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Abstract 

Stope layout optimization is a critical process for the evaluation and optimization of underground 

mining operations. Conventionally, stopes layouts are either planned manually or optimized using 

deterministic methods. Developing stochastic approaches to stope optimization is valuable due to 

the impact of uncertain inputs on optimization results, the non-linear nature of objective functions 

common to mining, and the large number of variables that impact the results. Deterministic 

methods are not able to account for non-linearities and produce sub-optimal solutions when the 

inputs are averaged before the transfer function response is calculated.  

In this thesis, an existing two-stage heuristic algorithm that greedily selects strips from a 

deterministic block model is modified to consider a set of realizations to account for uncertainty 

in the subsurface and non-linearities in the transfer function. As an example implementation, the 

algorithm is applied to a set of synthetic copper data with a non-linear recovery function and 

compared to the results from a deterministic stope optimization, showing an improvement of 

4.90% in value.  

A full case study is produced using the algorithm for a real-world vein-like deposit, showing the 

ability for risk evaluation and the improved calculation of non-linear objectives with a 17% 

increase in value when calculation over realizations is considered. After optimizing layouts for a 

variety of risk discounts, stochastic dominance is utilized to reduce the field of possible solutions. 

The layouts are scheduled, and an overall solution is determined from the resulting net present 

value distributions. 
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Chapter 1: Introduction 
1.1 Context 

The ultimate goal of mine planning and optimization is to determine and maximize the value of 

mineable reserves. Several critical stages in the mine planning process are necessary to produce 

disclosures that satisfy government requirements and encourage investor support, beginning with 

the development of an appropriate model of the subsurface based on the available data. The depth 

and properties of the potentially valuable mineralization lead to a decision between surface and 

underground mining. If surface is selected, planning proceeds with the optimization of an ultimate 

pit, the largest incremental excavation that provides value. This pit is then broken into mining 

stages, or pushbacks, according to a defined rate of mining per period, allowing for an evaluation 

of time-discounted project value. Underground mining follows a similar process, with an 

intermediate step of choosing a more specific underground mining method. When optimization is 

undertaken for underground operations, it takes a variety of forms. In the context of caving mines, 

the spacing of the draw points is optimized to maximize flow while minimizing access costs. Stope 

operations are both optimized with envelope methods, finding the maximum area in which mining 

will occur, and layout methods, which place the stopes considering geotechnical constraints. The 

stopes are then scheduled by panel or level to inform net present value calculations. 

Underground mining plans are generally either manually designed or optimized in stages. Mining 

extents or stope placements are optimized to maximize contained metal or economic value, and 

the mining schedule is subsequently optimized for net present value. Additional considerations 

such as development to access mining areas in underground mining are necessary to inform 

parameters such as capital expenditure. Results from one stage of the optimization are fed as an 

input to the next, such as ultimate pit limits informing pushback generation or stope placement 

into extraction scheduling. These stages are often iterated to approach a solution that is closer to 

optimal overall. 

1.2 Motivation 

The staged and iterative nature of mine design and optimization means incremental improvements 

of any optimization stage results in improvements in the overall outcome. At the same time, 

improvements made by changing procedures in one aspect of the design process will be dampened 

if other aspects are not adjusted to account for the changes in the input. Methods to improve the 
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consideration of any aspect of mine optimization are, therefore, valuable to develop. Here, the 

consideration of risk and non-linearities in stope optimization are identified as areas in which the 

optimization process can be improved.  

Metal content is a significant source of uncertainty in the mine planning process due to the limited 

sampling of the subsurface. Geostatistical modelling characterizes and quantifies subsurface 

uncertainty. Refining uncertainty is an ongoing focus in geostatistical research. The ability to 

develop a model that is representative of subsurface uncertainty facilitates the consideration of risk 

in optimization. This ability is seen in recent advancements in risk-inclusive optimization, 

particularly for surface mining (Acorn & Deutsch, 2018; Bootsma et al., 2018; Dimitrakopoulos, 

2018; Godoy, 2018; Sotoudeh et al., 2019; Villalba Matamoros & Kumral, 2018; Wilson et al., 

2019). 

In industry, risk is not often directly considered in mine planning optimizations. Projects with a 

higher level of risk require a correspondingly higher anticipated return in order to be worth 

pursuing; this is obvious where two investments are very close in expected value with significant 

risk differences. Projects can be considered equivalent to investments in this regard, with project 

decisions represented along an efficient frontier, an early investment comparison scheme that has 

been adapted for use in mine optimization (Acorn & Deutsch, 2018; Markowitz, 1952). A decision-

making paradigm is necessary to choose between options on the frontier, taking a position on risk. 

The less tolerant a decision-maker is to risk, the greater the value differential required to select a 

higher risk plan. 

Additional value in stochastic optimization is derived from the nature of non-linear transfer 

functions. When a transfer function does not average linearly, optimization of layouts on 

deterministic models will not reach a true optimum. Optimal results are only be found through the 

implementation of optimization over all realizations. 

1.3 Thesis Statement 

The development and implementation of a stochastic stope optimization algorithm allow for the 

correct consideration of non-linear functions and the direct inclusion of risk in the optimization 

process, improving decision-making when designing stope layouts. 
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1.4 Objective and Scope 

The objective of this research is to develop a stochastic approach for stope layout optimization. As 

a starting point, existing stope optimization techniques are evaluated for conversion to include 

simulated grade models when assessing the objective. The selected method reduces the 

dimensionality of the optimization to manageable computational levels, computing an envelope of 

overlapping stopes within which a layout can be designed. 

In this thesis, a 3-dimensional heuristic algorithm is adapted from the existing deterministic 

method to optimize stope placement over all realizations, allowing for the consideration of 

uncertainty in optimization as well as non-linearities in the optimized response. The algorithm is 

formulated to work in stages, first optimizing in one dimension and combining the results into two 

and three dimensions. While the algorithm is designed to be flexible, there are limits on the mining 

types it can be applied to due to the nature of underground mining constraints; the factors which 

determine constraints in caving operations are highly dissimilar to those in stope or drift mining. 

The presented algorithm is designed to optimize open or sublevel stoping. Additional methods 

such as drift and fill may be optimizable with the algorithm as well, but this capability is not 

assessed. The algorithm is expected to perform best where there is selectivity in the mining method 

at a smaller scale than the ore boundaries. Any method which can be defined by a minimum and 

maximum size for continuous stopes, pillar requirements between stopes, and expected cost and 

value functions are optimizable using this algorithm. However, it has not been thoroughly tested 

for all valid configurations. 

As a heuristic algorithm, the optimizer does not guarantee optimal solutions. A tabu search strategy 

is implemented to close the gap between the heuristic and fully optimal solutions. A further stage 

is implemented to investigate the value of stochastic scheduling and combining scheduling and 

stope placement simultaneously. These are developed as a post-process to the initial results. A 

simulated annealing optimization is implemented to approach an approximately optimal solution 

iteratively. 

1.5 Thesis Overview 

The remainder of this thesis consists of 4 chapters. Chapter 2 reviews relevant concepts and 

research to date, focusing on existing implementations of stochastic stope optimization while 

reviewing deterministic stope optimization, geostatistical modelling, uncertainty evaluation, 
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decision-making practice, and general methodology in underground mining. Chapter 3 introduces 

the novel heuristic algorithm to optimize stope layout stochastically as implemented in the Python 

programming language. The algorithm is validated with no risk discount applied by comparing 

results to existing stope optimization software. The algorithm is implemented on a case study in 

Chapter 4, optimizing a stope layout for a previously planned sublevel stoping operation. 

Concluding remarks are given in Chapter 5, showing that the algorithm is near-optimal, 

appropriately accounts for risk, and is flexibly applicable to a variety of mining scenarios. 
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Chapter 2: Research Review 
Existing research directly related to this work, as well as a consideration of other materials 

necessary for its understanding, are reviewed here to provide a contextual base for further 

developments. This review includes information related to geostatistical modelling, an overview 

of underground mining methods, general concepts of mine planning and optimization, existing 

work on stope layout optimization, and a review of basic decision-making concepts. 

2.1 Geostatistical Methods 

One of the significant inputs to any mining optimization or evaluation is the subsurface grade 

model, as it can be converted to metal contents and economic values. The grades are based on a 

limited set of sample data, making the grade model a common and significant source of 

uncertainty. There are two main types of subsurface models. The first is a deterministic, estimate 

based paradigm that produces a single “best” representation of the modelled parameter. The second 

is simulation, where several realizations are presented as equally probable interpretations of the 

domain. The goal of estimation is to produce a single model that is the best possible estimate of 

metal grades. There are various approaches to estimation, all of which determine weights to apply 

to known data for each estimated location in the model. Early estimation consisted of ideas such 

as interpolation and inverse distance estimation (IDE) methods. Inverse distance methods 

determine weights for estimation using Eq. 1 (Rossi & Deutsch, 2014). 

 𝜆𝑖 =
1

𝑐 + 𝑑𝑖
𝜔

 
  1 

Where 𝜆𝑖 is the weight of sample 𝑖, 𝑑𝑖 is the distance between sample 𝑖 and the estimate location, 

𝑐 is a constant to limit overweighting of very close samples, and 𝜔 is an exponent, often set to 2 

or 3, which effectively sets the relative weight given to more proximate samples compared to more 

distant ones. Setting the value of 𝜔 to 0 results in an equally weighted moving average within the 

search range and setting it to an arbitrarily high value only weights the closest sample, which is 

equivalent to a nearest-neighbour estimation. Typical implementations of IDE where the value of 

𝜔 is assumed do not directly account for the continuity of the subsurface and, like all estimation 

methods, do not reproduce data variance and results in a smooth interpretation of the domain. 

However, the exponent 𝜔 can be calibrated considering the selective mining unit (SMU) variance 

and Krige’s relation (Noble, 2011). IDE can also account for directional continuity by weighting 
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distance measures relative to anisotropy by replacing the Euclidean distance 𝑑 with the covariance 

weighted Mahalanobis distance (Rossi & Deutsch, 2014). 

Kriging, alternatively, accounts directly for data continuity in its implementation. Kriging is 

derived to minimize the mean squared error of estimates in an unbiased fashion (Journel & 

Huijbregts, 1978). It requires knowledge of the covariance among samples as well as that between 

sample and estimate locations. The modelling of variograms allows the calculation of covariance 

relations based on distance, facilitating the determination of the optimal kriging weights (Journel 

& Huijbregts, 1978). Kriging, being an estimation technique, does not reproduce the global 

distribution of the data, but as an unbiased estimator, the mean is reproduced (Journel & 

Huijbregts, 1978). While there are a variety of kriging estimators, the most basic is simple kriging. 

The estimator for simple kriging is defined in Eq. 2 (Rossi & Deutsch, 2014). 

 𝑍∗(𝑢) = ∑ 𝜆𝑖  [𝑧(𝑢𝑖) − 𝑚] + 𝑚

𝑛

𝑖=1

 2 

Here, Z* is the estimated value, 𝑢 is the estimate location, 𝑢𝑖 is the location of the 𝑖th data point, 

and 𝑧(𝑢𝑖) is the value of the data at that location. 𝜆𝑖 is the weight calculated for the data at location 

𝑢𝑖, and 𝑚 is the unbiased mean of the data. 

The second paradigm of geostatistics is simulation, the generation of several probabilistic models. 

Where estimation attempts to generate the best single subsurface interpretation, simulation 

samples the multivariate distribution of possible subsurface grade models reproducing spatial and 

univariate variability (Rossi & Deutsch, 2014). This includes an accurate representation of extreme 

values. While no single simulated realization is more correct than the others, the ensemble is a 

valuable representation of uncertainty (Deutsch, 2018). 

A commonly used geostatistical simulation method is sequential Gaussian simulation (SGS). SGS 

is a Monte Carlo Simulation of possible values at each gridded location facilitated by 

parameterizing conditional distributions with the kriged estimate as the mean and kriging error as 

the standard deviation (Rossi & Deutsch, 2014). The methodology of SGS leverages a 

multiGaussian assumption, the assumption that all higher order probability distribution functions 

are Gaussian when the univariate cases are transformed to a Gaussian form. This is advantageous 

as Gaussian functions are fully described with two parameters: mean and variance, making 
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simulation possible at a location where these parameters are known. Because kriging at each 

location assigns weight to both original data and previously simulated nodes, the spatial continuity 

of the data is reproduced in each realization. 

Estimation and simulation both produce valuable information for the mining process. The 

paradigm which should be used depends on the anticipated use of the model. The impacts of non-

linearities are lost if an estimated model is used, so where non-linearities are known to exist in a 

transfer function of optimized objective, the use of simulated models is preferable (Deutsch, 2018). 

Theoretically, averaging a sufficient number of realizations converges to a kriged model, so 

considering a simulated model where there are no non-linearities instead of an estimated model 

should not cause a deviation from the correct result. However, where non-linearities do exist, only 

considering simulated models is the correct approach (Deutsch, 2018). 

2.2 Underground Mining Methods 

The geostatistical model of the subsurface is one aspect that is considered when the method of 

exploitation is decided. An early mining decision is whether a surface or underground method is 

pursued. This decision is based on factors including deposit shape, extent, and depth, as well as 

location and the social implications of mining in the region (Nelson, 2011). If underground mining 

is selected, a variety of specific mining methods might be preferred. If the ore is relatively massive 

and weak enough that undercutting will cause it to fail, caving methods can be employed (Bullock, 

2011). These methods are often used to exploit lower grade deposits because the bulk nature of 

the operations results in lower operating costs. The capital expense of caving, however, is 

relatively high as there is extensive excavation required before extraction can begin. This 

investment is only recovered where there is a large volume of extracted ore, especially when 

considering net present value. 

Room and pillar mining is a supported method that maintains the stability of openings by leaving 

ore unmined as pillars, with the extracted ore forming the corresponding rooms (Bullock, 2011). 

This method is mostly used for well-delineated, horizontal to sub-horizontal deposits. Coal is 

commonly mined with room and pillar mining.  

Stoping is a group of extractions methods that are primarily used in sub-vertical to vertical deposits 

that require some selectivity in extraction (Bullock, 2011). Stopes are blasted openings that 

leverage their steep dip to allow material extraction from a draw-point at the base (Fig. 2.1). The 
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methods are also used in some massive deposits that are vertically expansive enough to create 

appropriate stoping dimensions. 

