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Abstract

Deep learning (DL) has become a leading subset of machine learning (ML) and has

been successfully employed in diverse areas, ranging from natural language process-

ing to medical image analysis. In medical imaging, researchers have progressively

turned towards multi-center neuroimaging studies to address complex questions in

neuroscience, leveraging larger sample sizes and aiming to enhance the accuracy of

DL models. However, challenges arise due to variations in imaging characteristics

across centers, often attributed to differences in MRI scanners. This phenomenon,

known as domain shift, leads to inconsistent performance of DL models when applied

to unknown test data. Domain adaptation (DA) methods aim to bridge this domain

gap by aligning data across different domains. Unfortunately, the lack of suitable

tools for domain shift analysis hinders the development and validation of DA tech-

niques. Moreover, existing solutions often process entire datasets without accounting

for source/target domain heterogeneity. Furthermore, the impact of various MRI

scanners on different disease classification tasks remains largely unexplored.

Motivated by the aforementioned challenges and limitations of existing literature,

I first propose a novel framework called DSMRI (Domain Shift analyzer for MRI)

to comprehensively assess the extent of domain shift within MRI datasets. This

framework provides key insights into domain shift factors by integrating knowledge

from diverse domains, including spatial, frequency, wavelet, and texture analysis.

Secondly, I introduce another unsupervised framework called DeepDSMRI, which

analyzes domain shift in MRI data using various deep models pre-trained on the

ImageNet dataset. DeepDSMRI demonstrates its efficacy in determining domain shift
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not only in structural MRI (e.g., T1-weighted, T2-weighted, and FLAIR) but also in

advanced MRI modalities such as diffusion-weighted imaging (DWI) and functional

MRI (fMRI). To the best of my knowledge, this is the first work to analyze and

quantify domain shift in multi-modal MRI using DL without requiring additional

training on MRI data.

Thirdly, I investigate the impact of scanner vendor variability on various disease

classification tasks using multiple DL models. My analysis reveals a significant decline

in classification accuracy when DL models are tested with data from different scanner

manufacturers. To address the challenging task of amyotrophic lateral sclerosis (ALS)

classification, where existing methods have not achieved satisfactory accuracy, I pro-

pose an effective and robust transformer-based framework called SF 2Former. Lever-

aging the vision transformer (ViT) concept, SF 2Former employs a novel linear fusion

of spatial and frequency domain information to efficiently extract robust local and

global discriminative features. This study pioneers in applying a transformer-based

deep model for ALS classification, achieving state-of-the-art performance compared

to existing popular ML methods.

Finally, a new perspective in solving the domain shift issue for MRI data is de-

signed by identifying and addressing the dominant factor causing heterogeneity within

the dataset. An unsupervised DA method called DAMS (Domain Adaptation of MRI

Scanners) is developed to align domain-invariant features between source and target

domains by minimizing discrepancies in their feature maps. Instead of treating the

entire dataset as a single source or target domain, the method processes data based on

the primary factor driving variations. Furthermore, my research extends the concept

of handling domain shift through black-box source-free domain adaptation (SFDA),

which aggregates knowledge from multiple source domains and eliminates the need

to access source data during target domain adaptation. This thesis offers innovative

solutions to domain shift challenges in MRI data analysis, benefiting researchers not

only in medical imaging fields but also in computer vision.
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Chapter 1

Introduction

1.1 Background and Motivation

Machine learning (ML) is a mathematical method based on statistics by which a

computer model is created to perform specific tasks by learning from existing data

and has been applied in clinical applications for many years [1–3]. A prominent

ML branch known as deep learning (DL) builds models using layers of interconnected

neurons to learn critical insights from existing data and to predict the outcome of new

data. Unlike traditional ML methods, DL networks automate feature extraction and

selection, making them user-friendly and more prevalent than classical ML techniques.

Recent research has demonstrated that DL, particularly convolutional neural networks

(CNNs), are an effective strategy for classifying, segmenting, and detecting objects

of interest in medical images [4–6]. CNNs, as statistical tools, learn the input data’s

statistics under the assumption of identical independent distribution (IID). Under

this assumption, a trained CNN model is expected to perform consistently on samples

with similar or identical distributions. Hence, the practical efficacy of DL frameworks

depends on their successful generalization to unknown datasets [7].

Magnetic resonance imaging (MRI) is a versatile, non-invasive imaging modality

offering exceptional contrast for analyzing soft tissue. MR images have useful appli-

cations, including diagnostics, due to the varied appearance of organs, tissues, and

pathology. High-resolution images of brain anatomy are obtained during MRI scans,
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allowing medical professionals and researchers to examine different neuroanatomical

aspects like cerebral structures, white matter, and grey matter. Radiologists and neu-

rologists use MRI scans to identify abnormalities, such as tumors, lesions, atrophy,

or other anatomical changes, that may be signs of disorders like multiple sclerosis,

epilepsy, and brain tumors [8–10]. Training a DL model requires sufficient data (e.g.,

MR images, clinical scores) and/or their corresponding ground truth. The network

uses the training data to adjust its internal parameters (up to many millions). The

robustness of the model is highly dependent on the inclusion of a large number of

relevant samples in the training phase. During deployment, the trained model is ap-

plied to unseen samples, leveraging its learned parameters to formulate predictions.

While numerous earlier studies have evaluated various DL models across diverse MRI

datasets, the generalization issue of DL models on MR images remains [11].

In medical research and clinical applications, the utilization of MRI data sourced

from multiple centers has become increasingly prevalent [12–14]. Large-scale multi-

center MRI datasets play a vital role in advancing medical research, not only in

aiding in the understanding, diagnosing, and treating of a wide range of disorders but

also in training DL models. However, the inherent variability among these centers

presents challenges due to a phenomenon known as “domain shift”, which can impact

the quality and reliability of the analysis. Domain shift is the term used to describe

the variances in data distributions across different centers resulting from variations

in hardware, acquisition protocols, patient demographics, and environmental factors

[15]. Several parameters contribute to this phenomenon, including the imaging pro-

tocol (comprising aspects such as flip angle, acquisition orientation, slice thickness,

and resolution) and the scanner itself (encompassing manufacturer, model, magnetic

field strength, and the number of channels per coil). As a result, the appearance,

contrast, intensity distribution, spatial resolution, and noise level of MR images differ

qualitatively and quantitatively from site to site and study to study [16].

The problem of domain shift creates several challenges in analyzing and interpret-

2



ing MRI data using ML/DL models. Firstly, it significantly impacts the performance

and reliability of ML analysis pipelines, in particular, models trained on data from

one center often struggle to generalize effectively when they are applied to data from

other centers [17]. This limitation has hindered the widespread adoption of auto-

mated tools for tasks like diagnosis, treatment planning, and disease monitoring, as

their effectiveness relies on their ability to handle data from diverse sources. Secondly,

domain shift can introduce biases and confounds in research studies that utilize multi-

site MRI datasets [18]. In the context of clinical trials or population studies involving

data from multiple centers, the variations originating from domain shift might dis-

tort statistical analysis, leading to erroneous conclusions and misleading findings.

Thirdly, the inherent variability in scanner hardware and software across centers can

introduce technical discrepancies, further complicating the comparison and fusion of

data. These issues pose significant challenges for researchers and clinicians seeking

to extract reliable and reproducible insights from multi-center MRI datasets. Ef-

fectively addressing the challenges associated with domain shift in multi-site MRI

datasets requires advanced techniques and methodologies.

Domain adaptation (DA) and harmonization methods [19–21] aim to bridge the gap

among different domains by aligning and harmonizing the data from different centers.

The primary goal of DA is to make ML models perform well in the target domain,

even when they are trained with data from a different source domain. This is crucial

because, in many real-world scenarios, it is impractical or expensive to collect labeled

data for the target domain. As depicted in Fig. 1.1, the domain shift phenomenon,

marked by discrepancies in data distributions, highlights the significance of DA. The

top row of Fig. 1.1 illustrates how variations in image acquisition protocol can lead

to significant discrepancies in imaging characteristics, a common challenge in fields

like retinal and MR images. In contrast, the bottom row exemplifies the purpose of

DA: mitigating the distribution disparities between the source and target domains

through adaptation techniques. However, prior to developing DA or harmonization

3



algorithms, it is crucial to gain a comprehensive understanding of the nature and

extent of domain shift present in both source and target datasets. Unfortunately,

the lack of adequate tools for domain shift analysis serves as a significant bottleneck,

hindering the development and validation of DA techniques.

Figure 1.1: Illustration of the “domain shift” phenomenon with significant contrast
variation between source and target domain (top row) and the fundamental of domain
adaptation (distribution of source and target samples before and after adaptation).

Although many research studies have demonstrated exemplary performance on

specific domains and MRI protocols, the applicability of these methods in the target

data with different imaging distributions remains questionable [22]. To ensure that

the trained models can be used effectively in real-world clinical practice, it is essential

to overcome the aforementioned challenges posed by domain shift. Towards this, some

studies [23–25] used supervised domain adaptation (SDA) techniques that require la-

bels from both source and target domains. Some researchers [26, 27] trained their

models on source domains and fine-tuned the trained models with partially labeled

data from the target domain in a semi-supervised fashion. Unsupervised domain
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adaptation (UDA) methods [28–32] do not require the ground truth information from

the target domain but require accessing the labeled source data during the training

process. Taking a step further towards more realistic configuration, source-free do-

main adaptation (SFDA) approaches [33, 34] eliminate the need for direct access to

source data during model training. As shown in Fig. 1.2, the most notable difference

between UDA and SFDA is that the UDA models leverage raw source and target do-

main data, whereas SFDA methods only utilize the trained parameters or predictions

of the source domain and then adapt them with unlabeled target data. However,

existing techniques do not analyze the nature of heterogeneity present within the

source/target domain and process the entire dataset to mitigate the effects of domain

shift.

Figure 1.2: The basic comparison of (a) UDA and (b) SFDA configurations.

1.2 Contributions

Motivated by the aforementioned challenges and limitations of the existing literature,

firstly, I propose a novel Domain Shift analyzer for MRI (DSMRI) framework to

comprehensively assess the extent of domain shift within MRI datasets in Chapter 3.

The proposed framework provides key insights into domain shift factors and identi-

fies the dominant contributors to data heterogeneity. DSMRI integrates knowledge

from diverse domains, including spatial, frequency, wavelet, and texture analysis.

This multi-domain feature extraction approach strengthens the framework’s ability
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to capture various aspects of domain shift. Moreover, deriving the unique features

from the frequency domain to capture low and high-frequency image information and

incorporating wavelet domain features to measure sparsity and energy within wavelet

coefficients significantly enhance the robustness of domain shift analysis. Further-

more, using visualization techniques such as t-SNE [35] and UMAP [36] enrich the

framework’s ability to visually represent and interpret domain shift effects. The effec-

tiveness of the proposed approach is demonstrated using structural MRI data (e.g.,

T1-weighted, T2-weighted, and FLAIR) across seven large-scale multi-site neuroimag-

ing datasets.

In Chapter 4, I introduce another unsupervised framework called Deep Domain

Shift analyzer for MRI (DeepDSMRI), which analyzes domain shift in MRI data

using various deep models pre-trained on the ImageNet dataset [37] without requiring

additional training on MRI data. The proposed framework demonstrates its efficacy in

determining domain shift not only in structural MRI (e.g., T1-weighted, T2-weighted,

and FLAIR) but also in other advanced MRI modalities such as diffusion-weighted

imaging (DWI), and functional MRI (fMRI). To the best of my knowledge, this is the

first work to analyze and quantify domain shift in multi-modal MRI data using deep

learning.

In Chapter 5, the focus is on the non-biological factors of variability in neuroimag-

ing data, which pose a barrier to the practical applications of DL algorithms in the

medical domain. Specifically, I investigate the impact of scanner vendor variability

on various disease classification tasks across multiple DL models. My analysis re-

veals a significant decline in classification accuracy when DL models are tested with

data from different scanner manufacturers. Subsequently, experiments show that em-

ploying a popular statistical harmonization technique called ComBat fails to provide

improvements in disease classification performance when it is applied to multi-center

datasets of 3D structural MR images.

In my previous investigation of disease classification performance using existing
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deep models, I discovered that no existing models provide satisfactory accuracy for

the challenging task of ALS classification. To address this, I propose an effective

and robust transformer-based framework called SF 2Former (spatial and frequency

fusion transformer) for ALS classification using multi-modal brain imaging data in

Chapter 6. Leveraging the concept of the vision transformer (ViT) [38], SF 2Former

distinguishes ALS samples from healthy controls by utilizing a set of intermediate 2D

coronal slices extracted from 3D MRI data. The framework employs a novel linear

fusion of spatial and frequency domain information to efficiently extract robust local

and global discriminative features. To the best of my knowledge, this is the first study

to apply a transformer-based deep model for ALS classification, achieving state-of-

the-art performance compared to many popular CNN-based DL methods. Notably,

SF 2Former not only excels in ALS classification but also demonstrates superior per-

formance in classifying other neurodegenerative diseases such as Alzheimer’s disease

and Parkinson’s disease.

In Chapter 7, I propose a new perspective in solving the domain shift issue for MRI

data by identifying and addressing the dominant factor causing heterogeneity in the

dataset. Specifically, I design a multi-source UDA method which aligns the domain-

invariant features of the source and target domain by minimizing the discrepancy

between these domains. I combine maximum mean discrepancy (MMD) [39] and

a modified correlation alignment (CORAL) [40] loss functions to extract pairwise

domain-specific invariant features. Instead of regarding the entire dataset as a source

or target domain, the dataset is processed based on the dominant factor driving data

variations which is the scanner manufacturer.

Finally, I extend the concept of handling domain shift under the formulation of

black-box SFDA, which eliminates the need for concurrent access to both source

and target data during training. My proposed technique employs self-distillation and

consistency regularization for pseudo label generation and refinement with a learnable

ensemble network. The successful implementation of these proposed strategies has
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significant implications for the fields of computer vision and medical imaging. It

enables the transfer of knowledge from one or multiple domains while preserving

privacy and facilitates the application of learned knowledge to domains where data

scarcity is a prevailing challenge.

To assess the effectiveness of the proposed frameworks, I conduct comprehensive

experiments with a wide range of diverse multi-center MRI datasets, including partici-

pants with amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s

disease (PD) and autism spectrum disorder (ASD) in addition to healthy controls

(HC). To foster reproducibility and knowledge sharing, the Python source codes of

the proposed frameworks have been made publicly available.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews existing lit-

erature on domain shift in MRI data, domain shift analysis tools, methods for ALS

and AD classification, MRI harmonization, and domain adaptation techniques. Two

prominent proposed methods to analyze domain shift on MRI data are introduced in

Chapters 3 and 4. The effects of different scanner manufacturers on various disease

classification tasks are discussed in Chapter 5. Afterwards, a novel disease classifica-

tion framework is presented in Chapter 6. Finally, Chapter 7 covers DA techniques

designed to handle domain shift in MRI data. For each proposed framework, I first

describe the approach and then present the experimental results. Chapter 8 concludes

the dissertation and discusses future research directions. Appendices A and B provide

additional experimental details and results related to the corresponding chapters.
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Chapter 2

Related Works

2.1 Domain Shift in MRI Data

Prior studies have widely acknowledged and examined the presence of domain shift

in diverse MRI datasets. Researchers have consistently reported variations and chal-

lenges originating from domain shift, highlighting the need for robust analysis tech-

niques [41–43].

A study by Dadar et al. [44] examined the impact of scanner manufacturers on a

brain MRI dataset collected from multiple imaging centers. They reported significant

differences in gray and white matter volume estimation among scanner manufacturers.

These variations affected the reliability of automated brain segmentation algorithms,

resulting in inconsistent outcomes from different centers. In another investigation

by Tian et al. [45], domain shift effects were analyzed to reduce the site effects

on gray matter volume maps using a travelling-subject MRI dataset obtained from

various sites. They considered several underlying domain shift factors such as scanner

manufacturer, model, phase encoding direction, and channels per coil. Interestingly,

they found that the scanner manufacturer is the most significant parameter causing

domain shift, followed by the scanner model.

In another study, Lee et al. [46] explored the effects of changing MRI scanners on

whole-brain volume change estimation at different time point visits. They identified

that inter-vendor (e.g., Philips to Siemens) scanner changes led to more significant
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effects on percentage brain volume change than intra-vendor (e.g., GE Signa Excite to

GE Signa HDx) scanner upgrades. Additionally, Glocker et al. [47] conducted an em-

pirical study to investigate the impact of scanner effects when using ML on multi-site

neuroimaging data. The authors discovered that even after meticulous pre-processing

using advanced neuroimaging tools, a classifier could identify the origin of the data

(e.g., scanner) with high accuracy. Furthermore, Panman et al. [48] experimented

with 8-channel and 32-channel head coil configurations using structural, diffusion and

functional MR images while keeping all other image acquisition parameters identical.

They showed that the variations in the number of head coils could considerably impact

the outcomes of analysis methods, despite having the other acquisition parameters

synchronized.

The above studies collectively highlight the pervasive presence of domain shift

in multi-center MRI datasets. The observed variations in image characteristics and

acquisition parameters across centers pose significant challenges for analysis and in-

terpretation.

2.2 Quality Assessment Methods for MRI Data

MRIQC [49] is an open-source tool developed to automatically predict the quality of

MRI data acquired from unseen sites, as manual inspection is subjective and imprac-

tical for large-scale datasets. The tool extracts a set of spatial domain features to

train an ML classifier and predict whether a scan should be accepted or excluded from

the analysis. The authors validated that MRIQC accurately predicted image quality

on an unseen dataset of multiple scanners and sites with approximately 76% accuracy.

To address the errors and inconsistencies in brain image segmentation, Mindcontrol

[50], a web-based application, was designed to allow a user to inspect brain segmen-

tation data and manually correct errors visually. The user can view and interact with

3D brain images, including the ability to adjust opacity, slice orientation, and zoom

level for data curation and quality control (QC).
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Osadebey et al. [51] presented a quality metric scheme for structural MRI data

in multi-site neuroimaging studies. Their system evaluates image quality based on

factors such as luminance contrast, texture analysis, and lightness and generates a

total quality score. The authors demonstrated their framework’s effectiveness by

applying it to large-scale multi-center MRI data and concluded that it correlates

well with human visual judgment. The quality evaluation using multi-directional

filters for MRI (QEMDIM) [52] is a technique which is capable of detecting various

distortions, including Gaussian noise and motion artifacts. Their method utilized

mean-subtracted contrast-normalized (MSCN) coefficients to extract image statistics

in the spatial domain and achieved satisfactory accuracy in identifying low-quality

images affected by different artifacts or noises compared to undistorted images.

In another study, Esteban et al. [53] proposed a crowdsourcing approach for col-

lecting MRI quality metrics and expert quality annotations to train both humans and

machines in assessing the quality of MRI data. They revealed that the ML algorithms

trained on the crowdsourced data perform comparably to human raters in evaluating

image quality. The strategy developed by Oszust et al. [54], NOMRIQA, used high-

boost filtering to intensify the high-frequency points, which allows the identification

of various distortions. Their method utilized the fast retina key-point descriptor and

the support vector regression classifier to generate a quality score, which assists in

detecting distorted T2-weighted images.

Bottani et al. [55] introduced an automated QC method for brain T1-weighted

MRI in a clinical data warehouse. Their technique involves extracting spatial domain

features using a convolutional neural network (CNN) to predict scans which need to

be excluded. They showed that their method could recognize images with potential

quality issues, such as artifacts or motion-related distortions, and detect acquisitions

for which gadolinium was injected. Lastly, an overview of various no-reference image

quality assessment (NR-IQA) methods designed explicitly for MRI data can be found

here [56]. The authors discussed the challenges associated with evaluating MRI image
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quality due to the complex and dynamic nature of MRI data, including the influence

of various acquisition parameters, image artifacts, and population-related factors.

These QC studies focus mainly on automatically detecting artifacts or poor-quality

samples to reduce manual effort and decide whether a particular scan should be

accepted or excluded from the analysis. These studies neither emphasize quantifying

the degree of domain shift from these QC features nor analyze which features are

correlated to domain shift.

2.3 Existing Domain Shift Analysis Tools

The tools introduced by Sadri et al., MRQy [57] and Guan et al., DomainATM [20]

can be considered two closest studies to analyze domain shift on MRI data. MRQy

is mainly designed for the QC of MRI data by which manual effort to filter poor-

quality data can be automated for clinical research studies. It uses different spatial

domain image quality-related metrics to address different types of noise, shading,

inhomogeneity, and motion artifacts. Although they provided an example of detecting

site effects using their proposed features, the experimentation on large-scale datasets

with more scanner/acquisition protocol variations revealed that MRQy features could

not cluster the data accurately. Secondly, MRQy used metadata such as image/voxel

dimension from the file header. These features become identical for all the center’s

data after commonly used preprocessing steps like skull stripping or registration;

hence, they are not fruitful for site effect analysis.

On the other hand, DomainATM offers visualization of data distribution as well

as measures the domain shift distance for the original or synthetic data. Then, they

implemented some classical DA methods to show the effectiveness of these methods

in reducing the domain shift. However, their tool cannot take raw neuroimaging data,

such as NIfTI files, directly as input. To analyze real-world data with DomainATM,

the user must process the data with Anatomical Automatic Labeling (AAL) atlas and

then extract the grey matter volumes for each region of interest (ROI), making the
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tool inconvenient for many applications. Most importantly, these grey matter features

are not meaningful regarding the domain shift measurement, which is reflected in the

experimental section 3.2.8. My proposed frameworks DSMRI and DeepDSMRI are

compared with MRQy and DomainATM to demonstrate the strength of the proposed

features in analyzing the domain shift in multi-center large-scale MRI datasets.

2.4 ALS Classification

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that typically

manifests in individuals in their late fifties to early sixties, affecting both upper and

lower motor neurons in the nervous system. The degeneration of upper motor neu-

rons (UMN) leads to symptoms such as spasticity, exaggerated reflexes, and slowness

of movement while the degeneration of lower motor neurons (LMN) causes weakness,

muscle atrophy, and fasciculations. As the disease progresses, patients may expe-

rience loss of limb function, difficulty walking, speaking, and eventually breathing.

