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ABSTRACT 

  

The main objective of this study was to identify genes, DNA variants and plasma 

metabolites associated with residual feed intake (RFI) in beef cattle. In the first 

study, a total of 117 SNPs were selected and genotyped in 531 steers at the 

University of Alberta. The population was split into a discovery and validation 

population and multiple marker association analyses were performed in the 

discovery, validation and combined populations using ASReml. Twenty two SNPs 

were associated (P < 0.05) with RFI in the discovery population and 7 (of the 22) 

were also significant (P < 0.05) in the validation population. Twenty five SNPs 

were associated with RFI (P < 0.05) in the pooled population. A gene network 

analysis indicated that the biological processes associated with the significant 

genes included lipid, glucose, protein and steroid metabolism, growth, energy 

utilization, and regulation of DNA transcription and translation. The second study 

was an association analysis using the 117 SNPs and indicated that 7 were 

associated with various carcass quality traits (p ≤ 0.005) in the same population. A 

third association analysis was performed using steers at the University of Guelph, 

as the discovery population, to identify blood metabolites associated with RFI. 

Blood samples were collected at 3 periods with period 1, 2 and 3 corresponding to 

week 2, 6 and 9 into the feeding period respectively. Two, ten and three 

metabolites were significantly associated with RFI (P < 0.05) in period 1, 2 and 3 

and accounted for 36%, 74% and 52% of the variation respectively. A validation 

analysis was performed using steers at the University of Alberta as the validation 

population. The results indicated that 3 metabolites were significantly associated 



with RFI in both discovery and validation populations accounting for 32.8% of 

the variation in the validation population. A metabolic network analysis indicated 

that the biological pathways associated with the metabolites included AMPK 

signaling, growth hormone signaling, lipid and energy metabolism and cholesterol 

metabolism. The genes, metabolites, biological networks and the biological 

pathways help contribute to a better understanding of the physiological processes 

influencing RFI and carcass quality in beef cattle. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 INTRODUCTION 

 

Profitability in beef production is the difference between the level (quality and/or 

quantity) of products (outputs) and the costs of production (inputs) (MacNeil et 

al., 1997). In beef production, the major input is feed (Herd et al., 2003) which 

constitutes about 60 - 70% of the total costs of production (Herd et al., 2003; 

Arthur et al., 2004) and the major output is meat. Profits can be increased by one 

or a combination of the following: reducing feed utilization and increasing the 

quality or quantity of outputs. Therefore in relation to profitability, two of the 

most important traits assessed for selection in beef production are feed efficiency 

and carcass quality.  

Most measures of feed efficiency are correlated with production traits except 

residual feed intake (RFI). RFI is defined as the difference between actual feed 

intake and predicted feed intake (Koch et al., 1963). In beef cattle, the predicted 

feed intake is estimated based on the individual’s maintenance requirements (body 

weight-BW) and weight gain (average daily gain –ADG). Feed efficient cattle are 

those that consume less feed than the amount predicted based on their growth and 

maintenance requirements and thus have a negative RFI value, whereas inefficient 

cattle have a positive RFI value. RFI is phenotypically independent of the 

production traits used to estimate it. Therefore, selecting cattle for feed efficiency 

using RFI is expected to reduce feed intake without significantly affecting the 

growth rate and the mature body weight of the selected individuals. The 
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independence of RFI from production traits suggests that RFI represents inherent 

differences in basic metabolic processes that determine the efficiency of feed 

utilization (Herd and Arthur, 2009). This concept will be addressed in detail in 

Chapter 2. 

On the other hand, traits related to carcass and meat quality, such as marbling, 

quality grade and carcass weight may have an impact on the monetary value of 

the meat and as a result will affect meat prices and profits. Improving feed 

efficiency and carcass quality traits relies on the ability to accurately select cattle, 

which are genetically superior for RFI, to be used as the breeding stock and 

thereby pass their superiority to the offspring. In the past, the traditional selection 

methods practiced by most breeders were based on the quantitative genetics 

approach described in detail by Dekkers and Hospital (2002). This approach 

requires data to be collected on the phenotypes of interest to estimate their 

heritability and genetic correlations (Dekkers and Hospital, 2002). This approach 

creates a challenge for RFI because estimating RFI requires expensive equipment 

to measure each animal’s daily feed intake (Herd et al., 2003). Estimation of RFI 

also requires data on feed intake to be collected over a minimum duration of 63 

days using the GrowSafe system (Wang et al., 2006) and some researchers have 

used 112 days (Mader et al., 2009) and up to 140 days (Montanholi et al., 2010). 

Where phenotypic data is not sufficient for selection, genetic markers can be used 

with or without phenotypic information. When used with phenotypic data, genetic 

markers can increase the accuracy of selection (Dekkers, 1999; Goddard and 

Hayes, 2002; Villanueva et al., 2002; Villanueva et al., 2005), and therefore result 
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in increased response to selection (Snelling et al., 2012). Genetic markers are also 

important for traits, such as carcass traits, which cannot be measured until the 

animal has been sacrificed making it unavailable for breeding.  Genetic markers 

are effective in selecting for traits that have a moderate heritability (Togashi and 

Lin, 2010), which indicates that a moderate amount of the observed phenotypic 

variation is controlled by the additive effect of the genes associated with the trait. 

RFI has a moderate heritability ranging from 0.16 (Herd and Bishop, 2000) to 

0.58 (Crews et al., 2003); therefore it is also a good candidate for marker-assisted 

selection. A more detailed review of marker-assisted selection for RFI is also 

discussed in Chapter 2. 

Despite the published successes in identifying the genetic basis for economically 

important traits such as feed efficiency (Herd and Bishop, 2000; Moore et al., 

2009; Barendse et al., 2007; Nkrumah et al., 2007; Sherman et al., 2008), 

utilization of marker-assisted selection tools in beef cattle is still limited, partly 

due to the lack of reproducibility of phenotype-genotype association studies 

across different populations/breeds (Sherman et al., 2008).  

One of the options available to improve the efficiency of genetic markers for 

selection is to identify markers located in candidate genes associated with 

phenotypes. For RFI, this involves identifying SNPs located in genes whose 

functions are associated with the physiological mechanisms underlying the 

variation in RFI. These functional genes and SNPs are expected to be more robust 

across diverse populations and breeds of cattle.  
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In addition to SNP markers, identification of blood metabolites significantly 

associated with variation in RFI may be used as intermediate phenotypes that can 

be refined and developed into biomarkers for selection for RFI in beef cattle.  

The regulation of RFI also depends on the combined effect at all the genes, 

metabolites and other factors that affect gene expression (Hartwell et al., 1999). 

The combined effects can be analyzed by reconstructing biological networks and 

an assessment of biological interactions and pathways involved. 

 

1.2 OBJECTIVES 

 

The major objective of this study was to identify candidate genes, DNA 

polymorphisms within the candidate genes, metabolites and the biological 

processes associated with variation in RFI and carcass quality in beef cattle.  

The specific objectives included: 

1. Identify positional and functional candidate genes for RFI and 

perform association analyses to identify Single Nucleotide 

Polymorphisms (SNPs) associated with RFI in beef cattle.  

2. Identify levels of various blood metabolites and perform 

association analyses to identify the metabolites associated with RFI in 

beef cattle and propose a selection tool for RFI using metabolite 

biomarkers. 

3. Use candidate genes and metabolites to reconstruct biological 

networks and analyze the networks to identify the biological processes 
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associated with RFI and assess the interactions between genes and 

biological processes. 

4. Identify, from the genes that are significantly associated with RFI, 

those that have pleiotropic effects on carcass traits in beef cattle 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1. UNDERSTANDING RESIDUAL FEED INTAKE 

 

Koch et al., (1963) argued that a robust measure of feed efficiency should allow 

for the adjustment of feed intake for any of the ‘energy sinks’ present in various 

livestock production systems. For example, in beef production, growth is the 

major energy sink in growing cattle, maintenance of body weight is the major 

energy sink for mature cattle and reproduction is an additional energy sink in the 

breeding herd. Koch et al., (1963) therefore proposed residual feed intake (RFI) or 

net feed intake as a measure of feed efficiency defined as the difference between 

an individual’s actual feed intake and its predicted feed intake. The predicted feed 

intake is estimated based on energy requirements for maintenance (body weight - 

BW) and weight gain (average daily gain – ADG). It is expected that individual 

animals will consume an amount of feed only enough to support maintenance of 

body weight and daily weight gain therefore the expected value for RFI is 0. RFI, 

therefore, is not correlated with body weight and average daily gain but is 

correlated with dry matter intake-DMI (Basarab et al., 2003). In beef cattle, 

animals which consume more feed than the amount predicted will have a positive 

value for RFI and are considered relatively inefficient while individuals that 

consume less-than-the-predicted amount of feed have a negative value for RFI 

and are considered more efficient (Herd and Arthur, 2009).  
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2.2. STATISTICAL COMPONENTS OF RFI 

 

The computation of RFI for an individual animal applies a multiple linear 

regression summarized by Crews (2005) as:  

𝑦 =  𝛽0 + 𝛽1(𝐴𝐷𝐺) + 𝛽2(𝐵𝑊) +  𝑅𝐹𝐼 

 

Where; y is daily dry matter feed intake (DMI)  

β0 is the regression intercept  

β1 is the partial regression of daily intake on average daily gain (ADG) 

β2 is the partial regression of daily intake on body weight (BW)   

 

From this equation, RFI is expected to be independent of ADG and BW but is 

expected to be positively correlated with DMI. Therefore, RFI will also change if 

ADG and/or BW change at a constant DMI, or if DMI changes at a constant BW 

and ADG. 

2.3. PHYSIOLOGICAL REGULATION OF RFI 

 

RFI measures whether the amount of feed an animal consumes is more or less 

than the predicted amount based on its body weight and average daily gain. 

Therefore variation in RFI between individuals can be explained by differences in 

the underlying biological processes that result in variation in energy utilization for 

maintenance and growth (Herd and Arthur, 2009). About 5 broad biological 

processes have been implicated in the variation in RFI including: feed intake, 
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digestion of feed, metabolism, physical activity and thermoregulation (Herd and 

Arthur, 2009). We review these processes and their roles in influencing RFI. 

 

2.3.1. Regulation of RFI by feed intake 

There are several factors that can affect feed intake and as a result may affect RFI. 

These include: 

Diet selection: Although ruminants consume a wide variety of feeds, some 

ruminant species are highly selective (Preston and Leng, 1987) and the preferred 

feed is not necessarily the abundant type in the pasture. When pastures are 

abundant, feed selection increases, but when less forage is available feed selection 

is reduced (Preston and Leng, 1987). Sheep and goats tend to be more selective 

than cattle and other larger ruminants (Langlands and Sanson, 1976). In addition, 

there are also considerable differences in diet selection between individuals within 

the same herd, which may result in differences in feed intake (Arnold, 1963). 

Therefore it is clear that differences in diet selection between individuals may 

affect their feed intake and may result in differences in residual feed intake. 

Acetate clearance: Ruminants match the rate of absorption of volatile fatty acids 

from the rumen with their utilization in metabolism. Weston (1966) showed that 

acetate clearance was highly correlated with the intake of Lucerne in sheep. The 

clearance rate of acetate is affected by the balance of nutrients available, 

particularly the ratio of acetate/propionate and acetate/amino acids. Even if 

acetate clearance is only associative and not causative it still appears to be ‘the 
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metabolic parameter which is most highly correlated with feed intake’ (Weston, 

1966). 

Appetite: The complex brain networks that regulate appetite may either result in 

short term or long term effects. Short term effects occur in episodes causing bouts 

of eating while long term effects arise from tissue stores of fat, which exert a slow 

but consistent pressure on appetite (Halford and Blundell, 2000). The short term 

effects on appetite result in a unique feeding behavior for each individual (Halford 

and Blundell, 2000) and the relationship between RFI and these bouts of feeding 

behavior was reported previously by Golden et al., (2008) who showed that more 

efficient steers (low RFI) ate less feed and had fewer bouts of feeding than 

inefficient steers. Richardson (2003) also observed that steers with low RFI had 

shorter feeding periods than inefficient steers. Neuropeptide Y (NPY) is one of the 

neurotransmitters associated with appetite regulation in humans and animals 

(Sherman et al., 2008). Three SNPs in the NPY gene were significantly associated 

with body weight and growth rate in cattle and showed a trend of association with 

RFI (P = 0.10) (Sherman et al., 2008). If the SNPs affect the functions of NPY, 

then they may be influencing RFI by altering the appetite and feed intake. 

Cholecystokinin (CCK) is a hormone released in the proximal small intestine and 

may possibly mediate the early phase of satiety. CCK reduces meal size and also 

suppresses hunger before a meal (Halford and Blundell, 2000). The association 

between cholecystokinin and appetite was observed in several species of animals 

including dairy cattle (Choi et al., 2000), pigs (Clutter et al., 1998) and rats 

(Reidelberger et al., 2003) and may affect RFI by altering feed intake.  
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Glucagon-like peptide (GLP)-1 is a hormone released from the gut into the blood 

stream in response to intestinal nutrients such as carbohydrates, fats and proteins. 

GLP-1 causes increased insulin secretion, decreased glucagon secretion, increased 

sensitivity to insulin, increased insulin gene expression, inhibited gastric secretion 

of hydrochloric acid, reduced gastric emptying and decreased food intake (Holst, 

2007). These effects if replicated in beef cattle may have profound effects on feed 

intake and therefore affect RFI. 

Peptide YY3-36 (PYY) is a protein secreted from endocrine cells in intestines and 

is similar in structure to neuropeptide Y (NPY). Like NPY, PYY was also shown 

to reduce food intake and reduce the rate of weight gain in humans and mice 

(Batterham et al., 2002). PYY therefore may affect RFI by influencing feed intake 

and weight gain. 

Amylin is a hormone secreted from the pancreas and also has an effect on both 

food intake and body weight (Reda et al., 2002). In mice and rats, administration 

of amylin resulted in reduced food intake, body weight and body mass (Rushing 

et al., 2001). These effects may eventually influence RFI. 

Leptin is involved in long term regulation of appetite and occurs through a signal 

sent to the brain about the state of the adipose tissue (Weigle, 1994). Other similar 

signals believed to circulate in the blood and indicating the state of tissue energy 

include satietin, adipsin, tumour-necrosing factor (TNF) or cachectin, adiponectin, 

resistin and some cytokines (Halford and Blundell, 2000). There is some evidence 

that leptin interacts with NPY and with the melanocortin system to regulate 

appetite, body weight and body composition (Maffei et al., 1995). Significant 
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association between RFI and serum levels of leptin in beef steers have already 

been reported (Nkrumah et al., 2005; Kelly et al., 2010 and Hoque et al., 2009).  

Ghrelin (GHRL) stimulates feeding behavior, rather than inhibiting it (Inui et al., 

2004). GHRL is a hormone produced in the stomach and pancreas and is a potent 

stimulator of growth hormone (Inui et al., 2004). It stimulates feed intake and 

therefore may be associated with RFI. Sherman et al., (2008) reported significant 

association between a SNP in the Ghrelin gene with RFI and suggested that the 

role of GHRL in feed efficiency was likely in determining whether fat or 

carbohydrates would be used as the metabolic substrate for maintenance of energy 

balance as seen in GHRL knockout mice (Wortley et al., 2004). GHRL has also 

been shown to interact with NPY and play important roles in the stimulation of 

appetite and feeding activity (Jarkovska et al., 2004).  

Insulin levels are positively correlated with adipose tissue mass within the body 

and may implicate insulin in the long term regulation of appetite in a similar 

cascade to leptin. Insulin stops the use of fat as an energy source by inhibiting the 

release of glucagon while glucagon causes the liver to convert stored 

glycogen into glucose (Halford and Blundell, 2000). Therefore glucagon and 

insulin play an antagonistic role in the feedback system that keeps blood glucose 

levels stable. Glucagon also enhances the body’s physiological response to stress 

by increasing energy expenditure (Suzuki et al., 2012). Richardson et al., (2004) 

reported significant correlations between plasma insulin levels and RFI in beef 

cattle. However, contradicting results were reported by Kolath et al., (2006) who 

showed that although plasma glucose concentration was greater in high RFI steers 
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than in the low RFI steers, plasma insulin concentration was not different between 

the high RFI and low RFI groups. 

2.3.2. Regulation of RFI by digestion and absorption of nutrients 

The association between digestibility of dry matter and feed efficiency measures 

has been reported by Richardson et al., (1996), who indicated that young bulls and 

heifers that were ranked low or high for RFI differed in their ability to digest dry 

matter by about 1%. Digestibility was also correlated with RFI in cattle at a 

magnitude of r = –0.44 indicating that low RFI (more efficient) steers were better 

able to digest feed than high RFI steers (Richarson and Herd, 2004). Significant 

association was also reported between RFI and rumen microbial composition 

(Hernandez-Sanabria et al., 2012), which may indicate the role of rumen microbes 

in influencing feed digestibility. (The role of microbes in regulation of RFI may 

also relate to the availability of amino acids (microbial protein) for absorption). 

RFI can also be affected by feed absorption. There is evidence that animals that 

differ in RFI also differ in the appearance of amino acids at the portal vein (Lush 

et al., 1991).  

Together, these results indicate that RFI may be associated with differences in 

both digestibility of feed ingested and the absorption rate of the nutrients. They 

indicate possible biological mechanism that can cause variation in feed efficiency 

even before the nutrients reach the tissues for metabolism. 

2.3.3. Regulation of RFI by nutrient metabolism 

The various metabolic processes occurring in the body account for over 40% of 

the phenotypic variation in RFI (Herd and Arthur, 2009). Most of the energy-
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producing metabolic processes occur in the mitochondria. However, there are 

contradicting results reported in relation to the effect of mitochondrial function on 

RFI. For example, Kolath et al., (2006) observed no difference in the overall 

mitochondrial function between steers having low or high RFI values. However, 

there was significant association between RFI and the rate of mitochondrial 

respiration such that individuals with low RFI had increased rate of respiration 

and the flux of electrons through the electron transport chain was impaired in the 

high RFI steers (Kolath et al., 2006). Several other studies have attempted to 

establish association between mitochondrial enzymes and RFI; Ramos et al., 

(2011) reported significant associations between the mitochondrial complex 1 

protein and RFI. The NADH dehydrogenase gene and the cytochrome gene 

complex have also been found to be significantly associated with variation in RFI 

(Zulkifli et al., 2009) though the exact mechanism is not established. In a separate 

study, the expression profile of mitochondrial genes from steers differing in RFI 

was used to identify genes that would be associated with RFI (Kelly et al., 2010) 

using real-time PCR to quantify mRNA transcripts of 17 genes associated with 

cellular energetic efficiency. The expression of UCP3 (mitochondrial uncoupling 

protein 3) was up-regulated about 2.2 fold in the high RFI group compared to the 

low RFI group. Other mRNA transcripts that were up-regulated in the low RFI 

steers were PGC-1 (PPAR-Gamma Coactivator 1) and COX II (cyclooxygenase-

2). Several biological processes related to metabolism have been reported to be 

associated with RFI including amino acid metabolism (Herd and Arthur, 2009), 
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methane and nitrogen metabolism (Nkrumah et al., 2006) and glucose and nucleic 

acid metabolism.  

The effect of metabolism on RFI can therefore be pursued in two directions; those 

metabolic processes that result in production of energy such as glycolysis, TCA 

cycle and oxidative phosphorylation (catabolism), and those metabolic processes 

that consume energy such as anabolism, production, thermoregulation and 

physical activity.  

2.3.4. Regulation of RFI by energy expenditure 

 

2.3.4.1. Production and reproduction 

In animals, most of the energy is required for maintenance and production. In beef 

cattle, production encompasses tissue growth, and to a lesser extent growth of 

fetus and milk production in the breeding herd. Tissue growth is regarded as fat 

and protein synthesis using substrates including acetate, butyric acid, amino acids 

and glucose (Preston and Leng, 1987). Individual animals vary in their efficiency 

of depositing fat and protein (Herd and Arthur, 2009) explaining why associations 

between RFI and body composition have been reported (Basarab et al., 2003). 

Studies indicate that steers with low RFI have slightly reduced average back fat 

and inter-muscular fat than steers with high RFI and that steers with low RFI tend 

to have higher lean meat yield (Basarab et al., 2003). Metabolite analysis 

indicated that blood urea which is negatively correlated with protein content in 

bulls was positively correlated with RFI (Herd and Arthur, 2009). In a separate 

study, urea was negatively correlated with lean growth and positively correlated 
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with average back fat (Clarke et al., 1996). Creatinine, which is positively 

associated with muscle mass (Clarke et al., 1996) was negatively associated with 

RFI (Richardson et al., 2004) 

The relationship between RFI and reproductive performance has had inconsistent 

results. Schaffer et al., (2010) showed that steers with low RFI took longer to 

reach puberty than steers with high RFI but showed no correlation with other 

reproductive measures including conception rates and calving interval. In a 

breeding herd, low RFI bulls had significantly lower individual progressive sperm 

motility than high RFI bulls (Wang et al., 2012). However, Wang et al., (2012) 

showed that using a multiple sire natural mating system, the mean number of 

progeny per sire was significantly higher in low RFI than in high RFI bulls 

2.3.4.2. Thermoregulation 

Evaporative heat loss through the lungs and nasal turbinates is the principle 

mechanism of heat loss in ruminants (Blaxter, 1962). RFI has been associated 

with heat loss traits in beef cattle with Montanholi et al., (2010) reporting that 

more efficient steers had lower temperatures in the snout and cheeks in 

comparison to less efficient steers but both groups had similar temperatures in the 

other body locations tested. Feed intake (which is correlated with RFI) was also 

shown to be correlated with air temperature, humidity, solar radiation and wind 

speed (Mujibi et al., 2010), which may relate indirectly with thermoregulation. 

2.3.4.3. Activity 

Energy expenditure may be the root cause of the regulation of appetite by physical 

activity; however, studies reported that acute exercise caused little or no 
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immediate effect on levels of hunger or daily energy intake (Halford and Blundell, 

2000). The relationship between RFI and physical activity has been reported by 

several authors reviewed by Herd and Arthur (2009). Luiting et al., (1991) 

concluded that 80% of the genetic difference in RFI between lines of chickens 

divergent for RFI could be related to a difference in physical activity. The 

measures of activity that have been studied relate to feeding behavior such as 

frequency of feeding and duration of feeding. Durunna et al., (2011) reported that 

steers with high RFI and steers with low RFI also differed in their feeding 

frequency and feed duration.  In addition, difference in activity was also reported 

by Richardson et al., (1996) showing a phenotypic correlation of 0.32 for RFI 

with daily pedometer count indicating that steers with high RFI had higher 

pedometer counts (locomotion) than steers with low RFI.  

2.3.4.4. Immune and stress response 

The resource allocation theory defined by Beilharz et al., (1993) states that in an 

environmentally limiting situation, animals have limited resources, and when 

resources are used by a certain biological process they are no longer available for 

other processes. Ideally, animals have to allocate their energy resources to the 

biological processes that will improve their fitness. Immune and stress responses 

are energy consuming processes (Deerenberg et al., 2000) and may be influenced 

by these energy trade-offs. Theoretically, it may be thought that selecting animals 

for RFI will result in animals that prioritize their energy to production traits at the 

cost of immune responses (Van Eerden et al., 2004). Conflicting results have been 

reported on this topic; Van Eerden et al., (2004) reported no change on measures 
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of humoral immune response in chicken with different RFI values. However, 

Galal et al., (2008) showed a positive correlation between cell mediated immune 

responses such as lymphocyte percentage and RFI. They showed that animals 

with low RFI had reduced lymphocyte percentage compared to high RFI animals. 

In beef cattle with divergent RFI values, white blood cell profiles did not differ 

between the two groups (Gomes et al., 2011). Differences in response to stress in 

steers selected for divergent RFI were reported (Richardson et al., 2004) showing 

that plasma cortisol levels were higher in high RFI steers than in low RFI steers 

and implied that high RFI steers may be more susceptible to stress than the low 

RFI steers. Stress being an energy consuming process may imply that steers with 

high RFI spend more energy to initiate these stress responses than their 

counterparts with low RFI. 

 

2.4. UNDERSTANDING CARCASS QUALITY TRAITS 

2.4.1. Types of Carcass data 

 

Carcass quality data obtained from either actual measurements or estimated by 

ultrasound can be described in five categories: 

a. Quality grade or the corresponding marbling score 

b. Yield grade, whose components include carcass weight, fat thickness, 

percentage kidney, pelvic and heart fat, and ribeye area. 

c. Carcass weight 

d. Ribeye area 
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e. Fat (backfat) thickness  

a. Quality grade 

A carcass’ quality grade is determined by the amount of marbling on the cut 

surface of the ribeye between the 12
th

 and 13
th

 ribs, such that increased marbling 

results in higher quality grade.  

b. Yield grade 

Yield grade estimates the amount of closely trimmed retail cuts of meat that a 

carcass is likely to yield. Yield grade, as a proportion of lean meat is classified as: 

1 = ≥59%; 2 = 54 to 58%; and 3 = <54% (Basarab et al., 2003).  

c. Carcass weight 

Carcass weight is recorded just before the carcass enters the chilling room 

therefore it is sometimes referred to as hot carcass weight. It reflects the 

approximate size of the cuts of meat that may be expected after further processing 

of the carcass for example heavier carcasses result in larger ribeyes.  

d. Ribeye area 

This area is measured as the surface area on the cut surface of the ribeye muscle 

between the 12
th

 and 13
th

 ribs. The ribeye area is used to calculate the yield grade 

such that large carcasses have larger ribeyes.  

e. Fat (backfat) thickness 
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Average backfat thickness is measured as the amount of fat opposite the ribeye at 

the cut surface between the 12
th

 and 13
th

 ribs. External fat is generally considered 

as a waste of product but some fat is needed to prevent the carcass from cooling 

too fast, it protects the meat from drying and enhances the tenderization process. 

2.5. Regulation of traits at the molecular level 

 

Phenotypes are regulated at multiple levels as shown in figure 2.1. Variations 

arising at any level of regulation may subsequently influence the variation in the 

respective phenotype (Banks et al., 2000). Distinct levels also interact with other 

levels so that the phenotype is shaped not only by the individual levels of 

regulation but also the effects arising from the interaction between the levels. 

Figure 2.1 summarizes these levels and the interactions existing between them. 
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Figure 2.1: Levels of regulation of gene expression starting from the genomic 

levels to the products of metabolic reactions at the metabolites levels. Distinct 

levels of regulation also interact with other levels eventually shaping the variation 

observed in the traits. 
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2.6. SELECTION FOR RFI 

 

Traits that are candidates for selection must have specific properties, one of which 

is that the trait should have considerable phenotypic variation. To select for RFI, 

whose component traits are feed intake and growth, considerable phenotypic 

variation must be demonstrated in daily feed intake or dry matter intake and/or 

growth rate/average daily gain. Several studies have reported considerable 

phenotypic variation in feed intake (Arthur et al., 2001; Basarab et al., 2003; 

Crews et al., 2006) therefore providing the opportunity for selection for RFI.  

The presence of phenotypic variation alone is not sufficient; the observed 

differences between animals must have an underlying genetic basis that is partly 

due to additive genetic effects. RFI has a moderate heritability ranging from 0.16 

to 0.58 (Koch et al., 1963; Arthur et al., 2001; Crews et al., 2003; Shenkel et al., 

2004). This indicates that benefits of improved RFI can be passed from parents to 

their offspring.  

 Lastly, traits that are candidates for selection must be assessed for their genetic 

correlations with other productivity traits. For example, RFI is strongly correlated 

with feed conversion ratio (FCR) (0.70, Herd and Bishop, 2000; 0.85, Arthur et 

al., 2001). 

2.6.1. Response to selection 

 

The response to selection per year can be estimated using the formula:  

𝑅𝑦𝑒𝑎𝑟 =  
𝑖𝑚𝑎𝑙𝑒 + 𝑖𝑓𝑒𝑚𝑎𝑙𝑒

𝐿𝑚𝑎𝑙𝑒 + 𝐿𝑓𝑒𝑚𝑎𝑙𝑒
 𝜎𝑝ℎ2 
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Where; 

 𝑖𝑚𝑎𝑙𝑒 + 𝑖𝑓𝑒𝑚𝑎𝑙𝑒 is the selection intensity associated with males and females 

respectively. 

 𝐿𝑚𝑎𝑙𝑒 + 𝐿𝑓𝑒𝑚𝑎𝑙𝑒 is the generation interval for males and females respectively 

𝜎𝑝 is the phenotypic standard deviation 

ℎ2 is the heritability of the trait. 

A detailed discussion of this topic is available at Falconer and Mackay (1996).  

In summary, the selection intensity (i) represents the number of standard deviation 

units that selected parents are superior to the mean of the general population. It is 

obtained from selection intensity tables when the proportion of selected animals is 

known. When few animals are selected, the proportion of selected animals to the 

entire population will be low and the selection intensity will be high. The 

selection intensities between males and females are different because most beef 

production systems consist of few bulls responsible for mating several females; 

therefore the selection intensity for males is higher than that for females.  

The generation interval (L) is the average age of parents when progeny are born or 

the average time between birth of parents and birth of progeny. L varies widely 

across species. However, it can be altered within species by changing the age at 

which animals are selected and bred. The generation interval is also calculated 

separately for males and females and then averaged.  
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𝜎𝑝 is the standard deviation of the trait, and from the equation, the response to 

selection is higher if when 𝜎𝑝 is higher. 

ℎ2 is the heritability of the trait, and the higher the heritability, the higher the 

response to selection. Heritability is estimated by the formula VA/VP where VA is 

the additive genetic variance and VP is the phenotypic variance; therefore 

heritability is the ratio of additive genetic variance or variance of breeding value 

to the overall or phenotypic variance (Hill, 2010). 

2.6.2. Approaches to selection 

 

The traditional selection practiced by most breeders is based on the quantitative 

genetic approach (Dekkers and Hospital, 2002). This approach relies on the 

availability of phenotype data, the heritability of the traits and their genetic 

correlations to select superior individuals and to predict the performance of the 

progeny. The quantitative genetics approach assumes that the genetic architecture 

and number of gene affecting the trait are unknown (Dekkers and Hospital, 2002). 

It has several limitations because phenotypes are also influenced by the 

environment making them imperfect predictors of the breeding value of an 

individual. In some cases, phenotypes are only observable in one gender and not 

the other such as milk yield observed in lactating cows but not in bulls. In 

addition, some phenotypes cannot be observed before the time when selection 

decisions must be made such as carcass traits in beef cattle, which can only be 

observed when the individual has already been sacrificed and can no longer be 

used for breeding. Lastly, phenotypic selection is not effective in resolving 
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negative genetic correlations between traits and/or genes such as the negative 

correlations caused by pleiotropy or epistasis (Dekkers and Hospital, 2002). 

However, despite the assumptions in the quantitative genetics approach, 

tremendous genetic improvement has been achieved in livestock and crop 

production exemplified by milk production, broiler body weight and yield of corn 

(Dekkers and Hospital, 2002)  

More recently, to overcome the limitations of phenotypic selection, molecular 

markers have gained importance in the evaluation and ranking of candidates for 

selection. Molecular markers can also be used to understand gene functions and 

exploit the information on the genes themselves and the relationship between 

gene function and phenotypic variation. The use of molecular markers in selection 

relies on the ability to determine the genotypes of individuals for the mutations 

associated with the traits of interest (Dekkers and Hospital, 2002). The mutations 

fall into two broad types of markers: indirect markers and causal mutations. 

Indirect markers are presumed to be non-functional genetic markers that are 

linked to QTL while causal mutations are located within the genes that directly 

affect the trait (Dekkers and Hospital, 2002). The causal mutations are more 

difficult to find and prove and therefore only a few examples are available as 

reported by Andersson (2001). Several other mutations associated with 

economically important traits in livestock have been reported and reviewed by 

Sellner et al., (2007), Goddard and Hayes (2009) and Meuwissen et al., (2013). 

The indirect markers are more abundant in the genome and their linkage with 

QTL can be established by evidence of empirical associations of marker 
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genotypes with trait phenotype (Dekkers and Hospital, 2002). Two approaches are 

used to identify indirect markers; the gene association analysis approach and the 

classical QTL mapping (Andersson, 2001). The gene association analysis can be 

more targeted and may even identify the causal mutations or markers that are very 

tightly linked to the causal gene. It utilizes unstructured natural populations that 

have undergone some degree of random mating (Dekkers and Hospital, 2002). On 

the other hand, classical QTL mapping utilizes specialized populations such as F2 

crosses. This approach identifies chromosomal regions associated with the trait. 

These regions average 10-20cM but the exact position of the QTL or the 

underlying QTN is unknown and difficult to identify (Dekkers and Hospital, 

2002). These approaches are discussed further in Chapter 3. 

The use of genetic markers in selection programs relies on the ability to identify 

the genotypes of individuals for the mutations (direct or indirect markers). This 

information is then used to develop a molecular score that can be used for 

selection. 

