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CABSTRACT A .

Oﬁtimal control theory was wsed to design® an am;}litude>c0ntrol

system for a quadrature phase oscillator. Low distortion _hnd fast -
. i )
settling time are important specifications of amplitude control

systems; howeyer, these criterion are normally ¢ontradictory. The
’ AR - ~

approach discussed here eliminates the problém by ‘designing two .

separate control syétefns;‘ each of which has l)%n optimized for the

°

En goal. The complexity of‘ttbxe solution forces, a

appropriate dg
P &

// > \
“sub-optimdl implementation for which -a circuit has been built and

perforglance parameters measured. The THD obtained is better than
o, - - -
e . .
-60dB and the 'settling time is better than half th& pgriod of
. .
oscillation. N ,
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CHAPTER ONE: THE PROBLEM OF AMPLITUDE CONTROL

L4

1.0 THE STRUC?URE OF AMPLITUDE CONTROL SYSTEMS

A lipear oscillator would make an ideal oscillating systed.
However, the dependence of the amplitude on the initial conditions and
designing a circuit that ﬂ:e poles with only imaginarj components 15

physically imposdible. Therefore, some form of nonlinearity is
L

required. Determining that nonlinearity and the way in which it is

connectied in the c¢ircuit is the subject of this thesis. 8

There are certain criterion that must bé met when designing an

amplitude'control\system. One ef the major problems ‘is overcomin;'the

distortion introduced by the noglinear .nature of the control.

-

Sometimes low distortion is not the only concern; the oscillator may
be required to have a fast settling time. This tends to complicate

matters- because a trade-off must be made between low harmanic

distortion and fast settling time. For example in very low ffequency ’
“oscillators a settling time of 60 to 1000 geriods of oscillation’ is

generally unacceptable. 1Another area of application is in automated

test equipment where the oscillator acts as a' signal generator; again,

a fast settling,time is‘Just as important’;? low diétortiou. In an
attempt to.minimize Eth factors designere tave tesorted to‘:kme very
nbvel designs with varying degrees of success. Despite the'decteceed:
settling times while distortion has remained low the trade- off ltill

exists. The two design criterion renein linked . |
Amplitude control systens have a definite ltructure which is

illustrated in Fig 1.1. There are three bauic conponlntl to the,

feedheck system - The first compomnt 1- eh- usnitndl dcmtor Itl‘;'"'j

., P



’ . o
/ » . .
function is_ to measure the amplitul® of the signal. The det\ector is

inherently 'Qnoﬁlinear circuit or device and consequently it is

usually the largest source of distortion in the circuit. Therefore,

much of the design effort centers on the detector. Following the

.

detector is a difference amplifier which rarely poses any froblems.
Its main ‘purpose is to create an error signal which is the difference
between the actual and {esired amplitude.  The error signal then
controls the wvariable gain aerlifier which 1is usually the second
source of distortior As. with the detector, it is inherently

nonlinear; however, }deally it sl';ould be a bilinear device (ie. to-

-

have constant gain wben the error signal is constant) since. it would
not prbduca any distortion. The variable gain amplifier is usually
either a FET, acting as a voltage varjable resistancg, or an analog

multiplier whose transconductance varies according to the error

.-

signal. The output of the variable gain amplifier is the control

.

signal which feeds into the oscillator circﬁt and adjusts the
amplitude. Figure 1.1 indicates that the inpiit into the variable gain

amplifier is V is a vector containi,ng ‘all the state

. v
STATE STATE

variables required. In an RC-oscillator all state variables are
voltages. Typically, only one voltage is required-or controlled but -

this is not always so. Figure 1.1 also illustrates that the input to
. L
the magnitude detector is another vector vour which may or may not be

. AN . . b
the same as V though normally it .is. . Agaiﬁ only a single

. STATE'

voltag’e feeds Lnto the detector in typical applications but not

always. This is the- basic feedback structure of an amplitude control

'\
v

system for which a design is squght
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1. 1 LITERATURE SURVEY

.

»

The typical approach (sv~ [1] and [2]) to designing an amplitude
control svétem Is to use a rectifier as the detector. This s

followed by a filter creating a smooth dc signal which cath then be

: 4
compared with the reference signal. The larger the time constant of
the filter the Yess harmonics there will be. At the same time the
transient duration will increase. In order to obtain a total harmonic

s
distortion (THD) of O.1% the time constant of the filter needs to be

large enough that a settling time of several hundred) periods of
oscillation will result [5]. This is why so much effort has bee?
placed in creating new designs for the magnitude detector.

Efforts of wvarious designers to overcome the problem have
resulted in methods which can be categorized into four groups. The

5,
firsct group ([3]-(6]), replaces the rectifier and filter with a sample

and hold peak detector synchronised to the oscillation frequency. The
circuit by Vannerson (5] will serve as an example. the approach is

applied to a quadrature phase or state variable oscillator which has

two outputs whose phase difference is 90°. Vantierson exploits the

fact that when the first output is zero the second output has reached
~

»
fts peak. By sensing the zero crossing of the first output with an

.

edge sensitive comparator the resulting output can be used to control

the samplé and hold 'so that it samples the peak value of the second

output. Once the peak value has been obtained the circuit follows the
same pattern as described in section 1.0, where in this example the
variable gain amplifier is realized with an analog multiplier. The

THD is better than 0.00l% and the settling time 1is two or three

periods of oscillation. The fréquency of oscillation is limited by

S

A

~—



N
the bandwidth of the sample and hold, and low distortion figures are
;;bCained only if the sampling time is less than 0.05 times the period
of oscillation.

It has been -steted that a linear oscillator could not be bufilt
Because the initial conditions could not be predetermined. What {f
they -could? The second design approach (J7]-[9]) attempts to do just
that. In an RC-oscillator all state variables are voltages determined
by the capacitors; therefore, it is th; charge on the capacitor which
determines the inigi;I condition. In this approach the control®
circuict waits until the energy 1in the capacitor is zero and then

places a charge on the capacitor equivalent to the desired amplitude

’

once each period. In the paper by Filanovsky [9]: the settling time
was one period of oscillation while maintaining a THD of less than-
0.2% for a range of amplitudes from 2 to 7V.

The above two methods relied on sampling of the oscillator's
signalg to determine the control. The third group ([IQ‘&[II]) departs
from this approach. Instead the attempt is done to eliminate the
filter or at [east significantly reduce the ‘time constant. The

‘
approach is to use a multi-phase rectifier. The circuit by Vannerson
[11] uses the quadrature phase oscillator as before but takes the two
outpdts; inverts them; to create four outputs that are all 90° out of
phase. These outputs are then rectified and summed. The result is an
output voltage wjth very little ripple and a filter with a small time
constant can remove that. For a THD of 0.004% the settling time is
250 periods. However, the THD can be traded-off for speed. For
example, the settling time can‘be reduéced to 1.5 periods<4f a THD of

- 3

0.6% is acceptable. -



The final wmethod ([12],(17])) is similar to the third in that it

eliminates the filter  However, the means of measuring the amplitude
involves analog computation. The idea {s to exploit the phase
relationship of the quadrature phase oscillator. If the two outputs

N -

are squared and then summed, the result 1is a dc signal which is
equivalent to the amplitude. There are, howeve%,‘several weaknesses
to this approach. The first is that the squaring circuits should be
matched. If not disfortion will occur. The phase error of the two
voltages must be small. However, t}e results éan be quite good; in
[2] a THD of 0.005% to 0.06% ;epending on amplitude was achieved.
Typical settling times are between 6 to 10 periods.

The quadrature phase oscillator is not the only circuig for which
this control can be applied. It can also be used in the twin-T
oscillaté; since the phase diffefence of the voltages at the nodes of
each T nétwork is 90°. The method can also be extended (6] to other
multiphase oscillato;s. For e;ample, if ag oscillator has three
outputs each 120° apart, then if these vol&ages are squared and
symmed, the result is a dc voltagé 1.5 times the amplitude.

THD figures and settling times have béen used as a basis for
comparison, an important factor has been ignored in these cémparisons,
hamely, frequency. Frequency also has an effecc on the distortion and
settling times obtained. The problea is that not every researcher

records what the frequency of his circuit was, which creates some

doubts as to the validity of the comparison. To make matters worse,
N At .

some researchers do not record the conditions under which the

measurements were made. For example, a low distortion figure is

obtained as well as fast settling time bES> vete they obtained at the



same time with the same circyit conditions? Therefore, "1ty is not as

v

easy as 1t appears to judgj the merits of the designs based on juét

.

the published results.

From this survey it is clear that various designs have obtained
t

improved results as compared to theé typical design. Each has {ts
advantages and disadvantages. There is one thing.that remains common
\ :

to all of them; low distortion and fastlsettling remain contradictory

design criterion requiring the designer to make a trade-off. *



1.2 THE PROPOSED CONTROLLER
The first step in designing the amplitude controller i; to sever
the link between response time and distortion. The only time to be
concerned about,settling time is during amplitude transitions whereas
one only needs td_be concerned about distortion during steady state
behavior. Since transient and steady state behavior represent two
separate parts of the dynamic behavior why npc have two §§barate'
controls: one for steady state behavior whose oflly design criterion is

low distortion and o;le for transien behavior which is optim‘zed forr
fast rqslonse. This way no trade-off has to be made. ‘

First, consider the céntrol that has a fast-response. Of all the
designs discussed in section 1.1 none of them were copied or modified
here. Instead the results of optimal congrol theory were applied to
synthesize a control. Many of the papers discussed claimed that thei?
control wae fast. The intent here was to design a controller that was -
the fastest. Optimal control theory was used to determine the contr;l
law that minimized the time of transition from one_amplitude to the.
other. “The nature of the control is unlike any other but the de®wign
of the fast Amplitude control was only half the problem:

Having used optimal control for one controller it was only
natural to tﬂy it for the steady stacg controller. . However, it is not
possible to state a performance index that minimizes the distortion
directly. This is because the mathematical model or description has .
no harmonics as long as a‘systeﬁ is‘chu;en such ihat the liﬁit cycle
is circular. The harmonics are due to Fhe non-idealities of the ___

circuit; deviations from thg model caused by the circuit. Since the

-model is synthesized before the circuit is designed the anomalies

i e - '



cannot be accounted for. Instead the error between the actual and the

. o

desired amplitude \is minimized over an infinite amount of time. This .
at least ensures that the limit cycle is circular.

. Y 1 -
The thesis is divided. into four chapters including this ona.

Y
Chapter two delves inta the world of mathematics and optimal control.

The optimal _solutions are found .but due to their complexity
sub-optimal controls Are derived. These prpposed controls provide the

basis of the circuit design which is covered in chapter three. ' The

final chapter is the conclusion and brings this treatise to a close.



CHAPTER Two: MATHEMATICAL FORMULATION oF THE CONTROLS

-~

N\

2.0 INTRODUCTION ' .

This chapter discusses the mathed&tics used to design the dontrol

systems. The notation and nomenclature of optimal control theory is

N
first introduced and then a basic summary of the results is covered.

The coverage is brief and the reader is referred to the references

cited in the text for more in-depth information. This is followed by

a qiscussioh of yime optimal control. The results here are applied to

solving the time optimal ¢ontrol for an oscillator where the goal is

[ N
to reach a desired amplitude in the shortest time. Discussion

continues with the proposed controller which is the control system

.

that was actually built. It is a sub-optimal control based ®wn the

.

solution of the optimal control. The discussion then turns to the

optimal trackiﬁg regulator. This control system takes over after the
J

~

desired amplitude in the oscillator is reached. Its main job -is to
. AN
ensure that the oscillater stays at the desired amplitude and

hopefully does not introduce too much distortion in the process. The

‘o -t

results of the opéimal tracking regulator are found to have sbme
LN

drawbacks and so a subjoptimal controller is proposed that;is more
feasible in terms of the circuit design. It is also found that’this
control has a faster rate’ of convergence than the optimal control and
reasons for this are discussed.. Finally, the chapter concludes by

looking at a dual mode control system. The dual mode control simply

il

determines when the two different control systems should be applied %o

I . »

the oscillator.