Respiratory failure often becomes the cause of death. On average the survival time

is 3-5 years from symptom onset [58]. The precise pathophysiology underlying neu-

rodegeneration in ALS remains insufficiently understood. While a small percentage

(5-10%) of ALS cases are familial, the vast majority of patients (90-95%) present

with sporadic forms of the disease [59]. Currently, only a few pharmacologic thera-

pies, such as riluzole and edaravone, have been approved for use in the early stages of

the disease to slow progression and improve survival [60]. Unfortunately, no therapies

are available that can halt disease progression entirely.

In ALS, neuroimaging is routinely utilized to rule out other diseases but does not

play a direct role in making a definitive diagnosis. While structural changes in af-

fected regions such as the precentral gyrus (PCG) and corticospinal tract (CST) can

be observed in a minority of cases through visual inspection [61, 62], the majority

of MRI scans of ALS patients do not exhibit such changes (Fig. 2.1). Therefore,

one significant challenge to developing effective treatments is the absence of estab-
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lished biomarkers that can accurately track disease progression or aid in early diagno-

sis. Recent research efforts have focused on establishing MRI measures as potential

biomarkers for tracking disease progression in ALS. The development and demon-

stration of an automated method that can accurately classify patients from healthy

controls is a critical first step towards the eventual inclusion of the technique in the

clinical diagnosis of ALS.

Figure 2.1: MR images of controls and ALS patients for T1-weighted, T2-FLAIR
and R2* modalities. Coronal images are sampled at the plane of the precentral gyrus
with a white line demonstrating the approximate path of the corticospinal tract within
each plane. There are no visually discernible features in the gray and white matter
between controls and ALS patients.

The involvement of iron accumulation in the motor cortex area has been reported

in multiple in vivo and ex vivo studies conducted on ALS cohorts. When comparing
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different MRI sequences such as T1-weighted, T2*-weighted, and FLAIR, the T2*-

weighted sequence has been shown to better capture hypointensities in the precentral

gyrus gray matter (PGGM) in ALS patients [63]. In one study, Wang et al. [64]

discovered increased R2* values in the primary motor cortex in ALS compared to

healthy controls. Furthermore, Hecht et al. [65] revealed the presence of more hyper-

intense signals in the CST in FLAIR images compared to T1-weighted, T2-weighted,

and proton density-weighted images. Similar findings were also demonstrated by Jin

et al. [66] with increased CST hyperintensity in ALS compared to control samples in

the juxtacortical PCG. Another study by Fabes et al. [67] highlighted the significance

of FLAIR intensity in the CST and corpus callosum of ALS patients in comparison

to normal controls. Additionally, Li et al. [68] demonstrated a considerable decrease

in fractional anisotropy (FA) in the left CST for ALS cohorts using structural and

diffusion tensor MRI. Lastly, Alberich et al. [69] provided an extensive overview of

imaging biomarkers in ALS. These crucial neuroimaging findings motivate my inves-

tigation into different MRI measures for the automatic differentiation between ALS

patients and healthy controls.

VoxelHop was proposed by Liu et al. [70], which used T2-weighted structural MR

images to detect ALS. However, their evaluation was limited to a small-scale dataset

consisting of 20 controls and 26 patients. By utilizing recurrent neural networks and

random forest classifiers, Thome et al. [71] designed a feature set from structural

and functional resting-state MRI which was able to achieve a maximum classifica-

tion accuracy of 66%. On the other hand, Elahi et al. [13] introduced a modified

co-occurrence histogram of oriented gradients (M-CoHOG) method for feature selec-

tion using 2D coronal slices of T1-weighted images. While their technique achieved

76% classification accuracy in a single-center dataset, it exhibited poor consistency

when applied to an extended version of the multi-center database. On top of that,

M-CoHOG required laborious efforts from experts to manually select the appropriate

coronal slices for each individual. Moreover, Chen et al. [72] employed FA informa-
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tion from diffusion tensor imaging (DTI) and a linear kernel support vector machine

(SVM) to classify ALS from healthy controls and obtained a classification accuracy

of 83%. However, their dataset was also limited, comprising 22 ALS patients and 26

healthy subjects. In another study by Kocar et al. [73], using DTI and texture analy-

sis with a linear SVM classifier, the authors reported approximately 80% classification

sensitivity and specificity.

2.5 Alzheimer’s Disease Classification

Alzheimer’s disease (AD) is a gradual fatal condition of the brain affecting 1 in 10

people above the age of 65 that deliberately impairs memory and thinking skills.

The aetiology of the disorder is not adequately understood. However, genetics and

environmental factors are thought to be involved [74]. The disease grows steadily as

irregular protein fragments named plaques and tangles are accumulated in the brain

and destroy brain cells. They originate from the hippocampus region of the brain

where memories are first developed. Afterwards, more plaques and tangles expand

into different areas of the brain and compromised brain functionalities by continuing

killing neurons [75]. This spreading around the brain basically causes the distinct

stages of AD such as mild cognitive impairment (MCI). Some drugs are generally

used for the treatment of AD which promotes healthy cognition and memory; however,

they do not stop neurodegeneration. As a result, there is no medication to cure the

disease.

In the case of AD compared to healthy control mostly the region known as the hip-

pocampus is affected at the beginning stage and considered as the prominent feature

to classify AD [76]. In later stages, the ventricle and cortex area also got affected.

Figure 2.2 shows a coronal slice of AD patient and healthy control highlighting left

and right hippocampus (yellow box) and ventricle (green box) regions. Existing re-

search, which has been conducted to predict and classify AD using diverse ML/DL

strategies, can be roughly categorized into the following four types:
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Figure 2.2: Distinguishable regions of the brain related to AD in structural MRI. It
illustrates a coronal slice of AD patient and healthy control highlighting left and right
hippocampus (yellow box) and ventricle (green box) regions.

Voxel-based: This is the most automated and straightforward technique by which

the full 3D MRI scan is used for feature extraction. However, these methods require

high computational cost, memory, and feature dimensionality. On top of that, a large

portion of the volume does not contribute any distinguishing feature in identifying

AD. A 3D CNN is designed by Shahamat et al. [77] utilizing a genetic algorithm-

based brain masking (GABM) to capture features related to AD. In another work,

Solano et al. [78] proposed a cost-efficient 3D DenseNet-121 architecture to classify

different stages of AD.

Slice-based: Several research works develop their methods based on axial projection

view, whereas few studies are also based on the coronal view. The slice-based schemes

reduce the computational complexity as well as make it easy to leverage transfer

learning models trained on computer vision-related 2D datasets. Ebrahimi et al. [79]

introduced a deep sequence-based network to classify AD given that the inputs are

coming from manually chosen 2D coronal slices. In another work, Zhang et al. [80]

combined gray matter slice region and attention mechanism to classify AD and MCI

using T1-weighted structural MRI.

ROI-based: This approach involves adequate manual observation, prior knowledge,

and/or experts support to ensure the right region is processed through the network.

In one study, Lin et al. [81] derived AD related features with the help of FreeSurfer
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[82] which includes cortical thickness, surface area, and cortical volume. Moreover,

Liu et al. [83] performed joint hippocampus segmentation and AD classification using

a 3D DenseNet-based architecture.

Patch-based: The key obstacle in the patch-based procedure is determining mean-

ingful image patches to extract local and global features. Qiu et al. [4] integrated

multi-modal inputs like MRI and neuropsychological testing scores in a CNN model

to classify AD. In another study, Li et al. [84] utilized the DenseNet architecture

with different 3D image patches clustered using K-Means clustering to distinguish

AD from healthy controls.

2.6 Transformer in Medical Image Analysis

The transformer architecture [85] was initially introduced in the context of natural im-

age processing (NLP). It allows for the capturing of long-term dependencies as well as

parallel processing of multiple words or patches. However, its application in computer

vision has been hindered by its high computational requirements. To overcome this

limitation, the vision transformer (ViT) [38] employed non-overlapping patch tokens

to embed an image, thereby reducing the spatial dimension of the representation.

ViT has achieved state-of-the-art performance on the renowned ImageNet dataset

[37] for image classification. One of the drawbacks of ViT is its incapability to learn

dependencies within the patch. The Swin transformer [86] addressed this limitation

by leveraging a hierarchical structure that captures both local to global relationships.

Moreover, the global filter network (GFNet) [87] has been proposed for capturing both

long-term and short-term spatial relationships in the Fourier domain. By applying a

discrete Fourier transform with a global convolution, the GFNet reconstructs ViT’s

self-attention layer, resulting in considerable performance improvements. Another

study by Touvron et al. [88] introduced data-efficient image transformers (DeiT)

that utilized knowledge distillation, allowing ViT to perform well even on smaller

datasets.
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Transformer-based approaches are not only leading in computer vision tasks but

have also demonstrated successful applications in diverse medical image analysis con-

texts. For instance, TransUNet [89] employed CNNs to extract features, which are

then fed into a ViT network for efficient medical image segmentation. TransFuse [90]

also leveraged the fusion of ViT and CNN features for various 2D and 3D medical

image segmentation tasks. In contrast, MedT [91], which is based on axial-attention,

investigated the viability of using transformers without large-scale datasets. Coarse

to fine vision transformer (C2FViT) [92] was developed for 3D affine medical im-

age registration using ViT and a multi-resolution strategy. Utilizing the effectiveness

of ViT, ScoreNet [93] has been proposed for histopathological image classification,

whereas Uni4Eye [94] has been developed for robust ophthalmic image classification.

Furthermore, SphereMorph [95], a robust diffeomorphic cortical surface registration

network, used a UNet-style architecture and a modified spatial transformer layer.

The success of these models demonstrates the enormous promise of transformers in

medical image analysis.

2.7 MRI Harmonization Techniques

Harmonization is a technique used to mitigate variations arising from diverse image

acquisition protocols. Many efforts have been made to address the negative impact of

scanner bias using MRI harmonization, which aims to mitigate site effects while re-

taining the statistical power to detect biological factors in images. Image translation-

based methods like CycleGAN [96] or neural style transfer [97] render harmonized

images to address the issue of domain shift. Statistical techniques, such as ComBat

[98], have also been utilized to harmonize region of interest (ROI)-extracted biomark-

ers and alleviate scanner bias.

Existing research shows that ComBat is highly successful in neuroimaging data

harmonization, focusing on removing scanner effects from a set of imaging features

such as cortical thickness, surface area, and subcortical volumes [98–101]. Pomponio
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et al. [102] applied a modified ComBat method to 145 anatomical ROI volumes to

eliminate location and scale effects for each ROI. Another study by Horng et al. [103]

reported better performance by employing radiomic features from lung computed

tomography (CT) images with a modified ComBat method.

Nevertheless, the application of a ComBat-based strategy to full-size 3D (NIFTI)

images, rather than specific ROIs or extracted features, presents an ongoing chal-

lenge. For extensive high-resolution image datasets, memory allocation constraints

may impede program execution. Additionally, ComBat-based strategies require some

demographic data to be available for all samples, such as sex, age, and disease status,

which are aimed to preserve during harmonization. Importantly, adding a new sample

to an existing dataset imposes another concern: the need to rerun the entire harmo-

nization process with the newly added data. Furthermore, modifying pixel intensities

before training may not be ideal for medical applications, as it may remove meaning-

ful pixel-level details needed for various tasks such as anomaly detection. However, a

recent study [21] revealed that existing image translation or statistical approaches in-

cluding ComBat failed to harmonize cortical thickness from multi-scanner MRI data

properly. Unlike existing harmonization methods, which apply transformation to im-

ages to reduce scanner bias, my proposed study aims to adapt datasets from various

scanners without changing the actual image content.

2.8 Domain Adaptation Methods

In recent years, there is a notable surge in research utilizing diverse DA techniques,

including supervised, semi-supervised, or unsupervised approaches, across both seg-

mentation and classification tasks in the field of medical imaging [23, 25–29, 31, 32].

For instance, Ghafoorian et al. [26] utilized transfer learning and reported that with-

out fine-tuning the model using target domain data, the pre-trained model failed for

brain white matter hyperintensity (WMH) segmentation. A mixup strategy-based un-

supervised domain adaptation (UDA) [31] for knee tissue segmentation revealed that
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the model trained from scratch with fewer samples lacked generalization and per-

formed worse when tested on different domains. Another UDA approach by Orbes

et al. [32] used a paired consistency loss to control the adaptation for WMH segmen-

tation. However, none of these studies considered scenarios involving multiple source

or heterogeneous target domains.

Wachinger et al. [23] designed a supervised classification model for AD detection

by regularizing the multinomial regression employing l1/l2 norm. Another supervised

domain adaptation (SDA) framework by Wolleb et al. [25] ignores scanner bias while

focusing on pathology-related features for HC vs. multiple sclerosis (MS) patients

classification. With pre-training and fine-tuning phases, Zeng et al. [27] utilized

federated learning for schizophrenia and major depressive disorder classification tasks.

Another SDA study by Dinsdale et al. [24] generated scanner invariant representation

for the age prediction task. Note that these methods require full or partial ground

truth from the target domain, which is often time-consuming and costly in a real-life

scenario.

In one study, Wang et al. [29] developed a pre-trained classifier using source data

and fine-tuned this model to new data, which showed improvement in the AD classi-

fication task. By learning a common embedding space for source and target samples,

the UDA framework Seg-JDOT [28] was developed for MS lesions segmentation. How-

ever, these studies overlooked the presence of heterogeneity within the target domain

dataset, specifically the variations introduced by different MRI scanners. Addressing

this heterogeneity is crucial for accurate analysis. For a comprehensive understanding

of the advancements, key aspects, and pitfalls of various DA techniques in medical

image analysis, refer to the review studies by Guan et al. [19], Choudhary et al. [104],

and Kumari et al. [105].
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2.9 Source-free Domain Adaptation

In conventional DA approaches it is assumed that both source and target domain data

can be accessed during the adaptation phase. However, this assumption often does

not align with the practicalities of many applications, particularly in the domain

of medical imaging. Factors such as privacy, confidentiality, and copyright issues

can render raw source domain data inaccessible. Furthermore, storing the entire

source dataset on resource-limited devices for training purposes can be a formidable

challenge.

To address this practical gap, source-free domain adaptation (SFDA) techniques

have drawn significant attention in recent years. Based on the level of access to

the source model’s parameters and predictions, SFDA methods can be classified into

white-box and black-box approaches. In white-box SFDA [106–108], full access to the

internal details of the pre-trained source model, including its architecture, parameters,

and gradients are available. In contrast, black-box SFDA methods [109–111] only have

access to the outputs of the pre-trained source model (i.e., predictions) without any

insight into the internal architecture or parameters. For a comprehensive overview of

recent advancements in SFDA, particularly in the context of computer vision datasets,

review studies by Fang et al. [112] and Yu et al. [113] provide detailed analyses and

summaries of the field.

In one medical imaging study, Yang et al. [33] proposed Fourier style mining and

contrastive learning to produce source-like images through statistical information of

the pre-trained source model for polyp and prostate image segmentation. In another

medical image segmentation context, Bateson et al. [34] estimated class-ratio priors

based on anatomical knowledge and maximized mutual information between target

images and their label predictions. Hong et al. [114] introduced an SFDA method

for cross-modality abdominal multi-organ segmentation using entropy minimization

and feature map statistics to guide model adaptation. In addition to entropy mini-
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mization, another study [115] proposed the Ring loss to constrain the feature vector

norm to preserve the target organ’s shape constraints for different medical image

segmentation tasks.

For medical image segmentation, further advancements in SFDA methodologies

have emerged, such as Fourier visual prompting (FVP) [116]. Their method encour-

aged a pre-trained model to perform effectively in the target domain by adding a vi-

sual prompt to the input target data. Another SFDA framework named SFHarmony

[117] modelled the imaging features as a Gaussian mixture model and minimized

the distance between source and target features across classification, segmentation

and regression tasks. Yu et al. [118] proposed prototype-anchored feature alignment

utilizing bi-directional transport and contrastive learning for cross-modality medical

image segmentation.

It is noteworthy to mention that the aforementioned SFDA-based studies using

MRI data often overlooked the intrinsic heterogeneity or domain shift within each

domain, treating the entire dataset as either a source or target domain. In contrast,

my proposed approach aims to leverage an understanding of the significant factors

driving domain shift and align the feature space accordingly, harnessing this prior

knowledge to improve adaptation outcomes.
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Chapter 3

Domain Shift Analyzer for MRI

The degree of domain shift in an MRI dataset is a problem worth investigating and

is the principal focus of this chapter. In particular, I propose a novel framework

named DSMRI (Domain Shift analyzer for MRI) to qualitatively and quantitatively

determine the degree of domain shift present in an MRI dataset. The proposed

framework leverages existing MRI quality-related spatial domain features as well as

introduces frequency, wavelet and texture domain features to quantify the degree of

domain shift. The source code is available at https://github.com/rkushol/DSMRI.

3.1 Proposed Method

3.1.1 Overview

An overview of the proposed DSMRI framework is shown in Fig. 3.1. The 22 features

used in the proposed framework are summarized in Table 3.1. The features are

extracted from the foreground of 2D slices of 3D MRI in three different directions,

i.e., axial, sagittal, and coronal. MRQy [57] is used to detect the foreground of the MR

image. However, Signal-to-Noise Ratio (SNR), Contrast-to-Noise Ratio (CNR) and

Coefficient of Joint Variation (CJV) features also involve the background intensity

information to measure their corresponding quality score.
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Figure 3.1: An overview of the proposed DSMRI framework. The different colours
in the brain icon show that MRI data originated from different sites or may be ac-
quired with distinct image acquisition protocols. Twenty-two significant features are
extracted from 2D MRI slices of each subject. Utilizing these feature maps, t-SNE
and UMAP methods are used to visualize the position of each scan in a reduced two-
dimensional plot. The results are also interpreted in quantitative analysis, where the
domain shift distance can be obtained with the maximum mean discrepancy (MMD)
distance and the ranking of 22 features to show which features play a more significant
role in classifying different domains. Best viewed in color.

3.1.2 Spatial Domain Features

Spatial domain features are based on prior studies [49, 57, 119–121]. Firstly, essential

statistical intensity distributions of the foreground (F) are extracted by MEAN =

1
HW

∑︁
i,j F (i, j), Range (RNG) = max(F ) − min(F ), and Variance (V AR) = σ2

F ,

where H = height,W = width, and σ2 = variance.

Secondly, relevant noise-related features are extracted by incorporating the F and

background (B), such as Peak SNR (PSNR) following [57], SNR1 = σF

σB
, SNR2 =

µFP

σB
, and CNR = µFP−BP

σBP
, where, µ = mean, σ = standard deviation (SD), FP =

Foreground Patch, and BP = Background Patch. FP and BP are random 5 × 5

square patches of the F and B, respectively.

Finally, to detect different types of artifacts like shadowing, inhomogeneity, alias-

ing, and motion, I employ Coefficient of Variation (CV), CJV and Entropy Focus

Criterion (EFC) features extracted from the F. The CV is defined as: CV = σF

µF
,
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Table 3.1: Summary of the proposed features used in our study to quantify the
degree of domain shift. [GLCM=Gray-Level Co-occurrence Matrix], [SD=Standard
Deviation]

Type Metric Description

MEAN Mean intensity of the foreground.

RNG Intensity range of the foreground.

VAR Intensity variance of the foreground.

CV Coefficient of Variation to detect shadowing and inhomogeneity artifacts [119].

PSNR Peak Signal to Noise Ratio of the foreground.

SNR1 Signal to Noise Ratio of foreground SD and background SD [57].

Spatial SNR2 Signal to Noise Ratio of foreground patch mean and background SD [49].

domain
CNR

Contrast to Noise Ratio to detect shadowing and noise artifacts [120].

Higher values indicate better quality.

CJV
Coefficient of Joint Variation between the foreground and background to detect

aliasing and inhomogeneity artifacts [121]. Higher values indicate head motion.

EFC
Entropy Focus Criterion to detect motion artifacts. Indication of ghosting and

blurring induced by head motion [49]. Lower values indicate better quality.

SNRF
Signal-to-Noise Ratio in the Frequency domain which can be calculated by

taking the ratio of the power in the signal to the power in the noise.

Frequency
LFR

Low Frequency Response which measures the ability of the MRI scan to

domain capture low-frequency information in the image.

HFR
High Frequency Response which measures the ability of the MRI scan to

capture high-frequency information in the image.

WCS
Wavelet Coefficient Sparsity measures the sparse information in the wavelet

coefficients, which can indicate the presence of artifacts or inhomogeneities.

Wavelet
WQS

Wavelet-based Quality Score uses the wavelet transform to analyze the spatial

domain frequency content of the image and calculates a quality score based on the

magnitude and phase of the wavelet coefficients.

WCE
Wavelet Coefficient Energy measures the amount of energy present in wavelet

coefficients, which can indicate the presence of artifacts or inhomogeneities.

Contrast
Measures local intensity variations between neighboring pixels. High contrast

indicate large intensity differences, while low indicate more uniform regions.

Dissimilarity
Calculates the average absolute difference between the pixel intensities in

the GLCM. It quantifies the amount of local variation in the texture.

Texture
ASM

Angular Second Moment measures the uniformity of the intensity distribution

domain in the image and is often used to describe the texture of the tissue.

Homogeneity
Measures the closeness of the distribution of elements in the GLCM matrix

to the diagonal elements, indicating the level of local homogeneity.

Correlation
Represents the linear dependency between pixel intensities in the image and

measures how correlated the pixels are in a given direction.

Energy
Reflects the overall uniformity in the image. It is calculated as the sum

of the squared elements in the GLCM.
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whereas, the CJV can be expressed as: CJV = (σF+σB)
|µF−µB | . The EFC is defined as:

EFC = HW√
HW

log E√
HW

, where E is derived following [57].

3.1.3 Frequency Domain Features

The frequency domain features are calculated after performing a 2D fast Fourier

transform (FFT) on F. The FFT transform is performed with the Python SciPy

library [122].

1. SNRF: The SNR in the Frequency domain assesses signal quality corrupted

by noise. It quantifies the power (or energy) ratio in the signal component to the

power (or energy) in the noise component in the frequency domain. It can be defined

as: SNRF = 10 ∗ log(
Psignal

Pnoise
) where Psignal is the power (or energy) in the signal

component and Pnoise is the power (or energy) in the noise component.