A significant amount of research has been conducted to determine the genetic and 

molecular basis of RFI and several genetic association studies have resulted in the 

identification of several SNPs associated with RFI (Moore et al., 2006; Barendse 

et al., 2007; Nkrumah et al., 2007; Sherman et al., 2008, 2009; Bolormaa et al., 

2011; Snelling et al., 2011; Elzo et al., 2012). In addition to these genes, levels of 

IGF-1 in blood were reported to be associated with increased feed efficiency 

(Bishop et al., 1989; Stick et al., 1998). 
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Genome-wide association analyses for RFI have been performed (Nkrumah et al., 

2007). Eight QTLs associated with RFI were identified in 8 chromosomes 

including 1, 5, 7, 8, 12, 16, 17 and 26. Suggestive QTLs were identified in 

chromosomes 2, 14, 18, 19, 20, 21, 24, 28 and 29. 

There are specific examples of mutations associated with variation in RFI: 

A C/G mutation at position 2141 in exon 5 of the growth hormone leading to a 

leucine/valine change in the amino acids sequence at position 127 was reported to 

be associated with feed efficiency and the GG genotype was associated with 

lower ADG, BW, meat deposition and low lean yield (Chrenek et al., 1998). 

Several polymorphisms located in the leptin gene have also been shown to be 

associated with feed efficiency: C/T polymorphism at position 207; T/C at 

position 305; C/T at position 528; and C/G at position 1756 (Buchanan et al., 

2002). Some polymorphisms located in the promoter region of the leptin gene 

were also shown to be associated with feed efficiency (Nkrumah et al., 2005). The 

SNPs in the promoter region were also significantly (P < 0.05) associated with dry 

matter intake, backfat thickness, marbling score and rib eye area.  

An intronic SNP located in the growth hormone receptor gene (GHR) was shown 

to be associated with RFI (Sherman et al., 2008). Sherman et al., (2008) also 

identified some SNPs that showed a trend of association with RFI. These included 

SNPs located in the ghrelin (GHRL) gene and the neuropeptide Y (NPY) gene. 
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Eight markers located within and between the NCAPG and LOC540095 genes on 

chromosome 6 were shown to be significantly associated with feed intake and 

average daily gain in beef cattle (Lindholm-Perry et al., 2010) 

A detailed analysis of bovine chromosome 14 was performed to identify genes 

associated with RFI in beef cattle (Lindholm-Perry et al., 2012). The authors 

identified 5 markers located downstream of TMEM68, and between TMEM68 

and the neighboring XKR4 gene that were predictive for feed intake and gain.  

2.6.3. Commercialized selection for RFI 

There are two commercialized tests available for testing the RFI values in cattle. 

Igenity®-feed efficiency offers analyses to predict RFI in Bos indicus (Igenity 

feed efficiency Indicus) and Bos taurus (Igenity feed efficiency Taurus) breeds of 

cattle. The analysis from Igenity is reported as a series of scores on a scale of 1 – 

10 with 1 corresponding to less intake and 10 corresponding to high intake. 

Igenity believes that these analyses will help producers to identify breeding cattle 

that will be more efficient and will also produce more efficient offspring while 

maintaining a good body condition score and without negatively affecting their 

fertility, (obtained from the Igenity website; 

http://www.igenity.com/beef/profile/FeedEfficiency.aspx). An independent 

validation analysis showed that Igenity feed efficiency Indicus was not predictive 

for RFI in the Brahman breed (NBCEC, 2011). During the validation analysis, the 

Igenity feed efficiency Taurus test was shown to be inconsistently associated with 

RFI in Bos taurus breeds of cattle. The authors found significant associations 
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between this test and RFI in two populations of Bos taurus cattle but the 

association was not significant in four other populations of Bos taurus cattle 

(NBCEC, 2011). 

Pfizer GeneSTAR –feed efficiency offers an analysis for feed efficiency in cattle. 

A validation test showed that this test successfully predicted feed efficiency in 

North American Bos taurus cattle but not in Bos indicus influenced cattle 

(NBCEC, 2011).  

The results obtained by the NBCEC indicated that the available commercialized 

markers are population specific and will not result to similar genetic progress 

across populations. 

2.7. CONCLUSION 

 

Traditionally, selection of beef cattle for RFI was based on phenotypic values 

without a clear understanding of the underlying molecular mechanisms 

influencing the trait. This approach is expensive and takes a long time to obtain 

the RFI values for each individual. The advent of genetic markers has the 

potential to improve the accuracy of selection and to reduce the generation 

interval, both of which would result in increased response to selection. Several 

DNA variants have so far been shown to be associated with RFI and some DNA 

tests have been developed to test animals for feed efficiency. However, despite the 

DNA variants shown to be associated with RFI so far and the DNA test developed 

thereof, only a small portion of the variation in RFI has been accounted for by 

these variants and there has been frequent failure to reproduce the associations in 
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other populations of cattle. The candidate gene approach may offer an alternative 

and superior approach to discover DNA variants that will account for more 

variation in RFI, markers that may be significantly associated with RFI in 

different beef cattle breeds and populations.  
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PREFACE TO CHAPTER THREE 

 

Chapter 3 consists of a review paper published in Springer Science Reviews DOI: 

10.1007/s40362-013-0005-8 under the same title. This was a competition by 

Springer as part of a ‘brand new initiative aimed specifically at providing a high-

profile vehicle for outstanding early career researchers to showcase their 

emerging talent.’ I was nominated to submit this manuscript by my PhD 

supervisor Dr. Graham Plastow. 

This review describes the utilization of the systems biology approach in the 

analysis of quantitiative traits in animal science. Specifically, it details the 

processes utilized in the identification of genetic markers associated with 

economically important traits in animals. Then it is followed by assessing the 

interactions between genes and metabolites using biological networks.  
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CHAPTER THREE 

 

Complicated relationships: A review of biological interaction networks and 

pathways in animal science
1
 

3.1. INTRODUCTION 

 

Profits in any enterprise are defined as the difference between costs and returns. 

In livestock production, profits can be increased by reducing the costs of 

production (inputs) and/or by increasing the returns. Returns can be increased by 

increasing production and/or by increasing the price of the product. Considering 

the limited capacity to increase production, farmers may seek to emphasize 

quality so as to increase the price of the product.  

In most livestock production systems, the cost of feed is the largest single expense 

(input). It accounts for between 60- 70% of the total cost of production in beef 

cattle (Herd et al. 2003; Arthur et al. 2004), about 65% of total costs in pigs 

(Hoque et al. 2009) and approximately 70% in broilers (Aggrey et al. 2010). On 

the other hand, production traits (outputs) differ across different livestock 

production systems such as eggs and meat in poultry production, milk in dairy 

production and meat in beef cattle and pig production systems. These production 

traits influence the economic success in livestock production, which relies on 

                                                 
1 
Published in Springer Science Reviews, 2013. 
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producing products of high economic value at the lowest cost possible (MacNeil 

et al. 1997). 

Most of the traits that are of economic importance to livestock producers are 

quantitative in nature; they are influenced by multiple genes, each causing a small 

effect on the trait. In addition, most economically important traits are correlated. 

Therefore selecting individuals for one trait could impact upon another trait.  

In the past, selection of individuals for economically important traits was solely 

based on phenotypic measurements and statistical predictions using information 

collected from relatives (Dekkers and Hospital 2002). Although this strategy has 

had several successes, the advent of genetic markers for marker assisted selection 

has the potential to increase the accuracy of selection and reduce generation 

interval resulting in an increase in the response to selection (Snelling et al. 2012). 

Genetic markers are especially important when it is expensive to collect the 

required phenotypic data on the traits of interest, or in traits, such as carcass traits, 

which cannot be measured until the animal has been sacrificed making it 

unavailable for breeding.  

The growing need to use genetic markers for selecting animals for breeding has 

resulted in a surge in high throughput genomic techniques and the generation of 

large amounts of data on DNA polymorphisms and potential candidate genes 

(Reverter and Fortes 2012). However, despite the increase in DNA markers and 

candidate genes associated with several economically important traits, only a 

small proportion of the phenotypic variation in quantitative traits can be explained 
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by the genetic markers (Reverter and Fortes 2012). The amount of variation 

explained by DNA markers is even lower when the effects of the same markers 

are assessed in unrelated populations. This can be partly attributed to the nature of 

association between the DNA markers and the trait, which may either be 

statistical or functional. Statistical association is based on linkage disequilibrium 

(LD) between the marker and the causal DNA variant (Snelling et al. 2012). 

Statistical association indicates that the marker associated with the variation in the 

trait of interest may not be causing the phenotypic variation; however, it is 

inherited together with the unknown functional DNA variant more frequently than 

by random chance, that is; the marker is in LD with the functional DNA variant. 

Statistical associations are relatively more difficult to replicate across different 

populations (Snelling et al. 2012) possibly due to decay of LD resulting in 

different LD patterns between different populations especially populations 

separated by geographical isolation (Farnir et al. 2000). Functional association 

analysis, on the other hand, utilizes DNA markers with functional relevance to the 

biological mechanisms regulating a trait. As a result, these markers may be 

associated with a larger effect on the variation of the corresponding trait and 

because they do not rely necessarily on LD, they are expected to be reproducible 

across diverse populations offering more accurate and reproducible predictions of 

the levels of the trait even in untested populations (Snelling et al. 2012). For 

example, a functional variant observed in the MC4R gene has been shown to have 

consistent effects on pig growth and fat deposition traits across populations and 
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environments (Kim et al., 2000, Kim et al. 2004, Kim et al. 2006, Szyndler-Nedza 

et al. 2010)   

This missing heritability has been attributed to several factors reviewed in detail 

by Maher (2008) and Hill (2010). These factors include: 

• Statistical errors arising from the models including markers that are 

identified to be significantly associated with a trait when they are in fact false 

positives. 

• The contribution of many loci to the trait’s variation (Wang et al., 2012b). 

This is the infinitesimal model first described by Fisher (1918) indicating that 

quantitative traits are regulated by possibly an infinite number of genes each with 

a small effect on the trait (Bulmer, 1971). This concept was also illustrated by 

Nagamine et al. (2012) who developed an analytical approach to detect regions 

containing multiple alleles that individually contribute too little variance to be 

detectable by genome-wide association studies. 

• Transient epigenetic effects could contribute to heritability estimates from 

close relatives (Slatkin, 2009). 

• Interaction between DNA variants with differing effects on the same trait 

that may even cause diluting effects to each other. This is illustrated in animals by 

PRKAG3 (Ciobanu et al. 2004) and MC4R (Fan et al. 2009). 
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• Interaction between different DNA variants with differing effects on 

different traits (pleiotropy) though these were suggested to be rare (Wagner et al., 

2008). 

• Interaction between alleles at the same loci resulting to varying degrees of 

dominance effects which cannot be detected in the heritability of a trait.  

In this review, we discuss some of the approaches used to identify DNA markers 

associated with economically important traits. We also explore the use of 

biological networks in analyzing the interactions among candidate genes, DNA 

polymorphisms, metabolites and understanding the biological pathways involved 

in regulation of gene expression for productivity traits.  

3.2. ASSOCIATION ANALYSIS 

 

In biological sciences, association analysis refers to the process of finding 

variations in different boundaries of cellular processes or molecules and assessing 

their correlation with the variation in a trait. These boundaries are referred to as 

levels of constraints or control constraints (Strohman 2002) outlined in Figure 2.1. 

The molecules may be at the DNA level (marker genotypes) or at the level of 

metabolites (such as hormones and enzymes). The primary objective is 

association analysis is to develop markers (genetic, metabolic etc) that could be 

used to accurately predict the level of a trait without necessarily obtaining the 

phenotypic data on the trait.  
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There are two major approaches used to perform association analysis in animal 

sciences; the quantitative trail locus/loci (QTL) mapping approach and the 

candidate gene approach.  

3.2.1. The QTL mapping approach 

 

QTL mapping describes the approach used to identify chromosome regions 

associated with variation in quantitative traits. This approach assumes the actual 

genes and functional DNA variants associated with the trait are unknown and 

instead it identifies DNA markers that are in LD with the causative DNA variants 

(Hayes, 2007).  

QTL mapping can be classified as either family based (classical) or population 

based (association analysis). Classical QTL mapping relies on experimental 

populations of animals that are developed by breeding specific individuals or lines 

to maximize the LD in families. Family-wise LD decays through recombination 

after a few generations of random mating therefore it is not long term (Hayes 

2007). Alternatively, QTL mapping may be performed using naturally occurring 

populations and thereby exploit population-wise LD as shown in Evans et al. 

(2003). This approach differs from classical QTL mapping because population-

wise LD has undergone several recombination events resulting from random 

mating. Population-wise LD persists for a longer period across a larger number of 

generations than family-wise LD (Hayes 2007). A detailed review of QTL 

mapping was discussed by Hayes (2007). 
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3.2.2. The Candidate gene approach 

 

The candidate gene approach is a functional association approach, which assumes 

that a gene whose function is related to the physiology of the trait contains a 

polymorphism that causes variation in that trait (Hayes 2007). Unlike QTL 

mapping which identifies markers linked to the gene, the candidate gene approach 

identifies potential causative gene(s) that contain(s) DNA variant(s) associated 

with phenotypic variation in the trait of interest (Zhu and Zhao 2007).  

The candidate gene approach consists of four strategies; 

The comparative genomics strategy is used to identify candidate genes in 

particular species by comparing the structure and functions of candidate genes in 

other species assuming that genes may be functionally conserved or structurally 

homologous (Zhu and Zhao, 2007). This approach has been utilized in mouse 

models to identify putative genes that confer susceptibility to human diseases 

(Moore, 1999). In addition, the approach was also applied after the identification 

of the role of CAST gene in meat tenderness in cattle (Schenkel et al., 2006) to 

identify its role in influencing meat tenderness in other species such as sheep 

(Knight et al., 2012). The predictions are occasionally inefficient because of the 

biological differences among species due to the genetic heterogeneity and 

evolutionary differentiation (Zhu and Zhao, 2007). 

The position-dependent strategy utilizes physical linkage of genes in a QTL 

region, (Zhu and Zhao 2007). This strategy aims at known QTL regions with the 

genes located in their vicinity considered as candidates. Successful applications of 
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the position-dependent strategy have been reported in previous studies including 

the association between a missense mutation located in the DGAT1 gene and milk 

yield and composition in cattle (Grisart et al. 2002) and that in PRKAG3 gene 

with glycogen content in skeletal muscles in pigs (Milan et al. 2000 and Ciobanu 

et al. 2001). 

In addition, DNA polymorphisms located in the GDF8/MSTN gene were shown 

to be associated with carcass traits in sheep (Johnson et al. 2005), double 

muscling and racing performance in dogs (Mosher et al. 2007) and double 

muscling in cattle (McPherron and Lee 1997). Associations between haplotypes 

of the IGF1 gene with body size in dogs were reported by Sutter et al. (2007). The 

difficulty in this strategy is to prioritize the positional candidate genes to identify 

the genes with more functional relevance to the trait.  

The function-dependent strategy aims at identifying genes whose biological 

functions are related to the physiological processes causing variation in a trait. It 

could use gene expression profiles associated with the trait and/or information 

from gene knock-out and transgenic animals (Zhu and Zhao, 2007). The function 

dependent strategy was used by (among others) Rothschild et al. (1996) to 

identify the association between ESR gene and litter size in pigs. 

The last strategy is the combination strategy that may involve a combination of 

two or more of the three aforementioned strategies. For example the position-

dependent strategy could be combined with mRNA expression profiles to identify 

candidate genes associated with a trait as reported by Kelly et al. (2012). The 



55 | P a g e  

 

combination strategy was also used by Liu et al. (2001) to identify genes that 

confer resistance to Marek's disease among resistant and susceptible chickens, and 

by Schwerin et al. (2004) to identify functional candidate genes associated with 

mastitis in dairy cattle. Other studies that utilized the combination strategy include 

Ciobanu et al. 2001; to identify new alleles in the protein kinase adenosine 

monophosphate-activated gamma (3)-subunit gene and their association with low 

glycogen content in pig skeletal muscle resulting in improved meat quality and 

Ciobanu et al. 2004; to identify alleles in the CAST gene and their association 

with meat quality in pigs. Some additional mutations identified using the 

candidate gene approaches were reviewed by Andersson and Georges (2004).  

3.2.3. Metabolites as intermediate phenotypes in association analysis 

 

If the gene is considered as the start point and the phenotype (trait) is considered 

as the end point (fig 1), all the parameters that are involved in the development of 

the end point can be considered as intermediate phenotypes. However, certain 

conditions, as described by Kronenberg (2012), need to be met before the 

parameter can be considered as a suitable intermediate phenotype. The most 

important of these conditions is that the parameter should be as close to the end 

point as possible. The intermediate phenotype should also considerably decrease 

the heterogeneity of the end point phenotype, which dramatically increases the 

power to detect a gene influencing the intermediate phenotype. If the association 

between a gene and an intermediate phenotype is strong and the gene has a huge 

effect on the intermediate phenotype then we can be optimistic that the gene 

would also have a strong effect on the endpoint. If the effect is low, then we will 
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be warned in advance that the association with the endpoint may be even lower 

and therefore the gene may be of less relevance (Kronenberg 2012).  

Significant associations between genetic and metabolic markers and phenotypes 

have been reported; Weikard et al. (2010) reported significant association between 

mutations in the NCAPG and GDF8 genes and average daily gain in two 

independent populations of cattle. These authors also observed a significant 

association between the mutation in the NCAPG with plasma levels of carnitine, 

arginine and total dimethylarginine. These results indicate that the significant 

metabolites could be utilized as intermediate phenotypes linking average daily 

gain in cattle and the mutation in NCAPG gene. In a separate study, Pliakogiannis 

et al. (1993) reported significant association between serum carnitine levels and 

body weight and serum triglyceride levels in humans. If validated, the metabolites 

reported in these studies may have the potential to be used as intermediate 

phenotypes in selection of cattle for average daily gain and prediction of body 

weight in humans respectively. 

Therefore metabolites, as intermediate phenotypes, can be used as biomarkers to 

predict the levels of certain traits, where measuring the levels of the metabolite 

offers more convenience than measuring the phenotype. However, for these 

predictions to be highly accurate there should be high correlation between the 

phenotype and the levels of the metabolite(s). 

3.3. BIOLOGICAL NETWORKS 
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When several parameters such as DNA polymorphisms, genes and metabolites are 

associated with a trait, the level of the endpoint is no longer the sum of the 

individual effects; it is also determined by the modes of interactions between the 

parameters generally called biological networks (Hartwell et al. 1999).   

In biological networks a node defines the component molecule being analyzed; it 

could be a gene (gene network), a metabolite (metabolic network), a protein 

(protein network), RNA (RNA network) or regulatory networks (Barabasi et al. 

2011). The number of links to a node is defined as k or node's degree or 

connectivity and most nodes have multiple links. The highly connected nodes in a 

network are called hubs consisting of molecules having a major biological role 

and are expected to be older and more conserved across individuals and species 

(Barabasi et al. 2011). Molecules located at the periphery of the network 

(peripheral nodes) may play a major role on the specific trait of interest but do 

not have a big impact on other traits due to their low connectivity. It is 

hypothesized that mutations or deletions of genes at the hub will cause effects on 

multiple traits compared to mutations located in genes located away from the hub. 

Trait modules can be developed from the hypothesis that if a gene is involved in 

regulating a certain trait, the genes that interact with it will also be involved in 

that trait and the direction of interaction relates to the direction of regulation 

(Barabasi et al. 2011). An illustration of the features of biological networks is 

shown in figure 3.1. 
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Figure 3.1: General characteristics of a biological network with nodes (N), which 

may represent a gene or a metabolite in gene and metabolic networks respectively. 

The locations in the cell where the nodes exert their function are indicated such as 

plasma membrane (P), cytoplasm (C) or nucleus (NU). Interacting nodes are 

represented by links (L) whose direction indicates the flow of regulation. The 

level of connectivity (k) of a node is the number of links to that node and regions 

with highly connected nodes are called hubs (H). The different shapes of the 

nodes represent molecules belonging to different functional groups such as 

enzymes, regulatory proteins or receptors. 

There are three major types of biological networks in animal science; gene, 

metabolic and phenotypic networks 

3.3.1. Gene and metabolic networks 

 

Gene networks are a reconstruction of the biological processes that result into 

interactions between multiple genes (Drees et al. 2005). Metabolic networks 

consist of metabolites as the nodes and biochemical reactions transforming these 
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metabolites into each other (Pfeiffer et al. 2005). These biochemical processes 

usually utilize enzymes to convert substrates to products. The product of the 

reaction becomes the substrate for the subsequent step in the biochemical 

pathway. Therefore variations in the substrate may cause variation in the levels of 

products formed, resulting in metabolic interaction. Other metabolites may act as 

inhibitors or enhancers acting at specific steps along the biochemical pathways 

and also causing variation in the levels of products formed (Pfeiffer et al. 2005). A 

metabolic pathway therefore indicates all the possible interactions that can exist 

between several metabolites and using information on the pathway, one can 

determine whether the effect is a reduction or an increase in the levels of the 

product. 

3.3.2. Phenotypic networks 

 

Phenotypic networks are characterized by phenotypes as nodes and the links 

represent biological processes and molecular relationships that are common 

between the interacting traits (Barabasi et al. 2011). Phenotypic networks can 

therefore be inferred using correlations between individual traits. However, 

although phenotypic correlation matrices indicate the interactions which can be 

used to infer the networks, they do not indicate the biological processes that cause 

the interactions. Phenotypic networks have been used more extensively in human 

disease studies to develop the ‘human diseasome’ (Goh et al. 2007). Although no 

phenotypic network has been constructed for economically important traits in 

livestock, uncovering links between traits would help to understand how traits that 

phenotypically appear different may be linked at the molecular level. These 
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networks may be used to predict the effects of selecting animals for one trait on 

the other linked traits. This technique therefore offers new approaches to 

developing complex animal breeding programs and the economic weights used 

for various traits when developing selection indices.  

3.3.3. Analysis and manipulation of biological networks 

 

Biological networks can be reconstructed using various data sets including lists of 

genes or metabolites from association studies, results from gene expression 

studies or matrices consisting of phenotypic correlations. Programs such as IPA 

(Ingenuity systems) can reconstruct networks using lists of genes or metabolites 

while programs such as GenePath (Zupan et al. 2003) infer pathways from gene 

expression data and Vector PathBlazer (Reshetnikov et al. 2003) reconstructs the 

networks from a combination of information from different databases.  

There are several approaches to the analysis of biological networks including 

visualization (Junker and Schreiber 2008). Tools such as Pathway Editor (Sorokin 

2006) can be used to manually create visualizations while programs such as 

Pathway Studio (Nikitin et al. 2003), PathwayFinder (Yao et al. 2004) and 

PubGene (Jenssen et al. 2001) use information in databases to build and create 

visualization of the pathways. The layout of the biological network is usually 

automated by the program (Zoubarev 2009). However, the automated layout may 

lack specific biological information such as sub-cellular localization of the 

respective gene in the cell (as shown in figure 3.1). In IPA, (and possibly other 



61 | P a g e  

 

programs) the user can customize the information required in the network and its 

layout. 

Using Pathway Studio (Nikitin et al. 2003) the user can interactively expand 

specific molecules and complexes to show specific regions of the network more 

clearly. Some programs such as IPA (Ingenuity Systems) assign different shapes 

for the nodes which represent different molecule classes such that the shape 

representing an enzyme will be different from the shape representing a receptor. 

Comparative analysis of the topology of a biological network can aid in 

identifying the underlying biological functions associated with the trait. For 

example if networks were reconstructed for different animal species, the user can 

use PathBlast (Kelley et al. 2004) to identify network differences and the 

biological functions associated with them.  

Osprey (Breitkreutz et al. 2003) is a program that can superimpose a network on 

top of another to identify similarities and differences between them (Zoubarev 

2009). Biological networks can also be filtered so as to visualize only specific 

nodes or links (Zoubarev 2009) 

In programs such as IPA (Ingenuity Systems) a list of biological pathways will be 

created with a corresponding significance value (-Log P-value) for each pathway 

and compared against a threshold to identify the biological pathways significantly 

associated with the phenotype in study. A detailed analysis of each pathway can 

be obtained in the canonical pathway analysis section within the program, which 
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is a database of biochemical pathways, involving genes, proteins or metabolites 

(Ingenuity Knowledgebase).  

By using these analysis tools, the nature of interactions existing between 

molecules in the nodes of any biological network and the biological processes 

underlying certain traits can be identified. 

3.3.4. Examples of biological networks in animal science 

 

The advent of high throughput genotyping and sequencing techniques and the 

completion of whole genome sequencing in several animal species including 

cattle (Elsik et al. 2009), pig (Groenen et al. 2012) and chicken (Hillier et al. 

2004) have led to a rapid increase in molecular data and the discovery of several 

genes (Marinus et al. 2011; Reverter and Fortes 2012). This genomic revolution 

has also provided tools to investigate the interactions among genes and their 

association with phenotypes of economic importance in livestock production. 

Once discovered, the genes, networks and biological processes will provide a 

more complete and accurate understanding of the respective traits and could be 

used to make predictions of complex traits when phenotypic values are 

unavailable (Marinus et al. 2011).  

a. Cattle 

Productivity in cattle relies on the efficiency of feed utilization (input) and the 

quality and quantity of production. The economically important traits depend on 

the production system such as average daily gain and meat quality in beef and pig 

operations, milk quantity and quality and reproductive traits in dairy operations, 
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reproductive traits in cow-calf operations and fiber in wool-sheep and alpaca 

operations. Other traits of importance include resistance or susceptibility to 

diseases and fertility.  

A gene network containing 3,159 genes associated with 22 measures related to 

puberty, fertility, growth and body composition in beef cattle heifers was 

reconstructed by Fortes et al. (2010). Among other benefits, this study showed 

that the gene network approach captured more information than analyses that 

utilize LD only. This study was followed up with the analysis of gene networks 

associated with ten growth and fertility traits in Brangus heifers (Fortes et al. 

2012). These authors reported the importance of genes involved in biological 

processes such as axon guidance (a pathway known to influence release of 

LHRH), regulation of cellular localization, regulation of neurotransmitter 

secretion and regulation of membrane potential. In addition, the authors identified 

5 transcription factors that were located as hubs in the network indicating that 

their regulatory role may impact the entire network. 

Jiang et al. (2009) described a candidate gene association and gene network 

analysis for 19 traits related to carcass quality and eating quality in Wagyu X 

Limousin crosses. These traits included phenotypic measurements for carcass 

weight, carcass rib eye area, subcutaneous fat, pelvic and heart fat and marbling, 

and taste panel measurements for tenderness, juiciness and flavor. These traits 

were generally classified into three categories; carcass measurements, eating 

quality and fatty acid composition. They identified 10 genes associated with 

carcass measurements, 7 genes associated with eating quality and 5 genes 
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associated with fatty acid composition. Through gene network analysis, the 

authors reported that the three classes of phenotypes did not share a lot of gene 

networks indicating a high degree of genetic independence between them. 

Therefore, the authors concluded that marker assisted selection to improve one 

category of these traits would not interfere with the improvement of another 

category.  

Seo and Lewin (2009) set out to create a cattle specific metabolic pathway 

database using the MetaCyc database (Caspi et al. 2006) and the PathwayTools 

software (Karp et al. 2002). Using comparative analysis of metabolic pathways, 

the authors revealed the absence of mammalian genes for 22 metabolic enzymes 

whose activity was reported in the literature. For example the cattle orthologs of 

human genes ECGF1, CERK, FAAH2, ALG12 and EARS2 were not identified. 

This may have resulted from the fact that the generated metabolic network highly 

depends on the primary genome annotation (Notebaart et al. 2006), which is 

heavily dependent on sequence homology to human and mouse (Curwen et al. 

2004).   

Hudson et al (2009) proposed a new algorithm to correctly identify the gene 

containing causal mutation with microarray data using bovine myostatin mutants. 

This approach identified the causal mutation by globally contrasting co-

expression network dynamics. The authors used the differential wiring method to 

compare RNA expression levels at several developmental stages and contrasted 

them between the Wagyu and Piedmontese phenotypic differences. They 

developed a correlation expression network to identify those nodes in the network 
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whose links with other nodes changed significantly between the two breeds and 

termed these as differential wiring. Then using expression levels for the genes and 

the level of differential wiring, they developed an algorithm that defined a 

regulatory impact factor such that genes that were highly expressed and had high 

differential wiring were defined to have a high regulatory impact factor. They 

further propose that this approach can be applied to other ‘omics data because its 

mathematical approaches mesh well with the known biology of regulatory and 

non-regulatory molecules. This proposal was tested by Reverter et al. (2010) to 

identify regulators associated with phenotypic differences in breast cancer and 

adipocyte differentiation and showed that it appeared universally applicable.  

A metabolic network was reconstructed using 1743 metabolites in the mammary 

gland tissue (Wang et al. 2012a). The authors identified 20 metabolites located in 

hubs and 11 key enzymes were associated with significant changes in expression 

during mastitis. Many of the enzymes identified were either involved in amino 

acid metabolism or had a direct connection to amino acid metabolism. 

b. Pigs 

Productivity traits in pig production are those related to meat production, litter 

sizes, feed consumption and disease resistance or susceptibility. There are limited 

studies that have attempted to use biological networks in pig specific data. 

Possibly the most relevant study of gene networks in pig productivity traits was 

an analysis of eQTL performed using whole genome expression microarray using 

the loin muscle (Steibel et al. 2011). These authors reported 62 unique eQTL and 
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identified 3 gene networks involved in biological processes related to lipid 

metabolism, DNA replication and cell cycle regulation. In addition, they 

identified 2 potential candidate genes; AKR7A2 and TXNDC12 that were part of 

the gene network associated with lipid metabolism and their location overlapped 

with QTL for marbling, intramuscular fat and loin muscle area. In a similar study, 

gene networks were inferred from eQTL using RNA obtained from Longissimus 

dorsi muscle in pigs. The gene networks were inferred from 272 genes having at 

least one eQTL (Liaubet et al. 2010). Hornshoj et al. (2009) reported a novel 

study of two porcine tissues based on integrative analysis of data from expression 

profiling of identical samples using cDNA microarray and iTRAQ based 

proteomics. They showed that the differences in transcript and protein levels 

across heart and muscle tissues were positively correlated. These authors did not 

reconstruct interaction networks but they assessed correlations between protein 

and transcript levels between microarray and sequencing technologies.  

In relation to litter size, differential gene expression analysis was performed using 

tissues from the ovaries of low and high prolificacy sows during pregnancy 

(Rodriguez et al. 2011). The sows were categorized in high or low prolificacy 

depending on their breeding values for prolificacy and 6 sows were selected from 

each class. The analysis identified 189 differentially expressed genes which were 

involved in immune system activation, regulation of maternal homeostasis by 

complement and coagulation cascades and lipid and fatty acid metabolism, which 

may be involved in steroidogenic pathways. The authors also indicated that 22 of 
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the differentially expressed genes were located in the same regions with 

previously reported QTL for litter size traits. 

c. Poultry 

The completion of the chicken whole genome sequence in 2004 (Wong et al. 

2004) enabled investigations into biological interactions (Burt 2005). The chicken 

genome was also used to create a draft genome assembly for the turkey genome 

completed in 2010 (Dalloul et al. 2010). To explore biological interactions in 

chicken, an interactome was created using 8140 genes and established 72000 

interactions (Konieczka et al. 2009). This interactome can be used by specific 

users to extract sub-networks and study specific biological processes.  

Several additional studies have aimed at reconstructing biological networks to 

study specific traits. For example Ciraci et al. (2010) reconstructed a gene 

network using genes differentially expressed between endotoxin stimulated verses 

non-stimulated macrophages and showed that endotoxin exposure significantly 

affected the expression of IL1B, IL6, IL8 and TLR15 and Schokker et al. (2011) 

reported a gene network reconstructed using gene expression data associated with 

intestinal salmonellosis in poultry. 

3.3.5. Application of biological networks in animal breeding 

 

Recent rapid advances in genomic and bioinformatics technologies have allowed 

researchers in animal sciences to analyze biological networks and, identify and 

characterize the molecular components of traits, and the variations associated with 

them (Woelders et al. 2011). However, the quantitative aspects of traits do not 
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simply arise from the sum of the properties of individual components of the ‘trait 

system’ under investigation but depend on dynamic interactions between these 

components at various biological levels (Woelders et al. 2011). A summary of 

genetic interactions was discussed by Drees et al., (2005) using a model of two 

DNA variants/mutations A and B and included:  

Noninteractive interaction occurs when A has no effect on the trait when B is 

present or B has no effect when A is present. However, when A and B have no 

effect on the trait, but the AB combination has an effect, the interaction is termed 

Synthetic interaction.  

Epistatic interaction occurs when A and B have different effects (in terms of 

direction or magnitude) but individuals with both mutations have the same 

phenotype as having either A or B. While, when the A, B, and the AB combination 

have the same effect the interaction is named Asynthetic interaction. 

Conditional interaction occurs when A has an effect only when B is present, or 

the B mutant has an effect only when A is present. On the contrary, Suppressive 

interaction occurs when A has an effect but that effect is abolished by adding the 

suppressor B, which itself shows no single-mutant effect.  

