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Abstract

Spatial co-location pattern mining and classification association rule discovery are

two canonical tasks studied in the data mining community. Both of them focus on

the detection of sets of features that show associations. The difference is that in spa-

tial co-location pattern mining, the features are all spatial features which contain lo-

cation information. While in classification association rule discovery, we constrain

the mining process to generate association rules that always have as consequent a

class label. Existing methods on these two tasks mostly use the support-confidence

framework in an Apriori-like way or through a FP-growth approach to mine the

co-location patterns and classification association rules which require the setting

of confounding parameters. However, the lack of statistical dependencies between

features in the used framework may lead to the omission of many interesting pat-

terns and/or the detection of meaningless rules.

To address the above limitations, we fully exploit the property of statistical sig-

nificance and propose two novel algorithms for these two tasks, respectively. The

CMCStatApriori, a co-location mining algorithm, is able to detect more general

and statistically significant co-location rules. We use it on real datasets with the

National Pollutant Release Inventory (NPRI), and propose a classification scheme

to help evaluate the discovered co-location rules. The second algorithm, SigDi-

rect, an associative classifier, aims to mine classification association rules which

show statistically significant dependencies between a set of antecedent features and

a class label. Experimental results on UCI datasets show that SigDirect achieves

a competitive if not better classification performance while indeed produces a very

small number of rules. We also show the potential of integrating statistically signif-

icant negative classification association rules in the SigDirect algorithm.
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Chapter 1

Introduction

1.1 Motivation

The concept of association rule mining was first introduced by Agrawal et al. [5]

and extensively studied in the past decades [6, 32] which aims to find associations

between items or itemsets in a transaction database. Assume a transaction database

D consists of a set of items I = {i1, i2, ..., im}, then an association rule is an

implication of the form “X → Y (support, confidence)”, where X and Y are

disjoint subsets of I. The support indicates the probability that X and Y appear

together in the transaction database D. The strength of the rule is measured by

confidence, which is the conditional probability of Y given X . The problem of

discovering association rules in transaction database D consists of generating the

rules that have a support and a confidence higher than given thresholds.

Spatial co-location mining, one of the canonical tasks of spatial data mining,

could be seen as an extension of association rule mining. The task is very similar to

association rule mining, the major difference being that in spatial co-location pat-

tern mining, the features are all spatial features which contain location information.

It tries to find a set of spatial features that are frequently co-located together, i.e. in

a geographic proximity. A motivating application example is the detection of pos-

sible co-location rules between chemical pollutants and cancer cases with children.

Due to the absence of a clear notion of transactions, it is nontrivial to use associa-

tion rule mining techniques to tackle the co-location rule mining problem directly.

Therefore, previous work [49, 61, 64, 63, 33] are mainly based on transaction-free
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apriori-like algorithms. A prevalence measure threshold is required in the prop-

erty of anti-monotonicity for effective pruning, the strength of co-location rules

are determined afterwards with a minimum confidence threshold. However, the

support-confidence framework fails to capture the statistical dependency between

spatial features. On one hand, the antecedent and consequent spatial features may

be independent of each other. On the other hand, some other strong dependent

co-location rules may be ignored due to a low prevalence measure value. In the

worst case, all detected co-location rules can be spurious, and strong co-location

rules are totally missing. These two types of scenarios are called type 1 (false pos-

itive) error and type 2 (false negative) error. Another limitation of transaction-free

apriori-like co-location mining algorithms is that they use only one distance thresh-

old to determine the neighbourhood relationship. However, in real applications, a

proper distance threshold is hard to determine. Meanwhile, with only one distance

threshold, the neighbourhood relationship among spatial features can not be fully

captured.

To solve the previous mentioned limitations of transaction-free apriori-like co-

location mining algorithms, Adilmagambetov et al. [2] proposed a new transaction-

based framework to discover co-location rules in datasets with extended spatial ob-

jects. Buffers are built around each spatial object, the buffer zone could be the same

for each spatial object or it might be affected by some other spatial or non-spatial

features, like the amount of chemical pollutants the facility emits, wind direction in

this region, etc. Then, grids are imposed over the geographic space; each grid point

intersects with a set of spatial objects could be seen as a transaction. As mentioned

above, the usage of support-confidence framework may result in the discovery of

weak co-location rules and the omission of strong co-location rules. Therefore, to

find statistically significant co-location rules, a statistical test method is used instead

of global thresholds. However, the statistical significance is not a monotonic prop-

erty and it can not be used to prune insignificant rules as apriori-like algorithms.

Thus in their work, they limit the size of the antecedent of a rule up to three fea-

tures and test each possible candidate co-location rule to see if it passes a statistical

test. The algorithm cannot scale up well for co-location rules with more than three
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spatial features in the antecedent, and as such limits its use. Therefore, the first

motivation of this thesis is to derive effective algorithms to detect more general and

statistically significant co-location rules.

The other problem which is of our interest is introducing statistical dependen-

cies into the problem of classification association rule discovery. Classification is

another canonical task in the data mining and machine learning community. Given

a set of attributes for an object, a classifier tries to assign it to one or more pre-

defined classes. A typical classification method consists of two steps, the first step

is to build a model on the training set whose attributes and class labels are known

in advance. Then the ability of the model to correctly classify objects in the test

dataset is evaluated.

Recent studies on associative classification integrate association rule mining and

classification [40, 38, 7, 13]. These associative classifiers have proven to achieve

competitive classification accuracies as decision trees [47], rule induction meth-

ods [46, 22], naı̈ve-Bayes [26] as well as some probabilistic methods [39]. Besides,

instead of taking a greedy algorithm as most rule based classifiers, associative clas-

sification directly mines the complete set of classification association rules (CARs)

to avoid missing any important ones. Another advantage of associative classifi-

cation is that each individual CAR in the model is human readable and can be

interpreted. To classify an object, associative classifiers first adopt association rule

mining methods to mine the CARs in the form of X → C with given support-

confidence thresholds and constrain the consequent of the rule to be a class label.

Then a subset of CARs after pruning are selected to form the classifier. The selec-

tion is usually made by utilizing the database coverage method [40]. Finally, once

the classifier is built, it chooses one or more matching CARs to make predictions

on the test dataset.

The existing associative classification methods mine the complete set of CARs

mostly in an apriori-like fashion [6] or through a FP-growth way [32]. Although

the rule generation process might be slightly different, all of them use a support-

confidence framework to find CARs for classification. Therefore, they have the

same shortcomings as most spatial co-location mining algorithms: first, it is diffi-
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Table 1.1: An example of type 1 error and type 2 error.
Items Class Label Frequency
x c1 4400
y c2 15
z c2 5480
x, y c1 20
y, z c2 80
x, y, z c2 5

cult to determine the appropriate support and confidence thresholds for each dataset

without any background information; second, the traditional association rule min-

ing methods are based on frequency to prune infrequent patterns. The strength of

a rule is decided afterwards with a confidence value. In this way, CARs do not

capture the actual statistical dependencies between features and the corresponding

classes. In the worst cases, we may only find spurious CARs while leaving statis-

tically significant CARs undiscovered. Table 1.1 shows an example of these two

types of errors.

Example 1. A transaction dataset is shown in Table 1.1. Let the min support = 1%

and min confidence = 50%, respectively. On one hand, through an Apriori-like

or a FP-growth method, we generate some CARs. The CAR: y→ c2 is among

them because its support is 1% and confidence is around 83% which meets the

support-confidence thresholds requirement. Although the confidence of the CAR is

very high, there is a very weak dependency between y and c2, because the support

of c2 is much larger than the support of y, i.e. 5580 � 120. In other words, y

might happen to appear together with c2, and in fact, they are more likely to be

independent of each other. This is a typical example of type 1 error. On the other

hand, it misses a strong CAR: (x,y, z)→ c2. The CAR is not found because it

has a very low support, 0.05%. But the confidence of the CAR is 100%. Besides,

itemsets (x,y, z) always co-occurs with c2 which demonstrates that it is a CAR

with strong dependency and the missing of this CAR is considered as an example of

type 2 error.

To avoid missing any strong CARs, most associative classifiers maintain a small

4



Table 1.2: CARs example (minsup = 10%, minconf = 90%).
CARs confidence
X → c1 95%
Y → c1 90%

XY → ¬c1 92%
X → c2 90%
Y → c2 95%
Z → c1 95%
Z → c2 93%

minimum support threshold, but it is still of a high chance to miss strong CARs

and at the same time it introduces a new problem: association rule mining ends

up generating a huge number of CARs making it impossible to manually edit and

even defeating the readability of the classification model. From another perspective,

some post-processing strategies have been proposed to alleviate the type 1 error [38,

11, 20], but the discovered CARs are still not statistically significant.

Searching for statistically significant CARs is a demanding and intractable task

because statistical dependency is not a monotonic property, therefore, we cannot

do some effective pruning like Apriori or FP-growth approaches. The situation

gets worse especially if we have a large number of features since the number of

candidate CARs grows exponentially with the number of features.

Another concern on associative classification algorithms is that most of them

only use positive CARs (X → C) in the classification process. By positive associ-

ations we refer to associations between items and classes existing in the transaction

database. In addition to the positive CARs (X → C), the negative CARs are also

able to provide valuable information to discriminate between different classes. A

negative CAR is in one of the following forms: X → ¬C or ¬X → C (where X

means existence and ¬X means absence of feature X in enough transactions). Let

us consider the following example:

Example 2. In a transaction database D, we discover some positive and negative

CARs as illustrated in Table 1.2. Assume now we have a new instance with items X

and Y , how to classify the new instance? When only positive CARs are considered,

it is hard to label the new instance because both class c1 and class c2 are possible.
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For class c1 and class c2, we both find two matching rules with a 95% and a 90%

confidence value, respectively. But the problem is easier since we have a negative

CAR XY → ¬c1 which reinforces the decision in favour of class c2.

The above two examples point out the limitations of current association clas-

sification methods and potential direction to improve these algorithms. Firstly, we

aim to find an effective and efficient way to mine statistically significant CARs, and

build a novel associative classification algorithm based on the discovered CARs.

Secondly, we will investigate if we can also introduce negative statistically signifi-

cant CARs into the new classifier to help the classification process.

1.2 Thesis Statement

In this thesis we address the following two challenges: mining statistically signif-

icant co-location rules and building an associative classifier with statistically sig-

nificant classification association rules. We study the feasibility of resolving these

challenges by claiming the following statements:

1. In a spatial dataset with spatial features of pollutants and cancers, it is possi-

ble to detect more general and statistically significant co-location rules with-

out randomization test methods in which the size of the co-location rules is

constrained to be below a certain threshold.

2. It is possible to find an effective way to detect statistically significant classi-

fication association rules without any confounding parameter settings and we

can use the discovered classification association rules to build an associative

classifier.

3. Negative classification association rules may be able to provide valuable in-

formation to discriminate between different classes, therefore, it is also possi-

ble to integrate negative statistically significant classification association rules

to the associative classifier to reinforce the classification process.
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1.3 Thesis Contribution

This thesis makes the following contributions:

1. In this study, we first investigate how to exploit the property of statistical sig-

nificance to scale it up to detect more general co-location rules without any

randomization tests. We propose a new algorithm: Co-location Mining Con-

strained StatApriori (CMCStatApriori) which is able to detect statistically

significant co-location rules without any limitation on the rule size. CMC-

StatApriori is based on the work of StatApriori [28, 30]. It uses the z-score

to search for the statistically significant co-location rules with a fixed con-

sequent spatial feature. The results of co-location rules are hard to evaluate

even for domain experts, therefore, we also propose to use a classifier to help

evaluate the results of the discovered co-location rules.

2. Second, we propose a novel parameter-free associative classifier, SigDirect.

An extension of statistically significant dependency rule mining method, Con-

strained Kingfisher, is proposed on the basis of Kingfisher [29, 31], it pushes

the rule shape constraint in the phase of generation of classification asso-

ciation rules by taking Fisher’s exact test as a significance measure along

with some effective pruning strategies. An instance centric rule pruning strat-

egy is used to find a globally optimal CAR for each instance in the training

dataset. In the classification phase, we conduct an empirical study on dif-

ferent classification heuristics and investigate how to combine the class pre-

dictions of selected rules to make a final classification model. The proposed

classifier achieves competitive and even better classification performance as

some well-known rule based classifiers and the state-of-the-art associative

classifiers while generates an order of magnitude less classification associa-

tion rules.

3. Third, we propose to integrate the negative statistically significant classifica-

tion association rules into the SigDirect algorithm which shows a promising

classification result compared to the classifier built with only positive statis-

7



tically significant classification association rules, a simple but effective rule

pruning strategy is presented to prune noisy classification association rules

without jeopardizing the classification accuracy.

