¢f. [5]) For every orbit type o = (H) in W:
(a)  the set II(H) is a subgroup of IIC,
(b) II(H)={0} if dmW(H) > 1,

(c) I°= € IH).

dim W (H)<1

In what follows, we will denote by a(z) the II(H)-component of a € I¢. We will

also write
dege(f,Q) = > aun € EDI(H). (2.8)

(H) (#)
Proposition 2.3.3. (¢f. [5]) Let f : W — V be an Q-admissible map such that
dego(f,Q) = a # 0, i.e. agy # 0 for some (H). Then there exists z € QF such

that f(z) = 0. In other words, the equation f(z) = 0 has a solution z in Q0 with
symmetries at least H, i.e. G D H.
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2.4 Burnside Ring A(G)

In this section we introduce the definition of the Burnside ring A(G), and provide
several examples. Let ®(G) denote the set of conjugacy classes (H) such that the
Weyl group W(H) is finite. We denote by A(G) the free abelian group generated
by (H) € ®G). There is a multiplication operation on A(G) defining in A(G) a
structure of a ring with identity. The multiplication is given by

(H)-(K)= Y n(l),

(L)e2(G)

where

n = [n(L, H) - (LKW E)] - WE) = . nL DnziW D] /W)
(D)>(L)

and the integer n(L, H) denotes the number of conjugate copies of H containing the
subgroup L.

Example 2.4.1. Dihedral group D,
(a)n=3
In this case, the subgroups of the group
D3 = {1,7,7* k. 67, 67},
where v = e € C, are represented by
Zy={1}, Zs={1,7,7}, Di={Lk}~{Lwr}~{L,5"}

It is easy to notice that in this case N(D;) = D; and N(Zs3) = N(Z;) = D3, which
implies that W (D) = Z;, W(Zs3) = Z,, and W(Z,) = Ds.

Following is the lattice of conjugacy classes in Dj:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Ds)

/ N\

(D1) (Zs3)

(Z,)

Figure 2.3: Lattice of Conjugacy Classes in Ds.

T | B | oA
Z: [ Ds| 1
D: | Ds| 1
Zs | D3| 1
Zi | Zs | 1
Z: | D1 | 3

Table 2.1: Numbers n(L,H) for subgroups of Dj.
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| (Ds) (D1) (Zs) (Z,) |
(Ds) | (Ds) (D1) (Zs) (Za)
(D1) | (D1) (Dh) +(Zh) (Zn) 3(Za)
(Zs) | (Zs) (Z,) 2(Z3) 2(Z,)
(Zy) | (Zn) 3(Z,) 2(2,) 6(Z,)

Table 2.2: Multiplication Table for the Burnside Ring A(Dj).

(b)yn=4
In this case, The subgroups of

Dy={1,1,—1,—1,K, ki, —K, —Ki},

are exactly:
Zy={1,%,—-1,—1i},
Ly = {1’ _1}3

Zy = {1}=

D2 = {1, —1, R, —K,},
Do= {1, -1, ki, —ki},
Dl = {1, K/} ~ {1, —K,},
Di= {1, ki} ~ {1,—ri}.

Notice that, N(Dy) = Dy and N(1~)k) =52k, where k = 1,2 and N(Zi) = D, for
k =1,2,4, which implies that W(Zx) = Ds and W(Dy) = W(Dx) = Z>. We have
the following lattice of the conjugacy classes of subgroups in Dj:
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(Da)

Zy) (52)

(
(

D) (
DQZQ (D1)
(Z,)

Figure 2.4: Lattice of Conjugacy Classes in Dj.

| L | H |n(L,H)| L | H|n(LH)|

Zy | Dy 1 Zy | Do 1
D, | Dy 1 Zo | Zy 1
ZQ D4 1 Zl Z4 1
D1 | Dy 1 Z, | D, 1
Dy | Dy 1 Zy | Do 1
Z4 | Dy 1 D; | Dy 1
Do | D4 1 7, | D 9
.51 52 1 Zy | Zo 1
ZZ 52 1 Zl D1 2

Table 2.3: Numbers n(L,H) for subgroups of Dj.
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| | (Ds) (D2)  (Za) (Do) (D) <§1> (Z2) (Z) |
D) | (Dy) (D) (Zs) (De) (D1) (Ds) (Z2) (Zo)
03|00 i Gy @ o @) 2z 2AZ)
(Zs) | (Zo) (Zo) 2(Zo) (Zo) (Z,) (Z,) 2AZs) 2A(Zy)
Do) | (D) (Zo)  (Zo) 2AD») (Z,) 2D 2AZo) ATY)

D) (@) (@) 2D 2Z.) 2AD)+(Z) AT
(Zo) | (Zo) 2(Zo) 2(Zo) 2AZ») 2(Z,) 20zZ)) Az
(Z2) | (Zv) 2(Zi) 2(Z) A

)
)
)
2
(Dlg (D1) 2(D) (Zh) (Zi) 2(D1)+(Zy) 2(Z;) 2(Z,) 4AZy)
) | (D 1 )
)
)

Z,) 4(Z,) 4(Z,) 4(Z,

Table 2.4: Multiplication Table for the A(D,).

(c)n=5
‘We have the following subgroups of

Ds = {1,777 67, &7%, k7%, 677},

2m:
5

where vy = e
Zy ={1}, Dy ={1,k}~ {1,687} ~{1, KY*} ~ {1, &v*} ~ {1, 57},

Zs = {1,7, 77, 7'}

In this case, N(D;) = D, and N(Zs) = N(Z,) = Ds, which implies that W(D;) =
Z,, W(Z;) = Ds and W(Zs) = Z,. The lattice of subgroups in Ds is shown on
Figure 2.5.
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Figure 2.5: Lattice of Conjugacy Classes in Ds.

L H | nL H)
Zl D5 1
D, | Ds| 1
Zs | Ds | 1
Z, | Zs | 1
Z, | D:| 5

| | (Ds) (D1) (Zs)  (Zy) |
(Ds) | (Ds) (D1) (Zs) (Zy)
(D1) | (D) (D) +2(Z1) (Za) 5(Za)
(Zs) | (Zs) (Z,) 2(Zs) 2(Z,)
(Zy) | (Zn) 5(Z) 2(Z,) 10(Z:)

Table 2.6: Multiplication Table for the Burnside Ring A(Ds).
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Example 2.4.2. Tetrahedral Group A4

We have the following representatives for the conjugacy classes of the subgroups
in A4:(see Section 1.3.9)

H
Zy = {(1)}
Z, ={(1),(12)(34)}
Zsz ={(1), (123), (132)}
Ve ={(1),(12)(34), (13)(24), (14)(23)}

—
=
=

Table 2.7: Subgroups of A4 and the order of each conjugacy class.

The lattice of subgroups in A4 is shown on Figure 2.6.
(Aq

/A

(Va) Z3)

(Z2)
AN
(Z,)

Figure 2.6: lattice of conjugacy classes in Aj4.

In addition, N(Va) = Ag, N(Zs) = Zs, N(Zs) = Vi, and N(Zy) = As, 0
W (Vi) = Zs, W(Zs) = Z,,W(Zs) = Z, and W(Z,) = A;. Now we can find the
numbers of n(L, H).
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L H ]| nLH

N

ol

~
W[ =

Table 2.8: Numbers n(L, H) for subgroups of A,.

| (4g) (Vi) (Z3) (Z5) (Z,) |
(Ag) | (A2) (Vo) (Zs) (Z2) (Z,)
Va) | (Va) 3(Va)  (Zw) 3(Z.) 3(2Zy)
(Zs) | (Zs) (Z) (Zs)+ (Z,) 2(Z,) 4(Z,)
(Z2) | (Zo) 3(Zo)  20Zh)  2Zo)+2(Zi) 6(Zy)
(21) | (Z) 3(Z)  4(Z) 6(Z1) 12(Z:)

Table 2.9: Multiplication table for the Burnside ring A(Ay).
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Example 2.4.3. Octahedral Group S,

Since A4 is a subgroup of Sy, it is clear that all the subgroups of Ay, including V,, Za,
Zs, and Z, are also subgroups of S;. In addition, there are the following subgroups
in Sy (up to the conjugacy class)-(see Section 1.3.9)

D, = {(1), (1324), (12)(34), (1423), (34), (14)(23), (12), (13)(24)},
Zs = {(1), (1324), (12)(34), (1423)},

Dy = {(1), (123), (132), (12), (12)(23). (13)},

Dy ={(1), (12)(34), (12), (34)},

Dy =A{(1), (12)}-

These subgroups are shown in Figure 2.7.

(S4)

TN

(Ds) (Ag) (Ds)
N/
) (Zs)

(Z4) (D1)

(Da) (Vs

(Z1)

Figure 2.7: Lattice of Conjugacy Classes in S;.

Let us notice that the subgroup Dy, which is composed of the elements {(1),

(1324), (12)(34), (1423), (34), (14)(23), (12), (13)(24)} has the normalizer i(1)34) -

D,4. The conjugacy class (Dg4) contains three elements, corresponding to the sym-
metry subgroups of the three pairs of parallel faces of the cube. The normalizer of

the subgroup Ay is N(A4) = S4. The group D3 consists of the elements {(1), (123),
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(132), (12), (23), (13)}. The conjugacy class (D3) contains four subgroups corre-
sponding to the symmetries of the cube around each of four pairs of opposite vertices
of the cube. In addition N(D3) = Ds;. The subgroup Z4 consisting of the rotations
belonging to Dy, has the normalizer N(Z,) = D4. There are three subgroups in the
conjugacy class (Z,), which correspond to the rotations of the three pairs of the
parallel faces of the cube. The normalizer of V; is N(V;) = S, the subgroup Ds has
the normalizer N(D,) = Dy, and the subgroup D; has the normalizer N(D;) = Ds.
Finally, the subgroup Z, has the normalizer N(Z,) = D;.

The following table shows the numbers of n(L, H).

| B | L|nLH|L]|K]|nLH ]

Ay | Sy 1 D, | Dy 1
Vi | Sa 1 D, | D4 1
Zz | Ss 1 Z, | D, 3
Z2 S4 1 D1 D3 2
Zy | S 1 Zs | Dy 1
D4 54 1 Z1 D3 4
Z; | S| 1 Zo | Vi| 1
Ds3 | Sy 1 Z, | Vy 3
Dy | S 1 Dy | Dy 1
D | S 1 Zy | Dy 1
Vi | Ag 1 Zy | D, 1
Zs | A4 1 Z, | D, 6
Zy | Ag 1 Zy | Z4 1
Z, | Aq 1 Z, | Z4 3
Va | Dy 3 Z, | Zs 4
Z4 D4 1 Z}_ Zg 3
Zs | Dy 3

Table 2.10: Numbers n(L, H) for Subgroups of S;.
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(zvze  (‘2)al (‘z)at ('z)8 (‘z)9 ('z)9 ("z)o (‘z)v (‘ze  (z) ('z)|('2)
(‘zyer (‘z)v+ ("2)y (‘z)o ('z)v (‘ze+ (%2 ((z2)9 ('2)e+(*2)e ('2)z tze (2 (%2) | (2)
(‘z)er ('z)o ("z)s +('a)e (‘z)v (‘z)e (‘z)e (2ke+(Cayx (‘z)+(Cakx (z+(a) (z) (a)|(Ca)
(‘z)8 ('zhv ('z)v ("z)e + (*Z)e (‘Z)e ('z)e ('z)e (‘z) +(*2) ('z) (¢z)e (°2) | (*z)
('z)o  (‘z)z+ (*z)e ('z)e ('z)e ('z2)+(2Z)e (2 (2)+(%2) ('z) (z)+('z) (o) ('2) | ('2)
(‘z)o (*z)9 (‘z)e (‘z)e (*z)e (*A)o (*z)e ('z) (A (e () | ()
(‘z)o  ('2)e+(¥z)e (‘2 +('alke ('‘z)e (‘z)+(2) (2 (“2)+(ak (‘e o)+ Ca) (f2) (Ca)|(a)
(‘z)v (‘z)e (2)+(ayx  (2)+(¥2) ('2) ('2) (‘a)e (a)+(ta) (‘a) tz) (a)|Ca)
(‘2)e (#2)e (‘z) +('a) (‘z) (tz)+(2) (e (@2 +(a) (‘a) D+ Ca)y ) (a)|(a)
('z)e (*z)e (‘z) (*Z)e (*2) (*A)e (*z) (“z) (*A) ('vie (v)|(v)
('z) (¢z) ('a) (*z) ('z) (*A) (a) (ta) (*a) (v) (s) | (*s)
(‘2) (*2) (‘a) (®2) (*z) () (ta) (ta) (ta)  Cv) (%)

Multiplication Table for the Burnside ring A(S;).

Table 2.11

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 2.4.4. Alternating Group As

Let us list the representatives of the conjugacy classes of the subgroups in As:

Zz {(1), (12)(349)},
={(1),(123), (132)},
= {(1), (12)(34), (13)(24), (28)(14)},
= {(1), (12345), (13524), (14253), (15324)},
= {(1), (123), (132), (12)(45), (13)(45), (23)(45)},
= {(1), (12)(34), (123), (132), (13)(24), (14)(23), (124), (142), (134),

(143), (234), (243)},
= {(1), (12345), (13524), (15432), (14253), (12)(35), (13)(54), (14)(23),
(15)(24), (25)(34)}-

The conjugacy classes of the subgroups of As can be classified as follows: there are
15 elements in the conjugacy class of the subgroup Z., 10 elements in the conjugacy
class of the subgroup Zs, 5 elements in the conjugacy class of the subgroup V, 6
elements in the conjugacy class of Zs, 10 elements in the conjugacy class of Ds, 5
elements in the conjugacy class of A4, and 6 elements in the conjugacy class of the

subgroup Ds.
The lattice of the conjugacy subgroups in A; is shown in Figure 2.8.
/( i
(IT) (As) (D‘a)
(Zs) (Va) (Zs)
(Z2)
(Z1)

Figure 2.8: Lattice of the Conjugacy Classes for As.
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| L | H|n(LH)| L|H|nLH) |

Zs | As 1 Zsy | Aq 1
Zy | As 1 Zy | Ag 1
Z, | As 1 Zy | Zs 10
Ag | As 1 Zs | Ds 1
Zs | As 1 Zy | Ds 2
Va | As 1 Z, | Ds 6
D3 As 1 Z3 D3 1
D5 | As 1 Zy | D3 2
Vi | Ag 1 Zy | Ds 10
Zs | Aq 2 Ly | V4 1
Z, | Zs 15 Zy | Vy 5
Zy | Zs 6

Table 2.12: Numbers n{L, H) for Subgroups of As.

In addition N(D3) = N(Z3) = D3, N(Zs) = N(Ds) = Ds, and N(A4;) = As.
the subgroup V; has the normalizer N(V;) = A4. Finally, the subgroup Z, has the
normalizer N(Z) = Vj.

2.5 Subgroups of I' x S! and Twisted Subgroups

In this section we introduce the definition of twisted subgroups of I'x S?, and provide

several examples.
Let " be a finite group and consider the group G =T x S*. In order to classify
the subgroups H of I' x S* we consider the following diagram

H
7/\"‘2
T St

where 7; and 7, are projections (homomorphisms) on I" and S? respectively. Let
K := m(H) and consider ker m; = HN{e} x S?, where e denotes the neutral element
of I'.
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(*Z)oo (‘z)oe ('z)og ('z)51 ('z)er (*z)o1 ('z2)9 (‘z)s ('z) | ('2)
(‘z)oe (‘Z)v1 -+ (*2)e ('z)or ('z)9 -+ (*2)¢ ('z)o (‘2 + 2z (‘2e+ () ('2)e+ () (“2) | (“2)
('z)oz ('z)or (2)9+ (*z)z (‘2)g (‘z)r ('z)e -+ (*2) ('z)e ('z) +(%2)z (*2) | (*2)
(‘z)st  ("zo-+(“z)e (‘z)s ('z)e - (e ('z)e ('z) + (*2)e () ('z) + () () | ()
(‘zer ('z)9 (‘z)v ("z)e (‘z)z+ (“Z)e ('z)e ('z) + (°2) ('z) (z) | (*2)
("zmor  (zw+Cz)e  (‘me+(2)  ('2)+ (2 (‘z)e ('z) + (2z) + (Ca) ()2 (*z)+((2) (a) | (*a)
('z)o  ('2)e+ (“z)e ('Z)e (2)e ('z) -+ (°Z) (2)e (%z) +(°q) (“z) Ca) | Ca)
(‘z)s  ('2e+(F2) (z2)+C2e  ('2)+ () ('z) (“z) + (*2) (*2) t2)+(v) (v | (v)
('2) (*2) (¥2) (") (°z) (ta) (‘a) ('v) ((v) | Cv)
('2) (*7) (¥2) (*A) (°2) (fa) ((a) ('v) (*v)

A(As).

ing

Multiplication Table for the Burnside r

Table 2.13
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If ker m; = {e} x S%, then simply H = K x S'ie. H is a“product® subgroup

and
N(H)= N(K x §') = N(K) x S,
therefore NE) NE) xS NE)
] X
W(H) = T - Rxs - Kk = W(X).
Consequently, we obtain that dim W (H) = dimW(K) = O since K C I'and I' is
finite.

If ker m = {e} x Z,,, for some m > 1, then we are dealing with“twisted” subgroup
and in this case still we have H/ker 71 C I x S, thus we can consider the diagram
below.

H
'ﬂm
H/ker m

AN
@

K e - 5

Since 7 : H/ker m; — K is one-to-one and onto, we can define the homomorphism
@:=Tmpom ' : K — S, and consequently the subgroup H/ker 7, is the graph of ¢,
ie.

H/ker m := {(7,2) € T x S§t|p(7) = 2},

and since the subgroup H is the inverse image u;' (H/ker 71), we obtain:

H={(7,2) €T x SYp(y) = z"}.

In this case we will call the subgroup H a twisted (by ) m-folded subgroup which
will be denoted by K»™. Let us describe the normalizer N(H) of the group H.
Notice that

N(H)=N(K*™) ={(y,2) € x §': (v,2)K®™ (v}, z71) = K¥™}
={(7,2) €T x 8" : p(vky™!) = p(k) Vk € K}
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={yeN(K): p(vky?) = p(k) Vk€ K} x S' := N x §™.
That means N is finite and W(H) = W(K¥™) = %ﬁf Consequently, we obtain
that dim W(H) = dim W(K%™) = 1.
2.5.1 Examples and Computations

In this section we consider several examples of groups I' and the product groups
G =T x S, for which we classify their conjugacy classes of twisted subgroups and
determine the values of the numbers n(L, H) and their Weyl groups.

Example 2.5.1. G=D3x S?
By Example 2.4.1‘, we know the subgroups of D; are represented by
Z1 = {1}3 Z3 = {17 e 72}7 -Dl = {la K’} ~ {1)57} ~ {1’ 5’72}'

On the other hand, besides all the listed above subgroups of D3 (up to conjugacy
class), which are clearly also the subgroups of D3 x S, we have the following twisted
(one-folded) subgroups of G = D3 x S*

Zy = {(L1), (7,7, %)}~ {1, (). (PN}
D ={(1,1), (s, -1)} ~{(1, 1), (&7, -1} ~ {(1, 1), (&7*, -1)},

Dg = {(1’ 1)= (7’ 1)’ ('72’ 1)’ (’{7 _1)’ (K"Y: —1)2 (&72= '—1)}'

Additional properties of these subgroups are listed in Tables 2.14 and 2.15. The
lattice of the conjugacy classes of subgroups in D3 x S* is shown on Figure 2.9.

|[H=K*1 | K oK) Kerp N(H) W(H) |

D3 D3 Zl D3 D3 X Sl Sl
D1 D1 Zl D1 D1 X 51 Sl
Zg Z3 Zl Zg D3 X S1 ZQ x St
Z]_ Zl 21 Zl D3 X 51 D3 X Sl
Dg D3 Zz Zg D3 X 51 Sl
Zg Zg Zg Z1 Zg X Sl Sl
D‘f D1 Zz Z;[ D1 X 51 Sl

Table 2.14: Twisted Subgroups of D3 x S*.
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(D3) (Ds) (Z3)

(D) (D1) (Zs)

Figure 2.9: Lattice of the conjugacy classes of twisted subgroups in D; x S!.

L | H [nlH) || L | H |nLH |

Z, | Ds 1 D: | D3 1
Dy | Ds 1 zZ, | Z¢ 2
Zs | Ds 1 Z, | Dz 3
Z, | Zs 1 Z, | D 3
Z, | Di 1 Z; | Zs 1

Table 2.15: Numbers n(L, H) for Twisted Subgroups in D3 x S*.

The complete list of numbers n(L, H) for the twisted subgroups of D; x S is
given.

Example 2.5.2. Dy x S

As we know the subgroups of
D, ={1,i,-1, —1,k, ki, —K, —Ki},
classifying the conjugacy classes (H) are exactly
Zs = {1,1,-1,—1},
Z2 = {17 _1}:

Zl = {1},
D2 = {13 _17 K, _K'}’

Do= {1, -1, i, —ki},
D; ={1,k} ~ {1, =k},

Di= {1, i} ~ {1, —ki}.
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Then, in addition to the above subgroups of G = Dy x S?, there are the following
twisted (one-folded) subgroups of G:

Z, = {(1’ 1), (_1’ _1)},

Zfl = {(17 1)a (i’i)v (_1’ _1)’ (_ir —Z)} ~ {(1, 1)= (7:’ —7:)) (_la _1): (—i,i)},
Zg = {(1? 1)’ (iv _1): (—1’ 1)’ (_7:7 _1)}3

Di = {(1’ 1)7 ("7" _1)} ~ {(1’ 1)’ (_K" _1)}’

Df = {(17 1)3 (K'i’ "1)} ~ {(17 1)1 (_N'i’ —1)}’

125 = {(17 1)a (_1, 1)3 (K" —1)’ (_"'a 1)}3

.D; = {(1’ 1)’ (_1’ 1)’ (K'ir _1)’ (—/{'iv —1)}:

Dg_ = {(1’ 1): (_13 —1)3 (K,, 1)7 (—K" —1)}-.

'Qg = {(1, 1)’ (—11 —1)$ (K'a —1)) (_K:: 1)},

12% = {(1’ 1)’ (_1’ _1)’ (H'iv 1)3 (_K'ia _1)},

D§ ={(1,1), (-1, -1), (si, —1), (—~i, 1)}

D; ={(1,1), (%, 1),(-1,1),(-%,1), (s, =1), (si, —1), (—k, —=1), (—xi,-1)},
D§={(1,1), (i, 1), (=1,1), (=%, =1), (5, 1), (s, =1), (=&, 1), (—~i, =1)},
Dﬁ = {(17 1)7 (i’ —1)1 (_11 1)7 (—ia _1)7 (H'? _1)7 (K'ir 1)’ (_K', _1)7 (—K)’i, 1)}

All the twisted subgroups of Dy x S* (up to their conjugacy class), their normalizers
and Weyl groups, are listed in Table 2.16. The lattice of the conjugacy classes of
the twisted subgroups in D4 x S? is shown in Figure 2.10. The numbers n(L, H) for
twisted subgroups in D4 x S* are listed in Table 2.17.

Example 2.5.3. Djsx S?

We have the following subgroups (up to conjugacy class) of

Ds = {1,777, 7" 57 677, 57% k),

2mi
5

where vy =e

Z, ={1}, Di={Lk}~{L,s7} ~{L e’} ~{1,67°} ~ {1,57*},
ZS = {117$72)737’Y4}7
Ds = {1,775, 7% 7%, &7, k7%, k7%, 57}
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| H=K%' | K oK) Kerp N(H) W(H) |

D4 D4 Z] D4 .D4 X 51 Sl
D, D, Z,y Do Dyx 8 Zoyx St
%4 _Z:4 Z]_ %4 .D4 X 51 D1 X 51
Dg Dg Zl Dg D4 X Sl Zg X 51
D, D, Z,y D, Dyx St Zoyx St
Z, Zo Z, Zp DyxS Dpx§'
D, Dy Zy D, Dy x §' Zopx S
Zl Zl Zl Zl D4 X Sl D4 X Sl
DZ D4 Zz Z4 D4 X Sl Sl
Dfi D4 Zz D2 D4 X Sl Sl
D¢ Di 2y Dy DgxS! st
D3 D Zo Zn DyxS ZpyxS
Dz Dy Z, Zo DyxS' Zox S
Dg D, Z, Dy Dyx St St
Dg Do Z, Dy Dyx& st
D3 Di Zn Zy DyxS§ ZyxS§
Df .51 Zg Zl .52 x St ZQ x St
Zg Z4 Zg ZQ .D4 X Sl Dl X Sl
Zﬁ Z4 Z4 Zl Z4 x St Sl
ZZ— Zg Zg Z1 D4 X Sl D'_) X Sl

Table 2.16: Twisted Subgroups of Dy x S*.
(D4 x S*)

//\\\

(D% (Ds) (DD @) (D9 (D9

</

Figure 2.10: Conjugacy Classes of Twisted Subgroups in Dy x S*.
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| L H|nZH| L |H|nLE|L|H |[alE]|L]|H|naLH ]

Z, | Dy 1 D; | D¢ 1 D, | D¢ 1 z, | z¢ 1
D, | Dy 1 z D" 1 Z5; | D¢ 2 D, | D, 1
Z, | D4 1 Ds Dg 1 Z, | D¢ 2 Z, | D, 1
Dy | Dy 1 Z, | D¢ 1 D, | D¢ 1 Z, | D» 1
Dy | Dy 1 D, | D¢ 1 z; | D¢ 2 Zo | Z4 1
Zq | Dq 1 Z, | D¢| 1 z, | Dg| 2 Z, | Zq 1
Dy | Dy 1 z$ | D§ 1 D: | D3 1 Dy | Do 1
D | Di| 1 D |DE| 1 Zo | D3| 1 Zo | D: | 1
D, | D3 1 Z, | D} 1 Z, | D 1 Z, | D» 1
Di | D 1 D, | D¢ 1 D: | D3 1 Z, | D3 2
D: | D; 1 z; | D¢ 1 Z, | D3 1 Z, | Ds 2
Z, | Di 1 z; | Z¢ 2 Z, | D3 1 Z, | D, 2
Z, | D; 1 z, | Z¢ 2 z, | z¢ 1 Z, | Z, 1
z, | D 2 z, | Z; 1

Table 2.17: Numbers n(L, H) for Twisted Subgroups in D4 x S*.