Additive interaction: single-mutant effects combine to give a double-mutant 

effect. A single-nonmonotonic interaction is when B shows opposing effects in the 

A background or, A shows opposing effects in the B background, but not both and 

a double-nonmonotonic interaction is when both A and B show opposing effects 

in the background with the other mutant gene.  
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Therefore, to understand the effects of biological networks on a trait, it is 

important to evaluate the mode of interactions and the level of dynamicity of the 

biological networks.  

The rationale of the application of biological networks in animal sciences is the 

development of predictive models of animal traits that help to understand the 

biology of traits and that can be applied for the prediction, modulation and 

improvement of traits (Quackenbush, 2007). We will attempt to clarify this 

concept as follows.  

The knowledge derived from biological networks, if used optimally, can be used 

to generate accurate and comprehensive predictions of performance 

characteristics of animals kept under normal or specified conditions (Woelders et 

al. 2011). This can be exemplified by the already existing application of 

‘predictive biology’ in ‘genomic selection’, which can be used to predict the 

breeding value of individual animals in the absence of direct phenotypic 

measurements. Gene networks in this case would be used to expand the genomic 

selection models to include the expected interactions between the component 

markers. 

Once the breeding values have been estimated (more accurately) the knowledge 

of genotype–phenotype relationships and biological interactions may be used for 

the development of precision mating systems that maximize the non-additive 

variation of traits (Woelders et al. 2011). The mating systems will definitely be 

superior to the current systems because the current systems rely more on the 
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additive effects of genes, which does not capture the entire contribution from 

genetic variations (Hallander and Waldmann 2007). 

Another important application of biological networks is the sorting of animals to 

establish the individuals which are best equipped for optimal performance under 

defined environmental and management conditions (Woelders et al. 2011). 

As a result of the biological networks approach, knowledge on the relationships 

between molecular composition, biological mechanisms and the behavior of trait 

systems can developed to create a better understanding of the underlying 

biological mechanisms associated with the traits and may also aid in the 

identification of genomic variation causally associated with economically 

important traits in livestock. 

3.4. CONCLUSION  

 

Following association analysis, reconstruction of biological networks is a critical 

part in research in livestock science and several other organisms. Firstly, the 

reconstruction of biological networks is useful in identification of additional 

candidate molecules associated with the phenotype under study. The assumption 

is that once the molecules associated with a trait have been identified, all 

molecules that interact with the already identified molecule(s) are considered as 

potentially associated with the trait. Secondly, biological networks can be used to 

identify the biological processes associated with the trait being studied. The 

biological processes are used to create a better understanding of the underlying 

biological mechanisms associated with the trait. Therefore even if a trait is 
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complex and its underlying biological mechanisms are not well understood, 

biological networks can be used to identify processes that may potentially control 

the trait. Lastly, biological networks can be used to assess interactions between 

molecules such as genes or proteins. Understanding the interactions may be useful 

in predicting the effects of manipulating one molecule on the molecules that 

interact with it. The network may be used to predict the impact of manipulating 

one trait on other traits that share similar interacting genes. 

Due to these benefits, and the ever increasing amount of molecular data generated 

by ‘omics’ studies, we anticipate that biological network reconstruction and 

analysis will remain one of the superior approaches for analysis.  
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PREFACE TO CHAPTER FOUR 

 I have structured the thesis to reflect the different levels of regulation of 

quantitative (polygenic) traits illustrated and described in detail in figure 2.1. 

In Chapter 4, which has been published in Journal of Animal Science, 2013 

(doi:10.2527/jas.2012-6170), the candidate gene approach is used to identify 

candidate genes containing SNPs associated with variation in residual feed intake 

(RFI) in beef cattle.  

The null hypothesis: No SNP within the selected candidate genes would be 

significantly associated with RFI  

RFI is an economically important trait because feed costs account for over 65% 

of the total costs in beef production. Selecting cattle for RFI will result in 

individuals who eat less feed without compromising the level production. 
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CHAPTER FOUR 

 

Candidate genes and single nucleotide polymorphisms associated with 

variation in Residual Feed Intake in beef cattle
2
 

4.1. INTRODUCTION 

 

In beef cattle, residual feed intake (RFI) is defined as the difference between 

actual and predicted feed intake (Koch et al., 1963). Therefore, variation in RFI 

may be due to variation in biological processes involved in maintenance of body 

weight and production (Herd and Arthur, 2009). Although the specific processes 

are unknown (Crews, 2006), Herd and Arthur (2009) estimated that metabolism 

would directly account for about 42% of the variation in RFI. Other sources of 

variation may include body composition (5%), digestion (10%), physical activity 

(9%), thermoregulation and heat increment of feeding (9%) and the remaining 

25% is due to unknown factors (Richardson and Herd, 2004; Herd and Arthur, 

2009). 

The genetic basis of RFI has been investigated indicating that RFI has a moderate 

heritability ranging from 0.16 (Herd and Bishop, 2000) to 0.58 (Crews et al., 

2003) indicating that a moderate amount of the observed phenotypic variation is 

regulated by the additive effect of the genes associated with the trait. In addition, 

several DNA markers associated with RFI in beef cattle have also been reported 

                                                 
2
A version of this chapter has been published in the Journal of Animal Science, 

doi:10.2527/jas.2012-6170. 
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(Barendse et al., 2007; Sherman et al., 2008, 2009; Moore et al., 2009; Bolormaa 

et al., 2011; Snelling et al., 2011; Elzo et al., 2012) and may be used for marker-

assisted selection (MAS) for RFI. However, some of these markers are located in 

introns including those reported by Sherman et al., (2009) and the basis of the 

biological effect may not be easily explained. In addition, some marker sets 

accounted for a small proportion of the variation in RFI (for example 6.9% in 

Sherman et al., 2008). Therefore, there is need to identify functional markers that 

will explain a larger proportion of variation in RFI and whose effects will be 

consistently reproduced across genetically diverse beef cattle populations. 

One of the approaches that can be used to identify functional markers is the 

candidate gene approach. This approach entails the identification of positional 

candidate genes located within QTL associated with RFI and/or its component 

traits such as feed intake, average daily gain and body weight. The positional 

candidate genes are then prioritized according to their functions such that genes 

whose functions are related to the physiology of RFI are considered more 

important than genes whose functions are not related to RFI. The physiological 

processes associated with RFI used for this prioritization were reviewed in detail 

by Richardson and Herd (2004) and Herd and Arthur (2009). DNA 

polymorphisms located within the functional candidate genes are then identified, 

genotyped and analyzed for association with RFI. Because the prioritized genes 

retain their functional relevance across diverse beef cattle populations, the 

candidate gene approach is well suited for identifying genes underlying the 

variation in RFI and is expected to account for more phenotypic variation in RFI 
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and DNA markers identified are also expected to be consistent and reproducible in 

genetically diverse beef cattle populations. 

In this study, we utilized the candidate gene approach to identify SNPs 

significantly associated with RFI. We also reconstructed gene networks using IPA 

(Ingenuity Systems, www.ingenuity.com) to identify biological pathways 

associated with the significant genes. The significant genes, if validated in other 

beef cattle populations, may be incorporated into a MAS panel for selecting beef 

cattle for RFI. The biological processes identified will create a better 

understanding of the physiological processes underlying the variation in feed 

efficiency especially RFI. 

4.2. MATERIALS AND METHODS 

 

Phenotypic and genotypic data were obtained from 531 beef cattle steers at the 

University of Alberta ranch at Kinsella, Canada. The steers used were sired by 

Angus, Charolais or University of Alberta hybrid bulls. Dams were produced 

from crosses among 3 composite cattle lines; Beef Synthetic 1, Beef Synthetic 2, 

and Dairy × Beef Synthetic. The breed composition of the Beef Synthetic groups 

was described by Goonewardene et al., (2003). The steers were managed and 

tested under feedlot conditions using the GrowSafe automated feeding system 

(GrowSafe Systems Ltd., Airdrie, Alberta, Canada) as described by Nkrumah et 

al., (2004) and all the animals were managed and cared for according to the 

guidelines of the Canadian Council on Animal Care (CCAC, 1993). 

4.2.1. Phenotypic data 
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Phenotypic data was collected from 531 beef cattle steers born between 2003 and 

2006. The collection of feed intake data and calculation of RFI was discussed in 

detail by Basarab et al., (2003). In summary, the actual feed intake for each steer 

was measured using the GrowSafe automated feeding system (GrowSafe Systems 

Ltd., Airdrie, Alberta, Canada). This feed intake was converted to dry matter 

intake (DMI) by multiplying it by the dry matter content of the diet. DMI was 

then standardized to 10 MJ of metabolizable energy (ME)/kg of dry matter. The 

predicted feed intake was estimated based on metabolic mid-weight and average 

daily gain (ADG). ADG was calculated as the slope from the regression of body 

weight (BW) on test day. Metabolic mid-weight was obtained as the mid-weight 

on test to the power of 0.75. 

4.2.2. Genotypic Data 

4.2.2.1. Identification of positional candidate genes 

 

Two sets of positional candidate genes were utilized in this study. The first set 

consisted of 1100 candidate genes positioned within a range of 500kbp on either 

side of 203 QTL reported in the Bovine QTL database (cattleQTLdb) (Hu et al., 

2007). These QTL were associated with average daily gain (ADG), feed 

conversion ratio (FCR), body weight (BW), dry matter intake (DMI), metabolic 

weight (MW), energy balance and RFI. There was at least one QTL for BW on 

each chromosome except chromosome 5, 9, 13 and 24. QTL for FCR, DMI and 

ADG were located in 18, 17 and 16 chromosomes respectively. Only three QTL 

were associated with RFI and were located on BTA25. The second set of 
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positional candidate genes consisted of 1018 genes positioned within a range of 

500kbp on both sides of 310 SNPs previously reported to be significantly 

associated with RFI in a genomewide association study (GWAS) using the 50K 

bovine SNP chip (Mujibi et al., 2011). 

A total of 2118 positional candidate genes were used in this study. 

SNP Detection 

The SNPs located in the positional candidate genes were identified from the 

NCBI SNP database (dbSNP) (Sherry et al., 2001) and by comparing cDNA 

sequences generated from liver samples from steers at the University of Alberta 

ranch at Kinsella, Canada with reference sequences from Ensembl version 57 

(Hubbard et al., 2009). 

To generate the cDNA library, RNA was prepared from pooled liver samples 

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) using the protocol 

described in the TRIzol reagent user manual (Conolly et al., 2006). The quality 

and quantity of RNA was determined using a NanoDrop 2000 spectrophotometer 

(Nanodrop technologies, USA) (Gallagher and Desjardins 2007). The liver cDNA 

library was constructed according to the TruSeq RNA and DNA sample 

preparation kit (Illumina, USA, v2 published by Illumina Inc. 2011, publication 

number 970-2009-039) and cDNA sequencing was performed on the Genome 

Analyzer II using the TruSeq RNA and DNA sample preparation kit (Illumina, 

USA, v2 published by Illumina inc 2011, publication number 970-2009-039). 
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To generate a list of putative SNPs, Maq (version 0.7.1) (Li et al., 2008) was used 

to map DNA sequencing reads and the bovine transcript sequences from Ensembl 

version 57 (Hubbard et al., 2009) were used as reference sequences. The SNPs 

returned by Maq’s SNPfilter command were annotated using NGS-SNP (Grant et 

al., 2011) by assigning a functional class to each SNP (e.g. nonsynonymous) and 

then providing Ensembl identifiers and gene ontology (GO) terms for the affected 

genes, when applicable. Only the non-synonymous SNPs were considered 

functional candidate SNPs. Functional candidate SNPs were then filtered by 

discarding those with a minor allele frequency less than 10%. 

The positional candidate genes containing functional SNPs were then prioritized 

according to their functions in relation to the physiology of feed efficiency as 

reviewed by Herd and Arthur (2009). Positional candidate genes with functions 

related to metabolism (catabolism and anabolism), carbohydrate, lipid and protein 

metabolism, body temperature regulation, muscle activity and immunity (Herd 

and Arthur, 2009) were considered functional candidate genes and a final set of 

116 genes was obtained. The non-synonymous SNPs from each gene were 

prioritized based on the expected effect of the amino acid change such that among 

several SNPs, a non-conservative amino acid change was considered of higher 

priority than a conservative amino acid change in the same gene. A total of 117 

SNPs were selected within the 116 genes; one SNP from each gene and 2 SNPs 

from the CAST gene, and genotyped at GeneSeek using DNA samples obtained 

from steers at the University of Alberta ranch at Kinsella, Canada. 

4.2.3. Association analysis 
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The total number of steers that had both genotypic and corresponding phenotypic 

data was 531. This population was split into a discovery (n = 2/3*531) and a 

validation population subset (n =1/3*531) and ensured there were no sires 

common to both sub-populations. The steers in the discovery population were 

born in 2003 and 2004 and those in the validation population were born in 2005 

and 2006. This criterion of splitting the population ensured there was temporal 

separation between the discovery and the validation and that the subpopulations 

had experienced different environmental conditions during their growing phase. 

Considering these factors together, the discovery population consisted of 382 

steers and the validation population consisted of 149 steers.  

Of the 117 functional SNPs, 113 were successfully genotyped and 39 SNPs were 

monomorphic in the population leaving 74 polymorphic SNPs to be used in the 

analysis. 

The multiple marker association analysis was performed using the animal model: 

𝑌𝑖𝑗 =  µ + 𝑋1𝑖β + ∑ 𝑋2𝑗𝑔𝑗
74
𝑗=1 + 𝑍𝑎 + 𝑒       (Equation 1) 

Yij represents the RFI value for animal i with j SNPs 

 µ  is the population mean, 

 β is the vector of fixed effects associated with animal i, in this case the breed of 

the sire and the batch.  
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∑ 𝑋2𝑗𝑔𝑗
74
𝑗=1  is the sum of the SNP effects (g), X2j is a design matrix relating an 

observation (y) to one of the genotypes 0, 1 or 2 at the jth SNP. 

𝑎 is a vector of random additive effects (exclusive of SNP g effect(s) in the 

model) constructed using each animal’s pedigree information. It was assumed to 

be normally distributed with a mean of 0 and variance of Aσ
2

a, where A 

represented the additive relationship matrix 

 𝑒 was the vector of random residual effects assumed to be normally distributed 

with a mean of 0 and a variance of Iσ
2
 where I was an identity matrix 

The heritability was calculated as h
2 

= (σ
2

a + σ
2

g)/ (σ
2

a+ σ
2

g+ σ
2
) where (σ

2
a) was 

the additive variance, (σ
2

g) was the variance explained by the SNPs and (σ
2
) was 

the residual variance. 

In each association analysis, The variation accounted for by the significant SNPs 

was estimated as a contrast between the residual variance in a reduced model 

(𝑌𝑖𝑗 =  𝑋1𝑖β + 𝑍𝑎 + 𝑒) and the full model (Equation 1) as described by Yang et 

al., (2011).  

The initial association analysis was performed on the training population using 

ASReml
®
 3 software (Gilmour et al., 2009). The three genotypes were coded 0, 1 

and 2 such that all heterozygous genotypes were coded 1 and the rare homozygote 

was coded 0. Missing values were coded 9 and were included in the analysis. 

The association analysis was then repeated in the validation population using only 

the SNPs that were significant in the discovery population. 
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In addition, to increase the accuracy of the estimate of marker effects, the 

discovery population and the validation population were combined into a pooled 

population (n = 531 steers) and association analysis was performed using the 

same model (equation 1) to estimate the effect of each genotype on RFI.  

Genotypic effects were estimated in ASReml 3 and represented as Y0, Y1 and Y2 

corresponding to the effect for genotype 0, 1 and 2 respectively. The additive 

effect (A) for each SNP was calculated using the formula; 𝐴 = 0.5(𝑌0 − 𝑌2) and 

dominance effect (D) was calculated using the formula 𝐷 =  𝑌1 − [0.5(𝑌0 + 𝑌2)]. 

Contrasts between marker effects for each genotype were estimated using a t-test 

and the significance was determined as the probability that the effects for the two 

genotypes were equal; (Y0 = Y1), (Y1 = Y2) or the difference between the two 

genotypic effects is 0; (Y0 – Y1 = 0), (Y1 – Y2 = 0).  

Linkage disequilibrium (LD) analysis between the significant SNPs was 

performed using Golden Helix
®
 SNP and Variation suite v7.x (Golden Helix, 

Bozeman, MT). An R
2 

between two SNPs would be considered significant LD if it 

was > 0.5. 

4.2.4. Assessing the effect of SNPs on protein structure and 

function 

 

The SIFT
 
(Sorting Intolerant From Tolerant) program (Ng and Henikoff, 2003) 

was used to predict whether the amino acid substitution from the significant SNPs 

significantly affected the function of the proteins. Given a protein sequence, SIFT 

chooses related proteins and obtains an alignment of these protein sequences with 
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the query sequence. Based on the amino acids appearing at each position in the 

alignment, SIFT calculates a score, which is the normalized probability that the 

amino acid change is tolerated and scores less than 0.05 are predicted as 

deleterious (Ng and Henikoff, 2003). 

The effect of the SNPs on the tertiary structure of the respective proteins was 

assessed using SWISSModel
®
 protein modeling software (Arnold et al., 2006). 

Models of the tertiary structures of proteins with SNPs were then compared with 

models from the corresponding reference proteins using the DaliLite
®
 program 

(Liisa and Jong, 2000). 

4.2.5. Reconstructing gene networks 

 

Gene interaction networks were reconstructed from the significant genes using 

IPA software (Ingenuity Systems, www.ingenuity.com). The same program was 

used to identify biological processes and canonical pathways associated with the 

significant genes. To reconstruct the gene network, a list of significant genes and 

their corresponding p-values were imported into the IPA software and the 

parameters were set to allow the network to include indirect relationships between 

the imported genes and genes in the IPA knowledgebase. Indirect relationships 

would assist in the identification of other genes that were not among the genes 

analyzed but may be associated with RFI. The IPA algorithm generates gene 

networks by mapping each gene identifier to its corresponding gene in the IPA 

Knowledge Base (Calvano et al., 2005). The genes are then overlaid onto a global 

molecular network developed from information contained in the Knowledge Base. 
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The networks are generated based on their connectivity such that each network 

has a maximum of 35 imported genes. Each network is assigned a significance 

score, which represents the likelihood that the imported genes within the network 

are found therein by random chance (Calvano et al., 2005). A high number of 

imported genes within a dataset lead to a higher network score. The network score 

is calculated as the negative of the exponent of the P value such that a score of 25 

will be equal to a P-value of 10
-25

 (Calvano et al., 2005). And therefore larger 

scores correspond to high significance. 

 

4.3. RESULTS AND DISCUSSION 

 

4.3.1. Analysis of phenotypes 

 

The RFI values ranged from -2.34 to +2.44 kgday
-1

 and as for other biological 

traits, RFI was normally distributed in the test animals and had a mean of -0.0061 

kgday
-1

, a phenotypic variance of 0.64 (kg/day)
2
 and a standard deviation of 

0.80kgday
-1

. The descriptive statistics for the other phenotypes are shown in Table 

4.1.  

Phenotypic correlations indicated that RFI was independent of ADG but was 

significantly (P < 0.0001) correlated with feed intake and dry matter intake as 

shown in Table 4.2. FCR was significantly (P < 0.0001) correlated with RFI, ADG 

and DMI. These correlations were consistent with those reported by Sherman et 

al., (2008). 
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4.3.2. Association analysis 

 

Discovery population: Association analysis of the discovery population indicated 

that 22 SNPs in 21 candidate genes were significantly associated (P ≤ 0.05) with 

RFI and accounted for 18.1% of the phenotypic variation. These SNPs were 

located in chromosome 1, 2, 4, 7, 15, 18, 20 and 29 and the number of SNPs in 

each chromosome was 4, 6, 1, 2, 2, 1, 5 and 1 respectively. Two SNPs were 

located in the calpastatin gene. 

Validation population: The association analysis to validate the 22 significant 

SNPs was done using the validation population consisting of 149 steers. Seven (of 

the 22) SNPs were also significantly associated with RFI (P < 0.05) in the 

validation population. Three SNPs are located on chromosome 20 and the other 

SNPs are located on chromosome 1, 2, 15 and 29. The small number of 

significant SNPs identified in the validation population may have resulted from 

the relatively small number of samples when the population was split into a 

discovery and validation subsets therefore reducing the power and increasing the 

false negatives. 

Pooled population: The association analysis in the pooled population indicated 

that 25 SNPs in 24 candidate genes were significantly associated with variation in 

RFI (P ≤ 0.05) accounting for 19.7% of the phenotypic variation in RFI. A 

summary of the significant SNPs is presented in Table 4.3. These SNPs were 

located on chromosomes 1, 2, 4, 7, 15, 18, 20 and 29 and the number of SNPs on 
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each chromosome was 4, 7, 1, 2, 2, 1, 7 and 1, respectively, indicating that the 

majority of the significant SNPs were located on BTA 1, 2 and 20.  

BTA1 contains previously reported QTL for average daily gain and carcass 

weight (Komatsu et al., 2011), body length, hip height and heart girth (Liu et al., 

2010) and post natal growth, carcass rib eye area and calving ease (McClure et al., 

2010). 

A QTL on BTA2 was previously reported to be associated with average daily feed 

intake, average daily body weight gain and dressed carcass bone percentage in 

beef cattle (Martinez et al., 2010). Other QTL on this chromosome were 

associated with body weight (Kneeland et al., 2004) and body conformation score 

in beef cattle (Allais et al., 2010). 

BTA20 has been reported to contain several QTL related to body weight and 

average daily gain in cattle. SNPs located in the prolactin receptor (PRLR) were 

significantly associated with body weight, average daily gain, body height, body 

length and heart girth in beef cattle (Lu et al., 2011) and rib eye muscle area and 

calving ease (McClure et al., 2010). 

There was significant LD between the two SNPs on chromosome 7 with an R
2 

value of 0.6 and both were located in the Calpastatin (CAST) gene. The rest of the 

SNPs had a non-significant R
2
 ≤ 0.2. 

The effects associated with each genotype are shown in Table 4.4 as Y0, Y1 and Y2 

corresponding to genotype 0, 1 and 2 respectively. The genes with genotypes 

whose effects were additive included NECAP2, OCLN and OSMR (Figure 4.1a). 
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Other SNPs showed a dominance effect such as UMPS and CAST (1) (Figure 

4.1b). An over-dominant effect was observed in the genotypes for GHR, 

ACAD11, UGT3A1 and CAST (2) (Figure 4.1c). However, some SNPs had a 

relatively low number of observations (<20) for at least one of the genotypes 

(Table 4.4) making the estimates potentially unreliable and may require re-

estimation using larger sample sizes. 

4.3.3. SNPs predicted to cause significant effect on protein 

structure and/or function 

 

Of the 25 significant SNPs, 3 SNPs were predicted to cause a significant effect on 

the function of their respective protein using SIFT. These included the 

Cytochrome P450 subfamily 2B (CYP2B), the Low-density lipoprotein receptor 

related protein 5 (LRP5) and the Growth hormone receptor precursor (GHR) 

gene. The SNP in the GHR gene was also predicted to cause a significant effect 

on the tertiary structure of the protein. 

a. Growth hormone receptor precursor (GHR) 

The SNP located in the GHR gene was significantly associated with RFI (P = 

0.026). This gene is located in BTA20 within QTL for body weight and energy 

balance. We did not identify any additional genes with functional relevance to RFI 

in this region.  

The SNP in the GHR was predicted to cause significant effect on both the tertiary 

structure and the function of the GHR protein. 
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The genotype effects associated with this SNP were over-dominant with the 

heterozygous genotype associated with an effect of -135.3 g/day. This effect was 

226.4 and 179.5 g/day less than the effects associated with the two homozygous 

genotypes 0 and 2 respectively; therefore it was more preferred for RFI than the 

two homozygous genotypes. Combining the observed genotypic effects and the 

effect of the SNP on the structure and function of the protein, this may be a true 

overdominant effect. However, the homozygous genotype consisting of the low 

frequency allele (0) consisted of only 65 individuals so the genotype effects 

should be confirmed in a larger dataset than used here. 

A gene network analysis indicated close interactions between the GHR gene and 

UBC, LIFR, JAK, OSMR, ERK1/2, CLCF1, STAT5 and STAT 1/3/5 genes as 

shown in Fig 4.2.  

The GHR gene encodes a receptor for growth hormone, which is involved in 

regulating body growth. Binding of growth hormone to the receptor leads to 

dimerization of the receptor and the activation of the signal transduction pathway, 

including the JAK2/STAT5 pathway. The JAK-STAT system consists of three 

main components: a receptor, Janus kinase (JAK), a signal transducer and 

activator of transcription (STAT).  This system transmits chemical signals from 

outside the cell, through the cell membrane, into gene promoters on the DNA and 

cause DNA transcription activity (Aaronson and Horvath, 2002). Some of the 

genes influenced by the STAT activator of transcription are IGF1, IGF2, IGFBP3 

and ALS. The IGF genes are involved in the regulation of growth and cellular 
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anabolism and have already been reported to be associated with feed efficiency 

(Bishop et al., 1989; Stick et al., 1998). 

A similar association of the GHR gene and RFI was reported in a previous study 

by Sherman et al., (2008). The SNPs reported by Sherman et al., (2008) were 

located in the introns and the promoter region. Whilst the SNP in the promoter 

region may have an effect on gene expression, the SNP in this study was located 

in an exon and as predicted may have an effect on protein structure and function.  

Other studies have reported significant associations between GHR and 

productivity traits in cattle such as growth and carcass traits in Zebu and cross 

bred cattle (Curi et al., 2006) and, carcass weight, percentage of valuable cuts, 

average daily gain and feed conversion ratio (Maj et al., 2004). 

b. The Low density lipoprotein receptor related protein fragment 5 (LRP5) 

The SNP located in the LRP5 gene was significantly associated with RFI (P = 

0.018). This gene is located in a body weight QTL on chromosome 29 close to 

other possible candidate genes for RFI such as Pyruvate carboxylase (PC), NADH 

dehydrogenase flavoprotein 1 (NDUFV1) and Aldehyde dehydrogenase 3B1 

(ALDH3B1). These genes were not included in this study. 

This SNP showed a significant (P < 0.05) additive effect and the homozygous 

genotype 2 was associated with the favorable effect on RFI at -147 g/day. 

However, in this case there were only 3 and 27 observations for genotypes 0 and 1 

respectively; therefore these estimates may be unreliable. 



103 | P a g e  

 

The gene network analysis showed interactions between this gene and the UBC 

and ERK1/2 genes. An analysis of ERK1/2 indicated that the signal that 

stimulates the ERK1/2 then stimulates CEBPA. CEBPA (CCAAT/enhancer 

binding protein) is a transcription factor protein that binds to certain promoters 

and enhancers and modulates the expression of these genes. The most important 

genes modulated by this protein are leptin and growth hormone. Several studies 

have reported the significant association between Leptin and RFI (Hoque et al., 

2009; Kelly et al., 2009). The biological processes associated with LRP5 included 

energy, lipid and cholesterol metabolism (Fujino et al., 2003). 

The SNP resulted in an amino acid change from Methionine to Valine. A 

comparative analysis of the homologs of this gene in ten species was performed in 

NCBI and indicated that 6 of the 10 species had the amino acid Valine at that 

position, the mouse (Mus musculus) and the rat (Rattus norvegicus) had the amino 

acid Methionine. Other species that differed in their amino acid composition at 

that position were Drosophila melanogaster (Leucine) and the mosquito (A. 

gambiae) with Serine. 

The amino acids Met and Val are both non polar amino acids indicating that their 

chemical properties are similar and may explain why the effect of the amino acid 

change on the tertiary structure of the protein was not significant.  

The LRP5 gene is associated with biological processes that affect bone density in 

humans (Ashburner et al., 2000). The effect of this gene on bone density may 

indicate an effect on body weight and as a result an effect on RFI. Other gene 
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ontology terms associated with this gene are adipose tissue development, 

cholesterol homeostasis and glucose catabolism (Ashburner et al., 2000). Adipose 

tissue development influences body composition, a trait that was shown to be 

associated with RFI (Basarab et al., 2003). Both glucose and cholesterol 

metabolism fall in the broad category of metabolism, which encompasses all 

catabolic and anabolic processes whose importance in the regulation of RFI was 

reviewed in detail by Herd and Arthur (2009). 

c. Cytochrome P450 subfamily 2B (CYP2B) 

The SNP in the CYP2B gene was significantly associated with RFI (P = 0.014) 

and was predicted to cause a significant effect on protein function. The 

homozygous genotype 0 was associated with low RFI with a predicted effect of -

75 g/day. However, only 6 steers in the population had this genotype so it may not 

be accurate and should be regarded with caution. There were 162 heterozygous 

genotypes with a predicted effect on RFI of 69.4g/day compared to 6.36g/day for 

the other homozygous genotype (n = 354). The effects associated with genotypes 

1 and 2 were not significantly different (P = 0.197). However, both effects were 

significantly different from the effect of the homozygous genotype 0. The effect 

of the heterozygous genotype 1 was higher than both homozygous genotypes 

indicating a possible over-dominant effect where individuals with the 

heterozygous genotype have the highest RFI.  

CYP2B is located on chromosome 18 in a QTL for FCR and close to another 

cytochrome gene the Cytochrome P450 family 2, subfamily S polypeptide 1 
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(CYP2S1). The members of subfamily 2B of the cytochrome P450 genes are 

associated with metabolism of cholesterol, steroid hormones and other lipids. 

Some of the gene ontology terms associated with CYP2B were electron transport, 

oxidation-reduction activity and heme binding (Ashburner et al., 2000). 

4.3.4. Genes with significant additive effect  

Some alleles showed additive effects on RFI as shown in figure 4.1a. For 

example, NECAP2 gene had significant additive effect and the preferred genotype 

for RFI was the homozygous genotype 2 at -128.1 g/day. Although the dominance 

effect was not significant (P = 0.12), the three genotypes showed a trend of partial 

dominance (Table 4.4 and Fig 4.1a). The gene also had an intermediate frequency 

resulting in relatively good estimates of the allele effects. Other genes in this class 

include OCLN and OSMR (Figure 4.1a). 

4.3.5. Genes with significant dominance effects  

Two SNPs located in UMPS and CAST(1) genes showed significant dominance 

effects (Figure 4.1b) and other genes, ACAD11, CAST(2), GHR and UGT3A1 

showed an over-dominant effect (Figure 4.1c). Both SNPs located in the CAST 

gene (CAST1 and CAST2) had significant dominance effects and CAST (1) also 

showed significant additive effects.  

Significant associations between the CAST gene and RFI were previously 

observed in steers (McDonagh et al., 2001) and pigs (Gandolfi et al., 2011). 

CAST has also been associated with meat quality (Morgan et al., 1993; 

McDonagh, 1998; Barendse, 2002; Casas et al., 2006). These associations could 
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partially explain the correlation between residual feed intake and meat quality 

traits such as meat tenderness (McDonagh et al., 2001) and the previously 

reported negative phenotypic correlation (-0.33) between RFI and Warner-

Bratzler shear force (Ahola et al., 2007). However, further studies need to be 

conducted to assess the association between the two specific SNPs analyzed in 

this study and meat tenderness in beef cattle. 

4.3.6. Significant genes in the validation population 

 

The 7 genes that were significant in the validation were GHR and LRP5 (see 

previous section), and UGT3A1, ASNSD1, UBA5, APIP and LIFR. The variation 

explained by each validated SNP was estimated by performing a single marker 

association analysis in ASReml 3 with the results as follows; GHR (2.1%), LRP5 

(1.9%), UGT3A1 (2.0%), ASNSD1 (2.5%), UBA5 (1.5%), APIP (2.4%) and 

LIFR (2.3%). These results further reinforce previous observations that 

quantitative traits are regulated by several genes each with a small effect (Hayes 

and Goddard, 2001). However, the contributions from each of the significant 

genes in this study were higher than those reported in previous studies such as 

Sherman et al., (2009). This may have resulted from one or both of two possible 

factors reported; firstly, the estimates in this study may have been inflated due to 

the low numbers of individuals in some of the genotypes. Secondly, the high 

estimates may have resulted from the candidate gene approach which may have 

resulted in the identification of markers in genes that cause a larger effect on the 

trait.  
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4.3.7. Analysis of gene networks and biological processes 

 

The gene interaction network reconstructed included only 13 genes out of the 24 

genes found to be significantly associated with RFI in this study (Figure 4.2). The 

additional genes which had not been analyzed in this study but were present in the 

network are discussed as potential candidate genes for RFI. 

We identified 3 major hubs in the gene network; the first hub was associated with 

the Ubiquitin C (UBC) gene, the second hub was associated with the insulin 

induced gene 1 (INSIG1) and a final minor hub was associated with the leukemia 

inhibitory factor receptor (LIFR) gene. 