1.4 Thesis Outline

1. Chapter 2 reviews the most important studies in the area of spatial co-location

mining, associative classification, statistically significant rule mining and neg-

ative association rule mining. Concretely, Section 2.1 briefly describes the

task of spatial co-location pattern mining and reviews recent studies from

two perspectives: the support-confidence framework and the statistical test

framework. Section 2.2 introduces the procedure of building an associative

classifier and overviews existing associative classifiers. Section 2.3 covers

the recent studies on statistically significant rule mining. Finally, Section

2.4 gives a summary of the most important negative association rule mining

algorithms.

2. Chapter 3 addresses the problem of mining general and statistically signifi-

cant co-location rules. In this chapter, Section 3.1 explains the problem def-

inition. Section 3.2 introduces the proposed algorithm, Co-location Mining

Constrained StatApriori (CMCStatApriori). Section 3.3 contains the descrip-

tion of the real spatial datasets with the National Pollutant Release Inventory

(NPRI), experimental settings and the experimental results. Section 3.4 in-

troduces a classifier we propose to help evaluate the discovered co-location

rules.

3. Chapter 4 addresses the problem of mining statistically significant classifica-

tion association rules for classification. In Section 4.1, some basic notations

and definition are presented. Section 4.2 describes the process of generat-

ing statistically significant classification association rules with Constrained

Kingfisher algorithm. Section 4.3 talks about the effects of the pruning strate-

gies and the classification heuristics we take in the classifier. Section 4.4

introduces the empirical study on different classification heuristics and in-
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vestigates how to combine the class predictions to make a final classification

model. Section 4.5 shows the experimental results of the proposed SigDirect

algorithm. Section 4.6 presents how to incorporate the negative classifica-

tion association rules into the associative classifier and Section 4.7 shows a

promising result when the negative classification association rules are also

considered.

4. Chapter 5 summarizes the important conclusions of this thesis. In addition,

we list some possible future work that can be done regarding the problems

discussed in this study.
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Chapter 2

Related Work

In this chapter we review some of the related work on spatial co-location mining,

associative classification, statistically significant rule mining as well as negative

association rule mining.

2.1 Spatial Co-location Pattern Mining

In this section, we review some related work about two different frameworks of

co-location pattern mining algorithms: the support-confidence framework and the

statistical test framework.

2.1.1 Support-Confidence based Co-location Pattern Mining

Spatial co-location mining has been extensively studied in the past decades. An

initial summary of results on mining co-location patterns was proposed by Shekhar

and Huang [49]. The algorithm they proposed is based on the neighbourhood re-

lations between spatial features and the concept of participation index. The basic

concept of this method is similar to the concepts of association rule mining. Due

to the absence of explicit notion of transactions over the spatial dataset, they pro-

posed to use neighbourhoods of instances of different spatial features to represent

the groups of spatial items appearing together. For instance, if an instance of spa-

tial feature A, an instance of spatial feature B and an instance of spatial feature

C are in a spatial proximity of each other, a corresponding transaction is derived

as {A,B,C}. Similar to association rule mining, the output co-location rule is
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in the form of C1 → C2(PI, cp), where C1 and C2 are a set of spatial features.

Prevalence measure Participation Index (PI) corresponds to the support and cp is

the conditional probability that corresponds to the confidence. The co-location rule

C1 → C2(PI, cp) is considered as prevalent, or interesting, if for each feature of

the pattern at least PI% instances of that feature form a clique with the instances of

all other features of the pattern according to the neighbourhood relationship. The

candidate generation and pruning process works in a similar way like association

rule mining methods. However, in the previous mentioned work, the authors as-

sumed that different spatial features have a similar level of frequency, therefore,

co-locations patterns with rare spatial features may be pruned due to a low preva-

lence value.

To address this problem, Huang et al. [35, 33] continued their previous work by

introducing an algorithm that finds co-location patterns with rare spatial features.

The authors proposed to use the Maximal Participation Ratio (maxPR) threshold to

replace the Participation Index (PI) threshold. A co-location pattern C is consid-

ered prevalent or interesting if maxPR(C) is greater than the minimum confidence

threshold.

Based on the approach in [49], most of the following work tried to improve

the running time of the mining procedure, [34] proposed a novel multi-resolution

pruning technique and also showed that the PI has a spatial statistical interpretation

that it acts as an upper bound for the cross-K function, which is often used as a

statistical measure for spatial feature relationships.

Zhang et al. [67] proposed a fast co-location mining method combing the dis-

covery of neighbourhood relationships with the mining process. Some heuristics are

also proposed to optimize the mining process and to deal with constraint of mem-

ory. They extended a hash-based spatial join algorithm to identify neighbourhood

relationships.

Yoo and Shekhar proposed a partial-join [65] and a join-less [63] algorithm

to reduce the expensive computation time of the instance join. In the partial-join

approach, the transaction is materialized to from a clique neighbourhood, while in

the join-less approach, it tries to find star neighbourhoods instead of calculating
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pairwise distances between spatial instances.

Xiao et al. [60] proposed a density-based approach to further improve the run-

ning time. They divided the spatial map into partitions and first identified instances

in dense partitions. The method maintains a dynamic upper bound for the preva-

lence measure of candidate co-locations patterns, if the upper bound is less than a

threshold, the candidate co-location pattern can be pruned.

Xiong et al. [61] extended the co-location pattern mining problem by introduc-

ing a framework for detecting co-location patterns in datasets with extended spatial

objects. Extended spatial objects include points, lines and polygons. They proposed

to build a buffer zone around each extended spatial object. The size of the buffer

depends on size of the spatial object. Coverage Ratio is used as a prevalence mea-

sure, more specifically, if the area covered by the features of a candidate co-location

pattern exceeds the Coverage Ratio threshold, the co-location pattern is considered

to be interesting.

2.1.2 Statistical Test based Co-location Pattern Mining

The approaches mentioned above all use thresholds on prevalence measures, which

causes meaningless co-location patterns to be considered as significant with a low

threshold, and a high threshold may prune interesting but rare co-location patterns.

Instead of using a threshold-based approach, Barua and Sander [14, 15] used the

statistical test to mine statistically significant co-location patterns. Like [35, 33],

the Participation Index is used as a prevalence measure, but the difference is that

they did not set a prevalence threshold. Instead, for each candidate co-location

pattern, the authors computed the probability p of seeing the same or greater value

of the observed prevalence measure value under a null hypothesis model. In the null

hypothesis model, the spatial features are assumed to be independent of each other.

The candidate co-location pattern is considered statistically significant if p ≤ α,

where α is a level of significance and is usually set to be 0.05.

Adimagambetov et al. [2] proposed a transactionization framework to find sta-

tistically significant co-location rules on extended spatial objects. In their problem,

the spatial features are also linked to some other non-spatial features, for instance,
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the spatial feature of pollutant has different amounts of release, and may be affected

by wind direction. It is also important to mention that the consequent spatial feature

in the co-location rule is fixed. They transformed spatial instances into transactions

by buffers and grid points on the space. The expected support is used as a preva-

lence measure. The statistical test method they used is similar to [14, 15], in the null

hypothesis model (randomization test), both the antecedent and consequent spatial

features are randomized.

2.2 Associative Classification

The first reference to using association rules as CARs is credited to [17], while the

first associative classifier, CBA, was introduced by Liu et al [40]. The main steps

in building an associative classifier are as follows:

• Modeling the data into the transaction dataset D in which the numerical at-

tributes are transformed to the discrete attributes.

• Generating the set of CARs from the transaction dataset D. The CARs are

in the form of X → C where X is a conjunction of attributes and C is a

class label. The CARs are usually generated by pushing the constraint in

the association rule mining process to generate association rules that always

have as a consequent a class label given minimum support and minimum

confidence thresholds.

• Pruning the discovered CARs by some rule pruning strategies. Previous rule

generation phase usually generate an overwhelming number of CARs includ-

ing many noisy CARs and it is very important to prune the rules to make the

classifier effective and more efficient. The phase is employed to choose a

best subset of CARs and weed out those rules that may introduce errors or

are overfitting in the classification stage.

• Classifying a new unlabeled object to a predefined class. At this level a sys-

tem that can make a prediction for a new object is built. The challenge here is
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how to rank and make use of the set of rules from the previous phase to give

a good prediction.

CBA mines the complete set of CARs through an apriori-like way, in addition,

it ignores rules by “pessimistic error rate” as C4.5 [47]. In the rule pruning phase,

CBA uses a method called “database coverage”. Database coverage consists of

going over all the rules ranked by confidence and evaluate them against the training

instances. Whenever a rule applies correctly on some instances, the rule is marked

and the instances eliminated until all training instances are covered. Finally, the

unmarked rules are simply pruned. New instances are classified by the matching

rule with highest ranking.

Motivated by the idea of CBA, many improvements have been proposed to build

more accurate associative classifiers. CMAR [38] maintains a CR-tree to compactly

store and retrieve rules, the CARs are discovered by a FP-growth approach. In

addition to the database coverage method, CMAR also prunes lower ranked and

more specific rules. The rule R1: X → C with confidence conf1 is a lower ranked

and more specific rule w.r.t rule R2: X ′ → C with confidence conf2 if X ′ ( X and

conf1 ≤ conf2. For a new unlabeled instance, CMAR makes a prediction based on

multiple matching rules with a weighted χ2 measure.

In the classification phase, ARC [7] takes all rules that apply within a confidence

range, but instead, calculates the average confidence for each set of rules grouped

by class labels in the consequent and selects the class label of the group with the

highest confidence average.

There are some other variants for associative classification: Harmony [55] adopts

an instance-centric approach to find the highest confidence rule for each training

instance and builds the classification model from the union of these rules. In Har-

mony, some efficient pruning methods are employed to accelerate the rule discovery

process in which the pruning strategies are incorporated within the FP-growth al-

gorithm. Therefore, Harmony has both high efficiency and good scalability.

One deficiency of associative classification methods is the use of rules in the

classification stage, some choose the best matching rule and some others make a

prediction decision based on multiple matching rules, 2SARC [9] is a two-stage
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classification model that is able to automatically learn to select the rules for clas-

sification. In the first stage, they use traditional association rule mining methods

to mine CARs. Multiple predefined features which are outputs of the rules for as-

sociative classifier are then be used as input for a neural network, to train a new

prediction model by weighing the different input features to train a more accurate

classifier.

CCCS [11] uses a new measure, “Complement Class Support (CCS)” to mine

positively correlated CARs to tackle the imbalanced classification problem. It

forces the CCS to be monotonic, thus the complete set of CARs are discovered

by a row enumeration algorithm. A associative classifier is then built upon these

positively correlated CARs.

SPAR-CCC [53] is another associative classifier designed for imbalanced data.

It integrates a new measure, “Class Correlation Ratio (CCR)” into the statistically

significant rules, the classifier works comparably on balanced dataset and outper-

forms other associative classifiers on imbalanced dataset.

ARC-PAN [8] is the first associative classifier that uses both positive and neg-

ative CARs. The authors proposed to use the Person’s φ correlation coefficient

to mine generalized negative association rules. Based on the discovered positive

and negative CARs, ARC-PAN gets a similar or even better classification result

compared with other associative classifiers, it well demonstrates the potential of

integrating negative association rules in the associative classification problem.

2.3 Statistically Significant Rule Mining

Searching for statistically significant rules with any consequent attribute is a very

difficult problem, but finding statistically significant rules (with a fixed consequent)

has been well studied. Most previous methods used chi-square as a statistical cor-

relation measure and fully exploited the property of chi-square to prune uninterest-

ing rules [43, 45, 44, 41, 13, 42]. However, these methods are mostly based on a

minimum support threshold to mine rules and important post-processing work is

required to get statistically significant rules. In spite of that, they still suffer from
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the problem of missing significant rules (type 2 error) heavily. Apart from the chi-

square measure, many other measures like lift, leverage are proposed to express

or validate if the antecedent and consequent part of a rule are independent of each

other. Results, however, are not statistically significant.

Recently, researchers are focusing on searching for significant and non-redundant

rules because the property of non-redundancy can be employed to do some effec-

tive pruning [37]. Another advantage of searching for non-redundant rules is that

we can greatly reduce the search space since the pruned redundant rules do not add

more information [66, 16].

Webb [56, 57, 58] has done a series of work on testing the significant and non-

redundant rules with Fisher’s exact test to avoid false discoveries. However, the

tests can only be considered as a post-processing phase and the efficiency of the

test is poor on high-dimensional dataset since the test space is extremely huge.

Hämäläinen et al. [28, 30, 29, 31] pioneered the development of statistically

significant rule mining. In [28, 30], they proposed an algorithm, StatApriori, using

z-score to mine the significant and non-redundant association rules. But the defi-

nition of redundancy in StatApriori is much more restrictive than the normal defi-

nition, therefore, they proposed another algorithm, Kingfisher [29, 31]. Kingfisher

not only has a normal definition of redundancy, but also directly mines the global

top-K statistically significant rules. Moreover, the discovered rules are able to show

both positive and negative dependencies between antecedent and consequent items.

