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ABSTRACT

We have performed a coupled multichannel calculation tov
various two--body hadronic decays ol chormed nesons.,
Particular attention is paid to the role of weak annihilation
term in these decays. A tw: channel calculation ot
Cabibbo-angle favored D;%VP results in a <. -sfactorv ftit to
D;e¢n+, d%+ and K+R*° data from ARGUS and E-691. An
extension of this to include the wn'  mode, whose
un-unitarized amplitude 1is zero, also satisfies the recent
experimental limit. For Cabibbo angle-favored D-»VP decays, we
perform a three channel calculation, coupling the K*n, Kp and
RO¢ staces 1in isospin 1/2. In isospin 3/2 only the two
channels K*n and Kp are coupled. It is possible to generate
enough B(in?¢) without a weak annihilation term, though a
finite annihilation term, about (15-20)% of the spectator
term in Dq%(ﬁ+, is not ruled out by data. For the
Cabibbo-angle favored D/DS+VV decay modes, a similar
treatment is follcwed. Cabibbo-angle suppressed modes are
also studied in a coupled channel formalism. The D+ﬂﬁ%+
branching ratio can be fitted in this approach, whereas its
un-unitarized amplitude yields a _ry small value. Some of
the other models proposed to study heavy flavor decays are
also discussed. We attempt to incorporate the effect of final
state interactions, through introduction of phases in the

amplitudes given by the QCD sum rule approach.

Cya g + o+ + . ,
The n»ossibility of large Dsenn , n'm branching ratios



is investigated in a theoretical framework. A factorization
model with orthogonal mixing scheme fails to satisfy the
Mark II results. These values can be accommodated in a nonet
symmetry breaking model, where the coupling Lo the slnglet
is large. Finally, the effect of final state scattering
phases .n two-body B decays are studied, in view of a
possible measurement of the mixing angle vub from the

nonchermed, nonstrange hadronic decays of the bottom mesons.
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I. INTRODUCTION

The interactions of the fundamental constituents of
matter, quarks and leptons, are believed to be given by the
so called Standard model.! In this model the electrcmagnetic
and weak interactions are unified into the electroweak gauge
theoz:y,2 with the gauge bosons- photon and the Wi, Z wvector
bosons. The strong interactions are also described by a
gauge theory known as Quantum Chromodynamics3 (QCD), where
the gauge bosons are the gluons. It is currently pbelieved'
that there exist six flavors of quarks- up, down, strange,
charm, bottom and top and six leptorns- electron, muon, tau
and their neutrinos. These gquarks and leptons Dbelong toO
three generations. Members of the different generations have
identical quantum numbers and differ only in their masses.
Each generation consists of a doublet whose members differ
in their charge.

Quarks as well as leptons, participate in electroweak
interactions. Strong interactions on the other hand invelve
only the quarks, which carry an additional color gquantum
number. The guarks remain confined’ to color singlet bound
states called hadrons. There are two kinds of hadrons, the
quark-antiquark (qg) states called mesons and the three
quark states (gqg) called baryons. The interactions of
hadrons have proved very difficult to understand, as it is
not possible to solve QCD at low energies. QCD is a non-

1



abelian gauge theory which has the feature of asymptotic
freedom,4 i.e., the effective coupling constant o is small
at sho.: distances (or large momentum). Hence, in the deep
inelasti. region, po-turbative solutions can be obtained
reliably. However, at low momentum, the coupling constant is
large and a perturbativ theory is not applicable. It is
theretore hoped that hadrons carrying heavy quarks, will be
better described.

The heavy quarks decay into the lighter ones, through

'8 on the

weak interactions. A wealth of experimental data’
decays of the heavy mesons (Charmed and Bottom) has emerged
in the last decade. Since the decaying heavy gquarks are
within the bounds of a hadron, the effects of QCD play an
important role. Hence, the heavy flavor systems are regarded
as a laboratory for the study, not only of weak inter-
actions, but also of strong interactions. Much theoretical

.8

attention’'® has therefore been devoted to understanding the
weak decays of the heavy open flavor mesons. Open flavor
mesons Qg with Q(g) denoting a heavy (light) flavor can
perhaps shed some light on the dynamics of light mesons aq,
where our understanding is rather unsatisfactory.8 The
quarkonia states Q0 are understood quite well in the
framework of potential models.’

Open flavor pseudoscalar mesons can decay only through
weak interactions. In the charm sector there exist’® three

such mesons, the (D°(cu), D'(cd)) isodoublet and the D;(CE)

isosinglet. There are'® four pseudoscalar B mesons, the (Bg,



B;) isodoublet and the B;, B; isosinglets. Apart from
providing valuable information on weak/strong interaction
physics, weak decays of the D and B mesons will also provide
an estimation of certain fundamental parameters unknown
within the standard model. The weak eigenstates of the
quavks are related to the strong eigenstates through the
Kobayashi—Maskawall (KM) mixing matrix. The elements of the
KM matrix can’therefore be extracted from the weak decays of
the heavy flavor mesons. By establishing the structure of
these decays, one may also hope for clues to the physics
beyond the Standard mbdel.

The short time-scale of the weak decays allows one to
separate the possible correcticns from strong interactions
into short and long distance contributions. The short
distance corrections can be calculated perturbativelyl.z'13
and modify the structure of the weak interaction
Hamiltonian. The 1long distance effects are harder ¢to
estimate. Our theoretical understanding of the strange quark
decays 1is unsatisfactory8 essentially due to the lack of
understanding of these long distance corrections. It is
hoped that in charm and bottom decays, the mass of the
decaying quark is large enough that long distance
corrections become less important. However, experimental

dataf”6

on the exclusive two body decays of charmed (and
bottom) mesons, indicate that hadronization does play an
important role.

Although the gross features of charm and bottom decays




can be reproduced from fairly simple quark level calcu-
lations,14 the light quark and gluon content of the hadronic
bound states have a greater influence than anticipated. A
detailed understanding cannot be achieved just at the quark
level, but has to be &% the hadroni~ level, where the

15-17

appropriate formfactors are included. In addition, one

8-22 tpe role of strong interactions of

needs to consider’
the final states produced in a weak decay, the importance of
which has been established® experimentally. Alsoc, there
could be effects such as annihilation,23 a reliable estimate
of which is still unavailable.

In the next chapter, we start with a brief review of
the standard model. The short-distance QCD corrected

. \ 12,13
Hamiltonian

for the decays of charmed and bottom mesons
is presented. We describe the so-called valence quark
approximation,24 for estimation of two-body nonleptonic
decays, employing the assumption of factorization.?® We
point out the theoretical uncertainties in this simple
picture.

In chapter III, we discuss the theory of final state
interactions and propose a model to incorporate these
effects.

Hadronic two-body decays of the charmed mesons are
discussed in chapter IV. We vparameterize the K-matrix’®
model for final state interacticns, obtained in chapter III

and apply it to the different decay modes of the D mesons.

In particular, we study the Cabibbo-~allowed D, DS decays to



a vector (V) and pseudoscalar (P) and also to two vector
(VV) mesons. A similar treatment 1s also carried out torv
Cabibbo-suppressed D»VP decays. In all the decay modes we
introduce weak annihilation contribution as a parametoeyr.

In chapter V we describe some of the other theoretical
models’ proposed to study the weak decays of heavy
mesons. We point out that none of these include a sat is-
factory treatment of final state interactions. To some of
the amplitudes obtained from the the QCD sum rule
approach,29 we have attempted to introduce corrections due

to final state interactions.

, +
In chapter VI, v2 have examined the decay modes D;»nn '

30-32

4

n n . Experimental data on these modes are not vyet
conclusive; surprisingly large branching ratios have been
observed by the Mark I1** collaboration. We have explored
the possibility of accommodating such large values i a
theoretical framework.

Chapter VI({ considers the effects of final state
interactions in B--Zecays. These are expected to be small,
yet if the nonleptcnic B-decays are used to extract the
Kobayashi-Maskawa matrix element Vbu’ it will be important

to know the magnitude of such effects.

Finally, in chapter VIII, we present our conclusions.



II. REVIEW OF BASIC IDEAS IN HEAVY QUARK DECAYS

The understanding of heavy open flavor mesons contain-
ing one charm or Dbottom quark, has progressed rapidly in
recent years through steady improvements33 in expevimental
techniques foi production and detection of their decays. On

the theoretical side, heavy quark systems are simpler to

analyze than systems involving light quarks. It was
pelieved!” that non-perturbative - ffects would be un-
important inn the decays. of these charmed (DO,D+,D;) and

+ \
bottom (Bu,Bé,B;) mesons. In the case of charm, experimental

datas"6

indicates, that the 1light antigquark and gluon
content of the hadronic bound states have a greater impact
than originally anticipated.

In this chapter, we start with a brief review of the
gauge theory of electroweak interactions. We then add the
corrections due to strong interaction effects and apply
these quark level calculations to actual hadrons, assuming a

simple model. Finally we point out the need for refining

this simple theoretical picture.

II.1 The Standard Model

The theoretical framework for weak decays of heavy
quarks is provided by the standard SU(3)eSU(2)eU(1l) model!
of strong and electroweak interactions. In the electroweak

sector, the left-handed fermion fields form doublets of weak



isospin, whereas the right-handed components are kept as
singlets. There are three generations of quark and lepton
doublets:

Leptons Charge Quarks Charge

LT TR T e

The charge -1/3 weak interaction eigenstates d’,s’,b’ are
mixtures of the strong interaction (or mass) eigenstates
d,s,b. Hence, decays caused by transitions between the
generations of quarks can occur. The weak eigenstates are
related to the mass eligenstates by the unitary Kobayashi-
Maskawa'' (KM) matrix,

q v . V.V d

, ud us ub
S, = Vcd VCS VCb S . (II.2)
b v Vv v b

td ts tb
This matrix is the generalization of the Cabibbo matrix’’
relevant for two generations of quarks. Whereas the Cabibbo
matrix depends on a single mixing parameter elmec(the
Cabibbo angle), the matrix in eq.(II.2) can be parameterized
in terms of three mixing angles 91,62,93 and one complex

phase 8 as follows:35

_ is ia]
-slcz C1C2C3 82838 C1C253+32C38

[ cy $,C3 S133
l (I1.3)

’
is is
=s;s, C;S,C3%C 848 C15,537C,Cqe j

where cy= cose, , si=sinei (i=1,2,3). The phenomenological
success of the 4-quark scheme with sin6C=0.221tO.0021%

implies that the angles 8, and 85 must be small. In the case

7



of leptons, no such flavor mixing has been established. A
massless neutri..o would rule out”® mixing in the lepton
sector.

There are four gauge bosons correspouding to the AL
gencrators of the SU(2)eU(l). These vecto:r bosons must be
massless for the theory to be renormalizable.”’ However,
't Hooft®® showed that renormalizability can be maintained
in a theory with spontaneous symmetry breaking,39 where
three of the bosons acquire mass through the Higgs
mechanism.'’ These massive bosons are the mediators of the
weak interaction, which has a short range. The fourth boson
remains massless and corresponds tc the photon of electro-
magnetism, which is a long range force. The couplings in the
model are the fine structure constant «=1/137.03599 and g,
g’. The coupling constants g and g’ are related through the

electroweak mixing angle I to a through:

gsinew = Vina and g’coseW = Vina. (1I1.4)
sinze is measured in deep inelastic neutrino scattering to

W
have the value'® 0.230%0.005. The masses of the weak gauge

bosons can be expressed in terms of the coupling constants

and the mixing angle,

MW o 1/2
MZ= ~ 90 GeV, MW = —_—— ~ 80 GeV. (II.5)
cose, V2GFsin 6y

These predictions are 1in excellent agreement with the
experimental values:° (92.4:1.8) GeV and (81.0+ 1.3) GeV

respectively.



Flavor changing neutral currents have not been

10

observed. The charm quark was postulated to guarantee the

absence of flavor changing neutral currents in lowest order

perturbation theory via the GIM mechanism.”  n the six-
quark model this feature |is incorporated through the
unitarity of the KM mixing matrix (eq.II.3). The parameters

of the KM matrix are not determined within the standard

model.

II.2 Weak Currents and Hamiltonian

Flavor changing weak decays thus proceed only via
charged current interacticas, 1.e., through exchange or
emission of a W boson. The Lagrangian for flavor changing
interaction is given by,8

L= -9 (3w +h.c.}, (I1.6)
2v2 H

where the charged currents are,

- s M (I1.7)

B3 3 EyaM(1n = S Sy H1=a) (e

J¥ =(u c )Yy (1-¢7)V{d) + (vev“vt)z (1-%7) (e_
b T

and 3* =(3*)T; v is the KM matrixz (egs. (II.2), (II.3)).

Since M >>m the q2 dependence of the W

quark '/ mlepton !
propagator can be neglected. Hence, in the absence of QCD
effects +he effective Hamiltonian for the charged weak

interaction of quarks (and leptons) has the currentxcurrent

form:



G . - GF 2
”2£[ = = (3 T (mI" ) + h.c.), where — = <., (IT.8)
- v H v2  8m
W
-5 -2 . .
GF:(1.16637tU.OOOO2)x10 “Cev “, is the Fermi coupling
consLant . Tl eharm Jowering poact o sbtadned  Uromooeds,

(I1.7) and (II1.8) as,
G

”

{<§'c)(ud')+(§'c><;ﬂ4}, (I1.9)

)

it

0 —
Heff(AC~ 1)

V2

where, d’ = d

G

os0 . + s sineo _, g’ = -d sine_ + s cose_. and
o C c c

mixing in the third generation has been neglected. Also, in
writing the above we have used the following notation,

(@,9,) =Fa, ;7" (1=0°) g (II.10)

271 T 21 1i '

where i is the color index, summation over i implying that
the charged currents must be color singlets. The nonleptonic

part may be explicitly written as,

G

(AC==-1) = {(Ec)(ﬁd)coszec+<§c)<Gs)cosecsinec

0
HNL

NIE

~(ac)(Gd)sineccosec—(ac)(Gs)sinzec}.
... (ITI.1Y)
The terms proportional to c0529C are referred to as Cabibbo-
a'i wed, those with cosecsineC and sinzeC as Cabibbo-
suppressed and doubly-suppressed respectively. For the
semileptonic part we have,

G
HY (AC=-1) = ;%{(sc)(éve)cosec + (Sc) (iv,) cose
—(ac)(éue)sinec - (ac)(ﬁv“)sinec}.
.. (11.12)

The Hamiltonian for bottom decays can be obtained similarly.

10



For the rest of this chaptcr, we will concentrate on charm
decays to demunstrate the ideas involved in veak decays ot
heavy flavor mesons. The gencralization to botton decays

will be ohvious.

II.3 Strong Interaction Effects

The theory of weak processes 1is, in essence, & theory
of strong interactions. The decaying heavy quarks are
necessarily confined inside hadronic bound states. The torce
responsible for the binding of quarks and gluons s
described by Quantum Chromodynamics3 (2D) . The confinement
mechanism is still not understood completely and weak decays
of quarks thus offer a chance of achieving a deeper insight
into strong interaction dynamics.

QCD involves an unbroken SU(BEV gauge group. Each quark
flavor exists in three colors, whil the leptons are color
neutral. The eight gererators of SU(3)C correspond to an
octet of massless gauge bosons-the gluons, which are flavor
neut al. The nonabelian structure of QCD leads to
self-interaction of gluons. This results in the property of
asymptotic freedom4, i.e., at small distances or
equivalently, at large momentum transfers the effective
strong coupling constant is small.

Thus for sufficiently small distances, the effects of
strong interactions can be calculated3 in a perturbation
theory with aS(Qz) being the expansion parameter. As the

distance scale increases, non-perturbative effects will

11!



become important. Both short range etiects and long range
effects of QCD will come into play in the decay of a heavy
meson. Heavy flavor decays thus present an opportunity to
learn about OCD on the interface between the perturbative
and the non-perturbative regimes. In the weak decays of a
hadron, the heavy quark decays at a time-scale given by
ral/MW, The spectator gquark:, sea quarks and gluons, go
along wunaffected wuntil the confinement forces becone
important after the much longer time-scale t=1/A, where A is
the scale parameter3 of QCD. Due to these differing time-
scales it 1is assumed’® that the short and long distance
contribut’ - of the strong interaction effects can be
separated. The 1long distance effects including bound state
wavefunctions, soft gluon radiation and final state inter-
actions are absorbed into the 1initial and final state
hadronic wave functions. The short distance effects origin-
ating in hard gluon interactions are calculated perturb-
atively and included in the effective weak Hamiltonian. The
above assumption then implies that the amplitude for a meson
M decaying into a final state b, ¢, 1s determined by the
matrix element of the effective weak Hamiltonian between
asymptotic initial and final states,

A (Msbc) = <bc|Heff|M> (I1.13)
Heff includes the hard gluon corrections and is calculated
from perturbative QCD. The non-perturbative phenomena cannot
be calculated from first principles in QCD. Hence the matrix

elements have to be evaluated from physically motivated

12



models and are discussed in section thod.
Hard Gluon Effects

n the absence of QCD effects, the hadronic part ot the
woeak Hamiltonian hags the form,

U i T e P '
Hope Vg‘lqu)(“4‘3" crr-en

~rorrections to the above four-guark opeorator  come bron
one-~loop diagrams in the Lowest order. The vertoex atd selt
enecgy corrections are absorbed in the physical  conpling
constant, G

Fe The gluon exchange diagrams result  in o the

following corrected Hamiltcnian:
2

1 0 Gp 3ag MW - ,a - ,a
H=H "——:——‘-"ln*-—z—'— (qzk ql) (CI4>\ CI3) . (I1.19)
v2 8n M
The hard gluon exchange induces an additional four--juutk
operator, having the same chiral and flavor structure as the
uncorrected HO, but inveclves a product of «color octet
currents. Using a Fierz transformation“ and the properties

of SU(3) algebra one has the relation:

[(3.224.) (G,2300) 1=22-(3,q,) (3,a) +2(3,a,) (da,) - (11.16)
2 1 4 3 3 211 473 213 471

Hence,
. G ag M% _ ] 3 Mﬁ ) )
H = ;E 1+ 4= ln;7 (qqu)(q4q3) - 43 ln;? (qzqz)(q4q1)

From the above one can see that the hard gluon exchange

renormalizes the original four-quark operators and intro-

duces an additional effective neutral current interaction.
The four quark interaction has the color structure

3¢3=3+6. The operators corresponding to the sextet and



14
anti-triplet are:
I 5 5 S o)) \

T » Hamiltonian without QCD corrections can then be written

in the form,
0 GF
H = —[c, 0, +c 0.1, (I1.19)

vz 7 -

where c+=c_=l. The first order corrected Hamiltonian may be

similarly decomposed,

G
g = L (el o+ cl o1, (I 0)
4
where,
2 2
o o M
1 _ s MW 1 S W -
c, =1 7Eln;§ and c. =1+ —Eln;? . (IT.21)

The strong interaction effects modify the coefficients c,
and c_, but do not mix the operators O, and O_, which are
even and odd under interchange of color indices respect-
ively. Note that QCD corrections increase c_ but decrease
c, -

The hard gluon corrections can be summed up to all
orders in g using the techniques of operator product
expansion43 and renormalization group.44 The time ordered
product of weak currents is expanded in terms of local
operators,

po

,-.-0) O (0). (I1.21)

T[J"’(x)JT‘y(O)] =Yy ck(x;gs,m «

. q

In the limit of massless quarks, the short distance expan-
sion of the time-ordered product of weak currents consists
of only two operators,12 leading to the following

Hamiltonian:



g®Ef - C, (GgrMy/m) 0, (0) + c_(gg,My/w) O_(0) (II.22)

with

P 5wt 5 ;
0, = 5{1ay,3Vay /31119; /3 9y 3011953V /30 1,191 /351 /31 L)

.. (I1.23)
u d
with /3 = C and 9y /3 g .
t

The coefficients c,, must compensate the dependence of the
matrix elements <flok(0)|i> on the normalization point u and
hence are obtained as the solutions of the renormalization

group equation. In the leading log approximation12

2
: a () x
c, (g ,gﬂn)=c (O,MW i 5, (IT.24)
t'7s’ p t m ( 2)
ag (My
where as(Qz) = ____ﬁga_z_

bln (Q2/A%)

g_ is the effective coupling constant, d, are the anomalous

S
dimensions and b=ll—2Nf/3, Nf being the number of flavors.
Since d_%2d+, we have the relation c_=1/c+2° The calculation
has also been done in the next to leading log (NLL) approx-
imation.'® These NLL corrections are small and reinforce the
leading log shift of C, w.r.t. their free quark values:

M, [as(uz) ]f%_[l . ag (u%) —ag (M2)

C(gl )=
+'7s “s(M%) 14

m pt(Nf)]' (IT.25)

where,

2,.2
2 NLL , A2 LL, N2 38 1 1n[ln{Q°/A7)
o« (Q°) = o " (Q%) = a_ (QT)4{1 - [102 - N_-]
] s S { 3V F b? ln(Qz/Az) }

1 -221 5 1 ... _ 19
P Mg = — l=7 " 3 Nel* —2 150 = 757 Nel
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_ 1 263 _ 10 1 _ 38
and p_(Nf) = - [ > 5 Nf] + —gj [~102 + —— Nf].

The corrected Cabibbo allowed charm lowering Hamiltonian may

now be rewritten in terms of the ¢ ‘cients,
c, + Cc_ - C_
C, = ———— and Cp = 5
as,
Gp 2 = - —
HNL(AC=—1) = —— COS ec[ Cl(sc)(ud) + Cz(sd)(uc)].
V2

... (II.26)

II.4 Valence Quark Approximation

The short distance QCD corrections to the Hamiltonian
of weak interaction were calculated using perturbation
theory. Now, to determine the amplitude for any weak decay,
one needs to calculate the matrix element of this
Hamiltonian. One thus has to deal with non-perturbative
bound state effects, and an approximate model is required.
The simplest approach8 is that of the valence dquark approx-
imation. The calculations are done at the quark level. The
initial state meson is represented by its valence quark
configuration, and the final state quarks represent the
inclusive hadronic final state. Soft gluon interactions
ac.ompanying the weak process are neglected. The decay
mechanisms® possible are shown in Fig. 1. The diagram in
1(a) represents flavor decay, while 1(b) and 1(c) are flavor
annihilation via W-exchange and W-annihilation respectively.

In the flavor decay mechanism (also referred to as the
spectator diagram), the spectator quark remains passive. The

semileptonic width from flavor decay should thus be

16



identical to the p-decay amplitude:36

I"D (P—élle) ~ T (Qaqlvl) =T (p.—)vueve) (mQ/mM) o
25
GF mQ .
= — - (I1.27)
192 «
////’qé ‘
Q -q,
< ;
q, P
§ <q2
Q a Qs
q q q q
(a)
Q - 4 a q
G 1
% \vvwvmv//<q3
—_ ‘__——_——t?3 ﬁ'///// \\\\\\~q3
q q2 -qz

(b) (c)

Fig. 1 Decay mechanisms in valence quark approximation: (a)
flavor decay, (b) flavor annihilation via W-exchange and (C)
W-annihilation.

For light final state quarks, the hadronic width would also
be the same, apart from a color factor, which accounts for
three color states in which §2q3 can be produced, i.e.,
_ 3GL my
o = T
FD(P»XH) F(Q+q1q2q3) —_— - (I1.28)
192 @

In the case of flavor annihilation the light antiquark has
an active role. Since weak interactions are point-like the

heavy quark and the light :/ntiquark have to overlap for the

annihilation process to occur. Thus, the meson decay



constant fp defined by <0|J“|P>=ifpp”, comes 1into the

picture. The annihilation width is given by:8

r (P>X,,) = C Gg f2 M (m2 + m2) x phase space (II1.29)
ann ‘" 7%H 87 p ph 1 2 p pace, .

where C is the color factor, Mp the initial meson mass and
m, are the final state quark masses. The dependence of the
width on the light quark masses implies that the annihi-
lation process is helicity suppressed. This is analogous to
the suppression of neese versus n»usu. A pseudoscalar meson
cannot decav into a massless fermion-antifermion pair if
only left-handed fermions participate in weak interactions.
Spectator Model

In the so called spectator model, the light constit-
uents of the decaying heavy meson are assumed to be inert.
Thus the annihilation process is neglected and the decay
assumed to occur via spectator diagram only. Thus, in this
model the lifetimes of D+, DO, DS+ mesons should all be
equal and essentially determined by the lifetime T of the
charm quark:

c(0%) =z « @) = 1.

In the charm quark decay, at the Cabibbo-allowed level, only

two leptonic modes and one hadronic mode is possible. Hence,

using eqs.(II.27) and (II.28), we have

5
m
_ 1L 1 1 . -13 N
T = —F— o 5[ ] T, ® 7x10 s, form, = 1.5Gev. (IT1.30)
c

+

The experimental values® of the lifetimes of D°, D and D;

are:

18



+(0%) =(4.27£0.10) x10™ 35,
z(0*)=(10.45:°" Z:)x10_13s
and T(Ds+)=(4.3ltg:Zg)x10—13s. (IT.31)

The naive prediction of the spectator model is quite close
to the experimental values. Thus the spectator model does
provide a very useful qualitative hasis for calculating the
weak decay of heavy quarks. However, one notes that the
lifetimes of p* and D° are not equal. Thus we need to look
beyond the spectator model and include the effects of the
other quarks and gluons present in the initial or final
state. Note that the short distance QCD corrections were
ignored in the above. However, within the spectator model
framework, their inclusion still results in equal lifetimes
for all the charm particles. The nonleptonic rate, including
QCD corrections is given by,
G2 m5

I'(cosdu) = (ZCE + cg) ————%— . (1T.32)

192n

Thus, the hard gluon corrections enhance the non-leptonic
rate by a factor (2c3+c§)/3 w.r.t. the rate obtained using
the uncorrected Hamiltonian.

In the spectator model, the semileptonic branching
ratios of all weakly decaying states with the same heavy
flavors will also be the same. For charm quark decay, one
out of five decays leads to a particular lepton in the final
state, therefore,

B(calle) = 1/5 = 20% . (IT.33)
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The nonleptonic QCD enhancement would lead to,

B(colv X) = 1 ~ 16% . (II.34)

2
2 + 2c * c_

Again, this result is in variance with the observed®
semileptonic branching ratios:

B(D setx) = (17.0%1.9:0.7)%
and B(D’»etx) = (7.5:1.1:0.4)%. (II.35)
since the electroweak sector is well understood, it may be
expected that the reason for the lifetime difference must be

hidden in the purely hadronic sector.

Now, B se'x) _ rm e’ =) (IT.36)
B(Dsetx) r(d°se™x) (D%
+ + 0 + . N
If (D se X) = I'(D-e X), then the ratios of the semi-

leptonic branching ratios should be equal to the lifetime
ratios. This is indeed the case.

