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A bstract

This thesis presents practical methods for the quantum mechanical treatment of large 

complex molecular systems in classical molecular dynamics simulations. The proposed 

approach is based on the inclusion of constraints in semiclassical initial value repre­

sentation (SC-IVR). The latter has proved itself as an effective means of including 

quantum effects, such as tunneling and interference, at least qualitatively, in classical 

simulations. Prior to the present work, however, no provision was made in SC-IVR, 

for a general and practical treatment of large geometrically constrained molecules 

which are ubiquitous in large-scale classical simulations. The work presented in this 

thesis therefore, represents our endeavour to extend the applicability of SC-IVR to a 

wider class of molecular systems, with a focus on large molecular systems.

The approach is first implemented and tested on atomic systems, on a series of van 

der Waals clusters in particular. Bound state energies are determined and compared 

to the corresponding exact quantum mechanical quantities. Quantitative accuracy is 

observed both for the zero-point energy and excited state energies. The method is 

then extended to treat molecular systems and successfully applied to the calculation 

of the intermolecular vibrational bound states of a dimer of rigid water molecules. 

An alternative approach is also developed by using a recently proposed version of 

SC-IVR, which makes use of a time-averaging procedure, with potentially improved 

applicability to large systems. The combination of the constraint SC-IVR with the 

time-averaged technique is able to capture quantum effects for a molecular system
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through the reproduction of the zero-point energy. Both methods bear promise for 

an accurate quantum mechanical treatment of dynamical systems of high complexity 

and dimensionality.
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Chapter 1 

Introduction

1.1 Context

In 1929, Paul Dirac declared that “The underlying physical laws necessary for the 

mathematical theory of a large part of physics and the whole of chemistry are thus 

completely known, and the difficulty is only that the exact application of these laws 

leads to equations much too complicated to be soluble. It therefore becomes desirable 

that approximate practical methods of applying quantum mechanics should be devel­

oped, which can lead to an explanation of the main features of complex atomic systems 

without too much computation” [1]. Nearly 80 years later, applications of quantum 

mechanics have come a long way due to technological advances in computer power 

and the development of efficient algorithms. However, save a few exceptions, exact 

(real-time) quantum dynamical calculations remain limited to small molecular sys­

tems. Thus, Dirac’s comment remains a hard reality even today! The development 

of “approximate practical methods” is precisely the goal of this thesis.

While there are many approximate techniques to obtain dynamical information 

from a quantum system, each technique has its own merits and drawbacks, semiclas- 

sical initial value representation (SC-IVR) allows us to probe quantum mechanical 

properties of systems within classical molecular dynamics (MD) simulations. Based 

on semiclassical theory, the method holds great promise for the treatment of sys­

tems of high complexity and dimensionality. MD simulations of such systems are 

often performed in Cartesian coordinates by imposing geometric constraints on mo-

1
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tions of “lower importance” (to the problem of interest). However, prior to this 

work, a general and practical technique for applications to constrained systems was 

quasi-non-existent in SC-IVR. We have developed an approach to study constrained 

molecular systems in Cartesian coordinates with SC-IVR and thereby contributed to 

the extension of the applicability of SC-IVR to more complex systems. Following the 

development, the method was first successfully tested on model constrained atomic 

clusters and subsequently applied to a molecular system.

The introduction is organised as follows. We start in Sec. 1.2 with a lexical 

definition with the purpose of establishing a common terminology. The following 

section, Sec. 1.3, offers a description of the Born-Oppenheimer approximation, a 

fundamental approximation in modern day quantum mechanical treatment of atoms 

and molecules. Subsequent sections survey some of the existing methods of studying 

dynamical systems at the classical (Sec.1.4), quantum (Sec.1.5) and hybrid (Sec.1.6) 

levels of theory. Finally, in Sec.1.7, we conclude the chapter with a concise discussion 

of semiclassical methods, with particular emphasis on SC-IVR.

This is an article-based thesis, i.e., Chapters 2, 3 and 4 have appeared as articles 

in the literature, and Chapter 5 has been submitted for publication. Thus, the reader 

will encounter an introduction and a description of the theoretical method at the 

beginning of each forthcoming chapter.

1.2 Definitions

Effective communication calls for a common terminology (or language) and common 

semantics (or meaning). In theoretical and computational chemistry specifically, def­

initions can be somewhat arbitrary and subjective. Thus, a description of the various 

predictive tools of research employed in the field is particularly useful in dispelling 

any possible ambiguities. In this section, basic terms such as theory, computation 

and modelling are defined and put into context using examples encountered in the 

rest of the thesis. Cambridge Dictionary defines theory as a formal statement of the 

rules on which a subject of study is based or of ideas which are suggested to explain

2
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a fact or event or, more generally, an opinion or explanation [2]. In scientific usage, 

these rules can often be formulated mathematically. For example, quantum theory 

describes the dynamics of a particle of mass m  by the Schrodinger equation

. d ' F  h2 <92\k x
=  +  ( U )

where i is the imaginary unit, *F is the time-dependent wave function, t is the time 

and h =  h/2n, h being Plank’s constant. V  represents the potential energy as a 

function of the coordinates of the particle, r. All theories aspire to generality. In 

reality, however, most theories have limitations. The actual range of validity of a 

theory needs to be determined through experimental testing. For instance, Newtonian 

mechanics is experimentally observed to break down for small microscopic systems. 

Despite its limited applicability, the high practicality resulting from the simplicity of 

classical mechanics has shaped it into a theory so robust that it has earned itself the 

title of a law [3]. And so, classical equations of motion are also referred to as Newton’s 

laws. The second law, for example, states that the rate of change of momentum of 

a body is proportional to the resultant force acting on the body and is in the same 

direction, and is mathematically given by

F =  =  ma , (1.2)
d t y ’

where F is the force and p and a are the momentum and the acceleration, respectively

[4]-

The main objective in the development of theories is to achieve general formu­

lations, irrespective of practical consequences. Thus, while Eq. (1.1) governs the 

dynamical evolution of a quantum system, it is intractable for the large majority 

of systems in nature. It becomes therefore, necessary to introduce approximations 

in such theories, via the creation of models, in order to achieve a practical imple­

mentation. Models offer a simplified and more practical version of the theory, often 

at the expense of generality. A substantial portion of efforts in the development of 

models is devoted to parametrization, the process by which constants in a model are 

determined. This can be achieved empirically by fitting to experimentally determined
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values or through a fit to data obtained from more accurate calculations. Models are 

ubiquitous in the theoretical/computational field. In a broad sense, classical molec­

ular dynamics, which employs classical mechanics to describe the motion of atoms 

and molecules, can be seen as a form of modeling. Another example encountered in 

Chapter 4 is the popular empirical TIP3P water model which describes the interaction 

between water monomers.

The transition from theory to practice is achieved through methods. Back of the 

envelope calculations can be performed to determine physical quantities of interest 

either through the direct application of a theory or a model. However, in many cases, 

solutions cannot be determined analytically. In such cases, one needs to resort to 

numerical methods which require a digital computer for efficiency of the computations. 

Methodological development proceeds in several stages. Once a practical means of 

applying the theory is devised (creation), implementation ensues, often through the 

development and use of efficient computer algorithms. The next step involves the 

rigourous testing of the developed method for a series of model systems to determine 

its applicability and limitations before it can be applied for its ultimate predictive goal 

{application). It is in the final stage that the connection is made with experiments via 

the reproducibility and prediction of experimental physical measurements. Although 

formally a part of methodological development, application is often regarded as an 

independent subject. Research work presented in this thesis focuses on creation, 

implementation and testing aspects; applications of the method are discussed in the 

closing chapter.

1.3 Born-Oppenheimer Approximation

In 1963, Richard Feynman noted that “everything that living things do can be under­

stood in terms of the jigglings and wigglings of atoms” [5]. This jiggling and wiggling 

of atoms can be described by the time-dependent Schrodinger equation

i h— [ = m ( R , r , t )  , (1.3)

4
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where R  and r are vectors representing the nuclear and electronic coordinates, re­

spectively, $(R , r, t) is the wave function and H  is the Hamiltonian. For a closed, 

isolated system, H  is time independent and is given by

=  __ v 2 -  V V 2 —
9 m  a ^  9 m  < J  * Anrt?n  It*.- —A 2mA 2me ^  % Aneo \n -  R A\

+—y —!—+ — y  ZaZb . (i.4)
in £ ° 77] l7b “  r *l 47r£o IR b  -  R a \

The indices A  and B  refer to nuclei and i and j  refer to electrons. The first term is the 

kinetic energy operator for each nucleus of mass m A- The second term is the kinetic 

contribution of the electrons to the energy with m e designating the electronic mass. 

The third term represents the attractive Coulombic interaction between electrons 

and nuclei bearing charges e and Z , respectively. The last two terms correspond to 

the repulsion resulting from the electron-electron interaction and the nuclear-nuclear 

interaction [6]. Note that the spin-orbit coupling and hyperfine interactions are ne­

glected in the above Hamiltonian.

Alternatively, the above equation can be re-written in a more compact fashion as

H  = f N{R) + f e(r) + VeN(r ,R ) + Vee(r) + VNN(R) , (1.5)

where T  is the kinetic energy operator and V  is the corresponding operator for the 

potential energy [7]. The term VeN(r, R) prevents us from separating H  into nuclear 

and electronic parts. Consequently, the wave function cannot be expressed as a 

product of the nuclear and electronic terms.

The Schrodinger equation with such a non-separable Hamiltonian can be solved 

analytically only for atoms containing a single electron. For the remaining vast major­

ity of multi-electron systems which form the core of chemistry, solutions make use of 

the Born-Oppenheimer (BO) approximation. Born and Oppenheimer [8] showed that 

the motion of the nuclei can be decoupled from electronic motion as a result of the 

very different timescales of the two motions. The justification lies in the observation 

that the electron is much lighter than the nucleus and hence the electron charge den­

sity is able to quickly rearrange in response to the slower nuclear motion. Conversely, 

the nucleus can be regarded as being fixed with respect to electronic motion.
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The mathematical significance of the BO approximation is that it makes the 

Hamiltonian separable through a parametric dependence on the nuclear coordinates 

so that the total wave function is given as T(r; R)y(R). In practice, the Schrodinger 

equation is solved for a fixed geometry and the corresponding electronic energy is 

calculated by diagonalizing the Hamiltonian. If this procedure is repeated at vary­

ing geometries, one eventually obtains the energy over a range of coordinates of the 

nuclei. This electronic potential energy is the desired potential energy surface (PES) 

for nuclear motion and it can be used to investigate the dynamics of the nuclei.

The BO ansatz assumes that no excitation of electrons occurs upon nuclear mo­

tion. In other words, the nuclei evolve on a single adiabatic PES (i.e., associated 

with a single electronic quantum state). The BO approximation can be safely applied 

to a large number of physical situations. However, processes such as charge transfer 

and photochemistry are inherently nonadiabatic and characterised by a coupling of 

the electronic and nuclear motions. In such cases, the BO approximation is said to 

break down. For the systems studied in this thesis, the BO separation is always a 

reasonable approximation.

1.4 Classical Molecular Dynamics

Molecular dynamics literally refers to the simultaneous motion of a number of atomic 

nuclei and electrons constituting molecular entities. In this section, we describe an 

approximate, yet powerful, method which tracks the classical motion of atoms (nuclei 

only) on a PES (by invoking the BO approximation). The PES, also called the force- 

field, is often an empirically determined function describing the interactions between 

atoms in a system through a sum of bonded forces corresponding to chemical bonds, 

bond angles and dihedral angles, and non-bonded interactions associated with van 

der Waals forces and electrostatic charge.

Classical molecular dynamics (MD) describes the time-evolution of a system ap­

proximately, according to classical mechanics. The initial state of a system is specified 

by its phase space variables: its momentum p* and its position q,. The dynamical

6
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problem consists of finding solutions to Newton’s equation of motion F =  m  a (see 

Eq. (1.2)) where the force F on each atom is obtained from the gradient of the PES. 

Solutions are determined for a given initial condition at regular time intervals known 

as the time step, each time generating new momenta and positions (p*,qt). Equa­

tions of motions are generally integrated numerically through the implementation of 

robust algorithms such as the Verlet integrator [9]. The end result of the dynamics is 

a trajectory, a series of momenta and positions as a function of time, guided by the 

forcefield given an initial point in the phase space.

MD can be combined with “on-the-fly” quantum mechanical calculations of the 

electronic potential energy through ab initio methods. Ab initio MD allows the study 

of bond breaking and bond formation, which typically cannot be treated via empirical 

classical potential functions. However, the benefit of generating accurate potential en­

ergies and their gradients comes at a price: the intensive computation involved in the 

calculation of the electronic wavefunction makes ab initio methods computationally 

expensive. A popular “on-the-fly” technique is Car-Parrinello [10] MD.

An important criterion in assessing the practicality of an MD simulation is its 

cost, where the term “cost” is equated with the total length of computer simulation 

time in the jargon. By definition, simulations carried out in the microcanonical 

ensemble (i.e., with fixed number of particles N , volume V  and total energy E) 

require that the total energy be conserved throughout the simulations [11]. However, 

the numerical nature of the integration procedure can give rise to instabilities, hence 

leading to a violation of the energy conservation condition. This can be prevented 

by employing small time steps during the trajectory calculation. The computational 

bottleneck of MD simulations, however, is the force calculation required at every 

time step. Consequently, decreasing the time step or increasing the total length of 

the simulation can significantly add to the computational cost. To keep simulations 

affordable, an optimum time step, corresponding to the largest possible time step 

that will satisfy the energy conservation criterion, needs to be found. Typical time 

steps employed in simulations of molecular systems are about 10 times shorter than 

the fastest characteristic timescale of the motion of interest.

7
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The loss of accuracy incurred by the introduction of an approximation, namely 

a classical description of the nuclear dynamics, is accompanied by a huge practical 

benefit: it significantly reduces the computational effort of the simulations, thereby 

opening applications of the technique to a wider pool of candidates. MD has been 

successfully applied to a number of problems, within chemistry and in other related 

fields. It has become the tool of choice for simulating high-dimensional complex 

systems, such as biological molecules [12] and nanostructures [13, 14]. The interdisc- 

plinary nature of applications of the technique in particular is well illustrated in the 

review of Entel et al. on “Molecular Dynamics Simulations in Biology, Chemistry 

and Physics” [15].

1.5 Quantum Dynamics

While the approximate classical treatment of nuclear motion afforded by MD can 

be adequate for some systems, other problems require the use of a higher level of 

theory for a reliable description of their dynamic nature. An inherent limitation of 

MD is its inability to describe classically forbidden processes such as tunneling, zero- 

point motion, coherence and interference. Such phenomena are especially relevant 

when light atoms (such as hydrogen) axe involved and have important implications 

in chemistry and biology.

Spectroscopy, one of the most widely used characterization tool used in chem­

istry, is another classical example. Spectroscopic techniques take advantage of the 

interaction between matter and radiation to probe the structure of compounds at the 

molecular or atomic scale. Spectroscopy is a broad subject, which can be subdivided 

into numerous categories depending on the nature of the method and the interactions 

involved. The essence of the techniques relies on the quantization of energy levels, a 

concept that can only be described using quantum mechanics. The accurate predic­

tion and interpretation of any spectrum in general therefore benefits from a quantum 

mechanical treatment of the dynamics.

Quantum dynamical studies of molecular systems endeavour to numerically solve

8
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the many-particle time-dependent Schrodinger equation given by Eq. (1.3). If the 

Hamiltonian is time-independent, the propagated wave function may be expanded 

into a set of eigenstates of H ,

=  ^ ai e~lE3t,h(Pj > (L6)
j

where

H<Pj =  Ejtpj and a,j — (<£>_,• ̂ (O)} . (1-7)

According to the expansion in Eq. (1.6), a knowledge of the wave function 'l'(t) 

for all times is equivalent to the knowledge of all eigenstates ipj and energies Ej. 

Consequently, the choice of following quantal motion by the time-dependent or time- 

independent approach is a matter of taste or practicality (i.e., numerical efficiency). 

The remainder of this section and the next section are devoted to a discussion of the 

various quantum mechanical methods available to study nuclear motion within the 

accuracy of the BO approximation.

Although formally equivalent, the time-independent approach appears simpler 

because the time variable has disappeared from the equation. In this case, the 

Schrodinger equation is reduced to an eigenvalue problem where energy levels and 

wave functions are determined from the eigenvalues and eigenvectors of the Hamil­

tonian, respectively. The time-dependent solution to the Schrodinger equation is an 

initial value problem that is sometimes more attractive than its time-independent 

counterpart. For example, processes involving continuum states, such as scattering, 

can be better studied using the time-dependent picture. Additionally, methods involv­

ing an approximation of the wave function are more accurate in the time-dependent 

version since the time-dependent wave packet tends to be more localized in phase 

space than the eigenstates. Finally, only the time-dependent approach provides a 

correct description if the Hamiltonian itself varies with time.

The standard technique of solving the Schrodinger equation in either picture in­

volves constructing a matrix representation of the Hamiltonian from a set of basis 

functions. In principle any complete set of basis functions can be chosen to expand

9
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the wave function. In practice, however, one would like to select an efficient basis set 

such that accurate results can be obtained with the use of the minimum number of ba­

sis functions. The discrete variable representation (DVR) is a popular method which 

offers a general prescription of generating basis functions in a localized (in coordinate 

space) but discrete representation [16, 17]. Numerical solutions to the Schrodinger 

equation involves the diagonalization of the Hamiltonian. The computational effort 

involved in the diagonalization routine grows exponentially with the number of atoms 

present in the system. Consequently, exact basis set calculations are limited in terms 

of the treatable system size. Currently such methods can be applied to study sys­

tems of up to six atoms [18]. An additional drawback is the lack of generality: most 

calculations are performed in internal coordinates which demands a re-definition of 

the coordinates for every new system.

An alternative method that has been successful in accurately describing poly­

atomic systems is the multi-configuration time dependent Hartree (MCTDH) algo­

rithm [19, 20]. The approximation involves expanding the Hamiltonian as a sum of 

products of one-particle operators. The wave function is then determined by varia- 

tionally solving the time-dependent Schrodinger equation. MCTDH requires that all 

possible configurations be built from the set of possible single-particle functions. As 

a result, like standard methods, the technique also suffers from exponential scaling. 

However, the product form of the Hamiltonian leads to a reduction in the numerical 

cost of the calculation compared to standard approaches [21], Therefore, MCTDH 

can be applied to larger systems. For instance, the method has been applied to the 

calculate the absorption spectrum of vibronically coupled systems such as pyrazine, 

by treating all 24 vibrational modes [22]. The main limitation of the method lies in 

the non-trivial generation of the initial MCTDH wave function, more specifically in 

the difficulty of tailoring a set of single-particle functions in Cartesian coordinates. 

It should be noted that MCTDH results are numerically exact when converged with 

respect to the number of configurations.

Broadly speaking, time-dependent quantum mechanical approaches can be di­

vided into real-time and imaginary-time approaches. The techniques mentioned so
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R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



far, propagate the wave function in real time. Despite the encouragingly successful 

applications of MCTDH to larger system sizes, systems with hundreds of degrees 

of freedom still lie outside the scope of real-time full quantum calculations due the 

exponential scaling of numerical effort with the number of degrees of freedom. An 

attractive approach for the exact quantum mechanical treatment of larger polyatomic 

systems is offered by Feynman’s path integral formalism [23, 24], Path integral meth­

ods show a more favourable scaling since the bottleneck now lies in the evaluation of 

an integral whose dimensions grow linearly with the number of degrees of freedom. 

Following is a brief review of the underlying theory of path integral methods. We 

start by looking at the matrix element of the time evolution propagator in the po­

sition representation, i.e., the transition amplitude between the initial position state 

|xj) and the final position state (x/|

K (x i ,x f ,t) = (xf \e~lHt/h\Xi) . (1.8)

The Hamiltonian is given in Cartesian coordinates as

F  -2

H = T  + V = Y , ~  + v (<Iu - ,Qf ) .  (1.9)
3 = 1  j

where pj and rrij are the momentum operator and mass associated with the j th degree 

of freedom respectively and qi,...,q f are the position operators. If the propagator is 

split into many small time slices A t  =  t / N ,  we can rewrite Eq. (1.8) as

N

dxtf_i J J f c f c le ^ ^ lx f c -x )  . (1.10)
fc=i

Since the operators for the potential and kinetic energies do not commute, the short 

time propagator is approximated as a Trotter product

e -iHAt/h =  e -iTAt/he -iVAt/h +  0 ( ( A t ) 2) . (1.11)

This leads to the following expression for the matrix element of the short time prop-
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agator:

j=i

F 1 rrij \  V 2/ m ,  
\27rihAtJ

F
' I f 'x exp A t V (x k)) • (1-12) 

j=i
The oscillatory nature of the time-evolution propagator makes the real-time study 

of dynamical systems impractical through path integral techniques. As a result, dy­

namical quantities are calculated in imaginary time instead. Replacing the real time 

variable, t, with t —> —irk, and substituting the short time propagator in Eq. (1.10) 

give rise to an expression for the evolution of a system of quantum particles which is 

analogous to the evolution of an ensemble of classical ring polymers. In this picture, 

nearest neighbours (beads) on a ring polymer are connected with springs while V (x) 

is the external potential. The multidimensional integral, representing an integral over 

all possible paths connecting x* to x j in an imaginary time n  x r , is traditionally 

evaluated by Monte Carlo techniques [25] (PIMC). Path integral theory has also been 

successfully combined with molecular dynamics techniques in path integral molecular 

dynamics (PIMD) [26, 27, 28, 29]. The results are exact in the limit of infinite time 

slices (number of beads). In practice, a finite number of time slices is sufficient to 

achieve converged results. Path integral techniques offer a powerful means of cal­

culating time-independent equilibrium (i.e., imaginary-time) properties for molecular 

systems with hundreds of atoms. There have been numerous applications ranging 

from electron transfer in myoglobin [30] to proton transfer through hydrogen bonds 

[31] to the study of quantum effects in liquid water [32, 33, 34, 35] and helium [36]. 

