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Abstract

This thesis presents the results of an experimental study of a deflected wall jet using
particle image velocimetry (PIV). A wall jet was formed in a rectangular flume and
deflected upwards to the water surface by a baffle affixed across the width of the flume.
A square data mosaic was assembled from fourteen tesserae, each with 15 cm square
fields of view. The velocity data was decomposed and the following flow parameters
were calculated: u and v velocities, kinetic energy, Reynolds stress, turbulent kinetic
energy, dissipation rate, vorticity, strain and Kolmogorov length and velocity scales.
Profiles along the curved jet trajectory were extracted and similarity analyses were
performed. Wall jet-like, plane jet-like and surface jet-like regions of flow were
identified. Results consistent with those of Wu and Rajaratnam (1995a) were observed
for the mean flow. Turbulence was concentrated in the body of the jet and decayed

with distance along the trajectory.
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1 Introduction

The topic of this current work is motivated by the study of Wu and Rajaratnam
(1995a) on the effect of baffles on submerged flows. Therein, the authors conceptualize
the submerged hydraulic jump as an energy dissipator and describe the limitations
encountered when tailwater depths are larger than subcritical sequent depths in such
flows. It is suggested that the employment of submerged jet flows as energy dissipators
is generally avoided in civil engineering practice; attributed to the concern that high-
velocity streams may continue for relatively large distances along a riverbed without
appreciable dissipation and thereby cause serious downstream erosion. This erosion
can damage native fish and wildlife river ecosystems as well as endanger the
foundations of hydraulic structures and adjacent public works.

It is also suggested that the provision of baffle walls in these types of submerged
flows may attenuate the risk of bed degradation and erosion. Introduced by Wu and
Rajaratnam is the instance of the deflected wall jet, the flow structure in which a baffle
wall is employed to deflect a plane wall jet in such a way that it travels upward as a
plane turbulent jet to eventually become a plane surface jet at the free surface. Wu and
Rajaratnam propose that such a deflected wall jet can dissipate energy similarly to a
deeply submerged hydraulic jumps without the associated erosion risks under certain
conditions. A video still obtained from a dye visualization test of the plane deflected
wall jet is shown in Figure 1.1. It is this flow that is presently studied.

The velocity and pressure data assembled by Wu and Rajaratnam is time averaged
in nature and was collected using standard Prandtl tube point measurement
techniques. Although a wealth of information concerning both the mean flow
structure and velocity similarity configurations are presented by the authours, there
currently exists no detailed mean or turbulent data set describing the whole flow field
of the deflected wall jet.

This study aims to remedy the deficiency by employing the particle image
velocimetry (PIV) technique in a limited experimental investigation of the
phenomenon. The specific PIV arrangement is quite non-standard. It divides a large
flow field in to individual tesserae, which are imaged and processed separately. The
resulting data sets are then assembled into a final mosaic fully describing the
experimental area of interest, providing greater spatial and velocity resolution than
could be achieved by studying the mosaic as a whole. The measurement programme
and analyses presented in the current work provide original instantaneous, mean and
turbulent data including but not limited to: velocity, Reynolds stress, vorticity and
turbulent kinetic energy.

The structure of this thesis follows the progression of the theoretical investigation,
the experimental programme and the analysis of resultant data. A detailed literature
review is found in §2 that considers the theory of plane turbulent jets. It focuses, in
particular, on the classic plane jet, but considers also the plane jet in a crossflow, the
plane wall jet and the plane surface jet, as these are the constitutive elements of the



deflected plane wall jet, as outlined by Wu and Rajaratnam (1995a). The experimental
methods of the investigation are outlined in §3. This includes a brief outline of PIV
methodology and follows with a description of the flume arrangement, the PIV
instrumentation setup and the measurement programme. Details of the primary PIV
processing and supplementary computations are presented in §4, along with sources of
error. Analysis of the resultant data is presented in §5, as well as concurrent discussions
regarding the findings of this research and its relationship to the current state of
knowledge on the subject. Conclusions and recommendations for future work are
given in §6. References are provided in §7 and the appendix is §8.



Figure 1.1: Dye visualization still of the plane deflected wall jet.




2 Literature Review

Because the plane turbulent deflected wall jet has plane jet-like, wall jet-like and
surface jet-like constitutive elements, condensed reviews of the current states of
knowledge on these subjects are presented below. More consideration will be given to
the plane jet as the other cases may be considered as special cases of the plane jet, and
analyses are similar. An excellent review of jet theory, and especially that of a plane and
wall jets, is presented by Rajaratnam in the book Turbulent Jets (1976), and it is from
this volume that a great portion of the following discussion is derived.

2.1 Plane Turbulent Jets
2.1.1 Classic Plane Jet

The classic plane turbulent jet (also called simply the plane jet) can be considered as a
jet of either water or air issuing from a plane nozzle into a large body of an identical
fluid, with the slot width at the upstream gate defined as 2b,, the mean jet exit velocity
defined as U, and the mean jet discharge defined as Q, . In such a configuration, the
origin of the Cartesian coordinate system is located at the centreline of the issuing jet
and at the downstream edge of the slot, with x being the coordinate measured from the
gate in the direction of the jet axis, y being the coordinate measured normal to x in the
direction of the plane surface and z being the third axis of the coordinate system
orthogonal to the others. The two-dimensionality of the plane jet results in a plane of
symmetry coincident with the x-z plane and hence normal to the slot at the upstream
gate. Figure 2.1 shows the definition sketch of this type of plane turbulent jet.

The fluid discharged from the gate opening may be assumed to be of relatively
constant mean velocity, with a pronounced velocity discontinuity between the jet and
the surrounding fluid both above and below the body of the jet (Albertson et al. 1950).
The eddies generated in this region of high shear will immediately result in a lateral
mixing process whereby the kinetic energy of the oncoming flow is steadily converted
into turbulence, with the latter steadily decaying through viscous shear. Due to the
turbulent nature of the mixing region, the fluid within the jet undergoes both lateral
diffusion and deceleration, with fluid from the surrounding area being brought into
motion or entrained into the body of the jet. Thus the deceleration of the fluid in the
jet is accompanied by a simultaneous acceleration of the surrounding fluid, resulting
in both an increase in jet width and discharge intensity (q) at successive sections of the
jet with distance from the efflux section and origin.

