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Abstract

This thesis is devoted to the study of (twisted) multiplicative invariant
rings and fields. Multiplicative invariant fields were first studied by Noether
in her work on the inverse Galois problem. Since then, many others have con-
tinued her study of multiplicative invariant rings and fields. Endo-Mivata,
Swan, Voskresenskii, Saltman and Farkas examined various rationality prob-
lems for (twisted) multiplicative invariant fields: Farkas and Lorenz examined
the structure and divisor class groups of multiplicative invariant rings.

In this thesis, we first give a complete description of the divisor class
group of a twisted multiplicative invariant ring in terms of cohomological
data about the field, the lattice and the associated twist. Next we consider
the rationality problem for a field extension given by a twisted multiplicative
invariant field K,(A) over a field K where here the group G acts by field
automorphisms on the field K, faithfully on the lattice A and the action
on K,(A). the quotient field of the group algebra of A with base field K is
determined by the 1-cocycle v : G — Hom(A, K*). The set of generators
' of inertia subgroups of the extension A,[A]/(K,[A])¢ corresponding to

height one primes consists of elements of G which act as reflections on A,



act trivially on K, and which satisfy a particular cocycle relation on v. T
generates a normal (reflection) subgroup R of G. We first show that AL, (A4)%
is rational over A. Then under a hypothesis on the cocycle v, are able to
reduce the rationality problem for K.,(A)¢ over K, (AR)C to the rationality
problem for K. (A)% over K., (AR)% where Q¢ is a particular subgroup of
G satisfying G = R x Q. We then applied this result in the untwisted
case to show that A (A)C is rational over K where G is the automorphism
group of a crystallographic root system ¥ acting faithfully on V = Q¥ and
trivially on the field A" and A is any ZG lattice on V. Last, we considered the
stable rationality problem for the centre of the generic ring of n x n matrices
which Procesi and Formanek converted into a (stable) rationality problem
for a multiplicative invariant field for the symmetric group S, over C. In the
case when n is odd, we prove that this multiplicative invariant field is stably
equivalent to a multiplicative invariant field for a smaller lattice which is the
direct sum of a permutation lattice with an irreducible ZS, lattice which

corresponds over Q to the partition (n — 2,12) of n.
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Chapter 1

Introduction

Classical invariant theory studies the linear action of groups on polynomial
rings over fields. Given a group G, a field K. and a n-dimensional K'G-
module V, the action of G can be extended uniquely to an action on the
symmetric algebra K[V]. Note that A[V] is isomorphic to the polynomial
algebra in n variables over K. The invariant ring of K[V], denoted by R'[V]C,
is called the ring of polynomial invariants. The action of G on K[V] can be
naturally extended to its quotient field K (V). The invariant ring of A'(V)
is denoted by K(V)€ and is called the field of polynomial invariants. Note
that K (V)€ is also the quotient field of K[V]C.

In this thesis, we study the analogous notion of (twisted) multiplicative
invariant rings and fields. Let G be a finite group, A a ZG lattice of finite rank
n, and K a field on which G acts as field automorphisms. Write elements of
the group ring K[A] as ) ¢4 Co€(a) where e : A — K[A]* is the “exponential
map” where S* indicates the units of the ring S. Given a l-cocycle vy : G —
Hom(A, K*), let G act on K[A] by ring automorphisms as

glce(a)] = (ge)vy(ga)e(ga)

forall g € G, c € K* and a € A and write K,[A] for A{A] with this G-
action. Then under the isomorphism ExtL(A, K*) = HY(G,Hom(A, K*))
the extension class [K* »— (K,[A])* - A] corresponds to [y]. The action of
G can also be extended to the quotient field of K, [A] which will be denoted by
K. (A). The ring of invariants of K,[4] under the twisted action of G, K. [A]°
is called a twisted multiplicative invariant ring. The ring of invariants of the
quotient field K., (A) which is also the quotient field of K, [A]€ is denoted by
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K, (A) and is called a twisted multiplicative invariant field. If [v] represents
the trivial extension A'* & A, then we will drop the subscript 7 in reference
to the ring of multiplicative invariants A[A] and the field of multiplicative
invariants K(A)G. We will assume throughout that G acts faithfully on the
group algebra and hence on its quotient field. In the first section of the first
chapter, we review the construction of twisted multiplicative invariant fields
and rings and prove a few useful technical facts about them.

A major theorem for rings of polynomial invariants is the Shephard-Todd-
Chevalley Theorem. Let G be a finite subgroup of GL(V') where V is a finite-
dimensional A'G module and K is a field with characteristic not dividing the
group order. Recall that a pseudoreflection on V is an element s of GL(V')
with Imy (1 — s) of dimension 1. Then Shephard-Todd-Chevalley [6] states
that A[V]C is a polynomial ring iff G is generated by pseudoreflections on
V. The analogous question can also be posed for multiplicative invariants.
This motivates a closer examination of the concept of a reflection acting on
a lattice.

For a lattice A of Z-rank n, a reflection s € GL(A4) is an element of
finite order with Im4(s — 1) cyclic. Note that s is a reflection on A iff s
acts as a (pseudo)reflection on V' = Q ®z A. If s is a reflection on A,
then A =X Z~ & Z" "' or A = Z(s) & Z"? as Z(s) lattices. The reflections
corresponding to the first case are called diagonalizable over Z.

A reflection space over Q for a finite group W is a finite dimensional Q
space V' such that W acts faithfully on ¥V, VW = 0, and such that W is
generated by the set of reflections

['={seW|dimqImy(s—1) =1}

Analogously, we may define a reflection lattice as a lattice A such that W acts
faithfully on A, AW =0, and such that W is generated by the set of reflections
on A in W or equivalently such that W is generated by the set of reflections
on V=Q®zAinW. In Section 2.2, we classify the reflection lattices. Feit
used a different method in [17] to classify the reflection lattices corresponding
to irreducible root systems. Due to the classification of reflection spaces, it
suffices to determine the ZW isomorphism classes of ZW lattices A such that
Q®z A=V as QW modules for a fixed reflection space V over Q.

For a given reflection space V' over Q with reflection set I' generating
W, and a crystallographic root system @, any lattice A lying between Z®
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and the weight lattice A(®) is a reflection lattice with Q @ A = V as QW
modules. Conversely, we may associate to any reflection lattice A on V a
crystallographic root system for V:

¢4 = {a € V|Kera(s+1) = Za for some s € T'}

with Z&4 C A C A(®4). Autqw (V) acts on the set of crystallographic root
systems for V. To classify the ZW isomorphism classes of reflection lattices
on V, we first identify the Autqw(V') orbit of a fixed crystallographic root
system ® and then determine the ZW isomorphism classes of ZW-lattices ly-
ing between Z® and A(®). The precise statement is given by Theorem 2.2.20.
For an irreducible reflection space V' with root system ®, we determine the
number of isomorphism classes of ZW(®) lattices. The crystallographic root
system ® 4 associated to a reflection lattice A that is used in this classification
determines the first cohomology group in Proposition 2.2.25

Proposition 1.0.1. Let A be a reflection lattice on a reflection space V' with
reflection group W. Then

H' (W, A) = A(24)/4

A classical result which begins the search for an analogue of Shephard-
Todd-Chevalley for multiplicative invariants states that C[A]" is a polyno-
mial ring [6] where W is a Weyl group acting on the weight lattice A of its
root system ®. In order to state Farkas’ theorem that addresses STC for
multiplicative invariants we need two more definitions: Let G be a group
acting faithfully on a lattice A and let R be the normal subgroup of G which
is generated by the set of reflections Ton V=QQ®AinG. Let 7:V — V be
the QG map defined by 1 — ﬁ > rer™- A crystallographic root system & is
called suitable for the ZG lattice Aif @ is G stable, ® C A, m(A) C A(®), and
R is isomorphic to the Weyl group for ® under the natural map R — R|qs.
®.4 is an example of a suitable root system for A. A stretched weight lattice
for a root system ® is a lattice B = @7, Zm;w; where m; € N and {w;}~,
is a set of fundamental dominant weights in A(®) corresponding to a base of

o.

Theorem 1.0.2. [16, 13, 14] Let A be a lattice, V = Q®z A, R be a finite
subgroup of GL(A) generated by reflections acting on A, m be the QR map
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defined above, ® be a suitable root system for the ZR lattice A and let K be
a field with characteristic not dividing the order of G. Then the following
statements are equivalent:

(a) 7(A) is a stretched weight lattice for .
(b) KA

16 is a polynomial ring over K[A®]
(c) K[A]C is a UFD.

For a normal Noetherian domain S, the divisor class group of S is defined

as
@peSpec(S),ht(p)=1 Zd.iV(p)

{37, nidiv(p:)| NI, p7* = (z) for some z € S}

where {div(p)|p € Spec(S),ht(p) = 1} is a Z linearly independent set in
bijection with the set of height one primes of S. Since CI(S) = 0 [4, (3.5.1)]
iff S is a unique factorization domain, the divisor class group of § measures
in some sense how far S is from being a UFD.

Farkas’ result determines precisely when a multiplicative invariant ring
K[A]® is a UFD if G is a finite reflection group. In [15], Farkas expressed
doubt that it would be possible to determine exactly when K[A] is a UFD
for an arbitrary finite group G and faithful ZG lattice A. In response to this
remark , Lorenz posed the following more general question: Is it possible
to describe the divisor class group of multiplicative invariants C1{K[A]) for
any finite group G and faithful ZG lattice A? For polynomial invariants, this
question had already been answered. It had been shown that CI(K{V]%) is
isomorphic to Hom(G/N, A'*) where .V is the subgroup of G generated by
pseudoreflections on V. In fact, Lorenz proved the following theorem:

Theorem 1.0.3. [24]
CI(K[A]®) = Hom(G/N,K*) & H(G/D, AP)

CYS) =

where A is a lattice, G is a finite subgroup of GL(A) which acts trivially on
the field K, N is the subgroup of G generated by reflections acting on A and
D is the subgroup generated by reflections that are diagonalizable over Z

In the third chapter of this thesis, we determine the divisor class group
of the normal Noetherian domain (K, [A])¢ in terms of cohomological infor-
mation about K* and A. We used the following result of Lorenz based on
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work of Samuel [33]. Recall first that for a finite group G acting faithfully
on a normal noetherian domain S, the inertia subgroup of a prime p of S is
given by

GT(p) = {g € Glgs —s € pforall s € §}

Proposition 1.0.4. [24] Let S be a unique factorization domain on which
the finite group G acts faithfully. Let H be the collection of non-trivial inertia
subgroups of G corresponding to height one primes. If all S¥ for H € H are
UFDs then

CL(S%) = (] Ker(Res%)
HeH

where Res% : HY(G, S™) — H'(H,S*) is the restriction map.

To apply this result to the unique factorization domain S=A,[A] with the
given faithful action by the group G, we must first determine the non-trivial
inertia groups of K,[A]/K,[A]€ corresponding to height one primes and show
that all the K,[A]” are UFDs. We do this in Section 3.1. Proposition 3.1.5
characterizes the height 1 primes:

Proposition 1.0.5. The non-trivial inertia subgroups G (p) with p a height
one prime of K,[A] are precisely the subgroups of G generated by an element
s such that

(a) s acts as a reflection on A
(b) s acts trivially on K
(c) A C Ker(v,)-
and Lemma 3.1.6 shows that K,[A]7 is a UFD for a non-trivial inertia sub-
group H.

Let

T, = {1 # g € Gl(g) = GT(p) for some height 1 prime p of K,[4]}

Now by Proposition 1.0.4 we see that

CU(K4[A]°) = Nger, Ker(Res : HY(G, K,[A]*) — H'((9), K,[A]%))
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In Section 3.2, we relate CI(K,[A]®) to the ZG exact sequence K* »—
(R, [4])* - A in terms of

Nger,Ker(Resf, : HY(G, K*) — H'({g). k™))

Nger, Ker(Res(, : H'(G. A) — H'({g), A))

Section 3.3 takes a closer look at the first of these and then Section 3.4
combines the previous results to obtain our description of the divisor class
group of K,[A]¢ in Theorem 3.4.1. Here N, is the normal subgroup of G
generated by [, and D, is the normal subgroup of G generated by the set of
s € [, such that s is a diagonalizable reflection and ~,(A4) C A™*.

Theorem 1.0.6. Assume G acts faithfully on A. There is a short ezact
sequence

HY(G/ N, K)/8(A%) = CU(KA[A])C) —» Ker(85) N HY(G/ D, AP7)
where g : A® = HY(G,K*) and é¢ : HY(G,A) — H*(G,K*) are the re-

spective connecting homomorphisms associated with the short ezact sequence
K™ — (KL[4])" —» A
and O satisfies infg,N.’ 00g = Og, while §¢; = ég o infg/Dﬁ.

In Chapter 4, we turn to rationality problems for twisted multiplicative
invariant fields. A large class of problems comes from the study of the ratio-
nality of field extensions. A field extension K/k is said to be rational if K
is isomorphic to k(Xi, ..., X,) for some algebraically independent variables
Xi1,...,Xn. K/k is said to be stably rational if there exists a field L O A
which is rational over both K and k. K/k is said tc be unirationalif K is a
subfield of a field rational over k. Then rationality implies stable rationality
which implies unirationality, but the converses [1] do not hold in general.
Two fields K, and K; containing k are called stably equivalent over k if there
is a k-isomorphism

Ki(X1,..., X)) 2 Ky(Ys,... Yo

In Noether’s work on the inverse Galois problem, she showed that a finite
group G could be realized as a Galois group over a given number field F' if the
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invariant field F(G) = F(X,|g € G)® is rational over F where here G acts by
permuting variables [25, 36]. In showing that the F(G)'s were nonrational
for certain G {28], Saltman first considered multiplicative invariant fields
and showed in [29] that for certain lattices @, F(Q)¢ was stably equivalent
to F(G') for G’ a non-split extension of G with abelian kernel. He later
expressed such a field F(G’) as a twisted multiplicative invariant field of
G [32]. Saltman was also able to describe the invariant fields of reductive
groups as twisted multiplicative invariant fields of their Weyl groups where
the lattice is derived from the root lattice [30]. He used the concept of twisted
multiplicative invariant fields to prove results on the existence of solutions
to the embedding problem for Galois extensions{32] and as a tool to study
retract rationality via the non-ramified Brauer group {31].
Farkas [16] proved the following theorem:

Theorem 1.0.7. C(A)R is rational over C if R is generated by reflections
acting on the lattice A.

Farkas’ proof actually establishes the stronger result that C(A)# is ratio-
nal over C(AR). A key tool in his proof is an embedding of the Z R lattice A
into a ZR lattice B for which C[B]® is a UFD so that it satisfies the equiva-
lent conditions of Proposition 3.1.1. He relied heavily on this embedding to
obtain a description of the structure of C[A]? C C[B}® which later allows
him to prove the rationality of C(A)® over C.

The 1-cocycle v representing a class [y] € H'(R,Hom(A4, A'*)) turned
out to be a complicating factor in the attempt to find a generalization of this
result for our setting. Specializing to our case, Lemma 4.1.12 shows that

HE(G,Hom(A,T)) = {[f] € HY(G,Hom(A4, T))|A® C Ker(~,) for all s € I'}

is a group where A is a faithful ZG lattice, [ is a G-stable set of reflections
generating R and T is a G/R module.

Here are the required hypotheses to embed A,[A]? into a UFD of the
form K5[B}*:

(EMB) Let ' = Iy, and R = (I',). Let ® be a suitable root system for 4
with weight lattice A(®). There exists a ZR lattice B on V which contains
A and satisfies:

(E1) [1] € Im(H}(R, Hom(B, K*)) — HL(R, Hom(4, KX))).

|



(E2) ©(B) C A(®)

(E3) =(B) = &% ,Zm;w; is a stretched weight lattice for P

With these hypotheses, we are able to prove Proposition 4.1 14, a gerer-
alization of Theorem 1.0.7.

Proposition 1.0.8. Assume (EMB). Then K,(A)? is rational over K.

In order to remove some of these hypotheses, we take another approach
to the problem using the Z R short exact sequence of lattices

AR A A/4R

and the following isomorphism from Lemma 2.1.5: K, (A)® = L,(X)?® where
X = A/AR, L = K(A®), R = (I,) and p is a 1-cocycle representing a class
[pl € HY(G,Hom(X,L*)) determined by v and a Z splitting of the above
exact sequence.

Here R acts effectively on X as a group of reflections. We find a suitable
stretched weight lattice Y for which X € Y C A and show that the in-
duced map HE(R,Hom(Y, L*)) — HE(R,Hom(X, L*)) is surjective. Hence
we obtain Proposition 4.2.5.

Proposition 1.0.9. If R is generated by I.), then K,(A)? is rational over
K(AR).

We next examine the rationality of K. (A)% over K, (A®)C where G, act-
ing faithfully on the lattice A, also acts on the field K, v is a l-cocycle
representing [y] € H'(G,Hom(A, K*)), and R is the group generated by [,.
For a suitable root system ® for A with weight lattice A and base A, we
obtain a G-equivariant decomposition V = V2 @ Q®. using the idempo-
tent ep = UIQTZreRr of QG. Setting Q¢ = {g € GlgA = A}, we show in
Lemma 2.3.6 that G = R x Qg and we prove Proposition 4.3.2:

Proposition 1.0.10. Suppose
[v] € Im(HE(G, Hom(B, K*) — H}(G,Hom(A, K*)))



where B = e A®A. Then the invariant fields K,(A)® and K,(A)®S are iso-
morphic under an isomorphism that is the identity on K,(AR)® = K, (4)%.
In particular, K., (A)® is rational over K,(AR®)C if and only if K,(A)% is
rational over K,(AR)%s.

In the untwisted case, we obtain Corollary 4.3.3:

Corollary 1.0.11. The invariant fields K(A)S and K(A)® are isomorphic
under an isomorphism that is the identity on K(AR)¢ = K(AR)%¢. In par-
ticular, K(A)® is rational over K(AR®)C if and only if K(A)? is rational
over K(AR)%s,

We are able to apply this Corollary to show in Theorem 4.4.9 that certain
types of multiplicative invariant fields are rational:

Proposition 1.0.12. Let ® be a crystallographic root system for the Q space
V. Then G = Aut(®) acts faithfully on V. For any ZG lattice A on V,
K(A)C is rational over K where G acts trivially on the field K .

When G acts faithfully by automorphisms on the field K, the field of
multiplicative invariants K(A)¢ is called the field of tori invariants of A
under G. Rationality problems concerning the field of tori invariants seem to
be the most tractable type of multiplicative invariant rationality problems.
It is possible to relate questions on stable rationality and stable equivalence
to problems on the structure of the ZG-lattices involved: [9, 3]:

Proposition 1.0.13. [12] (Endo-Miyata) Let P be a ZG permutation lat-
tice. The field of tori invariants K(P)C is rational over K€.

Theorem 1.0.14. [35, 88/(Swan, Voskresenskii) The field of tori invariants
K(M)C is stably rational over K€ iff there ezists an ezact sequence of ZG

lattices
0O M—->P—>Q—0

where P,Q are permutation lattices.

Theorem 1.0.15. (35, 89, 11] Two fields of tori invariants K(M)® and
K(N)C are stably equivalent over K€ iff there ezist ezact sequences of ZG

lattices
0O M—-E—-P—=0

9



0> N—=>E-Q—0

where P,Q are ZG permutation lattices. The above condition defines an
equivalence relation on ZG lattices.

[t is sometimes possible to convert rationality problems of polynomial
invariant fields into rationality problems of fields of tori invariants. This is
the case in the following particularly prominent problem: Let PGL,(C) act
on M,(C) & M,(C) by simultaneous conjugation, and act on C trivially.
Then one asks whether C,, = C(M,(C) & M,(C))PFE~(C) is (stably) rational
over C. The fields C,, can also be described as the centre of the division ring
of n x n generic matrices. Procesi [26, 27] and Formanek [l8] were able to
convert this problem into a tori invariant rationality problem over the Weyl
group S,. Let the permutation lattice Z[S,/Sn—;] have basis {y;;|i # j} and
let the permutation lattice Z[Sn/Sn-1] have basis {u;|i = 1.... ,n}. Then S,
acts on Z([Sn/Sn-2] via 0(¥ij) = Yo(i)o(j)- Let

pn 2 Z{Sn/Sn-2) = Z[S,/Sn_1]
be the ZS, map sending y;; to u; — u;. Then
0 = Gn = Z[Sn/Sn-2] B 2[S1/S0_1] B Z =0

is an exact sequence of ZS,-lattices where G, = Ker(p.) and ¢, : Z[S,/Sn-1] —
Z is the “augmentation” map sending u; to 1. Procesi and Formanek were
able to show that

C(M,(C) & M,(C))P¢ O = cU, 8 U, & G,)*
C(Un)(Un & Ga)*,

where U, = Z[S,/Sn-1]-

Progress on this rationality problem has a rather odd history [23]. C.
was shown to be rational over C by Sylvester [37] at the end of the last
century. Formanek proved that C, is rational over C for n = 3,4 [18, 19].
Bessenrodt and Lebruyn proved that Cy, is stably rational over C forn = 5,7
[5]. Beneish [3] later reproved the results of Bessenrodt and Lebruyn using
a different approach and without the use of computers. Each of these cases
was solved using the description in terms of multiplicative invariants given
by Procesi and Formanek and the results on tori invariants and a wide range
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of representation theoretical results. However the proof of each new case
was accompanied by a demonstration that the method used could not be
extended to further cases. Using geometric techiques, Schofield proved a
reduction result in [34]: For n = a - b where a and b are relatively prime, he
showed that if C, and Cj are both stably rational over C, then C, is stably
rational over C. Thus, so far, C(M,(C) & M,(C))PGEn(€) has shown to be
stably rational over C for any divisor of 420.

We make a small contribution to this problem. We first study the QJS,
structure of the QS, module QG, and determine its decomposition into
irreducible QS., modules. It turns out that

o - S g St-1.1) g §(r—21%) g §(n-22) if p >4
QG, = 53 g 521 g 509 ifn=3

where S* denotes the irreducible QS, module corresponding to the partition
A+ n. We determine an explicit pure sublattice E, of G, satisfving

QGn = QEn @ Q[Sn/sn—‘z X 52]

over Q. In Proposition 5.0.16 , we prove that C(U,)(U, & G,)%" is stably
equivalent to C(U,)(U, S E,)5 for odd values of n. It would be interesting
but undoubtably difficult to examine the stable rationality problem for this
smaller lattice.
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Chapter 2

Preliminaries

2.1 Twisted Multiplicative Invariant Rings and
Fields

Twisted multiplicative invariant rings and fields were first introduced by
Saltman in [32].

Let G act on the field K, let A be a ZG-lattice of Z rank n, and let K[A]
be the group ring. We will write elements of AA] as 3 . 4c,e(a) where
e: A — K[A]is the “exponential” map. Note that A[4] = K[XZ,...,. X
is a domain and hence has a quotient field A'(A). Observe also that the unit
group K[A]* = K* & A. Using the following (standard) isomorphism as an
identiﬁcamon we wxll define a twisted action of G on K[A]* corresponding

o[yJ]e H 1(G Hom(A, K*)) and extend it naturally to an action of G on
K [A] and K(A).

Lemma 2.1.1. [10, (25.10)] Extg(A, N) = HY(G,Homz(A, N)) where A
ts ¢ ZG lattice and N is any ZG module.

Proof: Let 0 = N - X 5 A — 0 be a short exact sequence of ZG modules.
Replacing N by ¢(NV) if necessary, we may assume that i is an inclusion map.

Since A is a lattice, the sequence is Z-split so that there exists 7 €
Homgz(A, N) with pr = 14.

For each g € G, let f, = g7 — 7 € Homgz(A, N).

Now p(fy(a)) = p(g97)(a) — pr(a) = p(g7(97%a)) — a = gpr(g~'a) —a =
g~ 'ga —a =0 so that f;(a) € Ker(p) =

12



The map defined by f : G =+ Homgz(A, N),g — f, is a l-cocycle: For
g:h € G.a € A, we have

(fs + gfu)(a) = (¢g7)(a) — 7(a) + g[fu(g"a)]
=g(r(¢g7"a)) — 7(a) + g[(h7)(g™"a) - T(g™"a)]
= g[r(¢g7'a)] = 7(a) + gh[r(h™'g 7 a)] — g[r(g™ a)]
= (ghT)(a) — 7(a) = fen(a)
Note that the 1-cocycle f’ for our given extension defined by a different
Z-splitting 7’ also differs by a 1-coboundary since
fi=fr=(gr =)= (gr=7) =gz’ =) = (' = 7)

with 7 — 7 € Homgz(4, V).
Now X = N&71(A). So each element z of X can be uniquely represented
as £ =n + 7(a) for some n € N,a € A.

gz = g(n + 7(a)) = gn + g[7(a)] = gn + f,(ga) + 7(ga)

. . . . id.rty L, . . .
Using the isomorphism X = N ¢ 7(A) (275 N & A as an identification, we
have

g9(n,a) = (gn + f4(ga), ga) (2.1.2)
Since for g,h € G, n € N,a € A,

(gh)(n.a) = ((gh)n + feu((gh)a).(gh)a)
g(h(n,a)) = ((gh)n + fo((gh)a) + (9f4)(gha), gha)

we see that (gh)(n,a) = g(h(n,a)) iff fin = f; + gfx so that (2.1.2) defines
an actionof Gon X = N @ A iff f is a 1-cocycle.
Claim: The ZG extension [0 -+ ¥ — X' — A — 0] with I-cocycle f' is
equivalent to the ZG extension [0 - N — X — A — 0] with 1-cocycle f iff
f' — f is a l-coboundary.

