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Abstract

Missing data is common in health and medical experiments including con-

trolled clinical trials. Using only the complete cases for analysis may cause

biased inferences or even controversial results. Assuming that the data are

missing at random (MAR), various methods have been developed to handle

missing data. Among them, GEE, non-linear mixed effects and multiple im-

putation (MI-GEE and MI-NLME) methods based on GEEs and NLMEs are

considered the most efficient methods. However, these guidelines are too lim-

ited to apply generally. We evaluated their performance on various missing

data mechanisms with repeated measurement binary data using a simulation

study. We considered two different levels of correlation (ρ=0.3, 0.7) with three

cases of repeated measures (T=2, 4, 6) with sample sizes of 40, 80, 200 under

different missing data mechanisms, MCAR (Missing Completely at Random),

MAR (Missing At Random) and MNAR (Missing Not At Random). Based

on obtained empirical size control, power level and bias of each method, we

conclude that the NLME based multiple imputation (MI-NLME) method per-

forms the best.
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Chapter 1

Introduction

One can classify variables into two categories: continuous or discrete. Contin-

uous data such as height, weight, etc. can take any value in a defined range.

On the other hand, discrete data can only take countable values or categories.

Due to this difference, different methods should be applied to each data type

for analysis. For example, the simple linear regression can be applied to con-

tinuous data, while logistic regression can be an appropriate model for binary

discrete data [1].

Repeated measures data refers to data that contains repeatedly observed

values for subjects and in different conditions of a certain experiment. These

observed values are random samples from the population. One of the most

prominent types of repeated measures data is longitudinal data. Repeated

measures data are often called longitudinal data whenever observed values are
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ordered by time or a position in space. As a result, these observations cannot

be randomly assigned to each time, and results in a correlation within ob-

served values of each subject in the dataset. In other words, the independence

assumption in some of the models cannot be satisfied, and therefore these

methods will not be applicable to this kind of dataset. There has been some

methods that take care of this data type. Among them, we will discuss Non-

linear Mixed Effects (NLME) models and Generalized Estimating Equations

(GEE) [2].

In clinical trial studies, subjects go through various phases from the begin-

ning to the end of study [3]:

(i) Enrollment in the study in which subjects will be informed about the study

procedure and all the other required information such as possible side effects.

The eligibility of the subject for this study will be confirmed via a screening

test.

(ii) Treatment will be applied to the subjects taking into account various safety

and efficacy considerations.

(iii) Follow up phase: in this period the treated subject will be observed and

measured over time.

Any of the following errors may occur to each subject in the study in each

phase [3]

(i) Noncompliance to eligibility criteria.

(ii) Noncompliance to treatment.

(iii) Noncompliance to follow up phase.
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Noncompliance to eligibility criteria can affect the generalizability of a

study. Most investigators resolve this issue by removing subjects who do not

qualify for this criteria from the study. Noncompliance to treatments can

also alter the study by increasing variability between responses of subjects.

This problem may be resolved by conducting intention-to-treat (ITT) analy-

sis. Noncompliance to follow up phase usually refers to situations where the

subject withdraws from the study. In such cases, data must be carefully han-

dled using a missing data analysis technique to avoid unwanted bias to the

study.

Some of the most popular methods for handling missing data can be clas-

sified in the following categories:

1- Case deletion

2- Single imputation

3- Multiple imputation

4- Maximum likelihoood based approaches

5- Quasi likelihood approaches

Currently, the first two methods are mostly being used in empirical studies.

However, it has been documented that these two perform poorly in practice.

Some of these weaknesses are discussed in this thesis.

The other three methods have been proved to be more efficient [4]. Among

these, Non-linear Mixed Effect (NLME) Models and Generalized Estimating

Equations(GEE) are discussed in this thesis. These methods can be combined

with the multiple imputation method such that after imputation, one can ap-

ply these models on each imputed dataset and then combine all the results in
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order to obtain a more comprehensive result from the data.

Our goal is to make a thorough investigation into all these methods in

terms of empirical size, power and bias when applied to binary data.
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Chapter 2

Literature Review

2.1 Mising Data Mechanisms

Donald B. Rubin defined three different mechanisms for missing data in his

book [5], Missing Completely At Random (MCAR), Missing At Random (MAR)

and Missing Not At Random (MNAR). In the following, these different mech-

anisms have been explained.
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2.1.1 Missing Completely At Random (MCAR)

Data are missing completely at random when the probability of missingness on

a variable Y is not related to any other variables and to the observed values of

the Y variable. Because of this property one can assume that observed values

are from a simple random sample extracted from the data set we would have

analyzed if all the values were observed. For instance, when an experimentor

drops a laboratory sample, the corresponding information of the sample are

missed completely at random. Under this mechanism for missingness, almost

all the methods of handling missing data work perfectly. However, this sit-

uation rarely happens or at least the chance of missingness under two other

mechanisms (MAR and MNAR) is higher than MCAR [5].

2.1.2 Missing At Random (MAR)

A missing at random mechanism can be detected when the probability of

missingness of variable Y is related to other variables (covariates) but it is

not related to the observed values in the same variable (Y). In other words,

Missing at random mechanism implies that there is a systematic relationship

between the chance of missingness and other variables. Maximum likelihood

based methods and also multiple imputation method assume an MAR mecha-

nism [6]. For instance, when asking volunteers to attend a study and show up

in a lab to do the experiment for seven days in a row early in the morning, the

chance of dropout from the study is higher for people who live further from

the lab rather than those people who live close by the lab.
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2.1.3 Missing Not At Random (MNAR)

Data are assumed to be missed not at random, when the probability of miss-

ingness is related to other variables and also observed values in the variable

with missed data. Any data mechanism that does not fit in missing completely

at random and missing at random categories, is assumed to be missing not at

random [5]. This mechanism is the most common in studies there are a few

methods that work well under this assumption when the rate of missingness

is not very severe. An example of missing not at random is when a group of

people are asked to fill in an electronic form related to the information of their

income by a tax related organization. In such a case, the probability that an

older person fills in the form is less than the probability for a younger individ-

ual as older people are not as comfortable as younger people are with using

computers. Also, people with higher income rates have less tendency to report

their tax information as the organization which is asking for this information

is a tax related organization.

There is another categorization method for different missing data mech-

anisms in which the first two mechanisms (MCAR and MAR) are called ig-

norable missing mechanism and the last one (MNAR) is called non-ignorable

missing mechanism [5].
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2.2 Traditional Methods

There are many conventional methods that are still being used as they are

easy to use. Most of these methods come with serious disadvantages. The

following methods are the most popular ones among them:

2.2.1 Case Deletion

This method is the most basic method that is used when there is missing data.

It can be categorized into two groups: listwise deletion and pairwise deletion.

In listwise deletion method, all the cases with any missing value will be dis-

carded from all the calculations. As a result, analysis will be done on the

complete cases only. In the pairwise deletion method, cases with a missing

value in the variable or variables of interest will be discarded only. In other

words, if there is a missing value in a specific variable corresponding to a case

and we are not interested in that specific variable but other variables, that

case still remains in the study. As all the cases are complete cases, there is no

limit for using any standard statistical method to analyze the data. Sometimes

deleting some complete subjects will be recommended in order to balance the

sample size across treatment groups. This method can be useful when the

proportion of missing cases is small and they are not overly influential. Not

surprisingly, this method comes with several disadvantages. It can be inef-

ficient when a very high proportion of cases are missing. Also, this method

assumes the missing completely at random (MCAR) mechanism for missing-

ness. In practice this assumption is usually violated, so in many cases deletion
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method distorts the results [7].

2.2.2 Single Imputation

The single imputation approach is a method in which all missing values are

replaced by any reasonable value such as the mean, median or even zero de-

pending on the nature of data. Among several single imputation methods,

mean imputation, regression imputation and Last Obseravation Carried For-

ward (LOCF) are the most popular methods.

The mean imputation method replaces all the missing values in a vari-

able by its mean. One advantage is that after the imputation, the mean of

the variable does not change. However, this method can become problem-

atic in multivariate cases. Consider a highly correlated multivariate dataset

with some missing values. After mean imputation, the correlation between the

variables become smaller. In other words, mean imputation may distort the

results when estimating the correlation matrix [6].

In the regression imputation method, the missing cases of a variable are

being predicted using at least another variable as the predictor on a regression

line. Although using some extra information on the other variables in order

to estimate missing cases of a specific variable is a very good idea, the method

comes with some disadvantages. For example, consider a bivariate scenario

with missing cases in only one variable. Assume the variable with missing
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data is the response and the variable with complete cases is the predictor.

After estimating the regression line, the missed cases can be predicted using

the corresponding values in the predictor. These predicted values would all

fall on a straight line. This implies a perfect correlation. As a result, the re-

gression imputation method can lead to over estimation of correlation between

variables [7].

The last Observation Carried Forward (LOCF) method, can be categorized

as a single imputation method as well. This method involves replacing miss-

ing cases with the last observed value. In data sets with dropouts, the last

observed value will be repeated for the rest of dataset. For instance, if there

is a study with seven repeated measures and a subject drops out of the study

after the third repeated measure, the last four missed measures will be filled

in by the third observation of the same subject. This method may change the

distribution and relationship between the variables. For example, consider a

set of variables with large variations among subjects and also the presence of

missing cases. In this situation, replacing the last observed values for missing

cases would result in under estimation of the variations of different variables

and is inappropriate. Therefore, LOCF can give false results in cases where

there are high variations among the subjects of a study [8].
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2.3 Generalized Linear Model (GLM)

Components of GLM: Generalized linear models (GLM) are basically an ad-

vanced format of ordinary regression models. These models were first intro-

duced by John Nelder and Robert Wedderburn [9]. Generalized linear models

can be decomposed into three parts: the random component, the systematic

component and the link function. To illustrate these three components, we

use the model proposed by Agresti [10]. The random component is basically

the response variable and its corresponding distribution. In generalized linear

models, it is assumed that responses are independent. These independent re-

sponses are assumed to have a distribution from the exponential family. This

part can be formulated as:

Y = (Y1, Y2, ..., Yn)′ (2.1)

The systematic component or the linear predictor incorporates the information

of the response variable to the model. It also can be considered as a linear

combination of covariates and can be written as:

ηi =
∑
j

βjxij = X ′iβ, i = 1, 2, ..., n (2.2)

in which xij refers to the jth covariate on the ith subject.

The link function is a function that relates the random component to the
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systematic component. Suppose that µis are the means corresponding to the

responses (Yi) and h(.) is an one-to-one and invertible function. One can

write:

µi = h(ηi) = h(X ′iβ) (2.3)

Then simply, one can write:

ηi = X ′iβ = g(µi) (2.4)

g(.) = h−1(.) is the link function. There are two different types of link function,

the identical link and canonical link. If the link fuction is defined as g(µi) = µi,

then g(.) is an identical link function. If the function g(.) is such that it

transforms µis to the natural parameter in the exponential family, then it is

called the canonical link. Recall the natural parameterQ(θi) in the exponential

family:

f(yi; θi) = a(θi)b(yi)exp[yiQ(θi)] (2.5)

Then g(µi) = Q(µi) = X ′iβ is a canonical link function.

2.4 Non-linear Mixed Effects (NLME) Model

Non-linear mixed effect models are fully parametric models. This model con-

sists of two parts: the fixed effect and the random effect. It models the within
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subject covariance structure more explicitly. This model is already an accept-

able and practical method for analyzing longitudinal data. This model is an

extension of linear mixed-effect (LME) models which recognizes and takes into

account the variability of within and between responses. In many situations,

LMEs are no longer useful as the relationship between responses and covariates

cannot be explained in a linear relationship. NLME can be a good solution

to these cases [9]. Lindstrom and Bates [2] proposed a non-linear mixed effect

model for repeated measures data and defined estimators of NLME’s param-

eters.

Let Yij be the jth response for the ith individual in the study, then one can

write the model as:

Yij = f(φi, xij) + eij (2.6)

Where xij is the corresponding vector of independent variable for the jth re-

sponse of ith individual. f(.) is any non-linear function. The random error part

(eij) is normal, eij ∼ N(0, σ). Responses of different individuals are assumed

to be independent which implies Cov(eij,ei′j)=0 if i 6= i′. φi is a r × 1 vector

with the form of:

φi = Aiβ +Bibi, bi ∼ N(0, σ2
bD) (2.7)

Where Ai is a r × p design matrix for the fixed part and Bi is a r × q design

matrix of the random part. β is the mutual vector of parameters of all the

subjects in the study, β = (β1, β2, ..., βp)
T . bi is the vector of random effects

13



which changes from subject to subject, bi = (bi1, bi2, ...biq)
T . Also, σ2

bD is the

covariance matrix of bis.

2.5 Generealized Estimating Equations (GEE)

Models

2.5.1 Quasi Likelihood

Generalized estimating equations are based on quasi likelihood estimation

which is an alternative approach of estimation to maximum likelihood. The

only difference between quasi likelihood and maximum likelihood is that the

maximum likelihood approach assumes a specific distribution of responses, but

quasi likelihood approach only assumes a relationship between the mean and

the variance of responses:

V ar(Yi) = ν(µi) (2.8)

Thus ν(.) is a variance function defined in terms of means. Similar to the

maximum likelihood score function, a quasi likelihood score function can be

defined. The only difference of quasi likelihood score function from the maxi-

mum likelihood score function is that it uses ν(µi) [10].
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2.5.2 Generalized Estimating Equations (GEE)

This model has been proposed by Liang and Zeger [11] as an extension of

generalized linear models. Similar to NLME, this model also has the ability

to account for the correlation within subjects. As metioned in the previous

section, estimations are based on quasi likelihood.