The mean flow of the plane jet can be divided into two distinct regions of
developmental stability: the developing flow region and the fully developed flow
region. In the first region, nearest to the efflux section, the jet begins with a near-
uniform velocity distribution of u=U_. Turbulence generated by each of the shear
layers bounding the plane jet penetrate both outwards and inwards, both away from
and toward the plane of symmetry of the jet. A wedge-like region of undiminished
mean velocity equal to U, can be found between the successively closer turbulent



fronts propagating towards the plane of symmetry, as shown in Figure 2.2. This zone is
called the potential core and has a length of approximately 12b, measured from the
origin (Rajaratnam 1976). Its presence defines the developing flow region; that is, the
limit of this zone of flow establishment is reached when the mixing region has
penetrated to the centreline of the jet and there is no longer any province where U,
exists unchanged.

The second region, is characterized by the lack of a potential core and by the
establishment of dynamic similarity whereby the diffusion process and the growth of
the jet continue without essential change in character. In this fully developed flow
region, further entrainment of the surrounding fluid by the expanding eddy region is
balanced inertially by a continuous reduction in the velocity of the entire body region
(Albertson et al. 1950) of the jet. It is here that the most interesting relationships
between the various parameters of the plane turbulent jet can be and historically have
been identified and compared. In this region it is noted that at each section taken along
the trajectory, the axial component velocity u decreases continuously from a
maximum U _ at the jet centreline to a zero value with distance away from the central
axis. Two points of interest are defined in such velocity profiles: the point at which the
mean velocity is equal to half of the maximum velocity, where u=0.5U_, and the
point at which the velocity is equal to zero, where u=0. The first location is defined as
the jet half-width 8, and the second is defined as the jet width 3,.

The similarity of the u profiles at various longitudinal sections on the x-axis when
the flow is completely established can best be observed when the profiles are non-
dimensionalized and collapsed onto each other. The standard non-dimensionalizing
quantities are called the velocity scale and the length scale, and are defined respectively
as U_ and §,. Plotting u/U_ against n=y/d, for different longitudinal sections
yields velocity distributions that fall on one common geometric curve. They are thus
said to be similar, exhibiting a strong relationship of the form u/U,, =f(n).

In order to study the similar velocity distributions found in the fully developed
region, it is advantageous to investigate the phenomenon from an analytical
standpoint and develop the equations of motion for the plane turbulent jet. Following
the procedure and logic outlined by Rajaratnam (1976), one accepts the
decomposition of velocity and pressure terms into mean and fluctuating components
and begins with the three dimensional Reynolds equations and the continuity equation
for incompressible flow. Presuming the flow to be both steady and completely two
dimensional, terms including time derivatives or w-component velocities and
derivatives are dropped from the equations. Further reductions to the equations are
made following the observation that u is generally much larger than v in a large
portion of the jet and that both the velocity and pressure gradients are much smaller in
the x-coordinate direction that the y-coordinate direction. After equation
rearrangement, a final assumption of the pressure gradient in the axial direction being



negligibly small is made (assuming a simple hydrostatic pressure distribution),
resulting in the well-known equations of motion for the plane jet:

ua—u-i—v—a£=lg1 [2.1]
dx dy pody '
a_u+_8_v=0 [2.2]

where u, v and w are the mean component velocities in the x-, y- and z-directions,
respectivey, and T is the mean Reynolds shear stress.

Further theoretical analyses can be performed with the above equations in order to
better understand the mean flow of the plane jet. Approaches have been developed in
which the equations of motion are integrated across the jet and conservation integrals
for momentum, energy and volume derived (Kotsovinos 1975). Rajaratnam derives
the integral momentum equation by multiplying equation [2.1] by p and integrating
across y. Employing our assumption on the nature of the velocity distribution at
different jet sections and from considerations of symmetry, the remaining equation
can be expressed as:

% [putdy=0 [2.3]
0

This equation indicates that the rate of change of momentum flux in the x-
direction is zero and that therefore the momentum flux, M, = 2pb Uy , should be
conserved. The momentum flux is an important physical quantity controlling the
behaviour of the plane jet. It effectively replaces the individual values of b, and U, in
any similarity analysis and indicates that, for a given value of M, the same jet
behaviour is obtained for different combinations of b, and U, (Rajaratnam 1976). A
parallel analysis of the energy flux, performed by multiplying equation [2.1] by pu and
integrating over y yields the following equation, indicates that the rate of decrease of
the kinetic energy flux is equal to the rate at which turbulence is produced, supporting
the assertion that the mixing action of the jet converts kinetic energy into turbulence
which is ultimately dissipated:

d 7pu’ T _du
— |=—udy =~|t—dy [2.4]
a2 [

Rajaratnam (1976) also derives the volume flux integral equation and discusses the
entrainment hypothesis originally introduced by Morton et al. (1956) relating to the
plane turbulent jet. Here, the discharge intensity at any section of the jet is defined as
twice the integral of u from y =0 to y =co and the rate of change of q with
longitudinal distance from the gate can be obtained from integration of equation [2.2]
and finally written as:



da_d udy =-v, [2.5]
dx dx?

where v, is the entrainment velocity magnitude component, representing the velocity
magnitude of the fluid being brought into the jet. The entrainment velocity could also
be expressedas —v, = U_, with o, representing the entrainment coefficient. As
explained earlier, the jet entrains a considerable amount of the surrounding fluid as it
moves forward. If momentum is considered to be conserved, it would follow that there
should be no axial component to the entrainment velocity, however, Heskestad (1965)
has reported that the flow near the edge of the jet enters the jet at angles in excess of
normal to the x-axis. This indicates that momentum is not actually conserved and that
the assumptions used in the determination of equation [2.3] are imperfect. Kotsovinos
(1978) notes a loss of 0.2M_ in the momentum flux of a plane jet approximately 100b_
downstream of the origin and presents an equation describing the variation.

