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Abstract 

Cognitive diagnostic assessment (CDA) is a testing format that employs a 

cognitive model to, first, develop or identify items measuring specific knowledge 

and skills and, then, use this model to direct psychometric analyses of 

examinees’ item response patterns to promote diagnostic inferences.  The 

attribute hierarchy method (AHM, Leighton, Gierl, & Hunka, 2004) is a 

psychometric procedure for classifying examinees’ test item responses into a set 

of structured attribute patterns associated with different components from a 

cognitive model of task performance.  Attribute reliability is a fundamental 

concept in cognitive diagnostic assessment because it refers to the consistency 

of the decisions made in diagnostic test about examinees’ mastery of specific 

attributes.  In this study, an adapted attribute-based reliability estimate was 

evaluated in comparison of the standard Cronbach’s alpha using simulated data.  

Factors expected to influence attribute reliability estimates, including test length, 

sample size, model structure, and model-data fit level, were also studied.  

Results of this study revealed that the performances of the two attribute-based 

reliability estimation indices are comparable; however, the adapted index is 

conceptually more meaningful.  Test length, model structure, and model-data fit 

were shown to impact attribute reliability estimates differentially.  Implications 

to researchers and practitioners were given based on the simulation results.  

Limitations of the present study and future directions were also discussed.  �
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Chapter I: Introduction 

Context of the Study 

The development and progression of modern technology is infiltrating all 

research areas and, in turn, generating more demands for multidisciplinary and 

interdisciplinary research.  Educational measurement is no exception.  One key 

example of interdisciplinary research in educational measurement is the fusion 

of psychological principles with measurement practices (Snow & Lohman, 1989; 

Pelleino, Baxter, & Glaser, 1999, Mislevy, 2006).   

Cognitive psychology reflects a psychological perspective that focuses on 

the realms of human internal mental processes such as perception, attention, 

thought, memory, and problem solving.  The psychological perspective together 

with the substantive perspective determine the nature of elements in test 

performance and, thus, directly affects practice, such as test construction, test 

score interpretation, and the diagnostic feedback provided to examinees 

(Mislevy, 2006).  In test construction, a cognitive theory of how examinees 

develop competence in a content domain yields clues about the types of item 

features that would elicit psychological evidence for claims of examinees’ 

thinking processes and cognitive proficiencies (National Research Council, 2001).  

Accordingly, test users would be able to make valid test score interpretations in 

relation to examinees’ cognitive strengths and weaknesses based on a cognitive 

theory.  Then, based on the test score interpretation drawn from examinee 
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performance on the test items, cognitively diagnostic feedback could be 

provided to the examinees and their teachers to enhance learning and 

instruction.  

Although cognitive psychology is exerting its influence on testing practice, 

its impact to-date has been overlooked (Leighton, Gierl, & Hunka, 2004).  The 

significance of understanding the psychology underlying examinees’ 

performance has been neglected in most contemporary large-scale testing 

programs.  In contrast, much more attention has been paid to statistical models 

and psychometric techniques for scaling and scoring examinees’ performance 

(Glaser, 2000; Leighton et al., 2004; Nichols, 1994).  Consequently, information 

provided by most current large-scale tests for teachers, examinees, and parents 

is very limited about why some examinees perform poorly and how instructional 

conditions can be modified to improve teaching and learning (National Research 

Council, 2001).   

The call for the integration of cognitive psychology and educational 

measurement began in earnest two decades ago (Snow & Lohman, 1989).  

Increasingly, researchers and practitioners are calling for the union of cognitive 

psychology and educational measurement to enhance learning and instruction 

(Embretson, 1998; Gierl, Bisanz, Bisanz, Boughton, & Khaliq, 2001; Gierl, Cui, & 

Hunka, 2008; Leighton et al., 2004; Gierl & Zhou, 2008; Mislevy, 2006; Mislevy & 

Riconscente, 2006; National Research Council, 2001; Nichols, 1994; Sheehan, 

1997; and Tatsuoka, 1995).  Pellegrino et al. (1999) claimed that: 
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…it is the pattern of performance over a set of items or tasks explicitly 

constructed to discriminate between alternative profiles of knowledge 

that should be the focus of assessment.  The latter can be used to 

determine the level of a given student’s understanding and competence 

within a subject-matter domain.  Such information is interpretative and 

diagnostic, highly informative, and potentially prescriptive. (p.335) 

That is, a test has the potential for identifying examinees’ problem-solving 

strengths and weaknesses when it is created from cognitive models which 

provide a contemporary representation of the knowledge structures and 

processing skills that are believed to underlie conceptual understanding in a 

particular domain.  Results of the assessment could also be integrated into the 

teaching and learning process because this form of assessment supports specific 

inferences about the examinees’ problem-solving skills that could be linked with 

specific instructional methods designed to improve these cognitive skills. 

The incremental pressure to adapt assessments to be informative about 

examinees’ cognitive strengths and weaknesses promotes changes in 

educational measurement.  The movement of integrating cognitive psychology 

and educational measurement has led to innovations and change in relevant 

research areas such as the development of cognitive diagnostic assessment (as 

discussed in Leighton & Gierl, 2007a). 
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Cognitive Models and Cognitive Diagnostic Assessment 

Human problem-solving skills represent knowledge structures and 

information-processing performance.  The knowledge structure includes 

declarative and procedural information while the processing skills indicate the 

management of the transformation of the information (Lohman, 2000).  

Cognitive diagnostic assessment (CDA) is a form of assessment designed to 

measure examinees’ specific knowledge structures and processing skills and to 

provide information about examinees’ cognitive strengths and weaknesses, 

particularly when the assessments are created from cognitive models that 

provide a contemporary representation of the knowledge structures and 

processing skills that are believed to underlie conceptual understanding in a 

particular domain (Gierl, Cui, & Zhou, 2009).  Specifically, in order to make 

inferences about human problem solving, a cognitive model that represents an 

explicit interpretative framework of human knowledge structures and processing 

skills is first employed to develop or identify items that measure specific 

knowledge and skills and then used to direct the psychometric analyses of the 

examinees’ item response patterns to promote diagnostic inferences.   

In educational measurement, a cognitive model refers to a “simplified 

description of human problem solving on standardized educational tasks, which 

helps to characterize the knowledge and skills examinees at different levels of 

learning have acquired and to facilitate the explanation and prediction of 
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students’ performance” (Leighton & Gierl, 2007a, p. 6). A cognitive model can be 

used to identify examinees’ cognitive proficiencies because it provides the 

framework necessary to link cognitively-based inferences with specific problem-

solving performance.  Consequently, the strength of developing test items and 

analyzing testing data according to a cognitive model stems from the detailed 

information that can be obtained about the knowledge structures and processing 

skills that produce examinees’ test scores.  In other words, CDAs have the 

potential for identifying examinees’ problem-solving strengths and weaknesses.  

CDAs can also help pinpoint why examinees perform as they do and how 

examinees’ opportunities to learn can be maximized because the information is 

specifically tailored for each examinee to reflect the examinee’s thinking and 

high-order cognitive processes associated with meaningful learning (Leighton & 

Gierl, 2007a).  CDAs provide one way for linking theories of cognition and 

learning with instruction because they support specific inferences about the 

examinees’ problem-solving strengths and weaknesses that, in turn, could be 

linked with the most effective and timely instructional methods designed to 

improve these cognitive skills.  With such information, erroneous strategies can 

be corrected and misconceptions can be altered.   

According to Messick (1989), substantively understanding test 

performances in terms of the mental processes examinees use to answer and/or 

solve test items is a core feature of construct validity theory.  Particularly, he 

emphasized the verification of the domain processes to be revealed in 
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assessment tasks.  As discussed above, CDA is an assessment format that focuses 

on highlighting examinees’ mental processes as they are engaged in problem 

solving and then using this information for improving examinees’ opportunity to 

learn (Leighton & Gierl, 2007a).  Therefore, CDAs can help enhance test construct 

validity in terms of understanding examinees’ mental processes.   

Attribute Hierarchy Method 

In an attempt to uncover the diagnostic information that may be 

embedded in examinees’ item response data and address the challenge posed by 

Pellegrino et al. (1999), psychometric procedures have been developed to 

support test-score inference based on cognitive models of task performance.  

These cognitive diagnostic models contain parameters that link item features to 

examinees’ response patterns so inferences about declarative, procedural, and 

strategic knowledge can be made.  Some early examples include the linear 

logistic test model (Fischer, 1973), the multicomponent latent trait model 

(Embretson, 1980), and the rule space model (Tatsuoka, 1983).  More recent 

examples include the unified model (Dibello, Stout, & Roussos, 1995), the DINA 

models (de la Torre & Douglas, 2004), and the NIDA models (Junker & Sijtsma, 

2001). 

In 2004, Leighton, Gierl, and Hunka introduced a procedure for CDA 

called the attribute hierarchy method (AHM).  The AHM, a method that evolved 

from Tatsuoka’s rule space model (see Gierl, 2007), refers to a cognitively-based 
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psychometric method which classifies examinees’ test item responses into 

structured attribute patterns according to a cognitive model of task 

performance, with the assumption that test performance is associated with a 

specific set of hierarchically-organized cognitive components called attributes.  

An attribute is a description of declarative or procedural knowledge required to 

perform a task in a specific domain. These attributes are structured using a 

hierarchy so the ordering of the cognitive skills is specified.  As a result, the 

attribute hierarchy serves as an explicit construct-centered cognitive model 

because it represents the psychological ordering among the cognitive attributes 

required to solve test items.  This model, in turn, provides an explicit, fine-

grained interpretative framework for designing test items and for linking 

examinees’ test performance to specific inferences about psychological skill 

acquisition.  AHM developments have been documented in the educational and 

psychological measurement literature, including psychometric advances (e.g., 

Leighton et al., 2004; Gierl, Leighton, & Hunka, 2007; Gierl, Cui, & Hunka, 2008; 

Cui, Leighton, Gierl, & Hunka, 2006) and practical applications (e.g., Gierl, Wang, 

& Zhou, 2007; Wang & Gierl, 2007).  The AHM has also been used to study 

differential item functioning (Gierl, Zheng, & Cui, 2008) and to serve diagnostic 

adaptive testing (Gierl & Zhou, 2008). 
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Attribute-Based Reliability Estimation 

To-date, however, the AHM has not been applied in an operational 

diagnostic testing situation because the reliability for attribute-based scoring has 

not been well developed.  Reliability estimation, in educational measurement, 

considers how the scores resulting from a measurement procedure would be 

expected to vary across replications of times and test forms (i.e., parallel forms 

estimate of reliability); replications of times (i.e., test-retest estimate of 

reliability); and replications of test items (i.e., internal consistency estimate of 

reliability which contains the Spearman-Brown type procedure; Flanagan, Rulon, 

and Guttman procedure; KR-20 and KR-21 procedures; and Cronbach’s 

coefficient alpha) (Haertel, 2006).  That is, the concern of reliability estimation is 

to quantify the precision of test scores over repeated administrations.  It is 

critical to determine the extent to which any single score produced by a 

measurement procedure is likely to depart from the average score over many 

replications of times, test forms, and/or test items because the variation reflects 

the reliability of a measurement procedure.  Stated another way, a 

measurement procedure is reliable when it can produce test scores close to each 

other as it is administered over replications of times, test forms, and/or test 

items.  Conversely, the greater the variation among the scores of a 

measurement, the less reliable the instrument.   

Reliability estimation is critical in diagnostic assessment because 

diagnostic assessment provides information on examinees’ mastery of specific 
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attributes.  A functional diagnostic assessment should yield reliable feedback on 

an examinee’s attribute mastery.  In the AHM, attribute reliability refers to the 

consistency of the decisions made in a diagnostic test about examinees’ mastery 

of specific attributes across multiple observations.  Attribute reliability is a 

fundamental concept in CDA because score reports must provide users with a 

comprehensive yet succinct summary of the outcomes from testing, including 

score precision.  Standard 5.10 in the Standards for Educational and 

Psychological Testing (AERA, APA, NCME, 1999) makes this point clear: 

When test score information is released to students, parents, legal 

representatives, teachers, clients, or the media, those responsible for 

testing programs should provide appropriate interpretations.  The 

interpretations should describe in simple language what the test covers, 

what scores mean, the precision of the scores, common 

misinterpretations of test scores, and how scores will be used. (p. 65) 

A criterion-referenced score interpretation which compares an examinee’s 

performance with a preset standard for acceptable achievement regardless of 

other examinees’ performance is appropriate for use in a cognitive diagnostic 

assessment.  The interpretation identifies an examinee’s mastery of specific 

knowledge and skills assessed.  Attribute-based reliability should be calculated, 

therefore, to examine the consistency of observed response pattern 

classification.   
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Purpose of Current Study 

The purpose of the present study was to develop and comparatively 

evaluate a new measure of attribute reliability for cognitive diagnostic 

assessments designed to provide examinees with information about their 

cognitive strengths and weaknesses.  Two reliability estimation procedures were 

considered: the standard form of Cronbach’s alpha (Cronbach, 1951) and an 

adapted form in which each item is weighted to take account of those examinees 

who correctly answer the item but do not possess the attributes needed to 

correctly answer the item.  The study explored which factors influenced each 

method and if the influence was the same for both methods.  The research 

questions addressed in this study included: 

1. Is attribute reliability as determined by adapted and standard 

Cronbach’s alpha influenced by different cognitive model 

structures, specifically, a linear model versus a divergent model? 

2. What is the minimum number of items required to measure each 

attribute to achieve adequate attribute reliability as determined 

by adapted and standard Cronbach’s alpha? 

3. Are the two indices influenced by sample size? 

4. Is attribute reliability as determined by adapted and standard 

Cronbach’s alpha influenced by discrepancy of examinees’ 

observed response patterns from expected response patterns? 
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Organization of the Dissertation 

The current study consists of five chapters.  Chapter I, the present 

chapter, described the context of the study, provided a brief introduction to 

cognitive models and the AHM, and then presented the purpose of the study.  

Chapter II contains the theoretical framework of the study.  It includes a detailed 

introduction of AHM and an introduction to the procedures for estimating 

attribute reliability.  Details on the research deign, data simulation, and data 

analyses of the present study are elaborated in Chapter III.  The results are then 

reported in Chapter IV.  Chapter V provides a summary and discussion of the 

results.  The conclusions drawn in light of the findings and limitations of the 

study are then presented.  Implications for practice and suggestions for future 

research conclude this chapter.     
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Chapter II: Review of Attribute Hierarchy Method for Cognitive Diagnostic 

Assessment 

In Chapter I, it was shown that the theoretical background of the present 

study lies in the integration of cognitive psychology and educational 

measurement.  In this study, attribute-based reliability for the attribute 

hierarchy method (AHM) will be introduced and evaluated.   

This chapter is divided into three sections.  Section 1 gives an overview of 

cognitive models in diagnostic testing and describes why they are important in 

educational measurement and, more specifically, in cognitive diagnostic 

assessment (CDA).  Some currently existing cognitive diagnostic models and their 

features will be reviewed.  Section 2 provides a review of the AHM, including the 

cognitive model representation and its psychometric components.  Section 3 

introduces the procedures examined for estimating attribute reliability.  

Cognitive Models and Educational Measurement 

Currently, most large-scale tests are designed using test specifications 

(Leighton & Gierl, 2007a).  Test specifications are represented, most commonly, 

in a two-way matrix which serves as a blueprint to link intended and actual test 

score inferences.  Specifically, a blueprint describes the content and cognitive 

skills required for generating a set of relevant items that represents the defined 

achievement domain.  The rows of the blueprint matrix typically represent 

content coverage while the columns of the matrix indicate cognitive processes to 
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be measured on the test.  Often, there are two reporting categories: knowledge 

and skills.  As relevant items are generated from the test specifications, they are 

designed to be representative samples of each matrix cell which is the cross 

combination of rows and columns (Bloom, 1956; Gierl, 1997; Webb, 2006).  A 

sample blueprint of Alberta 2007 Grade 3 Mathematics Achievement Test is 

presented in Table 1.  In this blueprint, the mathematics content to be assessed 

in the test is listed in each row and the cognitive processes are listed in the 

columns.  For example, the Provincial Mathematics Achievement Test is designed 

to cover four content areas:  Number, Patterns and Relations, Shape and Space, 

and Statistics and Probability.   For each content category, the cognitive 

processes to be measured are classified as knowledge or skills.  For Grade 3 

examinees, knowledge  of Mathematics is about recalling facts, concepts, and 

terminology; knowing number facts; recognizing place value; knowing 

procedures for computations; knowing procedures for constructing and 

measuring; knowing how to use a calculator/computer; and knowing mental 

computation and estimation strategies.  The skills include representing basic 

mathematical concepts in concrete, pictorial, and/or symbolic modes; applying a 

mathematical concept in both familiar and new situations; creating new problem 

situations that exemplify a concept; justifying answers; judging reasonableness 

of answers; communicating why and when certain strategies are appropriate; 

applying basic mathematical concepts to solve problems; demonstrating and 

applying relationships among numbers, operations, number forms, and modes of 
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representation; explaining relationships among geometric forms; and using a 

variety of problem-solving strategies.  The essential assumption of using test 

specifications for item development is that examinees would use the skills 

outlined in the specifications to solve items.  The number of items for each cell in 

the blueprint is specified so test developers can prepare a test containing 

relevant items that together represent each content area and cognition 

interaction.  That is, the items included in the test are assumed to be relevant 

and representative of the test specifications.   

However, tests constructed from test specifications are not capable of 

yielding diagnostic claims about examinees’ strengths and weaknesses because 

the grain size of the specifications only defines examinees’ knowledge and skills 

at a general level of detail.  That is, items are not designed to measure particular 

skills because the test specifications only reflect a general description of the 

domain of achievement.  Moreover, studies are rarely conducted to verify that 

the thinking processes examinees use to answer the test mirror the expectations 

laid out in the test specifications (Leighton & Gierl, 2007a).  Some of the studies 

that do exist reveal that the cognitive skills reflected in the test specifications do 

not, in fact, measure important aspects of examinees’ thinking processes (Gierl, 

1997; Hamilton, Nussbaum, & Snow, 1997; Poggio, Clayton, Glasnapp, Poggio, 

Haack, & Thomas, 2005).  The absence of empirical evidence that the content 

and skills outlined in the test specifications are identical to what is being applied 

by examinees becomes an obstacle for providing detailed diagnostic claims 
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about examinees’ cognitive strengths and weaknesses.  Thus, large-scale tests 

which are developed using models of test specifications are regarded as 

instruments measuring only generalized knowledge and skills.  

Currently, a total score which represents only a coarse evaluation of 

examinees’ overall knowledge and skills measured on tests is provided in most 

large-scale testing programs.  This limitation is mainly caused by the absence of 

any cognitive basis in the test development process.  Fortunately, testing 

organizations have recognized the problem and are starting to address this issue.  

For example, one of the goals of the Learner Assessment Branch at Alberta 

Education, the organization responsible for the Alberta Provincial Achievement 

Tests, is to provide individual examinees with feedback about their performance 

on the achievement tests (personal communication with psychometricians in 

Alberta Education).  This goal represents Alberta Education’s ongoing effort 

towards linking large-scale tests with teaching and instruction.  Also, the 

Education Quality and Accountability Office, the agency in Ontario responsible 

for the assessments conducted in Ontario, uses Cognitive Labs (Zucker, Sassman, 

& Case, 2004) as an activity in the development of educational assessments.   

To develop cognitive diagnostic assessments that measure knowledge 

structures and processing skills so examinees receive information about their 

cognitive strengths and weaknesses, a cognitive model is required.  Leighton and 

Gierl (2007a, p. 6) defined the term cognitive model in educational and 
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psychological measurement as: “… simplified description of human problem 

solving on standardized educational tasks, which helps to characterize the 

knowledge and skills examinees at different levels of learning have acquired and 

to facilitate the explanation and prediction of examinees’ performance.”   

A cognitive model reflects the knowledge structures and processing skills 

examinees apply to solve educational tasks in a specific achievement domain.  

The knowledge structure contains factual and procedural information while the 

processing skills include the transformations and strategies required to 

manipulate this information (Lohman, 2000).  The knowledge structures and 

processing skills are connected with test performance and test score 

interpretations through a cognitive model of task performance, which, in turn, 

provides a detailed framework for identifying and understanding how examinees 

use their cognitive skills to produce their responses and yield subsequent test 

scores.   

A cognitive model of task performance must be specified at a fine-grain 

size to represent the detailed knowledge structures and thinking process that 

underlie examinees’ task performance.  Cognitive models are able to guide 

diagnostic inferences if they are specified at a small grain size because only in 

this manner can the cognitive processes that underlie test performance be 

magnified and, hence, understood.  Each component in a cognitive model, 

specified at a small grain size, should reflect an identifiable problem-solving skill.  
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The components required to produce a satisfactory response should then be 

combined.  In this way, test performance can be connected with score 

interpretations that allow the understanding of how examinees’ cognitive skills 

were used to produce their responses and, subsequently, test scores.  Often, due 

to the lack of existing cognitive models, items in the test are reviewed post hoc 

to extract the cognitive attributes measured by the items.  This is called a post-

hoc or retrofitting approach.  However, the grain size of cognitive skills obtained 

using a post-hoc or retrofitting approach is not fine enough because items with 

these specific cognitive characteristics are unlikely to exist in a test developed 

without a cognitive model.   

The impact of cognitive models of task performance on educational and 

psychological measurement is far reaching.  One of the benefits of a cognitive 

model is that it is a viable guide for item and test development after the model is 

evaluated and validated.  With the description of specific, fine-grain cognitive 

skills, test developers can create items according to the structural organization of 

the cognitive components in a cognitive model.  By doing so, the test developer 

achieves control over the particular cognitive skills each item measures.  That is, 

the assessment principles used in test construction are much more precise 

allowing items to be validly and efficiently created during the development cycle.   