The hub associated with the UBC gene had multiple interactions with other genes 

including PLEKHA7, PARP14, SMARCAL1, UBA5, LRP5, CAST and INSIG1 

(Fig 4.2). UBC also interacted with ERK1/2 through LRP5, UBA5, GHR, OSMR 

or LIFR. The UBC hub represented biological processes related to the regulation 

of phenotypic expression by processes such as endoplasmic reticulum associated 

degradation of proteins (ERAD), lysosomal degradation, protein degradation via 

the proteasome, activation of transcription factor NF-kappa-B, cell signaling and 

DNA repair. This hub therefore, among other processes, indicates the role played 

by processes that regulate protein function through protein degradation and since 

most of the proteins associated with the UBC hub were enzymes (figure 4.2 

legend) the UBC hub seems to be involved in regulation of enzyme activity 

through protein degradation. 
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The INSIG1 gene hub had interactions with other molecules including 

Lysophosphatidylcholine acyltransferase 3 (LPCAT3), Acyl-CoA synthetase short 

chain family member 2 (ACSS2), ELOVL fatty acid elongase, Acetoacetyl CoA 

synthetase (AACS), endoplasmic reticulum lipid raft associated protein 

(ERLIN2), 3-hydroxyl-3-methylglutaryl-CoA synthase 2 (HMGCS2) and STAR 

related lipid transfer. This hub represents biological processes related to energy, 

lipid and steroid metabolism. The importance of lipid and steroid metabolism for 

RFI was previously reported by Naik et al., (2007) and Richardson et al., (2004). 

The LIFR hub (which also interacts with the UBC hub) had links with Janus 

kinase (JAK) gene and (Glycoprotein 130) GP130. LIFR also interacted with 

CLCF1, ERK1/2, STAT5, GHR and OSMR. This hub represents biological 

processes such as growth, cytokine mediated signaling and immune responses. 

ERK1 is a protein kinase involved in cell growth, adhesion, survival and 

differentiation by regulating transcription, translation and cytoskeleton 

rearrangements. It also causes phosphorylation of several transcription factors 

resulting in regulation of meiosis and mitosis and post mitotic functions of cells. 

ERK1 is also involved in lysosome processing and endosome cycling (Lancet et 

al., 2008). ERK1/2 interacted with the UBC hub through UBA5, LRP5, OSMR 

and GHR and this may represent the relationship in the biological processes 

associated with both hubs. LIFR combines with GP130, to form a receptor 

complex while JAK is a non-receptor kinase that transduces the cytokine-

mediated signal via the JAK-STAT pathway. Janus kinases are predominantly 

expressed in immune cells and responsible for signal transduction in response to 
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activation via tyrosine phosphorylation by interleukin receptors (Lancet et al., 

2008). Immune and stress responses were previously reported to be associated 

with RFI (Richardson et al., 2004) though the results have been inconsistent 

across different studies. 

In summary, the genes and biological processes identified in the candidate gene 

association analysis and gene network analysis included genes with functions 

which impact RFI by regulating processes at the genomic level such as regulation 

of DNA replication, repair and recombination, transcription and translation, and 

processes related to the metabolism of carbohydrates, lipids, proteins, cholesterol, 

vitamins, minerals and nucleic acids. In addition, some of the significant 

processes were involved in immunity such as antigen presentation, immune cell 

trafficking and inflammatory response. 

These processes are similar to those observed by Richardson et al., (2004) and go 

further to show support for some of the SNPs identified in this study being 

associated with this variation. However, although the biological processes 

identified to be associated with variation in RFI have been consistent across 

several studies (Rolf et al., 2011), there are still several studies reporting different 

significant genes. For example, from this study, the only genes that were reported 

in previous studies were; GHR (Sherman et al., 2008; Chen et al., 2012) and 

CAST (McDonagh et al., 2001). 

4.4. CONCLUSION 
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This study reports 22 SNPs associated with variation in RFI in a discovery 

population and 7 of these SNPs were also significant in a validation population. 

These validation results indicate that these markers may be useful for marker-

assisted selection for RFI in unrelated populations. The effects of the 7 markers 

were re-estimated using all of the data and they were again significant explaining 

approximately 15.2% of the variation in RFI in the population. However, the 

utility of these genes for selection requires some factors to be considered. Firstly, 

an independent validation should be done before they are used by the industry. 

Secondly, some of the SNP genotypes showed over-dominance and this needs to 

be taken into account in their use, for example, they may be useful in 

crossbreeding animals to combine the different alleles. Thirdly, some of the genes 

may have pleiotropic effects such as the two SNPs located in the CAST gene, 

which may influence meat tenderness. If these findings are further validated then 

these SNPs can be used to select for RFI with increased accuracy. 
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Table 4.1: Descriptive statistics for some of the phenotypes related to RFI  

 ADG DMI FCR RFI 

Mean 1.48 10.82 7.47 -0.01 

Std dev 0.27 1.43 1.29 0.80 

Variance 0.07 2.05 1.67 0.64 

Minimum 0.63 6.20 4.59 -2.34 

Maximum 2.23 14.54 14.26 2.44 

 

 

Table 4.2: Phenotypic correlation between economically important traits
1
 

related to RFI in beef cattle 

Pearson correlation coefficients 

                   ADG Feed intake DMI FCR RFI 

ADG 1.00 0.56 
2
 0.57 

2
 -0.60 

2
 0.01 

Feed intake  1.00 0.99 
2
 0.29 

2
 0.53 

2
 

DMI   1.00 0.29 
2
 0.55 

2
 

FCR    1.00 0.49 
2
 

RFI     1.00 

1
The traits included; ADG - average daily gain, DMI - dry matter intake, FCR- 

feed conversion ratio and RFI- residual feed intake.
  

2
Significant at P < 0.0001 
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Table 4.3: Candidate genes significantly associated with residual feed intake in beef cattle steers 

Gene name SNP ID
1
 BTA: Position 

(bp) 

P-value SNP 

position 

SNP 

allele 

Amino acid 

change 

Gene ontology
2 

and function 

related to RFI 

PARP14 protein fragment 

(PARP14) 

 NF 1:68144657 0.028 5002 G/A Gly -> Arg Protein synthesis, NAD+ ADP-

ribosyltransferase activity 

Uridine 5 -monophosphate 

synthase (UMPS) 

rs110953962 1:70328819 <0.001 572 C/T Arg -> Cys Fat, protein and uridine 

biosynthesis. 

Ubiquitin-like modifier 

activating enzyme 5 (UBA5) 

NF 1:139111130 0.048 231 A/T Glu -> Val ATP binding and oxidoreductase 

activity. 

Acyl-CoA dehydrogenase 

family member 11 

(ACAD11) 

rs208270150 1:138045480 0.004 816 C/T Ser -> Leu FAD binding, acyl-CoA 

dehydrogenase activity and fat 

metabolism 

Bridging integrator 1 

(BIN1)
 

rs210348685 2:5642793 0.026 916 G/A Ala -> Thr Regulation of endocytosis and 

protein synthesis 

Asparagine synthetase 

domain-containing protein 1 

(ASNSD1) 

NF 2:6949248 <0.001 499 G/A Ala -> Thr Asparagine biosynthesis,  

glutathione and protein 

metabolism 

MKI67 FHA domain-

interacting nucleolar 

phosphoprotein (MKI67IP) 

NF 2:76998684 0.036 900 A/T Arg -> Stop Regulation of phosphatase activity, 

RNA metabolic processes and 

protein synthesis. 

Aldehyde oxidase (AOX1) rs110994776 2:89545687 0.0001 1732 A/G Ser -> Gly NAD binding and electron carrier 

activity 

SWI/SNF-related matrix-

associated actin-dependent 
rs109065702 2:105138600 0.034 265 T/C Ser -> Pro Chromatin modification and 

regulation of transcription. 
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regulator (SMARCAL1) 

PQ loop repeat containing 2 

(PQLC2) 

rs209148339
4 

2:137970404 0.023 691 A/G 

(C/G)
5
 

Arg -> Gly Protein synthesis 

Adaptin ear-binding coat-

associated protein 2 

(NECAP2) 

NF 2:140340622 0.013 568 A/G Thr ->Ala Endocytosis and protein transport 

Insulin-induced gene 1 

(INSIG1) 

rs109314460 4:121360120 

 

0.006 308 A/G Ser -> Gly Lipid, cholesterol and steroid 

metabolism 

Calpastatin (CAST) rs109727850 7:97480120 0.026 271 G/A Gly -> Asp Inhibition of calpain which is 

involved in pre and post mortem 

degradation of proteins 

Calpastatin (CAST) rs210072660 7:97526153 0.007 672 A/G Thr ->Ala - 

Pleckstrin homology domain 

containing, family A 

member 7 (PLEKHA7) 

NF 15:34411065 0.04 2490 C/T Pro -> Ser Epithelial cell to cell adhesion and 

protein synthesis 

APAF1 interacting protein 

(APIP) 

NF 15:65118633 <0.001 737 G/A Val -> Met Amino acid biosynthesis and 

apoptosis. 

Cytochrome P450 subfamily 

2B (CYP2B
3
) 

NF 18:49958396 0.014 16 G/A Val -> Met Electron carrier activity, heme 

binding and oxidoreductase 

activity. 

Occludin (OCLN) rs109638814
4 

20:10849769 0.008 1051 T/C 

(A/G)
5
 

Cys -> Arg Cell to cell junction and protein 

synthesis 

Growth hormone receptor rs209676814 20:33897128 0.026 1643 G/A Ala -> Thr Regulates post natal growth and 

may act as a reservoir of growth 
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precursor (GHR
3,4

) hormone in plasma. 

Oncostatin M receptor 

(OSMR) 

rs41580312 20:37772898 0.006 620 G/T Arg -> Met Regulates the growth and 

maturation of hepatocytes. 

Leukemia inhibitory factor 

receptor (LIFR) 

NF 20:38170739 0.005 1162 G/A Ala -> Thr Stimulation of cell proliferation, 

body conformation and growth 

UDP-

glucuronosyltransferase 3A1 

Precursor (UGT3A1) 

rs133951891 20:40434540 0.023 1597 T/C Met -> Thr Glucuronosyltransferase activity 

and protein metabolism 

Solute carrier family 45 

member 2 (SLC45A2) 

NF 20:42286376 <0.0001 718 G/A Ala -> Thr Melanin biosynthesis, visual 

perception. 

Myosin-X (MYO10) NF 20:59933885 0.0001 2375 G/T Arg -> Leu Binds ATP, actin and calmodulin 

Low-density lipoprotein 

receptor-related protein 5 

fragment (LRP5
3
) 

rs42190891 29:47717873 0.018 3166 A/G Met -> Val Bone and mammary gland 

development, cholesterol 

metabolism, apoptosis and 

regulation of insulin secretion. 

1
SNPs with an ID indicated as NF did not match any SNP reported in the SNP database

 

2
Gene ontology and functions were obtained from Ashburner et al., 2000.

 

3
 SNPs in these genes were predicted to cause a significant effect on the function of the protein.

 

4 
SNP in this gene was predicted to cause a significant effect on the tertiary structure of the protein.

 

5 
The SNP alleles reported in the SNP database were different from the alleles obtained in this study but the amino acid and nucleotide 

positions were the same. The alleles reported in the database are shown in parenthesis in the column ‘SNP allele’. 
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Table 4.4: Genotype effects on RFI in gday
-1

 in beef cattle at the University of Alberta ranch in Kinsella
1
 

GENES Predicted effects and (number of observations) for each  

Genotype (gday
-1

) 

Y0-Y1 and 

(p [Y0 = Y1]) 

Y1-Y2 and 

(p [Y1=Y2]) 

Additive effect      

(gday
-1

) 

Dominance 

effect (gday
-1

) 

 Y0 Y1 Y2   - - 

PARP14 

UMPS 

0 (0) -68.15 (15) 68.15 (506) 68.15 (0.178) -136.3 (0.032) 

172.8 (33) -80.48 (197) -92.37 (294) 253.28 (0.0008) 11.89 (0.436) 132.585
3
 -120.695

4
 

UBA5 -110.9 (4) 120.3 (113) -9.34 (408) -231.2 (0.0009) 129.64 (0.04) -50.78 180.42
3
 

ACAD11 -47.06 (129) 114.6 (262) -67.5 (129) -161.66 (0.014) 182.1 (0.006) 10.22 171.88
3
 

BIN1 21.62 (5) -51.77 (98) 30.15 (418) 73.39 (0.161) -81.92 (0.135) -4.265 -77.655 

ASNSD1 0 (0) -17.82 (3) 17.82 (518) 17.82 (0.405) -35.64 (0.315) -- -- 

MK1671P 113.4 (6) -75.63 (50) -37.77 (472) 189.03 (0.005) -37.86 (0.308) 75.585 -113.445
4
 

AOX1 39 (29) 105.5 (121) -144.5 (381) -66.5 (0.19) 250 (0.0008) 91.75
4
 158.25

3
 

SMARCAL1 -48.29 (22) 118.4 (211) -70.11 (287) -166.69 (0.012) 188.51 (0.005) 10.91 177.6
3
 

PQLC2 37.35 (13) 10.55 (145) -47.9 (368) 26.8 (0.359) 58.45 (0.217) 42.625 15.825 

NECAP2 89.38 (130) 38.71 (240) -128.1 (161) 50.67 (0.248) 166.81 (0.012) 108.74
3
 58.07 

INSIG1 18.44 (67) -39.63 (251) 21.19 (211) 58.07 (0.217) -60.82 (0.206) -1.375 -59.445 

CAST (1) 127.5 (30) 119.1 (180) -246.6 (311) 8.4 (0.456) 365.7 (<0.0001) 187.05
2
 178.65

3
 

CAST (2) 117.5 (57) -97.83 (226) -19.62 (240) 215.33 (0.001) -78.21 (0.146) 68.56 -146.77
3
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PLEKHA7 -37.64 (2) 38.66 (72) -1.02 (450) -76.3 (0.151) 39.68 (0.298) -18.31 57.99 

APIP 102.9 (22) -7.58 (116) -95.31 (383) 110.48 (0.068) 87.73 (0.119) 99.105
4
 -11.375 

CYP2B -75.76 (6) 69.41 (162) 6.36 (354) -145.17 (0.025) 63.05 (0.197) -41.06 104.11 

OCLN -94.4 (125) -10.6 (264) 105 (137) -83.8 (0.129) -115.6 (0.059) -99.7
4
 -15.9 

GHR 91.09 (65) -135.3 (204) 44.17 (255) 226.39 (0.001) -179.47 (0.007) 23.46 -202.93
2
 

OSMR 78.26 (57) 16.18 (209) -94.44 (257) 62.08 (0.2) 110.62 (0.068) 86.35
4
 24.27 

LIFR -29.86 (9) -53.53 (130) 83.39 (380) 23.67 (0.375) -136.92 (0.032) -56.625 -80.295 

UGT3A1 69.97 (80) -70.4 (268) 0.43 (171) 140.37 (0.028) -70.83 (0.171) 34.77 -105.6
4
 

SLC45A2 6 (7) 138 (60) -144 (461) -132 (0.032) 282 (<0.0001) 75 207
2
 

MYO10 29 (50) 80 (233) -109 (240) -51 (0.248) 189 (0.005) 69 120
4
 

LRP5 113.9 (3) 33.15 (27) -147 (491) 80.75 (0.137) 180.15 (0.007) 130.45
3
 49.7 

1 
Estimates of additive and dominance effects for PARP14 and ASNSD1 were not performed because only two 

genotypes occurred. The markers were significant at P < 0.01 
(2)

, P < 0.05 
(3)

 and P < 0.10 
(4) 
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Figure 4.1a: Predicted genotype effects for genes with additive effects on RFI. The predicted effect of genotype 1, 

corresponding to the heterozygous genotype, was approximately the average of the two homozygous genotypes 0 and 2, 

corresponding to the genotype with low and high frequency respectively.  
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Figure 4.1b: Predicted genotype effects for genes with dominant effects on RFI. The predicted effect of genotype 1, 

corresponding to the heterozygous genotype, was closer to one of the homozygous genotype than the other and was not 

equal to the average of the two homozygous genotypes 0 and 2, corresponding to the homozygous genotype with low 

and high frequency respectively.  
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Figure 4.1c: Predicted genotype effects for genes with over-dominant effects on RFI. The predicted effect of genotype 1, 

corresponding to the heterozygous genotype, exceeded the value of one of the homozygous genotypes such that the 

heterozygous genotype conferred more superiority (or inferiority) on the trait than either homozygous genotype 0 or 2, 

which corresponded to the homozygous genotype with low and high frequency respectively.  
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Figure 4.2: Gene interaction network
1
 for candidate genes associated with RFI

2
. 

1
Reconstructed using IPA (Ingenuity 

systems).
 

2
 Only 13 of the 24 significant genes are identified in the network as colored nodes. 
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PREFACE TO CHAPTER FIVE 

 

In addition to improving feed efficiency, profitability in beef production can also 

be increased by increasing the quantity and/or quality of beef, which is the major 

output in beef production.  

In Chapter 5, putative candidate genes for RFI were evaluated for possible 

association with various carcass traits.  

Null hypothesis: None of the SNPs selected within the candidate genes would be 

significantly associated with carcass quality traits. 

This study has been published in the Canadian Journal of Animal Science 

(doi:10.4141/CJAS2012-136). 

 

 

 

 

 



132 | P a g e  

 

CHAPTER FIVE 

Candidate genes and biological pathways associated with carcass quality 

traits in beef cattle
3
 

5.1. INTRODUCTION 

 

The economic success in terms of profitability in beef production relies on 

producing a product of high economic value (output) at the lowest cost possible 

(input) (MacNeil et al., 1997). One of the options to increase profitability is to 

increase the meat quantity and/or quality (outputs) through selection for carcass 

quality traits such as back fat thickness, marbling and rib eye area. Alternatively, 

beef producers may select cattle for increased feed efficiency using traits such as 

residual feed intake (Koch et al., 1963). Some of these economically important 

traits are correlated, for example average back-fat thickness was reported to be 

highly correlated with Yield Grade (r = 0.86) (Rios-Utrera et al., 2005), both 

intramuscular and inter-muscular fat were negatively correlated with lean meat 

yield and feed efficiency (Basarab et al., 2003) and lean meat yield was positively 

correlated with residual feed intake (Richardson et al., 1998, Herd and Bishop 

2000, Basarab et al., 2003). Mirzaei et al., (2011) reported several significant 

correlations between some growth traits such as body weight and growth, with 

carcass quality traits such as hot carcass weight, carcass rib eye area and fat depth. 

These correlations may result in antagonistic effects on the breeding goal resulting 

                                                 
3
 A version of this chapter has been accepted for publication in Canadian Journal of Animal 

Science, 2013. 
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in a dilemma that requires producers to be certain of what traits they wish to 

select and to be aware of what other traits will be affected and in which direction 

the secondary effects will occur.  

The traditional selection practiced by most breeders is based on the quantitative 

genetics approach (Dekkers and Hospital, 2002). This approach relies on the 

availability of phenotypes, the heritability of the traits and their genetic 

correlations. More recently, molecular markers have gained importance in the 

evaluation and ranking of candidates for selection. The use of molecular markers 

in selection relies on the ability to determine the genotypes of individuals for the 

mutations associated with the traits of interest (Dekkers and Hospital, 2002). 

Molecular markers such as SNPs have great potential for use in marker assisted 

selection (MAS) in beef cattle especially for carcass quality traits because these 

traits have a large impact on profitability. In addition to profitability, carcass 

quality traits can only be measured after the animal has been slaughtered, which 

removes its genetics from the breeding population unless semen or oocytes were 

collected and stored for future use. In addition, beef producers invest significant 

expense into herd sires which may ultimately have undesirable carcass traits that 

are discovered late after their purchase when progeny carcass characteristics are 

realized.  

Another advantage of selecting animals using molecular markers relies on the 

overlap between QTL associated with multiple traits. Markers located in these 

QTL can be used to select for one trait and also to predict pleiotropic effects of the 
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markers on other economically important traits. This can be done using 

bioinformatics tools or where data are available, by calibrating the markers for 

effects on all economically relevant traits. For example, the calpastatin gene 

(CAST) was reported to be associated with multiple traits such as RFI in cattle 

(McDonagh et al., 2001), meat quality in cattle (Morgan et al, 1993, McDonagh, 

1998, Barendse, 2002, Casas et al., 2006) and meat quality in pigs (Ciobanu et al., 

2004). Due to this pleiotropy, beef producers who wish to embrace marker 

assisted selection should be able to predict the effects of genetic markers on traits 

other than those under primary selection. 

In this study, we used SNPs in candidate genes for productivity traits to assess 

their association with carcass quality traits in beef cattle steers at the University of 

Alberta ranch at Kinsella, Canada. We also reconstructed a gene network using 

the significant genes to analyze the gene interactions and biological processes 

associated with the various carcass traits. 

5.2. MATERIALS AND METHODS 

 

The animals were managed and cared for according to the guidelines of the 

Canadian Council on Animal Care (CCAC 1993) and the research was approved 

by the animal care and use committee at the University of Alberta. 

Phenotypic data were obtained from 531 beef cattle at the University of Alberta 

ranch at Kinsella, Canada. The breed composition of this herd was described in 

detail by Goonewardene et al., (2003), Nkrumah et al., (2007) and Mujibi et al., 

(2010, 2011a). Cows and heifers were bred on pasture in a multiple-sire breeding 
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system and the sire of each calf was later determined in a parentage test by using a 

panel of bovine microsatellite markers (Nkrumah et al., 2007). The steers were 

managed and tested under feedlot conditions using the GrowSafe automated 

feeding system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada). A detailed 

review of the GrowSafe system can be found at Nkrumah et al., (2004). 

5.2.1. Phenotypic Data 

 

Carcass traits were collected on steers raised at the University of Alberta ranch at 

Kinsella, Canada. There were two batches of steers tested each year (Mujibi et al., 

2010, 2011b) and carcass quality traits were collected as described by Nkrumah et 

al., (2004) and Nalaila et al., (2011). The carcass traits considered in this analysis 

included average back fat (BF), grade fat (GRDFT), carcass rib eye area (CREA), 

ultrasound rib eye area (UREA), carcass marbling (CMAR), ultrasound marbling 

(UMAR), yield grade (YGRD), quality grade (QGRD) and lean meat yield 

(LMY). Lean meat yield as a percentage was estimated using the equation % lean 

meat yield = 57.96 + (0.202 × cm
2
 L. thoracis area) – (0.027 × kg warm carcass 

weight) – (0.703 × mm average back fat thickness), Yield grade; the proportion of 

lean meat; was classified as follows: 1 = ≥59%; 2 = 54 to 58%; and 3 = <54% 

(Basarab et al., 2003).  

5.2.2. The candidate gene approach 

5.2.2.1. Identification of positional candidate genes 

 

Two sets of positional candidate genes were utilized in this study. The first set 

consisted of 1100 candidate genes positioned within a range of 500kbp on either 
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side of 203 QTL reported in the Bovine QTL database (cattleQTLdb) (Hu et al., 

2007). These QTL were associated with some production traits including body 

weight (BW), average daily gain (ADG), feed efficiency, dry matter intake (DMI), 

metabolic weight (MW) and energy balance. The second set of positional 

candidate genes consisted of 1018 genes positioned within a range of 500kbp on 

both sides of 310 SNPs previously reported to be significantly associated with 

RFI in a GWAS using the 50K bovine SNP chip (Mujibi et al., 2011b).  

A total of 2118 positional candidate genes were identified in this study.  

5.2.2.2. SNP Detection 

 

The SNPs located in the positional candidate genes were identified from the 

NCBI SNP database (dbSNP) (Sherry et al., 2001) and by comparing cDNA 

sequences generated from liver samples from steers at the University of Alberta 

ranch at Kinsella, Canada with reference sequences from Ensembl version 57 

(Hubbard et al., 2009). 

To generate the cDNA library, RNA was prepared from pooled liver samples 

using TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) using the protocol 

described in the TRIzol® reagent user manual (Conolly et al., 2006). The quality 

and quantity of RNA was determined using a NanoDrop 2000 spectrophotometer 

(Nanodrop technologies, USA) (Sean, 2007). The liver cDNA library was 

constructed according to the TruSeq® RNA and DNA sample preparation kit 

(Illumina, USA, v2 published by Illumina Inc. 2011, publication number 970-

2009-039) and cDNA sequencing was performed on the Genome Analyzer II 
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using the TruSeq® RNA and DNA sample preparation kit (Illumina, USA, v2 

published by Illumina inc 2011, publication number 970-2009-039). 

To generate a list of putative SNPs, Maq (version 0.7.1) (Li et al., 2008) was used 

to map DNA sequencing reads and the bovine transcript sequences from Ensembl 

version 57 (Hubbard et al., 2009) were used as reference sequences. The SNPs 

returned by Maq’s SNPfilter command were annotated using NGS-SNP (Grant et 

al., 2011) by assigning a functional class to each SNP (e.g. nonsynonymous) and 

then providing NCBI, Ensembl identifiers and gene ontology terms for the 

affected genes, when applicable. Only the non-synonymous SNPs were 

considered functional candidate SNPs and were retained if the minor allele 

frequency was greater than 10%. 

The positional candidate genes containing functional SNPs were then prioritized 

according to their functions and gene ontology terms (Ashburner et al., 2000) in 

relation to the biological processes associated with feed efficiency (Herd and 

Arthur, 2009). Genes with functions related to metabolism of carbohydrate, lipid 

and protein, growth, ATP and body temperature regulation were considered 

functional candidate genes and a final set of 116 genes was identified spread 

across 12 chromosomes with some chromosomes containing larger numbers of 

functional candidate genes than others. The non-synonymous SNPs from each 

gene were prioritized based on the expected effect of the amino acid change such 

that among several SNPs, a non-conservative amino acid change was considered 

of higher priority than a conservative amino acid change in the same gene. A total 

of 117 SNPs were selected within the 116 genes; one SNP from each gene and 2 
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SNPs from the CAST gene, and genotyped at GeneSeek® using DNA samples 

obtained from steers at the University of Alberta ranch at Kinsella, Canada. 

5.2.3. Association analysis 

 

Association analysis was performed using ASReml 3 software (Gilmour et al., 

2009). The homozygous genotype containing the two alleles with lower frequency 

in the population was coded 0, the homozygous genotype with two alleles of 

higher frequency was coded 2 and the heterozygote genotypes were coded 1. Of 

the 117 functional SNPs, 113 were successfully genotyped and 39 SNPs were 

monomorphic leaving 74 polymorphic SNPs to be used in the analysis.  

The multiple marker association analysis was performed using the animal model:  

𝑌𝑖𝑗 =  µ + 𝑋1𝑖β + ∑ 𝑋2𝑗𝑔𝑗
74
𝑗=1 + 𝑍𝑎 + 𝑒  ……     (Equation 1) 

Yij represents the specific carcass trait being studied for animal i which has j SNPs 

(j = 74 SNPs) 

µ is the population mean, 

β is the vector of fixed effects associated with animal i, in this case the breed of 

the sire and the batch (Mujibi et al., 2010) 

∑ 𝑋2𝑗𝑔𝑗
74
𝑗=1  is the sum of the SNP effects (g), X2j is a design matrix relating an 

observation (y) to one of the genotypes 0, 1 or 2 at the jth SNP,  

a is a vector of random additive effects (exclusive of SNP g effect(s) in the model) 

constructed using each animal’s pedigree information to construct the relationship 
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matrix A. It was assumed to be normally distributed with a mean of 0 and 

variance of Aσ
2

a. 

e was the vector of random residual effects assumed to be normally distributed 

with a mean of 0 and a variance of Iσ
2
 where I was an identity matrix 

The significance criteria was a P-value corrected for 9 tests; using the same model 

for 9 different traits in this study, therefore SNPs were considered significant if P 

< 0.005. 

A multivariate analysis was performed for significantly correlated (P < 0.05) traits 

(Table 5.1) using ASReml 3 to identify markers that were significantly associated 

with variation in multiple traits simultaneously. Traits in this analysis were BF, 

UREA, CREA, CMAR, UMAR, YGRD, QGRD, GRDFT and LMY. 

5.2.4. Reconstructing gene networks 

 

Gene interaction networks were reconstructed and biological processes were 

identified using IPA software (Ingenuity® Systems, www.ingenuity.com) for the 

genes that were significantly associated with single carcass traits. The IPA 

software was selected because it offered a large knowledge base and can model 

relationships between genes, proteins, metabolites and can be used to identify 

biological pathways and interaction complexes (Ingenuity® knowledge base). To 

reconstruct the gene network, a list of significant genes and their corresponding p-

values were imported into the IPA software and the parameters were set to allow 

the network to include indirect relationships between the imported genes and 

http://www.ingenuity.com/
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genes that were in the database. Indirect relationships would assist in the 

identification of other genes that were not among the genes analyzed but may be 

associated with carcass traits. The IPA algorithm generates gene networks by 

mapping each gene identifier to its corresponding gene in the IPA Knowledge 

Base. The genes are then overlaid onto a global molecular network developed 

from information contained in the Knowledge Base. The networks are generated 

based on their connectivity such that each network has a maximum of 35 

imported genes. Each network is assigned a significance score, which represents 

the likelihood that the imported genes within the network are found therein by 

random chance. A high number of imported genes within a dataset lead to a higher 

network score. The network score is calculated as the negative of the exponent of 

the P- value such that a score of 25 is equal to a P- value of 10
-25

 (Calvano et al., 

2005). And therefore large scores correspond to high significance. 

5.3. RESULTS 

 

5.3.1. Correlation analysis 

 

Phenotypic correlation analysis indicated significant correlations between 

multiple carcass traits. Average back fat was significantly correlated with 

ultrasound rib eye area, ultrasound marbling, carcass marbling, yield grade, grade 

fat and lean meat yield. A summary of the correlations are shown in Table 5.1.  

5.3.2. Association analysis for individual carcass traits 
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Seven genes were significantly associated with various carcass traits at P < 0.005. 

Three more genes with P < 0.05 were considered to show a trend of association 

because they had been reported to be associated with carcass traits in previous 

studies. The amount of phenotypic variation explained by the significant SNPs for 

each trait is discussed in subsequent sections. These genes, their allele substitution 

effect and their functions are summarized in Table 5.2 and Table 5.3 shows the 

details of the SNPs and amino acid changes. 

The SNPs located in the Diacylglyerol kinase gene (DGKD), Serine/threonine 

kinase 10 (STK10) and the Ankyrin repeat and BTB domain containing gene 

(ABTB2) were associated with slaughter weight at P = 0.005, 0.0027 and 0.0047 

respectively. Two SNPs located in the 17-beta-hydroxysteroid dehydrogenase 12 

(HSD17B12) gene and the UBXN4 domain-containing protein 4 were 

significantly associated with carcass quality grade (P = 0.0006 and 0.0048 

respectively). The SNP in the NADH dehydrogenase iron sulfur protein 3 

(NDUFS3) was associated with carcass rib eye area (P = 0.0005) with an effect of 

-2.66cm
2
. A SNP located in the low density lipoprotein receptor-related protein 4 

(LRP4) was significantly associated with yield grade (P = 0.0008). 

The three genes showing a trend of significance were the growth hormone 

receptor precursor (GHR) associated with grade fat and average back fat thickness 

(P = 0.03 and 0.025 respectively) and the solute carrier family 45, member 2 

(SLC45A2) associated with grade fat (P = 0.01) and ARHGAP1 protein 

containing fragment (ARHGAP1) associated with carcass weight (P = 0.008). 
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5.3.3. Multivariate analysis 

 

A multivariate analysis was performed in ASReml 3 (Gilmour et al., 2009) using 

the significantly correlated traits to identify genes that were significantly 

associated with all traits. The highly correlated traits were BF, UREA, CREA, 

CMAR, UMAR, YGRD, QGRD, GRDFT and LMY. 

Four SNPs located in the 17-beta-hydroxysteroid dehydrogenase 12 (HSD17B12), 

Pyruvate dehydrogenase complex (PDHX), Solute carrier family 30 (zinc 

transporter), member 5 (SLC30A5) and Ubiquitin like modifier activating enzyme 

5 (UBA5) genes were significant (P < 0.005). The SNP in the HSD17B12 that 

was significant in the multivariate analysis was the same as the one that was 

significantly associated with quality grade, which was significantly correlated 

with CREA, UREA and UMAR.  

5.3.4. Gene Network and Biological pathways 

 

Using the 13 significant genes imported into IPA, three networks were 

reconstructed in IPA. The first network had the highest score of 23 and out of the 

13 significant genes, this network consisted of 9 genes including ABTB2, 

HSD17B12, LRP4, DGKD, STK10, GHR, UBXN4, SLC30A5 and PDHX genes 

as shown in Figure 5.1a. The second gene network had a score of 6 and out of the 

13 significant genes this network consisted of 3 genes including ARHGAP1, 

NDUFS3 and UBA5 (Fig 5.1b). The third network had a score of 3 and out of the 

13 genes this network contained only 1 gene, SLC45A2. Several other genes that 

formed indirect relationships with these genes were also included in the networks. 



143 | P a g e  

 

However, only the first and the second gene networks, which included more than 

one of the significant genes, will be discussed further.  

The gene network with the highest score had several hubs as shown in figure 5.1a.  