Thus, the spectator model, which only incorporates the
short distance structure of heavy flavor decays, 1is not able
to reproduce the detailed pattern of charmed particle
decays. Long distance phenomena, involving the 1light
constituents appear to play a significant role. Two such
effects have been proposed to resolve the lifetime differ-
ence: quark interference45 and flavor annihilation.23
Interference

From the Cabibbo-allowed nonleptonic charm changing
Hamiltonian given 1in eq.(II.26), one can see that the two

terms with coefficients C1 and C2, both give rise to the

. . + .
same final states in D decay, whereas the final states are



distinct in D° decay (see Fig. 2). Thus, one can exgect

f;} T °)
~g
c S } d hhﬂ%<:::;\

o+ u
D d d ﬂ}
C4 diagram (a) C» diagram
} C S}
d
4§§S§////’ p° 4%%"”z<:::::
C
0 u
Py U a)
C diagram (b) C, diagram

Fig 2. Amplitudes for (a) D+ and (b) D’ decays arising from
the C1 and C2 terms. Brackets denote color singlet final
states.

interference between the two amplitudes in D+ case. Further,
if this interference is destructive then it could account
for the higher D' 1lifetime. Ti.e amount of interference can
be accounted for by a parameter «, where 0 s a« s 1. The
nonleptonic width for Dt (neglecting Cabibbo suppressed

8
2rms), then becomes:

2.5
G_m

ry 05 = [2 (14w c2 + (1-a) 21 2S5 (I1.37)
192n

ace, the interference would be absent in D° decay, we

have,
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(D+) 2 + 2CE + c%
b = 5 5 (II1.38)
©(d%) 2 + 2(l+a)ct + (l-a)cl
Even for maximal destructive interference, i.e. « = 1, the

above ratio is 1.5. Hence, this mechanism 1is probably
present at some level, but not enough of an affect by itself
to be consistent with the observed p* and D° lifetimes.

The interference can also arise at the quark level
pefore hadronization, from the presence of two identical d
quarks in the final state. If a d quark spectator is present
in the initial hadron, the newly produced d cannot occupy
the whole phase space; according to Pauli principle, the
part of the phase space already occupied by the d spectator
is 1inaccessible to the new d. A calculation of the D"

hadronic width including this Pauli interference leads to,8

2
rootsx) = (2¢2 + &) 5 W _(c? - 2¢%) Gg . 12(0) |2
p(P Xy = lecg v e ) ———3 = (c_ 7 ey '
192n
... (II.39)

The correction to the original width 1s seen to depend on
$(0), the bound state wavefuﬁction at the origin, since an
overlap of identical quarks in space leads to the Pauli
interference. Note that since c"2>2c+2, the interference
does decrease the pt width. Estimates’ using simple quark
models for the D+ meson, indicate that the interference
effect probably does not exceed 20%.

Annihilation

The W-exchange and W-annihilation diagrams can contri-

22



pute to D’ and D; nonleptonic decays at the Cabibbo-allowed
level. The annihilation graph 1s present only at the
Cabibbo-surpressed level for 0", Thus non-vailshing annihi-
lation contributions could be responsible for the lifetime
differences in charm particles. The helicity suppres ion of
these diagrams could be lifted by the presence of gluons in
the decaying meson. The cq pair can then be in a spin one
configuration and thus annihilation into a pair of 1light
fermions will not be impeded by small mass ratios.

23

A perturbative QCD calculation of the effect o,

single gluon emission from the light quark line yields:

2
Tann_ _ 2n:s 5 (c e ) [5[%_] for DXy (II.40)
Ty 27 (2c, + c) u
~ 6x10—2.
However, perturbation theory may not be relevant in

estimating the annihilation contributions. Non-perturbative
approaches such as QCD sum rules?® and QCD multipole
expansion46 give much larger values. Thus, precise
quantitative predictions are very difficult due to the lack
of understanding of hadronic bound states and the role of
soft gluon interactions. We thus need to determine them
phenomenolcgically.
Nonleptonic Two-Body Decays

Since the discovery of charmed mesons, many exclusive
decay channels of these particles have Dbeen mo:—:asuredﬁ'6 by
various collaborations. Two-body and quasi-two-body modes

seem to dominate® the nonleptonic D decays. The hadronic

(%)



matrix elements are simple to calculate for these modes.
Some two-body decay channels of B mesons have been measured
as well.' of course two-body v ivs of B mesons are not
expected to be as dominant as in the case of D decays, due
to the larger phase space.

Neglecting soft gluon interactions, the two-body decay
amplitudes are determined as follows. First, the quark
currents in the effective Hamiltonian are replaced by the
corresponding hadronic currents JH' For two body final
states consisting of two pseudoscalars, a pseudoscalar and a
vector or two vectors, henceforth denoted by PP, PV and VV
respectively, one employs the factorization ansatz’’

<f|JH-JHID> =z <P Or VIJH|O><F or VIJHID>. (I1.41)
Thus, the matrix element of the HNLeff can be written in
terms of simpler matrix elements of single currents and thus
are determined in terms of meson decay constants and hadron
current matrix elements.

Let us consider the decay D+9R0n+. Using egs. (II1.26)
and (II1.41) we have :

G

am’s %) = —gcoszec{c

<at13%d, 10><k%s9c. ">
V2 + ]

1

+ cl<R°|§3d.10><n+|ﬁlc.|D+>
i 3

+ c2<n+|63d.|0><R°|§lc.|D+>
i y

+ c2<i°|§1di|0><n+|ﬁjcj|D+>} (IT.42)

Using,
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1

<n+|Gldj|0> a;<n+|ad|o >

NC
and
=0, =i 1 i_zo, = +
< . = el §7,< S
K’lsc 10> Tl K lsciD > (IT.43)
we get,
G c ;
ats Bt = Lcos®e {[Cl * ‘Zq<"+lud|0><x°lsch*>
V2 ¢ Ne
€1 z0,2 £
+ [cz + N—]<KlsdJ0><nluC|D >}.
C
... (IT.44)

In general the transition amplitude may be written in the

form:
2
Gp cos™e, _ _
TMD » f) = —————= { a1<f|(sc)L H(ud)L H|D>

Vz 4 r
+ a2<f|(Gc)L H(Ed)L g/D>}, (I1.45)

1 [4
where, a; = Cl + ng and a, = C2 + gcl. (II.406)

Both charged and effective neutral current receive contri-
butions from a term where the color indices are automatic-
ally matched to form color singlet hadrons and a second term
where the color indices are mismatched. £ is the color
mismatch factor, and we expect £=1/NC for NC colors.

In the absence of QCD corrections,
implying that al—)l
C290 a2—>€=1/Nc

Clel

Thus the amplitudes with coefficient a, are then color
suppressed w.r.t. those with coefficient ay - In the presence
of QCD corrections, an additional neutral current interac-
tion with coefficient C2 is introduced, the hadronic

amplitudes then have the full coefficients a and sy

1



defined in eq.(II.46). Thus both aq and a, have color
& #ed and color suppressed parts.

I'n h= case ot D’ decay the charged current oweralZor
with coofficient ay results 1n <c¢harged final states

(referredZI to as class I transitions by Bauer et. al.)
while the effective neutral current operator with coeff-
icient a, results in neutral final states (called class II
transitions). As a consequence of QCD corrections (c_>1,
c,<1) la2|<|a1|, leading to <class II amplitudes Dbeing
smaller than class I amplitudes. Thus for example:
F(DO->K—1I+, K~p+, etc.) « a?, I‘(DC—>I—<O1tO, I—{Opo, etC) « ag
In the absence of QCD effects one expects that the ratio:
R = ”DZ > Ri“i) - 1, =2, for N_=3, (1I.47)
rd” » Km) 2N 18 }

the 1/2 factor comes from the square of the 7’ wave function

(uu-dd) /v2. QCD corrections require that:

2
. - (
R = ror - Kono) _ 1 c2+€Cl
- 0 - + _2- - (II-48)
rc” > Kn) ‘Cl+§C2
2
=1 _ij___(:_: zl for&:l
2 { 2C,+ C_ 50 3

reducing it even further. This is in gross disagreement with
the experimental branching ratios:®
B (D%~ RK°2°)=(1.9+0.420.2)%,
o - + (II.753)
and B(D-K nw )=(4.220.420.4)% .
In the naive quark model the parameter £ has the value 1/3.

However, in the presence of soft gluons i.e. nonperturbative

effects, this may not be justified. The discrepancy between
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the above theoretical valuoe (see  og. i L.d8)) and t he
ecxperimental prediction was usod by Buras ot .'11,"” to be an

indication of the abronce of coler oo oresoed Jdb warame, e

£=0. For £=0 the above ratio i,

L [ S CL 2
R=5 |- — =~ 0.1 (11.50)
c, +C_
in better agreement with the values of eq.(l1.49). oimilu

absence of color suppressed contributions was also shown to
give better agreement for the neutral and charged Kp and K*n
modes.

Before making any conclusive statemencs about the
factor & from the above data, one needs to consider two
effects. The first important effect'” is that of final state

. . . -+ =
interactions. The three D-Kn amplitudes, DOﬂK n o, K'n’ and

+ =0 + . . .
D 5K'm can be expressed in terms cf two isospin amplitudes

with isospin 1/2 and 3/2 1n the final state as,

A K r")= L (v + A )
/3 1/2 3/2
A(D°sK%%)= L (- + vIA_ ) (I1.51)
/3 1/2 32
A K% )= v3a
3/2
Without final state interactions the amplitudes A and

/7

sz would be real. Mark III measurements6 however indicate
that they need &to be complex and that the phase shift

between the two isospin amplitudes 61”—6H2z77°. Thus,

. . ' 48,22
final state interactions could account

for the discrep-
ancy between theory and experiment for the neutral to

charged ratios of D’ decay modes. Note that there 1is not



complete ayreement between theory and experiment for these
ratios even for ¢=0, in the absence of final state
interactions.

The other effect which also needs to be considered is
that of annihilation. It was pointed out earlier that in the
presence of gluons in the meson wave function there is no
helicity suppression for the annihilation process. Alter-

49,22
such as

nately, there could be a dynamical mechanism
the presence of a resonance, with quantum numbers equal to
that of a K’ with mass close to p%and a n+close to D;, which
could also enhance the annihilation contribution in D’ and
D; decays respectively.

There are some special decay modes that can be

generated only via annihilation. The valence quark structure

of these final states cannot be produced via spectator

50 0

decays in a direct way. D%sK% and E%"° should be clear
signatures for W-exchange. Here the u quark of the initial
state is absent in the final state meson. For the D; meson,
final states with no net strangeness and no ss content (such
as pn) could be characteristic of W-annihilation. al
state interactions could however confuse the picture. The
difficulty in calculating weak annihilation diagrams lies in
the fact that form factors at large q2 are involved, where

16 Thus

the simple pole type form factors cannot be trusted.
at present one cannot predict the strength of annihilation.
We adopt the following strategy: we treat annihilation as a

parameter and predict the rates for various decay modes.
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Comparison with the experimental wvalues can then glve some
idea about annihilation.

In addition to the spectator and annihilation graphs,
there are the so-called Penguin diagram&@ which can also
contribute to the decay processes. Here, a quark of flavor
q, is transformed to a quark of flavor q, via a virtual
quark loop, carrying flavor g - This effective flavor
changing neutral current interacts with a flavor diagonal
current via gluon exchange. The contribution of these
diagrams to charm decays is small, being at the IVﬁbl level.
In B-decays, these contributions may not be negligible. We
will ignore the Penguin contributions in our discussions.

In the next chapter we will discuss the theory of final
state interactions. In chapter IV final state.interactions
and annihilation will be incorporated in a model calculation

for various D, DS decay modes.
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IIX. FINAL STATE INYTERACTIONS

Charmed mesons can decay nonleptonically into a variety
~f hadronic channels. As charmed meson masses lie in the
resonance region, strong interaction final state rescatter-
ing effects'!® can modify the naive expectations for
exclusive two body D, DS decays substantially.

If the pair of hadrons produced in a weak decay has an
energy which is below the inelastic threshold, the amplitude
can still develop a phase from elastic scattering. For
example, consider a process ‘X’, in which the final state is
composed of two possible isospins. The corresponding
portions of the weak amplitude, each pick up a phase that is
appropriate to scattering in that particular isospin state.
Depending on the phase difference of the two isospin states,

the net amplitude for the physical process ‘X’ can be very

different from that predicted from the weak decay alone.

£%: 3

When one is above inelastic threshold, it is also
possible to produce the final state through scattering of

20,22
other channels. 2

Thus, the amplitudes of the different
coupled channels can feed into each other, resulting in
enhancement or depletion of the weak amplitudes. A coupled
multichannel scattering calculation needs to be done for
such a case.

The problem at hand is thus the following: Given a set

of n strongly interacting channels which can communicate, we
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want to determine the amplitudes for a weakly interacting
system to go into each of these channels. The technique for
handling this problem consists of writing the unitarity
relations and solving the resulting coupled integral
equations, the SO call«d Muskhelishvili-Omnes (MO)
equations.51

In the literature the MO equation has been discussed®
quite extensively, particularly for purely elastic single
channel scattering. Charmed meson decays mainly involve
inelastic multichannel final state interactions. We will
therefore review the inelastic multichannel case” (in
section III.2), mentioning the elastic case very briefly. In
the following section we first consider the analytic

properties of the scattering matrix.

III.1 Analytic properties of the Scattering matrix

The strong interaction S matrix can be expressed in
terms of the scattering T matrix as,

S(s) = 1+2iT(s) (III.1)
where s is the center of mass energy squared of the two-body
subsystem. For n coupled channels S and T are n-dimensional
matrices. The property of causality requires that T(s) be an
analytic function of s, except for certain poles and branch
cuts in the complex s plane. These branch cuts?® may be
separated into two classes: right-hand cut as. ~iated with
the unitarity condition and left-hand cuts associated with

the physical mechanisms which generate the reactions
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considered.

For s above threshold, the unitarity of the S matrix,
i.e. the condition STS=1 reduces to the following for the T
matrix:

. t _ T _
21(Tij(S)-Tij(s)) = 4% Tik(s)e(s sk)Tkj(s)

or, ImT, . (s) = L T1,(5)0(s=8,) Ty () (III.2)
K

ij
where Sk is the threshold for the channel k and e(s—sk) is
the step function. Below the threshold energy, since there
are no final states energetically available, ImT(s)=0. Once
above threshold InT=0. Writing, T (s+ie)=ReT+iImT and

T(s—ie) =ReT-iImT we have,

T(s+ig)-T(s-1i¢e)
21
A non-vanishing ImT thus implies that T(s+ie) and T(s-ie) do

ImT(s) =

not approach equal values as e>0. This implies that there
must be a branch cut on the real axis above the threshold,
refer.2d to as the right-hand cut.

The left-hand cuts on the other hand are provided by
the production model. Thus, they depend on the dynamical

>4 they arise from the

details of the interaction, for e.g.,
p-exchange graphs in the two channel problem involving
" ¢ N, NN & TW.
The scattering matrix T(s) for a partial wave of given
angular momentum and isospin can be expressed as,
T(s) = N(s)D 1(s). (III.3)
This formalism, known as the N/D method,f35 guarantees the

unitarity and analyticity properties of the scattering

32



matrix mentioned above. For an n channel system, N(s) and
D(s) are nxn matrices, D(s) carries the physical unitarity
cut, while N(s) carries the unphysical left-hand cuts. Note
that time reversal invariance requires that T(s) be a
symmetric matrix. T(s) given by eq.(I11.3) satisfies this
condition, provideds56 ImT(s, 1is a symmetric matrix on the
left-hand cuts.

Above the threshold, since N(s) is real, we have,

_ -1
ImDij(s) = Im{T (s)]ikaj(s) s>sR (III.4)

where, Sg 4s the threshold energy appropriate to each

element of T(s). Using eq.(III.1l), we have,
-1

rl(s) = [—%l}—] . (III.5)

Eg. (III.5) and a similar relation for (T—l)T may be used to
. -1 = - -

obtain, ImTij(s) = aije(s sj). (I1I1.6)

Using (III.6) in (III.4), we have,

ImDij(s) = -Nij(s)e(s—si). (I1II.7)
If we choose a normalization of D(s), such that ReD(s)
approaches the wunit matrix as S-=, then the analytic
expression for D(s) in the complex plane is,

0

1 f N..(S’)G(s’—si)

D..(s) = &8.. - i3 ds’ . (III1.8)
+J +J] n s’-s~ie
0

The physical value of D(s) is obtained by approaching the
real s-axis from the upper half plane.

Since D(s) is real on the left-hand cuts, the imaginary
part of N(s) may be similarly computed as,

InN(s) = ImT(s)D(s) s<sy, (ITI.9)
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where s. denotes the end point of the branch cut appropriate

L
to each element of T(s). The function N(s) 1is therefore
given by,
S
1 L
N(s) = ImT(s')D(S’) 44/, (II1.10)
x s’ ~s~-1¢

-

Note that N(s)-0 as s>» to satisfy T(s)»0 in the same limit.

III.2 Muskhelishvili-Omnes Equation for multichannel case”

For n communicating intermediate states, we introduce
the n-dimensional column vector A(s) = (Ai(s), i=1,...n),
formed of the n amplitudes for producing these states. In
the following discussion, for convenience, we define a
matrix 8, whose components are given by,

A

(s) = 6i.9(s—si)

]
where si denotes the threshold for the ith‘ channel. The

0, .
17

unitarity condition for the amplitudes A(s), takes the
form,57

ImA(s) = T'(s)e(s)A(s). (III.11)
As an example, consider pwo coupled channels, denoted by 1
and 2. The imaginary part of the amplitude of channel 1 will
be given by,

ImA, (s) = T;;(s)8(s=S )R (S)+T,,(S)0(s=5,) A, (s).

Using eq. (III.11), the unitarized (i.e. final state interac-
tions corrected) amplitudes may be related to the un-

unitarized (uncorrected, weak) amplitudes through the

following MO equations:
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35

A(s) = a°.s) + ds’ (II1.12)

00 N
1 et sye(s)a(s))
s‘—gs~1¢
o}

T
A° (s) are the real ununitarized amplitudes.
For single-channel elastic scattering this takes the

simple form

A(s) = A%(s) +

(ITI.13)

1 (® L *
h (s’)A(s’)ds’
s’~s-1¢

T
s
R

i8(s)

where, h{(s)=e sins(s) for rescattering in the L=0

partial wave. The solution to the above 1is,

c(s) ® - (s’)

A<s)=eia(s)[ko(s)coss(s) + & _ PJ Ap(s,)sina(s/)e ds’ ]

s’-s

s
R

. (I1I.14)
P 8(s’)ds’
T s’-s
)
R

where, c(s) =

The solution of the homogeneous equation (when allowed) can
be added to the above. For small phase shifts, eq. (I1T.14)
has the simple approximate form :
A(s) = e 38 a0 (s, (III.15)
In the case of inelastic n-coupled channels, we seek a
solution to eqg.(III.12), in the region of energy, such that
the two body channels of interest are all open. The para-
meter s must thus be greater than the maximum threshold. We
define an n-dimensional column vector
F(z) = —— J:gi;éTT(s')g(s’)A(s’). (III.16)
Thus, we have,

a(s) = A%(s) + F(s+) (III.17)
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where, F(st)= lim F(stie) on the unitarity cuts. The
£ »+0

discontinuity egquation for F(z) can be written from
eq. (I1I.16) as,
F(s+) - F(s-) = 2iT'(s)a(s)A(s).

Using egs.(III.3) & (III.17), « have,

F(s+) - F(s-) = 21571 (s-) W (s+) 6 (s) (BC (s) +F (s+))
since, on the right-hand cut, N(s) is real and D*(s)=D(s~);
D, N denote the transpose of D and N respectively. Using
eq. (III.7), this implies that,

F(s+) - F(s-) = 2iD 1 (s-) (~ImD(s)) (A% (s) +F (s+)) .
Rewriting this relation we have,

(D (s-) +2iImD (s) ]F (s+) - D(s-)F(s-) = -2iImb(s)A°(s)
or, D(s+)F(s+) - D(s-)F(s-) = -2iImD(s)A°(s). (III.18)
A function of z which satisfies eq.(III.18) may be given
by,

(o4] -~ ; [o) ’ )
D(z)F(z) = - i J ImD(ssgfz(s )ds

+ P(z) (III.19)

0

P(z) is a column vector of arbitrary polynomials,
Eqs.(III.17) & (III1.19) imply,

B lis) mbB(sHA%(s)ds’ | §71p (s .

— O head
A(s) = A7(s) Ty S7=3

.. (ITI1.20)

We shall hereafter omit the polynomial term which gives a

solution of the homogenecus equation51 and restrict our-
selves to the main term of the solution.

In the case of point interactions (eg. weak decays),

the amplitudes 2% (s) are energy independent, hence,



eq.(III.20) reduces to,

n.--l %) ~ )
N _ D “(s) ImD(s’)ds’ o
~—1 ~ 1 ® tnb(s’)ds’ o
= b t(s)| B(s) - — f A A% (s).
14 (o]

Using eq.(III.8) in the above we get,

A(s) = b L(5)a%(s). (III.21)
Further, for a symmetric D matrix, we may write,

A(s) = D 1(s)a%(s). (III.22)
It may be noted that this solution has several ambiguities.
They come in the form of: (i)Polynomial ambiguity (see
eq. (II1.19)). (ii)Ambiguities arising from the presence of
simple poles in D(s) (CDD58 ambiguity) . (iii) The normaliza-

tion of the amplitude A(s).

III.3 A K-Matrix model.

The prescription in eq.(III.22) to determine the
unitarized amplitudes in a multi-channel scattering problem
requires the evaluation of the D matrix. At the mass scale
of heavy flavor decays, there is as yet very little experi-
mental information available regarding hadron-hadron
scattering. Hence the D matrix is completely unknown. A
simple approach is to write the D matrix in terms of the K
matrix formalism.?® In terms of the K matriz S is written
as,

S(s) = (1-iK(s)) 1 (1+iK(s)) (I11.23)

K must be hermitian to ensure the unitarity of S. Now, since



T(s) = [.S._(_g’_),_i],

AR

using, eq.(III.23) in the above we get,.

T(s) = K(s)(l—iK(s))_l. (III.24)

Time reversal invariance requires that T(s) be symmetric,
hence K(s) must also be symmetric. Further, since K(s) is
hermitian this implies that K(s) is a real symmetric matrix.
For “stem with n channels, whereas the T matrix would
hav+ +1)/2 complex elements, the K matrix has the same
number of independent real elements. The K matrix formalism
therefore provides an economical parameterization method.
It can easily be shown that eqg.(III.24) can also be

written in the form,

T(s) = (1-iK(s)) TK(s) .
Using eq. (III.3) and the above relation we have

K(s) = (1-iK(s))N(s)D I (s)

which may be rewritten as

1 1

K(s) [1+iN(s)D ~(s)] = N(s)D ~(s).

N(s)D 1 (s) [1+iN(s)D~ .s)]1 %

Hence, K(s)

N(s) [(1+iN(s)D Y(s))p(s) 1 .

i

Using eqg.(III.7) in the above gives the following form for
K(s).

K(s) = N(s) [ReD(s)] . (III.25)
Note that since N(s) is real in the physical region, the
above implies that K(s) is real, as desired.

By comparing egs.(III.3) & (III.24) one also finds that

a simple choice?® for the D function is
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D(s) = 1-iK(s). (I11.26)
T this model, the unitarized amplitude will then be glven
by,

AY(s) = (1-iK(s)) *A°(s) (III.27)
where we have introduced the superscript u to denote
unitarized amplitude for clarity. The above choice of the D
function is not unique, though it has the property, that in
the 1limit the strong interactions are turned off, i.e.,
K(s)-0, D(s)»1l, one recovers the un-unitarized amplitude.
The enhancement factor (D—l(s)) in eq.(III.27) has the
virtue of yielding the behavior expected19 in the presence
of a resonance that couples to the two-body channels under
consideration. If such a state is represented by a pole in

1

the K-matrix, then the form (1-iK) ~ corresponds to summing

the geometric series shown in Fig. 3.

Fig. 3 The geometric series that sums to p 1 (s). The broken
line represents the decaying heavy meson, thin solid 1lines
represent final state hadrons, which are assumed to scatter
via a resonance (thick solid line).

The unitarization prescription of eq.(III.27) requires

a suitable parameterization of the K matrix. In the next
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chapter, we give the form of the K matrix and use this model
to evaluate the unitarized amplitudes for various D, DS

decay modes.
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IV. A COUPLED CHANNEL TRELTMENT OF CHAR'¥D MESON

SADRONTC RECAYS

Considerable progress7'8 has been made in cur under-
standing of charmed meson Jdecas in recent years., An
economical model?’ which uses Factorization, £=0 (E,=1/Nc for
o colors) and no weak (or direct) annihilation has been
able to explain most of the two-body data with a consistent
set of parameters. Although this description is quite
successful in reproducing the data, the chapter on heavy
flavor decays is far from closed. Felevant questions, like
the real strength of weak annihilation and the role of final
state interactions are still unanswered.

In the above, by ‘weak .nnihi”at. or airect
annihilation’ we mean W-annihilation, or flavor annihi-
lation through W-exchange (see Fig.l), au the quark level.
Annihilation type graphs also emerge through final state
interactions, where a single resonance may couple to various
hadronic channels. In these rescattering diagrams, the
annilhiilation occurs due to the strong interactions with a
typical range of one fermi and not due to the point-like
weak interactions, thus it is clearly distinct from weak
annihilation.

A search for the process Dq§?¢ was originally proposed
by Bigi and E‘ukugita50 as a ‘smoking gun’ test of the
existence of exclusive non-spectator processes (one needs to
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get rid of both the ¢ and u quarks in the initial state,
since neither appears in the final hadrons). It 1is now
believed,20 however, that such a final state «can be
generated without W exchange, through rescattering effects.,
Another decay mode which cannot arise through a spectator
process 1s that of D;eﬁh+. In ref.[27] it was argued that
any weak annihilation contribution would conflict with the
low decay rate for D;ﬂfn+. We wish to point out that final
state interactions could conceivably conspire with weak
annihilation in such a way that the transition Dzaﬁ%+ is
interfered away. Thus direct annihilation processes could
occur, though possibly at a reduced rate. However, no
quantitative conclusions regarding it can be made without
the simultaneous inclusion of final state rescattering
effects.

In the following we perform a coupled channel final
state interaction calculation for wvarious D, DS decays. The
annihilation ceontribution to the weak amplitude is taken as
a parameter, since a reliable estimate for it is not
possible. The layout of this chapter is as follows. 1In
sect.IVv.1l, w2 describe the K-matrix parameterizationz2 used
for unitarizing the weak decay amplitudes. In sect.IV.Z2 we
show the calculation of un-unitarized amplitudes. A coupled
channel treatment? of Cabibbo-angle favored Dé»VP decays is
presented in sect.IV.3. Sect.IV.4 discusses the coupled

channel treatment?’ for DsVP decays. Sect. IV.5 deals with

the D,Dsavv modes, while IV.6 treats the Cabibbo-suppressed
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DsVP decays.

