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“This is an exercise in science, or science fiction, i f  you like that better. Not for  
amusement: science fiction in the service o f science. Or just science, i f  you agree 

that fiction is a part o f it, always was, and always will be as long as our brains are 
only miniscule fragments o f the universe, much too small to hold all the facts o f the 

world but not too idle to speculate about them. ”

- Valentino Braitenberg
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Introduction

In his historical study on the progress of robots since the earliest existence of electric 

computers, Moravec preconceives tha t “Artificial minds for mechanical bodies capa­

ble of autonomous manual work finally seem within reach” [57]. The prospects of 

this statem ent rely on the challenging and ongoing research in the field of autonomous 

mobile robots.

1.1 Preface

Along with hardware and processing limitations, the challenges in the field of 

mobile robotics stem from the large and complex spaces encompassed by the sensors 

and actuators, making it difficult to draw meaningful information and to create 

intuitive sensor-actuator mappings. The research in this thesis attem pts to overcome 

these challenges by developing a controller capable of satisfying the following two

1
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Sec. 1.1 Preface 2

autonomous objectives:

1. Self interpretation of the input space

2. Self-determination of the mapping between the interpretation derived from 

Objective 1 and the actuator space

Since it is one of the most im portant features required by a functional mobile robot, 

navigation is the particular application field of mobile robotics chosen in which to 

implement these objectives. The navigation task involves purposefully traversing 

unfamiliar environments while dealing with noisy, imperfect sensor information. 

While several control schemes have been developed to  accomplish the navigation 

task, the behaviour based control paradigm continues to be an essential element of 

autonomous mobile robot navigation. Behaviour based controllers often incorporate 

reactive control schemes th a t use range sensors such as sonar and laser to  provide 

responsive control in dynamic and uncertain environments.

Fuzzy logic control is well suited for behaviour based approaches towards navigation 

as it can be made forgiving against sensor noise and imprecise or ambiguous inputs 

tha t inherently exist in real world environments. Fuzzy logic controllers (FLCs) 

have been implemented in many successful autonomous navigation systems [68]. 

However, while navigational behaviours based on fuzzy logic designs can produce 

good performance, the designs often require human intuition and an ad hoc trial 

and error approach th a t is inflexible and time consuming to implement. In recent 

research, the adoption of learning strategies, such as evolutionary and reinforcement 

learning, have attem pted to address this problem by automating the design of low 

level behaviours and behaviour integration [30], [79]. However, the large state space 

involved in mobile robot navigation often slows the learning of navigation tasks. 

A ttem pts to lower the dimensionality of the state space by grouping input data using 

expert knowledge only shift the element of input interpretation from one design stage
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Sec. 1.2 Thesis Organization 3

to another. An effective way to reduce the state space dimensionality is to cluster 

input data using a fuzzy clustering algorithm, so tha t the resulting fuzzy clusters 

can then be considered as fuzzy states or situations by an algorithm th a t can learn 

the association between situations and actuator values. Sonar data from sample 

indoor environments are partitioned with a fuzzy clustering algorithm. The resulting 

partitions may not correspond to the state space partitions tha t a human expert 

would use, but they would provide a good description of typical situations the robot 

will encounter in its environment.

Although the fuzzy clustering of robot data into situations occurs prior to the 

execution of the fuzzy control system, rule learning is online and is applied to 

navigational behaviours such as obstacle avoidance and wall following. Each fuzzy 

situation is associated with an action to be taken in tha t state; and a reinforcement 

learning algorithm is used to  associate punishments generated from a reward function 

to the state-action pair tha t caused the collision so tha t over several iterations an 

optimal policy is learned. This proposed system is referred to as an autonomous 

situation-based fuzzy control system  for the purpose of navigational mobile robots. 

As today’s field of mobile robots is still far from developing completely autonomous 

robots tha t are both useful and effective, this research attem pts only to incorporate 

features into the fuzzy control system (FCS) to  increase its autonomy in accomplishing 

navigational tasks.

1.2 T hesis O rganization

This thesis is organized in seven sections. Chapter 2 provides a literature review 

discussing how the following related challenges have been dealt with in the past: 

robot navigation, input interpretation and rule base learning. Chapter 3 summarizes 

background knowledge of topics which deserve a thorough introduction with respect 

to this thesis. These topics include mobile robots, the navigation problem, fuzzy rule
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Sec. 1.2 Thesis Organization 4

based systems, clustering, and reinforcement learning. The proposed autonomous 

situation-based FCS for robot navigation is described in Chapter 4. In this chapter, 

the proposed design is applied to a single low-level navigation behaviour: obstacle 

avoidance. The results are observed and analyzed in Chapter 5. W ith successful 

results, Chapter 6 investigates whether a similar system can be used towards learning 

other navigational behaviours by applying it towards the wall following task. As 

well, this chapter studies the need to  combine and fuse behaviours in order to create 

more purposeful autonomous robots. The two behaviours fused together are obstacle 

avoidance and goal finding. Finally, Chapter 7 brings main conclusions and indicates 

possible directions of future work.
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“Really we create nothing. We m erely plagiarize nature.”

-  J. Baitaillon

Literature Review

This literature review examines the previous work related to  the research described 

in this thesis. The general challenge of this research deals with the problem of mobile 

robot design and navigation. Therefore, first and foremost, the history of mobile and 

navigational robots is discussed. Secondly, several approaches tha t have been used to 

induce autonomy and intelligence in mobile robots are reviewed.

In this thesis, a FCS is the approach taken towards inducing intelligence in a mo­

bile navigational robot. Furthermore, in this thesis, two main objectives in the realm 

of the FCS will be actualized in attem pts to increase its autonomy. These two objec­

tives are input self-interpretation and the autonomous design of the fuzzy rule base. 

Thus, the final section of this Chapter details previous work toward fulfilling these 

two objectives.

5
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Sec. 2.1 History of Mobile Robots 6

2.1 H istory  o f M obile R ob ots

The study of behavioural mobile robots began in the 1950s when W. Grey Walter 

[78] experimented with robots tha t possessed simple reactive behaviours (i.e., 

ELSIE and ELMER). W ith an almost direct relationship between its sensors and 

actuators, minimal computation was involved. He studied how these simple, collision- 

retracting phototropic robots interestingly conducted themselves with response to 

their environment. Thus, from the demonstrations, he concluded th a t complex 

behaviours can emerge from simple systems. Following W alter’s observations, 

Braitenberg [15] continued to  build vehicles with simple electrical connections 

between two light sensors and two motors. Reminiscent of W alter’s ELSIE and 

ELMER, Braitenberg’s vehicles were either inhibitory or excitatory towards light, 

depending on the configuration of its interconnections. Observing the behaviours of 

these vehicles without any prior knowledge of its design would lead one to  believe 

tha t they encompassed a rather sophisticated level of intelligence. This was the 

fundamental idea of Braitenberg’s research, which furthered the robotics field of 

thinking vehicles.

Since the beginning of W alter’s experiments, however, traditional artificial 

intelligence (AI), a hierarchical approach, dominated the field of robot control for 

about 30 years starting from its emergence in the latter half of the 20th century. 

It was based on a sense-plan-act (or sens e-plan-execute) schema in which internal 

world representations, and the manipulation of these rich internal representations 

using deliberative reasoning methods, were used to plan the course of action [19]. 

The sense and execute components were considered to  be low-level aspects while the 

plan component was considered as a high-level aspect [69]. In 1971, one of the 

first mobile navigational robots, SRI International’s Shakey [59], was built on this 

overtly deliberative and logical planning architecture. Experiments followed in which 

Shakey navigated in a set of predetermined environments to  complete tasks. Its
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Sec. 2.1 History of Mobile Robots 7

logical foundations and high-level cognitive skills appeared attainable and attractive, 

however several issues arose.

The main problem tha t arose (in Shakey, and in other mobile robots based on 

traditional AI) was the intensive computation required by the logical reasoning and 

deliberations in the planning stage. This resulted in a failure of classical methods with 

its struggle of performing and processing in real time. Complimenting this problem 

was the fact tha t world models and symbolic representations were stored prior to 

execution. The drawback lied in the basis tha t planning is performed in the world 

model rather than the real world. Thus, the resulting action is executed blindly of 

the real world, ignoring unexpected characteristics or new changes tha t might occur 

in the environment. This resulted in the difficulty of integrating world models and 

the inability to  adapt to  new and dynamic environments.

W ith the discouraging prospects of traditional AI, researchers shifted from desiring 

sophisticated cognitive robots to desiring more practical and reactive behaviours in 

the decades following Shakey. Therefore, the need was to abandon representation and 

extensive planning, and tighten the coupling between the sensing and execution stages 

so th a t the interaction between the robot and the environment was more intimate. 

Brooks argued against the traditional artificial intelligence in navigational robotics 

[18] stating th a t the reliance on representation is lost when intelligence is approached 

in an incremental manner with a strict reliance on interfacing to the real world through 

perception and action. The real world is so complex tha t a world model rarely exists 

tha t could fully represent it. W ith mobile navigational robotics, “the world is its own 

best model” [16], thus all information about the world is derived from its sensors 

and there is no need for an internal model of the environment. This eliminated the 

plan component and favored a sense-execute sequence. Several other researchers 

agreed with this criticism of traditional AI based robots (e.g., [2], [50], [40]).

Subsequently, Brooks helped to  revive the study of behavioural robotics since Walter
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Sec. 2.2 Navigation and Control for Autonomous Mobile Robots 8

and Braitenberg, and proposed the subsumption architecture -  a modular top down 

approach to  behavioural robotics. In the subsumption architecture, the execution 

layer is divided into simpler behaviours th a t run in parallel. Each behaviour has a 

separate task and each is closely reactive to the environment. Since the introduction 

of this architecture, behavioural based mobile robots became more accepted.

Despite the popularity of behavioural and reactive robotics, traditional AI, or 

hierarchical, methods have not been abandoned. In fact, representational models and 

planning are still widely studied in their application towards robotics (i.e., partially 

observable Markov decision processes, Bayesian Nets, hidden Markov models, linear 

dynamical systems, particle filters, etc). Through the growing research in both 

subfields of robotics, a hybrid approach has emerged combining both behavioural 

and hierarchical methods. Arkin suggested th a t “The false dichotomy th a t exists 

between hierarchical control and reactive systems should be dropped” [3]. The 

strong intentionality of hierarchical approaches were useful in guiding reactivity a t a 

higher level (e.g., [4], [29], [48]).

2.2 N avigation  and C ontrol for A uton om ou s  

M obile R ob ots

Following the movement against hierarchical AI robotics, the study of behavioural 

based mobile robots tha t exhibited more intelligence and autonomy increased in the 

1980s. Researchers desired their robots to  learn its behaviours from the environment, 

rather than  explicitly telling their robots how to react. For example, Brooks and 

M ataric developed mobile robots tha t successfully learned how to  navigate online from 

maps th a t it would build as it wanders the environment [53]. In the task of designing 

behavioural mobile robots th a t navigate intelligently and autonomously, as opposed to
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Sec. 2.2 Navigation and Control fo r Autonomous Mobile Robots 9

the simple sense-react robots constructed by W alter and Braitenberg, several machine 

learning and computational intelligence techniques have been applied for both control 

and optimization schemes. The following sections include a brief survey of methods 

commonly utilized in mobile robotics for their sophisticated sensory-actuator mapping 

approaches.

2.2.1 Fuzzy Control System s

FCSs have been often used as a solution to controller designs for mobile robots. Their 

rule based system assists in good reasoning and decision making skills, fulfilling an 

im portant aspect of intelligence. They are also beneficial because their IF-THEN rule 

structure allows an easy mapping between sensory and actuator information. Equally 

im portant, they are able to forgivingly process the uncertain and ambiguous data 

tha t naturally exists in real environments. Saffiotti, Ruspini, and Konolige designed 

one of the first notable fuzzy logic controllers for a navigational mobile robot using 

SRI’s International mobile robot Flakey as a testbed [66]. Flakey had 12 behaviours 

and each behaviour had 4-10 predesigned rules. The behaviours were successful, 

however, the control rules were written based on the designers’ intuition of the desired 

performance and constant debugging and tuning of the parameters occurred through 

several trial and error experiments. O ther examples th a t incorporate fuzzy methods 

as controllers for mobile robots are found in [71], [49], [74], These and other FCSs 

are successful in utilizing linguistic rules and performing smooth transitions between 

them. However, there is still a high reliance on the human designer to specify the 

rules, functions and parameters of the knowledge base. Thus, the performance of 

the FCS also depends on the humans perception of the real-time environment before 

execution. This comes as a disadvantage as no real learning, nor adaptiveness to 

unexpected environments, is incorporated in a robot tha t is based solely on fuzzy
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Sec. 2.2 Navigation and Control for Autonomous Mobile Robots 10

logic. Rather, an FCS incorporates sophisticated processing and reasoning of real 

world data.

2.2.2 Neural Controllers

Artificial neural networks have been suggested as a promising method for controlling 

mobile robots due to  their resemblance to natural biological systems with adaptive 

characteristics. They are well suited for learning numerical data pairs, such as 

sensor-actuator pairs for mobile robots. In their review on neural approaches for 

navigation, Krose and van Dam [44] emphasize the advantages of neural control: no 

world models, as in traditional AI, or predefined rules, as in fuzzy logic controllers, 

are required a priori. They can be well trained to learn reactive behaviours for 

mobile robots due to  the strong relationship they provide between the sensors and 

actuators. Another advantage is tha t self-supervised learning is possible with the 

training data being provided from the robot’s inputs, outputs, and their corresponding 

performance with the environment. Thus, training can continue as the environments 

change, allowing the emergence of an adaptive characteristic towards dynamic worlds. 

W ith the high-level information and symbolic knowledge tha t are stored in a neural 

network’s intricate internal structure, neural networks have been successful in learning 

and adapting complex behaviours. Krose and van Dam describe a controller tha t 

learns to avoid obstacles from negative feedback through the network whenever a 

collision occurs. However, after overcoming the issue of input interpretation via self­

organization schemes, they still encountered problems of misclassification of safe and 

dangerous states. The network of another similar example of a neural controller, 

ANNIE, improves on Krose and van Dam’s controller because it further classifies 

the strength of the feedback value to  varying degrees, rather than just indicating 

the presence or non-presence of a collision [42]. Although ANNIE was successful,
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Sec. 2.2 Navigation and Control for Autonomous Mobile Robots 11

the main disadvantage of its controller, and neural controllers in general, is tha t 

an optimal network structure is unknown before training and training takes a long 

time since the learning begins from scratch. As well, the fusion of two or more 

behaviours becomes problematic, particularly when the behaviours are contradicting. 

This is due to  the strong reflexive nature of neural networks. Their proficiency in 

learning numerical data pairs makes it difficult for neural networks to learn and 

distinguish multiple behaviours. This is exemplified in [26] in which a neural-based 

robot oscillates back and forth in response to  the obstacles in its path while it is 

trying to  reach a goal

2.2.3 Reinforcem ent Learning

Reinforcement learning [72] has its advantages in a diverse range of applications, 

including mobile robots, because of the generality of the problem specification. The 

theory th a t behaviours can be learned by reinforcing positive and negative behaviours 

has been applied to several robot navigation applications (e.g., [6], [32], [51], [54], 

[63]).

Millan [54] lead the design of reinforcement learning robots and built TESEO, a 

navigational robot th a t was able to  learn efficient obstacle avoiding and goal finding 

behaviours through reinforcement learning. TESEO generalized its input situations 

and output reflexes to  further reduce the possible mappings between the two spaces. 

By continually punishing unsuccessful situation-reflex pairs, and rewarding successful 

pairs, TESEO also learns incrementally, however the rate of learning is greater 

since the search space is significantly reduced through the generalized situations. 

Furthermore, with reinforcement learning’s emphasis on predicting which pairs receive 

the most cumulative rewards, TESEO learns how to avoid encounters with undesirable 

and dangerous situations, even when its sensors cannot detect obstacles. This is an
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advantageous characteristic of reinforcement learning -  to foresee which situation- 

reflex pairs are most beneficial in the long run. In TESEO, however, perceived 

situations are added incrementally and discrete classification of the state to the 

situations is rather ambiguous. TESEO, and other reinforcement learning based 

controllers, still have the challenge of efficiently classifying the situations while, a t the 

same time, they are learning how to map the situations and reflexes. As well, with 

reinforcement learning’s focus to learn situation-action pairs, it would also undergo 

the same difficulties in learning multiple behaviours as neural networks. Nevertheless, 

reinforcement learning is adaptive and continuous and, with an efficient generalization 

scheme for its input and output spaces, it is quite suitable for online learning.