Another benefit of cognitive models is their facility to yield detailed 

cognitive diagnostic feedback to the examinees about their problem-solving 
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strengths and weaknesses.  These models provide an explicit framework 

necessary to link cognitively-based inference with explicit, fine-grained test score 

interpretations (Gierl & Leighton, 2007; Leighton & Gierl, 2007a).  A cognitive 

model of task performance also helps track the underlying knowledge 

requirements and thinking processes for solving tasks.  Therefore, examinees will 

become aware of their strengths and weaknesses through the diagnostic 

inferences provided and, consequently, they will be able to improve their 

learning.   

One other benefit of cognitive models is the potential for linking 

cognition theory with learning and instruction.  Instructional principles are 

decided on the basis of how examinees reason and solve problems.  The 

diagnostic inferences associated with examinees’ knowledge and thinking 

processes will help instructors identify examinees’ strengths and weaknesses and 

adjust, if necessary, their instructional strategies.  Cognitive models provide one 

means to report examinees’ cognitive skills on tasks of interest which could be 

used to associate their test score with instructional procedures designed to 

improve the examinees’ skills (National Research Council, 2001; Pellegrino, 2002; 

Pellegrino, Baxter, Glaser, 1999).  

Among a variety of procedures (e.g., judgmental and logical analyses, 

generalizability studies, and analyses of group differences; Messick, 1989) that 

may be used to generate a cognitive model, verbal report methods are 
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appropriate for the study of human information processing (Leighton & Gierl, 

2007b).  Researchers can develop a cognitive model by administering tasks to a 

sample of examinees that represent the intended population, having them think 

aloud as they respond these tasks, and then conducting protocol or verbal 

analysis with the corresponding verbal data (Chi, 1997; Ericsson & Simon, 1993; 

Leighton, 2004; Leighton & Gierl, 2007b; Taylor & Dionne, 2000).   

Only a valid cognitive model can be used to empirically confirm the 

thinking processes individuals use to answer or solve classes of test items.  An 

existing cognitive model can be validated using the same method as it is 

generated, for example, by verbal reports.  A cognitive model can also be 

evaluated by checking how examinees’ observed response data fit expected 

response patterns derived by the cognitive model.  A valid cognitive model of 

task performance can be used to empirically confirm the thinking processes 

individuals use to answer or solve classes of test items (Leighton & Gierl, 2007b).   

Obviously, a cognitive model plays a crucial role in CDA because it is 

designed to specify knowledge requirements and processing skills that underlie 

examinees’ task performance when answering an item in a particular domain.  

To uncover the diagnostic information that is embedded in examinees’ item 

response data, many cognitive diagnostic models have been proposed (e.g., de la 

Torre & Douglas, 2004; Dibello, Stout, & Roussos, 1995; Embretson, 1980; 

Fischer, 1973, 1983; Leighton, et al., 2004; Junker & Sijtsma, 2001; Tatsuoka, 
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1983, 1995).  From a psychometric modeling perspective, most cognitive 

diagnostic models share a common property: they model the probability of 

yielding a correct response to an item as a function of examinees’ attribute 

mastery associated with different knowledge and skills, regardless of the forms 

that the models might take.  In the following sections, six cognitive diagnostic 

models will be briefly reviewed to provide information regarding the breadth 

these models cover in educational measurement.   

An Overview of Existing Cognitive Diagnostic Models 

Linear Logistic Latent Trait Model 

 Fischer’s (1973, 1983) linear logistic latent trait model (LLTM), which is an 

extension of the IRT Rasch model, was regarded as the first approach to bring 

cognitive variables into psychometric models (Stout, 2002).  The LLTM intends to 

account for the difficulty of test items with respect to a set of underlying 

cognitive skills or attributes which an examinee is hypothetically required to 

possess for solving items.  The IRT item difficulty parameters are rewritten as a 

linear combination of the difficulties of K cognitive attributes.  The item response 

probability of the LLTM can be expressed as:  

����� � ��	� 
 �� 
 
� � ���������� ������� ��� !!"����������� ������� ��� !!
                (Equation 1) 

where 

  ��� = the response of examinee # to item $,  
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  	�  = the ability of examinee #,  
  %�� = the hypothetical minimum number of times that attribute & has to 

be used in solving item $,  
  ��  = the difficulty of attribute &, and  

  
 = the normalization constant.   

In the LLTM, an examinee’s ability is modeled as a unidimensional parameter, 	�.  
Since only one ability parameter is specified for each examinee, the LLTM can 

not be used to evaluate examinees in terms of individual attributes.  In addition, 

as recognized by Embretson (1984, 1991), the cognitive attributes are 

“compensatory” in the LLTM, indicating that high ability on one attribute can 

compensate for low ability on other attributes.  However, cognitive attributes 

are often not compensatory in nature.  For example, if comprehension of text 

and algebraic manipulation are both required skills for solving a math problem, 

high ability on comprehension of text cannot compensate the lack of algebraic 

skills.   

Multicomponent Latent Trait Model 

 To overcome the shortcomings of the LLTM, Embretson (1984) 

introduced a non-compensatory model called the multicomponent latent trait 

model (MLTM).  Subtask responses are used to measure cognitive attributes 

underlying test items in the MLTM.  The probability of satisfactory performance 
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on a test item is expressed as the product of probabilities of satisfying 

performances on subtasks of the item, each of which follows a separate one-

parameter unidimensional IRT model,  

����� � ��	� 
 '�� � ( ������ � �)	�� 
 '��!*�+" � ( ���������,�!"����������,�! 
*�+"       

(Equation 2) 

where 

  	�  = the vector of - subtask abilities for examinee #,  
  '� = the vector of - subtask difficulties for item $, 
  ���� = the response of examinee # to subtask & for item $, 
  	��  = the ability of examinee # on subtask &, and 

  '� = the difficulty of subtask &. 

By using the multiplicative form of the probabilities for solving each subtask 

correctly, the MLTM captures the non-compensatory nature of cognitive 

attributes.  Moreover, an examinee’s ability parameters for subtasks can be 

estimated in situations in which several cognitive subtasks are required 

simultaneously to solve each of the test items correctly.  However, a major 

limitation related to the MLTM is that this approach requires examinees’ 

responses to subtasks of each item, which cannot be directly obtained from 
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multiple-choice items.  As a result, the practicability of the MLTM for cognitive 

diagnosis is, to some extent, restricted.   

Rule Space Model 

 One widely recognized cognitive diagnostic model is Tatsuoka’s (1983, 

1991, 1995) rule space model, which is currently used with the Preliminary 

Scholastic Assessment Test (PSAT).  As Stout (2002) pointed out, the rule space 

model is “a major pioneering milestone, both from the psychometric and the 

formative assessment perspectives” (p. 508).  Generally speaking, the rule space 

model contains two sequential parts.  The first part of this model is to define an 

attribute-by-item incidence matrix (. matrix) of order - by /, and to derive the 

universal set of knowledge states from the incidence matrix.  The . matrix is a 

predefined binary matrix consisting of 1s and 0s, where the 1s in the $-th column 

identify which of the - attributes are necessary for successful performance on 

item $.  For example, a hypothetical . matrix is shown as follows: 

.5
78 � 011
12�����������������������3�����3�����3�����3����3�3���3�3���3�3���3�3��3�3�3�������3�3�3������3�3�3�3�3�3������������455

56                                 (Matrix 1) 

This matrix consists of five rows and twelve columns, with each row 

corresponding to an attribute and each column corresponding to an item.  The 

first column of this . matrix shows that item 1 is measuring attribute 1.  The 

second column indicates that item 2 is measuring attributes 1 and 2.  The rest of 
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columns can be interpreted in the same manner.  In the rule space model, an 

examinee is assumed to have mastered all the attributes that an item is 

measuring in order to answer the item correctly.  Therefore, in order to answer 

item 2 correctly, the examinee must have mastered attributes 1 and 2.  The . 

matrix is typically obtained from a task analysis conducted by test developers or 

content experts by reviewing test items and identifying the attributes that 

underlie the items.  Once the . matrix is established, knowledge states can be 

derived and related to examinees’ observable response patterns by using 

Boolean description functions (Tatsuoka, 1991; Varadi & Tatsuoka, 1992).  In the 

rule space model, each cognitive attribute is dichotomized as mastered or non-

mastered.  As a result, knowledge states, used to describe examinees’ profiles of 

cognitive skills, are represented by a list of mastered/non-mastered attributes.   

The second part of the rule space model is to classify each observed 

response pattern into one of the knowledge states obtained from the analysis of 

the first part of the model (i.e., specification of the . matrix).  The rule space 

model uses a two-dimensional Cartesian coordinate system, characterized by 

theta (	, the ability level from the IRT model) and zeta (7, an index measuring 

atypicality of response patterns), and a Bayesian decision rule for minimizing 

errors to facilitate inferences about examinees’ knowledge states.  By creating 

knowledge states from the . matrix and then classifying observed item 

responses into one of the knowledge states, a link is established between 

examinee cognition and psychometric applications.   
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The Unified Model 

Based on the idea of Tatsuoka’s rule space model, Dibello et al. (1995) 

proposed a new cognitive diagnostic model called the unified model, which 

“brings together the discrete, deterministic aspects of cognition favoured by 

cognitive scientists, and continuous, stochastic aspects of test response 

behaviour that underlie item response theory” (Dibello et al., 1995, p. 361).  The 

unified model adds to the rule space approach a cognitively-based IRT model, 

which is modeled with respect to discrete cognitive states and a continuous 

latent ability (Dibello, et al., 1995).  In the unified model, each examinee is 

characterized by a dichotomous vector 8� representing the examinee’s attribute 

mastery profile and a latent “residual” ability 	�  which is not captured by the . 

matrix.  Dibello et al. identified four possible sources of response behaviour that 

could lead to the variation in observed response patterns from those predicted 

by or derived from the . matrix.  These sources are: 1) the use of a different 

strategy from that presumed by the . matrix, 2) the incompleteness of the . 

matrix for attributes, 3) the positivity of attribute for the item (corresponding to 

the possibility that an examinee who possesses an attribute may fail to apply it 

correctly to an item and an examinee who lacks the attribute may still answer 

the item correctly by possessing partial knowledge), and 4) the possibility that an 

examinee makes a random error.  The unified model incorporates these four 

sources of variation in the following equation for the item response probability: 
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                                                                               (Equation 3) 

where 

� = probability of making a random error,  

;� = probability of using attributes specified in the . matrix to solve item 

$,  
8�� = the &th element of vector 8�, 

� = completeness index of attributes required for item $,  
<��  = B(Attribute & applied correctly to item $)8�� � 7),  

>�� = B(Attribute & applied correctly to item $)8�� � :), 

@ = 2, and 

����! = one parameter logistic model with difficulty '�.  

Comparable to Embretson’s MLTM, the unified model captures the non-

compensatory nature of cognitive attributes as the probability of satisfying 

performance on an item derived from the . matrix is presented as a product of 

the probabilities of applying each attribute correctly.  Moreover, the explicit 

expression of the item response probabilistic function makes the likelihood-

based classification procedures straightforward.  However, the unified model 
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encounters an identifiability problem given that the item response data are 

essentially not rich enough to make all the item parameters identifiable.  In an 

effort to solve the identifiability problem, Hartz (2002) reparameterized the 

unified model so that it can produce statistically identifiable and well 

interpretable parameters.   

The DINA and NIDA Model 

There are many other cognitive diagnostic models based upon the . 

matrix in the literature, such as the deterministic input noisy and gate model 

(DINA) (de la Torre & Douglas, 2004; Doignon & Falmagne, 1999; Haertel, 1989; 

Junker & Sijstma, 2001; Macready & Dayton, 1977; Tatsuoka, 2002) and the noisy 

input deterministic and gate model (NIDA) (Junker & Sijstma, 2001).  The DINA 

model partitions examinees into two classes for each item, those who have 

mastered all the attributes required by an item (C�� � 7) and those who have not 

(C�� � :).  It models the probability of a correct response to an item with two 

parameters: the probability that an examinee fails to answer the item correctly 

when the examinee has mastered all required attributes (D�, the “slipping” 

parameter) and the probability that an examinee gets the correct answer when 

the examinee does not possess all of the required attributes (E�, the “guessing” 

parameter).  The item response probability can be written as: 

����� � ��C�� 
 D� 
 E�� � �� 9 D�!F��E��"�F��!
                (Equation 4) 

where ��� is the response of examinee # to item $.   
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 The NIDA model extends the DINA model by defining a slipping 

parameter D� and a guessing parameter E� for each attribute, independent of 

the item.  That is, for all the items that require attribute &, the slipping 

parameter D� and the guessing parameter E� for attribute & are constant across 

these items.  The NIDA model gives the probability of a correct response as: 

����� � ��8�
 D
 E� � ( G�� 9 D�!=��E��"�=��!H���*�+" 
       (Equation 5) 

where 

8� = the vector of the attribute profile for examinee #, 
D = the vector of attribute slipping parameters,   

E = the vector of attribute guessing parameters,  

%�� = the element of the . matrix in the $th row and &th column, and  

8�� = the &th element of vector 8�.   
All of the cognitive diagnostic models discussed in this section require the 

specification of the . matrix, based on which test developers can use to design 

test items according to a presumed set of attributes.  The . matrix, however, 

does not provide information in terms of the relationships among attributes.  

The attributes might be independent of each other in the sense that the mastery 

of each attribute does not depend on the possession of any other attributes in 

the . matrix.  However, cognitive research suggests that cognitive skills do not 
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operate in isolation but indeed function as a network of interrelated processes 

(e.g., Anderson, 1996; Kuhn, 2001; Mislevy, Steinberg, & Almond, 2003).  As a 

result, it is necessary to build the relationships or dependencies among 

attributes into cognitive diagnostic models and, in turn,  integrate this 

information into statistical pattern classification procedures.  

In 2004, Leighton, Gierl, and Hunka introduced a procedure for cognitive 

diagnostic assessment called the attribute hierarchy method (AHM).  The AHM 

brings an important cognitive property, attribute dependency, into cognitive 

modeling methodologies because the AHM is based on the assumption that test 

performance is associated with a specific set of hierarchically-organized cognitive 

components called attributes.  This method is reviewed in the next section.  

The Attribute Hierarchy Method 

The attribute hierarchy method (AHM; Gierl, Leighton, & Hunka, 2007; 

Gierl, Cui, & Hunka, 2008; Leighton, Gierl, & Hunka, 2004) refers to a cognitively-

based psychometric method that classifies examinees’ test item responses into a 

set of structured attribute patterns with reference to a cognitive model of task 

performance.  In the AHM, a cognitive attribute is defined as a description of the 

procedural or declarative knowledge required to perform a task in a specific 

domain of achievement (Leighton et al., 2004).  Attributes are considered to be 

hierarchically related and therefore can be ordered into a hierarchy based upon 

their logical and/or psychological properties (Leighton & Gierl, 2007b).  The 
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hierarchical structure of the AHM reflects an important characteristic of human 

cognition because cognitive skills operate dependently (Anderson, 1996; Mislevy, 

Steinberg, & Almond, 2003).  A cognitive attribute hierarchy functions in the 

framework of the AHM by providing a manifest description of cognitive 

attributes required to solve test items and the relationships among these 

cognitive attributes (Leighton et al., 2004).   

Once a cognitive attribute hierarchy for a specific content domain is 

identified and validated, test developers can create items and tests according to 

the cognitive characteristics that embody each attribute and the hierarchical 

organization of these attributes.  Consequently, the test developer achieves 

control over the specific attribute each item measures and the cognitive features 

of the test composed by these items.  The AHM also offers a more convenient 

way of providing cognitive feedback to examinees.  This feedback is provided by 

mapping observed examinee response patterns onto expected examinee 

response patterns derived from the attribute hierarchy.  An examinee with a 

certain observed response pattern is expected to master the attributes implied 

by the corresponding expected response pattern.  As a cognitively-based 

psychometric approach, the AHM consists of two major components: the 

cognitive model representation component and the psychometric component.   

Cognitive Model Representation Component of the AHM 

The cognitive model representation component of the AHM refers to the 



31 
 

specification of the cognitive attribute hierarchy.  A cognitive attribute hierarchy 

specifies the cognitive attributes to be measured by a test and the 

interrelationships among these attributes.  There are two types of cognitive 

model structures, linear and divergent, as presented in Figure 1.  The 

hypothesized linear model presented in Figure 1a contains all three attributes 

aligned in a single branch.  This type of model could be used to characterize 

problem-solving when the knowledge and skills are ordered in a linear manner.  

Knowledge and skills that are restricted within a domain of basic logical 

application, for example, could be characterized in a linear mode.  In other 

words, the attributes in a linear model measure a single construct at varying 

difficulty levels.   

The second cognitive model is a more complex divergent hierarchy, as 

presented in Figure 1b.  The hypothesized divergent hierarchy contains two 

independent branches which share a common prerequisite—attribute A1.  Aside 

from attribute A1, the first branch includes two additional attributes, A2 and A3, 

and the second branch includes attribute A4.  This type of model could be used 

to characterize problem-solving when the knowledge and skills differ as a 

function of the concepts and content within a domain.  Examples of divergent 

model can be found in the study of Gierl, Wang, and Zhou (2008).  The four 

cognitive hierarchies they used to describe examinee performance on the SAT 

algebra subtest are presented in Figure 2.  The descriptions of attributes involved 

in the four cognitive hierarchies are presented in Appendix 1.  Attributes in each 
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of the four hierarchies are organized in divergent manner, indicating the 

knowledge and skills they measure are unrestricted within one domain.  

However, these attributes are categorized in one cognitive hierarchy because the 

knowledge and skills they measure have some characteristics in common.  Taken 

together, these two model structures, linear and divergent, represent different 

types of cognitive structures that could characterize examinee performance on a 

diagnostic test. 

To specify the cognitive model components and their organization, the 

formal representations of the hierarchy, four different sequential matrices are 

developed: the adjacency, reachability, incidence, and reduced . matrices (Gierl, 

Leighton, & Hunka, 2000; Leighton et al., 2004; Tatsuoka, 1995).  The attribute 

hierarchy example presented in Figure 1b is used to identify and describe the 

different matrices in the AHM.   

In the AHM, a binary adjacency matrix (I) of order (-
-), where - is the 

number of attributes, specifies the direct relationships among attributes.  In the 

adjacency matrix, the diagonal elements are denoted as 0s while the off-diagonal 

elements are 1s or 0s depending on the relationship between two attributes.  A 1 

in the position �$
 &!�$ J &! indicates that attribute $ is directly connected in the 

form of a prerequisite to attribute &, while a 0 in the position �$
 &!�$ J &!  

indicates that attribute $ is not the direct prerequisite to attribute &.  It can be 

expressed as follows: 

8�� � K�
 #L�8MM>#'NMO�$�#D�MPO��>O>O%N#D#MO�QL�8MM>#'NMO�&3
 QMPO>R#DO ST     (Equation 6) 
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For example, the adjacency matrix for the hierarchy example shown in 

Figure 1b is:  

I;
; � U3 � 3 �3 3 � 33 3 3 33 3 3 3V                                            (Matrix 2) 

Row 1 of matrix 2 indicates that attribute A1 is a direct prerequisite to 

attribute A2 and A4 (i.e., 812 � 1�and�814 � 1) but not the direct prerequisite 

of attribute A3 (i.e., 87< � :).  Similarly, attribute A2 is the direct prerequisite 

of attribute A3 as 88< � 7.  Attribute A3 and A4 are direct prerequisites of no 

other attributes because all elements are 0 in row 3 and row 4 of the matrix.   

The adjacency matrix only expresses the direct relationship between 

attributes.  To specify the direct and indirect relationship among attributes, a 

reachability matrix is used.  The reachability matrix (W) of order (-
-), where - 

is the number of attributes, specifies both the direct and indirect relationships 

among attributes.  The reachability matrix can be derived from the adjacency 

matrix by performing Boolean addition and multiplication.  Boolean addition is 

defined by � ? � � �
 � ? 3 � �
 3 ? � � �
 8X;�3 ? 3 � 3.  Boolean 

multiplication is defined by 3 Y 3 � 3
 � Y 3 � 3
 3 Y � � 3
 8X;�� Y � � �.  

The W matrix is calculated using W � �I ? Z![, where X is the integer required 

for W to reach invariance, X � 7
 8
 \ 
 &
 given I is the adjacency matrix, and Z is 

an identity matrix of order (-
-).  For the divergent hierarchy example 

presented above, I ? Z is equal to: 
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I ? Z � U� � 3 �3 � � 33 3 � 33 3 3 �V                                             (Matrix 3) 

When I ? Z is multiplied by itself repeatedly using Boolean algebra until 

the product become invariant, the resulting matrix is the reachability matrix.  For 

example, to calculate the reachability matrix for the hierarchy shown in Figure 

1b, �I ? Z![  is calculated for X � 7
 8
 <
 ; separately.  Because the resulting 

matrices are same for X � < and X � ;,  �I ? Z!< is, therefore, the W matrix for 

the hypothetical divergent hierarchy:  

W;
; � U� � � �3 � � 33 3 � 33 3 3 �V                                             (Matrix 4) 

The $]� row of the W matrix specifies all the attributes, including the $]� 

attribute, that the $]� attribute can reach through direct or indirect connections.  

In the hypothetical reachability matrix, row 1 indicates that attribute A1 can 

reach itself and all other attributes through direct or indirect relations as all 

elements on row 1 are 1s.  Row 2 indicates that attribute A2 can reach itself and 

attribute A3 (i.e., >88 � 7�8X;�>8< � 7); row 3 and row 4 indicate that each of 

attributes A3 and A4 is a direct prerequisite of itself but neither is a direct or 

indirect prerequisite of any of the other attributes (i.e., only ><< � 7�8X;�>;; � 7 

in the corresponding row).  In the AHM, the reachability matrix is used to select a 

subset of items from the potential pool of items, which corresponds to the 

dependencies of the attribute hierarchy.   
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In order to maximize the control over the attributes each item measures, 

prior to the development of test items, the attribute hierarchy should be 

identified to represent the hierarchical relationship among attributes (Leighton 

et al., 2004).  That is, the attribute hierarchy should be used to guide test and 

item development by which test items can be designed to assess the specific 

attributes taking into consideration of the inter-attribute hierarchical 

relationships.  

