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Abstract

This thesis investigates the optimal control of two nonholonomic mechanical systems, Suslov’s problem

and the rolling ball. Suslov’s problem is a nonholonomic variation of the classical rotating free rigid body

problem, in which the body angular velocity Ω(t) must always be orthogonal to a prescribed, time-varying

body frame vector ξ(t), i.e. ⟨Ω(t), ξ(t)⟩ = 0. The motion of the rigid body in Suslov’s problem is actuated

via ξ(t), while the motion of the rolling ball is actuated via internal point masses that move along rails

fixed within the ball. First, by applying Lagrange-d’Alembert’s principle with Euler-Poincaré’s method,

the uncontrolled equations of motion are derived. Then, by applying Pontryagin’s minimum principle, the

controlled equations of motion are derived, a solution of which obeys the uncontrolled equations of motion,

satisfies prescribed initial and final conditions, and minimizes a prescribed performance index. Finally, the

controlled equations of motion are solved numerically by a continuation method, starting from an initial

solution obtained analytically (in the case of Suslov’s problem) or via a direct method (in the case of the

rolling ball).
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Preface

This thesis contains material that has appeared in a pair of papers, one on Suslov’s problem and the

other on rolling ball robots, co-authored with my supervisor, Vakhtang Putkaradze. Chapter 4 contains

much of the material published in the paper [1] on Suslov’s problem: Vakhtang Putkaradze and Stuart

Rogers, “Constraint Control of Nonholonomic Mechanical Systems,” Journal of Nonlinear Science, DOI:

10.1007/s00332-017-9406-1, 2017. Chapter 5 contains much of the material in the paper [2] on rolling

ball robots that has been submitted for publication in Optimal Control, Applications and Methods and

posted online on arXiv : Vakhtang Putkaradze and Stuart Rogers, “Optimal Control of a Rolling Ball Robot

Actuated by Internal Point Masses,” arXiv preprint arXiv:1708.03829, 2017.
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Rome wasn’t built in a day, but they were laying bricks every hour.
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Chapter 1

Introduction

1.A Motivation and Methodology for this Research

The first six films in the famous Star Wars space saga starred the sidekick robot R2-D2, which locomoted

via a three-wheeled tripod. However, the seventh film in that saga, The Force Awakens, stars a new, next-

generation, sidekick robot called BB-8. BB-8, depicted in Figure 1.1a, locomotes via a single rolling ball.

To cash in on this new Star Wars fan favorite, the toy companies Sphero and Hasbro sell working toy

models of BB-8. But rolling ball robots are not just gimmicks used by the entertainment and toy industries.

The defense, security, energy, and agricultural industries are also interested in exploiting sensor-equipped

rolling ball robots, such as Rosphere shown in Figure 1.1b, for such tasks as surveillance and environmental

monitoring. How are rolling ball robots like BB-8 and Rosphere controlled to locomote over a prescribed

trajectory?

(a) Sphero’s toy incarnation of BB-8,
Star Wars’ next-generation rolling
ball robot [3].

(b) Rosphere can be used in agriculture for
monitoring crops, c⃝ 2013 Emerald [4].

Figure 1.1: Examples of real rolling ball robots.

More specifically, suppose a rolling ball like BB-8 or Rosphere is actuated by some internal mechanism which

may be controlled, such as by spinning internal rotors, by swinging an internal pendulum, or by moving

internal point masses along rails fixed within the ball. In addition, suppose initial and final conditions, like

the ball’s initial and final positions and velocities, algebraic (i.e. non-differential) path inequality constraints,

like engineering limitations on the internal mechanism’s acceleration, and a performance index, such as the
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mean error between the ball’s actual and prescribed trajectory, are prescribed. How can the ball’s internal

mechanism be controlled to minimize the prescribed performance index while satisfying the prescribed initial

and final conditions and the prescribed algebraic path inequality constraints? This is an example of a so-

called optimal control problem. In the absence of algebraic path inequality constraints, this thesis offers a

solution to this optimal control problem by applying methods from mechanics and optimal control.

In this thesis, a dynamical system is always assumed to be a system that evolves according to a collection of

ordinary differential equations. Optimal control is an optimization technique to derive a control policy for

governing a dynamical system that minimizes some prescribed performance index such as a cost function or

a cost functional, while satisfying prescribed initial and final conditions, prescribed algebraic path inequality

constraints, and the ordinary differential equations that define the dynamical system. An optimal control

problem may be solved by dynamic programming, Pontryagin’s minimum principle, or the direct method.

Dynamic programming, developed by Richard Bellman in the 1950s, formulates the Hamilton-Jacobi-Bellman

partial differential equation (HJB PDE). Pontryagin’s minimum principle, developed by Lev Pontryagin in

the 1950s, formulates an ordinary differential equation two-point boundary value problem (ODE TPBVP).

In the literature, Pontryagin’s minimum principle is often referred to as the indirect method. The direct

method recasts the infinite-dimensional optimal control problem as a finite-dimensional parameter optimiza-

tion problem, i.e. a nonlinear programming (NLP) problem, by discretizing time and by approximating the

unknown controls via an unknown linear combination of a finite set of given basis functions. Because the

HJB PDE is difficult to solve due to the curse of dimensionality, this thesis relies on the direct and indirect

methods to solve optimal control problems.

However, before optimal control can be applied to the rolling ball or any other dynamical system, its

ordinary differential equations of motion must be derived first; henceforth, the ordinary differential equations

of motion of a dynamical system will often be referred to as the equations of motion or the uncontrolled

equations of motion to distinguish them from the controlled equations of motion which may be obtained

by the indirect method. To derive the uncontrolled equations of motion for the rolling ball, methods from

mechanics must be utilized. The rolling ball is an example of a nonholonomic (as opposed to a holonomic)

mechanical system. A mechanical system is said to be nonholonomic (holonomic) if its physical motion

constraints depend on the system’s velocity (position). The uncontrolled equations of motion governing a

nonholonomic mechanical system are given by Lagrange-d’Alembert’s principle, a somewhat nonintuitive

method in mechanics developed by Jean d’Alembert in the 18th century. In addition, Euler-Poincaré’s

method [5], published by Henri Poincaré in 1901, provides a more efficient derivation of the equations of

motion of a mechanical system than Hamilton’s principle.

Given a nonholonomic mechanical system, such as the rolling ball, the procedure to formulate and solve an

optimal control problem in this thesis is as follows. First, the uncontrolled equations of motion are derived

by applying Lagrange-d’Alembert’s principle with Euler-Poincaré’s method, from which an optimal control

problem is formulated, given initial and final conditions and a performance index to be minimized. Next,

Pontryagin’s minimum principle is used to derive the controlled equations of motion, a solution of which

obeys the uncontrolled equations of motion, satisfies the prescribed initial and final conditions, and minimizes

the prescribed performance index. Finally, the controlled equations of motion are solved numerically by

continuation, starting from an initial solution to a simpler optimal control problem obtained via analytics

or a direct method.
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Before investigating the optimal control of the rolling ball, this thesis first investigates the optimal control of

Suslov’s problem because it is a much simpler nonholonomic mechanical system. In summary, this thesis uses

the procedure just described to investigate the optimal control of two particular nonholonomic mechanical

systems, Suslov’s problem and the rolling ball. The optimal control of other nonholonomic mechanical sys-

tems, namely the continuous variable transmission and the Chaplgyin sleigh, has been investigated recently

in [6].

1.B Background on Suslov’s Problem

In 1902, Suslov [7] considered the motion of a rigid body that rotates about a fixed point but which is

constrained such that its body angular velocity Ω must be orthogonal to a prescribed body frame vector

ξ. Such a rigid body, depicted in Figure 1.2 using a coffee mug, is therefore called Suslov’s problem.

Mathematically, the constraint for Suslov’s problem is ⟨Ω(t), ξ(t)⟩ = 0, and so Suslov’s problem is an

example of a nonholonomic mechanical system.

Figure 1.2: Suslov’s problem studies the motion of a rotating rigid body subject to ⟨Ω(t), ξ(t)⟩ = 0. In
Suslov’s original formulation, ξ(t) ≡ ξ is fixed (i.e. does not vary with respect to time) in the body frame.

In [7], Suslov derived the equations of motion for Suslov’s problem assuming that ξ is fixed. Reference

[8] reviews how Suslov’s problem might be physically realized, as illustrated in Figure 1.3, though Suslov’s

problem would be difficult to actually build, requiring idealized (i.e. unrealizable) conditions. Even though

it is probably not physically realizable, Suslov’s problem is a frequent and active topic in the nonholonomic

mechanics literature [9, 10, 11, 12, 13, 8, 14] due to its mathematical simplicity. In fact, Suslov’s problem

is perhaps the simplest nontrivial nonholonomic mechanical system. For this reason, Suslov’s problem is

investigated in this thesis before attacking the more complicated rolling ball. However, this thesis considers

a new variation of Suslov’s problem, in which ξ may vary with time so that ξ may serve as a control, thereby

transforming Suslov’s problem from a pure dynamics problem into an optimal control problem.

1.C Background on the Rolling Ball

Consider a ball rolling without slipping on a flat surface in the presence of a uniform gravitational field.

Figure 1.4 shows a ball of radius r rolling without slipping on a flat surface in the presence of a uniform

gravitational field of magnitude g.

3



Figure 1.3: Idealized realization of Suslov’s problem using a pair of diametrically opposed ice skates wedged
inside a spherical ice shell. The grey shaded blob represents the rigid body rotating about the fixed point
O. At this time instant, the fixed vector ξ lies in the plane of the page and is orthogonal to the rotation
axis, which points out of or into the page and which is parallel to Ω.

There are several terminologies in the literature to describe a ball rolling without slipping on a flat surface

in the presence of a uniform gravitational field, depending on its mass distribution and the location of its

center of mass. A Chaplygin sphere is a ball with an inhomogeneous mass distribution, but with its center

of mass located at the ball’s geometric center [15]. A Chaplygin top is a ball with an inhomogeneous mass

distribution, but with its center of mass not located at the ball’s geometric center [15]. Reference [16] does not

distinguish between these two cases, calling a Chaplygin ball a ball with an inhomogeneous mass distribution,

regardless of the location of its center of mass; as a special case of a Chaplygin ball, [16] calls a Chaplygin

concentric sphere a ball with an inhomogeneous mass distribution with its center of mass coinciding with

the ball’s geometric center. Thus, the Chaplygin concentric sphere (used by [16]) and the Chaplygin sphere

(used by [15]) are different terms for the same mechanical system. Note that a ball with a homogeneous mass

distribution (in a uniform gravitational field) necessarily has its center of mass at the ball’s geometric center,

and is therefore not very interesting. In this thesis, these terminologies are not used, rather the mechanical

system is referred to simply as a ball or a rolling ball, regardless of its mass distribution (homogeneous vs

inhomogeneous) and regardless of the location of its center of mass (at the ball’s geometric center vs not at

the ball’s geometric center).

In this thesis, the motion of the rolling ball is investigated assuming both static and dynamic internal

structure. The dynamics of the rolling ball with static internal structure was first solved analytically by

Chaplygin for the cylindrically symmetric rolling ball, i.e. a ball such that the line joining the ball’s center

of mass and geometric center forms an axis of symmetry, in 1897 [17] and for the Chaplygin sphere in 1903

[18], though dynamical properties of the cylindrically symmetric rolling ball were previously investigated by

Routh [19] and Jellet [20]. The dynamics of the rolling ball with dynamic internal structure is still an active

topic in the nonholonomic mechanics literature [21, 22, 15, 23, 24, 25, 26, 27, 28].
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Figure 1.4: A ball of radius r rolls without slipping on a flat surface in the presence of a uniform gravitational
field of magnitude g. The ball’s geometric center, center of mass, and contact point with the flat surface are
denoted by GC, CM, and CP, respectively.

Many methods have been proposed (and some realized) to actuate a rolling ball, such as illustrated in

Figure 1.5. This thesis considers a rolling ball actuated by internal point masses that move along rails

fixed within the ball, such as depicted in Figure 1.5c. Actuating the rolling ball by moving internal point

masses along general control rails has not been considered yet in the literature; [28] considers a very special

case where 6 magnets each move inside its own linear tube as shown in Figure 1.5b. Prior to [28] and this

thesis, controlling the motion of a nonholonomic mechanical system by moving internal point masses has

been studied previously in [29], which investigates the controlled motion of the Chaplygin sleigh actuated

by a single internal point mass.

In a comprehensive review of nonholonomic optimal control, [30] briefly discusses the optimal control of a

rolling ball, where an external control force pushes the ball’s geometric center. While several papers [21,

22, 15, 23, 24, 25, 26, 27] have investigated methods to control the rolling ball, none have used the optimal

control methods investigated in this thesis.

1.D Contributions and Thesis Summary

The key contributions of this thesis are listed below.

• The uncontrolled equations of motion are derived for a variation of Suslov’s problem where ξ is permit-

ted to vary with time; in Suslov’s original formulation, ξ was assumed to be fixed. Controllability of

this variation of Suslov’s problem is demonstrated. Controlled equations of motion for this variation of

Suslov’s problem are derived, a solution of which obeys the uncontrolled equations of motion, satisfies

prescribed initial and final conditions, and minimizes a prescribed performance index. A singular case

of the controlled equations of motion is solved analytically. The controlled equations of motion are

solved numerically by a monotonic continuation method, starting from the analytical solution to the

singular case.

• The uncontrolled equations of motion are derived for a rolling ball actuated by internal point masses

that move along rails fixed within the ball. By using automatic differentiation, controlled equations
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(a) A ball actuated by 3 rotors, studied
in [23, 24, 25], c⃝ 2016 IFAC [25].

(b) A ball actuated by 6 magnets, each
in its own linear tube, c⃝ 2016 IEEE
[28].

(c) A ball actuated by 3 point masses,
each on its own circular control rail,
studied in this thesis.

(d) A ball actuated by a gyroscopic
pendulum, studied in [27].

(e) A ball actuated by a pendulum and
yoke, c⃝ 2015 IJRNC [26].

(f) Sphero has 4 wheels wedged inside
the spherical shell, but only the lower 2
are spun by the motor [31].

Figure 1.5: Different methods to actuate a rolling ball.

of motion for this rolling ball are constructed numerically, a solution of which obeys the uncontrolled

equations of motion, satisfies prescribed initial and final conditions, and minimizes a prescribed per-

formance index. The controlled equations of motion are solved numerically by a predictor-corrector

continuation method, starting from an initial solution provided by a direct method.

• Jacobians of the ordinary differential equations (ODEs) and boundary conditions (BCs) which consti-

tute the controlled equations of motion (i.e. an ODE TPBVP) corresponding to the optimal control

of a dynamical system are derived. These Jacobians are useful for numerically solving the controlled

equations of motion.

• Algorithms for solving an ODE TPBVP by predictor-corrector continuation are developed and were

implemented in MATLAB to numerically solve the controlled equations of motion for the rolling ball.

There are not very many predictor-corrector continuation methods publicly available for solving dy-

namical systems. The idea of using a monotonic continuation ODE TPBVP solver in conjunction with

a predictor-corrector continuation method to advance (or “sweep”) as far along the tangent as possible

is new.

The thesis is organized as follows. Chapter 2 reviews methods from mechanics needed to derive the uncon-

trolled equations of motion for holonomic and nonholonomic mechanical systems. Chapter 3 reviews the
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theory of optimal control needed to derive the controlled equations of motion for a generic dynamical system

given initial and final conditions, given a performance index to be minimized, and in the absence of path

inequality constraints. Chapter 4 derives the uncontrolled and controlled equations of motion and numer-

ically solves the controlled equations of motion for Suslov’s problem. Chapter 5 derives the uncontrolled

equations of motion and numerically constructs and solves the controlled equations of motion for the rolling

ball actuated by internal point masses that move along rails fixed within the ball. Chapter 6 summarizes

the results of the thesis and discusses topics for future work. Appendix A provides a brief survey of meth-

ods to numerically solve optimal control problems. Appendix B validates a claim concerning the controlled

equations of motion for Suslov’s problem. Appendices C and D develop algorithms for numerically solving

an ODE TPBVP via predictor-corrector continuation; these algorithms are utilized to numerically solve the

controlled equations of motion for the rolling ball. Appendix E reviews quaternions, which are utilized to

formulate the optimal control problem for the rolling ball.
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Chapter 2

Mechanics

This chapter reviews several principles from mechanics that are useful for developing the uncontrolled equa-

tions of motion for rigid bodies. Hamilton’s principle and Euler-Poincaré’s method are reviewed in Sec-

tion 2.A, while Lagrange-d’Alembert’s principle is reviewed in Section 2.B. By studying a simple nonholo-

nomic particle in Section 2.C, it is demonstrated that the nonintuitive Lagrange-d’Alembert’s principle gives

different equations of motion than the more intuitive vakonomic approach. Euler-Poincaré’s method and

Lagrange-d’Alembert’s principle are later utilized to derive the uncontrolled equations of motion for Suslov’s

problem in Chapter 4 and for the rolling ball in Chapter 5.

2.A Hamilton’s Principle, Symmetry Reduction, and Euler-Poincaré’s

Method

Hamilton’s Principle A mechanical system consists of a configuration space, which is a manifold M with

tangent bundle TM =
⋃

q∈M TqM , and a Lagrangian L(q, q̇) : TM → R, (q, q̇) ∈ TM . Figure 2.1 illustrates

the tangent bundles of several manifolds. The equations of motion are given by Hamilton’s principle (also

(a) The tangent bundle of the circle
[32].

(b) The tangent bundle of the sphere,
c⃝ 2011 Greg Egan [33].

(c) The tangent bundle of the Möbius
strip, c⃝ 2011 Greg Egan [34].

Figure 2.1: Illustrations of the tangent bundles of several manifolds.
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called the variational principle of stationary action) which states that

δ

∫ b

a

L (q, q̇) dt = 0 , δq(a) = δq(b) = 0, (2.1)

for all smooth functions δq(t) defined for a ≤ t ≤ b and that vanish at the endpoints (i.e. δq(a) = δq(b) = 0).

Pushing the variational derivative inside the integral, integrating by parts, and enforcing the vanishing

endpoint conditions δq(a) = δq(b) = 0 yields

δ

∫ b

a

L (q, q̇) dt =

∫ b

a

δL (q, q̇) dt =

∫ b

a

[
∂L (q, q̇)

∂q
δq +

∂L (q, q̇)

∂q̇
δq̇

]
dt

=

∫ b

a

[
∂L (g, q̇)

∂g
δq − d

dt

∂L (q, q̇)

∂q̇
δq

]
dt+

∂L (q, q̇)

∂q̇
δq

⏐⏐⏐⏐b
a

=

∫ b

a

[
∂L (q, q̇)

∂q
− d

dt

∂L (q, q̇)

∂q̇

]
δqdt.

(2.2)

Insisting that δ
∫ b

a
L (q, q̇) dt = 0 for all such smooth functions δq produces the Euler-Lagrange equations of

motion:
∂L

∂q
− d

dt

∂L

∂q̇
= 0. (2.3)

Recall that a Lie group is a smooth manifold which is also a group and for which the group operations of

multiplication and inversion are smooth functions [16]. In the case when there is an intrinsic symmetry in

the configuration space, in particular when M = G, a Lie group, and when there is an appropriate invariance

of the Lagrangian with respect to G, these Euler-Lagrange equations, defined on the tangent bundle of the

group TG (i.e. depending on both g and ġ) are cumbersome to use.

Free Rigid Body For example, consider the case of a rigid body rotating about a fixed point with no

external torques, so that G = SO(3), g = Λ ∈ SO(3) = G, and the Lagrangian is L
(
Λ, Λ̇

)
. This mechanical

system is called a free rigid body. The Euler-Lagrange equations are

∂L

∂Λ
− d

dt

∂L

∂Λ̇
= 0 , ΛTΛ = I, (2.4)

where I ∈ R3×3 is the 3× 3 identity matrix. Equation (2.4) involves 9 ordinary differential equations with 6

constraints, and (2.4) is highly counterintuitive to use. Thus, the Euler-Poincaré description of motion [5], or

Euler-Poincaré’s method, is exploited to handle this situation and substantially simplify the Euler-Lagrange

equations of motion which result from Hamilton’s principle. Assuming that the Lagrangian is invariant with

respect to rotations on the left, which corresponds to the description of the equations of motion in the body

frame, the symmetry-reduced Lagrangian should be of the form ℓ
(
Λ−1Λ̇

)
.

Since Λ ∈ SO(3), Λ−1Λ = I and Λ−1 = ΛT, so that

(
Λ−1Λ

)·
= Λ−1Λ̇ +

(
Λ−1

)·
Λ = Λ−1Λ̇ +

(
ΛT
)·
Λ = Λ−1Λ̇ + Λ̇TΛ = Λ−1Λ̇ +

(
ΛTΛ̇

)T
= Λ−1Λ̇ +

(
Λ−1Λ̇

)T
= 0.

(2.5)
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Hence Λ−1δΛ = −
(
Λ−1δΛ

)T
, and so Λ−1δΛ ∈ so(3). The isomorphic mapping from the column vectors in

R3 to the Lie algebra so(3), i.e. skew-symmetric matrices, is defined using the hat map ∧ : R3 → so(3) as

ω̂ =

⎡⎢⎣ω1

ω2

ω3

⎤⎥⎦
∧

=

⎡⎢⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎥⎦ , (2.6)

and the inverse mapping from so(3) to the column vectors in R3 is defined using the caron map ∨ : so(3)→
R3 as ⎡⎢⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎥⎦
∨

=

⎡⎢⎣ω1

ω2

ω3

⎤⎥⎦ = ω. (2.7)

Since the hat map ∧ : R3 → so(3) and its inverse ∨ : so(3) → R3 give isomorphisms between so(3) and

R3 and since Λ−1Λ̇ ∈ so(3), the symmetry-reduced Lagrangian should also be of the form ℓ (Ω), where

Ω ≡
[
Λ−1Λ̇

]∨
∈ R3. The variation of Ω is computed as follows:

δΩ =
(
δΛ−1Λ̇ + Λ−1δΛ̇

)∨
=

(
−Λ−1δΛΛ−1Λ̇ +

(
Σ̇
)∧
−
(
Λ−1

)·
δΛ

)∨

=

(
−Λ−1δΛΛ−1Λ̇ +

(
Σ̇
)∧

+ Λ−1Λ̇Λ−1δΛ

)∨

=

(
−Σ̂Ω̂+

(
Σ̇
)∧

+ Ω̂Σ̂

)∨

= Σ̇+
(
Ω̂Σ̂− Σ̂Ω̂

)∨
= Σ̇+Ω×Σ,

(2.8)

where Σ ≡
(
Λ−1δΛ

)∨ ∈ R3. Under the hat map isomorphism, the variations Σ lie in the Lie algebra so(3).

Taking the variation of the action integral, pushing the variational derivative inside the integral, integrating

by parts, and enforcing the endpoint conditions Σ(a) = Σ(b) = 0 yields

δ

∫ b

a

ℓ (Ω) dt =

∫ b

a

δℓ (Ω) dt =

∫ b

a

⟨
δℓ

δΩ
, δΩ

⟩
dt =

∫ b

a

⟨
δℓ

δΩ
, Σ̇+Ω×Σ

⟩
dt

= −
∫ b

a

⟨(
d

dt
+Ω×

)
δℓ

δΩ
,Σ

⟩
dt+

⟨
δℓ

δΩ
,Σ

⟩⏐⏐⏐⏐b
a

= −
∫ b

a

⟨(
d

dt
+Ω×

)
δℓ

δΩ
,Σ

⟩
dt.

(2.9)

Insisting that δ
∫ b

a
ℓ (Ω) dt = 0 for all smooth variations Σ that vanish at the endpoints generates the well-

known equations of motion for the free rigid body:

d

dt

δℓ

δΩ
+Ω× δℓ

δΩ
= 0. (2.10)

Note that in the above derivation, the functional derivative notation δℓ
δΩ is used rather than the partial

derivative notation ∂ℓ
∂Ω . The former is used if the Lagrangian depends functionally (e.g. involving a derivative

or integral) rather than pointwise on its argument. If the Lagrangian depends only pointwise on its argument,

such as is the case for the free rigid body and heavy top (to be discussed next), the two notations agree. For

the free rigid body, the symmetry-reduced Lagrangian is l (Ω) = 1
2 ⟨IΩ,Ω⟩, δℓ

δΩ = IΩ, and the equations of

motion (2.10) become Ω̇ = I−1 [(IΩ)×Ω]. By multiplying (2.10) by Λ and using the identity Λ̇ = ΛΩ̂, the
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equations of motion for the free rigid body may be expressed in conservation law form:

d

dt

[
Λ

δℓ

δΩ

]
= 0⇔ Λ

δℓ

δΩ
= const. (2.11)

Heavy Top As another application of Euler-Poincaré’s method, consider the heavy top, which is a rigid

body of mass m rotating with a fixed point of support in a uniform gravitational field with gravitational

acceleration g. Let χ denote the vector in the body frame from the fixed point of support to the heavy

top’s center of mass. To compute the equations of motion for the heavy top, another advected variable

Γ = Λ−1ẑ must be introduced. Γ represents the motion of the unit vector ẑ along the spatial vertical

axis, as seen from the body frame. Γ̇ =
(
Λ−1ẑ

)·
= −Λ−1Λ̇Λ−1ẑ = −Ω̂Γ = Γ × Ω and δΓ = δ

(
Λ−1ẑ

)
=

−Λ−1δΛΛ−1ẑ = −Σ̂Γ = Γ × Σ. The heavy top’s reduced Lagrangian is l (Ω,Γ) = 1
2 ⟨IΩ,Ω⟩ − ⟨mgχ,Γ⟩.

Taking the variation of the action integral, pushing the variational derivative inside the integral, integrating

by parts, and enforcing the endpoint conditions Σ(a) = Σ(b) = 0 yields

δ

∫ b

a

l (Ω,Γ) dt =

∫ b

a

δl (Ω,Γ) dt =

∫ b

a

[⟨IΩ, δΩ⟩ − ⟨mgχ, δΓ⟩] dt

=

∫ b

a

[⟨
IΩ, Σ̇+Ω×Σ

⟩
− ⟨mgχ,Γ×Σ⟩

]
dt

=

∫ b

a

⟨
− d

dt
(IΩ) + (IΩ)×Ω+mgΓ× χ,Σ

⟩
dt+ ⟨IΩ,Σ⟩|ba

=

∫ b

a

⟨
− d

dt
(IΩ) + (IΩ)×Ω+mgΓ× χ,Σ

⟩
dt.

(2.12)

Insisting that δ
∫ b

a
l (Ω,Γ) dt = 0 for all smooth variations Σ that vanish at the endpoints generates the

equations of motion for the heavy top:

Ω̇ = I−1 [(IΩ)×Ω+mgΓ× χ] ,

Γ̇ = Γ×Ω.
(2.13)

AD, Ad, ad, Ad∗, and ad∗ In order to consider mechanics on general groups, adjoint and coadjoint

operations are defined as follows. Consider a Lie group G with Lie algebra g, dual Lie algebra g∗, and a

pairing ⟨·, ·⟩ : g∗ × g→ R. The ADjoint operation AD : G×G→ G is defined by

ADgh = ghg−1 ∀g, h ∈ G. (2.14)

The Adjoint operation Ad : G×g→ g is defined by taking a smooth curve h(t) with h(0) = e and ḣ(0) = η ∈ g

(arbitrary and fixed) and computing

Adgη :=
d

dt

⏐⏐⏐⏐
t=0

ADgh(t) = gηg−1 ∀g ∈ G, ∀η ∈ g. (2.15)
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The adjoint operation ad : g×g→ g is defined by taking a smooth curve g(t) with g(0) = e and ġ(0) = ξ ∈ g

(arbitrary and fixed) and computing

adξη :=
d

dt

⏐⏐⏐⏐
t=0

Adg(t)η = ξη − ηξ = [ξ, η] ∀ξ, η ∈ g, (2.16)

where [·, ·] : g× g→ R is the Lie bracket defined by

[ξ, η] = ξη − ηξ ∀ξ, η ∈ g. (2.17)

The coAdjoint operation Ad∗ : G× g∗ → g∗ is defined by

⟨
Ad∗gµ, η

⟩
= ⟨µ,Adgη⟩ ∀g ∈ G, ∀µ ∈ g∗, ∀η ∈ g. (2.18)

The coadjoint operation ad∗ : g× g∗ → g∗ is defined by

⟨
ad∗ξµ, η

⟩
= ⟨µ, adξη⟩ ∀ξ, η ∈ g, ∀µ ∈ g∗. (2.19)

Euler-Poincaré’s Method More generally, if the Lagrangian L : TG→ R is left-invariant, i.e. L (hg, hġ) =

L (g, ġ) ∀ (g, ġ) ∈ TG, ∀h ∈ G, we can define the symmetry-reduced Lagrangian through the symmetry

reduction ℓ = ℓ
(
g−1ġ

)
= ℓ(ξ) = L (e, ξ) , where ξ = g−1ġ. Then, the equations of motion (2.3) are equivalent

to the Euler-Poincaré equations of motion obtained from the variational principle

δ

∫ b

a

ℓ(ξ)dt = 0, for variations δξ = η̇ + adξη, ∀η(t) : η(a) = η(b) = 0. (2.20)

The variations η(t), assumed to be sufficiently smooth, are sometimes called free variations. Applying the

variational principle (2.20) gives

δ

∫ b

a

ℓ(ξ)dt =

∫ b

a

⟨
δℓ

δξ
, δξ

⟩
dt =

∫ b

a

⟨
δℓ

δξ
, η̇ + adξη

⟩
dt

=

∫ b

a

⟨
− d

dt

δℓ

δξ
+ ad∗ξ

δℓ

δξ
, η

⟩
dt+

⟨
δℓ

δξ
, η

⟩⏐⏐⏐⏐b
a

=

∫ b

a

⟨
− d

dt

δℓ

δξ
+ ad∗ξ

δℓ

δξ
, η

⟩
dt = 0,

(2.21)

which yields the Euler-Poincaré equations of motion:

d

dt

δℓ

δξ
− ad∗ξ

δℓ

δξ
= 0 . (2.22)

For right-invariant Lagrangians, i.e. L (gh, ġh) = L (g, ġ) ∀h ∈ G, the Euler-Poincaré equations of motion

(2.22) change by altering the sign in front of ad∗ξ from minus to plus. For the free rigid body, ξ = Ω and

ad∗Ω
δℓ
δΩ = −Ω × δℓ

δΩ , so that the free rigid body equations of motion (2.10) derived earlier agree with the

Euler-Poincaré equations of motion (2.22).

Next it will be shown that (2.22) implies conservation of angular momentum. Letting α ∈ g be arbitrary
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and constant in time and letting t0 ∈ R be an arbitrary time, observe that⟨
d

dt

⏐⏐⏐⏐
t0

Ad∗g−1

δℓ

δξ
, α

⟩
=

d

dt

⏐⏐⏐⏐
t0

⟨
Ad∗g−1

δℓ

δξ
, α

⟩
=

d

dt

⏐⏐⏐⏐
t0

⟨
δℓ

δξ
,Adg−1α

⟩

=

⟨
d

dt

⏐⏐⏐⏐
t0

δℓ

δξ
,Adg−1α

⟩
+

⟨
δℓ

δξ
,
d

dt

⏐⏐⏐⏐
t0

Adg−1α

⟩

=

⟨
Ad∗g−1

[
d

dt

⏐⏐⏐⏐
t0

δℓ

δξ

]
, α

⟩
+

⟨
δℓ

δξ
,−adξ

[
Adg−1α

]⟩

=

⟨
Ad∗g−1

[
d

dt

⏐⏐⏐⏐
t0

δℓ

δξ

]
, α

⟩
−
⟨
ad∗ξ

δℓ

δξ
,Adg−1α

⟩

=

⟨
Ad∗g−1

[
d

dt

⏐⏐⏐⏐
t0

δℓ

δξ

]
, α

⟩
−
⟨
Ad∗g−1

[
ad∗ξ

δℓ

δξ

]
, α

⟩

=

⟨
Ad∗g−1

[
d

dt

⏐⏐⏐⏐
t0

δℓ

δξ
− ad∗ξ

δℓ

δξ

]
, α

⟩
=
⟨
Ad∗g−10, α

⟩
= 0,

(2.23)

where (2.22) is used in the second to last equality. In the fourth equality of (2.23), the following result is

used

d

dt

⏐⏐⏐⏐
t0

Adg−1α =
d

dt

⏐⏐⏐⏐
t=t0

Adg(t)−1α =
d

dt

⏐⏐⏐⏐
t=t0

Adg(t)−1g(t0)

[
Adg(t0)−1α

]
=

d

dt

⏐⏐⏐⏐
t=t0

{
g(t)−1g(t0)

[
Adg(t0)−1α

]
g(t0)

−1g(t)
}

=

{
− g(t)−1ġ(t)g(t)−1g(t0)

[
Adg(t0)−1α

]
g(t0)

−1g(t)

+ g(t)−1g(t0)
[
Adg(t0)−1α

]
g(t0)

−1ġ(t)

}⏐⏐⏐⏐
t=t0

= −g(t0)−1ġ(t0)
[
Adg(t0)−1α

]
+
[
Adg(t0)−1α

]
g(t0)

−1ġ(t0)

= −ξ(t0)
[
Adg(t0)−1α

]
+
[
Adg(t0)−1α

]
ξ(t0)

= −adξ(t0)
[
Adg(t0)−1α

]
,

(2.24)

using the property AdgAdhη = g
(
hηh−1

)
g−1 = (gh) η (gh)

−1
= Ad(gh)η ∀g, h ∈ G, ∀η ∈ g in the second

equality. Since α ∈ g is arbitrary, (2.23) implies that d
dt

⏐⏐
t0
Ad∗g−1

δℓ
δξ = 0. Since t0 ∈ R is an arbitrary time,

d
dtAd

∗
g−1

δℓ
δξ = 0, thereby proving conservation of angular momentum.

Hamilton-Pontryagin’s Principle An alternative to Euler-Poincaré’s method is Hamilton-Pontryagin’s

principle, which says that the equations of motion may be obtained from the variational principle

δŜ (ξ, g, ġ) = δ

∫ b

a

ℓ̂ (ξ, g, ġ) dt = 0 (2.25)

for all variations of g such that δg(a) = δg(b) = 0, where Ŝ is the constrained action integral

Ŝ (ξ, g, ġ) =

∫ b

a

ℓ̂ (ξ, g, ġ) dt =

∫ b

a

[
ℓ(ξ) +

⟨
µ, g−1ġ − ξ

⟩]
dt (2.26)
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and ℓ̂ is the augmented, reduced Lagrangian

ℓ̂ (ξ, g, ġ) = ℓ(ξ) +
⟨
µ, g−1ġ − ξ

⟩
. (2.27)

To see that Hamilton-Pontryagin’s principle gives the same equations of motion as Euler-Poincaré’s method,

define η = g−1δg. Since ξ = g−1ġ,

δξ = δ
(
g−1ġ

)
= −g−1δgg−1ġ + g−1δġ = −ηξ + g−1δġ. (2.28)

Since η = g−1δg,

η̇ =
(
g−1δg

)·
= −g−1ġg−1δg + g−1 (δg)

·
= −ξη + g−1 (δg)

·
. (2.29)

Subtracting (2.29) from (2.28) gives

δξ − η̇ = ξη − ηξ = adξη. (2.30)

Now compute the variation of Ŝ:

δŜ = δ

∫ b

a

ℓ̂ (ξ, g, ġ) dt = δ

∫ b

a

[
ℓ(ξ) +

⟨
µ, g−1ġ − ξ

⟩]
dt

=

∫ b

a

[⟨
δℓ̂

δξ
− µ, δξ

⟩
+
⟨
δµ, g−1ġ − ξ

⟩
+
⟨
µ, δ

(
g−1ġ

)⟩]
dt

=

∫ b

a

[⟨
δℓ̂

δξ
− µ, δξ

⟩
+
⟨
δµ, g−1ġ − ξ

⟩
+ ⟨µ, η̇ + adξη⟩

]
dt

=

∫ b

a

[⟨
δℓ̂

δξ
− µ, δξ

⟩
+
⟨
δµ, g−1ġ − ξ

⟩
+
⟨
−µ̇+ ad∗ξµ, η

⟩]
dt+ ⟨µ, η⟩|ba

=

∫ b

a

[⟨
δℓ̂

δξ
− µ, δξ

⟩
+
⟨
δµ, g−1ġ − ξ

⟩
+
⟨
−µ̇+ ad∗ξµ, η

⟩]
dt,

(2.31)

since δ
(
g−1ġ

)
= η̇+adξη by (2.30) and because η(a) = η(b) = 0 (since δg(a) = δg(b) = 0). δŜ = 0 gives the

Hamilton-Pontryagin equations of motion

∂ℓ̂

∂ξ
= µ, g−1ġ − ξ, µ̇ = ad∗ξµ, (2.32)

which agree with the Euler-Poincaré equations of motion (2.22). Even though Hamilton-Pontryagin’s princi-

ple could be utilized, this thesis instead relies on Euler-Poincaré’s method to derive the equations of motion

for Suslov’s problem in Chapter 4 and for the rolling ball in Chapter 5.

Euler-Poincaré’s Method with an Advected Parameter Let V be a vector space. Suppose the

Lagrangian L depends on a parameter in the dual space V ∗, so that the general Lagrangian has the form

L : TG × V ∗ → R. For a parameter α0 ∈ V ∗, suppose that the Lagrangian Lα0
: TG → R defined

by Lα0
(g, ġ) = L (g, ġ, α0) ∀ (g, ġ) ∈ TG is left-invariant, i.e. L (hg, hġ, hα0) = L (g, ġ, α0) ∀ (g, ġ) ∈

TG, ∀h ∈ G. Then we can define the symmetry-reduced Lagrangian through the symmetry reduction

ℓ = ℓ
(
g−1ġ, g−1α0

)
= ℓ (ξ, α) = L (e, ξ, α) , where ξ = g−1ġ and α = g−1α0. Euler-Poincaré’s method with
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an advected parameter says that the equations of motion are obtained from the variational principle

δ

∫ b

a

ℓ (ξ, α) dt = 0, for variations δξ = η̇ + adξη, δα = −ηα, ∀η(t) : η(a) = η(b) = 0. (2.33)

Before applying this variational principle, the diamond operation � is defined. � : V ×V ∗ → g∗ is defined by

⟨v � w, ξ⟩ = ⟨w, ξv⟩ ∀v ∈ V, ∀w ∈ V ∗, ∀ξ ∈ g. (2.34)

� : V ∗ × V → g∗ is defined by

⟨w � v, ξ⟩ = −⟨v � w, ξ⟩ = −⟨w, ξv⟩ ∀v ∈ V, ∀w ∈ V ∗, ∀ξ ∈ g. (2.35)

Applying the variational principle (2.33) gives

δ

∫ b

a

ℓ (ξ, α) dt =

∫ b

a

[⟨
δℓ

δξ
, δξ

⟩
+

⟨
δℓ

δα
, δα

⟩]
dt

=

∫ b

a

[⟨
δℓ

δξ
, η̇ + adξη

⟩
+

⟨
δl

δα
,−ηα

⟩]
dt

=

∫ b

a

[⟨
− d

dt

δℓ

δξ
+ ad∗ξ

δℓ

δξ
, η

⟩
+

⟨
δl

δα
� α, η

⟩]
dt+

⟨
δℓ

δξ
, η

⟩⏐⏐⏐⏐b
a

=

∫ b

a

⟨
− d

dt

δℓ

δξ
+ ad∗ξ

δℓ

δξ
+

δl

δα
� α, η

⟩
dt = 0,

(2.36)

which yields the Euler-Poincaré equations of motion with an advected parameter:

d

dt

δℓ

δξ
− ad∗ξ

δℓ

δξ
− δl

δα
� α = 0 . (2.37)

The most direct application of the Euler-Poincaré equations of motion with an advected parameter is the

heavy top, where the advected parameter is the gravity vector expressed in the heavy top’s body frame. For

the heavy top, ξ = Ω, α = Γ, l (Ω,Γ) = 1
2 ⟨IΩ,Ω⟩ − ⟨mgχ,Γ⟩, δℓ

δΩ = IΩ, ad∗Ω
δℓ
δΩ = −Ω× IΩ, δℓ

δΓ = −mgχ,

and δl
δΓ � Γ = −mgχ× Γ. Plugging all these identities into (2.37) recovers the previously derived heavy top

equations of motion (2.13).

2.B Nonholonomic Constraints and Lagrange-d’Alembert’s Prin-

ciple

Suppose a mechanical system having configuration space M , a manifold of dimension n, must satisfy m <

n constraints that are linear in velocity. To express these velocity constraints formally, the notion of a

distribution is needed. Given the manifold M , a distribution D on M is a subset of the tangent bundle

TM =
⋃

q∈M TqM : D =
⋃

q∈M Dq, where Dq ⊂ TqM and m = dimDq < dimTqM = n for each q ∈ M .

A curve q(t) ∈ M satisfies the constraints if q̇(t) ∈ Dq(t). Lagrange-d’Alembert’s principle states that the
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equations of motion are determined by

δ

∫ b

a

L(q, q̇)dt = 0⇔
∫ b

a

[
d

dt

∂L

∂q̇
− ∂L

∂q

]
δq dt = 0⇔ d

dt

∂L

∂q̇
− ∂L

∂q
∈ D◦

q (2.38)

for all smooth variations δq(t) of the curve q(t) such that δq(t) ∈ Dq(t) for all a ≤ t ≤ b and such that

δq(a) = δq(b) = 0, and for which q̇(t) ∈ Dq(t) for all a ≤ t ≤ b. If one writes the nonholonomic constraint in

local coordinates as
∑n

i=1 A(q)ji q̇
i = 0, j = 1, . . . ,m < n, then (2.38) is written in local coordinates as

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

m∑
j=1

λjA(q)ji , i = 1, . . . , n ,

n∑
i=1

A(q)ji q̇
i = 0, (2.39)

where the λj are Lagrange multipliers enforcing
∑n

i=1 A(q)ji δq
i = 0, j = 1, . . . ,m. Aside from Lagrange-

d’Alembert’s approach, there is also an alternative vakonomic approach to derive the equations of motion

for nonholonomic mechanical systems. Simply speaking, the vakonomic approach relies on substituting the

constraint into the Lagrangian before taking variations or, equivalently, enforcing the constraints using the

appropriate Lagrange multiplier method. The next section illustrates the differences in the two approaches

by studying a simple nonholonomic particle. In particular, it is shown that the two methods yield different

equations of motion for this particle. In general, it is an experimental fact that all known nonholonomic

mechanical systems obey the equations of motion resulting from Lagrange-d’Alembert’s principle [35].

2.C A Simple Nonholonomic Particle

Consider a free particle with unit mass moving in space subject to the nonholonomic constraint

ż = yẋ. (2.40)

This problem was introduced and studied by Bates and Śniatycki in [36]. The particle’s Lagrangian is

l =
1

2

(
ẋ2 + ẏ2 + ż2

)
, (2.41)

the particle’s action integral is

S =

∫ b

a

ldt =

∫ b

a

1

2

(
ẋ2 + ẏ2 + ż2

)
dt, (2.42)

and the variation of the particle’s action integral is

δS = δ

∫ b

a

ldt =

∫ b

a

δldt =

∫ b

a

[ẋδẋ+ ẏδẏ + żδż] dt = −
∫ b

a

[ẍδx+ ÿδy + z̈δz] dt. (2.43)

Lagrange-d’Alembert’s Approach In Lagrange-d’Alembert’s approach, the constraint ż = yẋ implies

the variational constraint δz = yδx. Lagrange-d’Alembert’s principle states that the equations of motion

are given by δS = 0 for all variations δx, δy, and δz (i.e. Hamilton’s principle) subject to the variational

constraint δz = yδx and the original constraint ż = yẋ [30]. Using the method of Lagrange multipliers to
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simultaneously enforce the conditions δS = 0 and δz = yδx, the equations of motion must satisfy

0 = δS +

∫ b

a

λ [δz − yδx] dt

= −
∫ b

a

[ẍδx+ ÿδy + z̈δz] dt+

∫ b

a

λ [δz − yδx] dt

= −
∫ b

a

[(ẍ+ λy) δx+ ÿδy + (z̈ − λ) δz] dt,

ż = yẋ,

(2.44)

for all variations δx, δy, and δz and where λ is a Lagrange multiplier. Thus, the equations of motion are

ẍ+ λy = 0,

ÿ = 0,

z̈ − λ = 0,

ż = yẋ.

(2.45)

These equations may be simplified by using the equation z̈ − λ = 0 to eliminate λ and by then using the

original constraint ż = yẋ to eliminate z; after these simplifications the equations of motion only depend on

x and y. Since z̈ − λ = 0, z̈ = λ and so the equation ẍ+ λy = 0 becomes ẍ+ z̈y = 0. Having eliminated λ,

the equations of motion become

ẍ+ z̈y = 0,

ÿ = 0,

ż = yẋ.

(2.46)

The original constraint ż = yẋ implies that z̈ = ẏẋ + yẍ. Substituting z̈ = ẏẋ + yẍ into ẍ + z̈y = 0 yields

ẍ+ (ẏẋ+ yẍ) y = 0. The equations of motion simplify to

ẍ+
y

1 + y2
ẋẏ = 0,

ÿ = 0.
(2.47)

For this simple problem, a more direct derivation of the above equations of motion, avoiding introduction

of the Lagrange multiplier, is achieved by substituting the variational constraint δz = yδx in for δz in the

variation of the action integral. Making this substitution, the variation of the action integral becomes

δS = −
∫ b

a

[ẍδx+ ÿδy + z̈δz] dt = −
∫ b

a

[ẍδx+ ÿδy + z̈yδx] dt = −
∫ b

a

[(ẍ+ z̈y)δx+ ÿδy] dt. (2.48)

Applying Hamilton’s principle (i.e. demanding that δS = 0 for all variations δx and δy) and using the

original constraint ż = yẋ recovers the previously obtained equations of motion

ẍ+
y

1 + y2
ẋẏ = 0,

ÿ = 0.
(2.49)

17



These equations of motion may be solved analytically. Since ÿ = 0,

y(t) = ct+ d, (2.50)

for integration constants c and d. Using this result, the equation ẍ+ y
1+y2 ẋẏ = 0 becomes

ẍ+
ct+ d

1 + (ct+ d)
2 cẋ = 0. (2.51)

If c = 0,

x(t) = αt+ β, (2.52)

for integration constants α and β. If c ̸= 0,

x(t) = B ln

[
ct+ d+

√
1 + (ct+ d)

2

]
+ E, (2.53)

for integration constants B and E. If the particle’s initial conditions x(a), ẋ(a), y(a), and ẏ(a) are

given at time t = a, then the integration constants may be readily determined. c = ẏ(a) and d =

y(a) − ẏ(a)a. If c = 0, α = ẋ(a) and β = x(a) − ẋ(a)a. If c ̸= 0, B =
ẋ(a)
√

1+y(a)2

ẏ(a) and E =

x(a) − ẋ(a)
√

1+y(a)2

ẏ(a) ln

[
y(a) +

√
1 + y(a)

2

]
. Since ẏ = c is constant, the Lagrange-d’Alembert solution

conserves the y-component of momentum, which is contrary to a näıve application of Noether’s theo-

rem. The Lagrangian (2.41) and nonholonomic constraint (2.40) for this particle are invariant under the

translational transformations ρ1 (x, y, z) = (x+ C1, y, z) and ρ3 (x, y, z) = (x, y, z + C3) for constants C1

and C3. But the nonholonomic constraint (2.40) is not invariant under the translational transformation

ρ2 (x, y, z) = (x, y + C2, z) for a constant C2. Based on these observations, (wrong application of) Noether’s

theorem would predict that the particle’s x- and z-momenta, px and pz, should be conserved and that the

particle’s y-momentum, py, should not be conserved, which is not in agreement with (2.53), (2.50), and

(2.46). That is, (2.53) says that ẋ is nonconstant, (2.50) says that ẏ = c is constant, and (2.46) says that ż,

which equals yẋ, is nonconstant.