 
Fig. 2.1: Stope parameters (Pakalnis & Hughes, 2011). 

Stopes are bound by minimum and maximum stope sizes derived from geotechnical and equipment 

requirements, as well as the pillars required to maintain stability (Pakalnis & Hughes, 2011). Types 

of stoping include sublevel, long-hole, vertical crater retreat, vein mining, and open stoping. These 

methods vary in terms of typical stope size and orientations, selectivity, costs, and pillar recovery 

requirements. However, the shapes of the final openings are constrained by similar factors and 

planning between the methods follows similar processes. 

2.3 Mine Planning and Optimization 

Whether a surface or underground mining method is selected, the mine planning and optimization 

processes involve determining what units should be extracted to create a profitable project. 

Generally, after producing a block model of grades with geostatistical methods, each block is 

assigned a binary variable representing whether it is mined. A group of mined blocks represents a 

pit or underground opening and must follow geotechnical and equipment-based limits. Mine 

design is often completed manually through reduction to 2-dimensional slices, particularly in 

underground cases (Pakalnis & Hughes, 2011). Surface optimization is more thoroughly studied 

than underground overall. 



 

9 

 

2.4 Surface Mining Optimization 

The planning and optimization process in surface mining has a long research history with early 

examples such as the development of the Lerchs-Grossmann algorithm and subsequent 

improvements to its implementation (Khalokakaie et al., 2000). Monkhouse and Yeates (2018) 

describe a path forward from what is described as naïve optimization, assuming single values for 

orebody tonnes and grade, processing methods and costs, maximum sales volumes, commodity 

prices, and discount rates. They suggest adding flexibility into optimization to account for the daily 

decisions made by mine planners. The progress and future of global optimization for surface 

operations are described by Whittle (2018). The existing ProberB optimizer globally optimizes 

mining, processing, and blending, but is restricted from completing complex operations (Whittle, 

2018). ProberC, which has since been released, is capable of handling more complex scenarios 

such as differential processing costs by stockpile source (Whittle, 2018). 

Journel (2018) describes the necessity to account for error with simulated data realizations rather 

than any best estimate model. The case for preferring structural accuracy over local accuracy for 

subsurface models is presented as the only eventual path to avoiding biases in the combined 

modelling and optimization process. Examples of surface operation optimization considering risk 

are further presented in (Dimitrakopoulos, 2018; Godoy, 2018; Khosrowshahi et al., 2018; 

Menabde et al., 2018; Ramazan & Dimitrakopoulos, 2018). Acorn and Deutsch (2018) present an 

additional heuristic method to optimize ultimate pit limits under uncertainty using a novel heuristic 

method that actively accounts for geological uncertainty. 

The primary motivation for exploring the state of surface optimization is the notable gap between 

surface and underground methods. The early Lerchs-Grossmann algorithm is recognized as an 

exact solution to the ultimate pit problem, albeit with limitations in its implementation 

(Khalokakaie et al., 2000). No comprehensive underground equivalent is available.  

2.5 Underground Mining Optimization 

Alford et al. (2007) provide an overview of underground optimization research encompassing 

much of the body of work on non-stochastic optimization in underground mining to date, including 

considerations on optimization of infill drilling, cut-off grade determination, stope layout 

optimization, development design, decline design, stope scheduling, and some integrated 

approaches.  Generally, underground optimization is completed in these separate stages, resulting 
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in suboptimal solutions (Little et al., 2013). More recent studies consider various combinations of 

these stages to form integrated optimizations. In one instance, Little et al. (2013) integrate stope 

placement and scheduling into a single optimization. However, the process only considers 

regularly spaced stopes with two possible sizes, limiting the exploration of the solution space. The 

algorithm operates on a deterministic model. Block caving is also a focus of recent study, as Zarate 

et al. (2020) consider the optimization of drawpoint placement over many realizations produced 

by SGS. 

The varying constraints and controlling factors between the various underground methods require 

the development of a variety of optimization schemes to facilitate mine planning and maximization 

of value. Reviews of existing deterministic stope optimization methods have been produced 

(Erdogan et al., 2017; Nhleko et al., 2018). The methods are generally divided into envelope, 

layout, and geometry methods. Envelope methods, such as floating stope and maximum value 

neighbourhood, optimize an outer boundary of stope extraction within which individual stopes are 

planned by hand (Alford et al., 2007). Layout methods, on the other hand, output stopes that are 

extracted over the life of mine. Geometry methods consider individual stopes, varying their 

dimensions to maximize value or contained metal above cutoff locally. While layout methods are 

the focus of this work, notable work on stope geometry optimization includes Manchuk’s use of 

simulated annealing to vary the position of the defining points of a stope triangulation (2007). 

Manchuck enforces constraints on each point based on boundary conditions such as adjacent 

stopes. Case studies utilizing this method improve in value by 15%. 

2.5.1 Stope Layout Optimization 

Stope layout optimization is still a focus in current research, as indicated by recent advancements 

in both deterministic and stochastic methods. For deterministic methods, both heuristic and exact 

algorithms are considered. Sens and Topal (2010) extend floating stope principles, selecting 

greedily from the available stopes while disallowing overlapping stopes from the solution. This 

transitions from an envelope result to a stope layout. The greedy nature of the algorithm does not 

ensure that a global optimum is reached. Sandanayake (2014) introduces an algorithm that also 

considers combinations of non-overlapping stopes as initially defined through a floating stope 

implementation. In this case, all non-overlapping sets of stopes are assessed and compared, leaving 

only the maximum layout as the solution. It is found, however, that this method is prohibitive in 
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examples with a large number of stopes, leading to approximations replacing the precise solution, 

including a reduction of the number of retained solution sets to a maximum number to avoid time 

and memory issues. 

Bootsma et al. (2018) approach stope optimization following the cut-off grade ideas introduced 

for surface mining by Lane (2016). In this approach, layouts are optimized in an existing 

commercial package considering various cut-off grades. The NPV for each layout is calculated to 

compare results. Since NPV calculation is time-dependent, accesses are manually designed to 

facilitate extraction scheduling. This method improves the cut-off grade selection process but does 

not guarantee an optimal result. 

There are multiple methods used in the stope shape optimizer (SSO) as implemented in multiple 

commercial mining software such as Maptec Vulcan (Vulcan Envisage, 2018). The methods 

include a slice and seed, which is often used in the mining industry. Slice and seed works by 

evaluating 2-dimensional slices of the ore body and selecting regions that exceed cutoff grades on 

average. The seeds are combined between layers to form stopes, and iterations are run to alter the 

seeds and improve outcomes, often maximizing contained tonnage over the cutoff grade. The 

algorithm is limited to optimization with 1 or 2 degrees of freedom, although pillars in other 

dimensions can be added through the substoping utility. Dimensions that are not optimized by 

stope are considered by altering the gridded framework on which seeds are generated, and stopes 

are placed. An alternate prism method is also available in the SSO that uses linear programming 

to determine the best set of stopes that can be mined in a given area (Vulcan Envisage, 2018). The 

problem is divided into smaller subsets because of the complexity of the optimization. The 

resulting solutions are combined at the end of the process.  

Nikbin et al. (2018) produce an integer programming model to optimize stope boundaries by 

implementing valid cutting planes to improve convergence and optimization speed. The cutting 

planes allow the algorithm to solve the stope boundary problem in a case study with a model of 

473,600 blocks, but it is noted that more complex stope boundary optimization problems might 

still be unsolvable. Two configurations of a heuristic iterative enumeration algorithm are also 

produced to address this issue and solve larger problems. This algorithm invokes either a greedy 

or dynamic algorithm with an input number of stopes in a specified range within the number found 

through the implementation of an initial greedy algorithm. The first greedy algorithm is similar to 
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that presented in Sens and Topal (2010), adding each maximum value stope to the solution as long 

as they remain positive. A second, improved greedy algorithm is also introduced by Nikbin et al. 

(2019). This algorithm randomly populates an initial solution based on an assumed total number 

of stopes and greedily exchanges stopes that are in the solution with ones that are excluded based 

on their value difference. When no beneficial exchanges are found, the algorithm is halted. Finally, 

an approximate dynamic algorithm is produced. This algorithm is also initialized with a random 

solution of a set number of stopes. In this instance, sets of stopes to exchange between included 

and excluded sets are developed, described as states. At each stage, the best value of all current 

and previous states is retained. 

Nikbin et al. (2018) produce an additional algorithm that combines the dynamic and greedy 

algorithms in stages to produce 3D results. This algorithm follows these steps: 

• Divide the model into overlapping slices perpendicular to each axis based on the minimum 

stope size in that dimension (Fig. 2.2) 

• Combine slices into strips parallel to each axis (Fig. 2.3) 

• Optimize each strip in one dimension using a one-dimensional exact dynamic 

programming algorithm 

• Greedily select the best strip as determined by best ratio (Eq. 3) 

• Add blocks from selected strip to solution set 

• Set value of blocks included in the solution to 0 

• Repeat steps 1-6 until no strips with positive values are calculated 

 𝐵𝑅 = 𝑚𝑎𝑥 
∑ 𝑐𝛾

∗𝑐𝛾
+𝛤

𝛾=1

| ∑ 𝑐𝛾
∗𝑐𝛾

− 𝛤
𝛾=1 |

 3 

Here BR is the best ratio, 𝑐∗ is a binary variable with a value of 1 if block 𝛾 is mined and 0 if it is 

not, while 𝑐𝛾
+ and 𝑐𝛾

− are binary parameters with a value of 1 if stope 𝛾 is positive or negative, 

respectively. 
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Fig. 2.2: Slice population with corresponding origin blocks (Nikbin et al., 2018). Scenarios in (a), (b), 

and (c) show i-j, i-k, and j-k slices respectively 

 

 
Fig. 2.3: Strip population (red) including the behaviour of previously included blocks in value calculation 

(Nikbin et al., 2018) 

Ideas of stochastic optimization are also explored by using the risk-based option in a commercial 

stope optimizer (Bootsma et al., 2018). This function allows the user to consider a suite of 

realizations which represent uncertainty in the subsurface. A user set limit is then applied to 
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determine the minimum allowable certainty to include a stope in the resulting plan. For example, 

when 100 realizations are considered, if the stope is over cut-off in 30 realizations, it has a 30% 

confidence. In the case study presented by Bootsma et al. (2018), it is expected that a stope that is 

above cut-off on a kriged model has low confidence when the set of realizations is considered, 

with the majority of stopes ranging from 0% to 30%. In this application, it is shown that the 

previously optimized layout is only profitable in one realization, and only when no discounting is 

considered. This is because of the underrepresentation of low and high grades and the spatial 

variability in the estimated model. The risk-based optimizer is run with minimum confidence 

levels from 0 to 80%, and the resulting layouts are assessed to evaluate the potential for a lower 

risk mine plan (Fig. 2.4). The stopes in the plan are so uncertain that a cut-off of 40% confidence, 

a state in which some stopes are still more likely to be below cut-off than above, is selected for 

further analysis because further limiting stope confidence resulted in unminable layouts. The 

optimization is set to maximize the objective (Eq. 4). 
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Fig. 2.4: Stope layout by minimum confidence (Bootsma et al., 2018) 

Dimitrakopoulos and Grieco (2009) suggest an alternate approach to stochastic stope optimization. 

This application centers on the use of Multiple Integer Linear Programming (MILP) and includes 

a similar risk limit, as described in Bootsma et al. (2018). The flexibility in stope positioning is 

limited for this approach to maintain a manageable problem size (Dimitrakopoulos & Grieco, 

2009). To facilitate MILP, the block model is divided into sections which can be assigned a 

variable value representing either inclusion or exclusion from the mining plan. First, the block 

model is divided into panels that are optimized independently. These panels are further divided 

into 2-D rings, which are the units considered in the optimization. The rings have a fixed height 

and lateral position. Combinations of rings form planned stopes, abiding by set stope size and pillar 

constraints. 
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Fig. 2.5: Schematic of rings and stopes. Rings are vertical stope sections consisting of 9 consecutive 

blocks. Consecutive rings form stopes (Dimitrakopoulos & Grieco, 2009). 

 

 ∑ ∑ 𝑔𝑖𝑗𝑝𝑖𝑗𝐵𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 4 

Where 𝑚 is the number of panels, n the number of rings, 𝑔 is the grade of a ring above the cutoff, 

𝑝 is the probability for the ring to be above the cutoff, and 𝐵 is the integer variable indicating 

whether the ring is included in the plan. The results are subjected to a panel-by-panel risk limit 

(Eq. 5). 

 ∑(𝑝𝑖𝑗 − 𝑃𝐿)𝐵𝑖𝑗 ≥ 0

𝑛

𝑖=1

 5 

Here, PL is a defined risk limit, similar to the minimum confidence level from Bootsma et al. 

(2018). There is a difference in application, as here the limit applies panel by panel, allowing 

individual stopes with lower confidence to be included in the design, even if it is below the risk 

limit on an individual basis (Dimitrakopoulos & Grieco, 2009). 

Genetic algorithms are heuristics that alter solutions according to rules similar to evolution in 

nature. Two applications of genetic algorithms are presented to optimize stope layouts 
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stochastically. Verhoff (2017) considers the value of stopes over all realizations as an objective 

function – the value of the stope configuration is assessed over each realization and averaged, and 

this average value is maximized. A genetic algorithm is implemented to improve random parent 

chromosomes through selection, cross-over, mutation, constraint enforcement, and elitism. The 

algorithm is limited to two dimensions (Verhoeff, 2017). 

The genetic algorithm presented by Matamoros and Kumral (2018) begins by deterministically 

optimizing each input realization and combining the results geometrically to an average stope 

layout (Fig. 2.6). This algorithm maximizes value while penalizing dilution through the application 

of a recovery function. The solution is also limited as a certain percentage of included stopes must 

also appear in the average solution. 

 
Fig. 2.6: Geometric averaging of N scenario plans to average design (Villalba Matamoros & Kumral, 

2018) 

Sotoudeh et al. (2019) adapt the deterministic algorithm from (Sandanayake, 2014) to consider 

stochastic input. The adapted algorithm produces a layout for each of the input realizations 

following the algorithm produced by Sandanayake (2014) and does not consider a stochastic 

objective function. 