2. LFR: The Low Frequency Response (LFR) has the ability to capture low-

frequency information in the resulting image. It involves applying a low-pass filter,

calculating the amplitude spectrum using the FFT, and measuring the LFR as the

square root of the amplitude spectrum. The purpose of the low-pass filter is to

attenuate or remove high-frequency components from F, allowing only low-frequency

information to pass through. A 3 × 3 Gaussian filter [[1, 2, 1], [2, 4, 2], [1, 2, 1]]/16

is used as a low-pass filter which is convolved with F to obtain a low-pass version

of the F. The amplitude spectrum of the low-pass image is then computed using

the FFT, representing the distribution of frequencies present in the low-pass image.

Finally, the square root operation is performed to linearize the amplitude spectrum

and make it more suitable for interpretation. The LFR can be expressed as follows:

LFR =
√︁

FFT (low_pass_image).

3. HFR: Similar to the concept of LFR, the High Frequency Response (HFR) has

the ability to capture high-frequency information in an image. Instead of a low-pass

filter, a high-pass filter is applied to F, allowing only high-frequency components to

pass through while attenuating lower frequencies. This step emphasizes the high-
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frequency content of an image. A 3 × 3 Laplacian filter [[−1,−1,−1], [−1, 8,−1],

[−1,−1,−1]] is used as a high-pass filter which is convolved with F to acquire a high-

pass version of the F. After applying FFT to the high-pass image, the final HFR can

be measured as follows: HFR =
√︁

FFT (high_pass_image).

3.1.4 Wavelet Domain Features

The wavelet domain features are extracted after performing a 2D discrete wavelet

transform (DWT) on F. The wavelet decomposition is implemented with the Python

Pywt package [123], and some examples of wavelet types include Haar, Daubechies,

Discrete Meyer, Symlets, and Coiflets.

1. WCS: The Wavelet Coefficient Sparsity (WCS) is a feature used to measure

the amount of sparse information present in the wavelet coefficients of a signal or an

image. It quantifies the extent to which the wavelet coefficients are concentrated in

a few significant coefficients while the majority are close to zero or negligible. First,

a 2D DWT is applied to F, which decomposes an image into different frequency sub-

bands, representing different scales or levels of detail. Then, the wavelet coefficients

obtained from the wavelet transform are analyzed to determine their sparsity. Vari-

ous sparsity measurement techniques can be employed, such as counting the number

of coefficients above a certain threshold or using sparse representation algorithms

like l1-norm minimization. Here, the WCS is measured based on the mean of the

coefficients. Coefficients above the mean are considered significant, while those be-

low the mean are considered insignificant. The WCS can be represented as follows:

WCS =
∑︁n

i |Significant_Coefficienti |
n

.

2. WQS: The Wavelet-based Quality Score (WQS) evaluates the quality of an

image by analyzing its spatial frequency content using the wavelet transform. It

calculates a quality score based on the magnitude and phase information of the wavelet

coefficients. The magnitude represents the strength or energy of each coefficient, while

the phase represents the spatial orientation or phase shift. The WQS is calculated
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by taking the sum of the product of magnitude and cosine form of the phase for

each coefficient. The WQS can be expressed as follows: WQS =
∑︁n

i (magnitudei ∗

cos(phasei)), where, magnitude i = |Coefficient i| and phasei = angle(Coefficient i).

3. WCE: The Wavelet Coefficient Energy (WCE) measures the amount of energy

present in the wavelet coefficients of a signal or an image. It quantifies the overall

strength or magnitude of the coefficients, indicating how much information is con-

tained in each coefficient. The energy of each wavelet coefficient is computed by

taking the absolute value of its magnitude. The total energy of the wavelet coeffi-

cients is then obtained by summing up the energies of all the coefficients. The WCE

can be defined as follows: WCE =
∑︁n

i |Coefficienti|
n

.

3.1.5 Texture Domain Features

Texture features are extracted from the widely used GLCM [124, 125], which repre-

sents the spatial relationship between pairs of pixel intensities in an image. These fea-

tures provide valuable information about the spatial patterns and structures present

in an image, enabling the characterization and differentiation of various textures

within an image. I employ the Python scikit-image package [126], which provides

a convenient way to calculate various GLCM texture features. A brief description of

six GLCM features employed in the proposed framework is given below:

1. Contrast: This feature measures the local variations or differences in intensity

between neighbouring pixels in an image. It provides information about the amount

of contrast present in the image texture. It is calculated as the sum of squared

intensity differences between neighbouring pixel pairs, weighted by the frequencies

in the GLCM matrix. A higher contrast value indicates greater variation or sharp

transitions between pixel intensities, representing a more textured or detailed image.

Command: skimage.feature.greycoprops (GLCM, ‘contrast’). Formula:

Contrast =
∑︂
i,j

(i− j)2 · GLCM(i, j) (3.1)
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2. Dissimilarity: This feature calculates the average absolute difference between

the pixel intensities in the GLCM. It quantifies the amount of local variation in

the texture. Higher values indicate greater pixel dissimilarity. It is similar to con-

trast but focuses on absolute differences rather than squared differences. Command:

skimage.feature.greycoprops (GLCM, ‘dissimilarity’). Formula:

Dissimilarity =
∑︂
i,j

|i− j| · GLCM(i, j) (3.2)

3. Angular Second Moment (ASM): This feature represents the sum of squared el-

ements in the GLCM matrix and reflects the overall uniformity or homogeneity of the

image. A higher ASM value indicates a more homogeneous texture, where the pixel

pairs are distributed more evenly across the image. Command: skimage.feature.

greycoprops (GLCM, ‘ASM’). Formula:

ASM =
∑︂
i,j

(GLCM(i, j))2 (3.3)

4. Homogeneity: This feature measures the closeness of the distribution of el-

ements in the GLCM matrix to the diagonal elements, indicating the level of local

homogeneity or similarity in an image’s texture. A higher homogeneity value indicates

a greater level of similarity between neighbouring pixel pairs in terms of intensity val-

ues and spatial relationships. Command: skimage.feature.greycoprops (GLCM,

‘homogeneity’). Formula:

Homogeneity =
∑︂
i,j

GLCM(i, j)

1 + (i− j)2
(3.4)

5. Correlation: This feature measures the linear dependency between pixel inten-

sities in the image. It indicates how correlated the pixels are in a given direction and

provides information about the texture’s pattern and organization. A higher value

suggests a higher degree of linear correlation between pixel pairs in the image, rep-

resenting a more organized and patterned texture. Command: skimage.feature.
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greycoprops (GLCM, ‘correlation’). Formula:

Correlation =
∑︂
i,j

(i− µi)(j − µj) · GLCM(i, j)√︂
(σ2

i )(σ
2
j )

(3.5)

6. Energy: This feature reflects the overall uniformity or homogeneity of the

image texture. It is calculated by the square root of the sum of squared elements

in the GLCM matrix, indicating the concentration or "energy" of pixel pairs with

specific intensity values and spatial relationships. A higher energy value suggests a

more uniform and homogeneous texture in the image. Command: skimage.feature.

greycoprops (GLCM, ‘energy’). Formula:

Energy =

√︄∑︂
i,j

(GLCM(i, j))2 (3.6)

3.1.6 Applications

Applications and benefits of analyzing and dealing with domain shift in MRI datasets

are numerous. Here are some crucial ones:

1. Improved generalizability: Domain shift analysis facilitates the development

of ML models that can generalize across multiple centers. By identifying and miti-

gating the variations caused by domain shift, the methods become more robust and

applicable to data from different imaging centers.

2. Reliable and reproducible research: It helps overcome biases and confounds

triggered by the variations across different sites. By accounting for the domain-

specific effects, research studies utilizing multi-center MRI datasets can yield more

reliable and reproducible results.

3. Cross-center comparison and validation: It enables meaningful comparisons and

validation of imaging biomarkers, algorithms, and protocols across various centers.

Thus, researchers and clinicians can assess the performance and consistency of imaging

techniques and analysis methods in diverse settings.

4. Enhanced collaborative research: Multi-center collaborations have become
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prevalent in medical imaging research. Analyzing domain shift encourages data shar-

ing and collaboration among different centers by enabling a harmonized data anal-

ysis from various sources. It promotes data integration, pooling, and joint analysis,

thereby facilitating large-scale studies and advancing scientific knowledge in the field.

5. Adaptation to new centers and populations: As new imaging centers are estab-

lished, or new patient cohorts are included in studies, domain shift analysis can guide

the adaptation of existing models to these new domain configurations. This reduces

the time and effort required to deploy analysis tools in new settings, allowing faster

translation of research findings into clinical practice.

6. Quality control (QC) and outlier detection: Analyzing domain shift can serve

as a QC measure for MRI datasets. It allows for identifying centers or specific scans

that exhibit significant variations compared to others. Such insights can help in data

validation as well as detect potential sources of errors or outliers.

3.2 Experiments

3.2.1 Datasets

Seven large-scale multi-center datasets are used in the experimental evaluation of the

proposed framework. Publicly available Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) [127] and the Australian Imaging, Biomarker and Lifestyle (AIBL) [128]

datasets comprise AD patients and HC. The Parkinson’s Progression Markers Initia-

tive (PPMI) [129] and the Autism Brain Imaging Data Exchange (ABIDE) [130] are

also publicly available datasets containing MRI data with PD and ASD patients. The

Canadian ALS Neuroimaging Consortium (CALSNIC) [131] multi-site dataset incor-

porates ALS patients along with HC. For ADNI and CALSNIC, two independent

versions are used, ADNI1/ADNI2 and CALSNIC1/CALSNIC2, respectively. The

T1-weighted structural MR images are used for all seven databases. Furthermore,

I evaluate the outcomes for the T2-weighted and FLAIR (Fluid Attenuated Inver-
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sion Recovery) images of the CALSNIC2 dataset. All the aforementioned datasets

comprise data from three widely used scanner manufacturers (GE Healthcare, Philips

Medical Systems, and Siemens) except the AIBL, which only includes Siemens vendor

data. Tables 3.2 and 3.3 illustrate each dataset’s demographics and scanning details,

respectively.

Table 3.2: Demographic details of the ADNI1, ADNI2, AIBL, PPMI, ABIDE, CAL-
SNIC1, and CALSNIC2 datasets.

Group

MRI Scanner Manufacturer

Dataset GE Siemens Philips

(#total) Sex Age Sex Age Sex Age

(M/F) (Mean±Std) (M/F) (Mean±Std) (M/F) (Mean±Std)

ADNI1 AD 85/85 75.5±7.7 85/85 75.0±7.2 43/33 75.7±7.0

(900) HC 85/85 75.1±5.7 85/85 75.9±5.9 90/54 75.4±5.2

ADNI2 AD 61/40 75.0±8.5 90/57 75.1±7.8 45/58 74.5±7.3

(844) HC 64/90 74.3±5.9 92/88 74.0±6.4 68/91 75.6±6.4

AIBL AD - - 28/45 73.6±8.0 - -

(300) HC - - 107/120 72.9±6.6 - -

PPMI PD 82/37 61.6±9.7 78/46 63.0±9.8 68/37 61.6±9.9

(520) HC 17/17 59.6±13.3 71/34 59.6±10.5 20/13 59.7±11.2

ABIDE ASD 83/15 12.8±2.6 280/40 16.8±8.2 79/7 18.6±9.7

(1060) HC 91/27 13.9±3.6 275/55 17.1±7.8 94/14 17.6±8.4

CALSNIC1 ALS 21/25 57.0±11.4 43/28 59.6±10.8 17/1 58.1±9.0

(281) HC 23/33 50.5±11.9 38/28 57.2±8.1 6/18 53.1±8.4

CALSNIC2 ALS 14/4 54.0±11.8 124/65 60.1±10.2 29/19 62.4±8.2

(545) HC 18/13 60.1±8.8 120/101 54.9±10.5 10/28 61.7±10.8

3.2.2 Evaluation Metrics

1. t-Distributed Stochastic Neighbor Embedding (t-SNE): It is a nonlinear dimen-

sionality reduction technique that maps high-dimensional data to a lower-dimensional

space while preserving the local and global structure of the data [35]. It models each

high-dimensional data point as a probability distribution in the lower-dimensional

space and minimizes the divergence between the probability distributions. In my

case, the t-SNE method takes the input of the proposed 22 features and converts

them to two-dimensional space for each MRI scan. The sklearn.manifold Python
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Table 3.3: Scanning protocol details of the ADNI1, ADNI2, AIBL, PPMI, ABIDE,
CALSNIC1, and CALSNIC2 datasets. [FS = Field Strength]

Dataset
Scanning MRI Scanner Manufacturer

Protocol GE Siemens Philips

ADNI1

Model

Genesis Signa, Symphony, Sonata, Intera Achieva,

Signa Excite, TrioTim, Trio, Intera, Achieva,

Signa HDx Avanto, Allegra Gyroscan Intera

FS 1.5 T / 3.0 T 1.5 T / 3.0 T 1.5 T / 3.0 T

Flip Angle 8 ° 8 °/ 9 ° 8 °

Resolution 1.0× 1.0× 1.2 / 1.0× 1.0× 1.2 / 1.0× 1.0× 1.2 /

(mm3) 0.94× 0.94× 1.2 1.25× 1.25× 1.2 0.94× 0.94× 1.2

ADNI2

Model

Signa HDxt, Signa HDx, Symphony, Skyra, Achieva dStream,

Signa Excite, Verio, Avanto, Intera, Achieva,

Discovery MR750 TrioTim Ingenia, Ingenuity

FS 3.0 T 3.0 T 3.0 T

Flip Angle 11 ° 9 ° 9 °

Resolution 1.05× 1.05× 1.2 1.05× 1.05× 1.2 1.05× 1.05× 1.2

AIBL

Model - Avanto, TrioTim, Verio -

FS - 1.5 T / 3.0 T -

Flip Angle - 9 ° -

Resolution - 1.0× 1.0× 1.2 -

PPMI

Model

Signa HDxt, Genesis Signa, Symphony, Skyra, Achieva dStream,

Signa Architect, Signa Excite, TrioTim, Prisma, Achieva, Intera,

Discovery MR750, Verio, Espree, Gyroscan NT

FS 1.5 T / 3.0 T 1.5 T / 3.0 T 1.5 T / 3.0 T

Flip Angle 8 °/ 11 °/ 13 °/ 15 ° 8 °/ 9 °/ 15 ° 8 °/ 9 °

Resolution

1.0× 1.0× 1.0 / 1.0× 1.0× 1.0 / 1.0× 1.0× 1.0 /

0.94× 0.94× 1.2 / 1.25× 1.25× 1.3 / 0.94× 0.94× 1.2 /

0.94× 0.94× 0.7 0.49× 0.49× 2.0 1.0× 1.0× 1.2

ABIDE

Model
Signa Allegra, Verio, Achieva, Intera

Discovery MR750 TrioTim, Prisma,

FS 3.0 T 3.0 T 3.0 T

Flip Angle 8 °/ 15 ° 7 °/ 8 °/ 9 °/ 10 ° 7 °/ 8 °

Resolution

1.0× 1.0× 1.0 / 1.0× 1.0× 1.0 / 1.0× 1.0× 1.0 /

0.86× 0.86× 1.5 / 1.0× 1.0× 1.33 / 0.98× 0.98× 1.2 /

1.02× 1.02× 1.2 0.5× 0.5× 1.2

Model Discovery MR750 Prisma, TrioTim Intera

CALS- FS 3.0 T 3.0 T 3.0 T

NIC1 Flip Angle 11 ° 8 ° 9 °

Resolution 1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0

Model Discovery MR750 Prisma, TrioTim Achieva

CALS- FS 3.0 T 3.0 T 3.0 T

NIC2 Flip Angle 16 ° 10 ° 10 °

Resolution 1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0

34



library is used to implement t-SNE with the default settings (n_components = 2,

perplexity = 30).

2. Uniform Manifold Approximation and Projection (UMAP): It is another non-

linear dimension reduction algorithm which focuses on retaining the local structure

of the data [36]. In order to map the high-dimensional data to a lower-dimensional

space, UMAP creates a topological representation of the data while maintaining the

neighbourhood relationships between the data points. The UMAP is implemented

with the Python umap package with default hyper-parameters (n_components = 2,

n_neighbors= 15, min_dist= 0.1, metric = ‘euclidean’). This study’s visual

findings are mostly similar for both t-SNE and UMAP. However, the data are more

condensed in UMAP and tend to produce more clusters; hence t-SNE is recommended

as the first choice.

3. Domain shift distance: The MMD is widely recognized as a prominent metric

in DA research to assess the dissimilarities in data distribution between two domains

[20]. It can be mathematically defined as the discrepancy between the distributions

of domains a and b, MMD2
k = ∥Ep[ϕ(x

a)]−Eq[ϕ(x
b)]∥2Hk

, where H(k) represents the

Reproducing Kernel Hilbert Space equipped with a kernel function k. A decrease

in the MMD distance between the two domains after DA or harmonization process

signifies a reduction of domain shift.

4. Domain classification accuracy: Consider a scenario where a random number of

samples are selected from two distinct domains, each labelled with its corresponding

domain. To evaluate the presence of domain shift or dissimilarity, a domain dis-

criminator or classifier is applied to all the samples, aiming to identify the domain

from which each sample originates. The classification outcome serves as a measure

of domain shift. A high accuracy in classifying the samples based on their domains

implies that the two domains exhibit significant differences, indicating a substantial

domain shift. It also supports the robustness of the features used to train the classi-

fier. Conversely, the reduction in domain classification accuracy indicates a decrease
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in domain shift, making it more challenging to distinguish between them. Support

Vector Machine (SVM) with a linear kernel and Random Forest (RF) with a 500 es-

timator size are used in the experiments as domain classifiers. These classifiers follow

the implementation of the Python sklearn package with a five-fold cross-validation

setup.

3.2.3 Domain Shift in T1-weighted MRI Data

The multi-center datasets used in this study encompass various factors contributing to

domain shift, including scanner manufacturer, model, field strength, image acquisition

orientation, resolution, and flip angle. However, when applying the DSMRI frame-

work to these datasets, the resulting clusters primarily demonstrated separation based

on the scanner manufacturer parameter, corroborating findings from previous studies

[45, 46]. Figure 3.2 presents the visualization of the datasets, considering three dis-

tinct domains representing different scanner vendors (e.g., GE, Philips, and Siemens).

The first row of Fig. 3.2 depicts the t-SNE plots of the CALSNIC1, CALSNIC2, and

ADNI2 datasets, clearly showcasing the separation among data from different manu-

facturers. In the second row, which pertains to the more challenging ADNI1, PPMI,

and ABIDE datasets, some minor overlapping is observed among domains. It might

be because of strong similarities in imaging characteristics among those samples. Fur-

thermore, distinct clusters emerge within the same vendor, highlighting the influence

of other parameters primarily attributable to the scanner model.

These visual findings are supported by the domain shift distance calculated by

MMD, as presented in Table 3.4. Additionally, the domain classification accuracy is

consistently around 100% for most cases, which signifies two crucial aspects. Firstly, it

highlights the substantial level of domain shift present among the data from different

manufacturers, and secondly, it demonstrates the robustness of the features employed

in classifying these domains.
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Figure 3.2: t-SNE plots illustrating data distributions across various datasets: CAL-
SNIC1, CALSNIC2, ADNI2, ADNI1, PPMI, and ABIDE. Each data point in the
graph corresponds to an individual MRI scan, using three distinct colors to distin-
guish scans acquired from different scanner manufacturers.

Table 3.4: Domain shift distance in terms of MMD and domain classification accuracy
for the ADNI1, ADNI2, PPMI, ABIDE, CALSNIC1, and CALSNIC2 datasets.

Dataset

Domain shift distance Domain classification accuracy

GE vs. GE vs. Philips vs.
GE vs. Siemens vs. Philips

Siemens Philips Siemens

ADNI1 2.03 0.99 3.01
SVM = 0.99

RF = 1.00

ADNI2 18.06 4.31 7.72
SVM = 0.95

RF = 1.00

CALSNIC1 31.60 369.34 105.59
SVM = 0.99

RF = 1.00

CALSNIC2 3.79 2.23 9.97
SVM = 0.99

RF = 0.99

PPMI 1.35 2.02 1.19
SVM = 0.91

RF = 0.98

ABIDE 2.68 1.78 2.30
SVM = 0.93

RF = 0.99
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3.2.4 Effects of Scanner Model

This analysis investigates the impact of different scanner models originating from the

same manufacturer. A subset of the ADNI1 dataset comprising five Siemens scanner

models, namely Trio, Allegra, Avanto, Sonata, and Symphony, is evaluated to under-

stand the effects of different scanner models. The t-SNE plot in the left panel of Fig.

3.3 illustrates that the data from Avanto, Sonata, and Symphony exhibit similarities

in their feature space, indicating comparable imaging characteristics. Additionally,

it is worth noting that the Trio and Allegra scanners have a magnetic field strength

of 3.0 T, while the other three scanners maintain a field strength of 1.5 T. Moving

to the AIBL dataset, it consists of data from three different Siemens scanner models:

Avanto, TrioTim, and Verio. The middle panel of Fig. 3.3 shows the t-SNE plot

for the AIBL dataset, where data clusters closely align with their respective scanner

models. Moreover, the right panel of the diagram further confirms the influence of

the magnetic field strength, as the data with a field strength of 1.5 T are separated

from the data with a field strength of 3.0 T in the t-SNE map. Lastly, Table 3.5 pro-

vides information on the domain shift distance and classification accuracy among the

different scanner models, offering insights into the variations between these models.

Figure 3.3: t-SNE plots illustrating the domain shift effects resulting from different
scanner models of the same manufacturer, observed in the ADNI1 and AIBL datasets.

38



Table 3.5: Domain shift distance and domain classification accuracy for the ADNI1
(Model 1= Allegra, Model 2= Trio, Model 3= Symphony+Avanto+Sonata), and
AIBL (Model 1= Avanto, Model 2= TrioTim, Model 3= Verio) datasets to show the
effects of various scanner models.

Dataset

Domain shift distance Domain classification accuracy

Model 1 vs. Model 1 vs. Model 2 vs.
Model 1 vs. Model 2 vs. Model 3

Model 2 Model 3 Model 3

ADNI1 4.82 1.80 6.82
SVM = 0.99

RF = 1.00

AIBL 5.02 2.62 0.92
SVM = 0.97

RF = 0.98

3.2.5 Effects of T2-weighted and FLAIR Images

This experiment validates the proposed framework’s effectiveness when applied to

T2-weighted and FLAIR images. Within the CALSNIC2 dataset, both FLAIR and

T2-weighted images were available for the same population. T2-weighted images offer

excellent contrast for evaluating pathologies like inflammation, edema, and fluid-filled

structures. On the other hand, FLAIR imaging, a variation of T2-weighted imaging,

nullifies the signal from fluids like cerebrospinal fluid (CSF) and enhances the visibility

of lesions, particularly those adjacent to CSF-filled spaces. Figure 3.4 showcases

the t-SNE and UMAP plots for the data derived from these two MRI modalities.