Vakonomic Approach In the vakonomic approach, the constraint ż = yẋ is added to the Lagrangian via

the method of Lagrange multipliers to obtain the modified Lagrangian

l̃ = l + λ (ż − yẋ) =
1

2

(
ẋ2 + ẏ2 + ż2

)
+ λ (ż − yẋ) , (2.54)

for a Lagrange multiplier λ [30, 37]. The modified action integral is

S̃ =

∫ b

a

l̃dt =

∫ b

a

[
1

2

(
ẋ2 + ẏ2 + ż2

)
+ λ (ż − yẋ)

]
dt =

∫ b

a

1

2

(
ẋ2 + ẏ2 + ż2

)
dt+

∫ b

a

λ (ż − yẋ) dt

= S +

∫ b

a

λ (ż − yẋ) dt.

(2.55)
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The variation of the modified action integral is

δS̃ = δ

∫ b

a

l̃dt = δS + δ

∫ b

a

[λ (ż − yẋ)] dt

= δS +

∫ b

a

δ [λ (ż − yẋ)] dt

=

∫ b

a

[ẋδẋ+ ẏδẏ + żδż] dt+

∫ b

a

δ [λ (ż − yẋ)] dt

=

∫ b

a

[ẋδẋ+ ẏδẏ + żδż + λ (δż − yδẋ− δyẋ) + δλ (ż − yẋ)] dt

=

∫ b

a

[
−ẍδx− ÿδy − z̈δz − λ̇δz − λẋδy +

(
λ̇y + λẏ

)
δx+ (ż − yẋ) δλ

]
dt

=

∫ b

a

[(
−ẍ+ λ̇y + λẏ

)
δx− (ÿ + λẋ) δy −

(
z̈ + λ̇

)
δz + (ż − yẋ) δλ

]
dt.

(2.56)

Demanding that δS̃ = 0 for all variations δx, δy, δz, and δλ (i.e. applying Hamilton’s principle) yields the

equations of motion

−ẍ+ λ̇y + λẏ = 0,

ÿ + λẋ = 0,

z̈ + λ̇ = 0,

ż − yẋ = 0.

(2.57)

The equation z̈ + λ̇ = 0 implies that λ = −ż + c̃, for an integration constant c̃. Taking c̃ = 0, λ = −ż.
Making the substitutions λ̇ = −z̈ and λ = −ż eliminates λ from the equations of motion, simplifying them

to

−ẍ− z̈y − żẏ = 0,

ÿ − żẋ = 0,

ż − yẋ = 0.

(2.58)

The equation ż − yẋ = 0 implies that z̈ = ẏẋ + yẍ. Making the substitutions ż = yẋ and z̈ = ẏẋ + yẍ

eliminates z from the equations of motion, simplifying them to

−ẍ− (ẏẋ+ yẍ) y − yẋẏ = 0,

ÿ − yẋẋ = 0,
(2.59)

which is equivalent to

ẍ+
2y

1 + y2
ẋẏ = 0,

ÿ − yẋ2 = 0.

(2.60)

For this simple problem, a more direct derivation of the equations of motion substitutes the constraint ż = yẋ
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into the Lagrangian. With this substitution, the Lagrangian becomes

l =
1

2

(
ẋ2 + ẏ2 + ż2

)
=

1

2

(
ẋ2 + ẏ2 + y2ẋ2

)
=

1

2

((
1 + y2

)
ẋ
2
+ ẏ2

)
. (2.61)

The action integral is

S =

∫ b

a

ldt =

∫ b

a

1

2

((
1 + y2

)
ẋ
2
+ ẏ2

)
dt. (2.62)

The variation of the action integral is

δS = δ

∫ b

a

ldt =

∫ b

a

δldt =

∫ b

a

[(
1 + y2

)
ẋδẋ+ yδyẋ2 + ẏδẏ

]
dt

=

∫ b

a

[
− d

dt

[(
1 + y2

)
ẋ
]
δx+ yẋ2δy − ÿδy

]
dt

=

∫ b

a

[
−
((
1 + y2

)
ẍ+ 2yẏẋ

)
δx+

(
yẋ2 − ÿ

)
δy
]
dt.

(2.63)

Demanding that δS = 0 for all variations δx and δy (i.e. applying Hamilton’s principle) recovers the

previously obtained equations of motion

ẍ+
2y

1 + y2
ẋẏ = 0,

ÿ − yẋ2 = 0.

(2.64)

Comparison Figure 2.2 compares the solutions of the Lagrange-d’Alembert and vakonomic equations

of motion during the time interval 0 ≤ t ≤ 1 assuming that the initial conditions at time t = 0 are

x(0) = 1, ẋ(0) = 1, y(0) = 1, and ẏ(0) = 1. The MATLAB routine ode45 was used to numerically solve the

vakonomic equations of motion using the default error tolerances. Figures 2.2a and 2.2b show that the x-

and y-components of the solutions of the Lagrange-d’Alembert and vakonomic equations of motion disagree.

Figure 2.2c shows that the Lagrange-d’Alembert solution conserves the y-component of momentum, while

the vakonomic solution does not.

Time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Analytical Lagrange-d'Alembert
Numerical Vakonomic

(a) The x-component of the Lagrange-
d’Alembert and vakonomic solutions
disagree.

Time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

1

1.2

1.4

1.6

1.8

2

2.2
Analytical Lagrange-d'Alembert
Numerical Vakonomic

(b) The y-component of the Lagrange-
d’Alembert and vakonomic solutions
disagree.

Time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ẏ
(t
)
−

ẏ
(0

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Conservation of y-Momentum

Analytical Lagrange-d'Alembert
Numerical Vakonomic

(c) The Lagrange-d’Alembert solution
conserves the y-component of momen-
tum, while the vakonomic solution
does not.

Figure 2.2: Lagrange-d’Alembert vs vakonomic solutions for a simple nonholonomic particle.

While the vakonomic approach does not give the correct equations of motion for a mechanical system with

20



nonholonomic constraints, the vakonomic approach does give the correct equations of motion for a mechanical

system with holonomic constraints. The vakonomic approach is also applicable in optimal control, where

a performance index must be minimized subject to satisfying equations of motion, which may have been

obtained through the vakonomic or Lagrange-d’Alembert approaches depending on whether the mechanical

constraints are holonomic or nonholonomic. When the vakonomic approach is applied to an optimal control

problem as part of Pontryagin’s Minimum Principle (discussed in Chapter 3), the resulting equations are

called the controlled equations of motion.
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Chapter 3

Optimal Control

This chapter reviews Pontryagin’s minimum principle, which provides necessary conditions that a solution of

an optimal control problem must satisfy. In this thesis, these necessary conditions, in the context of describing

the optimal control of rigid bodies, are referred to as the controlled equations of motion. Section 3.A briefly

reviews some notation from the calculus of variations needed to understand the derivation of Pontryagin’s

minimum principle, after which Pontryagin’s minimum principle is developed in Section 3.B. In Section 3.C,

the controlled equations of motion and their Jacobians are expressed in normalized coordinates, which is

useful for the numerical solution of the controlled equations of motion. Pontryagin’s minimum principle is

utilized in Chapter 4 to derive the controlled equations of motion for Suslov’s problem. Chapter 5 utilizes

the formulas derived in Section 3.C to construct the controlled equations of motion (and their Jacobians)

for the rolling ball via automatic differentiation, so that the controlled equations of motion may be solved

numerically.

3.A Calculus of Variations

Before proceeding with Pontryagin’s minimum principle, some terminology from the calculus of variations

is briefly reviewed. Suppose that y is a time-dependent function, w is a time-independent variable, and Q

is a scalar-valued function or functional that depends on y and w. The variation of y is δy ≡ ∂y
∂ϵ

⏐⏐⏐
ϵ=0

, the

differential of y is dy ≡ δy + ẏdt = ∂y
∂ϵ

⏐⏐⏐
ϵ=0

+ ∂y
∂t

⏐⏐⏐
ϵ=0

dt, and the differential of w is dw ≡ dw
dϵ

⏐⏐
ϵ=0

, where

ϵ represents an independent “variational” variable. The variation of Q with respect to y is δyQ ≡ ∂Q
∂y δy,

while the differential of Q with respect to w is dwQ ≡ ∂Q
∂wdw. The total differential (or for brevity “the

differential”) of Q is dQ ≡ δyQ + dwQ = ∂Q
∂y δy + ∂Q

∂wdw. Colloquially, the variation of Q with respect to

y means the change in Q due to a small change in y, the differential of Q with respect to w means the

change in Q due to a small change in w, and the total differential of Q means the change in Q due to small

changes in y and w. The extension to vectors of time-dependent functions and time-independent variables is

staightforward. If y is a vector of time-dependent functions, w is a vector of time-independent variables, and

Q is a scalar-valued function or functional depending on y and w, then the variation of y is δy ≡ ∂y
∂ϵ

⏐⏐⏐
ϵ=0

, the
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differential of y is dy ≡ δy + ẏdt = ∂y
∂ϵ

⏐⏐⏐
ϵ=0

+ ∂y
∂t

⏐⏐⏐
ϵ=0

dt, the differential of w is dw ≡ dw
dϵ

⏐⏐
ϵ=0

, the variation

of Q with respect to y is δyQ ≡ ∂Q
∂y δy, the differential of Q with respect to w is dwQ ≡ ∂Q

∂wdw, and the

total differential (or for brevity “the differential”) of Q is dQ ≡ δyQ+ dwQ = ∂Q
∂y δy + ∂Q

∂wdw.

To illustrate these definitions, consider the integral I of the function F (t,y(t)) with respect to t with free

upper limit of integration b and free lower limit of integration a

I =

∫ b

a

F (t,y(t)) dt. (3.1)

Applying the above definitions and using the Fundamental Theorem of Calculus, the differential of I is

dI = δy

∫ b

a

F (t,y(t)) dt+
∂

∂b

[∫ b

a

F (t,y(t)) dt

]
db+

∂

∂a

[∫ b

a

F (t,y(t)) dt

]
da

=

∫ b

a

δyF (t,y(t)) dt+ F (b,y(b)) db− F (a,y(a)) da

=

∫ b

a

∂F

∂y
δydt+ [F (t,y(t)) dt]

b
a ,

(3.2)

which is Leibnitz’s Rule.

3.B Pontryagin’s Minimum Principle

This section derives necessary conditions, called Pontryagin’s minimum principle, which a solution to an

optimal control problem must satisfy. In the literature, application of Pontryagin’s minimum principle to

solve an optimal control problem is called the indirect method. The derivation presented here follows [38].

Suppose a dynamical system has state x ∈ Rn and control u ∈ Rm and the control u is sought that minimizes

the performance index

J ≡ p (a,x(a), b,x(b), µ) +

∫ b

a

L (t,x,u, µ) dt (3.3)

subject to the system dynamics defined for a ≤ t ≤ b

ẋ = f (t,x,u, µ) , (3.4)

the prescribed initial conditions at time t = a

σ (a,x(a), µ) = 0, (3.5)

and the prescribed final conditions at time t = b

ψ (b,x(b), µ) = 0. (3.6)

p is a scalar-valued function called the endpoint cost function, L is a scalar-valued function called the

integrand cost function, x and f are n× 1 vector-valued functions, u is an m× 1 vector-valued function, σ

is a k1× 1 vector-valued function, and ψ is a k2× 1 vector-valued function. The initial time a and final time
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b may be prescribed or free. µ is a prescribed scalar parameter which may be exploited to numerically solve

this problem via continuation. More concisely, this optimal control problem may be stated as

min
a,x(a),b,u

[
p (a,x(a), b,x(b), µ) +

∫ b

a

L (t,x,u, µ) dt

]
s.t.

⎧⎪⎨⎪⎩
ẋ = f (t,x,u, µ) ,

σ (a,x(a), µ) = 0,

ψ (b,x(b), µ) = 0,

(3.7)

or even more concisely as

min
a,x(a),b,u

J s.t.

⎧⎪⎨⎪⎩
ẋ = f (t,x,u, µ) ,

σ (a,x(a), µ) = 0,

ψ (b,x(b), µ) = 0.

(3.8)

Observe that the optimal control problem encapsulated by (3.7) or (3.8) ignores path inequality constraints

such as D (t,x,u, µ) ≤ 0, where D is a r × 1 vector-valued function. Path inequality constraints can be

incorporated in (3.7) or (3.8) as soft constraints through penalty functions in the integrand cost function

L or the endpoint cost function p. The augmented performance index for this optimal control problem is

obtained by adjoining the dynamic, initial, and final constraints to the original performance index (3.3) via

Lagrange multipliers:

J̃ ≡ J + ξTσ (a,x(a), µ) + νTψ (b,x(b), µ) +

∫ b

a

λT (f (t,x,u, µ)− ẋ) dt

= p (a,x(a), b,x(b), µ) + ξTσ (a,x(a), µ) + νTψ (b,x(b), µ)

+

∫ b

a

[
L (t,x,u, µ) + λT (f (t,x,u, µ)− ẋ)

]
dt

= G (a,x(a), ξ, b,x(b),ν, µ) +

∫ b

a

[
H (t,x,λ,u, µ)− λTẋ

]
dt,

(3.9)

where the endpoint function G and the Hamiltonian H are defined by

G (a,x(a), ξ, b,x(b),ν, µ) ≡ p (a,x(a), b,x(b), µ) + ξTσ (a,x(a), µ) + νTψ (b,x(b), µ)

H (t,x,λ,u, µ) ≡ L (t,x,u, µ) + λTf (t,x,u, µ) ,
(3.10)

and where ξ is a k1 × 1 constant Lagrange multiplier vector, ν is a k2 × 1 constant Lagrange multiplier

vector, and λ is an n × 1 time-varying Lagrange multiplier vector. In the literature, the time-varying

Lagrange multiplier vector used to adjoin the system dynamics to the integrand cost function is often called

the adjoint variable or the costate. Henceforth, the time-varying Lagrange multiplier vector is referred to as

the costate and the elements in this vector are referred to as the costates.

Note on Normal and Abnormal Extremals There is a slightly more general formulation of the endpoint

function and the Hamiltonian whereG (a,x(a), ξ0, ξ, b,x(b),ν, µ) = ξ0p (a,x(a), b,x(b), µ)+ξ
Tσ (a,x(a), µ)+

νTψ (b,x(b), µ) and H (t,x, λ0,λ,u, µ) = λ0L (t,x,u, µ) + λTf (t,x,u, µ), where ξ0 is a constant Lagrange

multiplier scalar and λ0 is a time-varying Lagrange multiplier scalar. But it can be shown (Pontryagin

showed this in [39]) that λ0 must be a nonnegative constant for an optimal solution! If λ0 > 0, the extremal

is normal, and if λ0 = 0, the extremal is abnormal. If λ0 > 0, then the Hamiltonian can be normalized so

that λ0 = 1.
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Taking the differential of J̃ yields

dJ̃ = Gada+Gx(a)dx(a) +Gξdξ +Gbdb+Gx(b)dx(b) +Gνdν

+
[(

H − λTẋ
)
dt
]b
a
+

∫ b

a

[
Hxδx− λTδẋ+

(
Hλ − ẋT

)
δλ+Huδu

]
dt

= (Ga − H|t=a) da+Gx(a)dx(a) +Gξdξ + (Gb + H|t=b) db+Gx(b)dx(b) +Gνdν

−
[
λT (δx+ ẋdt)

]b
a
+

∫ b

a

[(
Hx + λ̇

T
)
δx+

(
Hλ − ẋT

)
δλ+Huδu

]
dt

= (Ga − H|t=a) da+Gx(a)dx(a) +Gξdξ + (Gb + H|t=b) db+Gx(b)dx(b) +Gνdν

−
[
λTdx

]b
a
+

∫ b

a

[(
Hx + λ̇

T
)
δx+

(
Hλ − ẋT

)
δλ+Huδu

]
dt

= (Ga − H|t=a) da+
(
Gx(a) + λT

⏐⏐⏐
t=a

)
dx(a) +Gξdξ

+ (Gb + H|t=b) db+
(
Gx(b) − λT

⏐⏐⏐
t=b

)
dx(b) +Gνdν

+

∫ b

a

[(
Hx + λ̇

T
)
δx+

(
Hλ − ẋT

)
δλ+Huδu

]
dt.

(3.11)

In the first equality, Leibnitz’s rule (3.2) is used to compute the differential of the integral. In the second

equality, integration by parts is used. In the third equality, the formula dx(t) = δx(t) + ẋ(t)dt, or more

concisely dx = δx+ ẋdt, is used.

The necessary conditions on x, λ, and u which make dJ̃ = 0 are the differential-algebraic equations (DAEs)

defined for a ≤ t ≤ b

ẋ = HT
λ (t,x,λ,u, µ) = f (t,x,u, µ)

λ̇ = −HT
x (t,x,λ,u, µ)

0 = HT
u (t,x,λ,u, µ) ,

(3.12)

the left boundary conditions defined at time t = a

H|t=a = Ga, λ|t=a = −GT
x(a), GT

ξ = σ (a,x(a), µ) = 0, (3.13)

and the right boundary conditions defined at time t = b

H|t=b = −Gb, λ|t=b = GT
x(b), GT

ν = ψ (b,x(b), µ) = 0. (3.14)

If the initial time a is prescribed, then the left boundary condition H|t=a = Ga is dropped. If the final

time b is prescribed, then the right boundary condition H|t=b = −Gb is dropped. The necessary conditions

(3.12), (3.13), and (3.14) constitute a DAE TPBVP.

If Huu is nonsingular, then the optimal control problem is said to be regular or nonsingular; otherwise if

Huu is singular, then the optimal control problem is said to be singular. If Huu is nonsingular, then by

the implicit function theorem, the condition Hu = 0 guarantees the existence of a unique function, say π,

for which u = π (t,x,λ, µ). If Huu is nonsingular and the condition Hu = 0 can be used to construct an

explicit function π such that u = π (t,x,λ, µ), then the Hamiltonian may be re-expressed as a function of
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t, x, λ, and µ via the regular or reduced Hamiltonian Ĥ (t,x,λ, µ) = H (t,x,λ,π (t,x,λ, µ) , µ) and the

necessary conditions on x and λ which make dJ̃ = 0 are the ODEs defined for a ≤ t ≤ b

ẋ = ĤT
λ (t,x,λ, µ)

λ̇ = −ĤT
x (t,x,λ, µ) ,

(3.15)

the left boundary conditions defined at time t = a

Ĥ
⏐⏐⏐
t=a

= Ga, λ|t=a = −GT
x(a), GT

ξ = σ (a,x(a), µ) = 0, (3.16)

and the right boundary conditions defined at time t = b

Ĥ
⏐⏐⏐
t=b

= −Gb, λ|t=b = GT
x(b), GT

ν = ψ (b,x(b), µ) = 0. (3.17)

If the initial time a is prescribed, then the left boundary condition Ĥ
⏐⏐⏐
t=a

= Ga is dropped. If the final

time b is prescribed, then the right boundary condition Ĥ
⏐⏐⏐
t=b

= −Gb is dropped. The necessary conditions

(3.15), (3.16), and (3.17) constitute an ODE TPBVP.

A solution of the DAE TPBVP (3.12), (3.13), and (3.14) or of the ODE TPBVP (3.15), (3.16), and (3.17)

is said to be an extremal solution of the optimal control problem (3.8). Note that an extremal solution

only satisfies necessary conditions for a minimum of the optimal control problem (3.8), so that an extremal

solution is not guaranteed to be a local minimum of (3.8). Since the DAE BVP (3.12), (3.13), and (3.14) and

the ODE TPBVP (3.15), (3.16), and (3.17) have small convergence radii, a continuation method (performing

continuation in the parameter µ) is often required to numerically solve them starting from a solution to a

simpler optimal control problem. The solution to the simpler optimal control problem might be obtained

via analytics or a direct method. Appendices C and D describe predictor-corrector continuation methods

for solving ODE TPBVP. In Chapters 4 and 5, the continuation parameter µ is used to vary integrand

cost function coefficients in L in order to numerically solve the optimal control ODE TPBVPs for Suslov’s

problem and the rolling ball via continuation.

Because path inequality constraints have been omitted from the optimal control problem (3.8), the control

is not restricted to lie in a compact set. Hence, an extremal solution solving (3.12), (3.13), and (3.14) or

(3.15), (3.16), and (3.17) does not lie on any boundary. If the control is restricted to lie in a compact set

(due to path inequality constraints), then the control of an extremal solution may lie on the boundary of

this compact set; if the control is discontinuous, hopping abruptly between points on the boundary, then it

is said to be bang-bang.

3.C Implementation Details for Solving the Optimal Control ODE

TPBVP

In order to numerically solve the ODE TPBVP (3.15), (3.16), and (3.17), most solvers require that the ODE

TPBVP be defined on a fixed time interval and any unknown parameters, such as ξ, ν, a, and b, must
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often be modeled as dummy constant dependent variables with zero derivatives. To aid convergence, solvers

can exploit Jacobians of the ODE system and of the boundary conditions. Thus, (3.15) is redefined on the

normalized time interval [0, 1] through the change of independent variable s = t−a
T , where T = b− a. Note

that t(s) = Ts + a. Define the normalized state x̃(s) = x(t(s)) and normalized costate λ̃(s) = λ(t(s)).

Define the expanded un-normalized ODE TPBVP dependent variable vector

z(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t)

λ(t)

ξ

ν

a

b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.18)

Defining z̃(s) = z(t(s)), the expanded normalized ODE TPBVP dependent variable vector is

z̃(s) = z(t(s)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t(s))

λ(t(s))

ξ

ν

a

b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃(s)

λ̃(s)

ξ

ν

a

b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.19)

By the chain rule, (3.15), and since dt(s)
ds = T ,

˙̃z(s) =
dz̃(s)

ds
=

⎡⎢⎣ ˙̃x(s)
˙̃
λ(s)

0(k1+k2+2)×1

⎤⎥⎦ =
dz(t(s))

dt

dt(s)

ds
=

⎡⎢⎣
dx(t(s))

dt
dλ(t(s))

dt

0(k1+k2+2)×1

⎤⎥⎦ dt(s)

ds

=

⎡⎢⎣ ĤT
λ (t(s),x(t(s)),λ(t(s)), µ)

−ĤT
x (t(s),x(t(s)),λ(t(s)), µ)

0(k1+k2+2)×1

⎤⎥⎦T

=

⎡⎢⎢⎣
ĤT

λ

(
t(s), x̃(s), λ̃(s), µ

)
−ĤT

x

(
t(s), x̃(s), λ̃(s), µ

)
0(k1+k2+2)×1

⎤⎥⎥⎦T.

(3.20)

Define Φ̃ (s, z̃(s), µ) to be the right-hand side of (3.20), so that

Φ̃ (s, z̃(s), µ) =

⎡⎢⎢⎣
ĤT

λ

(
t(s), x̃(s), λ̃(s), µ

)
−ĤT

x

(
t(s), x̃(s), λ̃(s), µ

)
0(k1+k2+2)×1

⎤⎥⎥⎦T. (3.21)
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The Jacobian of Φ̃ with respect to z̃(s) is

Φ̃z̃(s) (s, z̃(s), µ) =⎡⎢⎣ ĤλxT ĤλλT 0n×(k1+k2) −ĤT
λ + Ĥλt(1− s)T ĤT

λ + ĤλtsT

−ĤxxT −ĤxλT 0n×(k1+k2) ĤT
x − Ĥxt(1− s)T −ĤT

x − ĤxtsT

0(k1+k2+2)×n 0(k1+k2+2)×n 0(k1+k2+2)×(k1+k2) 0(k1+k2+2)×1 0(k1+k2+2)×1

⎤⎥⎦ (3.22)

and the Jacobian of Φ̃ with respect to µ is

Φ̃µ (s, z̃(s), µ) =

⎡⎢⎣ ĤλµT

−ĤxµT

0(k1+k2+2)×1

⎤⎥⎦ . (3.23)

In (3.22) and (3.23), shorthand notation is used for conciseness and all first and second derivatives of Ĥ are

evaluated at (s, z̃(s), µ). An explanation of the meaning of the shorthand notation used to express all first

and second derivatives of Ĥ is given in Table 3.1.

Shorthand | More Shorthand | Normalized | Un-Normalized

ĤT
x = ĤT

x

⏐⏐⏐
(s,z̃(s),µ)

= ĤT
x

(
t(s), x̃(s), λ̃(s), µ

)
= ĤT

x (t(s),x(t(s)),λ(t(s)), µ)

ĤT
λ = ĤT

λ

⏐⏐⏐
(s,z̃(s),µ)

= ĤT
λ

(
t(s), x̃(s), λ̃(s), µ

)
= ĤT

λ (t(s),x(t(s)),λ(t(s)), µ)

Ĥxx = Ĥxx

⏐⏐⏐
(s,z̃(s),µ)

= Ĥxx

(
t(s), x̃(s), λ̃(s), µ

)
= Ĥxx (t(s),x(t(s)),λ(t(s)), µ)

Ĥxλ = Ĥxλ

⏐⏐⏐
(s,z̃(s),µ)

= Ĥxλ

(
t(s), x̃(s), λ̃(s), µ

)
= Ĥxλ (t(s),x(t(s)),λ(t(s)), µ)

Ĥxt = Ĥxt

⏐⏐⏐
(s,z̃(s),µ)

= Ĥxt

(
t(s), x̃(s), λ̃(s), µ

)
= Ĥxt (t(s),x(t(s)),λ(t(s)), µ)

Ĥxµ = Ĥxµ

⏐⏐⏐
(s,z̃(s),µ)

= Ĥxµ

(
t(s), x̃(s), λ̃(s), µ

)
= Ĥxµ (t(s),x(t(s)),λ(t(s)), µ)

Ĥλλ = Ĥλλ

⏐⏐⏐
(s,z̃(s),µ)

= Ĥλλ

(
t(s), x̃(s), λ̃(s), µ

)
= Ĥλλ (t(s),x(t(s)),λ(t(s)), µ)

Ĥλx = Ĥλx

⏐⏐⏐
(s,z̃(s),µ)

= Ĥλx

(
t(s), x̃(s), λ̃(s), µ

)
= Ĥλx (t(s),x(t(s)),λ(t(s)), µ)

Ĥλt = Ĥλt

⏐⏐⏐
(s,z̃(s),µ)

= Ĥλt

(
t(s), x̃(s), λ̃(s), µ

)
= Ĥλt (t(s),x(t(s)),λ(t(s)), µ)

Ĥλµ = Ĥλµ

⏐⏐⏐
(s,z̃(s),µ)

= Ĥλµ

(
t(s), x̃(s), λ̃(s), µ

)
= Ĥλµ (t(s),x(t(s)),λ(t(s)), µ)

Table 3.1: Explanation of shorthand notation for first and second derivatives of Ĥ used in (3.22) and (3.23).

Now the boundary conditions (3.16)-(3.17) are considered. Letting

Υ1 (z(a), z(b), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ (a,x(a),λ(a), µ)

λ(a)

σ (a,x(a), µ)

Ĥ (b,x(b),λ(b), µ)

λ(b)

ψ (b,x(b), µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.24)
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Υ2 (z(a), z(b), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ga (a,x(a), ξ, b,x(b),ν, µ)

−GT
x(a) (a,x(a), ξ, b,x(b),ν, µ)

0k1×1

−Gb (a,x(a), ξ, b,x(b),ν, µ)

GT
x(b) (a,x(a), ξ, b,x(b),ν, µ)

0k2×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.25)

and

Υ (z(a), z(b), µ) = Υ1 (z(a), z(b), µ)−Υ2 (z(a), z(b), µ)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ (a,x(a),λ(a), µ)

λ(a)

σ (a,x(a), µ)

Ĥ (b,x(b),λ(b), µ)

λ(b)

ψ (b,x(b), µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ga (a,x(a), ξ, b,x(b),ν, µ)

−GT
x(a) (a,x(a), ξ, b,x(b),ν, µ)

0k1×1

−Gb (a,x(a), ξ, b,x(b),ν, µ)

GT
x(b) (a,x(a), ξ, b,x(b),ν, µ)

0k2×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.26)

the boundary conditions (3.16)-(3.17) in un-normalized dependent variables are

Υ (z(a), z(b), µ) = 02n+k1+k2+2. (3.27)

The Jacobians of Υ with respect to z(a), z(b), and µ are

Υz(a) (z(a), z(b), µ) = Υ1,z(a) (z(a), z(b), µ)−Υ2,z(a) (z(a), z(b), µ) , (3.28)

Υz(b) (z(a), z(b), µ) = Υ1,z(b) (z(a), z(b), µ)−Υ2,z(b) (z(a), z(b), µ) , (3.29)

and

Υµ (z(a), z(b), µ) = Υ1,µ (z(a), z(b), µ)−Υ2,µ (z(a), z(b), µ) , (3.30)

where

Υ1,z(a) (z(a), z(b), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥx(a) Ĥλ(a) 01×k1
01×k2

Ĥa 0

0n×n In×n 0n×k1
0n×k2

0n×1 0n×1

σx(a) 0k1×n 0k1×k1
0k1×k2

σa 0k1×1

01×n 01×n 01×k1
01×k2

0 Ĥb

0n×n 0n×n 0n×k1
0n×k2

0n×1 0n×1

0k2×n 0k2×n 0k2×k1
0k2×k2

0k2×1 ψb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.31)

Υ1,z(b) (z(a), z(b), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01×n 01×n 01×k1
01×k2

Ĥa 0

0n×n 0n×n 0n×k1
0n×k2

0n×1 0n×1

0k1×n 0k1×n 0k1×k1
0k1×k2

σa 0k1×1

Ĥx(b) Ĥλ(b) 01×k1
01×k2

0 Ĥb

0n×n In×n 0n×k1
0n×k2

0n×1 0n×1

ψx(b) 0k2×n 0k2×k1
0k2×k2

0k2×1 ψb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.32)
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Υ1,µ (z(a), z(b), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥµ

⏐⏐⏐
a

0n×1

σµ

Ĥµ

⏐⏐⏐
b

0n×1

ψµ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.33)

Υ2,z(a) (z(a), z(b), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gax(a) 01×n Gaξ Gaν Gaa Gab

−Gx(a)x(a) 0n×n −Gx(a)ξ −Gx(a)ν −Gx(a)a −Gx(a)b

0k1×n 0k1×n 0k1×k1
0k1×k2

0k1×1 0k1×1

−Gbx(a) 01×n −Gbξ −Gbν −Gba −Gbb

Gx(b)x(a) 0n×n Gx(b)ξ Gx(b)ν Gx(b)a Gx(b)b

0k2×n 0k2×n 0k2×k1
0k2×k2

0k2×1 0k2×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.34)

Υ2,z(b) (z(a), z(b), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gax(b) 01×n Gaξ Gaν Gaa Gab

−Gx(a)x(b) 0n×n −Gx(a)ξ −Gx(a)ν −Gx(a)a −Gx(a)b

0k1×n 0k1×n 0k1×k1
0k1×k2

0k1×1 0k1×1

−Gbx(b) 01×n −Gbξ −Gbν −Gba −Gbb

Gx(b)x(b) 0n×n Gx(b)ξ Gx(b)ν Gx(b)a Gx(b)b

0k2×n 0k2×n 0k2×k1
0k2×k2

0k2×1 0k2×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.35)

and

Υ2,µ (z(a), z(b), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gaµ

−Gx(a)µ

0k1×1

−Gbµ

Gx(b)µ

0k2×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.36)

In equations (3.31), (3.32), and (3.33), all first derivatives of Ĥ in row 1 are evaluated at (a,x(a),λ(a), µ),

all first derivatives of σ in rows n + 2 through n + 1 + k1 are evaluated at (a,x(a), µ), all first derivatives

of Ĥ in row n + 2 + k1 are evaluated at (b,x(b),λ(b), µ), and all first derivatives of ψ in rows 2n + 3 + k1

through 2n + 2 + k1 + k2 are evaluated at (b,x(b), µ). In equations (3.34), (3.35), and (3.36), all second

derivatives of G are evaluated at (a,x(a), ξ, b,x(b),ν, µ).

To express the boundary conditions in terms of normalized dependent variables, let Υ̃1 (z̃(0), z̃(1), µ) =

Υ1 (z(a), z(b), µ), Υ̃2 (z̃(0), z̃(1), µ) = Υ2 (z(a), z(b), µ), and Υ̃ (z̃(0), z̃(1), µ) = Υ (z(a), z(b), µ). Thus

Υ̃1 (z̃(0), z̃(1), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ
(
a, x̃(0), λ̃(0), µ

)
λ̃(0)

σ (a, x̃(0), µ)

Ĥ
(
b, x̃(1), λ̃(1), µ

)
λ̃(1)

ψ (b, x̃(1), µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.37)
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Υ̃2 (z̃(0), z̃(1), µ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ga (a, x̃(0), ξ, b, x̃(1),ν, µ)

−GT
x(a) (a, x̃(0), ξ, b, x̃(1),ν, µ)

0k1×1

−Gb (a, x̃(0), ξ, b, x̃(1),ν, µ)

GT
x(b) (a, x̃(0), ξ, b, x̃(1),ν, µ)

0k2×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.38)

and

Υ̃ (z̃(0), z̃(1), µ) = Υ̃1 (z̃(0), z̃(1), µ)− Υ̃2 (z̃(0), z̃(1), µ)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ
(
a, x̃(0), λ̃(0), µ

)
λ̃(0)

σ (a, x̃(0), µ)

Ĥ
(
b, x̃(1), λ̃(1), µ

)
λ̃(1)

ψ (b, x̃(1), µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ga (a, x̃(0), ξ, b, x̃(1),ν, µ)

−GT
x(a) (a, x̃(0), ξ, b, x̃(1),ν, µ)

0k1×1

−Gb (a, x̃(0), ξ, b, x̃(1),ν, µ)

GT
x(b) (a, x̃(0), ξ, b, x̃(1),ν, µ)

0k2×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.39)

and the boundary conditions (3.16)-(3.17) in normalized dependent variables are

Υ̃ (z̃(0), z̃(1), µ) = 0(2n+k1+k2+2)×1. (3.40)

The Jacobians of Υ̃ with respect to z̃(0), z̃(1), and µ are

Υ̃z̃(0) (z̃(0), z̃(1), µ) = Υ̃1,z̃(0) (z̃(0), z̃(1), µ)−Υ2,z̃(0) (z̃(0), z̃(1), µ) , (3.41)

Υ̃z̃(1) (z̃(0), z̃(1), µ) = Υ̃1,z̃(1) (z̃(0), z̃(1), µ)− Υ̃2,z̃(1) (z̃(0), z̃(1), µ) , (3.42)

and

Υ̃µ (z̃(0), z̃(1), µ) = Υ̃1,µ (z̃(0), z̃(1), µ)− Υ̃2,µ (z̃(0), z̃(1), µ) , (3.43)

where the equality between the Jacobians of Υ̃, Υ̃1, and Υ̃2 with respect to z̃(0), z̃(1), and µ and the

Jacobians of Υ, Υ1, and Υ2 with respect to z(0), z(1), and µ is given in Table 3.2.

Normalized | Un-Normalized

Υ̃z̃(0) (z̃(0), z̃(1), µ) = Υz(a) (z(a), z(b), µ)

Υ̃1,z̃(0) (z̃(0), z̃(1), µ) = Υ1,z(a) (z(a), z(b), µ)

Υ̃2,z̃(0) (z̃(0), z̃(1), µ) = Υ2,z(a) (z(a), z(b), µ)

Υ̃z̃(1) (z̃(0), z̃(1), µ) = Υz(b) (z(a), z(b), µ)

Υ̃1,z̃(1) (z̃(0), z̃(1), µ) = Υ1,z(b) (z(a), z(b), µ)

Υ̃2,z̃(1) (z̃(0), z̃(1), µ) = Υ2,z(b) (z(a), z(b), µ)

Υ̃µ (z̃(0), z̃(1), µ) = Υµ (z(a), z(b), µ)

Υ̃1,µ (z̃(0), z̃(1), µ) = Υ1,µ (z(a), z(b), µ)

Υ̃2,µ (z̃(0), z̃(1), µ) = Υ2,µ (z(a), z(b), µ)

Table 3.2: Equality between Jacobians of boundary condition functions in normalized and un-normalized
coordinates.
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Special care must be taken when implementing the Jacobians (3.41) and (3.42). Since the unknown constants

ξ, ν, a, and b appear at the end of both z̃(0) and z̃(1), the unknown constants from only one of z̃(0) and

z̃(1) are actually used to construct each term in Υ̃ involving ξ, ν, a, and b. The trailing columns in (3.41)

are actually the Jacobian of Υ̃ with respect to ξ, ν, a, and b in z̃(0), while the trailing columns in (3.42) are

actually the Jacobian of Υ̃ with respect to ξ, ν, a, and b in z̃(1). Thus, the trailing columns in (3.41) and

(3.42) corresponding to the Jacobian of Υ̃ with respect to ξ, ν, a, and b should not coincide in a software

implementation. For example, if the unknown constants are extracted from z̃(0) to construct Υ̃, Υ̃z̃(0) is as

shown in (3.41) while the trailing columns in (3.42) corresponding to the Jacobian of Υ̃ with respect to the

unknown constants in z̃(1) should be all zeros. Alternatively, if the unknown constants are extracted from

z̃(1) to construct Υ̃, Υ̃z̃(1) is as shown in (3.42) while the trailing columns in (3.41) corresponding to the

Jacobian of Υ̃ with respect to the unknown constants in z̃(0) should be all zeros.

In equations (3.18), (3.19), (3.20), (3.21), and (3.23), the second to last row is needed only if the initial time

a is free and the last row is needed only if the final time b is free. In equation (3.22), the second to last row

and column are needed only if the initial time a is free and the last row and column are needed only if the

final time b is free.

In equations (3.24), (3.25), (3.26), (3.27), (3.30), (3.33), (3.36), (3.37), (3.38), (3.39), (3.40), and (3.43) the

first row is needed only if the initial time a is free and row n + k1 + 2 is needed only if the final time b is

free. In equations (3.28), (3.29), (3.31), (3.32), (3.34), (3.35), (3.41), and (3.42) the first row and second to

last column are needed only if the initial time a is free and row n+ k1 + 2 and the last column are needed

only if the final time b is free.

In order to numerically solve the ODE TPBVP (3.15), (3.16), and (3.17) without continuation or with

a monotonic continuation solver (such as acdc or acdcc), the solver should be provided (3.21), (3.22),

(3.39), (3.41), and (3.42). In order to numerically solve the ODE TPBVP (3.15), (3.16), and (3.17) with

a non-monotonic continuation solver (such as the predictor-corrector methods discussed in Appendices C

and D), the solver should be provided (3.21), (3.22), (3.23), (3.39), (3.41), (3.42), and (3.43). While (3.21),

(3.22), (3.23), (3.39), (3.41), (3.42), and (3.43) are complicated, they are readily constructed numerically in

Chapters 4 and 5 to simulate the optimal control of Suslov’s problem and the rolling ball through automatic

differentiation of the regular Hamiltonian Ĥ and the endpoint function G. There are many free automatic

differentiation toolboxes available. Specifically, the MATLAB automatic differentiation toolbox ADiGator

[40, 41] is utilized in this research to construct the equations numerically. Moreover, these equations are

constructed numerically very efficiently in MATLAB by exploiting vectorization; the non-vectorized version of

these equations execute too slowly in MATLAB to complete timely simulations. The use of vectorized automatic

differentiation to realize these equations in MATLAB is noteworthy, because it is tedious to manually derive

the non-vectorized version of these equations and terribly difficult to manually derive the vectorized version

of these equations.
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Chapter 4

Suslov’s Problem

This chapter investigates the optimal control of Suslov’s problem. By applying Euler-Poincaré’s method,

Lagrange-d’Alembert’s principle, and Pontryagin’s mimimum principle, Section 4.A derives the uncontrolled

and controlled equations of motion for Suslov’s problem for an arbitrary group, while Section 4.B derives the

uncontrolled and controlled equations of motion for Suslov’s problem for SO(3). Subsection 4.B.2 shows that

Suslov’s problem for SO(3) is controllable. In Section 4.C, the controlled equations of motion for Suslov’s

problem for SO(3) are solved numerically via monotonic continuation, starting from an analytical solution to

a singular optimal control problem. The numerical solution of the controlled equations of motion for Suslov’s

problem for SO(3) is aided by the numerical construction of their Jacobians via automatic differentiation.

4.A Suslov’s Optimal Control Problem for an Arbitrary Group

4.A.1 Derivation of Suslov’s Uncontrolled Equations of Motion

Suppose G is a Lie group having all appropriate properties for the application of Euler-Poincaré’s method

[42, 16]. As discussed in Section 2.A, if the Lagrangian L = L(g, ġ) is left G-invariant, then the problem

can be reduced to the consideration of the symmetry-reduced Lagrangian ℓ(Ω) with Ω = g−1ġ. Here, we

concentrate on the left-invariant Lagrangians as being pertinent to the dynamics of a rigid body. A parallel

theory of right-invariant Lagrangians can be developed as well in a completely equivalent fashion [16]. We

also assume that there is a suitable pairing between the Lie algebra g and its dual g∗, which leads to the

coadjoint operator defined previously in (2.19) and repeated below:

⟨ad∗aα, b⟩ := ⟨α, adab⟩ ∀a, b ∈ g , α ∈ g∗.

Then, the equations of motion are obtained by Euler-Poincaré’s method

δ

∫ b

a

ℓ(Ω)dt = 0 (4.1)
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with the variations δΩ satisfying

δΩ = η̇ + adΩη , (4.2)

where η(t) is an arbitrary g-valued function satisfying η(a) = η(b) = 0. Then, the equations of motion are

the Euler-Poincaré equations of motion

Π̇− ad∗ΩΠ = 0 , Π :=
δℓ

δΩ
. (4.3)

Let ξ(t) ∈ g∗, with ξ(t) ̸= 0 ∀t and introduce the constraint

⟨ξ,Ω⟩ = γ (ξ, t) . (4.4)

Due to the constraint (4.4), Lagrange-d’Alembert’s principle states that the variations η ∈ g have to satisfy

⟨ξ, η⟩ = 0. (4.5)

Using (4.5), Suslov’s uncontrolled equations of motion are obtained:

Π̇− ad∗ΩΠ = λξ, Π :=
δℓ

δΩ
, (4.6)

where λ is the Lagrange multiplier enforcing (4.5). In order to explicitly solve (4.6) for λ, we will need to

further assume a linear connection between the angular momentum Π and the angular velocity Ω. Thus, we

assume that Π = IΩ, where I : g→ g∗ is an invertible linear operator with an adjoint I∗ : g∗ → g; I has the
physical meaning of the inertia operator when the Lie group G under consideration is the rotation group

SO(3). Under this assumption, we pair both sides of (4.6) with I−1∗ξ and obtain the following expression

for the Lagrange multiplier λ:

λ =

d

dt

⟨
Π, I−1∗ξ

⟩
−
⟨
Π,

d

dt

[
I−1∗ξ

]
+ adΩI−1∗ξ

⟩
⟨ξ, I−1∗ξ⟩

(4.7)

One motivation for this particular pairing is that the denominator in (4.7) is non-zero for non-zero ξ, enabling

an explicit solution for λ. Making use of the constraint (4.4) in the formula (4.7) for λ by using the assumption

Π = IΩ,
⟨
Π, I−1∗ξ

⟩
=
⟨
IΩ, I−1∗ξ

⟩
= ⟨Ω, ξ⟩ = γ (ξ, t), so that (4.7) becomes

λ (Ω, ξ) =

d

dt
[γ(ξ, t)]−

⟨
IΩ,

d

dt

[
I−1∗ξ

]
+ adΩI−1∗ξ

⟩
⟨ξ, I−1∗ξ⟩

. (4.8)

If we moreover assume that γ(ξ, t) is a constant, e.g. γ(ξ, t) = 0 as is in the standard formulation of Suslov’s

problem, and I : g→ g is a time-independent, invertible linear operator that is also self-adjoint (i.e. I = I∗),
then (4.8) simplifies to

λ (Ω, ξ) = −

⟨
IΩ, adΩI−1ξ

⟩
+
⟨
Ω, ξ̇

⟩
⟨ξ, I−1ξ⟩

, (4.9)

34



the kinetic energy is

T (t) =
1

2
⟨Ω,Π⟩ = 1

2
⟨Ω, IΩ⟩ , (4.10)

the time derivative of the kinetic energy is

Ṫ (t) =
1

2

[⟨
Ω̇, IΩ

⟩
+
⟨
Ω, IΩ̇

⟩]
=

⟨
Ω,

1

2
[I+ I∗] Ω̇

⟩
=
⟨
Ω, IΩ̇

⟩
=
⟨
Ω, Π̇

⟩
= ⟨Ω, ad∗ΩΠ+ λξ⟩ = ⟨adΩΩ,Π⟩+ λ ⟨Ω, ξ⟩ = λγ (ξ, t) ,

(4.11)

and kinetic energy is conserved if γ(ξ, t) = 0.

4.A.2 Derivation of Suslov’s Controlled Equations of Motion

Consider the problem (4.6) and assume that Π = IΩ so that the explicit equation for the Lagrange multiplier

(4.8) holds. We now turn to the central question of this chapter, namely, optimal control of the system by

varying the nullifier (or annihilator) ξ(t). The optimal control problem is defined as follows. Consider a fixed

initial time a, a fixed or free final time b > a, the integrand cost function C
(
Ω, Ω̇, ξ, ξ̇, t

)
, and the following

optimal control problem

min
ξ(t),b

∫ b

a

C
(
Ω, Ω̇, ξ, ξ̇, t

)
dt subject to Ω(t), ξ(t) satisfying (4.6) and (4.8) (4.12)

and subject to the initial and final conditions Ω(a) = Ωa and Ω(b) = Ωb. Observe that this optimal control

problem ignores path inequality constraints such as D
(
Ω, Ω̇, ξ, ξ̇, t

)
≤ 0, where D is a r × 1 vector-valued

function. Path inequality constraints can be incorporated in (4.12) as soft constraints through penalty

functions in the integrand cost function C.

To solve this optimal control problem, construct the augmented performance index

S = ⟨ρ,Ω(a)− Ωa⟩+ ⟨ν,Ω(b)− Ωb⟩+
∫ b

a

[
C +

⟨
κ, (IΩ)· − ad∗ΩIΩ− λξ

⟩]
dt

= ⟨ρ,Ω(a)− Ωa⟩+ ⟨ν,Ω(b)− Ωb⟩+ ⟨κ, IΩ⟩|ba +
∫ b

a

[C − ⟨κ̇+ adΩκ , IΩ⟩ − λ ⟨κ, ξ⟩] dt,
(4.13)

where the additional unknowns are a g-valued function of time κ(t) enforcing the uncontrolled equations of

motion and the constants ρ, ν ∈ g∗ enforcing the initial and final conditions.

Remark 4.1 (On the nature of the pairing in (4.13)). For simplicity of calculation and notation, we assume

that the pairing in (4.13) between vectors in g and g∗ is the same as the one used in the derivation of

Suslov’s problem in Subsection 4.A.1. In principle, one could use a different pairing which would necessitate

a different notation for the ad operator. We believe that while such generalization is rather straightforward,

it introduces a cumbersome and non-intuitive notation. For the case when G = SO(3) considered later in

Section 4.B, we will take the simplest possible pairing, the scalar product of vectors in R3. In that case, the

ad and ad∗ operators are simply the vector cross product with an appropriate sign.