Regardless, from dimensional considerations of the three flux integrals and the
Reynolds and continuity equations it is possible to present general proportionalities
describing the decay of the maximum mean centreline velocity, the jet growth rate, and
the increase of the jet discharge intensity in the context of the velocity distribution
relationship u/U_ =f(n) noted earlier. Substitution and rearrangement suggest that
U_ <1/ \/f ,that §, o< x and that v, =< U_ . Further dimensional analysis (Rajaratnam
1976) produces the following three semi-empirical equations with the coefficients C,,
C, and C, requiring evaluation with experimental data:

u, C
AN 6]
8,/b, =C,(x/b,) [2.7]

a/a, =C,\x/b, [2.8]

There exists a long history of experimental and mathematical studies performed to
give explanation and prediction to the velocity distribution in the plane turbulent jet.
Tollmien (1926) and Gortler (1942) each produced theoretical approximations to the
similarity curve by substituting varying hypothetical relations between shear stress and
velocity gradients based on the equations of Prandtl (concepts such as mixing length
and eddy viscosity) in the simplified equations of motion. Forthmann (1934) and
Reichardt (1941) both collected extensive data sets of mean flow properties that
adequately validated the previous semi-empirical solutions. Reichardt derived a
solution similar to those of Tollmien and Gértler by instead using a thermal
conduction analogy as the shear stress substitution in the equations of motion while
Zijnen (1958) showed that the velocity distribution could be satisfactorily represented
by a Gaussian curve. Corrsin (1943) noted certain shortcomings of the hypotheses
used by Tollmien and Gértler (reported by Albertson et al. 1950 and by Miller and
Comings 1957) and confirmed the insensitivity of their velocity functions to their



employed closure relationships when he conducted detailed measurements of the
turbulence within two dimensional jets. Additional detailed mean and turbulent data
was collected by Albertson et al. (1950), Miller and Comings (1957), Zijnen (1958),
Heskestad (1965) and Goldshmidt and Eskinazi (1966) and supplementary solutions
were presented by them.

The resulting wealth of theoretical arguments, experimental data and semi-
empirical solutions have lead to a refined set of functions which describe most of the
experimenta data accurately. It can be noted that Tollmein’s solution appears to
provide a better fit in the outer region of the velocity profile while Gértler’s solution
appears superior near the jet axis. The following solution of Reichardt provides a good
general fit (Goldshmidt and Eskinazi 1966) and is considered a suitable f(n)
approximation:

u/U, =e®" [2.9]
Rajaratnam (1976) reports that due to the imprecise methods of locating the virtual
origin of plane jets, it can be taken as coincident with the origin described earlier. In
fact, most of the solutions historically presented can be reworked in forms of equations
[2.6], [2.7] and [2.8] and coefficients compared. The following are accepted coefficient
values: C, =3.50, C, =0.1 and C, =0.44, with o, =0.053 obtained from equation
[2.5], as reported by Rajaratnam. They result in the following formulae:

U 3.50

U': T [2.10]

3, =0.1x [2.11]
q/q, =0.44,/x/b, [2.12]
v.=-0.053U,, [2.13]

2.1.2 Plane Jetin a Crossflow

Consider a plane turbulent jet issuing into a body of fluid which has a uniform
velocity, and orient the jet and slot so that the jet exit velocity is normal to the uniform
velocity. This flow is shown in Figure 2.3 and describes the case of a plane turbulent jet
in a crossflow. The initial characteristics of the such a jet are identical to those of the
plane jet: the slot width is defined as 2b_, the mean jet exit velocity as U, and the
mean jet discharge as Q. The origin of the global Cartesian coordinate system is
located at the centreline of the jet at efflux section, with x measured from and normal
to the gate, y measured normal to x and in the direction of flow in the surrounding
fluid body, and x orthogonal to both the x- and y-coordinate axes. There is, however,
no plane of symmetry. The trajectory of the jet centreline is curved in nature and
therefore not coincident with the x-axis; it defines the local coordinate system through
which the plane jet in a crossflow can be studied and is defined by the locus along
which the maximum mean axial jet velocity U, exists. This frame of reference shares



its origin with the global frame, but considers the s-coordinate axis (defined by the
trajectory), 0, (defined as the angle between U, and the x-axis) and the n-coordinate
axis (defined as normal to 0, in the outbound direction) as seen in the provided
figure.

For reasons which will be obvious in §2.4, it becomes convenient to neglect a
detailed fluid mechanical analysis of the plane jet in a crossflow. The significant
observation taken from the current literature is that there exists a similarity in velocity
profiles taken at different sections along the s-axis in the developed flow region that
can be approached in a manner comparable to that in §2.1 and that growth rate of the
jet is non-symmetrical (Yu-Leuk and Wood 1966). As such, let 3, and 3,, define the
jet half-width and jet width along the positive (outbound) section n-stem, where
u=0.5U_ and u=0 respectively, and let 3 and d,_ define the same values along the
negative (inbound) section n-stem. Likewise, the dual length scales are defined as §,,
and 3,, with the velocity scale as U_.

2.2 Plane Turbulent Wall Jets

The classic plane turbulent wall jet (also called simply the wall jet) can be considered as
a jet of either water or air issuing from a plane nozzle tangentially onto a flat plate or
bed that is submerged in a semi-infinite body of an identical fluid. The slot width at
the upstream gate is defined as b, , the mean jet exit velocity defined as U, and the
mean jet discharge defined as Q_, much like the definitions applied to a plane jet. In
such a configuration, the origin of the Cartesian coordinate system framing the flow is
located on the bed and at the downstream edge of the slot. The x-coordinate is
measured from the gate in the direction of the jet axis, with the y-axis taken normal to
the x-axis towards the free surface and with the z-axis of the coordinate system
orthogonal to both the x- and y-coordinate axes. Figure 2.4 shows the definition sketch
of plane turbulent wall jet.

The behaviour of the fluid and the mean characteristics of the jet as it exits the
outlet closely resemble those of the plane jet. In both cases a shear layer is formed
where the velocity discontinuity exists, there is the presence of a potential core and
therefore there is both a developing and a fully developed flow region to the body of
the jet. The surrounding fluid is likewise also entrained into the mixing region of the
wall jet. Like the plane jet, the length of the developing region of a plane wall jet is also
equal to approximately 12b_, as measured from the coordinate system origin
(Rajaratnam 1965a). However, unlike the former, this flow is not symmetrical about
the x-z plane, nor can its virtual origin be considered coincident with the coordinate
system origin. It is, in fact, located approximately 10b, upstream of the global origin
(Rajaratnam 1976). The reason for the differences is obvious: the presence of the bed.
Instead of two shear layers propagating both toward and way from each other in an
axisymmetrical manner, there is a growing free-mixing region on one side and a
boundary layer of thickness 8 on the other.