Interestingly, the clusters representing different manufacturers are even more distinct

for these two modalities compared to T1-weighted images. Table 3.6, presenting

the domain shift distance and high domain classification accuracy, provides robust

evidence supporting the existence of domain shift in the T2-weighted and FLAIR

data while demonstrating the effectiveness of the proposed features.

3.2.6 Effects of Processed Data

In this experiment, the objective is to evaluate the performance of the data after

applying commonly used preprocessing neuroimaging pipelines to the CALSNIC1 and

CALSNIC2 datasets. As a crucial step in the preprocessing pipeline, I first utilize the

FreeSurfer [82] program for skull stripping. Subsequently, the FSL software [132] is
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Figure 3.4: t-SNE and UMAP plots illustrating the domain shift effects observed
within the CALSNIC2 dataset due to the utilization of T2-weighted and FLAIR
images.

Table 3.6: Domain shift distance in terms of MMD and domain classification accuracy
for the CALSNIC2 dataset showing the effects of using T2-weighted and FLAIR
images.

Dataset

Domain shift distance Domain classification accuracy

GE vs. GE vs. Philips vs.
GE vs. Siemens vs. Philips

Siemens Philips Siemens

CALSNIC2
143.75 203.98 130.39

SVM = 1.00

T2-weighted RF = 1.00

CALSNIC2
9.57 6.08 41.73

SVM = 0.98

FLAIR RF = 0.99

employed to register the MRI scans to the MNI-152 space, ensuring the standardized

image and voxel dimensions across all scans. Following these preprocessing steps, I

generate t-SNE diagrams to visualize the processed data, as depicted in Fig. 3.5. The

visualizations reveal that domain shift remains prevalent in the dataset despite the

application of preprocessing techniques.
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Figure 3.5: t-SNE plots for the CALSNIC1 and CALSNIC2 datasets showing the
effects of data after performing skull stripping and registration to MNI-152 template.

To further confirm the presence of domain shift, Table 3.7 presents the domain

shift distance between pairs of domains, along with a domain classification accuracy

of nearly 100%. These findings provide evidence of the substantial impact of domain

shift within the dataset, emphasizing the robustness of the proposed features, which

consistently demonstrate their efficacy even with the processed data.

3.2.7 Feature Importance

This section examines the significance of different proposed features across various

datasets and data types. To accomplish this, I employ an RF classifier and extract the

feature importance ranking from the model. The ranking of the features is presented

in Fig 3.6, where the upper left panel displays the average scores of six large datasets

utilized in the study. Similarly, the upper right panel depicts the results obtained from

the average scores of the processed data from the CALSNIC2 dataset. Interestingly,
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Table 3.7: Domain shift distance in terms of MMD and domain classification accu-
racy for the CALSNIC1 and CALSNIC2 datasets showing the effects of data after
performing skull stripping and registration to MNI-152 template.

Dataset

Domain shift distance Domain classification accuracy

GE vs. GE vs. Philips vs.
GE vs. Siemens vs. Philips

Siemens Philips Siemens

CALSNIC1
37.86 13.29 150.25

SVM = 1.00

Skull-stripped RF = 1.00

CALSNIC1
53.97 3.54 250.46

SVM = 1.00

MNI-152 RF = 1.00

CALSNIC2
7.88 5.90 39.92

SVM = 0.99

Skull-stripped RF = 0.99

CALSNIC2
4.16 6.21 77.24

SVM = 0.98

MNI-152 RF = 0.98

Figure 3.6: Feature importance ranking across various datasets and data types, as-
sessing domain shift presence through prioritizing the 22 proposed features.

the ‘VAR’ feature consistently achieves the highest ranking in both cases. The fre-

quency domain features, namely ‘HFR’ and ‘LFR,’ demonstrate notable importance,

while the spatial domain features, such as ‘RNG,’ ‘MEAN,’ and ‘EFC,’ also exhibit

promising significance. The wavelet and texture domain features mostly occupy the

middle area of the ranking chart. Furthermore, the bottom left and right panels il-

lustrate the outcomes obtained from the CALSNIC2 T2-weighted and FLAIR image
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datasets, respectively. In both cases, features such as ‘VAR,’ ‘RNG,’ ‘MEAN,’ ‘HFR,’

‘LFR,’ ‘ASM,’ and ‘WQS’ secure positions in the top 10 of the ranking, emphasizing

their consistent importance across different data types.

3.2.8 Comparison

The comparative evaluation of the proposed DSMRI framework involves two related

methods, namely DomainATM and MRQy, with a focus on visualizing the data using

t-SNE plots. Figure 3.7 illustrates the comparison results for three large-scale chal-

lenging datasets (e.g., ADNI1, PPMI, and ABIDE). The first column displays the

outcomes obtained from DomainATM, revealing inferior performance in clustering

the three dominant domains. This can be attributed to the fact that the features

Figure 3.7: Comparison of the proposed framework with two prior approaches visu-
alizing data distribution through t-SNE plots for the challenging ADNI1, PPMI, and
ABIDE datasets.
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utilized by DomainATM, which are the grey matter volumes of different ROIs, do not

exhibit a strong correlation with domain shift measurement. Moving to the middle

column, the t-SNE diagram generated by MRQy demonstrates a significant improve-

ment in grouping the data based on scanner vendor. However, upon closer observation

(shown in red circles), it becomes apparent that a noticeable amount of data either

adopts unexpected positions or slightly deviates from the main clusters, suggesting

the presence of weaknesses in their features. Finally, in the last column, the proposed

DSMRI approach demonstrates a significant superiority over both DomainATM and

MRQy in accurately clustering data from different manufacturers or domains. This

compelling performance highlights the strength of the features introduced by DSMRI,

which exhibit strong correlations with quantifying the degree of domain shift.

3.3 Summary

The proposed DSMRI framework, explicitly designed to analyze the presence of do-

main shift in multi-center MRI datasets, to my best knowledge, offers several sig-

nificant contributions for the first time. Firstly, DSMRI integrates insights from

diverse domains, including spatial, frequency, wavelet, and texture analysis. This

multi-domain approach fortifies the framework’s ability to capture various aspects of

domain shift. Secondly, deriving the features from the frequency domain to capture

low and high-frequency image information and incorporating wavelet domain features

to measure sparsity and energy within wavelet coefficients enhance the robustness of

domain shift analysis. Thirdly, using visualization techniques such as t-SNE and

UMAP enriches the framework’s ability to visually represent and interpret domain

shift effects. Fourthly, estimating domain shift distance, domain classification accu-

racy, and the ranking of significant features add a rigorous quantitative evaluation of

domain shift. Lastly, the efficacy of DSMRI is validated through extensive experimen-

tal evaluations conducted on seven large-scale multi-site neuroimaging datasets. This

real-world validation showcases the practical applicability of the proposed framework.
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In the field of neuroscience research, multi-center neuroimaging studies require ro-

bust, efficient, and reliable techniques to address the non-biological sources of data

variation. ML-based approaches often yield inconsistent results when dealing with

data acquired from different MRI scanner models and scanning protocols. This study

makes a significant contribution by presenting a simple yet effective unsupervised

framework for quantifying the degree of domain shift. After examining a wide range

of large multi-center MRI datasets, this study explores the impacts of different scan-

ner manufacturers, models, field strengths, and resolutions in the context of domain

shift. Furthermore, the proposed framework demonstrates its adeptness in identi-

fying domain shift, not only in preprocessed T1-weighted MRI data but also across

T2-weighted and FLAIR modalities. The findings of this study have important impli-

cations for advancing the field of medical imaging and enabling more reliable analysis

of multi-center MRI datasets. Moreover, DA and harmonization methods can utilize

the proposed framework to validate the effectiveness of their approaches in reducing

or eliminating domain shift.
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Chapter 4

Deep Domain Shift Analyzer for MRI

The proposed DSMRI method described in the previous chapter was designed for

structural MRI. Therefore, it could not exhibit robustness in identifying domain shift

for some advanced MRI modalities such as functional MRI (fMRI) and diffusion-

weighted imaging (DWI). To address this limitation, I propose another novel frame-

work called Deep Domain Shift analyzer for MRI (DeepDSMRI), designed explicitly

to comprehend the extent of domain shift in multi-modal MRI datasets [133]. Uti-

lizing pre-trained deep models as feature extractors, DeepDSMRI provides adequate

insights into the existence of domain shift for diverse MRI modalities, including struc-

tural, functional, and diffusion-weighted images. The datasets and evaluation metrics

are the same as previous chapter. The source code has been made publicly available

at https://github.com/rkushol/DeepDSMRI.

4.1 Proposed Method

4.1.1 Overview

The overall workflow of the proposed DeepDSMRI framework is depicted in Fig. 4.1.

This methodology is driven by the concept of harnessing the knowledge acquired by

a deep neural network through pre-training on the extensive ImageNet [37] computer

vision dataset and extending its applicability to the medical imaging domain. In the

early layers of the deep network, fundamental low-level features such as edges, colors,
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Figure 4.1: The assorted colors of the brain icon in the MRI dataset denote the source
of the originating data using distinct acquisition protocols. The pre-trained deep
models are used as feature extractors, which transfer knowledge from the ImageNet
dataset and extract deep features from 2D MRI slices of each sample. The t-SNE and
UMAP algorithms display data similarity in a 2D graph using these feature maps.
Finally, the domain shift distance using maximum mean discrepancy (MMD) and the
classification accuracy of various domains are calculated in quantitative analysis.

and textures are captured. These basic features effectively represent essential patterns

inherent in MR images. Moving deeper into the network, mid-level features emerge,

encapsulating more intricate patterns or textures formed by combinations of low-level

features, such as certain shapes or object segments. The deeper layers of the network

are dedicated to capturing high-level semantic features, offering representations of

complex structures and object components. These layers excel in grasping the broader

context, spatial relationships, and semantic intricacies of objects within the images.

Leveraging pre-trained deep models as feature extractors facilitates the extraction

of basic image patterns and representations without requiring the fine-tuning of new

data. An example of an output MR image generated through different layers of a deep

model is illustrated in Fig. 4.2. My proposed approach excludes the final output layer

responsible for task-specific predictions. This strategic choice enables the framework

to comprehend the extent of domain shift in MRI data, providing valuable insights

into the variations across different imaging domains. The following section details the

deep models employed as feature extractors. I apply nine widely used deep networks
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using PyTorch timm library [134], and based on the qualitative results, most of them

are capable of visualizing domain shift in MRI data.

Figure 4.2: Visualization of feature representation for a 2D MRI slice using various
layers of the pre-trained ResNet50 deep model. The images from left to right display
the output of feature representation for layers one to five, respectively.

4.1.2 Deep Networks

The analysis encompasses two most popular types of deep networks: Convolutional

Neural Networks (CNNs) and transformer-based architectures. First, ResNet [135]

is a widely used CNN architecture that introduces residual connections to improve

training speed. Out of several versions of ResNet, I use ResNet50, which generates

2048 deep features for each image. Next, DenseNet [136] is well-known for its densely

connected blocks, where each layer takes input from all prior layers in the block. This

dense connectivity encourages feature reuse with parameter efficiency which alleviates

the vanishing gradient problem. I employ DenseNet169, which yields 1664 deep fea-

tures. Another deep model, MobileNetV2 [137], is designed for devices with limited

computational resources, emphasizing efficiency and speed using inverted residuals

and linear bottlenecks. Lastly, EfficientNet [138] employs a compound scaling strat-

egy to optimize the model’s efficiency by balancing trade-offs between model size and

performance. The final size of features produced by EfficientNet and MobileNetV2

are 1792 and 1280, respectively.

The Vision Transformer (ViT) [38] has revolutionized image classification by treat-

ing images as sequences of patches, transforming the task into a sequence-to-sequence

problem. It employs self-attention (SA) mechanism for capturing global and local

dependencies within the image. In the implementation, the vit_base_patch16_224
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version is employed which generates 768 deep features. Building on ViT’s success, the

Swin transformer [86] introduces a hierarchical design with shifted windows to effec-

tively capture information across different scales, enhancing the model’s performance

on both global and local features. I prefer the swin_base_patch4_window7_224

version, which yields 1024 features. Another transformer-based model, DeiT [88]

focuses on training models with limited data by leveraging knowledge distillation.

It utilizes a teacher-student framework, where a larger transformer (teacher) trans-

fers knowledge to a smaller transformer (student). The implementation follows the

deit_base_patch16_224 version, which creates 768 features. Some models combine

the strengths of both CNNs and transformers. The CoaT [139] model, for instance,

enhances the multi-scale and contextual modeling capabilities of ViT by introducing

a co-scale mechanism and convolutional attention module. I employ the coat_mini

version with 216 deep features. Lastly, ConViT [140] introduces gated positional

self-attention (GPSA), another hybrid approach of combining CNNs and ViT with

768 features for the base configuration. Although the proposed framework employs

these deep methods separately, their performance is comparable. However, based

on slightly superior qualitative results on challenging datasets such as ABIDE and

PPMI, the experimental analysis section primarily showcases the performance of the

Swin transformer.

4.2 Experiments

4.2.1 Domain Shift in T1-weighted MRI Data

The MRI data employed in this study encompass several aspects that contribute to do-

main shift, as illustrated in Table 3.3. Nevertheless, upon analyzing the DeepDSMRI

framework across the datasets of T1-weighted images, the resulting clusters predomi-

nantly exhibit partitions based on the scanner manufacturers. This observation aligns

with conclusions from prior research studies [43, 45, 46]. Three scanner vendors are
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treated as distinct domains in the visualization of four datasets, as shown in Fig. 4.3.

The t-SNE plots for the remaining datasets are presented in the comparison section.

Notably, for the CALSNIC1 dataset, a subcluster within the Siemens data reflects

significant variations in scanner models (i.e., Prisma and TIM Trio). Similarly, for

the AIBL dataset, different scanner models of Siemens show uniqueness, and the data

can be separated based on the field strength (i.e., 1.5T and 3.0T) as well. The vi-

sual findings align with the MMD-calculated domain shift distance, which is shown

in Table 4.1. Furthermore, in the majority of cases, the domain classification accu-

racy continuously hovers around 100%. This high accuracy reinforces two important

points: firstly, it highlights a significant amount of domain shift between scanner

manufacturers, and secondly, it emphasizes the effectiveness of the deep features used

to detect these domains.

Figure 4.3: t-SNE graphs illustrating domain shift of T1-weighted MRI data for the
CALSNIC1, CALSNIC2, ADNI2, and AIBL datasets. Different colors represent data
originating from three scanner manufacturers, except AIBL, where colors denote data
from different models of the Siemens scanner.
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Table 4.1: Domain shift distance for the ADNI1, ADNI2, CALSNIC1, CALSNIC2,
PPMI and ABIDE datasets in terms of MMD and domain classification accuracy.

Dataset

Domain shift distance Domain classification accuracy

GE vs. Philips vs. Siemens vs.
GE vs. Philips vs. Siemens

Siemens GE Philips

ADNI1 31.21 57.20 73.37 SVM = 0.99, RF = 0.97

ADNI2 307.14 149.84 172.02 SVM = 1.00, RF = 1.00

PPMI 226.42 236.56 102.96 SVM = 0.98, RF = 0.97

ABIDE 10.62 9.01 29.57 SVM = 0.99, RF = 0.99

CALSNIC1 342.66 255.26 848.75 SVM = 1.00, RF = 1.00

CALSNIC2 431.22 324.95 224.25 SVM = 1.00, RF = 1.00

4.2.2 T2-weighted, FLAIR, fMRI and DWI Data

This experiment substantiates the efficacy of the proposed technique when applied

to diverse MRI modalities, including FLAIR, DWI, fMRI, and T2-weighted images.

The CALSNIC2 dataset facilitates MR images of these modalities for the same popu-

lation. Due to exceptional contrast, T2-weighted sequences are valuable for assessing

pathologies such as inflammation and edema. Conversely, FLAIR, a variant of the

T2-weighted image, suppresses signals from fluids and enhances lesion visibility, espe-

cially near CSF-filled spaces. DWI is an advanced MRI modality that measures the

random motion of water molecules within tissues and provides information about the

microstructural organization of tissues. Lastly, fMRI measures the hemodynamic re-

sponse, reflecting increased blood flow to active brain regions during performing tasks

or resting. Figure 4.4 displays t-SNE plots representing data for the aforementioned

MRI modalities. Remarkably, for these modalities, the clusters distinguishing various

scanners are more prominent than T1-weighted data. The higher MMD distance and

100% classification accuracy between different domains strongly support the presence

of domain shift, as noted in Table 4.2. This evidence further reinforces how well the

deep features express the domain shift in MRI data. To our knowledge, no existing

framework is capable of assessing the extent of domain shift for fMRI and DWI data.

By employing the handcrafted features of the previous work of DSMRI [16] for these
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Figure 4.4: t-SNE plots demonstrating domain shift of T2-weighted, FLAIR, fMRI
and DWI MR images on the CALSNIC2 dataset using the proposed framework.

two modalities, I provide some failure cases as shown in Fig. 4.5.

Table 4.2: Domain shift distance for the CALSNIC2 dataset demonstrating the im-
pacts of T2-weighted, FLAIR, fMRI, and DWI in terms of MMD and domain classi-
fication accuracy.

Modality

Domain shift distance Domain classification accuracy

GE vs. GE vs. Philips vs.
GE vs. Siemens vs. Philips

Siemens Philips Siemens

T2-weighted 612.08 115.11 283.15 SVM = 1.00, RF = 1.00

FLAIR 68.47 133.22 67.41 SVM = 1.00, RF = 1.00

fMRI 280.79 294.12 328.87 SVM = 1.00, RF = 1.00

DWI 558.65 345.32 756.64 SVM = 1.00, RF = 1.00

4.2.3 Comparison

Comparative analysis involves evaluating the performance of the proposed framework

through a comparison with two related methods, DomainATM and DSMRI, using the

t-SNE data visualization tool. Figure 4.6 displays the comparison outcomes for three
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Figure 4.5: On the left side, the t-SNE plot illustrates domain shift for the fMRI
data using the features of a prior study called DSMRI, revealing its limitations in
identifying domain shift within the fMRI modality. Additionally, the t-SNE plot on
the right side highlights minor failures, indicated by red circle, observed in the DWI
data on the CALSNIC2 dataset.

challenging datasets (PPMI, ABIDE, and ADNI1). Results from DomainATM are

shown in the first column, clearly indicating suboptimal performance in identifying

domain shift among different scanners’ data. This is probably due to DomainATM’s

use of grey matter volume features, which correlate weakly to domain shift estimation.

Next, the DSMRI method significantly improves grouping data based on scanner ven-

dors. However, closer scrutiny (highlighted in the red circle) reveals that one scanner

manufacturer’s data overlapped with that of another manufacturer, indicating poten-

tial feature deficiencies. In the last column, the proposed DeepDSMRI outperforms

DomainATM and DSMRI in precisely grouping data from various scanners.

4.3 Summary

DeepDSMRI offers a simple yet efficient unsupervised framework for analyzing do-

main shift in MRI data, utilizing different deep models pre-trained with the ImageNet

dataset and requiring no training on existing MRI data. The experimental results

demonstrate robustness across a spectrum of MRI modalities, including structural

(e.g., T1-weighted and T2-weighted), DWI, and fMRI. To our knowledge, this work

is the first to analyze and quantify domain shift in multi-modal MRI data using deep
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Figure 4.6: Comparative analysis of various methods illustrating domain shift of
T1-weighted MRI data across the challenging ABIDE, PPMI, and ADNI1 databases
through t-SNE plots.

learning. Moreover, the proposed framework incorporates visualization tools (e.g.,

t-SNE and UMAP) to illustrate grouping similar data and isolating dissimilar data

into distinct clusters. Furthermore, the quantitative analysis encompasses the classi-

fication accuracy between domains and the domain shift distance using MMD. The

efficacy of the proposed DeepDSMRI is demonstrated through experimental assess-

ments conducted on seven extensive multi-center neuroimaging databases.

This study significantly contributes by introducing a simple yet valuable unsuper-

vised approach to quantify the extent of domain shift in MRI data. More importantly,

DeepDSMRI demonstrates its efficacy in determining domain shift not only in struc-

tural MRI but also in other advanced MRI modalities such as fMRI and DWI. Last
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but not least, the proposed framework can serve as a valuable tool for DA and harmo-

nization methods to verify the effectiveness of their strategies in mitigating domain

shift.
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Chapter 5

Effects of Scanner Manufacturer

This chapter investigates the performance of multiple disease classification tasks using

multi-center MRI data obtained from three widely used scanner manufacturers: GE

Healthcare, Philips, and Siemens. I thoroughly examine how variations in MRI scan-

ner manufacturers affect different classification tasks using various deep learning (DL)

models. Additionally, this study evaluates whether applying a ComBat-based harmo-

nization technique can improve classification performance after 3D image-level harmo-

nization. Furthermore, I introduce a novel transformer-based classification framework

named ADDFormer (Alzheimer’s Disease Detection using Transformer). This ap-

proach is pioneering in applying a transformer-based deep model for Alzheimer’s dis-

ease classification, demonstrating superior performance compared to existing popular

DL methods. The source code is available at https://github.com/rkushol/ADDFormer.

5.1 Proposed Method

5.1.1 ADDFormer

The proposed ADDFormer method includes a process to select a range of slices,

utilizing two transformer networks for selecting features in the spatial and Fourier

domains, fusing the gathered features with a third transformer network and perform-

ing a majority voting on the predictions to finalize the results. Figure 5.1 shows the

architecture of the proposed method.
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Figure 5.1: The overall workflow of the proposed ADDFormer architecture.

After performing an empirical analysis among the three different axes (coronal,

axial and sagittal) of 3D brain MRI, the best performance is achieved by employing

the coronal slices. A total of 15 consecutive 2D coronal slices from the central part

of the plane are used to train the network.