The two extensions are equivalent iff there exists a ZG homomorphism
@ : X — X' making the following diagram commute:

0—N > X A—>0

<l

0 >N X’ >~ A >~ ()

13



Ifp: X — X'isa Z-homomorphism, then it is a Z-isomorphism which makes
the diagram commute iff ©(n, a) = (n + 6(a),a) for some § € Homz(4, N).
Now

glr(n, )] = (gn + g[0(a)] + f;(ga), ga)
v(9(n.a)) = vlgn + f4(ga). ga) = (gn + fo(ga) + b(ga), ga)
Note that 8(ga) — g[6(a)] = [0 — (¢8)](ga). Then ¢ defined above is a ZG
isomorphism iff f' — f is a 1-coboundary.
So we have shown that Ext} (A, V) = H'(G,Hom(A, N)) as required. B

Applying the lemma to our set-up, a l-cocycle 7 representing [y] €
H'(G,Hom(A, K*)) defines a short exact sequence of ZG modules

0=+ K* > K,[A]* 2 A—=0
and hence an action of G on AK[A] and K(A) such that
g -lee(a)] =(g-c)n(ga)e(ga).g € G.c€ K*,ac A

We will denote K[A], respectively K(A) with this G-action induced by v as
K,[A4] and K,(A). The fixed ring K, [A]|C is called a twisted multiplicative
invariant ring and the fixed field K,(A)® is called a twisted multiplicative
invariant field. Note that K,(A) is the quotient field of K,[A]%. If v is
the trivial I-cocycle, then we write K[A]¢ and K (A)€ for the multiplicative

invariant ring and field respectively. The following lemma shows that A’,[4]¢
and hence K,(A)® depend only on the class in H'(G,Hom(A, K*)) of the

1-cocycle .

Lemma 2.1.3. Ifv,7 are I-cocycles with [y] = [+'] in H'(G,Hom(A4, K*))
then there exists a ring isomorphism K,[A] — K.,[A] compatible with G
actions. In particular, K,[A]¢ = K..[A]C.

Proof: By hypothesis, there exists A € Hom(A, K'*) such that 7, /75 = gA[ A
Evaluating this at ga we get

Ye(92)/7;(ga) = g(A(a))/X(ga)

Now define ¢ : K,[A] =+ K,/[A] by ce(a) — c)(a)e(a). This is clearly a ring
isomorphism. For g € G,c € K*,a € A, we have

¥(gce(a)) = ¥((ge)v,(ga)e(ga)) = (96)79(9«1)/\(ga)e(gé)
= (gc)g(A(@))v,(ga)e(ga) = g[v(ce(a))]

14



which shows that ¥ is compatible with the G action. |
The following proposition shows that it suffices to consider twisted mul-
tiplicative invariant rings and fields in which G acts faithfully on the lattice.

Proposition 2.1.4. Given G, K, A,v as above, there ezists a quotient G of
G, a subfield K of K, a sublattice A of A and ¥ € HY(G, Hom(A, K™)) such
that K,[A]¢ = K5[A]® and G acts faithfully on A.

Proof: This will be shown by two standard reductions, both of them con-
structive.
The first reduces the lattice. Let

N = {g € Glg acts trivially on K and A}

and let
B = {a€ Alya(a) =1 for all n € N}

N is clearly a normal subgroup of G. Since 8 : A —+ Hom(NV, £%),a — [n —
vn(a)] is 2 homomorphism with kernel B and with Hom(:V, K*) finite, B is
a sublattice of A. To show that B is G-stable it then suffices to check that
8 is a G-homomorphism: Indeed, for a € A,n € N,g € G, we have

(glo(a)))(n) = g([6(a)](g~'ng))
= g['ﬁl"ﬂy(“)]
= g[7,-1(a)g7 (1 (ga))ng ™ (v,(n " ga)]
= g[715-1(a)75(g9a)}7n(ga)
= g[v,-14(a)]7m(ga)
= g(1)7n(ga)
= Tx(ga) = 6(ga)(n)

The inclusion B <+ A induces a G-homomorphism Hom(4, K*) — Hom(B, K*)
which sends the 1-cocycle v to v/, say. The G-action on the subring K[B] of
K,(A] makes it into K./[B]. By definition of B, N acts trivially on K..[B]
and we claim that K, [A]Y = K.,[B]: for if Y sca Ca(a) € K,[A]Y then for all
n€ N, wehave ) 4 cavn(a)e(a) = 3, cae(a) so that foralln € Na € A
we have ¢;(yn(a) — 1) = 0. If a & B, then v,(a) # 1 for some n € N and
thus c, = 0. It follows that ) ., c.e(a) € K.[B].

fb € B, then 13(b) = (972)(0)7,(6) = g(1a(9716))75(b) = g(1)7,(d) =
79(b). This means that 7' is inflated from a 1-cocycle ¥ : G/N — Hom(B, K*)
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so that G/N acts on K./[B] as K5{B]. But then K,[A4]% = (K,[4]V)¢/N =
R5{B]°/¥,

To reduce the field, our second step, we return to our original notation
but can now assume that if g € G acts trivially on both A" and A then g = 1.
Let

N = {g € G|g acts trivially on A} <G

and let F' be the fixed field of N on K. By our assumption, NV is then the
Galois group of K/F.

Since NV acts trivially on A, Hom(A, K*) = (K*)®(4) 5o that H'(V, Hom(A, K¥)) =
0 by Hilbert 90. By the inflation-restriction sequence, [v] is then the inflation
of some [y'] € H'(G/N,Hom(A, F*)). Choose a l-cocycle v representing
[7']- Then by Lemma 2.1.3, K, [A] is G-isomorphic to King+)[A]. So we may
assume that v = inf(vy’).

But v is then F-valued hence K,[4] = A &F F,[A] with the obvious
G-actions. Since VN acts trivially on F,[A], it follows that A, [4]Y = KV @F
F.[A] = F,[A] (a normal basis of K/F is an F,[A]-basis of A,[A]) and so
K,[A]¢ = (K,[A]Y)¢/Y = F,.[A]°/Y again as required. [ |

The next lemma shows that one can decompose the group action on a
twisted multiplicative invariant ring or field with ZG lattice 4 if there exists
a short exact sequence of ZG lattices of the form

0= N—=- A2 X =0

Lemma 2.1.5. Let G be a finite group acting on the field K and the lattice
A. Let v: G — Hom(A, R'*) be a I-cocycle representing the extension class
of
0+K* = K,[A]* > A—=0

Let0 =+ N -+ A— X — 0 be a short ezact sequence of ZG lattices with 1-
cocycle 3: G — Hom(X, N) representing the extension given by 3, = g — T
where 7 : X — A is a Z-splitting of A — X. Then there is an induced ezact
sequence

0= K,[N]* = KA = X =0

with ezténsion class represented by the I-cocycle p : G — Hom(X, A, [N]*X)
given by
Ps(2) = 15(7(2))19(Bs(z))e(Bs(2)), 9 € Gz € X

16



This allows the G-ring K, [A] to be viewed as an iterated (K,[N]),[X]. In
particular, there is a ring isomorphism K,[A]® = (K,[N],[X])¢ inducing
K,(A)° = (A, (N),(X))C where now p is also the image of the old p under

HY(G,Hom(X, K,[N]¥)) = HY(G,Hom(X, K,(N)*))

Proof: We build the following commutative diagram starting with the mid-
dle column and the bottom row:

Koo IT

|

KL [NP>— K,[A]* —= X

R

M- A X

To obtain the middle row, we define the map A-,[A]* —» X as the composite
K,[A]* -+ 4 — X. The kernel of this composite is then A.,/[N¥]* where
v¢ = Yeln forallg € G. Combining the Z-splitting 7 : X — Aof A - X with
the usual Z-splitting e : A — K, [A]* of K,[A]* — A, which gives v, = ge/e
by construction, we get the Z-splitting eo 7 : X — K, [A]* for the middle
row from which its extension class is represented by p, = g(e o 7)/(e o 7).
Since 3, = g7 — 7, we have 3,(gz) = (97)(gz) — T(gz) = g[r(z)] — 7(gz) so
that g[(z)] = 8,(gz) + 7(g9z). Then

[g(e o T)(z) = g[(e o 7)(g7 z)]
= 75 (g[r(g7 z)])e(g[r(¢ 7 )])
= Y9(7(z) + By(z))e(r(z) + By(z))
= Y(7(2))7(Bs(z))e(34(2)) (e 0 T)(2)

shows that p (z) = 74(7(z))7.(84(z))e(B,(z))
Let f: X — (K,[N]),[X]* give a Z-splitting of

0 = K [N]* = K,[N],[X]* = X =0,

so that p, = 2} Let » : K,[N],[X] — K,[A] be the ring homomorphism
satisfying o(f(z)) = (e o 7)(z) for all z € X and ©|k, (] is the inclusion of
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R,[N] in K,[A]. Then ¢ is clearly a ring isomorphism. Let ¢ € G, z € X.
Then

o(gf(z)) = v(ps(97) f(97))
= py(gz)(e o 7)(gz)
= gl(eo 7)(z)]
= glo(f(z))]

shows that v commutes with the G-action and hence induces an isomorphism
between K,[N],[X]¢ and K,[A]° and thus, by localization, an isomorphism
between A, (N),(X)® and K,(A)C. |

2.2 Classification of Reflection Lattices

A reflection acting on a lattice A is an element s of GL(A) of finite order
with Im4(s — 1) cyclic. Let W be a finite subgroup of GL(A) generated by
reflections ou A which acts effectively on A (that is, A" = 0). We will call
such a ZW-lattice A satisfying the above hypotheses a reflection lattice. In
[17], Feit classified the reflection lattices corresponding to irreducible root
systems. We are interested in classifying all of the reflection lattices up to
ZW- isomorphism. The constructions used in this section will be useful in
future sections in our study of divisor class groups of twisted multiplicative
invariant rings and in our study of rationality problems for twisted multi-
plicative invariant fields. In order to make this classification, we will first
show that for a reflection lattice A, the Q- vector space V = Q ®z A is a
reflection space. Since the reflection spaces have been completely classified,
it will suffice to find the isomorphism classes of full ZW-lattices on a given
reflection space.

Lemma 2.2.1. A reflection s € GL(A) has order 2

Proof: Let Im4(s — 1) = Za. Then s(a) = co for some c € Z. Let n be
the order of s on A. Then a = s"(a) = c"« implies that c is a root of unity
inZ. Soc=%1.

Suppose ¢ = 1. Let z € A be such that s(z) =z + a. Then z = s*(z) =
z+nz. Son =0 and s = 1. The contradiction implies that ¢ = —1.
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Let a € A. Then s(a) = a + na for some n € Z. Then s%(a) = a. Since a
was arbitrary, s has order 2. [ ]

The following result is standard, eg. {16. 2.2 but is often stated without
proof. We include a proof for completeness.

Lemma 2.2.2. For a reflection s € GL(A), Ker(s + 1) is cyclic and
H'((s), A) =0 or Z/2Z.

In fact, the first cohomology group of A completely determines the isomor-
phism class of A as an Z(s) lattice:

H'((s),A)=0 & AXZ(s) g 22
Hl((s>7-4) = Z/2Z S A2 S A

where s acts on Z™ = Zz by sz = —z.

Proof
H'((s),A) = H™'((s), A) = Kera(s + 1)/Im(s — 1)

Since A has finite rank and s has order 2, H!((s), A) is finite and has exponent
dividing 2. In fact, since Im4(s — 1) is cyclic, so is Ker4(s + 1). This means
that H'({s),4) =0 or Z/2Z.

Let Kery(s 4+ 1) = Za. Then A/Za = A/Kery(s +1) = Ima(s + 1) is
torsion-free. So there exists a Z-sublattice C of A such that A = Za & C.
Note that any basis for C can be added to a to form a basis for A. Let
{z1,...,Za=1} be an arbitrary basis for C. Then s(z;) = z; + kia for some
k; € Z.

Case 1: H'({s),A) =0
Then Im4(s — 1) = Kers(s + 1) = Za. This implies that gcd(k;) = 1. Let
a; € Z,i = 1,...,n — 1 be such that Z:-:ll ak: = 1. Set z = Z?___-ll a;x;.
Then C/Zz is torsion-free since ged(a;) = 1. Indeed if
n—-1
m Z biz; € Zz

=1

then there exists r € Z such that mb; =ra; forall: =1,...,n - L.

n-1 n-1
E mb,'kg = E -ra;k,- =r
=1 =1
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Then & = Z”"l b;k; € Z so that

=1

n—1
E biz; = —z € Zz
=1
We may create a new basis {z,ys,...,yn-1} for Csince C/Zz is torsion-

free. Then P = Za & Zz is a Z(s) lattice on which s acts via s(a) =
—a,$(z) = 2+ a. A new basis for P is { + a,z}. Then s(z + a) =z
and s(z) = z+ a. So P = Z(s). We see that A/P is torsion-free and
s(a)—a € Za C P implies that A/P is a trivial Z({s)-lattice. Hence0 — P —
A — A/P — 01is an exact sequence of Z(s) lattices. Since Ext%(s)(A/P, P)=
Extlz(s)(Z“‘z, Z(s)) = 0, we see that the sequence splits. Hence, A = Z(s) &
Z""? as a Z(s)-lattice.
Case 2: H'((s),A) = Z/2Z.

In this case, Im4(s — 1) = 2Za. This implies that for all 7, k; is even. A new
basis for C is {z; + %ia[i =1,...n—1}. Then

s(z; + %a) =z;+ ki — %a =z;+ %a.

4 -

So the matrix of s with respect to

bt )

ky
{21+ 5oz +

is diag(—1,1,...,1) and hence A= Z~ g Z™L. [ |

Definition 2.2.3. A reflection s in GL(A) is called diagonalizable over Z if
H'((s),A) =Z/2Z.

Now consider V = Q ®z A. V is a QW-space with V" = 0. We will
identify 18s € GL(V') with s € GL(A). Then Imy(s—1) = Q®zImy4(s—1)
is 1 dimensional and s is of order 2 on V'. Note that Kery(s+1) = Imy(s—1).

Lemma 2.2.4. Ifs,t € W are reflections with Qa = Kery(s+1) = Kery (t+
1) then s =t.

Proof: Qa is a Q(s,t) submodule of V. By Maschke’s theorem, V =
Qa®U, where U is a Q(s, t) submodule of V. Now s(a) = ~a and s(u)—u €
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UNQa =0 for each u € U. This implies that s|y is the identity. Similarly,
t(a) = —a and t|y is the identity. Then ¢t = s.

Lemma 2.2.4 allows us to make the following definition:

Definition 2.2.5. Let s, € W be the unique reflection s on V' in W with
Kery(s + 1) = Qa. Now let

('7a):VHQ

be the Q-linear map satisfying so(z) = z — (z,a)aforr € V. T = {s €
W|dimq(Kerv (s + 1)) = 1} is the reflection set in W.

Lemma 2.2.6. If A is a ZW lattice on the reflection space V,
b4 = {a|Kers(s +1) = Za,s € T}

is a crystallographic root system for V' with reflection set T'. That is, ® 4
satisfles the following conditions:

(a) {sala € 34} =T

(b) &4 is a finite spanning set for V not containing 0.

(c) W stabilizes ® 4.

(d) QaN®y = {£a} foralla € D,.

(e) For alla,3 € ®4,(8,a) € Z.

Proof:

(a) Note that Kerv(s + 1) = Q ®z Kers(s + 1) implies that Kery (s + 1) is
one-dimensional if and only if Kers(s 4+ 1) is cyclic. If s € T, Kery'(s + 1) is
one-dimensional so that Za = Ker4(s + 1) for some a € A and hence s = s,
where o € @ 4. Conversely, if « € @4 then Za = Ker4(s + 1) which implies
that Qa = Kery (s + 1) and hence that s = s, € .

(c) Let w € W and s € . Then w restricts to a Z-module isomorphism
between Ker4(s + 1) and Kers(wsw™ + 1). Since Kers(s + 1) = Za, we
find that Kers(wsw™ + 1) = Zwa so that wsw™! is a reflection. In fact
ws,w™! = 5., implies that wa € & 4.

(b) 0 ¢ @4 and @4 is finite since W is. By (c), Spanq(®4) is a QW-subspace
of V. Then V = Q®,4 & U for some QW-subspace U of V. Let z € U and
let « € &4 be given. Then

T~ $q4(z) =(z,a)a € UNQP, =0
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This implies that s,(z) =z foralls, € T. Butthen U C VW =0. So V =

Spa.nq((I>4)
(d) Let ca € QaN &4 for some a € & 4. Then

Qa = Kery(sca + 1) = Kery(s, + 1)
so that by Lemma 2.2.4, s.., = s, which implies that
Zca = Kerg(sea + 1) = Kerg(so +1) = Za

Hence ¢ = £1 as required.
(e) Let a,3 € ®,4. then

(sa = 1)(B) = —(8,a)a € Imy(sa — 1) C Kerg(sa + 1) = Za
So (B.a) € Z. [ ]

Definition 2.2.7. Let @ be a crystallographic root system in V. Then the
root lattice Z® is the Z-span of ®. The weight lattice is

A(®) ={ve V|{v,a) € Z for all a € B}

Since V = Q%,v — [a — (v,a)] is injective as VW = 0, we see that
A(®) embeds into Z® and hence is a lattice. Now W = (s,|a € ®). Since
(wv, wa) = (v,a) for all w € W, and all v € V,a € & and & is W-stable,
A(®) is actually a ZW lattice. Finally Z® C A(®) implies that Z® and A(P)
both have Z-rank equal to dimq(V) = n.

Lemma 2.2.8. Z&, C A C A(D.,).

Proof: The first inclusion is clear from the definition of ® 4. To see that
ACA(®,),let 2 € Aand o € &4. Then

8 —z = —(z,a)a € Imy(s, — 1) C Kera(sq + 1) = Za
implies that (z,a) € Z. |

Remark 2.2.9. If we take an arbitrary positive definite symmetric bilinear
form on V and average it over W, we would obtain a W-invariant positive
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definite symmetric bilinear form for V: (-,-) : V. x V — Q. Since for any
veV,

(v,a) = (840, 5q0) = (v — (v, a)a, —a) = —(v,a) + (v, a)(a, a)

we find that (v,a) = 22)

So we have shown that our QW space V = Q ®z A is a reflection space
with respect to a positive definite symmetric W-invariant bilinear form (-,-)
with root system ®4 and Weyl group W. Conversely, given a finite dimen-
sional Q-space V, a positive definite symmetric bilinear form on V', and a
root system ® for V' with Weyl group W, then the ZW lattices A such that
Q Rz A = V are reflection lattices since for any reflection s € W on V,
Ims(l —s) = ANImy(l — s) C Imy(l — s) must be cyclic. We are now
free to use our knowledge of the classification of reflection spaces to find a
classification of the reflection lattices.

We would like to express an arbitrary root system for a reflection space
V in terms of a fixed one.

Lemma 2.2.10. Let V be a finite-dimensional reflection space with fized
root system ® and set of reflections ['. If ®’ is another root system with
reflection set ', then @' must take the form & = {c,a|la € ®},c, € Q™.
The decomposition of ® into irreducible root systems corresponds bijectively
to the decomposition of ®'. The corresponding decompositions of W and V
are also the same for ® and P'.

Proof: Let 8 € ®'. Then sz = s, for some a € ® so that 3 = c,a for some
ca € Q*. Since QBN ¥’ = {£B} and QaN P = {+a}, we may assume that
ce € Q*. Thus &' is as required.

Note that ' = {cqa|a € ®} for an arbitrary choice of positive constants
satisfies the first four axioms of Lemma 2.2.6. We will later determine the
conditions on ¢, so that ®’ satisfies the last axiom.

Our fixed root system ® can be decomposed into a disjoint union of
irreducible root systems:

=0, U.-- U

Take another root system @’ with reflection set ['. Then & = {c,ala €
®}, ¢ € Qt. Its decomposition into irreducible root systems corresponds to
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that of the decomposition of ®. That is
=9¢U---UD,

where @] = {c,ala € ®;} since (a,3) = 0 if and only if (ca. c38) = 0.
The decomposition of @ into irreducible components gives a corresponding
decomposition of the Weyl group

W=W;,x---x W,
where W; is the Weyl group of ®; and of the reflection space V:
V=Wg---gV

where V; = Spang(®:) and the reflection set I = US| T; where I'; = {s,|a €
®;} such that V; is a QW; space with root system ®; and reflection set ;.
Now the correspondence of the decomposition of an arbitrary root system &’
with reflection set I' to that of ® gives the same decomposition of W, V' and
[, proving the lemma. ]

Notation: From this point on, we will fix an n-dimensional reflection space
V. a crystallographic root system @, its reflection set I, its decomposition
into irreducible root systems:

®=0,U---Ud;
and the corresponding decompositions of V=V $--- & V; and W = W} x
- X Wk.

Lemma 2.2.11. Endqw(V) = Hle Q. More precisely, a QW -automorphism
of V' is given by fl|v; = multiplication by q; for some q; € Q*. In particular,
if @ is an irreducible root system then Spang(®) is an absolutely irreducible

QW module.

Proof: Each V; is a QW; module. Since V; is fixed pointwise by W; for all
JFt,and W =W; x - x Wy, V; is also a QW- module.
Let f € Endqw (V). Since Nz VW =V}, we see that f(V}) C Vi. So

k k
Endqw(V) = II Endqw (Vi) = HEndQW,—(Vg)

i=1 i=1
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It now suffices to consider a QW-module V" with irreducible root system
® and to show that Endqw (V) = Q.

Let @ be an arbitrary irreducible root system for V' . Let f € Autqw(V).
Let o € ®. Then s, f(a) = f(sa) = —f(a) so that f(a) € Kery(s, + 1) =
Qa. So f(a) = goa for some q, € Q. Moreover a, 8 € ® imply

f(ss(@)) = fla —{e,8)8) = gacx — (. 8)gs3

spf(a) = 53(ga) = gua — (@, B)qaf

Since f(sz(a)) = szf(a), we see that (a,8)gs = (a,8)q.. In particular,
(a, B) # 0 implies that g, = g3. Note that (a.8) # 0 & (3,a) # 0 by the
description of (-,-) in terms of a positive definite symmetric bilinear form.
So the relation a ~ 3 < there exists ay,..., a, so that a = og, a, = 3 and
(i, aiv1) 7 0 for all 7, is an equivalence relation whose equivalence classes
are the connected components of the Coxeter graph of & [20. pp 56-57]. Thus
& irreducible implies that all roots are equivalent and hence g, = ¢ for all

aed. |

Lemma 2.2.12. [20, pp 44-45,53] Let o, be roots in a crystallographic
root system ®. Define poa = (a.B)(3,a). Then

(a) a # £3 implies that p,3 = 0,1,2 or 3.

(b) pas = 1 implies Wa = W§g.

(¢c) pag # 0 and (a,a) = (3, 8) implies that p,z = 1.

(d) If ® is irreducible, then there are at most two W-orbits in ®.

Proof: Choose a positive definite W-invariant symmetric bilinear form (-, -)
on V. Then, as before (v,a) = 2(v,a)/(a, @) from which trivially follows:
(i) (0, 8) =0 & (3,a) =0

(ii) pag # 0 implies (B,a)/(c,B3) = (3,8)/(e, @) and, in particular, (a, 3)
and (3, a) have the same sign.

(iii) If @, 8 € @ irreducible then there exists 3’ € W3 with p,a # 0.

For (iii), note that (w8,a) = 0 for all w € W implies that (w8,a) = 0
for all w € W implies by Lemma 2.2.11 that (V,a) = 0 which implies that
a = 0. By contradiction, (iii) follows.

Moreover, expressing p.g in terms of (-,-) gives

Pop = 4(07 ﬁ)z/(a7 a)(ﬂv ,B)

o
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So (a) follows from the Cauchy Schwarz inequality and p,g € Z.

For (b), factoring pag = 1 in Z, in view of (ii), gives (a.3) = (8. a) = £1.
But then, (sas3)a = sa(a—{a,3)8) = ~a—(a, 83)(B— (8. a)a) = —(a,3)8 =
+3 so that either (sas5)a = 3 or sgs,sza = 3.

For (c), note that (ii) gives (a,3) = (3,a). Looking at factorizations of
(a,3) =1,2,3, it follows that (a,8) = (8,a) = £1 and so p.3 = 1.

Finally for (d), suppose that a,3,7 € ® are in three different W -orbits.
The ratio (3, 8)/(a, a) is constant on W-orbits W3, Wa. By (iii), we can
arrange that p.s # 0 and then by (ii), (8,8)/(a,a) = (3, a)/{(a,B3). Now by
(a) and (b). (a.B8){(3,a) = psg = 2 or 3. Hence, looking at factorizations,
(3.8)/(a,a) € {2,3,1/2,1/3} = S in view of (ii). For the same reason.
(v,7)/(3,8) and (v,7v)/(e, @) are in § so

(1) _ 8:.8) (v.7)
(¢,0)  (a,2) (8,8)

means that two elements of S have product in S. But this is impossible.
Note that the choice of (:,-) therefore does not affect the ratios of root

lengths. |

Definition 2.2.13. The dual root system ®" for a root system ® is defined

as:
a

2
(a. @)

for some choice of (,:). This satisfies the axioms of Lemma 2.2.6 with the
same reflection set I' on noting for the last axiom that (aV,3") = (3, a).

oY = {

la € @}

Lemma 2.2.14. The Autqw (V) orbits of crystallographic root systems with
fized reflection set T for a QW -space V' are in bijection with the W -orbits of
roots in a fized root system ®. More precisely, a set of representatives of the
Autqw(V) orbits of root systems for a QW-space V with fized root system
® = UL, ®; is obtained by taking &' = UL | &} where

' =

3

®; if ®; has one W-orbit of roots
®; or ®Y if ®; hds two W-orbits of roots

Proof: Let ® be a fixed root system for V and let ' = {c,a|a € ]}, c, €
Qt be any other root system. Since, by Lemma 2.2.10, the decomposition
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of ¢’ is compatible with the decomposition of ¢, we may reduce to the case

when @ is irreducible and must show for some constant ¢, ® = ¢® if ®

has one root length and ® = ¢® or ¢®¥ otherwise where ®V is formed with

respect to some form (-,-) on V' . Note that the Auty (V)-orbit of ¥ is not

affected by the choice of form and that W is the Weyl group of ® and ®V.
[fa€®and we W, then

w(cqaa) = cawa € Qeyawa N d’

implies that ¢ o = ¢, for all w € W. In particular, if ¢ has only one W orbit
then ¢, =cforall a € ® and ¢’ = 9.
Suppose that ® has two W-orbits of roots. Note that

(3,aYeaa = (3',a')a =8 — sa8" = ca(8 — 5.3) = ca(3, a)a
hence

8,y = 2(B,c) (2.2.15)

and therefore that pl,3 = pas. Note that (', a’)’ and (3, a) are of the same

sign since c,,c3 € QY. By Lemma 2.2.12(iii), we may choose «, 3 € ® with

Pas # 0 in different W-orbits. Then p,g = 2 or 3 by Lemma 2.2.12(a), (b).
Comparing factorizations of pl,, 3 = pag, we find that we have two cases

to consider:

Case 1: (8',) = (8. a)

Then by (2.2.13), ¢g = ¢, so that ¢, = c3 = con all of @ and @’ = ¢d.