Then, in addition to the above, the twisted (one-folded) subgroups of Ds x S* are:

Di ={(1,1), (5, -1} ~ {(1,1), (K%—l }~{(1,1), (s¥, -1)},
~{(1,1), (+7%, -1} ~ {(1, 1), (&7, - 1)},

zg ={(1,1, (7, (7). (P ) (7 )}
~{(1,1), (r ), (), (7 M) ( )}
Z2 ={(1L,1),( %7, (%) (%), ()}
~{@1), (%), (A, (). (b

D ={(1,1), (v, 1),("¥%1), ("% 1), ("%, 1), (‘ -1), (v, =1),

(57%,-1), (7%, =1), (57, = D)}

All the twisted subgroups of Ds x S (up to conjugacy class), their normalizers and
Weyl groups, are listed in Table 2.18. The lattice of the conjugacy classes of the
twisted subgroups in Ds x S? is shown in Figure 2.11. The numbers n(L, H) for
twisted subgroups in Ds x S?* are listed in Table 2.19.
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| H=K#' | K oK) Kery N(H) W(H) |

.Ds D5 Zl D5 Ds X Sl Sl
Zs Zs Z]_ Zl Ds X Sl ZQ bed Sl
D1 .D1 Zl Zl D]_ X Sl Sl
Z]_ Z1 Z1 Zl D5 X Sl D5 X Sl
Dg’ Ds ZQ Zs Ds X Sl Sl
Z? Zs Zz Z1 Zs X Sl Sl
.Df D1 Zg Zl D1 X 51 Sl
zz Zs Zn Z,; ZsxS' &

Table 2.18: Twisted Subgroups of Ds x S*.

'L | B | n(lH) |

Z, | Ds 1
Zs | Ds 1
D, | Ds 1
Z, | Ds 1
Z, | Dg 1
z, | Z¢ 2
Z, | D3 5
Z, | Z¥% 2

Table 2.19: Numbers n(L, H) for Twisted Subgroups in D5 x S*.
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(Ds X Sl

7

(z2) (Ds) (D3)  (Zg)

u)/ \wsfo)

\/

(Z1)

Figure 2.11: Conjugacy Classes of Twisted Subgroups in Ds x S

Example 2.5.4. A, x S?

Let us consider the group A4. We already know the subgroups H of 44 (up to
conjugacy class):

Z, ={(1)}, Z»={(1),(12)(34)},

Zs = {(1),(123), (132)}, Ve ={(1),(12)(34), (13)(24), (14)(23)},

As = {(1), (12)(34), (123), (132), (13)(24), (142), (124), (14)(23), (134), (143),
(243), (234)}.
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The additional twisted (one-folded) subgroups of A4 x S! are

= {((1),1),((12)(34), -1},
z3 —{( ):1), ((123),7), ((132),v*)},

Z7 = {((1),1), ((123),4%), ((132), 1)},

Vi ={((1),1),((12)(34), 1), ((13)(24), -1), ((14)(23), - 1)},

A7 ={((1),1),((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123), ),
((132),9%), ((142),7), ((124),7%), ((134),7), ((143), %),
((243),7), ((234),7")},

AZ = {((1),1),((12)(34), 1), ((13)(2 ) 1), ((14)(23),1), ((123),7%),
((132),7), ((142),7%), ((124),7), ((134),7%), ((143), ),
((243),7%), ((234), 1)},

where v = e, Additional properties of these groups are listed in Tables 2.20 and
2.21. The lattice of the conjugacy classes of subgroups in A4 x S? is shown on Figure
2.12.

| H=K®D | K oK) Kere N(H) W(H) Comments |

Aq Ay Iy Ay Agx St st

Va Vi 7y Vi Agx St Zzx St

Z3 Z3 Zl Z3 Z3 X 51 51

Z, Z, I Zy Vyx§' Zyx§?

Z]_ Zl Z1 Zl A4 X SI A.4 X Sl

A k=12 | Ay Zs Vi Agx St st

Vi Vi 2o Zy, V3x§! s

z; Zo Zn Ly Vax§ Zpyx St

Z¥, k=122 Z3 Z; ZzxS S8 (g =g

Table 2.20: Twisted Subgroups of A4 x S*.

The complete list of numbers n(L, H) for the twisted subgroups of A4 x S? is
given in Table 2.21.
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(A4 x §%)

SN

(4%) 44& Vo)
(Z¥) (V4) (z3)
7)
(Z1)

Figure 2.12: Lattice of the conjugacy classes of twisted subgroups in 44 x S*.

|H| L |nL,H)|L| K |nLH]| HE| L |nLH]| H| L |nLH,]
Zy | Ay 1 zZ, | v 1 Zy | A 1 Z, | VT 3

Zy | Ag 1 Zy | Vi 1 Ve | A¢ 1 Zo | Vo 1

Zs | Ay 1 Zy | Zs 4 Zy | Al 1 z; | Vo 2

Vi | Ag 1 Z: | Zo 3 Zy | A 1 z, | z¥ 4

Z, | Z7 3

Table 2.21: Numbers n(L, H) for Twisted Subgroups in 44 x S* (k= 1,2).
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Example 2.5.5. S;x S

In addition to the listed subgroups in Example 5.2.3, there are the following
twisted (one-folded) subgroups in Sy x S?, representing conjugacy classes:

Zz —{ (1),1),((12)(34), -1)},
= {((1),1),((123),7), ((132),7*)},
= {((1),1), ((1324),4), ((12)(34), -1), ((1428), —1)},
Z" = {((1),1), ((1324), -1), ((12)(34), 1), ((1423), - 1)},
Di = {((1),1),((12),-1)},
Ve ={((1),1),((12)(34), 1), ((18)(24), -1), ((14)(23), ~1)}
Dg = {((1),1), ((12)(34), -1), ((12), 1), ((34), 1)},
D; = {((l)s 1), ((12)(34)3 1), ((12)’ _1)’ ((34), —l)},
D3 = {((1)7 1)7 ((123)7 1)3 ((132)’ 1)’ ((12)3 _1)7 ((12)(23):‘1)’ ((13) _1)}
A = {((1),1),((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123),7)
((132),%), ((142),7), ((124),7°), ((134),7), ((143),7?),
((243),7), ((234),7")},
D = {((1),1),((1824), ~1), ((12)(34), 1), ((1428), 1), ((34), 1),

(
), —=1),((12), 1), ((13)(24). - 1)},

Dg = {((1),1),((1324), ~1), ((12)(34), 1), ((1423), -1), ((34), 1),
),1),((12), -1), ((13)(24), D},

D = {((1).1),((1324), 1), (12)(34), 1), ((1423), 1), ((34), - 1),
); -1),
(
)

((14)(23), -1), ((12), -1), ((13)(24), -1)},

Sy ={((0),1),((12), -1), ((12)(34). 1), ((123), 1), ((1234), 1), ((13), - 1),
((13)(24),1),((132), 1), ((1342), 1), ((14), 1), ((14)(23), 1), ((142),1),
((1324), -1),((23), —1), ((124), 1), ((1243), -1), ((24), —1), ((134), 1),
((1423), -1), ((142), 1), ((34), —1), ((143), 1), ((1432), —1), ((243), 1),
((234), 1)}

The properties of the twisted subgroups in Sy x S? are listed in Table 2.22.
The numbers n(L, H) for the twisted subgroups in S; x S*, which can be again
established by inspection, are given in Table 2.23.
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| H¢ | Kery | Imep | N(H?) | W(H?) | Comments

; A4 Zg 54 X 54 st

il Z Zy | DyxS? St
Di| Dy | Zo | Dyx S s
Dy | Vi Zy | Dy x S St
Af! ‘/4 Z3 A4 X Sl Sl
Dil Zy | Z, | Dyx S st
Di| Zo | Zo |Dex S| Zyx$§t
Dé| D, | Z, | Dyx S st

Vi | Ze Zy | Dy x S Zy x S*
Di| Zy | Zo |Dyx S| Zyx S
ZZ Zz Zz D4 X Sl Zg X Sl

Zs | Zy | Zg |Zyx S S w(g) =g
Zg Zl Zg Z3 x S? St Qp(g) =g
Zy | 7y Zo | DyxS* | Zy®Zy x S*
Table 2.22: Twisted Subgroups in S; x S!, where ¢ : H — S is a homomorphism.

| E] L n@E | L X |nEE|H[L LA H ]| | n(L,H) |

Ag | S7 1 Z; | Z§ 2 D; | D§ 1 Ds | D 1
Vi | Sy 1 z, | zZ§ 6 zZ; | D¢ 1 D, | D3 1
Zs | ST 1 Z; | D§ 1 Vi | D¢ 3 Zs | D 1
Zy | 57 1 v, | D§ 1 Z, | D§ 3 Vi | Di 1
Z, | Sg 1 z; | D¢ 2 D; | D¢ 1 z; | Di 2
D¢ | 57 1 D, | D§ 1 Z, | D¢ 3 Di | Di 1
zZ; | 57 1 D, | D¢ 1 Vi | A% 2 Z, | D 3
Vi | S¢ 1 Z, | D§ 1 Z5 | A 1 Z, | Z7 2
zZ; | S¢ 1 Z, | D§ 3 Z, | A4 2 Z, | Z7 3
z; | Vi 2 Zs | Dj 1 Zy | A 1 Z; | D 2
Z | Vi 1 Di | D3 2 Di | D3 1 Di | D¢ 1
Z, | T4 8 Z, | D} 4 Z, | D3 1 D, | D¢ 1
Ve | Ag 1 Vi | Ds 3 Z3 | Ds 1 Zo | Zyg 1
Zs | Ag 1 Zs | Dq 1 Dy | D3 2 Z, | 24 3
Zy | Ay 1 Dy | Dy 1 Zy | Ds 4 Z, Zs 4
7 Aq 1 Dy, | Dy 1 Zo | Vg 1 Dy | Do 1
Z, | Z§ 1 Z; | Dy 3 Zy | Vi 3 Z, | D2 1
Z, | Di 6 Z, | Dq 3 Z, | D, 6 Z, | Dy 1
Zy | Zy 1 Zy | Zo 3

Table 2.23: Numbers n(L, H) for Twisted Subgroups in Sy x S*.
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Z,)

Figure 2.13: Lattice of Conjugacy Classes in Sy x S*.
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Example 2.5.6. As x S? Let us list, up to conjugacy class, the twisted subgroups
H? of A5 x S, where H is a subgroup of As, ¢ : H — S* a group homomorphism,
and H? = {(h,z) € HxS':p(h)= z}:

z; = {(().1) ((12)(34> —1)}

vi = {(W.1), (1234, -1), ((13)(29,-1), (28)(14),1) }.

2% = {((1),1), ((12849),€%), (1352 ), ((14253), £%), ((15324), %) },
2= {(().1), (128),), ((132),° } {(@.1), (132),7). ((128),7*) },
D5 = {((1),1), ((129), ) ((132),1), ((12)(45)), ((13)(45), 1),

4z = {((0,1), (12)(39,1), ((123),), ((132),7), ((13)(29) 1), ((14)(23). 1),

4z = {((,1), (12)69,1), ( ~3),72)»((13) 7). ((19)(24), 1), ((19)(23),1)
((129),), ((142), 7). ((134),7%), ((143),7), ((234),7), ((243),+*) },

D; = {((1),1), ((12845),1), ((13524),1), ((154329), 1), (14259),1),
((12)(35),-1), ((13)(54), -1), ((14)(28),-1), ((15)(24), -1).
((25)(34),-1) }

where k=1,2, £ = ¥, y=¢F.

There are 15 elements in the conjugacy class of the subgroup Z;, 15 elements in
the conjugacy class of V,~, 12 elements in the conjugacy class of Z¥, (k = 1,2), 20
elements in the conjugacy classes of Z§, 10 elements in the conjugacy class of Dj,
5 elements in the conjugacy classes of A%, (k = 1,2), 6 elements in the conjugacy
class of Df.

All the twisted subgroups of As x S! (up to their conjugacy class), their normal-
izers and Weyl groups, are listed in Table 2.24. The lattice of the conjugacy classes
of the twisted subgroups in As x S! is shown in Figure 2.14. The numbers n(L, H)
for twisted subgroups in As x S* are listed in Table 2.25.
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H? | Imgp | Kerg | N(H?) | W(H?) | Comments

A5 Zl A5 As X S1 St
D5 Zl D5 D5 X Sl st
Ay | Zn Aq Ay x S St
D3 Zl D3 D3 X 51 Sl
Zs Z1 Zs D5 X 51 Z'z X Sl
Va | Zy Vo | Aax S| Z3x St
Zs Zy Z3 D3 X S1 ZQ x 5!
Z Z, Zy Vax 8§ | Zyx St
Z1 Zl Zl As X Sl .45 x 51
Vi | Z2 Zy Ve x St St
Di | Zo | Zs |DsxS| &t
AR Zs | Vi | Agx St st k=1,2
Dg' Zg Z3 D3 X SI St
Zg Zg Zl Zs X Sl Sl
Z'sc Zs Zl Zs X Sl Sl k= 1,2
Z; | Ze Z, Vax 8§ | Zyx St

Table 2.24: Twisted Subgroups H¥ in As x S*, where ¢ : H — S! is a homomor-
phism.

) (Z3)

Figure 2.14: Conjugacy Classes of Twisted Subgroups in As x S*.
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| L1 H|nL.H)||L|H |nLH|L]|H|nlH|L|]H nLH ]

Zs | D5 1 Zo | A2 ] 1 Zs | As | 1 Z, | D] 10
Z; | Dz 2 Z, | A? 5 Zy | As 1 Z, | Z&% | 12
Z, | Dz 6 Zg | AR 2 Z, | As 1 Z, | Z; 15
Zs | Ds 1 Vi | Al 1 Z; | Vo 2 Vi | As 1
Z, | Ds 2 Zy | A} 1 Zy | V[ 1 Zs | As 2
Z, | Ds 6 Z, | A} 5 Z, | VS 15 Zy | Ag 1
Zy | A% 2 Ay | As 1 Zs | Dy 1 Z, | Aq 5
Ve | A7 1 Vi | As 1 Z, | Ds 2 Z, | Z} 20
Z, | Ds 10 Z, | Zs 6 Zs | Dj 1 Z, | Zs 10
Z5 | Di 2 Z, | Vi 1 Z, | Vi 5 Z, | Z, 15

Table 2.25: Numbers n(L, H) for Twisted Subgroups in A5 x S2.
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Chapter 3

Computation of Equivariant
Degree

3.1 Equivariant Degree: Definitions and Proper-
ties

We vary the groups II(H) defined in the previous section according to the values of
dim W(H). More precisely,

Definition 3.1.1. Let II(H) be a subgroup described in Definition 2.3.1. TI(H) is
called primary (resp. secondary) group if dim W(H) =1 (resp. dim W (H) = 0).

Remark 3.1.2. Notice that if (H) is an orbit type in ROV such that dim W(H) >
1, then by Theorem 2.3.2, we obtain that II(H) = {0}. In other words

I°= & na&H),

dim W(H)<1
where the summation is taken over the orbit types (H) in R V.

In what follows, we will assume that G = T x S, where T is a finite group, and
denote by ®1(G) the set of all the conjugacy classes (H) of subgroups H such that
dim W(H) = 1. Then we have the following theorem.

Theorem 3.1.3. (¢f. [9]) If (H) is an orbit type in RV such that (H) € &;(G),
then II(H) = Z.

It will be convenient to write the elements in @ II(H) in a form of finite
dim W (H)=1

a7
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sums, indexed by the orbit types (H) € &(G). ie. a € @ II(H) can be
dimW(H):l
written as a = > ny - (H), ny € Z.
(H)

Let us denote by 7 the natural projection of II¢ onto @ II(H).
dim W (H)=1

Definition 3.1.4. If f: R&V — V is an Q-admissible, G-equivariant map and
2 C R&@V an open, bounded and G-invariant set, we put
G-Deg (f, Q) := w(degs(f,9)),

and write
GDeg(f, Q)= >  nyg-(H)e @ MH) cO® (3.1)
dim W(H)=1 dim W(H)=1
The G-Deg (£, Q) is called primary degree of f in Q.

Clearly, since G-Deg (£, §2) is a “projection” of the G-equivariant degree, it sat-
isfies the existence, additivity, homotopy and suspension properties.

Remark 3.1.5. Let us point out that (H) € ®:(G) if and only if H is a twisted
m-folded subgroup, i.e. there exists X' C I" and a homomorphism ¢ : K — S?* such
that
H=K""={(v,z) €K xS p(y)=2"}.

One of the advantages of using the primary degree is that it is possible to consider,
as a range of this degree, the free Z-module A;(G) generated by the orbit types
(H) € &:(G), i.e. Ai(G) = Z[®:(G)]. Thus Z-module does not depend on the
representation V, which will allow us to explore additional properties of the primary
degree, such as multiplicativity property.

Before we establish the computational formula for the primary degree, we need to
discuss the equivariant degree introduced by H. Ulrich (cf. [48]) in the case without
free parameter.

3.2 [-Equivariant Degree without Free Parame-
ter

The equivariant degree I-Deg(f,2) can be computed using appropriate recurrence
formula. Since in this case II(H) = Z for any orbit (H) in V such that dim W (H) =
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0, so we have IT"' C A(T), where A(T') denotes the Burnside ring of I". The fact that
A(T') is a ring with identity is very important for this degree. The I-Deg (f, Q) has
additional property, called the multiplicativity property, which is formulated below.

Theorem 3.2.1. (MurTIPLICATIVITY PROPERTY) (cf. [85]) Let V and W be two I-
representations. Suppose Q) C V, Qo C W be two I'-invarient open bounded sets,
f:V =V an Q;-admissible map and g : W — W an Qs-admissible map. Then

I-Deg (f x g, x ) = I-Deg (f, Q1) - I-Deg (g, 2,

where the multiplication is taken in the Burnside ring A(T).

Suppose f : V — V is an Q-admissible, '-equivariant map, where Q C V is

bounded, open and I-invariant, I is a finite group. Recall that II" = © II{H).
dim W (H)=0

We will discuss the computational technique for I'-Deg (f,2) for two cases.

Case 1: f is a regular normal map: Since f is a regular normal map, for
every orbit type (K) in Q, we have that f¥ : VX — V¥ is Qx-admissible and
W (K)-equivariant. Since f¥|q, has zero as a regular value and
() NQx = WK U--- UW(K)Zmm.
It is clear that Vy € W(K) we have
signdet Df* (z;) = signdet Df¥ (yz:).
In this case we obtain:

Theorem 3.2.2. If f s a regular normal, I'-invariant, Q-admissible map from V
to V, then

IDeg(f,Q)= » nx(K)

dim W(K)=0

where ng = isig;n det Df¥(z;) and (f%)"2(0)NQx = W(K)z1 U+ - UW(K)Zpm.

i=1

Notice that
> signdet Df¥ (z)
_ zeUH) T On0k _ deg(f¥, Qx)
W (K)| W (K)|
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where deg(f¥, Qx) is the local Brower degree.

Case 2: f is an arbitrary -maps: (not necessary a regular normal map)
Let

J(Q) = {(K) | K =T for some z € Q}.

Let us begin with an explanation of the computational method applied to a simplified
situation, where the only orbit types in Q are (Kj), (K1), (K2), and (K3), with the
lattice of the orbit types illustrated in the diagram below.

(K3)

Figure 3.1: Lattice of isotropies.

Then the maximal orbit type in 2 is K and
QK°={.'EEQ|PIDK0}=.QKO={:L'EQ|FI=K0},

We consider a regular normal approximation f of f, which is I-homotopic to f
(notation: f ~ f). By the regular normal approximation theorem for homotopies,
we have that for all (K) € J(Q), f¥ ~ fXin Q¥ therefore

o (7, Q) _ deg(7%0,Q%0) _ deg(f"9. 0% (32)
Ko = TIW ()| W (Ko)| W) '

Now, let us illustrate the computation of nk,. Since K; C Ky then Q' 5 Qg, and
Qo c QX1 Let z € (£%1)71(0) N Qk, then by normality of f,

det DfE1 (z) = det(DfE0(z) x 1d)(z) = det DFXo(z),

v o des(F" Q) _ deg(£59, Q%) — (s, Ko) deg(f50, 07)
BT WE) W (k)] |
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and by homotopy

_ deg(fF1, Q%) — n(Ki, Ky) deg( o, QK0)
W (K1) '

'I’I,]{1

thus, by Equation (3.2)

_ deg(f*1, Q%1) — n(Ky, Ko)ng,|W (Ko)|
|W (K1) '

Nk,

The same idea can be applied to compute ng, and then ng;, i.e.

deg( s, Q%3) — ;20 n(Ks, Ke)nse, |W (K)|
W]

Nk, =

In the general case, by applying a simple induction over the orbit types in Q, we
can easily prove the following recurrence formula:

deg(f5, Q) = ¥ n(L, K)ng|[W(K)|
(E>(L)

(W (L)

ny =

(3.4)

Let us illustrate these computations on several examples.

Example 3.2.3. I'=D,;

Assume V = C is the orthogonal irreducible Ds-representation, with the action of
D4 on V, given by vz = v - z (complex multiplication) and kz = Z. We define the
map f: C — C by f(z) = —z, which is clearly not normal. Suppose 2 = B is the
unit ball. then

J(B) = {(Da). (Dv), (D1), (Z,)},
and the following is the lattice of isotropy groups:
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(Zy)

Figure 3.2: Lattice of isotropies.

Ds-Deg (£, B) = np,(Ds) + np, (D1) + ng, (D1) + nz, (Z,).-

Clearly, VP+ = {(0,0)}, V& =C, VP =R, and VD = R. By using tabels 2.16
and 2.17 we have

_ deg(£.Bn{(0,0)})) __ (-1)° _
mDe = Wl -1 - b

__ deg(f,BNR)—n(D1,D4)np, \W(Ds)l _ (-1)1-1(1)(1) _ _
"D = WO =" =1

k]

— deg(f\BOR)—n(D1,DeJnp, IW(Da)] _ (=1)P~1()1) _ _q
W (D) 2 ’

S
|

__ deg(f,BNR?)—n(Z;,D4)np, [W(Da)|~n(Z1,D1)np, [W(D1)|=n(Z1,D1)n5: IW (Dy))]
nz, = Wz
= (E2-1@)=-2=1)@)-2A=D@) _ 4
2 :

Then —
Dy-Deg(f, B) = (Dy) — (D1) — (D1) + (Zy).

Example 3.2.4. T'= Ay

Let us consider V = R* to be the permutation representation of A4, where 44 acts
on R* by permuting the coordinates of vectors. Then V = V4 @ Vj, where V4
is the fixed point space of A4, which is spanned by (1,1,1,1), and V; = (V-“4)‘L =
{(%1, 22,23, 24) : T1 + T2+ T3 + 24 = 0}. The orbit types in V are (Ay), (Z2), (Zs),
and (Z;), which can be illustrated by the following lattice:
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(Zy1)

Figure 3.3: Lattice of isotropies.

Clearly, dim V4 = 1, dimV?% = dim V% = 2, and dimV% = 4. Supposed B
is the unit ball and let f be —Id. Then

Aq-Deg(—1d, B) = na, (A4) + nz,(Zs) + nz,(Z2) + nz, (Z1),
then by using Tables 2.20 and 2.21 we obtain:

— deg(f.BAR) _ (=)! _ 4

Mas = TwWiA)] 1 ’

N = deg(f,BNR?)—n(Z3,Ad)nag[W(Ad)| _ (=1)>-1(-1)(1) __ o
&= W(Zs)] - 1 o

_ deg(f,BNR*)—n(Za,As)ns, [W(A)| _ (-1)2-1(=1)(1) __ 1
= > =

Nz, = WZo)] ,
_ deg(f,BNRY)—n(Zy, Aa)na, |W (Aa)|=n(Z1 Za)nz, [W (Zs)| —n(Z1,Z2)nz, [ W (Z2))]
" = W)
— EDA-EHOM-2@W-1GND) _
12 .
Thus:

As-Deg (f, B) = —(As) +2(Zs) + (Z2) — (Z).

3.3 S'-Equivariant Degree

We start with a particular case of the primary degree for the group G =T" x S,
where I' = {1} i.e. G = S'. We denote by A;(S?), the free Z-module generated by
the symbols (Z¢), k£ = 1,2,3,.... Consider an orthogonal S!-representation V, an
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open S'-invariant bounded set @ C R®V, and an Q-admissible S*-equivariant map
f:R®V — V. Then the primary degree S*-Deg (f,Q), which we will simply call
the S'-equivariant degree, is an element in A4;(S*) which can be written as

S*-Deg (£, Q) = Y ue(Zi) = 1y (Ze,) + 1ty (Ziy) + -+ - + s (Z, ), (3.5)

where n; € Z.

The S*-degree can be introduced axiomatically, based on its fundamental prop-
erties only, (its existence follows from the general construction) and we can use the
axioms for its computations.

3.3.1 Basic and m-Folding Maps

We denote by Vi, k= 1,2,3,..., the (non-trivial) k-th real irreducible representation
of the group S?, i.e. V; is the space R? = C with the S'-action given by vz := v* - z,
v € S}, z € C, and define the set

kQ = {(t,z)ER@V;J lt] < 1, -1-<[z|<2}, (3.6)

and b: R& Vi — Vi by
b(t,z):==(1—|z| +1it) -z, (¢,2) ER XV, (3.7)

where ‘-’ denotes the complex multiplication in Vi = C. It is clear that the map b
is S*-equivariant and *Q-admissible. We will call the map b the S*-basic map on
kQ) (or simply basic map if it will be clear from the context what representation is
involved).

Further, for every integer m = 1,2,3,..., we define the homomorphism 8,, :
St — S' (called m-folding), by 0m(v) = v™, v € S, and define the induced by 6,
homomorphism ©, : 4;(S?) — A:1(S?), by

Om(Zi) == (Zim), k=1,2,3,..., (3.8)
ie. On(Zx) = (07}(Zk)), where (Zy) are the free generators of A4;(S?).

Notice that if f : R@&V — V is an Q-admissible map for a certain open bounded
Sl-invariant subset Q C R&® V, then for every integer m = 1,2,3,..., we can, first,
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define the associated m-folded S*-representation ™V, which is the same vector space
V with the S*-action “-” given by

v-vi=On(Yv=7"v, y€S5, veV (3.9)

Next, the map f considered from R @™V to ™V, is S'-equivariant as well. The set
(2 considered as an S*-subset of R & ™V will be denoted by ™Q. In what follows, we
will say that the pair (f,™Q) is the m-folded admissible pair associated with (f, ).

3.3.2 Axiomatic Definition of S!-Degree

Theorem 3.3.1. (cf.[4]) There exists a unique function, denoted by S*-Deg, as-
signing to each admissible pair (f,Q) an element S*-Deg(f,Q) € A;(S*) satisfying
the following properties:

(P1) (Existence) If S*-Deg(f.Q) = an(Zk) is such that ng, # 0 for some
k
ko =1,2,..., then there ezists z € Q with f(z) =0 and Gy D Zx, .

(P2) (Apprtivity) Assume that ) and Qp are two S*-invariant open disjoint
subsets of Q such that f7H(0)NQ C Q, UQs. Then

S'-Deg(f,) = S*-Deg (£, ) + S*-Deg (f, ).

(P3) (HomoTopy) Suppose that b : [0,1] x R x V — V is an Q-admissible S*-
equivariant homotopy (i.e. hy := h(},-,-) is Q-admissible for all A € [0,1]).
Then

S'-Deg(hy, Q) = constant.

(P4) (SusPENSION) Suppose that W is another orthogonal S*-representation and
let U be an open, bounded S*-invariant neighborhood of origin in W. Then

S'-Deg(f x1d,Q x U) = S*-Deg (£, Q).
(P5) (NORMALIZATION) For the basic map b: R @ V; — V, we have
S'-Deg(b,'Q) = (Z),
and if V is a trivial S*-representation, then
S'-Deg(f,Q) = 0.