The potential pool of items includes all combinations of attributes and 

represents the set of potential items when the attributes are independent of one 

other.  That is, the adjacency matrix is a matrix of order �-
 -! with all elements 

equal to zero and the reachability matrix is an identity matrix of order �-
 -!, 

where - is the number of attributes.  The attributes in the potential pool of 

items are described by the incidence matrix (.).  The . matrix is of order (-
 B), 

where - is the number of attributes and B, which equals to ^* 9 �, is the 

number of potential items.  Each column of the . matrix represents one item.  

The 1s in the column identify which attributes are required for successful 

performance on this item.  The columns of the . matrix are created by 

converting the integers ranging from 1 to ^* 9 � to their binary form.  The . 

matrix for the hypothetical divergent hierarchy is shown below: 

                  .;
75 � U� 3 � 3 � 3 � 3 � 3 � 3 � 3 �3 � � 3 3 � � 3 3 � � 3 3 � �3 3 3 � � � � 3 3 3 3 � � � �3 3 3 3 3 3 3 � � � � � � � �V                  (Matrix 5) 
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For this hypothetical divergent hierarchy, the number of items (columns) 

in the . matrix is ^_ 9 � � �`, therefore the . matrix is of order �a
 �`!.  

Column 1 of the . matrix represents item 1 which indicates that only attribute 1 

is required for examinees to correctly answer this item.  Column 15 identifies 

that all four attributes are required for solving item 15.  The rest of the columns 

can be interpreted in the same way.   

In the AHM, the attributes are related hierarchically as some attributes 

are prerequisites of other attributes.  Correspondingly, an item that probes an 

attribute must at the same time probe its prerequisite attribute(s).  As a result, 

when the attributes share dependencies, the size of the potential item pool can 

be significantly reduced by imposing the constraints of the attribute hierarchy as 

embodied in the reachability matrix.  For example, in the . matrix presented 

above, item 2 (column 2 of the matrix: [0100]) indicates that it is developed to 

measure attribute A2.  However, the hierarchy indicates that attribute A2 has 

attribute A1 as its prerequisite.  Hence, the item that measures attribute A2 

must measure attribute A1 as well.  The representation of that item is [1100], 

which is identical to the third column of the . matrix (item 3).  For this reason, 

item 2 can be removed as the hierarchy imposes dependencies among the 

attributes.  Logically speaking, the removal of items in this manner results in a 

reduced . matrix (.b) which represents the dependencies among attributes.  

In practice, the .b�matrix is derived by determining which columns of the 

W matrix are logically included in columns of the . matrix, using Boolean 
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inclusion (Tatsuoka, 1991).  For example, column 3 of the reachability matrix 

specifies that any item that probes attribute 3 must also assess attribute 1 and 2.  

If the item does not measure these two additional attributes, the item does not 

match the attribute hierarchy and, therefore, would be removed.  The .b matrix 

is of order (-
 Z) where - is the number of attributes and Z�is the reduced 

number of items resulting from the constraints imposed by the hierarchy.  For 

the hypothetical divergent hierarchy, the .b�matrix is as follows: 

.b;
6 � U� � � � � �3 � � 3 � �3 3 � 3 3 �3 3 3 � � �V                                      (Matrix 6) 

The .b matrix is of order �;
 6!.  Thus, out of a potential pool of 15 items, if the 

attribute hierarchy is valid, only six items are logically meaningful to measure the 

domain of interest according to the hypothetical divergent hierarchy shown in 

Figure 1b.   

The .b matrix represents the cognitive specifications or blueprint for the 

test as it describes attribute-by-item level combinations in the hierarchy.  

Therefore, the .b matrix can be used as a guide to develop and interpret items 

that measure specific attributes outlined in the hierarchy.  In order to 

systematically evaluate each component in the cognitive model and in turn 

provide diagnostic inferences, items must be developed to directly mirror each 

attribute combination in the .b matrix.  The .b matrix includes the total number 

of single items that is needed.  For the hypothetical example, the .b�matrix is of 

order �;
 6!, indicating that six items must be developed to measure the four 
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attributes in the hypothesized hierarchy.  In the .b matrix, the first column 

indicates that an item must be created to measure attribute A1 while column 2 

of the .b matrix indicates that an item must be created to measure both 

attributes A1 and A2.  The remaining columns are interpreted in the same 

manner.   

Given the reachability matrix and the .b matrix, the attribute patterns 

and expected response patterns for a group of examinees can then be 

generated.  Attribute pattern refers to the combination of attributes that is 

consistent with the attribute hierarchy.  The attribute pattern matrix is the 

transpose of a .b matrix with one additional row.  This row, containing all 0s for 

each attribute, indicates that an examinee has mastered none of the attributes 

designated in the hierarchy.  The attribute pattern matrix of the hypothesized 

divergent hierarchy is presented below:  

IB=
; �
011
112
3 3 3 3� 3 3 3� � 3 3� � � 3� 3 3 �� � 3 �� � � �45

555
6
                                              (Matrix 7) 

Corresponding to each of the attribute patterns is an expected response 

pattern.  Expected response pattern refers to the response pattern produced by 

an expected examinee who correctly answers items assessing the cognitive 

attributes that the examinee has fully mastered, but fails the items which 

evaluate the cognitive attributes that the examinee has not mastered.  That is to 
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say, expected response patterns are those response patterns that can be clearly 

explained by the presence or absence of the attributes without any errors or 

“slips.”   

The expected response matrix (c) is created, again using Boolean 

inclusion (Tatsuoka, 1991), where the algorithm compares each row of the 

expected attribute pattern matrix to the columns of the .b matrix.  The c matrix 

is of order (/
 Z), where / is the number of expected responses and Z is the 

reduced number of items resulting from the constraints imposed by the 

hierarchy.  The rows of the c�matrix are those responses that would be produced 

by an examinee who possesses the attributes as defined and structured in the 

attribute hierarchy and presented by the columns of the .b�matrix.  The columns 

of the c matrix are the items that probe specific attribute combinations.  When 

an examinee’s attributes match those attributes measured by an item, a correct 

answer is expected.  The expected response pattern matrix of the hypothesized 

divergent hierarchy is as follows: 

c=
6 �
011
112
3 3 3 3 3 3� 3 3 3 3 3� � 3 3 3 3� � � 3 3 3� 3 3 � 3 3� � 3 � � 3� � � � � �45

555
6
                                         (Matrix 8) 

Given the assumption that the hypothesized divergent hierarchy is true, 

an examinee, who has an expected attribute pattern of G�333H, as presented in 

the second row of the attribute pattern matrix for the hypothetical example, is 

expected to have mastered only attribute 1.  Hence, the examinee should 
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correctly answer item 1 but incorrectly answer the rest of the items (i.e., the 

second row of the expected response pattern matrix G�33333H).  Conversely, if 

an examinee has an observed response pattern G��3��3H, as presented in the 

sixth row of the expected response pattern matrix, then it can be inferred that 

the examinee has mastered attributes 1, 2, and 4 but has not mastered attribute 

3 (i.e., the sixth row of the attribute pattern matrix G��3�H).  The remaining rows 

of attribute pattern and expected response pattern can be interpreted in the 

same manner.   

Noticeably, an examinee who possesses attributes 1 and 2 (i.e., G��33H) 
can produce the expected response pattern G��3333H and obtain a total score of 

2.  An examinee who masters attributes 1 and 4 (i.e., G�33�H) is expected to 

correctly solve items 1 and 4 (i.e., G�33�33H) and has a total score 2.  That is, 

examinees with an equal total score do not necessarily master the same 

attribute patterns.  Hence, an examinee’s total score can not be consistently 

coupled with a single attribute pattern.  Apparently, total scores are not 

adequate to diagnose examinees’ cognitive strengths and weaknesses.  The 

attribute pattern and the expected response pattern establish the 

correspondence between an examinee’s test performance and the examinee’s 

expected attribute pattern, and yields a convenient way for diagnosing the 

examinee’s strengths and weaknesses.  An examinee who is classified into an 

expected response pattern is said to have mastered the cognitive attributes 

implied by the corresponding attribute pattern, but not others.   
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Psychometric Component of the AHM 

 After attribute hierarchies are specified, psychometric procedures are 

required to apply the AHM in test analysis.  These procedures include 

approaches for observed response pattern classification (Gierl, Cui, & Hunka, 

2008) and calculation of hierarchy consistency indices (Cui, Leighton, Gierl, & 

Hunka, 2006).  To provide an overall review of attribute hierarchy method, these 

two procedures will be reviewed next. 

Classification of Observed Response Patterns 

In a real testing situation, discrepancies will occur between the observed 

response patterns and expected response patterns because slips are inevitable. 

A slip is the discordance of the expected response pattern based on the 

hierarchy compared to the observed response pattern.  For example, the 

examinees may have the required attributes for an item, but due to carelessness 

or a mistake in writing on the answer sheet, they get the item wrong.  

Conversely, some examinees may not master the required attributes, but by 

guessing or by applying partial knowledge, they could get the item correct.   

An examinee’s observed response pattern is judged relative to the 

expected response patterns in the c matrix under the assumption that the 

cognitive model is true.  The attribute probability is the probability that an 

examinee possesses these specific attribute combinations.  Hence, the purpose 

of calculating attribute probability is to identify the attribute combinations that 

the examinee is likely to possess, given their observed response pattern.  These 
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probabilities provide examinees with specific information about their attribute-

level mastery as part of the test reporting process. 

In the AHM, three classification methods have been developed to date 

(Cui, Leighton, Gierl, & Hunka, 2006; Leighton et al., 2004; Gierl, Cui, Hunka, 

2008).  Among three methods, two are IRT-based procedures (Method A and 

Method B) while the third is the artificial neural network approach.  In these two 

methods, the probability of a correct response to individual items is first 

calculated for each expected response pattern using an IRT model.  The three-

parameter logistic IRT model is given by: 

����� � T�)	�
�8� 
 '� 
 
�� � 
� ? "� �"��d�Sef�gh�di�j ,                    (Equation 7) 

where 8� is the item discrimination parameter for item $, '� is the item difficulty 

parameter for item $, 
� is the pseudo-guessing parameter for item $, and 	�� is 

the ability parameter for examinee #S��The two-parameter logistic IRT model is a 

special case of the three-parameter model in which the 
� parameter is set to 

0.0.  The one-parameter model also called Rasch model is another form of the 

logistic IRT model in which all the items are assumed to have equal 

discrimination power and no guessing.  Item parameters can be estimated based 

on the expected response patterns using BILOG 3.11 (Mislevy & Block, 1990).  

According to the psychometric features of a test, one of the three models is used 

to meet specific requirements.   

 Once item parameters and the theta value associated with each expected 

response pattern are estimated, the IRT probability of a correct response to each 
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item can be calculated for each expected response pattern.  In Method A, an 

observed response pattern is compared against all expected response patterns 

and slips (inconsistencies between an observed response pattern and an 

expected response pattern) of the form 0 -> 1 and 1 -> 0 are identified.  The 

product of the probabilities of each slip is calculated to give the likelihood of the 

observed response pattern being generated from an expected response pattern 

for a given ability level (Leighton et al., 2004).  Formally, this likelihood is 

expressed as: 

B��k��� ]�l�	�� � ( B���	�!�mn�o ( p� 9 B�q�	��rqmn�� ,          (Equation 8) 

where s�: is the subset of items with slips from 0 to 1 for the observed response 

vector of examinee #
 s�7 is the subset of items with slips from 1 to 0 for 

examinee #
 and 	�  is the ability level for a given observed response pattern, 

which can be estimated using an IRT-model.  The higher the value of 

B��k��� ]�l�	��, which is calculated by comparing the observed response vector 

to expected response vector $, the more likely the observed response pattern 

originates from the expected response vector.  Therefore, the observed response 

pattern would be classified as being generated from the expected response 

pattern for which the maximum value of B��k��� ]�l�	�� is achieved.  Then, 

diagnostic information could be inferred from the attribute pattern implied by 

the corresponding expected response pattern.  

 For illustration, Table 2 presents the information for classifying the 

observed response pattern [101000] from a hypothetical 6-item test constructed 
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from the hypothetical hierarchy used previously (the ability levels of the 

response patterns and the values of likelihood are not estimated using an IRT 

model, but specified by the author for illustration purposes only).  The observed 

response pattern has different numbers of slips when compared with the 

expected response patterns.  However, as the expected response pattern 

[111000] corresponds to the largest likelihood, the observed response pattern 

[101000] should be classified this expected response pattern with one 1 - > 0 slip.  

Because the expected response pattern [111000] corresponds to the attribute 

pattern [1110], diagnostic information can be provided to the examinees with 

such an observed response pattern that they have mastered attributes 1, 2, and 

3, but need more work on attribute 4.   

 In Method B, all the expected response patterns that are logically 

contained within the observed response pattern are identified.  The attributes 

implied by these expected response patterns are supposed to have been 

mastered by the examinee with the observed response pattern.  For the 

expected response patterns that are not logically included in the observed 

response pattern, the likelihood of the slips of the form 1 -> 0 is computed as:  

B��k��� ]�l�	�� � ( p� 9 B�q�	��rqmn�� ,                   (Equation 9) 

Based on the likelihood values, judgments can be made about the classification 

of the observed response pattern according to the criterion set by the 

researchers.  
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 For illustration, Table 3 presents the information for classifying the 

observed response pattern [101000] using Method B.  The asterisks in the last 

column of the table indicate that the corresponding expected response patterns 

are logically included in the observed response pattern.  For the expected 

response patterns that are not logically included, the slips of the form 1 ->  0 are 

identified as shown in the fourth column of the table.  If the researcher set 0.20 

as the criterion, then the observed response pattern [101000] can be classified 

to the expected response pattern [111000], which corresponds to the attribute 

pattern [1110].  The diagnostic decisions for this response pattern can be made 

in a similar way as in Method A.   

Both Methods A and B involve the calculation of joint probabilities for 

slips to get the values of maximum likelihood.  In many cases, such calculations 

result in very small maximum likelihood values, which make the interpretation of 

these values difficult.  For example, the maximum likelihood value may be 0.01 

or even lower, which indicates, probabilistically, that the expected response 

pattern associated with the maximum likelihood value is very unlikely.  However, 

according to the classification principle of the two methods, even with such small 

values, the expected response pattern is most likely because its likelihood is 

highest among all the expected response patterns.  Another weakness common 

to both methods A and B is that they rely on IRT-models and assumptions about 

the distribution of examinees, which are restrictive.   
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To address these problems, an artificial neural network approach can be 

used to estimate the probability that examinees possess specific attributes, given 

their observed item response pattern (Gierl, Cui, & Hunka, 2008).  A neural 

network is a type of parallel-processing architecture that transforms a stimulus 

received by the input unit to a signal for the output unit through a series of mid-

level hidden units.  The input layer units produce a weighted linear combination 

of the inputs which are then transformed to non-linear weighted sums that are 

passed to every hidden layer unit.  The hidden layer units, in turn, produce a 

weighted linear combination of the inputs which are transformed to non-linear 

weighted sums that are passed to every output layer unit.  The network serves as 

a powerful pattern recognition technique because it can map any relationship 

between input and output.   

The input (called exemplars in the terminology of neural network) to train 

the neural network is the set of expected response vectors produced from the 

AHM analysis.  For each expected response vector there is a specific combination 

of examinee attributes (i.e., the transpose of the .b matrix).  The examinee 

attribute patterns, as the expected response vectors, are meaningful because 

they are derived from the cognitive model and provide a description of each 

attribute pattern that should be associated with each expected response 

pattern.  The relationship between the expected response vectors with their 

associated attribute vectors is established by presenting each pattern to the 

network repeatedly until it learns the associations (Gierl, Cui, & Hunka, 2008).  
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The final result is a set of weight matrices, one for cells in the hidden layer and 

one for the cells in the output layer, which can be used to transform any 

response vector to its associated attribute vector. 

The functional relationship for mapping the examinees’ observed 

response patterns onto the expected response pattern so that their attribute 

probabilities can be computed is given as follows.  Let  

t�u! � ""��dv�� ,                                   (Equation 10) 

and 

8� � � w����+" t�9� R����+" ��!,                    (Equation 11) 

then the output for unit &, x�Y, is given as 

x�Y � t�8�!,                                     (Equation 12) 

where % is the total number of hidden units, w�� �is the weight of hidden unit $ for 

output unit�&, ��is the total number of input units, R��  is the weight of input unit 

# for hidden unit $, and ��  is the input received from input unit #.  The output 

values, scaled from 0 to 1, can be interpreted as probabilities.  Using this 

approach, individual attribute probabilities can be computed for each observed 

response pattern thereby providing examinees with specific judgments about 

whether an examinee has mastered a certain attribute or not.  Table 4 presents 

the classification information produced by the neural network approach for the 

observed response pattern [101000].  Based on the information, we can 
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conclude that examinees with this observed response pattern likely have 

mastered attributes 1, 2, and 3, as the probabilities for these three attributes are 

high, and that they likely have not mastered attribute 4, as the probability for 

this attribute is quite low.  

Evaluation of Hierarchical Consistency 

Cui, Leighton, Gierl, and Hunka (2006) proposed a model-data fit index 

for the AHM, the hierarchy consistency index (yzZ�!, to evaluate the consistency 

between the expected and observed response patterns.  The yzZ� examines the 

degree to which observed examinee response patterns generated from a large 

group of examinees is consistent with the expected response patterns generated 

from the attribute hierarchy.  Given & attributes and # items, the element %�� of 

the .b matrix indicates if attribute & is required to solve the #]� item.  It can be 

represented as 

%�� � :����������8MM>#'NMO�&�>O%N#>O;�'{�#MO|�#3������������QMPO>R#DO�������������������������������������T              (Equation 13) 

 Attribute mastery occurs when examinees correctly answer the items 

requiring the attribute.  Thus, the yzZ for examinee $ is specified as  

yzZ� � � 9 }� � ~���"�~��!�m���m������������  ,                 (Equation 14) 

where s �bb� ]� includes items that are correctly answered by examinee $, ��� is 

examinee $’s score (0 or 1) to item #, ���  is examinee $’s score (0 or 1) to item E, 
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attributes of item #, and � � is the total number of comparisons for correct-

answered items by examinee $.   
 The term � � ����� 9 ���!�mn��mn��������  in the numerator of the yzZ� 

represents the number of misfits between examinee $’s item response vector 

and the .b matrix.  If examinee $ correctly answers item #, ��� � �, then the 

examinee is also expected to answer item E that belongs to s� correctly, namely, 

��� � ��E m s�!, where s�  includes items that require the subset of attributes 

measured by item #.  If the examinee fails to correctly answer item E,  ��� � 3, 

then ����� 9 ���! � � and it is a misfit between examinee $’s observed response 

pattern and the expected response patterns specified by the attribute hierarchy.  

Thus, � � ����� 9 ���!�mn��mn��������  is equal to the total number of misfits.  The 

denominator of the yzZ�, ��� , contains the total number of comparisons for 

items that are correctly answered by examinee $.  When the numerator of the 

yzZ� is set to equal the total number of misfits multiplied by 2, the yzZ� has the 

property of ranging from -1 to +1, which makes it relatively straightforward to 

interpret.  The value of the yzZ�  ranges from a perfect misfit of -1 to a perfect fit 

of 1.  As the examinee’s observed response pattern matches the hierarchy 

perfectly, the numerator is 0 and the yzZ�  has a value of 1.  When the 

examinee’s observed response maximally misfits the hierarchy, the numerator is 

(8 Y � �) and the yzZ�  will have a value of -1.  Therefore, yzZ� values close to -1 
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indicate inconsistency between the observed response patterns and the 

expected response patterns specified by the attribute hierarchy, suggesting that 

the attribute hierarchy needs improvement.  Moreover, the mean and standard 

deviation of the yzZ�  can be used as indicators of the overall model-data fit.  Cui 

(2007) demonstrated that yzZ�  values above 0.70 indicate good model-data fit.   

Estimation of Attribute Reliability 

Reliability Estimation 

To date, the AHM has not been applied in an operational diagnostic 

testing situation because the reliability for attribute-based scoring must first be 

established before the AHM can be put into practice.  In conventional testing 

theory, the concern of reliability estimation is to quantify the precision of test 

scores.  The issue of reliability considers how the scores resulting from a 

measurement procedure would be expected to vary across replications of times 

and test forms (i.e., parallel forms estimate of reliability), replications of times 

(i.e., test-retest estimate of reliability), and replications of test items (i.e., 

internal consistency estimate of reliability which contains the Spearman-Brown 

procedure, Flanagan, Rulon, and Guttman procedures, KR-20 and 21 procedures, 

and Cronbach’s �) (Haertel, 2006).  It is critical to determine the extent to which 

any single score of a measurement procedure is likely to depart from the average 

score over many replications of times, test forms, and/or test items, as that is 

the way to represent the precision of test score report.  The greater the variation 
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among the scores, the less reliable is the instrument.  In addition, to any test 

form, reliability is a topic that has important implications because only if a test is 

reliable can the scores be validly interpreted.   

Test score reliability must be conceived relative to particular testing 

purposes and contexts (Haertel, 2006).  In the environment of a CDA, attribute-

based reliability is considered, therefore, to examine the consistency of observed 

response pattern classification.  Attribute reliability is a fundamental concept in 

cognitive diagnostic assessment because score reports yielded by CDA must 

provide users with a comprehensive yet succinct summary of the outcomes from 

testing, including score precision.   

Attribute Reliability 

Attribute reliability refers to the consistency of the decisions made in a 

diagnostic test about examinees’ mastery of specific attributes.  One method to 

estimate attribute reliability is by calculating Cronbach’s (1951) coefficient alpha, 

which can be interpreted as the ratio of true score variance to observed score 

variance on the items that are probing each attribute.  The reliability estimation 

for attribute & using standard Cronbach’s � formula is given as 

����� � [�[��" �� 9 � �����m���� ���m��� � ,                      (Equation 15) 

where X� is the number of items that are probing attribute & in the .b (i.e., the 

number of elements in s�),  s�  includes items that measure attribute & in the .b, 

�~�8  is the variance of the observed scores on item #, � �~�8�mn� �is the sum of the 
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variance of the observed score on the items that are measuring attribute &, and 

��� ~��m��8 ��is the variance of the observed total scores.  