10 o -

#
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2.1 A BRIEF INTRODUCTION TO -OPTIMAL CONTROL THEORY
x )
Once a mathematical model of the oscillator has been attained the

' design of the control system can begin. Thf results of optimal
control theory can be used to detgrmine the nature of the control.
However, in order to use these results, one must be familiar ;1th the
concepts, language and notation of the éheory;- This section-
intro&uces the notation used }n‘this thesis when discussing optimal
c%?trol'and includes the following topics:

™ . state space modelling';f the oscillaﬁbr,

. 1nttoductioﬁ of the performance index J, L

s~discussion of the terminal conditions,

A + incorporation of the constraints into J,

-

+ introduction of the Hamiltonian H,

L 4

+ statement of the necessary conditions for optimization,
+ statement of the associated terminal conditions.
In order to apply!optimal control thqary the design must have

preciséiy defined goals and the’ system must be modelled
- N . \ h ’
mathematically. The results of optimal control théory are usually

stated using a state space representation; therefore, the equations

goﬁérning the oscillator must be written, in thaé\form. Thi;gepctal
~

[}

form of the equation is

d x = £(x,u,t) - ce '{f:o,ct] 2.

where. x is gn n vector controlled by u, an m vact.or. and the initial

[
condition® . ¥

©

x(t) o x . L | (2.2)
_ - | . |

Since only 'linear. time 1nv;:iant squations are studied, equation (2.1)

can be re-v‘:ten as ~ ' : R 8

11

LN



x - Ax(is + Bu(t) N (2.3)
where the oscillatory nature of the system 1is determined by the

eigenvalues of A. R
‘ !

. . -,
With’h state space model of the system, the design goals are then

. 1
expressed in terms of a performance index J  where

-

t -
T = wlxe)] + [ Tix(e) u(e))de (2.4).
t .

The problem is incomplete unless a set of relations is imposed on the
terminal” point of the trajectory. ' This is usually stated by a
q-dimensional terminai manifold giyén by

. N[x(tt)'tz] -0 (2.59.

The ‘objective is to minimize J with respect to the coﬁtrol' u(e)
subject to the equality constraints: the differential equation (2.3),
the 1nitial condition " (2.2) and the . terminal cond;tion (2.5). .
Lagrange multipliérs are used to incorporate these constraints into
the formulation for J.bbzgtroducing p(t), an n dimensional costate

vector for x(t), and {, a ¢ dimensional Lagrange multiplier for N, the

equality constraints are adjoined to J as follows:

.
J = pix(e )] + UNIx(e) e ] + | ‘{es[x(c),u(c)] -
t

+

+ p'(£)[Ax(t) + Bu(e) - ii}dc 1 (2.6).

To make the notation more c%Fpact H, the Hamiltontan, is introduced.

H is defined as

1 J‘is sometimes referred to as a cost functional

h . ]
P 3 -

12



- -

H(x(£),w(€),p(e)] = $[x(£),u(6)] + p'(£) [Ax(e)+Bu(e)] (2,7),
then J becomes ‘ﬂf ,

J = $(x(e)] + ON(x(e),c ]

O
t

+ f i{H[x(t),u(t),p(t)] - p’:‘:} de . (2'.8)/.

t

(<] -

In equation (2.8) ct may be unknown, therefore the condjition for a

miniﬁum will be altered to reflect that fact or cr can be allowed to

approach infimity producing an improper integral. Furthermore,

inequality constraints can be imposed on u(t). In order to solve the
problem with inequality control constraints Pontryagin’s Principle

. l
(12] is used . Other conditions such as state inequality congtraints

.could be imposed, but they are mot discussed in this thesis. With the
design goals now incorporated into J and the constraints imposed by
the system and endpo%nt conditions, J is ready to be minimized.

b ]
J is ‘minimized by computing the first variation §J and setting

6§J = 0. From this "the necessary conditions for u(t) to minimize J

are
. -
*®
9 _ x ~ ax(t) + Bu(e) (2.9)
ap h [ L
OH L 5 = 2%, A%h(e) (2.10).
x - ax v

~

If there are' no constraints imposed on u(t) then the relation
gg
du

-0 -2, 8o (2.11)
du. : B _
- 18 used: However, if u(t) is bounded such that u(t) € 0 where 0 is

" the set of admissible values of controls then

[ kY

| H[x(£) (), B(8)] S H[x(£),u(E),p(E)] (2.12)

where u(t) is the optimal control. zqu.uan (2.9) 1s the original

13
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system of n first order differential equations. Added to (2.9)884s
‘-‘(2.10) with another n equations to solve. Associated with these
equations are 2n arbitrary constants. The information required to

determine these constants comes from the endpoint conditions which

are: .
: . ;
x(t) = x (2.13)
a o
N [x(tt)] -0 (2.14)
34 6Ni
+ |- A p(c‘) -0 (2.15)
ax(t,) ax(c ) ' A\
and if £, is unspecified the relation
36 N ~ )
| £ t-H=-q 2.16) 1,
at ac
£ £

is added. Equations (2.9) to (2.16) comprise the necesééry conditions

for the minimization of J and (2.13} to (2.16) the endpoint
conditions. »7 ’

If it is éossible for J to be maximized, an investigation -of the
secend variation .SZJ is required to determine whether J has been
‘maximized or minimized. Hoyever, in the problems studied, it is
", usually apparent from the §olution which extreme has been reached and
the computation of 8%3 is not required. J

Althouéh tptimal control theoryvprovideS'a mathematicélly optimal
solution, a problem arises when‘ the solution is viéwedv from an

-

engineering standpoint. First and foremost u(t) should be a function

~

of x(t), the state, in drder that a feedback control law {is obtained

égecause the system of equations is almosdéif%ays a two-point boundary”’

value problem, the solution obtained is in the form of an open loop

14
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(
control. Formulating the problem in terms of the Hamilton-Jacobi {13]

equation will provide a feedback control lad? when solved. However,

the Hamilton-Jacobi equation is a partial differential equation and is

not edsily solved. The only other approach is to make the assumption
that u is a function of x, i.e. u(x(¢t)}], then apply the assumption,ﬁo
. O -

the equations and hope it works. This approach is implicit in the .

\

solutions that follow.

Although the performance index J has been introduced as a means

’ i
for expressing the design goals in mathematical terms, J does not -

describe the entire problem. Endpoint conditions are required to
supplement' the information already obtained about the problem.
Depending on whether any bounds on u are imposed, either equation

(2.11) or (2.12) is used. If (2.12) is used, the optimal trajectory x

.will norﬂally have "corners". An example of this occurs in the next

section on ‘time optimal control. This section has introduced optimal '

control theory but not in any general terms. More general and mor;.

3

thorough treatments can be found in Sage [13] and Athans and .PF&lb

[14]. A conciée'but complete statement of the tﬁhpry can be found in

A \\

Macki [16].

15
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2.2 SYNTHESIS OF THE TIME OPTIMAL 'CONTROLLER
’ ‘ »
This sectionisz applies the results of the previous section to

the‘$rob1em of timeé-optimal control. This, particular problem of the

time optimal control™applied to the harmoﬁic_oécillg;?r is one that
\appears extensively in the literature as it pfovides a gimple example.
However, for the mafbr&ty of the research literature examined the
target set or Eerﬁinal set has alway?fbeen the  origin. What this

means 1is that the optimal control has been used to damp out the

-
oscillations. This {s not the case here; on the contrary, the aim

here is to have the system achieve a desired amplitude in the shortest.

possible time. This section will outline. the solutién to this
problem. Much of the work depends on the geometrical description of
the state variable trajectories in the phase plane. The following

topics are covered:

-

+ the constraints on u, .

* the performanee index J for this problem,

-+ the optimal control 4 in terms of p(t),
' : ’
- a graphical solution based on the information ‘from the

terminal manifold and its gradient,

* a switching curve for u(t) from the graphical solution,

£

* a feedback control law.
I

a4 © e !

The time optimal problem c¢an be made more precidé by putti it

in mathematical terms.A Equation (2.3) is repeated here for reference

»

and it describes the linear harmonic oscillator for yhicﬁ an amplitud;‘

‘cqntroller 197de$1red;
x = AX(t) + Bu(t) - (2.17)

whére A is given as ' L , .

16
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A‘-[_ﬁ 0 } (2.18)
and B determines the frequency of oscillation. If u(t) = 0 then
/ 2 2
x1(t) - X0t Xy, 8in (Bex) (2.19) .
x,(t) . B

' 2
x_ + x_ cos (Bt+
Lo 20 (Be+€)

o

In the XX, plane the solutipﬁ is a family o{.ci;cles ceﬁxered at the
origin (see Fig. 2.1) where the amplitude is determined by the initial
conditi;ns. To keep th; ;ontroller simple only a single cbnn}ol will
be &esiéned, that is, m = 1. Tﬁe circuit real{?ation of the copt;oL

. will have limits on the voltages it can produce. It 1s, therefore,

expected that u(t) will have upper and lower bounds. Assuming that
. :

L

the voltage -swing is symmetricgl the inequality {s g%ven as
lue)f <k < | (2.20).

where k is a positi;e constant. However, it is more convenient to

write (2.20) as - ' | 2

lu(e)] <1 (2.21)

where the constant k is incorporated into the matrix B. Since B is a

2 x 1 matrix it will be represented as a vector b.
Since the only objective is to minimize the time

$=c =0, $-1 C - - (2.22)

-

thergfore, J 1is

J -.-'J' fde - ¢ T (2.23).
0 f s . ’ | ,
The results of the previous seetion»can-how be ;ppiiodf,- Thq

o o

Hamiitoﬁi:p is - -  ,v  .‘
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»
Fe * H(x,u.p] = 1 + p [Ax + Bu]

S

g

Ry %,

> - pTAx + pru (2.24) .

L
-Applying the inequality (2.12)
Hix, a,p] s H[(x,u,p] jue)] s 1 (2.25)

1+ pI()AX(t) + p'ba(c) s 1 + p (¢)Ax(c) + pbu(c)
(2.26)

PL(OIBACE) = pl()bu(r) (2.27).
Letting pr(t)b & g(t), a scalar, there is a 0a(¢t) which minimizes the
funetion
o = q(O)u(t) X (2.28)
It {s apparent that
min ¢ = min (q()u(c)) - -Jq(c)| (2.29)

therefore- G(t) must be

N

a(ec) = +1 if q(t) < 0O
' a(e) = -1 if q(c) > 0 (2.30).
i) a(r) is indeterminate if q(t) =~ 0 ",
In more compact notation ‘{}

a(£) = -sgn(q(r)) = -sgn(p (£)b) | (2.31).

Now the results of equations (2.9) and (2.10) can be applied.

O L g - Ax() + bu(c) = Ax(e) - b sgn(p (£)b] 1 (2.32)

ap

o o ATp(¢o) (2.33)

ix .
A is skew symmetric., thus (2.33) becomes

P - Ap(f) (2.34)
The solution to (2.34) is

s p(e) = *p(o) (2.35)
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U [COS pt sin gr (2.36).

sin Bt cos B¢

In equation (2.30) if q(¢t) = O then u(t) is undetermined. If

q(t) = O over an interval of time, say [tx’czl' then the control
problem is a singular control problem. Otherwise, it 1is called a
normal control problem {14]. Since q(t) = pr(t)b, the only way q(t)

could be zero over an interval of time is if pT(C)b is zero ovér an
interval. From Equation (2.35) and (2.36) it is cleaPly seen that
this i1s impossible; therefore, the control problem is normal and there
is ,no need for concern over a singular solution.
The endpoint conditions can now be applied to the problem. The
terminal manifold or the target set is
N[{x(c )] = x°(t) + x(t) - R* =0 (2.37)
4 1t 2 f o )
where R is the ‘desired amplicude. Equation (2.3/) describes a circle
o
in the X X, plane with radius R and the” center at the origin.
®
A}
Applying (2.16)
] .
Hix(c).p(c)] = 0 =~ p'(c)Ax(c ) - (2.38).
’ T T
P (£ )b sgn[p (¢ )b]

Since 9K _ O this result'z«can be extended to cover the entire interval,
atc

thus

L]

Mx(t),p(t)] =0 ve e (0,¢ ] (2.39)

and from equation (2.15)

2x1(t£) J
2xz(tz)

P(C!) - C[ (2.40).