Let Yi = (yi1, yi2, .., yini
)T be a vector of different measurements on subject

i with a mean vector µi = (µi1, µi2, .., µini
)T and Vi as the corresponding co-

variance matrix. Assuming that the ni×p matrix of Xi = (xi1, xi2, .., xini
)T are

the corresponding covariates of subject i, one can write g(µi) = XT
i β which is

exactly the GLM format. The quasi likelihood score function in this case will

be:

S(β) =
N∑
i=1

DT
i V
−1
i (Yi − µi(β)) (2.9)

where

DT
i =

∂µTi
∂β

=


xi11

g(µi1)T
· · · xini1

g(µini
)T

...
. . .

...

xi1p
g(µi1)T

· · · xinip

g(µini
)T

 (2.10)
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the formula for Vi is given by

Vi = φA
1
2
i W

−1
2

i R(α)W
−1
2

i A
1
2
i (2.11)

where Ai is a ni × ni diagonal matrix. The jth diagonal component of Ai is

ν(µij). Also, Wi is the ni × ni potential diagonal weight matrix. Then the

n× n symmetric matrix of R(α) is called the correlation matrix which has to

be specified based on properties of responses [12]. There are different defined

structures for the correlation matrix such as independet, exchangeable, un-

structured and autoregressive. Based on the nature of the study one of these

correlation matrices should be chosen. An independent correlation matrix as-

sumes independency between different measurements within a subject. This

correlation matrix would not be a proper choice in repeated measures studies.

An exchangeable correlation matrix assumes a constant value for the correla-

tion among all different measurements within a subject. A better choice for a

correlation matrix is to allow the correlation value to change between different

measurements within a subject. However, using such a correlation matrix will

acquire more parameter estimations and when the number of repeated mea-

surements is large, it may not be an appropriate correlation matrix to use.

Nevertheless, when the measurements are not highly correlated, using any of

these correlation structures would result in similar estimates [10].
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2.6 Multiple Imputation

The main idea in multiple imputation is to replace missing values with M > 1

plausible values. As a result, the uncertainty of the imputed values would

be represented better. Estimates from different datasets will be combined af-

ter using Rubin’s rule which will be introduced in this section. In fact, the

multiple imputation procedure can be summarized into these three following

phases:

1- Replacing missing values in the dataset M times in order to obtain M

datasets.

2- Analyzing each dataset separately using standard methods.

3- Combining results from different datasets all together using Rubin’s rule.

In order to explain multiple imputation procedure, a short review of the EM

algorithm is necessary as the parameters are estimated using the EM algo-

rithm in a multiple imptation study.

2.6.1 EM algorithm

There are several ways to obtain estimators of maximum likelihood. One of

the most well known methods is called the Expectation-Maximization algo-

rithm (EM). The main idea of this method is: if we had the real values for

missing subjects, then estimation of the parameters would be clear. On the

other hand, if we had the values for parameters of the model, then obtaining

an unbiased prediction for the missing subjects would be possible [13].
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There are two steps in the EM algorithm. The first step is the Expectation

step (E step) in which the conditional expectation of data log likelihood given

the observed data and parameter estimates is calculated. The second step is

called the maximization step (M step) in which the parameter are estimated

such that it maximizes the expectation of the log likelihood obtained in the E

step. This procedure will be repeated several times until the system stabilizes.

Suppose there are G specific groups with different missing patterns on mul-

tivariate normal data. Then the format of the log likelihood for the observed

data has the following form:

logL(θ|Yobs) =
G∑
g=1

logLg(θ|Yobs) (2.12)

where logLg(θ|Yobs) corresponds to gth group and can be decomposed into:

logLg(θ|Yobs) = −ng
2
log|

∑
g
| − 1

2

∑
ig

(yig − µg)′
∑−1

g
(yig − µg) (2.13)

where ng is the total number of observations in the gth group, and µg and
∑

g

are the corresponding mean vector and covariance matrix of the gth group.

The results from the EM algorithm are the parameters of the multivariate

normal distribution in the multiple imputation method.
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2.6.2 MCMC multiple imputation

As mentioned in the previous section, there are three phases for conducting a

multiple imputation analysis. In the first phase, missing values are replaced

by random values generated from a multivariate normal distribution with pa-

rameters obtained by the EM algorithm using an MCMC procedure. This

procedure repeats for M > 1 times. Due to the fact that it is a random num-

ber generation procedure, these datasets and their corresponding estimates

will be slightly different from each other. M does not need to be a very large

number as three to five imputations are considered sufficient [5].

In the second phase, a statistical analysis method is conducted on each

dataset separately. These statistical analyses could be multiple regression, gen-

eralized estimating equations (GEE), Non linear mixed effect (NLME) models

or any other statistical procedure. In this thesis, GEE and NLME are chosen

as appropriate analysis methods because of many of the data properties.

Results obtained from each dataset will be combined in the third phase in

order to reach the final estimation of the parameter of interest and its corre-

sponding variance using Rubin’s rule.

Let θ̂l be the parameter of interest obtained from the lth, l = 1, ...,M ,

dataset and let Wl be the corresponding variance. Then we can write the

combined estimate of the parameter of interest θM as the following:

θM =
M∑
l=1

θ̂M
M

(2.14)
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The variability associated with the estimator of the parameter of interest can

be decomposed into two parts. First, the average within imputation variance:

WM =
M∑
i=1

Ŵl

M
(2.15)

Second, the between imputation variance:

BM =

∑
(θ̂l − θM)2

M − 1
(2.16)

We can then write the total variability associated with the estimator of the

parameter of interest as [5]:

TM = WM +
M + 1

M
BM (2.17)

Typically, we can perform inference on θ using a normal distribution with

estimated mean θM and variance TM .

20



2.7 Other Alternatives

2.7.1 Weighted Generalized Estimating Equations (WGEE)

WGEE works similarly to GEE except that a weight wi is defined as the in-

verse missingness probability of subject i. A random variable rij is defined as

an indicator if the response is observed. Then the logistic resgression model

will be defined as:

logitP (rij=1|Xi
) = ψ0 + ψ1Yi,j−1 + ψ2Xi (2.18)

Where Yi,j−1 are the previous observed responses of the same subject and xi

is the covariate of the subject. Then Wi can be modeled as:

w−1i = (
m−1∏
j=2

λij)(1− λim) (2.19)

Where m is the time of dropout and λij = P (rij = 1|ri(j−1)=1, Xi, Yi,j−1). Then

using the following equation called the weighted GEE equation, β can be es-

timated from [10]:

∑
i

wi[
∂µi
∂β

]′[Vi(α)]−1(Yi − µi) = 0. (2.20)
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2.7.2 Penalized Quasi likelihood (PQL)

Penalized Quasi Likelihood (PQL) is developed as another estimation method

of GLMs. This method works based on a first order Taylor series approxi-

mation. This method is also called pseudo-likelihood and joint maximisation.

Recently, this model became popular among statisticians as implementing it

is very simple. It has been shown that it performs good in the estimation of

mean parameters. However, this technique does not work properly in some

certain GLM situations such as small group sizes of binary responses in terms

of bias in estimation. Particularly, this method seems to work poorly in the

estimation of standard errors of variances in the model [10].
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Chapter 3

Simulation Study

3.1 Data Generation

We simulate data using a clinical trial study, which evaluates efficacy of a

treatment in comparison to a control group of subjects for a respiratory disor-

der [14]. The sample size of the generated data is n = 40, 80, 200. Half of the

subjects are randomly assigned to the treatment group (treatment=1) and the

other half are randomly assigned to the placebo group (treatment=0).The yij

is the binary response variable indicating the respiratory condition (0=poor,

1=good) of the subject i at its corresponding jth measurement i = 1, 2, ..., n;

j = 1, 2, ..., T . In this simulation T = 2, 4, 6 have been considered repeated

measures. Each binary response (yij) is generated with probability πij =
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P (Yij = 1). Therefore the model can be written as:

logit(πij) = log(
πij

1− πij
) = β0 +β1×treatment, i = 1, 2, ..., n, j = 2, 4, 6 (3.1)

The probability of observing a subject with a good respiratory disorder condi-

tion is assumed to be equal to the probability of observing a subject with poor

respiratory disorder condition for the placebo group (πij = P (Yij = 1) = 0.5).

In the treatment group it is assumed that the probability of observing a

good respiratory disorder condition is more than the probability of observ-

ing a subject with a poor disorder respiratory condition. In other words,

for the treatment group (πij = P (Yij = 1) > 0.5). In this specific study,

we will consider πij= 0.6, 0.70, 0.80 for the treatment group. It is easy to see

β0 = log(
πij

1−πij ) = 0 (treatment=0, πij = 0.5). As a result, β1 = 0.41, 0.85, 1.39

(treatment=1, πij = 0.60, 0.70, 0.80).

For generating correlated binary data, the command ”rmvbin” in the R pack-

age ”bindata” has been used. This command gives the option to choose a

correlation structure. In this simulation study, we used an exchangeable cor-

relation matrix with two different correlation coefficients ρ = 0.3, 0.7 indicating

low and high correlation respectively. After generating data, some data points

have to be eliminated in order to generate missing data. 30 percent of the

responses are assumed to be missing. For the MCAR mechanism, the 30 per-

cent of responses have been omitted completely at random. In order to create

missing data for the MAR mechanism, a 20 percent of reponses with treat-

ment=1 and 10 percent of responses with treatment=0 have been omitted.

The MNAR mechanism, works very similarly to MAR mechanism except that
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among those 20 percent missing responses with treatment=1, we omit 70 per-

cent of reponses with value 1 representing a good respiratory status. Similarly

a 10 percent of responses with treatment=0 will be assumed missing.

3.2 Analysis of the Simulated Data

3.2.1 Software Package Introduction

All the analysis of simulatied data have been done using the R software version

3.0.2. The nlme, gee and Amelia packages were used to conduct the analy-

sis for the non-linear mixed effext models, generalized estimating equations

and multiple imputations respectively. In this section, we briefly illustrate the

analyses steps and commands.

3.2.2 Non-linear Mixed Effects Model

We consider the underlying model which has been discussed in the previous

sections:

logit(πij) = log(
πij

1− πij
) = β0 +β1×treatment, i = 1, 2, ..., n, j = 2, 4, 6 (3.2)
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The R command for conducting this would be:

> library(nlme)

> fit1 <- nlme(response ∼ exp(1+treatment)/1+exp(1+treatment),

random=∼ 1|id,data=data,

correlation = ”exchangeable”, method=’ML’)

Arguments in the nlme command start with defining the general format of the

model and then specifying the random part and also the format of the correla-

tion matrix. The maximum likelihood method was chosen for estimating the

parameters. The other option for estimation is REML [15].

3.2.3 Generalized Estimating Equations

The following is R code for the GEE model:

> library(gee)

> fit2 <- gee(response ∼ 1 + treatment,id = id, data = data,

family = binary, corstr = ”exchangeable”)

Similar to nlme, the first argument in the gee command is to introduce the

response and explanatory variables. The ”id” argument reprsents a cluster in

the dataset. The ”family” argument specifies the distribution of the response.

The ”corstr” argument specifies the structure of the correlation matrix [16].
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3.2.4 Multiple Imputation

The following R code was used to conduct multiple imputation:

> library(Amelia)

> imp < − amelia(X = data, m = 3, noms = ”response”, ts = visit)

The ”X” is the data set that we want to impute, ”m” is the argument indicating

number of imputations, the ”noms” argument specifies categorical variables

and the ”ts” identifies the variable related to the time change. This command

calculates the parameters and covariance matrices using the EM algorithm

and imputes the data [16].

3.3 Empirical size, power and bias comparison

Errors that occur in hypothesis testing can be divided into two different kinds:

Type I error or Type II error.

Type I error is the probability of rejection of the null hypothesis when the

null hypothesis is actually correct (P(Rejection of H0|H0 is correct)). Type II

error occurs when we fail to reject the null hypothesis, when the alternative

hypothesis is correct (P(Acceptance of H0|H1 is correct)). Type I error is con-

sidered a more serious kind of error that can happen in practice. Therefore,

Type I error will have priority in terms of minimization. This minimization

will be done by setting a critical region (C) such that:

α = maxPθ[(X1, X2, ..., Xn) ∈ C] (3.3)
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After setting the Type I error, we work to minimize the Type II error. This is

often accomplished by maximizing its complement, which is called the power

of the test (β = P(Acceptance of H1|H1 is correct)). Therefore, a reliable test

must maintain a low Type I error and a high power.

3.3.1 Claculation of size and power

In this simulation study, the empirical size and power of the different methods

have been measured. Based on the definition of the size of a test, the em-

pirical size will be calculated as the proportion of number of rejections over

the total number of tests in the simulation when the null hypothesis is correct

(πij = 0.5). Similarly, power will be calculated as the proportion of number

of rejections over the total number of tests during the simulation when null

hypothesis is incorrect (πij = 0.6, 0.7, 0.8).

When the sample size is large enough, the empirical size follows a normal dis-

tribution with mean α0 which is the estimate of the size of the test and variance

σ2 = α0(1−α0)
5000

. A 95% conidence intervel can be obtained using α0 ± 1.96σ.