In the AHM, an item can be designed to measure a combination of 

attributes.  Consequently, for items that measure more than one attribute, each 

attribute only contributes to a part of the total item-level variance.  The index, 

therefore, incorporates the concept of attribute dependency into the reliability 

calculation.  The consideration of attribute dependency is important because 

theories of learning and performance which dictate the conditions over which 

the construct is expected to change or remain unchanged play a central role in 

attributing consistency or inconsistency in test takers’ performance (Nichols & 

Smith, 1998). Consider attribute 1 in Figure 1b.  Attribute 1 is the prerequisite for 

all other attributes in this hierarchy because an examinee must possess attribute 

1 in order to correctly respond to items measuring any other attribute in the 

hierarchy.  Similarly, if an examinee correctly answers items that directly probe 

attribute 2, then it can be inferred that the examinee has also mastered attribute 

1 because of their structural relationship in the hierarchy.  More generally, 

attribute 1 is measured directly or indirectly by all test items included in the set 

of items for the AHM model displayed in Figure 1b, and, thus, to calculate the 

reliability of attribute 1, all test items must be included.  Now consider attribute 

3 in Figure 1b.  Attribute 3 does not serve as the prerequisite of any other 

attribute.  If an examinee produces a correct answer to items that require 

attribute 4, for instance, then we could not discern if the examinee had 
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mastered attribute 3 because attributes 3 and 4 are independent.  Hence, only 

items that directly probe attribute 3 can be included in the reliability estimate for 

attribute 3.  Attribute dependency also implies that prerequisite attributes in the 

initial nodes of the hierarchy, such as attribute 1, are expected to have higher 

reliability estimates compared to attributes in the final nodes of the hierarchy, 

such as attributes 3 or 4 in Figure 1b because of the dependencies among the 

attributes that, in turn, affect the number of items that measure each attribute, 

either directly or indirectly. 

Different from the first method of estimating attribute reliability which 

treats the contribution of each attribute towards an examinee’s item-level 

performance equally, the second method to estimate attribute reliability is to 

isolate the contribution of each attribute to an examinee’s item-level 

performance, in which the item score is weighted by the subtraction of two 

conditional probabilities.  The first probability is associated with attribute 

mastery (i.e., an examinee who has mastered the attribute(s) can answer the 

item correctly) and the second probability is associated with attribute non-

mastery (i.e., an examinee who has not mastered the attribute(s) can answer the 

item correctly).  The weighted scores for items that measure the attribute are 

used in the reliability calculation.   

 Let ��� denote the weight for item # in the calculation of attribute�&.  A 

��� value of 1 indicates that performance on item # is completely determined by 

attribute &.  Hence, the variance of the responses on item # should be used in the 
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calculation of the reliability for attribute &.  Conversely, if ��� has a value of 0, 

indicating that the mastery of attribute & could not increase the probability of 

solving item # correctly, then item # should not be used to calculate the reliability 

of attribute &.  ����can be calculated as 

��� � ���� � �)I� � �! 9 ���� � �)I� � 3!,            (Equation 16) 

where ���� � �)I� � �! is the conditional probability that an examinee who 

has mastered attribute & can answer item # correctly, and ���� � �)I� � 3! is 

the conditional probability that an examinee who has not mastered attribute & 

can answer item # correctly.  

The term ���� � �)I� � �! is calculated as 

���� � �)I� � �! � ����+"
~�+"!����+"!  ,                    (Equation 17) 

where ��I� � �
 �� � �! is the joint probability that an examinee has attribute 

& and correctly answers item #, and ��I� � �! is the marginal probability that an 

examinee has attribute &.  To obtain���I� � �
 �� � �! and ��I� � �!, the 

attribute patterns, the expected response patterns, and the estimate of the 

population probabilities for each of the expected response patterns must be 

specified.   

The term ���� � �)I� � 3! should be 0 because examinees are not 

expected to answer item # correctly since they lack attribute & required by item #.  
However, in an actual testing situation, it is possible that examinees can still 

answer the item correctly by guessing or by applying partial knowledge to reach 
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their solution, particularly when the multiple-choice item format is used.  

Therefore, ���� � �)I� � 3! can also be fixed at a specific value (e.g., 0.20) that 

reflects a “pseudo-guessing” parameter. 

The weights for attribute included in the hypothesized divergent 

hierarchy present in Figure 1b, for example, are as follows: 

�3S�� 3S^a 3S�^ 3S�` 3S�3 3S3^3S33 3S`3 3S^` 3S33 3S^� 3S3`3S33 3S33 3S�a 3S33 3S33 3S��3S33 3S33 3S33 3S`` 3S�� 3S3��                      (Matrix 9) 

The first row of the Matrix 9 indicates that the weights of items 1 to 6 (columns 1 

to 6) on attribute 1 are 0.37, 0.24, 0.12, 0.15, 0.10, and 0.02, respectively.  The 

remaining rows can be interpreted in the same manner.  

Once the ���s are specified, the weighted scores can be used to calculate 

attribute reliability by adapting Cronbach’s coefficient alpha for the AHM 

framework.  The formula is given by 

����� � [�[��" �� 9 � ���������m���� ������m��� �,                     (Equation 18) 

where ����� �is the reliability for attribute &, X� is the number of items that are 

probing attribute & in the .b (i.e., the number of elements in s�), s�  includes 

items that measure attribute & in the .b, �~�8  is the variance of the observed 

scores on item #, � ���8 �~�8�mn� �is the sum of the weighted variance of the 
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observed score on the items that are measuring attribute &, and ��� ���~��m��8 ��is 

the variance of the weighted observed total scores.   

The Spearman-Brown formula can also be used to evaluate the effect of 

changes to test length on the attribute reliability coefficient.  The attribute-based 

Spearman-Brown formula is specified as 

�����n � � [�¡¢£¤�"��[��"!¡¢£¤�,                           (Equation 19) 

where �����n �  is the Spearman-Brown reliability of attribute & if X� additional 

items sets that are parallel to item set measuring attribute & are added to the 

test.  This formula can be used to evaluate the effect of adding parallel items to 

the reduced-incidence matrix on the attribute reliability estimate. 
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Chapter III: Methodology 

The purpose of the present study was to evaluate reliability when the 

attribute hierarchy method (AHM) is used for cognitive diagnostic assessment 

(CDA).  CDAs are designed to measure specific knowledge structures and 

processing skills to provide examinees with information about their cognitive 

strengths and weaknesses.  The new adapted Cronbach’ alpha, presented in 

Chapter 2, was compared to the standard form of Cronbach’s alpha in terms of 

attribute reliability estimation.  Specifically, the study was designed to answer 

the following four research questions: 

1. Is attribute reliability as determined by adapted and standard 

Cronbach’s alpha influenced by different cognitive model 

structures, specifically, a linear model versus a divergent model? 

2. What is the minimum number of items required to measure each 

attribute to achieve adequate attribute reliability as determined 

by adapted and standard Cronbach’s alpha? 

3. Are the two indices influenced by sample size? 

4. Is attribute reliability as determined by adapted and standard 

Cronbach’s alpha influenced by discrepancy of examinees’ 

observed response patterns from expected response patterns? 

To answer research questions 1 to 4, a simulation study was conducted to 

evaluate and illustrate the two attribute reliability indices.  Four factors expected 

to affect attribute reliability were manipulated in the simulation study:  model 
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structure (linear and divergent types), test length (2, 4, 6, and 8 items per 

attribute), sample size (250, 500, 750, and 1000), and slip percentage (10, 15, 20, 

and 25%).  The manipulated factors and the data generation procedure are 

described next.   

Simulation Study 

Factors to be Manipulated 

A simulation study was conducted to evaluate attribute reliability by 

manipulating four factors that could directly affect CDA outcomes. The first 

factor is the structure of the cognitive model.  Two models were evaluated, a 

linear and a divergent hierarchy.  The number of attributes in each model was 

fixed at six to make the comparison between different model structures 

straightforward.  The first cognitive model is a simple linear hierarchy.  This 

model, as presented in Figure 3, contains all six attributes aligned in a single 

branch.  This type of model could be used to characterize problem-solving when 

the knowledge and skills are ordered in a linear manner.  Knowledge and skills 

that are restricted within a domain of basic logical application, for example, 

could be characterized in a linear model.  In other words, the attributes in a 

linear model measure a single construct at varying difficulty levels.  The second 

cognitive model was a more complex divergent hierarchy, as presented in Figure 

4.  This model contains two independent branches which share a common 

prerequisite, attribute 1.  The first branch includes two additional attributes, 2 

and 3, while the second branch includes a self-contained sub-hierarchy with 
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attributes 4 through 6.  Two independent branches form the sub-hierarchy: 

attributes 4, 5 and attributes 4, 6.  This type of model could be used to 

characterize problem-solving when the knowledge and skills differ as a function 

of the concepts and content within a domain.  Examples of divergent model can 

be found in the study of Gierl et al. (2008).  The four cognitive hierarchies they 

used to describe examinee performance on the SAT algebra subtest are 

presented in Figure 4.  Attributes in each of the four hierarchies are organized in 

a divergent manner, indicating the knowledge and skills they measure are 

unrestricted within one domain.  However, these attributes are categorized in 

one cognitive hierarchy because the knowledge and skills they measure have 

some characteristics in common.  Taken together, these two model structures, 

linear and divergent, represent different types of cognitive structures that could 

characterize examinee performance on a diagnostic test. 

The second factor was the number of items measuring each of the six 

attributes.  Four different items sets were evaluated—two, four, six, and eight 

item sets—because test length (i.e., number of items contained in a test) is one 

factor known to affect reliability.  The two item set yields a diagnostic test with 

12 items, as each of the six attributes is measured by two items.  Similarly, the 

four item set produces a diagnostic test with 24 items, the six-item set a test 

with 36 items, and the eight-item form a test with 48 items.  Stated in another 

way, tests with different lengths were simulated in this study; a short 12-item 

test (2 item set), a short-to-moderate 24-item test (4 item set), a moderate 36-
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item test (6 item set), and a long 48-item test (8 item set).   

The third factor was the sample size involved in each simulated condition.  

Sample size was manipulated because the range of scores may differ in different 

size samples.  If the variance does change, then the change will likely influence 

the estimates of attribute reliability.  Therefore, four sample sizes were 

considered: 250, 500, 750, and 1000.  

The fourth factor was the percentage of slips involved in the simulated 

responses.  These slips represent the differences between the expected 

responses prescribed by the cognitive model in the c matrix and the actual 

responses produced by examinees.  The discrepancies between expected and 

observed responses are common in practice because expected response 

patterns represent theoretically ideal responses.  As an examinee solves an item, 

certain sources of random error might impact the examinee’s test performance 

and result in a discrepancy between the expected and observed responses.  Four 

slip levels were evaluated to produce different percentages of model-data 

misfit—10%, 15%, 20%, and 25%, meaning the difference between the expected 

and actual responses ranged from 10 to 25%.   

Taken together, 256 conditions were assessed in the simulation study 

[i.e., (2) formula conditions * [(2) cognitive models * (4) items sets * (4) sample 

sizes * (4) slip conditions] = 256].  Each condition was simulated once as the 

possible variation involved in replication is on simulated response data.  

Attribute reliability estimation will not vary with multiple replications of each 
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condition.  Therefore, observed response data was simulated with no replication.   

Data Simulation 

To generate the observed response data, a three-step process was used.  

First, the matrices of the AHM for each hierarchy—adjacency (I), reachability 

(W), incidence (. ), reduced incidence (  .b), and expected response matrix ( c)—

were derived.  The I  matrix for the linear hierarchy shown in Figure 3 is:  

011
123 � 3 3 3 33 3 � 3 3 33 3 3 � 3 33 3 3 3 � 33 3 3 3 3 �3 3 3 3 3 345

556                                          (Matrix 9)  

The  W matrix for the linear hierarchy is: 

011
12� � � � � �3 � � � � �3 3 � � � �3 3 3 � � �3 3 3 3 � �3 3 3 3 3 �45

556                                        (Matrix 10) 

The .  matrix for the linear hierarchy is: 

011
112
�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3��33��33��33��33��33��33��33��33��33��33��33��33��33��33��33��333����3333����3333����3333����3333����3333����3333����3333����3333333��������33333333��������33333333��������33333333��������333333333333333����������������3333333333333333����������������3333333333333333333333333333333��������������������������������45

555
6
        

(Matrix 11) 

The .b matrix for the linear hierarchy is as follows: 

011
12� � � � � �3 � � � � �3 3 � � � �3 3 3 � � �3 3 3 3 � �3 3 3 3 3 �45

556                                        (Matrix 12) 
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Lastly, the 2-item set expected response matrix for the linear model is: 

 

011
111
2333333333333��3333333333����33333333������333333��������3333����������33������������45

555
56
                                     (Matrix 13) 

The 4-item set expected response matrix for the linear model is: 

011
111
2333333333333333333333333����33333333333333333333��������3333333333333333������������333333333333����������������33333333��������������������3333������������������������45

555
56
                      (Matrix 14) 

The 6-item set expected response matrix for the linear model is: 

011
111
2333333333333333333333333333333333333������333333333333333333333333333333������������333333333333333333333333������������������333333333333333333������������������������333333333333������������������������������333333������������������������������������45

555
56
        (Matrix 15) 

The 8-item set expected response matrix for the linear model is: 

           

011
111
2333333333333333333333333333333333333333333333333��������3333333333333333333333333333333333333333����������������33333333333333333333333333333333������������������������333333333333333333333333��������������������������������3333333333333333����������������������������������������33333333������������������������������������������������45

555
56
               

(Matrix 16) 
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The I  matrix for the divergent hierarchy as shown in Figure 4 is:     

011
123 � 3 � 3 33 3 � 3 3 33 3 3 3 3 33 3 3 3 � �3 3 3 3 3 33 3 3 3 3 345

556                                       Matrix 17) 

The W  matrix for the divergent hierarchy is: 

011
12� � � � � �3 � � 3 3 33 3 � 3 3 33 3 3 � � �3 3 3 3 � 33 3 3 3 3 �45

556                                    (Matrix 18)   

The .  matrix for the divergent hierarchy is: 

011
112
�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3��33��33��33��33��33��33��33��33��33��33��33��33��33��33��33��333����3333����3333����3333����3333����3333����3333����3333����3333333��������33333333��������33333333��������33333333��������333333333333333����������������3333333333333333����������������3333333333333333333333333333333��������������������������������45

555
6
   

   (Matrix 19) 

The .b matrix for the divergent hierarchy is as follows: 

  

011
12� � � � � � � � � � � � � � �3 � � 3 � � 3 � � 3 � � 3 � �3 3 � 3 3 � 3 3 � 3 3 � 3 3 �3 3 3 � � � � � � � � � � � �3 3 3 3 3 3 � � � 3 3 3 � � �3 3 3 3 3 3 3 3 3 � � � � � �45

556                 (Matrix 20) 
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The 2-item set expected response matrix for the divergent model is: 

01
11
11
11
11
11
11
12333333333333��3333333333����33333333������333333��3333��3333����33��3333��������3333��3333����33����33����33����������33��3333��33������33��33����������33����3333����������33������������������45

55
55
55
55
55
55
56

��������                            (Matrix 21) 

The 4-item set expected response matrix for the divergent model is: 

01
11
11
11
11
11
11
12333333333333333333333333����33333333333333333333��������3333333333333333������������333333333333����33333333����33333333��������3333����33333333����������������33333333����33333333��������3333��������3333��������3333��������������������3333����33333333����3333������������3333����3333��������������������3333��������33333333��������������������3333������������������������������������45

55
55
55
55
55
55
56

                     (Matrix 22) 

 

 

 

 



65 
 

The 6-item set expected response matrix for the divergent model is: 

01
11
11
11
11
11
11
12333333333333333333333333333333333333������333333333333333333333333333333������������333333333333333333333333������������������333333333333333333������333333333333������333333333333������������333333������333333333333������������������������333333333333������333333333333������������333333������������333333������������333333������������������������������333333������333333333333������333333������������������333333������333333������������������������������333333������������333333333333������������������������������333333������������������������������������������������������45

55
55
55
55
55
55
56

      (Matrix 23) 

The 8-item set expected response matrix for the divergent model is: 

              

01
11
11
11
11
11
11
12333333333333333333333333333333333333333333333333��������3333333333333333333333333333333333333333����������������33333333333333333333333333333333������������������������333333333333333333333333��������3333333333333333��������3333333333333333����������������33333333��������3333333333333333��������������������������������3333333333333333��������3333333333333333����������������33333333����������������33333333����������������33333333����������������������������������������33333333��������3333333333333333��������33333333������������������������33333333��������33333333����������������������������������������33333333����������������3333333333333333����������������������������������������33333333������������������������������������������������������������������������45

55
55
55
55
55
55
56

     

  (Matrix 24) 

Second, expected response data were generated for both linear and 

divergent hierarchies with four different sample size conditions.  The expected 

response pattern matrix is used as the basis for generating expected response 
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data.  The ability estimates for the expected response vectors were produced 

using maximum likelihood estimation.  For both the linear and divergent 

hierarchies, expected response data were generated with the constraint that the 

ability estimates associated with the expected response vectors be normally 

distributed because the normal distribution reflects the common characteristic 

of ability estimates for population in most operational testing situations.    

Third, slips were added to the expected response data to simulate the 

observed response patterns.  The values of randomly added slips are 10%, 15%, 

20%, and 25%.  These slips are based on item probabilities calculated from each 

expected response vector using the 2-parameter logistic item response theory 

model, 

���	! � � ""���d¥f��hdi�!� ���������# � �
 ^
 \ 
 X�                      (Equation 20) 

where ���	! is the probabilty that a random examinee with ability 	 answers 

item  # correctly,   8� is the item  # discrimination parameter, '�   is the item  # 
difficulty parameter,  	 is the ability level,  X is the number of items in the test,  O 

is a transcendental number whose value is 2.718, and the factor ¦  is a scaling 

factor introduced to make the logistic funtion as close as possible to the normal 

ogive function.  It has been shown that when  ¦ � 7S=, values of ���	! for the 

two-parameter normal ogive and the two-parameter logistic models differ in 

absolute value by less than 0.01 for all values of  	.  To simulate responses that 

most likely reflect the data in practice, the chance that a simulated examinee 

correctly answers an item by guessing was not considered in this study.  
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Therefore, a modified two-parameter logistic item response theory model was 

used in this study.  

The item parameters used in the simulation study for both linear and 

divergent models are presented in Table 5.  The discrimination parameter (a-

parameter) is set at 1.0 across all items involved in both the linear and divergent 

models to represent items with acceptable discriminating power.  The difficulty 

parameter (b-parameter) ranges from -2.50 to 2.50 with an increment of 1.0 for 

items measured in the linear model.  This range indicates items measuring these 

six attributes in the linear model cover difficulty level from easy to hard.  The 

difficulty parameters for items measured in the divergent model range from -

2.50 to 2.50 with increment of 2.50.  Again, the range covers items that are easy, 

moderate, and difficult.   

Two types of slips were generated.  First, slips were created for the 

subset of items expected to be answered incorrectly according to the attribute 

hierarchy (i.e., slips of the form 0 to 1).  The percentage of these slips was 

specified as the item probability.  Second, slips were created for the subset of 

items expected to be answered correctly according to the attribute hierarchy 

(i.e., slips of the form 1 to 0).  The percentage of these slips was specified as one 

minus the item probability. 

As an example, consider the divergent model in Figure 4 where two items 

are used to measure each attribute and 1,000 examinees.  According to the 

frequency of normally distributed expected response vectors of the 1,000 
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examinees, 85 examinees are expected to have attribute pattern [100000] 

thereby producing the response pattern [110000000000].  The response 

probabilities for these items were computed using item parameters and the 

ability level associated with this attribute pattern.  If one only considers the 

probabilities for item 1 (8" � �S3
 '" � 9^S`) and item 3 (8} � �S3
 �'} � 3S3) in 

the expected response pattern (	 � 9�Sa�`), then the values of probabilities 

are 0.85 and 0.07, respectively.  According to the distribution of expected 

response pattern, the 85 examinees are expected to answer the first item 

correctly.  However, the probability of a correct response calculated from the 2-

parameter logistic IRT model is 0.85 for item 1, indicating that although 

examinees have mastered the attributes required by the item, they still have 1 – 

85% = 15% chance of producing an incorrect response.  Therefore, 85 x 15% ≈ 13 

response vectors associated with attribute pattern [100000] were randomly 

selected in the simulated data and changed from 1 to 0 for item 1.  The 85 

examinees are also expected to answer item 3 incorrectly.  Using the item 

parameters and ability level estimate, the probability is 0.07 for item 3.  This 

value suggests that although examinees are not expected to answer the item 

correctly based on their attribute mastery, they still have 7% chance of 

producing a correct response.  As a result, 85 x 7% ≈ 6 slips of the form 0 to 1 

were randomly introduced into the simulated data for item 3.  Using this data 

generation procedure, four different slip percentages—10, 15, 20, and 25%—
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were introduced into the expected response data producing observed responses 

that differed from the expected responses in the form of either 1 to 0 or 0 to 1.   
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Chapter IV: Results 

The simulation study results are presented in Tables 6 to 13.  Each of 

these tables contains two sub-tables, a and b.  Sub-table a lists the results 

calculated using the adapted Cronbach’s alpha coefficient for the AHM 

framework while sub-table b lists the results calculated using the standard 

Cronbach’s alpha coefficient.  Among these tables, Tables 6 to 9 list results for 

the linear model with four different sample size conditions, respectively, and 

tables 10 to 13 contain results for the divergent model with four different 

sample size conditions.  Each table contains the reliability level for each of the six 

attributes as a function of the number of items measuring each attribute (2, 4, 6, 

8) and the percentage of slips (10%, 15%, 20%, 25%).  These results are 

presented in the order of increasing sample size.  

