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Abstract

Solar photovoltaic (PV) generation is one of the fastest-growing renewable en-

ergy sources worldwide. Almost half of this growth is projected to be behind-

the-meter (BTM) installations – typically PV systems mounted on the rooftop

of a home or a commercial building. Today, utilities neither have visibility

into BTM distributed energy resources (DER) nor the analytical tools to reli-

ably estimate the amount of solar power injected at any given time into their

distribution feeders, a vital piece of information for crafting new tariffs and

planning future investments to mitigate voltage problems and manage bidi-

rectional power flows. This has given rise to research on signal processing and

machine learning techniques that can be applied to disaggregate solar gen-

eration from the net load that is measured by a smart meter. In addition,

as battery pack prices continue to decline and new pricing schemes are being

introduced, many customers with PV installations will be inclined to install

a battery to shift the PV output to align with the peak demand time. This

“solar-plus-battery” system, when installed behind the meter, makes the dis-

aggregation problem even harder to solve because some fluctuations in the net

load that were useful for disaggregation will be smoothed out by the battery.

This thesis aims to solve some of the challenges in the solar disaggregation

problem under the assumption that the historical disaggregated data from

the target home is unavailable and the deployment characteristic of BTM en-

ergy resources (e.g., PV systems and batteries) are unknown. We propose a

data-efficient solar disaggregation method to estimate solar power generated
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by a BTM PV system and show that as long as there is one real proxy, other

real proxies can be replaced with synthetic ones generated by a physical PV

model with negligible loss of accuracy. We then examine how the improved

solar disaggregation accuracy affects the performance of three state-of-the-

art non-intrusive load monitoring (NILM) methods, namely Factorial Hidden

Markov Model (FHMM), Sequence-to-Point (Seq2Point), and Denoising Au-

toencoder (DAE). NILM methods help residential customers understand how

much money they spend on different appliances, especially energy-hungry ap-

pliances, such as air conditioner and furnace. Finally, we extend our solar

disaggregation method by considering BTM battery storage. We discuss how

the physical characteristics of the battery can be inferred from net meter data

and how they can be used to facilitate disaggregation. Using a real dataset, we

compare our methods with several state-of-the-art methods in two scenarios,

which include customers with and without a BTM battery, and show that our

methods outperform baselines by a clear margin.
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Wonder is the beginning of wisdom.

– Socrates, Philosopher.
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Chapter 1

Introduction

In the past few decades, substantial changes have occurred in the traditional

grid. These changes were primarily driven by the integration of demand-side

technologies, such as distributed energy resources (DER) and controlled loads,

into low-voltage distribution networks, aiming to improve its efficiency and

reduce carbon emissions [1]. Solar photovoltaic (PV) is one of the most widely

used renewable technologies, which is currently enjoying the fastest growth rate

among renewable sources worldwide thanks to declining costs of solar projects

and government tax credits. Solar PV generation in end-use sectors in the U.S.

is anticipated to increase more than fourfold, from 41 billion kilowatt-hours

(1% of U.S. generation) to 182 billion kilowatt-hours (4% of U.S. generation)

by 2050 [18].

The large-scale adoption of distributed PV systems and the rising number

of prosumers (i.e., energy producers and consumers) present new challenges

for planning and operation of power distribution grids, from the management

of voltage to the configuration of protection systems and increased wear and

tear on utility equipment. In light of this, utility companies seek innovative

solutions to identify unregistered solar panels, and estimate their peak ca-

pacity and real-time production. Since most distributed PV systems will be

installed behind the meter (BTM) [25], the most reliable and effective method

is to install additional sensors to measure the solar generation of each BTM

PV system directly. However, this is not only costly, but also raises privacy

concerns. For example, it has been shown in [10] that it is possible to localize
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“anonymous” solar-powered homes using their solar generation data only.

In the past few years, millions of smart meters have been rolled out around

the world to collect high resolution data from customers. One potential low-

cost and less-intrusive approach to estimate solar generation by BTM PV

systems is to develop methods that only rely on the data that is commonly

available to electric utilities, in particular, weather information and net meter

data (i.e., home load minus solar generation) from advanced metering infras-

tructure (AMI). In fewer cases, substation-level and feeder-level voltage and

current phasor measurements from the supervisory control and data acqui-

sition system (SCADA) or distribution-level phasor measurement units (D-

PMUs) [39] can also be utilized.

1.1 Identification of BTM solar PV systems

Several methods have been proposed in the literature to estimate the solar

power generated by BTM PV systems. They can be divided into three major

categories:

(a) Methods that rely on satellite and aerial imagery [21] to identify PV

systems and estimate their physical characteristics, e.g., size, tilt, and

orientation. These approaches provide a rough estimate of the peak

production capacity, but cannot accurately estimate solar generation at

a given time.

(b) Methods that rely on a few separately metered solar sites in a geograph-

ical area to estimate the total solar generation in that area [46], [47].

These methods require knowledge of the total installed capacity of PV

systems in the area, which is not available in many cases.

(c) Methods that apply signal separation techniques to disaggregate solar

generation from feeder-level measurement or smart meter data [9], [13].

The main advantage of the solar disaggregation methods that only re-

quire smart meter data is that they are widely applicable as they do not

require additional information.
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House without PV system

Cloud
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Customer-level

Weather data

House with PV system

Figure 1.1: The overview of customer-level and feeder-level solar disaggrega-
tion.

1.2 Solar disaggregation

Solar disaggregation is the problem of estimating solar generation from net

load measurements which can be obtained at different levels of aggregation.

Customer-level solar disaggregation is to separate the power consumption mea-

sured by a smart meter into household (or business) demand and solar gener-

ation. Feeder-level (or substation-level) solar disaggregation concerns separat-

ing the overall solar generation at the feeder from the total active power con-

sumption of loads connected to that feeder. Figure 1.1 shows the similarities

and differences between customer-level and feeder-level solar disaggregation at

a high level. Compared to other methods of estimating BTM solar generation,

solar disaggregation methods only rely on the data that is commonly available

to the utilities, in particular weather information and net meter data from

advanced metering infrastructure with time resolutions in the range of one

minute to one hour [11]. In this thesis, we focus on investigating customer-

level solar disaggregation methods using net meter data collected by smart

meters.
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1.2.1 Differences with Non-Intrusive Load Monitoring

Solar disaggregation is closely related to non-intrusive load monitoring (NILM) [20],

the problem of separating a household’s total energy consumption, measured

by a single meter, into individual appliance consumption data. Several tech-

niques have been proven to be effective in NILM problem, which includes

hidden Markov models (HMM) [32], deep learning [31], combinatorial optimi-

sation (CO) [20], etc. Despite the apparent analogy between the two problems,

NILM methods cannot be directly applied to separate solar generation from

net load. This is partly because most NILM methods assume that the opera-

tion of each appliance can be divided into a finite number of operating states

(e.g., ON, OFF, standby), and that the power consumption in each state is

known and constant. Solar generation however changes continuously depend-

ing on several factors, such as solar radiation and temperature, and can have

abrupt changes due to the effect of passing clouds. This diminishes the efficacy

of NILM methods [15].

1.2.2 Challenges in solar disaggregation from net meter
data

Despite the growing literature on solar disaggregation, there are still several

key challenges, ranging from the lack of fine-grained data and an evaluation

toolkit to the presence of latent components (e.g., BTM battery system and

electric vehicle chargers), which hinder the application of these methods in

practice. Since historical (disaggregated) data regarding solar generation and

home load may not be available from a customer with a BTM PV system,

the problem should be solved in an unsupervised fashion. Furthermore, the

increased BTM solar penetration brings in new challenges for NILM as the

smart meter reading may not be equal to the sum of the power demand of

individual appliances in the daytime. This highlights the importance of dis-

aggregating solar power from net meter data before trying to separate the

household demand into the constituent appliances, and calls for incorporating

solar disaggregation algorithms in NILM software, such as NILMTK [4].
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In Section 2.4 and Section 2.5, we elaborate on the open challenges in

this area and put forward recommendations to address them in future work.

These challenges underline the scope for developing new techniques for solar

disaggregation and justify the effort to collect data from a larger set of solar

installations where solar generation can be separately metered.

1.2.3 Enabling NILM

Although NILM problem has been extensively studied in decades, the ma-

jority of NILM methods assume that the net load is simply the total power

consumed by home appliances. As more and more households choose to install

their own PV systems, those ’negative’ load (i.e., solar generation) generated

from PV panels may confuses many NILM methods, since solar generation

is subtracted from the home load, whereas appliance loads are summed to

construct the home load. Thus, it is necessary to develop reliable solar disag-

gregation methods to decompose the net load data into solar generation and

home load. The NILM methods can then be applied to the latter component

to identify the energy consumption of different appliances.

1.2.4 Dealing with BTM solar-plus-battery systems

As battery pack prices continue to decline and new pricing schemes are being

introduced [41], customers with PV systems will be inclined to install a battery

to shift the PV output to align with the peak demand time. This “solar-plus-

battery” system, when installed behind the meter, makes the disaggregation

problem even harder to solve because some fluctuations in the net load that

are useful for disaggregation will be smoothed out by the battery. This calls

for new disaggregation techniques that (a) rely on the data that is commonly

available to utilities, e.g., weather data and smart meter readings with time

resolutions in the range of 1 minute to 1 hour, and (b) maintain a high level

of accuracy even when other DER, with unknown characteristics, are installed

behind the meter. While extensive research has been done on disaggregating

solar generation from feeder-level or building-level measurements [9], [13], [26],
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[27], [35], most related work addresses this problem without considering the

effect of a BTM battery.

In Chapter 4, we advance the state of the art by proposing a solar dis-

aggregation method to accurately decompose the net load to major types of

load, i.e., aggregate home load, solar generation, and power contribution of

the battery when it is present.

1.3 Summary of contributions

In this thesis, we initially conduct a detailed survey of related work on solar

disaggregation, and identify key challenges and research opportunities. Then,

we propose two solar disaggregation methods in order to answer following three

questions that arose from the survey,

• RQ1: Since the solar disaggregation problem has to be solved in an

unsupervised fashion, state-of-the-art methods use measurements from

a large number of neighboring PV systems to estimate solar generation of

the target home. However, measurements from many PV systems in the

same area may not be available in practice. So how can we disaggregate

solar generation in a more data efficient way?

• RQ2: What is the accuracy of standard NILM techniques when they are

applied to the disaggregated home load? Can we still understand which

appliances are turned on and when?

• RQ3: How can we maintain the performance of solar disaggregation

methods in the presence of BTM battery energy storage?

To address RQ1, we propose a method that has two key advantages over

prior work. First, it requires active power measurements with low temporal

resolution and solar generation measurements from only one or a few PV

systems located in the same geographical area. Second, our method has a low

computational overhead, making it suitable for large-scale implementation. To

address RQ2, we apply 3 benchmark NILM techniques that are implemented in
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an open source toolkit to the disaggregated home load obtained by our method.

We then discuss the disaggregation result for 7 appliances that are present in

most homes. To address RQ3, we extend our disaggregation method to tackle

the problem in the presence of BTM battery without knowing its capacity,

peak power, and control strategy.