Case 2: (3',d) = (a, 83).

Then by Lemma 2.2.12(ii) and (2.2.15), we have

& _(0.8) _(xa)
a (Bra)  (B.B)

and so ic.(a,a) = 3¢3(8,8) is a constant c on all ® and so for all a € @,
we get

1 2
ca’ = =cq(a, a)-(-i) =ceax =0o

2

Hence &’ = ¢®" as required. (]

[A)
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Lemma 2.2.16. (a) W acts trivially on A(®)/Z®.
(b) Any Z-lattice A lying between Z® and A(®) is a ZW -lattice with QRz.4 =
V.

(c) There are only a finite number of such lattices.

Proof: A(®)/Z¢® is a W-trivial module since for all @ € ® and A € A(®).
SeA — A =—(\a)a € Za C Z®
and (s,la € &) = W.

Soif Z®d C A C A(P). A/Z® is also W-trivial so that W stabilizes A.
Note that Z® C A C A(®) are lattices of the same rank n = dimq(V’). So

V=Q82Z‘b=Q®zA=Q®zA(@)

as required. The last statement follows immediately from the fact that
A(®)/Z® is a finite group. [ ]

Definition 2.2.17. Let ® be any fixed root system in V' with weight lattice
A. A forbidden subgroup of A(®)/Z® is one of the form A(®) N Qa/Zd
for @ € ®. An admissible subgroup of A(®)/Z® is one which meets every
forbidden subgroup trivially.

Remark 2.2.18. Let A be a ZW lattice with Z® C A C A(®). Since
QanA=Kery(se +1)N A =Kery(sq +1).

it follows that A/Z® is an admissible subgroup of A/Z® iff Qa N A = Za
for all @ € @ iff 4 = &. Note that, for any a € &, Qa N ZP = Za so that
the trivial subgroup of A(®)/Z® is always admissible.

We define the following subgroup of Autqw (V):
¥ = {0 € Autqw(V)|olv, = multiplication by ¢, ¢; € {£1}}

Lemma 2.2.19. ¥ induces an action on A(®)/Z® which stabilizes the set
of admissible subgroups.
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Proof: The decomposition of & = U*_ ®; leads to a decomposition of Z® =
&5 128, and of A(®) = 8L ,A(®:). Let o € T where o|y, = multiplication
by €. Then

o(A) = e(A(81)) & - & ex(A(Bi)) = A(D)) S --- B A(Dr) = A(O).

Similarly o(Z®) = Z®. So o(Fi_, Mi+Z8) = Y5 A +Z®, where ); € A;,
defines the action of ¥ on A/Z®. Now if A/Z® were an admissible subgroup,

d(A)N Qa =d(AN Qa) = o(2a) = Za

for 0 € ¥ and o € ® shows that o(A4)/Z® is also an admissible subgroup of
A(®)/Z9. [ |

Theorem 2.2.20. Given a reflection space V' with Weyl group W, the iso-
morphism class of a ZW -lattice A on V' is completely determined by the
Autqw(V)-orbit of the root system ®,4 and the Y-orbit of admissible sub-
groups of A(®4)/Z® 4 determined by A/ZD,.

Proof: The reflection set [' is the set of all reflections on V' in W, by [21,
p-24

S]uppose A and B are ZW-lattices on V such that f(®4) = ®p for some
f € Autqw(V') and where cf(A)/Zdg = B/Zdp for some o € £. Note
that A/Z®4 and B/Z®p are both admissible and 0o f : A — Bisa ZW
isomorphism.

Conversely, let f be a ZW-isomorphism mapping B onto A. Then f
extends linearly to a QW-automorphism of V. So f maps Kerg(s + 1)
isomorphically onto Ker 4(s + 1) for each reflection s in W. This shows that
f(®B) =®4. Thus f € X takes B/Z®p to A/ZS,. [ |

We will now apply this theorem to find the number of isomorphism classes
of reflection lattices on an irreducible reflection space. We first recall the
following:

Lemma 2.2.21. [20, pp. 68,71]
1. If®=A,, then A(®)/® =Z/(n+1)Z.
2. If ® = B,,Cn, E7, then A(D)/® = Z/2Z.
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3
4.

Oy

(=)}

If® = Danyy, then A(®)/® = Z/4Z.

[f® = Dy, then A(®)/® = Z/2Z x Z/2Z.
If® = Es, then A(®)/® = Z/3Z.

[f® = Es, Fy, Ga, then A(3)/® = 1.

Proposition 2.2.22. Let ¢(®) denote the number of isomorphism classes of
ZW(®) lattices on the irreducible reflection space Q @z Z®. Then

Forn > 2, ¢(4,) is the number of divisors of n + 1.
c(A) =c(Es) = 1.

c(By) =2.

¢(Bn) =¢(Cr) =3,n > 2.

¢(Dan) =5.

¢(Dzns1) = 3.

c(Eg) = c(E;) = 2.

c(Fy) = c(Gp) =2.

Proof: In the irreducible case, we may ignore the L-orbit as for any ZW-
lattice Aon V and any o € £, 0(A) = +A = A.

Since each root 8 of ® is conjugate to a simple root «, we have A(®) N
Q38 = w(A(®) N Qa) where w € W is such that wa = 3. So to find the
non-trivial forbidden subgroups it suffices to examine A(®) N Qa for simple
roots a. Then ta € A iff (za,8) € Z for all 3 simple iff n divides

n(a) = ged{(a, 3)|8 simple}

But since (o, 8) is the a, 3 entry of the Cartan matrix for &, we can examine
the list of Cartan matrices ([20, p. 39]) to see that a forbidden subgroup
occurs only for types A;, B2,C, and that in each case, there is a unique
forbidden subgroup of order 2.
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For ® = A;, there is only 1 root length and hence only 1 Autw (V)-
orbit of root system by Lemma 2.2.14. Moreover, A(®)/Z® = Z/2Z is not
admissible. So the only isomorphism class is represented by Z®.

For @ = A.(n > 2), Dx, Es, E7, Es, there is only 1 root length and hence
only 1 Autw(V)-orbit of root system by Lemma 2.2.14. Since A(®)/Z®
and hence all its subgroups are admissible, the isomorphism classes are in
bijective correspondence with the subgroups of A(®)/Z®. The result follows
from an examination of the previous lemma.

Note that W(B,) = W(C,) and that Q z ZB, = Q ®z ZC,. It then
suffices to consider @ = B,. There are two Autw(V)-orbits of root systems,
® and &Y = C,. For n = 2, A(B2)/ZB; and A(C,)/ZC, are both not
admissible. So the representatives of the isomorphism classes are ZB, and
ZC,. For n > 2, A(Cr)/ZB, = Z/2Z is not admissible but A(B,)/ZB, =
Z/2Z is admissible. So the representatives of the 3 isomorphism classes are
ZB,,ZC,, and A(B,).

For & = F; or G2, A(®)/Z® is trivial but there are two Auty (V)-orbits
of root systems. In each case, the representatives of the isomorphism classes
are Z® and Z®". |

We now wish to use our knowledge about the structure of reflection lat-
tices to determine their first cohomology groups.
The following is an alternate proof of [24, 2.4]:

Lemma 2.2.23. If 'y = {d1,...,d.} is a set of distinct diagonalizable re-
flections on A then the group D generated by 'y is an elementary abelian
2-group of rank r and

HY(D,A) = &7 H' (i), A)
is an isomorphism.

Proof: Since for each i = 1,...,r, A = Kery(d; + 1) @ A%}, each d; acts
trivially on A/2A, hence so does D as it is generated by [';. It follows that
d € D implies that d> = 1 (hence D is an elementary abelian 2-group): for
d =1+ 2z with £ € F = Endz(A) implies that d®> € 1 + 4F so it suffices to
prove that 1 + 4£ contains no non-trivial element of finite order. If this is
false, then there exists m > 2,z € E,z & 2F such that 1 + 2™z has prime
order p. Then (1+2™z)? = 1 shows that }%_, (?)(2™z)* =1 so that z € 2E
which gives a contradiction.

31



Each character x € Hom(D,Z*) has an idempotent factorization e, =
[T5=: 3(1 + x(di)d;) . Note that (1 £ d;)(A) C 2A since d; acts trivially on
A/2A. So the Wedderburn decomposition of Q ®z A occurs on the Z level.
That is e, acts on A and A = ©ye,A. Let X = {x # lple,4A # 0}. Note
that d € D acts on e, A as de, = x(d)e, and Kera(d+1) = Syex x(d)=—1xA-
Since d; is a reflection, there exists a unique x; € X such that x;(d;) # 1
(ie with x:(d;) = —1). The x; are distinct since the d; are and each e,, A =
Ker4(d; + 1) has rank 1 since d; is a reflection. It follows that D is a rank r
elementary abelian 2-group.

Finallly X = {xi,-.-,xr}: for if x ¢ X, then xy # x; implies that
x(d;) = 1 for all i so that x = 1p. So A = AP ¢ &7_,e,, A where each
€x; A is a ZD lattice of Z rank 1 on which D acts with character x;. Since
HY(D, AP) = 0, we see that H'(D,A) = &f_ H (D, ey, A). Since d; acts
trivially on ey, A for j # i, we also see that H'((d;), A) = H'((d;), ey, A) for
all i. Note that D/(d;) acts trivially on H'((d;),e,, A) = Z/2Z since D/{d;)
centralizes (d;) and acts trivially on e,, A. Since (e, A)!4) = 0 for all i, we
see by the 5-term exact sequence that Res&) : HY(D, ey, A) = H'((d:), ex, A)
is an isomorphism. Hence so is the map -@f_.:lRes&):

H'(D, A) Sy H((d:), A)

Lg =

~

e{=1H1(<di>’ eXtA) —_— @:=IH1(<dl)' eX: ‘4')

|
Recall the following lemma due to Lorenz [24]:

Lemma 2.2.24. Let G be a finite group acting on a lattice A. Let T be the
set of reflections in G acting on A and let Ty be the subset of diagonalizable
reflections. Let N be the (normal) subgroup of G generated by T and D be
the (normal) subgroup of G generated by I'y. Then

Ker(©.erRes)) : H(G, A) = @erH'((s), A)) = H'(G/D, AP)
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Proof:

Ker(@,erRes(G,)) = ﬂ,erKer(Resg )
= Nser,Ker(Resy),) since H'((s),A) =0
if sy
= Ker(‘&},erdResg )
= Ker[(@,er,Res(;)) o ResF]

= Ker(Res$) Sser dRes(D,) is an isomorphism
by Lemma 2.2.23

=~ HY(G/D, AP) by inflation-restriction
sequence

Proposition 2.2.25. Let A be a reflection lattice on a reflection space V'
with reflection set ' generating W and set ® = &4, A = A(®4). Then

HY (W, 4)=A/A

Proof: Since V" = 0, we note that A" = 0. Also since A/Z® is W-trivial
and Z® C A C A, we see that A/.A4 is W-trivial.
Applying cohomology to the exact sequence

0>A—=>A—=A/A—=0,
we obtain the exact sequence
0—A/A S HY(W, A) S HY (W, A).

To show that J is an isomorphism, it suffices to prove that i. is the zero map.
Now

HY (W, A) ——E—— HY(W, A)
-BReszYa) L leﬂ’”&n

eaed’Hl((sa)v A) e—i."@c’rE@Hl((sa)’ A)

is a commutative diagram. By the previous lemma applied to W and A, we
find that

Ker(®acoRes(,)) : H'(W,A) = @acoH'((sa),A)) = H'(W/D,AP)
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But by Proposition 1.0.3 [24] , this is isomorphic to the divisor class group
CL(C[A]"). Since C[A]" is a polynomial ring (6, Théoréme 3, p. 188], we
find that Ker(eaEQResK,’o)) = 0. Thus, it suffices to show that for eacha € ®,
i. : HY((s4), A) = H'((Sa),A) is the zero map since then i.(H' (W, A)) C
Ker(ea@ResKa)) = 0. Viewing this map in H~t, i. is the map

Kers(sq + 1)/Ima(ss — 1) = Kera(sq + 1)fIma (s, — 1)
induced by the inclusion map
Za = Kerg(sq+1) — Kerp(sa + 1)

To finish the proof, we need only show that Imy (s, — 1) = Za.

By [21, p. 11}, we may extend a to a base A = {ay,...,a,} for the
root system ® with a; = a. Take {w,...,w,} to be the Z-basis for A of
fundamental dominant weights corresponding to the base chosen for the root
system [20, p. 67]. Then (wi,a;) = &;. Since (s — l)(w1) = —a and
(sa — 1)(w;) = 0 for 7 # 1, we see that Imp(so — 1) = Za as required. W

2.3 Suitable Root Systems

This last preliminary section deals with non-effective reflection groups.

Let G be a finite group and let A be a lattice on which G acts faithfully.
Set V= Q®zA and let I be a G-stable set of reflections on V' (i.e. gg~! =T
for all g € G.) Let R be the subgroup of G generated by .

Definition 2.3.1.

1
eR=I—R—IZreQRcQG, r=1l—er: VoV

ré€R
Lemma 2.3.2. V = Kerv(er) & V® is a QG decomposition of V.
Proof: For all r € R, rer = er. Hence eg is an idempotent of QR C QG.
Since R is a normal subgroup of G, we find that gegp = egrg for all g € G and
hence that eg acts G-linearly on V. We obtain the following decomposition
of V into QG subspaces:
V = Kery(er) & Imv(er)
Kerv(er) = Imy (1 — eg)
Imy(er) = Kery(1 — eg) = V&
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as required. n

Definition 2.3.3. A crystallographic root system ® for the Q space #(V)
with weight lattice A(®) is called suitable for the ZG lattice A on V and for
rif

iyecA

(if) 7 (A) C A(®)

(iii) R is isomorphic to the Weyl group W(®) under the natural map R —
Rlqs

(iv) @ is G stable.

Remark 2.3.4. If ® is a suitable root system for A and I, then for s € T,
Kery(s + 1) = Kerrv(s + 1) is 1-dimensional so there exists @ € ® such that
Kerzo(s+1) = Kerry(s+1)NZP = Za. We denote s by s, and define (-, o)
by sa(v) =v —(v,a)afor v € V and a € 9.

Lemma 2.3.5. Let ® be a suitable root system for A and . Then
(a) V=Q®5 VR is a QG decomposition of V.

(b) For g € G, a,3 € ®, we have gsag~' = s, and {ga,gB) = (e, 3).
Proof:

(2) Since @ is a root system for m(V') = Imy(1 — er) = Kery(er), we see
that Q® = Kery(er) and hence by Lemma 2.3.2, V = Qd < VB is a QG
decomposition of V as required.

(b) For g € G,a,3 € ®, we have s, €T, gs,g~! € ' and ga € ®. Since

Zga = gKerzs(sa + 1) = Kerze(gsag™ +1)
we see that sgo = gs,g~' Since

sgp(ge) = ga — (ga, gB)gB
gssg ' (ga) = ga — (a, B)gB

and sgg = gsag~!, we see that (ga, g83) = (a, B) as required. m
Fix a suitable crystallographic root system ® for A and ['. Then let A
be a base for ® and set

Qe = Qs(D) = {g € Glg(A) = A}
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Lemma 2.3.6. (a) G = R x Qg
(b) Let H =Im(G — GL(Q®)) and let W = W(®). Then H =W x Qg is

a subgroup of
Aut(®) = {g € GL(QD)|g® = &}

Proof: (a) Let ¢ : G — GL(Q®). Note that R maps isomorphically to the
Weyl group W = W(®) and that Q¢ maps surjectively onto Q). For each
g € G, ¢(g)(A) is another base for the root system ®. Since W acts simply
transitively on the set of bases for the root system & [20, p. 51], we see that
there exists a unique w € W with w(A) = ¢(g)(A) and w = (r) for a
unique r € R. So ¢(g7'r) € Qug) = ¢(Qc) and since Ker(p) C Q. we have
g 'r € Qg and hence g € RQ¢. Let r € RNQ¢. Then o(r) € WN Qo) =1
so r € Ker(p) N R. Since R acts faithfully on Q®, we see that RN Qg =1
as required.

(b) The isomorphism was proved in the course of the proof of (a). H is a
subgroup of Aut(®) since ® is G-stable. |

We need to show that suitable root systems for A and I' exist. Let

®4 = {a|Kers(s + 1) = Za for some s € ['}

Note that Kerzg,(s + 1) = Kera(s + 1) for all s € I'. The following Lemma
is adapted from Farkas {16, Lemmas 1-3].

Lemma 2.3.7. &4 is a suitable root system for A and T.
Proof: Note that ® 4 is G-stable since I' is G-stable and
Keri(gsag™' +1) = gKera(s, +1) = Zga

Applyving er to sqa = —a, we get epa = —era and hence ega = 0 so
that Q®,4 C Kery(er). Let v € Kery(egr)®. Then rv = v for all r € R so
that v = egv = 0. We see Kery(er) is a QR space containing Q®, with
Kery(er)® = 0. By Lemma 2.2.6, this implies that

Keryv(er) = Q®,

So @, is a crystallographic root system for Kery(eg). Thus R maps onto
the Weyl group of ®4 on m(V) = Kerv(er) under the restriction map R —
R|x(v). Since R acts trivially on V¥ and faithfully on V the decomposition
V =Q&, & V® from Lemma 2.3.2 shows that the map is an isomorphism.
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With our extended definition of (-, @) we find:
sa(erv) = egv — (egv, a)a

which together with s,er = er implies that (egv,a) = 0 and thus ((1 —
erlv,a) = (v,a) for all v € V.

Now for a € A, (a,a)a = (1 — s,)a € Ima(l —s,) C Kerg(sq +1) = Za
implies (a,a) € Z. Thus (1 — er)a € Ker(er) = QP4 has ((1 — er)a,a) =
{(a,a) € Z which proves 7(A) = (1 — eg)A C A. Since &4 C A by construc-
tion we see that ®4 is a suitable root system for A. |
Remark: For a suitable root system @ for A and I, we have Z® C Kera(er) C
Im4(1l — er) C A and clearly Kers(1 — eg) C Imy(eg). Moreover,

Kera(er) © Kera(l —er) C A C Imu(1l —er) S Ima(er)

relative to V = Q® £ Vr. Acting on A by eg respectively 1 — er gives exact
sequences:

0 — Kers(er) > A — Imy(er) = 0

0 —Kerq(l —er) > A —Imy(l—eg)—0



Chapter 3

Class Groups

3.1 Inertia Groups for K7[A]/(K.,[A])G

Lemma 3.1.1. Let p be a prime ideal of K, [A]). Let H = GT(p) where
GT(p) = {g € Glgs — s € p}

is the inertia group of p and let B = IgA where Iy is the augmentction ideal
of H. Then there is a unique group homomorphism 3 : B — K* so that

e(b) = B(b) mod p,b € B
If g € GT(p), then g acts trivially on the field K and 3(ga — a) = v,(ga)™"
Proof: Since g € G¥(p), then

g(ce(a)) —ce(a)) epforallaec A,ce K*
(9¢)75(ga)e(ga) = ce(a) mod p

e(ga—a) = mod p

(g¢)74(ga)

Given b € B, suppose we have e(b) = k; mod p and e(b) = k; mod p
where kl,kg € K*. Then if k; 7"“é kg, k1 -k € (I{-Y[A])x Np which is
impossible. So, there is a unique element §(b) of K™ such that e(d) =
B(b) mod p. It is easy to verify that 3 is a group homomorphism.

e
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For any ¢ € K™ and a € A, the above calculation shows that 8(ga —a) =
mﬂa—z. But then so that gc = cand B(ga—a) = (v,(ga))!
as required.

c — 1
(9c)rglga) = ~4(ga)

Definition: Let H = GT(p), B = IyA, and 8 : B — R* be the group
homomorphism defined in the previous lemma. Then we define .J3 as the
ideal of K,[A] generated by the set {e(b) — 3(b) | b € B}. Note that .J3 C p.

Lemma 3.1.2. Let K denote an algebraic closure of K. Then
?[A]/FJg = T\':[A/B]

Proof: Since K _ is divisible as an abelian group, it is injective. So 3 : B —
K* may be extended to 3: A — K .. Define
p: K[A] - K[A/B]
Z c.e{a) — Z caﬁ(a)e(a + B)

a a

It is clear that p is a ring epimorphism with KJ3 C Ker(p;).
Conversely. let > c.e(a) € Ker(ps;). Then if T is a transversal for B in
A, we find that

Z cﬁ.b/;’(a +b)=0forallacT
beB

so that ), c,458(b) =0 for all a € T. Now

Z c.e(a) = Z Z cas€(a +b)

a€A c€T beB

= DD cansle(® = B)e(a) + Y Y carsB(b)e(a)

2€T beB a€T beB

= D) cassle(d) — B(b)le(a)
a€T beB
€ KJs

as required. [ |
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Remark 3.1.3. Let B* ={ea € A|n-a € Bforsome0 # n € Z}. Then
B* is a direct summand of A and B*/B is the torsion part of 4/B. Hence
if 3: B> R™* could be extended to 8% : B¥ —+ R™*, it can also be extended
to 3 : A~ K*. In this case, we actually have K[A]/Js+ = A[A/B*]. In
particular, if BY = B, we have K[A]/J3 = K[4/B].

Definition 3.1.4. For a ZG lattice A, and a subgroup H,
Af = {a € Alha =a}

is the Z-sublattice of A fixed by H. The norm map is Ng : A — 4,a —
> scq ha. Note that Ny can be extended naturally to a Q-linear map Vg :
V-V

Now we can characterize the non-trivial inertia subgroups corresponding
to height one primes:

Proposition 3.1.5. The non-trivial inertia subgroups G¥ (p) with p a height
one prime of K, [A] are precisely the subgroups of G generated by an element
s such that

(a) s acts as a reflection on A

(b) s acts trivially on K
(c) AL C Ker(ys).

Proof: Let s € GT(p), p a height 1 prime. Then by Lemma 3.1.1, s acts
trivially on K. Also by Lemma 3.1.1, for a € A},

75(‘1)-1 = 73(5a)—1 = ﬂ(sa — a) =1

so that “/,!_4(,) =1.

Suppose that s # 1. If s acts trivially on A then Af® = A and hence
v, = 1 by the last paragraph. So s acts trivially on K,[A] and hence s = 1
since G acts faithfully on K,[A]. By contradiction, s must act non-trivially
on A. ’

Let H = G¥(p), B = IgA, and 8 be the homomorphism defined by
Lemma 3.1.1. Take Js a K,[A] as defined above. Since K is algebraic over
K, we find K[A] = K ®xk K[A] is integral over K[A]. Let B be a prime of
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K[A] lying over p. Then K[A]/ is integral over K[A]/PB N K[4] = K[A]/p
so that dim K[A]/P = dim K[A]/p. Hence P is a height one prime of K[A]
and KJ3 C AKp C*B. By Lemma 3.1.2,

n —1 =dim K[A]/P < dim K[A]/K.J; = dim K[4/B] = n — rank(B)

which implies that the rank of B is precisely 1, as we have noted that B is
non-trivial.

Since Im4(s — 1) C B, we find that s acts as a reflection on A and hence
by Lemma 2.2.1, s has order 2 on 4. Since A/Kers(s + 1) is torsion-free
and H~!((s),A) = Kera(s + 1)/Im4(s — 1) is finite, the torsion subgroup
of A/Im4(s — 1) is Kera(s + 1)/Ima(s — 1). Since B/Ima(s — 1) is finite,
B/Ims(s —1) C Kera(s+1)/Imy(s — 1) so that B C Ker,(s + 1). But then
since A/Ker4(Ng) is torsion-free, H~'(H, A) = Kera(Ng)/Ig A is finite and
B = Ig A, the torsion subgroup of A/B is Ker4(Ng)/B = Kera(s +1)/B so
that Kerq(s + 1) = Kery(Ng) forany 1 #s € H.

Let s,t € H be two non-trivial elements. Then s, invert Ker4(Vg) and
st fixes it. As st # 1 implies Kers(st +1) = Ker1(Ng). we must have st = 1
and so t = s. Hence H = (s) has order 2.

Conversely, let s be an element of G satisfying the three given hypotheses.
We need to find a height 1 prime p in K, [A] with GT(p) = (s). Since GT(p)
can only be cyclic of order 2, by above, we need only find p with s € GT(p).

