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Abstract 

 

In reservoir simulation studies, history matching is extensively used for 

uncertainty reduction and reservoir management. History matching using 

Ensemble Kalman Filter (EnKF) is a promising approach due to its non-

iterative nature and ability to assimilate a large number of model parameters. 

However, in processing a large set of realizations, this method suffers from 

high computational time and cost associated with the use of commercial 

reservoir simulators. Therefore, there is a scope for some improvement in this 

approach especially in the case of complex thermal recovery process such as 

steam assisted gravity drainage (SAGD). In this work, the computational cost 

is reduced significantly by developing proxy models that can substitute the 

need of reservoir simulator during the assisted history matching process. 

Different proxy models such as Polynomial Chaos Expansion (PCE) and 

Artificial Neural Networks (ANN) are tested to represent the outputs of the 

conventional reservoir simulator. Permeability realizations of the SAGD 

reservoir are first parameterized using Karhunen- Loeve (KL) series expansion 

and represented in the form of uncorrelated random variables.  The developed 

proxy models utilize random variables obtained from KL expansion as input 

parameters. Proxy models are further integrated with EnKF algorithm as a 

substitute for reservoir simulator. Computational requirement of the proxy 

model during the development as well as deployment as compared to 

commercial reservoir simulator is emphasized in this study. The proposed 

approach is validated using a field-scale SAGD case study of northern Alberta. 

The observed daily oil rate, cumulative oil production, and cumulative steam 
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to oil ratio are history matched using the proposed method. Results show that 

as compared to conventional EnKF, the integration of data-driven proxy 

models can perform assisted history matching in quick, low-cost manner while 

maintaining the accuracy of results. This work has a potential to cut down the 

monetary and time constraints during the assisted history matching process. 
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Chapter 1: 

General Introduction 
 

1.1 Reservoir Modeling and Simulation 

Reservoir modeling and simulation is an art to predict the flow of fluids through 

subsurface geological formations. It plays a very crucial role in decision-making 

process and field development strategies. It takes into account various factors 

significantly contributing to the economic risk and reservoir performance. These 

factors include a variation of fluid properties, properties and types of rocks, 

porosity and permeability characteristics, and substantial physical processes 

taking place within the reservoir. Traditional reservoir simulation techniques 

consist of analogical, experimental and mathematical approaches (Ertekin et al. 

2001).  

Analogical methods predict the performance of reservoir based on the information 

of already developed reservoirs with similar properties. These approaches have 

vital importance at the early stage and when minimal or no data is available for 

the target reservoir. However, such methods failed to provide any information if 

development strategies or production scenarios differ from the scenarios known 

for the sample reservoir. Experimental methods deal with direct measurements of 

flow properties. Reservoir rock samples are taken from the field in the form of 

cores and studied under laboratory environment. Even though the experimental 
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analysis reflects the reservoir performance but the difficulty lies in scaling up the 

lab sample features to the actual reservoir scale.  

Conventional mathematical methods used to predict the reservoir performance is 

decline curve analysis and material balance (Dake, 2007). In decline curve 

analysis, a curve is fitted graphically to the observed production data and the 

reservoir performance is predicted.  Production rate versus the cumulative 

production is plotted on semi-logarithmic plot and based on a mathematical model 

(exponential, hyperbolic or harmonic) a curve is fitted to the plot. As no physical 

interpretation of subsurface flow is involved, and also pressure data is not used in 

the analysis, decline curve approach predicted the reservoir performance only 

under certain circumstances and failed when development strategy is changed. 

Material balance is another approach which is based on the assumption that the 

reservoir volume is constant and expansion of other components and aquifer 

influx causes the depletion of the volumetric component. This approach also 

assumes that the reservoir is homogeneous and reacts spontaneously and equally 

throughout its volume which is one of its main drawbacks. It is also not possible 

to determine new development strategies such as the location of the new well 

using simplified material balance analysis.  

Currently, complex mathematical simulation models are probably the most widely 

used techniques in reservoir simulation. It encompasses discretization of the 

reservoir into grid blocks, each with a different set of rock and fluid properties. 

Material balance analysis is conducted on each grid block coupled with initial and 

boundary conditions of the reservoir, and mathematical equations are solved to 
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estimate the pressure and flow rates of reservoir fluids at each grid block. Due to a 

large number of grid blocks and complexity of the system, it is tough to solve the 

model equations analytically. Hence numerical methods are used for solving 

mathematical models.  

 

1.2 Reservoir Simulation Process 

There is a standard workflow for reservoir simulation process. Below are the 

major components of a typical reservoir simulation study (Carlson, 2003). The 

process has also been summarized in Figure 1. 

Data Gathering: In this step, all the data is gathered and selected for the input in 

the simulation model. Collective data regarding relative permeability, capillary 

pressure, and PVT data is screened. Correlations are applied on various lab data, 

and geological maps of porosity and net pay are developed and digitized into a 

grid format. 

Initialization: This step is mainly known as data checking step. An initial run is 

completed, and preliminary calculations are conducted. Calculation of parameters 

like grid block saturation, original oil in place is the main objective of this step. 

Results are cross-checked against other available data and results. 

History Matching: This step includes the tuning of input data based on the field 

production data. It involves a series of trial and error runs to obtain the correct 

values and therefore is the most time-consuming step. The simulation model is 

run through time with field production data, and the idea is to match the 

production behavior of the simulator with the actual behavior that happened 
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1.3 Uncertainty in Reservoir Properties 

An important step of reservoir modeling is to address the uncertainty in geological 

properties of reservoir rocks. Geological properties such as porosity, permeability 

and saturations are obtained using different kinds of well logs measured during 

drilling and exploration phase. Due to the presence of noise and measurement 

error in well logs, core samples, and seismic data, uncertainty becomes an 

intrinsic characteristic of any geological model. In almost any case, available data 

is limited and geological formations are way too complicated to be pronounced on 

a model level conceptually. Even if all the information is known, computational 

power would be a constraint for solving large-scale problems. Researchers are 

developing different approaches to get a reasonable solution for these issues. 

Models are divided into two categories, deterministic models, and stochastic 

models. Deterministic models assume that all the parameters and conditions are 

known hence claim a single best prediction as an actual result. On the other hand, 

stochastic models use multiple input realizations and provide a range of possible 

solutions and hence help in quantifying the uncertainty for complex dynamic 

systems. Uncertainty in the reservoir properties, scale, and complexity of the 

reservoir are some of the main difficulties during a modeling and simulation 

study. History matching is an approach for handling the lack of available data and 

uncertainty in geological information during a simulation study.   
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1.4 Introduction to History Matching 

History matching is a process of adjusting model input parameters to obtain a 

model output similar to historical/dynamic data. Dynamic data normally includes 

production data measured at the surface as oil, water, and steam production rate, 

cumulative oil/water production. This is a non-unique problem since there is more 

than a solution which can match the available data. Therefore, a unique history 

matched reservoir model is not sufficient to predict reservoir performance, and a 

calculation of uncertainty in reservoir model variables becomes the important part 

of history matching problem. 

History matching techniques have been practiced widely in petroleum engineering 

applications for the last several decades. Traditionally, reservoir models were 

history matched manually using a good engineering knowledge and judgment. 

Manual History matching is a trial-and-error approach and is known to be time-

consuming and ineffective. It is obviously not the practical approach. Therefore, 

numerous statistical and mathematical methods have been studied as automatic or 

assisted history matching algorithms in reducing the time required during the 

process while maintaining the accuracy of results. Assisted history matching 

(AHM) is software enabled approach which can calibrate a reservoir model using 

known data. A detailed discussion on various history matching techniques is 

presented in the further chapter.  
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1.5 Problem Definition 

Data assimilation and history matching of the large-scale reservoir is a 

challenging task due to high computational cost and time requirement associated 

with the use of commercial reservoir simulators. For a conventional reservoir of 

average size, hundreds or thousands of grid blocks can be employed each one 

with different properties. During assisted history matching process various 

realizations of these models are evaluated using commercial reservoir simulators 

repeatedly at different time steps, resulting in high computational cost and time. 

Although the growth in computational capabilities in recent years has supported 

the assisted history matching process, for large scale models and SAGD reservoir 

models, in particular, the computational cost and time is still a major limiting 

factor. Various approaches are documented in the literature to reduce the time and 

number of simulations in the history matching process. One of the approaches to 

reduce the computational cost and time is by reducing the number of input 

realizations by application of different screening/ranking methods (Patel et al. 

2015). Another approach which is of interest is the use of proxy or surrogate 

models instead of commercial reservoir simulators. Proxy models are referred as 

mathematically derived models that imitate the output of a simulation model for 

selected input parameters. Proxy models are widely applied in different numerical 

modeling tasks such as sensitivity analysis, probabilistic forecasting, reservoir 

management and process optimization. In cases where proxy models can 

adequately represent relevant output parameters, they can be used as an adequate 

substitution for full reservoir simulations. An integrated workflow is therefore 
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required which can conglomerate the use of proxy models with data assimilation 

algorithm for fast and low-cost history matching of large-scale reservoirs while 

maintaining the accuracy of results.  

 

 

1.6 Research Objectives 

The primary goal of this thesis is to develop an integrated framework using data-

driven proxy models with Ensemble Kalman Filter (EnKF) data assimilation 

approach for efficient and fast-track history matching of large scale complex 

reservoirs. In this work, data-driven proxy models, which can substitute the need 

of using reservoir simulator during the assisted history matching process, are 

developed. Spatial distribution of permeability field for various synthetic and real 

geological reservoirs is parameterized using Karhunen- Loeve (KL) series 

expansion and represented in the form of uncorrelated random variables. Proxy 

models are developed using the random variables obtained from KL expansion as 

input parameters and used to predict production parameters as outputs. 

Established models are further integrated into EnKF framework to predict 

production parameters in forecast step while updating the random variables 

instead of permeability of each grid block in analysis step of EnKF. 

Computational requirement of the proxy models during the development as well 

as deployment as compared to commercial reservoir simulator is emphasized in 

this study. Primary objectives of this thesis are summarized as below: 
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 To parameterize the random permeability fields of geological reservoirs in the 

form of uncorrelated variables using KL series expansion. 

 To construct different data driven proxy models based on polynomial chaos 

expansion and artificial neural networks capable of imitating the outputs of 

reservoir simulator. 

 To compare the efficiency and accuracy of developed proxy models with 

commercial simulators for different reservoir models. 

 To develop a framework combining data-driven proxy models with EnKF 

approach for efficient and fast-track history matching of geological reservoirs. 

 To history match a real 3D SAGD reservoir using data-driven proxy model 

based EnKF algorithm. 

 

1.7 Thesis Outline 

The thesis is organized as follows.  

Chapter 1 provides the general overview of reservoir modeling and simulation 

process. It also explains the objectives and scope of research work.  

Chapter 2 provides a literature review on history matching algorithms and 

various proxy modeling methods and parameterization techniques.  

Chapter 3 discusses the KL parameterization method used as a dimensional 

reduction tool for geological reservoirs in this work. Also, different proxy models 

are presented in this section. Detailed methodology, principle, and application for 

a real SAGD field are provided. 
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Chapter 4 provides an integrated framework for the use of ANN based proxy 

models with Ensemble Kalman filter for fast and efficient history matching of a 

real 3D SAGD reservoir. Results are compared with the conventional approach of 

EnKF. 

Chapter 5 provides an integrated framework for the use of PCE based proxy 

models with Ensemble Kalman filter for a real 3D SAGD reservoir.  

Chapter 6 discusses the summary and conclusions of this study along with some 

insights into future work for application of proxy models in reservoir modeling 

and simulation. 
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Chapter 2: 

Literature Review 
 

2.1 History Matching 

Reservoir Simulation is a vital exercise for decision making and field 

development planning. An important step of reservoir modeling is to address the 

uncertainty in geological properties of reservoir rocks. Geological properties such 

as porosity, permeability and saturations are obtained using different kinds of well 

logs measured during drilling and exploration phase. Due to the noisy and sparse 

nature of well logs, core samples, and seismic data, uncertainty becomes an 

intrinsic characteristic of any geological model. History matching is used to solve 

this problem and to estimate the spatially varying reservoir properties. History 

matching is a process of adjusting model parameters to obtain a model output 

similar to historical/dynamic data. Dynamic data normally includes production 

data measured at the surface as oil, water, and steam production rate, cumulative 

oil/water production. 

History matching techniques have been practiced widely in petroleum engineering 

applications for the last several decades. It provides a  non-unique solution where 

different variable sets may result in an equally good match with the observed 

production history of the reservoir (Oliver & Chen, 2011). Traditionally, reservoir 

models were history matched manually using a good engineering knowledge and 
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judgment. Manual History matching is a trial-and-error approach and is known to 

be time-consuming and ineffective (Romeu, 2010). It may also result in loss of 

geological sanity (Oliver & Chen, 2011). Agarwal et al. (2003) applied manual 

history matching for a complex fracture chalk reservoir in the Norwegian North 

Sea. They stated that it took almost one year of rigorous work to history match the 

production data manually. It is obviously not the practical approach. Therefore, 

numerous statistical and mathematical methods have been studied as automatic or 

assisted history matching algorithms in reducing the time required during the 

process. Advancement in computer technology has also generated interest in 

automated history matching techniques. 

In assisted history matching, simulated data is compared to historical data by 

minimizing a misfit function. Various algorithms have been developed to perform 

history matching in an efficient and reliable way. They can broadly be divided 

into local and global algorithms. Oliver & Chen (2011) reviewed different 

approaches like gradient methods, neighborhood algorithm, adjoint methods, etc. 

used in assisted history matching. Gradient-based algorithms and adjoint methods 

fall under the category of local algorithms and have the advantage to converge 

faster than global approaches. However, in the case of multidimensional and non-

linear problems, these methods tend to get stuck in local minima. They provide 

only one solution corresponding to a minimum which depends on the initial set of 

reservoir parameters. Adjoint methods have to be hard coded in the simulators 

which reduce their adaptability to different simulators (Cancelliere et al. 2011).  

On the other hand, global algorithms such as genetic algorithms and evolutionary 
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strategies provide multiple solutions in a single run and can spurt the issue of 

local minima efficiently. Evolutionary algorithms are frequently used approach 

because of their adaptability to different simulators. However, slow rate of 

convergence decreases their efficiency when dealing with a large number of 

parameters (Cancelliere et al., 2011). These methods require a large number of 

simulation runs to evaluate the misfit function which results in high 

computational cost and time. A brief introduction and limitations of various 

history matching algorithms have been presented in this chapter. 

2.1.1 Gradient-based approach 
 

In the Gradient-based approach for history matching, the unknown model 

parameters are calculated by minimizing an expression called the objective 

function. The objective function gradients on model parameters are estimated, and 

direction of optimization search is then determined. The objective function is 

typically based on the squared difference of the simulated data as compared to the 

observed data. 

 ( )   ‖ (   )      (   )‖
 ……………………………………………… 2.1 

Where  (   ) is the output of simulated model over model parameter   and 

    (   ) is the observed data. The task of history matching is to find    which 

minimize the objective function represented by Eqn.2.1. The loop followed by the 

process includes running the flow simulator for entire history matching period, 

evaluating the cost function, updating the static parameters and going back to the 

first step (Liang, 2007). There are several algorithms available in literature the 
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which follows the basis of the gradient-based method such as Gauss-Newton, 

Levenberg-Marquardt, Conjugate gradient, Quasi-Newton, Limited Memory 

Broyden Fletcher Goldfarb Shanno (BFGS). These methods fall into the category 

of Gradient-Based Methods. In view of finding the minimum of the objective 

function  , its gradient concerning   should be zero. Using the Taylor Series 

expansion, the following expression is derived (Nejadi, 2014): 

              (  )   (  )……………………………………………. 2.2 

Where,    is the iteration step, and  (  ) is the Newton Hessian Matrix, 

represented by ((  (  ))
 
). Prime difficulty with the gradient-based method 

for history matching is the evaluation of the Hessian matrix. 

Another limitation of gradient based approach is that it does not consider the 

reference statistics of the model parameters (Nejadi, 2014). Although the initial 

guess is made from reference distribution and statistics but got wrecked during the 

successive updates of the model parameter. Also, in the case of multidimensional 

and non-linear problems this approach tends to get stuck in local minima (Liang 

2007). It provides only one solution corresponding to a minimum which depends 

on the initial set of reservoir parameters and may be far away from the global 

optimum. 
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2.1.2 Adjoint Method     
 

Adjoint method is the most efficient method for computing the gradient of a 

function and is practical for history matching problems with a large number of 

model parameters. As mentioned in the previous subsection that the main 

drawback with gradient based techniques is to evaluate gradients and Hessian 

matrix.  In the adjoint method, the sensitivity of each production data concerning 

model parameters is generated in terms of derivatives and adjoint equations 

(Liang, 2007). The system of adjoint equations is analogous but distinct from the 

finite difference equations in the reservoir simulator. While the finite difference 

equations may be nonlinear, the adjoint state variables are the solutions of a linear 

system of equations. Also, reservoir simulation runs forward in time while the 

adjoint variables are propagated backward in time that includes information from 

the simulation results.  

Oliver et al., (2008) have presented the application of the adjoint method for the 

history matching of a one-dimensional problem. The adjoint method was applied 

to a water-oil two-phase problem by Zhan et al. (1999) and to three-dimensional 

three-phase problems by Makhlouf et al. (1993).  The computational time for 

adjoint equations is comparatively less than the corresponding time required for 

reservoir simulator. But for a large number of observed data, this method becomes 

computationally expensive. In other words, this method is impractical for large-

scale multiphase flow due to high computational time and cost associated with the 

process. Even if due to advancement in computing technologies, the adjoint 

method becomes feasible for large scale problems, it is still limited to the 
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implantation into the source code of the reservoir simulator. Adjoint methods 

have to be hard coded in the simulators which reduce their adaptability as source 

code for different simulators are very complicated and are not easily reachable 

(Cancelliere et al. 2011).   