As a result, intervals (0.007, 0.013), (0.044, 0.056) and (0.092, 0.108) are 95%

confidence intervals for α = 0.01, 0.05, 0.1 respectively. In the following tables,

the empirical size has been illustrated for each method with different missing

data mechanisms at different levels:
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Table 3.1: The Empirical Size in 5000 simulations under the significant level
of 0.01

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

rho T Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
0.3 2 GEE 0.0119 0.0107 0.0122 0.0112 0.0128 0.0113 0.0117 0.0106 0.0112

NLME 0.0124 0.0103 0.0098 0.0145 0.0125 0.0107 0.0124 0.0116 0.0104
MI-GEE 0.0121 0.0123 0.0104 0.0128 0.0122 0.0112 0.0145 0.0128 0.0115
MI-NLME 0.0105 0.013 0.0089 0.0135 0.0129 0.0114 0.013 0.0108 0.0112

4 GEE 0.0168 0.0102 0.0114 0.0182 0.0151 0.0126 0.0173 0.0135 0.0108
NLME 0.0108 0.0098 0.0087 0.0134 0.0116 0.0121 0.0152 0.0127 0.0126
MI-GEE 0.0115 0.0094 0.0108 0.0162 0.0166 0.0131 0.0171 0.0102 0.0094
MI-NLME 0.01 0.0082 0.0117 0.0148 0.0175 0.0125 0.019 0.0108 0.0111

6 GEE 0.0165 0.0119 0.0091 0.0143 0.0127 0.0089 0.0142 0.0128 0.0098
NLME 0.01 0.0118 0.0087 0.0159 0.0118 0.0099 0.0153 0.0152 0.0109
MI-GEE 0.0163 0.0109 0.0095 0.0146 0.0129 0.0096 0.0168 0.0121 0.0103
MI-NLME 0.0152 0.0117 0.0099 0.0153 0.0118 0.0094 0.0184 0.0131 0.011

0.7 2 GEE 0.0112 0.0103 0.0099 0.0124 0.0134 0.0127 0.0115 0.0117 0.0108
NLME 0.0258 0.0116 0.0104 0.0137 0.0137 0.0116 0.0124 0.0131 0.0134
MI-GEE 0.0108 0.0105 0.0092 0.0154 0.0143 0.0152 0.0116 0.0105 0.0111
MI-NLME 0.0119 0.0089 0.0094 0.0143 0.0132 0.0164 0.0123 0.0121 0.0118

4 GEE 0.0112 0.0096 0.0097 0.0114 0.0126 0.0109 0.0126 0.0122 0.0102
NLME 0.0094 0.0105 0.0082 0.0134 0.0122 0.0114 0.0121 0.0118 0.012
MI-GEE 0.0116 0.0104 0.0096 0.0148 0.0127 0.0106 0.0137 0.0141 0.0127
MI-NLME 0.0126 0.012 0.0083 0.0155 0.0111 0.0096 0.013 0.0149 0.0121

6 GEE 0.0127 0.0103 0.0089 0.0136 0.0119 0.0102 0.0128 0.0115 0.0106
NLME 0.0076 0.0091 0.0103 0.0167 0.0098 0.0101 0.0125 0.0097 0.0104
MI-GEE 0.0106 0.0097 0.0091 0.0122 0.0094 0.009 0.0109 0.0096 0.0097
MI-NLME 0.0124 0.0116 0.0098 0.0112 0.009 0.0087 0.0102 0.0108 0.0103

Number of rejections over 5000 simulations with Type I Error=0.01 and a 95%
confidence interval=(0.007, 0.013).
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Table 3.2: The Empirical Size in 5000 simulations under the significant level
of 0.05

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

rho T Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
0.3 2 GEE 0.0564 0.0557 0.0548 0.0587 0.0563 0.0532 0.0578 0.0585 0.057

NLME 0.0542 0.0536 0.0518 0.0571 0.0545 0.0524 0.0587 0.058 0.0571
MI-GEE 0.0561 0.0558 0.0546 0.0588 0.0559 0.0526 0.0587 0.0569 0.0564
MI-NLME 0.0577 0.055 0.0538 0.0598 0.057 0.051 0.0577 0.0556 0.0574

4 GEE 0.0551 0.0549 0.0521 0.0607 0.0601 0.0529 0.0601 0.0545 0.0512
NLME 0.0539 0.0522 0.0508 0.0626 0.0576 0.0521 0.0584 0.0588 0.0525
MI-GEE 0.0547 0.0544 0.0517 0.0594 0.0559 0.0524 0.0524 0.0508 0.0531
MI-NLME 0.0552 0.0551 0.0522 0.0575 0.0563 0.0522 0.054 0.0506 0.0546

6 GEE 0.0548 0.0548 0.0514 0.0589 0.0541 0.0514 0.0534 0.0516 0.0504
NLME 0.0533 0.0515 0.0503 0.0547 0.0516 0.0496 0.0541 0.0544 0.0507
MI-GEE 0.0545 0.0538 0.0518 0.0596 0.0512 0.0489 0.0537 0.0516 0.0481
MI-NLME 0.054 0.0544 0.0511 0.0585 0.0505 0.0474 0.0508 0.0491 0.0529

0.7 2 GEE 0.057 0.0551 0.0526 0.0581 0.0562 0.0531 0.0546 0.0551 0.0537
NLME 0.0564 0.0534 0.0515 0.0561 0.0537 0.0519 0.0571 0.0556 0.0516
MI-GEE 0.0566 0.0545 0.0519 0.056 0.0538 0.0524 0.0551 0.0542 0.0519
MI-NLME 0.0548 0.055 0.0518 0.0571 0.0538 0.0512 0.0544 0.0552 0.0524

4 GEE 0.0574 0.0552 0.0527 0.0524 0.0513 0.0507 0.0546 0.0528 0.0512
NLME 0.0566 0.0541 0.0518 0.0518 0.051 0.0501 0.0521 0.0526 0.0502
MI-GEE 0.0569 0.0548 0.0522 0.0532 0.0513 0.0504 0.0528 0.0543 0.0511
MI-NLME 0.0587 0.0548 0.0525 0.055 0.0497 0.0488 0.0526 0.0551 0.0505

6 GEE 0.0565 0.0551 0.0524 0.0572 0.0529 0.0488 0.0552 0.0531 0.0499
NLME 0.0524 0.0506 0.0498 0.0532 0.0517 0.0495 0.0537 0.0504 0.04986
MI-GEE 0.0556 0.0527 0.0513 0.0547 0.0511 0.0491 0.0516 0.0523 0.0496
MI-NLME 0.0537 0.053 0.0507 0.0564 0.051 0.0471 0.0512 0.0515 0.0492

Number of rejections over 5000 simulations with Type I Error=0.05 and a 95%
confidence interval=(0.044, 0.056).
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Table 3.3: The Empirical Size in 5000 simulations under the significant level
of 0.1

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

rho T Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
0.3 2 GEE 0.1096 0.1052 0.1016 0.1107 0.1066 0.1021 0.1091 0.1041 0.1016

NLME 0.1088 0.1035 0.1011 0.1091 0.1043 0.1051 0.1083 0.1067 0.1023
MI-GEE 0.1094 0.1055 0.1008 0.1103 0.1082 0.1027 0.1077 0.1064 0.1011
MI-NLME 0.1094 0.1054 0.1027 0.112 0.1094 0.1034 0.1077 0.1046 0.1019

4 GEE 0.1099 0.1053 0.1027 0.1116 0.1034 0.1048 0.1069 0.1021 0.107
NLME 0.1063 0.1021 0.0997 0.1095 0.1028 0.1006 0.1116 0.1083 0.1027
MI-GEE 0.1087 0.1036 0.1002 0.1081 0.1026 0.1034 0.1093 0.1024 0.1026
MI-NLME 0.108 0.1033 0.1014 0.1097 0.1045 0.1026 0.109 0.1027 0.1041

6 GEE 0.1075 0.1068 0.1011 0.1084 0.1044 0.0103 0.1095 0.1019 0.1004
NLME 0.1056 0.1016 0.0999 0.1097 0.1016 0.0989 0.1115 0.1031 0.0992
MI-GEE 0.1078 0.1044 0.0991 0.1064 0.0994 0.0992 0.1074 0.1017 0.0995
MI-NLME 0.1074 0.106 0.0989 0.1057 0.0981 0.0982 0.1058 0.1002 0.1008

0.7 2 GEE 0.1149 0.0994 0.1002 0.1125 0.1102 0.1053 0.1142 0.1054 0.1062
NLME 0.1153 0.1012 0.0958 0.1147 0.1048 0.1057 0.1151 0.1042 0.1051
MI-GEE 0.1132 0.1005 0.0981 0.1136 0.1072 0.1064 0.1084 0.1071 0.1064
MI-NLME 0.1144 0.0992 0.0969 0.1152 0.1067 0.1054 0.1065 0.1064 0.1082

4 GEE 0.1036 0.1008 0.0996 0.1094 0.1021 0.1036 0.1086 0.0997 0.1007
NLME 0.1023 0.0989 0.0984 0.1087 0.0995 0.1007 0.1055 0.1029 0.1004
MI-GEE 0.1026 0.0985 0.0985 0.1104 0.1042 0.1051 0.1071 0.1002 0.1027
MI-NLME 0.1031 0.0996 0.0976 0.1123 0.1038 0.1062 0.1056 0.102 0.104

6 GEE 0.1006 0.0984 0.0972 0.1073 0.1013 0.0982 0.1095 0.1015 0.0984
NLME 0.1041 0.0988 0.098 0.1084 0.1008 0.1012 0.1076 0.0982 0.0991
MI-GEE 0.0971 0.0973 0.0965 0.1079 0.0981 0.0997 0.1072 0.0995 0.1002
MI-NLME 0.0964 0.0983 0.0971 0.1084 0.0963 0.0993 0.1066 0.0999 0.0998

Number of rejections over 5000 simulations with Type I Error=0.1 and a 95%
confidence interval=(0.092, 0.0108).

As can be seen from the tables, most of the empirical sizes of the different

tests are very close to the levels 0.01, 0.05 and 0.1 in each table respectively.

This convergence to the level, holds true for all the missing data mechanisms

as well as different methods for each level. In general, in cases that sample size

is larger (n = 200), the empirical size deviates less from the level in comparison

with cases where the sample size is smaller. Also, the results do not change
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drastically by changing the correlation (ρ) from 0.3 to 0.7. It can be observed

that the NLME based methods are more conservative than the GEE based

methods which are more liberal. Also, the values from the GEE and MI-GEE

fall out of the confidence interval more than values for NLME and MINLME.

This has been shown in the tables. In the following tables, the power has

been illustrated for each method with different missing data mechanisms at

different levels:

32



Table 3.4: The Power in 5000 simulations under the level of 0.01 and ρ = 0.3

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE 0.0125 0.021 0.0637 0.0143 0.0204 0.0641 0.0192 0.0121 0.0353

NLME 0.0131 0.0292 0.068 0.0195 0.0273 0.0679 0.0102 0.0144 0.0346
MI-GEE 0.0147 0.0269 0.0614 0.016 0.0244 0.0666 0.0194 0.0155 0.0393
MI-NLME 0.0176 0.0287 0.0705 0.0179 0.028 0.0707 0.008 0.0175 0.0318

0.85 GEE 0.0543 0.1087 0.3927 0.0481 0.1254 0.3974 0.0164 0.065 0.3547
NLME 0.0304 0.121 0.3965 0.0534 0.1306 0.4078 0.0196 0.0983 0.3594
MI-GEE 0.0569 0.1476 0.4003 0.0425 0.1304 0.4057 0.0243 0.0813 0.386
MI-NLME 0.0366 0.1205 0.3987 0.058 0.135 0.4084 0.0202 0.095 0.3617

1.39 GEE 0.1026 0.3233 0.8259 0.1176 0.3204 0.8112 0.0597 0.2454 0.7611
NLME 0.0947 0.3676 0.8308 0.1025 0.3675 0.8138 0.0546 0.2784 0.7753
MI-GEE 0.0938 0.338 0.819 0.0951 0.3035 0.8133 0.0786 0.2748 0.7817
MI-NLME 0.0979 0.3719 0.8297 0.1082 0.3729 0.8112 0.0556 0.2766 0.7767

4 0.41 GEE 0.0172 0.0212 0.0532 0.0128 0.0203 0.053 0.0167 0.0127 0.0367
NLME 0.0227 0.0242 0.0541 0.0181 0.0284 0.0573 0.011 0.0128 0.0304
MI-GEE 0.0201 0.0236 0.0526 0.0135 0.0232 0.0545 0.014 0.015 0.0369
MI-NLME 0.0261 0.0234 0.053 0.02 0.0345 0.0591 0.0078 0.012 0.0304

0.85 GEE 0.0523 0.0858 0.2877 0.0525 0.0851 0.2848 0.0282 0.0695 0.2545
NLME 0.0523 0.0997 0.2996 0.0527 0.0994 0.2972 0.0165 0.7204 0.2674
MI-GEE 0.0529 0.0953 0.2877 0.0527 0.0856 0.2918 0.0363 0.062 0.2599
MI-NLME 0.0576 0.1006 0.3037 0.0555 0.0974 0.3015 0.018 0.7217 0.2704

1.39 GEE 0.1136 0.2663 0.68 0.1176 0.2605 0.6712 0.0672 0.2431 0.6527
NLME 0.1179 0.2713 0.6889 0.114 0.2609 0.6892 0.0997 0.2307 0.6621
MI-GEE 0.1159 0.2662 0.6868 0.1119 0.275 0.6805 0.0797 0.2492 0.6477
MI-NLME 0.1212 0.2721 0.6877 0.1149 0.2633 0.689 0.0974 0.2315 0.6629