Acquiring navigation behaviours through reinforcement learning and neural 

networks have several overlapping characteristics. Both learn sensor-actuator pairs, 

both can effectively learn through interaction with the environment and both 

incrementally update its weights or utility values towards reaching an optimal stable 

system. Many neural networks actually exploit the temporal-difference methods and 

reward functions of reinforcement learning algorithms. A difference lies, however, 

in tha t reinforcement learning focuses on evaluating the actions taken rather than 

instructing which actions to take. In addition, reinforcement learning with a 

minimized rule space is advantageous over pure neural controllers with complex 

architectures. The same simple sensory-actuator mapping developed in reinforcement 

learning is distributed throughout the complex set of weights of the network making 

learning less generalized and more complicated.

2.2.4 Hybrid M ethods

Evidently, machine learning and computationally intelligent methods used 

singlehandedly have their advantages and drawbacks. Many attem pts to  combine
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these methods are beneficial to  capitalize on each m ethod’s strengths and to 

compensate for each m ethod’s weakness. For example, evolutionary neural 

networks have been used in designing robot navigational controllers and have been 

demonstrated to  perform properly as classifier systems [38] th a t exhibit adaptive 

behaviour. Such hybrid classifiers benefit from the genetic algorithm’s optimization 

capabilities and explorative direct search, particularly of large spaces. From the 

neural network, they benefit from the ability of multi-layer perceptrons to encode 

sophisticated numerical behaviours and from the network’s ability to  learn through 

back propagation methods. Some examples of applying evolutionary neural networks 

can be found in [23], [58]. Among the growing number of hybrid architectures, a few 

notable ones are genetic fuzzy systems [12], evolvable neural networks [7], uniform 

coevolution [9], fuzzy neurons [62], [35], reinforced fuzzy systems [11], reinforced 

neural networks [47] and reinforced evolutionary algorithms [25], [43]. Section

2.3 further discusses the combination of fuzzy systems with other machine learning 

methods in learning its param eters or rules.

2.3 Fuzzy System s

Following the notion tha t the combination of two or more learning methods can benefit 

from the individual advantages of each method and compensate for each other’s 

weaknesses, the situation-based FCS proposed in this thesis exploits the benefits 

from clustering, reinforcement learning and fuzzy systems. Fuzzy systems suffer from 

the fact tha t a human expert is required to  design its rules and membership functions 

(input interpretation). The input interpretation for the fuzzy system is handled by 

a clustering technique th a t generalizes the environment into situations. The design 

of rules is handled by the reinforcement learning technique. These two enhancing 

methods are combined with the reasoning and decision making skills of the fuzzy
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system. In the following two sections, alternative methods tha t handle the issues of 

input interpretation and rule learning for fuzzy systems are discussed.

2.3.1 Input Interpretation for Fuzzy Logic Controllers

Sensory input interpretation deals with interpreting the environment information 

from sensors. This is difficult because even a simple robot can have several sensors 

and, with the wide range of possible values, this can create an enormous number of 

possible input combinations th a t the robot controller must understand. As a result, 

the input space of a robot’s sensory values is large and complex and the ability to 

draw meaningful information from the sensors is a challenging task. Ideally, input 

interpretation involves perceiving the environment through extracting specifically 

relevant information and understanding or recognizing its significance.

As mentioned in Section 2.2.1, a disadvantage of fuzzy logic controllers is the 

need for an expert to  design the knowledge base functions and parameters. These 

components direct the fuzzy logic controller in interpreting the potentially large and 

complex input space. As a result, generalization or classification schemes should be 

applied to  the input space.

Several classification methods have been used to fuse and interpret multiple 

sensory inputs into situational data. For example, TESEO incorporated incremental 

classifications of situations as it explored the environment. However, this was 

problematic because situational classes were created even before the environment 

was fully explored. Hoffmann used feed-forward neural networks to classify different 

environment situations given the robot’s sensor data and steering angles. From 

the neural network, the controller is able to distinguish the sonar data into eight 

different basic situations (e.g., dead end, corners, walls) [36]. Similarly, Provost et 

al. used self organizing maps [41] to  develop a set of higher level perceptual features 

from the low level sensory inputs [64], Researchers who have used evolutionary
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techniques towards learning the param eters of the membership functions in genetic- 

fuzzy systems (e.g., [21], [52]) encode the directions for input interpretation within 

its chromosomes. Although it provides great encoding flexibility and a diverse search 

for input membership functions and parameters, the range of possible values is 

typically so large tha t convergence is difficult. Finally, researchers have also used 

clustering techniques as a method of reducing the dimensionality of the input sensory 

information [60]. Clustering measures the similarity between sensory data  and 

forms groups of data  th a t can represent higher level situations. In Brooks’ and 

M atarics’ experiments in which robots learned by building maps of its environment 

[53], clustering techniques were used to  classify objects such as walls, corridors, etc. 

This provided a successful generalization of the robots surrounding environment. 

Furthermore, by calculating the belongingness of the state to  each cluster, the input 

space is heavily reduced from generalizing several sensors, and their respective ranges, 

to  single situational clusters. However, some precision of the robot’s state is inherently 

lost with this generalization scheme.

2.3.2 Fuzzy Rule Base Learning for Fuzzy Logic Controllers

Recently, much research has been done towards the use of fuzzy controls in directing 

autonomous robots. The problem in fuzzy logic controllers lies in the need for the 

experience and intuition of an expert in designing the controller’s rule base. The 

ability of the fuzzy logic controller to  learn and self-adapt its own rules would increase 

the level of its autonomy.

The neuro-fuzzy approach has been gaining popularity in recent years. Because of 

their complex nature, fuzzy neural networks are able to embed the insightful symbolic 

knowledge of the fuzzy model. As well, neural learning capabilities aid in adapting to 

dynamic environments. Some background and applications of neuro-fuzzy methods 

can be found in [55], [20], [73], [79]. Although several researchers proved successful
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in learning navigational behaviours via the neuro-fuzzy approach, many issues arose 

such as the difficulty in determining the network architecture, long training times, 

and difficulty in providing leamable training data (in supervised and unsupervised 

neural learning).

The application of evolutionary algorithms towards the learning of fuzzy rules, as 

well as parameters (i.e., genetic-fuzzy systems), has also been widely investigated. 

W ith the large and complex search space involved in determining the optimal rules 

and the optimal parameters of the membership functions, evolutionary algorithms 

benefit from their flexible encoding schemes and evolutionary operators (i.e., mutation 

and crossover). A well defined fitness function and appropriate selection strategies 

facilitate population convergence to  individuals representing optimal fuzzy models. 

In the Michigan Approach, individuals in the population represent separate rules, 

thus the fuzzy rule base is comprised of all the individuals in the population [35]. 

The problem arises in the credit assignment of the rules. It is difficult to evaluate 

competing rules when they all combine their properties to generate the actions of 

the system. Thus, a compromise between cooperation and competition [12] is 

needed to  find an entire rule base whose individual rules successfully collaborate 

to meet the desired performance. This problem might be solved with the Pittsburgh 

approach in which each individual in the population encodes the entire fuzzy rule 

base and/or knowledge base parameters [35]. Evaluation of each individual is 

more straightforward such tha t each individual can be evaluated in the environment 

separately from others. The disadvantage, however, is tha t with the large population 

sizes and high number of generations generally required with evolutionary algorithms, 

the evaluation of each individual would be computationally intensive and time 

consuming. Several genetic-fuzzy systems, particularly those applied to navigational 

mobile robots, may be found in [36], [37], [31], [46].

Finally, reinforcement learning can be used for learning the fuzzy rule base of
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a navigational robot controller (e.g., [11], [8]). Bonarini has studied the learning

of fuzzy rules through both evolutionary algorithms and reinforcement learning 

[14]. He developed a robot, ELF, which demonstrated an agent tha t can learn 

reactive behaviours, strategic behaviours, behaviour coordination and multi-agent 

coordination through reinforcement learning of the fuzzy rule base [13]. The 

system was successful and was able to  adapt to unknown environments. Thongchai 

experimented with the similar method in an FLC tha t learned two navigational tasks: 

obstacle avoidance and landmark detecting [75]. Although his robots were successful 

in learning both behaviours, as with Bonarini, he had several inputs and several fuzzy 

sets for each input. This created a large number of possible input-output mappings, 

thus, learning was time consuming and difficult.
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“There is no practical reason to  create machine intelligences 
indistinguishable from human ones. People are in plentiful supply.
Should a shortage arise, there are proven and popular m ethods for 
making more. ”

-  Anon

o
m . m

Background

The word robot derived its meaning from the Czech word robota, meaning forced labor 

-  after a play R.U.R.: Rossum’s Universal Robots (1920) by playwright K. Capek 

in which mechanical human clones were created to  be slave workers. Brooks defined 

a robot being as a robot which ‘lives’ in the world, carrying out its own agenda of 

on-going projects, while maintaining the necessary balance with its environment to 

ensure its continued successful operation [17]. More generally, robots are defined 

as machines tha t are able to extract information from their environment and use 

knowledge about their world to act safely in a meaningful and purposive manner [5]. 

The interaction with their surrounding environment may be strictly controlled and 

predefined or it may be more independent and autonomous.

18
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3.1 M obile R ob ots

Mobile robots have the following major components:

S ensors. Robots are equipped with sensors th a t allow them to  perceive information 

about themselves and the environment. There are generally two classes of 

sensors. Proprioceptive sensors are internal sensors tha t give information about 

the robots internal status. These sensors provide information of the robots 

odometry, speed, acceleration, position, etc. Exteroceptive sensors are sensors 

tha t provide information of the robots external environment. These sensors 

provide information of the objects surrounding the robot through range finders 

(i.e., sonar, infrared, laser), cameras, tactile sensors, etc.

A c tu a to rs  o r  E ffec to rs . In order to carry out tasks and to respond to the 

environment, robots are also equipped with actuators. There are a wide range 

of actuators, but among the most common are limbs, grippers and motion 

actuators tha t control the robots velocity, heading and acceleration (i.e., motors, 

wheels, legs, etc.).

C o n tro lle rs . Controllers are needed to determine the most appropriate actuator 

values for the given situation of the robot and its environment.

3.2 N avigation  P rob lem

Autonomous robot navigation is a necessary characteristic in mobile robots which 

entails moving purposefully through environments while executing behaviours tha t 

maintain a desired performance or complete particular tasks. In doing so, robots 

must combine and integrate multiple sensors, have many degrees of freedom and make 

control decisions in order to meet real-time deadlines. The navigational behaviours
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could include reaching a goal, following walls or objects, keeping track of its position 

relative to the environment (self-localization), object recognition and manipulation, 

creating a map of its surroundings (mapping), path planning, etc.

Three navigational tasks which will be further studied in this thesis are obstacle 

avoidance, wall following and goal finding. The safety aspect of navigation can be 

handled by various methods such as obstacle avoidance. Obstacle avoidance typically 

uses information about the robot’s immediate surroundings to choose an action (i.e. 

heading) appropriate to  avoid obstacles in the environment. Such information is 

provided through means of the robot’s sensory subsystem, equipped with proximity 

sensing devices. Wall following is another behaviour which could also be considered as 

a safety component in some environments. Otherwise, it is a navigational behaviour 

in which a particular distance between the robot and its adjacent wall must be 

maintained. The challenge arises in determining the heading adjustments it must 

make in response to  the various positions it could have with respect to  the wall. The 

problem of goal seeking is tha t of performing actions to react from a current position 

towards the desired location despite any obstacles or barriers tha t may exist in its 

path.

3.3 C lustering

Clustering, or cluster analysis, is a technique for partitioning and finding structures 

in data [39]. By partitioning a data set into clusters, similar data  are assigned 

to  the same cluster whereas different data  should belong to different clusters. The 

underlying motive for clustering is to be able to  draw structure and natural groupings, 

and to  prospectively extract significant conclusions about the data as a whole. While 

it is possible to assign each data-point strictly to  only one cluster, as in conventional 

clustering techniques such as K-means clustering [34], such crisp assignment rarely 

captures the actual relationship and similarity among the data, i.e., data-points from
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the real world can simultaneously belong to multiple clusters to  varying degrees.

A variant to  conventional discrete clustering methods leads to  the formulation of 

fuzzy clustering [10], where membership degrees between zero and one are used 

instead of crisp assignment of the data to  clusters. In addition to better conformity, 

fuzzy clustering provides a simple interpolation between the cluster prototypes and 

an accurate representation of the relationships among the data. This la tter property 

is very im portant when considering clustering in connection with rule-based systems 

as described in Chapter 4.

The fuzzy c-means clustering algorithm [10] is a commonly used method of fuzzy 

clustering. It is based on the minimization of an objective function J  with respect to 

U, a fuzzy partition of the data set, and V, a set of c prototypes. Alternatively, U 

is the membership matrix of the data  points and cluster centers and V  is the cluster 

centers matrix. The following equation is the objective function J  of the order m

n  c

Jm(U ,V )=  { j = l . . . n , t  = l . . . c , m > l }  (3.1)
j =i *=i

where ||*|| is any norm expressing the similarity between the data points and cluster

centers (e.g., Euclidean distance). This similarity measure between two points, i and 

j ,  can also be expressed as D tJ. Although the Euclidean distance is one of the most 

common measures of similarity between two points used in clustering techniques, other 

such similarity measures, such as Canberra, Squared Chord, or Squared Chi-squared, 

are further discussed in [70].

The membership of data-point j  to cluster i, denoted by Uij, is determined by

The partition order, m , affects the degree of fuzziness. If m  =  1, then the partition 

is hard or discrete as in K-means clustering. As m  increases, the fuzziness of the
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partition increases and becomes maximally fuzzy (uik =  as rn — > 00.

The number of cluster prototypes, c, must be specified prior to clustering in most 

clustering algorithms. However, if the optimal number of clusters is not properly 

selected prior to  execution, it is likely tha t the resulting clusters will not closely 

match the natural structure of the data. Thus, different numbers of clusters should 

be experimented with. The optimal number of clusters for a set of data is such 

tha t distances between the data and their respective clusters (weighted by their 

memberships for fuzzy clustering) is minimal while the distances between the clusters 

is maximal. There are some techniques supported by this principle, such as subtractive 

clustering [22], which estimate an appropriate number of clusters for a given data 

set.

The fuzzy partition is eventually obtained through the iterative optimization of 

the objective function in Equation 3.1 with the gradual update of memberships Uij 

and cluster centers V* following Algorithm 1. Updating the cluster centers such 

tha t they move towards more centroidal positions within their respective partitions 

ensures minimization of the objective function since it enforces distinctive high and 

low memberships.

3.4 Fuzzy C ontrol S ystem s

A fuzzy control system (FCS) is a controller tha t performs mapping from the space of 

situations th a t the robot can encounter to the space of actions the robot can perform 

through the use of fuzzy logic. FCSs can be used to extend conventional approaches 

to mobile robot navigation using the notion of fuzzy behaviours [79]. In the case of 

navigational mobile robots, fuzzy logic can be used in deciding which actions to take 

(e.g. velocity, direction) based on the crisp values from its surrounding environment. 

The advantage is th a t it allows the intuitive nature of navigation to be easily modelled
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A lgorithm  1 Fuzzy C-Means Clustering algorithm
1: Choose T  as the maximum number of iterations

2: Choose e as the maximum change in cluster positions to indicate the convergence 

of cluster centers.

Choose c as the number of the cluster centers for cluster center vector V  

Guess the initial positions of the cluster vector randomly V  

repeat

for all Uij E U do
Calculate membership of each data point j  to  each cluster % using 

Equation 3.2 

8 : end for

9. for all Vi E  V  do

10: Update center clusters u* using the following averaging equation such tha t

the cluster centers are placed in more centroidal positions with respect 

to its current position within the data. Thus, the objective function in 

Equation 3.1 is minimized.