Recent condensed phase studies have focused on investigations of superfluidity in 

helium and hydrogen clusters with a variety of dopants including carbonyl sulfide 

[37, 38], nitrous oxide [39, 40] and cyanoacetylene [41].

In order to compare calculated quantities with experimental non-equilibrium. (i.e., 

dynamical) observables, a conversion from imaginary time to real time is necessary. In 

principle, real-time behaviour can be inferred via numerical analytic continuation. In 

reality, the transformation is far from being trivial. Although there have been reports
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of successful implementations [42] which provide useful short real time information 

for the calculation of rate constants [43, 44], path integral methods are essentially 

restricted to the study of equilibrium properties.

Despite considerable progress in the field of quantum dynamics via the develop­

ment of methods and algorithms as well as technological improvements, sadly, the 

real-time dynamics of large complex molecular systems remain largely intractable 

with currently available exact quantum mechanical methods.

1.6 Approximate Quantum Dynamics

Motivated by the need to overcome the limitations of exact real time quantum dynam­

ics, increasing efforts are geared towards the development of approximate methods 

for treating complex molecular systems. Some hybrid approaches, which combine 

classical and quantum mechanics to different levels, are rapidly gaining in popularity 

without superseding exact techniques nonetheless. For small quantum systems, real 

time exact techniques remain unparalleled in performance and provide useful bench­

marks for methodological developments. The current section briefly surveys a few of 

the available methods to provide a reader with a flavour for the variety of approaches 

that have been developed to study complex systems as well as to put the current work 

into context.

A common approach is to treat “light” particles such as electrons (in non-adiabatic 

systems) or hydrogen atoms quantum mechanically and to use classical mechanics to 

describe the motion associated with the “heavier” particles. The quantum particles 

are evolved in real-time via the time-dependent Schrodinger equation while the clas­

sical propagation is given by Newtonian mechanics. The difficulty in this technique 

lies in the coupling of the quantum and classical subsystems: How do we permit each 

of the subsystems to influence and be influenced by the other subsystem? [45]. Several 

forms of quantum-classical dynamics exist, depending on the models used to describe 

the coupling. Popular examples include mean-field [46] and trajectory surface hop­

ping [47] approaches. The latter scheme has been sucessfully applied by Billeter et al.
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to the simulation of proton transfer reactions in large biomolecules such as enzyme 

liver alcohol dehydrogenase in an aqueous environment [48] (~  75000 atoms). The 

authors report good agreement of their calculated kinetic isotope effect for the overall 

rate with experimental measurements. A main limitation of this type of dynamics is 

that it is applicable only to systems where quantum degrees of freedom can be sin­

gled out. When the distinction becomes ambiguous, one needs to resort to alternative 

methods.

Approaches stemming from path integral theory and its exploitation of the iso­

morphism of a quantum particle with a classical ring polymer, as mentioned in Sec. 

1.5, present attractive alternatives for describing quantum effects in high-dimensional 

systems. The two methods described here are centroid molecular dynamics (CMD) 

[49, 50, 51] and ring polymer molecular dyanamics (RPMD) [52]. Just as conventional 

MD traces the trajectory of classical particles, CMD and RPMD follow the classical 

evolution of beads on classical ring polymers. The two techniques differ essentially 

in the way dynamical quantities are calculated from the trajectory variables in real 

time. RPMD employs average bead positions and momenta to determine quantities 

at every time step. In CMD on the other hand, time-dependent quantities are calcu­

lated from the phase space variables of centroids which represent the centres of mass 

of the classical ring polymers. Typically these path-integral derived techniques can 

provide a good description of processes occurring on short timescales. Applications 

of CMD include the calculation of rate constants [53, 54] and transport properties 

such as diffusion coefficients of liquid water [55] and liquid hydrogen [56, 57]. Similar 

processes have been investigated using RPMD by Manolopoulos et al. [58, 59, 60]. 

In principle, there is a high potential for applications to complex systems since the 

techniques present a favourable scaling with system size. Yet, to date, systems of 

appreciably high complexity and dimensionality remain unexplored by such methods.

The last but certainly not the least of methods to be discussed is based on semiclas- 

sical theory. Since the work presented in this thesis aims at extending the applicability 

of a semiclassical approach, it is only natural that its discussion be more thorough 

than the techniques mentioned so far. A description of the underlying theory as well
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as a discussion of the method in general are presented in the Sec. 1.7.

1.7 Semiclassical Dynamics

Semiclassical approaches are characterised by their ability to obtain quantum dy­

namical information from classical trajectories. This feature offers the promise of 

combining the best of two worlds: the power to capture quantum effects while re­

taining the intuitive nature of classical mechanics as well as a favourable scaling with 

dimensionality.

Historically, semiclassical theory became popular with the formulation of the 

Wentzel-Kramers-Brillouin (WKB) approximation in the 1920’s. The standard WKB 

approach was mainly developed for treating one dimensional problems and has en­

joyed great success in systems with separable Hamiltonians. It provides a solution to 

the Schrodinger equation following a semiclassical expansion of an exponential wave 

function. Appendix A takes the reader through the derivation of the WKB wave 

function.

The most popular semiclassical technique, in terms of applications, is undoubt­

edly the Semiclassical initial value representation (SC-IVR). The propagator used in 

SC-IVR is derived from an older expression for the propagator which was proposed 

by van Vleck in 1928 [61]. A derivation of van Vleck’s (coordinate) propagator is 

presented in Appendix B. In the current section, the SC-IVR propagator is derived 

from van Vleck’s propagator. A description of the SC-IVR propagator itself, however, 

is omitted since it can be found in the theory sections of the subsequent chapters.

1.7.1 D erivation  o f  th e  p ropagator

The transition amplitude or matrix element of the time-evolution operator (propaga­

tor) between an initial wave packet T, and a final wave packet T j  can be written as

K f i ( t )  =  J  dx-i J  ^ / ( x / )  (x. i \e~l6t /H\x.f) 'J'i(xf) , (1-13)
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where x* and Xf represent the initial and final coordinates respectively. Using the 

van Vleck [61] approximation for the coordinate propagator leads to

a x ,  y 1/2

dp i J
x  , (1.14)

where Sc(x i,X f , t) represents the classical action along the trajectory, M c is the Maslov 

index counting the number of negative eigenvalues of the second derivative matrix of 

the action Sc, and the momentum p* is given by

p j =  A V | ^ A .  (1.15)

The direct application of Eq. (1.14) is prohibitively impractical for two reasons. First, 

the determination of Sc(xi,X f, t) is associated with the notorious root-search problem. 

Because only the end points x* and x / are known, all classical trajectories satisfying 

the condition Xy(xj, p i; t) = Xf need to be located by varying the initial momentum. 

The second inconvenience comes from the observation that the propagator is singular 

at caustics or turning points where

^ (y p -’f ) = 0 , ( i . i 6 )
dp*

thus rendering its evaluation problematic.

Applications of the semiclassical propagator in the early 1970’s were traditionally 

performed by introducing further semiclassical approximations for the wave functions 

and evaluating them using the stationary phase approximation (SPA). The birth of the 

Initial Value Representation (IVR) [62] has revolutionized applications of semiclassical 

theory. The strategy of the IVR is to evaluate the integrals over x, and Xf numerically

rather than by using SPA. To circumvent the root-search problem, SC-IVR employs

a transformation of the integration variable from Xf to p i 5  i.e.,

d x f = d x f (p i,p i,t)  
dp i

dpi , (1.17)
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resulting in the following expression for the IVR transition amplitude

K f M  = E / * / d p i  4C (x*) I
1 dxt(xi,pi)

(27nh)F dp i

1 /2

X e iS c ( x i ,p „ i ) e  iM c 2 ^ ( X i ) , (1.18)

Since x^(xj, p l; t) is given by the trajectory evolving from an initial coordinate x, and 

an initial momentum pj, the integral can be evaluated by a Monte Carlo sampling 

without the need for root-searching. In addition, the singularities that could arise in 

the original expression are removed since the Jacobian (<3xt/<9p;) is now present in 

the numerator rather than in the denominator as in Eq. (1.14). Eq. (1.18) can be 

expressed in Dirac notation as

= E /■**< j d Pi

x e*S:(xi.Pi.t)e-iAfci(x . |^ )  , (1.19)

An explicit expression for the IVR propagator can be obtained in terms of the Carte­

sian coordinates by deleting the wave packets from the above equation

1 /2
- i H t / h  __ £ /* / dpi

1 dxt(xi,Pi)
(27nh)F dp i

x e ftsc(x*,Pi,t)e iMc 2 |Xt^ x .| ; ( 1 .20 )

Similarly, the propagator can be written in Cartesian momentum representation as

1 /2
0—i H t / h  __ dpi

1 9pt(xi,pi)
(27xih)F d xz

x e ^ c(Xi’Pi’t)e_;!Mĉ |p t)(p,| , ( 1 -2 1 )

where the action is defined in momentum space as

5c(x i,x /,i)  =  [  d t'[-x(t')p{t') -  H (p(t'),x(t'))} .
Jo

( 1 .22 )

In 1984, Herman and Kluk [63] derived an expression for the IVR propagator in 

terms of coherent-states |<7Pi,qi). These hybrid states, intermediate between position
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and momentum eigenstates, are given in the position representation as

" y \ F / 4/  7 \  /
( X I ^ P i , q i )  =  ( “ J  e X P -  qi)T7(x -  qi) + -  q;) (1.23)

In this picture, every classical point in phase space is represented by a Gaussian 

wave packet of width 7  through its expectation values of the position and momentum 

operators, corresponding to and p; respectively in the above equation. The wave 

packets are commonly referred to as frozen Gaussian wave packets [64, 65] in the 

literature because of their fixed widths. Chapter 2 offers a description of the procedure 

leading to the generation of the width matrix. In the limit 7  —> 0 0 , the coherent-states 

become position eigenstates and the propagator reduces to Eq. (1.20). Similarly, in 

the opposite limit of 7  —> 0 , the coherent-states become momentum eigenstates with 

the description of the propagator afforded by Eq. (1.21). The Herman-Kluk (HK) 

propagator is expressed as

- i H t / h (2 trh) F J  J  dpidqiRPiqiteiSpiC,it̂ h\gptqt)(gpi(li \ . (1.24)

As mentioned above, detailed explanations of the propagator can be found in forth­

coming chapters. We will just point out here the appearance of a new term R PiClit 

known as the HK prefactor in the propagator.

The acronym SC-IVR in this thesis refers specifically to Herman and Kluk’s ver­

sion of the Semiclassical Initial Value Representation. Likewise, unless otherwise 

specified, the SC-IVR propagator is synonymous to HK propagator given by Eq. 

(1.24).

1.7 .2  F eatures o f  S C -IV R

Herman and Kluk’s contribution has made SC-IVR by far the most popular semi­

classical scheme by offering a practical way of adding quantum effects to classical 

dynamics. The success can also be attributed to the accuracy as well as the simplic­

ity and ease of implementation of the method.

Past studies have shown that SC-IVR is able to capture a variety of quantum 

effects such as interference, zero-point motion and tunneling, sometimes with very
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Figure 1.1: Schematic representation of SC-IVR calculation

good accuracy [66, 67, 68]. A concise description of applications of the technique is 

provided in Sec. 1.7.3. To illustrate the simplicity of SC-IVR calculations, we briefly 

describe the procedure depicted in Fig. 1.1. The first step involves sampling initial 

conditions from which trajectories are generated. The integrand is evaluated during 

the classical dynamics and finally employed to calculate quantities of interest, which 

are discussed below. The time-averaged SC-IVR employed in Chapter 5 is essentially 

a single-step procedure. This is as simple as a quantum dynamical calculation can 

get! In addition, implementations of SC-IVR have wisely taken advantage of estab­

lished tools such as Monte Carlo for the sampling of initial conditions and MD for 

the classical dynamics. The latter point is particularly important. Since quantum 

dynamical quantities are calculated exclusively from classically obtained data, SC- 

IVR can be integrated into MD software packages without much effort. Too often, 

quantum systems are studied classically due to the limitations of available quantum 

mechanical methods. Such implementations of SC-IVR would allow for the possibil­

ity of including quantum effects in conventional classical MD simulations. Part of 

our goal is precisely to implement SC-IVR in the context of the molecular modelling 

toolkit [69], a software toolkit currently designed for classical simulations.

Besides the advantages listed above, SC-IVR is blessed with technical benefits
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over other quantum mechanical methods. The fact that the dynamics are performed 

classically suggests an affordable computational cost compared to exact approaches. 

Brewer’s study on the scaling of SC-IVR revealed a linear scaling with the number of 

degrees of freedom [70]. Moreover, the nature of the method, namely the independent 

generation of classical trajectories from a pool of initial conditions makes it amenable 

to parallelization of the computational effort during the dynamics and evaluation of 

the integrand.

The difficulty in SC-IVR lies in the rapidly oscillating nature of the integrand, 

which slows down the convergence of the calculations. “The interference between the 

trajectories with different initial conditions is the source of computational difficulty, 

but is also the source of quantum effects, so one must deal with i t”, rightly comments 

W. H. Miller, the father of SC-IVR [71]. Several variants of IVR have been devel­

oped to this end, although none have been as successful as the HK formulation. An 

example is the linearized IVR [72, 73] which makes a rather drastic approximation 

in the evaluation of the propagator by assuming that the contribution to the integral 

comes exclusively from trajectories that are closely related in phase space, thereby 

dampening the integrand. The approach has been tested on model systems where 

it was shown to correctly reproduce rate constants and the population relaxation in 

an electron-transfer reaction. However, the effect of the linearized approximation is 

a purely classical behaviour of the dynamics at long times. Therefore, the method is 

not suited to the study of more realistic systems where quantum treatment is often 

required over longer periods of time [71]. A more rigourous and practical way of deal­

ing with oscillatory signals is offered by Forward-Backward IVR (FBIVR) [74, 75, 76]. 

In this technique the double phase space integral is reduced to a single integral. Two 

propagators, e~lHt/'n and e+%Ht̂ h are utilized resulting in the time evolution of initial 

conditions from time 0  to t (forward propagation) and from time t to 0  (backward 

propagation). As opposed to the linearized IVR, FBIVR has been successfully applied 

to molecular systems. These applications are listed in the review of applications of 

SC-IVR at the end of this section. For details concerning the formalism of FBIVR, 

we refer the reader to the article by Sun and Miller [76] and a recent review [77], No
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perfect solution has been identified yet. Attempts to reduce the computational cost is 

still a current area of research as illustrated by the recent formulation of a van Vleck 

SC-IVR [78] or of a new and improved linearized version [79]. The treatment of the 

oscillatory integrand in our calculations is discussed alongside the specific methods 

used in the respective chapters.

1 .7 .3  A p p lica tion s o f  S C -IV R

The massive current literature related to SC-IVR attests to its growing popularity. 

Several reviews have appeared on the general subject in recent years [71, 80, 81, 

82, 77]. In broad terms, developmental efforts can be divided into methodological 

improvements (such as the aforementioned efforts to cut down the computational 

cost) and their applications. In this section, we provide a mini-review of the large 

volume and variety of applications of SC-IVR, which ultimately dictates the general 

and practical nature of any implemented theoretical tool.

The application of a newly developed method generally occurs in stages. Often, 

initial attem pts involve some form of testing on model problems. Successful testing 

then allows applications to more realistic systems. While each stage of the process is 

equally important, attention is focused here on applications to atomic and molecular 

systems because of their greater relevance to our goal of treating complex dynamical 

molecular systems quantum mechanically.

To fully understand and appreciate the quantum dynamical calculations, it is 

useful to have a feel for the quantities that are calculated. In this regard, we provide 

a short description of real-time correlation functions [83].

The dynamical behaviour of molecular systems in general can be studied through 

time correlation functions. Classical correlation functions relate the value of a prop­

erty B  at time 0 with a property A  at time t , i.e.,

C(t) =  (B(0)A(t)) = ~ J d p J d q e ^ H^ A ( t ) B ( 0 )  , (1.25)

where Z ci is the classical partition function and (d =  l / k BT. kB and T  being the 

Boltzmann constant and the temperature, respectively. Quantum mechanically, the
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correlation function is defined as a trace over the operators corresponding to the 

observables of interest normalized by the partition function Z\

C(t) =  ^ T r  \e~pAB eiAt/hAe~iflt/h\ . (1.26)
Zj l j

The quantities or operators A  and B  are determined by the property that is being 

investigated. If A  =  B  or (A =  B  in the quantum mechanical version), the correlation 

function is called an autocorrelation function. For example, the eigenvalue spectrum, 

commonly known as the power spectrum, I(u )  can be obtained via a Fourier transfor­

mation of the survival amplitude (sometimes also called the autocorrelation function)

1 f ° °
I(w) =  —  /  d te ^ C (t)  = |(* |n ) | 2 <i(fiu, -  En) . (1.27)

^-oo n

ui corresponds to the frequency (or eigenvalue) and C(t) is given in SC-IVR formula­

tion by

C(t) =

=  (2 n h y 3N J  J  dpi dqi/ 2 PiqiteiSPi‘»‘‘/R(^ i |flfP(q()(flfPiqi|$ i) , (1.28)

where 3N  is the total number of degrees of freedom for a system consisting of N  

atoms. Such an expression has been used to accurately determine the tunneling 

splitting of the HC1 dimer from its eigenvalues [84], Photodetachment spectra (i.e., 

photoelectron spectra of negatively charged ions) have been calculated for I~Ar„, 

n = 2  — 6  by Brewer et al. [85]. Calculations were performed for systems possessing 

up to 15 degrees of freedom with |'Pi) as the ground vibrational state of the negative 

ion and with the Hamiltonian H  describing the dissociation to a neutral molecule. The 

authors observed very good agreement with the experimentally determined spectrum. 

Other spectroscopic applications include the photodissociation of carbon dioxide CO 2

[8 6 ], ozone [87] O 3  and iodine cyanide ICN [8 8 ] and the photoexcitation of pyrazine

[89]. Except for C 0 2, all systems involved a coupling of electronic states and therefore 

necessitated a non-adiabatic treatment of the dynamics. In all cases, the quantum 

mechanical result was closely reproduced. Ovchinnikov and Apkarian [90] successfully
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simulated the absorption spectrum of CI2  in solid Ar via mixed-order semiclassical 

dynamics of a system with a total number of 321 degrees of freedom.

Just as autocorrelation functions enable the calculation of the eigenvalues, they 

also provide a means of analyzing the eigenfunctions associated with each eigenvalue 

after minor manipulations:

|$n) «  — /  eiEnt'/h\^{t'))dt' . (1.29)

Such an approach offers the possibility of probing the molecular structure and has 

been applied to a ruthenium dihydrogen complex, [Ru(H... H)(C 5 Me5 )(dppm)]+, [91]. 

Conventionally, molecular structures are determined quantum mechanically via elec­

tronic structure theory. In the case of the above complex, however, the results from

neutron diffraction experiments did not match the predictions from electronic struc­

ture methods but have been successfully explained in terms of the delocalisation of 

the wave function within SC-IVR.

Another type of correlation function that has been extensively studied is the flux 

flux correlation function. The long time limit of this correlation function affords the 

rate constant for a chemical reaction. In this case,

A  =  F = i [ H , h ( s m

B = h(s(q)) , (1.30)

where F  stands for the flux operator and the Heaviside function, h(s(q)) has a value 

of 1  on the product and 0  on the reactant sides of the dividing surface defined by 

s(q). Alternatively, the reaction survival probability can be calculated as

P(t) = ( ^ l e ^ M q ) ! ^ )  . (1.31)

Investigation of the excited state double-proton transfer in 7-azoindole dimers via 

FBIVR revealed that proton transfer occurs 100 fs after photoexcitation [92]. A sim­

ilar study was performed for oxazole derivatives (51 degrees of freedom) [93]. In both 

studies, the authors report that the results are in good agreement with full quantum 

mechanical results. As well, comparison of SC-IVR treatment of reaction dynamics
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with experimental observations has offered valuable insight into the hydroxylation 

mechanism of alkanes [94].

In conclusion, the impressive number of applications of SC-IVR and the successful 

extension to systems of increasing complexity in particular makes it an undoubtedly 

promising approach for the treatment of quantum effects in large complex molecular 

systems.

1.7 .4  T h e void  in  S C -IV R

Generality is a major requirement for methods such as SC-IVR which aspire to offer 

a practical means of adding quantum effects to classical simulations of systems of 

molecular complexity. In other words, to truly function in conjunction with classical 

dynamics, SC-IVR needs to be amenable to the treatment of existing classical sim­

ulations. However, as SC-IVR is trying to establish itself as a quantum dynamical 

technique for large complex molecules, one cannot help but note that there lies a 

significant obstacle in its way: the treatment of geometrically constrained molecular 

systems has been neglected.