Overlooking the boundary layer and the slightly different mechanisms by which
the potential core of the plane turbulent wall jet is consumed, the wall jet presents itself
surprisingly similar to the upper half of the plane turbulent jet. It is defined with viaa
corresponding logic. In the fully developed flow region, it is noted that at each section
taken along the trajectory, the axial component velocity u decreases continuously from
amaximum U, where y =3 to a zero value some distance above the bed. The two
main locations of interest in such velocity profiles are defined like those in the plane
jet: the point at which the mean velocity is equal to half of the maximum velocity,
where u=0.5U_ with the caveat du/dy <0, and the point at which the velocity is
equal to zero, where u =0 with that same caveat. The first location is defined as the jet
half-width 8, and the second is defined as the jet width 9, .

Similarity of the u profiles at various sections along the x-axis (when the flow is
completely established) is observed when the profiles are non-dimensionalized and
superposed. The velocity scale and length scales are taken as U_ and 8, , respectively.
Plotting u/U_ against n=y/§, for different longitudinal sections yields a common
similarity curve of the form u/U_ =g(n).

Following closely the arguments presented in §2.1 and again neglecting the effects
of any longitudinal pressure gradient, it can be shown that the simplified equations of
motion for the plane turbulent wall jet are as follows:

Ju du Ju ladt

u5;+ V$=V$;+B-a—y [2.14]
du ov
&*‘E—O [2.15]

The momentum, energy and volume fluxes can be similarly produced, integrated
and manipulated. This process introduces the wall shear stress T, as an important
term, and it becomes clear that the friction at the wall is a decisive agency that must be
given a prominent place in any theory of the turbulent plane wall jet (Glauert 1956).
Coupled with the same type of dimensional analysis used in the analysis of the plane
jet, the relationships U_ o 1/vx , that & < x, T, 1/xand v, = U, are suggested
Rajaratnam (1976). Theoretical arguments and experimental observations have been
given by Férthmann (1934), Glauert (1956), Sigalla (1958), Schwartz and Cosart
(1961), Myers et al. (1963), Verhoff (1963), Rajaratnam (1965a-c), Rajaratnam and
Subramanya (1967 and 1968) and Wu and Rajaratnam (1995b). In his summary of the
works completed previous to 1976, Rajaratnam reports the following formulae as
describing the turbulent plane wall jet:

u/U,, =1.480""[1-erf(0.681) ] [2.16)
U, 350

m

U, Jx/b,

[2.17]
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8, =0.068x [2.18]
q/q, =0.248(x/b,) [2.19]
v, =-0.035U [2.20]
2.3 Plane Turbulent Surface Jets

A plane turbulent surface jet can be observed as a fluid jet of thickness b, issuing from
a slot into a semi-infinite body or large channel of an identical stagnant fluid, where
the jet enters tangentially to the free surface and the bed of the channel is at such a
depth as to hold no influence over the behaviour of the jet. There exists a near-uniform
mean velocity as the jet issues into the body of fluid defined as U, and a mean
discharge defined as Q_ . This describes the plane turbulent surface jet. In such a
configuration, the origin of the Cartesian coordinate system framing the flow is located
at the water surface and at the downstream edge of the slot. The x-coordinate axis is
measured from the gate in the direction of the plane surface jet flow, with the y-
coordinate axis taken normal to the x-axis toward the bed and with the z-coordinate
axis orthogonal to both the x- and y-coordinate axes. Figure 2.5 shows the definition
sketch of the plane turbulent surface jet.

If one were to mirror this two-dimensional flow about its x-axis, it would very
closely resemble to upper half of the plane jet of §2.1 or the plane wall jet of §2.2. A
number of parallels can be drawn from the previous reviews. On the underside of the
surface jet a shear layer is formed due to the velocity discontinuity between the jet and
the ambient into which it enters. Surrounding fluid is entrained into the body of the
jet. There exists a potential core that is consumed when the mixing region of the shear
layer eventually reaches the surface, as well as developing (approximately 12b, in
length measured from the origin) and fully developed flow regions. As is the case for
the plane wall jet, the virtual origin of the plane turbulent surface jet is located
approximately 10b, behind the global Cartesian origin.

In the fully developed flow region, the axial component velocity u is at its
maximum U_ very near to the water surface and smoothly decreases to zero at some
distance below. Important characteristic locations and scales along velocity profiles
taken at various sections on the x-axis are defined as those of the plane jet. The jet half-
width 3, is defined where the mean velocity is equal to half of the maximum velocity
and the jet width is defined where the velocity is equal to zero. Similarity of the u
profiles at various sections along the x-axis is observed when u/U_, is plotted against
n=y/9, for different longitudinal sections, with the mean velocity relationship
expressed in the form u/U_ = h(n). Rajaratnam and Humphries (1984) report that
equation [2.9], u/U_ =", adequately describes both their own data and that of
Vanvari and Chu (1974) for n< 1.4. Following closely the arguments and
assumptions presented in $2.1, it can be shown that the simplified equations of motion
for the plane turbulent surface jet are equations {2.1] and [2.2] and that the
relationships U o< l/ Jx, 8, < x and v, < U,, are valid through flux integral analysis
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and dimensional considerations. The following equations describing the mean flow of
the plane turbulent surface jet are reported by Rajaratnam and Humphries (1984):

U 3.10
——= 221
U, 4x/b, 221]
3, =0.09x (2.22]
v, =-0.037U, [2.23]

More recent studies, including those by Swean et al. (1989) and Ead and
Rajaratnam (2001), provide additional experimental data of more jets with finite
depths of tailwater and adverse pressure gradients, and analyses attacking the
acknowledged decay of momentum flux in jets which entrain fluid.