IV.1 XK-Matrix Parameterization

As discussed in the last chapter, we unitarize the weak
decay amplitudes a%(s) (V§ is finally set equal to the
charmed meson mass) through,

A% (s)=(1-iK(s)) “*A’(s) (IV.1)

Since strong interactions conserve isospin and G-parity, the

above equation has to be written for each isospin and
G-parity (where it can be defined), separately.
In the case of a single channel, we choose

K(s)=ka (IV.2)

where, k 1is the center of mass (c.m.) momentum in the

channcl and a is a constant. Using eq.(III.23), the S

matrix, then has the form,

S(s) = (1-ika) *(1+ika) (IV.3)

Also, S(s) = eZis, (IV.4)
where & is the phase shift. Equating eqgs. (IV.3) & (Iv.4), we
have the following zero range formula,Sg

kcots = 1/a. " {IV.5)
The parameter a, thus represents the scattering length. For
a two-channel problem we generalize the K-mat~ix in
eq. {IV.2) to have the real symme:-rl: Form

['x b vk _k_cj
1 12}

K(s) = (IV.6)

vk Kk c k._a
2 1 2

where @. b and c are real functions of the energy. Again, if

they are energy independent one is led to the zero-range
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approximation;60 k1 and k2 are the c.m. momenta in the two
open channels. In channels that doc not resonate we shall use
the parameterization of eq.(IV.6) with energy independent
parameters a, b and c.

For two coupled channels that resonate, we employ a

single resonance approximation for the K-matrix,

1 kr vk kT
K(s) = 111 172712 Ve
m- -s vk kT k T
R 271 21 2022

where m. is the mass of the resonance and s the c.m.
(energy)2 of the two-body system. Fij are related to the
coupling of the resonance to the channels i and j as will

become clear in the following.

Egq. (IV.7) inv...: three parameters, assuming that m
is known. From t..- . -natrix parameterization in eq.(IV.7)
one can const. ..t the T-matrix using eq.(III.24). For

example, the diag:n«l element Tll is given by,

kT -1
TU(S) = -idetK + —%—il ] (l—detK —iTrK} . (IV.8)
L mR =S

If we set det K=0, i.e., FIJ}2=F§2, eq. (IV.8) takes on a

1

simple factorized form® (by a factorized form we mean T «
1

]

r )
i3

kT -1
mR -S

On comparing eq.(IV.9) with the Breit-Wigner form, it is

clear that TrK 1is related to the total width of the

resonance and rll to the partial width in channel 1. The
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total width of the resonance, I, is given by
m I = klrll+k2r22 (IvV.10)

Thus for a resonant parameterization, the condition
rur”=rfy reduces the number of parameters from three to
two. Finally, fixing the total width of the resonance
reduces the number of free parameters to one.

For a three channel problem, the K-matrix of eq. (IV.6)
or (IV.7) is extended to a real symmetric 3x3 form. We
discuss here in some detail how we reduce the number of free

parameters in the case of a resonant parameterization of the

K-matrix. The real symmetric K-matrix we choose 1is Jiven by,

kr vk kT vk kT
111 172 12 173713
- 1 & . 1
K(s) = —— 2T kzrzy vk, ®iTys (I'7.21)

vk kT vk _ k. T k. T
372 32 333

3131

ki is the magnitude of the c.m. momentum of channel i. There
are & independent parameters FU, assuming that m. is known.
To reduce the independent parameters to a manageable number
we generalize the factorization condition of thé two-channel
case by requiring that the diagonal factors of eqg.(IV.1ll)

vanish. This leads us to three ccnditions.

‘e 2 2 2
T Y F =Ty r}zraa_rza

1 (IV.12)
11 22 11 33

In addition we impose the condition det K=0 which together
with eq.(IV.12) implies,

r r_r_=r

= (IV.13)
11 22" 33

r . r_.
12713 23

Eg.(IV.13) restricts the choice of the sign of Lo, rp and
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IDB obtained from eq. (IV.12). Egs. (IV.12) and (IV.13)
factorize the diagonal elements of the T-matrix but not the
off diagonal ones. A condition similar to eq. (IV.10) 1is

imposed on the diagonal I‘ii for the three channel case,

3
mRrR=.z k. (IV.14)
i=1

where T is the total width of the resonance and m its
mass. Conditions (IV.12) & (IV.14) provide us with four
constraints on six parameters. Note that the eq.(IV.13) is
consistent with eq.(IV.12) and restricts only the sign of
r”. Thus we have reduced +the number of 1independent

parameters to two.

IV.2 Calculation of Un-unitarized Amplitudes

For Cabibbo-angle favored decays, the un-unitarized
amplitudes Ao(s) are generated through the following
Hamiltonian:

1éffac=-1) = °F cos?e (a. (50) . - (3d) ¥ a,(5d), . (ac), L]
NL J> c 1 L, H L,H 2 L,H L,H
... (IV.15)
The corresponding Hamiltonian for Cabibbo-suppressed decays
is given by,

G

eff 4\ F . - - 3 -
HNL {AC= 1)—;§COSGCSln9C{al[(SC)L,H(US)L,H (dc)L,H(ud)L,H}
+a2[(ss)L,H(1,1c)L,H - (dd)L,H(uc)L,H]}
... (IV.16)

For two-body decays of the type I»PP, PV or VV (I is

the initial state pseudoscalar meson), the factorization
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assumption (see sect II.4), allows the matrix elements of
Hgif to be written in terms of the meson decay constants and
hadron matrix elements. The decay constants are defined
through,
<P|J |0>=-1if k and <V|J |0>=¢ £ m (IV.17)
H P M povv

From Lorentz invariance, Bauer, Stech and Wwirbel'’ write
down the following form factor decomposition for the hadron

matrix elements,

2 2 2 2
PlT |T> = (B.tP. - L2 gy F. (q2) + ST o (qd)
ee . (IV.18)
: _ _ _ 2 2
with qp = (P PP)p and Fl(O) = FO(O). Fo(q ) and F,(q")

denote longitudinal and transverse formfactors respectively;
in the case of I decaying into a vector meson, four form

factors appear, and the decomposition is written in the

form,17
<VIg,IT> = ﬁ: € po e PP Y V(g
; i{eu(mlﬂnv)Al COI ﬁ%;%;)—(P;PV)“Az(qZ)
- _Eéﬂ_ 2m g A3(q2)} + iE;%~'2n1q Ao(qz)
q v q Ve
e (IV.15,

where A3(O)=A0(0), A3(q2) denotes,

(m_+m ) (m -m )
2, _ I v 2, _ I v 2
A3(q )= dmv Al(q ) “—Za;—— AZ(q )

e“ denotes the polarization vector of the outgoing vector

meson and here, qu=(PI-Pv)“.
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The q2 dependenc= of the various form factors Fi(q2),

A.(qz) and V(qz) is assumed17 to be dominated by the nearest

i
pole (of mass m), i.e., they have the form

h

1

[~3

This ansatz ensures asymptotic (q2+m) current conservation.
In the limit of exact SU(3) symmetry, h’s are unity; h’s are
therefore a measure of SU(3) breaking. The form factor
decomposition in egs. (IV.18) & (IV.19) has been done in such
a way that each formfactor is dominated by one pole only:
the vector formfactors FO and (Fl,V) by the 0+ and 1 poles
and the axial vector formfactors A, and (A,,A), by the 0
and 17 poles, respectively. Although the precise positions
of most poles are not known, however, approximate values are
sufficient in most cases. For numerical calculations we use

1 (see Appendix

the mass values as given by Wirbel et. al.
A) . The residues of the pole terms, h's are determined by
the overlap integral of the appropriate hadronic wave
function as obtained in a relativistic harmonic oscillator
model. These have been evaluated in ref.[17] (Appendix A).
The spectator part of the PV decay amplitudes involve

the following type of terms:

(1) . A (IsP) = <VI|J |0><P|J |I>.
PV u M

Using egs. (IV.17) & (IV.18), we get

2__ 2 2_ 2
m_ -m
I

m_-m
_ B 1 P 2 P 2 vl
A?V(IAP)—[[PI+PP ——~;§— q]“Fl(q )y o+ ———;7— unO(q ) le mva.
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Since, qu=(PI-PP)“=PV , q-e=0. Hence, we have
u
- - 2

APV(I—>P) = (PI-FPP)'C xr,_/fvl. ir(q )

_ 2 "

= 2nwval(q ) e-k (Iv.20)
where k is the momentum of the pseudoscalar meson and

h

Fo(q°) = —5—
1 44
l1-g /ml—
m, = is the vector pole for the appropriate current J“.
(i1) . A (I-sV) = <P|J |0><VIJ |I>.
PV K p

Egs. (IV.17) & (IV.19), imply that

s M 2 V P o7 2
AVP(IaV)—- ( 1fPPP)[ m1+mv euvpo € PI Pv vVi(gT)
, 2, _ €-q 2
+ 1{eu(m1+mv)Al {(q™) W(PI+PV)#A2 (g™)

_e:q 2 e 2
. 1 2an“A3(q )} + J_—-;Z 2qu“A0(q )]

or,

_ . 2, _ RXe| . z
A, (IsV)= £, {s P_(r +m)A; (q7) W(pl+pv) P A, (q%)

- &9 omnqg-PaA (q2) + &9 2mgpPpa (q2)
q? v p 3 q? v P 0 )

Here, P_=(P -P ) =q , therefore, (P +P)-P,=m?—m2 and we

Pl I Vg Cu SO P v
have,
A (IsV) = fle-gq(m +m )A (qz)—c-q(m—m ) A (qz)

ve P 1 v 1 v T2
m_+m

m —m
1 v 2 I v 2
- c'qzmv[—TnTv_Al(q ) - ——Q_ﬁ;—AZ(q )]
+ (e.9)2m A (qz)}
) v 0

- i 2
= 2nwfp(c k)Ao(q ) . (IV.21)



50
where, Ao(q ) =

and 4= is the pseud: ;calar pole of the appropriate current.
For VV decays, the spectator contribution to the
amplitude will only involve the following type of term,

= K
AWAIAVl) = <V2|J |0><V1|J“|I>

2 v

- _2_ 2
c2mv2fv2[ mI+mVl€uvpo €1

P oF 1y 2,
Py Py Via)

. 2, 514 2
+ 1{81“ (mI+mv1)A1 (q )—W(PI+PV1)‘1A2 (q )

€174 2 €174 2
- : - 2mv1qu3(q )} + 1-;7— 2mv1quAO(q )
Since, q“=PI—Pm=va 52-q=0, therefore we have,
2mvzfvz V B P T 2
AL, (I9Vy) = ﬁi?ﬁi;:'euvpc € € P} A
+ im f {e,.e,{m +m_)A (q2)
v2aov2| 17721 v’
€174 2
- W(PI-*-PVI)-SZAZ (q )} (IV.22)
where,
h h h
Vi) = s A (ED) = e & Ay -
1-g /ml- 1-gq /m1+ 1-gq /m1+
and m,- m,+ are the vector and axial vector poles of the

appropriate currents respectively. Egs.(IV.20)-(IV.22) can
be used to determine the un-unitarized amplitudes for all
the decay modes which are 1listed in Table 1 (where the

annihilation contribution is left as a parameter).



The un-unitarized amplitudes depend on the parameters

al and a, . We evaluate a2 for a chosen value of the ratio

al/a2 and €&, as follows. Recall that (see egs. (ll.Z2b) &

(I1.47)),

31’2 = —%— [(c+tc_)+g(c+$c_)]. (IV.23)

Rewriting the above we have,

_ 1 -
3y, = 3 [(1+gec, * (1-8)c_],

which gives the following relation for c_/c+

’

\

c_ B 14 al/az—l v 24)
c, B 1-£ a/a,*1 J e

Also, using eq. (IV.23), we have
_ =2
(a;+a,y) (a;-ay) = (1-€7)c c_

Therefore,

2__2 2 2
oo a17ay _ ay[(a;/ay)"-1]
+7- l—§2 1_€2
3 3 ag[(a1/52)2_1] 3 C__
or, c, c_ = > =z (IV.25)
1-¢ +
where we have used the perturbative constraint, cic_z 1.

Equating (IV.24) & (IV.25), we get

6 _ (1+¢) * (1-6)°

a yj
(al/az-l) (al/a2+l)

4

Hence,
2/3

1/3

(1‘5)1/3
2
(al/a2+1)

(1+€)
(al/az—l)

a (IV.26)

2 - 73

Once the ratio al/a2 and €& are chosen, a is calculated

2

through the above equation, to be used in the un-unitarized

amplitudes A°(s) shown in Table 1. The unitarized amplitudes

Au(s) are then generated through eq. (Iv.1l). Finally, the



Table 1. Un-unitarized amplitudes for D, DS+VP decays.

Multiply each amplitude by GF coszec/Viaz. R, R_ are the

annihilation terms.

o

Mode

Un-unitarized Amplitudes

+ o+ +
Dsepn P

+ K
D oK K’
S

- %

b kTR
S

0

R R

- _S _S
V2 V2
h (D _-»K ) R
of m b0 S s
R 1-q®/md 2
e m1*hF1(DsaK)+ Rg
K K 2 2 N
1-g /mD* 2
h (D _->¢)
(a./a.)2f m 20 S
1°72 TP 2, 2
1-g°/m
D
s
0
VZ2Ff_ m hAO(D%p) - R
2, 2 T
BP 1-g®/m? vz
hFl (D-K?}
(a,/a,)2f m —— + R
12 PP 1-g°/ns -
D
s
JTE e hFl(Den) R
K" T2, 2 7 T4
1-q /mD~ V2
hAo(Der)
(al/a2)2fan"__——Z__7_ - R
1-g~/m
D
s
R
h_ (D-»n)
L 2g am e EE -3R
K K 2 2
v6 1-gq /mDr
h (Dow)
1 AD
- { 2Eymy—>—% * R }
V2 l1-gq /mD
*
hAO(DeK ) hFl(Den)
(al/a2)2fan"————?__2 * ZfK*mKh—__Z——Z—
1-g /mD 1-gq /mD'
s
hF (D>K) h O(D—>p)
(a;/a,)2f m + 2f,m A
PP 1—q2/mg' P 1—q2/mg

S
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branching ratios are calculated as follows,

u 2 .3
R(I»VP) = 'r,llA (I>ve) 1 k- (TV.27)

mrm

<

Note that in VP decays all amplitudes have the (e-k) form,

e., they involve P-waves (L=1) only, giving rise to the
above k3 form in the decay rate. VV decays, on the other
hand involve more than one partial wave and hence a simple
form for it’s decay rate is aot possible. For details see
Appendix B.

We wish to make the following remarks regarding the
ratio al/az. It was argued in ref.[27] from a fit tc D-Kr
that the ratio al/a2 lies roughly in the range -3.3 = al/azs
-2.0. In ref.[21] the branching ratios B (0%K°k")  and
B(Ddaﬁ%fﬁ, neither of which involve annihilaticn process,
were used to limit al/a2 to be in the range -4.1 = al/a2s
-2.4. These two observations are mutually consistent.

To evaluate the values of c¢

4+ C_ and the ratio al/a2 we

use the next to leading log (NLL) formula (eq. (11.25)),

scaled down to the charm mass scale, as follows,

2 n

2 2 2

) a (u7)\d, /b a (L) ~a_(m>)
oNLL [ S ] + 4{1 , _S s' b p+(4)}
as(mb)

2 2 2
) [ as(mb))dt/2b5{ as(mb)—as(mt) \
J

1 +

2 2
as(m ) dt/2b6 L. as(mt)~aS(Mw) ’
x — Pt( )
as(mw)
... (IV.28)

For reasonable values of the Q.C.D parameters p and A we



Table 2. Next to leading log estimates of Q.C.D.

coefficients with mt:SOGeV.

c‘tl/a2
A (GeV) w(Gev)  C, C_ £=0 £=1/3
1.2 0.787 1.6306 -2.854 -55.77
0.1 1.5 0.803 1.570 -3.094 +88.22
1.8 0.815 1.523 -3.302 +29.47
1.2 0.753 1.793 -2.448 -11.49
0.2 1.5 0.775 1.688 -2.697 -23.46
1.8 0.791 1.617 -2.915 -91.40
1.2 0.713 2.010 -2.09% -5.88
0.3 1.5 0.742 1.348 -2.342 -3.15
1.8 0.762 1.745 -2.550 -14.7¢
1.2 0.661 2.363 -1.777 -3.540
0.4 1.5 0.699 2.102 -1.9%0 -4.,971
1.8 0.724 1.950 -2.181 -6.769
1.2 0.614 2.752 ~-1.574 -2.611
0.5 1.5 0.665 2.332 -1.798 -3.655
1.8 0.697 2.113 -1.984 -4.877

determine = , c_ and a,/a, and list these values in Table 2
Sor botin €=0 and *=1/3. It is clear from this tabulation
that for =0, a vaiue cof al/a2 in the interval required by
dats 1s easil, secured perturbatively with A = 0.3 GeV and
reascnakle values of u. Deep inelastic data requirelO 0.1
GeV = A = (.3 GeV. For £=1/3, a value of al/a2 in the
desired range can be secured in an NLL calculaticon, only by
raising A to about 0.5 GeV (or by lowering p below the range
shown in table 2). An alternate way to secure the desired
value cf al/a2 would be if c, and ¢ were to receive

significant nonperturbative corrections. Since in deriving

the relation (IV.26) between a, and al/a? for a given wvalue
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of € we have used the perturbative constrvaint ¢ o = 1, we

shall have r.o more to say about the possibil 'y that o anld

¢ heve signiticant non perturbative cont rionri o,

Iv.3 Cabibbo-angle favored DZ»VP decays

We shall consider the following Cabibbo-angle tavorved

=*0 A =0

+ t= .
decays: D > pm, n, ¢, K K and K K. Using

0_+ + 0 +
gl
s .

egs. (IV.20) & (IV.?1l) the weak anplitudes for theso decays

are evaluated as follows:
G
+ = ) ~*g — - +
AMSkTR™) = —F cos’o _{a,<K'R °|ud|0><015c|D. >
S Jé C - S

~*qg - + - +
+ a2<K OIsle><K IuchS>)

G -a.,r h (D _»K)
P 2 { 1 F1°'°S }(c-k)

Il
|
O
o}
0
jes]

= 2,7
V2 1-gq /mD-
where r .- "a1e annihilation parameter,
G
AT ﬂK*+KO) = —% cos7ec{a <K K |ud|0><»‘ ch+
V2
+ a2<K|sdIO><K Iuch: >}
G a,r h (D 9K )
= —é coszec{ —%— + a22f m -——1—7——2— } (e-k)
V2 1-gq /m
+ o_+ G 2 - - +
A(Dsapn ) = —— cos 6, {a <p1t|Ud|O><0|SCIDb>)
V2 =
G a,r
= =L coszec—l: (e-k)
V2 V2
+ + 0 GF 2
A(Dsep nt) = — COS 6, {a 1<p nIudIO><Olsc|D >}
V2
GF 2 -a,r
= — CO0S 86 _ —— (e-k)
V2 V2
+ + GE 2 - +
A(Dse¢n ) = — cos e {a <n |:d|O><¢|sc|DS>}

V2



G 2 { hAO (Dsad’)

= —— cos @ _4a.2f m }(e-k).
/3 cl®1“"n ¢ 1_qf—/;%
s

ce e (IV.29)
In the above we assume the annihilation to proceed through a
x7 like resonance and use SU(3) to relate the annihilation
contributions of the various channels. Note that in Table 1
we have redefined the annihilation parameter as Rss—al/azr.
All the final states mentioned above are produced with I=1,
since the weak spurion changes isospin by one unit. ﬁ%+
(and pﬂﬁ) system has an odd G-parity while ¢n+ system has
an even G-parity. K'& %and K TR° can have either G-parity.

Under G-parity the pseudoscalar particle and antiparticle K

doublets transform as follows:

)= - =

K -K -K K

the vector'K* states transform similarly. Hence, the two
eigenstates of G-parity are (note that the orbital angular
momentum is required to be unity),

K e K- -—%
IK'R> = 2K TR+ 1KTR>) (IV.30)
Sihyy

The symmetric {(antisymmetric) combination is G-~even (odd).
In the G even state, IK*I_(>s will mix with ¢n+, while in the
G-odd state, IK*I_<>A will mix wiﬁh pn+ final state. Thus our
mixing problem reduces to a pair of coupled two-channel
problems. Note that p+no and HH+ states can have I=1 or 2,

[I=2,1,=1> = —]—'-(|p+1to>+|p01t+>)

3 (IV.31)

|I=1,I,=1>

3 Lp =10 ")
vz
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Since the weak spurion cannot excite I=2 final state, one

finds that the quark amplitudes for D: > p+n0

and ot p0n+

s
are equal in magnitude and opposite in sign.

In parameterizing the K-matrix we postulate that a
resonance with allowed guantum numbers lying close to the D;
mass will dominate the K-matrix. In G odd states, a
resonance coupling the different channels, must have G=-1,
T=1 and J=0, i.e., it must have nmn-like gquantum numbers. An
unconfirmed m-like resonance exists'® close to the DS mass
at 1770MeV. We therefore parameterize the K-matrix in G-odd
state with the resonant form of eq.(IV.7) with nk=1770MeV.
In G=+1 channel there appears to be no confirmed or un-
confirmed resonance with I=1 and J=0. We therefore,
parameterize the K-matrix in G-even state as in eqg. (IV.0)
with energy independent parameters 4, b and ¢. Due to the
Okubo-Zweig-Izuka (0ZI) rule,63 we disallow m¢ o mp transit-
ion by setting b=0 in the K-matrix. This approximation does
not forbid mp e np scattering, since the reaction can
proceed as a two-step process, nwﬂK*R>§m¢.-Hence our model
K-matrix has two parameters, a and ¢, in G-even state and
one parameter, ru, in G-odd state. We choose r&=3OOMeV.

Once the 1isospin one, G-even and G-odd wunitarized

amplitudes are determined, the unitarized observable

amplitudes are evaluated as follows,

al (D;—)pon+) - - 1 Ay e
V2
A% (lap*n") = = alrP"

v72 1



A% (psgn®) = A% OT
*- _ ®
AU (DTsk TR = =i ANR e Al
ot Bl L
s 4 * *
AU(D+9K+K 0 - _l{ AUrK K _ pUsK K
'/Z G=1 ==1

... (IV.32)

Fit to Argus Data®
First we set £=0 and the annihilation parameter Rs=0,
as do the authors of ref.([27]. and searched for a fit to
LRGUS data®® shown in the last column of Table 3 . We found
none. As RS was mnade nonzero we started seeing solutions
which, in the ratio al/az, appeared in the range
—2.35a1/a25—1.8. In Fig. 4, we have shown the range of
parameters a and Fu for which we could fit ARGUS data. In
this figure we have used al/a2=_2.0, £=0 and constrained the
parameter c¢ through c=a/4. We see from Fig. 4(a) that for a

2

small annihilation parameter RS=O.05GeV (to put this number

in perspective, a typical spectator term is of the order

0.4-0.8 GeV2), solutions appear for a limited range of a and

r“. As RS is raised to 0.12 GeV2, data can be fit with a

wider range of parameters as seen from Fig.4(b). As Rs is
raised further, it gets harder to find solutions as seen

from Fig.4(c). The small branching ratio for Dzaﬁh+ is a

strong constraint. For values of Rs larger than 0.17 GeVZ,
we did not find a solution to ARGUS data with al/a2=-2.0 end
£=0. In general the trend was that a larger annihilation

term was needed as the magnitude of al/a2 was increased,

keeping the ratio negative.
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Table 3. Fits to ARGUS data (ref.64) for Cabibbo-angle
favored D;aVP decays inqa two-channel model. Theory column
with  £=0, RS=0.12Gev‘ uses  a;/a,="2.0, r,,=0.41Gev,
rn=0.279 GeV, a=Oé2Gqu, c=0.05GeV'. Theory column with
£=1/3, RS= 0.19GeV”™ uses al/a2=—2~4, ru=0.6lGeV, FH=O.037

Gev, a = 0.0GeV™', c=0.0GeV .

Theory
Branching ratio £=0 £€=1/3 ARGUS
RS=O.12GeV2 RS=O.19GeV2 data

B(D;»K+R*O) 4.85 1.00 5.0%1.3
B(D;ap%ﬁd 0.57 0.61 <0.77
B(D;a¢n+) 3.90 3.66 3.240.7%0.5
B (D kTR

f ; 1.24 1.09 1.44+0.37
B(Dsa¢n )
B(D;ap0n+)
— 0.15 0.17 <0.22
B(Dsa¢n )
B(D;eﬁoK*+)

S 0.12 0.05 -
B(D K"K )
B(D;ep+no)

S - 1.0 1.0 -
B(Dsap o)
B(D KK )

S 8.51 6.5 -

T o+
B(Dsap o)

In column 2 of Table 3 we have shown the best fit, with
£€=0, to ARGUS data. Within the constraints of our model we
require an annihilation term of the size of (15-30)% of the
spectator term, depending on the decay mode, for the best

fit. For €=0 we found no fits to ARGUS data for al/a2<—2ﬁf
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At al/a2=—2.3 an annihilation term in the range (0.16-0.19)
GeV2 was allowcd.

Next we chuce €=1/3 and repeated the= above procedure.
This tacitly cssumes that the range of al/a2 in the interval
(-3.0 to -2.0" is acaievable i oerturbative QCD. From Table
2 it is clear that in an NLL caiculation, it would require A
to be close to 0.5 GeV and u in the neighborhond of 1 GeV.
We found fits to ARGUS data for ~2.22a1/a22—2.4. The
annihilation parameter was now somewhat larger; for example,
in the limiting case of al/a2=—2.4, RS was 0.19 Gevz. One
such fit to ARGUS data for £=1/3 has been shown in column 3
of Table 3, using al/a2=—2.4. Again, we note that as al/a2
was allowed to increase, keeping it negative, we needed a
larger annihilation to fit data. We return to a discussion
of allowed values of RS for different values of al/a2 later.
Fit to E-691 data®

We followed the same procedure as above, to fit E-691
data.®® Since the E=-691 upper limit on B(D;aﬁ%+) is
considerably lower than the ARGUS limit and also since the
E-691 value for B(D;aK+?*°) is roughly a half of that from
ARGUS (note that p°rn’ and kTk"° channels couple in our
formalism), it becomes easier to fit E-~691 data with a
smaller, indeed =zero, annihilation term for both £=0 and
1/3. In Table 4 we have shown fits to E-691 data “ith €&=0
and different values of the annihilation parameter, RS. As

2

RS increases beyond 0.1 GeVv®, theoratical valiues of

-
B(D;—)pon+) and B(D;->K+K 0

) begin to wviclate data for
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al/a2=—2.0 and &=0.

Table 4. Fits to E-691 data (ref.65) for Cabibbo-angle
favored D;eVP decays in a iwo-channel model. Theory columns
with €=0, use al/a2=—2.0, ru=0.31GeV, I}2=0.399GeV; column
1 with RS=0, uses a= 0.4 GeV'', cﬁ@.lGeVd, column 2 with
RS=O.1GeV2 uses a=0.8Gev™! and c¢=0.2Gev . Thecrv column
with €=1/3, uses al/a2= -2.4, FH=O.41GeV, FH=O.28GeV,
a=0.4GevV", c= 0.1Gev .

