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ABSTRACT 

 As cognitive diagnostic models (CDMs) become increasingly popular in 

modern educational measurement, it is important to develop a person fit index 

that examines the appropriateness of a CDM for each individual examinee.  The 

purpose of this study is to propose a new person fit index, the hierarchy misfit 

index (HMI), for CDMs, and test the power and type 1 error of the HMI at 

detecting misfitting item response vectors using a simulation study.  The results of 

the simulation study showed that the HMI had high powers and acceptable type 1 

errors when a test consisted of highly discriminating items.  But when a test 

consisted of low discriminating items, the HMI’s type 1 errors were too high to be 

acceptable.  A comparison was also made with a previously developed person fit 

index, the hierarchical consistency index, (HCI).  The results showed that the 

HMI performed better in high item discrimination conditions. 
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CHAPTER 1 INTRODUCTION 

 

Inaccurate educational measurements could negatively impact students’ 

learning.  Therefore, it is crucial to design educational measurements that can 

reliably and accurately measure students’ knowledge and skills, and are 

informative for instruction and learning.  In order to generate such measurements, 

a variety of psychometric procedures must be considered in both the test 

development and the interpretation of results.  Otherwise, large-scale assessment 

programs, especially those that result in high stakes decisions about students, 

would be open to legal action. 

 During test development and interpretation, the psychometric procedures 

that must be considered involve what are called “measurement models.”  In non-

technical terms, a measurement model is a simplified explanation of how different 

factors, such as test difficulty and students’ abilities, influence students’ test 

scores.  Mislevy (2006) provides a more formal definition of measurement model: 

a measurement model describes the mathematical relationship among a variety of 

measurement variables including students’ observed responses (e.g., test scores), 

their underlying level of achievement or ability (e.g., knowledge and skills), the 

test or item characteristics (e.g., difficulty), and measurement error.  Examples of 

measurement models include classical test theory (CTT; Haertel, 2006), item 

response theory (IRT) models (e.g., 1PL, 2PL & 3PL; for a review see Hambleton, 

Swaminathan, & Rogers, 1991), and the recently developed cognitive diagnostic 

models (CDM; for a review see Leighton & Gierl, 2007).  These measurement 

models differ in their assessment goals, and as a result, they differ in the level of 



2 
 

detail of inferences they can support about students.  For example, CTT and IRT 

models are designed with the purpose to compare and rank students.  Therefore, 

their primary focus is to infer a student’s location on an underlying ability 

continuum.  CDMs, on the other hand, are designed with the purpose to inform 

teaching and learning.  Therefore, their primary focus is to support inferences 

about the knowledge and skills students have acquired that permit them to answer 

test items correctly.  Regardless of their different foci, the accuracy of the 

inferences made from a measurement model depends on how well the model’s 

assumptions are reflected by the student’s responses.  For example, if a student is 

able to consistently and correctly answer difficult test items, most measurement 

models would predict that the student should also be able to consistently and 

correctly answer easy items.  But if the student consistently fails to answer the 

easy test items defined by a measurement model, we know it may be 

inappropriate to make inferences about this student based on the measurement 

model.  Therefore, a critical area of research in educational measurement is to 

evaluate whether a student’s item response pattern is logically consistent with the 

measurement model’s expectations (Cui, & Leighton, 2009). 

 Attempts to assess the consistency between a student’s item-response 

pattern and a measurement model’s expectations have led researchers to the 

studies of person-fit statistics.  While various person-fit statistics are available for 

IRT models (for a review see Meijer & Sijtsma, 2001), very few person-fit 

statistics are specifically designed to examine the fit of a student’s item response 

pattern to CDMs.  One recently developed person-fit index for CDMs is the 
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hierarchy consistency index (HCI) (Cui, Leighton, Gierl, & Hunka, 2006).  Cui 

and Leighton (2009) apply the HCI to detect different types of misfitting item 

response patterns (the definition of this term will be explained in details later).  

The results shows that while this index is powerful at detecting certain types of 

model misfits (e.g., misfits that result because students are guessing randomly), its 

power at detecting other types of misfitting item response patterns (e.g., misfits 

that result because the measurement model is incorrectly specified) needs to be 

improved (Cui & Leighton, 2009).   

Purpose of the Study 

Therefore, the objectives of the current study are to a) propose a new 

person-fit statistic called the hierarchy misfit index (HMI), which attempts to 

address some of the weaknesses of the HCI, b) conduct a simulation study (i.e., 

using a computer to generate hypothetical student item-response patterns that 

resemble real student item-response patterns), and c) assess the power and type 1 

error of the proposed HMI in identifying misfitting item response vectors.  There 

are two specific research questions: 

1. Are the HMI’s power and type 1 error acceptable across different 

simulation conditions? 

2. Does the HMI’s performance in terms of power and type 1 error offer an 

improvement compared to the HCI? 
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Organization of the Thesis 

 The thesis is divided into six chapters.  The introduction is presented in 

Chapter 1 shown above.  The literature review is presented in Chapter 2.  It starts 

with an overview of CDMs.  Then, an example of CDM, the attribute hierarchy 

method (AHM), is reviewed in detail.  The AHM is chosen as an example of 

CDM because the simulation study is conducted under the AHM framework.  The 

last part of Chapter 2 reviews the HCI, including its formula, interpretation, and 

power.  The proposed HMI is explained in detail in Chapter 3.  The research 

design and data simulation procedures are provided in Chapter 4.  The results of 

the analysis are reported and discussed in Chapter 5.  The answers to the research 

questions, limitations of the study, future research directions, and conclusions are 

presented in Chapter 6. 
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CHAPTER 2 LITERATURE REVIEW 

Cognitive Diagnostic Models (CDMs): An Overview 

 While traditional measurement models such CTT and IRT are successful 

at ranking students on an underlying or latent ability continuum, they offer little 

information about students’ cognitive strengths and weaknesses, and as a result, 

they are often not informative for instruction and learning (Nichols, 1994).  For 

example, when a student fails to answer a test item correctly, the only inferences 

supported by CTT or IRT are that the student’s ability is below the threshold that 

is required to answer the item correctly, or that the student makes a careless 

mistake by chance (e.g., the student was distracted while responding to the item).  

Such inferences are not informative for helping teachers improve their instruction 

and helping students focus on their learning.  It is for this reason that CDMs were 

developed with the goal to uncover students’ knowledge and skills.  CDMs 

attempt to identify students’ knowledge and skills in small parts, where each part 

represents a small piece of knowledge or skill a student needs to be successful in 

answering a test item.  These small pieces of knowledge or skill are called 

attributes.  Unlike other measurement models, CDMs are not designed to be used 

on an existing educational test, that is, one that has already been created.  In fact, 

CDMs are designed to inform the development of test items, after the attributes of 

interest are identified.  With CDMs, test items are developed to probe different 

combinations of the attributes.  The end goal of CDMs is to identify which 

attributes a student has mastered and which attributes the student has not mastered 

(this will be referred to as an attribute pattern), and hopefully provide useful 
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diagnostic information to teachers about students’ cognitive strengths and 

weaknesses.   

In the past three decades, many CDMs have been proposed (e.g., Fischer, 

1973; Embretson, 1984; Tatsuoka, 1983; mislevy, Steinberg, & Almond, 2003: 

Leighton et al., 2004).  While they differ in the specific mathematical formulation, 

most of them share the common goal to support inferences about students’ 

mastery of attributes.  In this paper, Leighton et al.’s AHM (2004) will be 

introduced as an illustration of CDMs because the HCI was initially developed 

under the AHM framework. 

The Attribute Hierarchy Method (AHM) 

 The AHM (Leighton, Gierl, & Hunka, 2004) is a recently developed CDM 

that is an extension of Tatsuoka’s rule space model (Tatsuoka, 1983).  Compared 

to other CDMs, the unique feature of the AHM is that it assumes that the 

attributes students use to answer test items are hierarchically related.  This means 

that some attributes are prerequisites for other attributes.  For example, in order to 

carry out the multiplication of 2-digit numbers, addition and the multiplication of 

single digit numbers need to be mastered first.  Consequently, if a student is able 

to carry out the multiplication of 2-digit numbers, the AHM would predict that the 

student is also able to carry out addition and simple multiplication.  The 

advantage of considering the hierarchical relationships among the attributes is that 

it reflects the structure found in many cognitive psychological theories (see 

Leighton & Gierl, 2011); for example, well known cognitive theories such as 
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Piaget’s stage developmental theory describes cognitive skills as hierarchically 

related (Piaget, 1983).  Even Bloom’s taxonomy, which is not an empirically-

verified cognitive theory but nonetheless widely applied, is hierarchically ordered 

(Bloom, 1956).  The AHM does have limitations, however.  Potential 

disadvantages of the AHM include the difficulty in specifying the hierarchy of 

attributes for educational tasks and the possibility that students may use different 

knowledge and skills from those specified in the attribute hierarchy to answer 

items (Leighton, Cui, & Cor, 2009). 

