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Abstract. The Black-Scholes model is described, and the differential equa-
tions for the American put, and its generalizations, are derived. S. D. Jacka’s
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ACKNOWLEDGEMENTS. I would like to thank my supervisor, Pro-
fessor Robert J. Elliott, for his wonderful teaching, advice, and unfailing
support and encouragement, Dr. Byron Schmuland for his excellent teach-
ing, and Dr. Augustine Wong for his constant encouragement and superh
teaching.



Contents

1

3

Background

1.1 Why study options? . .. ... ........... ... . ..
1.2 The Black-Scholes Model . . . . ... ... ......... . .
1.3 Altcinative derivation of the Black-Scholes model . . . . . . .

Optimal Stopping and the American Put

2.1 The Optimal Stopping Problem .................
2.2 Pricing the Option . . .. ... .. .... ... ... . .. ..
2.3 An Integral Transform of the Stopping Time . . . . .. .. ..
24 Appendix . . ...

Analytic Approximation of the American Put
3.1 Johnson . .. ...

3.2 Geskeand Johnson . . .. ... ..... ... ... .. .. .
33 MacMillan . . . .. ...
3.4 Barone-Adesi and Whaley . .. . ... .. ... ... ...
3.5 Lamberton. . ... ... ... .. ... ... . ... ..
3.6 Appendix .. .. ... ... L
Numerical Methods

4.1 Parkinson . . ... .. ... ... ...
4.2 Jaillet, Lamberton, and Lapeyre . . . . .. .. ... ... .
43 Lamberton. . ... .. ... ..

4.4 Allegretto, Barone-Adesi, and Elliott . ... .. ... ... .



1 Background

The theory of option pricing began in 1900 when Bachelier (2] deduced an
option pricing formula based on the assumption that stock prices follow a

Brownian motion with zero drift.

Bachelier assumed that the stock price S is a random variable, that price

changes are independent and identically distributed, and that

PI‘(SH.TSS.'St=£L‘)=F(S'—.’L‘,T), (l)

where F'is the distribution function of the stock price changes.

Bachelier also incorrectly deduced that (1) implies the following,

F(S'—m,T):(I)(

S* — (x+;zT)) (2)

oVT

where p is the mean expected price change per time period, o2 is the variance
per time period, and @ is the standard normal distributjon. However, (1)
1s not sufficient to deduce (2), since it is known that any stable Paretian
family of distributions satisfies (1). To deduce (2) from (1), one must assume
that the variance is finite. In addition, as T tends to infinity, Pr(Sr < S*)
tends to 1/2 for every S*. Since nothing in this formulation restricts S* to
the positive numbers, there is a positive probability of negative stock prices,

which is a violation of the property of limited liability.

Bachelier also assumed that the mean expected price change per unit time y

1



is zero, since he viewed stock market transaction as a gamble, and felt that
competition would reduce the expected return to zero. This is unsuitable
as an equilibrium specification, since it seems to deny both positive interest

rates and risk aversjon.

Applying the same logic to call option pricing, Bachelier claimed that the
current call price, ¢, was equal to the expected final call price, ¢*. Since
" = (5,0, X) = (57 - X)*t (where f+ = maz(f,0)), the model implies

that

= E(c) = [ (5" = X)&'(5")ds", 3
c=B(e) = [ (5" - x)/(57) (3)
where @' is the normal density function. Changing variables,

= [" WoVT + S — X)&'(W)dW, 4
e= [ WV )o'(w) (1)

where W = (§* — §)/o /T, and so

L (S—X L (S X (S —X
c=b-®(aﬁ>—‘\-®<aﬁ)+oﬁ®(U\/T), (5)

Not~ that as the time to expiration is increased, the czall price increases

without bound. This implication seems to violate the restriction that the
maximum value which the call price can assume be equal to the stock price.
This result arises because Bachelier (implicitly) did not essume that stock

possesses limited liability.

The major problems with Bachelier’s model are

o



1. The assumption of Gaussian Brownian Motion in the description of
expected price movement implies both a nonzero probability of negative
prices for the security, and option prices greater than their respective

security prices for large T.

2. The assumption that the mean expected price change is zero, which

suggests no time preference or risk neutrality.

3. The implicit assumption that the variance is finite, thereby ruling out

other members of the stable Paretian family except the normal.

1.1 Why study options?

Since iae option is a particularly simple type of the contingent claim asset,
a theory of option pricing may lead to.a general theory of contingent claims
pricing. The development of an option pricing theory is also an intermediate
step toward a unified theory about the pricing of a firm’s liabilities, the term

and risk structure of interest rates, and the theory of speculative markets.

DEFINITION. An American warrant is a securivy, issued by a company, giving
its owner the right to purchase a share of stock at a given exercise price on
or before a given date. An American call option has the same terms as the
warrant except that it is issued by an individual instead of a company. An
American putl option gives its owner the right to sell a share of stock at a

given exercise price on or before a given date. A Furopean option has the



same terms as its American counterpart except that it cannot be exercised

before the last date of the contract.

Samuelson [45] showed that the American and the European options may
not have the same value. The contracts may differ with respect to other

provisions such as antidilution clauses, exercise price changes, etc.
The following notation will be used throughout the thesis:

® | = current time,

® (" = expiration date.

e T'=1" —t = time to expiration.

r = risk-free interest rate.

o

e X = exercise (strike) price.
e S5 = stock price at time ¢.

Se = the critical stock price = the price at which the put should be

exercised.
¢ o = standard deviation of the stock price processes.
e P = price of the American put at time t.
® (' = price of the American call at time t.

¢ p = price of the European put at time t.



e c = price of European call at time ¢.

o M =2r/c2

Merton [42] deduces a set of restrictions on option pricing formulae from the
the assumption that investors prefer more to less (a necessary condition for

the formula to be consistent with a rational pricing theory).

DEFINITION. Security A is dominant over security B3, if, the return on A
is never less than the return on B, and is greater than that on /# at some

known date in the future.

Note that in perfect markets with no transaction costs and the ability to
borrow and short-sell without restriction, the existence of dominated secu-
rities would be equivalent to the existence of an arbitrage situation. Thus,
assuming that investors prefer more wealth to less, any investor willing to

purchase B would prefer A.

Assumption 1 A necessary condition for a rational option pricing theory is
that the option be priced such that it is neither a dominant nor a dominated

security.
THE EUROPEAN PuT OQpTIOMN PRICE

The put option has received relatively little analysis in the literature because
1t is a less popular option than the call and, because it is commonly believed

(e.g., Black-Scholes [5]) that given the price of a call option and the common
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stock, the value of a put is uniquely determined. This belief is false for
American put options, and the mathematics of put option pricing is more

difficult than that of the corresponding call option.

Let B(t*) be the price of a riskless, discounted loan (or bond), which pays $1,
t* years from now, and B’(1*) the current value of $§1 payable * years from
now at the borrowing rate of a #*-year, noncallable, discounted loan. Since it
is assumed that current and fu ure interest rates are positive, it follows that
1 = B(0) > B(t}) > B(t3) > ... > B(t:) whenever 0 < <ty <...<15.
To avoid arbitrage, B’(t*) < B(t*).

At the expiration of a put option, we have

P(5,0; X) =p(5,0; X) = (X — §)*. (6)

To determine the rational European p-ut option price, consider two portfo-
lio positions. First, a long position in the common stock at S dollars, a
long position in a ¢*-year European put at p(S,t*; X) dollars, and borrowing
X B'(t*). The value of the portfolio t* years from now with the stock price
at §* will be: S+ (X = S") =X  0,if "< X,and S"+0—X = S* — X
if S* > X. The pay-off structure is identical in every respect to a European
call option with the same exercise price and duration. Hence to stop the call
option from being a dominated security, the put and the call must be priced

so that

p(S. 7 X) + 5~ XB'(t7) > (5,17 X). (7)



The values of the portfolio prior to expiration are not computed because the

call option is European and cannot be exercised prematurely .

Next, consider taking a long position in a t*-year European call, a short
position in the common stock price at price S, and lending X B(t*) dollars.
The value of the portfolio ¢* years from now with the stock price at S* will
be: 0 -5+ X =X~ 8% if $* < X, and (§*-X)-S"+X =0if $* > X.
The pay-off structure is identical in every respect to a European put option
with the same exercise price and duration. If the put is not be a dominated

security, then

(5,85 X) = S+ XB(t") 2 p(5,1%; X), (8)

must hold.

Theorem 1 If Assumption 1 holds and if the borrowing and lending rates
are equal (i.e., B(t") = B'(t*)), then

plS,t5X)=c(S,t"; X) - S+ XB(t").

PROOF. The proof follows directly from the simultaneous application of (7)
and (8), using B(t*) = B'(t*). O

Thus the value of a rationally priced European put option is determined once
one has a rational theory of the call option value. Note that no distributional
assumptions about the stock price or future interest rates are required to

prove Theorem 1.



Two corollaries to Theorem 1 follow directly from the above analysis.
Corollary 1 p(S,1*; X) < XB(t*).

PROOF. Since § > C(S,1*; X) > c(S,t*; X)), we have c— § < 0, so the result
follows from (8). O

Corollary 2 The volue of a perpetual (i.e., t* = oo) European put option is

ZEero.

PROOF. The put is a limited liability security (p(S,t*;X) > 0). From
Corollary 1 and the condition that B(oc) = 0, one obtains 0 > p(S, 00; X).
(]

Since the American put option can be exercised at any time, its price must

satisfy the arbitrage condition
P2 (X-— S)* (9)
and it can be shown that
PS5, X) 2 p(S, 1 X) (10)
where the strict inequality holds only if there is a positive probability of

exercising early.

Unlike a European option, the value of an American option is always a nonde-
creasing function of its expiration date. If there is no possibility of exercising
prematurely, then the value of the American option will be equal to its Eu-

ropean counterpart. Also, if the strike price is constant and no dividends
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are paid, then the European and American call options will have the same
value. Even under these assumptions, there is usually a positive probability
of prematurely exercising an American put, so that the American put will

sell for more than its European counterpart.

Theorem 2 If, for some t < t*, there is positive probability that ¢(S,t; X) <
X(1 — B(t)), then there is a postive probability that a t*-year American put
option will be exercised prematurely, and the value of the American put will

strictly exceed the value of its European counterpar.

PROOF. The only reason that an American put will sell for a premium over
its European counterpart is because there is a positive probability of exer-
cising prior to expiration. Hence, it is sufficient to prove that p(S,1*; X) <
P(S,t*; X). By Assumption 1, if for some ¢ <, p(St 5 X) < P(S*, 1, X)
for some value of S*, then p(S,1%; X) < P(S,t*; X). By assumption, there
exists S* such that ¢(S*,¢; X) < X(1 - B(t)). Then Theorem 1 implies
that p(S*, % X) = ¢(S*,4; X) ~ 8" + XB(t) < X — XB(t)— S+ XB(t) =
X—-5"<(X -8 )" <P(S,;;X). O

Since there is almost always a chance of exercising early, the formula in
Theorem 1 will not lead to a correct valuation of an American put since
the valuation of such options is analytically more difficult than its European

counterpart.



1.2 The Black-Scholes Model

A number of option pricing theories satisfy the general restrictions on a

rational theory. One such theory developed by Black and Scholes [5] is par-

ticularly attractive because it is a complete general equilibrium formulation

of the problem and because the final formula is a function of observable

variables, making the model subject to direct empirical tests,

The assumptions of Black-Scholes model are as follows:

o

. The risk-free interest rate, r, is known and constant through time.

The stock price follows a random walk in continuous time with a vari-
ance rate proportional to the square of the stock price. Thus the dis-
tribution of possible stock prices at the end of any finite interval is

lognormal. The variance rate of the return on the stock is contant.

No dividends are paid, and the exercise price does not change over the

life of the contract.
The option is European so that it can only be exercised at maturity.

There are no transaction costs in buying or selling the stock or the

option and no taxes.

It is possible to borrow any fraction of the price of a security to buy it

or to hold it, at the risk-free interest rate.

10



7. There are no penalties to short selling. A seller who does not own a
security will simply accept the price of the security from a buyer, and
will agree to settle with the buyer on some future date by paying her

an amount equal to the price of the security on that date.

Black and Scholes used Samuelson’s theory of warrant pricing [45] to express
the expected return on the option in terms of the option price function and
its partial derivatives (possibly since the option price is a function of the
common stock price). From the equilibrium condiiions on option yield, a
partial differential equation (see (23)) for the option price is derived. The

solution of this equation for the European call option is

o(S,1°X) = SO(dy) — Xe~™ d(d,), (11)
where
dy = [In(S/X) + (r + 0%/2)T)/(oVT) (12)

and d, = d; — (o/T).

An exact formula for an asset price, based on observable variables only, is a

rare finding from a general equilibrium model.

The most noticeable property of (11) is the variables that it does not depend
oun. The option price does not depend on the expected return of the common

stock, risk preferences of investors, or on the aggregate supply of assets. It

11



does depend on the rate of interest and the total variance of the return on
the common stock (which is often a stable number, so accurate estimates are

possible from time series data).

The Samuelson and Merton [47] model is a complete, although very sim-

ple (three assets and one investor), general equilibrium farmulation. Their

formula is

(S, X) = et JC/OS(ZS - X)dQ(z;1"), (13)

where dQ is a probability density function with Eq(Z) = ™. Equations
(11) and (13) will be the same only when dQ is a legnormal density and

Var(log(Z)) = ot*. Note that this occurs only if
1. the objective returns on the stock are lognormally distributed.

2. the investor’s utility function is iso-elastic.

However, dQ is a risk-adjusted distribution, dependent on both risk prefer-
ences and aggregate supplies, while the distribution in (11) is the objective
distribution of returns on the common stock. Black and Scholes claim that
one reason that Samuelson and Merton [47] did not arrive at formula (11)
was because they did not consider other assets, although a result which does
not obtain for a simple, three asset, case is unlikely to hold in a more gen-
eral example. In fact, it is only necessary to consider three assets to derive
the Black-Scholes formula. (Black and Scholes also provide an alternative

derivation of their equation using the capital asset pricing model.)

12



The Black and Scholes derivation of (11) is intuitively appealing, but a rig-
orous derivation can also be provided, particularly to gain an insight into
sufficient conditions for the formula to obtain. Note that because Black and
Scholes consider only terminal boundary conditions, their analysi: is only
applicable to European options, even though the European valuation is of-
ten equal to the American option. Finally, although their model is based on
a different economic structure, the formal analytical content is identical to
Samuelson’s [45] linear a = 8 model when the returns on the common stock
are lognormal. Hence, with a different interpretation of the parameters, the-
orems proved in Samuelson [45] and McKean [39] are directly applicable to

the Black-Scholes models and vice versa.

1.3 Alternative derivation of the Black-Scholes model

Initially, we consider the case of a European option where no payouts are
made to the common stock over the life of the contract. We make the fol-

lowing further assumptions.