We first show s has order 2. If c € K,a € A then by (a), (b),

s%[ce(a)] = s[cys(sa)e(sa)] = cvs(sa)ys(s2a)e{s%a)
= ¢v,(a + sa)e(a) = ce(a)

where the last equality follows from the fact that Imy(s + 1) C A% since s
has order 2 on A. But then s? = 1 since s? acts trivially on A.[A] and G
acts faithfully on K,[A].

Now B = Imy(s — 1) is cyclic. Let B = Zby where by = sag — aq.
Define 3 : B — K* by 8(sa — a) = v,(a) = (7s(sa))"!. Since v, : A —
K* is a homomorphism, and A/A{) = Im4(s — 1), we see that 3 is the
homomorphism induced from +,. It is well-defined by property (c). But then
Js = (e(y)—B(y) | y € B) is generated by e(bo) —3(bo) since e(nbg)—3(nbo) =
e(bo)™ — B(bo)™ € (e(bo) — B(bo)). We wish to show that sz — z € Jj for all
z € K,[A]. It is sufficient to show this for £ = ce(a) for all ¢ € K and a € A.
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In fact, since s acts trivially on K[A%)] and A = A{) g Za,, it suffices to
check that se(ao) — e(ag) € Jg. Indeed,

se(ao) —e(a0) = 7s(sao)e(sag) — e(ao)
= Ys(sao)e(ao)[e(sao — ao) — (7s(sa0)) "]
= 7s(sao)e(ao)[e(bo) — B(bo)] € J3

Since J3 is generated by the non-zero non-unit element e(bg) — 3(bo) of
the Noetherian domain K,[A], we find that 2 minimal prime p containing Jg
must be of height 1 by Krull’s Principal Ideal Theorem [2]. As st —z € p
for all z € A, [A], we have (s) = GT(p). ]
Remark: We can actually determine the height one primes p containing .J3
above.

For B = Im4(s—1), we first claim that BT = Ker(s+1): Clearly Ims(s—
1) C Kery(s + 1) and A/Ker(s + 1) is torsion-free. Since H~({s),A) =
Kery(s + 1)/Im4(s — 1) is finite, we may conclude that B¥ = Ker,(s + 1).
So

BB = HY((s), 4) = {Z/QZ if s is diagonalizable
0 else

In particular, by the Remark after Lemma 3.1.2, we find that K[A]/.J3 =

K[A/B] if s is a non-diagonalizable reflection and hence J; is the required

prime in this case.

Suppose that s is a diagonalizable reflection. Then A = A SKer4(s+1).
Let Zag = Ker4(s+1). Then B = Z(sag—ao) = Z(—2a0) = Z(2aq). So Bt =
Zao. Let by = 2aog. Then Jg is generated by e(bg) — 8(ba) = e(ao)® — B8(bo)
and T ~ e(ag), A} — A induces an isomorphism

K[T)/(T* - B(bo)) ®x K[A™] — K[A]/Js
If B(bo) & (K*)? then T? — B(bo) is irreducible over K so K[T]/(T? — 3(bo))

is a field which is algebraic over K. Hence the left side is a domain and again
J3 is the required prime.

Suppose B(by) € (K*)® Then if char(K) # 2, Js = Jg#Jg4 where

37 (a0) = v/B(bo) and 37 (ag) = —/B(bo) define the two possible extensions
of 3 to B*. By the Remark after Lemma 3.1.2, J;,;— and JB;.. are the two

42



possible minimal primes containing J3. Finally if char(K') = 2, then e(ag)? —
B(bo) = (e(ao) — /B(bo))? so the nil radical is \/Jy = J5+ where 8*(ao) =
v 3(bo) is the unique extension of 8 to B*. As before, \/’]: = Js+ is now
the unique minimal prime containing .J3.

Lemma 3.1.6. Let GT(p) = (s) for some height I prime p. Then (K,[4])®
is a UFD. ‘

Proof: By Proposition 3.1.5, s acts as a reflection on A so that A = A& Zag
where sag = —ag + zo for some zo € A®). It follows that {e(ao)*|n € Z} is
a K[A®)] basis of K,[A] and since s acts trivially on K and 7, [y = 1, we
see that s acts trivially on K[A)]. Here

se(ao) = vs(sac)e(saa) = vs(sao)e(zo)[e(ao)] ™"
where 7,(sao)e(zo) € K[A®)]. Raising this identity to the kth power we see
that
{1} U {e(a0)*, (se(ao))flk > 1}
is also a K[A‘]-basis for K,[A] and therefore
{1} U {e(a0)* + (se(ao))¥|k > 1}

is a KA basis of A, [A]*).

Note that T = e(ao)(se(ag)) = ¥s(sao)e(zo) € K[A™]* and set wy
e(ao)* + (se(ag))* for k > 0 so that wy = 2. Put w = w;. Now se(ag)
w — e(ag) and T = e(ao)(w — e(aop)) so that for & > 2,

mo

Wwg_1 — Twg—2

= [e(ao) + (w — €(ao))][e(a0)* ™ + (w — e(ao))*~"]

— [e(a0)(w — e(a0))][e(a0)*2 + (w — e(ao))*~?]

= e(a0)* + (w — e(a0))e(a0)* ™" + e(ao)(w — €(a0))* ™" + (w — e(a0))*
— e(a0)* ™" (w — e(ao)) — e(ao)w — e(aq)]* ™

= e(ao)* + (w — e(ao))F = w

so that
Wi = Wwgoy — TWe—2,k > 2

Now induction on k implies that wy is a K[A{*)]- linear combination of powers
of w for all k. Hence it follows that {w*|k > 0} is a K[A(*)]-basis of K_,[A]‘*
which means that K,[A]‘*) is a polynomial ring in one variable w over KA.
Since K[A] is a UFD so is K,[A]‘*. |
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3.2 Connecting Homomorphisms and Restric-
tion Maps
Let
[, ={l#s€&G|(s)=GT(p) for some p a height one prime of A,[4]}

In Section 3.1, we showed that the hypotheses of Lorenz’ result 1.0.3 are
satisfied for I'y. So we now know that

CI(K[A])%) = Nyer, Ker(ResGy : HY(G, Ko[A]*) = H((s), K [A]"))

We now want to relate this class group to cohomology groups of A'* and 4
via the exact sequence of G-modules

0= K* = (K,[AD* = A =0
We first want to determine the connecting homomorphisms
0 : A° = HY(G,K*) {dg:HYG,A)— HG,K*)
arising from this sequence.
Lemma 3.2.1. (a) The map 9 : A® = HY(G, K*) is given by
dc(a) = [g—+ 7,(a)], & € A
(6) The map ég : H'(G, A) = H*(G,K*) is given by
dclf] = [(g:h) = vo(gfa)l, [f] € HY(G, 4)

(c)Let s € Ty. Then Oy, is the trivial map.

The homomorphism 6, : H'((s), A) = H?((s), K*) has a non-zero ker-
nel iff s is a diagonalizable reflection with Resg)['y] =0 iff s is a diagonal-
izable reflection with v,(A) C (K*)?. Note that Ker(§(,)) # 0 implies that
Ker(d(,)) = H'({s), A) = Z/2Z.

Proof: (a) Lift a € A® to e(a) € (K,[A])*. Then 85(a) is represented by
the 1-cocycle

g+ (ge(a))/e(a) = v4(ga)e(ga)/e(a) = v,(a)
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(b) Let f : G — A be a l-cocycle. Lift each f, € A to e(f,) € (K,[A])*.
Then [g — e(f,)] maps to [g — f,] and &[f] is represented by the 2-cocycle

(g.h) — ge(fa)e(fon) " e(fo) = vo(gfu)e(gfn — fon + fo) = 459 fn)

(c) Now let s € [,. By condition (c) of Proposition 3.1.5, it is clear that
O(sy 1s trivial. :

If s € [y is a non-diagonalizable reflection, then H'({s), A) = 0, so we
may assume that s is diagonalizable and hence that H!((s),A) = Z/2Z.
Then A = A & Kers(s + 1) where Kers(s + 1) = {ao). A 1-cocycle repre-
senting the generator of H'({s), A) = H'((s), Kers(s + 1)) is given by

_ G ,9g=Ss
f"‘{o g=1

By (b). &(;)[f] is represented by the 2-cocycle r with r(1,1) = r(s,1) =
r(1,s) = 1 and r(s,s) = ¥s(ag)~!. The cocycle r is a coboundary iff there
exists a map c: (s) = K* such that

r(g. h) = [ge(R)][c(gh)]~ [c(g)]

Since r(1,1) = r(s,1) = r(l,s) = 1 we see that ¢(1) = 1. Also r(s,s) =
(c(s))? since s acts trivially on K. So dy,) is the trivial map iff v,(ao) € (K*)?
iff v,(4) C (K)2

Finally we must show, for diagonalizable s, that ~,(a) € (K*)? if and
only if Resg)[*/] = 0 in H'(G,Hom(A, K*)). The map Resﬁyy 2 (s) —
Hom(A, K*) is a 1-coboundary iff v, = 2 for some ¢ € Hom(A, A'™*). Since
A = A® & Za,, we need only determine sp/¢ for z € A% and for ag. Since
sp(z)/¢(z) =1 and sp(ag)/¢(as) = (p(ao))~2, we find that Resg)['y] =0 iff
vs(A) C (K*)2. |

Definition 3.2.2. Let V, be the subgroup of G generated by T,.

Definition 3.2.3. Let ['? be the set consisting of s € [, such that s acts
on A as a diagonalizable reflection and v,(A) C (K*)? and let D, be the
subgroup of G generated by I'%.

Notation: Let H be a subgroup of G, H a collection of subgroups of
G, and M a ZG module. Then we will sometimes abbreviate the map
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Res$ : HY(G, M) — H'(H, M) by Res§(M). We will also write ©yeyRes, :
HY G, M) = ®nenH'(H, M) as @genResS(M).

Lemma 3.2.4. (a¢) N, and D, are normal subgroups of G.
(b) Let M be a G-module, H be a subgroup of G and g € G. Then

Ker(ResZy, —«(M)) = Ker(ResS(M))

gHg

(c)
Ker (:”B,erg,/GResg)(A)) = HI(G/D_Y’AD-,))

Ker (e,erv/GReS(Gs)(Kx)) = HI(G/AV.y, RK™)

Proof: (a) To show that N, and D, are normal in G, it suffices to show
that [, and ['¢ are stabilized by conjugation by g € G. First note that for
g9, €G,

Ima(gsg™" — 1) = glma(s — 1) = Imu(s — 1)
Algss™) = gA(’) =~ Ale)
Kera(gsg™ +1) = gKera(s +1) = Kera(s + 1)

Now let s € [,. Since s acts as a reflection on A, Im4(s — 1) is cyclic. But
then Im4(gsg™ — 1) = glma(s — 1) is cyclic so that gsg~! is a reflection on
A. Also

H'((gsg™), A) = H'({gsg™"), A) = gKera(s+1)/glma(s—1) = H'({s), A)

shows that gsg~! is diagonalizable iff gsg™! is. Since s acts trivially on K so
does gsg~!. Let a € A%9*™"), Then g~la € A® and vs(A¥) = 1. So

Ygsg-1(a) = Yo(a)g(v:(g7 a))gs(v,-1 (sg ™ a))
= v,(a)g(1 - v4-1 (g™ a))
= Ygg-1(a) = 11(a) =1

Ifse F;‘,, we already know that gsg™! is diagonalizable so we need only
show that 7,4,-1(A4) C (K*)%. But A = Al)$Kery(s+1) with Kerg(s+1) =
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Zag and the above implies that Kers(gsg™! + 1) = Zgag so that it suffices
to show v44,-1(gao) € (K)%. But

Ygsg-1(9ga0) = Y4 (ga0)g(vs(ao)s(v-1 (sao)))
= 74(9a0)g(7g-1(a0))g(1g-1 (a0)) "' g(7s(aa))g(74-1 (an)) ™"
= 749-1(9a0)9(7s(a0))g(7g-1(a0) *)
= g(7s(@0)vy-1(a0)~?) € (K*)?

since v,(ag) € (K*)?. So we have shown that N, and D, are normal in G.

The following more conceptual proof of the normality of V, and D, was
suggested by Lorenz: For g € G, and any height one prime p in K,[A],g-p
is also a height one prime in K,[A] and G%(g-p) = gGT(p)g~". But

I, ={s € GIGT(p) = (s) for some height 1 prime of A_,[4]}

So s € T, implies that (gsg™') = gGT(p)g~' = G¥(g-p) so that gsg! € [,.
Hence I, is G-stable so that NV, is a normal subgroup of G.
Recall from Lemma 3.2.1 that

I'Y = {s € [, |Ker((5)) # 0}

Then the commutativity of the following diagram induced by the conjugation
isomorphism (s) — (gsg™"') [7, p. 80]

&

H'((gsg™"), A) H'((s), A)

S(ysy"‘)i 5<s>l

H*({gsg™'), K*) =— H*((s), K*)

shows that ¢ is also G stable so that D, is normal in G.

(b) Now let M be a G-module, H a subgroup of G and g € G. Let
[f]1 € Ker(Res$(M)) and let f be a l-cocycle representing [f]. Then there
exists m € M such that fr =(h—1)mforall h € H. So

forg—r = fo + gfu + ghfe—
= fo +g(h —1)m + ghg™lgfy—
= (ghg™! — 1)(gm - f,)
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shows that f € Ker(RengHg_l). The reverse inclusion is symmetric.
(c) By (b) applied to M = A and H = (s) for some s € I',,, we find that

Ker (@ae[‘g/GResg) M HI(G’ _4) — "%SGF-,/GHL((S>, ‘4))
= N,erg/cKer(Res(;)(4))
= Ker (@seré, Resg)(A))
- ~ D_7
= Ker [(—:.;,el—g,Res(,) (4)) o Res§ _( A)]

We wish to show that @,ergRes(Ds;(A) is injective. Let D, = Im(D, —

Aut(A)) and let f‘g be the image of I'? in D.,. Then we have the following
commutative diagram:

H'(D,, A)—=— HY(D,, A)

L |

e?eﬁHl(Cs—)’ A) — esGFL‘,Hl((s)v A)

Note from the inflation-restriction sequence, the top map is an isomorphism
since Ker(D., — D,) acts trivially on A. The left vertical map is an isomor-
phism by [24, 2.4] or equivalently Proposition 2.2.23. Finally the bottom map
is a diagonal map with H'((3), A) mapping diagonally into &z H'({(t), 4)
and hence is injective. We now see from the diagram that &,cr¢ Res(Ds;(A) is
injective so that the above calculation shows that Ker(®,er, /GRes(G,)(A)) =
Ker(Resg’ (A)) which is isomorphic by the inflation-restriction sequence to
HY(G/D,, AP+) as required.

For the second isomorphism, apply (b) to M = K* and H = (s) for some
s € I'y. Note that

Suer,Respy : HY(Ny, K*) — Buer, H((s), K%)

is injective since [, generates /N, and Res?:;’ is just the restriction map on
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homomorphisms as N, acts trivially on K. Then

Ker (Sser, ,GResg) : HY(G, K*) = Sqer, ;e H ((s). K))
= ﬂ,erﬁ/GKer(Res(Gs)(K" ))
= Ker (S,er, Res{}) (K*))

= Ker [(\‘Ese[‘, Resz\s([{")) o Resf\;,w([\’x)}
= Ker (Res§, (K*))
= HY(G/N,,K*)

where the last isomorphism follows from the inflation-restriction sequence.

3.3 Finite Groups with Normal Reflection Sub-
groups

Let G be a finite group and let 4 be a lattice on which G acts faithfully. Set
V' = Q ®z A and let [ be a G-stable set of reflections on V. Let R be the
subgroup of G generated by . We will use the notation of Section 2.3.

Let ® be a suitable G-stable crystallographic root system for A and T.
Then by Lemma 2.3.5(a), V = Q® & V? is a QG decomposition of V. Let
A be a base for ® and recall that Qg = {h € H|hA = A}. Then, by
Lemma 2.3.6(b), we have that H = Im(G — GL(Q®)) = W xQy is a
subgroup of Aut(®) = {g € GL(Q®)|g® = &}.

Lemma 3.3.1. (a) The commutator subgroup H' of H = W x Qg is Py x QY
where
Pw = (stls ~g t,s,t €T)a H

and ~g denotes H-conjugacy.

(b)
o: W x Qu/Pw x Qg — W/ Pw, wt Py — wPy

is a split epimorphism of groups so that

H/H = W/Py x Qg/Q,
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(c)

V/Pw = Seer/asPw = Seer/al/2Z

Proof: (a) To fix notation, let (g,h) = ghg~'h~! and ¢* = hgh~! for all
g.heG.
If h € H and s, ~g sg, then hs,szh™! = ShaShd where $5, ~g 5o ~g
s3 ~g Skg- S0 Pw is a normal subgroup of H.
Since H is generated by the set {s.|a € ®}UQg. H' is the normal closure
of the group generated by the set

{(saf 5_3)7 (s:nt)7 (t17t2)lar,3 € @,t, tlvt2 S QH}

As ($4.Z) = SaSza, We see that (Sa, S3). (Sa,t) are all in Py while (¢;.¢;) €
Q. Hence the above set of generators for H' is contained in Pw (] H- The
same relation shows that Py Q}; is generated by commutators and so is con-
tained in H'.

To show that PwQy = H’. it suffices, by the above, to show that Py Qf
is a normal subgroup of H. Since Pw a H, it suffices to check that t* €
PyQfy fort € QY. h € WQpg. But ¢ € Qfy < Py for z € Q. and
t%e = (s,.t)t € PwQy verifies this on generators of H, so (a) is proved.

(b) o0 : H =+ W/Py,wt — wPy is a well defined map. Let uwy.w, € W
and t,,t; € Qg. Then since witjwat; = wywiitits and (wywe) H(wiwh) =
(wyl,t)) € HHNW C Pw, we see that

o(witiwata) = o(wwitt ts) = wiws Pw = wiw: Py = o(wit))o(wats)

So o is an epimorphism and since Pw )y € Ker(o), the induced map @ is
a group epimorphism. Define ¥ : W/ Py — WQy/PwQ} as the homomor-
phism induced by the inclusion map W — WQg. Since Fo v = idwyp,,. T
is a split epimorphism as required.

(c) Let A = {ey,...,0,} be our base of & defining Q. Since H is a
subgroup of Aut(®). the H-orbit of an irreducible root system ®¢ in & is a
union of irreducible root systems all isomorphic to ®;. Decompose ® into
irreducible root systems ® = U2, &% so that the H-orbit of the irreducible
root system ®; is @k This decomposition gives a corresponding decompo~
sition for A = Um, AR T = um, T, W = m W and V = 8%, V¥ such
that A is a base of the root system @5 on the QH space V ha.vmg Weyl
group W‘" generated by ['¥. Note also that Pw =[], P . But then
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W/Pw = [I72, W/ Pyr and @uer/ns Pw = 82, © ser® /5 SPyx; shows that
we may reduce to the case when ® is an H-orbit of an irreducible root system.

So suppose ® is an H-orbit of an irreducible root system and let A =
{a1,...,a,} be our base of ® defining H. Then W = (s{,...,s,) where
$i = Sa, [20, p.11] is the simple reflection corresponding to o;. So W/ Py =
(s1Pw....,snPw) is an elementary abelian 2-group.. Each reflection s, is
W-conjugate to a simple reflection.

Claim: s;Pw = s;Pw if and only if s; ~g s;.

Suppose s; ~g $;. Then s;s; € Py implies that s;Pw = s; Pw.

Now suppose siPw = s;Pw. Then s;s; € Pw. So sis; = [/, sg.5x
where sg, ~g Sr,- Now each sg, = wis; wi' and s, = visjvp" for some
wi, Ux € W and some simple reflections s;,,sj,. Then s;, ~w sg, ~p 5+, ~w
sj,- Write each wy and vy as a product of simple reflections and then w; !, vg*
as the product in reverse order of the same simple reflections. This results in
an expression for s;s; as a product of simple reflections with the special prop-
erty that each simple reflection occurring has some H-conjugate appearing
elsewhere. Apply the deletion condition [21, p.13] repeatedly removing a W-
conjugate (and hence H-conjugate) pair at each step. Since s;s; has length
2 (or 0) and the special property is preserved by this process, it ends with
sis; = sis; where sy ~g s;. We must show that this implies that s; ~g s;.
There are four cases to consider:

Case 1: {t,5}n{k, i} =09

sisj(aj) = —a; + (o, a:)q;

sksz(aj) =0a;— (aj,a;)al - (aj,ak)ak + (aj,az)(al,ak)ak

But since s;s; = sis; and the simple roots are linearly independent this
case is impossible.
Case2: i=korj=I!
If : =k then s;s; = sis; implies s; = sg ~g s = 5.

Case 3: 1 =
3isj = sxs; implies s; = s; ~f 8¢ = 5{S;8; ~H Sj.
Case 4: j =k

8;s; = sgs; implies s; = Sk ~g §; = $j8:i8; ~H Si. S50 §; ~y ;.

We may conclude that W/Py = (soPw|sa« € [/H). We still need to
show that no non-trivial product of reflections s, where s, € I'/H is in Pw.
Since we are in the case when ® is an H-orbit of an irreducible root system
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®g, there can be at most 2 H-orbits of roots in ® as there are at most 2
W -orbits of roots in ®o. But then there are at most 2 H-conjugacy classes
of reflections in I'. Then the above claim shows that W/ Py = S,_er/gse Pw
as required.

Remark: A more conceptual and straightforward proof of the last Lemma

was suggested by Lorenz:
Observe first that for A € H,s € T, (h,s) = (hsh™!)s where hsh™! € T
and hsh™! ~gz s. So we have

Pw = {((h,s)|h € H,s€T)

By the identity (g,zy) = (9.y)(ygy~',z) and the fact that ' generates W,
it follows that

Pw = (H, W) = ((h,w)|h € H,w € W)

Then (a) of the Lemma follows easily from the identity (h,w)® = (h%, w®)
for h,z € Hyw € W and the fact that W is normal in H. Part (b) of
the Lemma remains the same. For (c), we note that W’ < Py induces the
natural epimorphism W/W’' — W/ Py, wW' — wPy with kernel

{wW'lw = H(h,-, w;) for some h; € Hw; € W}

i=1
m

={wW'|luW' = Z(h" —1) - w;W’ for some h; € H,w; € W}
i=1

=Ig(W/W')

So W/Py = (W/W")/Ig(W/W') = Ho(H,W/W'). Since W/W"' is an ele-
mentary abelian 2-group generated by {sW’|s € '} then its homomorphic
image W/ Pw is too and if s ~p ¢ then sPw = tPw. So W/Pw = {sPy|s €
I'/H}. To show that W/Pw = @,er/nsPw we then reduce to an H-orbit of
an irreducible root system and then prove our claim as before.

We now let our finite group G, acting faithfully on the lattice A, act also
on a field K. Let [ be a G-stable set of reflections on A which act trivially
on the field K and let R be the normal subgroup of G generated by T.

52



Lemma 3.3.2.
Sser/cRes(y : HY(G, K*) = Ser/cH' ((s), K¥)
s surjective.

Proof: We first make some reductions:
Step 1: We may assume that G acts trivially on K:
Apply cohomology to the sequence

0— (K*)¢ = K* = KX/(K*)¢ =0
Then

HY(G,(K*)%) HY(G,K*)

sraty | |srety

Sser/cH ((s), (K*)%) — B,er/cH' ({s). K*)

is a commutative diagram where the sums are taken over all s € I'/G. But
the bottom horizontal arrow is surjective as s € [ acts trivially on K and
—1 € KC. So the right hand map is surjective if the left hand map is
surjective.
Step 2: We may assume that ® spans V" where ® = &, = {a|Kera(s+1) =
Za for some s € T'}:

Let H = Im(G = GL(Q®)) so that W = Im(R — GL(Q®)) is a normal
subgroup of H. Now G/Ker(y) = H. Consider the commutative diagram

HY(H,K*) inf HY(G,K*)
%Er/gaesg) l LesEP/GResg)
Sser/mH' ((s), K*) 2> B,er/c H ({s), K¥)
Since G and H have the same orbits on ® and hence on I, the bottom
horizontal arrow is surjective, hence the right vertical arrow is surjective if
the left one is.

Step 3: After these reductions, we may replace G, N by H,W so that H =
W x Qg as above.

53



Since by Lemma 3.3.1,

W/Pw = @ser/u(sPw) = Baer/ua(sPwy)

is a direct summand of H/H' = W x Qg /Py xQY, we find that S, gHom(s Pw Q. K*)
is a direct summand of H'( H, A’*) which maps isomorphically onto %,er, g Hom((s). K™*)

under S,ery HResg) . u

3.4 Main Result

Let G be a finite group acting on the field A" and the lattice A. Let v be a
l-cocycle representing [v] € H!(G,Hom(A, K*)) and let G act on A.,[A] as
before. Let I',, V,, and D, be given as in Section 3.2.

Remark: Although we assume in the following theorem that G acts faith-
fully on A, we may still apply it to the general case. Indeed, by Proposi-
tion 2.1.4, we can obtain an isomorphic twisted multiplicative invariant ring
in which the group does act faithfully on the lattice.

Theorem 3.4.1. Assume G acts faithfully on A. There is a short ezact
sequence

HY(G/Ny, K*)/85(A%) — CI((K,[A])°) - Ker(85) N H'(G/D,, AP")
where Og : A® — HY(G,K*) and 6¢ : HY(G, A) — H*(G,K™*) are the re-

spective connecting homomorphisms associated with the short ezact sequence
K* s (Bo[A])* = 4

and 8% satisfies infgy. 084 = Bg, while 8 = g o infZ .