E " = i  (uijXj)
^  ™ ---------

E j = l  Uij

11: end for

12: until t = T  or \Vt — Vt+i\ < £
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using linguistic terminology. And with its intelligent reasoning, it allows for smooth 

uninterrupted robot motion [76]. In order to  further understand how FCSs operate, 

a review in fuzzy logic is deserved.

The notion of a set is implied by the encapsulation of objects into a collection 

in which the members of the collection all share some general feature or property 

[62]. Zadeh claimed th a t many sets in the world tha t surround us are defined by 

non-distinct boundaries [81]. W ith discrete belongingness to sets, semantic value or 

meaning is surely lost. Fuzzy belongingness, through fuzzy sets, encompass a more 

accurate and representational description of the compatibility between an element 

and a set. Fuzzy systems convert real-world input values into their respective degrees 

of memberships to  these fuzzy sets so tha t approximate reasoning can be used in 

decision making.

Membership functions are used to determine the degree of belongingness of an 

element or value to  a set. This process of evaluating the membership degrees of 

crisp data  to  each corresponding fuzzy set is called fuzzification and the resulting 

membership grades are the fuzzified inputs. The membership of the element x  to 

fuzzy set A  given the universe of discourse X  is between 0 and 1, inclusively, and is 

denoted by

fiA(x) : X  —> [0,1].

In fuzzy systems, although not limited, these membership functions often take 

on the following various shapes: triangular, trapezoidal, gaussian, singleton, sloped 

ramp, etc. Each membership function represents a linguistic label, in which a 

linguistic variable has one or more linguistic labels to describe it. For example, 

Temperature is a  linguistic  variable. I ts  linguistic labels could include hot, warm and 

cold. Membership degrees of an element x  to hot, warm and cold can be evaluated 

to  describe the tem perature of x.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 3-4 Fuzzy Control Systems 25

Fuzzy behaviours then associate the fuzzified inputs with an appropriate fuzzy 

action through fuzzy rules. The fuzzy rules together form the inference engine, or the 

rule base, of the fuzzy logic controller. The fuzzy rule base is a set of IF-THEN or 

IF-THEN-ELSE rules in which the antecedents and consequents of the rules are made 

up of the linguistic values pertaining to  given membership functions [45]. Generally 

in mobile robotics, the antecedents refer to sensory data  while the consequents refer 

to  actuator control signals. The structure of a fuzzy rule with two antecedents and 

one consequent is illustrated below

IF x  is A  and y is B  THEN z is C,

where x  and y are elements in the universes of discourses X  and Y ,  respectively, and 

A  and B  represent the linguistic labels of their corresponding fuzzy sets.

According to the Min-Max fuzzy logic inference method, the minimum numeric 

value among the antecedents is the strength of the rule. For each rule, the linguistic 

label(s) of the consequents accordingly take on numeric value of its rule strength. 

Then under composition, each linguistic label of the system takes on its maximum 

numeric value determined among all the rules in the rule base. The numerical 

values assigned to  each consequent linguistic label are the fuzzified outputs. More 

information on the Min-Max inference method and other fuzzy logic inference methods 

can be found in [24], Finally, defuzzification is used to convert the fuzzified outputs 

into a single crisp output. In the Center of Gravity [56], the output variable is 

determined by finding the centroidal position among of the membership functions for 

th a t fuzzy linguistic variable according to  Equation 3.3. More information on the 

Center of Gravity method, and other defuzzification methods can be found in [62].

_  E f c = l ( w k  • x k )  O')

E f c = i K )
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Figure 3.1 depicts the workings of a FCS with two inputs and one output via the 

fuzzy logic components: fuzzification, rule evaluation, and defuzzification. Triangular 

membership functions are used for the input fuzzy sets, and singleton membership 

functions are used for the output fuzzy sets. There are 4 membership functions for 

each input and 4 membership functions for the output. Thus, there are 8 input 

fuzzy sets and 4 output fuzzy sets. The components combined generate intelligent 

reasoning and inference processes for decision making. As a result, FCSs provide a 

smooth interpolation between a set of rules.

FUZZIFICATION RULE EVALUATION DEFUZZIFICATION

R U LES:

1. If x is A1 th e n  

z  is D1 ...

x

y

Figure 3.1: A high level diagram of a typical FCS

3.5 R einforcem ent Learning

Reinforcement learning problems exhibit online learning and dynamic adjustments in 

order to search for optimal methods and actions to  maximize cumulative rewards over 

time. Some examples include adaptive control systems, game playing machines, and 

autonomous robot navigation and exploration. Evolutionary heuristics such as genetic 

algorithms or genetic programming have been previously applied in solving such 

problems. However, they lack in the sense tha t they require time consuming stochastic 

searches of large and complex spaces. Instead, a more general machine learning 

technique, tha t is closely dependent on interactions with the environment, would
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be more efficient. Reinforcement learning is favored for its generality and similarity 

to  how humans think and learn on a higher level -  through experience. Sutton 

describes reinforcement learning as a computational approach to understanding and 

automating goal-directed learning and decision-making [72]. The learning agent 

determines which actions yield the most rewards in a particular environment by 

exploring and performing several different actions repeatedly thus learning which 

actions to  exploit.

The underlying theories of reinforcement learning include the following: trial and 

error, optimal control and temporal-difference (TD) learning. Trial and error is 

essentially performing actions and determining which are beneficial by observing 

the error they acquire from the environment. This is an im portant aspect of 

reinforcement learning as experience is gained and exploited from the rewards and 

penalties received. Optimal control is controlling a system, through developing 

control policies, such th a t its dynamical behaviour over time is optimized. Dynamic 

programming (DP) and Markovian decision processes (MDPs) are used in solving 

optimal control problems. However, although MDPs and DP require complete 

knowledge of the system, reinforcement learning problems do not always fulfill this 

requirement, nor do they always fulfill the Markov property which states th a t the 

future of the system is independent of its path. Therefore, reinforcement learning 

often deals with approximating MDPs, in particular, finite MDPs (i.e., MDPs in which 

the states and actions are finite). Finally, TD learning is driven by the difference 

between temporally successive elements. It uses sampling from the environment, 

an idea derived from Monte Carlo methods. Consequently, the incorporation of 

TD-learning allows reinforcement learning systems to utilize the ideas of DP and 

approximate MDPs without having complete knowledge of the system -  thus, a 

model is not required. DP is im portant in reinforcement learning particularly 

because of the bootstrapping method in which estimates are learned from previous
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estimates. This allows a system to  gradually reach an optimal function with successive 

approximations. Eventually, the system converges deterministically to a single answer 

as long as the learning rate remains small.

A reinforcement learning system consists of a set of defined attributes:

• The e n v iro n m en t, or the m o d e l of the environment, provides the perceived 

s itu a tio n s  (or s ta te s )  and stimuli for the robot to interact and learn from.

• A ctio n s  are the possible executions the learning agent may perform with 

response to the perceived situation.

• U til ity  v a lues  are assigned to  each situation-action pair to indicate how 

beneficial it is to perform th a t action in the perceived state. The utility values 

are assigned through the action-value function.

• R ew ard s  are the immediate reinforcements the agent receives to specify the 

desirability of the performed action in the perceived state. The rewards are 

defined by the reward function.

• The re w a rd  fu n c tio n  defines and enforces the desired goal of the learning 

problem by assigning the rewards to situation-action pairs depending on how 

they perform in the environment.

•  The b e h a v io u r  po licy  determines how the learning agent responds to the 

environment by indicating which actions to  execute in the perceived state. 

It instructs the agent to  either explore the actions and expand its learning 

experience, or to  exploit the actions it already knows will gain positive rewards. 

Behaviour policies may either be stochastic allowing an explorative search (i.e., 

soft policies), exploitive through repeatedly choosing the actions with maximal 

utility values (i.e., greedy policies), or a combination of both (i.e., soft-max 

policies).
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Reinforcement learning relies on a continual combination of exploration and 

exploitation. Exploration facilitates visiting new parts of the input space to 

expand the learning experience. Exploitation utilizes the knowledge gained 

from exploration to increase the rewards gained from the environment. Ideally, a 

progressive combination of the two should be performed to  continually evaluate 

and improve the agent.

•  The s ta te -v a lu e  fu n c tio n  (Vir(s)) is the expected return when starting in 

the current situation and following the given policy ir. Therefore, it gives an 

indication of the desirability of the state s.

• The ac tio n -v a lu e  fu n c tio n  (Q'!r(s , a)) is the expected cumulative return when 

taking the particular action a in state s and following the given policy. This 

function learns which actions produce the highest rewards in the long run or 

after several states, as opposed to  which actions produce the highest rewards 

in the immediate state. For example, a particular action may receive a low 

immediate reward, but it may produce higher cumulative rewards in the states 

to  follow than another action tha t has a higher immediate reward.

•  O p tim a l va lue  fu n c tio n s  (7r*) determine the policy which receives the most 

possible rewards over the long run (i.e., Greedy policy). The optimal state-value 

function is given as V*(s) =  m axV'R(s) and the optimal action-value function 

is given as Q*(s, a) — maxQ'K(s,a).

Algorithm 2 describes how the above attributes of reinforcement learning are 

combined.

From the constant interaction with the environment and from the concept of delayed 

rewards in teg ra ted  in to  th e  value function , ac tio n s affect th e  im m ed ia te  rew ard , as 

well as the subsequent rewards afterwards. This allows the learning agent to  effectively 

maximize rewards and optimize performance over time.
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A lgorithm  2 Reinforcement Learning 
1: Define the conditions of a terminal sta te  
2: Define the possible actions and perceived states  
3: Initialize the u tility  values of the state-action  pairs 
4: repeat
5: Observe perceived sta te  from the environment
6: From the behaviour policy, determine an action
7: Perform the determined action
8: From the reward function, observe the reward resulting from the action
9: From the value function, update the u tility  value of the perceived sta te

and the action  performed 
10: until S ta te  is terminal
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“Third Law o f Robotics: A robot m ust pro tect its  own existence as 
Jong as such protection does not conflict with the F irst o f  Second 
Law.”

-  Isaac Asimov

4LMm
mm

Situation-Based Fuzzy Control System for 
Autonomous Mobile Robots

FCSs are advantageous for their good reasoning capabilities and their ability to  han­

dle ambiguous and vague inputs. The navigational system proposed in this chapter 

exploits these benefits of FCSs. Furthermore, the proposed system attem pts to in­

crease the autonomy of a typical FCS (Figure 3.1) through the modification of the 

fuzzification and rule evaluation components.

4.1 O verall S tructure

The proposed navigational system described in this chapter is referred to as 

an autonomous situation-based FCS. It attem pts to  meet two objectives: self­

interpretation of the input space and self-determination of its fuzzy rule base. It

31
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CLUSTERING

REINFORCEM ENT LEARNING

ROBOT
SONAR
DATA ENVIRONMENT

ROBOT

PERFORM ANCE

Figure 4.1: Diagram of the proposed situation-based FCS 

incorporates two features to meet these two objectives:

• The s itu a tio n -b a se d  component is used to interpret the robot’s input space. In 

the fuzzification step, a membership function determines how closely the robot’s 

current state belongs to each fuzzy set, such th a t each fuzzy set represents a 

particular situation the robot could encounter with respect to its environment. 

These situations are determined prior to execution of the FCS through the 

off-line fuzzy clustering of the robot’s sensory space.

•  The a u to n o m o u s  component is based on reinforcement learning and it used 

to  acquire and adapt the FCS’s fuzzy rule base. From clustering of the robot’s 

sensory space, the resulting situational clusters are the appropriate antecedents 

of the fuzzy rules in the rule base, while the consequents express the actions 

the robot can execute in response to the situations. For the rule evaluation 

step, the rules themselves are initially random and unknown. They are learned 

on-line through the process of reinforcement learning.
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The overall structure of the proposed situation-based FCS is illustrated in Figure 4.1. 

It is a modified structure of the typical FCS shown in Figure 3.1 where the inputs 

are the 8 sonar range values (s.t) and the output is a control action (i.e. heading), c 

is the number of clusters and num a is the number of possible actions for the single 

control action. The membership function uaituati<mi{.s) determines the belongingness 

of the sonar data s to  the fuzzy set situatiorii.

The proposed system is used to learn navigational behaviours for mobile robots, 

where a behaviour, intuitively, is a particular control regime tha t focuses on achieving 

one specific, predetermined goal [67]. The predetermined goal used for these 

experiments is obstacle avoiding. Therefore, the consequents of the fuzzy rule base is 

the turning angle or the relative change of the robot’s current heading. In expanding 

the performance of the FCS, velocity optimization is then incorporated as a second 

consequent in Section 4.7.

As seen from Chapter 2, fuzzy systems, reinforcement learning and fuzzy clustering 

have been previously used and experimented with in their application towards robot 

navigation. The novelty of the approach in this thesis, however, lies in the hybridized 

combination of these three methods. Reinforcement learning has been shown to 

be useful in learning beneficial long term actions in an online environment (i.e., 

Section 2.2.3). Subsequently, it is also efficient in responding to changing and 

unexpected environments. Reinforcement learning, however, suffers from the curse 

of dimensionality -  the amount of computation will increase with an increase in the 

number of inputs or state variables. Thus, clustering of the robot’s sensory data 

serves to achieve two aspects: it interprets and draws meaningful information from 

the crisp input data  and it overcomes the curse of dimensionality by reducing the 

state variables. The resulting reinforcement learning system is not a finite MDP -  

states and actions are fuzzy. Therefore, the application of reinforcement learning onto 

a FCS requires modification of the value function to account for the varying degrees
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of membership to states and actions. The intent is to  take advantage of FCSs and 

incorporate efficient fuzzification schemes and a simple rule structure in which the 

rules are learned autonomously through interacting with the environment.

4.2 R ob ot S im ulation  and E nvironm ent

The simulations model the Pioneer 2DX mobile robot from Activmedia [1], For 

sensing, it has 16 proximity range sonars placed around its body. For control purposes, 

it has a left and right motor which, in combination with its 3 wheels, are used to 

control the robot’s velocity, acceleration, displacement and rotational movements. 

Two large wheels are placed in parallel op each of the robot’s sides. Each of these 

side wheels is connected to  a motor, while the main functionality of the back wheel is 

to  keep the robot steady (Figure 4.3b). In this research, only 8 front sonars are used. 

They are spaced nearly evenly from 90 degrees at its left side, and around its front 

to  -90 degrees at its right side (Figure 4.3a). The maximum range of the proximity 

sonars is 3000mm. The experiments in this thesis model the Pioneer 2DX robot in a 

simulated environment.

During the simulations, the velocity and heading are controlled by the FCS. The 

velocity is either constant a t 150 m m /s, or it varies between 100 m m /s and 300 m m /s. 

The maximum possible velocity of the Pioneer 2DX is 300 mm/s. The relative heading 

varies between -90 left to 90 right. The FCS determines the heading and/or velocity 

values after each iteration and commands the robot to  move in the acquired direction 

and speed. For each iteration, the robot maintains its command by continuing its 

current motion for 1500ms. If a collision occurs, the robot is programmed to  retract 

slightly back and forth, adjusting i t ’s heading relative to  the position of the obstacle 

it collided with, to help it recover from stalled positions.
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Figure 4.2: Pioneer 2DX a) Sonar placement b) Wheel placement

The robot is placed in two-dimensional rooms equipped with walls, corridors and 

polygon obstacles placed at varying angles. The robot is represented by a small circle 

with a line stemming from its center to an edge of the circle. The position of this line 

determines the direction in which it is facing. The rooms are approximately 10m x 

10m, while the robot itself is about 30cm in diameter. Figure 4.4 is a sample 13m 

x 8m environment used for the training of obstacle avoidance. The placement of its 

walls and objects should create an environment tha t provides sufficient availability of 

the possible situations. From exploring such an environment, the robot will encounter 

as many diverse situations as possible and will thus increase its experience.

4.3 D a ta  C ollection

In order to collect the sonar data  required for clustering, experiments have been 

performed by placing the robot into simulated 3m x 6m environments. Figure 4.4 

represents the five room environments created for the collection of data. The robot 

was allowed to  traverse the trajectories in theses rooms indicated by the arrows. The 

numbers indicate the robot’s path by representing the order in which it followed the 

lines. The environments and forced trajectories attem pt to encompass all the possible
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Figure 4.3: Training environment for learning the obstacle avoidance behaviour.

situations the robot may encounter in its environment. Two 8 dimensional data points 

of the robot’s sonar range values were recorded every second, running a t a velocity of 

150mm/s. From the data  collection scheme described, about 1500 data points were 

collected.