2.5.2 Production Scheduling Optimization 

Production scheduling is important to consider in conjunction with layout optimization as layout 

results act as the input for production scheduling. The ideal case is concurrent stope layout and 

schedule optimization, but no general deterministic or stochastic case for this has been presented. 
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If combined optimization is not an option, an appropriate stochastic stope scheduling optimization 

algorithm should be implemented. Otherwise, the benefits of the stochastic layout optimization 

will be lost. Stope production scheduling is reviewed here, showing a lack of stochastic options. 

Maybee et al. (2010) develop a heuristic framework for stope schedule optimization, the schedule 

optimization tool (SOT). A genetic algorithm is implemented as the basis of this framework, 

iterating on an initial schedule to find a better solution. The SOT uses a process called guidance 

that rates each stope by a series of parameters to help drive the decision-making of the algorithm. 

After each run, sliding is implemented. Sliding is a process that delays development until it is 

required, delaying and increasing NPV. The guidance portion of the algorithm results in a reduced 

time to completion of the algorithm, while reducing the probability of finding the optimal solution. 

Nehring and Topal (2011) produce an MIP production scheduling optimization program. The 

program enforces a production order of prepare, extract, void, fill, optimizing a 9x9 series of stopes 

in 2:45:08. Little et al. (2013) streamline existing MIP formulations by making the simple 

assumption that stope related processes will follow each other directly without delay. This 

formulation reduces the number of decision variables as only one variable is necessary as a 

decision. All other constraints are derived from the results. The algorithm is applied to a 2-

dimensional example consisting of 50 stopes. A result is reached in under 3 hours, a large reduction 

from the 64 hours required for a classical approach. 

Manchuk (2007) presents a general framework for stope schedule optimization as an alternative to 

integer methods. Both a simulated annealing and probabilistic decision-making method are 

presented. Random restarts are used to escape local minima and reach near-optimal solutions.  

Recently, Rosado et al. (2019) focus on quantifying geological risk by optimizing stopes on each 

realization with an unspecified optimization tool. Density is calculated based on a density-grade 

regression model, compounding the impact of grade uncertainty on the resulting metal content 

calculations. The model results are combined to assess the total probability that grades are above 

both the estimated value for the stope and the average grade of the reserve. These probabilities are 

combined into a risk indicator with values from 1 (low) to 3 (high). Lower risk stopes are 

prioritized early in the extraction schedule, showing a decrease in the standard deviation of grade, 

particularly in early periods. 
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Sari and Kumral (2019) develop an MILP schedule optimization that uses chance constraints and 

a risk-intolerance factor to generate a risk-inclusive stope schedule. The algorithm considers 

stability and backfill constraints, but not stope access precedence.  

2.6 Nonlinearities and Stope Optimization 

One benefit of using stochastic grade models in mine optimization is that calculation over all 

realizations correctly accounts for the nature of averaging when the transfer function is non-linear. 

Linear functions are defined as those which can be represented as a straight line and, conversely, 

non-linear cannot be. Examples of non-linear functions are quadratic and exponential functions. 

In mining, it is expected that the processing recovery relates non-linearly to input ore grade and it 

is known that non-linear transfer functions must be averaged after calculation to obtain the correct 

result where the input includes uncertainty (Deutsch, 2018). An example is shown here to depict 

the importance of correctly accounting for nonlinearities in value calculation. 

The first consideration for this example is when recovery is applied. The level of support that is 

correct to consider when applying process recovery varies according to the scenario being 

optimized. Factors such as the size of a batch as it enters the processing plant and the 

implementation of ore blending change how grade values should be averaged. If it is a batched 

process that, for example, uses milling to generate correctly sized material for the rest of the 

processing circuit, each batch should be considered separately. If it is a continuous process 

choosing what represents a batch is more complicated and further assumptions are made. This 

includes considering the smallest available scale, such as block scale if recovery is expected to 

vary quickly, or a larger scale, such as the stope scale, if the process is less sensitive to head grade 

changes. An additional consideration is what ore is combined or blended before processing occurs. 

It is common to blend ore to maintain a consistent head grade or dilute deleterious elements, 

changing what grade value is appropriate to use in recovery calculations. Considering blending at 

the time of stope layout optimization is difficult due to the necessity of timing information. 

Some assumptions are made here to simplify the consideration of both timing and batching on 

value calculations. Due to the lack of timing information in layout optimization, blending is not 

considered. Instead, single stopes are divided into batches individually. Within each stope, various 

batch sizes can be used. In this example, a batch is either a single mined block or a single mined 

stope.  
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Three recovery functions are presented that inflect at their maximum values, which occurs at 

grades of 2.5 and 1.5. Recovery functions with various symmetries are evaluated. (Figs. 2.7 to 

2.9). 

 

Fig. 2.7: Symmetric recovery functions 

 

Fig. 2.8: Low grade favoured recovery functions 
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Fig. 2.9: High grade favoured recovery functions 

Five realizations of a single 2-dimensional stope are produced to evaluate the importance of 

nonlinear calculation. The stope dimensions are 2 blocks by 8 blocks. Grade values between 0 and 

5 are assigned randomly to each block by drawing from a high tailed distribution (Eq. 6, Fig. 2.10). 

The resulting stopes and average case are shown in Fig. 2.11. 

 𝐹 =
log(𝑔 + 1)

log(6)
, 𝑔 ∈ (0,5) 6 

 

Fig. 2.10: CDF of grade distribution 
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1.15 1.74  1.84 0.07  0.56 0.31 
1.51 1.72  0.21 1.46  0.68 2.68 
2.43 2.28  0.41 2.67  1.94 0.21 
4.75 1.01  0.44 4.25  4.78 3.56 
2.97 2.21  3.48 0.20  2.75 3.01 
4.59 2.75  2.01 1.42  1.26 1.84 
0.76 0.36  0.07 1.47  2.70 0.51 
3.10 1.55  0.74 1.12  1.68 0.13 

 (a) (b) (c) 

0.45 0.84  4.64 2.10  1.73 1.01 
0.50 3.16  1.52 1.25  0.88 2.05 
1.62 0.27  1.55 1.47  1.59 1.38 
0.90 1.44  4.80 4.88  3.13 3.03 
0.67 0.40  3.64 0.62  2.70 1.29 
1.96 0.21  0.26 0.65  2.02 1.38 
4.35 2.12  1.52 1.30  1.88 1.15 
2.14 2.71  0.86 0.48  1.70 1.20 

 (d) (e) (f) 

Fig. 2.11: Stope realizations (a-e) and average case (f) 

The average grade in the stopes is 2.18, 1.37, 1.79, 1.48, and 1.97 respectively, with an overall 

average of 1.76. For this example, units are inconsequential; however, considering all grade values 

to be g/t is reasonable. 

The recovery is calculated in stochastic and deterministic frameworks considering both block and 

stope scale support for processing batches. This process is repeated for each recovery function, as 

presented above (Figs 2.7 to 2.9). The results for each case are shown in Fig. 2.12 and Fig. 2.13. 
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Fig. 2.12: Recovery by paradigm and support with various recovery function shapes and peak recovery at 

2.5 

 

Fig. 2.13: Recovery by paradigm and support with various recovery function shapes and peak recovery at 

1.5 
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Notably, when the peak recovery is set at a grade of 2.5, there is no difference between 

deterministic and stochastic calculation by stope (Fig. 2.13). While this appears to contradict the 

assertion that stochastic calculation is the correct method, the reason for this discrepancy can be 

seen in Fig. 2.14. 

 

Fig. 2.14: Grade distribution and recovery by stope with symmetric recovery inflection at 2.5 including 

block grade distribution (bars) 

In this case, the average values of the stopes all fall on the same side of the inflection point. This 

interval of the function is linear, leading to the equivalency of the average case. The block support 

case, alternatively, results in different deterministic and stochastic results due to the value 

distribution across the recovery function. 

This evaluation is supported by the results for the 1.5 peak recovery case: the stochastic and 

deterministic results vary for both the stope and block scale calculations. Fig. 2.15 shows the 

distribution of the individual and average stope cases overlaid on the recovery function. 
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Fig. 2.15: Grade distribution and recovery by stope with recovery inflection at 1.5 and symmetric 

recovery 

In this case, the recovery difference is not stark, with only a 1.5% overestimation when considering 

the deterministic calculation. Tabs. 2.1 and 2.2 show the percent difference between deterministic 

and stochastic calculations for all the considered cases. 

Tab. 2.1: Value change with maximum recovery at 2.5 

Calculation Summary 
Percent 

Difference 

By Stope 

Symmetric 0.0% 

Asymmetric Low 0.0% 

Asymmetric High 0.0% 

By Block 

Symmetric 14.8% 

Asymmetric Low 8.0% 

Asymmetric High 7.4% 
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Tab. 2.2: Value change with maximum recovery at 1.5 

Calculation Summary 
Percent 

Difference 

By Stope 

Symmetric 1.5% 

Asymmetric Low 1.0% 

Asymmetric High 12.1% 

By Block 
Symmetric 21.2% 
Asymmetric Low 10.0% 
Asymmetric High 12.7% 

 

The difference when calculating recovery by stope ranges between 0% and 11.7%, with the 

deterministic case always exceeding the stochastic. Because of the low number of stopes and 

random nature of grade assignment, there are no outlying high or low stope grades as might exist 

in a real case. The difference between deterministically and stochastically block scale recoveries 

is much more notable, ranging from 7.4% to 21.2% (Tab. 2.1). Note that in all cases, recovery is 

higher in the deterministic case than the stochastic because the recovery function is concave down. 

This is confirmed in the results with the inflection at 1.5 (Tab. 2.2), with stope scale recovery 

differing by between 1% and 12.1%, and block scale recovery by between 10% and 21.2%. These 

differences are significant and have a direct impact on value calculations. 

A final extreme case is posed as a theoretical example, where two realizations of a single block 

are modelled. High and low realization values are selected such that their mean is representative 

of the reference distribution. Consider the symmetric recovery function with a peak at a grade of 

2.5 and realization grade values of 0 and 5. Both values correspond to the minimum recovery value 

of 0.38 from the symmetric distribution and average to 0.38. However, the average of the grade 

values, 2.5, results in a recovery of 1 when assessed with the same function. This is a 163% 

overestimation. 

From these examples, some generalizations are drawn: 

• Stochastic calculation is often significantly different from deterministic calculation 

• If the interval of the recovery function utilized in the stochastic calculations is 

approximately linear, the deterministic calculation is equivalent 

• Deterministic recovery is always overestimated if the recovery function is concave down 
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• Larger processing batches have a lower discrepancy than smaller batches due to the 

averaging which takes place in calculating batch grades, reducing the presence of extreme 

values 

This evaluation shows that non-linear transfer functions are not correctly assessed when 

deterministic estimates or averaged values are generated before the calculation is completed. Due 

to the principles of MCS, it is understood that calculating over all realizations is the correct 

approach when considering non-linear transfer functions (Deutsch, 2018). Unless a study can be 

undertaken that shows approximate linearity in a calculation, stochastic methods should always be 

pursued to ensure the best model is produced. Additional benefits of optimizing on a stochastic 

grade model, such as risk analysis, are secondary to this issue. 

2.7 Decision-making and risk 

Optimization of the mine plan is a decision between many potential extraction options. Because 

of the large number of possible non-overlapping stope combinations that make up the solution 

space, the decision-making process must limit the solution space explored. The number of possible 

solutions is initially reduced by constraints placed on minable blocks. Underground mining 

constraints vary widely by the specific mining type. In general, there are geotechnical limits that 

inform the maximum size of openings and equipment-based limits that inform the minima 

(Bullock, 2011).  

To decide between valid plans, a means for comparison must be determined. A method that can 

be used to populate an initial subset of possible solutions is the idea of an efficient frontier in 

portfolio theory (Markowitz, 1952). This theory recognizes that a decision can only be correct if 

it maximizes expected value at a certain level of risk, creating what is known as an efficient frontier 

of viable options. While the idea of the efficient frontier is nearly 70 years old, it is still considered 

in portfolio optimization (Elton et al., 2014). Choosing between solutions on the efficient frontier 

requires taking a position on risk tolerance, a qualitative process (Deutsch, 2018). In general, risk 

tolerance can be tuned to either seek, avoid, or take a neutral stance on risk. One approach to 

defining risk tolerance includes producing objective functions that penalize risk. It common to 

evaluate a range of positions on risk and work towards an overall solution. Ideally, a formal 

decision-making framework is adapted to formulate a single value that can be maximized or 

minimized appropriately, such as expected utility or regret theory (Bleichrodt & Wakker, 2015). 
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Expected utility combines aspects of a problem into a single maximizable value, utility. It can 

include penalties due to the expectation of unwanted characteristics in a possible decision such as 

risk in the case of stope optimization. Regret theory, alternatively, looks to minimize the realization 

of regret if the chosen course of action was not the best choice in the real case (Loomes & Sugden, 

1982). Both paradigms can be applied to mining scenarios where planning alternatives are 

considered (Wilson et al., 2019). Treating potential stope layouts as planning alternatives leads to 

an optimization problem where risk can be accounted for directly by optimizing not value but a 

parameter that is calculated to include the risk of a layout that is being considered. 

2.8 Summary 

Stope optimization is an integral part of the mine planning process where stoping methods are 

employed. Geostatistical methods are well developed in their ability to access joint risk through 

simulation modelling paradigms such as SGS. While stope optimization methods exist that access 

this quantification of risk and include its impacts on the stope optimization process, no 

comprehensive method has been produced. Existing stochastic optimization methods that are 

reviewed in this chapter are limited either in their consideration of risk, the methods which they 

consider, their ability to produce mineable layouts, or the flexibility of stope and constraint 

consideration. As mentioned in Chapter 1, the goal of this research is to develop a flexible 

stochastic stope optimization algorithm, improving the treatment of non-linearities and 

consideration of risk with flexibility in the possible layouts. Viewing the stope optimization 

problem under a decision-making lens leads to the implementation of decision-making paradigms 

such as utility or regret theory allow the selection of an optimal solution that accounts for the risk 

which is inherently present. The remainder of this thesis leverages this perspective to generate a 

novel stochastic stope optimization heuristic based on existing deterministic heuristics. 
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Chapter 3: The Algorithm 
It is possible to adapt deterministic integer methods to stochastic inputs by considering a linear 

combination of all input values (Eqs. 7, 8); however, this adds additional complexity to a problem 

that is already often unsolvable in deterministic cases. Heuristics can similarly be adapted to 

optimize an objective function which is assessed over all realizations and are less dependent on 

problem setup to be able to find a reasonable or optimal solution. 