The AHM is created in three sequential stages.  In the first stage, an 

attribute hierarchy (a model of the prerequisite relationships among attributes) is 

developed from verbal reports of students, by consulting testing experts, or by 

reviewing the literature (Leighton et al, 2009).  An example of an attribute 

hierarchy of interest is provided in Figure 1 next page.   
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Branch 1 (attribute 1, 2, 3) 

 

 

 

  

                         Branch 2 (attribute 1, 2, 4, 5) 

 

 

                                                                               Branch 3 (attribute 1, 2, 4, 6, 7) 

Figure 1.  A seven-attribute hierarchy of categorical syllogism performance 

(taken from Leighton et al., 2004) 

Figure 1 is an attribute hierarchy that attempts to model how people solve 

categorical syllogism problems.  Categorical syllogism problems involve making 

a conclusion from two premise statements.  An example of categorical syllogism 

Attribute 1 
The interpretation of 

quantifiers according to formal 
criteria 

Attribute 2 
The ability to create an initial 

model of the premises 

Attribute 3 
The ability to draw conclusion 

from 1-model syllogism 

Attribute 4 
The ability to create a second 

unique model of premises 

Attribute 5 
The ability to draw conclusion 

from 2-model syllogim 

Attribute 6 
The ability to create a third 
unique model of premises 

Attribute 7 
The ability of draw conclusion 

from 3-model syllogism 
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problem is as follow: given all A are B, and all B are C, what conclusion can we 

make about the relationship between A and C?  The answer is all A are C.  The 

attribute hierarchy in Figure 1 suggests that in order to solve categorical syllogism 

problems, people need to first be able to interpret the quantifiers (e.g., all, some) 

in the premise statements.  Then, people need to be able to create mental 

representations of the premise statements.  Some problems require only one 

mental representation (e.g., all A are B, and all B are C), other problems require 

two or three mental representations (e.g., some A are B, no B are C).  The 

attribute hierarchy states that in order to solve problems that require multiple 

mental representations, people need to know how to solve problem that requires a 

single mental representation.    The attribute hierarchy also suggests that after 

people create the mental representation(s), they need to be able to make a 

conclusion based on the mental representation(s).  For a detailed review of the 

theory, see Leighton et al. (2004). 

In the second stage of the AHM, the attribute hierarchy specified in the 

first stage is used to develop test items.  In order to do this, test developers need to 

create a blueprint that outlines which attributes are required to correctly answer 

each item.  Can test developers randomly decide the attribute combination 

required by each item?  The answer is “no”, if we assume there is a prerequisite 

relationship among the attributes.  For example, is it possible to create an item 

that only requires the ability to do two-digit multiplication without requiring the 

abilities to do simple multiplication and addition?  If we assume that in order to 

do two-digit multiplication, students need to know how to do single digit 
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multiplication and addition, then it is impossible to create an item that requires 

only the ability to do two-digit multiplication without requiring the abilities to do 

single digit multiplication and addition.  This example shows that the attribute 

combination required to correctly answer each item is restricted by the 

prerequisite relationship among the attributes as specified by the attribute 

hierarchy.  In other words, not all attribute combinations are logically coherent 

with the attribute hierarchy.  If we put all the attribute combinations that are 

logically coherent with the attribute hierarchy together into a matrix, we get a 

blueprint of all the possible attribute combinations test items can measure.  This 

blueprint is called the reduced Q matrix (Leighton, Gierl, & Hunka, 2004).  The 

word “reduced” is used because attribute combinations that are not logically 

coherent with the attribute hierarchy are removed.  Since the reduced Q matrix 

includes all possible attribute combinations consistent with the attribute hierarchy, 

it will be referred to as the theoretical maximum reduced Q matrix in this paper to 

distinguish it from other types of reduced Q matrices.  The theoretical maximum 

reduced Q matrix for the attribute hierarchy shown in Figure 1 is shown in Table 

1.   
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Table 1. 

Theoretical Maximum Reduced Q Matrix for Figure 1 

  Item 

Attribute  i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 

A1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

A2  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

A3  0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

A4  0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

A5  0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 

A6  0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

A7  0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

 

 The theoretical maximum reduced Q matrix in Table 1 contains 7 rows 

and 15 columns of 1s and 0s.  Each row represents an attribute, while each 

column represents a test item.  Together, they show which attribute combination 

is required by each test item.  For example, column 1 in Table 1 represents an 

item (item 1) that requires only attribute 1.  Column 2 represents an item (item 2) 

that requires both attribute 1 and 2.  It is important to note that while item 2 is 

coded to require both attribute 1 and 2, it does not need to directly probe attribute 

1.  That is, item 2 can be designed to probe attribute 2 directly and, indirectly, it 

also is expected to require attribute 1 since attribute 2 is dependent on attribute 1.  

For example, if a student is able to correctly answer an item that measures 

attribute 2, one can infer that the student can also correctly answer an item that 

measures attribute 1 as it is the prerequisite for attribute 2.  For this reason, item 2 

is coded as requiring both attribute 1 and 2.  The rest of the columns can be 

interpreted in a similar fashion. 
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 In practice, it is not necessary for a test to include all the attribute 

combinations in the theoretical maximum reduced Q matrix.  This is because the 

development of items that measure complex attribute combinations can be 

difficult (e.g., it is difficult to develop an item that probes all the attributes at the 

same time).  As a result, some attribute combinations in the theoretical maximum 

reduced Q matrix can be removed based on the needs of test developers (Cui & 

Leighton, 2009).  However, it is important to note that not all attribute 

combinations in the theoretical maximum reduced Q matrix can be removed.  

Some attribute combinations in the theoretical reduced Q matrix are essential and 

must be retained.  If any of the essential attribute combinations are removed, the 

diagnosis made from the AHM test will not be complete (Chiu, Douglas, Li, 

2009).   Therefore, it is important to understand which attribute combinations in 

the theoretical maximum reduced Q matrix are essential and which are not.  Cui 

and Leighton (2009) named these essential attribute combinations as simple 

attribute combinations, and the non-essential attribute combinations as complex 

attribute combinations.  A simple attribute combination only includes attributes 

belonging to a single branch of the attribute hierarchy (e.g., in Figure 1, attribute 1, 

2, 3 belong to one branch, attribute 1, 2, 4, 5 belong to another branch, and 

attribute 1, 2, 4, 6, 7 belong to another branch), while a complex attribute 

combination includes attributes from at least two branches (e.g., attribute 5 and 6 

are from different branches).  For example, in Table 1, columns 1 to 4 and 

columns 6, 8, and 12 contain attribute combinations from only one branch and 

therefore can be classified as simple attribute combinations.  The rest of the 
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columns contain attribute combinations from more than one branch and therefore 

can be classified as complex attribute combinations.   

Compared to complex attribute combinations, simple attribute 

combinations are easier to measure and interpret.  This is because in a simple 

attribute combination, items can be designed to explicitly measure the most 

difficult attribute in the combination.  For example, column 4 in Table 1 

represents item 4, which is coded to measure attribute 1, 2 and 4.  Since attribute 

1, 2 and 4 belong to one branch, item 4 measures a simple combination.  As a 

result, item 4 can be designed to directly measure the most difficult attribute in 

the combination, namely, attribute 4.  If a student is able to answer the item 

correctly, the mastery of the most difficult attribute the item probes (i.e., attribute 

4) and all its prerequisite attributes (i.e., attribute 1 and 2) can be assumed.  

Otherwise, if the student fails to answer the item correctly, one can infer that the 

student has not mastered the most difficult attribute probed by the item (i.e., 

attribute 4).  For complex attributes combinations, item design and interpretation 

are more difficult because items need to explicitly probe the most difficult 

attributes for at least 2 branches, and when a student fails to answer the item 

correctly, it is difficult to tell whether the student has not mastered the attribute 

from the first branch or the second branch, or both.  For example, column 5 in the 

reduced Q matrix (1) represents item 5, which is coded to measure attributes 1, 2, 

3 and 4.  Since attribute 1, 2, and 3 are from branch 1 and attribute 1, 2 and 4 are 

from branch 2 (see Figure 1), this is a complex combination.  If a student fails to 

answer item 5 correctly, it is difficult to tell whether the student has not mastered 
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attribute 3 or 4 or both.  For this reason, it may be desirable to simplify the 

theoretically maximum reduced Q to contain only simple attribute combinations.  

The resulting matrix is called theoretical minimum reduced Q matrix.  Continuing 

with the example, Table 1 can be further simplified to form the theoretical 

minimum reduced Q matrix, which is shown in Table 2. 

Table 2. 

Theoretical Minimum Reduced Q Matrix 

  Item 

Attribute  i1 i2 i3 i4 i5 i6 i7 

A1  1 1 1 1 1 1 1 

A2  0 1 1 1 1 1 1 

A3  0 0 1 0 0 0 0 

A4  0 0 0 1 1 1 1 

A5  0 0 0 0 1 0 0 

A6  0 0 0 0 0 1 1 

A7  0 0 0 0 0 0 1 

 

For each column of the matrix, items can be designed to probe the most 

difficult attribute in the column.  For example, the fourth column in Table 2 

represents an item that directly probes attribute 4.  Similarly, the fifth column in 

Table 2 represents an item that directly probes attribute 5.  