(P6) (FoLping) Let ™V be the m-folded representation associated with V., and
(f,™Q)) the m-folded admissible pair associated with (f,Y). Then

5*-Deg(f,™) = O[5 -Deg (f,)].
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3.3.3 Computation of S!-Degree via Reduction to Basic and
C-Complementing Maps

In order to use the primary degree without referring to its topological construction,
we need the definition of C-complementing maps and splitting lemma.

3.3.4 C-Complementing Maps

Let V = Vi be a k-th irreducible S'-representation. We define on V; a complex
structure “sensitive” to the S'-action as follows: for z € C we put z = v|z|, where

v = €% for some 8 € [0,27). The complex multiplication of v € V, by the number 2
is defined by

z-v= ]zle%v. (3.10)

We call this complex structure on Vi by a natural complex structure.

Definition 3.3.2. Let b : R &V, — V. be the k-th basic map and let *Q be a
subset of R & Vi. Assume, further, that Vi is equipped with the natural complex
structure and O is given by (3.11). Suppose, finally, that f: C& V., = R&V, is

defined by f(A,v) = (I)\l(llvll - D+ o] + 1,)\-'0), where A € C, v € Vi. Then the
pair (f, ©) is called a C-complementing pair to (b, *Q).

."vk

Figure 3.4: The admissible pair (b,% Q).
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Figure 3.5: The admissible pair (f, O).

It is clear that (f, O) and (b,*Q) are admissible pairs (see Figures 3.4 and 3.5).
Lemma 3.3.3. Splitting Lemma(cf. [{])

Let G be a compact Lie group, Vi and Vz orthogonal G-representations, V = Vi & Vs.
Assume that the isotypical decomposition of V' contains only components modeled
on irreductble G-representations of complex type. Suppose that a; : S? — GLG(VJ-).
j =1,2, are two continuous maps and a: S* — GL®(V) is given by '

a(A) = a;(A) €ax(N), MeSh
Let

. 1
O;:={(huw)eCaV Il <2 5 <IN <4},

0:={vecev| Jul<2 3 <IN <4}, (3.11)

Define the maps fo, : O; = R&V;, j=1,2 fa.O »R&V by

>/

3,
o) = (0l = 0+ sl + 1 () ) 9= 1.2
9=

(ol = 1) +llel + 1.a <w> >

wherev; € Vi, j=1,2,veV and § < |\ < 4. Then

G-Deg (fo, ©)) = G-Deg (fa,, O1) + G-Deg (fu,, Oa). (3.12)
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By using the splitting lemma we can provide the following proposition.

Proposition 3.3.4. (¢f.[{]) Let (f,O) be a C-complementing pair to (b,*Q). Then

S'-Deg(f,O) = S*-Deg(5,*Q) = (Z4).

3.4 Basic Maps for Irreducible Representations of
G=TxS!

Assume that I is a finite group and V is a complex irreducible representation of T'.
We define an action of z € S* on Vi by formula

=2 -v, z&8 veV, 7 €N,

where ‘-’ denotes the usual complex multiplication in V,. The obtained real irre-
ducible representation of the group G = I' x S we will denote by Vi ;- The following
definition provides two examples of the simplest possible G-equivariant maps with
non-zero primary degree.

Definition 3.4.1.
(a) Let O CR@ Vi be the set

1
O={tv)eR® Vx| s <lpll<2 -1<t<1},
and b: O — V; be defined by

b(t,v) = (1 — |Jvl| +4t) -v, (t,0)€O. (3.13)

Then the map b is called a basic map on O, and the pair (b, O) is called a
basic pair for the irreducible G-representation V;y;

(b) LetQ={(A\v)eCVi| vl <2 <A <4}and f:Q— RSV, be
defined as

f0) = (ARl =D+l +1.2-0), (o) e®,  (314)

where A - v denotes the usual complex multiplication of v by A. Then the
map f is called a C-complementing map on 2, and the pair (f,2) is called a
C-complementing pair for the irreducible G-representation V.
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Remark 3.4.2. Notice that the basic map b and the C-complementing map f (see
section 3.3) are G-equivariant. Moreover, b is O-admissible. Indeed, since for all
(t,v) € O, v #0, it follows from the equality

=b(t,v) = (1= |lvll +it) - v,

that 1 — |lv]| + ¢ = 0, which is equivalent to |ju|| = 1 and ¢ = 0. Consequently, we
have

672(0) = {(0,v)| Jv]| = 1} co.

The map b is illustrated below on Figure 3.6.

Figure 3.6: Basic Map b.

Similarly, the map f is Q-admissible. Indeed, since A # 0 we have for (A,v) € Q
that the equality

0= f(Av) = (IAl(Ill = 1) + [lo]l + 1,2+ v),
implies that v = 0 and || = 1. Consequently,

o ={no A =1}ce

The basic map b seems to be the simplest G-equivariant map for which the
primary G-degree on O may be non-zero. On the other hand, the definition of f
was motivated by the applications to the bifurcation theory. Although, these two
maps are essentially different, their primary G-equivariant degrees are equal. (cf.

[4]))
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3.5 Computational Formula for Basic Maps with-
out Parameter and Examples

Let Vi be an irreducible I'-representation, and b : V. — V. be simply the map b =
—Id. The map b will be called basic for the equivariant degree without parameter.

Consider the set ®o(T', Vi) of all orbit types (L) in Vi such that dim W (L) = 0.
We can assume that the partial order in $o(T", V) is extended to the total order,
l.e. @O(F,Vk) = {(Ll),(Lg). ,(Ln)}, (L]_) < (Lz) < -0 < (Ln) Then the
I-equivariant degree

[-Deg(-Id, B:) = Z nr, - (L),
(L;)€do(F, Vi)

where By denotes the unit ball in Vg, can be computed from the formula

(=1 - ; n(Ljs L) - g, - W (L)
T WL, 313)

where n; = dim V4.

In this section we present several examples of computations of the equivariant
degree for the basic maps in the case of various groups I'. These results will be used
later to concrete applied problems. Notice that to compute the equivariant degree
we need the isotropy lattice for each irreducible representation and the dimension
of the fixed point space for each subgroup K of I'. For this purpose we can use the
following theorem.

Figure 3.7: C-complementing Map f.
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Theorem 3.5.1. (¢f. [18]) LetT be a complez (resp. real) representation of the
finite group T in a space V. then
1
dmV# = = Z xr(h),
heH

for any subgroup H CT.

3.5.1 Degrees of Basic Maps for the Dihedral Group Dj

(i) There is a one-dimensional trivial representation V. In this case we have
deng = —(D3).
(i) There is a one-dimensional representation V;, given by the homomorphism

¢ : D3 — Z, such that ker ¢ = Z3. Let us obtain the corresponding degree of
the basic map by using Theorem 3.5.1, Table 1.1, and Formula 3.15.

dim V2% = L(xa(1) + 2x2(7) + 3x2(k)) = (1 +2(1) + 3(-1)) =0,
30e(1) + 2x(7) = 3(1+2(1)) = 1.

Figure 3.8: Isotropy lattice for V.

And

(iii) There is one two dimensional representation V, of D3 on C given by

z:=+-z, fory € Z; and z € C,
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where ~y-z denotes the usual complex multiplication. Then by applying Theorem
3.5.1, and Table 1.1 we obtain

dim %ZD = 2(x3(1) + 2x3(7) + 3xs(k)) = (2 +2(-1) + 3(0)) =0,
dim V52 = $(xs(1) +2x3(7)) = (2 +2(-1)) =0,
dim V;?* = $(xs(1) + xs(x)) = 3(2+0) =1,
dim VF = (xs(1)) = 2.
(Ds) [0}
(Dh) (1]
(Zyr) [2]

Figure 3.9: Isotropy lattice for V.

By Formula 3.15 we have the following degree of the basic map:

degy, = (Ds) — 2(D1) + (Z1)-

3.5.2 Degrees of Basic Maps for the Dihedral Group D,

(i) There is a one-dimensional trivial representation V. In this case we have
degy, = —(Da).

(ii) There is a one-dimensional representation V), given by the homomorphism
¢ : Dy — Zo such that ker ¢ = Z4. Then by applying Theorem 3.5.1, and
Table 1.2 we obtain

dim VP =

(x2(1) + 2x2(7) + x2(7?) + 2x2(K) + 2x2(57))
(1+2(1) +1+2(-1)+2(-1)) =0,

0000+
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Figure 3.10: Isotropy lattice for V;.

(Da) [0}

(Do) 1]

Figure 3.11: Isotropy lattice for V.

dim Vi = (x2(1) + 2x2(7) + x2(¥)) = (1 +2(1) + 1) = 1.

And
degy, = (Ds) — (Zs).

(iii) There is an irreducible representation V,, given by the homomorphism d :
D4 — Z, such that ker d = Dy. Then by applying Theorem 3.5.1, and Table

1.2 we obtain

dim V32 = L(xa(1) + 2x3(7) + x3(¥®) + 2x3(x) + 2x3(x7))
=:(1+2(-1)+1+2(1) +2(-1)) =

dim V& = L(xs(1) + 2x3(7) + xs(¥®)) = (1 +2(-1) + 1) =0

dim V22 = 1 (xa(1) + x3(7?) + 2xs(k)) = 31 +1+2(1)) = 1,
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Figure 3.12: Isotropy lattice for Vs.

And
degVQ = (D4) - (D2)

(iv) _ There is an irreducible representation V,, given by the homomorphism
d: Dy — Z5 such that ker d = D:z Then we obtain

dim V3> = £(xa(1) + 2xa(7) + xa(¥?) + 2xa(K) + 2xa(x7))

= 1(14+2(-1) +1+2(=1) + 2(1)) =0,
dim V7 = (xa(1) + 2xa(7) + x4(7?)) = 31 +2(-1) +1) =0,
dim V2 = 3 (xa(1) + xa(7?) + 2xa(x)) = (1 + 1+ 2(=1)) = 0,
dim V3™ = $(xa(1) + xa(v?) + 2xa(x)) = 31+ 1+ 2(1)) =
And

degy, = (Ds) = (Da).

(v) There is an orthogonal two dimensional representation V> of Dy on C given
by
vz :=+-z, for y € Z4y and z € C,

KZ 1= Z,

where «y - z denotes the usual complex multiplication.Then

dim V;Ps = 2xs(x) + 2x5(k7))

X5(1)+2Xs()+X5(72)+ 5
2 +2(0)) 0
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(Ds) [0]

dim V22 = L(xs(1) + xs(72) + 2xs(k7)) = 1(2 + (—2) +2(0)) =0,
dim V2 = Ls(1) + xs(19) = 32 + (=2)) = 0,

dim V2 = L(xs(1) + xs(x)) = 52 +0) = 1,

d1mV;D‘=%(X5(1)n 5(k7) =1(2+0) =

dim V2 = L(x5(1)) = 2

By Formula (3.15) we have the following degree of the basic map:

degy, = (Ds) — (D1) — (D1) + (Zy).

3.5.3 Degrees of Basic Maps for the Dihedral Group Dj;

(i) There is a one-dimensional trivial representation V. In this case we have
degVQ = —(DS)’

(ii)  There is a one-dimensional representation Vi, given by the homomorphism
¢ : Ds — Zo such that ker ¢ = Zs. Let us obtain the corresponding degree of
the basic map by applying Theorem 3.5.1, Table 1.3, and Formula (3.15).

dim V;?* = H(x2(1) + 2x2(7) + 2x2(7?) + 5x2(x)),
= 75(1 +2(1) +2(1) +5(=1)) =0
dim V& = L (x2(1) + 2x2(7) + 2x2(v?) = 11 +2(1) + 2(1)) =

—

And
degy, = (Ds) — (Zs)-

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Zs) [1]

Figure 3.14: Isotropy lattice for V.

(Ds) [0]
(D1) [1]
(Zy) 2]

Figure 3.15: Isotropy lattice for V.

(iii) There is one two dimensional representation V, of Ds on C given by
vz :=+-z fory€Zsand z€C,

Kz :=7Z,

where 7 - z denotes the usual complex multiplication. Then we obtain

dim Vs = 35 (xa(1) + 2x3(7) + 2x3(v 2) + 5x3(x))
= L(2+2(52) + 2(-5H)) + 5(0)) =0,
dlmv25=§< s(1) + 2xs(7) + 2x3(7?) = 12 + 2(52) + 2(—LEL)) =,
dim V2 = 1(xs(1) + xa(x)) = 3(2+0) = 1,
dlmvzl=§( 5(1)) = 2.
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(Z,) 2]

Figure 3.16: Isotropy lattice for Vs.

degy, = (Ds) — 2(D1) + (Z1)-
(iv) There is one two dimensional representation Vs of Ds on C given by
vz :=~%-z, for v € Zs and z € C,

Kz 1= Z,

where 72 - z denotes the usual complex multiplication. Then

+ 2x3(7) + 2x3(7?) + 5x3(x))

xs(1)
=;—0(2+2( Loe1y 4 9(¥EEL) 4 5(0) =0,
dim V2 = L(xs (1) +2x5(7) + 2x:(7) = §(2+ 2(- Vol 4 o(¥ERL)) = 0,
dim VP = 1(x3(1) + xa(k)) = 12+ 0) = 1,
dim V¥ = $(xs(1)) =

By Formula 3.15 we have the following degree of the basic map:

degy, = (Ds) — 2(D1) + (Z1)-

3.5.4 Degrees of Basic Maps for the Alternating Group Ay

To compute besic degree, we describe real irreducible As-representations. Using
the homomorphism ¢ : Ay — % ~ Zs3, we obtain the one-dimensional trivial
representation Vp and the two-dimensional Vi, Vs, which are associated with the
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(Za)\ /(Zz) (1]
(Z,) (3]

Figure 3.17: Isotropy lattice for Vs.

Zz-actions are on R? ~ C given by 7Z = v* - z, k = 1,2, respectively. There is also
one three-dimensional natural representation V; of Ay.

The computation of the basic degrees, related to the representations Vy, V;, Vs, and
Vs is a strightforward application of Theorem 3.5.1, and formula (3.15). (as we did
for the dihedral groups)

degVO = —(A4)? degV1 = degv;z = (A4)'

Following is the isotropy lattice for Vi:
degy, = (Aq) — 2(Zs3) — (Z2) + (Z2).

3.5.5 Degrees of Basic Maps for the Permutation Group S,

There are exactly five real (and also complex) irreducible representations of S4: The
trivial representation V, the one-dimensional representation V; corresponding to the
homomorphism ¢ : Sy — Z,, where ker ¢ = A4, the two dimensional representation
V, corresponding to the homomorphism ¢ : Sy — S;/Vy = S3 ~ D3, and two
different three-dimensional representations of S;, one of them being the natural
representation Vi of Sy , while the other Vy being the tensor product V) ® Vs of
the natural three-dimensional representation with the non-trivial one-dimensional
representation. Following we obtain the isotropy lattice of each representation and
the corresponding basic degree.

degvo = —(54)7

degv1 = (S4) — 2(Das),

degy, = (S1) — 2(Dsg) + (Va),
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(Sa) (0]

Figure 3.18: Isotropy lattice for V.

(Sa) [0]
(Das) 1]
(Va) 2]

Figure 3.19: Isotropy Lattice for V.
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(Sa) [0]

(Ds)\ /(Dz) [1]
(D1) 2]
(Z,) (3]

Figure 3.20: Isotropy Lattice for Vs.

/(54)\ [0]
(ZS)\(Z4)/(D1) [1]
(Z,) (3]

Figure 3.21: Isotropy Lattice for V.
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degy, = (Sa) —2(D3) — (D2) +3(D1) — (Za),
degy, = (S1) — (Z4) — (D1) — (Z3) + (Z1)-

3.5.6 Degrees of Basic Maps for the Alternating Group A;

There are exactly 5 irreducible representations of As: Vy — the trivial representation,
V) — the natural 4-dimensional representation of As, V» — 5-dimensional representa-
tion of As, and two 3-dimensional representations V3 and V;.

Clearly, for the representation Vo we have the basic degree deg, = —(45). We
have the following isotropy lattice for the representation Vs (the dimension of the
fixed point spaces is marked on the left of each row) and the basic degree deg,:

(Aq) (D3) [1]
| >
(Z2) (Zs) [2]
N
(Z,) [4]

Figure 3.22: Isotropy Lattice for V.

degy, = (As) — 2(As) — 2(D3) + 3(Z2) + 3(Zs) — 2(Z4).

We have the following lattice of isotropies and the basic degree for the 5-dimensional
representation Vs:

degy, = (As) — 2(Ds) — 2(Ds) + 3(Z2) — (Z1).

We have the following lattice of isotropies and the basic degree for the 3-dimensional
representations Vs and Viy:
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0]

ny
N s
(Z [5]

1 D

Figure 3.23: Isotropy Lattice for V.

(As) [0]
P N
(Zs) (Z3) (Zo) [1]
~ |~
(Zy) [3]

Figure 3.24: Isotropy Lattice for Vs and V.

degy, = deg, = (As) — (Zs) — (Zs) — (Z2) + (Z1).

3.6 Computational Formula for Basic Maps with
One Parameter and Examples
The equivariant degree I' x S*-Deg(f, ), where f : R@®V — V is an Q-admissible

map, can be also computed by applying a recurrence formula. Let us discuss the
following cases.

Suppose f is a regular normal map (otherwise, we consider a regular normal approx-
imation map f of f), then for every orbit type (H) in Q (we assume dim W(H) = 1),
the map f#|q, has zero as a regular value, thus

(FHH0)NQy = W(H)z, U- - UW (H)Zem,

on the other hand, since H is a twisted subgroup, i.e. H = K*™ = {(v,2) €
K x S| o(y) = 2™} for some K C T and ¢ : K — S* being a homomorphism.
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Then there exists a natural homomorphism S* — W (H), defined as follows:

We have N(H) = Ny x S*, where Np = {g € N(K)| v(g9vg™*) = ¢(7) for all v € K},
so we have the composition

St — Nox St=N(H) L W(H),

denoted by p which has a kernel Z,,. We define this homomorphism by 7,

St W(H)

SY)Z = S

and 7 : S* — W(H) is an injective homomorphism.

So, we can consider S* as a subgroup of W(H). Since f# is W(H)-equivariant, it
is also S'-equivariant. Then we get

_ degl (fK1 QK)
- lW(H)
Sl
where deg, (f¥, Q) is the first coefficient of S*-Deg (f¥, Q) corresponding to the
orbit type (Z,).

By applying the induction over orbit types we get the recurrence formula

degl(fK’QK) - Z ’I‘L(K, L) “nL - ‘%(lél
(K)<(L)
!W(K)
5T

(3.16)

N =

Now, consider the representation Vi; (we consider here Vi ifor simplicity but the
general case Vi ; for j > 1 can also be analyzed in the same way). We consider a
basic map b : R x Vi — Vi, and we put G-Deg (b,0) = degy, ,. We will show how
to compute these degrees.
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By recurrence formula degy, . = > nz - (L), where
' (€5

= W(L
o = Z n(L,L) - ng - | S(l)l : (3.17)
(L)>(L)

and My = dim V¥,.

3.6.1 Degrees of Basic Maps for Group D3 x S!

There are three complex irreducible Ds-representations
(i) The representation V¥ defined on C.

(i) The representation V¢ defined on C & C by

1

Yz1,22) == (v- 21,7 - 22), fory € Zs, and 21,2, €C,

k(21, z2) 1= (22, 21)-

(iii) The representation V§ defined by ¢ : D3 — Zo», such that kerc = Z;.

For j=0,1,2, we define the action of S! on Vibyzv=2z-v, forzeS*andv e Vs,
where the product ‘-’ is the usual complex multiplication. In this way we obtain a
real irreducible representation for D3 x S*, which we denote by V; 1. For each of the
representations V;; of D3 x S, we can compute the degvj‘1 of the associated basic
maps on Vj,, by using the isotropy lattice for V;; and the Formula (3.17). (the
numbers located on the right side of the isotropy lattice denote the real dimension
of the fixed-point space).

Clearly, degy,,, = (Ds) and degy,,, = (D3).

degy,, = (Z§) + (D1) + (Df) — (Zu).
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(Dsx S%)  [0]

(D3)) 2]

Figure 3.25: Isotropy Lattice for Vs ;.

/<>\ ’
(D7) (D1) (Z3) [2]
() [4]

Figure 3.26: Isotropy Lattice for Vi ;.
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Figure 3.27: Isotrpy lattice for Vs ;.

3.6.2 Degrees of Basic Maps for Group D, x S!

There are five complex irreducible Dy-representations
(i) The representation V{ defined on C.

(ii) The representation V defined on C @ C by
1

Y(21,22) == (v-21,7" - 22), fory€Zs, and 21,2, € C,
5(2’1,22) = (22,2'1).

(ii) The representation V§ defined by ¢ : Dy — Z,, such that kerc = Z,.
(iv) The representation V5§ defined by d : Dy — Z,, such that kerd = D».
(v) The representation V5 defined by d: Dy — Zs, such that kerd = Ds.

The same as the first example we obtain five real irreducible representation for
D, x S which we denote by V;1, 7=0,---,4. For each of the representations Vi1
of Ds x S*, we can compute the degy, , of the associated basic maps on V;,, by using
the isotropy lattice for V;; and the equation (3.17).

It is clear degy,, = (D4) and

degv2'1 = (Dz)’ degV3,1 = (Dg)‘ degV4_1 = (DZ)'

degy, , = (Z}) + (D2) + (D3) ~ (Zy).
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(D4 X Sl)

(D)

Figure 3.28: Isotrpy lattice for V3 ;.

(Dyx 8Y) (0]

Figure 3.29: Isotrpy lattice for Vy ;.

(Dy x SY) [0]
(D9) (D§) (Z4) 2]
(Z) [4]

Figure 3.30: Isotropy Lattice for V1 ;.
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(Z,) [4]

Figure 3.31: Isotropy Lattice for Vs ;.

3.6.3 Degrees of Basic Maps for Group Ds x S*
There are four complex irreducible Ds-representations

(i) The representation Vg defined on C.

(i) The representation V¢ defined on C & C by

’Y(zla 22) = (7 © 21, 7—1 : 22), for Y€ ZS: and 21,22 € C?
k(z1, 22) == (20, 21).

(iii) The representation Vi defined on C& C by

v(z1,22) == (v - 21,72+ z2), for vy €Zs, and 21,22 €C,
k(z1, 22) == (22, 21)-

(iv) The representation V§ defined by c¢: Ds — Zo, such that kerc = Zs.

We obtain four real irreducible representations for Ds x S! which we denote by
Vi1, 7 =0,---,3. For each of the representations V;; of Ds x S*, we can compute

the degy, , of the associated basic maps on V; 1, by using the isotropy lattice for V;
and the equation (3.17).

It is clear degy,,, = (Ds) and degy, , = (D3).

degy,, = (Zg) + (D1) + (Df) — (Zy).
degy,, = (Z3) + (D1) + (D}) — (Zy).
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(Zv) [4]
Figure 3.32: Isotropy Lattice for Vs ;.

3.6.4 Degrees of Basic Maps for Group A4 x St

There are four irreducible real representation V;; of A4 x S*. Let us discuss the
isotropy lattices for the representations V;;, j = 0,1,2,3. Of course, the only
twisted orbit type for Vo1 is (A4). For j =1, or j = 2, there is also only one twisted
isotropy class (A7) in Vj. determined by the homomorphism ¢; : Ay =~ A,/V; ~
Zs =% Z3 To obtain the lattice for V3 ;, consider the action of A4 on C* permuting
the coordinates of the vectors ¥ = (21, 2o, 23, 24) and let S? act by the complex
multiplication. The subspace {(z,z,z,z) : z € C} is the fixed-point subspace for
the action of A4, and its complement is equivalent to the representation V3. Let us
choose the following basis in this subspace: 7y = (1, — -1), v, = (1,1,-1,-1),
and 73 = (—1,1,1,—1). Notice that the vectors v, ’U2, and U3 have the isotropy
groups (with respect to G = A4 x S') belonging to the class (V7).

Indeed:
Ga = {((1),2), ((19)(24),2). (12)(39), -1), (14)(28), -1) },

5 ={(2),2), (1239,1), (13)(29). -1). (19)(23), -1) .
& = {((1,1), (19)(23),1), (12)(38), 1), (13)(24), 1) }.

Next, notice that the vectors Z = 91+ 72 = (0,2,0,-2) and ¥ = v1 — 0> = (2,0, -2,0)
have the isotropy group H = {((1), 1), ((13)(24),-1) }, which belongs to the class

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3]

Flg‘ure 3.33: Isotropy lattice for Vs.

(A4 X 51) (0]

(Ztl) |73 Zs) th 2]

Figure 3.34: Isotropy lattice for Vi ;.
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(Z;) The elements ¢ + Ur + U3, U1 + Up — Uz, Uy — Uo — U3, and —v1 + T — U
have the isotropy group belonging to the class of the subgroup (Zs). Let w = %,
Then the elements @} = (1,w,w?0), U5 = (l,w,0,u°) W3 = (1,0,w,w?), and
@} = (0,1,w,w?) have the isotropy groups belonging to the class (Z%), and
w2 = (1,u? w,0), w2 = (1,0 0,w), 73 = (1,0,0?,w), and @2 = (0, 1,w?,w) have
the isotropy groups belonging to the class (Z3*). The isotropy lattices for V; (as the
representation of A4) and Vs (as the representation of A4 X S*) are shown on the
diagram above.

Finally, we can list all the A4 x S?-degrees of the basic mappings associated with
these representations:

degVQ'l = (‘44)? de‘rvm = (‘4‘?)7

(=3

degy,, = (49), degy,, = (Z) + (Z$) + (V1) + (Zs) — (Zo).

3.6.5 Degrees of Basic Maps for Group S; x S*

There are exactly five real irreducible representations of S;, which described in
section 3.5.5. We consider the complexifications V5 of the representations V;, j = 0,
1, 2, 3, 4, and define the S'-action on V§ by 70 = 7' - 7, where [ = 0,1,2,.. ;
vyeS,ve Vi. We will denote the obtained irreducible Sy x S'-representations by
Vj,l, j=0, l, 2, 3, 4and (= 0,1,2,3,....

The representation Vo) contains two orbit types: (Sg x S') and (Ss), so we
have degy,,, = (Ss). For the representations V;; there are also two classes of the
isotropy groups: (Ss x S*) and (S7), so we have degy, , = (S;)- In the case of the
representations Vs, ;, we have the following lattice of the isotropy groups:

(Sa x S*) [0]
(A%) (Ds) (Dd) 2]
(Va) (4]

Figure 3.35: Isotropy Lattice for Vs ;.
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// \\
(Df) (D5) (Z3) (Ds) (Z3) (2]
e
(Ds (Z3) [4]
\

(Z,) [8]
Figure 3.36: Isotropy Lattice for Vs ;.

For the representation Vo1 we obtain that the corresponding Sy x S*-degree of

the basic map is )
degy,, = (A%) + (Dd) + (Df) — (V).

Now, let us consider the representation Vs of Sy x S*, which is obtained by taking
the complexification of V3 and defining the action of S* by complex multiplication.
The isotropy lattice for the natural representation V31 of Sy x S* is shown in the
following diagram. Notice that the isotropy group Gz of z = % is represented by
D¢, for £ = Uy + U it is D, for z = 01 + U + U3 it is D3, for = 7) + 20, it is Z3,
for £ = 71 + Y02 + >0, where v € S* is the third root of 1, it is Z}, and finally for
T = U; + 20Up + 303, it is Z;.