 𝑂𝑑 = 𝑣 − 𝑝 7 

 
𝑂𝑠 =

1

𝐿
∑(𝑣𝑙 − 𝑝𝑙) 8 

Here 𝑂𝑑 and 𝑂𝑠 are deterministic and stochastic objective functions, respectively, formulated as 

the sum of a value and penalty functions 𝑣 and 𝑝. In the stochastic formulation, 𝑣𝑙 and 𝑝𝑙 are 

equivalent functions assessed over each realization. When scaled by the number of realizations, 𝐿, 

𝑂𝑠 is an average probabilistic response. The possibility to substitute a stochastic objective into an 

existing heuristic algorithm simplifies the algorithm development process. A variety of existing 

algorithms, as reviewed in Chapter 2, are considered for adaptation: the greedy solution introduced 

by Topal and Sens (2010), the set-based method from Sandanayake (2014), and the combined 

greedy and dynamic algorithm presented by Nikbin et al. (2018). These algorithms are reviewed 

in Section 2.5.  

The algorithms are compared by their ability to solve the stope optimization problem efficiently, 

consider reasonable constraints, and their ability to be adapted to a stochastic case. It is assumed 

that a stochastic implementation will increase the complexity and time requirements of any 

existing algorithm. The set-based stope combination optimization is the most rigorous approach 

but is limited to small problem cases even in deterministic implementations (Sandanayake, 2014). 

The greedy and combined algorithms both utilize greedy heuristics that select the best incremental 

solutions but can miss globally optimal results (Nikbin et al., 2018; Topal & Sens, 2010). The main 

difference between the two is the dynamic algorithm that is a part of the Nikbin et al. method 

(2018). The dynamic algorithm obtains an exact result by reducing the problem to 1-dimensional 

sub-problems. It is also common, as described in Section 2.2, that stopes are aligned to facilitate 

access and extraction, limiting the negative impact of forcing stopes to be aligned when the linear 

problems are combined. The exact nature of the dynamic portion of the algorithm is expected to 
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find solutions that are not found by a purely greedy algorithm while maintaining algorithm speed. 

Pillar placement is also accounted for in the one-dimensional problems.  

The algorithm selected is the deterministic algorithm presented by Nikbin et al. (2018). It is 

expected to out-perform the pure greedy algorithm as presented by Topal and Sens (2010) while 

achieving computational efficiency that will allow for the optimization of larger problems than the 

Sandanayake algorithm (2014). The following sections show further detail for this algorithm and 

how it is adapted for stochastic use. 

3.1 Original Algorithm 

The stochastic algorithm presented here is adapted from the work of Nikbin et al. (2018). The 

original deterministic algorithm proposed an alternative to commonly used integer programming 

frameworks. The two-stage heuristic system developed by Nikbin et al. (2018) as an alternative to 

integer methods follows these steps: 

1. Divide the model into overlapping slices perpendicular to each axis based on the minimum 

stope size in that dimension (Fig. 3.1) 

2. Combine slices into strips parallel to each axis (Fig. 3.2) 

3. Optimize each strip in one dimension using a one-dimensional exact dynamic 

programming algorithm 

4. Greedily select the best strip as determined by best ratio (Eq. 9) 

5. Add blocks from selected strip to solution set 

6. Set value of blocks included in the solution to 0 

7. Repeat steps 1-6 until no strips with positive values are calculated 



 

31 

 

 
Fig. 3.1 Slice population with corresponding origin blocks (Nikbin et al., 2018). Scenarios in (a), (b), and 

(c) show i-j, i-k, and j-k slices respectively 
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Fig. 3.2: Strip population (red) including behaviour of previously included blocks in value calculation 

(Nikbin et al., 2018) 

 
BR = max 

∑ cγ
∗cγ

+Γ
γ=1

| ∑ cγ
∗cγ

− Γ
γ=1 |

 9 

𝐵𝑅 refers to the best ratio, 𝛾 is the stope index, while Γ is the total number of stopes. 𝑐∗ is a binary 

indicator with a value of 1 if block 𝛾 is mined and 0 if it is not, while 𝑐𝛾
+ and 𝑐𝛾

− are binary 

parameters with a value of 1 if stope 𝛾 is positive or negative, respectively. This results in a ratio 

of positive and negative stopes in each optimized strip. 

The combined algorithm is designed to generate a stope boundary similar in nature to a floating 

stope or maximum value neighbourhood algorithm, meaning it does not result in the generation of 

a mineable plan but a reduced set of stopes from which to develop a mine plan manually. This is 

a function of the decision to set the value of blocks included in interim solutions to 0, allowing 

them to be included in further stopes with no value or penalty. This can be seen in the value 

calculations in Fig. 3.2 and is accounted for during the adaptation of the algorithm. 

The one-dimensional portion of the algorithm is a one-dimensional exact dynamic algorithm 

(ODEDA) (Nikbin et al., 2018). The ODEDA leverages the reduced dimensionality of the 
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optimization to solve a lower complexity problem. Only constraints in one dimension are 

considered when a strip is optimized. The algorithm populates stope values beginning at the 

minimum index of the strip and combines the minimum number of slices needed to generate a 

valid stope. Each stope is evaluated to find the maximum value combination of all previously 

considered non-overlapping stopes. The process is illustrated in Figs. 3.3 - 3.5. Use of the ODEDA 

reduces the optimization space which must be explored to generate a solution compared to an 

exhaustive search while guaranteeing an optimal solution in the one dimension considered. The 

ODEDA proceeds as follows: 

1. Select the first stope index in a given strip 

2. Populate the value of each stope that begins at current index 

3. Calculate the total value for the current stope in combination with any non-overlapping 

previously populated stopes (including pillar considerations) 

4. Retain the maximum value and state for each stope size considered at this index 

5. Advance to next index 

6. Repeat steps 2-5 until no minimum size stopes can be populated 

7. Overall maximum value and corresponding state are retained as the solution 

The optimization is simple for the initial stopes as no potential overlapping is considered (Fig. 

3.3). The best incremental solution, in this case, is always just the stope itself. Once an index with 

the potential for non-overlapping stope combinations is reached, all such possible combinations 

are assessed, and the incremental maximum value layout is retained for each index (Fig. 3.4). The 

linear progression of the optimization means that if an evaluated stope does not overlap with a 

previously evaluated stope, it also does not overlap with the solution which is retained at that point 

of the optimization. After evaluating the final stopes, the incremental solution with the maximum 

value is retained as the overall solution (Fig. 3.5). 
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Fig. 3.3: Data and population of first stopes in 1-dimensional dynamic algorithm 

 
Fig. 3.4: Assessment of stopes at index of 2 with best non-overlapping combination of previously assessed 

stopes 

 
Fig. 3.5: Final stope assessments, associated best incremental solutions, and overall solution 

3.2 Adaptation of Algorithm 

The algorithm introduced by (Nikbin et al., 2018) is adapted to produce a stochastic stope layout 

algorithm by 1) altering the objective function of the algorithm to consider stochastic information 

in the form of grade model realizations including a consideration of risk, and 2) changing the 

results from a stope boundary optimization to a stope layout optimization. Additional changes are 

made to reflect typical mining practices, such as applying unified stoping levels. The specifics of 

these changes are discussed in the following sections. 

3.2.1 Stochastic Objective Function 

In the deterministic algorithm, two objective functions are considered. The dynamic portion 

maximizes value, and the greedy portion selects by the best ratio (Eq. 10). The first change is to 

have the objective function in both stages of the algorithm refer to a value-based objective with 

the ability to consider risk through the implementation of a proportional risk discount. Eq. 10 

shows the objective function. 
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 Os(𝐵, α)  = ∑(𝑣𝐵𝑖
− α × σ𝐵𝑖

) × b𝐵𝑖

𝐼

𝑖=0

 10 

𝑂𝑠 is the stochastic objective value for a set of entities 𝐵 evaluated with risk penalty multiplier 𝛼. 

𝐵 is assumed to be a set of stopes but could also refer to individual blocks. 𝐵𝑖 is the stope from set 

𝐵 with index 𝑖 and 𝑣𝐵𝑖
 is the averaged stochastic value of stope 𝑖 over all realizations. The standard 

deviation of the value over all realizations is given by 𝜎, and 𝑏𝐵𝑖
 is a binary variable representing 

whether stope 𝑖 of set 𝐵 is mined. 𝐼 represents the total number of stopes in the model. The 

calculation for 𝑣𝐵𝑖
 is shown in Eq. 12. 

 𝑣𝐵𝑖
= (

1

𝐿
∑ g̅Bi,𝑙 × 𝑟�̅� × 𝑚𝐵𝑖

𝐿

l=0

) − 𝑐𝑚 − 𝑐𝑝  11 

Here, 𝐿 is the number of realizations in the model, while 𝑙 refers to an individual realization. g̅𝐵𝑖,𝑙 

is the average grade of all blocks in stope 𝐵𝑖 on realization 𝑙, 𝑟�̅� is the recovery associated with the 

calculated average grade and 𝑚𝐵𝑖
 is the mass of all blocks in stope 𝑖. The costs of mining and 

processing are given by 𝑐𝑚 and 𝑐𝑝 respectively. 

Stochastic value is used in the objective function rather than the best ratio (Nikbin et al., 2018), 

controlling dilution through a recovery function and grade averaging (Eq. 12). Dilution can have 

a significant impact on the realized value from an underground deposit, but it should not be the 

only parameter that controls optimization. Recovery functions are selected to reflect the impact of 

dilution based on deposit or analogue data and can include penalties for cases such as 

contamination with a deleterious by-product.  

The implementation of recovery can result in a non-linear value function. Where this occurs, using 

deterministic or averaged input values does not result in the correct output response (Deutsch, 

2018). This is illustrated in Eq. 12. 

 
(1 + 2)2

2
≠

12 + 22

2
 12 

This shows the necessity of introducing a stochastic evaluation of value to correctly account for 

the value of a stope layout, even where risk limitations are not considered. 
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Selecting proper ranges and values for 𝛼 is not a simple decision. The efficient frontier must be 

sufficiently informed to decide between the possible plans without omitting the best option but 

optimizing for additional risk discounts demands more resources. This demand is not, however, 

prohibitive for the practitioner assuming a high level of computing power and sufficient time. The 

number of considered values can also be increased after initial options are assessed, better filling 

in the critical region of the efficient frontier. This likely generates solutions that do not fall below 

the efficient frontier and are not dominated stochastically. In an exhaustive implementation, each 

incremental 𝛼 value is associated with the removal of one stope from the layout until the layouts 

begin to be dominated by previous options. It is considered sufficient to evaluate a set of chosen 

𝛼 values that produces a set of value distributions that vary to the degree that is meaningful to the 

scenario. While what constitutes a meaningful difference between scenarios might vary, a target 

of about 1% variation is suggested to be meaningful. 

3.2.2 Dimensional Considerations 

Selecting optimized one-dimensional strips parallel to all the x, y, and z axes generates results that 

ignore conventional mining constraints, producing layouts that are difficult to mine. This is 

primarily because stoping operations are often mined with unified drilling and extraction levels 

(Fig. 3.6) 

 
Fig. 3.6: Stoping layout showing level based organization and rib pillars (Villaescusa, 2014) 

A typical mining constraint is to mine from unified drilling and extraction levels. The greedy 

portion of the algorithm is retooled to work in two dimensions to account for this restriction, 
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generating optimized mining levels that are then combined to form a full 3-dimensional layout. 

The greedy algorithm is altered to select from strips parallel to the x and y axes. Extension to 3-

dimensional results is achieved by first implementing the 2-dimensional algorithm on every 

possible mining level in the domain. A non-overlapping combination of levels that maximizes 𝑂𝐵𝐽 

is found using a third dynamic algorithm. In this case, each level is assigned an index and height. 

The optimization follows the workflow defined for the ODEDA. 

3.2.3 Layout Optimization 

Layout optimization is achieved by disallowing overlapping stopes in the solution. To disallow 

overlapping combinations, previously included blocks are set to an arbitrarily large negative 

number. If pillars are required based on the current layout, the associated blocks are also 

disallowed from future solutions. The greedy algorithm does not consider the potential impact of 

including stopes in an incremental solution on adjacent strips. The value of adjacent strips is 

reduced when pillars are required after one strip is mined, disallowing blocks from the solution 

(Fig. 3.7). Due to the one-dimensional nature of the dynamic algorithm, any blocks disallowed 

from adjacent strips are not considered as a penalty before the implementation of the greedy 

algorithm. These pillars' position will be sub-optimal because they are not directly optimized. 

 
Fig. 3.7: Schematic of pillar optimization limitations for greedy portion of combined algorithm. Only 

pillars which lie in the selected strip are optimized by the dynamic algorithm 

3.3 Heuristic Stochastic Stope Optimization 

A detailed overview of the produced stochastic algorithm, as adapted from Nikbin et al. (2018), is 

provided here. This section explores the basic implementation of the algorithm, while Section 3.4 

reviews alternate and optional modules. 
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3.3.1 Parameters Input 

A number of input parameters are required in order to enforce the constraints on the algorithm and 

to inform the value and objective calculations (Eqs. 10 and 11). The area to be optimized is set by 

defining a three-dimensional grid. The parameters used in the algorithm are shown in Tab. 3.1. 

They are described in further detail in Appendix A. 

Tab. 3.1: Input parameters for stochastic stope optimization 

Parameter Symbol(s) 

Stope size minima (blocks) 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 

Stope size maxima (blocks) 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥 

Model size 𝑋𝑑𝑖𝑚, 𝑌𝑑𝑖𝑚, 𝑍𝑑𝑖𝑚 

Model origin 𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑍𝑚𝑖𝑛 

Block sizes 𝑋𝑠𝑧, 𝑌𝑠𝑧, 𝑍𝑠𝑧 

Pillars 𝑥𝑝𝑖𝑙, 𝑦𝑝𝑖𝑙, 𝑧𝑝𝑖𝑙 

Risk scaling factor 𝛼 

Mining cost per block 𝐶𝑚 

Processing cost per block 𝐶𝑝 

Metal price 𝑃 

Density 𝛾 

Recovery Function 

Note that metal recovery is not defined with a parameter but is a function. All dimensional 

parameters are defined by block numbers except the block model origin and block sizes. The risk 

scaling factor 𝛼 can be defined as a single value or range of values to compare the resulting layouts. 