One additional fact is that P(t,) is normal to the target set [14],

which is implied in (2.40) since oN is the gradient of N. Now let
ax :

o] .
b - [k] . o o (2.41)
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FIG. 21 FAMILLY OF TRAJECTORIES FOR THE HARMONIC OSCILLATOR

N

FIG. 22 THE CONTROL W(T) AND ITS RELATIONSHP TO P2(T)
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thus the control will only be applied to X, and
q(e) = p()k . _ ¢ (2.42)
In Fig. 2.2 pz(t) is plotted and u(t) has been superimposed. From the
\ :

graph it is apparent that u(t) is a plecewise constant func%ion, it

. n
can remain constant for no more than — units of time, and there is no

A

upper bound on the number of switchings. Essentiall&, u(c) 1is a

square wave with frequency f until such time as the target set is

reached.
Legting
u=a=2 (2.43)
the system (2.17) is solved for u(t) - a constant. The solution of

the system is .

xl(c) - [xw - ka Jcos st + xuﬁin Bt + ka

A B
x (t) = -[x - ka ]sin Bt + x_cos St (2.44) .
2¢ 10 8 20

The time dependence can be eliminated from (2.44) which gives
(Bx - kn)'+(px )" = (px - ka)*+(px, )?
= constant (2.45).
Equation (2.45) is drawn in Fig 2.3. .As illustrated, the trajectories
are circles wi;h centers (-k,0) and (k,0) in the ﬁilﬁxz plane. |
With the information obtained the switching curve for u(t) in the
ﬁxlﬂxz plane can now be determined. To Bégin,ﬁassume R° in (2.37) s
Ro - 2.5k | . . \(2.49)
and that the initial pointvx° lies outside the circle described by
N[x.(tt)]. Let x , the final p‘oint, be.expressed pardmetrically as

)

21
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(k.0)
px,

f
FIG. 23 FAMLY OF TRAJECTORES FOR THE HARMONIC OSCILLATOR
WITH THE CONTROL APPLIED

s
M

(-k,0)

\TARGET SET

FIG. 24 THE TERMNAL CONDITIONS APPLED.TO THE OPTIMAL TRAJECTORY



R sin «a
o

R cos a |» \
x - ° (2.50)"
From the previous discussion it is known that p(tt) is normal to

the tar set (Fig 2.4). Since it is the direction rather than the

magnitude o 'a(c:) that i{s of concern, let

p(t) = [ e ] (2.51).

sin a
. A3

Using (2.51) as the terminal condition for (2.35) the arbitrary
constants can be solved for in terms of a and L, giving,

cos (ﬂt!+a-ﬁtj

P = latn (Be va-pe) #(2.52).

In Fig. 2.4 it can be seen that for 0 < a < u(t)"- -1. Because

u(t) = -sgnip, (t)k] - (2.53)
pz(c) must be positive. In order that pz(t) > 0 the following must be
. -
true,

ﬂt:' (x-a) < Bt < pcr+ a ' (2.54).

- -

However, Bt will never exceed ﬂcg and (2.54) can be modified to

ﬂtt- (x-a) < Bt < ﬂtt (2.55).

Stérting at the-point A and tracing the trajectory béck-wards in time

until the control switches,@the angle of the arc traced will be x-a
. \ . .
radians, as determined from (2.55). If the point where u(t) switches
is called B then as a varies from 0 to x the point B will °trace a

semicircle witt_x radius k and-qem:e;: (~(R°+k),()) (see Fig. 2.5). The

" semicircle is part of the switching curve. The switchings t;f u(t)

will now occur every x radians until x 18 reachcd (Fig 2.6). Thul,~

outside of the target sct the ﬂxﬂx phm is dividcd in hnlf by a

series of connecting semic:[tclcs f?ig 2.7) vith radius k. In the

2
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FIG. 25 CONSTRUCTION OF THE SWITCHING CURVE
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£
upper half plane u = -1 and in the lower half plane u = +1. When the
trajectory reaches one of the semicircles the control switches, hence
the name switching curve. »

- Having determined the switching curve outside the ‘circle; the
switching curve inside the circle will now be determined. The
argument here is .completely analogous to that already presented except
that for 0 < a < n the control u(t) = +1 and the vector p(tt) points
into the circle. However, the conclusion that the angle of the arc is
n-a radians still remains true (see Fig.‘2.8). As before, as a varies
from O to » B t;aces a semicircle. The semicircle represents part of
the switching curve-fof'the interior of the circle. However, the next
part of the switching curve is not determined by tracing several
trajectories of angle = radians from the. semicircle described by B.
In fact, the situation becomes complicated and requires some
explanation. In Fig. 2.9 the circular target set is drawn. In }ts
interior have been drawn the two semicircular switching curves; one
for u = +1 and the other for u = -1. The only part of the ﬂx&ﬂxz

plane for which the switching éurGes is not known is for

2 2 ‘
/x] +x. < 0.5k (2.56). -

»

To aid the discussion below, let the semicircle on the left be L and
the one on the right R. The switching curve for the condition
specified iIn (2.56) is dé;ermined ﬁy‘ the locus for which the

transition time to the target set is equal regardless of whether the

~

starting value for the control is u(t)=+l1 or u(t)=-1. , This is the -

same as determining the point for which the sum of the angles 01 and

0‘ is equal to the sum of the angles 02 and 03 as depicted in Fig.

2.10. The Problem is best solved numerically and the solution is
. “ .
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FIG. 210 CONSTRUCTION OF THE SWTCHNG CURVE FOR bd < 05k
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FIG. 211 THE COMPLETED SWITCHING CURVE !
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shown in Fig 2.11. In the design of the oscillator R° will change.,
Because Ro does change, the switching curve in the region defined by
(2.56) changes too, as 1illustrated in Figs. 2.10 to 2.1l. . Therefore,

' »

even if a switching curve were realizable for a specific Ro the fact

that the curve changes as R° changes makes an engineering solution

»
14

unviable.

1f R3< 2k then the switching’ curve in the interior of éhe circle
will be determined solely by She equal angles -argument since no
switching of the control occurs. In Fig 2.12a and b the switching
curves are shown for R;f 1.5k and E;- 0.5k respectively. Since these|
curves. are determined num;rically this preclude; \hny sort of
engineering realization.: The curve 1is too com‘plex‘ and an
approxiﬁatiqn must be sought. Thus, the only poss;ble désign that éhn\
enefge from: this theoretical dis;us:v.ion" is a sub-q»pi"f,!_al one,
However, a standard of comparison has been obtained and thus

sub-optimal designs can be judged on how well they approach the

opﬁimal solution.

!

This .section has determined the- time‘ optimal \concrzl for a
harmon% ;scillgtor with a circular target set. ﬂtermining the
switching curvg'resulted in tf\e solution being stat;ed_' as a feedback
control law. Although the splutioh_is,not realizable it does glve a.
standard to aim for. It should be ;pc;’int_ed‘ out that the graphical

approach. used prdvided con‘gderablé insiglit into the so\lution of ‘the

problem.

1 . :t , . ;;>%/}



2.3 A FAST AMPLITUDE CONTROLLER

e
The time optimal control law as stated in the previous section
. :
£

could only be synthesized in terms of a circuit with great complexity.
The most obvious approacﬂ would be a digital one. However, that is
not one of the options open. The éircuit is essentially an analog oné
and it does its processing continuously. It is also an advantagevif
the circuit can be simﬁiified at the cost of a li;tle performance.
The major problem with the time optimal contfoller is the switching

curve; it is too complex. In this section a slightly modified control
P - .
law will be introduced with a simpler and restricted switching curve.

The consideration is to determine the region . of ‘the phase plane
»” N
that is of importance. It is obvious that there is a limit to the

magnitude of the voltages or currents that can‘be obtained with the
circuit chosen which, therefore, }imits or rest;icts the region of the
phase plane that is applicable to the control. The parameter that

will determine the restriction is k, but k was not known previously.

- <

In order to %et‘ﬁome 1dea of what k is an initial design was made. It
was decfded‘;hat the maximum voltage that- could be allowed in the
circufjt was 110 volts. It was the voltage restriction rather than k

that became the final design‘ parametar. If the maximum alIBwed

-

valtage is V. then
MAX

. k g ~ ~
) V = A _ (2.57) ™~
f Wwe s % ‘ .

In the ﬂxl-ﬁxz- plane this means that the centers for the ciraular

&

trajectories would always bé outside the target set. ;Tﬁereforg, only

a pertion of the semi-circlé&?eeds to be simulated in both the right

-

and the left sides of the plane. ,This applies to points outside th&\

target set. For points inside the citcl%v&the sﬁitchink curve can be

- . . : ‘ .
) ) . R .
-

[
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simplified by letting it be the X axis . Since the centers for the
arcs that would tesult are outside the target set, the radii of those
arcs will te relatively large and therefote, the error introduced by
the approximation should,be small. Figl 2.13 - shows tﬁe division of
the plane and the proposed s;itching curve,

The control has been obtained for the oscillator -but onlj in
terms‘of\a‘switceing curve which-has been Yepresented graphically” In
order to désign_ the circuitry the contrcl law must te expressed
explicitly in detﬁematical terms The first step in doing'that is to
divide the applicable area depicted 1; Fig. 2.13 into regions. | First
create two regions: one for where the control u(t)-}T and the other
yhere u(t)—-). Next, divide the area according to whether the state

x(t) 1is in the interior or exterjor of the cirgular target set.

Finally, divide the region acording to whether Ix,| < R or |x| > R.

The control system must sense where the state x(t) is and respond by

producing Vmu(ét). This can be done by applying diffSrent control
laws for the various reg'ions jus;t described and then using
'combina\lonal logic circuitry to determine the final value of u(t).

When all the math has been sorted out thae control can be gtated as

3

- ) %

sign(xy) if r’< R: S

u(E)'-J,-sign(x)if Ix, |.<R;an'dr2>Rz (2.58)

-4

-sign[ x + sign(xi)/(lx I-R, )(2V R, - IX l)]

S 1f|x|>R andr >R

where r is the amplitude of t:he time varying signaI givcn by

o r (c) -+ xz RN SRR (@, 59)
The ‘Teason vhy r (t) is used 1n the above expreuion il Mdc cl.onr 1n

;_‘ﬂ- ﬂ,,' e

-
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the section cover&ng the tracking regulator. .

This proposed control law is the basfis for the circuit which was
built and is described in chapter 3. In order to obtain the control
law 1nf\ormation about the applicable region of the phase plane was
exploited to simplify the nature of the control and thus enable the
circuit realization. Without the simplification the circuit would
have been virtually impossible to build. Yet, the simplification only
introduces an error when the initial amplitude 1is less than the

desired one. Therefore, very little performance was sacrificed to

find a circuit that could be built.
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2.4 SYNTHESIS OF THE OPTIMAL TRACKING REGULATOR
The time-optimal control forces the system to the desired
- ' ]
amplitude in minimum time. What then? At c-cr' u(t)=0 and presumably
the system continues to oscillate without assistance - at least
according to the mathematics. In any physical system noise and
component tolerances will disturb the system causing 1t to deviate
from the desired amplitude. What is needed is a control that will
maintain the desired amplitude during steady state operation. The
design of such a control {s the objective of this section.
T»e discussion begins by transforming the system of

x - Ax (2.69}

into the polar coordinates

. - (2.61)

4 B
By doing so.the amplitude and phase have been separated and the
control can be applied stricgly to the amplitude. It also simplifies
the solution of the optimal control since only a one dimensional
syécem occurs. The form of the differential equation is .

r = bu (2.62)

where u(t) is to tge determined.