 

2.1.3 Genetic algorithms  
 

Genetic Algorithm (GA) is a randomized search technique, which is based on an 

analogy to natural selection according to the evolutionary theory of Darwin and 

the ”survival of the fittest” principle. This method was developed by John 

Holland at the University of Michigan (Holland, 1975). It starts with an initial 

sample space of possible solutions, from which specific solutions are selected 

according to a stochastic process for the best combination of parameters to 

improve the match and discard the bad candidates. The process is repeated till a 

convergence is achieved, or specified number of evaluations are performed. 

Genetic algorithm approach consists of three main steps, designing of sample 

space which contains the uncertain possible solution in terms of variables or 

realizations, defining and selecting proper structure to create solutions, and thirdly 

the operators to generate new solutions. This approach is easy to implement but 

computationally expensive (Kaleta, 2011). It has been used multiple times in 

petroleum engineering applications. Genetic algorithms have also been embedded 

in various commercial software (Begum, 2009). BP’s “Top-Down Reservoir 

Modelling” approach proposed by (Williams et al., 2004) used the genetic 

algorithm as a global optimizer in combination with the reservoir simulator to 



17 
 

accomplish history matching tasks. Unfortunately, due to the computation cost 

arising from the slow convergence, a genetic algorithm is still very limited in real 

problems (Liang, 2007). 

2.1.4 Simulated Annealing  
 

Simulated annealing is a probabilistic procedure for global optimization problems, 

which locate the global optimum of a given function by implementing certain 

cooling schedules in a large search space. This approach is analogous to annealing 

in metallurgy, a technique which involves heating and controlled cooling of the 

material to alter the size of its crystals and reduce their defects. The heating 

increases the energy of the atoms within the material. The slow cooling causes the 

solid material to form a new homogeneous crystalline structure with minimal 

energy. Metropolis et al., (1953) numerically simulated the molecular behavior 

when the energy level of the system is altered. Kirkpatrick et al., (1983) further 

implemented the idea to optimization problems. The idea is to use a control 

parameter, like temperature, to search for feasible solutions and find the global 

minimum of the objective function. 

There have been numerous applications of simulated annealing in the petroleum 

industry. The major trouble in the application of this approach is that there is no 

obvious analogy for the temperature on a free parameter in the combinatorial problem 

(Begum, 2009). Also, implementation of this algorithm is too expensive for reservoir 

characterization. Petroleum reservoir models consist of a vast number of grid blocks, 

optimization of such large model parameter space requires many iterations and 

significant computational effort (Gomez et al., 2001). 
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2.1.5 Neighbourhood algorithm  
 

The Neighbourhood Algorithm is a direct search algorithm in the same class of 

inversion techniques such as Simulated Annealing and Genetic Algorithms. These 

methods are similar in that they use randomized decisions in exploring the 

parameter space and require a particular forward model primarily. The algorithm 

generates history matched models by first randomly generating an initial set of 

models and then identifying the models with smallest data mismatch. Finally, new 

models are created by a random walk in the Voronoi cell of each selected model. 

 

One of the advantages of the Neighborhood Algorithm is the simplicity of its two-

parameter tuning scheme in contrast to the more complicated adjustment 

mechanisms of other methods, such as the cooling schedule required by Simulated 

Annealing (Sambridge, 1999). Christie et al., (2002) applied this approach to 

history matching and uncertainty quantification.  Rather than using a single, 

lowest misfit model to make inferences about the system, this method retains 

multiple models that have small data mismatch. The idea is that even poor-fitting 

models contain information about the system. The application of this approach is 

although limited to a small number of parameters (Sambridge, 1999). 
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2.1.6 Ensemble Kalman Filter 
 

In recent years, the research community has shown great interest for Ensemble 

Kalman filter (EnKF) as a data assimilation technique because of its simplicity 

and ability to adapt large-scale non-linear systems. As data becomes available, 

this method sequentially and continuously updates the reservoir model states 

(saturation, pressure, etc.) and parameters (permeability, porosity, etc.). This 

approach can be easily combined with any reservoir simulator. Evensen (1994) 

initially introduced this method for oceanic models. Lorentzen et al. (2001) used 

this approach for updating both dynamic variables and model parameters for a 

two-phase well flow model used in underbalanced drilling. Naevdal et al.(2003) 

showed the application of this method in history matching with encouraging 

results. It has also been applied to several synthetic cases for parameter estimation 

and production optimization (Brouwer et al. 2004, Wang et al. 2007). Haugen et 

al. (2006) presented a study for a North Sea field using EnKF for assimilating 

production data. Bianco et al. (2007) applied this method to a saturated oil 

reservoir and examined the influence of ensemble size on history matching 

results. Chitralekha et al. (2010) used production data in EnKF to characterize, 

and history match a 3D synthetic steam assisted gravity drainage (SAGD) 

reservoir. EnKF method for history matching mainly comprises of two steps, the 

forecast step, and the analysis step. In forecast step, all the realizations in the 

ensemble are forwarded using numerical simulation from current time step (tk) to 

next time step (tk+1). Then uncertainty in production forecast is assessed, and if 

uncertainty is high, then analysis step is performed in which unknown model 
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parameters are updated by assimilating production data available from the field at 

current time step. Again, production forecast of the ensemble with updated model 

parameters is obtained for the next time step, and uncertainty is measured. This 

process goes on till the uncertainty is reduced up to a level where realizations can 

be used further to develop field related strategies.  

Differences between traditional history matching and EnKF 

Traditional history matching follows the iterative approach to update the static 

parameters like porosity and permeability (Liang, 2007). Following are some of 

the characteristics of traditional history matching algorithms: 

 Repeated flow simulations with all data when new data are available, 

 Not fully automated, 

 Not suitable for real-time reservoir model updating, 

 Hard for uncertainty assessment. 

On the other hand EnKF approach updates the reservoir model sequentially for 

both static parameters like porosity and permeability as well as dynamic 

parameters like pressure and saturations. Following are the characteristics of 

EnKF approach: 

 Production data assimilated sequentially in time, 

 Fully automated, 

 Suitable for updating nonlinear reservoir simulation model on a large 

scale, 

 The uncertainty of prediction is straightforward from the ensemble 

members. 
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Ensemble Size 

EnKF method relies greatly on the size and the features of the initial ensemble 

(Mitchell & Houtekamer, 2000). Ensemble should be selected such that it 

statistically represents the parameter space and characterize the uncertainties of 

the model. Small ensemble size does not represent model uncertainties' correctly, 

and the problem is under sampled (Nejadi, 2014). Many realizations in the 

ensemble lead to high computational cost and time during the assisted history 

matching process. The problem becomes more complicated with large scale 

thermal recovery process such as SAGD for which simulation of each ensemble 

member would take several hours. The ensembles of around 100 realizations are 

considered to be large enough for practical applications (Mitchell & Houtekamer, 

2000).  

Ensemble collapse (loss of ensemble variance) 

EnKF depends on statistical measures of the ensemble during the analysis 

(update) step. Small ensemble size and sampling errors poorly estimate the cross-

covariance matrix (Nejadi, 2014). Poor cross covariance approximation results in 

large Kalman gain values and unphysical updates resulting loss in ensemble 

variance after few assimilation steps. The updated realizations collapse toward a 

particular response which may not honor the reference statistics. This problem is 

known as ensemble collapse (Nejadi, 2014). 

Further details about the EnKF algorithm steps are presented in chapter 4. 
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2.2 Proxy Modeling 

Data assimilation and real-time updating of large-scale SAGD reservoirs is a 

challenging task due to high computational cost and time requirement associated 

with reservoir simulators. For a conventional reservoir of average size, hundreds 

or thousands of grid blocks can be used each one with different properties. In 

forecast step, each realization of the ensemble is evaluated using commercial 

reservoir simulators at every time step, resulting in high computational cost and 

time. Various approaches have been discussed recently in literature to reduce the 

time and number of simulations in the history matching process. One of the 

approach to reduce the computational cost and time is by reducing the ensemble 

size by application of various screening/ranking methods (Patel et al., 2015). 

Another solution to the huge computational cost has been the use of proxy 

models. Proxy models are referred as mathematically derived models that imitate 

the output of a simulation model for selected input parameters. In the literature, 

proxy models are often termed as response surface models or surrogate models 

(Zubarev 2009). In cases where proxy models can adequately represent relevant 

output parameters, they can be used as an adequate substitution for full reservoir 

simulations. Polynomial regression models, ordinary kriging models, artificial 

neural networks (ANN) and radial basis functions (RBF) are some of the 

commonly used proxy models for reservoir simulation. 

Numerous active applications of these proxy models in uncertainty quantification, 

history matching, and optimization have been found in the literature (Li & 
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Friedmann, 2005, Junker et al. 2006, Slotte et al. 2008). Peng & Gupta (2004) 

presented different experimental design techniques in combination with kriging 

and polynomial regression models to predict initial hydrocarbon in place. Zangl et 

al. (2006) used a combination of neural network-based proxy model and genetic 

algorithms for the production optimization process. He et al. (2011) proposed 

Trajectory Piecewise Linearization (TPWL) for model reduction and used them 

with EnKF for history matching of artificial reservoirs.  Li & Friedmann (2007) 

used thin-plate spline interpolation to generate objective function in history 

matching of two waterflooded reservoirs. Cullick et al. (2006) used a neural 

network based non-linear proxy model for the history matching process. Costa et 

al. (2014) demonstrated the application of Artificial Neural Network (ANN) in 

history matching of a synthetic water flooded reservoir.   

Some applications of proxy models in case of the complex thermal recovery 

process as SAGD are also available in the literature. Akram (2011) considered a 

polynomial regression model using least square fit for optimization of a SAGD 

model. Fedutenko et al. (2014) suggested proxy models based on radial basis 

functions and observed their capability to forecast the outputs of SAGD 

operations for a given period. Queipo et al.(2002) proposed a proxy methodology 

for the optimization of well spacing and sub-cooling to maximize the production 

of a synthetic 2D SAGD reservoir model, using a method based on neural 

networks and a kriging surface. Vanegas et al. (2008) discussed another strategy 

for assessing optimal operating conditions in the SAGD process using the design 

of experiments and polynomial response surface approach. However, these 
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studies are based on synthetic reservoir models and overlooked the geological 

uncertainties and complexities of the real SAGD field. It can also be observed that 

proxy models used for history matching deal with few undiagnosed reservoir 

parameters due to their inability to incorporate a higher number of parameters. 

Hence, there is an opportunity of improved method, which can be used for proxy 

modeling of large-scale reservoirs and can easily be integrated with assisted 

history matching algorithms such as EnKF to reduce computational cost while 

maintaining the accuracy of results. 

Zubarev (2009) has conducted a comparative study of proxy-modeling 

algorithms, their prognostic quality, and computational efficacy. He concluded 

that model complexity, dimension and the selection of the trial runs are the key 

dependencies for all proxy-modeling methods. Therefore, the ideal proxy 

selection is unique to the problem for examination and requires a detailed 

understanding of the advantages and limitations of the proxy model before 

selection. In almost all cases, some traditional reservoir simulation runs for 

development or validation purposes are needed. An initial analysis is done to 

reduce the number of input parameters required for the simulation. The run time 

and sophistication necessary to generate a proxy model is another significant 

aspect that differs among different types of models. 

In the next section, some of the commonly applied proxy models in reservoir 

simulation are discussed. A very brief review of these proxy model types is 

provided. A detailed discussion of the models used in this work will be presented 

in subsequent chapters.  
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2.2.1 Polynomial Regression Models 
 

Polynomial regression models is a term generally used to address response 

surface models (RSM). Because of their flexibility and computational efficiency, 

these models are widely been used in petroleum industry. A general form of a 

second order polynomial model can be represented as: 

 ( )          ∑      
 
     ∑      

  
     ∑ ∑          

 
        …………. 2.3 

Where P is the parameter space dimensionality,     are the input variables,  ( ) is 

the output based on input variables,      ,      ,        and    
   … are the coefficients for 

constant, linear, quadratic and cross terms of polynomial expression respectively. 

In this approach, coefficients are generally calculated using least squares fitting 

method.  This method requires careful selection of training data and calculation of 

regression coefficients. It has an advantage of quick evaluation but is prone to 

over fitting (Fedutenko et al., 2013).It also depicts poor prediction accuracy for 

highly nonlinear multidimensional cases. 

 

2.2.2 Kriging Models 
 

Kriging is a geostatistical technique to quantify the spatial correlation in the data 

using a function of distance and direction between the two points. It assumes that 

points are spatially correlated to each other. The extent of correlation is expressed 

in terms of geostatistical parameters as covariance function and variograms, 

which are further used to determine the weight of each sample point for the 

estimation of new values at unsampled locations. This method has high prediction 
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accuracy compared to polynomial regression models (Fedutenko et al., 2013). 

However, for an experiment of L observations, it requires inversion of a (L+1) x 

(L+1) matrix, which is time-consuming and makes this approach difficult for a 

large value of L. 

 

2.2.3 Thin-plate Spline Models 
 

Thin plate spline is a multidimensional interpolation method for data within a 

parameter space. It is analogous to bending of a thin sheet of metal. If a particular 

set of data points is available, this approach creates a weighted combination of 

thin plate splines which are centered about each data point and provides the 

interpolation function that passes through the points with minimized bending 

energy. These models exactly reproduce the input data but require more 

experiments than the number of uncertainty parameters (Zubarev, 2009). It 

consists of radial basis functions that define a spatial mapping between two points 

in space. This method can be widely used as the non-rigid transformation model 

in image alignment and shape matching (Bookstein, 1989). However, it has been 

observed that splines already in one dimension can cause severe overshoots. In 

2D such effects can be much more critical, which limits the application of this 

approach for complex multidimensional cases. 
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2.3  Parameterization techniques  

In the case of large reservoir models, it is almost impractical to deal with the full 

description of a reservoir. History matching is an ill-posed problem which does 

not have a unique solution. The number of independent parameters required to 

describe the dynamics of fluid flow within the reservoir is more than the 

parameters that can be calibrated during assisted history matching process based 

on limited data and constraints. Thus, there is a need for excellent selection of 

how many and which parameters have to be calibrated at a particular time.    

Reduced-order modeling procedures entail the projection of a high-resolution 

description of a reservoir into a low-dimensional space, hence significantly 

reducing the number of unknowns and making the problem better posed. This 

process of dimension reduction is known as random field parameterization. 

Various approaches for random field parameterization have been published in the 

literature (Sudret & Kiureghian, 2000).The competency of a random field 

parameterization method rests on its ability to approximate the original random 

field accurately with a minimum number of unknowns. Following are some of the 

parameterization techniques discussed in literature: 

2.3.1 Zonation 

Zonation is the most basic and commonly used form of parameterization. In this 

method, the reservoir model is divided into individual zones larger than a single 

grid block and value of the particular parameter is kept constant within that zone. 

This method is mainly useful in cases where boundaries of zones are determined 

before the calibration process so that values of the reservoir properties in each 
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region are considered to be uncertain. The data misfit with zonation process is 

larger because of less number of degrees of freedom and inappropriate selection 

of zone boundaries (Oliver & Chen, 2011). Also, this method suffers from the 

discontinuity of reservoir properties at the zone boundary due to coarse zonation. 

 

2.3.2 Pilot Point Method 

Pilot point method is a parameterization technique in which initial realizations of 

model parameters are generated based on prior knowledge. Pilot points are 

selected at certain locations where the parameters are calibrated. The properties at 

other points are computed using the interpolation techniques and covariance of 

the model parameters. Initial realizations are conditioned to the hard data along 

with soft data such as seismic, geostatistical parameters through stochastic 

simulation. The concern of this approach is the selection of the location of the 

pilot points. Another practical issue is to specify the number of pilot points to be 

considered while using this method for parameterization. RamaRao et al., (1995) 

suggested locating the pilot points at most sensitive points to decrease the overall 

objective function. Still, the selection of the number of points is a grave concern 

in this approach. Various factors such as reservoir heterogeneity, the complexity 

of reservoir model, production mechanism and well pattern should be thoroughly 

investigated for selection of number of points (Nejadi, 2014). Points should be 

selected so that they can capture the adjustments made during the optimization 

process. 
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2.3.3 Discrete Cosine Transformation 
 

Discrete Cosine Transform (DCT) is a Fourier-based transformation used to 

represent the spatial distribution of model parameters in terms of coefficients of 

independent basis functions. The basis functions are defined as cosine functions. 

This method is extensively used as image compression technique. In place of 

actual model parameters, the coefficients of retained cosine functions are used. 

Largest DCT coefficients are selected and maintained to reduce the number of 

model parameters and hence the size of parameter space. Jafarpour & McLaughlin 

(2008) have presented a history matching algorithm with a combination of DCT 

with EnKF, where, the DCT coefficients were involved in the state vector instead 

of actual model parameters. During History matching the parameter field is 

unknown; therefore it's hard to determine the related basis functions by ordering 

the coefficients. However, some prior information about the model parameter 

field is available but selecting the optimum number of DCT coefficients is still a 

concern in this approach.  

 

2.4  Summary 

A broad literature review on history matching techniques and large applications 

has been presented in this chapter. The option of using multiple models has 

benefits compared to unique history matched model. It can be observed from the 

limitations of different history matching algorithms that there is a requirement of 

a method which can include both static and dynamic parameters with 

measurements. 
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EnKF method seems to fulfill the requirements and has already been extensively 

reported in the petroleum industry. This approach avoids the computation of 

adjoint equations and sensitivity coefficients. Another key advantage of using 

EnKF method for history matching is its independence of any reservoir simulator. 