2.4 Negative Association Rule Mining

A negative association between two positive itemsetsX , Y is a rule of the following

forms: ¬X → Y , X → ¬Y and ¬X → ¬Y , where ¬X and ¬Y indicate the

absence of itemsets X and Y in the transaction dataset D. Mining association rules

from a transactional dataset that contains information about both present and absent

items is computationally expensive, traditional association rule mining algorithms

cannot cope with mining rules when negative items are considered. This is the

reason why new algorithms are needed to efficiently mine association rules with
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negative items. Here we survey algorithms that efficiently mine some variety of

negative association rules from data.

Brin et al. [18] mention for the first time the notion of negative relationships.

They propose to use the chi-square test between two itemsets. The statistical test

verifies the independence between the two itemsets. To determine the nature (posi-

tive or negative) of the relationship, a correlation metric is used.

Aggarwal and Yu [3, 4] introduce a new method for finding interesting item-

sets in data. Their method is based on mining strongly collective itemsets. The

collective strength of an itemset I is defined as C(I) = 1−v(I)
1−E[v(I)]

× E[v(I)]
v(I)

, v(I) is

the violation rate of an itemset I , i.e. the fraction of violations over the entire set

of transactions and E[v(i)] is its expected value. An itemset I is in a violation of

a transaction if only a subset of its items appear in that transaction.The collective

strength ranges from 0 to∞, where a value of 0 means that the items are perfectly

negatively correlated and a value of∞means that the items are perfectly positively

correlated.

In [48], the authors present a new idea to mine strong negative rules. They com-

bine positive frequent itemsets with domain knowledge in the form of a taxonomy to

mine negative associations. The idea is to reduce the search space, by constraining

the search to the positive patterns that pass the minimum support threshold. When

all the positive itemsets are discovered, candidate negative itemsets are considered

based on the taxonomy used.

Wu et al. [59] derive another algorithm for generating both positive and negative

association rules. The negative associations discovered are of the following forms:

¬X → Y , X → ¬Y and ¬X → ¬Y . They add on top of the support-confidence

framework another measure called mininterest for a better pruning of the frequent

itemsets generated, which is used to assess the dependency between two itemsets.

The SRM algorithm [50, 51], discovers a subset of negative associations. The

authors develope an algorithm to discover negative associations of the type X →

¬Y . These association rules can be used to discover which items are substitutes for

others in market basket analysis.

Antonie and Zaı̈ane [10] propose an algorithm to mine strong positive and neg-
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ative association rules based on the Person’s φ correlation coefficient. In their algo-

rithm, itemset and rule generation are combined and the relevant rules are generated

on-the-fly while analyzing the correlations within each candidate itemset.

In [52], the authors extend an existing algorithm for association rule mining,

GRD (generalized rule discovery), to include negative items in the rules discovered.

The algorithm discovers top-K positive and negative rules.

Cornelis et al. [23] propose a new Apriori-based algorithm (PNAR) that exploits

the upward closure property of negative association rules. With this upward closure

property, valid positive and negative association rules can be discovered efficiently.

Wang et al. [54] give a more intuitive way to express the validity of both positive

and negative association rules, the mining process is very similar to PNAR.

MINR [36] is a method that uses Fisher’s exact test to identify itemsets that

do not occur together by chance, i.e. with a statistically significant probability.

An itemset with a support greater than the positive chance threshold is considered

for positive rule generation, while an itemset with a support less than the negative

chance threshold is considered for negative rule generation.

Kingfisher [29, 31] is an algorithm developed to discover both positive and neg-

ative dependency rules. The dependency rule can be formulated on the basis of

association rule and the statistical dependency of a rule can be calculated by the

Fisher’s exact test. In order to reduce the search space, the author introduces the ba-

sic branch-and-bound search with three lower bounds for the measure of pF -value.

Another two pruning strategies (pruning by minimality and pruning by principles

of Lapis philosophorum) are also included to speed up the search.
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Chapter 3

Statistically Significant Co-location
Rule Mining

In this chapter, we will introduce the problem definition and the proposed method

to mine statistically significant co-location rules. Experimental results and a novel

evaluation method for the discovered co-location rules are also presented.

3.1 Problem Definition

The objective is to discover statistically significant co-location rules between a set

of antecedent spatial features and a single fixed consequent spatial feature. A real

world application of this task is to detect co-location rules between chemical pol-

lutants (antecedent) and cancer cases or other morbidities (consequent). Since we

do not intend to find the causality relationships, the goal is to identify potentially

interesting co-location associations in order to state hypotheses for further study.

The task consists of three steps. In the initialization step, a buffer is built around

each spatial object, and it defines the area affected by that object; for example, the

buffer zone around an emission point shows the area polluted by a released chem-

ical pollutant. The buffer shape is defined as circle in our problem, but the shape

may also be affected by some other factors like wind direction. Considering the fac-

tor of wind direction, the circular buffer is transformed to elliptical. Figure 3.1(a)

displays an example spatial dataset with buffers of various sizes (circular and el-

liptical) that are formed around spatial point objects. In the transactionization step,

the transaction dataset is formed by imposing grids over all the buffer zones, as
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(a) (b)

Figure 3.1: Transactionization step: (a) An example of spatial dataset with point
feature instances and their buffers; (b) Grids imposed over the space.

shown in Figure 3.1(b). Then a transaction is defined as a set of spatial features

corresponding to these objects [2]. After getting the derived transaction database

D from the spatial dataset, we intend to detect statistically significant co-location

rules in the statistical test step.

3.2 Algorithm

In this subsection, we introduce the proposed Co-location Mining Constrained Stat-

Apriori (CMCStatApriori) algorithm which is able to detect statistically significant

co-location rules without any rule length limitation.

CMCStatApriori is a variation of StatApriori [28, 30]; the main difference is

that CMCStatApriori can efficiently detect more specific co-location rules, rules

with one fixed consequent feature. Moreover, the non-redundancy definition in

StatApriori is not very practical. In StatApriori, the association rule X → A (A is

a single feature) is considered as redundant w.r.t. the rule X ′ → A′, if X ′A′ ( XA

and the rule X → A is more significant than X ′ → A′ under some interesting

measure M . However, according to normal definition, the rule X → A is only

considered as redundant w.r.t. the rule X ′ → A, if X ′ ( X and the rule X → A is

more significant. In other words, to compare if one rule is considered as redundant

to another rule, the consequent feature of both rules should be the same. Therefore,

in CMCStatApriori, we do not intend to consider the non-redundancy.

For the co-location rule X → A (F = {f1, ..., fm} is the set of spatial features
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and X ( F , A ∈ F ), the significance of dependency between X and A is com-

pared with the null hypothesis in which X and A are independent. The statistical

significance of the dependency is measured by the p-value, i.e. the probability of

observing higher or equal frequency of X and A under null hypothesis. Suppose in

the derived transaction datasetD, each transaction can be viewed as an independent

Bernoulli trial with two possible results, that P (XA) = 1 or P (XA) = 0. Thus,

the statistical significance of the frequency of XA follows the binomial distribution

and the p-value can be formulated as:

p =

σ(A)∑
i=σ(XA)

(
n

i

)
(P (X)P (A))i(1− P (X)P (A))n−i (3.1)

where σ(XA) is the observed frequency of XA, and n is the total number of trans-

actions in D.

The p-value is not a monotonic property, but z-score provides an upper bound

for the critical value which corresponds to the p:

z(X → A) =
σ(XA)− µ

s
=

√
nP (XA)(γ(XA)− 1)√
γ(XA)− P (XA)

(3.2)

where µ = nP (X)P (A), s =
√
nP (X)P (A)(1− P (X)P (A)) are the mean and

standard deviation of the binomial distribution, respectively. γ(XA) = P (XA)
P (X)P (A)

is

the lift for the co-location rule X → A. It measures the strength of the dependency

between X and A such that γ(X → A) > 1 if X and A show a positive correlation.

It is easy to notice that the z-score is a monotonically increasing function with

the support and lift of XA: σ(XA) and γ(XA), therefore, it can be denoted as

z(X → A) = f(σ(XA), γ(XA)).

Therefore, following StatApriori [28, 30], the search problem can be reformu-

lated as searching for all statistically significant co-location rules in the form of

X → A with the following requirements (the set of statistically significant co-

location rules is denoted as P ):

Definition 1. Statistically significant co-location rules

1. X → A expresses a positive correlation, i.e. γ(X → A) > 1
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2. for all (Y → A) /∈ P, z(X → A) > z(Y → A)

3. z(X → A) ≥ zmin

With this definition, the property “potentially significant” (PS) is defined as

follows. It is a necessary condition to construct the set of statistically significant

co-location rules.

Definition 2. Let A be the fixed consequent feature, zmin is an user-defined thresh-

old for the z-score, and upperbound(f) be an upper bound for the function f . The

co-location rule X → A is defined as potentially significant, i.e. PS(X) = 1, iff

upperbound(z(X → A)) ≥ zmin. Otherwise, the co-location rule is not considered

as statistically significant.

The property of PS displays a monotonic property in some specific situations:

Theorem 1. Let A be the fixed consequent feature and PS(X) = 1, then for all

Y ⊆ X and min(XA) = min(Y A) we can get PS(Y ) = 1, where min(XA)

denotes the feature with the minimum support in XA.

The proof of Theorem 1 is straightforward, first we can see that:

γ(Y A) =
P (Y A)

P (Y )P (A)
≤ 1

P (Y )
≤ 1

P (min(Y A))
(3.3)

where min(Y A) denotes the feature with the smallest support among Y A. Since

the z-score can be represented as a monotonically increasing function with two

variables σ(Y A) and γ(Y A), the upper bound of the z-score for the co-location

rule Y → A now is:

upperbound(z(Y → A)) = f(P (Y A),
1

P (min(Y A))
) (3.4)

then we have:

upperbound(z(X → A)) = f(P (XA),
1

P (min(XA)
) ≤

f(P (Y A),
1

P (min(Y A)
) = upperbound(z(Y → A))

(3.5)
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for all Y ⊆ X such that min(XA) = min(Y A). We can see that the monotonic

property is kept only when the minimum feature (the feature with the minimal sup-

port) in XA and Y A are the same.

With the monotonic property of PS, we can derive the algorithm that dis-

covers the potential significant co-location rules in the same way as the general

Apriori-like algorithms do, alternating between the candidate generation and can-

didate pruning. First, the set of antecedent features are arranged in an ascending

order by their frequencies. Let the renamed features be {f ′1, f ′2, ..., f ′m−1}, where

P (f ′1) ≤ P (f ′2) ≤ ... ≤ P (f ′m−1). The candidate generation process is the same as

that in Apriori [6], for the l-set Pl = {f ′a1 , ..., f
′
al
} (a1 < a2 < ... < al), we can gen-

erate (l+1)-sets Pl ∪ {f ′aj}, where aj > al. After the generation of the (l+1)-sets

Pl∪{f ′aj}, we need to check if all of its l-set “regular” parents (the parents with the

same minimum support feature when combined with A as Pl ∪{f ′aj}∪A) can indi-

cate PS co-location rules. If all of its regular parents can indicate PS co-location

rules, then Pl ∪ {f ′aj} is added to the candidate set for the pruning process, other-

wise, Pl ∪ {f ′aj} can be pruned directly. In the pruning process, the PS co-location

rule X → A is kept if it meets the zmin threshold, otherwise, it is removed.

A problem of StatApriori is that for each potentially significant set C, only the

best rule is derived from C. For example, if C\A → A is the best rule, where

A ∈ C and the “best” indicates that the rule has the highest z-score, then no other

rules in the form ofC\B → B(B 6= A) is output. However, in our CMCStatApriori

algorithm, this kind of problem does not exist, because the PS property is for the

co-location rule and the consequent feature is fixed. The detailed pseudo code of

CMCStatApriori is illustrated in Algorithms 1, 2 and 3.

3.3 Experiments

3.3.1 Datasets

We conduct our experiments on two real datasets which contain pollutant emis-

sions and information about cancer cases for children in the provinces of Alberta

and Manitoba, Canada. The sources of the data are the National Pollutant Release
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Data: Set of antecedent features F\A, the consequent feature A, derived
transaction database D, the threshold zmin for the z-score

Result: Set of potential statistically significant co-location rules P
P1 = {fi ∈ F\A|PS(fi) = 1};
l = 1;
while (Pl 6= ∅) do

Cl+1 = GenCands(Pl, A);
Pl+1 = PrunCands(Cl+1, zmin, A);
l = l + 1;

end
P = ∪iPi;
return P ;

Algorithm 1: CMCStatApriori Algorithm.

Data: Potentially significant l-sets Pl, the consequent feature A
Result: (l + 1)-candidates Cl+1

for all Qi, Qj ∈ Pl such that |Qi ∩Qj| = l − 1 do
if ∀Z ⊆ Qi ∪Qj such that |Z| = l and min(ZA) = min((Qi ∪Qj)A)
and Z ⊆ Pl then

Cl+1.add(Qi ∪Qj);
end

end
return Cl+1

Algorithm 2: Algorithm GenCands.