2.4 Plane Turbulent Deflected Wall Jets

Consider a supercritical plane jet of water issuing into a rectangular channel filled with
a identical fluid, where the jet nozzle is set tangentially to the flume bed and a baffle of
height h is placed on the bed at a distance of x, from the outlet. The baffle extends
across the entire width of the channel and is oriented perpendicular to the channel side
walls. The slot width at the upstream gate is defined as b, and the mean jet exit
velocity is defined as U, . The jet discharge is defined as Q, . Consider the origin of the
coordinate system as located on the bed and at the downstream edge of the slot. The x-
axis is measured from the gate in the downstream direction, the y-axis is taken normal
to the x-axis towards the water surface and the z-axis is orthogonal to both x and y.
The water level upstream of the gate is called y, and the level inmediately downstream
is called y,, with the tailwater called y, The driving head of the jet is expressed as
AH=y, -y,.

The plane deflected wall jet is observed if the jet behaves like a plane wall jet
upstream of the baffle, where it is deflected and travels upward, behaving as a curved
plane turbulent jet, with a return flow between the inbound face of the jet and the gate,
and eventually behaves like a plane surface jet at the water surface. This return flow is
defined by the axial velocity profiles passing through zero at some sectional ordinate
and having negative axial velocities past that ordinate, and occurs as a result of the
effective jet confinement. It is similar to actual experimental data, such as in the
submerged flow in a sluice way (Rajaratnam 1965a) or in the flow of a plane surface jet
in shallow tailwater (Ead and Rajaratnam 2001). Figure 2.6 shows both the mean flow
pattern of and the definition sketch for the plane turbulent wall jet.

It is mentioned in §1 that Wu and Rajaratnam (1995a) discuss the submerged
hydraulic jump as an energy dissipator. The authors note that although submerged
jumps are well understood phenomena, they are not commonly used in practice, for
fear of serious bed erosion under sub-optimal tailwater level conditions. As an
alternative, Wu and Rajaratnam employ a baffle wall in a configuration physically
identical to the one described above, and study the effects of the baffle on the
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submerged plane jet flow. Their experiments were performed in a flume 7.60 m long,
0.466 m wide and 0.60 m deep with varying baffle heights, baffle positions, tailwater
levels, and Froude numbers. Wu and Rajaratnam measured time-averaged velocities
and pressures using both pitch probes and Prandtl tubes connected to either
transducers or manometer boards.

Their experiments identify two possible flow states: the first being that described
earlier, of a plane turbulent deflected wall jet (defined by Wu and Rajaratnam as the
deflected surface jet) having wall jet-like (WJL), plane jet-like (PJL) and surface jet-like
(SJL) constitutive elements; and the second being that of a stable reattached wall jet,
where the main flow passes over the baffle and reattaches to the bed of the flume. In
the case of the deflected wall jet, three eddies are observed. They are positioned in
relation to the centreline of the jet (defined by the locus of the maximum velocity
filament) and the baffle. There first exists a large eddy of clockwise rotation on the
outbound side of the curved jet extending to the downstream end of the flume. Second
is an eddy of counter-clockwise rotation and significant circulation (Wu and
Rajaratnam 1995a) bounded by the upstream flume gate and the jet centreline. There
thirdly exists a small eddy of clockwise rotation upstream of the baffle and below the
jet centreline, with a diameter of the same order as h. A reference curve was produced
by plotting x_/y, against h/y, which identifies the stable reattaching and stable
deflected wall jet regimes as well as a transition region where the jet oscillates between
the two stable patterns.

Further experiments were conducted by Wu and Rajaratnam on the deflected wall
jet case with mean u and v velocity profiles taken at various stations along the length
and height of the flow. Analysis was performed parallel to either wall jet or surface jet
theory, with no distinction made when the jet is plane jet-like. In the main flow region
before the baffle (wall jet-like) it was found that the velocity profiles are similar and
well represented by the equations of §2.2. It is reported that the growth rate of the
length scale 8, is not greatly affected by the presence of the baffle until the jet gets very
close to the baffle and that the velocity scale U decays in the familiar manner. The
curved plane jet-like region begins approximately at x =x, and it is here that deviation
is noted: there is a rapid decrease in U_, that reaches a minimum near where the jet
trajectory approaches the free surface and there is enhanced entrainment due to the
curved nature of the jet in this region. In the main flow region downstream of the
point where the jet centreline reaches the free surface (plane jet-like) Wu and
Rajaratnam observe that velocity profiles are similar but somewhat different than given
in §2.3. The length scale has a growth rate smaller than for the classic plane surface jet
and is approximately 2b_ at the upstream limit of the region. Maximum velocity decay
occurs as it would for a surface jet that is located upstream of the gate.
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3 Experimental Methods

The particle image velocimetry (PIV) technique used in this experimental work
requires a complex instrumentation arrangement and data analysis programme in
addition to a modified physical flow setup. This section is divided into four main
subsections: §3.1 outlines basic PIV methodology, §3.2 describes the flume
arrangement, §3.3 presents the PIV setup assembly and §3.4 describes the
measurement programme.

3.1 PIV Methodology

Particle image velocimetry is a technique which employs tracer particles suspended in
a flow to provide a quantitative measure of the instantaneous velocity field of the flow
(Prasad et al. 1992). Generally, a plane section of a flow is illuminated by a light source
and a sequence of images is recorded with a specified time interval between images.
The resulting image sequence captures specular reflections from the seeded particles as
they travel in the illuminated flow plane. If the timing sequence of the illumination
and recording processes are synchronized correctly, and if the majority of particles
remain in the illuminated field of view (FOV) without appreciable out-of plane-
motion particle loss, individual particles or patterns of particles can be tracked
between images. With knowledge of the time separation between the images,
correlations, displacements and hence velocities can then be computed for either
individual particles or for regions encompassing groups of particles.

In the earliest PIV methods, particles carried by a flow were imaged under natural
light onto photographic film and velocity data extracted through manual displacement
measurement. Artificial, and strobing illumination devices were later introduced to
increase image quality and decrease minimum time separations, including
illumination by laser light. Variations on the classic photographic PIV method,
including double exposures within single images, were used in order to reduce both
the number of images analyzed and the cost associated with photo development.
Computers aided in the analysis if images were digitized and processed. As charge-
coupled device (CCD) camera technology matured and powerful computers became
more readily available, completely digital PIV analysis methods followed. An excellent
review of PIV theory and history is presented by Raffel et al. in the book Particle Image
Velocimetry: A Practical Guide (1998) and by Lourengo (1996).