{
5 "

7

6t 8' 

6

4 10n
2 8

1 2 ’

Figure 4.4: D ata collection environments and trajectories
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4.4 Fuzzy C -M eans C lustering

The sonar data in Section 4.3 was acquired to obtain a partition of the 8 dimensional 

sonar space to the space of fuzzy situations (e.g., open space, right comer, etc.). 

Although the situations can be labelled and interpreted this way, the labels only 

serve to gain insight into the results of clustering and are not relevant for the robot 

and its navigation system.

Clustering was performed using the fuzzy c-means clustering algorithm discussed 

in Section 3.3, using the Euclidean distance as the similarity measure Dij. The 

Euclidean distance measure was used since it was experimentally found to  be effective 

in determining the similarity between two situations in an 8 dimensional space. In 

practical applications, there are several param eters of the clustering algorithm to  be 

chosen tha t have a profound impact on quality of the resulting partition, particularly 

the number of clusters c and the partition order m.

The number of clusters, c, should be large enough such tha t an overgeneralization 

of the data does not occur. As well, it should be particularly large enough so 

tha t the situation-based FCS is able to  distinguish im portant situations from one 

another, significantly affecting the potential learning capabilities of the robot. On 

the contrary, having a large number of clusters would result in a time consuming 

and computationally intensive learning period of the FCS due to  the large number of 

state-action pairs. This would defeat the initial purpose of the input generalization. 

Thus, a compromise must be made for c. By examining the environment used for data 

collection, and the desired behaviour of obstacle avoidance, 8 clusters were selected to 

represent 8 potentially significant situations. This number is somewhat flexible and 

can be increased to allow for greater resolution of the situational space, if needed. 

However, depending on the desired navigational behaviour, more clusters may be 

required for some behaviours due to the need for some behaviours to  have a more 

precise interpretation of the environment. A separate parallel experiment is also
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demonstrated with 12 clusters to compare the learning process and performance of 

the two systems with a different number of clusters.

The partition order, m, should be greater than 1 since m  = 1 constitutes a hard 

partition. Additionally, m  should be a relatively low number since large values of m  

(i.e. m  —> oo) cause maximal fuzziness. This means tha t any situation instance of 

the robot would belong to each cluster by equal degrees of m  ~  A This makes it very 

difficult to distinguish situations from one another. Typical values of m  in several 

fuzzy clustering experiments were chosen to be m  =  2. Experimentally, this value 

still caused a high degree of fuzziness and situational distinction was difficult. Thus, 

the value of m  = 1.2 was determined as a good compromise.

There are also several cluster validity measures [39], [61], [77], [65] th a t can be 

used to  evaluate the quality of the partition and may also aid in the process of selecting 

particular values of c. In fuzzy c-means clustering, the objective function (Equation 

3.2) is minimized in order to maximize the memberships of each data  point to  its 

closest cluster. Likewise, depending on its definition, each validity measure should 

either be maximized or minimized so th a t distinct clusters are formed and good 

inter-cluster separability is achieved without forming a hard partition. Since discrete 

clustering is also not desirable, setting the value of m as 1 <  m  C  oo ensures th a t a 

hard partition is not formed despite the tendencies induced by these measures. Along 

with the objective function in Equation 3.2, there have been seven validity measures 

used to evaluate the quality of the partition. They are used in determining param eters 

such as c and m. Also, varying partitions form with each clustering trial due to the 

different initial guess of the cluster prototypes. Thus, these validity measures can 

also help determine suitable partitions.

1. P artition  coefficient V p c

Vpc(U) =  ^ fc=1 (4-1)
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2. P a r t i t io n  e n tro p y  Vp e  where
1 n  c

VPE(U) =  — 5ZKfc/o5a(uifc)]}, a G (1, oo) (4.2)
n

k — 1 i = l

Bezdek [10] defined the partition coefficient Vpc and the entropy coefficient Vp e - Vpc 

validates the partition among the data since it is proportional to the squared sum of 

the data-cluster memberships. The maximum value is Vpc =  1 with a hard partition 

and its minimum value is Vpc =  \  for the fuzziest partition possible (i.e. — -Vi, k).

Vpe  is appropriate in validating the number of clusters since 0 < Vpe  < log(c), where 

VpE =  0 with a hard partition and VPE =  log(c) with its fuzziest partition. Therefore, 

to  ensure good inter-cluster separation, Vpc should be maximized and Vpp should be 

minimized.

3. N on-fuzzy index

NFI ( c )  = ~  n  (4 .3 )
n(c — 1)

The non-fuzzy index [65] provides another measure of how fuzzy a c partition is: 

it takes its maximum value for crisp partitions and its lowest value in the case of 

fuzziest clustering. Analogously to VPc, N F I  should be maximized.

4. M inim um  hard ten d en cy

M in H T  = m a x{—logio(Ts)} , 1 < s < c, (4.4)

5. M ean hard ten d en cy

1 C
M eanH T  = -  —log(Ts) (4.5)

where
c ,=i

T. =  (4.6)card(Ys)
and

^kiVi. =
Uji

(4.7)
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Minimum and Mean Hard Tendency measure the tendency of the data to hard 

clustering [77]. Uk% is the strongest membership value of a data point x.t to cluster s for 

all i in which Xi exists in cluster s. Likewise, uJt is the second strongest membership 

value of another data point to  cluster s among all x*. Therefore, ris compares the two 

strongest membership values in cluster s. Ts is inversely proportional to  the tendency 

towards hardness for each cluster, s. card(Ys) is the number of data points x t th a t 

belong to  cluster s. Thus, from equation 4.6, Ts is minimized when the closest data 

points to  the cluster s are distant from other clusters and vice versa. In other words, 

Ts has its lowest value with a hard partition and its maximum value with the fuzziest 

partition. Therefore, according to Equations 4.4 and 4.5, M in H T  extracts the 

least favorable hard tendency of the set of clusters while M ea n H T  determines the 

average of the hard tendencies of all clusters. M in H T  and M ea n H T  should both be 

maximized to yield distinct clusters.

6. M inim um  C ardinality

The minimum cardinality of the input data set is defined in the Equation 4.8 

where j\M em berss is the number of data points in which cluster s has the strongest 

membership to  among all the clusters. If there exists a cluster in which | M em berss — 

0, then this is an empty cluster with no data points with a strong belongingness to  it. 

This can often occur when clusters are very close to  one another. Empty clusters are 

not desirable as a cluster prototype, thus the minimum cardinality, or the minimum 

value of emberss for all s , should be greater than 0 (M inC ard  >  0).

7. R ela tive  fuzziness

M inC ard  =  m in($M  ember ss) (4.8)

^n on -fu zzy  member s
tyfuzzymembers

(4.9)
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Relative fuzziness R f  is defined as the ratio of fuzzy members to non-fuzzy members 

for all Uij in U, where Uij is a fuzzy member if its value is less than a threshold value. 

This threshold value is usually defined as

Threshold =  —̂ —
2c

Since R f  is minimized for hard partitions, R f  should also be minimized in fuzzy c- 

means clustering to  maintain distinct clusters with strong memberships to the data.

Figure 4.5 shows graphical representations of the functionals, with respect to 

increasing number of clusters, after fuzzy c-means clustering was performed on the 

robot sonar data gathered in Section 4.3. It is evident tha t most functionals are 

satisfied with increasing number of clusters from 1 to  20. However, the partition 

entropy is notably satisfied with a lower number of clusters. This is expected since 

the entropy requirement favours a lower number of clusters (Equation 4.2). The 

cardinality value, although satisfied (i.e. M inC ard  > 0), value gradually gets closer to 

0 with increasing number of clusters. This is also expected because the probability of 

empty clusters increases with the number of clusters. These contradicting tendencies 

among the functionals between low and high number of clusters further emphasize 

the need for a  compromise in choosing c.

4.5 Fuzzy C ontrol S ystem

For the purpose of the robot navigation problem, the crisp fuzzy inputs are derived 

from the sensory information of the robot’s front eight proximity sonars. The fuzzified 

in p u ts  p rovide an  ind ica tion  of th e  ro b o t’s position  re la tive to  th e  walls an d  obstacles 

in the environment. The defuzzified output should give constructive directions for 

the robot to  effectively stay clear from collisions while moving at a constant velocity.
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Figure 4.5: Functionals with respect to increasing number of clusters
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4 .5 .1  F u zzifica tion

The number of input linguistic variables and their corresponding fuzzy sets should 

be minimized to reduce the complexity of the search space. Thus, the complexity of 

fuzzy rule base learning will also be reduced. In order to minimize the input state 

space, input generalization is performed using fuzzy clustering as described in the 

previous section.

A single linguistic variable, given as situation, is used to represent the situational 

environment of the robot. Its describing linguistic labels are derived from the results 

of fuzzy c-means clustering on the sonar data. Thus, each cluster center is considered 

as a fuzzy set for the situation variable. Since only the numerical values of the 

cluster centers are known, the degrees of membership to the situation fuzzy sets 

are determined by comparing the similarity distances between the crisp inputs, the 

current 8 sonar range values, and the cluster centers. This is accomplished with the 

same expression used in calculating the U membership matrix in Equation 3.2,

where Uik is the degree of membership of the current crisp input vector k  to  cluster 

I, c is the number of clusters, and is the similarity distance of the data point k 

to cluster I using the Euclidean distance measure, A. It is im portant to note th a t m  

is the same value as in the clustering process (m — 1.2).

4.5.2 R ule Structure and Evaluation

There is one crisp output of the obstacle avoiding FCS which dictates the relative 

heading of the robot. The linguistic variable for this output is heading. The fuzzy 

sets representing the linguistic labels for heading are singleton membership functions. 

The respective angle heading values for each singleton membership function used for
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the experiments in this Chapter are denoted in Table 4.1. The number of fuzzy 

sets for heading is another design param eter which should be chosen by taking into 

consideration th a t the increase in the number of fuzzy sets

• increases the precision of the control actions

• increases the computation required in fuzzy rule base learning since the rules 

search space is increased.

Thus, given the scope and definition of the problem, a range of about 5-10 fuzzy 

sets would be a suitable choice as the number of output fuzzy sets. In this chapter, 

7 fuzzy sets are used for experimental purposes.

Singleton 
Function tt

Value Description

1 90 Complete left
2 60 Very left
3 30 Left
4 0 Straight
5 -30 Right
6 -60 Very right
7 -90 Complete right

Table 4.1: Singleton membership functions and their corresponding values for the 

output variable heading.

The surface structure of a fuzzy linguistic rule showing the relationship between 

the input and output linguistic variables takes the following form

IF situation is left corner T H E N  turn  amount is complete right

The next step in the fuzzy inference model [39] is rule evaluation. Since

there is only one input variable, there is always exactly one antecedent in each
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rule. Thus, according to  the Min-Max inference method [28], the rule strength, 

which is the numerical minimum value of the antecedents in a rule, is strictly 

the membership degree of the current sonar ranges to the rule’s single situation 

antecedent. Consequently, the numerical value of each consequent is equal to  its 

rule strength. Finally, the fuzzified output, or the numerical strength for each output 

fuzzy label, is the maximum value of its consequents derived among all the rules in 

the rule base.

4.5.3 Defuzzification

Finally, defuzzification is performed to convert the fuzzified outputs into crisp system 

outputs. Using the singleton membership functions defined in Table 4.1, the 

crisp output is determined via the commonly used Center of Gravity Algorithm for 

defuzzification (COG) [62]. COG defuzzification is determined by the formula

5 2 k = 1 ( W k  '  x k )

y T . I . M )
where y  is the crisp output, wk is the strength of the fuzzy output k, x k is the 

position of the singleton k  in output domain, and n is the number of output fuzzy 

sets.

4.6 R einforcem ent Learning

Initially, the rule base of the FCS for the obstacle avoiding behaviour is not known. 

Reinforcement learning is used to determine the optimal policy or mapping between 

situations and actions (or antecedents and consequents) in order to  maximize rewards 

over time and thus, in this case, to  maintain repeatable obstacle avoiding performance. 

The main challenge tha t arises in applying reinforcement learning to robot navigation 

lies in assigning appropriate immediate and delayed credit to actions. Reinforcement,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 4-6 Reinforcement Learning 4 6

induced by the robot’s immediate and/or past actions, is very particular to locality 

and closely dependent on how the robot interacts with the environment. Therefore, 

optimal long term  actions are difficult to learn. Q-learning, an off-policy [80] control 

based on a temporal-difference (TD) algorithm, is used to address this challenge. Q- 

learning instructs how the utility values for the situation-action pairs are updated 

such tha t the more beneficial they are, the greater their utility value. Consequently, 

it estimates the action-value function [72],

Algorithm 3 outlines the combination of clustering and reinforcement learning 

method applied in the proposed situation-based FCS. It is im portant to  note tha t

A lg o rith m  3 Fuzzy c-means clustering and reinforcement learning applied in the

FCS_________________________________________________________________________
1: Perform clustering on a set of robot sonar data  for c clusters (Section 4.4). Each

cluster is referred to as a situation.

2: Define the output actions with singleton membership functions by evaluating FCS

3: State the term ination condition for reinforcement learning

4: Initialize utility values for each situation-action pair randomly or with constant 

values

5: Initialize the FCS’s rule base with random situation-action pairs so tha t each 

situation has an associated action (i.e., The number of rules is equal to the 

number of situations).

6: r e p e a t

7: Get crisp inputs from the range sonars as inputs to the FCS and perform

fuzzification to  get fuzzified inputs 

8: Calculate a crisp output action using the current fuzzy rule base

9: Perform the resulting crisp action

10: Assess the performance of the resulting crisp action using a reward function

11: Update the utility values of all the rules currently in the rule base using the
Q-learning update rule 

12: Update the rule base with new rules chosen using the behaviour policy

13: until Termination condition satisfied
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the search space for the rules is given as the number of action-situation combinations.

Totalftules TVum S itua tions  *  NuTYl^Actions

Thus, in the case of 8 or 12 situations and 7 actions, the rule search space is 56 

or 84, respectively. A simple fuzzy logic controller for navigation, w ithout its input 

space generalized into situations, would have a significantly larger search space. For 

example, if each sonar input had three membership functions such tha t each fuzzy 

set represented the relative distance to its closest obstacle (e.g. very far , medium far , 

near), then the to tal rule search space would be

TotalRUies =  38 * 7 =  45927

Compared to  56 or 84 rules, generalizing the robot’s surrounding state into situations 

drastically reduces the input search space. Thus, it makes reinforcement learning 

easier to explore the rule space.

4.6.1 Reward Function

The reward function  is the central mechanism which defines and enforces the goal 

of the reinforcement learning component and, inadvertently, of the FCS. It provides 

the positive or negative reinforcements (or rewards) to each situation-action pair 

depending on the assessment of its performance. Positive performance will be 

given positive reinforcement, and vice versa. Thus the reward function facilitates 

determining the intrinsic desirability of each situation-action pair’s rule within the 

FCS’s rule base.

The reward function is typically simple, leaving the complexity of learning for the 

action-value function which states how the reward affects the utility values. For 

obstacle avoidance, the goal to  be enforced is to prevent collisions with the walls and 

obstacles in the environment. The reward function is described in Algorithm 4.
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A lg o r i t h m  4  R ew ard fu n ction  for ob stac le  avoidance

1 if  Robot is stalled (collision occured) th e n

2 Reward  =  — 30

3 Recover from stalled position

4 else

5 Reward  =  30

6 e n d  if

7 i f  Rew ard > 0 th e n

8 Reward  =  Reward — C risp-O utput-H eading  * 0.1

9 e n d  if

If the robot had multiple possible actions which produced equal rewards, it would 

be beneficial to choose the action which required less energy. Thus, this defines a 

subgoal of obstacle avoidance: to  derive an efficient obstacle avoiding behaviour. A 

deduction, which is proportional to the crisp output performed in tha t time, is applied 

to  positive reinforcements iteration (Lines 7-8) in Algorithm 4.

Note th a t the absolute values of the reward were chosen experimentally by studying 

how varying these values would affect the rate of convergence. Small values would 

result in long simulations with little effect on utility values after each iteration. Larger 

values resulted in a rapid increase or decrease in utility values before the robot is given 

enough time for exploration. A compromise was required and reasonable absolute 

values for the reward were between 10 and 50.