Proof: For each s € [, the exact sequence
K™ o (KG[A])* — A

gives rise to the following commutative diagram with exact rows

AG 28w FY(G, K%) —— HY(G, (K, [A])*) —= HM(G, A) =%~ H*(G, K*)

| : |

AW F1((s), K%) — HY((s), (K4 [A])%) —= H((s), 4) = H2((s), K*)
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where the vertical maps are given by restriction. By summing over G-
conjugacy classes of reflections in I, and applying Lemma 3.2.1(c), we obtain
the commutative diagram :

HYG, K*)/dc(A%) HY(G, (K,[A])*) _ Ker(d¢g)
@ResG, (K *) [ @Resf, (K4[A])*) l Sresf)(4) L

esef-,/GHI“S)v R’x) > @sefﬁlGHl((’s)r ((K"/ [A])x) —_— 636F$/GKer(6(a))

since §(sy = 1 forall s € [, by Lemma 3.2.1(c). Here Res(G,)(K") and res(Gs)(A)
are induced from the respective restriction maps. From Lemma 3.3.2, we

find that e,er,/gResg)(K ) is surjective so the snake lemma applied to this
diagram yields the exact sequence

Ker(@,er,/GResg)(K")) — Ker(@,ep,/GResg)((K.,[A])x)) — Ker(@,epg/cresg)(A))

is exact. We need only determine the terms of this sequence. From the first
paragraph of Section 3.2 and Lemma 3.2.4(c), we find that

Ker (Syer,/cResfy (K4 [A]*)) = Nyer, Ker(Res(} (A5 [A]*)) = CI(A,[4]°)
Ker (@,EF,/GIGS?’)(A)) = Ker (8,er,/cRes{};(4)) N Ker ()
> HY(G/D.,, AP*) N Ker(d%)
Ker (@ser,/cRes)(K¥)) = Ket (Sser./cRes) (K*)) /05(4%)
= HY(G/Ny, K*)/85(A%)

We now have our exact sequence as required. |
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Chapter 4

Rationality

4.1 Twisted Farkas

In this section, we generalize the results of Farkas in [16]. Let G be a finite
group and let A be a lattice on which G acts faithfully. Let I' be a G-stable
set of reflections on V' = Q ®z A and let R be the normal subgroup generated
by I'. We will use the notation of Section 2.3.

Notation: Fix a suitable root system ® for A and ' with weight lattice
A = A(®) and choose a base A for #(®) = ®. Form the dominant weights

AT = {w € Al{w,a) > 0for all a € A}

Also define a partial order on 7(V) by

xSy@y—z:ana
a€A

where all ¢, > 0.

Lemma 4.1.1. (a) Each R orbit on A has ezactly one element in AT.
(b) If \ € AT thenrA < A for allr € R.
(c) The stabilizer Ry = {r € Rlrz = z} of = € n(V) is generated by the
simple reflections it contains.
(d) < satisfies the minimum condition on A¥, ie. if A € A then {u €
AT|u < A} is finite.
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Proof: Since @ is a suitable root system for A, R induces the Weyl group
W of ® on Q® so (a) and (b) are {20, p. 68]; (c) is [21, p. 22] and (d) is 20,
p- 70]. |
Let 4 be a 1-cocycle representing a class {y] € H'(R, Hom(A, K'*)). We
will eventually be interested in the case when I’ = I, i.e. the set of reflections
s € R so that
(a) s acts trivially on K and
(b) A® C Ker(v,)
To start, we assume only that [ satisfies (a).
Lemma 4.1.2. Let Ao = {a € A|y,(a) =1 for all r € R,}. Define X(a) =
> acr/r (@) for a € Ag. Then

{X(a)la € 7"{(A*) N Ao}
is a K-basis for K, [A]R.
Proof: Observe that for a € Ay, X(a) is well-defined (i.e. independent of

the choice of representatives of R/R,) since for r € R, t € R,, rte(a) =
Yri(rta)e(rta) = y-(ra)yvi(a) = v.(ra) = re(a).

The set {X(a)la € #~}(A*) N Ag} is linearly independent since the R-
orbits of A are disjoint and each R-orbit contains precisely one element of
T HAY) N A

It now suffices to show that our set spans K, [A]®. Clearly each X(a) €
AL[AJR Let 3,4 cae(a) € K,[A]R. Then

r(z cge(a)) = Z cee(a)

acd cEA

for all @ € A implies that ¢;¥.(ra) = ¢, for all r € R and a € A. Note that
if r € R, has v,(a) # 1, then ¢,v-(a) = ¢, implies that ¢, = 0. So

Z ce€(a)

a€A

= Z Z cree(ra)

e€r—(A+)nA4y reR/R,

= Y al Y w(rae(ra))

aer—1{At)NAg réR/Ra

= Y cX()

aer—l(A+t)NA,
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as required. |
Lemma 4.1.3. R, = R.(,) forallve V

Proof: If r € R,. then rv = v implies that rx(v) = n(rv) = w(v) which
shows that r € Ry
If r € Ry(y), then ra(v) = 7(v) so that rv —v € VR, Let rv = v + v for
some vg € VR, Then rfv = v + kvg. But if &k is the order of r, we find that
v + kvg = v so that vg = 0 and rv = v which implies that r € R,. [ |
From now on, we specialize to the case [' =T,

Lemma 4.1.4. If R is generated by T, then {X(a)la € n"Y(A*)N A} is a
K -basis for K.,[A]R

Proof: Note that

R, — K*
a =+ ¥-(a)

is a group homomorphism since ¥,,r,(a) = ¥, (a)1,(r{'a) = . (a)¥r,(a)
where ry,r, € R,.

By Lemma 4.1.2, it suffices to prove that v, (a) =1 foralla € 77 }(A*)NA
and r € R,. So w(a) € A* and r € R,. Write w as a product of simple
reflections: w = s;...5¢. Then we find by Lemma 4.1.1(c). s; € Rz, for
all 7 so that by Lemma 4.1.3, s; € R, for all i. So it follows that ¥.(a) =

Vs(a) -5 (a) = L. u

Definition: [16] A finite subset F of V is peaked if there exists a € F' such
that 7(b) < w(a) for all b € F with b # a. Then a is called the peak of F'.

Definition: The support of an element y = ) ., v.e(a) € K,[A], is the
finite set supp(y) = {a € Aly. # 0}. y € K,[A] is peaked if its support is

’

peaked. Denote the peak of supp(y) by y.

Lemma 4.1.5. (a) Let F, F' be peaked subsets of V' with peaks a,a’ respectively.
Then F+ F'= {b+ Vb € F,b' € F'} is peaked with peak a + a’.
(b) Moreover, in the notation of (a), if forb € F,b' € F' we have b+b = a+d’
thenb=a and ¥ =a'.
(c)[16, Theorem 5] The R-orbit of each element of A is peaked and its peak
lies in #71(AT) N A.
(d) If y,z € K,[A] are peaked then so is yz and (yz) =y +=.
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Proof: (a),(b) If b€ F, ¥’ € F’ then n(b) < m(a), m(b') < 7(a’) implies that
7(b+b) = m(b)+ (V) < w(a)+m(a’) = w(a+a’). If equality holds here then
(7(a) — (b)) +(m(a’) — w(d')) = 0 with m(a) —w(b) > 0 and w(a’)~=(¥') > 0.
So w(b) = w(a) and w(b’") = 7(a’) by definition of < and then b = a.b’ = o’
by definition of peaked. Thus b+ & = a + a4’ proving (a).

Moreover, if 6,8’ are as in (b) then equality holds in the above argument.
So we have b = a and b’ = a’ as above, proving (b).

(c) Let @ € A. By Lemma 4.1.1(a), there exists w € R with m(wa) =
wr(a) € A* and by Lemma 4.1.1(b), rr(a) < ww(a) for all r € R. If
7(ra) = w(wa) then w™'r € R, = R, by Lemma 4.1.3. So ra = wa as
required.

(d) From yz = 3_.c 4 (D qrs=c Ya2s)e(c) we see that supp(y=) C supp(y) +
supp(z). By (a), letting a=,b" be the peaks of supp(y),supp(z), we know
a* + b is the peak of supp(y) + supp(z). By (b), the coefficient of e(a™ + 6~)
is yg+ 25+ # 0. Thus a™ + b € supp(yz) must be the peak of supp(y=). |

Lemma 4.1.6. Let E be a set of peaked elements in K., [A]R such that (E) =
A* N =(A). Then K,[A]R is generated by E as a K[AR]-module.

Proof: Since R is generated by I, ,r — v.(a) is a homomorphism R — K*
for all a € ﬂ,er,A(’) = AR, hence v,|4r =1 for all € R. So we note that if
a € AR, e(a) € K,[A]® and hence that K[A®] C K, [A]&

Let S be the A{AR]-submodule of K., [A]® spanned by E. By Lemma4.1.4,
we need only show X(a) € S for all a € 7~1(AT) N A.

Suppose not. Then by Lemma 4.1.1(b), we can find ¢ € #~'(A*)N 4
such that a is minimal subject to X(a) ¢ S. Find y € £ withy = a—b
where b € AR. Then by Lemma 4.1.4, we find that X(a) — ye(b) € K. [A]?
must be a linear combination D ¢ 104 mcX(c). the support of X(a)—ye(b)
consists by Lemma 4.1.5(c), (d) of elements d with 7(d) < #(a). In particular,
X(a) — ye(d) is a K linear combination of {X(c)|c € m"}(A*) N A,w(c) <

a)} C S by minimality of m(a). Thus X(a) — ye(b) € S and X(a) € 5,
contradiction. | |

Proposition 4.1.7. Let Y;,..., Y, be peaked elements of K., [A]R and let E
be the multiplicative monoid they generate. If the map

E = Atnr(A)
Y — n(Y)
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is surjective, then K,[A]R is generated by E as a K[A®] module. Further-
more, if this map is bijective then E is a K[AR] basis of K,[A]R.

Proof: The first statement follows from the last lemma.

Suppose 3y TvY = 0 where Y € E and ry € K[A®]. Assuming not all
the coefficients are zero, choose Z € E with #(Z) maximal in {7(Y)|ry # 0}.
If b is in the support of rz, then e(b)e(Z) must appear a second time in
Y zzvepTrY: i.e. there exists Y € E,Y # Z so that e(b)e(Z) = e(c)e(x)
where z € supp(Y), ¢ € supp(ry). Then b+Z = ¢+ z with b, c € AR implies
7(Z) = n(z) < n(Y). Since 7(Z) was maximal, we find that #(Z) = =(Y).
Using the bijection hypothesis, Z = Y. But then z lies in the support of Z
and w(z) = 7(Z). Then z ="Z by the fact that"Z is the peak of Z. But then
b(Z) occurs in precisely one way. By contradiction, F is linearly independent
over K[AFR] as required. ]

Definition 4.1.8. Let w;,...,w, be the fundamental dominant weights with
respect to the base A of ®. A submodule of A containing @ is called a
stretched weight lattice if it has a Z-basis of the form {mw,....,mywn} for
some my,...,my, € Z.

Corollary 4.1.9. Suppose m(A) = S ,Zmw; is a stretched weight lattice
for a suitable root system ® for A and choose a; € A with 7(a;) = muw;. Then
K,[A]" is a polynomial ring over K[AF] in the variables X(ay)...., X(an).

Proof: A* consists of Z>¢ combinations of the linearly independent elements
wi, ..., ws hence 7(A) NAY consists of Zyo combinations of mywy, ..., Mawn.
We apply Proposition 4.1.7 with ¥; = X(a;). Then Y € E means Y =

T X(a)s with k; € Z>o henceY = ). kiX(a;) = Y _;kia; by Lemma
4.1.5(c),(d), and #(Y) = > ., kimnjw; verifying the bijective hypothesis. So
E is a K[AR]-basis of K, [A]F.

Moreover, the independence of mwy,...,m,w, implies that E is freely
generated by X(a;), ..., X (a,) as a multiplicativemonoid. Indeed, if [T, X(a:)*
for some k; € Zyo then Y7, kimiw; = w(([], X(a:)%)) = 0 implies that
ki=0foralli=1,...,n. | |

Following Farkas, we want to embed A into a ZR lattice B on V' to which
the Corollary 4.1.9 applies. This is not as straightforward now as we also
have to accommodate the cocycle 4. The next few technical lemmas will be
used to determine which conditions are required to axiomatize the situation.
In the following, we let B denote a ZR lattice on V with A C B.
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Lemma 4.1.10. (a) [y] € Im(H'(R.Hom(B, K*) — H'(R,Hom(A, K*)) is
equivalent to the existence of a I-cocycle v' in [v] so that there exists a I-
cocycle ¥ : R — Hom(B, K*) such that 4.|4 = . for all r € R. This means
that A — B induces K..[A] — K;[B] R-equivariantly.

(b) Assume [y] € Im(H'(R,Hom(B, K*) - H'(R,Hom(A, K*)), =(B) C A
and that v is chosen as in (a) (where it’s called v'). Let by,...,b € B and
form X(b;),..., X(b) € K;[B]R. Then X(by)--- X(bi) € K.,[A]R if and

only if Y -, bi € A.

Proof:

(a) The condition [y] € Im(H'(R,Hom(B, K*) — H'(R,Hom(A4, K*))
with the map induced by the inclusion A < B holds iff [y] is the image of
some [¥] € H}(R, Hom(B, K*)). Then for a 1-cocycle % representing [¥] , we
see that r — ¥4 is in the same cohomology class as r + .. So 7.4 = 7.
with 4/ ~ 7. By Lemma 2.1.3, replacing v by v’ gives K,/ [A]F = K, [A]F so
after this A — B induces K,[A]? — K;[B]®. We will always assume v is so

chosen.
In fact if K,[A]® < K;[B]® is induced by A — B then

Z vr(ra)e(ra) = Z re(a) = Z ¥-(ra)e(ra)

réR r

foralla € Aso~,|la=7 forallr€R.

(b) Claim: R acts trivially on B/A.
Proof of Claim: If b € B then (b,a) = (x(b),a) € Z for all « € P since
7(B) C A. We need to prove rb—b € A for all »r € R,b € B by induction on
the length m of r. For m =1, s4(b) = b= —(b,a)ac € & C A. Then

Say * - "Sam(b) -b= Sap " 'sam-l(samb - b) + (301 °e 'Sam—lb - b) €4

by the inductive hypothesis. So rb— b€ A for all r € R, b € B, as required.

A typical element in the support of X(b;)... X (bg) has the form >, rib;
for some r,...,7x € R. Since K;[B]R N K,[A] = K,[A]?, we see that
X(br)--- X(be) € Ko[AJRIE X(by) - X(bs) € Koy[A]iffsupp(X(51) - - X (b))
A 3% rib; € A for all r; € R. But by the claim 3, rib; — 3. b € A so

this last holds iff ), b; € A. u

Lemma 4.1.11. (a) The set of indecomposable elements in A* Nm(A) is finite.
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(b) Assume w(B) = &%, Zm;w; is a stretched weight lattice for ® and choose
by.....bs € B with w(b;) = mw;. Then everya € 7~ (AY)N A can be written
asa =by+ Y -, kib; with unique k; € Z,k; >0 and b € BE,.

Proof:

(a) Since Z® = Zw(®) C w(A) C A has finite index, d = [\ : 7(A)]
is finite. Then dw; € A* N w(A) for all i. Soif 3 o kiw; € AT N =(A) is
indecomposable then 0 < k; < d for all 7.

(b) Since w(a) = Y., kimiw; with unique k; > 0. Then a — > k:b; €
Kerg(w) = B® shows that we have a unique b, € BR. ]

Lemma 4.1.12. For a group H, a ZH lattice X, S C H which generates a
normal subgroup N of H and T a H/N-module written multiplicatively, set

HL(H.Hom(X,T)) := {[f] € H'(H, Hom(X,T))|f,|xw = 1 for all s € S}

Then
(a)

Hi(H,Hom(X,T)) = NyesKer(i; o Res(y)) = N,es/mKer(i] o Resfhy)

is a subgroup of H*(H,Hom(X,T)) where i,: X — X.
(b) An inclusion i : X — Y of ZH lattices induces a homomorphism
HY(H.Hom(Y,T)) — Hi(H,Hom(X, T)).

Proof:

(a) Since (s) acts trivially on Hom(X,T), H'((s), Hom(X‘).T)) =
Hom((s), Hom(X ), T)) via [f] ¢ f.. This shows the first equalitv and
proves that H3(H,Hom(X,T)) is a subgroup.

For the second equality, we need to show that Ker(i] o Res,s>) Ker(if o

Res(t)) if s ~tin H. Let ¢ = hsh™! for some h € H and let [f] € Ker(¢; 0
Res(yy). For z € X = AX(?), we have

fi(z) = fran-1(z)
= fa(2)h[fo(h7 T)]|sh[fim1 (s TR )]
= fa(z)h[fa-1 (R )]
= fan-1(z) =1

62



shows that [f] € Ker(i} o Resg)). The reverse inclusion is symmetric. |
Now Lemma 4.1.12 applies to the case H = R,S =T, N = (['). Now we

will list the required conditions in order to obtain an embedding of A,[A]%

into a UFD Kj;[BJ]R.

(EMB) Let ' =T, and R = (T'y). Let ® be a suitable root system for A and

[ with weight lattice A(®). There exists a ZR lattice B on V" which contains

A and satisfies:

(E1) [v] € Im(HE(R,Hom(B, K*)) — HL(R,Hom(A,K*))). Let ¥ be a

1-cocycle which maps to +.
(E2) =(B) C A(®)

(E3) n(B) = &L,Zm,w; is a stretched weight lattice for . Choose b; € B
with 7(b;) = mw; for all 1.

Notation: Assume (EMB). For a € A, write a = by + ., kib; as in
Lemma 4.1.11(b). Then set X, = X(bg)X(b;)* --- X(b,)**. Note that for
a€x Y AY)N A, X, € K,[A]® by Lemma 4.1.10(b).

Proposition 4.1.13. Assume (EMB). Then

(a) K;[B]® is a polynomial ring in X(b;),..., X (bs) over K[Bf].

(6) X, € K,[A]R is irreducible iff w(a) is indecomposable in w(A) N A*.

(c) Let E be the multiplicative monoid {X,|la € 7~} (A*)NA}. Then E gener-
ates K,[A]? as ¢ K[AR] module. Let 7(a,),...,n(ax) be the indecomposable
elements in A* N w(A4). Then X,,,...,X,, are irreducible in K. [4]} and
generate E as a multiplicative monoid.

Proof: (a) We want to apply Corollary 4.1.9 to K;[B]®. Note that a suitable
root system for A is also suitable for B since then ® C A C B and #(B) C
A(®) by (E2). (E1) ensures that ' = I'; and (E3) shows that 7(B) is a
stretched weight lattice.

(b) Note that X (o) = e(bo) is a unit in K5[B]®. Since X(b1),...,X(bn)
are irreducible elements of the UFD K;[B]® by (a), we see that any factor
of X, = X(bo)X(b1)** -+ X(ba)* must take the form uX ()" - X (ba)™
where 0 < I; < k; for all 7 and u € (K;[B]®)* = K*e(BE). So up to
multiplication by an element of K*, u = X(b) with b, € BR. This means
by Lemma 4.1.11(b) that a divisor of X, in K_,[A]® must take the form c X, =

63



cX(by)X(b1)" - - - X(ba)'~ where c € K*,b) € BRand b)+35_,_, lib; = a’' € A,
0<;<k.

Now suppose X, is reducible in K,[A]®. Then, by the above, X, =
cXo Xqar with ¢ € K*. Taking peaks, we get a = ¢’ + ¢” and hence 7(a) =
m(a’)+ w(a"). Since X/, X,» are non-units, m(a’), v(a”) are both non-zero so
that =(a) is decomposable in A* N 7(A).

If w(a) = Z‘_lkm,w‘ is decomposable in A* ns w(A), then w(a) =
m(a’) + w(a”) where a’,a" € @ 1(/\‘*‘) N A. By Lemma 4.1.11(b), we have
that a’ = by + >, lib; and a” = bj + ., I!b; where b, b5 € BR and
l;, l' > 0. Since w(a’) = ?=llm‘w,, then w(a") = :‘zl(k ymuw; =

o Uimuw; so that a” = by + 37 (ki — )b, Now ap = a—d —a” €
Kery(r) = AR So we find that a9 = by — by, — 6. But then X, =
e(bo) X (b)) - - X (bn)* = e(aq) X Xan. Since 7(a ’) ( ") # 0, we see that
Xar, X, are not in (K5[B])R)* = K*e(B®) and so cannot be units in A,[A]R.
Hence X, is reducible.

(c) The map

E =5 A*tn ‘/T(A)
Xe 2> m((Xa)) =a
is surjective. The first statement then follows from (b) and Proposition 4.1.7.

For a 6 TTAY) N A4, 7(a) = TN, k'r( ;) for some k; > 0, so that ¢ =
a—N kai e AR and X, = e(ao) [, X(a:)* as required. |

Proposition 4.1.14. Assume (EMB). Then K.,(A)® is rational over K.

Proof:

By Proposition 4.1.13(a), K;[B]® is a polynomial ring in X(b;), ..., X(b.)
over K[B¥]. The multiplicative subgroup M of the field of fractions K;(B)#
generated by BR and X (b,),...,X(b,) is a free abelian group of finite rank
whose members are linearly independent over K. Now

{e(bo) X (b1)* - -- X (bn)*|bo € BR k; € Z,k; > 0}

is a K-basis of K5[B]R. Let S be the multiplicative monoid generated by
X(b1),...,X(bn). After localizing at S, each X (b;) becomes a unit so that

{e(Bo) X (by)*t - - X (by)*~|bo € BR, k; € Z}
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is a A-basis for S™1K;[B]®. Hence S~'K;[B]|R is the group algebra K[M]
and so K5(B)R = K(M).

By Proposition 4.1.13(c), A, [A]Ris generated by the multiplicative monoid
E ={X,la € #7'(A*) N A} as a K[A®] module. Since A® C E, we see that
in fact E generates K., [A}R over K. Now localize A,{A]® at the monoid E.
Consider E~'R,[A]® C E~'K;[B]R. We first show that E~1A;[B]R is also
the group algebra A'[M]. It suffices to show that X (b;) is a unit for each i.
Let d = [B : A]. Then db; € #~'(A*) N A. So X(b;)¢ = X, is invertible in
E~'K;[B]® and hence so is X(b;). So E~'K;[B}R = K[M].

Now let L be the subgroup of M generated by E. Hence L is also free
abelian of finite rank. By Proposition 4.1.13(c). {X:la € #~'{AT)N A} is
a K-generating set for A,[4]?. Hence L spans E~'A[A]R over A so that
E-'K,[A]R = K[L] is a group algebra. So K,(A4)R = K(L) as required. W

Remark 4.1.15. In fact, as noted by Lorenz. the proof of 4.1.14 shows
the following stronger result: Assume (EMB). Then the invariant algebra
K,[A]® is an affine normal semigroup algebra over K [8]. Indeed since the
multiplicative monoid E is contained in M, the elements of E are linearly
independent over A'. This shows that K.,[A]® = K[E] is a semigroup algebra,
and K,[A]® is clearly affine and normal, as an invariant subalgebra of the
affine normal algebra A[A] under a finite group action. Letting L denote the
subgroup of M that is generated by E, we see that L is free abelian of finite
rank. as M is. and K. (A)® = Q(K[E]) = Q(K[L]) = K(L) is rational over
K.

Proposition 4.1.16. Assume (EMB). If K,[AI® is a unique factorization
domain then w(A) is a stretched weight lattice.

Proof: By Proposition 4.1.13(a), K;[B]? is a polynomial ring over K[BF]
in the variables X(b,)....,X(b,). We want to first show that the set of
indecomposables in A* N w(A4) is of the form {kymiwi.....kamaw,} where
ki>0foralli=1,...,n.

Let a € #7'(A*) N A be such that w(a) is indecomposable. Then by
Lemma 4.1.11(b), @ = bo + Z:-;l kimg; where ky,..., k, > 0,bg € BF and
by Proposition 4.1.13(b), Xo = X(bg)X ()% - -- X(b;)* is irreducible in
K,[A]®. Since B/A is finite, we let d = [B : A]. Then db; € X for all
i. So X(b;)? € K,[A]R. Now X7 = [X(bo)]#[X (61)%]F - - - [X(bn)%]*". Since
X, is an irreducible in the UFD K,[A]R then X, divides X(b;)¢ for some
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1 <j<n Sok; =0forall i # jand m(a) = kjmjw;. This shows
that any indecomposable element of A* Nw(A4) is of the form kjm;w;. Since
db; € A fori = 1,...,n, there exists a minimal k; > 0 such that k;b; € A.
If Kima; € AT N w(A) then & = gk; + r where 0 < r < k;. But then
rw; € ATN7(A). By minimality of k;, k! = gk; so that we may conclude that
{kymwi, ..., knmawn} is the set of indecomposable elements in AT N 7(A4).
Since {kymyw1. . . ., knmnws } is Z-linearly independent, we need only show
that it spans w(A). Suppose Y ., limiw; € 7(A). Choose N sufficiently large
so that %‘- < N for all i. Since kimuw; € w(A) we have V(3. kimw;) €
7(A). Thus > o, (Nki — Lymw; € At N w(A4). So D0 (Nki — i)mjw; =
., Tikimu; for some r; > 0 since every element of AT N 7(4) is a sum of
indecomposables. Hence Y"1, limw; = Y (N — r;)kim;w; as required. W

4.2 Embedding

Let G be a finite group acting faithfully on a lattice A and a field K. Let
[v] € HY(G,Hom(A, K*)). Let R be the subgroup of G generated by I' = [,.
We have an exact sequence of ZG lattices

0>AR 45 4/48 50

Set X = AJ/AR let 7 : X — A be a Z-splitting of 7 : A — X and let
p : G — Hom(X, K,[AF]*) be the l-cocycle of Lemma 2.1.5. Or, more
accurately, let L = K,(A®) and let p : G — Hom(X, L*) be obtained via
K,[AR]* — L. Then by Lemma 2.1.5, L,(X)¢ = K,(A)°.

