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Abstract 

Voussoir beam theory, also named as arching action, has been widely accepted and applied in 

design and construction of both surface and underground structures. This investigation focused 

on its underground applications with moderately jointed rock, such as underground mining and 

tunneling. 

There are discrepancies between the voussoir beam models built by different researchers, for 

example, the shape and depth of the induced stress at abutment and midspan and the beam 

shortening equation. In this investigation, the behavior of voussoir beam under transverse 

loading was investigated through physical, numerical and theoretical modeling.  It was found 

that the stress distributions at the midspan and abutment are different both in shape and depth 

through the photogrammetric analysis in physical investigation. And the stress distribution is 

changing as the loading changes. Using the physical tests as calibration and validation, the finite 

element code, Phase2 8.0, was selected to further the investigation. Systematically numerical 

modeling was performed to cover the voussoir beams with common ratios of span/thickness 

encountered in the field. The characteristics of voussoir beam behavior were obtained. 

An analytical model was built based on a general form of stress distribution at the abutment and 

midspan with different depths of stress distribution. Based on the findings from physical and 

numerical investigations, an iteration procedure was proposed to determine the stability and 

deflection of voussoir beams under transverse loading. 

The voussoir beam model developed was applied to analyze the mechanical behavior of stress 

riser of segmental precast concrete liner. The stress distribution at the stress riser of segmental 
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liner cannot be derived from existing closed form solution. There is always the uncertainty about 

the compressive failure of the segment liner especially when hair cracks happened at stress risers. 

Through modelling one piece of segment liner as a voussoir beam, the stress distribution and 

deflection at stress riser were obtained. It shows the stress riser is free from compressive failure 

for the target project. This is verified in the field by safely removing the temporary “reinforcing” 

measures. Voussoir beam theory is a suitable analytical method for the design of segmental 

tunnel liners. 
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1 Introduction 

It is not uncommon for a stratified rock mass to host an ore deposit. An ore body in a 

sedimentary setting frequently conforms to the surrounding rock, which has been stratified by 

bedding planes or other related depositional features. Excavations in stratified rock are therefore 

usually performed according to a cross-sectional geometry so that the roof and floor coincide 

with the bedding planes. This stratification structure can be the dominant factor controlling the 

roof stability in large civil excavations and in underground mining stopes (Betournay, 1987; 

Miller & Choquet, 1988). 

Historically, the mechanical behaviors of stratified strata encountered in underground openings 

have been simplified as simple beam, cantilever, or slab. Design rules have likewise been 

developed on the basis of concepts from solid mechanics, such as elastic beam theories and plate 

theories. Elastic beam theories assume that the rock above the excavation acts as a beam or series 

of beams containing no cracks and loaded by self-weight. Thus the roof span is designed so that 

the allowable stress is not exceeded in these beams. In the field, those simplifications were found 

to be unable to explain the strength measured or calculated in stable underground openings. The 

analyses are over-simplified. Furthermore, the stable roof observed is too broken and cracked 

transversely to act as a simple beam. As a result, the voussoir beam theory was developed and 

adopted for the structural analysis of stratified strata. Stratified and jointed rock as these appear 

in the field is shown is Figure 1-1. 
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Figure 1-1 Stratified and jointed rock in the field (Y. H. Hatzor, 2012) 

1.1 Concepts of the Voussoir Beam 

The roofs of mine excavations in fractured rock stand up over span lengths well in excess of 

what might be expected from the analysis of a continuous beam. The strength of such 

undermined strata is derived from “arching action.” The term “arching action” does not solely 

imply the formation of an arch- or dome-shaped opening. The term also refers to the process by 

which failed rocks may become self-supporting by the formation of a compression zone above an 

opening, which transfers vertical load to the adjacent abutments. This process is analogous to the 

voussoir arch commonly used in civil engineering projects.  

 

Figure 1-2 Voussoir beam analogy (M. S. Diederichs, 2000) 

Figure 1-2 shows an underground excavation in stratified rock that is moderately jointed. As the 

beam deflects, these cracks open up, inducing lateral and frictional forces at the contact areas 

Blocky Rock 

mass 
Excavatio

n 

Voussoir 
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Compression Arch 

aaarArch 

No-Tension 

Joint 
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between the blocks and abutments. The areas that are in contact with adjacent edges are under 

increasing compressive strain and hence high compressive stress occurs in these zones. 