In order to ensure that each attribute has been measured with adequate 

reliability, a sufficiently large number of items need to be designed to measure 

each attribute.  At the same time, it is also important to consider practical 

constraints such as the time limit of the test and student fatigue.  For example, in 

practice, a test can be designed in which each simple attribute combination in 

Figure 1 is explicitly measured by four items.  Such a reduced Q matrix will be 



15 
 

called the test reduced Q matrix, which, as the name suggests, is the reduced Q 

matrix used for the actual test, usually including multiple items measuring each 

simple attribute combination.  This can be represented by the reduced Q matrix 

shown in Table 3, which is derived by replicating each column of Table 2 four 

times. 

Table 3. 

Test Reduced Q Matrix (based on theoretical minimum reduced Q matrix) 

  

Items 
Attributes 1-4 5-8 9-12 13-16 17-20 21-24 24-28 

A1 1111 1111 1111 1111 1111 1111 1111 

A2 0000 1111 1111 1111 1111 1111 1111 

A3 0000 0000 1111 0000 0000 0000 0000 

A4 0000 0000 0000 1111 1111 1111 1111 

A5 0000 0000 0000 0000 1111 0000 0000 

A6 0000 0000 0000 0000 0000 1111 1111 

A7 0000 0000 0000 0000 0000 0000 1111 

 

In Table 3, there are total 28 items.  A closer examination of Table 3 

reveals that some of the items require the same attribute combination.  For 

example, items 5, 6, 7, and 8 all require attributes 1 and 2; items 9, 10, 11, and 12 

all require attributes 1, 2 and 3.  For this reason, we say items 5, 6, 7, and 8 

belong to an item type, and items 9, 10, 11, and 12 belong to another item type.  

An item type includes all the items that require the same attribute combination.  In 

Table 3, there are total 7 item types, and each item type is measured by 4 items. 

In the third stage of the AHM, the test developed in the second stage is 

administered to students.  Students’ test responses are scored as either correct or 

incorrect.  The scoring produces an observed item response vector for each 
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student.  An observed item response vector is a vector that shows which items a 

student correctly answered, and which items the student failed to correctly answer.  

For example, for a test developed based on the test reduced Q matrix shown in 

Table 3, a student’s observed item response vector may look like this: (1111 1111 

0000 1111 0000 0000 0000), which shows that the student is able to correctly 

answers items 1 to 8, and 13 to 16, but unable to correctly answer the rest of the 

items.   

The next step in the AHM involves interpreting the observed item 

response vectors.  More specifically, each observed item response vector is 

analyzed to determine which attributes the student has mastered.  In order to 

understand the procedure, three new concepts need to be introduced first: attribute 

pattern, expected attribute pattern, and expected item response vector.  The 

attribute pattern is a vector that summarizes which attributes a student has 

mastered.  For example, a student may have an attribute pattern of (1101000), 

which means that the student has mastered the attribute 1, 2 and 4 but not the rest 

of the attributes.  In this example, there are seven attributes (see Figure 1).  In 

total, there are        possible attribute patterns.  However, not all of the 128 

attribute patterns are logically consistent with the prerequisite relationships 

among the attributes described by the attribute hierarchy in Figure 1.  For example, 

the attribute hierarchy in Figure 1 specifies that attribute 1 is the prerequisite for 

attribute 2.  This means if a student has mastered attribute 2, he/she must also 

have mastered attribute 1.  Consequently, attribute pattern (1100000) is consistent 

with the attribute hierarchy, but attribute pattern (0100000) is not.  Attribute 



17 
 

patterns that are logically consistent with the attribute hierarchy of an AHM test 

are called the expected attribute patterns.  The expected attribute patterns for the 

attribute hierarchy in Figure 1 are shown in Table 4. 

Table 4. 

Matrix of Expected Attribute Mastery Patterns 

 Attributes 

Attribute 
Attribute Pattern (AP) A1 A2 A3 A4 A5 A6 A7 

AP1 1 0 0 0 0 0 0 

AP2 1 1 0 0 0 0 0 

AP3 1 1 1 0 0 0 0 

AP4 1 1 0 1 0 0 0 

AP5 1 1 1 1 0 0 0 

AP6 1 1 0 1 1 0 0 

AP7 1 1 1 1 1 0 0 

AP8 1 1 0 1 0 1 0 

AP9 1 1 1 1 0 1 0 

AP10 1 1 0 1 1 1 0 

AP11 1 1 1 1 1 1 0 

AP12 1 1 0 1 0 1 1 

AP13 1 1 1 1 0 1 1 

AP14 1 1 0 1 1 1 1 

AP15 1 1 1 1 1 1 1 

 

 The expected attribute patterns can be derived by transposing the 

theoretical maximum reduced Q matrix.  For example, Table 4 is derived by 

transposing the theoretical maximum reduced Q matrix in Table 1. 

 It is important to note that given a test reduced Q matrix, each expected 

attribute pattern has a corresponding expected item response vector.  For example, 

we can predict that under ideal condition (i.e., the student makes neither lucky 

guess nor careless mistakes), a student who has the expected attribute pattern 

(1100000) will have an expected item response vector of (1111 1111 0000 0000 
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0000 0000 0000).  This is because if the student has only mastered attribute 1 and 

2, the student should be able to correctly answer all items that requires only 

attributes 1 and 2 (i.e., items 1 to 8 according to the test reduced Q matrix in 

Table 3).  The expected item response vectors associated with the expected 

attribute patterns in Table 4 are shown in Table 5. 

Table 5. 

Matrix of Expected Item Response Vectors 

 Items 

Items 
Expected 

item 

response 

vector 

(EV) 

1-4 5-8 9-12 13-16 17-20 21-24 24-28 

EV1 1111 0000 0000 0000 0000 0000 0000 

EV 2 1111 1111 0000 0000 0000 0000 0000 

EV 3 1111 1111 1111 0000 0000 0000 0000 

EV 4 1111 1111 0000 1111 0000 0000 0000 

EV 5 1111 1111 1111 1111 0000 0000 0000 

EV 6 1111 1111 0000 1111 1111 0000 0000 

EV 7 1111 1111 1111 1111 1111 0000 0000 

EV 8 1111 1111 0000 1111 0000 1111 0000 

EV 9 1111 1111 1111 1111 0000 1111 0000 

EV 10 1111 1111 0000 1111 1111 1111 0000 

EV 11 1111 1111 1111 1111 1111 1111 0000 

EV 12 1111 1111 0000 1111 0000 1111 1111 

EV 13 1111 1111 1111 1111 0000 1111 1111 

EV 14 1111 1111 0000 1111 1111 1111 1111 

EV 15 1111 1111 1111 1111 1111 1111 1111 

 

 Now, we can go back to answer the question of how to analyze an 

observed item response pattern to determine which attributes a student has and 

has not mastered.  Basically, a student’s observed item response vector is matched 
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with the most similar expected item response vector.  Then, the most similar 

expected item response vector’s corresponding expected attribute pattern is 

assigned to be the student’s estimated attribute pattern.  For example, a student 

has an observed item response vector of (1111 1101 0000 0000 0000 0000 0000).  

The most similar expected item response vectors would be (1111 1111 0000 0000 

0000 0000 0000), which has a corresponding expected attribute pattern of 

(1100000).  Therefore, the student’s estimated attribute pattern would be 

(1100000).  This pattern matching procedure can be conducted using an artificial 

neural network (Gierl, Zheng, & Cui, 2008).  However, the details of the artificial 

neural network procedure are not relevant to the current thesis and will not be 

further discussed.  

The Hierarchy Consistency Index (HCI) 

Definition and Computation.  The accuracy of the inferences the AHM 

will support depends on how well the attribute hierarchy can help predict students’ 

observed item response vectors.  In order to assess the consistency between the 

attribute hierarchy and the observed item response vectors, the HCI was 

developed.  The HCI is a person-fit statistic that examines how well a student’s 

observed item response vector matches the expected item response vector of the 

student based on the hierarchical relationship among the attributes (Cui, Leighton, 

Gierl, & Hunka, 2006).  The HCI formula is given by: 

       
 ∑ ∑                   

       

   

            (1) 
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where 

          
 includes items that are correctly answered by student i, 

    
 is student i’s score (1 or 0) to item j, where item j belongs to          

, 

    includes items that require the subset of attributes measured by item j, 

     is student i’s score (1 or 0) to item g where item g belongs to   , and 

    
 is the total number of comparisons for all the items that are correctly 

answered by student i. 