The Ins1 hub was composed of several interactions with the insulin 1 gene which 

encodes the insulin hormone. The insulin hormone plays a role in decreasing 

blood glucose concentration by increasing cell permeability to glucose. It also 

increases cell permeability to amino acids and fatty acids. In addition, it 

accelerates glycolysis, the pentose phosphate cycle and glycogen synthesis in the 

liver (Rebhan et al, 1997). 

An additional hub was centered on the NFkB (complex) transcription factor, 

which is involved in several processes such as cellular growth, immune and 

inflammatory responses and developmental processes. A complete review of the 

NFkB complex was published by Gilmore (2006). There were several interactions 

including 3 genes involved in estrogen metabolism. These genes are also involved 

in lipid metabolism and fatty acid biosynthesis. 

The second gene network was centered at the Ubiquitin C (UBC) gene (the UBC 

hub) and also consisted of several minor hubs associated with the NDUF genes. 

The UBC gene also interacted with NDUFS3 and the several minor hubs 

associated with the NDUF genes. The UBC gene was not analyzed in this study, 

but its location on the network and its multiple interactions with the significant 

genes indicates that it may influence their function and thereby potentially 

influence carcass traits. 
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Several genes were included in the gene networks and may be associated with 

carcass traits including AGRN, MAPK8IP1, CDKN1A, RANBP9, the NDUF 

genes and several additional genes as shown in Fig 5.1a and Fig 5.1b.  

The biological processes represented by the UBC hub relate to regulation of gene 

expression and include degradation of proteins in the endoplasmic reticulum, 

lysosomal degradation, and protein degradation via the proteasome, activation of 

transcription factor NF-kappa-B, cell signaling and DNA repair. Therefore, this 

hub represents genes and biological processes that influence variation in 

phenotypes through processes that regulate the levels of gene expression and 

protein function such as DNA transcription and protein degradation respectively.  

The NDUF hubs are associated with energy production and utilization, which is 

also related to fat and steroid metabolism.  

Other important biological processes identified in this pathway analysis included 

acetyl-CoA biosynthesis, androgen and estrogen biosynthesis, phospholipid 

degradation, glycerophospholipid metabolism and cytokine signaling.  

5.4. DISCUSSION 

5.4.1. Genes associated with individual carcass traits 

 

Protein structure and function have been shown to be influenced by amino acid 

properties such as the polarity and their interaction with water. In most cases, 

polar amino acids are found located on the outside of the protein and interact 

closely with tissue fluids because they are hydrophilic (Branden and Tooze, 

1999). Mutations that cause a change from a polar to a non-polar amino acid may 
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result in a major change in the structure of the protein and as a result affect its 

function. In this study, all the significant SNPs resulted in amino acid whose 

polarity was different from the amino acid in the reference sequence (Table 5.3). 

a. Diacylglycerol Kinase Delta (DGKD) 

In this study, DGKD was significantly associated with slaughter weight and 

explained 0.4% of the phenotypic variation in slaughter weight. DGKD also had 

an effect of increasing the average back fat thickness and a reduction in carcass 

weight though these effects were not significant (P= 0.05 and P=0.02 

respectively). The function of DGKD is to catalyze the conversion 

of Diacylglyerol (DAG) to phosphatidic acid (PA) with ATP as the phosphate 

group donor. Both DAG and PA are lipid signaling molecules and DGKD acts as 

the switch by terminating the signaling of one lipid while simultaneously 

activating signaling by another lipid (Merida et al., 2008). According to the gene 

ontology database (Ashburner et al., 2000), and the UniProt knowledgebase 

(UniProt Consortium, 2012), the functions of the DGKD gene relate to fat 

metabolism and include glycerolipid and glycerophospholipid metabolism and the 

phosphatidylinositol signaling system, both of which may influence the 

accumulation of back fat. Although there are no other studies reporting the 

association between this gene and carcass traits the gene has a role in lipid 

metabolism explaining the effect it has on average back fat and we hypothesize 

that this may secondarily affect the carcass weight. Further studies are required to 

validate this association in other populations.  
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b. 17-beta-hydroxysteroid dehydrogenase 12 (HSD17B12) 

17-beta-hydroxysteroid dehydrogenase 12 (HSD17B12) catalyzes the 

transformation of estrone (E1) into estradiol (E2), suggesting a central role in 

estrogen formation. It also has 3-ketoacyl-CoA reductase activity, reducing both 

long chain 3-ketoacyl-CoAs and long chain fatty acyl-CoAs, suggesting a role in 

long chain fatty acid elongation (Moon and Horton, 2003). In general the enzyme 

is involved in lipid metabolism, fatty acid biosynthesis and steroid, especially 

estrogen, synthesis. In this study, this gene was associated with quality grade (P = 

0.0006) and explained 1.36% of the phenotypic variation. HSD17B12 also 

showed a trend of association with marbling (P = 0.02). Although there has been 

no previous report on its association with quality grade and marbling, we 

hypothesize that its role in biological processes related to lipid metabolism may 

influence the fat levels in meat resulting in variation in marbling and consequently 

carcass quality grade.   

c. Low density lipoprotein receptor related protein 4 (LRP4) 

The LRP4 gene was significantly associated with yield grade explaining about 

5.5% of the phenotypic variation. LRP4 is a potential cell surface endocytic 

receptor and has been associated with functions such as calcium ion binding, 

anatomical structure development, cell differentiation and bone formation 

(Ashburner et al., 2000, Uniprot Consortium, 2012 and Rebhan et al., 1997). A 

SNP in the LRP4 gene was significantly associated with bone mineral density and 

limb development in humans (Unnur et al., 2008). A mutation in this gene caused 
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syndactyly in Holstein cattle (Duchesne et al., 2006). LRP4 also plays a role in 

lipid and cholesterol metabolism as a member of the low density lipoprotein 

receptor gene family which is involved in reducing cholesterol levels in blood 

(Brown and Goldstein, 1997). The role of this gene in anatomical development 

and bone mineralization may have an impact on the weight of the carcass. In 

addition, based on its role in cholesterol metabolism, we hypothesize that it may 

consequently affect yield grade which is estimated from a combination of carcass 

weight, fat content and muscle development.  

d. NADH dehydrogenase (NDUFS3) 

The NDUFS3 gene was associated with CREA (P=0.0005) and explained 3.2% of 

the phenotypic variation in CREA. The gene also showed a trend of association 

with YGRD (P = 0.03). The enzyme NADH dehydrogenase (NDUFS3) is 

involved in a complex of reactions in the electron transport chain and oxidative 

phosphorylation in the mitochondria (Ashburner et al., 2000 and UniProt 

Consortium, 2012). Other gene ontology terms associated with NDUFS3 are 

protein binding, apoptosis and negative regulation of cell growth (Ashburner et 

al., 2000). In a previous study, the NADH dehydrogenase 2 was significantly 

associated with marbling fat content in the loin muscle (Kim et al., 2009). We 

hypothesize that its role in energy metabolism in the electron transport chain may 

influence traits related to growth and fat deposition thereby influencing marbling. 

The role of the electron transport chain may also be influenced by the muscle 

fiber type and size where high oxidative fiber types tend to be smaller. A detailed 

review of the relationship between fiber type and size can be found at Wessel et 
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al., (2010). Further research is needed to validate the association between this 

gene and carcass rib eye area in other populations of cattle. 

e. Serine threonine kinase 10 (STK 10) 

STK10 was significantly associated with slaughter weight (P = 0.02) and 

explained 0.62% of the phenotypic variation in SLTWT. It also showed a trend of 

association with carcass weight (P = 0.03), yield grade (P = 0.04) and ultrasound 

rib eye area (P = 0.04). Serine/Threonine Kinase 10 belong to the family of 

Serine/Threonine kinases and their functions are to phosphorylate and activate 

members of the AMPK-related subfamily of protein kinases (Baas et al., 2003). In 

pigs, the protein kinase AMP-activated γ3 subunit gene, PRKAG3, which encodes 

the γ3 isoform of AMPK was identified by positional cloning as the causative 

gene for the Rendement Napole (RN) phenotype (Andersson 2003). The RN 

phenotype is common in Hampshire pigs and is characterized by a 70% increase 

in skeletal muscle glycogen content, decreased post mortem muscle pH and water 

content and increased lean meat content (Andersson 2003). There is evidence that 

the RN
 
phenotype is caused by a missense mutation (Arg

 
to Gln) in PRKAG3. 

Other polymorphisms in porcine PRKAG3 are associated with meat quality traits 

including meat color (Gunilla et al., 2004) and water holding capacity. In sheep, 

AMPK was shown to be negatively correlated with muscle adipogenesis (Tong et 

al., 2008). In beef cattle, a SNP marker in PRKAG3 position T2885C has been 

significantly associated with meat tenderness (Wu-Feng et al., 2012). We 

hypothesize that the effects of STK10 on the carcass traits may be through the 

activation of members of the AMPK-related subfamily of protein kinases and 
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consequently have effects on multiple carcass traits. Additional studies are 

required to validate this hypothesis. 

5.4.2. Genes significant in multivariate analysis  

 

The genes significant in multivariate analysis were HSD17B12 (see above), 

PDHX, SLC30A5 and UBA5. The multiple traits considered in this analysis were 

either related to fat content in meat such as carcass and ultrasound marbling, 

average back fat thickness and grade fat or they had components that were 

calculated from fat related traits such as yield grade which is estimated from fat 

content, carcass weight, and muscle development. 

The PDHX gene product is a component of the pyruvate dehydrogenase enzyme 

complex, which catalyses the conversion of pyruvate into acetyl CoA which 

enters the citric acid cycle (cellular respiration) producing energy for cellular 

processes (Rebhan et al., 1997). A previous study reported significant association 

between a SNP in the PDHX gene and body weight and body mass index in 

humans (Fox et al., 2007). The effect of this gene on energy metabolism may 

subsequently affect fat composition and growth in steers resulting in variation in 

carcass and ultrasound measurements of fat, growth and carcass weight. We 

therefore hypothesize that the gene may play a similar role in cattle as that 

reported in humans by Fox et al., (2007) resulting in variation in carcass weight. 

There were no studies that reported association between the SLC30A5 and UBA5 

and carcass traits, however, we recommend further studies to validate the 

significant associations observed. 
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5.4.3. Genes showing a trend of association 

 

The GHR gene codes for the receptor that binds growth hormone and other 

peptide hormones. In this study, the SNP in GHR gene showed a trend of 

association with both average back-fat thickness and grade fat explaining 8.8% of 

the phenotypic variation in grade fat and 9.0% of the phenotypic variation in 

average back fat. Mogens et al., (1993) showed that growth hormone significantly 

reduced the fat content and trim on meat. Another allele on the GHR gene has 

been significantly associated with mean differences in final weight, eye muscle 

area, marbling score and fat color, but the same allele was not associated with 

carcass weight, back-fat thickness and final meat quality grade or meat color (Han 

et al., 2009). A different SNP in the 4
th

 intron of the GHR gene was significantly 

associated with body weight and feed efficiency in beef cattle (Sherman et al., 

2008).  

The SLC45A2 gene showed a trend of association with grade fat explaining 5% 

of the phenotypic variation. The functions of SLC45A2 gene are more related to 

melanin production and in humans the gene is associated with hair, skin and eye 

pigmentation. Polymorphisms in the same gene have been associated with silver 

and white color phenotypes in chickens (Gunnarsson 2007) and using the 

comparative functional genomics approach, similar effects may be anticipated in 

beef cattle. The relationship between coat color and growth in cattle was 

investigated by Finch et al., (1984) where they showed that color had significant 

effects on growth with white steers gaining 0.13 kg more per day than dark steers. 

They also showed that coat color affected the feeding behavior of steers where 
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light colored steers spent more time in the sun grazing than dark ones. The 

relationship between coat color, obesity and adiposity has also been illustrated 

with the agouti gene in mice and its interactions with the melanocortin receptors 

with MC4R knockout mice showing obesity. MC3R has also been implicated in 

body weight regulation where antagonists of MC4R result into increased fat mass, 

reduced lean meat and increased feeding (Voisey and Van Daal 2001). In addition, 

a SNP located in a highly conserved region of the MC4R gene was found to be 

significantly associated with back-fat thickness, growth rate and appetite in pigs 

(Kim et al., 2000 and Fan et al, 2009). Therefore, although a direct link between 

the SLC45A2 and carcass traits has not been reported, we hypothesize that it may 

interact with the pigment genes and melanocortin receptors and consequently 

influence fatness, growth rate and appetite.  

The ARHGAP1 gene is a member of the cytoskeleton regulator family associated 

with protein binding and regulation of GTPase activity. Although the ARHGAP1 

gene has not been linked to carcass traits before, a SNP in the promoter region of 

this gene has been associated with osteoporosis in mice (Duncan and Brown, 

2010). In another study, ARHGAP1 knockout mice tended to be weaker and most 

died during their neonatal period. ARHGAP1 knockout mice that survived had a 

short lifespan, showed premature ageing phenotypes such as reduction in body 

mass, loss of sub-dermal adipose tissue and osteoporosis (Wang et al., 2007). In 

this study, the ARHGAP1 gene was associated with carcass weight and accounted 

for 1.2% of the phenotypic variation. Although there is a lack of previous reports 

of association between ARHGAP1 and carcass traits, we hypothesize that 
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variation in this gene may have effects similar to the ones reported by Wang et al 

(2007) resulting in lower body mass and sub-dermal adipose tissue which would 

result in reduced carcass weight in beef cattle.  

Although two SNPs in the Calpastatin gene were included in this study, there was 

no significant effect on carcass quality traits. Previous studies have reported 

significant association between CAST and feed efficiency and carcass quality (see 

introduction), the main effect is on beef tenderness (Barendse 2002, Casas et al 

2006). 

When all the genes significantly associated with specific traits were considered 

together, DGKD, ABTB2 and STK10 accounted for about 5% of the phenotypic 

variation in slaughter weight and UBXN4 and HSD17B12 accounted for about 

14% of the phenotypic variation in quality grade. To be cost effective, a marker 

set needs to account for at least 10-15% of the genetic variance (Crews, 2008), 

therefore the two markers associated with quality grade may be validated and 

incorporated into a marker assisted selection panel for beef quality grade. 

Although these genes were initially selected as positional candidate genes for 

traits that may also influence feed efficiency, none of the genes that accounted for 

more than 10% of the phenotypic variation in a carcass trait was also significantly 

associated with feed efficiency indicating that their use in marker assisted 

selection will not have significant effects on feed efficiency traits.  

5.4.4. Gene networks and biological processes 
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The gene networks and biological processes were reconstructed using IPA® 

(Ingenuity® systems) software. There were few interactions between the 

significant genes, which may indicate a possibility that their effects are relatively 

independent and only a few genes interact with each other directly. However, 

these genes may interact indirectly depending on the hub they belong to and the 

genes that are involved in that hub. 

The major hubs identified were associated with the insulin (Ins1) gene in the first 

network and UBC gene in the second network. There were several hubs 

associated with other genes including the NDUF genes. 

The Ins1 hub corresponded with biological processes associated with the 

metabolism of glucose, sterol and lipids. Other genes in the first network were 

involved in sterol metabolism and the regulation of transcription of several genes 

involved in several biological processes including cellular growth, immunity and 

cellular development. 

The Ubiquitin C (UBC) hub corresponded to biological processes including 

degradation of proteins in the endoplasmic reticulum, lysosomes and the 

proteasome, and activation of transcription factor NF-kappa-B, cell signaling and 

DNA repair.  

The NDUF hubs represent biological processes involved in energy production and 

utilization, and by extension lipid metabolism. These processes are more specific 

to carcass traits especially the traits related to fat content in meat such as marbling 

and average back fat thickness.  
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Other important biological processes identified by the gene network analysis were 

acetyl-CoA biosynthesis, estrogen biosynthesis and cytokine signaling. Acetyl 

CoA is important in energy and lipid metabolism and may have an effect on fat 

traits in carcasses. Estrogen is also involved in lipid and cholesterol metabolism 

and growth in complex biological pathways that will not be discussed in detail 

here but can be found in a review by Berthezène (1999). These processes may be 

implicated in its role in influencing carcass traits in cattle. 

5.5. CONCLUSIONS 

 

We have reported ten SNPs in ten genes associated with various carcass traits in 

beef cattle with significant effects on slaughter weight, carcass weight and 

average back-fat thickness. These genes need to be validated across other diverse 

breeds and populations in other geographical locations to assess the 

reproducibility of the results in other populations. If these markers show 

consistent results across different populations then SNP panels for marker assisted 

selection could be developed from these markers for selection of carcass traits in 

diverse beef populations.  
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Table 5.1: Phenotypic and (genetic)
z
 correlations between carcass merit traits in cattle from University of Alberta Kinsella ranch

y
. 

TRAITS BF GRDFT CREA UREA CMAR UMAR YGRD QGRD LMY 

BF 1.00  0.76
x
 (0.69)

x 
0.01 (0.01) 0.35

x 
(0.08) 0.47

x 
(0.18)

x 
0.47

x 
((0.14)

x 
0.64

x 
(0.32)

x 
-0.06 (0.04) -0.66

x 
(-0.78)

x 

GRDFT  1.00 -0.09(-0.12) 0.22
x 
(-0.16)

x 
0.53

x 
(0.24)

x 
0.43

x 
(0.32)

x 
0.76

x 
(0.36)

x 
-0.03 (0.08) -0.87

x 
(-0.62)

x 

CREA   1.00 0.67
x 
(0.80)

x 
-0.07 (-0.01) -0.13

x 
(-0.08) -0.30

x 
(-0.12)

x 
-0.30

x 
(0.45)

x 
0.45

x 
(0.56)

x 

UREA    1.00 0.13
x 
(0.11) 0.11

x 
(0.13)

x 
0.06 (0.02) -0.40

x 
(0.52)

x 
0.03 (0.58)

x 

CMAR     1.00 0.55
x 
(0.75)

x 
0.41

x 
(0.65)

x 
0.03 (0.38)

x 
-0.54

x 
(-0.22)

x 

UMAR      1.00 0.39
x 
(0.54)

x 
0.13

x 
(0.15)

x 
-0.44

x 
(-0.24)

x 

YGRD       1.00 0.06 (0.12)
x 

-0.81
x 
(0.19)

x 

QGRD        1.00 -0.08 (0.06) 

LMY         1.00 

y 
The phenotypic and genetic correlation between various carcass merit traits, including backfat (BF), grade fat (GRDFT), carcass ribeye area 

(CREA), ultrasound rib eye area (UREA), carcass marbling (CMAR), ultrasound marbling (UMAR), yield grade (YGRD), quality grade 

(QGRD) and lean meat yield (LMY).
z 
Genetic correlations are in parenthesis

 

x
 Significant correlation (P < 0.05).  
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Table 5.2: SNPs and genes significantly associated with various carcass traits, the position of the SNPs and the functions of the genes
z
 

Gene 

symbol 

Gene name Associated trait P-Value Number of individuals per 

genotype 0, 1, 2 

Allele effect Gene function
y
 

UBA5 Ubiquitin like 

modifier activating 

enzyme 5 

Multiple traits 0.0003 4 113 408 - Ubiquitin like post translational modifier 

protein 

 UBXN4 UBX domain-

containing protein 4  

Quality grade 0.0048 57 236 230 -0.1676 Involved in endoplasmic reticulum-

associated protein degradation thus 

regulation of phenotypic expression 

DGKD Diacylglycerol kinase Slaughter 

weight 

0.005 6 160 356 -12.43kg Involved in Glycerolipid and 

glycerophospholipd metabolism and 

phosphatidylinositol signaling system 

ABTB2 Ankyrin repeat and 

BTB (POZ) domain 

containing 2 

Slaughter 

weight 

0.0047 132 238 160 11.63kg Suggested to be involved in DNA and 

protein binding. However the functions of 

this gene remain largely unknown. 

PDHX Pyruvate 

dehydrogenase 

complex (complex X) 

Multiple traits 0.0023 125 264 137 - The pyruvate dehydrogenase complex 

catalyzes the conversion of pyruvate to 

acetyl CoA. 

HSD17B12 17-beta-

hydroxysteroid 

dehydrogenase 12 

Quality grade 0.0006 34 160 327 0.1951 Catalyzes the transformation of estrone 

(E1) into estradiol (E2), suggesting a 

central role in estrogen formation. 

Also has 3-ketoacyl-CoA reductase 
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activity, reducing both long chain 3-

ketoacyl-CoAs and long chain fatty acyl-

CoAs, suggesting a role in long fatty acid 

elongation. 

 ARHGAP1 ARHGAP1 protein 

Fragment 

Carcass weight 0.0083
 

60 213 250 12.11kg One of cytoskeleton regulators and the 

ontology terms associated with this gene 

were protein binding and regulation of 

GTPase activity. Has been associated with 

reduction in body mass, adipose tissue and 

osteoporosis 

LRP4 

 

 

 

 

 

 

Low density 

lipoprotein receptor-

related protein 4 

 

 

Yield grade 0.0008 23 27 471 -0.4533 Plays a key role in the formation and the 

maintenance of the neuromuscular 

junction. 

It has also been proposed to function as a 

cell surface endocytic receptor binding and 

internalizing extracellular ligands for 

degradation by lysosomes 

In humans and cattle this gene is involved 

in bone development and growth. 

May also be involved in cholesterol 

metabolism. 

NDUFS3 NADH 

dehydrogenase 

Carcass rib eye 

area 

0.0005 30 200 294 -2.663 (cm2) Involved in a complex of reactions in the 

electron transport chain and oxidative 

phosphorylation in the mitochondria. 

Therefore plays a role in energy 
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metabolism. 

STK10 Serine/threonine 

kinase 10 

Slaughter 

weight 

0.0027 22 215 284 18.14kg One of Serine Threonine Kinase genes. 

Their roles are in cell cycle arrest, protein 

amino acid phosphorylation  and 

regulation of fatty acid oxidation 

SLC30A5 Zinc transporter 

(solute carrier family 

30) member 5 

Multiple traits 0.004 80 265 171 - May be involved in zinc transport into 

cells to form insulin crystals 

 GHR Growth hormone 

receptor Precursor 

(GHR) 

Grade fat 0.03 65 204 255 1.59 This gene encodes the receptor that binds 

the growth hormone and activates 

intercellular signals that lead to growth. 

 GHR Growth hormone 

receptor Precursor 

(GHR) 

Average back 

fat 

0.025 65 204 255 1.626cm Encodes the receptor that binds the growth 

hormone and activates intercellular signals 

that lead to growth. 

 SLC45A2 Solute carrier family 

45, member 2 

Grade fat 0.0126 7 60 461 0.9835 Related to melanin production and in 

humans the gene is associated with hair, 

skin and eye pigmentation. In animals it is 

also involved in pigmentation, lipid 

metabolism and growth. 

z 
Details of SNP position and type are shown in Table 5.3. 

 

y
Referred from genecards (Rebhan et al., 1997), gene ontology databases (Ashburner et al., 2000) 
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Table 5.3: Details of significant SNPs associated with carcass traits 

Gene symbol SNP ID
x 

SNP Chr:bp Type 

of 

SNP 

Position of 

SNP in gene 

A.A Change Position of 

A.A in 

gene 

UBA5 NF 1:139081617 A/T
y 

231 Glu > Val 13 

UBXN4 rs208513069 2:61935185 T/A
y
 591 Leu > His 195 

DGKD NF 3:120460419 A/G
z
 3067 Thr > Ala 1023 

ABTB2* rs211653218 15:65558664 A/C
y
 2339 Glu > Ala 780 

PDHX rs211170349 15:66290876 A/T
y 

782 Tyr > Phe 255 

HSD17B12 rs109711563 15:74828355 A/G
z
 816 Arg > Gly 243 

ARHGAP1 NF 15:76986446 C/T
z
 235 Pro > Ser 79 

LRP4 NF 15:77158469 T/C
z
 3410 Met > Thr 1137 

NDUFS3 NF 15:77730420 C/A
y
 168 Ala > Asp 55 

STK10* rs136660541 20:3772213 C/T
z
 2226 Thr > Met 728 

SLC30A5 rs136504424 20:10487612 A/G
z 

1666 Ser > Gly 556 

GHR NF 20:33915503 T/A
y
 873 Phe > Tyr 279 

SLC45A2 NF 20:42286376 G/A
z
 718 Ala > Thr 240 

z
Transition.   

y
Transversion.  

x
SNPs with NF in their ID did not match any SNP in the SNP database 

* The SNP reported in the SNP database differed from the SNP alleles in the population we studied but they were located at the same position 

in the transcript and amino acid (A.A) sequence. 
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Figure 5.1a: Gene interaction network 1 associated with carcass quality genes in 

beef cattle. Genes in the network that were significantly associated with 

various carcass traits were: PDHX, DGKD, LRP4, ABTB2, SLC30A5, 

HSD17B12, UBXN4, GHR and STK10. 
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Figure 5.1b: Gene interaction network 2 associated with carcass quality genes in 

beef cattle. Genes in the network that were significantly associated with 

various carcass traits were: NDUFS3, ARHGAP1 and UBA5. 
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PREFACE OT CHAPTER SIX 

Post translational regulation of phenotypes can be expressed as variation in 

metabolite levels in blood. These metabolites, if highly correlated with the trait, 

may be used as intermediate phenotypes to predict the phenotype of interest. 

The null hypothesis; that there would be no significant association between 

metabolite levels and RFI in beef cattle, was tested in Chapter 6 with the intention 

of proposing the use of  metabolites as biomarkers for the prediction of RFI in 

beef cattle. 

This Chapter has been submitted to Livestock Science for publication 
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CHAPTER SIX 

 

Metabolite bio-markers associated with feed efficiency in beef cattle with 

divergent residual feed intake
4
 

6.1. INTRODUCTION 

 

RFI is a measure of feed efficiency defined as the difference between an 

individual’s actual feed intake and the predicted feed intake (Koch et al. 1963). 

The predicted feed intake in beef cattle is estimated based on the individual’s 

maintenance of body weight (BW) and growth (average daily gain-ADG). 

Therefore RFI is phenotypically independent of both BW and ADG. Selecting 

cattle for RFI could be implemented using phenotypic measurements. However, 

estimation of RFI requires measurement of individual animal feed intake, which is 

expensive and limited to the capacity of the recording equipment (Williams, 

2010). RFI is also moderately heritable (Arthur et al. 2001) making it a good 

candidate for marker assisted selection with DNA or other predictive markers 

could be used in selection schemes (Moore et al. 2009). In reference to genetic 

markers, variation in several genes have been reported to influence RFI variation 

but their effects are either breed or population specific and are not always 

reproducible in genetically diverse populations (Sherman et al. 2010).  

                                                 
4
 A version of this chapter has been submitted to Livestock Science for publication (2013) 
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The discovery of metabolites associated with traits of importance in livestock 

such as plasma levels of carnitine and body weight in cattle (Weikard et al. 2010), 

indicates a potential for using metabolites as biomarkers to predict RFI. 

Metabolite marker assisted selection may offer an approach to be used as an 

alternative or complementary to genetic marker assisted selection. The significant 

metabolites may also be used to discover novel pathways influencing the variation 

in feed efficiency. Metabolite based selection techniques have the potential to be 

refined making them relatively easy and fast to use.  

In addition, combining metabolite association studies with genetic association 

studies to develop triple association analysis between genotypes, metabolites and 

phenotypes as used by Weikard et al. (2010) to identify genotypes and metabolites 

associated with growth and lipid metabolism in cattle, may result in the 

identification of even more important physiological pathways involved in the 

regulation of RFI. This approach was also used to identify metabolites associated 

with specific genotypes in humans (Kettunen et al. 2012). As a selection tool, 

metabolite profiles have also been used to predict levels of phenotypes such as 

body mass in birds (Jenni-Eiermann and Jenni, 1994), bird growth rates (Albano 

et al. 2011), growth and body composition in sheep (Hegarty et al. 2006) and 

diseases such as diabetes (Kulkarni, 2012).  

In this study, we used the nuclear magnetic resonance (NMR) technique to assess 

the levels of metabolites in plasma followed by association analysis to identify the 

metabolites associated with RFI in beef cattle. The significant metabolites were 

then used to reconstruct metabolic networks using IPA to analyze the interaction 
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between the significant metabolites. We also identified the biological pathways 

associated with the metabolites and made some hypotheses on the role they play 

in the regulation of feed efficiency.  

6.2. MATERIALS AND METHODS 

6.2.1. The animal resources 

 

The composition and management of the steers used as the discovery population 

this study was described by Montanholi et al. (2010). The steers belonged to the 

University of Guelph in Guelph, Ontario, Canada and were cared for according to 

the guidelines of the Canadian Council of Animal Care, (1993). The project was 

approved by the University of Guelph animal care committee. The breed 

composition of this herd was described in detail by Mader et al. (2009) as 

crossbreeds composed of Angus, Limousin, Charolais, and Simmental as the 

major contributing breeds. The entire population entered into the feeding test 

consisted of 91 steers (46 in year 1 and 45 in year 2) and the average initial 

weight for the steers was 313±6.2kg. 

Blood samples were collected through jugular venipuncture using a 10 ml blood 

collection tube (VacuntainerR; BD Inc., Franklin Lakes, NJ, USA) containing 

sodium heparin mounted with a 20 ga needle. Blood samples were immediately 

stored on ice until centrifugation (3,0003g for 20 min) to separate the blood 

plasma, which was stored at -80
o
C until RFI was estimated.  

6.2.2. RFI estimation 
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The statistical procedures used to estimate RFI in the discovery population were 

reported by Montanholi et al. (2010). In summary, the feeding tests were 

conducted for 140 days during which individual average daily feed intakes were 

recorded using an automated feeding system. Daily dry matter intake (DMI) over 

the testing period was calculated as a product of the daily intake in as fed basis 

and the percent dry matter in the feed. Average daily gain (ADG) was determined 

by a regression of body weight (BW) on days on trial. Mid-trial BW was 

calculated by computing the animals’ intercept plus the ADG times 70 (half of the 

experimental period).  

RFI was estimated for each steer using the formula described by Koch et al. 

(1963) (Equation 1).  

RFI = DMI- β0 + β1 (ADG) + β2 (BW)   ….............Equation 1 

Where β0 was the intercept, β1 and β2 were the regression coefficients on ADG 

and on mid-trial body weight (BW) respectively.  

The R
2
 observed for this regression was 0.59 and 0.72 for year 1 and 2, 

respectively (Montanholi et al. 2010). 

When the RFI values for each steer were available, the plasma samples were 

initially sorted into 2 batches according to the RFI value of the steers tested so 

that one batch consisted of steers with high RFI and the other batch consisted of 

steers with low RFI. The plasma samples were then sorted to establish 3 sets of 

samples from each batch (making a total of 6 sets) according to the period when 

the blood samples were collected. The three time periods considered in this study 
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included period 1, which corresponded to the second week after the beginning of 

the feeding test period, and period 2 and 3, corresponding to 6 and 9 weeks into 

the feeding period respectively.  

A subset of 16 plasma samples collected from steers with the highest RFI values 

in the high RFI batch and 16 samples from steers with the lowest RFI values from 

the low RFI batch were sampled in each period for metabolomics analysis.  

The size of the sample used in this study was estimated using the formula:  

𝑛 =  
2

𝑑2 ∗  𝐶𝑝, 𝑝𝑜𝑤𝑒𝑟     (Whotley and Ball, 2002) 

Where n is the number of subjects required in each group, d is the standardized 

difference and  𝐶𝑝, 𝑝𝑜𝑤𝑒𝑟 is a constant defining the values chosen for p value and 

power. In this study the constant was estimated using a p value of 0.05 and power 

of 80% and was equal to 7.9 (Whitley and Ball, 2002).  

The standardized difference (d) was estimated as: 

 𝑑 =  
𝑇𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
. The value of d was set at 1 such that the target/detectable 

difference would be equal to standard deviation of RFI in the population. 

Therefore the sample size was estimated as 𝑛 =  
2

12
∗  7.9 =  15.8 rounded off to 

16 steers. A total of 96 samples were used in the metabolomic analysis. 

6.2.3. Metabolite assays using NMR in beef cattle 

 

Serum global metabolite concentrations were determined using Nuclear Magnetic 

Resonance (NMR) at the Chenomx® NMR facility at the University of Alberta, 
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Canada. This procedure is novel because, although it has been used and validated 

more frequently in humans and laboratory animals, this study is one of the first to 

apply it in samples obtained from cattle. The NMR analysis involved three steps 

namely sample preparation, spectra acquisition and sample fitting. 

Sample preparation 

Samples were filtered through 3kDa molecular weight cut-off filters (Nanosep 3K 

Omega microcentrifuge filter tubes; Pall Corporation, NY, USA) to remove 

macromolecules, including lipids and proteins. As the filter tube manufacturer 

treats the filter membranes with glycerol as a preservative, filters were either 

soaked overnight in distilled water, or rinsed with distilled water and centrifuged 

three times before use. Samples comprising of less than 530 μl after filtration 

were diluted with 30mM KH2PO4 solution (pH7) to ensure adequate volume for 

NMR acquisition. 