The main contributions of this thesis are as follows:

• We propose a data-efficient disaggregation method to estimate solar

power generated by a BTM PV system with unknown deployment char-

acteristics. We show that as long as there is one real solar proxy, other

real proxies can be replaced with synthetic ones that are generated by a

physical PV model with negligible loss of accuracy. Comparing against

two state-of-the-art solar disaggregation methods on a publicly available

dataset, we find that the proposed method outperforms them in terms

of the disaggregation accuracy.

• We examine how the improved accuracy of solar disaggregation affects

the accuracy of three baseline NILM methods, namely Factorial Hidden

Markov Model (FHMM) [19], Sequence-to-Point (Seq2Point) [61], and

Denoising Autoencoder (DAE) [31]. The evaluation is done on a real

dataset.

• We extend our solar disaggregation method by considering BTM bat-

tery storage. We discuss how the power rating of the battery can be

inferred from net meter data and used to facilitate disaggregation. In

the experiments, we use a real dataset and compare our method with

one state-of-the-art method in the scenario where a battery is installed

at the target home, and show that it outperforms the baseline by a clear

margin.

The methods proposed in this thesis could benefit utility companies and

end customers alike. For utility companies, higher solar disaggregation ac-

curacy means that they can craft new rate programs, plan future invest-

ments to mitigate voltage problems, and manage bidirectional power flow
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without installing separate meters at scale. Meanwhile, improving data ef-

ficiency translates to lowering the cost associated with solar disaggregation

techniques, thereby increasing their application in the real world. For resi-

dential customers, solar disaggregation enables NILM, which in turn can help

them understand how much money they spend on different appliances, espe-

cially energy-hungry appliances (e.g., air conditioner and furnace).

1.4 Outline of the thesis

Chapter 2 presents related works on NILM and solar disaggregation, followed

by the description of the datasets that can be used for evaluating disaggrega-

tion methods. Then, we discuss the open challenges in the solar disaggregation

area and put forward recommendations to address them in future work. Chap-

ter 3 first describes the formulation of the solar disaggregation problem and

lists the assumptions we make. Then, the models we use for estimating so-

lar generation and home load are introduced. An iterative algorithm and an

initialization technique are presented in our methodology framework. After

that, in the experiment section, we first describe the dataset we use in the

experiment, the different variations of our methods, and the baseline works

used for performance comparison. Then we show the result in terms of dis-

aggregation performance and the sensitivity of our method to the amount of

net meter data used for disaggregation, the choice of solar proxies, and the

weight initialization method. Lastly, we investigate whether a more accurate

disaggregation technique could lead to higher accuracy in NILM.

Chapter 4 describes the extension of our previous work by considering BTM

battery, presenting the whole disaggregation framework, the models we used

for BTM components (i.e., solar generation, aggregated home demand, and

battery activities) and the initialization techniques. Then, in the experiment

section, we first describe the battery strategies we use in battery simulation

and the baseline work. We also show the experimental results for solar dis-

aggregation performance comparison, battery peak power estimation, and the

sensitivity of our method to BTM battery operation strategy and battery
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capacity. Chapter 5 concludes the thesis with some discussion about the limi-

tations of the work presented in this thesis, threats to its validity and potential

future extensions of this thesis.

9



Chapter 2

Related Work

2.1 Non-Intrusive Load Monitoring

Since the early days of smart meter rollouts, NILM has been extensively stud-

ied in the literature. At a high level, NILM methods aim to disaggregate the

net load measured at a single point of measurement. A wide range of sam-

pling rates are explored in the literature, from less than 1Hz to thousands

of Hz. Despite the recent efforts in high-frequency range [49], [55], and the

intuition that sampling the load profiles at high rates provides more useful

features for NILM, collecting this data requires special hardware. The smart

meter devices that are being installed widely in distribution grids can only

provide low-resolution data. A recent study concludes that the data sampled

at 1/30 Hz would be sufficient to achieve high accuracy in NILM [22]. It is

also mentioned that such a low sampling rate allows the NILM algorithms to

benefit from additional information pertaining to the past power consumption

of some long-running appliances. A NILM method is proposed in [48] that is

suitable for low-resolution data. The performance of this method is evaluated

for a range of resolutions, from 5 minutes to 1 hour.

Since combining the temporal information with active power measurements

can facilitate disaggregation [60], the most recent work utilizes Hidden Markov

Model (HMM) and Deep Neural Networks (DNN). Reference [32] studies four

variants of HMM for energy disaggregation using low-frequency data. Another

low frequency power disaggregation method is proposed in [37] that is based

on HMM and DNN. Reference [31] studies different deep learning architectures
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for NILM. These methods can only generalize to unseen homes if the training

set has enough variety, which is rare in NILM training sets. Reference [61] pro-

poses a sequence-to-point learning via a Convolutional Neural Network (CNN)

that outperforms the sequence-to-sequence method introduced in [31]. Refer-

ence [33] studies different DNN compression schemas and suggests a multi-task

learning-based architecture to compress the models further.

The majority of NILM methods assume that the net load is simply the total

power consumed by home appliances. There are just a few NILM papers that

consider BTM solar generation. Reference [57] proposes a method to disag-

gregate three types of loads, namely traditional loads, distributed generation

(e.g., PVs), and flexible loads (e.g., electric vehicles), at the substation level.

However, the focus of our work is on customer-level load disaggregation. The

closest line of work to ours is by Dinesh et al. [15], which proposes a NILM

method for customers with BTM solar generation. The authors construct a

unique set of signatures for appliances and solar generation, and classify their

operating modes using a spectral clustering based method. Finally, they iden-

tify their state and operating mode through a subspace component power level

matching algorithm. The main drawback of this approach is that it relies on

the synthesized net load measured at 1 second intervals. This is much faster

than the sampling rate of smart meters that are currently installed in many

jurisdictions (which is typically in the order of minutes).

2.2 Solar Disaggregation

Several solar disaggregation techniques have been proposed to date drawing

on algorithms from machine learning, signal processing, and state estimation.

Table 2.1 summarizes these techniques. The vast literature on behind-the-

meter solar disaggregation can be categorized into two classes based on the

type of models they use for estimating solar power. In particular, in model-

based techniques, PV systems are modelled using a physical PV model, while

data-driven techniques develop a black-box PV model leveraging the training

data.
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2.2.1 Data-driven approaches

With the growing adoption of different metering technologies in distribution

grids, data-driven methods have become increasingly popular.

Some of the methods rely on the aggregate data at the feeder, distribution,

or substation transformer level. Kara et al. [29] developed a linear proxy-

based estimator to disaggregate feeder-level solar generation from the aggre-

gate real power at the substation, using reactive power data measured by a

DPMU [39] and PV generation profiles from nearby metered PV systems. A

similar method was proposed by Tabone et al. to tackle customer-level solar

disaggregation [54] by utilizing the aggregated net load data at the substa-

tion level. But instead of using reactive power data to estimate the aggregate

home load, they use temperature and time of the day. Both methods leverage

a contextually supervised source separating [58] with different features. Bu et

al. [7] utilize separately metered load and PV generation data of some cus-

tomers to disaggregate higher-level net load using a game theoretic approach.

They formulate solar disaggregation as a nested bi-layer optimization problem.

This method adaptively updates the estimation in each time step and shows

robustness to unobserved events and abnormalities (e.g., PV system failures).

Shaffery et al. [45] propose a Bayesian Structure Time Series (BSTS) model

for solar disaggregation. Unlike other data-driven methods, it can provide a

probabilistic estimation of PV generation and load consumption, allowing the

operator to determine necessary reserves. However, the slow training process

limits its real-world application. The common shortcoming of these meth-

ods is that they are not accurate enough when applied to the net load of a

single customer and sensors, such as distribution-level PMUs, are not yet avail-

able in large numbers in distribution grids. In another line of work, Sosan et

al. [51] disaggregate the solar generation in the frequency domain given that

the spectral density of the aggregated power flow is similar to the measured

PV generation. The result of this method is promising enough to encourage

researchers to use frequency domain analysis to address the disaggregation

problem especially at the feeder-level where higher resolution data might be
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available. In recent work [36], a model is trained via federated learning for

community-level solar disaggregation while protecting user privacy.

Meanwhile, there are many methods that rely on customer-level net meter

data. Cheung et al. [13] model demands of customers with PV systems us-

ing a mixture model of representative customers without PV systems which

are selected via clustering. Leveraging the fact that customer-level net load

curves have different shapes under different weather conditions, Li et al. [34]

extract multiple features and feed them to machine learning models to infer

PV capacity and estimate solar generation. In recent work [8], a disaggregation

method is proposed based on the observation that there is a strong correlation

between monthly nocturnal and diurnal homes loads. A shortcoming of this

method is that it requires three years of historical data, which may not always

be available for each customer. In [5] a novel approach is proposed to perform

solar disaggregation in real-world situations where the amount of solar power

exported to the grid is not reported by the smart meter.

To our knowledge, disaggregating solar power from net meter data in the

presence of other BTM DER, like battery packs, has been studied in two recent

papers only. Reference [14], which extends [13], utilizes proxy measurements

from 15 solar sites to estimate solar generation. In contrast, our method

needs as few as one real proxy thanks to additional synthetic proxies that

are incorporated. We use it as our baseline for performance comparison in

the experiments where customers have BTM batteries installed. The second

paper [59] employs a contextually supervised source separation method with

the addition of estimating the battery operation. The drawback of this method

is that it assumes BTM batteries of different customers are controlled using

the same strategy and utilizes this knowledge in the disaggregation process.

In real world, the control strategy of batteries is not known a priori owing

to the diversity of objective functions, pricing schemes, and power electronic

interfaces.
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2.2.2 Model-based approaches

Compared to data-driven approaches, model-based approaches normally re-

quire no or just a few data points for calibration. They learn the deployment

characteristics of PV systems (e.g., capacity, tilt, orientation), which is useful

for both real-time estimation and long-term forecasting. Reference [9] uses

the PV system’s location and net load data to build a model for maximum

clear sky solar generation. It then estimates the true solar generation using

a general weather model to account for the percentage reduction in the clear

sky solar irradiance due to clouds, humidity, precipitation, etc. The method

requires net load data from two days with clear sky and low energy consump-

tion that have a large temperature difference. A solar disaggregation toolkit

based on [9] is developed in [3], which is used as a baseline in our work.

Reference [26] proposes an unsupervised solar disaggregation framework

that does not require net load data or the location of the PV system (i.e.,

its latitude and longitude). Instead, the authors estimate the home load by

using a physical PV model together with Hidden Markov Model Regression.

They start with an initial guess of the physical PV model parameters and

iteratively estimate the home load and solar generation from the net load data.

This method can achieve satisfactory performance after many iterations, which

makes it too slow for real-world applications. In addition, accurate weather

and irradiance data from the vicinity of the target home are necessary for

accurate disaggregation. We use this method as a baseline. The authors

extend this work in [27] to jointly disaggregate the net load data of a group of

customers into aggregated solar generation and aggregated home load.

2.3 Open Data

Solar disaggregation studies use net metering data collected at different levels

of aggregation. The customer-level data is available through AMI while the

feeder-level data is typically collected by DPMUs or the SCADA system if there

is such instrumentation beyond the distribution substation. For validation

purposes, additional gross meters need to be installed behind the utility meter

15



to separately measure the solar inverter output.