4.6.2 Q-Learning

W ith on-policy reinforcement learning (i.e., Sarsa [72]), the system is learning the 

value of the policy ir which is used to  make the decisions. Thus, as in Equation 4.10, 

the utility value is dependant on the reward received from the situation-action pair, 

and the utility value of the following situation-action pair which is chosen by n. The
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resulting optimal policy Q* is given by Q*(s, a) =  m axQ 7!(s, a).

Q (st , at) =  Q (st, at) + « [r(s t , of) +  yQ {st+1, at+i) -  Q (st , at)] (4.10)

Q-learning [80], on the other hand, is an off-policy since it learns the value of 

a policy other than the one used to  make the decisions. The policy used to  make 

the decisions is the behaviour policy 7r. In Equation 4.11, the utility value, or Q- 

value, is dependant on the reward received from the situation-action pair, and the 

maximum utility value possible in the next state. Thus, it is learning the value of 

the maximum policy and is directly estimating Q*. Therefore, similarly to the value 

function, a Q-value can be defined as a prediction of the sum of the reinforcements 

the agent will receive when performing the associated action and following the given 

policy thereafter (Section 3.5, [72]). For Sarsa on-policy learning, this given policy 

is the same as the behaviour policy, ir. For off-policy Q-learning, the given policy is 

the estimated optimal policy 7r*, or the estimation policy.

Q (st , at) = Q{st, at) + a[r(su at) +  ym a x{Q (st+1, a)} -  Q (st, at)] (4.11)

In Equations 4.10 and 4.11, Q (st ,a t) is the Q-value of situation s and action a pair 

at time t, and r(s, a) is the reinforcement determined by the reward function after 

performing the action a in situation s.

The discount factor 7 is chosen between 0 and 1 (0 <  7 <  1). It defines the weight 

of the future possible rewards m ax{Q (st+1, a)} or Q (st+I, at+i) on new Q-values. This 

helps to  predict which actions are more beneficial with the subsequent states. Since 

it is desirable to  learn which rules will return the most rewards over time, a high 

emphasis on the discount factor was made (7 =  0.9). Note th a t if 7 =  0, the agent is 

only concerned in maximizing its current immediate rewards without considering the 

future states.
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The other param eter in Q-learning is the learning rate a , which is also bounded 

between 0 and 1 (0 <  a  <  1). It affects the rate of convergence of the reinforcement 

learning system. If it is set too high (i.e., a  ~  1), then more rapid and drastic 

changes of the utility values will occur. Thus, oscillations will constantly exist 

between utility values greater and less than  the expected value from positive and 

negative rewards, respectively. This instability makes it difficult, if not impossible, to  

reach the expected value w ithout slow and incremental approximations. On the other 

hand, if the learning rate is too small (i.e., a  ~  0), then changes in utility values are 

insignificant and no learning occurs.

In non-dynamic environments, it is beneficial to  have the learning rate slowly decay 

with time (e.g., a t — j )  to satisfy two requirements im portant in assuring convergence 

[72]:

CXI

^ a ( t )  =  oo (4.12)
t= i

and

OO

^ ^ a ( t ) 2 < o o  (4-13)
t=l

However, since the robot should react to  dynamic environments, the learning rate 

should be constant (i.e., a ft)  =  a) so th a t effective learning will still occur when 

the system is faced with new situations in changing environments. Since a constant 

learning rate does not satisfy the second condition (Equation 4.13), indicating th a t 

complete convergence of the utility values will never be reached, the convergence 

of the rule base is used in determining the term ination condition rather than  the 

convergence of the utility values (Section 4.6.4).

In summarizing these desirable characteristics of the learning system, it is 

im portant to choose a  to avoid large oscillations in the utility values, to  have more 

gradual changes in successive utility values, and to be able to perform in dynamic
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environments. As a result, the learning rate was set to relatively low positive constant 

value of a  = 0.3.

In this case, the dimensions of the lookup table holding the Q-value predictions 

correspond to  the number of clusters by the number of possible fuzzy sets for the 

heading output. Thus, each situation-action pair has a Q-value associated with 

it. W ith each iteration, immediate reinforcements to the Q-values of responsible 

situation-action pairs are applied. Additionally, after several iterations, the knowledge 

gained from updating the Q-values is propagated backwards through the lookup table 

from later states to earlier states in time until it eventually predicts the optimal 

action-value function.

Algorithm 5 outlines the Q-learning procedure.

A lgorithm  5 Q-Learning algorithm 
1: Initialize Q-values, Q(s, a)

2: Observe the state s

3: repeat

4: Choose an action a using behaviour policy derived from Q
5: Perform action a

6: Observe the reward, r

7: Observe the next state s'

8: Update utility values using Q-learning formula (Equation 4.11) which is

dependant on the r  and the max utility in s'

9: S  *— s'
10: until Termination condition satisfied

Q -Learning M odifications tow ards th e  Incorporation o f  Fuzzy Logic

E ach  s itu a tio n -ac tio n  p a ir in  th e  lookup tab le  can  be  regarded  as a  possible ru le  in 

the fuzzy rule base. A rule base is formed from all the possible rules in the fuzzy 

knowledge base. Each rule in the rule base provides an action for each situation.
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Thus, the number of rules in the rule base a t any time is equal to the number of 

clusters. Initially, a rule is added for each situation and the action associated with 

tha t situation is chosen randomly. W ith each iteration, the system observes the 

belongingness to each fuzzy state and uses the current set of rules in the FCS’s rule 

base to  produce the final (crisp) change of heading direction. Therefore, instead of 

identifying discrete situations and actions as in traditional reinforcement learning, 

fuzzified combinations of situations and actions are considered. In order to account 

for this, a modification to Equation 4.11 must be made such tha t all the rules which 

were activated in the rule evaluation step are updated and their Q-values are updated 

such th a t the change in Q-value for each responsible situation-action pair is rightfully 

deserved. For example, if a positive reward was received from the current set of rules 

in the rule base, then the rule(s) tha t were most responsible will have a greater change 

in Q-value, and vice versa.

The change in Q-value is mainly dependant on two variables which are received in 

response to the FCS’s resulting output action:

1. The reward R (s,a )

2. The maximum utility in the next state m ax{Q (st+i, a)}

Since each rule in the rule base is partially responsible for the formulation of 

the crisp output heading action, then in Equation 4.11, these two factors must be 

weighted proportionally by the responsibility of each corresponding situation-action 

pair. Thus, these two factors are weighted by the strength of the rule. This leads to 

the reformulation of Equation 4.11 to

Q(st , at)i =  Q{st , at)i +  a[wisar(s t , at) +  'ywi,am ax{Q (st+i,a)} -  Q (st , at)i] (4.14) 

where wisa is the strength of rule i th a t corresponds to the situation-action pair sa.
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The maximum utility in the next state, m ax{Q (st+1, a)}, can be regarded as tha t 

action’s potential in the current state. It can also be regarded as the desirability of 

the next state. The maximum utility in the next state is used to  incorporate the 

discounted rewards over time. Typically, it is evaluated by observing the next state 

st+1 and determining the single action in tha t state which holds the maximum Q-value. 

This maximum Q-value is the maximum utility in the next state m ax{Q (st+i,a )} . In 

the situation-based FCS, since the observed next state is not a single discrete state, 

m ax{Q (st+ i,a)}  is determined by considering the maximum Q-value found in all of 

the next fuzzy states, similarly weighted by the membership strength of the next 

state. Thus, it is calculated as the weighted average of the membership degrees to 

each situation and the maximum Q-value for tha t fuzzy situation:

C

m ax{Q (st+1, a)} =  ^ K St+1m ax{Q (j, a)}] (4.15)
3 = 1

where U jSt+1 is the membership degree of the next state st+i to  the fuzzy situation 

j  and m ax{Q (j, a)} is the maximum Q-value of the fuzzy situation j  among all the 

actions a.

4.6.3 Exploration

In order for Q-learning to  converge to the optimal policy the robot must visit every 

situation and execute each possible action in the situation several times. To ensure a 

maximum exploration of the rules search space, a behaviour policy must be assigned 

to  facilitate an even distribution of the actions so tha t all the situation-action pairs 

continue to  be updated, given th a t all the situations are available in the environment.

The soft-max policy [33] has been chosen, which assigns a probability to each 

action proportional to the situation-action pair’s Q-value in the lookup table. This 

probability indicates the chance th a t the rule will be added to the fuzzy rule base: 

the higher the Q-value an action has in the relevant situation, the more likely tha t
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the situation-action pair will be added.

Other such policies are the e-greedy, which selects the actions with the greatest 

utility value, and e-soft, which selects the actions on a random basis [72], e-greedy 

favors the exploitation of the rules with maximum estimated value, whereas e-soft 

favors the exploration of the rule space. The soft-max policy overcomes the individual 

drawbacks of the e-greedy and e-soft policies by still selecting action stochastically 

but with favoritism of situation-action pairs with high estimated values. Ultimately, 

soft-max provides a simple compromise between the exploration and exploitation of 

the rule space.

The soft-max behaviour policy defines what to choose as the next actions in the 

rule base. For exploration, it must also be decided when to  change the rule base. A 

rule base must be implemented long enough to be able to evaluate its performance 

in the environment. It must also be changed frequently to  assist exploration of the 

remaining rules in the search space. For these experiments, the rule base is changed 

when one of the following occurs

• a collision

• b iterations have passed without any collisions

4.6.4 Term ination C ondition

The robot continues to  explore and the lookup table continues to update itself until 

the current state is terminal. A terminal state is defined with the following two 

conditions:

1. The rule base has converged to a set of rules. Since complete convergence of the 

utility values will never occur due to  the positive constant value of the learning 

rate a  (Section 4.6.2), convergence is measured through the consistency of the 

rule base. A complete set of rules have converged when the estimation policy, or
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the actions with the maximum utility value for each situation, remains constant 

for a period of p iterations.

2. A maximum number of iterations I has occurred without convergence of the 

rule base.

The fulfillment of the first terminal condition is verified by the Q-values in the 

lookup table. As reinforcement learning progresses, and even after sufficient learning 

has been achieved, the Q-values of the situation action pairs do not cease to change. 

Either they may continue to increase, decrease, or modulate. However, as convergence 

progresses, the situation-action pairs should reach a particular equilibrium such 

tha t the relative Q values among the actions for each situation cease to  change. 

Consequently, an increasing gap forges between positive and negative actions as the 

probability of choosing the positive actions increases (and vice versa) until finally the 

estimation policy (the actions with the greatest utility value in each situation) ceases 

to change.

The second terminal condition is set to a relatively high number of iterations so 

tha t it can be presumed tha t the first terminal condition may never be reached as 

t —> oo. Thus, there is no need to  continue the experiment, and learning can be 

interrupted and term inated at I iterations. If learning continued for this long without 

fulfilling the first terminal condition, then either of the following assumptions could 

be made:

• Learning of the navigational behaviour could not be accomplished;

• The learned rule base keeps oscillating between similar sets of rules. These 

multiple sets of rules could all be sufficient in maintaining the desired behaviour. 

Thus, the estimation policy may continue to  change even when learning is 

achieved.
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4.7  Im provem ents: O ptim ize V elocity

The experiment described in Section 4.6 used a constant velocity setting to  solve 

the obstacle avoidance problem. W ith the maximum velocity being 300 m m /s, a 

relatively slower velocity of 150 m m /s was used to  give the robot enough time to 

observe the presence of obstacles and to  react to  them. If a velocity of 300 m m /s 

were to  be used, and the robot was, for example, in a left corner situation, the high 

speed would not give the robot enough time to  turn  away from the corner. Thus, the 

velocity factor must be taken into consideration for optimizing the obstacle avoiding 

behaviour in a more realistic navigational controller.

The reinforcement learning method for obstacle avoidance was used again for the 

purpose of learning the optimal speed in which it should travel with respect to  the 

situations it encounters. The learned obstacle avoiding rule base with the heading 

control action is incorporated and is kept constant. However, now there are two 

output variables: heading and velocity. Thus, the obstacle avoiding rule base with 

a velocity control action is incorporated and learned using the same reinforcement 

learning method with respect to the same clustered situations. The output singleton 

membership functions have the values shown in Table 4.2.

Singleton Velocity Value Description
Function jj

1 100 m m /s Slow
2 200 m m /s Medium
3 300 m m /s Fast

Table 4.2: Singleton membership functions and their corresponding values for the 
output velocity.

The following limitations were enforced by the reward function of the reinforcement 

learning component to describe the desired behaviour:
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R ew ard

•  If we didn’t hit an obstacle, reward proportionally to the numerical velocity 

value. This is to encourage high speeds and to take advantage of the maximum 

speed of the robot. Otherwise, without this factor, the tendency would be for 

the robot to  always choose the safest action: to use the slowest velocity possible.

P en a lize

•  If an obstacle collision occurs

• If the previous closest distance cdp to an obstacle is less than a distance 

cdmax =  30cm, and the current closest distance to an obstacle cdc is less than the 

previous closest distance, the system is penalized proportionally to the difference 

between cdp and cdc. This penalty is to  prevent the robot from approaching 

obstacles too quickly.

This reward function is described in Algorithm 6.

A lg o rith m  6 Reward function for optimal velocity
1 if  Robot is stalled (collision occured) th e n
2 Reward = —30
3 Recover from stalled position
4 else if  ({cdp <  cdmax) and (cdc < cdp)} th e n
5 Reward — cdc — cdv
6 else
7 Reward = 10 +  0.2 * C urrentVelocity
8 en d  if

Table A .l in the Appendix summarizes the chosen values of the parameters 

discussed in this Chapter.
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“Part o f the inhumanity o f the com puter is that, once it is 
com petently program med and working smoothly, i t  is com pletely 
honest.”

-  Isaac Asimov

5
Results and Analysis

The situation-based FCS collaborates the workings of a typical fuzzy logic controller 

with clustering and reinforcement algorithms. This chapter presents and analyzes the 

results obtained, first from the underlying components of clustering and reinforcement 

learning to  the higher level performance of the situation-based FCS.

As stated in Section 4.4, 8 cluster and 12 cluster vectors were used in the fuzzy 

c-means clustering of the robot sonar data gathered in Section 4.3 with a partition 

order of m  = 1.2. Identical parallel experiments were performed on the two cluster 

vectors to  study the effect of the number of clusters on the resulting situation-based 

FCS.

58
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5.1 C lustering

In using fuzzy c-means clustering on the robot sonar data, 50 trials were performed 

for both the 8 cluster and 12 cluster vector sets. Depending on the initial randomly 

guessed positions of the cluster centers, each trial of the fuzzy-c means algorithm 

would converge to  varying sets of cluster centers. For 8 clusters, the following graphs 

in Figure 5.1 were produced for the objective function (Equation 3.1) and each 

of the functionals represented in Equations 4.1 - 4.9 with respect to the trial

number. The functionals diagram for 12 clusters is shown in Figure A .l in the 

Appendix. To determine which trial would be used in the following experiments, the 

functionals were optimized. For optimal fuzzy clustering, each functional should be 

either maximized or minimized as stated in Section 4.4. The trial which satisfied as 

many of these requirements as possible was chosen as the set of cluster centers used 

in the experiments th a t followed.

Figures 5.2 and 5.3 show the resulting cluster prototypes for the 8 and 12 cluster 

vectors among the 50 trials for each experiment. The cluster center prototypes are 

represented in the form of polar plots of the collective sonar ranges. Although the 

cluster vectors among all trials exhibited some similarities, the diversity of the clusters 

in each trial demonstrates the affect of this initial random guess of the cluster centers. 

Figures A.2 and A.3 in the Appendix are two separate trials for 8 clusters to  show 

some notable similarities and subtle differences among the separate trials.

Each cluster represents a situation tha t the robot may encounter in its environment. 