Pontryagin’s minimum principle gives necessary conditions that a minimum solution of (4.12) must satisfy,
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if it exists. These necessary conditions are obtained by equating the differential of S to 0, resulting in

appropriately coupled equations for the state and control variables. While this calculation is well-established

[43, 38], we present it here for completeness of the exposition as it is relevant to our further discussion.

Following [43], we denote all variations of S coming from the time-dependent variables κ, Ω, and ξ as δS

and write δS = δκS + δΩS + δξS. By using partial differentiation, the variation of S with respect to each

time-independent variable ρ, ν, and b is
⟨

∂S
∂ρ ,dρ

⟩
,
⟨
∂S
∂ν ,dν

⟩
, and ∂S

∂b db, respectively. Thus, the differential

of S is given by

dS = δS +

⟨
∂S

∂ρ
,dρ

⟩
+

⟨
∂S

∂ν
,dν

⟩
+

∂S

∂b
db

= δκS + δΩS + δξS +

⟨
∂S

∂ρ
,dρ

⟩
+

⟨
∂S

∂ν
,dν

⟩
+

∂S

∂b
db.

(4.14)

Each term in dS is computed below. It is important to present this calculation in some detail, in particular,

because of the contribution of the boundary conditions. The variation of S with respect to κ is

δκS =

∫ b

a

⟨
(IΩ)· − ad∗ΩIΩ− λξ, δκ

⟩
dt. (4.15)

Since δΩ(a) = 0, dΩ(b) = δΩ(b) + Ω̇(b)db, and

δΩ ⟨κ, ad∗ΩIΩ⟩ = ⟨κ, ad
∗
δΩIΩ⟩+ ⟨κ, ad

∗
ΩIδΩ⟩

= ⟨adδΩκ, IΩ⟩+ ⟨adΩκ, IδΩ⟩

= ⟨−adκδΩ, IΩ⟩+ ⟨I∗adΩκ, δΩ⟩

= ⟨−ad∗κIΩ+ I∗adΩκ, δΩ⟩ ,

(4.16)

the variation of S with respect to Ω is

δΩS = ⟨ρ, δΩ(a)⟩+ ⟨ν, δΩ(b)⟩+ ⟨κ, IδΩ⟩|ba +
⟨
∂C

∂Ω̇
, δΩ

⟩⏐⏐⏐⏐b
a

+

∫ b

a

⟨
∂C

∂Ω
− d

dt

∂C

∂Ω̇
− I∗ (κ̇+ adΩκ) + ad∗κIΩ−

∂λ

∂Ω
⟨κ , ξ⟩ , δΩ

⟩
dt

=

⟨
ν + I∗κ+

∂C

∂Ω̇
, δΩ

⟩⏐⏐⏐⏐
t=b

+

∫ b

a

⟨
∂C

∂Ω
− d

dt

∂C

∂Ω̇
− I∗ (κ̇+ adΩκ) + ad∗κIΩ−

∂λ

∂Ω
⟨κ , ξ⟩ , δΩ

⟩
dt

=

⟨
ν + I∗κ+

∂C

∂Ω̇
,dΩ

⟩⏐⏐⏐⏐
t=b

−
⟨
ν + I∗κ+

∂C

∂Ω̇
, Ω̇

⟩⏐⏐⏐⏐
t=b

db

+

∫ b

a

⟨
∂C

∂Ω
− d

dt

∂C

∂Ω̇
− I∗ (κ̇+ adΩκ) + ad∗κIΩ−

∂λ

∂Ω
⟨κ , ξ⟩ , δΩ

⟩
dt.

(4.17)
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Since dξ(b) = δξ(b) + ξ̇(b)db, the variation of S with respect to ξ is

δξS =

⟨
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇
, δξ

⟩⏐⏐⏐⏐b
a

+

∫ b

a

⟨
− d

dt

(
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇

)
+

(
∂C

∂ξ
− ⟨κ , ξ⟩ ∂λ

∂ξ

)
− λκ, δξ

⟩
dt

=

⟨
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇
,dξ

⟩⏐⏐⏐⏐
t=b

−
⟨
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇
, ξ̇

⟩⏐⏐⏐⏐
t=b

db−
⟨
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇
, δξ

⟩⏐⏐⏐⏐
t=a

+

∫ b

a

⟨
− d

dt

(
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇

)
+

(
∂C

∂ξ
− ⟨κ , ξ⟩ ∂λ

∂ξ

)
− λκ, δξ

⟩
dt.

(4.18)

The remaining terms in dS, due to variations of S with respect to the time-independent variables, are⟨
∂S

∂ρ
,dρ

⟩
= ⟨Ω(a)− Ωa,dρ⟩ , (4.19)

⟨
∂S

∂ν
,dν

⟩
= ⟨Ω(b)− Ωb,dν⟩ , (4.20)

and
∂S

∂b
db =

[⟨
ν, Ω̇

⟩
+ C +

⟨
κ, (IΩ)· − ad∗ΩIΩ− λξ

⟩]
t=b

db. (4.21)

Adding all the terms in dS together and demanding that dS = 0 for all δκ, δΩ, δξ, dΩ(b), dξ(b), dρ, dν, and

db (note here that δκ, δΩ, and δξ are variations defined for a ≤ t ≤ b) gives the two-point boundary value

problem defined by the following equations of motion on a ≤ t ≤ b

δκ : (IΩ)· − ad∗ΩIΩ− λξ = 0 (4.22)

δΩ :
∂C

∂Ω
− d

dt

∂C

∂Ω̇
− I∗ (κ̇+ adΩκ) + ad∗κIΩ−

∂λ

∂Ω
⟨κ , ξ⟩ = 0 (4.23)

δξ : − d

dt

(
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇

)
+

(
∂C

∂ξ
− ⟨κ , ξ⟩ ∂λ

∂ξ

)
− λκ = 0 (4.24)

the left boundary conditions at t = a

dρ : Ω(a) = Ωa (4.25)

δξ(a) :

[
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇

]
t=a

= 0 (4.26)

and the right boundary conditions at t = b

dν : Ω(b) = Ωb (4.27)

dξ(b) :

[
∂C

∂ξ̇
− ⟨κ , ξ⟩ ∂λ

∂ξ̇

]
t=b

= 0 (4.28)

db :

[
C −

⟨
∂C

∂Ω̇
, Ω̇

⟩
−
⟨
κ,−İΩ+ ad∗ΩIΩ+ λξ

⟩]
t=b

= 0 (4.29)

where λ is given by (4.8) and the final right boundary condition (4.29) is only needed if the final time b is

free. Equations (4.22), (4.23), and (4.24) together with the left boundary conditions (4.25)-(4.26) and the

right boundary conditions (4.27)-(4.28) and, if needed, (4.29), constitute the controlled equations of motion

for Suslov’s problem using change in the nonholonomic constraint direction as the control.
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4.B Suslov’s Optimal Control Problem for Rigid Body Motion

4.B.1 Derivation of Suslov’s Uncontrolled Equations of Motion

Having discussed the formulation of Suslov’s problem in the general case for an arbitrary group, let us now

turn our attention to the case of the particular Lie group G = SO(3), which represents Suslov’s problem

in its original formulation and where the unreduced Lagrangian is L = L(Λ, Λ̇), with Λ ∈ SO(3). Suslov’s

problem studies the behavior of the body angular velocity Ω ≡
[
Λ−1Λ̇

]∨
∈ R3 subject to the nonholonomic

constraint

⟨Ω, ξ⟩ = 0 (4.30)

for some prescribed, possibly time-varying vector ξ ∈ R3 expressed in the body frame. Physically, such a

system corresponds to a rigid body rotating about a fixed point, with the rotation required to be normal

to the prescribed vector ξ(t) ∈ R3 . The fact that the vector ξ identifying the nonholonomic constraint is

defined in the body frame makes direct physical interpretation and realization of Suslov’s problem somewhat

challenging. Still, Suslov’s problem is perhaps one of the simplest and, at the same time, most insightful

and pedagogical problems in the field of nonholonomic mechanics, and has attracted considerable attention

in the literature. The original formulation of this problem is due to Suslov in 1902 [7] (still only available

in Russian), where he assumed that ξ was constant. This chapter considers the more general case where

ξ varies with time. In order to match the standard state-space notation in control theory, the state-space

control is assumed to be u = ξ̇. We shall also note that the control-theoretical treatment of unconstrained

rigid body motion from the geometric point of view is discussed in detail in [44], Chapters 19 (for general

compact Lie groups) and 22.

For conciseness, the time-dependence of ξ is often suppressed in what follows. We shall note that there is

a more general formulation of Suslov’s problem when G = SO(3) which includes a potential energy in the

Lagrangian,

ℓ(Ω,Γ) =
1

2
⟨IΩ,Ω⟩ − U(Γ), Γ = Λ−1e3 . (4.31)

Depending on the type of potential energy, there are up to 3 additional integrals of motion. For a review of

Suslov’s problem and a summary of results in this area, the reader is referred to an article by Kozlov [11].

Let us choose a body frame coordinate system with an orthonormal basis (E1,E2,E3) in which the rigid

body’s inertia matrix I is diagonal (i.e. I = diag(I1, I2, I3)) and suppose henceforth that all body frame

tensors are expressed with respect to this particular choice of coordinate system. Let (e1, e2, e3) denote the

orthonormal basis for the spatial frame coordinate system and denote the transformation from the body to

spatial frame coordinate systems by the rotation matrix Λ(t) ∈ SO(3). The rigid body’s symmetry-reduced

Lagrangian is its kinetic energy: l = 1
2 ⟨IΩ,Ω⟩. The action integral is

S (Ω) =

∫ b

a

ldt =

∫ b

a

1

2
⟨IΩ,Ω⟩dt. (4.32)
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The variation of the action integral with respect to all variations Σ such that Σ(a) = Σ(b) = 0 is

δS (Ω) = δ

∫ b

a

ldt =

∫ b

a

δldt =

∫ b

a

⟨IΩ, δΩ⟩dt =
∫ b

a

⟨
IΩ, Σ̇+Ω×Σ

⟩
dt

= −
∫ b

a

⟨(
d

dt
+Ω×

)
IΩ,Σ

⟩
dt+ ⟨IΩ,Σ⟩|ba

= −
∫ b

a

⟨(
d

dt
+Ω×

)
IΩ,Σ

⟩
dt,

(4.33)

where Σ ≡
[
Λ−1δΛ

]∨ ∈ so(3), by using δΩ = Σ̇+Ω×Σ, integrating by parts, and applying the vanishing

endpoint conditions Σ(a) =
[
Λ−1(a)δΛ(a)

]∨
= 0 and Σ(b) =

[
Λ−1(b)δΛ(b)

]∨
= 0. Applying Lagrange-

d’Alembert’s principle to the nonholonomic constraint (4.30) yields the constraint on variations required to

derive the equations of motion: ⟨[
Λ−1δΛ

]∨
, ξ
⟩
= ⟨Σ, ξ⟩ = 0.

The principle of stationary action states that Ω must satisfy the ordinary differential equations arising from

δS (Ω) = 0 for all variations Σ such that Σ(a) = Σ(b) = 0 and ⟨Σ, ξ⟩ = 0, in addition to satisfying the

constraint ⟨Ω, ξ⟩ = 0. The first part of this statement implies that Ω must satisfy

δS (Ω) +

∫ b

a

λ ⟨Σ, ξ⟩dt =
∫ b

a

−
⟨(

d

dt
+Ω×

)
IΩ,Σ

⟩
dt+

∫ b

a

λ ⟨Σ, ξ⟩dt

=

∫ b

a

[
−
⟨(

d

dt
+Ω×

)
IΩ,Σ

⟩
+ λ ⟨Σ, ξ⟩

]
dt

=

∫ b

a

⟨
−
(

d

dt
+Ω×

)
IΩ+ λξ,Σ

⟩
dt

= 0

(4.34)

for all variations Σ such that Σ(a) = Σ(b) = 0 and for some time-varying Lagrange multiplier λ. Conse-

quently, Ω must satisfy the system of ordinary differential equations

−
(

d

dt
+Ω×

)
IΩ+ λξ = 0, (4.35)

subject to

⟨Ω, ξ⟩ = 0.

Equation (4.35) can be expressed as

IΩ̇ = (IΩ)×Ω+ λξ. (4.36)

The next step is to determine the Lagrange multiplier λ. Both sides of (4.36) are dotted with I−1ξ to give⟨
IΩ̇, I−1ξ

⟩
=
⟨
(IΩ)×Ω, I−1ξ

⟩
+ λ

⟨
ξ, I−1ξ

⟩
, (4.37)

from which λ may easily be solved for:

λ =

⟨
IΩ̇, I−1ξ

⟩
−
⟨
(IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

. (4.38)
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But wait. This is not quite the formula needed for the Lagrange multiplier, because the formula must

somehow incorporate the constraint ⟨Ω, ξ⟩ = 0. By using the product rule and the constraint ⟨Ω, ξ⟩ = 0,⟨
IΩ̇, I−1ξ

⟩
=
⟨
Ω̇, ξ

⟩
=

d

dt
⟨Ω, ξ⟩ −

⟨
Ω, ξ̇

⟩
= −

⟨
Ω, ξ̇

⟩
. (4.39)

Note that this relation holds even if the constraint were ⟨Ω, ξ⟩ = c, for any constant c. Using this relation,

the equation for λ can now be re-written as

λ = −

⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

, (4.40)

thereby incorporating the constraint equation. In order to make λ well-defined in (4.40), note that it is

implicitly assumed that ξ ̸= 0 (i.e. ξ(t) ̸= 0 ∀t). As is easy to verify, equations (4.36) and (4.40) are a

particular case of the equations of motion (4.6) and the Lagrange multiplier (4.9). Also, equations (4.36) and

(4.40) generalize the well-known equations of motion for Suslov’s problem [30] to the case of time-varying

ξ(t). When this formula for λ is substituted into (4.36), the equations of motion become

IΩ̇ = (IΩ)×Ω−

⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

ξ, (4.41)

which is equivalent to

⟨
ξ, I−1ξ

⟩ [
IΩ̇− (IΩ)×Ω

]
+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ = 0. (4.42)

As noted during the construction of λ, these equations of motion only guarantee that ⟨Ω, ξ⟩ = c, for a

possibly non-zero constant c. To ensure that ⟨Ω, ξ⟩ = 0 for all time, ⟨Ω(a), ξ(a)⟩ = 0 must be satisfied as

an initial condition at time t = a. For conciseness the expression appearing on the left hand side of (4.42)

is denoted by q, i.e.

q (Ω, ξ) :=
⟨
ξ, I−1ξ

⟩ [
IΩ̇− (IΩ)×Ω

]
+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ = 0. (4.43)

We would like to state several useful observations about the nature of the dynamics in the free Suslov’s

problem, i.e. the results that are valid for arbitrary ξ(t), before proceeding to the optimal control problem.

On the nature of constraint preservation Suppose that Ω(t) is a solution to (4.43) (equivalently

(4.36)), for a given ξ(t) with λ given by (4.40). We can rewrite the equation for the Lagrange multiplier as

λ = −

⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

= −

d

dt
⟨Ω, ξ⟩ −

⟨
Ω̇, ξ

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

= − 1

⟨ξ, I−1ξ⟩
d

dt
⟨Ω, ξ⟩+

⟨
IΩ̇− (IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

.

(4.44)
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On the other hand, multiplying both sides of (4.36) by I−1ξ and solving for λ gives

λ =

⟨
IΩ̇− (IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

. (4.45)

Thus, from (4.44) and (4.45) it follows that the equations of motion (4.43) with λ given by (4.40) lead to
d

dt
⟨Ω, ξ⟩ = 0, so that ⟨Ω, ξ⟩ = c, a constant that is not necessarily equal to 0. In other words, the equations

(4.43), (4.40) need an additional condition determining the value of ⟨Ω, ξ⟩ = 0. Therefore, a solution (Ω, ξ)

to Suslov’s problem requires that q (Ω, ξ) = 0 and ⟨Ω(a), ξ(a)⟩ = 0, where t = a is the initial time.

On the invariance of solutions with respect to scaling of ξ In the classical formulation of Suslov’s

problem, it is usually assumed that |ξ| = 1. When ξ(t) is allowed to change, the normalization of ξ becomes

an issue that needs to be clarified. Indeed, suppose that Ω(t) is a solution to (4.43) for a given ξ(t), so that

q (Ω, ξ) = 0 and further assume that ⟨Ω, ξ⟩ = 0. Next, consider a smooth, scalar-valued function π(t) with

π(t) ̸= 0 on the interval t ∈ [a, b], and consider the pair (Ω, πξ). Then

q (Ω, πξ) =
⟨
πξ, I−1 (πξ)

⟩ [
IΩ̇− (IΩ)×Ω

]
+
[⟨
Ω, (πξ)

·⟩
+
⟨
(IΩ)×Ω, I−1 (πξ)

⟩]
πξ

= π2
⟨
ξ, I−1ξ

⟩ [
IΩ̇− (IΩ)×Ω

]
+
[⟨

Ω, π̇ξ + πξ̇
⟩
+ π

⟨
(IΩ)×Ω, I−1ξ

⟩]
πξ

= π2
⟨
ξ, I−1ξ

⟩ [
IΩ̇− (IΩ)×Ω

]
+
[
π̇ ⟨Ω, ξ⟩+ π

⟨
Ω, ξ̇

⟩
+ π

⟨
(IΩ)×Ω, I−1ξ

⟩]
πξ

= π2
⟨
ξ, I−1ξ

⟩ [
IΩ̇− (IΩ)×Ω

]
+
[
π
⟨
Ω, ξ̇

⟩
+ π

⟨
(IΩ)×Ω, I−1ξ

⟩]
πξ

= π2q (Ω, ξ) = 0.

(4.46)

Hence, a solution Ω(t) to (4.43) with ⟨Ω, ξ⟩ = c = 0 does not depend on the magnitude of ξ(t). As it turns

out, this creates a degeneracy in the optimal control problem that has to be treated with care.

Energy conservation Multiplying both sides of (4.36) by Ω, gives the time derivative of kinetic energy:

Ṫ (t) =
d

dt

{
1

2
⟨IΩ,Ω⟩

}
=
⟨
IΩ, Ω̇

⟩
= λ ⟨Ω, ξ⟩ = λc, (4.47)

where we have denoted ⟨Ω, ξ⟩ = c = const. Thus, if c = 0 (as is the case for Suslov’s problem), kinetic

energy is conserved:

T (t) =
1

2
⟨IΩ,Ω⟩ = 1

2

3∑
i=1

IiΩ2
i = eS , (4.48)

for some positive constant eS , and Ω lies on the surface of an ellipsoid which we will denote by E. The

constant kinetic energy ellipsoid determined by the rigid body’s inertia matrix I and initial body angular

velocity Ω(a) = Ωa on which Ω lies is denoted by

E = E(I,Ωa) =
{
v ∈ R3 : ⟨v, Iv⟩ = ⟨Ωa, IΩa⟩

}
. (4.49)
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Integrating (4.47) with respect to time from a to b gives the change in kinetic energy:

T (b)− T (a) = c

∫ b

a

λ dt. (4.50)

Thus, Ω(a) and Ω(b) lie on the surface of the same ellipsoid iff c = 0 or
∫ b

a
λ dt = 0.

If c = 0, as is the case for Suslov’s problem, the conservation of kinetic energy holds for all choices of ξ,

constant or time-dependent. We shall note that if the vector ξ is constant in time, and is an eigenvector of

the inertia matrix I, then there is an additional integral 1
2 ⟨IΩ, IΩ⟩. However, for ξ(t) varying in time, which

is the case studied here, such an integral does not apply.

4.B.2 Controllability and Accessibility of Suslov’s Uncontrolled Equations of

Motion

We shall now turn our attention to the problem of controlling Suslov’s problem by changing the vector ξ(t) in

time. Before posing the optimal control problem, let us first consider the general question of controllability

and accessibility using the Lie group approach to controllability as derived in [45], [46], and [47]. Since for

the constraint ⟨Ω, ξ⟩ = 0 all trajectories must lie on the energy ellipsoid (4.49), both the initial and final

point of the trajectory must lie on the ellipsoid corresponding to the same energy. We shall therefore assume

that the initial and final points, as well as the trajectory itself, lie on the ellipsoid (4.49). Before we proceed,

let us remind the reader of the relevant definitions and theorems concerning controllability and accessibility,

following [30].

Definition 4.2. An affine nonlinear control system is a differential equation having the form

ẋ = f(x) +

k∑
i=1

gi(x)ui, (4.51)

where M is a smooth n-dimensional manifold, x ∈ M , u = (u1, ..., uk) is a time-dependent, vector-valued

map from R to a constraint set Φ ⊂ Rk, and f and gi, i = 1, ..., k, are smooth vector fields on M . The

manifold M is said to be the state-space of the system, u is said to be the control, f is said to be the drift

vector field, and gi, i = 1, ..., k, are said to be the control vector fields. u is assumed to be piecewise smooth

or piecewise analytic, and such a u is said to be admissible. If f ≡ 0, the system (4.51) is said to be driftless;

otherwise, the system (4.51) is said to have drift.

Definition 4.3. Let a be a fixed initial time. The system (4.51) is said to be controllable if for any pair of

states xa, xb ∈ M there exists a final time b ≥ a and an admissible control u defined on the time interval

[a, b] such that there is a trajectory of (4.51) with x(a) = xa and x(b) = xb.

Definition 4.4. Given xa ∈ M and a time t ≥ a, R(xa, t) is defined to be the set of all y ∈ M for which

there exists an admissible control u defined on the time interval [a, t] such that there is a trajectory of (4.51)

with x(a) = xa and x(t) = y. The reachable set from xa at time b ≥ a is defined to be

Rb(xa) =
⋃

a≤t≤b

R(xa, t). (4.52)
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Definition 4.5. The accessibility algebra C of the system (4.51) is the smallest Lie algebra of vector fields

on M that contains the vector fields f and gi, i = 1, ..., k; that is, C = Lie {f ,g1, ...,gk} is the span of all

possible Lie brackets of f and gi, i = 1, ..., k.

Definition 4.6. The accessibility distribution C of the system (4.51) is the distribution generated by the

vector fields in C; that is, given xa ∈M , C(xa) = Liexa {f ,g1, ...,gk} is the span of the vector fields X in C
at xa.

Definition 4.7. The system (4.51) is said to be accessible from xa ∈M if for every b > a, Rb(xa) contains

a nonempty open set.

Theorem 4.8. If dim C(xa) = n for some xa ∈M , then the system (4.51) is accessible from xa.

Theorem 4.9. Suppose the system (4.51) is analytic. If dim C(xa) = n ∀xa ∈ M and f = 0, then the

system (4.51) is controllable.

To apply the theory of controllability and accessibility to Suslov’s problem, we first need to rewrite the

equations of motion for Suslov’s problem in the “affine nonlinear control” form

ẋ = f(x) +

3∑
i=1

gi(x)ui, (4.53)

where x is the state variable and ui are the controls. We denote the state of the system by x ≡

[
Ω

ξ

]
and the control by u ≡ ξ̇. Thus, the individual components of the state and control are x1 = Ω1, x2 = Ω2,

x3 = Ω3, x4 = ξ1, x5 = ξ2, x6 = ξ3, u1 = ξ̇1, u2 = ξ̇2, and u3 = ξ̇3. The equations of motion (4.43) can be

expressed as

Ω̇ =
I−1

⟨ξ, I−1ξ⟩

{⟨
ξ, I−1ξ

⟩
(IΩ)×Ω−

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
}

, ξ̇ = u . (4.54)

To correlate (4.54) with (4.53), the functions f and g in (4.53) are defined as

f(x) ≡

[
I−1

⟨ξ,I−1ξ⟩
{⟨
ξ, I−1ξ

⟩
(IΩ)×Ω−

⟨
(IΩ)×Ω, I−1ξ

⟩
ξ
}

03×1

]
(4.55)

and

gi(x) ≡

[
− I−1

⟨ξ,I−1ξ⟩Ωiξ

ei

]
for 1 ≤ i ≤ 3. (4.56)

Here, f(x) is the drift vector field and gi(x), 1 ≤ i ≤ 3, are the control vector fields; 03×1 =
[
0 0 0

]T
denotes the 3×1 column vector of zeros and ei, i = 1, 2, 3, denote the standard orthonormal basis vectors for

R3. An alternative way to express each control vector field gi, 1 ≤ i ≤ 3, is through the differential-geometric

notation

gi =
−Ωiξm

dm ⟨ξ, I−1ξ⟩
∂

∂Ωm
+

∂

∂ξi
. (4.57)

As noted in the previous section, the first three components, Ω, of the state x solving (4.53) must lie on the
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ellipsoid E given in (4.49), under the assumption that

⟨Ω(a), ξ(a)⟩ = 0 (4.58)

for some time a. As shown in the previous section, (4.58) implies that a solution of (4.53) satisfies

⟨Ω(t), ξ(t)⟩ = 0 for all t. Also, it is assumed that ξ ̸= 0 (i.e. ξ(t) ̸= 0 ∀t). Hence, the state-space

manifold is M =
{
x ∈ R6| 12 ⟨IΩ, Ω⟩ = eS , ⟨Ω, ξ⟩ = 0, ξ ̸= 0

}
. Let K = R6\ 0, a 6-dimensional submanifold

of R6. Note that M = Φ−1(02×1), where Φ : K → R2 is defined by

Φ(x) =

[
1
2 ⟨IΩ, Ω⟩ − eS

⟨Ω, ξ⟩

]
. (4.59)

The derivative of Φ at x ∈ K, (Φ∗)x : TxK → TΦ(x)R2, is

(Φ∗)x =

[
d1Ω1 d2Ω2 d3Ω3 0 0 0

ξ1 ξ2 ξ3 Ω1 Ω2 Ω3

]
=

[
IΩ ξ

03×1 Ω

]T
. (4.60)

Since (Φ∗)x has rank 2 for each x ∈ K, Φ is by definition a submersion and M = Φ−1(02×1) is a closed

embedded submanifold of K of dimension 4 by Corollary 8.9 of [48]. Being an embedded submanifold of K,

M is also an immersed submanifold of K [48].

The tangent space to M at x ∈M is

TxM =
{
v ∈ TxK = R6| (Φ∗)x (v) = 02×1

}
. (4.61)

Using (4.55), (4.56), and (4.60), it is easy to check that (Φ∗)x (f(x)) = 02×1 and (Φ∗)x (gi(x)) = 02×1 for

1 ≤ i ≤ 3. Hence, f(x) ∈ TxM and gi(x) ∈ TxM for 1 ≤ i ≤ 3 by Lemma 8.15 of [48]. So f ,g1,g2, and

g3 are smooth vector fields on K which are also tangent to M . Since M is an immersed submanifold of K,

[X,Y] is tangent to M if X and Y are smooth vector fields on K that are tangent to M , by Corollary 8.28

of [48]. Hence, Liex {f ,g1,g2,g3} ⊂ TxM and therefore rankLiex {f ,g1,g2,g3} ≤ dim TxM = 4.

For 1 ≤ i, j ≤ 3 and i ̸= j, the Lie bracket of the control vector field gi with the control vector field gj is

computed as

[gi,gj ] =

[
−Ωiξm

dm ⟨ξ, I−1ξ⟩
∂

∂Ωm
+

∂

∂ξi
,
−Ωjξl

dl ⟨ξ, I−1ξ⟩
∂

∂Ωl
+

∂

∂ξj

]
=

Ωiξmξlδmj

dmdl ⟨ξ, I−1ξ⟩2
∂

∂Ωl
− Ωj

dl

{
∂

∂ξi

(
ξl

⟨ξ, I−1ξ⟩

)}
∂

∂Ωl

− Ωjξlξmδil

dldm ⟨ξ, I−1ξ⟩2
∂

∂Ωm
+

Ωi

dm

{
∂

∂ξj

(
ξm

⟨ξ, I−1ξ⟩

)}
∂

∂Ωm

=
Ωi

ξj
dj
− Ωj

ξi
di

dl ⟨ξ, I−1ξ⟩2
ξl

∂

∂Ωl
− Ωjδil

dl ⟨ξ, I−1ξ⟩
∂

∂Ωl
+

2Ωjξiξl

didl ⟨ξ, I−1ξ⟩2
∂

∂Ωl

+
Ωiδjm

dm ⟨ξ, I−1ξ⟩
∂

∂Ωm
− 2Ωiξjξm

djdm ⟨ξ, I−1ξ⟩2
∂

∂Ωm

=
Ωj

ξi
di
− Ωi

ξj
dj

⟨ξ, I−1ξ⟩2
ξl
dl

∂

∂Ωl
+

Ωi

dj ⟨ξ, I−1ξ⟩
∂

∂Ωj
− Ωj

di ⟨ξ, I−1ξ⟩
∂

∂Ωi
,

(4.62)
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recalling that
⟨
ξ, I−1ξ

⟩
=
∑3

i=1
ξ2i
di
.

Next, to prove controllability and compute the appropriate prolongation, consider the 6×6 matrix comprised

of the columns of the vector fields gi(x) and their commutators [gi(x),gj(x)], projected to the basis of the

space (∂Ω, ∂ξ):

V = [g1,g2,g3, [g1,g2] , [g1,g3] , [g2,g3]] =

[
− I−1

⟨ξ,I−1ξ⟩ξ ⊗ΩT I−1

⟨ξ,I−1ξ⟩A

I3×3 03×3

]
, (4.63)

where we have defined

A =

⎡⎢⎣ −Ω2 −Ω3 0

Ω1 0 −Ω3

0 Ω1 Ω2

⎤⎥⎦+
1

⟨ξ, I−1ξ⟩
ξ ⊗

[(
Ω× I−1ξ

)T
D
]
, D =

⎡⎢⎣ 0 0 −1
0 1 0

−1 0 0

⎤⎥⎦ . (4.64)

In (4.63), I3×3 denotes the 3 × 3 identity matrix and 03×3 denotes the 3 × 3 zero matrix. Since V ⊂
Liex {f ,g1,g2,g3}, rankV ≤ rankLiex {f ,g1,g2,g3} ≤ dim TxM = 4. It will be shown that rankV = 4, so

that rankLiex {f ,g1,g2,g3} = dim TxM = 4.

Since the bottom 3 rows of the first 3 columns of V are I3×3, the first 3 columns of V are linearly indepen-

dent. Note that since I−1 is a diagonal matrix with positive diagonal entries, rank I−1

⟨ξ,I−1ξ⟩A = rankA. If

rank I−1

⟨ξ,I−1ξ⟩A = rankA > 0, each of the last 3 columns of V , if non-zero, is linearly independent of the first

3 columns of V since the bottom 3 rows of the first 3 columns are I3×3 and the bottom 3 rows of the last 3

columns are 03×3. Hence, rankV = 3 + rankA. Since rankV ≤ 4, rankA is 0 or 1.

The first matrix in the sum composing A in (4.64) has rank 2, since Ω ̸= 0 (i.e. at least one component of Ω

is non-zero). The 3 columns of the first matrix in (4.64) are each orthogonal to Ω and have rank 2; hence, the

columns of the first matrix in (4.64) span the 2-dimensional plane in R3 orthogonal to Ω. Since ⟨Ω, ξ⟩ = 0,

ξ lies in the 2-dimensional plane orthogonal to Ω and so lies in the span of the columns of the first matrix.

Thus, ξ and Ω× ξ is an orthogonal basis for the plane in R3 orthogonal to Ω. Since the columns of the first

matrix span this plane, at least one column, say the jth (1 ≤ j ≤ 3), has a non-zero component parallel to

Ω× ξ. The second matrix in the sum composing A in (4.64) consists of 3 column vectors, each of which is a

scalar multiple of ξ. Hence, the jth column in A has a non-zero component parallel to Ω× ξ. Thus, A has

rank 1, V has rank 4, and rankLiex {f ,g1,g2,g3} = dim TxM = 4. By Theorems 4.8 and 4.9, this implies

that (4.53) is controllable or accessible, depending on whether f is non-zero. Thus, we have proved

Theorem 4.10 (On the controllability and accessibility of Suslov’s problem). Suppose we have Suslov’s

problem q (Ω, ξ) = 0 with the control variable ξ̇(t). Then,

1. If I = cI3×3 for a positive constant c, then Ω lies on a sphere of radius c, f = 0 for all points in M ,

and (4.53) is driftless and controllable.

2. If I ̸= cI3×3 for all positive constants c (i.e. at least two of the diagonal entries of I are unequal), then

Ω lies on a non-spherical ellipsoid, f ̸= 0 at most points in M , and (4.53) has drift and is accessible.
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4.B.3 Suslov’s Optimal Control Problem

Let us now turn our attention to the optimal control of Suslov’s problem by varying the direction ξ(t).

Suppose it is desired to maneuver Suslov’s rigid body from a prescribed initial body angular velocity Ωa ∈ E

at a prescribed initial time t = a to another prescribed final body angular velocity Ωb ∈ E at a fixed or free

final time t = b, where b ≥ a, subject to minimizing some time-dependent integrand cost function C over the

duration of the maneuver (such as minimizing the energy of the control vector ξ or minimizing the duration

b− a of the maneuver). Note that since a solution to Suslov’s problem conserves kinetic energy, it is always

assumed that Ωa,Ωb ∈ E. Thus a time-varying control vector ξ and final time b are sought that generate

a time-varying body angular velocity Ω, such that Ω(a) = Ωa ∈ E, Ω(b) = Ωb ∈ E, ⟨Ω(a), ξ(a)⟩ = 0, the

uncontrolled equations of motion q = 0 are satisfied for a ≤ t ≤ b, and
∫ b

a
Cdt is minimized.

The natural way to formulate this optimal control problem is:

min
ξ, b

∫ b

a

C dt s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q = 0,

Ω(a) = Ωa ∈ E,

⟨Ω(a), ξ(a)⟩ = 0,

Ω(b) = Ωb ∈ E.

(4.65)

The collection of constraints in (4.65) is actually over-determined. To see this, recall that a solution to q = 0,

Ω(a) = Ωa, and ⟨Ω(a), ξ(a)⟩ = 0 sits on the constant kinetic energy ellipsoid E. If (Ω, ξ) satisfies q = 0,

Ω(a) = Ωa ∈ E, and ⟨Ω(a), ξ(a)⟩ = 0, then Ω(b) ∈ E, a 2-d manifold. Thus, only two rather than three

parameters of Ω(b) need to be prescribed. So the constraint Ω(b) = Ωb in (4.65) is overprescribed and can

lead to singular Jacobians when trying to solve (4.65) numerically, especially via the indirect method. A

numerically more stable formulation of the optimal control problem is:

min
ξ, b

∫ b

a

C dt s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q = 0,

Ω(a) = Ωa ∈ E,

⟨Ω(a), ξ(a)⟩ = 0,

φ(Ω(b)) = φ(Ωb), where Ωb ∈ E,

(4.66)

and where φ : E → R2 is some parameterization of the 2-d manifold E. For example, φ might map a point

on E expressed in Cartesian coordinates to its azimuth and elevation in spherical coordinates. Using the

properties of the dynamics, the problem (4.65) can be simplified further to read

min
ξ, b

∫ b

a

C dt s.t.

⎧⎪⎨⎪⎩
q = 0,

Ω(a) = Ωa ∈ E,

Ω(b) = Ωb ∈ E,

(4.67)

which omits the constraint ⟨Ω(a), ξ(a)⟩ = 0. One can see that (4.65) and (4.67) are equivalent as follows.

Suppose (Ω, ξ) satisfies q = 0, Ω(a) = Ωa ∈ E, and Ω(b) = Ωb ∈ E. Since Ωa,Ωb ∈ E have the same

kinetic energy, i.e. T (a) = 1
2 ⟨Ωa, IΩa⟩ = 1

2 ⟨Ωb, IΩb⟩ = T (b), equation (4.50) shows that ⟨Ω(a), ξ(a)⟩ = 0

or
∫ b

a
λ dt = 0. The latter possibility,

∫ b

a
λ dt = 0, represents an additional constraint and thus is unlikely

to occur. Thus, a solution of (4.67) should be expected to satisfy the omitted constraint ⟨Ω(a), ξ(a)⟩ = 0.

Observe that the optimal control problem encapsulated by (4.67) ignores path inequality constraints such
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as D
(
Ω, Ω̇, ξ, ξ̇, t

)
≤ 0, where D is a r × 1 vector-valued function. Path inequality constraints can be

incorporated in (4.67) as soft constraints through penalty functions in the integrand cost function C.

In what follows, we assume the following form of the integrand cost function C in (4.67):

C := Cα,β,γ,η,δ ≡
α

4

[
|ξ|2 − 1

]2
+

β

2

⏐⏐⏐ξ̇⏐⏐⏐2 + γ

2
|Ω−Ωd|2 +

η

2

⏐⏐⏐Ω̇⏐⏐⏐2 + δ, (4.68)

where α, β, γ, η, and δ are non-negative constant scalars. Suslov’s optimal control problem (4.67) becomes

min
ξ, b

∫ b

a

Cα,β,γ,η,δ dt s.t.

⎧⎪⎨⎪⎩
q = 0,

Ω(a) = Ωa ∈ E,

Ω(b) = Ωb ∈ E.

(4.69)

The first term in (4.68), α
4

[
|ξ|2 − 1

]2
, encourages the control vector ξ to have near unit magnitude. The

second term in (4.68), β
2

⏐⏐⏐ξ̇⏐⏐⏐2, encourages the control vector ξ to follow a minimum energy trajectory. The

first term in (4.68) is needed because the magnitude of ξ does not affect a solution of q = 0, and in the

absence of the first term in (4.68), the second term in (4.68) will try to shrink ξ to 0, causing numerical

instability. An alternative to including the first term in (4.68) is to revise the formulation of the optimal

control problem to include the path constraint |ξ| = 1. The third term in (4.68), γ
2 |Ω−Ωd|2, encourages

the body angular velocity Ω to follow a prescribed, time-varying trajectory Ωd. The fourth term in (4.68),

η
2

⏐⏐⏐Ω̇⏐⏐⏐2, encourages the body angular velocity vector Ω to follow a minimum energy trajectory. The final

term in (4.68), δ, encourages a minimum time solution.

As in Subsection 4.B.2, using state-space terminology, the state is x ≡

[
Ω

ξ

]
and the control is u ≡ ξ̇

for the optimal control problem (4.69). It is always assumed that the control u = ξ̇ is differentiable, and

therefore continuous, or equivalently that ξ is twice differentiable.

4.B.4 Derivation of Suslov’s Controlled Equations of Motion

Following the method of [43, 38], to construct a control vector ξ and final time b solving (4.69), the un-

controlled equations of motion are added to the integrand cost function through a time-varying Lagrange

multiplier vector and the initial and final constraints are added using constant Lagrange multiplier vectors.

A control vector ξ and final time b are sought that minimize the augmented performance index

S = ⟨ρ,Ω(a)−Ωa⟩+ ⟨ν,Ω(b)−Ωb⟩+
∫ b

a

[C + ⟨κ,q⟩] dt, (4.70)

where ρ and ν are constant Lagrange multiplier vectors enforcing the initial and final constraints Ω(a) = Ωa

andΩ(b) = Ωb and κ is a time-varying Lagrange multiplier vector (i.e. the costate) enforcing the uncontrolled

equations of motion defined by q = 0 as given in (4.43).

The control vector ξ and final time b minimizing S are found by finding conditions for which the differential

of S, dS, equals 0. For the purpose of computing the differential of S, it is assumed that the integrand
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cost function is of the form C
(
Ω, Ω̇, ξ, ξ̇, t

)
. The differential of S is defined as the first-order change in

S with respect to changes in κ, Ω, ξ, ρ, ν, and b. After computing the differential of S, the goal of the

following calculation is to isolate δκ, δΩ, and δξ in the integrand terms, to isolate dξ(a) = δξ(a) and dρ in

the left boundary terms, and to isolate dΩ(b), dξ(b), dν, and db in the right boundary terms. Once these

differentials have been isolated, the controlled equations of motion may be obtained readily upon setting

dS = 0. Utilizing the calculus of variations summarized in Section 3.A and because δS = δκS + δξS + δΩS

and Ṡ(b) = ∂S
∂b (b) =

[⟨
ν, Ω̇

⟩
+ C + ⟨κ,q⟩

]⏐⏐⏐
t=b

by the Fundamental Theorem of Calculus, the differential of

S is computed as

dS = δS +

⟨(
∂S

∂ρ

)T

,dρ

⟩
+

⟨(
∂S

∂ν

)T

,dν

⟩
+ Ṡ(b)db

= δκS + δξS + δΩS + ⟨Ω(a)−Ωa,dρ⟩+ ⟨Ω(b)−Ωb,dν⟩+
[⟨
ν, Ω̇

⟩
+ C + ⟨κ,q⟩

]⏐⏐⏐
t=b

db

=

∫ b

a

⟨q, δκ⟩dt+
∫ b

a

[⟨(
∂C

∂ξ
− d

dt

∂C

∂ξ̇

)T

, δξ

⟩
+ ⟨κ, δξq⟩

]
dt+

⟨(
∂C

∂ξ̇

)T

, δξ

⟩⏐⏐⏐⏐⏐
b

a

+ ⟨ρ, δΩ(a)⟩+ ⟨ν, δΩ(b)⟩+
∫ b

a

[⟨(
∂C

∂Ω
− d

dt

∂C

∂Ω̇

)T

, δΩ

⟩
+ ⟨κ, δΩq⟩

]
dt

+

⟨(
∂C

∂Ω̇

)T

, δΩ

⟩⏐⏐⏐⏐⏐
b

a

+ ⟨Ω(a)−Ωa,dρ⟩+ ⟨Ω(b)−Ωb,dν⟩+
[⟨
ν, Ω̇

⟩
+ C + ⟨κ,q⟩

]⏐⏐⏐
t=b

db.

(4.71)

Because δΩ(a) = 0 (since Ω(a) is fixed to Ωa) and dΩ(b) = δΩ(b) + Ω̇(b)db, the differential of S computed

in (4.71) simplifies to

dS =

∫ b

a

⟨q, δκ⟩dt+
∫ b

a

[⟨(
∂C

∂ξ
− d

dt

∂C

∂ξ̇

)T

, δξ

⟩
+ ⟨κ, δξq⟩

]
dt+

⟨(
∂C

∂ξ̇

)T

, δξ

⟩⏐⏐⏐⏐⏐
b

a

+

∫ b

a

[⟨(
∂C

∂Ω
− d

dt

∂C

∂Ω̇

)T

, δΩ

⟩
+ ⟨κ, δΩq⟩

]
dt+

⟨(
∂C

∂Ω̇

)T

, δΩ

⟩⏐⏐⏐⏐⏐
b

a

+ ⟨Ω(a)−Ωa,dρ⟩+ ⟨Ω(b)−Ωb,dν⟩+ ⟨ν,dΩ(b)⟩+ [C + ⟨κ,q⟩]|t=b db.

(4.72)

In order to isolate δΩ and δξ in (4.72), the integrals
∫ b

a
⟨κ, δΩq⟩dt and

∫ b

a
⟨κ, δξq⟩dt appearing in (4.72)

will be computed. Since

δΩq =
⟨
ξ, I−1ξ

⟩ [
IδΩ̇− (IδΩ)×Ω− (IΩ)× δΩ

]
+
[⟨

δΩ, ξ̇
⟩
+
⟨
(IδΩ)×Ω+ (IΩ)× δΩ, I−1ξ

⟩]
ξ, (4.73)
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it follows that

⟨κ, δΩq⟩ =
⟨
ξ, I−1ξ

⟩ [⟨
κ, IδΩ̇

⟩
− ⟨κ, (IδΩ)×Ω⟩ − ⟨κ, (IΩ)× δΩ⟩

]
+
[⟨

δΩ, ξ̇
⟩
+
⟨
(IδΩ)×Ω+ (IΩ)× δΩ, I−1ξ

⟩]
⟨κ, ξ⟩

=
⟨
ξ, I−1ξ

⟩ [⟨
Iκ, δΩ̇

⟩
− ⟨Ω× κ, IδΩ⟩ − ⟨κ× (IΩ) , δΩ⟩

]
+ ⟨κ, ξ⟩

[⟨
ξ̇, δΩ

⟩
+
⟨
Ω×

(
I−1ξ

)
, IδΩ

⟩
+
⟨(
I−1ξ

)
× (IΩ) , δΩ

⟩]
=
⟨
ξ, I−1ξ

⟩ [⟨
Iκ, δΩ̇

⟩
− ⟨I (Ω× κ) , δΩ⟩ − ⟨κ× (IΩ) , δΩ⟩

]
+ ⟨κ, ξ⟩

[⟨
ξ̇, δΩ

⟩
+
⟨
I
(
Ω×

(
I−1ξ

))
, δΩ

⟩
+
⟨(
I−1ξ

)
× (IΩ) , δΩ

⟩]
=
⟨⟨
ξ, I−1ξ

⟩
Iκ, δΩ̇

⟩
+

⟨
−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
, δΩ

⟩
.

(4.74)

Integrating (4.74) and using integration by parts to eliminate δΩ̇ yields∫ b

a

⟨κ, δΩq⟩dt =
∫ b

a

⟨⟨
ξ, I−1ξ

⟩
Iκ, δΩ̇

⟩
dt

+

∫ b

a

⟨
−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
, δΩ

⟩
dt

= −
∫ b

a

⟨
d

dt

(⟨
ξ, I−1ξ

⟩
Iκ
)
, δΩ

⟩
dt+

⟨⟨
ξ, I−1ξ

⟩
Iκ, δΩ

⟩⏐⏐b
a

+

∫ b

a

⟨
−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
, δΩ

⟩
dt

=

∫ b

a

⟨
− d

dt

(⟨
ξ, I−1ξ

⟩
Iκ
)
−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
, δΩ

⟩
dt+

⟨⟨
ξ, I−1ξ

⟩
Iκ, δΩ

⟩⏐⏐b
a
.

(4.75)

Since

δξq =
[
IΩ̇− (IΩ)×Ω

] [⟨
δξ, I−1ξ

⟩
+
⟨
ξ, I−1δξ

⟩]
+
[⟨

Ω, δξ̇
⟩
+
⟨
(IΩ)×Ω, I−1δξ

⟩]
ξ

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
δξ

=
[
IΩ̇− (IΩ)×Ω

] ⟨
2I−1ξ, δξ

⟩
+
[⟨

Ω, δξ̇
⟩
+
⟨
I−1 ((IΩ)×Ω) , δξ

⟩]
ξ

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
δξ,

(4.76)
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it follows that

⟨κ, δξq⟩ =
⟨
κ, IΩ̇− (IΩ)×Ω

⟩ ⟨
2I−1ξ, δξ

⟩
+ ⟨κ, ξ⟩

[⟨
Ω, δξ̇

⟩
+
⟨
I−1 ((IΩ)×Ω) , δξ

⟩]
+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
⟨κ, δξ⟩

=
⟨
⟨κ, ξ⟩Ω, δξ̇

⟩
+

⟨
2
⟨
κ, IΩ̇− (IΩ)×Ω

⟩
I−1ξ + ⟨κ, ξ⟩ I−1 ((IΩ)×Ω)

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ, δξ

⟩
.

