
Joint Level Generation and Translation Using
Gameplay Videos

by

Seyyede Negar Mirgati

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Seyyede Negar Mirgati, 2024

Abstract

Procedural Content Generation via Machine Learning (PCGML) faces a sig-

nificant hurdle that sets it apart from other ML problems, such as image or

text generation, which is limited annotated data. For example, many exist-

ing methods for level generation via machine learning specifically require a

secondary representation beyond level images. However, the current methods

for obtaining such representations are laborious and time-consuming, which

contributes to the limited data problem. In this work, we aim to address

the limited game level data problem by utilizing gameplay videos of human-

annotated games to train a novel multi-tail framework to perform simultane-

ous level translation and generation. The translation tail of our framework

can convert gameplay video frames to an equivalent secondary representation,

while its generation tail can produce novel level segments. Evaluation results

and comparisons between our framework and baselines suggest that combining

the level generation and translation tasks can lead to improved performance

for both tasks. Additionally, we have conducted experiments to evaluate the

generalizability of our model across different scenarios. Our findings represent

a possible solution to limited annotated level data, and we demonstrate the

potential for future iterations of our model to generalize to unseen games.

ii

Preface

This thesis has been accepted and published as a full paper in the IEEE Con-

ference on Games 2023, as: Mirgati, Negar, and Matthew Guzdial. “Joint

Level Generation and Translation Using Gameplay Videos.” 2023 IEEE Con-

ference on Games (CoG). IEEE, 2023. Also, an extended version of it has

been submitted to the IEEE Transaction on Games Journal.

iii

Taking a new step, uttering a new word, is what people fear most.

– Fyodor Dostoevsky.

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to Dr. Matthew Guzdial

for providing me with invaluable guidance, support, and advice throughout

my entire research process. I am truly fortunate to have had the privilege of

conducting my graduate research under his mentorship, and I owe much of my

academic growth and success to his expertise and dedication.

I would also like to thank Dr. Behnam Bahrak for his inspiring discussions

and guidance throughout my B.Sc. His enduring influence continues to be a

guiding inspiration in both my academic pursuits and personal goals.

Additionally, I am grateful for the support provided by the Canada CIFAR

AI Chairs Program, which funded this work, and the Alberta Machine Intel-

ligence Institute (Amii), whose support was instrumental in its completion.

Lastly, I would like to thank my family and friends for their love and

encouragement, without which this achievement would not have been possible.

v

Contents

1 Introduction 1
1.1 Research Questions . 3

2 Background 5
2.1 Deep Learning . 5

2.1.1 Convolutional Neural Networks 6
2.1.2 GAN . 6
2.1.3 VAE . 7
2.1.4 VAE-GAN . 8
2.1.5 VQ-VAE . 8

2.2 Optical Flow . 10
2.3 Level Translation . 10
2.4 Level Generation . 12
2.5 Effects of Training Data on Level Generation Methods 13

3 Joint Level Generation and Translation Using Gameplay Videos 14
3.1 Dataset . 14
3.2 Model Architecture . 15
3.3 Model Training . 17
3.4 Hyperparameter Tuning . 18

4 Experimental Setup and Results 20
4.1 Evaluation . 20

4.1.1 Baselines . 21
4.1.2 Metrics . 22

4.2 Results . 23
4.3 Experiments on Generalizability 27

4.3.1 Impact of Data Variation, Representation, and Embedding 28
4.3.2 Latent Space Analysis 29
4.3.3 Case Studies on Super Mario Land 32
4.3.4 Case Studies on Translation Accuracy 33
4.3.5 Case Studies on Translation of Natural Images 33

5 Conclusion 35
5.0.1 Limitations and Future Work 35
5.0.2 Conclusions . 36

References 37

vi

List of Tables

4.1 Results of generation and translation evaluation metrics for our
model and all baselines. 25

4.2 Results of translation evaluation metrics for variations of model
architecture and representation techniques. 29

4.3 Evaluation results for Super Mario Land. 31

vii

List of Figures

1.1 A frame from the game Kid Icarus with a hazardous tile high-
lighted by red. 2

2.1 Example of a simple Deep Neural Network. 6
2.2 The GAN architecture. 7
2.3 The VAE architecture. 8
2.4 VAE-GAN Framework. 9
2.5 VQ-VAE framework. 9
2.6 An example of sparse optical flow calculated for a frame of The

Legend of Zelda. The red tracks show the recent movement
path of the character. 11

3.1 Our model’s architecture. 16

4.1 Examples of the VAE baseline’s generated outputs. 25
4.2 KDE plots of the training dataset, demonstrating linearity vs.

leniency for the top four models. 26
4.3 KDE plots of the test dataset, demonstrating linearity vs. le-

niency for the top four models. 26
4.4 Sample generations of our VAE-GAN. Samples 4.4a and 4.4b

look more similar to Kid Icarus levels, whereas samples 4.4c
and 4.4d are closer to the Super Mario Bros. levels. Samples
4.4e, 4.4f, 4.4g, 4.4h in the second row blend the characteristics
of both Kid Icarus and Super Mario Bros. levels. 27

4.5 Sample translations of our VAE-GAN. Figures 4.5a (Super Mario
Bros.) and 4.5b (Kid Icarus) belong to the test set of our
dataset, and figures 4.5c (Duck Tales), and 4.5d (Megaman)
are sample frames from unseen games. 28

4.7 Case studies of Super Mario Land data. The first row demon-
strates two examples with high translation accuracy, while the
second row shows two examples with the lowest translation ac-
curacy. 31

4.8 Examples of our model’s translation of natural images. 33
4.9 Examples of our model’s most accurate (4.9a, 4.9c) and least

accurate (4.9e, 4.9g) translations versus the real translations. . 34

viii

Chapter 1

Introduction

Procedural Content Generation (PCG) is the practice of using algorithms to

generate new game content, as opposed to manual human creation. PCG tech-

niques cover a broad range of content types, such as game levels, characters,

maps, and quests. PCG can be used to assist game designers in the design

phase and at runtime to generate content [40].

Historically, PCG was devised as a data compression method to address

the problem of limited storage [45]. One of the first games that used PCG is

the 1980 “Akalabeth: World of Doom”, in which the user is asked to enter a

number that is then used as a seed to procedurally generate the dungeons [1].

Since then, PCG techniques have greatly evolved and appear more commonly

in modern games. One frequently cited modern game example is “No Man’s

Sky,” in which almost all the game objects, such as creatures, planets, and

solar systems, are procedurally generated [8].

PCG approaches can be categorized into three major types: constructive,

search-based, and machine learning-based methods [44]. Constructive PCG

[43] involves the use of hand-authored pieces of content and rules to put the

pieces together to create new content. Search-based methods [55], on the other

hand, explore a space of possible content and find desirable instances based on

a fitness function. Finally, procedural content generation via machine learning

(PCGML), which is the focus of this work, is the practice of generating new

game content by applying various machine learning (ML) techniques to train

on existing game data or environments and then sampling from trained models

1

Figure 1.1: A frame from the game Kid Icarus with a hazardous tile highlighted
by red.

to generate new content [14], [52].

Although there has been considerable advancement in the area, one of

the fundamental challenges PCGML researchers face is the limited availability

of annotated data. Contrary to other ML tasks, such as image generation,

PCGML methods typically need more information than raw pixel representa-

tions. This additional requirement arises from the fact that game data, such

as levels, have special structural features and functional rules, which are dif-

ficult or impossible to capture solely from images. For instance, consider the

hazardous objects in the game Kid Icarus, such as the highlighted example in

Figure 1.1. It is difficult to determine the behavioral properties of these tiles

(e.g., that they will kill the player) from their visual appearance alone.

Consequently, we require additional information to generate new game con-

tent that closely follows the same structure and abides by the constraints of

the original data [19].