The most popular dataset which has been used for evaluating solar dis-

aggregation methods is released by Pecan Street Inc. [24]. It contains the

customer-level measurement of solar generation and household demand for a

total of 73 homes located in three states in the U.S. (New York, California,

and Texas). Measurements cover three granularity levels, namely 1 second,

1 minute and 15 minutes. This is useful to evaluate a disaggregation algo-

rithm at different temporal resolutions as we do in Section 2.4. We also use

this dataset in Subsection 3.4.3 for quantifying the improvement in the accu-

racy of NILM techniques when they run on the disaggregated home load rather

than the net load measured by a smart meter, since this dataset also contains

the appliance-level consumption in each household. Another relatively large

dataset is released by Ausgrid, a utility company in Sydney, Australia [2]. The

half-hour household consumption and solar output data are collected from 300

customers with rooftop solar PV systems. The dataset spans 3 years, from July

1, 2010 to June 30, 2013, and contains the actual solar panel capacity for each

customer. We use this dataset for measuring the disaggregation performance

of our two proposed methods. Finally, the SunDance dataset [44] includes

hourly net meter, solar generation, and weather data for 100 sites in North

America.

To our knowledge, the above datasets are the only publicly available datasets

that contain both solar generation and home load data. However, there are

several residential load datasets which are published online [6], [23]. Real solar

generation data from specific PV sites can be found in [44], [52]. Synthetic

PV output can also be simulated using the System Advisor Model (SAM)

developed by the National Renewable Energy Laboratory according to the

real solar irradiation data and other weather data [40]. Therefore, a synthetic

net metering dataset can be created easily by combining home load and solar

generation from different sources.
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2.4 Disaggregation Challenges

Despite several efforts to date to disaggregate solar power from net meter data

there are several challenges which need to be addressed.

Low temporal resolution of customer-level data: Data collected by

smart meters is coarse-grained (typically 1 sample every 15 minutes). This

dramatically increases the difficulty of capturing inherent variability in solar

generation and household demand, and prevents researchers from successfully

separating frequency components of the two signals. High-frequency DPMU

data can support the use of signal processing techniques. But since these

sensors are typically installed at higher levels of aggregation in the distribution

grid, fluctuations smooth out further due to aggregation.

To understand how the temporal resolution of input data could affect the

performance of solar disaggregation algorithms when applied to data collected

for individual customers, we run two model-based [3], [26] and two model-

free [13], [54] approaches1 proposed in the literature to disaggregate net meter

data of five randomly selected homes in Austin, Texas. We run each algo-

rithm three times for a given home, each time using the net meter data with

a different resolution (1min, 15min, and 1hr). We obtain the net meter, home

load, and PV generation data for a month in summer and a month in win-

ter from the Pecan Street dataset and pull in 5-minute weather data (GHI,

GNI, DNI, Temperature, etc.)2 for the same periods for a location in Austin3

(30.267°N,-97.743°E) from the Solcast API [50]. Note that a subset of these

features are needed by each algorithm as specified in Table 2.1. We do not re-

tune the (hyper)parameters of each algorithm across the three runs, and report

normalized root-mean-square error (nRMSE) which is root-mean-square error

normalized by the mean value of the measurements. For fair comparison, we

only include the estimates at the top of the hour in the calculation of nRMSE

as they are available for all three runs. As shown in Figure 2.1, increasing the

1We implemented [13] from scratch and [26] based on PV modelling code provided by
the authors. We used the implementations of [3], [54] we found on authors’ websites.

2For the 1min scenario, we use weather data of the closest 5 minute interval.
3The Pecan Street dataset does not include the home address, hence we queried weather

data for a randomly selected location in downtown Austin.
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temporal resolution does not improve the reliability of estimates in general.

We believe this is because the algorithms are not designed to take advantage

of high-resolution net meter data as it cannot be obtained from AMI today.

Abrupt and gradual changes in the output of PV systems: A number

of different events can change the power output of a PV system over time.

For example, inverter failure and panel cleaning will cause the PV output to

change rapidly in a short period of time; while soiling on solar panels (i.e., the

dry deposition of dust and light absorbing particles on the surface of the panel)

will gradually decrease its power output. Traditional PV models cannot track

these changes to adjust the estimated PV generation.

Latent flexibility: The continued rise in the adoption of BTM energy stor-

age, demand-side management technologies, and smart thermostats in homes

and buildings creates problems for most data-driven solar disaggregation mod-

els. This is because these components can change the load profile, but control

policies used or price signals sent to them are not typically known when the

disaggregation problem is solved. This latent flexibility is ignored in most

previous work on solar disaggregation, except work [14] and work [59] which

address the disaggregation problem in the presence of a BTM battery. [14]

also shows that state-of-the-art approaches cannot accurately perform disag-

gregation when there is a BTM battery. Thus, future work should focus on

developing disaggregation algorithms that can remove effects of latent compo-

nents from net meter data through identification of control signals and actions.

Lack of datasets containing different types of households: Most datasets

that can be used for evaluating solar disaggregation methods do not include

information about households that participate in demand-response (DR) pro-

grams, installed smart thermostats or BTM solar-plus-storage systems in the

metadata. Specifically, from the three datasets described in Section 2.3, only

the Ausgrid dataset records whether the customer participated in a DR pro-

gram. Even when this information is available, it is unclear what control or

price signals were sent to those households.
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Figure 2.1: nRMSE of 4 disaggregation methods at different temporal resolu-
tions. Each small marker shows the result of a single home. Each large marker
indicates the nRMSE of one method averaged over 5 homes. The top figure
shows performance results from 2018/06/01 to 2018/06/30 and the bottom
one shows performance results from 2018/12/03 to 2018/12/30.
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2.5 Research Opportunities

Several interesting research questions are still to be addressed, some of which

will require overcoming the challenges described in the previous section. We

outline these opportunities below.

Fusion of customer-level and feeder-level data: In recent years high

frequency (up to hundreds of Hz) measurements of real and reactive power have

become available thanks to the deployment of DPMUs in the secondary side

of the substation. Fusing this data with smart meter data and incorporating

pseudo-measurements in the disaggregation method is an interesting direction

that can improve the overall accuracy and allow for running the disaggregation

method in an online fashion.

Dynamic disaggregation algorithms: As noted in the previous section,

the power output of a PV system can change over time due to various reasons.

Thus, the PV models trained/calibrated using historical data can no longer

provide accurate estimates of solar generation. Dynamic disaggregation en-

ables researchers to simultaneously solve system identification and solar dis-

aggregation problems, presumably at two different timescales. This way the

changes in the power output of a PV system can be detected and the PV

models can be updated accordingly.

Single-channel blind source separation (BSS) which separates a set of source

signals from a single mixed signal is a perfect fit for the solar disaggregation

problem. Hence, different techniques used in BSS can be modified and applied

to this problem.

Utilizing various data sources: As the Internet of Things (IoT) devices

are becoming ubiquitous across the building sector, there is a huge potential

to use the data collected by their embedded sensors to better predict the home

load. For example, the occupant presence and actions have an impact on the

household demand. Hence, utilizing the occupancy data which is recorded by

smart thermostats or plug load energy use collected by submetering devices

can improve the accuracy of several data-driven disaggregation techniques.

Increasing data efficiency: Since historical (disaggregated) data regarding
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solar generation and home load is usually unavailable from a customer with

BTM PV system, the disaggregation problem must be solved in an unsuper-

vised or semi-supervised fashion. Nevertheless, many methods proposed in

related work [7], [8], [14], [54] assume the availability of measurements from a

large number of neighboring PV systems, located in the same city or district

as the customer’s, to estimate solar power produced by BTM systems. This

assumption does not typically hold in practice. Hence, it is essential to design

a solar disaggregation method that requires measurements from no more than

a few neighboring PV systems.

Building a framework for evaluating solar disaggregation algorithms:

The lack of publicly available datasets that contain mixed and unmixed signals,

open-source implementation of benchmark algorithms, and consensus on the

evaluation metrics4 has made it difficult to compare the methods proposed for

solar disaggregation. We believe a comprehensive evaluation toolkit, similar

to NILMTK [4], can greatly facilitate research in this area. Alternatively,

benchmark solar disaggregation algorithms can be added to existing NILM

evaluation frameworks; this would make sense since solar generation must be

separated from net meter data before running NILM algorithms.

In the following chapters of this thesis, we first investigate one of the oppor-

tunities listed above, namely increasing data efficiency of solar disaggregation

methods. We try to address some of the challenges related to latent flexibility

by incorporating BTM battery in our disaggregation method.

4The following metrics have been used in related work to report the accuracy of a solar
disaggregation algorithm: RMSE, MAPE, and coefficient of variation of RMSE.
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Chapter 3

Solar Disaggregation without
Battery

In this chapter, we propose a data-efficient solar disaggregation method for

customers with PV installations only. Section 3.1 presents the solar disaggre-

gation problem formulation and states the assumptions we make. Section 3.2

introduces the disaggregation algorithm as well as the models that are used

in this algorithm. Then Section 3.3 describes the dataset and different vari-

ations of our methods. Furthermore, it introduces two baselines that we use

for comparison. Finally, Section 3.4 shows the results in terms of disaggrega-

tion performance and discusses the sensitivity of our model to the amount of

net meter data used for disaggregation, the choice of solar proxies, and the

weight initialization method. In that section, we also investigate whether a

more accurate solar disaggregation technique could lead to higher accuracy in

NILM.

3.1 Problem Definition

Customer-level solar disaggregation concerns decomposing the customer’s net

load, presumably measured by a smart meter, into home load and solar gen-

eration. Since historical (disaggregated) data regarding solar generation and

home load may not be available from a customer with a BTM PV system, the

problem should be solved in an unsupervised or semi-supervised fashion.
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3.1.1 Notation

As a general rule, matrices and vectors are denoted respectively by bold face

uppercase and lowercase letters. We use a subscript to refer to a specific row

of a matrix or an element of a vector.

Let y ∈ RT be a vector that collects the measured net load of one customer

over T intervals. Hence, yt denotes the net load measurement of this customer

at time t ∈ {1, 2, ...T}. Similarly, let ˆ̀, ŝ ∈ RT denote respectively their

estimated home load and behind-the-meter solar generation in the same period.

These quantities must satisfy the following equality constraint: y = ˆ̀− ŝ.

Let XA ∈ RT×Ka be the set of Ka features that determine the customer’s

home load, and XS ∈ RT×Ks be the set of Ks proxy measurements that can

be used to approximate the customer’s solar generation via a mixture model.

We can train a non-linear model g to map the features to the home load, and

a linear solar mixture model to estimate the customer’s solar generation. The

model g can be a neural network, a support vector machine, a random forest,

or any other nonlinear model used for regression. We can write:

ˆ̀ = g(XA;θ), (3.1)

ŝ = XSw, (3.2)

where θ is a vector that represents parameters of the load model, and w ∈ RKs

is the weight vector of the mixture model. Hence, wk is a scalar that represents

the weight assigned to the kth proxy. The motivation for using a linear mixture

model for estimating solar generation is explained in Section 3.2.