Data: l-candidates Cl, threshold zmin, the consequent feature A
Result: Potentially significant l-sets Pl
Sl = ∅;
for all Qi ∈ Cl do

Calculate P (QiA) and the upperbound of lift [28, 30] 1
P (min(QiA))

;
if z(P (Qi, A),

1
P (min(Qi,A))

) ≥ zmin then
Sl.add(Qi);

end
end
return Pl

Algorithm 3: Algorithm PruneCands.
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Inventory (NPRI) [19] and the provincial cancer registries. The information on

pollutants is taken for the period between 2002 and 2007 and contains the type of

a chemical, location of release, and average amount of release per year. In order

to get reliable results, the chemical pollutants that had been emitted from less than

three facilities are excluded from the dataset. There are 47 different chemical pollu-

tants and 1,422 chemical pollutant emission points in Alberta; 26 different chemical

pollutants and 545 chemical pollutant emission points in Manitoba, several chem-

ical pollutants might be released from the same location. The number of cancer

cases are 1,254 and 520 in Alberta and Manitoba, respectively. In order to make the

model more accurate, the wind speed and direction are also taken into account in

these two provinces. The interpolation of wind information between wind stations

is used. In Alberta, the data of 18 stations are from Environmental Canada [24] and

156 stations are from ArgoClimatic Information Service (ACIS) [1]. In Manitoba,

the data of all 20 stations are all from Environment Canada [24]. We obtain the wind

direction and speed in the locations of chemical facilities by making interpolations

in the ArcGIS tool [27].

3.3.2 Experimental Settings

We are interested in co-location rules of the form of Pol → Cancer, where Pol is

a set of pollutant features and Cancer is a cancer feature. Three different methods

are compared: the co-location mining algorithm by Adilmagambetov et al. in [2]

(denoted as CM), co-location mining algorithm with Kingfisher [29, 31] (denoted

as CMKingfisher) and the proposed CMCStatApriori method. In all of these three

methods, the distance between grid points is 1km.

CM CM needs a number of simulations to detect significant co-location rules, the

number of simulations for the statistical test is set to be 99 and the level of signif-

icance α is set to be 0.05. The size of antecedent features of a candidate rule is

up to three. The randomized datasets (simulations) that are used in the statistical

test are generated according to the distributions of chemical pollutant emitting fa-

cilities and cancer cases. Chemical pollutant emitting facilities are not randomly
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distributed, and are usually located close to regions with high population density,

thus, CM does not randomize the pollutant facilities all over the region, instead, it

keeps locations of facilities and randomize the pollutants within these regions. For

the cancer cases, most of them are located within dense “urban” regions and the rest

are in “rural” regions. Therefore, the cancer cases are randomized according to the

population ratio of “urban” regions to “rural” regions. In each simulation of CM,

both pollutant chemicals and cancer cases are randomized.

CMKingfisher Kingfisher [29, 31] is developed to discover positive and negative

dependency rules between a set of antecedent features and a single consequent fea-

ture. The algorithm is based on a branch and bound strategy to search for the best,

non-redundant dependency top-K rules. Kingfisher is able to detect statistically

significant positive and negative rules with any possible consequent. But we are

only interested in the positive rules whose consequent is “Cancer”, therefore, after

getting the derived transaction dataset T , we apply Kingfisher algorithm to get the

complete set of co-location rules and extract the subset of co-location rules that we

are interested in. The significance level α is 0.05.

CMCStatApriori The CMCStatApriori is the algorithm proposed in this paper.

Unlike CM and CMKingfisher which use the p-value as a significance level, CM-

StatApriori uses the z-score which provides an upper bound for the p-value. In the

experiment, the threshold of z-score is set to be 150 in the Alberta dataset. This

threshold of 150 is too high in the Manitoba dataset and no co-location rules are

output. Therefore, we set a lower z-score threshold of 40. Indeed, the lower the

z-score threshold, the more co-location rules is generated. The parameter setting of

z-score threshold of CMCStatApriori is discussed in the end of this chapter.

3.3.3 Experimental Results

Both CMKingfisher and CMCStatApriori are able to detect more general co-location

rules (without limitation of size of antecedent features). However, to have a fair

comparison with CM, we only list the co-location rules with up to three antecedent
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features. The number of rules detected by these three methods and the number of

rules overlaps with CM by CMKingfisher as well as CMCStatApriori are listed in

Table 3.1. It can be observed that in the dataset of Alberta, both of CMKingfisher

and CMCStatApriori have a small overlap with CM rules. The situation is slightly

different in the dataset of Manitoba, around 80% and 30% of detected rules by

CMKingfisher and CMCStatApriori also appear in CM.

Table 3.1: Number of co-location rules generated by different methods.
Alberta Manitoba

#rules # rules in CM #rules # rules in CM
CM 273 – 170 –

CMKingfisher 108 7 23 19
CMCStatApriori 571 5 60 16

3.4 Evaluation

Environmental pollutants are suspected to be one of the causes of cancer in children.

However, there are other factors that could lead to this disease. Therefore, it is a

difficult task to evaluate the detected co-location rules even for domain experts. To

assist in evaluating the discovered co-location rules, we propose to use a classifier

with the discovered co-location rules as a predictive model. Meanwhile, we also

develop a tool to visualize the discovered co-location rules in the map. Figure 3.2

gives a snapshot of detailed information of all discovered co-location rules on Al-

berta dataset by CM. Each time you click a co-location pattern ID in Figure 3.2, a

corresponding map will be displayed, it shows the locations and buffer zones of the

pollutant features and the cancer feature, as shown in Figure 3.3. In Figure 3.4, we

show a regional zoom in view of a discovered co-location rule.

The results by different methods are carefully and painstakingly evaluated man-

ually by experts in our multidisciplinary team. However, the systematic evaluation

by classification provides an estimation of the best quality co-location rule set.

In the classification evaluation scheme, we consider co-location rules generated

by either method as a classifier. To evaluate the discovered co-location rules, we

randomly sample some grid points on the geographic space. The randomly sampled
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Figure 3.2: Detailed information of all discovered co-location rules on Alberta
dataset by CM.

Figure 3.3: A visualization of a co-location rule in the map.
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Figure 3.4: A regional zoom in view of the co-location rule in Figure 3.3.

grid point has to intersect with at least one pollutant feature; it either intersects with

cancer or not. For the type of grid point (Polgrid, Cancer) intersects with both pol-

lutant(s) and cancer, if we can find at least one co-location rule Pol → Cancer in

the classifier that correctly matches it, i.e. Pol ⊆ Polgrid, the grid point is indicated

as correctly classified. For the other type of grid point (Polgrid,¬Cancer) inter-

sects with pollutant(s) but not cancer, if there does not exist any co-location rules

Pol → Cancer that match it, i.e. Pol * Polgrid, the grid point is also indicated as

correctly classified. Otherwise, the grid points are considered as misclassified. The

ratio of correctly classified grid points to the total number of sampled grid points

is output as the classification accuracy. Figure 3.5 shows a toy example of the

evaluation process. In the datasets of Alberta and Manitoba, we randomly sample

1000 grid points each time, repeats 100 times, and calculate the average classifica-

tion accuracy for the previously mentioned three methods. Table 3.2 and Table 3.3

present the evaluation results, along with the classification accuracy (ACC), the

specificity (SPE) and sensitivity (SEN) are also listed. As can be observed from

the classification accuracy, CMCStatApriori is better than CM and CMKingfisher.

The classification accuracy is much higher in Alberta compared with Manitoba.
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One possible explanation is that the co-location association between chemical pol-

lutants and children cancer cases is stronger in Alberta. Both the number of co-

location rules and the classification accuracy is very low in Manitoba, therefore, it

is possible that chemical pollutants and children cancer cases are more likely to be

independent in Manitoba. We can also notice that the specificity is much higher

than the sensitivity in both datasets. High specificity means that grid points without

cancer are seldom misclassified; on the other hand, low sensitivity indicates that

grid points with cancer are mostly misclassified. This phenomenon may imply that

the co-location associations between chemical pollutants and children cancer cases

is weak. However, these assumptions still need to be carefully scrutinized.

Co-location rules 

P1 -> Cancer 

P1, P4 -> Cancer 

P2, P6 -> Cancer 

P3, P5 -> Cancer 

P1, P6, P7 -> Cancer 

P2, P3, P6 -> Cancer 

 

 

Sampled grids Prediction Result 

P1 C = 1 C = 1 Correct 

P1, P5 C = 1 C = 1 Correct 

P2, P5 C = 1 C = 0 Wrong 

P1, P5, P6 C = 0 C = 1 Wrong 

P1, P6, P7 C = 1 C = 1 Correct 

Evaluation by 

Classifier

Accuracy is 3/5 = 60% 

Figure 3.5: Toy example of the classifier evaluation.

Table 3.2: Evaluation of CM, CMKingfisher and CMCStatApriori using Accuracy,
Specificity and Sensitivity on Alberta dataset.

Alberta
ACC SPE SEN

CM 83.9± 3.3 97.6± 1.6 11.4± 8.1
CMKingfisher 69.2± 4.1 77.4± 4.1 28.6± 11.4

CMCStatApriori 84.7± 3.4 99.6± 0.7 6.6± 6.4

The only parameter in CMCStatApriori is the zmin. In this subsection, we also

discuss the effect of the parameter zmin. As shown in Figure 3.6 and Figure 3.7,

the number of discovered co-location rules drops when we increase zmin. We were

not able to find any statistically significant co-location rules when zmin > 170 in

Alberta and when zmin > 50 in Manitoba. In Figure 3.8 and Figure 3.9, the average
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Table 3.3: Evaluation of CM, CMKingfisher and CMCStatApriori using Accuracy,
Specificity and Sensitivity on Manitoba dataset.

Manitoba
ACC SPE SEN

CM 22.0± 4.3 55.8± 11.2 13.4± 3.7
CMKingfisher 26.6± 4.6 96.4± 3.6 8.7± 3.0

CMCStatApriori 27.4± 4.1 83.4± 7.7 12.2± 3.4

classification accuracy of the sampled grid points is presented. The classification

performance is poor when the z-score threshold is set to be low. Besides, there

exists a turning point (zmin = 100 in Alberta, zmin = 30 in Manitoba) where the

accuracy improves dramatically. In the Alberta dataset, there is not much difference

when zmin varies from 110 to 170, while in the Manitoba dataset, the performance

is best when zmin is set to be 40.
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Chapter 4

Statistically Significant Classification
Association Rules for Classification

This Chapter introduces the proposed associative classifier, SigDirect (Statistically

SIGnificant Dependent ClassIfication Association RulEs for ClassificaTion). Un-

like other associative classifiers, SigDirect does not need any confounding parame-

ter settings. SigDirect consists of three phases: In the first step, SigDirect directly

mines the complete set of statistically significant CARs. We propose a rule gener-

ator algorithm, Constrained-Kingfisher, which is based on Kingfisher [29, 31], by

pushing the rule shape and constraint in the rule generation phase, the discovered

CARs are statistically significant as well as non-redundant. Once the CARs are

generated, we then apply a rule pruning strategy to build the classifier by selecting

the best CAR for each transaction in the training dataset similar to Harmony [55]. In

our algorithm, the best CAR is considered as the CAR with the highest confidence

value. Finally, we investigate different strategies to select a subset of CARs for pre-

diction. At the end of this chapter, we also introduce how to integrate the negative

statistically significant CARs into the associative classifier and show a promising

experimental result.

4.1 Basic Notations and Definitions

Definition 3. Dependency of a CAR:

LetD be a transaction database, it consists of a set of items I = {i1, i2, ..., im} and

a set of class label C = {c1, c2, ..., cn}. Each transaction T is associated with a set
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of items X and a particular class label ck, where X ⊆ I and ck ∈ C. A CAR is

in the form of X → ck, the antecedent part and the consequent part of the CAR is

dependent if and only if P (X, ck) 6= P (X)P (ck).

Definition 4. Fisher’s exact test:

The dependency of the CAR X → ck is considered statistically significant at level

α, if the probability p of observing equal or stronger dependency in a dataset com-

plying with a null hypothesis is not greater than α. In the null hypothesis, X and

ck are assumed to be independent of each other. The probability p, i.e. p-value, can

be calculated by Fisher’s exact test [29, 31]:

pF (X → ck) =

min{σ(X,¬ck)σ(¬X,ck)}∑
i=0

(
σ(X)

σ(X,ck)+i

)(
σ(¬X)

σ(¬X,¬ck)+i

)( |D|
σ(ck)

) (4.1)

where σ(X) denotes the frequency of X . The significance level α is usually set to

be 0.05.

Definition 5. Confidence:

The confidence of the CAR X → ck is:

conf(X → ck) =
σ(X, ck)

σ(X)
(4.2)

Definition 6. Parent and Child CAR:

Let the CAR X → ck like before. The CAR Y → ck is considered as its parent CAR

if Y ( X and |Y | = |X| − 1. The CAR X → ck is considered to be the child CAR

of Y → ck.