What should the performance index be? There are two

possibilities. The goal is to force r(t) tc be R and sheuld the -
o ~

system be disturbed the goal is to resist the change. The more

circular the actual orbit is the fewer the harmonics present in the

output signal. Begin by assuming r(t) = R ; take the . difference and
. o

then derive a positive quantjity called e(t) suth that

34



e(t) = [r(e) - R}’ (2.63)

e(t) is the error signal which represents the degree of deviation of

the actual amplitude from the desired signal.
It 1is apparent that e(t) must be minimized over time. The
control must also be smooth and continuous. If a discontinuous

control were designed such as the time-optimal control it would
Y
%
introduce its own harmonics into the signal, an obviously undesirable

result. The cqptrol effort must also be minimized. To do that
uz(c) must be minimized over time. So the performance index takes the

form a
¢

4

J - lim 1 J qlr(e) - RO]2 + u?(t)de (2.64)
tt» o 2

[

Now {he results of section 2.1 can be applied. The Hamiltonian (2.7)

becomes #

q[r(c) - Ro]z

<

Z(C) .
+ ¢ + p(t)bu(e) (2.65)

2 2~

H =

There are no bqrnds on u(t) therefore equation (2.11) is usea so that

8 _ o = u(e) + p(e)b : (2.66)
du
\ ,
which becomes
-

u(t) = -p(e)b (2.67)
Applying (2.10) gives

B . qercey - R) = -p (2.68)

ar
Combining the rﬁi:;ts of equations (2.62), (2.67) and (2.68) gives a
second order diffefentdal equation in r, namely,
- 2 N
r =bq(r - Ro) (2.69) P

and u(t) in terms of r is
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wy % © (2.70)’
b

To solve (2.69) let

r - c _ (2.71)
de
then /,'1
o dv_dv dr_dv (2.72)

and apply (2.72) to (2.69) to give

vdv - bq(r - R )dr , (2.73)
Solving for v gives
v(t) = r(t) = t//bzq(r - Ro)z +c (2.74)
As t = o r(t) approaches R therefore, r(t) = O. With'this

ot

information the constant of integration < is determined to be zero

Y

and (2.74) is , A

r(t) = * b/q (r - Q) (2.75)

se, therefore-it is reasonable to require

z"(c) < 0 so the negative square root is taken, hence

If r(e) > Ro, r(t) m

r(t) = -b/q (r - R) ' (2.76)
Equation (2.76) is easily solved to give

r(e) - ke DT L, R (2.77)
where

k = r - Ro (2.78) k .
and u(e) is

»
- utt) = -Yg (r - R) _ | (2.79)

Equation (2.79) looks simple enough to implement and indeed it is.
Howezr the circuitry must derive r(t) from xl(t) and xz(t:). Since

r(e) = /x:(c) + x2(e) (2.80)

can the square root operation be avoided? Such a question motivated

> » .,
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37
the change in the definition of e(t) to
e(e) = [r(v) - K® (2.81)
since rz(c) is easier to derive from the %rcuitry than r(t). The new
performance index is \
3 \
J = 1lim J L [Py - R L w3 (e)de (2.82)
2 )
t 9 x 4 2
£
and the differential equation is
r = biqr(r’- R:) ‘ (2.83)
The same procedure can be applied as before, however, the results are
slightly different. The control u(t) is
u(e) = -/q (£~ &) (2.84)
and r(t) has the solution \
1L+ ke 2PR7A €
r(e) = R ) (2.85)
N ke-ZbRoy/q t /
where k is
r - R
k= —2 ) (2.86)
r + R
h . o o

The results can now be transformed back into the original coordinate

system. Starting with equation (2.62) the differential system becomes

- bu
~ . /2 2 ﬂ
0 AR x, (2.87)
xz ————————— xz ’
) -P '/Xi + x:

Now either value for u(t) can be- substituted into equation (2.87).

2

For_the' first performance index, letting r = x: + xz, (2.87) becomes

¢



A

-b/q (r - R ) 8
x r x
- .88
1 b Q;_(r - R) [ 1 } (2 )
X o X
2 2
. - r
. * 4
angd for the second performance index
) 2 Y2
-bYq (r" - R”)
° B
x r x S
1 - _b/q—(rz_ RZ) [ 1 :l (2\‘89)
X o X .
2 . ) 2
p r

Figure 2.14 shows the resulting trajectories for the two performance
indices given g8 = 10b/q = 1, R = 5 and r - 0. It is clear that for
[

Jz, the resulging ampliéﬁde approaches R° far more quickly. Thee
difference between the two is minor, yet the performance is
substantially different. Obviously, the control based on the second
performance index is preferrable. |

With the two possible controls derived!hequation (2.87) reveals a

problem. Namely, the expression

bu
2 2
X'+ x
1 2
is hard to implement. It is:possible to implement but performing the
square root function and especially division produces the possibility
of an unacceptable error in the control signal. ‘Also, what haﬁpéns if
r(t) = 0? As with the time optimal control a sub-optimal econtroller
, o )
is more feasible than the optimal one.. However, the optimal control
can still be used as a standard and may suggest a possible sub-optimal

design The idea will be investigated in the next section.

4
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FIG. 244 THE OPTMAL TRAJECTORES FOR THE TWO PERFORMANCE NDICES
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2.5 A SUB-OPTIMAL TRACKING REGULATOR

It has been pointed out already that the optimal tracking
regulators have a serious problem when it comes to implementation.
This section will propose a different tracking régulator. It is not
optimal in the pérfect sense but, as the circuit demonstrates, it
works. It actually has been around for some time (see Herpy [16] and
;idyasagar [(17]). The control is obtained by manipulating the control

expression so that there is no division by r in the final form of the

equations.

-

Consider the control expression for the second performance index.

u(e) = -/q (r*- R:) (2.90)

Why not multiply (2.90) by r(e)? iThen, when the system is transformed

into Cartesian coordinates, the r(t) in the numerator will cancel with

\

the r(t) in the denominator. Note thatythe control for the second
index was chosen over the first because it is easieYr to synthesize
rz(c) g&an it'is r(t). The resulting control is now given as

u(t) = /q r(r- R:) (2.91)
In the Cartesian system the control‘u(t) beéomes
[“1 - -/q (rz-Rz)[§1] | (2.92)

u
: T2

N

The differential equations are

i -b(q (") 8 x|
1| - (2.93)

* BT ES Y EaS S M

{
Equations (2.93) are the basis for the circuit design of the tracking

L]
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regulator that is discussed in chapter 32.
\

J
. What kind of performance does this new system have? Does it even

work as a controllér? Well, it does control the amplitude and the
system even has a closed form solution. (;/’terms of r(t), the
\

differential equation is )

_b,/;,“r({- R:) _ (2.94) v

and the soluti to the system is

I (2.95)
//i g:%e-Zsz/E—c

g(t) = st @00

r(c) =

where

. re 0 , (2.96)

The values for x1 and xi can be found from

x] sind (¢) . | .
{xi] - r(t)[coso(t)] (2.97)

The performance of the system can be compared in Fig. 2.15 where r(t)
has been plotted versus time. Note that the rate of convergence is
faster for the proposed control than for the optimal cgntrol. One

might expect the. optimal control to perform better than the
b Y4 " .

\ | | .

ZItAis obvious that (2.90) is, not completely expressed in Cartesian
coordinates. In fact the equation is a mixture of both polar and
Cartesian variables. The reason|\is not simply the need for s compact <'~
expression but rather this is the way the circuit was ‘conceptuslized. \
That is, circuitry was designed based on r(t) rather than ft‘m-x‘(c)' and

. xz(t) vhen it qfade sense to do so and the converse is also true.
. ‘ . b : ) . \ M ) w,.‘ EIEI

-
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sub-optimal one. It does in terms of its performance index but not

-

necessarily in terms of the rate of convergence to the desired_

trajectory. The expression chosen for J minimizes the error between

{ ) :
the Wctual amplitude and the desired one, and the control effort. It

- 4
" is the second term, namely, the control effort, that is not minimized
in the proposed controller and thus allows the syStem to converge more
rapidly. However, if J were computed for the two systems the minimum

value would be obtained for the optimal control chosen. What, in
effect, s ‘g\be Y
one that »

minimize the control effort, all that was required was that the

gscribed the design goals. It was not necessary to

control be "smooth" and provide a circular limit cycle so that the
distortion products would be small. However, to havé actually found'va
J that described these goals would have probably madé the optimal
control solution intractable or at the Teast a‘n open léop control,
neither of ’which would have helped in the design of ;he.circuitﬁ 'Ihe'
approaéh that was used, thoughv it did not provide the actual soilut:ior;,

did provide the insight into the problem that eventually led to the

control chosen.
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2.6 A DUAL MODE CONTROLLER

°

So far, the control laws for the fast‘amplitude controller and

the cracki'ng regulator have been developed to the point where the .

. circuits can be designed. However, the problsm of how to. switch from

one control to the other has pot- yet been addressed. The purpose of

this section 15 to sdlve that problem.

The pronlem~ can ‘be Adefiﬁéd as determining the two. states of
operaf:i;onj - namely, &steady s.tatg\ and transitional behavior. The
question is how dnes one dgtegminé\one ;f\Rhese two condi;ions? The

» \
answer lies in- the expres:ion for\,phe error Setween the dctual Lot

L3

amplitude and the desired one. The equation for ‘t:he error is &i:ven as
) 2 .2 ) . : )
e-r—R° . . . N - (298)
Ideally, when e is zero this would indicgte \steady svgte behavior and
when e 13 other- than zero thfs would be transitional\behavior
/ -

definition, however, is inadequate since the solut&i.on to the ing
\ N ,

regulator takés an infinite amount of time to reach\steady\-,st:atg.,_ The
other consfideration is that in- a practical sense e will neve\: be zero

due to the\non-idealities of the circ‘u"it; 'f'herefore,‘. the dé\finiﬁion

has to be churiged to say that the steady state occurs when le] is':
small and when e is not small this will indicate that the fasE
controller should take over. Exactly what' is meant by "sma&l" will n

only be known when the circuit is built and some measure of the
k]

magnitude of e can be ascertained. Geometrically this can be-viewed

as an annular region defired. Qver the circulhr_ target set. Whenever 3
the state 1is outside the annular region this indicates transient
behavior and inside steady state conditions’ would prevail (see Fig. o

. . . . AN
2.16). The width of the annulus should be varjable to allow for

variations in the error signp,l'. This ;:an easily be ‘d.'bne with a window

\ ) . o . ,
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comparator. The output from the comparator can then be used to- switch
g : - .

control signals. The ‘dual mode ¢ontroller then determines which -

control should be applied to the oscillator ardl when it should beé

- applied. It: is a ra(cher eimple concept and presents no problems for

H

the circut designer and thu§ the problem of switching is easily

solved ot

“In this chapt:er thrge control systems have been designed eath a .