One of the most commonly used approaches to represent this information

for game levels is by translating tiles of pixels to text characters, where each

character stands in for an object in the level. Each character is associated with

a set of affordances, indicating which is harmful, which is breakable, and so

on. The conventional procedure of generating string-based representations of

game levels typically involves multiple iterations of image processing via tools

2

such as OpenCV [4], followed by manually checking the results, which is quite

labor-intensive [13]. In this regard, the Video Game Level Corpus (VGLC)

[53] has immensely assisted PCGML researchers by providing public access

to string representations of 428 levels from 12 different 2D games. Though

this is an impressive range of coverage in the area of games, it is still orders

of magnitude smaller than numerous widely-used datasets (e.g., ImageNet [9],

and CelebA [26]), used in image generation. If we could access sufficient data,

we may be able to achieve the success and generalizability found in other

modern machine learning domains.

A less explored yet promising secondary source of data for PCGML is game-

play video. The active community of video game enthusiasts has produced

countless gameplay videos across different genres of games. This includes

platformers that are currently the target of a large proportion of PCGML re-

search. Despite the existence of significant video data, few approaches leverage

gameplay video for game level generation. The existing methods either focus

on a single game [13] or do not focus on level design [42].

In an attempt to tackle the problems mentioned above, we focus on a

novel machine learning framework for simultaneous video-to-level generation

and translation. In this context, “level generation” involves the creation of

new game level segments for 2D platformer games. On the other hand, “level

translation” refers to the process of converting existing game level content

from an RGB pixel representation to a string-based representation that can

be used for level generation. Our framework seeks to leverage commonalities

in the learned latent representation between these processes by simultaneously

addressing both level generation and translation tasks.

1.1 Research Questions

Motivated by the problems discussed earlier in this chapter, we propose the

following research questions:

RQ1) Can learning level generation and translation tasks in tandem benefit

any of these tasks, compared to learning each task separately?

3

RQ2) To what extent can this idea improve or hinder the performance qual-

ity of the proposed architecture regarding both generation quality and

translation accuracy?

RQ3) What is a machine learning-based architecture that can be employed

to perform these tasks in a joint manner?

RQ4) How can such an approach potentially address the problem of insuf-

ficient annotated data for procedural level generation via machine

learning?

To answer the above research questions, we propose a novel machine learn-

ing model for simultaneous video-to-level translation and generation. We be-

lieve this can lead to an improved generation and/or translation performance,

as these tasks are related. Our final model translates gameplay video into a

tile-based string representation and simultaneously generates new level seg-

ments. We accomplish this with a modified VAE-GAN architecture, with each

tail handling one task. We train our approach with YouTube videos and the

VGLC level corpus but demonstrate the ability to generalize over content out-

side of the VGLC representation.

The rest of this thesis is organized as follows: In chapter 2, we overview

necessary background information and briefly outline related work to under-

stand this work. Chapter 3 explains our joint level generation and translation

approach in detail. In chapter 4, we describe our evaluation methods and

present the results. Finally, chapter 5 concludes this thesis by discussing the

limitations of our approach and potential avenues for future work.

4

Chapter 2

Background

This chapter introduces the required technical knowledge for the following

chapters related to the approaches we employ to construct our model and

baselines. We provide background on Deep Learning and Deep Neural Net-

works (DNNs) such as Variational Autoencoders (VAEs), Vector-Quantized

Variational Autoencoders (VQ-VAEs), and Generative Adversarial Networks

(GANs), as we have made use of these techniques in the design of our model

and baselines. We then discuss Optical Flow methods for tracking objects’

motion in videos. To conclude this chapter, we cover related work on level

generation and translation, the main tasks we focus on in this thesis. Subse-

quently, we explore existing research on the implications of varying amounts

of training data on level generation methods.

2.1 Deep Learning

Deep learning is a subset of machine learning algorithms that are inspired by

the human brain [35]. Deep learning relies on deep neural networks (DNNs)

that consist of artificial neurons. Each artificial neuron has weights, biases,

inputs, and outputs and can represent a mathematical function. An example

of a simple DNN is represented in Figure 2.1. This DNN consists of an input

layer with two neurons, two hidden layers, each with four neurons, and an

output layer with two neurons.

One of the most essential advantages of deep learning approaches compared

to other machine learning methods is the reduced need for human interven-

5

tion. Deep learning methods can work with unstructured data such as text and

images. In this research, we make use of multiple widely-used deep learning ar-

chitectures, namely generative adversarial networks, variational auto-encoders,

and convolutional neural networks, to learn our desired tasks from image and

string-based data.

OutputsInputs

Hidden Layers

Figure 2.1: Example of a simple Deep Neural Network.

2.1.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of deep learning network that

is mainly applied to two-dimensional data types such as images [24]. CNNs

typically consist of a series of convolutional layers, activation functions, and

pooling layers. The automatic learning of filter weights enables CNNs to ex-

tract useful features from images with a reduced need for human intervention.

CNNs are widely used to perform various tasks such as image classification,

object detection, and image segmentation.

2.1.2 GAN

A Generative Adversarial Network (GAN)[11], as shown in Figure 2.2, is a

DNN that consists of a generator and a discriminator that compete against

6

each other. The generator’s goal is to output content that is hard for the

discriminator to distinguish from the original content. On the other hand,

the discriminator aims to strengthen its ability to differentiate the generator’s

outputs from the real data. The generator and discriminator are trained in an

alternating manner until convergence.

In this research, we make use of the GAN architecture as part of our model

due to the effect it has on the latent space. Additionally, we leverage the

Wasserstein GAN (WGAN) [2], which is a variant of the vanilla GAN that uses

the Earth-Mover’s distance (EM) instead of the Jensen-Shannon divergence.

The Earth-Mover’s distance is a metric that measures the minimum amount

of work needed to move a distribution’s mass to another distribution [34],

while the Jensen-Shannon divergence is a simpler method for calculating the

similarity between two distributions.

Discriminator

Generator

Real Data

Random
Noise

Real

Fake

Fake Data

Figure 2.2: The GAN architecture.

2.1.3 VAE

Variational Autoencoder (VAE) [22], as shown in Figure 2.3, is a probabilistic

generative model that consists of an encoder and a decoder. The encoder

receives X as input and outputs a latent distribution represented by a mean µ

and variance σ. The decoder then samples from this distribution to output X̃,

a reconstruction of X. The model is trained with the objective of minimizing

reconstruction loss as well as maintaining a Gaussian structure in the latent

space. In this thesis, we make use of the VAE architecture as part of our model

7

architecture since our goal is to propose a model that can generate new data

and perform the translation task.

Encoder

D
ecoder

Input Reconstructed
Input

Sampled
Latent
Vector

Figure 2.3: The VAE architecture.

2.1.4 VAE-GAN

A VAE-GAN [23], as shown in Figure 2.4, is a deep learning architecture that

combines a VAE and a GAN by unifying the VAE’s decoder with the GAN’s

generator. This means that a VAE-GAN is capable of encoding, generating,

and differentiating between data samples. Larsen et al. [23] also provided

evidence that the VAE-GAN architecture outperforms the individual VAE and

the GAN architectures regarding the quality of generated images, providing

motivation to apply it to our problem. To the best of our knowledge, this

architecture has not been previously applied to a level translation task outside

of the work presented in this thesis.

2.1.5 VQ-VAE

Vector-Quantized Variational Autoencoders (VQ-VAEs) are a subset of VAEs

that employ Vector Quantization (VQ) to learn a discrete latent space. VQ is

a dictionary-learning method that attempts to map the embedding vectors to

symbolic encoded values. The VQ-VAE architecture has three main compo-

8

Encoder

D
ecoder/G

enerator

Input Reconstructed
Input

Sampled
Latent
Vector

Discriminator

Real Data

Real

Fake

Figure 2.4: VAE-GAN Framework.

nents, as shown in figure 2.5: an encoder, a learnable codebook, and a decoder.

The input data is first fed through the encoder to output ze(x). Next, the code-

book converts zex to a table of indices. This table is then converted to zq(x)

by translating indices to the codebook embeddings indices in the codebook.

Finally, the decoder receives zq(x) to reconstruct the input data.

In this thesis, we train and evaluate a variation of our model with the VQ-

VAE architecture as one of its main components, as it may be a natural fit for

our use case with discrete text data.