The sequential nature of EnKF helps in data assimilation in real time fashion. One 

of the concerns raised in the literature regarding this approach is the time-

consuming simulation runs at each update step. In this work, we tried to overcome 

this issue by use of proxy models as a substitute of reservoir simulator in history 

matching process. 
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Chapter 3: 

Proxy Modeling of Geological Reservoirs1 

 

3.1  Introduction 

Our approach in this work for proxy modeling is based on different techniques 

including Polynomial Chaos Expansion (PCE) introduced by Wiener (1938) and 

Artificial Neural Networks (ANN). The main idea is to represent the response of a 

model through a mathematical relation or network that can imitate the output 

similar to the commercial simulators. In PCE approach, the model is generated 

with the help of orthogonal polynomial basis functions. The polynomial chaos 

expansions are orthogonal with respect to the specific distribution of the input 

random variables. In other words, the dependency of the output parameter on all 

significant input parameters is estimated by a polynomial chaos-based proxy. The 

work of (Ghanem & Spanos, 2003), in which they approximated solutions of 

stochastic differential equations with truncated Hermite polynomials of Gaussian 

random variables, re-ignited the interest in the application of PCE for stochastic 

modeling. This approach offers a highly efficient way to include non-linear 

effects in stochastic modeling (Zhang & Lu, 2004, Fajraoui et al., 2011). 

 

 
1based on a manuscript “Application of Polynomial Chaos Theory as an accurate and 
computationally efficient Proxy Model for Heterogeneous SAGD Reservoirs” submitted for 
publication in Journal of Petroleum Science and Engineering 
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PCE in simple form can be expressed as: 

 

 ( )   ∑   
 
     ( )……………………………………………………. 3.1 

Where     are deterministic coefficients and   ( ) are     order orthogonal 

functions of random variable  . There are numerous applications of PCE in 

petroleum engineering problems. (Ghanem & Spanos, 2003) used PCE for 

uncertainty quantification. Sarma, (2006) used PCE to efficiently quantify 

uncertainty for closed-loop production optimization. Xiu & Karniadakis (2003) 

used generalized polynomial chaos for modeling uncertainty in flow simulations. 

Zhang & Lu, (2004) also used PCE for modeling flow in random porous media. 

The applications and limitations of the PCE technique have been studied by 

Augustin et al., (2008). Oladyshkin & Nowak (2012) used PCE for risk 

assessment via robust design of subsurface flow. Babaei et al., (2015) used PCE 

for the optimization of water injection rate to maximize oil production from a 

synthetic 2D reservoir. 

One of the main advantages of using PCE over other proxy models is that it 

converges systematically as the order of the expansion increases. This indicates 

that PCE does not have problems with overfitting which affects many other 

proxies. Cameron & Martin (1947) examined the convergence properties of PCE 

and stated that the convergence rate of PCE is exponential for Gaussian random 

variables. Another advantage of using PCE is that it is generally applicable to any 

type of input distribution. The PCE used in this work is based on Hermite 

polynomials specified for Gaussian distribution of input random variables. 
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However, for non-Gaussian random variables the convergence rate of PCE might 

be slow. To improve the convergence rate in such cases, optimal basis functions 

for PCE needs to be chosen. Not restricted to Gaussian distributions, the input 

random variables can be of any probability distribution such as uniform, gamma, 

and beta distributions. Input distributions determine the type of orthogonal 

polynomials to be used (Xiu & Karniadakis, 2003). For example, Legendre basis 

functions are recommended for uniform distribution, Hermite for Gaussian 

distribution and Jacobi basis functions for beta distribution. In reservoir models, 

the distribution of input random variables can be arbitrary. For such cases, the 

corresponding orthogonal polynomial expressions need to be constructed. Such a 

study is beyond the scope of this work. 

The precision of the PCE proxy model is dependent on the set of basis 

polynomials chosen for the expansion and also on the precise calculation of the 

coefficients of the basis polynomials in the proxy model. Hence, the calculation of 

coefficients in the PCE proxy is a crucial task. Various methods can be used to 

determine the coefficients accurately, including the Galerkin projection scheme 

(Xiu & Karniadakis, 2003) and probabilistic collocation method (PCM) (Webster 

al., 1996) However, the former method requires access to the equations governing 

those coefficients. For complex problems, these equations are non-linear partial 

differential equations, and hence, the procedure may become very complex and 

computationally demanding (Li et al., 2009). On the other hand, the PCM 

approach used in this work uses a solution set generated from trial runs (“black 

box” approach) to compute the PCE coefficients. In this approach, coefficients are 
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obtained by solving a linear system of equations of size M, where M is the number 

of coefficients. However, the PCM approach can be unfavorable for a higher 

order of PCE as it requires more simulation runs since the number of collocation 

points exponentially increases with an increase in the dimensionality of the 

expansion. Isukapalli (1999) suggested the regression-based PCM approach as a 

modified collocation-based method in which he applied a least square technique 

to determine the coefficients, hence solving a regression problem in place of 

solving linear system equations. However, the regression problem will be strictly 

undetermined and non-unique if the number of simulations is not sufficient. To 

lessen this issue of dimensionality, another method as suggested by ( Li et al, 

2011) is to use pure terms of PCE and discard the cross terms. This will reduce 

the number of coefficients in PCE, but this approach will only work if the true 

model does not contain any nonlinear cross effects, which is practically not true 

for reservoir models. This approach also contravenes the primary advantage of 

PCE, which is guaranteed convergence as the order of PCE increases. 

The main drawback of PCE is the exponential increase in the number of PCE 

terms as the order of PCE increases. This issue becomes stringent in the case of 

high dimensional problems. Although the different methods discussed above 

address this issue, still a large number of simulation runs is required to compute 

PCE coefficients. In this work, we tried to mitigate this issue by using the reduced 

terms PCE that retains only the relevant terms in PCE based on the spatial 

distribution of the input parameters. To represent a PCE, we need a strong 

understanding of the geological formation properties (permeability and porosity), 
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which will be considered as input parameters for the proxy model. These 

properties always have high spatial variability. In the case of large reservoir 

models, it is almost impractical to deal with the full description of a reservoir. 

Reduced-order modeling procedures entail the projection of a high-resolution 

description of a reservoir into a low-dimensional space, hence significantly 

reducing the number of unknowns. This process of dimension reduction is 

generally known as random field parameterization. Various approaches for 

random field parameterization have been published in the literature (Sudret & Der 

Kiureghian, 2000). The competency of a random field parameterization method 

rests on its ability to approximate the original random field accurately with a 

minimum number of unknowns. Among the various approaches, Karhunen-Loeve 

(KL) expansion is an optimal technique for global parameterization. This 

approach was studied in detail by (Ghanem & Spanos, 1991). (Romary, 2009) 

used a similar approach to reduce the dimension of the inference problem in the 

Monte Carlo Markov chains algorithm. The use of KL expansion as an efficient 

parameterization technique has also been discussed by (Reynolds et al., 1996). 

Zhang & Lu, (2004) developed a KL expansion-based moment equation (KLME) 

for uncertainty quantification. KL expansion is a very promising approach for 

representing stationary and non-stationary processes with clearly known 

covariance functions. It is a series expansion method for the representation of a 

random field. The expansion involves a complete set of deterministic functions 

(Huang et al., 2001). The deterministic functions are the eigenvalues of 

covariance function that decay steadily. However, when the eigenvalues of the 
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KL decomposition are not realistically fast decaying, the number of terms in PCE 

again increases, and hence, there is an increase in the number of simulation runs 

to compute the coefficients. The proposed work becomes less efficient when the 

random field cannot be efficiently expressed using KL decomposition. 

In this work, we use KL expansion in combination with PCE and ANN proxy 

model to project the geological parameters (permeability and porosity) into a 

lower dimension in terms of Gaussian random variables. After parameterization 

of the random permeability field into random variables, the desired outputs 

(cumulative oil, steam to oil ratio and oil production rate) will be calculated using 

the proxy models. The computational requirement of the proxy in comparison to 

full numerical simulations is emphasized during the course of this study. Hence, 

we studied different cases by varying the number of random variables, thus 

changing the number of terms in PCE to get an accurate proxy representation with 

minimal use of simulators. We also compared the efficacy and accuracy of the 

proposed approach with ANN and RBF proxy models under the same geological 

conditions. The results of all the proxy models are compared with numerical 

simulator results.  

As very few applications of proxy models are found for heterogeneous SAGD 

reservoirs in the literature, hence, in this work we tried to develop and analyze 

different proxy models for a real heterogeneous SAGD reservoir. This work has 

demonstrated that PCE as a proxy model outperforms other data-driven proxy 

model techniques such as ANN and RBF considering the same number of 

simulations used to train the proxy models. The main advantage of the proposed 
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approach is that it can easily substitute the need for commercial numerical 

simulators in order to run different realizations of uncertain input parameters. The 

proposed method also addressed some of the limitations mentioned above by 

incorporating the geological uncertainty and complexity of the SAGD reservoir. 

While the computational time and cost are greatly reduced compared to 

conventional simulation methods, this work will find prodigious applicability 

when uncertainty within a SAGD reservoir is a substantial limitation for decision-

making processes such as history matching and production optimization tasks.  

 

3.2  Methodologies 

3.2.1 Karhunen-Loeve Expansion 
 

In reservoir models, the fluid and rock properties at different grid locations are 

assumed to have some correlation to each other, and this correlation helps reduce 

the dimensions of the model without compromising the geological information. If 

the analytical expression for the correlation function is not known, the 

numerically derived covariance matrix can be used to perform KL transformation.  

The KL expansion is a promising approach for representing random fields 

(permeability in our case) with the help of a covariance matrix. It is a linear 

relation that de-correlates the random field while preserving the two-point 

statistics of the field (Bazargan 2014).  
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The correlation structure of the random field may be described by the covariance 

function. Since the covariance is bounded, symmetric and positive-definite, it may 

be decomposed as follows (Ghanem & Spanos, 1991): 

 

 (     )  ∑    
 
     (  )  (  )………………………………………….. 3.2 

 

Where    are the eigenvalues and   ( ) are the deterministic eigen functions. 

Now, the random field  (   ) with mean  ̅( )  can be expressed using KL 

expansion as: 

 

 (   )   ̅( )  ∑ √   
 
     ( )  ( )………………………………........ 3.3 

 

Here,   is the spatial variable,   ( ) is a set of uncorrelated Gaussian random 

variables.  

KL expansion can be approximated by sorting the eigenvalues   and the 

corresponding eigen functions  ( ) in a descending order and truncating the 

expansion after K terms. K is the number of terms needed to reproduce the   

variability with a given accuracy. To truncate KL expansion after K terms, the 

smallest eigenvalues are discarded. The rate of decay in the eigenvalues depends 

on the correlation strength of the random field (Bazargan 2014). Eqn. (3.3) 

therefore provides an alternate way for generating the random field realizations. 

Once the eigenvalues and their corresponding eigen functions are determined, a 
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realization can be generated with a certain number of values    from the standard 

Gaussian distribution N(0,1). 

The discrete form of KL expansion is then given as (Sarma, 2006): 

 

           ( )      √               ̅    ……………………………… 3.4 

 

Here,  ( ) is the matrix of the eigenvectors corresponding to the K largest eigen 

functions of the covariance matrix, √  is a diagonal matrix consisting of the K 

largest square roots of eigenvalues,   is a vector of uncorrelated random variables 

with zero mean and unit variance, and  ̅ is the mean value of output Y. In 

practice, K is much less than R, where R is the total number of grid blocks in the 

problem. Thus by using KL transformation,   is represented by a much smaller 

set of parameters   . The workflow for KL expansion used in this work is 

presented in Figure 3. 

 

Figure 3: Workflow for dimension reduction using KL expansion 
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3.2.2 Polynomial Chaos Expansion (PCE)  
 

PCE, introduced by Wiener (1938), can be used to effectively express the 

dependent (output) parameters. This approach is basically using bi-orthogonal 

polynomial functions of different orders to predict outputs for several values of 

input parameters. Outputs obtained from full reservoir simulation runs are used to 

train the PCE model and to get the best fit coefficients for the Nth-order 

polynomials. Each output parameter of interest can be expressed as: 

 

 ( )       ∑     

 
      (   ) + ∑ ∑       

  
      (   

 
        )…………… 3.5 

 

Where         
and             are deterministic coefficients, and   (         ) 

are orthogonal polynomial chaos of order d with respect to the random variables 

(         )  The type of distribution of the input random variable determines the 

type of orthogonal polynomials to be used. Hermite polynomials form the best 

orthogonal basis for Gaussian random variables (Ghanem & Spanos, 1991). In 

this work, we assume that the random variables generated after dimensionality 

reduction are all standard Gaussian distributions, hence we use Hermite PCE to 

construct the proxy. In discrete form, PCE can be expressed as Eqn. (3.1), where, 

  is a vector of dimension K (same as in KL expansion). The total number of 

terms P in PCE is determined by the random dimensionality K and highest PCE 

order d, 
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(   ) 

    
 ………………………………………………………………… 3.6 

 

Eqn. (3.6) demonstrates that increasing the dimension of the random field (i.e., 

increasing the variables in vector   or increasing the order of PCE) will 

exponentially increase the number of terms in PCE. Greater numbers of terms 

require more simulation runs to determine the coefficients. 

In this work, we use PCM to determine the unknown coefficients in PCE. This 

approach was initially introduced by (Webster et al., 1996). In the PCM approach, 

the simulator is treated as a black box. In this process, coefficients of PCE are 

calculated from the outputs by running the commercial simulator with some 

selected collocation realizations of input parameters. As input parameters have 

already been represented by KL expansion as the functions of standard random 

variables in vector  , the collocation realizations are constructed by some selected 

random variables. For a set of output parameters, the collocation realizations must 

equal the number of terms in PCE. We expressed the discrete form of PCE in 

Eqn. (3.1), which can be rewritten in the form of linear systems of equations as: 

 

      …………………………………………………………………….. 3.7 

 

Where, Z is the matrix of dimension     and consists of Hermite polynomials 

evaluated at selected collocation point sets, i.e, 
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is the vector containing the P collocation outputs obtained by running the 

simulators with the corresponding collocation realizations derived on vector   .   

is the vector of coefficients to be solved, which can be obtained by solving the 

above linear system of equations (Eqn. (3.7)). It is important to note that the sets 

of collocation points should be selected such that the matrix Z satisfies the 

condition of rank (Z)=P (i.e., the matrix should not be a singular matrix).  

 

The performance of the PCM approach strongly depends on the choice of the 

collocation points. The method used for selecting the collocation points in this 

work is derived from the Gaussian quadrature technique to numerically solve the 

integrals. In the Gaussian quadrature technique, we can estimate the integral of a 

polynomial as a summation by using the roots of next higher order polynomial 

(Webster et al., 1996). Similarly, in the PCM approach, we use the roots of next 

higher order polynomial as the collocation points at which we will run the full 
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3.2.3 Artificial Neural Network (ANN)  

Artificial neural networks are similar to the concept of reflecting the reasoning of 

the human brain. It uses a dataset (training data) to learn the correlations and 

dependencies between the input and the output parameters. ANN can be a single 

or a multilayered network in which information runs from input to output through 

one or more hidden layers. ANN architecture consists of some base elements 

known as nodes, which are analogous to neurons in a biological system. Nodes of 

every layer are connected to other nodes in the contiguous layer. The nodes keep 

the information in the form of weights. The input to any node is modified 

according to the weight and then passed on to the next node. During the training 

phase of ANN architecture, the weights are adjusted. Training is completed when 

the network can predict the given target output (Amirian, 2014). After training 

and testing, the neural network can be used to compute output values for any 

given set of input values. In this work, the network created can be utilized as a 

proxy model to substitute the time consuming, full simulation model runs. A 

schematic process of an ANN with a single hidden layer is shown in Figure 5. 
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Figure 5: General schematic diagram for an ANN model  

 

 

To Construct an ANN, it is essential to define the optimum number of hidden 

layers, the number of nodes per hidden layer and transfer function. The number of 

hidden layers and nodes influences the efficacy of the network to simulate 

different degrees of non-linearity (Ma et al., 2015). Neural network configurations 

are purely based on numerical observations. There is no information stored in the 

network, which determines the actual physics involved in the real process. If the 

value of the input exceeds the range that has been used to train the network, the 

output is not expected to be accurate. It is, therefore a crucial task from user's end 

to set up and train the neural network in a way that it can be used afterward. 

During the training of neural networks, the general practice is first to divide the 

data into two subsets: a training dataset and a validation dataset. The training 

dataset is used for computing the gradient and updating the network weights and 
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biases. In the training phase, the errors in the validation set are monitored. The 

validation error typically decreases during the initial phase of training. However, 

if the network begins to overfit the data, the error on the validation set usually 

starts to increase (Math Works 2014). The network is selected at the minimum 

validation error. 

 

If the network is not satisfactorily accurate, it can be re-initialized and 

retrained. Every time the network is trained, the network parameters are different 

and might produce different solutions. A second approach for improving the 

accuracy of the neural network is to increase the number and size of hidden 

layers. Increasing the number of neurons enhances the flexibility of the network 

because the network will have more parameters to optimize. However, a balance 

need to be maintained between the accuracy and over fitting of data: using too 

few neurons can have under fitting problems, and the error cannot be minimized, 

while too many neurons in the hidden layer can lead to over-fitting of the network 

(Ferreira et al., 2012). The performance of the model can be further improved by 

using different training algorithms. Some training algorithms, such as Bayesian 

regularization, produce better generalization capabilities and adequately capture 

the non-linearity of the process (Amirian, 2014). Finally, if the accuracy of the 

model is still not acceptable, then additional training data should be used. The 

workflow for ANN model development is presented in Figure 6. 
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model and the general feed-forward ANN model is that it uses a radial basis 

transfer function instead of a sigmoid transfer function.  