6 0.41 GEE 0.0193 0.027 0.0533 0.0192 0.0277 0.0516 0.0112 0.0133 0.0345
NLME 0.0195 0.0305 0.0549 0.0199 0.0282 0.0517 0.017 0.0198 0.0325
MI-GEE 0.0199 0.0271 0.0545 0.019 0.0274 0.0511 0.0192 0.0121 0.0365
MI-NLME 0.0257 0.0287 0.0603 0.0255 0.0287 0.0514 0.0168 0.0166 0.0313

0.85 GEE 0.047 0.0868 0.2315 0.0496 0.0864 0.2329 0.0198 0.0777 0.2
NLME 0.0483 0.0897 0.2393 0.0472 0.0876 0.2377 0.0279 0.0726 0.2128
MI-GEE 0.052 0.0899 0.2321 0.0472 0.0874 0.2367 0.028 0.077 0.2168
MI-NLME 0.0506 0.0905 0.2438 0.0515 0.0939 0.2383 0.0293 0.0725 0.2102

1.39 GEE 0.091 0.2386 0.6151 0.105 0.2216 0.6126 0.0616 0.1997 0.5883
NLME 0.109 0.2398 0.6196 0.1069 0.2293 0.618 0.0705 0.199 0.5997
MI-GEE 0.0999 0.2333 0.6159 0.1008 0.2213 0.6135 0.081 0.2069 0.5864
MI-NLME 0.1136 0.2433 0.619 0.1076 0.2356 0.6225 0.0744 0.1989 0.5978
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Table 3.5: The Power in 5000 simulations under the level of 0.01 and ρ = 0.7

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE 0.0077 0.0341 0.0828 0.0074 0.0317 0.0955 0.0055 0.0147 0.069

NLME 0.0073 0.0384 0.0946 0.0076 0.0357 0.0963 0.0048 0.0118 0.0565
MI-GEE 0.0079 0.0348 0.0911 0.0072 0.0346 0.0958 0.0058 0.0181 0.0737
MI-NLME 0.0105 0.0362 0.0936 0.0079 0.0383 0.0986 0.0054 0.0136 0.0558

0.85 GEE 0.0131 0.1794 0.4803 0.0268 0.1279 0.4662 0.0127 0.1033 0.4152
NLME 0.0206 0.1887 0.4888 0.0277 0.1703 0.5206 0.0134 0.0857 0.4321
MI-GEE 0.0264 0.1671 0.4829 0.0233 0.143 0.4814 0.0175 0.1158 0.4341
MI-NLME 0.0245 0.1925 0.4932 0.0276 0.1702 0.5255 0.0153 0.0837 0.4355

1.39 GEE 0.1052 0.3451 0.8822 0.0949 0.3373 0.8854 0.0525 0.2067 0.8543
NLME 0.113 0.4208 0.9136 0.1003 0.3992 0.8909 0.0479 0.238 0.869
MI-GEE 0.1181 0.3913 0.8983 0.1403 0.3575 0.8832 0.0534 0.2699 0.8552
MI-NLME 0.1126 0.4201 0.9189 0.1021 0.4052 0.8907 0.0495 0.2349 0.8676

4 0.41 GEE 0.0157 0.0371 0.0771 0.0096 0.0297 0.0776 0.0076 0.0127 0.0552
NLME 0.0166 0.0395 0.0882 0.0112 0.0385 0.0878 0.0076 0.0188 0.0692
MI-GEE 0.0245 0.0396 0.0707 0.0112 0.0357 0.0861 0.0073 0.0137 0.0578
MI-NLME 0.0148 0.0429 0.0878 0.0136 0.0444 0.0866 0.0114 0.0165 0.0688

0.85 GEE 0.0606 0.1249 0.4358 0.0438 0.1143 0.4479 0.0254 0.0869 0.4034
NLME 0.0548 0.1494 0.4495 0.0603 0.1553 0.4747 0.0113 0.1009 0.4014
MI-GEE 0.0581 0.1429 0.4448 0.0595 0.1516 0.4781 0.0225 0.1011 0.4186
MI-NLME 0.0586 0.1472 0.4543 0.0652 0.1538 0.4799 0.0093 0.1021 0.4022

1.39 GEE 0.1053 0.3301 0.8721 0.1043 0.3632 0.8675 0.0604 0.26 0.836
NLME 0.1162 0.3794 0.8933 0.1683 0.4223 0.8912 0.0536 0.3133 0.8331
MI-GEE 0.1414 0.3564 0.8972 0.1633 0.4074 0.8628 0.0678 0.2919 0.8592
MI-NLME 0.1167 0.3769 0.8908 0.1694 0.4267 0.891 0.0522 0.314 0.8353

6 0.41 GEE 0.0192 0.0255 0.0817 0.0145 0.0307 0.0864 0.0063 0.0102 0.061
NLME 0.0213 0.0382 0.0881 0.0114 0.0347 0.0899 0.0088 0.0169 0.0534
MI-GEE 0.0202 0.0331 0.0849 0.0247 0.0384 0.0851 0.0074 0.0168 0.0649
MI-NLME 0.0223 0.0397 0.0851 0.0164 0.0325 0.0925 0.0104 0.015 0.0561

0.85 GEE 0.0671 0.1422 0.448 0.0409 0.1517 0.4505 0.0172 0.088 0.4103
NLME 0.0677 0.148 0.4338 0.0437 0.1587 0.4588 0.0238 0.0795 0.3931
MI-GEE 0.0309 0.1306 0.436 0.0539 0.1407 0.4546 0.0149 0.0793 0.4141
MI-NLME 0.0699 0.1454 0.4326 0.0429 0.1616 0.4572 0.0249 0.0755 0.3933

1.39 GEE 0.1226 0.3525 0.857 0.1671 0.3654 0.8526 0.0647 0.2845 0.8425
NLME 0.1503 0.4359 0.877 0.1675 0.3872 0.8673 0.0558 0.2895 0.8473
MI-GEE 0.1336 0.3933 0.8535 0.1651 0.3877 0.8698 0.0981 0.2546 0.851
MI-NLME 0.1554 0.4393 0.8821 0.1733 0.3862 0.8679 0.0539 0.2858 0.8487
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Table 3.6: The Power in 5000 simulations under the level of 0.05 and ρ = 0.3

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE 0.083 0.1137 0.2004 0.0836 0.1103 0.1986 0.0752 0.0961 0.1759

NLME 0.0832 0.1172 0.2082 0.0845 0.1296 0.2117 0.0867 0.1194 0.1748
MI-GEE 0.0832 0.1152 0.2016 0.0833 0.1124 0.1989 0.0733 0.1102 0.1828
MI-NLME 0.0877 0.1137 0.2089 0.0882 0.134 0.2171 0.0843 0.1184 0.1782

0.85 GEE 0.1834 0.3156 0.6157 0.1534 0.2981 0.6235 0.1378 0.0671 0.5872
NLME 0.1426 0.3148 0.6271 0.17 0.3089 0.6242 0.1327 0.0861 0.5854
MI-GEE 0.1829 0.3142 0.6164 0.1583 0.3051 0.6231 0.1364 0.0804 0.6064
MI-NLME 0.142 0.3162 0.6314 0.1732 0.3108 0.6229 0.1311 0.0887 0.5842

1.39 GEE 0.3358 0.6184 0.9413 0.295 0.5927 0.9475 0.2696 0.5642 0.9222
NLME 0.3415 0.6491 0.9737 0.3065 0.5997 0.9495 0.2661 0.5575 0.9339
MI-GEE 0.3367 0.6175 0.9561 0.2901 0.6093 0.949 0.2731 0.5593 0.9385
MI-NLME 0.3477 0.6524 0.9724 0.3048 0.603 0.951 0.269 0.556 0.9368

4 0.41 GEE 0.0833 0.1154 0.2013 0.0842 0.0894 0.1637 0.0526 0.0669 0.1544
NLME 0.0837 0.1182 0.2102 0.0818 0.0918 0.1682 0.0633 0.0793 0.1567
MI-GEE 0.0827 0.1159 0.2013 0.0819 0.092 0.1634 0.0627 0.0798 0.1587
MI-NLME 0.0841 0.1166 0.2087 0.085 0.0917 0.1681 0.0635 0.0832 0.1543

0.85 GEE 0.1556 0.2583 0.5137 0.1427 0.2438 0.5134 0.1345 0.2172 0.4985
NLME 0.1429 0.2597 0.5234 0.1463 0.2584 0.5148 0.1313 0.2216 0.4929
MI-GEE 0.1569 0.2593 0.5148 0.1466 0.2596 0.5173 0.1215 0.2205 0.4978
MI-NLME 0.1477 0.2571 0.522 0.1478 0.2578 0.5128 0.1288 0.2202 0.4948

1.39 GEE 0.2779 0.5064 0.8659 0.2765 0.4964 0.863 0.2323 0.4678 0.8304
NLME 0.2843 0.5147 0.8742 0.2766 0.498 0.8665 0.2361 0.4784 0.8352
MI-GEE 0.2829 0.5049 0.8715 0.2737 0.4921 0.8609 0.2357 0.4777 0.8396
MI-NLME 0.2818 0.5217 0.8743 0.2802 0.5038 0.8671 0.2397 0.4792 0.8315

6 0.41 GEE 0.0936 0.1163 0.2115 0.0746 0.0947 0.1502 0.0521 0.0757 0.136
NLME 0.0937 0.119 0.2142 0.075 0.0954 0.1591 0.0622 0.0741 0.1483
MI-GEE 0.0953 0.1162 0.2119 0.0752 0.0947 0.1515 0.0602 0.0777 0.1374
MI-NLME 0.0949 0.1237 0.218 0.0796 0.0937 0.1638 0.0584 0.0772 0.1455

0.85 GEE 0.1405 0.2272 0.452 0.1495 0.2439 0.5145 0.1258 0.2077 0.4457
NLME 0.142 0.2275 0.4589 0.1495 0.2554 0.52 0.1354 0.2077 0.4371
MI-GEE 0.1416 0.2223 0.4537 0.1465 0.2529 0.5117 0.1398 0.2196 0.4418
MI-NLME 0.1437 0.2245 0.4655 0.1466 0.2609 0.5187 0.1369 0.206 0.4362

1.39 GEE 0.2438 0.4481 0.8093 0.2745 0.492 0.8609 0.2262 0.4368 0.7959
NLME 0.2482 0.4498 0.8183 0.2716 0.4974 0.8654 0.2263 0.43 0.8015
MI-GEE 0.2408 0.4403 0.8134 0.278 0.4996 0.8628 0.2313 0.4389 0.8089
MI-NLME 0.2518 0.454 0.8194 0.2726 0.5034 0.8655 0.226 0.4276 0.8053
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Table 3.7: The Power in 5000 simulations under the level of 0.05 and ρ = 0.7

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE 0.0195 0.1434 0.2436 0.0234 0.1394 0.2371 0.0286 0.1249 0.2138

NLME 0.0262 0.1456 0.2583 0.0253 0.1573 0.2545 0.0241 0.1367 0.2073
MI-GEE 0.0202 0.1436 0.2441 0.0228 0.1425 0.238 0.0256 0.1385 0.2269
MI-NLME 0.027 0.1506 0.2577 0.0235 0.1591 0.2541 0.027 0.1327 0.2078

0.85 GEE 0.07892 0.3373 0.7045 0.0863 0.314 0.7266 0.0496 0.273 0.771
NLME 0.08172 0.3495 0.7159 0.0794 0.3498 0.7284 0.0482 0.2819 0.7271
MI-GEE 0.07263 0.3341 0.7183 0.073 0.3739 0.7111 0.0505 0.2784 0.7497
MI-NLME 0.082 0.3483 0.7205 0.0807 0.3496 0.7334 0.0482 0.2816 0.7303

1.39 GEE 0.3317 0.6632 0.9657 0.3024 0.643 0.9631 0.2075 0.5959 0.9436
NLME 0.3359 0.6646 0.9662 0.2681 0.6491 0.9647 0.2173 0.5715 0.9404
MI-GEE 0.3311 0.6802 0.9656 0.3716 0.6838 0.9628 0.2085 0.5961 0.9491
MI-NLME 0.3332 0.67 0.9669 0.268 0.6527 0.9711 0.2155 0.5728 0.9403

4 0.41 GEE 0.0456 0.1534 0.2436 0.0726 0.1198 0.2268 0.0503 0.0945 0.2049
NLME 0.0462 0.1556 0.257 0.0837 0.1252 0.2281 0.0474 0.0909 0.2019
MI-GEE 0.0455 0.1536 0.2444 0.0841 0.1244 0.2267 0.049 0.0958 0.2065
MI-NLME 0.0525 0.1573 0.2609 0.0813 0.1311 0.2263 0.0447 0.0934 0.2054

0.85 GEE 0.1801 0.3086 0.696 0.1649 0.3362 0.7047 0.127 0.25 0.6621
NLME 0.2197 0.3495 0.6956 0.1917 0.344 0.6941 0.1223 0.2581 0.6833
MI-GEE 0.2029 0.3012 0.6818 0.1603 0.3127 0.6957 0.1377 0.2652 0.6872
MI-NLME 0.2199 0.3539 0.6987 0.195 0.3471 0.6944 0.1185 0.2615 0.6838

1.39 GEE 0.3344 0.6332 0.9638 0.3413 0.6613 0.9639 0.2608 0.5836 0.9472
NLME 0.3069 0.6702 0.977 0.322 0.6386 0.9676 0.255 0.6043 0.9407
MI-GEE 0.3161 0.6677 0.9633 0.3215 0.6787 0.9654 0.2622 0.5823 0.9499
MI-NLME 0.3057 0.667 0.9822 0.3282 0.645 0.9728 0.2527 0.6038 0.941