Definition 7. Non-redundant CARs:

The CAR X → ck is non-redundant, if there does not exist any CARs in the form of

Y → ck such that Y ( X and pF (Y → ck) < pF (X → ck).

Definition 8. Minimality:

The CAR X → ck is minimal, if and only if X → ck is non-redundant, and, there

does not exist any CARs in the form of Z → ck such that X ( Z and pF (Z →

ck) < pF (X → ck).
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It has been proven in the literature [37, 29, 31] that if the CAR X → ck is

minimal, we can get P (ck|X) = 1, i.e. the conditional probability of ck given X is

1.

4.2 Generating Classification Association Rules

To find the relevant CARs for classification, SigDirect first needs to generate the

complete set of statistically significant CARs. It means the rule in the form of

X → ck has a relevant small pF -value, i.e. pF (X → ck) ≤ α. Since the pF value is

not a monotonic property, it is impossible for us to do some pruning as apriori-like

algorithms. One possible solution is to enumerate the whole search space, the size

of the whole search space is |P(I)|.|C|, where P(I) is the power set of I, it grows

exponentially with the size of antecedent items, therefore deriving effective pruning

strategies is urgent and of great importance.

The first pruning strategy is useful at the beginning of the algorithm, it can help

us weed out some items that are impossible in the antecedent of a CAR.

Theorem 2. There exists a threshold γ smaller than 0.5. When the frequency of

an item I is smaller than γ, i.e. P (I) < γ, the item I is impossible to be in the

antecedent part of any statistically significant CARs.

Proof. First, we assume that item I can be the consequent of a CAR X → I ,

where X ⊆ I\I . According to [29, 31], the minimum pF value of the rule X →

I is σ(I)!σ(¬I)!
|D|! , the minimum value is smallest when σ(I) = σ(¬I) = |D|

2
. If

|D|
2

!
|D|
2

!

|D|! > α, then it is certain that σ(I)!σ(¬I)!|D|! > α. If
|D|
2

!
|D|
2

!

|D|! ≤ α, we can still make
σ(I)!σ(¬I)!
|D|! > α when either σ(I) or σ(¬I) deviates a lot from |D|

2
. It indicates there

exists a threshold γ ≤ 0.5, thus when σ(I) < γ|D| or σ(I) > (1− γ)|D|, the item

I cannot appear in the consequent of a statistically significant CAR. As mentioned

above, we intend to find CARs in which item I can only be in the antecedent part.

If the condition of σ(I) < γ|D| or σ(I) > (1− γ)|D| holds, according to [29, 31],

when σ(I) < |D|
2

, the item I cannot even appear in the antecedent part. In this

way, we can derive a threshold γ smaller than 0.5, when the frequency of the item
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I is smaller than γ, the item cannot appear in any statistically significant CARs, let

alone in the antecedent part.

Through Theorem 2, some impossible antecedent items I are pruned before

further analysis. Assume there are s antecedent items left, where s ≤ m, then

the rest s items are arranged and renamed in ascending order by their frequencies,

i.e. Irest = {i1, i2, ..., is}, where P (i1) ≤ P (i2) ≤ ... ≤ P (is). Then, in order

to traverse the whole search space, an enumeration tree is built over the reordered

antecedent itemsets Irest (Figure 4.1). Since the enumeration tree lists the whole

search space, for each node in the enumeration tree, we check all the n possible

CARs X → ck(X ⊆ Irest, k ∈ {1, ..., n}) to see if they are statistically significant,

where X denotes the antecedent item sets in the corresponding node, as illustrated

in Figure 4.1.

The second pruning strategy is of great importance since it has an effect in the

whole search process.

Theorem 3. Let X → ck be a CAR as before, where X ⊆ Irest, k ∈ {1, ..., n} and

Q ⊆ (Irest\X). If σ(X) ≤ σ(ck), then we can get:

pF (XQ→ ck) ≥
σ(¬X)!σ(ck)!

|D|!(σ(ck)− σ(X))!
(4.3)

Proof. This theorem is from Kingfisher, the detailed proof can be referred in [29,

31].

In Theorem 3, we can find that best value of pF (XQ → ck) can be considered

as a low bound of pF (X → ck), i.e. best(pF (XQ → ck)) ≤ pF (X → ck), the

“best value” is the lower bound in Theorem 3. Therefore, if the lower bound is

larger than α, the dependency of the CAR X → ck is not statistically significant

and can be pruned. Otherwise, we define the CAR as PSS, “potentially statistically

significant”, the CAR needs to be further calculated to get the exact pF -value to see

if it is indeed statistically significant.

Another important property is necessary in the search algorithm.

Theorem 4. If the CAR X → ck is PSS, then any of its parent CARs Y → ck is

also PSS, where Y ( X and |Y | = |X| − 1.
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Figure 4.1: Enumeration of the whole search space of SigDirect.
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Proof. To make X → ck to be PSS, there are two supporting scenarios. First

situation is when σ(X) > σ(ck). Since Y ( X , thus σ(Y ) > σ(X) > σ(ck),

and it is easy to see the parent CAR Y → ck is also PSS. The second situation is

when σ(X) ≤ σ(ck) and best(pF (XQ→ ck)) < α, where Q ⊆ (Irest\X). XQ =

Y (X\Y )Q = Y R holds for any Q ⊆ (Irest\X), because (X\Y ) ⊆ (Irest\Y ) and

Q ⊆ (Irest\X) ⊆ (Irest\Y ), thus R = (X\Y )Q ⊆ (Irest\Y ) and therefore, there

must exists R ⊆ (Irest\Y ) making best(pF (Y Q → ci)) < α, i.e. CAR Y → ci is

PSS.

With theorems 2, 3, 4, we can summarize the whole statistically significant

CARs generation algorithm Constrained-Kingfisher: we first list all the candidate

(1)-set CARs, those with only 1 item in the antecedent, as illustrated in the (1)-set

level in Figure 4.1. Then for each candidate (1)-set CAR, we use Theorem 3 to see if

it is PSS, non-PSS CARs can be directly pruned. PSS CARs are further checked

to validate if they are statistically significant, i.e. pF ≤ α. Between level 2 to level

s, we take a breadth-first strategy, for each candidate CAR in these levels, we check

if all of its parent CARs are PSS, if any of its parent CAR is not PSS (pruned

already), then the candidate CAR is also not PSS and therefore can be pruned. In

other words, if and only if all of its parent CARs are PSS, the CAR is considered

PSS and will be further analyzed. Non-redundancy property is also taken into ac-

count, statistically significant CARs are checked if they are non-redundant before

they are output. Furthermore, the minimality is also checked, if the non-redundant

rule is also minimal, the CAR is also marked preventing expansion and all of its

children CARs can be directly pruned. The pseudocode of the whole procedure is

illustrated in Algorithm 4.

4.3 Rule Pruning

In the classification association rules generation phase, we have taken the non-

redundancy property into consideration. However, the number of statistically sig-

nificant CARs could still be very large. One possible disadvantage of a large num-

ber of CARs is that it could contain some noisy information which may mislead
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Data: Transaction Database D, set of antecedent item sets I, class set C,
significance level α = 0.05.

Result: Statistically significant CARs setR.
Prune impossible antecedent items with Theorem 2;
Irest: the arranged and renamed antecedent item set;
Create root node and level-1 nodes;
Set l = 2;
for each candidate rule r in level-1 do

if r is PSS then
if pF (r) ≤ α then

if r is minimal then
r.minimal = 1;
R.add(r);

else
R.add(r);

end
end

else
prune rule r from the enumeration tree;

end
end
while l ≤ |Irest| do

for each candidate rule r in level l do
if all parent rules of r are PSS and not minimal then

if pF (r) ≤ α then
if r is non-redundant then

if r is minimal then
r.minimal = 1;
R.add(r);

else
R.add(r);

end
end

end
else

prune rule r and all its decedent rules from the enumeration tree;
end

end
l = l + 1;

end
Algorithm 4: Constrained Kingfisher algorithm to generate statistically signifi-
cant CARs.

39



the classification process. Another drawback is that a large number of CARs will

make the classification process slower. This could be an important problem in appli-

cations where fast responses are required. Moreover, in classification applications

where evidence checking is required, rule based models are an advantage but a large

number of rules is a significant drawback and defeats the purpose. In order to reduce

the number of CARs in the classification phase, many associative classifiers take a

sequential database coverage paradigm. However, the final set of CARs may not be

the globally best CARs for some instances in the training dataset. In order to reduce

the number of CARs and find the globally best rules for all training instances, we

take an instance centric rule pruning approach as Harmony [55], the classifier se-

lects the best CAR for each instance in the training dataset, the best CAR is defined

as the matching CAR with the highest confidence value. Each candidate CAR may

be selected by multiple training instances, therefore, each candidate CAR is associ-

ated with an attribute “count”, it indicates how many times the CAR is selected in

the pruning process.

The detailed algorithm is shown in Algorithm 5:

Data: Set of statistically significant rulesR found in the rule generation
phase, transaction database D.

Result: A subset of rulesRnew for the classification process.
for each instance t in the transaction database D do

Scan the set of candidate rules inR to find the matching rule r, i.e.
(r.antecedent ⊆ t.antecedent and r.classlabel = t.classlabel) with
highest confidence value;
if r /∈ Rnew then
Rnew.add(r);
r.count = 1;

else
Rnew.r.count + 1;

end
end

Algorithm 5: Rule pruning phase in SigDirect.
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4.4 Classifying New Instances

After the rule pruning phase, the subset of the most statistically significant CARs

form the actual classifier. In this phase, we utilize the built classifier to make new

predictions. Given a new instance without class label, the classification process

searches the subset of CARs matching the new instance to make a class prediction.

This subsection discusses the three approaches that we take to label new instances.

A simple solution is to select the matching rule inRnew with highest confidence

value or lowest pF -value and assign its label to the new instance. Another alterna-

tive is to divide all matching rules into groups according to their class labels. The

groups are then ordered according to the average confidence value or average pF -

value. The class that has the highest average confidence value or the lowest average

pF -value will be assigned to the new instance. However, these two classification

heuristics are often biased to minority classes. To solve this problem, an intuitive

way is to calculate the total confidence value or total pF -value instead of the average

values. But pF -value is different from confidence, the lower the value, the better the

rule is, therefore, simply sum up the pF value does not make any sense. To make

it compatible to the confidence measure, we transform the pF -value to log scale, all

the subsequent steps are on the log-transformed values.

Then, we propose three different heuristics, denoted as S1, S2 and S3, to con-

sider the sum of ln(pF ), sum of confidence and sum of ln(pF ).confidence of match-

ing rules in each class, respectively:

• S1: Calculate the sum of ln(pF ) of matching rules in each class, the class

label of the new instance is determined by the class of the lowest value

• S2: Calculate the sum of confidence of matching rules in each class, the class

label of the new instance is determined by the class of the highest value

• S3: Calculate the sum of ln(pF ).confidence of matching rules in each class,

the class label of the new instance is determined by the class of the lowest

value

Algorithm 6 describes three heuristic classification methods of a new instance.
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Data: A new instance o to be classified. Set of rulesRnew from rule pruning
phase.

Result: Class label of the new instance o.
T = ∅ ; // set of rules matching o
for each rule r inRnew do

i = 1;
while i ≤ r.count do

if r.antecedent ⊆ o.antecedent then
T .add(r);

end
i = i+ 1;

end
end
divide T into n subsets by class labels: T1, T2, ..., Tn;
// Classification with S1
for each subset T1, T2, ..., Tn do

sum up the ln(pF ) values of matching CARs in each subset
end
assign the class with the lowest sum of ln(pF ) value to o;
// Classification with S2
for each subset T1, T2, ..., Tn do

sum up the confidence values of matching CARs in each subset
end
assign the class with the highest sum of confidence value to o;
// Classification with S3
for each subset T1, T2, ..., Tn do

sum up the ln(pF ).confidence values of matching CARs in each subset
end
assign the class with the lowest sum of ln(pF ).confidence value to o;

Algorithm 6: Classification of new instances in SigDirect.
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4.5 Experiments

4.5.1 Datasets

We evaluate our SigDirect method on 20 datasets from UCI Machine Learning

Repository [12]. In these datasets, the numerical attributes have been discretized by

the author of [21], the discretization strategy is different from that used in [40, 38],

thus the classification performance may be different from the results reported be-

fore. All the following experimental results on each dataset are reported as an

average of a 10-fold cross validation.