“ sub- system of the overall control for the oscillator The tracking

regulator operates during st‘eady state so that the control is smooth
ST : ) T, o /

thereby 'introducing lictle distortion into the circuit. The fast

amplitude control is based on the’ results of time optimal control

3 "
theory It is designed to Operate during transitional periods ‘when

the amplitude is changing. The dual mode .control, whose -purpose is

to sv’ritéh between the two other controls, is the final control stage:

© 45



CHAPTER THREE: THE CIRCUIT IMPLEMENTATION

3.0 INTRODUCTION

The job is only half done when tﬂe control equations have been
derived. The final half involves the designing and testing of the
cir:uit. The chapter is divided into two main sections. The first
discusses the design of the circuitry. This section is further broken
down {nto subsections, each covering a particular sub-circuit. The
other section covers the  testing of the circuit and it is sub-divided

,into two parts. The first part deals with the distortion measurements
and discusses the dominant harmonic frequencies and how they arise.
Ways in which distortion can be reduced are considered. The final

Al
PR N
part covers the transient response measurements and ends the chapter.
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3.1 CIRCUIT DESIGN

The design of the complete circuit begins by designing the
various sub-circuits. An overview of the entire system and how the
various sub-systems are interconnected is illustrated in Fig 3.1. The
approach to the circuit design is the same as designing an analog
computer which simulates the differential e.quacions discussed ;.n
chapter 2. The outputs of the oscillator are the state variables v,
and v, These voltages are the inputs to the tracking regulator and
the fast an;plitude controller. The voltage VR is the reference
voltage and represents the desired amplitude of oscillation. The
outputs of the tracking are € s and € s’ which are the steady state.
control signals for the osci}lator, and v., which is the error gignal
representing the difference between the actual and the desired
amplitudes. v, is an input for the dual mode controller and the fast
amplitude controller. The dual mode controller uses v, to determine
if steady state has been achieved and the fast amplitude controller

. L]
uses it to determine whether the amplitude must be increased or

1]

decreased. The fast amplitude controller has only one output, L
which is the transient control signal for the oscil®Pator. To ensure
that the control input e is not undefined alluring transitions ;l‘l'l is
connected to ground. With the input’ and output signals defined and

their functions determined the design of the circuits can begin,

starting with £he oscillator.

3.1.1 The Oscillator Circuit Design

The design of the osc¢illater circuw considered in this

section along with some of the problems and the approximations to the

3

r
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ideal that are to be encountered. Some of the problems to be
discussed are offset compensation, e{genvalues with non-zero real
parts, the effect\,of component tolerance on the determination of the
frequency, slew rate limitations and supply current limitations. The
section begins by explaining the design of the state variable
oscillator.
The oscillator comprise; two integrators where the first feeds
directly into the second and the second one feeds into the first after
.1ts signal has been inverted. The outputs of the two 1ntegrator§ are
sinusoids that are 90° out of phase. ?iguré 3.2 shows the a;tual
circuit for the oscillator. To avoid inQerting the voltage v, the
op-amp Ala is configured as a differential integrator thus reducing
the number of op-amps required. Tge op-amps chosen for the circuit
were Precision Monolitqg:L OP-227GY [18]). This IC has. two matched
amﬁifiers on the same chip producing the advantage that they will
track each other thermallly.  Each output is buffered 'to prevent any

possible loading by the dontrol circutry because the voltage signals

v, and v, feed into severa} points in the control circuitry.

The challenge of desfigning an integrator is in dealing with the

bias and offset currents bf the op-amp. The first step i; to carcel

the bias currents. This vas achieved by configuring amplifier Ala as
a differential integrlkorjand by adding bias ?ompenia%ion resistor R°
to Alb. Then the resistapces and capacitafices were chosen so that the
signal currents were largp with respect to the offset currents. _This
does not solve the problei compfetely but it helps.

Arf 1deal 1ntcgrator‘jas infinite gain atr;F and no offset current

to irk the desi eri Howjver, an actual op-amp has finite gain at dc

49
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which is large enough to cause the amplifier to Saturate due to the

integration of the offset current. To avoid this the dc gain was
R
reduced by the addition of R1 and Ra' For the values shown in

S
Fig. 3.2 t;hc gain was 50 dB and the corner frequency was 3 Hz. This

ensured that from 10 Hz to 100 kHz the amplifierjtill remained an

\

integrator. v

The addition of R1 and R3 in the feedback path of each amplifieri

’ .
presents another problem. Amplifier Alb is ¢onfigured as a sumiing

integrator. That is, it sums and integrates the two voltages v, and

e . '‘Now let R= R= R= R= R, let R= R= R« R and let C= C=
2C 2 a 5 6 [Res a1 3 7 % 1 2

c-C¢C. The expression for v, is -

v, = -,Bvl- av, - ﬁezc (3.1)
where S = l/RiC énd a = ‘l/RtC. Because Ala is configured as a
differential integrator the expression for v, 1s slightly different;
namely,
4
v, - -av1+ ﬁvz- ﬂem. ‘ (3.2)
If (3.1) and (3.2) are put in vector form then the coefficient matrix

I3

is ‘ *

A-| @B ' | | (3.3)
4 e , | .

Compare (3.3) with "(?‘.18): Nate that (3.3) has nonzero values on the

diagonal; this is due to the finite gain that wds required for the

offset currents. The result is that the eigenvalues for the harmonic

.
- oscillato: now have negative real parts. The only thing that can be

done is to make a as small as possible. For the circuit vnlﬁ.l'givon

a=19.7 rad/sec whereas f’'= 6097.6 rad/sec. Since 8 is toughly 300

~ times’ larger than a the effscts should be small enough to.enable the

3
.
- -
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control to compensate.
-

The frequency of oscillation 1is determined by the passive
components R1 and C. - The nominal design frequency whks 1000 Hz. Witﬁ
the values of the components available, the actual design frequency
was 970 Hz. If the toleraﬁces indicated in Fig. 3.2 are taken into
account, the oscillation frequency can be expected to be anywhere
between 937.4 and 1005.4 Hz. The actual frequency of oscillation was
975 Hz. Since the frequency 1is determined solel); by passive
components the frequency stability is determined by the stability ef
the passive components. The variation of frequency with temper».a\tx-xre

s

is given as
st - s® . ¢ (3.4)
T T T

where S: ¥ the frequency sensitivity defined as

1 4

4
- S - — — (3.5).
T ﬂ ar ¢

Since the temperature“coefficient of the resistors is 100 ppm/°C and
\180 ppm/°C for the capacitors the value of S; is -280 ppm/°C. The
only way to improve on this figure is buy better components or to
obtain capacitors with negative temperature coefficients such‘ that
™ they cancel with the resistors’ positive ones.

Any op-amp, has limitations. Twoflimitati;ms whicﬁ concern the
design of the Vostv:i‘llyator are slew rate and maximum supply current.
Neitherﬂof these is a concern when the oscillator is operating in the
steady state since the frequency of oscillation is low enough.

*

situation changes. In order to ensure that neither of the limits were

‘ ) ;
However, when the. fast -amplitude control (FAC) is applied the
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exceeded a computer simulation, shown in Figs. 3.3, 3.4 and 3.5, was’

done. The program was written in Pascal and run on a, PC. The
results, which can be seen in the figures, indicates that the maximum
voitége deiivative that could be expected was -0.65V/usec for 02 and
the maximum chrrent was -10.20mA for Alb. The data sheet for the
OP-227 indicates that the slew rate 1is 2.8V/usec and the maximum
current 1is 50mA. So there 1s 1little need for concern .at this
oscillation érequency; ho&gver, if the need for a higher frequency was
required then different op-amps would be required. The other point
that arises from these results is that the circuit does not ptace big

demands on Ala. It is possible, therefore, that Ala could be a more

economical device with inferior performance specifications.

3.1.2 The Tracking Regulator
When the oscillator reaches steady state operation, as determined
by the dual mode controller (DMC), the tracking regulator assumes

responsiblity for controlling the amplitude. The circuwitry which

performs this function is shown in Fig. 3.6. This circuit generates-

+

the electrical analog of the signals ul(t) and uz(t) defcribed in the
equation (2.92). In addition' another output is added which is
proportional to ﬁhe error signal e defined in°(2.98). This signal,
rather than being an input to the oscillator, is an input for the DMC
and the fast amplitude contréller (FAC).

The' key building block of  the tracking regulator 1is thg
multipliefi The multipier circuit is made up qf two ICs. The MC1594
is a four quadrant multiplier (17]. The output of this multiblie; is

5

a current; in order to convert this current to a voltage a TL0O71C
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]

op-amp is used as a curent to voltage converter [18]. The M1-41
combination represents the basic multiplier circuit used and all
remaining hultiplier circuits are configured similarly. To aid whe
discussion consider the following definitions:
R=R=R=R =R =R * .
1 8 "9 11 14 X - .
R=-R=-R =R =R =R
) 8 12 13 is Y
R=R=R=R =-R =R
2 s "7 1w 15 L
C=C=C=C=C_.
1 3 & s ¢
Since the MC1594 allows a maximum input voltage magnitude of 10V on
both inputs scaling is required since it would be impossible for the
output to reach 100V. Typically, a scaling factor. of 1/10 is used so
that the output is reétricted to 10V. There are, however, two scaling
factors which are pertinent. The first 1is related to just the
multiplier and it is designated as Kx' -Kl relates the voltage inputs
to the current output such that the expression for the current is
io- szxvy , 7 - : (3.6).

K1 in terms of the circuit components is given by (3.7).

Ki--———g———— : t (3.7)
RRI
xX'¢'s
In i1s the bias current of the MC1594. The bias cyrrent is normally
set by a resistor which is _not shown in the figure. For information
on biasing and offset nulling see  the Motorola ‘data book [17]. The
\ s .

second scaling factor is related to the multiplier op-amp combination
and is called k. The éxpression for the Goltage at the output of the
op-amp is given by (3.8).

V- -X VyVy ) ' .. (3.8) i

Note the inversion of the signal is due to the op-ahp. K is given by
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2R ' -

x-R;Ki-—-—L—— : R (3.9).
RR I - ~

X Y B _
Applying equation (3.8) to the M1-Al combination the voltage at the
output of Al is ‘ < _— -
. 2 - . s
- - : . P
Vi K Vn . (3.10)
where K = 0.1 V . Again, appiying equation (3.8) to the final stage

of the tracking regulator results in two outputs e and L which

are given by

e = -Kvv (3.11) 7
1SS e 1
L -K vV, ‘ ' - . (3.12)
where v 1is the output of A3.  All rthat remains of i:he circuit
NN ) B

analysis is to determine the expression for v,

-The key to making the cir'cui;: work 1is getnerating vche analog of
«rz(t'). This ';Ls accomplishéd by M‘Z anci M3. In't:his c_as'e” the signal of
‘interest is a qurrent(rather.than a voltage. Mil and M3 create a
current that is proportional to the square of ;heir input voltages.
When g}zese two currencétare summed the output-: is the equivalent of .
rz(.t). The expres_s;ion, is glven as

| fo b L= kv Ky - xi(v1’+ v (1)

The’ next step 1is to gener#te' .the' difference -between the actual
amp]_.i'.tude given by (3_.].3) énd the;de'sired amplit;ﬁde. (~3.16). To do this
the vo]:tage v is cc?nverted to a current by Rs‘and t;hon summed with

j‘s by am;;lifier A2. The resuiting outpﬁt: expragsioh for A21-
2 2 2 : 1
v, -X [ (‘,'1+ vz) - Vn] o o | (3‘14).

Under normal ope;ating'céndit;ons v v). and thus (3._ 14) is the. error

rd

signal of (2.98) exdqpt inverted and scaled.



The circuit in the dashed box'represents optional cfrcuftry. Two
types of circuits were tried. One was a voltage divider which
effectively decreases the gain of the control. The other was a low
pass fllter. The purpose was to test the effects on the oscillator’'s

performance especially with regard to distortion. When the optional

circuitry {s present v = v
7 A2 .

Multjpiiers 1ike op-amps have offsets Much of the offset
circuitry is not shown be it follows the suggested circuits in
[177]. However, R . R17 form a non-standard bias circuit. R16 is a

1

potentiometer configured as a voltage divider and R17 converts this
voltage to a current. The purpose is to.null.the offset currents of
M2, M3 and A2.

Unlike op-amps multipliers have wide bandwidths and when combined
with an op-amp instability becomes a real possibility. In order to
ensure that the circuit doesn’'t oscillate a compensation capacitor CC
is added. Although these components are required they do not enter
them expressions fo; the comtrols. .

/

With the information given the expressions for the controls can

.

now be stated.

e = -K vv-aKz[(vzi- vy - VZJ T (3.1%)
188 e 1 1 2 R

e = K vve= aKZ[(V v 2) - V‘{] (3.16)
2ss 2 1 2 R .
The voltages e and e are proportional to -u  and -u_ which is
1ss 25s 1 2 .
what 1s required by the oscillator circuit since the inverting
integrators 1 change the sign of the control)fy/“l‘he\constant a is

3 .
included in the expression for when the optional circuitry is in

place. However, if a frequency dependent network 1is inserted then
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(3.15) and (3.16) no\losger apply since the order of the differential

system will increase.” When a is determined by a simple voltage
<

divider the designer has direct control over the quantity gq. q is
related to a by
q - aK2 3.17).