Theory
£=0 £=0 £=1/3 £691
Branching ratio R =0.0 R_=0.1 R_=0.1 Data
S 2 S 2 S )
GeV GeV GeV
B(D;»KJ’R*O) 3.08 3.00 2.61 2.640.5
E(D;9p0n+) 0.03 0.26 0.25 <0.28
B(D;a¢n+) 3.99 4.25 3.75 3.5+0.8
D(D;»K+R*%
S 0.77 0.71 0.69 0.74+0.12+0.06
B(D_-¢n )
S
B(D;aponJr)
— 0.01 0.06 0.07 <0.08
B(D_-¢n )}
B(D;aROK*+)
o 0.43 0.35 0.24 -
B(D K K %)
S
B(D;ap+1to)
T 1.0 1.0 1.0 -
B(Dsap )
B(D;aK+R*O)
= 98.53 11.53 10.42 -
o +
B(DS—)p n )

In Fig. 5 we have shown the allowed values of the

~--ameters a and T, needed to fit E-691 data on D;eVP for

62



1.0

E
0.8 - . %%%%é
~ os i égm
=] I
0.2 ~_:E (a) Rs=0.00GeV’
OO —|Illlllll|IIII]l'I_ll‘llll]lll1|llll|llll|
00 01 02 03 04 05 06 07 08
I'1(GeV)
‘I.O—_j
< —
: -
> 0.6 - é% ;
5 2 il
~ 0.4 éé%é
0.2 3 (b) R.,=0.03CeV*
0.0—I_lll|Ililllllllllflllllllllll|llll||ll—Tl
00 0.1 02 03 04 05 06 0.7 08
F“(GGV)
T.Oj
~ o5 B T
Ak 1T
> - i
& 0.6 —; %; :
© .
0.4 -
] (c) R,=0.08CeV’
0.2 —Tlll|1|ll||ll|1|lTl|1|ll||Hl|llll||llﬂ
00 0.1 02 03 04 05 06 07 0.8
Fll(GeV)

Fig. 5 Fits to E-691 data®® for D;aVP for the same
parameters as in Fig. 4.
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different values of annihilation parameter Rs. For these
plots we have used al/a2=—2.0 and €¢=0 and constrained
parameter ¢ by c=a/4. We found no solutions for Rs>0.l GeV2
for al/a2=—2.0 and £=0. Clearly the allowed size of the
annihilation parameter is smaller than that allowed by ARGUS
data.

For £=1/3 we found solutions to E-691 data for
—2.lza1/a2z—2.9. At al/a2=—2.9 an annihilation parameter in
the range (0.14—0.15)Gev2 was needed to fit the data. In the
range —2.9sa1/a25~2.5, a finite annihilation parameter was
necessary to fit the data. The value of Rs at the two
limiting points were: RS=(O.14—O.15) GeV2 at al/a2=—2.9 and

S=(O.01—O.13) GeV2 at al/a2=-2.5. For al/a22—2.4 an
annihilation parameter was not required, though allowed by
the data. For example E-691 data could be fit with

al/a2=—2.4 and RS in the range (0-0.13) GeV2 while for

al/a2=-2.l we needed RS in the range (0-0.06) GeVZ. In
column 4 of Table 4 we have shown a particular fit, using
€=1/3, to E-691 data. We return to a discussion of the
allowed values of al/a2 and &, at the end of the next
section.
Summary of the D;eVP data fits

In the above we have presented the results of a
two-channel fit to Cabibbo-angle favored D;+VP data from
ARGUS and E-691. The fits to ARGUS data with £&=0 were

obtained for al/a2 in the range: —2.35a1/a25—1.8 and to

E-691 data in the range: —2.7sa1/a25—1.7. The allowed range
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of al/a2 for €=1/3 was only slight.y different.

In Table 5 we have tabulated the range of the annihila-
tion parameter, Rs’ needed by our model to fit he data.
Evidently as the magnitude of al/a2 increases, one requires
in our model, a finite annihilatior term. This annihilation
term can be as big as (15-30)% of the spectator term for
some decay modes.

Table 5. Range o7 anpihilation parameter allowed Dby
Cabibbo angle favoured DS%VP data.

Range of RS(GeVd);€=O Range of RS(GeV2);§=1/3

al/a2 ARGUS data E-691 data ARGUS data E-691 data

-2.0 0.05-0.17 0.00-0.10 No Solution
-2.1 0.09-0.18 0.00-0.11 No Solution 0.00-0.06
-2.2 0.12-0.19 0.00-0.12 0.12-0.18 0.00-0.11
-2.3 0.16-0.19 0.00-0.13 0.15-0.19 0.00-0.12
-2.4 No Solution 0.00-0.13 0.19 0.00-0.13
-2.5 0.04-0.14 No Solution 0.01-0.13
-2.6 0.08-0.14 0.04-0.14
-2.7 0.11-0.14 0.07-0.15
-2.8 No Solution 0.10-0.15
-2.9 0.14-0.15
-3.0 No Solution

The 1limit on B(D;aﬁh+) serves to constrain the
parameters of the model, in particular, the annihilation
parameter, quite severely. Another measurement that will

. , + =0,*
restrict the parameters of the model 1is B(DseKoK +). A
measurement of, or an upper limit on, this branching ratio
would be helpful.

. , + o+
Branching ratio for Dsawn

. \ , + +
In our discussion above, we have not considered Dsewn
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This mode 1is particularly interesting for the following
reason. In a factorization model, there is no contribution
‘~om the spectator diagram for this mode. Although an
annihilation contribution would appear to be possible at the

’ the vector part of the

quark level, it indeed vanishes;2
(ud) current makes no contribution due to Conserved Vector
Current (CVC) hypothesis and first class axial vector
current cannot connect v~iuum tO wn+ state which has even
G-parity.
It has been argued66 that a diagrammatic analysis67 of
0

+ . . e
two-body decays of D+, D° and DS requires a significant

annihilation term. Based on this it was predicted66 that

B(D sun') > B(Dls¢n'). Since B(D spn’) = 3%, it implies a
significantly large branching ratio for D;awn+. The

estimates of other models on B(D;ewn+) differ greatly. Blok
and Shifman’’ include non-factorizable contributions, but
ignore factorizable annihilation to calculate B(D;awn+) =
0.3%. The question then arises: “What should the magnitude of
B (D swr') be?

In absence of final state interactions, B(D;awn+)
should be zero. However, final state interactions can change
the picture substantially; wn+ could Dbe generated by
coupling to other final states. Since wn+ has G=+1, it will
ccuple only to G-even states, i.e., to ¢n+ and IK*R>G:+1.
However, ¢n+ ® wn+ is disaliowed by OZI rule. Hence, wn+
will couple only to the symmetric IK*R>S state. This

interchannel coupling 1is achieved? by extending the G-even

66



2x2 K-matrix in eq. (IV.6) to a 3x3 matrix, thereby including

+
the wn mode, as follows:

" kb vk Tk vk K fF
1 1 2 1 3
K = VEzﬁlc kza VE7E3d (IV.33)
vk k f vk k_d k_e
3 1 3 2 3

with channel labels i=(1,2,3) belonging to ¢n+, IK*R>S and
wn+ respectively. The rarameters d, e and f are also chosen
to be energy independent (zero range approximation), k3 is
the c.m. momenta in the wn+ channel. Since ¢n+ ® ¢n+ and

wn' e ¢n’ transitions are disallowed by OZI rule, we set b

and f equal to zero as an arproximation. Clearly, this’

disallows the 0Zi-violating transitions in the lowest order
in the K-matrix. The coupling in G=-1 states is retained as
before. Our model has four parameters a,c,d and e in the
G-even K-matrix and one parameter, Fu, in the G-odd
K-matrix.

For d,e=0, wn+ channel decouples from the other two
channels and one gets B(D;ewn+)=0. However, for non-zero d &
e, the number of parameters involved in the coupled channel
proklem is large and an exact branching ratio for D;awn+
cannot be predicted. We therezfore vary the parameters of our
model to determine the maximum possible B(Dgewn+),
consistent with the ARGUS®® and E691%° data for the other
coupled channels. We find that, for reasonable values of d
and e, it is possible to produce B(D;awn+) upto 3%, keeping

. . , =*g_+ o+ +
the other branching ratios (i.e., for K K, pm, ¢mu
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moda¢) within the exusrimental limits.

In our model, D;awn+ is being generated via final state
int ‘ractions and not directly Lrom anni! i1lation in wn
channel. We do, however, include an annihilation parameter
in the K K amplitude, which feeds into the wn' final state.
Note that the un-unitarized amplitude for D;awn+ is zero.

A fit to APGUS data requires that the annihilation
parameter Rs be non-zero, even if we demand B(D;»wn+)=0 (as
was seen in the earlier discussion, which excluded D;awn+
mode). Although fits o E&91 data may be obtained for
vanishing Rs’ non-va,rishing Rs is also allowed by the data;
larger B(D;wm+) being obta.ned for Rsxo. The maximum value
of B(D;awn+) consistert with a fit to ARGUS data requires an
annihilation term = 4)% of the spectator term in D;»K*+R°
and that for E691, =« 25% of the spectator term. For E691
data, even with the annihilation parameter set equal to
zero, final state interactions alone can ¢enerate B(D;»wi+)
urto about 2%.

In Table 6 we show a fit to *he ARGUS data (ior &€=0 and
€=1/3), where the various parameters are chosen such that
B(D;*m+) is at its maximum value. Table 7 lists the sam~
for E-691 data. We note that B(D;ewn+) fails as al/a2
increases in magnitude. Also, E-621 data, where B(D;QR*OK+)
is lower than in ARGUS date, allows a larger value of
B(D;ewn+) than the ARGUS data. This presumably results from

-_%
more of K °K' rate being siphoned off into wn+ mode.

In summary, we find that in a factorization model,
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Table 6. Fits to ARGUS data64 for Cabibbo-angle rtavored
D;»VP decays. The various parameters in the model are
selected to maximize B(DtAmn+) consistent with data.  The
parameters d, ¢ take values groater than o, ¢ and e ot he
range (7.1-1)GeV '. The R_ values are in Gev’ .
Theory £=0 Theory &€=1/3
R =0.15 R_=0.17 R_=0.15 R_=0.17
S S S s

Branching al/a2 al/a2 al/a2 al/a2 ARGUS
ratio (%) =-2.0 ==2.2 =-2.0 =-2,2 data

+ =*o_+ - —
B(DseK K') 3.86 3.71 4,32 4,13 5.0£1.3

+ o0 _+
B(Dsep T ) 0.59 0.56 0.66 0.63 <0.77
B (D ") 3.57 3.45 4.00 3.83 3.2¢0.7:0.5
B(D sum") 1.66 0.74 1.86 0.83 -
Table 7. Fits to E-691 data® for Cabibbo angle favored

D;eVP decays for the same conditions as specified for

Table 6. The values in parentheses correspond to RS=O.OGeV2.

Theory £=0 The 'ry £€=1/3
R =0.10 R.=0.11 R =0.09 R =0.11
S S S S
Branching al/a2 al/a2 al/a2 al/a2 E-691
ratio (%) =-2.0 ==2.2 =-2.0 -2.2 data
+ =*o_+ -
B(D_sK °K')  2.24 2.11 2.13 2.10 2.640.5
(2.30) (2.11) (2.57) '2.14)
B (D +p n") 0.27 0.24 0.25 0.27 <0.28
(0.006) (0.004) (0.006) (0.005)
B(D;9¢n+) 3.64 3.43 3.52 3.43 3.5%0.8
(3.76) (3.43) (4.21)  (3.51)
B(Dgewn+) 2.48 1.73 2.75 2.02 -
(1.84) (0.89) (2.05)  (1.15)
where the quark level (spectator and weak annihilation)

, + o+, . . .
amplitude for Dsawn is zero, final state interactions can

+

+
generate B(Dsewn ) as large as =3%. An observation of a
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signal at this level, will not necessari.y constitute an
evidence for an annihilation term in the decay amplitude for
D;ewn+, at the quark level as suggested.66

A recent meas . rement’® of the D;%wn+ mode by E-691
group, supports our claim. They set the limit: B(D;wm+) <
0.5 B(D;a¢n+), well within the maximum branching ratio limit
obtained by us. A suitable choice of the parameters d and e
can give branching ratio at this level, with or without
annihilation parameter RS.

In a revised wversion of ref.[66], the predictions of

+  + 69 1 + .+
B(Dsawn ) has been lowered  to -0 B(Dsa¢n ) .

IV.4 Cabibbo-angle favored D->VP

Cabibbo-angle favored decays D-VP involve at least five

4 - - — %
coupled channels: Kp, K, KO¢, % and K °». The un-
unitarized amplitudes for these modes are evzl..tea to be

(using egs. (IV.20) & (IV.Z21)),

G
A(D%R%%) = -5 cos®e {a,<k%’15d10><0|dc|D’>
V3 C Y
+ a2<z"<°|sd|0><p°|ﬁc|D°>}
G -a, R h (D-p)
_7F 2 { 2 = a0 }
= — Cco0s’® - + a,v2f_m (e-k)
V32 U yv3 2K 1-q2/?]2;
A a0 =t G, 2 +,= -z 0
A(D>SK p ) = — cos Bc{a1<p jud} 0><K |sciD >
V2
+ a,<K p" 15d10><0|ac|D">)
G h_ (D>K)
= —é coszec{ a12f m —53—7——§~ + a2R l(e-k)
V2 PP 1-q“/mZ- J
D
S
v =K n — — -
AR %) = & cos®e (a,<K °2%15d]0><0juc|p’>
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=%0, = L0, - 0 -
+ a~.<K 1sdl0><mx juc|{D >¢

2
GF > a2R h (D-m)
= — crs’e { <+ a. V2f P }(c-k)
v3 \ vz ° 1- qz/m2
. G _ .
AaM%K Ta") = £ coszec{a <n1ad;6><K " 15cID%>
V2

+ a2<K““u+i§d|o><0|Gc|D°>}

GF 2 hAO(DeK )
= — CO0S Gc{ a12fan'-——-—§-7— - a2R }(s-k)
1-gq /mD

A(D%K") = cos ec{a2<f<°¢!5d|0><O|Gc|D°>}

—* .

AMD%SE 'g) = — cos2ec{a K" ® n15d}0><0uc|D’>
V2

_*0 - -— 0
+ a.<K “|sd|0><nluc|D >}

2

(Dom)
2 2B} (e- k)
S 3R + a 2f —~
c{ 2 2 K Z/m?. VE

where we take n to be pure octet,
G
A(D%5K%w) = — cos’e {a2<KuﬂsdIO><G|ung >
V2

a2<R°|§d|o><w|Gc|D0>}

G 5 { B, (020) (i

+

cos~e a,R + a,2f_ m —
c 2 277K w4 qz/mg S v>

+ - —%g - +
*oszac{al<n judi{0><K °|sc|D >

- % — - +
+ ay<k 93d10><n" lacID >}

GF hAo(DeK*)
= — Ccos"6 4 a4 2f MK T
y <} - I

3%
-~

S
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hnl(Dan)
+ a,2f_»m,* — : }(c-k)
27 KK 1-q /mD-

- =0, = +
coszec{al<p+lud|0><K°lscID >

+ a,<R°[sdl0><pt1ucID™>)

a2
h__ (D-K)
= —% cos29c{ a,;2f m —22

... (IV.34)
Here, the annihilation is assumed to proceed via a K'-1like
resonance and SU(3) 1is used te¢ r=late the -+ . nailation
contributions of the various channels. A model invoiving all
these five channels interacting in tue final state would
have too many free parameters to be useful. However, the
problem can be simplified somewhat as follows. The un-
unitarized weak decay amplitudes for D’»K% and &%, are
proporticnal to a, (class II amplitudes as described in
chapter II), which is smaller than a in magnitude. The
K+p_and K*+n— modes have decay amplitudes proportional to a;
(apart from the annihilation term) and are therefore large.
Thus, it is not unrealistic to set up a three channel model
involving ¥p, K*n and I_{°¢ channels to see 1if I_<°¢ channel can
be fed?’ by the other two channels in a manner consistent
with date. This we have attempted in the following.
In Cabibbo-angle favored D-VP decays, the final state

* -
can have I=1/2 in all the three channels Kp, K ® and K%»
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while only two of these channels, Kp and K*u, can have
I=3/2. Hence in I=1,2 final state, we shall have a three-
channel coupled problem while in 1I=3/2 state we have a
two-channel coupled problem. We leave the decay amplitudes

- - % \ .
for DoaK%o and K On un—~unltarized.

* *

We introduce the decay amplitudes AT/Z, A‘;/Z and AT‘/’?,
A§72 for decays to I=1/2 and 3/2 states as:
" _* *—
AT = LR S - V2K )
/3
* *_ i
BT = L TR 0 TR
V3 (IV.35)
A% = L (R - V21K ")
V3
AP = 1 (K p"> + vZIR %)
32 3

A K-like resonance can contribute to I=1/2 amplitude in
the ‘direct’ channel. An unconfirmed K-like resonance
&% (1830), lies®® very close to the D-meson mass and could
influence D-decays into strange VP systems with I=1/2. Hence
in I=1/2 final state we choose a resonance parameterization
of the form given in eq.(IV.1ll) to unitarize the three decay
amplitudes EﬂaKp, K*n and Rp¢. We choose n%=1830 and rk=250
MeV. Using the constraints given in egs. (1V.12) to (IV.14)
we get down to two independent parameters.

In I=3/2 final state, K*n and Kp channels couple. Since
there 1s no resonance in this 1isospin state, we use a
non-resonant parameterization (eq.IV.06) with constant
parameters a, b and c¢. We reduce the number oI parameters

down to two by imposing the constraint detK=0. This condi-
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tion though not as intuitive here, as in the resonant case,
still implies that Ttk « @, where a is the scattering
length for i-k.

Once the unitarized I=1/2, 3/2 amplitudes are eval-

uated, the unitarized physical amplitudes are deteriiined as

follows:
—* " n
”(DO—>K00) =_l { \/ZAu’ T, AWK }
‘/§ 3 1/72
* — * o
A% K nT) = = (A% KT oy A% T
‘/'3' 3/2 1,2
Au(Do% Ropo) - 1 { V2 alrKp A&(Kp }
V’j 3/2 1/2
AY (D% K pt) = = { AMEP - vz AW Lo,
‘/3' 3/2 1/2 )
A" (D% K% = Atk
—_ % - *
At B %) = v3 AW T
3/2
-0 +
aY(p*s k%) = v3 AL;'/*;p

To determine the fits to the experimental data, we
fol'nved the same procedure as in the two-channel case of
D;+VP, discussed in the previous section. We searched for
so'utions consistent with MARK 178 data, both with and
without the annihilation term. We found no solu.ions to the
seven branching ratio measurements shown in the last column
of Table 8. (By a ‘solution’, we mean theoretical predic-
tions which fall within the experimental errors of all data
being fit). We did however, come close to satisfying all of
the MARK III date shown in Table 8. (By a ‘near fit’ or

‘close to a solution’ we mean theoretical predictions which
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Table 8. Fits to MARK-III data (ref.6) for Cabibbu-angle
favored D-VP in a three-channel model. Theory column with

£=0, R=0 uses Ja =20, r =0..2%GeV, o) ) roo0Ly
2 11 J !

al AN 03

GeV, a=O.lGeV%, b=0.3GeV4; £-0, R=0.1CeV’ column uses
11/a2=-12.0, r,,=0.0, r22=g.1286ev, r,=0.7Gev, a=0.8GeV |
0.5GeV ; €=1/3, R=0.1GeV® cclumn uses 31/392‘2-4r r =0.0,

A
“ i

r_=0.128%v, I =0.7GeV, a=0.05GevV ", b=0.1GeV

, b

Theory

Branching ratio %=%é0 g=%él §=g:i giig—ltl
GeV GeV GeV~©
B (D°5K ") 3.95 3.81 8.11 10.840.4+1.7
B (DK% 1.10 0.62 0.88 0.75x1.09%0.47
B (DK ') 3.70 o0 3.70 5.240.3%1.5
B (%K %x®) 2.79 1.94 3.04 2.6+0.3:0.7
B (DK ¢) 0.5 0.57 0.45 0.868:4010: )
B (D&% ") 10.04  10.85 8.61 6.9+0.8%2.73
B (DY5R %t 1.11 1.69 1.7 5.9+1.952.5
fall within 2¢ of all data being fit). We wish to point out,

that onc € and a.l/a2 are chosen, our model has four
parameters to describe the final state interactions. [n
columns 2 and 3 of Table 8 we have shown two of our best
fits to MARK III data with £=0. The fit with £=0 and R={

consistent with six of the seven branching ratios but
predicts B(DTsK x') slightly below the least value allowed
by data. On the other hand the fit with &=0 and R=0(.1 Gevz
predicts B(D'5K%') slightly above the mazimum allowed
value, while t=ing consist=nt with the remaining six
branching ratios. The fit with €=1/3 in column 4 of Table 8

uses al/a2=~2.4 and an annihilation term R=0.1 Gevz. In this




case B(ﬂZK—p+) is predicted slightly below tkz experimental
measurement while the remaining six branching :atios are
consistent with data.

We have purposely left out B(D>K’w) and B(D%K °n)
trom our discussion above. This is because we performed a
three channel unitarization in /2 state leaving these two
channels cuc of the unitarization schame. The un-unitarized
amplitudes for p°5K% and 1)"-—>E—<;k”~,; tead to the following
branching ratios belonging t» the three theory columns of
Table 8 : B(D%>K’)=0.65% (for &=0, R=0), 1.55% (£=0, R=0.1l
Gevz) and 1.02% (£€=1/3, R=0.1 GeVz). The experimental number
is:  B(DsK%w)=(3.21.3:0.8)%. For DK n  we  get:
B (D%K %) =0.35% (=0, R=0), 0.004% (=0, '=0.1Gev?) and
0.002% (€=1/3, R=O.1GeV2). There are no measurements yet of
this branching ratio. The un-unitarized branching ratio for
D3k’ is consistent with data with a small annihilat . -
parameter. Note however, that both %K% and [ﬁeﬁ*qn cce
be fed by t..o c.uer tnree channels, Kp, K*n and Rp¢, in =«
S5-channel mixing scheme. In particular, even modest inter-
channel coun®inas would effect [ﬁeﬁ*%) significantly since
the un-unitarized amplitudes for If»K*n and Kp decays are
large. A measarement of B(Doaﬁ*on) would be desirable.

Summarizing, in the above three-channel (DOaKp, K*n and
K%) calculation, we secured some ‘near fits’ to MARK-III
data for €=0 and £=1/3. These ‘near fits’ were obtained both

with and without a weak annihilation term. Clearly, it is

possible to generate enough B(D>K’¢) without a weak
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annihilation term, though a finite annihilation term, about
{15-20)% of the s ectator term in qufb+, i1s not ruled out
by data.

We now turn to a discussion of the role of the para-
meters a,, a2’ £ and the annihilation parameter in both D
and DS decays to VP modes. As we }i v2 c.umerted earlier, a
value of al/a2 in the desired range ~f (-2.0 to -3.0) is
secured with relative ease in perturhacive QCD with £=0 and
A in rance required by de=p inelasti~ data. However for
£€=1/3 one has to use a higher value of i (=500 MeV) to get
al/a2 i1l the desired range perturbat:-iy. An alternate way
a

tc get a > in the desired rangs £~ £€=1/3 would be by

1
giving c, and ¢_  .n-perturbative ccnzr ibutions. However, in
this case we loose control over the calculation of the
parameters aq and r

Once a value of al/a2 is assumed, the wvalue of a, is
determined by eq. (IV.26). The wvalue of |a2| so determined,
though fairly insensitive to the value of § (in the range
O0s¢=1/3), tends to rise with €£. For example, at €=0 and
al/a2=-2.0, one gets |a21=0.6933 while with £€=1/3 and
al/a2=—2.0 one gets |a2|=0.7336. This increase 1in |a2|
raises the normalization of all the amplitudes listed in
Table 1. This change in the amplitudes can be compensated by
using a non-zero annihilation term. Thus if a solution could
be found with €=0 and R=0, for a certain value of the ratio

al/az, we could, in general, also find a solution with £=1/3

and R#0 for the same value of the ratio al/az. This 1is
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evident from the calculations of this and the previous
section (see Tables 3, 4 and 8).

In presenting cur results in Tables 5, 4 and 8, we have
used ay’d, =-2.0 for €&=0 and al/a2=—2,4 for £-1/3 for the
simple reason that while al/ahz—Z.O can be sncured with
relative ease in NLL perturbation theory with €=0, such is
not the case for €=1/3. However, for &=1/3, one can get al/a2

in the region «f -2.5 with A=0.5GeV and p~1.2GeV.

Iv.5 Cabibh. -angle favored D,DSQVV
D->VV

Very little experimental data®®’® is aviilable for
these modes so far. However, it 1s still interesting to
examine the role of weak annihilation and final state
interactions in these decays. The Cabibbo-angle favored VV
modes for D decay are: K*p and K ‘0. Note that R*O¢ is
xinematically disallowed. The amplitudes in the VV case are

more complicated than in the PV case, as they involve a

larger number of form-factors. Using eq. (IV.2Z) we have,

G
K — - K -
A%k pT) = £ coszeh{al<p+|ud10><K |5cID%>
V2 -
Ke— 4 = - 0
+ a2<K p 1sd|0><0juc|D >}
*
GF 2 2mpfp hv(DeK )
= — cos’e a - + a,R
V2 It ™tk l—qz/mi- 2
OV, pP pC,
X SH.VPO‘SP eg PD PK
*
h (DK )

+ia,m f |e .e_ > (m_.+m *)_ﬁ—_ﬁr—TT_
Tpp| o K b K 1-g /m1+
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*
€.* 9 h_  (D-K )
—_ ~E\ (PD+P -) e J.‘_* _‘M\l}

) N
(mUomK ) K p l—q‘/mI.
0 %0 0 GF 2 , =% = 0, = 0
A{D»>K p) = — Ccos 0O {a2<K |sd|0><p |uclib >
V72 ¢
=*0 0, = 0
+a?<K p 1sdl0><0jucl|l >}
G a
= — coszec~:—:—mK £
V2 V2
[ 2 hv(Dép) )t Vv op O
x m_ +m 2, 2 uvpo‘cK‘ P PD Pp
t'n e 1-g /ml—
hAl(Dap)
Ile,-eg" (Mp*m ) ————5"
P 1“q /ml+
e g h (D=p)
P A2
(ELtP ) -€,»
(mD+m ) b e K 1-g /mlf]}
0 %0 GF 2 =*g = - 0
A(D 5K "w) = — co0s6 _{a,<K " |sd|0><wluc|D >
= c 72
V2
=%*0 = . = 0.
+ a2<K wlsd|0><0|uciD >}
G a
= — coszeC —2_-— Mp* fK*
V2 V2
h (Dow) }
2 v i vV op O
X { R} € €, " P P
m. +m 2, 2 o K w D
\[ D 1-g /ml— pre p
h (D-ow)
i |le ., > (m.+m )
© K D w l—q /m +
1
e g h (Daw)]
- T BptBy) Sk - |
Y'Dw 1-q°/n" |,
. IvV.37)
where, m, - and m,+ are the vector and axial ve. - poles of

the appropriate currents respectively. R is an annihilation



parametoer.,

The Kkp state can have isospin 1/2 and 3/2, while K
will have isosoin 1/2 final state only. Hence we have a two
coupled cl.annel problem in I=1/2. The isospin decomposition

*
of K p is given by,

1T=1/2, 15°1/2> = =K *p°> - v2 1K p">)

‘/i’ kg - (IV.38)
|I=3/2, I3=1/2> = —[V2 |[K p >+ |IK p >]

V3

Again as in VP case, we may use the Ro(1830) resonance for
conpling the 1=1/2 states. The amplitudes written 1in
1. (IV.37) involve a P-wave (L=1) term and terms which are
mixtures of S and D-waves. The k° resonance will couple only
t o the P-wave (L=1) terms. Therefore as a first apporoxi-
mation, we will unitarize only this part of each <l the
amp litudes. In principle, there can be non-resonant scatter-
ing in the other partial waves, but we ignore them for the
moment .