Assumption 2 "Frictionless” market: There are no transaclion cosls or
differential tazes. Trading takes place continuously and borrowing and short-
selling are allowed without restriction, and the borrowing rate equals the lend-

ing rale.

Assumption 3 Stock price dynamics: The instantancous return on the com-

mon stock is described by the stochastic differential equation

13



iisﬁ = pdt + adW (14)

where p is the instantaneous erpecled return on the common stock, o? is
the instantanous variance of the return and dW is a standard Gauss- Wiener
process. p is a stochastic variable which may even be dependent on the level of
the stock price or other assets’ returns. o is a non-stochastic, known SJunction

of time.

No assumption is made that dS/S be an independent increment process or

stationary, although dW clearly is.
Assumption 4 Bond price dynamics: With B(t*) as before,

% = a(t)dt + §(1")dq(t,1°) (15)

where a is the instantaneous expected return, 82 is the instantaneous vari-
ance, and dq(t,i‘) is a standard Gauss-Wiener nrocess for maturity t*. It is
not assumed that dq for one maturity is perfectly correlated with the dq for

another, i.e.,

dq(t;17)dq(t;u) = ppeydt, (16)

where pyey, may be less than 1 for t* # u. However, it is assumed that there
is no serial correlation (Cootner, [8]) among the (unanticipated) returns on

the assets, i.e.,

14



dq(s;t")dg(t;u) =0 fors#1t
dq(s;t")dW(t) =0 fors #t, (17)

(consistent with the general efficient market hypothesis of Fama [14] and
Samuelson [{6]). a(t*) may be stochastic, and different for different maturi-
ties. Because B(t*) is the price of a discounted loan with no risk of default,
B(0) = 1 with certainty, and 6(0) = 0. However, & is non-stochastic and
independent of B. In the special case when the interest rate is constant over

time, 6=0,a =7, and B(t*") = e """.

Assumption 5 [nvestor preference and expectations: Apart from Assump-
tion 1, it is assumed that all investors agree on the values of o and 8, and on
the distributions of dW and dq. It is not assumed that they agree on cither

g oora.

It is reasonable to assume that the option price is a function of the stock price,
the riskless bond price, and the length of time to expiration. If H(S, B,t*; X)
is the option price function, then, given the distributions of $ and B, we have,
by Ité’s lemma, that the change in the option price over time satisfies the

stochastic differential equation

OoH oH OoH | .
dH = %ds + 'a—BdB + gt—'dt

1[0%H ., . 0°H OH o
+ 3 [ES.;(dS) + 25'578—3“(6150'3) + ‘B*B"z‘(dB) } ) (18)

15



where (dS)? = 0%S?%dt, (dB)? = §2B%dt, dt* = —dt, and (dSdB) = po6SBdt
with p the instantaneous correlation coefficient between the (unanticipated)
return on the stock and on the bond. Substituting (14) and (15) and re-

arranging terms, (18) becomes
dH = BHdt + yHdW + nHdq, (19)

where 3 = [025%(0°H/05%)/2 + po6SB(9*H/050B) + §*B*(0°H/0B?*)/2 +
aB(0H/IB) + uS(OH[0S) — (H[0t*))/H, v = 0cS(8H/8S)/H, and n =
6B(OH/OB)/H. Denoting by u,(resp. uz, us) the amounts invested in the
common stock (resp., option, bonds), it can be shown (Merton [40] or [41])

that the instantaneous return on investment is

[(1n— a)uy + (B — a)uz]dt + [ouy + yus)dW + [quy — 6(uy + uz)]dg.  (20)

To make the above return non-stochastic, the coefficients of dW and dg in
(20) must be zero. To avoid arbitrage, the coefficient of df must then be
zero. This gives a system of three equations in u; and uz, which will have a

non-zero solution if and only if

o(f—a) = y(p—a)

Il

Q
—_
S

I

-3
~—
—_
3]
—
~—

6y
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When r is constant, we have § = 0, a = r, and B(t*) = €. Thus (21)

redices to
B—r=X(u—-r). (22)
o

Making use of (22) and the fact B(t*) is non-stochastic for this model of the
American put, we obtain
1 2q282P opP oP

— _rpZ 9
27 o5z t o5 P =0 (23)

subject to P(oo,t*,X) = 0, P(5,0,X) = (X = S)*, and P(S,1*,X) >
(X =St

)

For t* = oo, equation (23) is an ordinary differential equation

1 ,.,d*P dP _ Y
205 d52+rSdS rP =0, (24)

valid for all § > S., with the boundary conditions
P(co,00, X) = 0,

P(S.,00,X) = X - S.,

and S. chosen so as to maximize the return. It is elementary that the solution

to (24), subject to the above boundary conditions, is

P(S,00,X) = (X = S)(S/S.)™M. (25)



The value of S, which maximizes (25) is easily found to be S, = MX/(1+M),

whence (25) becomes

X [(a+MsS\ ™™
P ( _
P800, X) = 1037 ( MX ) (26)

18



2 Optimal Stopping and the American Put

An American put option provides the right. but not the obligation, to sell for
price X a unit of stock at any time up to the time horizon T, the original
expiry date of the option. To simplify the problem, we follow the Black-
Scholes model by assuming that the stock pays no dividends during the
lifetime of the option and that the stock price S, at time t is an exponential

Brewnian motion:

S = Soel7MWitlu=ct/2)n) (27)

where (1¥1)1>0 is a canonical Brownian motion, Sy (= x) is the fixed initial
value, p is the expected rate of return on the stock, and o is the variance of
the return of the stock. This price S, is the unique (strong) solution to the

stochastic differential equation

dS, = S(adW, + pdt). (28

We also assume that interest on cash is earned at a fixed rate r > 0.

In 1991, Jacka established the following basic results: (i) The fair price for an
option is a function of the present stock price and the time horizon only, and
is the unique solution to a parabolic free boundary problem. (ii) The option
price is the solution to an optimal stopping problem which is a generalization
of the Black-Scholes option pricing formula. McKean [39] and Van Moerheke

[49]) had earlier derived a result equivalent to (i), and parallel results were

19



established by Kim [31], Carr, Jarrow and Myneni [7], and Jacka and Lynn
[23].

2.1 The Optimal Stopping Problem

We consider the problem of optimally stopping e~"'S, before time T, that is,

we find
flz,t) ¥ sup Ez[e”""(X ~ §,)Y] (29)

<t

with 7 ranging over stopping times. Let P be the (martingale) measure with
respect to which the discounted stock price e~"S, is a martingale. It will be
shown (Theorem 8) that there is an exercise boundary b(¢) = S, and that we
exercise the option the first time that S,, the price of the underlying stock,
falls below the (lower) boundary b(t) at t = T — s.

It is well known that under P, S, satisfies the stochastic differential equation

t b4
Sfz)=x+ /0 0S,(x)dW, + /0 rS,(z)ds (30)

where 117 is the P-Brownian motion such that
S, = xe(a“’,-{-(r—a"'/Q)t). (31)

Let g(r) = (X —2)*. Then one has the following:

Theorem 3 The payoff function Vi for the stopping problem is a function
of the present price of the stock and of the time to the expiry of the option
only. That is,

20



Vr = f(5,T). (32)

The function f is continuous, f(x,t) > g(z), and the optimal stopping time

T s

T =inf {s: f(S,,T ~s)=g(z)} =inf {t>0:(S, T — t)g D}  (33)
where
D={(z,t) e R* x R* : f(z,1) > g(z)}
is the continuation region for the stopping problem.

PROOF. The results follow from Krylov’s theorems (Appendix, Theorems 9

and 10) upon letting w(s,z) = f(z,t) in Krylov’s notation. O
Further, one knows the following about the structure of the region D:
Proposition 1 For each t > 0, the t-section of D has the form

D= {z:(z,t) € D} = (b(t),00)
for some b(t) satisfying X > b(t) > 0.

PROOF. We know that zero is not in D, so we only need to show that for
any y > z, (z € D;) = (y € D,). We show this by using a pathwise

comparison based on S, = zel*Wi+(r-2*/2)8) Quppose z € D, Yy > z, and let
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T =inf(s 2 0: (Si(z),T~s) € D). (That is, 7 is a stopping time for S,(z).)
Note that 7 is bounded. Then

Sy, t) — f(z,1)
= f(y,t) ~ E[e”"(X - §,(z))*]
2 E[e™7((X = 8, (y))* — (X = S,(z))*)]
= Ee”[(X - S:(y)) — (X = S:(z))
+(X = S:(¥))” — (X = S:(z))7]. (34)
Now S.(y) > S,(z) since y > =, so the last term of (34) is non-negative.
Thus

ft) = f(z,t) = Ele7"(S.(z) — S.(y))]
= (2 —y)E["" ") = (2 — ),

since e(®"1=%/2) 5 5 martingale starting at 1 and 7 is a bounded stopping

time. Therefore,
(1) 2 f(z,t) + (z — y).
Ii f(z,1) > (X — 2)*, then
ft)>(X—a) +(z-y) 2 (X -z)+ (2 —y) = (X —y).

Since f(y,t) > 0, for all t > 0 and all y 2 0 (Appendix, Lemma 3), we have
f(y,t) > g(y). so (y,t) € D, as required. O
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Note that b(t) < X forall t > 0, sinceif z > X, (X=z)* =0but f(x,1) > 0.
It can be shown (see Appendix, Propositions 3 and 4) that b is a continuous,

decreasing function of ¢.

The limiting behaviour of b and { is given by:
Proposition 2 Let (F,b) be the unigue solution, with F € C*, to

o*z?F"(z)/2 + raF'(z) — rF = 0 fa>b
Flr)= X—-z ifz<b

Then
(i) b= [MX/(1 + M),
= { (£ 2000 ez
where M = 2r/c? and F(z) = sup, E.le ""g(S,)].
(i) limi—o f(z,t) = F(z).
(iii) lim,_o b(1) = b.

PROOF. To begin with, observe that f is decreasing in z, as is immedijate
from its definition. Also, f is increasing in ¢, since if 7 is admissible for the
optimal stopping problem with horizon t, it is also admissible for the problem
with horizon s, for any s > t.

(i) Trivial (see, e.g., Merton [42] or Karatzas and Shreve, [30]).

(ii) It clear that f(z,t) < F(z) Vt. Conversely, let 7 = inf{t: S, < b}. Then
F(z) = E[e™""g(S,)]. If we let 7, = 7 A, then for z > b,
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fz,) 2 E.[e7mg(S,,)]
(X = 0)E; [e71, 4]
— (X = b)E]e™] = F(z)

v

as 1 — oo, since e"" is a bounded continuous functicn on ®*, and r, - 7. On
the other hand, for @ < b, we have f(z,t) > g(z) = F(z), so lim,—., flz,t) =
F(z).

(iii) Given = > b, we have F(z) > g(z). Let € = F(z) — g(x), and take t(¢)

such that
F(z) = f(z,t) < e/2

for all t > t(c). Then f(z,t) > g(x) for t > t(¢), so (z,t) € D, whence
b(t) < x. But thisis for all £ > b, so lim SUP;_.o b(t) < b. Similarly, if z < b,
then g(a) = F(z) > f(z,1),s0 = < b(t) for all ¢, and so b < liminf, .o, b(¢).

The result follows. O

Jacka’s main theorem is the following.

Theorem 4 The pair (f,b) is a solution pair (p,h) to the free boundary prob-
lem

Lo =0, 2> h(t)

P(h(t).t) = X - h(t)

Se(h(t), t) = -1



#(z,0) — g(x), x > h(0)
@(z,t) — 0 uniformly on compact sets as r — oo

and f is mazrimal.

Before proceeding with the proof of the above theorem, we need several
lemmas. Recall that a function on a metric space X is Holder continuous
if, Vo € X, there exist constants C:>0and 0 < %, <1 and an open
neighbourhood V of z such that Vz,, 22 € V, d(f(x,), f(x2)) < Cod(ry, 23)=.

Lemma 1l f is C! inz.

Proor. Define
My= My = e [(S0t =) 47X [(e ™1 ndu. (35)
A <

Since @D = {b(s,s);s > 0} has zero measure, and the decreasing component
of the semimartingale decomposition of (e7"'g(S:)) is absolutely continuous
with respect to the Lebesgue measure, it follows from Theorem 12 and Corol-

lary 3 of the Appendix, that MH s a martingale. Therefore, we can write
f(z,t) = Mo = EM, = p(z,t) + rX Jo €7 (z, b(t — u), u)du,

where p(z,t) = E(e™"(X — S:)*) (price of an European put option) and
Y(z,y,1) = Pr(S,(z) < y). Then we can rewrite Af[0z = f.(x,t) as

fe(z,t)=rX /Ot e Yoz, b(t — s), s)ds + p,(z,t)
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(Lebesgue a.e.).

Define u(z,t) = f5 e "4, (z,b(t — s),s)ds. We need to show that u(z,t) is
continuous. Since b is bounded and Borel measurable, it is sufficient to show

that for any Borel measurable function k, the function

d(z,t) = /Ot e n(z — k(s),0%s)ds

where n(z,v) is the normal density at £ with mean zero and variance v, 18
continuous in z. Clearly, for any 0 < 6 < ¢, we have | n, |< (e/2m)/2/(a?t)

and 0 < n < 1/(2r0%t)/?, so

| d(x,2) - d(y, 1) |
- /O' e n(z — h(s), o%s)ds — /0' e n(y — k(s), o%s)ds |
< /d' | e n(z — k(s),os)ds | +/Ot | e n(y — k(s), 0%s)ds |
< /05 ds/o(2rs)/? 4 /ot [z —y | (e/2n)?/o?tds
= (2V8)/(aV2r)+ | 2 — y | (¢/27) "/ In(1/6) .

In particular, letting § = (z — y)?, we get

| d(x,t) —d(y,t) |
S2a—y|/(oV2r)+ |z —y|(e/2r)/*/o*(n(t] | z — y %))
=lx—y [[(2/0)(e/27)*{oe™? + (1/2)Int —In| 2 — y |}]
Shlz—y|(Q+|Injz—-y]]).
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Therefore, | d(z,t) —d(y,t) IS K |z —y | 1+ [In]z —y||), so dis locally
Holder continuous. Thus, fis C!. O

Lemma 2 Let £ = 0? 2%/2 0?/822 + r20/8z — r — 0/0t (a parabolic oper-

ator). Then f is the unique solution ¢ of the initial value problem

Lo=0,z> b(1)
@(b(t),t) = X — b(t), where t > 0
w(z,0) = g(z)

w(z,t) = 0 as ¢ — co, uniformly on compacl sets.