3.1.2 Assumptions

We postulate that no information is available about the customers except their

approximate location (i.e., the city or district they are located in) and their

smart meter data. Hence, we do not know the exact longitude and latitude

information of each customer. This is a reasonable assumption because (a)

some customers are reluctant to provide their home address, and (b) there

might be data privacy requirements that prevent the utility from sharing their
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address with a third party that performs solar disaggregation or NILM. In

addition to the smart meter data, solar irradiance, wind speed, and ambient

temperature at the city scale can be downloaded via an API. We assume that

deployment characteristics of BTM PV systems are not known a priori. These

include the panel size, orientation, tilt, temperature coefficient, etc.

We assume that there is at least one separately metered solar installation

in the same city or district as our target home. This site provides proxy

measurements that are used to estimate solar generation of the target home.

The deployment characteristics of this site could differ from the characteristics

of the PV system installed at the target home. We argue that this is not a

strong assumption as utilities usually have access to direct solar measurements

from several sites in a city. Moreover, the cost of installing and maintaining

one or a few PV systems can be easily justified by the potential benefits of

observing customer-level PV generation.

3.2 Methodology

We now introduce the models we use for estimating solar generation and home

load. We present our solar disaggregation algorithm, which has two main

parts: a weight initialization technique and an iterative algorithm for updating

the model parameters. Figure 3.1 shows the overview of our proposed solar

disaggregation method.

3.2.1 Models

Solar mixture model: We aim to approximate that solar power generated

by the BTM PV system installed at the target home using a mixture of proxy

measurements from PV systems located in the same city or district. The intu-

ition behind this approximation is that PV systems in the same geographical

area have more or less the same solar generation pattern regardless of their

deployment characteristics. This can be verified by inspection of Figure 3.2

which displays the solar power generated by 20 homes with BTM PV systems

in Sydney, Australia. The PV systems that have the same orientation but
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Figure 3.1: Overview of the proposed solar disaggregation method.

different sizes and tilts have almost identical solar generation patterns, though

with different scales.

There are two specific challenges that must be addressed to get a good ap-

proximation. First, we do not have control over the deployment characteristics

of the PV systems that provide proxy measurements. If they had exactly the

same orientation angle as the PV system installed at the target home, esti-

mating the target home’s solar generation would reduce to learning a single

scaling factor. One way to address this challenge is to adopt a solar mix-

ture model to approximate the target home’s solar generation as a weighted

sum of a number of proxy measurements, as shown in Equation (3.2). This

increases the chance of getting proxy measurements from PV systems with

similar deployment characteristics to the target home. A higher weight will

be eventually assigned to these PV systems in the mixture model. The second
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Figure 3.2: The solar generation of 20 homes in the Ausgrid dataset over 2
weeks. The thicker line shows the average solar generation power across all
the homes.

challenge is that proxy measurements from a large number of neighbouring

PV systems might not be available in practice. To address this challenge, we

combine proxy measurements from real PV systems with measurements syn-

thesized by a physical PV model that takes into account solar irradiance data

of an arbitrary location in the same city. We discuss in Section 3.4 that it is

essential to use proxy measurements from at least one real PV system as some

fluctuations in solar generation cannot be accurately explained by the physi-

cal PV model when coarse-grained solar irradiance data is fed to this model.

We also demonstrate the importance of incorporating synthetic proxies that

have different orientation angles in Figure 3.7. These synthetic proxies help

us estimate the peak time of solar generation more accurately.

The physical PV model that we use to obtain data for synthetic proxies

is based on PVWatts [17]. Figure 3.3 shows a screenshot of the PVWatts

calculator. We develop this model using the PV Performance Modeling Col-

laborative [53]. The output power of the PV model with the specified rating

Pdc0 can be computed given the transmitted plane of array (POA) irradiance

Itr and cell temperature Tcell:

Pdc =
Itr
Eref

Pdc0(1 + γ(Tcell − Tref )) (3.3)

Here γ represents the temperature coefficient, Eref represents the reference

irradiance, and Tref represents the reference cell temperature. We set them

respectively to -0.47%/◦C, 1000W/m2, and 25◦C to create synthetic proxies.

Itr is determined by solar irradiance data (direct normal irradiance, diffuse

horizontal irradiance, global horizontal irradiance), PV system characteristics
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Figure 3.3: Screenshot of PVWatts calculator developed by National Renew-
able Energy Laboratory (NREL).

(e.g., tilt, orientation) and its location. Tcell is a function of wind speed,

ambient air temperature, and solar irradiance data. We use different preset

technical parameters for different synthetic proxies.

Home load model: To estimate the home load, we adopt random for-

est regression, a supervised learning algorithm that uses an ensemble learning

method for regression. We use the scikit-learn [43] library to train this model.

Four explanatory variables are used as features, XA, for all customers. These

variables include ambient temperature c, exponentially weighted moving av-

erage of temperature over the last 24 hours cwmv, hour of the day h, and a

binary variable d that indicates if it is a weekday or weekend. Thus, we have

XA = [c, cwmv,h,d].

3.2.2 Solar Disaggregation

Solar model weight initialization: InitSolar(y,XS)

The first step of our method is to initialize the weight vector w of the solar

mixture model using the net load data of the target home and the solar gen-

eration data collected from the proxies. A good initialization can enhance the
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performance of the disaggregation method and reduce its convergence time.

Our weight initialization method has 3 main steps:

1. Estimating the physical characteristics of PV systems installed at the

target home and real solar proxies.

2. Finding the maximum solar generation of each PV system.

3. Solving an optimization problem to determine the initial weight vector

w0.

We use an open source toolkit, SolarTK [3], to estimate the physical char-

acteristics of PV systems including its tilt, orientation, and panel size. To

estimate these parameters, the toolkit takes the real solar generation data as

input and finds the maximum solar generation. We can run this toolkit on

proxy measurements, but we lack the real solar generation data from the tar-

get home. To solve this problem, we approximate the solar generation of the

target home given the net load data y from this expression ŝ ≈ [`base − y]+,

where [ ]+ is an operator that truncates negative elements of a vector to

zero, and `base is the target home’s base power consumption calculated as the

minimum consumption level at night time. SolarTK is then applied to the

estimated solar generation of the target home and the real solar generation

of solar proxy/proxies to obtain the estimated parameters for all PV systems.

Since we use a city’s longitude and latitude as an approximate location for

all the PV systems located in it, the estimated parameters may not be highly

accurate.

We then calculate the maximum solar generation for each proxy and tar-

get home using the estimated deployment characteristics obtained in Step 1.

The maximum solar generation is the potential generation of a PV system

under clear sky condition, that is determined by the system’s physical char-

acteristics, the ambient temperature and the location of PV. We denote the

maximum solar generation of the kth proxy by mp
k ∈ RT , and the maximum

solar generation of target home by mc ∈ RT .
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In the last step, we determine the initial weight vector, w, for the solar

mixture model following the idea of [47], [51]; the solar generation of a target

home with unknown deployment characteristics is estimated utilizing metered

solar generation of sites with nonuniform deployment characteristics. Formally,

we can write

stargett = α· sproxyt (3.4)

where α depends on time, site location, and other site-specific factors. In

our method, we simplify α to be a constant weight factor for each site, i.e.,

wk. Since we do not have the true solar generation from target home in

Equation (3.4), we use the maximum solar generations to determine the initial

weight of each solar proxy. Specifically, the weight factor wk for the kth proxy

can be determined by solving the following optimization problem:

min
wk

‖wk·mp
k −mc‖2

subject to wk > 0
(3.5)

Finally, the initial weight vector is w0 = w/K and initial solar estimation is

s0 = XSw0. Here K is the number of solar proxies.

Disaggregation algorithm: In this step, we iteratively estimate the

home load and solar generation until the parameters of our model converge.

Algorithm 1 presents the pseudocode of the proposed solar disaggregation al-

gorithm. After obtaining the initial weights w for the solar mixture model,

we first estimate the solar PV generation siter using a linear combination of

the solar proxies. Then, we use y = ˆ̀− ŝ to calculate the estimated home

load `iter (line 2) and incrementally train the load model using `iter and load

related features XA (line 3). Based on the updated home load `iter (line 4), we

determine solar generation siter (line 5), update the weights for solar proxies

(line 6), and recalculate the solar generation using the updated weights (line

7). We repeat the above steps until the solar proxy weights w converge or

we reach the maximum number of iterations. In our experiments, it typically

takes between 20 and 80 iterations for this algorithm to converge depending

on the number of proxies and goodness of initial weights.
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Algorithm 1: SolarDisaggregationWithoutBattery(y,XS,XA)

Input : Net load of the target customer, y ∈ RT ;

Proxy measurements from K sites, XS ∈ RT×Ks ;

Load related ambient features, XA ∈ RT×Ka ;
Output: Estimated solar generation and home load of the target

customer, ŝ, ˆ̀;
Init: s0,w0 ← InitSolar(y,XS);

Initialize parameters θ0 for load model g;
1 while iter < Max Iteration and |witer −witer−1| > ε do
2 `iter ← siter + y;

3 Incrementally train the model g with input feature XA and output
`iter;

4 Update load `iter ← g(XA,θiter);
5 siter = `iter − y;

6 witer ← argminw ‖XSw− siter‖2;
7 siter ← XSwiter;

8 end

3.3 Evaluation

3.3.1 Dataset

We use the Ausgrid [2] dataset to evaluate the estimation accuracy of different

solar disaggregation methods. This dataset includes 30-minute resolution net

load measurements in addition to direct measurements of home load and solar

generation from homes with rooftop PV systems. It consists of 140 customers

with rooftop PV systems in Sydney, Australia (in the southern hemisphere)

with the latitude and longitude of -33.888575 and 151.187349 respectively.

Figure 3.4 shows the locations of these customers1. These locations are ap-

proximate since we only have the postal code of each customer. It is also likely

that a marker in this figure represents multiple customers that have the same

postal code. Since Sydney is a sprawling city, we cluster the customers into

three clusters according to their latitude and longitude. Points within each

cluster are drawn in the same color and shape in Figure 3.4. As it can be seen,

each cluster still spans a large area of the city. We consider two periods in

two seasons, one from November 1, 2012 to November 30, 2012 in the sum-

1The map is downloaded from OpenStreetMap [42].
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Figure 3.4: The approximate locations of customers in Ausgrid dataset. The
unit of scale bar is 5 km.

mer season (T=1440) and the other one from May 1, 2013 to May 30, 2013

in the winter season (T=1440). A small number of customers are removed

due to data quality issues in each season. For Sydney’s weather data, we pull

the solar radiation, wind speed, and outside air temperature with 30-minute

temporal resolution using the Solcast API [50].

3.3.2 Variants of our Disaggregation Method

We implement our method with 4 different solar proxy settings.

• 3Proxies: we directly use solar generation data for the same periods

from 3 real rooftop PV systems in the same city.

• 1P+1SP: we only use 1 real solar proxy combined with 1 synthetic
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Table 3.1: Physical parameters of synthetic proxies we set in different proxy
settings.