The following relation describes the input-output mapping of the RBF network: 

 

 (  )        ∑    (   
 
     )………………………………………… 3.10 

 

Where,   (     ) is the ith radial basis function that is calculated on the distance 

between the input parameter    and the center   .    represents the weights 

associated with the neurons. 

RBF networks take a slightly different approach from the general ANN. In RBF 

models, the hidden nodes implement a set of radial basis functions (e.g. Gaussian 

functions). It is comparatively fast in learning and training the dynamics of the 

model. The weights and biases of each neuron in the hidden layer define the 

position and width of a radial basis function. Each linear output neuron forms a 

weighted sum of these radial basis functions. With the correct weight and bias 

values for each layer and enough hidden neurons, a radial basis network can fit 

any function and can be used as a substitute for simulations. 

 

3.3 Reservoir Model: A SAGD Field Case Study 
 

To demonstrate the efficacy of the proposed methods and to compare their results 

with numerical simulation outputs, we implemented all three methods (PCE, 

ANN, and RBF) to a real SAGD reservoir in northern Alberta. A general 
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description of the reservoir model is explained in Section 3.3.1. Stepwise 

implementation of the proposed frameworks is discussed in further subsections. 

3.3.1 Description of the Reservoir Model 

A 3D heterogeneous SAGD reservoir model was built using the data available 

from the field. Various types of well logs obtained from the vertical core holes at 

a particular location were used to build a static model in Petrel. A corner point 

grid was generated with a total of 20,000 grid blocks: 25 in the I direction, 50 in 

the J direction and 16 in the K direction. The dimensions of each grid block are 25 

m × 2 m × 1.5 m in the I, J and K directions, respectively. Well logs were used to 

obtain the porosity of the grid blocks containing vertical core holes, and 

permeability was also calculated (Figure 7). Sequential Gaussian Simulation 

(SGS) was performed to generate 100 realizations of permeability using the data 

at the wells as conditioning data. Bitumen viscosity at the initial reservoir 

temperature (7oC) was 625,000 cp, and at a higher temperature of (216◦C), it was 

10 cp. A rock type with appropriate relative permeability curves was used in the 

model (details of the rock are not provided due to confidentiality). A horizontal 

well pair 500 m in length with 6 m spacing between the injector at the top and 

producer at the bottom was modeled. The different constraints of both wells from 

the field data were used in the simulation model. The permeability values ranged 

from 1525 md to 7150 md in the realizations. The porosity values ranged from 

31.5% to 41.5%, while irreducible water saturation ranged from 0.16 to 0.2 in a 

100-member initial ensemble. Realizations were simulated for 1,355 days using 
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the thermal simulator CMG STARSTM (CMG 2013), and the results are compared 

with the outputs of the proposed proxy models. 

 

 
Figure 7: Permeability values of grid blocks containing core holes, which was used 
as conditional data in sequential Gaussian simulation to create permeability 
realizations 

 

         
                         Figure 8: 2D view of the SAGD model 
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                       Figure 9: 3D view of the SAGD model 

 

3.3.2 KL - PCE Approach for Proxy Modeling 

The case study SAGD model is a heterogeneous model with different values of 

permeability for different grid blocks. Therefore, if we consider permeability as 

an input variable, then the number of input variables will be equal to the number 

of grid blocks, which are 20,000 in this case. It is almost impractical to deal with 

such a large number, hence, reduced order representation of the permeability field 

is required. To parameterize the permeability field and to reduce the number of 

input parameters, we used KL expansion. KL expansion (Eqn. (3.3)) allows the 

expression of a correlated random field or process in terms of a set of independent 

random variables while maintaining the covariance structure. A set of 100 random 

permeability realizations generated using SGS is considered here to obtain the 

covariance matrix. The KL workflow presented in Figure 3 is followed using these 

100 realizations. The covariance structure is expressed in terms of eigenvalues 

and eigen functions (Eqn. (3.2)). The eigenvalues show a monotonically 
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decreasing trend as demonstrated in Figure 10. The sum of normalized eigenvalues 

shows the ratio of energy (variance) kept in the KL terms (Figure 11). Upon 

plotting the cumulative sum of eigenvalues, we observed that most of the energy 

is associated with a few initial eigenvalues. To truncate the KL expansion as per 

Eqn. (3.4), we discarded the small eigenvalues and selected only the initial 

eigenvalues. Discarding the smaller eigenvalues implies that we are discarding the 

shorter correlation lengths in the covariance structure. For adequate 

parameterization, the sum of the truncated normalized eigenvalues should be 

close to unity (Chang & Zhang, 2009). It is generally not suggested to keep more 

KL terms as that would increase the number of random variables representing the 

input field, which eventually increases the number of terms in PCE and requires 

more simulation runs for the training data. Figure 11 shows that more than 90% of 

energy is preserved with the first five to six eigenvalues.  

 
 

Figure 10: Decay in eigenvalues of KL expansion 
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Figure 11: Energy retained in the first 50 eigenvalues of KL expansion 

 

In this work, we consider two cases for the PCE proxy model. In PCE model case 

1, we consider only the first three eigenvalues. Hence, 20,000 correlated 

permeability values were reduced to a vector of three independent random 

variables by KL expansion (Eqn. (3.4)). For the second degree of PCE 

approximation, Eqn. (3.6) can be used to calculate the total number of terms, 

which were 10 in this case. These terms are Hermite polynomial functions of 

different orders derived from independent Gaussian random variables. To solve 

Eqn. (3.7) to derive the coefficients, numerical simulation outputs are required at 

10 collocation points. More specifically, the PCM algorithm explained in Section 

3.2.2 requires 10 sets of collocation points for determining the unknown 

coefficients. The Gaussian quadrature technique is used to select collocation 

points (explained in Section 3.2.2). In PCE model case 2, we increased the 
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number of eigenvalues from three to five. Using Eqn. (3.6), the number of PCE 

terms becomes 21. This will increase the number of collocation points and 

simulation runs to 21. At this point, a comparison on computational effort can be 

made between the two cases. The computational effort to obtain output for each 

set of collocation points in the proposed approach is the same as solving for a 

realization in a numerical simulator. PCE case 1 needs only 10 simulation runs to 

train the proxy model, while 21 different simulation runs are required in case 2 for 

PCE proxy development. Once we obtained the collocation outputs by running the 

simulator with the corresponding parameter collocation realizations, we can solve 

the system of linear equations (Eqn. (3.7)) to obtain the unknown coefficients. For 

each output parameter of interest, we will get a different set of coefficients. This 

step of coefficient determination has to be done only once, and values of 

coefficients for every time interval can be calculated and tabulated for future use.  

It is worth mentioning that each random variable vector corresponds to a high-

resolution permeability field (Eqn. (3.4)). Hermite polynomials can easily be 

evaluated for a given set of random variables. Using the coefficients determined 

above, we can calculate the output results for any number of permeability 

realizations. As this step only needs a polynomial equation to generate results, it 

takes a fraction of seconds to give the output, which is a significant advantage 

over using the numerical simulator again and again for running thousands of 

realizations. We will later compare the results obtained from both PCE proxy 

model cases with the outputs of a numerical simulator to demonstrate the 

efficiency and accuracy of the PCE proxy model. 

 



56 
 

3.3.3 KL - ANN Approach for Proxy Modeling 

In this work, the MATLAB neural network module is used to build the neural 

network architecture. The workflow presented in Figure 5 is strictly followed to 

obtain a neural network-based proxy model. To maintain consistency while 

comparing the efficacy of different proxy models presented in this work, we kept 

the training data the same for all models. For the ANN proxy, the input data 

vector is the set of permeability collocation realizations, which were used in PCE 

approach. The target output vector is obtained by running those realizations on a 

numerical simulator. The design of a neural network involves the selection of a 

number of neurons and hidden layers. As mentioned in Section 3.2.3, special 

attention is required in selecting the number of neurons. (Ferreira et al., 2012) 

used some thumb rules from the literature for the selection of a number of 

neurons. They suggested the number of neurons should be between the number of 

input parameters and output parameters. More precisely, it should be two-thirds 

the number of input parameters plus the output parameters and should not be 

more than twice the number of input parameters. In our work, different network 

configurations were analyzed and ideal network architecture was selected by 

comparing the prediction error from different configurations. 

A three-layer feed forward neural network is used in this work for proxy model 

development. The first layer consists of neurons representing the input values of 

permeability in terms of random variables used in Eqn. (3.4). The second (hidden) 

layer consists of three neurons with sigmoid transfer functions, and the third layer 

contains one neuron representing the output value of the production parameter (oil 
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rate, cumulative oil production, and SOR). Pre-processing functions are used to 

normalize the input data vectors and target output vectors. The network is trained 

using the results of 10 simulation runs, which were used to develop the PCE 

model 1. The network uses a back propagation training algorithm that updates the 

weight and bias values for each neuron. The training algorithm used in this work 

minimizes a combination of squared errors and weights and then determines the 

correct combination to produce a network that generalizes well. The process used 

to train the network is called Bayesian regularization back propagation. During 

the training process, 80% of the data is used for training and 20% of the data is 

used for validation, which allows monitoring of the network’s general 

performance and prevents overfitting of the training data. After the setup, training, 

and validation, the neural network is used to compute the output values for any 

number of permeability realizations represented by a set of random variables, and 

the results are compared with other proxy methods as well as with numerical 

simulation outputs. 

3.3.4 KL - RBF Approach for Proxy Modeling 

To develop a RBF-based proxy model, we used the same set of training data used 

for PCE model case 1 and ANN proxy development. The outputs of 10 

collocation simulation runs are used to build the corresponding RBF network 

proxy model. The training data is stored in the form of input data vectors and 

target outputs (similar to ANN). To design radial basis networks, MATLAB 

inbuilt functions are used. The function takes matrices of input vectors and targets 

output vectors, and a constant value for the radial basis layer, and returns a 
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network with weights and biases such that the outputs match the target outputs for 

a given set of input data. This function creates, as many radial basis nodes as there 

are input vectors, resulting in a layer of radial basis nodes in which each node acts 

as a detector for a different input vector. If there are K input vectors, then there 

will be K nodes. The constant value assigned in a function determines the width 

of an area in the input space to which each node responds. The constant value 

should be large enough that nodes respond strongly to overlapping regions of the 

input space. The developed network is further used as a proxy model to simulate 

the production data for the given set of permeability realizations represented by 

the vector of random variables, and the results are compared with other proxy 

models and the numerical simulator.  

 

3.4  Results and Discussions 
 

This section describes the results obtained from the different proxy models. Our 

primary objective is to substitute the numerical simulator by a proxy model to 

eliminate the need to run a simulator every time, especially in cases where an 

output for hundreds or thousands of different input realizations is needed. 

To compare the performance and efficacy of different proxy models, two forms of 

analyses were performed: quantitative and qualitative. A set of 100 realizations, 

different from those used for training the models, was used for comparison. These 

realizations were run on CMG STARSTM, and the oil production rate, cumulative 

oil production, and cumulative steam to oil ratio were calculated. The same set of 

100 realizations was tested on different proxy methods, and the results were 
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compared. All of the production parameters presented in this work are normalized 

by a target value of respective production parameters for confidentiality purpose. 

This section is divided into two subsections. In Section 3.4.1, a quantitative 

analysis of the different proxy model is discussed, and in Section 3.4.2 a 

qualitative analysis using performance cross plots is discussed. 

 

3.4.1  Quantitative Analysis 

For the quantitative screening, statistical error analysis was used. The output 

production parameters at the end of 1,200 days were analyzed. The statistical 

parameters used for the assessment are mean, variance, minimum and maximum 

data values obtained from 100 experiments. The oil production rate, cumulative 

oil and cumulative SOR at the end of 1,200 days obtained from different proxy 

models were compared with results of the numerical simulator.  

Table 1 shows the comparison of oil rate from different proxy models with the 

simulator results. A proxy model will be a good substitute for full simulation if 

the statistical parameters are the same as those obtained from the simulator. As 

shown in Table 1, the normalized mean value of the oil rate from the simulator is 

0.5387. All the proxies’ mean values are close to this value, showing a good 

estimate of oil rate. Along with mean, the variance is another important parameter 

which predicts the accuracy of the model. PCE model case 1 and the ANN model 

shows good agreement in terms of variance. The RBF proxy shows poor 

performance in terms of the mean as well as variance values. In addition, from 

Table 1, the minimum and maximum oil rate for different proxy models show their 
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efficacy to cover the whole range of results obtained from the simulator. PCE 

model case 1 and PCE model case 2 show similar values; therefore, it is evident 

that the PCE model correctly represents the original spread in terms of oil rate. 

Table 2 demonstrates the same statistical parameters for the prediction of 

cumulative oil production. In the case of mean and variance, all the proxy models 

except RBF are in agreement with the simulator results, but PCE model case 1 

and PCE model case 2 outperforms when minimum and maximum values are 

considered. This again demonstrates the capability of the PCE model to cover the 

whole range of output parameters. 

Cumulative Steam Oil Ratio (SOR), another important production parameter that 

depicts the efficiency of the SAGD process, was also studied. Results for SOR 

from different proxy models are tabulated in Table 3. All of the proxy models are 

in good agreement with the simulator results. The reason for the good prediction 

in terms of SOR is due to the small range of SOR output. This is evident from the 

variance value that is very small (0.0032). Therefore, one cannot observe many 

variations in the predicted data from the different proxy models. Based on the 

parameter values shown in Table 3, the PCE model demonstrates a comparatively 

better prediction than the other proxy models. 

Table 1: Normalized Oil Production Rate after 1,200 days 

 Normalized Oil Production Rate after 1,200 days 
 Simulator PCE Case 1 PCE Case 2 ANN RBF 
Mean 0.5387 0.5323 0.5482 0.5309 0.5797 
Variance 0.0117 0.0114 0.0137 0.0115 0.0068 
Minimum 0.1708 0.2116 0.2391 0.3124 0.3538 
Maximum 0.7147 0.7156 0.7713 0.6627 0.7111 
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Table 2: Normalized Cumulative Oil Production after 1,200 days 

Normalized Cumulative Oil Production after 1,200 days 
 Simulator PCE Case 1 PCE Case 2 ANN RBF 
Mean 0.6233 0.6276 0.6310 0.6140 0.6462 
Variance 0.0094 0.0106 0.0112 0.0155 0.0046 
Minimum 0.2410 0.2338 0.2289 0.3190 0.4103 
Maximum 0.7655 0.7677 0.7553 0.7424 0.7370 
 
 
 
Table 3: Normalized Cumulative SOR after 1,200 days 

 Normalized Cumulative SOR after 1,200 days 
 Simulator PCE Case 1 PCE Case 2 ANN RBF 
Mean 0.2553 0.2550 0.2516 0.2684 0.2480 
Variance 0.0032 0.0039 0.0040 0.0055 0.0016 
Minimum 0.2026 0.1951 0.1875 0.2029 0.2106 
Maximum 0.6098 0.5236 0.5193 0.4737 0.4038 
 

For a detailed quantification of the predictive quality of the proxy models, some 

other parameters were studied, including the correlation coefficient (ϒ), average 

relative error ( ̅), maximum relative error (    ), standard deviation of relative 

error (  ) and root mean square relative error (RMSE). A brief explanation of 

these parameters and their implications are as follows: 

 Correlation coefficient (ϒ) is termed as  

ϒ  
∑ (  

  
      ̅̅̅̅ )(  

 
   ̅̅ ̅̅ )

√∑ (  
  

      ̅̅̅̅ )  √∑ ( 
 
  

      ̅̅ ̅̅ ) 
…………………………………………… 3.11 

 

Where n is the number of experiments.    ̅̅ ̅̅  and    ̅̅ ̅̅  are the mean values of the 

simulated and predicted data, respectively. The higher the proxy quality, the 

closer the correlation coefficient will be 1. 
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 Average relative error ( ̅) is defined as 

 ̅  
 

 
∑   

 
   ……………………………………..…………………… 3.12 

 

Where, n is the number of experiments,    |  
    

 |     
  is a relative error,   

  

is a simulated response from the full numeric model and   
  is a predicted 

response from a proxy model. 

 

 Maximum relative error is termed as 

         (  ) ……………………………….……...………….…. 3.13 

 

 Standard deviation of the relative error is calculated as 

    √
∑ (    ̅)

  
   

   
 ……………………………..…………….…….… 3.14 

 

 RMSE is defined as 

      √
∑   

  
   

 
 …………………………………………………... 3.15 

 

A proxy with a small value of error proves to be an efficient and accurate replica 

of a simulation model. All of the proxy models are compared with numerical 

simulator outputs. The output of the simulator is taken as a true simulated value 

and outputs from the proxy models as predicted values. The parameters 



63 
 

mentioned above are determined for oil rate, cumulative oil production, and SOR 

prediction. 

Table 4 shows the values of the above parameters for oil rate prediction. The 

correlation coefficient is the measure of linearity between the simulated and 

predicted values. A value close to 1 demonstrates high prediction quality for a 

proxy model. Table 4 shows that the PCE and ANN models have good agreement 

with the simulated values with a correlation coefficient close to unity. The RBF 

model demonstrated the worse performance in this case with a correlation 

coefficient value of only 0.7592. This cannot be considered a good proxy model 

because, as a rule of thumb, the correlation coefficient needs to be above 0.85 for 

the proxy to be considered acceptable. Also, the average relative error in the PCE 

and ANN models is close to 5% as compared to 13% in the case of the RBF 

model. However, the PCE models outperform ANN when the maximum relative 

error is considered, showing its ability to imitate the responses at the desired 

level. Also, the PCE models have comparatively lower values of RMSE. 