By applying the standard computational formulae, we obtain the following value of
the G-equivariant degree for the basic map on the representation Vs ::

degy,, = (Df) +(D3) + (Ds) + (23) + (Z3) — (Z3) — (D1)-

By taking the complexification of V; and defining the action of z € S! by the complex
multiplication, we obtain the irreducible representation Vs of the group S x 5.
Notice that the isotropy group G of ¢ = © is represented by Dj, for z = ¥; + 02
it is Dg, for £ = ¥y + o+ U3 it is D3, for £ = 1+ 202 it is Z; , for = 1 + v + 2T,
where v € S is the third root of 1, it is Z§, and finally for z = ¥} + 205 + 373, it
is Z,. By applying the standard computational formulas, we obtain the following
value of the G-equivariant degree for the basic map on the representation V4,

degy,, = (Dj) + (D3) + (Z5) + (D3) + (Z3) — (Z3) — (D3).
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(Se x 5Y) (0]

//\\

(Zo (Dl [4]
( 1

Figure 3.37: Isotropy Lattice for Vg ;.

3.6.6 Degrees of Basic Maps for Group A5 x S*

Let us present the computations of the basic As x S*-degrees for the representations
Vi1, Va1, Va1 and Vg, In the case of the representations Vi) and V. ; we have the
following lattice of twisted subgroups:

The basic degree for this representation is given by:

degy, , = (Aa) + (Ds) + (D3) + (Vi) + (Z5) + (Z2) + (Z8)
—(Z2) = (Zs) — (Z3),

The basic degree for this representation is given by:

degy,, = (Ds) + (Da) + (A7) + (A7) + (V) + (Z3) + (Z8) — 2(Z2).
For the representations Vs, and V;:, we have the isotropy lattice of twisted sub-

groups:
The basic degrees for these two representations are equal to:

degy,, = (D3) + (Vi) + (D3) + (Zg) + (Z5) - 2(Z3),
degy,, = (D5) + (V") + (D3) + (28) + (Z5) — 2(Z3).

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Z3)

(zt <z;2>4 (A%) %Da Ds)

Figure 3.39: Isotropy lattice for Va ;.
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(Dg( (D3 (@)
Z5)
(Z,)

Figure 3.40: Isotropy lattice for Vi .

(45 x SY)

/ \
(Dg{ (D3) (Z3) Z3)
Z;)

(Z1)

Figure 3.41: Isotropy lattice for Vg ;.
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Chapter 4

A(I')-Module Structure on
A1(T x SY) and the Multiplication
Tables

In this section we consider several paticular cases of the group I', for which we present
the computations of the A(T')-module structure of A;(I’ x S*) the multiplication
tables. Recall that the Z-module A; (T'x S!) is generated by all the conjugacy classes
of twisted subgroups (H%!) in I x S!. The A(T)-multiplication on the generators
(K) € A(T") and (H**!) € A;(T x S?), is defined by the formula

(K).(H?Y = np- (L9,

(L)

where the number n; are computed using the recurrence formula

” ; o .l T Lo
[ oW (e, B EE ~ Ty gy (L2 e 2G|
ny = IW(L*—”-‘) ’

Sl
(4.1)

where for a set Y, we denote by |Y| the number of elements in Y.

4.1 Examples of A(I')-Modules A;(T x S?)

We devote this section to several examples of the multiplication tables for the A(T)-
Modules A; (T x S?).
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4.1.1 A(D3)-Module A;(D; x S?)

Let us consider the A(Ds)-module A;(Ds x S*). We will use the notation and
the computations of the numbers n(L, H) that were presenteed in section 2.4. By
applying formula (4.1), it is an easy task to derive the multiplication table for the
A(Ds)-module A(D3 x S'), which is shown in Table 4.1.

| (Ds) (D) (Zs) (Zy) | J

(Ds3) (D) (Zs) (Z,) | (Ds
(D) (D) +(Zy) (Zn) 3(Z)
(Z3) (Z,) 2(Zs) 2(Zy)
(Z,) 3(Zy) 2(Z,) 6(Zy) | (Z
(Z3) (Zy) 2(Z5) 2(Zy)
(D3) (D%) (Zs) (Zy) | (D7)
(Df) (Df) (Z,) 3(Z,) | (D7)

Table 4.1: Multiplication Table for A(D3)-module A;(D3 x S*).

4.1.2 A(D4)-Module Al(D4 X Sl)

| D) ) | D] D) | By |@)| @@ ]| |

(D) | (D2) | (D2) (D) (D1) (Za) | (Z2) | (Z) | (Do)
(D2) | 2D2) | (Za) 2(Dy) (Z) (Zo) | 2AZ2) | 2(Z0) | (D2)
(D2) | (Z2) | 2(D2) (Z1) 2(Dy) (Z2) | 2AZ2) | 2(Z41) || (Do)
(D) | 2Dn) | (Zy) {2(Dy)+(Z0) | 2(Zn) (Zo) | 2%) | 4(Z0) | (Dy)
(D1) | (Z1) | 2(Dn) 2(Zy) 2AD) +(Zy) | (Zy) | 2AZ) | 4(Z1) | (Dy)
(Ze) | (Zo) | (Z2) (Z:) (Z1) 2(Za) | AZ) | 2AZs) |i (Za)
(Z2) | 2(Z2) | 2(Z2) 2(Zy) 2(Zy) 2(Z,) | 4(Z2) | 4(Z1) || (Zo)
(Zy) | 2(Zy) | 2(Zy) 4Zy) 4Z,) 2AZy) | 4T | 8(Z0) | (Z0)
(D7) | (D3) | (D2) (D7) (D7) (Zo) | (Z) | (Z1) | (D))
(D) | (D2) | (D) (€25)) (D1) (Z%) | (Z2) | (Z1) | (D)
(DY) | (D2) | (D7) (D1) (D7) (Z3) | (Z2) | @) || (D)
(D) | 2AD9) | (Zz) | (DD +(Dy) | _ (Zy)_ | (Z3) | 2(Z7) | 2(Zy) | (D3)
(D5) | (Z3) | 2(D%) (Z,) (D) + (D) | (Z7) | 2Z7) | 2(Z0) | (DF)
(D3) | 2(D3) | (Z2) 2(D7) (Zy) (Z2) | 2Z2) | 2(Z)) || (D3)
(D5) | (Zo) |2(D3) (Z1) 2(D7) (Zo) | 2Z2) | 2(Z1) || (D)
(D) | 2D) | (@) |2ADD) +(Zh) | 2(Z1) (Zy) | 2(Z1) | 4(Z0) || (DD
(D}) | (Za) | 2(D5) 2(2Zy) 2AD5) +(Zh) | (Z) | 2(21) | 4(Z1) || (DY)
(2 | (Z7) | (Z2) (Zy) (Zy) 2AZy) | 2(Z7) | 2(Z0) | (Z)
(Z9) | (Zo) | (Z) (Z1) (Z:) 2(Z3) | 2(Z2) | 2Zy) | (Z9)
(Z7) ] 2(Z3) | 2(Z7) 2(Z,) 2(Zs) 2(Z3) | 4(Z2) | 4@1) | (Z3)

Table 4.2: Multiplication Table for the A(Dy)-module A;(Dg x SY).
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4.1.3 A(Ds)-Module A;(Ds x S*)

| (Ds) (D1) (Zs)  (Zy) | |
(Ds) (D) (Zs) (Z.) | (Ds)
(D1) (D1) +2(Z,) (Za 5(Z1) | (Dh)
(Zs) (Zy) 2(Zs) 2(Zy) | (Zs)
(Z,) 5(2,) 2(Z,) 10(Z,) | (Zn)
(z%) (Z)) 2Z8) 2zZy) | (Z2)
(Zg) (Zy) 2Z2) 2Z) | (ZF)
(Ds) (Df) (Zs) (Z,) | (Dg)
(Df) (D) +2z.) (Z,) 35(Zy) | (D)

Table 4.3: Multiplication Table for A(Ds)-module A;(Ds x S?).

4.1.4 A(A)-Module A;(4;s x SY)

By applying the standard reccurence formula (4.1) one can easily establish the
A(A;)-multiplication table for the generators of A;(As x S*), which is shown in

Table 4.4.

| (As) (Vo) (Zs) (Z2) (Z,) |
(A) (Vo) (Zs) (Z2) (Z,) | (Ad)
(Va)  3(Va) (Z,) 3(Z,) 3(Zy) | (Va)
(Zs) (Zy) (Zs)+(Z4) 2(zZ,) 4(Zy) | (Zs)
(Zo) 3(Z) 2(Z,) 2(Zs) +2(Z,) 6(Z,) | (Z2)
(z,) 3(Z) 4(Z,) 6(21) 12(Zy) | (Zv)
(4F)  (Va (Z%) (Z2) (Z1) | (A%)
Vi) 3(V) (Zy) 2(27) +(Z2)  3(Zy) (V{)
(Z¥) (Z,) (ZF)+ (Z) 2(z,) 4zZy) | (ZF)
(z7) 3(z3) 2(Z,) 2(Z7)+2zZ,) 6(Z) | (Z3)

Table 4.4: Multiplication Table for A(A4)-module A4;(A4 x S?).
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4.1.5 A(Sy)-Module A;(S; x S)

licitly for the

The multiplication table for the A(S,)-module A;(S; x S!) (and imp

Burnside ring A(S;))

in Table 4.5.

is given in

X2y | (t2)o (v} ‘2z 1 (&) ('z)z (‘2 v (M2 (e ('z)r(2) ('2) (2) @)1z (l2)
HORES/ AN G A RN )1 ('z)o (‘z)v (*z)e (e (2t Cae (D1 Gae () (21 0 (o)
(1) | (2) (ta) (vz) (vz) (!2) (') (¢a) (tu) (v) ) (1s)
(f2) { (‘2)21 (‘z)o Qv+ (2 ('2)y (20t (f2)z (fz)o (‘z)et (Y2)e ('"2)2 ({z)2 (f2)e (!2)
f2) | (‘2)8 (‘z)v (“2) ('z)z 1 (§2)2 (‘2)z ('2)z (‘z)e, (2)y (§z2) (2)e ('z) (52)
8z) | (“z)o (‘2)e ("2)e 1 (f2)e (‘z)z ("2 v (22 (fze (2) 4 (22) (*z) (22) (22102 (2
()| (2o (‘z)¢ (L2 v (2)e ('2)z (v (Pa) (Cz2)2 (@) ('z) (M) e ()
Gy | (z)o Ot Gy 0a) (e (22)z ('z)z D1 (&) (ze DGz Cayiea) (G (G Ga) (Ba)
CGa) | (2 (22 (o2 (‘z)z (212 (e () Gak (e () (2 Ga)
fa) | (‘v (*2) + (e ('z)z ('2) + (%2) ('z) ('z) (la)k )+ Ga)  (72) (i) fa)
w1l (‘z)e ('z) (“2)e (*2)z (“2) ()1 (%z) \2) Wz (') W)
ANS (‘z)e ('2) + (Ya) (2)e ('2) @)y (tz) O (2) 1 Ga) (i) () ()4 (an) Am.S
Ga) § (‘2)e (‘2) + ('a) (¥2)2 v (%) ('2) () v (2z) (‘e (22) v Ca) (‘a) 2 () v (a) Ga)
HOREWA ('2) + ({q) (!2)2 t (2) ('2) ) v2) (e (o) (Ga) ({a) 20 () o) Ga)
(‘z) | (zhve (“2)z1 (‘z)z1 ('2)8 ('z)o ('z)o (‘z)9 ('z)r (*z)e (‘2)e (‘z)
(‘) | ("2)21 (‘)¢ +(Cak (*z)o ('z)y (‘z)e (*2)¢ 2+ (Caye (o4 Cae (2 (2) i (fa) (‘a)
(2) | ()21 ('2)9 ('zZ)r +(zi ("2 (‘z)zt (). (2)9 (‘2)0 ) (2) (‘z)z (“z2)e. (“z)e (vz)
(vz) | (‘z)8 (‘z)v (z)r ('z)z 1 (2)¢ (‘z)z. (‘z)z ("z) (‘z)t (vz) (*2) ('z) (*z)
(*z) | ('z)o (‘z)e (z)e v (222 ('z)e (‘z)+('Z)z (2  ('2) 1t (%2) (‘2) (e (@)1 (2) ('2)
(") | (‘z)o ('z)e (wz)o ('z)z. ()¢ ('A)o (w2)e ('z) (LY (*A)e ('A)
(ta) | ('z)o ('z)z 1 (‘ade (‘z)e + (*Z) (2)z (z) t (22) (Z2)e  (‘z) 1 (Cade (‘ale (z) 2t (a)
(ka) | (“2)v ('2) + ('alz (‘2)z ('z) + (*2) ('2) ('2) (‘e (a) v Ca)  (*z) (‘ar) (*a)
('v) | ('2)2 (*2) (L7414 (*2)z (“2) ("A)z. (“z) (47) ('v)e (*A) ('v)
(*a) | ('2)e (*2) + (*a) (“zZ)e (‘z) @)+ (z) (A (2)1 Ca) (*a) ) ) a) Ca)
'$) | (‘2) (‘a) (42) (“2) (*z) (*A) {a) (€a) 'v) (*a) ('s)
| | (') (‘a) () (vz) ('z) (*A) (*ar) (ca) ('v) (') 's) |

Multiplication Table for A(Ss)-module A;(Ss x S*).

Table 4.5
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)-module on

5

group As, the structure of the A4(A

(f2) | (“z)oe (Dot ("o+ (e (‘)0 (2)e+ () (2e+ (22 (2z)
(&52) | (“z)oz (‘z)o +(§2)2 (‘z)e (‘z)y -(§2)e (‘z)e (§2)
( .M.t ('z)oz (‘z)o+ (52} (v2)s ('z)y Y AT4 (‘z)z (52)
(52) | (*z)21 ('2)y ('z)e (‘z)e+ fmﬁm E_vi.mﬁ (52)
(52) | (‘2)21 (‘z)v ('2)e (‘2)z+ (520 ('2)+(52) (32)
(fa) | (oo 2w+ (12)2 (per{2) (D +(22e ('z)e ('2) + () + (a) (D) +(2) (%2} a)
(') | (et ('2)o+ (*2) + (‘2 (‘z)s (‘z)e+ (e ('z)e (z)+(2)+(fz)e ('Z) v (Ca) () + (2 (D)

ta) | ('z)o (‘e + (") (‘2)e (f2)e ('2)+ (°2) (fz) (2) U2+ ¢a) Ga)
(&) [ ('2)e (‘z)e + (¥2) (' + (52 ('Z)+ (") (‘z) (42) + (*2) S2) +(4v) (*z) ()
W) | ('2)s ('2)z + (*2) ('2)+ (&2 (2) +('A) ('z) (52) + (*2) (52) + () (‘2) (W)
('z) | (*z)o0 (z)og ('2)oz (v2)at ('2)z1 (‘z)ot (z)s ('z)o (‘z)
(2z) | (‘z)oe (21 + (2)z ('z)or (‘Z)o + (“z)e ('2)o (2)r + (2) ('2)z +(2) (‘2)e+(%2)z (*2)
z) | (‘2)oz Z)01 {20+ (v2) ('z)8 {(vz}r (*2)e + (2) (*2) + (“z2) ('z)e (v2)
('A) | (“z)ar (‘29 + (‘) (‘z)e ('2)e +("A)e (‘z)e (“z)+ (“2)¢ ('2) + (") (*2)¢ (")
(°z) | (‘z)a1 ('z)o (‘z)y ('z)e (‘2)z + (s2)2 ('z)2 ('2) ('z)+(2)  (*2)
Ca) [ ("z)oy (‘2 + {22}k ('z)e+(¢z)  (‘z)+(*2)e (‘'z} )+ (@) +(fa)  (2) +(v2) (*2) (fa)
tv) | ('2)e ('2)e + (%2) 2y + (22 ("2)+ (%) ('z) (“z) + (2) (z) + ('v) (*Z) ('v)
(‘a) 1 ('z)o ("ze+ (2)e (‘'z} (“z)e. (‘z) + (*2) (“z)e (vz) (t2)+(fa)  (a)
) | ('2) (“z) (4] (') (°2) (‘a) ('v) (*a) (*v)

| (2) (2) z) ) (*2) ) %) a) 2N

), which contains (implicitly) the multiplication formulae for the Burnside

ring A(As), is described in Table 4.6. Notice that this table contains (implicitly)

also the multiplication formulae for the Burnside ring A(As).

4.1.6 A(.45)-Module A]_(As X Sl)

In the case of the Icosahedral

A]_(Asxsl

Table 4.6: Multiplication Table for A(As)-module A;(As x S?). The upper half of
100

the table describes the multiplication in the Burnside Ring A(As).
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4.2 Multiplicativity Property for the Primary
Equivariant Degree

The following multiplicativity property of the primary degree plays an important
role in practical computations of the primary degree.

Let I' be a compact Lie group, V' (resp. W) be an orthogonal representation of
G:=Ix 8" (resp. of T), QCR®V (resp. U C W) an invariant open bounded
setand f : RSV — V (resp. g: W — W) an Q-admissible (resp. /-admissible)
equivariant map. Then

G-Deg (f x g, x U) =T-Deg (9,U) - G-Deg (f,Q),

where the multiplication is taken in the A(T")-module A4;(T" x S!). (See[3])
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Chapter 5

Application of Equivariant Degree
to Symmetric Systems of Van Der
Pol Equations

In this chapter we set up a standard framework for analyzing the van der Pol systems
with symmetries and introduce several examples of symmetric van der Pol systems
based on the geometric symmetries of regular polygons, tetrahedron, octahedron and
dodecahedron. Later on, we present a series of results for these systems, describing
and classifying the symmetry types of different periodic solutions occuring in these
systems, which can be deduced from properties of the linearized systems. Finally,
the necessary algebraic computations for the considered groups Ds, Dy, D5, A4, Sy
and As are presented.

5.1 Definitions and Some Basic Facts

Definition 5.1.1. Let V be a real (resp. complex) Banach space, and G be a
compact Lie group. We say that V' is a real (resp. complex) Banach representation
of G or Banach G-representation if the space V' is a G-space such that the translation
map T, : V — V, defined by Ty(v) = gv for v € V, is a bounded R-linear (resp.
C-linear) operator for every g € G.

Clearly, every finite-dimensional G-representation is a Banach G-representation.

We say that a Banach G-representation V is isometric if for each g € G, the
translation operator Ty : V — V is an isometry, i.e. ||T,v|| = [|v]| for all v € V and
we call the norm ||-|| a G-énvariant norm.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem 5.1.2. (¢f. [36]) Let V be a Banach G-representation. Then for every
irreducible G-representation V;, there ezists a closed subspace V; C V satisfying:

(1) IfWo C V is an drreducible subrepresentation of V' equivalent io V;, then
Wy C VJ

(i) IfW§ C V is an érreducible subrepresentation of V' not equivalent to V;, then
Wi nv; ={0}.

(i1i) The set Voo = ®;Vjis dense in V i.e. V =g,V

(iv) There ezists G-equivariant, projection P;:V — V.

Definition 5.1.3. The Sobolev space of order 1 on [a, b] is defined by
H'([a,; R™) = {u € L*([a,0};R")| u' € L*([a,B; R™ }.

The space H!([a,b}; R®) can be equipped with scalar product

wev = [ult) ve)dt + [/(8)- v'(e)dt, (5.1)

a

and ||ull;2 = vuewu. Notice that H([a,b];R") is a Hilbert space for the inner
product defined by (5.1).

Definition 5.1.4. Let X and Y be two Banach spaces. A linear operator A: X — Y
is called compact, if A(B) CY is relatively compact, (B is the unit ball in X).

Theorem 5.1.5. (¢f. [10]) The natural imbedding
j B (0, RY) = C(la, B} ),

defined by j(u) = u s a compact operator.

Corollary 5.1.6. The natural tmbedding
7+ H*([a, b, R") — L*([a, b; R™),
1$ a compact operator.

Definition 5.1.7. Let f : [a,b] x R* — R™ be a continuous map. We define the
map

Ny : C([a,b; R™) — C([a,b; R™),
which is called Nemysky Operator associated with f, by Ny(u)(t) = f(z, u(t)).

Notice that Ny is a continuous map.
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5.2 Systems of van der Pol Equations with Sym-
metries

The van der Pol equations are related to the so-called self-excited dynamical systems
arising in many models of mechanics, electronics and biology. For more information
on van der Pol oscillators and related results, we refer to [3].

We are interested in systems of coupled identical van der Pol equations of the
type

’&1 + 6('&% - a)?h =+ C11U3 + C12U2 =+ + ** =+ C1nlUn =0

Ug + E(U,% - a)’t:l.z + CotUy + CooUs + -+ Conn, =10

~~
[@4]
V)
g

tin + €(U2 — @)Un + Co1Us + CnoUp + * +* + Canln =0

where a > 0, € > 0, admitting certain “spatial” symmetries. The system (5.2) can
be reformulated using the vector “multiplication”:

UV u U1
U2V2 Uz V2

Uy = . , Where u= . and v =
UnUn Un Un

in the following form

i+e®~a)i+Cu=0 (5.3)
where
2
a Uuj Ci1 C12 Ci3 ... Cin
€ - a 2 u% Co1 C22 C23 ... Con
€= ? a= . ’ u = . bl C = .
€ a u2 Cnl Cn2 Cn3 --- Can

There are many possible examples of symmetric van der Pol systems of the type
(5.3), where the matrix C is equvariant with respect to a certain group I acting on
u = (uj,up, -+ ,U,) by permuting its coordinates. Let us discuss some of them.

Example 5.2.1. We consider a ring of n identical van der Pol oscillators where the
interaction takes place only between the neighboring oscillators (see Figure 5.1), i.e.
in this case the matrix C is of the type
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@

Figure 5.1: System with dihedral symmetries.

Q. O
0
¢+ Q. O
- OO
- O Q

d 00 ...dc
It is clear that the system (5.3) has the dihedral group D, of symmetries.

In the subsequent examples, we present the concrete systems of van der Pol
equations modelled on three regular polyhedrons: tetrahedron, octahedron and do-
decahedron. In each case, the symmetry group I of the system is composed of the
orthogonal symmetries of the corresponding polyhedron. To simplify the presenta-
tion, we have considered only those orthogonal symmetries T for which detT = 1.
This assumption is not essential, and in the general case, similar results can be easily
derived based on the already obtained computations.

Example 5.2.2. Let us consider four identical inter-connected van der Pol oscilla-
tors having exactly the same linear interaction with all the other oscillators. In this
case, the matrix C in the system (5.3) can be written as:

d dd
c d d
d c d
d d c
The situation is illustrated on Figure 5.2, where the vertices of the tetrahedron
symbolize the oscillators and its edges correspond to the connections between the

(5.4)
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Figure 5.2: System with tetrahedral symmetries.

oscillators, indicating the interaction between them. It is clear that this system of
differential equations is symmetric with respect to the tetrahedral group T = A,.

Example 5.2.3. Suppose that the van der Pol oscillators are arranged in a con-
figuration corresponding to the vertices of a cube. We assume that the interaction
takes place between those oscillators that are connected by an edge of the cube (see

Figure 5.3). We assume that all the oscillators are identical.

The eight identical van der Pol oscillators, which are inter-connected, illustrated
on Figure 5.3, lead to the system of equations with the matrix C of the following

type:

O R O A O A O

0

O R OO O Q O Q,

Q OO O O A O

OO OO QLo

Q. O O A0 O o

O RO QOO0 O A,

A O QL. OO O Q, ©

QO QO RN OO

c

It is clear that the system of van der Pol equations (5.3) is symmetric with respect
to the octahedral symmetry group © which is isomorphic to the symmetric group

Sq.
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Figure 5.3: System with octahedral symmetries.

Example 5.2.4. Let us consider an arrangement of van der Pol oscillators based
on the inter-connections given by the edges of a dodecahedron (see Figure 5.4). It
is clear that the group of symmetries of the dodecahedron, which is the icosahedral
group I, is the symmetry group of the system (5.3). Let us point out that the
icosahedral group I is isomorphic to the alternating group As. In this case we have
the system (5.3) composed of 20 equations, where the matrix C is given by:
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un

Figure 5.4: System with icosahedral symmetries.
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5.3 Reformulation of the Problem as an Equivari-
ant Fixed-Point Problem with One Parameter

In this section we discuss a general strategy based on the application of the equivari-
ant degree allowing us to study symmetric periodic solutions for (5.3).

5.3.1 Preliminaries

Notice that in the all examples discussed above, the space V' := R™ was an orthogonal
representation of a certain finite group I', acting on vectors © € R” by permuting
their components, the matrix C commuted with the action of I' on V, and det(C) #
0. In addition C was symmetric, i.e.

Cuev=ueCv, u,veR"
where u o v denotes the usual inner product in R™.

By replacing the independent variable ¢ by &7, where p > 0, the equation (5.3)

can be rewritten as )

g(u® — @)u+ Z‘D:ECu = 0. (5.7)

Since, we are looking for a 2x-periodic solution, the boundary conditions for the
system (5.7) are

U+

¥

u(0) =u(27) and 4(0) =u(27).

Let us put a := £, so the equation (5.7) can be rewritten as

i+ ae(u® — @)u+ o*Cu = 0. (5.8)
Set
1, . _
Fu)= ¥ —au . (5.9)
Then the equation (5.8) becomes
i+ as%F(u) +a*Cu=0. (5.10)

The equation (5.10), together with the periodic boundary conditions, can be refor-
mulated as a non-linear operator equation in an appropriate Hilbert representation
of the group G =T x S, where I" denotes the symmetry group of the system (5.8).
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We will need another technical assumption, which is used later to establish a
priori bounds for the periodic solutions. We will restrict our analysis to the solutions
u of (5.3) satisfying the following additional condition:

ut+7) = —u(t), forall teR.

In this way, we transform (5.8) into the following system

—~
(S
—
p—t

~—

—ii=as(u? - a)u+a?Cu, u(t)eV
u(t+m) = —u(t).

5.3.2 Setting in Functional Spaces

Let us introduce the functional spaces, which are appropriate for studying (5.11).
First we define the subspace H, of the Sobolev space HZ.(R,V) of 27-periodic,
twice-differentiable, V-valued functions such that @ and @ € L?(R, V), defined as

H,={u€ H,L(R V)| u(t+7)=—ut), Vt€R}.

We will also identify V' with the space of all constant V-valued functions. The space
H, can be equipped with an inner product, given by

o 2% 2%
(1,0}, = /0 u(t) o v(t)dt + /0 a(t) » 9(2)dt + /0 i(t) o B(t)dt.

In addition, we define the subspace L, C L?([0,2r];V) by L, := L(H,), where
Lu = —1. It is clear that L : H, — L, is an isomorphism. Let us define

H:=VeH, L:=V&L..

We put
1 2w

K:H—-L, Ku=_- u(t)dt.

2T Jo

It is clear that the operator K is an orthogonal projection on the subspace V of
constant functions and L+ K : H — L is an isomorphism such that (L + K)y = Id
and (L+K ), = Ljg,. Givenu € H, denote by % (resp. u,) its orthogonal projection
of wuon V (resp. H,).