Although it isn’t  required for the functionality of the situation-based FCS, labels were 

assigned to  each cluster solely to  gain some intuitive insight on the meaning of each 

situation. The labels are subjective descriptions from a hum an’s perspective and 

several possible descriptions could be assigned. The descriptions in Tables 5.1 and

5.2 provide a reasonable interpretation of the situations or cluster vectors.
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Figure 5.1: Functionals for 8 clusters with respect to trail number
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Figure 5.2: 8 Cluster prototypes of fuzzy situations

Descriptions for 8 Clusters 

1. Front Wall 2. Right Corner 3. Right Wall 4. Open Space

5. Corridor 6. Left Wall 7. Left Corner 8. Wide Corridor

Table 5.1: Descriptive labels corresponding to  the 8 clusters in Figure 5.2

Clusters represented by the same situation (e.g., clusters 1 and 10 in Table 5.2 are 

both left comer situations) have similar sonar ranges, but may differ in how close the 

walls or objects are, or by the angle to which the robot is facing them. The clusters 

represented by right wall or left wall may also represent situations in which there is
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Figure 5.3: 12 Cluster prototypes of fuzzy situations
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Descriptions for 12 Clusters

1. Left Corner 1 2. Open Space 1 3. Front Wall 4. Corridor 1

5. Right Corner 1 6. Right Corner 2 7. Dead End 8. Corridor 2

9. Right Wall 10. Left Corner 2 11 . Left Wall 12. Open Space 2

Table 5.2: Descriptive labels corresponding to  the 12clusters in Figure 5.3.

some obstacle on the right and left sides, rather than walls. The objects indicated by 

the short sonar ranges in any situation may be either walls, obstacles, or any object in 

the environment. There are several descriptions th a t could represent a single cluster. 

Alternate example descriptions of the labels are given in Table 5.3 and can be used 

interchangeably with those in Tables 5.1 and 5.2.

Original Label Alternate Label

Front Wall Front Obstacle

Left Wall Left Obstacle

Right Wall Right Obstacle

Left Corner Left and Front Obstacles

Right Corner Right and Front Obstacles

Corridor Right and Left Obstacles

Dead End Left, Right and Front Obstacle

Open Space No Obstacles

Table 5.3: Alternate descriptions to the labels in Tables 5.1 and 5.2.

These two sets of cluster centers were then used as the situation antecedents in 

the FCS. The results of using 8 cluster center and 12 cluster center vectors for the 

situation-based FCS are studied in the following sections.
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5.2 R einforcem ent Learning

The results presented in this chapter are based on the 8 cluster and the 12 cluster 

vectors derived in the previous section. The cluster prototypes are the premises or 

antecedents for reinforcement learning and for the fuzzy rules in the FCS. The results 

of using these prototypes to  learn obstacle avoidance are studied.

5.2.1 Exploration

As learning continues, beneficial situation-action pairs repeatedly receive rewards 

and non-beneficial situation-action pairs repeatedly receive penalties. Occasionally, 

depending on the rule strengths, a situation-action pair th a t is usually rewarded 

could be penalized and vice versa. This happens when beneficial situation-pairs are 

combined with non-beneficial situation-action pairs in the fuzzy rule base a t the 

same time. All the situation-actions pairs in the rule base are collectively either 

penalized or rewarded regardless of their rule strength. However, the situation-action 

pair(s) most responsible for the control action and outcome is given its rightful reward 

weighted by its rule strength. The Q-values of those situation-action pairs which are 

less responsible are less affected, regardless of how beneficial they are. W ith enough 

exploration of the environment and enough exploration of the possible situation-action 

pairs, a rightful and all-encompassing determination of beneficial and non-beneficial 

situation-action pairs should inevitably emerge.

Exploration is controlled by the behaviour policy, which states tha t in each 

situation, each action has a probability to be chosen as rule in the rule base. This 

probability is proportional to its Q-value and how it compares to  the Q-values of the 

other actions. Proper exploration is necessary to ensure tha t the FCS will eventually 

converge to a set of fuzzy rules tha t satisfy the desired criterion, thus each situation- 

action pair must be visited several times. Figure 5.4 shows the number of times each 

situation action pair was dominant in deciding the control action for a to tal of 5000
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iterations in the 8 cluster experiment. It shows tha t there is a relatively thorough 

distribution of the possible situation-action pairs, and it can therefore be presumed 

tha t proper exploration is achieved. It also demonstrates tha t the availability of the 

situation space was sufficiently provided in the training environment. Although some 

situations were significantly more common than others (e.g Open space vs. Narrow 

corridor), there was sufficient exploration exhibited in all the situations to learn the 

adequate actions for each situation. Also, as learning continues, beneficial situation- 

action pairs will increase in Q-values. Consequently, desirable actions will have a 

greater probability of being added to  the fuzzy rule base in each situation due to  the 

soft-max behaviour policy. Therefore, in Figure 5.4, these beneficial situation-action 

pairs have a slight tendency to have a greater occurrence. These same characteristics 

are evident in the 12 clusters situation-action pair distribution in Figure A.4 of the 

Appendix.

5.2.2 D erived E stim ation Policy  

Study o f th e  C onverged Lookup Table

The Q-values in the lookup table are predictions of the cumulative sum of 

reinforcements the agent will receive by performing the action in the current situation 

and following the optimal (Q-learning) policy thereafter [72], Therefore, as learning 

continues, the lookup table should progress such th a t the most desired actions will 

positively increase in Q-values.

Table 5.4 is an example of the lookup table after convergence. By studying the 

Q-values for each situation, the action with the greatest Q-value is the estimated 

preferred heading value. From observing the Q-values among all the actions for each 

situation, the tendency is th a t as the Q-values decrease as the action for situation 

becomes increasingly dangerous. For example, for the Situation 1 (front wall), the
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Figure 5.4: Exploration distribution for 8 clusters in obstacle avoidance experiment. 

(S it.l-Front wall, Sit.2-Right corner, Sit.3-Right wall, Sit.3-Open space S it.4-Corridor, 
Sit.5-Left wall, Sit.ti-Left comer, Sit.7- Wide corridor)
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action with the greatest utility value is to  turn  complete left. The other action with 

a relatively high utility is to  turn  complete right. Thus, these actions are considered 

the most preferred actions. Note tha t preferred actions are considered safe and 

less preferred actions are considered dangerous. In obstacle avoidance, safe actions 

prevent the robot from colliding with any object(s) in its path while dangerous actions 

would lead to the collision with obstacles.

Furthermore, in the front wall situations, the Q-values tend to decrease as the 

turning values go from complete left to very left, to left, then finally to straight. 

Likewise, the same pattern  is reflected on the right side. From this pattern  it can be 

further deduced th a t in situation 1, complete left and complete right turns are the 

preferred actions, while turns with a stronger inclination towards a straighter angle 

are less preferred. This tendency occurs repeatedly for the remaining situations: safe 

actions have the highest Q-values, and these Q-values tend to decrease towards more 

dangerous actions. The same patterns are also observed in the same experiment 

performed for 12 clusters as shown in Table 5.5.

The reinforcement learning method using the maximum utility (Q-value) of the 

next state to  estimate the potential of a situation-action pair. If the next state 

has a low maximum utility, then the situation-action pair does not perform well in its 

subsequent states. Thus, it is im portant to note tha t situations with a high maximum 

utility value give a higher potential to its predecessor situation-action pairs, and vice 

versa. The maximum utility is also a measure of the desirability of the situation. 

Situations with a higher maximum utility value are more desirable, or, in other words, 

are more safe in the sense tha t the robot is less likely to hit an obstacle in tha t state. 

Likewise, the robot in dangerous situations is less desirable and more likely to  hit an 

obstacle. This can be drawn from the lookup table since the desirable situations (i.e., 

open space and wide corridor) don’t  have as many close obstacles around it than  the 

less desirable situations (i.e., corridor, left comer). Table 5.6 is a summary of the
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maximum utility values in each situation in the order of decreasing desirability.

Clus. Label

Heading Value

90°

©O

30° 0°

OOC
O

! 
I

i
-6 0 ° -9 0 °

1 Front Wall 88.5232 75.3621 75.3006 55.2341 68.4009 74.3626 88.499

2 Right Corner 102.933 94.1128 47.664 64.4788 57.2275 62.0681 46.1149

3 Right Wall 120.748 131.578 121.268 110.18 83.0621 76.4927 79.4707

4 Open Space 142.698 137.49 139.55 144.581 133.763 130.251 123.06

5 Corridor 40.0379 65.8052 66.7891 70.9823 57.6694 67.1838 38.9514

6 Left Wall 64.4424 104.558 106.079 111.84 129.185 136.504 132.74

7 Left Corner 51.7911 55.8056 70.2846 76.5532 83.4929 89.704 103.498

8 Wide Corridor 132.115 134.254 130.71 153.952 143.199 131.069 132.351

Table 5.4: An example lookup table after convergence for the obstacle avoidance 

experiment using 8 clusters

After convergence, the actions with the greatest utility value for each situation 

make up the estimation policy. The estimation policy subsequently comprises the 

rule base for the fuzzy logic controller. Tables 5.7 and 5.8 show the complete rule 

bases derived from their respective lookup tables (Tables 5.4 and 5.5). O ther trials 

derived similar rule bases with some small variations (e.g. front wall situation was 

coupled with a turn  of +90 instead of -90). The other actions th a t were often derived 

in the final rule base for each situation among all the trials are listed in Tables A.2 

and A.3 in the Appendix. It would be ideal for the rule bases to converge to the 

same state a t each trial, however, the small fluctuations occur and the final derived 

rule base is partially dependant on random characteristics of the initial Q-values, the 

soft-max behaviour, and the environment. Fundamentally, it is im portant th a t the 

converged rule base maintains the desired behaviour.
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Clus. Label

Heading Value

90° 60°

OOCO 0° 1 CO o 0 -6 0 °

OOcn1

1 Left Corner 1 27.9703 57.0372 34.4936 39.8101 60.6995 87.7947 84.5178

2 Open Space 1 149.34 158.868 141.379 174.779 164.066 151.513 159.67

3 Front Wall 139.383 123.961 132.325 91.1964 125.686 59.2321 147.626

4 Corridor 1 65.0343 68.0864 71.8306 74.0205 63.1513 49.9582 62.743

5 Right Corner 1 116.521 107.222 103.493 81.6878 109.622 108.595 91.0663

6 Right Corner 2 131.497 119.72 113.563 107.402 69.8178 103.206 102.701

7 Dead End 42.7199 9.40794 9.49937 16.1608 28.6717 24.5497 16.9143

8 Corridor 2 32.8932 31.2288 27.7333 39.2169 31.7463 31.1907 32.0261

9 Right Wall 144.735 153.5 176.768 134.076 117.491 89.9767 115.849

10 Left Corner 2 48.5934 25.8245 95.3795 70.3588 73.9922 109.089 74.4227

11 Left Wall 117.146 119.674 131.374 112.953 129.042 154.277 141.827

12 Open Space 2 171.123 175.827 176.003 189.002 183.428 187.346 185.257

Table 5.5: An example lookup table after convergence for the obstacle avoidance 

experiment using 12 clusters

5.2.3 Convergence R esults

Convergence occurs when the estimation policy is constant for a certain number, p, 

of change intervals. The learning process is alternatively term inated if a predefined 

number of iterations, I is reached. The values of these criteria used in this study are 

p — 50 and I =  5000.

The parameter, I, is meant to  cut off learning if convergence was taking too long. 

Although it was set relatively high, in the trials executed, the Q-values were able to 

converge before the system reached 5000 iterations. Table 5.9 depicts the number of 

iterations it took for convergence for the trials for 8 and 12 clusters. It is evident tha t 

the 8 cluster vector trials required less number of iterations to converge compared to 

the 12 cluster vector trials. This agrees with the assumption tha t a greater number of
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Cluster Label Max Q- Value Desirability
8 Wide Corridor 153.952 Most Desirable
4 Open Space 144.581
6 Left Wall 136.504
3 Right Wall 131.578
7 Left Corner 103.498
2 Right Corner 102.933
1 Front Wall 88.5232
5 Corridor 70.9823 Least Desirable

Table 5.6: Maximum utility values for each state in order of decreasing desirability 
in the obstacle avoidance experiment using 8 clusters

Cluster Label Action

1 Front Wall 90°

2 Right Corner 90°

3 Right Wall

OOCO

4 Open Space 0°

5 Narrow Corridor 0°

6 Left Wall 1 O 0

7 Left Corner -90°

8 Wide Corridor 0°

Table 5.7: Learned rule base for obstacle avoidance after convergence for 8 clusters 

clusters would require a longer learning time due to the increased rule search space.

5.3 Perform ance E valuation

The situation-based FCS was able to  converge to a learned rule base in each trial. 

The ultim ate question, however, is how well is the converged fuzzy rule base able to 

maintain the desired performance. In this section, the ability of the derived fuzzy 

rule base to  avoid obstacles is examined.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Sec. 5.3 Performance Evaluation 71

Cluster Label Action

1 Left Corner -60°

2 Open Space 0°

3 Front Wall -9 0 °

4 Wide Corridor 0°

5 Close Right Corner 90°

6 Right Corner 90°

7 Dead End 90°

8 Corridor 0°

9 Right Wall

OOC
O

10 Left Corner -60°

11 Left Wall 1 o 0

12 Stronger Open Space 0°

Table 5.8: Learned rule base for obstacle avoidance after convergence for 12 clusters

Figures 5.5 - 5.8 show how learning progressed with time in typical simulation 

runs. Figures 5.5 and 5.6 show the number of iterations between collisions in 5000 

iterations for the 8 and 12 cluster experiments, respectively. The converged rule 

base is kept constant once convergence is achieved. Since each iteration lasts for 1.5 

seconds, it can also be considered as the the time between each collision. From these 

two figures, it can be concluded th a t the 12 cluster experiment took a longer time to 

converge, and the 8 cluster experiment had a more gradual increase in the number of 

iterations between clusters. However, once convergence was reached, the 12 cluster 

experiment performed better since there was more time in between the collisions.

Figures 5.7 and 5.8 show the average reinforcement in 50 iteration intervals 

for the two experiments. The reinforcement was assigned according to  the reward 

function for obstacle avoidance described in Section 4.6. Initially, there is almost an 

equality between positive and negative rewards: positive and negative rewards keep
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N um ber of Iterations B etw een Collisions - 8 Clusters
300

250
Rule B ase Converged

200

150

100

150
Collision

Figure 5.5: Number of iterations between collisions in learning obstacle avoidance 

with 8 clusters
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Number of Iterations Between Collisions -1 2  Clusters
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Figure 5.6: Number of iterations between collisions in learning obstacle avoidance 

with 12 clusters
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Trial 8 Clusters 12 Clusters

1 2006 4805

2 2009 2337

3 1884 3387

4 1808 2813

5 1829 4157

6 403 3557

7 1114 3065

8 1305 2421

9 2244 2649

10 987 2651

11 1833 2926

Avg 1582 3160

Table 5.9: Number of iterations until convergence for 8 clusters and 12 clusters in the 

obstacle avoidance experiments.

alternating, thus there is no segregation between positive actions and negative actions. 

As learning continues, a segregation forms as the controller learns which actions 

perform as desired and the number of negative rewards decreases gradually. It can 

observed tha t the 8 cluster experiment’s rewards had a more gradual improvement, 

however, the 12 cluster experiments performed slightly better (received more positive 

rewards) after convergence.