5mm NMR tube (New Era Enterprises Inc., NJ, USA) contained a total of 600μl 

of liquid with the contents as follows: 60μl of Chenomx internal standard solution 

IS-2 (contains 5.3945 mM DSS-d6, 0.2 %w/v NaN3 in D2O) which is used for 

metabolite quantification, 10μl of Formate (pH7.0, added for lineshape 

correction) and 530μl of sample + phosphate buffer. This mixture was vortexed 

for 30s before it was transferred to an NMR tube for data acquisition. All 

metabolite concentrations obtained were adjusted by appropriate factors to 

account for the above dilutions, and represent the contents of the filtered samples, 

not the contents of the NMR tube. 
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Spectra acquisition 

Spectra were acquired on a 600 MHz VNMRS spectrometer equipped with a 

5mm HX probe (Agilent Technologies, CA, USA).  The pulse sequence used was 

a 1D-tnnoesy with a 990 ms presaturation on water and a 4 s acquisition period.  

Spectra were collected with 256 transients and 4 steady-state scans at 298 K. 

Sample fitting 

Spectra were processed using the Processor module in Chenomx NMR Suite 7.5 

software (Chenomx, Edmonton, Alberta, Canada).  Spectra were zero filled to 64k 

points and Fourier transformed.  Spectral phasing was performed on the spectra 

along with baseline correction (Chang et. al, 2007). Metabolites were identified 

and quantified with a targeted profiling approach using the Profiler and Library 

Manager modules in the same software which contains 304 total metabolites 

(Weljie et. al, 2006). Each spectrum was reviewed by at least two different  

analysts.  A final review pass was done on all of the spectra before exporting 

concentration results. Concentration measurements were adjusted to report 

metabolite concentrations after filtration of the samples. 

6.2.4. Statistical analysis 

 

Association analysis between RFI and the metabolite levels was performed using 

SAS 9.1 (SAS Institute Inc. Cary, NC, USA) for each period separately using a 

multiple regression model and for the combined data at the three periods using a 

mixed model for repeated measures analysis. 
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Metabolic networks 

To assess the molecular interactions between significant metabolites in each 

period, metabolic networks were reconstructed for each period using IPA software 

(Ingenuity Systems, www.ingenuity.com). To reconstruct the metabolic networks, 

a list of significant metabolites and their corresponding P-values were imported 

into the IPA software and the parameters were set to allow the network to include 

indirect relationships between the imported metabolites and metabolites in the 

knowledge base. Indirect relationships would assist in the identification of other 

metabolites that were not among the ones analyzed but may be associated with 

RFI. The IPA algorithm generated metabolic networks by mapping each 

metabolite identifier to its corresponding metabolite in the IPA knowledge base as 

described in details by Calvano et al., (2005). The metabolites are then overlaid 

onto a global molecular network developed from information contained in the 

knowledge base. Each network is assigned a significance score, which represents 

the likelihood that the imported metabolites within the network are found therein 

by random chance (Calvano et al., 2005). A high number of imported metabolites 

within a dataset lead to a higher network score. The network score is calculated as 

the negative of the exponent of the P-value such that a score of 25 will be equal to 

a P-value of 10
-25

 (Calvano et al., 2005) and therefore larger scores correspond to 

increased significance. 

6.2.5. Validation analysis 

 



182 | P a g e  

 

To validate the results obtained in the discovery population, blood was collected 

from 10 Angus steers with high RFI and 10 Angus steers with low RFI from the 

University of Alberta beef ranch at Kinsella, Canada. The blood samples were 

collected at two time points corresponding to period 1 and 2 in the analysis 

conducted on the discovery population. Blood samples were not collected from 

the time period corresponding to period 3 because it was only one week to the end 

of the feeding test period, and, period 3 would be considered too late into the 

feeding test period and metabolites identified at this period would not offer 

significant additional information in predicting RFI in comparison to period 2.  

The metabolite concentrations were determined using Nuclear Magnetic 

Resonance, NMR, at the Chenomx® NMR facility at the University of Alberta, 

Canada, as described above.  

A multiple regression analysis was performed using SAS 9.1. (SAS Institute Inc. 

Cary, NC, USA) to identify the metabolites significantly associated with RFI in 

each of the two periods. 

6.3. RESULTS 

6.3.1. Discovery analysis 

 

Multiple regression analysis showed that at period 1, two metabolites (creatine 

and glycine) were significantly (P < 0.05) associated with RFI and accounted for 

36.3% of the phenotypic variation in RFI (Table 6.1, Fig 6.1A). In period 2, 10 

metabolites were significantly (P < 0.05) associated with RFI and accounted for 

74.2% of the phenotypic variation in RFI (Table 6.1, Fig 6.1B) and at period 3, 3 
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metabolites were significantly (P < 0.05) associated with RFI and accounted for 

52.1% of the phenotypic variation (Table 6.1, Fig 6.1C). Creatine was the only 

metabolite that was significant in more than one period; being significant in both 

period 1 and 2. 

In a mixed model for repeated measures, 2 metabolites (citrate and creatine) were 

associated with RFI across all periods and accounted for 33.2% of the phenotypic 

variation in RFI (Table 6.1, Fig 6.1D).  

The concentration of all the significant metabolites fluctuated between periods 

(Figure 6.2 indicating an interaction between metabolite levels and the animal’s 

developmental stage. The significant metabolites in the discovery population 

accounted for the highest phenotypic variation during period 2 although this R-

square may be biased due to the usage of a larger number of metabolites in period 

2 than the rest of the periods as shown in Table 6.1.  

6.3.2. Validation analysis 

 

The results of the validation analysis indicated that 8 metabolites were 

significantly (P < 0.05) associated with RFI in period 1 with a cumulative R-

square of 75.3% (Table 6.2). Another metabolite; Trimethylamine was not 

significant (P = 0.06) but explained 23% of the variation therefore was considered 

relevant. None of the metabolites that were significant at period 1 in the discovery 

population was also significant in the validation population. However, creatinine, 

which was significant in the validation population, is a product of the metabolism 

of creatine, which was significant in the discovery population. Table 6.2 and Fig 
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6.2 show a summary of the results of association analysis in the validation 

population in period 1. 

In period 2, 12 metabolites were significantly associated with RFI in the 

validation population explaining 98.4% of the phenotypic variation (Table 6.3). 

Three of these metabolites (creatine, hippurate and carnitine) were also significant 

in the discovery population. Together, these 3 metabolites accounted for 32.8% of 

the phenotypic variation. An additional metabolite glutamine was significantly 

associated with RFI in the validation population while its metabolic precursor, 

glutamate, was associated with RFI in the discovery population.  

6.3.3. Metabolic networks and biological pathways 

 

Using the results of the analysis of the discovery population, at period 1 only two 

metabolites, creatine and glycine were used and several links were created 

between these metabolites and other metabolites (Fig 6.3). The metabolic network 

indicated additional metabolites that may have biological relevance in the 

regulation of RFI including proinsulin, calpain, cholesterol, amylase and NAD+. 

The biological processes associated with the metabolites in period 1 included 

calcium/calmodulin signaling pathways, AMPK signaling, methane metabolism, 

bile acid biosynthesis, glucose metabolism and cholesterol metabolism. 

At period 2, a metabolic network was reconstructed for the 10 metabolites that 

were significantly associated with RFI. Similar to the network in period 1, 

proinsulin was also involved in these interactions (Fig 6.4). Other metabolites and 

genes were the neuropeptide Y receptor Y5 (NPY5R), the MAPK pathway and 
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kynurenic acid which is a product of normal metabolism of L-tryptophan. The 

biological processes associated with the metabolites in period 2 were related to 

amino acyl tRNA biosynthesis, metabolism of serine, glutamate, glycine and 

threonine, nitrogen metabolism, urea cycle and GABA receptor signaling.  

At period 3, the network only retrieved molecules interacting with Tyrosine as 

shown in figure 6.5. The metabolites formate and hydroxyisobutyrate were not 

associated with any records in the databases. The biological processes 

significantly associated with tyrosine at period 3 included the metabolism of 

nitrogen, pyruvate, methane, tyrosine, amino acid and glyoxylate, protein kinase 

signaling and dopamine receptor signaling. 

6.3.4. Predicting RFI using metabolite assays 

 

According to this study, the prediction of RFI levels in steers using blood 

metabolites is possible and can achieve the highest accuracy if performed at 

period 2 (6 weeks into the feeding period). The three metabolites that were 

significant in both discovery and validation population only explained 32% of the 

variation and the predicted values of RFI based on these metabolites had an 

average accuracy of prediction of 48% (Fig 6.6). The accuracy of prediction of 

RFI could be increased by using more metabolites as shown in fig 6.6, where 12 

significant metabolites achieved an accuracy of prediction of 99.5% in the 

validation population.  

6.4. DISCUSSION 
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In this study, the NMR assay approach was used to identify blood metabolites 

associated with RFI. We also investigated the metabolic networks and biological 

pathways associated with the significant metabolites and proposed the metabolites 

that could be used to predict RFI with high accuracy. 

The results indicated that there are metabolites significantly associated with RFI 

at different stages during the feeding test period. The concentrations of 

metabolites fluctuate from one period to the next possibly depending on the 

underlying biological processes occurring in the animal at that stage of 

development. Of the greatest importance were the metabolites observed in period 

2, which corresponded with week 6 of the feeding period. A total of 10 

metabolites were significantly associated with RFI in the discovery population 

accounting for 74.2% of the phenotypic variation in RFI and three of them 

(creatine, hippurate and carnitine) were also significant in the validation 

population accounting for 32% of the phenotypic variation in RFI. In period 2 in 

the validation population, 9 metabolites accounted for 98.5% of the phenotypic 

variation in RFI. The R square values for each period may be biased due to the 

small sample size used in this study and requires to be re-estimated using larger 

populations of beef steers.  

Carnitine was one of the metabolites significantly associated with RFI in period 2. 

In a similar study, carnitine was identified to be associated with body weight in 

cross-bred cattle with high carnitine levels associated with increased body weight 

(Weikard et al., 2010). In this study, the high RFI steers had relatively higher 

levels of carnitine than the low RFI steers and may indicate a relatively higher 
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body weight. This is contrary to the expectations of phenotypic RFI being 

expected to be independent of its component traits (Kennedy et al., 1993). 

However, the biological mechanisms that influence variation in RFI may also 

influence body weight resulting in genetic correlations between these traits. The 

lack of genetic dependence in RFI was reported by Kennedy et al., (1993). 

Carnitine plays a key role in energy metabolism of cells (Di Lisa et al., 1995; 

Scholte et al., 1996; Siliprandi et al., 1994) mainly, by transferring acyl groups 

from cytoplasm to mitochondrial matrix for β-oxidation. In addition, L-carnitine 

regulates coenzyme-A concentrations in cytosol and mitochondria, glucose and 

lipid metabolism (Arslan, 2006). These functions render the utilization of energy 

in feed and body stores more efficient (Arslan, 2006). The role of carnitine, 

therefore, may be influencing body composition in cattle and as a result 

influencing body weight. The relationship between RFI and body composition 

traits was discussed previously. Arthur et al., (2001) and Shenkel et al., (2004) 

showed that subcutaneous fat depth over the 12th and 13th ribs and rump had a 

positive genetic correlation with RFI in beef cattle.  

Another metabolite which functions as part of the cell's energy shuttle is creatine, 

which was also significantly associated with RFI in both populations. During 

creatine metabolism, the high energy phosphate group of ATP is transferred to 

creatine to form phosphocreatine. Phosphocreatine will then be used to 

resynthesize ATP from ADP during increased energy demands. A detailed review 

of the creatine and phosphocreatine system can be obtained from Wallimann et 

al., (2011). Creatinine, a by-product of creatine metabolism, was reported to be 
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significantly associated with muscle mass and negatively associated with fat depth 

in sheep (Clarke et al., 1996). In this study, creatine levels were high in high RFI 

steers across all periods and in both discovery and validation populations. These 

levels may indicate an increased need for energy among the less feed efficient 

steers. 

Other metabolites associated with energy metabolism were involved in the TCA 

cycle. These included the levels of acetate in blood, which were significantly 

associated with RFI in the discovery population. Acetate levels were higher in low 

RFI (efficient) steers than high RFI (inefficient) steers in the discovery 

population. In contrast, acetate levels were lower in the low RFI steers in the 

validation population. Acetate comprises the majority (70%) of volatile fatty acids 

produced in the rumen of cattle and is used for lipid metabolism and energy 

production for skeletal muscles, the heart and kidneys. Acetate is used to produce 

energy when individuals are in low energy balance and it forms fat when the 

animal is in high energy balance (Preston and Leng, 1987). Acetate reacts with 

Coenzyme-A to form acetyl-CoA which enters the TCA cycle (in a step which 

utilizes ATP) and reacts with oxaloacetate to form citrate (Preston and Leng, 

1987). The citrate levels in serum were also significantly associated with RFI in 

the discovery population; steers with low RFI had less citrate than those with high 

RFI in both populations.  

To explain the levels of acetate and citrate and their correlation with RFI, we 

suggest two hypotheses; firstly, low citrate levels in the low RFI steers may be a 

mechanism to reduce the amount of ATP produced by the TCA cycle. Secondly, 
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the lower citrate levels in low RFI steers may have resulted from reduced levels of 

acetyl-CoA in an alternative mechanism to reduce ATP production. The second 

hypothesis cannot be pursued further because the levels of acetate were 

inconsistent between the discovery and the validation populations.  

Hydroxyisobutyrate, another metabolite associated with RFI in the discovery 

population, is associated with gluconeogenesis from valine and has been shown to 

be an inter-organ metabolite that preserves the gluconeogenic potential of valine 

(Letto et al., 1986). It has been shown that hydroxyisobutyrate inhibits key 

enzymes in energy metabolism in young rats by inhibiting the functions of the 

respiratory chain complex 1 to 3 and mitochondrial creatine kinase (Viegas et al., 

2008). Hydroxyisobutyrate was also associated with high levels of circulating free 

fatty acids, increased intramyocellular lipid content, impaired insulin-mediated 

glucose uptake, diminished mitochondrial functioning and an overall weakened 

metabolic flexibility (Mullen and Ohlendieck, 2010). In this study, high RFI steers 

(feed inefficient) had a higher concentration of hydroxyisobutyrate than low RFI 

steers, which may indicate that the efficient steers had less inhibition to the 

respiratory chain, better energy production, less circulating free fatty acids and 

reduced intramuscular lipid content. 

Some significant metabolites may play a role in energy production through 

gluconeogenesis such as the gluconeogenic amino acids glycine in period 1, 

glutamate, phenylalanine, threonine and lysine in period 2 and tyrosine in period 

3. In the validation population, the significant amino acids that are gluconeogenic 

included glutamine, histidine and proline. In mature cattle, most of the amino 
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acids are deaminated and contribute to energy production (Preston and Leng, 

1987). Each amino acid enters the TCA cycle at a different step for example 

glutamate enters the TCA to form alpha ketoglutarate while threonine forms 

succinyl CoA. In this study there was no consistent trend in the levels of 

gluconeogenic amino acids between the high and low RFI steers. The low RFI 

steers had higher concentration of glutamate, threonine and glycine but a lower 

concentration of tyrosine, lysine and phenylalanine compared to the high RFI 

steers. 

Several other metabolites were included in the metabolic networks and may play a 

role in feed efficiency. The neuropeptide Y (NPY) and its receptors (NPYRs) in 

the metabolic network in period 2 have been implicated in regulation of appetite 

in humans (Minor et al., 2009) and cattle (Matteri, 2001). A previous genetic 

association analysis of SNPs located in the Neuropeptide Y gene indicated 

significant association between these SNPs and ADG, BW, feed efficiency and 

carcass marbling (Sherman et al., 2008). In this study, NPY5R created a network 

module with L-glutamic acid and proinsulin, two metabolites which were 

previously shown to be associated with regulation of appetite (Hermanussen et al., 

2006) with glutamic acid down-regulating hypothalamic suppression of appetite 

and potentially leading to obesity. However, the effect of proinsulin and insulin on 

regulating appetite has been inconsistent across studies. Lele et al., (2006) showed 

that proinsulin and leptin were both significantly associated with obesity in 

humans with obese subjects having higher levels of proinsulin. Other studies have 

also reported the significant association between Leptin and RFI (Hoque et al., 
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2009; Kelly et al., 2009). The biological processes associated with leptin and 

proinsulin included energy and lipid metabolism. 

Another metabolite included into the networks was cholesterol. The metabolism 

of cholesterol is similar to that of other lipids (Preston and Leng, 1987) and may 

partially explain the reported negative correlation between RFI and fat 

composition in steers (Basarab et al., 2003).  

The metabolic networks also included calpain, which is involved in post-mortem 

tenderization of meat. The involvement of calpain may partially explain the 

previously reported correlation between RFI and beef tenderness (Casas et al., 

2006).  

The biological processes associated with RFI included methane and nitrogen 

metabolism. This is consistent with the previously reported correlation between 

RFI and methane production, where low RFI steers were shown to produce less 

methane than high RFI steers (Nkrumah et al., 2006). Other biological processes 

associated with RFI in the metabolic network included AMPK signaling, glucose 

and cholesterol metabolism. The AMPK signaling pathway is involved in several 

metabolic processes including glycogen metabolism, glycolysis, gluconeogenesis, 

sterol synthesis, fatty acid oxidation and lipolysis.  

6.5. SUMMARY 

 

The metabolomics approach was used to identify metabolites associated with RFI 

in a discovery and validation population of beef steers with divergent RFI levels. 

Three metabolites were successfully validated and accounted for 32% of the 
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phenotypic variation in RFI. An additional set of 9 metabolites were also 

significantly associated with RFI in the validation population and together with 

the three metabolites, accounted for 98.5% of the variation in RFI. The 12 

metabolites significantly associated with RFI may be used to develop a biomarker 

based selection tool for RFI in beef cattle. In this study, this tool was estimated to 

achieve an accuracy of RFI prediction of 99.5%. However, this estimate may be 

biased due to the small sample size used in this study and requires to be validated 

using a larger population of beef steers. 
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Table 6.1: Metabolites associated with RFI in the discovery 

population 

Period Metabolite P-value Partial R-

square 

Cumulative 

R-square 

1 Creatine 0.010 0.087 0.087 

 Glycine 0.001 0.276 0.363 

     

2 Threonine 0.044 0.035 0.035 

 Carnitine 0.008 0.042 0.077 

 Acetate 0.032 0.044 0.121 

 Creatine 0.002 0.057 0.178 

 Phenylalanine 0.003 0.067 0.245 

 Lysine 0.009 0.074 0.319 

 Citrate 0.002 0.081 0.400 

 Betaine 0.036 0.087 0.487 

 Glutamate 0.001 0.102 0.589 

 Hippurate 0.026 0.153 0.742 

     

3 Hydroxyisobutyrate 0.0002 0.332 0.332 

 Tyrosine 0.014 0.047 0.379 

 Formate 0.007 0.141 0.521 

 

Entire Citrate 0.006 0.193 0.193 

 Creatine 0.002 0.139 0.332 
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Table 6.2: Metabolites significantly associated with RFI 

in the validation population in period 1 

Metabolite Partial R square P - value 

Creatinine   0.2635 0.0206 

Valine   0.2993 0.0033 

Choline 0.1561 0.0088 

Histidine 0.0821 0.0251 

Uridine       0.0884 0.0048 

Dimethylamine 0.0257 0.0686 

Trimethylamine 0.0307 0.0230 

2-Hydroxybutyrate 0.0173 0.0445 

3-HydroxybutyrateB 0.0204 0.0056 

TOTAL 0.9835  
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Table 6.3: Metabolites significantly associated with 

RFI in the validation population in period 2. 

Metabolite Partial R-Square P-value 

Creatine 0.2568    0.0226 

Histidine 0.1573    0.0475 

Succinate 0.1542    0.0295 

Oxobutyrate 0.1297    0.0227 

4-Hydroxybutyrate 0.1006    0.0192 

Hippurate 0.0770    0.0140 

Trans- 4-Hydroxy- L-

proline 

0.0483    0.0172 

Proline 0.0411    0.0042 

Allantoin 0.0094    0.0407 

Glutamine 0.0045    0.0513 

Uridine 0.0039    0.0118 

Carnitine 0.0017    0.0002 

Total 0.9845  
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Figure 6.1: Average concentrations of significant metabolites in µM, in high and low RFI steers in period 1 (A), period 

2 (B) period 3 (C) and in the entire period (D) in the discovery population. *Hydroxyisobutyrate
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Figure 6.2: Average concentrations of significant metabolites in high and low RFI 

steers in period 1 (A*) and period 2(B
#
) in the validation population. 

*2M-amine; Dimethylamine, 3M-amine; Trimethylamine, 2H-butyrate; 2-

Hydroxybutyrate, 3H-butyrate; 3-Hydroxybutyrate.
 

#
4H-butyrate; 4-Hydroxybutyrate, T-4-H-L-P; Trans-4-Hydroxy-L-Proline. 
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Figure 6.3: Metabolic network for period 1 in the discovery population 
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Figure 6.4: Metabolic network for metabolites significant in period 2 in the discovery population 
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Figure 6.5: Metabolic network for metabolites significant in period 3 in the discovery population
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Figure 6.6: Relationship between predicted values and observed values of RFI 

using the 3 metabolites that were significant in both populations (A) and the 12 

metabolites that were significant in the validation population (B) in period 2. 

 

 



202 | P a g e  

 

6.6. REFERENCES 

 

Albano, N., Masero, J. A., Villegas, A., Abad-Gómez, J. M., and Sánchez-Guzmán 

J. M. 2011. Plasma metabolite levels predict bird growth rates: A field test 

of model predictive ability. Comp. Biochem. Physiol. A. Mol. Integr. 

Physiol. 160 (1), 9-15.  

Arslan, C. 2006. L-Carnitine and its use as a feed additive in poultry feeding a 

review. Revue Méd. Vét. 157 (3), 134-142. 

Arthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C. and 

Parnell, P. F. 2001. Genetic and phenotypic variance and covariance 

components for feed intake, feed efficiency, and other postweaning traits 

in Angus cattle. J. Anim. Sci. 79, 2805–2811. 

Basarab, J. A., Price, M. A., Aalhus, J. L., Okine, E. K., Snelling, W. M., and Lyle. 

K. L. 2003. Residual feed intake and body composition in young growing 

cattle. Can. J. Anim. Sci. 83,189-204.  

Canadian Council on Animal Care. 1993. Guide to the care and use of 

experimental animals. Vol. 1. E. D. Olfert, B. M. Cross, and A. A 

McWilliams, eds. 2nd ed. CCAC, Ottawa, ON. 

Casas, E., White, S. N., Wheeler, T. L., Shackelford, S. D., Koohmaraie, M., 

Riley, D. G., Chase Jr., C. C., Johnson, D. D., and  Smith, T. P. L. 2006. 

Effects of calpastatin and µ-calpain markers in beef cattle on tenderness 

traits. J. Anim. Sci. 84, 520-525. 



203 | P a g e  

 

Clarke, J. N., Binnie, D. B., Jones, K. R., Mowat, C. M., Purchas, R. W., and 

Uljee, A. E. 1996. Repeatabilities of blood plasma metabolites and their 

association with leanness in genotypes showing a wide divergence in 

carcass composition. Proc. N.Z. Soc. Anim. Prod. 56,180–183. 

Di Lisa, F., Barbato, R., Menabo, R., Siliprandi, N. 1995: Carnitine and carnitine 

esters in mitochondrial metabolism and function. Dev. Cardiovasc. Med. 

162, 21-38. 

Hegarty, R. S., McFarlane, J R., Banks, R., Harden. S. 2006. Association of 

plasma metabolites and hormones with the growth and composition of 

lambs as affected by nutrition and sire genetics. Australian Journal of 

Agricultural Research, 57, 683–690. 

Herd, R. M. and Arthur, P. F. 2009. Physiological basis for residual feed intake. J 

Anim Sci. 87 (14), 64-71. 

Hermanussen, M., Garcia, A. P., Sunder, M., Voigt, M., Salazar, V., Tresguerres, J. 

A. 2006. Obesity, voracity, and short stature: the impact of glutamate on 

the regulation of appetite. Eur. J. Clin. Nutr. 60 (1), 25–31. 

Jenni-Eiermann, S. and Jenni, L. 1994. Plasma Metabolite Levels Predict 

Individual Body-Mass Changes in a Small Long-Distance Migrant, the 

Garden Warbler. The Auk, 111 (8), 888 - 899. 

Kennedy, B. W., Werf,  J. H. J. and Meuwissen, T. H. E.  1993. Genetic and 

statistical properties of residual feed intake. J. Anim. Sci. 71, 3239-3250. 



204 | P a g e  

 

Kettunen, J., Tukiainen, T., Antti-Pekka, S., Ortega-Alonso, A., Tikkanen, E., Leo-

Pekka,  L., Kangas, A. J., Soininen, P., Würtz, P., Silander, K., Dick, M.D., 

Rose, R. J., Savolainen, M. J., Viikari, J., Kähönen, M., Lehtimäki, T., 

Pietiläinen, K.H., Inouye, M., McCarthy, M. I., Jula, A., Eriksson, J., 

Raitakari, O. T., Salomaa, V., Kaprio, J., Marjo-Riitta, J., Peltonen, L., 

Perola, M., Freimer, N. B., Ala-Korpela, M., Palotie, A., and Ripatti, S. 

2012. Genome-wide association study identifies multiple loci influencing 

human serum metabolite levels. Nature Genetics. 44, 269–276. 

Koch, R. M., Swiger, L. A., Chambers, D., and Gregory. K. E. 1963. Efficiency of 

feed use in beef cattle. J. Anim. Sci. 22, 486–494. 

Kulkarni, R. N. 2012. Identifying Biomarkers of Subclinical diabetes. Diabetes. 

61, 1925-1926 

Lele, R. D., Joshi, R. S., and Gupte, A. 2006. Association of Adipocytokines 

(Leptin, Adiponectin TNF-alpha), Insulin and Proinsulin with Diabetes - 

The Mumbai Obesity Project [MOP]. J Assoc Physicians India; 54:689-96. 

Letto, J., Brosnan, M. E., and Brosnan, J. T. 1986. Valine metabolism. 

Gluconeogenesis from 3-hydroxyisobutyrate. Biochem. J. 240, 909-912 

Mao. F., Chen, L., Vinsky, M., Okine, E., Wang, Z., Basarab, J., Crews, D. H. Jr., 

Li, C. 2013. Phenotypic and genetic relationships of feed efficiency with 

growth performance, ultrasound, and carcass merit traits in Angus and 

Charolais steers. J. Anim. Sci. 91(5):2067-76. 



205 | P a g e  

 

Matteri, R. L. 2001. Overview of central targets for appetite regulation. J. Anim. 

Sci. 79, 148-158. 

Minor, R. K., Chang, J. W., and DeCabo, R. 2009. Hungry for Life: How the 

arcuate nucleus and neuropeptide Y may play a critical role in mediating 

the benefits of calorie restriction. Mol Cell Endocrinol. 299 (1), 79–88. 

Montanholi, Y. R., Swanson, K. C., Schenkel, F. S., McBride, B. W., Caldwell, T. 

R., and Miller, S. P. 2009. On the determination of residual feed intake and 

associations of infrared thermography with efficiency and ultrasound traits 

in beef bulls. Livestock Science. 125, 22–30. 

Montanholi, Y. R., Swanson, K. C., Palme, R., Schenkel, F. S., McBride, B. W., 

Lu, D. and Miller, S. P. 2010. Assessing feed efficiency in beef steers 

through feeding behavior, infrared thermography and glucocorticoids. 

Animal. 4(5), 692 – 701. 

Mullen, E., and Ohlendieck, K. 2010. Proteomic profiling of non-obese type 2 

diabetic skeletal muscle. Int. J. Mol. Med. 25 (3), 445-58. 

Nkrumah, J. D., Okine, E. K., Mathison, G. W., Schmid, K., Li, C., Basarab, J. A., 

Price, M. A., Wang, Z., and Moore, S. S. 2006. Relationship of residual 

feed intake with metabolic rate, methane production and energy 

partitioning in beef cattle. J. Anim. Sci. 84, 145–153 



206 | P a g e  

 

Preston, T. R., and Leng. R. A. 1987. Matching ruminant production systems with 

available resources in the tropics and sub-tropics. Penambul Books. 

Armidale, N.S.W. 

Schenkel, F. S., Miller, S. P., and Wilton, J. W. 2004. Genetic parameters and 

breed differences for feed efficiency, growth and body composition traits 

of young beef bulls. Can. J. Anim. Sci. 84,177–185. 

Schenkel, F. S., Miller, S. P., Jiang, Z., Mandell, I. B., Ye, X., Li, H., and Wilton, 

J.W. 2006. Association of a single nucleotide polymorphism in the 

calpastatin gene with carcass and meat quality traits of beef cattle. J. 

Anim. Sci. 84, 291–299. 

Sherman, E. L., Nkrumah, J. D., Murdoch, B. M., Li, C., Wang, Z., Fu, A. and 

Moore, S. S. 2008. Polymorphisms and haplotypes in the bovine 

neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth 

factor 2, and uncoupling proteins 2 and 3 genes and their associations with 

measures of growth, performance, feed efficiency, and carcass merit in 

beef cattle. J Anim. Sci. 86 (1), 1-16. 

Sherman, E. L., Nkrumah, J. D., Moore, S. S. 2010. Whole genome single 

nucleotide polymorphism associations with feed intake and feed efficiency 

in beef cattle. J. Anim. Sci. 88,16-22. 

Scholte, H. R., Boonman, A. M. C., Hussaarts-Odijk, L. M., Ross, J. D., Van 

Oudheusden, L. J., Pereira, R. R., Wallenburg, H. C. S. 1996: New aspects 

of the biochemical regulation of the carnitine system and mitochondrial 



207 | P a g e  

 

fatty acid oxidation. In: Carnitine - Pathochemical Basics and Clinical 

Applications. Eds Seim H, Löster H, Ponte Press Bochum, 11-31. 

Siliprandi, N., Venerando, R., and Tassani, V. 1994: The “carnitine system”: 

recent aspects. Adv. Exp. Med. Biol. 368, 161-164. 

Viegas, C. M., Da Costa, F. G., Schuck, P. F., Tonin, A. M., Zanatta A., de Souza 

Wyse, A. T., Dutra-Filho, C. S., Wannmacher, C. M., Wajner, M. 2008. 

Evidence that 3-hydroxyisobutyric acid inhibits key enzymes of energy 

metabolism in cerebral cortex of young rats. Int. J. Dev. Neurosci. 26 (3-

4), 293-9. 

Wallimann, T., Tokarska-Schlattner, M., Schlattner, U. 2011. The creatine kinase 

system and pleiotropic effects of creatine. Amino Acids. 40 (5), 1271 – 

1296. 

Weikard, R., Altmaier, E., Suhre, K., Weinberger, K. M., Hammon, H. M., 

Albrecht, E., Setoguchi, K., Takasuga, A., and Kühn, C. 2010. 

Metabolomic profiles indicate distinct physiological pathways affected by 

two loci with major divergent effect on Bos taurus growth and lipid 

deposition. Physiol Genomics 42A, 79–88. 

Williams, C. B. 2010. Application of biological simulation models in estimating 

feed efficiency of finishing steers. J Anim Sci. 88, 2523-2529. 

Wishart, D. S., Knox, C., and Guo, A. C. 2009. HMDB: a knowledgebase for the 

human metabolome. Nucleic Acids Res. 37 (Database issue), D603-610. 



208 | P a g e  

 

 

 

 

PREFACE TO CHAPTER SEVEN 

 

Genes and metabolites do not function independently, in most cases their 

functions are correlated and result in interactions between them. Interactions 

between genes are implemented by biological processes (pathways) while 

interactions between metabolites are implemented by genes (usually enzymes). 

Chapter Seven is aimed at analysing the interactions between genes and 

metabolites and the biological processes involved in these interactions. 

This chapter has been submitted for publication in Animal Science Journal, 2013. 
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CHAPTER SEVEN 

 

Analysis of biological networks and biological pathways associated with 

residual feed intake in beef cattle
5
 

7.1. INTRODUCTION 

 

Improving profitability in livestock production can be achieved by reducing the 

costs of production (inputs) while either maintaining or improving the quantity 

and/or quality of the products (outputs) (MacNeil et al., 1997). In beef production, 

the cost of feed is the largest single expense (input), accounting for approximately 

60- 70% of the total cost of production (Herd et al., 2003; Arthur et al., 2004). 

Therefore, there is need to increase the efficiency of feed utilization by reducing 

the amount of feed consumed for the same level of production. Most measures of 

feed efficiency are correlated with production traits except residual feed intake 

(RFI). RFI is defined as the difference between actual feed intake and predicted 

feed intake based on the individual’s body weight (maintenance) and average 

daily gain (growth/production) (Koch et al., 1963). RFI is phenotypically 

independent of the production traits used to estimate it (Archer et al., 1999) 

indicating that RFI represents inherent differences in basic metabolic processes 

that determine the efficiency of feed utilization (Korver, 1988).  

                                                 
5
 A version of this chapter was submitted to Animal Science Journal for publication, 2013. 
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The genetic basis of RFI has been studied and several genes were reported to be 

significantly associated with RFI (Arthur and Herd, 2006; Moore et al., 2006; 

Barendse et al., 2007; Nkrumah et al., 2007a; Sherman et al., 2008 a, b). 