The space H2.(R; V) is a Hilbert representation of the group I" x S?, where the

element (vy,e") € T' x S? acts on a function u € Hz.(R; V) by the formula

(v, e u(t) = y(u(t +7)), forall teR, yeT, e €S (5.12)
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The S!-isotypical components of the space H3 (R;V) are the subspaces V°, | =
1,2,..., and the subspace of constant functions V' (which is the S*-fixed-point sub-

space), where
Vi€ = {a;cos(lt) + by sin(lt)| a;, b € V}.

A function u € V%, u(t) = a;cos(lt) + by sin(lt), can be identified with
u(t) = e (231 + z'yz>,

where 7; = 2% and y, = %%, so the action of " € S* on u(t) is simply the
complex multiplication by €7, i.e. ¢™ - u(t) = ¥+ (z; + iy). It is clear that V¢
are G-invariant subspaces of H3.(R;V); in addition, V* (considered as a complex

linear space) is S'-isomorphic tg the complexification of V. Let D(u)(t) = ult),
then for u(t) = e (z; +iy) we have
D(u)=4lu, and L(u)=1, (5.13)
so L and D preserve V5, 1=1,2,3,....
Notice that V¢, 1 =1,3,5,..., are the S'-isotypical components of H,.

5.3.3 Operator Reformulation and Setting for the Equivari-
ant Degree Treatment

Let us now reformulate the problem (5.11) as a parameterized G-equivariant fixed
point problem in the space Hy, where G =T x S*.

We consider the following (infinite dimensional) representation of the group G:
Coi={u:R = V; ypon € C}([0,27], V), u(t+7)=—ut)VteR],

where u(t+27) = u(t), u(t+27) = u(t). Let us define C := V&C,, notice that i is a
continuous periodic function for every function u € C, in particular 4(t+7) = —u(t)
for all £ € R, therefore the map N : C — L?([0, 27]; V') defined by

N(u)(t) = (*(t) — @)u(t), teR,

satisfies
N@)(t+m) = =N(u)(?).

thus N : C — L. It is clear that N is a continuous map.
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We also define the operators:

JH<=C, ju)=uxy
AC—L, (Au)(t)=Cult)),

D:C—L, (Du)(t)=n1u(t).
The relations between the operators L, 7, D, N and A are illustrated in the following
diagram.
H
J

Notice that the linear operator j is compact, and A is a bounded linear operator.
In addition, all the above operators are G-equivariant, where the G-action on all the
above functional spaces is defined by (5.12). The equation Lu = —i can be written
in the following operator form:

L(u) = aeN(j(u)) + *A(j(u)), ueH (5.14)

5.3.4 Computations of the Equivariant Degree

We are going to introduce additional parameters to the original system of differential
equations to allow its deformation to a “linear” system. Then, by applying a priort
bounds to parameterized systems, the existence result can be obtained by using the
homotopy property of the degree.

Let us introduce additional parameters § € [0,1] and A € R to the equation
(5.11):

(5.15)

—i=6ae(u® - @)u+ a®Cu—dapu, u{t)eV
u(t + ) = —u(t)

where p = £a@ (see [27]).
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Assume for a moment that there exists an increasing positive function m(-) such
that every solution u, of the system (5.15) for A = 0, which by the imposed condi-
tions belongs to H,, satisfies the inequality (cf. Lemma 5.5.1)

o]z, < m(e).

Given a > 0, take M > m(a), and choose m < m(a) to be small enough. We
define n: R — [0,1] by

0 if t<m,
n(t)=<{ 22 i m<t<M,
1 if t> M,

and 0 : Hy — [0,1] by 6(u,) = n(lluollgo), where u, € H,. We modify the problem
(5.15) as follows

—.-= E 2_—.-' 2 o _ A ..
{u Sac(u? — @)u + 0*(u,)Cu — dapt, u(t) €V (5.16)

u(t +7) = —u(?).

The problem (5.16) can be reformulated as the following parameterized equation
in the functional space H =V & H,

Lu, = 60N (j(uo)) + 020(uo) A(j (o)) — AapD(j(w0)), (5.17)
0 = 020(u,) AT. '
Notice that the equation (5.17) can be written as
(L+K)u =380zN(5(uo)) + a®0(uo) A5 (o) + *0(uo) AT
—AapD(j(uo)) + K (u), (5.18)
and since L + K is a G-equivariant isomorphism, (5.18) is equivalent to
v =(L+K)? [5asN(j(u,,)) + 020(u0) Al (o)) + 26(u) AT
—XepD(j(uo)) + K(u)] . (5.19)

Consequently, the equation (5.19) can be represented as the system of equations

(5.20)

Uo = 6eL N (5(uo)) + 28(uo) LT A(G (o)) — AapL ™ D(j(u,))
T = a®0(u,) AT + T.
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We define G(a.4,,-) : R x H, — H,, by

Gl 8, 1) =60 LN (5(uo)) + 020(uo) LT A (o)) = AapLl D(j(wo)),  (5.21)

and G(a,d,-,-) : R x H — H, by

Gl b, M) = (zz + 00(u) A(T), Gler, 6, ), u)) w=T+u, TEV, u,€H,.

(5.22)
Clearly, G(a,d, A, u) is a completely continuous G-equivariant map.

Remark 5.3.1. Notice that, the original van der Pol equation (5.11) corresponds to
the case A = 0 and 6 = 1, except for the nonlinear factor §(u,) in (5.17). However, if
[|to|[m, = M, then 6(u,) = 1 so the solution u, of (5.17) is also a solution of (5.11).

Remark 5.3.2. In the case of one free parameter, the simplest equivariant maps
(needed for the computations of the equivariant degree) turn out to be the so-called
basic maps, which on the isotypical components have a form

23)

(91}

b(),v) = (1 — 1] +z'm)v, AER, §>0. (

In section 5.4, we will show that the term —AapL~*D(j(u,)) in the system (5.20)
corresponds to the term ¢8\v in (5.23), while (1 — ||v||)v corresponds to u, —
?0(u,) L7 A(5(u,)), i-e. the basic maps (5.23) “emerge” from the “linearized sys-
tem”. However, the “linearized system” can not be connected by an admissible
homotopy to the original van der Pol system! The “breaking” of the homotopy
occurs for those solutions u, with ||uo||m, = M, which are in fact the solutions of
the original van der Pol system, so the existence results still can be obtained (see

section 3.5).
We define

Q:={(Mu) ERXH| A€ (=X, Xo), m < |luolle, <M, |[z] <1},

Qo ={(M\u) ERXxH, | A€ (=X, X)), m < [[&ollm, < M},
B(0,1):=={ve V]| <1},
where u = T+ U, Uo € H,, T € V and the constant A, > 0 is a fixed number,
which will be specified later. Notice that the set 2 is a product of 2, C R x H, and
B(0,1) ¢ V. The boundary 95, is composed of three parts
Bm = {(A 20) € Qo | lluolm, = m},
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= {(\uo) € 0o | lluolle, = M},
8o = {(\ua) €T | 1A = Ao}

It is possible to show that for appropriate values of @ and M, the homotopy
G(e, 6, A\, u,) with respect to § € [0, 6,] (where d, will be chosen to be large enough)
has no fixed points in 8,» U 8,. Notice that for § = 0 the equation (5.20) can be
written as

26(uo) LT A(G (o)) — AapL ™' D(5(us)), o € H,. (5.24)
In addition, the equation (5.24) has no solutions in dp. Let us put

FATue) = (T+ 0?0(uo)A@), 020(uo) L7 A (1o)) — AapL ™' D(j (w0)))

eV x H,. (5.25)
It is possible to show that the primary equivariant degree
G-Deg(ld — F,Q) = > ny (H), (5.26)
(H)

is different from zero. In the next section we will reduce the computations of (5.26)
to studying the equivariant degrees of the basic maps related to irreducible I'- and
G-representations.

On the other hand, it is possible to apply a G-equivariant homotopy Id —
(s, M\ u), s € [0,1], to the map Id — G(a, do, A, u), where

—U(0,\u)=u—G(a, 6o, \,u) for (A u)€Q,
u—Y(s,\u)#0, for (A\u)edQ,

and the map Id — ¥(1,-,-) satisfies
G-Deg (Id — ¥(1,-,-),Q) =0.

By using the standard argument, it will follow that for every orbit type (H,) in €
for which ng, is different from zero, there exist § > 0 and uo € Oy satisfying

—ii, = dae(u2 — @)to + 020(uo)CUo — Aaplio, Uo(t) EV
Up(t + ) = —Uo(t),

and having a symmetry at least H,. Since u, € Op, we have 6(u,) = 1, so u, is a
solution of the equation

—tip = Se (U] ~ Ao + 0*Cio — Aptlo,  Uo(t) €V
uo(t + 7) = —up(t)-
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Definition 5.3.3. Let V be a finite-dimensional or Banach representation of I’ x St
and let V; be the G-invariant complement of VS' in V. We will call an orbit type
(H) in V to be dominating, if (H) is a maximal isotropy type in 5\ {0} with respect
to the usual order relation.

5.4 Computations of the Equivariant Degree: Re-
duction to Basic Maps

In this section we reduce the computation of the G-equivariant degree G-Deg(Id —
F. ), where F is defined by (5.25), to the computation of the degrees of basic maps.

5.4.1 Finite-Dimensional Reduction
We, first, study the solution set for the equation

Uo = FolAUp) = U= a29(u0)L_1A(j(u0)) - )‘apL—lD(j(uo»: u, € H,
(5.27)
(in particular, we will show that the solution set is finite-dimensional). The above
equation (5.27) can be rewritten as follows:

5.28)

1o + 020(Uuo)Cuo — Aapti, = 0, uo(t) €V (
Up(t + ) = —Uo(L).

Since the matrix C is nonsingular, symmetric and I'-equivariant, it is diagonalizable
and every eigenspace is a I-invariant subspace. Let o(C) = {us} denote the spec-
trum of C and assume that for every v € V' we have a decomposition v = 3 _vs,
where v, is an eigenvector corresponding to the eigenvalue y;. Then, we can split
the system (5.28) into

ﬁs + QZO(UO)usus - Aamls - Oy uo = ZS U’S (5.29)
us(t + ) = —us(t).

Since (5.29) is a system with constant coefficients, it follows that (5.29) has 2w-

periodic solutions u, satisfying us(t + m) = —u,(t) if

®O(uo)pts = (2r = 1)> and A=0 (5.30)
for some r = 1,2,3,.... By construction, the function u, lives in Q,, therefore
6(uo) € (0,1) (see the definition of 6(-) and requirements on ,). From this it

follows that (5.30) can be satisfied only if
1 =
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By the same argument, the requirement for possible values of a should be

(2r-1)
Vs

Bearing in mind the isotypical decomposition of H,, formulae (5.13) and the second

inequality from (5.31), the solution set to (5.29) satisfies the following equations in
H,:

s

forall p,, 7=1,2,3,.... (5.32)

2

X ———9(5;0)_#;?2 Us,r = 0, (533)
wherer = 1,2,3,... and u,(t) = e ~D#(z, +4y,), for some p-eigenvectors z, and
y- of C. Thus (5.30) and (5.33) give rise to a non-zero solution for (5.29) if (5.31) and
(5.32) are satisfied. In particular, since there are only finitely many such r > 0, the
solution set to (5.33) (and respectively, to (5.29)), is finite-dimensional. Combining
the above argument with the suspension property of the equivariant degree, one
obtains that G-Deg (Id — F,,Q,) = G-Deg (1d — F,, (), where

F,(\v) = P8(|v|)Av+ ATv, (\v) eRxUT,

U is a finite-dimensional G-representation such that US = {0}, & = Qo N (RxU)
(see Figure 5.5), A : U — U is a G-equivariant nonsingular linear operator with
spectrum

ps . 1 -
W= {GogE ToLek > ) (.39

The linear operator T : U — U is diagonal with respect to the eigenvectors of A,
with all its diagonal entries being positive multiples of z. Notice that since A is
G-equivariant, one may consider A as a complex linear operator. In particular, the
set (Id — F,)~(0) N §2; is composed of finitely many S -orbits S*(vp), - ... S*(vr)-

5.4.2 Isotypical Decomposition and Basic Maps

In order to compute the G-degree G-Deg(Id — F,,2;), we need to consider the
following S*-isotypical decomposition of the space U:

U=U,80:&--- & U,

where U; denotes the isotypical S'-component of U with the S-action given by
the complex multiplication (v,v) — 7' - v, (7,v) € S* x Uy, and the product *-’
denotes a complex multiplication. Every subspace U, is invariant with respect to
the I'-action. We can consider the I-isotypical decomposition of U;, which we denote
by Uy = Uy @ U1y & - - - © Uk, where each of the components Ujy, 7 = 0,...,k,
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Figure 5.5: The set {2,

is modelled on the complex irreducible -representation V%, j = 1,...,k, and V§
being the trivial representation of I'. It is clear that the space V; equipped with the
above I' x S!'-action is a real irreducible representation of G = I’ x S, which we
will denote by V;,. Consequently, we obtain the following isotypical decomposition
of the space U with respect to the G-action:

U"—-@Uﬂ, U;, modelled on V.
3l

For an orthogonal irreducible representation V;; of G = ['x S such that V;,5" = {0},
we put

O={M@eRx%w

| =

<|vll<2 -1< A< 1}

The simplest O-admissible map is b: O — V;,, by

where (A, v) € R x V;;. Notice that b(\,v) = 0 if and only if 1 — |jv] +iX = 0,
ie. A=0, |lv|| = 1. In what follows, for every G-irreducible representation V;,;, on
which S! acts non-trivially, we denote by (b, O) the so-called V;;-basic pair, and we
define

degy,, = G-Deg(b,0) € Ay(T" x Sh.

Similarly, let V; be an irreducible representation of I and B; be the unit ball in V;.
The simplest (in some sense non-trivial) B;-admissible map is —Id : V; — V;, which
we denoted by (—Id, B;) the so-called V;-basic pair. We put

degy, := I-Deg(—1d, B;) € A(T).
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5.4.3 Product Formula

Return to the computations of G-Deg (Id — F,, ;) and, respectively, G-Deg (Id —
F, Q) (see (5.25)). Let £ € 6(A) be an eigenvalue of the G-equivariant linear operator
A : U — U. Then the eigenspace E(&) = {'v elU:Av = §v} is a G-invariant
subspace of U. Clearly, the subspace E(£) can be represented as the direct sum of
its G-isotypical components

E(€) =P Eu(g), Ej(f) modelledon Vj,.
3l

We will call the number
n;(§) = dim Ej;(€)/dim Vjy,

the V;;-multiplicity of the eigenvalue £&. Consider the [-equivariant map Id — F :
V =V, (0d -F)(@) = —a®8(v,)C(), ¥ € V (cf. the second equation in system
(5.20)). Let B = B(0,1) in V. Then the I-equivariant degree I'-deg(Id — F,B) €
A(T) can be computed as follows: for every eigenvalue y, € o(C) such that u, > Z,
we consider the I-isotypical decomposition of the associated with u, eigenspace

E(uo) = EB E;(1so)- We put

j
N (o) = dim Ej;(uo)/dim V;.

Then we have )
I-deg(ld — F,B) = H <degvj> J,
3,
where the product is taken in the Burnside ring A(T') and we assume that ( degy, )0 =
().
Defineld - F:RxV xU -V xU by

(Id — F)(\,7,v) = (— o?9(v,)C(T), v — &?8(v) Av — ATU), \T,0) ERxV x U,

and put Q, = QN (]R xVxU ) By the argument given in subsection 5.4.1,

G-Deg(Id — F,Q) = G-Deg(ld — F,{z). In the statement following below, we
present the result for the computation of G-Deg (Id — F, ()

INotice that we always have (degy, )2 = (])
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Proposition 5.4.1. Under the notations of previous subsections we have

j,S EO’(.4) ]vl

G-Deg(1d - F.05) = [] (desy, )""(“‘) . [ S Sna() degvj'l (5.25)
3

where the product “’ denotes the A(T') multiplication on the Z-module Ay(I x S?)
generated by the twisted orbit types (H) in T x St.

Proof: By using the homotopy invariance, we can modify the operator A (using
a small perturbation) in such a way that each eigenvalue £ € o(A) is “simple”, i.e.
there exists exactly one (7,1) such that n;;(§) = 1. Let us consider an eigenvalue
§ € o(A) and suppose that E(€) = E;,(€) for some isotypical component Uj;. By
(5.33), for every eigenvector v € E;;(€) we have that (Id — F,)(A\,v) = 0if A =0
and o?0(v)€ = 1. Put Kj(€) = (Id — F,)7}(0) N @ N E;4(€). The sets K, (€)
are compact and it is possible to separate them by choosing small open G-invariant
neighborhoods €;;(§) in R x U. Notice that for every neighborhood Q;,;(€) the map
Id — F, is G-homotopic to a map, which is normal to E;;(€). Consequently, by the
additivity and suspension properties of the G-equivariant degree, we obtain

G-Deg (Id — F,, (1) = Z G-Deg (Id — Fo, Q2;,(€))

&did

= Z G-Deg ((Id = Fo)ig;.(8), 50(6) N Ej,z(é))-

&Xj!l

On the other hand, it can be easily verified that the map (Id — F,) g, ,(e)ne,.(9)
is G-homotopic to a basic map on V;,;. This reduction to basic maps is fundamental
for the computations of the primary degree. Consequently,

G-Deg (14 = Fu)is, (e %a(6) N Eju(€) ) = degy, .
Therefore, by applying the homotopy and additivity properties again, we get

G-Deg(1d — Fp, ) = > > nyy(€) degy,, -

§€o(A) jd
On the other hand, since Id — F is a product of two maps Id — F : V — V
(F-equivariant) and Id — F;, : R x U — U (G-equivariant), it follows from the
multiplicativity property (section 4.2) that
G-Deg (Id — F, Q) =T-deg(Ild — F, B) - G-Deg (Id — F,, ).
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Finally, since the map Id — F = —a®0(v,)C: V — V (notice that since 6(v,) > 0,
we can simply consider it to be equal to 1) can be represented by a diagonal-block
matrix on the eigenspaces of C, one has

T-deg (F., B) = [] (degy, )" )

J»s

and the result follows. O

5.5 Existence of Symmetric Periodic Solutions in
Van Der Pol Systems

Let us recall that we consider the space V =R"*, agroup I’ C S,, andann X n

non-singular matrix C commuting with the I'-action on V. Throughout this section

we continue to keep the same notations as in section 5.3. We consider a solution

to (5.10) as a function living in the G-space H = V x H,, where G=Tx §', V is
identified with the I'-space of constant functions.

As it was indicated in section 5.3, in order to provide the equivariant degree
treatment to system (5.10) (see also (5.11)), one needs to obtain a priori estimates
for the solutions.

5.5.1 A Priori Estimate

The required a priori estimates are provided by the two lemmas following below.

Lemma 5.5.1. There ezists an increasing function m : Ry — R, such that for each
§ € (0,1], @ € Ry and for each solution u € H, of the system

d
i+ 5aeEF(u) +a*Cu =0, (5.36)

where F is given by (5.9), we have
lulls, < m(e).

Proof: Let us fix o € R, and ¢ € (0, 1] and assume that u is a solution of (5.36).
Bearing in mind that C is symmetric and using integration by parts we have

27

/277 i(t) eu(t)dt =0, and Cu(t) e u(t)dt = 0. (5.37)
0 0
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Thus, by multiplying (5.36) by ¢ and integrating over [0, 27] we obtain that

0 2r (“ 5 -fil?( " 2(7 ) ) dt
=/, U+ dos— u)+aCujet

27
=5a.»:/ (u® — @)ueudt
0
27
=(5aa/ (u2oa2—aﬁ-ﬁ)dt.
0

27 2
/ u?e i dt = / at e udt = afjilf3. (5.38)
0 0

Since for u € H,, u(t) = —u(r + t), for each component wu(t) of u(t), there exists
sk € [0,27] such that uk(sx) = 0. Consequently, using integration by parts one
easily obtains for every t € (0, 27| satisfying ¢ > si:

Therefore,

t 27
?.Li(t) _<_ 2/ luk'&kl dt _<_ 2/ Iukzlkl dt. (539)
Sk 0

Using (5.38) and (5.39) one obtains (by the Cauchy Schwartz inequality)

27

2% n 27 %

“u{lg = / ueudt < 47['2/ [urte] dt < 47 onr (/ 2o iL2\ gt
0 k=10 0
= 283 v/mallll

(5.40)

On the other hand, if we multiply (5.36) by u and again integrate over [0,27], we
get

27 d )
0= /; (u + &zEEF(u) +a Cu> oudt

27 27 2%
=—/ aoudt—éas/ <1u3—6u)oudt+a2/ Cueudt
0 o \3 0

< —[lal + IO flul,

where [|C|| denotes the operator norm of C. So, we obtain

il < @®lIC ull3- (5-41)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Then, by (5.40) and (5.41), we get

lulf3 < 2272 /an||ale < 237% Vana/ICT ull
SO
lull < 2273 ay/na[Cll and |afls < 227%02||C|lv/ra. (5.42)

Notice that if u € H, is a solution to (5.36), then it is clearly of class C2. By
multiplying the equation (5.36) by i and integrating it from 0 to 27 we obtain by
(5.37) and (5.39)

2%
il < das /0 W2 (8)ilt) o i(t)dt + o? | C]] a3

(5.43)
< 2oelulfelll|ill: + 2| C| el
o)
&2 < Soeluliollul} + \/(fSCré‘llullzllﬂllﬁ)2 +a?||Cllluli3
< 26azl|ull2]lll + av/[Cllljill2-
Since the norms ||u||2 and ||%]|2 are bounded, it follows from (5.42) that
lifle < 27 7280%[|C|13 (na)? + 28w oVl C| 2.
Therefore, it is to observe that
lullg, < m(a).
where
m(a) := 2572 a/nal[C](1 + 2||C||% + 2°7260%||C|Pna + &2||C])).
Notice that m(a) is clearly increasing. O

Lemma 5.5.2. For every & > 0 there ezists §;(a) > 0 such that the equation (5.36)
has no non-zero solution in H, for alla € (0.&) and 6 > 6;(a).

Proof: Fix & > 0 and take & € (0,&). Let m(:) be a function provided by Lemma
5.5.1. Let u € H, be a solution to (5.36). By multiplying (5.36) by @ and integrating
it over [0, 27}, we get

27
0= 5a5/ (u? - @) @ udt. (5.44)
0
Combining (5.44) with the condition u(t + 7) = —u(t) for all ¢, and using the
standard continuity argument, one can find ¢y € [0,27] and k£ € {1,2,...,n} such
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that uk(Zo) = v/a and @k (p) < 0. Notice, in particular, that |julle > +/a. Since
u(t) = —u(t — 7), u(t) = —u(t — 7), and F(u) is an odd function, we have

to d o
0 = ‘/;0_7‘, (u-réaeth( )+a C’u)dt
\ to to
= (tp) — u(to — 7) + S F(w) o o? Cudt
0= to—~7
1o
= 20(ty) + 20aeF (u(ty)) + o Cudt.
to—~7
Consequently,
0 > ux(to)
3 2 prto
a2 3 o
= —boe (? a2> - /to_r(Cu)kdt
2 . & [
>a |zt =3 [ CHu)edt
3 2 to~7

2.z @& 2. 3 « -
> [gésaz - 5\/7—1'|]C'[||]u||%] >a {gésaz - EﬁHCHm(a) ,

where ||u(t)||o stands for max{|u;(¢)], .. -, |un(t)|}. Therefore, it is sufficient to take
5, = BVEICImE)
;.-az
O

5.5.2 Existence Result: Formulation

Take a function m : R. — R_ provided by Lemma 5.5.1 and let & > 0 be a fixed
numbersuchthataz#@;;lﬁforaﬂ/LEa(C)andV {,uEa )|/,L>;15}7-£
0. Let J H, — C(S%; V) be the natural injection. We choose m > 0 such that

m < oo “J“ Then for every u € H, such that |lullz < m we have

[ulles = 17 (W) lles < 11| Il < [IT]Im < Va.

Notice that for any solution u of the equation (5.11) we have |jullo > v/a (see the
proof of Lemma 5.5.2), thus there is no solution u such that ||u|lz, = m. Next, we
choose M > m(a) and the numbers ), and J, to be large enough in order to have

Ao — 00 > 51(&), [0, )\o] C {/\ A 51(&)} U {)\ 0<AL 20(322} ;
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Next, we define §2, 2,, O, Our and 9, according to formulas in subsection 5.3.4.

We are now in a position to formulate the existence theorem providing a general
framework for the classification of periodic solutions to (5.2) according to their
symmetries.

(2r —1)2

Theorem 5.5.3. Let @ > 0 be such that o® # for all p € o(C) and

r=1,23,... and assume that Z(a) := {u €o(C) | p> ;12-} is not empty.

(i) Suppose that for a certain orbit type (H,) in 2, the coefficient ng, of the
equivariant degree (5.26) is non-zero. Then the van der Pol system of equations
(5.10) has a 2wa-periodic solution u such that G, D H,.

(it) If in addition, the orbit type (H,) is dominating, then the system (5.10) has
at least |G/ H,|s: different 2na-periodic solutions, where | X |1 stands for the
number of different S*-orbits in X.

Proof: (i) The idea of the proof of the first part of Theorem 5.5.3 is based on the
following fact: Let Id — F* be a homotopy of two eguivariant maps Id — F° and
Id — F* such that G-Deg(Id — F7,Q) = > n%(H), j =0,1. Ifnd # ny , then

7/

there ezists tg € (0,1) such that the map F* has a fized point in OQFe. We present
only a sketch of the proof. For more details see [27].

Let
S, = {(/\, u):u= 5’(a, 8, \,u) for some § € [0, 60]},

where G(e, 6, -,-) : R x H, — H, is defined by (5.21). We can show that
8. (8,U8n) =0.

Notice that if (A, u) € S, N 9, then 8(u) =1 and § + A > 0 and (by Lemma 3.5 in
(27]) the function w = ,/gﬁ;u satisfies the equation
W+ (6 + Nae(w?® — @) + o*Cw = 0. (5.45)

In particular, that means the function w is a 27-periodic solution of equation (5.11)
with € replaced by (6 + A)e.

Following [27], define the parameterized nonlinear operators Fy: V — V by

Fy(u) := %u3 - (1-9)au, se€]0,1],
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and consider the following family of parameterized differential equations

{—ﬁ = Joe L F(u) + 0?0(u,)Cu — dagat, u(t) €V,

u(t + ) = —u(t). (5.46)

Again, we can reformulate the above system using the setting in the functional space
H,. We define H(,s,-,-) : R x H, — H, by

H(a, s, A uo) = 6,aeL Ny (j(uo)) + & 8(uo) L2 A(5(ug)) — AezaL ™2 D(j(uo)),
and H(e,s,-,-) : R x H — H, by
H(a,s,\u) = (‘zz + o?6(u,) A(a), H(a, s, A ua)), u=T+uU, UTEV, u €H,

where

d d (1, - 5 -
= — = —| = —_ bl e - (1-— L.
Ns(u) ths(u) % (SU (1 s)au) (u* = (1—s)@)u, ueH,
The map Id — H(e, s,,-) is a G-equivariant homotopy. Using Lemmas 5.5.1 and

5.5.2, one can show that:
(a) the homotopy Id — H(a,s,-,-) has no zeros in the set 8, U 8pn;

(b) the map Id — H (a, 1,-,-) has no zeros in Q, (in particular, by the existence
property of the G-equivariant degree, G-Deg (Id — H(a, 1,-,-),Q2) = 0).