(4.77)

Integrating (4.77) and using integration by parts to eliminate δξ̇ yields∫ b

a

⟨κ, δξq⟩dt =
∫ b

a

⟨
⟨κ, ξ⟩Ω, δξ̇

⟩
dt

+

∫ b

a

⟨
2
⟨
κ, IΩ̇− (IΩ)×Ω

⟩
I−1ξ + ⟨κ, ξ⟩ I−1 ((IΩ)×Ω)

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ, δξ

⟩
dt

= −
∫ b

a

⟨
d

dt
(⟨κ, ξ⟩Ω) , δξ

⟩
dt+ ⟨⟨κ, ξ⟩Ω, δξ⟩|ba

+

∫ b

a

⟨
2
⟨
κ, IΩ̇− (IΩ)×Ω

⟩
I−1ξ + ⟨κ, ξ⟩ I−1 ((IΩ)×Ω)

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ, δξ

⟩
dt

=

∫ b

a

⟨
− d

dt
(⟨κ, ξ⟩Ω) + 2

⟨
κ, IΩ̇− (IΩ)×Ω

⟩
I−1ξ

+ ⟨κ, ξ⟩ I−1 ((IΩ)×Ω) +
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ, δξ

⟩
dt

+ ⟨⟨κ, ξ⟩Ω, δξ⟩|ba .

(4.78)

Using (4.75) and (4.78), the differential of S computed in (4.72) simplifies to

dS =

∫ b

a

⟨q, δκ⟩dt+
∫ b

a

⟨(
∂C

∂ξ
− d

dt

∂C

∂ξ̇

)T

− d

dt
(⟨κ, ξ⟩Ω) + 2

⟨
κ, IΩ̇− (IΩ)×Ω

⟩
I−1ξ

+ ⟨κ, ξ⟩ I−1 ((IΩ)×Ω) +
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ, δξ

⟩
dt

+

⟨
⟨κ, ξ⟩Ω+

(
∂C

∂ξ̇

)T

, δξ

⟩⏐⏐⏐⏐⏐
b

a

+

∫ b

a

⟨(
∂C

∂Ω
− d

dt

∂C

∂Ω̇

)T

− d

dt

(⟨
ξ, I−1ξ

⟩
Iκ
)
−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
, δΩ

⟩
dt+

⟨⟨
ξ, I−1ξ

⟩
Iκ+

(
∂C

∂Ω̇

)T

, δΩ

⟩⏐⏐⏐⏐⏐
b

a

+ ⟨Ω(a)−Ωa,dρ⟩+ ⟨Ω(b)−Ωb,dν⟩+ ⟨ν,dΩ(b)⟩+ [C + ⟨κ,q⟩]|t=b db.

(4.79)
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Finally, because δΩ(a) = 0 (since Ω(a) is fixed to Ωa), dΩ(b) = δΩ(b)+ Ω̇(b)db, and dξ(b) = δξ(b)+ ξ̇(b)db,

the differential of S computed in (4.79) simplifies to

dS =

∫ b

a

⟨q, δκ⟩dt+
∫ b

a

⟨(
∂C

∂ξ
− d

dt

∂C

∂ξ̇

)T

− d

dt
(⟨κ, ξ⟩Ω) + 2

⟨
κ, IΩ̇− (IΩ)×Ω

⟩
I−1ξ

+ ⟨κ, ξ⟩ I−1 ((IΩ)×Ω) +
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ, δξ

⟩
dt

+

⟨
⟨κ, ξ⟩Ω+

(
∂C

∂ξ̇

)T

,dξ

⟩⏐⏐⏐⏐⏐
t=b

−

⟨
⟨κ, ξ⟩Ω+

(
∂C

∂ξ̇

)T

, δξ

⟩⏐⏐⏐⏐⏐
t=a

+

∫ b

a

⟨(
∂C

∂Ω
− d

dt

∂C

∂Ω̇

)T

− d

dt

(⟨
ξ, I−1ξ

⟩
Iκ
)
−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
, δΩ

⟩
dt

+ ⟨Ω(a)−Ωa,dρ⟩+ ⟨Ω(b)−Ωb,dν⟩+

⟨⟨
ξ, I−1ξ

⟩
Iκ+

(
∂C

∂Ω̇

)T

+ ν,dΩ

⟩⏐⏐⏐⏐⏐
t=b

+

[
C + ⟨κ,q⟩ −

⟨⟨
ξ, I−1ξ

⟩
Iκ+

(
∂C

∂Ω̇

)T

, Ω̇

⟩
−

⟨
⟨κ, ξ⟩Ω+

(
∂C

∂ξ̇

)T

, ξ̇

⟩]⏐⏐⏐⏐⏐
t=b

db.

(4.80)

Demanding that dS = 0 in (4.80) yields the conditions that must be satisfied to find the control vector ξ

and the final time b. The controlled equations of motion are⟨
ξ, I−1ξ

⟩
IΩ̇ =

⟨
ξ, I−1ξ

⟩
(IΩ)×Ω

−
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ

⟨
ξ, I−1ξ

⟩
Iκ̇ =

(
∂C

∂Ω
− d

dt

∂C

∂Ω̇

)T

−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
− 2

⟨
ξ̇, I−1ξ

⟩
Iκ[

⟨κ, ξ⟩ I − 2I−1ξ (Iκ)T
]
Ω̇+

(
d

dt

∂C

∂ξ̇

)T

+ΩξTκ̇ =

(
∂C

∂ξ

)T

− 2 ⟨κ, (IΩ)×Ω⟩ I−1ξ

+ ⟨κ, ξ⟩ I−1 ((IΩ)×Ω)

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ−

⟨
κ, ξ̇

⟩
Ω,

(4.81)
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which simplify to

Ω̇ =
I−1

⟨ξ, I−1ξ⟩

{⟨
ξ, I−1ξ

⟩
(IΩ)×Ω−

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
}

κ̇ =
I−1

⟨ξ, I−1ξ⟩

{(
∂C

∂Ω
− d

dt

∂C

∂Ω̇

)T

−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
− 2

⟨
ξ̇, I−1ξ

⟩
Iκ
}

(
d

dt

∂C

∂ξ̇

)T

=

(
∂C

∂ξ

)T

− 2 ⟨κ, (IΩ)×Ω⟩ I−1ξ + ⟨κ, ξ⟩ I−1 ((IΩ)×Ω)

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ−

⟨
κ, ξ̇

⟩
Ω

−
[
⟨κ, ξ⟩ I − 2I−1ξ (Iκ)T

]
Ω̇−ΩξTκ̇,

(4.82)

for a ≤ t ≤ b, the left boundary conditions

Ω(a)−Ωa = 0[
⟨κ, ξ⟩Ω+

(
∂C

∂ξ̇

)T
]
t=a

= 0,
(4.83)

and the right boundary conditions

Ω(b)−Ωb = 0[
⟨κ, ξ⟩Ω+

(
∂C

∂ξ̇

)T
]
t=b

= 0[
C + ⟨κ,q⟩ −

⟨⟨
ξ, I−1ξ

⟩
Iκ+

(
∂C

∂Ω̇

)T

, Ω̇

⟩
−

⟨
⟨κ, ξ⟩Ω+

(
∂C

∂ξ̇

)T

, ξ̇

⟩]
t=b

= 0.

(4.84)

Using the first equation in (4.82), which is equivalent to (4.43), and the second equation in (4.84), the third

equation in (4.84), corresponding to free final time, can be simplified, so that the right boundary conditions

simplify to

Ω(b)−Ωb = 0[
⟨κ, ξ⟩Ω+

(
∂C

∂ξ̇

)T
]
t=b

= 0[
C −

⟨⟨
ξ, I−1ξ

⟩
Iκ+

(
∂C

∂Ω̇

)T

, Ω̇

⟩]
t=b

= 0.

(4.85)

Equations (4.82), (4.83), and (4.85) form an ODE TPBVP. Observe that the unknowns in this ODE TPBVP

are κ, Ω, ξ, and b, while the constant Lagrange multiplier vectors ρ and ν are irrelevant.

This application of Pontryagin’s minimum principle differs slightly from the classical treatment of optimal

control theory reviewed in Chapter 3. Let us connect this derivation to that chapter. In the classical
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application, the Hamiltonian involves 6 costates π ∈ R6 and is given by

H = L (Ω, ξ,u, t) +

⟨
π,

[
I−1

⟨ξ,I−1ξ⟩
{⟨
ξ, I−1ξ

⟩
(IΩ)×Ω−

[
⟨Ω,u⟩+

⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
}

u

]⟩
, (4.86)

whereas in the derivation above, the Hamiltonian involves only 3 costates κ ∈ R3 and is given by

Hr = C
(
Ω, Ω̇, ξ, ξ̇, t

)
−
⟨
κ,
⟨
ξ, I−1ξ

⟩
(IΩ)×Ω−

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
⟩
, (4.87)

with L (Ω, ξ,u, t) = C
(
Ω, Ω̇, ξ, ξ̇, t

)
, since Ω̇ is a function of Ω, ξ, and ξ̇ and since u = ξ̇.

Appendix B shows that the classical costates π can be obtained from the reduced costates κ, derived here,

via

π = −

⎡⎢⎣ ⟨ξ, I−1ξ
⟩
Iκ+

(
∂C
∂Ω̇

)T
⟨κ, ξ⟩Ω+

(
∂C
∂ξ̇

)T
⎤⎥⎦ . (4.88)

Now consider the particular integrand cost function (4.68) corresponding to the optimal control problem

(4.69). For this integrand cost function, the partial derivative of the Hamiltonian (4.86) with respect to the

control u = ξ̇ is

Hu = Hξ̇ =
∂L

∂u
+ πT

d

∂Ω̇

∂u
+ πT

e =
∂Cα,β,γ,η,δ

∂Ω̇

∂Ω̇

∂ξ̇
+

∂Cα,β,γ,η,δ

∂ξ̇
+ πT

d

∂Ω̇

∂ξ̇
+ πT

e

= ηΩ̇
T ∂Ω̇

∂ξ̇
+ βξ̇

T
+ πT

d

∂Ω̇

∂ξ̇
+ πT

e ,

(4.89)

where we have defined for brevity

πd ≡

⎡⎢⎣π1

π2

π3

⎤⎥⎦ and πe ≡

⎡⎢⎣π4

π5

π6

⎤⎥⎦ and where
∂Ω̇

∂ξ̇
=

I−1ξΩT

⟨ξ, I−1ξ⟩
. (4.90)

The second partial derivative of the Hamiltonian (4.86) with respect to the control u = ξ̇ is

Huu = Hξ̇ξ̇ = η

(
∂Ω̇

∂ξ̇

)T
∂Ω̇

∂ξ̇
+ βI =

η

⟨ξ, I−1ξ⟩2
[
I−1ξΩT

]T [
I−1ξΩT

]
+ βI = c̃ΩΩT + βI, (4.91)

where c̃ = η
⟨ξ,I−1ξ⟩2 ξ

TI−2ξ is a nonnegative scalar. Recall that it is assumed that β ≥ 0. If β = 0,

then Huu = c̃ΩΩT is singular since ΩΩT is a rank 1 matrix. Hence, if Huu is nonsingular, then β > 0.

Now suppose that β > 0. Part of the Sherman-Morrison formula [49] says that given an invertible matrix

A ∈ Rn×n and w,v ∈ Rn×1, A + wvT is invertible if and only if 1 + vTA−1w ̸= 0. Letting A = βI and

w = v =
√
c̃Ω, the Sherman-Morrison formula guarantees that Huu is nonsingular if 1 + c̃

βΩ
TΩ ̸= 0. But

c̃
βΩ

TΩ ≥ 0, so 1 + c̃
βΩ

TΩ ≥ 1 and Huu is nonsingular. Therefore, Huu is nonsingular if and only if β > 0.

Thus, the optimal control problem (4.69) is nonsingular if and only if β > 0. Since singular optimal control

problems require careful analysis and solution methods, it is assumed for the remainder of this chapter,

except in Subsection 4.C.1, that β > 0. As explained in the paragraph after (4.68), β > 0 requires that
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α > 0. So for the remainder of this chapter, except in Subsection 4.C.1, it is assumed that β > 0 and α > 0

when considering the optimal control problem (4.69).

For the particular integrand cost function (4.68), with α > 0, β > 0, γ ≥ 0, η ≥ 0, and δ ≥ 0, the controlled

equations of motion (4.82) defined on a ≤ t ≤ b become

Ω̇ =
I−1

⟨ξ, I−1ξ⟩

{⟨
ξ, I−1ξ

⟩
(IΩ)×Ω−

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
}

κ̇ =
I−1

⟨ξ, I−1ξ⟩

{
γ (Ω−Ωd)− ηΩ̈−

⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
− 2

⟨
ξ̇, I−1ξ

⟩
Iκ
}

ξ̈ =
1

β

{
α
(
|ξ|2 − 1

)
ξ − 2 ⟨κ, (IΩ)×Ω⟩ I−1ξ + ⟨κ, ξ⟩ I−1 ((IΩ)×Ω)

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ−

⟨
κ, ξ̇

⟩
Ω

−
[
⟨κ, ξ⟩ I − 2I−1ξ (Iκ)T

]
Ω̇−Ω ⟨ξ, κ̇⟩

}
,

(4.92)

the left boundary conditions (4.83) become

Ω(a)−Ωa = 0[
⟨κ, ξ⟩Ω+ βξ̇

]
t=a

= 0,
(4.93)

and the right boundary conditions (4.85) become

Ω(b)−Ωb = 0[
⟨κ, ξ⟩Ω+ βξ̇

]
t=b

= 0[
α

4

[
|ξ|2 − 1

]2
+

β

2

⏐⏐⏐ξ̇⏐⏐⏐2 + γ

2
|Ω−Ωd|2 + δ − η

2

⏐⏐⏐Ω̇⏐⏐⏐2 − ⟨⟨ξ, I−1ξ
⟩
Iκ, Ω̇

⟩]
t=b

= 0.

(4.94)

(4.92) is an implicit system of ODEs since κ̇ depends on Ω̈, which in turn depends on ξ̈, while ξ̈ depends on

κ̇. While one can in principle proceed to solve these equations as an implicit system of ODEs, an explicit

expression for the highest derivatives can be found which reveals possible singularities in the system. (4.92)

may be expressed as an explicit system of ODEs via a few algebraic manipulations. Since

Ω̈ = I−1

⎧⎨⎩(IΩ̇)×Ω+ (IΩ)× Ω̇−

⎡⎣
⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

⎤⎦ ξ̇
−

⎡⎣⟨ξ, I−1ξ
⟩ [

ṅ1 +
⟨
Ω, ξ̈

⟩]
− 2

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩] ⟨
ξ̇, I−1ξ

⟩
⟨ξ, I−1ξ⟩2

⎤⎦ ξ
⎫⎬⎭ ,

(4.95)

where

ṅ1 =
⟨
Ω̇, ξ̇

⟩
+
⟨(

IΩ̇
)
×Ω+ (IΩ)× Ω̇, I−1ξ

⟩
+
⟨
(IΩ)×Ω, I−1ξ̇

⟩
, (4.96)
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κ̇ can be rewritten as

κ̇ =
I−1

⟨ξ, I−1ξ⟩

{
γ (Ω−Ωd)− ηΩ̈−

⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
− 2

⟨
ξ̇, I−1ξ

⟩
Iκ
}

= g +
η
⟨
Ω, ξ̈

⟩
⟨ξ, I−1ξ⟩2

I−2ξ,

(4.97)

where

g =
I−1

⟨ξ, I−1ξ⟩

{
γ (Ω−Ωd)

− ηI−1

⎧⎨⎩(IΩ̇)×Ω+ (IΩ)× Ω̇−

⎡⎣
⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩
⟨ξ, I−1ξ⟩

⎤⎦ ξ̇
−

⎡⎣⟨ξ, I−1ξ
⟩
ṅ1 − 2

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩] ⟨
ξ̇, I−1ξ

⟩
⟨ξ, I−1ξ⟩2

⎤⎦ ξ
⎫⎬⎭

−
⟨
ξ, I−1ξ

⟩
[I (Ω× κ) + κ× (IΩ)]

+ ⟨κ, ξ⟩
[
ξ̇ + I

(
Ω×

(
I−1ξ

))
+
(
I−1ξ

)
× (IΩ)

]
− 2

⟨
ξ̇, I−1ξ

⟩
Iκ
}
.

(4.98)

Using this formula for κ̇, ξ̈ can be rewritten as

ξ̈ =
1

β

{
α
(
|ξ|2 − 1

)
ξ − 2 ⟨κ, (IΩ)×Ω⟩ I−1ξ + ⟨κ, ξ⟩ I−1 ((IΩ)×Ω)

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ−

⟨
κ, ξ̇

⟩
Ω

−
[
⟨κ, ξ⟩ I − 2I−1ξ (Iκ)T

]
Ω̇−Ω ⟨ξ, κ̇⟩

}
=

1

β
{h−Ω ⟨ξ, κ̇⟩}

=
1

β

⎧⎨⎩h−Ω

⟨
ξ,g +

η
⟨
Ω, ξ̈

⟩
⟨ξ, I−1ξ⟩2

I−2ξ

⟩⎫⎬⎭
=

1

β
{h−Ω ⟨ξ,g⟩} −

η
⟨
ξ, I−2ξ

⟩
β ⟨ξ, I−1ξ⟩2

ΩΩTξ̈,

(4.99)

where

h = α
(
|ξ|2 − 1

)
ξ − 2 ⟨κ, (IΩ)×Ω⟩ I−1ξ + ⟨κ, ξ⟩ I−1 ((IΩ)×Ω)

+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
κ−

⟨
κ, ξ̇

⟩
Ω

−
[
⟨κ, ξ⟩ I − 2I−1ξ (Iκ)T

]
Ω̇.

(4.100)

Thus, [
I +

η
⟨
ξ, I−2ξ

⟩
β ⟨ξ, I−1ξ⟩2

ΩΩT

]
ξ̈ =

1

β
{h−Ω ⟨ξ,g⟩} . (4.101)
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Now ξ̈ can be solved for in terms of Ω, Ω̇ (Ω̇ is actually a function of Ω, ξ, and ξ̇), ξ, ξ̇, and κ via

ξ̈ =
1

β

[
I +

η
⟨
ξ, I−2ξ

⟩
β ⟨ξ, I−1ξ⟩2

ΩΩT

]−1

{h−Ω ⟨ξ,g⟩}

=
1

β

⎡⎢⎣I − η⟨ξ,I−2ξ⟩
β⟨ξ,I−1ξ⟩2

1 + η⟨ξ,I−2ξ⟩⟨Ω,Ω⟩
β⟨ξ,I−1ξ⟩2

ΩΩT

⎤⎥⎦ {h−Ω ⟨ξ,g⟩}

=
1

β

[
I −

η
⟨
ξ, I−2ξ

⟩
β ⟨ξ, I−1ξ⟩2 + η ⟨ξ, I−2ξ⟩ ⟨Ω,Ω⟩

ΩΩT

]
{h−Ω ⟨ξ,g⟩} .

(4.102)

To compute the ODEs explicilty, Ω̇, g, h, ξ̈, and κ̇ must be computed in that order, given Ω, ξ, ξ̇, and κ.

The ODE system (4.92) can be rewritten

Ω̇ =
I−1

⟨ξ, I−1ξ⟩

{⟨
ξ, I−1ξ

⟩
(IΩ)×Ω−

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
}

ξ̈ =
1

β

[
I −

η
⟨
ξ, I−2ξ

⟩
β ⟨ξ, I−1ξ⟩2 + η ⟨ξ, I−2ξ⟩ ⟨Ω,Ω⟩

ΩΩT

]
{h−Ω ⟨ξ,g⟩}

κ̇ = g +
η
⟨
Ω, ξ̈

⟩
⟨ξ, I−1ξ⟩2

I−2ξ.

(4.103)

The ODEs (4.103) and the left and right boundary conditions (4.93)-(4.94) define an ODE TPBVP for the

solution to Suslov’s optimal control problem (4.69) using the integrand cost function (4.68). We shall also

notice that while casting the optimal control problem as an explicit system of ODEs such as (4.103) brings

it to the standard form amenable to numerical solution, it loses the geometric background of the optimal

control problem derived earlier in Subsection 4.A.2.

Remark 4.11 (On optimal solutions with switching structure and bang-bang control). It is worth noting

that we allow the control ξ̇ to be unbounded so that it may take arbitrary values in R3. In addition, note that

at the end of the previous subsection, the control ξ̇ is assumed to be differentiable and therefore continuous.

However, if we were to set up a restriction on the control such as |ξ̇| ≤ M for a fixed |ξ|, say |ξ| = 1,

and permit ξ̇ to be piecewise continuous, then the solutions to the optimal control problems tend to lead to

bang-bang control obtained by piecing together solutions with |ξ̇| = M . The constraint |ξ| = 1 is equivalent

to the constraint
⟨
ξ, ξ̇
⟩
= 0 with the initial condition |ξ(a)| = 1. The constraint |ξ̇| ≤ M is equivalent to

the constraint |ξ̇|2−M2− θ2 = 0, where θ is a so-called slack variable. To incorporate these constraints, the

Hamiltonian given in (4.86) must be amended to

H = L (Ω, ξ,u, t)

+

⟨
π,

[
I−1

⟨ξ,I−1ξ⟩
{⟨
ξ, I−1ξ

⟩
(IΩ)×Ω−

[
⟨Ω,u⟩+

⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
}

u

]⟩

+

⟨
µ,

⟨
ξ, ξ̇
⟩

⏐⏐⏐ξ̇⏐⏐⏐2 −M2 − θ2

⟩
,

(4.104)
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where µ =

[
µ1

µ2

]
∈ R2 are new costates enforcing the new constraints and the control now consists of u = ξ̇

and θ. A solution that minimizes the optimal control problem with Hamiltonian (4.104) is determined from

the necessary optimality conditions Hu = 0 and Hθ = −2µ2θ = 0. The latter condition implies that µ2 = 0

or θ = 0. If µ2 = 0, the control u = ξ̇ is determined from Hu = 0 and θ is determined from θ2 = |ξ̇|2 −M .

If θ = 0, the control u = ξ̇ is determined from |ξ̇|2 = M and µ2 is determined from Hu = 0. The difficulty is

determining the intervals on which µ2 = 0 or θ = 0; this is the so-called optimal switching structure. In this

thesis, this difficulty is avoided by assuming that the control u = ξ̇ is unbounded and differentiable rather

than bounded and piecewise continuous. Instead of bounding the control u = ξ̇ through hard constraints,

large magnitude controls are penalized by the term β
2

⏐⏐⏐ξ̇⏐⏐⏐2 in the cost function (4.68).

4.C Numerical Solution of Suslov’s Optimal Control Problem

4.C.1 Analytical Solution of a Singular Version of Suslov’s Optimal Control

Problem

In what follows, we shall focus on the numerical solution of the optimal control problem (4.69) by solving

(4.103), (4.93), and (4.94), with α > 0, β > 0, γ ≥ 0, η ≥ 0, and δ ≥ 0. As these equations represent a

nonlinear ODE TPBVP, having a good initial approximate solution is crucial for the convergence of numerical

methods. Because of the complexity of the problem, the numerical methods show no convergence to the

solution unless the case considered is excessively simple. Instead, we employ the continuation procedure,

namely, we solve a problem with the values of the parameters chosen in such a way that an analytical solution

of (4.69) can be found. Starting from this analytical solution, we seek a continuation of the solution to the

desired values of the parameters. As it turns out, this procedure enables the computation of rather complex

trajectories as illustrated by the numerical examples in Subsection 4.C.3.

To begin, let us consider a simplification of the optimal control problem (4.69). Suppose the final time is

fixed to b = bp, β = 0, η = 0, and δ = 0. In addition, suppose Ωd is replaced by Ωp, where Ωp satisfies the

following properties:

Property 4.12. Ωp is a differentiable function such that Ωp(a) = Ωa and Ωp(bp) = Ωb.

Property 4.13. Ωp lies on the constant kinetic energy manifold E, i.e.
⟨
IΩp, Ω̇p

⟩
= 0 iff ⟨IΩp,Ωp⟩ =

⟨IΩa,Ωa⟩.

Property 4.14. Ωp does not satisfy Euler’s equations at any time, i.e. IΩ̇p(t)− [IΩp(t)]×Ωp(t) ̸= 0 ∀t ∈
[a, bp].

Under these assumptions, (4.69) simplifies to

min
ξ

∫ bp

a

[
α

4

[
|ξ|2 − 1

]2
+

γ

2
|Ω−Ωp|2

]
dt s.t.

⎧⎪⎨⎪⎩
q = 0,

Ω(a) = Ωa ∈ E,

Ω(bp) = Ωb ∈ E.

(4.105)
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As discussed immediately after (4.91), (4.105) is a singular optimal control problem since β = 0. If there

exists ξp such that
⏐⏐ξp⏐⏐ = 1 and q

(
Ωp, ξp

)
= 0, then ξp is a solution to the singular optimal control

problem (4.105) provided Property (4.12) is satisfied. To wit, for such a ξp and given Property (4.12), take

Ω = Ωp and ξ = ξp. Then q (Ω, ξ) = q
(
Ωp, ξp

)
= 0, Ω(a) = Ωp(a) = Ωa, Ω(bp) = Ωp(bp) = Ωb, and∫ bp

a

[
α

4

[
|ξ|2 − 1

]2
+

γ

2
|Ω−Ωp|2

]
dt = 0.

Now to construct such a ξp, assume Ωp satisfies Properties (4.12)-(4.14). To motivate the construction of

ξp, also assume that ξ̂ exists for which q
(
Ωp, ξ̂

)
= 0, ξ̂(t) ̸= 0 ∀t ∈ [a, bp], and

⟨
Ωp, ξ̂

⟩
= c = 0. Since⟨

Ωp, ξ̂
⟩
= c = 0, q

(
Ωp, πξ̂

)
= 0 for any rescaling π of ξ̂. Letting ξ̃ ≡ λ

(
Ωp, ξ̂

)
ξ̂ = IΩ̇p − (IΩp) × Ωp,

q
(
Ωp, ξ̃

)
= q

(
Ωp, λ

(
Ωp, ξ̂

)
ξ̂
)
= 0. Next, by Property (4.14) (i.e. IΩ̇p(t) − [IΩp(t)] ×Ωp(t) ̸= 0 ∀t ∈

[a, bp]), normalize ξ̃ to produce a unit magnitude control vector ξp:

ξp ≡
ξ̃⏐⏐⏐ξ̃⏐⏐⏐ = IΩ̇p − (IΩp)×Ωp⏐⏐⏐IΩ̇p − (IΩp)×Ωp

⏐⏐⏐ . (4.106)

Again due to scale invariance of the control vector, q
(
Ωp, ξp

)
= 0.

One can note that this derivation of ξp possessing the special properties q
(
Ωp, ξp

)
= 0 and

⏐⏐ξp⏐⏐ = 1 relied

on the existence of some ξ̂ for which q
(
Ωp, ξ̂

)
= 0, ξ̂(t) ̸= 0 ∀t ∈ [a, bp], and

⟨
Ωp, ξ̂

⟩
= c = 0. Given ξp

defined by (4.106) and by Property (4.13) (i.e.
⟨
IΩp, Ω̇p

⟩
= 0), it is trivial to check that

⟨
Ωp, ξp

⟩
= 0, so

that indeed q
(
Ωp, ξp

)
= 0 with

λ
(
Ωp, ξp

)
≡ −

⟨
Ωp, ξ̇p

⟩
+
⟨
(IΩp)×Ωp, I−1ξp

⟩⟨
ξp, I−1ξp

⟩ =

⟨
IΩ̇p − (IΩp)×Ωp, I−1ξp

⟩
⟨
ξp, I−1ξp

⟩ =
⏐⏐⏐IΩ̇p − (IΩp)×Ωp

⏐⏐⏐ .
Thus ξp defined by (4.106) is a solution of the singular optimal control problem (4.105). Moreover, ξp has

the desirable property
⟨
Ωp, ξp

⟩
= 0. The costate κ = 0 satisfies the ODE TPBVP (4.103), (4.93)-(4.94)

corresponding to the analytic solution pair (Ωp, ξp).

4.C.2 Numerical Solution of Suslov’s Optimal Control Problem via Continua-

tion

Starting from the analytic solution pair (Ωp, ξp) solving (4.105), the full optimal control problem can then

be solved by continuation in γ, β, η, and δ using the following algorithm. We refer the reader to [50] as

a comprehensive reference on numerical continuation methods, as well as our discussion in Appendix A.

Consider the continuation integrand cost function Cα,βc,γc,ηc,δc , where βc, γc, ηc, and δc are variables. If

γ = 0, choose βm such that 0 < βm ≪ min{α, β, 1}; otherwise if γ > 0, choose βm such that 0 < βm ≪
min{α, β, γ}. If the final time b is fixed, choose bp = b; otherwise, if the final time is free, choose bp as

explained below.

If γ = 0, choose Ωp to be some nominal function satisfying Properties (4.12)-(4.14), such as the projection of

the line segment connecting Ωa to Ωb onto E and let bp be the time such that Ωp(bp) = Ωb. For fixed final
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time bp, solve (4.69) with integrand cost function Cα,βm,γc,0,0 by continuation in γc, starting from γc = 1

with the initial solution guess (Ωp, ξp) and ending at γc = γ = 0 with the final solution pair (Ω1, ξ1).

If γ > 0 and Ωd doesn’t satisfy Properties (4.12)-(4.14), choose Ωp to be some function “near” Ωd that does

satisfy Properties (4.12)-(4.14) and let bp be the time such that Ωp(bp) = Ωb. For fixed final time bp, solve

(4.69) with integrand cost function Cα,βm,γc,0,0 by continuation in γc, starting from γc = 0 with the initial

solution guess (Ωp, ξp) and ending at γc = γ with the final solution pair (Ω1, ξ1).

If γ > 0 and Ωd satisfies Properties (4.12)-(4.14), choose Ωp = Ωd, let bp be the time such that Ωd(bp) = Ωb,

and construct the solution pair (Ω1, ξ1) with Ω1 = Ωp and ξ1 = ξp.

For fixed final time bp, solve (4.69) with integrand cost function Cα,βc,γ,0,0 by continuation in βc, starting

from βc = βm with the initial solution guess (Ω1, ξ1) and ending at βc = β with the final solution pair

(Ω2, ξ2). Next, for fixed final time bp, solve (4.69) with integrand cost function Cα,β,γ,ηc,0 by continuation in

ηc, starting from ηc = 0 with the initial solution guess (Ω2, ξ2) and ending at ηc = η with the final solution

pair (Ω3, ξ3). If the final time is fixed, then this is the final solution. If the final time is free, solve (4.69)

with integrand cost function Cα,β,γ,η,δc , letting the final time vary, by continuation in δc, starting from

δc = −
[
α

4

[
|ξ|2 − 1

]2
+

β

2

⏐⏐⏐ξ̇⏐⏐⏐2 + γ

2
|Ω−Ωd|2 −

η

2

⏐⏐⏐Ω̇⏐⏐⏐2 − ⟨⟨ξ, I−1ξ
⟩
Iκ, Ω̇

⟩]
t=b

(4.107)

with the initial solution guess (Ω3, ξ3, bp) and ending at δc = δ with final solution triple (Ω4, ξ4, b4). If the

final time is free, then this is the final solution.

4.C.3 Numerical Solution of Suslov’s Optimal Control Problem via the Indirect

Method and Continuation

Suslov’s optimal control problem was solved numerically using the following inputs and setup. The rigid

body’s inertia matrix is

I =

⎡⎢⎣ 1 0 0

0 2 0

0 0 3

⎤⎥⎦ . (4.108)

The initial time is a = 0 and the final time b is free. The initial and final body angular velocities are

Ωa = φ(a)/2 = [5, 0, 0]T and Ωb = φ∥(bd) ≈ [2.7541, −2.3109, −1.4983]T, respectively, where φ and φ∥ are

defined below in (4.109)-(4.111) and bd = 10.

The desired body angular velocity Ωd (see Figure 4.1) is approximately the projection of a spiral onto the

constant kinetic energy ellipsoid E determined by the rigid body’s inertia matrix I and initial body angular

velocity Ωa and defined in (4.49). Concretely, we aim to track a spiral-like trajectory Ωd on the constant

kinetic energy ellipsoid E:

φ(t) = [10, t cos t, t sin t]
T
, (4.109)

v∥ =

√
⟨Ωa, IΩa⟩
⟨v, Iv⟩

v forv ∈ R3\0, (4.110)
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φ∥(t) = [φ(t)]∥ , (4.111)

σ(t) =
1

2

[
1 + tanh

(
t

.01

)]
, (4.112)

s(t) = σ(t− bd), (4.113)

Ωd(t) = φ∥(t) (1− s(t)) +Ωbs(t). (4.114)

The setup for Ωd is to be understood as follows. The graph of φ (4.109) defines a spiral in the plane x = 10.

Given a nonzero vector v ∈ R3, the parallel projection operator ∥ (4.110) constructs the vector v∥ that lies

at the intersection between the ray Rv = {tv : t > 0} and the ellipsoid E. The spiral φ∥ defined by (4.111)

is the projection of the spiral φ onto the ellipsoid E, which begins at Ωa at time a, and terminates at Ωb

at time bd. Also, σ (5.98) is a sigmoid function, i.e. a smooth approximation of the unit step function, and

s (4.113) is the time translation of σ to time bd. Ωd (4.114) utilizes the translated sigmoid function s to

compute a weighted average of the projected spiral φ∥ and Ωb so that Ωd follows the projected spiral φ∥

for 0 ≤ t < bd, holds steady at Ωb for t > bd, and smoothly transitions between φ∥ and Ωb at time bd. The

coefficients of the integrand cost function (4.68) are chosen to be α = 1, β = .1, γ = 1, η = 1or .01, and

δ = .2.

Figure 4.1: The desired body angular velocity is approximately the projection of a spiral onto the constant
kinetic energy ellipsoid.

The optimal control problem (4.69) was solved numerically via the indirect method, i.e. by numerically

solving the ODE TPBVP (4.103), (4.93)-(4.94) through continuation in β, η, and δ starting from the analytic

solution to the singular optimal control problem (4.105), as outlined in Section 4.C.2. Because most ODE

BVP solvers only solve problems defined on a fixed time interval, the ODE TPBVP (4.103), (4.93)-(4.94)

was reformulated on the normalized time interval [0, 1] through a change of variables by defining T ≡ b− a

and by defining normalized time s ≡ t−a
T ; if the final time b is fixed, then T is a known constant, whereas

if the final time b is free, then T is an unknown parameter that must be solved for in the ODE TPBVP.

The collocation automatic continuation solver acdc from the MATLAB package bvptwp was used to solve

the ODE TPBVP by performing continuation in β, η, and δ, with the relative error tolerance set to 1e-

8. The result of acdc was then passed through the MATLAB collocation solver sbvp using Gauss (rather

than equidistant) collocation points with the absolute and relative error tolerances set to 1e-8. sbvp was

used to clean up the solution provided by acdc because collocation exhibits superconvergence when solving

regular (as opposed to singular) ODE TPBVP using Gauss collocation points. To make acdc and sbvp
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execute efficiently, the ODEs were implemented in MATLAB in vectorized fashion. For accuracy and efficiency,

the MATLAB software ADiGator was used to supply vectorized, automatic ODE Jacobians to acdc and

sbvp. For accuracy, the MATLAB Symbolic Math Toolbox was used to supply symbolically-computed BC

Jacobians to acdc and sbvp. ADiGator constructs Jacobians through automatic differentiation, while the

MATLAB Symbolic Math Toolbox constructs Jacobians through symbolic differentiation.

Figures 4.2 and 4.3 show the results for η = 1 and η = .01, respectively. The optimal final time is b = 11.36

for η = 1 and is b = 9.84 for η = .01. Figures 4.2a and 4.3a show the optimal body angular velocity Ω,

the desired body angular velocity Ωd, and the projection ξ∥ of the control vector ξ onto the ellipsoid E.

Recall that γ, through the integrand cost function term γ
2 |Ω−Ωd|2, influences how closely the optimal body

angular velocity Ω tracks the desired body angular velocity Ωd, while η, through the integrand cost function

term η
2

⏐⏐⏐Ω̇⏐⏐⏐2, influences how closely the optimal body angular velocity Ω tracks a minimum energy trajectory.

For γ = 1, γ
η = 1 when η = 1 and γ

η = 100 when η = .01. As expected, comparing Figures 4.2a and 4.3a,

the optimal body angular velocity Ω tracks the desired body angular velocity Ωd much more accurately for

η = .01 compared to η = 1. Figures 4.2b and 4.3b demonstrate that the numerical solutions preserve the

nonholonomic orthogonality constraint ⟨Ω, ξ⟩ = 0 to machine precision. Figures 4.2c and 4.3c show that

the magnitude |ξ| of the control vector ξ remains close to 1, as encouraged by the integrand cost function

term α
4

[
|ξ|2 − 1

]2
. Figures 4.2d and 4.3d show the costates κ. In Figures 4.2a, 4.3a, 4.2d, and 4.3d, a

green marker indicates the beginning of a trajectory, while a red marker indicates the end of trajectory. In

Figure 4.3a, the yellow marker on the desired body angular velocity indicates Ωd(b), where b = 9.84 is the

optimal final time for η = .01.

To investigate the stability of the controlled system, we have perturbed the control ξ̇ obtained from solving

the optimal control ODE TPBVP and observed that the perturbed solution Ω obtained by solving the

uncontrolled equations of motion (4.43) as an ODE IVP using this perturbed control is similar to the

anticipated Ω corresponding to the solution of the optimal control ODE TPBVP and the unperturbed

control. While more studies of stability are needed, this is an indication that the controlled system we

studied is stable, at least in terms of the state variables Ω and ξ under perturbations of the control ξ̇. More

studies of the stability of the controlled system will be undertaken in the future.

Verification of a local minimum solution It is also desirable to verify that the numerical solutions

obtained by our continuation indirect method do indeed provide a local minimum of the optimal control

problem. Chapter 21 in reference [44] and also reference [51] provide sufficient conditions for a solution

satisfying Pontryagin’s minimum principle to be a local minimum, however the details are quite technical

and may be investigated in future work. These sufficient conditions must be checked numerically rather

than analytically. COTCOT and HamPath, also mentioned in Appendix A, are numerical software packages

which do check these sufficient conditions numerically.

Due to the technicality of the sufficient conditions discussed in [44, 51], we have resorted to a different numer-

ical justification. More precisely, to validate that the solutions obtained by our optimal control procedure,

or the so-called indirect method solutions, indeed correspond to local minima, we have fed the solutions

obtained by our method into several different MATLAB direct method solvers as initial solution guesses. We

provide a survey of the current state of direct method solvers for optimal control problems in Appendix A.
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Note that the indirect method only produces a solution that meets the necessary conditions for a local

minimum to (4.69), while the direct method solution meets the necessary and sufficient conditions for a

local minimum to a finite-dimensional approximation of (4.69). Thus, it may be concluded that an indirect

method solution is indeed a local minimum solution of (4.69) if the direct method solution is close to the

indirect method solution. The indirect method solutions were validated against the MATLAB direct method

solvers GPOPS-II and FALCON.m. GPOPS-II uses pseudospectral collocation techniques, uses the IPOPT

NLP solver, uses hp-adaptive mesh refinement, and can use ADiGator to supply vectorized, automatic

Jacobians and Hessians. FALCON.m uses trapezoidal or backward Euler local collocation techniques, uses the

IPOPT NLP solver, and can use the MATLAB Symbolic Math Toolbox to supply symbolically-computed

Jacobians and Hessians. Both direct method solvers we have tried converged to a solution close to that

provided by the indirect method, which is to be expected since the direct method solvers are only solving a

finite-dimensional approximation of (4.69). Thus, we are confident that the solutions we have found in this

section indeed correspond to local minima of the optimal control problems.

(a) The optimal body angular velocity roughly tracks the
desired body angular velocity with η = 1.
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Figure 4.2: Numerical solution of the optimal control problem for α = 1, β = .1, γ = 1, η = 1, δ = .2, and
free final time. The optimal final time is b = 11.36.
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(a) The optimal body angular velocity accurately tracks
the desired body angular velocity with η = .01.
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Figure 4.3: Numerical solution of the optimal control problem for α = 1, β = .1, γ = 1, η = .01, δ = .2, and
free final time. The optimal final time is b = 9.84.
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Chapter 5

The Rolling Ball

This chapter investigates the optimal control of the rolling ball. Section 5.A discusses the specific type of

rolling ball considered, presents natural questions about this rolling ball that motivate this chapter, and

defines coordinates systems and notation used to describe this rolling ball. By applying Euler-Poincaré’s

method and Lagrange-d’Alembert’s principle, Section 5.B derives the uncontrolled equations of motion for

the rolling ball. Section 5.C formulates the regular Hamiltonian and endpoint function required to construct

the controlled equations of motion (and their Jacobians) for the rolling ball according to the formulas derived

in Section 3.C. In Section 5.D, the controlled equations of motion (and their Jacobians) for the rolling ball

are constructed numerically via automatic differentiation, after which the controlled equations of motion are

solved numerically via a predictor-corrector continuation method, starting from an initial solution provided

by a direct method.

5.A Mechanical System and Motivation

Consider a rigid ball of radius r containing some static internal structure as well as n ∈ N0 point masses. This

ball rolls without slipping on a flat surface in the presence of a uniform gravitational field. For 1 ≤ i ≤ n, the

ith point mass may move within the ball along a trajectory ξi, expressed with respect to the ball’s frame of

reference; since the motion of the ith point mass along its trajectory ξi may actuate motion of the ball, the

ith point mass is hereafter called the ith control mass. Refer to Figure 5.2 for an illustration. The trajectory

ξi may be constrained in some way, such as being required to move along a 1-d control rail (like a circular

hoop), across a 2-d control surface (like a sphere), or within a 3-d control region (like a ball) fixed within

the ball. The ball with its static internal structure has mass m0 and the ith control mass has mass mi for

1 ≤ i ≤ n. Let M =
∑n

i=0 mi denote the mass of the total system. The total mechanical system consisting

of the ball with its static internal structure and the n control masses is referred to as the ball or the rolling

ball, the ball with its static internal structure but without the n control masses may also be referred to as

m0, and the ith control mass may also be referred to as mi for 1 ≤ i ≤ n.

It is natural to ask the following questions for this mechanical system:
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1. How does the ball move if the n control masses are held fixed in place?

2. Given some prescribed motion of the n control masses, how does the ball move along the flat surface?

3. Suppose that it is desired to move the ball in a prescribed manner, such as moving the ball’s geometric

center along a prescribed trajectory parallel to the flat surface or performing obstacle avoidance. How

might the n control masses be moved to realize such a motion? Figure 5.1 illustrates this problem for

2 control masses.

The aim of this chapter is to answer these questions. The answer to the 2nd question also answers the 1st,

by insisting that the prescribed motion for each control mass be that of holding it fixed within the ball. The

3rd question is the inverse of the 2nd. Chaplygin answered the 1st question analytically for two special cases

in his seminal 1897 and 1903 papers [17, 18]. As far as the author knows, the 2nd and 3rd questions have not

been answered previously. The 1st and 2nd questions are answered in Section 5.B, while the 3rd question is

answered in Section 5.C.

Figure 5.1: A ball of radius r and mass m0 rolls without slipping on a flat surface in the presence of a
uniform gravitational field of magnitude g. The ball’s center of mass is denoted by m0. In addition, the
ball contains 2 internal point masses, m1 and m2, that may move within the ball. How must m1 and m2 be
moved to induce the ball to follow the prescribed trajectory zd?

5.A.1 Coordinate Systems and Notation

Two coordinate systems, or frames of reference, will be used to describe the motion of the rolling ball, an

inertial spatial coordinate system and a body coordinate system in which each particle within the ball is

always fixed. For conciseness, the spatial coordinate system will be referred to as the spatial frame and the

body coordinate system will be referred to as the body frame. These two frames are depicted in Figure 5.2.

The spatial frame has orthonormal axes e1, e2, e3, such that the e1-e2 plane is parallel to the flat surface

and passes through the ball’s geometric center (i.e. the e1-e2 plane is a height r above the flat surface), such

that e3 is vertical (i.e. e3 is perpendicular to the flat surface) and points “upward” and away from the flat

surface, and such that (e1, e2, e3) forms a right-handed coordinate system. For simplicity, the spatial frame

axes are chosen to be

e1 =

⎡⎢⎣10
0

⎤⎥⎦ , e2 =

⎡⎢⎣01
0

⎤⎥⎦ , e3 =

⎡⎢⎣00
1

⎤⎥⎦ . (5.1)
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The acceleration due to gravity in the uniform gravitational field is g = −ge3 =
[
0 0 −g

]T
in the spatial

frame.

The body frame’s origin is chosen to coincide with the position of m0’s center of mass. The body frame has

orthonormal axes E1, E2, and E3, chosen to coincide with m0’s principal axes, in which m0’s inertia tensor

I0 is diagonal, with corresponding principle moments of inertia d1, d2, and d3. That is, in this body frame

the inertia tensor is the diagonal matrix

I0 =

⎡⎢⎣d1 0 0

0 d2 0

0 0 d3

⎤⎥⎦ . (5.2)

Moreover, E1, E2, and E3 are chosen so that (E1,E2,E3) forms a right-handed coordinate system. For

simplicity, the body frame axes are chosen to be

E1 =

⎡⎢⎣10
0

⎤⎥⎦ , E2 =

⎡⎢⎣01
0

⎤⎥⎦ , E3 =

⎡⎢⎣00
1

⎤⎥⎦ . (5.3)

In the spatial frame, the body frame is the moving frame (Λ (t)E1,Λ (t)E2,Λ (t)E3), where Λ (t) ∈ SO(3)

defines the orientation (or attitude) of the ball at time t relative to its reference configuration, for example

at some initial time. For 1 ≤ i ≤ n, it is assumed that ξi(t), the position of mi’s center of mass, is expressed

with respect to the body frame. Since m0’s center of mass is always 0 =
[
0 0 0

]T
in the body frame (by

choice of that frame’s origin), let ξ0 ≡ 0; with this definition, mi’s center of mass is located at ξi(t) for all

0 ≤ i ≤ n.

Let zi(t) denote the position of mi’s center of mass in the spatial frame. Let χi(t) denote the body frame

vector from the ball’s geometric center to mi’s center of mass. Then for m0, χ0 is the constant vector from

the ball’s geometric center to m0’s center of mass. Note that the position of mi’s center of mass in the body

frame is ξi(t) = χi(t)−χ0 and in the spatial frame is zi(t) = z0(t)+Λ(t)ξi(t) = z0(t)+Λ(t) [χi(t)− χ0]. In

general, a particle with position w(t) in the body frame has position z(t) = z0(t) + Λ(t)w(t) in the spatial

frame and has position w(t) + χ0 in the body frame translated to the ball’s geometric center.

For conciseness, the ball’s geometric center is often denoted GC and m0’s center of mass is often denoted

CM. The GC is located at z0(t) − Λ(t)χ0 in the spatial frame, at −χ0 in the body frame, and at 0 in the

body frame translated to the GC. The CM is located at z0(t) in the spatial frame, at 0 in the body frame,

and at χ0 in the body frame translated to the GC.

For conciseness, the explicit time dependence of variables is often dropped. That is, the orientation of the

ball at time t is denoted simply Λ rather than Λ(t), the position of mi’s center of mass in the spatial frame

at time t is denoted zi rather than zi(t), the position of mi’s center of mass in the body frame at time t is

denoted ξi rather than ξi(t), and the position of mi’s center of mass in the body frame translated to the GC

at time t is denoted χi rather than χi(t).
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Figure 5.2: A ball of radius r and mass m0 rolls without slipping on a flat surface in the presence of a uniform
gravitational field of magnitude g. The ball’s geometric center, center of mass, and contact point with the
flat surface are denoted by GC, m0, and CP, respectively. The ball’s motion is actuated by n point masses,
each of mass mi, 1 ≤ i ≤ n, that move inside the ball. The spatial frame has origin located at height r above
the flat surface and orthonormal axes e1, e2, and e3. The body frame has origin located at the ball’s center
of mass (denoted by m0) and orthonormal axes E1, E2, and E3. All vectors inside the ball are expressed
with respect to the body frame, while all vectors outside the ball are expressed with respect to the spatial
frame.