C ollisions

In Figures 5.5 - 5.8, it can be seen tha t collisions occur throughout learning,

and continue to  occur even after convergence. Collisions will occur frequently 

during learning due to the exploration factor required to gain experience. However, 

even though the number of collisions significantly decreases after the rule base has
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Figure 5.7: Reward values with respect to 50 iteration intervals in learning obstacle 

avoidance with 8 clusters
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Figure 5.8: Reward values with respect to  50 iteration intervals in learning obstacle 

avoidance with 12 clusters
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converged, collisions still occur intermittently. When observing the robot’s movement 

after convergence and its interpretation of the search space, the cause of the collisions 

is the robot’s inability to correctly assess its situation due to  one of the three 

conditions:

S o n ar P la c e m e n t The Pioneer 2DX’s sonar placement is almost evenly spaced with 

small gaps between each sonar (Figure 4.3). Depending on what angle the 

robot is approaching an obstacle, the sonars may not see the obstacle from one 

of its sonar ranges. Thus, the robot thinks there is nothing in its path a t tha t 

particular angle. This could be solved by having more sonars around the robot.

o O
a) b)

Figure 5.9: Misclassified situations a) Approaching a corner b) Approaching an edge

G e n e ra lity  o f th e  C lu s te rs  As seen with the difference between 8 clusters and 

12 cluster, the 8 cluster system has more collisions even after learning has 

been achieved. A smaller number of clusters generalizes many data  points into 

the same situation. Thus, several actual robot situations will have the same 

action command, and the chosen action will be the one which is beneficial 

for most instances of the situation, not necessarily for all instances. The 

solution for over-generalized situations is simply to increase the number of 

clusters, as dem onstrated in the performance comparison of the 8 and 12 cluster 

experiments.
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A bsen ce  o f  th e  S itu a tio n  in  R o b o t S o n ar D a ta  The data collection in Section 

4.3 was meant to  capture all the possible situations a robot could encounter 

in an environment. Although it appeared tha t most situations were accounted 

for, some particular situations were overlooked. Thus, the robot didn’t  have a 

situational cluster available to learn what to do in this situation. The FCS 

had to associate these situations with the closest cluster prototype. Two 

particular situations occurred when it was approaching an obstacle’s corner 

or edge, illustrated in Figures 5.9a) and b). All the sonar ranges are long 

except the two front ranges or the two front right ranges. These situations 

were thus misclassified as open space situations. This could be remedied by 

having the robot randomly wander in the data collection step so th a t it may 

encounter more unexpected situations. Another solution would be to increase 

the adaptability of the robot by clustering on-line. In this way, the robot would 

be able to handle any new situation th a t it has never seen before.

Figure 5.10 shows a simulated trajectory of the fuzzy controlled robot in the 

training environment. It follows after the convergence of a rule base in an experiment 

with 8 clusters. The robot with the same fuzzy rule base is placed in a novel 

environment to exemplify its ability to adapt to different environments (Figures 5.11). 

Figure A.5 in the Appendix shows the obstacle avoidance behaviour of a converged 

situation-based FCS with 12 clusters prototypes in another novel environment. It 

is evident tha t the robot’s path is such th a t it avoids collisions with any of the 

obstacles present in both environments. However, since there is no goal directedness 

incorporated with the obstacle avoiding behaviour, a t times, the robot tends to 

encircle a small area with obstacles surrounding it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.3 Performance Evaluation 79

Figure 5.10: Simulated trajectory with obstacle avoidance behaviour in training 

environment
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Figure 5.11: Simulated trajectory with obstacle avoidance behaviour in

environment
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5.4 Im provem ent (V elocity) R esu lts

Section 4.7 describes the reinforcement learning method applied towards learning 

the optimal velocities with respect to  the situations. The method is analogous to  the 

method used in learning to avoid collisions. The only differences are tha t now there is 

are two outputs, velocity and heading (the rule base for deciding the heading action is 

constant) and the reward function is changed following Algorithm 6 in Section 4.7.

Table 5.10 is the lookup table of the Q-values after convergence and Table 5.11 

is the corresponding derived fuzzy rule base of a trial which took 2132 iterations to 

converge. From Table 5.11, it is evident tha t the learned rule base, or policy, favours 

maximum speeds in the open space and wide corridor situations. Medium speeds 

are suggested for the right wall, left wall situations. Slowest speeds are suggested 

for left comer, right comer, narrow corridor and front wall situations. This can be 

interpreted th a t the slower speeds are suggested for the more dangerous situations and 

vice versa. Safe (desirable) and dangerous (less desirable) situations were classified 

in Table 5.6. In the Appendix, refer to Table A.4 for a list of convergence times and 

Figure A.6 for a summary of the robot’s exploration of its situation-action space.

Figure 5.12 shows the average reward values, with increasing iteration intervals of 

50, according to the reward function detailed in Algorithm 6. The reinforcement is 

generally high since an obstacle avoidance behaviour for the heading control is already 

implemented. The main purpose of the reward function is to optimize the robot’s 

velocity. It is evident tha t the reward values are initially high, and they slightly 

increase continually until the optimization is learned.
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A v erag e  R ew ard  v s . I te ra tions  -  8  C lu s te rs  -  Velocity
7 0 -----------------1 i t i i i r

6 0  -

5 0  -

0  5  10  15 2 0  2 5  3 0  3 5  4 0  45
Iteration Interval

Figure 5.12: Reward values with respect to 50 iteration intervals for 8 clusters, 

learning optimal velocities
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Cluster Label

Heading Value

100 m m /s 200 m m /s 300 m m /s

1 Front Wall 256.187 214.836 222.199

2 Right Corner 234.351 223.433 220.652

3 Right Wall 217.566 244.973 242.778

4 Open Space 251.759 297.853 320.878

5 Corridor 195.344 199.148 195.554

6 Left Wall 255.582 274.673 284.981

7 Left Corner 232.087 223.566 211.141

8 Wide Corridor 226.75 249.217 255.856

Table 5.10: An example lookup table for learning optimal velocities after convergence 

using 8 clusters

Cluster Label Action Velocity

1 Front Wall lOOmm/s

2 Right Corner lOOmm/s

3 Right Wall 200mm/s

4 Open Space 300mm/s

5 Narrow Corridor 200mm/s

6 Left Wall 300mm/s

7 Left Corner lOOmm/s

8 Wide Corridor 300mm/s

Table 5.11: Learned Rule Base after convergence for learning optimal velocities using 
8 clusters.
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“Properly educated, the resulting robots are likely to  be intellectually 

formidable.”

- H. Moravec

6
Extensions

The research described in the previous chapters explores the possibility of learn­

ing a single primitive behaviour using the techniques of fuzzy c-means clustering and 

reinforcement learning in a navigational fuzzy logic controller. This chapter extends 

this research by exploring the derivation of other navigational behaviours and the 

fusion of multiple low-level behaviours.

The positive results in learning the fuzzy rule base for obstacle avoidance through 

means of reinforcement learning and fuzzy c-means clustering suggests the prospects 

of learning other navigational behaviours. The changes made to  the situation-based 

FCS to  learn other behaviours exist in the reward function, which essentially defines 

the desired performance of the behaviour.

The non-directed and loopy behaviour of the robot with only the obstacle avoiding

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 6.1 Application to Other Behaviours 85

behaviour (i.e. Figures 5.10 and 5.11) suggests th a t different techniques might be 

needed to establish the existence of a more practical and functional navigational robot. 

Although it is an essential component of navigation, the obstacle avoiding behaviour, 

single-handedly, does not have much purpose. O ther low-level behaviours should be 

integrated to  create more higher-level and complex controllers. This is typical of 

behavioural based robots since their controllers often consist of multiple low-level 

behaviours, each controlling a particular aspect of the robot’s desired performance. 

This is an underlying aspect of Brook’s subsumption architecture [18]. However, 

once the single behaviours are defined, the task of fusing and coordinating the 

behaviours is a non-trivial challenge. Behavioural cooperation and integration is 

essential in exploiting the single behaviours efficiently and correctly, particularly when 

the behaviours contradict each other.

In this chapter, the behaviour of wall following is learned using the same 

methodology and situation-based FCS tha t was applied to obstacle avoidance. Next, 

two behaviours, obstacle avoidance and goal finding are fused together in order to 

accomplish the ultim ate goal of finding a goal without hitting any obstacles along the 

way.

6.1 A pp lication  to  O ther B ehaviours

The purpose of the research in Chapter 4 was to demonstrate tha t the obstacle 

avoidance behaviour could be learned if the positive and negative traits of the 

behaviour are well defined in the reward function and proper exploration of clustered 

situations is maintained. Furthermore, a more useful application of this research is 

to  dem onstrate th a t this method could be used to learn other low level behaviours in 

which a reward function can be reasonably well defined. A well defined behaviour is 

such th a t it is clear from the current, and/or subsequent, states whether the behaviour
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is being satisfied or not. For example, it is clear whether the robot has maintained the 

obstacle avoidance behaviour in the current state by examining if a collision occurred 

through the robot’s internal and external sensors.

The alternative navigation behaviour chosen to  demonstrate this assertion is the 

wall following behaviour. More specifically, the objective is to follow either the left 

wall or right wall within a specified allowable distance without hitting the wall. Thus, 

similar to the obstacle avoiding behaviour, a penalty is given if the robot hits a wall 

or obstacle. However, additional characteristics are essential in the definition of the 

wall following behaviour. The robot should not move too close to a wall, and if it is 

following a right or left wall within an allowable distance, it should not move too far 

away from the wall. If it is not following a wall, it should explore the environment, 

or approach a wall if it sees one in its field of view (from the sonars). The specified 

allowable distance from a wall chosen for the purpose of this experiment is 15-35cm. 

The parameters chosen for the wall following experiment are summarized in Table A .l 

of the appendix. The corresponding reward function for the wall following behaviour 

is defined in Algorithm 7.

Figure 6.1: Training environment used for wall following
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A lg o rith m  7 Reward function for wall following
1 if  Robot is stalled (collision occured) th e n

2 Rew ard  =  — 30

3 Recover from stalled position

4 else  if  Robot goes too close to  the wall th e n

5 Reward = — 20

6 else  if  Robot goes too far from the wall th e n

7 Rew ard  =  — 20

8 else if  Robot maintains allowable distance th e n

9 Rew ard  =  30

10 else if  Robot is approaching a wall th e n

11 Reward =  20

12 en d  if

13 if  Reward  >  0 th e n

14 Reward = Reward — Crisp-O utput-H eading  * 0.1

15 en d  if
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The experiments were conducted using a simple enclosed room with narrow and 

wide corridors. There were few obstacles to prevent the robot from encircling the 

objects in the environment and to  focus more on the wall following situations. Figure 

6.1 displays the wall following training environment.

The same 8 cluster situations (Figure 5.2) and 7 output membership functions 

(Table 4.1) th a t were used in Chapter 4 were initially used for this wall following 

learning system. However, the fuzzy logic controller was unable to distinguish 

situations tha t should be separated for the purpose of wall following. For example, 

left com er and approaching left wall at an angle are two situations tha t have similar 

sonar ranges - short front and left sonar ranges. W ith 8 clusters, these two situations 

are classified as one situation (i.e. left comer). Also, the output singleton heading 

angles need to be more precise in order to  facilitate small heading adjustments of 

the robot to better align itself with the wall. In summary, it was determined tha t 

the precision in determining the current situation and the precision of the heading 

values had to be increased due to  the more strict requirements of the wall following 

problem. Therefore, the clustering procedure (Algorithm 1) was repeated for 16 

clusters. Figure B .l in the Appendix shows the corresponding functionals graphically 

with respect to trial number and Figure 6.2 shows the 16 cluster prototypes resulting 

from the clustering. The corresponding descriptions of the clusters are in Table 6.1.

Descriptions fo r 16 Clusters

1. Right Wall 1 2. Open Space 1 3. Dead End 1 4. Right Corner 1

5. Front Wall 1 6. Front Wall 2 7. Left Corner 1 8. Left Wall

9. Corridor 1 10. Dead End 2 11. Right Wall 2 12 Open Space 2

13. Corridor 2 14. Left Corner 2 15. Right Corner 2 16. Wide Corridor

Table 6.1: Descriptive labels corresponding to the 16 clusters in Figure 6.2.

Although some labels are similar (e.g. Right Corner 1), and Right Com er 2, the
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figure shows th a t the prototypes with the same labels are not identical. They have 

some variations which are helpful in distinguishing the situations from one another. 

For example, the left and right corner situations could represent varying positions 

and angles towards facing the corner, or perhaps a wall.

For the output control action, heading, 9 singleton membership functions, rather 

than 7 are used. Table 6.2 shows these membership functions and their respective 

values.

Singleton

Function^

Value Description

1 90 Complete left

2 60 Very left

3 40 Left

4 20 Small Left

5 0 Straight

6 -20 Small Right

7 -40 Right

8 -60 Very right

9 -90 Complete right

Table 6.2: Singleton membership functions and their corresponding values for the 

output label heading in learning the Wall Follow behaviour.

The maximum number of iterations was increased to I =  6000 since the wall 

following behaviour required more time in order to converge. The reasons for the 

increased convergence time are the increased rule search space and the increased 

granularity of the desired behaviour. Wall following requires careful adjustments 

of the robot’s heading to maintain a close and parallel position with the wall. In 

addition, the correlation between the situations and positive and negative rewards 

were much less consistent than  tha t of obstacle avoidance. For example, depending
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on the distance and angle the robot is towards a wall, the FCS could either be 

rewarded or penalized. This was a problem because different situation instances 

tha t received different reinforcement were often categorized into the same situation, 

whereas in obstacle avoidance, reinforcement was often consistent with the generalized 

categories. As with 8 clusters, the 16 cluster FCS still had difficulty in distinguishing 

im portant situations for wall following. Thus, the learning rate a  was reduced to 

0.2 to give less dependence on any single reinforcement value and more emphasis on 

small incremental adjustments in Q-values over a longer period of time. The design 

parameters chosen for the wall following experiment are summarized in Table B .l of 

the Appendix.

R esults

Table B.2 in the Appendix summarizes the robot’s exploration of the situation- 

action space in the training environment. Table 6.3 is an example lookup table 

after convergence. The derived rule base from this lookup table, listed in Table 

6.4, performed reasonably in wall following, however, the Q-values for each situation 

are much closer in value and are therefore less distinct from one another. Also, the 

trends described in Section 5.2.2 are not as clear as they are in the obstacle avoidance 

lookup Tables 5.4 and 5.5. Convergence was comparably difficult in learning the 

wall following behaviour; among 11 trials, 5 trials were not able to converge to a set 

of rules, and from inspection of the lookup tables, learning could not be accomplished 

since the resulting utility values did not describe a wall following behaviour. However, 

6 trials were able to converge with an average of 5415 iterations. The convergence 

table for the converged trials is found in Table B.2 of the Appendix. As a measure 

of performance, the reward is displayed with respect to 50 interval iterations (Figure 

B.3 of the Appendix).

Figure 6.3 shows the resulting trajectory of the robot after convergence of the
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situation-based FCS has been achieved in learning the wall following behaviour. This 

trajectory takes place in the robot’s learning environment. Another trajectory of the 

robot’s wall following behaviour in a novel environment is shown in Figure B.4 of 

the Appendix. It is evident tha t the robot follows the wall, however the trajectory of 

the robot is not smooth.

It**.*  *

Figure 6.3: Simulated trajectory with the wall following behaviour in the training 
environment

6.2 Fusing B ehaviours

The fact th a t most single behaviours lack any practical purpose in realistic robots 

introduces the need for behaviour fusion. For example, if there are obstacles in the 

path between a robot and its goal, the goal finding behaviour cannot function on its 

own without an obstacle avoidance behaviour. Likewise, a robot with an obstacle 

avoiding behaviour is almost stochastically random if not given some sort of goal or
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Cluster Label

Heading Value

90° 60°

OO

20° 0° -2 0 °

0O1 -6 0 °

OOO)i

1 Right Wall 1 27.8897 22.9001 28.603 20.1345 32.4299 26.4643 30.4934 16.9796 19.7044

2 Open Space 1 50.2647 61.3818 58.0298 51.6143 54.2206 46.7648 57.0035 53.938 49.6289

3 Dead End 1 91.812 93.6142 86.0746 69.1931 87.2259 90.0663 86.4325 91.6526 96.9195

4 Right Corner 1 61.8049 64.1147 57.7355 47.6291 50.2104 54.3856 55.053 55.0033 53.2401

5 Front Wall 1 1.66957 0 0 0 0 0 0 0 0

6 Front Wall 2 41.3929 28.8122 31.3356 24.9925 32.8465 24.4726 31.0862 31.6784 32.1446

7 Left Corner 1 71.9307 59.8252 70.491 64.2581 65.8838 65.5508 70.2877 74.6655 72.1682

8 Left Wall 48.6307 48.5053 58.0591 46.0609 60.5521 55.01 45.7778 51.1417 50.0563

9 Corridor 1 86.3302 77.3797 86.1895 92.1883 86.0332 71.9746 91.7118 82.736 89.7352

10 Dead End 2 87.2363 86.744 78.3902 76.6838 81.6978 82.431 83.0827 86.3719 82.0843

11 Right Wall 2 7.40642 19.0983 10.5893 13.5143 20.49704 11.48572 17.8905 16.9806 12.8326

12 Open Space 2 32.1137 25.1416 41.4446 29.0385 32.4487 32.1361 30.9956 34.1177 25.9387

13 Corridor 2 57.9797 54.1379 56.312 58.2101 61.1984 58.9031 61.1533 58.7782 56.3036

14 Left Com er 2 56.4678 66.9239 54.7208 59.7596 67.9234 65.6429 66.8447 62.741 70.3342

15 Right Corner 2 49.8177 44.0165 45.0761 41.8883 43.1813 42.7232 45.3957 46.5214 48.8518

16 Wide Corridor 24.5826 19.238 24.3606 22.2213 28.61694 12.0339 21.7737 27.6879 19.9675

Table 6.3: An example lookup table after convergence for 16 clusters to  learn the wall following behaviour

Sec. 
6.2 

Fusing 
Behaviours 

93



Sec. 6.2 Fusing Behaviours 94

Cluster Label Action
1 Right Wall 1 0°
2 Open Space 1 60°
3 Dead End 1 -90°
4 Right Corner 1 60°
5 Front Wall 1 90°
6 Front Wall 90°
7 Left Corner 1 -60°
8 Left Wall 0°
9 Corridor 1 20°
10 Dead End 2 90°
11 Right Wall 2 0°
12 Open Space 2 40°
13 Corridor 2 0°
14 Left Corner 2 -90°
15 Right Corner 2 90°
16 Wide Corridor 0°

Table 6.4: Learned rule base after convergence for 16 clusters in learning the wall 
following behaviour.

direction. Otherwise, the robot could just simply continue to  rotate in a small circular 

orbit. This trajectory may appear to have no purpose, however it is still successful 

in avoiding obstacles.