Vision transformer (ViT) [38] is the first work that applies the transformer [85] to

vision tasks. Different from the conventional deep learning-based methods that utilize

convolution, which is hard to capture the long-term dependencies, to extract features

from images, ViT exploits self-attention to handle such a problem. However, due to
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the high computational cost of matrix multiplication in the self-attention, it embeds

the image into patch tokens and utilizes patch tokens as input of transformer block

to reduce the computation. The attention output of the extra class embedding Acls is

passed into the classification head (several fully-connected layers) for final prediction.

MRI data is originally acquired in the frequency domain and then transformed

into the spatial domain. Thus, it is more natural to perform feature selection in the

frequency domain. However, due to the high resolution, the computational cost of

directly applying the network on images in the frequency domain is high. GFNet [87]

follows the downsampling strategy of ViT and adopts the fast Fourier transform

(FFT) on the embedded patch tokens. Instead of exploiting the output of the extra

class embedding as the input of the head, GFNet uses the average pooling of the final

feature map Ffinal as the input of the classification head.

To take advantage of information from both the spatial domain and frequency do-

main, I propose a new fusion transformer block to fuse the Acls and Ffinal, further

improving the classification accuracy. As shown in Fig. 5.1, the Acls and the Ffinal

are used as the class embedding and features, respectively, of the fusion transformer.

The architecture of the fusion transformer block is exactly the same as the trans-

former block in ViT, except that the class embedding and features are from different

networks. Finally, the attention output of the Acls is regarded as the input of the

final classification head. Both of the ViT and GFNet are pre-trained on the Ima-

geNet dataset[37]. I first separately train each of the two base transformer networks.

Then, the trained weights are used to initialize the combined architecture and train

the fusion head.

Lastly, the affected tissue or region is not expected to be present in all the selected

slices. In other words, it is not possible to select slices that will always contain dis-

tinguishable features without manual effort from an expert. To mitigate the false

positive response from those slices with non-significant features, I have taken advan-

tage of majority voting. Therefore, the final classification of a particular subject is
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based on the detection of the class that is present in the majority of the slices in the

pre-determined range.

5.1.2 Existing DL Models

To assess the performance of various classification tasks across different neuroimag-

ing datasets with distinct scanner vendors, I employ both 2D and 3D DL architec-

tures. Firstly, three widely recognized and successful networks are utilized: ResNet

[135], ShuffleNetV2 [141], and MobileNetV2 [137]. The Residual Network (ResNet),

a prominent and influential DL model, was introduced by He et al. [135]. A pivotal

contribution of ResNet is the introduction of "identity shortcut connections," creating

alternate pathways for gradient flow and addressing the vanishing gradient problem

in deep CNNs. The fundamental building block of MobileNet [137] is depthwise sepa-

rable convolution, which comprises depthwise convolution and pointwise convolution.

Depthwise convolution applies distinct kernels to each input channel, while pointwise

convolution employs 1× 1 convolution kernels.

ShuffleNet [141], designed to accommodate mobile device computing limitations,

relies on pointwise group convolution and channel shuffling to maintain accuracy

while significantly reducing computational load. Subsequently, I employ two cus-

tomized models designed explicitly for AD classification. Qiu et al. [4] introduced

a 3D customized Fully Convolutional Network (FCN) consisting of six convolutional

blocks and then integrated both neuroimaging and clinical data using Multilayer Per-

ceptron (MLP) networks. However, my study only employs their FCN model to

handle neuroimaging data. Last but not least, my proposed method, ADDFormer

[142] which utilizes frequency and spatial domain features in an innovative manner.

Figure 5.2 illustrates the processing pipeline for both 2D and 3D frameworks. In the

case of 3D networks, after preprocessing, DL models analyze the entire 3D brain MRI

data to extract features for the final class prediction. Conversely, for 2D networks, 15

coronal slices from the central position are assessed for feature extraction. The final
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classification decision is determined by the majority voting of class predictions from

these coronal slices of a subject, similar to the approach used in ADDFormer.

Figure 5.2: The processing pipeline used in the study to carry out different disease
classification tasks with different DL networks.

5.2 Experiments

5.2.1 Datasets

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 [127] and the Parkinson

Progression Marker Initiative (PPMI)2 [129] represent two prominent and extensively

studied publicly available datasets in the field of AD and PD detection, respectively.

Additional information is accessible at ADNI and PPMI. I attained approval to use

the ADNI and PPMI data in the present study. The Canadian ALS Neuroimaging

Consortium (CALSNIC)3 [131] is the only prospective, multi-center and multimodal

longitudinal study of ALS using harmonized clinical and imaging protocols across its

sites. The CALSNIC study was conducted with the approval of each participating

site’s HREB, and informed consent was obtained from the participants. This study

leverages T1-weighted MR images, commonly used for standard structural imaging,

acquired from three distinct MRI manufacturers (GE, Philips, and Siemens) across

the aforementioned datasets. The acquisition orientation of all the MRI data used in

our study is sagittal. I employ two versions of ADNI: ADNI1 and ADNI2, consisting

of 1638 and 865 MRI scans, respectively. Additionally, my study enlists 528 samples
1(http://adni.loni.usc.edu/)
2(http://www.ppmi-info.org/)
3(https://calsnic.org/)

60

http://adni.loni.usc.edu/
http://www.ppmi-info.org/
(http://adni.loni.usc.edu/)
(http://www.ppmi-info.org/)
(https://calsnic.org/)


from PPMI and 545 samples from the CALSNIC2 datasets. CALSNIC1 data were

excluded from my experiments due to its comparably limited sample size as well as

variations in MRI acquisition orientation. An insightful depiction of the demographic

composition of the utilized datasets is presented in Table 5.1. Furthermore, Table

3.3 meticulously outlines the divergent scanning protocols linked to different scanner

manufacturers.

Table 5.1: Demographic details of the ADNI1, ADNI2, PPMI, and CALSNIC2
datasets. [CN: cognitively normal]

Dataset Group

MRI Scanner Manufacturer

GE Siemens Philips

Sex Age Sex Age Sex Age

(M/F) (Mean±Std) (M/F) (Mean±Std) (M/F) (Mean±Std)

ADNI1

AD 80/80 75.5±7.7 80/80 75.0±7.2 60/49 75.7±7.0

CN 80/80 75.1±5.7 80/80 75.9±5.9 109/67 75.4±5.2

MCI 150/100 75.3±7.6 150/100 76.1±7.0 150/63 75.9±7.5

ADNI2
AD 62/41 75.0±8.5 100/57 75.1±7.8 48/58 74.5±7.3

CN 80/82 74.3±5.9 100/57 74.0±6.4 80/100 75.6±6.4

PPMI
PD 83/40 61.6±9.7 78/46 63.0±9.8 70/37 61.6±9.9

CN 17/17 59.6±13.3 72/35 59.6±10.5 20/13 59.7±11.2

CALSNIC2
ALS 14/4 54.0±11.8 124/65 60.1±10.2 29/20 62.4±8.2

CN 18/13 60.1±8.8 120/101 54.9±10.5 12/25 61.7±10.8

5.2.2 Preprocessing

A straightforward, rapid, and commonly employed preprocessing pipeline is imple-

mented to prepare the original 3D T1-weighted brain MRI data for disease classi-

fication tasks. The process begins with a standard operation known as skull strip-

ping, aimed at eliminating the unnecessary skull region. This task is achieved us-

ing the FreeSurfer program [82] (Command: mri_synthstrip -i input_image -o

stripped_image) [6]. Subsequently, we perform N4 bias field correction using the

SimpleITK library’s N4BiasFieldCorrectionImageFilter class to rectify low fre-

quency intensity non-uniformity in the MRI data [143]. The Symmetric normalization

(SyN) registration technique, implemented through ANTsPy [144], is then employed
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to align each scan with MNI-152 standard space, using lanczosWindowedSinc inter-

polation for transformation. Lastly, I apply WhiteStripe intensity normalization using

the python intensity-normalization package [145]. Upon completing the prepro-

cessing of the original images, their dimensions are transformed to 182 × 218 × 182,

and the voxel size is converted to 1× 1× 1 mm3. This preprocessing procedure typi-

cally takes around 5 minutes per scan, with computations performed on an eight-core

CPU platform utilizing parallel processing.

5.2.3 Implementation

The DL frameworks employed in this analysis are implemented using PyTorch [146]

and executed on a server equipped with 4 NVIDIA RTX A6000 GPUs. The cod-

ing of 3D CNN models is based on publicly available implementations, accessible at

(https://github.com/xmuyzz/3D-CNN-PyTorch). To enhance training robustness, I

employ data augmentation methodologies, including random rotations, flipping, and

the mixture of Gaussian noise, to prepare a robust training batch. The optimization

process employs the Adam optimizer with an initial learning rate of 0.00005 and a

decay rate of 10−1 after every 100 iterations. For the ADDFormer model, a patch

size of 16× 16 is used, and the training spans a total of 300 epochs with a batch size

of 16. The final accuracy reported in this study represents the average results from

five experiments, each employing distinct training, validation, and test data combi-

nations. The data split ratio is maintained at 70% for training, 15% for validation,

and 15% for testing in each experimental setup. The training time of the CNN-based

procedures takes approximately 5 hours on a single GPU with 48GB of memory. The

classification performance is evaluated using standard statistical metrics, specifically

Accuracy (Acc) and F1-score. They are characterized in terms of four key values:

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative

(FN). The Acc metric represents the fraction of accurately identified subjects to the

total number of samples in a given dataset, defined as Acc = TP+TN
TP+TN+FP+FN

. The
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F1-score harmonically combines precision and recall, and is mathematically measured

as F1-score = 2× precision×recall
precision+recall

. The recall is the ability to identify individuals with

a specific condition correctly and is computed as recall = TP
TP+FN

. The precision

reflects the number of relevant items and can be expressed as precision = TP
TP+FP

.

5.2.4 Scanner Manufacturer Effects

This section presents the results of a series of experiments highlighting the distinctive

characteristics of different scanner manufacturers. Initially, I employ three 3D DL-

based classification networks (ResNet [135], MobileNetV2 [137], ShuffleNetV2 [141])

using T1-weighted MRI data to classify three distinct scanner manufacturers (GE,

Philips, and Siemens). These well-established CNN-based networks demonstrate ex-

ceptional accuracy in classifying the scanner manufacturers. For the ADNI1, ADNI2,

and CALSNIC2 datasets, the average classification accuracy exceeds 98%, while the

accuracy for the PPMI database ranges between 93% and 96% across all the afore-

mentioned frameworks. The classification outcomes, presented as confusion matrices

derived from the ResNet architecture for different datasets, are depicted in Fig. 5.3.

The corresponding confusion matrices for the ShuffleNetV2 and MobileNetV2 models

can be found in Fig. A.1 and A.2 of the Appendix.

Figure 5.3: MRI scanner manufacturer classification results for the ADNI1, ADNI2,
PPMI, and CALSNIC2 datasets generated by ResNet model. The classification ac-
curacy is approximately 99% for the (a) ADNI1, (b) ADNI2, and (d) CALSNIC2
datasets whereas the accuracy is around 95% for the (c) PPMI dataset.

Subsequently, I employ t-SNE [35] technique to visualize the data in a 2D space,

using features generated by MRQy [57] as presented in Fig. 5.4. The t-SNE is a non-
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Figure 5.4: t-SNE plots for the ADNI1, ADNI2, PPMI, and CALSNIC2 datasets using
the features generated by MRQy evaluation metrics. Different clusters are primarily
formed based on the scanner manufacturer. In panels (a) and (b), bounding boxes are
delineated, incorporating information about the scanner model, field strength, and
flip angle. These annotations visually highlight their role in inducing domain shift
within a dataset.

linear, graph-based dimension reduction method that project the high-dimensional

feature space into a lower-dimensional space while preserving the distribution charac-

teristics. The visualization of the t-SNE plots reveals that the proximity of grouped

data primarily corresponds to the scanner manufacturer. Additionally, I observe

further clustering within the same vendor, which can be attributed to variations in

scanner models from the same manufacturer. Minor contributions to data clustering

arise from variations in magnetic field strength and flip angles, as depicted by dif-
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ferent bounding boxes in Fig. 5.4. Some 3D views of the t-SNE and UMAP plots

are available on my GitHub project page at (https://github.com/rkushol/Effects-of-

MRI-scanner-manufacturer).

5.2.5 Gender Classification

The task of gender classification (Male vs. Female) from MRI data is comparatively

less intricate than the challenge of classifying different neurodegenerative diseases. In

this context, I evaluate gender classification across the four previously mentioned

datasets to assess performance variations among different scanner manufacturers.

The outcomes of gender classification, achieved through distinct 3D CNN-based deep

models (ResNet [135], MobileNetV2 [137], ShuffleNetV2 [141]), are presented in Table

5.2. For the ADNI1, ADNI2, and CALSNIC2 datasets, the aforementioned CNN

methods achieve an average accuracy and F1-score of over 90%. Notably, in the

PPMI dataset, using data from Siemens and GE also yields an average accuracy of

around 90%, while using Philips data results in an approximate classification accuracy

of 85%. Overall, there is no significant difference in performance among the scanner

manufacturers in this classification task.

Table 5.2: Gender classification results for the ADNI1, ADNI2, PPMI, and CAL-
SNIC2 datasets.

Scanner
DL ADNI1 ADNI2 PPMI CALSNIC2

models Acc F1-score Acc F1-score Acc F1-score Acc F1-score

GE

ResNet 0.92 0.93 0.93 0.94 0.93 0.92 0.92 0.92

ShuffleNetV2 0.95 0.94 0.92 0.93 0.89 0.90 0.96 0.96

MobileNetV2 0.92 0.93 0.91 0.90 0.88 0.89 0.92 0.92

Siemens

ResNet 0.94 0.94 0.92 0.91 0.90 0.90 0.91 0.90

ShuffleNetV2 0.94 0.93 0.97 0.95 0.94 0.92 0.92 0.92

MobileNetV2 0.90 0.89 0.91 0.90 0.88 0.88 0.90 0.91

Philips

ResNet 0.92 0.91 0.90 0.90 0.86 0.87 0.95 0.94

ShuffleNetV2 0.93 0.93 0.90 0.88 0.85 0.84 0.94 0.94

MobileNetV2 0.90 0.89 0.92 0.93 0.84 0.83 0.93 0.92
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5.2.6 Disease Classification

Classifying patients with neurodegenerative diseases such as AD, PD, or ALS from

healthy controls using limited MRI data poses significant challenges due to the subtle

structural changes present in the images. To enhance the reliability of my findings

while maintaining balanced sample sizes across different scanner manufacturers, I

leverage longitudinal data. However, a notable exception arises in the CALSNIC2

dataset, where the volume of data from GE and Philips scanners is comparatively

smaller compared to that of the Siemens vendor. Moreover, I ensure that the data-

splitting strategy avoids data leakage issues. This involves meticulously dividing the

data based on individual subjects, preventing mixing the same participant’s images

in both training and testing processes, as illustrated in Fig. 5.5.

Figure 5.5: Patient-level split process for longitudinal data to train different DL
models.

In the context of 2D frameworks, this practice is extended to ensure the integrity

of slices within subjects across the test and training sets. Indeed, a recent study [147]

discovered that many prior disease classification approaches did not follow a proper

distribution of slices or subjects in their training or testing data. As a result, their

reported outcomes present inaccurate and excessively optimistic classification accu-

racies. My analysis reveals that the ResNet (3D) and FCN (3D) models outperform
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other 3D frameworks across various disease classification tasks. Similarly, in the case

of 2D networks, the ResNet (2D) and ADDFormer (2D) models achieve better results

compared to other 2D DL methods. Table 5.3 summarizes the classification results

from these top-performing models.

Table 5.3: Different disease classification results based on scanner manufacturer with
the ADNI1, ADNI2, PPMI, and CALSNIC2 datasets. [G: GE, S: Siemens, P: Philips]

Scanner
DL

AD vs. CN MCI vs. CN PD vs. CN ALS vs. CN

models
ADNI1 ADNI2 ADNI1 PPMI CALSNIC2

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

GE

ResNet (3D) 0.76 0.76 0.79 0.79 0.70 0.68 0.80 0.80 0.70 0.70

FCN 0.84 0.83 0.84 0.83 0.74 0.74 0.84 0.83 0.75 0.74

ResNet (2D) 0.81 0.79 0.81 0.81 0.71 0.70 0.79 0.79 0.71 0.70

ADDFormer 0.86 0.85 0.89 0.88 0.75 0.73 0.88 0.87 0.82 0.79

Siemens

ResNet (3D) 0.77 0.78 0.80 0.82 0.71 0.71 0.66 0.66 0.71 0.72

FCN 0.84 0.84 0.82 0.82 0.73 0.73 0.70 0.71 0.75 0.76

ResNet (2D) 0.78 0.76 0.76 0.74 0.71 0.70 0.66 0.66 0.71 0.69

ADDFormer 0.88 0.88 0.86 0.85 0.71 0.72 0.72 0.71 0.78 0.79

Philips

ResNet (3D) 0.75 0.73 0.83 0.82 0.66 0.66 0.77 0.76 0.70 0.69

FCN 0.84 0.83 0.86 0.85 0.71 0.70 0.80 0.80 0.73 0.72

ResNet (2D) 0.74 0.73 0.79 0.78 0.67 0.66 0.74 0.73 0.70 0.67

ADDFormer 0.85 0.85 0.91 0.90 0.71 0.71 0.82 0.82 0.79 0.79

ResNet (3D) 0.76 0.78 0.79 0.80 0.71 0.69 0.76 0.77 0.72 0.72

All samples FCN 0.84 0.85 0.85 0.84 0.77 0.75 0.78 0.78 0.74 0.75

(G+S+P) ResNet (2D) 0.77 0.76 0.78 0.78 0.72 0.71 0.73 0.72 0.72 0.70

ADDFormer 0.88 0.88 0.89 0.89 0.76 0.75 0.80 0.79 0.81 0.81

One-third ResNet (3D) 0.72 0.70 0.78 0.77 0.66 0.68 0.73 0.74 0.67 0.67

samples FCN 0.80 0.80 0.80 0.81 0.70 0.68 0.74 0.74 0.71 0.70

(G+S+P) ResNet (2D) 0.74 0.72 0.75 0.75 0.66 0.65 0.70 0.70 0.67 0.68

ADDFormer 0.79 0.80 0.80 0.79 0.68 0.68 0.75 0.74 0.74 0.75

ADNI1

Firstly, the independent evaluation of AD classification performance across the three

manufacturers yields very close accuracy results. The classification accuracy of the

top-performing model falls within the range of 85%-88%. Secondly, comparable accu-

racy is achieved when combining data from all manufacturers, resulting in a sample

size approximately three times larger than that of each individual vendor. How-
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ever, when equalizing the total sample size to that of a single manufacturer (ap-

proximately one-third of the total samples), a noticeable decline in performance is

observed. Thirdly, among the 3D frameworks, the customized FCN model achieves

the highest score, while the ADDFormer model outperforms all others in terms of

classification accuracy. On the other hand, a similar conclusion is depicted for the

intermediate stage of AD, known as the MCI vs. CN classification task, except that

the overall accuracy decreases from all angles.

ADNI2

The classification accuracy of ADNI2 slightly surpasses that of ADNI1. Among the

three manufacturers, utilizing data from Philips scanners yields slightly better per-

formance compared to data from GE or Siemens. The range of the best model’s

classification accuracy falls between 86% and 91%. Upon merging data from all

manufacturers, which increases the sample size to approximately three times that of

individual vendors, the achieved accuracy remains consistent. However, performance

experiences a noticeable decline when the sample size is reduced to that of a single

manufacturer, accounting for roughly one-third of the total samples. Once again,

among the 3D frameworks of DL models, both the ResNet and the custom-made

FCN model achieve better results. In contrast, within the group of 2D methods, the

ADDFormer model stands out for achieving the highest classification accuracy.

PPMI

In the PD vs. CN classification task, a few control samples from the ADNI2 dataset

are added to ensure a balanced sample size of patients and healthy controls across

all three manufacturer groups, thus mitigating the class imbalance issues. Notably,

the FCN and ADDFormer custom-made models also demonstrate strong performance

when compared to other fundamental CNN-based methods. The ShuffleNet achieves

better outcomes in certain cases within the group of 3D frameworks. The range
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of the best model’s classification accuracy spans from 72% to 88%. Comparable

classification results are observed whether the data originates from GE or Philips

scanners. However, the outcomes using data from Siemens are comparatively poor.

This discrepancy could be due to sharing a small number of healthy control samples

from the ADNI2 dataset, whereas the GE or Philips group shares a large number of

control samples from the ADNI2. Likewise, employing a total sample size equivalent

to that of an individual manufacturer (approximately one-third of the total samples)

leads to a noticeable decline in performance.

CALSNIC2

The classification task involving ALS patients vs. healthy controls within the CAL-

SNIC2 database presents an even greater challenge compared to AD classification.

All three manufacturers exhibit similar average classification accuracy. However, the

performance of data originating from Siemens scanners is notably more reliable due

to the inclusion of large samples from multiple centers. The range of the best model’s

classification accuracy falls between 78% and 82%. The accuracy remains consistent

when the data from all manufacturers are combined. Conversely, the performance

experiences a noticeable decline when the sample size from the Siemens manufacturer

is reduced to one-third. The number of scans from GE and Philips scanners remains

unchanged, as their original sizes are already limited. Among the DL models in both

3D and 2D frameworks, the ADDFormer model once again stands out for its highest

classification accuracy.

Cross-validation

This section examines the consequences of introducing a change in the test set data

by employing a different manufacturer. The left panel of Table 5.4 illustrates the

classification results for this cross-domain validation using the four top-performing

DL models described earlier. In this experimental setup, data originating from a
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specific manufacturer is utilized as the training domain, while the remaining two

serve as the test domains. When comparing these findings with the results presented

in Table 5.3, it becomes evident that a significant drop in accuracy is observed across

all datasets in Table 5.4. These outcomes further confirm the presence of a substantial

domain shift inherent within the MRI data acquired from different manufacturers.