6 0.41 GEE 0.0443 0.1136 0.2541 0.0766 0.1195 0.2206 0.044 0.0946 0.2008
NLME 0.0458 0.1538 0.2579 0.0752 0.1207 0.2299 0.0437 0.0919 0.2007
MI-GEE 0.0435 0.1447 0.255 0.0774 0.1041 0.2218 0.0465 0.0989 0.2178
MI-NLME 0.0469 0.1593 0.2624 0.0785 0.1219 0.2337 0.0471 0.0915 0.1992

0.85 GEE 0.1801 0.3012 0.6818 0.2093 0.3239 0.6839 0.1247 0.2661 0.6761
NLME 0.2197 0.3495 0.6956 0.1844 0.3377 0.6819 0.1406 0.2738 0.6502
MI-GEE 0.2029 0.3086 0.696 0.2177 0.3484 0.6853 0.1286 0.2718 0.6793
MI-NLME 0.2167 0.3544 0.7004 0.1868 0.3353 0.6839 0.1404 0.2755 0.6505

1.39 GEE 0.3161 0.6332 0.9633 0.3603 0.6327 0.9649 0.2671 0.571 0.9348
NLME 0.3069 0.6702 0.977 0.3819 0.6475 0.9657 0.2653 0.5965 0.9251
MI-GEE 0.3344 0.6677 0.9638 0.3719 0.6405 0.9632 0.2639 0.5863 0.9445
MI-NLME 0.312 0.6702 0.9749 0.3844 0.6479 0.9668 0.269 0.5935 0.922
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Table 3.8: The Power in 5000 simulations under the level of 0.1 and ρ = 0.3

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE 0.1457 0.17 0.3144 0.1331 0.1828 0.3128 0.1219 0.1532 0.3041

NLME 0.1332 0.1852 0.3152 0.1491 0.1816 0.3179 0.1217 0.1674 0.3038
MI-GEE 0.1474 0.174 0.315 0.1365 0.1718 0.3163 0.1285 0.1657 0.311
MI-NLME 0.1384 0.1847 0.3162 0.1529 0.1787 0.3196 0.1218 0.171 0.3057

0.85 GEE 0.2623 0.4241 0.7409 0.2522 0.4255 0.7405 0.214 0.4148 0.7141
NLME 0.2676 0.4275 0.7479 0.2432 0.4257 0.747 0.2127 0.4184 0.7175
MI-GEE 0.2595 0.4238 0.7419 0.2603 0.4301 0.7467 0.2146 0.413 0.7138
MI-NLME 0.2744 0.4267 0.7491 0.2427 0.4292 0.7515 0.2128 0.4192 0.7196

1.39 GEE 0.4599 0.7135 0.9605 0.4365 0.711 0.965 0.4138 0.6939 0.9435
NLME 0.4359 0.7178 0.967 0.4564 0.716 0.9669 0.4257 0.6919 0.9445
MI-GEE 0.4329 0.7145 0.965 0.4483 0.7148 0.9636 0.4118 0.7099 0.9478
MI-NLME 0.4418 0.7256 0.9691 0.4543 0.7162 0.9672 0.4291 0.6909 0.9438

4 0.41 GEE 0.1435 0.1541 0.2623 0.1318 0.1558 0.2626 0.1228 0.1477 0.254
NLME 0.1447 0.1581 0.2637 0.1399 0.1573 0.2674 0.1237 0.1408 0.2594
MI-GEE 0.1493 0.1544 0.2628 0.1349 0.1527 0.2642 0.1223 0.1485 0.255
MI-NLME 0.1507 0.156 0.261 0.1401 0.1629 0.2667 0.1236 0.1435 0.2613

0.85 GEE 0.2308 0.364 0.6335 0.2393 0.3633 0.6325 0.2171 0.3463 0.6183
NLME 0.2377 0.3694 0.6375 0.2312 0.3698 0.6366 0.2135 0.3422 0.6186
MI-GEE 0.2385 0.365 0.6371 0.2371 0.3622 0.6345 0.2175 0.3483 0.6185
MI-NLME 0.2421 0.3764 0.6388 0.2331 0.371 0.6379 0.2106 0.3427 0.6212

1.39 GEE 0.3863 0.6183 0.9248 0.3833 0.6127 0.92 0.3777 0.6986 0.927
NLME 0.3822 0.6186 0.9251 0.386 0.6171 0.9284 0.37 0.699 0.9479
MI-GEE 0.3803 0.6145 0.9251 0.386 0.6178 0.9264 0.3787 0.6994 0.9441
MI-NLME 0.38 0.6224 0.9263 0.3885 0.6215 0.9347 0.3673 0.6993 0.9491

6 0.41 GEE 0.139 0.151 0.2429 0.1304 0.1549 0.2442 0.1142 0.1459 0.2278
NLME 0.1334 0.1579 0.248 0.1353 0.1567 0.2498 0.118 0.1497 0.2266
MI-GEE 0.1386 0.1527 0.2442 0.1326 0.1547 0.2432 0.1129 0.1476 0.2281
MI-NLME 0.1382 0.1616 0.2529 0.1357 0.1582 0.2504 0.1205 0.1532 0.2259

0.85 GEE 0.2226 0.3266 0.5823 0.2242 0.3218 0.5822 0.2021 0.3088 0.5645
NLME 0.2297 0.3277 0.5868 0.228 0.3281 0.5879 0.2068 0.3042 0.5666
MI-GEE 0.2259 0.3255 0.5821 0.2292 0.3247 0.5863 0.2023 0.3091 0.564
MI-NLME 0.2325 0.33 0.5867 0.2279 0.3312 0.5914 0.2067 0.3032 0.5665

1.39 GEE 0.3583 0.574 0.8813 0.3556 0.5767 0.883 0.3339 0.5578 0.8679
NLME 0.3542 0.5775 0.8897 0.3568 0.5792 0.8868 0.3494 0.5513 0.898
MI-GEE 0.3676 0.5766 0.8819 0.3651 0.5731 0.8864 0.3327 0.588 0.8678
MI-NLME 0.3542 0.5776 0.8958 0.3629 0.5803 0.8851 0.3487 0.5515 0.8952
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Table 3.9: The Power in 5000 simulations under the level of 0.1 and ρ = 0.7

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE 0.0421 0.2219 0.3617 0.04225 0.1925 0.3695 0.0225 0.1744 0.3235

NLME 0.0427 0.2216 0.3733 0.04179 0.2038 0.3701 0.0266 0.1838 0.3083
MI-GEE 0.0418 0.2173 0.3651 0.04235 0.2154 0.3794 0.0208 0.1843 0.3073
MI-NLME 0.0464 0.2254 0.3712 0.0419 0.208 0.3731 0.0273 0.184 0.3088

0.85 GEE 0.1315 0.462 0.8226 0.1273 0.4496 0.8228 0.1034 0.4275 0.8065
NLME 0.1321 0.5104 0.8375 0.1275 0.472 0.8241 0.0925 0.4086 0.7911
MI-GEE 0.1166 0.4649 0.8335 0.1113 0.5016 0.8226 0.1075 0.4717 0.7973
MI-NLME 0.1299 0.5095 0.8385 0.1249 0.4722 0.823 0.0954 0.4065 0.794

1.39 GEE 0.4385 0.7531 0.9806 0.4344 0.7105 0.9877 0.3623 0.6 0.9557
NLME 0.412 0.7943 0.9848 0.4994 0.7792 0.9891 0.3772 0.6555 0.9757
MI-GEE 0.5004 0.7248 0.9843 0.5045 0.761 0.9856 0.3791 0.6043 0.9701
MI-NLME 0.4164 0.8013 0.9815 0.4987 0.782 0.9936 0.3766 0.6545 0.9794

4 0.41 GEE 0.12 0.1857 0.3472 0.1386 0.1838 0.3402 0.117 0.1648 0.31
NLME 0.1217 0.2057 0.3485 0.1291 0.1957 0.3419 0.1144 0.1578 0.3027
MI-GEE 0.1422 0.2001 0.3401 0.1336 0.2038 0.3404 0.1002 0.1707 0.3237
MI-NLME 0.1197 0.2109 0.3506 0.1297 0.1963 0.3395 0.1161 0.1615 0.3016

0.85 GEE 0.2657 0.4345 0.8035 0.2573 0.4641 0.8017 0.2235 0.4049 0.789
NLME 0.2913 0.4695 0.809 0.2785 0.4647 0.8074 0.2234 0.4103 0.7915
MI-GEE 0.2796 0.4467 0.8034 0.3061 0.4312 0.8055 0.229 0.4089 0.7957
MI-NLME 0.2933 0.4666 0.8082 0.2769 0.4636 0.8108 0.2267 0.4066 0.7916

1.39 GEE 0.4762 0.758 0.9836 0.4884 0.7493 0.9827 0.379 0.7151 0.9587
NLME 0.4572 0.7714 0.9847 0.4652 0.758 0.9876 0.3744 0.7122 0.9692
MI-GEE 0.4711 0.7629 0.9898 0.4574 0.7495 0.9867 0.3993 0.7259 0.9638
MI-NLME 0.4555 0.7726 0.9899 0.4687 0.7622 0.9917 0.3734 0.7118 0.9689

6 0.41 GEE 0.1291 0.1987 0.3434 0.1324 0.1986 0.3408 0.1027 0.1692 0.306
NLME 0.1313 0.2092 0.3476 0.1279 0.1999 0.3412 0.1067 0.1601 0.3
MI-GEE 0.1394 0.2038 0.3414 0.1491 0.1912 0.3414 0.1152 0.1513 0.3152
MI-NLME 0.1313 0.2147 0.3461 0.1327 0.2036 0.34 0.1074 0.1569 0.298

0.85 GEE 0.272 0.45 0.7924 0.2851 0.4507 0.7995 0.227 0.4115 0.7719
NLME 0.2421 0.4652 0.7985 0.2546 0.4745 0.7995 0.2148 0.4112 0.7743
MI-GEE 0.2569 0.456 0.7961 0.2544 0.4599 0.7914 0.2223 0.4238 0.7761
MI-NLME 0.2404 0.4706 0.7967 0.2556 0.4797 0.8044 0.2116 0.4098 0.775

1.39 GEE 0.4787 0.7513 0.9868 0.4902 0.755 0.9824 0.3869 0.7326 0.9538
NLME 0.4997 0.7541 0.9875 0.5015 0.7646 0.9828 0.3872 0.7282 0.9584
MI-GEE 0.4792 0.7529 0.9867 0.4784 0.759 0.9824 0.3902 0.7299 0.9673
MI-NLME 0.5053 0.7588 0.9861 0.4998 0.771 0.987 0.3838 0.7261 0.9544
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When the empirical size of each method does not deviate too much from

the nominal level, comparison of methods based on their power is advisable.

Otherwise, some adjustments would be needed. In our simulations, it can be

seen that the empirical sizes do not deviate from each other by a large amount.

In general, the NLME has a higher power than the GEE in most of the cases

under MAR and MCAR. It seems that the multiple imputation method helps

to increase the power of both the GEE and NLME methods. It can be seen

that by implementing multiple imputation, the NLME method still slightly

performs better in comparison with the GEE. As the sample size increases all

the tests become more powerful. Power increases as the value of β increases

too. Note that to make an inference, one should check the corresponding em-

pirical size as well. If the corresponding empirical size falls out of the bounds

of the 95% confidence interval, conclusions are not valid anymore. In cases

where the MNAR mechanism is used,we cannot say if any of the methods is

performing better than the rest. Of course, the effect of multiple imputation

in increasing the power is obvious.

3.3.2 Bias

The relative bias of each method was also measured. As making conclusions

only based on power may not be wise, a specific method can consistently give

a higher power in comparison with other methods, but its estimates may be

biased. Therefore, regardless of the power of a method, further investigation

is needed.
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In this simulation study, bias is calculated as the diference between the

average of estimated coefficients over the total number of simulations and the

true parameter estimates (β1 = 0.41, 0.85, 1.39) [3].