Linear Cognitive Model with 85: Sample Size Condition for Adapted Formula  

Table 6a contains the reliability estimates for the 250 sample size 

condition estimated by adapted Cronbach’s alpha coefficient for the linear 

cognitive model.  With two items measuring each attribute, the reliability 

estimate was highest for attribute 1 and lowest for attribute 6 in all slip 

conditions and decreased as the percentage of slips increased for each attribute.  

For example, with 10% error, the attribute reliability estimates differed from 

0.83 for attribute 1 to 0.37 for attribute 6.  Reliability estimates ranged from 0.81 

for attribute 1 to 0.34 for attribute 6 with 15% error.  With 20% error, the 
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outcome ranged from 0.78 for attribute 1 to 0.27 for attribute 6.  With 25% 

error, reliability estimates varied from 0.74 for attribute 1 to 0.28 for attribute 6. 

The same pattern was observed when the number of items per attribute 

was four.  With four items measuring each attribute, the reliability estimate was 

again highest for attribute 1 and lowest for attribute 6 in all slip conditions.  

However, test length and model-data fit both clearly affected reliability as the 

outcomes in the four item condition were higher than the two item condition 

and decreased as the percentage of slips increased.  With 10% error, reliability 

estimates varied from 0.91 for attribute 1 to 0.58 for attribute 6.  With 15% 

error, the outcomes differed from 0.90 for attribute 1 to 0.43 for attribute 6.  

The reliability estimates ranged from 0.88 for attribute 1 to 0.37 for attribute 6 

with 20% error.  With 25% error, the reliability estimates changed from 0.86 for 

attribute 1 to 0.26 for attribute 6. 

With six items per attribute, the reliability estimate was highest for 

attribute 1 and lowest for attribute 6, as in the previous item-set conditions.  The 

importance of test length and model-data fit was apparent as the overall 

reliability outcomes in the six item condition were higher than the two or four 

item conditions and the outcomes in larger slip conditions were lower compared 

to those in smaller slip conditions.  The reliability estimates ranged from 0.94 for 

attribute 1 to 0.70 for attribute 6 with 10% error.  With 15% error, the reliability 

estimates varied from 0.93 for attribute 1 to 0.58 for attribute 6.  With 20% 

error, the outcomes differed from 0.92 for attribute 1 to 0.53 for attribute 6.  
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The reliability estimates ranged from 0.90 for attribute 1 to 0.52 for attribute 6 

with 25% error. 

With eight items per attribute, reliability was observed to be highest for 

attribute 1 and lowest for attribute 6, as in the previous item-set conditions.  

Again, the importance of test length and model-data fit was apparent as the 

overall reliability outcomes in the eight item condition were higher than the two, 

four, or six item conditions and the outcomes in larger slip conditions were lower 

compared to those in smaller slip conditions.  With 10% error, reliability ranged 

from 0.96 for attribute 1 to 0.76 for attribute 6.  Reliability varied from 0.95 for 

attribute 1 to 0.64 for attribute 6 with 15% error while it changed from 0.94 for 

attribute 1 to 0.55 for attribute 6 with 20% error.  With 25% error, reliability 

differed from 0.93 for attribute 1 to 0.55 for attribute 6. 

To summarize, the same reliability estimates pattern was observed for 

different item-set conditions.  That is, with two, four, six, and eight items 

measuring each attribute, the reliability estimate was consistently highest for 

attribute 1 and lowest for attribute 6 across all slip conditions.  Test length 

clearly affected reliability estimates.  For example, the reliability estimates for 

attribute 1 with 10% slip for the two, four, six, and eight items conditions were 

0.83, 0.91, 0.94, and 0.96, respectively; and for attribute 6, the corresponding 

estimates were 0.37, 0.58, 0.70, and 0.76.  Similar patterns were observed for all 

the other attributes.  Also, the reliability estimates decreased as the percentage 

of slips increased.  For instance, the outcomes for two items measuring attribute 
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1 were 0.83, 0.81, 0.78, and 0.74 for 10%, 15%, 20%, and 25% slip conditions, 

respectively.   

Linear Cognitive Model with 85: Sample Size Condition for Standard Formula  

Table 6b contains the reliability estimates for the 250 sample size 

condition estimated by Standard Cronbach’s alpha coefficient for the linear 

cognitive model.  As two items measuring each attribute, the reliability estimate 

was highest for attribute 1 and lowest for attribute 6 across all slip conditions 

and decreased as the percentage of slips increased for each attribute.  For 

example, with 10% error, the attribute reliability estimates ranged from 0.85 for 

attribute 1 to 0.37 for attribute 6.  The reliability varied from 0.83 for attribute 1 

to 0.34 for attribute 6 with 15% error.  With 20% error, the outcomes differed 

from 0.80 for attribute 1 to 0.27 for attribute 6.  With 25% error, reliability 

ranged from 0.75 for attribute 1 to 0.28 for attribute 6. 

The same pattern was observed for the other item-set conditions.  That 

is, with two, four, six, and eight items measuring each attribute, the reliability 

estimate was consistently highest for attribute 1 and lowest for attribute 6 

across all slip conditions.  Test length clearly affected reliability estimates.  For 

example, the reliability estimates for attribute 1 with 10% slip for the two, four, 

six, and eight items conditions were 0.85, 0.92, 0.95, and 0.96, respectively; and 

for attribute 6, the corresponding estimates were 0.37, 0.58, 0.70, and 0.76.  

Similar patterns were observed for all the other attributes.  In addition, the 

reliability estimates for each attribute decreased as the percentage of slips 
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increased in same item set condition.  For instance, the outcomes for two items 

measuring attribute 2 were 0.84, 0.82, 0.77, and 0.71 for 10%, 15%, 20%, and 

25% slip conditions, respectively.    

Linear Cognitive Model with 5:: Sample Size Condition for Adapted Formula  

Table 7a contains the reliability estimates for the 500 sample size 

condition estimated by adapted Cronbach’s alpha coefficient for the linear 

cognitive model.  With two items measuring each attribute, the reliability 

estimate for attribute 1 was highest and for attribute 6 was lowest in all slip 

conditions and decreased as the percentage of slips increased for each attribute.  

For example, with 10% error, the attribute reliability ranged from 0.84 for 

attribute 1 to 0.47 for attribute 6.  The reliability altered from 0.81 for attribute 1 

to 0.33 for attribute 6 with 15% error.  With 20% error, the reliability differed 

from 0.79 for attribute 1 to 0.30 for attribute 6.  With 25% error, the reliability 

ranged from 0.75 for attribute 1 to 0.26 for attribute 6. 

Similar pattern was observed for the other item-set conditions.  That is, 

with two, four, six, and eight items measuring each attribute, the reliability 

estimate was consistently highest for attribute 1 and lowest for attribute 6 

across all slip conditions.  Test length clearly affected reliability estimates.  For 

example, the reliability estimates for attribute 1 with 10% slip for the two, four, 

six, and eight items conditions were 0.84, 0.92, 0.94, and 0.96, respectively; and 

for attribute 6, the corresponding estimates were 0.47, 0.57, 0.71, and 0.75.  

Similar patterns were observed for all the other attributes.  In addition, the 
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reliability estimates decreased as the percentage of slips increased.  For instance, 

the outcomes for two items measuring attribute 2 were 0.82, 0.78, 0.74, and 

0.69 for 10%, 15%, 20%, and 25% slip conditions, respectively.    

Linear Cognitive Model with 5:: Sample Size Condition for Standard Formula 

Table 7b contains the reliability estimates for the 500 sample size 

condition estimated by Standard Cronbach’s alpha coefficient for the linear 

cognitive model.  With two items measuring each attribute, the reliability 

estimate was highest for attribute 1 and lowest for attribute 6 in all slip 

conditions and decreased as the percentage of slips increased for each attribute.  

For example, with 10% error, the attribute reliability varied from 0.86 for 

attribute 1 to 0.47 for attribute 6.  With 15% error, the reliability differed from 

0.83 for attribute 1 to 0.33 for attribute 6.  With 20% error, the reliability altered 

from 0.80 for attribute 1 to 0.30 for attribute 6.  With 25% error, the reliability 

ranged from 0.76 for attribute 1 to 0.26 for attribute 6. 

The same pattern was observed for the other item-set conditions.  That 

is, with two, four, six, and eight items measuring each attribute, the reliability 

estimate was consistently highest for attribute 1 and lowest for attribute 6 

across all slip conditions.  Test length is apparently a factor that affects reliability 

estimates.  For example, the reliability estimates for attribute 1 with 10% slip for 

the two, four, six, and eight items conditions were 0.86, 0.93, 0.95, and 0.96, 

respectively; and for attribute 6, the corresponding estimates were 0.47, 0.57, 

0.71, and 0.75.  Similar patterns were observed for all the other attributes.  In 
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addition, the reliability estimates for each attribute decreased as the percentage 

of slips increased in the same item set condition.  For instance, the outcomes for 

four items measuring attribute 2 were 0.92, 0.90, 0.87, and 0.84 for 10%, 15%, 

20%, and 25% slip conditions, respectively. 

Linear Cognitive Model with =5: Sample Size Condition for Adapted Formula 

Table 8a contains the reliability estimates for the 750 sample size 

condition estimated by adapted Cronbach’s alpha coefficient for the linear 

cognitive model.  With two items measuring each attribute, the reliability 

outcome for attribute 1 was highest and for attribute 6 was lowest in all slip 

conditions and decreased as the percentage of slips increased for each attribute.  

For instance, with 10% error, the attribute reliability ranged from 0.84 for 

attribute 1 to 0.40 for attribute 6.  The reliability differed from 0.81 for attribute 

1 to 0.30 for attribute 6 with 15% error.  With 20% error, the reliability altered 

from 0.78 for attribute 1 to 0.18 for attribute 6.  With 25% error, the reliability 

varied from 0.75 for attribute 1 to 0.20 for attribute 6. 

The same pattern was observed for the other item-set conditions.  That 

is, with two, four, six, and eight items measuring each attribute, the reliability 

estimate was consistently highest for attribute 1 and lowest for attribute 6 

across all slip conditions.  Test length is apparently a factor that affects reliability 

estimates.  For example, the reliability estimates for attribute 1 with 10% slip for 

the two, four, six, and eight items conditions were 0.84, 0.92, 0.94, and 0.96, 

respectively; and for attribute 6, the corresponding estimates were 0.40, 0.59, 
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0.68, and 0.76.  Similar patterns were observed for all the other attributes.  In 

addition, the reliability estimates decreased as the percentage of slips increased.  

For instance, the outcomes for six items measuring attribute 4 were 0.89, 0.86, 

0.81, and 0.76 for 10%, 15%, 20%, and 25% slip conditions, respectively. 

Linear Cognitive Model with =5: Sample Size Condition for Standard Formula 

Table 8b contains the reliability estimates for the 750 sample size 

condition estimated by Standard Cronbach’s alpha coefficient for the linear 

cognitive model.  With two items measuring each attribute, the reliability 

estimate was highest for attribute 1 and lowest for attribute 6 in all slip 

conditions and decreased as the percentage of slips increased for each attribute.  

With 10% error, the attribute reliability ranged from 0.85 for attribute 1 to 0.40 

for attribute 6.  With 15% error, the reliability differed from 0.83 for attribute 1 

to 0.30 for attribute 6.  The reliability altered from 0.80 for attribute 1 to 0.18 for 

attribute 6 with 20% error.  With 25% error, the reliability ranged from 0.76 for 

attribute 1 to 0.20 for attribute 6. 

The same pattern was observed for the other item-set conditions.  That 

is, with two, four, six, and eight items measuring each attribute, the reliability 

estimate was consistently highest for attribute 1 and lowest for attribute 6 

across all slip conditions.  Test length clearly affected reliability estimates.  For 

example, the reliability estimates for attribute 1 with 20% slip for the two, four, 

six, and eight items conditions were 0.80, 0.89, 0.92, and 0.94, respectively; and 

for attribute 6, the corresponding estimates were 0.18, 0.35, 0.48, and 0.57.  
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Similar patterns were observed for all the other attributes.  In addition, the 

reliability estimates for each attribute decreased as the percentage of slips 

increased in the same item set condition.  For instance, the outcomes for six 

items measuring attribute 5 were 0.86, 0.79, 0.72, and 0.63 for 10%, 15%, 20%, 

and 25% slip conditions, respectively. 

Linear Cognitive Model with 7::: Sample Size Condition for Adapted Formula 

Table 9a contains the reliability estimates for the 1000 sample size 

condition estimated by adapted Cronbach’s alpha coefficient for the linear 

cognitive model.  With two items measuring each attribute, the reliability 

estimate was highest for attribute 1 and lowest for attribute 6 in all slip 

conditions and decreased as the percentage of slips increased for each attribute.  

With 10% error, the attribute reliability ranged from 0.84 for attribute 1 to 0.49 

for attribute 6.  The reliability differed from 0.81 for attribute 1 to 0.25 for 

attribute 6 with 15% error.  With 20% error, the reliability varied from 0.78 for 

attribute 1 to 0.23 for attribute 6.  With 25% error, the reliability altered from 

0.75 for attribute 1 to 0.18 for attribute 6. 

Similar patterns were observed for the other item-set conditions.  That is, 

with two, four, six, and eight items measuring each attribute, the reliability 

estimate was consistently highest for attribute 1 and lowest for attribute 6 

across all slip conditions.  Test length is apparently a factor that affects reliability 

estimates.  For example, the reliability estimates for attribute 1 with 15% slip for 

the two, four, six, and eight items conditions were 0.81, 0.90, 0.93, and 0.95, 
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respectively; and for attribute 6, the corresponding estimates were 0.25, 0.45, 

0.57, and 0.64.  Similar patterns were observed for all the other attributes.  In 

addition, the reliability estimates decreased as the percentage of slips increased.  

For instance, the outcomes for four items measuring attribute 3 were 0.88, 0.85, 

0.82, and 0.77 for 10%, 15%, 20%, and 25% slip conditions, respectively. 

Linear Cognitive Model with 7::: Sample Size Condition for Standard Formula 

Table 9b contains the reliability estimates for the 1000 sample size 

condition estimated by Standard Cronbach’s alpha coefficient for the linear 

cognitive model.  With two items measuring each attribute, the reliability 

estimate was highest for attribute 1 and lowest for attribute 6 in all slip 

conditions and decreased as the percentage of slips increased for each attribute.  

With 10% error, the attribute reliability ranged from 0.86 for attribute 1 to 0.49 

for attribute 6.  With 15% error, the reliability differed from 0.83 for attribute 1 

to 0.25 for attribute 6.  The reliability altered from 0.80 for attribute 1 to 0.23 for 

attribute 6 with 20% error.  With 25% error, the reliability varied from 0.75 for 

attribute 1 to 0.18 for attribute 6. 

The same pattern was observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attribute 6 across all slip 

conditions.  Test length is apparently a factor that affects reliability estimates.  

For example, the reliability estimates for attribute 1 with 20% slip for the two, 

four, six, and eight items conditions were 0.80, 0.89, 0.92, and 0.94, respectively; 



80 
 

and for attribute 6, the corresponding estimates were 0.23, 0.39, 0.48, and 0.57.  

Similar patterns were observed for all the other attributes.  Moreover, the 

reliability estimates for each attribute decreased as the percentage of slips 

increased in the same item set condition.  For instance, the outcomes for four 

items measuring attribute 2 were 0.92, 0.90, 0.87, and 0.84 for 10%, 15%, 20%, 

and 25% slip conditions, respectively. 

Summary for Conditions of the Linear Cognitive Model 

It was concluded that for the linear model the attribute reliability 

estimate derived from both the adapted and standard Cronbach’s alpha 

coefficients was highest for attribute 1 and lowest for attribute 6 across all item 

sets and slip conditions.  The test length and model-data fit were apparently the 

factors that influenced the attribute reliability estimates.  The longer the test and 

the smaller the number of the slips, the higher the reliability estimates.  

However, as the sample size increased across each slip and item set condition, 

attribute reliability estimates were quite similar to one another.  

Noticeably, for attribute reliability estimates in the same slip, sample size, 

and formula condition, differences between consecutive estimates became 

progressively smaller as the number of items on each attribute increased.  For 

example, the change between the two and four item sets in the condition of 250 

sample size, 10% slip percentage, and the adapted formula was 0.08, between 

the four and six item sets, 0.03, and between the six and eight item sets, 0.02, 
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for attribute 1.  Similar patterns were observed for all other attributes, which 

reflects the behavior of the Spearman-Brown formula.   

The reliability estimates derived from the adapted and standard 

Cronbach’s alpha were also compared.  Table 14 presents correlation coefficients 

between attribute reliability estimates for the linear model derived by the 

adapted and standard Cronbach’s alpha coefficients for each sample size and slip 

percentage condition.  These correlation coefficients range from 0.99 to 1.00, 

indicating essentially perfect fit between reliability result sets estimated by the 

two formulas.  However, for each sample size-slip percentage-item set condition, 

the reliability estimates derived by the standard Cronbach’s alpha coefficient 

were slightly higher than those estimated by the adapted Cronbach’s alpha 

coefficient.  Table 15 presents the root mean square deviation between the 

attribute reliability estimates for the linear model derived by the adapted and 

standard Cronbach’s alpha coefficient for each sample size, slip percentage, and 

item set condition.  These values range from 0.01 to 0.06, indicating negligible 

differences between the reliability results estimated by the two formulas.  

Divergent Cognitive Model with 85: Sample Size Condition for Adapted Formula 

Table 10a contains the reliability estimates for the 250 sample size 

condition estimated by adapted Cronbach’s alpha coefficient for the divergent 

cognitive model.  Recall, the divergent model is more complex than the linear 

model because it contains two independent branches which share a common 

prerequisite, attribute 1.  The first branch includes two attributes, 2 and 3, while 



82 
 

the second branch forms two sub-hierarchies consisting of attributes 4 and 5 and 

4 and 6.  With two items measuring each attribute, the reliability estimate was 

highest for attribute 1 and lowest for attributes in the final nodes of the 

hierarchy (i.e., attributes 3, 5, and 6) in all slip conditions and decreased as the 

percentage of slips increased for each attribute.  For instance, with 10% error, 

the reliability estimate for branch one (i.e., attributes 1, 2, and 3) ranged from 

0.81 for attribute 1 to 0.69 for attribute 3.  For branch two (i.e., attributes 4, 5, 

and 6), the reliability was 0.76 for attribute 4 and 0.71 and 0.63 for attributes 5 

and 6, respectively.  With 15% error, the reliability for branch one ranged from 

0.82 for attribute 1 to 0.56 for attribute 3.  For branch two, the outcome was 

0.74 for attribute 4 and 0.57 and 0.53 for attributes 5 and 6, respectively.  With 

20% error, the reliability for branch one altered from 0.80 for attribute 1 to 0.45 

for attribute 3.  For branch two, the reliability was 0.68 for attribute 4 and 0.52 

and 0.47 for attributes 5 and 6, respectively.  With 25% error, the reliability for 

branch one varied from 0.80 for attribute 1 to 0.43 for attribute 3.  For branch 

two, the reliability was 0.67 for attribute 4 and 0.45 and 0.42 for attributes 5 and 

6, respectively. 

The same pattern was observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attributes in the final 

nodes of the hierarchy across all slip conditions.  As with the linear model 

analysis, test length is apparently a factor that affects reliability estimates.  For 
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example, the reliability estimates for attribute 1 with 10% slip for the two, four, 

six, and eight items conditions were 0.81, 0.90, 0.93, and 0.95, respectively; and 

for attribute 6, the corresponding estimates were 0.63, 0.81, 0.86, and 0.90.  

Similar patterns were observed for all the other attributes.  Moreover, the 

reliability estimates for each attribute decreased as the percentage of slips 

increased in the same item set condition.  For instance, the outcomes for four 

items measuring attribute 5 were 0.82, 0.74, 0.61, and 0.55 for 10%, 15%, 20%, 

and 25% slip conditions, respectively. 

Divergent Cognitive Model with 85: Sample Size Condition for Standard Formula 

Table 10b contains the reliability estimates for the 250 sample size 

condition estimated by Standard Cronbach’s alpha coefficient for the divergent 

cognitive model.  With two items measuring each attribute, the reliability 

estimate was highest for attribute 1 and lowest for attributes in the final nodes 

of the hierarchy (i.e., attributes 3, 5, and 6) in all slip conditions.  With 10% error, 

the reliability for branch one (i.e., attributes 1, 2, and 3) ranged from 0.81 for 

attribute 1 to 0.69 for attribute 3.  For branch two (i.e., attributes 4, 5, and 6), 

the reliability was 0.77 for attribute 4 and 0.71 and 0.63 for attributes 5 and 6, 

respectively.  With 15% error, the reliability for branch one varied from 0.82 for 

attribute 1 to 0.56 for attribute 3.  For branch two, the reliability was 0.75 for 

attribute 4 and 0.57 and 0.53 for attributes 5 and 6, respectively.  With 20% 

error, the reliability for branch one altered from 0.79 for attribute 1 to 0.45 for 

attribute 3.  For branch two, the reliability was 0.69 for attribute 4 and 0.52 and 
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0.47 for attributes 5 and 6, respectively.  With 25% error, the reliability for 

branch one differed from 0.79 for attribute 1 to 0.43 for attribute 3.  For branch 

two, the reliability was 0.68 for attribute 4 and 0.45 and 0.42 for attributes 5 and 

6, respectively. 

The same pattern was observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attributes in the final 

nodes of the hierarchy across all slip conditions.  As with the linear model 

analysis, test length is apparently a factor that affects reliability estimates.  For 

example, the reliability estimates for attribute 1 with 15% slip for the two, four, 

six, and eight items conditions were 0.82, 0.90, 0.93, and 0.95, respectively; and 

for attribute 6, the corresponding estimates were 0.53, 0.73, 0.79, and 0.84.  

Similar patterns were observed for all the other attributes.  Moreover, the 

reliability estimates for each attribute decreased as the percentage of slips 

increased in the same item set condition.  For instance, the outcomes for six 

items measuring attribute 3 were 0.86, 0.78, 0.68, and 0.65 for 10%, 15%, 20%, 

and 25% slip conditions, respectively. 