So when a = 1 q - 0_%1 which may appear to be small but it turns out
that the major source of distortion is caused by the control itself.
Therefore, the smaller the control signal is the less distortion there
will be. In fact, the circulit was tegted with a ¢ = 0.0001. Even

though there was a small error in the amplitude the distortion was

. , N
reduced another 20dB. Of course as q gets smaller the transient
response of the regulator gets longer. However, it is of no concern

since the fast amplitude controller takes care of the transienc
-response. This concludes the discussion of the fraqking regulator.
3.1.3 Dual Mode Controller Circuit Design .

The dual mode controller (DMC) has a logic output that controls
the state of an analog switch (see Fig. 3.7). The analog switch used
is Silicopix’'s DG243 [19] which is a dual dpst complementa;) switch.
Complementary meaning that when one switch is on the other 1is off
according to the control signal. The desigp of the DMC centers on
deriv%ﬂg the correct control signal. Mathematically the function can
be statéh as '

TRUE or HIGH If |v | & AV :
Csaraa” | L. " <3.‘19
- FALSE or LOW if |v.| > AV
Equation (3.18) 'is realized wip:h a window._conparntot. The window

A}
‘comparator is comprised of two op-amps. The first amplifier Alas
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D

functions as a half-wavé rectifier. The second amplifier Alb works as
an ampiifier but the signal which it amplifies is switched according”
to the polarity of the summed currents at the inverting input of the
op-amp. Alb shouldupérhaps be called an attenuator since the gains
are configured to be ¢ither zero or 1/3.

The circuit works in the ¥ollowing manner. When v < 0 diode D2
L o °

is on and the output of Ala {s zero. When v > 0 then D1 is on and the
L]

-

output is now -y , since Rz- Ra‘ Note that Rr- R5~ 2R‘. The polarityA

of the diode cd}renc 1D determines whether D3 or D‘ is on and lo is

the sum of the currﬁnts at the snput of Alb such that when v > 0 10 is
®

given by : )
| N P
v v av - v
i - T, L .- . . 1(3.19)
R R R R |
[ ! o 1 5 N
where Rx- Rs- R and R‘- R/2. Diode D3 will be on when —isz 0.
[
Applying this ineqpality to (3.19) the condition on v is
i [ ]
Y ' C
vsav (3.20).

It is easy to infer that D‘ is on when vz AV.  When D3 is on the

output of Alb is gero or logic low. When D‘ is on Re i1s connected in

I .
the feedback paéq and the output is 5V since the gain of Rs’ Ra and

Alb is -1/3. T%e situation is slightly different when v;< 0. The.

!
diode current infnow becomes

v;+ AV
- y (3.21)
D ‘ .

‘R .
and the forward bias conditifn on D3 gives the inequality for v, as

°

vz -AV - (3.22).

The output of Alb can ‘now be stated in terms of v, and AV.

J
'

;
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SV if “jv | = av
L )
v - #

. (3.2%
oV if -AV < v < AV

Therefore, it is easy to see that tﬁe width of the window is 2AV and
since AV 1is variable, complete control over the DMC is achieved.
A -

Comparing (3.23) with (3.18), (3.23) represents the complement of the
logic function required. This {s why the output is followed by an
inverter with hysteresis. It not only inverts the signal but sharpens
switching transition as well as providing additional noise immunity.
3.1.4 éast Amplitude Controller (FAC)

By far the most complicated-circuit {s the FAC. Part of the
reason for this 1is the complex ﬂﬁ%ure of the control law itself,
stated in equat Ln~(2.58). Tke othé? reason is the synthesis of the
switching cufve which was illustrateé in Fig. 2.13. This section will
look at the circuitry that achieves this control law. The Aescription
divides the design into three partsi The first part deals with the
circuit that produees a signal which simulates the semi-circul#r part
of,Fhe switching curve in both tﬁe left and the right hand planes. A
lot of signal processing is required and much of the circuitry of the
FQC is devoted to producing just this function. Tﬂe next ﬁart looks
at the interface between the analog and the digital circuitry. ‘The
third and finil part of this section discusses the logic circuitr&fand
the switching of the control signals. Q

The first step in designing ‘the FAC is simulating the switching

curve. The most difficult parts of the switching curve to simulate

‘are the two semi-circular portions shown in Fig. 2.13. The circuit

1
4
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which does this is shown in Figs. 3.8 and 3.9° The function which tﬁe

circuit realizes is ¢

y = /(lel - RV 4+ R - x| w ' (3.24).

A: quick study of the above expression reveals that the circuictry
- required should calculate the absolute value function, sum and
subtract, determine the product and finally calculate the square root.
Two absolute value circuits are used. Amplifiers Ala and Alb form one

¢
circuit and Alc and Ald form the other. The difference between the

two is that one produces |v1| and the other -|x1|. In every other way *

they are the same. The circuit surrounding Ala and Alb is very

similar to the window comparator. Resistors 1,2,3 and 5 all have the

¢

same value and R‘ is half the ®¥alue. The only difference between this

-

circuit and the window comparator is the addition of R5 and the
absence of the second set of diodes. The analysis is wvery similar to
that already covered. The voltages Vwm and V; are inverted and

bﬁffered by amplifiers A2a and A2b so that they can be used in the

W

summing circuits of A3 and A4. The output of A4 is

Ve« v - v ; (3:25) -

since R - R = R . The summing circuit’ of A3 forms a sum

proportional to (2me+ Ro- |'x1|): The actual output iz scaled by 1/3
since there is the possib]:ity of a 30V output which the op-amp could
_ \ :

never achieve. So the actual output of A3 is '

v = —tAX R R ' (3.26).

The two sums are fed into a multiplier circuit (M1-A5).  Since
‘multipliers have been discusué‘pi'eviogsly no more will be said except

to say that the output,gf’AS is given by

&
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(ZVHAX+ Ve Ivll)('vll ) VR) (3.27).

AS 30

»
The output of A5 is fed into a square root circuit (see Fig. 3.9).

Taking a multiplier, tying the inputs together and putting it in the
feedback path of an op-amp yields a circuit which performs the square

root function. The output of M1l is a current given by (3.28).

i =Kv? ’ (3.28)
M1 1 Ala

This current flows through Ri and since the voltage at the inverting

input of the op-amp is zero Vs is given by

v = -i R (3.29).
AS M1 1

Combining (3.28) and (3.29) the output is given as

(3.30).

Note that since the square root function is defined for positive
arguments, VAj must be less than zero, otherwiée the circuit will
latch up. In other Qords, the feedback becomes positive and the
op-amp saturates. To avoid this two things were done. The first was
to include Z1 which is an 11V zener diode. Should the output voltage
swing negative then Z1 will tirn on preventing latch up. The other
step taken was to ensure that the input is always negative. Consider
the equation (3.27). The oniy time Vs bécomes positive is when
-Vks vrs Vh, which wunfortunately happens twice 4every oscillation
cyéle. The purpose of the analog switch is to supply a negative
voltage to the op-amp when the normal input goes posiﬁive. The
control signal for the switch is derived in the later stages of the

controller. It is simply the output of a comparator which tests this

- condition. Combining (3.27) and (3.30) the output expression for Alak

¥ .
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is given in (3.31).

QVaxt Yo v DAV E - V)

Vi ; (3.31)

The final stage is a non-inverting amplifier with a gain of / 3 so

that the finél output expression is

—

A AN AR (3.32)

AX

It took a lot of circuitry just to get (3.32) and there is more to
com;. |

The control law as stated in (2.58) can be expressed as a series
of conditional tests. The testing can be done by comparators. The
output of these tests, which can only have two possible outputs, can
then be processed by légic circuits to determine when the control will
switch. There are six conditions to test for. The final circuit is
shown in Fig. 3.10.

It is known that u(t) can have only two values: me or -Vmx

Therefore, a logic variable, say Z, can be associated with u(t) such

that the following equation holds. ‘ : v
V _ when Z is true

u(e) = -V __ when Z is false (3.33)
MAX
Now each of the six conditional tests can be associated with a logic

wariable, designatedgA through F,%as described below.



-

sV -V DUV ] - V)

v
A 1s true when v2< //(2 MAX

- ‘ - -V
B is true when v2> //(?VHAX+ VR ]vll)(lvll R)

\ 5
. [
C 1is true when V1< 0

D is true when |v1| > VR
E is true when v2> 0
'F is true when v > 0

Z can be related to the variables A-F by the following truth table.

T = true
F = false

X = don’t care

BOBS H o BE B M X [
R R VI I
M H X |
I R R e e
M b e b g |
-3 g gy oty oy oy |
SmHamAamm e N

From the table is it easy to determine the expression for Z.

Z - EF + DEF + BCDF + ACDF (3.34)
The output of the logic circuitry then controls the s;ﬁte of the
analog switch, which applies iku according to the state of Z.

This section has covered the circuit design of the FAC. The
circuits required to simulate the switching and the decision circuitry
have been discussed. One can anticipate that errors in the circuit
will largely be due to the square root circuit, ‘especially when
signals are small. Square root circuits aside, just the complexity of

¢

the control itself makes it prone to errors because of the amount of

~ -~

signal processing to be done. The complexity issue leads)one to
ponder whether any simplifichtioq would be possible. No doubt there

is some simp}ification that is possible in terms of the reduction of



-

clrcuitry while still synt}_\esizing the "same control ‘1aw. However,
efforts applied to simplification might be better rewarded by finding

a suitable approximation to the present control law.
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3.2 TEST RESULTS )

The test results are divided into two parts. The " first p;rc
covers the d&stortion meastremenCS that were made. This includes the
sources of error that cause the distortion and derivation of equations

to show the connection between the harmonic terms and the error

sources. The results of the measurements are covered and methods to

reduce the distortion are explained. The second part covers the-

transient response of the system. Most of the material discusses the

phase plane portraits obtained. »
s~

Apart from the distortion and transient measurements imade, some

preliminary frgquency measurements were made too. Consider the

-~

photographs in Fig. 3.11. Part a) shows the frequency of oscillation
as 975 Hz, which is within the expétted range explained in section

3.1.1. Part b) shows the phase difference between v1~and v, as 88.6°,

an error of 1.56%. Due to the succe’ with which the tracking

- regulator wnr&d it is believed that the phase shift is cloder to 90°

than the measurement shows and that the error 1is due to the -

K

measurement itself arid';/ not thg cirtfzuit. . Since there was no

environmental chambe;:,-' the tempei‘ature sengitivity could not be
measured. Because the main concern Yas with the amplitude of the

~ oscillator these were all the frequency measurements that were made.

372.1 Distortion Measurements -

-

The dependence of t:hé .hamonicé on tite. lutching of tho 'pnuivc ,

° ! -

components in the tracking regulacor can ‘be lcurnog by ltudying thc'

ripple in the signal V.. Theoretically, tha ligm]’. v, lhould bo nt@,

however, becauu the poln of the osci.llucot hwo n‘ptivo tul pam iv S |
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a small dc signal is expected.” Any ac components in the signal result
in harmonic components in th} output signal. Therefore, the amount of
ripple in v, can be a Felative measure of the.distortion in the
system. The resistan.ces Rx,Ry and Ra (RB determines Ia) 1nitially‘
were not matched. Sinc€ no matching was done the tolerance for K in
_ the multipliers M2 and M3 in Fig. 3.6 was 15%. When the resistances
were matched the resulting tolerance for K became 0.17% which resulted
in a 77% reduction in the ripple voltage of v, Fig. 3.13a shows the
ripple after matching. The resistors were matched with ,n ohmmeter.
However, using thick film resistor arrays might prove better since
they are not only tightly matched but track thermally as well. It is
clear that tightly matched components in the circuits for M2 and M3
will do much to improve the total harmonic distortion.