Voussoir beam theory recognizes that in a confined situation the ultimate strength of a beam is 

greater than its elastic strength and that pre-existing fractures impede the beam from sustaining 

tensile stresses. The stability of the fractured rock beam is maintained entirely by compression 

and shear resistance; hence the strength of the linear arch does not depend on the flexural 

strength of the rock.  
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1.2 Application of Voussoir Beam Theory 

Some applications of voussoir beam theory are as follows: 

a) Voussoir beam theory can be used to design stable roofs in excavations in moderately 

jointed strata. 

b) Voussoir beam theory can be used to determine the strength of the segmental concrete 

liner that is widely used in mechanized tunneling, i.e. tunneling by Tunnel Boring 

Machine (TBM). 

c) The general theory for voussoir beams can be extended to bedded footwall slopes. 

Currently, the potential modes of failure in bedded footwall slopes of Canadian western 

coal mines include linear slab failure and Euler buckling failure. However, Euler 

buckling is very sensitive to the buckling length and thickness of the buckling slab, 

making it necessary to design to very high safety factors (e.g., S.F. of 5 or 6). A more 

realistic buckling analysis can therefore be developed by considering the buckling strata 

as a voussoir beam. 

d) For extracting pillar coal in old shallow mines with stratified roofs, voussoir beam theory 

can be used to determine the cutting sequence of pillars and the size of remnants (van der 

Merwe, 2009). 

e) Using knowledge of voussoir beam strength and failure mechanism, monitoring data 

from real excavations can be analyzed with respect to the ongoing failure mechanisms in 

the roof, and conclusions can be drawn concerning imminent failure or stabilization. 
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1.3 Current Knowledge of Voussoir Beam Theory 

Voussoir beam theory is generally attributed to Evans who first performed systematic research 

on the mechanical behavior of voussoir beams (Evans, 1941). Extensive investigation has since 

been performed using different methods. The following review of the voussoir beam theory 

literature is organized according to the three research approaches employed: analytical 

investigation, experimental investigation, and numerical investigation. 

1.3.1 Analytical Investigations 

In classical beam analysis (Euler beam or Timoshenko beam), a closed-form solution can be 

obtained for the shear and axial stress distribution, as well as for the amount of deflection. It is 

assumed that the beam is fixed at the ends and is therefore statically determinate. However, the 

voussoir beam is statically indeterminate as the beam is free to displace at abutments or at the 

midspan. The analytical solution can be arrived at either using the iteration method or by 

reducing unknown parameters by deriving new formulas from experiment results. 

1.3.1.1 Iteration method 

Evans (Evans, 1941) built the voussoir beam model to analyze underground roof stability, as 

shown in Figure 1-3 (note that only half of the model is presented due to its symmetry). An 

undermined beam with span (s) and thickness (t) is subjected only to the load of its own weight 

(w). The vertical load was transferred as the horizontal thrust (T) to the abutment through the 

arch in the beam. Evans proposed that both the stress distributions at the abutments and midspan 

have the same triangular shape (or linear distribution) and the same depth (nt) over the abutment 

and midspan, respectively. 
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𝑛 – ratio of the depth of stress distribution to beam thickness; 𝑊 – weight of the beam 

 – maximum stress at the abutments and midspan; 

 𝑇 – lateral thrust generated at the abutments and midspan 

𝑧 – distance between the action line of the thrust at the abutment and that at the midspan (i.e., moment arm) 

Figure 1-3 Voussoir Model proposed by Evans (Evans, 1941) 

Because Evans made an error in the analysis of the total resistance moment, the analysis as a 

whole is incorrect as well. Nevertheless, the triangular shape of stress distribution that he 

proposed has been accepted until now. He also proposed that 0.5 is the proper value for n. 