Divergent Cognitive Model with 5:: Sample Size Condition for Adapted Formula 

Table 11a contains the reliability estimates for the 500 sample size 

condition estimate by adapted Cronbach’s alpha coefficient for the divergent 

cognitive model.  With two items measuring each attribute, the reliability was 

highest for attribute 1 and lowest for attributes in the final nodes of the 
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hierarchy (i.e., attributes 3, 5, and 6) in all slip conditions.  For example, with 10% 

error, the reliability for branch one (i.e., attributes 1, 2, and 3) ranged from 0.80 

for attribute 1 to 0.71 for attribute 3.  For branch two (i.e., attributes 4, 5, and 6), 

the reliability was 0.76 for attribute 4 and 0.73 and 0.71 for attributes 5 and 6, 

respectively.  With 15% error, the reliability for branch one altered from 0.81 for 

attribute 1 to 0.61 for attribute 3.  For branch two, the reliability was 0.73 for 

attribute 4 and 0.57 and 0.58 for attributes 5 and 6, respectively.  With 20% 

error, the reliability for branch one varied from 0.80 for attribute 1 to 0.25 for 

attribute 3.  For branch two, the reliability was 0.69 for attribute 4 and 0.43 and 

0.42 for attributes 5 and 6, respectively.  With 25% error, the reliability for 

branch one differed from 0.80 for attribute 1 to 0.48 for attribute 3.  For branch 

two, the reliability was 0.66 for attribute 4 and 0.36 and 0.37 for attributes 5 and 

6, respectively. 

A similar pattern was observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attributes in the final 

nodes of the hierarchy across all slip conditions.  As with the linear model 

analysis, test length clearly affected reliability estimates.  For example, the 

reliability estimates for attribute 1 with 25% slip for the two, four, six, and eight 

items conditions were 0.80, 0.89, 0.93, and 0.94, respectively; and for attribute 

6, the corresponding estimates were 0.37, 0.57, 0.70, and 0.75.  The same 

patterns were observed for all the other attributes.  In addition, the reliability 
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estimates for each attribute decreased as the percentage of slips increased in the 

same item set condition.  For instance, the outcomes for two items measuring 

attribute 4 were 0.76, 0.73, 0.69, and 0.66 for 10%, 15%, 20%, and 25% slip 

conditions, respectively. 

Divergent Cognitive Model with 5:: Sample Size Condition for Standard Formula 

Table 11b contains the reliability estimates for the 500 sample size 

condition estimated by Standard Cronbach’s alpha coefficient for the divergent 

cognitive model.  With two items measuring each attribute, the reliability was 

highest for attribute 1 and lowest for attributes in the final nodes of the 

hierarchy (i.e., attributes 3, 5, and 6) in all slip conditions.  With 10% error, the 

reliability for branch one (i.e., attributes 1, 2, and 3) ranged from 0.80 for 

attribute 1 to 0.71 for attribute 3.  For branch two (i.e., attributes 4, 5, and 6), 

the reliability was 0.77 for attribute 4 and 0.73 and 0.71 for attributes 5 and 6, 

respectively.  With 15% error, the reliability for branch one altered from 0.81 for 

attribute 1 to 0.61 for attribute 3.  For branch two, the reliability was 0.74 for 

attribute 4 and 0.54 and 0.58 for attributes 5 and 6, respectively.  With 20% 

error, the reliability for branch one varied from 0.80 for attribute 1 to 0.52 for 

attribute 3.  For branch two, the reliability was 0.70 for attribute 4 and 0.43 and 

0.42 for attributes 5 and 6, respectively.  With 25% error, the reliability for 

branch one differed from 0.79 for attribute 1 to 0.48 for attribute 3.  For branch 

two, the reliability was 0.68 for attribute 4 and 0.36 and 0.37 for attributes 5 and 

6, respectively. 
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The same pattern was observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attributes in the final 

nodes of the hierarchy across all slip conditions. As with the linear model 

analysis, test length is apparently a factor that affects reliability estimates.  For 

example, the reliability estimates for attribute 1 with 10% slip for the two, four, 

six, and eight items conditions were 0.80, 0.90, 0.93, and 0.95, respectively; and 

for attribute 6, the corresponding estimates were 0.71, 0.83, 0.87, and 0.90.  

Similar patterns were observed for all the other attributes.  In addition, the 

reliability estimates for each attribute decreased as the percentage of slips 

increased in the same item set condition.  For instance, the outcomes for four 

items measuring attribute 3 were 0.82, 0.72, 0.63, and 0.57 for 10%, 15%, 20%, 

and 25% slip conditions, respectively. 

Divergent Cognitive Model with =5: Sample Size Condition for Adapted Formula 

Table 12a contains the reliability estimates for the 750 sample size 

condition estimate by adapted Cronbach’s alpha coefficient for the divergent 

cognitive model.  With two items measuring each attribute, the reliability was 

highest for attribute 1 and lowest for attributes in the final nodes of the 

hierarchy (i.e., attributes 3, 5, and 6) in all slip conditions.  With 10% error, the 

reliability for branch one (i.e., attributes 1, 2, and 3) ranged from 0.80 for 

attribute 1 to 0.69 for attribute 3.  For branch two (i.e., attributes 4, 5, and 6), 

the reliability was 0.76 for attribute 4 and 0.68 and 0.71 for attributes 5 and 6, 
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respectively.  With 15% error, the reliability for branch one varied from 0.80 for 

attribute 1 to 0.57 for attribute 3.  For branch two, the reliability was 0.71 for 

attribute 4 and 0.48 and 0.56 for attributes 5 and 6, respectively.  With 20% 

error, the reliability for branch one altered from 0.80 for attribute 1 to 0.46 for 

attribute 3.  For branch two, the reliability was 0.67 for attribute 4 and 0.39 and 

0.47 for attributes 5 and 6, respectively.  With 25% error, the reliability for 

branch one ranged from 0.79 for attribute 1 to 0.49 for attribute 3.  For branch 

two, the reliability was 0.65 for attribute 4 and 0.34 and 0.49 for attributes 5 and 

6, respectively. 

Similar patterns were observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attributes in the final 

nodes of the hierarchy across all slip conditions. Apparently, test length is a 

factor that affects reliability estimates.  For example, the reliability estimates for 

attribute 1 with 20% slip for the two, four, six, and eight items conditions were 

0.80, 0.89, 0.93, and 0.94, respectively; and for attribute 6, the corresponding 

estimates were 0.47, 0.60, 0.70, and 0.77.  Similar patterns were observed for all 

the other attributes.  In addition, the reliability estimates for each attribute 

decreased as the percentage of slips increased in the same item set condition.  

For instance, the outcomes for eight items measuring attribute 3 were 0.89, 

0.82, 0.75, and 0.74 for 10%, 15%, 20%, and 25% slip conditions, respectively. 
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Divergent Cognitive Model with =5: Sample Size Condition for Standard Formula 

Table 12b contains the reliability estimates for the 750 sample size 

condition estimated by Standard Cronbach’s alpha coefficient for the divergent 

cognitive model.  With two items measuring each attribute, the reliability was 

highest for attribute 1 and lowest for attributes in the final nodes of the 

hierarchy (i.e., attributes 3, 5, and 6) in all slip conditions.  With 10% error, the 

reliability for branch one (i.e., attributes 1, 2, and 3) ranged from 0.81 for 

attribute 1 to 0.69 for attribute 3.  For branch two (i.e., attributes 4, 5, and 6), 

the reliability was 0.77 for attribute 4 and 0.68 and 0.71 for attributes 5 and 6, 

respectively.  With 15% error, the reliability for branch one varied from 0.80 for 

attribute 1 to 0.57 for attribute 3.  For branch two, the reliability was 0.73 for 

attribute 4 and 0.48 and 0.56 for attributes 5 and 6, respectively.  With 20% 

error, the reliability for branch one altered from 0.79 for attribute 1 to 0.46 for 

attribute 3.  For branch two, the reliability was 0.69 for attribute 4 and 0.39 and 

0.47 for attributes 5 and 6, respectively.  With 25% error, the reliability for 

branch one differed from 0.79 for attribute 1 to 0.49 for attribute 3.  For branch 

two, the reliability was 0.67 for attribute 4 and 0.34 and 0.49 for attributes 5 and 

6, respectively. 

Similar patterns were observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attributes in the final 

nodes of the hierarchy across all slip conditions. Test length is a factor that 
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affects reliability estimates.  For example, the reliability estimates for attribute 1 

with 25% slip for the two, four, six, and eight items conditions were 0.79, 0.88, 

0.92, and 0.94, respectively; and for attribute 6, the corresponding estimates 

were 0.49, 0.58, 0.68, and 0.75.  Similar patterns were observed for all the other 

attributes.  Moreover, the reliability estimates for each attribute decreased as 

the percentage of slips increased in the same item set condition.  For instance, 

the outcomes for four items measuring attribute 3 were 0.81, 0.69, 0.60, and 

0.56 for 10%, 15%, 20%, and 25% slip conditions, respectively. 

Divergent Cognitive Model with 7::: Sample Size Condition for Adapted Formula 

Table 13a contains the reliability estimate for the 1000 sample size 

condition estimate by adapted Cronbach’s alpha coefficient for the divergent 

cognitive model.  With two items measuring each attribute, the reliability was 

highest for attribute 1 and lowest for attributes in the final nodes of the 

hierarchy (i.e., attributes 3, 5, and 6) in all slip conditions.  With 10% error, the 

reliability for branch one (i.e., attributes 1, 2, and 3) varied from 0.80 for 

attribute 1 to 0.67 for attribute 3.  For branch two (i.e., attributes 4, 5, and 6), 

the reliability was 0.76 for attribute 4 and 0.67 and 0.71 for attributes 5 and 6, 

respectively.  With 15% error, the reliability for branch one ranged from 0.80 for 

attribute 1 to 0.51 for attribute 3.  For branch two, the reliability was 0.71 for 

attribute 4 and 0.52 and 0.58 for attributes 5 and 6, respectively.  With 20% 

error, the reliability for branch one changed from 0.80 for attribute 1 to 0.44 for 

attribute 3.  For branch two, the reliability was 0.68 for attribute 4 and 0.44 and 
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0.47 for attributes 5 and 6, respectively.  With 25% error, the reliability for 

branch one altered from 0.79 for attribute 1 to 0.42 for attribute 3.  For branch 

two, the reliability was 0.64 for attribute 4 and 0.40 and 0.42 for attributes 5 and 

6, respectively. 

The same pattern was observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attributes in the final 

nodes of the hierarchy across all slip conditions. Similar as with the linear model 

analysis, test length apparently affects reliability estimates.  For example, the 

reliability estimates for attribute 1 with 15% slip for the two, four, six, and eight 

items conditions were 0.80, 0.89, 0.93, and 0.95, respectively; and for attribute 

6, the corresponding estimates were 0.58, 0.70, 0.79, and 0.82.  Similar patterns 

were observed for all the other attributes.  In addition, the reliability estimates 

for each attribute decreased as the percentage of slips increased in the same 

item set condition.  For instance, the outcomes for two items measuring 

attribute 3 were 0.80, 0.69, 0.60, and 0.56 for 10%, 15%, 20%, and 25% slip 

conditions, respectively. 

Divergent Cognitive Model with 7::: Sample Size Condition for Standard 

Formula 

Table 13b contains the reliability estimate for the 1000 sample size 

condition estimated by Standard Cronbach’s alpha coefficient for the divergent 

cognitive model.  With two items measuring each attribute, the reliability was 
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highest for attribute 1 and lowest for attributes in the final nodes of the 

hierarchy (i.e., attributes 3, 5, and 6) in all slip conditions.  With 10% error, the 

reliability for branch one (i.e., attributes 1, 2, and 3) varied from 0.80 for 

attribute 1 to 0.67 for attribute 3.  For branch two (i.e., attributes 4, 5, and 6), 

the reliability was 0.77 for attribute 4 and 0.67 and 0.71 for attributes 5 and 6, 

respectively.  With 15% error, the reliability for branch one altered from 0.80 for 

attribute 1 to 0.51 for attribute 3.  For branch two, the reliability was 0.73 for 

attribute 4 and 0.52 and 0.58 for attributes 5 and 6, respectively.  With 20% 

error, the reliability for branch one changed from 0.80 for attribute 1 to 0.44 for 

attribute 3.  For branch two, the reliability was 0.70 for attribute 4 and 0.44 and 

0.47 for attributes 5 and 6, respectively.  With 25% error, the reliability for 

branch one differed from 0.78 for attribute 1 to 0.42 for attribute 3.  For branch 

two, the reliability was 0.66 for attribute 4 and 0.40 and 0.42 for attributes 5 and 

6, respectively. 

Similar patterns were observed for the other item-set conditions.  With 

two, four, six, and eight items measuring each attribute, the reliability estimate 

was consistently highest for attribute 1 and lowest for attributes in the final 

nodes of the hierarchy across all slip conditions. Test length, again, is a factor 

that affects reliability estimates.  For example, the reliability estimates for 

attribute 1 with 20% slip for the two, four, six, and eight items conditions were 

0.80, 0.89, 0.92, and 0.94, respectively; and for attribute 6, the corresponding 

estimates were 0.47, 0.61, 0.71, and 0.76.  The same patterns were observed for 
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all the other attributes.  Moreover, the reliability estimates for each attribute 

decreased as the percentage of slips increased in the same item set condition.  

For instance, the outcomes for four items measuring attribute 4 were 0.88, 0.85, 

0.83, and 0.80 for 10%, 15%, 20%, and 25% slip conditions, respectively. 

Summary for Conditions of the Divergent Cognitive Model 

It was concluded that for the divergent model, attribute reliability 

estimated by both the adapted and standard Cronbach’s alpha coefficients was 

highest for attribute 1 and lowest for attributes in the final nodes, i.e., attributes 

A3, A5, and A6, across all item sets and slip conditions.  The test length and 

model-data fit were apparently the factors that influenced the attribute 

reliability estimates.  The longer the test and the smaller the slip, the higher the 

reliability estimates.  However, as the sample size increased across each slip and 

item set condition, attribute reliability estimates were quite similar to one 

another.    

Noticeably, for attribute reliability estimates calculated by either formula 

in the same slip and sample size condition, differences between consecutive 

estimates became progressively smaller as the number of items on each 

attribute increased.  For example, the change between the two and four item 

sets in the condition of 1000 sample size, 10% slip percentage, and the adapted 

formula was 0.10, between the four and six item sets, 0.03, and between the six 

and eight item sets, 0.02, for attribute 1.  Similar patterns were observed for all 

other attributes which reflect the behavior of the Spearman-Brown formula.   
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The reliability estimates derived from the adapted and standard 

Cronbach’s alpha were compared.  Table 16 presents correlation coefficients 

between attribute reliability estimates for the divergent model derived by the 

adapted and standard Cronbach’s alpha coefficients for each sample size and slip 

percentage condition.  These correlation coefficients range from 0.99 to 1.00, 

indicating essentially perfect fit between reliability result sets estimated by the 

two formulas.  However, for each sample size-slip percentage-item set condition, 

the reliability estimates derived by the standard Cronbach’s alpha coefficient 

were slightly higher than those estimated by the adapted Cronbach’s alpha 

coefficient.  Table 17 presents root mean square deviation between attribute 

reliability estimates for the divergent model derived by adapted and standard 

Cronbach’s alpha coefficient for each sample size, slip percentage, and item set 

condition.  These values ranged from 0.00 to 0.02, indicating negligible 

differences between the values of the two reliability estimates.    

Summary of both the Linear and Divergent Models 

Overall, the attribute reliability for both the linear and divergent models, 

estimated by either the adapted or the standard Cronbach’s alpha formulas, is 

systematically affected by test length and slip percentage but not by sample size.  

By comparing the results between two model structures, the variation of the six 

reliability estimates calculated by both adapted and standard formula, is 

noticeably and consistently larger for the linear model compared to the 
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divergent model.  This outcome can be accounted for by the attribute 

dependencies inherent in each hierarchy with different structures.   

Another noticeable outcome is that although reliability estimates derived 

by the standard Cronbach’s alpha coefficient for some conditions were slightly 

greater than those estimated by the adapted Cronbach’s alpha coefficient, the 

reliability estimates for the majority of conditions differed not at all or by a very 

small amount.  However, the ways in which the two formulas take into 

consideration examinees who obtain the correct answer but without possessing 

the required attributes differ in that the adapted formula fully accounted for 

these examinees while the standard formula did not.  For example, in the linear 

model with six attributes, the weights were assigned to each attribute in a way 

that respected each item’s contribution to the measurement of that attribute.  In 

contrast, if attribute reliability is estimated by standard formula, each of the six 

attributes are considered to completely contribute to the performance of the 

item that measures examined attribute.  Therefore, the adapted Cronbach’s 

alpha formula is more conceptually meaningful than the standard formula.   
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Chapter V: Discussion and Conclusions 

The increasing demand for providing diagnostic feedback about 

examinees’ cognitive proficiency has encouraged measurement specialists to 

probe new methods of evaluating and interpreting examinees’ performance.  

Cognitive diagnostic assessment is one means that can be used to support 

specific inferences about examinees’ cognitive strengths and weaknesses.  

Cognitive diagnostic assessment is a test form that employs a cognitive model to 

develop or identify items measuring specific knowledge and skills and to direct 

the psychometric analyses of examinees’ item response pattern to promote 

diagnostic inferences.  The cognitive model plays a foundational role as it 

provides a representation of the knowledge structures and processing skills that 

are believed to underlie conceptual understanding in a particular domain.   

In 2004, Leighton, Gierl, and Hunka proposed a procedure for cognitive 

diagnostic assessment, the attribute hierarchy method (AHM), as a way to link 

psychological principles with psychometric procedures.  With the assumption 

that test performance is associated with a specific set of hierarchically-organized 

attributes, the AHM is a cognitively-based psychometric method that classifies 

examinees’ test item responses into structured attribute patterns according to a 

cognitive model of task performance.  These attributes are structured using a 

hierarchy in which the ordering of the cognitive skills is specified.  As a result, the 

attribute hierarchy serves as an explicit construct-centered cognitive model 

because it represents the psychological ordering among the cognitive attributes 
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required to solve test items.  This model, in turn, provides an explicit, fine-

grained interpretative framework for designing test items and for linking 

examinees’ test performance to specific inferences about psychological skill 

acquisition. 

The issue of reliability estimation is critical in cognitive diagnostic 

assessment because it concerns precision of decisions about examinees’ specific 

cognitive strengths and weaknesses.  In the AHM, attribute reliability refers to 

the consistency of the decisions made in a diagnostic test about examinees’ 

mastery of specific attributes across multiple items that measure each attribute.  

Attribute reliability is a fundamental concept in CDA because it reflects score 

precision that should be reported to test users.  To date, however, the reliability 

for attribute-based scoring for AHM has not been established.  The present study 

was designed to introduce and evaluate an analytic procedure for assessing 

attribute reliability for cognitive diagnostic assessments and to explore factors 

that influence attribute reliability.   

This chapter includes five sections.  First, the research questions are 

revisited together with a brief summary of the methods used for the present 

study.  A summary and discussion of the results are then presented.  The 

limitations of the study are discussed followed by the presentation of the 

conclusions drawn from the results.  Lastly, the educational and practical 

implications from the study and recommendations for future research directions 

are outlined.   
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Restatement of Research Questions and Summary of Methods 

The purpose of this study was to evaluate attribute reliability for 

cognitive diagnostic assessments so examinees could receive precise information 

about their cognitive problem-solving strengths and weaknesses.  The 

customized feedback for each examinee would, on one hand, guide examinees’ 

individual learning, and on the other hand, enhance teachers’ instruction.  The 

accuracy and consistency by which cognitive diagnostic assessments can classify 

examinees’ observed response patterns is, therefore, key to providing diagnostic 

feedback about examinees’ cognitive proficiencies.  Hence, attribute-based 

reliability that considers the consistency of decision about examinees’ cognitive 

proficiencies was conducted and evaluated in the present study.  Two reliability 

estimation procedures were considered: the standard form of Cronbach’s alpha 

(Cronbach, 1951) and an adapted form in which each item is weighted to take 

account of those examinees who correctly answer the item but do not possess 

the attributes needed to correctly answer the item.  For each method, the 

factors expected to influence attribute reliability estimate were studied and 

explored.  The research questions addressed in this study include: 

1. Is attribute reliability as determined by adapted and standard 

Cronbach’s alpha influenced by different cognitive model 

structures, specifically, a linear model versus a divergent model? 
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2. What is the minimum number of items required to measure each 

attribute to achieve adequate attribute reliability as determined 

by adapted and standard Cronbach’s alpha? 

3. Are the two indices influenced by sample size? 

4. Is attribute reliability as determined by adapted and standard 

Cronbach’s alpha influenced by discrepancy of examinees’ 

observed response patterns from expected response patterns? 

To answer the research questions, a simulation study was conducted.  

The four factors identified in the research questions were manipulated for each 

method.  To answer the first question, two types of model structures were 

evaluated, a linear and a divergent hierarchy.  The number of attributes in each 

model is fixed at six to make the comparison between different model structures 

more interpretable.  To answer the second question, tests with different 

numbers of items were simulated to create tests with different lengths.  Four 

levels were created: a short 12-item test, a short-to-moderate 24-item test, a 

moderate 36-item test, and a long 48-item test.  To answer the third question, 

four different sample sizes (250, 500, 750, and 1000) were used for simulation to 

represent a relatively small scope of sample size that can occur in certain testing 

situations such as provincial achievement tests.  To answer the fourth question, 

four levels of discrepancies between expected and observed responses were 

simulated: 10%, 15%, 20%, and 25% to represent different percentages of 

model-data misfit.   
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Results and Discussion 

Impact of the Adaptation of Cronbach’s alpha 

Although reliability estimates derived by the standard Cronbach’s alpha 

coefficient for some conditions were slightly greater than those estimated by the 

adapted Cronbach’s alpha coefficient, the reliability estimates for the majority of 

conditions differed not at all or by a very small amount.  However, the ways in 

which the two formulas take into consideration examinees who obtain the 

correct answer but without possessing the required attributes differ in that the 

adapted formula fully accounted for these examinees while the standard formula 

did not.  For example, in the linear model with six attributes, the weights were 

assigned to each attribute in a way that respected each item’s contribution to 

the measurement of that attribute.  In contrast, if attribute reliability is 

estimated by standard formula, each of the six attributes are considered to 

completely contribute to the performance of the item that measures examined 

attribute.  Therefore, the adapted Cronbach’s alpha formula is more 

conceptually meaningful than the standard formula.   