1

3
k

...

Code Book

Encoder

D
ecoder

Input Output

Figure 2.5: VQ-VAE framework.

9

2.2 Optical Flow

Optical Flow is an algorithm that detects the motion of objects, edges, and sur-

faces between two consecutive frames as a result of relative movement between

the object and the camera. [16]. Optical flow has applications in different ar-

eas, such as traffic monitoring, image stabilization, face tracking, and robot

navigation.

There are two main variants of optical flow: dense and sparse optical flow.

In sparse optical flow, the motion is tracked for only the points of interest (such

as object corners) in the frame. These points of interest can be automatically

detected by algorithms such as Harris [15] and Shi-Tomasi corner detection

[41]. Dense optical flow, on the other hand, tracks the movement of all the

pixels in the frame. This means that the dense variant is more accurate but

less computationally efficient than sparse optical flow.

In this research, we make use of the Lucas-Kanade implementation of sparse

optical flow [27] with Shi-Tomasi corner detection, which is a commonly used

robust and efficient algorithm in the field [25]. We believe adding the player

character’s movement path to the data representation might be helpful to our

model since it can provide additional help in terms of distinguishing foreground

from background elements.

Figure 2.6 demonstrates an example of applying the Lucas-Kanade optical

flow algorithm to the frames of gameplay video for the game The Legend

of Zelda. The red dots in this image demonstrate the detected points by

the algorithm. Also, the red tracks show the player character’s movement in

consecutive frames as detected by the algorithm. In this specific example, the

algorithm has only detected the player’s movement as opposed to the other

elements in the background, which is a desirable result for our use case.

2.3 Level Translation

Level translation is the process of converting the raw pixel representation (im-

age) of a game level into a secondary representation that is useful for down-

10

Figure 2.6: An example of sparse optical flow calculated for a frame of The
Legend of Zelda. The red tracks show the recent movement path of the char-
acter.

stream tasks. In this thesis, we focus on level translation since it has the

potential to address the issue of limited annotated data.

As an example, Summerville et al. [53] created the VGLC corpus that

contains level images and their corresponding string representations. In the

level images, each 16× 16 pixel tile specifies a game object (e.g., enemy, door,

coin), and the VGLC representation converts each tile to a character. As a

result, it provides a sequence of characters (i.e., string) for each level image. It

is most likely that the creators of the VGLC corpus utilized a non-ML approach

involving the OpenCV library [4], and human editing passes to perform the

tile-to-character translation. Although we use the VGLC representation in

this work, we propose employing an ML model to translate from pixels to the

character representation automatically.

Chen et al. [6] leveraged a Convolutional Neural Network (CNN) to trans-

late 32× 32 level segments to their corresponding string representation. They

iteratively performed this process to convert an entire image to its equivalent

string representation. Instead, we employ a Variational Autoencoder (VAE)

to translate each video frame to its equivalent string representation at once.

Smirnov et al. [42] introduced a novel framework that can extract recur-

11

ring sprites from gameplay videos. Their translated representation was not

intended for level design tasks, unlike our own, and instead focuses on game

reconstruction and scene understanding.

Snodgrass and Ontañón [47] introduced an approach to transform levels

from one domain to levels of another by translating the input domain’s tiles to

the target domain. In comparison, we design a model that learns to translate

level images to the equivalent string representation in the same domain. Hav-

ing said that, we do train our approach on multiple domains, meaning that it

is capable of generating similarly “blended” levels.

2.4 Level Generation

Researchers have suggested various methods for generating levels through the

use of PCGML [52]. Most of these rely on access to a string-based represen-

tation (e.g., the VGLC), which makes them only applicable to a very limited

number of games for which such representation is available [52]. We do not

cover the majority of work that relies on these representation as we have differ-

ent aims. Relevant to our work, Guzdial and Riedl [13] proposed an approach

utilizing gameplay video to generate new levels. While their model successfully

captured the style of the original game of training data, it does not generalize

to unseen games.

A number of existing approaches focus on generating blended levels. For in-

stance, Sarkar, Yang, and Cooper [39] trained a VAE on two games to generate

new blended level segments. Sarkar et al. [38] then built upon the approach

proposed in [39] and expanded the input domain to six games. While our

approach also trains on multiple domains and generates blended levels, this is

not the primary focus of our work.

Jadhav and Guzdial [19], and Khameneh and Guzdial [21] focused on learn-

ing new representations that could be used for downstream tasks. These meth-

ods can be viewed as alternative strategies for dealing with the problem of in-

sufficient training data in PCGML. We differ from these two approaches in the

use of video data and in our unique VAE-GAN-based architecture that learns

12

to translate video frames and generate new level segments simultaneously.

2.5 Effects of Training Data on Level Genera-

tion Methods

Most work on procedural level generation via machine learning make use of

all available data without considering the implications of varying amounts of

training data on model performance [13], [48], [51]. Snodgrass, Summerville,

and Ontañón [49] studied the impact of using different numbers of Super Mario

Bros. levels to train an LSTM-based and a Multi-dimensional Markov chain-

based model. The evaluation results of this work showed that choosing a

smaller subset of available levels may be beneficial for these models’ perfor-

mance. In this thesis, we explore the effect of different numbers of training

games on the translation performance of our model.

13

Chapter 3

Joint Level Generation and
Translation Using Gameplay
Videos

In this thesis, we seek to train a single model on gameplay video capable of

both level generation and translation. This chapter describes the four parts

of the procedure for implementing and training such a model. The first part

outlines the primary steps we undertook to collect our dataset. The second

part provides a detailed explanation of our model architecture. The third part

covers the training process of our model, and the last part discusses details of

the hyperparameter tuning of our model.

3.1 Dataset

We required a dataset that matched gameplay video frames to level structure

for our problem. To create this dataset, we undertook the following steps:

1. We obtained high-quality gameplay videos of Super Mario Bros. and

Kid Icarus from YouTube.

2. We used a video parser script 1 to parse each video into a series of

frames. We used 2 frames per second (FPS) for Super Mario Bros. and

1 for Kid Icarus. This helped keep multiple frames with the exact same

level structures out of our dataset.

1https://github.com/mguzdial3/VideoParser

14

3. We resized all frames so that the tile size was 16 × 16 pixels, which is

the same as the tile size of level images in the VGLC.

4. We used the VGLC’s level images to match the gameplay frames to the

VGLC tile-based string representation. We employed OpenCV’s tem-

plate matching algorithm to look for the closest match of each frame in

its corresponding level image. Using the location of the closest match,

we paired the frame data with the appropriate string representation.

As the VGLC string representations differ between Super Mario Bros.

and Kid Icarus, following the prior work [19], [38], we unified the string

representations by using a common set of 9 tile types: {(#: solid,

ground), (-: empty, background), (D: pipe, door), (H: enemy, harmful),

(M: moving), (T: solid-top), (B: block), (S: breakable), (O: collectible)}.

5. We chose 10× 15 tiles as the string representation size and cropped our

frame images to match the corresponding translations. We chose this

string size since this was the smallest common window size that would

work with the VGLC games.

6. Finally, we downsized all frame images to 75× 50 pixels since this frame

size retained enough pixel information for the tiles to be recognizable

and allows for odd-sized filters in the convolutional layers of our model.

We split our final dataset into training and test sets by setting aside

level 6 of Kid Icarus and worlds 7 and 8 of Super Mario Bros. as the test

data. In addition, we upsample the Super Mario Bros. level segments in

our training set to have an equal number of samples from both games.

Our final dataset consists of 3956 (frame, string translation) pairs, half

for each game, in the training set and 360 pairs in the test set.