In order to calculate the elastic shortening of the arch under compression, Evans assumed a 

section of the beam over which equal stress was distributed. The position of the section is in the 

middle of the half-beam (i.e., s/4 from the abutment), as shown in Figure 1-3. Although the 

analysis contains a statics error, the approach is inspiring for the determination of arch 

shortening. The design procedure proposed by Evans was later modified by Beer and Meek 

(Beer & Meek, 1982). Subsequently, Sofianos (Sofianos, 1996) and then Diederichs and Kaiser 

(M. Diederichs & Kaiser, 1999b) noted some limitations in a simplified version of Beer and 

Meek’s method and proposed alternative ways of addressing the static indeterminacy of roof-bed 

analysis. To be concise, only the revisions proposed by Diederichs and Kaiser and Sofianos, 

respectively, are described in this review. 
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Diederichs and Kaiser (M. Diederichs & Kaiser, 1999b) proposed an algorithm to test the 

stability of a voussoir beam against snap-through and crushing (see Figure 1-4) based on the 

assumption that there will be the same linear stress at the abutment and midspan. This procedure 

is accepted by Brady and Brown (Brady & Brown, 2004), which proposed that the distribution of 

horizontal stress at the center of the arch is parabolic and presented a new formula to determine 

the deflection of the arch. 

 

Figure 1-4 Flowchart for the determination of stability and deflection of a voussoir beam (M. Diederichs & Kaiser, 1999b) 
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1.3.1.2 Reducing unknown parameters method 

Based on Evans’s model, Sofianos (Sofianos, 1996) reduced the unknown parameters of static 

indeterminacy in the voussoir model by deriving formulas of the parameters from the numerical 

analysis results obtained by Wright (see Table 1-2). The formulas of the parameters (nav, r and λ) 

are derived (see the non-rectangular box in Figure 1-5). The stress at the abutment is the same as 

at the midspan in Evans’s model; however, it was found that they are different from each other 

according to Wright’s results. Instead, Sofianos treated the stress at the abutment and midspan 

with the same thickness, navt, which is the arithmetic mean of the stress depth at the abutment 

(nt) and at the midspan (Nt). In order to calculate the shortening of the arch under elastic 

compression, Sofianos assumed that an equivalent thickness of the arch is χt and that the 

equivalent compression stress acting in the arch is σm. Ultimately, the formulas of extreme strain 

(εx) and deflection (δ) were derived in terms of the geometry, loading, and mechanical 

parameters of the beam, as shown in Figure 1-5. The relations for buckling, crushing, and the slip 

at the abutment are established (see Figure 1-5). 

It should be noted that the analytical procedures of Sofianos and Diederichs and Kaiser assume 

different conceptual voussoir roof models. As a result, the analyses of static stability and beam 

deflection differ considerably between them. A discussion on the differences between the two 

models is provided by Sofianos (Sofianos, 1999) and Diederichs and Kaiser (M. Diederichs & 

Kaiser, 1999a). 
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nav is the intermediate value of the ratios of the depth of stress induced at the abutment and at the midspan to beam 

thickness; λ is the ratio of n to nav; r is the ratio of the extreme strain (εx) to the equivalent strain (εm);                                                                                                           

χ is ratio of the depth of equivalent stress (σm) to the thickness of the beam (t); z0 is the lever arm of voussoir beam 

with zero deflection; FSB is the factor of safety for buckling. 
Figure 1-5 Flowchart of Sofianos’s analytical procedure (Sofianos, 1996)  
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Sofianos (Sofianos & Kapenis, 1998) validate the above-mentioned formulas with a distinct 

element code: UDEC. The numerical model consists of three blocks. The center block is the only 

deformable one that simulates half of the voussoir beam, the left rigid block simulates the 

abutment, and the right rigid block imposes the boundary conditions at the midspan. The contacts 

between the half-voussoir beam and the two rigid blocks are treated as discontinuities. In the left 

discontinuity, which represents the abutment of the beam, only lateral separation is permitted. In 

the right discontinuity, which represents the midspan of the beam, both vertical slip and lateral 

separation are permitted.  

Sofianos found that the stress depth ratio (𝑛𝑎𝑣) decreased not only with the span/depth ratio (s/t), 

according to the formula in Figure 1-5, but also with the normalized loading (described by 
𝑘𝑞𝛾𝑠

𝐸
 ). 