The natural question that pops up in the mind of the reader at this point is: 

Why is the treatment of constrained molecules so critical? The majority of MD 

simulations of large molecules inevitably involve constraining some parts of the sys­

tems. For instance, the simulation of solvated proteins generally employs rigid solvent 

molecules. The rationale for constraining high frequency motions or freezing out de­

grees of freedom is the same as in the BO approximation: motions occurring on 

different timescales can be decoupled without seriously compromising the accuracy 

of the calculations. In MD specifically, there is another more compelling reason for 

constraining high frequency vibrations, as beautifully illustrated by W. H. Miller’s 

words: “consider the water molecule, which is ubiquitous in bio simulations: the zero- 

point energy in its two OH stretching vibrations and its bending vibration is more 

than 20 times k s T  (at 300 K). I f  this energy were allowed to behave classically in a 

simulation with hundreds (or thousands) of water molecules, it is clear that nonsense 

would result; the energy could leak out of these modes classically (which it cannot do
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quantum mechanically) and boil the systemP [82],

By freezing out certain motions from a system, one is left with a system of re­

duced dimensionality. Since the computational cost of carrying out a classical or 

semiclassical simulation is proportional to the dimensionality, the beneficial conse­

quence accompanying the inclusion of constraints is a gain in computer time. By 

extension, it becomes conceivable to investigate quantum mechanical phenomena in 

systems of high dimensions which traditionally lie outside the capabilities of semi­

classical methods. This lowering of computational cost in semiclassical calculations 

has two origins. First is a reduction in the computational effort involved in the gen­

eration of classical trajectories, through the use of larger timesteps (see Sec. 1.4 for 

details). The second spin-off is related to the traditional difficulty of handling the 

oscillatory integrand in semiclassical calculations (mentioned earlier): constraining 

high frequency modes naturally smoothes out the integrand and leads to a faster 

convergence of the calculations. Finally, imposing constraints on selected degrees of 

freedom is desirable in some situations such as kinetic studies where one wishes to 

focus on a specific reactive mode of interest.

Traditionally, quantum calculations on constrained systems are performed in in­

ternal coordinates. This natural choice of coordinate system is however the least 

general option since a re-definition is required for every new system. Cartesian coor­

dinates, on the other hand, being general, conveniently obviates the need for such a 

new definition. For this reason, they are also the coordinate system employed in the 

majority of MD simulation packages. It is therefore desirable to perform SC-IVR cal­

culations of constrained molecules in Cartesian coordinates, particularly if integration 

within MD framework is to be maintained as a viable goal.

1.7 .5  O riginal con trib u tion s to  know ledge and overv iew

To reiterate, our goal is to treat geometrically constrained systems within SC-IVR in 

Cartesian coordinates. The inclusion of constraints in SC-IVR is a non-trivial prob­

lem, especially for systems of high dimensionality. Previous efforts have treated model 

and simple one dimensional systems [95]. In this thesis, we present the development
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of a general and practical approach targeting constrained multidimensional systems 

[96, 97, 98, 99],

Our novel contributions, specifically, are twofold: scientific and technical (or com­

putational). The scientific accomplishment is the extension of the capabilities of 

SC-IVR to allow for the treatment of geometrically constrained atomic and molecu­

lar clusters in Cartesian coordinates. Our method was initially developed and tested 

on model atomic clusters and shown to accurately reproduce the zero-point energy 

(see Chapter 2) as well as the excited state energies (see Chapter 3). Following the 

success of the tests, we extended the method to treat molecular clusters. The encour­

aging results of the study are presented in Chapter 4. We also apply our approach 

to another SC-IVR technique (the time-averaged SC-IVR) which has been proposed 

as a potential way of studying specifically large quantum dynamical systems. The 

performance of our method in this context is discussed in Chapter 5. Concluding 

remarks and future work are presented in Chapter 6 .

In addition, the implementation of the developed methodology is carried out in 

the context of the molecular modelling toolking (MMTK) [69], a software library 

package for MD simulations. Currently, no quantum dynamical calculations can 

be performed directly with the software. The planned distribution of our computer 

codes (a description of the codes is provided in the Appendix C) as open software will 

offer the possibility of investigating non-equilibrium (dynamical) quantum mechanical 

properties to users of MMTK.
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Chapter 2 

Ground state

A rtic le  1 . Geometric constraints in semiclassical initial value representation calcu­

lations in Cartesian coordinates: Accurate reduction in zero-point energy 

Reused with permission from Bilkiss B. Issack and Pierre-Nicholas Roy, Journal of 

Chemical Physics 123, 084103 (2005). Copyright 2005, American Institute of Physics.

2.1 Introduction

Considerable progress has been made in semiclassical (SC) theory and its applicability 

to quantum dynamics since the development of van Vleck’s [1] standard SC approx­

imation. The approximation involves evaluating the time evolution of the quantum 

propagator from observables obtained from classical trajectories. Early applications 

of van Vleck’s propagator proved to be problematic because of the “root-search” pro­

cedure that was required: all trajectories with different initial momenta that satisfied 

the initial and time-evolved coordinates had to be located. The problem was circum­

vented with the birth of the initial value representation (IVR) of the SC propagator 

over three decades ago [2 , 3, 4], Since then, there has been numerous applications of 

SC-IVR [5, 6 , 7, 8 ], The Herman-Kluk [5] (HK) or coherent-state version has been 

the most popular in terms of applications to quantum dynamics. The HK version of 

the SC-IVR will be referred to as HK-SC-IVR throughout this paper.

SC-IVR theory offers a means of adding quantum effects to classical trajectories. 

Semiclassical dynamics have been shown to provide a description, although approx-
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imate, of quantum effects such as tunneling, interference, and zero-point energy, in 

chemical dynamics [9, 10, 11]. Since exact quantum calculations are not feasible for 

complex systems with many degrees of freedom, SC methods provide an attractive 

alternative to include quantum effects in such systems. For instance, SC approaches 

present the advantage of avoiding the exponential scaling of computational cost with 

the number of degrees of freedom that is seen in quantum mechanical calculations.

Many SC-IVR calculations are carried out in the internal coordinates of the molec­

ular systems being investigated. While this choice can be practical for systems with 

few atoms, it requires the definition of a different coordinate system for every new 

molecular system. Cartesian coordinates, on the other hand, conveniently obviates the 

need for a redefinition of the coordinate system. It is our aim to develop a general ap­

proach to perform SC dynamics in Cartesian coordinates with geometric constraints. 

It is often desirable to apply holonomic constraints to large complex systems for sev­

eral reasons. Firstly, the computational cost is reduced by freezing high-frequency 

motions, as longer time steps can be employed during molecular-dynamics (MD) 

simulations. In addition, specifically to SC calculations, the presence of constraints 

makes the SC propagator less oscillatory and consequently, the calculations become 

less computationally demanding. Secondly, the application of constraints strips off 

irrelevant degrees of freedom, thus making it possible to focus on some specific modes 

of interest. The latter is especially useful in the study of reaction dynamics.

A first implementation of the HK-SC-IVR with constraints in Cartesian coordi­

nates has recently been reported [12]. Energy states of a model constrained water 

bender were calculated using an approximate form of the so-called HK prefactor. 

The approximation is the one proposed in Ref. [13] and is also called the Johnson’s 

“multichannel Wentzel Kramers Brillouin (WKB)” approximation. Details of the ap­

proximation are provided in the Sec. 2.2. As a common practice, the phase-space 

integral over the initial coordinates and momenta of the SC expression was evaluated 

through Monte Carlo sampling to reduce computational effort. It was observed that a 

large proportion of the sampled initial conditions did not obey the bond constraints, 

and one had to resort to an approximate method to force back the constraints on the
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initial conditions. It is our belief that, to extend the applicability of the approach, 

a systematic method needs to be developed to sample constrained initial conditions. 

We remedy these problems in the current work which endeavors at presenting a gen­

eral approach to perform Monte Carlo sampling of constrained initial conditions that 

falls out from the representation of the wave function.

The remainder of the paper is organized as follows: Sec. 2 . 2  reviews the HK-SC- 

IVR theory and provides details of our approach to represent the wave function. The 

implications, on the dynamics, of imposing constraints to a system are outlined in 

the last part of the section. Section 2.3 provides a description of the rare-gas trimers, 

the system we choose to test our method. Sampling results and details of trajectory 

calculations are also included. In Sec. 2.3.3, the SC results for the various trimers 

are presented. Finally, Sec. 2.4 provides concluding remarks.

2.2 Theoretical approach

The eigenvalues of the quantum Hamiltonian H  can be determined from the power 

spectrum, the result of a Fourier transform of the quantum-mechanical autocorrela­

tion function,
1  r00

I{U) =  2 n j  dt ^  C{t) ’ (2-1}
where

C(t) = ( ^ | e - ^ | ^ )  , (2 .2 )

and 4q stands for the initial wave function. The HK-SC-IVR propagator in the 

coherent-state representation for a 3Ar-dimcnsional system is given by

e - i H t / h  =  ( 2 7 T h ) - 3 N  j / d P l d q , f W

x eiS^ h\gPt(lt)(gPi(li\ , (2.3)

where q, and p, axe the 3-ZV-dimensional vectors corresponding to the position and 

momentum, respectively, at time t = 0 . Similarly, c\t and p t denote the corresponding 

variables at time t. <7 p,q. and gP(q, represent the coherent-state, minimum uncertainty
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wave packets before and after their time evolution, respectively. SPi<iit is the classical 

action along each trajectory, i.e.,

SPi<ut = f  dt' [Pt' • Qt' -  H \ ■ 
Jo

(2.4)

Formally, the Herman-Kluk prefactor R Pi(lit is given by

RVi<Ht ~~
dqt dpt . JMt . i dpt1 1/2

+   -------------  F (2.5)
dqt dp, ~r dpz '■/h dqz

The partial derivatives of the time-evolved coordinates and momenta with respect to 

their initial values are elements of the monodromy matrix and 7  is a 3N  x 3N  matrix 

related to the width of the Gaussian wave packet. In this paper, the HK prefactor 

was computed using the log-derivative formulation as well as its approximate form, 

the Johnson’s multichannel WKB version [13].

The log-derivative form of the prefactor is given by

RpiHit —  ̂I det ^ U  +  ^ 7  xA t j exp i  /  d t' Tr(At.) (2 .6 )

The evaluation of the above expression involves the integration of a log-derivative 

matrix A t , according to the differential Riccati equation

A t =  - F t  - (2.7)

The initial value of A is given by foy/i and Ft is the matrix of force constants, or the 

Hessian, at time t.

The approximate form of the prefactor is based on the assumption that the Riccati 

matrix is independent of time. It is calculated from the phase resulting from the local 

harmonic zero-point energy along the trajectory, i.e.,

3 N

Rptmt ~  exp
hwjit')

(2 .8)

In the above expression, the frequency corresponding to the normal mode de­

fined by the index j ,  is obtained from the eigenvalues of the matrix of force constants.
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Combination of Eqs. (2 .2 ) and (2.3) leads to the following expression for the SC 

autocorrelation function:

C(t)  =  (2nh)-m  J  J . (2.9)

The overlaps between the initial wave function and the initial and time-evolved Gaus­

sian wave packets are denoted by (gPiCli l^h) and (T, |^P4qt), respectively. Overlap terms 

are explained in greater detail in Sec. 2.2.1. Suffice it to say at this point that the 

phase-space integral of is generally evaluated by Monte Carlo sampling.

2.2 .1  R ep resen ta tion  o f  th e  w ave function

We choose to represent the initial wave function in the position representation as a 

product of Gaussian functions of the normal coordinates Q =  {Qk},  i.e.,

In the above expression, a  and c are 3N  x 3N  diagonal matrices. L is the trans­

formation matrix that converts normal coordinates to mass-weighted Cartesian coor­

dinates. x  and x e are both 3Ar-dimensional vectors of the mass-weighted Cartesian 

coordinates, with xe referring specifically to the minimum-energy configuration.

The Gaussian wave packet of Sec. 2.2 in the position representation has the form

The overlap between the Gaussian wave packet and the wave function is obtained by 
combining Eqs. (2.11) and (2.12) and integrating

3 N

=  I T *  exp ( - QX?iD. (2 . 10)

where Q/. =  uik/^h and q, is the normalizing factor (2 ct/7r ) 1 / / 4  [14]. 

Conversion to mass-weighted Cartesian coordinates leads to,

(x |^ j) =  c exp[—(x -  xe)T L aL T(x  -  x e)] . (2 . 11)
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Note that here, the 7  matrix is not restricted to a diagonal form. We choose to 

define 7  as a symmetric matrix related to the frequencies of the system:

7  =  2LaLT . (2.14)

2 .2 .2  In clu sion  o f con stra in ts

The SC-IVR autocorrelation function for a constrained system with a reduced number 

of degrees of freedom, F  = 3N  — Nc, where Nc is the number of constraints, can be 

expressed as [1 2 ]

The integration is now performed over constrained coordinates and momenta indi­

cated by the superscript c. The equations of motion can be integrated using the 

RATTLE (Ref. [15]) or the SHAKE (Ref. [16]) algorithm. The procedure used here 

is identical to the one used in classical simulations studies where one wishes to im­

pose constraints while keeping a Cartesian coordinate system and therefore builds on 

existing tools.

As explained in Sec. 2.2, the approximate form of the HK prefactor is evaluated 

from the sum of the frequencies of the system. As a result of the introduction of 

constraints, however, the frequencies are now obtained from a projected Hessian 

matrix F c, i.e., a Hessian matrix of the allowed motions only.

sponding to the desired motions. The M  displacement vectors are combined into the 

columns of a 3N  x M  displacement matrix D, i.e.,

The projection is performed by using the approach devised by Hinsen and Kneller

[17]. First, a subspace is built by specifying the displacement vectors corre-

D  =  (d(1 ), . . . ,d(m)) . (2.17)
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As an example, consider the stretching motion of atoms about their molecular bond. 

I f R ,  is a vector which describes the positions of the atoms, where j  is the atomic 

index (i.e, j  = 1,..., N ) , the displacement vectors are given by the general expression

dj =  (Rk - R l)(Sj k - S kl) . (2.18)

The matrix D  is then orthornormalized by singular value decomposition to a basis U  

with orthonormal columns, spanning the same subspace:

D =  U  £  V r  . (2.19)

£  is an M  x M  diagonal matrix which contains the singular values of D. The number 

of nonzero singular values corresponds to the dimension of the subspace, ds. V T is 

an orthogonal matrix of the same size as £  . The ds columns of the matrix U  which 

contain nonzero singular values constitute the orthonormal basis of the subspace. The 

projection of the mass-weighted Hessian is carried out by the projection matrix, A

Fc =  A  F A  , (2.20)

where A  is defined as U  ■ U r .

The overlaps between the initial wave function and the initial and time-evolved 

Gaussian wave packets, i.e., and {^i\gcpiqi) are also calculated with con­

strained coordinates and momenta. The implication for a geometrically constrained 

system is that initial conditions need to obey the constraints. This is achieved to 

some extent by our choices of the wave function and the Gaussian widths. As for Uj,

the matrix yc is also derived from the diagonalization of the projected Hessian matrix

such that Eq. (2.14) becomes

Fc Lc = L c Ac ,

7 C =  2Lc a LcT . (2.21)

In addition, the evaluation of the exact HK prefactor becomes a nontrivial oper­

ation in the presence of constraints. As mentioned earlier, the log-derivative formu­

lation of the HK prefactor is based on the integration of the Riccati equation, which
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involves both the 7  and Hessian matrices. For the constrained systems, we used the 

matrices in their reduced subspace instead, that is, the projection given by Eq. (2.20) 

was omitted and the basis was used directly. This is achieved by

F s = U r  F  , U

F s L s = Ls As ,

Y  = 2V  a s LsT  . (2.22)

The superscripts s denote the matrices with reduced dimensionality ds. The HK 

prefactor can be rewritten for the constrained system as a function of the matrices in 

their reduced space

where

A st = —Ft — (A t)2 and Aq =  h j s/ i  . (2.23)

An obvious advantage of using the smaller matrices compared with projected matrices 

is a reduction in the computer time required for the integration of the differential 

equation.

2.3 Numerical example: Rare-gas trimers

We study argon and neon trimers to test and illustrate our approach. The interactions 

between the atoms are described by the Lennard-Jones potential 4e[(cr/r) 1 2  — (a f r f ] .  

The atomic masses and the parameters e and a employed in the calculations are 

provided in Table 2.1. We study two variants of each trimer: the regular trimer, 

labeled Ar3  and Ne3  and the constrained trimer, designated by Ar2 SldAr and Ne2 SldNe. 

In the regular trimers, stretches are allowed between all three pairs of atoms. In the 

constrained trimers, the internuclear distance between two chosen atoms is fixed at 

their equilibrium value 2 1 / 6 ct, such that interatomic stretching is permitted along 

two directions only. Rotation and translation are excluded from the subspace of all 

clusters, so the number of degrees of freedom is given by the vibrational contribution
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Table 2.1: Masses and parameters for the Lennard-Jones potential for argon and 
neon.

Mass (amu) e /M  K) ct(A)

Argon 39.948 1 2 0 3.4
Neon 20.1797 35.6 2.75

only. Consequently, the regular trimers have three degrees of freedom while those 

of the constrained trimers are reduced to two. All of the following calculations were 

performed using the molecular modelling toolkit (MMTK), an open source software 

toolkit based on the object-oriented PYTHON [18].

2.3 .1  Sam pling o f in itia l con d ition s

The integral over phase space was evaluated by Monte Carlo sampling. The initial 

positions and momenta were generated in Cartesian coordinates from the phase-space 

integral of the product of the overlap terms at initial times by performing a multi­

variate Gaussian sampling. The sampling function is described by

P(PiQ,9) = =  exp

and has covariance matrices defined as

(2.25)

Initial conditions were generated from a mass-weighted matrix of width parameters 

and were transformed into regular Cartesian coordinates prior to the dynamics. The 

center-of-mass motions and rigid body rotations were removed from the sampled 

positions and momenta. Only the initial conditions with total energies corresponding 

to bound trajectories were retained as highly energetic trajectories that quickly escape 

the potential-energy surface offer hardly any contributions to the correlation function. 

The number of rejected initial conditions amounted to less than 10% of the generated
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positions and momenta for the argon trimers. The acceptance ratio for the neon 

trimers was about 60%.

We analyzed the sampled initial conditions by plotting the distribution of inter­

atomic distances. The plots for the constrained trimers Ar2 SldAr and Ne2 SldNe are 

shown in Fig. 2.1. The distributions for the regular trimers are rather monotonous 

and are not presented. They indicate a uniform spread in the interatomic positions 

about their equilibrium value. As mentioned above, the interatomic distance between 

two atoms of the constrained trimer is held constant at its equilibrium distance. This 

feature is reflected in the nonuniform distribution of the distance between pairs of 

atoms in the trimers. The distribution along the constrained direction is highly local­

ized for both constrained trimers, as desired. The sampling results provide evidence 

for constrained sampling of initial conditions. The key to the successful sampling lies 

in the use of the subspace. The constraints are introduced in our system by specifying 

a subspace of allowed motions or equivalently removing undesired motions as outlined 

in Sec. 2.2. The resulting projected Hessian matrix is used in the calculation of the 

constrained width matrix. The information about the constraints are thus preserved 

in the covariance matrices, consequently affecting the sampling of initial conditions.

2.3 .2  D yn am ics

Trajectories were generated from 5000 sampled initial conditions for each of the reg­

ular and constrained trimers and autocorrelation functions were computed using the 

two previously discussed versions of the HK prefactor. The constrained equations of 

motion were integrated every femtosecond using the RATTLE algorithm (Ref. [15]) 

and data were collected over a period of 2 ps for each trajectory. The load of data 

collection was divided on a number of computers.

The Ricatti equation in the log-derivative version of the prefactor was propagated 

with a very simple Euler integrator with a time step of 0.03 fs. The size of the log- 

derivative matrix is determined by the dimensionality of the subspace ds. In our case, 

this also corresponds to the number of vibrational degrees of freedom since no rotation 

and translation are possible in the subspace. We noted earlier that the subspace of
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a regular trimer such as Ar3  or Ne3  has three dimensions and that of a constrained 

trimer has only two dimensions. Consequently, their log-derivative matrices are 3 x 

3 and 2 x 2  matrices, respectively. As was previously reported [13, 19], the branch 

cut problem traditionally encountered in the exact calculation of the HK prefactor 

is avoided in the log-derivative version by the choice of the width matrix to match 

the frequencies of the constrained trimers. We observed a branch cut problem arising 

from the evaluation of the square root in the expression for the HK prefactor in Eq. 

(2.6) in about 1% of the generated trajectories for the regular trimer Ar3  or Ne3. In 

these cases, the branch cut problem was fixed by inspection.

2 .3 .3  R ed u ctio n  in zero p o in t en ergy

We now analyze the power spectra obtained from the Fourier transform of the au­

tocorrelation function and assess the accuracy of the reduction in zero-point energy 

(ZPE) that results from the inclusion of constraints. The peaks of the power spec­

trum  correspond to the energies of the eigenstates of the system. The peaks shown in 

Fig. 2.2 represent the ZPE of the regular and constrained trimers. Our SC approach 

fares well in describing the ZPE of the trimers. The expected, almost linear, decrease 

in the SC ZPE is observed with a decrease in the number of degrees of freedom for 

both systems. Exact results were obtained using the methods outlined in Ref. [20] 

for the regular trimers and using the method of Ref. [21] for the constrained trimers.