Lemma 4.2.1. [, =TI, =T. In particular, ', generates R.

Proof: Let s € T',. Then s acts as a reflection on A and trivially on A"
hence as a reflection on X. For n € AR we have se(n) = v,(sn)e(sn) =
vs(n)e(n) = e(n) since AR C A  Ker(y,). Since s also acts trivially on
K, we see that s acts trivially on K,[A%®] and hence on L. Finally we show
that X{* c Ker(p,): If z € X}, there exists a € A¢? such that 7(a) = z
since H'({s), A®) = 0. But m(r(z)) = z implies that 7(z) —a € A® C AV,
So 7(z) € A implies that

Bs(z) = (s7)(z) — 7(z) = s[r(sz)] — (2} = s[r ()] — () = 0
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and so p,(z) = 7,(7())7s(8s(z))e(B:s(x)) = 7s(7(z)) = 1 since s € I, and
m(z) € A®. Thus [, C T,.

Conversely let s € [',. Then s fixes L hence fixes K and A® and satisfies
AR C Ker(v,). Since s acts as a reflection on X and fixes AR, it is also
a reflection on A. Finally if £ € X! then 7(z) € A as above so 1 =
ps(z) = vs(7(2))7s(3s(z))e(3s(z)) with B,(z) = 0 as before. It follows that

(X)) C Ker(y,) which with AR C Ker(v,) and 7(X) c A% implies
-1(’) C Ker(v,). Thus T, C [,,. |

We want to embed Kq(AR) o[X]R into K, (AR);[V]R for a suitable stretched

weight lattice Y. We first need to find an appropriate stretched weight lattice.

Notation: Let ¢ be a suitable root system for X = w(A4), let {a;,...,a,}
be a base for ® and let s; = s,, forall i =1,...,n. Foralli =1,...,n,
define m; so that Imx(s; — 1) = Zm;o;.

Lemma 4.2.2. [pX = &% ,Zm;o; where Ir is the augmentation ideal of
ZR.

Proof: Since {s;} is a set of group generators for R, then {s; — 1} is a
set of R-module generators for Ir. So IrX is the R-module generated by
Yoo Imx(s;i — 1) = 8%,Zm;o;. It suffices to show that &% ,Zm;c; is R-
stable:
sj(m,-a,-) = m;a; — ‘( J>mJaJ € e“;,_lZm O
m;

with (%j'll € Z since {(a;, aj)a; € (X, aj)a; = Imx(s; — 1) = Zm;a;. n

Proposition 4.2.3. For a trivial ZR module T written multiplicatively, there
s an ezact sequence

Hom(X,T) 5 Hom(IpX, T) Hp(R Hom(X,T))

where i* is induced by the inclusion i : IpX — X and ¥x(8) = [f] where
[f] is repreaented by a 1-cocycle f such that f,(z) = 6((s: — 1)(z)) for all
t=1,...,n, ¢ € X. In particular, Yx induces an isomorphism

¥x : Hom(IpX, T)/i"(Hom(X, T)) = H:(R, Hom(X,T))
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Proof: We first show that ¥y is well-defined. Let F be the free group
on Si,....S5, and let F —» R be the Coxeter presentation with kernel V,
the normal closure in F of {(S5:S;)™|1 < ¢, < n} [2L, p. 16]. Consider
X.T as F modules via the inflation F - R. Given 8§ € Hom(/rX,T), set
fs.(z) = 9((-5; —1z) forall z € X, 7=1,...,n. Since F is a free group
on Si,...,Sn, there exists a unique 1- cocycle f F — Hom(X,T) with the
above fs. on generators. (Setting f -1 = -5t fs., we may use the cocycle

relations to define f on reduced words.) Now
fs2(z) = (fs. + (Sifs.))(z) = fs,((si +1)(2)) = O((s: — 1)(s: + 1)z) =1

so that fsf = 1. Note that s;s; = (s;s;)7! so that (s;s;) = (sis,). So we also
have

fissyms = (L4 S:Si 4+ + (5iS;)™ ™) fs,3,](2)

= fs( Nias,)T)(Sifs,)(Ns,s ) T)
= f5:(N(es)) f5, (5: V(a5 ) T)
= 0((si = 1)N(sis)2)0((s5 ~ 1)8:V(s:,)T)
= 0((sj8: — 1) Nigopz) =1

Since NV is the normal closure in F' of these relators which act trivially on
Hom(X,T), it follows that f|v = 1.

But now the inflation-restriction sequence shows that f is the inflation
of a 1-cocycle f : R — Hom(X, T) such that f,.(z) = fs,(z) = 6((si — 1)z)
foralli = 1,...,n and all z € X. Note that f, (y) = 6((si — l)y) =
if y € X, So wx : Hom(IrX,T) — HA(R.Hom(X,T)) is a well-defined

map.

It is clear from the definition that ¥x is a homomorphism. To see that
¥x is surjective, we first choose for each i = 1,...,n, z; € X such that
(s; — )z; = ma;. Observe that X = X&) g Z.z', for all: = 1,..., M.

Let [f] € HY(R,Hom(X,T)) be given. By Lemma 4.2.2, {(s; — 1 a:,|z =

.,n} is a Z basis for IrX so we may define § € Hom( I rX,T) such that

0((5,- - 1)z;) = f,,(zi) for all i = 1,...,n. But then §((s; — 1)z) = f,,(z)

for all z and all ¢ follows from the facts that X = X! & Zz; and that
X C Ker(f,,). So ¥x(8) = [f] as required.

Suppose 6 € Ker(¥x). Then the l-cocycle r — f, satisfying f,,(z) =

8((si — 1)z) is a 1-coboundary and hence there exists § € Hom(X,T) such
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that f, = (rf)/8 for all r € R. But then, in particular,
O((si — 1)a) = ((5:6)/6)(x:) = farlz:) = 0((s: — 1))

-~

shows that :*(8) = 0 since {(s; — 1)z;|¢ = 1,...,n} is a Z-basis of [gX. So
Ker(vx) C i*(Hom(X, T)).

Conversely, suppose § = i*(§) for some § € Hom(X,T). Then for the
l-cocycle r — f, satisfying f, () = 0((s; — 1)z) for all ¢, z € X we have

falx) =0((s: — 1)z) = ((s:6)/6)(x)

But then f, = (r§)/8 for all r € R since the s; generate R. Hencei*(Hom(X,T)) C
Ker(¥x) as required. u

Lemma 4.2.4. Let A be the weight lattice for a suitable root system & for X

and let {w;}., be the basis of fundamental dominant weights corresponding

to the base {a;}, for ®. Set Y = & Zm;w;. Then

(e) X CY C A and IRY = [rX.

(b} For a trivial Z R module written multiplicatively, the natural map H (R, Hom(Y,T)) —
H{(R,Hom(X,T)) induced by X — Y is surjective.

Proof: (a) Since (X, ;) = m;Z and z = ) ., (z, a;)w; we have X C Y.
Since IrY is the R-module generated by Y ., Imy(s; — 1), and [rX

is the R-module generated by Y Imyx(s; — 1), it suffices to show that

Imy(s; — 1) = Imx(s; — 1) for all i. But s;w; = w; — &;;c; implies that

ImY(.S,' - 1) = Zm,-(s,- - 1)&); = Zm;a,- = Imx(si - 1)

as required.

(b) Note that Lemma 4.2.2 and Proposition 4.2.3 also apply to Y since a
suitable root system for X is also suitable for Y. X — Y induces [ X —
IRY and hence the vertical maps in the following diagram:

Hom(IrY,T) —X Hi(R, Hom(Y, T))

l

Hom(IrX,T) —%& H}(R, Hom(X, T))

This diagram commutes: The image of § € Hom(IrY,T) under ¢y is [f] €
H{(R,Hom(Y,T)) with representing 1-cocycle f such that f,(y) = 8((s; —
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1)y) for all y € Y which is taken to [f’] € H}(R,Hom(X,T)) such that
fa(z) = 0((s; — 1)z) for all z € X. But [f] is also the image of § under
Hom(IgY,T) — Hom(IpX, T) followed by wx. Since [rX = IrY by (a), (b)
follows. m.

Proposition 4.2.5. If R is generated by T, then K,(A)? is rational over
K(AR). '

Proof: By Lemma2.1.5 and by Lemma 4.2.1, we may replace K, (A)?/K(AR)
by L,(A)R/L(AR) where L = K, (AR). Now [p] € HL(R, Hom(X, L*)) can
be lifted to [4] € HE(R, Hom(Y, L*)) by Lemma 4.2.4 (b). In order to apply
Proposition 4.1.14, we need only check that the hypotheses apply to our sit-
uation. The only ones left to verify: X C Y C A and Y a stretched weight
lattice were arranged by Lemma 4.2.4. Then Proposition 4.1.14 shows that
L,(X)® is rational over L as required. |

Lemma 4.2.6. Choose the suitable root system for X as ®x and define Y
as in Lemma 4.2.4. Then

(a) m; = order of H'({s:), X)

(b) Under the identification of a lattice M with its double dual M=, Y =
(Z®x-)"

(c) There exists a ZR lattice B such that the following diagram commutes:

1]

AR——>B—=Y

Proof: (a) H'({s:), X) = Kerx(s; +1)/Imx(s; —1) = Zoa;/Zm;a; = Z/m;Z
(b) Since for each 1,

n

Wi = D wi(mjw;)(mje;)” = mi(miw)”

where wi,...,w] is the basis of A* dual to wy,...,w,, we see that ¥
* ,Zm,w; implies that Y* = g2 Zm%w' . So it suffices to show ZPx-

=1 =1 H
n 1 .=
=z i

Claim: Imy-(s; — 1) = Zuwr?
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Proof: If n € X~ then [(s; — )n](w;) = n(siw;) — n(w;) = n(w; — dijo) —
n(w;j) = —dijn(e:) hence (s;i—1)n = 3 —din(a;)w; = —n(a;)w; € Zw; since
a; € X implies that n(e;) € Z. Conversely, Za; = Kerx(s; + 1) has X/Za;
torsionfree. This implies that there exists a lattice C; such that X = C; $Z«;
and so there exists n € X~ with n(a;) = 1. This n has (s; —1)p = —w” hence
w? € Imy-(s; — 1) proving the Claim. _

Note that as an Z(s;) module, we have X™ = X since this is true for each
of the indecomposables Z, [\, )y = Z~,Z(s;). Hence s; acts as a reflection on
X* and then H'((s;),X") = H((s;),X) = Z/m;Z. From the Claim, we
have (s; + 1)w; = 0 hence Keryx-(s; + 1) = X~ N Qu; since Kery-(s; + 1)
must have rank 1. But then since Kerx«(s; + 1)/Imx-(s; — 1) =2 Z/m;Z, we
see that Kerx«(s; +1) = Z;}:w{ as required.

(c) The following diagram commutes where m = rank(A#®):

H'(R,Hom(Y, AR)) — H'(R,Hom(X, AR))

[g lg
HY R, Y")™ HY (R, X™)"

In view of Lemma 2.1.1, it suffices to show that the top arrow is surjective.
Since R acts trivially on AR, we are reduced, by the above diagram to showing
that H*(R,Y") — H'(R, X") is surjective.

But Y= = Z®x-. by (b), so we may appeal to Proposition 2.2.25 of the
classification section to get the following commutative diagram:

A(®x.)/Z®x. — HY(R,Zdx.)

| |

o

A(@x-)/ X" —2— H'(R, X")

Observe that the horizontal arrows are isomorphisms since ®x- is the root
system of both Z®x. and X*. Since the left hand map is surjective, so is
HY(R,Z®x.) - H'(R,X") and the proof is complete. [ |

4.3 Reduction

Let G be a finite group acting faithfully on a lattice A which also acts on a
field K. Let V = Q®zA4, [v] € H}(G,Hom(A, K*)) and let R be the normal
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subgroup of G generated by [,. We will use the notation of Section 2.3.

Choose a suitable crystallographic root system ® for A and [ = T,.
Recall from Lemma 2.3.5, for g € G, « € ® and v € V, gs,¢g~ ! = s,, and
(gv,ga) = (v,a). Let A = {ay,...,a.} be a base for ® and let A be the
weight lattice of ® with basis of fundamental dominant weights {w;,...,wn}
corresponding to the base A. Now set

Qe =Q6(A) = {g € Glg(A) = A}
Then from Lemma 2.3.6(a), we recall that G = R x (.

Lemma 4.3.1. Z® and A are isomorphic ZQc permutation lattices.

Proof:
A = {a1,...,an} is a Z basis for the root lattice Z® and the set of
fundamental dominant weights {wi,...,wn} corresponding to A is a Z basis

for A. By definition, (w;, a;) = d;jso thatfor A € A, A =3"7 (A, ai)w:. Since
Q)¢ stabilizes the base A, we see that for each ¢ € (g, there exists o € S, such
that t(a;) = ag) fori =1,...,n. This shows that Z® is a permutation ZQ¢s
lattice. Now (tw;, a,(j)) = (tw;, tayj) = (wi, o) = J;j = (5,(,'),(1-) = (w,(,-), C!,(j))
for all j implies that tw; = ;‘=1 (twi, aj)w;j = Wy for all i. This shows that
Z® — A, ; — w; is a ZQs isomorphism. ]
Note that Lemma 4.1.12 appliesto H =G, S=T,N=R, T = R’*.

Proposition 4.3.2. Suppose
(1) € Im(HH(G, Hom(B, K*)) — HY(G, Hom(4, K*))

where B = erA & A. Then the invariant fields K,(A)® and K, (A)%
are isomorphic under an isomorphism that is the identity on K,(AF)¢ =
K, (AR)e. In particular, K., (A)® is rational over K. (AR)C if and only if
K,(A)% is rational over K,(AR)%,

Proof: Let Ao = erA C VF and let A be the weight lattice for a suit-
able root system ® of A. Then A C 7(A) & Ay and 7(4) C A. Setting
B = Ay & A then gives a ZG lattice containing A with BR = Ay which
satisfies the (EMB) hypotheses of Twisted Farkas: Indeed m(B) = A and
[+] € Im(HE(G,Hom(B,K*)) — HL(G,(A, K*)) implies that ResS[y] €
Im(H}(R,Hom(B, K*)) - HL(R,Hom(A, K*)).
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Using the notation of the proof of Proposition 4.1.14, we let M be the
multiplicative subgroup of K;(B)F generated by e(Aq) and X (w,), ..., X(wa)
(note that A C B and w(w;) = w;) which is then free abelian and linearly
independent over A". Recall that each a € #7!(A*) N A has a unique ex-
pression as @ = ag + y_._, kiw; where a9 € Ag and k; > 0. Then X, =
e(ao) [T, X(wi)* € R,[A]R. Then E = {X,|a € #~'(At) N A} is a mul-
tiplicative monoid with e(A®) C E. In Proposition 4.1.14, we showed that
E-'K;[B)® = K[M] and E~'K,[A]® = K[L] where L is the subgroup of M
generated by E, which is hence also free abelian. Note that K'[M] and K[L]
are the K-subalgebras of K;(B)R, respectively K., (A)F generated by M and
L. They are both group algebras of free abelian groups of finite rank written
multiplicatively.

R acts trivially on K[M] C R5(B)? and on K[L] C A,(A)R. We will
now show that Qg = G/R also acts on K[M] and K[L] inducing an action
of G on K{M] and K[L] by inflation.

Let t € Q¢. By the last lemma, we know that tw; = w,(;) for some o € 5,.
Now

tX(wi) = > tre(w)

r€R/Ry,

= Z r‘te(w,-)

r€ER/R,,

= Z rite(w;)

r1 ER/R:,‘

= Z re(twi)e(tw;)

reR/Re;

= Ye(tw;) Z re(tw;)
r€R/Ruu;

= Fe(twi) X (tw;)

= Ye(wo(i)) X (woiy) € K[M]

and for by € BE, te(bo) = 4:(tbo)e(tho) € K[M]. We may express b € B
uniquely as b = bo + Y-, kiw; for b € B® and k; € Z. Note that M =
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{Xs|b € B} where we recall that X, = e(bp) []~, X (wi)* Then

=1

tX, = t(e(bo) [ X (wi)*)

=1

= :(tbo)e(tbo) [ ] 4e(tw:)¥ X (tuwi)*

i=1

= 44(tbo)e(tbo) | [ Fe(wer)* X (worn)™

=1

Y:(tb) Xep

defines the action of Qg on K[M].
Claim: L = (X,|a € A).
Since L is generated as a group by the multiplicative monoid

E={X.laex(AT)n A}
then z € L can be expressed as z = X'%T = Xor—on where d’,a” € 771 (AT)NA.
Conversely, if a € A, then @ = ap+ ) | kiw; where ag € 4g and k; € Z.
Since A/m(A) is finite, there exists d € N such that dw; € 7(A) for all
i = 1,...,n. Choose z; € A such that n(z;) = dw; and m; such that
ki+dm; >0 and set o’ = 3., dm;z;. Then a +a’,a’ € 7~}(AT)N A. So

Xa+a'
Xa. - (X_a"> € L

Then for a € A, by the calculation above, we have tX, = w;(ta)X;, € K[L]
showing that Q¢ also acts on K[L].

Now B — M,b — X, is an abelian group isomorphism inducing the K-
algebra isomorphism ¢ : K5[B] — K[M], e(b) — X;. Note that ©|xzr = id.
We check that ¢ is lg-equivariant where Qg acts on K;[B] by te(b) =
4:(tb)e(tb) and on K[M] by tX; = 4:(tb) X, for t € Q¢ and b € B. Indeed.
p(te(b)) = (T (tb)e(td)) = 4:(tb)ip(e(2h)) = 4:(tb) Xeo = tio(e(b)) as required.
Note that p(K,[A]) = K[L] since L = (X,|a € A), p|gx = id and ¢(e(a)) =
X.. So K;[B] and K[M], respectively K,[A] and K[L], are isomorphic as
K-algebras under an {lg- equivariant isomorphism which acts as the identity
on K[BR], respectively K[AR].
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So K,(A)¢ = (K, (A)R)C/R = (K(L))% = = K.,(A)QG as required. Note
that the above isomorphism acts as the identity on K, (AR)% = K (AR)%.
Now if K, (A)%¢ = K, (AR)%e(X,,..., X,) where X|,..., X, are algebraically
independent over K, (AR), we find t:ha.t

Ky(A) = K(L)% = K,(AR)(o(X1), . - 0(Xa))
where {(X;)}L, are algebraically independent over K., (A®) as required. M

Corollary 4.3.3. The invariant fields K(A)® and K(A)? are isomorphic
under an zsomorphzsm that is the identity on K(A®)® = K(AR)% . In par-
ticular, K(A)® is rational over K(AR)¢ if and only if K(A)® is rational
over K(AR)QG.

Proof:
The condition [7] € Im(HE(G, Hom(B, K*))) — H(G,Hom(A, K*)) for
B = epA & A in Proposition 4.3.2 is trivial in this case since [v] = 0. |

4.4 The Automorphism Group of a Root Sys-
tem

The automorphism group G of a crystallographic root system acts on the
Q-vector space V spanned by the root system. In this section, we would
like to use Corollary 4.3.3 to show that K(A)€ is rational over K where A
is a full ZG lattice on V and G acts trivially on the field K. In the next
few lemmas, we will determine some information about the automorphism
group of a crystallographic root system, its full reflection subgroup and the
stabilizer of a base.

Lemma 4.4.1. Let ¥ be an irreducible crystallographic root system of rank
n.

(a) There ezists an irreducible > crystallographic root system ¥ of rank n such
that ¥ C z, Aut(¥) = Aut(\I!) and the full reflection subgroup of Aut(¥)
is W(CI)) In particular, for U # A,, A3, D,, we may take T = . For the

remazmng cases:’

2\2=G2,:4\3=Bs,5;=F4,Z7:=an25,
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we have Aut(¥) = W(T).

(b) There ezists a crystallographic root system W such that Aut(¥) = Aut(\Il’)
and the reﬂectzon subgroup of Aut(¥!) is W(\I!’) If vV = A,, then 4‘ By
otherwise U = (D).

Proof:

(a) For ¥ # A,,n > 2, Dy, Eg, we have Aut(¥) = W(¥) so the result is
trivial.

For ¥ = A,,n > 2; Eg, note that [Aut(¥) : W(¥)] = 2. Suppose Aut(¥)
were a reflection group. Then there would exist an irreducible reflection
group of the same rank of size [Aut(¥)|. Examining the orders of irreducible
Weyl groups (20, p. 66], we see that this cannot hold. By contradiction,
Aut(¥) has reflection subgroup W(¥) in these cases.

For the remaining cases, we see that |Aut(¥)| = [I'V(\’I})L Aut(@) =
W(@) and ¥ C U. [20, pp. 64-63] (Note: We may replace A; with its
isomorphic copy D3 with base {€2 — €3, €1 — €2, €2 + €3} contained in Bs.) So
we have W(¥) < PV(@) in each case. We need only show that the diagram
automorphism group of ¥ is generated by reflections in W( \i) for each case.

For A,, the diagram automorphism group is generated by S¢ —2e,4¢; 1D
W(G,).

For D.,n = 3,n > 5 (i.e. including Aj), the diagram automorphism
group is generated by (¢, _, —en)—(en_i+en) = S2en € W(Br).

For Dy, the diagram automorphism group is generated by S(c, —c;)—(e3—e4)
and S(e,—e;)— (caea) € W(Fy).

(b) For ¥ # A,, suppose s € Aut(¥!) = Aut(\Il)' x S; is a reflection
not in Aut(®)!. Then s = ro where r € (Aut(¥))’ and 1 # o € S;. Then
o(J) # j for some j. Since V = QW has dimension larger than 1, there exist
two linearly independent elements z(),y() in V()| the jth copy of V. But
then Imy(ro — 1) contains rz(?0)) — z() and ry(elD —yO). If pgleO) — () =
c(ry®) — y9)) for some 0 # c € Q, then ro(z) —cy() = ) — cyl) and so
) —ey(e()) = p=1(z0) — cy()) € VeI NV = 0 implies a contradiction.
So the reflections in Aut(¥') = Aut(¥)' x S are those in Aut(¥)! and hence
generate W()! = W (). Thus we may take Tl = (\Il)

If ¥ = A,;, we note that A} C By so that W(A,)! < W(B,). Since the
stabilizer of a base for A! is generated by s, — s, € W(B), we find that

Aut(A!) = W(B;) and hence ;171 = B. |
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Definition 4.4.2. For an arbitrary crystallographic root system ® where
& = UR,®% is a disjoint union of 1rreducible root systems with the ®;

-

distinct, we define & = U, &% where @ is as in the previous Lemma. Note

that it is not necessarily true that Aut(‘I)) = Aut(®) as, for example, the
irreducibles ®; may not be distinct.

Notation: Let ¥ be a crystallographic root system and ¥ = UT,(\0;)"

the decomposition of ¥ into irreducible crystallographic root systems w1th
¥; distinct. Let Vi = QU; so that G = Aut(¥) = [[n, Aut(¥:)* x S, acts
diagonally on V = @2, V% with Aut(¥;)" acting diagonally on Vi and S,

permutlng components of V!*. Let [y be the (G-stable) set of reflections in
= [, W(¥;)" and let [ be the set of all reflections in G. Let R be
the group genera.ted by [. Note that R is the full reflection subgroup of G.

Lemma 4.4.3. The full reflection subgroup R ofG Aut(P) = [T, (Aut(;)) >

S, onV = QY is R = W) =[I%, W(\Il") Let TI; be a base for \Il and let
HI' be a base for \Il where if U; # A;, we choose Hl = II . The stabilizer
of a base II = U™, Hl of ¥ is Q = Qg(Il) = [[, i, where

) ) T.l"xSl if U; # A
'Qi = Aut \Dl' Hl' :Hl‘ = ¢ . ¢ 7
{g € Aut(¥)|g(ITy) = I3} X A,

where T; = {g € Aut(@)[g(f[\i) = f[\,}
Proof: Since Aut(¥) = [[%, Aut(¥¥) acts diagonally on V = &7, V/, an
element of s € Aut(¥) has Imy(s — 1) = &%,Im,,,(s — 1) so that it can act

as a reflection on V iff it is a reflection in Aut(¥}) = Aut(¥}) for somei. So
the reflection subgroup of Aut(¥) is R = []., R; where R; is the reflection
subgroup of Aut(¥%). The result follows from Lemma 4.4.1.



The stabilizer of the base I in G is

Qc(T) = {g € Glgll =1}

= J[{g € Aut(})

=1

= [{g € Aut(¥h)lgll: = I}

1=1

=fn[Qt

=1

glly =10}

where the €Q; are as described above. [ ]
Notation: For a ZG lattice A on V and a G-stable set of reflections S, set

®45={a € V|Kera(s +1) = Z« for some s € S5}
We write &4 for ® 4.

Lemma 4.4.4. Let U be a crystallographic root system, G = Aut(¥), V =
QU and R be the full reflection subgroup of G acting on V. For a ZG lattice
AonV, ®.r, C P4 where Aut(P4r,) = Aut(¥) =G.

® 4 can be expressed as a disjoint union of crystallographic root systems
by =04, = Uz’;ld)f‘ where S5, = UE’;Ifo is the decomposition of ® 41,
into irreducibles with ®; distinct. A base Ay for @4 may be expressed as
Ag = U}'_‘__IA? where K is a base for (f;,- and A:-‘ s a base for <I>f-‘ chosen so

“ =t

that Ai-‘ =A; if d; # A;. Moreover

Zo4 CACA(®4)

where G = [[™, Aut(®%), R = [[2, R: with R; = W(®[) and the stabilizer
of the base A4 s Q = [[-, Qi with

Q; = {g € Aut(a})|g(AF) = A}

acts diagonally on Z®,4 = @7, Z8" and A(D,4) = @:-';IA(E)?).
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Proof:

Since &4 and ¥ have the same reflection set I, the set of reflections in
R = W(U¥), we find by Lemma 2.2.10 that 4 = {c.a|la € ¥} for some
ca € Q. Since both ¥ and &, are G-stable, we see that c,, = c, for all
g€Gand a € .