Table 5.4: The cross-domain intra-study disease classification accuracy before and
after voxel-wise ComBat harmonization for the ADNI1, ADNI2, PPMI, and CAL-
SNIC2 datasets. [G: GE, S: Siemens, P: Philips]

Dataset
Training Testing

Classification Acc with different DL models

data data

Results before harmonization Results after harmonization

ResNet FCN ResNet ADDFo- ResNet FCN ResNet ADDFo-

(3D) (3D) (2D) rmer(2D) (3D) (3D) (2D) rmer(2D)

ADNI1 GE P + S 0.75 0.80 0.75 0.86 0.75 0.78 0.74 0.76

AD vs. Philips G + S 0.69 0.74 0.68 0.71 0.70 0.72 0.69 0.73

CN Siemens G + P 0.72 0.77 0.74 0.79 0.71 0.71 0.70 0.68

ADNI2 GE P + S 0.71 0.76 0.72 0.80 0.69 0.71 0.69 0.68

AD vs. Philips G + S 0.71 0.74 0.71 0.75 0.63 0.65 0.66 0.63

CN Siemens G + P 0.75 0.77 0.77 0.83 0.68 0.70 0.67 0.69

ADNI1 GE P + S 0.66 0.71 0.66 0.71 0.64 0.67 0.68 0.70

MCI vs. Philips G + S 0.60 0.67 0.62 0.64 0.61 0.62 0.59 0.64

CN Siemens G + P 0.65 0.67 0.64 0.66 0.65 0.64 0.63 0.65

PPMI GE P + S 0.62 0.63 0.60 0.63 0.60 0.62 0.59 0.56

PD vs. Philips G + S 0.65 0.66 0.63 0.67 0.60 0.65 0.59 0.59

CN Siemens G + P 0.56 0.61 0.60 0.60 0.59 0.63 0.62 0.67

CALSNIC2 GE P + S 0.57 0.56 0.56 0.61 0.57 0.57 0.55 0.55

ALS vs. Philips G + S 0.59 0.59 0.60 0.62 0.56 0.58 0.61 0.62

CN Siemens G + P 0.61 0.63 0.65 0.68 0.59 0.65 0.65 0.71

5.2.7 ComBat Harmonization Effects

Initially, I evaluate the outcomes of a modified ComBat-based method known as

ComBat-generalized additive model (ComBat-GAM), specifically designed to address

site effects in multi-site neuroimaging datasets [102]. ComBat-GAM is the only pub-

licly available package that directly handles 3D NIFTI images as input, accessible at

(https://github.com/rpomponio/neuroHarmonize). This technique successfully esti-

mated age-related volume differences within a large-scale multi-center dataset, seg-
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menting each MR image into 145 ROIs. However, my analysis does not yield promis-

ing outcomes when harmonizing entire 3D MRI data, as opposed to limited features

extracted from MR images. Appendix Fig. A.3 provides an example of a 2D axial

brain slice before and after harmonization using the ComBat-GAM method from the

CALSNIC2 dataset. The output image exhibits undesirable artifacts and blurriness,

with distinct brain tissue sections showing abnormal patterns of intensity shift com-

pared to the input image. This disrupts the structural integrity of gray and white

matter. As a result, I abstain from performing classification tasks using these unde-

sirable resultant images generated by the ComBat-GAM approach. Subsequently, I

apply the standard ComBat method to the multi-center datasets, utilizing the official

implementation available at (https://github.com/Jfortin1/ComBatHarmonization).

A minor adjustment is made to the original implementation to enable voxel-level har-

monization instead of feature-level harmonization, treating each scanner manufac-

turer as an individual site. From a visual perspective, the outcomes produced by the

standard ComBat method closely resemble the original images, with minor changes

evident in cortical regions, as depicted in Fig. 5.6. Thus, I harmonize the datasets

using the standard ComBat and utilize the harmonized images for the cross-domain

classification context. The classification results following the ComBat harmonization

are presented in the right panel of Table 5.4. Unfortunately, the harmonized images

generated by the standard ComBat method demonstrate weakness in enhancing the

classification accuracy in most cases (exceptions are shown in bold in Table 5.4).

The potential reason behind these failures could be that ComBat-based harmoniza-

tion techniques are inappropriate for image/voxel-level harmonization. Successful

ComBat-based applications reported in prior studies have predominantly focused on

limited feature-level harmonization. Notably, during the execution of both ComBat-

based strategies, I incorporate age and sex as covariates to ensure the preservation of

this biological information throughout the harmonization process.
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Figure 5.6: Minor changes in voxel-wise ComBat harmonization using structural MRI.
A) One 2D axial slice of preprocessed 3D T1-weighted MR image of CALSNIC2
dataset before harmonization, B) corresponding slice after harmonization. The red,
yellow, and blue arrows point to the regions with manipulated structures, including
the disappearance of minor details resulting from the ComBat harmonization.

5.2.8 Quality Evaluation of Scanners Data

Alongside manual inspection, I utilize the quality control tool MRQy [57] to verify the

quality of each MR image. The MRQy tool offers a comprehensive array of quality-

related metrics, including peak signal-to-noise ratio (PSNR), contrast-to-noise ratio

(CNR), coefficient of variation of the foreground patch (CVP) to address shading

artifacts, coefficient of joint variation (CJV) to quantify aliasing and inhomogeneity

artifacts between foreground and background, and entropy focus criterion (EFC) to

detect motion artifacts. The user-friendly interface of MRQy greatly simplifies the

process of identifying outliers or inconsistencies within a dataset. Table 5.5 presents

an illustrative comparison of the diverse quality metrics obtained by averaging all

samples for each scanner manufacturer.
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Table 5.5: The quality evaluation of MRI data with MRQy for the ADNI1, ADNI2,
PPMI, and CALSNIC2 datasets.

Dataset
Quality

MRI scanner manufacturer

metrics
GE Siemens Philips

(Mean±Std) (Mean±Std) (Mean±Std)

ADNI1

PSNR ↑ 15.69±2.8 16.89±1.1 18.23±1.6

CNR ↑ 21.18±9.0 19.41±5.0 50.16±18.9

CVP ↓ 0.36±0.1 0.42±0.1 0.41±0.1

CJV ↓ 0.88±0.2 0.85±0.1 1.22±0.3

EFC ↓ 2.49±0.4 2.67±0.2 2.60±0.3

ADNI2

PSNR ↑ 16.96±1.0 15.37±0.9 17.16±1.1

CNR ↑ 17.64±17.3 34.09±6.5 12.31±2.0

CVP ↓ 0.46±0.1 0.41±0.1 0.51±0.1

CJV ↓ 1.59±2.6 0.91±0.1 1.48±0.5

EFC ↓ 1.89±0.1 2.94±0.1 2.17±0.2

PPMI

PSNR ↑ 13.65±1.5 14.42±1.2 17.31±3.6

CNR ↑ 29.29±25.3 34.99±12.99 16.33±5.7

CVP ↓ 0.39±0.1 0.41±0.1 0.47±0.1

CJV ↓ 0.84±0.2 0.84±0.1 0.95±0.3

EFC ↓ 24.02±13.1 4.04±1.8 3.36±1.5

CALSNIC2

PSNR ↑ 14.98±0.9 12.59±1.6 11.82±1.0

CNR ↑ 16.45±4.3 70.05±24.8 10.54±2.4

CVP ↓ 0.41±0.1 0.37±0.1 0.46±0.1

CJV ↓ 0.72±0.1 0.84±0.1 0.82±0.1

EFC ↓ 10.1±3.9 8.19±3.0 2.61±0.2

5.3 Discussion

The reproducibility of MRI research continues to be challenging, particularly when

data is influenced by scanner effects, a type of non-biological variation originating from

various image acquisition protocols. After demonstrating significant distinguishable

imaging characteristics present in data derived from distinct scanner manufacturers,

I explore its consequences for different disease classification tasks using several promi-

nent 2D and 3D DL models. The specialized FCN model consistently outperformed

other 3D classification frameworks in most disease classification scenarios. A notable

advantage of 3D frameworks lies in their ability to process the entire brain as input,

eliminating the need for prior knowledge in selecting specific slices for feature extrac-

tion. However, 3D DL methods tend to lack the utilization of pre-trained networks
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through transfer learning. In contrast, 2D frameworks necessitate the careful selec-

tion of relevant 2D slices based on prior knowledge. Additionally, the 2D DL models

leverage the transfer learning property by utilizing pre-trained models with a massive

2D imaging dataset like ImageNet. Overall, the ADDFormer network demonstrates

the best performance in this study, leveraging the power of the ViT architecture by

integrating spatial and frequency domain features in a novel manner.

The preprocessing steps applied to our original T1-weighted MR images involve

state-of-the-art algorithms and can be easily replicated using open-source tools. Af-

ter experimenting with a straightforward classification task of differentiating sex (male

vs. female) using the original MRI data, I move on to more sophisticated neurodegen-

erative disease classification tasks. Based on the results obtained from different DL

models, the most challenging classification task is distinguishing between MCI and

CN groups. This finding aligns with prior studies, which have also reported lower

accuracy in this specific classification [83]. Notably, some investigations have further

subdivided MCI into progressive (pMCI) and stable (sMCI) subgroups, achieving

improved results through such stratification [148].

The next challenging task is the classification of PD vs. CN. One critical factor that

makes this classification task difficult is the heterogeneous nature of the dataset. The

PPMI dataset encompasses 21 different centers [129], a characteristic evident in Fig.

5.4 (b). As a result, a decline in performance is anticipated in DL models if the test set

contains data from a particular center, while the corresponding center’s data is either

insufficient or entirely missing in the training set. For the same reason, tasks such as

scanner vendor and gender classification might yield lower accuracy with the PPMI

dataset compared to others. Lastly, the classification task of distinguishing between

ALS patients and healthy controls also presents challenges due to the insignificant

structural changes in MRI data compared to the control group.
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Chapter 6

Spatial and Frequency Fusion
Transformer

This chapter extends the idea of ADDFormer architecture more comprehensively for

the challenging task of amyotrophic lateral sclerosis (ALS) classification. This study

introduces an effective and robust transformer-based framework titled SF 2Former

(Spatial and Frequency Fusion transFormer) for the classification of ALS subjects and

healthy controls using multi-modal brain MRI data (i.e., T1-weighted, R2*, FLAIR).

The source code is available at https://github.com/rkushol/ADDFormer.

6.1 Proposed Method

6.1.1 Overview

The proposed framework encompasses simple preprocessing steps of the raw MRI data

using FreeSurfer [82] and FSL [132], selection of a fixed range of 2D coronal slices,

combination of features from two transformer networks in the spatial and Fourier

domains, and majority voting on the predictions of individual slices to determine the

final classification result. Figure 6.1 depicts the overall workflow of the proposed

phases.
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Figure 6.1: The overall workflow of the proposed stages.

6.1.2 Preprocessing

A straightforward, fast, and easy-to-perform preprocessing pipeline has been followed

on the original 3D brain MRI data to make it suitable for deep models. Several com-

mon preprocessing operations are conducted using the FreeSurfer program, including

motion correction, skull stripping, and non-parametric non-uniform intensity normal-

ization (N3) (Command: recon-all -subject subjectname -i input-file.nii

-autorecon1). Subsequently, registration to the MNI-152 standard space is per-

formed using the FSL flirt function. After the reconstruction of the original images,

the resultant image dimension is a matrix of size 182 × 218 × 182 with a voxel size

of 1 × 1 × 1 mm3. I utilize an eight-core CPU platform that leverages parallel pro-

cessing, resulting in an average processing time of approximately 5 minutes per scan

for the preprocessing steps. Without parallelization, processing each subject individ-

ually takes approximately 15 minutes per scan. This efficient preprocessing pipeline

ensures that the MRI data is prepared for subsequent analysis with deep models.

6.1.3 Slice Selection

After conducting empirical analysis, the optimal performance is found by manipulat-

ing the coronal slices among the three planes (coronal, sagittal, and axial) of the 3D

MRI scans. To identify a potential region of meaningful slices, I extensively explore

various combinations of slices through training and testing the network. The detailed
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outcomes of the experiments with various slice clusters are given in section 6.2.7. Ul-

timately, 15 consecutive 2D images from the central section of the coronal plane are

used to train the proposed framework. Expert observations suggest that this range of

coronal slices effectively captures the CST, a prominent region of interest in ALS. It

is essential to mention that the slices generated from the same subject are never used

simultaneously in both the train or test sets. In other words, the proposed method

follows a subject-level split protocol to avoid data leakage, which is further illustrated

in Fig 6.2. Data leakage in a machine learning model refers to the inadvertent sharing

of information between the test and training datasets, leading the model to already

possess knowledge about certain aspects of the test data after training. Indeed, a

recent study [147] revealed that many previous approaches to neurodegenerative dis-

ease classification did not adhere to proper slice division in their training or testing

data, resulting in incorrect and excessively optimistic classification accuracies.

Figure 6.2: Subject-level split process of the data used to train the proposed model.

6.1.4 Architecture

Figure 6.3 depicts the overall architecture of the proposed SF 2Former method, which

integrates features from two vision transformer-based networks. One network is re-

sponsible for generating features from the spatial domain, and the other is capable of
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developing features from the frequency domain.

Figure 6.3: The overall architecture of the proposed SF 2Former framework. The
left branch of the methodology encodes features from the spatial domain, whereas the
right segment encodes features from the frequency domain. Finally, the linear fusion
module incorporates the features to assemble the classification decision for each 2D
slice.

The ViT is the first successful method to adopt the transformer architecture and

has achieved state-of-the-art performance in many computer vision tasks. Unlike

other deep learning-based approaches that extract features from images using con-

volution, which face challenges in capturing long-term dependencies, ViT employs

self-attention (SA) to overcome this limitation. However, SA involves computation-

ally expensive matrix multiplications. To mitigate this, ViT embeds the image into

patch tokens and uses these tokens as input to reduce the computational complexity.

The left branch of the proposed architecture, similar to ViT, consists of alternating

layers of multiheaded self-attention (MSA) and a Multilayer perceptron (MLP) block

with two layers of Gaussian Error Linear Unit (GELU) [149] non-linearity on top

of the encoder. Layer normalization (LN) is applied before each block, and residual

connections are adjusted after each block. L represents the number of transformer

78



encoder layers which is 12 in our case.

To begin with, I have 2D slices with a spatial resolution of (H,W ) and C channels.

As an input to the transformer, I reshape the image x ∈ RH×W×C into a series of 2D

patches xp ∈ RN×(P 2.C). Here (P, P ) represents the size of each patch, and I have

N = HW/P 2 number of total patches, which serves as the input sequence length for

the transformer. Now, I flatten the patches and project them to D dimensions using

a trainable linear projection. This is necessary because the transformer maintains a

constant latent vector size D throughout its layers. The output of this mapping is

known as patch embeddings, as shown in Fig 6.3. To preserve positional information,

position embeddings Epos ∈ RN×D are appended to the patch embeddings. I employ

learnable 1D position embeddings, following the work [38]. The value of z at different

layers and positions can be expressed as follows:

z0 = [x1
pE ;x2

pE ; · · · ;xN
p E ] + Epos E ∈ R(P 2.C)×D (6.1)

z ′l = MSA(LN(zl−1)) + zl−1 l = 1 · · ·L (6.2)

zl = MLP (LN(z ′l )) + z ′l l = 1 · · ·L (6.3)

The MSA module computes the relationship between pairs of tokens to produce

the attention map A using an SA layer. Given an input sequence z ∈ RN×D, the

SA module linearly projects z into three embeddings: query q, key k, and value v,

represented as [q, k, v] = zUqkv, where Uqkv ∈ RD×3Dh . Subsequently, the attention

map A is estimated by taking the dot product between the query q and key k, which

is used to weight the value embedding v as follows:

SA(q , k , v) = Av = softmax (
qk⊤
√
Dh

)v (6.4)

MSA(q , k , v) = Concat [SA1(q, k, v), · · · , SAi(q, k, v)]Umsa (6.5)

The MSA module’s output involves performing i SA operations in parallel where

weight matrix Umsa ∈ Ri.Dh×D. The dimension Dh corresponds to the size of each

attention head, and the scaling factor
√
Dh is used to stabilize the gradient during
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training.

There is a close relationship between MRI data acquisition and the frequency do-

main. The mathematical formation of raw MRI data is initially performed in the

frequency domain before being converted to the spatial domain for visual interpreta-

tion. This connection also motivates me to extract features in the frequency domain.

However, directly involving a deep model in the frequency domain can be computa-

tionally expensive, especially when dealing with high-resolution images. The GFNet

[87] utilizes a similar downsampling design as the ViT and replaces the SA layer with

the Fast Fourier Transform (FFT) applied to the embedded patch tokens. The right-

side branch of the proposed architecture introduced in Fig 6.3 essentially follows the

concept of GFNet. The primary objective of this network is to learn the frequency

domain interactions among different spatial positions. Another notable difference be-

tween GFNet and ViT is the use of global average pooling in the final feature map

as an alternative to the extra class embedding head. GFNet accepts non-overlapping

H × W patches as input and flattens them into L = HW tokens with a dimension

of D. Each spatial domain token x ∈ RH×W×D transformed by 2D FFT generates a

complex tensor X in the frequency domain as:

X = 2D FFT [x] ∈ CH×W×D. (6.6)

Then, I modulate X (the spectrum of x) with respect to a learnable filter K in the

form of element-wise multiplication and can be expressed as:

X̃ = X ⊙ K . (6.7)

The parameter K is a global filter representing an arbitrary frequency-domain filter

with the same dimension as X . Ultimately, the modulated spectrum X̃ is transformed

back to the spatial domain using the inverse FFT (iFFT), and the tokens are updated

as:

x = 2D iFFT [X̃ ]. (6.8)
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The other components, such as layer norm and MLP, used in the diagram for

GFNet, are identical to those in ViT. Among the different variants of GFNet, I adopt

the transformer-style GFNet-B version, which consists of 19 layers/depth and has an

embedding dimension of 512. Therefore, in my presented diagram of Fig. 6.3, the

values of m and M become 512 and 19, respectively. To leverage information from

both spatial and frequency domains, I propose a new linear fusion block to combine

the features extracted from ViT and GFNet. A new linear head with a dimension

equal to the joint embedding dimensions of ViT and GFNet is constructed, where the

input comes from the final layers of these two networks as a form of concatenation.

The output from the linear fusion block containing the merged features of the spatial

and frequency domain is used to carry out the classification decision. The loss function

we operate throughout our model is the cross-entropy (CE) loss function.

6.1.5 Majority Voting

The rationale behind applying majority voting in the proposed methodology is that

it is unlikely for all the disease-affected tissues or areas to be present in all the chosen

slices. In other words, automatically identifying 2D slices that consistently capture

distinct clinical characteristics for every subject without manual intervention is not

feasible. To address the possibility of false-positive responses from these insignificant

slices, I employ the concept of majority voting at the last stage. The final classification

of an individual sample is determined based on the class that has the highest number

of occurrences within the given range of slices. The effectiveness of this majority

voting scheme in enhancing classification accuracy is further reported in the ablation

study 6.2.4 section.
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6.2 Experiments

6.2.1 Dataset

Neuroimaging data are obtained from two independent datasets of the CALSNIC1

[131] study. CALSNIC is a longitudinal, multi-center, and multi-modal study in

which 3T MRI scans are acquired using scanners from three different manufacturers:

GE Healthcare, Philips, and Siemens. The data used in the experimentation with

CALSNIC1 is accumulated from five centers (i.e., Calgary, Edmonton, Toronto, Van-

couver, and Montreal), whereas CALSNIC2 data comprises seven different centers

(i.e., Calgary, Edmonton, Toronto, Quebec, Miami, Utah, and Montreal). To avoid

potential data leakage issues, I only consider MRI data from participants with a cer-

tain visit (baseline) in our experiments. Due to a shortage of data in CALSNIC1,

the FLAIR and R2* modalities are only considered from the CALSNIC2 dataset. A

summary of the demographic information for both datasets is provided in Table 6.1.

6.2.2 Implementation

The proposed framework is implemented using PyTorch [146] and runs on a server

with 4 NVIDIA 2080 Ti GPUs. The coding follows the publicly available implemen-

tation of the ViT2 and the GFNet3. To ensure robustness during training, I apply

data augmentation techniques such as random rotations and flipping to create di-

verse training batches. Each coronal slice is resized to a dimension of 224 × 224.

After normalization, the pixel intensity values are scaled to the range of [0, 1]. I

employ the SGD optimizer to train all the networks with a momentum value of 0.9.

I choose an initial learning rate of 0.001 and decay the rate to 10−5 using the cosine

schedule. A batch size of 16 and a total number of 150 epochs are used for both

transformer networks. A concise summary of the network parameter details of our
1(https://calsnic.org/)
2(https://github.com/jeonsworld/ViT-pytorch)
3(https://github.com/raoyongming/GFNet)

82

(https://calsnic.org/)
(https://github.com/jeonsworld/ViT-pytorch)
(https://github.com/raoyongming/GFNet)


Table 6.1: Demographic details of T1-weighted MR images for the CALSNIC1 and
CALSNIC2 datasets. ALSFRS-R = The Revised Amyotrophic Lateral Sclerosis Func-
tional Rating Scale, S.D. = Standard Deviation.

Participant
CALSNIC1 CALSNIC2

characteristics
ALS Healthy

p-value
ALS Healthy

p-value
patients controls patients controls

Subjects 61 59 - 116 116 -

Sex: Male/Female 36/25 27/32 0.15 76/40 57/59 0.01*

Age (years)

Mean ± S.D. 58.4 ± 10.7 54.0 ± 10.2 0.02* 60.1 ± 10.1 56.3 ± 10.6 0.005*

Median 57.0 55.0 - 60.9 58.7 -

Range 33.0 - 86.0 25.0 - 69.0 - 25.6 - 83.4 25.8 - 77.0 -

ALSFRS-R score

Mean ± S.D. 39.2 ± 5.0 - - 37.3 ± 7.0 - -

Median 40.0 - - 39.0 - -

Range 22.0 - 47.0 - - 7.0 - 47.0 - -

Symptom duration

(months)

Mean ± S.D. 16.1 ± 10.5 - - 22.6 ± 13.2 - -

Median 13.3 - - 19.3 - -

Range 4.0 - 54.8 - - 2.6 - 59.8 - -

proposed framework is given in Table 6.2. The final accuracy and the values of hyper-

parameters reported in the study are attained from five-fold cross-validation (CV).

Specifically, we design a variation of the Stratified KFold approach where each fold

is conditioned on a similar share of data from all the available centers. This ensures

that each fold will incorporate approximately the same percentage of samples from

their respective centers. For a better understanding of the data distribution for model

training in CALSNIC1 and CALSNIC2, Fig. 6.4 is presented below. The data split

ratio of train: validation: test data is 7:1:2 in each fold. The training time of the

proposed approach is approximately 6 hours when operating on a single GPU with

12GB memory.