3.3.2 Preprocessing 

In the preprocessing phase of the algorithm, all possible stopes in the layout are populated. The 

value of each possible stope is calculated on each realization. Value calculation and recovery are 

applied at the stope level. Applying recovery by stope is equivalent to assuming that no blending 

of the ore occurs before processing. The value function is shown in Eq. 11. The process for data 

and parameter input, as well as data initial data formatting, is shown in Fig. 3.8. 
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Fig. 3.8: Flow chart of data parameter input and preprocessing. 𝑣𝑠 retains the value of a stope from each 

realization while 𝑣𝑚 is the average of those values  

3.3.3 Strip Optimization 

To optimize each strip, a dynamic algorithm is implemented to find the optimal one-dimensional 

solution for a given set of possible stopes following the procedure described in Figs. 3.3 to 3.5 

with the additional consideration of pillars. The algorithm maintains a minimum number of blocks 

between each stope as set by the user. Every strip parallel to the x and y axes are optimized for 

input into the next algorithm stage. This stage of the algorithm is detailed in Fig. 3.9. 
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Fig. 3.9: Flow chart of dynamic strip optimization 
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3.3.4 Greedy Strip Selection 

To scale the one-dimensionally optimal strips into levels, they are combined with a greedy 

algorithm. At each decision, the strip which provides the best incremental improvement to the 

objective function value is selected. Between selections, previously optimized strips are evaluated 

for overlap with existing stopes, accounting for any required pillars. If the next greedily selected 

strip includes an overlapping stope, it is reoptimized, and the greedy selection is reassessed. The 

process is shown in Fig. 3.10. 

 
Fig. 3.10: Flow chart of level optimization through greedy strip selection 

3.3.5 Dynamic Level Selection 

The final step of the algorithm is the combination of 2-dimensional results into a three-dimensional 

solution. This process reuses the strip optimization function, inputting value data from each level 
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in place of the stopes, with the stope length replaced by level height and z pillars input as required. 

This produces unified levels with constant sill pillars between them. 

3.3.6 Algorithm Summary 

The intent of this algorithm is to produce optimal layout plans for stoping operations considering 

risk over all realizations while respecting physical and conventional constraints. Reducing the 

problem to a combination of 1-dimensional sub-problems allows for efficient exploration of the 

solution space at the expense of ignoring some complex layouts. The heuristic nature of the 

algorithm leads to a gap in optimality which is accepted in exchange for its ability and efficiency 

in finding solutions. Section 3.4 introduces optional algorithm modules that both look to close this 

gap and allow for optimization with alternate constraint configurations. 

3.4 Optional and Alternate Algorithm Modules 

3.4.1 Alternative (Dynamic) Strip Selection 

If a regular stoping method with permanent, continuous pillars is desired, the greedy algorithm is 

replaced with a second dynamic algorithm. In this case, the strip optimization algorithm is used to 

optimize strips in one dimension, parallel to either the x or y axis with pillars between stopes as 

usual. The one-dimensional stope optimization algorithm is then called again with the strip results 

as input to dynamically determine the best combination of strips. This configuration of the 

algorithm is appropriate where stopes are generally aligned with long, continuous longitudinal 

pillars between sets of stopes. This can be the case in lower stability conditions. 

3.4.2 Tabu Solution Improvement 

In order to improve the optimality of the heuristic optimization, a tabu search approach is 

implemented in the greedy strip selection algorithm. In the tabu implementation, the greedy 

algorithm is run multiple times with some strips disallowed from the solution. Multiple tabu lists 

are maintained to ensure a variety of solutions are explored. The lists of tabu selections are 

developed in two steps. First, a practitioner defined number, or tabu depth (𝑇𝑑) of seeds are selected 

based on the top valued stopes in the initial solution. A series of runs are completed with each seed 

disallowed. The best stope in each run is then added to the tabu list for further runs with that seed. 

The solution from each run is evaluated and the best overall solution is retained. The process is 

depicted in Fig. 3.11. 
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Fig. 3.11: Tabu algorithm flowchart 

This solution is focused on the high-grade regions of the algorithm due to the value sorting of the 

selected strips. The greedy strip selection might get caught in a local maximum if only a single 

configuration is considered for extraction. The tabu approach reconfigures the extraction plan in 

the high-grade areas, possibly escaping minima where it will have the most impact. Fig. 3.12 shows 
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how the choice of the 𝑇𝑑 and 𝑇𝑤 produce additional solutions by omitting strips from the solution 

which can outperform the initial case. 

 

Fig. 3.12: Schematic showing impact of 𝑇𝑑  and 𝑇𝑤 selection. Each run generates an independent solution 

Each set of omitted strips leads to a new solution that is compared to previous results. The best 

scenario is retained as the solution of the greedy portion of the algorithm. 

3.5 Example Implementation of Algorithm 

A simple example of the optimization algorithm is shown to illustrate its implementation. The 

portions of the algorithm which are common to all implementations are shown in Section 3.5.1. 

The optimization is first shown using the secondary greedy module in Section 3.5.2.1, while the 

secondary dynamic configuration is shown in Section 3.5.2.2. A comparison to the existing 

deterministic stope optimizer found in Maptec Vulcan is also produced to show the improvements 

due to accounting for non-linearities in a stochastic optimization framework and acting as a 

validation of the optimization results in Section 3.6. 

The proposed stochastic algorithm is applied to the same set of simulated copper grade realizations 

in each configuration. The grade in the model is disseminated, with an average of 1.45% and a 
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standard deviation of 0.23%. The origin of the 189000-block model is at the lower left-hand corner 

with an origin of (100,0,300) and extends to (550,600,1000). The blocks are 10x10x10 m. The 

grade distribution is shown in Fig. 3.13. Stochastic stope optimization is implemented for a single 

level of the model.  

 
Fig. 3.13: Grade distribution histogram 

Stochastic optimization approaches are anticipated to outperform deterministic methods even in 

cases where risk is not considered because the implemented processing recovery model is non-

linear (Deutsch, 2018), applying the recovery by block before averaging to the stope scale is not 

equivalent to applying recovery on each stope. A slice of the e-type grade model is shown (Fig. 

3.14) with two sample realizations (Fig. 3.15). Other pertinent values are assumed to facilitate the 

optimization (Tab. 3.2). 
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Fig. 3.14: Plan section of E-type model at z = 330 m 

 
Fig. 3.15: Sample realizations from grade model. Plan section at z = 330 m 

3.5.1 Parameters and Preprocessing 

Optimization parameters are informed in part by the input data set and other values are defined or 

assumed to facilitate stope optimization. These values are reported in Tab. 3.2.  
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Tab. 3.2: Model parameters 

Of note, the risk scaling factor is varied in this application of the algorithm to form an efficient 

frontier of results. The recovery function is defined piecewise with a penalty to recovery below a 

threshold value (Eq. 13). 

 𝑟 =  {
(

𝑔

𝑚𝑔
)

2

, 𝑥 ≤ 𝑚𝑔

1       , 𝑥 > 𝑚𝑔

 13 

Where 𝑟 is the processing recovery, 𝑔 is the grade, and 𝑚𝑔 is the grade over which there is no 

penalty to recovery. Here, 𝑚𝑔 is set to 2.5%. 

The data is preprocessed considering the chosen parameters to produce three arrays: stope value 

on each realization, average stope value over all realizations, and the standard deviation of stope 

values. These arrays are used to efficiently calculate the objective value for each stope, strip, and 

overall layout as required. In this implementation, recovery is applied to each possible stope (Eq. 

13). Stope recoveries are calculated on each realization to account for non-linearities. When a 

deterministic model is used, the recovery can only be applied to the average stope value which is 

inappropriate (Deutsch, 2018). This either results in an over or underestimation of recovery and a 

correspondingly inaccurate value. Optimization considering the incorrect recovery information 

cannot produce an accurate layout. 

Parameter Symbol(s) Values(s) 

Stope Size Minima (blocks) 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 3 × 3 × 3 

Stope Size Maxima (blocks) 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥 3 × 3 × 3 

Model Size 𝑋𝑑𝑖𝑚, 𝑌𝑑𝑖𝑚, 𝑍𝑑𝑖𝑚 45 × 60 × 70 

Model Origin (m) 𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑍𝑚𝑖𝑛 (100,0,300) 

Block Sizes (m) 𝑋𝑠𝑧, 𝑌𝑠𝑧, 𝑍𝑠𝑧 10 × 10 × 10 

Risk Scaling Factor 𝑎 0 to 0.9 step 0.1 

Mining cost ($/block) 𝑚𝑖𝑛𝑒 $20k 

Processing cost ($/block) 𝑝𝑟𝑜𝑐 $10k 

Metal price 𝑝𝑟𝑖𝑐𝑒 $2050/tonne 

Density 𝑑𝑒𝑛𝑠 2.7 

Recovery Function Eq. 13: Recovery Function 

Pillar dimensions (blocks) 𝑋𝑝𝑖𝑙, 𝑌𝑝𝑖𝑙, 𝑍𝑝𝑖𝑙 1,1,1 
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3.5.2 Optimization 

The optimization is completed for level 15 of the input data. Greedy and dynamic strip selection 

are considered in Sections 3.5.2.1 and 3.5.2.2, respectively. The resulting layouts are compared to 

show how the constraints impact the alignment of stopes and output values.  

The 1-dimensional strip optimization is the same for both algorithm configurations, with all strips 

optimized using the dynamic algorithm outlined in Section 3.3.3. 

3.5.2.1 Greedy Implementation 

For the greedy implementation of strip selection, the strip with the maximum objective value is 

selected at each stage, as shown in Section 3.3.4. The progression of the solution is shown in Fig. 

3.16.  

 
Fig. 3.16: Strip selection process. Selected strip shown in blue 
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In this case, all selected strips were parallel to the x axis. This process is repeated for each 𝛼 value, 

further limiting risk in each layout. The resulting layouts are shown in Figs. 3.17 through 3.26.  

 
Fig. 3.17: Stopes at 𝛼 = 0 

 
Fig. 3.18:Stopes at 𝛼 = 0.1 

 
Fig. 3.19: Stopes at 𝛼 = 0.2 

 
Fig. 3.20: Stopes at 𝛼 = 0.3 
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Fig. 3.21: Stopes at 𝛼 = 0.4 

 
Fig. 3.22: Stopes at 𝛼 = 0.5 

 
Fig. 3.23: Stopes at 𝛼 = 0.6 

 
Fig. 3.24: Stopes at 𝛼 = 0.7 
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Fig. 3.25: Stopes at 𝛼 = 0.8 

 
Fig. 3.26: Stopes at 𝛼 = 0.9 

Higher risk discounts result in fewer planned stopes, beginning at 14 stopes with no risk discount 

and reducing to a single stope at 𝛼 =  0.8 and 0.9. Fig. 3.27 summarizes the number and total 

value of stopes at each risk discount. Optimization results are identical between some risk 

discounts. Each time the risk discount is increased, any stope with a marginally positive objective 

value or high uncertainty may become negative and be removed from the solution. 

 
Fig. 3.27: Stope numbers and values 
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The objective values of the solutions are compared in value-risk space (Fig. 3.28). This forms an 

efficient frontier of stope layouts, which can be compared and selected based on a considered risk 

tolerance (Markowitz, 1952). 

 
Fig. 3.28: Optimization results for all 𝛼 values in value-risk space 

3.5.2.2 Dynamic Implementation 

The same input is considered for the dynamic implementation of the algorithm, but only strips 

parallel to the x or y axis are considered at one time. Strips parallel to the x axis are considered for 

this example. The stope layouts resulting from the dynamic strip optimization are presented in 

Figs. 3.29 through 3.38. This configuration selects the best combination of non-overlapping strips, 

as described in Section 3.4.1. 
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Fig. 3.29: Stopes at 𝛼 = 0 

 
Fig. 3.30:Stopes at 𝛼 = 0.1 

 
Fig. 3.31: Stopes at 𝛼 = 0.2 

 
Fig. 3.32: Stopes at 𝛼 = 0.3 
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Fig. 3.33: Stopes at 𝛼 = 0.4 

 
Fig. 3.34: Stopes at 𝛼 = 0.5 

 
Fig. 3.35: Stopes at 𝛼 = 0.6 

 
Fig. 3.36: Stopes at 𝛼 = 0.7 
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Fig. 3.37: Stopes at 𝛼 = 0.8 

 
Fig. 3.38: Stopes at 𝛼 = 0.9 

The optimization results are similar to those from the greedy strip selection in Section 3.5.2.2. 

Differences occur with 𝛼 values of 0.0, 0.2, 0.4, and 0.5. These differences appear to occur for two 

reasons: 1) a strip is selected in the greedy configuration that overlaps with higher value strips and 

is disallowed by the dynamic algorithm; 2) a strip selected by the greedy algorithm is in the 

direction not considered in the dynamic configuration. The first difference will always result in a 

lower value in the dynamic configuration as valuable stopes are simply eliminated from 

consideration. The second difference, however, can cause either better or worse results, as seen in 

the layouts at 𝛼 = 0.4 and 0.5. This is because the greedy heuristic does not guarantee optimality, 

meaning that what would be considered a suboptimal choice by the greedy algorithm might be 

better when considered in combination with other choices.  

The number and total values of stopes found using the dynamic configuration of the algorithm are 

plotted in Fig. 3.39. Similarly to the greedy implementation, higher risk discounts result in fewer 

planned stopes, beginning at 13 stopes with no risk discount and reducing to a single stope at 

𝛼 =  0.8 and 0.9. The objective values of the solutions are also shown in value-risk space (Fig. 

3.40). 
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Fig. 3.39: Number of stopes and layout value by risk discount (𝛼) 

 
Fig. 3.40: Optimization results for all 𝛼 values in value-risk space 

The regularly distributed 𝛼 values do not produce solutions across the entire efficient frontier. This 

is seen as the stope numbers changes between incremental 𝛼 values (Fig. 3.39) and visible gaps in 

the frontier itself (Fig. 3.40). It is suggested that the frontier would be better informed if more 

discount values are considered; however, some discontinuity is expected because removing an 

individual stope from the solution has a step impact on solution value and risk. Depending on the 

criteria used to select an overall layout, these gaps may require refinement to ensure an optimal 

solution is found for a desired level of risk. 
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3.6 Comparative Evaluation 

In order to evaluate and evaluate the algorithm, it is compared to the Stope Shape Optimizer (SSO) 

results as implemented in Maptek Vulcan (Alford, 2013; Vulcan Envisage, 2018). The SSO is 

deterministic and uses the e-type model after recoveries are applied as input. A cutoff grade 

equivalent to a $0 block is calculated in Eq. 14 and Eq. 15. The recovery is applied by block.  