By definition, @4, C ®4r = ®4. Since ¥ and @4, both have reﬂection
set [y, we have @41, = {ca|a € U} so that Aut(Par,) = Aut(¥) =
Set ®; = {coa|a € ¥;},i=1,...,m. By Lemma 2.2.10, ®,r, = UR <I>“

=1

1s the decomposmon of ®4r, 1nto 1rreduc1bles with ®; dJstmct Note that
<D' = {coala € U} so that &4 = UT, Ql‘ and Ay = UI’;IAf So we have

G = Aut(¥) = Aut(®ar,) = [] Aut(ah),

R =w(®,) = [[ W@ = [[W(@) = w(T)

and

Q= QG AA) HQ:
where
0; = {g € Aut(T")|g(IT) = I}
= {g € Aut(®})|g(A¥) = A}}

all act dJagona.lly on V=egnVi= 91—1Q‘£§ and hence act diagonally on
7%, = :11Z‘Dl A(®4) = 1—1A(¢£') .

Remark 4.4.5. The last few lemmas were necessary to determine the struc-
ture of the crystallographic root system ®,4. From now on, we will change
the notation slightly to facilitate the proof of the remaining Lemmas and
eventually the Theorem. Lemma 4.4.4 shows that ®4 can be decomposed
as U}’;lfbf‘ where each ®; is an irreducible crystallographic root system but
the ®; are not necessarily distinct and k; = [; if ¥; # A;, otherwise k; = 1
and ¥; = By,. (Note that A; = B;.) Here G = Aut(¥) =[], Aut(\Ilf.‘), its
subgroup R = [].., R: generated by all the reflections on V' in G, and the
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stabilizer of a base A4, Q = [, Q: each act diagonally on V = S
where we take V = QU = Q®,4, V; = Q®; so that V5 = Qd" = QU?.

We will refer to ‘Df‘ as the ith component of ®,4. Taking A; as a base
for ®;, Ay = f’;lAf‘ is a base for ®4. Then with this new notation, ; =
TF » S, where T is the group of diagram automorphisms of the irreducible
root system ®; with respect to the base A;.

Note that by Lemmas 4.4.1, 4.4.3, and 4.4.4, we see that for a component
<I>f of &4, ®; can be any irreducible crystallographic root system except

An,n<3,Dn,n 2 4.

The following is a technical lemma about lattices for the wreath product
T* % Si, where T is any finite group:
Lemma 4.4.6. (a) For a ZT module X, Indgz:;’:_l Infgkxs""X =@k, X0
where the inflation is with respect to the projection homomorphism py : T* w
Si_1 — T onto the last component of TF , o € S maps X©) identically onto
X)) gnd T* acts componentwise on X = &5 X0,

K o

(b) If X is a faithful ZT lattice, then In Tf.:f?:_llnfi *Sk=t X is a faithful
T* % S, lattice.

(c) If T is the diagram automorphism group corresponding to a base A
for an irreducible root system ® with weight lattice A then, firing the last
copy A(®) of A(®)F, respectively Z® of Z®*, we have

A@) = ndL$ Inf **A(®)  Z8F = IndLP Infp 1z

T"xsk_
as T* x Sk lattices.

Proof: Identifying T* with Map([y, T) where I; = {1,...,k}, Sk acts on T*
as fo(i) = f(o~'i) and T* x S is the semi-direct product corresponding to
this action. Hence elements of T* x S take the form fo with multiplication

fa_flo_l _ fflﬂo_o_l
and inverses (fo)~! = (f°')"'c. Then pi : T* x Si—;y — T defined by

fo — f(k) is a homomorphism since Si_, centralizes the last component of

T*.
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(a) Since {(i,k)|i = 1,...,k} is a transversal for T% x Sx_; in T% x S
. kyQ
where (k.k) = id, take X®) = (i,k) ® Infr. ***X,i=1,...,k. Foro €
Sk, o(i, k) = (o(2), k)o’ where ¢’ € Sk_;. So

o((i,k) @ z) = (0(i), k) ® a'z = (a(i), k) =
For f € T*, f(i, k) = (i. k)(f%*)) so that
f(G k) ® ) = (i,k) @ (F*¥ (k))z = (i, k) @ f(3)z

as required.

(b) Let fo € T* » Si act trivially on [ndL,*S Infl ***-'X. Then, in
particular, fo X = X0 {i=1,..., k so that X)) = o X () = f(z) LX) =
X for all i implies that o = 1. Now Sk O = fE 20 =S f( )x( )
shows that f(i) acts trivially on X which is congruent to X as a ZT lattice
and hence that f(7) = 1 for all i since the action of T on X is faithful. So
fo =1 as required.

(c) follows immediately from (a) and the description of the action of
T* % S; on A(®)* and (Z®)~. [ ]

By Lemma 4.3.1, Z® 4 and A(®,4) are both permutation lattices for 1.
The following lemma refines this description:

Lemma 4.4.7.

(a) For each i, Z®" contains ZQ; permutation lattices P;, Q% and A(®F)
contains afazthful ZQ permutation lattice Q; for §); such that Z@" = P=Q;
and A(8%) = P & Q; and Q' C Q..

(b)
Indsk Z Q: = S
Q:=Ql Ind; :s;Sk _ Qi =T5 xS
or Indy, i‘f:sk Z & In dTL.:? Z Q=T xS,

(¢) Po = &2, P, Qa = O2,Q; and Q) = 8%,Q! are ZQ permutation
lattices such that Z® = Po & Q' and A(®4) = Py & Qa4 where Q acts
faithfully on Q4 and @'y C Q4.
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Proof: Since Q [TZ, Q4 acts componentwise on A(®4) = sm A(9%) and
7D, = &7, Z0% | we see that (c) follows immediately from (a).

(a), (b) To sunplify notation, we suppress the subscript i. Q = T* x S;
where T is the group of diagram automorphisms for a base A of & and
®* = (®)*. Then fixing the last component A(®), Z® of A(D)*, ZOF we see

that A(®)* = Ind7, %3 InfT *S-tA(@) and Z®* = IndL 2% In £ % 28

TrkxSk— TkxnS;_
as T* x S lattices by Lemma. 4.4.6. Since induction and lnﬂa.tion preserve
direct sums and send permutation lattices to permutation lattices, it suffices
to find a ZT permutation lattice K and faithful ZT permutation lattices
L' C L such that

Zd=KoLl A®) =KoL (4.4.8)
We then set
P =Indf.x3  Infy "*~'(K)
Q =Indf3d Infr "5(L),Q" = Indfj | Infp ™ (L)

and note that both Q and Q' are faithful ZT* x Sy lattices by Lemma 4.4.6.

We will show (4.4.8) case by case.

Case 1: T =1

To show (4.4.8), we need only find a suitable Z decomposition. Since
A(®)/Zd is cyclic, we may choose a Z-basis z;,...,z, of A(®) such that
Ty.... In-1,dTa is @ Z-basis of Z@. Then we may take K = &7 Zz;,
L=2Zz,and L' =dL.

Then P = Indsk (A) = (Indsk )L Q= Indsk (L) = Indi‘: 2,Q' =
Ind‘gz (dL) = dQ = Q gives the required decomposition.

Case 2: T # 1.

By [20, p. 66], the only irreducible root systems with non-trivial diagram
automorphism groups are of types A, for n > 2, Eg or D,,n > 4. But in the
previous remark, we noted that (D,)*, (42)*, (A3)* cannot be components
of ® 4. So, for each component & of ® 4 such that ® has non-trivial diagram
automorphism group T', T is cyclic of order 2. We now show (4.4.8) in each
case:

Case 2a: ® has type A, for n > 4.

Set T = (t). By [20, p. 59], the base for the root system A = {ay,...,a,}

can be expressed in terms of the fundamental dominant weights {wi,...,w,}
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ap = 2wy —ws
Q; = —wyio] +2UJ, — Wil forl<i<n

Qn = —Wn—y + 2w

The T-action is given by tw; = wp41-; and ta; = any1-i.

Since {wn, @2,...,a,} is also a Z basis for A(®), we can take K = Za; S
-+- @& Za,_; and observe that K is a ZT permutation lattice and A(®)/K is
a ZT lattice with Z basis {w, + K, a, + K}. To determine the T action on
A(®)/K, we recall [20, p. 69] that

o +20+ -+ na, nay+(n—-lay+---+a,
= wp =

n+1 n-+1

n

to calculate that

twn+A)=w+K=nw, —(n—1l)a,—(n —2ap-1 — - —az2+ K
=nw, —(n—1)a, + K
tlan+R)=a+ A =(n+1l)wp —na,—(n—1)any —--- =200+ K

=(n+ lwpn —na, + K
Then

Z(7 - &)
ged(n — L,n + 1)Z(, — &n)

HY(T,A(®)/K) = Kerpey/x(t + 1)/Impgeyr(t — 1) =

_ {Z/QZ ,n odd

0 ,n even
We see that ¢ acts as a reflection on A(®)/K and

T ,m even

AP)/K =
(®)/ {Z@Z‘ ,n odd

So if n is even,

K — A(®) - A(®)/K

is T- split so we get L = ZT with A(®) = K © L and then 2 = K g L'
with L' = LNZ® = Z8/K = Zay, & Zo, = ZT as required.
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Unfortunately, if n is odd, K = (ZC;)*T & Z and A(®)/K = Z S Z".
Since Extye,(A(®)/K,K) = Extyc (Z~,Z) # 0, we cannot guarantee a
splitting in this case. Let’s try a different approach for the odd case. Take

K=68") il
=273
Again K is a permutation ZT lattice and A(®)/K is a ZT lattice with basis
{wn+ K,on+ K, nps + K}. Once again we need to know the structure of
A(®)/K as a ZT lattice. Now

twpn+K)=wi+K=nw,—(n—1apn—(n=2)apn1 —---—a2 + K
tla,+ K=oy +K=(n+ 1w, —na,—(n—1)an_1 —--- — 20+ K
t(aggg-i-ﬁ'):a%l-{-[\’
so that
R n—1 .
tHlwn+ K) =nw, — (n —1)an — ( ) )a&;_x-i-[\
, n+ 1 .
t(an+ K) = (n + l)wn —nan — (—5—)aap + K

-

t(al-zu + A’) = a%-_x + K
and this time
KerA(q,)/K(t +1) = Z(25, - 2a, — 62%._1) = ImA(q))/[\'(t —-1)

Again t acts as a reflection on A(®)/K and H'(T,A(®)/K) = 0and A(®)/K =
ZSZT. So again K ~— A(®) - A(®)/K is T-split since both A" and A(®)/K
are permutation. Hence A(8) = K@ L with L=Z@ZT and Z® =R gL'
with L' = LN Z®. Note that L' = Z&/K = Za, @ Zon © Zanp = 2T S Z
as required.
Case 2b: ® has type Ejs

By [20, p. 39], A = {a1,...,as} can be expressed in terms of the corre-
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sponding basis of fundamental dominant weights as follows:

a; = 2w —ws

Qo = 2&)2 — Wy

a3 = —wy + 2wz — wy

a4 = —wy — wi + 2wy ~ ws
a5 = —wy + 2ws — wWe

ag = —ws + 2we

Note that {a, a3, a4, as,ws, w3} is an alternate Z- basis for A(®) since

wy = —ag + 2w,

wp = —ag —wy + 2w;

Ws = —Qg — Wy — w3 + 2wy
we = —a5 — wyq + 2ws

Let K = Za, € Zaz € Zay © Zas. Note that ¢t acts on A(®) and Z® by

ta1 = Qg tw1= We
tag = Q2 t(.UQ= (95
tag = as twi= ws
tay = aqy twy= wy
tas = Q3 th= w3
tag = ay twe= wy

So K=2Z2ZT6Z AN?P)/K =Za,& Zas = ZT and Z®/K — A(®)/R —
A(®)/Z® with A(®)/Z® of order 3 implies H(T, \(®)/K) = 0 hence A($)/K =
ZT (as T does not act trivially on A(®)/K). Alternatively, we compute

twr+ K)=wy + K
tws+ K)=ws + K
=—a4 —wy —w3 + 2wy + K
= —04 —wy — w3 +2(2w; — ) + K
=3w; —w3 —ag — 200+ K
=3w; —w3 + K
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so that
Kerae)/x(t + 1) = Z(3@; — 2w0;5) = Ima(ey/x(t — 1)

So t acts as a reflection on A(®)/A and HY(T,A(®)/K) = 0 imply again
that A(®)/K = ZT. In either case, K — A(®) — A(®)/A splits and
AM®)=R&6LZd=Rs L with l'=LNZ® =ZP/K = ZT as required.

Note that the first method used to show that A(®)/K = ZT works also
in Case 2(a) when n is even.

Since Indi*% Infr "7 = ndL, 2% Z, IndD % Inf] **-'2T =

k)ﬂsk_l ")dsk_l xSk
Tk)ﬂsk ~ T"xSk Tkxsk—l - ~e !~ T"xS,.. Tk)‘sk-l
Indi_lxsk__lZ, P= IndixSk_IInfT K,and@Q = Q' = Ind’z‘kns,‘_l Inf L
we see that
Tk)dsk n—=1 _
(In ,‘_lxsk_lZ) 7, ®=A,,nodd
~ TkxS Rt _
pP= (Ind'z’:k-h:s,‘_LZ)z . ® = A,,neven
T* xSy ~ T*xSk 2 —
ID. k_lXSk_l Z fer} (Indixsk—l Z) . @ -_— E6
T}‘NS); —
0=Q = {Indi-lxsk_lZ’ ® = A, neven, Eg
- - T“xSk ~ T"xSk —
In ,‘_lxsk_lz &S IndT,‘msk_1 Z, ®=A..nodd
so that (b) is proved. [ |

Theorem 4.4.9. Let ¥ be a crystallographic root system for the Q space V.
Then G = Aut(¥) acts faithfully on V. For any ZG lattice A on V, K(A)%
is rational over K where G acts trivially on K.

Proof: By Corollary 4.3.3, we need only show that A(A)® is rational over
K. By Lemma 4.4.4, we have Z®, C A C A(®,4). By Lemma 4.4.7, we can
decompose ®4 and A(P4) as Z®, = Py & @'y, A(P4) = P41 & Q4 where
Ps,Qa4,Q are ZQ permutation lattices and Q acts faithfully on Q' C Qa.
Take B4 = @Q4NA. Then A = P, & B, is a decomposition of Z{} lattices with
Q acting faithfully on B4 and @’y C B4 C Q4. Then by Proposition 1.0.13,
K(A)® is rational over K(Ba)%.

It now suffices to prove the rationality of K(B4)® over K. In order to do
this, we want to apply Corollary 4.3.3 to K(B4)®. Recall that Q = [T, Q
and Q) = On,Q: C By C Qa = en,Q: where Q! = Q; are Zf); direct
summands of Z®¥, respectively A(®5).
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Definition 4.4.10. Let ®* be a component in the decomposition of $4. Let
Q' 2 Q be the ZQ direct summands of Z®* defined in Lemma 4.4.7.

Let T be the group of diagram automorphisms for a base A of ®. Then
®* is said to be of type:
[if Q=S and Q' = Q = Ind3* Z

MifQ=T"xS,and Q' = Q = IndL,*%. Z

Trk—1%Sc
ITif Q = T% » S and Q' = Q = Ind%*.  Z@Ind 3 Z

Observe that by Lemma 4.4.7, these are all the possibilities for a compo-
nent ® occurring in the decomposition of @ 4.

For each type of component, we need to find the reflection subgroup R* of
the action of Q on Q, the stabilizer Q¥ of a base of an associated root system
and the structure of Q as a Z* lattice. We also need a decomposition of @
into permutation ZQF lattices similar to that in Lemma 4.4.7.

Lemma 4.4.11. (a) Let ®* be a component of the decomposition of ® 4. Then
with the above notation:
®F of type I: R = Sy, O =1, Resqi Q = Z*.
@ of type II: R* = C%, ¥ = Si, Resu@ = Ind3* Z & Indg Z
®* of type III: R = C¥, O = i, Resq:Q = Ind$* Z@Indy Z&Ind3: Z
(b) For ®* as in (a) of any type, we have ZQ* permutation lattices
C.D, D' such that there exist decompositions

@=CsD Q=CglD D'cD

as ZQ* lattices where Q* acts faithfully on D. Let d be the order of A\(®)/Z®.
Then for & of type I, D = Z*¥, D' = dD and for ®F of type ILIII, D =
Indd* Z,D'=dD.

(c) For each component @f" in the decomposition of ®4, let Rf, Qf be
given as in (a) and C;, D;, D! be given as in (b) and set Cy = &72,C;, D4 =
on D;, D), = &%, D:. Then the reflection group acting on Q4 is R* =
=, R' and the stabilizer of a base of the associated root system is ° =

i Qf Then Cya, D4, D'y are ZQF permutation lattices and there exist
decompositions

QRQa=Ca® D4 W=Cs® D) Dy C D4
of ZO® lattices where QF acts faithfully on Dy.
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Proof:
(a) For @ of type I, @ = St and Q = Indi::_lz = Z[Si/Sk-1]. Now
{(t,k): =1,..., k} is a transversal for Si_; in S;. For all : and o € S;.

(a(i),k)a’(i,l;:) e Sk—1. So 0(i,k)Sk~1 = (0(7).k)Sk—1. Take u; = (i,k)Si_;
for each i. Then {uy,..., ui} is a Z-basis for @ and o(u;) = usy. o € Sk

acts as a reflection on @ if and only if

Img (o — 1) = Spang{ueu —uilt =1,...,k}

has rank 1 if and only if o fixes k — 2 elements of {1,...,k} if and only if
o is a transposition. So R! = S since it is generated by the transpositions.
Hence Q! =1 and Resq:Q = ZF follow easily.

For ®* of type II, Q = T* x S; and

Q= IndZ 5 Z= Z[T* x Si/T* ' % Si_y]

Tk—t XSk

where T = (t) = C,. Let m; € T* be such that m;(i) = t and m;(j) = 1,
J # 1. Then

(G.Ri=1,... . k}u{m(i.k)i=1,....k}

is a transversal for 757! »x Sx_; in T* x Si. Note that om;oc~! = m,(;). Then
foroc € Si,i=1,...,k, we have

o (i, k)T* ™ % Spmy = (0(2), k)TF ! % Si_y
since (o(2), k)o(i, k) € Skt < T*! x4 Sy and

om;(3, K)TF! % Skt = moyo (i, k)T x Sk
= mq (o (i), K)T* ! % Sy

m;(i, k)Tk_l X Sk_1 ,]=1
(R)TEE % Seey L j A
(ia k)Tk—l X Sk-1 J =1
mi(i, ) T* Y % Seey LG

m,(z, k)Tk-l x4 Sk_]_ = {

mjm;(i,k)Tk‘l XSk = {
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Hence for each i, we may take z; = (¢, k)75 ' % Se_1, yi = mi(3, k)T 1% S_;
so that Q = &%, & Zz; &%, Zy;. Here m; interchanges z; and y; and fixes
IszJ:J 75 t and 0‘(1‘;) = To(i)s U(yi) = Yo(i)-

Now f € T* is a reflection on Q iff

Img(f — 1) = Spang{z: — y:l f(2) # 1}

has rank 1 iff f = m; for some i. Suppose fo € T* x S; has o(i) # i for
some t. Then if f(i) = 1, Zou) — Zi,Yoi) — ¥i are in Img(fo — 1) and if
F(3) # 1, Yo(i) — Ti Tos) — yi are in Img(fo —1). In either case, fo cannot be
a reflection if ¢ # 1. So R® = T* since it is generated by the set of reflections
{m;}. Since @ is a permutation lattice,

Kerg(m; + 1) = Img(m; ~ 1) = Z(z; — yi)i=1....,k

We may take a base for the associated root system to be {z;—y;[i = 1,...,k}.
Then since o(z; — ¥i) = To@) — Yoi), We see that Si stabilizes the base.
Since Q! N T* = 1, we see that O = S;. Finally note that &% ,Zz; and
q;t.ﬂZy, are ZS; lattices both isomorphic to Inds" ,Z. Hence ResQ.Q =

ndg*  Z 3 Ind3_Z.
N } kxS T*xS,
For ®* of type III, Q = T* x S; and Q = Ind%,*’*. Z& IndL*% Z

Tk_l)dsk_l Tkhbk_l
We have already seen that {(i,k)| = 1,...,k} is a transversal for T% x S._,
in T% x Si. Let z; = (4,k)T* x Si_,. Then {zlt = 1,...,k} is a basis for

Z[T* x Sk/T* x Si-.] where T* acts trivially on z; and o (i) = z(;)- So
Q 6,— th VA CD', ]_Zyt & \.u,._IZ.,,

. . k k.
Reflections on Q must act as a reflection on one of Ind%,*> s, 2> In T,‘:z.: Z
and trivially on the other. Now an element f of T* acts as a reflection on

k . . . - . -
Indgkfls s, 2 ff f = m; for some i. Since all elements of T* act trivially

k
on Ind?k:gz_lz, we see that the m; are reflections on Q. Now if o # 1,

the rank of Img(fo — 1) was already shown to be greater than 1, hence fo
cannot be a reflection. We see that R = T* and as for type II, we see that
Qf = S;. Since &%, Zz;, &* _IZyt,e,_IZ,., are each ZQ* lattices isomorphic
to Inds" 2, we see that ResqiQ = (Ind ' Z)? as required.

(b) For <I>’° of type I with Qf = 1, we have Q = Indg..::?‘ Infgk"s"“L =
Ind3* L[ =Indy Zand Q =dQ. Wemaytake C=0,D=Q,D' =Q' =
dD to get the required decompositions.
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Let ®F be of type Il or III with Qf = S;. Then in Lemma 4.4.7, we found
ZT lattices L', L with T = C; such that
Q =IndL*$ Infy "= Q' =Indl*$ Infy "L

and L' C L. Since Si(T* x Si-1) = T* x Si, we see from the Mackey
decomposition [10, p.237] that

k 315 szk T*xS, T*xSk-1
Ressk @ = Res IndZ. s Infr L

~ Indsk lR T xSk_l InfT xSk-lL
= Indsk lRes’f xs"“ L
= (Indg:_ Z)=kE

where the second last equality follows from the fact that Si—; is contained in
the kernel of the inflation map T%xS;_; — T. The last equality gives another
proof of the structure of @ as an QF lattice. The same calculation shows that
we have a parallel statement for @', L’. Then since restriction, induction and
inflation preserve direct sums and permutation lattices, it suffices to find
appropriate splittings of L', L as Z-lattices. But L/L' = Q/Z® is cyclic of
order d. Hence there exist la.ttlces Co, Do, D where Dy = dDy are of rank
Land L' = Co & Do, L = Co & Do. Then we can take C = Ind§ Co.D =
Ind3* s¢_, Do, D' = Ind k—lDo to get the required decompositions.

(c) Since Q = ], Q; acts componentwise on Q4 = §%,Q; and Q' =
&, Q) the results follow easily from (a) and (b). |

By Corollary 4.3.3, it suffices to show that K(B4)® is rational over K.
Now @', C B4 C Q4 where there exist permutation ZQ* lattices C4, D’,, D 4
and decompositions

Qa=Ca& D) RQa=Cag D,y D)y C D4

of ZQ* lattices with Q! acting faithfully on D,. Setting Yi = By N Dy,
we see that By = C4 & Yy is a decomposition of ZQ® lattices with Cy4
permutation, Dy C Y4 C D4 and OF acting faithfully on Y4. So we may
again use Proposition 1.0.13 to show that K(B,4)® is rational over A (Yy)®
Now we have reduced the problem to showing that K (Y4)? is rational over
K. But observe that Qf = [[7, ! acts diagonally on D4 = @7, D; and
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D', = @%,D!. From Lemma 4.4.11, we see that if i corresponds to an
component of type ILIII, Q! = 5. acts faithfully as a group of reflections on
D;=D!= [nd;:f_lz and if ¢ corresponds to an irreducible of type I, Qf =1
acts trivially (ax;d also faithfully) on D;, D;. If all the irreducibles are of
type [, Q* acts trivially on D', D4 and hence on Y}y, so K(Y_.l)m = R (Y,y)is
clearly rational over K. Otherwise, Q* acts faithfully as a group of reflections
on D4 and D', and hence also on Y4. So Farkas’ result (Proposition 1.0.7)
shows that K(Y4)®' is rational over A in this case. Hence we finally have
proved the rationality of K(A)¢ over K. |
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Chapter 5

Centre of the Generic Division
Ring

Define the ZS,-permutation lattices U, = Z[Sn/Sn-1] and V,, = Z[S,/S.-2]-
Let {u;|t =1,...,n} be a ZS, permutation basis for U, and let {y;;|1 <7 #
j < n} be a ZS, permutation basis for V;, so that for 0 € S,, ou; = u,sy
and 0yi; = Yo(i)oyj)- Defining €, : Un — Z,u; = 1 and p, : V; = U,
yij —r ui — uj, we get exact sequences of ZS, lattices:

Any — Un S Z (5.0.1)
Gn— Vo 5 Any (5.0.2)

which define the ZS, lattices A,—; and G,.. By Procesi-Formanek [26, 27,
18], the centre of the division ring of generic matrices is isomorphic to the
multiplicative invariant field C(U,)(U, & GA)>"

Definition 5.0.3. For ¢ = (41,...,%,) an r- cycle in §,, define
Co = Yiyip T Yizis + 7 + Yiryi, T Vieiy € Va

which we call a cycle. Note that ¢, does not depend on the way o is presented
and hence is well defined. Note also that for 7 € Sp, 7(¢s) = Crpr-t.