 The term ∑ ∑                   
        in the numerator of the HCI 

represents the number of misfits between the student’s observed item response 

vector and the expected item response vector associated with the test reduced Q 

matrix (an illustration of the calculation procedure will be provided in the next 

paragraph).  The HCI was formulated to range between -1 and 1, where -1 

represents a total misfit between a student’s observed  item response pattern and 

corresponding expected item response vector, and 1 represents a perfect fit 

between the student’s observed item response vector and an expected item 

response vector.  If the HCI value is close to -1, it indicates that the student’s 

knowledge and skills for solving the test items are not well represented by the 

attribute hierarchy specified by the AHM (since it does not match very well with 

one of  the expected item response vectors). 



21 
 

 To illustrate the calculation procedure of the HCI, the example provided in 

Cui and Leighton’s (2009) study is presented here.  Consider the attribute 

hierarchy presented in Figure 1 and the test reduced Q matrix in Table 3.  Suppose 

a student’s observed item-response vector is (1111 0000 1000 0000 0000 0000 

0000), in which items 1 to 4, and 9 are correctly answered, namely          
 ={1, 

2, 3, 4, 9}.  According to the test reduced Q matrix (Table 3), item 9 requires 

attributes 1, 2, and 3.  Since the student correctly answered item 9, he or she is 

considered to have mastered the attributes required by this item, namely, attribute 

1, 2, and 3.  Therefore, this student is expected to also answer items 1 to 4 

(measuring attribute 1), 5 to 8 (measuring attributes 1 and 2), and 10 to 12 

(measuring attributes 1, 2, and 3) correctly, because each of these items measures 

the same set or a subset of attributes required by item 9.  That is, 

S9={1,2,3,4,5,6,7,8,10,11,12,}.  In other words, for item 9, there are 11 

comparisons that can be made among items: item 9 vs. items 1 to 8 (8 

comparisons) and 10 to 12 (3 comparisons).  Since the student failed to answer 

items 5 to 8 and 10 to 12 correctly, seven misfits are found out of 11 total 

comparisons between the student’s observed item responses and the expected 

responses.  Similarly, potential misfits can be calculated for items 1 to 4, which 

are also correctly answered by the student, S1={2,3,4}, S2={1,3,4}, S3={1,2,4}, 

and S4={1,2,3}.  For item 1, there are three comparisons: item 1 vs. items 2, 3, 

and 4.  Since items 2, 3, and 4 are all correctly answered by student i, there are no 

misfit found for item 1.  Likewise, no misfits are found for items 2, 3, and 4.  

Overall, the total number of misfits is 7, and the total number of comparisons is 
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equal to 11+3+3+3+3=23.  Hence, using the formula presented in the previous 

page, the value of the HCI for the student’s observed response vector is 1-

2*7/23=0.39. 

Interpretation of the HCI.  Strictly speaking, any HCI value that is lower 

than 1 indicates some level of misfit between the student’s observed item-

response vector and the expected item response vector (a misfit in HCI refers an 

inconsistency between the number of items the student is observed to answer 

correctly with the number of items the student is expected to answer correctly).  

However, in practice, it is not realistic to classify all HCI values smaller than 1 as 

misfitting.  As a result, a cut score is needed to identify the misfitting HCI values.  

If an HCI value is greater than the cut score, it will be classified as “normal”; if an 

HCI value is smaller than or equal to the cut score, it will be classified as 

“misfitting”.  According to Cui and Leighton (2009), the cut score can be 

obtained by the following procedure.  First, a computer is used to generate 2000 

observed item response vectors that are consistent with the attribute hierarchy.  

Observed item response vectors that are consistent with the attribute hierarchy 

will be referred to as the normal item response vectors.  These normal item 

response vectors are then modified by randomly introducing slips (changes from 1 

to 0, or 0 to 1) to all the possible expected item response vectors.  The probability 

of the slips is determined by the item discrimination power, which will be 

discussed in detail later.  Second, the HCI values for the 2000 normal item 

response vectors are calculated.  Third, the HCI values are ordered from lowest to 

highest value.  Fourth, if we let alpha = 0.10 be the probability of misclassifying a 
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normal item response vector as misfitting, then the 10
th

 percentile of the rank 

ordered HCI values can be used as the cut score.  According to Cui and Leighton 

(2009), an alpha of 0.10 rather than 0.05 is used to increase the power of the HCI 

(i.e., the probability of correctly indentifying misfitting item response vectors). 

The power of the HCI in Identifying Misfitting Item Response 

Patterns. The cut score enables the classification of the HCI values and the 

corresponding observed item response vectors into normal and misfitting.  Like 

any other classification procedure in statistics, researchers are interested to know 

the power of the classification procedure.  Power here refers to the probability of 

correctly classifying a misfitting item response vector (i.e., an observed item 

response vector that is inconsistent with the attribute hierarchy) as misfitting.  In 

order to estimate the power of the HCI in identifying misfitting item response 

vectors, Cui and Leighton (2009) conducted a simulation study.  Part of the 

simulation study involved generating misfitting item response vectors using a 

second attribute hierarchy shown in Figure 2.  These generated observed item 

response vectors were considered as misfitting with respect to the attribute 

hierarchy in Figure 1 because they were generated from a different attribute 

hierarchy (Figure 2). Then, the HCI values for these misfitting item response 

vectors were computed (based on the attribute hierarchy in Figure 1).  Cui and 

Leighton (2009) found that the HCI’s power for identifying these misfitting item 

response vectors was low to moderate (0.21 to 0.53) across different conditions 

(e.g., different number of items, different item discrimination power).  Cui and 

Leighton (2009) argued that the relative low powers of the HCI were mainly due 
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to the fact that the attribute hierarchy in Figure 1 was only partially different from 

the attribute hierarchy in Figure 2.  That is, the two attribute hierarchies still 

shared many similarities (e.g., both attribute hierarchies assumed the same 

prerequisite relationships among attributes 1, 2, 4, and 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  A hypothetical seven-attribute hierarchy of categorical syllogism 

performance 

  

Attribute 1 
The interpretation of 

quantifiers according to formal 
criteria 

Attribute 2 
The ability to create an initial 

model of the premises 

Attribute 3 
The ability to draw conclusion 

from 1-model syllogism 

Attribute 4 
The ability to create a second 

unique model of premises 

Attribute 5 
The ability to draw conclusion 

from 2-model syllogim 

Attribute 6 
The ability to create a third 
unique model of premises 

Attribute 7 
The ability of draw conclusion 

from 3-model syllogism 
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CHAPTER 3: THE HIERARCHY MISFIT INDEX (HMI) 

 In order to improve the power to detect misfitting item response vectors, a 

new person fit index, the HMI, is developed based on the HCI.  Compared to the 

HCI, the most unique feature of the HMI is that it has two sub-indices that 

represent two types of misfits: random misfit and systematic misfit.  The two sub-

indices can be summed together to give an overall indication of person fit, the 

HMI.  The definitions and computational formulas for the random misfit, 

systematic misfit, and the HMI will be presented in the following sections. 

Random Misfit   

Not all misfits indicate that the attribute hierarchy is misspecified.  In 

other words, even if an attribute hierarchy is accurately specified, there will still 

be some misfits that occur due to random measurement error (e.g., a high 

achieving student accidentally makes a careless mistake, or a low achieving 

student correctly answers an item by a lucky guess).  Such misfits will be referred 

to as random misfits.  In practice, in order to identify the amount of random misfit, 

an operational criterion is needed.  Random misfit is operationally defined as the 

inconsistency among test responses to items that belong to the same item type (as 

a reminder, an item type includes all the items that require the same attribute 

combination).  This inconsistency can be mathematically represented by the 

random misfit index.  The computational formula for the random misfit index is: 

Random misfit index =  
∑  

 
,                                         (2) 
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where, 

Mw represents the number of minority items (it will be demonstrated later) 

that are inconsistent with the rest of the items that measure the same attribute 

combination, and 

k is the total number of items in the test. 

To illustrate the calculation procedure for the random misfit index, 

consider a test that only measures five attributes and each attribute is measured by 

four items.  For simplicity, assume the five attributes are linearly ordered (form 

one branch), where attribute 1 is the easiest attribute and attribute 5 is the most 

difficult attribute.  Suppose a student’s observed item response vector is {1111 

0000 1100 1000 1110}.  To calculate the random misfit index, inconsistencies 

within each item type are examined separately at first.  Mw represents the number 

of minority items that are inconsistent with the rest of the items that measure the 

same attribute combination.  In the observed item response vector, the first four 

items measure attribute 1, and the student is able to answer them correctly.  There 

is no inconsistency among the items, so Mw equals to 0.  The second four items 

measure attribute 2.  The student fails to answer any of them correctly.  Again, 

there is no inconsistency among the items, so Mw equals to 0.  For the third set of 

four items that measure attribute 3, the student is only able to answer two of them 

correctly.  Since two items (item 9, 10, correctly answered) suggest the student 

has mastered attribute 3 and two items (item 11, 12, incorrectly answered) suggest 

the student has not mastered attribute 3, there are inconsistencies among the third 
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set of four items.  Mw equals to 2 in this case because 2 items are inconsistent 

with the rest of the items.  For the fourth set of four items that measure attribute 4, 

the student is only able to answer one out of four items correctly.  Since one item 

(item 13) is inconsistent with the rest of the items, Mw equals to 1.  For the last 

set of 4 items that measure attribute 5, the student is able to answer three out of 

four items correctly.  Since one item (item 20) is inconsistent with the rest of the 

items, Mw equals to 1.  The random misfit index equals to (0+0+2+1+1)/k.  Since 

the test includes 20 items (4 items per attibute*5attribute=20 items, k=20), the 

random misfit index equals to (0+0+2+1+1)/20=0.2.  Given the definition of Mw, 

the Mw cannot exceed half of the number of items that measure the same attribute 

combination.  Therefore, the sum of Mw cannot exceed half of the total number of 

items in the test.  As a result, the random misfit index has a range between 0 to 

0.5, where 0 represents no random misfit, and 0.5 represents severe random misfit 

(e.g., {1100 1100 1100 1100 1100}). 