 

Table 4: Quantitative comparison of Oil Rate after 1,200 days 

 Quantitative comparison of Oil Rate after 1,200 days  
 PCE Case 1 PCE Case 2 ANN RBF 

Correlation Coefficient 0.9216 0.9541 0.9184 0.7592 
Average relative error 0.0624 0.0555 0.0579 0.1302 

Maximum relative error 0.2517 0.2073 0.8289 1.3066 
Std. deviation of rel. error 0.0569 0.0552 0.0944 0.1998 

RMSE 0.0842 0.0834 0.1103 0.2375 
 

Similar analyses were performed for cumulative oil and SOR predictions. The 

results are shown in Table 5 and Table 6, respectively. In these cases, RBF tends to 

show better results in terms of a correlation coefficient higher than 0.85, but the 
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PCE models show better performance in predicting the output. It is evident from 

the data that PCE is superior to other proxy models in almost all cases with a 

correlation coefficient value close to unity and average relative error always less 

than 6%. 

 

Table 5: Quantitative comparison of Cumulative Oil after 1,200 days 

Quantitative comparison of Cumulative Oil after 1,200 days  
 PCE Case 1 PCE Case 2 ANN RBF 

Correlation Coefficient 0.9847 0.9902 0.9652 0.8745 
Average relative error 0.0236 0.0166 0.0577 0.0637 

Maximum relative error 0.1715 0.0948 0.3236 0.8145 
Std. deviation of rel. error 0.0237 0.0165 0.0609 0.1219 

RMSE 0.0334 0.0234 0.0836 0.1370 
 

 

Table 6: Quantitative comparison of Cumulative SOR after 1,200 days 

Quantitative comparison of Cumulative SOR after 1,200 days  
 PCE Case 1 PCE Case 2 ANN RBF 

Correlation Coefficient 0.9428 0.9492 0.8755 0.8617 
Average relative error 0.0684 0.0603 0.0817 0.0417 

Maximum relative error 0.1769 0.2040 0.2886 0.3606 
Std. deviation of rel. error 0.0385 0.0350 0.0894 0.0618 

RMSE 0.0784 0.0696 0.1207 0.0742 
 

As per the results are shown in Tables 1 to 6, it has been verified that the PCE 

proxy model outperforms the other proxy methods and provides predictions with 

higher accuracy in terms of the highest correlation coefficient, lowest average 

relative error, the lowest value of the maximum relative error, the lowest value of 

standard deviation and lowest RMSE.  

The two PCE model cases are different in terms of the number of full simulation 

runs required to develop the proxy model. PCE model case 1 takes only 10 

realizations to run on a numerical simulator while PCE model case 2 requires 21 
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full simulation runs as training data. The performance of PCE model case 2 as 

evident from Tables 1 to 6 is better than PCE model case 1 in terms of statistical 

parameters and correlation coefficients. However, the error in prediction for both 

cases is almost the same range. Based on the results, it can be concluded that 

increasing the number of terms in PCE can improve the prediction performance, 

but not drastically in this case. Our primary motive is to develop a proxy model 

with the minimum computational requirement. In such cases, PCE model case 1 

with fewer terms is recommended over PCE model case 2, which unnecessarily 

increases computational time in terms of more simulation runs. 

 

3.4.2 Qualitative Analysis 

For qualitative screening, performance cross plots were used. The cross plot is a 

graph of the predicted versus measured properties with a 45o reference line to 

readily determine the proxy models’ fitness and accuracy. A perfect proxy model 

would plot as a straight line with a slope of 45o. Each point on the cross plot 

represents the output for one realization. We investigated the predicted outputs of 

100 realizations from different proxy models against the measured simulation 

outputs. As we have considered outputs from the simulator as our true measured 

values, these values are plotted on the x-axis of the cross plot, and values obtained 

from the proxy models are plotted on the y-axis of the plot. Figure 12 show the 

cross plots between the measured oil rate and that predicted by different proxy 

models. It is evident from Figure 12 that the PCE and ANN models are in good 

agreement with the simulator results while the RBF model shows more variability 
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in the oil rate prediction. The low correlation coefficient value and high relative 

error of the RBF model in Table 4 support its corresponding plot in Figure 12. It 

can be seen that, for the ANN and RBF proxy models, certain points are very far 

away from the reference line, showing a mismatch in the measured and predicted 

value for some realizations. To improve the accuracy of these models, these 

realizations need to be added in the training data, which in turn increases the 

computational requirement. However, in the case of the PCE models, all points 

are near the reference line, which demonstrates that the training data used is 

sufficient for PCE model development. 

 
 

 
 
Figure 12: Cross plots for oil rate production at 1,200 days from PCE model case 1, 
PCE model case 2, ANN and RBF proxy models. 
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Similar cross plots were generated for cumulative oil prediction and cumulative 

SOR from different proxy models (i.e., Figure 13 and Figure 14, respectively). 

Compared to other proxy methods, the PCE model shows the tightest cloud of 

points around the 45o line with very good clusters at all ranges of output values, 

indicating the excellent agreement between the measured and predicted data 

values.  

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Cross plots for cumulative oil production at 1,200 days from PCE model 
case 1, PCE model case 2, ANN and RBF proxy model. 
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The cross plots show that RBF has the worst performance and is unable to predict 

the nonlinearity of the model. The ANN model shows better agreement compared 

to RBF. The PCE model outperforms the other proxy models in almost all cases 

as the data values are very close to the reference line. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Cross plots for cumulative SOR at 1,200 days from PCE model case 1, 
PCE model case 2, ANN and RBF proxy models. 

 

In Figure 15, we demonstrated the oil rate trend for the entire simulation period. 

Oil rate was calculated at a time interval of every 30 days until 1,355 days using 

the proposed proxy methods and was compared with the numerical simulation 

output. We obtained the oil rate from 100 different realizations of permeability 
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using different proxy models and opted to show the median, lowest and highest 

values of different realizations at each time interval. The black lines in Figure 15 

show the median, lowest and highest oil rate value trend obtained from the 

different proxy models. These trends are superimposed on the spread of oil rate 

obtained from numerical simulation by running the same 100 realizations. The 

gray lines in Figure 15 show the output of the numerical simulator. An unbiased 

and accurate proxy model should cover the entire spread of the simulation results. 

However, it can clearly be seen that only the PCE proxy method shows good 

agreement with the oil rate trend obtained from the numerical simulator. ANN 

and RBF are seen to be a little biased and do not cover the whole range of oil rate 

predicted by the numerical simulator. One reason for the poor performance of 

ANN and RBF may be insufficient data on which these models were trained. To 

improve the accuracy, additional realizations must be added while training the 

ANN and RBF proxy models. At this point, the study indicates the PCE method is 

more efficient than ANN and RBF in capturing the whole dynamics of the process 

with limited training data.  
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Figure 15: Oil rate trend predicted from different proxy models at a time interval of 
30 days. The gray lines are the outputs from the numerical simulator. The black 
lines show the highest, median and lowest value trends of the PCE, ANN, and RBF 
proxy model. 

 

3.5  Summary 
 

In this chapter, we proposed a proxy model framework as an alternative to the 

numerical simulator. A real field SAGD model was used to demonstrate the 

applicability of the developed approach. The KL expansion was employed to 

parameterize the permeability field and to reduce the dimensionality of the model. 

Model parameters were represented by means of standard Gaussian random 

variables. Further, PCE was developed on these random variables to predict the 

output. The coefficients of PCE were obtained using PCM. Two other proxy 

models based on ANN and RBF were also studied in this work. The results of all 
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the proxy models were compared with those obtained from a numerical simulator. 

The following are the key findings of this work: 

 Our proposed PCE approach, integrated with KL expansion, gives adequate 

results when compared with the outputs obtained from the numerical 

simulator. This can be used to run as many realizations as required in a 

relatively very small amount of time and with very low computational effort. 

 The proposed PCE proxy model demonstrates better performance in 

comparison to the ANN and RBF-based proxy models. The PCE framework is 

easy to implement even in highly heterogeneous and large reservoir models. 

The PCE model developed with the help of very few simulation runs is 

efficient enough to represent the full dynamics and trend of simulation results, 

thus eliminating the need for time-consuming simulation runs. 

 In this case, increasing the number of terms in PCE improves the prediction 

performance, but not significantly. To develop a proxy model with the 

minimum computational requirement, PCE with fewer terms is recommended 

over PCE with more terms. In this case, the latter will unnecessarily increase 

computational time in terms of more simulation runs. 

 ANN-based models can show improved performance if more training data is 

used. 
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Chapter 4: 

ANN Proxy Model Based EnKF framework for Assisted 
History matching2 

 

 
 
4.1 Introduction 

In recent years, the research community has shown great interest for Ensemble 

Kalman filter (EnKF) as a data assimilation technique because of its simplicity 

and ability to adapt large-scale non-linear systems. As data becomes available, 

this method sequentially and continuously updates the reservoir model states 

(saturation, pressure etc.) and parameters (permeability, porosity etc.). It is highly 

parallelizable and can be readily combined with any reservoir simulator. Evensen 

(1994) initially introduced this method for oceanic models. Lorentzen et al. 

(2001) used this method for updating both dynamic variables and model 

parameters for a two-phase well flow model used in underbalanced drilling. 

Naevdal et al.(2003) showed the application of this method in history matching 

with encouraging results. It has also been applied to several synthetic cases for 

parameter estimation and production optimization (Brouwer et al. 2004, Wang et 

al. 2007). Haugen et al. (2006) presented a study for a North Sea field using EnKF 

for assimilating production data. 

 
2based on a manuscript “Application of ANN based Proxy Models for Efficient and Fast track 
Assisted History Matching of SAGD Reservoirs” Published in proceedings of World Heavy Oil 
Congress 
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 Bianco et al. (2007) applied this method to a saturated oil reservoir and studied 

the influence of ensemble size on history matching results. Chitralekha et al. 

(2010) used production data in EnKF to characterize and history match a 3D 

synthetic steam assisted gravity drainage (SAGD) reservoir. EnKF method for 

history matching mainly comprises of two steps, the forecast step, and the 

analysis step. In forecast step, all the realizations in the ensemble are forwarded 

using numerical simulation from current time step (tk) to next time step (tk+1). 

Then uncertainty in production forecast is assessed and if uncertainty is high then 

analysis step is performed in which unknown model parameters are updated by 

assimilating production data available from the field at current time step. Again, 

production forecast of the ensemble with updated model parameters is obtained 

for the next time step and uncertainty is measured. This process goes on till the 

uncertainty is reduced up to a level where realizations can be used further to 

develop field related strategies. 

For a conventional reservoir of average size, hundreds or thousands of grid blocks 

can be used each one with different properties. In forecast step, each realization of 

the ensemble is evaluated using commercial reservoir simulators at every time 

step, resulting in high computational cost and time. Various approaches have been 

discussed recently in the literature to reduce the time and number of simulations 

in the history matching process. One of the approaches to reduce the 

computational cost and time is by reducing the ensemble size by application of 

various screening/ranking methods (Patel et al., 2015). Another solution to the 

huge computational cost has been the use of proxy models. Proxy models are 
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referred as mathematically derived models that imitate the output of a simulation 

model for selected input parameters. In the literature, proxy models are often 

termed as response surface models or surrogate models (Zubarev, 2009). In cases 

where proxy models can adequately represent relevant output parameters, they 

can be used as a substitution for full reservoir simulations. Polynomial regression 

models, ordinary kriging models, artificial neural networks (ANN) and radial 

basis functions (RBF) are some of the commonly used proxy models for reservoir 

simulation 

In this work, data-driven proxy models, which can substitute the need of using a 

reservoir simulator during the assisted history matching process, are developed. 

Permeability realizations of a large SAGD reservoir, located in northern Alberta, 

are first parameterized using Karhunen-Loeve (KL) series expansion and 

represented in the form of uncorrelated random variables. KL expansion 

represents the initial ensemble in the form of uncorrelated random variables using 

Eigen decomposition of the covariance function. Artificial Neural Network 

(ANN) based proxy models are developed using the random variables obtained 

from the KL expansion as input parameters and predict production parameters as 

outputs. Established models are further integrated into the EnKF framework to 

predict production parameters in forecast step while updating the random 

variables instead of permeability of each grid block in the analysis step of EnKF. 

Computational requirement of the proxy models during the development as well 

as deployment as compared to the commercial reservoir simulator is emphasized 
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in this study. The Primary aim is to perform assisted history matching of SAGD 

reservoirs in quick, low-cost manner while maintaining the accuracy of results. 

4.2 Ensemble Kalman Filter 

EnKF is a Monte Carlo method, which is widely used for assisted history 

matching due to its ability to include available observations sequentially in time. 

Aanonsen et al., (2009) reviewed the application of EnKF in reservoir engineering 

for estimation of reservoir parameters. In EnKF procedure an ensemble of model 

states is used to estimate the covariance matrices which are further used in the 

model updating process. Model parameters are the reservoir properties such as 

porosity and permeability. The Initial ensemble is generated based on the prior 

knowledge of the reservoir derived from various sources as well logs, core, and 

seismic analysis. In general, simulation techniques such as Sequential Gaussian 

Simulation (SGS) and Sequential Indicator Simulation (SIS) are used to generate 

multiple realizations. These realizations are consistent with the initial state of the 

reservoir. In the next step, all the reservoir models in the ensemble are forwarded 

typically using the numerical reservoir simulation. Mean and covariance of 

predicted model states are calculated and used in turn to calculate Kalman gain. 

Next, in the update (or analysis) step, each geological realization of the ensemble 

is updated using the Kalman gain. 

 
The primary procedure for EnKF contains two parts. In the forecast step, the 

forecast model is applied to the ensemble using the commercial reservoir 

simulator. Each realization is forwarded in time using a transition function( ), 
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which is based on the solution of the dynamical equations for flow and transport 

in the reservoir. In mathematical form, it can be expressed as: 

 

 

[
  

 

  
 
]   [

    
 

    
 

]                   ……………………………..…………4.1 

 

where      and   represent reservoir state parameters, production data, and 

model parameters respectively while superscript   refers to a particular realization 

in the initial ensemble and subscript   stands for the current time step,     

indicates previous time step.    represents the number of independent ensemble 

members. 

The state vector is generated for each realization in the ensemble that contains all 

the uncertain and dynamic variables which define the state of the system. These 

variables can be categorized into three parts and can be expressed as: 

  
 
 [

  
 

  
 

  
 

]              …………………………………………..…..... 4.2 

 
The static parameters (reservoir properties such as permeability and porosity) are 

represented by  . Initial realizations of   are generated using prior knowledge of 

the reservoir. Dynamic parameters (such as saturation and pressure) are denoted 

by  , which are assumed to be known initially.   represents the production data 

which can be oil rate, water rate, steam to oil ratio, etc. Production data is kept in 

state vector for the purpose of estimating the correlation between the state vector 
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and observed data (Chen et al. 2009).  State vector of all the realizations is 

combined in the form of a matrix that can be written as: 

 

       
    

       
 
      

     ……………………...………………… 4.3 
 
 
Ensemble mean of the prediction ensemble is calculated using equation, 
 

   [  
 ̅̅̅̅    

 ̅̅̅̅      
 ̅̅̅̅      

  ̅̅ ̅̅ ̅]      ..…………….…….…..…..…….. 4.4 

where    is the       matrix having each of its element as     . 

 

In next step, ensemble perturbation matrix     is calculated by subtracting 

ensemble mean from state vector of each realization and is represented as, 

           ………………………………….……..……..…..……. 4.5 

 

The ensemble covariance matrix can then be expressed as 

   

  
   (   ) 

    
 ......................................................................................... 4.6 

where superscript   represents predicted state of the matrix. 

 

Further, a random Gaussian noise     (   ) , generally known as measurement 

error is added to original observation   
    at time step  , 

 

  
     

   
      

 
              ........................................................... 4.7 
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where    follows a zero mean Gaussian distribution with measurement noise 

covariance matrix   and  [    
 ]    assuming that   is known. The addition of 

random variables as noise is a necessity to maintain variance of updated ensemble 

(Burgers et al. 1998). In update/analysis step, Kalman gain    is calculated using 

ensemble covariance matrix as follows, 

 

      

   (    

     )
  

.……………………………..….…….. 4.8 

 

  is a measurement operator having only 0 and 1 as its elements. It relates state 

vectors to theoretical observations. It can be represented as, 

 

     |     …………….…………………………..……....…..…..… 4.9 

 

Kalman gain calculated in Eq. (4.8) is finally used to update state vector of each 

realization in predicted ensemble. Mathematically, this step can be shown as, 

 

  
   

   
   

   (  
     

    
   

)              ……………......…. 4.10 

 

In Eq. (4.10) superscript   denotes updated/analyzed state vector. The process is 

repeated till the uncertainty in production forecast of updated state vector is 

acceptable. A workflow for history matching using EnKF is shown in Figure 16. 
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random variable represents a permeability realization. These random variable 

vectors are used as input parameters for development of the proxy models. A 

detailed explanation for the proxy model generation has already been presented in 

Chapter 3. A brief description of proxy model will be provided in the further 

section using a real field case study of SAGD reservoir. The proxy models are 

then used in forecast step of EnKF. 

 
EnKF workflow starts from the construction of a state vector shown in Eqn. (4.2). 

In KL-ANN-EnKF approach, state vector consists of random variables as model 

parameters representing the permeability field along with production parameters.  