Using ea. (IV.10) and the condition detK=0, our resonant
K-matrix is left with only one independent parameter. We vary
this parameter and estimate the unitarized isospin 1/2
amplitudes for different values of annihilation parameter R.

The unitarized physical decay amplitudes will then have the

form,
UK Tty = l il AO,K‘p I 2 U, K p . o,z<"p++ Ao,x*'p+
p 3 302, 1/2,1 II 111
-*0 0 -0 Q
AU(DO—a 2 OKp IzAuxp+ 0K p+AO,Kp
3/2,1 1/2,1 11 TII
—_ K
(DoeK %) = Ao,x w . a0 K w + A% K w
I 11 111

. (IV.39)



where, the subscript : denotes the P-wave part while 11 and
111 denote parts that contain both § and D partial waves. The
result ing branching ratios axe  listed in Table 9 tor
aw/a2=—2.0 and £€=0. As is evident from Table 9, unitarication
in P-wave only, does not alter the results very much. This is
due to the fact that the dominant term in the un-unitarized

amplitude is not the P-wave term.

Table 9. Theoretical branching ratios in percent for
Cabibbo allowed D»VV decays, including a resonant
coupling in the isospin 1/2, P-partial wave amplitudes.
These have been evaluated at al/a2=—2.0 and £=0. The
range 9f wvalues shown for - each R, correspond to

differing values of the parameter .

Theoretical Branching Ratio (%)

Mode
R=O.OGeV2 R=O.lGeV2 R=O.2GeV2
0 =%0 .
B(D 5K " w) 2.67-3.32 ~o71-2.030 2.74-3.29
B 5K o7 24.3-26.3 25.2-26.4 25.6-26.5
0 =%0 0 Y e s
E(D 3K p ) 3.20-3.406 3.37-3.47 3.38-3..8

Next we separate the S and D-partial wave amplitudes.
This 1s achieved by rewriting the amplitudes in egs. (IV.38)

as, (see appendix B),

*
G ( zm £ n_(DsK )
x — - 5 .
am® kK ") = =& cos“e {|a ﬁ 2. d 5+ a,R
’ D K 1-g /m‘l‘-

x [~ EikmD)

*
, ho (DsK ) Pyr-F
-,a,nlfli(mD+mK~) o —% (2 - mK~ mp )
- P Pk ! 1—q4'/ml, \/3 K
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*
- ‘ 2
+ ,.? S ?’ ,(__D_)_K : _._2. kz._ mB
(mD-v-mK*) l_qz/mzl. y3 Mgem
x
ho (DK ) - P
Fo(mFm ) - J - (1 e
DK §§7m§+ 3 mer m
1 B, (D2K ) =2 k%m’
7 ) -
(M, ~) l-qz7mi+ 37 my m
a
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where k 1s the momentum of either of the vector particles
produced in each mode. We then introduce a phase in the
dominant D-wave terms and 1look at the wvariation of the
amplitudes with this phase. The D-wav phase would be
different in the two isospin states. Hence, the unitarized

amplitudes will be given by,
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A phase in the D-partial wave amplitude will not affect the
-
K % mode, as it has only one isospin state.

The results of the above calculation are presented in

. . . K- 4
Table 10. A large variation in the B (DK p ) and
- I . , , ,
B(Dqﬁiop‘) is observed for differing phase values 1ia the
mable 10. Theoretical branching ratios in percent

for Cabibbo allowed DsVV decays, with a phase in
the D-partial amplitudes evaluated for a./a,=-2.0
- 1"72
and &£=0.
Phase Theoretical branching ratios (%)
o)
in R=0.0GaV" R=0.1GeVv’
K o -k X - -k
degrees K p+ K 0pO K p+ K OpO
0 27.91 3.77 | 27.23 3.57
30 27.00 4.68 26.32 4.48
60 24.52 7.17 23.83 6.97
90 21.12 10.57 20.44 10.36
120 17.T2 13.96 17.04 13.76
150 5.24 16.45 14.55 16.25%
180 14.33 17.36 13.64 17.16
D-partial wave of the amplitudes. In the above we did not

. + =*0 + .
mention the D -K % mode. This was due to the fact that

this mode involves only one isospin (3/2) state. In the

above unitarization scheme it’s amplitude will remain
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unaffected.
+
DSQVV
. =*g %+ +
The Cabibbo angle favored decay modes are: K K , wp ,

+ . . .
dp and p+po. The un-unitarized amplitudes for these modes

are evaluated using eqs. (IV.22),
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SU(3) has been used to relate the annihilation terms of wp+
and R*OK*+. At the Cabibbo-allowea level, the spectator
terms in DS decay must have final states that contain the s
and s quarks. Hence in both wp+ and H% modes, spectator
terms are absent. Further the vector current contribution to
the annihilation terms are zero due to CVC. In the absence
of second class currents, the axial wvector current can
contribute only to states with odd G-parity. Since H$+
state has G=+1, its un-unitarized amplitude is then identi-
cally zero, while there is annihilation contribution to the
G=-1 wp+ state. Hence, the decays D;ewp+ and D;»p%f' are
very interesting and experimental limits on these would be
beneficial.

E *
O * has G=-1 in

We couple the three G-odd states (K
J=0 state). The G-even H$+ state remains uncoupled. We thus
expect the branching ratic for the p%;- state to wvanish.
Regarding the experimental situation, the only two-body mode

. 5 . + =*o %+
which has been measured™ so far 1is that of DSaK K .
+

Recently a value for B(Dse¢f%+) (presumably due to ¢p+) has

been reported.68
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—%g_ k4 + . ,
The K o and wp modes can couple via a n-like

resonance. Note that this resonant coupling is possible only
in the P-wave. RfOK*+ and ¢p+ will only have non-resonant
coupling (quark interchange diagrams). wp+ @ ¢p+ coupling 1is
forbidden by 02I rule. We introduce non-iesonant coupling in
the dominant D-partial wave only, apart from the resonant
coupling in the P-wave. The amplitudes are rewritten in a

form, where the S and D-partial waves are separated (see

Appendix B):
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Hence, in our problem, we have two coupled channels in each
of the P aud D-partial waves. The K-matrix for the P-wave
has the resonant form of eq.(IV.7), while the non-resonant
matrix coupling the D-wave amplitudes is given by eq. (IV.9).
Note that wp+ has only a P-wave amplitude. We vary the
independent parameters of the corresponding K-matrices, to

+ .
+) and B(D;9¢H%t ), for wvarious

Fit the known B(Di+K °K
values of the annihilation parameter. This is done for both
£€=0 and €=1/3. The branching ratio for D;»R*OK*+ restricts
the range of R to be <0.6 GeV2.

We find that even for R=0, through final state
interactions alone B(D;*m+) can be =0.13%. A higher value
is obtained for R#0. A measurement of this mode would be
very useful. A fit to data is presented 1in Table 11.
Regarding B(D;a¢p+), we wish to point out that in absence of

final state interactions, the un-unitarized amplitude yields

a branching ratio of ="1% (for al=l.3), which is much larger
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than that deduced from the observation® of ¢#H+ modes,

Table 11. Fits for Cabibbo allowed DSoVV decays. Theory
columns with &=0 use al/a2=—2.0, b=1.2GeV ' and c=2.6GeV "
while that  for £=1/3 use & /a,=-2.4, b=1.2GeV '
and c=2.4GeV .

r =0.06 GeV.
22

The wvalues listed are for F“=0.31 GeVv,

Theory €=0 Theory £€=1/3

Branching

ratio (%) Rs=g.0 Rs=g'10 RS=8.O Rs:g'l Data (%)
Gev GeV Gev® GeV

+ —*O * 4-

B(DK 'K ) 7.31 6.94 6.45 6.21 8.1+4.2+2.8

B (D, p" ) 0.10 1.90 0.06 1.78

B (D p") 12.2 12.2 11.8 11.8 8.4:4 -

B (DS—)¢onOn+) /B (Ds—‘;¢n+) ~2.4%#1.0:0.5. With inclusion of final
state interactions, this wvalue is satisfied, for C
22.00Gev_1. Note that the solutions in Table 11, are
obtained for c¢>b. Since, the K*K* & ¢p coupling is via a
quark interchange diagram (nonplanar), while K*K* w K*K*
coupling is planar, one would have expected c<b. One reason
for this result could be that the form—factors appearing in
the vector, wvector amplitudes may not be reliable. Another
possibility is that the B(Dse¢p+) is itself large— but there
is some cancellation, resulting in a small ¢nr branching
ratio. A measurement of ¢p+ mode itself, could clarify the

issue.

IV.6 Cabibbo-suppressed D-»VP modes

The possible modes of decay for D at the Cabibbo
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-suppressed level are: pnr, ¢r, wr, ¢n, wn, LN, NP, ' p,
K*K. A few of these Cabibbo-suppressed D»VP decay modes have
been measured.G Two of these modes are particularly
interesting, DOaK*ORO and D+ep0n+. The amplitude for D%

*(-=

K °K°

does not get a contribution from the spectator
diagram. An upper limit on it’s branching ratio exits.’ The
measured value® of B(D'sp’r’) is =0.2%. In the absence of
final state interactiocn and weak annihilation the
theoretical branching ratio s two orders of magnitude
smaller.

We first consider the decays of the neutral D mesons.

The un-unitarized amplitudes for the above modes are given

by,
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The annihilation in pn’s is assumed to proceed via a n-like
resonance whereas 1in K*K’s through an =n-like or mn-like
resonance. The annihilation contribution in these modes 1is

related by SU(3). No resonance with appropriate quantum



numbers Lo oavailable for the annihilation to proceed in the
Gther channels (note o vector resonance cannot contribute) .
Since the weak currenl. has 1=1/Z2 and 3/2 pileces, the
isospin of the final gstates can be 0, 1 or 2. Strong
coupling conserves G-parits and isospin. We therefore list
{ o sLales Lhal contribule to biee dilborent  lsospins for

each G-parity serarately,

G=-1: I=0 P, dn, wn, “)n,r K K
*
[=1 pn, KK
I1=2 pn {(IV.45)
*
S=+1 I=0 K K
*

I=1 wn, ¢un, mp, n'p, ¥ K

*
In G=-1, I=1, pm states can couple to K K’s through a n-like

* *
resonance. In G=-1, I=0, ot & K K, K K « wn/wy’ and
* - -
pnt o wn/wn’ (K K o ¢n) can couple via a uu (or ss)

resonance. An isospin zero, G=-1 resonance will be w-like
(or ¢-like for ss) . However, a vector resonance cannot
contribute to final state interactions in D»VP modes. Note
that ¢n & wn/wn’ coupling will be nonresonant and that
pn o ¢n is disallowed by 0ZI. Again in G=+1, wn coupling to
ne, nw'p and K*K’s can only be via a uu resonance. It must
have G=+1, I=1, i.e., p-lixe, which again is disallowed. We
shall ignore the non-resonant couplings and consider only
the resonant coupling of K K and pr in G=-1, I=1 isospin
state, as very little experimental data is available or all

the other decay modes.

We .hus need to first construct eigen—-states of
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« A

G-parity and isospin tor K K/ s. PFPov the K K staces, where

the particle and antiparticle doublets are given by

X =0
K K = K
K = Xy and K = a
K -K

the isospin 1 and 0 states ave give Gy

- * - | Ky mm
IT=1, T,=0> — - J K KT 4 TR
v (LV.10)
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V2 Ve
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Similarly for KK cstates (i.e., ~1i1nicle psecudoscalar,
antiparticle vector),
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V2 V2
The combined isospin states are:
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K () o o 4 * —_ K e
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... (IV.48)

As indicated, these are states of definite G-parity.

The isospin decomposition for the pn states 1is given

by,
Agn = % {|p+n—>+[p—n+>+|pono>}
V3
" = P e ) (IV.49)
V.
APT = _.1__ {|p+1z—>+|p—n+>—2|p07zo>}
2 Ve

*
Hence, we couple Ain end the ll,O>A K K state via a resonant

K-matrix given in eq. (IV.7) with n&=1770MeV and r}=3OOMeV.



Tl unitariced physical amplitndes are obtained as tollows,
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Next we consider the corresponding Dt decay modes. The

un-unitarized amplitudes for the modes being coupled are
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The I=1, G=-1 amplitude for prn and K*K states resulting

from the D" decays can in princips. »< related to the
corresponding D’ decay states. These could then be used to

93 e
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evaluate the branching ratio for D -p’n’ and D LkR
there are experimental values available for these modes,
this could further constrain the parameters of the K-mo.rix.
However, unlike the Cabibbo-allowed VP decays, the relation
between D’ and p* decay amplitudes in the Cabibboc-supprecsced
decays is more involved. Note that Cabibbo-suppressed D+
decays can get contributions from Lboth spectator and

annihilation graphs.

. . CL ) +
The 1isospin decomposition for pmn modes in D decay ma;
P p Y 7



2 written as,

|p0n+> = - ————-—l APt 4 —-—~l Pt
v ? v o1
(IV.52)
ot = - Loagem - L
v2 - V2 :

The isospin 2 part of the amplitude arises only from the

AI=3/2 term of the Hamiltonian. Also, it contributes only to

spectator diagrams. Hence, Aépn can be related to Agn simply
through the Wigner-Eckart theorem,
,pn=|3 pT
A% —— AST . (IV.53)
To relate APt and AP" is not so straightforward as the

1 1
isospin 1 amplitude gets contribution from both AI=1/2 and

AI=3/2 parts of the Hamiltc :ian. Further, the spectator and
annihilation terms of the p’ and Dt amplitudes arise from

different terms in the Hamiltonian. The spectator part of

Ai” gets contribution  from al(ﬁd)(ac) part of the
Ham?® ltonian, the corresponding contribution to Aipn comes
from al(ad) (dec) as well as from az(ad) (Gc). Similarly, the
contribution to the annihilation part in Aﬁ" comes from
az(ad)(ﬁc) while that for Aip" from al(ﬁd)(ac). Hence we may
write,
A (%’ = ~2xaB® + L (yaf™(spect.) + y'Af"(ann.))
V2 V2
... (IV.54)

where x ,y and y’ are determined Dy equating the above to
the amplitude for this mode written directly from the

Hamiltonian to obtain,

- [T

a
2! y= a2

= and y'= —v2 —=.
1 .

<
NII}—‘
S
N+
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The value of x is the same as obtained in eq. (IV.53).

* , +
The K K states in D

one final state.

decay can occur only in isospin

The G=-1 and G=+1 combinations of these

states are given by,

K
, KK
1=1,G=-1

x

, KK
I=1,G=+1

* = +
= 2 xRS + KK

b, i S -—K
L xRS - KR
V2

1

>)
(IV.55)

— %
0>)

V2

These can also be related to the isospin one, G even and odd

. 0
resulting from D

states decays, by following the same
procedure described above for the pn states, i.e., we may
write,
P KK = za" " (spect.) + z/A* " (ann.)
I-1,G=-1 1=1,G=-1 1=1,G=-1
ar KX = K (spect.) + z'A K {(ann.)
I=1,G=+1 I=1,G=+1 I=1,G=+1
... (IV.56)

Equating the above to the amplitude obtained directly from
the Hamiltonian, we get, z=-v2 and z’=V§al/a2.

since the D° and D" amplitudes are not simply related,
we cannot just use the unitarized D’ amplitudes determined,

. . . + ,
to evaluate the unitarized D amplitudes. However, we can

a

*
use the same K-matrix to separately couple the pm, K K (I=1,

G=-1) states resulting from D" decay (final state

interactions are assumed to occur through a n+(l770)

. , . +
resonance). The unitarized amplitudes for the observable D
decay modes are therefore given by,

_ } a/OrPT

V2

+ 1 A/ulpn

AY(ptsp%nT) = : =Y
V2
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Au(D+_)p‘{-no) = - _LA/OIPTI _ 1 A,U,p'ﬁ;
vz ? vz !
Au(D' K*+I—<0) - 1 [A’u'“*x + A,O,K K 1
. V3 I=1,6=~1 I=1,G=+1
U ntoetp’?) = L ,UIK*K _ ,O,K*K
aY (D k'K %) = v [t - A%
... (IV.56)
Table 12. Bran_ hing ratic- for Cabbibo-suppressed D-VP
2

decays. Theory column with ¢ 0 uses: al/a2:-2.0, R=0.13GeV",

FH=O.17BGeV & TO=O.6556eV, while that for €=1/3 uses:

Py = 4 0 2 = B =
al/a2~ 2.4, R=0.10GeV", FM—O.lC sV & Fn 0.698GeV

Theoretical Branching Ratio (%)

Mode Mark III
£=0 £=1/3 bata
B (D%p ) 1.041 0.927
B(D%p 1) 0.165 0.179
B (D%p’r’) 0.126 0.083
B(D%K TK") 0.643 0.565
B(D%K TKT) 0.199 0.215
Xy -
B(D%fc_g.) 0.842 0.780 0.840.5
B (D’>K °Z°) 0.068 0.034
B (DK k") 0.068 0.034
x -
B(Doalic(jléij) 0.136 0.068 <0.55
B (D 5p%") 0.242 0.121 0.20£0.08+0.03
B (D >p 1) 1.598 1.526
8 (D KR 0.668 0.669 0.44+0.20%0.11
B (D K TR 1.328 1.174

Note that the K-matrix being the same, the bt branching
ratios will constrain the parameters c¢f our model. We

therefore leave Fn and rn as independent parameters.
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Typical fits to data are shown in Table 12. We wecre able to
obtain fits to data for both zero and non-zero v.'ues of the
annihilation parameter R. The limit on B (D%K “R%+c.c)
restricts the range of R, which 1is specified for the
different al/a2 values in Table 13. In Fig. 6(a), we show

Table 13. Range of R allowed in the
Cabibbo suppressed D»VP decays.

a,/a £€=0 £=1/3
172 2 >
(GeV®) (GeV™)
-2.0 0.0-0.16 0.0-0.01
0.0-0.02
-2.0 0.0-0.20 0.10_0‘14}
~-2.4 0.0-0.21 0.0-0.19

the allowed range c¢f the parameters Fll and réz for R=0. As
R is raised to 0.12GeV2, a bilgger range of r. and r,, is
allowed (Fig. 6(b)). Further increase in the R value,
reduces this range, as is shc'n in Fig. 6(c). We would also
like to point out that in the above model, it is possible to
fit the B(D++p%f); the un-unitarized amplitude did not

satisfy the observed value as pointed out earlier.
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V. OTHER AFPROACHES TO STUDY HEAVY FLAVOR DECAYS

In the last chapter we presented a model calculation
for various nonleptonic two-body exclusive decays of D, D;
mesons. We now briefly describe some of the other theoret-
ical approachesm"29 to these decays and point out their
successes and shortcomings.

First, 1in comparing our procedure to that of Bauer,
Stech and Wirbel (BSW),27 we would like to point that the
two approaches are similar, as both are Dbased on the
assumption of factorization and use identical form-factors
in the weak amplitudes. However, the BSW approach does not
include a satisfactory treatment of final state inter-
actions. Further, they retain only the spectator diagrams,
while weak annihilation is ignored. From a fit to data, they
conclude that the color mismatch factor &, 1s zero. Since £
represents the impact of low energy strong interactions,
i.e., soft glu»n effects etc., one would hardly expect to
find a universal value of €. The phenomenological fit of
Bauer et al., can perhaps be justified within the framework
of the 1/N_ apprnach, which is discussed in the following

C

section.

v.1l 1/N_ approach

‘t Hooft'®™ has shown that QCD simplifies considerably
when one assumes that quarks have a large number Nc of

colors. In particular the physics of mesons becomes rather
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simple. A meszon Lz represented colely by i1ts valence quark
content and the meson decay ampllitudes can be written as the
product of quark currents. In the large N limit, a 1/NC
expansion could be used to obtain approximate solutions in
OCDh. The diagrammatic rules in the 1./NC approach are as
follows: A qguark 15 represented by & line and a gluon by two
lines as shown in Fig. 7(a). Furthermore, guark-gluon and
meson-quack vertices are represented as shown 1. figs. 7(b)
and (c¢) respectively. The cclor factors are then assigned as
follows,

(i) a factor Nc for each closed guark loop,

(ii) a factor ]/Vﬁc for cach quark-gluon vertex and

(iii) a factor l/VﬁC for each meson-quark vertex.

Buras, Gerard and Ruckl?® have used this approach to

evaluate non-leptonic weak decay anmplitudes for the charmed
mesons. They start with the usual operator product expansion
for the matrix element of the e<ffective weak Hamiltonian,

(assuming factorization of short and long distance effects),

eff

<AB|HW

|M> = § C,<AB|O |M> (V.1)

1

where A, B are the final state mesons resulting from the
decay of the meson M; Ci’s are the Wilson coefficient
functions which include the short distance QCD corrections
and Oi are local cperators (see Chapter II). The proposal
then 1s to expand the hadronic matrix elements <AB|Oi|M> in
l/NC,

<AB|O, IM> = »/ITIC( a; + bi/Nc + O(l/Ni) } (V.2)

where ay and bi are Nc—independent numerical expansion
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coefficients, which are iu princivle calculable in QCD.
Since the relevant expansion parameter is 1/N, and not a,
the coefficients ay and by include contributions from all
orders 1in LD This exhiosits the non-perturbative character
of the expansion. Weak interaction effects tO first order
can be included in the L/Nc approach by adding the following
prescription to the rules civen above:

(1) a factor C1 for a charged current interaction (Fig.7d)

(1i) a factor C2 for a neutral current interaction (Fig.7e).

(d) (e)

Fig. 7 Diagrammatic rules in the /1l approach,.

The diagrams contributing to a given matriz element are
then found Dby connecting the decaying meson M in all
possible ways wita the mesons A and B using guark lines,
soft gluon lines and a single weay. interaction line (charged

or neutral) . These diagrams are depicted in Figs. 8(a) and
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(b)y. There are two Lypes ol leading  order diagrams,

)
s @MWJ\/

“ . e

(a) 3

TR0 L

tlf-

(b)

Fig. 8 Leading and next-to-leading charged current diagrams
contributing to two-body decays. Analogous diagrams exist
for effective neutral current interactions.

contributing to a; of eqg.(V.2), namely, one of the spectator
and one of the annihilation type. At the next to leading
level, there are three kinds of diagrams: a spectator
diagram, a weak annihilation diagram and diagrams involving
final state interactions. We note that all the leading order
diagrams are factorizable into simpler diagrams by cutting
the weak line. The non-leading spectator and annihilation
diagrams have factcorizable and non-factorizakle pieces. The

factorizable part can be extracted through a Fierz transfor-

105



mation. For oxample (see Fig.9):

+ — z Do ;
2

Fig. 9 Diagrammatic relations which follow from Fierz
identity and color algebra.

<K 71 (3e) (5d) ID°>= <1 (@ad)  10><k | (Se) D>
- . .
1 +,- - =& N
+ _Z—<n K l(uhad)L(sA c)LlD >,
<«'K71 (@) | (5e) 1D%>= —Ilq—<n+z<"| (3d) 10><0] (uc) I1D">

c
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dicrermine  the  weak  amplitudes  for
by roetaining only the leading l/NC

i oquivalent to taking €=0 in the
Although  weak annihilation diagrams
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This approeach provides a reasonable
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For example, B(D K¢, B0 -5 v ) /B(D e ) typically come
out too small. The predictions tor class I transitions
overshoct the experimental numbers.

In summary, the L/NC cpproach i1c compact and self-
consistent, since it is based o just one basic assumption,

namely ignoring terms
assumption 1s however
small in the real wor
simple tool, it does
standing, unless

are computed.

of non-leading order
experimen -1 evidence’
decays.

The evaluation

Strong interacticn final

are non-leading in l/Nc. The

purely adnoc. 1/N_ 1is by no means
«

che approach

pauiby

Althcugh provides a

1N
La o

not advance our theoretical under-

at least the first non-leading corrections

state effects being

are neglected, vyet there 1s clear
for their significance in D meson
of neon-factorizable part of the

amplitudes, which are ia..ored in the l/NC approach, requires

explicit use of QCD.

framework of QCD sum

Such a calculation is possible in the

rules, discussed in the following
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section.

V.2 QCD Sumﬂgulus

Summary of Sum Rule technique

The idea' of the QCD sum rules is to make use ot the
simplicity of QCD in the perturbative regime to gain
information on the bound state structure of hadrons, where
perturbat ton theory cannot be g plied. The starting poinot
for the QCD sum rule approach is the correlation function
between n currents, where the currents carry the quantum
numbers of the hadrons one wants to> study. For example
consider the two-point function,
ig.x

4 . . _ 2
Jda'x e <0|T{j“(x)j (0)Y 110> = H#V(q ) (V.4)

v
where j“(x) is a wvector/axial vector current and T denotes
the time ordered product. For large q2, or in the short

. . . 43
distance region, one assumes an operator product expansion

(OPE) for the time ordered product:

2

4 _ig.x . . _ k.2
Jd'x e <0|T{j“(x)jv(0)}|0> = g va" )0y (V.5)

where Q2=-q2, Ok are local cperators constructed from quark

or gluon fields. The Wilscon ¢ efficients Ck(QZ) depend on
the process 'nder study, i.e., the Lorentz structure and the
quantum numbers of the currents. The operators in eq. (V.5)
are ordered by increasing dimension anc the coefficients
fall off with corresponding powers in 1/Q2. Therefore, the
operators with lowest dimension dominate the expansion at
large Q2. The coefficients Ck(Qz) can be calculated perturb-

atively. Non-perturbative effects are introduced by allowing
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tor non-vanishing vacuum cexpectat ion values ol the operatons

)

k:

<010, 1o =~ 0,

I k|

These matrix clements are treated as free parameters which
can be fitted in one physical recaction and can then be used

in all other rrocesses, since they are process independent
by definition.
Next one invokes analyticity to write a dispersion

relation for the pglarization funcuion,
- 1 J Imn(s

(S+Q
The imaginary part of the polarization operator is

ds. (V.6)

m(Q

determined by a sum over discrete spectrum of resonances and

a continuum above the appropriate threshold s

C
2 mifi 1 (® Iml(s)
mQ%) = — + ds, (V.7)
a2e0? s (s+0?)

-

where fk is the decay constant of the mesor of mass m. In
order to pick out only the lowest resonance in the above,

one defines the nth moment of H(qz):

2 1 d n 2
m_(Q7) = [* ] m(Q™) 1.2_.2
n n! dQ2 0 —QO
2.2
m, £ 00
k" k 1 Im(s)ds .
=Y + (V.8)
v R JsC (s+02) 1L

The above technique also gets rid of the unknown subtraction
constants 1in the dispersion relation. Note that large Q2
must be chosen in order te to:rminate the OPE by first few
terms, however large Q2 sacrifices the enhancement of

low-lying poles in the dispersion integral. The remedy is to
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operate the sum pule by
: : , . G 1
., bim I oneld o
1, 2 ) - . Y
M [ Q oo, Dow nt ( [ ( 102 l )

o o
whoere the ratio O7/n M7 o tixed, to  obtain the Bored

trans formed cum rule.