Method orientation (◦) tilt (◦) DC rating (kW)

1P+1SP(SP1) 0 33.9 3
1P+3SP(SP1) 0 33.9 3
1P+3SP(SP2) 90 33.9 3
1P+3SP(SP3) 270 33.9 3

1P+3SP(SPx) refers to the xth synthetic proxy in 1P+3SP; The panel faces respectively
N, E, S, and W when the orientation angle is 0◦, 90◦, 180◦, 270◦.

proxy. In this case, the ideal orientation angle in each hemisphere is

used to create the synthetic proxy. It is specifically 180◦ in the northern

hemisphere and 0◦ in the southern hemisphere.

• 1P+3SP: we use 1 real solar proxy combined with 3 synthetic proxies

with different orientation angles.

• 3SP: we use 3 synthetic proxies with different orientation angles just

like the previous setting.

The parameters for different synthetic proxies are shown in Table 3.1. We set

the tilt angle to the absolute value of the city’s latitude and use a uniform

DC rating for all synthetic proxies. The tilt and DC rating have a similar

effect on solar generation curve, i.e., they scale the curve up or down [9],

whereas the orientation shifts the peak of the generation curve to earlier or

later. Therefore, we can set the tilt angle and DC rating similarly for all the

synthetic solar proxies because the elements of our weight vector w will be

adjusted by Algorithm 1.

3.3.3 Baselines

We compare the performance of our solar disaggregation method with two

methods that also use the data that is commonly available to the utility

and outperform other solar disaggregation methods proposed in the literature.

Specifically, we use the solar disaggregation methods proposed in [26] and [3]

as our baselines; these methods are labelled “Baseline 1” and “Baseline 2”,
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respectively. For a fair comparison, we implement the one-nearby-proxy-based

solar estimation method in [3] that was adopted in the case study of computing

the clear sky index. In each experiment, we use the same real solar proxy for

our method and Baseline 2. It is worth mentioning that in some homes the PV

system’s physical characteristics estimated by Baseline 2 can be quite different

from their true values due to the inaccuracy of location information and lack

of directly measured solar generation from the respective homes. Therefore, in

our implementation of Baseline 2 we constrain the system’s orientation within

specific bounds based on the hemisphere in which the home is located.

3.3.4 Evaluation Metrics

We use two metrics to assess the performance of our disaggregation method

with different proxies, and compare them with the two baselines. The first

metric is the root-mean-square error (RMSE) which has been used in many

solar disaggregation papers. The second one is a normalized RMSE metric,

called nRMSE. It is the RMSE normalized by the mean value of the real solar

generation.

nRMSE =

√∑T
t=1(st − ŝt)2/T∑T

t=1 st/T
=

RMSE

Mean
(3.6)

Compared to RMSE, this normalized metric can help us compare the disag-

gregation performance on signals with different magnitudes (i.e., generation

from PV panels with different sizes). These two are the performance metrics

used in related work that focuses on solar disaggregation2.

3.4 Experimental Results

We first evaluate the performance of our methods in disaggregating BTM solar

generation using the metrics introduced in the previous section. We analyze

the sensitivity of our methods to the amount of net meter data used for dis-

aggregation, the choice of solar proxies, and the weight initialization method.

2The mean absolute percentage error (MAPE) is occasionally used besides RMSE and
nRMSE as a performance metric for energy disaggregation. But MAPE is not well defined
in this case because the true output of the PV system can be zero in some intervals.
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Table 3.2: Comparison of disaggregation methods for the customers without
BTM battery systems. Each cell contains two slash-separated metrics: average
RMSE and nRMSE over all customers.

Summer Winter

Method Solar Load Solar Load

3Proxies 0.0590/0.450 0.0590/0.229 0.0576/0.761 0.0576/0.201

1P+1SP 0.0683/0.517 0.0683/0.270 0.0646/0.829 0.0646/0.228

1P+3SP 0.0649/0.498 0.0649/0.252 0.0618/0.791 0.0618/0.216

3SP 0.0780/0.596 0.0780/0.305 0.0664/0.826 0.0664/0.233

Baseline 1 0.0765/0.606 0.0765/0.283 0.1168/1.696 0.1168/0.375

Baseline 2 0.0853/0.632 0.0853/0.338 0.0772/0.947 0.0772/0.280

Lastly, we investigate the impact of running NILM methods on the disaggre-

gated solar generation, real solar generation, and net load. This will reveal

the potential benefits of disaggregating solar generation prior to performing

NILM.

3.4.1 Disaggregation Performance

We compare 4 variants of our method – 3Proxies, 1P+1SP, 1P+3SP, and

3SP – with the two baselines described in Section 3.3.2. For each variant, we

evaluate the disaggregation performance for all customers with PV systems

in the dataset. Since our method utilizes proxy measurements, we run the

experiment 10 times for each target home with real solar proxies that are

randomly selected from the same cluster as the target home, excluding that

home (shown in Figure 3.4).
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Figure 3.5: Comparison of disaggregated 30-min average solar generation
power (in kW) in summer (top) and winter (bottom) for a customer with-
out BTM battery storage over five days.

Estimation accuracy: Table 3.2 shows the average RMSE and nRMSE

of solar generation and home load estimation across all customers in two sea-

sons. We observe that using 3 real proxies (3Proxies) yields the lowest error

compared to the other variants of our method and the two baselines. That

aside, 1P+1SP outperforms the two baselines in both seasons, reducing the

RMSE of solar estimation by 28.20% and 18.07% on average, respectively. Sim-

ilarly, 1P+3SP outperforms the two baselines in all cases, reducing the RMSE

of solar estimation by 31.59% and 21.87% on average compared to Baseline 1

and Baseline 2, respectively. This observation suggests that by utilizing real

data from as few as one directly measured PV site, we can disaggregate solar

power and home load more accurately than the state-of-the-art solar disag-

gregation methods. Comparing the result of 3Proxies with 1P+3SP, we see a

trade-off between the disaggregation accuracy and the cost of acquiring data
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Figure 3.6: The RMSE distribution for homes in the Ausgrid dataset in two
seasons (without considering batteries). The legend shows the solar disaggre-
gation methods shown in each panel (from left to right). The whiskers show
1.5× IQR.

from real proxies. The end users can choose the best proxy setting for different

tasks (e.g., NILM, and solar modelling and forecast) according to their budget,

access to data, and required accuracy level. Furthermore, using 3 synthetic

proxies with distinct orientation angles proves to be better than using only

the best orientation angle for the southern hemisphere as PV installations in

Sydney do not necessarily have the same (ideal) orientation angle. Interest-

ingly, 3SP has the worst performance among the four variants of our method,

although it still beats Baseline 1 and Baseline 2 in winter. This underscores

the importance of having at least one real proxy for solar disaggregation to

account for high-frequency variations in solar generation (e.g., due to passing

clouds). We do not consider 3SP in the following sensitivity analysis exper-

iment as it does not use a real proxy. Figure 3.5 illustrates solar generation

disaggregated by our method with 1P+3SP and the two baseline methods for

a randomly selected home in summer and winter. It can be seen that our

estimate of the PV output is generally closer to the true output considering
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Figure 3.7: PV generation (kW) of a sample home. Dashed curves show solar
proxy measurements. The relative weights (normalized to sum to 1) of proxies
are put in the legend.

both the peak generation time and scale. Figure 3.6 is the box and whisker

plot indicating the RMSE distribution of all customers for each disaggrega-

tion method. It can be seen that all methods have a large variance in both

seasons, and in winter there are several customers with RMSE values outside

the 1.5 times the interquartile range. In spite of this, the 1P+3SP variant of

our method outperforms both baselines and the 1P+1SP variant for almost

all homes. In a few homes, the performance of the 1P+3SP variant is on par

with Baseline 2, which utilizes proxy measurements from one neighbouring PV

site. This suggests that using synthetic proxies in addition to one real proxy

improves the estimation accuracy in most cases.

Figure 3.7 shows real solar generations of a target home besides the four

proxy measurements used in 1P+3SP. It can be seen that the peak generation

of the target home and real solar proxy happen at different times as they have

different orientations. In this case, the synthetic proxy with an orientation

angle close to the target home’s orientation angle gets a much higher weight

compared to the other synthetic proxies and the real proxy. This highlights

the advantage of incorporating the synthetic proxies.

Computation time: We now compare our method (the 1P+3SP variant)

with the baselines in terms of their running time. Excessively high running

times could be prohibitively costly for the utilities that intend to run the solar
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Figure 3.8: Average RMSE of disaggregated solar for different disaggregation
lengths in the Ausgrid dataset.

disaggregation method at scale. We use an Intel Xeon Silver 4114 CPU to run

the experiments. The total running time for disaggregating one month data

from a target home in Ausgrid using 1P+3SP is around 35 seconds (25 seconds

for weight initialization and 10 seconds for solar disaggregation). The other

variants of our method have similar running times. In comparison, the total

running time of Baseline 1 is about 70 minutes, which is roughly 120 times

greater than the running time of our method. We attribute this to the fact

that this method solves a nonlinear optimization problem for the solar model

and trains a Markov switching regression model for load estimation in every

iteration. Although Baseline 2 has a running time that is similar to our pro-

posed method (i.e., 30 seconds), its estimation accuracy is worse than ours as

explained in the previous section.

3.4.2 Sensitivity Analysis

Disaggregation length: We now investigate how extending the length of

solar generation data would impact the performance of our disaggregation

method. We set the disaggregation length T to be {48, 240, 720, 1,440} time

intervals corresponding to {1, 5, 15, 30} days of data from Ausgrid. Then,

we apply our method to each T consecutive intervals separately. Similar to
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the implementation in the previous subsection, we run 10 independent exper-

iments and average the error values for each target home to account for the

randomness caused by choosing different solar proxies. Figure 3.8 shows the

RMSE of 3Proxies, 1P+1SP, and 1P+3SP for different disaggregation length.

For all three variants, the RMSE is larger for shorter disaggregation periods.

This could be because more data is available for longer periods, which is help-

ful to capture the true relationship between the solar generation of the target

home and solar proxies. Meanwhile, we believe that the estimated weight vec-

tor for solar mixture model w obtained with 5 days of data is pretty close to

the true values.

Selection of solar proxies: To evaluate the sensitivity of our methods to

the choice of solar proxies, we randomly choose 14 target homes in Ausgrid and

run 10 independent experiments with solar proxies that are randomly chosen in

each experiment. Figure 3.9 shows the RMSE distribution for the 14 different

target homes. It can be seen that the RMSE distributions obtained for a few

target homes are wider than the rest, implying that the disaggregation method

is more sensitive to the choice of solar proxies. This is because these homes are

located far from the majority of homes in this dataset. Expectedly, 1P+3SP is

the least sensitive variant to the choice of solar proxy because it only requires

one real solar proxy and incorporates three synthetic proxies.

Table 3.3: Comparing average RMSE of disaggregated solar using different
methods to initialize the weight vector w of the solar mixture model.

Constant Random Ours

3Proxies 0.4144 0.1594 0.0590

1P+1SP 0.7544 0.3203 0.0683

1P+3SP 1.1207 0.9798 0.0649

Weight initialization: To evaluate the efficacy of our initialization method,

we compare it with constant and random initialization methods. We simply

set w to 1 for constant initialization. For random initialization, we assign

random numbers in the range of [0, 1] to the weights. Table 3.3 compares the

results. It is evident that our weight initialization method can significantly
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Figure 3.9: The distribution of RMSE values obtained using different choices
for solar proxies used in solar mixture model. The top plot shows the results
from 3Proxies, the middle plot shows the results from 1P+1SP, and the bottom
one shows the results from 1P+3SP. The x-axis indicates the home index.

increase the accuracy of solar disaggregation, especially when we use only one

real solar proxy (i.e., 1P+1SP and 1P+3SP). We attribute this to the fact that

we take into account the PV system deployment characteristics estimated by

40



SolarTK.