In the following tables, bias has been estimated for each method with dif-

ferent missing data mechanisms at different levels:
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Table 3.10: The Bias in 5000 simulations under the level of 0.01 and ρ = 0.3

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE -0.0059 -0.0319 0.0172 -0.0156 0.0286 0.0022 0.0354 -0.0317 -0.0101

NLME -0.0111 0.0168 0.0128 -0.0376 0.0316 -0.0114 0.0565 0.0046 -0.0141
MI-GEE -0.0246 -0.0269 -0.0024 0.017 0.026 -0.0067 0.0407 0.0003 -0.0021

MI-NLME 0.0431 -0.0169 -0.0032 0.0281 0.0183 -0.0072 -0.0449 0.0028 -0.0016
0.85 GEE 0.0168 -0.0294 0.0152 0.009 -0.0339 0.0134 0.0389 -0.029 -0.0198

NLME 0.0424 -0.0294 -0.0016 -0.0399 0.026 0.0182 -0.0126 -0.0272 -0.006
MI-GEE 0.0077 0.0066 -0.0042 0.0153 -0.0152 -0.0072 0.0192 -0.0031 -0.0093

MI-NLME -0.0296 0.0157 -0.0014 0.0398 0.0091 -0.004 -0.0289 0.0026 -0.0075
1.39 GEE 0.0217 0.028 -0.0064 0.0381 -0.0221 -0.0121 0.032 0.0355 -0.016

NLME 0.0527 0.0193 -0.0118 0.0471 0.0325 -0.0078 -0.0118 0.007 0.005
MI-GEE 0.0118 -0.0117 -0.0099 0.0125 0.0132 -0.0048 -0.0429 0.0203 -0.0011

MI-NLME 0.0117 -0.0288 -0.0034 -0.0383 -0.0165 -0.0004 -0.0092 -0.0263 -0.0064
4 0.41 GEE 0.0461 -0.0309 -0.0157 -0.0588 -0.0124 0.0031 -0.025 0.0375 -0.0182

NLME -0.0267 0.0315 -0.0033 -0.0207 -0.0111 -0.0065 -0.0307 -0.025 0.002
MI-GEE -0.0497 0.0089 -0.0086 0.0368 -0.0214 -0.0065 -0.0419 -0.022 -0.0069

MI-NLME -0.0173 -0.0293 -0.0087 0.0027 0.01 -0.0032 0.0406 0.0017 -0.0052
0.85 GEE -0.0363 -0.0148 -0.0157 0.0524 0.0328 0.0197 -0.0479 -0.0038 0.0152

NLME -0.0125 0.0085 0.0102 0.0314 0.0343 -0.0082 -0.0524 -0.0214 -0.0088
MI-GEE 0.0309 0.0047 -0.0079 0.0442 0.0171 -0.001 0.0281 0.027 -0.0067

MI-NLME 0.0418 0.0138 -0.0051 0.0388 0.0102 -0.0072 -0.0167 0.0109 -0.0003
1.39 GEE -0.0017 0.0164 0.0148 0.0046 0.0202 -0.0117 -0.0164 -0.0378 -0.0111

NLME 0.0482 0.0094 -0.0136 -0.0024 0.0156 -0.0155 -0.0182 -0.0387 -0.0165
MI-GEE 0.0041 -0.0267 -0.0042 0.0028 -0.0102 -0.0047 -0.036 0.0206 -0.0095

MI-NLME -0.0401 -0.0052 -0.0065 0.0387 -0.0195 -0.0093 0.0093 -0.0046 -0.01
6 0.41 GEE -0.0036 0.0335 0.0085 0.0299 -0.0327 -0.003 -0.029 0.0277 0.0184

NLME 0.0545 0.0149 0.0196 -0.0586 0.0169 0.0117 -0.0418 -0.032 -0.0019
MI-GEE -0.0427 -0.0174 -0.0005 -0.0326 -0.0295 -0.0032 -0.03 -0.0058 -0.0039

MI-NLME 0.0102 0.0004 -0.0072 -0.0195 -0.0015 -0.0061 0.0322 -0.0218 -0.0031
0.85 GEE -0.0425 -0.0121 0.0126 -0.0287 -0.0247 0.0182 -0.0203 -0.0134 0.02

NLME -0.0144 -0.0352 0.0073 0.0354 0.0147 0.0195 0.0446 0.0265 0.0069
MI-GEE 0.0305 -0.0085 -0.0083 0.0233 0.028 -0.01 -0.0231 -0.0083 -0.0029

MI-NLME 0.0057 0.0016 -0.0082 -0.0469 0.007 -0.0069 -0.0233 0.0233 -0.0056
1.39 GEE -0.0509 0.006 -0.0057 0.0402 0.0283 -0.01 -0.0312 0.0214 -0.0023

NLME 0.0402 0.0363 0.0101 0.0106 0.036 0.012 0.0249 -0.0104 0.0012
MI-GEE 0.0444 0.0131 -0.0066 -0.0373 -0.027 -0.0068 0.0134 -0.0275 -0.0066

MI-NLME -0.0137 -0.0176 -0.0041 -0.0319 0.01 -0.0003 0.0205 -0.0242 -0.0061
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Table 3.11: The Bias in 5000 simulations under the level of 0.01 and ρ = 0.7

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE -0.0488 -0.0028 -0.0146 -0.0089 -0.0214 0.006 -0.018 -0.0104 0.0194

NLME 0.0454 -0.0355 0.001 0.0504 0.0384 -0.0035 0.0038 -0.0324 0.0094
MI-GEE 0.0109 -0.0181 -0.0052 0.0174 0.0274 -0.0097 -0.0117 0.0175 -0.004

MI-NLME 0.044 -0.0154 -0.0082 0.042 0.0242 -0.0026 -0.0145 0.0251 -0.0083
0.85 GEE -0.0423 -0.0095 0.0005 -0.0193 0.0084 -0.0045 -0.0567 0.0304 -0.0114

NLME 0.0031 0.0307 -0.0181 0.0524 0.0242 0.0004 0.0054 -0.0244 -0.0149
MI-GEE 0.0404 0.0087 -0.0075 0.0192 0.0243 -0.0077 0.0092 0.003 -0.0002

MI-NLME 0.0376 0.0177 -0.0054 -0.0048 -0.0163 -0.0058 -0.0147 0.0218 -0.0077
1.39 GEE 0.0593 0.0334 0.0013 -0.0367 -0.0225 -0.002 -0.0085 0.0071 0.0186

NLME -0.0156 0.0341 -0.0186 0.0565 0.0214 0.0031 0.0044 -0.0003 -0.0137
MI-GEE 0.014 0.0097 -0.0099 0.043 -0.0298 -0.0087 0.0203 0.0098 -0.008

MI-NLME 0.0152 -0.0066 -0.0015 -0.0365 0.0143 -0.0099 -0.0484 0.024 -0.0069
4 0.41 GEE -0.0484 0.0335 0.0015 -0.0182 -0.03 -0.0145 -0.0075 0.0095 -0.0053

NLME 0.024 -0.0034 0.0147 -0.0069 0.0019 -0.0097 -0.0504 -0.0034 0.0118
MI-GEE 0.0167 -0.0142 -0.0053 -0.022 0.0266 -0.0013 -0.0105 -0.0206 -0.0006

MI-NLME 0.0405 0.0272 -0.0025 -0.0214 0.0025 -0.0062 0.0342 -0.0104 -0.0081
0.85 GEE -0.0291 0.007 -0.0091 0.0526 -0.0199 0.0113 0.0377 -1E-04 -0.0168

NLME -0.028 -0.0229 -0.0165 -0.0551 -0.0038 -0.0055 0.0358 0.0072 0.0123
MI-GEE -0.0121 -0.0134 -0.0015 0.0073 0.0029 -0.001 0.0497 -0.0113 -0.0073

MI-NLME -0.0088 -0.0205 -0.0032 0.0089 0.0206 -0.0034 0.0017 -0.0014 -0.0013
1.39 GEE 0.0327 -0.0127 0.009 -0.0442 0.0354 -0.0164 0.0255 -0.0189 0.0011

NLME -0.0525 0.0059 -0.0065 0.0229 0.0055 0.0129 0.0473 0.036 0.0049
MI-GEE -0.0336 0.0112 -0.006 0.0385 -0.0027 -0.0007 0.0364 0.0046 -0.009

MI-NLME -0.0384 0.025 -0.004 -0.0381 0.0038 -0.0067 0.0418 -0.0036 -0.0051
6 0.41 GEE 0.0332 0.0354 -0.0188 -0.0122 -0.0127 -0.0159 0.0492 -0.0319 -0.0015

NLME 0.0059 0.0319 -0.0127 -0.0137 -0.0065 0.0192 0.0305 0.0378 0.0169
MI-GEE -0.0016 -0.0013 -0.0032 -0.0018 -0.0132 -0.0035 0.0079 0.0027 -0.0033

MI-NLME 0.0477 -0.0253 -0.0025 -0.0394 -0.0002 -0.0047 0.0268 0.0135 -0.0043
0.85 GEE -0.0069 0.025 -0.0146 -0.0014 -0.0396 0.0026 -0.0482 -0.0387 -0.0176

NLME 0.0333 -0.0315 -0.0152 0.0362 0.0078 -0.0094 0.0115 0.0313 0.0158
MI-GEE -0.0323 -0.0159 -0.0045 -0.0204 0.0201 -0.0031 0.0336 0.0038 -0.0011

MI-NLME 0.0106 -0.0016 -0.0008 0.0493 0.0048 -0.0056 -0.0482 0.0068 -0.0022
1.39 GEE 0.0544 0.0395 0.0143 -0.0208 0.0215 -0.0035 -0.0069 -0.0199 -0.0075

NLME -0.0324 -0.0019 -0.0053 0.0556 -0.0343 -0.0023 -0.0585 0.0039 0.0017
MI-GEE -0.041 0.0127 -0.0081 -0.0459 0.026 -0.0057 -0.043 0.0132 -0.0043

MI-NLME 0.0206 0.0089 -0.008 0.0405 0.0106 -0.002 0.0073 0.0201 -0.0099
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Table 3.12: The Bias in 5000 simulations under the level of 0.05 and ρ = 0.3

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE 0.0002 0.0087 0.0145 0.0293 0.0243 -0.0091 -0.0071 -0.0318 0.0172

NLME 0.0205 -0.0222 0.011 -0.0289 -0.033 0.0182 0.0181 -0.0374 0.0168
MI-GEE -0.0224 -0.0089 -0.007 0.0305 -0.0243 -0.0074 0.0174 0.0169 -0.0075

MI-NLME -0.0478 -0.0188 -0.0002 -0.0128 0.0185 -0.0005 0.0343 0.029 -0.0077
0.85 GEE 0.0495 -0.04 -0.0115 0.0582 -0.0388 -0.0024 -0.013 -0.0272 0.0048

NLME 0.0299 0.0293 -0.0166 -0.0274 0.0186 0.0141 -0.0012 -0.0051 -0.0155
MI-GEE -0.0021 0.0178 -0.0063 -0.0415 0.0082 -0.0077 -0.049 0.0096 -0.0019

MI-NLME 0.0269 0.0038 -0.0019 0.0014 0.0064 -0.0038 -0.0062 0.0118 -0.005
1.39 GEE -0.0331 -0.0006 0.0099 0.0123 0.0162 0.0135 0.0581 -0.0272 0.0059

NLME 0.0173 0.0367 -0.0065 -0.0308 -0.0351 0.0002 0.0586 0.0333 0.0016
MI-GEE -0.0193 0.0049 -0.0097 -0.0466 -0.0289 -0.0031 -0.0339 -0.0284 -0.0018

MI-NLME -0.0444 0.0164 -0.0002 -0.0256 0.0277 -0.0069 -0.0246 -0.0277 -0.0029
4 0.41 GEE 0.0477 -0.0152 0.0162 0.0011 -0.0263 -0.0143 -0.045 -0.0261 -0.0047

NLME -0.0269 0.0099 -0.0052 -0.001 -0.0237 0.018 -0.0351 -0.0369 -0.0165
MI-GEE -0.017 -0.0058 -0.0051 0.0301 -0.0146 -0.0095 0.0167 -0.018 -0.0064

MI-NLME -0.0471 -0.0286 -0.0089 0.0331 -0.0057 -0.0061 0.0316 0.021 -0.006
0.85 GEE -0.0352 -0.0029 -0.0064 -0.01 -0.0157 0.0129 0.0244 -0.0071 -0.0181

NLME 0.0121 0.0072 0.0022 0.0086 0.0354 0.0104 -0.0367 -0.0021 0.0092
MI-GEE -0.037 0.0179 -0.0065 -0.0353 0.0117 -0.0048 -0.0176 0.0176 -0.0009

MI-NLME 0.0412 -0.0103 -0.0038 0.0341 -0.0252 -0.0058 0.0396 0.0243 -0.0026
1.39 GEE -0.0489 -0.0023 0.0097 -0.0422 -0.0376 -0.0126 -0.0205 -0.0123 -0.0073

NLME -0.005 -0.0334 0.0012 -0.0347 -0.0039 -0.0004 0.0221 0.0047 0.003
MI-GEE -0.0005 -0.0187 -1E-04 0.0148 0.0161 -0.0079 -0.0004 0.0067 -0.0084

MI-NLME 0.035 0.0206 -0.0085 0.0418 -0.0161 -0.0009 -0.0274 -0.0264 -0.0065
6 0.41 GEE -0.0162 -0.0158 0.004 -0.0558 0.0024 0.0197 0.0524 0.0201 0.0129

NLME -0.0509 -0.0082 -0.0099 -0.0299 -0.0012 0.0025 -0.0148 -0.0386 -0.0173
MI-GEE 0.0026 -0.0066 -1E-04 -0.0267 -0.0045 -0.0054 0.0473 0.0211 -0.0039

MI-NLME -0.0162 0.0076 -0.0072 0.0454 -0.0193 -0.0089 0.0088 0.0288 -0.0022
0.85 GEE -0.0332 0.0375 -0.0159 0.0087 -0.0051 -0.0092 -0.0317 0.0232 0.0015

NLME -0.0318 -0.0359 -0.013 0.0442 0.023 -0.0058 0.0302 0.014 -0.0061
MI-GEE -0.0082 -0.0068 -0.0053 -0.0019 0.03 -0.0038 -0.0201 0.0026 -0.0027

MI-NLME 0.0067 -0.0075 -0.0069 0.0188 0.0022 -0.0031 0.0126 0.0006 -0.0077
1.39 GEE 0.0372 -0.0319 0.0182 -0.058 -0.0046 0.0159 0.0088 0.0285 -0.0118

NLME 0.047 0.0064 -0.0159 -0.0315 0.0173 -0.0148 0.0105 0.0065 -0.0135
MI-GEE -0.002 0.0084 -0.0018 0.0149 -0.0182 -0.0076 0.0363 -0.0145 -0.0074

MI-NLME 0.0478 -0.0227 -0.0055 -0.0345 -0.012 -0.0019 -0.0175 -0.0115 -0.0003
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Table 3.13: The Bias in 5000 simulations under the level of 0.05 and ρ = 0.7