The spectrum analyzer reveals what harmonic t.erms are present.
The two dominant frequency terms aré the first and second harmonics,
which is not surprising; however, the wmecond harmonic i{s larger than
the first. Also the amplitude of the gsecond harmonic frequém;
remains fixed while the first varies with time. It appears that the
first term is related to noise and drift. At Jlarge amplitudes the
third and fourth harmonic t;erms appear as well. Fig. 3.14 shows the
frequency spectrum g&'aph of’ the output v, ;,c 10'V. ’Thésé, then, are
the harmonic components 'tha't': were measured. The soutcbeu of the

distortion are considered next. ' &

. .3 ' -
T The analysis that follows is not meant to bo a thorough

distortion analysis but racher to show the connection b-tvoen the

error sources and the hamonic distortion terms thcy &l ‘l’hn

output of ', tiplier inc&uding the op-amp has the follwin;_

- o . B -
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expression [1]

Ve K(V+V -V X(V+V -V ) +V (3.35)
0 x fox xoff y oy yoff oo
where V and V are the 1input signals, V and V are the
x b4 iox 1oy
feedthrough‘.'offsets before nulling, V and V are the offset
xoff yoff

adjustment voltages and ¥V is the output offset. When the multiplier
o0
c

{s operated as a squaring circuit the output is given as
Ve KV + KV (e + € ) + Ke e + V (3.36).
0 x x x Yy xy oo

where ¢ =V -V and e =V -V . The output of M1l will be
x 10x xoff y 1oy yoff 4

assumed ideal since it is only a dc signal and does not contribute to

the distortion terms. The same argument applies to the terms Ke ¢
xy

and V in (3.36) when it is applied to M2 and M3. Therefore, the
o0

output of A2 can now be given as

v—KVz-{K vA K vi(e + e )+ K vHE v(e + ¢ )} 3.37)
A2 R M2 ) M2 1} X2 Y2 M3 2 M3 2 X3 Y3

pu

Let v=¢ + ¢ = ¢ + ¢ since \these represent small signals and all
F X2 Y2 X3 Y3 . :

are due to feedthrough In the multpliers. To simplify matters even

>
further let K = (an+ Km)/Z‘ and® AK = (I(Hz- Km)/?_. Applying some

algebra and assuming that v - av the expression for v becomes
[ ] [ ]
<+

v- aK{(VRZ— [vf+ v:]) - v v V) + [(vi- v:) + v (v - vz)]}_

K
(3.38)
Ignoring the final term of (3.38) and assuming that M4 and M5 are

ideal the expressions for e __ and e __ are given by
158 258

, : 5
e - -1szl{(vnz- ["i* vz]) - v (v )+ 2‘ (vf- v;)} (3.39)
o - -.x‘v{(v 2 v+ vi]) Sv (v v + 2 AW (3.40)
288 2R 1 2 F1o2 X 1 27 ) )
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Consider e and let v = V sin ft and v = V cos f¢. The resulting
15§ 1 R 2 R
e is
1ss
2.2
ak'v AK
e = —————}—{v - v sin Bt - ¥ 2 v cos(28t + —£~)
188 F R F
2 K 4
AK
+ V sin Bﬁt} (3.41)
R X ‘ . .

Equation (3.41) shows that the distortion terms are a function of the
amplitude and this can be seen in the graph of Fig. 3.12. Equation
(3.41) a}so shows that the first harmonic {s a function of the

feedthrough voltage in M2 and M3. This would explain the dependencé

on drift and noise. Finally, (3.41) 1indicates that the second

harmonic is dependent on the mismatch in K. It appears that the-

mismatch iq¥K is larger than the 0.2% which was indicated before.
This 1is proﬂibly due to differences in M2 and M3 which has not been
accounted for. Although (3.41) does not correctly show the values of
the coefficients of ;he harmonic terms, it does illustrate how the
harmonic terms arise due to the error sources in the magnitude
detector circuit consist}ng of M2 and M3 in Fig 3.6.

If the THD figures shown in Fig. 3.12 are not acceptable then

other ways' must be considered to reduce the distortion. Two

. ~

(
approaches will be discussed that reduce the distortion withodt
changing the topolégy of the circuit. The most obvious approach is to

filter out the ripple in \f.. The second curve in the graph of

°

Fig.°3.12- illustrates what happens when a filter is added. This

filtar‘-‘ the circuit in the dashed qu shown in Fig. 3_.6 vith a time

constant ¢ = 10 msecs. At an amplitude of 10V the THD d_r.opl ‘to -77.5

dB ‘(00.(:)13%)." In fact Fig. '3.13 shows the control ‘voltages .\“" and

-

77



78

01

3ANLMTdWY 40 NOILONNA vV SV NOILYOLSIA 2l'E "old

<«
P~

“e

(S170A) FANLITINV

-6 / € A
] -l ] ]

YAL1Id V HIIM &

! I
40014 FSION —

R el ]

$10°0 = 4P08- NT'0 = 9P 09-

06-

- S8~

low -

- GL-
(gp)
QHL

[Oh!

= nWI

—09-

r GG~

s teubl 4



a) ‘WITHOUT A FILTER

g

o s e
’ L <&

_b) WITH A FILTER. - e

\» . ~ i 2

""FI6. 313 THE RPPLE VOLTAGE PRESENT N THE CONTROL SIGNALS

79

»



20
dB8v

12
dB
/01v

-76
START:

Ay STORED

1

RANGE: -2S dBV STATUS: PAUSED

OV PEAK WO FILTER RMS: 100

370 Hz

X3 877.8125 Hz

>
20
dBv

12

s

/01v

-76
START,

BW: 29.839 Hz ‘ STOP1 4 085S Hz
Yv 17.07 dBv
a) WITHOUT A FILTER AND a=1

RANGE; -2S5 .dBvV STATUS: PAUSED’ .
A: STORED 10V PEAK W FILTER RMS: 100
: ;
Al
[]
t " Y ‘. ...........

970 Hz

X3 -977.8125 Hz.

BW: 29.839 Hz STOP: 4 (089S Hz
Y: 17.06 dBv

b) WITH A FILTER AND a=1 *

‘o

ﬁ - FIG. 3.4 FREQUENCY SPECTRUM FOR AN AMPLITUDE OF 10V

80



e
A: STORED

RANGE,
10V PEAK Q=0.152

-1 dBv

STATUS,
RMS: 100

PAUSED

18
d8v

a) a=0.152
N P Y G
12
d8
/01v

I e | T

m*f"“ww %

START: S0Q Hz Bw: 29.839 Hz

‘ STOP: 4 025 Rz
Xr: 2931.25 Hz Yr: -74,.82 dB
RANGE: 19 dBvV STATUS: PAUSED
' As MAG 10V PEAK 0=0.0175 ‘ RMS: 100
I8 .
d8v ﬁ
b) a=0.0175 _ :
. ~ : ,"
Y2 ST ST . 4
dB . Co . | ‘
701V R S ' c
....................................................... e
, .
-78 © N . ~ . v A . - . o
START: 900 Hz . ‘BW: 29. 839 Hz STOP: 4 025 Az
X: 978,125 Hz Y: 15,77 dBv. , .

[

’ '-Fli’SJS

FREQUENCY SPECTRUM FOR AN ANPLITUDE OF 10V

o
——

81



; 82

L before and after filtering. The filter was one attempt at

decreasing the distortion in the signal by smoothing -the rip.ple in v,

Another approach was to replace the filter with a. voltage

F“ . divider. The network chosen was such that the constant a, v;hich

appears in the control equations (3.39) and (3.40), was 0.152. The

result was similar to the filter. The THD was -75 dB (0.018%) at 10V.

However, since the dc component of \./. is ralso reduced a change in the

amplitude results. The change in amplitude is rather small. For a

\ nominal 10V amplitude the divider causes it to drop to 9.90V, a change

of only 1%. The voltage divider has the advantage of not introducing

any delay into _the: feedback path. When a was further reduced to

0.0175 the THD became -79.25 dB (0.011s). However, the amplitude

dropped to 8.7V from 10V. So it appears that further attenuation of

v, does not pay off. With either the filter in place or a set to

0.0175 it was the first harmonic that was dominant rather than the

seeond, which indicates that there was ariother source of distortion

.from those already discussed. The®filter spectrum plots are shown in

Fiés. 3.14 and 3.15. These plots cover the situations discussed. It

was not until after these meesureinents hed been made that the other
error source was finally discovered.

The cause of the first harmonic term which was .only apparent: when
the filter was in place was due to another mismatch pro&am ‘this time
befween the multipliers M4 and M5. Again the problem is the mismatch v
in the ecaling factors. However, the problem was easily remedied by
adjusting the scaling fact?or of one of the multipl¥ers.

\N

How t:he mismat:ch in M4 éna MS\ causes t:he distortion term can be

‘ »
}!etermined by considering the expressions for the two control signals

\.
. .
[ N ' SR



e and e where the signal v is assumed ideal. This asumption
[ ]
. A}

can be made since the signal v 1is either filtered or attenuated by
[ ]
the voltage divider to such an extent that distortion due to M2 and M3

is small in comparison to M4 and M5. Indeed v

2 2 2
e -aIU(‘{VR - (v1+ vz))v1 (3.42)
2 * 2 2
ezss— -AKKS.(“;_- (V1+ Vz))Vz . (3.43) ,
Let . .
K‘+ ﬁs K‘- K5 '
Ko ——° AK = —— (3.44)
” 2 2 ‘

The differential equations which describe the oscillator are given by

(3.45) and (3.46) when (3.42) and (3.43) are used for the control

§ignals..
' v.= [BakK (V.2 [v*+ v*])]v + Bv (3.45)
1 TS 1. 2 1 2 )
- 2 2 2
I A -ﬂv1+ [ﬂaKKS(?i - [v1+ vz])]v2 (3.46)
Now let
y -2 by - ——2 (3.47)
2 2
where
L2 2 2 - ey 2 2 2
7~ [PaKK (V- (v + v.])] ~ and 7, [ﬂ'ﬂKKs("v'R - v+ v D).

.

Using che/definitiéng of (3'.44_) and (3.47) the folloying relations are

true. / ' N
- Y- S CAN LA C(3.48)
7,~ 7(L - AK/K) 1,~ 1(1 + &K/K) . (3.49)
¢ Ay = v(AK/K)' , » - (3.50)

A
-

The differential system can now be re-stated as .

v (L - AK/E)V By, AR W X

6}- -ﬁv£+ 7(1.+'AK/K)VQ . .(3;525A_ 
The k,ey:poi'nt: is that the mis;latch in K; and X’-‘ creates )n'; l.liniu'l:clty in

\.,‘ . ‘ . o - . . . o - .
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. the term 7 and it is this mismatch that strangely enough causes the
distorf:-ion term. The effect can be better understood when the
differential system of ‘(3.51) and (3.52) 1is transformed into polar

coordinates. The resulting system is given now as
»

. F = ry(l + (8K/K) cos 28) (3.53)
§ = y(AK/K) sin 20 + B (3.54)
v = pak’ (v - ) | (3.55).

When the system 1s ideal the two equations in (3.53) and (3.54)

decouple .and can then be solved separately. It is the coupling

between the phase and the amplitude that causes the distortion and .

3 .
this 1is how the mismatch in M4 and M5 causes the additional first
¢ \

harmonic term.

-
3.2.2 Transient Response

The transient response i; a function of the‘chaﬁge in amplitude
and when the signal to change with respect to the éeriod of
oscillatioﬁ occurs. This ﬁakes measurement; difficult. A full set of
responses wouid have required a special tfiggering eircuit. What ;aé s
done was to photoggpph somé,reppesentative'responsestﬁsgeAfigs. 3.16
to 3.20). To begin; consider the oscilloscope photograph§ in Figs.
3.16 and 3.17. Figure 3116 shéws the rise time from a 2i;amplitu&e to

10V, with 3.16b showing an éxpanded version of the Cragsient:- As can

be seen EP the picture the rise time is about 200psecs. ‘ It should be

‘ .