Application of Sum Rule approach to D-decays
OCD sum rules have been apptiod to oondy thee fecays of
Choarmed woes ons into W ik TR E EE R  SEE CC S R OSSN A T

They analyzed the four-point corvelator:

2 4 | 4 A AR s I
Mo (900,707 = Jds aly aty ot (@Y
x-OIT{]A“(y)]Bv(x)jD(O)Hw(;)}|O> (V.10)

where jD is a quark current with the quantum numbers of «a

charmed meson with momentum Ql; and are the quark

In Iy

currents corresponding to the particles A and B, which are

formed in the decay of the charmed meson and carry momenta ¢

and Q respectiv.ly. H_(z) 1is the weak Hamiltonian. The
2

W'

correlator in eq.(V.10) is depicted in Fig. 10. They work in

Ja

Ol z
Jﬁﬂﬂﬂf"—tt PAVAVAT) P
D D B ),

Fig. 10 Four point correlator, chaded blob stands for the
amplitude of the weak decay of the charmed mesons into two
light wesons.

the cniral limit: mu=md=ms=0. Thus, the light pseudoscalar

mesons have zero mass, and the vector mesons all have equal
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masses, mp. The value of the vectof meson decay constant
usac. is fpzZOOMeV. In the case ¢of the 7’ meson mn,=0.96GeV,
fn,=lOOMeV is used.

There exist three bare diagrams which give a contribu-
tion to the polarization operator. They are depicted in
Fig. 11. The diagram of Fig.1ll (a) represents the weak
annihilation mechanism while diagrams in Figs. 11(b) and (c)
correspond to spectator processes. Actual graphs are
obtained from these bare diagrams by adding gluons and/or
cutting some quark or gluon line to include the effect of
non-vanishing vacuum expectation values in the OPE. If the
aaded gluon lines are located entirely inside the triangle
or the external loop, the diagram corresponds to a factoriz-
able amplitude, while 1f the gluon lines connect the

triangle and the external loop, the diagram 1is clearly

non-factorizable. A
A A
C
DMMNMF:\\ B D B
C D C
B
(a) (b) (c)

Fig. 11 The skeleton diagrams in the QCD sum rules for two
particle D meson decays. The wavy lines denote external
currents producing mesons from vacuum.

Corresponding to the decay D-»AB, where A 1is a light

pseudoscalar meson and B i1s a nseudoscalar or vector mneson,

the phenomenological side of the sum rule is determined in

111



terms of the meson masses and decay constants. A double
Borel transformation with the parameters M2 and M'2 is
applied to suppress the contributions from the excited
states in the D-meson channel and in the channel connected
with B. To account for the contribution of higher resonances
in the channel connected with the light meson A, in which a
Borel transformation is not applied, a special choice is
made, for the spectral density in this channel. Only one

further resonance, corresponding to the Al meson is added,

by assuming the following form for the form-factor Fn(Qz),

2 02
F (Q7)=1 - o (V.11)
T (m< + Q)

A
1

The sum rule for the amplitude then has the form,

2 2 2 2
T £ (mZ/m )£ £ F (Q7, m m
2 2 .2 DYVD ¢ TATBx D B
£, %,0%) = exp[-(—5 + )|
T Q2 M M’2
.o (Vo12)

In order to diminish contributions from diagrams other than
that for, the decay D-»AB, the above is differentiated w.r.t.

1/M2 to obtain:

2 2 2 2 2 2
2 2 2 2 ,2) 2
My d(1/M7) fAfoDmD/mc M M Q
el (V.13)

fT(MZ,M’Z,QZ) can be decomposed into the sum of two terms,
fT(MZ,M’Z,QZ) = ff(Mz,M’z,Qz) v fn(MZ,M’Z,QZ) (V.14)
where ff(MZ,M’Z,QZ) corresponds to the factorizable
diagrams, 1i.e., diagrams where the two Dblocks are not
connected by anything except by the four fermion vertex; the

funccion fn(MZ,M’Z,Qz) corresponds to the sum of all other
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diagrams. A sum rule, similar to eq.(V.13) may be written
for the factorizable amplitude ff(Mz,M’z,Qz). The non-
factorizable amplitudes are then determined through a sum
rule obtained by subtracting the sum rule for the factoriz-

able part from the sum rule for the full decay amplitude,

2 .2 2 2 2 2
1 4 [ fn(M ST, Q )]exp( my N Mg ]_ TnFn(Q )
2 2 2 2 T2 2
my d(1l/M™) fAfoDmD/mc M M o)
c..(V.14)

where Tn=T-Tf.
The operator product expansion is then wused for
2 .2
' Q

fn(Mz,M’ )
2 2 2

e, w200 = aje 048,102,090 ¢ ay6, 00, ur %, 0%)

+ a,Gy w2, 2, 0% (V.15)
where the coefficients @y, and as are constants and depend
on the specific decay mode. Gl(MZ,M'Z,QZ), GZ(MZ,M’Z,QZ) and
GB(MZ,M’Z,QZ) are the functions corresponding to the
diagrams in Fig.lla,b & ¢, which receive contributions from
the operators of dimension 5 and 6. Note that quark
condensate <@w>o and the vacuum average <G2>0 will
contribute only to the factorizable part of the amplitude.
Operators of dimension greater than six are ignored.

For each of the functions G*, G2 and G3, the parameters

M M. and M, fix the corresponding parts of the amplitude

1’ 72 3

Tn‘ For each group of decays, D,DSePP, D,DSePV and D,DsaPn',
it is sufficient to consider three sum rules which determine
these parameters. They are determined by requiring the left
hand side of the sum rule to depend weakly on the Borel

parameters M2 and M’2 and that, the contribution of the
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continuum and the higher power corrections to the sum rule
be small in the desired region.

Oonce these parameters are determined the non-
factorizable amplitudes for all the decay modes can be
evaluated. The factorizable pieces are evaluated in the
usual fashion, using £=1/3. It is found that, in some of the
decay modes, the factorizable terms of order 1/Nc approxi-
mately cancel with the non-factorizable contributions. The
dynamical analysis of Blok and Shifman may thus provide a
‘theoretical foundation’ for the rule of neglecting l/NC
contributi s to the amplitudes which has been found in the
phenomenological approach of Bauer et al.?’ and assumed in
the work of Buras et al.”

In sumn.-y Blok and Shifman’s treatment27 represents a

theoretical improvement in the sense that it allows the

inclusion of non-factorizable contributions to the
amplitudes. ‘hay generate B(DQ§3¢)=1.3%, purely from non
-factorizable weak annihilation. However, final state

interaction effects which are known to be significant, have

not been incorporated in their scheme.

Effect of Final State Interactions on Blok and Shifman’s
Amplitudes

To see the effect of final state scattering on the
amplitudes given by Blok and Shifman, we proceed as follows.
The various decay amplitudes are decomposed into the
different isospin parts. In the presence of a phase in each

of the isospins, the ratio of the decay rates of any two
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modes - ROO or R0+ etc., (to be described below), can be
expressed in terms of the ratio of the isospin amplitudes,
r, and the phase difference 5. One can thus plot this ratio
or R. ) as a function of r, for various phase differ-

(Rggr 0+

ence values. Since the experimental values for ROO’ RO+ are
known, one can determine the range of r and & allowed by the
data. The r value determined for Shifman’s amplitudes of
course corresponds to zero phase. First we check whether
that value is allowed by the data. Next, for that same r
value, we determine whether inclusion of a phase would be
consistent with the experimental results. Note that we are
introducing final state interactions only through a phase in
each of the isospin amplitudes, thus its effects will be
important only in decay modes with more than one isospin
state.

The technique described above is applied to the
following decay modes:
1. K*n - In the presence of phases &4 and Sy in the isospin

states 3/2 and 1/2 respectively, we may write the decay

amplitudes as,

—_% —_ 3 P 1
AR On%) = — (vERST &% 4 A% T 10y
1/3 3/2 1/2
*— 4 L : - . .
A%k Trh) = L @t T et - vaalt et (V.16)
V3 *
— % - :
AR %) = v3ART o0

Hence we have,

* F (%R %r®) ‘ ) )
ROO(K ) = =

2 (¢ n)2+l+2V§rK‘ncos§{n
B

% LT L ;
PIDWSK ) (X M) 240 2y5r% Teoss™ ™

x
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and (V.17)
* I‘(DO—>K*_TI+) 1 K, 2 = xm K T
R, (K @) = * = [(r" ") +2-2V2r “"coss ]
0+ ro*k °nh) K, 2
(3r ")
where, T o= pfT oAt and 3¢ =5 -5

3/2 1/2 3 o1t

. . , 6 * .
The experimental branching ratios for the K n modes imply

that,
0 %0 0
R. (K'my = BP2K ") _ 5 50040.208
00 0 %= ¥
B(DSK w )
0 *em T+
and Ry, (K 1) = B K _m) o - 2.157:1.314. (V.18
B(D »K " ) o
For zero phases,
. KT — —* *_
K Ao v3A(D R %% + A%k 1)) V.19)
- " - - - * — - .
n BAMD°sK %% — v3A(D%K )
1/2
Using Blok and Shifman’s amplitudes:
G c
0 =*o 0, _ F 2 1 K _ (e-q)
a(D%K °rn’) = ——cos ec{[c2+-3_Jf+ 2m £+ Cy(Rj=Ry) ==
V2 V2
= - (1.171%0.166)x10 °(e-q), and
G C
0 k= 4+, _ F 2 2 _ .
A(DH»K =n) = 7 cos ec{mD(cl+—§—]g+fn (C1R1+C2R2)}(e q)
= (2.11840.276)x10 %(e-q), (V.20)
we get T = -0.111+0.088. (V.21)

Note that we have estimated the errors in the amplitudes
using the theoretical uncertainties (as given in ref.29) in
the various parameters.

2. Kp - The isospin decomposition of these amplitudes is
similar t» that of K*n, hence we have identical relations

for R and R,,. The observed branching ratios for the Kp

00 0+
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modes imply that,
B L =0 0
Roo (Kp) = BIOOK P~ 0.069£0.046
B(D»5K p )
B(D‘) K— 'F)r”r
and R., (Kp) = R P ) P - 3,831%1.494. (V.22)
0+ + =0 +, T C
B(D K p ) &
Again, P 1o given by a relation similar to that in eq.
(V.19). Blok and Shifman’s amplitudes for these modes are
given by,
G C
0 30 0, _ v 2 1 . _ (e-q)
A(D5K'p') = ——cCo0s ec{mD[C2+TJg+rn + Cl(Rl Rz)}——:——
V2 V2
= ~(5.392%1.501)x10  and
A(DSK pN) = Ei— 26 {c +C2 5 2m £ - (C,R,+C,R;) t(e-qQ)
(DK p ) = =08 0 (C17737) + “MpTp 1R TCoR3 q
= (2.416£0.313)x107°. (V.23)
Hence, P = -(0.418+0.108) . (V.24)
3. Kn - The isospin decomposition iz again similar. The

experimental branching ratios imply,

0 z0 ¢
Ryo (Km) = 22K ) = 0.45240.123
B(D K m )
0 = +, T -
and Ry, (km) = DKL) 2o 3.21210.703. (V.25)
B(D >K'n ) o

The theoretical amplitudes are,

G C
0 z0 0y _ _F 2 1 YK 2 _ 1
A (D"K%2") v cos ec{[c2+_3_]f+ moE o+ Cy (M) m@)} ;5—
= —(1.29510.238)x10_6 and
G C
0 ,~_+ _ F 2 2 2 K -
A(D»K n') = ;E—cos ec{mD(Cl+—§_]f+fn (C1M1+C2Mé)}
~ (3.0780.430)x107°

4

(V.26)
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giving the following value,
Mo = (0.221£0.100) . (V.27)

4. mir - The nm states can be in isospin 0 or 2. The decompo-

sition is given by,

—_ 1 ]
A(Doan+n I (V2Aﬁn e "o + A?n e "2 )

[y
cz

N b (Ag ey - voea™ et (V.
+ + o
AMD T’y = v3Aa e” %

Therefore,

r%ntn) | 2™ 2+1+2v2r coss™

F0%r%2%) (") 242-2v2r"Tcoss™
and (V.29)

0 + -

F(D o m ) 1 nn, 2
= — = —5— [2(x )
F(D++n0n1)

Roo(nn) =

Ry, (mm) +1+2vV2r ™ coss])

+

here,

= and 8 = 80—6.
For zero phases, r™ can be determined as,
1918
p— +—
o A0 _ vZA (D s n) + 2 (D%n’n%)

N A srtnT) — v2a (0%’

(V.30)

The experimental branching ratios for these modes imply the

following limits,

Ryg > 0.467 and Ry, > 0.714. (V.31)
In Blok and Shifman’s approach we have,
G C
000, _ F . 2 K 2 _
A Dormn) = 7 coseC51neC{[Cl+—§-]f+ men + Cl(M1 Mé)}

= —(4.232¢o.778)x10'8 and
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G . C. .
- T coso Gino | mz[C +~§—]fhf -
) C cl D{71 o

7

*v —
I\(D”an o)

(ClMl .J'.(",')_M?‘) }

= (7.112+0.993)x10 ', (V.32)
giving the following value,
r™ =0.445%0.133. (V.33)
5, K - In this case disospin 0 and 1 amplitudes are
involved,
. - ¢ KK - KK
A(BKTKT) = 2 (A% %+ A e
=0 ‘/14 K stK ki is "
A(%SK K%Y = — (A" ™% - ) (V.34)
= 0 1
V2 ,
+ =0t 5 AT 16KK
A(D' 5K K') = V2AT" e 1
Hence we have,
R (k) = DOSKE) 1+ (r*) 2+2 coss™
00 r (0%sk°k°) 1+(rﬂK)2—2 coss™"
and (V.35)
(%K'K 1+ (r%) 242 coss™™
R4 (KK) = + -0, +. KK, 2 ¢
(D K K ) (2r )
K A};K KK
where o= and 8§ =8 -8 .
KK 1 0
A
o]
The observed branching ratios imply that,
ROO(KK)=2.550i2.607 and Ro+(KK) = 1.236%x0.522.
For zero phases we have,
KK
w2 a%kTKT) - A(D%KRY)
T T T 0+ - 0 050 (V.36)
AO A(DHK K ) + A(DSKK)
Since the amplitude for D%K’R’® is zero in Blok and
Shifman’s approach, thus
rKK =1
The resulting plots for the above decay modes (1-5) are

shown in Figs. 12(a)-(e) respectively. The

allowed values of
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the phase differences correspoudina to each of the ratios
plotted, are listed in Table ;. It 1is seen that a

. 5,6 .
r sonable agreement between theory and experiment is

achieved for most decays. Howaver, there are certain
. . . R + =%g +
discrepancies. In particular, B(D X = y/B(D K m ) and
o+ - , + o0+ .
B(D»n n ) /B(D »mm ) do not agree with the data, for any

value of the phase included in the amplitudes.

Table 14. The range of phase values that
Blok and Shifman’s (ref.29) amplitudes can
accomodate, being consistent with data.

Ratio of Amplitudes phase value allowed

* Q

ROO(K*H) 0-180

RO+(K ) no allowed value

ROO(Kp) ~0—3(3

Ro+(Kp) 0-90

ROO(Kn) 0—110o

R0+(Kn) 0-180

Ry (T70) ~0-100°

RO+(nn) no allowed value

ROO(KK) ~45—188

R0+(KK) 0-60

To investigate the role of non-factorizable contribu-
tions vs. the factorizable part we 1look at some of the
amplitudes in more detail. For example, in the amplitude for

=%0_+

+
D> K nm ,

+ Z%0 +. _ F 2 1 K
A(D 5K =® ) = —cCOS ec{[c2+—3—]f+ 2mpfp +mD[C1+—3—]g+fn
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the relative magnitudes of the factorizable term and the

non-factorizable term are,

— % —
A (0%K ") = 0.160  and a_ (0K %) = -0.101.
nlso, the DT> K%' amplitude,
G C C
+ =0 +, _ F 2 ! 2 K
A(D 5K'p ) = ;E—cos ec{mD[Czk—j—]g+f" + [C1+-3—Jf+ 2mpfp

- (C1R2+C2R3)}(G°Q),
is composed of the following factorizable and non-
factorizable parts,
Af(D+»?%+) = 0.162 and  A_(D'sKp") = +0.049
Table 15. Factorizable and non-factorizable parts (columns

5 and 6) of amplitudes obtained in the Sum Rule approach.
Branching ratios given in columns 2 and 3 are in percent.

Mode B.R. in Expt. |[Comment Fact. Non fact.
Sum Rule B.R. Part Part
Approach
B(D k%™ 14 6.9:+2.4 | high +0.162 +0.049
B 5k °rt) | 0.8 5.9:3.1 | low +0.160 | -0.101
K-
B(D°5K ') 8.6 5.2¢1.5 | high | +0.158 +0.133
B(D K p") 14.8 10.8+1.8 | high +0.7 59 +0.089
B(Dsn n ) 0.28 0.14% high | +0.132 +0.149
. . 6 + =*g + .
A comparison with the data  reveals that B(D »K = ) 1is

smaller than the experimental value and B(D++Rop+) is larger
than the observed value. Sir.ce, the non-factorizable term in
the X %% mode reduces the net amplitude and that for &7,
enhances it, it 1is plausible that the non-factorizable

amplitudes have been overestimated in the sum rule approach.

3]
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A similar pattern emerges in some of the other decay modes
which are listed in Table 15.

In conclusion, the above models can explain the
experimental data with reasonable success. However, there
are many discrepancies, which could perhaps be accounted for
by proper inclusion of final state interaction effects. The
BSW model attempts to include these effects but they have
rather adhoc treatment of final state interactions. More-
over, they Jjustify their £=0 rule using the 1/NC approach;
simultaneous inclusion of final state interactions (non-
leading in l/Nc) is however then, inconsistent.

There 1s one more entirely different approach,67 which
is based on diagrammatic classification of the weak decay
processes which has not been discussed above. We will

briefly refer to this approach, in the next chapter.
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+
VI. THE DECAY MODES D;»mr AND D:MYH+.
A lot of interest has been generated by the modes
+ o
D;»nn+ and Dsan’n+. Mark 1II°>? has observed surprisingly
large branching ratios for these modes, B(D;»nn+)/B(D;+¢ﬁk):
3.0#1.1 and B(D —)n’1t+)/B(D;-ypn+)=4.8i2.'l. Mark III had also

repo:ted30 B (D

0+ 0 +

sne’) /B (Dispn')=2.5£0.8:0.8  and B (DL snm ")
/B(D;eﬁGK+=2.3iO.7tO.8. The recent Mark III analysis’
results only in upper limits: P(D;ann+)/B(D;a¢n+)<2.5 and
B(D;anﬁﬁ}/B(D;a¢i+)<l.9. One would like to know whether it
is at all possible to obtain the large Mark II branching
ratios for the D;ann+ and D;an’iF modes in a theoretical

framework.

VI.1l u»-n' Mixing

The decays into modes involving the =» and =’ are
complicated by mixing in the pseudoscalar sector. The SU(3)

basis states are:

the octet, lp > = 1 |uG+ad-2ss>
8 g
V6

and the singlet, |n0> = —%—Iuﬁ+d5+s§>
V3

Assuming orthogonal mixing for the physical states n and 7',
we have,
In> = n.cose - nosine
P P (VI.1)
> = n.sineé + m COS8
8 p 0 p
In terms of a quark basis, the above may be written as:

in> = X LiuG+ad> + Y Iss>
'ﬂ‘/i n
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In’> = X_, L uG+dd> + Y, Iss>,
"2 n
- _ 1 .
where, Xn = Yn,— - cosep— - Slnep

Yn = —Xn,= -J:%: cosep— I:%: sinep .
.. (VIL2)
The quadratic Gell-Mann-Okubo mass formula’ yields a value
of Qf—10°, while the mass formula which is linear in the
masses gives %f—23°. In the past, two-photon experiments
gave,74 epz—11°. Recent measurements employing a different

. \ . 74
technique seem to indicate

%f—19°. This value is also in
agreement with the data from J/y-m(n’)7.

The above mixing scheme can be extended to include
mixing of the pseudoscalars (isosinglets) and gluonic bound
states. Defining,

IN>= n%— |uG+da> ; |S>Els§> and |G>=lgluonium>,

V2
the » and »’ states in this generalized mixing scheme’’ are
written as,
|n>=X_IN>+Y_|S>+2_|G>
K K n (VI.3)
!n’>=xn,|N>+Yn,|S>+Zn,|G>

with the normalization X§+Y§+Z§=l, i=n,n’. A significant

gluonic admixture in a state is ©possible only if
Z?=1-X§—Y§>O. 7 is well understood as an SU(3) flavor octet
with a small quarkonium singlet admixture, and does not have
much room for a significant gluonium admixture. However,

. . . . 75 . P
information on %’ 1is incomplete without a significant

constraint on it’s ss content.
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VI.2 Factorization Approach

In the following we have looked at the predictjonsm
for the D;eni+ and n’i+ modes, using an orthogonal mixing
scheme. To estimate the amplitudes we used two factorization
models, one due to Bauer, Stech and Wirbel27 (BSW) and the
second due to Kamal and Ssinha’’ (KS) .

Following the method of BSW, we obtain the following

decay amplitudes (using egs.(IV.17) & (Iv.18)),

G
+ + - -
A(D >nmn )= £ c0829 a <n+|ud|0><nlsn|D+>
S v3 c1 S

G h (J_-7) sine
_ F 2 2 _ 2,70 "s | 2 p
= -—— CO0S © allf (mD m”) 2 3 (cose + )

v2 s 7 1-m2/m + P Y2
w0
+ + GF 2 + - - +
A(D 5n'm )= — cos 8 _a,<m jud|{0><n’|sc|D_>
S V> c 1 s
-G h (D _-»7n’)
= F C0526 allf (m -m ,)—3—?5—7——
V2 s T 1-m®/m4-
n 0
¢« —~(cose ~vZsine )
V3 P P
= Cp 2 =0, = +,= +
A(D aK K )= — Ccos™ e a2<K.|sle><K juc|D >
-G , h_(D_»K)
= _F cosze azifK(mg —mR)—ﬂ—?E—f—
V2 S 1—mK/mO+

.{VI.4)
Note that annihilation plays no role in the above decays.
This is a consequence of CVC hypothesis in tnhe (ud) sector.

The amplitude for D;a¢n+ mode is given by,

GF 2 A (Dg9)
A(D —>¢n )= —cos 9 a sz——T—Z (e k),
V2 1-m /m
(as given in eq.(IV.29)). This amplitude i- included to

compare the theoretical predictions with the experimental
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: . +
results which are normalized to B(Dsa¢n+).

In the KS$S model, the <P|%JI> hadronic matrix element

is written as,

2
) (BB,

® =
<Pi|Jj ] Ik> fi

2
s [, (a7) (B +R)) +E_(q
where I and P are the initial and final pseudoscalar mesons
. +  + , + zo+
respectively. In the case of Dsenn ,mn ,KK , the form-
factors f_(mi) and f_(mi) are neglected since they are

2
multiplied by m; and mi respectively. In this model SU(4)

symmetry is used to generate the form-factors f+(q2) and
2

f (q”). Hence using,
2 2 _
f+(mn)~f+(mK)~f+(O)—1,
the relevant PP amplitudes in the KS model are:
G sine
A(D;»nn+) = —Ecoszecalfn(mg —m2) —%—(cose + —P)
V2 s T V3 Pv2
A(D+» ‘ +) =:Egcosze a.f (m2 —m2 ) I 2 (cose -v2sine )
S nn ‘/’2' c 1l n DS "n' —T p o]
a(Dsk*RY = :Egcosze a V3£, (m2 -n?)
S VE Cc2 K DS K :

... (VI.5)

The decay constants in the KS model are defined through,
<P1J,| O>=—i1/§ka“,

and the values of fn and fK used are 93 and 120 MeV. To
calculate the Dsa¢n+ amplitude (or any P-PV amplitude), the
KS model uses the fact that only the axial vector current
can contribute. Partially conserved axial current (PCAC)
hypothesis is then employed to determine these amplitudes.
Hence, in this model,

<P|J“10><V1A“|I> = —iv’éka“<V|A“|I >



= —v2f <via aMT >.
P n

The amplitude for Dsa¢n+ is therefore given by,
A(D+ ) +) = GFCO”ZG a,2v2f f (e-k)
57T ;E v et n Dsgww € ’

where the Vi»PJE} ¢oupling constant 1is introduced via the

vertex,
i3k T *tijk

Table 16. Rates (in 10'° sec™) and the ratios of rates for
various decays in KS and BSW models

KS model (ref.77) BSW model (ref.Z27)
Mode g =-11" g =—19° g =-11° o =-19°
P P P P
r (oo a) 5.64a° 7.11a] 2.87a% 3.63a%
+ + ) 2 2 2 2
F(Dsenn ) 9.Llal 6.50a1 4.89al 3.50a1
+ .+ 2 2
F(Dse¢n ) 4.83al 4.67a1
+ =0+ 2 2
F(DsaK K) 30.91a2 12.76a2
F(D;en’ﬁ+)
T ™ 0.62 1.09 0.59 1.04
F(Dsann )
F(D;ann+)
———i——jf—- 1.89 1.35 1.05 0.75
F(Dsa¢n )

In Table 16, we have summarized the results of our
calculations for different relevant rates. These rates
depend on the QCD coefficients a, and 32 and the n-n' mixing
angle. We have used ep=—11° and 6p=—19°. As the magnitude of
the mixing angle 1is increased, F(D;enn+) decreases and

F(Dé#ﬁn+) increases. For a mixing angle of = -19° we find,



45 is seen from Table 16, that both KS and BSW models give

B(Dfan’n+)/B(D;ann+)z 1. However, since the effect of a

(%5}

larger (and negative) mixing angle is to lower the rate for
Dgann+, B(D;ann+)/B(D;a¢n+) for ep=—l9° is lower than that
for ep=—11“. In Table 17 we list the branching ratios for
the above modes. We have shown three numbers in this table
for each branching ratio. They correspond to NLL calculated
a1 and a2,
(1.5,0.1), (1.5,0.2) and (1.5,0.3).

with £=0, for QCD parameters (in GeV), (uC,A) =

Table 17. Branching ratios (in %) for various decays of the
KS and BSW models. The threa entries (a,b,c) are obtained
with (u,A)=(1.5.0.1),(1.5,0.2),(1.5,0.3), respectively.

KS model B3SW model .
Mode . . . R Experiment”™
0 =-11 8 =-19 6=-11 8 =-19
p p P P
B(D;»n’n+) 3.43°  4.33 1.74 2.20 16.8+7.73%
3.70 4.67 1.81 2.38 .
4.09° 5.16 2.07 2.62 <6.65
B(D;»nn+) 5.55 3.96 2.97 2.12 10.5+4.13%
5.98 4.25 3.20 2.29 ]
6.61 4.72 3.54 2.53 <g8.75°"
B(D;9¢n+) 2.94 2.84 3.540.5°
3.17 3.06 5
3.50 3.39 2.021.0
B(D;eROK+) 1.96 0.81 3.22+1.40°
2.79 1.15
4.01 1.69

The results of tables 16 & 17 can be summarized as
follows. B(D;a¢ﬁ+) is predicted to be consistent with data
in both the KS and BSW models. B(D;£3K+), in the KS moael
is consistent with data with QCD coefficients calculated

with p=1.5 GeV and A in the range (0.1-0.3) GeV. In the BSW

133



model this branching ratio is predicted to be too low tor
A=0.1 and 0.2 GeV, but is consistent with data for A-0.-
GeV. B(DZ»nn+) is consistent with the Mark III limits i
both models. The Mark II B(Ds—mn+) is barely satisfied by
the KS model for opﬁ—ll° at p=l.5 GeV, A-=0.3GeV. Neither the
KS, nor the BSW model, can give B(D54Wn+) consistent with
the Mark 1I measurement.