However, the amount of variation explained so far remains relatively small, for 

example Sherman et al., (2008a) identified SNPs accounting for 6% of the 

phenotypic variation in RFI. The missing heritability may arise from several 

factors (reviewed in detail in Chapter 3) including association analysis 

approaches that rely on LD between genotyped SNPs and unknown functional 

DNA variants. These approaches are more effective when the population consists 

of genetically related individuals (Snelling et al., 2013). The missing heritability 

may also result from the association analyses taking a reductionist approach by 

identifying discrete molecules associated with RFI. Although the reductionist 

approach has had several successes, (see above), most complex traits, including 

RFI, are characterized by complex interactions between cellular constituents such 

as DNA, RNA and proteins, and are usually influenced by multiple biological 

processes simultaneously (Barabasi and Oltvai, 2004).  

To understand the biological processes associated with RFI there is need to 

address the mechanisms by which an associated variant gives rise to the 

phenotypic differences observed. In addition, molecular variants can be analyzed 

in the framework of pathways and networks (Han, 2008). The knowledge of gene 

functions and interactions may provide greater insight into the genes and genomic 

mechanisms affecting polygenic traits, and facilitate functional genomic selection 

for economically important traits (Snelling et al., 2013). The biological networks 
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could also be used to identify additional genes and metabolites involved in the 

biological processes and that may have an effect on RFI. 

The objectives of this study were to utilize molecular data obtained from 

association analyses using genes and plasma metabolites to reconstruct biological 

interaction networks for RFI and analyze the networks to offer a holistic view of 

the regulation of RFI and identify the specific biological processes associated 

with RFI.  

In reference to the gene networks, we hypothesized that the genes associated with 

RFI significantly interact with one another connected by the biological processes 

they are involved in. Each biological process would result in metabolites as 

components of either the substrates or the products of that process. 

In reference to the metabolic networks, we hypothesized that the metabolites 

associated with RFI also significantly interact with one another connected by the 

protein products of genes, which utilize the metabolites as substrates or produce 

them as products of the specific biological reactions in which they are involved. 

7.2. MATERIALS AND METHODS 

7.2.1. Summary of association analysis 

Phenotypic and genotypic data were obtained from 531 beef steers at the 

University of Alberta ranch at Kinsella, Canada. The breed composition of this 

herd was described by Nkrumah et al., (2007b). 
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The steers were managed and tested under feedlot conditions using the GrowSafe 

automated feeding system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada) as 

described by Nkrumah et al., (2004) and all the animals were managed and cared 

for according to the guidelines of the Canadian Council on Animal Care (CCAC, 

1993). 

7.2.2. Estimation of RFI 

Collection of feed intake data and calculation of RFI was discussed in detail by 

Basarab et al., (2003). In summary, the actual feed intake for each steer was 

measured using the GrowSafe automated feeding system (GrowSafe Systems 

Ltd., Airdrie, Alberta, Canada). This feed intake was converted to dry matter 

intake (DMI) by multiplying it by the dry matter content of the diet. DMI was 

then standardized across the different years to 10 MJ of metabolizable energy 

(ME)/kg of dry matter. The predicted feed intake was estimated based on 

metabolic mid-weight and average daily gain. Average daily gain (ADG) was 

calculated as the slope from the regression of body weight (BW) on test day. 

Metabolic mid-weight was obtained as the mid-weight on test to the power of 

0.75. 

7.2.3. Identification of genes associated with RFI 

About 1100 positional candidate genes were identified within the genomic 

positions of previously reported QTL from the bovine QTL database 

(cattleQTLdb) release 10 (Hu et al., 2007). These QTLs were associated with 

traits related to RFI such as feed / dry matter intake, growth, FCR, average daily 



213 | P a g e  

 

gain and energy balance. An additional set of positional candidate genes consisted 

of 1018 genes positioned within a range of 500kbp on both sides of 310 SNPs 

previously reported to be significantly associated with RFI in a GWAS using the 

50K bovine SNP chip (Mujibi et al., 2011). Therefore a total of 2118 positional 

candidate genes were used in this analysis.  

The positional candidate genes were then prioritized into functional candidate 

genes according to their functions inferred from gene ontology terms (Ashburner 

et al., 2000) in relation to the physiological processes associated with feed 

efficiency. The physiological processes associated with RFI were reviewed by 

Richardson and Herd (2004) and Herd and Arthur (2009) indicating that 

metabolism (anabolism and catabolism) may account for about 42% of the 

variation in RFI. Other processes that account for the variation in RFI include 

body composition (5%), digestion (10%), physical activity (9%), 

thermoregulation and heat increment of feeding (9%) and unknown factors (25%). 

 The gene ontology terms considered in this study were related to energy 

acquisition through carbohydrate, fat and protein metabolism and energy 

utilization through growth, body temperature regulation, muscle activity and 

immune response. There were 116 genes whose functions were associated with 

RFI and were considered the functional candidate genes. The remaining 2002 

positional candidate genes that were not functionally relevant were not included 

in any further analysis. 

SNPs located in the functional candidate genes were identified by comparing 

cDNA sequences with reference sequences from Ensembl version 57 (Hubbard et 
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al., 2009). To generate the cDNA library, RNA was prepared from pooled liver 

samples using TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) using the 

protocol described in the TRIzol® reagent user manual (Connolly et al., 2006). 

The liver cDNA library was constructed according to the TruSeq® RNA and DNA 

sample preparation kit (Illumina, USA, v2 published by Illumina Inc. 2011, 

publication number 970-2009-039) and cDNA sequencing was performed on the 

Genome Analyzer II using the TruSeq® RNA and DNA sample preparation kit 

(Illumina, USA, v2 published by Illumina inc 2011, publication number 970-

2009-039). 

To generate a list of putative SNPs, Maq (version 0.7.1) (Li et al., 2008) was used 

to map DNA sequencing reads and the bovine transcript sequences from Ensembl 

version 57 (Hubbard et al., 2009) were used as reference sequences. The SNPs 

returned by Maq’s SNPfilter command were annotated using NGS-SNP (Grant et 

al., 2011) by assigning a functional class to each SNP (e.g. nonsynonymous) and 

then providing NCBI, Ensembl identifiers and gene ontology terms for the 

affected genes, when applicable. Only the non-synonymous SNPs were 

considered functional candidate SNPs and were retained if the minor allele 

frequency was greater than 10%. 

The non-synonymous SNPs were prioritized based on the expected effect of the 

amino acid change: a non-conservative amino acid change was considered to have 

a greater chance of being associated with a trait variation than a conservative 

amino acid change in the same gene. A total of 117 SNPs were selected within 

116 genes (with 2 SNPs in the CAST gene) and genotyped at GeneSeek® using 
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DNA samples obtained from steers at the University of Alberta ranch at Kinsella, 

Canada. 

 A multiple marker association analysis was performed as shown in equation 1 

using the RFI data obtained from 531 steers from the University of Alberta ranch 

at Kinsella, Canada, using ASReml 3 (Gilmour et al., 2009). 

𝑌𝑖𝑗 =  µ + 𝑋1𝑖β + ∑ 𝑋2𝑗𝑔𝑗
𝑛
𝑗=1 + 𝑍𝑎 + 𝑒       (Equation 1) 

Yij represented the RFI value for animal i which has j SNPs  

µ was the population mean, β was a vector of fixed effects associated with animal 

i, in this case the breed of the sire and the batch (Mujibi et al., 2010), ∑ 𝑋2𝑗𝑔𝑗
𝑛
𝑗=1  

was the sum of the SNP effects (g), X2j was a design matrix relating an 

observation (Y) to one of the genotypes 0, 1 or 2 at the jth SNP, a was a vector of 

random additive effects (exclusive of SNP g effect(s) in the model) constructed 

using each animal’s pedigree information to construct the relationship matrix A. It 

was assumed to be normally distributed with a mean of 0 and variance of Aσ
2

a. 

e was the vector of random residual effects assumed to be normally distributed 

with a mean of 0 and a variance of Iσ
2
 where I was an identity matrix 

7.2.4. Analysis of blood metabolites 

 

The steers used in the analysis of metabolites belonged to the University of 

Guelph ranch in Ontario. The breed composition of the population was described 

by Montanholi et al., (2009). In summary, the total number of steers entering the 

feeding test was 91 with 46 from year 1 and 45 from year 2. The average weight 
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of the steers was 313 ± 6.2 kg and once the test begun, steers had a period of 

approximately 2 weeks to acclimatize to the facilities and feeding system. About 

5ml of blood was collected through jugular venipuncture from beef steers in the 

year 2 group every week during the feeding test period into collection tubes 

containing sodium heparin and immediately stored on ice until centrifugation. 

Estimation of RFI for individual steers was described by Montanholi et al., 

(2009). In summary, individual average daily feed intakes for the feeding test 

period were recorded by an automated feeding system. Daily dry matter intake 

(DMI) over the testing period was calculated as a product of the daily intake in as 

fed basis and the percent dry matter in the feed. Average daily gain (ADG) was 

determined by a regression of body weight on days on test. RFI was estimated 

using the equation described by Montanholi et al., (2009, 2010) as;  

RFI = DMI- β0 + β1 (ADG) + β2 (BW)   ….............Equation 1 

Where β0 was the intercept, β1 and β2 were the regression coefficients on ADG 

and on mid-trial body weight (BW) respectively. The ADG was determined by a 

regression of BW on days on trial, with six observations per animal. Mid-trial BW 

was calculated by computing the animals’ intercept plus the ADG times 70 (half 

of the experimental period). 

At the end of the feeding period when RFI values were available for all the 

animals, the plasma samples were sorted into batches according to the period 

when they were collected and the RFI value of the steers tested. Three time 

periods were considered in this study; period 1 corresponded to the second week 
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after the beginning of the feeding test period, period 2 and 3, corresponded to 6 

weeks and 9 weeks into the feeding period respectively. From each of the three 

periods, 16 plasma samples were selected from the steers with the highest RFI 

value and 16 plasma samples from the steers with the lowest RFI value 

establishing two groups with divergent RFI values. A total of 96 samples were 

used in the metabolomic analysis.  

Association analysis between RFI and the metabolite levels was performed using 

SAS 9.1 (SAS Institute Inc. Cary, NC, USA) for each period separately using a 

multiple regression model accounting for the year of birth of the steers and for the 

combined data at the three periods using a mixed model for repeated measures 

analysis. 

7.2.5. Reconstruction of biological networks 

 

Biological networks were reconstructed using IPA software (Ingenuity Systems, 

www.ingenuity.com) using the genes and metabolites significantly associated with 

RFI. The IPA software was selected because it offered a large knowledge base and 

can model relationships between genes, proteins, metabolites and can be used to 

identify the biological processes involved (Ingenuity knowledge base). However, 

the IPA knowledge base is built using data obtained from studies in mice and 

humans. Although these species can be utilized as model animals and most of the 

biological processes between them and other animal species may be similar, 

caution should be practiced when dealing with biological processes that differ 

widely between humans/mice and cattle. For example, biological processes 

http://www.ingenuity.com/
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related to immune response may be relatively similar between humans, mice and 

cattle while the major processes related to feed digestion may differ between the 

species.  

To reconstruct the biological networks, a list of significant molecules (genes or 

metabolites) and their corresponding P-values were imported into the IPA 

software and the parameters were set to allow the network to include indirect 

relationships between the imported molecules and the corresponding molecules in 

the knowledge base. Indirect relationships would assist in the identification of 

other genes or metabolites that were not among the ones analyzed but may be 

associated with RFI. The IPA algorithm generated biological networks by 

mapping each gene/metabolite identifier to its corresponding gene/metabolite in 

the IPA knowledge base as described in detail by Calvano et al., (2005). The 

molecules are then overlaid onto a global network developed from information 

contained in the knowledge base. Each network is assigned a significance score, 

which represents the likelihood that the imported molecules within the network 

are found therein by random chance (Calvano et al., 2005). A high number of 

imported molecules within a dataset lead to a higher network score. The network 

score is calculated as the negative of the exponent of the P-value such that a score 

of 25 will be equal to a P-value of 1.0
-25

 (Calvano et al., 2005) and therefore 

larger scores correspond to higher significance. 

The gene networks were reconstructed from the genes significantly associated 

with RFI and metabolic networks were reconstructed for each period from the 

metabolites significantly associated with RFI in that period.  However, at period 
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3, only 1 of the 3 significant metabolites was mapped in the IPA knowledge base 

and used to reconstruct the network therefore this network will not be discussed in 

detail.  Further analysis of the interaction networks was performed using the 

canonical pathways tool within the IPA software.  

7.3. RESULTS AND DISCUSSION 

 

In summary, 25 SNPs in 24 genes were significantly associated with RFI (P < 

0.05) accounting for 19.7% of the phenotypic variation in RFI (Table 4.3 and also 

shown in Table 7.1 ). 

The metabolites significantly associated with RFI were 2 in period 1, 10 in period 

2 and 3 in period 3 (Table 6.1 and again in Table 7.2 . 

7.3.1. Analysis of gene network 

 

The gene network reconstructed using IPA is shown in figure 7.1 with the 

corresponding locations of the genes within the cell. The additional genes which 

had not been analyzed in this study but were present in the network will be 

discussed as components of the biological pathways associated with RFI and 

potential candidate genes associated with RFI.  

There were 2 major hubs in the gene network; the first hub was associated with 

the Ubiquitin C (UBC) gene and the second hub was associated with the insulin 

induced gene 1 (INSIG1). There was also a minor hub associated with the 

ERK1/2 gene.  
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The hub associated with the UBC gene had multiple interactions with other genes 

including PLEKHA7, PARP14, SMARCAL1, UBA5, LRP5, CAST and INSIG1 

(Fig 7.1). UBC also interacted with ERK1/2 through LRP5, UBA5, GHR, OSMR 

or LIFR.  

The UBC gene encodes a polyubiquitin precursor which can be conjugated into 

Ubiquitin monomers or polymers and can result in different effects in the cell 

depending on the residues to which the ubiquitin is conjugated. Generally the 

UBC gene is involved in protein degradation, DNA repair, cell cycle regulation, 

kinase modification, endocytosis and regulation of other cell signaling pathways 

(Rebhan et al., 1997). These processes are generally classified and described as 

post translational regulation of gene expression and may cause variation in 

phenotypes by influencing the levels of proteins (such as enzymes) present and 

their activity in performing the biochemical processes. The UBC gene interacts 

with all the genes that were significant in this study indicating a possible role in 

influencing the activity of their protein products.  

The INSIG1 gene hub had interactions with other molecules including 

Lysophosphatidylcholine acyltransferase 3 (LPCAT3), Acyl-CoA synthetase short 

chain family member 2 (ACSS2), ELOVL fatty acid elongase, Acetoacetyl CoA 

synthetase (AACS), endoplasmic reticulum lipid raft associated protein 

(ERLIN2), 3-hydroxyl-3-methylglutaryl-CoA synthase 2 (HMGCS2) and STAR 

related lipid transfer protein 4 (STARD4). All these genes relate to metabolism 

and specifically this hub represents biological processes related to energy, lipid 

and steroid metabolism. Polymorphisms that may be present in these genes may 
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cause variation in lipid metabolism and may influence body composition in beef 

cattle steers. The importance of lipid metabolism and body composition in 

influencing the levels of RFI was previously discussed by Naik et al., (2007) and 

Richardson et al., (2004). Additional evidence on the role of lipid metabolism on 

RFI was provided by the observed genetic correlation of 0.17 between RFI and 

subcutaneous fat depth at the 12
th

 and 13
th

 ribs and the rump (Arthur et al., 2001; 

Shenkel et al., 2004).  

The ERK1/2 hub (which also interacts with the UBC gene through UBA5) was 

closely linked to GHR, LIFR, JAK, OSMR and Glycoprotein 130 (GP130-LIFR). 

Other genes linked to this hub included CLCF1, STAT5a/b, STAT1/3/5 and 

IL31RA. ERK1 is a protein kinase involved in regulating transcription, translation 

and cytoskeleton rearrangements. It also causes phosphorylation of several 

transcription factors resulting in regulation of meiosis and mitosis and post 

mitotic functions of cells (Rebhan et al., 1997). The details of these processes will 

be discussed in a subsequent section. 

7.3.2. Canonical pathway analysis: 

 

a. The growth hormone (GH) signaling pathway 

The growth hormone receptor precursor (GHR) was identified to be associated 

with RFI in another study by Sherman et al., (2008). In this analysis, GHR 

interacts closely with JAK, ERK1/2, STAT5 a/b and STAT1/3/5 as shown in 

figure 7.2a. A detailed representation of the GH signaling pathway is shown in 

figure 7.2b and fig. 7.7.  
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Growth hormone is a peptide hormone; therefore, it cannot directly cross the 

plasma membrane. Its effect is initiated when it binds to the GH receptor (GHR) 

located on the plasma membrane. This signal can have an effect on several 

pathways (fig. 7.2b) but only three of these pathways will be discussed further 

due to their role in metabolism.   

In the first instance, the signal stimulates the JAK2 pathway which is capable of 

stimulating either STAT1, 3 and 5 or the ERK1/2. The signal that stimulates the 

ERK1/2 will then stimulate CEBPA. CEBPA (CCAAT/enhancer binding protein) 

is a transcription factor protein that binds to certain promoters and enhancers and 

modulates the expression of these genes. The most important genes modulated by 

this protein are leptin and growth hormone. Several studies have reported the 

significant association between leptin and RFI (Hoque et al., 2009, Kelly et al., 

2009). The fact that CEBPA modulates the expression of the genes by binding to 

the promoter site indicates that polymorphisms located in the promoter sites may 

affect the binding to CEBPA thereby affecting the levels of gene expression. 

Additional evidence of this effect was provided by previous association analysis 

of SNPs located in the promoter region of the leptin gene, which indicated 

significant association between some of the SNPs with RFI (Nkrumah et al., 

2005).  

In the second instance, JAK2 stimulates STAT1, 3 and 5. Then the phosphorylated 

(activated) STAT5 act as a transcription regulator for genes such as Insulin like 

growth factor 1 and 2 (IGF1, IGF2), Insulin like growth factor binding protein 3 

(IGFBP3) and Insulin growth factor binding protein acid labile subunit (ALS) (fig 
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7.2b and Fig 7.7). This pathway can also be activated through PLCG 

(phospholipase C gamma) which then stimulates Diacylglyceride (DAG). DAG 

has an effect on Protein kinase C (PKC), which stimulates STAT5 transcription 

activation proteins.  

IGF-1 is a hormone that regulates growth and cellular anabolism and was already 

reported to be associated with feed efficiency (Bishop et al., 1989; Stick et al., 

1998). In fact, IGF-1 has been used as a marker for indirect selection for RFI 

(Davis and Simmen, 2006). However, these authors also reported a positive 

correlation between the levels of IGF-1 and some measures of growth indicating 

that using IGF-1 to select for RFI may also be selecting for growth traits 

simultaneously. Both IGF-1 and 2, through the IGF-1 receptor, are involved in 

pathways associated with protein synthesis and cell survival (Fig 7.2b). 

In the third instance, JAK2 stimulates P1-3K (1-phosphatidyl Inositol 3 kinase) 

either directly or indirectly through IRS1 (Insulin receptor substrate 1). The P1-

3K is involved in the expression of GLUT4 on the plasma membrane (Fig 7.2b). 

GLUT4 allows the facilitated diffusion of glucose into muscles and fat cells aided 

by insulin (Fig 7.7). It can be seen, therefore, that growth hormone and its 

receptor are involved in biological processes associated with protein synthesis, 

cell survival, lipid metabolism and glucose transport across the cell membrane.  

 

b. Oncostatin M receptor signaling 

Oncostatin M receptor signaling is similar to growth hormone signaling. 

Oncostatin M binds to the oncostatin M receptor (OSMR) stimulating Janus 
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kinase (JAK) which then stimulates STAT1, 3 and 5. The activated STAT1, 3 and 

5 proteins enter the nucleus and act as transcription activators for several genes. 

This pathway differs from the growth hormone signaling pathway, which 

activates the transcription of different genes. In oncostatin M signaling pathway 

the expressed genes include; Matrix metallopeptidase 1 (MMP1), 3 (MMP3), 13 

(MMP13) and TIMP metallopeptidase inhibitor 3 (TIMP-3) (Fig 7.3). Most of 

these genes are associated with cell proliferation, migration, differentiation, 

angiogenesis and apoptosis (Rebhan et al., 1997). 

7.3.3. Metabolic networks 

 

At period 1 only two metabolites, creatine and glycine were significantly 

associated with RFI (Table 7.2) and used to reconstruct the metabolic network 

using IPA. Several links were created between these metabolites and other 

metabolites that were not included in the analysis in this study (Fig 7.4). Creatine 

interacts closely with AMP activated protein kinase (AMPK), which is an enzyme 

that plays a role in cellular energy homeostasis. The net effect of AMPK 

activation is stimulation of hepatic fatty acid oxidation and ketogenesis, inhibition 

of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of 

adipocyte lipolysis and lipogenesis, stimulation of skeletal muscle fatty acid 

oxidation and muscle glucose uptake, and modulation of insulin secretion by 

pancreatic beta-cells (Winder and Hardie, 1999). Creatine also interacts with 

SLC2A4 (GLUT4) which is responsible for glucose transport across the cell 

membrane.  



225 | P a g e  

 

A review of the creatine canonical pathways (figure 7.5) indicated that additional 

biological processes involved included steroid biosynthesis, chloride transport and 

glycogen synthesis. In the mitochondrion, biological processes affected included 

triacylglycerol synthesis and β-oxidation of fatty acids to acetyl-CoA. Other 

molecules that would initiate similar signals to AMPK are Leptin, Adiponectin 

and Insulin (fig 7.5). The importance of lipid, cholesterol and glucose metabolism 

in influencing feed efficiency in farm animals was reviewed in detail by Rafael et 

al., (2007).  

AMPK has also been associated with increased blood supply to trained muscle 

cells by promoting angiogenesis (Ouchi et al., 2005) and may be a response to 

muscle activity. Increased muscle activity also requires increased supply of energy 

as indicated by the involvement of the Glucose transporter (SLC2A4/GLUT4) and 

Glycogen synthetase kinase (Fig 7.4). Muscle activity also requires the 

involvement of muscle contractile tissues as indicated in the network (Fig. 7.4) by 

the interactions with Myosin heavy chain 2 (MYH2) and Titin (TTN). The 

correlation between some measures of physical activity and the variation in RFI 

has been reported previously in poultry (Luiting et al., 1991), pigs (DeHaer et al., 

1993) and in beef cattle (Herd and Arthur, 2009; Nkrumah et al., 2003). These 

genes identified here may (partially) indicate the underlying biological 

mechanism for this correlation. 

At period 2, 10 metabolites were significantly associated with RFI. These 

included Acetic acid, Carnitine, Betaine, Citric acid, Creatine, Hippuric acid, 

Glutamic acid, Lysine, Phenylalanine and Threonine. Eight of these metabolites 
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were mapped in IPA, and used in the metabolic network analysis. The presence of 

creatine in this network (Fig. 7.6) resulted in an overlap of some of the 

metabolites with some metabolites in the network reconstructed for period 1 (fig 

7.4). In addition, this network also showed several similarities with the gene 

network for RFI (Fig. 7.1); such as the involvement of the ERK1/2, MAPK and 

P13K described in a preceding section. One of the major canonical pathways in 

the metabolic network in this period was the citric acid (TCA) cycle and figure 

7.6 shows the interaction between acetate, acetoacetate and citrate in a module 

that is made complete by ERK1/2. These metabolites are important in the TCA 

cycle and may be used to identify additional candidate metabolites associated 

with RFI. Acetate is used to produce energy when in low energy balance and it 

forms fat when the individual is in high energy balance (Preston and Leng, 1987). 

Acetate reacts with Coenzyme A to form acetyl CoA which enters the TCA cycle 

(in a step which utilizes ATP) and reacts with oxaloacetate to form citrate. 

In this study, citrate levels in plasma were significantly associated with RFI; 

steers with low RFI had less citrate and higher acetate than those with high RFI. 

This may indicate the importance of the TCA cycle in regulating feed efficiency. 

The interaction between acetic acid and citric acid is indicated in the network (Fig 

7.6) as a bidirectional relationship where the metabolites can influence each other 

in both directions. Although the specific mechanisms remain just hypotheses, it is 

worth noting that regulating the levels of acetate and/or citrate may affect the rate 

of the processes occurring in the TCA cycle and therefore the amount of energy 

produced. In addition, the conversion of acetate into acetyl CoA requires ATP, 
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therefore reducing the rate of this step may save the individual’s ATP and may 

explain why low RFI steers had higher levels of acetate than high RFI steers yet 

both high and low RFI steers had similar levels of acetyl CoA. An association 

between RFI and mitochondrial ATP production was reported by Kelly et al., 

(2009). They reported significant associations between UCP-3, PGC-1α and COX 

II genes with RFI in beef cattle and indicated the importance of cellular energetic 

efficiency in influencing RFI.  

At period 3, three metabolites; tyrosine, hydroxyisobutyrate and formate were 

significantly associated with RFI. In the network reconstruction, only tyrosine 

was used and therefore this network will not be discussed further. 

Hydroxyisobutyrate (HB) was not identified in the IPA knowledgebase so there 

was no network associated with it. HB is associated with gluconeogenesis from 

valine (Letto et al., 1986). It has been shown that hydroxyisobutyrate inhibits key 

enzymes in energy metabolism in young rats by inhibiting the functions of the 

respiratory chain complex 1 to 3 and mitochondrial creatine kinase (Viegas et al., 

2008). Hydroxyisobutyrate was also associated with high levels of circulating free 

fatty acids, increased intramyocellular lipid content, impaired insulin-mediated 

glucose uptake, diminished mitochondrial functioning and an overall weakened 

metabolic flexibility (Mullen and Ohlendieck, 2010). 

7.4. Biological networks indicate a relationship between feed efficiency and 

cholesterol metabolism 

The regulation of cholesterol synthesis depends on the levels of cholesterol in the 

cell. In humans, a high intake of cholesterol from food results in reduced 
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production in the cell (Espenshade and Hughes, 2007). Livestock, on the other 

hand, consume almost similar feed for extended periods of time therefore the 

amount of cholesterol obtained from the feed remains relatively constant. In 

livestock, variation in levels of cholesterol in the cell is largely due to variation in 

cellular regulation of cholesterol biosynthesis. 

A detailed account of cholesterol regulatory mechanisms was provided by 

Espenshade and Hughes (2007). In summary, it relies on detecting the levels of 

intracellular cholesterol in the endoplasmic reticulum by the sterol regulatory 

element-binding proteins (SREBP1 / 2). When cholesterol levels in the cell are 

high, the SREBP protein is bound to two other proteins; SREBP-cleavage-

activating protein (SCAP) and Insulin induced gene 1 (INSIG1). INSIG1 was one 

of the genes that were significantly associated with RFI in this study. When 

cellular cholesterol levels are low, INSIG1 is unbound from the complex and 

SREBP is cleaved. The cleaved SREBP enters the nucleus and bind to the sterol 

regulatory element (SRE) acting as a transcription factor, which stimulates the 

transcription of several genes including the low-density lipoprotein (LDL) 

receptor and HMG-CoA reductase. One of the low density lipoprotein receptors, 

LRP5, was significantly associated with RFI in this study. In general, the SREBP 

pathway regulates the expression of several genes that are involved in lipid 

synthesis and metabolism. 

Cholesterol synthesis begins with the conversion of Acetyl CoA and acetoacetyl 

CoA to hydroxymethylglutaryl-CoA (HMG-CoA) (Liscum, 2002). Acetyl CoA is 

formed from the reaction between acetate and coenzyme A. (Note that the plasma 



229 | P a g e  

 

levels of acetate were significantly associated with variation in RFI in this study). 

The HMG-CoA is reduced to mevalonate in a rate-limiting step where the HMG-

CoA reductase enzyme is highly regulated. This is followed by a series of 

reactions (details provided by Liscum, 2002) resulting in lanosterol, which is then 

converted to cholesterol by 19 additional reactions. The reactions involved in the 

conversion of lanosterol to cholesterol are catalyzed by members of the 

cytochrome P450 enzyme superfamily (Liscum, 2002). In this study, Cytochrome 

P450 subfamily 2B (CYP2B) gene was significantly associated with variation in 

RFI. 

Some of the other metabolites that were indirectly associated with cholesterol 

metabolism included creatine and citrate, which would influence the levels of 

AMPK and as a result may have an impact on cholesterol metabolism (fig 7.5). 

Using the biological network analysis, we hypothesize that feed efficiency in beef 

cattle is associated with cholesterol levels in tissues. In addition, we hypothesize 

that steers with high RFI (inefficient) will also have high cholesterol levels 

compared to low RFI (efficient) steers. We propose this positive correlation 

because the pattern of regulation of cholesterol biosynthesis is similar to the 

regulation of lipid metabolism in the cell. Using the trend observed in previous 

studies which reported a positive correlation between RFI and intermuscular, 

intramuscular, subcutaneous and average back fat in beef carcasses (Arthur et al., 

2001; Basarab et al., 2003; Shenkel et al., 2004) it also appears that low RFI 

steers may have low cholesterol levels. 

7.5. SUMMARY and CONCLUSION 



230 | P a g e  

 

 

Residual feed intake is a complex trait regulated by many genes and biological 

pathways (Herd and Arthur, 2009). Several metabolites can also act as 

intermediate phenotypes to indicate the substrates and/or products of the 

biological reactions associated with RFI. Figure 7.7 summarizes the interaction 

between the different genes and metabolites that were significantly associated 

with RFI and discussed in this study. The biological processes associated with 

variation in RFI begin from glucose uptake into the cell through the GLUT4 

protein. The GHR gene, Insulin, creatine-AMPK and Leptin have an impact on 

the efficiency of the glucose transporter. Once glucose enters the cell, it could 

undergo glycolysis into pyruvate and later into acetyl CoA. Gluconeogenic 

pathways and β oxidation of fatty acids also results in the generation of acetyl 

CoA. In this study, metabolites such as acetate and citrate were significantly 

associated with RFI and may indicate an influence on the rate of formation of 

acetyl CoA. The formation of acetyl CoA is also influenced by AMPK (figure 

7.5). Some of the amino acids that are glucogenic were also significantly 

associated with RFI, and lipid metabolism was influenced by multiple genes 

including GHR, INSIG1 and LRP5. The role of lipid metabolism in influencing 

RFI was reported previously by Naik et al., (2007) and Richardson et al., (2004).  

Biological networks such as those identified in this study may be used to identify 

the biological processes associated with a phenotype and to give an insight on the 

interactions between the molecules. The biological processes associated with the 

trait and the canonical pathways associated with the molecules may be used to 
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predict the relationship between the trait and other traits of importance in beef 

productivity. 
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Table 7.1: Candidate genes significantly associated with residual feed intake in beef cattle steers 

Gene name BTA: Position (bp) P-value SNP position SNP allele
§
 Amino acid 

change 

      

PARP14 1:68144657 0.028 5002 G/A Gly -> Arg 

UMPS 1:70328819 <0.001 572 C/T Arg -> Cys 

UBA5 1:139111130 0.048 231 A/T Glu -> Val 

ACAD11 1:138045480 0.004 816 C/T Ser -> Leu 

BIN1
 2:5642793 0.026 916 G/A Ala -> Thr 

ASNSD1 2:6949248 <0.001 499 G/A Ala -> Thr 

MKI67IP 2:76998684 0.036 900 A/T Arg -> Stop 

AOX1 2:89545687 0.0001 1732 A/G Ser -> Gly 

SMARCAL1 2:105138600 0.034 265 T/C Ser -> Pro 

PQLC2 2:137970404 0.023 691 A/G (C/G) Arg -> Gly 

NECAP2 2:140340622 0.013 568 A/G Thr ->Ala 

INSIG1 4:121360120 0.006 308 A/G Ser -> Gly 

CAST 7:97480120 0.026 271 G/A Gly -> Asp 

CAST 7:97526153 0.007 672 A/G Thr ->Ala 



233 | P a g e  

 

PLEKHA7 15:34411065 0.04 2490 C/T Pro -> Ser 

APIP 15:65118633 <0.001 737 G/A Val -> Met 

CYP2B 18:49958396 0.014 16 G/A Val -> Met 

OCLN 20:10849769 0.008 1051 T/C (A/G) Cys -> Arg 

GHR 20:33897128 0.026 1643 G/A Ala -> Thr 

OSMR 20:37772898 0.006 620 G/T Arg -> Met 

LIFR 20:38170739 0.005 1162 G/A Ala -> Thr 

UGT3A1 20:40434540 0.023 1597 T/C Met -> Thr 

SLC45A2 20:42286376 <0.0001 718 G/A Ala -> Thr 

MYO10 20:59933885 0.0001 2375 G/T Arg -> Leu 

LRP5 29:47717873 0.018 3166 A/G Met -> Val 

 
§
For some genes, the SNP alleles reported in the SNP database were different from the alleles observed in the 

population used in this study but the amino acid and nucleotide positions were the same. The alleles reported in 

the database are shown in parentheses. 
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Table 7.2: Metabolites associated with RFI in 

beef cattle steers in three periods 

Period Metabolite P-value 

1 Creatine 0.010 

 Glycine 0.001 

   

2 Threonine 0.044 

 Carnitine 0.008 

 Acetate 0.032 

 Creatine 0.002 

 Phenylalanine 0.003 

 Lysine 0.009 

 Citrate 0.002 

 Betaine 0.036 

 Glutamate 0.001 

 Hippurate 0.026 

   

3 Hydroxyisobutyrate 0.0002 

 Tyrosine 0.014 

 Formate 0.007 
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Figure 7.1: RFI gene network showing the sub-cellular layout where each gene 

exerts its functions. About 3 hubs can be identified in this network; the UBC hub, 

the INSIG1 hub and the hub associated with ERK1/2 and STAT genes. Most of the 

genes are located in the plasma membrane acting as receptors, transport 

molecules or signaling molecules. Signals are then passed to molecules in the 

cytoplasm, for example, from GHR to JAK and then to the STAT genes. 
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Figure 7.2a: The GHR sub-network as shown in the gene network analysis. The 

GHR gene module shown here is an incomplete representation of the signals 

passed from the growth hormone through the growth hormone receptor (GHR) 

which then stimulates either the JAK or the ERK1/2. The interaction between 

GHR and UBC has no direction therefore it is impossible to predict which 

molecule would have an effect on the other. 
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Figure 7.2b: A 

detailed GH 

signaling pathway, 

showing additional 

candidate genes that 

may be associated 

with RFI. This 

canonical pathway 

was identified in 

IPA® (ingenuity 

systems). The STAT 

proteins enter the 

nucleus and act as 

transcription factors 

for IGF1, 2 and their 

binding proteins. The 

ERK1/2 stimulates 

CEBPA which acts 

as transcription 

factor for genes such 

as Leptin and 

Growth hormone. 
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Figure 7.3: The Oncostatin 

M signaling pathway and 

the Oncostatin M receptor. 