Systematic Misfit   

In contrast to random misfits, systematic misfits occur because the 

attribute hierarchy is misspecified, that is the attribute hierarchy does not 

accurately represent the prerequisite relationship among students’ knowledge and 

skills.  When the attribute hierarchy is misspecified, students’ observed item 

response vectors will systematically differ from the expected item response 

vectors.  For this reason, the term systematic misfit is used. 
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Similar to random misfits, systematic misfits need an operational 

definition so that they can be clearly defined in practice.  But in order to 

operationally define systematic misfits, two new concepts need to be introduced: 

the observed item type pattern, and the expected item type pattern.  The 

systematic misfit is operationally defined as the inconsistency between the 

observed item type pattern and the expected item type pattern.  In the following 

sections, the definitions and calculation procedures of the observed item type 

pattern and the expected item type pattern are introduced.  Then, the 

computational formula of the systematic misfit index is introduced.   

Observed Item Type Pattern.  The observed item type pattern is a vector 

that indicates which item types (i.e., items that measure the same attribute 

combination are said to belong to the same item type) a student appears to be able 

to consistently and correctly answer.  The observed item type pattern is different 

from the observed item response vector in that the observed item type pattern 

shows which item types a student can consistently and correctly answer, while 

the observed item response vector shows which items the student correctly 

answered.  To illustrate this, the previous example is continued, consider the 

student whose observed item response vector is {1111 0000 1100 1000 1110}.  

The student’s observed item type pattern could be summarized arbitrarily as 

follows: {1 0 0 0 1}, which indicates that the student can consistently and 

correctly answering item type 1 and 5 but not item type 2, 3 and 4 because item 

types 2, 3, and 4 have 50% or fewer items answered correctly.    
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The observed item type pattern is also different from the attribute pattern 

because an item type does not necessarily correspond to an attribute.  There could 

be more item types than attributes.  This is because an item type can be designed 

to measure combination of attributes from different branches of an attribute 

hierarchy (i.e., complex attribute combination).  Another important and 

distinguishing property of the observed item type pattern is that it is estimated 

entirely based on the student’s observed item response vector, and it is does not 

depend on the assumption that the attribute hierarchy is correctly specified.   

In order to estimate which item types a student can consistently and 

correctly answer, a cut score is needed to determine how many items of an item 

type a student needs to correctly answer in order to be considered as a master of 

the item type.  There are two approaches to determine the cut score: determining 

the cut score based on the likelihood of mastery vs. non-mastery, and determining 

the cut score based on an arbitrary standard. 

In order to determine the cut score based on the likelihood of mastery vs. 

non-mastery, we need to know the item discrimination power.  In the AHM 

framework, item discrimination power includes two probabilities: the probability 

of answering an item correctly given a student has mastered the attribute 

combination probed by the item, and the probability of answering an item 

correctly given a student has not mastered the attribute combination probed by the 

item (Cui & Leighton, 2009).  For example, an item has an item discrimination 

power of 0.6/0.2.  This means if a student has mastered the attribute combination 

required by the item, the probability of correctly answering the item by the 
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student is 0.6; if the student has not mastered the attribute combination required 

by the item, the probability of correctly answering the item by the student is 0.2.  

If the item discrimination powers of all the items that belong to an item type are 

known, the probability of producing an observed item response vector given 

mastery or non-mastery can be calculated, and whether the student is classified as 

a master or non-master can be determined by which probability is larger.  For 

example, suppose there are four items that belong to the same item type, and they 

all have an item discrimination power of 0.9/0.1.  The probability of a student 

producing the item response pattern (1111) given that the student has mastered the 

attributes combination required by the items is 0.6561 (0.9*0.9*0.9*0.9=0.6561).  

The probability of producing the same item response pattern given the student has 

not mastered the attribute combination is 0.0001 (0.1*0.1*0.1*0.1=0.0001).  

Since the probability of producing this item response pattern given mastery is 

much larger than the probability of producing it given non-mastery, it is more 

likely the student has mastered the item type.  Therefore, the response pattern 

(1111) can be classified as mastery.  If the number of correct responses in the item 

type  is decreased (e.g., {1110}), the probability of producing such observed item 

responses given mastery will decrease and the probability of producing them 

given non-mastery will increase.  At one point, the probability given mastery will 

equal to the probability given non-mastery.  After that point, if the number of 

correct responses keeps decreasing, the probability given non-mastery will 

become larger than the probability given mastery.  The point where the two 
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probabilities are equal can be used as the cut score to determine whether the 

student has mastered the item type. 

In order to compute a cut score based on the probabilities given mastery or 

non-mastery, additional formulas are required.  For the purpose of simplicity, the 

item discrimination is assumed to be the same across the items.  The formula for 

calculating the probability of producing an observed item response vector given 

mastery is: 

    |               
  

         
 ,                                                 (3) 

where, 

 a is the probability of correctly answering an item given mastery 

 c is the number of correct responses to items that belong to an item type 

 l is the number of items that measure the item type. 

 The probability of an item response pattern given non-mastery is: 

    |               
  

         
 ,                                               (4) 

where 

 b is the probability of correctly answering an item given non-mastery 

 c and l are the same as before. 
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 The formula for the cut score is the solution to the equation:     |   

    |   =0 (c is the unknown in this equation).  This solution can be computed by 

many equation solving programs (e.g., Mathematica).  After the cut score is 

computed, the estimated item mastery pattern can be computed based on the 

comparison of the actual number of correctly answered items that belong to an 

item type and the cut score.  If the actual number of correctly answered items is 

greater than the cut score, the student will be considered as having achieved 

mastery of the item type.   

To illustrate these procedures, the hypothetical 5 attributes test example 

will be continued.  Suppose the item discrimination power for each item is 0.6/0.2.  

Thus, “a” equals to 0.6, and “b” equals to 0.2.  Since the test has 4 items 

measuring each attribute, “l” equals to 4.  The cut score will be the solution to the 

following equation:  

Cut score = Solution [    |       |    ]                                 (5) 

                          
  

         
                 

  

         
     

In this case, the solution to the above equation is 1.55, meaning that if a student 

correctly answers two or more items that belong to the same item type, the student 

will be classified as a master of the item type (since 2 >1.55); and if the student 

fails to answer at least two items, the student will be classified as a non-master of 

the item type.  Suppose a student’s item response vector is {1111 0000 1100 1000 

1110}.  By applying the cut score of 1.55, the student’s estimated item mastery 

profile will be {1 0 1 0 1}.  For example, the student is able to correctly answer 
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four items that belong to item type 1.  Since 4 is greater than 1.55, the student is 

considered as a master of item type 1.  Similarly, since the student correctly 

answers 0 items that belong to item type 2, and  0 is smaller than 1.55, the student 

will be considered as a non-master of item type 2.  It is important to note, this 

method assumes that the item discrimination powers are known, and that each 

item has approximately the same item discrimination power.  The disadvantage of 

this method is that in practice, there may be some situations where these 

assumptions cannot be satisfied.  When the assumptions of the probability method 

cannot be satisfied, the cut score can be determined arbitrarily.  For example, the 

test developer can decide that if a student is able to correctly answer more than 

half of the items that belong to an item type, the student can be considered as 

master of the item type. 

 Expected Item Type Pattern.  In contrast to the observed item type 

pattern, which is independent from the attribute hierarchy, the expected item type 

pattern is an item type pattern that is logically consistent with the attribute 

hierarchy.  The expected item type pattern is different from the expected item 

response vector and the expected attribute pattern.  In order to illustrate how the 

expected item type pattern is derived, the previous example is continued.  The 

student has an observed item type pattern of {1 0 1 0 1}.  Since the attribute 

hierarchy is linear, it means that the in order to master an attribute, its previous 

attributes must be mastered (e.g., in order to master attribute 4, attributes 1 to 3 

must be mastered).  The observed item type pattern suggests that the student is 

able to master item type 5 which measures attribute 5.  From this, the attribute 
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hierarchy will predict that the student should also master attributes 1 to 4, and 

consequently be able to correctly answer item types 1 to 4.  Therefore, the 

expected item type pattern for this student will be {1 1 1 1 1}.  However, since the 

observed item type pattern is different from the expected item type pattern at item 

type 2 and 4, we can say there are two misfits between the observed item type 

pattern and the expected item type pattern. 