\ . : . : ’
noted that the photo in 3.16b depicts a differegt startfhg point than

- . o »
in’ 3.16a. What is demonstrated .in these photographs is .that the
. L 3 .

control néver*swi;cﬁes and that the transient is always less’ than the

period of oscillation. This is the,fastest:transient ever recorde\.
. 1 N . .. N B . R " . - .A,

T T
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.Much the same applies for the fall time sho in the photographs

[ 4 4 .
in Fig 3.17. The key difference here is that ntrol switches
once. This is the most that the control will ever switch. Under

certain conditions it may not swiech at all.

The photos in Fig.3.16 and 3.17 do not tell the whole story. In
L < . .

- Figs, 3.18 and 3.19 v, and v, have been plotted against each‘other to .

create the phase plane portraits. It is now easy to see that the FAC

-

1Y . .
confirms the phase plane plots done in chapter 2. In each photo both
\ .

R the amplitude rise and fall are shown. Fig 3.18a shows the situation i

N :
‘ where the control does not switch during the amplitude a‘crease. Note \

4 .
that the trajeCtory - is traced in the clockwise ‘direction,. The \

transient rise is shown in the &pper part of the trace and the fall in

-

. the bottom part of the trace. In Fig. 3.18b one can see that control e
'switches during the fall in amplitude. In Fig 3.19 a slightly
different situation occurs. The reason for the double trace is due to :

the ‘difference in frequency -between the oscillator and the Bignal

-

~ generator and is not a result of the circuit. One cah 1mmediatgly ses _

the overshoot here. fhere are several reasons for the overkhoot Tﬁ@

- -y, R} l-;
» first reason is a gain error in the TAC caused by the squaro rootv_
1
circuit which gp turn causes the’switchkng ‘curve to be out of plece._
. Y .
The overshoot can also be affecte& by the width ofrthe window in thov'

’

DMC. égFinallyf the tracking regulator and’ the FAC do not see the lame

&

‘o AT

of the. tracking regulator. To corract or mininize these errors vouldf

q

reference stgnal. This is due offset errors in, the squdring circuit, '»aii

require careful umaaurements and a way of nealuring ého actuaI,

; ) L -

switching curve, sonething which was not vuilablo. Hovavot, tho
. ’ '

circuit st111 prodnces vory fast resvonse-, vith tho wor-t ceao

s




86

transient being less than half the period of oscillation.

¢

Figure 3.20 illustrates what happens when the tracking regulator
is shut off and the FAC is allowed to operate during the steady state.

The FAC simply chatters and causes. the ripple seen in the photo. Note

. —

that v, still appears 3s a smooth sine wave sinfe it 1is indirééfi&
controlled. In other words, v, is v, filteted due .to the integrator,

In this chapter the implementation of the control systems has ,

-

beenklooked at. The shortéomings of thq circuits have- been scudfed
with special attention paid to distortien and’settling time. The
performance of the tracking regulator can maie'mode%t claims in terms
of the THD obtained whereas the FAC has the fastest time glaimed.in
‘the rése&rch 11teriture. .However.'ﬁhe circuits ére not in their final
form (and with the insights gained it should be possible to derive

\

improved circuits with better performances.
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. CHAPTER FOUR: CON9LUSION

-

4.0 SUGGESTIONS FOR FURTHER RESEARCH v
-~ »A
It can be said with some coprfidence ‘that the, control systems

r

derived in chapter 2 are complete. The same is not true with their

circuit Ilmplementation. The design 8f the.circurts took the most
direct spproaohj.‘fhe tracking regulator/needs ®o be redesigned snd
optimized in order to redoce the distortion that it introduces as well
aJ overcome tne other problems tnat were discussed. -The FAC needs to

be simplified. The first step is to attempt to simplifiy the control

law approximation. After that the circuft requires simplification.
. b -

The FAC should also be disabled during steady state to reduce noise

.

caused by its switching of signals when it operates. Means to better

measure its performance are needed so that ‘the sources of error‘uulbe

-~

determined. Inveftigation of these areas would go a long way to

putsing the oscillator circuit in it4" final form.. Another area to

research is different performance critefion It would be interesting

to investigate what kind of control would result if a sensitivity

w
measure was added to the tracking regulator The measure would be the

Vc‘(
oscillatqr s state variables’ sensiﬁfvity to tpe controls. The intent

is to reduce the distortion by minimizing the sensitivity. Another
criterion to trf is one which comBines the tracking error and time.
This would eliminate the need for 'two separate control systems. Such
a perfornence index would never be as fast.as the one already studied
but it night have %ess comﬁlexlty. Actually, the choice of criterion
.becomes limitless and will ultimaCei§ depknd on the oscillator’'s,

application. s ' : ) )/, '
. - - ) <

ap . : N



One of the applications of the oscillator is as part of a
function generator. However, it is not complete without the ability
to change the frequency of oscillation. Applying optimal control

'

theory to the design of’a'frequency controller‘might have interesting

-~ .

" results. For example, minimizing the frequency transients would
result in a fast frequency controller, in other words, a phase locked

loop with fast frequency lock. With both frequency and amplitude
¢ o
control applied the resulting oscillator 4ould be quite imprespive.

- ) :
The final area of further. research is the fabrication of thd
. K}

¢ircuit igto a chip.\ The circuit’s appeal would probably increase if -
¢ L.

a digital input’ was added for the amplitude and the frequancy as well

@ ]

< as a method ‘for automatic calibration. Then the circuit could be used

by... .automated eguipment and the ~ computer could compensate for
. Q +

temperatu{g\dhd aging effects. The best rdsult of this thesis was to

raise more questions than answers.



le FAC never Trg;xld have bgen conceived. The performance of the

rcuit speaks for ftself. However, the major drawback {s that the

esults of optimal control cheg)ry are such that they dO' not lend
hcmselves readily to circuit synthesis, largely due to the open loop”
n_ature of the solutions. . Ultimately, a mathematical "tric}c" is

reqdire& to obtain the resulting control in closed loob form; the use
{ .

. of geometric 'meth;)ds applied to the phase plant‘ lin tih_e solution,:g the
time optimal control problem can be cited as an, example..' If the

thHird orderf instead of second there .would have been

N
problem had b b
: * &

T

2 lictle _

pe of obtaining any wuseful results from the solution.

, all that has really taken place is aAshiflt in effort from the

Howev
, bt B v \
circuit :design to applying some. ingenuity in finding a clpsed loop.
Iy . B 4 ) N

solution to the control. Regarhless of the view one takes, optimal

control theory, as applied . to circuit design, is something that has

_ been overlooked by engineers. Despite many drawbacks it remains a
- - \
‘'valid design tool. - l CgE o
u " The de;].gn method used, as present'ed in this thesis, has differed
. . piie

«+*  from the t:rahitional appraach, ° It has be:; .syntheg:ic inst'eatjof
anaiytié and systématic rather than intuitive. It also ?di:ffers in
thac .the m?del used a state variable descrip_i:ion instead of an
"i.n;;ut-outptlt: t:ransfer funct:.km This was in part 4ue to the nonlinear

nature of the system but more 80 because of. t:he use of opcimal control

°

theorx. Whn:her this approacb. is any better depends on whether

perf nce outweighs other factors, especiall}; cost. ,Ip a comercial

. @

N -
K »



~ - , L
0 " .
< o

design cost may.ye the major design objective in which case a ‘short

development time and ‘simplicity in the design may force a more

. ’
intuitive approach. Hoyever, a systematic method is amenable to

implementation into a CAD enhvironment. As well, fabrication of the

circﬁit in silicon may negate the need for simplicity - conside; the

history of microprocessor chips. Regardless, the approach has merit

——

since it prodUce§ a circuit that works and works well.

= 94



(1] .

[2].

(3]

(4].

[5].

(6].

7.

(8].

‘[91.\

-

[10].

[11].

s

2.

s -

-

BiBLIOGRAPHY¥ . . >

References for Chapter One

B. J. Skehan, "Design of an Amplitude ‘Stable Sine-Wave
Oscillator", - IEEE J. Solid-State Circuits, ' wvol. SC-3,
pp. 312-315, Sept. 1968.

P. W. Van Der Walt, . \ bien-Bridge Oscillator . with
High-Amplifude Stabilty , IEEE , Trans. Instrumentatien &
Measurement, vol. IM-30, no. &4, Dec. 1981.. .

D. Meyer-Ebrecht, "Fast Amplitude _Contfol of a Harmonic, -
-Oscillator", IEEE Proc., vol. 60, p. 736, 1972.

D. Meyer-Ebrecht,' "Schnelle Amplitudenregelung Ha%@onischer
Oscillatoren™, Philips Res.'Rep.,.vol. 6, pp. 1-85, 1974, 5

E. Vannerson and K. C. Smith, "A low-distortion oscillator with
fast amplitude stabilization", Int. J. Electronics, wvol. 39,
PP- 465 473, 1975. . :

W B Mikhael and S. Tu, "Centinuous and Switched-Capacitor
Multiphase  Oscillators", IEEE' Trans. Circuits  Syst.,
vol. CAS-31, pp. 280-292, 1984. .

1
/

g$ Pahor, J. Eetteich and M. Tavzes "A harmonic oscillator

<

ith low harmonic- distortion and' stable. amplitude®™, Int. J.
Electronics, vol. 37, pp. 765-768, 1974.

>

Vannai and L Pap, "RC- oscillatof with extremely low
h rmonic gistortion,” Period. PolyCechn (Hungary) g!ecc Eng. ,
vol. 24, pp.59-65, 1980, :

o

TN .
If . Filanovsky, "A Wien bridge RC oscillator .with fast
ampIitude control”, Int. J. Electronlcs,_vol.'§8, pp. 817-826,
1985. ~ S ~ ‘

- I. M. Filanovsky, V. A. Piskarev and K. A. Stromsmoe, "On the

fast amplitudg' control in RC-oscillators", Proc. IEEE Int.
Symp. Cireuits Syst., (Romé), May 1982, pp. 819-822.

E. Vannerson AnddK. C. Smith, "Fast Amplitude Stébilization of

an 'RC Oscillator”, IEEE J. Solid- State Circuits, vol. s¢-9,
PP.. 176-179, Aug.’ 1974, s Y-

-

I. M. Filanovsky and G. J. Fortier, "Fast amplitude control fh
*win-T . RC-oscillators”, Electronics  Letter$, vol. 21;
pp. 791-792, 1985. . A

N\

—
.

- References for Chapter fwo

[!3] Andrew P. Sape, Optimum Systems Uontrol, Préhtice Hall ihc.,

Engi’wood Cliffs, N.J., 1968. ‘

¢

p 95 ~. |

rd

ot



[14).
(15].

[16].
{17].

(18].

" 19].
[20].
[21].

[22].

‘Englewood Cliffs N.J., 1978~

o ) ‘ ‘u‘ 96-

/

Hichael Athans and Peter L. Falb, Optimal Concrol An
éntroducclon to the Theory and’Its Appllcatlons, McGraw-H{1l1l,
ew York 1966.

L. s. Pontryagin. V. G. Boltyanskii, R. V. Gamkrelidze, and"
E. F. Mishchenko, The Mathematical Theory of Opcimnl Processes,
John Wiley & Sons, New York, 1962, .

Jack Macki and Aaron Strauss, Introduction to Optimal Concrol
Theory, Springer- Verlag, New York 1982. - -

~—

\
M. Herpy, Analog Integrated Circuits, John Wiley & Sons; New -
York, 1980. ‘

-

M. Vidyasagar, Nonlinear Systems Analysls: Prentiéﬂlﬂall Inc.,

L4

References for Chapter Three PR

» . .
Linear and Interface Integrated Circu!{s Data Book, Motorola
Inc., 1985, '( T~ ’

Linear Circuits Data Book, Texas Instruments 1984,
Linear and Conversion Products, Precision Monolithics 1986.

Analog Switch & IC Product Data Book, Silicdnix Ina., 12{2.