Definition 5.0.4.

Wi = C(i oo ) ClEi+1i—1.) ifi<jy
17 = () 2 = o '
" Cliim1,mnjtly) 1LT>]



Lemma 5.0.5. (a) The cycles ¢, generate Gy.

(5)

B :={w;ll1<i<j<n}u{szl<i,7<n,j—-122}

and
B,y := {w,»jll §i<j§n}u{:;,-|1 <t,7<n,i—j2>2}

are both Z bases of G,.

Proof:

(a) Clearly every ¢, € Ker(pn) = Gn. To show that they span G, =
Ker(p,), we need only show that Ker(p,) C Spang{cslc = (41,....7;)}. Let
a=3 .. a;yi; € Ker(pn) = G, and set hi(a) = }_,c;cp j; @ij foralli. Then
> izj @ij(wi —u;) = 0 implies that h;(a) = 3, ¢ e, i @ji- For each (¢, j) with
i < j, let mi; = min{a;;, a;}. Since 3, ;mi;(yi; +y5:) € Spang{c,}, we see
that

a=a—) mi(y;+y;:) mod Spang(c,)
1<)
so that we may assume that a;; > 0 and min{a;;,a;;} = 0. Then every
hi(a) > 0 and we may proceed by induction on h(a) = > . hi(a) for a
satisfying

a= z aijyij € Ker(pn), a;; > 0, min(aij, a;;) =0 (3.0.6)

Iy
(S5

If h(a) = 0, we are clearly done. If A(a) > 0 then consider the directed
graph with vertices {1,...,n} and an edge from 7 to j < a;; > 0. Note that
an edge from ¢ to 7 implies that there is none from j to : since min(a;;, a;) =
0. Note also that if : has an edge coming in, it also has one going out since
ax; > 0 implies hi(@) = 3| cicnini G = Xi<jcnjui @5 > 0 Since h(a) > 0,
there are some edges. Start at any edge and follow any next edge to form a
path in the directed graph. Since the graph has finitely many vertices, the
path must eventually return to some vertex: i.e. there exists o = (iy,..., k)
such that a;;;,, >0foralll <j <k—1and a;; >0. Then a —c, satisfies
(5.0.6) and h(a — c;) < h(a). So a — ¢, satisfies the inductive hypothesis and
hence is a Z-linear combination of cycles. Thus soisa =a — ¢, + ¢,.

(b) Note that

rankz(Gn) = rankzZ[S./Sn—2] —rankz A, = n(n—1)—(n—1) = (n — 1)?
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Since also [B;] = (n — 1)%,i = 1,2, it suffices to show that B; and B, both
span G,. By (2), we need only show that each cycle ¢;, 0 = (i1,...,7.) can
be written as a Z linear combination of elements of B (resp. B;).

Setting
wi; —z; ifie<y
P e A
Zji ifi1>7
we have:
Yiig1 + 0+ Yi-1j ifi<y
Yij — Tij = T
—(yjjer + - Fyiou) >
Then since 1,41 = _il, we see that D % ¥ii ., — Tijiy, = 0 so that ¢, =
Z;=1 Zi)i,,, is a Z linear combination of elements of B; as required.
Similarly with
. = Wi; — Zij ifi1>7
Y 25 ifi<y
we find that ¢, = D7 i i
Hence both B; and B, are Z-bases of G,. [ |

Remark 5.0.7. For n = 2, G, = Z(yi2 + y21) = Z. So we see that
C(U,)(Us & Go)*2 is rational over C(U,)? by Proposition 1.0.13 and hence
over C. Thus we may assume n > 3 from now on.

In order to investigate the ZS, structure of G, we first determine the
irreducible components of the QS, module QG,. Tensoring (5.0.2) over Q
we obtain

0 = QGr =+ Q[Sn/Sn—2] &+ QA1 = 0

By Maschke’s Theorem, Q[S./Sn—2] & QG.SQAn-;. Denote the irreducible
QS, module corresponding to the partition A ++ n by S*. Then QA,_, =
S(n=1.1) Here we will apply Young’s rule [22, p. 89], a beautiful combinatorial
formula for determining the irreducible components of Q[S,/S,] where S, is
the Young subgroup of S, corresponding to the partition A +— n. This shows
that

S g 9g(n—11) g §(n—22) g Sh-212) >4

Q[Sn/Sn-2] = {5(3) @252 g §O° n=3
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from which we deduce

S(n) & S(n—l.l) e S(n—Z,‘Z) @ S(n—Z,l’) n 2 4

QGn = {5(3) e 521 g g(1h) n=3

Lemma 5.0.8. (a)Spang{w;;|1 < < j < n} is isomorphic to Z[S,/S._2 X Ss].
(b) ¥n : Z[Sn/Sn_2] = Z[Sn/Sn_2xS2] defined by wn(yi;) = wi; is a surjective
ZS, homorphism whose kernel K, has basis {yi; — y;i|ll <i < j < n}.

(c) QK, = S(n~1.1) a S(n-Z,lz).

Proof:

(2) The set {w;;} is linearly independent by Lemma 5.0.5. For ¢ € S,,
o(wi;) = Wo(i)e(;) SO clearly Ln, = Spangz{w;;|l < i < j < n} is a transitive
ZS, permutation lattice. Since the stabilizer of w;; = y;; + y,; is isomorphic
to Sn—2 X Sz, we have shown that L, = Z[S,/Sn—2 X Sy

(b) The first statement follows from (a) and |{y;; —y;|ll <i<j <n}| =
n(n —1)/2 = rank(Z[S5,/Sn—2]) — rank(Z[S,/Sn-2 x S3]) = rank(A,) shows
that it suffices to show that these span. But a = } .. a;jyi;; € Ker(¥,)
implies that ; .(aij + a;i)wi; = 0 and hence that a = fki ai;j(Yij — Yji)-

(c) By Young’s rule, we have

Q[Sn/Sn-2 x Sa] = {g::: g;’((::)l,l) &g S(h-22) Z i 4;
Tensoring the exact sequence
0= Kn = Z[Sn/Sn-2] = Z[Sn/Sn—2 X 53] = 0
by Q and applying Maschke’s Theorem we find that
QK, = S(n—-l,l) s S(n-'l.lz)

as required. |
We would like to determine the unique pure ZS, sublattice E, of G,
corresponding to the irreducible for the partition (n — 2,12).

Lemma 5.0.9. (e¢) E, = Spangz{c, — c,-i|o a cycle in S} is a ZS, sublattice
of both G, and K, with basis {z;j — 2|1 <4, < n,j—1> 2} and Z-rank

("29)-
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(b) E. is a pure sublattice of both G, and K,.
(¢) En = Gy N K, and QE, = S-21%)
(d) hn : Gn = Uy, co — z;___l ui, for o = (i1,...,i,) is a ZS, epimorphism

vith E, C Ker(h,). For n = 3, E3 = Ker(h3) = Z~ and C(U3)(U3 & G,)™>

is rational over C.

Proof: (a) E, is Sy-stable since
T(C, - C,—l) = Cror-t = C(ror-1)-!

forT € S, and o = (41,...,i,) € S, and is contained in G,, K}, since pp(c;) =
pn{ce-t) and ¥n(cs) = ¥n(cs-1). The claimed set is linearly independent as
for each (i,j) with 7 —7 > 2, z;; — z;; is the unique element with non-zero
coefficient for y;;. Finally, this set spans E, because from the proof of Lemma
5.0.5, we see that

r r
cd - Czr-‘ = Z(Ii1i1+l - x:,.*.lij) = Z sgn(iJ - ij+l)(zi1i1+l - :i1+1"])

=1 =1

(b) It suffices to show that the basis Bz of E, from (a) can be extended
to bases for A, and G, respectively. Since for j —1 > 2,

j-1
zii = zii = Wii — Yii) + D _(Ykks1 — Yks1)

k=1

we see that By U {yiis1 — ¥i+1ilt = 1,...n — 1} is a basis for K. Also for

-1
2 = (25 — 236) — (255 — wig) + (Q_ wakw1)
k=i
shows that B3 U {z;; — wi;|7 — ¢ > 2} U {wiip1li =1,...,n — 1} is a basis for
G-
(C) Pn : Z[Sn/S _g]1—+ An-l,y;j = U; — U; mMaps Yi; — Y —r 2(u; — Uj).
Since zi; — zji = Y _10; 2(uk — Ug1) + 2(u; — ui) = 0 and rank(K,L/E,) =

n — 1 = rank(2A,_;) we see that E, = Ker(pn|x,) so we have the exact

sequence
0= E, - K,2324,_, -0
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with QR, = Sk-11) ¢ §S(*-21Y) Q @ (24n-1) = S(*-11) and so QE, =~
§(+=21%) From E, C G, N K, C K, and K,/E, = 2A,_; an irreducible
lattice, we need only rule out G, N K, = K, or equivalently A, C G,. But
G. = Ker(p,) and we just saw that p,(A,) # 0. So E, = G, N K, as
required.

(d) We must first show that A, is well defined. We define h, on the basis

Br={w;ll1<i<j<n}u{z;l<i,j<n,j—122}

for G, given in Lemma 5.0.5 and then check that this definition matches the
definition on the cycles. So set

J
ho(wij) = ui + u;j, ha(zij) = Z Uk

k=t

From the proof of Lemma 5.0.5(b), we know that for o = (7;,...,{.), we have
Cs = Yoy Tijiyy, Where

_Jwij— oz ifi1<y
I;; =

Zji If] <1
Now,
' _ (Zk—x+1 uk ifi < ]
hn(zij) = o ]
Zk:, ifi>
So we have

ha(Co) =D haliy) = D mit
Jj=1 k=1

for some m; € Z. where
me = [{jlijr <k < GH =i <k <ijp}l

But since ¢,41 =11, we have k& € (4141, %) if and only if & € (¢m, tm+1) so that
mi = |{jlk =%;}| and A (c,) = Z;_l u;, as required.
For 7 € Sp,0 = (41, . ..,%), Tot™ ! = (7(41), ..., 7(3r)) so that

hn(Tca') = hn(cfo"r‘l) = Z Ur(i;) = T(hﬂ-(cﬂ))

=1
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and hence h, is a ZS, map. ha(c,,...i;) — C(is,...iv)) = Ui, shows that h, is
surjective for n > 3. Since hn(cs) = hn(c,-1) we see that E, C Ker(h,).
For n = 3, E5 C Ker(hs) are both pure ZS3 sublattices of G5 of rank 1
and hence E3 = Ker(hs). Clearly E3 = Span(zi3 + z31) = Z~. Then by
Proposition 1.0.13, C(Us)(Us & E3)% = C(E3)(Us @ Us)™® is rational over
C(E3)%. But since E3 = Z~, it is a reflection lattice for S; and hence
C(E3)" is rational over C. So we have C(U3)(U; & E3)™* is rational over C
as required. ]

Remark 5.0.10. For n = 4, E, is in fact the lattice A; that Formanek uses
in [19] to prove rationality of the centre of the division ring of 4 x 4 generic
matrices. Formanek defines A; = Spany{a, a2, a3, a4} where in our notation
Q3 = C(234) — €(243): @2 = C(143) — €(134)s @3 = C(124) — C(142): @4 = C(132) — C(123)-
One easily checks by direct calculation that a; + a; + a3 + a4 = 0 and that
{a1,a2,a4} is a Z- basis for A;. Our basis for £4 can be expressed in terms of
the basis {a1, @2, a4}: z14— 24 = —a2— a4, 213— 231 = —a4 and 234 — 245 = a;.
Hence F; = A,. Formanek describes his lattice A, as the dual of the kernel
of the augmentation map for the signed permutation lattice: That is,

o(a;) = sgn(c)(as(), o € Sy

where Z:;l a; = 0 so that for the signed permutation lattice L with basis
{eili = 1,...,4} such that o(e;) = sgn(o)es () for o € Sy, there is an exact

sequence of Z.5; lattices:
02" —=L% E,—0

where § : L — E4,e; — a; and Ker(8) =Z(e; + e, + e3+€4) =27,

Lemma 5.0.11. The following is a commutative diagram with eract rows

and columns:
E[r T Gn i E,

Ko——>72[5./Sn-2] —% 2[5,/ Sn-2 x Si]

N L

?—‘A'rs—r¥ An—l An—l/2‘4~n—1
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Proof: The middle row and column come from Lemma 5.0.8(b) and (5.0.2)
respectively. By the proof of Lemma 5.0.9(c), restricting p, to A, gives an

Pn
exact sequence E, — K, —» 2A,_; So we find that

[T
Kp——Z[S./Sn-2]

oo |-

2An_p——> Any

is a commutative diagram with exact rows and columns. Applying the snake
lemma, we find that the cokernel sequence

Gn/En o Z[Sn/sn—2]/Kn - An-—-l/QAn—l

is exact and fits into the following commutative diagram with exact rows and
columns:

Gn/Ex = Gn[En

i S

Z(Sn/Snez] — Z[Sn/Sn-2]/ K — Z[S0/ Sz X Sa]

- : -L

An-1 An_1/24An = An /240

Putting these two commutative diagrams together and observing that the
composite of Z[Sn/Sn—2] = Z[S,/Sn-2] and ¥, is ¥,, we obtain the required
commutative diagram with exact rows and colums. u

Definition 5.0.12. [9] A ZG lattice A is coflasque if H(H, A) = 0 for all
subgroups H of G.

Lemma 5.0.13. The ZS,, lattice G, /E, is coflasque iff n is odd.

Proof: Tensoring the exact sequence of ZS5, lattices0 — A1 = U = Z —
0 over Z/2Z and using the natural ZG isomorphism X/2X S FoX, 242X
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T where X is a ZG lattice, we obtain the following diagram of ZS, modules
which commutes and has exact rows and columns:

Anet [2Anp—> U/ 2U, —=Z/2Z

F‘z An_r : szrn >3- F2

By Lemma 5.0.11, the ZS, sequence
0— Gn/En g Z[Sn/sn_g X 52] — A-n—I/QAn—I -0

is exact. Composing with the natural ZS, isomorphism A4,.,/24,_; =
F,A,_;, we obtain an exact sequence

0— Gn/E’n — Z[Sn/S —2 X 52] — FgAn_l —0 (5.014)

where the map Z[S,./Sa-2 X S2] — F2A,_, is given by w;; — u; + ;. For
a subgroup H of S,, this sequence induces the following exact sequence in
cohomology:

Z[Sn/sn—2 X 52]H — (F2An—1)H - Hl(H: Gn/Eq)

since H'(H,Z[S+/Sn-2 x S3]) = 0 by Shapiro’s lemma {7, p. 73]. So
HY(H,Gn/E,) = 0 iff Z[S,/Sn-2 x S] — (F24An_1)7 is surjective.

We first wish to determine (F;A,_;)¥. Denote the basis of F,U, by
{wli =1,...,n}. Then FyA,_; has basis {%; + Tit1{t = 1,...,n — 1}. Let
{O1,...,0;} be the set of orbits of H actingon {1,...,n}. Then (FoU,)¥ has
basis {Oili =1,...,7} where O; = Zjeo,- % So S ai0; € (Fadn.)? =
FoA,_ N (FU)T M 0, a;]O0:] =0 mod 2. Reorder the orbits above so
that the first ¢ have even length and the remaining r — ¢ have odd length. So
a basis for (FgAn_l)H is

{Oili=1:"'1t}U{Oi+Or|i=t+1,...,7’—1}

Let n be odd. If H acts transitively, then our basis for (F;A,_;) shows
that that (FyA,—;)¥ = 0 and so the fixed point map is surjective in this
case.
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Suppose H acts intransitively. Then since Y __, |O:| = n =1 mod 2,
we find that |O,| is odd. Then } ;.o ko, Wik € Z[Sn/Sn-2 x S2]¥ maps to
> jeo; Leor(uj +a) = |0:0; + |0:0, = O; + |0:|0, For 1 < i < ¢, this
shows that O; is in the image and for t + 1 < i < r — 1, it says that 0; + O,
is in the image. So our map is onto as required.

Let n be even. We will show that G,/E, is not coflasque by showing that
the fixed point map Z[Sn/Sn-2 x So]¥ — (F324.—1)¥ is not surjective for
H = Dy, = (7,0) where 7 = (1,2) and o = (1,2,...,n). Since (F3A,_)P»
has basis {} .., @i}, we need to show that this map is zero. It suffices to
show that the D,, orbit of a basis element w;; maps to 0. Now the Dj, orbit
of a basis element w;; must contain an element wy; with [ # 1 since D, acts

transitively on {1,2,...,n}.
Case 1: { 7& +1 _
Since az(wu) = Wi+ # wyy, the C, = (o) orbit of wy is {c'wyli =

0,...,n—1} and Z‘_O o'wy; € Z[S,/Sn-2 x 53] maps to Y. o'(T; +
) =23, u = 0. Since C, is normal in D,, with transversal {1,7},
(1 + 1) o'wu) € Z[S./Sn-2 x S2]P* also maps to 0 under the fixed
point map.
Case 2: [ =3 +1

The D,, orbit of wy; also includes o~ TW341 = W12 which reduces us
to the previous case. [ |

8

Lemma 5.0.15. For n odd, there erists an ezact sequence
0= Gu/EnSZ = Z[S:/Sn-2x5]62¢ U, = U, —0
Proof: We have exact sequences
Gn/En » Z[Sn/Sn—2 x Sa] » F2 A,

FiAn — F2Un —-» Fy

where F,U, — F; maps %; —> 1. Since (F,U,)%" has basis {3 -, u} which
goes to @ € F, under this map, we see that F,A,_; § Z — FoU,, (z,2) —
T + T ) ., U is surjective for n odd (and not for n even). Also for n odd,
the images of F,A,—1 — F,U, and Z — F,U, are disjoint.
This suggests building the map (an, Bs) : Z[Sn/Sn—2X%S52|8Z — FyU,, an(w;;) =
T; + T, Bn(1) = D1, Ti. Note that Im(a,) N Im(B,) = O since the images of
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FyA. ;1 = FU, and Z — F,U, are disjoint. But then the kernel of (a,, 8,)

is Ker(a,) € Ker(8:) = Go/E. 6 2Z = G,/E,. & Z. So we have an exact
sequence

Gn/En Sz — Z[Sn/sn-Z X 52] SZ —» FZD—n
Form the pullback square:

Xn U.

Z[Sn/sn_z X Sz] & Z — FzUn
We obtain the following commutative diagram with exact rows and columns:

= Llon
I
i

G./E. & % Xn n

- : L

Gn/En © B—>1Z[S3/Sn-2 x Sa] € Z —=F,U,

The exact sequence
0= Un—= Xn = 2Z[S:/Sn-2 xS2]SZ -0
splits since U, and Z[S,/Sn-2 x S2] & Z are both permutation lattices. So
Xn 2 U, @ Z[Sn/Sn—2 x 52] & Z and we obtain the desired exact sequence.
[ |

Proposition 5.0.16. For n odd, G, ~ E, where ~ is the equivalence rela-
tion of Proposition 1.0.15. In particular, C(U,) (U, & G.)>" is stably equiv-
alent to C(U, (U & E,)%". Hence, for n odd, C(U,)(Un & G,)5 is stably
rational over C provided C(E, )" is.

Proof: Since Gn/E, is coflasque by Lemma 5.0.13, the exact sequence of
Lemma 5.0.15 splits so that

GnlEn G ZBUp = Up &2 & Z[Sn/Sn2 x Sa] = P,
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with P, a permutation lattice. We can construct exact sequences
0=E, =G, @¢Z2sU,— P, -0

0 -G, -G, 02c¢U,—-72ZcU,—0

so that we see that G, ~ E, and hence that U, 8 G, ~ U, = E,. Since S,
acts faithfully on U, and hence on C(U,), we may apply Proposition 1.0.15
to prove that the above fields of tori invariants are stably equivalent. |

103



Bibliography

[1]

[4]

[9]

Michael Artin and David Mumford. Some elementary examples of unira-
tional varieties that are not rational. Proc. London Math. Soc., 25:75-95,
1971.

M. F. Atiyah and I. G. Macdonald. Introduction to commutative alge-
bra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills,
Ont., 1969.

Esther Beneish. Induction theorems on the center of the ring of generic
matrices.

D. J. Benson. Polynomial invariants of finite groups, volume 190 of
London Mathematical Society Lecture Note Series. Cambridge Univer-
sity Press, Cambridge, 1993.

Christine Bessenrodt and Lieven Le Bruyn. Stable rationality of certain
PGL, quotients. Invent. Math., 104:179-199, 1991.

N. Bourbaki. Groupes et Algébres de Lie, IV,V,VI. Hermann, Paris,
1968.

Kenneth S. Brown. Cohomology of groups, volume 87 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1994. Corrected reprint of
the 1982 original.

Winfried Bruns and Jirgen Herzog. Cohen-Macaulay rings, volume 39
of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 1993.

Jean-Louis Colliot-Thélene and Jean-Jacques Sansuc. La R-équivalence
sur les tores. Ann. Sci. Ecole Norm. Sup. (4), 10(2):175-229, 1977.

104



[10] Charles W. Curtis and Irving Reiner. Methods of representation theory.
Vol. I. Wiley Classics Library. John Wiley & Sons Inc., New York,
1990. With applications to finite groups and orders, Reprint of the 1981
original, A Wiley-Interscience Publication.

[11] S. Endo and T. Miyata. Invariants of finite abelian groups. J. Math.
Soc. Japan, 25:7-26, 1973.

(12] S. Endo and T. Miyata. On the projective class group of finite groups.
Osaka J. Math., 13:109-122, 1976.

[13] Daniel R. Farkas. Multiplicative invariants. L 'Enseignement
Mathématique, 30:141-157, 1984.

[14] Daniel R. Farkas. The stretched weight lattices of a Weyl group. Proc.
AMS, 92:473-477, 1984.

[15] Daniel R. Farkas. Toward multiplicative invariant theory. In Group ac-
tions on rings (Brunswick, Maine, 1984), volume 43 of Contemp. Math.,
pages 69-80. Amer. Math. Soc., Providence, R.I., 1985.

[16] Daniel R. Farkas. Reflection groups and multiplicative invariants. Rocky
Mountain J. Math., 16(2):215-222, 1986.

[17] Walter Feit. Integral Representations of Weyl groups rationally equiva-
lent to the reflection representation (preprint).

[18] Edward Formanek. The center of the ring of 3 x 3 generic matrices. Lin.
Mult. Alg., 7:203-212, 1979.

[19] Edward Formanek. The center of the ring of 4 x 4 generic matrices. J.
Algebra, 62:304-319, 1980.

(20] James E. Humphreys. Introduction to Lie Algebras and Representation

Theory, volume 9 of Graduate texts in mathematics. Springer Verlag,
New York, 1972.

[21] James E. Humphreys. Reflection Groups and Cozeter Groups, volume 29
of Cambridge studies in advanced mathematics. Cambridge University
Press, Cambridge, 1990.



[22]

[31]
[32]

[33]

Gordon James and Adalbert Kerber. The representation theory of the
symmetric group, volume 16 of Encyclopedia of Mathematics and its
Applications. Addison-Wesley Publishing Co., Reading, Mass., 1981.
With a foreword by P. M. Cohn, With an introduction by Gilbert de B.
Robinson.

Lieven Lebruyn. Centers of generic division algebras, the rationality
problem, 1965-1990. Israel J. Math., 76:97-111, 1991.

Martin Lorenz. Class groups of multiplicative invariants. J. Algebra,
177(1):242-254, 1995.

E. Noether. Gleichungen mit vorgeschriebener gruppe. Math. Ann.,
78:221-229, 1918.

Claudio Procesi. Non-commutative affine rings. Atti. Accad. Naz. Linces,
Ser. VIII, 3(6):239-255, 1967.

Claudio Procesi. The invariant theory of n x n matrices. Adv. Math.,
19:306-381, 1976.

David J. Saltman. Noether’s problem over an algebraically closed field.
Invent. Math., 77(1):71-84, 1984.

David J. Saltman. Multiplicative field invariants. J. Algebra, 106(1):221-
238, 1987.

David J. Saltman. Invariant fields of linear groups and division algebras.
In Perspectives in ring theory (Antwerp, 1987), volume 233 of NATO
Adv. Sci. Inst. Ser. C: Math. Phys. Sci., pages 279-297. Kluwer Acad.
Publ., Dordrecht, 1988.

David J. Saltman. Multiplicative field invariants and the Brauer group.
J. Algebra, 133(2):533-544, 1990.

David J. Saltman. Twisted multiplicative field invariants, Noether’s
problem, and Galois extensions. J. Algebra, 131(2):535~558, 1990.

P. Samuel. Lectures on Unique Factorization Domains, volume 30 of
Tata Institute Lecture Notes. Tata Institute of Fundamental Research,
Bombay, 1964.

106



[34] A. Schofield. Matrix invariants of composite size. J. Algebra, 147(2):345~
349, 1992.

(35] Richard G. Swan. Invariant rational functions and a problem of Steen-
rod. Invent. Math., 7:148-158, 1969.

[36] Richard G. Swan. Noether’s Problem in Galois Theory. Emmy Noether
in Bryn Mawr. Springer Verlag, 1983.

[37] J. Sylvester. On the involution of two matrices of the second order.
Southport: British Association Report, pages 430—432, 1883.

[38] V.E. Voskresenskii. Birational properties of linear algebraic groups.
Math. USSR-Izv., 4:1-17, 1970.

[39] V.E. Voskresenskii. The birational invariants of algebraic tori. Usp.
Mat. Nauk., 30(2):1049-1056, 1975.

107



IMAGE EVALUATION
TEST TARGET (QA-3)

R EEE

13
K EEYEFTTE

16

I

t Main Street
er, 1 A
hone: 716/482-0300

- 716/288-5989
Rights Reserved

14

—
—
—_—
 —————

i

125

© 993, Applied Image, inc., All

I