For these reasons, behaviour based architectures should incorporate multiple 

simple behaviours. While the designer has the challenge of designing the individual 

functionalities of the behaviours prior to  execution, they are also met with the 

challenge of coordinating them with limited knowledge of the real world environment. 

To give some goal directedness to the loopy behaviour in Figures 5.10 and 5.11, two 

low-level navigation behaviours are combined: obstacle avoidance and goal finding 

using a technique called context dependent blending (CDB). Each behaviour has its 

own separate fuzzy logic controller which produces separate preferred directions of
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movement based on the same crisp inputs. Sometimes, the direction of movement 

for each fuzzy logic controller conflicts with each other and often, a fair combination 

(i.e., the average value) of the two movements will produce undesirable actions. The 

behaviours should be compromised and fused together in such a way th a t takes 

advantage of more flexible combinations of the preferred control actions. This is 

on the contrary to some popular arbitration schemes (i.e., [16], [27]) which switch or 

activate single behaviours on and off. The disadvantage of these arbitration schemes 

is evident when a movement from the activated behaviour is taken th a t does not defy 

any desired performance features, but perhaps is less efficient from a more global 

perspective.

CDB [67] is an improvement to these arbitration schemes because rather than 

turning behaviours on and off, preferences are weighted and fused together in a 

trade-off control manner. The weight placed on each behaviour’s desired control 

action can only be decided during execution and in response to the current situation 

of the environment. To calculate the weight of each behaviour during runtime, the 

relationship between the context (conditions from the environment) and its preferred 

objective (behaviour) in tha t context must be determined prior to execution. In the 

case of goal finding and obstacle avoidance, the goal finding behaviour is most effective 

when it is in an open space. When it approaches obstacles in its path towards the goal, 

the obstacle avoidance behaviour should be preferred to enable reactive maneuvers 

around the obstacles.

For CDB, a separate higher level fuzzy logic controller is used to decide the 

weight of each behaviour relative to the distance to the closest obstacle. If there 

are no obstacles, the high-level fuzzy logic controller will favour the goal finding 

behaviour. Otherwise, the presence of close obstacles will emphasize the obstacle 

avoiding behaviour. T hus, th e  preferences of th e  goal-seeking b ehav iou r are still 

considered during the reactive obstacle avoiding maneuvers. This biases the control
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choices toward the achievement of the common goal.

C D B  Fuzzy Logic Controller

The input label for the higher level fuzzy logic controller for CDB is context which, 

in this case, refers to  the closest distance to  an obstacle. Thus, the crisp input for 

context is determined by taking the minimum distance from the 8 front sonar ranges. 

The two fuzzy sets for context are close and far. The triangular membership functions 

shown in Figure 6.4 indicate how fuzzification is performed.

Membership i t

1.0

Fuzzy Set b: FARFuzzy Set a: CLOSE

0.0
0mm 3000mm

Figure 6.4: Membership functions for the context input for CDB

The rule structure of the fuzzy rule base has the form 

If context is C*, then objective is O*

The two objectives are avoid obstacles and go to goal. Thus, the two rules in the 

CDB rule base are

If context is close, then objective is avoid obstacles 

If context is far, then objective is go to goal

The output membership functions are singletons. Each objective has a desired control 

action, a heading value, which are the numerical values of each singleton function.
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Thus, the control action for each behaviour, and similarly, the value of the two 

singleton functions, are dynamic and are determined by the two lower level controllers:

• The obstacle avoiding controller uses the learned situation-based FCS discussed 

in Chapter 4

• The goal finding controller compares the relative heading of the robot to the 

goal and the absolute position heading of the robot to determine the desired 

heading change to reach the goal.

The COG defuzzification method is used to  calculate the final crisp output.

Figure 6.5 shows a trajectory of the resulting goal finding system with obstacle 

avoidance. It is evident th a t the robot avoids and tracks around obstacles th a t lie 

between itself and the destination. The transition between dominant behaviours is 

fluid and the robot’s path towards the goal is smooth. Another trajectory of the goal 

finding system in a different environment is shown in Figure B.5 of the Appendix.
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Figure 6.5: Simulated trajectory with fused behaviours of obstacle avoidance and goal 
finding.
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“Man is still the m ost extraordinary com puter o f all.”

-  John F Kennedy

7
Conclusion

In this thesis, a new approach for robot navigation behaviours has been presented 

combining favorable properties of several existing technologies: fuzzy clustering for 

the classification of situations in robot’s environment, fuzzy rule based systems for 

inferring actions suitable in different situations, and reinforcement learning to  learn 

the rules of inference in an autonomous manner. The proposed system is referred to 

as an autonomous situation-based FCS.

Robot sonar data  was collected by allowing the robot to follow predetermined 

trajectories in a set of known environments. About 1500 sonar data points were 

collected. Using fuzzy c-means clustering, these data points were translated into 

a set of situational cluster prototypes. Two parallel experiments were performed 

th a t differed in the number of fuzzy clusters used in the FCS: one experiment used 8 

clusters while the other used 12 clusters. The resulting cluster vectors were used as the 

input situational fuzzy sets in the situation-based FCS’s fuzzy rule base. The heading
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output was determined by 7 possible actions represented as singletons. The FCS 

learned the situation-action mapping which maintained obstacle avoidance through 

means of reinforcement learning. In particular, a temporal-difference learning method 

called Q-learning was used for updating the utility values in reinforcement learning. 

The robot was allowed to  roam in a training environment to  learn a rule base which 

satisfies the obstacle avoidance requirements. It was determined th a t the FCSs with 

a greater number of cluster prototypes had longer learning periods: the FCS with 8 

clusters required an average of 1582 iterations until convergence while the FCS with 

12 clusters had an average of 3160 iterations. However, the performance of the system 

with the greater number of clusters was relatively better with respect to the number 

of collisions and rewards received after convergence. Several trials were run for both 

parallel experiments and all trials managed to converge to a rule base tha t maintained 

obstacle avoidance. The derived rule bases were similar for each trial. Moreover, the 

rule bases comprised of rules th a t might have been intuitively written by a human 

designer. After convergence, the trained robot was placed in a novel environment and 

obstacle avoidance was still maintained. Thus, with the reduction of the inputs space 

through fuzzy c-means clustering, reinforcement learning was successful in learning 

this low-level behaviour.

The main goal of this research was to learn the obstacle avoidance behaviour for 

mobile robots. To demonstrate the flexibility and generality of this reinforcement 

learning technique, the situation-based FCS was also applied towards other 

navigational behaviours. The wall following behaviour was used as the application 

for this experiment since its reward function could be well defined. The learning 

methodology of the situation-based FCS remained constant while the reward function 

was changed to define the new desired behaviour. Initially, the same 8 clusters and 

o u tp u t s ing leton  m em bersh ip  functions from  th e  previous experim en t were used. 

However, the wall following behaviour required more precision in terms of input
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situations and output actions (heading values). Thus, the number of clusters and 

the number of output singleton functions were increased. Although the situation- 

based FCS was able to learn the wall following behaviour, learning was difficult due 

to  the increased rule space and the complexity of the behaviour.

Robots with single behaviours typically do not serve any practical purpose in 

realistic robots. Behaviour based robots involve one or more low level behaviours 

arbitrated together to fulfill the high level goal of the robot. Thus, single behaviours 

may be combined to create more sophisticated mobile robots. The two behaviours 

used to  demonstrate behaviour arbitration are goal finding and obstacle avoidance. 

The action desired by goal finding is generated through means of inspection. The 

action desired by obstacle avoiding is generated using the obstacle avoiding situation- 

based FCS. The two desired actions are arbitrated using a higher-level fuzzy logic 

controller which decides the strength of each action to  send as the crisp output for 

the mobile robot based on the context. This method is called context dependant 

blending. The result is a smooth compromise between obstacle avoiding and goal 

finding towards the completion of a common goal.

The navigation methods described in this thesis are successful because they are 

inspired by intuitive sensing and decision making processes made when navigating 

through environments. Although navigational behaviours seem almost trivial, the 

general thought process would be to classify oneself to their current situation 

sensed in the immediate environment and react based on th a t situation. Negative 

reinforcements from the environment would encourage the search for more beneficial 

actions. Also, the natural curiosity or inquisitiveness may lead one to explore different 

alternatives. If there are multiple behaviours to  incorporate, one will also reason to  

compromise between these behaviours to smoothly satisfy the main purpose.

Future W ork
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Navigational robots in general, and the ones used in this thesis, are still far from being 

completely autonomous -  thus there is still a growing need for research in this field. 

Although the research in this thesis provides successful results, this study introduces 

the need for future work. The following are three areas of work tha t could significantly 

improve the autonomy of the situation-based FCS.

• To further increase the degree of autonomy of the situation-based navigation 

system, the current off-line clustering of situations could be replaced by an on­

line incremental clustering system th a t would create models of new situations 

as they arise during the robot’s interaction with the world. Situational clusters 

would be modified as more representational sets of cluster prototypes would 

form with the new data. Thus, the learning would be completely online and 

more adaptable to unexpected situations and dynamic environments.

•  The issue of the number of clusters or situations should also be dealt with 

in a more autonomous and incremental manner. As of now, the number of 

clusters is a decision on the part of the human designer. The designer must 

be careful tha t the number of clusters chosen is able to adequately represent 

the im portant situations in the environment to learn the desired behaviour. 

However, the number of clusters should not be so high such tha t learning 

will be too computationally intensive. For example, with wall following, more 

clusters were required to  represent all the situations tha t would allow the robot 

to  properly align itself with the wall. The appropriate number of clusters is 

difficult to  estimate without several trial and error experiments. Thus, an online 

learning method could be devised th a t learns the optimal number of clusters 

with respect to  the environment and goal.

•  A final component tha t could increase the autonomy of the situation-based 

system is to  learn how different behaviours should be arbitrated. Currently,
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CDB is used as a high-level controller to  assess the environment and decide 

on the importance of each behaviour. This high-level fuzzy controller is pre­

determined by the human designer. They must decide on the significant 

contexts and the relationship between contexts and behaviours. However, this 

relationship may also be learned using similar methods tha t were used to  learned 

navigational behaviours in the situation-based FCS. Since the situations are 

already determined through fuzzy c-means clustering, the situation can be the 

context and the situational clusters can be the fuzzy sets of the context. The 

reinforcement learning method would be used to determine which behaviour 

is most im portant in each situation. Learning should be performed in a 

hierarchical order (i.e. first, learn the lower-level behaviours, then learn how to 

arbitrate them).

Indeed, the above suggestions would substantially require more time and 

computation. Along with learning the individuals behaviours, the FCS would be 

faced with the challenges of learning the incremental cluster centers, the number of 

clusters, or the arbitration of the learned low-level behaviours. Despite the challenges, 

these features would further diminish the need for human decisions, especially in more 

complex systems, and would create a more autonomous and adaptable controller.
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Figure A .l: Functionals with respect to  trial number in fuzzy c-means clustering for 

12 clusters
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Figure A.2: Trial 1: 8 cluster prototypes of fuzzy situations from fuzzy c-means 

clustering
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Figure A.4: Exploration distribution for 12 clusters in obstacle avoidance experiment
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Figure A.5: Simulated trajectory with obstacle avoidance behaviour in novel 

environment, with 12 clusters
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Symbol Description Value

Fuzzy c-means Clustering

c Number of Clusters 8, 12

Fuzzy Logic Controller

velh Velocity for learning the heading control action 150 m m /s

velv Velocity for learning the velocity control action 100 m m /s - 300 m m /s

N um Actionsh Number of output singleton 

functions for heading

7

N um A ctionsv Number of output singleton 

functions for velocity

3

Q-Leaming

7 Discount Factor 0.9

a Learning Rate 0.3

Reinforcement Learning

b Number of collision free iterations 

between rule base changes

5

I Maximum number of iterations 5000

V Number of constant rule base 

changes for convergence

50

Table A .l: Design parameters for the situation-based FCS to learn the obstacle 

avoidance behaviour
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Cluster Label Action

1 Front Wall 90°, -9 0 °

2 Right Corner 90°, 60°

3 Right Wall 60°,90°,30°,0°

4 Open Space 0°,30°,—30°

5 Corridor 0°

6 Left Wall -6 0 ° ,-9 0 ° -3 0 °

7 Left Corner -9 0 ° -60°

8 Wide Corridor 0°,30°,—30°

Table A. 2: Observed alternate rules for obstacle avoidance among several trials in 

order of frequency (8 clusters)

Cluster Label Action

1 Left Corner 1 -9 0 ° -6 0 °

2 Open Space 1 0°,30°-30°

3 Front Wall 90°, —90°,60°

4 Corridor 1 0°

5 Right Corner 1 90°,60°

6 Right Corner 2 90°,60°,30°

7 Dead End 90°,-90°

8 Corridor 2

OOCOO ~O

9 Right Wall 60°,90°,30°,0°

10 Left Corner -9 0 ° ,-6 0 °

11 Left Wall - 6 0 ° - 3 0 ° - 9 0 ° ,

12 Open Space 2 0° -30°,30°

T able A .3: O bserved a lte rn a te  ru les for obstacle  avoidance am ong several tr ia ls  in 

order of frequency (12 clusters)
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Trial Iterations

1 2561

2 1904

3 1679

4 1512

5 1716

6 1129

7 1334

8 1227

9 2472

10 2132

11 1441

Avg 1737

Table A.4: Number of iterations until convergence for 8 clusters in the optimal 

velocities in obstacle avoidance experiments.
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Figure B .l: Functionals with respect to  trial number in fuzzy c-means clustering for 

16 clusters
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Figure B.2: Exploration distribution for 16 clusters in wall following experiments
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Figure B.3: Reward values with respect to  50 iteration intervals for 16 clusters, 

learning wall following
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Symbol Description Value

Fuzzy c-means Clustering

c Number of Clusters 16

Fuzzy Logic Controller fo r  Wall Following

velh Velocity for learning wall following 150 m m /s

mind Minimum allowable distance to  a wall 15cm

maxd Maximum allowable distance to  a wall 35 cm

N um A ctionsw Number of output singleton functions 9

Q-Leaming

7 Discount Factor 0.9

a Learning Rate 0.2

Reinforcement Learning

b Number of collision free iterations 

between rule base changes

5

I Maximum number of iterations 6000

P Number of constant rule base 

changes for convergence
50

Table B .l: Design param eters for the situation-based FCS to  learn the wall following 
behaviour
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Trial Iterations

1 5115

2 5878

3 4379

4 5532

5 5674

6 5912

Avg 5415

Table B.2: Number of iterations until convergence for 16 clusters in the wall following 

experiments.

-W.tr* .

Figure B.4: Simulated trajectory with wall following behaviour in novel environment
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Figure B.5: Simulated trajectory with goal finding and obstacle avoidance in the same 

environment as in Figure B.4
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