The PIV technique implemented in this current work employs reflective tracer
particles, a pulsing laser sheet and various digital devices to produce, store and process
image sequences. These sequences are separated into image pairs which are then
processed by computer to obtain cross-correlation fields and ultimately, instantaneous
velocity fields. A detailed description of the actual PIV computational process which
extracts the velocity data from the images is presented in §4.
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3.2 Flume Arrangement

The experiments presented in this study were conducted in the T. Blench Hydraulics
Laboratory, at the University of Alberta in Edmonton, Canada. A relatively large
rectangular flume with a self-contained water supply, as shown in Figure 3.1, was
employed. The horizontal under-bed of the flume was constructed of aluminium,
topped with either Plexiglas or glass, and the sidewalls were also either Plexiglas or
glass. An aluminium baffle was located downstream of the channel gate and placed
across the width of the flume and perpendicular to the centreline. There was a
rectangular opening in the aluminium under-bed, aligned with the centreline axis of
the flume, situated to allow unobstructed transmission of the laser sheet through the
channel bed and into the flow. Due to the scratched and clouded condition of the
Plexiglas sidewalls, glass was installed where greater clarity and transparency was
required for both image capture and laser transmission. Flume covers and sidewall
shrouds were employed to eliminate ambient light pollution of the PIV imaging area.
Water was pumped from the downstream reservoir into the upstream head tank with
discharge measured by a magnetic flowmeter located in the supply line.

The global Cartesian coordinate system of the flume assembly has an origin
defined at the downstream gate section, at the flume bed and in the centre of the
channel width. The definition and direction of the coordinate axes are identical to
those of the classical plane turbulent wall jet, i.e. x was the longitudinal coordinate, y
was the vertical coordinate and z was the transverse coordinate.

The channel itself measured 45.7 cm wide, 450.0 cm long and 90.2 cm tall and was
raised 95.3 cm above the floor, allowing for piping and PIV equipment to be placed
under the channel bed. Figure 3.2 is a dimensioned drawing of the channel. Water
enters the flume from the head tank under a sluice gate with a streamlined lip, and
produces a supercritical stream of thickness equal to the slot width of the gate opening.
Both the slot width b_ and the baffle height h were set at 2.54 cm for the experiments
discussed in this work. The tailwater level was controlled via an adjustable weir located
at the downstream end of the flume. The baffle consists of a 3.175 mm thick
aluminium angle (painted black to eliminate reflections), affixed to the bed at
x, =50.0 cm downstream of the sluice gate opening, with the vertical face of the angle
facing upstream. A section of the angle bottom at the centreline of the flume was
removed so that the baffle provided the least possible obstruction to the laser
illumination sheet. When the pump was in operation and the reservoir fully filled, the
flume arrangement held approximately 8 m’ of water. This water was seeded with
approximately 30 g of silver-coated glass sphere tracer particles (Potter Industries,
Valley Forge, Pennsylvania) with a 15 pum nominal diameter and a mean specific
gravity of 2.6.
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3.3 PIV Setup

The PIV instrumentation used in this study of the plane deflected wall jet was
comprised of three main sub-systems: the illumination system, consisting of a laser
and optics; the timing system, consisting of a signal sync stripper and a delay

generator; and the imaging system, consisting of a CCD camera, a computer equipped
with a frame-grabber and a positioning and targeting apparatus. The three sub-systems
were configured to sample sequential digital images of the seeded flow, capturing pairs
separated by small At values at an ultimate rate of 15 Hz. Figure 3.3 shows (a) the
general layout of the PIV setup and (b) laser timing structure.

3.3.1 lllumination Sub-System

The central element of the illumination sub-system was the laser. It was used to
produce a beam of light that, when directed through a plano-cylindrical lens, was
spread into a sheet of light the same thickness as the beam. The laser was fastened to a
mobile table equipped with an optical rail; the laser was fixed so that the axis of the
beam follows the rail and was perpendicular to the flume. The plano-cylindrical lens
was attached to the rail and aligned such that the beam passed through the lens centre
to produce a plane of light parallel to the flume bed. The mobile table height was
adjusted so the horizontal light sheet passed under the lower edge of the flume and a
mirror angled at 45 degrees was used to reflect it vertically upwards through the glass
bed and into the channel. This sheet illuminates a plane in the flow along the
centreline of the channel, coincident with the x-y plane of the flume. Figure 3.4 shows
a diagrammatic representation of the illumination sub-system.

The specific laser used in this study was a dual-cavity Minilite PIV model g-
switched Nd:YAG laser (Continuum Electro-Optics, Santa Clara, California). Along
with internal optics, electrical components and a distilled-water cooling system, each
laser cavity contains a flashlamp and a solid-state lasing-medium rod. The two rods are
called laser A and laser B for convenience. Both lasers are housed in a single laser head,
and beams from each cavity are tuned to be co-incident upon emission. When
electrically stimulated by the power supply, the flashlamp emits a non-polarized light
which excites the Neodymium atoms in the rod. These atoms absorb and effectively
store the flashlamp’s optical energy until the rod is allowed to release the energy. The
release of the laser energy, expressed as a highly coherent laser-light beam, occurs a
short time (defined as the build-up time) after the q-switch component of the laser is
triggered and opened. Thus the beam generation and emission of each Minilite PIV
laser cavity is controlled via two different signals: the flashlamp delay and the g-switch
delay. The sequence and cycle pattern of the resulting four delay signals directly
controls the timing and strength of the dual laser pulses.

The Nd:YAG laser produces horizontally polarized infrared light at a wavelength of
1064 nm by default, but with the installation of non-linear crystals and dichroics,
wavelengths of 532 nm, 355 nm, and 266 nm can also be produced. In this experiment,
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the laser operated at the visible wavelength of 532 nm to produce a circularly polarized
beam of 3 mm nominal diameter. Under such operating conditions, the lasers each
achieve 28 m]J per pulse, resulting in an average power level of 0.42 W per laser rod.
The combined energy was 56 mJ per each dual-pulse, resulting in a total power level of
0.84 W. Separation time (At) between pulses could vary between 40 ns and 100 ms.
The rated build-up time was 60 ns and the rated pulse width was approximately 5 ns.
Factory calibrations indicated that to achieve optimal power in each laser, the q-switch
delay should be set to 148 ps, however it was found that lasers A and B required
individual and unique q-switch delays to produce pulses of equal intensity.