In forecast step, reservoir simulator is replaced by the proposed ANN proxy 

model and production parameters are estimated considering random variables as 

input parameters.  Output spread is analyzed, and state vector is updated using 

true production data from the field and Kalman gain in analysis step of EnKF 

loop. The random variables from updated state vector are again used to calculate 

output parameters and process is repeated until the uncertainty in production 

forecast of updated state vector is acceptable. Permeability realizations at any 

time step can be generated by substitution of last updated random variables into 

Eqn. (3.4). The integrated ANN-EnKF workflow is presented in Figure 17. 
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4.4.1 Description of the Reservoir Model 

A single horizontal well pair, 500 m in length with 6 m spacing between the 

injector at the top and producer at the bottom, from a field in northern Alberta is 

considered to build a 3D heterogeneous SAGD reservoir model. Several well logs 

obtained from the vertical observation wells are imported in Petrel exploration 

and production software provided by Schlumberger to get information about 

formation top and depths. A corner point grid is generated with a total of 20,000 

grid blocks. The model comprises of 25 grid blocks in the I direction, 50 in the J 

direction and 16 in the K direction. Each grid block has a dimension of 25 m × 2 

m × 1.5 m in the I, J and K directions, respectively. Well logs are used to obtain 

the porosity of the grid blocks, and permeability is also calculated at those 

locations. Sequential Gaussian Simulation (SGS) is performed to generate 100 

realizations of permeability using the data at the wells as conditioning data. 

Permeability values range from 1525 md to 7150 md. The porosity values range 

from 31.5% to 41.5%, while irreducible water saturation ranges from 0.16 to 0.2 

within the initially generated 100 realizations. The static model is further 

imported in CMG BuilderTM (CMG 2013c) to assign dynamic properties. A 2D 

and 3D view of SAGD reservoir model are shown in Figure 18 and Figure 19 

respectively. Initial reservoir temperature is 7oC and bitumen viscosity at the 

original reservoir temperature is assigned as 625,000 cp. At a higher temperature 

of 216◦C, bitumen viscosity is 10 cp. A rock type with appropriate relative 

permeability curves is used in the model (details are not provided due to 

confidentiality). Injector and producer well-operating constraints are applied as 
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per the historical field data. Realizations are simulated for 1,355 days using the 

thermal simulator CMG STARSTM (CMG 2013a). 

      

                   Figure 18: 2D view of SAGD Reservoir Model 

 

      

                   Figure 19: 3D view of SAGD Reservoir Model 
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4.4.2 EnKF using a reservoir simulator: conventional approach 

A base case is prepared using traditional EnKF assisted history matching. 

Initially, 50 realizations are selected from original 100-member initial ensemble 

using scenario reduction method (Rahim et al., 2015) proposed for assisted 

history matching using EnKF. In state vector, the natural logarithm of 

permeability is used as model parameters while daily oil rate and steam oil ratio 

as production parameters. State vector    for the base case can be written as,  

   [

   (            )      

              

                     

]

        

……………………………..…. (4.11)  

where    denotes the total number of grid blocks (i.e. 20,000) in the reservoir 

model.    refers to the number of sampled realizations (i.e. 50) in the initial 

ensemble. State parameters are not used in Eqn. (4.11) since their time 

dependency could cause potential inconsistency (Gu & Oliver, 2006). Since the 

Gaussian statistics assumption has to be followed, logarithmic permeability is 

used in the state vector. The state vector is updated at four different time steps i.e. 

at 601, 760, 840 and 1160 days. After every update, simulations are rerun from 

the beginning using updated state vector. Production parameters are plotted after 

each update to compare and analyze the results.  

 

4.4.3 EnKF using KL-ANN based proxy model: Proposed Approach 

KL expansion allows the expression of a correlated random field or process in the 

form of a set of independent random variables while maintaining the covariance 



85 
 

structure. A set of 100 random permeability realizations generated using SGS is 

considered to obtain the covariance matrix. The KL workflow presented in 

Chapter 3 is followed using these 100 realizations. The covariance structure is 

expressed in the form of eigenvalues and eigen functions. The eigenvalues show a 

monotonically decreasing trend as demonstrated in Figure 10. The sum of 

normalized eigenvalues displays the ratio of energy (variance) in the KL terms. 

Upon plotting the cumulative sum of eigenvalues, it is observed that most of the 

energy is associated with a few initial eigenvalues. In a view to truncate the KL 

expansion (Eqn. (3.4)), smaller eigenvalues are discarded, and only the first few 

eigenvalues are selected. It is shown in the previous chapter (Figure 11) that more 

than 90% of energy is preserved with the first five to six eigenvalues. In this 

work, the KL expansion is truncated after first three eigenvalues and each 

permeability realization is represented using only three random variables with 

normal distribution. 

MATLAB® Neural Network ToolboxTM (release R2013a) is used to build the 

neural network architecture. The workflow presented in Figure 5 is followed to 

obtain a neural network-based proxy model. A set of 25 permeability realizations 

in the form of random variables are selected as input training data for ANN model 

development. The target output vector for training data is obtained by running 

these realizations on the reservoir simulator. The design of a neural network 

involves selection of the number of neurons and hidden layers. (Ferreira et al., 

2012) used some thumb rules from the literature for the selection of the number of 

neurons. They suggested the number of neurons should be between the number of 
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input parameters and output parameters. More precisely, it should be two-thirds 

the number of input parameters plus the output parameters and should not be 

more than twice the number of input parameters. In our work, different network 

configurations are analyzed, and suitable network architecture is selected by 

comparing the prediction error of various configurations. 

A three-layer feed forward neural network is used for the proxy model 

development. The first layer consists of neurons representing the input values of 

permeability in the form of random variables used in Eqn. (3.4). The second 

(hidden) layer consists of three neurons with sigmoid transfer functions, and the 

third layer contains one neuron representing the output value of the production 

parameter. Three different models with similar structure are developed for three 

production parameters as outputs (oil rate, cumulative oil production, and steam 

oil ratio).  Pre-processing functions are used to normalize the input data vectors 

and target output vectors. The network uses a back propagation training algorithm 

that updates the weight and bias values for each neuron. The training algorithm 

utilized in this work minimizes a combination of squared errors and weights and 

then determines the correct combination to produce a network that generalizes 

well. The process used to train the network is called Bayesian regularization back 

propagation. During the training process, 80% of the data is used for training and 

20% of the data is used for testing, which allows monitoring of the network's 

general performance and prevents over-fitting of the training data. After the setup, 

training, and testing, the neural network is used to compute the output values for 

any number of permeability realizations represented by a set of random variables. 
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To show the accuracy of ANN based proxy model, 100 realizations different from 

those used for training are used for validation purpose. Production parameters are 

calculated using both reservoir simulator and proxy model. All of the production 

parameters presented in this work are normalized by a target value of respective 

output parameters for confidentiality purpose. Table 7 shows the quantitative 

comparison of oil rate, cumulative oil production, and steam oil ratio after 1200 

days regarding mean, variance, minimum and maximum values. It can be seen 

that all the statistical values calculated using ANN proxy model are almost equal 

to those calculated using the commercial simulator. The result proves the potential 

of ANN proxy model as a substitute for reservoir simulator in history matching 

process.  

 

Table 7: Quantitative comparison of different production parameters obtained 
using simulator and ANN proxy model after 1,200   days 

Quantitative 
Measures 

Normalized Oil 
Rate 

Normalized Cumulative 
Oil Production 

Normalized Steam 
Oil Ratio 

Simulator ANN Simulator ANN Simulator ANN 
Mean 0.539 0.535 0.623 0.618 0.256 0.263 

Variance 0.011 0.011 0.009 0.015 0.003 0.005 
Min 0.171 0.295 0.241 0.310 0.203 0.202 
Max 0.715 0.692 0.766 0.752 0.611 0.493 

 

It is evident from Table 7 that ANN proxy model is in good agreement with the 

numerical simulator results as the statistical values obtained from ANN model are 

comparable with those obtained using the simulator. The proposed ANN model is 

sufficient to calculate required production parameters and can be used further 

with EnKF in the forecast step as a substitute for the commercial simulator. 
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Random variables, which represent permeability field through KL expansion, are 

used as model parameters instead of the natural logarithm of permeability. 

Modified state vector can be shown as:  

 

   [

                  ( )     

              

                     

]

    

…….…………………..…. 4.12 

 

where   is a vector of random variables (containing three random variables for 

each realization) and Ne is the total number of realizations in the initial ensemble 

(50 in this case).  For comparing the results, the state vector is updated at the same 

time instances as the baseline scenario. After each update, production parameters 

are plotted and compared. History matching results are shown and discussed in 

further section. 

 

4.5  Results and Discussions 

This section describes the results of assisted history matching using the proposed 

approach and also its comparison with history matching results of base case 

obtained using conventional EnKF framework. We compared the performance 

and efficacy of proposed KL-ANN-EnKF history matching workflow using 

comprehensive quantitative as well as qualitative analysis. 
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Quantitative analysis is performed using distinct statistical measures and output 

parameters. Different production parameters such as daily oil production rate, 

cumulative oil production, and cumulative steam to oil ratio are considered, actual 

expected mean values after 1200 days of which are 0.404, 0.562 and 0.268, 

respectively. Statistical measures used for the assessment are mean, standard 

deviation, minimum and maximum data values of the ensemble at every update 

step. Also, two quality measures,    and root-mean-square-error (    ) are 

calculated for detailed quantification of the efficiency and accuracy of proposed 

method.    of a realization   can be calculated as (Chitralekha et al., 2010), 

 

  
    

∑ ( ̂    ̂    )
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where   
  is    value for realization  ,  ̂  is the simulated value for     realization, 

and  ̂     is the true field data.  ̅     represents the  average value of production 

parameter over the time span from    to   . For the complete ensemble of 

realizations,    can be calculated as mean of all the realizations using equation 

below: 

 

   
 

  
∑    

   
    ……………………………………...…………… 4.14 
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The value of    ranges from -  to 1, where 1 represents a perfect match. Another 

parameter used to quantify the accuracy of results is the RMSE value. For a 

particular realization  , it can be calculated as (Gu & Oliver, 2006), 

 

      √
 

  
∑ ( ̂    ̂    )   

     ...……………… ……………. 4.15 

 

RMSE value for the entire ensemble is calculated by averaging RMSE of all 

realizations and ranges from 0 to   where 0 denotes a perfect match; equation for 

which can be written as, 

 

     
 

  
∑        

  
    ……………………….………………. 4.16 

 

If model parameters are estimated correctly in the history matching process, then 

mean of the production parameters of all realizations in the ensemble should be 

closer to the real value of the respective output parameter after history matching. 

Also, reduction in standard deviation of the ensemble should be observed which 

indicates uncertainty reduction in production forecast. However, ensemble 

variability should be maintained in EnKF to avoid filter divergence and spurious 

updates of state vectors, widely known as "ensemble collapse" (Chen et al., 2009). 

Furthermore, when the simulator is replaced with ANN based proxy model in 
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proposed history matching workflow, quality of history matching results should 

be consistent concerning average data mismatch. Keeping in mind these 

prospects, results of standard EnKF and KL-ANN-EnKF are analyzed here. 

 

Table 8: Quantitative analysis of production parameters after 1,200 days at each 
update step obtained using conventional approach for EnKF  

Quantitative 
Measures 

Initial 
Ensemble 

After 1st 
Update 

After 2nd 
Update 

After 3rd 
Update 

After 4th 
Update 

  Normalized Oil Rate SC after 1200 days (True value = 0.404) 
Mean 0.468 0.510 0.530 0.519 0.454 

Std Dev 0.131 0.063 0.059 0.046 0.029 
Min 0.225 0.403 0.394 0.419 0.405 
Max 0.728 0.665 0.654 0.613 0.551 
R2 -0.230 -0.048 -0.153 0.053 0.476 

RMSE 0.136 0.129 0.136 0.124 0.093 
  Normalized Cum. Oil Production after 1200 days (True value = 0.562) 

Mean 0.549 0.568 0.590 0.586 0.525 
Std Dev 0.132 0.055 0.047 0.038 0.024 

Min 0.306 0.433 0.453 0.503 0.476 
Max 0.734 0.684 0.664 0.668 0.600 
R2 0.842 0.960 0.966 0.976 0.968 

RMSE 0.077 0.040 0.037 0.032 0.038 
  Normalized Steam Oil Ratio after 1200 days (True value = 0.268) 

Mean 0.295 0.274 0.263 0.264 0.291 
Std Dev 0.087 0.026 0.021 0.017 0.012 

Min 0.212 0.229 0.233 0.230 0.259 
Max 0.490 0.337 0.338 0.305 0.314 
R2 -0.001 -0.198 0.301 0.288 -0.051 

RMSE 0.061 0.069 0.052 0.053 0.069 
 

 

Results of quantitative analysis of the base case and proposed KL-ANN-EnKF 

approach are shown in Table 8 and Table 9, respectively. Though same initial 

ensemble of 100 realizations as the base case has been used in recommended 

workflow, as mentioned in methodology, permeability realizations are represented 
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using random variables in KL expansion. Therefore, the statistical measures for 

initial ensemble are different for KL-ANN method then the base case. Since, 

quantitative measures in Table 9 are shown for realizations using truncated KL; a 

small variation in output is expected. 

 

 

Table 9: Quantitative analysis of production parameters after 1200 days at each 
update step obtained using KL-ANN-EnKF workflow  

Quantitative 
Measures 

Initial 
Ensemble 

After 1st 
Update 

After 2nd 
Update 

After 3rd 
Update 

After 4th 
Update 

  Normalized Oil Rate SC after 1200 days (True value = 0.404) 
Mean 0.517 0.568 0.569 0.481 0.467 

Std Dev 0.115 0.046 0.027 0.009 0.007 
Min 0.210 0.424 0.510 0.462 0.452 
Max 0.689 0.678 0.631 0.505 0.485 
R2 -0.228 -0.293 -0.251 0.473 0.510 

RMSE 0.137 0.145 0.143 0.094 0.090 
  Normalized Cum. Oil Production after 1200 days (True value = 0.562) 

Mean 0.588 0.638 0.638 0.551 0.529 
Std Dev 0.101 0.037 0.024 0.011 0.008 

Min 0.310 0.534 0.570 0.524 0.510 
Max 0.728 0.724 0.689 0.571 0.546 
R2 0.896 0.936 0.943 0.990 0.977 

RMSE 0.061 0.052 0.050 0.022 0.033 
  Normalized Steam Oil Ratio after 1200 days (True value = 0.268) 

Mean 0.266 0.236 0.237 0.259 0.262 
Std Dev 0.078 0.010 0.006 0.002 0.002 

Min 0.205 0.206 0.222 0.255 0.258 
Max 0.588 0.265 0.251 0.265 0.269 
R2 -0.837 -0.972 -0.968 -0.715 -0.624 

RMSE 0.265 0.275 0.275 0.257 0.250 
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However, by comparing the different measures for all the production parameters 

after each update step, it can be observed that all values are in the same range as 

the base case. The normalized oil production rate for the base case and KL-ANN-

EnKF after each update step is presented in Figure 20 and Figure 21 respectively. 

Actual data obtained from the field is shown using black line while the ensemble 

is represented as gray lines. Smaller ensemble spread for KL-ANN-EnKF 

workflow after the last update step is evident from Figure 21, the fact which is 

also endorsed by lower standard deviation of oil rate in Table 9 after last update 

step, indicating better convergence of model parameters. 

 

In the case of KL-ANN-EnKF, oil rates after the 2nd update are slightly biased 

from the field data when compared to the base case, most probably due to the 

mismatch between the prediction of production parameters using ANN proxy 

model and commercial reservoir simulator. However, it has been taken care of 

later in the next update step due to sequential data assimilation in EnKF. Though 

mean of the oil rate for base case is closer to the real value (Table 8), proposed 

workflow depicts minimum ensemble span with higher minimum and lower 

maximum values for the oil rate (Table 9) after the last update, suggesting 

minimal uncertainty in model parameters between both cases. Lower RMSE and 

improved R2 values are observed for oil production rate in Table 9 as compared to 

the base case, indicating fewer data mismatch over the time and hence confirming 

the capability of the proposed KL-ANN-EnKF workflow. 
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Figure 20: Normalized oil rate after each update of EnKF for the base case in which 
conventional approach is considered to update the ensemble (gray lines). Black line 
shows history obtained from field  
 
 

 

 
Figure 21: Normalized oil rate at each update step obtained after using KL-ANN-
EnKF approach to update the ensemble (gray lines). The black line shows history 
obtained from the field. 
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Figure 22 and Figure 23 represent history matching results of normalized 

cumulative oil production after each update for the base case and KL-ANN-EnKF 

respectively. It can be seen from the figures that with each update, reduction in 

ensemble spread (gray lines) in the case of proposed workflow is better than 

baseline scenario. Quantitative analysis in Table 9 also shows comparable results 

with significantly smaller standard deviation and better minimum/maximum 

values of cumulative oil production which reflect reduced ensemble span and 

hence faster uncertainty reduction in output forecast as compared to the base case 

after the last update. Also, mean of the cumulative oil after final update (Table 9) 

is slightly closer to the actual value in case of KL-ANN-EnKF, demonstrating a 

better convergence of model parameters towards the real value. Furthermore, near 

to unity R2 value and almost zero RMSE after final update step display better 

history matching of cumulative oil production using KL-ANN-EnKF. 