 𝑉 = 𝑀 × 𝑝 − 𝐶𝑡 = 𝑡𝑜 × (𝑟 × 𝑔) × 𝑝 − 𝐶𝑡 14 

Where 𝑉 is block value, 𝑀 is the mass of the contained metal after recovery, 𝑃 is the metal price, 

and 𝐶𝑡 is the block mining cost. Decomposing 𝑀 into terms yields 𝑀 = 𝑡0 × 𝑟 × 𝑔 , with 𝑡𝑜 

representing mined tonnes of ore, 𝑟 the expected recovery after processing, and 𝑔 the fractional 

grade. Substituting 𝑟 for Eq. 13 and solving for grade 𝑔 yields a cutoff grade, 𝑐𝑔, where 𝑉 =  0 

(Eq. 15): 

 𝑐𝑔 =  √
𝐶𝑡 × 𝑚𝑔2

𝑡𝑜 × 𝑝

3

 15 

Recall that 𝑚𝑔 is the grade at maximum recovery from Eq. 13. 

After substituting the model values in Eq. 15, a cutoff value of 1.50% is found. The SSO slice 

method stope optimization is then applied with a cutoff of 1.50%. The optimization is run in both 

YZ and XZ orientations to ensure the maximum value orientation is found. The resulting layouts 

are shown in Fig. 3.41 and Fig. 3.42.  
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Fig. 3.41: SSO Solution with XZ slices 

 
Fig. 3.42: SSO Solution with YZ slices 

Note that the Vulcan YZ result does not appear to follow the input pillar requirements. The number 

of stopes in both cases is less than was found previously with 𝛼 =  0. The value of the YZ SSO 

implementation is similar to the stochastic implementation with 11 stopes in the produced layout 

instead of 13 (Section 3.5.2). The results of the Vulcan model SSO are shown in comparison to 

the proposed stochastic stope optimization results in value-risk space Fig. 3.43. 

 
Fig. 3.43: Optimizer solutions in Greedy (Section 3.3.4) and Dynamic (Section 3.3.5) configurations 

compared to SSO results 
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The heuristic optimization outperforms the SSO due to the nonlinearities in metal recovery. The 

placement of the SSO results under the efficient frontier indicates that neither is the optimal 

solution with or without a consideration of risk. The greedy configuration of the algorithm is 4.90% 

above the Vulcan YZ results, while the dynamic configuration is 4.16% greater where no risk is 

considered. This significant improvement confirms the ability of the algorithm to find 

approximately optimal solutions considering the applied constraints. 

3.6.1 Discussion 

Adapting a deterministic heuristic stope optimization algorithm to account for stochastic data 

allows for the proper calculation of non-linear responses and the consideration of risk in an 

objective function. The combined dynamic-greedy algorithm, as presented by Nikbin et al. (2018), 

is adapted to consider a stochastic grade model. The algorithm is altered to output a stope layout 

rather than a design envelope and consider levels individually to better conform with stope mining 

conventions. Two configurations of the algorithm are developed with different strip selection 

processes: one greedy and one dynamic. The dynamic implementation is restricted to consider 

strips parallel to one axis rather than both as in the greedy approach, further limiting the explored 

solution space.  

The dynamic configuration of the algorithm is a constrained version of the general greedy 

algorithm, meaning it should only be implemented where continuous longitudinal or transverse 

pillars are required for stability. In general, it should be expected that adding these constraints will 

lower the value of the solution. However, the heuristic nature of the greedy algorithm means an 

optimal solution is not guaranteed, and, in some cases, the dynamic implementation does produce 

a better result than the greedy. 

The algorithm is compared to the SSO as available in Maptek Vulcan, showing that the stochastic 

optimization produces better results by 4.90% in the greedy configuration and 4.16%. 

  



 

60 

 

Chapter 4: Case Study 
The stochastic stope optimizer is applied to a gold data set from a real-world project that is 

transitioning from a surface operation to underground mining. The data is modelled with sequential 

Gaussian simulation to create a suite of realizations (Section 4.1). The grade realizations are then 

inputted into the stochastic stope optimizer (Section 4.2). 

4.1 Geostatistical Modeling 

A stochastic grade model is produced according to geostatistical best practices to facilitate the 

application of the stochastic stope optimizer (Rossi & Deutsch, 2014). Twenty realizations are 

produced using the GSLIB program USGSIM (Manchuk & Deutsch, 2012). USGSIM generates 

sequential Gaussian simulation realizations, as described in Chapter 2. The raw data and subset to 

be modelled are described in Section 4.1.1. The results of the simulation are presented in Section 

4.1.4, and they are checked in Section 4.1.5. 

4.1.1 Data 

The data is provided as a series of drillhole records arranged in the collar, survey, and assay tables. 

There are a total of 1557 drillhole collars in the data set with associated assay data. Three solids 

are provided with the data: the existing surface excavation as mined before the transition to 

underground mining, a low grade solid consisting of a relatively massive vein-like structure 

trending N 34.7° E and dipping approximately 50° to the SE, and an additional high grade solid. 

The high grade solid is fully contained within the low grade structure with a similar strike and dip 

(Figs. 4.1 - 4.3). The high-grade structure is selected for modelling and optimization, with 

subsetting considered to maintain a reasonable problem size. 
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Fig. 4.1: Plan view projection of high-grade vein and existing excavation. Line A-A' shows long section 

view direction. Grid is in meters 
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Fig. 4.2: Long section view with full high-grade vein and existing excavation from line A-A' (Fig. 4.1). 

Grid is in meters 

 
Fig. 4.3: Section view of high-grade structure perpendicular to line A- A' (Fig. 4.1). Grid is in meters 

The high-grade structure is 2.5 km in length and dips at about 50°. A subset of the high-grade vein 

is selected for modelling and optimization (Fig. 4.4). This region is selected to lie in an area of 

interest below the existing surface excavation and extends to the lower extents of the high-grade 
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data in this location at an elevation of about 420 m. The deposit is very densely drilled on from the 

surface, with fan drilling delineating the high-grade target (Figs. 4.5, 4.6). 

 
Fig. 4.4: Long section view projection with subset of high grade considered shown in green. Grid is in 

meters  

 
Fig. 4.5: Long section projection with drillhole collars and traces. Grid is in meters 
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Fig. 4.6: Rotated plan projection of drillholes and high-grade vein centered on modelling area (green). 

Grid is in meters in rotated frame of reference 

The drilling density is lower at depth, with drilling nearly perpendicular to the structure. The data 

is composited on 5 m lengths for assessment and modelling (Fig. 4.7). Note that the bottom of the 

region selected for modelling lies below the deepest sample within the high-grade structure. 

Section 4.1.2 explores the data distribution and declustering. Variography is completed in Section 

4.1.3. Finally the simulation is completed in Section 4.1.4. 
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Fig. 4.7: Characteristic section view perpendicular to high grade structure showing drilling intercepts. 

Grid is in meters 

4.1.2 Grade distribution and declustering 

Subsurface sampling is biased by nature, primarily due to the clustering of samples (Rossi & 

Deutsch, 2014). There is a guarantee that samples along a drillhole are clustered and common that 

drillholes are clustered around higher-grade targets. Declustering is a necessary process to 

determine the true grade distribution that should be reproduced by simulation techniques (Rossi & 

Deutsch, 2014). The raw distribution of gold assay data that falls within the modelled area of the 

high grade structure is right-tailed with a mean of 3.79 g/t and a standard deviation of 3.08 g/t (Fig. 

4.8). 
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Fig. 4.8: Raw data distribution 

The variable thickness of the vein created an interesting dynamic when approaching declustering 

with standard techniques such as cell and polygonal declustering. Since the drillholes are 

approximately perpendicular to the solid model and the data spacing along a drillhole, composited 

to 5 m, is generally less than the spacing between drillholes, the weights are primarily informed 

by the thickness of the vein and not the density of information. This leads to high weights at thin 

vein sections, which tend to correspond to lower grade values. Consequently, the declustered 

average grade is reduced severely to a value of 3.2 g/t at a cell size of 150 m (Fig. 4.9). The 

influence of high-grade samples is too low using the weights acquired with this method, producing 

realizations with an average mean of 3.52, 10% higher than the declustered mean. 

 
Fig. 4.9: Plot of declustered mean vs. cell size for simple workflow 
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A novel declustering workflow is implemented to minimize the impact of the data configuration 

on the grade distribution. The most critical alteration in this workflow is that weights are assigned 

by drillhole, not by data point. The data is rotated so the hanging wall side of the high-grade 

structure is horizontal. The point with the maximum z value in the new frame of reference is 

selected for each drillhole and used in a 2-dimensional cell declustering. A variety of cell sizes are 

considered, and the size which minimizes the average grade of these samples is selected. The 

results for each cell size and declustered distribution are shown in Figs. 4.10 and 4.11, respectively. 

Note that declustering on a subset of the data causes a discrepancy between the means in the 

declustering curve and the associated declustered mean. 

 
Fig. 4.10: Declustering mean by cell size on rotated data 

 
Fig. 4.11: Declustered distribution with a cell size of 350 m in novel framework 
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The declustered distribution with a mean of 3.63 g/t and standard deviation of 3.07 g/t is reasonably 

accurate for the following modelling and stope optimization when compared to the simulated 

distribution with a mean of 3.68 g/t and a standard deviation of 3.07 g/t, a difference in mean of 

1.3% as calculated in Section 4.1.5. 

4.1.3 Variogram modelling 

Variograms are modelled on normal score transformed data that does not consider the declustering 

weights (Rossi & Deutsch, 2014). The orientation of the distinct vein-like structure of the high-

grade region is used to infer the major, minor, and perpendicular directions as the strike, down dip, 

and perpendicular directions. This equates to an orientation of anisotropy with an azimuth of 34.7°, 

dip of 0°, and plunge of -50°. The experimental variograms and modelled fits are shown in  

Figs. 4.12 - 4.14. The parameterized variogram models are given in Tab. 4.1. 

 
Fig. 4.12: Strike direction experimental variogram and fitted model 
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Fig. 4.13: Down-dip experimental variogram and fitted model 

 
Fig. 4.14: Perpendicular experimental variogram and fitted model 
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Tab. 4.1: Three-dimensional variogram model parameters 

Nugget 
First Structure 

Sill Contribution Type Range (m) Angles 

0.3 0.1 Exp 

50 34.7° 

40 0.0° 

20 -50.0° 
 

Second Structure 

Sill Contribution Type Range (m) Angle 

0.56 Exp 

110 34.7° 

40 0.0° 

75 -50.0° 
 

Third Structure 

Sill Contribution Type Range (m) Angle 

0.04 Exp 

inf 34.7° 

40 0.0° 

75 -50.0° 
 

Here, 𝐸𝑥𝑝  is the exponential variogram. The formula for an exponential variogram structure with 

a range of 𝑎 at a lag of ℎ is given in Eq. 16 (Rossi & Deutsch, 2014). 

 𝐸𝑥𝑝𝑎(ℎ) = 1 − 𝑒−
3ℎ
𝑎  16 

Attention is given to avoiding overfitting the models, especially where the experimental data are 

noisy. This is common in the perpendicular direction which in this case is approximately 

equivalent to the downhole direction where the drillholes intersect the high-grade structure. 

Downhole variograms are often less noisy than their counterparts due to the guaranteed continuity 

of data; however, the data extents perpendicular to the structure limit the available pairs to inform 

the corresponding variogram calculation, causing the noise to occur. The fit aims to represent the 

short-scale variability of the data as well as the experimental range while ignoring some cyclicity, 

which occurs around a 30 m lag. This parameterization is used in the subsequent SGS 

implementation in Section 4.1.4. 

4.1.4 Sequential Gaussian Simulation 

The GSLIB program USGSIM is used to create 20 (SGS) grade realizations. The data is 

transformed to a normal distribution using a quantile-quantile transformation and accounting for 

declustering weights. Spatially, the data is transformed with a 34.7° rotation counter-clockwise 
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around point (123340, 259885) to align the strike of the high-grade structure with the N-S axis. 

Figures 4.15 and 4.16 show the averaged output of the realizations overlaid on the rotated high 

grade structure on characteristic plan and section views, respectively. The full parameter file for 

USGSIM and further section and plan views are included in Appendix B. 

 
Fig. 4.15: Plan view of averaged simulation results overlaid on high-grade structure at z = 700 m. Grid 

is in meters 

 
Fig. 4.16: Section view of averaged simulation results overlaid on high-grade structure at y = 260420 m. 

Grid is in meters 
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The output realizations produce data distributions with averages between 3.58 g/t and 3.81 g/t, 

with an average mean of 3.68 g/t. The standard deviations lie between 2.98 g/t and 3.16 g/t, 

averaging 3.07 g/t. Figure 4.17 shows the distribution of a selected realization, realization zero. 

 
Fig. 4.17: Produced distribution of realization zero 

4.1.5 Model Checking 

Multiple model checks are performed to validate the stochastic grade model: 1) the reproduction 

of the grade distribution is assessed, 2) variogram reproduction is checked, and 3) the average of 

the simulated values are compared to the kriged value at each location. These checks are suggested 

to validate internal model consistency by Rossi and Deutsch (2014). 

4.1.5.1 Grade Distribution Reproduction 

If the proper presumptive data distribution is input into the SGS model, its statistical parameters 

should be approximately reproduced by the data output in each realization and more strongly 

reproduced on average (Rossi & Deutsch, 2014). Fig. 4.18 compares the distributions of each 

realization and the input declustered data. 
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Fig. 4.18: Cumulative histogram for all realizations and declustered data for full grade range (left) and 

subset (right) 

The spread of the realization distributions is very narrow, and the declustered histogram falls 

within their range. To provide a more detailed comparison, the relative spread of the mean and 

standard deviation of each realization is shown in Fig. 4.19. For comparison, the declustered 

distribution parameters are plotted as well as the average of the realization parameters. 

 

 
Fig. 4.19: Comparison of realization, average, and declustered distributions 
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Notably, the declustered and average standard deviations are the same at 3.07 g/t. The average 

mean grade of the realizations is 3.68 g/t, 1.4% higher than the declustered mean grade of 3.63 g/t. 