Both the approximate and the exact forms of the prefactor in the semiclassical 

autocorrelation function result in comparable ZPEs for the rare-gas trimers as indi­

cated by Table 2.2. When compared with the exact result, both prefactors give rise to 

energies that are in very good agreement. Although sometimes small, the differences 

between the results from the two prefactors show that the ZPE calculated using the 

exact prefactor is superior in accuracy to the approximate prefactor for all cases with 

the exception of the constrained argon trimer.

The harmonic approximation to the ZPE is included in Table 2.2 for comparison 

purposes. In all cases, the SC method consistently outperforms the simple harmonic
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Table 2.2: Zero-Point Energies (in kJ mol-1). Results of exact quantum mechanical, 
and SC-IVR treatment based on the exact log-derivative HK (SCIVR£ ) and the 
approximate (SCIVR'4) prefactors. The result from the harmonic approximation 
(HA) is included for reference. The difference, 5, between the various approximations 
and the exact results is also given. The energies are given with respect to the bottom 
of the total potential.

System Exact SCIVR^ ŜCIVR' ' 5 SCIVRA ^scivfC HA ^HA

Ar3 0.445 0.439 -0.006 0.433 -0 . 0 1 2 0.467 0 . 0 2 2

Arr2igidAr 0.290 0.301 0 . 0 1 1 0.299 0.009 0.320 0.030
Ne3 0.379 0.354 -0.025 0.333 -0.046 0.442 0.063

Ner2igidNe 0.248 0.245 -0.003 0.232 -0.016 0.303 0.055

approximation at describing the energies of the system. In addition, the harmonic 

results overestimate the true ZPE while the SC results underestimate the ZPE for all 

trimers excluding the constrained argon trimer again. Anharmonicity is of greater 

relevance to the neon trimers than to the argon trimers. As a result the discrepancy 

between the exact result and the harmonic approximation to the ZPE is larger for the 

neon system than for the argon system. The same trend is also observed for the SC 

result obtained from the approximate prefactor. This can be understood by referring 

to Eq. (2.8). The phase is calculated by assuming a local harmonic approximation.

In general, the harmonic approximation is reasonable at low kinetic energies. How­

ever, as more modes become available for vibrations and the kinetic energies increase, 

anharmonicity becomes more significant. Based on this reasoning one would expect 

the difference between the SC and the harmonic results to increase with the number 

of degrees of freedom. We observe such an increase in the differences for the neon 

system. The argon trimers, however, do not display the same behavior. The deviation 

with respect to the exact ZPE for the SC result is nearly doubled with the addition 

of a constraint when the log-derivative formulation of the prefactor is employed. In­

terestingly, the harmonic result also shows an increase in the discrepancy upon the 

decrease in the number of degrees of freedom for the argon trimers. We point out that
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the approximate prefactor makes use of an additional local harmonic approximation. 

So, the observed decrease in the magnitude of the difference with the exact ZPE could 

also be fortuitous.

We further analyze our results by comparing their dissociation energies D0. We 

calculate the difference between the dissociation energies of the neon and argon 

trimers for each of the constrained and regular trimers. The calculation, done at 

different levels of approximation, is related to the measure of anharmonicity present 

in the calculated results. For ease of comparison, we show in Table 2.3 the differences 

per number of vibrational degree of freedom. The calculated quantity is a constant 

for every method and is independent of the number of vibrational degrees of freedom. 

In contrast to the harmonic value, both SC values are lower than the exact value. 

The SC value computed from the exact prefactor is closest to the exact value.

Table 2.3: The difference in dissociation energies between the argon and neon trimers 
per number of vibrational degree of freedom d.

Exact SCIVR* SCIVIT4 HA

T>0 (Ar"sidAr) 1.705 1.694 1.696 1.675
£>0 (Ne2lgidNe) 0.344 0.347 0.360 0.289
A D 0/(d  = 2 ) 0.680 0.674 0 . 6 6 8 0.693

T^o(Ar3 ) 2.548 2.554 2.560 2.526
A)(Ne3) 0.509 0.533 0.555 0.445

A D 0/(d  = 3) 0.680 0.674 0 . 6 6 8 0.694

2.4 Conclusion and Outlook

We have developed a general method to sample initial conditions in Cartesian co­

ordinates to study the SC dynamics of geometrically constrained systems. In this 

work, the sampling of initial conditions was performed from a multivariate Gaussian 

form. We observed the retention of constraints in the sampled initial conditions.
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Compared to our initial effort [12], which lead to accurate energies, we now have an 

approach that additionally yields the correct distribution directly. The SC autocor­

relation function was calculated from an approximate form of the HK prefactor as 

well as from its exact log-derivative form which is a novel aspect of the current work. 

In the latter version, we performed the calculation of the prefactor in the subspace 

of permissible motions. Only the approximate form of the prefactor was used in the 

earlier work on the inclusion of constraints in HK-SC-IVR [12].

We tested the approach on model rare-gas trimers in their constrained and uncon­

strained forms. The zero-point energies obtained from the Fourier transform of the 

correlation function for all trimers show good to excellent agreements with the exact 

counterparts. In the present work, the integration of the Riccati equation was per­

formed by a simplistic Euler integrator. Future work will involve the implementation 

of a better-performing integrator for the time evolution of the prefactor, especially 

for larger constrained systems. Our approach, being a general one, can easily be ex­

tended the study to analyse the quantum dynamical properties of more complicated 

constrained systems. Since our approach is implemented in the context of MMTK

[18], the code can currently be used to study a wide variety of systems described, for 

example, by the AMBER (Ref. [22]) force field, Lennard-Jones interactions, or the 

TIP3P (Ref. [23]) water model. This generality is an important step towards making 

semiclassical initial value representation methods, a practical tool for the simulation 

of complex molecular systems. The application to the complexes of rigid molecular 

monomers will be considered in the future. The performance of our Cartesian method 

could for instance be benchmarked by comparing to the results obtained in curvilinear 

coordinates as in the case of the HC1 dimer [9].
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Figure 2.1: Distribution of atomic distances for Arij1 8 * 1 +  Ar (top) and Ne2 8ld +  Ne 
(bottom). The circles and the triangles represent the unconstrained interatomic dis­
tances. The solid line indicates the distribution of distances along the constrained 
direction. A sample size of 10000 configurations is used.
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Figure 2.2: Power spectra for the argon (top panel) and neon (lower panel) trimers. 
The solid line corresponds to the results for the regular trimer and the broken line 
shows results for the constrained trimer. The results are obtained based on the exact 
log-derivation expression for the HK prefactor. The exact results (dotted vertical 
lines) are also included.
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Chapter 3 

Excited states

A rtic le  2. Geometric constraints in semiclassical initial value representation calcu­

lations in Cartesian coordinates: excited states

Reused with permission from Bilkiss B. Issack and Pierre-Nicholas Roy, Journal 

of Chemical Physics, 126, 024111 (2007). Copyright 2007, American Institute of 

Physics.

3.1 Introduction

Dynamical simulations of high-dimensional complex molecular systems are essentially 

restricted to a classical description. Indeed, such systems represent a challenge to 

study quantum mechanically since the Schrodinger equation cannot be solved exactly 

for all their degrees of freedom. However, purely classical dynamics fail to provide 

an accurate description and understanding of processes where quantum mechanical 

effects are significant. For instance, it is not possible to explain the kinetics of some 

proton transfer reactions without taking tunneling into account. Other examples of 

quantum effects include fundamental concepts such as zero-point energy and energy 

quantization, which form the cornerstone of spectroscopy. Quantum effects are also of 

relevance to complex systems: they play an important role in biological interactions 

and enzymatic reactions that rely on hydrogen bonding. Owing to the limitations 

of both extreme levels of theory, namely classical mechanics and full quantum cal­

culations, it is imperative to develop approximate methods which allow one to treat
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dominant quantum effects within molecular dynamics simulations.

Semiclassical initial value representation (SC-IVR) is a method which uses semi- 

classical theory to incorporate quantum effects in classical dynamics [1, 2, 3]. Over 

the years, it has proven to be a robust and attractive approach capable of, at least 

approximately, capturing quantum effects. The main appeal of the method lies in 

its practical use of classical mechanics to determine the quantities of interest [4], 

SC-IVR has been applied in the popular fferman-Kluk [5] (HK) version to treat a 

variety of systems and phenomena. Spectroscopic applications include simulations of 

the photodissociation spectrum of CO 2  (Ref. [6 ]) and the photodetachment spectra 

of A rl“ (Ref. [7]) and 12  [8 ]. Partial use of the method in a mixed-order semiclassical 

dynamics calculation has also been reported to provide an understanding of the spec­

tral features of the electronic absorption spectrum of CI2  in solid Ar at the molecular 

level. Additional implementations of the HK SC-IVR method range from the study of 

quantum tunneling in the HC1 dimer, [9] to the successful description of the molecular 

geometry of a ruthenium complex [1 0 ].

Despite considerable progress in the field, illustrated by the long list of examples, 

applications of SC-IVR are still limited to system sizes well below the reach of classical 

dynamics. Such restrictions can seriously compromise the potential of the method 

as a practical tool for the study of quantum effects in classical simulations. Yet, 

compared to quantum mechanical calculations, SC-IVR is known to scale favorably 

with the dimensionality of the systems under investigation. In principle, one should 

be able to exploit this feature together with the simplicity and relatively low cost of 

well-refined classical simulations to increase the practicability of the approach.

One commonly used technique to reduce computational effort in classical molecu­

lar dynamics simulations involves selectively imposing geometric constraints on sep­

arable motions of lower importance in the system. Freezing certain modes of motion 

effectively reduces the number of degrees of freedom and therefore the computational 

cost. Alternatively, the study of systems of higher complexity becomes more ac­

cessible upon application of constraints. The consequences of imposing constraints 

in a semiclassical calculation are twofold. Firstly, the computational effort involved

52

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



in integrating the equations of motion during the dynamics is reduced when high- 

frequency motions are excluded. Secondly, the semiclassical propagator becomes less 

oscillatory and therefore a faster convergence can be achieved.

We developed a general method which implements the inclusion of constraints in 

SC-IVR calculations in Cartesian coordinates [11, 12]. Our choice for the coordinate 

system gives the method immediate appeal in terms of generality since it is directly 

applicable to any system without a redefinition of the coordinate system. It is also 

worth pointing out that the majority of software available for molecular dynamics 

simulations also makes use of the Cartesian coordinate system. This is particularly 

relevant to the efforts being invested in making SC-IVR a practical tool to be used 

in conjunction with classical simulations for the treatment of quantum effects [13, 4].

To test our approach, we recently carried out a calculation of the zero-point energy 

of constrained weakly bound clusters. The calculations of the Herman-Kluk prefac­

tor were performed using the approach described by Gelabert et al. [14] both in its 

exact and approximate forms. The computation of the exact prefactor is based on 

the integration of a log-derivative matrix, obtained by solving a differential Riccati 

equation. The simpler and less computationally demanding approximate form makes 

use of Johnson’s “multichannel WKB” approximation. We demonstrated that both 

forms of the prefactor gave an accurate reduction in the zero-point energy upon reduc­

tion in the number of degrees of freedom when compared to full quantum mechanical 

calculations. Given its highly reasonable performance for weakly bound systems, the 

approximate form of the prefactor was selected for the present calculations. The goal 

of the current work is to assess the performance of our approach in the determination 

of excited states of constrained weakly bound clusters.

In the remaining sections, the paper describes the aspect of the SC-IVR theory 

pertaining specifically to the extraction of excited states in Sec. 3.2. Calculations are 

performed for small argon clusters. Technical details regarding the systems and the 

calculations are provided in Sec. 3.3. In Sec. 3.3.3, we present and compare results 

for the excited states obtained semiclassically and from full quantum treatment. The 

final part, Sec. 3.4 presents concluding remarks.
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3.2 Theoretical approach

The dynamics of complex systems can be probed by analyzing the time-dependent 

survival amplitude C(t). In quantum mechanics, the survival amplitude for a system

propagator. Its semiclassical counterpart in the initial value representation can be 

expressed in terms of coherent states as

In the above expression, q 2 and p, represent the initial positions and momenta for 

classical trajectories; qt and p ( are their time-evolved values. gPi(ii and gPtqt are 

the coherent state, minimum uncertainty wave packets prior to and after their time 

evolution, respectively. The initial wave packet in the position representation has the 

following analytical form:

with 7  being a matrix representing the Gaussian widths. The classical action <Sp<qit 

is computed during the dynamics according to

Finally, the quantity R Pi<iit is the Herman-Kluk prefactor. As mentioned in the previ­

ous section, an approximate form of the prefactor known as Johnson’s “multichannel 

WKB” (Ref. [14]), is employed during the calculations. In this formulation, the 

prefactor is calculated from the phase resulting from the local harmonic zero-point 

energy along the trajectory as

with 2>N degrees of freedom described by the Hamiltonian H  is given by

(3.1)

where T, represents the initial wave function and e lHtih is the quantum mechanical

- i H t / h
PiQi I ’ (3.2)

(3.4)

(3.5)

54

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The sum in the expression runs over the 3N  frequencies u>j(tf) associated with the 

normal modes of motion.

The present work aims at calculating the bound energy states of geometrically 

constrained systems. In general, these can be extracted by performing a Fourier 

transform on the survival amplitude to produce the power spectrum,

The computation of the semiclassical survival amplitude for a geometrically con­

strained system is far from being trivial. An extensive discussion of the implications 

of constraints on SC-IVR calculations is provided elsewhere [12]. We only provide a 

brief overview in the current report for the sake of completeness.

The superscript c indicates that the calculation of the quantities contained in the 

expression is performed under the existence of constraints. In particular, constrained 

classical trajectories are generated by the time evolution of constrained initial con­

ditions, q? and p?. In addition, the construction of the initial Gaussian wave packet 

is performed by taking into account the geometric constraints on the system. While 

the expression retains the same form as Eq. (3.3), yc, the matrix of Gaussian widths 

itself is significantly changed. As described in our previous work [1 2 ], the width 

matrix is derived from the F  eigenvalues of a projected force constant matrix. The 

projection refers to the exclusion of constrained modes from the force constant ma­

trix according to a procedure developed by Hinsen and Kneller [15]. The approach is 

briefly described below. The projected force constant matrix is also employed in the 

calculation of the Herman-Kluk prefactor, particularly in the determination of the 

frequencies of the unconstrained modes in the equation,

(3.6)

The semiclassical survival amplitude for a geometrically constrained system with 

a reduced dimensionality F  is given by

C(t) =  (2*%rF j  J  , (3 .7 )

(3-8)
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The first step in the projection procedure involves the construction of a subspace 

of allowed motions, D, from the corresponding vectors describing these motions. The 

subspace is subsequently orthonormalized by singular value decomposition to remove 

any dependencies between the vectors forming the subspace, i.e.,

D = U  S  V T . (3.9)

Of the resulting matrices, only the basis U is pertinent to the discussion. It is used 

to form the projector A  as follows:

A  =  U  • U T . (3.10)

The projection of the mass-weighted force constant matrix F is then carried out 

according to

Fc =  A  F A  (3.11)

to produce the projected force constant matrix Fc. We would like to point out that the 

procedure is very similar to existing projection methods used in geometry optimiza­

tion techniques in ab initio codes. The projection procedure used in our calculations 

indeed compares with projection approaches in redundant internal coordinates devel­

oped by Pulay and Fogarasi [16] and by Ayala and Schlegel [17] when the gradient 

correction is neglected.

Both the constrained width matrix and the frequencies of the Herman-Kluk pref­

actor are determined from the diagonalization of the projected force constant matrix:

Fc L c = L c Ac 

u c = y/fc

7 c =  ^ L c coc Lc T . (3.12)

Specifically, the frequencies of the free modes to0 are derived from the corresponding 

nonzero eigenvalues Ac of the projected force constant matrix. The mass-weighted 

width matrix on the other hand is additionally related to the eigenvectors L c.
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3.3 Numerical example: Small Argon clusters

Our recent work has demonstrated the success of our method in extracting the zero- 

point energies of argon and neon trimers and particularly in catching the reduction in 

energy upon application of constraints. In the current work, we study argon clusters 

to test and illustrate the applicability of our approach in extracting the excited energy 

states. A mass of 39.948 amu is used to represent the argon atoms in our system. 

The interactions between the atoms are described by the Lennard-Jones potential

V(r) =  4e[(cr/r) 1 2  — (cr/r)6], (3.13)

where r  refers to the interatomic distance. The well depth e and the van der Waals 

radius a are equal to 0.998 kJ mol- 1  and 3.4 A, respectively.

We study three forms of the clusters: the dimer, the regular trimer, and the 

constrained trimer.

The dimer is the simplest system, designated by Ar2 . The subspace of the dimer 

is defined by a single interatomic stretching motion (F = 1) and excludes overall 

rotations and translations.

The regular trimer is labeled Ar3  and has three degrees of freedom (F = 3) 

corresponding to stretches between all three pairs of atoms. The constraints on 

the regular trimer are similar in nature to those of the dimer since both subspace 

definitions prohibit overall rotational and translational motions.

In the constrained trimer, Ar2 gldAr, the internuclear distance between two chosen 

atoms is fixed at its equilibrium value such that interatomic stretching is permitted 

along two directions only. As a result, the number of degrees of freedom is reduced to 

two compared to the regular trimer (F = 2). The constrained trimer can alternatively 

be viewed as the combination of a constrained dimer and a single argon atom. Beside 

rotational and translational constraints, there also exists an additional constraint on 

the system: the constraint on the dimer, which is analogous to a geometric bond 

constraint. All calculations were performed using the molecular modeling toolkit 

(MMTK) [18].
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3.3 .1  Sam pling o f  in itia l con d ition s

The integral over phase space in Eq. (3.7) was evaluated by Monte Carlo sampling. 

Initial positions and momenta were generated in Cartesian coordinates from the phase 

space integral of the product of the overlap terms at initial times. A multivariate 

Gaussian sampling was performed using

(q?-x«f)2 p; 2
P(pfq?) =  ( 'N f f U X & J * * )  =  <*P o W  -  T T  <3-14)

9 P

as a sampling function with covariance matrices given by

o ?  =  7 C _ 1

Up =  h 2 7 c . ’ (3.15)

Equations (3.14) and (3.15) are expressed in terms of mass-weighted quantities. 

The quantity x r e f  specifically represents the mass-weighted coordinates of the center 

of the wave function. Consequently the sampling procedure yielded mass-weighted 

initial conditions which were transformed into regular Cartesian coordinates prior to 

the dynamics. Center-of-mass motions and rigid-body rotations were removed from 

the sampled positions and momenta. Initial conditions with total energies exceeding 

the binding energy were discarded as such highly energetic trajectories quickly escape 

the potential energy well and do not contribute significantly to the survival amplitude 

(with regard to the bound states). The number of rejected initial conditions amounted 

to less than 1 0 % of the generated positions and momenta for all the argon clusters.

We show in Fig. 3.1 the distribution of initial conditions along interatomic dis­

tances for the three model systems under study. The distribution of distances for the 

Ar2  dimer is peaked away from the minimum of the potential well as shown in Fig. 

3.1(a). Such a displaced wavefunction will have greater overlap with excited states. 

A similar distribution is seen in Fig. 3.1(b) for the Ar3  trimer.

This time, there are three possible pair distances and we see that they have differ­

ent distributions. Such an uneven distribution will also be useful in the extraction of 

excited states. For the constrained trimer, Ar2 SldAr. the preservation of the geometric 

“bond constraint” in the sampled initial conditions is illustrated in the distribution of
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Figure 3.1: Sampling distribution of atom pair distances, d, for the three model sys­
tems. (a) Ar2  dimer: the arrow indicates the position of the potential minimum, 
(b) Ar3 trimer: the filled triangles, circles, and squares represent the pair distance 
between the three possible atom pairs, (c) Ar2 gldAr complex: the solid line corre­
sponds to the constrained distance while the filled triangle and squares correspond 
the remaining two unconstrained distances.

interatomic distances in Fig. 3.1(c). The distances corresponding to the two uncon­

strained stretches are uniformly spread compared to the highly localized distribution 

along the constrained direction. We refer the interested reader to our previous work 

for a detailed description of constrained sampling [12].

3 .3 .2  D yn am ics

The dynamical quantities in the survival amplitude were calculated from the time- 

evolution of 10 000 sampled initial conditions. Equations of motion were integrated 

at every femtosecond with the velocity-Verlet algorithm for the dimer and the regular
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trimer and with the RATTLE algorithm [19] for the constrained trimer, A rl^ A r. 

The time lengths of propagation were 15 ps for the dimer and 30 ps for both trimers. 

The load of data collection was divided on a number of computers.

The survival amplitude was computed using the approximate form of the HK pref­

actor. The latter quantity is calculated from the frequencies of permissible motions 

as given by Eq. (3.8) after projection of undesired motions. As mentioned in the 

last part of Sec. 3.2 the projection procedure requires the construction of a subspace. 

The subspace of allowed motions for the argon clusters is defined as a combination 

of interparticle stretches. In a multidimensional system, the subspace definition (and 

therefore the basis) is dependent on the geometry of the cluster. The one-dimensional 

subspace of the dimer is made up of a single normalized vector describing the transla­

tion of the two argon atoms and is therefore unaffected by the geometry. For systems 

of higher dimensionalities, the orientation of the vectors in the subspace changes with 

time during the dynamics depending on the geometry. Consequently, the frequency 

calculations along the trajectory require the costly computation of a basis at every 

time step. Our calculations employ the zero-time approximation to the basis to save 

on the computational cost by bypassing the diagonalization involved in the generation 

of the basis.