4.5.2 Classification Accuracy

We evaluate our SigDirect with three different classification strategies S1, S2, S3

against two rule based classifiers C4.5 [47] and FOIL [46], three associative clas-

sifiers CBA [40], CMAR [38] and a hybrid between rule based and associative

classifier CPAR [62] on the previous mentioned 20 discretized UCI datasets. The

results are reported in the form of average classification accuracy over 10-folds. All

classification methods are evaluated on the same generated 10-folds to ensure a fair

comparison. The parameters of C4.5 are set as default values [47]. In FOIL, we

allow a maximum of 3 features in the antecedent of a rule. In CBA, CMAR, the

minimum support is set to be 1%, the minimum confidence is 50%, the maximum

number of antecedent features and the maximum number of mined classification

association rules are set to be 6 and 80, 000, respectively. In CPAR, we also follow

the same parameter settings as [62], minimum gain threshold set to 0.7, total weight

threshold to 0.05 and decay factor to 2/3.

Table 4.1 presents the classification accuracy of the following methods: C4.5,

FOIL, CBA, CMAR, CPAR and our SigDirect method with three different classi-

fication heuristics S1, S2 and S3. Along with the accuracy result, the name of the

dataset and the number of records are also reported.

As can be observed from Table 4.1, the proposed SigDirect with S2 achieves the

best overall classification accuracy, followed by SigDirect with S3 and SigDirect

with S1. All of these three classifiers outperform C4.5, FOIL, CBA, CMAR and
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CPAR on the average over the 20 datasets.

To have a more fair comparison between these classifiers, we show how many

times the classifier is the best and how many times it is the runner-up. Table 4.2

shows the comparison results, SigDirect with S2 is still the best among these clas-

sifiers. It wins 8 out of 20 datasets, i.e. 40% of all datasets, and is the runner-up 5

times. CMAR, in the second place, wins in 6 datasets and gets the runner-up twice.

Combing the comparison results from Table 4.1 and Table 4.2 together, SigDi-

rect with S2 is always the best, SigDirect with S1 and SigDirect with S3 can be

considered as competitive classifiers. It demonstrates that in the classification ac-

curacy aspect, our SigDirect classification method can be viewed as a competitive

and even slightly better classifier with the state-of-the-art rule based and associative

classifiers.

4.5.3 Number of Rules

In associative classification, the number of CARs before and after rule pruning

phase are both very important indicators to measure a classifier. On one hand, if

we get a small number of CARs after rule generation phase, people are able to sift

through these CARs to determine validity, to choose a subset of them or even to edit

them to inject domain knowledge not reflected in the training data. Moreover, rule

pruning strategies are possible since these CARs are more readable. On the other

hand, a small number of CARs post rule pruning can make the classification phase

faster. In addition, after rule pruning phase, because of transparency of the CARs,

manually updating some CARs is favourable and practical in many applications if

the number of CARs is reasonable. Therefore, we evaluate the number of CARs

generated by our Constrained-Kingfisher algorithm and the number of CARs after

rule pruning phase (instance centric way). Table 4.3 shows the number of CARs

of two associative classifiers CBA, CMAR and our SigDirect method. The number

of CARs before and after rule pruning phase are both presented. We also list the

number of rules in C4.5, FOIL and CPAR in Table 4.3. In CBA and CMAR, the

rule generation stops if the number of CARs is larger than 80,000, but even in this

situation, we can find that the number of CARs generated by SigDirect is much
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Table 4.2: Best and runner-up counts comparison between C4.5, FOIL, CBA,
CMAR, CPAR and SigDirect.

Classifiers Best Runner-up
C4.5 1 2
FOIL 3 4
CBA 2 4

CMAR 6 2
CPAR 3 3

SigDirect with S1 3 4
SigDirect with S2 8 5
SigDirect with S3 2 5

smaller than that generated by CBA and CMAR, in most datasets (18 out of 20),

the number is even an order of magnitude smaller. It can also be observed, after

the rule pruning process, the number of CARs by SigDirect is smaller, in 16 out of

20 datasets, the number of CARs is below 100, which makes it more readable and

more manually editable.

All in all, SigDirect dramatically reduce the number of CARs compared with

CBA and CMAR in the rule generation phase without jeopardizing accuracy and

even improving it. After rule pruning phase, the number of CARs for classification

is still very small. The overall small number of CARs makes SigDirect superior to

other associative classifiers when there is a slight difference between classification

accuracies. The number of CARs remains comparable and even smaller than the

case of C4.5, FOIL and CPAR.

4.5.4 Effects of Pruning Strategies and Classification Heuristics

In SigDirect, we take an instance-centric method to do rule pruning to reduce the

number of CARs. Here, we first compare the effect of this pruning strategy with

the database coverage paradigm (pruned by confidence) which is widely. In Ta-

ble 4.4, the classification results with these two different rule pruning strategies are

presented and compared. As can be observed, the classification accuracy indeed

improves when we take the instance centric pruning strategy, no matter what kind

of classification heuristics are used. The average classification accuracy is higher

around 1% to 2% percent.
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Table 4.4: Classification results comparison with instance centric and database cov-
erage pruning methods.

Dataset
S1 S2 S3

instance
centric

database
coverage

instance
centric

database
coverage

instance
centric

database
coverage

adult 83.9 83.9 83.9 83.2 84.1 83.6
anneal 96.8 96.1 94.0 88.0 96.7 94.4
breast 91.4 90.7 91.7 91.3 91.6 90.7

cylBands 74.4 73.3 73.7 72.0 74.4 73.9
flare 83.0 80.3 84.2 83.2 84.2 83.7
glass 66.8 66.4 69.6 72.0 68.7 67.8
heart 56.4 57.1 58.1 56.8 57.4 56.4

hepatitis 83.2 82.6 85.2 83.2 82.6 81.9
horseColic 81.3 80.2 80.7 76.7 81.3 80.7
ionosphere 87.2 88.9 85.5 85.0 87.2 88.9

iris 94.0 93.3 94.0 94.7 93.3 93.3
led7 73.8 73.5 73.8 73.5 73.7 72.7

letRecog 48.2 46.7 58.8 61.8 52.6 51.1
mushroom 100.0 100.0 100.0 100.0 100.0 100.0
pageBlocks 91.2 90.7 91.2 91.1 91.2 90.7
penDigits 84.3 81.5 88.4 90.3 84.6 81.5

pima 74.6 68.5 75.1 67.7 74.6 68.6
soybean 89.5 87.6 90.0 89.6 89.8 88.4

wine 92.1 92.7 92.7 88.2 92.1 92.7
zoo 94.1 93.1 94.1 93.1 94.1 94.1

Average 82.3 81.3 83.2 82.1 82.7 81.8
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Next, in order to investigate the efficacy of the measure M (ln(pF ), confidence

or ln(pF ).confidence) in the classification phase , to see if classifying by the sum of

M can overcome the bias problem caused by classifying with only the best rule or

by the average of M , we compare S1, S2 and S3 with their corresponding alterna-

tives (B1, A1), (B2, A2) and (B3, A3). The compared classification heuristics B1,

A1, B2, A2, B3 and A3 are listed below:

• B1: Select the matching rule with the lowest ln(pF ) value, the class label of

the new instance is determined by the selected rule

• A1: Calculate the average value of ln(pF ) for matching rules in each class,

the class label of the new instance is determined by the class of the lowest

value

• B2: Select the matching rule with the highest confidence value, the class label

of the new instance is determined by the selected rule

• A2: Calculate the average of confidence value for matching rules in each

class, the class label of the new instance is determined by the class of the

highest value

• B3: Select the matching rule with the lowest ln(pF ).confidence value, the

class label of the new instance is determined by the selected rule

• A3: Calculate the average of ln(pF ).confidence value for matching rules in

each class, the class label of the new instance is determined by the class of

the lowest value

As shown in Table 4.5, S1, S2 and S3 have a better classification performance

than their counterpart (B1, A1), (B2, A2), (B3, A3) with a higher average classi-

fication accuracy. It can be concluded that the classification heuristics in the “A”

category are always the worst, “B” category heuristics are better than “A” category,

but are still not as good as “S” category heuristics. Therefore, the classification

heuristic that classifying a new instance by the sum of measure M (ln(pF ), con-

fidence or ln(pF ).confidence) of all matching rules indeed helps to improve the

49



classification performance. When the measure M is the rule’s confidence, the asso-

ciative classifier is the best.

4.5.5 Statistical Analysis

From Table 4.1, we can conclude that our SigDirect algorithm gets a competitive

and even better classification performance compared to other methods and the con-

fidence is a better measure when measured against ln(pF ) and ln(pF ).confidence

in the classification phase. Table 4.3 shows that our method gets a small number of

CARs both before and after rule pruning phase. Table 4.4 and Table 4.5 indicate the

superiority of the instance-centric rule pruning strategy and the summation effect,

respectively. These conclusions are obtained mainly by measuring average classi-

fication accuracies and winning times. Although it gives us some intuition about

the lead of a certain classifier, a certain rule pruning or a classification strategy, the

conclusion is not forceful since the dominance is unsurpassed over all 20 datasets.

To better validate the conclusions we get, we use Demsar’s [25] method, con-

ducting a set of non-parametric statistical tests to compare different classifiers over

multiple datasets.

In the first step, Friedman test is applied to measure if there is a significant dif-

ference between different classification models on Table 4.1. We first rank different

classifiers on each dataset separately, rji denotes the j-th of k classifiers on i-th of

N datasets. Then the average rank of j-th classifier is computed as Rj =
1
N

∑
i r
j
i .

In the null hypothesis, the average ranks of different classifiers are equivalent, and

the Friedman statistic is:

χ2
F =

12N

k(k + 1)
(
∑
j

R2
j −

k(k + 1)2

4
)

with k − 1 degrees of freedom, when N > 10 and k > 5. If the Friedman statistic

exceeds a critical value, the null hypothesis is rejected and we conduct post-hoc

tests to make pairwise comparisons between classifiers, otherwise, there is no sta-

tistical significance among the k classifiers over these N datasets.

The Friedman statistics of 8 classification methods from Table 4.1 exceeds the

critical value, so we continue to use Wilcoxon signed-ranks test to compare the
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differences between different methods pairwisely. In Wilcoxon signed-ranks test,

di denotes the classification accuracy difference on the i-th of N datasets. We then

rank the difference di according to their absolute values, if ties occur, average ranks

are assigned. Next, the sum of ranks R+, R− are calculated on datasets which the

second classifier outperforms the first classifier and the first classifier outperforms

the second classifier, respectively:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di)

Let T be the smaller value of these two sums, when N ≥ 20, Wilcoxon W statistic

tends to form a normal distribution, then we can use z-value to evaluate the null

hypothesis that there is no statistical difference between these two classifiers. The

z-score is:

z =
T − 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

If z < −1.96 then the corresponding p-value is smaller than 0.05, therefore, the

null hypothesis is rejected.

A series of Wilcoxon signed-ranks test from Table 4.1, Table 4.3, Table 4.4

and Table 4.5 are listed in Table 4.6. It shows the count of wins, losses, ties and

corresponding p-value for pairwise post-hoc comparisons. Rows 2-6 show the dif-

ference between the proposed SigDirect algorithm with 5 other well-known rule

based and associative classifiers. SigDirect is significant better than C4.5, FOIL,

CBA and CPAR and is as good as CMAR. From Rows 7-8, we can see the differ-

ence between three different classification heuristics is not statistically significant,

but since S2 gets a more higher average classification accuracy, we choose to use

S2 in the classification phase. Rows 9-12 list the number of CARs differences be-

tween SigDirect, CBA, CMAR before and after rule pruning phase. SigDirect gets a

significantly smaller number of CARs in the rule generation phase when measured

against CBA and CMAR, the number of CARs is still significantly smaller than

CMAR even after the rule pruning phase. The effect of the instance-centric rule

pruning strategy is shown in Rows 13-15, when classification heuristics S1 and S3
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are used, the instance-centric method is significantly better than the database cov-

erage method. Although the difference is not statistically significant with S2, the

corresponding p-value is still very close to 0.05 and the instance-centric strategy

wins 15 time and only loses 4 times. Therefore, the instance-centric rule pruning

strategy is better than the database coverage method. The last 6 rows compares

different classification heuristics, the “S” category is much better than the “B” and

“A” category. In this way, to classify a new instance, we should choose to sum up

the measure M of multiple matching rules to make a final prediction.