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE -0.0052 0.0209 -0.0198 0.0249 0.026 -0.0125 -0.0256 0.0038 -0.0137

NLME 0.0033 0.0128 0.0176 -0.0245 -0.0148 -0.0026 -0.0561 0.0034 -0.015
MI-GEE 0.0217 0.0065 -0.0022 0.0203 -0.0014 -0.0038 -0.0029 -0.0057 -0.0064

MI-NLME 0.0132 0.0078 -0.0068 0.0476 -0.0202 -0.0071 -0.0241 0.0161 -0.0064
0.85 GEE -0.0046 0.0205 0.0001 -0.0068 0.0018 0.002 0.0291 -0.0307 -0.0012

NLME 0.006 -0.0081 0.0121 -0.0083 -0.0373 0.019 0.0299 -0.0005 0.0106
MI-GEE 0.047 0.0118 -0.0026 -0.0261 0.0277 -0.0028 -0.0391 0.0034 -0.0009

MI-NLME -0.044 -0.0208 -0.0002 0.0444 0.0056 -0.0025 0.015 -0.0037 -0.0066
1.39 GEE 0.0515 -0.0279 -0.0008 -0.0125 0.0113 0.0147 0.0366 0.0294 0.0163

NLME 0.0533 -0.013 0.0008 0.0349 -0.0336 -0.0112 -0.007 0.0377 0.0087
MI-GEE 0.0477 -0.0174 -0.0047 0.0252 0.0214 -0.0087 -0.0225 0.0162 -0.0099

MI-NLME 0.0306 0.0227 -0.0048 -0.0467 -0.0122 -0.0086 -0.0204 -0.0098 -0.0063
4 0.41 GEE -0.0133 -0.0358 -0.0169 0.0453 -0.0072 0.0086 -0.0207 -0.012 -0.0052

NLME 0.0017 -0.0341 0.0132 -0.0274 -0.0382 -0.0112 0.0554 0.0212 0.0191
MI-GEE -0.0363 0.0231 -0.0087 -0.0315 0.0142 -0.0013 -0.0295 0.007 -0.0062

MI-NLME -0.0481 0.0196 -0.01 -0.0267 -0.0039 -0.0079 0.0031 -0.019 -0.0019
0.85 GEE 0.0477 -0.0224 -0.0151 -0.0292 0.0321 -0.0069 -0.0169 -0.0266 -0.011

NLME 0.0025 0.0321 0.0165 -0.0549 -0.0312 0.0098 -0.0234 -0.0217 0.0022
MI-GEE 0.0468 0.0151 -0.0032 0.0344 0.026 -0.0086 -0.0212 -0.0073 -0.0014

MI-NLME 0.0435 -0.026 -0.0043 -0.0063 0.0019 -0.0072 0.0242 0.0197 -0.0058
1.39 GEE 0.0423 0.0145 -0.0127 0.0033 -0.037 0.008 0.0594 -0.0174 0.004

NLME 0.0284 -0.0285 -0.0151 0.035 -0.0355 0.0155 -0.0344 0.0284 -0.0044
MI-GEE 0.0196 -0.0117 -0.0041 0.0298 -0.0165 -0.0022 -0.032 -0.0036 -0.0073

MI-NLME 0.0014 -0.0211 -0.0019 0.0313 -0.0162 -0.0029 -0.0492 0.0066 -0.0069
6 0.41 GEE -0.0328 0.0052 0.0161 0.0384 0.0275 -0.0119 -0.0586 0.0104 0.0157

NLME 0.0256 0.0192 0.0156 0.0221 0.0333 -0.0136 0.0062 0.0377 -0.017
MI-GEE 0.0191 -0.0203 -0.0097 0.0402 -0.0211 -0.0026 0.0184 -0.0109 -0.0075

MI-NLME 0.0172 0.0052 -0.0052 -0.0018 0.0139 -0.0084 -0.0314 -0.009 -0.0078
0.85 GEE 0.0461 0.0398 0.0114 -0.0591 0.02 -0.0099 0.0164 0.0182 0.0136

NLME 0.0558 0.0101 -0.0046 0.012 0.037 0.0012 0.0292 -0.022 0.0051
MI-GEE 0.005 0.0123 -0.001 0.0311 0.0227 -0.0026 0.0354 -0.0111 -0.003

MI-NLME 0.0414 -0.0184 -0.0003 -0.0145 -0.0065 -0.0062 0.0084 0.0299 -0.0013
1.39 GEE 0.0338 0.029 0.0077 0.0522 0.0155 -0.007 0.0208 -0.0006 0.0097

NLME 0.0116 -0.0067 0.0156 -0.0154 0.0194 0.0148 0.0174 0.0135 -0.0143
MI-GEE 0.0286 0.0178 -0.0056 -0.0252 -0.0183 -0.0065 0.0064 -0.0013 -0.0063

MI-NLME -0.0122 -0.0183 -0.0019 -0.0044 -0.0166 -0.0052 0.0313 0.017 -0.0094
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Table 3.14: The Bias in 5000 simulations under the level of 0.1 and ρ = 0.3

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE -0.015 -0.0149 -0.0165 -0.0369 -0.0248 0.0108 0.0303 0.0122 -0.009

NLME -0.04 0.0015 0.0141 0.0102 0.0352 0.0049 -0.0537 0.0004 0.0123
MI-GEE -0.0377 -0.0168 -0.0068 -0.0037 -0.0136 -0.0054 0.0287 0.0113 -0.0055

MI-NLME 0.0367 -0.0072 -0.0024 -0.0354 -0.0087 -0.0059 -0.0414 0.016 -0.0055
0.85 GEE 0.0589 0.0138 -0.0195 0.0167 -0.0293 -0.0103 0.0354 0.0032 -0.015

NLME 0.0327 -0.0343 -0.0161 -0.0438 0.0302 -0.0154 -0.017 -0.0104 -0.0183
MI-GEE 0.0009 -0.0039 -0.0051 -0.0027 -0.0262 -0.003 -0.027 -0.0092 -0.0056

MI-NLME -0.0004 -0.0234 -0.004 0.0032 -1E-04 -0.0088 0.0492 0.0046 -0.0072
1.39 GEE -0.024 0.0178 -0.0164 -0.0441 -0.0367 0.0046 0.039 0.0045 0.0143

NLME -0.0562 0.0386 -0.0094 0.005 0.0113 -0.0006 0.0035 0.0098 -0.0117
MI-GEE 0.0444 -0.0071 -0.0065 -0.0376 -0.023 -0.0003 -0.0487 -0.0186 -0.0005

MI-NLME 0.003 0.0208 -0.003 0.0256 0.0271 -0.0078 0.0422 0.0201 -0.0006
4 0.41 GEE 0.0332 0.0231 0.0112 0.0419 -0.008 0.0045 0.0271 -0.0164 0.0054

NLME -0.0566 0.0097 -0.0019 -0.0581 0.029 -0.0184 0.0206 -0.0122 0.0025
MI-GEE -0.0229 0.0181 -0.0077 -0.0464 0.014 -0.0074 0.0194 -0.0068 -0.0088

MI-NLME -0.0352 -0.0019 -0.0043 0.0299 -0.0281 -0.0002 0.0102 0.0207 -0.009
0.85 GEE -0.0363 0.0047 -0.0081 0.058 -0.0339 0.0145 0.0195 -0.0079 0.0062

NLME 0.0512 -0.0106 -0.0116 -0.0443 0.0038 0.0147 -0.0111 0.0278 -0.0132
MI-GEE 0.0253 0.0131 -0.0022 0.0323 -0.01 -0.0094 0.0101 0.0259 -0.0078

MI-NLME 0.043 -0.0117 -0.0054 -0.034 -0.0224 -0.0052 -0.0078 -0.0299 -0.0032
1.39 GEE -0.038 0.0133 0.0173 -0.0117 0.0071 0.0194 0.0489 -0.003 -0.0162

NLME -0.0368 -0.0167 -0.0038 -0.0249 -0.0215 0.001 0.0549 0.0025 -0.0039
MI-GEE -0.0137 -0.0181 -0.0008 -0.0471 -0.0126 -0.0021 -0.0324 0.0082 -0.0085

MI-NLME 0.0032 0.0144 -0.0016 0.0299 0.0207 -0.0004 -0.046 0.0202 -0.0056
6 0.41 GEE 0.0209 -0.0315 0.0119 -0.0089 0 -0.0166 -0.0163 0.0152 -0.0146

NLME -0.0385 -0.0235 0.0131 0.0518 0.0045 0.0001 -0.0235 -0.0329 0.0031
MI-GEE 0.0331 -0.0188 -0.0009 0.0018 -0.0211 -0.0028 -0.0267 -0.0145 -0.0005

MI-NLME 0.0146 0.0273 -0.0042 0.0471 -0.0003 -0.0085 0.0419 0.0192 -0.0032
0.85 GEE -0.0468 0.003 -0.0075 0.0415 0.0003 -0.0021 -0.0399 0.036 -0.0046

NLME 0.06 -0.014 -0.0043 -0.0392 0.0098 0.0113 -0.0525 -0.018 0.0086
MI-GEE -0.0034 0.0238 -0.0095 -0.0098 -0.0031 -0.004 -0.0493 0.0155 -0.0031

MI-NLME -0.0145 0.0137 -0.0012 0.0378 0.0266 -0.0058 0.0418 0.0282 -0.0014
1.39 GEE 0.0375 -0.0197 -0.0194 -0.0574 -0.0352 -0.0143 0.0252 -0.0037 0.0072

NLME -0.0079 -0.0262 -0.0039 -0.0353 0.0269 0.0119 -0.0599 -0.0233 -0.0103
MI-GEE 0.0105 -0.0016 -0.0076 0.0164 -0.0141 -0.0044 0.0124 0.0265 -0.0007

MI-NLME 0.0295 -0.0174 -0.0005 0.0324 0.0017 -0.009 0.0474 0.0029 -0.0042
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Table 3.15: The Bias in 5000 simulations under the level of 0.1 and ρ = 0.7

MAR MAR MAR MCAR MCAR MCAR MNAR MNAR MNAR

T Beta Method n=40 n=80 n=200 n=40 n=80 n=200 n=40 n=80 n=200
2 0.41 GEE 0.045 -0.0339 0.0079 -0.0115 -0.0154 0.0154 0.0542 0.0222 -0.01

NLME -0.0026 0.0053 -0.009 -0.0047 -0.0326 0.006 -0.0352 -0.0338 0.0123
MI-GEE -0.0032 -0.025 -0.0089 0.0043 0.0009 -0.0035 0.0437 -0.0002 -0.0051

MI-NLME 0.0423 -0.0008 -0.0082 0.0359 -0.0108 -0.0092 0.0478 0.0078 -0.0043
0.85 GEE -0.029 -0.0049 0.0185 -0.0414 0.0219 -0.0161 -0.0304 -0.0179 0.0125

NLME 0.0117 0.0021 -0.013 -0.0032 -0.0177 -0.0075 -0.0416 0.0291 -0.003
MI-GEE 0.0026 -0.0127 -0.0017 -0.0084 -0.0105 -0.0064 0.0136 -0.0227 -0.0075

MI-NLME 0.002 0.0285 -0.0049 -0.0186 -0.0075 -0.0065 0.0064 -0.0093 -0.0068
1.39 GEE -0.0205 -0.0281 0.0142 0.0259 -0.0233 0.0069 -0.0124 -0.0302 -0.0177

NLME 0.0195 -0.0029 -0.0186 0.0237 0.0225 0.0109 0.0221 -0.0223 0.0058
MI-GEE 0.0341 -0.02 -0.0008 -0.0309 0.0111 -0.0045 0.0436 0.0028 -0.0026

MI-NLME 0.021 0.0155 -0.004 -0.0311 -0.0133 -0.0037 0.0125 0.0264 -0.0032
4 0.41 GEE -0.0509 0.0282 0.0157 0.0236 0.0232 0.0062 -0.009 -0.0108 0.0154

NLME -0.0076 0.0146 0.0014 -0.053 -0.0254 0.0054 -0.0207 -0.0305 -0.0088
MI-GEE -0.0126 -0.0029 -0.0079 -0.0023 -0.0169 -0.0022 -0.0322 -0.0048 -0.0025

MI-NLME -0.0387 -0.0152 -0.0052 0.0339 -0.0112 -0.006 0.0361 0.0167 -0.0083
0.85 GEE -0.045 -0.008 -0.0036 0.0224 -0.0236 -0.0059 0.0582 -0.0116 -0.0016

NLME 0.0374 -0.0091 0.0194 0.0529 0.0026 -0.0167 0.0333 0.0228 0.0106
MI-GEE -0.0451 -0.0061 -0.0006 -0.0255 -0.0185 -0.0047 0.0349 0.0139 -0.0031

MI-NLME 0.0439 0.0211 -0.0093 0.047 0.0069 -0.0072 0.0216 -0.0179 -0.0006
1.39 GEE -0.0282 -0.02 -0.0068 -0.0032 -0.0021 0.0024 0.0119 -0.0383 -0.0199

NLME -0.0324 -0.0333 -0.0176 -0.0248 0.0318 -0.0071 -0.0511 -0.0108 0.0025
MI-GEE 0.0145 0.0241 -0.0097 0.0033 0.0194 -0.0008 0.0444 -0.0125 -0.0021

MI-NLME 0.0175 0.0271 -0.0071 0.0453 -0.0255 -0.0076 -0.0244 0.0296 -0.0056
6 0.41 GEE 0.0496 -0.0152 -0.0098 0.0569 -0.0287 0.0049 0.0504 -0.0029 0.0014