In the standard n-n’ mixing formalism the two ratios
B(Dé—)nn+)/B(D;—>¢n+) and B(D;—m’n+)/B(D;—>¢n+) pull in oppo-
site directions as a function of the mixing angle ep, that
is, raising the magnitude of ep has the effect of lowering
the first ratio and raising the second. Thus, 1if

B snrt) /B(D sen™) > 1.5

S S . . (VI.6)

B(Ds—m’n )/B(Ds—mn ) > 1.0
the standard orthogonal mixing model will have difficulty in
explaining theAdata. The Mark II data’® indicate that the
first ratio in eq.(VI.6) is about 3 and that the second
ratio in eq.(VI.6) is about 1.6. This implies B(Dgan’n+) is
about 17%; as is evident from Table 17 such a large branch-
ing ratio poses a problem for standard orthogonal =n-7’
mixing model. The branching ratio for D;an’n+ could be
enhanced by using a larger mixing angle, however, in that
case B(D;»nn+) will drop to unacceptably low values.

If eq.(VI.6) is true and the standard orthogonal mixing
for w and n’ runs into trouble with Dgann+ and D;am'n+ data,
one would seek to reconcile the data with theory in one or

more of the ways discussed below.



The models we have discussed use factorization of the
hadronic decay amplitude. One may suspect factorization, yet

22,27 .
in other

factorization appears to work reasoanably well
hadronic decays of charm. Further, we note that even in the
QCD  sum  rulce approachy) which incluaes 1no-factorizable
amplitudes, the B(D;»ni%) and B(D;anﬁfw are much below the
Mark II values. The assumption of factorization itself is
then unlikely to be the reason for discrepancy. One could
also suspect nonperturbative contributions to the QCD
coefficients However, both the decay amplitudes for D;»nﬁk
and D;en’n ylve the same combination of QCD coeffi-
cients. Henc., the relative normalization of the two rates
should remain unaffected by nonperturbative effects.

Earlier analysis78 of Mark III data on J/y decays,
which had neglected double Okubo-Zweig-Iizuka rule
violating79 (DOZI) amplitudes, in terms of a generalized
mixing, had concluded that there was a significant gluonium
content in 73’. Their analysis had yielded

IX_|=0.63%0.06, lY 1=0.83+0.13
n n (VI.7)
lxn,l=0.36t0.05, lYn,|=O.7210.12
Haber and Perrier analysis80 gave similar results The above
set is consistent with Zn=0 but allows IZn,I=O.59i0.09.

A recaent analysis81 of Mark III J/y data, with the
inclusion of [GZI amplitudes, concludes that if DOZI
amplitudes ere about 15% of 0ZI -violating amplitudes then

there is no room for gluonium in %’ and one can satisfactor-

ily explain J/¢y decay data using the standard orthogonal
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n-n’ mixing scheme with q§-19°. However, if the orthogonal-

ity condition is dropped, the normalization condition
appears to be oversubscribed’': Xi,+Yi,= 1.44+0.26. Thus, if
DOZI amplitudes are at the level of 15% of the 0O2I-violating
amplitudes, Zn,zO. However, 1f DOZI amplitudes are conslder-
ably smaller, then Zn, is allowed to be nonzero and one
could enhance the rate for D;mrn+ while leaving the rate
for D;»nn+ unaffect.ed. Note that such a mechanisi would also
enhance the rates for D;a(gluonium)n+

In Tables 16 & 17, we have used the un-unitarized
amplitudes to calculate the decay rates for the various
modes. In principle, the three channels RPK+, nn+ and n’n+
could mix through final state interactions. All these
channels involve a single isospin state,  I=1. The only
scalar resonance with I=1, G=-1 and J=0 appears10 to be
a0(980) well below the D; mass. A coupled three-channel
calculation, using the resonant parameterization (eq.IV.1l1)
was performed. a cannot decay to n’n+, being kinematically
disallowed; we thus constrain the parameters Fu and r22 by
the relation, k,F  + k,r, = TIm. The ratio B(adﬁvK+)/
B(a&mn+) =I‘u/I‘222 and the parameter [ are varied and the
corresponding unitarized amplitudes determined. One set of
branching ratios calculated using such unitarized amplitudes
is given in Table 18. Thus, final state interactions do not
play a significant role in these modes. This was to be

expected, since the resonance activity occurs well below the

D; mass; the effect of final state interactions will then be
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simply to rotate the amplitudes leaving the magnitude of the
amplitudes largely unaffected. However, since the final
states involve only a single isospin amplitude, the phase of
the amplitude is irrelevant.
Table i8. Branching ratlios (%) using un-
unitarized and unitarized amplitudes. We use

al/a2=—2.3 and r“/rn=1.0. Not.e that unitariza-
tion has negligible effect.

B.R. using B.R. using

Mode un-unitarized unitarized

amplitudes amplitudes
B(D}R"K*) 1.95519 1.95544
B(D;—mn+) 3.59369 3.59340
B(D o) 2.10410 2.10410

We would like to point out that the penguin diagrams
play no role in D;ann+ and n’n+ decays. Hence, indeed if the
branching ratios of D;»ni+ and n’n+ are large, they pose a
problem for the standard orthogonal n-7»’ mixing model with a

mixing angle in the region of af—l9°.

VI.3 A Nonet Symmetry breaking model

B(D;»Wn+) larger than B(D;wm+) inspite of the phase
space suppression, may also suggest that the decay
amplitudes involving an SU(3) flavor singlet and & flavor
octet vseudoscalar (0 ) meson in the final state are larger
than the ones involving two SU(3) flavor octet 0 mesons. In
the standard approaches there is a tacit assumption of nonet

symmetry i.e., the flavor singlet and octet couple the same
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. . . Ho
way. We discuss here a scheme where nonett symmetry s

explicitly broken and explore it’s consequences.

The charm lowering Hamiltonian has the form,
1 u T
A = = J \T
H(ac=-1) 5 {J%, “}
'] — — 2 ) . - —
s {{s;«_:,\.ui‘ym_s:,: 0 Foaing cona ({so,us) o e, adyy
‘. ~ [ [ o
-sin (i(\ {1, 1_-):'} ‘,1
(V1.8
The Hamiltonian thus involves a pioduct i charm-cheno.ng

and charm-conserving currents, which crensform’’ as elomwents
of the representations [3] (or {3*]) and (8] respectively.
In general [8]e(3]1=[3"Jol(6]e(15 1. The [6] and [15 | arec
antisymmetric and symmetric under the exchange of the quark
fields respectively. The [3*] does not contribute to tne
above Hamiltonian.

The general structure of the charm lowering decay

amplitude for decay into two SU(3) flavor octet O 50NS

; . 84
&Pg) may be written as,

A(charmP P ) = c(Pi?Tel) HTlm] + d(PkPgPl) HTlm}
+ e(p'plel Hflm}

.o (VI
where Pl is the C=1 triplet (DO, D+, D;) and Pﬁ iz the
pseudoscalar octet. HTlm] represents the weak spurion
belonging to the 6-dimensional representation of SU/3) and
HTlnﬂ to the 15*—dimensional representation. For Cabibbo-
anale favored decays, H?m = H; and for Cabibbc-angle
suppressed decays, Hk = H3—H;. In the above it 1s assumed

1m 13

that the decay amplitudes are SU(3) symmetric, hence they



involve only three parameters c, d and e. All QCD correction
factors are absorbed in these coefficients. The indices in
eq.(VI.9) run from 1 to 3.

If the final state involves an SU(3) flavor singlet and
an octet the most general form of the decay amplitude is,
A(charmsp B,) = (P PyP™) (a HY .+ b B ) (VI.10)
where PO is the pseudoscalar singlet; a and b are two
parameters. In the limit of nonet symmetry we have a=c and
b=d, e=0. The antisymmetric terms in the Hamiltonian are
.ihanced relative to the symmetric terms, implying sextet

> We would thus anticipate that |c|>(ldl,lel) ana

dominance.8
A4>ibl.

For Cabibbo-allowed (ca) modes eq.(VI.9) may be written

i,

AchharmeP;})=c(P

plp! - pP"pip’) + a(eTp’p' + PURPY)
2 N 2 N 2 N

p’ + plp’pl)

2 n 2

= DO{H+K—(C+d+8) + nORO[:ZEiEiglij

V6

+ & :_421@1_@_]}

+ R K*(—c+d+e)},

ce . (VILLIL)
and eq. (VI.10) has the form,

cA _ > plg3 3.t 153 351
A (CharmaPoPe) a(LonP PonP )+ b(PonP + POPZP )

= I—%—{D;n+no(a+b) + D°R“no(-a+b)}. (VI.12)

In Cabibbo~suppressed (cs) decays, the }ﬁz piece for decay
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to two octets gives,

(cs)

) _ no2,1 _ Nglg2 n_2.1 n_ 1.2
A (cnarm»PgPe) = c(PanP PanP ) +d(PanP + P?PnP )

+ e (P7plp? + pUpp!
n 2 n 2
0 0

= Do{n+n—(c+d+e) + o (ctd-e)+ ROKO(c+d)

+ c+d+e) o (c+d)
Mgy 3 Tn -

)

S v3
+ D+{ROK+(—C+d) + n+n [gi:gig+e)] - n+n0V?e}
8
Ve
+ D;{K+n82: N K0n+e _ n0K+—§ ,
V2 V2
... (VI.13a)

while the contribution from the H; piece is,
A% (charmsP P ) = c(pPp’p! - Pp’P’) +a(e%r’p' + PP'P’)
8 8 3 n 3 n in 3 n
+ e (PR + TP
n 3 n 3

= DO{K+K—(c+d+e) + KK (c+d) + n8n8[4(c+d)-%g]

0 e +fz0 ,+ +lz
TIT)S-—E}+D{KKe“ﬂ7)8Te}

N |
v2 v6

... (VI.13Db)
The Cabibbo-suppressed amplitude involving a singlet and

"octet has the general form,
ASS(charmsP P ) = P { a(P'P® - P’PY) + b(p'P’ + P’P)}
0 8 0 3 3 3 3

1,2 251 1,52 2,1
- - }
Po{ a(PZP PZP ) + b(PzP + PZP )}

= I-j— {D;K+n0(a+b) - D+n+no(a+b)

+ Dononsisgi] - Donenol—?—(b—a)}.
2

Lol (V1L14)

Using egs.(VI.11-VI.14) we can evaluate the amplitudes for
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Table 19.

(VI.11-VI.14).

Un-unitarized decay amplitudes obtained from egs.
We have defined A=a+b, B=a-b, C=c+d, D=c-d.

Mode Amplitude
Cabibbo-angle favored:
DO->K'-1t+ Ct+e
5K n® (-C+e) /V2
nK° (e-C) coseD/Vé + 2B sinep/V@
an’ﬁo (e~C) sine /v6 - 2B cose /V6
D+9R0n+ 2e ’ ’
D;an+n0 0 (forbidden by isospin)
N e-D
e— -2 (D+e) cos8 /V6 - 2A sineD/VE
an’n+ -2 (D+e) sinBZ/V@ + 2A,cose;/V€

Cabibbo-angle suppressed: multiply by taneC

0o + -
D onm
0.0
ST M
+_
5K K
00
5K 'K
0
NI

0
n

s

- N
NN

m'n
+ + 0
D onn=n

>N
Y L
+ _+
D K no
S o+
SK'n
+
5K 7

5K 7

C+e
C-e
-C~-e
0
(e=C) ro0-a /V3 - B sing /V3
(e-": "nep/¢§ + B cosep/V§
(- -y ns‘e + B sin2e
p ]
(e 7 sin2eb/2 - B cosZGD
-V2e
-D-e

-2 (D-2e) cosev/Vg - 22 sinep/V@

-2 (D-2e) sinep/#@ + 2A cosep/vg
(D-e) /V2

D+e

(5e-D) coseD/VE + 2A sinep/V@

(5e~D) sinep/V@ - 2A cosep//@
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the decay of DO, Dt and D; into two pseudoscalar mesons. In
Table 19, we have listed these amplitudes for both the
Cabibbo-allowed and Cakikbo-suppressed modes.

To explore the predictions of our model we need to
determine the five parameters a,b,c,d and e. We express all
the decay amplitudes in terms of more convenient parameters:
A=a+b, B=a-b, C=c+d, D=c-d and e. Using experimental data’
we determine these parameters under the assumption that
final state interactions simply rotate the amplitudes and
not significantly change their magnitudes. In the case of
modes involving only one isospin, the absolute value of the
amplitudes (which determine the branching ratios) do not
involve any phases. The effect of final state interactions
will therefore be important only in the amplitudes involving
more than one isospin state.

Thus, for example, in case of DK w , K'n

— + . . . ,
D+9K%z, the unitarized amplitudes will have the form,

<Au(D0+ROnO) = —l (V?Ai?y eléa + A§72 elal)
VB - 1

AY 0%k rt) = L (¥ &%y - vERfT 19 (VI.15)
‘/-3 3/2 i/2

Au(D+9ROn+) _ V?Amz 163

3/2

Using the un-unitarized amplitudes for these modes given in

Table 19, the unitarized amplitudes are given by,

A% (p%R%n°) = 2V 2e 18, _iggte) o138,
32

AY(D%SK ) = g%— etd, , (3CFe) 33, (VI.16)
3

Au(D++Ron+) = 2e e163

The parameter e can be determined directly from the



B(D+9?%+). To evaluate C, we proceed as follows. First we
note that,

u

/2 = |R e*°| =R (VI.17)

u

A

3/2

where 6=(61—89 . R and & can therefore be determined using

the experimental branching ratios and have the values,6
R=3.67%0.27 and &=(103#11)°
. (VI.18)
or R=-(3.6720.27) and &=(77+11) .
Either choice of R and & would fit D-Kr data, but the two

solutions have different implications on the other two body

modes. Also, since

u AO
R = i _ ém _ f—C+e) - 2£C+e) (VI.19)
aY a V2 (C+e) + V2 (-C+e)

3/2 372

we have the relation
C/e = -(2V2 R+1)/3 (VI.20)
Knowing C and e, the branching ratios B(Doaﬁon) and
B(Dgeﬁ%(n are used to determine B and D respectively. The
parameter A is then wvaried to predict all other branching
ratios. From the parameter set we select only those solu-
tions that are consistent with sextet dominance, i.e., those
solutions which give (a+b) and (a-k) of the same sign and so
also (c+d) and (c-d). We further restricted the parameter
set by requiring that the calculated values of B (D%n’K")
satisfies the limit given by the data.’ We use ep=—19°. The
parameter A 1s also required to satisfy the experimental

31,32

data on B(Dgann+) and B(D;en’n+).

In Table 20 , we give the predictions corresponding to
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Table 20.

Solution

sets

satisfying selection criteria

for

(see text)

AL, IBI,

ICl, 1Dl

in units of 10

and

144

el
6GeV

and Branching ratios in percent. Mark III limits: B(D;wm+)

<2.SB(D;e¢n+) and B(D;anﬁ+)<l.9B(D;e¢n+) are used to
restrict the parameter [A].
B(D;a¢n+)=3.5t0.5 B (D »¢n’)=2.0%1.0
Set I Set IT Set 1 Set II

Y <3.00 <4.00 <2.00 <3.00

IBI 4.08+1.52 1.30:1.55 [4.08x1.52 1.30£1.55

1Cl 2.2440.36 2.72+0.42 (2.24%0.36 2.72%0.42

1D | 3.09:0.52 1.66%0.52 |2.51+0.59 1.08%0.59

le| 0.72+¢0.10 0.72+0.10 |0.72£0.10 0.72%0.10
Mode Branching ratio Data
D%k %y 1.60+0.72 1.60%£0.72 |1.60+0.72 1.60£0.72  input
D°sK%p’  3.64%2.90 0.13%0.55 |3.64x2.90 0.13%0.55 <2.7
Dsmr®  <1.69x1073 .089:.041 |<1.69x10° .089:.041  <0.9
p°5n'n® 0.17:0.11 <0.11 0.17+0.11 <0.11
D%sum 0.45:0.23 0.45%£0.23 |0.45:0.23 0.45%0.23  <1.2
D%sn'm  0.190.16 <1.88x1073 |0.19£0.16 <1.88x107°
Dtonnt <0.22 <0.64 <0.12 <0.46
D¥sna’ <0.52 <1.07 <0.26 <0.65
D;9R0K+ 3 .20+1.40 3.22:1.40 |1.84%1.19 1.84%1.19  input
D;»nK+ <2.13x107° <0.33 <0.01 <0.25
Disn K’ <0.13 <0.13 <0.07 <0.07

the limits on B(D;wm+) and B(Déqﬁn+) given by Mark 111.°0

We find two sets of solutions. The parameters obtained in

set I exhibit nonet symmetry breaking (tal>lcl,bi>1dl),




while those in set II show approximate nonet symmetry. We

have done the calculations using both B(D;e¢n+)=3.5% (ref.6)

Table 21. Solution sets for |Al, IBl, ICl, IDlI and lel
6

satisfying selection criteria (see text) in units of 10” °Gev

I

and Branching ratios in percent. Mark II values B(D;%nn+)
(3.0£1.1)B (D »¢n') and B(Dgann+)=(4.8t2.1)B(Dia¢n+) are used

to restrict the parameter |A].

B(D;a¢n+)=2.0tl.0

Set I Set II

|A| 2.00-3.50 7.00-7.25

B 4.08%1.52 1.30%1.55

1C 2.24%0.36 2.72%0.42

D 2.51%0.59 1.08%0.59

le| 0.72£0.10 0.72%0.10
Mode Branching ratio Data
D" 5K’y 1.60£0.72 1.60£0.72 input
D’ 5K 3.64+2.90 0.13+0.55 <2.7
D’ san’ <1.69x1073 .089+.041 <0.9
D’5sn’n’ 0.1740.11 <0.11
D’ 507 0.45%0.23 0.45%0.23 <1.2
D°5n’ 7 0.19+0.16 <1.88x10°
D snn’ 0.00-0.03 0.00-0.007
D s’ 0.18-0.65 2.29-2.71
Do +K K’ 1.841.19 1.84%1.19 input
DL snK" 0.00-0.02 0.34-0.48
Deon K’ 0.06-0.20 0.52-0.60
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+ 5 . . .
and the new B(D;a¢n y=2% observed by CLEO.” Since Mark rrrt

only provides upper limits on B(Dgwm+) and B(D;%Wn+), the
parameter A 1is allowed to have a wide range. We plot
B(Dsmi') vs B(OI»n'n’), in Figs. 13(a) and (b), for the two

sets of solutions obtained. Once either branching ratio is

known, the other can be read off from tiis olot. We find no

solutions corresponding to Mark II data’ with
+ R :

B(D;+¢n y=3.5%. Solutions to Mark II data with

B(D;»@fﬁ=2.0% are yiven in Table 21. Here both the solu-

tions sets exhibit nonet symmetry breaking.

6.0—_-:
5.0 3
4.0 =
C E
< -
2 =
+w 30'_:_ a
= 3
/M 3
20 3
e b |
= AN
1.0 - S
OO :Illlllllllfllll[[llll]‘lllTTlll]llI||I|l|[l[[l[fl|
1.0 2.0 3.0 4.0 5.0 6.0
B(Ds"»nm")

Fig. 13(a) B(D;»anW vs. B(D;%nn+) for solution set I
satisfying Mark III data. Curve a corresponds to E(D:a¢n+)
~(3.5:0.5)% while the cuve b is for B(D.s¢n ) = (2.0:1.0)%
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From Tables 20 & 21, we see that the theoretical
predictions for qum and Do—mnO satisfy the experimental
limits."" we predict branching ratios for only those modes
that involve a single isospin in the final state. The rates

n + - 0 +_ .- .21 .
for Do =n and DK K depenad strongly on the inter-

ference bulween the tLwo isc pin amplitudes involved.

8.0 =
N
]
] a
6.0 T
T3
S 4.0 4
.’_w :
- ] L
/M ]
20 4
5,
OO —IIIIFIITIIIIIII!III[IIIIIIlII[llllll[ll]
0.0 0.1 0.2 0.3 0.4

B(Ds"»nm’)

Fig. 13(b) B(D;-m’n+) vs. B(D;->nn+) for solution set II
satisfying Mark III data. Curve a corresponds to B(D;a¢n+)
=(3.5+0.5)% while the cuve b is for B(D;e¢n+) = (2.0x1.0)%

We would like to point out that the nonet-symmetry

breaking is equivalent to the inclusion of hairpin contri-
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butions.'” These diagrams are 021 suppressed  and  ave
nonleading in l/NC and have the property that  they
contribute only to decays with a meson containing an SU(3J)
flavor singlet cc..honent, hence breaking the nonet symmetry.
In the absence of hairpin contributions, Chau and Cheng
predict,””
B sn'n')~1% ,  B(D K 'n) ~1%.

Any deviation from this prediction 1is a signal of the
importance of hairpin contributions in DS»PP decays, 1in
their model. (They had a second solution set
B(Dgwrn+)~0.2%, B(DS»R%Y)~7%, which has already been
ruled out by the data.)

In conclusion the results of this and the previous
section may be summarized as follows. In a factorization
approach large B(D;wm+) and B(D;mrn+) cannot be explained
in a orthogonal n-n’ mixing scheme. A gluonium content in 7’
could enhance the B(D;%rn+) significantly. A nonet symmetry
breaking model can accommodate both B(D;wm+) and B(Déqﬁn+)
as measured by Mark II, only with the restriction
B(D;a¢n+)=2%. The solutions here depict larger couplings to

the singlet as compared to the octet.



VIT FINAL STATE INTERACTIONS IN TWO-BODY B DECAYS

The next heavy flavor beyond charm 1is bottom. The
decays of the bottom mesons shoi'ld be simpler to understand
due to the heavier b quark mass, as nonperturbative effects
would be less important. There is much less experimental
data available for exclusive B-meson decays, than that for
the charmed mesons. However, both ARGUS47 and cLEOY have
reconstructecd a small sample of exclusive decays, which
allows us a preliminary glimpse into the weak decays of the
b quark system.

The decays of B mesons arise largely from b-c transi-
tions, yielding final states containing DO, D+, their vector
partners and charmonium J/¢. The DS fraction is expected to
be small, since it’s spectator amplitude depends on the KM
matrix elements |Vcbllvusl. B decays to non-charmed and

non-strange states are of great interest since they involve

the mixing angle |V and hence could be used to estimate

ubl’
this unknown parameter.

Although B mesons lie much beyond the resonancz region,
nonresonant final state scattering could still be present.
One would like to estimate the effect of these final state
interactions. Of particular interest here, is the effect of
final state interactions in the two body modes mnr and pmu.
Any theoretical uncertainties in the amplitudes for these

modes will be reflected in the value of |V extracted from

ub|
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them.

VIT.1l Phases from isospin relations

We cc.nider the dominant PP and PV decay mode;: Bobm,
Dp, D*n. Each of them involwve two isospin amplitudes. We
introduce a phase in each of the isospia states. The known
., riment i brancning ratios (or limits  on branchiag
ratios) are then used to check if at all, any nonvanishing
vllase i the amplitudes are allowed by the data. In this
sectiou.., our procedure 1is independent of auy other
theoretical uncertainties in the un-unitarized amplitudes
themselves. The ratios of twe decay wodes in any channel
R

(R 0_) defined below, depend only on the ratio «(r) of

00’
the two isospin (un-unitarized) amplitudes and on the phase
difference (8) between them. We plot the ratios Ry and Ry _
as a function of r for vwvarious & values. (A similar
procedure was followed in section V.2)

. unitarized amplivudes for the Dn states may be

writte.. =s,

a%(8%0°n") = - (v2B"T e - AT e
V3
AY (BT nT) = = (A" &Sy 4 v3APT %) (VIT.1)
‘/"3" 3/2 1/2
Au(B_aDon—) = y3a°" elaa.
3/2
Hence we have,
_r%e’r”) 2(r°™) 241-2v7 r"Mcoss”™”
Rog Pm) = ———5=— ~
F(B-D n )

(rD")2+2+2¢§ r®Teoss”™

and (VII.2)
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RO~(D")
where,
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&
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0.0
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The experiment2l braaching ratios for the Dn modes imply

t-hat,
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B(B -D%n )
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Figs. 14 (b) and (c) ROO(Dp) and RO_(Dp) vs. rP. The dashed
lines indicate limits from ARGUS data.
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while Roo is unknown. The ~lot in Fig.l4(a), indicates that
the data so far allows all values (0°-180°) for the phase 3.

A measurement of B(anDon% would help in restricting this
phase.

Relations similar to egs.(VII.l) and (VII.2) exist for

*
the Dp and D n modes. The experimental data implies that,

R. (Dp) = BB 2D P ) -1 048:0.932

_ - —
0 B(B sD’p )
=0 0 O
and Ry (DP) = §ﬁ§%29¢ﬂrl <0.229 ,
B(B5D p )

while only the branching ratio for the 80 Tn” is known.
From Figure 14(b) & (c), we can see that the allowed phase
in the Dp amplitudes is ~(0°~45°).

As is evident from the above, there are not enough data
as yet to extract a model independent conclusive evidence

regarding final state interactions in the two-body B decays.

VII.2 Theoretical amplitudes and the resulting phases

The un-unitarized amplitudes for Dbottom decays are

generated through the following Hamiltonian,

G
eff L _F * - = - -
HNL (Ab=-1) = ;5[ VCqud{al(cb)(du)+a2(cu) (db) }
+ VubV:d{al(Gb)(éu)+a2(ﬁu) (db) }
+ Vcbvzs{al(ab)(gu)+a2(5u) (Sb) }

LV {a, (@h) (Su)+a, (L) (5b))

ub us
+ Vcbvzs{al(éb)(gc)+a2(ac) (sb) }
+ Vubvzs{al(ﬁb)(gc)+a2(ﬁc) (3b) }



*

* vcchd

{a, (cb) (dc) +a, (ce)  (db) )
+ Vubvzd{al(ﬁb)(ac)+a2(EC) (ab)}]

.. (VIIL3)
where, (ﬁlqz) represent the left-handed hadronic currents.
The short distance QCD correction coefficients ¢ and c_ can
be determined using an NLL formula similar to eq.(IV.28),
scaled down to the bottom mass scale. The values obtained
are listed in Table 22. We also tabulate the corresponding

values of the parameters a, and CPY for both €=0 and €=1/3.