3.2 Model Architecture

Our architecture is based on a typical VAE-GAN architecture introduced by

[23]. As with all VAE-GAN architectures, it is made up of the VAE and GAN

components. Our VAE component is primarily responsible for translating

15

kernels: 1, 3, 5, 7
#filters: f_vae * 2

- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - H- - - - -
- - - - - - - - DD- - - - -
- - - - - - - - DD- - - - -
- HH- - - - - DD- - - - -
###############kernels: 1, 3, 5, 7

#filters: f_vae
num_tile_types (9)

IM IM IM F

D

D

Encoder

D

Generator

D D LDB IMT LDB IMT LDB CDT

D LD IMT LD IMT LD CDT

Decoder

BLD BLD BLD

Input Image (75*50*3)

Output (15*10*9)

Shared
Weights

GN CD MS CD LD CD LD F D

(1)

Discriminator

- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - SSS- - - - - - - DH-
- - - - - - - - - - - - D##
- - - - - - - - - - - - D##
- HH- - - - - - - - - H##
###############

Input (15*10*9)

- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -
- - SSS- - - - - - - DH-
- - - - - - - - - - - - D##
- - - - - - - - - - - - D##
- HH- - - - - - - - - H##
###############

Output (15*10*9)

(96) (128) (15*10*f_gen)

(128)

f_vae*2 f_vae*2 f_vae(15*10*f_vae)

Leaky ReLU,
Dropout

(LD)

Leaky ReLU, Dropout
(LD)

Inception Module
(IM)

Logsigma

mean

Gaussian
Sample

 Inception
Module

Transpose (IMT)
Conv2DTranspose

Batchnorm,
LeakyReLU, Dropout

(BLD)

f_gen f_gen*2

Gaussian
Noise

Minibatch
Stdev

Conv2D
(CD)

num_tile_types (9)

Flatten

stdev=0.1 f_disc *2 f_disc*4Kernel Size: 5
filter_size: f_disc

Leaky ReLU,
Dropout,

Batchnorm
(LDB)

Figure 3.1: Our model’s architecture.

frames into a tile-based string representation. Meanwhile, the GAN component

is in charge of generating new level segments. Figure 3.1 demonstrates our

model architecture. The defining characteristic of our VAE-GAN is the split

of the generator and the decoder and the shared weights between the encoder

and generator, which we included to help the model learn a latent space that

would benefit both tasks.

Our model’s VAE has two parts - an encoder and a decoder. The encoder

receives frame images of size 75×50×3 as input, where 3 stands for the number

of RGB channels. Our encoder is made up of consecutive Inception modules

[54], followed by batchnorm [18], leaky ReLU, and dropout layers. After all

these layers, our encoder has a shared dense layer, and a variance dense layer,

both of which have d neurons, where d represents the size of the latent space.

Finally, the last layer of our encoder uses the mean µ and the variance σ from

the previous layers to sample a d-dimensional vector from the latent space.

Our decoder receives the d-dimensional vector as its input from the encoder.

It then passes it through consecutive sets of transposed Inception modules,

leaky ReLU, and dropout, followed by a Convolutional Transpose layer with

nine filters. The output of our decoder, which has size 10 × 15 × 9, is a

reconstruction of the input in the tile-based string representation.

For our model, we make a modification to the original VAE-GAN archi-

tecture. Our GAN consists of a separate generator and a discriminator. To

16

elaborate further, instead of having a single unified decoder/generator, we use

separate decoder and generator networks to avoid overcomplicating the job of

the single decoder/generator network. However, we allow the VAE and GAN

components to share information by sharing the weights of the encoder’s mean

layer with the generator’s second dense layer. Apart from the shared layer and

an initial additional dense layer to facilitate the weight sharing, our generator

has a very similar architecture to the decoder and the same input and output

sizes.

Finally, the discriminator network consists of a Gaussian noise layer, a

convolutional layer, a minibatch standard deviation layer [20], and two con-

secutive convolutional layers followed by leaky ReLU and dropout layers, and a

final single-neuron dense layer. Notably, the last dense layer doesn’t have any

activation functions because our GAN follows the properties of the WGAN

variation. The input size of this network is 10 × 15 × 9, and it outputs a

1-dimensional value representing the model’s evaluation score for the input.

3.3 Model Training

Our VAE-GAN architecture has a unique optimization process. We train our

model as a whole, meaning that our VAE and GAN components are trained in

a joint manner. In each epoch, we go through three primary stages. Firstly, we

train our encoder and decoder to learn to perform the frame translation task.

Secondly, following the training procedure of WGAN with gradient penalty

[12], we train our discriminator towards optimality by training it for ten steps.

Finally, in the last stage, we train our generator for a single step.

We refer to algorithm 1 (adapted from [23]) for an overview of the training

process.

Our model is implemented using the Keras library [7]. The training hyper-

parameters of our models are as follows:

• Alpha coefficient of all leaky ReLU layers: 0.1473

• Discriminator number of CNN filters(f disc): 8

17

• Generator number of CNN filters (f gen): 2

• VAE number of CNN filters (f vae): 2

• Discriminator dropout rate: 0.4684

• Generator dropout rate: 0.2400

• VAE dropout rate: 0.2426

• Latent space size: 128

• GAN learning rate: 1e− 4

We obtained these parameters by tuning the GAN and the VAE. The tuning

process is covered in more detail in the subsequent section.

3.4 Hyperparameter Tuning

Since GANs are sensitive to hyperparameter changes and hard to tune, we

developed an approach to find a shared set of hyperparameters for all our

models. We tuned our VAE and GAN baselines using the same approach

and employed the discovered hyperparameters for the VAE-GAN models. We

utilized Keras Tuner’s Bayesian Optimization function with 10 trials and 50

epochs for each trial. Furthermore, we employed the following approach to

estimate the optimization objective that our tuning process minimizes. First,

we generated 100 outputs and then computed a mean squared error (MSE) for

each output by comparing it against all the training samples and finding the

closest match. We then averaged the MSE values of the generated samples to

calculate the final score. Notably, our goal for designing this method was to

enable the tuning process to avoid choosing hyperparameters that led to the

generation of obviously poor outputs (e.g., all background) that we observed

while developing our models.

18

Algorithm 1 Our VAE-GAN with gradient penalty. We use default values
of ndisc = 10, λ = 10

Initialize network parameters ← θEnc, θDec, θGen, θDisc

repeat
// Stage 1: VAE Training
(X, Y)← random mini-batch from dataset
Z ← Enc(X)
Lprior ← DKL(q(Z|X)||p(Z))
X̃ ← Dec(Z)
Lreconstruction ← Categorical Cross Entropy(X̃, Y)

θEnc
+← −▽θEnc

(Lprior + Lreconstruction)

θDec
+← −▽θDec

(Lprior + Lreconstruction)

// Stage 2: Discriminator Training
for t = 1, ..., ndisc do

Zp ← samples from prior N(0, I)
gfake ← Gen(Zp)
dfake ← Disc(gfake)
dreal ← Disc(Y)
gp← gradient penalty(Y, gfake)
LDisc ← mean(dfake)−mean(dreal) + λ ∗ gp
θDisc

+← −▽θDisc
LDisc

end for

// Stage 3: Generator Training
Zp ← samples from prior N(0, I)
gfake ← Gen(Zp)
dfake ← Disc(gfake)
LGen ← −mean(dfake)

θGen
+← −▽θGen

LGen

until deadline

19

Chapter 4

Experimental Setup and Results

Generative models can learn the underlying structure of input data and gen-

erate new data instances. Unlike previous approaches that accomplish level

generation in a sequential manner, we present a method that is able to per-

form joint level generation and translation using gameplay video frames. In

this chapter, we use our modified VAE-GAN-based model to learn to perform

simultaneous level generation and translation. Using various evaluation meth-

ods, we show that our approach can achieve a better performance regarding

translation accuracy and generation quality. Additionally, we conduct further

experiments to shed more light on the generalization ability of our model.

4.1 Evaluation

The purpose of our model is to accomplish simultaneous level generation and

translation. The ideal way to evaluate the generative quality of a level genera-

tor is to conduct a human study, where designers/players inspect the generated

outputs and assess them. However, this would be premature for an initial eval-

uation of this approach. Thankfully, researchers in the field of PCGML have

proposed several metrics to address situations like this that do not require

human evaluation [3], [5], [17], [30], [46], [50]. On the other hand, we do not

require human evaluation for the translation task as we can utilize metrics

like accuracy and f1-score to assess the model’s performance. The following

subsections present the baselines and metrics we chose for assessing our model.