The Oncostatin M 

signaling pathway also 

uses one of the Janus 

kinases (JAK), which also 

stimulates STAT5. This 

pathway differs from the 

growth hormone signaling 

pathway by the genes 

whose expression has been 

affected. While the GH 

signaling pathways 

influence the IGF genes, 

the Oncostatin M signaling 

pathway influences the 

genes that encode the 

Matrix metallopeptidases. 
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Figure 7.4: Metabolic 

network reconstructed 

from metabolites 

significantly 

associated with RFI in 

period 1. Creatine 

interacts with AMPK, 

which plays a major 

role in energy 

metabolism including 

processes such as 

lipolysis, glycogen 

metabolism and 

glucose transport. The 

SLC2A4 (GLUT4) is 

the transporter protein 

involved in glucose 

transport. Other 

molecules such as TTN 

and MYH2 may be 

involved in muscle 

contraction thereby 

utilizing glucose and 

increasing the levels of 

AMP which stimulates 

the AMPK signaling 
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Figure 7.5: The AMPK signaling pathway, one of the canonical pathways for 

metabolites significantly associated with RFI in period 1. Several signals can 

initiate the AMPK pathway including Leptin, Adiponectin and levels of AMP in 

the cells. AMPK has an effect on glycogen synthesis, steroid biosynthesis, lipolysis 

and fatty acid biosynthesis. In the mitochondria, AMPK signaling pathway 

stimulates triacylglycerol synthesis. It also results in β-oxidation which forms 

Acetyl CoA. The AMPK signaling pathway can also result in protein synthesis and 

glucose transport.
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Figure 7.6: Metabolic 

network reconstructed from 

metabolites significantly 

associated with RFI in period 

2. Some of the metabolites 

associated with RFI in period 

2 shown in this network 

indicate the role of the TCA 

cycle in regulating RFI. 

Levels of Acetate, which may 

influence levels of Acetyl 

CoA, were associated with 

RFI and interacted closely 

with levels of citrate. Citrate 

being the product of the 

reaction between Acetyl CoA 

and oxaloacetate also 

indicates the effects of the 

TCA cycle on RFI. These 

reactions may indicate an 

effect on the amount of ATP 

produced by steers with 

differing RFI levels. 
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Figure 7.7: A summary of the interaction between some genes, metabolites and biological processes associated with 

RFI.
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CHAPTER 8 

 

8.1. SUMMARY AND GENERAL DISCUSSION 

 

Ideally, a holistic understanding of the regulation of feed efficiency would have to 

consider all the levels of regulation of phenotypes as shown in Figure 2.1. This 

ability to connect phenotypes to genotypes is one of the fundamental objectives in 

genetics research (Botstein and Risch, 2003). One of the most common 

techniques used to perform genotype-phenotype association studies is the 

candidate gene approach (Zhu and Zhao, 2007). This approach relies on prior 

knowledge of the physiology of the trait and the functions of the genes. In this 

study, the candidate genes to be considered for the analysis were selected based 

on prior knowledge obtained from QTL analyses performed and stored in the QTL 

database (QTLdb) (Hu et al., 2007) and the results of a genome wide association 

study (GWAS) reported by Mujibi et al., (2011). The QTLs considered were 

associated with feed intake/dry matter intake, average daily gain, feed conversion 

ratio, energy balance and body weight. The choice of these QTLs was based on 

the physiology of RFI, which was reviewed in detail by Herd and Arthur (2009). 

The candidate gene approach, discussed in Chapter 3, involved identifying 

positional candidate genes, which are all the genes located in the region of the 

QTL (or from the GWAS) about 500Kbp upstream and downstream of the 

position of the QTL or marker. These were defined as the positional candidate 

genes. The positional candidate genes were then prioritized according to their 

biological function such that genes whose functions were closely related to the 
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physiology of feed efficiency were retained for further analysis and were defined 

as functional candidate genes. We acknowledge the fact that there was a 

possibility to exclude genes whose known functions were not related to feed 

efficiency but would have had a role in the variation in feed efficiency.  This 

would especially arise when the function of the gene was not totally understood, 

or the physiological basis of feed efficiency was not totally understood. A total of 

117 functional SNPs were identified within the functional candidate genes in a 

process described in detail in Chapter 4. Steers from the University of Alberta 

ranch at Kinsella, were used for all the candidate genes studies in this project. 

In the first study, Chapter 4, a multiple marker association analysis was performed 

to identify the SNPs significantly associated with RFI. The total population was 

sub-divided into a training set and a validation set based on the year the steers 

were born and pedigree information such that there were no common sires 

between the two subsets of the population. Twenty two SNPs were associated 

with RFI in the discovery population (P < 0.05) accounting for 18.1% of the 

variation in RFI. Seven of the 22 SNPs were also associated with RFI in the 

validation population (P < 0.05) and 25 SNPs were significantly associated with 

RFI in the pooled population. Using SIFT
®
 software (Ng and Henikoff, 2003), 3 

of the 22 significant SNPs were predicted to cause a significant effect on protein 

function (P < 0.05). One of the three SNPs was located in the GHR gene and was 

associated with a significant effect on the tertiary structure of the GHR protein (P 

< 0.05) as modeled using SWISSModel
®
 software (Arnold et al., 2006). The GHR 

gene was reported to be associated with RFI by Sherman et al., (2008). However, 



254 | P a g e  

 

in contrast with this study, the SNPs reported by Sherman et al (2008) were 

located in the introns and we may not be able to explain how they function to 

affect RFI.   

The other genes that were significantly associated with RFI included SLC45A2, 

AOX1, MYO10, NECAP2, OCLN, OSMR, UMPS, CAST, ACAD11, UGT3A1, 

CYP2B, LRP5. A complete list of the genes can be obtained in Chapter 4. Some 

genes such as NECAP2 and OSMR showed additive effect while other genes such 

as GHR and CAST showed a dominance effect.  

This study resulted in a total of 25 genes which were associated with RFI and, if 

validated across different genetically diverse populations, can be used to develop 

a marker assisted selection tool to select beef cattle for RFI.  

Although RFI is phenotypically independent of some production traits (Archer et 

al., 1999), studies have shown that it is genetically correlated with some of them 

(Kennedy et al., 1993), indicating that the biological processes that cause 

variation in RFI also cause variation in other production traits. Chapter 5 was 

therefore aimed at testing whether the functional candidate genes identified for 

RFI would be significantly associated with carcass quality traits in the same 

population of steers. A multiple marker association analysis was used to test this 

hypothesis. Seven (out of the 117) SNPs were significantly associated with 

various carcass quality traits (p ≤ 0.005) and three of them were the same as those 

that were significantly associated with RFI (p ≤ 0.005). The GHR, SLC45A2 and 

the ARHGAP1 genes were significantly associated with both RFI and at least one 
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of the carcass traits. The other genes associated with carcass traits included 

DGKH, HSD17B12, LRP4 and NDUFS3. The DGKH and HSD17B12 genes are 

involved in lipid and cholesterol metabolism among other functions and may 

partially explain the positive correlation reported between RFI and average back 

fat and intramuscular fat (Basarab et al., 2003). Therefore if these 3 pleiotropic 

markers are to be incorporated into a marker assisted selection panel for RFI, 

there will be need to estimate the effects that the favorable genotypes will have on 

the relevant carcass traits and if the effects are antagonistic, breeders should 

ensure that the economic benefits outweigh  the possible losses. 

Metabolites have the potential to be used as markers for selection of beef cattle. 

There are some studies reporting significant associations between a trait, a 

metabolite and a gene(s). For example; Weikard et al., (2010) reported significant 

association between mutations in the NCAPG and GDF8 genes and average daily 

gain in two independent populations of cattle. They also observed a significant 

association between the mutation in NCAPG with the metabolites carnitine, 

arginine and total dimethylarginine levels in plasma. In a separate study, 

Pliakogiannis et al., (1993) reported a significant association between carnitine 

and triglyceride levels in plasma and body weight.  

Based on these results and the potential for using blood metabolites to test for 

productivity traits in cattle, the objective of Chapter 6 was to identify blood 

metabolites associated with variation in residual feed intake (RFI) in beef cattle. 

The metabolites were assessed at three time points to identify metabolites 

associated with RFI in each period. In addition, there was need to use a mixed 
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model for repeated measures analysis to identify the metabolites significantly 

associated with RFI throughout the feeding period. To achieve these objectives, 

blood samples were collected through jugular venipuncture from 32 (16 high and 

16 low RFI) steers at three time points (periods). Period 1, 2 and 3 corresponded 

to 2, 6 and 9 weeks into the feeding period respectively. The metabolite 

concentrations were determined using nuclear magnetic resonance (NMR). An 

analysis of variance was performed in two ways: for each period separately to 

identify metabolites associated with RFI in each period and using a mixed model 

for repeated measures to identify metabolites associated with RFI irrespective of 

period. The results indicated that at period 1, creatine and glycine were significant 

(P < 0.05) and accounted for 36% of the phenotypic variation in RFI. In period 2, 

10 metabolites (details in Chapter 6) were significant (P < 0.05) and accounted for 

74% of the variation in RFI and at period 3, hydroxyisobutyrate, fumarate and 

tyrosine were significant (P < 0.05) and accounted for 52% of the variation in 

RFI. In a mixed model for repeated measures, 2 metabolites were significantly (P 

< 0.05) associated with RFI across all periods. These results indicate that period 2 

would be the best period to use the metabolites to test for RFI as it results in 

highest accuracy. However, this period required 10 metabolites to achieve that 

accuracy. Although period 3 had relatively low accuracy, it only required 3 

metabolites to achieve it. 

The metabolite creatine was associated with RFI in period 1 and 2, and in the 

entire feeding period. Creatine is a source of energy in cells especially in muscles 

and brain. It is formed from glycine (which was associated with RFI in period 1) 
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and arginine. A good review of the role of creatine in energy metabolism is 

provided by Wallimann et al., (2011). The creatine system connects the processes 

that produce ATP such as glycolysis and oxidative phosphorylation to the 

processes that utilize ATP. Metabolites which were closely involved in the 

processes that produce ATP were citrate and acetate, which were significantly 

associated with RFI in period 2. Carnitine also was significantly associated with 

RFI in period 2. Similar results indicated that carnitine was associated with 

average daily gain (Weikard et al., 2010). The other metabolites associated with 

RFI were amino acids, and we hypothesize that they may be involved in either 

protein synthesis or gluconeogenesis. 

The analysis of metabolites was followed further with a validation analysis 

performed using steers at the University of Alberta in Kinsella. The results 

indicated that 3 metabolites were significant in both discovery and validation 

populations and accounted for 32% of the variation in RFI in the validation 

population in period 2. There were no metabolites significant in both populations 

in period 1. The differences observed between the populations may have resulted 

from among other reasons, the small number of steers used. Therefore there is 

need to identify more metabolites that may be associated with RFI using a larger 

population size and at an earlier age during the development of the cattle.  

Chapter 7 was aimed at consolidating the results reported in the previous chapters 

into a condensed form focusing more on the interactions between the genes, 

metabolites and their biological functions. The reconstruction of gene and 

metabolic networks was made to address these interactions and to indicate the 
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possibility of using them to predict the effects of these molecules on other 

molecules and traits. The major canonical pathways included the growth hormone 

signaling (including protein anabolism), Insulin mediated pathways, AMPK 

signaling and cholesterol biosynthesis (Chapter 7). The biological processes 

identified in this study were similar to those identified by Richardson and Herd 

(2004) and Herd and Arthur (2009). In addition, the genes, metabolites and 

biological processes identified indicated that the biosynthesis of cholesterol may 

vary between beef cattle with varying RFI levels. An exposition of this 

relationship was provided in Chapter 7. 

8.2. GENERAL CONCLUSIONS AND RECOMMENDATIONS 

The results in this study indicate that RFI is a complex trait that is regulated by 

several genes and biological processes. Some of the genes significantly associated 

with RFI have been reported in this study. However, we recommend that these 

genes be tested for association in a different population consisting of diverse 

breeds of cattle before they can be used to develop marker assisted selection 

panels for those populations. A similar assessment was performed using 

population structure and genetic diversity measures in Chapter 9. 

This study has also identified metabolites as an alternative in selection for RFI. 

This concept is still in its infancy but in this study, we show that it has a great 

potential for predicting RFI with relatively high accuracy. We recommend that the 

metabolites identified in this study be validated in other populations to assess their 

consistency across different populations and breeds. There is need to identify 

metabolites associated with RFI at an earlier age. This may be achieved by 
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collecting blood samples from calves at different ages and performing a 

metabolite profile for each calf. This profile could be used later to perform 

analysis of variance when the RFI values are available. However, caution should 

be taken to ensure a difference in the diet offered to the animals does not 

influence the metabolite levels. This may be done by ensuring animals are offered 

the same diet or by identifying metabolites which are significantly associated with 

RFI irrespective of the diet. 

The details provided on the biological processes affected by the significant genes 

and metabolites were aimed at obtaining a greater understanding of the underlying 

factors that cause variation in RFI and giving insights on the possible pleiotropic 

effects of the genes and metabolites.  

This pleiotropy was tested further using the genes that were associated with RFI 

to assess their effects on carcass traits. As expected, 3 of the 25 genes that were 

associated with RFI were also associated with some carcass traits. This was a 

small proportion but is still important as it indicates that selection for RFI using 

these genes may have an effect on carcass traits. We recommend that breeders 

who may wish to use these genes to cautiously look out for these pleiotropic 

effects. 

8.3. OUTPUTS AND IMPLICATIONS IN THE BEEF INDUSTRY 

From this study: 

 We now have an additional 25 SNPs that can be tested further for use in 

marker assisted selection for RFI in beef cattle. These markers account for 
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a larger proportion of the phenotypic variance than most markers reported 

in the past. 

 We also reported plasma metabolites that can be used to predict RFI in 

beef cattle at different stages during the feeding test period 

 We tested the pleiotropic effects of the significant genes and found that 

about 12% (3 of 25) of the genes are also significantly associated with 

some carcass traits. The effects on carcass traits may be favorable 

depending on the breeding goals of the breeder therefore we caution that 

breeders who use the 3 genes should be aware of their possible effects on 

carcass traits as well as RFI. 

 We have also provided a comprehensive analysis of the biological 

processes underlying the variation in RFI. This analysis is expected to give 

insights into the nature of this trait and predict the other processes and 

traits that may be affected if selection for RFI is practiced. 
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CHAPTER 9 

SUPPLEMENTARY WORK 

A genetic diversity analysis and its effects on the results obtained from 

association studies in reference to the University of Alberta beef ranch at 

Kinsella, Canada 

9.1. INTRODUCTION 

 

The province of Alberta, with about 4.95 million cattle, has the largest cattle 

population in Canada, which stands at about 12.46 million (Statistics Canada, 

2012). The Canadian beef industry utilizes Bos taurus breeds, mainly Angus but 

also includes Charolais, Hereford, Simmental and Limousin breeds. Cross 

breeding is utilized to combine the best characteristics of several breeds into one 

animal and results in increased genetic diversity in the population (Amer et al., 

1992). The genetic diversity of the beef cattle populations is key to the 

productivity and survival of the populations as well as the wellbeing of the 

producers. Genetic diversity also enables producers and breeders to select animals 

with preferred genotypes for breeding (Pariset et al., 2006).  In addition to 

selection, the analysis of genetic diversity can be used to detect population 

structure existing in large populations. 

Previously, studies focused on assessing genetic diversity and population structure 

in cattle were conducted using low-density microsatellites and Y-chromosome 

markers (Li et al., 2007). However, analysis of single nucleotide polymorphisms 

(SNP) is becoming the standard approach for population structure and genetic 
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diversity studies (Edea et al., 2013). SNPs are becoming more popular because 

they are abundant in the genome, they are genetically stable, and are amenable to 

high-throughput automated analysis (Vignal et al., 2002). The usefulness of SNPs 

in population structure and genetic diversity analysis has been demonstrated in 

several studies (McKay et al., 2008, The Bovine HapMap Consortium, 2009 and 

Lin et al., 2010).  

With the advent of marker assisted selection (MAS), assessment of population 

structure and genetic diversity is important for several reasons: 

Firstly, genetic markers found to be significantly associated with a trait in 

genetically diverse populations are expected to retain their significance across 

genetically stratified populations resulting in successful utilization across multiple 

breeds and populations. On the contrary, markers that show significant 

associations in specific populations of genetically related individuals may not be 

utilizable in genetically distant populations due to the decay of LD over several 

generations. 

Secondly, genetically diverse populations could be split into distinct 

subpopulations containing more genetic uniformity within the sub-populations 

and genetically distant between the sub-populations. In association studies, one of 

the subpopulations could be used as a discovery population and the other, the 

most distant subpopulation, could be used as a validation population.  

In this study, we used SNPs to analyse the genetic diversity and population 

structure of the beef cattle population at the University of Alberta beef ranch in 
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Kinsella, Canada.  We then identified the probable number of populations within 

the genotyped individuals with the intention of determining whether a subset of 

the population was genetically distant enough to establish it as a genetically 

distinct population that could be used to validate markers identified as significant 

in the other subset of the population.  

9.2. MATERIALS AND METHODS  

9.2.1. Animal resources 

 

The analysis was performed using genotypes obtained from 670 steers at the 

university of Alberta beef ranch in Kinsella, Canada. The composition of the 

population was described in detail by Goonewardene et al., (2003). In summary, 

the sires were mainly from 3 breeds; Angus, Charolais or Alberta hybrid bulls. 

Dams, on the other hand, were crosses developed from 3 composite cattle lines; 

Beef synthetic 1, Beef synthetic 2 and Dairy X Beef synthetic lines. The Beef 

synthetic lines were also composed of crosses of multiple breeds as described by 

Goonewardene et al., (2003).  

9.2.2. Genes, genotyping and population structure analysis 

 

The genes and SNPs used in this study were identified using the candidate gene 

approach as described in Chapter 4. A total of 117 SNPs were genotyped and used 

for the population structure analysis. The details of the identification of SNPs 

used in this analysis were also described in Chapter 4.  

The specific objectives of this analysis included: 
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i. Determining the probable number of population clusters in the genotyped 

steers.  

ii. Determine the relationship between the identified population clusters and 

the breed composition of the individuals in that cluster. 

iii. Utilize the genetic diversity to divide the genotyped steers into a discovery 

and validation population by: 

o Forcing the population into 2 clusters (k = 2) and determine the 

genetic diversity between the clusters, and whether the two clusters 

can be used as discovery and validation populations. 

o Using the optimum number of clusters obtained (i) and select the 

subpopulations that are genetically diverse enough to be used as 

discovery and validation populations. 

Genotype data was prepared and converted to the structure (.str) format using 

CONVERT program (Glaubitz, 2004).  

Population structure analysis was performed using STRUCTURE software 

(Pritchard et al., 2000). The software assumes a model in which there are k 

populations (also called clusters), contributing to the genotype of each individual 

and each is characterized by a set of allele frequencies at each marker locus (Edea 

et al., 2013) 

To determine the optimum number of clusters in the population, the k value was 

set between 2 and 12 with 10,000 iterations and a burn-in period of 10,000. We 
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performed 4 independent runs for each predefined number of population (k = 2-

12). The optimum value of k was the one that resulted in the highest mean value 

of –log likelihood.  

To assess the relationship between population clusters and breed composition, the 

k value was set to 3 to correspond with the number of sire breeds in this 

population (Angus, Charolais and Hybrid). 

9.3. RESULTS 

 

The number of clusters (k) that resulted in the highest mean value of –log 

likelihood was around k = 10 - 11, indicating that the population could be sub-

divided into around 10 – 11 clusters (sub-populations). A graphical representation 

of the estimated membership coefficients (y-axis) to the 11 clusters is shown in 

Fig 9.1. Each individual is represented by a single vertical line broken into k 

colored segments whose lengths are proportional to each of the k inferred clusters. 

An analysis of the breed composition in each cluster indicated that all Angus 

steers were distributed across 4 clusters, Charolais steers belonged to 2 clusters 

and the Hybrid steers were located in 5 clusters.  

When the population was forced to fit in 3 clusters (k = 3), the relationship 

between clustering and breed composition indicated that the three sire breeds 

occupied distinct clusters as shown in Figure 9.2. Cluster 1 corresponded to steers 

sired by Angus sires, cluster 2 corresponded to Charolais sires and cluster 3 

corresponded to hybrid sires. Genetic heterogeneity was still observed (Figure 
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9.2) but the cluster-breed relationship was more defined than in the structure 

established by 11 clusters. Figure 9.3 is a triangle plot showing the distinct 

clusters of the three breeds in the population. The number of individuals in each 

breed/cluster was 205, 197 and 268 for cluster 1, 2 and 3 respectively.  

When the population was forced into 2 clusters, in an attempt to establish a 

discovery and a validation population, the three breeds were distributed across 

both clusters. There were 382 and 288 individuals in cluster 1 and 2 respectively. 

The steers whose sires were hybrids seemed to have a higher probability of being 

in cluster 1. Most of the individuals with higher probability of belonging to cluster 

2 seemed to have sires of the Charolais breed. Most individuals who had an 

almost equal probability of being in cluster 1 or 2 seemed to have sires in the 

Angus breed.  

The allele frequency divergence between the two clusters was very low (0.0083) 

indicating that the two populations were genetically closely related. This 

frequency divergence was also low relative to the allele frequency divergence 

observed between the three breeds/clusters (0.016). The frequency divergence in 

the three clusters indicated that there was a relatively larger genetic distance 

between the individuals when clustered into three clusters than when clustered 

into two clusters. 

When individuals were forced into 2 clusters, the average distances between 

individuals in the same cluster were 0.2 relative to the distance between 

individuals in the same cluster when clustered into 3 clusters (0.19). This 
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indicated that when individuals were forced into two clusters the individuals 

within the clusters were more genetically diverse. However, when the population 

was clustered into three clusters individuals within the same cluster were 

relatively more genetically similar. 

When dividing the population into a discovery and validation population, the 

allele frequency divergence between clusters and the average distances between 

individuals within the same cluster indicated that the optimal clustering would be 

obtained if 3 clusters were used instead of 2; three clusters would achieve higher 

allele frequency divergence between clusters and lower genetic distance within 

clusters. 

The greatest allele frequency divergence observed using the three clusters was 

between cluster 1 and 3 at 0.016. The allele frequency divergence between cluster 

2 and 3, and 1 and 2 was relatively lower; 0.013 and 0.012 respectively. This 

indicated that cluster 3 was more closely related to cluster 2 than cluster 1 and 

cluster 2 was more closely related to cluster 1 compared to cluster 3. 

Therefore, cluster 1 could be considered relatively genetically distinct from 

cluster 3 while cluster 2 was equally related to cluster 1 as it was to cluster 3. 

Cluster 1 may be used as a discovery population while cluster 3 could be used as 

the validation population, or vice versa. Because cluster 2 was equally related to 

clusters 1 and 3, it could be used as discovery or validation population. In this 

study we categorised cluster 2 as part of the discovery population to help increase 

the number of steers in the discovery population. This corresponded to steers sired 
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by Angus sires (cluster 1) belonging to the validation population and those sired 

by Charolais (cluster 2) and Hybrid sires (cluster 3) belonging to the discovery 

population. 

9. 4. Application of population clustering in association analysis 

9.4.1. Population composition and statistical analysis 

 

The total number of steers that had both genotypic and corresponding phenotypic 

data was 531. These steers were born at the University of Alberta ranch in 

Kinsella, Canada, between 2003 and 2006. In each year, the feeding tests were 

conducted in spring and fall seasons, therefore each year had two batches of steers 

that were entered into the feeding test to evaluate their residual feed intake (RFI).  

The population (n = 531) was divided into a discovery and a validation population 

such that the discovery population consisted all the individuals located in cluster 2 

and 3 (sired by Charolais and Hybrid bulls respectively) while the validation 

population consisted of steers in cluster 1 (sired by Angus bulls). In total there 

were 348 steers in the discovery population and the validation population 

consisted of 183 steers. 

A detailed description of the collection and calculations associated with the 

phenotypic data for RFI can be obtained in Chapter 4. 

Association analysis for RFI was performed on the discovery population using 

multiple marker association analysis as described in Chapter 4. The SNPs 

significantly associated with RFI in the discovery population were validated in the 
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validation population using the multiple marker association analysis as described 

in Chapter 4.  

9.4.2. Results and Discussion 

 

Only 6 SNPs were significantly associated with RFI (P < 0.05) in the discovery 

population accounting for 6.4% of the phenotypic variation in RFI (Table 9.1) 

One of the SNPs was located in the Occludin (OCLN) gene with genotypes CC, 

CT and TT. Genotypes CT and TT were both associated with negative (low) RFI 

values and thus were more desirable. The other SNPs were located in SLC30A5, 

MX1, SMPD1, DNAJC24 and OSMR genes (Table 9.1).  

A comparison of the results obtained in this analysis and those obtained in 

Chapter 4 indicated that 2 genes (OCLN and OSMR) were significantly 

associated with RFI in both analyses. This may indicate that these SNPs retain 

significance across genetically diverse populations. To test this hypothesis a 

validation analysis was performed using the steers sired by Angus bulls (cluster 

1). The results indicated that 3 of the 6 SNPs were still significantly associated (P 

< 0.05) with RFI and accounted for 2.9% of the variation in RFI in the validation 

population. These SNPs were located in the OCLN, SLC30A5 and OSMR genes. 

These results confirm that the 2 genes (OCLN and OSMR) remain significantly 

associated with RFI even in genetically diverse populations of beef cattle.  

The SNPs significantly associated with RFI in this study accounted for a 

relatively small proportion of the total phenotypic variance, compared to the SNPs 
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associated with RFI in Chapter 4, which accounted for 19.7% of the phenotypic 

variance. This difference may have resulted from the difference in the number of 

significant SNPs associated with RFI; 25 SNPs accounted for 19.7% (in Chapter 

4) while 6 SNPs accounted for 6.4%. Alternatively, the difference may have 

resulted from the clustering technique applied in the second analysis, which 

enabled the populations to consist of individuals with similar allele frequencies. 

The results obtained from association analyses in beef cattle have frequently 

failed to be reproduced in populations composed of breeds that are different from 

the breed composition in the discovery population (Hayes and Goodard, 2010). 

This usually resulted from the differences in allele frequencies between the 

individuals in the discovery and validation populations. In addition, the failure to 

replicate association analysis results may result from the decay of linkage 

disequilibrium (LD) between markers and the causative genes from one breed to 

another (Hayes and Goodard, 2010). Because of the decay in LD, only a few 

SNPs will remain significant across different breeds as indicated in this analysis. 

9.5. CONCLUSION 

 

This study has shown that SNP genotypes can be used to determine the probable 

number of clusters (sub-populations) in a larger population consisting of 

genetically diverse individuals. The subpopulations differ in their allelic 

frequencies indicating the underlying genetic differences between them. In this 

study, the allelic divergence between clusters was relatively low (around 0.01) 

indicating that the individuals were largely genetically similar.  
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There was a consistent relationship between clusters and breed composition. 

Steers were located in specific clusters depending on the breed of their sire 

establishing three distinct clusters corresponding to the 3 breeds of sires present in 

the Kinsella population (fig 9.3). 

Because of the small difference in allelic frequency divergence between cluster 2 

and 3 and the high genetic distance between individuals within the same cluster in 

cluster 2 and 3, the 2 clusters were not sufficiently genetically different to allow 

them to be divided into 2 genetically distinct populations. However, despite this 

limitation, we have shown that it is possible to use the allelic divergence 

information obtained in this study to divide a population into a discovery and 

validation subset. This will especially be relevant if the population consists of 

more genetically diverse individuals and the two subsets of the population have 

larger differences in their allelic frequencies between them and lower differences 

between the individuals within the subpopulation. 

The 3 SNPs shown to be significantly associated with RFI in both discovery and 

validation populations indicate that they may retain their significant association 

with RFI across genetically diverse populations of beef cattle including different 

breeds. However, these SNPs need to be tested in these genetically diverse breeds 

including Bos indicus to confirm this hypothesis. 
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Table 9.1: SNPs significantly associated with RFI in the discovery population  

SNP Gene name BTA SNP 

alleles 

SNP 

position 

P-value 

MX1 Interferon-regulated 

resistance GTP-

binding protein MxA 

1 C/T 440 0.0090 

SMPD1 Sphingomyelin 

phosphodiesterase 1 

15 C/T 1698 0.0119 

DNAJC24   DnaJ (Hsp40) 

homolog, subfamily 

C, member 2 

15 C/T 143 0.0107 

OCLN Occludin 20 C/T 1051 0.0381 

SLC30A5 Solute carrier family 

30) member 5 

20 A/G 1666 0.0002 

OSMR Oncostatin M 

receptor 

20 G/T 620 0.0301 
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Figure 9.1: Population structure of the Kinsella beef cattle population in 11 clusters 

 

Figure 9.2: Population structure of the Kinsella beef cattle population in 3 clusters 
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Figure 9.3: Triangle plot of the population structure of the Kinsella population in 

3 clusters. The individual, A, may have been placed in that cluster due to an error 

in the associated breed of the sire in the dataset. Each cluster corresponds to the 

breed of the sire such that cluster 1 corresponds to Angus sires, cluster 2 to 

Charolais sires and cluster 3 to Alberta hybrid sires. 
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APPENDIX 1 

STATUS OF MANUSCRIPTS SUBMITTED FROM THE PhD PROJECT 

(AS OF 30 July 2013) 

 

1. Based on Chapter 3 of the thesis: 

Karisa, B. K, Moore, S. S, Plastow, G. S. Complicated relationships: A review of 

biological networks and pathways in animal science. PUBLISHED in Springer 

Science Reviews, 2013, DOI: 10.1007/s40362-013-0005-8 

 

2. Based on Chapter 4 of the thesis 

B. K. Karisa, J. Thomson, Z. Wang, P. Stothard, S. S. Moore, G. S. Plastow. 

Candidate genes and single nucleotide polymorphisms associated with variation 

in residual feed intake in beef cattle. PUBLISHED in Journal of Animal 

Science; DOI:10.2527/jas.2012-6170. 

 

3. Based on Chapter 5 of the thesis 

Karisa, B. K., Thomson, J., Wang, Z., Bruce, H. L., Plastow, G.S., Moore, S.S. 

Candidate genes and biological pathways associated with carcass quality traits in 

beef cattle. Accepted for publication in Canadian Journal of Animal Science. 

 

4. Based on Chapter 6 of the thesis 

B. K. Karisa, J. Thomson, Z. Wang, C. Li, S. P. Miller, S.S. Moore, G. S. Plastow. 

Metabolite bio-markers associated with feed efficiency in beef cattle with 

divergent residual feed intake. Submitted to Livestock Science, 2013. The 

authors have received the reviewer’s comments and are making corrections. 
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5. Based on Chapter 7 of the thesis 

Brian Karisa, Stephen Moore and Graham Plastow.  Analysis of biological 

networks and biological pathways associated with residual feed intake in beef 

cattle. Animal Science Journal, 2013. The authors received reviewers’ 

comments and submitted a revised version. The chapter in the thesis reflects 

the corrections suggested by the reviewers. 

 

 