Next, we can define the following G-equivariant homotopy Id — ¥(r,-,-) by

G(a, 2700, M\ u), for (\u)eQ, 7€[0,1],

JAU) 1= [¢)
TS PP A b D |

As it was explained in section 5.4, the solution set to the equation (5.33) is non-
empty only if conditions (5.31) and (5.32) are satisfied. Therefore, these conditions
are necessary for the equivariant degree to be different from zero. Assume (according
to the Theorem 5.5.3 conditions) that ny, 5 0. Suppose that u — ¥(7, A, u) 5 0 for
all (\,u) € 8Q. Then, by the homotopy property of the G-equivariant degree, we
would also have that the (H,)-coefficient of G-Deg (Id — H(a, 1, -, -), Q,) is non-zero,
what is impossible. Since for u = T+u, € V xH,, the equation u = ¥(7, A, u) implies
that —o8(u,)C(T) = 0, thus T = 0, therefore, there exists (X, u) = (X, u,) € I
such that u = ¥(7, A, u) for some 7 € [0, 1]. However, the equation u—¥(7, A, u) =0
has no solution v in 8, Ud,,. Consequently, it has a solution u in 9ps. By applying a
standard transformation, we obtain a solution for the equation (5.11), for the value
of € replaced by another (appropriate) value, with the period equal to 27.

(ii) Assume now that (H,) is a dominating orbit type. Then, we obtain the
existence of at least |G/H,|s: different 27-periodic solutions. O
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5.6 Conclusions and Applications

In this section we will show how the existence Theorem 5.5.3 in combination with the
computations related to the basic maps and the equivariant degree product formula
provided by Proposition 5.4.1, allow us to study symmetric periodic solutions to

concrete van der Pol equations. In particular, we will discuss the examples 5.2.1,
5.2.2, 5.2.3 and 5.2.4

Let us recall that for each of the discussed systems of van der Pol equations, we
have the following associated G-equivariant degree (G =T x S'):

G-Deg(ld — F(0,-,), Q) = > ngws(L?Y),

where (L#') are the generators of 4;(T" x §*), L C T, and F is given in (5.23). Al-
though the entire value of the degree G-Deg (Id — F (0, -, -), ) should be considered
as the equivariant invariant classifying the solutions of the corresponding equations,
in order to simplify our exposition, we will restrict our computations to the coef-
ficients nre:, which will be called first coefficients (the corresponding part of the
eqivariant degree will be denoted by G-Deg (Id — F(0,-,-),Q)1). As it follows from
Theorem 5.5.3(i), if npea 5 0, then system (5.11) has at least one periodic solution
u with symmetry G, D L¥'. However (see theorem 5.5.3(ii)), only dominating orbit
types occuring in eigenspaces, relevant to suitable eigenvalus of C, give a possibility
to estimate a precise number of periodic solutions with the corresponding symmetry.

In addition, we will assume here, that the value of the parameter o was al-
ways chosen in the most favorable way, i.e. the set ©(a) contains all the positive
eigenvalues of the matrix C.

5.6.1 Conclusions for the Dihedral Group Dy

Let us consider again the system describing the ring of identical van der Pol oscilla-
tors, which was discussed in Example 5.2.1. This system has the group of symmetries
I = Dy. Let us describe explicitly the Dy-action on V = R¥, its isotypical de-
composition and the spectrum of the linear operator C. We denote by & := e¥i the
generator of Zy. Notice that £ acts on a vector £ = (2,21, ...,Zn-1) by sending
the k-th coordinate of Z to the k+1 (mod N) coordinate. It is convenient to consider
this Dy-action on the complex space U := CV. Notice that we have the following
Zn-isotypical decomposition of U

U=(7o®5'1@"-@5'1v-1»
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| A >0 i degy, I degy, |
| j=0 { ~(Dn) 1 (Dn) |
0<j<N/2 (Dn) = 2(Dy) + (Zn) (Z32) + (Dr) + (D) — (Zn)
m is odd
0<j<N/2 (Dn) = (Dw) = (Dn)+ @n) | (ZR) + (D) — (Zon)
N is even and m = 2 (mod 4)
0<j<N/2 (Dn) = (Dn)~ (Dn) + (Zn) | (Z3)+ (D5y) — (Zon)
N is even and m = 0 (mod 4)
ji=jn+1 (Dn) = (Dy) (D%)
N is even

Table 5.1: Values of deg,, and deg,, , corresponding to A; > 0, where jy = (N +
1)/2], h = gcd(N, j) and m = N/h.

where U; = span ((1,&7,€%,...,6W-14)). Since x sends U; onto U_; (where —7 is
taken (mod N)), thus the Dy-isotopical components of U are
Up=0U, U;j:=U;8U-; 0<j<N/2,
and, in addition, if N is even there is also the component
Uy :=Uy.

N =
2

n|z

It is easy to check that the isotypical component U;, 0 £ j < N/2, is equivalent
With the irreducible representation Vf of Dy, and Uy (for N even) is equivalent to
¢ +1- Lhe subspace Uj is also an elcrenspa,ce of the matrix C corresponding to the

eigenvalue \; := c4-2dcos 2 2" . Weput £(C) = {)\ | Aj > 0} Then by Proposition
5.4.1 we have

G-Deg(1d — F(0,-,-),Qu =[] degy, - | D_ degy, (5.47)

Moreover, for an eigenvalue A; > 0 the values of deg,, and deg,,, are listed in Table
5.1, where h = ged(j, N).

Let us illustrate these results for the particular cases N = 3, 4 and 5.

In the case N = 3, the spectrum ¢ (C) of the matrix C'is {)\o =c+2d, M = c—d}
and the dominating orbit types (occuring in V¢) are (Z%), (Ds;) and (D). If a
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coefficient ny is standing by a dominating orbit type, then there is an orbit of
periodic solutions of the system (5.3) composed of exactly |G/L|s periodic solutions.
In particular, for the orbit type (Z) there are 2 distinct periodic solutions, for
(Di) there are 3 periodic solutions, and 1 periodic solution for (D3). If np, = 0,
then still one more periodic solution can be detected as long as ny # 0 for some
(L) < (Ds3). The number of periodic solutions for the equation (5.3) in the case
N = 3 is summarized in the following table:

Possible Cases for N = 3

¢ | G-Deg (1d — 7(0,-..0), | Minimal  of Solutions |
i} : 0 0
{c—d} (Z5) = (D) — (D1) + 3(Z4) 6
{c+2d} —(D3) 1
{e+2d.c—d} | —(Z3) + (D) — (D) +3(Dy) ~ 2(Z1) 6

In the case N = 4, the spectrum ¢(C) of the matrix C is {)\o =c+2d M =
c, Ao = c—?.d} and the dominating orbit types (occuring in V¢) are (Z¢), (D), (D2),
(5%) and (Dy). For the orbit type (Z}) there are 2 distinct periodic solutions, for
(D$) there is 1 periodic solutions, for (D¢) and (Dg) there are 2 periodic solutions,
and there is 1 periodic solution for (D;). We also have*?
degy, = —(Ds), degy, = (Ds) = (D1) = (D1) + (Z), degy, = (D:) - (D)
degy,, = (Da), degy,, = (Zi) + (D3) + (D5) — (Z3), degy,, = (D9).

The number of periodic solutions for the equation (5.3) in the case N =4 is sum-
marized in the following table:

2= Notice that for N = 4 we have D¢ = D¢ (cf. Table 5.1).
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Possible Cases for N =4

[ =(0) | G-Deg(1d — F(0,-,-), )1 | Minimal # of Solutions |

] 0 0

{c+2d} —(Dy) 1

{c—2d} (D) 1

{c+2d,c} —(Z%) - (D§) - (D%) — (Dg) + (Z3) + (D}) + (D1) 7

+2(D1) +2(Dy) - 3(Z) B

{c—2d,c} (Dg) + (D5) + (Ds) +(Z%) + (Z3) - (Df) —2(D1) 8
=2(D1) = (D1) — (D7) = 2(Z3) + 3(Z1)

{c+2d,c— 2d,c} ~(Dq) — (D§) = (D§) = (D§) — (Z4) + 3(D1) 8
+(D3) +2(DF) + 2(D1) + (Z3) — 4(Z1)

In the case N = 5, the spectrum ¢(C) of the matrix C is {)\o =c+2d,\ =

4
and (Dj). We have the following equivariant degrees of the basic maps related to

the eigenspaces of C

c+2d¥5=L Ny =c— 2d‘/i;'l} and the dominating orbit types are (Z%), (Z2), (Ds)

degy, = —(Ds), degy, = (Ds) —2(Dh1) + (Z1), degy, = (Ds) ~ 2(D1) + (Zy)
degy,, = (Ds), degy,, = (22) + (Di) + (D1) — (Zy),
degy,, = (Z2) + (Dj) + (D1) — (Zv).

For the orbit types (Z&) and (Z%) there are 2 distinct periodic solutions, for (D3)
there are 5 periodic solutions, and 1 periodic solution for (Ds). The number of
periodic solutions for the equation (5.3) in the case N = 5 is summarized in the
following table:

Possible Cases for N =3

Z(C) G-Deg (Id — F(0,-,-),2)1 Minimal #

of Solutions
0 0 0
{C+ 2d} —(D:s) 1
c— 244551 @) - (D9) - (D) + (24) :
{e+2482 e 203551 (Z8) + (Z8) + 2(D5) + 2(Dy) - 2(Z1) 10
{c+2dl/-_54;1,c+ 2d} —(Z&) + (D) — (Ds) +3(Dy) — 6(Z1) 8
{e+2d,c+ 20331 - 2035 | ~(2¥) - (25) - (Ds) - 2ADE) — 2AD1) + 2AZ2) 10
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5.6.2 Conclusions for the Tetrahedral Group T

Let us consider the system of van der Pol oscillators with the tetrahedral symmetry
group, which was studied in Example 2.2. Here, the tetrahedral group A, acts on
the space V' = R* by permuting the coordinates of vectors. The subspace V; of the
fixed-points of this action is spanned by the vector (1,1,1,1), and its orthogonal
complement V3 is the natural three-dimensional representation of A4, which was in
section 6 denoted by V3. These two subspaces are the eigenspaces of the matrix C:
the subspace Vj corresponds to the eigenvalue ¢+ 3d and V3 to the eigenvalue ¢ — d.
The dominating orbit types in V© are (A44), (Z%), (Z%), and (V7). For non-zero
first coefficient corresponding to the orbit type (As) there is at least one periodic
solution, for (Z%) or (Z%) — at least 4 periodic solutions, and for (V) there exist
at least 3 periodic solutions.

In order to compute the equivariant degree A4 x S*-Deg(Id — F(0,-,-),Q);, we
apply the computational formula (5.47). Depending on the set £(C), we need the
basic degrees: degy, € A(A4) (if ¢+ 3d > 0), degree degy,, € A(As) (f c—d > 0),
degy,, € A1(As x §%) (if ¢+ 3d > 0), degy,, € A1(As x §Y) (if c—d > 0). The
related to this formula basic degrees are presented below:

| Rep. | Basic Degrees degy, or degy, , | Eigenvalue of C |
Vo l —(4q) ‘ c+3d>0 )
Vs (Aq) = 2(Z3) — (Z2) + (Z,) c—d>0
Vou (A2) c+3d>0 ‘
Vai | (Z8)+ (Z8) + (V) + (Z3) + (Z1) c—d>0

By using the established multiplication tables for the A(A4)-module 4;(A4;x SY),
and applying the formula (5.47), we obtain the following first coefficients of the
equivariant degrees A4 x S*-Deg(Ild — F(0,-,),Q):

| £(C) | As x S'-Deg(Id — ¥(0,-,-), ), | # Solutions ]
| c+3d \ —(Aq4) | L ‘
|l c—d | —(Z8) — (Z8) + (Vi) = (Zs) — (Z2) + 2(Zs) | 12 |
[ c+3d,c—d l (Zg‘) + (Zg") — (Aq) = (V) + 3(Zs) + 2(Z2) — 3(Z,) I 12 l

5.6.3 Conclusions for the Octahedral Group O

Let us discuss the system of van der Pol equations described in Example 2.3. Here
we have the group S; is acting on the eight-dimensional space V := R® by permut-
ing the coordinates of the vectors in the same way as the symmetries of the cube
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in R® permutes the eight vertices of the cube. It can be easily verified, that the
representation V' can be decomposed into a direct sum of four subspaces:

V=WhelWaVlaVs
where
%-—spa.n{11111111)}
Vi _s,pan{ 1,-1,1,-1,1 —1,1,—1),)},
% _span{ 1,1,-1,-1,1,-1,-1,1), {1,-1,1,-1,-1,1,-1, 1),

(

(1,

(

(- 111—111—1—1)}

V—spa.n{(l,-—-l ~1,1,1,1,-1,-1), {1,1,1,1, -1, -1, ~1, 1),
(=

1,-1,1,1,1, 1,—1,1)}.

Notice that these subspaces are irreducible representations of Sy, where V' is equiv-
alent to the natural three-dimensional representation Vj of Sy, and V7 is equivalent
to the another three-dimensional irreducible representation V, of S;. The subspace
Vb is the fixed-point space of the action of S;. The subspaces Vo, Vi, V3! and Vi are
eigenspaces for the matrix C. Indeed, it is easy to check that:

| Subspace | Eigenvalue of C | Type of Representation | Dimension |

Vo c+3d Trivial 1
W1 c~-3d Representation Wy 1
v c+d Natural V3 3
1% c—d Representation Vg 3

In order to compute the equivariant degree Sy x S*-Deg(Id — ¥(0,-,-), ), we
will apply the computational formula (5.47). All the related to this formula degrees
of the basic maps are presented in the following table:

| Rep. | Basic Degree degy,, or degy, | | Eigenvalue of C |
Vo —(S4) c+3d>0
W1 (S4) —2(D4) c—3d>0
Vs (S2) = 2(Ds) — (D2) + 3(Dy) — (Z1) ctd>0
1Z (Sa) = (Z4) — (D1) = (Z3) + (Za) c-d>0
Vo1 (Sa) c+3d>0
Vi1 (53) c—3d>0
Vay | (D§)+(D5)+ (Ds) + (Z8) = (Z2) — (D1) + (Z9) c+d>0
Var | (D7) + (D5)+ (D) + (Z§) — (Z3) = (D1) + (Z9) c—d>0
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Let us list the dominating orbit types: (S;) (orbit contains one periodic solu-
tion), (Sy) (orbit contains one periodic solution), (D) (orbit contains 3 periodic
solutions), (D§) (orbit contains 3 periodic solutions),(D¢) (orbit contains 6 periodic
solutions), (Z§) (orbit contains 6 periodic solutions), ((Z%) (orbit contains 8 peri-
odic solutions),(Z;') (orbit contains 6 periodic solutions) and (Dj) (orbit contains 3
periodic solutions).

By using the above equivariant degrees of the basic maps, as well as the multi-
plications table for the A(S,)-module 4;(S; x §!) we obtain the following values of
Sy x §*-Deg(Id — ¥(0,-,-),Q);, for all the possible distributions of the eigenvalues
of the matrix C.

| =(C) | Ss x §1-Deg(Id — F(0,-,-), W | # Sol. |
| c+3d | —(Sa) |1 |
| c~3d | (Sg) ~2(D3) (4|
c+d,c+3d —4(D¢ — 4(D%) — 4(Z5) — 4(Z%) — (1) 18
—4(D3) +4(D1) +4(Z7)
c—d,c—3d -2(D§) — (D) + (D§) - (D) - 2(Vy) | 34
—(Z8) + (S7) +2(D7)

+(Z7) — (Ag) + (Zg) — 2(Z3) + 4(Zo)
+(D1) = 4(Z1) + 5(Z3)
c—d,c+d,c+3d —(D§) — (D3) + (D3) + (D3) 33
+2(Dg) — 2(Z4) — (D7)
+(Z7) — (81) + 3(D3) + 2(D2) + 2(Z5) + 2(Z4)
—=3(Z3) = 3(Z2) — 3(Dh)
+3(Z1) - 2(Z3)

c+dc—dye—3d | —2(Dd) - (D5) - (D) - 3(D5) +2(D5) | 36
+2(D§) — 4(V;) +2(Zh)
—=2(Z5) + (8y) + 3(D7) + 2(Zy) — (Ds)
+2(Z5) + (D2) + (Za)
+3(Z3) — 3(Z2) + (D1) — 3(Zy)

c—3d,c—d,c+d, | 2D + (D) + (D7) +2(Ds) + 3(D5) - 2(D5) | 37

-2(D§) +4(Vy") — 2(Z4)

c+3d +2(Z;) - (S;) - 3(D5) - 2(27)
—(54) + 3(Ds) — 2(D2) — 2(Z5)

—2(Zs) — 4(Zs) + 4(Z2) - 3(D1) + 4(Z1)
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5.6.4 Conclusions for the Icosahedral Group I

Finally we consider the system of van der Pol equations with icosahedral symmetry
group described in Example 5.2.4. Here we have the group As acting on the twenty-
dimensional space V := R? by permuting the coordinates of the vectors in the same
way as the symmetries in R® permutes the vertices of the dodecahedron. It can be
verified, that the matrix C, defined by (5.6) in Example 5.2.4 has the following
eigenvalues:

o(C) = {Ao —c+3d M =c—2ddo=c+ddg=c+ ng}
and there is the following decomposition of V' into the eigenspaces of C:
V=WwelWhelel,,

where Vp is a one dimensional subspace of V', with a trivial action of 45 (ie. Vp =
V4s), and
1/121)1@1;1, .‘/2:])2: Vé:v?zev&

where V), V» and Vs are irreducible representations of As.

In order to compute the equivariant degree As x S'-Deg(ld — ¥(0,-,-),Q);, we
will apply the computational formula:

G-Deg (Id —\II(O,-,-),.Q)1 = H deg;'.;" . Z m; degy, | . (5.48)
A ET(C) 2;€X(C)

where m; denotes the “multiplicity” of the eigenvalue J;, which is 2 in the case of
}\1 and >\3.

We need the basic degrees deg,,, € A(As) and deg,,, € Ai(As x S) (in the case
the eigenvalue corresponding to the irreducible representation V; is positive). All
the related to this formula degrees of the basic maps are presented in the following
table:
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| Rep. | Basic Degree degy, or degy,, | Eigenvalue of C |

Vo —(4s) c+3d>0
Vi (As) — 2(As) — 2(Ds3) + 3(Z2) + 3(Zs) — 2(Z.) c—2d>0
Vo (As) — 2(Ds) — 2(D3) + 3(Z2) — (Zy) c+d>0
Vs (As) — (Zs) — (Zs) — (Z2) + (Zy) c++5d >0
Vou (4s) c+3d>0
Vi1 (As) + (Ds) + (D3) + (Vi) + (Z4) + (Z2) c—2d>0
+(Z8) — (Zo) — (Zs) — (Z5)
Va1 | (Ds) + (Ds) + (AZ) + (A2) + (Z8) + (Z¢) — 2(Z2) + (Vi) c+d>0
Vi1 (D2) + (Vi) + (D3) + (Z2) + (Z§) — 2(Z5) c++/3d >0

Let us list the dominating orbit types: (A%) and (A2) (orbit contains 5 periodic
solutions), (As) (orbit contains 1 periodic solution), (V;~) (orbit contains 15 periodic
solutions), (DZ) (orbit contains 6 periodic solutions), (D3) (orbit contains 10 periodic
solutions), (Z%) and (Z#) (orbit contains 12 periodic solutions).

By using the above equivariant degrees of the basic maps, as well as the multi-
plications table for the A(As)-module 4;(As x S*) we obtain the following values of
As x S*-Deg(ld — F(0,-,-), Q)1, for the possible distributions of the eigenvalues of
the matrix C.
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| =(C) As x S1-Deg(ld — F(0,-,-), Q)1 # Sol. |
|c+3d —(4s) |1
c—2d 2(Aq) + 2(Vy7) + 2(D5) + 2(Z8) 45
+2(Z3) - 2(Z7) + 2(Z)
+2(D3) — 2(Zs) — 2(Z)
c+3d,c+5d —2(Dz) — 2(Vy) - 2(D3) - 2(Z%) 29
—2(Z5) +4(Z7) - (4s)
(AF) + (A2) + 3(Vy) — 2(D3) 45

c—-2d,c+d

-3(2%) - 3(z¥)
—6(Z8) — 4(Z5) + 2(Aq) — 3(D3) — (Ds) — 2(Zs)
—3(Zs) + 7(Zy)

c++V53d,c+3d,c+d

—(AF) - (A7) +2(D2)
=3(V) + 2(D35) + (Z8) + 3(Z¢)
+6(Z) — (4s) + 3(Ds) + 3(Ds) + 2(Z3) — 4(Z1)

c+d,c—2d,c+5d

—(Ds) + (A3) + (AP) — (D3)
+4(V]) — 3(D3) + 3(Z¥
+4(Z8) + 3(Z4) + 2(A4) — 3(D3) + 4
+4(Z3) + 4(Z2) — 8(Z1) + 2(Zs)
—(A2) — (A®) +2(D3) - 5(V[")

)
)+

(Z3)

c+3d,c—2d,c++5d,c+d

+4(D3) + 5(Z%) + 3(Z%)

+8(2Z%) + 4(Z3 ) — (As) + 3(Ds) — 2(A4)
+5(D3) + 2(Z3) + 2(Z2) - 8(Z,y)
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Chapter 6

Symmetric Hopf Bifurcation for
Functional Differential Equations

The equivariant degree theory provides the most effective and complete method
for studying the symmetric Hopf bifurcation problems. It allows to directly trans-
late the equivariant spectral properties of the characteristic operator (associated
with the system) into a topological invariant containing the information related to
the occurences of the Hopf bifurcation, the symmetric structure of the bifurcating
branches of non-constant periodic solutions, and their multiplicity.

In this chapter we will apply the equivariant degree method to a Hopf bifurcation
problem for a system of symmetric functional differential equations. As examples,
symmetric configurations of identical oscillators, with dihedral, tetrahedral, octahe-
dral, and icosahedral symmetries, are analyzed.

6.1 Symmetric Hopf Bifurcation for Delayed Func-
tional Differential Equations

Let us discuss a general setting for studying symmetric Hopf bifurcation problems
for delayed functional differential equations, with a finite group I' of symmetries.

6.1.1 Idea of Bifurcation

By a nonlinear eigenvalue problem means the problem of finding appropriate solu-
tions of a nonlinear equation of the form

F(u,)) = 0. (6.1)
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Figure 6.1:

F is a nonlinear operator, depending upon the parameter A, which operates on the
unknown function or vector u. The questions are:

(i) Whether or not the equation (6.1) has any solution u for a given values of A?
(i) If it does, how many solutions?

(i) How this numbers varies with A?

Of interest is the process of bifurcation whereby a given solution of (6.1) splits

into two or more solutions as A passes throught a critical value Ao, called a bifurcation
point.

To illustrate bifurcation, let us consider the linear eigenvalue problem
Lu = M. (6.2)

L is a linear operator acting on vector u in some normed linear space and X is a
real number. For any value of A a solution of (6.2) is u = 0. Suppose that there is
a sequence of eigenvalues A\; < X; < --- and corresponding normalized eigenvectors
Uy, Ug, - -+ such that

Then if ¢ is any real number, other solutions of (6.2) are given by u = cu; j =
1,2,--- with [Ju;]| = [¢[. A graph of these solutions is shown in Figure 6.1.
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Figure 6.2:

As the figure shows, the solution © = 0 splits into two branches at each of
eigenvalues );, therefore the points u = 0, A = }; are bifurcation points of (6.2).

We now consider the nonlinear eigenvalue problem (6.1) which has equation (6.2) as

its linearization. An illustrative plot of |ju|| versus A, called the responses diagram,
is shown in Figure 6.2.

6.1.2 Bifurcation Setting for Delayed Functional Differen-
tial Equation

Let U be an orthogonal representation of the group I', and let 7 > 0 be a given
constant. We denote by Cy, the Banach space of continuous functions from {—7, 0]
into U equipped with the usual supremum norm

HﬁD“ = Sup “:9(0)‘ pE CU,T-
—-7€0<0
In what follows, if z : [-7, A] — U is a continuous function with 4 > 0 and if

t € [0, A, then x; € Cy, is defined by
z(0) =x(t +6), 6¢€[-7.0l.

Also, for any x € U we denote by Z the constant mapping from [~7,0] into U with
the value z € U.
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Consider the following one parameter family of delayed functional differential
equations

z= f(aa xi): (6'3)
where z(t) € U, a € R, f:R x Cy. — U is a continuously differentiable and com-
pletely continuous mapping. Clearly, the I'-action on U induces a natural isometric
Banach representation of I' on the space Cy, with the action - : I' X Cy» — Cy-
given by:

(v0)(8) :=v(0(8)), ~ve€T, 8€[-70].
We make the following assumptions

(Al) The mapping f is [-equivariant, i.e.
fleyvp) =7fla). 9€Cyr a€R, vl

(A2) f(a,0)=0forall @ €R,ie. (a,0)isa stationary solution of (6.3) for every
a€eR.
Consider the I'-isotypical decomposition of U
U=UycelUi®---8 U, A (6.4)

where Uy = UT and U; is modeled on the irreducible I-representation V; and Vo
stands for the trivial irreducible ['-representation.

6.1.3 Characteristic Equation

An element (a,, T,) € Rx U is called a stationary solution of (6.3) if f(co. Zo) = 0. A
complex number A € C is said to be a characteristic value of the stationary solution
(e, o) if it is a root of the following characteristic equation

detc Da,z0) (M) =0, (6.5)

where
A(O‘O:%) (A) = /\Id - D:Cf(am xo)(e)‘-ld )

A stationary solution (o, Z,) is called nonsingular if A = 0 is not a characteristic
value of (o, Z,), and a nonsingular stationary point (e, Z,) is called a center if it
has a purely imaginary characteristic value. We will call (,, z,) an isolated center
if it is the only center in some neighborhood of (a,,z,) in R x U.

We now make the following assumption:
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(A3) There is a nonsingular stationary solution (c,,0) which is an isolated center
such that A = i3, 8, > 0, is a characteristic value of (a,, 0).

Let B :=(0,81) x (8o — 62, 8o + 62) C C. Under assumption (A3), the constants
8 >0, 62 > 0 and £ > 0 can be chosen such that the following condition is satisfied:

(A4) For every a # a, € [0, — &, @, + £], the characteristic value of (¢, 0) does
not belong to 0B.

Note that Aa(X) := Dap)(A) is analytic in A € C and continuous (see [25]) in
a € (o, — £, 0, + &]. It follows that detec Dq,2:(A) # 0 for A € 8B.