This is a reasonable reproduction of the distribution and acceptable for the purposed of this case 

study. The range of realization means is also reasonable, with the highest realization reporting an 

average grade 4.8% greater than the declustered mean, and the lowest-lying 1.5% below.  

4.1.5.2 Variogram Reproduction 

One property of SGS is that it reproduces spatial variability (Rossi & Deutsch, 2014). 

Consequently, variogram reproduction can be checked to assess the suitability of the input model. 

Here, GSLIB program Gam is used to calculate the experimental variogram for each direction that 

is modelled in Section 4.1.3. Gam calculates variograms for gridded data according to input block 

steps. Since the strike is aligned with the north axis, that direction is simple to reproduce, but the 

down-dip and perpendicular directions are approximated with block ratios to reproduce the 

modelled directions. The variograms for the down-dip direction are calculated at an azimuth of 

90° and a -36.8° dip, and the cross dip at the same azimuth and a 45° dip. The cross-dip check is 

also attempted at a 51.3° dip, but the 32 m minimum lag length required to generate that angle is 

too long to generate a meaningful comparison. The variograms for each realization are compared 

to the input models and experimental points (Fig. 4.20). 
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Fig. 4.20: Variogram reproduction assessment 

The along-strike variogram appears to have inflated variance at low lags, which might be explained 

by the higher values seen in the initial low-lag experimental variogram points than the model. 

Similarly, in the down-dip direction, the realization variograms tend to lie between the variogram 

model and the experimental points, particularly at higher lags. Short lags are more challenging to 

assess as the minimum lag calculated is 25 m. The perpendicular variogram is also difficult to 

assess as there are no calculated pairs below a lag of 32 m if an approximately equivalent angle of 

-51° is used. Instead, a -45° dip is considered, allowing a lag of 1.41 m. The lags which are assessed 

are more varied between realizations than the other directions but are still relatively close to the 

modelled values. Overall, the variograms are reasonably reproduced. 
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4.1.5.3 Comparison to Kriged Model 

The final check produced for the stochastic grade model is a comparison of the averaged stochastic 

model to a kriged model. The values at each location are cross plotted to allow a visual comparison 

(Fig. 4.21). The variables have a correlation coefficient of 0.89 and a mean square error of 0.085, 

suggesting a reasonable reproduction. A mean error of -0.004 indicates low bias in the results. This 

is considered acceptable, particularly because only 20 realizations are produced. 

 
Fig. 4.21: Cross plot comparing average of realization values and kriged values at each location 

4.1.5.4 Model Checking Conclusions 

The model reasonably reproduces the data distribution and spatial variability, as determined in 

Sections 4.1.5.1 and 4.1.5.2. The block model section and plan views (Fig. 4.15, Fig. 4.16, 

Appendix A, Appendix B) additionally show good containment of simulated blocks within the 

high-grade structure. Finally, a comparison of a kriged grade model and the average of the 

realizations show a reasonable reproduction with a high correlation coefficient and low mean 

squared error. The bias of the errors is also shown to be very low. Together, these factors show 

that the simulated model is internally consistent and a reasonable interpretation of the spatial grade 

distribution. 

4.2 Stope Optimization 

The grade model produced in Section 4.1 is considered for optimization with the proposed 

stochastic stope optimizer. The optimization is run with various risk penalty factors, and the 

resulting layouts are compared in a decision-making framework. The top layouts are scheduled 
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using the stochastic simulated annealing scheduler, which accounts for time-based risk and 

differential access costs to better compare and finalize the layouts.  

To assess the impact of non-linear calculations on the optimization, results with no risk discount 

are compared to a layout found by applying the recoveries both by block and by stope on an e-type 

model, ignoring the non-linear impacts of stope-based recoveries. 

4.2.1 Parameters 

Parameters representative of the operation are provided to facilitate the optimization of subsurface 

extraction with an open stoping method. This includes stopes and pillar sizes, recovery ranges, 

mining cost and metal price estimates. Tab. 4.2 shows the parameters input for optimization. 

Tab. 4.2: Parameters for stope optimization 

Parameter Symbols Values 

Stope size minima (blocks) 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 (1,4,4) 

Stope size maxima (blocks) 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥 (5,8,8) 

Model size 𝑋𝑑𝑖𝑚, 𝑌𝑑𝑖𝑚, 𝑍𝑑𝑖𝑚 (165,249,166) 

Model origin 𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑍𝑚𝑖𝑛 (123342.5,259887.5,422.5) 

Block sizes 𝑋𝑠𝑧, 𝑌𝑠𝑧, 𝑍𝑠𝑧 (5,5,5) 

Pillars 𝑥𝑝𝑖𝑙, 𝑦𝑝𝑖𝑙, 𝑧𝑝𝑖𝑙 (1,1,1) 

Risk scaling factor 𝛼 0 to 0.3 by 0.1 

Mining cost per block 𝐶𝑚 $75/t 

Processing cost per block 𝐶𝑝 $25/t 

Metal price 𝑃 $38.59/g 

Density 𝛾 2.7 t/m3 

Recovery Function Eq. 17 
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Recovery is assumed to behave non-linearly with a range between 85% to 95%. To form a recovery 

function, 5.0 g/t is taken as the optimal grade for processing, with a 95% recovery. A piecewise 

parabolic curve is fit with a discontinuity at 5.0 g/t. Initially, the portion of the curve below 5.0 g/t 

is set to have a 0% recovery at 0 g/t. An economic cutoff is back-calculated as 3.5 g/t, returning a 

recovery of 85%, which is within the given range. The function above 5 g/t calculated to have a 

recovery of 90% at 50 g/t. The full recovery function is given in Eq 17. 

 𝑟 =  {

19

20
− (

19

500
× (𝑔 − 5)2)         , 𝑔 ≤ 5

19

20
− (

3

125000
× (𝑔 − 5)2) , 𝑔 > 5

 17 

Stope placement is limited to between 0 and 485 m above the base of the simulated model due to 

the requirement for a crown pillar below the existing excavation. The required pillar is assumed to 

be approximately equal to the width of the pit at the pit bottom.  

4.2.2 Implementation 

The stochastic stope optimization algorithm is implemented with a greedy secondary algorithm as 

there is no requirement for continuous longitudinal or transverse pillars. Each level is optimized 

for every considered risk discount in succession to reduce the reading and calculation of level data. 

The dynamic level combination adds continuous sill pillars, which are identified as a requirement 

for this project. It is indicated that the pillars should be different in height depending on the width 

of the above excavation, but stope size-dependent pillar dimensions are not implemented for this 

algorithm. This implementation considers all sill pillars to be one block tall, the minimum stope 

width. 

The algorithm initially takes about 6 days to produce the layouts associated with the 4 risk discount 

factors, indicating a need for efficiency improvements. The algorithm is adjusted to reduce the 

data input to any call of the 1-dimensional dynamic optimization to include only strips bounded 

by the outermost positive stopes, limiting the memory and iterations required to reach a solution. 

This greatly improved the speed of the algorithm, with the improved implementation taking 4.5 

hours to produce results for the 97-level stope optimization problem at 4 discount levels. The 5 

considered stope dimensions in each direction lead to 5^3 or 125 possible stope sizes. 
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4.2.3 Results 

Four stope layouts are produced for 𝛼 values between 0 and 0.3. The layout produced for the 

𝛼 = 0 case is shown in Fig. 4.22. 

 
Fig. 4.22: Schematic view of 𝛼 =  0 results 

Note that some stopes are set apart from the main valuable area reducing the likelihood that those 

stopes are economic if individual access costs are assessed. 

As the risk discount is increased, the number of stopes, value, and standard deviation of the layout 

is reduced. Fig. 4.23 shows the changes in the number of stopes and value by risk discount. The 

number of stopes appears to decrease linearly as the risk discount increases, while the value inflects 

at 𝛼 = 0.2. Additionally, the stope number has a broader range with values between 422 and 265, 

a 37% reduction. The value ranges from $560 M to $540 M, a difference of only 3.5%. 
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Fig. 4.23: Stope number and value by risk discount 

When the results are plotted in value-risk space (Fig. 4.24), they do not form a convex efficient 

frontier as might be expected, most noticeable when considering the 𝛼 = 0.3 risk penalty 

optimization; however, none of the solutions appear dominated, and therefore all remain viable 

solutions.  

 
Fig. 4.24: Solutions in value-risk space 

As the best layout is not apparent from the value-risk plot, alternative assessments are required to 

choose between them. The first method in the process is to assess the alternatives for stochastic 

dominance. An alternative is stochastically dominated if its value is lower than that of another 
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layout at every quantile of its distribution (Rossi & Deutsch, 2014). The cumulative histograms 

are plotted for all the optimized layouts to assess whether any are stochastically dominated (Fig. 

4.25). 

 
Fig. 4.25: Assessment of stochastic dominance between optimized layouts 

In this case, one alternative is dominated: the layout at 𝛼 = 0.3 is dominated by that at 𝛼 = 0. The 

remaining layouts are not dominated. Visually, the layout for 𝛼 = 0 outperforms the others on 

most quantiles, with the 𝛼 = 0.1 outperforming it on two quantiles and the 𝛼 = 0.2 on one. With 

the higher upside and downside outcomes, it appears that the 𝛼 = 0 layout should be chosen in 

most cases. This is likely because of the low relative error in even the riskiest optimized layout. 

The remaining layouts, at 𝛼 = 0, 0.1,  and 0.2, are considered for scheduling to account for time-

dependent risk when selecting the final layout. 

4.2.4 Scheduling 

The layouts remaining after optimization and assessment in Section 4.2.3 are further analyzed 

through a stochastic scheduling procedure. Each layout is considered in stochastic annealing 

schedule optimization using the same risk discount as in the corresponding layout optimization. 

The schedules are optimized to maximize a risk-rated NPV by level, assuming a vertical 

development cost of $10000/m and a discount of 8% per period. The resulting range of returns is 

shown undiscounted by period in Fig. 4.26 and overall in Fig. 4.27. 
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Fig. 4.26: Scheduling results with 90% confidence interval 

 
Fig. 4.27: NPV histogram by risk discount to assess stochastic dominance 

The undiscounted period distributions clearly show value being preferred early in the schedule. 

The general correlation of high value and high risk is also apparent here. There is no stochastic 

dominance between the solution distributions after scheduling (Fig. 4.27). The 𝛼 = 0.2 case, 
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however, is clearly worse than the other options, only competing in low quantiles but generally 

producing visibly worse results. The remaining solutions are reasonably similar, with the α= 0 

case displaying a large jump in value at the high tail. While more analysis could be pursued, such 

as a utility theory comparison, the 𝛼 = 0 case is selected due to the better mid-range performance 

compared to that with 𝛼 = 0.1. The order of extraction by level for the  

𝛼 = 0 layout is shown in Fig. 4.28. The resulting layout is reasonable, with levels mostly being 

mined as they are accessed, with some exceptions where more stopes are accessed in a period than 

can be mined. This is most notable looking at period 6, during which previously omitted levels are 

mined. 

 

Fig. 4.28: Order of extraction by level for chosen layout 

In a case where a decision is less clear, expected utility or regret theory can be utilized to decide 

between remaining options (Bleichrodt & Wakker, 2015). The maximization of expected utility or 

minimization of maximum regret is considered in this case. This requires the development of a 

utility function that considers risk according to personal or corporate risk tolerance. The 

minimization of maximum regret, alternatively, reduces the impact of underperformance on lower 

value realizations. In an industry where meeting or exceeding targets is an indication of success, 

adopting a regret-based decision-making paradigm is worth pursuing. 
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4.3 Non-Linearity Analysis 

The optimization is run on an e-type model of the simulated grades to assess the impact of 

considering non-linearities by implementing stochastic optimization. Recoveries are first applied 

by block and then by stope before comparing both results to the initially optimized layouts from 

Section 4.2.3. Figs. 4.29 and 4.30 show the stope-based e-type and initial results in value-risk space 

and as full distributions respectively, facilitating a direct comparison. 

 
Fig. 4.29: E-type comparison in value-risk space 

 
Fig. 4.30: Stochastic comparison of e-type optimization with recovery by block 

In both cases, the e-type model severely underperforms all the stochastically optimized layouts, 

falling well below the apparent efficient frontier and is stochastically dominated by all alternatives. 

The average value of $464 M is 17% below the value of the 𝛼 = 0  layout. This shows the 
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magnitude of the benefit realized when considering non-linearities in value calculation for stope 

optimization. Fig. 4.31 shows results for an additional optimized plan with recovery applied to 

each stope in an e-type model. This plan performs very poorly with an average value of $43.6 M 

and one realization on which it returns a value less than $0, further supporting the necessity of 

optimizing on a stochastic model to include non-linearities in calculations. 

 
Fig. 4.31: Value distributions including e-type optimization with recovery applied by stope 

The gap between the two optimized e-type layouts and the stochastically optimized solutions is 

not as drastic in practice as it appears in Fig. 4.31. This is because the information effect causes 

the uncertainty to become lower at the time of mining (Chiquini, 2018). There is often recourse 

available through the changing of mine plans over time, allowing the realized value of the e-type 

layouts to become closer to those of the stochastic optimizations. However, stochastic methods 

also do not consider the information effect directly and their value similarly improves as mining 

proceeds. The non-linearity example in Chapter 2.6 indicates that the stochastic interpretation is 

correct. 

An additional consideration is that this comparison assumes that it is correct to calculate metal 

recovery at the stope level. Realistically, ore does not move as a unit from a stope to the processing 

plant. Instead, ore is often combined from various sources, impacting the head grade at the 
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processing plant at any point in time. While this combination would ideally be considered, the 

time-independent nature of stope layout optimization makes it infeasible.  
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4.4 SSO Comparison 

The ore body is optimized using SSO as implemented in Maptek Vulcan to compare the developed 

optimizer with existing deterministic methods (Vulcan Envisage, 2018). The slice method is used, 

as discussed in Section 2.5.1. A cutoff grade of 3.5 g/t is used for the optimization, and substoping 

is used to enforce x and z pillars. It is difficult and computationally costly to produce scenarios 

with identical constraints between SSO and the heuristic stochastic stope optimization algorithm 

as substoping can only define x and z pillars as a ratio to the stope width. It is difficult to maintain 

constant pillar sizes as they are constrained to block multiples. Two scenarios are considered to 

attempt to reach a reasonable comparison: 

1. The x and z dimensions are constrained to the minimum values (1 and 4 blocks, 

respectively) 

2. The z dimension is constrained to its minimum height, and x is varied between 5 and 10 

metres. 