Steam oil ratio which exhibits the efficiency of the SAGD process is also plotted 

in Figure 24 and Figure 25 after each update in history matching, performed using 

base case and KL-ANN-EnKF, respectively. Similar to other production 

parameters, a significant reduction of ensemble spread in every update step as 

compared to base case is evident from the results of KL-ANN-EnKF. Please note 

that small band spread here does not indicate a loss in ensemble variability, which 

can be proven by comparing, updated model parameters with reference statistics 

before history matching as shown in Figure 31 and Figure 32. 
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Figure 22: Normalized cumulative oil production after each update of EnKF for 
base case in which conventional approach is considered to update the ensemble 
(grey lines). Black line shows history obtained from field 

 

 
 

 

Figure 23: Normalized cumulative oil production at each update step obtained after 
using KL-ANN-EnKF approach to update the ensemble (grey lines). Black line 
shows history obtained from field. 
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Various statistical measures in Table 9 also show promising history matching 

results using KL-ANN- EnKF as the mean value of steam oil ratio after the last 

update is almost equal to the real value. The result proves the capability of ANN 

based proxy model to estimate production parameters accurately in forecast step, 

which ultimately leads to an adequate update of model parameters in following 

analysis step. Despite better history matching results using KL-ANN-EnKF, 

quality measures R2 is negative while RMSE is higher than the base case (Table 

8) for steam oil ratio. This observation can be explained by the fact that steam oil 

ratio has minuscule standard deviation and hence, even a small deviation from the 

actual value will considerably contribute to data mismatch, ultimately resulting in 

reduced quality measures. However, all other statistical measures in quantitative 

analysis (Table 9) as well as plots in qualitative analysis (Figure 25) express 

satisfactory history matching results. Overall, ensemble mean for all the three 

production parameters is in proximity to the respective real value while ensemble 

spread is reduced significantly with each update in proposed workflow. It is, 

therefore, evident that ANN proxy model can successfully substitute the use of 

commercial simulator during the assisted history matching process without 

compromising the accuracy of history matching results. 
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Figure 24: Normalized cumulative steam to oil ratio after each update of EnKF for 
the base case in which conventional approach is considered to update the ensemble 
(gray lines). Black line shows history obtained from field 

 

 

 

Figure 25: Normalized cumulative steam-oil ratio at each update step obtained after 
using KL-ANN-EnKF to update the ensemble (gray lines). The black line shows 
history obtained from the field. 
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In Figure 26,  

Figure 27 and Figure 28, box and whisker plots that demonstrate the change in 

distribution are plotted for oil production rate, cumulative oil production, and 

steam oil ratio respectively at 1200 days, before and after history matching. In 

these plots, whisker ranges from minimum to maximum while box presents 0.25 

quantile to 0.75 quantiles of the distribution. Red line and * sign in interquartile 

range of each box and whisker plot shows median and mean of the distribution 

respectively while black horizontal line denotes the real value of the respective 

production parameter. From the box-whisker plots, it can be said that KL 

expansion can reduce the dimensionality of the history matching problem while 

maintaining variability in the ensemble since the distribution, as well as mean and 

median of all production parameters, are similar to those for the base case before 

history matching. Another important observation is the lower standard deviation 

for all production parameters after history matching in KL-ANN-EnKF compared 

to the baseline scenario, which is in agreement with the qualitative and 

quantitative analysis. Also, concerning mean of output parameters, history 

matching results is either similar or better compared to the base case. 

Furthermore, it is observed that difference between mean and median reduced 

after history matching process using KL-ANN-EnKF, suggesting diminished bias 

in the ensemble since identical mean and median shows that same numbers of 

realizations in the ensemble are above and below the average value. This analysis 

of change in distribution further establishes the effectiveness of proposed 

integrated KL-ANN-EnKF workflow. 
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Figure 26: Box and whisker plots representing distributions of normalized oil rate at 
1200 days obtained using simulations of all realizations of the initial and updated 
ensemble using different EnKF approaches for history matching. The red line shows 
the median of each distribution. The horizontal black line shows the true value. 
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Figure 27: Box and whisker plots representing distributions of normalized 
cumulative oil production at 1200 days obtained using simulations of all realizations 
of the initial and updated ensemble using different EnKF approaches for history 
matching. The red line shows the median of each distribution. The horizontal black 
line shows the true value. 
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Figure 28: Box and whisker plots representing distributions of normalized steam oil 
ratio at 1200 days obtained using simulations of all realizations of the initial and 
updated ensemble using different EnKF approaches for history matching. The red 
line shows the median of each distribution. The horizontal black line shows the true 
value. 
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Figure 29: Ensemble variance of model parameters at various assimilation steps 
during conventional EnKF method. 

 

 

Figure 30: Ensemble variance of model parameters at various assimilation steps 
during KL-ANN-EnKF method. 
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It can be observed from Figure 29 and Figure 30 that there is a significant 

reduction in the ensemble variance of model parameters at successive assimilation 

steps in conventional as well as KL-ANN based EnKF method. This shows the 

convergence of ensemble towards the true representation of permeability field 

with almost zero variance after fourth update step.  

It is important to note that in KL-ANN-EnKF, state vectors used in EnKF process 

are modified. In this approach, individual random variables, which represent 

permeability field through KL expansion, are used as model parameters in the 

initial ensemble instead of the natural logarithm of permeability. For obtaining 

credible history matching results, it is important that parameterization technique is 

competent enough to represent the initial ensemble. To investigate this fact, the 

comparison of permeability histogram before history matching is plotted for 

realizations for the base case and KL-ANN-EnKF is plotted in Figure 31. 

Irrespective of the different method used for representing the permeability field, 

the overall distribution is similar in both cases. Also, to ensure the integrity of the 

history matching process, the occurrence of ensemble collapse should be 

examined. The variance of different grid blocks in all realizations of the ensemble 

becomes zero when ensemble collapse takes place. In other words, for all the grid 

blocks, values of model parameters (i.e. permeability in our case) become equal in 

different realizations, leading to apparently only one realization in the ensemble 

and hence loss of ensemble variability. Figure 32 depicts the updated permeability 

distribution of standard EnKF and KL-ANN-EnKF. It is evident from this figure 
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that only higher permeability values (which most likely are impractical values for 

the field) are filtered out.  

 

 
 
 
 
 

 
 

Figure 31: Histogram of Initial Permeability before history match for realizations 
used during conventional EnKF and KL-ANN-EnKF. 
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Figure 32: Histogram of Final updated Permeability after history match for 
realizations obtained during conventional EnKF and KL-ANN-EnKF. 
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Conventional 
EnKF 
89% 

ANN Based 
EnKF 
11% 

Percentage  Share in Total Computational Time 
 (Usage of Simulator)



108 
 

4.6  Summary 

In this Chapter, a KL-ANN based proxy model framework as an alternative to the 

commercial simulator in forecast step of EnKF is proposed. A real field SAGD 

model is used to demonstrate the applicability of the proposed approach. The KL 

expansion is employed to parameterize the permeability field and to reduce the 

dimensionality of the model. Model parameters are represented with the help of 

standard Gaussian random variables. Further, proxy models are developed on 

these random variables to predict the output. Results obtained from the proxy 

models are verified by comparing with the results obtained using the commercial 

simulator. The following are the main conclusions of this work: 

 KL-ANN-EnKF provides adequate results when compared with the outputs 

obtained from the commercial simulator. Developed model can be used to run 

as many realizations as required in a relatively very small amount of time and 

with very low computational effort. 

 The proposed framework is easy to implement in large-scale complex 

reservoirs. Models developed with the help of very few simulation runs are 

efficient enough to imitate the full dynamics and trend of simulation results, 

thus eliminating the need for time-consuming simulation runs. 

 KL-ANN based proxy model can easily be incorporated in EnKF framework 

as forecast model and can reduce the time required for assisted history 

matching, up to 90% for the case presented, while maintaining the accuracy of 

results. 
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Chapter 5: 

PCE Proxy Model Based EnKF framework for Assisted 
History matching3

 

5.1 Introduction 

After the development of a comparable proxy model based on PCE (discussed in 

Chapter 3), the next task is to combine it with existing EnKF framework for 

assisted history matching.  

Workflow that shows stepwise procedure to be followed to implement assisted 

history matching with practical computing cost is shown in Figure 34. Starting 

point of proposed integrated framework is to represent initial ensemble in terms of 

eigen values and corresponding eigen functions of covariance matrix along with 

random variables using Eqn. (3.3). Generally, depending on the pdf of random 

variables, type of orthogonal polynomial is chosen. In proposed framework, as 

stated before, Gaussian random variables with zero mean and unit variance are 

used and as the same random variables are considered as input parameters in PCE, 

Hermite polynomials are used to construct polynomial chaos. Using Gaussian 

quadrature technique, sets of random variables( ), commonly known as 

collocation points are obtained.  

 

3based on a manuscript “Polynomial-Chaos-Expansion Based Assisted History Matching 
Workflow for Computationally Efficient Reservoir Characterization: A SAGD Field Case Study,” 
Submitted in SPE Journal of Reservoir Engineering and Evaluation. 
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Considering each set of random variables as separate input, full physics 

simulations using commercial simulators are run and output data is collected. 

System of equations is developed using each input-output pair and coefficients are 

determined. If the error in approximation using PCE is not significant then the 

same polynomial model is used in forecast step of EnKF. 

The only loop in proposed assisted history matching workflow is of EnKF. It 

basically starts from construction of a state vector. Since initial ensemble is 

represented by random variables in KL parameterization, they are used in place of 

model parameters (i.e. permeability) in state vector along with the production 

parameters. Then using proxy model instead of commercial simulators in forecast 

step, production parameters are computed considering the random variables in 

state vector as an input parameters. Uncertainty in production parameters is 

analyzed and if it is high then state vector is updated using true production data 

from the field and Kalman gain in analysis step of EnKF loop. Again random 

variables from updated state vector are used in KL-PCE based proxy model to 

calculate production parameters and when uncertainty in production parameters is 

less enough, realizations can be generated by substituting latest updated random 

variables into Eqn. (3.3). Best realization from the ensemble then can be used 

further to outline future field development strategies. 

 



111 
 



112 
 

5.2 Application to a SAGD Reservoir: Field Case Study 

In a view, to demonstrate the efficacy of the proposed method and compare the 

results with numerical simulation outputs, KL-PCE based proxy model in 

combination with EnKF framework is implemented on a large-scale SAGD 

reservoir in northern Alberta. A code is developed using MATLAB® (release 

R2014a) that integrates CMG STARSTM (CMG 2013a), CMG Results ReportTM 

(CMG 2013b), and PCE based proxy model. A general description of the 

reservoir model is explained in Section 5.2.1. Stepwise implementation of the 

proposed frameworks is discussed in further subsections. 

5.2.1 Description of the Reservoir Model 

A portion of the reservoir in northern Alberta that contains one horizontal well 

pair and six vertical observation wells was considered to build a reservoir model. 

Various types of well logs (caliper log, resistivity log, sonic log, gamma ray log, 

neutron porosity log, self potential log, borehole compensated formation 

evaluation log) for each observation well were imported in Petrel exploration and 

production software platform by Schlumberger and well tops as well as top and 

bottom of formation were determined. Next, top and bottom surface of the 

formation was defined using well tops and formation depth at each well. A 3D 

view of reservoir model is shown in Figure 35 grid dimensions of which are 

25×50×16 and size of each grid block is 25×2×1.5 m in i (East), j (North) and k 

(Elevation) directions, respectively. Porosity obtained from well logs was then 

scaled up and used to calculate permeability for the grid blocks containing vertical 

observation wells. Using them as conditioning data, 100 permeability realizations 
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were generated by applying sequential Gaussian simulation. Porosity values range 

from 0.315 to 0.41 while permeability values range from 1525 md to 7150 md in 

the 100-member initial ensemble. 

In order to include dynamic properties, static model was exported to CMG 

BuilderTM (CMG 2013c). Initial reservoir temperature was defined as 7º C and 

bitumen viscosity at that temperature was specified as 625,000 cp which 

decreases to 10 cp at higher temperature of 216º C. Also, rock type with pertinent 

relative permeability curve was used in the dynamic model which along with 

viscosity vs. temperature curve is not provided here due to confidentiality 

purposes. A horizontal well pair with 6 m spacing was included in the reservoir 

model with injector being at top. Well constraints defined for both horizontal 

wells were obtained from the field data recorded on daily basis. Dynamic model 

was simulated using thermal simulator CMG STARSTM (CMG 2013a) and 

various production parameters were obtained for 1355 days.  

   

Figure 35: 3D View of reservoir model 
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5.2.2 EnKF using a reservoir simulator: conventional approach 

In order to compare the results of history matching obtained by applying proposed 

ideas with traditional assisted history matching using EnKF, a base case was 

prepared in which history matching includes assimilation of only production data. 

At first, 50 realizations were sampled from original 100-member initial ensemble 

using scenario reduction method proposed by Patel et al. (2015) to make history 

matching of the field scale reservoir a practical exercise. In this case, state vector 

consists natural logarithm of permeability as model parameters while daily oil rate 

and steam oil ratio as production parameters. State vector    for the base case can 

be written as,  

   [

   (            )      

              

                     

]

        

  ………........................... (5.1)       

where    denotes total number of grid blocks (i.e. 20,000) in a reservoir model 

while    refers to number of sampled realizations (i.e. 50) from initial ensemble. 

Logarithmic permeability in Eq. (5.1) is necessary in order to fulfill Gaussian 

statistics assumption of EnKF. Furthermore, state parameters are not used in Eq. 

(5.1) since their time dependency can cause potential inconsistency (Gu and 

Oliver 2006). State vector was updated at four instances i.e. at 601, 760, 840 and 

1160 days. After each update, simulations were rerun from the beginning using 

updated state vector so that accurate time dependent properties (e.g. pressure, 

saturation) can be calculated. Also, different production parameters were plotted 

after each update to compare and analyze the results.  
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5.2.3 EnKF using KL-PCE based proxy model: Proposed Approach 

KL expansion allows the expression of a correlated random field or process in the 

form of a set of independent random variables while maintaining the covariance 

structure. A set of 100 random permeability realizations generated using SGS is 

considered to obtain the covariance matrix. The KL workflow presented in 

Chapter 3 is followed using these 100 realizations. The covariance structure is 

expressed in the form of eigenvalues and eigen functions. The eigenvalues show a 

monotonically decreasing trend as demonstrated in Figure 10. The sum of 

normalized eigenvalues displays the ratio of energy (variance) in the KL terms. 

Upon plotting the cumulative sum of eigenvalues, it is observed that most of the 

energy is associated with a few initial eigenvalues. In a view to truncate the KL 

expansion (Eqn. (3.4)), smaller eigenvalues are discarded, and only the first few 

eigenvalues are selected. It is shown in the previous chapter (Figure 11) that more 

than 90% of energy is preserved with the first five to six eigenvalues. In this 

work, the KL expansion is truncated after first three eigenvalues and each 

permeability realization is represented using only three random variables with 

normal distribution. 

After parameterization, based on probability distribution of input random 

variables, type of orthogonal polynomials to be used in PCE is decided which is 

Hermite polynomials in our case. In PCE, to start with, 2nd order polynomial was 

considered. Then collocation nodes were computed using Gaussian quadrature 

technique. In our case, roots of next higher order orthogonal polynomial i.e. 3rd 

order Hermite polynomial were obtained and using them collocation nodes were 
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prepared. Total number of collocation nodes available here are 27. Since total 

number of terms in 2nd order PCE with 3 random variables is 10 which can be 

calculated using Eqn. (3.6), only 10 collocation nodes with higher probability 

were selected among all. Note that each collocation node here is a vector length of 

which is equal to number of random variables considered in PCE. For each 

collocation point, permeability field was generated using Eq. (3.4) and full 

physics simulations were carried out using CMG STARSTM to obtain required 

production parameters. Finally, all 10 coefficients were determined by solving 

system of equations shown in Eqn. (3.7) for each PCE constructed to calculate 

that particular production parameter.  

To check the error in output of PCE, 100 realizations different than initial 

ensemble were generated. Production parameters were obtained using CMG 

STARSTM as well as 2nd order PCE. Table 10 shows the quantitative comparison 

of oil rate, cumulative oil production and steam oil ratio (all normalized) after 

1200 days in terms of mean, standard deviation, minimum and maximum values. 

From the table, it can be said that production parameters obtained using PCE are 

very similar to those calculated using simulator, meaning that higher order 

polynomial chaos is not required. Hence, 2nd order PCE is sufficient to calculate 

required production parameters and can be used further in EnKF loop in place of 

commercial simulator. 
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Table 10: Quantitative comparison of different production parameters obtained 
using simulator and 2nd order PCE after 1200 days 

Quantitative 
Measures 

Normalized Oil 
Rate 

Normalized Cumulative 
Oil Production 

Normalized Steam 
Oil Ratio 

Simulator PCE Simulator PCE Simulator PCE 
Mean 0.539 0.532 0.623 0.628 0.256 0.255 

Std Dev 0.108 0.107 0.097 0.103 0.566 0.062 
Min 0.171 0.212 0.241 0.234 0.203 0.195 
Max 0.715 0.716 0.766 0.768 0.611 0.524 

 

In EnKF loop of integrated proxy model, as initial ensemble is represented using 

random variables in KL parameterization, random variables ( ) are used as model 

parameters instead of natural logarithm of permeability while production 

parameters used here are same as base case. State vector for integrated KL-PCE 

based EnKF workflow can be shown as, 

   [

                  ( )     

              

                     

]

    

          ………………………… (5.2)                                       

where   is a vector of random variables (containing three random variables for 

each realization as discussed before) and    is the total number of realizations in 

initial ensemble. In order to compare results with base case, production 

parameters were calculated using proxy model. State vector was updated at same 

time instances as base case. After each update in EnKF loop, different production 

parameters were plotted to evaluate the uncertainty reduction in production 

forecast.  
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5.3  Results and Discussions 

For qualitative analysis of assisted history matching results of base case, 

simulations for each ensemble member were rerun after each EnKF update and 

production parameters as well as surveillance parameters were plotted. Also, 

detailed quantitative analysis was performed to observe change in production 

parameters like oil rate, cumulative oil production, and steam oil ratio. 