PROOF. Take (z,t) € D. D is open so we can take an open rectangle
R = (z,,22) % (t1,1) with (z,2) € R C D. Consider the initial value problem
Lp =0in Rand p(z,t) = f(z,t)on R \ (z1,72) x {t2}. The existence and
uniqueness of a solution ¢ to this problem follows from Theorem 11 of the
Appendix. Next, let

N, = e p(S,(z),t — s).
It follows from Ité’s formula that N, where r = inf{s > 0:(S,,t—s) ¢ R},

1s a bounded martingale, so that,
P(z,1) = Ng = EN] = Ee™ f(S,,1 — t) = f(z,1),
since 7 is bounded from above by the first exit time of (Ss(z),t — s) from D.

Therefore f satisfies £Lf =0 in D.

The boundary conditions are also satisfied by f. The fact that f(z,t) — 0

as £ — oo uniformly on compact sets follows, since flz,t) > 0asz — oc
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for each t (0 < f(z,t) < X Pr(.S.(z) < t) for z > X, and 7xS.(z) — oo as
T — oo a.s.) and f is increasing in t and decreasing in z, as noted at the
beginning of the proof of Proposition 2. As for uniqueness, for any 7', ¢ is

bounded on R* x [0,T] and ¢(z,t) = (X ~ z) for z < b(t). Define
M,T = e_r(tAT)¢(S¢A1'1 T—(taT))

where 7 = inf{s > 0: S, = b(s)} and Sp = z > b(T). By Ito’s formula, MT

is a bounded martingale, so we have
M{ = ¢(2,T) = EMJ = Ee"T"g(Sra,) = f(z,T),

for all T € R*, since we know T A 7 is optimal for the T-horizon problem,

as required. O

PROOF OF THEOREM 4. That (f, b) satisfies the conditions follows im-
mediately from Lemmata 1 and 2. It remains to show that f is maxi-
mal. Suppose (@, k) is another solution pair. By the same argument as in
Lemma 2, we get ¢(x,1) < E(e (A" g(S,a,,) since g(z) > (X - z) and
Th =inf{s > 0: S, = k(t - s)}. Thus ez, 1) < f(z.t) = sup,¢, Ee™"7g(S,),

as required. O

2.2 Pricing the Option

The problem is to find a fair price for an American put option.
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Theorem 5 Let dS; = oS/dW, + rS!dt with So = So and let f(r,t) =
sup, <, E:[e™7(X — S1)*] be the optimal payoff from optimally stopping the
process e (X — S,)*. Then there is a self-financing portfolio of stock and
cash, (Y, Z,);0 < s <t) with Y and Z adapted, and whose value V, at time
s satisfies V, = (S,Y, + Z,) > (X — S,)* and such that if T° is the optimal
stopping time corresponding to the payoff function f(So,t), then Vyo = (X —
Sre)*. Therefore SoYo + Zo = f(So,) is the fair price for the option.

That is, if one writes the option and sells it for V; and then purchase the
portfolio (So, Yo) and manages it in the prescribed manner, then one will not

lose money, and will make money unless the option is not rationally used.

PROOF. In the previous section it was shown that the optimal stopping time
t is to exercise the option when S’ falls below b(t—s). Moreover f is piecewise

C?in z, C' in t with
d(e ™ f(S.,t —s)) = e " fs(Si,t — s)oSldW, — rXe T L <pe-s)ds.
So

df(Syst—s) = rf(Si,t—s)ds+ fs(S! 1 — s)o S dW,

- erSij(t-s)d'S'

Set
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Zy, = [f(Sst—38)—S,fs(Ss,t—38)+rXe™ /03 e s, <b(t—u)dU,
‘/s = Ss)/.v + ZJ
= S,fs(S,,t-—-s)+f(S,,t—s)—S,f5(S',,t—s)
+7‘X6”-/0 (:—rulsusg,(t_u)du
= f(Ss,t - S) + TXe”[) e_rulsusb(t_u)du.
Then
dVy = rf(S,,t —s)ds + o fs(S,,t —s)dW,
(1 =)f (St = $)Suds + (e X [ €15, ey du)ds
= Y,dS, +rZ,ds.

Since Y5, S,, and Z, are continuous, V is the value of a self-financing portfolio,
so dV, = Ys-dS, + rZs-dS, is the instantanenus return of a portfolio of Ys-

shares and Zg- cash. By V, = S,Y, + Z,, we know that V; > (X = S,)* since

f(z,t) > g(z). O

2.3 An Integral Transform of the Stopping Time

Theorem 6 Let (p,h) be a solution pair to the free boundary problem in
Theorem 4. Then

M,

i

t
MY = €7 (Sy t - s) + 71X / e 15, cheondy,  (36)
o <
is a martingale.
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PROOF. By Ité’s formula,

dM, = e " (Lp)(S,,t — s)ds + rXe T s, ch(r-s)ds
+e (S5, t — s)oS,dW,

since ¢ is C?, piecewise C? in r and piecewise C! in {. But

fo if z > h(s)
Lo(z,s) = { -rX ifz < h(s)

so M is a local martingale. Since p(z,u) = 0 as £ — oo uniformly for u
in a compact set, and ¢ is C! in «, @ is bounded on R* x [0,¢], so M is a

martingale. O

Theorem 7 The pair (f,b) is the unique solution pair (¢, h) to the condi-

tions of Theorem 4 (with h Lebesgue measurable), satisfying h(l) > 0 in-

finitely often.

PROOF. We know that (f,b) satisfies the conditions of Theorem 4. Now
suppose (@, k) is another solution pair to with h(t) > 0 infinitely often.
Define

M? = e f(Ss(z)t —s)+r X [§ e " 1s, <h(t-uydu
M = e o(Sy(z),t ~s) + rX [ €15, <h(t-w)du.

For a fixed ¢t > 0, consider = < b(co) A h(t) < b(t) A h(t). The last inequality

holds since b is bounded by X and bis decreasing in t (see Appendix, Proposi-
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tion 3). Thus, z < b(t)Ah(L), f(z,t) = p(z,t) = g(z). Define M = M° — M1
with My = 0. Define r = inf{s >0: S, > b(t —u)} At. Then EM.,, =
Mo = 0, but Mya, = e[ £(S,n,(2), L~ (r A8)) = p(Soas(a), £ — (7 A5))] +
rX 77 €™ 15,()>h(t-w)du. Then the right hand side is positive because f is
maximal and S,(z) < b(t — u) on [0, 7). Therefore, S.n;as(z) < h(t — (- A 7))
(Lebesgue x P) a.e. and o(Senr(z),t — 8) = f(Synr(z),t — s) = 9(Ssar) (P

a.s.). Note that h(s) < b(s) for s < ¢.

Next let

M, =rX At e " {1s,<b(t-s) — 1s,<n(t~s) }ds,
and let W = ls,<b(t-s) — 1s,<n(t-s)- Then W is negative since p(z,0) =
f(z,0) = g(z). But EM, = My = 0, so W is zero (Lebesgue x P) a.e. .

Therefore, h = b a.e. on [0,¢]. For arbitrary r and s < ¢,
p(z,s) = Mg = EMP' = M° = f(z,s),

s0 ¢ = [ and hence h < b everywhere else on {s € [0,¢]} since f > g on D.

This implies that h = b since £Lf # 0 on D°. O

Note that the argument fails if there exist a ¢ such that h{s) = 0 Vs > t.
Also, the theorem indicates that prohibited stopping before the horizon ¢
corresponds to the case where h(s) = 0 for all s > t.

One also has the following result which was also noted by El Karoui and

Karatzas [13].



Theorem 8 The boundary b(-) is the unique left continuous solution h(-),

satisfying X > h >0 for all t > 0, of the integral equation

X —z=p(z,t)+rX /0' Yz, h(t — s); s)ds (37)
for all x < h(1), where p(z,t) = E[e~™(X = S/x))*] is the price of the
European option, and v(x,y;t) = Pr(Si(r) < y).

PROOF. Since
(M]:s <t)=e " f(S,(z),t ~ s)+rX /Os €7 s, (1) <b(t-wydue

is a martingale, with initial value (X — x)if 2 < b(t), the boundary b satisfies

the conditions. Suppose h also satisfies the conditions. Define

@(z,1) = p(z,t) + 7'X/Ot €U (2, h(t — s), 8)ds.
Then we can write

AI; = e p(S,(z),t —s)+1X /03 €15, (r)<h(t—u)die,
which is a (6W, : u < s) martingale for (z,1) € R2. Define
T=inf{s > 0:S,(z) S h(t —s)} At

For z > h(t),

plz,t) = My = Ec™"o(Sy,t - 7) = Ee™"g(S,).

ThencpSfif:r2h(t)and<,a=g_<_fif:r§h(t). Now take 0 < 7 <
h(t) A b(t) and set

0 =inf{s >0: S,(z) > b(t —s)} AL

33



Then

0=f(z.t) - p(z.1)
= EeT[f(S5.1 = 6) = ¢(Se,t — 0))]
+ ErX /Oee"“lsu)h(,_,)du.
Both terms on the right-hand side are nonnegative (since f is maximal). so
h > b (Lebesgue a.e). However this implies that v > f. Therefore x = f

and so (by the left continuity of &) one obtains h = 6. O

2.4 Appendix

In this section. we have collected some background information necessary for

the previous sections.

1. Krylov [33]

Let A be a separable metric space (a set of admissible controls); R? the
Euclidean space of dimension d: T a nonnegative number. Consider a con-
trolled process in the space R? in a time interval [0, 7). Let (W Fi) be a
d,-dimensional Wiener process for some integer d. Suppose a € A , ¢t > 4,
r € R? and suppose we are given o{a,t.r) which characterizes the diffu-
sion component of the process as a matrix of dimension d x d, and bla,t,z)
which characterizes the deterministic component as a d-dimensional vector.

We are also given real-valued functions Ce(t,z) > 0. fo(i,x), and G(z),
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where f°(t.r) is the payoff during the time interval [t.At + 1], if the con-
trolled process is near a point r at time ¢, and if a control a is used, G(r) is

the gain at time T, and C°(t,z) is the measure of discounting.

Assume that o, b, C, f, G are continuous with respect to (a,r) and contin-
uous with respect to z uniformly over a for each 1. Further, assume that the

above functions are Borel measurable with respect to (a,t,r).

For some constants m, k > 0, all r, YER1>0,a€ A, suppose

lo(a.t.z) = a(a,t.y) || + | bla.t.z) + bla,t.y) |[< k [z -y |  (38)
I ola.t.z) || + | bla.t,z) I< k(14 | 2 |) (39)
| Coltz) |+ | f2(t2) | + | Gla) [< k(14 | 2 )™ (10)

DEFINITION. A strategy means a process a,(w) which is progressively mea-
surable with respect to a system F; of o-algebras having values in A. Denote

by U the set of all strategies.
For s < T, let

t
go = [Cor s +rztm)dr (41)
[¢]

T-s a0z
vY(s.1) = m[/O s+t ;" )e ™ dt + G(z727)e™#7-1] (42)

v(s.r) = sup (s, z) (43)
a€ll

35



Let C([0,00), R?) be the space of all continuous functions z, with values in R?
defined on [0,00), and N, the smallest o-algebra of subsets of C([0, co), R?)
which contains all sets of the form (zjp«) : , € T) for 7 € [0,T] and Borel
rc®

DEFINITION. For ¢ € [0,00) and z(o) € C([0,00),R%)), an A-valued func-
tion oy, with a:(Z(0,)) = ai(zp,n) is said to be a natural strategy admissible
at the point (s, z) if oy is progressively measurable with respect to (N,) and
if, in addition, there exist at least one solution of the stochastic equation

t t
o /O o(ar(pn), s + 1,2, )dW, + /0 b(ow(zpony), s + 7,z )dr,  (44)

which is progressively measurable with respect to F;. Denote by Ug(s, z) the

set of all natural strategies admissible at the point (s, ).
For each strategy o € Ug(s, z), choose one (fixed) solution z{""* of (44).

DEFINITION. The natural strategy a;(zjo,) is said to be a (nonstationary)
Markov strategy if ay(zor)) = a(x,) for some Borel function ay(z,). Denote
by Uys the set of all Markov strategies admissible at the point (s,z). Note

that Uns(s.x) C Ue(s, ), and Un(s,z) # 0.
Let H(t,x) be a continuous function of (¢,z), (z € R?, ¢t > 0) such that

| H(t,z) |[< k(1+ [z )™ (45)
for all t and z.

For s € [0,T], denote by M(T — s) the set of all Markov times (with respect
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to F;) not exceeding (T —s). Fera €U, r € M(T - s), let

v*7(s,x) = M:,[/OT S (s +t, 2" )e " dt + H(s + 7, T,)e"¥r) (46)

w(s,z) =sup sup v*7(s,z). (47)
o€l reM(T-s)
For s < T, let
wg(s,z)= sup v*7(s,z)
aeuE("lz)
and
wm(s,z) = sup v*7(s,z).
a€lips(s,x)

Theorem 9 The function w(s,z) is continuous with respect to (s,x) on
[0,T] x R?, w(s,z) > G(z), w(T,z) = H(T,z). Also, there exists a con-
stant N = N(m,k,T) such that for all s € [0,T], and r € R¢,

[w(s,z) |< N(1+ |z )™

0

Let € > 0, and let

T =inf(t 2 0: w(s +¢,20*%)) < H(s + t,zi"") + €.

1

Note that 727 is the time of the first exit of the process (s + t,z;""%)
from the open set Q. = {(s,z) | w(s,z) > H(s,z) + €}. It is clear that

7297 € M(T — s).

37



Theorem 10 w(s,z) = wg(s,z). Furthermore, for s € [0,T], z € R?, the
following inequality holds:
w(s,z) < sup AI,":I[/T‘ fP (s +t,z,)edt + H(s + Tey Tz )e 9] + €.
oa€Ug(s,r) 0

O

This theorem shows that 727 is an e-optimal stopping time of the controlled
s P PpIng

process.

If A consists of a single point, the last inequality becornes an equality for

e=0.
2. Friedman [15]

Let @ be a bounded domain in the (n + 1)-dimensional space of variables
(z,t). Assume that Q lies in the strip 0 < ¢ < T and that B = QN {t=
0},Br=0Qn{t= T} are nonempty. Let Br be the interior of Br, B be the
interior of B. Denote by So the boundary of @ lying in the strip 0 < t < T,
and let S = Sy \ Br. The set ,Q = BUS is called the normal (or parabolic)
boundary of Q. Let

1 & 9? n P 5
L=3 g::l @il ) g+ gb;(z,t)a: +elz,t) - 5

=~

be a uniformly parabolic operator in Q. Consider the initial boundary value

problem of finding a solution u of

Lu(x,t) = f(z,t) in QU By



u(z,0) = ¢(z) on B
u(r,t) = g(z,t)on S

where f, ¢, g are given functions. If g =¢on BN S, then the solution u is

always understood to be continuous in Q.

Theorem 11 Assume that L is uniformly parabolic in Q, that a,;, bj, ¢, f
are uniformly Holder continuous in Q, and that 9,9 are continuous functions
on B and S respectively, and g = o on BN S. Then there ezists a unique

solution u of the initial boundary value problem above.