3 .3 .3  B ou n d  sta te  en ergies

Eigenvalues of the system under investigation are revealed from its power spectrum 

following the Fourier transform of the survival amplitude. A Gaussian filtering proce­

dure was applied to the survival amplitudes prior to the Fourier transform to reduce 

the noise level in the power spectra and therefore facilitate the identification of the 

true eigenvalues of the systems. The power spectra of the smoothed survival ampli­

tudes were obtained as

where the parameter a  determines the degree of smoothing.

Figures 3.2(a), 3.3(a) and 3.4(a) contain the semiclassical survival amplitudes for
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the dimer, trimer, and constrained trimer respectively. Their corresponding power 

spectra are provided in Figs. 3.2(b), 3.3(b), and 3.4(b). In order to obtain the bound 

state energies, we extracted the positions of the peaks of the power spectra. During 

this procedure, we varied the integration time interval to identify peaks of the power 

spectrum that correspond to true bound state energies. The peaks whose position 

was not affected by this procedure were deemed good bound states.

The semiclassical energies of the first few bound states are tabulated and compared 

with exact results in Table 3.1. Exact calculations were performed using the methods 

outlined in Ref. [20] for the regular clusters and using the method of Ref. [21] for the 

constrained trimer. In general, the semiclassical energies show good agreement with 

their exact counterparts.

Table 3.1: Comparison of exact quantum mechanical bound state energies and the 
corresponding SC-IVR results for axgon clusters. Energies are given with reference 
to the minimum of the potential in kJ mol-1. Calculations are performed using 
the full approximate HK prefactor (SC-IVR"4) as well as the absolute value (SC- 
IVRabs) approximation. The percentage difference, 6, between the exact and SC-IVR 
calculations is also provided

System n Exant SC-IVR"4 5% SC-IVRa6s 6%

Ar2 0 0.15 0.14 6.6 0.15 2.0
1 0.41 0.39 5.4 0.41 0.2
2 0.61 0.58 4.5 0.62 2.0
3 0.76 0.74 2.2 0.77 2.1

Ar3 0 (Al) 0.44 0.43 2.7 0.43 2.7
1(E) 0.66 0.64 2.9 0.66 0.3

2 (Al) 0.75 0.74 0.8 0.75 0.1
3(E) 0.86 0.85 1.8 0.88 1.4

Arr2igidAr 0 0.29 0.30 3.0 0.30 2.7
1 0.52 0.52 1.0 0.52 1.6
2 0.56 0.56 0.4 0.57 1.4
3 0.72 0.72 0.3 0.74 3.6
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Figure 3.2: Real part of the survival amplitude (a), and associated power spectrum 
(b) for the Ar2 dimer.
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Figure 3.3: Real part of the survival amplitude (a), and associated power spectrum 
(b), for the Ar3 trimer.
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Figure 3.4: Real part of the survival amplitude (a), and associated power spectrum
(b), for the A rJ^ A r complex.
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A high degree of accuracy is noted in the calculated energies of the trimers. The 

deviation in energies between the two levels of theory amounts to a maximum of 

3%. The dimer shows a larger discrepancy. Also note that exact calculations of the 

energies of the regular trimers were performed by taking inversion symmetry into 

account. Figure 3.3(b) and Table 3.1 reveal that the semiclassical energy calculations 

are capable of capturing and reproducing the energies of states of different symmetries, 

namely A J and E.

Aside from the zero-time approximation to the basis, we additionally calculated 

the HK prefactor using the absolute values of the square frequencies. This is equiv­

alent to converting imaginary frequencies into real ones. The practical advantage 

which results from this ad hoc approximation is a reduction in the oscillatory behav­

ior of the prefactor. In such cases, no abnormally large prefactors are encountered at 

long propagation times. The resulting survival amplitude is “naturally” dampened 

and can be Fourier transformed directly without Gaussian filtering. In addition, the 

calculations required a shorter propagation time: the length of trajectories was re­

duced to half of the time required for the full approximation prefactor calculations. 

Energies calculated with the extra approximation are included in Table 3.1. The 

results compare favorably with those of the full prefactor calculation for the dimer. 

As for the trimers, the values obtained for the energies are similar in accuracy to the 

full prefactor calculation results.

3.4 Conclusion and Outlook

We previously reported a general method to study the SC dynamics of geometrically 

constrained systems in Cartesian coordinates. The approach involves the sampling of 

constrained initial conditions from a multivariate Gaussian form prior to dynamics. 

Our earlier study showed that the method is able to accurately capture the zero- 

point energies of constrained weakly bound clusters. In addition the reduction in 

zero-point energies upon application of constraints or reduction in dimensionality 

was successfully reproduced. The current work shows that this approach can also be

66

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



used to accurately obtain excited state energies of constrained systems. Not only does 

the method deliver in terms of accuracy but is also able to capture the symmetry of 

the different states for the argon trimer.

W ith an appropriate description of excited states, we can envisage applying our 

approach to problems in kinetics and spectroscopy. The method could, for example, 

be used to study the real-time dynamics of a rigid impurity embedded in a quantum 

solvent and address questions related to the onset of superfluidity [22, 23]. Such 

questions are currently addressed using imaginary-time path integral techniques (see 

Ref. [24] for a recent overview). From a more general point of view, one could say 

that we are a step closer to having a practical approach for the inclusion of quantum 

effects in molecular dynamics simulations. For computing the spectra of complex 

systems, a promising approach is the combination of our constraint techniques with 

the time averaging method of Kaledin and Miller [25, 26].
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Chapter 4

Extension to hydrogen bonded  
molecular system s: water dimer 
dynam ics

A rtic le  3. Quantum molecular dynamics of hydrogen bonded complexes of rigid 

molecules using the semiclassical initial value representation in Cartesian coordinates 

Reused with permission from Bilkiss B. Issack and Pierre-Nicholas Roy, Journal 

of Chemical Physics, 127, 054105 (2007). Copyright 2007, American Institute of 

Physics.

4.1 Introduction

Proteins and protein-ligand interactions typically take place in aqueous media under 

physiological conditions. These interactions, which rely mostly on hydrogen bonding 

or the hydrophobic effect, play a significant role on the energetics of the system. An 

accurate understanding of hydrogen bonding requires a quantum mechanical treat­

ment because it involves a light hydrogen atom. Yet, the majority of biomolecular 

simulations are carried out at a classical level of theory owing to the limitations of 

currently available quantum dynamical methods. Biomolecular systems are not the 

only victims; the problem also arises in dynamical studies of nanostructures and in 

any large complex system in general. The challenge is therefore to develop practical 

quantum dynamical methods that allow for the treatment of key quantum effects in
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high-dimensional systems by a broader base of users.

A truly practical method should have the ability of combining simplicity, generality 

and ease of implementation with affordability. In that respect, the semiclassical initial 

value representation (SC-IVR) offers a promising method of performing quantum 

dynamics [1, 2, 3, 4, 5, 6]. As a result of considerable developmental efforts, SC-IVR 

has been implemented in several forms including forward-backward SC-IVR [7, 8, 9], 

the thawed gaussian approach [10, 11], and the Herman-Kluk (HK) form [12]. HK SC- 

IVR, in particular, is able to boast a number of applications ranging from molecular 

structure determination [13] to quantum tunneling in the HC1 dimer [14] to studies of 

the photodetachment and photoionization spectrum of small molecules and clusters 

[15, 16, 17]. The simplicity of the approach lies in the use of classical trajectories 

to compute quantities of interest. One of its strongest assets is the fact that any 

classical simulation can, in principle, be extended albeit with additional effort to 

include quantum effects. In addition, it presents a favorable scaling with system 

size as opposed to the prohibitive exponential scaling of exact quantum mechanical 

methods.

However, to date, the high generality that SC-IVR aspires to achieve remains 

circumscribed to some extent. Classical simulations of large systems are commonly 

carried out with constraints. Imposing geometric constraints on a system provides 

the benefit of reducing computational effort. In a classical system, constraints are 

used to freeze out high frequency modes since those should be treated quantum me­

chanically for a proper description. For large complex dynamical systems specifically, 

the gain in computation time can be substantial, sometimes to the extent of bringing 

otherwise intractable simulations into the realm of feasilibity. SC-IVR calculations 

of constrained systems are usually performed in internal coordinates, which are per­

haps the simplest and most intuitive choice of coordinate system. This advantage is, 

however, accompanied by a significant drawback: a redefinition of the coordinates is 

required for every new system. In other words, the simplest choice of coordinates is 

also the less general option. Cartesian coordinates, on the other hand, offer the gen­

erality that internal coordinates lack and are therefore often the coordinate system

71

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



employed by the majority of classical molecular dynamics software packages.

In an effort to extend the capabilities of SC-IVR as a practical tool to include 

quantum effects in classical simulations, we have developed a method that allows for 

constrained calculations in Cartesian coordinates [18, 19, 20]. Our approach, based 

on HK SC-IVR, has been successfully tested on the intramolecular interaction of the 

water bender as well as on small constrained weakly bound atomic clusters of argon. 

In all cases, the zero-point energy and other bound state energies of the investigated 

systems were accurately reproduced. Motivated by the encouraging results, we now 

investigate the accuracy of our method in treating systems of higher complexity.

More specifically, the current work aims at gauging the ability of our approach in 

capturing quantum effects in molecular clusters through the calculation of the bound 

states of a dimer of rigid water molecules. The rationale for our choice of the system 

is twofold. Firstly, being the archetypal hydrogen bonded molecule, the constrained 

water dimer provides an ideal ground for investigating the quantum nature of hy­

drogen bonding without the interference of intramolecular interactions. Secondly, 

water molecules are probably the most frequently constrained species in any molecu­

lar dynamics simulations making use of explicit water molecules. In that respect, the 

calculation of constrained water clusters represents a stepping-stone to the applica­

tion of SC-IVR to solvated systems and by extension, to the quantum simulations of 

large complex molecular systems in general.

The following section of the paper (Sec. 4.2) describes the SC-IVR theory and 

associated methods employed in the calculation of bound state energies of constrained 

molecules. The methods rest on the approaches developed in our earlier reports 

[18, 19, 20], along with the key technical improvement in the computation of the time- 

dependent Herman-Kluk prefactor. In the remaining sections, we provide details of 

the calculations along with a description of the water model in Sec. 4.3. Energy levels 

determined for the constrained water dimer, along with the results of the isotopic 

substitution study are presented in Sec. 4.3.2. The final part (Sec. 4.4) presents 

concluding remarks.
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4.2 Theory and M ethods

The energy levels of a system of N  atoms can be determined from the time-dependent 

survival amplitude C(t) via a Fourier transform. The result, called the power spec­

trum, is mathematically expressed as

i r°°
I { u ) = 2 ^ J  d f e '"‘ C W -  <4 1 )

For a geometrically constrained system, with F  degrees of freedom, the survival 

amplitude or wave packet autocorrelation function is defined as

C(t) = < ^ |e - ^ ct/ % )  , (4.2)

where T, is the initial state wave function propagated by the Hamiltonian of the 

constrained system, H c.

The semiclassical propagator in the initial value representation is expressed in 

terms of coherent state bases, g£ . These are minimum uncertainty wave packets

which are Gaussian in position and momentum space, centered at vectors q and p.
In the position representation, the coherent state takes the following form:

x lFpq) oc exp - | ( x  -  qc)2 + |p '(x  -  qc) (4.3)

where yc is a matrix defining the widths of the Gaussian for the constrained system. 

The SC-IVR time propagator for a system is given by

g —iH ct /h

The integral in the above expression is performed over constrained initial conditions 

of the classical trajectories, i.e, constrained positions and momenta, p? and q(. The 

corresponding classically evolved phase space coordinates are represented by p( and 

qj. <7p.q. and s£tqt are the coherent states prior to and after their time evolution 

respectively. 5'piq.t is the action computed during the constrained classical dynamics 

as

S p.<,,<= f ‘ M  b l  ■ -  H I  . (4.5)
J O
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The quantity 7?p,q.t is the Herman-Kluk prefactor [12] and represents the contribution 

of a trajectory to the overall wave function. It can be calculated from the local 

harmonic approximation [21]

F M ( 0 'Rv m i t  ~  exP (4.6)

The sum in the expression runs over the number of normal modes of vibrations and 

is the frequency corresponding to the j th  unconstrained mode and is determined 

from the eigenvalues of a projected matrix of force constants. A description of the 

projection method employed in our calculations is given below.

Using the definition of the propagator from Eq. (4.4), one obtains the following 

expression for the survival amplitude:

C(t) = {2nh)-F J  J  . (4.7)

The integration over phase space is evaluated by Monte Carlo sampling of the 

wave function. In other words, the actual calculation of the survival amplitude is 

performed according to

m  = (2*h)-r (4.8)

with mass-weighted constrained initial conditions generated from the sampling func­

tion,
-(Oi -  Xref) 2 p (c 2

2 a *
(4.9)

The parameters a„ and ap are the covariance matrices defined as

c —1

(4.10)

and xref is the reference geometry. It specifically refers to the mass-weighted position 

vector representing the center of the initial wave function. If the reference coordinate 

is chosen to coincide with the center of the wave function in the position represen­

tation, given by Eq. (4.3), it is clear- that the sampled distribution of positions is
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equivalent to the probability associated with the wave function, except for a factor of 

2 in the width of the Gaussian function.

The effective sampling of phase space for a constrained system is achieved through 

a judicious choice of the width matrix, as described in our earlier work [19]. The 

elements of the width matrix are obtained from a vibrational analysis of the projected 

matrix of force constants or Hessian at the equilibrium geometry.

In the present calculations, we choose to perform the projection according to the 

methods proposed by Pulay and Fogarasi [22] and Ayala and Schlegel [23]. The ap­

proaches, originally developed for the purpose of geometry optimization in electronic 

structure calculations, provide a means of creating a subspace of allowed motions by 

projecting unwanted motions from the Hessian in redundant coordinates. We provide 

a short description of the approach as employed in our calculations.

The transformation from Cartesian displacement coordinates to redundant inter­

nal displacement coordinates is carried out through the Wilson B  matrix [24], defined 

as

5q =  B 5x  . (4.11)

The first step of the procedure involves the transformation of the gradient g and

Hessian H,

gq = B ~ 1gx (4.12)

and

Hq = B - ' H ^ B - y  , (4.13)

where g2. and Hx are the gradient and Hessian in Cartesian coordinates and gq and 

Hq are the corresponding quantities in internal coordinates. B  is a rectangular matrix 

whose inverse is given by

B ~ l =  G~Bu  . (4.14)

G is the generalized inverse of the matrix G =  B u B T, i.e.,

V t G V = \ q ° 1 ;  C -  =  c [ A0 X ° ] c T , (4.15)
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and u is a diagonal matrix of inverse masses. Equation (4.13) holds true when the 

Hessian is calculated at infinitessimal displacements from stationary points on the 

potential energy surface. For larger displacements, a gradient correction term is 

required and the equation becomes

H,  =  S ' 1 ( f f ,  -  ^ g , )  (B - ‘)t  . (4.16)

We would like to point out that the inclusion of the gradient correction in the calcu­

lation of the projected Hessian constitutes an improvement over our previous calcu­

lations, where the gradient correction was neglected [19, 20],

A subspace of allowed motions in the nonredundant part of internal coordinates 

is then constructed from the projection procedure. The function of the projector 

is to remove the redundancies and forbidden motions from the Hessian. A primary 

projector is built from the G matrix and its generalized inverse as P  =  GG~. It is 

then modified to account for the constraints according to

P C = P -  P C (C P C y 1C P  , (4.17)

where the constrained projector C  is given by

(4.18)

where
f  1 for constraints 
( 0 otherwise.

Redundancies and constraints are projected from the G matrix in an identical 

fashion

GC = G -  G C iC G C y 'C G  . (4.19)

The actual projection of the Hessian is written as

H cq = P cHqP c +  a (l -  P c) . (4.20)

The second term of the equation ensures that no displacement occurs in the remainder

of the space by setting the constant a to an arbitrarily large value (e.g., 1000 a.u.).
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Finally, the projected Hessian is mass weighted and diagonalized as follows:

Gc H cq L\ =  AcL cq (4.21)

(Gc)1/2 H cq (Gc)1,2Lcq = XcLq . (4.22)

The resulting eigenvectors Lq span the subspace of allowed motions, as desired. Since 

our calculations are carried out in Cartesian coordinates, they need to be transformed 

back into non-mass-weighted Cartesian displacement coordinates via the transforma­

tion matrix F  according to

LCX = F  (Gc)1/2 L q ; F  =  u B r G~ . (4.23)

Once the eigenvalues and eigenvectors are determined, the width matrix is constructed

cLS

Y  =  2  L i  a  ( L % ) t  . (4.24)

f \cwhere a = The projection method is also used in the evaluation of the con­

strained HK prefactor Rpiqit described by Eq. (4.6), particularly in the determination 

of the frequencies of the unconstrained modes of motion uj° =

4.3 Calculations for the water dimer

Bound state energies are calculated for a constrained water dimer, where the interac­

tions are represented by the TIP3P water model [25]. Along with the SPC/E model

[26], the TIP3P model is the most widely used water model in simulations of solvated 

biomolecules. The main reasons for their popularity include their ability to deliver a 

reasonable description of the solvation and dielectric properties of water as well as a 

high computational efficiency. Apart from the calculation of energy levels of the water 

dimer, we additionally carry out an investigation of the effect of isotopic substitution 

on the bound state energies in the current work.

The TIP3P water monomer is a three-site model with partial positive charges 

located on the hydrogen atoms and a partial negative charge on the oxygen atom. 

The intermolecular interaction is represented by a Lennard-Jones potential between
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the oxygen atoms and a Coulombic contribution from interacting atomic charges qi 

and qj on monomers, a and b. respectively,

~  '  \  12  /  \  6 "on a on b o

4n £0rij
j J J o o )  \ .ro o )

(4.25)

7\j is the Cartesian separation of two atomic sites and roo is the distance between 

the two oxygen atoms. The values of the parameters used in our calculations are 

provided in Ref. [25].

The effect of isotopic substitution was also investigated in the present work. Both 

monomer geometry of the deuterated TIP3P water model and intermolecular inter­

actions in the dimer are identical to those of H20 .

The B matrix defined in Eq. (4.11) was built from all possible pair distances of 

the water dimer. Subsequent projection of redundancies and constraints yielded the 

desired subspace. The subspace specifically excluded intramolecular motion as well 

as overall rotation and translation. Consequently, the only permitted motions in the 

rigid water dimer were the six intermolecular vibrational modes of motion, i.e., F  = 6.

4.3 .1  C alcu lation  o f  th e  survival am plitu de

The first step of the SC-IVR calculation consisted of sampling initial positions and mo­

menta of the constrained water dimer for the classical trajectories. The Monte Carlo 

method described in the previous section generated initial conditions in mass-weighted 

Cartesian coordinates, which were transformed to non-mass-weighted coordinates and 

further modified to exclude center-of-mass motion and rigid body rotation. A filtering 

procedure was then applied to the sampled initial positions and momenta based on 

their total energies. Highly energetic trajectories that quickly escape the potential 

energy surface and do not contribute significantly to the survival amplitude were cast 

aside. The acceptance ratio resulting from the filtering procedure was greater than 

75%. The sampling of initial conditions for constrained simple atomic clusters was 

previously demonstrated [19, 20]. We show here the first application of our sampling 

method to treat intermolecular interactions in constrained molecular clusters. The
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distributions of interatomic distances derived from a pool of 100 000 sampled initial 

positions are shown in Fig. 4.1.

All unconstrained intermolecular atomic pair distances are distributed about the 

pair distances in the reference geometry, x ref of Eq. (4.9), while the intramolecular 

pair distances are held fixed, as desired, at the equilibrium bond geometries. This 

is further depicted in the three-dimensional representation of atomic densities given 

in Fig. 4.2. In general, the atomic distribution of lighter hydrogen atoms tends to 

be more spread than the heavier oxygen atoms in the water dimer. Compared to 

other hydrogen atoms, the distribution around the hydrogen atom involved in hydro­

gen bonding spans a smaller volume as a result of the localizing effect of hydrogen 

bonding. The survival amplitude was calculated from 10 000 sampled positions and 

momenta, corresponding to bound trajectories, which were classically evolved for 400 

fs. Constrained equations of motion were integrated at intervals of 0.1 fs using the 

Rattle algorithm [27]. The semiclassical calculation was completely carried out using 

computational classes (or routines) we have developed for the molecular modelling 

toolkit (MMTK), an open source program library for molecular simulations [28].

The calculation of the constrained HK prefactor was performed from the sum 

of frequencies corresponding to permissible motions using the approximate method 

described in Sec. 4.2. These frequencies were obtained from the square root of the 

eigenvalues of a projected Hessian matrix computed along the trajectories. At the 

equilibrium geometry, all frequencies are real by definition. However, as the trajectory 

explores the potential energy surface, deviations from the equilibrium geometry can 

give rise to imaginary frequencies. In our calculations, frequencies were determined 

from the absolute value of the eigenvalues, and were therefore always real. This 

reduced the oscillatory behavior of the prefactor and conveniently led to a more rapid 

convergence of the calculations. The performance of this approximation proved to 

be highly comparable to the full approximate form of the HK prefactor in our earlier 

work [20].