Table 22. NLL values of QCD coefficients for u=4.5 GeV.

a,/a a
A (GeV) c, c_ e 2
£=0 £=1/3 £=0 £=1/3

mt=50 GeV

0.1 0.860 1.342 -4.633 7.900 -0.238 0.130

0.2 0.844 1.413 -3,967 11.272 -0.285 0.092

0.3 0.828 1.472 -3.572 16.984 -0.322 0.061
mt=100 GeV

0.1 0.869 1.330 -4.777 7.502 -0.230 0.136

0.2 0.848 1.340 -4.086 10.3¢7 -0.275 0.100

0.3 0.832 1.454 -3.676 14.843 -0.311 0.070

To estimate §, a; and a, are determined using the
observed branching ratios for the decay modes, B yK  and
B 5D . We do not expect these modes to have anv appreci-
able final state interaction effecrs, since these amplitudes
involve only one isospin state. Also, annihilation diagrams
if present, will not contribute to these modes. The
amplitude for B syK depends only on the parameter &y while

B sD°r” involves both a, anda a,. The un-unitarized amplitude
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for B -»yK 1is given by (using eq. (IvV.20)),
G

—_ - _ E‘ * —a —_ - —_
A(B -»J/yK ) = ;g VCbVCSa2<J/w|cc|0><K IsbiB >
= EE v V* a,f m 2 hFl(B%K)
/3 cb'cs 27y Y 1—m2/m§- !
'/
which yields the decay rate,
F(B >J/yK ) = a% (0.8503x1010)sec‘1.
Since B(B_awK_)=(O.O7tO.02)x10—2, we have,
a,= * (0.287£0.041)x10"° sec*’? rgl/z (VII.4)

t
I+

(0.264+0.07°5) .
We shall use this value of a5y to determine al/a2 from the

mode B »D°n” . The amplitude for this mode is given by,

@

A(B D) = - vcbv:d{al<n'iau|0><D°|Eb|B°>
V2
+ a2<D°|6u|o><n'|ab|B">}
G h  (B-D)
F * . - 2 2 FO
= — V_ .V a, (-if ) (mz-m_)
/5 cb ud{ 1 o TN T 2
n' 0
5 hFO(Ben)
+ a2(—ifD)(mé—mn)———?——w— . (VIT.5)
1 -mD/m6+

This gives, r(B'»D%{d=o.395x1010a§(al/a2+o.75)2sec‘l. Using

eq.(VII.4) ard equating the calculated branching ratio of

the above mode to the experimental value, we get the

following for al/az,

a,/a,=—(4.55220.876) or (3.052%0.876) CLEO data,
172 (VII.®)
al/a2=—(3.l67tl.029) or (1.667#1.029) ARGUS data.

Note that the negative values of the ratio al/a2 and a, (in
eqs. (VII.4 and VII.6)), satisfying both CLEO and ARGUS data

are consistent with the NLL calculations for £=0. Of course,
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this ‘€=0 rule’ can only be verified when the branching
ratios of many more channels l.ave bhc=2n measured.

*

The un-unitarized amplitudes for the Dmn, Dp, D n, nan

and pn modes are (using egs. (IV.17)-(IV.21)):

— Gq e - — _
A(BSDRY) = — V.V, ay<D’|Cul0><r’|dol B>
V2
GF N (—ifD) hFO (B»u)
= == VepVua®2 5 M) T
V2 V2 1—mD/mO~
=0 ~t_- GF * -3 + =50
A(B-»D m ) —- Vcbvudal<n jduf{0><D |cb|{B >
V2
CEy (-1f ) (m3 m')iil}B%D)
V2 Vep! d 1 D7y - m /m
=0 0 0 GF 0, = 0, 5,50
A(B%D%°) = — V_ V4 a,<D’Icul0><p’|dbIB">
v2
G (Bop)
F * 5 AQ
—_ V.48, V2Efm  ———
V2 Vepua2 Dop l—mD/mgj
- - G * - - S —
a(E%p%pT) = -E Ve Vigd1<P {du] 0><p” |cb (B>
V2
GF . V* ot hFl(BaD)
= —— a m
yz cbudilere 1—m§/m§-
A (R oD%T) = GE‘ ¢ - 3. 0, = -
(B -Dp ) — VCqud{a1<p fduj0><D |cb|B >
V2
+ a2<D°iEu|o><p‘|Eib|B'>}
Gp — o Fl(B—)D) 2f hro(B—ap)
= — a,2f m + a m
77 VeeVea| 1P Lz T e Lz
=0 %0 0 GF * Co= 0,550
A(B»D n) = — cquda2<D jcul0><n  |cb|B >
V2
G . h_ _(Bom)
— v Veb Lmaz‘/2f My _ELZ"—_7_
V2 l—mD-/ml-
-0 * g - _ GF * - -, K p -0
A(B-SD p ) = — vaud a,<mn ludi0><D |ckIB >
V2



G h  (BsD )

= v v o a.2f m - 20
T chb'ud" 1" D

l—mn/mo-
ABHr'n®) = v V. a.<n’laul0><z’(db|B’>
(B »n'n = — VipYud @2 4 4

G . (-if ) h_, (Bom)
= -V .,V u—————(m —m )
ub ' ud?2 /3 1- mZ/mZ—

- + - _ - .
A(Bomn ) = — Vubv da]<rt IdulO/\n lubIB >

- 5o- * [ 0, = —_
A(B snn ) VUqud{al<n jdu|0><n” |ub|B >

+ a.<n’|uul0><n |dbiB >}

2

G h (Bam) (a,+a,)
VopVaa (i) (mg-mz) —
1—m"/m0+ V2

* 0,= 0,51 B0
Vubvud az{<n juul0><p |db|B >

+ <p°t9u) 0><n’|db|B%>)

GF * (Bap) h 7(B—m)
- ub ud 2 2 2 " m f 2, 2

1- m /m 1- m /m

A(BpTn) = v, v L@ 1<m T1dulo><p’ 1 abiB’>

N 0 (B-p)
VvV .V sa.zf m
Cob ud 17 'm p 1—mn/m0'

* - = + - =g
leudal<p |dul0><n |ub|B >
GF hFl(Ban)

= = V a.2f m
vz ubrud"1™ele 22
p 1

A(éoap_n+)

(D]

A(B op'n ) = £ A d{a <n” |du|0><p’|Ub|B” >
V2

+ az<p°|ﬁu:0><n‘|ab15‘>}



~F X y h}\(‘ (B>p) hr' (Bon)
= — VpVug’a £,n, ————a— t asfm
V2 ub “ud 1 P l—mn/m0~ 27ep l—m;/mi-
- -0 GF * - - 0, - —
A(B »p 1) — Vv bV d{al<p [dul0><n [ub|B >
y3 ubu
+ a2<nolau|0><p—|ab|B_>}
G N h  (B-on) h (B-p)
= wg VprUCV7{awfpmp‘”LL7”’T“ + amfum ~ﬁpw——ﬂ—..
V . Py T emZ S < - eyt
V2 1 mp,m1 S /g g
e {VTITILT

In the above we have neglected the ontribution from the
annihilation diagrams. These are expected8 to be less
important in B decays.

The amplitudes for the Dr modes given above are used in
eq.(VII.1). The wunitarized amplitudes squared, for the

physical Dmn modes are then given by,

u,zo 00, 2 _ 1 o | 2 DI | 2, /5D D _
[A"(B>Dnr )|~ = 3 {2 (A3/2) + (A1/2) 2\/2A3/2A1/2Cu35}

u,=zo0 + - 2 _ 1 o | 2 o | 2 =, DT DT
[A"(BSD w ) [~ = 3 { (Az/z) +2 (AI/Z) +2\/2A3/2A1/2cosa}

2 ... (VII.B)

A% (B 5% ) 12 = 3(a)

3/2
with similar relations for the Dp and D*n modes. Note that
this method is more restrictive, as individual branching
ratios are used (not Jjust the ratios):; on the other hand, it
depends on the theoretical amplitudes calculated. We give
the resulting branching ratics for the Dan, Dp and D*n modes
in Table 23 (a), (b) and (c) respectively. The ARGUS

7 for B -D’r  i: not satisfied by the

branching ratio®
theoretical amplitude; note that this value 1is independent

of the phase in the amplitude.

91}

4



From Table 23,
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we deduce the phase values for the Dm,

*
Dp and D n modes, that are consistent with the dataﬂ7 We

evaluate the amplitudes for ay and a, calcuiated at u=4.5

. . =0 .+ - .
GeV. The CLEO branching ratio for B°>D " n requires a

of

A=0.

Table 23(a). Branching ratios of the Dm modes
(in %) for various phase values. The ARGUS
branching ratios for these modes are,
B(B%D n )=0.31#0.16 and B(B »D’m )=0.19:0.12
while CLEO reports, B(B%D'n )=0.24:0.11 and
B(B sD%1 )=0.47+0.17. The three values for
each phase correspounld to a, and a, calculated

at A=0.1, 0.2 aand 0.3 GeV respectively.

P?ise B(B%D V") B (8%0%°) B (B D% )
degrees
0 0.623 0.014 0.389
0.601 0.011 0.395
0.575 0.008 0.404
30 0.590 0.046
0.569 0.042
0.544 0.038
60 0.502 0.134
0.482 0.129
0.459 0.123
90 0.381 0.255
0.364 0.248
0.343 0.239
120 0.260 0.376
0.245 0.366
0.228 0.355
150 0.172 0.465
0.158 0.453
0.143 0.440
180 0.139 0.497
0.126 0.485
0.112 0.471

phase

>100°, ~(95°-170°) and ~(90°-160°), corresponding to

1,

0.2 and 0.3 GeV respectively. The branching ratios



1uv0
for the Dp modes are consistent with the data for a phase in

the approximate range (0°~55°) . The ARGUS branching ratio of

-— * - o o
B 5D fax~ can be satisfied for all the phases (0 -180) at

A=0.1 GeV, ~(0°-160°) at A=0.2 GeV and allows a phase ot

~(O°—120°) at A=0.3 GeV. CLEO value for this mode can be

Table 23(b), Branching ratios of the Dp modes
(in %) for various phase values. The ARGUS
branching ratios for these modes are,
B(B%D'p ) =2.221.5, B(B oD% )=2.1%1.2 and
B(ﬁOaD%f) <0.3. The three values for each
phase correspond to a; and a, calculated at
A=0.1, 0.2 and 0.3 GeV respectively.

Fhase B(B-D'p )  B(B%D%") B(B D% )
degrees
0 1.609 0.007 1.321
1.553 0.006 1.300
1.486 0.004 1.278
30 1.518 0.098
1.464 0.094
1.401 0.089
60 1.270 0.346
1.223 0.335
1.169 0.321
90 0.931 0.685
0.894 0.664
0.852 0.639
120 0.592 1.024
0.565 0.993
0.534 0.956
150  0.343 1.273
0.324 1.234
0.302 1.189
180  0.253 1.364
0.236 1.322
0.217 1.274

fitted with a phase (30°-120°), at A=(0.1, 0.2) GeV and

(0°-105°) for A=0.3GeV.



Table 23(c). Branching ratios of the D*n modes
(in %) for various phase values. The known
ARGUS branching ratio is B(B%D 'm )=0.35%0.22
while CLEO reports, B(B%D Tn)=0.33:0.11. The
three values for each phase correspond to a,

and a, ca.culated at A=0.", 0.2 and 0.3 GeV

respectively.
— —_ - * - * —_
P?ise B(B%D Trn)  B(B%D %i’)  B(B oD ‘m )
degrees
0 0.473 0.020 0.238
0.456 0.016 0.249
0.437 0.011 0.263
30 0.450 0.043
0.433 0.038
0.414 0.033
60 0.387 ¢.105
0.371 0.100
0.353 0.0985
90 0.302 0.191
0.287 0.185
0.269 0.178
120 0.217 0.276
0.202 0.270
0.185 0.262
150 0.154 0.339
0.140 0.332
0.124 0.324
180 0.131 0.362
0.117 0.354
0.102 0.346

We would like to ©point out that 1in the above
calcuiation, we have neglected the annihilation contribution
in the amplitudes, which though expected8 to be small may
not vanish. Particularly, the presence of a heavy (charm)
quark in the final state could result in smaller helicity
suppression. Also, in these decays, the theoretical

un-unitarized amplitudes depend on the overlap between

16l
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wavefunctions of a very heavy and a light meson, errors in
such a calculation may be large.7 Hence, the large phase
deduced for the Dn modes may not necessarily exist.

We apply the above procedure to the mn and pn modes as

well. These will then be used to set limits on lvubl. The
isospin decomposition for the nan modes 1 given by,
— + —_ — -
A(Bo—m n) = S (Ann + \/ZAH'[)
= 2 0
3
A(BSr'n%) = 1 (v2a™ - AT (VII.9)
\/§ 2 0
- 0o -, _ 3 "
A(B on ) = 1= A2

Using the above and the un-unitarized amplitudes given in

eq. (VIT.7), we get the tollowing unitarized amplitude

squared,
u,=z0_o0o,,2 _ 1 i, 2 M, 2 _, 5, TN
|IAZ (Bonm ) |© = —— (2(A)7) "+ (A )“-2v2A" A coss)
1aY (B%rTr) 12 =-%_ {(A’z”')2+2 (A’;")2+2V§AgnAgncosa} (VII.10)

2% (B on’n ) 12 = 3/2<A’2"'f)2

Table 24(a). Upper limits for |vub| and
predictions for branching ratios, B (BYn’n”)
and B(B—afH_) (in %), for wvarious ©phase
values using B(Eam+n—)<0.9x10~2(%).
Phase =0 0.0 - 5 -
in Ivubl B(Born) B(B »n'n )

degrees

0 0.0102 0.35E-03 0.23E-02

30 0.0105 0.83E-03 0.25E-02

60 0.0113 0.24E-02 0.28E-02

90 0.0128 0.57E-02 0.37E-02

120 0.0152 0.0116 0.51E-02

150 0.0181 0.0203 0.73E-02

180 0.0196 0.0256 0.86E-02
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=0 _+ - . . -
The upper Limit' on BB's>n m ), is used to obtain limits on

IV . ]. The limits on lvubl obtained corresponding to the

b
different phase values are listed in Table 24(a). We also
give the predictions for the B(ann%f) for each of these
phases. A measurement of this mode would be useful.

Similarly, the unitarized amplitudes for the decay modes

B ap'n and B sp n° can be written in the form,

_ _ . PT . P
PETap"rT) = L @PT et e AP et
oot . (VII.11)
ABTsp ") = = (APT e - AP e
vz ool :

Table 24(b). Upper limi=s for Ivubl and

predictions ‘or the branching ratio,
B(B »p n) (in %), for various phase values
using B(B »p’n ) < 1.5x1072 (%) .
Fhase - =0
in |Vub| B(B »p uw)
degrees
0 0.0521 0.235
30 0.0370 0.111
o0 0.0241 0.039
90 0.0181 0.015
120 0.0151 0.583E-02
150 0.01346 0.293E-02
180 0.0132 0.096E-02
m : . : - _0_- - pr pn
I'he unitarized amplitude for B sp n , waiere the A2 and Al

are given in terms of the un-unitarized amplitudes of
eq.(VII.7), 1is wused to obtain the 1limit on |Vub|. These
values are listed in Teble 24(b). The B’spn modes will
involve three isospin states, 0,1 and 2. In the above scheme,
these amplitudes would require at least one additional phase.

These modes are therefore not wvery useful due to lack of



sufficient data.

The upper Llimits on |V | deduced trom the ar modes

ub
vary from 0.01 to 0.02, corresponding to the phase values 0"
to 180°. The B(BnaﬁH_) gives a larger upper limit on lvubl.
It might be noted that the semileptonic decays of B, provide

a more Crringent limit on [V . . this Ulme. o tatare,

b
when more data becomes available, the effect ot final state
interactions and other theoretical uncertainties in the B

two body nonleptonic decay modes may be resolved.

1l



VIII. SUMMARY AND COLUSIONS

Recenc increase in the amount of experimental data on
exclus ive hadronic decays of charmed mesons has improved cur
uncerstanding of the beavy, quark decay mecnanism. Analysis of
(el ctwosl dy modes have stressed the twportance of Tinald
state interactions in [, DS decays.

We  have incorporated the effect of final state
interactions in hadronic D, Ds decays by performing coupled
multichannel calculaticno~, This 1i¢ Aachieved through a
K-matrix formalism. Ir o resonance of appropriate quantum
numbers lies c¢lose to the decuoying meson, the K-matrix 1is
parameterized in the sina' resonance approximation.
Non-resonant parameterization .. us2d otherwise. Note that a
resonance close to the D and DS nass could alsc provide a
dynamical mechanism for enhzncement of the weak anpihilation
amplitude, even in the absence of final state interactions.
We have included weak annihilation as a parameter in the
un-unitarized decay amplitudes.

In Cabibbo—-allowed DS»VP sector, we studied the modes:
D;»¢n+, K*+—O, K+R*o, pn+. Isospu.in and G-pr.ritv
considerations, reduce the coupling in these states to a mair
of two coupled channel problems. In this interchannel mixing
scheme, even the small branching ratio allowed for D;eﬁﬁ+

(where only an annihilation graph exists) can be satisfied

with a non-zero annihilation parameter in the amplitude. In

16%



toular fits o Beo! data  were  conststoent with an
ihilation term ot the ovder of (15-30)% ot Uhe spectabod
term, although annihilation was not required by the data
ARGUS data on the other hand required a non-zero annihilation
term, which was generally larger than that needed to tit Hodl
data. Fits were obtained for both £-0 and £-1/3. The above
calculation was extended to include the D:»wn* mod:r. The
un-unitarized amplitude for this mode is =zero. This mod:
could however ke fed by the K*K, G=+1 channel. wn+ mode  cdan
be produced at the level of the experimental limit, kceping
the rest of the branching ratios consistent with the data.

For Cabibbo-angle favored D-VP decays, we pertormed a
three coupled channel calculation, where the K*n, Kp and R”¢
channels were coupled in I=1/2 state. In I=3/2 state only Kkn
and Kp channels were coupled. We secured some 'nearfits’ to
Mark III data for €=0 and £€=1/3. These nearfits were cbtained
both with and without a weak annihilation term. Clearly it is
possible to generate enough B(Doaﬁo¢) without a weak
annihilation term, though a finite annihi! ".ion ~{15-20)% of
spectator term in DOeK_p+is not ruled out by data.

As for D, DSaVV decays, only a few of the modes have:
been measured so far. These can be explained through final
state interactions in our model. A coupled channel
calculation for the Cabibbo-suppressed DaK*K and pn modes in
isospin 1 and G-odd state was also performed. Fits to data
could be obtained for both zero and non-zero annihilation. In

particular thk- D+9p%3' branching ratio could be fitted,

b



whereas its un-unitarized a° le yielded a branching ratio
much below the observed val

The other approaches to he vy flavor decays were also
examined. Although quite successful in fits to data, none of
these include a satisfactory treatment of final state
interactions. In particular, the QCD sum rule approacn, which
prerents a theoretical improvement, as it incorporates
non-factorizable pieces of th: weak amplitudes, fails to
allow for final state interactions. We see the effect of
final state rescattering through introduction of phases to
some of the amplitudes obtained in this approach.

Surprisingly large branching ratios of the Djeni+, nﬁﬁ
were reported by Mark II. It is difficult to obtain these
branching ratios in a factorizaticn model with orthogonal
mixing scheme. A  nonet symmetry breaking model can
accommodate large 1m+ and 7rn+ branching ratios, only for
B (DS—)¢n+) ~ 2%,

The effect of phases in the hadronic decay amplitudes of
B-meson were studied as well. An estimatica of ti 2 r¥ elemerr

|V obtained from non-charmed and non-strange hadronic

ub !
decays, could differ with such a phase in the ampli<udes.

In summary, we were able tc¢ perform an effective coupled
multichannel calculation to account for final state
interactions in two body hadronic <charm decays. Weak
annihilation though not expected to be dominant, could be

~(15-30)% of the spectator amplitude, depending on the decay

mode. A complete analysis of B meson decays would be possible
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lod

in the near future, when more data is available.
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APPENDIX A
We list the values of owverlap rfactorws, pole masses and
decay constants used in the estimation of un-unitarized

amplitudes as given in rer.[27].

Overlap factors for DoP,V and BaP,V U rangiticns

Decay h =h h h h h o h

1 o \% h AL A3 AD

DK 0.762

Don 0.692

D-n 0.681

Don’ 0.055

DK 1.225 3.580 1.147 0.733
Dosp 1.225 0.775 0.923 0.669
Do 1.735 0.772 0.920 0.669
D -7 0.723

S

D _-n’ 0.704

s *

D K 1.250 0.717 0.853 0.634
D¢ 1.319 0.820 1.076 0.700
BD 0.690

BoK 0.379

Bon 0.333

Boy 6.307

Bomn’ 0.254

BoD 0.705 0.651 0.686 0.623
B-p 0 282 0

.329 0. .283 0.281

Values of pole masses (in GeV)

Current m(" ) m(l ) m(0") n(l’)
dc 1.87 2.01 2.47 2.42
sc 1.97 2.11 2.%0 2.53
ub 5.27 5.3 5.78 5.71
sh 5.38 5.43 5.89 5.8Z
‘ 6.30 5.34 5.80 5.73




Values ot

Weak Curroent arcicle IR Weak Curoent

diccay concvants (In Me

V)

Particle

ud ¢ 13 ud
s B 162 de
dd 0 64 dd
ﬁs 7 s 55
dd n’ 65 ce
ss n' 96 uc
uc D’ 162

sC D 162

“ +

221
221
156
233
382
221




APFENDIX P

In order to separate the 35, P, D partial waves in the
anplitudes for the decay of a pseudoscalar (1, of mans ow)
to o vector mesons, we first censider the helicitics ol
the final VV states. In the center of mass frame, these
Final statc: move along  the sames axis bt P oo it
directicns. We choose this to be the z-axis. The momenta ot
these vectors are therefore given by,

p, = (El,0,0,k) and P

1 = (E2,O,O,“k) (3.1)

2

where E1 and E2 are the energies of the mesons 1 and 2 ot

masses m, and m. respectively. The helicity polarization
L

vectors of meson 1 are then written as,88
0 k/ml
1 1 K 0
et (x1, 0=0) = ¥ —| , e (0, e=0) =
0 il 1L.A1/m1
while those for the meson 2 are,
0 k/m
1 -1 O2
c“(tl, o=n) = ¥ : , e“(O, o=n) =
2 = |1 2 0
V2 l 0 -E,/m
U202

(B
The ampli:udes in the P»VV decays involve the following type
of terms:
(i)€§€2p’ (ii)euvacg e; P? Pg and (iil)cl-P2 L2<’Pl+P)‘
We evaluate each of these terms corresponding to different
helicities of the two vector states. Usging eq.(B.2), for the

1
8182” term we have,

p = c = =
cl€2p 1 for Al 1, a,=1

L78



I Ly «'\1 _1., /\2"L
. -
L R
7km ;lﬁw for a0, A,-0
b, I ] 2
..o (BU3)
For e oonte o, and Pl ospecified by eq.(B3.1), the
i P
I ’ I_)rf V?: Cesrmn may bho writton as,
1"y L .
o P pty L TSR TN T B gV :
jio 0 . Ll LZ Luwf'l “2 ‘]( o 2")uu,s:;t'l 2 K E’2
km} (s:i LZ =g sé)
H « , we ha.eg,
[T R LY N 1 -
C et £, Pl L2 lkmt TOr A1 ; A2 1
= —Lkm: for Alrwl, A2=~1 (B.4)
= Q0 fror Alzo, A2=O.
The c]-P> 62'(91+P*) term in the VvV amplitucdes may be rewritten as,
N N ~ . p + e 2 ~ N . S, e , Si_l . . = .
€y P2 €5 (E’l P:) €4 PZ £,°Py e, g, P2 0
P . T 3,
= 2 Lz_l LZ 1 Ll ki [»,2 El 82 ki,

which will be non-vanishing only for a,=0 and 2,=0 and 1is

given by,
2

€. P .- (P +P ) - 2k m2 A,=0, A,=0 (B.5)
T2 72 1 "1 myms, 17 2T :

Using the above, for each of the terms (i), (ii) and (1iiy,
we can determine the S, P, D partial amplitudes as feollows.

The states with helic.uies A, and A. ~an be connected to the

pt

states of definite ancular momentum and spin through the

10

focllowing relation,’

s o1y B 5, § LY ies -
'1’2’”,ZSZJ+1 Vxl—,\z.\“o,\»\“ (B.

where, A=). A,, C’s denote Clebsch-Gordon cocefficients. For
L L

ving into two vectors, the final states

jo¥)

the pseudoscalar dece



must have J=0; also S, and S, must be Lo The second Clebsch-

Gordon coefficient in the abowe tmplics that A muast be sero
for J=0, i.e., Ay =As . Also, J=0 implics that L= and since,
L.

S=lel, L=S=2. The allowed Lielicity states may thus be

written as,

a) [T=0,a L, a0l R e S N LTI PR
- v3 v Vi
~ ~ o 1 \ T
b) 1J=0,3,=0,1,=0> = = ——]000%> + |—5-1022>
< V:’) ~ 2
1 i 1 ,
) 13=0,a ==1,h,==1> = =000 & == 011> + ——1022>

V3 V2 V6
L. (BLT
where the |JLS> states on the RHS, in the spectroscopic

notation are:

g 011> = 390 and 022> = °D

000> 0

il

0°
Using egs. (B.3) & (B.7), we have the following relations for

the term (1i):

(oY

D —-_.LA +

= “s —— ®p ‘E“AD:l
V3 V2 VE
——}‘——AS+—%— P+—E-AD—1 (B.8)
V3 V2 V6
, 2 E.E
7 e 172
'%As*f—?fb:ﬁr*—:ﬁ—'
V3 1M 1M

where A, AP and kn represent the L=0, L and 2 partial wave
fo

amplituacs and are given by,

2 2
. E.E.,+k S E.E,+k
A = fJZ 712 1 P,=0 & Ay =A‘:§— Lo -%12—m—~< (B.9)
5| AT ’ 172
For the ﬁumoeg s; PT Pg rerm, eqs.2.4) & (B.7) imply that,
A. =A_ = 0 and A_ = -iV2km, (B.10)
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Finally, for the term el-Pz CQ'(P1+P1)’ eqs. (B.S5 & (B.7)

yield the following partial wave amplitudes,

Sy 2
_ 2 k 2 _ _ l 2 k 2 .
A decay amplitude of the form,

2m_ £
_ V2 v2 u

v
Ay, (IV Vo) = m_+m Cuvpe £2%1

W(
+ im f de,.e{m +m A (q2)
v2 w2}l 12 v 'L
€, 9
1 2
T T®_+m )(PI‘{-PV1) .€2A2(q )}
I vl

may therefore be rewritten as,

vazfvz 2 =
AVV(I->V1V2) = -W V(q ) (—11/2){1'!11) ¢« P-wave
2
. 2.1 B E,tk
toim £l mtmy YR (@) == 42 T — i
V3 172
2 « S-wave
Baldd) 5 2 2
+ (m +m ) ,= m.m m,
1 v V3 172
> J BlE,,+k2
(m_+m_ YA, (g )l 2 1+ -
1 w1 1 3 l m, m,
2 « D-wave
)
. . Byl Tk 2
3
(m1+mv1) 3 m1mZ 1
... (B.12)

) 2 s .
1c may be noted that k +E1E2—Pl P2.
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