O
3. Jacka [22]

Let (&:):30 be a diffusion in R (with respect to (Fy)), and X, = e¢=*'g(&,, T —

t), where g is a continuous function. If

St = ess sup,., E[X, | F],

then clearly S, = et f(¢,, T ~t), where f is a continuous function and f>gq
(Krylov [33]). Let D := {(z,s) : f(z,s) > g(z,s)}. Because f and ¢ are
continuous, it is apparent that the Jocal time L°(S — X)) will only increase

for & € OD.

Next, let X = M + A be the canonical decomposition of X, where M is a

martingale and A is a continuous, predictable process of integrable variation
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with A9 = 0. Denote by A~ the decreasing component of A. Then we have

the following theorem and corollary:

Theorem 12 If¢, f, g are defined as above, and there ezist (deterministic)
measures my, my such that

(i) € has density p with respect to m,,

(ii) dA~ < dm,,

(iii) my ¢ ma(dD) = 0,

then L°(S — X) is indistinguishable from 0.

PROOF. Let p, := (1/2)dL7/dA;. It follows from the stroug Markov prop-
erty that g and K & dA7 [dmy(s) are of the form p, = p(€,, T — s) and
K, = e K (&, T — s) respectively. Denoting the ¢-section of 8D by (0D),,

we have

EL°(S - X)
t
= E/O /t_,l(s..,\')_,>0(lA_
t
= E/o Hsle, T-s)eapdA;
t
= [ [, € n(a T — )pleo. a )k (a, T ~ s)dm (a)dmss)
e u(a,T — s)p(&o,a;s)K(a,T — s)d(m; ® mz)(a, s)

aDN(RIx[0,1])
=0

by (ii1). O
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REMARK. Under the conditions of the above theorem, we can represent f as

f(fO, T)
=A E i d
= Ao+ /0 1, 7-s)epdA,
= E{Ar- [ 1 dA
- { T—/O (€5, T—~s)eDe< a}
T
= E{e™Tg(51,0) + [ e K (&, T - s)ds)
= e_an(€07 a, T)g(av O)dm,(a)

Rd

e y a3 K ’ - d y /.
+./Dcn(3edx[o,T])e p(€o,a;8)K (a,T — s)d(m, ® my)(a, s)

Corollary 3 Suppose the conditions of the above theorem are satisfied. If p
is C! in € with derivatives which are uniformly continuous in R x [ig, ,] for

any 0 <y < t; < oo, then f' is C' in € for oll t > 0.

a

4. Jacka [21]

Let f be as in (29).

Lemma 3 f(z,t) >0 forall z > 0,t > 0.

PROOF. Note that g(z) > 0Vz < X. Thenforz > X and ¢ > 0,
Sz, ) 2 (X/2)(Eze™ ™11, o) > 0

where 7x/, = inf{s > 0: S, < X/2} At. O
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Proposition 3 The boundary b 1s decreasing in t and bounded above by X .

PROOF. We know that f(z,-) is increasing for each z, and f(-,t) is decreasing

for each ¢, by the proof of Proposition 2 , so that for any ¢ >0,s> 0, > 0

S(b(t) +e,t+s) = f(b(t) +e,t)
> g(b(t) +¢),

since b(t) + € € Dy, and so b(t) + € € Dyyy. Thus b(t + s) < b(t), so b is
decreasing in t. Finally, note that g vanishes on [X,00), whereas if z > X,

t >0, then by Lemma 3, f(z,t) > 0so b(t) < X. O
Proposition 4 The boundary b is continuous.

PROOF. Both f and g are continuous , so since D = {(z,t): f — g > 0} is
open, D¢ is closed. If t, T ¢, then (b(2,),2,) € D* for all n. Thus b(t~) < b(2).
This gives us left continuity of &, since b is decreasing in ¢. Recall that Lf=0
in D by Lemma 2, and
2.2 52
021' 'ZT{ >
in D, since f/0t > 0 and §f/dz < 0. Thus by letting

rf

D" ¥ pnio,X] x [1/n,n]

we obtain

oz 9% f
inf —_ >
(r€D" 2 B = 7 0
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for some ¢, since f > 0 in the closure of D" and J is continuous while the
closure of D" is compact. Given t > 0, take N such that ¢ > 1/N. Then for

any z € [b(t*) + 5, X] we can write

f(z,s) - g(z,s)

v raZf d%g
/(,) /(s) 6:1:2 ﬁ(u,s)] dudy
> a"’X

since (0222/2)(8%g/0z?) vanishes on [0, X] x ®*, and f,g agree on b up to

first derivatives and b is decreasing.

Take a sequence (s,) | t, and use the continuity of f — g to deduce that

2
FO(tY) +n,t) — g(b(t*) + 7, —xcn > 0.

Thus (b(t) + 1) € D, for all 5 > 0. This implies that b(t*) > b(t). Since b

is also decreasing, it follows that b is right continuous. The result follows. O
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3 Analytic Approximation of the American
Put

As stated earlier, Black and Scholes [5] derived the pricing equation for an
European put option when the stock price follows a geometric Brownian mo-
tion. For the same model, Merton [42] derived the pricing equation for an
American put with infinite time to maturity (see Chapter 1). In this chapter,
several analytic approximations to the American put price will be reviewed.
Numerical solutions, which will be discussed in the next chapter, are gen-
erally expensive and do not provide much insight. By studying analytic

approximations, we hope to gain insight into the problem of pricing.

No one has yet been able to find the general solution to the American put

price, P, although P is known for several special situations (Johnson, [26]):
e 7T =0, P = p, ie the American and European puts are equivalent.

e 0’T =0, P = (X - S)*, i.e. the put is either worthless or exercised

immediately.
o X =0,P=0.

e S=0,P=X.

and Merton [12]:
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p_ { X/(1+ M)(S/S)M if S > S. = MX/(1+ M)
Y x-§ if S <8,

notation being as defined in Chapter 1. We write & for the distribution
function of a standard normal variate (the number of arguments will be clear
from the notation). Again, S,, the critical stock price (i.e., the price below
which early exercise occurs) is, in general, an unknown function of X, M,

and o°7T.

In this chapter, the works of Johnson [26], Geske and Johnson [16], MacMillan
(36], Barone-Adesi and Whaley [3], and Lamberton [35] will be reviewed.

3.1 Johnson

Using the fact that an American put is more valuable than a European put,
but less valuable than a European put with an exercise price which is constant
in present value terms, Johnson develops an approximate analytic expression
for the price of an American put on a stock which is not paying dividends.
The expression is very accurate for all values of the risk-free rate so far
observed in the United States. More precisely, Johnson derives a general
inequality by noting that an investor would be willing to trade an American
put with exercise price X and time to maturity T for an American put with
the same terms, but with a step-up of X(e'T — 1) at maturity. This latter

put is equivalent to another European put (Margrabe [37]); hence, one can
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write
p(X) £ P(X) < p(XeT). (48)
Note that any European put is equivalent to an American put with exercise

price rising at the risk-free rate.

It might appear that inequality (48) provides an analytic expression for P,

since we must have

P(X) = ap(Xe'T) ¢ (1 - a)p(X) (49)

with 0 < a < 1. Unfortunately, « is not a constant but a rather complicated
function of /X, rT, and o°T. Johnson estimates a functional form of a by
observing from Parkinson’s tables [44] that a is between 0.2 and 0.25. A first

attempt is made with a function of the form

rT
T aTra %0

with ag = 4 and a; < 1, since then (50) gives values of a in the correct range,
except when +T is small. Parkinson’s tables \-ere used to find a, by regressing
rT/a on »T. This yields ap = 3.9649 and a; = 0.03325 with R? = 0.9998.
For in-the-money puts, expression (50) gives values which are too large; the
values are too small for out-of-the-money puts. Therefore, (50) was modified
to permit a to become larger as S becomes smaller, while giving the same
values as before when § = X. The following functional form was used:

rT ¥
a= (aorT + al) (51)
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where
- log(s/s.)

= . (52
log(X/5.) (52)
Finding S. , in general, requires the solution of
X - 8. =P(X,S.,rT,o’T). (53)

Since the Amercian put pricing equation is not known, the equation for S,
must be estimated. For 02T = 0, we must have Sc = X, while for 0?7 = ¢
(Merton, {42]), we must have S, = X M/(1 + M}. Thus, it seems natural to
approximate the functional form for S, as

LM oA\" ]
S =X (1 +M) (51)

for some function m.

Note that for r = 0 there is no reason to exercise early, and, hence, S. must
be zero; (54) satisfies this requirement. In order to have m = 0 for o*T =0

and m = 1 for 02T = oo, one could try
m = UzT/(b()G'zT + bl) (55)

where by should be one. In order to estimate bo and by, rewrite (54) and (55)

as
_ o’T  log(S./X) X
" botT 4 b log(M/(1 + M) (56)
and (52) as
o BUS/X)X/5) _  loga 1)
log(X/S.) log(rT[(aorT + ay))’
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Now, regress
T
log(S/X)
on o?T. Since no listed puts have ever had 7 > 0.12r~!, cases of large rT

{1 —log(a — rT/(aorT + a,)} log(M/(1 + M)) (58)

were excluded from the regression. Again, values for a were obtained using
Parkinson’s tables; ag and a; were found in the previous regression. The

second regression yielded by = 1.04083 and b, = 0.00963, with R? = .9975.

The formula developed by Johnson is valid only for American puts on stocks
which do not pay dividends. The approximation is not very accurate for puts

on stocks which pay large dividends.
To find the hedge ratio, rewrite (49) as

P = a[X®(~dop;) — S®(—dn)]
+(1—a)[Xe™T@(—dy) — SO(—dy)] (59)

where d; and d, are as in (12),

_log(S§/X) + 02T/2

T (60)

(101

d(n = do] - U\/T. (61)

In this representation, one can view the American put as a weighted average
of two Europear puts, one using a zero interest rate and one using the true

interest rate. From (59) onc obtains

48



oP

ﬁ = —atb(—dm) - (1 - O)Q(—dl)
alog(rT)/(aorT + a;) .y v .
t T Slog(xj5)  PXeT) = p(X)) (62)

In general, of course, the derivative of an approximation formula is less ac-
curate than the formula itself. Using (62) to set a hedge will not necessarily

produce an entirely risk-free hedge.

3.2 Geske and Johnson

Geske and Johnson present an alternative analytic formula which allegedly
satisfies the partial differential equation and boundary conditions that char-
acterize the American put valuation problem. As usual, the Black-Scholes
hypotheses of'perfect markets, constant r and o, no dividends, and geometric
Brownian motion for the stock price are assumed. The current time is set at

zero.

The key to their solution is the assumption that each exercise decision is a
discrete event, whence a formula is derived as the discounted expected value
of all future cash flows. The cash flows arise because the put can be exercised
at one of the future times t,, ¢,, .... The infinite series thus derived should

be a continuous time solution to the free boundary value problem.

Since the assumption of geometric Brownian motion implies that the stock
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price at any future date is a lognormally distributed random variable, the
correlation coefficient between the overlapping Brownian increments at close
times {; and t; (t; > 1;) is given by p1; = (1;/t2)"%. At each instant, one
will exercise the put if (a) the put has not already been exercised and (b) the
payoff from exercising the put equals or exceeds the value of the put if it is not
exercised. The critical stock price is independent of the current stock price
and is determined from the free boundary whenever X — S, = P(S.,T), for
some § = S. and any T. Note that this can also be expressed as OP/0S = -1
when § = S.. At the first instant, there is no probability that the put
will already have been exercised, so one just integrates the exercise price
less the future stock price at this date, and then discounts to the present.
This yields two terms, one being the discounted exercise price times the
probability that the stock price will be below 5{1), At the next instart, one
performs a similar integration up to ${%2), the new critical stock price, but
one must exclude all those cases where the put has been exercised at the
first date. Again one obtains two terms, one being the discounted exercise
price times the probability that the stock price at the first instant will be
above the fitst critical stock price S, and the stock price at the second
instant will be below the second critical stock price §{2), and so on. The
correlation coefficient is negative between the argument for the last instant
and the arguments of the previous ones, but positive between the arguments
for the previous times. Intuitively, the put will be exercised at this instant
if the stock price is below the critical stock price for this instant, given that

it was not exercised at ail previous instants because the stock price was
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always above the critical stock price. Proceeding in this way. one obtains the

following formulae: Set

zi = di (S, 1)), (63)

yi = dp(S1)) 1)), (64)
Then one has

P =Xuw; — Sw, (65)

where the weights w; and w, are given by

wy = P(—z) + b(z;, -2, —p12)
+ ®(z1, T2, —23; p12, —p13, —p13)
+ .

wy = e7THd(—y;) + e "2 ®(y1, —y2; —p12)

+ €7D (y1, y2, —y3; pr2, =13, —p13)

and the correlation coefficients are pi; = i/\/7 for all i,5 > 1. The series are

both infinite.

Equation (65) cannot be used to compute actual numbers for the American

put values, but it offers some insight into the portfolio which duplicates the
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American put payoffs. Note that if we differentiate this formula, we also gain
some information regarding the sensitivity to all the specified parameters,
and obtain some simplification in computing the hedge ratio. Since one
assumnes that the risk-free rate is known and constant, the portfolio of bonds
represented by Xw, is equivalent to investing the same amount in a risk-free
bond of whatever maturity. However, if one were to introduce uncertainty
about future interest rates, then term structure effects could be important.
Note that the formula implies that the duplicating portfolio for the out-
of-the-money puts is skewed toward longer maturity bonds, while for the

in-the-money puts it is skewed toward shorter maturities.

Recall that the European put option is simply a special case of an American
put nption with only one exercise boundary. Then, (65) reduces to the
Eurébean put formula when P(S,T) = (X — S)* only holds at T = 0. The
critical stock price is a time-dependent path of stock prices that separates
the exercise from the no exercise region in such a way as to maximize the
value of the American put. Just at the point where the stock price is equal
to the critical price, the put value would decrease one dollar for a one dollar
increase in the stock price (i.e., OP/3S(S = S.) = —1). As § — S., the
sensitivity of the American put, dP/9T, tends to zero. Also, at this exercise
point, the interest rate effect on the American put exactly offsets the variance

effects.

Note that because the option is linearly homogeneous with respect to the

stock price and exercise price, the existenc: of either partial derivative implies
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the othe:. Since the time to maturity only appears in the formula multiplied
by the interest rate or variance rate, the existence of any two of the partial

derivalives with respect to r,o and T implies that of the third.

The partial derivative of the valuation formula (63)with respect to the stock
price is the hedge ratic (the number of shares of stock to options) in the

portfolio:

op
as

The negative sign indicates that as the stock price rises, the put price falls.

= —w,; < 0. (66)

The hedge ratio can be thought of as either the negative amount of stock
(sold short) to which the put is equivalent, or under risk neutrality, as the
discounted expected cash outflow (divided by the stock price) that the put
holder will experience.