5.B Uncontrolled Equations of Motion

The uncontrolled equations of motion for the rolling ball actuated by internal point masses, as depicted in

Figure 5.2, are derived. Next, as special cases, the uncontrolled equations of motion for a rolling ball with

static internal structure and the uncontrolled equations of motion for a rolling ball actuated by internal point

masses that move along rails fixed within the ball are derived. Finally, as an even more special case, the

uncontrolled equations of motion for a rolling disk actuated by internal point masses that move along rails

fixed within the disk are derived.

5.B.1 Kinetic Energy, Potential Energy, and Lagrangian

As a first step to deriving the uncontrolled equations of motion for the rolling ball, the ball’s kinetic and

potential energies must be constructed, from which the ball’s Lagrangian is easily constructed.

Kinetic Energy By definition, Ω ≡
(
Λ−1Λ̇

)∨
is the ball’s body angular velocity. m0’s kinetic energy is

the sum of its translational and rotational kinetic energy contributions about its center of mass:

T0 =
1

2
m0 |ż0|2 +

1

2
⟨Ω, I0Ω⟩ . (5.4)

For 1 ≤ i ≤ n, since mi is a point mass, mi’s kinetic energy is just its translational kinetic energy:

Ti =
1

2
mi |żi|2 . (5.5)
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But to be consistent with m0’s kinetic energy formula, for 1 ≤ i ≤ n, mi’s inertia tensor will be defined to

be zero so that Ii ≡ 0 and so that mi’s kinetic energy is

Ti =
1

2
mi |żi|2 +

1

2
⟨Ω, IiΩ⟩ . (5.6)

Define Yi = Λ−1żi. Since |żi|2 =
⏐⏐Λ−1żi

⏐⏐2 = |Yi|2, mi’s kinetic energy becomes

Ti =
1

2
mi |Yi|2 +

1

2
⟨Ω, IiΩ⟩ . (5.7)

Thus, the ball’s kinetic energy is

T =

n∑
i=0

Ti =

n∑
i=0

[
1

2
mi |Yi|2 +

1

2
⟨Ω, IiΩ⟩

]
=

1

2

n∑
i=0

mi |Yi|2 +
1

2

n∑
i=0

⟨Ω, IiΩ⟩

=
1

2

n∑
i=0

mi |Yi|2 +
1

2

⟨
Ω,

n∑
i=0

IiΩ

⟩

=
1

2

n∑
i=0

mi |Yi|2 +
1

2
⟨Ω, IΩ⟩ ,

(5.8)

where I ≡
∑n

i=0 Ii = I0 and

I = I0 =

⎡⎢⎣d1 0 0

0 d2 0

0 0 d3

⎤⎥⎦ . (5.9)

Potential Energy The potential energy due to mass mi is Vi = mig ⟨χi,Γ⟩, where Γ = Λ−1e3. Thus, the

ball’s potential energy is

V =

n∑
i=0

Vi =

n∑
i=0

mig ⟨χi,Γ⟩ = g

⟨
n∑

i=0

miχi,Γ

⟩
. (5.10)

Lagrangian Since the spatial position of mi’s center of mass is zi = z0 +Λ [χi − χ0], the spatial velocity

of mi’s center of mass is żi = ż0 + Λ̇ [χi − χ0] + Λχ̇i. Hence,

Yi = Λ−1żi = Λ−1
[
ż0 + Λ̇ [χi − χ0] + Λχ̇i

]
= Λ−1ż0 + Λ−1Λ̇ [χi − χ0] + χ̇i

= Y0 + Ω̂ [χi − χ0] + χ̇i

= Y0 +Ω× [χi − χ0] + χ̇i.

(5.11)

The ball’s Lagrangian is the difference between its kinetic and potential energies:

l = T − V =
1

2

n∑
i=0

mi |Yi|2 +
1

2
⟨Ω, IΩ⟩ − g

⟨
n∑

i=0

miχi,Γ

⟩
. (5.12)

Since Yi can be expressed as a function of Y0 and Ω for 1 ≤ i ≤ n, note that the ball’s Lagrangian should

be expressed as l (Ω,Y0,Γ), but this functional dependence is suppressed for the sake of conciseness.
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5.B.2 Rolling Constraint and Lagrange-d’Alembert’s Principle

Having constructed the rolling ball’s Lagrangian, the variation of the action integral is now computed, taking

into consideration the rolling constraint and Lagrange-d’Alembert’s principle.

Rolling Constraint Recall that it is assumed that the ball rolls along the flat surface without slipping.

The vector pointing from the contact point (i.e. the point on the flat surface touching the bottom of the

ball) to m0’s center of mass (located at z0 in the spatial frame and at ξ0 ≡ 0 in the body frame) is

σ0 = re3 + Λχ0, (5.13)

in the spatial frame and is

s0 = Λ−1σ0 = rΛ−1e3 + χ0 = rΓ+ χ0, (5.14)

in the body frame. Differentiating (5.14) with respect to time, using the identity Γ̇ = Γ×Ω, and using the

identity −rΓ = χ0 − s0, which follows trivially from (5.14), yields the following useful result:

ṡ0 = rΓ̇ = rΓ×Ω = Ω× (−rΓ) = Ω× (χ0 − s0) . (5.15)

Another useful result that follows trivially from (5.14) is

s0 × Γ = (rΓ+ χ0)× Γ = rΓ× Γ+ χ0 × Γ = χ0 × Γ. (5.16)

The rolling constraint is imposed by stipulating

ż0 = Λ̇s0 = Λ̇Λ−1σ0 = ω̂σ0 = ω × σ0, (5.17)

where ω̂ ≡ Λ̇Λ−1 ∈ so(3), or equivalently, by stipulating

Y0 = Λ−1ż0 = Λ−1Λ̇s0 = Ω̂s0 = Ω× s0. (5.18)

As a consequence of the rolling constraint (5.18),

Yi = Y0 +Ω× [χi − χ0] + χ̇i = Ω× s0 +Ω× [χi − χ0] + χ̇i = Ω× [s0 + χi − χ0] + χ̇i. (5.19)

Lagrange-d’Alembert’s Principle Since Ψ ≡ Λ−1δz0,

Ψ̇ =
[
Λ−1δz0

]·
=
[
Λ−1

]·
δz0 + Λ−1 [δz0]

·
= −Λ−1Λ̇Λ−1δz0 + Λ−1δż0

= −Ω̂Ψ+ Λ−1δż0

= −Ω×Ψ+ Λ−1δż0.

(5.20)

Hence Λ−1δż0 = Ψ̇+Ω×Ψ.
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Since Y0 = Λ−1ż0,

δY0 = δ
[
Λ−1ż0

]
=
[
δ
(
Λ−1

)]
ż0 + Λ−1δż0 = −Λ−1δΛΛ−1ż0 + Λ−1δż0

= −Σ̂Y0 + Λ−1δż0

= −Σ×Y0 + Λ−1δż0

= Ψ̇+Ω×Ψ−Σ×Y0,

(5.21)

where Σ̂ ≡ Λ−1δΛ ∈ so(3).

Since Yi = Y0+Ω× [χi − χ0]+ χ̇i and since the control masses move along prescribed trajectories {χi}
n
i=0

(so that the variation of Yi is computed with respect to Y0 and Ω, but not with respect to {χi}
n
i=0),

δYi = δY0 + δΩ× [χi − χ0] . (5.22)

Since Σ̂ = Λ−1δΛ,

˙̂
Σ =

[
Λ−1δΛ

]·
=
[
Λ−1

]·
δΛ + Λ−1 [δΛ]

·
= −Λ−1Λ̇Λ−1δΛ + Λ−1δΛ̇ = −Ω̂Σ̂+ Λ−1δΛ̇. (5.23)

Hence Λ−1δΛ̇ =
˙̂
Σ+ Ω̂Σ̂.

Since Ω̂ = Λ−1Λ̇,

δΩ̂ = δ
[
Λ−1Λ̇

]
=
[
δ
(
Λ−1

)]
Λ̇ + Λ−1δΛ̇ = −Λ−1δΛΛ−1Λ̇ + Λ−1δΛ̇ = −Σ̂Ω̂+

˙̂
Σ+ Ω̂Σ̂

=
˙̂
Σ+ [Ω×Σ]

∧

=
[
Σ̇+Ω×Σ

]∧
.

(5.24)

Hence

δΩ = Σ̇+Ω×Σ. (5.25)

Since Γ = Λ−1e3,

δΓ =
[
δ
(
Λ−1

)]
e3 = −Λ−1δΛΛ−1e3 = −Σ̂Γ = −Σ× Γ = Γ×Σ. (5.26)

Recall Lagrange-d’Alembert’s principle from Section 2.B. Part of Lagrange-d’Alembert’s principle stipulates

that due to the rolling constraint (5.17), which says ż0 = Λ̇s0, the variations of z0 must have the form

δz0 = δΛs0. Hence, the variations Ψ = Λ−1δz0 must take on the following form (as a consequence of the

rolling constraint (5.17) and Lagrange-d’Alembert’s principle):

Ψ = Λ−1δz0 = Λ−1δΛs0 = Σ̂s0 = Σ× s0. (5.27)

The uncontrolled equations of motion are derived here and in the next section from Lagrange-d’Alembert’s

principle. Recalling that the control masses move along prescribed trajectories {χi}
n
i=0, it is important to
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keep in mind that the variation of the action integral is computed with respect to {Yi}ni=0, Ω, and Γ, but

not with respect to {χi}
n
i=0. Once the variation of the action integral is computed, tedious calculations are

performed to isolateΣ, after which the variation of the action integral is equated to zero in order to obtain the

uncontrolled equations of motion. Key points in the calculations are: 1) the variations Ψ and Σ must satisfy

Ψ = Σ × s0 (5.27), which enforces the constraints on the variations demanded by Lagrange-d’Alembert’s

principle, and 2) the variation Σ must also satisfy Σ(a) = Σ(b) = 0, which enforces the vanishing endpoint

constraints. To begin the calculations, the variation of the action integral is computed as

δS = δ

∫ b

a

ldt =

∫ b

a

δldt =

∫ b

a

[
n∑

i=0

mi ⟨Yi, δYi⟩+ ⟨IΩ, δΩ⟩ − g

⟨
n∑

i=0

miχi, δΓ

⟩]
dt. (5.28)

Using the identity δYi = δY0 + δΩ× [χi − χ0] (5.22), the variation of the action integral obtained in (5.28)

becomes

δS =

∫ b

a

[
n∑

i=0

mi ⟨Yi, δY0 + δΩ× [χi − χ0]⟩+ ⟨IΩ, δΩ⟩ − g

⟨
n∑

i=0

miχi, δΓ

⟩]
dt

=

∫ b

a

[
n∑

i=0

mi ⟨Yi, δY0⟩+

⟨
IΩ+

n∑
i=0

mi [χi − χ0]×Yi, δΩ

⟩
− g

⟨
n∑

i=0

miχi, δΓ

⟩]
dt.

(5.29)

Using the identities δY0 = Ψ̇+Ω×Ψ−Σ×Y0 (5.21), δΩ = Σ̇+Ω×Σ (5.25), and δΓ = Γ×Σ (5.26),

the variation of the action integral obtained in (5.29) becomes

δS =

∫ b

a

[
n∑

i=0

mi

⟨
Yi, Ψ̇+Ω×Ψ−Σ×Y0

⟩
+

⟨
IΩ+

n∑
i=0

mi [χi − χ0]×Yi, Σ̇+Ω×Σ

⟩

+ g

⟨
n∑

i=0

miχi,Σ× Γ

⟩]
dt.

(5.30)

Integrating by parts, the variation of the action integral obtained in (5.30) becomes

δS =

∫ b

a

[
n∑

i=0

mi

[
−
⟨(

d

dt
+Ω×

)
Yi,Ψ

⟩
+ ⟨Yi ×Y0,Σ⟩

]

−

⟨(
d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [χi − χ0]×Yi

]
,Σ

⟩
+ g

⟨
Γ×

n∑
i=0

miχi,Σ

⟩]
dt

+

n∑
i=0

mi ⟨Yi,Ψ⟩

⏐⏐⏐⏐⏐
b

a

+

⟨
IΩ+

n∑
i=0

mi [χi − χ0]×Yi,Σ

⟩⏐⏐⏐⏐⏐
b

a

=

∫ b

a

[
−

n∑
i=0

mi

⟨(
d

dt
+Ω×

)
Yi,Ψ

⟩

+

⟨
−
(

d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [χi − χ0]×Yi

]
+

n∑
i=0

mi (Yi ×Y0 + gΓ× χi) ,Σ

⟩]
dt

+

n∑
i=0

mi ⟨Yi,Ψ⟩

⏐⏐⏐⏐⏐
b

a

+

⟨
IΩ+

n∑
i=0

mi [χi − χ0]×Yi,Σ

⟩⏐⏐⏐⏐⏐
b

a

.

(5.31)

Next, (5.31) is evaluated on the constraint distribution given by Ψ = Σ× s0 (5.27), and the boundary terms
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in (5.31) are eliminated since Σ is a variation such that Σ(a) = Σ(b) = 0. With these manipulations, the

variation of the action integral obtained in (5.31) becomes

δS =

∫ b

a

[
−

⟨(
d

dt
+Ω×

)[ n∑
i=0

miYi

]
,Σ× s0

⟩

+

⟨
−
(

d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [χi − χ0]×Yi

]
+

n∑
i=0

mi (Yi ×Y0 + gΓ× χi) ,Σ

⟩]
dt

=

∫ b

a

⟨((
d

dt
+Ω×

)[ n∑
i=0

miYi

])
× s0 −

(
d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [χi − χ0]×Yi

]

+

n∑
i=0

mi (Yi ×Y0 + gΓ× χi) ,Σ

⟩
dt

=

∫ b

a

⟨
−
(

d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [s0 + χi − χ0]×Yi

]

+

n∑
i=0

mi

(
Yi ×

(
Y0 −

(
d

dt
+Ω×

)
s0

)
+ gΓ× χi

)
,Σ

⟩
dt.

(5.32)

Using the identity Y0 = Ω× s0 (5.18), the variation of the action integral obtained in (5.32) becomes

δS =

∫ b

a

⟨
−
(

d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [s0 + χi − χ0]×Yi

]
+

n∑
i=0

mi (ṡ0 ×Yi + gΓ× χi) ,Σ

⟩
dt. (5.33)

Finally, using the identities Yi = Ω× [s0 + χi − χ0]+ χ̇i (5.19) and ṡ0 = Ω× (χ0 − s0) (5.15), the variation

of the action integral obtained in (5.33) becomes

δS =

∫ b

a

⟨
−
(

d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [s0 + χi − χ0]× [Ω× [s0 + χi − χ0] + χ̇i]

]

+

n∑
i=0

mi ([(s0 − χ0)×Ω]× [Ω× [s0 + χi − χ0] + χ̇i] + gΓ× χi) ,Σ

⟩
dt

=

∫ b

a

⟨
−
(

d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [s0 + χi − χ0]× [Ω× [s0 + χi − χ0] + χ̇i]

]

+

n∑
i=0

mi ([(s0 − χ0)×Ω]× [Ω× χi + χ̇i] + gΓ× χi) ,Σ

⟩
dt.

(5.34)

Note the order in which the operations were performed: first variations and simplifications were computed

in (5.28)-(5.31), followed by evaluation of the result (5.31) on the constraint distribution (5.27) to obtain

(5.32); preserving this order is key to the correct application of Lagrange-d’Alembert’s principle.

Now suppose a time-varying external force Fe acts at the ball’s geometric center. For example, this force

might be due to the wind blowing on the ball when the ball rolls around outdoors. If the ball’s geometric

center in the spatial frame is zGC , then the rolling constraint says that żGC = Λ̇Λ−1re3 and Lagrange-

d’Alembert’s principle says that δzGC = δΛΛ−1re3. Application of the external force yields a new variation

of the action integral, δS1 = δS +
∫ b

a
⟨Fe, δzGC⟩dt using Lagrange-d’Alembert’s principle for incorporating

external forces into the variational principle. Performing calculations on the new variation of the action
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integral to isolate Σ gives:

δS1 = δS +

∫ b

a

⟨Fe, δzGC⟩dt = δS +

∫ b

a

⟨
Λ−1Fe,Λ

−1δzGC

⟩
dt

= δS +

∫ b

a

⟨
Λ−1Fe,Λ

−1δΛΛ−1re3
⟩
dt = δS +

∫ b

a

⟨
Γ̃, Σ̂rΓ

⟩
dt

= δS +

∫ b

a

⟨
Γ̃,Σ× rΓ

⟩
dt = δS +

∫ b

a

⟨
rΓ× Γ̃,Σ

⟩
dt

=

∫ b

a

⟨
−
(

d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [s0 + χi − χ0]× [Ω× [s0 + χi − χ0] + χ̇i]

]

+

n∑
i=0

mi ([(s0 − χ0)×Ω]× [Ω× χi + χ̇i] + gΓ× χi) + rΓ× Γ̃,Σ

⟩
dt.

(5.35)

In the fourth equality, the definitions Γ̃ ≡ Λ−1Fe, Σ̂ ≡ Λ−1δΛ, and Γ ≡ Λ−1e3 are used. In the final

equality, the simplification of δS calculated in (5.34) is used.

5.B.3 Uncontrolled Equations of Motion for the Rolling Ball

Having computed the variation of the action integral according to Lagrange-d’Alembert’s principle, the

uncontrolled equations of motion for the rolling ball actuated by internal point masses are obtained now. In

addition, the uncontrolled equations of motion for two important special cases, a ball with static internal

structure and a ball with 1-d parameterized control rails, are derived.

Uncontrolled Equations of Motion for the Rolling Ball Actuated by Internal Point Masses

Insisting that the variation δS1 of the action integral in (5.35) is zero for all variations Σ (i.e. completing

the application of Lagrange-d’Alembert principle’s by letting 0 = δS1), the following uncontrolled equations
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of motion are obtained:

0 = −
(

d

dt
+Ω×

)[
IΩ+

n∑
i=0

mi [s0 + χi − χ0]× [Ω× [s0 + χi − χ0] + χ̇i]

]

+

n∑
i=0

mi ([(s0 − χ0)×Ω]× [Ω× χi + χ̇i] + gΓ× χi) + rΓ× Γ̃

= −IΩ̇−
n∑

i=0

mi [ṡ0 + χ̇i]× [Ω× [s0 + χi − χ0] + χ̇i]

−
n∑

i=0

mi [s0 + χi − χ0]×
[
Ω̇× [s0 + χi − χ0] +Ω× [ṡ0 + χ̇i] + χ̈i

]
−Ω× IΩ−

n∑
i=0

miΩ× {[s0 + χi − χ0]× [Ω× [s0 + χi − χ0] + χ̇i]}

+

n∑
i=0

mi [(s0 − χ0)×Ω]× [Ω× χi + χ̇i] + g

n∑
i=0

miΓ× χi + rΓ× Γ̃

= −IΩ̇−
n∑

i=0

mi [Ω×(χ0 − s0 )+χ̇i]× [Ω× [s0 + χi − χ0] + χ̇i]

−
n∑

i=0

mi [s0 + χi − χ0]×
[
Ω̇× [s0 + χi − χ0] +Ω× [Ω×(χ0 − s0 )+χ̇i] + χ̈i

]
−

n∑
i=0

miΩ× {[s0 + χi − χ0]× [Ω× [s0 + χi − χ0] + χ̇i]}

+

n∑
i=0

mi [(s0 − χ0)×Ω]× [Ω× χi + χ̇i]−Ω× IΩ+ g

n∑
i=0

miΓ× χi + rΓ× Γ̃.

(5.36)

Negating both sides of (5.36), rearranging terms, and using the identity rΓ = s0 − χ0, the uncontrolled

equations of motion are

0 = IΩ̇+Ω× IΩ− rΓ× Γ̃− g

n∑
i=0

miΓ× χi +

n∑
i=0

mi [rΓ×Ω+ χ̇i]× [Ω× [rΓ+ χi] + χ̇i]

+

n∑
i=0

mi [rΓ+ χi]×
{
Ω̇× [rΓ+ χi] +Ω× [rΓ×Ω+ χ̇i] + χ̈i

}
+

n∑
i=0

miΩ× {[rΓ+ χi]× [Ω× [rΓ+ χi] + χ̇i]} −
n∑

i=0

mi [rΓ×Ω]× [Ω× χi + χ̇i] .

(5.37)

By defining si ≡ rΓ+χi for 0 ≤ i ≤ n and combining the summations, the uncontrolled equations of motion

are

0 = IΩ̇+Ω× IΩ− rΓ× Γ̃+

n∑
i=0

mi

{
− gΓ× χi + [rΓ×Ω+ χ̇i]× [Ω× si + χ̇i]

+ si ×
{
Ω̇× si +Ω× [rΓ×Ω+ χ̇i] + χ̈i

}
+Ω× {si × [Ω× si + χ̇i]} − [rΓ×Ω]× [Ω× χi + χ̇i]

}
.

(5.38)
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Since si ≡ rΓ+ χi for 0 ≤ i ≤ n,

[rΓ×Ω+ χ̇i]× [Ω× si + χ̇i]

− [rΓ×Ω]× [Ω× χi + χ̇i] = [rΓ×Ω+ χ̇i]× [Ω× si + χ̇i]

− [rΓ×Ω]× [Ω× {si − rΓ}+ χ̇i]

= [rΓ×Ω+ χ̇i]× [Ω× si + χ̇i]− [rΓ×Ω]× [Ω× si + χ̇i]

= χ̇i × [Ω× si] .

(5.39)

Moreover, by exploiting the Jacobi identity,

χ̇i × [Ω× si] + si × [Ω× χ̇i] +Ω× [si × χ̇i] = 2si × [Ω× χ̇i] . (5.40)

By using (5.39) and (5.40) in (5.38), the uncontrolled equations of motion simplify to

0 = IΩ̇+Ω× IΩ− rΓ× Γ̃+

n∑
i=0

mi

{
− gΓ× χi + 2si × [Ω× χ̇i]

+ si ×
{
Ω̇× si +Ω× [rΓ×Ω] + χ̈i

}
+Ω× {si × [Ω× si]}

}
.

(5.41)

Given vectors a,b ∈ R3, a × {b× [a× b]} = a × {(b · b)a− (a · b)b} = − (a · b)a × b. This gives the

identity

a× {b× [a× b]}+ b× {a× [b× a]} = − (a · b)a× b− (a · b)b× a = 0. (5.42)

Since si ≡ rΓ+ χi for 0 ≤ i ≤ n and using the identity (5.42),

si × {Ω× [rΓ×Ω]}+Ω× {si × [Ω× si]} = si × {Ω× [(si − χi)×Ω]}+Ω× {si × [Ω× si]}

= si × {Ω× [si ×Ω]} − si × {Ω× [χi ×Ω]}

+Ω× {si × [Ω× si]}

= −si × {Ω× [χi ×Ω]} .

(5.43)

Using (5.43) in (5.41), the uncontrolled equations of motion simplify to

0 = IΩ̇+Ω× IΩ− rΓ× Γ̃+

n∑
i=0

mi

{
− gΓ× χi + 2si × [Ω× χ̇i]

+ si ×
{
Ω̇× si −Ω× [χi ×Ω] + χ̈i

}}
.

(5.44)

Since si ≡ rΓ+ χi for 0 ≤ i ≤ n,

− gΓ× χi = gχi × Γ = g (si − rΓ)× Γ = gsi × Γ = si × (gΓ) . (5.45)

Using (5.45) in (5.44), the uncontrolled equations of motion become

0 = IΩ̇+Ω× IΩ− rΓ× Γ̃+

n∑
i=0

mi

{
si × (gΓ) + 2si × [Ω× χ̇i]

+ si ×
{
Ω̇× si −Ω× [χi ×Ω] + χ̈i

}}
.

(5.46)
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Combining terms and eliminating minus signs by re-ordering cross product pairings in (5.46), the uncontrolled

equations of motion simplify further to

0 = IΩ̇+Ω× IΩ+ rΓ̃× Γ+

n∑
i=0

misi ×
{
gΓ+ Ω̇× si +Ω× (Ω× χi + 2χ̇i) + χ̈i

}
. (5.47)

Note that

si ×
{
Ω̇× si

}
= −si ×

{
si × Ω̇

}
= −si ×

{
ŝiΩ̇

}
= −ŝiŝiΩ̇ = −ŝ2i Ω̇, (5.48)

where for v =
[
v1 v2 v3

]T
, v̂2 = v̂v̂ is the symmetric matrix given by

v̂2 =

⎡⎢⎣−(v
2
2 + v23) v1v2 v1v3

v1v2 −(v21 + v23) v2v3

v1v3 v2v3 −(v21 + v22)

⎤⎥⎦ . (5.49)

Using (5.48) and solving explicitly for Ω̇ in (5.47), the complete uncontrolled equations of motion become

Ω̇ =

[
n∑

i=0

miŝ
2
i − I

]−1 [
Ω× IΩ+ rΓ̃× Γ+

n∑
i=0

misi × {gΓ+Ω× (Ω× χi + 2χ̇i) + χ̈i}

]
,

Γ̇ = Γ×Ω,

(5.50)

subject to the definitions si ≡ rΓ + χi for 0 ≤ i ≤ n, Ω ≡
(
Λ−1Λ̇

)∨
, Γ ≡ Λ−1e3, and Γ̃ ≡ Λ−1Fe. The

uncontrolled equations of motion (5.50) for the rolling ball actuated by internal point masses are new and

have not appeared previously in the literature, as far as the author knows.

Uncontrolled Equations of Motion for the Rolling Ball with Static Internal Structure A special

case of (5.50) gives the uncontrolled equations of motion for a rolling ball with static internal structure. By

fixing all the control masses (i.e. making χi constant for all 1 ≤ i ≤ n, so that χ̇i = χ̈i = 0), (5.50) gives

the uncontrolled equations of motion for a rolling ball with static internal structure:

Ω̇ =

[
n∑

i=0

miŝ
2
i − I

]−1 [
Ω× IΩ+ rΓ̃× Γ+

n∑
i=0

misi × {gΓ+Ω× (Ω× χi)}

]
,

Γ̇ = Γ×Ω.

(5.51)

Alternatively, the uncontrolled equations of motion for a rolling ball with static internal structure may be

obtained by setting the number of control masses n to 0 in (5.50):

Ω̇ =
[
m0ŝ

2
0 − I

]−1
[
Ω× IΩ+ rΓ̃× Γ+m0s0 × {gΓ+Ω× (Ω× χ0)}

]
,

Γ̇ = Γ×Ω.
(5.52)

Uncontrolled Equations of Motion for the Rolling Ball Assuming 1-d Parameterizations of the

Control Trajectories For 1 ≤ i ≤ n, assume now that the trajectory ξi of the i
th control mass is required

to move along a 1-d control rail, like a circular hoop. Moreover, for 1 ≤ i ≤ n, assume that the ith control
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rail is parameterized by a 1-d parameter θi, so that the position ζi of the ith control rail, in the body frame

translated to the ball’s geometric center, as a function of θi is ζi(θi). Thus, the trajectory of the ith control

mass as a function of time t is χi(t) ≡ ζi(θi(t)), 1 ≤ i ≤ n. Refer to Figure 5.3 for an illustration. To make

notation consistent, define ζ0(θ0) ≡ χ0, so that the constant vector χ0 = χ0(t) ≡ ζ0(θ0(t)) for any scalar-

valued, time-varying function θ0(t). By the chain rule and using the notation · to denote differentiation

with respect to time t and ζ′i to denote differentiation of ζi with respect to θi, for 0 ≤ i ≤ n,

χi(t) ≡ ζi(θi(t)) = ζi,

χ̇i(t) =
dζi
dθi

(θi(t))θ̇i(t) = ζ
′
i(θi(t))θ̇i(t) = ζ

′
iθ̇i = θ̇iζ

′
i,

χ̈i(t) =
d2ζi
dθ2i

(θi(t))θ̇
2
i (t) +

dζi
dθi

(θi(t))θ̈i(t)

= ζ′′i (θi(t))θ̇
2
i (t) + ζ

′
i(θi(t))θ̈i(t) = ζ

′′
i θ̇

2
i + ζ

′
iθ̈i = θ̇2i ζ

′′
i + θ̈iζ

′
i.

(5.53)

By plugging the formulas for χi, χ̇i, and χ̈i given in (5.53) into (5.50), the uncontrolled equations of motion

become

Ω̇ =

[
n∑

i=0

miŝ
2
i − I

]−1 [
Ω× IΩ+ rΓ̃× Γ

+

n∑
i=0

misi ×
{
gΓ+Ω×

(
Ω× ζi + 2θ̇iζ

′
i

)
+ θ̇2i ζ

′′
i + θ̈iζ

′
i

}]
,

Γ̇ = Γ×Ω,

(5.54)

where with this new notation, si ≡ rΓ+ χi = rΓ+ ζi for 0 ≤ i ≤ n.

Figure 5.3: Each control mass, denoted by mi, 1 ≤ i ≤ n, moves along a control rail fixed inside the ball
depicted here by the dashed hoop. The position of the control rail is denoted by ζi and is parameterized by
θi.

5.B.4 Uncontrolled Equations of Motion for the Rolling Disk

Now suppose that m0’s inertia is such that one of m0’s principal axes, say the one labeled E2, is orthogonal

to the plane containing the GC and CM. Also assume that all the control masses move along 1-d control rails

which lie in the plane containing the GC and CM. Moreover, suppose that the ball is oriented initially so
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that the plane containing the GC and CM coincides with the e1-e3 plane and that the external force Fe acts

in the e1-e3 plane. Then for all time, the ball will remain oriented so that the plane containing the GC and

CM coincides with the e1-e3 plane and the ball will only move in the e1-e3 plane, with the ball’s rotation

axis always parallel to e2. Note that the dynamics of this system are equivalent to that of the Chaplygin

disk [16], equipped with control masses, rolling in the e1-e3 plane, and where the Chaplygin disk (minus the

control masses) has polar moment of inertia d2. Therefore, henceforth, this particular ball with this special

inertia, orientation, placement of the control rails, and control masses may be referred to as the disk or the

rolling disk. Figure 5.4 depicts the rolling disk.

Figure 5.4: A disk of radius r and mass m0 rolls without slipping in the e1-e3 plane. e2 and E2 are directed
into the page and are omitted from the figure. The disk’s center of mass is denoted by m0. The disk’s
motion is actuated by n point masses, each of mass mi, 1 ≤ i ≤ n, that move along control rails fixed
inside the disk. The control mass depicted here by mi moves along a circular hoop in the disk that is not
centered on the disk’s geometric center (GC). The disk’s orientation is determined by φ, the angle measured
counter-clockwise from e1 to E1.

Let φ denote the angle between e1 and E1, measured counter-clockwise from e1 to E1. Thus, if φ̇ > 0, the

disk rolls in the −e1 direction and Ω has the same direction as −e2, and if φ̇ < 0, the disk rolls in the e1

direction and Ω has the same direction as e2. Before constructing the equations of motion for the rolling

disk using (5.54), some intermediate calculations must be performed.

Λ =

⎡⎢⎣cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

⎤⎥⎦ , ΛT =

⎡⎢⎣ cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

⎤⎥⎦ . (5.55)

Ω̂ = ΛTΛ̇ =

⎡⎢⎣ cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

⎤⎥⎦
⎡⎢⎣− sinφ 0 − cosφ

0 0 0

cosφ 0 − sinφ

⎤⎥⎦ φ̇ =

⎡⎢⎣0 0 −1
0 0 0

1 0 0

⎤⎥⎦ φ̇. (5.56)

Ω =

⎡⎢⎣ 0

−1
0

⎤⎥⎦ φ̇ = −φ̇

⎡⎢⎣01
0

⎤⎥⎦ = −φ̇e2, IΩ = −d2φ̇e2, Ω× IΩ = d2φ̇
2e2 × e2 = 0. (5.57)

Γ = ΛTe3 =

⎡⎢⎣sinφ0
cosφ

⎤⎥⎦ , Γ̃ = ΛTFe =

⎡⎢⎣ cosφFe,1 + sinφFe,3

0

− sinφFe,1 + cosφFe,3

⎤⎥⎦ . (5.58)
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rΓ̃× Γ = r

⎡⎢⎣ cosφFe,1 + sinφFe,3

0

− sinφFe,1 + cosφFe,3

⎤⎥⎦×
⎡⎢⎣sinφ0
cosφ

⎤⎥⎦
= r {(− sinφFe,1 + cosφFe,3) sinφ− (cosφFe,1 + sinφFe,3) cosφ} e2
= −rFe,1e2.

(5.59)

Ω̇ = −φ̈e2, Γ̇ =

⎡⎢⎣ cosφ

0

− sinφ

⎤⎥⎦ φ̇, Γ×Ω = −φ̇

⎡⎢⎣sinφ0
cosφ

⎤⎥⎦×
⎡⎢⎣01
0

⎤⎥⎦ = −φ̇

⎡⎢⎣− cosφ

0

sinφ

⎤⎥⎦ = Γ̇. (5.60)

Thus, the second equation, Γ̇ = Γ × Ω, in (5.54) gives no information about the dynamics and may be

ignored for the disk.

ζi =

⎡⎢⎣ζi,10
ζi,3

⎤⎥⎦ , ζ′i =

⎡⎢⎣ζ
′
i,1

0

ζ ′i,3

⎤⎥⎦ , ζ′′i =

⎡⎢⎣ζ
′′
i,1

0

ζ ′′i,3

⎤⎥⎦ . (5.61)

si = rΓ+ ζi =

⎡⎢⎣r sinφ+ ζi,1

0

r cosφ+ ζi,3

⎤⎥⎦ . (5.62)

ŝ2i = sisi =⎡⎢⎣ − (r cosφ+ ζi,3)
2

0 (r sinφ+ ζi,1) (r cosφ+ ζi,3)

0 − (r sinφ+ ζi,1)
2 − (r cosφ+ ζi,3)

2
0

(r sinφ+ ζi,1) (r cosφ+ ζi,3) 0 − (r sinφ+ ζi,1)
2

⎤⎥⎦ .
(5.63)

Ω× ζi = −φ̇

⎡⎢⎣01
0

⎤⎥⎦×
⎡⎢⎣ζi,10
ζi,3

⎤⎥⎦ = −φ̇

⎡⎢⎣ ζi,3

0

−ζi,1

⎤⎥⎦ , Ω× ζi + 2θ̇iζ
′
i =

⎡⎢⎣−φ̇ζi,3 + 2θ̇iζ
′
i,1

0

φ̇ζi,1 + 2θ̇iζ
′
i,3

⎤⎥⎦ . (5.64)

Ω×
(
Ω× ζi + 2θ̇iζ

′
i

)
= −φ̇

⎡⎢⎣01
0

⎤⎥⎦×
⎡⎢⎣−φ̇ζi,3 + 2θ̇iζ

′
i,1

0

φ̇ζi,1 + 2θ̇iζ
′
i,3

⎤⎥⎦ = −φ̇

⎡⎢⎣φ̇ζi,1 + 2θ̇iζ
′
i,3

0

φ̇ζi,3 − 2θ̇iζ
′
i,1

⎤⎥⎦ . (5.65)

gΓ+Ω×
(
Ω× ζi + 2θ̇iζ

′
i

)
+ θ̇2i ζ

′′
i + θ̈iζ

′
i =

⎡⎢⎢⎣
g sinφ− φ̇

(
φ̇ζi,1 + 2θ̇iζ

′
i,3

)
+ θ̇2i ζ

′′
i,1 + θ̈iζ

′
i,1

0

g cosφ− φ̇
(
φ̇ζi,3 − 2θ̇iζ

′
i,1

)
+ θ̇2i ζ

′′
i,3 + θ̈iζ

′
i,3

⎤⎥⎥⎦ . (5.66)

si ×
{
gΓ+Ω×

(
Ω× ζi + 2θ̇iζ

′
i

)
+ θ̇2i ζ

′′
i + θ̈iζ

′
i

}
= Kie2, (5.67)

where

Ki = (r cosφ+ ζi,3)
(
g sinφ− φ̇

(
φ̇ζi,1 + 2θ̇iζ

′
i,3

)
+ θ̇2i ζ

′′
i,1 + θ̈iζ

′
i,1

)
− (r sinφ+ ζi,1)

(
g cosφ− φ̇

(
φ̇ζi,3 − 2θ̇iζ

′
i,1

)
+ θ̇2i ζ

′′
i,3 + θ̈iζ

′
i,3

)
=
(
g + rφ̇2

)
(ζi,3 sinφ− ζi,1 cosφ) + (r cosφ+ ζi,3)

(
−2φ̇θ̇iζ ′i,3 + θ̇2i ζ

′′
i,1 + θ̈iζ

′
i,1

)
− (r sinφ+ ζi,1)

(
2φ̇θ̇iζ

′
i,1 + θ̇2i ζ

′′
i,3 + θ̈iζ

′
i,3

)
.

(5.68)
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Plugging (5.57), (5.59), and (5.67) into the first equation in (5.54) gives the equations of motion for the

rolling disk as

−φ̈e2 =

[
n∑

i=0

miŝ
2
i − I

]−1 [
−rFe,1e2 +

n∑
i=0

miKie2

]

=

(
−rFe,1 +

n∑
i=0

miKi

)[
n∑

i=0

miŝ
2
i − I

]−1

e2.

(5.69)

Note that
[∑n

i=0 miŝ
2
i − I

]−1
e2 is just the middle column of the matrix inverse of A =

∑n
i=0 miŝ

2
i − I.

Denote the entries of A by

A =

n∑
i=0

miŝ
2
i − I =

⎡⎢⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎦ . (5.70)

Since I is diagonal and from (5.63), a12 = a21 = a23 = a32 = 0, so that

A =

n∑
i=0

miŝ
2
i − I =

⎡⎢⎣a11 0 a13

0 a22 0

a31 0 a33

⎤⎥⎦ (5.71)

and the determinant of A simplifies to

detA = a11a22a33 + a21a32a13 + a31a12a23 − a11a32a23 − a31a22a13 − a21a12a33

= a11a22a33 − a31a22a13

= a22 (a11a33 − a31a13) .

(5.72)

Using the formula for the inverse of a 3 × 3 matrix, the middle column of the matrix inverse of A =∑n
i=0 miŝ

2
i − I is

[
n∑

i=0

miŝ
2
i − I

]−1

e2 = A−1e2 =

⎡⎢⎣a11 0 a13

0 a22 0

a31 0 a33

⎤⎥⎦
−1

e2 =
1

detA

⎡⎢⎣a13a32 − a12a33

a11a33 − a13a31

a12a31 − a11a32

⎤⎥⎦

=
1

a22 (a11a33 − a31a13)

⎡⎢⎣ 0

a11a33 − a13a31

0

⎤⎥⎦ =
1

a22

⎡⎢⎣01
0

⎤⎥⎦ =
1

a22
e2.

(5.73)

Plugging (5.73) into (5.69), the equations of motion simplify to

− φ̈e2 =

(
−rFe,1 +

n∑
i=0

miKi

)[
n∑

i=0

miŝ
2
i − I

]−1

e2 =
1

a22

(
−rFe,1 +

n∑
i=0

miKi

)
e2, (5.74)

which gives the scalar equation of motion

φ̈ =
−1
a22

(
−rFe,1 +

n∑
i=0

miKi

)
. (5.75)
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From (5.63)

a22 =

n∑
i=0

{
mi

[
− (r sinφ+ ζi,1)

2 − (r cosφ+ ζi,3)
2
]}
− d2. (5.76)

Plugging (5.76) into (5.75) gives the equation of motion for the rolling disk

φ̈ =
−rFe,1 +

∑n
i=0 miKi

d2 +
∑n

i=0 mi

[
(r sinφ+ ζi,1)

2
+ (r cosφ+ ζi,3)

2
] := κ

(
θ, θ̇, φ, φ̇, θ̈

)
, (5.77)

where κ is a function that depends on the control mass parameterized positions (θ), velocities (θ̇), and

accelerations (θ̈) and on the disk’s orientation angle (φ) and its time-derivative (φ̇).

Verification of the Variational Equations Using Newtonian Mechanics for a Special Case

There are two general classical approaches to derive the uncontrolled equations of motion of a mechanical

system: Newtonian mechanics and Lagrangian mechanics. Newtonian mechanics was developed by the

English mathematician Sir Isaac Newton, depicted in Figure 5.5a, during the latter half of the 16th century.

In Newtonian mechanics, the uncontrolled equations of motion are derived by writing down all the forces

acting on the system according to Newton’s three laws of motion. Lagrangian mechanics was developed

by the French mathematician Joseph-Louis Lagrange, depicted in Figure 5.5b, during the latter half of the

17th century. In Lagrangian mechanics, the uncontrolled equations of motion are derived by writing down

the system’s Lagrangian from the kinetic and potential energies followed by application of a variational

principle (e.g. Hamilton’s principle, Hamilton-Pontryagin’s principle, Lagrange-d’Alembert’s principle, etc.)

to the Lagrangian. This thesis relies on Lagrangian mechanics as it is much more efficient than Newtonian

mechanics. To illustrate the relative computational ease afforded by Lagrangian mechanics compared to

Newtonian mechanics, Newtonian mechanics will be used to derive the equations of motion for a simple case

of the rolling disk where the CM and GC coincide and where there is a single control mass; in addition, this

calculation will serve to validate the equations of motion obtained earlier using Lagrangian mechanics (i.e.

Lagrange-d’Alembert’s principle with Euler-Poincaré’s method).

Consider a disk of mass m0 and radius r whose CM and GC coincide. The moment of inertia of the disk

computed with respect to the CM is d2. The disk rolls without slipping along a flat surface in a uniform

gravitational field of magnitude g. The disk is actuated by a single control mass of mass m1 that moves along

a circular trajectory of radius r1, with 0 < r1 < r, centered on the disk’s GC. The spatial e1-component

of the disk’s GC is given by z(t). Since z(t) = za − r(φ(t) − φa), ż(t) = −rφ̇(t) and z̈(t) = −rφ̈(t). Since

the CM and GC coincide, the body frame coincides with the body frame translated to the GC. The control

mass’s trajectory in the body frame translated to the GC is

ζ1(t) = r1

⎡⎢⎣cos θ1(t)0

sin θ1(t)

⎤⎥⎦ (5.78)
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(a) Sir Isaac Newton, 1642-1727 [52]. (b) Joseph-Louis Lagrange, 1736-1813 [53].

Figure 5.5: Portraits of Newton and Lagrange, progenitors of classical mechanics.

and in the spatial frame is

z1(t) =

⎡⎢⎣z(t)0
0

⎤⎥⎦+ Λ(t)ζ1(t) =

⎡⎢⎣z(t)0
0

⎤⎥⎦+ r1

⎡⎢⎣cosφ(t) 0 − sinφ(t)

0 1 0

sinφ(t) 0 cosφ(t)

⎤⎥⎦
⎡⎢⎣cos θ1(t)0

sin θ1(t)

⎤⎥⎦

=

⎡⎢⎣z(t) + r1 cos (φ(t) + θ1(t))

0

r1 sin (φ(t) + θ1(t))

⎤⎥⎦ .

(5.79)

Observe that the axis of rotation passes through the CM and that the axis of rotation does not change

direction. Thus, it is straightforward to determine the dynamics of this system via Newtonian mechanics.

Newton’s second law says that the sum of all external forces acting on the disk must equal m0z̈e1 = −m0rφ̈e1

and that the sum of all external torques acting on the disk about the disk’s CM must equal −d2φ̈e2. The

external forces acting on the disk are the force −m1z̈1 −m1ge3 exerted by the accelerating control mass,

the gravitational force −m0ge3 exerted at the CM, a horizontal static frictional force −fse1 exerted by the

surface, a normal force Ne3 exerted by the surface, and an external force Fe exerted at the disk’s GC. See

Figure 5.6 for the free body diagram depicting all the external forces acting on the disk.

Application of Newton’s second law to this system gives the following force and torque balance equations:∑
F1 = −fs + Fe,1 −m1z̈1,1 = m0z̈ = −m0rφ̈ =⇒ fs = m0rφ̈+ Fe,1 −m1z̈1,1∑
F3 = N + Fe,3 −m0g −m1g −m1z̈1,3 = 0 =⇒ N = −Fe,3 + (m0 +m1) g +m1z̈1,3

∑
τ = rfse2 +m1g (z1,1 − z) e2 −m1

⎛⎜⎝z1 −

⎡⎢⎣z0
0

⎤⎥⎦
⎞⎟⎠× z̈1 = −d2φ̈e2.

(5.80)

82



Figure 5.6: A disk actuated by a single control mass.

Plugging the formula for the horizontal static friction force into the torque balance equation yields

r
(
m0rφ̈+ Fe,1 −m1z̈1,1

)
e2 +m1g (z1,1 − z) e2 −m1

⎛⎜⎝z1 −

⎡⎢⎣z0
0

⎤⎥⎦
⎞⎟⎠× z̈1 + d2φ̈e2 = 0, (5.81)

which simplifies to{
d2φ̈+ r

(
m0rφ̈+ Fe,1 −m1

[
z̈ − r1 cos (φ+ θ1)

(
φ̇+ θ̇1

)2
− r1 sin (φ+ θ1)

(
φ̈+ θ̈1

)])

+m1gr1 cos (φ+ θ1)

}
e2

−m1r1

⎡⎢⎣cos (φ+ θ1)

0

sin (φ+ θ1)

⎤⎥⎦×
⎡⎢⎢⎢⎣
z̈ − r1 cos (φ+ θ1)

(
φ̇+ θ̇1

)2
− r1 sin (φ+ θ1)

(
φ̈+ θ̈1

)
0

−r1 sin (φ+ θ1)
(
φ̇+ θ̇1

)2
+ r1 cos (φ+ θ1)

(
φ̈+ θ̈1

)
⎤⎥⎥⎥⎦ = 0.

(5.82)

Equation (5.82) is equivalent to

d2φ̈+ r

(
m0rφ̈+ Fe,1 −m1

[
−rφ̈− r1 cos (φ+ θ1)

(
φ̇+ θ̇1

)2
− r1 sin (φ+ θ1)

(
φ̈+ θ̈1

)])
+m1gr1 cos (φ+ θ1)

−m1r1

{
sin (φ+ θ1)

[
−rφ̈− r1 cos (φ+ θ1)

(
φ̇+ θ̇1

)2
− r1 sin (φ+ θ1)

(
φ̈+ θ̈1

)]
− cos (φ+ θ1)

[
−r1 sin (φ+ θ1)

(
φ̇+ θ̇1

)2
+ r1 cos (φ+ θ1)

(
φ̈+ θ̈1

)]}
= 0,

(5.83)

which simplifies to

d2φ̈+ r

(
m0rφ̈+ Fe,1 +m1

[
rφ̈+ r1 cos (φ+ θ1)

(
φ̇+ θ̇1

)2
+ r1 sin (φ+ θ1)

(
φ̈+ θ̈1

)])
+m1gr1 cos (φ+ θ1) +m1r1

{
rφ̈ sin (φ+ θ1) + r1

(
φ̈+ θ̈1

)}
= 0,

(5.84)
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which further simplifies to the following equation of motion

φ̈ = −
rFe,1 +m1r1

[
cos (φ+ θ1)

{
r
(
φ̇+ θ̇1

)2
+ g

}
+ {r1 + r sin (φ+ θ1)} θ̈1

]
d2 + (m0 +m1)r2 +m1r1 [r1 + 2r sin (φ+ θ1)]

. (5.85)

Under all these assumptions for this particular rolling disk, a calculation shows that equation (5.85) coincides

with equation (5.77), which was derived earlier by variational methods (i.e. Lagrangian mechanics).