Furthermore, box and whisker plots were prepared for all production parameters 

at 1200 days in order to analyze uncertainty reduction in production forecast after 

each update when only production parameters are used in state vector as shown in 

Eqn. (5.1). 

If model parameters in history matching are estimated precisely then mean of the 

production parameters calculated for all realizations in the ensemble should be 

equal to the true value of the respective production parameter. In addition, 

reduction in standard deviation of the ensemble ultimately demonstrates reduced 

uncertainty in production forecast. From Table 8, it can be observed that standard 

deviation of ensemble is decreasing consistently for all production parameters 

after each update in history matching of base case. Also, ensemble mean is 

moving closer to true value of respective production parameter as compare to that 

of initial ensemble which emphasizes the fact that EnKF can be successfully 

implemented for assisted history matching of field scale SAGD reservoirs. It is 

evident from the same table that minimum and maximum values of the ensemble 

for all production parameters are increasing and decreasing respectively which 
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denotes the convergence of ensemble towards the true value due to updated model 

parameters.  

Quantitative analysis is performed using distinct statistical measures and output 

parameters. Different production parameters such as daily oil production rate, 

cumulative oil production, and cumulative steam to oil ratio are considered, actual 

expected mean values after 1200 days of which are 0.404, 0.562 and 0.268, 

respectively. Statistical measures used for the assessment are mean, standard 

deviation, minimum and maximum data values of the ensemble at every update 

step. Also, two quality measures,    and root-mean-square-error (    ) are 

calculated for detailed quantification of the efficiency and accuracy of proposed 

method.    of a realization   can be calculated as (Chitralekha et al., 2010), 
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where   
  is    value for realization  ,  ̂  is the simulated value for     realization, 

and  ̂     is the true field data.  ̅     represents the average value of production 

parameter over the time span from    to   . For the complete ensemble of 

realizations,    can be calculated as mean of all the realizations using equation 

below: 
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The value of    ranges from -  to 1, where 1 represents a perfect match. Another 

parameter used to quantify the accuracy of results is the RMSE value. For a 

particular realization  , it can be calculated as (Gu & Oliver, 2006), 
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RMSE value for the entire ensemble is calculated by averaging RMSE of all 

realizations and ranges from 0 to   where 0 denotes a perfect match; equation for 

which can be written as, 
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    ……………………….……….…………. 5.6 

From Table 8, it can be noticed that both R2 and RMSE has improved with each 

EnKF update for almost all production parameters. In fact, initial ensemble shows 

negative R2 value in case of oil rate, which later improved to 0.476 after 4th 

update. Similarly, for steam oil ratio both quality measures reflects better history 

matching except the last update in which RMSE is increased and R2 value 

becomes negative. Since standard deviation of ensemble is the least after last 

update, a small deviation of steam oil ratio from true value contributes to the error 
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considerably, ultimately resulting into poor quality measures although ensemble 

provides acceptable match with field observations which can be seen in Figure 24.  

For qualitative analysis of base case history matching results, oil production rate 

of the ensemble (grey lines) as well as true data (black line) is plotted in Figure 

20. It can be noticed that after each EnKF update, ensemble spread (area consists 

of grey lines) is shrinking. Since model parameters are converging towards true 

value, uncertainty in production forecast is decreasing which is reflected in 

ensemble spread of that particular production parameter. Similar phenomenon can 

also be observed in case of cumulative oil production which is shown in Figure 

22. Steam oil ratio that depicts the efficiency of SAGD process is shown in Figure 

24 which demonstrates satisfactory results in assisted history matching. 

An attempt is made here to make assisted history matching practically applicable 

by integrating KL-PCE based proxy model in EnKF framework which reduces the 

overall computational cost. Simplest way to measure reduction in computational 

cost is number of simulation runs required to perform history matching. For 

history matching in base case, each realization in the ensemble is simulated till 

next time-step. So, for ensemble consists of 50 realizations, 50 full physics 

simulations are needed for each time-step. Therefore, in total 200 simulation runs 

are necessary for history matching of base case. On the other hand, to build a KL-

PCE based proxy model, simulations required are equal to number of collocation 

nodes i.e. 10 in our case. So it can be said that computational cost is reduced by 

95%. Even if higher order PCE is to be used, reduction in computational cost 

would be significant. However, it should be confirmed that history matching 
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results obtained using proposed integrated workflow are consistent. In other 

words, if a method uses less number of simulation runs and still produces results 

like traditional EnKF method, then only it will be successful attempt for 

computing cost reduction. Therefore, to compare the results with base case, 

similar quantitative and qualitative analysis is carried out for all production 

parameters obtained in history matching that uses proposed workflow.  

Quantitative analysis of initial ensemble as well as history matching results 

obtained using KL-PCE based EnKF workflow is shown in Table 11. Primarily, it 

can be observed from quantitative analysis that different measures like mean, 

standard deviation etc. for initial ensemble in Table 11 are different than those of 

base case in Table 8. In KL parameterization, each realization of the original 100-

member ensemble is represented using few random variables (3 in our case) 

which are then used to obtain permeability of all grid blocks in a particular 

realization using truncated KL shown in Eqn. (3.4). Since, quantitative measures 

in Table 11 are shown for realizations obtained using truncated KL, they are 

different. However, it can be noticed that they are not much distant from measures 

of original ensemble meaning that a set of random variables can represent the 

original ensemble correctly in KL transformation. By comparing the different 

measures for oil rate after each update with base case, it can be noticed that all 

values are in the same range as base case. Results for cumulative oil in Table 11 

are even better than base case as mean after final update is even closer to the true 

value. Also, higher R2 value and lower RMSE indicates better history matching of 

cumulative oil production when proposed workflow is used. In addition, though 
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mean and standard deviation for steam oil ratio are almost same as base case, 

lower RMSE and positive R2 value indicates appropriate update of state vector. 

Hence it is logical to use KL-PCE-EnKF workflow as not only comparable but 

also better results for some production parameters as compare to traditional EnKF 

can be obtained while consuming only 5% of computational time required 

originally. 

Table 11: Quantitative analysis of production parameters after 1200 days at each 
update step obtained using KL-PCE-EnKF workflow 

Quantitative 
Measures 

Initial 
Ensemble 

After 1st 
Update 

After 2nd 
Update 

After 3rd 
Update 

After 4th 
Update 

  Normalized Oil Rate SC after 1200 days (True value = 0.404) 
Mean 0.511 0.525 0.556 0.500 0.460 

Std Dev 0.119 0.116 0.061 0.020 0.017 
Min 0.157 0.165 0.392 0.439 0.430 
Max 0.726 0.770 0.725 0.542 0.506 
R2 -0.400 -0.362 -0.337 0.161 0.401 

RMSE 0.148 0.146 0.147 0.118 0.099 
  Normalized Cum. Oil Production after 1200 days (True value = 0.562) 

Mean 0.611 0.625 0.653 0.601 0.554 
Std Dev 0.112 0.091 0.048 0.030 0.028 

Min 0.266 0.366 0.535 0.474 0.475 
Max 0.756 0.748 0.777 0.672 0.672 
R2 0.863 0.886 0.906 0.978 0.987 

RMSE 0.070 0.066 0.060 0.030 0.022 
  Normalized Steam Oil Ratio after 1200 days (True value = 0.268) 

Mean 0.265 0.255 0.235 0.263 0.295 
Std Dev 0.070 0.056 0.025 0.017 0.015 

Min 0.194 0.197 0.197 0.237 0.238 
Max 0.498 0.438 0.317 0.334 0.334 
R2 0.259 0.518 0.738 0.807 0.586 

RMSE 0.053 0.046 0.036 0.031 0.046 
 

To endorse the capability of proposed workflow, qualitative analysis of history 

matching results after each update is also shown. Figure 36 shows oil rate (grey 
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lines) obtained after each update when proposed workflow is used for assisted 

history matching. Plots of oil rate more or less resemble to those of base case in 

Figure 20 with ensemble spread decreasing and realizations converging towards 

true data (red line). However, frequent shoot-ups in oil rate can be seen in Figure 

36. As PCE tries to accommodate all the changes in daily oil rate, value of 

deterministic coefficients keeps changing and sometimes combination of all 

coefficients predicts relatively higher or lower oil rate, mostly when changes in 

parameter are significant. Also, grey lines in Figure 36 represents whole ensemble 

but for one realization, there won’t be many abrupt changes and hence it will not 

affect history matching adversely, however, additional constraints in the proxy 

model or smoothing of output can be considered if needed. Cumulative oil 

production is plotted in Figure 37 after each update. It can be observed that after 

final update, ensemble follows the true data and shows satisfactory match. In fact, 

most of the realizations in case of cumulative oil production are on the same side 

of true data after 4th update in base case which is not evident in Figure 37 

obtained using proposed workflow. In case of steam oil ratio which is shown in 

Figure 38, results capture the trend over the time and are similar to base case 

results. Thus, qualitative analysis of results also indicates good potential of the 

integrated KL-PCE-EnKF workflow. 
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Figure 36: Normalized oil rate at each update step obtained after using KL-PCE-
EnKF approach to update the ensemble (gray lines). The Red line shows history 
obtained from the field. 
 

 

Figure 37: Normalized Cumulative oil production at each update step obtained after 
using KL-PCE-EnKF approach to update the ensemble (gray lines). The Red line 
shows history obtained from the field. 
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Figure 38: Normalized Steam oil ratio at each update step obtained after using KL-
PCE-EnKF approach to update the ensemble (gray lines). The Red line shows 
history obtained from the field. 

 

In Figure 39, box and whisker plots that demonstrate change in distribution are 

plotted after each update for all 3 production parameters at 1200 days using 

conventional EnKF method. In the plot, whisker ranges from minimum to 

maximum while box presents 0.25 quantile to 0.75 quantile of the distribution. 

Red line and + sign in interquartile range of each box and whisker plot shows 

median and mean of the distribution respectively while green horizontal line 

denotes the true value of the respective production parameter. It is evident from 

the plots that standard deviation of the distribution is decreasing with each update 

of EnKF and is minimum after final update for all production parameters. Also, 

mean in case of oil rate is closest to the true value (i.e. green line) after 4th update. 
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In case of cumulative oil production and steam oil ratio, mean after last update is 

not as close to the true value as it was in previous update. However, plots in 

Figure 39 shows the distribution of both production parameters only at 1200 days 

while Figure 22 and Figure 24 confirms acceptable closeness of ensemble mean to 

the true value for cumulative oil production and steam oil ratio over the time. 

Finally, proximity of the ensemble mean to the true value confirms the overall 

promising results in history matching of the base case. 

 

 

Figure 39: Box and whisker plots representing change in distribution of different 
production parameters at 1200 days after each update using conventional EnKF. 
Red line and ‘+’ mark show median and mean of each distribution respectively 
while continuous green line depicts true value of particular production parameter 
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Finally, to compare the change in distribution of production parameters with base 

case at 1200 days, box and whisker plots are shown in Figure 40. Like base case, 

box spans from 0.25 quantile to 0.75 quantile of the distribution and whisker 

spans the entire range of distribution. Also, red line, green line and + sign denotes 

median, true data and mean respectively.  

 

 

Figure 40: Box and whisker plots representing change in distribution of different 
production parameters at 1200 days after each update using proposed KL-PCE-
EnKF workflow. Red line and ‘+’ mark show median and mean of each distribution 
respectively while continuous green line depicts true value of particular production 
parameter 
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Change in distribution of different production parameters in Figure 40 reflects the 

perfect history matching of model parameters as standard deviation of distribution 

is decreasing gradually as oppose to some swift changes observed in base case, 

mostly in last couple of update steps. Also, mean is advancing towards the true 

value progressively instead of sudden change for almost all 3 production 

parameters. In fact, mean of cumulative oil production is nearly same as true 

value after last update. Furthermore, difference between mean and median is 

reducing after each update step meaning that biasedness in ensemble is 

diminishing since identical mean and median shows that same number of 

realizations in the ensemble is above and below the mean value. This analysis of 

change in distribution further establishes the effectiveness of proposed integrated 

KL-PCE-EnKF workflow. 

It is also important to show the variance in model parameters after every update 

step using the proposed workflow. For an efficient application of EnKF approach, 

the ensemble variance for the model parameters must reach close to zero at the 

end of final update step. It can be observed from Figure 29 and Figure 41 that 

there is a significant reduction in the ensemble variance of model parameters at 

successive assimilation steps in conventional as well as KL-PCE based EnKF 

method. This shows the convergence of ensemble towards the true representation 

of permeability field with almost zero variance after fourth update step and hence 

demonstrates the efficacy of proposed method. 
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Figure 41: Ensemble variance of model parameters at various assimilation steps 
during KL-PCE-EnKF method. 

 

It is important to note that in KL-PCE-EnKF, state vectors used in EnKF process 

are modified. In this approach, individual random variables, which represent 

permeability field through KL expansion, are used as model parameters in the 

initial ensemble instead of the natural logarithm of permeability. For obtaining 

credible history matching results, it is important that parameterization technique is 

competent enough to represent the initial ensemble. To investigate this fact, the 

comparison of permeability histogram before history matching is plotted for 

realizations for the base case and KL-PCE-EnKF is plotted in Figure 42. 

Irrespective of the different method used for representing the permeability field, 

the overall distribution is similar in both cases. Also, to ensure the integrity of the 
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history matching process, the occurrence of ensemble collapse should be 

examined. The variance of different grid blocks in all realizations of the ensemble 

becomes zero when ensemble collapse takes place. In other words, for all the grid 

blocks, values of model parameters (i.e. permeability in our case) become equal in 

different realizations, leading to apparently only one realization in the ensemble 

and hence loss of ensemble variability. Figure 43 depicts the updated permeability 

distribution of conventional EnKF and KL-PCE-EnKF. It is evident from this 

figure that only higher permeability values (which most likely are impractical 

values for the field) are filtered out.  

 

 



132 
 

Figure 42: Histogram of Initial Permeability before history match for realizations 
used during conventional EnKF and KL-PCE-EnKF. 

 

 

 

Figure 43: Histogram of Final updated Permeability after history match for 
realizations obtained during conventional EnKF and KL-PCE-EnKF. 

 

5.4 Summary 

In this work, a novel approach is presented to improve the assisted history 

matching process for SAGD reservoirs. To reduce the computational cost of 

assisted history matching, integrated KL-PCE-EnKF workflow is proposed. KL 
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transformation in the workflow parameterizes the initial ensemble using random 

variables which are then used to build PCE based mathematical model. Reservoir 

simulator in forecast step of EnKF is replaced by KL-PCE based proxy model and 

necessary changes are made in the state vector. Proposed approach is verified 

using a field scale SAGD reservoir model, results of which can be summarized as 

below: 

 KL parameterization can effectively represent the ensemble using set of 

random variables while PCE is competent enough to calculate daily as well as 

cumulative production parameters, both of which can be used further in EnKF 

to estimate model parameters successfully. 

 Implementation of proposed KL-PCE-EnKF workflow reduces the 

computational time required for assisted history matching by 95% for the given 

field case study without compromising the history matching results. 
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Chapter 6: 

Conclusions 
 

6.1 Conclusions 

The following are the key findings of this work: 

 Our proposed PCE approach, integrated with KL expansion, gives adequate 

results when compared with the outputs obtained from the numerical 

simulator. This can be used to run as many realizations as required in a 

relatively very small amount of time and with very low computational effort. 

 The proposed PCE proxy model demonstrates better performance in 

comparison to the ANN and RBF-based proxy models when limited training 

data is used. The PCE framework is easy to implement even in highly 

heterogeneous and large reservoir models. The PCE model developed with the 

help of very few simulation runs is efficient enough to represent the full 

dynamics and trend of simulation results, thus eliminating the need for time-

consuming simulation runs. 

 In our case, increasing the number of terms in PCE improves the prediction 

performance, but not significantly. To develop a proxy model with the 

minimum computational requirement, PCE with fewer terms is recommended 

over PCE with more terms. In this case, the latter will unnecessarily increase 

computational time in terms of more simulation runs. 
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 ANN-based models can show improved performance if more training data is 

used. 

 Data-driven proxy model based EnKF provides adequate results when 

compared with the outputs obtained from the commercial simulator. 

Developed model can be used to run as many realizations as required in a 

relatively very small amount of time and with very low computational effort. 

 The proposed framework is easy to implement in large-scale complex 

reservoirs. Models developed with the help of very few simulation runs are 

efficient enough to imitate the full dynamics and trend of simulation results, 

thus eliminating the need for time-consuming simulation runs. 

 Data-driven proxy models can easily be incorporated in EnKF framework as 

forecast model and can reduce the time required for assisted history matching, 

up to 90% for the case presented, while maintaining the accuracy of results. 

 

6.2 Recommendations for Future Work 

For use of proxy models during assisted history matching process, the following 

future research is recommended:  

 

 In the proposed approach, permeability is used as input parameter for proxy 

development as well as in state vector during EnKF procedure for assisted 

history matching. Other parameters that can affect the desired output 

parameters can be included for proxy model development as well as in state 

vector of EnKF. For example, parameters like relative permeability, capillary 

pressure, temperature, well-logging data, and well-testing measurements.   
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 KL expansion method has been used to parameterize the Gaussian 

permeability field in this work for SAGD reservoir. However, different types 

of transformation techniques such as discrete cosine transform, optimization 

based PCA can be applied to characterize non-Gaussian reservoir models such 

as 2 facies model, channelized models.  

 Application of proxy models with other history matching algorithms can also 

be investigated. 
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