As the exercise price rises, the put value rises:

o —wm>0 (67)

This can be considered as the expected cash inflow (divided by the exercise
price).

As the interest rate rises, the American put value falls:

—06—? = —Xdtle7"®(') + 2¢72P() + .. J<o. (68)

Since the present value of the bonds in the duplicating portfolio decreases as

the interest rate increases.
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As the variance rate rises, the put value rises:

oP vT .
% = X-Ea—wz 2 0. (69)

An increase in volatility increases the probability of both high and low stock
prices, and with the asymmetry of an option’s contingent payoffs, increases
the option value.

As the time to expiration increases, the American put value rises:

2}_)_ — Y —rt; ’ —-riz ’ o >
aT—.\r[e ®(') + 2e <I>()+...]+z\2—\/__0. (70)

The first four partial derivatives are functionally different from their corre-
sponding European counterparts, but they do have the same sign and similar
interpretation. The partial derivative with respect to time to expiration is
strictly positive for the American put (provided S > S.), while its sign is
ambiguous for the European put. This ambiguity for the European put is
obvious because more time helps if the put is out-of-the-money, but hurts
if the holder wants to exercise immediately. The strictly positive sign for
the American put is intuitively plausible because extending the life gives the

holder more choices.

Geske and Johnson also show how to evaluate the American put formula
(65) with a polynomial expression based upon an extrapolation from only
a small number of exercise points to the infinite limit. The evaluation is
very efficient because one is approximating an exact solution rather than

the partial differential equation or the stock price process itsell. Arbitrary
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accuracy can be obtained by adding exercise points. However, they showed
that only a few {‘hree) critical stock prices need to be computed in order to
obtain penny accuracy. Unlike Brennan and Schwartz [6] or Parkinson [44],
they do not approximate the partial differential equation, or the stock price
process (Cox and Rubinstein, [9]). Instead, they evaluate their formula as
an exact solution to the partial differential equation subject to the (discrete)

free exercise boundary.

Let P be the price of a put that can only be exercised at time T (i.e., at
expiration); this option is just the European put, and we can write Po=p,
the European put value. Let P, be the value of a put that can only be

exercised at time T'/2 or time T. Then

Py = XemTPo(—dy(ST,T/2) — S&(—dy (ST, T/2))
+ XeTT0[dy (ST, T/2), —dy(S¥, T); —1/V/2)

c

= S (ST, T/2), ~d\ (X, T); ~1/V3). (71)
The critical stock price, S{T/2) | solves

S=X~-p(SX,T/2,r,0) = ST/?, (72)

Similarly, let P; be the value of a put that can only be exercised at times

T/3,2T/3, or T. Then

Py = XeTTTPO[—dy(STID, T/3)] - SO[-dy (ST, T/3))
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+ Xe TR0y (ST, T/3), —da (ST, 2T/3); ~1/V/3)

— SO[d\ (ST, T/3), —dy (SPT/,2T/3); 1/ /3]

+ Xe T0[dy (ST/™,T/3), —dy (SET1¥), 27 /3), —d; (X, T);
1/V2,-1/V3, -2/V3]

= SO[dy(S{T/%,T/3),dy (SPT/),2T/3), ~dy( X, T);
1/V2,-1/V3,-2/V3] (73)

and the critical stock prices S(/3) and SET/3) solve

S =X - Py(S,X,2T/3,r,0) = ST/ (74)

and

S=X-p(8X,T/3,r,0)=SCT/3) (75)

respectively.

The values P,' s P2, P, - define a sequence whose limit should be the Amer-
ican put value. Many techniques are available for computing such limits.
One method is Richardson extrapolation (Dahlquist and Bjorck [11], p.269).
In this case, the quantity to be determined is the American put price for a
particular set of values S, X, T, r, and 0. The step length is the time between
points at which exercise is permitted. The version of Richardson extrapola-

tion (Appendix, equation (111)) leads to the following equation:

P=Ps+7/2Ps - P) = 1/2(P; - P)). (76)
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This polynomial can be used to determine American put values and hedge

ratios.

Preliminary evidence indicates that the analytic formula evaluation tabulated
is faster to compute, by a factor of 10, than numerical methods. This is
because the binomial and finite difference methods compute n critical stock
prices (n = 150 in Cox and Rubinstein) while here only three points are used.
(Even the tabulated four point method computes six.) Note that the three

point extrapolation is about twice as fast as the four point.

Recall that the hedge ratio for the American put is given approximately
by 0P/0S = —w,. In the absence of an analytic formula the hedge ratio
is numerically approximated by computing two put values for two different
stock prices and then using a difference equation to approximate the partial

derivative at an intermediate stock price.

Geske and Johnson attribute their solution to an economic interpretation.
First,the risk free hedge allows economists to avoid the transformations re-
quired for solutions to partial differential equations. Second, compound op-
tion theory provided a straightforward method for interpreting the infinite
series of interrelated probability integrals arising from the free boundary con-
dition. A key to the solution is that each exercise decision is considered as
a discrete event. Thus, the formula derived is a continuous time solution
to the parital differential equation instants. The formula adds to our intu-

ition because it implies an exact duplicating portfolio for the American put,
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consisting of specific positions in discount bonds and stock sold short.

The evaluation of the formula is a separate problem. At first blush the
American put formula might be considered intractable due to ihe infinite
series of integrals. However, since the formula is exact in the limit, arbitrary
accuracy can be obtained by extrapolating from a small sequence of terms
to the actual solution containing an infinite series. This formula evaluation
procedure leads to a polynomial expression similar to that used to evaluate

the integral terms in the Black-Scholes European put option formula.

3.3 MacMillan

A third analytic approximation for the value of the American put option is
given by MacMillan. The approximation is claimed to give accurate values
and is easy to implement on a computer.

The value of the American put option satisfies the following partial differen-

tial equation (23)

a*P oP oP

:)1‘0'2528q2 +I‘SR—TP— -B—-T =0,
subject to the boundary conditions
PS5, %) = (X - 9)%; (77)
P(5,t) 2 (X - §)%; (78)
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P(S5,t) < X; (79)

Jim P(S,8) =0, (80)

where t* is the expiration date. In addition, we require equilibrium option
prices to be continuous functions. If discontinuities arise, for example as §
_varies, then arbitrageurs would seek to buy on the low side of the disconti-
‘nuity and sell on the high side; the resulting market forces would work to
eliminate the discontinuity, and so at equilibrium no discontinuities could

survive.

Recall that S, is the price at which the put should rationally be exercised,
defined by P(S.,t) = X — S.. Equation (23) is only applicable for § > ..
For § < &, P(S,t) =X - S.

MacMillan finds an approximate solution to Merton’s differential equation

and its boundary conditions, in the following form: write

P=p+e, (81)

so e is the early erercise premium. Since the European put satisfies an
equation similar to the American put, e satisfies
1 d% Oe Je

1 2020°€ ge .. _ 9 _ .
205’ 557 +rSaS re 5T 0, (82)

However the boundary conditions on e are substantially simpler than those

on either P or p, since both P and p satisfy the same houndary condition:
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P(5,87) = p(5,17) = (X ~ §)*.

(83)

We are thus left with the simpler problem of solving (82) subject to the
conditions €(5, %) = 0, (S, t) < X, and lims_. e(S,t) = 0. Replacing T by

a function K (T), transforms (82) into

e
2
T 652

+MS

MdK Je

e
ﬁ—MC 0,

r dT 8K

where M = 2r/o?. Now write (S, K) in the form:

e(S,K) = K(T)f(S, K).

One then has

@
as
O%
082
is;
orT

Equation (82) then becomes

5°
of af M dK ,dAK Of
S§?] g9l _ Il Skl
aq,-f-)‘ISI 39 MKf [ f K dTaK]
This can be rewritten as:
2 0% f of dI\/dT LOf[OK
Sog tMSFo - Ml + —L—(1+ K 7 Nf=0

of
K ﬁ,
0'f
N ase
dK . dK 3f

! T aT aK
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The function K(T') is now chosen so that the time-dependence of € = K f is

contained in the factor K(T). A simple and useful choice is

K(T)=1-¢"7. (88)
(86) the becomes:
a*f of M ., OfOK
2 — =
5652+A158q \,[1+(1 K)K 7 If=0.

The term (1 - KN)K iszeroat T =0 (i.e. K =0)and at T = oo (ie. N =1),
and has a maximum value of 1/4 at K = 1/2. Neglecting the term involving
(1~ K)K should produce a useful approximation for small 7" and for large T,
with error at intermediate values of 7" well controlled by the term (1 — K)K,

so consider

o°f of M .

S+ MS—= — — [ ~0. 89

g5z *Mogs Rl = (89)

One can assume that K is not equal to zero; the case K = 0 is treated in
the Appendix. The second-order ordinary differential equation (89) has two
linearly independent solutions of the form a.S9. By substituting f = aS7 into

(89), one gets a quadratic equation in ¢:

M
q2+(M—1)q—7‘.—.=0. (90)

This is easily solved for g to give two roots ¢1 and gq, with ¢; < 0 < ¢, say.

The general solution to (89) is
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f(S)=a,5" 4+ a;87%. (91)
Necessarily a; = 0, since $% — oc with S, which is not allowed by condition
(80). Writing a = a; and ¢ = ¢,. we obtain
P(ST)=p+ Kf=pS.T)+ (1 —e"T)as".

Let § = S. be the value of S at which the curve P = p + A" f touches the

line}Y =X — S, so
P(S) =p(S)+ K(T)f(S.)= X - S.. (92)

Note that at § = S, the slope of the curve P = p+ A f must equal the slope
of the line Y = X — &, which is -1. That is,
d d

d d
= - (G Ty = .
as (s agP(oe) + K(T) 7= f(S:) = +=

where S; in parentheses indicates evaluation at S. after all other operations

(X =S.)=-1. (93)

have been performed. Finally. recall that for § < S.. one has P = X — .

Use (92) and (93) to determine S, and a. First of all note that

d d
GP(S) = —=el§) = 1 = B(&(S)) 1

(see. Eq(45) in Smith [42"). Then from (92) and (93) obtain

I\f(Sc) _ .X,—‘S',:—P(SC)
KEf(S)  —9(di(S.))



n

But f(S§) = aS7 so that % f(S) = aqS9-'. Thus,

Hence

¢ _ —9(X = p(S.))
ST (S — g

Thus §. is the value of S which satisfies the equation S = G(S). where

(94)

gy = 94X = p(S))
" @Em) -

This equation will not vield an explicit formula for S, but can be solved to
any desired degree of accuracy using standard iterative techniques. Having
obtained S.. use (93) to obtain
(di(S.))S17
a=——2=c
—qh

Now let

Sc¢(dl(5c))
—-q
Then an approximate solution of (23) subject to the boundary conditions

(77)-(80) is

A=aKN5! = (95)

P(S,T) = p(S,T) + A(S/S.)°. (96)

The limit T = oc is exact, and the solution in this case has been obtained

by Merton [42]. For T = oc,onehas K =1 —¢~'T = 1. Thus, the quadratic
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equation, ¢* + (M — 1)qg — M = 0, has solutions ¢ = 1 and g = —M. Select
the negative root ¢ = — M as hefore. Obtain S, from the equation

s = —8(X = p(S.))
KICIEs e

At T = oo, p(S) = 0 and &(d,(S)) = 1, so that this equation becomes
Se = MX/(1+ M), whence A = S.8(d,(S.))/(~q) = X/(1 + M), and so
finally

S q /\r S -M
P“A(E) _1+M(S—c) ’

for § > S, while P=X =S for S < S.. These are precisely the results

obtained by Merton.

3.4 Barone-Adesi and Whaley

Barone-Adesiland Whaley extended MacMillan’s work to the theory of pric-
ing commodity option contracts. A commodity option represents the right to
buy or sell a specific commodity at a specified price within a specified period
of time. The exact nature of the underlying commodity varies and may be
anything from a precious metal such as gold or silver to a financial instru-
ment such as a Treasury bond or a foreign currency. Usually the commodity
option is labelled by the nature of the underlying commodity. For example,
if the commodity option is written on a common stock, it is referred to as a
stock option, and if the commodity option is written on a foreign currency,

it is referred as a foreign currency option.

64



Consider a general commodity option-pricing model. The assumptions used
in Barone-Adesi and Whaley’s analysis are consistent with Black-Scholes
and Merton. First, the short-term interest rate, v, and the cost of carry
for the commodity, b, are assumed to be constant, proportional rates. For
a non-dividend paying stock, the cost of carry is equal to the riskless rate
of interest (i.e. b = r), but, for the most other commeodities, this is nat
the case. For the traditional agricultural commodities such as grain and
livestock, the cost of carry exceeds the riskless rate by the cost of storage,

insurance, deterioration,etc.

A second common assumption in the option pricing literature is that the
underlying commodity price change movements follows the stochastic differ-

ential equation,

i,—s = pdt + cdW, (97)

where 4 is the expected instantaneous relative price change of the commodity,

o is the instantaneous standard deviation, and W is a Wiener process.

Finally, assuming a riskless hedge between the option and the underlying
commodity may be formed, the partial differential equation governing the

movements of the commodity option price V through time is

1yege0V GOV, OV ¢
378 g TS5~V ~ 5 =0, (98)

This equation, which first appeared in Merton, is the heart of the commodity

option pricing discussion contained herein. Note that, when the cost of carry
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rate b is equal to the riskles rate of interest, the above differential equation
reduces to that of Black and Scholes. The non-dividend stock option pricing

is a special case of the more general commeodity option pricing problem.

Barone-Adesi and Whaley derive a quadratic approximation to the American
put value. The key insight into this approximation is that, if the above partial
differential equation applies to both the American and European options, it
also applies to the early exercise premium of the American option. Recall

that the early exercise premium is defined by (81).