20

4.1.1 Baselines

To evaluate the performance of our proposed model, we used the following

existing architectures for the level generation task:

• VAE-GAN: We made use of the original VAE-GAN architecture [23].

Therefore, the primary difference between this baseline and our model

is that this baseline only has one decoder/generator component instead

of separate modules. Moreover, to make the comparison between archi-

tectures clearer, we leveraged the same reconstruction loss as our VAE-

GAN. Noteworthy, we used 1e − 6 as the reconstruction vs. generation

coefficient since this value was used in the original VAE-GAN paper [23].

• GAN: For this baseline, we removed the VAE components from our

model and kept the generator and discriminator. The main difference

between this GAN and our model’s GAN module is that it no longer has

a shared layer.

• VAE: As above, but removing the GAN components of our model.

• VAE-GAN TEXT, VAE TEXT: Same as the VAE-GAN and the

VAE, but with the VGLC string representation of frames as input instead

of frame images.

All of our baselines represent variations of our architecture, which will

allow us to determine the utility of our VAE-GAN to this task in comparison

to a typical VAE-GAN and the individual GAN and VAE components. In

addition, we include variations of these baselines trained only on VGLC data

to determine the utility of employing gameplay video data. We trained all our

baselines using a batch size of 8 for 300 epochs, as empirical evidence showed

that 300 epochs were enough for our models to converge. Moreover, we kept

our baselines as similar as possible by utilizing the same hyperparameters as

our model.

21

4.1.2 Metrics

Following previous research [19], [37], we adapted the following metrics pro-

posed by prior PCGML work to evaluate our model’s generation and transla-

tion quality:

• Linearity: This metric measures how well a level conforms to a straight

line. We employed the implementation of this metric from Jadhav and

Guzdial [19].

• Leniency: This metric measures how hard a level is. We calculated this

by subtracting the number of harmful/enemy tiles and half the number

of moving tiles from the total number of tiles in the frame [37].

• Interestingness: This metric measures the number of interesting tiles

in a level. To calculate this, we counted the number of doors, moving

platforms, collectibles, and harmful tiles [37].

• Playability: The purpose of this metric is to determine whether a level

segment is playable or not by trying to find a path from the lowest piece

of level structure to the highest piece of level structure. We adapted this

implementation of playability and pathfinding agents from Sarkar and

Cooper [36], [37].

• Accuracy: We used this metric to evaluate our model’s performance

regarding the ability to translate level segments. We calculated accuracy

by dividing the number of correctly translated tiles by the total number

of tiles in the level segment.

Additionally, we used the following metrics as means of comparing our model

and baselines based on the values that we obtained using the metrics mentioned

above:

• Energy Distance (E-Distance): The purpose of this function is to

measure the distance between two distributions [32]. In this thesis, we

considered the linearity, leniency, and interestingness of generated sam-

ples as features of their distribution to estimate how similar the outputs

22

of each model are to our dataset. We used the GeomLoss library [10] to

calculate this metric.

• Kernel Density Estimation (KDE): This statistical approach is used

to estimate the probability density function of a distribution based on

a set of samples [33]. We utilized KDE plots to visualize the generative

space of our models and compare them against both our training and

test sets.

We note that to calculate the training metrics, we generated 3956 random

samples for each model to have an equal number of samples as our training

dataset. Similarly, we generated 360 random samples to compare our model’s

outputs against the test dataset.

4.2 Results

Table 4.1 presents the results of the evaluation metrics for our model and all

baselines. We bold the best value for a particular column or metric, and a

dash indicates that the corresponding model does not have a defined value for

that metric. To be more specific, best means highest values for the accuracy

and playability columns, and lowest values for the e-distance columns.

Notably, our table has two playability columns, as we ran Super Mario

Bros. and Kid Icarus pathfinding agents for all generated outputs. We made

this decision because our model and baselines learn a single latent space, so

they produce outputs covering both games and the space between them. The

playability values in our table represent the portion of level segments that were

playable according to the respective playability agent.

We observe that our VAE-GAN outperforms all the baselines regarding

e-distance across both training and test datasets. This suggests that the gen-

erated outputs from our VAE-GAN are closer to the original datasets than

the other baselines. Also, the test e-distance results provide evidence for our

model’s superior ability to generalize. The test e-distance also demonstrates

evidence of overfitting, as the text-based models perform poorly on it. We take

23

this as evidence that using gameplay video is beneficial for the level generation

task. A possible explanation for this is that drawing on video data could have

a similar effect as data augmentation in terms of introducing small variations

on the same structures. For example, each second of Super Mario Bros. game-

play video produces two frames in our dataset (with FPS = 2). This results in

some frame images with significant overlap, but with differences in their pixel

representation due to the dynamic nature of gameplay video (e.g., movement

of the player and enemies). In comparison, the static string representation

had no such variation and no way to generate it automatically.

Considering the above analysis, it’s important to acknowledge that we re-

frain from making a definitive claim regarding the superiority of our model over

the original VAE GAN, which achieves the closest results in terms of genera-

tion abilities. Given the sensitivity of GAN training to hyperparameters and

random seeds [28], one could possibly discover a version that outperforms our

model. Notably, we haven’t explored the space of possible seeds or reconstruc-

tion vs. generation coefficients in this research.

In terms of reconstruction accuracy, our model achieves the best perfor-

mance, tied with the VAE TEXT model, though it is clearly superior in terms

of generation quality. Furthermore, we performed statistical testing [58] using

Python’s SciPy library [57] on the accuracy results of our model against the

baselines. The obtained p-values show that the reconstruction accuracy of our

model is significantly greater than all the other baselines, except for the the

VAE TEXT.

Turning our attention to the playability results, we see that all the playa-

bility (SMB) percentages are quite close except for the VAE baseline. By

inspecting this baseline’s outputs, such as examples provided in Figure 4.1, we

recognized that its outputs had less variety and simpler structures, leading to

improved playability but an inferior e-distance. Furthermore, the playability

(KI) results are similar and rather low. We anticipate that this is due to this

Kid Icarus pathfinding agent [36], [37] only achieving 77% on the real Kid

Icarus level segments of our dataset. The original VAE-GAN does outper-

form our approach for playability (KI) but not in terms of playability (SMB)

24

or other metrics. We take this as evidence of the utility of the VAE-GAN

architecture generally and of our alterations to this architecture specifically.

Model Training Accuracy Test Accuracy Training E-distance Test E-distance Playability (SMB) Playability (KI)
Our VAE-GAN 0.94 0.88 0.31 0.39 0.86 0.54

Original VAE-GAN 0.90 0.85 0.37 0.44 0.85 0.60
GAN - - 0.64 0.83 0.85 0.54
VAE 0.94 0.87 1.69 0.84 0.94 0.58

VAE-GAN TEXT 0.92 0.87 0.66 1.81 0.85 0.54
VAE TEXT 0.92 0.88 2.53 2.55 0.85 0.47

Table 4.1: Results of generation and translation evaluation metrics for our
model and all baselines.

Figure 4.1: Examples of the VAE baseline’s generated outputs.

Figure 4.2 demonstrates linearity vs. leniency KDE plots for the top four

models in terms of training e-distance. The first row of Figure 4.2 plots the lin-

earity vs. leniency against all the Kid Icarus samples from our training dataset

for our VAE-GAN, the original VAE-GAN, GAN, and the VAE-GAN TEXT

models, respectively. The second row plots the same metrics for the same

models against our dataset’s Super Mario Bros. samples. We chose these ar-

chitectures as they had the best results in Table 4.1. As we move from left to

right in each row, we see a decreasing trend regarding coverage of the original

distribution. We also observe that this decreasing trend of coverage correlates

with the trend that we see in the e-distance values of these four models.

Figure 4.3 demonstrates linearity vs. leniency KDE plots for the top four

models in terms of test e-distance. Similar to the training KDE plots, we

can see the correlation between the e-distance trend and coverage of the test

dataset in the KDE plots.