The plano-cylindrical glass lens (Melles-Griot, Nepean, Ontario) had a focal length
of ~12.7 mm and a design wavelength of 587.6 nm. The flat surface mirror (Edmund
Industrial Optics, Barrington, New Jersey) was 200 mm by 235 mm in size and was
comprised of a fine annealed Pyrex substrate coated with enhanced aluminium as
protection and to increase reflectance in the 200 nm to 650 nm range. These optics
produced a pulsed 3 mm thick light sheet that can be directed upwards, perpendicular
to the flume bed, and positioned perfectly along the centreplane of the flow.

3.3.2 Timing Sub-System

In order to synchronize the laser pulses with the imaging system, and to enable use of
the PIV technique, the laser pulses must be accurately controlled. This is accomplished
by the timing sub-system. The purpose of the timing sub-system is to produce pulses
of illumination very close to the end of the first frame of an image pair and very close
to the beginning of the second frame of the same pair. It must do this repeatedly, as
long as images are being acquired by the imaging sub-system. In this way high-velocity
flows can be resolved using standard 30 Hz digital video equipment. The main timing
component was a model 500A (Berkeley Nucleonics, San Rafael, California) pulse
generator. It has one input BNC connection and four BNC output connections.

Using an external input signal as a trigger, it generates four separate output signals
with user-programmable delays, pulse widths and polarities. The delays generated by
the four outputs are called T1, T2, T3 and T4 respectively. They correspond to the laser
A flashlamp and g-switch delays (T1 and T2) and the laser B and flashlamp and g-
switch delays (T3 and T4) previously discussed. With the exception of the T2 delay,
each is triggered by the same rising edge in the input signal. T2 is triggered at the end
of the T1 signal. The input signal to the delay generator was a 15 Hz square signal
describing the occurrence rate of image pairs. This signal was derived from the 30 Hz
odd-even signal stripped from the analog video output of the CCD camera using a
video signal sync stripper circuit assembled at the University of Alberta. The sync
stripper produces a signal with a rising edge at the beginning of every second frame
taken by the imaging system. Figure 3.5 (a) presents a schematic diagram of the timing
sub-system connection and signal flow and Figure 3.5 (b) illustrates the detailed timing
scheme.
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3.3.3 Imaging Sub-System

The imaging sub-system is responsible for the storage and acquisition of the digital
PIV images. It is comprised of a digital CCD camera, a desktop computer equipped
with a digital frame-grabber, image acquisition software and a positioning and
targeting apparatus. The camera signal drives the PIV imaging as well as provides the
necessary input to the timing sub-system. The camera used for imaging was a model
TM-1040 progressive scanning high resolution monochrome CCD camera (Pulnix,
Sunnyvale, California) with a 30 fps output rate. It captures 10-bit grayscale images
1 008 px by 1 008 px in size and has an adjustable manual gain control. Both digital
and analog output is provided. Equipped with a 25 mm 1:1.4 camera lens (Fujinon,
Deerfield, Illinois) and set at an aperture of 2.8, the camera has a approximate
minimum 9 cm FOV length.

Digital images were recorded using a single 733 MHz Pentium Ill-class personal
computer running Windows NT 4, equipped with 256 MB of RAM memory and a
striped-set array of four high-speed SCSI 9.1 GB (unformatted) hard drives as well as a
removable hard drive bay. The frame-grabbing software package Video Savant (10
Industries, London, Ontario) and Road Runner digital camera interface hardware
(BitFlow, Woburn, Massachusetts) permitted real-time image acquisition to the
computer and subsequent export of individual image frames in an 8-bit tagged image
file format (TIFF) for further analysis. A maximum of approximately 34 000 frames
could be captured to the striped-set array before export to the removable hard drive
was required.

Through early experimental investigation using acoustic Doppler velocimetry
(ADV), it was decided that the complete field of interest of the plane deflected wall jet
phenomenon began approximately 35 cm downstream of the gate and extended
approximately 60 cm further downstream. Because actual pixel (px) resolution is
reduced when larger fields of view are employed (i.e. each pixel element represents and
reduces to a single grayscale value a larger physical area), the area was divided into
tesserae which could be imaged separately and later combined into one complete
mosaic. This led to the need for accurate positioning of the camera in the global
coordinate system. Such a system was provided through use of a positioning stage for
the camera and a corresponding target apparatus placed in the flume at the location of
the particular tessera FOV. The camera was attached to a set of precision scissor-jacks
which controlled the vertical height of the camera. A small two-dimensional stage was
installed between the upper jack and the camera to provide accurate positioning in the
horizontal plane. This entire assembly was supported by a table constructed so as not
to interrupt the path of the laser.

The target apparatus consisted of rigid 75 cm by 100 cm Lexan sheet placed into
the operating flume and locked into position through the use of spacer bars, clamps
and wedges. The target apparatus was placed on the flume bed at the centreline, so that
the grid plane was coincident with both the laser sheet and the focused FOV of the
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camera. During the course of the experiment, the target would be lowered into the
flow, and the laser and camera positioned to provide illumination and imaging for the
tessera of interest before data was collected. A laminated 1-cm grid was created and
adhered to the rigid sheet to provide tesserae reference points. Sixteen overlapping
square tesserae formed the single square mosaic: each tessera 15.75 cm by 15.75 cm in
size, with 0.75 cm overlaps, resulting in a mosaic 60.75 cm by 60.75 cm in size.
Tesserae centres, edges and numbers were visible during setup and allowed the camera
to be consistently positioned in the global coordinate system via optical adjustment.
Figure 3.6 shows a dimensioned drawing of the target apparatus in relation to the
flume and baffle.

Figures 3.7 through 3.14 show photographs taken of the complete experimental
area, including the flume arrangement and the PIV setup sub-systems.