Letting M = 2r/o?, and N = 2b/0?, the differential equation satisfied by e

is

0% Je M fe
2 5y - =
S 35‘2+A 35 — Me 3T 0. (99)

Next, let e(S, K} = K (T} f(S, K) as in (85). It follows that

e _ Of
a5 = Mg
0% o*f
a5z = F3g
o dI\f wdK Of
ar = dT oK

Substituting tne above partial derivatives into (99) yields

"2821+Asﬂ-—M[ af/a]‘

o 0S? oS

dK /dT

— (1 +(K/f) Nf=0.  (100)
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Choose K(T) =1 —e~"T as in (88), and substitute to obtain

o f of M g O
e JS— — —f — (] — - =
S 537 +1\SaS 1\’f (1 I‘MI(')I\' . (101)

Now, assume that the last term on the left-hand side is negligible. For
commodity options with either very short or very long times to expiration,
this assumption is reasonable since, as T — 0 or T’ — oo, df JOK — 0, and

the term (1 — K')M(8f/0K) disappears. Therefore, one has

o f of M
- == - —=f=0. 02
5652+N505' I\'f 0 (102)
The characteristic equation for (102) is
M
q2+(N—l)q— % =0, (103)

with a unique negative root ¢,. As in MacMillan, the only feasible solution

is f(S) = a; 8%, whence

P(S,T) = p(S,T) + Ka,S". (104)

The value of a; is
1

1 = elT9(dy(S,)))
Kqg, S8
where —e®=")T®(d,(S.)) is the partial derivative of p(.S;,T) with respect to

; (105)

a; =

Se, a1 > 0 since ¢; < 0, and all other terms are positive (for the definition of

dy see (12)). The critical commodity price S, is determined from
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X = 8= p(S.,T) - [1 - e®7T®(dy(S.))]S:/q1. (106)

To find S, observe that S.(0) = X, and
A’
1 - (1/q1(o0))’

where ¢1(00) = [(1 - N) — \/(N —1)2 4+ 4M]/2. 1t is worthwhile to point out

Se(o0) = (107)

that when the cost of carry b is equal to the riskless rate of interest r, this
result is exactly the same as Merton. In equation (106), S, is a decreasing

function of the time to expiration, and has the following approximate analytic

expression
S = Sc(00) + [X — S.(c0)]e™, (108)
where hy = (6T — 20V/T)X /(X — S.(c0)).

With S: known, the approximate value of an American put option (104)

written on a commodity becomes

P(5,T)= p(S,T)+ A(S/5.)" when S > S.
P(S,T)= X-S8 when § < S, (109)

where Ay = —(S./q1)[1 — e(b")T(I)(dx(Sc))]. Note th.t A; > 0 since ¢; < 0,
S. >0, and ®(d,(S,)) < etT.
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3.5 Lamberton

For a probabilitistic approach, consider an American put option on one share,
with exercise price X and maturity 7. Following Karatzas [27) and Myneni

[43], write the fair price of this option at time ¢ € [0,7] as
Vi=esssup,.r E(e "X - S)* | F),

where 7, 7 is the family of stopping times = ¢ [t,T]. Due to the Markov

property of the model, we have V; = u(t, S,), where

u(t,r) = ZUTP E(G—T(T_')(X —:ve(’“’2/2)(7-1)+o(Wr—W.)+
Ted T
= sup EeTT(X — zelrmotATHoWr )+
T€T,7-¢

For t € [0, 7], define the critical price at time { as
Se(t) = sup{z >0 | u(t,z) = (X — z)*}.
The function ¢ ~ S.(¢) is C™ on the interval [0,T) (see Van Mocrbeke [49]

and Friedman [15]), and lim,—.1 S.(t) = X. Since ¢ s u(t, z) is nonincreasing,

t — S.(t) must be nondecreasing.
From the theory of optimal stopping, we know that

Vo = supreq,  Ee™ (X — S,)Y = Ee™ """ (X — Sre)?t
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with 7* =inf{t € [0,T] | u(t, ;) = (X — S,)*} being the smallest optimal
stopping time (El Karoui, [12], 72-238). In fact, the following result of Jaillet
et al. [25] (Remark 3.12) shows that 7* is the only optimal stopping time.

Lemma 4 If 7 is a stopping time in Ty and satisfies
Vo=Fe (X - S,)*
then T = 7° almost surely.
0

Note that on {r* < T}, we have 7* = inf{t € [0,7)] S, < 5.(t)} and that,
if Sp < S.(0), then 7* = 0 almost surely.

Lemma 5 Assume Sy = z > S.(0). Then, the support of the distribution of
T* is equal to [0, 7).

PROOF. Since S; = zelr=*/t+eW: o have, with the convention that inf § =

T,

0 = inf{t €[0,T]|log(z) + (r — 0?/2)t + oW, = log S.(t)}
= inf{t € [0,T]| (r — 6?/2)t — log S.(t) + oW, = —log(z)}.

Now, for any ¢ € (0, T) the distribution of the process

(Wi + 2 = 0%/2)t ~ 1og £.(1) Jogrer—s
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is equivalent to that of the standard Brownian motion on the interval 0,7~
€], since S. is smooth on [0, 7). Hence, the result follows from the well-known

properties of the hitting times of Brownian motion. O

A natural way to approximate the function u is to introduce a random walk
approximation of the driving Brownian motion (Widogtsr. Let (€x)isy be a
sequence of i.i.d. square-integrable random variables, with E(ey) = 0 and
E(e?) =T, and let
Wi - She e
vn
Fort =kT/n,k=1,...,n,let

() - —rry oWl s2/0,
u'™(t, 1) supfefo(;)_‘E'(e X — ze )

where 'TO("})_, is the set of stopping times (with respect to the natural filtration

of W(™) with values in
0, T —t)n{0,T/n,2T/n,...,(n — )T /n,T).
From the definition of u(™), it is clear that z — u™(t,z)is a nonincreasing,
convex function, satisfying u(™(¢,z) > (X — z)*.
We extend the definition of u(™ to all of [0, T] by setting
uM(t,z) = u(")([nt/T]T/n, z),

where [a] denotes the integer part of a. With this definition, u™ is a nonin-
creasing function of ¢, whose values may be computed (by dynamic program-

ming), by solving the following recursive equations:
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u™(T,z) = g(z)

(k :l)T’zejr-a:p)T_"g%))

u™ (E,z) = maz(g(z), e~ T/ Eu™ (

n

for all integers k between 0 and n — 1.

(Note that when the &, are Bernoulli random variables, the algorithm we
have just described is a variant of the Cox-Ross-Rubinstein method [10] for
valuing American put options. The methods of Parkinson [44] and Geske

and Johnson [16] are also relevant to this approach.)

The main properties of the approximate critical price associated with the

u(™) are es follows.

Proposition § Let p, = {0,T/n,2T/n,...,(n - 1)T/n}. For all large
enough n and allt € p,, there is a number sn(t) € [0, X) such that u™(t,z) =
(X —x) for all x € [0,54(1)], and u™(1,z) > (X —~ z) for all ¢ € (sa(t), X].
Moreover, letting S™ = me("°2/2)‘+”w¢("), the stopping time defined by

7o =inf{t € p, | S < sn(t)}

salisfies

. oW _g2 .
u™(0,7) = E(e3X — g™ 0 /27")"’.

PROOF. First observe that for z > 0,

wM ((77 :zl)r’z> - 772a1‘(g(1‘),e_rT/nE(_¥ - xe(r—a"/Z)T/n+a(s;/\/r_1))+)_
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Therefore, for all o > 0,

u((n = 1)T/n, X) = XeTT/mE(1 — U=o*0TIntoes/VR)+
> Xe—rT/n(l _ e(r—a2/2)T/n—aa,/\/r_1) Pl"(Ex < —0)

= XeT/n PI‘(E] < —a) (g\/% + U(_\}T—?)) .

Since E(e;) = 0 and E(e?) = T, one can find o > 0 such that P(sy < —a) >

0, so that, for n large enough,
u™((n = 1)T/n, X) > 0.

Since t — u{")(t, X') is nonincreasing, we have ul) (1, X) > 0 for all t € p,.
The existence of s,(t) now follows from the convexity of the function z

u™(¢, ).

To see that 7,7 is an optimal stopping time, recall that the smallest optimal

stopping time is given by
T = inf{t € p, | u™(2,8M) = (X — S(M)+}.

Obviously, 77 > 7. The inequality may be strict, since u™(¢, ) may vanish
for large values of z (especially when the distribution of €; has finite support).

But on {7 > 7.}, we have (X — S;:))'* = 0, and therefore
X = ST 2 X - SI),

which implies that 77 is optimal too. O
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Define s, for all ¢ € [0,T] by setting s,(t) = s,([nt/T)T/n). The main result

is the following.

Theorem 13 The sequence of functions s, converges uniformly to S. as n

lends to infinitly.

PROOF. Since T is arbitrary, it suffices to show uniform convergence on
any interval [¢,T) where 0 < ¢ < T, because u(™ and u depend on T only
throuzh 7' — t. Next, since s is continuous and nondecreasing and each
sn is nondecreasing and bounded by X = lim,_7 S.(¢), it suffices to prove

pointwise convergence on (0,7T).
Let ty € (0,T). Then we know that
nl-i-.r& u™(to, ) = u(to, 7)
(cf Kushner [34], esp. Section 8.2). Thus
linm_.sololp sn(to) < Sc(to).

Indeed, if x < limsup,,__ s, (), then we have u™(tg,r) = X — z for in-

finitely many values of n, whence u(tp,z) = X — z.
- b b

In order to prove that liminf,_.c sa(to) > Sc(to), fix z > S.(0) and define
7, as in Proposition 5. Since 777 is optimal for the discretized problem, any
weak limit of the law of (7, W(") can be intrepreted as a law of (7, W),
where 11" is a standard Wiener process with respect to some filtration F and

. . . . . . - LA 3 .
7 is an F-stopping time which maximizes E(Xe™"" — ze?Wr=o7/2)+, Using

74



Lemma 4, we know that the optimal stopping time for the limit is unique
(note that the proof of Lemma 4 does not use the fact the filtration is the
natural filtration of W, but only the fact that W is an F -Brownian motion).

Therefore, (72 Q(")) converges in law to (7°,.5,.).

L= *
ne Tn

Now assume that liminf,_. sn(to) < S:(to), and take ¢ > 0 such that
liminf,_. sn(to) < S.(to) — €. Since S, is continuous, there exists 7 > 0

such that for all t € [to — 75,t0 + 1],
li,{r_l.j)gfsn(to) < S.(t) —e.
Choose a subsequence (8ni(t0))k>0 such that for all k
$ni(to) < Se(to — 1) —e. (110)
Since s,, and S, are nondecreasing, we have
Sn (1) < Se(t) — e
for all k and allt € (¢to—7,%,). By Lemma 5, we have Pr(r™ € (1o—mn,t)) > 0

since = > S,(0). Let

A={t,y)eR® [to—n<t<ty and y> S.(t)—e).

The set A is an open subset of R2, since S is continuous, and
P )

Pr((r7,5:.) € A) = Pr(v" € (to — 7, t0)),
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since on {7° < T} we have S, = S.(7°). As (T,:,Sis)) converges in law to

(r*,S;+), we have
liminf Pr((7;,S%)) € A) 2 Pr((7°,5,+) € A).
Therefore, for n large enough,
Pr [r,: € (to — n,to),Sis) > S.(r}) — e] > 0.

But on {77 < T'} we have s,(77) > Sﬁ;), so the above inequality contradicts

(110). O

3.6 Appendix

Let F°(h) be the value of the function of interest when a step size of & is used.

We wish to find F(0). Suppose F(h) takes the form
F(h) = F(0) + a1 h® + a2h™ + O(h*)
where s > > p. Then we can also write
F(kh) = F(0) + ay(kh)? + a(kR) + O(h*)
and
F(gh) = F(0) + ay(qh)? + az(gh)” + O(k*)

where ¢ > &k > 1. Substituting for ey and a and solving for F(0) yields
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F(0)= F(h) + g[F(;'z) - F(kh)] - g[F(kh) - F(qh)] (111)
where

A=q —gP+ kP — k"
B=#k —kr

C=q(k*—1) = ¢"(k" = 1) + k" — &P,

Using P, = F(gh), P, = F(kh), and Ps = F(h), we have g=3,k=3/2. If
we expand F(h) in a Taylor series around F(0) and drop terms of the third
order or higher, we obtain p = 1 and r = 2. Substitution into (111) gives

(76). There is some error in (76) from dropping the higher order terms.
The Case K =0

We are concerned here with the case K = 1 — T = 0, that is, 7T = 0. We
assume T # 0, so that we deal only with the case r = 0. In the quadratic
equation (90), the ratio AM/K is then undefined. To deal with his case,
suppose first that 7 # 0, and put U = M/2 = r/o? and V = 0?T". Then
UV = rT. For small rT expand K as

K=1-eT =1 =rT+ T+ )=rT = (T} +---.

Thus for r near zero K is approximately equal to T, and thus M/K is
approximately M/rT = 2/V, which is independent of r. Thus, for small r,

equation (89) becomes
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a*f
Lt
557

af 2

+MSo% - =f =

0.

Substituting f = aS? gives the quadratic equation

2
q2+(M—1)q—-‘7=0.

The negative root must be selected. The case r = 0 is obtained by setting

M = 0. Since r = 0 implies K = 0, the solution in this case is exact.



4 Numerical Methods

The Black-Scholes partial differential equation is relevant for many significant
valuation problems where no analytic solutions have been found. This has led
to considerable research employing numerical methods to find approximate

solutions.

Efficient markets imply the rapid reflection of information in asset prices.
Thus, the arrival of new information often will be accompanied by price
changes. If the underlying asset is assumed to follow a diffusion process,
then price changes are continuous. Alternatively, if the underlying asset is
assumed to follow a jump process, then price changes are discontinuous. In
the diffusion case, information is thought to arrive in a smooth, continuous
fashion, and price changes can have either a constant or a changing variance,
but with either a normal or a lognormal distribution. By contrast, a jump
process signifies that the information arrival is discontinuous, and that the
price changes have a Poisson distribution. In practice, it is suspected that a

combined diffusion-jump process is generating the data.

The no-arbitrage partial equilibrium conditions have been derjved for the
pure diffusion, pure jump, and combined processes, and some analytic so-
lutions have been found for each case. However, in many complex but re-
alistic problems, numerical methods, including finite differences (Brennan
and Schwartz) or numerical " tegration (Parkinson) must be employed to

approximate the value of the assets.
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The constant-variance diffusion approach to asset price changes leads to the
partial differential equation (23). Despite the presence of variable coeffi-
cients, the Black-Scholes equation remains parabolic (this is essentially due
to limited liability), although the approximation equations and the stakility
conditions become more complex with §. Fortunately, a change of variables

(cf [42]) can transform (23) into the following equation:

du 17} Ou

where a and k are C? functions of z and £. This may be a non- linear equation
if a and k are allowed to vary with u as well as z and 1. To use numerical
schemes of high accuracy, equation (112) is transformed from variable to

constant coefficients by making the transformation

dr
whereupon (112) becomes
Ju 1 9%

In terms of the original variable r, this transformation scheme in y will have
unequal spacing of the mesh points. Brennan and Schwartz [6] and Mason
[38] have used a version of this transformation by substituting y — in(S) into

equation (112).

A discussion of the works of Parkinson [44], Jaillet, Lamberton, and Lepeyre

(25], Lamberton [35], and Allegretto, Barone-Adesi, and Elliott [1] follows.
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4.1 Parkinson

Assume that one has an option which can only be exercised at definite times

r

tm, m = 1,...,N. In the limit N — oo, we obtain the true American
option. In the time interval ty_; <t < tn, solve for the value w(S, tn-1) of

the option using the following equation

w(y,t) = eI E [w(y', T) | y, T — ] (115)

where ¢ is the probability distribution defined, in terms of the density func-

tion p(y,t) = exp(f(z)t) of the stock price, by

1 ptoo o
ay' —y, 1) = ;/ W=V R)+1k(1(1)=r)) g (116)

— 00

w(S,tn-1) is then used as the boundary condition when (115) is applied to

the computation of w(S, tn-2), and so on, until the solution is shtained.