Figure 4.4 displays four instances of our VAE-GAN’s generated outputs

using a common tile representation (obtained from Kenney 1). Samples 4.4a

and 4.4b have a similar structure as the Kid Icarus levels, while samples 4.4c

1kenney.nl/assets/platformer-art-deluxe

25

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: KDE plots of the training dataset, demonstrating linearity vs.
leniency for the top four models.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: KDE plots of the test dataset, demonstrating linearity vs. leniency
for the top four models.

and 4.4d have a closer resemblance to the Super Mario Bros. levels. Moreover,

the sample images in the second row blend the characteristics of both games.

We should note that we looked at a hundred randomly generated outputs

to find the examples that were closest to these criteria. To elaborate on the

blended aspects of examples in the second row, although sample 4.4e has solid-

top platforms (cloud-like tiles) that are placed in a manner that is similar to

26

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Sample generations of our VAE-GAN. Samples 4.4a and 4.4b look
more similar to Kid Icarus levels, whereas samples 4.4c and 4.4d are closer to
the Super Mario Bros. levels. Samples 4.4e, 4.4f, 4.4g, 4.4h in the second row
blend the characteristics of both Kid Icarus and Super Mario Bros. levels.

Kid Icarus level structure, it has collectibles (coin-shaped tiles) that only occur

in Super Mario Bros. levels. This observation indicates that our model can

blend the aspects of both games to generate novel level segments that were

not included in the training dataset.

Figure 4.5 presents sample translations of our model. The upper row con-

sists of frames from Super Mario Bros., Kid Icarus, Duck Tales, and Megaman,

respectively. The translation of each frame is below it. We observe that the

translation performance is significantly better for the first two samples (4.5a,

4.5b) since our model saw samples from these two games during training. We

selected example outputs to demonstrate this, but note from Table 4.1 that

we had high translation accuracy.

4.3 Experiments on Generalizability

In this section, we cover experiments that we designed to better understand

our models’ generalization ability. Subsection 4.3.1 explains the impact of

data variation, representation, and embedding technique on the translation

accuracy of unseen data. Subsection 4.3.2 provides an in-depth analysis of the

latent space of our model, and subsections 4.3.3, 4.3.4, and 4.3.5 demonstrate

case studies on translation performance of our model with Super Mario Land,

27

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Sample translations of our VAE-GAN. Figures 4.5a (Super Mario
Bros.) and 4.5b (Kid Icarus) belong to the test set of our dataset, and figures
4.5c (Duck Tales), and 4.5d (Megaman) are sample frames from unseen games.

Megaman, and natural images.

4.3.1 Impact of Data Variation, Representation, and
Embedding

Table 4.2 demonstrates our evaluation results given variations of number of

training games, latent space embedding, and data representation techniques.

In this table, VAE-GAN refers to our VAE-GAN without any changes to the

model architecture, while VQ-VAE-GAN refers to a variation of our model

that uses a discrete latent space. Notably, in this evaluation, we have used

Megaman’s data as an unseen game test dataset.

Comparison between the results of the first two rows of table 4.2 suggests

that adding one additional game results in a drop in the translation perfor-

mance of our model. We believe this is likely due to the substantial structural

difference between the third training game (The Legend of Zelda), a dungeon

crawler, and the test game, a platformer. The third training game further

pushes the latent space away from that of the target data, leading to a perfor-

mance drop.

Comparing the second and third rows of the table provides evidence that

28

adding frames’ detected edges as an additional channel to the input data can

result in improved translation accuracy for unseen data. We believe this ad-

ditional representation improves our model’s ability to generalize, as it is not

dependent on the variations of color.

The fourth row uses the edge-detection representation technique with a

VQ-VAE variation of our model, which doesn’t improve the results comparing

the default setting (first row) or the best setting (third row). We attribute this

to the discrete latent space of this model, which is less capable of capturing

the variation in the input image data, resulting in reduced generalizability.

Lastly, the bottom row leverages both edge detection and optical flow in-

formation as the data representation techniques. Notably, this experiment

results in a 1% accuracy improvement for training data compared to the third

row. We believe this is probably due to the fact that the background is simpler

and has fewer decorative elements in Mario and Kid Icarus. Hence, employing

optical flow on their dataset yields a more discernible separation between the

player’s motion and extraneous background elements, which ideally should not

be included in the flow tracking.

Model Training Games Data Representation Training Accuracy Test Accuracy Test Macro F1-score
VAE-GAN KI, SMB - 0.94 0.59 0.12
VAE-GAN KI, SMB, LoZ - 0.91 0.55 0.11
VAE-GAN KI, SMB Edge Detection 0.93 0.63 0.15

VQ-VAE-GAN KI, SMB Edge Detection 0.93 0.55 0.13
VAE-GAN KI, SMB Edge Detection, Optical Flow 0.94 0.60 0.13

Table 4.2: Results of translation evaluation metrics for variations of model
architecture and representation techniques.

4.3.2 Latent Space Analysis

Our model has a unique architecture that shares the embedding layer weights

between its VAE and GAN tails. Motivated by this design choice, we con-

duct a closer inspection of the embedding space using t-SNE to determine

whether any semantic groups emerged. T-Distributed Stochastic Neighbor

Embedding (t-SNE) is a commonly-used statistical method used to visualize

high-dimensional data in a two or three-dimensional space [29]. We used the

29

ABC

(a) Examples of types of overlap between the two game clusters. Region A indicates
the case where datapoints are closer in terms of visual characteristics rather than
translations, while region B demonstrates the opposite case. Region C showcases
an example where datapoints are dissimilar in both comparison metrics.

(b) Average images and mode of translations for datapoints belonging to regions A,
B, and C. The first row demonstrates pixel-wise average images of SMB datapoints
versus the Kid Icarus datapoints and the character-wise mode of their predicted
and real translations for region A. The second and third rows display the same
information calculated for regions B and C, respectively.

Scikit-learn implementation of the t-SNE algorithm [31], with random initial-

ization, perplexity of 100, and an automatic learning rate.

Figure 4.6a demonstrates the t-SNE visualization of our VAE-GAN’s latent

space. There are two noticeable large clusters, one containing Kid Icarus dat-

apoints and the other containing Super Mario Bros. datapoints. While these

clusters exhibit separation overall, we observe some intersections. Therefore,

we analyzed the overlapping areas and detected three different patterns. No-

tably, for each overlapping region marked in Figure 4.6a, we partitioned the

30

points into two categories: Super Mario Bros. and Kid Icarus. For each cate-

gory, we computed the pixel-wise average of RGB values across the images of

datapoints and determined the character-wise statistical mode of their corre-

sponding string-based translations.

The first pattern (A) represents cases where the two groups of datapoints

have more similarities in terms of visual appearance compared to the string-

based translations. The second pattern (B) exhibits cases where datapoints

are more similar in terms of string-based translation compared to the visual

features in their images. Finally, the last pattern (C) identifies a region where

the two groups look very different regarding the visual appearance of average

images and average string-based representations. These examples demonstrate

that our model makes use of both visual features and the tile-based structure

to capture the underlying data distribution.

Precision Recall F1 score Support
0.59 0.32 0.42 1486
- 0.82 0.93 0.87 5930
D 0.32 0.04 0.07 151
H 0.00 0.00 0.00 36
M 0.00 0.00 0.00 0
T 0.00 0.00 0.00 0
B 0.00 0.00 0.00 35
S 0.00 0.00 0.00 255
O 0.07 0.02 0.03 57

accuracy 0.75 7950
macro avg 0.20 0.15 0.15 7950

weighted avg 0.73 0.75 0.73 7950

Table 4.3: Evaluation results for Super Mario Land.

Figure 4.7: Case studies of Super Mario Land data. The first row demonstrates
two examples with high translation accuracy, while the second row shows two
examples with the lowest translation accuracy.

31

4.3.3 Case Studies on Super Mario Land

In this work, we have designed an automatic level generation and translation

method that learns to generate new level segments based on visual input.