3.4.3 NILM Performance

In recent years, more and more research groups and companies have been fo-

cusing on developing advanced NILM techniques. However, to our knowledge,

all the NILM methods are supposed to be applied to household demand which

does not contain behind-the-meter solar generation. Thus, it indicates the

need to disaggregate solar power from net meter data before trying to sepa-

rate the household demand into the constituent appliances. In this subsection,

we are going to investigate the question that how much will the performance

of NILM techniques be affected for customers with PV systems, if we directly

apply them into metered net load data instead of the disaggregated home de-

mand. For the purpose of this study, We use 1-minute resolution data from

Pecan Street [24], since this dataset has both solar generation and individual

appliance consumption data. we select 6 homes from the dataset that have

both solar generation and individual appliance consumption data, and apply

three benchmark NILM techniques, namely FHMM [19], Seq2Point [61], and

DAE [31]. These techniques are implement[4]. Following the recommendation

of [22], which explored the impact of the temporal resolution of data on the

accuracy of NILM methods, we use data with 1-minute resolution.

We evaluate the performance of these 3 NILM methods in disaggregating

the loads of 7 appliances, including the washing machine, microwave, air con-

ditioner, furnace, fridge, dryer and dish washer, in each of the 6 homes. Since

a dryer is not present in 4 of these homes, we only report the results for the

remaining 2 homes for this appliance. We train appliance models using real

home load and individual appliance load data collected between June 1 and

June 22, 2018. We then calculate the error of disaggregating each appliance’s

load in the test data (from June 23 to June 30, 2018) with 5 different sets of

input data, including the true home load, the net load (i.e., home load - BTM

solar generation), and 3 versions of the disaggregated home load obtained by

applying our disaggregation method (1P+3SP), and the two baseline methods

described earlier.
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Figure 3.10 shows the average RMSE for each appliance and the overall

RMSE for all appliances in these homes. Two important observations can

be made. First, solar disaggregation will improve the overall NILM accuracy

but different appliances are affected to a different extent. The overall RMSE

for all appliances will be 0.446 if we directly apply Seq2Point (the best per-

forming NILM method) on the net load data. However, the RMSE will be

0.150 if we apply it to the disaggregated home load estimated by 1P+3SP, an

impressive 66.2% improvement in disaggregation accuracy. We also observed

52.3% and 22.0% improvements for DAE and FHMM methods, respectively.

Among all appliances, the air conditioner shows the most significant improve-

ment in accuracy, while the disaggregation accuracy of the washing machine,

dryer, microwave, and dish washer does not exhibit a statistically significant

change. This may be due to the fact that these appliances are usually used

after the sunset, when the net load is equal to the home load, while the air

conditioner is used throughout the day. It is also worth mentioning that the

fridge yields quite similar performance for all 5 different types of input data

using the 3 NILM techniques. Our hypothesis is that this is because the fridge

has a distinct power consumption pattern that is easier to detect.

Our second observation is that a higher accuracy in solar disaggregation

leads to a better NILM performance, especially for appliances with more vari-

able power usage patterns (e.g., the air conditioner). The overall RMSE

of Seq2Point when it runs on the disaggregated home load obtained by the

1P+3SP method is 22.3% and 9.7% lower than when it runs on the disaggre-

gated home load obtained by applying Baseline 1 and Baseline 2, respectively.

Among the 7 appliances, the NILM performance improvement achieved by our

method over the two baselines is particularly noticeable for air conditioner,

which is the most power-hungry appliance in our study.

From the results depicted in Figure 3.10 it is clear that Seq2Point yields

a better performance than the other 2 NILM methods. To further study the

effect of solar disaggregation on the the performance of NILM, we compare

the air conditioning load obtained by applying Seq2Point to the net load,

true home load, and disaggregated home load using our 1P+3SP method in
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Figure 3.11(A). We also show the true air conditioning load as a point of

reference. We can see that the error of directly applying Seq2Point to the net

load data is specially high around noon which solar generation is usually at its

peak. Figure 3.11(B) compares the air conditioner load obtained by applying

Seq2Point to the home load disaggregated by 1P+3SP and the 2 baselines. It

can be seen that among the three solar disaggregation methods, our method

enables tracking the true air conditioner’s demand more closely.
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Figure 3.11: Comparison between the true and estimated air conditioner (AC)
loads. The top plot shows the results of running Seq2Point on real home
load, net load, and the home load disaggregated by our method (1P+3SP).
The bottom plot shows the results of running Seq2Point on the home load
disaggregated by our method (1P+3SP) and 2 baselines.
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Chapter 4

Solar Disaggregation with
Battery

In this chapter, we extend the solar disaggregation method described in Chap-

ter 3 by considering BTM battery storage. Section 4.1 describes the problem

formulation in the presence of latent battery storage and outlines the assump-

tions we make. Section 4.2 introduces the disaggregation algorithm, initializa-

tion techniques, and models used in this algorithm. Then Section 4.3 describes

the battery control strategy, followed by the description of a baseline method.

Finally, Section 4.4 shows the results in terms of disaggregation performance

and discusses the sensitivity of our method to BTM battery operation strategy

and battery capacity.

4.1 Problem Definition

Our objective here is to decompose the net load into three major components

rather than individual appliance loads. These components are the aggregate

home load, solar generation, and battery charge and discharge activities. Sim-

ilar to solar disaggregation without battery, this problem must be solved in an

unsupervised fashion.

4.1.1 Notation and Preliminaries

Let y ∈ RT be a vector that collects measurements of a customer’s net load

in T successive half-hourly intervals, Let ˆ̀� 0, ŝ � 0, and b̂ be vectors in RT
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that represent respectively the estimated amount of aggregate home load, solar

generation, and battery power for the same customer in these intervals. The

sign of b̂(t) indicates if the battery is being charged (negative) or discharged

(positive) in interval t. When a solar-plus-battery system is installed BTM,

the law of conservation of energy yields a balance equation: y = ˆ̀− ŝ − b̂,

where the LHS is the quantity measured by a smart meter.

4.1.2 Assumptions

We make similar assumptions to those made in the previous chapter. Firstly,

we assume that the electric utility can only use the net meter data and approx-

imate location of a customer, e.g., as indicated by the first segment of their

postal code, for the purpose of solar disaggregation. Secondly, we postulate

that the utility does not know the deployment characteristics of the BTM PV

system, including its size, orientation, tilt, and temperature coefficient. Simi-

larly, the capacity, peak power, and control strategy of the BTM battery are

not provided to the utility. Thirdly, we assume there is at least one separately

metered solar PV installation in the same city or district as our target home.

Lastly, we also assume there is a couple of dozen homes, which neither

installed PV panels nor battery and are located in the same city or district as

the target customer. Hence, the net load of each of these customers represents

their aggregate household demand at any given time. This is not a strong

assumption because the vast majority of homes fall under this category today

and the utility can take a stratified sample of homes with different sizes and

verify that they do not have BTM DER. We use the net load of these homes

to approximate the target customer’s home load.

4.2 Methodology

Similar to the solar disaggregation method we developed in Chapter 3 for

customers who installed just PV systems, for the customers with solar-plus-

battery installations, we also solve the disaggregation problem in an iterative

way, but this time using a different load model and an additional battery model
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Algorithm 2: SolarDisaggregationWithBattery(y,XS,XL,XA)

Input : Net load of target customer: y ∈ RT

Proxy measurements from Ks PV sites: XS∈RT×Ks

Load measurements from K` homes: XL ∈ RT×K`

Ambient features: XA

Output: Major load components: ŝ, ˆ̀, b̂; Weights: w
// Initialization step

// First run disaggregation without battery

1 s0, w0 ← SolarDisaggregationWithoutBattery(y,XS,XA)

2 `0 ← InitLoad(y, s0,XL)

3 b0,θ0 ← `0 − s0 − y, 0
// Disaggregation step

4 do
5 do
6 `′j ← UpdateLoad(si + b′j + y,b′j,XL)

7 b′j,θj ← UpdateBattery(`′j − si − y)

8 while (j < MaxIter and ‖θj − θj−1‖ > ε2)

9 `i,bi ← `′j,b′j

10 si,wi ← UpdateSolar(`i − bi − y,XS)

11 while (i < MaxIter and ‖wi −wi−1‖ > ε1)

that we describe in Section 4.2.1.

Before applying any solar disaggregation method, we need to identify the

type of customers since we use different disaggregation methods for PV cus-

tomers with and without installations of BTM battery. The utility can develop

a binary classification model based on historical net meter data or simply ap-

ply a clustering technique1. Once they are identified, the utility apply the

corresponding disaggregation algorithms (i.e., Algorithm 1 and Algorithm 2)

for the respective customers.

The proposed algorithm (Algorithm 2) consists of two steps: (1) initializing

each latent component, and (2) updating the components iteratively until

convergence.

In the first step, we start off with finding an initial estimate for solar gen-

eration. We do this by solving the solar disaggregation problem assuming the

1A method for identifying customers with BTM PV systems by inspecting their net
meter data has been proposed in [13]. This method, with some modification, can be used
to identify customers with solar-plus-battery installations.
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battery is one of the home appliances, thus its charge and discharge activities

are incorporated in the aggregate home load. This is done by directly calling

SolarDisaggregationWithoutBattery described in Algorithm 1 (Section 3.2.2).

We found empirically that the initial solar generation estimate found in this

manner is slightly better than directly using the initial estimate returned by

the InitSolar function described in 3.2.2, thereby speeding up the convergence

of our algorithm. Next, an initial estimate of the aggregate home load is ob-

tained using the load initialization method described in Section 4.2.2 (Line 2),

and an initial estimate of the battery power contribution is found by applying

the balance equation (Line 3). In the next step (Lines 5-10) we refine the load

estimates of the 3 major BTM components one at a time in every iteration,

until the parameters of our models converge. Note that instead of putting

the 3 update steps in the same loop, we use nested loops and refine the solar

estimate only in the outer loop. This is because the initial estimate of solar

generation is relatively more accurate than the other two components, hence

it does not need to be updated frequently. In the inner loop, we fix the so-

lar generation estimate and refine the estimates of aggregate home load and

battery power contribution sequentially. This is done through the use of the

models described in Section 4.2.1 (Lines 6-7). Once we break out of the inner

loop, we recalculate the solar power by subtracting the estimates of aggregate

home load and battery power from the net load. The remainder is used to

update the weights of the solar mixture model and refine the solar generation

estimate (Line 10). The outer loop terminates when these weights converge or

the maximum number of iterations is reached (Line 11).

4.2.1 Modelling Latent Components

We now explain the details of the BTM component models used in Algorithm 2

and discuss how the model parameters are updated in each iteration.

Solar mixture model: We use the same solar mixture model described

in Section 3.2.1, which utilizes a mixture of proxy measurements from nearby

PV systems to approximate the solar power generated by the target home’s

PV system.