However, the computation done in this way will yield some put values which
are less than (X — S)*. Such values actually occur for European puts, since
the option cannot be exercised until expiration. But for an American put,
they cannot be allowed. In general, for the above procedure to be satisfactory,

we must set,

P(S,tm) = maz (P(S,T),e " tmt1=tm) B I P(S, s | Sy tmss — tn]). (117)

American puts will be more valuable than European puts because of the

maximum taken in (117), whose effect is propagated back in time with each
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successive stage of the calculatior; the longer the time until expiration, the

greater the difference between them.

The above calculation is easily performed with the discrete forms of the rele-
vant equations. For example, suppose the stock distribution is approximately

lognormal, so f(k) ~ —ika — k?0?/2, and

—(y—(r—a? 12
! D (118)

2ro?t
Now proceed as follows. Define y,, = mdy for all integer values of m, b,, =

(1 —em)—ym)* ,t; =T — jdt forj >0, P(m,j) = P(ym,t;)forj>1,

q(y,1) =

and P(m,0) = b,. Then the discrete version of (117) is
+00
P(n,j +1) =max(by, Y q(yn — Ym,dt)P(m,j)). (119)
One may use an approximation to (118) for substitution into (119). Define
u=(2r/o®~1)dy, a’ =0.25u/(1 + V1 +0.25u?), a = a’ + 0.5, di = 2a(1 —
a)(dy)?/o?, and define ¢(m) by

0 m < -2
el ~-a)® m = -1
e72a(l—a) m = 0
e—rdta2 m = 1
0 m > 2

Thez we may use

P(m,j +1) = max(b,,c(=1)P(m — 1,) + ¢(0)P(m, j) + c(1)P(m+1,7))
(120)



for j > 0 and all integer m. In the limit dy — 0, (120) converges to an
exact equation for an American put, because the binomial distribution given

by ¢(m) produces the normal distribution given by (118).

For the actual numerical solution to (120), dy =~ 0.032 was used and P(m,j)
was set to 1 (respectively 0) for m < —158 (respectively m > 32), to con-
centrate on a practical region of interest. The numerical check performed by
setting b, = 0 agreed with the Black-Scholes value for the European put to

three decimal places.

As expected, as r increases, a put option decreases in value. Parkinson
includes a numerical comparision between formula (120) and the advertised
put prices in the New York Times. On average, the percentage difference
(predicted/actual)—1is —25+8. Naturally, one would expect the advertised
prices to be higher than the true values. From this numerical comparison,
Parkinson also concludes that most of the advertised puts are significantly
overpriced. In addition, the values computed with » = 0 are in much better

agreement with the data than those with r = 7%.

4.2 Jaillet, Lamberton, and Lapeyre

A detailed discussion of the Brennan and Schwartz algorithm for the val-
uation of the American put options (except for the logarithmic change of
variable) is provided. Although the formulation of the boundary condition

in Brennan and Schwartz’s paper was mathematically incorrect, the algo-
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rithm is completely justified. The main advantage to this approach is that
the techniques of variational inequalities provide an adequate framework for

the study of numerical methods.

We begin by studying the pricing formulae of Bensoussan (4] and Karatzas
[27] from the point of view of diffusion models. Let (€, F, P) be a probability
space and (W,);50 a standard Brownian motion with values in ®". Denote

by (Fi)i>0 the P-completion of the natural filtration of (Wi)eso.

Consider a financial market with n risky assets, with prices S}, ..., S at time
t, and let Y; be the n-dimensional vector with components Y/ = log(S})

for j = 1,...,n. We will assume that Y, satisfies the following stochastic

differential equation:
Y, = B(t,Y,)dt + o(t,Y,)dW, (121)

on a finite interval [0, T], where T is the horizon (namely, the date of maturity

of the option).

We impose the following conditions on B and o, and on the interest rate:
(H1) B(t,x) is a bounded C! function from [0,7] x ®" into R, with
bounded derivatives.
(H2) o(t,7) is a bounded C? function from [0,T] x R" into the space of
n X n matrices, with bounded derivatives. Also, o admits bounded continuous
second derivatives a%,-,,-/a.z.'axj, satisfying a Hélder condition in z, uniformly
with respect to (¢,) in [0,T] x R".

(H3) The entries a;; of a(t,2)o*(t,z)/2 (where * denotes transposition)
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satisfy the following coercivity property: 35 > 0such that V(t,z) € [0,T]xR"
and V¢ € R™ we have
n
Y aii(t D)k =) €
1<i<n i=1
(H4) The instantaneous rate of interest r(¢) is a C' function from [0,7]

into [0, o).

REMARK. Condition (H3) can be interpreted in terms of the completeness
of the market (Bensoussan [4], Karatzas [29, 28], Harrison and Pliska (19]).

An American contingent claim is defined by an adapted process (h(t))o<i<T,
where h(t) is the payoff of the claim if exercised at time {. The typical
example is an American put option: for an option on one unit of asset z,
with exercise price X, one has h(t) = (X — Si)*. Note that, for simplicity,
we do not consider contingent claims allowing a payoff rate per unit of time as
in Karatzas [27]. Assume that h(t) depends only on the prices of risky assets
at time ¢, so Athat k(1) = ¥(Y;), where ¥ is a continuous function from R*

into R. Note that in the case of a put on asset 7, one has ¥(z;) = (XN —e™)t,

We will denote by (Y%),>; a continuous version of the flow of the stochastic
differential equation (121). Therefore, (s,t,z) — Y *(w) is continuous for

almost all w, ¥ = z, and Y'< satisfies (121) on [t, 7).

Proposition 6 Assume ¢ is continuous and satisfies | Y(z) | < MM for

some M > 0, and define a function u* on [0,T] x R", by



u'(t,z) = sup E(e”J Oy (yrey) (122)

7€,

where Tyr is the set of all stopping times with values in [t,T]. Then u* is

conlinuous and, for any solution (Y;) of (121)

w'(t,Yi) = ess sup,ex B (e-ff rSdsy oy | .7-',) . (123)

Note that if, under probability P, the discounted vector price is a martingale,
then (123) means that u*(¢,¥;) is the ‘fair price’ of the American option

defined by v at time ¢ (cf. Karatzas [27], [29], [28], Bensoussan [4]).

PROOF. Using the equality
VI = 4 / bv, Y1) dv + / o(v, Y1)dW, (124)
t t
it is easy to prove that

E ( sup eMIY’MI) < ceMlil (125)

t<s<7T
where C' depends only on T, M, and on the bounds on B, 0. Now, observe

that if (#;,21), ({2, 72) € [0,T] x ®", with ¢; < ¢,, then

'“-("2"7-'2) - u'(tlywl) =

sup_ E(e " y(vm)) - sup B(e Iy (ynmy)
€T, 1 T€T, 1
+ sup BTyt gy B Iy

€Ty 1 €Ty, r
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Therefore,

I U'(tg,.'l,‘g) - u.(tlsxl) I

K E(t S(UBTI e-—f‘2 r(tr)dv¢’();¢2,rz) _ €—f‘| r(U)dUd"();h'rl) ” +
2<s<

+E( sup | e T y(ym) - Kty ey )

*1 <8<tz
and the continuity of u* follows from the continuity of 3 and of the flow
and from (125) (which, applied with 2M instead of M, ensures uniform

integrability).

The equality (122) can be proved directly, by arguing that the supremum in
(122) and the essential supremum in (123) are the same - +hen 7, is replaced
by the set of stopping times with respect to the filtration (G,)s>: of the

increments Wy — W, for s > 1 (cf. [24] for details). O

Next, we turn to the algorithm of Brennan and Schwartz. The inner product
of two vectors u,v € R* will be denoted by (u,v). Let | v |*= (u,u), and

write u > v if u; > v; for all .
Proposition 7 Let A be an n x n matriz and u,,0 € R*. The following

two systems are equivalent:

Au>6,u > p,(Au—0,9 —u) =0, (126)

U2, (Au—0,v—u)=0 (127)
forallv> ¢.
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O
This proposition, which expresses the linear complementarity problem as a

variational inequality is well known (cf Kinderlehrer and Stampacchia, [32]).

In loc cit, the follhwing is also proved.

Theorem 14 The linear complementary problem (127) has a unique solution

Jor all 0, ¢ if and only if A has positive principal minors.

0

Note that this property is satisfied if A is coercive in the following sense:

There exists C > 0 such that for all z € R

(Az,z)>C |z |*.

The following is a characterization of the solution.

Proposition 8 Assume the nondiagonal coefficients of a coercive matriz are
nonpositive. Then the solution of (126) is the smallest vector u satisfying

Au >0 and u > .

0O
In the next two propositions, we assume that A is a tridiagonal matrix of the
form

h o 0 0

a2 by o 0

0

A1 bn—l Cn-1
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Proposition 9 If A is a tridiagonal matrir as above with ¢; = 0 for all
i€ {1,...,n—1}, and b; > 0 foralli € {1,...,n}, then, forall 0. € R", the
unique solution of the system (126) can be computed by solving the following
recursive relations

up = (01/b1) Vi
uj = [(0; — aju;—1)/b;] V @;

for2 <j <n.
PROOF. This is an immediate consequence of the equalities

(AU)] = b,u!

(A‘u)]‘ = bju]- + a;u;
for2<j;<n 0O

Given any coercive tridiagonal matrix A as above, consider the following

lower triangular matrix A

b p 0 0
as bg 0 ... 0
0 : :0

0
0 0 a, b,

where b, = b, and b; = b; — [c,-/b,;l]a,-ﬂ forall 1 <i<n—1.

Lemma 6 If A is coercive then b; > 0 foralll <i<wn.
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PROOF. Note that, for 1 <: < n, 5= b} is the determinant of the matrix
derived from A by deleting the first (i — 1) rows and columns. This matrix,
being a submatrix of A, is coercive and therefore, its determinant is positive.

Hence b; > 0 for all ;. O

If 6 € R, denote by 6 the vector with coordinates 6, = 0, and 0; = 0, —
c;é,-+1/5,-+1 for i < n. Clearly, the two systems Az = 0 and Az = 0 are

equivalent.

Proposition 10 Assume that A is a coercive tridiagonal matrir with ¢; <0
for all 1 < j < n —1. If the solution u of system (126) satisfies u; = ;
whenever 1 < 1 < k, and u; > ¢; whenever k < i for some 1 < k < n, then
u is also a solution to the following system:

Au>6,u> o, (Au—0,p—u) =0. (128)

PRrROOF. Since ¢;-; <0 and b; >0 (by Lemma 6), we have —c;_l/l;.- > 0 for
all 2 > 2. It follows that, for all : < n — 1, there exist nonnegative numbers

Xiji+1s- -+ Ain such that
0; = 0; + \ijg10i01 + ...+ Ain0,
and

(/iu), = (Au),- -+ /\,',,'+1(Au),'+1 +...4 )\,-'n(Au)n.

Therefore, if u solves (126), we have (fiu),' > 6;. Moreover, by assumption,
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equality holds whenever i > k, since (Au); is then equal to 8; for all j > 1.

Hence, u solves (128). O
THE VALIDITY OF THE BRENNAN-SCHWARTZ ALGORITHM

Recall that for the classical models, the calculation of the price of the Amer-
ican put option reduces to solving the following system, in which we have

made the change of variable t — (T —¢):

u 2> 1,

du o2 0% Ju
(37 ~ 5 5.2 — By, trully —u) =0,

u(0) = ¢,
with ¢(z) = (X — e*)*. The implicit discretization scheme approximates the
vector
(u(iAt,ij))OSiSN,nlSanz
by

(a;)OSiSN-ﬂl SjS712

obtained by solving the following set of equations:

@ = y(jAz) (129)
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forn; +1 <7< n+1,

a@th_, 4 bit + cily, > @ (130)

@ > y(jAT) (131)

(aiti_y + bu§ + cuityy — ai™') (@) — ¢ (jAz)) =0 (132)
iy, = ¥(nAz) (133)

@, =0 (134)

for1 <: < N andny +1<j<ny+1, where

_ Ato? + 8 At
= TA? T oAy
Ato?
b=1+ (AI)2+rAt
_ A _5 At
T TyAn? Yoz

and NAt = T, with [n;Az,n;Az] being a sufficiently large interval about.
log(X). '

Note that (133) and (134) correspond to Dirichlet boundary conditions,
whereas Brennan and Schwartz use mixed conditions, Dirichlet in nyAz and
Neumann in n;Az. The Brennan-Schwartz algorithm, as applied to the
system (129)- (134), goes as follows:

(1) From (129) get @ for n; < j < n,.

(2) For ny < j < ny, derive (@) from (ﬁ;'l) from the following equations:

@ = P(mAz),
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where

forn; +2<j<ny,-1.

To justify the algorithm, first restate (129)-(134) as a set of variational

inequalities. Let n = ny; — n; — 1, and let u* be the vector in R" with

components u} = @}, for all j. Given any vector v € R", denote by  the

vector with components v; = v; — a¥’(n1Az) and ©v; = v; for j > 1, and let

A be the following n x n matrix:

c O . 0
a b ¢ . 0
0 : 0
: : c
0 . 0 a ¢
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The system (129)-(134) is equivalent to the following set of variational in-

equalities:
ﬁiu = P (nAx)

= P(nAz)

for0 <: < N,

S
Il
A

Au' > !

(Au' — 7 u' — ) =0,
for 1 <7 < N, where ¢ is the vector with components ¢; = ¥((n; + j)Axr)

for all j.

It is clear that in order to justify the Brennan-Schwartz algorithm, it is
sufficient to prove that the assumptions of Proposition 10 hold for the above

variational inequalities. To this end, let us suppose that

B < o?/Ax. (135)

The above, for example, holds when Az is sufficiently small, and it implies

that a < 0.

Lemma 7 If(135) is satisfied, then A is a coercive malriz with the following

property: if z £ 0 and Az > 0, then z; > 0 for all 1.
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PRoOF. Using the fact that a and c are negative, we have

n n n—1
(Ar,z) = Y az;_iz;+ Yoo+ o ezizig
j=2 =1 i=1
a2 2 IR 2
2 52(%’-1 +z7) + bz:rj t3 Z(% + z541)
j=2 =1 J=1
> (a+b+c)z.r? = (1 +rAt)Ex;‘7.
=1 1=1
This proves coercivity. Next, suppose Az > 0. Thea Az > 0. Indeed, the
numbers A, ; introduced in the proof of Proposition 10 are positive since a < 0
and ¢ < 0. If, in addition, z # 0, then (Az); > 0, and using the negativity

of a again, we find that all the components of z are positive. O
Lemma 8 Let I'(y) be the set of all integers j such that
ay((j — 1)Az) + by (jAz) + cy((j + 1)Az) = $(jLz) > 0.