Computational Formula for Systematic Misfit Index.  The systematic 

misfit index formula is shown below: 

systematic misfit index = ∑ ∑                        
,                         (6) 

where 

           
 includes item types that are considered to be mastered by 

student i according to the observed item type pattern, 

 j represents the item type that the student has mastered, therefore,   

          
, 

   includes all the item types that require the subset of attributes measured 

by item type j, in other words,    includes item types that measure the prerequisite 

attributes of item type j. 

    is a dichotomous value (1 or 0) that represents whether student i has 

mastered item type g (according to the observed item type pattern), where item g 

belongs to   . 
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 To illustrate the calculation of the systematic misfit index, the 5-attributes 

test example is continued.  The student’s observed item response vector {1111 

0000 1100 1000 1110} is converted to the observed item type pattern, {1, 0, 1, 0, 

1}, as shown previously.  The observed item type pattern shows that item types 1, 

3, and 5 are mastered by the student.  In terms of the formula,           
={1, 3, 5}.  

Since j represents an item type that the student has mastered,              
 (i.e., j 

can take the value of 1, 3, or 5).  We will first examine the most difficult item 

type the student has master, namely item type 5 (j=5).  According to the 

hypothetical linear attribute hierarchy, item type 5 measures attributes 1, 2, 3, 4 

and 5.  Since the student has mastered item type 5, he or she is considered to have 

mastered all the attributes required by this item type, namely, attribute 1, 2, 3, 4 

and 5.  Therefore, this student is expected to also have mastered item type 1 to 4, 

which measure attribute 1, 2, 3, and 4 respectively.  In terms of the formula, 

     {1, 2, 3, 4}.  In other words, for item type 5, there are 4 comparisons that 

can be made among the item types: item type 5 vs. item types 1 to 4.  Since the 

student has not mastered item types 2 and 4, two misfits are found.  To put these 

in terms of the formula, g represents an item type that measures the subset of 

attributes of item type j. Therefore, g belongs to   .  For j = 5, g can take the value 

of 1, 2, 3, or 4.  The term,    , represents whether the student has mastered item 

type g.  The student has mastered item type 1 and 3, but not 2 and 4,       
 

       
        

        
  .  Therefore, the sum of         equals to 

                         , meaning there are two misfits.  

Similarly, potential systematic misfits can be calculated for item types 3 and 1, 
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which also have been mastered by the student.  For item type 3, there is one misfit, 

item type 2, which is expected to be mastered, but it is not. For item type 1, there 

is zero comparison because item type 1 measures attribute 1, which does not have 

any prerequisite attribute.  Overall, the total number of misfits is 3 (2+1+0=3).  

Hence, the value of the systematic misfit index for the student’s item response 

vector is 3. 

Since the systematic misfit index represents the total number of misfits 

between the observed item type pattern and the expected item type pattern, it will 

always be an integer greater than or equal to 0.  When the systematic misfit index 

equals to zero, it indicates there is no systematic misfit in the observed item 

response vector.  When the systematic misfit index is greater than 0, it indicates 

the presence of systematic misfits in the observed item response vector.  A special 

case is observed when an observed item type pattern is null (all 0), the systematic 

misfit index will be set to 999.  This is because a null observed item type pattern 

provides little information about person fit.  That is, a student who has a null 

observed item type pattern either randomly guesses every item, or skips the test.  

Neither behavior is meaningful for the evaluation of person fit. 

Combination of Random and Systematic Misfit Index   

Since the random misfit index is always a decimal (i.e., smaller than or 

equal to 0.5), and systematic misfit index is always an integer (i.e., greater than or 

equal to 0), they can be summed together to give an overall index of misfit, the 

HMI. 



37 
 

HMI = random misfit index + systematic misfit index                          (7) 

The decimal part of the HMI is the random misfit index and the integer part of the 

HMI is the systematic misfit index. 

Using the HMI to Detect Misfitting Item Response Pattern   

Both random and systematic misfits can be problematic in practice.  For 

random misfit, if the number of random misfit is high, it indicates the items within 

an item type are not consistent with each other.  This problem can be detected by 

a high random misfit index that is close to 0.5.  The cut score can be determined 

arbitrarily according to the needs of the test developers.  For systematic misfit, 

any systematic misfit index that is greater than 0 will be considered as serious 

violation of the attribute hierarchy.  Combining random and systematic misfit 

index together, any HMI value that is greater than the cut score of the random 

misfit index will be considered as misfitting.  To illustrate this property, consider 

the following HMI values: 1.30, 2.10, 0.26, and 0.10, and assume the cut score of 

the random misfit index is set to 0.25.  If systematic misfits exist, then the integer 

part of the HMI indices will be greater than or equal to 1.  For example, 1.30 and 

2.10 have integers that are greater than or equal to 1 and thus they indicate 

systematic misfits.  If the integer part of the HMI index is greater than or equal to 

1, the HMI index as a whole will also be greater than or equal to 1, and 

consequently it will be greater than the cut score of the random misfit index.  In 

this example, 1.30 and 2.10 are both greater than the cut score of the random 

misfit index, 0.25.  This shows that if systematic misfits are present, the HMI 
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value will always be greater than the cut score of the random misfits.  Severe 

random misfits are indicated by any HMI value that is greater than the cut score 

of the random misfits (i.e., 0.25).  To summarize, if systematic misfits are present, 

the HMI value will be greater than the cut score of random misfit; if severe 

random misfits present, the HMI value will also be greater than the cut score of 

random misfit.  Therefore, if the HMI value is greater than the cut score of the 

random misfit, the observed item response vector will be classified as misfitting. 
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CHAPTER 4 METHODS 

Research Design 

 In order to test how well the HMI can detect misfitting item response 

vectors, a simulation study was conducted to examine the HMI’s power and type 

1 error.  Power is the probability of correctly detecting misfitting item response 

vectors.  Type 1 error is the probability of incorrectly classifying normal item 

response vectors as misfitting.  The simulation study was conducted under the 

framework of Cui and Leighton’s (2009) simulation study, with the intention to 

compare the HMI with the HCI.  The data were generated based on the attribute 

hierarchy in Figure 1.  Three factors were mainipulated: types of misfits, number 

of items, and item discrimination. 

Types of Misfits.  Three types of misfits were manipulated: model 

misspecification, creative responding, and random responding to every item.  

Normal responding (no misfit) was also investigated as a control.  Misfits due to 

model misspecification refer to the misfits that occur when the attribute hierarchy 

does not accurately reflect student’s knowledge and skills.  Misfits due to creative 

responding occur when high achieving students fail to answer easy questions due 

to misinterpretation or boredom.  Misfits due to random responding occur when 

students randomly guess in response to every item.  The three types of misfits 

mentioned above can all be classified as systematic misfit because all of them 

involve systematic violations of the attribute hierarchy.  It is important to examine 

the HMI’s power at detecting the three different types of misfits because it has 
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been shown that the HCI has high power at detecting misfits due to random 

responding and creative responding; but relatively low power at detecting misfits 

due to model misspecification (Cui & Leighton, 2009).  In addition to the above 

three types of misfits, normal item response vectors were also examined.  Unlike 

the above three types of misfits, normal item response vectors do not contain any 

systematic misfit.  This is because normal item response vectors are generated by 

randomly introducing low probability slips to expected item response vectors.  

Any unexpected responses in normal item response vectors are the result of 

random errors (i.e., random misfits).  As a result, the percentage of normal item 

response vectors that are classified as misfitting by the HMI is an indicator of the 

HMI’s type 1 error. 

Number of Items.  Number of items (or number of items per attribute) 

refers to how many items are used to measure each attribute.  Three levels of 

number of items were manipulated: 3, 4, and 6 items per attribute.  These three 

levels of number of items were chosen because they reflect realistic testing 

limitation in practice (Cui & Leighton, 2009).  It is important to examine how the 

number of items per attribute influences the HMI’s power because previous 

research has shown that the HCI’s power increased as the number of items per 

attribute increased (Cui & Leighton, 2009). 

Item Discrimination.  As described earlier, in the AHM, item 

discrimination is represented by two probabilities: the probability of correctly 

answering an item given that a student has mastered the attributes the item 

requires; and the probability of correctly answering an item given that a student 
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has not mastered the attributes the item requires.  Two levels of the item 

discrimination were included: high and low.  High item discrimination was 

defined by two probabilities: 0.9 and 0.1, meaning that students who have 

mastered the attributes required by an item have a probability of 0.9 of answering 

the item correctly; and students who have not mastered the attributes the item 

requires have a probability of 0.1 of answering the item correctly.  Low item 

discrimination was also defined by two probabilities: 0.6 and 0.2, and they can be 

interpreted in a similar fashion.  According to Cui and Leighton (2009), HCI’s 

power tends to be high when the items discriminations are high.  Thus, it is 

important to examine how item discrimination influences the power of the HMI. 