5.C Controlled Equations of Motion

The results of the previous section are now used to derive the controlled equations of motion for the rolling

disk and ball. First, using the results of Subsection 5.B.4, the controlled equations of motion for a rolling

disk actuated by internal point masses that move along rails fixed within the disk are derived. Next, using

the results of Subsection 5.B.3, the controlled equations of motion for a rolling ball actuated by internal

point masses that move along rails fixed within the ball are derived.

5.C.1 Controlled Equations of Motion for the Rolling Disk

Before attacking the rolling ball, the controlled equations of motion are first developed for the rolling disk,

which is a simpler mechanical system. Let z and ż denote the spatial e1 position and velocity, respectively,

of the disk’s GC, and recall that θ =
[
θ1 θ2 . . . θn

]T
denotes the vector of the control mass parame-

terizations. If the disk’s GC is at initial spatial e1 position za and if the disk’s initial orientation is φa at

initial time t = a, note that the spatial e1 position and velocity of the disk’s GC are z = za− r (φ− φa) and

ż = −rφ̇, respectively, due to the sign convention adopted for φ in Subsection 5.B.4. The rotation matrix

that maps the body to spatial frame at time t is a function of φ(t) and is given by

Λ̃(φ(t)) = Λ(t) =

⎡⎢⎣cosφ(t) 0 − sinφ(t)

0 1 0

sinφ(t) 0 cosφ(t)

⎤⎥⎦ . (5.86)

Suppose it is desired to roll the disk from some initial configuration at a prescribed or free initial time a to

some final configuration at a prescribed or free final time b, without moving the control masses too rapidly

along their control rails. In addition, in between the initial and final times, it may be desired that the disk’s

GC tracks a prescribed spatial e1 path zd or traces out a minimum energy path. Finally, if the initial or

final time is free, it may be desired to minimize the duration b− a of the maneuver. How must the control

masses be moved in order to accomplish these tasks? This problem can be solved by posing it as an optimal

control problem.

Concretely, at the prescribed or free initial time a, the positions of the control mass parameterizations

are prescribed to be θ(a) = θa, the velocities of the control mass parameterizations are prescribed to be

θ̇(a) = θ̇a, the spatial e1 position of the disk’s GC is prescribed to be z(a) = za− r (φ(a)− φa) = za (which
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is equivalent to prescribing the disk’s orientation to be φ(a) = φa), and the spatial e1 velocity of the disk’s

GC is prescribed to be ż(a) = −rφ̇(a) = ża (which is equivalent to prescribing the rate of change of the

disk’s orientation to be φ̇(a) = − ża
r ).

Furthermore, at the prescribed or free final time b, some components (determined by the projection operator

Π) of the disk’s center of mass expressed in the spatial frame translated to the GC are prescribed to be

Π

(
Λ̃ (φ(b))

[
1

M

n∑
i=0

miζi (θi(b))

])
= ∆b, (5.87)

the velocities of the control mass parameterizations are prescribed to be θ̇(b) = θ̇b, the spatial e1 position

of the disk’s GC is prescribed to be z(b) = za − r (φ(b)− φa) = zb (which is equivalent to prescribing the

disk’s orientation to be φ(b) = φa − zb−za
r ), and the spatial e1 velocity of the disk’s GC is prescribed to

be ż(b) = −rφ̇(b) = żb (which is equivalent to prescribing the rate of change of the disk’s orientation to be

φ̇(b) = − żb
r ).

For example, if it is desired to start and stop the disk at rest, then Π is projection onto the first component,

∆b = ∆b = 0, θa and φa are such that

Π

(
Λ̃ (φa)

[
1

M

n∑
i=0

miζi (θa,i)

])
= 0, (5.88)

θ̇a = 0, ża = 0, θ(b) and φ(b) are such that

Π

(
Λ̃ (φ(b))

[
1

M

n∑
i=0

miζi (θi(b))

])
= 0, (5.89)

θ̇b = 0, and żb = 0. With this choice of Π, (5.88) and (5.89) mean that the CM in the spatial frame

translated to the GC is above or below the GC at the initial and final times.

The system state x and control u are

x =

⎡⎢⎢⎢⎢⎣
θ

θ̇

φ

φ̇

⎤⎥⎥⎥⎥⎦ and u = θ̈. (5.90)

The system dynamics defined for a ≤ t ≤ b are

ẋ =

⎡⎢⎢⎢⎢⎣
θ̇

θ̈

φ̇

φ̈

⎤⎥⎥⎥⎥⎦ = f (t,x,u, µ) ≡

⎡⎢⎢⎢⎢⎣
θ̇

u

φ̇

κ (x,u)

⎤⎥⎥⎥⎥⎦ , (5.91)
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where κ (x,u) is given by the right-hand side of (5.77), the prescribed initial conditions at time t = a are

σ (a,x(a), µ) =

⎡⎢⎢⎢⎢⎣
θ(a)− θa
θ̇(a)− θ̇a
φ(a)− φa

−rφ̇(a)− ża

⎤⎥⎥⎥⎥⎦ = 0, (5.92)

and the prescribed final conditions at time t = b are

ψ (b,x(b), µ) =

⎡⎢⎢⎢⎢⎣
Π
(
Λ̃ (φ(b))

[
1
M

∑n
i=0 miζi (θi(b))

])
−∆b

θ̇(b)− θ̇b
za − r (φ(b)− φa)− zb

−rφ̇(b)− żb

⎤⎥⎥⎥⎥⎦ = 0. (5.93)

Consider the endpoint and integrand cost functions

p (a,x(a), b,x(b), µ) =
υa
2

(a− ae)
2
+

υb
2

(b− be)
2

(5.94)

and

L (t,x,u, µ) =
α

2
(za − r (φ− φa)− zd)

2
+

β

2

(
−rφ̇

)2
+

n∑
i=1

γi
2
θ̈2i + δ, (5.95)

for constants ae and be and for fixed nonnegative constants υa, υb, α, β, γi, 1 ≤ i ≤ n, and δ so that the

performance index is

J = p (a,x(a), b,x(b), µ) +

∫ b

a

L (t,x,u, µ) dt

=
υa
2

(a− ae)
2
+

υb
2

(b− be)
2
+

∫ b

a

[
α

2
(za − r (φ− φa)− zd)

2
+

β

2

(
−rφ̇

)2
+

n∑
i=1

γi
2
θ̈2i + δ

]
dt.

(5.96)

The first summand υa

2 (a− ae)
2
in p encourages the initial time a to be near ae if the initial time is free,

while the second summand υb

2 (b− be)
2
in p encourages the final time b to be near be if the final time is free.

The first summand α
2 (za − r(φ− φa)− zd)

2
in L encourages the disk’s GC to track the desired spatial e1

path zd, the second summand β
2

(
−rφ̇

)2
in L encourages the disk’s GC to track a minimum energy path,

the next n summands γi

2 θ̈
2
i , 1 ≤ i ≤ n, in L limit the magnitude of the acceleration of the ith control mass

parameterization, and the final summand δ in L encourages a minimum time maneuver.

For example, the desired spatial e1 path might have the form

zd(t) = [zaw(t) + z̃d(t) (1− w(t))] (1− y(t)) + zby(t), (5.97)

where

S(t) =
1

2

[
1 + tanh

(
−t
ϵ

)]
, (5.98)

w(t) = S (t− ae) , (5.99)
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and

y(t) = S (−t+ be) . (5.100)

zd (5.97) holds steady at za for t < ae, smoothly transitions between za and z̃d at t = ae, follows z̃d for

ae < t < be, smoothly transitions between z̃d and zb at t = be, and holds steady at zb for be < t. S (5.98) is

a time-reversed sigmoid function, i.e. a smooth approximation of the time-reversed unit step function; ϵ in

(5.98) is a parameter such as .01 that determines how rapidly S (5.98) transitions from 1 to 0 at time 0. w

(5.99) is the time-translation of S (5.98) to time ae and y (5.100) is the time-translation of the time-reversal

of S (5.98) to time be. w (5.99) enables zd (5.97) to smoothly transition between za and z̃d at t = ae, while

y (5.100) enables zd (5.97) to smoothly transition between z̃d and zb at t = be. z̃d, which appears in (5.97),

might be the cubic polynomial

z̃d(t) = k1

[
−1

3
t3 +

1

2
(ae + be) t− aebet+ k2

]
= k1 [q(t) + k2] , (5.101)

where

q(t) = −1

3
t3 +

1

2
(ae + be) t− aebet, k1 =

zb − za
q(be)− q(ae)

, and k2 =
zb
k1
− q(be). (5.102)

z̃d has the special properties z̃d(ae) = za, ˙̃zd(ae) = 0, z̃d(be) = zb, and ˙̃zd(be) = 0, so that the disk’s GC

is encouraged to start with zero velocity at e1-coordinate za at t = ae and to stop with zero velocity at

e1-coordinate zb at t = be. Figure 5.7 illustrates (5.97) using (5.101) with ae = 0, za = 0, be = 2, zb = 10,

and ϵ = .01.

0 0.5 1 1.5 2
Time

0

2

4

6

8

10
Desired Path of Disk's GC

Figure 5.7: Plot of the desired path of the disk’s GC. The disk’s GC starts from rest at z = 0 at time t = 0,
moves to the right for 0 < t < 2, and stops at rest at z = 10 at time t = 2.

The optimal control problem for the rolling disk is

min
a,b,u

J s.t.

⎧⎪⎨⎪⎩
ẋ = f (t,x,u, µ) ,

σ (a,x(a), µ) = 0,

ψ (b,x(b), µ) = 0.

(5.103)

Observe that the optimal control problem encapsulated by (5.103) ignores path inequality constraints such as
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D (t,x,u, µ) ≤ 0, where D is a r×1 vector-valued function. Path inequality constraints can be incorporated

in (5.103) as soft constraints through penalty functions in the integrand cost function L or the endpoint cost

function p.

The indirect method, discussed in Section 3.B, is applied now to (5.103) to construct the endpoint function

and regular Hamiltonian needed to formulate the ODE TPBVP (3.15), (3.16), and (3.17), which render the

controlled equations of motion for the rolling disk.

The endpoint function is

G (a,x(a), ξ, b,x(b),ν, µ) = p (a,x(a), b,x(b), µ) + ξTσ (a,x(a), µ) + νTψ (b,x(b), µ)

=
υa
2

(a− ae)
2
+

υb
2

(b− be)
2
+ ξT

⎡⎢⎢⎢⎢⎣
θ(a)− θa
θ̇(a)− θ̇a
φ(a)− φa

−rφ̇(a)− ża

⎤⎥⎥⎥⎥⎦

+ νT

⎡⎢⎢⎢⎢⎣
Π
(
Λ̃ (φ(b))

[
1
M

∑n
i=0 miζi (θi(b))

])
−∆b

θ̇(b)− θ̇b
za − r (φ(b)− φa)− zb

−rφ̇(b)− żb

⎤⎥⎥⎥⎥⎦

(5.104)

and the Hamiltonian is

H (t,x,λ,u, µ) = L (t,x,u, µ) + λTf (t,x,u, µ)

=
α

2
(za − r (φ− φa)− zd)

2
+

β

2

(
−rφ̇

)2
+

n∑
i=1

γi
2
θ̈2i + δ + λT

⎡⎢⎢⎢⎢⎣
θ̇

u

φ̇

κ (x,u)

⎤⎥⎥⎥⎥⎦ .
(5.105)

Recall that

κ (x,u) =
−rFe,1 +

∑n
i=0 miKi

d2 +
∑n

i=0 mi

[
(r sinφ+ ζi,1)

2
+ (r cosφ+ ζi,3)

2
] , (5.106)

where Ki for 0 ≤ i ≤ n is defined as

Ki =
(
g + rφ̇2

)
(ζi,3 sinφ− ζi,1 cosφ) + (r cosφ+ ζi,3)

(
−2φ̇θ̇iζ ′i,3 + θ̇2i ζ

′′
i,1 + θ̈iζ

′
i,1

)
− (r sinφ+ ζi,1)

(
2φ̇θ̇iζ

′
i,1 + θ̇2i ζ

′′
i,3 + θ̈iζ

′
i,3

)
=
(
g + rφ̇2

)
(ζi,3 sinφ− ζi,1 cosφ) + (r cosφ+ ζi,3)

(
−2φ̇θ̇iζ ′i,3 + θ̇2i ζ

′′
i,1

)
− (r sinφ+ ζi,1)

(
2φ̇θ̇iζ

′
i,1 + θ̇2i ζ

′′
i,3

)
+
[
(r cosφ+ ζi,3) ζ

′
i,1 − (r sinφ+ ζi,1) ζ

′
i,3

]
θ̈i .

(5.107)

Differentiating the Hamiltonian (5.105) with respect to the components of the control u gives

Hui
= Hθ̈i

= γiθ̈i + λn+i + λ2n+2

mi

[
(r cosφ+ ζi,3) ζ

′
i,1 − (r sinφ+ ζi,1) ζ

′
i,3

]
d2 +

∑n
i=0 mi

[
(r sinφ+ ζi,1)

2
+ (r cosφ+ ζi,3)

2
] , (5.108)
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Huiuj = Hθ̈iθ̈j
= γiδij , (5.109)

and

Huu = diag
[
γ1 γ2 . . . γn

]
. (5.110)

By (5.110), Huu > 0 iff γi > 0 for all 1 ≤ i ≤ n. Consequently, the optimal control problem is regular iff

γi > 0 for all 1 ≤ i ≤ n. Assume that the optimal control problem is regular, so that γi > 0 for all 1 ≤ i ≤ n.

Hu = 0 iff Hui = 0 for all 1 ≤ i ≤ n. From (5.108),

Hui
= 0 ⇐⇒ θ̈i = −γ−1

i

⎧⎨⎩λn+i + λ2n+2

mi

[
(r cosφ+ ζi,3) ζ

′
i,1 − (r sinφ+ ζi,1) ζ

′
i,3

]
d2 +

∑n
i=0 mi

[
(r sinφ+ ζi,1)

2
+ (r cosφ+ ζi,3)

2
]
⎫⎬⎭ . (5.111)

(5.111) shows that the control θ̈ may be expressed as a function π of x, λ, and µ; to be consistent with the

notation of Section 3.B, π will also depend on t even though in this particular example it does not. The

regular Hamiltonian is

Ĥ (t,x,λ, µ) = H (t,x,λ,π (t,x,λ, µ) , µ)

=
α

2
(za − r (φ− φa)− zd)

2
+

β

2

(
−rφ̇

)2
+

n∑
i=1

γi
2
π2
i (t,x,λ, µ) + δ

+ λT

⎡⎢⎢⎢⎢⎣
θ̇

π (t,x,λ, µ)

φ̇

κ (x,π (t,x,λ, µ))

⎤⎥⎥⎥⎥⎦ .

(5.112)

One way to solve the optimal control problem (5.103) for the rolling disk is to solve the ODE TPBVP given

by (3.15), (3.16), and (3.17) using the endpoint function (5.104) and the regular Hamiltonian (5.112).

5.C.2 Controlled Equations of Motion for the Rolling Ball

Having derived the controlled equations of motion for the rolling disk, the controlled equations of motion are

now developed for the rolling ball. Before proceeding, some useful terminology is defined or recalled. Given

a vector

v =

⎡⎢⎣v1v2
v3

⎤⎥⎦ =
[
v1 v2 v3

]T
∈ R3, (5.113)

the projected vector consisting of the first two components of v is

v12 =

[
v1

v2

]
=
[
v1 v2

]T
∈ R2. (5.114)

Since a versor is used to parameterize the rolling ball’s orientation matrix, quaternions and versors are briefly

reviewed here; see Appendix E and the references mentioned there for a more complete review. H denotes
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the set of quaternions, which is isomorphic to R4. A quaternion p ∈ H can be expressed as the column vector

p =

⎡⎢⎢⎢⎢⎣
p0

p1

p2

p3

⎤⎥⎥⎥⎥⎦ =
[
p0 p1 p2 p3

]T
=
[
p0 ; p1 ; p2 ; p3

]
. (5.115)

Given a column vector v ∈ R3, v♯ is the quaternion
[
0 ; v

]
∈ H; that is,

v♯ =

[
0

v

]
=
[
0 ; v

]
. (5.116)

Given a quaternion p ∈ H, p♭ ∈ R3 is the column vector such that

p =

[
p0

p♭

]
=
[
p0 ; p

♭
]
. (5.117)

Given a column vector v ∈ R3, note that (
v♯
)♭

= v. (5.118)

However, given a quaternion p ∈ H,

(
p♭
)♯

= p iff p =

[
0

p♭

]
=
[
0 ; p♭

]
. (5.119)

Given quaternions p, q ∈ H, their product is

pq =
[
p0 ; p

♭
] [

q0 ; q
♭
]
=
[
p0q0 − p♭ · q♭ ; p0q♭ + q0p

♭ + p♭ × q♭
]

(5.120)

and their dot product is

p·q =
[
p0 ; p

♭
]
·
[
q0 ; q

♭
]
=
[
p0 ; p1 ; p2 ; p3

]
·
[
q0 ; q1 ; q2 ; q3

]
= p0q0+p♭·q♭ = p0q0+p1q1+p2q2+p3q3. (5.121)

S ⊂ H denotes the set of unit quaternions, also called versors, which is isomorphic to S3 ⊂ R4. A versor

q ∈ S can be expressed as the column vector

q =

⎡⎢⎢⎢⎢⎣
q0

q1

q2

q3

⎤⎥⎥⎥⎥⎦ =
[
q0 q1 q2 q3

]T
=
[
q0 ; q1 ; q2 ; q3

]
such that q · q = q20 + q21 + q22 + q23 = 1. (5.122)

The rolling ball’s orientation matrix Λ ∈ SO(3) is parameterized by the versor q ∈ S. If Ω ∈ R3 is the rolling

ball’s body angular velocity, then the time derivative of q is

q̇ =
1

2
qΩ♯. (5.123)
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If Y ∈ R3 is a body frame vector, then the rotation of Y by Λ is

ΛY =
[
qY♯q−1

]♭
. (5.124)

If y ∈ R3 is a spatial frame vector, then the rotation of y by Λ−1 is

Λ−1y =
[
q−1y♯q

]♭
. (5.125)

Since the third coordinate of the location of the ball’s GC is always 0, only the first two coordinates of the

ball’s GC are needed to determine the location of the ball’s GC. The first two coordinates of the ball’s GC

are denoted by z.

Suppose it is desired to roll the ball from some initial configuration at a prescribed or free initial time a to

some final configuration at a prescribed or free final time b, without moving the control masses too rapidly

along their control rails. In addition, in between the initial and final times, it may be desired that the ball’s

GC tracks a prescribed spatial e1-e2 path zd or traces out a minimum energy path, all while avoiding some

obstacles. Finally, if the initial or final time is free, it may be desired to minimize the duration b− a of the

maneuver. How must the control masses be moved in order to accomplish these tasks? This problem can be

solved by posing it as an optimal control problem.

Concretely, at the prescribed or free initial time a, the positions of the control mass parameterizations

are prescribed to be θ(a) = θa, the velocities of the control mass parameterizations are prescribed to be

θ̇(a) = θ̇a, the orientation of the ball is prescribed to be q(a) = qa, the body angular velocity of the ball is

prescribed to be Ω(a) = Ωa, and the spatial e1-e2 position of the ball’s GC is prescribed to be z(a) = za.

Furthermore, at the prescribed or free final time b, some components (determined by the projection operator

Π) of the ball’s center of mass expressed in the spatial frame translated to the GC are prescribed to be

Π

⎛⎜⎝
⎡⎣q(b)[ 1

M

n∑
i=0

miζi (θi(b))

]♯
q(b)−1

⎤⎦♭
⎞⎟⎠ = ∆b, (5.126)

the velocities of the control mass parameterizations are prescribed to be θ̇(b) = θ̇b, the body angular velocity

of the ball is prescribed to be Ω(b) = Ωb, and the spatial e1-e2 position of the ball’s GC is prescribed to be

z(b) = zb.

For example, if it is desired to start and stop the ball at rest, then Π is projection onto the first two

components, ∆b =

[
0

0

]
, θa and qa are such that

Π

⎛⎜⎝
⎡⎣qa [ 1

M

n∑
i=0

miζi (θa,i)

]♯
q−1
a

⎤⎦♭
⎞⎟⎠ =

[
0

0

]
, (5.127)
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θ̇a = 0, Ωa = 0, θ(b) and q(b) are such that

Π

⎛⎜⎝
⎡⎣q(b)[ 1

M

n∑
i=0

miζi (θi(b))

]♯
q(b)−1

⎤⎦♭
⎞⎟⎠ =

[
0

0

]
, (5.128)

θ̇b = 0, and Ωb = 0. With this choice of Π, (5.127) and (5.128) mean that the CM in the spatial frame

translated to the GC is above or below the GC at the initial and final times.

The system state x and control u are

x =

⎡⎢⎢⎢⎢⎢⎢⎣
θ

θ̇

q

Ω

z

⎤⎥⎥⎥⎥⎥⎥⎦ and u = θ̈, (5.129)

where θ, θ̇, θ̈ ∈ Rn, q ∈ S, Ω ∈ R3, and z ∈ R2. The system dynamics defined for a ≤ t ≤ b are

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣
θ̇

θ̈

q̇

Ω̇

ż

⎤⎥⎥⎥⎥⎥⎥⎦ = f (t,x,u, µ) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇

u
1
2qΩ

♯

κ (x,u)([
qΩ♯q−1

]♭
× re3

)
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.130)

where κ (x,u) is given by the right-hand side of the formula for Ω̇ in (5.54):

κ (x,u) =

[
n∑

i=0

miŝ
2
i − I

]−1 [
Ω× IΩ+ rΓ̃× Γ

+

n∑
i=0

misi ×
{
gΓ+Ω×

(
Ω× ζi + 2θ̇iζ

′
i

)
+ θ̇2i ζ

′′
i + θ̈iζ

′
i

}]
.

(5.131)

Note that in order to construct κ (x,u), Γ = Λ−1e3 and Γ̃ = Λ−1Fe must be constructed. Given q, this

can be accomplished by first constructing Λ from q or directly from q by using the formulas Γ = Λ−1e3 =[
q−1e♯3q

]♭
and Γ̃ = Λ−1Fe =

[
q−1F♯

eq
]♭
. Likewise, the final formula in (5.130) is ż = (ω × re3)12, where

ω = ΛΩ =
[
qΩ♯q−1

]♭
. Thus, given q, ω can be constructed by first constructing Λ from q or directly from

q via ω =
[
qΩ♯q−1

]♭
. The most computationally efficient method to construct Γ = Λ−1e3 =

[
q−1e♯3q

]♭
,

Γ̃ = Λ−1Fe =
[
q−1F♯

eq
]♭
, and ω = ΛΩ =

[
qΩ♯q−1

]♭
is to construct Λ from q and to then multiply Λ−1 = ΛT

against e3 and Fe and to multiply Λ against Ω.
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The prescribed initial conditions at time t = a are

σ (a,x(a), µ) =

⎡⎢⎢⎢⎢⎢⎢⎣
θ(a)− θa
θ̇(a)− θ̇a
q(a)− qa

Ω(a)−Ωa

z(a)− za

⎤⎥⎥⎥⎥⎥⎥⎦ = 0, (5.132)

and the prescribed final conditions at time t = b are

ψ (b,x(b), µ) =

⎡⎢⎢⎢⎢⎢⎣
Π

([
q(b)

[
1
M

∑n
i=0 miζi (θi(b))

]♯
q(b)−1

]♭)
−∆b

θ̇(b)− θ̇b
Ω(b)−Ωb

z(b)− zb

⎤⎥⎥⎥⎥⎥⎦ = 0. (5.133)

Consider the endpoint and integrand cost functions

p (a,x(a), b,x(b), µ) =
υa
2

(a− ae)
2
+

υb
2

(b− be)
2

(5.134)

and

L (t,x,u, µ) =
α

2
|z − zd|2 +

β

2

⏐⏐⏐⏐([qΩ♯q−1
]♭
× re3

)
12

⏐⏐⏐⏐2 + n∑
i=1

γi
2
θ̈2i +

K∑
j=1

Vj (z, µ) + δ, (5.135)

for constants ae and be and for fixed nonnegative constants υa, υb, α, β, γi, 1 ≤ i ≤ n, and δ so that the

performance index is

J = p (a,x(a), b,x(b), µ) +

∫ b

a

L (t,x,u, µ) dt

=
υa
2

(a− ae)
2
+

υb
2

(b− be)
2

+

∫ b

a

⎡⎣α
2
|z − zd|2 +

β

2

⏐⏐⏐⏐([qΩ♯q−1
]♭
× re3

)
12

⏐⏐⏐⏐2 + n∑
i=1

γi
2
θ̈2i +

K∑
j=1

Vj (z, µ) + δ

⎤⎦dt.

(5.136)

The first summand υa

2 (a− ae)
2
in p encourages the initial time a to be near ae if the initial time is free,

while the second summand υb

2 (b− be)
2
in p encourages the final time b to be near be if the final time is free.

The first summand α
2 |z − zd|

2
in L encourages the ball’s GC to track the desired spatial e1-e2 path zd,

the second summand β
2

⏐⏐⏐⏐([qΩ♯q−1
]♭
× re3

)
12

⏐⏐⏐⏐2 in L encourages the ball’s GC to track a minimum energy

path, the next n summands γi

2 θ̈
2
i , 1 ≤ i ≤ n, in L limit the magnitude of the acceleration of the ith control

mass parameterization, the next K summands Vj (z, µ), 1 ≤ j ≤ K, in L represent obstacles to be avoided,

and the final summand δ in L encourages a minimum time maneuver.
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For example, the desired spatial e1-e2 path might have the form

zd(t) = [zaw(t) + z̃d(t) (1− w(t))] (1− y(t)) + zby(t), (5.137)

where w, y, and S are given by (5.99), (5.100), and (5.98), respectively. zd (5.137) holds steady at za for

t < ae, smoothly transitions between za and z̃d at t = ae, follows z̃d for ae < t < be, smoothly transitions

between z̃d and zb at t = be, and holds steady at zb for be < t. z̃d, which appears in (5.137), might be

z̃d(t) = k1

[{
−1

3
t3 +

1

2
(ae + be) t− aebet

}[
1

1

]
+ k2

]
= k1

[
q(t)

[
1

1

]
+ k2

]
, (5.138)

where

q(t) = −1

3
t3 +

1

2
(ae + be) t− aebet, k1 =

zb − za
q(be)− q(ae)

, and k2 =
zb
k1
− q(be)

[
1

1

]
. (5.139)

The multiplication between the vectors k1 and q(t)

[
1

1

]
+k2 in (5.138) is meant to be performed component-

wise. The division zb

k1
used in the construction of k2 in (5.139) is meant to be performed component-wise; to

avoid division by zero, if a component of k1 is zero, then the corresponding component of k2 is set to zero.

z̃d has the special properties z̃d(ae) = za, ˙̃zd(ae) =
[
0 0

]T
, z̃d(be) = zb, and ˙̃zd(be) =

[
0 0

]T
, so that

the disk’s GC is encouraged to start with zero velocity at za at t = ae and to stop with zero velocity at zb

at t = be. Figure 5.8 illustrates (5.137) using (5.138) with ae = 0, za =
[
0 0

]T
, be = .5, zb =

[
1 1

]T
, and

ϵ = .01.

0

0.1

0.2

0

0.3

0.4

1

Desired GC Path

0.5 0.5
1 0

Figure 5.8: Plot of the desired path of the ball’s GC. The ball’s GC starts from rest at z =
[
0 0

]T
at time

t = 0 and stops at rest at z =
[
1 1

]T
at time t = .5.

Illustratively, for 1 ≤ j ≤ K, the jth obstacle of height hj and radius ρj with center at spatial e1-e2 position

vj =
[
vj,1 vj,2

]T
might be modeled via the function

Vj (z, µ) = hj S

(√
(z1 − vj,1)

2
+ (z2 − vj,2)

2 − ρj

)
, (5.140)
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where S is given by (5.98). As indicated by (5.140), the radial distance from the ball’s GC to the obstacle

center should exceed the obstacle radius ρj for successful obstacle avoidance. In order to encourage the entire

ball to avoid the obstacle, the obstacle radius ρj must include the ball’s radius r. That is, if the physical

radius of the obstacle is ϵj , then set ρj = r+ ϵj to encourage the entire ball to stay away from the obstacle;

if ρj = ϵj , then only the ball’s GC is encouraged to stay away from the obstacle.

The ODE formulation of the optimal control problem for the rolling ball is

min
a,b,u

J s.t.

⎧⎪⎨⎪⎩
ẋ = f (t,x,u, µ) ,

σ (a,x(a), µ) = 0,

ψ (b,x(b), µ) = 0.

(5.141)

There are also two DAE formulations of the optimal control problem for the rolling ball which explicitly

enforce the algebraic versor constraint on q and which are mathematically equivalent to (5.141). In the first

DAE formulation an additional control, q̇0, is added to the control u. The first DAE formulation is

min
a,b,u1

J s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ = f1 (t,x,u1, µ) ,

h1 (x) = 1,

σ (a,x(a), µ) = 0,

ψ (b,x(b), µ) = 0,

(5.142)

where

u1 =

[
θ̈

q̇0

]
, f1 (t,x,u1, µ) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇

u1

1
2

(
qΩ♯

)♭
κ
(
x, θ̈

)([
qΩ♯q−1

]♭
× re3

)
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and h1 (x) = q · q. (5.143)

In the second DAE formulation, the first component, q0, of the versor q is moved from the state x to the

control u and an imitator state, q̃0, is used to replace q0 in x. q̃a,0 = qa,0, so that with perfect integration

(i.e. no numerical integration errors), q̃0(t) = q0(t) for a ≤ t ≤ b. Define q̃ =

[
q̃0

q♭

]
; with perfect integration,

q̃(t) =

[
q̃0(t)

q♭(t)

]
=

[
q0(t)

q♭(t)

]
= q(t) for a ≤ t ≤ b. q̃0 is added to the state since the final conditions require

knowledge of q0, which is unavailable if it has been moved to the control since the final conditions are not a

function of the control. The second DAE formulation is

min
a,b,u2

J s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ2 = f2 (t,x2,u2, µ) ,

h2 (x2,u2) = 1,

σ2 (a,x2(a), µ) = 0,

ψ2 (b,x2(b), µ) = 0,

(5.144)
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where

x2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

θ̇

q̃0

q♭

Ω

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u2 =

[
θ̈

q0

]
, f2 (t,x2,u2, µ) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇

θ̈
1
2qΩ

♯

κ
(
x, θ̈

)([
qΩ♯q−1

]♭
× re3

)
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, h2 (x2,u2) = q · q, (5.145)

σ2 (a,x2(a), µ) =

⎡⎢⎢⎢⎢⎢⎢⎣
θ(a)− θa
θ̇(a)− θ̇a
q̃(a)− qa

Ω(a)−Ωa

z(a)− za

⎤⎥⎥⎥⎥⎥⎥⎦ = 0, (5.146)

and

ψ2 (b,x2(b), µ) =

⎡⎢⎢⎢⎢⎢⎣
Π

([
q̃(b)

[
1
M

∑n
i=0 miζi (θi(b))

]♯
q̃(b)−1

]♭)
−∆b

θ̇(b)− θ̇b
Ω(b)−Ωb

z(b)− zb

⎤⎥⎥⎥⎥⎥⎦ = 0. (5.147)

Even though both DAE formulations (5.142) and (5.144) are mathematically equivalent to the ODE formu-

lation (5.141), the DAE formulations (5.142) and (5.144) tend to be numerically more stable to solve than

the ODE formulation (5.141), as explained in Example 6.12 “Reorientation of an Asymmetric Rigid Body” of

[54]. While the second DAE formulation (5.144) is computationally more efficient (i.e. faster) than the first

(5.142) because it explicitly constructs the control q0 rather than q̇0, the second DAE formulation (5.144)

is not as accurate as the first (5.142), because it only constructs an approximation, q̃0(b), of q0(b), which is

needed for the final conditions. The direct method was used to solve all three formulations of the optimal

control problem for the rolling ball. Because DAE TPBVP solvers are not readily available in MATLAB, the

indirect method was only applied to the ODE formulation (5.141).

Observe that the optimal control problem encapsulated by (5.141), (5.142), and (5.144) ignores path inequal-

ity constraints such as D (t,x,u, µ) ≤ 0, D1 (t,x1,u, µ) ≤ 0, and D2 (t,x2,u2, µ) ≤ 0, where D, D1, and

D2 are r × 1 vector-valued functions. Path inequality constraints can be incorporated in (5.141), (5.142),

and (5.144) as soft constraints through penalty functions in the integrand cost function L or the endpoint

cost function p.

The indirect method, discussed in Section 3.B, is applied now to (5.141) to construct the endpoint function

and regular Hamiltonian needed to formulate the ODE TPBVP (3.15), (3.16), and (3.17), which render the

controlled equations of motion for the rolling ball.
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The endpoint function is

G (a,x(a), ξ, b,x(b),ν, µ) = p (a,x(a), b,x(b), µ) + ξTσ (a,x(a), µ) + νTψ (b,x(b), µ)

=
υa
2

(a− ae)
2
+

υb
2

(b− be)
2
+ ξT

⎡⎢⎢⎢⎢⎢⎢⎣
θ(a)− θa
θ̇(a)− θ̇a
q(a)− qa

Ω(a)−Ωa

z(a)− za

⎤⎥⎥⎥⎥⎥⎥⎦

+ νT

⎡⎢⎢⎢⎢⎢⎣
Π

([
q(b)

[
1
M

∑n
i=0 miζi (θi(b))

]♯
q(b)−1

]♭)
−∆b

θ̇(b)− θ̇b
Ω(b)−Ωb

z(b)− zb

⎤⎥⎥⎥⎥⎥⎦

(5.148)

and the Hamiltonian is

H (t,x,λ,u, µ) = L (t,x,u, µ) + λTf (t,x,u, µ)

=
α

2
|z − zd|2 +

β

2

⏐⏐⏐⏐([qΩ♯q−1
]♭
× re3

)
12

⏐⏐⏐⏐2 + n∑
i=1

γi
2
θ̈2i +

K∑
j=1

Vj (z, µ) + δ

+ λT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇

u
1
2qΩ

♯

κ (x,u)([
qΩ♯q−1

]♭
× re3

)
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.149)

Let λΩ =
[
λ2n+5 λ2n+6 λ2n+7

]T
. Recall that

κ (x,u) =

[
n∑

i=0

miŝ
2
i − I

]−1 [
Ω× IΩ+ rΓ̃× Γ

+

n∑
i=0

misi ×
{
gΓ+Ω×

(
Ω× ζi + 2θ̇iζ

′
i

)
+ θ̇2i ζ

′′
i + θ̈iζ

′
i

}]
.

(5.150)

Differentiating the Hamiltonian (5.149) with respect to the components of the control u gives

Hui = Hθ̈i
= γiθ̈i + λn+i + λ

T
Ω

[
n∑

i=0

miŝ
2
i − I

]−1 [
misi × ζ′i

]
, (5.151)

Huiuj
= Hθ̈iθ̈j

= γiδij , (5.152)

and

Huu = diag
[
γ1 γ2 . . . γn

]
. (5.153)

By (5.153), Huu > 0 iff γi > 0 for all 1 ≤ i ≤ n. Consequently, the optimal control problem is regular iff
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γi > 0 for all 1 ≤ i ≤ n. Assume that the optimal control problem is regular, so that γi > 0 for all 1 ≤ i ≤ n.

Hu = 0 iff Hui = 0 for all 1 ≤ i ≤ n. From (5.151),

Hui
= 0 ⇐⇒ θ̈i = −γ−1

i

⎧⎨⎩λn+i + λ
T
Ω

[
n∑

i=0

miŝ
2
i − I

]−1 [
misi × ζ′i

]⎫⎬⎭ . (5.154)

(5.154) shows that θ̈ may be expressed as a function π of x, λ, and µ; to be consistent with the notation

of Section 3.B, π will also depend on t even though in this particular example it does not. The regular

Hamiltonian is

Ĥ (t,x,λ, µ) = H (t,x,λ,π (t,x,λ, µ) , µ)

=
α

2
|z − zd|2 +

β

2

⏐⏐⏐⏐([qΩ♯q−1
]♭
× re3

)
12

⏐⏐⏐⏐2 + n∑
i=1

γi
2
π2
i (t,x,λ, µ) +

K∑
j=1

Vj (z, µ) + δ

+ λT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇

π (t,x,λ, µ)
1
2qΩ

♯

κ (x,π (t,x,λ, µ))([
qΩ♯q−1

]♭
× re3

)
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.155)

One way to solve the optimal control problem (5.141) for the rolling ball is to solve the ODE TPBVP given

by (3.15), (3.16), and (3.17) using the endpoint function (5.148) and the regular Hamiltonian (5.155). These

controlled equations of motion for the rolling ball actuated by internal point masses that move along rails

fixed within the ball are new and have not appeared previously in the literature, as far as the author knows.

Note that these controlled equations of motion track the ball’s orientation (i.e. the mapping from body

to spatial frames) and involve many specialized parameters and terms that enable the ball to execute a

wide variety of interesting and useful maneuvers. These controlled equations of motion constitute a novel

contribution of this thesis.

5.D Numerical Solutions of the Controlled Equations of Motion

In this section, the motion of the rolling disk and ball is simulated by numerically solving the controlled

equations of motion (3.15), (3.16), and (3.17) corresponding to the optimal control problems (5.103), for

the rolling disk, and (5.141), for the rolling ball. Subsection 5.D.1 simulates the rolling disk, while Subsec-

tion 5.D.2 simulates the rolling ball. Because the controlled equations of motion have a very small radius of

convergence, a direct method, namely the MATLAB toolbox GPOPS-II [55], is first used to construct a good

initial guess. For the rolling disk, the direct method is used to solve the rolling disk optimal control problem

(5.103). When using the direct method to solve the rolling ball optimal control problem, one of the DAE

formulations (5.142) or (5.144) is solved first. The direct method solution to the DAE formulation is then

used as an initial guess to solve the ODE formulation (5.141), which is consistent with the controlled equa-

tions of motion for the rolling ball, by the direct method; recall that the controlled equations of motion for
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the rolling ball were obtained from the ODE formulation (5.141) of the rolling ball optimal control problem.

The MATLAB automatic differentiation toolbox ADiGator [40, 41] is used to supply vectorized first and second

derivatives (i.e. Jacobians and Hessians) to the direct method solver GPOPS-II.

Starting from the initial guess provided by the direct method, the controlled equations of motion (3.15),

(3.16), and (3.17) are solved by predictor-corrector continuation in the parameter µ, as discussed in Appen-

dices C and D. The MATLAB ODE TPBVP solvers sbvp [56] or bvptwp [57] are utilized by the predictor-

corrector continuation method. By vectorized automatic differentiation of the regular Hamiltonian Ĥ and

non-vectorized automatic differentiation of the endpoint function G, ADiGator is used to numerically con-

struct the normalized ODE velocity function (3.21), the Jacobians of the normalized ODE velocity function

(3.22) and (3.23), the normalized BC function (3.39), and the Jacobians of the normalized BC function

(3.41), (3.42), and (3.43), which are needed by the ODE TPBVP solvers sbvp and bvptwp to solve the con-

trolled equations of motion (3.15), (3.16), and (3.17) by predictor-corrector continuation in the parameter

µ.

In contrast to the direct method, the controlled equations of motion obtained via the indirect method have a

very small radius of convergence. Therefore, the direct method is needed to initialize the predictor-corrector

continuation of the controlled equations of motion. Predictor-corrector continuation is used in conjunction

with the indirect, rather than direct, method, because a predictor-corrector continuation direct method

requires a predictor-corrector continuation NLP solver. Even though predictor-corrector continuation NLP

solver algorithms are provided in [58, 59], there do not seem to be any publicly available predictor-corrector

continuation NLP solvers.

5.D.1 Simulations of the Rolling Disk

Numerical solutions of the controlled equations of motion for the rolling disk are presented here. A rolling

disk of mass m0 = 1, radius r = 1, polar moment of inertia d2 = 1, and with the CM coinciding with the GC

(i.e. ζ0 = 0) is simulated. There are n = 4 control masses, each of mass 1 so that m1 = m2 = m3 = m4 = 1,

located on concentric circles centered on the GC of radii r1 = .9, r2 = .63, r3 = .36, and r4 = .1, as shown

in Figure 5.9. The total system mass is M = 5. Gravity is g = 1. The initial time is fixed to a = ae = 0

and the final time is fixed to b = be = 2. The disk’s GC starts at rest at za = 0 at time a = ae = 0 and

stops at rest at zb = 1 at time b = be = 2. Table 5.1 shows parameter values used in the rolling disk’s initial

conditions (5.92) and final conditions (5.93). Since the initial orientation of the disk is φa = 0 and since the

initial configurations of the control masses are given by θa =
[
−π

2 −π
2 −π

2 −π
2

]T
, all the control masses

are initially located directly below the GC. Table 5.2 shows parameter values used in the rolling ball’s final

conditions (5.93). Moreover, for the final conditions (5.93), Π is projection onto the first coordinate. ∆b

and Π are selected so that the total system CM in the spatial frame translated to the GC is located above

or below the GC at the final time b.

The desired GC path zd in the integrand cost function (5.95) is depicted by the red curve in Figures 5.10a

and 5.10b. zd encourages the disk’s GC to track a sinusoidally-modulated linear trajectory connecting z = 0

at t = 0 with z = 1 at t = 2. That is, the disk is encouraged to roll right, then left, then right, then left, and

finally to the right, with the amplitude of each successive roll increasing from the previous one. Specifically,
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Parameter Value

θa

[
−π

2 −π
2 −π

2 −π
2

]T
θ̇a

[
0 0 0 0

]T
φa 0

za 0

ża 0

Table 5.1: Initial condition parameter values for the rolling disk. Refer to (5.92) and (5.93).

Parameter Value

∆b 0

θ̇b

[
0 0 0 0

]T
zb 1

żb 0

Table 5.2: Final condition parameter values for the rolling disk. Refer to (5.93).

zd is given by (5.97), with ϵ = .01 in (5.98) and where z̃d is given by

z̃d(t) =

[
za + (zb − za)

t− ae
be − ae

]
sin

(
9π

2

t− ae
be − ae

)
. (5.156)

Table 5.3 shows the values set for the integrand cost function coefficients in (5.95). Since the initial and final

times are fixed, the integrand cost function coefficient δ in (5.95) and the endpoint cost function coefficients

υa and υb in (5.94) are irrelevant. There is no external force acting on the disk’s GC, so that Fe,1 = 0 in

(5.106).

Parameter Value

α(µ) 20 + .95−µ
.95−.00001 (5000− 20)

β 0

γ1 .1

γ2 .1

γ3 .1

γ4 .1

Table 5.3: Integrand cost function coefficient values for the rolling disk. Refer to (5.95).

The direct method solver GPOPS-II is used to solve the optimal control problem (5.103) when the integrand

cost function coefficient is α = 20. The predictor-corrector continuation indirect method is then used to solve

the optimal control problem (5.103), starting from the direct method solution. The continuation parameter

is µ, which is used to adjust α according to the linear homotopy given in Table 5.3, so that α = 20 when

µ = .95 and α = 5,000 when µ = .00001. The predictor-corrector continuation indirect method begins at

µ = .95, which is consistent with the direct method solution obtained at α = 20.

For the direct method, GPOPS-II was run using the IPOPT NLP solver with the MA57 linear solver. The
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GPOPS-II mesh tolerance is 1e−6 and the IPOPT error tolerance is 1e−7. The sweep predictor-corrector

method discussed in Appendix D was used by the indirect method. For the sweep predictor-corrector

continuation method, the maximum tangent steplength is σmax = 30, there are 250 predictor-corrector

steps, the direction of the initial unit tangent is determined by setting d = −2 to force the continuation

parameter µ to initially decrease, the relative error tolerance is 1e−8, the unit tangent solver is twpbvpc m,

and the monotonic “sweep” continuation solver is acdcc. The numerical results are shown in Figures 5.10

and 5.11. As µ decreases from .95 below −8 during continuation (see Figure 5.11a), α increases from 20 up to

54,866 (see Figure 5.11c). Since α is ratcheted up during continuation, thereby increasing the penalty in the

integrand cost function (5.95) for deviation between the disk’s GC and zd, by the end of continuation, the

disk’s GC tracks zd much more accurately (compare Figures 5.10a vs 5.10b), at the expense of wild control

mass trajectories (compare Figures 5.10c vs 5.10d) and large magnitude controls (compare Figures 5.10e vs

5.10f). Note the turning points at solutions 14 and 19 in Figures 5.11a-5.11d. In Figure 5.11b, note that

the predictor-corrector continuation method has to reduce the tangent steplength below σmax = 30 to get

around the turning points encountered at solutions 14 and 19.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Disk, Control Masses, and Control Rails
in the Body Frame Translated to the GC

Figure 5.9: The disk of radius r = 1 actuated by 4 control masses, m1, m2, m3, and m4, each on its own
circular control rail. The control rail radii are r1 = .9, r2 = .63, r3 = .36, and r4 = .1. The location of the
disk’s CM is denoted by m0.

Based on the turning points, the disk is re-simulated using different parameters for the sweep predictor-

corrector method in order to ratchet up α even more while decreasing the total simulation runtime. In

particular, the maximum tangent steplength used by the sweep predictor-corrector method is adjusted based

on the location of the turning points revealed by the previous simulation. Until the turning points (which

occur at solutions 14 and 19) are passed, σmax = 30, after which σmax is increased linearly to a maximum

of 3,000, as depicted in Figure 5.13b. Because σmax is increased dramatically, only 42 predictor-corrector

steps are executed. The numerical results are shown in Figures 5.12 and 5.13. As µ decreases from .95

below −200 during continuation (see Figure 5.13a), α increases from 20 up to 1,238,285 (see Figure 5.13c).

Since α is ratcheted up during continuation, thereby increasing the penalty in the integrand cost function

(5.95) for deviation between the disk’s GC and zd, by the end of continuation, the disk’s GC tracks zd

very accurately (compare Figures 5.12a vs 5.12b), at the expense of extremely wild control mass trajectories

(compare Figures 5.12c vs 5.12d) and large magnitude controls (compare Figures 5.12e vs 5.12f).
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5.D.2 Simulations of the Rolling Ball

Numerical solutions of the controlled equations of motion for the rolling ball are presented here. A rolling

ball of mass m0 = 1, radius r = 1, principle moments of inertia d1 = d2 = d3 = 1, and with the CM

coinciding with the GC (i.e. ζ0 = 0) is simulated. There are n = 3 control masses, each of mass 1 so

that m1 = m2 = m3 = 1, located on circular control rails centered on the GC of radii r1 = .95, r2 = .9,

and r3 = .85, oriented as shown in Figure 5.14. The total system mass is M = 4. Gravity is g = 1. The

initial time is fixed to a = ae = 0 and the final time is fixed to b = be = .5. The ball’s GC starts at rest

at za =
[
0 0

]T
at time a = ae = 0 and stops at rest at zb =

[
1 1

]T
at time b = be = .5. Table 5.4

shows the parameter values used in the rolling ball’s initial conditions (5.132). The initial configurations of

the control masses are selected so that the total system CM in the spatial frame translated to the GC is

initially located above or below the GC. Table 5.5 shows the parameter values used in the rolling ball’s final

conditions (5.133). Moreover, for the final conditions in (5.133), Π is projection onto the first and second

coordinates. ∆b and Π are selected so that the total system CM in the spatial frame translated to the GC

is located above or below the GC at the final time b.