The formula developed is shown in Equation 1-1. The formula for the ratio (λ) of the depth of 

equivalent triangular stress at the abutment (nt) to that of the beam (navt) is refined as shown in 

Equation 1-2. As was the case with Wright’s results (Wright, 1974), Sofianos noticed that the 

strain distribution at the abutments and midspan was not linear and that the maximum strain at 

the abutments is greater than it is at the midspan. The stress distribution at the abutment is shown 

in Figure 1-6. Stress at the abutment is affected by the variance of thickness (t) being in a higher 

order than the variance of Young’s modulus. A formula for the maximum strain at the abutment 

is presented based on the nonlinear stress distribution (see Equation 1-3).  
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t is the beam thickness and E is the Young’s modulus of the beam 
Figure 1-6 Stress distribution at the abutment of a voussoir beam with a 20m span (Sofianos & Kapenis, 1998) 

 

𝒏𝒂𝒗 = {

             𝟎. 𝟏𝟏                     𝒇𝒐𝒓 𝒃𝒖𝒄𝒌𝒍𝒊𝒏𝒈 

𝟎. 𝟑 − 𝟎. 𝟏𝟒
𝒔

𝒕
√

𝒌𝒒𝜸𝒔

𝑬

𝟑

         𝒇𝒐𝒓 𝒄𝒓𝒖𝒔𝒉𝒊𝒏𝒈 
                                                                              Equation 1-1 

𝝀 = 𝟎. 𝟔 + 𝟎. 𝟎𝟎𝟒
𝒔

𝒕
                                                                                                            Equation 1-2 

𝐥𝐧 𝑨 = −𝟑. 𝟖 + 𝟏. 𝟓 𝐥𝐧
𝒔

𝒕
− 𝟎. 𝟎𝟔 (𝐥𝐧

𝒌𝒒𝜸𝒔

𝑬
)

𝟐

                                                                               Equation 1-3 

A third method, besides the two methods discussed above, was developed through Bakun-

Mazor’s (Bakun-Mazor, Hatzor, & Dershowitz, 2009) analysis of the voussoir beam under a 

non-linear stress distribution (see Figure 1-7). He proposed a method to determine the shape and 

depth of the stress distribution at the abutment and midspan by finding the minimum of 

maximum stress. That is, the maximum stress (σA and σM) will get the minimum value for the 

given shape and depth of stress distribution. The use of this method has been discontinued in 

order to analyze the failure mechanism of voussoir beams. 

n
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Figure 1-7 Bakun’s model (Bakun-Mazor & Dershowitz 2009) 

1.3.2 Experimental Investigations 

Evans (Evans, 1941) built a steel frame to test the mechanical behavior of the voussoir beam 

(Figure 1-8). The steel frame consisted of two rods (ø7.62cm, 655.32cm long) with screwed 

ends, and two endplates built of U-shaped steel channels. A constraining force was applied 

through a knife-edge push-rod by tightening the nuts, which concentrated the force. The 

constraining force was measured by a bell crank installed at one end. The beam was formed by 

putting common building bricks end-to-end or face-to-face at an inclined angle. The experiments 

justified the aspect of voussoir beam theory that the undermined strata derive their capacity for 

self-support from voussoir beam action, not from simple bending.  

 

Figure 1-8 The Experimental Apparatus built by Evans (Evans, 1941) 

Because Evans did not investigate the voussoir beams in the form of two blocks, which was the 

form analyzed in theoretical model, the experiments cannot be taken as a verification of or 

comparison to the theoretical analysis. Likewise, since the horizontal thrust was applied by a 
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knife-edge rod, the location of the thrust was predetermined, but not the response of the voussoir 

beam to the transverse loading. Finally, the full failure process for the beams was also not 

investigated as no loading system was used.  

Wright (Wright, 1974) performed physical experiments to verify the formulas that he derived 

from numerical analysis results. The beam models consisted of limestone blocks or brick blocks 

similar to Evans’s experiments. The testing frame is shown in Figure 1-9. The abutments are 2 

limestone blocks 10-cm thick (J in Figure 1-9). The cracks at the abutments always opened first 

and farther than the crack at the midspan, and the beam behaved as if it had cracks at the 

abutments and at the center only. The testing results fit well with computer models. All the 

experiments are summarized in Table 1-1. 

 

A hydraulic jack; B worm gear jack; C typical distributed load; D model; E retractable support;  

F fixed abutment supports; G load cells; H separately supported dial gauges; 

 I thrust plates; J limestone abutment blocks 
Figure 1-9 The Testing Apparatus built by Wright (Wright, 1974) 

In Wright’s experimental investigation, the stress distributions at the midspan and abutments are 

unable to be checked. There are several differences between the numerical model and physical 

model. The numerical models have rigid abutments, but the physical models have limestone 

abutments. Computer models were self-loaded, but the physical models were loaded from above. 
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The computer models have only three cracks at the abutments and midspan; physical models 

consisted of many blocks and have more than three cracks. 