NLME -0.0583 -0.0123 0.0188 0.0522 -0.0257 0.0049 0.0027 -0.0131 0.0197
MI-GEE -0.0036 -0.0249 -0.0021 0.0033 0.0178 -0.0048 -0.0228 -1E-04 -0.0004

MI-NLME -0.0487 -0.0038 -0.006 -0.0341 -0.02 -0.0036 0.0295 0.0092 -0.0069
0.85 GEE 0.0493 -0.0287 0.0168 0.0472 0.015 0.0155 -0.0321 -0.0356 -0.0184

NLME -0.0262 -0.0395 -0.0072 -0.0191 0.0373 -0.0161 -0.053 0.0307 0.0118
MI-GEE 0.0042 0.0291 -0.0074 -0.0422 -0.0234 -0.0004 0.0014 -0.0278 -0.0041

MI-NLME -0.0297 -0.0096 -0.0045 0.0491 0.0133 -0.0005 -0.002 -0.0053 -0.0034
1.39 GEE -0.0054 0.0138 -0.0066 -0.036 0.0126 0.0186 0.0571 0.024 0.0106

NLME 0.0207 -0.0121 0.0018 -0.0226 -0.0056 0.0051 -0.0205 -0.0073 0.0069
MI-GEE -0.0315 0.001 -0.0042 0.0406 -0.0122 -0.0075 -0.0388 -0.0059 -1E-04

MI-NLME -0.0392 -0.0018 -0.0094 0.0097 -0.0149 -0.0035 -0.0398 -0.0231 -0.0038
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Overally, the bias for all the methods is fairly small. Also no trend or pri-

ority can be found among the different methods, although bias has a tendency

to get smaller as the sample size increases for each method. Since the estimate

is obtained by calculating an average over all the estimates in the simulation

study, it might not be the best statistic for comparing the performance of the

methods. In particular, there can be some estimates with big differences (both

underestimation and over estimation) from the observed value. However, by

averaging over all of them, those big differences will cancel each other out and

the user will only see a small value for the bias.
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Chapter 4

Data Analysis

4.1 Data Description

A dataset has been used to illustrate the missing data analysis and the impact

of using one missing mechanism to another. This dataset is from a clinical trial

in which two different treatments (active treatment and placebo) for a respi-

ratory disorder has been treated. There are 56 participants from center 1 and

the rest are from center 2 out of total 111 participants. All these subjects have

been randomly assigned to receive one of the possible treatments. The binary

response variable, which is the respiratory status, has been measured at four

different times for each subject during the study. A good respiratory status is

coded as 1 and a poor respiratory status is coded as 0. Explanatory variables
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in the study are the center, the treatment, gender, age and a baseline. In this

study, 33 subjects are assumed to have no responses for their third and fourth

responses (30 percent missingness). This missigness mechanism is believed to

be the MAR mechanism as 22 of missed subjects are people who received the

active treatment and the rest are people who received the placebo regardless

of their responses in the first two visits.

A partial data set can be found in the following table:

Table 4.1: The partial data set for the respiratory disorder clinical trial

Center ID Treat Sex Age Baseline Visit 1 Visit 2 Visit 3 Visit 4

1 1 P M 46 0 0 0 0 0
1 2 P M 28 0 0 0 NA NA
1 3 A M 23 1 1 1 NA NA
1 4 P M 44 1 1 1 1 0
1 5 P F 13 1 1 1 1 1

P: placebo A: active treatment

The underlying GEE model can be written as:

logit(µij) = β0 + β1xij1 + β2xij2 + β3xij3 + β4xij4 + β5xij5 (4.1)

Where xij1 is the center variable (center1=0, center2=1), xij2 is the treatment

(treatment=1, Placebo=0), xij3 is sex (male=0, female=1), xij4 is the contin-

uous variable of age and xij5 is the baseline variable (poor=0, good=1). Also,

µij = E(Yi) is the mean of the response variable. An extra random term would

be added to this model to construct the non-linear mixed effect model.
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4.2 Parameter Estimation

Parameter estimates were found and are shown in the following tables:

4.2.1 Parameter Estimation via GEE

Table 4.2: The Parameter Estimates by GEE

Parameter Estimate SE LCL UCL Z P-Value

Intercept -0.1566 1.4628 -3.0239 2.7106 -0.1070 0.9147
Center 0.5647 0.3621 -0.1451 1.2745 1.5593 0.1189

Treatment 1.3136 0.3497 0.6281 1.9991 3.7561 0.0001
Sex -0.1588 0.4549 -1.0504 0.7327 -0.3491 0.7269
Age -0.0199 0.0130 -0.0454 0.0055 -1.5331 0.1252

Baseline 1.8026 0.3551 1.1066 2.4987 5.0761 3.85e-07

For the GEE method, the variables treatment and baseline seem to be sta-

tistically significant with p-values of 0.0001 and 3.85e−7. According to these

estimates, the odds of having a good respiratory status for a subject in the

treatment group are 3.7195(=exp(1.3136)) times higher than those in the

placebo group. The corresponding 95% confidence interval is (exp(0.6281),

exp(1.9991)) which can be written as (1.8740, 7.3824).
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4.2.2 Parameter Estimation via NLME

Table 4.3: The Parameter Estimates by NLME

Parameter Estimate SE LCL UCL Z P-Value

Intercept -0.1248 1.2551 -2.5848 2.3351 -0.099 0.9207
Center 0.7556 0.3117 0.1447 1.3666 2.424 0.0153

Treatment 1.7815 0.3583 1.0791 2.4838 4.971 6.64e-07
Sex -0.0722 0.4202 -0.8958 0.7514 -0.172 0.8636
Age -0.0214 0.0126 -0.0463 0.0033 -1.694 0.0902

Baseline 2.0612 0.3682 1.3394 2.7830 5.597 2.18e-08

For the NLME model, the variables, center, treatment and baseline, are statis-

tically significant at 5% significance level with p-values of 0.0153, 6.64e−7 and

2.18e−8. According to this model, the odds of having a good respiratory sta-

tus for a subject in the treatment group is 5.9387(=exp(1.7815)) times higher

than the odds of a good respiratory status for a subject in the placebo group.

The corresponding 95% confidence interval is CI=(exp(1.0791), exp(2.4838))

which can be written as (2.9420, 11.9867).

4.2.3 Parameter Estimation via MI-GEE

Table 4.4: The Parameter Estimates from MI-GEE

Parameter Estimate Within Between SE LCL UCL Z P-Value

Intercept -0.3259 1.7798 0.1589 1.4112 -3.0920 2.4401 -0.23096 0.8173
Center 0.6041 0.1099 0.0211 0.3716 -0.1243 1.3326 1.6253 0.1040

Treatment 1.1182 0.0955 0.0041 0.3179 0.4950 1.7413 3.5170 0.0004
Sex -0.0888 0.1748 0.0010 0.4198 -0.9117 0.7341 -0.2115 0.8324
Age -0.0222 0.0001 7.68e-06 0.0126 -0.0471 0.0026 -1.7502 0.0800

Baseline 1.6350 0.0997 0.0322 0.3778 0.8944 2.3756 4.3272 1.50e-05
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For the MI-GEE model, the variables, treatment and baseline are statisti-

cally significant at 5% significance level with p-values of 0.0004 and 1.50e−5.

According to this model, the odds of having a good respiratory status for a

subject in the treatment group are 3.0593(=exp(1.1182)) times higher than

the odds of a good respiratory status for a subject in the placebo group. The

corresponding 95% confidence interval is CI=(exp(0.4950), exp(1.7413)) which

can be written as (1.6405, 5.7047).

4.2.4 Parameter Estimation via MI-NLME

Table 4.5: The Parameter Estimates from MI-NLME

Parameter Estimate Within Between SE LCL UCL Z P-Value

Intercept -0.1307 1.1517 0.2589 1.2235 -2.5289 2.2673 -0.1068 0.9148
Center 0.7435 0.0714 0.0501 0.3718 0.0146 1.4723 1.9994 0.0455

Treatment 1.4586 0.0887 0.0085 0.3166 0.8380 2.0791 4.6071 4.08e-06
Sex -0.0838 0.1339 0.0114 0.3863 -0.8409 0.6733 -0.2169 0.8282
Age -0.0231 0.0001 4.82e-06 0.01136 -0.0454 -0.0009 -2.0398 0.0413

Baseline 1.7739 0.0949 0.0771 0.4447 0.9023 2.6455 3.9889 6.63e-05

For the MI-NLME model, the variables, center, treatment and baseline, are

statistically significant at 5% significance level with p-values of 0.0455, 4.08e−6

and 6.63e−5. According to this model, the odds of having a good respira-

tory status for a subject in the treatment group are 4.2999(=exp(1.4586))

times higher than the odds of a good respiratory status for a subject in the

placebo group. The corresponding 95% confidence interval is CI=(exp(0.8380),

exp(2.0791)) which can be written as (2.3117, 7.9973).
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4.3 Goodness of fit

In order to evaluate the goodness of fit of each model, classification tables

have been obtained. with a classification table, the predicted values can be

compared with observed values. In the following analysis, it has been assumed

that the predicted value for any subject with π̂ij > 0.5 is 1 and zero otherwise.

Useful methods to assess the performance of these methods are the sensi-

tivity and specificity of the different methods. Sensitivity is the probability of

a test giving positive results given the observed values are actually positive.

Specificity is the probability of a test giving negative results given the observed

values are actually negative [17]. It is easy to see that sensitivity and power are

the same concepts. Also, the misclassification rate can be obtained by dividing

the number of incorrect classifications by the total number of classifications.

Classification tables of different methods are listed below:

Table 4.6: The classification table for GEE

Truth + Truth - Total

Predit + 177 75 252
Predict - 40 86 126

Total 217 161 378

For the GEE method, the sensitivity (power) is 0.8156 and specificity is

0.5341. Also, the misclassification rate for this model is 0.3042.
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Table 4.7: The classification table for NLME

Truth + Truth - Total

Predit + 188 47 235
Predict - 29 114 143

Total 217 161 378

For the NLME method, the sensitivity (power) is 0.8663 and specificity is

0.7080. Also, the misclassification rate for this model is 0.2010.

Table 4.8: The classification table for MI-GEE

Truth + Truth - Total

Predit + 630 213 843
Predict - 136 353 489

Total 766 566 1332

For the MI-GEE method, the sensitivity (power) is 0.8224 and specificity

is 0.6236. Also, the misclassification rate for this model is 0.2620.

Table 4.9: The classification table for MI-NLME

Truth + Truth - Total

Predit + 668 143 811
Predict - 98 423 521

Total 766 566 1332

Finally, for the MI-NLME method, the sensitivity (power) is 0.8721 and

specificity is 0.7473. Also, the misclassification rate for this model is 0.1809.

Overall, it can be concluded that the MI-NLME method is performing the

best in terms of both sensitivity and specificity. The corresponding misclassi-

fication of this method is relatively lower than the other methods as well.
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In general, a slight advantage of the NLME based models can be seen in

comparison with the GEE based models. Also, results show that multiple im-

putation actually improves the performance of both GEE and NLME models,

although it may be considered as a rather trivial improvement.
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Chapter 5

Conclusions and Limitations

5.1 Conclusion

In this study, we compare the performance of four different methods to ana-

lyze repeated measures binary responses data with missing values. Methods

that have been compared are the generalized estimating equations, non-linear

mixed effects models and combination of each of these with a multiple impu-

tation method called MI-GEE and MI-NLME. We evaluated the performance

of these methods by comparing them in terms of empirical size, power and

bias in parameter estimates.

Results for empirical size show that all these methods fairly maintain the
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nominal level and converges more and more to the nominal size of the test as

the sample size increases.

The power comparison reveals that the NLME method works better than

GEE in general. Also implementing multiple imputation on these two meth-

ods increases their performances. However, these differences among the power

of the different methods are really small and in a sense it can be stated that

all these four methods are showing a very good performance in terms of power.

Comparing bias in estimaton of the coefficients for each method using

the underlying model shows very small deviation from the theoretical value.

Therefore, it can be stated that none of the methods used in this study are

biased when it comes to estimation.

Two different levels of correlation (ρ = 0.3, 0.7) have been assumed for the

simulated study representing the low and high correlation among data points

and the performances of these methods do not seem to change significantly by

changing the correlation level. Also, it can be stated that the empirical size

gets better as the number of repeated mesures (T) increases. By increasing T,

larger powers are obtained. Power increases as the β values increase too. All

the methods are performing fairly well. Maximum likelihood based methods

work slightly better than quasi likelihood based methods and multiply impu-

tating separate datasets helps both methods to improve their performances.

Bias, power and empirical sizes become more ideal as the sample size increases.

Specifically, when the sample size is n = 200 under the MAR assumption, the

empirical size is really close to the size of a test, power is at its highest and
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the bias is almost zero.

5.2 Limitation

As a limitation it can be mentioned that all these properties hold true under

MAR and MCAR missing mechanisms only. Under MNAR missing data mech-

anism, it cannot be decided which method works the best. The empirical size

of MNAR deviates more from the size of a test in comparison with MAR and

MCAR situation. This especially can be seen when the sample size gets large.

This can also be seen in comparison with powers and biases between different

missing data mechanisms. It may be due to the assumption of ignorability

of missingness which is the assumption behind the most of the methods used

in this study. In general, MAR and MCAR missing data mechanisms show a

higher power and smaller bias than MNAR missing data mechanism although

all these differences are rather small.
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