-

Since the mapping f is I'-equivariant, for every o € R and A € C the operator
Do (N) : U¢ — Uc is -equivariant and consequently for every isotypical component
Uf of U we have AQ(A)(UJ-C) C Uf for j=0,1,...,7. Thus, we can put

B () 1= Ba(Nos

Let A be a complex root of the characteristic equation detc A(q,0)(A) = 0. In
what follows, we will use the following notations
E(X) :=ker Na,,0 C US,
E;(A) :=E(\)N U;s,
m;(A) := dimeE;(A)/dimcV;.

The integer m;(A) will be called the V;-multiplicity of the characteristic root A.

6.1.4 Crossing Numbers
We define

tj,l(aov 50) = deg(detc AOzo--E;j ()7 B) - deg(detc A&0+E;J' ()’ B) (66)

for 0 < 7 < r. The number t;1(c. 3,) is called the first V;-isotypical crossing
number for the isolated center (a,,0) corresponding to the characteristic value i3,,
where V; is the I'-irreducible representation on which is modeled the isotypical com-
ponent U;. The crossing number t;; has a very simple interpretation. In the case
detc(Day;i(i0)) = 0 (i.e. 18, is a Uf-characteristic value), the number t7) :=
deg(detc Aag—e;; (), B) counts in the set B all the Us-characteristic values (with mul-
tiplicity) before o crosses the value a,, and the number ), := deg(detcLag+e;i (), B)
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Figure 6.3: The Vj-isotypical crossing number.

counts the Uf-characteristic values in B after a crosses a,. The difference, which
is exactly the number t;, represents the net number of the Uj-characteristic values
which ‘escaped’ (if t;,; is positive) or ‘entered’ (if t;; is negative) the set B when o
was crossing a,. This situation is illustrated on Figure 6.3.

Since [3,, where [ > 1 is an integer, may also be an j-th isotypical characteristic
value of {a,,0), we put
tii(ao. o) := tj1(ao, 13,)-

In order to establish the existence of small amplitude periodic solutions bifurcat-
ing from the stationary point (a,,0), i.e. the existence of Hopf bifurcations at the
stationary point (a,,0), and to associate with (a,,0) a local bifurcation invariant,
we apply the standard steps for the degree-theoretical approach.
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6.1.5 Normalization of the Period

Normalization of the period is obtained by making the following change of variable
u(t) = z(£t) for t € R. We obtain the following, equivalent to (6.3), equation

) = j’ flou, o). (6.7)
td P
where u, 2x € Cy,- is defined by

‘P

ut,g;gw) =u(t+%6), 6¢[-70.

Evidently, u(t) is an 27-periodic solution of (6 7) if and only if z(2) is a p-periodic

solution of (6.3). We can also introduce 3 := = into the equation (6.7) to get
. 1
u(t) = 3 fleywg), (6.8)

6.1.6 I x S!'-Equivariant Setting in Functional Spaces

We use the standard identification S* = R/27Z and we introduce the operators
L : HY(SL,U) — L3*(SYU), Lu(t) = ut), and K : H*(SH:;U) — L*S";U) by
Ku = & T u(s)ds, u € HY(SLU), t € R, where H'(S*;U) denotes the first
Sobolev space of ’>r-penod1c U-valued functions. Put R% := R x R.. It can be
easily shown that (L + K)™! : L3S} U) — H*(S%U) exists and the map F :
R2 x HY(S\;U) — H (S, U) deﬁned by

Fle, fyu) = (L+ K)™ [Ku +1 Ni(a, 5, u)] (6.9)
is completely continuous, where Ny : RZ x C(S*;U) — L*(S*; U) is defined by

Ni(e, B,u)(t) = flo, ue,p),
where e € S, (o, 8,u) € RE x H}(S4, U).

We put W := HY(S'; U). The space W is an isometric Hilbert representation of
the group G = I’ x S* with the action being given by

(7, 0)u(t) = y(u(t+6)), €°, e*eS, yel, ueW.

The nonlinear operator F is clearly G-equivariant.
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Notice that, (o, 8,u) € RZ x W is a 2r-periodic solution of (6.8) if and only if
u = F(a, 5,u). Consequently, the occurences of a Hopf bifurcation at (a,,0) for the
equation (6.3) is equivalent to a bifurcation of 2r-periodic solutions for (6.8) from
(Co, B0, 0) for some 5, > 0. On the other hand, the necessary condition for the oc-
curences of a bifurcation at (@, 5, 0) € RZ x W for (6.8) implies that, in such a case,
the operator Id — D, F(c, 3o,0) : W — W is not an isomorphism, or equivalently,
183, is a purely imaginary characteristic value of (@, 0), i.e. detc A4, (i8,) = 0.

6.1.7 Sufficient Conditions for Hopf Bifurcation

It is convenient to identify R% with a subset of C, i.e. an element (e, 3) € RZ will
be written as A = a +13, and we put A, = @, +13,. By assumption (A3), (a,,0) is
an isolated center, thus there exists n > 0 such that

a(A):=Id — D,F(\,0): W - W (6.10)
is an isomorphism for 0 < |[A—2X,| < 7. Consequently, by Implicit Function Theorem,

there exists r, min{1,7} > 7 > 0, such that for (), u) satisfying |A — A;| = 7 and
0 < |lull £ 7, we have u — F(),u) # 0. We define the subset Q@ C R2 x W by

Q= {(,\, u) €RZ x W1 A= o] < m, [lufl < r} (6.11)
and put
Go:=0N(REx{0}) and & :={Au)el:|ul=r}

We introduce an auziliary function 8 : @ — R, which is a G-invariant function
satisfying the conditions

8\ u) >0 for (A u) €0y,
(N u) <0 for (A u) € 0.

Such a function 8 can be easily constructed, (see Figure 6.4), for example by

60 u) = A= Aol(llull =) +lfull = 5 (M) €T

We define the map Fo:=Q — RS W, by

Fo\ ) = (O(A, w),u— FO, u)), (\u) €T, (6.12)
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Figure 6.4: Auxiliary Function for Hopf Bifurcation.

Since Fe(X,u) # 0 for (A, u) € 99, thus Fp is an Q-admissible G-equivariant
compact field. Therefore, the standard Leray-Schauder extension of the primary
G-equivariant degree can be applied to the admissible pair (Fg,2). We put

w() = G-Deg (Fo, Q) € A1(G). (6.13)

and we will call w(\,) the local I x S'-invariant for the I'-symmetric Hopf bifurcation
at the point (A,,0).

We have the following

Theorem 6.1.1. (SurriCIENT CONDITION FOR HOPF BIFURCATION) Suppose that (o, 0)
is an isolated center for (6.3) satisfying the above assumptions. If

w(/\o) = ZnH (H)

(H)

and ny, # 0 for some (H,) € $,(G), then there exrists a branch of non-constant
periodic solutions (A, u) of (6.7) bifurcating from (Xo,0) such that G, O H,.

6.1.8 Linearization of the Problem

We define

-~ -_—

60 u) = D= Aol(lul =) + el + 2, (Lw e,
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and the map

T\ ) = ('a'(A, w),u— F\, u)), (\u) €. (6.14)
It is clear that §p and ¥ are homotopic by an Q-admissible (linear) homotopy, thus

G-Deg (T, ?) = G-Deg (F5. Q). (6.15)
Notice that for [A — A,| < Z and {ju|| < r we have

_ -
O(Aw) = llull + 5 = 1A= Aol(r — [Ju])
nooqr_nr N _nr
YT YEe T Ty
Put
Qp = {(/\,u) R X W:|lul <r, Z- < A=A < n}.

By excision property of the G-equivariant degree, we obtain

G-Deg (35, Q) = G-Deg (T (u)- (6.16)
We define F:=0; = R@® W by

FOuu) i= @\ u),u— DuF(A0)0), (\u) e

(6.17)
By standard linearization argument, it is easy to show that

G-Deg (F5, ) = G-Deg (5, 1) = G-Deg (3. Q). (6.18)
6.1.9 Representation of Fonl x Sl-Isotypical Components

With respect to the restricted I' x S!-action on W, we have the usual isotypical
decomposition of the space W

W=Ueol e al.aUy,

gl

where Uj is the I'-isotypical component of U modeled on V;, and Uy, 7 =0,1,...,7,
[ =0,1,2,..., are I x S'-isotypical components modeled on V;, (see 3] for more
details).

For every 7 =0,1,...,7and [ = 0,1,2,... we define

a;,(N) :=1d — (L + K)™ [K + 1D Ny(en 8, 0)]

A=a+13,
Uj'l
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where [A = X,| < 7.

We observe that, for [ > 0,

(L+K)™! (e“'(:z + zy)) =LY (z+1y), z.yeUl, (6.19)
and since
3500 =14 = (L+ K)™ [5DuNp(@, 8,0)] lus,.
we obtain
a(Netu=1d — (L + K)™ [%eil‘Du (e, 0) (e‘w')u]
= e 25 Dao) (i8) (u).
Consequently,

a;1(A) = 35 Do) (@8).
Notice in addition that .
ajo(A) = —'E-Duf (@, 0)|y;-

6.1.10 Computation of G-Deg (%, Q)

By applying the standard finite dimensional reduction, we can assume without loss
of generality that W is finite dimensional. We represent the set {2 as a product
B x Q, C R2@® W, where B is the unit ball in W% 2 U.

The computation of G-Deg (Fs,2) = G-Deg (§, Q) can be reduced to computa-
tion of primary degrees of the basic maps, associated with the problem (6.3) (see
Chapter 3).

More precisely, we consider the operator § := —% 2f(0,0) : U — U, which
is clearly T-equivariant. Put W, := @,,,US and Q, = QNR? @ W, and define
EOZQo*R@Wo by

Fo(A o) = (BN o), o — DuF (A, 0)wo), (N, uo) € (o
It is easy to verify that the product map F x F, is homotopic to 3 , therefore we have
G-Deg (3, Q) = G-Deg (T x Fo, B X Q).

By applying the multiplicativity property of the equivariant degree (see section 4.2)
we obtain that

G-Deg (§ X o, B x Q,) =TI-Deg (3, B) - G-Deg (Fo, Q). (6.20)
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Computation of I'-Deg (3,B). For every negative eigenvalue u of the linear I'-
equivariant operator §, which is clearly a positive eigenvalue of the operator A :=
D. f(c,,0), we consider the I'-isotypical decomposition of the eigenspace E(u)

E(u) = Ey(n)© Ex(w) © - © E- (),

where the component E;(u) is modeled on the irreducible I-representation V.
Let o— = {u, o, ..., 4} denote the set of all negative eigenvalues of §. Then,

we define the element
L. { -\ ()

I=1 7=0
where deg,, stands for the I-equivariant degree of the operator —Id : V; — V; on the
unit ball in V;, and m;(w) is the V;-multiplicity of ;. Then, by the multiplicativity
property of the I'-equivariant degree (in the case without parameter) we obtain

ko "
P—Deg(§,B)=HH(degvj> o (6.21)

1=1 =0

Computation of G-Deg (F,, Q). We put
Qo1 1= {()\, uo) ERL X W, : Jluo]| < 7, g <|A=X < 77},
and define 5, : 2, — R® W, by
Foh ) = (12 = Dol (ol = ) + lluell + G e Vo), () € ey

where a(}) == a ()\o + gé,l’\—,\__i\ff@ and a()\) : W, — W, is given by (6.10). By the

excision and homotopy properties of the equivariant degree, we have

G'Deg (307 Qo) = G‘Deg (305 Qol) = G'Deg (§07 Qal)-

Let us consider the isotypical decomposition

W, = D Ui, (6.22)
i
Then, we have the following representation of the map a with respect to this repre-
sentation
a()) = P a;u(N), (6.23)
i
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where a;;(\) 1= ajy (/\o + %’f\ﬁﬂ) By applying the Splitting Lemmea, we obtain
that _ -
G-Deg (Fo, V1) = »_ G-Deg (Fja, ) (6.24)
il
where §;, : Q1 — R Uy, with
Q= {(\0) ERL x Ui el <7, T < A=l <},

Fiavo) = (A= ol = 1) + ol + T esuXe) . (o) € T

The degrees G-Deg (§j,l, Q;;) can be eesily computed.
We consider the complexification
Ue=UseUre---8Uf (6.25)

of the isotypical decomposition (6.4) and, for j = 0,1,2,...,7, theset {i3,,i81,...,5m}
of all the purely imaginary roots A of the equation

dete Doy (A) =0,

and assume that

where I, > 1 are integers, is the subset composed of all the integer multiples of ¢5,.
Then, for every j and [ = I, we have that

G-Deg (§j,z., Q1) = (o, Bo) degv,,l

where the numbers t; (o, 5o) = t;,1(Q0, 18,) are the V; -isotypical crossing numbers
at (e, Bo,0), and degvj‘[ denotes the primary G-degree of the so-called basic map
(see [3] for more details) on V;; given by

futv) =1 =[] +4t)-v, (t,v) € Oy, (6.26)

where O;; CR @V, is the set

Oi={tv):s<ll] <2 -1<t<1}

o] =

(Notice that the space V;; admits a complex structure induced by the action of S*.)
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Consequently, we obtain that

G-Deg (50, %) = ) _ tiu(ao, 3o) degy,, -
il

In this way, we have obtained that

kK r )
G-Deg (-3" Q) = H H (degvj > o : Z tj,l(am 130) degvj’l . (627)
5l

=1 j=0

6.2 Hopf Bifurcation in Symmetric Configurations
of Identical Oscillators

Let us begin with several examples. Consider n identical cells coupled symmetrically
by diffusion between certain selected couples of the cells. We will denote by z7(t), say
for example, the concentration of the chemical species in the j-th cell. We assume
that the coupling is taking place between adjacent cells connected by the edges of
a regular polygon or polyhedron, symbolizing geometrically this configuration of
the cells. More precisely, the coupling strength between cells is represented by the
mapping K from R to the space of bounded linear operators L (C ([-7, 0 R), R),

which is continuously differentiable. In our case, the linear operator K(e) will
represent the coupling strength K (a)(z) ™' — z7) between the adjacent cells z7-! and
z7. This term is supported by the ordinary law of diffusion, which simply means
that the chemical substance moves from a region of greater concentration to a region
of less concentration, at the rate proportional to the gradient of the concentration.
Since, in general, the coupling strength between the j — 1-th and j-th cell may be
nonlinear and depend on the concentration z7, we will assume that it is of the form

h(z(t)) (9(e. 2l) — gla. 2l 7)),

where h : R — R is continuously differentiable function, h(t) # 0 for all t € R, and
g:RxC([-7,0;R) — R, 7 > 0, a continuously differentiable map, g(e,0) = 0.
We will also suppose that the kinetic law obeyed by the concentration z7 in every
cell is described by a certain function f : R x C([~7,0];R) — R, 7 > 0, which is
continuously differentiable.

As it will be shown on several examples below, a dynamical system describing
such a configuration of cells, is of the type

d

() = Fla.z) + H(z(1) - C(Gle 22)), (6.28)
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where

z z} (e 3) ofe. )
I o R = NN B (O B IR o
z" Ty | fle,7}) 9(a. z7)
hx;) x; Yt :ciyi
H(z) = ( ) , T-y= x =Y ,
e el Lo

and C is a symmetric non-singular n X n-matrix.

Suppose, in addition, that the geometrical configuration of these cells has a
symmetry group I'. The group I' permutes the vertices of the related polygon or
polyhedron, which means it acts on R™ by permuting the coordinates of the vectors
z € R™. Clearly, the system (6.28) is symmetric with respect to this action of the
group I' on U := R™. In this way, we are dealing here with a ['-symmetric system
of FDEs.

We will assume that

(H1) f(e,0) =0for a € R, ie. (¢,0) is a stationary solution of (6.28).

In the subsequent examples, we present concrete configurations of such identical
cells coupled symmetrically by diffusion between adjacent cells, modeled on the reg-
ular n-gon, tetrahedron, octahedron, and dodecahedron. In each case, the symmetry
group I' of the system is composed of the orthogonal symmetries corresponding to
the given n-gon or polyhedron. To simplify the presentation, in the case of a sym-
metry group modeled on the above polyhedrons, we consider only those orthogonal
symmetries T for which detT = 1. This assumption is not essential, and in the
general case, similar results can be easily derived based on the already obtained
computations.

Dihedral Configurations of Identical Oscillators. We consider a ring of n
identical oscillators where the interaction takes place only between the neighboring
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oscillators. In this case the matrix C is of the type
cdO0...0d
2 R
400 .. dc
It is easy to check that the system (6.28) is symmetric with respect to the action
of dihedral group D,,.

Tetrahedral Configuration of Identical Oscillators We consider four iden-
tical inter-connected oscillators having exactly the same linear interaction between
all the other oscillators. In this case, the matrix C is of the type

c d d d
d ¢ d d

Czddcd (6.30)
d d d c

It is also clear that this system of differential equations (6.28) is symmetric with
respect to the tetrahedral group T = A4.

Octahedral Configuration of Identical Oscillators Suppose that the identical
cells (oscillators) are arranged in a configuration corresponding to the vertices of a
cube. We assume that the interaction takes place between those oscillators that are
connected by an edge of the cube. We assume that all the oscillators are identical.
These identical oscillators, with such inter-connections lead to the system of eight
equations with the matrix C of the type

cd0d0do 0]
dcd000doO
0dcd000d
d0dcdo000
C=lo00dcdod (6.3
d000dcdo
0d0004dcd
(00d0do0dc|

It is clear that the system of equations (6.28) is symmetric with respect to the
octahedral symmetry group O which is isomorphic to the symmetric group Ss.
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Icosahedral Configuration of Identical Oscillators Let us consider an arrange-
ment of identical oscillators based on the inter-connections given by the edges of a
dodecahedron. It is clear that the group of symmetries of the dodecahedron, which
is the icosahedral group I, is the symmetry group of the system (6.28). Let us point
out that the icosahedral group I is isomorphic to the alternating group As. In this
case we have the system (6.28) composed of 20 equations, where the matrix C is of

the type
¢ d 0O0dOO0OdOO0OO0O0O0O0O0O0O0O0O0 0]
d cd00O0O0O0O0dOOOOOO0OOOGOO
0dcd0O0OO0O0O0O0O0O0OdOOOOOO0OO
0 0dcdOO0O0O0O0O0OO0OO0OddOOO0O0OOO
d 00dcd0O00000O0O0O00O00O0O0O
0000dcdO0O00C0O0O0O0CdOOO0OO0O0OQO0
00000dcdOO0O0O0O0OOO0OdOOODO
d 00000dcdO0O0O0O0OO0O0O0O0O0CO0TO
0000000dcdOO0O0O0O0O0O0dOO
C=8§883883§;d000000000 (6.32)

cd00O00O0O0CdO
0 0d0000000d<cd0O0O0O0O0O0CO0
0000O0O0O0O0OO0OCOdTCcdO0O0O0DOO0TUd
000dO0O0O0O0O0O0O0O0dTCcdO0O0DO0O©O00
00000dO0O0O0O0O0O0O0OCdTCdOO0OO0O0DO0
00000000O0CO0O0O0O0O0ddTcd©OO0Od
000000dO0OO0OO0OO0O0O0dTCcTdOoOO
00 000O00GCO0OdOOGOO0OO0O0O0dTCcddo o
00000DO0O0O0O0O0OAdOOO0OO0OO0OGddTCd
 000000000O0O0CO0ddO0O0dOO0OdCc,

Of course, other configurations of identical oscillators could also be considered,
for example based on octahedron, icosahedron or other higher dimensional polyhe-
dra.

6.2.1 Characteristic Equation for a Symmetric Configura-
tion of Identical Oscillators

The linearization of the system (6.28) at (¢, 0) is simply the system

%x(t) = D,F(a,0)z, + A(0)C(D:G(, 0)z:). (6.33)

Since D.G(a, 0) is diagonal and C has constant coefficients, CD.G(a,0) = D.G(e,0)C.
We put K(a) := h{0)D.G(a,0), i.e. the linearized system can be written as
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£ #(t) = D-F (e, 0)z + (@) Clzy) (6.34)

therefore, a number A € C is a characteristic value of the stationary solution (e, 0) €
R e U if there exists a nonzero vector z € U° such that

Aa(N)z = Az — D.F(e,0)(e")z — K (a)C(e*z) = 0. (6.35)

Therefore, we have the following characteristic equation for the bifurcation problem
(6.28)

dete Ag (N) = 0. (6.36)

Since the matrix C is symmetric (and non-singular), it is completely diagonal-
izable by using a basis composed of its eigenvectors. Thus, suppose that o(C) =

{&1,&,...,&} is the set of all eigenvalues of C and let 21, 2, ..., 2, € U° denote
the corresponding eigenvectors. Then we have the following formula:

Proposition 6.2.1. A number A € C is a characteristic value of the stationary
solution (a,0) for the system (6.28) if and only if

detc Ao (V) =[] [A D.f(a.0)e* — &K(a)e’\'], (6.37)
=1
where &1, &, ..., & are the eigenvalues of the matriz C.

Of course, the characteristic operator A, (A) : U¢ — U* is [-equivariant, so its
eigenspaces are ['-invariant.

In order to satisfy the necessary condition for the occurences of Hopf bifurcation,
we need to make the following assumption

(H2) There ezists o, € R such that (., 0) € RS U is an isolated center of (6.28)
such that detc Da, (18,) = 0 for some 3, > 0.

(H3) The system (6.28) has no constant periodic solution.

6.2.2 Application of the Equivariant Degree Method

By following the steps, which were explained in section 6.1, we associate with the
point (@, B,) & local bifurcation invariant w(e,, 8., 0) := G-Deg (Fs, ), where G =
I x S, Q (defined by (6.11)) is an open neighborhood of (c, 50,0) in the space
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RZ x W, and Fp : RZ x W — R & W (defined by a similar formula to (6.9)),
W := H'(S*;U), is the mapping associated with the bifurcation problem (6.28).
This bifurcation invariant can be evaluated by applying the standard steps, which
were explained in subsection 6.1.10.

Put A:= D,F(a,0) + K()C : U — U, and consider the real spectrum o (A)
of the operator A. It is easy to check that a number u belongs to o(A) if and only
if for some eigenvalue £ of the matrix C we have

K= k(ao) - §f;(a0’ 0) = 0: le. u= k(ao) + éf;(am 0)’

where k(a,) = K(a,)(1) and f;(a,0) = D, f(a,,0)(1) are constants. Consequently,
we obtain ‘

To every eigenvalue p € o(A) (u = w, for some [ = 1,2,...,77,) corresponds an
eigenvector z; € U of the matrix C associated with & € o(C).

Let 0.(A) = { |72 P uk} denote all the positive eigenvalues of A. Then we put

dego(@o, 3o) := HH (degv )‘m.,(p.,)'

s=1 j=0

We consider the isotypical decomposition (6.4) and the set {83,181, ...,i3m} of all
the purely imaginary roots A of the equation

detc Ng,; (A) =0, 7=0,1.2,...,7
We assume that
{7::309 iklﬁm .. 7iksr30} - {1/30 1:/81: ... :iﬂm}:

where k; > 1 are integers, is the subset composed of all the integer multiples of 5,.
The element deg; (@0, 8,) € A1(G) is given by

degl (ao: ﬁo) = degl,ko (ao: ﬂo) + degl’kl (ao’ 50) + -4 degl’ks (am 50)’
where kg = 1 and

deg1 ki ao’ ,[7)0 Z t] 1\%o; klﬁo deov

7=0
where the numbers t;1(, ki8,) = t; (@0, o) are the V;-isotypical crossing num-
bers at (a,, 5o)-

Then, under the above assumptions we obtain
G_Deg (fet Q) = degO(am /-30) degl (a07 »50) (638)
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6.3 Hopf Bifurcation Results for Configurations
of Identical Oscillators

In this section and its subsections, we will present the computations of the degree
G-Deg (Fy,2) for concrete models of symmetric configurations of identical oscilla-
tors.

More precisely, we consider the following system of delayed functional differential

equations
%x(t) = —az(t) - aH(z(t) - C(Gla(t — 1)), (6.39)
where
I; h(x;) g(x;)
e x | H) = h(::z) . Glo) = g(ﬂ:C)
z" h(z™) 9(z")

and the product ‘-’ is defined on the vector by component-wise multiplication, i.e.

z y? Tty
72 2 2%y
z-y= . . = . 3

the functions A,g : R — R are continuously differentiable, A(t) 5 0 and g(0) = 0,
g'(0) > 0. and C is a non-singular symmetric n X n-matrix. Such a system can
be obtained from (6.28) by rescaling the time and making an appropriate change of
variable.

The linearization of the system (6.39) at (e, 0) is

%z( t) = —az(t) — ah(0)g'(0)C(G(z(t — 1)), (6.40)

and
DNa(N) = (A +a)ld + ah(0)d'(0)e™>C.

Therefore, by Proposition 6.2.1, a number A € C is a characteristic value of the
stationary solution if and only if

dete B (V) =[] [A + o+ ah(0)g(0)&e™ *] =0, (6.41)

=1
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where &1, &, ..., &, are the eigenvalues of the matrix C.

We put 7 := h(0)g’(0). In order to find the characteristic values A € C for the
stationary point (e, 0) of the system (6.39) we need t0 solve the following equation

A+ a+ante =0, (6.

W

2)

where &, is an eigenvalue of C. The equation (6.42) can be written as the system

U+ o+ ane tcosv =0
et (6.43)
v—anée “sinv =0,

where A = u + 1.

Since we are interested in purely imaginary eigenvalues A = ¢3,, by substituting
u = 0 and v = 3 into the system (6.43), we obtain

a+ané,cos3=0 5.0z
B — anéesin 8 =0, (6.44)
which can be easily transformed to
cosff=—-1
{ . _.“B (6.45)
a%' = Sin J.

If Iéi_n‘ < 1, then there exists 5, € (0, ) such that cos 3, = —ULEO, and, in addition,

B,
nSosin 8o "

it is possible to find a unique &, # 0 such that a, =
a pair of solutions {a,, 5s)-

Therefore, we obtain

In order to determine the value of the crossing number associated with this purely
imaginary characteristic value A, = i3,, we will compute (by implicit differentiation)
%u(a)lamo. By differentiating the system (6.43) with respect to o we obtain

u'(1 — ame™™ cosv) — v (anbee ™ sinv) = —nke™ cosv — 1 (6.46)
U (anée *sinv) + v'(1 — anée ™ cosv) = né.e *sinv, ’
which, by (6.43), leads to
! 1 — gy = Ut 1
W tuto) —vv== (6.47)
v+ v(l+uta)=2
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By substituting & = a,, u = 0 and v = 3, into the system (6.47), we get

u{l+a,) —vF,=0
6.48
{u’ﬁo+v’(1+ao)=i—:. ( )

The system (6.48) yields

d 32
—_ e, = 2 . A
datle= = T T 1T 5 (6.49)
. d : <
sigh —ula=c, = SigN Q. (6.50)

do

Remark 6.3.1. The equivariant degree I’ x S*-Deg (Fy, Q) provides a complete de-
scription of the symmetric Hopf bifurcation at (o, 0), i.e. every non zero coefficient
Ny, in

T x S'-Deg (56,Q) = > _num (H), (6.51)

(H)

indicates a “topological obstruction” resulting in the existence of a branch of non-
trivial periodic solutions to (6.39) of the orbit type at least (H,) (with respect to the
indicated partial order). Although, the entire value of the degree G-Deg (Id — F3, Q)
should be considered as the equivariant invariant classifying the symmetric Hopf
bifurcation, in order to simplify the exposition (by reducing the number of additional
cases) we will restrict our computations to the coefficients ny, = nre.s, which will be
called first coefficients, and we will denote the corresponding part of the eqivariant
degree (6.51) by G-Deg (Id — F);.