3.4 Measurement Programme

Fourteen of the available sixteen tesserae were chosen to adequately describe the plane
deflected wall jet and the follow the jet centreline trajectory and are shown in

Figure 3.6 as the numbered tesserae. The data collection programme began at the
fourteenth tessera and then proceeded in an order chosen to reduce equipment
movement and repositioning. The exact location of the target and alignment apparatus
was set so the baffle was always centered in the overlap region between the second and
third tesserae. This minimized the manifestation of a baffle shadow in the captured
images to a thin wedge-like region above the baffle. Table 3.1 presents the global
coordinate centres and extents of the individual tesserae FOV areas. The lowest image
edge is not found at the bed due to the visible presence of silicon caulking at the flume
seams and because of reflections at the glass bed boundary. The image scale is

Siov = 156.25 pm/px.

The flow rate in the flume was measured by a voltmeter connected to the magnetic
flowmeter; the average reading was 30.6 volts, corresponding to an average volumetric
flow rate of Q = 0.0153 m’/s, a discharge intensity of q = 0.0335 m’/s, and a mean
uniform jet exit velocity of U, = 1.32 m/s. The resulting average Reynolds and Froude
numbers were R = 28 400 and F = 2.64, respectively. The average tailwater depth y,
and depth immediately downstream of the gate y, were both 55.0 cm while the
average depth immediately upstream of the gate in the head tank was y, =64.0 cm.
The U, measurement from the flowmeter was confirmed using the relation
U, =/2gAH =1.33 m/s. A mean water surface profile was taken through direct
measurement of the water level at the flume sidewall; profile data is presented in
Table 3.2. The experimental work was completed over an approximate ten-hour
period over which the average measured water temperature was 13.8 °C, yielding a
mean kinematic viscosity of v = 0.0118 cm’/s. The electronic thermometer used in
temperature measurement broke after the tessera 8 data collection process.
Temperatures for the tesserae 9 through 13 experiments were calculated by averaging
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the temperatures from tesserae 4 through 8 experiments. The water temperature while
collecting data for tessera 14 was 10.8 °C and it stabilized at approximately 14.0 °C by
the tessera 4 experiment. Only actually measured temperatures were included in the
average calculation. The full set of environmental data is provided in Table 3.3.

The laser timing and delays for each tessera were programmed individually and
recalled from the delay generator memory before data collection commenced at each
section. The At pulse separations were chosen based on a maximum allowable particle
pixel shift of 16 px in either the x- or y-direction and a maximum expected
instantaneous velocity for the individual tesserae as measured in both the investigatory
ADV study and preliminary PIV measurements. The need for this limitation is made
clear in §4 and is related to the size of the chosen interrogation window in the PIV
analysis. The minimum pulse separation was 1.3 ms, corresponding to a maximum
instantaneous velocity resolution of 192 cm/s; the maximum pulse separation was
4.0 ms, corresponding to a minimum instantaneous velocity resolution of 63 cm/s.
The full set of delays and pulse separations are presented in Table 3.4 with a sample
calculation provided in §8.

A total of 180.2 seconds of 30 frames per second (fps) video data was recorded for
each of the tesserae. This corresponds to 5 400 TIFF flawless images per tessera and
76 600 flawless images for the complete experimental mosaic. In addition, images were
taken of the target apparatus to confirm location and scale accuracy. Figure 3.15 shows
the target images for tesserae (a) twelve and (b) thirteen; note the centre point, the cm-
grid, the FOV edges and the water surface. Each TIFF image is approximately 0.97 MB
in size; this necessitated periodic export of image data from the main PIV hard drive to
one of three 60 GB (unformatted) removable hard drives. The first hard drive stored
the images of tesserae 14, 1, 2 and 3; the second hard drive stored the images of
tesserae 4, 5, 6, 7 and 8; and the third hard drive stored the images of tesserae 9, 10, 11,
12 and 13. The average time to export the images of one tessera to the removable
media was approximately 25 minutes. All three drives were less than half full in
anticipation of further processing and data-file creation.
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Table 3.2: Mean water surface profile coordinates.

x (cm) y (cm) x (cm) y (cm) X (cm) y (cm)
10.0 54.1 48.0 52.5 86.0 54.3
11.0 54.1 49.0 524 87.0 54.3
12.0 54.1 50.0 52.5 88.0 54.1
13.0 54.1 51.0 52.6 89.0 54.1
14.0 54.2 52.0 52.9 90.0 54.0
15.0 54.0 53.0 53.1 91.0 54.0
16.0 53.9 54.0 53.3 92.0 539
17.0 539 55.0 53.2 93.0 539
18.0 53.7 56.0 53.3 94.0 53.9
19.0 53.5 57.0 53.3 95.0 53.8
20.0 53.3 58.0 53.5 96.0 53.7
21.0 53.3 59.0 53.9 97.0 53.7
220 53.1 60.0 54.0 98.0 53.6
23.0 529 61.0 53.9 99.0 53.6
24.0 529 62.0 54.0 100.0 53.6
25.0 529 63.0 54.1 101.0 535
26.0 52.8 64.0 54.3 102.0 53.5
27.0 52.8 65.0 54.5 103.0 53.5
28.0 52.7 66.0 54.5 104.0 53.5
29.0 52.7 67.0 54.7 105.0 53.5
30.0 52.6 68.0 54.9 106.0 534
31.0 52.6 69.0 55.0 107.0 53.5
32.0 52.6 70.0 55.1 108.0 53.3
33.0 52.7 71.0 55.0 109.0 53.3
34.0 52.8 72.0 54.9 110.0 534
35.0 52.7 73.0 54.9 111.0 53.5
36.0 52.6 74.0 54.8 112.0 53.5
37.0 52.7 75.0 54.7 113.0 53.5
38.0 52.5 76.0 54.7 114.0 53.6
39.0 52.5 77.0 54.7 115.0 53.6
40.0 52.4 78.0 54.6 116.0 53.7
41.0 52.3 79.0 54.6 117.0 53.6
42.0 52.3 80.0 54.8 118.0 53.8
43.0 52.3 81.0 54.7 119.0 53.9
44.0 52.5 82.0 54.7 120.0 54.0
45.0 52.7 83.0 54.6 - -
46.0 52.7 84.0 54.6 - -
47.0 52.7 85.0 54.5 - -
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Figure 3.3: (a) General PIV setup layout and (b) broad laser timing structure.
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Figure 3.5: (a) PIV timing sub-system signal flow and (b) detailed timing scheme.
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Figure 3.6: PIV imaging sub-system target apparatus measured drawing.
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