Impact of Model Structure 

For both linear and divergent models, attribute reliability, estimated by 

both the adapted and standard Cronbach’s alpha coefficients for all sample sizes, 

was highest for attribute 1 and lowest for attributes at the final nodes of the 

hierarchy (i.e., attribute 6 in the linear model and attributes 3, 5, and 6 in the 

divergent model) across all item sets and slip conditions.  However, the variation 
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of the six reliability estimates, calculated by both adapted and standard 

formulas, is noticeably and consistently larger for the linear model compared to 

the divergent model.  Therefore, model structure was a factor that influences 

attribute reliability estimates.  

This outcome can be accounted for by the attribute dependencies 

inherent in each hierarchy.  For instance, in the linear hierarchy with two items 

per attribute, attribute 1 was directly or indirectly measured by 12 items 

whereas attribute 6 was directly measured by only two items because of the 

model structure.  For the divergent hierarchy with two items per attribute, 

attribute 1 was directly or indirectly measured by 12 items whereas attributes 3, 

5, and 6 were directly measured by only two items.  From this example it 

becomes clear that the divergent model contains attributes with fewer 

dependencies and, thus, each attribute is affected by a smaller number of items, 

either directly or indirectly.  As a result, there is less variation among the 

reliability estimates with the divergent model across all study conditions when 

compared with the linear model. 

Impact of Test Length 

Test length showed a consistent positive effect on attribute reliability 

estimates in simulated conditions with different model structures, sample sizes, 

and slip percentages for both reliability calculation formulas.  As the test length 

increased across each slip and sample size condition for both hierarchies, 

attribute reliability estimates calculated by both formulas increased.  That is, the 



102 
 

longer the test, the higher the reliability estimates regardless of the other factors 

considered. Therefore, test length was clearly a factor that influences attribute 

reliability estimates.  This finding reflects the Spearman-Brown finding where 

parallel items are added to increase reliability estimates.  

Impact of Sample Size 

The factor of sample size did not affect on attribute reliability estimates 

in simulated conditions with different item sets, model structures, slip 

percentages, and reliability calculation formulas.  As the sample size increased, 

attribute reliability estimates for each item set-hierarchy-slip percentage-

formula condition were quite similar to one another.  For example, as the sample 

size ranges from 250 to 1,000, the reliability estimates for attributes 1 to 6 in 

linear model, calculated by adapted formula, were (0.81, 0.79, 0.74, 0.67, 0.45, 

and 0.34), (0.81, 0.78, 0.73, 0.65, 0.49, and 0.33), (0.81, 0.79, 0.73, 0.65, 0.48, 

and 0.30), and (0.81, 0.78, 0.73, 0.64, 0.49, and 0.25) in 2-item set condition with 

15% slips.  Therefore, sample size was not a factor that influences attribute 

reliability estimates.  The lack of difference in variability is attributable to the 

selection of the samples from the sample population.   

Impact of Discrepancy between Expected and Observed Responses 

The factor of slip percentage showed a consistent negative impact on 

attribute reliability estimates.  As the slip percentage increased across each item 

set and sample size condition for both hierarchies, the attribute reliability 

estimates calculated by both the adapted and standard formulas decreased.  
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That is to say, the higher the slip percentage, the lower the reliability estimates 

regardless of the considerations of other factors.  Therefore, slip percentage was 

a factor that influences attribute reliability estimates.  

Summary 

Nunnally (1972) suggested that the reliability should be at least 0.75 and 

preferably at least 0.85 (p. 91).  If Nunnally’s minimum is considered, then the 

24-, 36-, and 48-item linear model produced acceptable results for all attributes 

in the 10% slip condition, with one exception: attribute 6 in the 24- and 36-item 

conditions.  The reliability results were also acceptable in the 36- and 48-item 

conditions with 15% error, again, with the exception of attribute 6.  The 

divergent model was more robust as it produced acceptable results for all the 

attributes in the 24-, 36-, and 48-item conditions with 10% slip percentage and 

all the attributes in the 36- and 48-item conditions with 15% slip percentage.  

The reliability results were even acceptable in most of 48-item conditions with 

20% and 25% error. 

Conclusions 

Given there was no difference between the reliability estimates yielded 

by the adapted and the standard Cronbach’s alpha formulas and conceptual 

richness, it is concluded that the adapted formula is a more appropriate formula 

for estimating the internal consistency reliability of attributes in the AHM 

regardless of whether the model is linear or divergent.   
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In using this formula, the factors of test length and occurrence of slips 

need to be considered.  The longer the test, the higher the attribute reliability 

estimates.  The lower the slip percentage, the higher the attribute reliability 

estimates.  Sample size had no impact.   

Limitations of the Study 

 The present study is limited in several aspects.  First, only a simulation 

study was conducted to evaluate attribute-based reliability.  Not including a real 

data study limits the practicability and persuasiveness of the present study.  A 

real data study was not investigated because tests in practice usually are not 

developed according to a cognitive model of task performance.  A real data study 

should be considered by researchers and practitioners when tests developed 

directly from a cognitive model are available, with the variation of test length, 

variability of samples, and model structure, for example. 

Second, test length, domain heterogeneity, test speedness, and sample 

variability are factors expected to influence reliability estimates.  However, 

sample variability was not manipulated in the current simulation study.   

Although sample size for simulated response data was selected as a factor in this 

study, the sample variability was not involved in simulation.  The lack of 

variability among samples could be one reason to explain why reliability 

estimates in different sample size conditions keep invariant. 

Third, the two attribute reliability estimation indices evaluated and 

compared in the current study are different on how the contribution of attribute 
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towards examinees’ item-level performance is treated, which means the 

discrimination power of each item on each attribute is considered in the adapted 

index but not in the standard one.  However, in the current study, discrimination 

power of each simulated item was fixed across all conditions, which might be the 

factor that evens out the possible difference on attribute reliability estimates 

which was expected to be resulted from the two formulas. 

Another limitation of the study relates to the structure of cognitive 

models simulated.  The two models involved in the present study were linear and 

divergent.  The number of attributes was fixed at six for both hierarchies to make 

the comparison between models interpretable.  However, the structure of the 

divergent model demonstrated a relatively simple representation of attribute 

organization.  This limits the generalizability of the present study.  More complex 

divergent model structures need to be considered to increase the generalizability 

of the findings.    

Implications and Future Directions 

Educational and Practical Implications 

The results of the present study have three practical implications.  First, 

attribute reliability estimates can be used to enhance score reporting by creating 

confidence intervals around attribute-based scores.  In the AHM, the probability 

that an examinee possesses specific attribute combinations can be estimated in 

the statistical pattern recognition stage.  These attribute probabilities provide 

examinees with specific information about their cognitive strengths and 
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weaknesses.  Also, these attribute probabilities can be used to create score 

reporting profiles.  By creating a confidence interval around each probability 

using the standard error of measurement with the attribute reliability 

coefficient, the precision of these point-estimate probabilities would be 

enhanced.  In this case, the standard error of measurement should reflect 

weights assigned to each attribute involved in a hierarchy.  Moreover, the impact 

on reliability estimates by adding parallel items to the test can also be evaluated 

using the attribute-based Spearman-Brown formula, as discussed in Chapter II 

and IV.  

Second, the attribute-based reliability index proposed and evaluated in 

the present study represents a method for estimating attribute reliability in 

cognitive diagnostic assessment.  The index considers the hierarchical 

relationship among attributes in a cognitive model, therefore, this procedure can 

be applied to not only the attribute hierarchy method but also to all other 

attribute-based procedures such as the rule space model (Tatsuoka, 1983), the 

unified model (Dibello, Stout, & Roussos, 1995), the DINA models (de la Torre & 

Douglas, 2004), and the NIDA models (Junker & Sijtsma, 2001) for cognitive 

diagnostic assessment.   

Third, the outcomes on attribute reliability estimation help operationalize 

CDA.  One implementation of CDAs is in the area of formative, classroom-based 

assessment.  These assessments can be developed by government or test 

agencies at a prior time.  Such assessment could be administered periodically 
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during the ongoing teaching and learning process.  The content examined on the 

test should be directly linked to the curriculum because the assessment 

outcomes are expected to guide following teaching and learning.  In addition, 

assessment outcomes should also have the capability of providing support on 

specific decisions about students’ homework or teachers’ instructional planning.  

Therefore, an assessment with acceptable reliability index will provide precision 

decisions and, consequently, better use of CDA in practical testing situations.  

Future Research Directions 

 Three major issues require further investigations.  First, the present study 

was only conducted with simulation data.  The feature of simulation studies 

limited the practicability of the current study.  How attribute reliability would 

perform with real cognitive models and examinees’ response data is unclear and, 

therefore, needs to be studied.  In particular, discrimination power of items 

measuring different attributes should vary and be more practical with a real 

cognitive model, and, in turn, might result in difference on the performance of 

the two formulas investigating attribute reliability estimates.  This line of 

research will contribute to further understanding of attribute-based reliability in 

the environment of cognitive diagnostic assessments with a more practical 

perspective.  However, such study should be conducted only with a test that is 

developed initially from a corresponding cognitive model of task performance 

and administered to public. 
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Second, internal consistency estimate of reliability was considered in the 

current study but not the consistency of classification.  In cognitive diagnostic 

assessment, attribute reliability refers to the consistency of decision made about 

examinee’s mastery of specific attribute.  Therefore, further study is required for 

developing an index of classification consistency for cognitive diagnostic 

assessment. 

Third, the number of items measuring each attribute was set as the same 

for all attributes in a hierarchy in the present study.  Given the property of 

attribute dependency, attributes that are positioned at the top of a hierarchy will 

be assessed more reliably than attributes located at the bottom of a hierarchy.  

That is, attributes that are prerequisites of other attributes require fewer items 

to probe to achieve acceptable reliability estimates.  This outcome indicates that 

the number of items measuring each attribute is not necessarily same for all 

attributes in a hierarchy.  Thus, investigations focused on the relationship 

between diagnostic model structure and its fit to the number of items probing 

each attribute when estimating attribute reliability should be conducted.  
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Table 1 

Blueprint of 8::= Alberta Grade < Mathematics Achievement Test 

General Outcomes 

Reporting Category Number 
(Percentage) 

of 
Questions 

Knowledge Skills 

Number 
• Develop a number sense for whole 
numbers 0 to 1 000, and explore fractions 
(fifths and tenths) 
• Apply an arithmetic operation (addition, 
subtraction, multiplication, or division) on 
whole numbers, and illustrate its use in 
creating and solving problems 
• Use and justify an appropriate 
calculation 
strategy or technology to solve problems 

8 9 17 (40%) 

Patterns and Relations 
• Investigate, establish, and communicate 
rules for numerical and non-numerical 
patterns, including those found in the 
home, and use these rules to make 
predictions 

2 4 6 (14%) 

Shape and Space 
• Estimate, measure, and compare by 
using whole numbers and primarily 
standard units of measure 
• Describe, classify, construct, and relate 
3-D objects and 2-D shapes 
• Use numbers and direction words to 
describe the relative positions of objects 
in one dimension using everyday contexts 

4 8 12 (28%) 

Statistics and Probability 
• Collect first- and second-hand data, 
display the results in more than one way, 
and interpret the data to make predictions 
• Use simple probability experiments 
designed by others in order to explain 
outcomes 

3 5 8 (18%) 

Number (Percentage) of Questions 17 (39%) 26 (61%) 43 (100%) 
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Table 2 

An Illustration of Classification Method A: Classifying Observed Response Pattern 

(7:7:::) 

Examinee 
Attribute 

Expected  
Response Pattern 

Ability Level 
No. of 
Slips 

Likelihood 

0000 000000 -2.357 2 0.0022 
1000 100000 -0.792 1 0.1227 
1100 110000 -0.156 2 0.0019 
1110 111000 0.428 1 0.2537 
1001 100100 -0.161 2 0.0018 
1101 110110 0.637 4 0.0001 
1111 111111 1.853 4 0.0001 
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Table 3 

An Illustration of Classification Method B: Classifying Observed Response Pattern 

(7:7:::) 

Examinee 
Attribute 

Expected  
Response Pattern 

Ability Level 
No. of 
Slips 

Likelihood 

0000 000000 -2.357 0 * 
1000 100000 -0.792 0 * 
1100 110000 -0.156 1 0.0219 
1110 111000 0.428 1 0.2483 
1001 100100 -0.161 1 0.0518 
1101 110110 0.637 3 0.0001 
1111 111111 1.853 4 0.0001 

 

  



122 
 

Table 4 

An Illustration of Neural Network Classification: Classifying Observed Response 

Pattern (7:7:::) 

Observed 
Response 
Pattern 

Attribute Probability 
1 2 3 4 

101000 0.99 0.95 0.96 0.06 
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Table 5 

Item Parameters Estimated from the Expected Response Matrix for the Linear 

and Divergent Models 

 Linear Divergent 
Attribute a b a b 

1 0.50 -2.50 1.00 -2.50 
2 1.00 -1.50 2.00 0.00 
3 1.50 -0.50 3.00 2.50 
4 2.00 0.50 2.00 0.00 
5 2.50 1.50 3.00 2.50 
6 3.00 2.50 3.00 2.50 
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Table 6a 

Attribute Reliability Estimated by Adapted Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Linear 

Cognitive Model as a Function of Test Length (Sample Size=85:) 

   Slip Percentages 
Item 
Set 

Attribute 10% 15% 20% 25% 

2 1 0.83 0.81 0.78 0.74 
 2 0.81 0.79 0.74 0.68 
 3 0.77 0.74 0.68 0.60 
 4 0.71 0.67 0.61 0.51 
 5 0.60 0.45 0.34 0.25 
 6 0.37 0.34 0.27 0.28 

4 1 0.91 0.90 0.88 0.86 
 2 0.90 0.89 0.86 0.83 
 3 0.88 0.86 0.81 0.77 
 4 0.84 0.80 0.75 0.67 
 5 0.77 0.69 0.62 0.52 
 6 0.58 0.43 0.37 0.26 

6 1 0.94 0.93 0.92 0.90 
 2 0.93 0.92 0.90 0.88 
 3 0.92 0.90 0.87 0.83 
 4 0.89 0.86 0.82 0.75 
 5 0.84 0.78 0.71 0.64 
 6 0.70 0.58 0.53 0.52 

8 1 0.96 0.95 0.94 0.93 
 2 0.95 0.94 0.93 0.91 
 3 0.94 0.92 0.90 0.87 
 4 0.92 0.89 0.86 0.81 
 5 0.87 0.82 0.76 0.68 
 6 0.76 0.64 0.55 0.55 
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Table 6b 

Attribute Reliability Estimated by Standard Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Linear 

Cognitive Model as a Function of Test Length (Sample Size=85:) 

  Slip Percentages 
Item Set Attribute 10% 15% 20% 25% 

2 1 0.85 0.83 0.80 0.75 
 2 0.84 0.82 0.77 0.71 
 3 0.82 0.79 0.73 0.64 
 4 0.77 0.72 0.64 0.53 
 5 0.66 0.51 0.40 0.29 
 6 0.37 0.34 0.27 0.28 

4 1 0.92 0.91 0.89 0.86 
 2 0.92 0.90 0.87 0.84 
 3 0.90 0.88 0.84 0.78 
 4 0.87 0.83 0.78 0.69 
 5 0.80 0.72 0.64 0.52 
 6 0.58 0.43 0.37 0.26 

6 1 0.95 0.94 0.92 0.90 
 2 0.94 0.93 0.91 0.88 
 3 0.94 0.92 0.89 0.85 
 4 0.91 0.88 0.84 0.77 
 5 0.86 0.80 0.73 0.65 
 6 0.70 0.58 0.53 0.52 

8 1 0.96 0.95 0.94 0.93 
 2 0.96 0.95 0.93 0.91 
 3 0.95 0.94 0.91 0.88 
 4 0.93 0.91 0.87 0.82 
 5 0.89 0.84 0.78 0.69 
 6 0.76 0.64 0.55 0.55 
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Table 7a 

Attribute Reliability Estimated by Adapted Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Linear 

Cognitive Model as a Function of Test Length (Sample Size=5::) 

  Slip Percentages 
Item 
Set 

Attribute 10% 15% 20% 25% 

2 1 0.84 0.81 0.79 0.75 
 2 0.82 0.78 0.74 0.69 
 3 0.78 0.73 0.68 0.61 
 4 0.72 0.65 0.60 0.52 
 5 0.61 0.49 0.45 0.37 
 6 0.47 0.33 0.30 0.26 

4 1 0.92 0.90 0.88 0.86 
 2 0.91 0.89 0.86 0.83 
 3 0.88 0.85 0.82 0.77 
 4 0.85 0.79 0.74 0.67 
 5 0.77 0.69 0.60 0.51 
 6 0.57 0.40 0.36 0.34 

6 1 0.94 0.93 0.92 0.90 
 2 0.94 0.92 0.90 0.88 
 3 0.92 0.90 0.87 0.84 
 4 0.90 0.86 0.81 0.75 
 5 0.85 0.78 0.70 0.63 
 6 0.71 0.56 0.51 0.46 

8 1 0.96 0.95 0.94 0.93 
 2 0.95 0.94 0.93 0.91 
 3 0.94 0.92 0.90 0.87 
 4 0.92 0.89 0.86 0.81 
 5 0.88 0.83 0.77 0.70 
 6 0.75 0.64 0.58 0.54 
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Table 7b 

Attribute Reliability Estimated by Standard Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Linear 

Cognitive Model as a Function of Test Length (Sample Size=5::) 

  Slip Percentages 
Item Set Attribute 10% 15% 20% 25% 

2 1 0.86 0.83 0.80 0.76 
 2 0.85 0.81 0.78 0.73 
 3 0.83 0.78 0.74 0.66 
 4 0.78 0.72 0.66 0.56 
 5 0.68 0.57 0.51 0.42 
 6 0.47 0.33 0.30 0.26 

4 1 0.93 0.91 0.89 0.86 
 2 0.92 0.90 0.87 0.84 
 3 0.91 0.88 0.84 0.79 
 4 0.88 0.83 0.77 0.70 
 5 0.81 0.72 0.63 0.52 
 6 0.57 0.40 0.36 0.34 

6 1 0.95 0.94 0.92 0.90 
 2 0.95 0.93 0.91 0.89 
 3 0.94 0.91 0.89 0.85 
 4 0.92 0.88 0.84 0.77 
 5 0.87 0.80 0.73 0.63 
 6 0.71 0.56 0.51 0.46 

8 1 0.96 0.95 0.94 0.93 
 2 0.96 0.95 0.93 0.91 
 3 0.95 0.93 0.91 0.88 
 4 0.94 0.91 0.88 0.83 
 5 0.90 0.85 0.79 0.71 
 6 0.75 0.64 0.58 0.54 
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Table 8a 

Attribute Reliability Estimated by Adapted Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Linear 

Cognitive Model as a Function of Test Length (Sample Size==5:) 

  Slip Percentages 
Item 
Set 

Attribute 10% 15% 20% 25% 

2 1 0.84 0.81 0.78 0.75 
 2 0.82 0.79 0.74 0.70 
 3 0.77 0.73 0.67 0.62 
 4 0.71 0.65 0.58 0.50 
 5 0.58 0.48 0.40 0.29 
 6 0.40 0.30 0.18 0.20 

4 1 0.92 0.90 0.88 0.86 
 2 0.91 0.88 0.86 0.83 
 3 0.88 0.85 0.82 0.77 
 4 0.84 0.79 0.74 0.68 
 5 0.77 0.68 0.59 0.51 
 6 0.59 0.43 0.35 0.36 

6 1 0.94 0.93 0.92 0.91 
 2 0.94 0.92 0.90 0.88 
 3 0.92 0.90 0.87 0.84 
 4 0.89 0.86 0.81 0.76 
 5 0.84 0.77 0.70 0.63 
 6 0.68 0.55 0.48 0.43 

8 1 0.96 0.95 0.94 0.93 
 2 0.95 0.94 0.93 0.91 
 3 0.94 0.92 0.90 0.87 
 4 0.92 0.89 0.86 0.81 
 5 0.88 0.82 0.76 0.69 
 6 0.76 0.65 0.57 0.57 
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Table 8b 

Attribute Reliability Estimated by Standard Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Linear 

Cognitive Model as a Function of Test Length (Sample Size==5:) 

  Slip Percentages 
Item Set Attribute 10% 15% 20% 25% 

2 1 0.85 0.83 0.80 0.76 
 2 0.85 0.81 0.77 0.73 
 3 0.82 0.77 0.72 0.65 
 4 0.78 0.71 0.63 0.53 
 5 0.66 0.55 0.44 0.31 
 6 0.40 0.30 0.18 0.20 

4 1 0.92 0.91 0.89 0.86 
 2 0.92 0.90 0.87 0.84 
 3 0.91 0.88 0.84 0.79 
 4 0.87 0.83 0.78 0.70 
 5 0.80 0.71 0.62 0.53 
 6 0.59 0.43 0.35 0.36 

6 1 0.95 0.94 0.92 0.91 
 2 0.95 0.93 0.91 0.89 
 3 0.94 0.91 0.89 0.85 
 4 0.91 0.88 0.84 0.78 
 5 0.86 0.79 0.72 0.63 
 6 0.68 0.55 0.48 0.43 

8 1 0.96 0.95 0.94 0.93 
 2 0.96 0.95 0.93 0.91 
 3 0.95 0.93 0.91 0.89 
 4 0.94 0.91 0.88 0.83 
 5 0.89 0.84 0.78 0.71 
 6 0.76 0.65 0.57 0.57 
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Table 9a 