49



Figure 4.1: A sample customer’s load curves (avg. power in 30-min intervals)
over the course of a day with and without battery.

We call the UpdateSolar(s,XS) function in every iteration to update the

weight vector of the solar mixture model. The first argument of this function is

our current estimate of solar generation si = `i−bi−y. The second argument

is the matrix of real and synthetic proxy measurements in T intervals, denoted

XS. We solve the optimization problem below to update the weight vector,

w.

min
w�0

‖si −XSw‖22 + λ‖w‖1 (4.1)

Let w∗ be the optimal solution of the above optimization problem. The refined

estimate of the target home’s solar generation is si = XSw∗.

Note that the L1 regularization is used here for two reasons. First, it

induces sparsity in the weight vector, weeding out proxies with an orientation

angle that is too different from that of the target home’s PV system. Second,

it prevents the estimates of solar generation and aggregate home load from

growing unbounded together, which can happen while they still satisfy the

balance equation: y = ˆ̀− ŝ− b̂ because they have opposite signs.

Home load model: Given the current load estimation `′j = si +b′j +y,
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we use a different load model to update this estimation for the customers with

installations of BTM batteries.

Specifically, we use a load mixture model similar to the solar mixture model.

This linear model relates the aggregate home load of neighbouring homes to

the aggregate home load of the target home: ` = XLµ. The use of this

mixture model, instead of a random forest regressor described in Section 3.2.1,

is motivated by the fact that due to battery operation, the net load does not

contain sufficient useful information at nighttime to extract the home load,

which is evident in Figure 4.1. This prevents us from using the random forest

regression model to determine the home load from environmental data.

When a BTM battery is installed, we solve the optimization problem below

to refine the current load estimate `i and update its weight vector µ.

min
µ�0

‖`′j − ˆ̀‖22 + λ‖A(`′j − b′j − ˆ̀)‖22 (4.2)

s.t. ˆ̀(d) = XLµ(d), ∀d ∈ {1, ..., D}

A =


1 . . . 1 . . . 0 . . . 0
0 . . . 0 . . . 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 . . . 1 . . . 1

,
indexes corresponding to interval in day D

where ˆ̀(d) and µ(d) are vectors that represent ˆ̀ and µ on day d, respectively,

and D is the total number of days for which we solve the problem. A ∈ RD×T

is a binary matrix that sums a signal over all the intervals of each day. We use

this matrix to enforce the constraint that the battery state of charge (SoC) at

the beginning of the day must be roughly equal to its SoC at the end of the

day; this can be expressed as follows: Ab ≈ 0.

Battery model: Given the current estimate of battery charge and dis-

charge activities b′j = `′j − si−y, we use a general model to update this esti-

mation without relying on the knowledge of its control strategy, peak power,

and capacity. The rationale is that utilities have no way to tell what kind

of battery is installed and how it is controlled by the customer, e.g., if it

is used to perform tariff optimization, shave the peak demand, or maximize
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self-consumption of solar power generated on-site. Solving the disaggregation

problem without knowing these parameters is indeed a challenging task.

We split a day into K time slots of equal length, denoted Tb, and model

charge and discharge activities of the battery in each time slot as the weighted

sum of sine and cosine waves with period of Tb. Note that K is an adjustable

hyper-parameter; we found empirically that setting it to 3 (Tb = 8hr) yields

the best result. We assume each quadrant of the sine and cosine waves in a

time slot is multiplied by a different weight factor, yielding 12 weight factors

for the sine wave and 12 weight factors for the cosine wave for one day. The

smoothness of sine and cosine functions makes them excellent candidates to

characterize battery operation which is not expected to change abruptly on a

timescale of half an hour as controllers are wary of the battery lifespan. Next

we calculate the weight factors by solving the problem below.

min
α,β

‖b′j − b̂‖22 + λ‖Ab̂‖22 (4.3)

s.t. b̂(t) = α(t) sin(
2πt

Tb
) + β(t) cos(

2πt

Tb
), ∀t ∈ {1, ..., T}

|b̂(t)| ≤ max(−b′j), ∀t ∈ {1, ..., T}

where α(t) and β(t) are the weight factors of sin and cos at time t, respectively.

If t1 and t2 fall into the same quadrant, α(t1) will be equal to α(t2). The same

rule applies to β. The vector θ = [α,β] collects all weight factors. Note that

max(−b′j) is the maximum amount of energy that can be charged into the

battery in a half hour time slot according to the current estimate b′j. Although

the battery’s peak charge and discharge powers are the same, we use max(−b′j)

rather than max(b′j) because our experiments suggested that charge activities

are usually estimated more accurately than discharge activities. This can be

attributed to the fact that a relatively accurate estimate of solar generation

is obtained in the first few iterations and that charge activities often take

place when there is solar generation and aggregate home load is small. Note

that estimating this peak power accurately is essential to improve the overall

accuracy of our disaggregation method.
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4.2.2 Initialization

For the customers with BTM battery systems, the first step of our disaggre-

gation method is initializing the weights of the solar model, and the aggregate

home load when a battery is installed behind the meter. A good initialization

can boost the performance of the disaggregation method while reducing its

convergence time. For solar model initialization, we treat home battery as one

of the home appliances and directly apply SolarDisaggregationWithoutBattery

function in Algorithm 1 to obtain the initial estimate of solar generation.

Load initialization: InitLoad(y, s0,XL)

For the customers with BTM batteries, we need to find the initial weights of

the load mixture model. To this end, after obtaining the initial solar generation

estimate s0, we enforce the constraint that the battery SoC at the beginning

of the day must be roughly equal to the SoC at the end of the day: A`0 ≈

A(y + s0). Therefore, solving the following optimization problem yields the

initial estimate of the load mixture model weight:

min
µ�0

‖AXLµ−A(y + s0)‖22

Once µ∗ is found, the initial home load estimate of the target home can be

calculated as follows `0 = XLµ∗.

4.3 Evaluation

We use the same dataset (i.e., Ausgrid [2]) as we use for the experiments

in Section 3.3 to measure the performance of our disaggregation method for

the customers with BTM battery system. Since we use the same solar mixture

model, we can still implement and benchmark our disaggregation method with

different solar proxy settings. In these experiments, we compare the two main

proxy settings (3Proxies and 1P+3SP) introduced in Section 3.3.2.

4.3.1 Battery Control Strategies

Since the Ausgrid dataset does not contain any home with a BTM battery

(or they are not identified in the dataset), we simulate battery activities using
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System Advisor Model (SAM) software [16]. Specifically, we feed the actual

measurements of a home’s solar generation and home load to SAM to obtain

the battery operation assuming that it is a Nickel Manganese Cobalt Oxide

(NMC) lithium-ion cell. Unless otherwise stated, we set the battery capacity to

6.4kWh, its maximum charge/discharge power to 2kW, and the default control

strategy to peak shaving (PS) [16]. This strategy uses a 24-hour look ahead

for home load and PV generation (i.e., assumes accurate forecasts for the next

day) to reduce the peak demand of the household. To test the robustness of

our method to different battery control strategies, we also simulate the price

signal forecast [38] dispatch option, which performs tariff optimization (TO) to

minimize the electricity bill and battery degradation cost, for each home using

the same battery capacity and power rating. This strategy utilizes day-ahead

PV and load forecasts, battery degradation data, and time-of-use (TOU) rates.

The TOU rates are collected from the Ausgrid website to keep it consistent

with the home load data. Figure 4.2 shows the daily battery charge/discharge

activity of one home over a month when the battery is controlled using the

two hypothetical strategies. It can be seen that the control strategy affects

charge and discharge times of the battery. For instance, by utilizing price

information, the tariff optimization strategy schedules more charge activities

in early morning hours than the peak shaving strategy; this is because the

electricity price is cheaper during that time.

4.3.2 Baseline

To compare our disaggregation method for the customers with BTM batteries,

we choose the baseline method proposed in [14], which also takes the BTM

batteries into the consideration in their disaggregation algorithm. We label

this baseline as “Baseline 3”. Note that this baseline uses solar and load

models that are similar to ours except that they approximate the battery

operation as a sine wave with a single weight factor for each day. For a fair

comparison, we select the same solar proxies in the solar model and use the

same neighboring homes to approximate the home load in each experiment. We

also compare our method with theirs using synthetic proxies (i.e., 1P+3SP),
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Figure 4.2: The heat map of the two distinct battery control strategies, peak
shaving (PS) on the left and tariff optimization (TO) on the right, over 30 days
for one customer. The x-axis shows day of the month. The y-axis indicates
the 30-minute intervals in one day, so 1 refers to the first interval of a day and
48 refers to the last interval of that day. Negative (positive) values indicate
the power (in kW) charged into (discharged from) the battery in respective
intervals.

although synthetic proxies are not used in their work. Since Baseline 3 uses

the same solar mixture model as ours, their method can benefit from using

synthetic solar proxies, the idea we propose in this thesis. Additionally, to show

that solar disaggregation methods that do not consider latent battery storage

have an inferior performance in the presence of BTM batteries, we also use

Baseline 1 and 2 described in Section 3.3.3 to disaggregate solar generation.

These two baselines treat the battery as one of the home appliances.

4.4 Experimental Results

We conduct a set of experiment to compare our disaggregation method in the

existence of BTM batteries. Since meter readings from customers with battery

installations are not included in our dataset, we use SAM to simulate battery

charge and discharge activities for each customer and superpose this on their
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net load as described in Section 4.3.1.

We first evaluate the disaggregation performance of our methods using

the two metrics (RMSE and nRMSE) introduced in Section 3.3.4. The per-

formance evaluation includes battery peak power estimation, solar generation

and home load disaggregation accuracy. We then analyze the sensitivity of our

methods to different battery control strategies and different battery capacities.

4.4.1 Disaggregation Performance

Solving this disaggregation problem in an unsupervised fashion without know-

ing physical characteristics of DER is indeed quite difficult. We consider the

two best solar proxy settings, i.e., 3Proxies and 1P+3SP, to compare our

method with Baseline 3. It should be noted that Reference [14], which is

Baseline 3, does not consider the use of synthetic proxies. Instead, it uses

data from 15 real proxies for each home. Yet, we implement this method with

both real and synthetic proxies for fair comparison with our work. Moreover,

we compare the solar estimation accuracy with Baseline 1 and Baseline 2 in-

troduced in Section 3.3.3 to explore how the presence of BTM battery could

affect the performance of these methods that are not originally designed to

work when other types of DER are installed behind the meter. Recall that

when a BTM battery is installed, our disaggregation method relies on a mix-

ture model to approximate the load of the target home given the loads of a

number of neighboring homes. To this end, for each target home, we ran-

domly choose 20 homes in the Ausgrid dataset that do not have a PV system

or battery. Measurements from these homes are used to build the load model.

Estimating the peak charge/discharge power: We now discuss how

accurately we can estimate the peak charge or discharge power of the battery.

Since the peak charge and discharge rates of a lithium-ion battery are nor-

mally equal, we refer to both as the battery’s peak power. We argue that the

more accurate our estimate of the peak power becomes, the better we could

disaggregate solar generation as it is used in the second constraint of (4.3).