The evolution of trajectories and the calculation of the survival amplitude for 

the constrained water dimers were divided on a number of computers. The real and
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imaginary parts of the resulting signal for the water dimer are shown in Fig. 4.3.

4 .3 .2  B ou n d  sta te  en ergies

Bound state energies of the constrained water dimer can be determined from peaks of 

the power spectrum, obtained through the Fourier transform of its survival amplitude. 

The power spectrum and its identified energy levels for the constrained water dimer 

are displayed in Fig. 4.4 and Table 4.1, respectively.

Table 4.1: SC-IVR bound state energies (in kJ mol-1) for (H20)2 and (D20)2 calcu­
lated with reference to the minimum of the potential (De =  —27.36 kJ mol-1).

n (H20 ) 2 (D20 ) 2

0 8.28 6.50
1 10.50 8.71
2 12.61 10.77

We take a closer look at the zero-point energy (ZPE) of the constrained water 

dimer in particular, by comparing the semiclassical value to the value obtained from 

the harmonic approximation, as highlighted in Table 4.2. The harmonic calculation 

considerably overshoots the ZPE with a discrepancy of 87%. Likewise, an overesti­

mation trend was observed in the study of constrained van der Waals clusters [19]. 

A direct comparison of our approach with other available quantum mechanical meth­

ods is unfortunately not possible, since no record of a calculation of the zero-point 

energy of a dimer of rigid TIP3P water molecules was found in the literature. The 

constrained water dimer has been studied, however, using the TIP4P water model by 

the rigid body diffusion Monte Carlo (RBDMC) technique [29]. The harmonic ZPE 

for this model also corresponds to an overestimate of 70% over the reported RBDMC 

value of 9.17 kJmol-1. The similar trends as well as the relatively comparable anhar- 

monicity exhibited by the two calculations indicate the accuracy of our approach in 

capturing the correct quantum effect in the interactions between the water molecules.

Quantum mechanical effects in hydrogen bonded moieties or entities are sensitive
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Table 4.2: Comparison of zero point energies (kJ mol-1) of the water dimer using the 
TIP3P and TIP4P potentials. Energies are given with reference to the minimum of 
the potential.

Water Model Quantum Harmonic A

TIP4P 9.17“ 15.61 70%
TIP3P 8.28 15.46 87%

“Rigid body diffusion Monte Carlo result (Ref [29])

to the mass of the participating atoms and can therefore be probed through isotopic 

substitution. We repeated the SC-IVR calculation of bound state energies for a 

deuterated dimer of rigid water molecules (D20)2- The results are shown in Fig. 4.5 

and Table 4.1. Table 4.3 compares the ZPEs of the intermolecular interaction in both 

the water dimer and its deuterated counterpart. As expected, we observe a lowering 

of the ZPE upon substitution by the heavier isotope. The vibrational motion in a 

diatomic molecule can be described by the Morse potential energy function

E  = De[ 1 -  e/3(re-r)]2 , (4.26)

where De is the dissociation energy, re is the equilibrium bond distance, and f3 is a 

constant specific to the molecule under investigation. The solution of the Schrodinger 

equation for the Morse oscillator yields an expression of the following form for vibra­

tional transitions between two consecutive energy levels, with vibrational quantum 

numbers n and n +  1, respectively

£"n+l<— n En+\ En

=  +  0  hwe +  0  hwex e , (4.27)

where u)e is the (hypothetical) equilibrium frequency of vibration, i.e., the frequency 

of infinitesimal vibrations about the equilibrium point and x e is the corresponding an- 

harmonicity constant. The above equation has found wide applications in the analysis 

of spectroscopic data. It can also be used to fit the calculated bound state energies
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from Table 4.1 to solve for x e and therefore quantitatively provide an estimate of the 

anharmonic contribution to the hydrogen bond vibration. The resulting anharmonic 

constants for the intermolecular interactions of the constrained (H20 ) 2 and (D20 ) 2 

water dimer are 0.024 and 0.034, respectively, indicating greater anharmonicity in the 

latter over the former. Table 4.3 contains the SC-IVR along the harmonic results for 

both isotopes for comparison purposes.

Table 4.3: Comparison of SC-IVR and harmonic zero point energies (kJ mol"1) of 
(H20 ) 2 and (D20 ) 2. Energies are given with reference to the minimum of the poten­
tial.

System SC-IVR Harmonic

(H20 ) 2 8.28 15.46
(D20 ) 2 6.50 15.43

4.4 Conclusions

We previously reported the development of a general approach for the treatment of 

geometrically constrained systems in SC-IVR calculations in Cartesian coordinates. 

Early applications of our method successfully reproduced the ZPE and higher energy 

levels of constrained small van der Waals clusters. In this work we applied, for the 

first time, our approach to the determination of bound state energies of a constrained 

molecular cluster. We also report a more accurate way of generating the projected 

Hessian matrix from which the time-dependent constrained HK prefactor is evalu­

ated. The present calculations included a gradient correction term to account for 

displacements away from the equilibrium geometry.

ZPEs and excited energy levels were calculated for a dimer of rigid TIP3P water 

monomers and its deuterated counterpart. We assessed the accuracy of our method 

by comparing with an existing ZPE calculation of the constrained dimer and by in­

vestigating the effect of isotopic substitution on the ZPE. Comparison of our results
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with the harmonic oscillator model shows a reduction in ZPE. The reduction is in 

good agreement with the decrease observed in the ZPE of the constrained TIP4P 

water dimer, thus demonstrating the correct predictive ability of our approach. This 

is further supported by the observation of the expected reduction in the ZPE of 

the deuterated dimer upon isotopic substitution. A quantitative measure of the an- 

harmonicity, given by the anharmonicity constant, was determined from the Morse 

oscillator model. The results indicate the deuterated dimer possesses a stronger an- 

hamonic character than the lighter isotope dimer.

The positive results of the present work on the application of SC-IVR to a con­

strained molecular dimer in Cartesian coordinates opens the way to the treatment 

of larger clusters and molecular systems, in general, with the same method. The 

time-averaging approach of Kaledin and Miller [30, 31] is particularly appealing for 

systems of higher complexity. The straightforward implementation of our constraint 

techniques in that context is currently being carried out. An immediate application 

of interest is the extension of the present study to larger constrained water clusters. 

Other possible applications include real-time quantum spectroscopic and kinetic stud­

ies.

83

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



0.2 0.3
distance (nm)

0.40.1 0.5

0.3
distance (nm)

0.40.2
distance

0.5

/v

distance (nm)

Figure 4.1: Distribution of atomic distances for (H20)2 for the pairs (a) XH1, (b) 
XE2,  and (c) Y O l ,  where X = 0 1 , HI or H2, H3, 0 2  and H4 and Y =  HI and H2, 
H3, 0 2  and H4 in this order, from left to right. Atomic labels on each of the two 
water monomers are HI, H2, and 01  and H3, H4, and 02 , respectively. Distributions 
of intramolecular pair distances are truncated along the vertical axis for clarity.
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Figure 4.2: Three-dimensional atomic densities generated from sampled positions of 
the water dimer wave function.
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Figure 4.3: (a) Real and (b) imaginary parts of the survival amplitude for (H20 ) 2.
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Figure 4.4: Power spectrum showing the bound state energies of (H20 ) 2.
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Figure 4.5: Power spectrum showing the bound state energies of (D20)2-
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Chapter 5 

Quantum molecular dynamics from  
a single trajectory

A rtic le  4. Semidassical initial value representation treatment of hydrogen bonded 

complexes of rigid molecules from a single trajectory in Cartesian coordinates 

Reused with permission from Bilkiss B. Issack and Pierre-Nicholas Roy, Journal of 

Chemical Physics, su b m itte d  (2007). Copyright 2007, American Institute of Physics.

5.1 Introduction

Correlation functions are a versatile group of functions which offer a means of probing 

dynamical systems. Quantum mechanically, they are generically given as

C(t) = ^ T r  le-P"Beif{t/hA e -iflt/h} , (5.1)
Zj l j

where e~@H is the thermal density operator, Z  = Tr(e~:3H) is the partition function, 

and elHt/nAe~tHt^n — A (t) is the Heisenberg representation of operator A. The exact 

expression for a correlation function depends on the property investigated. For exam­

ple, the rate constant of a reaction can be determined if the operators A  and B  corre­

spond to the flux operator. Similarly, the velocity autocorrelation (i.e., A = B  = v) 

provides insight about transport properties.

Semidassical initial value representation (SC-IVR) [1, 2] is a method of performing 

quantum dynamics based on classically determined variables. A simple and practical 

approach, the Herman-Kluk (HK) version in particular [3], holds great promise for the
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investigation of dynamical properties (via the calculation of correlation functions) in 

large molecular systems, a class of chemical entities that falls outside the capabilities 

of current quantum dynamical methods.

SC-IVR calculations call for the integration of an oscillating function, with an 

oscillatory behaviour which increases with the system size. As a result, the num­

ber of trajectories required in order to achieve converged results grows as a function 

of the complexity and dimensionality of the problem. One foresees therefore, that 

the treatment of large complex molecular systems by SC-IVR will eventually become 

impractical. Recent developments have been geared towards optimizing SC-IVR cal­

culations with the objective of extending the applicability of the method [4, 5, 6 ]. To 

this end, we proposed a means of reducing the computational cost associated with the 

generation of classical trajectories via the introduction of constraints in SC-IVR by 

reducing the effective number of degrees of freedom. Originally formulated for inter­

atomic interactions [7, 8 , 9], we recently extended our method to treat intermolecular 

interactions between rigid molecules [10]. Calculations are performed in Cartesian 

coordinates with the purpose of keeping a general approach. We point out that 

constraints are ubiquitous in classical molecular dynamics and easily implemented 

through well-developed existing constraint techniques in Cartesian coordinates. The 

integration of our approach into molecular dynamics software therefore comes at a 

very affordable price.

Kaledin and Miller [6 ] proposed an alternative method of performing SC-IVR cal­

culations which involves the time-averaging of correlation functions. They showed 

that, while introducing no additional approximation per se, the time-averaging pro­

cedure conveniently led to a reduction in the number of trajectories required for 

convergence though an inherent smoothing of the traditionally oscillatory integrand. 

The method was tested through the calculation of the bound vibrational states of sim­

ple molecules such as hydrogen and water. Going to the extreme, single trajectory 

calculations were sufficient in some instances, in producing reasonably accurate zero- 

point energies (ZPEs), although the resulting excited state energies were reported to 

be of poorer quality.
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In this work, we combine our constraint approach with the time-averaged (TA) 

SC-IVR with the aim of investigating the possibility of furthering the gain in com­

putational time. More specifically, we calculate the ZPE for a dimer of rigid water 

molecules, (H2 0 )2 , using the TA single trajectory method and compare our results 

to the traditional constraint calculations of Ref [10]. Previous applications of TA 

SC-IVR have considered exclusively single molecules. To our knowledge, this work 

represents the first application to intermolecular problems.

The article is organized as follows. Sec. 5.2 outlines the theory behind the time- 

averaging procedure and is followed by a description of the constrained water dimer 

and of the computational methods in Sec. 5.3. We also present and discuss results of 

the ZPE calculations in the same section. Concluding remarks can be found in Sec. 

5.4.

5.2 Theory

In the current work, the quantity of interest is a particular type of correlation function 

called the survival amplitude

C(t) = . (5.2)

This quantity is calculated for a constrained molecular system, described by the wave 

function Tj, evolving according to the Hamiltonian of the system H c. From the 

survival amplitude, it is possible to extract the eigenvalues of the Hamiltonian via a 

simple Fourier transform

1 r°°
m  =  dt e C(t) . (5.3)

Using the SC-IVR formulation of the propagator in coherent-state representation

[1.3]

„-<««</« = j  J  d p f d q f ^ e ^ v / ^ J ^ J  , (5.4)

one arrives at the following expression for the survival amplitude of a constrained
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molecular system with F  degrees of freedom

C(t) =  (2* R ) - r J  J . (5.5)

The integration variables q- and p i correspond to constrained initial positions and 

initial momenta respectively from which constrained classical trajectories are gener­

ated. (/p.qj and grViat are the coherent-state bases prior to and after time evolution.*ptqt
These are minimum uncertainty wave packets which are Gaussian in position and 

momentum space with average values of q? or q£ and p i or p£ respectively. They 

have the following general form in the position representation:

(X|3pq) «  eXP - y ( x - q c)2 +  ^pc( x - q c) (5.6)

where qc is a matrix defining the widths of the Gaussian for the constrained system. 

The quantities Sptq.t and RpiCut are computed along the trajectories. Specifically, 

S S . f is the classical action calculated as

cc _Pi<iit f  dt' [pct, ■ q£ -  H] , 
Jo

(5.7)

and Rpiqit is the HK prefactor, a quantity related to the stability of the trajectories,

defined by Herman and Kluk [3] as

D C  _
PiQit

£>q,c , dpi i"fh-dqt i d p 1/2

(5.8)
dqi dprl dpi ~(h dqct

Traditionally, the multidimensional integral in Eq. (5.5) is evaluated by Monte 

Carlo sampling of initial conditions. For a constrained molecular system, extra care is 

required to ensure that the initial conditions do not violate the constraints. We previ­

ously reported on the development of a method that allows for constrained sampling 

of initial conditions [8 , 10]. In this work we investigate an alternative formulation of 

the SC-IVR expression for the survival amplitude which is based on a time-averaging 

procedure [6 ]. Kaledin and Miller showed that any quantity determined from the 

phase space average

B  = J  dpi J  dqi A Piqi , (5.9)
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can be re-expressed in a time averaged form

BTa =  J  dpt J  dqt ^  J  dt A Ptqt . (5.10)

By analogy, the correlation function can be written as

C(t) = J  dpi J  dqi DPiClitt = J  dpi J" dqi — J" dt\ Dpt^ t  ̂ i . (o.ll)
Using the above formulation, the TA survival amplitude for a constrained system is

explicitly given by

CTA(t) =  ( 2 *h)-F J  j d p ' d q A f  dhRlr T
?c

P t j  q t j  12

x (5.12)

where t 2 =  ti + 1 and

Pt, = P̂ P̂ .Qi)

p t2 = ptc2(Pi,qf) =  p?1 +t(p,?,qi)

Qn = dt, (p"- qD

Qt2  =  q tc2 (Pi,q") =  q?1 +t(p<,q,?) • (5.13)

In words, (p£ , q [ j) are the constrained phase space variables which have evolved from 

initial conditions (p£.,q£ ) over the time period t\ while (p£2,q£2) have evolved from 

the same initial conditions for a total time U +t. The action „ . is now calculated

along trajectories running to t 2  with U as time origin
ft2

(5.14)
Ju

The current calculations were performed using an approximate form [4] of the HK 

prefactor rather than its formal definition given in Eq. (5.8). We previously showed 

that the approximate prefactor performed well for constrained atomic trimers [8 , 9]. 

The same prefactor was utilized in the determination of bound states of water clusters 

using the traditional constraint approach in Ref. [10]. Rptlqtlt2 is given by

Rp i i q t l * 2  ~  exP h

rz 2  *
/  d i 'E
Jt i  j = i
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The sum in the expression runs over the number of normal modes of vibrations. 

ujj(t') is the frequency corresponding to the j- th  unconstrained mode and is deter­

mined from the eigenvalues of a projected matrix of force constants. We employed 

the projection methods of Pulay and Fogarasi (Ref. [11]) and Ayala and Schlegel 

(Ref. [12]), to exclude the constrained modes from the normal modes analysis. The 

projection procedure has been thoroughly discussed elsewhere [10]. A noteworthy 

point regarding the approximate form of the prefactor is that it is equivalent to the 

separable approximation discussed in Ref. [6 ]. In the current work, the prefactor 

is calculated with an additional rather ad hoc approximation where is always

real. The latter form is advantageous for practical reasons since by construction, it 

possesses a smoother integrand.

Although time-averaging of the integrand necessitates an additional step in the 

SC-IVR calculation and may deceivingly suggest an increase in the computational 

cost, Kaledin and Miller mention that the effect is actually quite the opposite [6 ]. 

Since the time-averaging process leads to a smoothing of the integrand, fewer trajec­

tories are, in principle, required to converge the calculations.

5.3 M eth od s and R esu lts

Calculations were performed for (H2 0 ) 2  using a rigid TIP3P water model. The con­

strained system has six degrees of freedom corresponding to the intermolecular vi­

brational modes of motion. The TIP3P water monomer is a three-site model with 

partial positive charges located on the hydrogen atoms and a partial negative charge 

on the oxygen atom. The intermolecular interaction is described by the sum of a 

Lennard-Jones potential between the oxygen atoms and a Coulombic contribution 

from interacting atomic charges q-L and qj on monomers, a and b respectively,

12on a on b 9

^ - E E ^ ^ 1 \  - )Too) \ r o o J
(5.16)

r,j is the Cartesian separation of two atomic sites and roo is the distance between 

the two oxygen atoms. Using values from Ref. [13] for the parameters, the energy at
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the equilibrium geometry (De) was calculated to be -27.36 k j mol-1.

The calculations were completely carried out using the molecular modelling toolkit 

(MMTK), an open source program library for molecular simulations [14]. In particu­

lar, a single trajectory was generated from an initial condition (p?, q?) corresponding 

to the average values of the coherent-state parameters and chosen as a zero mo­

mentum vector and the equilibrium geometry respectively. Constrained equations of 

motion were integrated with the RATTLE algorithm [15] using a time step of 0.1 fs. 

A correlation length of only 80 fs was sufficient to catch the ZPE. The correlation 

functions were then time-averaged and Fourier transformed to extract the ZPE. Fig­

ure 5.1 shows an example of a power spectrum with a unique peak corresponding to 

the ZPE of the intermolecular vibration of the water dimer. To reduce noise levels, a 

Gaussian smoothing function was applied to the TA correlation function prior to the 

Fourier transform

1 7 0 0

I(u ) = -R e  /  dt eiuJt CTA(t) e- " ' * 2  , (5.17)
n  Jo

where the parameter a  determines the degree of smoothing.

As mentioned earlier, traditional SC-IVR calculations require the time evolution 

of a pool of sampled initial conditions representive of the initial wave function. In TA 

SC-IVR, the phase space points corresponding to the time origins of the correlation 

functions provides an analogous representation of the initial wave function. Figure 

5.2 displays the wave function from over 500 000 positions visited during the phase 

space exploration of the trajectory. We note a similarity between the distributions 

of the atomic positions during the dynamics and the distributions of sampled initial 

atomic positions reported in our recent study [10]. In particular, the distributions of 

the two hydrogen atoms on the left display identical delocalization, as a consequence 

of their equivalency, while the hydrogen atom directly involved in hydrogen bonding 

is more localized in space. All distributions are consistent with the bond and bond 

angle constraints imposed on the water molecules. The time-averaging length T  

for the constrained water dimer was determined at 50 ps from a convergence plot 

of the variation of the ZPE (reported with respect to De) with T  as displayed in
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Figure 5.1: Zero-point energy determination from the power spectrum in kJ mol- 1  

for T —0 (i.e., no time-averaging).

Fig. 5.2. The resulting ZPE has a value of 8.33 kJ mol- 1  and compares favourably 

to our previously reported value of 8.28 kJ mol-1. We therefore conclude that the 

single trajectory fares reasonably well at describing the ZPE. We also point out that 

simulations run time for the TA calculations were shortened by an order of magnitude 

when compared with our original constraint SC-IVR approach.

5 .4  C o n c lu sio n s

We report the first successful implementation of our previously developed constraint 

technique [8 , 9, 10] in the context of TA SC-IVR to treat geometrically constrained 

systems in Cartesian coordinates. We show that the method affords a reasonably 

accurate prediction of the ZPE of the water dimer. Although the present study has
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Figure 5.2: Three-dimensional atomic densities generated from the dynamical sam­
pling of positions along the trajectory.

focused on the calculation of the ZPE, it can directly be extended to the extraction 

of excited state energies by simply modifying the initial wave function and increasing 

the correlation time. A significant practical benefit of the approach is the relatively 

low cost of carrying out the calculations. Compared to regular SC-IVR calculations, 

the computational effort is doubly reduced: through the inclusion of constraints and 

through the time-averaging procedure. Thus, the current work represents a new and 

fruitful attempt at improving the practicality of SC-IVR with the purpose of treating 

systems of high dimensionality and complexity.
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Figure 5.3: Convergence of ZPE in kJ mol 1 with time-averaging length T. The 
horizontal line represents the ZPE obtained from the full SC-IVR calculation of Ref. 
[10].
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Chapter 6 

Conclusions

The dynamical behaviour of atomic and molecular systems can be accurately de­

termined in principle by solving the Schrodinger equation. In practice though, the 

exponential scaling plaguing real-time exact dynamical methods limits applications to 

small system size. It is hoped that continuing developmental efforts and the increas­

ing computational power and memory will allow the treatment of larger and larger 

molecules of interest in the future. However, unless a method is developed with a 

non-exponential scaling, the treatment of large complex molecules will remain outside 

the boundaries of quantum dynamics in the foreseeable short term.