Inspired by previous work [6], we decided to determine whether our approach

can be adapted to perform co-creative level generation. One possible strategy

to achieve co-creativity for our model is to feed human-drawn sketches to it and

obtain reconstructed tile-based level segments that conform to the patterns of

the input sketch. Since we did not have access to any sketch-to-tile datasets,

we used Nintendo’s Super Mario Land levels from the VGLC dataset. Levels of

this game are black-and-white and much less detailed compared to the Super

Mario Bros. and Kid Icarus data we used to train our model. While this

data may not represent an ideal choice, it is the best we could find in terms of

resemblance to sketches and platformer games.

We processed the three World 1 levels from Super Mario Land to obtain

53 samples. Additionally, we inverted the colors of these input images as this

made their visual appearance closer to the training data and resulted in better

translations.

Table 4.3 represents the evaluation results of our original model’s trans-

lation of this dataset. Our model achieves a reasonable performance for the

background (-) and solid (#) tile types, but struggles with correctly identify-

ing the less frequent tile types. We attribute this to the fact that these tile

types appear much less frequently in our training data, making it harder for

our model to correctly identify them in unseen games.

Figure 4.7 demonstrates some of the best and worst translations of our

model in terms of accuracy. We observe signs of overfitting as the structures

are being mapped to the closest Mario or Kid Icarus-like structures.

Notably, we did not train our model to perform this specific task, so we

do not expect perfect performance. However, the evaluation results provide

evidence for the potential ability of our model to perform reasonably well at

this task.

32

(a) (b) (c) (d)

Figure 4.8: Examples of our model’s translation of natural images.

4.3.4 Case Studies on Translation Accuracy

Figure 4.9 represents four sample frames from the game Megaman. We have

chosen this game to analyze our model’s performance on unseen games since it

has very different aesthetics than our training games. Examples 4.9a and 4.9c

were chosen from the top 30 samples with the best accuracy, and examples 4.9e

and 4.9g were chosen from the set of 30 samples with the worst accuracy. The

first two sample translations indicate that our model seems to be most accurate

with frames that consist primarily of background tiles with even textures. On

the other hand, the second two examples illuminate our model’s weakness in

identifying background from foreground when frames have different textures

and colors compared to the training data.

4.3.5 Case Studies on Translation of Natural Images

In this section, we provide two examples of natural images and our VAE-

GAN’s translations of them in Figure 4.8. As expected, the translations don’t

seem to meaningfully match the patterns in the inputs since these images are

out-of-distribution. However, we can take these results as further evidence

that our model isn’t suffering from posterior collapse.

33

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Examples of our model’s most accurate (4.9a, 4.9c) and least
accurate (4.9e, 4.9g) translations versus the real translations.

34

Chapter 5

Conclusion

In this chapter, we examine the limitations inherent in our approach, explore

potential avenues for future improvements, and draw final conclusions to com-

plete this thesis.

5.0.1 Limitations and Future Work

In this thesis, we aimed to develop a framework that is able to perform level

generation and translation. Our initial evaluations suggest that our VAE-GAN

architecture was able to learn both of these tasks and achieve better results

compared to other frequently used architectures in PCGML. However, there

are multiple avenues for improvement. First, our initial experiment on the

impact of the number of training games seems to suggest that more games

may not improve our model’s generalizability over unseen games. However,

expanding the training dataset may still boost the translation performance if

we include a considerably larger number of games. Moreover, semi-supervised

learning techniques can also provide a means to use the abundant but unan-

notated data available from gameplay videos [56]. Improved generalizability

opens up the possibility of generating new level segments for unseen games.

If the framework is able to translate unseen level segments effectively, one

can take any gameplay video of a new 2D platformer game and feed its frames

through the VAE to attain their translations. Then, these (frame, translation)

pairs can be used to generate novel level segments for a new game.

Second, the evaluation results of the generated outputs of our model demon-

35

strate that there is significant room for improvement in terms of playability.

Adding a new loss to the model to take playability into account or augment-

ing input data with additional information, such as player path, may lead to

a better playability score for the generated outputs.

5.0.2 Conclusions

In this thesis, we aimed to answer the following pivotal research questions

regarding the simultaneous learning of level generation and translation tasks.

RQ1) Can learning level generation and translation tasks in tandem benefit

any of these tasks, compared to learning each task separately?

RQ2) To what extent can this idea improve or hinder the performance qual-

ity of the proposed architecture regarding both generation quality and

translation accuracy?

RQ3) What is a ML-based architecture that can be utilized to perform

these tasks jointly?

RQ4) How can such an approach potentially address the problem of low

annotated data for procedural level generation via machine learning?

To tackle RQ3, we proposed a novel framework for simultaneous level seg-

ment generation and translation. We trained a novel VAE-GAN-based archi-

tecture on a dataset of human-annotated platformer games. To answer RQ1

and RQ2, we compared our framework against multiple baselines and showed

evidence that learning these two tasks jointly can lead to an overall better

performance in terms of generation quality and translation accuracy. Our

experiments on generalizability provide inconclusive evidence of the potential

ability of this approach to address the problem of insufficient data for PCGML,

as stated in RQ4. Additional experiments with larger datasets containing data

from more games may be helpful for further validating our findings and ex-

panding the scope of applicability of our proposed method.

36

References

[1] A. Amato, “Procedural content generation in the game industry,” Game
Dynamics: Best Practices in Procedural and Dynamic Game Content
Generation, pp. 15–25, 2017.

[2] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International conference on machine learning,
PMLR, 2017, pp. 214–223.

[3] S. Berns, V. Volz, L. Tokarchuk, S. Snodgrass, and C. Guckelsberger,
“Not all the same: Understanding and informing similarity estimation in
tile-based video games,” arXiv preprint arXiv:2402.18728, 2024.

[4] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[5] A. Canossa and G. Smith, “Towards a procedural evaluation technique:
Metrics for level design,” in The 10th International Conference on the
Foundations of Digital Games, sn, 2015, p. 8.

[6] E. Chen, C. Sydora, B. Burega, et al., “Image-to-level: Generation and
repair,” Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, vol. 16, no. 1, pp. 189–195, Oct.
2020. doi: 10.1609/aiide.v16i1.7429. [Online]. Available: https:
//ojs.aaai.org/index.php/AIIDE/article/view/7429.

[7] F. Chollet et al., Keras, https://keras.io, 2015.

[8] B. De Kegel and M. Haahr, “Procedural puzzle generation: A survey,”
IEEE Transactions on Games, vol. 12, no. 1, pp. 21–40, 2020. doi: 10.
1109/TG.2019.2917792.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, Ieee, 2009, pp. 248–255.

[10] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouve, and G.
Peyré, “Interpolating between optimal transport and mmd using sinkhorn
divergences,” in The 22nd International Conference on Artificial Intel-
ligence and Statistics, 2019, pp. 2681–2690.

37

https://doi.org/10.1609/aiide.v16i1.7429
https://ojs.aaai.org/index.php/AIIDE/article/view/7429
https://ojs.aaai.org/index.php/AIIDE/article/view/7429
https://keras.io
https://doi.org/10.1109/TG.2019.2917792
https://doi.org/10.1109/TG.2019.2917792

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversar-
ial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144,
2020.

[12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” Advances in neural information
processing systems, vol. 30, 2017.

[13] M. Guzdial and M. Riedl, “Game level generation from gameplay videos,”
Proceedings of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, vol. 12, no. 1, pp. 44–50, Jun. 2021. doi:
10.1609/aiide.v12i1.12861. [Online]. Available: https://ojs.aaai.
org/index.php/AIIDE/article/view/12861.

[14] M. Guzdial, S. Snodgrass, and A. J. Summerville, Procedural Content
Generation Via Machine Learning: An Overview. Springer, 2022.

[15] C. Harris, M. Stephens, et al., “A combined corner and edge detector,”
in Alvey vision conference, Citeseer, vol. 15, 1988, pp. 10–5244.

[16] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[17] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius, “A compara-
tive evaluation of procedural level generators in the mario ai framework,”
in Foundations of Digital Games 2014, Ft. Lauderdale, Florida, USA
(2014), Society for the Advancement of the Science of Digital Games,
2014, pp. 1–8.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International con-
ference on machine learning, pmlr, 2015, pp. 448–456.