Parameter Value

θa

[
0 2.037 .7044

]T
θ̇a

[
0 0 0

]T
qa

[
1 0 0 0

]T
Ωa

[
0 0 0

]T
za

[
0 0

]T
Table 5.4: Initial condition parameter values for the rolling ball. Refer to (5.132).

Parameter Value

∆b

[
0 0

]T
θ̇b

[
0 0 0

]T
Ωb

[
0 0 0

]T
zb

[
1 1

]T
Table 5.5: Final condition parameter values for the rolling ball. Refer to (5.133).

The desired GC path zd in the integrand cost function (5.135) is depicted by the red curve in Figures 5.15a,

5.15b, and 5.8. zd encourages the ball’s GC to track a trajectory in the e1-e2 plane connecting z =
[
0 0

]T
at t = 0 with z =

[
1 1

]T
at t = .5. That is, the ball is encouraged to start at z =

[
0 0

]T
at t = 0 with

zero velocity and to stop at z =
[
1 1

]T
at t = .5 with zero velocity. Specifically, zd is given by (5.137),

with ϵ = .01 in (5.98) and where z̃d is given by (5.138).

Table 5.6 shows the values set for the integrand cost function coefficients in (5.135). Since the initial and final

times are fixed, the integrand cost function coefficient δ in (5.135) and the endpoint cost function coefficients
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υa and υb in (5.134) are irrelevant. There are 2 circular obstacles which the ball’s GC should avoid, depicted

in Figures 5.15a and 5.15b. The obstacles appearing in (5.135) are modeled by (5.140); the obstacle centers,

radii, and heights are also shown in Table 5.6. There is no external force acting on the disk’s GC, so that

Γ̃ = Λ−1Fe = 0 in (5.131).

Parameter Value

α 20

β 0

γ1 10

γ2 10

γ3 10

v1

[
.3 .3

]T
v2

[
.7 .7

]T
ρ1 .2

ρ2 .2

h1(µ) .1 + .95−µ
.95−.00001 (1000− .1)

h2(µ) .1 + .95−µ
.95−.00001 (1000− .1)

Table 5.6: Integrand cost function coefficient values for the rolling ball. Refer to (5.135) and (5.140).

The direct method solver GPOPS-II is used to solve the optimal control problem (5.141) when the obstacle

heights appearing in the integrand cost function are h1 = h2 = .1. The predictor-corrector continuation

indirect method is then used to solve the optimal control problem (5.141), starting from the direct method

solution. The continuation parameter is µ, which is used to adjust h1 = h2 according to the linear homotopy

shown in Table 5.6, so that h1 = h2 = .1 when µ = .95 and h1 = h2 = 1,000 when µ = .00001. The predictor-

corrector continuation indirect method begins at µ = .95, which is consistent with the direct method solution

obtained at h1 = h2 = .1.

For the direct method, GPOPS-II was run using the IPOPT NLP solver with the MKL PARDISO linear

solver. The GPOPS-II mesh tolerance is 1e−6 and the IPOPT error tolerance is 1e−7. The sweep predictor-

corrector method discussed in Appendix D was used by the indirect method. For the sweep predictor-

corrector continuation method, the maximum tangent steplength σmax is adjusted according to Figure 5.16b

over the course of 6 predictor-corrector steps, the direction of the initial unit tangent is determined by setting

d = −2 to force the continuation parameter µ to initially decrease, the relative error tolerance is 1e−6, the
unit tangent solver is twpbvpc m, and the monotonic “sweep” continuation solver is acdcc. The numerical

results are shown in Figures 5.15 and 5.16. As µ decreases from .95 below −1,000 during continuation (see

Figure 5.16a), h1 = h2 increases from .1 up to 1,495,740 (see Figure 5.16c). Since h1 = h2 is ratcheted

up during continuation, thereby increasing the penalty in the integrand cost function (5.135) when the GC

intrudes into the obstacles, by the end of continuation, the ball’s GC veers tightly around both obstacles

(compare Figures 5.15a vs 5.15b), at the expense of large magnitude controls (compare Figures 5.15e vs

5.15f). Note the turning points in the continuation parameter µ at solutions 3 and 5 in Figure 5.16a.
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(a) The GC hardly tracks the desired path when α = 20.
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(b) The GC tracks the desired path much more accurately
when α = 54,866.
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(c) The motion of the center of masses is modest when
α = 20.
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(d) The motion of the center of masses is much wilder
when α = 54,866.
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(e) The controls have relatively small magnitudes when
α = 20.
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(f) The controls have large magnitudes when α = 54,866.

Figure 5.10: Numerical solutions of the rolling disk optimal control problem (5.103) using 4 control masses
for β = 0, γ1 = γ2 = γ3 = γ4 = .1, and fixed initial and final times. The direct method results for α = 20 are
shown in the left column, while the predictor-corrector continuation indirect method results for α = 54,866
are shown in the right column.
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(a) Evolution of the continuation parameter µ.
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(b) Evolution of the tangent steplength σ.
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(c) Evolution of α from 20 to 54,866.
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(d) Evolution of the performance index J .

Figure 5.11: Evolution of various parameters during the predictor-corrector continuation indirect method,
which starts from the direct method solution, used to solve the rolling disk optimal control problem (5.103).
Note the pair of turning points at solutions 14 and 19. The maximum tangent steplength σmax is fixed to
30.
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(a) The GC hardly tracks the desired path when α = 20.

0 0.5 1 1.5 2

-0.5

0

0.5

1
GC Path

(b) The GC tracks the desired path very accurately when
α = 1,238,285.
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(c) The motion of the center of masses is modest when
α = 20.
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(d) The motion of the center of masses is extremely wild
when α = 1,238,285.
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(e) The controls have relatively small magnitude when
α = 20.
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(f) The controls have large magnitudes when α =
1,238,285.

Figure 5.12: Numerical solutions of the rolling disk optimal control problem (5.103) using 4 control masses
for β = 0, γ1 = γ2 = γ3 = γ4 = .1, and fixed initial and final times. The direct method results for α = 20 are
shown in the left column, while the predictor-corrector continuation indirect method results for α = 1,238,285
are shown in the right column.
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(a) Evolution of the continuation parameter µ.
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(b) Evolution of the tangent steplength σ.
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(c) Evolution of α from 20 to 1,238,285.
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(d) Evolution of the performance index J .

Figure 5.13: Evolution of various parameters during the predictor-corrector continuation indirect method,
which starts from the direct method solution, used to solve the rolling disk optimal control problem (5.103).
The maximum tangent steplength σmax is increased linearly after passing the turning points.
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Figure 5.14: The ball of radius r = 1 actuated by 3 control masses, m1, m2, and m3, each on its own circular
control rail. The control rail radii are r1 = .95, r2 = .9, and r3 = .85. The location of the ball’s CM is
denoted by m0.
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(a) The GC plows through the obstacles when h1 = h2 =
.1.

(b) The GC veers tightly around the obstacles when h1 =
h2 = 1,495,740.
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(c) Motion of the center of masses when h1 = h2 = .1.
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(d) Motion of the center of masses when h1 = h2 =
1,495,740.
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(e) The controls when h1 = h2 = .1.
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(f) The controls increase in magnitude when h1 = h2 =
1,495,740.

Figure 5.15: Numerical solutions of the rolling ball optimal control problem (5.141) using 3 control masses
for α = 20, β = 0, γ1 = γ2 = γ3 = 10, and fixed initial and final times. The obstacle centers are located at

v1 =
[
v1,1 v1,2

]T
=
[
.3 .3

]T
and v2 =

[
v2,1 v2,2

]T
=
[
.7 .7

]T
and the obstacle radii are ρ1 = ρ2 = .2.

The direct method results for obstacle heights at h1 = h2 = .1 are shown in the left column, while the
predictor-corrector continuation indirect method results for obstacle heights at h1 = h2 = 1,495,740 are
shown in the right column.
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(a) Evolution of the continuation parameter µ. Note the
turning points at solutions 3 and 5.
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(b) Evolution of the tangent steplength σ. The maximum
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1,495,740.
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(d) Evolution of the performance index J .

Figure 5.16: Evolution of various parameters during the predictor-corrector continuation indirect method,
which starts from the direct method solution, used to solve the rolling ball optimal control problem (5.141).
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Chapter 6

Conclusions

6.A Summary and Conclusions

Chapter 1 motivated this research with the rolling ball robots BB-8 and Rosphere, explained the origins

of Suslov’s problem, mentioned several methods to actuate the rolling ball, listed key contributions of this

thesis, and provided a brief outline of the overall thesis.

Chapter 2 reviewed several methods from mechanics, namely Hamilton’s principle, Euler-Poincaré’s method,

and Lagrange-d’Alembert’s principle, needed to derive the uncontrolled equations of motion for Suslov’s

problem and the rolling ball. Euler-Poincaré’s method was applied to derive the equations of motion for the

free rigid body and the heavy top. By studying a simple nonholonomic particle, it was shown that Lagrange-

d’Alembert’s principle gives different equations of motion than the more natural and intuitive vakonomic

approach.

Chapter 3 presented Pontryagin’s minimum principle, which gives the controlled equations of motion corre-

sponding to an optimal control problem. The Jacobians of the controlled equations of motion were derived

because they are useful for the numerical solution of the controlled equations of motion. While the controlled

equations of motion and their Jacobians are complicated, they were readily obtained in Chapters 4 and 5

to simulate the optimal control of Suslov’s problem and the rolling ball by exploiting automatic differen-

tiation. Moreover, these equations were constructed numerically very efficiently in MATLAB by exploiting

vectorization; the non-vectorized version of these equations execute too slowly in MATLAB to complete timely

simulations. The use of vectorized automatic differentiation to construct these equations numerically in

MATLAB was key to obtaining results, because it is tedious to manually derive the non-vectorized version of

these equations and terribly difficult to manually derive the vectorized version of these equations.

Chapter 4 considered the optimal control of Suslov’s problem. The uncontrolled equations of motion for

Suslov’s problem were derived by applying Lagrange-d’Alembert’s principle with Euler-Poincaré’s method.

Controllability of Suslov’s problem was demonstrated. The controlled equations of motion were derived

manually by applying Pontryagin’s minimum principle and the Jacobians of the controlled equations of
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motion were constructed numerically via automatic differentiation. With the aid of their Jacobians, the

controlled equations of motion were solved numerically by using a monotonic continuation method, starting

from the analytical solution of a singular optimal control problem.

Chapter 5 considered the optimal control of the rolling ball actuated by internal point masses that move

along rails fixed within the ball. The uncontrolled equations of motion for the rolling ball were derived

by applying Lagrange-d’Alembert’s principle with Euler-Poincaré’s method. The regular Hamiltonian Ĥ

and endpoint function G were formed based on the uncontrolled equations of motion, prescribed initial and

final conditions, and a prescribed performance index that should be minimized. The controlled equations of

motion (and their Jacobians) were constructed numerically via automatic differentiation of Ĥ and G using

the equations derived in Section 3.C. With the aid of their Jacobians, the controlled equations of motion

were solved numerically by using a predictor-corrector continuation method detailed in Appendices C and D,

starting from an initial solution obtained via a direct method. This process was applied to roll a disk back

and forth several times, so that the disk’s GC tracked a sinusoidally-modulated linear path, by performing

continuation in the performance index parameter α which penalizes deviations between the disk’s GC and

the desired GC path. This process was again applied to roll a ball between a pair of points in the plane while

avoiding a pair of obstacles, by performing continuation in the performance index parameters h1 = h2 which

penalize intrusions of the ball’s GC into the obstacle interiors. These results demonstrate the potential of

this process to solve complicated trajectory-tracking and obstacle avoidance optimal control problems for

the rolling ball.

This thesis focused on the indirect, rather than direct, method to numerically solve the optimal control

problems. Because the indirect and direct methods only converge to a local minimum solution near the

initial guess, a robust continuation algorithm capable of handling turning points is needed to obtain indirect

and direct method solutions of complicated, nonconvex optimal control problems. A continuation indirect

method requires a continuation ODE or DAE TPBVP solver, while a continuation direct method requires

a continuation NLP solver. Predictor-corrector continuation ODE TPBVP algorithms were presented in

Appendices C and D and implemented in MATLAB to realize the continuation indirect method used to solve the

rolling ball optimal control problems. Because the predictor-corrector continuation ODE TPBVP algorithms

had not been researched or implemented at the time when Suslov’s problem was investigated, only monotonic

continuation ODE TPBVP solvers (i.e. acdc and acdcc) were used to solve Suslov’s optimal control problem.

Even though predictor-corrector continuation NLP solver algorithms are provided in the literature (e.g. see

[58, 59]), there do not seem to be any publicly available predictor-corrector continuation NLP solvers, which

inhibited the use of a continuation direct method in this thesis. When compared against the direct method,

the indirect method suffers from two major deficiencies:

1. Unlike the direct method, the indirect method has a very small radius of convergence and therefore

requires a very accurate initial solution guess. Moreover, unlike the direct method, the indirect method

requires a guess of the costates, which are unphysical.

2. Unlike the direct method, the indirect method is unable to construct the switching structure (i.e. the

times when the states and/or controls enter and exit the boundary) of an optimal control problem

having path inequality constraints.

To circumvent the first deficiency in the indirect method, the indirect method was provided a good initial
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solution guess obtained analytically (in the case of Suslov’s problem) or via a direct method (in the case of

the rolling ball). To circumvent the second deficiency in the indirect method, path inequality constraints

were incorporated into the optimal control problems as soft constraints through penalty functions in the

integrand and endpoint cost functions.

In summary, this thesis has utilized Lagrange-d’Alembert’s principle, Euler-Poincaré’s method, and con-

tinuation indirect methods to solve challenging optimal control problems for two nonholonomic mechanical

systems, Suslov’s problem and the rolling ball.

6.B Future Work

Topics for future work are listed below.

• Pontryagin’s minimum principle provides necessary but not sufficient conditions for a local minimum

solution of an optimal control problem. Sufficient conditions which ensure the local minimality of a

solution that satisfies the necessary conditions provided by Pontryagin’s minimum principle are given

in [44] within the context of geometric control theory. It would be useful to understand and implement

these sufficient conditions to verify the local minimality of a solution obtained by the indirect method

used to solve an optimal control problem. COTCOT [60] and HamPath [61] are indirect method

optimal control software packages that have already implemented these sufficient conditions.

• The direct and indirect methods only provide local minimum solutions to an optimal control problem.

In contrast, dynamic programming offers a global minimum solution, but is impractical to implement

due to the curse of dimensionality. References [62, 63, 64, 65] present recent research results that seek

to overcome the curse of dimensionality in certain special cases, and it may be useful to understand

and try to apply these methods to optimal control problems such as those investigated in this thesis.

• The indirect method used in this thesis only numerically solves ODE TPBVP, rather than more general

DAE TPBVP. This is because a DAE TPBVP solver is not readily available in MATLAB. It may be

worthwhile to develop a MATLAB DAE TPBVP solver based on the Fortran code COLDAE [66] and

the MATLAB code bvpsuite1.1 [67]. COLDAE is capable of solving index-2 DAE TPBVPs, while

bvpsuite1.1 is capable of solving index-1 DAE TPBVPs. While written in MATLAB, bvpsuite1.1

relies on an awkward graphical user interface for input of the DAE and boundary condition functions,

does not accept user-supplied Jacobians of the DAE and boundary condition functions, and is not

vectorized. A new version of bvpsuite, bvpsuite2.0 [68, 69, 70], is in preparation that addresses the

first two deficiencies but not the last one. Since the predictor-corrector continuation methods discussed

in Appendices C and D only apply to ODE TPBVP, they would need to be adapted to handle DAE

TPBVP.

• Solving the rolling ball controlled equations of motion in MATLAB is quite slow, even when vectorization

is used. Another path is to use Fortran or C/C++, which are an order of magnitude faster than

MATLAB. BOCOP [71] and PSOPT [72] are free C++ direct method optimal control solvers. bvpSolve

[73] is an R library that wraps the Fortran solvers TWPBVP, TWPBVPC, TWPBVPL, TWPBVPLC,

ACDC, and ACDCC and COLSYS, COLNEW, COLMOD, and COLDAE, which could be utilized to
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numerically solve the controlled equations of motion; moreover, the Fortran codes wrapped by bvpSolve

are able to execute compiled Fortran or C/C++ code implementing the ODEs/DAEs, BCs, ODE/DAE

Jacobians, and BC Jacobians. bvptwp, which offers the algorithms twpbvp m, twpbvpc m, twpbvp l,

twpbvpc l, acdc, and acdcc, is a MATLAB reimplementation of the Fortran solvers TWPBVP, TW-

PBVPC, TWPBVPL, TWPBVPLC, ACDC, and ACDCC. The MATLAB solver sbvp has capabilities

similar to the Fortran solvers COLSYS and COLNEW. Using bvpSolve has the added benefit in that it

provides access to the monotonic continuation ODE BVP solver COLMOD and the DAE BVP solver

COLDAE. Since Tapenade [74] is able to automatically differentiate Fortran and C code, ADOL-C [75]

is able to differentiate C/C++ code, and CppAD [76] is able to differentiate C++ code, these auto-

matic differentiation software packages could be used to numerically construct the controlled equations

of motion (and their Jacobians) from Fortran or C/C++ implementations of the Hamiltonian H (or

the regular Hamiltonian Ĥ) and endpoint function G. Another alternative to MATLAB is Julia, a rel-

atively new high-level programming language. Julia is just as easy to program in as other high-level

programming languages like Python, R, and MATLAB, but at the same time Julia executes almost as

fast as C due to a just-in-time compiler. Julia offers several automatic differentiation packages and the

ODEInterface package, which provides an interface to the Fortran ODE BVP solvers COLNEW and

BVP SOLVER-2.

• As an alternative to automatic differentiation, the first and second derivatives required by the direct

and indirect methods could be supplied by dual/hyper-dual numbers [77, 78, 79] or by complex-

step/bicomplex-step differentiation [80, 81, 82, 83]. Dual numbers and complex-step differentiation

are two different techniques to construct first derivatives, while hyper-dual numbers and bicomplex-

step differentiation are two different techniques to construct second derivatives. These alternatives are

possible because the functions being differentiated are real analytic.

• One difficulty in the predictor-corrector continuation method is adapting the tangent steplength so

that the solution curve is efficiently traced. The tangent steplength minimum, maximum, increase

scale factor, and reduction scale factor must be chosen wisely in order to efficiently trace the solution

curve. The sweep predictor-corrector continuation method used in this thesis only manually changed

the maximum tangent steplength by trial and error.

• In this thesis, continuation was used to adjust weighting factors that scale penalty functions in the

optimal control problem. Another approach that should be investigated is to perform continuation in

the final states starting from the trivial case when the final states match or nearly match the prescribed

initial states.

• Aside from continuation, another method to construct multiple solutions of a nonlinear operator (such

as an ODE TPBVP, a DAE TPBVP, or a PDE) is deflation [84]. Reference [84] uses deflation to

construct multiple solutions of ODE TPBVPs, while [85] uses deflation to construct multiple solutions

of PDEs. Reference [86] combines deflation and continuation to construct multiple solutions of several

different kinds of nonlinear operators. It may be fruitful to apply a combined deflation and continuation

algorithm to solve the controlled equations of motion corresponding to optimal control problems.

• In this thesis, the mechanical systems are encouraged to track a prescribed trajectory, with prescribed

time-parameterization, in a fixed or minimum time. A more general optimal control problem, called

time-optimal path parameterization (TOPP) [87, 88], is for a dynamical system to track a prescribed
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trajectory, whose time-parameterization is not prescribed, in a fixed or minimum time. It may be

worthwhile to investigate and apply TOPP algorithms to optimal control problems such as those

investigated in this thesis.

• In this thesis, the technique used to actuate the motion of the rolling ball is by moving internal point

masses along rails fixed within the ball. It would be useful to apply the methodology presented in

this thesis to investigate the optimal control of the rolling ball where the motion is actuated by other

techniques, for example by rotating internal rotors or by swinging an internal spherical pendulum [89,

27, 28].

• Controllability in the sense of Defintion 4.3 was demonstrated for Suslov’s problem in Subsection 4.B.2,

but controllability was not demonstrated for the rolling ball. Controllability of the rolling ball actuated

by moving internal point masses along rails fixed within the ball should be demonstrated.
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Appendix A

Survey of Numerical Methods for

Solving Optimal Control Problems:

Dynamic Programming, the Direct

Method, and the Indirect Method

There are three approaches to solving an optimal control problem: 1) dynamic programming, 2) the direct

method, and 3) the indirect method. References [43, 90] present an introduction to dynamic programming.

References [91, 92] are thorough survey articles on the direct and indirect methods. Reference [93] is a

recent treatise providing detailed descriptions of both the direct and indirect methods, [94] is a comprehensive

reference on the direct method, while [54] provides a comprehensive, modern treatment of the local collocation

technique of the direct method.

In dynamic programming, a PDE, called the Hamilton-Jacobi-Bellman equation [95], is formulated and

solved. However, due to the curse of dimensionality, solution of this PDE is only practical for very simple

problems. Therefore, very few numerical solvers implement dynamic programming to solve optimal control

problems. For example, BOCOPHJB [96] is free C++ software implementing the dynamic programming

approach. References [62, 63, 64, 65] constitute recent research that seeks to overcome the curse of dimen-

sionality in certain special cases.

Note that because the control function u is an unknown function of time, an optimal control problem is

infinite-dimensional. In the direct method, the infinite-dimensional optimal control problem is approximated

by a finite-dimensional nonlinear programming (NLP) problem by parameterizing the control function u as

a finite linear combination of basis functions. In the sequential approach of the direct method, the state

is reconstructed from a guess of the unknown coefficients for the control basis functions, the unknown

parameters, the unknown initial states, and the unknown final time by multiple shooting or collocation. In

the simultaneous approach of the direct method, the state is also parameterized as a finite linear combination
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of basis functions. In the direct method, the ODE, initial conditions, final conditions, and path constraints are

represented as a system of algebraic inequalities, and the objective function is minimized subject to satisfying

the system of algebraic inequalities, with the unknowns being the coefficients for the control and/or state

basis functions, parameters, initial states, and the final time. In the Lagrange and Bolza formulations, the

objective function is approximated via numerical quadrature. There are many NLP solvers available, such as

IPOPT [97], WORHP [98], SNOPT [99], KNITRO [100], and MATLAB’s fmincon [101]; of these NLP solvers,

only IPOPT and WORHP are free. Most direct method solvers utilize one of these NLP solvers.

The packages RIOTS [102], DYNOPT [103], ICLOCS [104], GPOPS [105], FALCON.m [106], and OptimTraj [107]

are free MATLAB implementations of the direct method, while DIDO [108], PROPT [109], and GPOPS-II [55] are

commercial MATLAB implementations of the direct method. BOCOP [71], ACADO [110], and PSOPT [72]

are free C++ implementations of the direct method. MISER [111], DIRCOL [112], SNCTRL [113] , OTIS

[114], and POST [115] are free Fortran implementations of the direct method, while GESOP [116] and SOS

[117] are commercial Fortran implementations of the direct method.

In the indirect method, Pontryagin’s minimum principle uses the calculus of variations to formulate necessary

conditions for a minimum solution to the optimal control problem. These necessary conditions take the

form of a differential algebraic equation (DAE) with boundary conditions; such a problem is called a DAE

boundary value problem (BVP). In some cases, through algebraic manipulation, it is possible to convert the

DAE to an ordinary differential equation (ODE), thereby producing an ODE BVP.

A DAE BVP can be solved numerically by multiple shooting, collocation, or quasilinearization [118]. bvpsuite

[67] is a free MATLAB collocation DAE BVP solver. COLDAE [66] is a free Fortran quasilinearization DAE

BVP solver, which solves each linearized problem via collocation. The commercial Fortran code SOS, men-

tioned previously, also has the capability to solve DAE BVPs arising from optimal control problems via

multiple shooting or collocation.

An ODE BVP can be solved numerically by multiple shooting, Runge-Kutta methods, collocation (which

is a special subset of Runge-Kutta methods), finite-differences, or quasilinearization [119]. bvp4c [120],

bvp5c [121], bvp6c [122], and sbvp [56] are MATLAB collocation ODE BVP solvers; bvp4c and bvp5c come

standard with MATLAB, while bvp6c and sbvp are free. bvptwp [57] is a free MATLAB ODE BVP solver

package implementing 6 algorithms: twpbvp m, twpbvpc m, twpbvp l, twpbvpc l, acdc, and acdcc; acdc

and acdcc perform automatic continuation. twpbvp m and twpbvpc m rely on Runge-Kutta methods, while

the other 4 algorithms rely on collocation. TOM [123, 124, 125, 126, 127] is a free MATLAB quasilinearization

ODE BVP solver, which uses finite-differences to solve each linearized problem. solvebvp [84, 128, 129] is

a MATLAB quasilinearization ODE BVP solver available in the free MATLAB toolbox Chebfun [130]; solvebvp

uses spectral collocation to solve each linearized problem. COTCOT [60], HamPath [61], and BNDSCO

[131] are free Fortran indirect method optimal control solvers that use multiple shooting to solve the ODE

BVPs.

MIRKDC [132], BVP SOLVER [133], and BVP SOLVER-2 [134] and TWPBVP [135] and TWPBVPC [136]

are free Fortran Runge-Kutta method ODE BVP solvers. TWPBVPL [137], TWPBVPLC [138], ACDC [139],

and ACDCC [57] are free Fortran collocation ODE BVP solvers. bvptwp, mentioned previously, is a MATLAB

reimplementation of the Fortran solvers TWPBVP, TWPBVPC, TWPBVPL, TWPBVPLC, ACDC, and

ACDCC. COLSYS [140], COLNEW [141], and COLMOD [139] are free Fortran collocation quasilinearization
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ODE BVP solvers; COLMOD is an automatic continuation version of COLNEW. bvpSolve [73] is an R

library that wraps the Fortran solvers TWPBVP, TWPBVPC, TWPBVPL, TWPBVPLC, ACDC, and

ACDCC and COLSYS, COLNEW, COLMOD, and COLDAE. py bvp [142] is a Python library that wraps

the Fortran solvers TWPBVPC, COLNEW, and BVP SOLVER. The NAG Library [143] is a commercial

Fortran library consisting of several multiple shooting, collocation, and finite-difference ODE BVP solvers.

The Fortran solvers in the NAG Library are accessible from other languages (like C, Python, MATLAB, and

.NET) via wrappers.

The NLP solver utilized by a direct method and the ODE/DAE BVP solver utilized by an indirect method

must compute Jacobians and/or Hessians (i.e. first and/or second derivatives) of the functions involved

in the optimal control problem. These derivatives may be approximated by finite-differences, but for in-

creased accuracy and in many cases increased efficiency, exact (to machine precision) derivatives are de-

sirable. These exact derivatives may be computed through symbolic or automatic differentiation. Usu-

ally, a symbolic derivative evaluates much more rapidly than an automatic derivative; however, due to

expression explosion, symbolic derivatives cannot always be obtained for very complicated functions. The

Symbolic Math Toolbox and TomSym [144] are commercial MATLAB toolboxes that compute symbolic deriva-

tives. While the Symbolic Math Toolbox only computes non-vectorized symbolic derivatives, TomSym com-

putes both non-vectorized and vectorized symbolic derivatives. ADiGator [40, 41] is a free MATLAB toolbox

capable of computing both non-vectorized and vectorized automatic derivatives. Usually in MATLAB, a vector-

ized automatic derivative evaluates much more rapidly than an non-vectorized symbolic derivative (wrapped

within a for loop). Only the MATLAB Symbolic Math Toolbox and ADiGator were utilized in this research.

For other automatic differentiation packages available in many programming languages see [145].

A dynamic programming solution satisfies necessary and sufficient conditions for a global minimum solution

of an optimal control problem. A direct method solution satisfies necessary and sufficient conditions for

a local minimum solution of a finite-dimensional approximation of an optimal control problem, while an

indirect method solution only satisfies necessary conditions for a local minimum solution of an optimal control

problem. Thus, the dynamic programming approach is the holy grail for solving an optimal control problem;

however, as mentioned previously, dynamic programming is impractical due to the curse of dimensionality.

Therefore, in practice only direct and indirect methods are used to solve optimal control problems.

Since the direct method solves a finite-dimensional approximation of the original optimal control problem,

the direct method is not as accurate as the indirect method. Moreover, the indirect method converges much

more rapidly than the direct method. However, in addition to solving for the states and controls, the indirect

method must also solve for the costates. Since the costates are unphysical, they are very difficult to guess

initially. Therefore, though the direct method may be slower than the indirect method and may not be quite

as accurate as the indirect method, the direct method is much more robust to poor initial guesses of the

states and controls. Therefore, the preferred method of solution for many practical applications tends to be

the direct method.

In some cases, it is possible to surmount the problem of providing a good initial guess required to obtain

convergence via the indirect method. In such cases, the indirect method will converge substantially faster

than the direct method. If a solution of a simpler optimal control problem is known and if the simpler

and original optimal control problems are related by a continuous parameter, it may be possible to perform

numerical continuation in the parameter from the solution of the simpler optimal control problem to a so-
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lution of the original optimal control problem. In the literature, numerical continuation is also sometimes

called the differential path following method or the homotopy method. Reference [50] is a comprehensive

treatise on numerical continuation methods. bvpsuite implements a continuation algorithm to solve DAE

BVPs, where the continuation parameter may have turning points (i.e. the continuation parameter need

not monotonically increase or decrease). COCO [146], a free collection of MATLAB toolboxes, and AUTO

[147], free Fortran software, implement sophisticated algorithms for the numerical continuation (permitting

turning points) of ODE BVPs. followpath, available in the MATLAB toolbox Chebfun, is able to utilize

Chebfun’s quasilinearization ODE BVP solver bvpsolve to solve ODE BVPs via continuation, where the

continuation parameter may have turning points. Appendices C and D discuss predictor-corrector contin-

uation algorithms for solving ODE TPBVPs, where the continuation parameter may have turning points;

the algorithm presented in Appendix C is very similar to followpath. acdc / ACDC, acdcc / ACDCC,

and COLMOD implement continuation algorithms to solve ODE BVPs, but the continuation parameter is

assumed to monotonically increase or decrease. HamPath, mentioned previously, is a free Fortran indirect

method optimal control solver which uses continuation (permitting turning points) in concert with multiple

shooting. Of these numerical continuation tools, only acdc, acdcc, and the predictor-corrector continuation

algorithms discussed in Appendices C and D were used in this research.

In order to converge to the solution of the true optimal control problem rather than a finite-dimensional ap-

proximation, a direct method may use h, p, or hp methods. In the h method, the degree of the approximating

polynomial on each mesh interval is held fixed while the mesh is adaptively refined until the solution meets

given error tolerances. In the p method, the mesh is held fixed while the degree of the approximating poly-

nomial on each mesh interval is adaptively increased until the solution meets given error tolerances. In the

hp method, which is implemented by GPOPS-II, the mesh and the degree of the approximating polynomial

on each mesh interval are adaptively refined until the solution meets given error tolerances.

We have used the indirect method to numerically solve Suslov’s optimal control problem, as it is vastly

superior in speed compared to other methods and is capable of dealing with solutions having sharp gradients,

if an appropriate BVP solver is utilized. This was made possible by constructing an analytical state and

control solution to a singular optimal control problem and then by using continuation in the integrand cost

function coefficients to solve the actual optimal control problem. The singular optimal control problem can be

solved analytically since the initial conditions ξ(a) are not prescribed, because the constraint ⟨Ω(a), ξ(a)⟩ = 0

is not explicitly enforced, and because it is easy to solve Suslov’s uncontrolled equations of motion for ξ in

terms of Ω. Since the necessary conditions obtained by applying Pontryagin’s minimum principle to Suslov’s

optimal control problem can be formulated as an ODE BVP, ODE rather than DAE BVP solvers were

used. The MATLAB solvers bvp4c, bvp5c, bvp6c, sbvp, bvptwp, and TOM were used to solve the ODE BVP.

sbvp and bvptwp, which have up to 8th-order accuracy, were found to be the most robust in solving the

ODE BVP for Suslov’s optimal control problem; the other MATLAB solvers were found to be very inefficient,

requiring many thousands of mesh points due to their lower accuracy. The numerical results presented in

Subsection 4.C.3 were obtained via bvptwp’s automatic continuation solver acdc and sbvp.
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Appendix B

Calculation Connecting Classical and

Reduced Costates for Suslov’s

Optimal Control Problem

This appendix verifies (4.88), which relates the classical and reduced costates for Suslov’s optimal control

problem. Recall the uncontrolled equations of motion for Suslov’s problem (4.43):

q =
⟨
ξ, I−1ξ

⟩ [
IΩ̇− (IΩ)×Ω

]
+
[⟨

Ω, ξ̇
⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ = 0. (B.1)

Solving for Ω̇ in (B.1) yields

Ω̇ =
I−1

⟨ξ, I−1ξ⟩

{
(IΩ)×Ω−

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
}
. (B.2)

Define the right-hand side of (B.2) to be the function h:

h
(
Ω, ξ, ξ̇

)
=

I−1

⟨ξ, I−1ξ⟩

{
(IΩ)×Ω−

[⟨
Ω, ξ̇

⟩
+
⟨
(IΩ)×Ω, I−1ξ

⟩]
ξ
}
, (B.3)

so that Ω̇ = h
(
Ω, ξ, ξ̇

)
. As it will be used later, observe that

∂h

∂ξ̇
=
−I−1

⟨ξ, I−1ξ⟩
ξΩT. (B.4)

Without loss of generality, assume that both the initial time a and final time b are fixed. Recall the reduced,

augmented performance index S for Suslov’s optimal control problem from (4.70). Using (B.1) and (B.3),
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this performance index can be expressed as

S = ⟨ρ,Ω(a)−Ωa⟩+ ⟨ν,Ω(b)−Ωb⟩+
∫ b

a

[C + ⟨κ,q⟩] dt

= ⟨ρ,Ω(a)−Ωa⟩+ ⟨ν,Ω(b)−Ωb⟩+
∫ b

a

[
C −

⟨
κ,
⟨
ξ, I−1ξ

⟩
I
[
h− Ω̇

]⟩]
dt.

(B.5)

The variation of S with respect to Ω is

δΩS =

∫ b

a

[⟨(
∂C

∂Ω

)T

, δΩ

⟩
+

⟨(
∂C

∂Ω̇

)T

, δΩ̇

⟩
−
⟨
κ,
⟨
ξ, I−1ξ

⟩
I
[
∂h

∂Ω
δΩ− δΩ̇

]⟩]
dt

+ ⟨ρ, δΩ(a)⟩+ ⟨ν, δΩ(b)⟩

=

∫ b

a

⟨(
∂C

∂Ω

)T

−
(
∂h

∂Ω

)T ⟨
ξ, I−1ξ

⟩
Iκ− d

dt

[(
∂C

∂Ω̇

)T

+
⟨
ξ, I−1ξ

⟩
Iκ

]
, δΩ

⟩
dt

+

⟨(
∂C

∂Ω̇

)T

+
⟨
ξ, I−1ξ

⟩
Iκ, δΩ

⟩⏐⏐⏐⏐⏐
b

a

+ ⟨ρ, δΩ(a)⟩+ ⟨ν, δΩ(b)⟩ .

(B.6)

Requiring that δΩS = 0 for all variations δΩ such that δΩ(a) = δΩ(b) = 0 gives the controlled equations of

motion for the reduced costates κ:

d

dt

[(
∂C

∂Ω̇

)T

+
⟨
ξ, I−1ξ

⟩
Iκ

]
=

(
∂C

∂Ω

)T

−
(
∂h

∂Ω

)T ⟨
ξ, I−1ξ

⟩
Iκ. (B.7)

Recalling (3.9), the classical, augmented performance index for Suslov’s optimal control problem is

J̃ = ⟨ρ,Ω(a)−Ωa⟩+ ⟨ν,Ω(b)−Ωb⟩+
∫ b

a

[
L+

⟨
πd,h− Ω̇

⟩
+
⟨
πe,u− ξ̇

⟩]
dt, (B.8)

with classical Hamiltonian

H (t,x,λ,u) = L (Ω, ξ,u, t) +

⟨[
πd

πe

]
,

[
h (Ω, ξ,u)

u

]⟩
, (B.9)

classical states

x =

[
Ω

ξ

]
, (B.10)

classical costates

λ = π =

[
πd

πe

]
, (B.11)

and where

L (Ω, ξ,u, t) = C
(
Ω, Ω̇, ξ, ξ̇, t

)
= C

(
Ω,h

(
Ω, ξ, ξ̇

)
, ξ,u, t

)
(B.12)

since Ω̇ = h
(
Ω, ξ, ξ̇

)
and u = ξ̇. Recall the latter two necessary conditions in the controlled equations of
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motion (3.12)

λ̇ = −HT
x (t,x,λ,u)

0 = HT
u (t,x,λ,u) ,

(B.13)

where the continuation parameter µ has been omitted. For Suslov’s optimal control problem, 0 =

HT
u (t,x,λ,u) translates into

πe = −

[(
∂h

∂u

)T

πd +

(
∂L

∂u

)T
]

= −

[(
∂h

∂ξ̇

)T

πd +

(
∂C

∂ξ̇
+

∂C

∂Ω̇

∂h

∂ξ̇

)T
]

= −

[(
∂h

∂ξ̇

)T
(
πd +

(
∂C

∂Ω̇

)T
)

+

(
∂C

∂ξ̇

)T
]

= −

[(
−I−1

⟨ξ, I−1ξ⟩
ξΩT

)T
(
πd +

(
∂C

∂Ω̇

)T
)

+

(
∂C

∂ξ̇

)T
]

= −

[
−1

⟨ξ, I−1ξ⟩
ΩξTI−1

(
πd +

(
∂C

∂Ω̇

)T
)

+

(
∂C

∂ξ̇

)T
]

(B.14)

and λ̇ = −HT
x (t,x,λ,u) translates into

[
π̇d

π̇e

]
= −

⎡⎣( ∂h
∂Ω

)T
0(

∂h
∂ξ

)T
0

⎤⎦[πd

πe

]
−

⎡⎣( ∂L∂Ω)T(
∂L
∂ξ

)T
⎤⎦ . (B.15)

The upper half of (B.15) is

π̇d = −

[(
∂h

∂Ω

)T

πd +

(
∂L

∂Ω

)T
]

= −

[(
∂h

∂Ω

)T

πd +

(
∂C

∂Ω
+

∂C

∂Ω̇

∂h

∂Ω

)T
]

= −

[(
∂C

∂Ω

)T

+

(
∂h

∂Ω

)T
(
πd +

(
∂C

∂Ω̇

)T
)]

.

(B.16)

Matching (B.16) with (B.7) gives the relationship between πd and κ

πd = −

[⟨
ξ, I−1ξ

⟩
Iκ+

(
∂C

∂Ω̇

)T
]
. (B.17)

From (B.14) and (B.17), the relationship between the classical costates, πd and πe, and the reduced costates

κ is

π =

[
πd

πe

]
= −

⎡⎢⎣⟨ξ, I−1ξ
⟩
Iκ+

(
∂C
∂Ω̇

)T
ΩξTκ+

(
∂C
∂ξ̇

)T
⎤⎥⎦ , (B.18)

which verifies (4.88).
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Appendix C

Predictor-Corrector Continuation

Method for Solving an ODE TPBVP

C.1 Introduction

Suppose it is desired to solve the ODE TPBVP:

d

ds
y(s) = F (s,y(s), λ)

G (y(a),y(b), λ) = 0n×1,

(C.1)

where a, b ∈ R are prescribed with a < b, s ∈ [a, b] ⊂ R is the independent variable, n ∈ N is the prescribed

number of dependent variables in y, y : [a, b]→ Rn is an unknown function which must be solved for, λ ∈ R
is a prescribed scalar parameter, F : [a, b]×Rn×R→ Rn is a prescribed ODE velocity function defining the

velocity of y, and G : Rn×Rn×R→ Rn is a prescribed two-point boundary condition function. Observe that

if n = 1, y, F, and G are scalar-valued functions, while if n > 1, y, F, and G are vector-valued functions.

The Jacobian of F with respect to y is Fy : [a, b]× Rn × R→ Rn×n and the Jacobian of F with respect to

λ is Fλ : [a, b]× Rn × R→ Rn×1. The Jacobian of G with respect to y(a) is Gy(a) : Rn × Rn × R→ Rn×n,

the Jacobian of G with respect to y(b) is Gy(b) : Rn ×Rn ×R→ Rn×n, and the Jacobian of G with respect

to λ is Gλ : Rn ×Rn ×R→ Rn×1. If F is linear in y and G is linear in y(a) and y(b), then (C.1) is said to

be a linear ODE TPBVP; otherwise, (C.1) is said to be a nonlinear ODE TPBVP.

Note that a solution y to (C.1) depends on the given value of the scalar parameter λ, so a solution to (C.1)

will be denoted by the pair (y, λ). Usually it is not possible to solve (C.1) analytically. Instead, a numerical

method such as a shooting, finite-difference, or Runge-Kutta method (collocation is a special kind of Runge-

Kutta method) must be utilized to construct an approximate solution to (C.1). All such numerical methods

require an initial solution guess and convergence to a solution is guaranteed only if the initial solution guess is

sufficiently near the solution. Thus, solving (C.1) numerically requires construction of a good initial solution

guess.
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One way to construct a good initial solution guess for (C.1) is through continuation in the scalar parameter

λ. If (yI , λI) solves (C.1) and it desired to solve (C.1) for λ = λF , it may be possible to construct a finite

sequence of solutions {(yj , λj)}Jj=1 starting at the known solution (y1, λ1) = (yI , λI) and ending at the

desired solution (yJ , λJ) = (yF , λF ), using the previous solution (yj , λj) as an initial solution guess for the

numerical solver to obtain the next solution (yj+1, λj+1), 1 ≤ j < J , in the sequence. J ∈ N denotes the

number of solutions in the sequence.

This appendix describes a particular such continuation method, called predictor-corrector continuation, for

solving (C.1). The treatment given here follows [84]. In the literature, predictor-corrector continuation is

also called pseudo-arclength continuation [84], path-following [148], predictor-corrector path-following [149],

and differential path-following [61]. Before delving into the details, some functional analysis is reviewed

which is necessary to understand how the predictor-corrector continuation method is applied to solve (C.1).

C.2 A Hilbert Space

LetH =
{
(y, λ) : y ∈ L2 ([a, b] ,Rn) , λ ∈ R

}
. H is a Hilbert space over R. If α, β ∈ R and (y, λ) ,

(
ỹ, λ̃

)
∈ H,

then

α (y, λ) + β
(
ỹ, λ̃

)
=
(
αy + βỹ, αλ+ βλ̃

)
, (C.2)

the inner product on H is ⟨
(y, λ) ,

(
ỹ, λ̃

)⟩
=

∫ b

a

yT(s)ỹ(s)ds+ λλ̃, (C.3)

and the norm on H, induced by the inner product, is

∥(y, λ)∥ = ⟨(y, λ) , (y, λ)⟩
1
2 =

[∫ b

a

yT(s)y(s)ds+ λ2

] 1
2

. (C.4)

(y, λ) ∈ H and
(
ỹ, λ̃

)
∈ H are said to be orthogonal if

⟨
(y, λ) ,

(
ỹ, λ̃

)⟩
=

∫ b

a

yT(s)ỹ(s)ds+ λλ̃ = 0. (C.5)

(y, λ) ∈ H is said to be of unit length if

∥(y, λ)∥ = ⟨(y, λ) , (y, λ)⟩
1
2 =

[∫ b

a

yT(s)y(s)ds+ λ2

] 1
2

= 1. (C.6)

C.3 The Fréchet Derivative and Newton’s Method

Given a function F : Rn → Rm, recall that ordinary vector calculus defines the Jacobian of F as the function

F′ : Rn → Rm×n such that F′(x) is the linearization of F at x ∈ Rn. Given normed spaces V and W and

an open subset U of V , the Fréchet derivative is an extension of the Jacobian to an operator F : U → W .
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Before giving the definition of the Fréchet derivative, recall that L(V,W ) denotes the space of continuous

linear operators from V to W . Now for the definition of the Fréchet derivative, which comes from Definition

2.2.4 of [84].

Definition C.1. Suppose that V and W are normed spaces, and let U be an open subset of V . Then the

operator F : U → W is said to be Fréchet differentiable at u ∈ U if and only if there exists an operator

L ∈ L(V,W ) such that

lim
∥h∥V →0

∥F (u+ h)−F (u)− Lh∥W
∥h∥V

= 0. (C.7)

The operator L is then called the Fréchet derivative of F at u, often denoted by F ′(u). If F is Fréchet

differentiable at all points in U , F is said to be Fréchet differentiable in U .

Given a function H : Rm → Rm, Newton’s method is an algorithm to solve H(x) = 0 for x ∈ Rm and

0 ∈ Rm when H satisfies certain mild conditions. Starting from an initial solution guess x0 ∈ Rm sufficiently

close to a solution, Newton’s method converges to a solution of H(x) = 0 by iteratively solving the equations

H′(xk)δxk = −H(xk), xk+1 = xk + δxk, (C.8)

starting at k = 0, where H′ denotes the Jacobian of H and xk, δxk ∈ Rm for k ≥ 0. The iteration in

(C.8) continues until H(xk) ≈ 0 (or δxk ≈ 0) or until k exceeds a maximum iteration threshold. Now

consider an operator H : U ⊂ V → W , where V and W are Banach spaces and U is an open subset of

V . Kantorovich [150] provided an extension of Newton’s method to solve H(u) = 0 for u ∈ U and 0 ∈ W

when H satisfies certain mild conditions. Starting from an initial solution guess u0 ∈ U sufficiently close to

a solution, Kantorovich’s extension of Newton’s method converges to a solution of H(u) = 0 by iteratively

solving the equations

H′(uk)δuk = −H(uk), uk+1 = uk + δuk, (C.9)

starting at k = 0, where H′ denotes the Fréchet derivative of H and uk, δuk ∈ U for k ≥ 0. The iteration in

(C.9) continues until H(uk) ≈ 0 (or δuk ≈ 0) or until k exceeds a maximum iteration threshold.

C.4 The Davidenko ODE IVP

To motivate the predictor-corrector continuation method, the Davidenko ODE IVP is first presented. Let

C = {(y, λ) : (y, λ) solves (C.1)} denote the solution manifold of (C.1). Suppose the solution manifold C
is parameterized by arclength ν, so that an element of C is (y(ν), λ(ν)), the tangent (v(ν), τ(ν)) to C at

(y(ν), λ(ν)) satisfies ∥(v(ν), τ(ν))∥2 =
∫ b

a
vT(s, ν)v(s, ν)ds+ [τ(ν)]

2
= 1 (i.e. (v(ν), τ(ν)) is a unit tangent),

and the solution manifold C can be described as a solution curve. With this arclength parameterization,

y : [a, b] × R → Rn, λ : R → R, v : [a, b] × R → Rn, τ : R → R, y(ν) is shorthand for y(·, ν) : [a, b] → Rn,

and v(ν) is shorthand for v(·, ν) : [a, b]→ Rn. Note that the components of the unit tangent (v(ν), τ(ν)) to

C at (y(ν), λ(ν)) are given explicitly by v(s, ν) = ∂y(s,ν)
∂ν and τ(ν) = dλ(ν)

dν .