6.2.3 Evaluation Metrics

Commonly used statistical metrics, such as accuracy, sensitivity, specificity, pre-

cision, and F1-score are used to assess the classification performance of the pro-
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Table 6.2: The summary of parameter details of the proposed framework.

Parameters
Left branch/ Right branch/

spatial domain frequency domain

Image dimension 224× 224 224× 224

Patch size 16× 16 16× 16

Number of layers/ depth L = 12 M = 19

Embedding dimension n = 768 m = 512

Activation function GELU GELU

MLP dimension 3072 2048

Dropout rate 0.1 0.25

(a) CALSNIC1 (b) CALSNIC2

Figure 6.4: Stratified five-fold cross-validation (CV) designed for CALSNIC datasets.
The row labelled ‘class’ indicates the percentage of ALS patients and healthy con-
trols, the number of which is similar and balanced in both datasets. Next, the row
tagged ‘center’ shows the percentage of participants in the corresponding dataset
from available centers. The five rows above ‘center’ show training and test data
distribution with five iterations of CV. Each iteration involves a similar proportion
of samples from each center.

posed method. These metrics are defined in terms of four values: True Positive

(TP), True Negative (TN), False Positive (FP), and False Negative (FN). Sensitivity

(SEN), also known as recall, is the capability of a test to correctly identify patients

with a disease and is defined as SEN = TP
TP+FN

. Specificity (SPE), also known

as the true negative rate, is the ability to determine individuals without the disor-

der and is expressed as SPE = TN
TN+FP

. The positive predictive value or precision

(PRE) reflects the proportion of relevant items, with high precision indicating that

the algorithm generates significantly more relevant outcomes than irrelevant ones

(PRE = TP
TP+FP

). Accuracy (ACC) represents the fraction of correctly identified
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subjects to the total number of samples in a specific database and is computed as

ACC = TP+TN
TP+TN+FP+FN

. The F1-score is the harmonic mean of precision and recall,

defined as F1− score = 2× precision×recall
precision+recall

.

6.2.4 Ablation Study

To demonstrate the effectiveness of different components and techniques used in the

proposed method, an ablation study is summarized in Table 6.3. The values of dif-

ferent hyperparameters and the choice of slice selection remain the same for this

experiment. I remove one particular function from the proposed framework to eval-

uate the impact of that function in the first five settings. First, I examine the model

without normalizing the pixel intensities of MRI scans. Normalization of the images

noticeably boosts the overall accuracy. Next, I assess the importance of data augmen-

tation and observe a considerable reduction in accuracy when data augmentation is

not applied. Importantly, slice selection plays a vital role in the proposed technique.

In particular, including most of the slices of a 3D brain MRI lowers the network’s

performance. In the experiment without slice selection, I chose 120 coronal slices out

of 218 (from slice 51 to 170) as slices outside this range do not contain the brain

and thus lack meaningful information. Another influential function of the proposed

method is leveraging the transfer learning property from the enormous computer vi-

sion dataset ImageNet [37]. Instead of using the pre-trained weights for the ViT and

the GFNet networks, training from scratch decreases the accuracy slightly.

Moreover, the idea of applying majority voting at the end of the framework helps

to enhance the performance significantly. In other words, bypassing this operation

reduces the performance drastically. Finally, I evaluate the performance of the pro-

posed framework’s two major building blocks: the ViT and the GFNet. When I apply

them independently, they can correctly determine samples which are not identical.

However, I achieve much-improved classification accuracy in the proposed architec-

ture by fusing the strength of these two networks. While some other methods may
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Table 6.3: Ablation study for ALS patients vs healthy controls classification on a
particular fold for T1-weighted MR images of CALSNIC1 dataset.

Method ACC SEN SPE PRE F1score

w/o normalization 0.800 0.750 0.889 0.923 0.828

w/o augmentation 0.760 1.000 0.667 0.59 0.700

w/o slice selection 0.680 0.647 0.750 0.846 0.734

w/o transfer learning 0.840 0.846 0.834 0.846 0.846

w/o majority voting 0.720 0.759 0.686 0.676 0.715

ViT only [38] 0.800 0.834 0.769 0.769 0.800

GFNet only [87] 0.840 0.800 0.917 0.923 0.857

Proposed method 0.880 0.813 1.000 1.000 0.900

outperform the proposed technique in terms of SEN, they often sacrifice scores in

SPE and PRE. The proposed methodology maintains a balance among all metrics,

which is also reflected in the F1-score.

6.2.5 Effects of Multi-center Study

This section highlights the effect of multi-center data or data acquired with multiple

scanners on classification performance. Deep learning-based models face increased

challenges when MRI data originates from different scanners [150]. Here, I present

the classification results from three different setups using CALSNIC2 T1-weighted

images. I select samples from two major recruiting centers, namely Toronto and

Edmonton, where Siemens 3T Prisma model scanners are used. In the final set, I

randomly collect samples from six centers equal to the largest center’s dimension.

In the first setup, I estimate the classification accuracy using data from the Toronto

center, consisting of 15 healthy controls and 20 ALS patients. In the second setup, I

evaluate the classification accuracy of samples obtained from the Edmonton center,

which includes 46 normal controls and 35 ALS subjects. Finally, I randomly assemble

MR images from six centers (i.e., Calgary, Edmonton, Toronto, Quebec, Miami, and

Montreal) to create a mixed dataset with a sample size similar to that of the Edmonton

center. Table 6.4 illustrates the classification scores, showing that accuracy is higher

when the data originates from a single center or the same type of scanner with an
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identical image acquisition protocol. On the other hand, when the data comes from

multiple centers or scanners, the performance declines. Another observation is the

significance of having more training data for deep models. By including all the samples

from the CALSNIC2 dataset, the classification accuracy improves from approximately

77% to 82%.

Table 6.4: Showing the effects of the multi-center study tested on CALSNIC2 T1-
weighted MR images.

Center Samples
CALSNIC2

ACC SEN SPE PRE F1-score

Toronto 35 0.813 0.900 0.708 0.800 0.845

Edmonton 81 0.824 0.770 0.571 0.727 0.824

Multi-center 81 0.765 1.000 0.714 0.600 0.765

6.2.6 Effects of Different MRI Modalities

The proposed framework investigates the applicability of multiple MRI sequences in

classifying ALS from healthy controls. Firstly, I consider T1-weighted images from

the CALSNIC1 and CALSNIC2 datasets as structural metrics (i.e., volume) obtained

from T1-weighted scans commonly used for neurodegenerative disorder classifica-

tion. Secondly, I evaluate the performance of the R2* modality from the CALSNIC2

dataset, which has rarely been explored for ALS classification. Finally, I calculate the

classification accuracy using the FLAIR imaging modality on the CALSNIC2 dataset.

Table 6.5 presents the classification performance of using different MRI modalities.

Among the five evaluation metrics, this study reveals that the R2* modality achieves

slightly better results in terms of accuracy, specificity, precision, and F1-score. The

classification accuracy of T1-weighted images is very close to that of R2* and achieves

the highest sensitivity. However, the FLAIR modality shows slightly lower classifica-

tion accuracy compared to the other two modalities.
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Table 6.5: Showing the classification results using different MRI modalities.

Modality (Dataset) Samples ACC SEN SPE PRE F1-score

T1-W (CALSNIC1) 120 0.816 0.843 0.812 0.800 0.815

T1-W (CALSNIC2) 223 0.818 0.824 0.815 0.800 0.811

R2* (CALSNIC2) 148 0.820 0.790 0.875 0.880 0.829

FLAIR (CALSNIC2) 168 0.806 0.807 0.824 0.812 0.803

6.2.7 Effects of Slice Selection

After applying the FreeSurfer autorecon1, FSL flirt, and resize commands, the re-

constructed image size becomes 224×218×224. As a result, each coronal slice (total

218) has a dimension of 224 × 224. From a 2D slice view perspective, the initial

and final parts of the volume do not contain significant information. In other words,

most of the tissues or important structural information can be found in the central

part of the volume. Therefore, I explore the effectiveness of a wide range of slices to

investigate which part of the volume provides the best performance, and the results

are demonstrated in Fig 6.5. I start with an interval of 15 consecutive slices from the

central slice location and analyze 45 slices in the forward and backward directions.

Subsequently, I experiment with different combinations of successive slices within

these 90-slice spans, such as 30 or 45 slices.

After careful observation, the best performance is found within the slice range of

111 to 125 for the T1-weighted images. The slice span of 96 to 110 demonstrates

results closest to the optimal performance. Increasing the number of slices for train-

ing does not improve the performance, as noticed in each chart’s middle and right

segments in Fig 6.5. Moreover, increasing the number of slices for model training

noticeably accelerates the overall training time. However, the best classification ac-

curacy for the R2* maps and FLAIR images is achieved within the slice range of 96

to 110. The slices from 111 to 125 also perform comparably well in classifying ALS

patients using R2* and FLAIR images. The anatomical features expected in different

slice ranges can be perceived in Fig. 6.6.
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(a) CALSNIC1 T1W (b) CALSNIC2 T1W

(c) CALSNIC2 R2* (d) CALSNIC2 FLAIR

Figure 6.5: Showing the classification accuracy effects on different ranges of coronal
slice selections for each MRI modality used in the study.

6.2.8 Comparison

I compare the proposed network with popular deep learning-based 2D and 3D archi-

tectures and highlight the results in Table 6.6. Additionally, I reproduce the classifica-

tion accuracy of a previous state-of-the-art work, M-CoHOG [13], for the CALSNIC1

dataset. Due to the manual slice selection process required by M-CoHOG, I could

not report their accuracy for the CALSNIC2 database. Firstly, I estimate the classi-

fication accuracy for the widely used ResNet architecture [135] with different depths,

such as 10, 18, 50, 101, and 152, and report the best accuracy among them. Secondly,

I evaluate the performance of the MobileNet network [151], which utilizes depthwise

separable convolutions to develop lightweight deep neural networks. Thirdly, I mea-

sure the accuracy with the ShuffleNet framework [141], which employs pointwise group

convolution and channel shuffle to provide efficient computation cost. Finally, I cal-

culate the performance with another popular deep model named EfficientNet [138],

which effectively balances the network’s depth, width, and resolution.

For the 2D CNN-based architectures, I follow similar steps and data, such as input
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Figure 6.6: Slice number and the corresponding coronal MR image of a T1-weighted
scan from an ALS patient. Out of 218 coronal slices, the best performance is found
from the slice range of 111 (D) to 125 (E) for the T1-weighted images.

slices and majority voting, as in the proposed method. In contrast, the input for

the 3D-based framework is the entire 3D brain MRI to carry out the classification

outcome. In Table 6.6, the proposed strategy outperforms all other approaches in

most of the evaluation metrics except SPE. The MobileNet architecture achieves

higher SPE but produces inferior SEN, indicating a bias towards a particular class.

Additionally, I perform paired t-tests to determine the statistical significance of the

five-fold CV ACC of the proposed framework in comparison to other methods. The
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Table 6.6: Comparison with popular CNN architectures and previous work for ALS
patients vs. healthy controls classification tested on T1-weighted MR images of CAL-
SNIC1 and CALSNIC2 datasets.

Reference
FLOPs CALSNIC1 CALSNIC2

(G) ACC SEN SPE F1-score ACC SEN SPE F1-score

ResNet-101 (2D) 23.2 0.717 0.631 0.811 0.699 0.726 0.667 0.783 0.746

ResNet-101 (3D) 243.2 0.720 0.692 0.750 0.720 0.733 0.727 0.739 0.733

ShuffleNet (2D) 2.1 0.680 0.580 0.789 0.654 0.696 0.697 0.696 0.692

ShuffleNet (3D) 14.8 0.680 0.692 0.667 0.692 0.689 0.773 0.609 0.708

MobileNet (2D) 1.0 0.667 0.441 0.911 0.580 0.704 0.546 0.783 0.643

MobileNet (3D) 40.3 0.720 0.539 0.917 0.667 0.711 0.546 0.870 0.649

EfficientNet (3D) 24.6 0.680 0.667 0.692 0.667 0.711 0.727 0.696 0.696

M-CoHOG (2D) - 0.745 0.786 0.688 0.752 - - - -

Proposed method 38.4 0.816 0.843 0.812 0.815 0.818 0.824 0.815 0.811

results of these t-tests are reported in Table 6.7, revealing that all p-values are below

the significance level of 0.05. This demonstrates that the performance of the proposed

method shows statistically significant differences when classifying CALSNIC1 and

CALSNIC2 T1-weighted image datasets compared to the other methods.

Table 6.7: The p-values of the paired t-test to compare the statistical significance of
the proposed method with other methods for the classification ACC on T1-weighted
MR images of CALSNIC1 and CALSNIC2 datasets.

Other methods vs. p-values

proposed method CALSNIC1 CALSNIC2

ResNet-101 (2D) 0.003 0.002

ResNet-101 (3D) 0.004 0.017

ShuffleNet (2D) 0.011 < 0.001

ShuffleNet (3D) 0.022 < 0.001

MobileNet (2D) 0.011 < 0.001

MobileNet (3D) 0.009 0.001

EfficientNet (3D) 0.007 0.003

M-CoHOG (2D) 0.021 -

6.3 Summary

This study presents a comprehensive investigation into the potential of integrating

the ViT architecture with spatial and frequency domain features to differentiate ALS
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patients from healthy controls. The proposed network outperforms established deep

models, achieving superior classification accuracy across T1-weighted, FLAIR, and

R2* MRI data. Notably, R2* maps exhibit slightly higher performance among these

modalities, highlighting the importance of further exploration to effectively utilize

them in ALS diagnosis. Previous attempts at ALS classification have been hindered

by small sample sizes or low consistency in accuracy when applied to multi-center

data, preventing their translation into clinical diagnosis or trials. The introduced

methodology will bring MRI closer to the reality of providing biomarkers for ALS

diagnosis and monitoring disease progression as well as response to therapy. In the

future, I plan to incorporate clinical features and imaging data to enhance the classifi-

cation performance. Other neuroimaging modalities, such as functional MRI (fMRI)

and diffusion tensor imaging (DTI), can be investigated using a similar framework.

The proposed architecture is flexible and can be adapted to other neurodegenerative

disease classification tasks with appropriate slice selection, where frequency domain

information plays crucial roles in feature extraction.
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Chapter 7

Domain Adaptation of MRI Scanners

This chapter introduces a new perspective to address the domain shift issue in multi-

site MRI data using unsupervised domain adaptation (UDA) and source-free do-

main adaptation (SFDA). The primary task is to learn with labelled source sam-

ples, and the objective is for the model to function satisfactorily in the target do-

main without labels. By classifying different scanner manufacturers as distinct do-

mains, the proposed framework can learn better domain-invariant representation

and enhance cross-domain classification accuracy. The source code is available at

https://github.com/rkushol/DAMS.

7.1 DAMS Method

This study proposes a novel UDA method called DAMS (Domain Adaptation of MRI

Scanners) to solve the domain shift issue for MRI data by identifying and addressing

the dominant factor causing heterogeneity in the dataset. Unlike previous meth-

ods where an entire study/dataset is considered as the source or target domain, the

proposed approach demonstrates the necessity of appropriate domain selection for

adaptation. Furthermore, the proposed DAMS framework leverages the maximum

mean discrepancy (MMD) [39] and a modified deep correlation alignment (CORAL)

loss in order to align domain-invariant features.

In a multi-center MRI dataset, domain shift refers to the differences in scanners
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and imaging protocols across different sites. Some examples of domain shift parame-

ters include imaging protocol (flip angle, acquisition orientation, slice thickness) and

scanner (manufacturer, model, field strength). Therefore, MR images may differ qual-

itatively and quantitatively from center to center and study to study. Dealing with

all of these parameters may appear computationally complex. Interestingly, based

on my observations in several MRI datasets, the dominating factor responsible for

data deviation is the scanner manufacturer, as shown in Fig 7.1 using the t-SNE [35]

method.

Figure 7.1: Graphs show the distribution of MRI data used in the study from the
ADNI [127] and CALSNIC [131] datasets generated by the features of MRQy [57] us-
ing t-SNE. Three different colors indicate three different MRI scanner manufacturers’
data which are separable from each other. The rightmost panel shows that among
three manufacturers, two can be regarded as source domains and the other as the
target domain. More findings with different datasets are given in Appendix Fig. B.1.

7.1.1 Problem Formulation

Assume that we have N source domains with labeled samples {X j
s ,Yj

s}Nj=1, where X j
s

denotes data from the jth source domain and Yj
s are the corresponding class labels.

Additionally, we have target domain Xt, with unlabeled Yt. UDA aims to learn a

model that can generalize well to the target domain while minimizing the domain

shift between the source and target domains. Specifically, given the source and target

domains, the objective is to learn a domain-invariant feature representation F that

can capture the underlying data distributions across different domains. To achieve

this, the discrepancy between the source and target feature distributions must be

minimized while maintaining the discriminative information necessary for downstream
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tasks, such as classification.

Figure 7.2: The overall workflow of the proposed stages in DAMS framework. Best
viewed in color.

7.1.2 Architecture

The overall workflow of the proposed DAMS approach is shown in Fig. 7.2. In stage 1,

the proposed framework classifies the domains based on scanner manufacturers (GE,

Siemens, Philips). Scanner information is readily available in a standard MRI dataset

[29]; however, if this is not available, t-SNE features can be generated using open-

source MRQy [57], which can be clustered using K-means clustering to categorize the

data based on scanner manufacturers. In stage 2, the common latent feature repre-

sentation F is determined from the original feature space of all available domains.

Although some methods try to extract domain-invariant features in this shared space,

in practice, extracting domain-invariant features across multiple domains leads to a

higher degree of discrepancy. Motivated by [39], F is extended to multiple feature

spaces (stage 3), aligning the target domain with available source domains by learning

multiple domain-invariant representations (D1, · · · ,Dn) by minimizing the maximum

mean discrepancy (MMD) [39] and modified correlation alignment (CORAL) loss. Us-

ing these pairwise domain-invariant feature maps, an equal number of domain-specific

softmax classifiers (C1, · · · , Cn) are trained in stage 4, which exploit the Cross-Entropy

(CE) loss on the labels of source domains. Finally, to minimize the dissimilarity in
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each (C1, · · · , Cn), the Smoothl1 loss function [152] is employed which is less sensitive

to outliers. The final target decision (Patient vs. HC) is generated from the weighted

average of the outputs of (C1, · · · , Cn) following [153]. The advantage of having mul-

tiple classifiers is that if there are fewer samples from a particular manufacturer, then

the data from other manufacturers can be used to achieve better performance.

7.1.3 Loss Functions

To align the feature space of the source and target domains, I leverage the joint

contribution from the MMD and deep CORAL loss functions. MMD measures the

distance between the empirical mean embeddings of the source and target domains in

a reproducing kernel Hilbert space, and the details of MMD() can be found in [39].

Each feature extractor (D1, · · · ,Dn) learns a domain-invariant map for each pair of

source and target domains by minimizing Lmmd as follows:

Lmmd =
1

N

N∑︂
j=1

MMD(Dj(F(Xj
s )),Dj(F(Xt))). (7.1)

Deep CORAL [40] aims to minimize the difference between the source and target co-

variance matrices (second-order statistics) in a d-dimensional feature space. I replace

the Frobenius norm and normalization term with the mean squared error (MSE) be-

tween the covariance matrices of the source (Vs) and target (Vt) feature distributions.

The use of MSE provides a more sensitive approach and improved alignment of fea-

tures which can be defined as follows: Lcoral = MSE(Vs, Vt). Each softmax predictor

Cj uses CE classification loss, expressed as follows:

Lce =
N∑︂
j=1

Ex∼Xj
s
J(Cj(Dj(F(xj

s))), y
j
s). (7.2)

Since (C1, · · · , Cn) are trained on diverse source domains, there may be discrepancies

in their predictions for target data, in particular, those that are close to decision

boundaries. So I employ Smoothl1 loss which offers stable gradients for larger values

and fewer oscillations during updates to yield a similar classification from each Cj for
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the same target sample. Finally, the total loss is noted as:

Ltotal = Lce + λ(Lmmd + Lcoral + LSmoothl1
), (7.3)

where λ is the adaptation factor.

7.2 Experiments

7.2.1 Datasets

Publicly available longitudinal datasets from the ADNI [127], AIBL [128] and Minimal

Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) [154] are used for clas-

sifying AD patients. The CALSNIC [131] multi-center dataset is used for classifying

ALS. For ADNI and CALSNIC, two independent versions are used, ADNI1/ADNI2

and CALSNIC1/CALSNIC2, respectively. T1-weighted structural MR images are

employed for the above datasets, which are skull-stripped and registered to MNI-152

standard space using the FreeSurfer and FSL software, respectively. After prepro-

cessing, the resulting image dimension is 182 × 218 × 182, and the voxel dimension

is converted to 1 mm isotropic resolution. Each dataset’s demographics and some

scanning protocol details are given in Table 7.1 and Table 3.3, respectively.