In total, four types of misfit (including the control), three levels of number 

of items, and two levels of item discrimination were examined in the simulation 

study producing a total of 4x3x2=24 conditions.  Each condition was replicated 

100 times.  An overall picture of the study design is illustrated in Table 6.  The 

power of the HMI was evaluated by the proportion of the three simulated 

misfitting item-response vectors (i.e., model misspecification, creative responding 

and random responding) that were correctly classified as misfitting by the HMI; 

and the type 1 error of the HMI was evaluated by the proportion of the simulated 

normal item-response vectors (control vectors) that were incorrectly classified as 

misfitting by the HMI. 

 

 



42 
 

Table 6. 

Overall scheme of the stimulation study 

    Number of 

items per 

attribute 

 

   3 items 4 items 6 items 

Item 

discriminati

on power 

High item 

discrimina

tion 

Type 

of 

misfits 

 

2000 normal 

responses 

(control) 

2000 model 

misspecificatio

ns 

2000 creative 

responding 

2000 random 

responding 

 

2000 normal 

responses 

2000 model 

misspecificatio

ns 

2000 creative 

responding 

2000 random 

responding 

 

2000 normal 

responses 

2000 model 

misspecificatio

ns 

2000 creative 

responding 

2000 random 

responding 

Low item 

discrimina

tion 

Type 

of 

misfits 

 

2000 normal 

responses 

(control) 

2000 model 

misspecificatio

ns 

2000 creative 

responding 

2000 random 

responding 

 

2000 normal 

responses 

2000 model 

misspecificatio

ns 

2000 creative 

responding 

2000 random 

responding 

 

2000 normal 

responses 

2000 model 

misspecificatio

ns 

2000 creative 

responding 

2000 random 

responding 
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Data Generation 

 As shown in Table 4, the 3 levels of number of items and 2 levels of item 

discrimination create a total of 6 forms of the tests (i.e., each cell in Table 4 

represents a unique test).  For each form of test, 2000 item response vectors are 

generated for each type of misfit (i.e., model misspecification, creative responding, 

random responding, and normal responding).  Since the number of items and the 

item discrimination powers are relatively easy to manipulate, the following 

sections will be centered on the data generation procedure for the 4 types of 

misfits. The procedure to manipulate the number of item and the item 

discrimination power will be explained within the data generation procedures for 

the 4 types of misfits. 

Generating Normal Item Response Vectors.  Two thousands normal 

item response vectors were generated for each of the 6 test forms.  The normal 

item response vectors were generated by introducing random slips (1 to 0, or 0 to 

1) to expected item response vectors.  The probabilities of the slips are determined 

by the item discrimination.  Expected item response vectors and item 

discrimination power will be explained in the next two paragraphs. 

Expected Item Response Vector.  As mentioned previously in the AHM 

review section, the expected item response vectors are derived from the expected 

attribute patterns and the test reduced Q matrix.  An expected attribute pattern 

shows which attributes a student has mastered (assuming the attribute hierarchy is 

correctly specified).  The test reduced Q matrix shows which attributes are 
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required by each item.  Combining the two pieces of information, we can predict 

the student’s test response under ideal situation (no lucky guesses, and no careless 

mistakes).  For example, assuming a test has Table 3 as its test reduced Q matrix, 

and a student has an expected attribute pattern of (1100000), the student’s 

expected item response vector would be (1111 1111 0000 0000 0000 0000 0000).  

Since the student has only mastered attribute 1 and 2, the student will only be able 

to correctly answer items that require only attributes 1 and 2, namely, item 1 to 8. 

Item Discrimination Power.  The expected item response vectors do not 

have any aberration from the attribute hierarchy.  This is unrealistic because 

students do guess and make careless mistakes.  Therefore, random errors need to 

be added to the expected item response vectors.  This can be done by randomly 

introducing slips (change 1 to 0, or 0 to 1) based on item discrimination.  As 

mentioned previously, in the AHM framework, item discrimination values 

includes two probabilities: the probability of correctly answering an item given a 

student has mastered the required attributes of the item; and the probability of 

correctly answering an item given that a student has not mastered the required 

attributes of an item.  The probability of the slips can be calculated from the item 

discrimination value.  Specifically, the probability of making the 1-to-0 slip 

equals 1 minus the probability of correctly answering an item given that a student 

has mastered the required attributes of the item.  The probability of making the 0 

to 1 slip equals the probability of correctly answering an item given a student has 

not mastered the required attributes of the item.  For example, for a test form that 

is made up of items with discriminations of 0.6/0.2, the probability of making the 
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1-to-0 slip would be set to 0.4 (i.e., 1 - 0.6 = 0.4), and the probability of making 

the 0-to-1 slip would be set to 0.2. 

Using this method, around 133 normal responding vectors (i.e., 2000 total 

normal responding vectors/15 attribute patterns = 133.3) were generated for each 

attribute pattern in Table 5 for each of the 6 test forms. 

Generating Model Misspecification Vectors.  Two thousand model 

misspecification vectors were generated for each of the 6 test forms.  The data 

were generated using the same procedures described in the previous section 

except that the attribute hierarchy in Figure 1 was replaced by the attribute 

hierarchy in Figure 2.  This means that the attribute hierarchy in Figure 1 was no 

longer an accurate model for these item response vectors, which were generated 

based on the attribute hierarchy in Figure 2. 

Generating Creative Response vector.  Two thousand creative response 

vectors were generated for each of the 6 test forms.  Creative response vectors 

were generated by first selecting four high ability expected attribute patterns from 

Table 4 (i.e., {1101011}, {1111011}, {1101111}, and {1111111}), and then 

changing the four expected attribute patterns to: {0101011}, {0111011}, 

{0101111}, and {0111111} to represent high achieving students who 

misinterpreted items that probed the easiest attribute (i.e., the first attribute).  

These modified attribute patterns were combined with the test reduced Q matrix 

to generate corresponding expected item response vectors.  Then, random slips 

were introduced based on item discrimination as before. 
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Generating Random Response Vectors.  Two thousands random 

response vectors were generated for each of the 6 combinations.  Random 

response data were generated by randomly generating responses to each item (0 or 

1) with a probability of 0.25 for a correct response, which corresponds with the 

probability of correctly guessing in response to a multiple choice item with four 

options. 

Power and Type 1 Error 

 The HMI value for each simulated item-response vector was calculated.  

Since items in a test form were established to  always have the same item 

discrimination power, the cut score for an observed item type pattern was 

determined by formula (5).  The cut score for the HMI was arbitrarily determined 

to be 0.5, since in this particular study, only systematic misfits were of interest.  

That is if an HMI value was greater than 0.5, then it was classified as misfitting; 

otherwise, it was classified as normal.  The powers of the HMI were determined 

by counting the proportions of item-response vectors in the misfitting conditions 

that were correctly classified as misfitting by the HMI.  The type 1 errors of the 

HMI were determined by the proportion of the item-response vectors in normal 

conditions that were incorrectly classified as misfitting by the HMI. 

 The data generation and HMI calculation were executed by programs 

written in Mathematica code (Wolfram Mathematica 6).  The data generation 

program can be requested from Cui, and HMI calculation program can be 

requested from Guo.  
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CHAPTER 5 RESULTS 

 The results of the HMI are presented in Table 7.  The HMI’s power and 

type 1 error will be reported across different conditions. 

Table 7. 

The Power and Type 1 Error of the HMI at Detecting Misfitting Item Response 

Vectors 

   Number of items per attribute 

 3 items 4 items 6 items 

Item 

discrimination 

power 

High 

discriminating 

items 

Type 

of 

misfits 

Model 

misspecification 

 

0.9834 

(0.00) 

0.9822 

(0.00) 

0.9945 

(0.00) 

Creative 

responding 

 

1.0000 

(0.00) 

1.0000 

(0.00) 

1.0000 

(0.00) 

Random 

responding 

 

0.9610 

(0.00) 

0.9864 

(0.00) 

0.9830 

(0.00) 

Type 1 error 

 

0.1026 

(0.01) 

0.1350 

(0.01) 

0.0460 

(0.00) 

Low 

discriminating 

items 

Type 

of 

misfits 

Model 

misspecification 

 

0.9055 

(0.01) 

0.9305 

(0.01) 

0.9353 

(0.01) 

Creative 

responding 

 

1.0000 

(0.00) 

1.0000 

(0.00) 

1.0000 

(0.00) 

Random 

responding 

 

0.9271 

(0.01) 

0.9202 

(0.01) 

0.9267 

(0.01) 

Type 1 error 

 

0.6900 

(0.01) 

0.5085 

(0.01) 

0.4669 

(0.01) 
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Power 

Types of Misfit.  The HMI had high power at detecting different types of 

misfits.  The HMI was most powerful at detecting creative responding (100% 

detection across 6 conditions).  The HMI’s powers at detecting model 

misspecification and random responding were high, ranging from 91% to 99% 

across conditions. 