This bitter reality has motivated the development of alternative approximate 

methods which allow for the description of key quantum effects in systems that are 

untreatable by quantum mechanics. We provided in Chapter 1 a brief review of a 

few approaches developed to that effect. In general, these techniques have been suc­

cessfully tested and benchmarked against exact quantum mechanical calculations for 

small systems. The challenge currently lies in the extension to larger systems. In our 

view, SC-IVR represents a particularly promising approach for the treatment of prob­

lems of high complexity and dimensionality. Based on the ingenious incorporation 

of quantum mechanical effects into classical simulations, the method conveniently 

takes advantage of existing well-established tools (developed for classical MD) with­

out re-inventing the wheel. However, one is forced to recognise that the applicability 

of SC-IVR in terms of system size is well under that of classical MD. In the latter 

approach, the computational burden associated with large system sizes is commonly
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alleviated via the introduction of constraints. Prior to our work, a rigourous and 

general way of constraining degrees of freedom in molecular systems was lacking in 

SC-IVR. Our contribution towards extending the applicability of SC-IVR is precisely 

the development and implementation of a general method that allows for the treat­

ment of geometrically constrained systems in SC-IVR. The generality of the approach 

draws on the fact that calculations are performed in Cartesian coordinates.

We presented in Chapter 2 the theoretical formalism we have developed to include 

constraints in a Cartesian formulation of the SC-IVR. This chapter also includes pro­

posed algorithms for the practical implementation of the theory. In order to test our 

new theoretical and methodological developments, we presented a benchmark appli­

cation to model systems consisting of free and constrained van der Waals clusters, 

modelled by the Lennard-Jones potential. For such systems, exact quantum mechan­

ical calculations are possible and thus provide a way of assessing the accuracy of the 

new approach. Comparison of results revealed that the constraint SC-IVR was able 

to correctly catch the reduction in ZPE upon inclusion of constraints. In Chapter 

3, we achieved an important step by demonstrating how our new approach could be 

extended to the calculation of bound excited state energies and we further illustrated 

the correct predictive ability of our ideas via the reproduction of the exact quantum 

mechanical bound state energies. The positive benchmarking tests for the atomic van 

der Waals clusters led to further developments and extension to molecular systems. 

Following a successful implementation, we presented in Chapter 4 the calculation of 

intermolecular vibrational energies for a dimer of rigid water molecules, the archetyp­

ical hydrogen bonded cluster, using the TIP3P water model [1]. In this case, exact 

quantum calculations of the bound state energies were unfortunately not available 

for comparison. Instead, we compared our results with the exact zero-point energy 

of the intermolecular vibration of a water dimer computed using a slightly different 

model from the same family [2] and concluded that the method performed well. In 

keeping with our efforts towards making quantum dynamical methods, SC-IVR in 

particular, applicable large complex systems, we combined the constraint technique 

with a recently proposed time-averaged version of the SC-IVR [3]. Being computa-
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tionally cheaper, the latter approach has been qualified by its developers as a method 

which “goes a long way towards making such calculations practical for molecular sys­

tems of an interesting size ” [3]. We showed in Chapter 5 that the implementation of 

constraints in TA SC-IVR enables the determination of the ZPE to reasonable accu­

racy while further reducing the simulation run time, thus amplifying the preceding 

statement.

Before concluding this section, it is appropriate to point out that for small sys­

tems such as the argon clusters, constraint SC-IVR presents no gain in computer time 

compared to full quantum calculations. In fact, for such small systems exact quantum 

mechanical methods are by far more advantageous, both in terms of accuracy and cost. 

However, the computational effort associated with exact methods (which exhibit an 

exponential dependence on system size) quickly outgrows the linearly scaled SC-IVR 

as the number of atoms increases. Consequently, SC-IVR remains a perfectly viable 

option for the target systems of high complexity and dimensionality. The computa­

tional bottleneck of SC-IVR calculations in general rests with the evaluation of the 

HK prefactor: a diagonalisation is required at each timestep. For constraint SC-IVR, 

the HK prefactor is obtained from a hessian of reduced dimensionality as forbidden 

modes are projected out. In other words, the computational effort associated with the 

determination of eigenvalues and eigenvectors of the hessian is lowered. However, part 

of the difficulty is transferred elsewhere, namely to projection procedure, which also 

involves either a singular value decomposition or an additional diagonalisation. In 

this respect, an alternative formulation of the constraint HK prefactor with improved 

efficiency is perhaps desirable from a technical point of view.

6.1 Complementary discussion of the results

In this section, we provide a discussion of the results which is complementary to 

the contents of the earlier chapters. The successful treatment of atomic as well as 

molecular clusters is extremely encouraging for future applications of our constraint 

approach to larger systems. So far the accuracy has been gauged with respect to cal-
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culated results from exact quantum mechanical methods. Besides accuracy, generality 

is another non-negligible requirement in making a method truly practical. According 

to Christopher Cramer, “The generality of any given model can only be established 

by comparison to experiment for a wider and wider variety of systems.” [4]. While 

also pertinent to theoretical/computational methods, comparison to experimentally 

determined data is often not as simple a procedure as one might think, particularly 

in the testing phases of a newly developed approach. Models tend to be simplistic 

and often prohibit direct comparison with experiments. Alternatively, other systems 

such as the weak van der Waals clusters encountered in Chapters 2  and 3 are very 

challenging to probe experimentally and can sometimes only be studied theoretically.

6.1 .1  van der W aals c lu sters

The particular issue of weakly bound clusters is addressed by Karlicky et al. in a 

recent article: “Experimental spectroscopic studies of small neutral argon clusters are 

difficult, due to the small optical activity of these species. The dimer has no electric 

dipole and no infrared spectra can be measured for these systems” [5]. However, the 

Raman [6 ] and ultraviolet electronic spectra [7] of the dimer have been measured; 

the latter is compared to results previously presented in this thesis in Table 6.1. 

Comparison with the experimental measurements indicates a systematic blue shift 

in our calculations by ~  0.4-0.5 kJ mol-1. There are two main reasons for the dis­

crepancies: the limitations of the method and of the model. Being an approximate 

method, SC-IVR is inherently limited in accuracy due to its use of classically obtained 

quantities to achieve a quantum mechanical description of the dynamics of systems. 

Similarly, the Lennard-Jones potential provides a good description of the interactions, 

but is certainly not the best available model. However, the use of the most accurate 

model was irrelevant since the objective of the test was to gauge the accuracy of the 

method rather than the reproducibility of experimental data. For that reason, com­

parison with exact quantum mechanical results remains the best criterion in judging 

the performance of the method for the model systems.

Regarding the argon trimer, Karlicky and co-workers write that “the trimer does
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Table 6.1: Comparison of the predictions of our method using the Lennard-Jones 
potential with experimentally determined vibrational spacings for the argon dimer in 
kJ mol-1.

Do
SC-IVR

0.85
Experiment “ 

1 . 0 1

Transition

v =  0  -»• 1 0.31 0.26
v = 1  ->• 2 0.25 0 . 2 1

v = 2 ^ 3 0.19 0.15

“Vibrational spacings of the argon dimer determined by vacuum ultraviolet laser spectroscopy 
by Herman et al. [7]. Error bars are on the order of 1 x 10-4  kJ mol- 1 .

have a small electric dipole for configurations distorted from the equilibrium equilateral 

triangular one. This dipole results mainly from the interaction of each of the three 

polarizable Ar atoms with the electric field created by the exchange quadrupole of 

the two other overlapping atoms. These three electric fields cancel for equilateral 

triangular configurations. We are not aware of experimental spectroscopic studies for 

the trimer of any type, infrared, Raman or ultraviolet.” [5]. The constrained trimers 

are evidently non-physical and hence cannot be hoped to be studied experimentally.

6 .1 .2  W ater clusters

The intermolecular hydrogen bonded interaction between water molecules has been 

studied by Curtiss and co-workers back in 1979 [8 ]. The authors determined the en­

thalpy of association (alternatively the dissociation energy) of a water dimer through 

thermal conductivity measurements. They additionally calculated the electronic bind­

ing energy from the experimental enthalpy by applying corrections for vibrational, 

rotational and translational motions. Their study considered both (H2 0 ) 2  and its the 

deuterated cluster (D2 0 )2 - A comparison of their determination of the ZPE with the 

SC-IVR results is provided in Table 6 .2 . The table compares the calculated ZPEs 

of the intermolecular interaction between H2 O molecules and D2 O molecules with
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their experimentally determined counterparts. As expected, we observe a lowering 

of the ZPE upon substitution by the heavier isotope. The large error bars on the 

experimental data unfortunately do not allow us to comment further on the effect of 

isotopic substitution or on the accuracy of the results.

Table 6.2: Comparison of SC-IVR ZPEs of (H2 0 ) 2  and (D2 0 ) 2. Energies are given 
in kJ mol_1with reference to the minimum of the potential.

System SC-IVR Experiment0

(H2 0 ) 2 8.28 7.74 (±  2.9)
(d 2 0 ) 2 6.50 7.45 (±  2.9)

“Experimental values of ZPE are determined from equilibrium and zero-point dissociation energies 
from thermal conductivity measurements by Curtiss et al. [8]

Now that we have rigourously tested the method for a correct description of the 

bound state energies for several weakly bound clusters, it can be extended to more 

realistic (and typically larger) systems of interest for the prediction and assignment 

of spectroscopic data. Examples of such applications are discussed below in Sec. 

6 .2 . Although studies of the novel constraint SC-IVR considered in this thesis have 

focused on calculations of eigenvalues of the Hamiltonian, they are in no way restricted 

to such investigations. In principle, its applicability encompasses the multitude of 

problems that are traditionally studied through SC-IVR and even extends beyond, 

since constrained and larger systems can additionally be treated. Even more powerful 

in terms of potential for applications is the method’s ability to determine the wave 

function itself as a function of propagation time. As the wave function completely 

defines the state of a system, virtually any property of interest can be calculated.

6 .1 .3  Softw are d evelop m en t

A significant portion of the work involved in this thesis has required the development 

and implementation of algorithms and computer codes. As mentioned previously,
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computer software codes were designed and programmed T The majority were im­

plemented within the MMTK framework [9]. We present in Appendix C a compilation 

of some of the key methods and classes, with an accompanying documentation. The 

run times of simulations performed on a parallel computer cluster varied from hours 

to days, depending on the system and the type of calculation. Parallelization of the 

computational effort resulted in a huge practical gain; many of the calculations would 

have been unrealistically slow on single processors.

6.2 Future Directions

In the last part of the thesis, we offer suggestions for two possible future applications 

of the developed constraint SC-IVR approach to systems currently in need of compu­

tational work in order to rationalize experimental observations and measurements.

6.2 .1  Larger w ater clusters: th e  hexam er

As a first application, we propose the direct extension of the constraint SC-IVR 

study of the water dimer to larger water complexes. The motivation behind exper­

imental and computational investigations of water clusters lies in the fact that the 

acquired information permits us to systematically untangle the intricacies associated 

with cooperative hydrogen bonding and promises to lead to a more complete molecu­

lar description of the liquid and solid phases [10]. Among larger water clusters, the 

water hexamer in particular, presents several features which make it an interesting 

candidate. Calculations on the stability of the hexamer have revealed the existence of 

several stable conformers including the book, boat, cage, cyclic and prism structures, 

all within close energetic proximity [11]. Three isomers of the water hexamer are 

depicted in Fig. 6.1.

The first experimental measurement of the water hexamer by far-infrared laser 

supersonic jet spectroscopy identified a cage structure [1 1 , 1 2 ] in agreement with 

RBDMC calculations [11, 13, 14] and an independent spectroscopic characterisation 

1For this project, over 10000 lines of code were written in python  and C +  +  by the author
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Figure 6.1: The cyclic, book and boat conformations of the water hexamer, courtesy 
of N. Oro, unpublished (2005).

also using slit-jet techniques [15]. Smaller clusters ranging from the dimer to the 

pentamer display cyclic structures with two-dimensional hydrogen bond network as 

their most stable conformer while the hexamer presents a stable three-dimensional 

cage structure. Representing a transition point, the cage has been proposed as a model 

to quantify the intermolecular forces and hydrogen bond rearrangements that occur 

in condensed phases (i.e., liquid water) via studies of its structural and dynamical 

properties. More recent spectroscopic investigations of the hexamer trapped in liquid 

helium droplets [16], solid para-hydrogen matrices [17] and solid neon matrices [18] 

all reveal a stable cyclic conformation. Attempts to explain the discrepancy have 

highlighted the role of the conditions under which the clusters are generated [16, 19]. 

It has been suggested that the isomerization of the book, cage and cyclic conformers 

holds the key to the puzzle. For a better understanding, the book «-► cage *-> cyclic 

interconversion needs to be studied in more details by including quantum effects, since 

the energy ordering is sensitive to the inclusion of the ZPE [11, 19].

As a first step, the constraint SC-IVR calculation of the water dimer could be ex­

tended to the hexamer for the determination of the relative stabilities of the different 

isomers. The previously used TIP3P water model [1] is however inadequate at the 

level of the hexamer since it fails to describe the cage structure. A more accurate 

intermolecular potential is required; TIP4P [1] would be a good starting point since
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it has been used in previous studies of the hexamer [20]. As part of a more in-depth 

study, the isomerization process and the timescales of hydrogen bond rearrangement 

in particular can be investigated via the calculation of the flux-flux correlation func­

tion. The single-trajectory approach is especially appealing in this situation since it 

can be used in conjunction with “on-the-fly” techniques.

6 .2 .2  CH+

Although first characterised in the 1950’s by mass-spectrometry [2 1 ] protonated methane, 

CH5+, was considered until recently [22, 23], as “one of the Holy Grails of rotational- 

vibrational molecular spectroscopy” [24]. Due to its unique properties, the molecule 

has generated massive interest, both from the experimental and theoretical view­

points. CH5+ has no real (fixed) structure, rather, it is a fluxional molecule constantly 

undergoing structural rearrangements or scrambling of hydrogen atoms at room tem­

perature. The global minimum on the PES can be described as a CH3  tripod with an 

H2  moiety connected to the carbon atom in an eclipsed configuration [24], The PES 

additionally contains several low-lying stationary points, all of which are accessible 

upon the inclusion of ZPE [25, 26, 27], thus explaining the floppy nature of the system. 

Figure 6 . 2  illustrates the delocalization of protons in the CH3  tripod and in the H2  

unit. Besides its peculiar structural properties, it also displays unconventional bond­

ing: three-centre two-electron bonding in the equilibrium geometry. Consequently, 

CH5+ represents the dual prototype of this type of bonding and of hypercoordinated 

carbon compounds.

The first resolved IR spectrum of bare CH5+ measured in 1999 was reported 

virtually unassigned [22]. The fluxional nature of the molecule obscures the identi­

fication of the ro-vibrational modes and complicates the assignment of the recorded 

spectrum. The challenge of assigning the spectrum of CH5+ was finally tackled via 

simulations based on ab initio dynamics [23]. The vibrational spectrum was calcu­

lated from the classical dipole-dipole correlation function, with a quantum correction

[28]. The low-frequency region of the spectrum was not recorded due to limitations of 

the experimental technique [23]. As a result, the scrambling dynamics were probed
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Figure 6.2: The delocalisation of the hydrogen atoms in CH5

during classical simulations via artificial cooling, i.e. at a low temperature. The 

cooling procedure however, is accompanied by a slowdown in the rate of proton ex­

change, consequently providing a slightly distorted picture of the scrambling process. 

The method developed in this thesis, on the other hand, provides a more accurate 

way of probing the fluxionality of CH5+ without affecting the scrambling dynamics 

and yet avoiding the interference of stretching modes by constraining the CH bonds. 

We propose to investigate the delocalization of hydrogen atoms through the extrac­

tion of the dynamical wave function by SC-IVR using a recently developed ab initio 

potential [29]. In addition, the low-frequency vibrational spectrum can be directly 

predicted from the semidassical calculation of the dipole-dipole correlation function 

C(t) =  ( ) ) .

We have discussed here two possible applications of the constraint SC-IVR ap­

proach presented in this thesis. The technique could also be applied to gain insight 

into the dynamics of a rotating rigid molecule inside superfluid environment or any 

quantum system, in general, where constraints are of relevance.
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A ppendix A  

W K B approximation

The material presented here is adapted from Refs. [1, 2].

The one-dimensional time-independent Schrodinger equation

d2%l> p2(x) ;-_ n
dx* + ~

where the momentum p(x) is classically given by

p(x) = y/2m (E  -  V(x)) , 

has solutions of the general form

^ ( x ) =  eiS{x)/h .

Substituting the above expression in Eq. (A.l) yields,

S'2 iS" p2(x) n
 1 1- =  0

h2 h n2

which is still a non-linear differential equation and therefore no 

original Schrodinger equation. In the semiclassical limit h —► 0, 

expand the function S(x) in terms of h,

s = s0 + hs1 + h2s2 + . . . ,

and re-write Eq. (A.4) after grouping like powers of h as

[ - S ' 2  + P 2 (x)] +  h{-2S'0S[ +  zS''] +  fi2 [ - 2 S 'S ' -  S ^ 2  +  iS'l] +
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(A.2 )

(A.3)

(A.4)

simpler than the 

however, we can

(A.5)

... =  0  . (A.6 )
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Equating all the coefficients of the different powers of h to zero leads to the following 

equations for the zeroth order term

respectively. By combining Eq. (A.9) and (A. 10) we construct the WKB wave func­

tions as two linearly independent solutions

This result was obtained from the time-independent Schrodinger equation and is 

therefore an approximation to the stationary state. In order to describe dynamical 

systems, however, the wave function requires a time dependence, which is achieved by 

including a time-dependent phase factor. The resulting time-dependent WKB wave 

function becomes

where E  is the conserved energy of the trajectory. Noting that the phase S(x. t ) can 

be re-written as

leads to the conclusion that the phase is simply the action along the classical trajec­

tory. The WKB wave functions therefore are ‘classical wave functions’ which satisfy

S'02 =  p \x )  , (A.7)

and the linear term

Si +  i(SS/2Si) (A.8 )

with solutions

(A.9)

and

(A.10)

(A.11)

e ±7? f p ( x )d x - j r E t (A.12)

T - V (A.13)
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exactly classical equations of motion and approximately the Schrodinger equation Eq. 

(A.l). The results are valid as long as the condition

dX
dx

<  27T (A.14)

holds true. X(x) is the de Broglie wavelength given by 2nh/p(x). The condition is 

satisfied for potential energy functions that vary smoothly with x  and unfortunately 

breaks down at turning points since the classical momentum is zero.
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A ppendix B 

Van V leck’s Propagator

For simplicity, we derive an expression for van Vleck’s propagator for a one-dimensional 

problem and later generalize for the multidimensional case. Note that the derivation 

presented here is not the actual work of van Vleck, which is unfortunately too complex 

for me to decipher. An alternative derivation taken from Ref. [1] is offered. Consider 

the path integral expression (see Sec. 1.5) for the transition amplitude K (x ,y , t )  in 

one dimension

K (x ,y , t )  = (x\e~iHt/n\y)

= (dsAifV"11'" /  d X N - ' e i S i   ' (ai)
where

JV-1

S{x ,y ,t)  = ^  At)
i = 1 

N —l

= ^ } Xi ~Xi~̂2 ~ Atv(x̂  ’ (B -2) 
i=i

is the classical action evaluated for all paths connecting x  =  Xo, x i , ..., rrjv-i, — 

y. In the semiclassical limit of h —> 0, the phase in the path integral is highly 

oscillatory. Consequently, the most significant contribution to the integral comes 

from classical paths characterised by stationary classical actions Sc, i.e., SSc(x, y, t ) =  

0. Therefore, we apply the Stationary Value Approximation (SPA) which involves 

expanding Sc(x, y, t ) around the stationary phase points to second order. In N  — 1
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dimensions, this corresponds to

S c(x, y, t ) =  Sc(x) -  Sc(xa) + f i x  -  x„)TS"(xcl)(x -  X,, ; (B.3)

where x is an ./V — 1 dimensional vector with components (i = 1, 2, N  — 1), x Q is 

a vector of stationary points and S"(xa) is the second derivative matrix defined as

d2Sc(x)
S ''(x Q) dxidxj (B-4)

Substituting Eq. (B.3) in Eq. (B.l) affords a multidimensional Gaussian integral 

with the following solution

K (x ,y , t ) h - ^ o 'Y^Ac(x,y, t)e  l l ehSĉ x'y' (B.5)

where the sum runs over all classical paths. M c is the number of negative eigenvalues 

of the matrix of the action, S"(xQ) and is called the Maslov index. The amplitude 

A c(x, y, t ) is defined by

(2n h) N - 1

1 / 2

1/2

1 d2Sc(x ,y ,t)  '
2irh dxdy

(B.6)

The final expression for the propagator in the stationary phase for a one-dimensional 

problem is therefore

1 /2

K(x, y, t) SPA E 1 d2Sc(x, y, t) ‘
2itih dxdy

, jrSc(x,y,t) - i M c % (B.7)

where the phase factor e“*4 has been absorbed in the amplitude for simplicity. Sim­

ilarly, the generalization of the Van Vleck propagator to a multidimensional system 

is

K f c ,  x /, t) ( x ^ e ^ ^ x / )

E 1 d2Sc(x.i, x /, t)
_{2nih)F dx-iidxf

1/2
, jrSc(xi ,xf ,t)e - i M c % '
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A ppendix C 

Manual

This section illustrates the software development aspect of this thesis and is intended 

as documentation for future users. Listed in an alphabetical fashion, is a collec­

tion of the modules, their constituent classes and member functions, built from the 

existing MMTK structure and set of computer codes. Original functions and at­

tributes of MMTK are not re-defined here. Relevant documention can be found 

at http://dirac.cnrs-orleans.fr/M anuals/M M TK /M M TK _10.htm l Computer codes 

were written for the most part in the object oriented Python language, supplemented 

with C++ for numerical implementations.