We note that, for various reasons, the battery operation signal simulated

by SAM may never include the preset peak power, i.e., 2kW. In that case, we
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Figure 4.3: Comparison of true and estimated battery peak charge/discharge
power using our method and Baseline 3 in the 1P+3SP setting. We assume
each battery system has the same peak charge and discharge power. The
dashed line shows y = x.

treat the maximum power that was simulated by SAM as the true peak power.

As shown in Figure 4.3, the peak power estimated by our method is closer to

the true peak power of the battery compared to Baseline 3. Overall the mean

absolute error of the estimated peak power with respect to the real peak power

is 0.4092 using our method (1P+3SP), while it is 1.0322 for Baseline 3 in the

same solar proxy setting.

Solar disaggregation accuracy: Table 4.1 and Table 4.2 show the average

RMSE and nRMSE of solar generation and home load estimation across all

customers in two seasons, considering two battery control strategies. We first

look at the peak shaving (PS) strategy. It can be readily seen that our method

outperforms Baseline 3 in both seasons with 1P+3SP and 3Proxies solar proxy

settings, reducing the RMSE of solar generation by 8.67% and 12.73% on aver-
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Table 4.1: Comparison of disaggregation methods for the customers with BTM
battery systems using two different battery operation strategies. Each cell
contains average RMSE across all customers.

Summer Winter

Method Ctrl Solar Load Solar Load

Ours (1P+3SP) PS 0.0740 0.2229 0.0702 0.2698

Baseline 3 (1P+3SP) PS 0.0777 0.2397 0.0801 0.2937

Ours (3Proxies) PS 0.0690 0.2232 0.0626 0.2704

Baseline 3 (3Proxies) PS 0.0748 0.2402 0.0758 0.2915

Ours (1P+3SP) TO 0.0825 0.2229 0.0766 0.2682

Baseline 3 (1P+3SP) TO 0.0873 0.2412 0.0793 0.2948

Ours (3Proxies) TO 0.0772 0.2229 0.0710 0.2694

Baseline 3 (3Proxies) TO 0.0834 0.2417 0.0759 0.2930

The second column indicates the battery control strategy. PS stands for peak shaving with
one-day look ahead and TO stands for tariff optimization.

Table 4.2: Comparison of disaggregation methods for the customers with BTM
battery systems using two different battery operation strategies. Each cell
contains average nRMSE across all customers.

Summer Winter

Method Ctrl Solar Load Solar Load

Ours (1P+3SP) PS 0.583 0.785 0.851 0.856

Baseline 3 (1P+3SP) PS 0.605 0.844 0.983 0.936

Ours (3Proxies) PS 0.540 0.786 0.771 0.858

Baseline 3 (3Proxies) PS 0.582 0.846 0.931 0.930

Ours (1P+3SP) TO 0.658 0.787 0.942 0.857

Baseline 3 (1P+3SP) TO 0.681 0.853 0.973 0.948

Ours (3Proxies) TO 0.598 0.788 0.885 0.861

Baseline 3 (3Proxies) TO 0.644 0.855 0.920 0.943

The second column indicates the battery control strategy. PS stands for peak shaving with
one-day look ahead and TO stands for tariff optimization.
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age, respectively. The same observation can be made about the load estimation

accuracy in both seasons. From Figure 4.4 we can conclude that Baseline 3

fails to capture most of the variations in the home load. This leads to several

problems should the estimate home load be further decomposed into individ-

ual appliance loads through the application of a non-intrusive load monitoring

technique [12]. We attribute this to the fact that this baseline attempts to fit

a single sine wave to the battery operation signal.

Meanwhile, we apply Baseline 1 and Baseline 2 to disaggregate solar power

from the net meter data when battery is installed behind the meter and used

for peak shaving. Recall that these baselines are not capable of decomposing

the net meter data into three components; thus, we pretend that battery

is one of the home appliances and only decompose the net meter data into

solar generation and other loads. We find that the average RMSE of solar

generation using Baseline 2 is 1.2671 in summer and 0.2387 in winter, which is

around 80% higher than the average RMSE of solar generation when battery

was not installed (cf. Table 3.2). Interestingly, the average RMSE of solar

generation using Baseline 1 is 0.0777 in summer and 0.0813 in winter. This is

on par with the accuracy of Baseline 3, but still worse than our method. We

believe that this is because, without battery, Baseline 1 tends to overestimate

solar generation, especially in winter. Since charging the battery reduces the

net load, Baseline 1 estimates improve when battery is installed. Overall,

our disaggregation method can beat all baseline algorithms in both seasons

regardless of what components are installed behind the meter, and can separate

battery activities from home load, thereby supporting NILM applications that

rely on the home load data.

4.4.2 Sensitivity Analysis

Battery control strategy: we evaluate the sensitivity of our method and

Baseline 3 to the choice of the battery control strategy. Table 4.1 allows us

to compare the disaggregation performance for peak shaving (PS) and tariff

optimization (TO) strategies in both summer and winter. It can be seen that

changing the control strategy affects the performance but the performance of

59



Figure 4.4: Comparison of disaggregated BTM components - solar generation
(top), home load (middle) and battery operation (bottom), for a customer
with a BTM battery in five days. The y-axis shows the average power (in kW)
consumed or generated in a 30-min interval.

our method is still superior to Baseline 3. Notice that our method does not

make any assumption about the battery control strategy adopted by the target

home.
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Figure 4.5: The distribution of RMSE values obtained using different battery
capacities. We set the battery capacity to be 20%, 60%, and 100% of the
average daily household demand. The left plot shows the accuracy of solar
production estimates and the right plot shows the accuracy of home load
estimates. The length of the whiskers shows 1.5 times IQR.

Effect of varying the battery capacity: We investigate the sensitivity

of our result to the battery capacity. To this end, we set the battery capacity

to be 20%, 60%, and 100% of the average daily household demand and re-

run the disaggregation method. We choose 20% and 60% of the average daily

demand because roughly speaking, for most homes, they give the capacity of

commercial home batteries that are available in the market. Figure 4.5 shows

the distribution of RMSE values when our method is used for disaggregation

in the 1P+3SP and 3Proxies settings. As the battery capacity increases, we

can see that the median of the disaggregation error increases slightly for solar

generation, but this effect is less pronounced for the home load. This is ex-

pected because a bigger battery can mask some fluctuations in the net load

that are deemed useful for disaggregation when solar generation is non-zero.

We conclude that increasing the battery capacity could negatively affect our

result but this impact is small for realistic battery capacities in the range of

5 to 15kWh.
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Chapter 5

Conclusion

Solar PV generation is one of the fastest-growing renewable energy sources

worldwide. High penetration of solar PV brings new challenges for the dis-

tribution system planning and operation, requiring the utilities to develop

low-cost disaggregation techniques for monitoring the solar power injected into

their systems. In this thesis, we first surveyed the literature on the solar disag-

gregation area, identified key challenges that must be overcome, and presented

opportunities for improving the accuracy of disaggregation techniques. Then

we studied and answered three important research questions in the solar disag-

gregation area under the assumption that historical disaggregated data from

the target home is unavailable and the deployment characteristics of the BTM

PV systems are unknown. The first question is how to disaggregate solar gener-

ation in a more data efficient way? The second question is about the accuracy

of NILM techniques when they are applied to the disaggregated home load.

Can we still understand which appliances are turned on and when? Finally, as

more BTM batteries are expected to be installed in customers’ houses, can we

maintain the performance of disaggregating solar generation in the presence

of BTM battery?

For the first question, we proposed an approach that entails inferring the

physical characteristics from smart meter data and disaggregating solar gen-

eration using an iterative algorithm. This algorithm takes advantage of solar

generation data (aka proxy measurements) from a few sites that are located

in the same area as the target home, and solar generation data synthesized
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using a physical PV model. We evaluated our methods with 4 different proxy

settings on around 140 homes in Australia. Table 3.2 showed that the so-

lar disaggregation accuracy is significantly improved over two state-of-the-art

methods using only one real proxy along with three synthetic proxies.

For the second question, we investigated whether a more accurate disaggre-

gation technique could lead to higher accuracy in NILM. Our results, shown

in Figure 3.10, suggested that using the disaggregated home load rather than

the net load data could improve the overall accuracy of three popular NILM

methods.

For the third question, we extended our work and tackled the problem in

the presence of a BTM battery without knowing its capacity, peak charge/discharge

power, and control strategy. To our best knowledge, most state-of-the-art dis-

aggregation methods are designed assuming that the PV system is the only

type of DER installed behind the meter. For the customers with solar-plus-

battery installations, we solved the solar disaggregation via an iterative method

but using a different load model and an additional battery model. We eval-

uated our methods with 2 different proxy settings on around 140 homes in

Australia. Because meter readings from customers with battery installations

are not included in the dataset, we simulated the battery charge and discharge

activities for each customer and superpose this on their net load. The results

in Table 4.1 and Table 4.2 showed that our method can improve the perfor-

mance of solar production estimation by a clear margin over a baseline that

tries to model operations of the latent battery.

The research presented in this thesis has certain limitations that we plan

to address in future work:

• Our disaggregation methods are not evaluated in a different climate

where snow accumulation can significantly affect the output of PV sys-

tems. The snow coverage situations in solar proxies and target PV sys-

tem may not only be different but also change over time. This poses a

significant challenge to find the true relationship between the solar gen-

eration of the target home and solar proxies. In future work, we plan to
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test our methods in winter in a country, like Canada.

• Both of our methods are designed for customer-level solar disaggrega-

tion. In addition to the net load data, feeder-level disaggregation meth-

ods benefit from data that can only be collected at a higher level of

aggregation, e.g., high-resolution voltage and current phasor measure-

ments taken at feeder head. In future work, we aim to explore how the

proposed solar disaggregation technique can be used to estimate the to-

tal amount of solar power generated below a distribution transformer or

in one neighbourhood.

• In Chapter 4, we evaluated our method using simulated battery activi-

ties. In reality, the batteries installed behind the customer’s meter may

vary in terms of make and model, operating strategy, capacity, and peak

charge/discharge power. We plan to evaluate our method using data

from real customers with solar-plus-battery installations. This allows

us to use the operation of a real battery rather than simulating it. We

also aim to study the disaggregation problem in the presence of mobile

batteries, e.g., from plug-in electric vehicles.

• We investigate one source of latent flexibility (i.e., BTM energy storage)

only. Nowadays, the shape of the net load can change due to other rea-

sons, such as demand response mechanisms and smart thermostat oper-

ations. This creates problems for most data-driven solar disaggregation

methods. In future work, we plan to extend our work by considering

other sources of flexibility.

Despite these limitations, the work presented in this thesis makes several

significant contributions in the solar disaggregation area. First, the proposed

data-efficient solar disaggregation method advances the state of the art in

terms of data needs and disaggregation accuracy. Second, for the first time,

we have quantified the change in the accuracy of NILM techniques when they

run on the disaggregated home load rather than the net load measured by a

smart meter. Last but not least, the method proposed in Chapter 4 is one
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of the few attempts to disaggregate solar generation from net meter data in

the presence of a BTM battery. We hope that this work sets a foundation for

future work on solar modelling, prediction, and disaggregation, and facilitates

the development of new methods.
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