Number of Items.  The HMI’s power at detecting model misspecification 

and random responding tended to increase with the number of items that measure 

each attribute.  Specifically, in 3-items per attribute conditions, the HMI’s powers 

at detecting model misspecification and random responding ranged from 91% to 

98%.  In 4-items per attribute conditions, the HMI’s powers ranged from 93% to 

98%.  In 6-items per attribute conditions, the HMI’s powers ranged from 98 to 

99%.  Overall, as the number of items per attribute increased, the power of the 

HMI also increased. 

Item Discrimination.  In high item discrimination conditions, the HMI’s 

powers at detecting model misspecification and random responding were 

significantly higher than in low item discrimination conditions.  Specifically, the 

HMI’s power at detecting model misspecification in high item discrimination 

conditions ranged from 98% to 99%, but in low item discrimination conditions, 

the power ranged from 91% to 94%.  The HMI’s power at detecting random 

responding in high item discrimination conditions ranged from 96% to 98%, but 

in low item discrimination conditions, the power ranged from 92% to 93%.  Since 
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the HMI had 100% detection rate for creative responding at each condition, item 

discrimination did not appear to influence the HMI’s power at detecting creative 

responding. 

Type 1 Error 

 The Type 1 errors of the HMI were related to both the number of items 

and item discrimination.  In high item discrimination conditions, the type 1 errors 

of the HMI were in the acceptable range (from 5 to 13%).  In these high item 

discrimination conditions, it seemed the type 1 error of the HMI decreased as the 

number of item increased, even though the type 1 error was slightly higher in the 

4 item per attribute condition than the 3 item per attribute condition.  In low item 

discrimination conditions, the type 1 errors of the HMI were high and fell in the 

unacceptable range (from 47% to 69%). As the number of item per attribute 

increased, the type 1 error became smaller in low item discrimination conditions. 
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CHAPTER 6 DISCUSSION 

 The first part of this chapter will focus on answering the two research 

questions outlined in chapter one.  Then, limitations and future research directions 

will be discussed. 

Are the HMI’s Powers and Type 1 Error Acceptable across Different 

Conditions? 

In high item discrimination conditions, the HMI’s power at detecting 

different misfitting item response vectors was high, ranging from 96.1% to 100%, 

and the HMI’s type 1 errors were acceptable, ranging from 4.6% to 13.5%.  As 

the number of items measuring per attribute increased, the power increased and 

type 1 error decreased.  There is one exception that the HMI’s type 1 error was 

lower in the 3-items high condition than in the 4-items condition (both refer to 

high item discrimination conditions).  This is likely related to the property of the 

cut score for observed item type patterns.  Specifically, in the 3-items condition, a 

student can have 4 possible scores on an item type: 0, 1, 2, 3 (i.e., how many 

items of an item type a student correctly answered).  The cut score is a number 

between 1 and 2, therefore, it divides all the possible scores of an item type into 

two classes (i.e., 0 and 1 belong to non-mastery, 2 and 3 belong to mastery).  But 

in the 4 items condition, a student can have 5 possible scores on an item type: 0, 1, 

2, 3, 4.  The cut score is right on 2.  When a student correctly answers 2 out of 4 

items, the likelihoods of mastery and non-mastery are equal.  An arbitrary 

decision must be made, and in this study a score of 2 out 4 is classified as non-
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mastery.  This arbitrary classification decision makes the observed item type 

pattern less accurate.  As a result, the 3-item condition’s type 1 error is actually 

smaller than the 4-item condition.  As the number of items measuring an attribute 

increases, this problem has less impact.  For example, in the 6-item condition, 

even though the cut score problem still exists, the large number of items is enough 

to overcome the effect and reduces the type 1 error (4.6%). 

For the low item discrimination conditions, the HMI’s powers are still 

relatively high, ranging from 90.6% to 100%, but the HMI’s type 1 errors become 

unacceptably high, ranging from 46.7 to 69.0%.  While increasing the number of 

items measuring an attribute from 3 to 6 decreases the type 1 errors, it is not 

enough to make the type 1 error fall into the acceptable range.  The high type 1 

errors are likely due to that the low item discrimination power (0.6/0.2) increases 

the probability to produce severe random misfits which resemble systematic 

misfits.  This result shows that in order for the HMI to function properly, it is 

crucial to have high item discrimination.  The cut score problem mentioned in the 

previous paragraph is not a concern for the low item discrimination condition.  

This is because the probability based cut score for estimated item mastery patterns 

are: 1.16, 1.55 and 2.32, which do not require any arbitrary decision to make the 

classification. 

Is there any Improvement from the HCI?  

The HCI’s powers at identifying misfitting item response vectors are 

shown in Table 8.  Before comparing the two indices, it is important to note the 
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small differences between the two study designs.  That is in Cui and Leighton’s 

(2009) study, the numbers of items measuring an attributes were 2, 4, and 6, but 

in the current study, it was 3, 4, 6.  The current study used 3 rather than 2-item 

condition because the author wanted to examine the possible cut score problem 

previously mentioned.  Also, in Cui and Leighton’s (2009) study, the HCI’s type 

1 error was always 10%.  The rest of the design is identical. 
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Table 8. 

Percentage of Misfitting Item-Response Vectors Correctly Identified by the HCI 

 

 

 
 

Number of items per 

attribute 

 K=3 k=4 k=6 

Item 

discrimination 

power 

High 

discriminating 

items 

  

Model 

misspecification 

 

52.66 

(0.01) 

51.74 

(0.01) 

50.89 

(0.01) 

Type 

of 

misfits 

Creative 

responding 

 

91.14 

(0.01) 

97.11 

(0.00) 

99.06 

(0.00) 

 Random 

responding 

 

93.01 

(0.01) 

99.04 

(0.00) 

99.82 

(0.00) 

Low 

discriminating 

items 

  

Model 

misspecification 

 

20.90 

(0.01) 

23.35 

(0.01) 

25.18 

(0.01) 

Type 

of 

misfits 

Creative 

responding 

 

88.18 

(0.01) 

99.43 

(0.00) 

99.97 

(0.00) 

 Random 

responding 

 

53.01 

(0.01) 

71.68 

(0.01) 

82.38 

(0.01) 

 

 

In high item discrimination conditions, the HMI seems to function better.  

As shown in Table 8, the HCI’s powers at detecting model misfits were relatively 
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low, ranging from 50.9% to 52.7%.  The HMI had better powers (98.2% to 

99.5%), yet maintaining comparable or better type 1 errors (10.1%, 13.5%, and 

4.6%). 

In low item discrimination conditions, both the HMI and the HCI were not 

functional.  The differences were that the HCI tended to have low type 1 errors 

and low power, while the HMI tended to have high type 1 errors and high power.  

Both studies point out the importance of high item discrimination. 

Beside power and type 1 errors, the HMI has the advantage of being easier 

to interpret.  That is, the HMI has two indices that distinguish random and 

systematic misfits, while the HCI only has one value which makes the distinction 

difficult.  Another advantage of the HMI is that it does not require simulation 

studies to determine the cut score for detecting misfitting item response vectors.  

In contrast, in order to use the HCI to detect misfitting item response vectors, a 

simulation study needs to be done first to determine the cut score.  This is slightly 

more difficult to use.  The HCI does have a cut score system that does not depend 

on simulation.  However, this cut score system is arbitrarily determined and its 

power in identifying misfitting item response vectors has not yet been tested. 

Limitations and Future Research Direction 

Some parts of the simulation study were not realistic.  For example, the 

study made all items have the same item discrimination.  This is unlikely to occur 

in practice.  But it is possible to develop items that have similar item 

discrimination values.  Also, the simulation of creative responding and random 
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responding data may not be realistic.  For creative responding, the simulation 

made high achieving students systematically fail at the easiest item type.  

Specifically, if there are 4 items measuring attribute 1, creative responding 

students will most likely fail 3 or 4 items.  This may not be realistic unless they 

choose to skip all the easy items.  For random responding, the simulation made 

the students randomly guess for every item.  This is usually not the case because 

most students will be able to master some items, and randomly guess other items 

they do not know.  The current study kept these limitations in order to be 

comparable with Cui and Leighton’s (2009) study. 

The author of the study believes that the HMI can still be improved.  

Currently, the systematic misfit index value cannot be interpreted in a numeric 

way.  A large systematic index does not always mean more severe systematic 

misfits.  Therefore, a future study direction would be to modify the systematic 

misfit index such that its numeric value can better represent the severity of the 

systematic misfit. 

Conclusion 

As cognitive diagnostic assessment becomes increasingly more popular in 

modern educational assessment, it is important to have a person fit index that 

indicates whether or not CDA is appropriate for individuals.  The HMI provides a 

new way to assess person fit for CDA.  Building on the HCI, the HMI improves 

the power at detecting misfitting item response vectors and also includes two sub-

indices that provides easier and clearer interpretation of the nature of the misfit. 
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