Then, j < jo € T'(¥) implies that j € T'(¥).
PROOF. Let f(x) = X — €* (so 1 = f*). Using ¢ < 0, it is easy to see that
I'(y') € I'(f). On the other hand, {j | ¥((; + 1)Az) # 0} C I'(x). Now for
any integer 7 we have

af((G —1)Az) + bf(jAz)+ cf((j + 1)Az) — f(jAz)

=(a+b+c—1)X — %7 (ae™ + b+ e — 1).

In the above equation, the right-hand side is a monotone function of j, whose

limit, as j goes to ~oo, is (a + b+ c —1)X = Xrh > 0. It follows that

J < Jjo € I'(f) imiplies that j € T(f), and the result follows. O
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The above results, together with the following proposition, complete the

justification of the Brennan-Schwartz algorithm.

Proposition 11 Let u°,u',...,u" be the solution of the above variational
inequalities. Then the following hold:

1. vt >u'! foralli€ {1,...,N}.

2. For each i, there exists k; such that u;- = ; for all j < k;, and u; > @,

for all j > k;.

PRrRoOOF. Clearly, u' > u® = . If v' > u'~!, then Au™! > !, and

u'*! > o, whence u*! > u' by Proposition 8.

As for (2), suppose first that 7 = 1. Sine ¢ # 0, it follows from the previeus
lemma that u; > 0 for all j. Suppose there exist integers ¢y, £, with 1 < ; <
€2 < n such that ug, = @, and u} > ; for all integers j € [£1,£, — 1]. By
reducing {; we may assume, if necessary, that either ¢; = 1 or u¢,.; = @/, ;.

From (Au')e, > ¢e, and uj, = ¢y, it follows that

1 1
aug, .y +boe, + cup, iy 2 0y,

and so, since a and ¢ are negative,

Upe-1 + bpr + cpe 41 2 oo, -

Therefore, n; 4 {; € I'(p), and so by the previous lemma again, [n; +1,n; +
£,] C T(p), whence (Ap); > ¢; for j € [1,£;). Since for all j in [£,,4;),
one has (Au'); = ¢;, it follows that u' satisfies (Au'); < (Ay); for all 5

in [fy,(;). Therefore, v = ¢ — u! satisfies the conditions (Av); > 0 for
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€ < j <ty v, =0,and v, =0if {; > 1. Applying Lemma 7 to a suitable
submatrix of A, we find that v; > 0 for ¢, < j < ¢;. Hence, u} < ¢; for the
same range of values of j. But this is a contradiction, so (2) holds for i = 1.
Finally, if (2) is true for some i, and [¢;,¢;] is chosen such that u};"’ = ¢,
and uf*' > o; for all j € [€;,6,), then, using (1), we obtain up, = @,

and so u} = @; for all j < ¢, and the same reasoning as above leads to a

contradiction. O

REMARK. In the case of call options, a modified version of the Brennan-
Schwartz algorithm can be justified, whereas the algorithm itself (as pre-
sented above) leads to a false solution. (The property to be used is J2Jo€

['(%) implies that j € I'(y).)

For some functions ¢, such as ¥(z) =|e* -- X|, the Brennan-Schwartz algo-

rithm fails to solve the variational inequality.

4.3 Lamberton

Lamberton aim here is to prove the convergence of the critical price in the

finite difference method of Brennan and Schwartz.

For z € R, let i(z) = (X — €*)* and v(t,z) = u(t,e) for t € [0, T). For
(t,x) € [0,T] x R, introduce the stochastic processes (Y}*)i<cs<T, defined for

s € [t,T], by
Y =24 (r—02/2)(s—1t)+ o(W, — W,)
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where W is a Wiener process. With these notations, we have

v(t,z) = u(t,e’) = sup E(e—'(f—!)d,(yrt.r)),
7€l

and it follows from the definition of S.(t) that for all ¢t € [0, T'). we have
log(Sc(t)) = sup{z € R | v(t,z) = 9(x)}.

Before applying the finite difference method, we need to localize the problem
in a bounded interval (see Jaillet et al [25], Section 4). Let M be a positive

real number such that e= < X < eM. For (¢, ) € [0,T] x R, define
Ty =inf{s € [t,T]| | Y}" | > M},
with the convention inf® = T, and define
va(t,z) = sup E(eT AT -0y he, ).
T€TT M
Obviously, we have

Y(z) Swm(t,z) < v(t,z)

and

A}l—r'noo l/}\](i,l’) = U(i,(l!)-
Proposition 12 1. If (1,z) € [0,T) x (—=M, M), then va(l,z) > 0.

2. Fort € [0,T) define sp(t) by

log(sar(t)) = sup{z € [-M, M) | vp(t,z) = (x)}.

Then, log(sm(t)) € [—M,log(X)), and, for all z € [—M,log(spm(t))],

we have vpr(t,z) = Y(x).
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3. The function t v sp(t) is continuous and nondecreasing on [0,7") and,

sas converges uniformiy to S. as M tends to oc.

PRroOF. To prove (1), observe that

n(t,z) > E(e—r(be..t)d)()zt,x ),

t,xr
TM

and that Pr(Yh% = —M) > 0if r € (=M, M), and $(—M) = X —e=M > 0.

tr
TAI

In order to prove (2), let t € [0,T'), and
I ={z € [-M,M) | vm(t,z) = ¥(2)}.

It follows from (1) that I, C [—M,log(X)), since ¢(z) = 0 for z > log(X)
and (2) will follow if we can prove that I, is an interval. Now, let z; < z,

belong to 1,. If # € [y, z;], and we let
pii = inf{s € [LT] | var(s,¥17) = w(¥})),

then
t,xr
var(t,z) = E(e7UR 09V D)),
M
By our choice of x, 1, and z3, we have Y} € [z1, ;] on the set {s < p},
and therefore ) (¥}*) = X — ¥, But it is easy to check that the process

(e7 (X — eY;'r)),S,ST is a supermartingale. Hence vps(¢,z) = ¢¥(x) and

so r € 1,.

The fact that sps is nondecreasing follows from the fact that ¢ — vas(2,z) is
nonincreasing. The continuity of sys can be proved by the same argument

that establishes the continuity of S. {cf Friedman [15], proof of Theorem 3.1).
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The convergence of sps to S. follows easily from the fact that vas(t,r) T v(t,r)

as M T oo.

Now let Hyy = L*(—M, M) and Vay = H (=M, M) = {f € Hy, | [7 € Ha).
For f,g € Viy, let

2
anthig) = 5 [ J@)g()de
—r=a*2) 7 f@gta)ds
M
+r [ fl@)gla)dz.

Denote by (.,.)as the usual inner product on Hps. Now define Cpy = {f €
Var |l f2gon (—M,M)and f =gifx = +M}. We know that vy, satisfies
the following

va € LE([0,T), Var)

81/1\1

5 € L*([0,T], Has)

vas(t,.) € Cuy
Ovar
— —=—,w — vpr +aM(VM-,w_VM) 20
at Iy

for all w € Cyg

vm(T,.) = .

For A > 0 let
i .
Ro={meZ|-M<(m- %)h <(m+ §)h < MY,

my = min(Rh)’
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ma = max(Ry).

Denote by x4 the indicate- function of the interval ((m — )k, (m + 1)R],
and let I, be the vector space spanned by the functions x{*) with m € R,,.

Cn H), the finite difference approximation of the operator

o? 0° 2,0, O
A=(Flgmtr—0*/2) g —r
is the operator A, defined as follows: if u = ey um (M, then
m;—l
Apu = Z (Au)m '57'1‘),
m=mj+1
with
2 _ 02/2

o r
(Ah“)m = ‘T)ﬁ(um-}-l - 2Um + um—l) + T(unl+l - um—]) —TUm

for my < < m,. The function ¥ will be approximated by

bn= 3 pmh)x®.
meER,,

Now let & be a positive number of the form & = T/N, with N € A'. The

finite difference approximation of vy is the function v**(¢t, x) defined by

it x) = 3 () Lonean(t),

i=1

where v} 12, ... v} are in H and satisfy the following implicit scheme:

vy =y

vi(mqh) = ¢(myh),
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vy (mah) = ¢ (myh)
and for all x € ((my + 3)h,(m2 — 3)h)
maz((viH(2) — vi(@))/k + Awr (2), ga(x) = v (x)) = 0

fori=1,...,N—1.
The above system can be solved using backward regression and the Brennan-
Schwartz algorithm. We know that as A,k — 0, the functions ¢"* converge

strongly to vas in L? (Jaillet et al [25]).

By Proposition 11, for A small enough and all t € (0,7 — k), there exists a
number p"*(t) € [(m, + 1)k, (mz — 3)h) such that

VMt ) = Pu(x)
for all z € (myh, p"*(t)), and
vt ) > ()

for all € (p"*(t), (my — 2)R). Since v"*(t, ) is a nonincreasing function
of ¢, p** is nonincreasing. From the proof of Proposition 11 one also knows

that
» 1 1 hk
(t,x) € (0,7 — k] x ({m; + E)h,(mg - 5)}1) = v (t,z) > 0.
Therefore p**(t) < log(X) + k. Now define the approximate critical price

shE (1) = ™M,



Theorem 15 As h and k go to zero, s** converges uniformly to sys.

PROOF. Due to the properties of p** and sy, it suffices to show pointwise
convergence on (0,T). Let tg € (0,T). Assume that z < limsup s*¥(¢p).

Then, for a suitable subsequence, we have
V" (1o, log()) = $a(log(z)).

Therefore, for all (1,y) € [to.T] x (—M,log(z)] one has v**(ty,y) = ¥n(y).
Hence, letting h,k — 0, one obtains vys(t,y) = ¥(y) almost everywhere on

[to,T] x (—M,log(z)], and so x < sps(to).

It remains to prove that liminfs"*(tg) > s (o). Suppose not, and take
€ > 0 such that liminf s**(#y) < sas(to) — €. Since sy is continuous, there

exists 7 > 0 such that for all t € [to — n,to + 1] we have
liminf s"*(10) < sas(t) —e.
Passing to a subsequenc >, we may assume that
sh'k(to) < saf(to—1m) — €.
Now if lg — 1 <t < to and log(sa(to ~ 1) — ) < = < log(sas(to — 1)), then
x > log(s"*(t0)) > log(.s"’k(t)),

whence v"*(1.z) > ¥4(z) and, by the definition of the v"*

vhk(t + k. z) - M1, 7)

3 + At 1) = 0.
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Now let
U = (to — n,t0) x (log(sas(to — 1) — ¢), log(sas(to — 1))

and let ¢ be a C'> function with support in U. It is easy to check (using the

fact that v** — vy in L?) that

: “(t+ k,x) — vME(L, ,
tm, [ (= 2D | At 2ot e

o 02 a¢ c? 0¢
= /V\,] a 2 - (7‘ — ?)_6_.‘; — 7‘¢)dtd1‘.
Hence

dvy oo, o Ovyg

—_—— —— —rip =0

ot +2312 r_—2-)01‘
in the sense of distributions on U. But on this set, vas(t, 1) = yo(r) = X — ¢,

since spr(t) > say(to — 1) if t > to — 1. Hence

all_u (24 8 % o? 81/5[ _ ,
o T2 o )y Trvm =X

and we have reached a contradiction. O

4.4 Allegretto, Barone-Adesi, and Elliott

As usual, €(5.,t) denotes the early exercise premium. From work of Carr,
Jarrow, and Myneni [7], it is known that ¢(S,t) has the following integral

representation

T.
e(S,t):/t (rXe "0 0P(—hy) — (r — b)Se~ DN (—p,))ds  (136)

104



where hy = (log(S5/S.) + (b+ § Z)(s - t))/ov/s—tand hy = by — o/5 — 1.

Further, the boundary conditions imply

p(Sc,t) + (S, t) = X - S, (137)
Op/0S + 0e/0S = —1 when § = §. . (138)

Begin by trying a function of the form A(¢)(S/S.)"® = €'(S,t), say, for e,
where A(t) and ¢(t) are functions to be determined. Substitution of ¢’ in

(137), (138), together with (99) leads to the following equation for ¢:

o? dA/dt qd
-—q(q—l)—r+b -5

d
) + 2/ log(S/S.)=0.  (139)
This equation implies that ¢ is not independent of S, so (S, 1) is not of the
same form as €. One may, however, regard ¢’ as an approximation to e.
Further, a useful approximation can be obtained by neglecting the last term

of (139). That is, consider

dA/dt q dS
S.

(140}

2
%( —1)—r+bq

This approximation is reasonable when log(S5/S.)(dg/dt) is small, which hap-
pens when either (dg/dt) is small (at long maturities), or in a neighbourhood

of S.. Further manipulation of the equations eventually leads to

F+(N=-1)¢g—(M+G)=~0, (141)
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where M = 2r/o?, N = 2b/o?, and G(t) = 2072Adp/Bt. As usual, the

boundary conditions at infinity rule out one of the roots, leaving us with

g(t) ~ (1= N = /(1 = N)? +4(M + G(1)))/2. (142)

A numerical procedure for finding S. now suggests itself. Consider the equa-

tions

A(t) = —p(S.,t) - S + X, (143)
¢+ (N-1)g— (M +G) =0, (144)
- a(t)(X — p(S., 1)) (145)

5 ) + O T-08(— (5 1)"

For a fixed value of ¢, begin with an initial guess for S., and successively find
new estimates for A, ¢, and S. from the above equations. The cycle is to be
repeated until the total difference between the successive approximations is
less than some pre-assigned value (e.g., 10~*), at which time one has hopefully

obtained a good approximation to S..

As for the accuracy of the estimates, the integral expression (136) for e
was evaluated by Bode’s rule ( [18], pp 649-652), and (e(S.,t) — A(t))/A(t)

calculated. This percentage error was typically of the order of 2%.

To improve the accuracy, the equation (141) was modified by the introduction

of a relaxation constant A to yield
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@+ (N-1)g—(M+AG) = 0. (146)

The same iterative scheme as above was followed, but now for different values

of A € [0,2], chosen so that e(S.,t) = A(t).

For example, with o € [0.2,0.4] and r € [0.04,0.20], various ratios b/r were
considered. For r = b, the following empirical formula was determined A =
1.2952 4 4.3338 x 1072 M — 4.6591 x 1073M? 4 2.1452 x 10~ M3, (recall that
M = 2r/c?), and the error (e(S.,t) — A(t))/A(t) was well below 1% (except
for very short times, where problems of computational accuracy arose). For
T =b/2, and A = 1.227 + 0.12066M — 4.2737 x 1072 M? + 5.453 x 10-3 M3,
good results were again obtained. Finally, for b = 0, the expression A =
1.2495 — 4.15 x 10~ 20 gave satisfaction. Generally, the error was of the order
of 0.1% for periods longer than two years. The authors conjecture that the

best value of A is the smallest parameter value for which S. 1s monotone.
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