The Fréchet derivative of the ODE TPBVP (C.1) with respect to ν about the solution (y(ν), λ(ν)), in

conjunction with the arclength constraint and the initial condition (yI , λI), gives the nonlinear ODE IVP
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in the independent arclength variable ν:

d

ds
v(s, ν) = Fy (s,y(s, ν), λ(ν))v(s, ν) + Fλ (s,y(s, ν), λ(ν)) τ(ν),

0n×1 = Gy(a) (y(a, ν),y(b, ν), λ(ν))v(a, ν) +Gy(b) (y(a, ν),y(b, ν), λ(ν))v(b, ν)

+Gλ (y(a, ν),y(b, ν), λ(ν)) τ(ν),

∥(v(ν), τ(ν))∥2 = ⟨(v(ν), τ(ν)) , (v(ν), τ(ν))⟩ =
∫ b

a

vT(s, ν)v(s, ν)ds+ [τ(ν)]
2
= 1,

(y(ν0), λ(ν0)) = (yI , λI) ,

(C.10)

which must be solved for (y(ν), λ(ν)) starting at ν0 from an initial solution (yI , λI) of (C.1). (C.10) is

called the Davidenko ODE IVP and its solution is called the Davidenko flow [151]. The first two equations

in (C.10) constitute the Fréchet derivative of the ODE TPBVP (C.1), the third equation is the arclength

constraint, and the final equation is the initial condition. By introducing a dummy scalar-valued function w

to represent the integrand of the arclength constraint, (C.10) can be re-written:

d

ds
v(s, ν) = Fy (s,y(s, ν), λ(ν))v(s, ν) + Fλ (s,y(s, ν), λ(ν)) τ(ν),

d

ds
w(s, ν) = vT(s, ν)v(s, ν),

0n×1 = Gy(a) (y(a, ν),y(b, ν), λ(ν))v(a, ν) +Gy(b) (y(a, ν),y(b, ν), λ(ν))v(b, ν)

+Gλ (y(a, ν),y(b, ν), λ(ν)) τ(ν),

w(a, ν) = 0,

w(b, ν) + [τ(ν)]
2 − 1 = 0,

(y(ν0), λ(ν0)) = (yI , λI) .

(C.11)

Again, letting ν vary, (C.11) is a nonlinear ODE IVP which must be solved for (y(ν), λ(ν)) (i.e. y : [a, b]×R→
Rn and λ : R→ R) starting at ν0 from an initial solution (yI , λI) of (C.1). However, for a fixed ν, (C.11) is

a nonlinear ODE TPBVP which must be solved for v(·, ν) : [a, b] → Rn, τ(ν) ∈ R, and w(·, ν) : [a, b] → R
and where the independent variable is s ∈ [a, b].

As explained in Chapter 5 of [152], it is inadvisable to integrate the Davidenko ODE IVP (C.10), or equiv-

alently (C.11). Instead, a predictor-corrector continuation method, depicted in Figure C.1 and explained

in detail in the following sections, is used to generate a solution sequence {(yj , λj)}Jj=1 which is a discrete

subset of the Davidenko flow such that (y1, λ1) = (yI , λI).

C.5 Construct the Tangent

Given a solution (yj , λj) to (C.1) and a unit tangent (vj−1, τj−1) to the previous solution (yj−1, λj−1) to

(C.1), we seek to construct a tangent (vj , τj) to the solution curve C at (yj , λj) which is roughly of unit

length. The arclength constraint is

∥(vj , τj)∥2 = ⟨(vj , τj) , (vj , τj)⟩ =
∫ b

a

vT
j (s)vj(s)ds+ τ2j = 1, (C.12)
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Figure C.1: Predictor-corrector continuation.

which is nonlinear in the tangent (vj , τj). An alternative constraint, the pseudo-arclength constraint, is

⟨(vj−1, τj−1) , (vj , τj)⟩ =
∫ b

a

vT
j−1(s)vj(s)ds+ τj−1τj = 1, (C.13)

which, in contrast to the arclength constraint (C.12), is linear in the tangent (vj , τj). The linearization

(i.e. Fréchet derivative) of the ODE TPBVP (C.1) about the solution (yj , λj), in conjunction with the

pseudo-arclength condition (C.13), gives the linear ODE TPBVP:

d

ds
vj(s) = Fy (s,yj(s), λj)vj(s)

+ Fλ (s,yj(s), λj) τj

d

ds
τj = 0

d

ds
w(s) = vT

j−1(s)vj(s)

Gy(a) (yj(a),yj(b), λj)vj(a) +Gy(b) (yj(a),yj(b), λj)vj(b)

+Gλ (yj(a),yj(b), λj) τj = 0n×1

w(a) = 0

w(b) + τj−1τj − 1 = 0,

(C.14)

which must be solved for vj : [a, b] → Rn, τj ∈ R, and w : [a, b] → R and where (vj , τj) is a tangent to C
at (yj , λj). Note that the first, second, and third equations in (C.14) are the ODEs, while the fourth, fifth,

and sixth equations constitute the boundary conditions. The first, second, and fourth equations in (C.14)

are the linearization (i.e. Fréchet derivative) of (C.1) about the solution (yj , λj) and ensure that a tangent

is produced, while the third, fifth, and sixth equations in (C.14) enforce the pseudo-arclength condition

(C.13). The initial solution guess to solve (C.14) is (vj , τj) = (vj−1, τj−1) and w(s) =
∫ s

a
vT
j−1(s̃)vj−1(s̃)ds̃,

s ∈ [a, b], for j ≥ 1. For j = 1, define (v0, τ0) = (0, 1). Note that the construction of the initial guess for w

can be realized efficiently via the MATLAB routine cumtrapz.

Note that the linear ODE TPBVP (C.14) can be solved numerically via the MATLAB routines sbvp or bvptwp,
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which offers 4 algorithms: twpbvp m, twpbvpc m, twpbvp l, and twpbvpc l; moreover, sbvp and bvptwp

have special algorithms to solve linear ODE TPBVP. Since yj and vj−1 are usually only known for a discrete

set of points in [a, b], the values of these functions at the other points in [a, b] must be obtained through

interpolation in order to numerically solve (C.14). The MATLAB routine interp1 performs linear, cubic,

pchip, and spline interpolation and may be utilized to interpolate yj and vj−1 while solving (C.14).

Because the numerical solvers usually converge faster when provided Jacobians of the ODE velocity function

and of the two-point boundary condition function, these are computed below. Let

x =

⎡⎢⎣vj

τj

w

⎤⎥⎦ . (C.15)

The ODE velocity function in (C.14) is

Ht (s,x(s)) = Ht (s,vj(s), τj , w(s)) =

⎡⎢⎣Fy (s,yj(s), λj)vj(s) + Fλ (s,yj(s), λj) τj

0

vT
j−1(s)vj(s)

⎤⎥⎦ . (C.16)

The Jacobian of the ODE velocity function Ht with respect to x is

Ht
x (s,x(s)) = Ht

x (s,vj(s), τj , w(s))

=

⎡⎢⎣Fy (s,yj(s), λj) Fλ (s,yj(s), λj) 0n×1

01×n 0 0

vT
j−1(s) 0 0

⎤⎥⎦ .
(C.17)

The two-point boundary condition in (C.14) is

Kt (x(a),x(b)) = 0(n+2)×1, (C.18)

where Kt is the two-point boundary condition function

Kt (x(a),x(b)) =⎡⎢⎣Gy(a) (yj(a),yj(b), λj)vj(a) +Gy(b) (yj(a),yj(b), λj)vj(b) +Gλ (yj(a),yj(b), λj) τj

w(a)

w(b) + τj−1τj − 1

⎤⎥⎦ .
(C.19)

The Jacobians of the two-point boundary condition function Kt with respect to x(a) and x(b) are

Kt
x(a) (x(a),x(b)) =

⎡⎢⎣Gy(a) (yj(a),yj(b), λj) Gλ (yj(a),yj(b), λj) 0n×1

01×n 0 1

01×n τj−1 0

⎤⎥⎦ (C.20)
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and

Kt
x(b) (x(a),x(b)) =

⎡⎢⎣Gy(b) (yj(a),yj(b), λj) Gλ (yj(a),yj(b), λj) 0n×1

01×n 0 0

01×n τj−1 1

⎤⎥⎦ . (C.21)

Special care must be taken when implementing the Jacobians (C.20) and (C.21). Since the unknown constant

τj appears as the second to last element of both x(a) and x(b), τj from only one of x(a) and x(b) is actually

used to construct each term in Kt involving τj . The middle column of (C.20) is actually the derivative of

Kt with respect to the τj in x(a), while the middle column of (C.21) is actually the derivative of Kt with

respect to the τj in x(b). Thus, the middle columns in (C.20) and (C.21) corresponding to the derivative of

Kt with respect to τj should not coincide in a software implementation. For example, if Kt is constructed

from the τj in x(a), Kt
x(a) is as shown in (C.20) while the middle column of (C.21) corresponding to the

derivative of Kt with respect to the τj in x(b) is all zeros. Alternatively, if Kt is constructed from the τj in

x(b), Kt
x(b) is as shown in (C.21) while the middle column of (C.20) corresponding to the derivative of Kt

with respect to the τj appearing in x(a) is all zeros.

C.6 Normalize the Tangent

The tangent (vj , τj) at (yj , λj) obtained by solving (C.14) in the previous step is only roughly of unit length.

A unit tangent at (yj , λj) is obtained from (vj , τj) through normalization:

(vj , τj)←
1

κ
(vj , τj) , (C.22)

where

κ = ∥(vj , τj)∥ = ⟨(vj , τj) , (vj , τj)⟩
1
2 =

[∫ b

a

vT
j (s)vj(s)ds+ τ2j

] 1
2

. (C.23)

The integration operator to construct the normalization scalar κ in (C.23) can be realized via the MATLAB

routine trapz.

C.7 Construct the Tangent Predictor

The unit tangent (vj , τj) constructed in (C.22) is used to obtain a guess (the so-called “tangent predictor”)

(yc
1, λ

c
1) for the next solution (yj+1, λj+1) as follows:

(yc
1, λ

c
1) = (yj , λj) + σ (vj , τj) , (C.24)

where σ ∈ [σmin, σmax] is a steplength and where 0 < σmin ≤ σmax. Concretely, σmin might be .0001 and σmax

might be 1
2 . σ is adapted during the predictor-corrector continuation method based on the corrector step,

discussed in the next section. Initially, the value of σ is set to σinit ∈ [σmin, σmax]. The notation (yc
1, λ

c
1) is

used to denote the tangent predictor in (C.24) because, as discussed in the next section, the tangent predictor

is used as the initial corrector in an iterative Newton’s method that projects the tangent predictor onto C.
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C.8 Construct the Corrector

Since the tangent predictor (yc
1, λ

c
1) constructed in (C.24) does not necessarily lie on C, (yc

1, λ
c
1) must be

projected onto C to obtain the next solution (the so-called “corrector”) (yj+1, λj+1). This projection process

is the corrector step. In order to perform the projection efficiently, the difference between the next solution

and the tangent predictor, (yj+1, λj+1) − (yc
1, λ

c
1), should be orthogonal to the unit tangent (vj , τj). That

is, the orthogonality constraint is

⟨(vj , τj) , (yj+1, λj+1)− (yc
1, λ

c
1)⟩ = ⟨(vj , τj) , (yj+1 − yc

1, λj+1 − λc
1)⟩

=

∫ b

a

vT
j (s) [yj+1(s)− yc

1(s)] ds+ τj [λj+1 − λc
1] = 0.

(C.25)

The tangent predictor (yc
1, λ

c
1) can be iteratively corrected by applying Newton’s method to (C.1), while

enforcing the orthogonality constraint (C.25), to generate a sequence of correctors {(yc
k, λ

c
k)}

K
k=1. Applying

Newton’s method to the ODE TPBVP (C.1) about the current corrector (yc
k, λ

c
k), in conjunction with the

orthogonality constraint (C.25), gives the linear ODE TPBVP:

d

ds
δyc

k(s) = Fy (s,y
c
k(s), λ

c
k) δy

c
k(s)

+ Fλ (s,y
c
k(s), λ

c
k) δλ

c
k

− d

ds
yc
k(s) + F (s,yc

k(s), λ
c
k)

d

ds
δλc

k = 0

d

ds
w(s) = vT

j (s)δy
c
k(s)

Gy(a) (y
c
k(a),y

c
k(b), λ

c
k) δy

c
k(a) +Gy(b) (y

c
k(a),y

c
k(b), λ

c
k) δy

c
k(b)

+Gλ (y
c
k(a),y

c
k(b), λ

c
k) δλ

c
k +G (yc

k(a),y
c
k(b), λ

c
k) = 0n×1

w(a) = 0

w(b) + τjδλ
c
k = 0,

(C.26)

which must be solved for δyc
k : [a, b] → Rn, δλc

k ∈ R, and w : [a, b] → R and where (δyc
k, δλ

c
k) represents

a correction to the current corrector (yc
k, λ

c
k). Note that the first, second, and third equations in (C.26)

are the ODEs, while the fourth, fifth, and sixth equations constitute the boundary conditions. The first,

second, and fourth equations in (C.26) are the result of applying Newton’s method to (C.1) about the current

corrector (yc
k, λ

c
k), while the third, fifth, and sixth equations in (C.26) enforce the orthogonality constraint

(C.25). (C.26) must be solved iteratively for at most K iterations, so that 1 ≤ k ≤ K. The initial guess at

the beginning of each iteration is (δyc
k, δλ

c
k) = (0, 0) and w(s) = 0, s ∈ [a, b]. The initial corrector about

which Newton’s method is applied in the first iteration is the tangent predictor (yc
1, λ

c
1). At the end of

each iteration, the corrector about which Newton’s method is applied for the next iteration is updated via(
yc
k+1, λ

c
k+1

)
= (yc

k, λ
c
k) + (δyc

k, δλ
c
k). At the end of each iteration, convergence to C should be tested via:

∥(δyc
k, δλ

c
k)∥

∥(yc
1, λ

c
1)∥

=

[∫ b

a
[δyc

k(s)]
T
δyc

k(s)ds+ [δλc
k]

2
] 1

2

[∫ b

a
[yc

1(s)]
T
yc
1(s)ds+ [λc

1]
2
] 1

2

< γ, (C.27)
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where γ is a small threshold such as .001. Since Newton’s method enjoys quadratic convergence near a

solution, only a few (say K = 5) iterative solves of (C.26) should be attempted. If convergence has not been

attained in K iterations, the steplength σ should be reduced:

σ ← σrσ, (C.28)

where σr is a reduction scale factor such as 1
4 and the corrector step should be restarted at the new tangent

predictor (yc
1, λ

c
1) = (yj , λj) + σ (vj , τj) , based on the updated value of σ realized in (C.28). If, as a result

of the reduction realized in (C.28), σ < σmin, the algorithm should halt and predictor-corrector continuation

failed. However, if convergence has been achieved in k + 1 ≤ K iterations, the next solution can be taken

to be (yj+1, λj+1) =
(
yc
k+1, λ

c
k+1

)
or the corrector can be further polished as explained in the next section.

Moreover, if convergence has been achieved rapidly in no more than kfast iterations, where 1 ≤ kfast ≤ K

and, concretely, kfast might be 3, then the steplength σ may be increased:

σ ← min {σiσ, σmax} , (C.29)

where σi is an increase scale factor such as 2.

Note that the linear ODE TPBVP (C.26) can be solved numerically via the MATLAB routines sbvp or bvptwp,

which offers 4 algorithms: twpbvp m, twpbvpc m, twpbvp l, and twpbvpc l; moreover, sbvp and bvptwp

have special algorithms to solve linear ODE TPBVP. Since yc
k,

d
dsy

c
k, and vj are usually only known for a

discrete set of points in [a, b], the values of these functions at the other points in [a, b] must be obtained

through interpolation in order to numerically solve (C.26). The MATLAB routine interp1 performs linear,

cubic, pchip, and spline interpolation and may be utilized to interpolate yc
k,

d
dsy

c
k, and vj while solving

(C.26).

Because the numerical solvers usually converge faster when provided Jacobians of the ODE velocity function

and of the two-point boundary condition function, these are computed below. Let

x =

⎡⎢⎣δy
c
k

δλc
k

w

⎤⎥⎦ . (C.30)

The ODE velocity function in (C.26) is

Hc (s,x(s)) = Hc (s, δyc
k(s), δλ

c
k, w(s))

=

⎡⎢⎣Fy (s,y
c
k(s), λ

c
k) δy

c
k(s) + Fλ (s,y

c
k(s), λ

c
k) δλ

c
k − d

dsy
c
k(s) + F (s,yc

k(s), λ
c
k)

0

vT
j (s)δy

c
k(s)

⎤⎥⎦ .
(C.31)
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The Jacobian of the ODE velocity function Hc with respect to x is

Hc
x (s,x(s)) = Hc

x (s, δy
c
k(s), δλ

c
k, w(s))

=

⎡⎢⎣Fy (s,y
c
k(s), λ

c
k) Fλ (s,y

c
k(s), λ

c
k) 0n×1

01×n 0 0

vT
j (s) 0 0

⎤⎥⎦ .
(C.32)

The two-point boundary condition in (C.26) is

Kc (x(a),x(b)) = 0(n+2)×1, (C.33)

where Kc is the two-point boundary condition function

Kc (x(a),x(b)) =

⎡⎢⎢⎢⎢⎣
Gy(a) (y

c
k(a),y

c
k(b), λ

c
k) δy

c
k(a) +Gy(b) (y

c
k(a),y

c
k(b), λ

c
k) δy

c
k(b)

+Gλ (y
c
k(a),y

c
k(b), λ

c
k) δλ

c
k +G (yc

k(a),y
c
k(b), λ

c
k)

w(a)

w(b) + τjδλ
c
k

⎤⎥⎥⎥⎥⎦ . (C.34)

The Jacobians of the two-point boundary condition function Kc with respect to x(a) and x(b) are

Kc
x(a) (x(a),x(b)) =

⎡⎢⎣Gy(a) (y
c
k(a),y

c
k(b), λ

c
k) Gλ (y

c
k(a),y

c
k(b), λ

c
k) 0n×1

01×n 0 1

01×n τj 0

⎤⎥⎦ (C.35)

and

Kc
x(b) (x(a),x(b)) =

⎡⎢⎣Gy(b) (y
c
k(a),y

c
k(b), λ

c
k) Gλ (y

c
k(a),y

c
k(b), λ

c
k) 0n×1

01×n 0 0

01×n τj 1

⎤⎥⎦ . (C.36)

Special care must be taken when implementing the Jacobians (C.35) and (C.36). Since the unknown constant

δλc
k appears as the second to last element of both x(a) and x(b), δλc

k from only one of x(a) and x(b) is actually

used to construct each term in Kc involving δλc
k. The middle column of (C.35) is actually the derivative of

Kc with respect to the δλc
k in x(a), while the middle column of (C.36) is actually the derivative of Kc with

respect to the δλc
k in x(b). Thus, the middle columns in (C.35) and (C.36) corresponding to the derivative of

Kc with respect to δλc
k should not coincide in a software implementation. For example, if Kc is constructed

from the δλc
k in x(a), Kc

x(a) is as shown in (C.35) while the middle column of (C.36) corresponding to the

derivative of Kc with respect to the δλc
k in x(b) is all zeros. Alternatively, if Kc is constructed from the δλc

k

in x(b), Kc
x(b) is as shown in (C.36) while the middle column of (C.35) corresponding to the derivative of

Kc with respect to the δλc
k appearing in x(a) is all zeros.
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C.9 Polish the Corrector

The final corrector
(
yc
k+1, λ

c
k+1

)
from the previous step can be further polished by finding (yj+1, λj+1) that

solves (C.1) while satisfying the orthogonality constraint (C.25). This yields the ODE TPBVP:

d

ds
yj+1(s) = F (s,yj+1(s), λj+1)

d

ds
λj+1 = 0

d

ds
w(s) = vT

j (s) [yj+1(s)− yc
1(s)]

G (yj+1(a),yj+1(b), λj+1) = 0n×1

w(a) = 0

w(b) + τj [λj+1 − λc
1] = 0,

(C.37)

which must be solved for yj+1 : [a, b] → Rn, λj+1 ∈ R, and w : [a, b] → R. Note that the first, second, and

third equations in (C.37) are the ODEs, while the fourth, fifth, and sixth equations constitute the boundary

conditions. The first, second, and fourth equations in (C.37) ensure that the solution lies on C (i.e. satisfies

(C.1)), while the third, fifth, and sixth equations in (C.37) enforce the orthogonality constraint (C.25). The

initial solution guess to solve (C.37) is the final corrector
(
yc
k+1, λ

c
k+1

)
from the previous step and w(s) = 0,

s ∈ [a, b].

Note that the ODE TPBVP (C.37) can be solved numerically via the MATLAB routines sbvp or bvptwp,

which offers 4 algorithms: twpbvp m, twpbvpc m, twpbvp l, and twpbvpc l. Since yc
1 and vj are usually

only known for a discrete set of points in [a, b], the values of these functions at the other points in [a, b]

must be obtained through interpolation in order to numerically solve (C.37). The MATLAB routine interp1

performs linear, cubic, pchip, and spline interpolation and may be utilized to interpolate yc
1 and vj while

solving (C.37).

Because the numerical solvers usually converge faster when provided Jacobians of the ODE velocity function

and of the two-point boundary condition function, these are computed below. Let

x =

⎡⎢⎣yj+1

λj+1

w

⎤⎥⎦ . (C.38)

The ODE velocity function in (C.37) is

Hp (s,x(s)) = Hp (s,yj+1(s), λj+1, w(s)) =

⎡⎢⎣ F (s,yj+1(s), λj+1)

0

vT
j (s) [yj+1(s)− yc

1(s)]

⎤⎥⎦ . (C.39)
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The Jacobian of the ODE velocity function Hp with respect to x is

Hp
x (s,x(s)) = Hp

x (s,yj+1(s), λj+1, w(s))

=

⎡⎢⎣Fy (s,yj+1(s), λj+1) Fλ (s,yj+1(s), λj+1) 0n×1

01×n 0 0

vT
j (s) 0 0

⎤⎥⎦ .
(C.40)

The two-point boundary condition in (C.37) is

Kp (x(a),x(b)) = 0(n+2)×1, (C.41)

where Kp is the two-point boundary condition function

Kp (x(a),x(b)) =

⎡⎢⎣G (yj+1(a),yj+1(b), λj+1)

w(a)

w(b) + τj [λj+1 − λc
1]

⎤⎥⎦ . (C.42)

The Jacobians of the two-point boundary condition function Kp with respect to x(a) and x(b) are

Kp
x(a) (x(a),x(b)) =

⎡⎢⎣Gy(a) (yj+1(a),yj+1(b), λj+1) Gλ (yj+1(a),yj+1(b), λj+1) 0n×1

01×n 0 1

01×n τj 0

⎤⎥⎦ (C.43)

and

Kp
x(b) (x(a),x(b)) =

⎡⎢⎣Gy(b) (yj+1(a),yj+1(b), λj+1) Gλ (yj+1(a),yj+1(b), λj+1) 0n×1

01×n 0 0

01×n τj 1

⎤⎥⎦ . (C.44)

Special care must be taken when implementing the Jacobians (C.43) and (C.44). Since the unknown con-

stant λj+1 appears as the second to last element of both x(a) and x(b), λj+1 from only one of x(a) and

x(b) is actually used to construct each term in Kp involving λj+1. The middle column of (C.43) is actually

the derivative of Kp with respect to the λj+1 in x(a), while the middle column of (C.44) is actually the

derivative of Kp with respect to the λj+1 in x(b). Thus, the middle columns in (C.43) and (C.44) corre-

sponding to the derivative of Kp with respect to λj+1 should not coincide in a software implementation. For

example, if Kp is constructed from the λj+1 in x(a), Kp
x(a) is as shown in (C.43) while the middle column

of (C.44) corresponding to the derivative of Kp with respect to the λj+1 in x(b) is all zeros. Alternatively,

if Kp is constructed from the λj+1 in x(b), Kp
x(b) is as shown in (C.44) while the middle column of (C.43)

corresponding to the derivative of Kp with respect to the λj+1 appearing in x(a) is all zeros.

C.10 Pseudocode for Predictor-Corrector Continuation

Below is pseudocode that realizes the predictor-corrector continuation method.
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Algorithm C.1 Predictor-Corrector Continuation for Nonlinear ODE TPBVPs. Part 1.

Input: ODE velocity function F : [a, b]×Rn×R→ Rn, two-point boundary condition functionG : Rn×Rn×
R→ Rn, and their Jacobians Fy : [a, b]×Rn×R→ Rn×n, Fλ : [a, b]×Rn×R→ Rn×1, Gy(a) : Rn×Rn×R→
Rn×n, Gy(b) : Rn × Rn × R → Rn×n, and Gλ : Rn × Rn × R → Rn×1. Initial point on the solution curve
C, (y1, λ1). Maximum number of points not including the initial point to be computed on C, J . Initial
tangent steplength, σinit. Minimum and maximum tangent steplengths permitted, σmin and σmax. Tangent
steplength reduction and increase scale factors, σr and σi. Maximum number of Newton correction steps
permitted, K. Maximum number of Newton correction steps for which a tangent steplength increase may
occur if convergence is obtained, kfast. Newton correction convergence threshold, γ. Tangent direction at the
first solution, d. d may be −2, −1, 1, or 2. If d is −1 or 1, the first tangent is scaled by d. If d is −2 (2), the
first tangent is scaled so that λ decreases (increases) in the first step. polish is a Boolean that determines
whether the Newton corrector solution is polished by solving (C.37).
Output: A solution curve c or a flag indicating that the curve could not be traced.

1: functionPAC BVP(F,G,Fy,Fλ,Gy(a),Gy(b),Gλ, (y1, λ1) , J, σinit, σmin, σmax, σr, σi,K, kfast, γ, d, polish)
2: σ ← σinit ◃ Set the initial tangent steplength.
3: c(1)← (y1, λ1) ◃ Store the initial solution on C.
4: (v0, τ0)← (0, 1) ◃ Select an initial unit tangent. This choice forces τ1 = 1.
5: for j = 1 to J do ◃ Trace the solution curve C.
6: Obtain a tangent (vj , τj) to C at (yj , λj) by solving (C.14) starting from (vj−1, τj−1).
7: κ← ∥(vj , τj)∥
8: if j == 1 then ◃ Choose the direction of the tangent at the initial solution, based on d.
9: if (d == −2 OR d == 2) AND τ1 < 0 then

10: d← −d ◃ Flip the sign of d to get the desired tangent direction.
11: end if
12: κ← sgn (d)κ
13: end if
14: (vj , τj)← 1

κ (vj , τj) ◃ Normalize the tangent.
15: reject ← TRUE
16: while reject do
17: (yc

1, λ
c
1)← (yj , λj) + σ (vj , τj) ◃ Take a tangent step of length σ.

18: for k = 1 to K do ◃ Newton correction counter.
19: Obtain a Newton correction (δyc

k, δλ
c
k) to (yc

k, λ
c
k) by solving (C.26).

20:
(
yc
k+1, λ

c
k+1

)
← (yc

k, λ
c
k) + (δyc

k, δλ
c
k) ◃ Construct the Newton corrector.

21: if
∥(δyc

k,δλ
c
k)∥

∥(yc
1,λ

c
1)∥

< γ then ◃ Test for convergence to C.
22: reject ← FALSE
23: if polish then
24: Obtain the next solution (yj+1, λj+1) on C by solving (C.37) starting from

(
yc
k+1, λ

c
k+1

)
.

25: else
26: (yj+1, λj+1)←

(
yc
k+1, λ

c
k+1

)
◃ Accept the Newton corrector solution.

27: end if
28: c(j + 1)← (yj+1, λj+1) ◃ Store the new solution on C.
29: if k ≤ kfast then ◃ Test for rapid Newton convergence.
30: σ ← min {σiσ, σmax} ◃ Rapid Newton convergence, so increase the tangent

steplength.
31: end if
32: break ◃ Break out of the for loop since convergence to C has been achieved.
33: end if
34: end for
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Algorithm C.1 Predictor-Corrector Continuation for Nonlinear ODE TPBVPs. Part 2.

35: if reject then
36: σ ← σrσ ◃ Too many Newton steps taken, so reduce the tangent steplength.
37: if σ < σmin then
38: print “Unable to trace C because the tangent steplength is too small: σ < σmin.”
39: return flag

40: end if
41: end if
42: end while
43: end for
44: return c
45: end function
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Appendix D

Sweep Predictor-Corrector

Continuation Method for Solving an

ODE TPBVP

D.1 Introduction

In this section, an alternative predictor-corrector continuation method is presented that exploits a monotonic

continuation ODE TPBVP solver, such as bvptwp’s acdc or acdcc, to monotonically increase (i.e. sweep)

the tangent steplength σ from 0 up until a maximum threshold σmax is reached or until the next turning

point is reached.

D.2 Construct the Tangent

Given a solution (yj , λj) to (C.1), we seek to construct a unit tangent (vj , τj) to the solution curve C at

(yj , λj). Recall the arclength constraint

∥(vj , τj)∥2 = ⟨(vj , τj) , (vj , τj)⟩ =
∫ b

a

vT
j (s)vj(s)ds+ τ2j = 1. (D.1)
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The linearization (i.e. Fréchet derivative) of the ODE TPBVP (C.1) about the solution (yj , λj), in conjunc-

tion with the arclength constraint (D.1), gives the nonlinear ODE TPBVP:

d

ds
vj(s) = Fy (s,yj(s), λj)vj(s)

+ Fλ (s,yj(s), λj) τj

d

ds
τj = 0

d

ds
w(s) = vT

j (s)vj(s)

Gy(a) (yj(a),yj(b), λj)vj(a) +Gy(b) (yj(a),yj(b), λj)vj(b)

+Gλ (yj(a),yj(b), λj) τj = 0n×1

w(a) = 0

w(b) + τ2j − 1 = 0,

(D.2)

which must be solved for vj : [a, b]→ Rn, τj ∈ R, and w : [a, b]→ R and where (vj , τj) is a unit tangent to

C at (yj , λj). Note that the first, second, and third equations in (D.2) are the ODEs, while the fourth, fifth,

and sixth equations constitute the boundary conditions. The first, second, and fourth equations in (D.2) are

the linearization (i.e. Fréchet derivative) of (C.1) about the solution (yj , λj) and ensure that a tangent is

produced, while the third, fifth, and sixth equations in (D.2) enforce the arclength constraint (D.1) ensuring

that the tangent is of unit length. The initial solution guess to solve (D.2) is (vj , τj) = (0, 1) and w(s) = 0,

s ∈ [a, b].

Note that the ODE TPBVP (D.2) can be solved numerically via the MATLAB routines sbvp or bvptwp, which

offers 4 algorithms: twpbvp m, twpbvpc m, twpbvp l, and twpbvpc l. Since yj is usually only known for

a discrete set of points in [a, b], the values of this function at the other points in [a, b] must be obtained

through interpolation in order to numerically solve (D.2). The MATLAB routine interp1 performs linear,

cubic, pchip, and spline interpolation and may be utilized to interpolate yj while solving (D.2).

Because the numerical solvers usually converge faster when provided Jacobians of the ODE velocity function

and of the two-point boundary condition function, these are computed below. Let

x =

⎡⎢⎣vj

τj

w

⎤⎥⎦ . (D.3)

The ODE velocity function in (D.2) is

Ht (s,x(s)) = Ht (s,vj(s), τj , w(s)) =

⎡⎢⎣Fy (s,yj(s), λj)vj(s) + Fλ (s,yj(s), λj) τj

0

vT
j (s)vj(s)

⎤⎥⎦ . (D.4)
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The Jacobian of the ODE velocity function Ht with respect to x is

Ht
x (s,x(s)) = Ht

x (s,vj(s), τj , w(s))

=

⎡⎢⎣Fy (s,yj(s), λj) Fλ (s,yj(s), λj) 0n×1

01×n 0 0

2vT
j (s) 0 0

⎤⎥⎦ .
(D.5)

The two-point boundary condition in (D.2) is

Kt (x(a),x(b)) = 0(n+2)×1, (D.6)

where Kt is the two-point boundary condition function

Kt (x(a),x(b)) =⎡⎢⎣Gy(a) (yj(a),yj(b), λj)vj(a) +Gy(b) (yj(a),yj(b), λj)vj(b) +Gλ (yj(a),yj(b), λj) τj

w(a)

w(b) + τ2j − 1

⎤⎥⎦ .
(D.7)

The Jacobians of the two-point boundary condition function Kt with respect to x(a) and x(b) are

Kt
x(a) (x(a),x(b)) =

⎡⎢⎣Gy(a) (yj(a),yj(b), λj) Gλ (yj(a),yj(b), λj) 0n×1

01×n 0 1

01×n 2τj 0

⎤⎥⎦ (D.8)

and

Kt
x(b) (x(a),x(b)) =

⎡⎢⎣Gy(b) (yj(a),yj(b), λj) Gλ (yj(a),yj(b), λj) 0n×1

01×n 0 0

01×n 2τj 1

⎤⎥⎦ . (D.9)

Special care must be taken when implementing the Jacobians (D.8) and (D.9). Since the unknown constant

τj appears as the second to last element of both x(a) and x(b), τj from only one of x(a) and x(b) is actually

used to construct each term in Kt involving τj . The middle column of (D.8) is actually the derivative of Kt

with respect to the τj in x(a), while the middle column of (D.9) is actually the derivative of Kt with respect

to the τj in x(b). Thus, the middle columns in (D.8) and (D.9) corresponding to the derivative of Kt with

respect to τj should not coincide in a software implementation. For example, if Kt is constructed from the

τj in x(a), Kt
x(a) is as shown in (D.8) while the middle column of (D.9) corresponding to the derivative of

Kt with respect to the τj in x(b) is all zeros. Alternatively, if Kt is constructed from the τj in x(b), Kt
x(b)

is as shown in (D.9) while the middle column of (D.8) corresponding to the derivative of Kt with respect to

the τj appearing in x(a) is all zeros.

D.3 Determine the Tangent Direction

The unit tangent (vj , τj) at (yj , λj) obtained by solving (D.2) must be scaled so that the sweep predictor-

corrector continuation method does not reverse direction. As shown in [148], the correct direction for the
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unit tangent is obtained via:

(vj , τj)← sgn (κ) (vj , τj) , (D.10)

where κ is the inner product of the previous and current unit tangents:

κ = ⟨(vj−1, τj−1) , (vj , τj)⟩ =
∫ b

a

vT
j−1(s)vj(s)ds+ τj−1τj . (D.11)

The integration operator to construct the inner product κ in (D.11) can be realized via the MATLAB routine

trapz. With the sign direction selected by (D.10), the inner product of the previous and current unit

tangents is positive:

⟨(vj−1, τj−1) , (vj , τj)⟩ =
∫ b

a

vT
j−1(s)vj(s)ds+ τj−1τj > 0. (D.12)

D.4 Sweep along the Tangent

By monotonically increasing (or sweeping) the tangent steplength σ from 0, the current solution (yj , λj) and

its unit tangent (vj , τj) can be used to find the next solution (yj+1, λj+1) that solves (C.1) while satisfying

the orthogonality constraint:

⟨(vj , τj) , (yj+1, λj+1)− ((yj , λj) + σ (vj , τj))⟩ = ⟨(vj , τj) , (yj+1 − (yj + σvj) , λj+1 − (λj + στj))⟩

=

∫ b

a

vT
j (s) [yj+1(s)− (yj(s) + σvj(s))] ds+ τj [λj+1 − (λj + στj)] = 0.

(D.13)

This yields the ODE TPBVP:

d

ds
yj+1(s) = F (s,yj+1(s), λj+1)

d

ds
λj+1 = 0

d

ds
w(s) = vT

j (s) [yj+1(s)− (yj(s) + σvj(s))]

G (yj+1(a),yj+1(b), λj+1) = 0n×1

w(a) = 0

w(b) + τj [λj+1 − (λj + στj)] = 0,

(D.14)

which must be solved for yj+1 : [a, b] → Rn, λj+1 ∈ R, and w : [a, b] → R by monotonically increasing (or

sweeping) σ. Note that the first, second, and third equations in (D.14) are the ODEs, while the fourth, fifth,

and sixth equations constitute the boundary conditions. The first, second, and fourth equations in (D.14)

ensure that the solution lies on C (i.e. satisfies (C.1)), while the third, fifth, and sixth equations in (D.14)

enforce the orthogonality constraint (D.13). The initial solution guess to solve (D.14) is the current solution

(yj , λj) and w(s) = 0, s ∈ [a, b]. σ starts at 0, since the initial solution guess for (yj+1, λj+1) is (yj , λj),

and increases monotonically until the maximum threshold σmax is reached or until the ODE TPBVP solver

halts (due to reaching a turning point).
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Note that the ODE TPBVP (D.14) can be solved numerically via the MATLAB routine bvptwp, which offers

2 continuation algorithms: acdc and acdcc. The continuation algorithms acdc and acdcc assume that

the continuation parameter (in this case σ) is monotonically increasing or decreasing, so that they will halt

at a turning point in the continuation parameter. Since yj and vj are usually only known for a discrete

set of points in [a, b], the values of these functions at the other points in [a, b] must be obtained through

interpolation in order to numerically solve (D.14). The MATLAB routine interp1 performs linear, cubic,

pchip, and spline interpolation and may be utilized to interpolate yj and vj while solving (D.14).

Because the numerical solvers usually converge faster when provided Jacobians of the ODE velocity function

and of the two-point boundary condition function, these are computed below. Let

x =

⎡⎢⎣yj+1

λj+1

w

⎤⎥⎦ . (D.15)

The ODE velocity function in (D.14) is

Hq (s,x(s), σ) = Hq (s,yj+1(s), λj+1, w(s), σ) =

⎡⎢⎣ F (s,yj+1(s), λj+1)

0

vT
j (s) [yj+1(s)− (yj(s) + σvj(s))]

⎤⎥⎦ . (D.16)

The Jacobian of the ODE velocity function Hq with respect to x is

Hq
x (s,x(s), σ) = Hq

x (s,yj+1(s), λj+1, w(s), σ)

=

⎡⎢⎣Fy (s,yj+1(s), λj+1) Fλ (s,yj+1(s), λj+1) 0n×1

01×n 0 0

vT
j (s) 0 0

⎤⎥⎦ .
(D.17)

The two-point boundary condition in (D.14) is

Kq (x(a),x(b), σ) = 0(n+2)×1, (D.18)

where Kq is the two-point boundary condition function

Kq (x(a),x(b), σ) =

⎡⎢⎣ G (yj+1(a),yj+1(b), λj+1)

w(a)

w(b) + τj [λj+1 − (λj + στj)]

⎤⎥⎦ . (D.19)

The Jacobians of the two-point boundary condition function Kq with respect to x(a) and x(b) are

Kq
x(a) (x(a),x(b), σ) =

⎡⎢⎣Gy(a) (yj+1(a),yj+1(b), λj+1) Gλ (yj+1(a),yj+1(b), λj+1) 0n×1

01×n 0 1

01×n τj 0

⎤⎥⎦ (D.20)
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and

Kq
x(b) (x(a),x(b), σ) =

⎡⎢⎣Gy(b) (yj+1(a),yj+1(b), λj+1) Gλ (yj+1(a),yj+1(b), λj+1) 0n×1

01×n 0 0

01×n τj 1

⎤⎥⎦ . (D.21)

Special care must be taken when implementing the Jacobians (D.20) and (D.21). Since the unknown con-

stant λj+1 appears as the second to last element of both x(a) and x(b), λj+1 from only one of x(a) and

x(b) is actually used to construct each term in Kq involving λj+1. The middle column of (D.20) is actually

the derivative of Kq with respect to the λj+1 in x(a), while the middle column of (D.21) is actually the

derivative of Kq with respect to the λj+1 in x(b). Thus, the middle columns in (D.20) and (D.21) corre-

sponding to the derivative of Kq with respect to λj+1 should not coincide in a software implementation. For

example, if Kq is constructed from the λj+1 in x(a), Kq
x(a) is as shown in (D.20) while the middle column

of (D.21) corresponding to the derivative of Kq with respect to the λj+1 in x(b) is all zeros. Alternatively,

if Kq is constructed from the λj+1 in x(b), Kq
x(b) is as shown in (D.21) while the middle column of (D.20)

corresponding to the derivative of Kq with respect to the λj+1 appearing in x(a) is all zeros.

D.5 Pseudocode for Sweep Predictor-Corrector Continuation

Below is pseudocode that realizes the sweep predictor-corrector continuation method.
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Algorithm D.2 Sweep Predictor-Corrector Continuation for Nonlinear ODE TPBVPs.

Input: ODE velocity function F : [a, b]×Rn×R→ Rn, two-point boundary condition functionG : Rn×Rn×
R→ Rn, and their Jacobians Fy : [a, b]×Rn×R→ Rn×n, Fλ : [a, b]×Rn×R→ Rn×1, Gy(a) : Rn×Rn×R→
Rn×n, Gy(b) : Rn × Rn × R → Rn×n, and Gλ : Rn × Rn × R → Rn×1. Initial point on the solution curve
C, (y1, λ1). Maximum number of points not including the initial point to be computed on C, J . σmax is a
vector of length J such that σmax(j) is the maximum tangent steplength permitted to obtain solution j +1.
Tangent direction at the first solution, d. d may be −2, −1, 1, or 2. If d is −1 or 1, the first tangent is scaled
by d. If d is −2 (2), the first tangent is scaled so that λ decreases (increases) in the first step.
Output: A solution curve c.

1: function PAC s3 BVP(F,G,Fy,Fλ,Gy(a),Gy(b),Gλ, (y1, λ1) , J, σmax, d)
2: c(1)← (y1, λ1) ◃ Store the initial solution on C.
3: for j = 1 to J do ◃ Trace the solution curve C.
4: Obtain a unit tangent (vj , τj) to C at (yj , λj) by solving (D.2) starting from (0, 1).
5: if j == 1 then ◃ Choose the direction of the tangent at the initial solution, based on d.
6: if (d == −2 OR d == 2) AND τ1 < 0 then
7: d← −d ◃ Flip the sign of d to get the desired tangent direction.
8: end if
9: κ← d

10: else
11: κ← ⟨(vj−1, τj−1) , (vj , τj)⟩ ◃ Ensure that the traced solution does not reverse direction.
12: end if
13: (vj , τj)← sgn (κ) (vj , τj) ◃ Choose the correct tangent direction.
14: Obtain the next solution (yj+1, λj+1) on C by solving (D.14) starting from (yj , λj) and monotonically

increasing σ starting from 0 and without exceeding σmax(j).
15: c(j + 1)← (yj+1, λj+1) ◃ Store the new solution on C.
16: end for
17: return c
18: end function
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Appendix E

Quaternions

Quaternions were invented by William Rowan Hamilton in 1843. Good references on quaternions and how

they are used to model rigid body dynamics are [16, 153, 154, 155]. The set of quaternions, which is

isomorphic to R4, is denoted by H. A quaternion p ∈ H can be expressed as the column vector

p =

⎡⎢⎢⎢⎢⎣
p0

p1

p2

p3

⎤⎥⎥⎥⎥⎦ =
[
p0 p1 p2 p3

]T
=
[
p0 ; p1 ; p2 ; p3

]
. (E.1)

Given a column vector v ∈ R3, v♯ is the quaternion
[
0 ; v

]
∈ H; that is,

v♯ =

[
0

v

]
=
[
0 ; v

]
. (E.2)

Given a quaternion p ∈ H, p♭ ∈ R3 is the column vector such that

p =

[
p0

p♭

]
=
[
p0 ; p

♭
]
. (E.3)

Given a column vector v ∈ R3, note that (
v♯
)♭

= v. (E.4)

However, given a quaternion p ∈ H,

(
p♭
)♯

= p iff p =

[
0

p♭

]
=
[
0 ; p♭

]
. (E.5)

Given quaternions p =
[
p0 ; p

♭
]
, q =

[
q0 ; q

♭
]
∈ H, their sum is

p+ q =
[
p0 ; p

♭
]
+
[
q0 ; q

♭
]
=
[
p0 + q0 ; p

♭ + q♭
]
, (E.6)
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their product is

pq =
[
p0 ; p

♭
] [

q0 ; q
♭
]
=
[
p0q0 − p♭ · q♭ ; p0q♭ + q0p

♭ + p♭ × q♭
]
, (E.7)

and their dot product is

p·q =
[
p0 ; p

♭
]
·
[
q0 ; q

♭
]
=
[
p0 ; p1 ; p2 ; p3

]
·
[
q0 ; q1 ; q2 ; q3

]
= p0q0+p♭ ·q♭ = p0q0+p1q1+p2q2+p3q3. (E.8)

It may be shown that multiplication inH is associative (i.e. p (qr) = (pq) r ∀p, q, r ∈ H) but not commutative

(i.e. pq ̸= qp for general p, q ∈ H). Given c ∈ R and a quaternion p =
[
p0 ; p

♭
]
∈ H, scalar multiplication of

p by c is

cp = c
[
p0 ; p

♭
]
=
[
cp0 ; cp

♭
]
. (E.9)

Given a quaternion p =
[
p0 ; p

♭
]
∈ H, its conjugate is

p∗ =
[
p0 ; −p♭

]
, (E.10)

its magnitude is

|p| = (p · p)
1
2 =

(
p20 + p♭ · p♭

) 1
2

, (E.11)

and its inverse is

p−1 =
p∗

|p|2
. (E.12)

In the language of abstract algebra, H is a four-dimensional associative normed division algebra over the real

numbers.

S ⊂ H denotes the set of unit quaternions, also called versors, which is isomorphic to S3 ⊂ R4. That is,

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩q =

⎡⎢⎢⎢⎢⎣
q0

q1

q2

q3

⎤⎥⎥⎥⎥⎦ ∈ R4 : |q|2 = q · q = q20 + q21 + q22 + q23 = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⊂ H. (E.13)

The set of versors S is useful because it may be utilized to parameterize the set of rotation matrices SO(3).

Given a versor

q =

⎡⎢⎢⎢⎢⎣
q0

q1

q2

q3

⎤⎥⎥⎥⎥⎦ ∈ S, (E.14)

the corresponding rotation matrix Λ ∈ SO(3) is

Λ =

⎡⎢⎣q
2
0 + q21 − q22 − q23 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q20 − q21 + q22 − q23 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q20 − q21 − q22 + q23

⎤⎥⎦ ∈ SO(3). (E.15)
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It is easy to see from (E.15), that the versors

q =

⎡⎢⎢⎢⎢⎣
q0

q1

q2

q3

⎤⎥⎥⎥⎥⎦ ∈ S and −q =

⎡⎢⎢⎢⎢⎣
−q0
−q1
−q2
−q3

⎤⎥⎥⎥⎥⎦ ∈ S (E.16)

correspond to the same rotation matrix Λ ∈ SO(3), so that S is a double covering of SO(3). Given a vector

Y ∈ R3, the rotation of Y by Λ ∈ SO(3) can be realized using the versor q ∈ S via the Euler-Rodrigues

formula

ΛY =
[
qY♯q−1

]♭
. (E.17)

Since q−1 ∈ S parameterizes Λ−1 ∈ SO(3), (E.17) says that the rotation of y ∈ R3 by Λ−1 ∈ SO(3) can be

realized using the versor q−1 ∈ S via

Λ−1y =
[
q−1y♯q

]♭
. (E.18)

Now consider a rigid body, such as a free rigid body, a heavy top, Suslov’s problem, a rolling disk, a rolling

ball, etc., with orientation matrix Λ ∈ SO(3) (i.e. Λ maps the body frame into the spatial frame) and body

angular velocity

Ω ≡
[
Λ−1Λ̇

]∨
=
[
ΛTΛ̇

]∨
∈ R3, (E.19)

so that

Λ̇ = ΛΩ̂. (E.20)

Let q ∈ S denote a versor corresponding to Λ. Then it may be shown that

q̇ =
1

2
qΩ♯. (E.21)
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