Fig. 4.32 compares the stochastic stope optimizations with the value distribution of the SSO 

results. 

 
Fig. 4.32: Novel optimizer compared to SSO implementation 

The SSO clearly underperforms the heuristic optimizer in the evaluated cases. The notable 

improvement when considering the heuristic stochastic stope optimizer increases confidence in the 
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quality of the novel optimizer presented in this thesis. The quality of the comparison is assessed 

by evaluating stope dimension distributions in the x, y, and z dimensions. (Figs. 4.33 and 4.34) 

 
Fig. 4.33: Heuristic optimizer stope dimension distributions at 𝛼 = 0 

 
Fig. 4.34: Scenario 1 (left) and 2 (right) y dimension distribution 

The x and z dimensions are fixed in scenario 1, at 1 and 4 blocks, respectively. In scenario 2, the 

z dimension was constrained at 4 blocks. All stopes are 2 blocks in the x dimension even though 

3 block stopes are permitted. The largest differences between the results are the lower frequency 

of low y stopes and restriction of x dimensions in both scenarios. These results support the 

statement that the produced heuristic optimizer truly outperforms SSO in this case. 

It should still be recognized that this is not a perfect comparison, and alternate implementations of 

the SSO or the heuristic stochastic algorithm may obtain different results. Additionally, comparing 

on this case study benefits the presented algorithm as the widely varying stope sizes cannot be 

reproduced using SSO. This limitation should be considering when comparing the algorithms. 

4.5 Discussion 

The algorithm shows promising results when implemented on a real-world case study, accessing 

risk-rated results and accounting for non-linearities in value calculations. Of the four optimized 
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layouts, three remain for further analysis as one is stochastically dominated. Schedules are 

optimized for each layout with a simulated annealing approach, considering the same risk discount 

used for the layout optimizations. The layout optimized with no risk discount is found to 

outperform the alternative solutions marginally and is selected as the overall solution. 

An additional comparison is completed to assess the benefit of accounting for non-linearities 

though stochastic optimization, showing significant improvement by applying the non-linear 

transfer function on each realization before averaging the response. The e-type optimization 

returns a stope layout that preforms 17% worse than the layout produced with no risk penalty 

considered. This leads to the conclusion that stochastic methods are necessary for the optimization 

of stope layouts. 

Implementing the stochastic stope layout optimization as presented accounts for grade uncertainty 

but does not directly consider boundary uncertainty. Boundary uncertainty can take varying forms 

with different implications for deposit assessment. The main contributing factor is the scale of the 

uncertainty in comparison with the scale of the deposit. If boundary uncertainty is small in scale, 

it is likely sufficient to consider its contribution to grade uncertainty in those blocks. However, 

there are also cases, particularly in vein deposits, where the positional uncertainty can be 

considerable compared with the width of the vein (Fig. 4.35).  

 
Fig. 4.35: Boundary uncertainty causes pessimistic assessments due to stope averaging process as only a 

small number of blocks may be included in most or many interpretations 

In these cases, the current averaging process in the algorithm is not appropriate as only a small 

subset of the blocks might be profitable over all realizations, and the stopes found will be limited 
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around these blocks. However, it is clear when evaluating any number of realizations that a larger, 

more inclusive stope is possible. In many cases, the resolution of data increases and the boundary 

locations of the veins will be further informed before the time of mining. Correct assessment in 

these scenarios requires implementing an information effect workflow (Chiquini & Deutsch, 2018; 

Neufeld et al., 2007). 

The general idea of this workflow is to simulate the level of information known at the time of 

mining and create separate simulated models for each resampled case (Neufeld et al., 2007). Each 

set of realizations is then assessed with planning tools, such as the developed stope optimizer. This 

will not result in a single stope layout output but will generate a range of returns from a plan as 

expected at the time of mining. Maps can also be produced to show areas that are more likely to 

be mined than others. 

  



 

91 

 

Chapter 5: Conclusion 
This thesis develops a practical heuristic stochastic stope optimization algorithm that enables the 

consideration of sets of geostatistical realizations in the optimization process. The algorithm allows 

for the calculation of non-linear transfer functions and the consideration of risk in decision-

making. An existing deterministic algorithm is adapted to accept realizations as input, applying a 

defined objective function on each realization before averaging the response. A workflow is 

developed in which several layouts are optimized with different risk penalties, and the results are 

compared to determine an overall layout. 

5.1 Contributions 

The main contribution of this research is an algorithm with the ability to optimize stope layouts 

considering a suite of realizations concurrently heuristically. Two outcomes are achieved by this 

configuration: 1) non-linear transfer functions are correctly accounted for in the calculation of 

layout response; 2) integration of risk into the objective function for active consideration of risk in 

optimization; 3) demonstration of algorithm performance on a real deposit. 

5.1.1 Non-linearities 

It is well known that non-linearities in any calculated response cannot properly be accounted for 

if the input is averaged before the response is calculated (Rossi & Deutsch, 2014). Configuring the 

algorithm to calculate response on each realization before averaging the values is the correct 

approach to optimization. Logically, optimization can only reach the correct solution when the 

objective calculation properly accounts for any aspects that could create substantive discrepancies; 

otherwise, what appears to be an optimal solution may not be optimal. 

5.1.2 Risk Integration 

Risk is an inherent aspect of mine planning, optimization, decision-making, and investment. When 

choosing between two possible plans, both the average value of the plan and the uncertainty in that 

value must be considered. The implementation of value calculation by realization allows for not 

only the assessment of plans with uncertainty but the optimization of plans with different levels of 

uncertainty, generating a variety of planning options fitting differing risk tolerances. This leads to 

the development of an efficient frontier of results which can be chosen between based on an 

assessment of stochastic dominance and a determination of risk tolerance. This improves the 

decision-making process when optimizing stope layouts. 
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5.1.3 Demonstrative Case Study 

A case study is presented to demonstrate the algorithm as it is applied to real-world data. A set of 

gold data is modelled into 20 realizations with SGS, and an open stoping layout is optimized at 

four risk discount levels. The layouts are compared considering stochastic dominance, reducing 

the field to 3 cases. After stochastically scheduling all levels using a simulated annealing approach, 

it is found that the distribution of NPVs of the 𝛼 = 0 case dominates both others and is selected as 

the optimal layout. The algorithm is also applied to an e-type model. The results indicate the impact 

of the non-linearities on the optimization, with the e-type layout having a value 17% below the 

𝛼 = 0 layout. The value distribution for this layout is also dominated by all alternatives and lies 

well below the efficient frontier. 

5.2 Limitations and Future Work 

While the work presented represents a real and valuable contribution to the body of research on 

stope optimization, the algorithm, as presented, has limitations in its implementation from both 

mining and programming perspectives. 

5.2.1 Mining Method Scope 

The scope of the optimizer has been limited primarily to the open stoping mining method. The 

mining controls are limited to stope sizes and pillars, allowing it to be adapted in its current form 

to any method which can be defined by those parameters. However, other stoping methods can 

require vertical alignment between stopes or stope edges, such as in the case of sublevel stoping, 

which reports blasted ore to a common extraction level. This alignment is not currently possible 

in the stochastic stope optimization algorithm. Additionally, any stopes produced are vertical, with 

no existing method to add or optimize inclination. 

Pillar recovery is also difficult to account for in the stochastic optimization as pillars are either 

defined based on time of extraction or a set pattern. Pillar recovery requires that adjacent stopes 

are backfilled, often with a cement mix, and allowed to set imposing cost and scheduling 

differences. The mining and processing recoveries of the pillars are reduced from primary stopes 

due to the difference in scale and dilution from those adjacent and the relatively soft backfill.  
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5.2.2 Dimensionality Reduction 

The dimension reduction leveraged to reduce the computational demand of the optimization at the 

expense of some completeness. Specifically, when a 1-dimensional strip is optimized, no direct 

consideration is given to where pillars are placed within strips that are adjacent to it horizontally 

or vertically (Fig. 5.1). 

 
Fig. 5.1: Pillar optimization considerations. Red segments are not considered jointly with the possible 

stopes they overlap 

The optional tabu optimization module (Fig. 3.11) reduces some impact of this issue by changing 

the order of strip selection and, consequently, pillar placement. However, it is possible that an 

optimal plan is not found with an alternate stope configuration as, theoretically, the first selected 

stope strip could need alternate stopes selected to reach the optimum. 

5.2.3 Minability of Results 

The layouts which result from this algorithm have some positionally outlying stopes that are not 

likely to be profitable at the time of mining. These stopes are those that fall on the outer extents of 

the optimized area, far from other groups of stopes. This distance leads to higher access costs and 

uneconomic extraction. The algorithm does not discriminate between stopes by the specific costs 

of accessing them in a mining scenario as that would require scheduling. The inclusion of outlying 

stopes is misleading, but the algorithm or workflow could be changed to remove the outliers. 

Without changing the algorithm itself, the practitioner can limit the workflow to act on panels of 

the deposit, ignoring areas where only outlying stopes are found. An ad-hoc alternative would be 

to post-process stopes, building clusters of stopes that are a maximum distance from each other, 

with a minimum number of stopes forming each cluster. This functionality could also be built-in 

as an optional procedure in the algorithm. 
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5.2.4 Additions to Algorithm 

Several additions are suggested for future improvement to the algorithm, some more impactful 

than others. These include methods to increase the optimality of the results, better reflect real 

mining scenarios, add flexibility, and either combine or account for multiple aspects of planning 

during optimization. 

The first suggested improvement is the addition of a method to account for variable mining and 

access costs. This can be implemented by, for example, referencing a function for distance from a 

set point, or including a rock-type with variable cost and recovery calculations. This addition 

would still not reproduce the exact costs of optimized access infrastructure, but it is worth 

investigating whether the implementation of an analogue for access cost improves the optimality 

of the layout when scheduling is considered. 

A more direct approach is to consider multiple aspects of underground mining optimization 

simultaneously. It is suggested that a partial combination, where some aspects are considered less 

thoroughly than others, could lead to an improved solution overall compared to the typical iterative 

approach where each portion is considered separately. This could include considering a scheduling 

analogue during the dynamic level selection portion of the algorithm, accounting for an 

approximation of differential access costs and the impact of mining order on the optimal layout. A 

potential issue with accounting for scheduling in stope layout optimization is stopes mined later 

would be given less weight in the objective function if a typical discounted value weighting such 

as net present value is considered, possibly leading to a depressed nominal value in the final layout. 

This could be relieved by considering the order of extraction to define the precedence of 

infrastructure while only considering discounted value after the optimization is completed. Further 

investigation is required to determine the best way to combine these optimizations while 

maintaining reasonable computational complexity. 

Another shortcoming of the algorithm is the limitation to vertical stopes. An immediate solution 

to this problem is to input a model that is rotated to a dip that is assumed appropriate for the stopes 

in question. As an attempt to optimize the dip, multiple angles could be considered, and the results 

compared. However, this would still lead to all stopes following the same dip, which is not always 

practical. Other methods to evaluate varying stope dips should be determined and evaluated. 
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It is noted that in some cases, positive stopes are indicated in an optimal solution that are spatially 

separated from the bulk of the other stopes. In this case, it is unlikely that the incremental value of 

the layout would increase when a stope of this type is added due to the cost of access. This should 

be accounted for in either the subsequent scheduling ad access optimizations or through general 

proximity limits to cull these external stopes. 

Finally, the current implementation of the algorithm is programmed in the Python programming 

language within the Jupyter development environment due to the ease of implementation. Because 

of the looping required, Python is not the most efficient language for this application, and the 

development of an executable program would be preferable if the program is adapted for 

commercial purposes. It is recommended that for continued use, a FORTRAN implementation as 

standard for GSLIB programs is pursued for the heuristic stochastic stope optimizer. 

5.3 Summary 

In the above sections, a heuristic optimization algorithm is developed. The benefits of the 

algorithm are proven both in terms of the correct calculation of non-linearities in objective 

functions and the added ability to directly consider risk during optimization. This improves a 

critical aspect of mine evaluation and planning, leading to a better realization of extraction value. 

A case study is completed with the novel algorithm, showing the ability for risk evaluation and the 

improved calculation of non-linear objectives with a 17% increase in value when calculation over 

realizations is considered. 

The thesis statement from Chapter 1 states: “The development and implementation of a stochastic 

stope optimization algorithm allow for the correct consideration of non-linear functions and the 

direct inclusion of risk in the optimization process, improving decision-making when designing 

stope layouts.” The body of this work develops a heuristic algorithm, which represents a real 

improvement in the ability for the consideration of non-linearities and risk in stope layout 

optimization, achieving all indicated goals. This is shown through the case study implementation 

where improvements due to the correct assessment non-linearities are detailed, and the 

consideration of risk is leveraged to implement a decision-making workflow that would not be 

possible without the generation of risk-rated layouts.  
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Appendix A 
Description of input parameters  

Parameter Symbol(s) Description 

Stope size minima (blocks) 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 
Minimum stope dimensions – 

determined by equipment restrictions 

Stope size maxima (blocks) 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥 
Maximum stope dimensions – 

determined by geotechnical constraints 

Model size 𝑋𝑑𝑖𝑚, 𝑌𝑑𝑖𝑚, 𝑍𝑑𝑖𝑚 Dimensions of the input geostatistical 

grade model 

Model origin 𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑍𝑚𝑖𝑛 Dimensional origin of the input model 

Block sizes 𝑋𝑠𝑧, 𝑌𝑠𝑧, 𝑍𝑠𝑧 Size of blocks in each dimension 

Pillars 𝑥𝑝𝑖𝑙, 𝑦𝑝𝑖𝑙, 𝑧𝑝𝑖𝑙 
Required dimension of pillars in each 

dimension required for geotechnical 

stability 

Risk scaling factor 𝛼 
Multiplicative penalty factor 𝛼 applied 

in objective calculations 

Mining cost per block 𝐶𝑚 Cost required to mine a block – 

converted from cost per tonne 

Processing cost per block 𝐶𝑝 
Cost of processing a single block – 

converted from cost per tonne 

Metal price 𝑃 Projected metal price for optimization 

Density 𝛾 Value for density of all blocks in model 

Recovery Function Function defining process recovery 
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Appendix B 
USGSIM Parameter File 
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