[19] M. Jadhav and M. Guzdial, “Tile embedding: A general representation
for level generation,” Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 17, no. 1, pp. 34–
41, Oct. 2021. doi: 10.1609/aiide.v17i1.18888. [Online]. Available:
https://ojs.aaai.org/index.php/AIIDE/article/view/18888.

[20] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” arXiv preprint
arXiv:1710.10196, 2017.

[21] N. Y. Khameneh and M. Guzdial, “Entity embedding as game represen-
tation,” arXiv preprint arXiv:2010.01685, 2020.

[22] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[23] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Au-
toencoding beyond pixels using a learned similarity metric,” in Interna-
tional conference on machine learning, PMLR, 2016, pp. 1558–1566.

38

https://doi.org/10.1609/aiide.v12i1.12861
https://ojs.aaai.org/index.php/AIIDE/article/view/12861
https://ojs.aaai.org/index.php/AIIDE/article/view/12861
https://doi.org/10.1609/aiide.v17i1.18888
https://ojs.aaai.org/index.php/AIIDE/article/view/18888

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[25] H. Liu, T.-H. Hong, M. Herman, T. Camus, and R. Chellappa, “Accuracy
vs efficiency trade-offs in optical flow algorithms,” Computer vision and
image understanding, vol. 72, no. 3, pp. 271–286, 1998.

[26] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 3730–3738.

[27] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in IJCAI’81: 7th international joint
conference on Artificial intelligence, vol. 2, 1981, pp. 674–679.

[28] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are
gans created equal? a large-scale study,” Advances in neural information
processing systems, vol. 31, 2018.

[29] L. van der Maaten and G. E. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
5855042.

[30] J. Mariño, W. Reis, and L. Lelis, “An empirical evaluation of evalua-
tion metrics of procedurally generated mario levels,” in Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 11, 2015, pp. 44–50.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[32] M. L. Rizzo and G. J. Székely, “Energy distance,” wiley interdisciplinary
reviews: Computational statistics, vol. 8, no. 1, pp. 27–38, 2016.

[33] M. Rosenblatt, “Remarks on some nonparametric estimates of a density
function,” The annals of mathematical statistics, pp. 832–837, 1956.

[34] Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distributions with
applications to image databases,” in Sixth international conference on
computer vision (IEEE Cat. No. 98CH36271), IEEE, 1998, pp. 59–66.

[35] D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, Paral-
lel distributed processing: Explorations in the microstructure of cognition,
Vol. 1: Foundations. MIT press, 1986.

[36] A. Sarkar and S. Cooper, “Dungeon and platformer level blending and
generation using conditional vaes,” in 2021 IEEE Conference on Games
(CoG), IEEE, 2021, pp. 1–8.

39

https://api.semanticscholar.org/CorpusID:5855042
https://api.semanticscholar.org/CorpusID:5855042

[37] A. Sarkar and S. Cooper, “Generating and blending game levels via
quality-diversity in the latent space of a variational autoencoder,” in
Proceedings of the 16th International Conference on the Foundations of
Digital Games, 2021, pp. 1–11.

[38] A. Sarkar, A. Summerville, S. Snodgrass, G. Bentley, and J. Osborn,
“Exploring level blending across platformers via paths and affordances,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, 2020, pp. 280–286.

[39] A. Sarkar, Z. Yang, and S. Cooper, “Controllable level blending between
games using variational autoencoders,” arXiv preprint arXiv:2002.11869,
2020.

[40] N. Shaker, J. Togelius, and M. J. Nelson, “Procedural content generation
in games,” 2016.

[41] J. Shi et al., “Good features to track,” in 1994 Proceedings of IEEE con-
ference on computer vision and pattern recognition, IEEE, 1994, pp. 593–
600.

[42] D. Smirnov, M. GHARBI, M. Fisher, V. Guizilini, A. Efros, and J. M.
Solomon, “Marionette: Self-supervised sprite learning,” in Advances in
Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates,
Inc., 2021, pp. 5494–5505. [Online]. Available: https://proceedings.
neurips.cc/paper/2021/file/2bcab9d935d219641434683dd9d18a03-

Paper.pdf.

[43] A. M. Smith and M. Mateas, “Answer set programming for procedural
content generation: A design space approach,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 187–200,
2011.

[44] G. Smith, “An analog history of procedural content generation.,” in
FDG, Boston, MA, 2015.

[45] G. Smith, “Procedural content generation: An overview,” Level Design,
pp. 159–183, 2017.

[46] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2d platformers,” in Proceedings of the 4th interna-
tional Conference on Foundations of Digital Games, 2009, pp. 175–182.

[47] S. Snodgrass and S. Ontanon, “An approach to domain transfer in pro-
cedural content generation of two-dimensional videogame levels,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, vol. 12, 2016, pp. 79–85.

[48] S. Snodgrass and S. Ontanón, “Learning to generate video game maps
using markov models,” IEEE transactions on computational intelligence
and AI in games, vol. 9, no. 4, pp. 410–422, 2016.

40

https://proceedings.neurips.cc/paper/2021/file/2bcab9d935d219641434683dd9d18a03-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2bcab9d935d219641434683dd9d18a03-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2bcab9d935d219641434683dd9d18a03-Paper.pdf

[49] S. Snodgrass, A. Summerville, and S. Ontanon, “Studying the effects
of training data on machine learning-based procedural content gener-
ation,” Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, vol. 13, no. 1, pp. 122–128, Jun.
2021. doi: 10.1609/aiide.v13i1.12930. [Online]. Available: https:
//ojs.aaai.org/index.php/AIIDE/article/view/12930.

[50] A. Summerville, “Expanding expressive range: Evaluation methodologies
for procedural content generation,” Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, vol. 14,
no. 1, pp. 116–122, Sep. 2018. doi: 10.1609/aiide.v14i1.13012. [On-
line]. Available: https://ojs.aaai.org/index.php/AIIDE/article/
view/13012.

[51] A. Summerville and M. Mateas, “Super mario as a string: Platformer
level generation via lstms,” arXiv preprint arXiv:1603.00930, 2016.

[52] A. Summerville, S. Snodgrass, M. Guzdial, et al., “Procedural content
generation via machine learning (pcgml),” IEEE Transactions on Games,
vol. 10, no. 3, pp. 257–270, 2018.

[53] A. J. Summerville, S. Snodgrass, M. Mateas, and S. Ontanón, “The vglc:
The video game level corpus,” arXiv preprint arXiv:1606.07487, 2016.

[54] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[55] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[56] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised learn-
ing,” Machine learning, vol. 109, no. 2, pp. 373–440, 2020.

[57] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[58] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics: Methodology and distribution, Springer, 1992, pp. 196–
202.

41

https://doi.org/10.1609/aiide.v13i1.12930
https://ojs.aaai.org/index.php/AIIDE/article/view/12930
https://ojs.aaai.org/index.php/AIIDE/article/view/12930
https://doi.org/10.1609/aiide.v14i1.13012
https://ojs.aaai.org/index.php/AIIDE/article/view/13012
https://ojs.aaai.org/index.php/AIIDE/article/view/13012
https://doi.org/10.1038/s41592-019-0686-2

	Introduction
	Research Questions

	Background
	Deep Learning
	Convolutional Neural Networks
	GAN
	VAE
	VAE-GAN
	VQ-VAE

	Optical Flow
	Level Translation
	Level Generation
	Effects of Training Data on Level Generation Methods

	Joint Level Generation and Translation Using Gameplay Videos
	Dataset
	Model Architecture
	Model Training
	Hyperparameter Tuning

	Experimental Setup and Results
	Evaluation
	Baselines
	Metrics

	Results
	Experiments on Generalizability
	Impact of Data Variation, Representation, and Embedding
	Latent Space Analysis
	Case Studies on Super Mario Land
	Case Studies on Translation Accuracy
	Case Studies on Translation of Natural Images

	Conclusion
	Limitations and Future Work
	Conclusions

	References