M O DULE : Analysis 

Class: PairD istances

Class calculates the distances between pair of atoms in the universe. By default, the 

distances for all possible pairs are calculated, unless a pairJist specified. In that case, 

distances are determined only for the specified pairs.

Constructor: PairDistances(rmwerse, pairJist= None) 

universe

the system which contains the objects whose pair distances are being calculated
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pair l is t

the list of pairs of atoms for which pair distances are calculated

M ethods:

• getPairDistanceList()

returns a list of distances for all pairs of atoms in the universe

•  get,PairDistancesFromConfiguration(A, D):

writes to a file in the directory D a list of distances for all pairs of atoms in the 

universe corresponding to the geometry specified by the array A

•  getPairDistancesFromArray(A, D)

A  refers to a array of several configurations/geometries. The functions writes to 

a file in the directory D a list of distances for all pairs of atoms in the universe 

corresponding to the geometry. A file is created for each configuration.

Class: Trajectory Analysis

Class extracts data from netCDF (.nc) files into arrays or textfiles.

Constructor: TrajectoryAnalysis(trajectory, nAtoms, D, **options=None)

trajectory

MMTK trajectory file object

nAtoms

an integer corresponding to the number of atoms in the universe

D

the directory where the files are to be written 

** options

option =  ‘Array’ (default option) - writes arrays for positions, velocities, time,
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kinetic energy, potential energy and temperature (in this order), 

option =  ‘Textfile’ - creates Textfiles for each of positions, velocities, time, ki­

netic energy, potential energy and temperature (in this order).

Class: W avefunction

Class generates the wavefunction described by a Gaussian function centered at the 

ref^geometry.

Constructor: Trajectory Analysis (wmherse, ref ̂ geometry, D)

universe

the system which contains the objects whose pair distances are being calculated 

ref-geometry

the geometry about which the wavefunction is centered

D

the directory where the files are to be written 

M ethods:

• inNormalCoordinates(a, nPoints, m in , m ax)

a is the matrix of widths of the Gaussian function and indicates the number 

of normal modes. The function constructs the wavefunction along a normal 

coordinate numerically using nPoints  ranging from m in  to max. As many 

wavefunctions as there are normal modes in a are constructed. Each wavefunc­

tion is written to an array in the directory D

• sampleCoordinates(a)

a is the matrix of widths of the Gaussian function. Function builds the wave­

function by a multivariate Gaussian sampling.
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ClassrAtomic D ensities

Class takes a series of geometries or configurations positions and bins the positions 

of each atom

Constructor: AtomicDensities(umuerse, positions, nAtom s , number _of Jbins, xmin, 

dx)

universe

the system which contains the objects whose pair distances are being calculated 

positions

an array object with dimensions (L x N x 3) where L =  length of array, N =  

number of atoms in system (or nAtom s), 3 (cartesian coordinates: x,y,z)

nAtoms

an integer corresponding to the number of atoms in the universe

number-of.bins

the number of bins (or intervals)

xmin

starting value for binning

dx

the interval or bin size 

M ethods:

•  getJdensity (atomtype, option=None, coordl=None, coord2=None)

the function returns the binned density of positions for the atom given by 

atomtype in 2D or 3D (if 2D binning is desired, the 2 binning coordinates 

need to be specified).

Arguments:
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atomtype -  a string corresponding to the atom type of the atom for which the 

density is binned; atomtype can refer to the symbol (e.g ‘H’) or name of 

the atom (e.g., ‘H I’) in the database entry, 

option -  optional keyword; a string (either ‘3D’ or ‘2D’) specifying the number 

of dimensions in which binning is carried out. Default is 3D binning of 

densities.

coordl -  a string (‘x’, ‘y ’, or ‘z’); only provide this if 2D binning is required. 

coord2 -  see above

•  extract PositionsofSelected Atoms (atomtype)

function extracts and returns the positions of atoms (corresponding to the sym­

bol specified in atomtype) from the positions array, atomtype is a string corre­

sponding to the symbol of the atom in the database entry, for which the density 

is binned.

• extract PositionsofASpecificAtom(Giomtype)

function extracts and returns the positions of atoms (corresponding to the name 

specified in atomtype) from the positions array, atomtype is a string corre­

sponding to the name of the atom in the database entry, for which the density 

is binned

• BinneR_3d()

function performs the 3D-binning of the positions and returns an array (number_ofJbins 

number_of -bins x number -o f -bins)

• BinneR_2d(coordl, coord2)

function performs the 2D-binning of the positions and returns an array (number_of -bins 

number-of-bins). For a definition of the arguments, see getDensity()

M O DULE : Atom ics
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Class: A tom icCollection

The actual distance calculations used in PairDistances() are perfomed in this class.

Constructor: AtomicCollection(universe, objectJist= None) 

universe

the system which contains the objects whose pair distances are being calculated 

pairJist

the list of pairs of atoms for which pair distances are calculated

M ethods:

•  interAtomicPairs(option=None)

returns a list of distances for pair of atoms located on different molecules in the 

universe. If option=‘verbose’, the list includes details of the atoms with their 

fullnames.

•  intraAtomicPairs(option=None)

returns a list of distances for pair of atoms belonging to the same molecule in 

the universe. If option=‘verbose’, the list includes details of the atoms with 

their fullnames.

•  intraAtomicPairs(option=None)

returns interAtomicPairs(option) and intraAtomicPairs(option). If option=‘verbose’, 

the list includes details of the atoms with their fullnames.

Class: A tom icD ictionary

Class creates a dictionary with keys given by entries from list and values given by 

indices

Constructor: AtomicDictionary(universe, list=None)
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universe

the system containing the objects whose pair distances are being calculated 

list= None

The default option uses universe.atomList() [i.e., a list of all atoms in the uni­

verse] as its source for creating the dictionary. Of course, any list of atoms can 

be used.

M O DULE : ConstrainedDynam ics 

Class: C onstraintDynam ics

Class performs the dynamics of constrained molecules via the integration of con­

strained equations of motion (handled by the velocity verlet algorithm)

Constructor: ConstraintDynamics( wmver.se, constraint List, dt. timesteps, filename, 

skip=l)

universe

the system for which the dynamics are performed. It must have a starting 

configuration specified as well as a forcefield that provides the energy, gradients 

and second-derivatives.

constraintList

a list of pairs of atoms between which the distance is constrained based on the 

starting geometry

dt

the timestep in MMTK units (ps) 

timesteps

the length of the trajectory (number of time steps)
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filename

the filename of the trajectory in netCDF format (.nc) 

skip=l

the number of time steps between which trajectory data is written. Default 

value is 1. i.e., all consecutive steps are recorded.

M ethods

• performDynamics()

performs the dynamics and records trajectory data (configuration, velocities, 

energy, thermodynamic, time - see MMTK. Trajectory for description)

•  finaLconfiguration

returns an array corresponding to the geometry of the final step of the trajectory

Class: ConstrainedW aterDynam ics

Class performs the dynamics of constrained water molecules via the integration of 

constrained equations of motion (handled by the velocity verlet algorithm)

Constructor: ConstraintDynamics(nmwer.se, dt, timesteps, filename, constraint_option=‘rigid’, 

skip=l)

universe

the system for which the dynamics are performed. It must have a starting 

configuration specified as well as a forcefield that provides the energy, gradients 

and second-derivatives.

dt

the timestep in MMTK units (ps) 

timesteps

the length of the trajectory (number of time steps)
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filename

the filename of the trajectory in netCDF format (.nc)

constraint _opt ion=‘rigid ’

an optional keyword specifying the type of constraints to be imposed on the 

system. Default option is ‘rigid’. In this case, constraints are set based on 

the database configuration entry (equilibrium geometry of individual water 

molecules). Alternative option is ‘distance’, where constraints are set based 

on the starting geometry.

skip=l

the number of time steps between which trajectory data is written. Default 

value is 1. i.e., all consecutive steps are recorded.

M ethods and A ttributes

• performDynamicsQ

performs the dynamics for the system and records trajectory data (configu­

ration, velocities, energy, thermodynamic, time - see MMTK. Trajectory for 

description)

• finaLconfiguration

returns an array corresponding to the geometry of the final step of the trajectory

M O DULE : Custom  Subspace 

Class: InterA tom icPairD istances

Class constructs displacement vectors corresponding to intermolecular motion only 

(modelled after MMTK.RigidMotionSubspace) for eventual use with a projector. 

Constructor: InterAtomicPairDistances^raTerse, objectJist)
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universe

the system containing the objects for which displacement vectors are deter­

mined. It must have a configuration.

object-list

a list of objects present in the universe between which atomic pair distances are 

determined

A ttributes

• vectors the normalized displacement vectors built from atomic pair distances 

corresponding to intermolecular motion

Class: M ultiW aterPairD istances

Class constructs displacement vectors corresponding to all possible motion of water 

molecules.

Constructor: MultiWaterPairDistances(urm/er,se, pairs=‘all’)

universe

the system containing the water molecules for which displacement vectors are 

determined. It must have a configuration.

pairs=‘all’

the default value calculates distances for all the pairs i.e intra- and inter­

molecular pairs

other valid options are just ‘intra’ or ‘inter’, in which cases only the specified 

type of distances are calculated.

A ttributes

• AtomicPairList the atomic pair list - can be complete list or specific depending 

on the input. If ‘all’ is specified, then the intramolecular pairs list is returned 

first followed by the intermolecular pairs list.
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• vectors the displacement vectors corresponding to normalized distances of the 

elements in the AtomicPairList

Class: SingleW aterPairDistance

Class constructs displacement vectors corresponding to intramolecular motion of a 

water molecule.

Constructor: SingleWaterPairDistance (universe, atom Jist) 

universe

the system containing the water molecule for which displacement vectors are 

determined. It must have a configuration.

atomJist

the list of atoms for which the displacement vectors are to be determined. 

A ttributes

•  AtomicPairList the list of atomic pairs present in the atomJist.

• vectors the displacement vectors corresponding to the normalized distances 

for atomic pairs of the AtomicPairList

Class: C lusterPairD istances

Class constructs displacement vectors corresponding to interatomic pair distance on 

atomic clusters.

Constructor: ChisterPairDistances(«/mw,T.se, atom Jist).

Description and attributes are identical to SingleWaterPairDistanceQ with the ex­

ception that the water molecule is replaced by an atomic cluster

M O DULE : H essianAnalysis
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Class: H essianAnalyzer

Class performs operations on or related to the force constant matrix.

Constructor: HessianAnalyzer {universe) 

universe

the system for which the dynamics are performed. It must have a starting 

configuration specified as well as a forcefield that provides the energy, gradients 

and second-derivatives.

M ethods

•  gradientAndHessian()

returns arrays corresponding to the gradient (3N)  and force constant matrix 

(3N  x 3N)

•  hessian()

returns the symmetric force constant matrix (3N  x 3 N )

•  forceConstantMatrix()

returns mass-weighted force constant matrix

• mass Weigher (A )

performs the mass-weighing on the array A

•  massWeighAndSymmetrize(A)

performs the mass-weighing and symmetrizes the A

•  gradient (mass=None)

returns an array containing the gradient, the result is mass-weighted if a mass 

vector is specified in the input command.

•  eigenVs(//)

returns the eigenvalues and eigenvectors of the diagonalised force constant or 

Hessian matrix H . The diagonalisation uses the lapack routine
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•  diagonalizef//)

returns the eigenvalues and eigenvectors of the symmetric force constant or 

Hessian matrix H. The diagonalisation uses python’s diagonaliser.

•  ge t Frequencies (F C M= None)

returns the frequencies from the eigenvalues of the force constant matrix FC M .  

The default calculation is done for the force constant matrix at the current state 

(configuration and forcefield) of the universe.

M O DULE : InitialConditionsFactory  

Class: CovarianceM atricesCalculator

Class calculated the covariance matrices for the multivariate Gaussian sampling of 

initial conditions

Constructor: CovarianceMatricesCalculator(universe, subspace, option=None, dis­

placement—None, description=None)

universe

the system for which covariance matrices are calculated. This involves calcula­

tion of the projected Hessian (see Projector for details) for constrained system. 

All eigenvalues of Projected frequency need to be real. So system must be at 

its equilibrium geometry.

subspace

the subspace in which the projection is carried out. See MMTK.Subspace for 

details.

option=None

defines the position of the wavefunction in the position representation.

if option =  None (default), the wavefunction is centered at the equilibrium

geometry.
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if option =  ’Displaced’, the wavefunction is displaced from the minimum, as 

specified by displacement.

displacement= N one

an array, specifying the displacement of the wavefunction from the minimum. 

The number of entries in the array and its shape should be identical to the 

configuration array i.e, consisting of vectors for the displacement of each atom 

in each Cartesian coordinate.Note: if option =  None, displacement should also 

be None.

descr ipt ion=N one

a string describing the type of cluster under investigation: ‘dimer’ or ‘trim er’ 

or ‘ dimer_atom’

M ethods and A ttributes

• centerOfWavefunction_position

the center of the wavefunction calculated based on the geometry of the universe 

and the displacement vector in the position representation

• centerOfWavefunction_momentun

the center of the wavefunction in the momentum representation

• fullGamma

the full mass-weighted matrix (3iVx3iV) of the widths of the gaussian wavepack- 

ets

• susbpaceGamma

the reduced-space mass-weighted matrix ((3N  — c) x (3N  — c)) of the widths of 

the gaussian wavepackets, where c =  number of constraints

• formCovarianceMatricesQ

function returns the mass-weighted covariance matrices for the positions and 

momenta
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• generateGamma(subspace=None, subspace-option)

function returns the mass-weighted gamma matrix (from which the covariances 

matrices are built). Note: if subspace=None: no projection of force constant 

matrix is performed

subspace-option= projected’: full gamma matrix after projection of force con­

stant matrix

subspace_op£ion=‘subspace’: reduced-dimension gamma matrix after projection 

of force constant matrix

Class: InitialConditionSam pler

Class generates initial conditions for dynamics from the multivariate Gaussian sam­

pling using covariances matrices calculated by CovarianceMatricesCalculator(). Sam­

pled initial conditions are initially mass-weighted. They are unmassi-weighted prior 

to writing to the array.

Constructor: InitialConditionSampler(Emax, n M C , factor , C V , option=None) 

Em ax

the total energy ceiling for bound states. Any sampled phase space point with 

total energy above Emax is discarded.

n M C

the number of initial conditions required. 

factor

a number (floating point/integer). Since some initial conditions are discarded, 

the actual number of sampled points need to be larger than nMC. The actual 

value is very system-dependent as is determined by trial and error: for some 

systems, a number as low as 1.2 is good enough; other systems require a value 

of 3.
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c v
class instance for CovarianceMatricesCalculator(). The universe, covariancematrices, 

center o f  wavefunction  (in position and momentum) are obtained from it.

option=None

option regarding the treatment of center of mass motion. Default (None) option 

removes center of mass (com) motion from the initial conditions, i.e., set the 

com to zero and also removes linear and angular momenta from the sampled 

positions and momenta. Other option is ‘Leave COM motion’ and only sets the 

com to zero, without operating on the linear and angular momenta.

M ethods and A ttributes

• Positions

an array containing the n M C  sampled non-massweighted initial positions vec­

tors for each atom.

• Velocities

an array containing the n M C  sampled non-massweighted initial velocities vec­

tors for each atom.

• energies

an array containing the potential, kinetic and total energies of the n M C  initial 

conditions.

• calculateRatio()

returns two numbers: the ratio of initial conditions accepted to the total number 

of sampled phase space points followed by the total number of sampled phase 

space points.

M O DULE : Projection
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Class: M ySubspace

Class is essentially a customized version of MMTK.Subspace

Constructor: MySubspace(umuerse, subspace) 

universe

the system from which the subspace is constructed. 

subspace

a set of (displacement) vectors defining the motion in a reduced space from 

within the universe.

M ethods

• setupBasis()

function returns a basis formed from the set of vectors specified in the class 

instance, the basis is created by orthonomalisation of the displacement vectors 

via Singular Value Decomposition.

Class: Projector

Class performs the projection of unwanted motions from the force constant matrix 

and related operations

Constructor: MySubspace (universe, subspace) 

universe

the system from which the subspace is constructed. 

subspace

a set of (displacement) vectors defining the motion in a reduced space from 

within the universe.

M ethods and A ttributes
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•  evalues

returns the eigenvalues of the projected force constant matrix.

•  evectors

returns the eigenvalues of the projected force constant matrix.

•  getProjectedHessian()

returns the symmetric projected full space force constant matrix (3N  x 3N)

• get Frequencies ()

returns the frequencies associated with the projected normal modes. Small 

non-zero frequencies are rounded off to zero.

• getFullFrequencies()

returns the all frequencies associated with the projected normal modes, no 

round-off.

•  getMassWeightedHessian()

returns the mass-weighted force constant matrix

M O DULE : SchlegelProjection_PDS  

Class: C onstrainedProjection

Class contains functions that perform operations related to the projection of con­

straints and redundancies based on the method of Schlegel and Pulay [1], ayala98. 

First a subspace is built from all possible pair distances along with a force constant 

matrix in internal coordinates. The redundancies and constrained motions are then 

removed through a projection procedure, so as to allow motion between unconstrained 

pairs of atoms. Constructor: ConstrainedProjection(wmuer.se)

universe

the system for which the projection is performed.
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M ethods and A ttributes

• evalues

eigenvalues of the projected force constant matrix.

• evectors

eigenvectors or nomal modes of the projected force constant matrix.

• frequencies ()

returns the frequencies associated with the normal modes of the allowed mo­

tions.

M O DULE : SchlegelProjectionJRM S  

Class: C onstrainedProjection

Class contains functions that perform operations related to the projection of con­

straints and redundancies based on the method of Schlegel and Pulay [1], ayala98. 

First a subspace is built from displacement vectors along with a force constant ma­

trix in internal coordinates. The redundancies and constrained motions are then 

removed through a projection procedure. This subspace differs from the Module 

SchlegelProjection_PDS in the way the subspace is created. In the present module, 

the displacement vectors are chosen so as to create rigid bodies out of objects in the 

universe. Constructor: ConstrainedProjection(wTOuerse)

universe

the system for which the projection is performed.

M ethods and A ttributes

• evalues

eigenvalues of the projected force constant matrix.
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• evectors

eigenvectors or nomal modes of the projected force constant matrix.

•  frequencies ()

returns the frequencies associated with the normal modes of the allowed mo­

tions.

M O DULE : Sem iclassicalDynam ics 

Class: Sem iclassicalDynam ics

Class launches classical trajectories using the sampled positions and momenta as 

starting conditions. Each sampled phase space point gives rise to a trajectory, stored 

in a trajectory netCDF file (.nc). After the dynamics, the trajectories are scanned 

for unbound ones (sometimes, a couple escape the PES) from which data is extracted 

and saved into a file for further manipulation by a C++ code.

Constructor: SemiclassicalDynamics(umuerse, dt, timesteps , constraintList, E m a x ,

D )

universe

the system for which the dynamics are carried out.

dt

the timestep to be employed during the dynamics.

timesteps

the number of steps in each trajectory.

Em ax

the maximum value of the kinetic energy for a bound trajectory.

D

the directory where the trajectory files are written.
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M ethods

• generateTrajectory(initialPositions, initialVelocities)

function performs the classical dynamics based on the initial positions (an array 

corresponding to the starting sampled positions) and initial velocities (an array 

corresponding to the starting sampled velocities) and scans the energies to verify 

that the trajectories are bound

• extractData(subspaceType, objectList, BJ). filename)

function saves dynamical data to a textfile named filename in the directory D 

for future analysis by a c-code. Dynamical data is saved in the following or­

der: configuration, momenta, action, force constant matrix (unprojected), bases 

(time-independent basis and time-dependent bases)

subspaceType = RigidMotionSubspace or PairDistanceSubspace; any subspace 

in MMTK is valid.

objectList — list of objects (atoms or molecules) in the universe to be included 

in the subspace

B D  = time-independent basis (basis generated at the equilibrium geometry)

M O DULE : W ater .Sem iclassicalDynam ics 

Class: W ater .Sem iclassicalD ynam ics

Class launches classical trajectories using the sampled positions and momenta as 

starting conditions. Each sampled phase space point gives rise to a trajectory, stored 

in a trajectory netCDF file (.nc). After the dynamics, the trajectories are scanned 

for unbound ones (sometimes, a couple escape the PES) from which data is extracted 

and saved into a file for further manipulation by a C+-1- code.

Constructor: Water_SemiclassicalDynamics(wrawer,se, dt, timesteps, constraintList, 

Emax, D )

141

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



universe

the system for which the dynamics are carried out.

dt

the timestep to be employed during the dynamics.

timesteps

the number of steps in each trajectory.

Em ax

the maximum value of the kinetic energy for a bound trajectory.

D

the directory where the trajectory files axe written.

M ethods

• generateTrajectory(initialPositions, initialVelocities)

function performs the classical dynamics based on the initial positions (an array 

corresponding to the starting sampled positions) and initial velocities (an array 

corresponding to the starting sampled velocities) and scans the energies to verify 

that the trajectories are bound

• extractData(/i/ename, nlnternal)

function saves dynamical data to a textfile named filename in the directory D 

for future analysis by a c-code. Dynamical data is written in the following or­

der: configuration, momenta, action, eigenvalues of the projected force constant 

matrix)

nlnternal = the total number of degrees of freedom (including redundancy).
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