7.2.2 Implementation

The proposed DAMS framework employs 32 coronal slices from the central plane of

3D MRI. The final class prediction is performed with the majority voting of these

coronal images, similar to [142, 155]. This slice range can better capture significant

brain regions related to AD/ALS, including hippocampus, motor cortex, and corti-

cospinal tract. ResNet-50 [135] model is used as the backbone, which is pre-trained

on ImageNet [37]. When both training and testing occurred on a specific domain, the

data is split as train:validation:test with a 6:2:2 ratio, and mean classification accu-

racy is reported from five repeated experiments with randomly shuffled data. Avenues

of data leakage are avoided following the previous work by Yagis et al. [147]. I use the
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Table 7.1: Demographic details of the ADNI, AIBL, MIRIAD and CALSNIC datasets

Group

MRI Scanner Manufacturer

Dataset GE Siemens Philips

(#total) Sex Age Sex Age Sex Age

(M/F) (Mean±Std) (M/F) (Mean±Std) (M/F) (Mean±Std)

ADNI1 AD 80/80 75.5±7.7 80/80 75.0±7.2 60/49 75.7±7.0

(925) HC 80/80 75.1±5.7 80/80 75.9±5.9 109/67 75.4±5.2

ADNI2 AD 61/41 75.0±8.5 90/57 75.1±7.8 48/58 74.5±7.3

(852) HC 64/90 74.3±5.9 92/88 74.0±6.4 69/94 75.6±6.4

AIBL AD - - 28/45 73.6±8.0 - -

(288) HC - - 99/116 72.9±6.6 - -

MIRIAD AD 19/27 69.4±7.1 - - - -

(69) HC 12/11 69.7±7.2 - - - -

CALSNIC1 ALS 21/25 57.0±11.4 43/28 59.6±10.8 17/1 58.1±9.0

(281) HC 23/33 50.5±11.9 38/28 57.2±8.1 6/18 53.1±8.4

CALSNIC2 ALS 14/4 54.0±11.8 124/65 60.1±10.2 29/20 62.4±8.2

(546) HC 18/13 60.1±8.8 120/101 54.9±10.5 12/25 61.7±10.8

SGD optimizer with a momentum of 0.9, a batch size of 32, and ηp =
η0

(1+αp)β
, where

η0 = 0.01, α = 10 and β = 0.75, The learning rate, ηp, during SGD, is modified from

0 to 1 with an iterative scheduling: λp =
2

exp(−θp)
− 1, where θ = 10, to reduce noisy

activations in early training phases [156]. The model was trained using an NVIDIA

RTX A6000 GPU with 48GB of memory, which took around 8 hours to train on the

largest dataset (ADNI1).

7.2.3 Intra-study Validation

While merging a new site into a trained model, the most challenging case is when

the scanner manufacturer of the new site differs from those currently involved. To

assess the potential impact of such variations in MRI data, I evaluate cross-domain

classification accuracy within the ADNI and CALSNIC datasets by considering two

scanner manufacturers’ data as source domains and the remaining one as the target

domain. Table 7.2 shows the results by analyzing three transfer tasks from different

domain combinations (source1, source2 → target): GE, Philips → Siemens; GE,

Siemens → Philips; Philips, Siemens → GE. The average classification accuracy of AD
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vs. HC, when training and testing occur within the same domain, is approximately

90% for both the ADNI1 and ADNI2 datasets but drops to around 80% when the test

and the target domains are different (w/o DA). However, by applying the proposed

DAMS, the mean classification accuracy returns to about 89%, demonstrating that

the proposed method robustly adapts the data from a different scanner to achieve

a classification accuracy similar to that of the source domains. The classification

accuracy of the CALSNIC datasets (ALS vs. HC) declines by approximately 13%

when the test domain differs from the source domains. Nevertheless, an improvement

of about 10% in the classification accuracy is obtained using the proposed method.

Furthermore, in Table 7.2, an ablation study focusing on the effectiveness of combining

the MMD and CORAL loss functions in the network is presented, which slightly

outperforms compared to using only one. Finally, the results of two previous multi-

source UDA techniques, M3SDA [153] and MFSAN [39] are reproduced, where the

proposed DAMS framework surpasses them in terms of classification accuracy.

Table 7.2: The cross-domain intra-study classification accuracy for the ADNI1,
ADNI2, CALSNIC1 and CALSNIC2 datasets. [SD: Source Domain, TD: Target
Domain, G: GE, S: Siemens, P: Philips]

Dataset
Training Testing

TD

Testing on target domain

on SD on SD w/o DA MMD CORAL M3SDA MFSAN
DAMS

(Proposed)

ADNI1

G + S 0.90 P 0.80 0.83 0.86 0.82 0.82 0.88

G + P 0.91 S 0.80 0.90 0.91 0.85 0.87 0.91

S + P 0.89 G 0.81 0.87 0.85 0.84 0.85 0.87

ADNI2

G + S 0.89 P 0.79 0.89 0.87 0.86 0.87 0.89

G + P 0.92 S 0.81 0.87 0.87 0.84 0.87 0.88

S + P 0.92 G 0.82 0.91 0.90 0.87 0.86 0.92

CALS-
G + S 0.75 P 0.56 0.64 0.62 0.63 0.64 0.68

NIC1
G + P 0.75 S 0.65 0.77 0.77 0.72 0.73 0.77

S + P 0.77 G 0.60 0.65 0.66 0.63 0.63 0.68

CALS-
G + S 0.77 P 0.60 0.73 0.72 0.71 0.70 0.74

NIC2
G + P 0.69 S 0.54 0.59 0.65 0.62 0.59 0.65

S + P 0.75 G 0.68 0.80 0.76 0.71 0.76 0.80
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7.2.4 Inter-study Validation

To validate the robustness of the findings, I analyze diverse datasets, including those

from single/multiple vendors, as well as datasets containing single/multiple models

from the same vendor. Table 7.3 shows the results, and as expected, a noticeable

drop in accuracy occurs when the target data differs from the source without DA.

However, the proposed DAMS framework substantially improves the accuracy after

DA, with accuracy similar to that obtained in the source domains. Another ablation

study examines the efficacy of addressing the target domain heterogeneity (TDH). The

proposed approach processes the target domain based on the scanner manufacturer,

producing better results than considering all samples without TDH. For datasets like

AIBL and MIRIAD, the proposed method and the baseline w/o TDH exhibit the same

classification accuracy as their data originated from a single manufacturer. Finally,

the proposed DAMS method outperforms others in classification accuracy using the

same data after domain categorization.

Table 7.3: Inter-study classification accuracy for the ADNI, AIBL, MIRIAD and
CALSNIC datasets. [TDH: Target Domain Heterogeneity, SD: Source Domain]

Training Testing Target
Testing on target domain

on SD on SD domain
w/o w/o

MMD CORAL M3SDA MFSAN
DAMS

DA TDH (Proposed)

ADNI2 0.81 0.83 0.88 0.89 0.87 0.87 0.90

ADNI1 0.89 AIBL 0.75 0.84 0.83 0.82 0.80 0.83 0.84

MIRIAD 0.78 0.88 0.88 0.85 0.85 0.88 0.88

ADNI1 0.79 0.84 0.87 0.87 0.84 0.85 0.88

ADNI2 0.91 AIBL 0.74 0.82 0.82 0.82 0.80 0.81 0.82

MIRIAD 0.75 0.87 0.87 0.85 0.82 0.87 0.87

CALS-
0.75

CALS-
0.61 0.69 0.70 0.73 0.68 0.69 0.73

NIC1 NIC2

CALS-
0.73

CALS-
0.64 0.72 0.76 0.74 0.71 0.73 0.77

NIC2 NIC1
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7.2.5 Limitations

The second dominant factor typically observed for data variation is the scanner model.

It would be interesting to analyze the results by subdividing each manufacturer’s

data into different models. The same vendor can reconstruct MRI data differently for

various models. However, I have limited my domain consideration to the manufacturer

level due to inadequate data availability for different scanner models. Moreover, the

proposed DAMS architecture is task-specific and designed for classification. The

network’s backbone and loss functions require modification of other tasks, such as

segmentation and registration.

7.3 BSAMS Method

SFDA is a subfield of domain adaptation where the goal is to adapt a pre-trained

model to a new target domain without access to the source domain data. Traditional

domain adaptation methods [23–29, 31, 32] typically rely on having access to both

the source domain (where the model was initially trained) and target domain data

to minimize the distribution discrepancy between them. However, in many practical

scenarios, the source domain data might not be available due to privacy concerns,

data ownership, or storage constraints. In SFDA, only the trained source model and

the target domain data are available. The adaptation process involves adjusting the

model parameters or predictions to perform well on the target domain despite the

lack of source data.

White-box SFDA provides full access to the pre-trained model, including its in-

ternal parameters, intermediate layer outputs, and structure. This access allows for

more sophisticated adaptation techniques that can directly manipulate the model.

However, through generation techniques like generative adversarial learning [157], it

is still possible to recover the raw source data, leaking the individual information. On

the other hand, black-box SFDA assumes that only the outputs (predictions) of the
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pre-trained model are available for the target domain data. In this scenario, the inner

workings of the model (e.g., weights, intermediate representations) are not accessible.

Adaptation methods must rely solely on the model’s predictions for the target domain

data. Therefore, black-box SFDA methods are more appropriate in real-world appli-

cations where the labeled data from the source domain might be costly, impractical,

or even impossible.

Motivated by the advantages of black-box SFDA, I introduce a novel framework

called BSAMS (Black-box Source-free Adaptation of MRI Scanners) to address do-

main shift issues in multi-center MRI data analysis. Unlike existing SFDA approaches

in medical imaging [33, 34, 114–118] that utilize source model parameters during

adaptation, the proposed BSAMS method relies solely on the predictions/APIs of

the source models, ensuring a more practical and privacy-preserving solution. Fur-

thermore, incorporating self-distillation and consistency regularization enhances the

model’s robustness into the pseudo label generation and refinement process. Addi-

tionally, a learnable ensemble network adaptively integrates information from multiple

sources, optimizing the final prediction based on the target domain data. This novel

approach substantially improves the accuracy and reliability of MRI data analysis

across different centers.

7.3.1 Overview

The overall architecture of the proposed BSAMS framework can be depicted in Fig.

7.3. The goal is to adapt models trained on multiple source domains to a target

domain without direct access to the source data during the adaptation process. The

proposed BSAMS technique utilizes multiple pre-trained ResNet-50 models and a self-

distillation loss for pseudo label generation, followed by consistency regularization for

label refinement and a learnable ensemble network for final classification.
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Figure 7.3: The overall architecture of the proposed BSAMS approach. The upper
row shows the training process of different source domain data which are categorized
based on scanner manufacturer. Three different colors can be assumed data originated
from three scanner manufacturers (GE, Philips, Siemens). The trained models are
saved in the remote cloud server and only the APIs are available during target domain
adaptation. The bottom row highlights the process of target data prediction where
pseudo labels are generated using source APIs. Next, the pseudo labels are refined
with self-distillation and consistency regularization loss functions. Finally, the target
predictions are obtained by utilizing a learnable ensemble network through the refined
pseudo labels.

7.3.2 Architecture

Training source domain models

As the large-scale multi-center MRI datasets typically consist of three scanner

manufacturers and the domain shift primarily observed due to this factor, I categorize

the source domain data considering each scanner manufacturer as a separate domain.

ResNet-50 is used as the model architecture, which is pre-trained on the ImageNet

dataset. Given source domain datasets DS1,DS2,DS3 with labeled samples (xi, yi),

three ResNet-50 models f1, f2, f3 are trained using the cross-entropy (CE) loss:
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LCE(xi, yi) = −
C∑︂
c=1

1{yi = c} log pc(xi), (7.4)

where pc(xi) is the predicted probability for class c. The trained source models are

stored in the remote cloud server and only the predictions are accessible through the

source APIs for third-party users.

Generating pseudo labels using self-distillation loss

For the target domain data DT = {xT
j }, the trained source models are used to

generate soft pseudo labels. The predictions from each model are averaged to produce

soft labels:

p̂j =
1

3

3∑︂
k=1

fk(x
T
j ). (7.5)

The self-distillation loss [109, 158] LSD encourages the model to output distributions

similar to these soft labels:

LSD(x
T
j , p̂j) = KL(f(xT

j )∥p̂j), (7.6)

where KL denotes the Kullback-Leibler divergence.

Refining pseudo labels with consistency regularization

To refine pseudo labels, the idea of consistency regularization is employed through

data augmentation [159, 160]. The consistency loss LCR ensures that the model’s

predictions remain stable across different augmentations xT,aug
j . I employ random ro-

tation, flipping and adding Gaussian noise to perform augmentation of MRI samples.

LCR(x
T
j ,x

T,aug
j ) = ∥f(xT

j )− f(xT,aug
j )∥2. (7.7)

The refined pseudo labels p̃j are computed by minimizing both the self-distillation

and consistency losses:

Ltotal = LSD + λLCR, (7.8)
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where λ is a weighting factor, empirically set to 0.2 using grid search.

Training the learnable ensemble network

The final step of the proposed approach involves training a learnable ensemble

network that aggregates the predictions from the refined pseudo labels produced by

the source models. This ensemble network is designed to leverage the strengths of

each source model and improve the robustness of the final predictions. The ensemble

network concatenates the predictions from the source models and passes them through

a fully connected layer to produce the final output. Formally, for a target sample xT
j :

zj = [f1(x
T
j ); f2(x

T
j ); f3(x

T
j )] (7.9)

where f1, f2, f3 are the source models and zj is the concatenated vector of predictions.

This vector is then passed through a fully connected layer with weights W and b:

ŷj = softmax(Wzj + b) (7.10)

The ensemble model is trained using cross-entropy (CE) loss with the refined pseudo

labels p̃j:

Lensemble = −
C∑︂
c=1

p̃jc log ŷjc. (7.11)

By employing this learnable ensemble network, the diverse strengths of multiple source

models are effectively integrated, leading to more accurate and reliable predictions

on the target domain.

7.3.3 Results

The proposed BSAMS method is evaluated on the ADNI1, ADNI2, AIBL, and MIRIAD

datasets, demonstrating a significant improvement in inter-study AD classification ac-

curacy. This improvement is attributed to the ensemble approach and the effective

generation and refinement of pseudo labels. Table 7.4 presents the classification re-
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sults, showing a noticeable drop in accuracy when the target data differs from the

source. The term without domain adaptation (w/o DA) means a ResNet-50 model

is trained with one domain (e.g., ADNI1) and tested with a different domain (e.g.,

ADNI2). However, the proposed BSAMS framework substantially enhances the accu-

racy after DA, achieving results similar to or even better than those obtained in the

source domains. For instance, training and testing on the ADNI1 dataset yields a clas-

sification accuracy of 0.89. Applying BSAMS, the accuracy reaches 0.90 for ADNI1

data, even when using ADNI2 as the source domain. The use of self-distillation (SD)

and consistency regularization (CR) loss functions during the pseudo label genera-

tion and refinement stages is crucial for achieving higher classification accuracy, as

reflected in Table 7.4. The absence of self-distillation (w/o SD) means the network

only employs CR loss, and vice versa. The ablation study shows weakness in pro-

cessing pseudo labels received from different source APIs without both SD and CT

loss functions. Additionally, the incorporation of a learnable ensemble network boosts

classification performance considerably. Without the ensemble network (w/o ensem-

ble), the classification accuracy declines noticeably, highlighting the effectiveness of

the proposed BSAMS framework.

Table 7.4: Inter-study AD classification accuracy for the ADNI, AIBL and MIRIAD
datasets. [DA: Domain Adaptation, SD: Self-distillation loss, CR: Consistency Reg-
ularization loss]

Training on Testing on Target
Testing on target domain

source domain source domain domain
w/o w/o w/o w/o BSAMS

DA SD CR ensemble (Proposed)

ADNI2 0.81 0.85 0.85 0.87 0.91

ADNI1 0.89 AIBL 0.75 0.79 0.80 0.83 0.85

MIRIAD 0.78 0.82 0.85 0.85 0.87

ADNI1 0.79 0.85 0.86 0.87 0.90

ADNI2 0.91 AIBL 0.74 0.80 0.82 0.83 0.84

MIRIAD 0.75 0.82 0.82 0.85 0.87
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7.4 Summary

This study demonstrates the necessity of appropriate domain selection for adaptation

instead of considering an entire study/dataset as the source or target domain. The

proposed DAMS framework combines MMD and modified CORAL loss functions

to extract pairwise domain-specific invariant features. Furthermore, the proposed

BSAMS framework eliminates the need for the concurrent access of raw source domain

data during target domain adaptation. The issue of scanner bias can negatively

impact the reliability of automated analysis of MR images. The proposed solution

addresses the undesirable scanner effects of multi-center MRI data and improves the

consistency in the classification task of such data. Most importantly, the proposed

research not only enables the pooling of data acquired by different sites within a

project but also promotes the sharing of data among different studies. The proposed

novel strategy can substantially improve the cross-domain classification accuracy of

AD/ALS patients from healthy controls.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

MRI datasets play a crucial role in advancing medical research, aiding in the un-

derstanding, diagnosis, and treatment of numerous neurological disorders, as well

as in training ML models. In recent years, the availability of large-scale multi-center

datasets has significantly advanced medical imaging research, which opens the avenues

for developing powerful ML algorithms and data-driven methodologies. However,

substantial variations from distinct centers, originating from non-biological sources,

introduce variability into neuroimaging data, complicating the coherent interpreta-

tion of results. ML-based approaches often yield inconsistent outcomes when dealing

with data acquired from different MRI scanner models and scanning protocols.

In Chapter 3, I introduce the DSMRI framework, which makes a significant con-

tribution to this field by presenting a simple yet effective unsupervised method for

quantifying the degree of domain shift in MRI data. This framework examines a wide

range of large multi-center MRI datasets, exploring the impacts of different scanner

manufacturers, models, field strengths, and resolutions in the context of domain shift.

Chapter 4 presents another unsupervised framework called DeepDSMRI, which

utilizes pre-trained deep models as feature extractors to comprehend the extent of

domain shift in MRI datasets. DeepDSMRI proves its efficacy in determining domain

shift not only in structural MRI but also in advanced MRI modalities such as fMRI
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and DWI. The findings from Chapters 3 and 4 have important implications for ad-

vancing the field of medical imaging, enabling more reliable analysis of multi-center

MRI datasets. Furthermore, DA and harmonization methods can use these proposed

frameworks to validate their effectiveness in reducing or eliminating domain shift.

Chapter 5 comprehensively explores how variations in MRI scanner manufacturers

impact different classification tasks using various DL models. The analysis reveals a

notable drop in classification accuracy when DL models are tested with data from

different scanner manufacturers. Interestingly, the popular statistical approach called

ComBat could not improve the performance after harmonizing MRI data across dif-

ferent scanners. Its widespread use could invalidate many published results.

To tackle the challenging task of ALS classification, where current methods fall

short, I introduce a novel transformer-based framework named SF 2Former. This

study pioneers in using a transformer-based deep model for ALS classification, achiev-

ing superior performance compared to existing popular DL methods.

Finally, a novel approach to address the domain shift issue in MRI data is de-

veloped by addressing the primary factor contributing to heterogeneity within the

dataset. A multi-source UDA technique called DAMS is developed to align domain-

invariant features between source and target domains by minimizing discrepancies in

their feature maps. Instead of treating the entire dataset as a single source or target

domain, the method processes the data based on the dominant factor causing vari-

ations. Additionally, this research advances the concept of managing domain shift

through SFDA, which leverages knowledge from various domains and eliminates the

need for concurrent access to source and target data during training. The proposed

study is evaluated on diverse neuroimaging datasets, demonstrating a significant im-

provement in cross-domain disease classification accuracy.

My proposed research directly addresses the challenge of domain shift faced by

neuroimaging researchers using multi-center and multi-modal MRI data. This thesis

paves the way for future medical image analysis and computer vision communities to
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design tools that can more effectively handle extensive and diverse datasets.

8.2 Future Work

Building on the potential demonstrated by the SF 2Former classification framework,

several promising directions for future research can be considered:

1. Multi-modal neuroimaging analysis: Developing a fusion ML framework capable

of simultaneously analyzing multiple neuroimaging modalities, such as T1-weighted,

FLAIR, and DTI, could significantly enhance overall performance. This framework

would leverage the unique strengths of each modality to provide a more comprehensive

analysis, potentially improving diagnostic accuracy and understanding of neurological

conditions.

2. Integration of clinical features: Incorporating clinical features (e.g., UMN/LMN

scores, EMG, ALSFRS-R, ECAS) alongside imaging features could further improve

the network’s prediction accuracy and interpretability. Combining clinical and imag-

ing data can provide a more holistic view of the patient’s condition, facilitating more

precise and personalized treatment plans.

3. Handling missing modalities: Developing the proposed model to handle missing

modalities is crucial for robust performance. This capability would ensure that the

framework can still provide accurate predictions even when some imaging or clinical

features are absent, making it more applicable in real-world clinical settings where

incomplete data is common.

Another promising future investigation could involve implementing existing MRI

harmonization techniques and using the proposed domain shift analysis frameworks

(i.e., DSMRI and DeepDSMRI) to evaluate their performance before and after har-

monization. This could provide valuable insights into the effectiveness of existing

harmonization methods in reducing domain shift.

My proposed DA technique considers the scanner manufacturer as the dominant

factor of MRI data heterogeneity. However, the scanner model is another significant
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source of data variation. Future research could involve subdividing each manufac-

turer’s data into different models to analyze their impacts. Since different models

from the same vendor can reconstruct MRI data differently, exploring this aspect

could yield deeper insights and further improve the robustness of ML models in han-

dling domain shift.
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Appendix A: First Appendix

Figure A.1: MRI scanner manufacturer classification results for the ADNI1, ADNI2,
PPMI, and CALSNIC2 datasets generated by ShuffleNetV2 model. The classification
accuracy is approximately 99% for the (a) ADNI1, (b) ADNI2, and (d) CALSNIC2
datasets whereas the accuracy is around 94% for the (c) PPMI dataset.

Figure A.2: MRI scanner manufacturer classification results for the ADNI1, ADNI2,
PPMI, and CALSNIC2 datasets generated by MobileNetV2 model. The classification
accuracy is approximately 98% for the (a) ADNI1, (b) ADNI2, and (d) CALSNIC2
datasets whereas the accuracy is around 94% for the (c) PPMI dataset.
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Figure A.3: Undesirable effects in voxel-wise ComBat-GAM harmonization of struc-
tural MRI. A) One 2D axial slice of 3D MR image of CALSNIC2 dataset before
harmonization, B) corresponding slice after harmonization. The red, yellow, and
blue arrows point to the regions with manipulated structures, including the disap-
pearance of details or abnormal shape changes, resulting from the ComBat-GAM
harmonization.
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Appendix B: Second Appendix

(a) CALSNIC1 dataset (b) CALSNIC2 dataset

(c) AIBL dataset (d) MIRIAD dataset

Figure B.1: Panel (a) illustrates the hierarchical clustering dendrogram for six sites
comprising the CALSNIC1 dataset, where the features are generated from the average
of evaluation metrics measured in MRQy. In (b), similar findings are observed for
seven sites of the CALSNIC2 dataset. The MRI manufacturer is the primary factor in
grouping site effects into clusters, followed by the scanner model. The t-SNE plots for
the AIBL and MIRIAD datasets are shown in (c) and (d). Both AIBL and MIRIAD
consist of MRI data from a single scanner manufacturer. Therefore, no significant
clustering is noticeable in their data distribution.
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