Table 4.6: Statistical analysis of Table 4.1, Table 4.3, Table 4.4 and Table 4.5 ; (*)
indicates statistically significant difference.

row comparisons wins losses ties p-value
2 SigDirect(S2) vs. C4.5* 17 2 1 0.001
3 SigDirect(S2) vs. FOIL* 13 6 1 0.040
4 SigDirect(S2) vs. CBA* 14 5 1 0.033
5 SigDirect(S2) vs. CMAR 12 5 3 0.136
6 SigDirect(S2) vs. CPAR* 13 6 1 0.010
7 SigDirect(S2) vs. SigDirect(S1) 10 4 6 0.158
8 SigDirect(S2) vs. SigDirect(S3) 11 5 4 0.214
9 #bef. prun: SigDirect vs. CBA* 18 2 0 0.004

10 #bef. prun: SigDirect vs. CMAR* 18 2 0 0.006
11 #aft. prun: SigDirect vs. CBA 9 11 0 0.435
12 #aft. prun: SigDirect vs. CMAR* 19 1 0 0.001
13 S1: instance-cetric vs. db coverage* 15 3 2 0.001
14 S2: instance-cetric vs. db coverage 15 4 1 0.056
15 S3: instance-cetric vs. db coverage* 15 2 3 0.008
16 SigDirect(S1) vs. SigDirect(B1)* 16 2 2 0.001
17 SigDirect(S1) vs. SigDirect(A1)* 15 3 2 0.001
18 SigDirect(S2) vs. SigDirect(B2)* 13 5 2 0.006
19 SigDirect(S2) vs. SigDirect(A2)* 15 3 2 0.001
20 SigDirect(S3) vs. SigDirect(B3)* 15 1 4 0.001
21 SigDirect(S3) vs. SigDirect(A3)* 16 2 2 0.001
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4.6 Integrating Negative Classification Association Rules

In Definition 4, the significance level of the CAR X → ck can be calculated as:

pF (X → ck) =

min{σ(X,¬ck)σ(¬X,ck)}∑
i=0

(
σ(X)

σ(X,ck)+i

)(
σ(¬X)

σ(¬X,¬ck)+i

)( |D|
σ(ck)

)
Similarly, the negative dependency between itemset X and class label ck is mea-

sured by:

pF (X → ¬ck) =
min{σ(X,¬ck)σ(¬X,ck)}∑

i=0

(
σ(X)

σ(X,¬ck)+i

)(
σ(¬X)

σ(¬X,ck)+i

)( |D|
σ(ck)

) (4.4)

where ¬ck indicates the absence of class label ck. It can be observed that from the

notion of pF -value that pF (X → ¬ck) = pF (¬X → ck), therefore, it is enough to

only consider the negative CARs in the form of X → ¬ck.

The statistically significant negative CARs generation phase is very similar to

the phase for the positive CARs. What we only need to do is substituting all ck to

¬ck in Algorithm 4, and all negative statistically significant CARs in the form of

X → ¬ck will be generated. It is obvious that the rule generation for the positive

and negative CARs can also be integrated together in Algorithm 7.

Although the rule generation phase is similar when the negative CARs are con-

sidered, the rule pruning phase cannot be directly used for the negative CARs. In

the rule pruning step, both instance centric and database coverage method try to find

a matching relationship between a training instance o and a CAR r, the relationship

holds only if r.antecedents ⊆ o.antecedents and r.class = o.class. It is easy for

a positive CAR to find a matching instance. In contrast, for the negative CARs in

the form of X → ¬ck, it is impossible to find a matching instance in the training

dataset. To reduce the number of negative CARs, we propose a simple but effective

rule pruning strategy.

The idea is similar to database coverage, we first scan through the set of dis-

covered negative CARs. For each negative CAR X → ¬ck, if it misclassifies at

least one training instance, in other words, if we find an instance t in the training

dataset such that X ⊆ t.antecedent and ck = t.class, the negative CAR X → ¬ck
is pruned, otherwise, it is kept.
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For the positive CARs X → ck, we first rank them by their confidence val-

ues, and then use the database coverage method to select a subset of high quality.

The database coverage method is used instead of the instance centric method. The

reason is that database coverage takes a greedy way to remove instances covered

by rules and generates a smaller number of rules compared to the instance centric

method. Therefore, it gives more chances for the negative rules to pop up and affect

the classification phase.

Here a problem arises, in some datasets, the number of left negative CARs may

be much larger than the number of positive CARs. In the extreme case if only nega-

tive CARs X → ¬ck are left, it is still hard to make a prediction for a new instance

like XY , the only information obtained is that class label ck is not correct. There-

fore, we still wish the positive CARs dominate the classification decision phase,

while taking negative CARs as a complement. In this case, we adjust the number

of negative CARs, making it at most as large as the number of positive CARs. To

be more specific, let nneg and npos denote the number of pruned positive and neg-

ative CARs respectively, if nneg > npos, only the first npos negative CARs and all

positive CARs are chosen as the actual classifier. The whole process is illustrated

in Algorithm 8.

The set of statistically significant positive and negative CARs left from the pre-

vious rule pruning phase represents the actual associative classifier. Given a new

unlabeled object, the classification process searches for the set of CARs that are

relevant to this object, and makes the prediction according to the label information

of all these relevant rules. Here we discuss how to make the predictions for new

objects based on the set of rules in the classifier. There are two types of CARs in

our classifier: positive CARs in the form of X → ck and negative CARs in the

form of X → ¬ck. These two types of CARs are both considered in our classifi-

cation phase. According to the results from previous section, the classifier works

best when the classification heuristic is S2, classifying an unlabeled instance by the

summation of confidence values of multiple matching rules. Therefore, we still use

the S2 method when the negative CARs are integrated. It is obvious that the con-

fidence values of positive CARs X → ck are added to the class ck. However, the
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negative CARs X → ¬ck is treated differently, we choose to subtract their confi-

dence values from the total confidence of the corresponding class ck. The detailed

description of the classification phase is presented in Algorithm 9.

4.7 Experiments with Negative Classification Associ-
ation Rules

We evaluate the proposed associative classifier which integrates the negative CARs

on the same 20 datasets as Section 4.5.1. To have a fair comparison, we list the

classification results of 5 rule based and associative classifiers C4.5 [47], FOIL [46],

CBA [40], CMAR [38] and CPAR [62] as before, we also show the classification

accuracy of ARC-PAN [8], which is also built on positive and negative CARs. In

ARC-PAN, the minimum support is 1%, the minimum confidence is 50% as other

associative classifiers. The confidence margin and correlation threshold is 0.1 and

0.5 in ARC-PAN, respectively. The parameter setting of other 5 classifiers follow

the settings in Section 4.5.1.

4.7.1 Classification Accuracy

The experimental results are shown in Table 4.7. Columns 2-3 show the number of

classes and number of records for each dataset. Columns 4-9 list the classification

accuracies of C4.5, FOIL, CBA, CMAR, CPAR and ARC-PAN. Columns 10 shows

the performance when only positive CARs are used, while Columns 11 lists the

classification result when the negative CARs are also taken into account.

As can be observed, rules+- gets the best overall classification performance

(82.7%) and wins 5 out of 20 datasets, followed by rules+ (82.1%). Both of their av-

erage classification accuracy outperform that of C4.5, FOIL, CBA, CMAR, CPAR

and ARC-PAN.

4.7.2 Effect of Negative Classification Association Rules

To validate the effect of negative CARs in the associative classifier, we compare

rules+- with rules+. The average classification accuracy is higher when negative
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CARs are included. We also compare the count of wins and losses for rules+- when

compared with rules+, rules+- wins 12 times and only loses twice. It indicates the

power of negative CARs. They indeed help us get more reliable and more accurate

classification results on most datasets.

4.7.3 Effect of Negative Rule Pruning Method

In the rule pruning phase, due to the absence of negative rule pruning strategies

in literature, we propose a simple but effective way, it prunes positive and nega-

tive CARs separately. We compare the classification performance of three different

scenarios: prune both positive and negative CARs, prune only positive CARs and

without rule pruning. In Table 4.8, Columns 2-4 show the classification results of

these three scenarios. The average accuracy of Column 2 (prune both positive and

negative CARs) is the highest and it wins 18 out of 20 datasets. Therefore, the sim-

ple but effective rule pruning method not only reduces the number of CARs in the

classifier, but also improves the classification performance compared to the asso-

ciative classifier pruning only positive CARs and the associative classifier without

rule pruning phase.

4.7.4 Statistical Analysis

We use the same method as Section 4.5.5 to analysis the results from Table 4.7

and Table 4.8. First, the Frideman test is applied on Table 4.7 to compare the

differences between 8 different classifiers. The null hypothesis is rejected which

indicates there is a significant difference between these 8 classifiers. Then, we con-

duct pairwise Wilcoxon signed-ranks test to compare the difference between these

different classifiers. The Wilcoxon signed-ranks test is also applied on Table 4.8 to

show the difference between different rule pruning strategies. The results are listed

on Table 4.9. Rows 2-7 show the comparisons of our associative classifier rules+-

with the other 6 well established classifiers. Our associative classifier always wins

more than half of all 20 datasets, but the only strong conclusion we draw is that our

method is significantly better than C4.5 and ARC-PAN. ARC-PAN is an associative

classifier most similar to our method which also uses the negative CARs, however,
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it fails to consider the statistical dependency of the discovered CARs. The statisti-

cally significant difference between our method and ARC-PAN is very appealing.

It shows the power of introducing statistical dependency in the associative classi-

fication problem. Through Row 8, we can find that when the negative CARs are

included, the associative classifier is significantly better than that with only positive

CARs. Rows 9-10 indicate the effect of the proposed rule pruning strategy, the

difference between pruning only positive CARs and without pruning is not statisti-

cally significant although pruning only positive rules wins 14 times. But when we

also prune negative CARs, the classification performance is greatly improved, the

p-value is very small (p = 0.001). Thus, by applying this rule pruning strategy, we

get a much better classifier with higher classification accuracy and fewer CARs.
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Data: Transaction Dataset D, set of antecedent items I, class labels C,
significance level α = 0.05.

Result: Statistically significant positive and negative CAR setsRpos and
Rneg.

Prune impossible antecedent items I with Theorem 2;
Irest: the arranged and renamed antecedent item set;
Create root node and level-1 nodes;
Set l = 2;
for each candidate 1-set CAR r do

if r is PSS then
if pF (r) ≤ α then

if r is minimal then
r.minimal = true;

end
if r.class is positive then
Rpos.add(r);

else
Rneg.add(r);

end
end

else
prune CAR r from the enumeration tree;

end
end
while l ≤ |Irest| do

for each candidate l-set CAR r do
if all parent rules of r are PSS and not minimal then

if pF (r) ≤ α then
if r is non-redundant then

if r is minimal then
r.minimal = true;

end
if r.class is positive then
Rpos.add(r);

else
Rneg.add(r);

end
end

end
else

prune CAR r and all its decedent rules from the enumeration tree;
end

end
l = l + 1;

end
Algorithm 7: Statistically significant positive and negative CARs generation.
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Data: Set of positive and negative CARsRpos,Rneg from rule generation
phase.

Result: Pruned CARs setRnewpos andRnewneg.
RankingRpos andRneg according to confidence values;
Rnewpos = ∅,Rnewneg = ∅;
// 1. Negative CARs pruning
for each CAR r inRneg do

for each training instance t in training dataset D do
if r.antecedent ⊆ t.antecedent and r.class = t.class then
Rneg.remove(r);
break;

end
end

end
AssignRneg toRnewneg;
// 2. Positive CARs pruning
for each CAR r inRpositive do

for each training instance t in training dataset D do
if r.antecedent ⊆ t.antecedent and r.class = t.class then
Rnewpos.add(r);
remove instances covered by r in D;

end
end

end
// 3. Negative CARs set adjustment
if |Rnewneg| > |Rnewpos| then
Rnewneg = first |Rnewpos| rules inRnewneg;

end
Algorithm 8: Positive and negative CARs pruning.
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Data: A new instance o to be classified. Set of positive CARsRnewpos and
negative CARsRnewneg from rule pruning phase.

Result: Class label of the new instance o.
Tpos = ∅ ; // set of positive rules matching o
Tneg = ∅ ; // set of negative rules matching o
for each CAR r inRnewpos do

if r.antecedent ⊆ o.antecedent then
Tpos.add(r);

end
end
for each CAR r inRnewneg do

if r.antecedent ⊆ o.antecedent then
r.confidence = −r.confidence;
Tneg.add(r);

end
end
Divide T into n subsets by class labels: T1, T2, ..., Tn;
for each subset T1, T2, ..., Tn do

sum up the confidence values of matching CARs in each class
end
Assign the class with the highest sum of confidence value to o;

Algorithm 9: Classification phase with negative CARs integrated.
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Table 4.8: Comparison of rule pruning strategies when negative CARs are inte-
grated.