6.3.1 DPositive Eigenvalues

We will use the same notation as in section 6.2. We have A = —ald —ah(0)¢'(0)C =
—ald — anC, so

o(A) = {uj tp;=—a—ang, & € U(C)}-

Let us consider an eigenvalue § € ¢(C) such that ‘&—H < 1. Then, there exists a

purely imaginary characteristic root i, 5 > 0, of the characteristic equation (6.41)
for o = oy, where
1 Bi

cOSs = —, Q= ——T=.
b n&’ ' m&sin g
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We always assume in what follows that 2(0) > 0 and, consequently, n > 0. There-
fore, sign o; = sign &. Therefore, we have

if >0 then tjyl(Q[, ﬁ[) = —mj(iﬁl)
if ay<0 then tj1(cn5)=m;(i5)

In order to determine all the positive eigenvalues of the operator A, we divide
the spectrum ¢ (C) into two parts ¢,(C) and ¢(C)

0.(C) = {§ € o(C) : =1 < n&;}
oo(C) = {& € 0(C) : n§; < =1}

Since we assume here that A is an isomorphism, the condition 1+n&; # 0 is satisfied
by all the eigenvalues &; of C, thus 0(C) = 0.(C) U 64(C). Therefore, if we put

_Joa(C) ifa<0
=(0)= {ab(C) ifa>0

then the set 0. (A) of all positive eigenvalues of A can be identified as

0+(A) = {us: iy = —al1+76;, & € T(O)}.

Consequently, we can apply the equivariant degree method described in subsec-
tion 6.2.2 with (@, 3o) = (cu, 8i), and we obtain

' x S*-Deg (Fs, H H (degv )m'(% i ( tj1(a, Br) degy, ) . (6.52)

pi€o+(4) =0 J=

Now we are in the position to discuss the concrete examples of the system (6.39),
where the matrix C is symmetric with respect to a certain finite group of symmetries
T

6.3.2 Hopf Bifurcation in a System with Dihedral Symme-
tries

We consider here the system of equations (6.28) with the matric C of the type
(6.29). This system is symmetric W1th respect to the dihedral group I' = D, action
on U = R™. We denote by p:=e¢ T the generator of Z,. Notice that p acts on a
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vector z = (2%, 7, ...,z ) by sending the A-th coordinate of z to the k + 1 (mod
n) coordinate. It is convenient to consider this D,-action on the complex space
U¢ := C". We have the following Z,-isotypical decomposition of U*¢

—~—

U°=[70@[71@@ n—1,

where U; = span ((1, 0, p%, ..., p™ 1)), Since « sends U; onto U_; (where —7 is
taken (mod n)), thus the D,-isotypical components of U are

Uo=Uo, U;j:=0U;80-; 0<j<n/2
and, in addition, if n is even, there is also the component
Un :=U

SR
(S1E]

It is easy to check that the isotypical component U;, 0 < j < n/2, is equivalent to
the irreducible representation V5 of Dy, and Us (for n even) is equivalent to V§, .,
(see [3] for more details). The subspace U; is also an eigenspace of the matrix C

corresponding to the eigenvalue &; := ¢ + 2d cos 2—;'1 We put ¢(C) := {gj :0<j<
[n/2]}.

It seems to be a difficult task to completely evaluate the D, x S*-equivariant
degree D, x S -Deg (Fs,Q); for an arbitrary n. However, in the case of the Hopf
bifurcation with the symmetry group Dn, it is possible to determine the coefficients
ny, of the degree D, x S*-Deg (Fp, )1 = Z( ) ng(H) corresponding to the domi-
nating orbit types (H,). For this purpose, we need the following

Lemma 6.3.2. Under the above assumptions, if (H,) is a dominating orbit type
in U¢ (see [8]), then for all j such that 0 < j < n/2 the coefficient of (H,) in
degy, -(H,) is non-zero.

Proof:  Suppose that H, = K and consider degy, = (Da)+ (K)+.... Itis clear
that the product (K)(K?) may contain a term a(H,), with a # 0, only if K, C K.
This is exactly the case when a cancelation of the coefficients of (H,) can take place.
For example (Z,)(Z%) = 2(Z%). We put h = gcd(j, n) and m = n/h, according to
the list of basic degrees degy, (given in [3]) we have the following cases:

The case m is odd, (H,) = (Df) or (H,) = (Z%), and degy, = (Dr) — 2(Dy)+ other
terms. We have

degy, -(D5) = (D5) — 2(D;) + other terms = —~(Dj) + other terms,
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thus, in this case, the coefficients of (D) in the above product do not reduce to
zero. Of course, we also have

degy, -(Z¥) = (Z) + other terms.
There are no other possibilities for the cancelation.

The case m is even. The following orbit types (H,) should be considered in this case:
(D), (DZ,), (D%,) and (Z%). The same argument, as in the previous case, can be
used for the orbit type (Z%). Assume that H, = Dg, (for the subgroups DS, and
D%, the same argument can be applied). If there exists another j' (0 < 7' < n/2)
such that #' = gcd(j',n) and h' = 2h, then n/h’ must be odd (or otherwise (H.)
could not be dominating), and in this case we have that deg,,, = (Dr) — 2(Dap)+
other terms. Therefore, ’

degy, (D%, = (Dg,) — 2(D5,) + other terms = —(D,) + other terms,
and again we obtain that the cancelation is not possible.

The case j =n/2. Assume that (H,) = (D2). In this case, the cancelation is clearly
not possible. O

As an immediate consequence of Lemma 6.3.2 we have

Proposition 6.3.3. Let ' = D,. Under the above assumptions, if the crossing
number t;1 # 0, standing in (6.52), then every dominating orbit type appearing in
degy,, with non-zero coefficient, will also appear with non-zero coefficient in D, X
Sl'Deg(‘E@v ‘Q)

Remark 6.3.4. Let us point out that Proposition 6.3.3 is not true for an arbitrary
group I'. In fact, it is shown in the subsequent examples, cancelation of coefficients
standing by dominating orbit types is possible. Therefore, it is necessary to use the
complete degree I' x S*-Deg(Fs, )1 to detect branches of solutions and classify their
symmetries.

We are now in a position to present the following general result (cf. [35])

Theorem 6.3.5. Suppose that &; € o(C) s such that ‘éﬁ’ < 1. Then, there exists
Bo > 0 and o, satisfying

° T n&sinB,

6.53
n&; (6:53)
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such that the equation (6.39) has a Hopf bifurcation at (o, 0). More precisely, there
ezists a branch of non-constant %-pem’odic solutions (3 — B, as o — o) of (6.39)
bifurcating from (@, 0). In addition

(i) If 7 =0, then there exists at least one branch of non-constant periodic solu-
tions of the orbit type (D),

(#) If0<j <%, and n is odd then there erists at least: 2 branches of non-
constant periodic solutions of the orbit type (Z73), 2 branches of the orbit type

(D) (where h = gcd(n,j)), and one branch of the orbit type larger or equal
than (D,),

(i) If0<j< %, niseven and m =2 (mod 4) (where m = %), then there
erists at least: 2 branches of non-constant periodic solutions of the orbit type
( fi), 7 branches of the orbit type (Dg,), and & branches of the orbit type
(Dgh):

(tv) If0<j<3%, niseven and m =0 (mod 4), then there erists at least: 2
branches of the orbit type (Z%), 2 branches of the orbit type (D3,), and Z
branches of the orbit type (D5,),

(v) Ifj =% (forn even) then there ezists at least one branch of non-constant
periodic solutions of the orbit type (D2).

Let us discuss several examples of dihedral groups, for which we obtain a com-
plete classification of the symmetric Hopf bifurcation, in terms of the equivariant
degree.

6.3.3 Hopf Bifurcation with D; Symmetries

In this case we have 0(C) = {& = c+2d, & = c¢—d}. To each of the eigenvalues &,
[ =0, 1, corresponds the pair (o, £i) such that 73, is a purely imaginary character-
istic value for (oy, 0). Then we can apply the equivariant degree D3 x S*-Deg(Fs, 2)
to classify the Hopf bifurcation at the point (e, 0). We summarize in Table 6.1 the
topological invariants D3 X S*-Deg(Fs, 2); corresponding to elements in £(C), and
under the condition that o; < 0 (for oy > 0, one should simply reverse the signum
of the listed degree for —oy). The dominating orbit types in this case are (Ds), (Z%)
(we write here simply ¢ instead ¢;), and (Df).
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a | Z(C) Dy x S'-Deg (Js, Q), # Branches |
ag 0 (Ds) 1
o | {6} ~(Ds) 1
o | {&} (D3) — 2AD1) + (Zy) 1
ao | {&.6} —(D3) +2(D1) - (Zy) 1
o 0 (Z8) + (D) + (D5) - (Zy) 6
o | {&} | —(Z5) - (D1) = (D) + (Z) 6
o | {&} | (@) — (D) — (D7) +(Zy) 6
a | {€,&6} | —(Z8) + (D) +(Df) ~ (Zy) 6

Table 6.1: Equivariant classification of the Hopf bifurcation with D; symmetries.

6.3.4 Hopf Bifurcation with Ds Symmetries

We summarize in Table 6.2 the corresponding results for D,-symmetric Hopf bifur-
cation. Here we have ¢(C) = {50 =c+2d,§ =c,& = c—2d » and the dominating

orbit types in this case are: (Z}) (here we simply write ¢ instead of #;), (D%, (D5),
(D2), and (Dy).

ol =€) | Dy x S8'-Deg (s, )1 # Br. |
% {0} (Da) 1
ag {&0} —(Dy) 1
Qo {52} (Dd) - 1
ao | {&o.&} =(D)+ (D) + (D) = (&) 1
ao | {66} (Da) = (D1) = (Dy) + (21) 1
oo | {60,612} =(De) + (D1) + (D1) = (1) 1
o {0} (Z:) + (DF) + (D§) - (Z7) 6
a1 | {&} -(2%) - (D8) ~ (D§) + (Z7) 6
a | {&} _(Z8) + (D8) + (D) - (23) _ | 8
ar | {66} | —(ZY) —(D§) — (D) +(Z7) + (D]) +(D5) —2Z) + (D) + (D) | 6
ar| {&.&} | (ZY)+(D5)+(D§) — (Dr) — (Dh) = (Z3) + 2(Z1) = (D5) — (D5) 6
o | {60, 61,62} | —(ZL) ~ (DF) — (D) + (Z2) + (D) + (D5) = 2Zy) + (D)) +(D1) | 6
a2 {0} (D§ 1
a2 {6} —(Dg) 1
| {&} (DD _ 1
az| {& &} —(Df)+(D1)+(~Df)—(Zx) 1
ez | {&.&} (D) = (D) = (D§) + (21) 1
az | {60, &, 62} —(D3) + (D) +(D§) = (&) 1

Table 6.2: Equivariant classification of the Hopf bifurcation with Ds symmetries.
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6.3.5 Hopf Bifurcation with D; Symmetries

The topological invariants D5 x S*-Deg(Fs, Q): corresponding to elements in (C),
and ¢y < 0, are summarized in Table 6.3. Here we have ¢(C) = {50 =c+2d,6 =

¢+ 2d‘/g4_1,£2 =c- 2d[54+—1} and the dominating orbit types in this case are:
(Z%),(Z%) ,(Ds), and (D).

fa| Z(C) |  Dsx S5'-Deg(Fs. | # Branches |
o {0} (Ds) 1
ao | {%} —(Ds) 1
ag {&} (Ds) = 2(D1) + (Zy) 1
ap | {%0.&} —(Ds) +2(Dy) ~ (Z1) 1
Qp {51152} (Ds) 1
ao | {60,610, &2} —(Ds) 1
o | {0} (Z3) + (Df) +(D:) = (Z4) 8
a {&o} —(Z3) = (D§) = (D1) + (Zy) 8
a {&} (Z§) = (D5) = (Dy) + (Z) 8
o | {&.6} | —(Z3)+(Df)+(D1) - (Zy) 8
o | {&.&} (Zg) — (D5) — (Dy) + (Zn) 8
ay | {€0,61,&} | ~(Z8) = (D) - (D) + (Z1) 8
o2 {0} (Z&) + (D) + (D) - (Zv) 8
a2 {&} —(Z&) = (D5) = (Dy) + (Zy) 8
a2 {&} (Z2) = (D5) = (Dy) + (Zy) 8
ea | {%,&} | —(Z&)+(D5)+(D)—(Z) 8
a | {6,&} (Z§) + (DF) +(D1) = (Zy) 8
az | {0, 61,8} | —(Z&) - (D5) - (D)) + (Zv) 8

Table 6.3: Equivariant classification of the Hopf bifurcation with Ds symmetries.

6.3.6 Hopf Bifurcation in a System with Tetrahedral Sym-
metries

We consider here the system of equations (6.28) with the matrix C of the type (6.30).
This system is symmetric with respect to the tetrahedral group I' = A4 action on
U = R™, which acts on the space V = R* by permuting the coordinates of vectors.
We have 0(C) = {& = c+3d, & = c—d}. The subspace V; of the fixed-points of this
action is spanned by the vector (1,1,1,1), and its orthogonal complement V; is the
natural three-dimensional representation of A4, which was denoted by V3. These two
subspaces are the eigenspaces of the matrix C: the subspace V; corresponds to the
eigenvalue & = ¢+ 3d and V5 to the eigenvalue §&3 = c—d. In addition Vo € V3 is the
isotypical decomposition of V', where V; is modeled on the trivial A4-representation
Vo and V3 is modeled on the natural As-representation V3. The dominating orbit
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types are (A4) (orbit contains 1 periodic solution), (Z%) (orbit contains 2 periodic
solutions), (Z%) (orbit contains 4 periodic solutions), and (V;”) (orbit contains 3
periodic solutions). The equivariant degree A4 x S*-Deg(Fs,2)1, can be evaluated
using the computational formula (6.52).

We summarize in Table 6.4 the topological invariants A4 x S*-Deg(Fs., Q)1 cor-
responding to elements in £(C), and o; < 0. Table 6.4 provides us with an example
of a situation where a non-zero coefficient in deg,,,, corresponding to a dominating

orbit type, gets canceled after multiplication.

| Z(0) A x S%-Deg (Fo. Q)1 # Branches
a | {0} {(4e) 1
a | {&} ~Aq) 1
o | {&} (Aq) = 2(Z3) = (Z2) + (Z1) 1
o | {50, &3} —(Ae) +2(Zs) + (Z2) — (Z) 1
o3| {0} (Z3) + (Z8) + (V) + (Za) = (Z0) 12
as | {&} —(Z3) = (ZF) ~ (V&) — (Za) + (Zv) 12
a3 | {&} | —(Z3) = (ZF)+ (Vi) = (Z3) = 2(Z2) + (Zn) 12
a3 | {€0,&} | (Z8) +ZF) - (Vi) + (Za) + 2(Z2) — (Zh) 12

Table 6.4: Equivariant classification of the Hopf bifurcation with 44 symmetries.

6.3.7 Hopf Bifurcation in a System with Octahedral Sym-
metries

Here we have the group Ss is acting on the eight-dimensional space V := R® by
permuting the coordinates of the vectors in the same way as the symmetries of the
cube in R® permutes the eight vertices of the cube. It can be easily verified, that
the representation V can be decomposed into a direct sum of four subspaces:

V=WheWeV;aV
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where
%=span{<1,1,1,1,1,1,1,1)}
Vi=spen {(1,~1,1,-1,1,-1,1,-1),)}
)

, (1,-1,1,-1,-1,1,-1,1),

J

V2—spa.n{(1 ~1,-1,1,1,1,-1,-1), (1,1, 1,1, =1, 1, =1, -1},

1% —~span{(1 1,-1,-1,1,—1,-1,1)

(-1,1,1,-1,1 -1

(-1,-1,1,1,1,=1,-1,1)

—

Notice that these subspaces are irreducible representations of .Sy, where V' is equiv-
alent to the natural three-dimensional representation Vs of Sy, and V2 is equivalent
to the another three-dimensional irreducible representation V, of S5. The subspace
Vp is the fixed-point space of the action of S;. The subspaces Vj,, Vi, V3 and V2,
which are the isotypical component of V, are eigenspaces for the matrix C. We have

| Subspace | Eigenvalue of C | Type of Representation | Dimension |

Vo c+3d Trivial 1
W c—3d Representation V; 1
Vi c+d Natural Vs 3
V# c—d Representation V, 3

Let us list the dominating orbit types: (S;) (orbit contains one periodic solu-
tion), (S;) (orbit contains one periodic solution), (D) (orbit contains 3 periodic
solutions), (DS) (orbit contains 6 periodic solutions), (Z4) (orbit contains 8 periodic
solutions), (Dj) (orbit contains 3 periodic solutions), (Dj) (orbit contains 4 periodic
solutions), and (Z5).

We summarize in Table 6.5 the topological invariants S; X S*-Deg(Fs, ) cor-
responding to elements in £(C), and o < 0.
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12 ('z) + (*2) + (2) - ("2) - (Ga) = (*2) + (*2) — (32) = (Ao + (Fa) - (Ga) - Ga) -+ (Ga) | {F3143413193) | o
Jié ('z) - (z) - (2) + ('2) + Ga) + (22) - (¢2) + (§z) + (CA)e = (Ga) + Ga) + Ga) - Ga)- | {333} |
Ir4 (‘z) + (*z) - (*z) - (*z) + Ga) - (z) - Gz) + Ga) -+ Ga) + Ga) + Ca)- {r3e3¢03} | ‘o
2 ('2)e = ('a) + (*2)s + (*z2)e + (vz) + () + (*z) - (§2) — (‘) — (z) + Ga) - Ga) + Ca)- {v3413} o
I¥4 ('z) + ('a) - (2z) + (3z) - Gae - (§z) + Ga) + Ga) + Ga) + Ga)- {213} |
J14 (22) -+ Ga) = (§2) + Ga) — (Ma)e — (bz) - (Ga) + (Ga) - {13} ro
22 (ta) - (*z) + (12) - (2) - (Ga) - (i) - (Ga) {93} o
22 (z) 4 Ga) - (2z) - (5z) — (Fa) + Ca) + Ca) {0} o
74 (‘z) + ('a) — (z) + (2a) ~ Ca) + (¢z) — (Xz) - (22) 1 (47) — (§z) + (CA)e - (Ba) — Ga)— | {¥3'53°13°03} | to
¥ ('z) - (a) + (%2) = Ca) + Ca) - Gz) + (Y2) - (2z) - (“z) + (5z) + (PA)e - Ga) + Ga)— | {13313} [ %o
74 (‘a) - ("z) + (*z) - (*z) — (?aq) + (Ca) + (¥z) — Gz) + (Y2) 1 Gz) + Ga) + Ga)- {r3e303} | o
Ve ('z)e - (Ya) + (#2)e + (*z)s 1 (a) + (*z) - (§z) - (Mg — (Pz 4 (Bz) - Ga) - Ga) - {v313} £0
74 ('z) +(22) + (a)e - Ca) + (*a) 1+ Ga) - (52) -+ (z) - Ga) + Ga)— {103} | *o
74 (a) - (2z) + Ca) + (2a)e - Gz) - Gz) + Ga) - Ga)- {13} o
4 (‘a) + (ta) — (*z) + (5z) - (¢z) ~ Ga) - Ga)- {93} £0
¥e (a) - Ca) +(z) + (C2) - (2) + Ga) + Ga) {0} to
9 (') + (#2) + (*z) — (22) - Ga)e - (Ga)e + (¥s) - (¢a) - ((a)e {r3'¢3413103} | to
9 ('z) — (*2) = (¢(z) + (Lz) + Ga)e + (Gade — (2s) + (a) + (fa)e— {r3¢3'13} |
(4 ('z) + (%z) - ({a)e — (¥z) - (2z) + Ca) + Ga)e + (Fs)~ {36303} [
4 ('z) - Cz)e + (a) - (fz) — Ua) + (Yz2) + Ga)e - (1s) {213} |
g ('z) + Ca)e - Ga) + Gade + (Xs)- {£3403} o
z sa)e - (¥s) {13} o
I (rs)- {03} o
! (*s) {0} o
I ('z) + (‘adz — (#2) + (*z) - (*z) — (Ca) — Ca)e + (*a)z + (vs) {r3€3113103} | o0
I ('z) - (Ca)e + (2z) - (¥2) + ("z) + Ca) + Ca)e - (*a)e - (*s)- {*3'63113} |00
I (z) + (Ca)e - (*z) — (*z) — (*z) + (Caq) + (*q)z + (*S)— {r3¢¢3¢03} |00
1 (‘z) - ('a) + (*z2)z + (tz) — (*z) + (*a)z — (*S) {r3413} o0
I ('z) - (ta)e - (*a)e — CCa)e + (vS) - {£3°03} oo
i (*a)e - (*s) {13} 00
I (*s)- {03} 0
1 (*s) {0} o0
| sopuuagy 4 | Y15'08) o118 % 'S | (O o

ies.5

th S; symmetri
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6.3.8 Hopf Bifurcation in a System with Icosahedral Sym-
metries

Finally we consider the system (6.28) with icosahedral symmetry group. Here we
have the group As acting on the twenty-dimensional space V := R® by permuting
the coordinates of the vectors in the same way as the symmetries in R® permutes
the vertices of the dodecahedron. It can be verified, that the matrix C, defined by
(6.32) has the following eigenvalues:

o(C) = {50 =c+3d,6 =c—2, 6 =c+d, &= c+\/5d}
and there is the following decomposition of V' into the eigenspaces of C:
V=VWeWhel.al

where V4 is a one dimensional subspace of V', with a trivial action of A5 (i.e. Vp =
V4s), and
.[/].:Vlevla V22’V2: %2V3®V33

where V1, Vo and Vs are irreducible representations of A5 (see [3]).

Let us list the dominating orbit types: (4%) and (A%) (orbit contains 5 periodic
solutions), (As) (orbit contains 1 periodic solution), (V,;”) (orbit contains 15 periodic
solutions), (DZ) (orbit contains 6 periodic solutions), (D3) (orbit contains 10 periodic
solutions), (Zg), (Z%) (orbit contains 12 periodic solutions), (Ds), and (Z5).

We summarize in Table 6.6 and the topological invariants As x S*-Deg(Js, )1
corresponding to elements in £(C), and o; < 0.
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147 (‘2)z — ((z)z + (§z)2 + ?NVN fa)e - (e - (ade (323413103} | ¥o
127 ('z)z + (Cz)e — (52)2 — ($7)e — Ca)e — (XA)e 4 Gade- {35313} | to
vy ('2)z — (“z)e + (Gz)e + (Sz)e + (Sa)g + (e — (Fade {e3123:03} | v
vy (‘2)e -+ (z)e — (§z)e — (¢ NVN e — () + Gae— {z313} to
b (2z)v - (S2)e - ?Nx - (a)e - (e — Ga)e— {£3103} 0
4! A@:x?&m + () + Eadg+ (n)e + Gale {'3} o
4 (Zz)v -+ (G2)e - (§2)2 - (a)e — () - (Gade— {03} v
vy (“z)v - (§z)e + (S2)e + (ae + (MA)e + (3a)e {0} fo
1 (12)e = (#2) - (2o + (Ca) -+ Ca) + Gy + ((A) - (G2) 3 (52) + (dy) = (Gv) - {£3122113103} | @v
16 ('z)e + (#z) — (Pz)e - (a) - Ca) — Gy — () + G ﬁL NTA )+ ?S {e323413} | o
1§ ('z)e - (*2) -+ (Fz)z + (a) + (a) + (5z)v ._.fci?.v. ?Nv () - (4= {25303} | oo
16 (1z)e + (22) - (278 — (2a) + (Fq) - Ca) - (z)v — (52) = (;72) ~ () ? ) A I
19 (@z)z - (2A) — Ca) - (a) - ?Nv (iz) = (dy) = (4v)= {£3'03} o
16 (z)e — (Ca) - () + (2a) + (i52) + ?NV 1:3 + ?5 {*3} Ry
(] (z)e - ((a) — (4a) — ( STA NVL iZ) — (4 SL:SI {03} 2
16 (“z)z — (ca) -+ (3a) + (*A) + ?.NV + (3z) + (Av) + (hy) {0} 0
¢ | (2w - C@z)e+ (Ez)e v Ca)e + ("We — (2z)e+ (§2)2 + (52)2 + (] EN + (e (Sa)e— | (63423413103} | o
75 () + (22)2 - (02 — (Ca)e — (Ve + (2o — () — (d2)e — (Gz)e — (a)e — (CA)e | {39313} | ™o
26 | 02y - Gz + () + (Pz)e -+ (§z)e + ((52)e + (Gz)e + (Ca)e — (F SN +(faq)e - (w)e— | {3e303} | o
ze | (2w (2 - (f2)e - (Ca)e - ('V)e i§m| NVT?NVN -(9z)e 115,7 () {2313} o
28 Cz)e -+ (“z)e + ((a)e — (e — (Zz)e + (2)e — (42)e — ?NVN - (a)e — (“n)e— {¥3'03} o
z8 (2)z + (¥z)2 + a)e — ("W)e — (*2)e + (§2)e — ((Gz)e — (i2)e — (fa)e — ("A)e— {'3} R
78 2yt — (*z)e — (Ca)e -+ ("W)e 4 (*z)e — (§2)e + (52)e ._,?NVN +(a)e + (n)e {n} o
I ('z) + (*z)e — (a)e + :52 (v)- {t3¢2311303} | 0o
1 ('z) - Cz)e -+ (*a)e — ((a)e — () {e3'23413} | o0
1 ('z) + (*z)e — CCa)e + (Sa)e -+ (*v)— {e3'23'03} | o0
1 (z) - (Cz)e + ((a)e — (¢a)e — (*v) {2313} 0o
1 (sv)— (€303} o0
{ (%v) {13} 00
I ((v)- {03} o0
I (%v) {0} o0
| a6 4 | 1(15'08) Fo(l-, S X SV | oz  |m]

symmetries.
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Remark 6.3.6. Let us explain briefly how to read the information provided by the
equivariant degree w(a,,3,) := I' x S'-Deg(Fy,2);. Consider for example the case
A= A3, B(C) = {&}, and ap < 0, listed in Table 6.4 for I' = A,. In this case we
have

w(ao, o) = —(Z3) — (Z3) = (Vi) = (Zs) + (Z).

The dominating orbit types in w(a,, 3,) with non-zero coefficients are (Z%), (Z%),
and (V;7). Therefore, there is a Hopf bifurcation taking place with non-constant
branches of periodic solutions with exactly these orbit type. That means we can
expect the occurences of at least four branches of periodic solutions with the orbit
type (Z%), four branches with the orbit type (Z%), and three branches of the orbit
type (V;7). Since w(aofBo) has also non-zero coefficients corresponding to (Z3) and
(Z;), there must be also another branch of non-trivial solutions with the isotropy
group larger or equal than Z;. In this way we can predict the existence of at least 12
branches of non-trivial periodic solutions. We illustrate this situation on a diagram
below.
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