Attribute Reliability Estimated by Adapted Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Linear 

Cognitive Model as a Function of Test Length (Sample Size=7:::) 

  Slip Percentages 
Item 
Set 

Attribute 10% 15% 20% 25% 

2 1 0.84 0.81 0.78 0.75 
 2 0.82 0.78 0.74 0.69 
 3 0.78 0.73 0.68 0.61 
 4 0.71 0.64 0.57 0.48 
 5 0.59 0.49 0.39 0.28 
 6 0.49 0.25 0.23 0.18 

4 1 0.92 0.90 0.88 0.86 
 2 0.91 0.88 0.86 0.83 
 3 0.88 0.85 0.82 0.77 
 4 0.84 0.80 0.75 0.68 
 5 0.77 0.69 0.60 0.52 
 6 0.59 0.45 0.39 0.39 

6 1 0.94 0.93 0.92 0.90 
 2 0.94 0.92 0.90 0.88 
 3 0.92 0.90 0.87 0.84 
 4 0.89 0.86 0.82 0.76 
 5 0.84 0.78 0.70 0.62 
 6 0.71 0.57 0.48 0.45 

8 1 0.96 0.95 0.94 0.93 
 2 0.95 0.94 0.93 0.91 
 3 0.94 0.92 0.90 0.87 
 4 0.92 0.89 0.86 0.81 
 5 0.88 0.82 0.76 0.70 
 6 0.77 0.64 0.57 0.56 
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Table 9b 

Attribute Reliability Estimated by Standard Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Linear 

Cognitive Model as a Function of Test Length (Sample Size=7:::) 

  Slip Percentages 
Item Set Attribute 10% 15% 20% 25% 

2 1 0.86 0.83 0.80 0.75 
 2 0.85 0.81 0.77 0.71 
 3 0.83 0.78 0.72 0.64 
 4 0.78 0.70 0.62 0.51 
 5 0.68 0.55 0.43 0.30 
 6 0.49 0.25 0.23 0.18 

4 1 0.93 0.91 0.89 0.86 
 2 0.92 0.90 0.87 0.84 
 3 0.91 0.88 0.84 0.79 
 4 0.88 0.83 0.78 0.71 
 5 0.81 0.72 0.64 0.54 
 6 0.59 0.45 0.39 0.39 

6 1 0.95 0.94 0.92 0.90 
 2 0.95 0.93 0.91 0.89 
 3 0.94 0.92 0.89 0.85 
 4 0.92 0.88 0.84 0.78 
 5 0.87 0.80 0.72 0.63 
 6 0.71 0.57 0.48 0.45 

8 1 0.96 0.95 0.94 0.93 
 2 0.96 0.95 0.93 0.92 
 3 0.95 0.94 0.91 0.89 
 4 0.94 0.91 0.87 0.84 
 5 0.90 0.84 0.78 0.72 
 6 0.77 0.64 0.57 0.52 
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Table 10a 

Attribute Reliability Estimated by Adapted Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Divergent 

Cognitive Model as a Function of Test Length (Sample Size=85:) 

  Slip Percentages 
Item 
Set 

Attribute 10% 15% 20% 25% 

2 1 0.81 0.82 0.80 0.80 
 2 0.71 0.67 0.59 0.61 
 3 0.69 0.56 0.45 0.43 
 4 0.76 0.74 0.68 0.67 
 5 0.71 0.57 0.52 0.45 
 6 0.63 0.53 0.47 0.42 

4 1 0.90 0.91 0.89 0.89 
 2 0.84 0.82 0.77 0.79 
 3 0.81 0.72 0.61 0.56 
 4 0.87 0.86 0.81 0.80 
 5 0.82 0.74 0.61 0.55 
 6 0.81 0.73 0.65 0.55 

6 1 0.93 0.94 0.92 0.93 
 2 0.89 0.87 0.83 0.88 
 3 0.86 0.78 0.68 0.65 
 4 0.91 0.90 0.87 0.86 
 5 0.86 0.79 0.70 0.66 
 6 0.86 0.79 0.69 0.65 

8 1 0.95 0.95 0.94 0.94 
 2 0.92 0.90 0.87 0.88 
 3 0.89 0.84 0.75 0.71 
 4 0.94 0.93 0.90 0.90 
 5 0.89 0.83 0.75 0.71 
 6 0.90 0.84 0.76 0.73 
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Table 10b 

Attribute Reliability Estimated by Standard Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Divergent 

Cognitive Model as a Function of Test Length (Sample Size=85:) 

  Slip Percentages 
Item Set Attribute 10% 15% 20% 25% 

2 1 0.81 0.82 0.79 0.79 
 2 0.75 0.70 0.61 0.61 
 3 0.69 0.56 0.45 0.43 
 4 0.77 0.75 0.69 0.68 
 5 0.71 0.57 0.52 0.45 
 6 0.63 0.53 0.47 0.42 

4 1 0.90 0.90 0.88 0.88 
 2 0.86 0.83 0.77 0.77 
 3 0.81 0.72 0.61 0.56 
 4 0.88 0.86 0.82 0.80 
 5 0.82 0.74 0.61 0.55 
 6 0.81 0.73 0.65 0.55 

6 1 0.93 0.93 0.92 0.92 
 2 0.90 0.88 0.83 0.83 
 3 0.86 0.78 0.68 0.65 
 4 0.92 0.90 0.87 0.86 
 5 0.86 0.79 0.70 0.66 
 6 0.86 0.79 0.69 0.65 

8 1 0.95 0.95 0.94 0.94 
 2 0.93 0.90 0.87 0.87 
 3 0.89 0.84 0.75 0.71 
 4 0.94 0.93 0.90 0.89 
 5 0.89 0.83 0.75 0.71 
 6 0.90 0.84 0.76 0.73 
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Table 11a 

Attribute Reliability Estimated by Adapted Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Divergent 

Cognitive Model as a Function of Test Length (Sample Size=5::) 

  Slip Percentages 
Item 
Set 

Attribute 10% 15% 20% 25% 

2 1 0.80 0.81 0.80 0.80 
 2 0.70 0.65 0.58 0.58 
 3 0.71 0.61 0.52 0.48 
 4 0.76 0.73 0.69 0.66 
 5 0.73 0.54 0.43 0.36 
 6 0.71 0.58 0.42 0.37 

4 1 0.90 0.90 0.89 0.89 
 2 0.84 0.80 0.77 0.78 
 3 0.82 0.72 0.63 0.57 
 4 0.87 0.85 0.82 0.81 
 5 0.82 0.70 0.60 0.59 
 6 0.83 0.70 0.60 0.57 

6 1 0.93 0.93 0.93 0.93 
 2 0.89 0.86 0.83 0.84 
 3 0.87 0.78 0.70 0.68 
 4 0.91 0.90 0.87 0.86 
 5 0.87 0.78 0.70 0.69 
 6 0.87 0.79 0.70 0.70 

8 1 0.95 0.95 0.94 0.94 
 2 0.92 0.89 0.87 0.88 
 3 0.90 0.83 0.76 0.75 
 4 0.94 0.92 0.90 0.90 
 5 0.90 0.83 0.77 0.75 
 6 0.90 0.83 0.77 0.75 
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Table 11b 

Attribute Reliability Estimated by Standard Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Divergent 

Cognitive Model as a Function of Test Length (Sample Size=5::) 

  Slip Percentages 
Item Set Attribute 10% 15% 20% 25% 

2 1 0.80 0.81 0.80 0.79 
 2 0.74 0.69 0.61 0.59 
 3 0.71 0.61 0.52 0.48 
 4 0.77 0.74 0.70 0.68 
 5 0.73 0.54 0.43 0.36 
 6 0.71 0.58 0.42 0.37 

4 1 0.90 0.89 0.89 0.88 
 2 0.86 0.81 0.77 0.76 
 3 0.82 0.72 0.63 0.57 
 4 0.88 0.85 0.82 0.81 
 5 0.82 0.70 0.60 0.59 
 6 0.83 0.70 0.60 0.57 

6 1 0.93 0.93 0.92 0.92 
 2 0.90 0.87 0.83 0.83 
 3 0.87 0.78 0.70 0.68 
 4 0.92 0.90 0.88 0.87 
 5 0.87 0.78 0.70 0.69 
 6 0.87 0.79 0.70 0.70 

8 1 0.95 0.95 0.94 0.94 
 2 0.93 0.90 0.87 0.87 
 3 0.90 0.83 0.76 0.75 
 4 0.94 0.92 0.90 0.90 
 5 0.90 0.83 0.77 0.75 
 6 0.90 0.83 0.77 0.75 
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Table 12a 

Attribute Reliability Estimated by Adapted Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Divergent 

Cognitive Model as a Function of Test Length (Sample Size==5:) 

  Slip Percentages 
Item 
Set 

Attribute 10% 15% 20% 25% 

2 1 0.80 0.80 0.80 0.79 
 2 0.71 0.63 0.61 0.61 
 3 0.69 0.57 0.46 0.49 
 4 0.76 0.71 0.67 0.65 
 5 0.68 0.48 0.39 0.34 
 6 0.71 0.56 0.47 0.49 

4 1 0.90 0.89 0.89 0.89 
 2 0.84 0.79 0.77 0.78 
 3 0.81 0.69 0.60 0.56 
 4 0.87 0.84 0.81 0.80 
 5 0.81 0.71 0.60 0.59 
 6 0.81 0.69 0.60 0.58 

6 1 0.93 0.93 0.93 0.92 
 2 0.89 0.86 0.84 0.84 
 3 0.86 0.78 0.71 0.70 
 4 0.92 0.89 0.87 0.86 
 5 0.87 0.78 0.70 0.69 
 6 0.87 0.79 0.70 0.68 

8 1 0.95 0.95 0.94 0.94 
 2 0.92 0.89 0.87 0.88 
 3 0.89 0.82 0.75 0.74 
 4 0.94 0.92 0.90 0.89 
 5 0.90 0.83 0.76 0.75 
 6 0.90 0.83 0.77 0.75 
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Table 12b 

Attribute Reliability Estimated by Standard Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Divergent 

Cognitive Model as a Function of Test Length (Sample Size==5:) 

  Slip Percentages 
Item Set Attribute 10% 15% 20% 25% 

2 1 0.81 0.80 0.79 0.79 
 2 0.75 0.67 0.62 0.61 
 3 0.69 0.57 0.46 0.49 
 4 0.77 0.73 0.69 0.67 
 5 0.68 0.48 0.39 0.34 
 6 0.71 0.56 0.47 0.49 

4 1 0.90 0.89 0.89 0.88 
 2 0.86 0.81 0.77 0.76 
 3 0.81 0.69 0.60 0.56 
 4 0.88 0.85 0.82 0.81 
 5 0.81 0.71 0.60 0.59 
 6 0.81 0.69 0.60 0.58 

6 1 0.93 0.93 0.92 0.92 
 2 0.90 0.87 0.84 0.83 
 3 0.86 0.78 0.71 0.70 
 4 0.92 0.90 0.88 0.86 
 5 0.87 0.78 0.70 0.69 
 6 0.87 0.79 0.70 0.68 

8 1 0.95 0.95 0.94 0.94 
 2 0.93 0.90 0.87 0.87 
 3 0.89 0.82 0.75 0.74 
 4 0.94 0.92 0.90 0.90 
 5 0.90 0.83 0.76 0.75 
 6 0.90 0.83 0.77 0.75 
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Table 13a 

Attribute Reliability Estimated by Adapted Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Divergent 

Cognitive Model as a Function of Test Length (Sample Size=7:::) 

  Slip Percentages 
Item 
Set 

Attribute 10% 15% 20% 25% 

2 1 0.80 0.80 0.80 0.79 
 2 0.70 0.64 0.59 0.60 
 3 0.67 0.51 0.44 0.42 
 4 0.76 0.71 0.68 0.64 
 5 0.67 0.52 0.44 0.40 
 6 0.71 0.58 0.47 0.42 

4 1 0.90 0.89 0.89 0.89 
 2 0.84 0.79 0.77 0.76 
 3 0.80 0.69 0.60 0.56 
 4 0.87 0.84 0.82 0.80 
 5 0.82 0.71 0.63 0.58 
 6 0.81 0.70 0.61 0.58 

6 1 0.93 0.93 0.93 0.92 
 2 0.89 0.86 0.84 0.84 
 3 0.86 0.78 0.71 0.68 
 4 0.91 0.89 0.88 0.86 
 5 0.87 0.78 0.71 0.69 
 6 0.87 0.79 0.71 0.68 

8 1 0.95 0.95 0.94 0.94 
 2 0.92 0.89 0.87 0.88 
 3 0.90 0.82 0.76 0.74 
 4 0.94 0.92 0.90 0.89 
 5 0.90 0.83 0.77 0.74 
 6 0.90 0.82 0.76 0.74 
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Table 13b 

Attribute Reliability Estimated by Standard Cronbach’s Alpha Coefficient Using 

Different Percentages of Slips in the Observed Response Patterns for a Divergent 

Cognitive Model as a Function of Test Length (Sample Size=7:::) 

  Slip Percentages 
Item Set Attribute 10% 15% 20% 25% 

2 1 0.80 0.80 0.80 0.78 
 2 0.74 0.66 0.61 0.60 
 3 0.67 0.51 0.44 0.42 
 4 0.77 0.73 0.70 0.66 
 5 0.67 0.52 0.44 0.40 
 6 0.71 0.58 0.47 0.42 

4 1 0.90 0.89 0.89 0.88 
 2 0.86 0.80 0.77 0.75 
 3 0.80 0.69 0.60 0.56 
 4 0.88 0.85 0.83 0.80 
 5 0.82 0.71 0.63 0.58 
 6 0.81 0.70 0.61 0.58 

6 1 0.93 0.93 0.92 0.92 
 2 0.90 0.87 0.84 0.83 
 3 0.86 0.78 0.71 0.68 
 4 0.92 0.90 0.88 0.86 
 5 0.87 0.78 0.71 0.69 
 6 0.87 0.79 0.71 0.68 

8 1 0.95 0.94 0.94 0.94 
 2 0.93 0.90 0.87 0.86 
 3 0.90 0.82 0.76 0.74 
 4 0.94 0.92 0.91 0.89 
 5 0.90 0.83 0.77 0.74 
 6 0.90 0.82 0.76 0.74 
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Table 14 

Correlation of Reliability Estimates on Linear Model between Adapted and 

Standard Formula  

 

 

 Sample Size 
Slip Percentage 250 500 750 1000 

10% 0.99 0.99 0.99 0.99 
15% 1.00 0.99 0.99 1.00 
20% 1.00 0.99 1.00 1.00 
25% 1.00 1.00 1.00 1.00 
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Table 15 

Root Mean Square Deviation of Reliability Estimates on the Linear Model 

between Adapted and Standard Formula  

  Slip Percentage 

 Item set 10% 15% 20% 25% 

250 

2 0.05 0.04 0.04 0.03 
4 0.02 0.02 0.02 0.01 
6 0.02 0.02 0.02 0.02 
8 0.01 0.01 0.01 0.01 

      

500 

2 0.05 0.05 0.05 0.04 
4 0.03 0.02 0.02 0.02 
6 0.02 0.02 0.02 0.01 
8 0.01 0.01 0.01 0.01 

      

750 

2 0.05 0.05 0.04 0.02 
4 0.03 0.02 0.02 0.02 
6 0.02 0.02 0.02 0.01 
8 0.01 0.01 0.01 0.01 

      

1000 

2 0.06 0.04 0.04 0.02 
4 0.03 0.03 0.03 0.02 
6 0.02 0.02 0.02 0.01 
8 0.01 0.01 0.01 0.03 
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Table 16 

Correlation of Reliability Estimates on Divergent Model between Adapted and 

Standard Formula 

 Sample Size 
Slip Percentage 250 500 750 1000 

10% 0.99 0.99 0.99 0.99 
15% 1.00 1.00 1.00 1.00 
20% 1.00 1.00 1.00 1.00 
25% 1.00 1.00 1.00 1.00 
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Table 17 

Root Mean Square Deviation of Reliability Estimates on the Divergent Model 

between Adapted and Standard Formula  

  Slip Percentage 

 Item set 10% 15% 20% 25% 

250 

2 0.02 0.01 0.01 0.01 
4 0.01 0.01 0.00 0.01 
6 0.01 0.00 0.00 0.02 
8 0.00 0.00 0.00 0.01 

      

500 

2 0.02 0.02 0.02 0.01 
4 0.01 0.01 0.00 0.01 
6 0.01 0.00 0.00 0.01 
8 0.00 0.00 0.00 0.01 

      

750 

2 0.02 0.02 0.01 0.01 
4 0.01 0.01 0.00 0.01 
6 0.01 0.00 0.00 0.01 
8 0.00 0.00 0.00 0.00 

      

1000 

2 0.02 0.02 0.01 0.01 
4 0.01 0.01 0.00 0.01 
6 0.01 0.00 0.00 0.01 
8 0.00 0.00 0.00 0.01 
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Figure 7a.  A linear cognitive model containing three attributes. 
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Figure 7b.  A divergent cognitive model containing four attributes. 
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Figure 8.  Four cognitive hierarchies used to describe examinee performance on 
the SAT Algebra Subtest. 
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Figure <. Linear Hierarchy 
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Figure ;. Divergent Hierarchy 
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Appendix 1 

Part 7.  Summary of the Attributes Required to Solve the Items in Hierarchy 7, 

Basic Algebra I 

Attribute A1 includes the basic mathematical knowledge and skills required for 
setting up a single ratio by comparing two quantities. 

Attribute A2 requires the mastery of the skills to order a geometric series.  This 
attribute involves the knowledge about geometric series (e.g., the nature of the 
between-term ratio) and/or the consecutive numerical computation (e.g., 
multiplication and division). 

Attribute A3 considers the skills for solving geometric series in an abstract 
pattern. 

Attribute A4 includes the skills required for representing and executing multiple 
basic algebraic skills. 

Attribute A5, termed fraction transformation, is also an attribute with multiple 
skills.  This attribute requires a host of specific skills including representing and 
executing multiple advanced algebraic skills such as setting up a single ratio, skills 
for transforming fraction, and insights, such as when, where, and/or how to do 
the transformation. 
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Part 8.  Summary of the Attributes Required to Solve the Items in Hierarchy 8, 

Basic Algebra II 

Attribute A1, which includes the basic language knowledge enabling the student 
to understand the test item, and the most basic mathematical knowledge and 
skills, such as the property of absolute value and arithmetic operations. 

Attribute A2 includes the basic knowledge of exponential and power addition 
operation. 

Attribute A3 involves the knowledge of power multiplication and flexible 
application of multiple rules in exponential operation. 

Attribute A4 requires the mastery of the skills to order a geometric series.  This 
attribute involves the knowledge about geometric series (e.g., the nature of the 
between-term ratio) and/or the consecutive numerical computation (e.g., 
multiplication and division)—see also Hierarchy 1, Attribute A2. 

Attribute A5 considers the skills for solving geometric series in an abstract 
pattern—see also Hierarchy 1, Attribute A3. 

Attribute A6 requires the basic mathematical skills in solving for a linear 
equation (e.g., subtraction or division on both sides).  This attribute also requires 
the management of the basic mathematical skills (i.e., Attribute A1) on both 
sides of a linear equation. 

Attribute A7 requires the skills of setting up and solving for a quadratic equation, 
which generally involves the skills in solving a linear equation and additional skills 
(e.g., factoring). 

Attribute A8 represents the skills of mapping a graph of a familiar function (e.g., 
a parabola) with its corresponding function.  This attribute involves the 
knowledge about the graph of a familiar function and/or substituting points in 
the graph.   

Attribute A9 deals with the abstract properties of functions, such as recognizing 
the graphical representation of the relationship between independent and 
dependent variables.    
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Part <.  Summary of the Attributes Required to Solve the Items in Hierarchy <, 

Ratios and Algebra 

Attribute A1 represents the most basic arithmetic operation skills (e.g., addition, 
subtraction, multiplication, and division of numbers). 

Attribute A2 includes the knowledge about the properties of factors. 

Attribute A3 involves the skills of applying the rules of factoring. 

Attribute A4 includes the skills required for substituting values into algebraic 
expressions. 

Attribute A5 represents the skills of mapping a graph of a familiar function (e.g., 
a parabola) with its corresponding function—see also Hierarchy 2, Attribute 8. 

Attribute A6 deals with the abstract properties of functions, such as recognizing 
the graphical representation of the relationship between independent and 
dependent variables—see also Hierarchy 2, Attribute 9. 

Attribute A7 requires the skills to substitute numbers into algebraic expressions. 

Attribute A8 represents the skills of advanced substitution. Algebraic 
expressions, rather than numbers, need to be substituted into another algebraic 
expression. 

Attribute A9 related to skills associated with rule understanding and application. 
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Part ;.  Summary of the Attributes Required to Solve the Items in Hierarchy ;,  

Equation and Inequality Solutions, Algebraic Operations, Algebraic Substitution, 

and Exponents 

Attribute A1, which includes the basic language knowledge enabling the student 
to understand the test item, and the most basic mathematical knowledge and 
skills, such as the property of absolute value and arithmetic operations—see also 
Hierarchy 2, Attribute 1. 

Attribute A2 represents the most basic arithmetic operation skills (e.g., addition, 
subtraction, multiplication, and division of numbers)—see also Hierarchy 3, 
Attribute 1. 

Attribute A3 involves the skills of solving quadratic inequality with two variables. 

Attribute A4 represents the skills of solving multiple linear equations. 

Attribute A5 considers the skills of substituting values into algebraic 
expressions—see also Hierarchy 3, Attribute A7. 

Attribute A6 involves the skills of rule understanding and substitution—see also 
Hierarchy 3, Attribute A9. 

Attribute A7 requires the basic knowledge of exponential and power addition 
operation—see also Hierarchy 2, Attribute A2. 

Attribute A8 represents the knowledge of power multiplication and flexible 
application of multiple rules in exponential operation—see also Hierarchy 2, 
Attribute A3. 
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