Dataset
rules+-

prune +- prune + w/o prune
adult 83.2 82.3 81.9

anneal 91.9 65.7 86.7
breast 91.3 87.0 81.0

cylBands 72.2 63.7 63.7
flare 83.2 78.0 76.6
glass 72.4 60.7 69.6
heart 57.4 60.1 59.7

hepatitis 83.9 82.6 81.3
horseColic 75.8 73.1 72.0
ionosphere 82.3 75.7 75.5

iris 94.7 94.0 94.7
led7 73.3 74.2 73.9

letRecog 64.9 55.1 52.6
mushroom 100.0 97.9 97.7
pageBlocks 91.2 90.4 89.8
penDigits 91.3 83.8 86.8

pima 68.0 65.6 65.1
soybean 90.5 78.2 61.6

wine 91.6 91.6 91.6
zoo 94.1 77.2 94.1

Average 82.7 76.9 77.8

Table 4.9: Statistical analysis of Table 4.7 and Table 4.8; (*) indicates statistically
significant difference.

row ID comparisons wins losses ties p-value
2 rules+- vs. C4.5 * 13 7 0 0.011
3 rules+- vs. FOIL 12 8 0 0.33
4 rules+- vs. CBA 11 9 0 0.24
5 rules+- vs. CMAR 12 7 1 0.42
6 rules+- vs. CPAR 12 6 2 0.058
7 rules+- vs. PAN * 15 5 0 0.014
8 rules+- vs. rules+ * 12 2 6 0.033
9 prune+- vs. prune+ * 17 2 1 0.001
10 prune+- vs. w/o rule pruning * 15 2 3 0.001
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this study, we investigate the problem of using statistically significant dependen-

cies to mine spatial co-location patterns and discover classification association rules

for classification. Co-location pattern mining and associative classification are two

well-studied problems in the data mining community, most of current methods rely

on confounding user defined thresholds to discover frequent patterns and strong

rules. However, these set of thresholds are difficult to determine limiting the usage

in many applications. Moreover, we show that the spatial co-location patterns and

classification association rules discovered by support-confidence framework easily

suffer from type 1 error and type 2 error which lead to the omission of many inter-

esting and detection of meaningless patterns and rules. To address the limitations

of support-confidence framework to make the algorithms less affected by type 1

error and type 2 error, we propose to use statistically significant methods in the

knowledge discovery process.

By fully exploiting the property of statistical significance, we propose two algo-

rithms CMCStatApriori and SigDirect to address the spatial co-location rule mining

and associative classification problem, respectively.

The CMCStatApriori algorithm that we propose is a novel co-location mining

algorithm that is able to detect statistically significant co-location rules in datasets

with extended spatial objects. A motivation for the development of this algorithm

is the problem of mining co-location rules between chemical pollutants and chil-
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dren cancer cases in Alberta and Manitoba, Canada. To solve this problem, firstly,

we build buffers around each spatial object and then impose grids over the geo-

graphic space. From the grid points that intersect with multiple spatial features, we

then derive a spatial transaction dataset. In this way, the co-location pattern mining

problem is transformed to the problem of mining statistically significant associa-

tion rules in the spatial transaction dataset. In CMCStatApriori, z-score is used to

measure those statistical significance of the co-location rules with a fixed conse-

quent spatial feature, it provides an upper bound for the binomial distribution and

its monotonically increasing property makes it possible to mine statistically signif-

icant co-location rules in an iterative way, iterating between candidate generation

and pruning phase. In this way, we do not have to limit the number of antecedent

features up to a certain number which is considered a major limitation of some pre-

vious methods. Therefore, the co-location rules we find are more general and the

algorithm scales up very well. Different statistically significant co-location mining

algorithms usually lead to different sets of co-location rules. The set of co-location

rules is difficult to evaluate even for some domain experts, therefore, we also pro-

pose to use a classifier to help evaluate the detected co-location rules. Experimental

results demonstrate that our algorithm seems to get more meaningful co-location

rules than some other alternatives. In conclusion, in addition to its good generaliza-

tion and scalability, CMCStatApriori is considered to be a very effective algorithm

for statistically significant co-location rule mining problem.

The novel associative classifier, SigDirect, can be viewed as a strong competitor

or even slightly winner to some existing rule based and associative classifiers. Un-

like existing associative classifiers which require minimum support and minimum

confidence thresholds, SigDirect does not need to set any confounding parameters.

It extends the recent proposed Kingfisher algorithm, to directly mine CARs that

show statistically significant dependencies. It is well known that searching for sta-

tistically significant CARs is a very expensive and demanding task, because the

number of CARs grows exponentially with the number of antecedent items. We

make this search phase possible by using some effective pruning strategies. Since

the mined CARs are statistically significant, it alleviates the type 1 error and type
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2 error that normally appear in other classification association rule mining meth-

ods. Apart from the promising classification performance, the number of CARs

before and after rule pruning are both very small, making SigDirect more appeal-

ing than other methods when there is little difference in classification performance.

The number of CARs before rule pruning is even an order of magnitude smaller

than that by CBA and CMAR. After rule pruning, the number of rules are almost

always below 100. The small set of rules in both phases makes it possible and prac-

tical for users to sift through them to edit and update according to their own needs,

which can be very important in many applications. The experiments also show that

in the rule pruning phase, the instance centric pruning strategy is more effective

than the database coverage method, and in the classification phase, under a mea-

sure M , summation effect performs better than average effect and classifying just

based on the best matching rule. When the measure M is the confidence, the clas-

sification performance is the best. We also investigate the problem of integrating

statistically significant negative CARs into our SigDirect algorithm, the experimen-

tal results seem very encouraging. A novel rule pruning strategy is also proposed

to reduce the number of positive and negative CARs separately. The classification

performance of the new classifier can be seen as a competitor to some well known

classification methods. Besides, by considering the negative CARs, the classifica-

tion accuracy indeed increases compared to the classifier built with only positive

classification association rules. A two step statistical test are used to validate all

these conclusions.

5.2 Future Work

Future work can be focused in these possible directions:

1. In CMCStatApriori, we generate the complete set of statistically significant

co-location rules. The number of co-location rules will be very large if a

loose z-score threshold is used, and a large subset of them is considered to be

redundant, i.e. adding no new information. In the future, we may consider

to detect only non-redundant co-location rules to reduce the number of dis-
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covered co-location rules. In addition, CMCStatApriori uses the z-score to

search for statistically significant co-location rules because z-score provides

an upper bound for the binomial distribution, more research can be done to

find a more tight upper bound for a more accurate result. Another limitation

of CMCStatApriori is we still need to set the z-score threshold. In this study,

we present a possible way to select the threshold by evaluating the classifica-

tion accuracy, how to automatically select the threshold more effectively for

each dataset is another very challenging problem.

2. Possible future work on SigDirect can be focused in these two aspects: firstly,

we expect to derive more effective pruning strategies in the rule generation

phase; another interesting but challenging task is to find more effective rule

pruning strategies to prune negative CARs post rule generation to improve

the classification performance.
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[31] Wilhelmiina Hämäläinen. Kingfisher: an efficient algorithm for searching
for both positive and negative dependency rules with statistical significance
measures. Knowledge and Information Systems, 32(2):383–414, 2012.

[32] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without can-
didate generation. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 1–12, 2000.

[33] Yan Huang, Jian Pei, and Hui Xiong. Mining co-location patterns with rare
events from spatial data sets. Geoinformatica, 10(3):239–260, 2006.

[34] Yan Huang, Shashi Shekhar, and Hui Xiong. Discovering colocation patterns
from spatial data sets: a general approach. IEEE Transactions on Knowledge
and Data Engineering, 16(12):1472–1485, 2004.

[35] Yan Huang, Hui Xiong, Shashi Shekhar, and Jian Pei. Mining confident co-
location rules without a support threshold. In Proceedings of the 2003 ACM
symposium on Applied Computing (SAC), pages 497–501, 2003.

[36] Yun Sing Koh and Russel Pears. Efficiently finding negative association rules
without support threshold. In Proceedings of the 20th Australian Joint Con-
ference on Artificial Intelligence (AI), pages 710–714, 2007.

[37] Jiuyong Li. On optimal rule discovery. IEEE Transactions on Knowledge and
Data Engineering, 18(4):460–471, 2006.

[38] Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and efficient clas-
sification based on multiple class-association rules. In Proceedings of the
2001 IEEE International Conference on Data Mining (ICDM), pages 369–
376, 2001.

[39] Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. A comparison of prediction
accuracy, complexity, and training time of thirty-three old and new classifica-
tion algorithms. Machine learning, 40(3):203–228, 2000.

70



[40] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining (KDD), pages 80–86, 1998.

[41] Bing Liu, Wynne Hsu, and Yiming Ma. Pruning and summarizing the dis-
covered associations. In Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 125–
134, 1999.

[42] Shinichi Morishita and Akihiro Nakaya. Parallel branch-and-bound graph
search for correlated association rules. In Proceedings of the 5th ACM
SIGKDD Workshop on Large-Scale Parallel KDD Systems (KDD Workshop),
pages 127–144, 1999.

[43] Shinichi Morishita and Jun Sese. Transversing itemset lattices with statistical
metric pruning. In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pages 226–236, 2000.

[44] Siegfried Nijssen, Tias Guns, and Luc De Raedt. Correlated itemset mining
in roc space: a constraint programming approach. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 647–656, 2009.

[45] Siegfried Nijssen and Joost N Kok. Multi-class correlated pattern mining. In
Proceedings of the 4th International Workshop on Knowledge Discovery in
Inductive Databases (KDD Workshop), pages 165–187, 2005.

[46] J Ross Quinlan and R Mike Cameron-Jones. Foil: A midterm report. In
Proceedings of the 1993 European Conference on Machine Learning (ECML),
pages 1–20, 1993.

[47] John Ross Quinlan. C4.5: Programs for Machine Learning, volume 1. Mor-
gan kaufmann, 1993.

[48] Ashok Savasere, Edward Omiecinski, and Shamkant Navathe. Mining for
strong negative associations in a large database of customer transactions.
In Proceedings of the 14th International Conference on Data Engineering
(ICDE), pages 494–502, 1998.

[49] Shashi Shekhar and Yan Huang. Discovering spatial co-location patterns: A
summary of results. In Proceedings of the 7th International Symposium on
Spatial and Temporal Databases (SSTD), pages 236–256, 2001.

[50] Wei-Guang Teng, Ming-Jyh Hsieh, and Ming-Syan Chen. On the mining
of substitution rules for statistically dependent items. In Proceedings of the
2002 IEEE International Conference on Data Mining (ICDM), pages 442–
449, 2002.

[51] Wei-Guang Teng, Ming-Jyh Hsieh, and Ming-Syan Chen. A statistical frame-
work for mining substitution rules. Knowledge and Information Systems,
7(2):158–178, 2005.

[52] Dhananjay R Thiruvady and Geoff I Webb. Mining negative rules using grd.
In Proceedings of the 8th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD), pages 161–165, 2004.

71



[53] Florian Verhein and Sanjay Chawla. Using significant, positively associated
and relatively class correlated rules for associative classification of imbalanced
datasets. In Proceedings of the 7th IEEE International Conference on Data
Mining (ICDM), pages 679–684, 2007.

[54] Hao Wang, Xing Zhang, and Guoqing Chen. Mining a complete set of both
positive and negative association rules from large databases. In Proceedings
of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and
Data Mining (PAKDD), pages 777–784, 2008.

[55] Jianyong Wang and George Karypis. Harmony: Efficiently mining the best
rules for classification. In Proceedings of the 2005 SIAM International Con-
ference on Data Mining (SDM), pages 205–216, 2005.

[56] Geoffrey I Webb. Discovering significant rules. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 434–443, 2006.

[57] Geoffrey I Webb. Discovering significant patterns. Machine Learning,
68(1):1–33, 2007.

[58] Geoffrey I Webb and Songmao Zhang. K-optimal rule discovery. Data Mining
and Knowledge Discovery, 10(1):39–79, 2005.

[59] Xindong Wu, Chengqi Zhang, and Shichao Zhang. Efficient mining of both
positive and negative association rules. ACM Transactions on Information
Systems, 22(3):381–405, 2004.

[60] Xiangye Xiao, Xing Xie, Qiong Luo, and Wei-Ying Ma. Density based co-
location pattern discovery. In Proceedings of the 16th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems
(GIS), page 29, 2008.

[61] Hui Xiong, Shashi Shekhar, Yan Huang, Vipin Kumar, Xiaobin Ma, and
Jin Soung Yoo. A framework for discovering co-location patterns in data sets
with extended spatial objects. In Proceedings of the 2004 SIAM International
Conference on Data Mining (SDM), 2004.

[62] X Yin and J Han. Cpar: Classification based on predictive association rules.
In Proceedings of the 3rd SIAM International Conference on Data Mining
(SDM), pages 331–335, 2003.

[63] Jin Soung Yoo and Shashi Shekhar. A joinless approach for mining spatial co-
location patterns. IEEE Transactions on Knowledge and Data Engineering,
18(10):1323–1337, 2006.

[64] Jin Soung Yoo, Shashi Shekhar, and Mete Celik. A join-less approach for co-
location pattern mining: A summary of results. In Proceedings of the 5th IEEE
International Conference on Data Mining (ICDM), pages 813–816, 2005.

[65] Jin Soung Yoo, Shashi Shekhar, John Smith, and Julius P Kumquat. A partial
join approach for mining co-location patterns. In Proceedings of the 12th an-
nual ACM International Workshop on Geographic Information Systems (GIS),
pages 241–249. ACM, 2004.

72



[66] Mohammed J Zaki. Generating non-redundant association rules. In Proceed-
ings of the 6th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 34–43, 2000.

[67] Xin Zhang, Nikos Mamoulis, David W Cheung, and Yutao Shou. Fast mining
of spatial collocations. In Proceedings of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pages
384–393, 2004.

73