Table 1-1 Summary of Wright’s experiments (Wright, 1974) 

NO

. 
Material 

Span 

m 
Depth m 

Span/

Depth 
E Gpa 

Constraining 

force kN/m 
Failure information 

1 limestone 0.9557 0.1524 6.271 36.17 0 Sliding at abutments 

2 limestone 0.9557 0.1524 6.271 36.17 41.89 

No information for failure type; 

T verses Q fit well with the formula curve. 

3 limestone 1.8471 0.1524 12.12 36.17 0 

4 limestone 1.8471 0.1524 12.12 36.17 38.38 

5 limestone 3.7582 0.1524 24.66 36.17 0 

6 limestone 3.7582 0.1524 24.66 36.17 37.57 

7 brick 1.9397 0.05715 33.94 5.515 0 Failed by buckling; 

T - Q and δ – Q curves fit well with the formula; 

Buckling danger point is at δ/t=0.14; 

The maximum load is at δ/t=0.3. 

8 brick 1.9162 0.05715 33.53 5.515 20.48 

9 brick 1.9397 0.05715 33.94 5.515 29.47 

10 brick 0.9729 0.05715 17.02 5.515 0 Crushing at the abutments; 

T - Q and δ – Q curves fit well with the formula; 

The compressive strength calculated by the formula 

from the maximum load tested fit the compressive 

strength tested. 

11 brick 0.9729 0.05715 17.02 5.515 26.55 

12 brick 0.9729 0.05715 17.02 5.515 37.33 

13 limestone 0.9144 0.0254 36 36.17 unknown 
Buckling at δ/t=0.21； 

T - Q and δ – Q curves fit well with the formula; 

14 limestone 0.4572 0.0254 18 36.17 unknown 

Crushing both at midspan and abutment; 

T - Q and δ – Q curves fit well with the formula; 

Calculated maximum stress is 80% larger than the 

tested strength 

15 limestone 0.8954 0.0508 17.63 36.17 unknown 

Crushing both at the top midspan and abutment; 

T verses Q fits well with the formula curve; 

Calculated maximum stress is 80% larger than the 

tested strength 

Calculated deflection is higher than the 

experimental value 

 

Sterling (Sterling, 1977) designed a constraining beam testing apparatus (Figure 1-10), which 

consists mainly of two steel-end plates and four threaded rods. A servo-controlled load 
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application was enabled to test the full failure process of the beam. Three types of loading 

conditions were used during the tests: one-point, two-point, and four-point loading. The 

horizontal thrust was measured by strain gauges attached on the horizontal rods; the beam 

deflection was acquired or converted from the LVDT (Linear Variable Differential Transformer) 

reading, which shows the convergence of the testing machine platens. The experimental 

parameters investigated included the material properties of beam, beam size, initial end 

conditions, loading conditions, support conditions and stiffness of lateral support, creep or 

relaxation, and multiple layers. The relations between load/deflection, lateral thrust/vertical load, 

eccentricity/vertical load, and crack diagram were presented. Nevertheless, the beam samples 

tested were intact beams, not voussoir beams. The stress distribution at the end was also not 

investigated. Finally, the eccentricity of the lateral thrust, which was determined by resolution of 

the upper and lower bar loads, are not reliable.  

 

Figure 1-10 Testing Apparatus built by Sterling (Sterling, 1977) 
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Ahmed (Ahmed, 1990; Stimpson & Ahmed, 1992) built a similar apparatus to Sterling’s with 

one modification by applying strain gauges on the front and back surfaces of the rock beam 

(Figure 1-11). The strain gauges can indicate the failure mechanism of the rock beam. 

This experimental work on thick beams reveals a progressive fracture phenomenon in which 

failure occurs by shearing along a diagonal crack. Clearly, this is a different failure mechanism 

than the rotational or crushing failures that occur in thin beams. There must be a transition area 

between buckling, crushing, and sliding failure mechanisms. 

 

Figure 1-11 The testing frame built by Ahmed (Ahmed, 1990) 

Given the limitation of the size of the rock beam surfaces, only one strain gauge can be applied. 

The stress distribution at the beam ends and the crack near the midspan cannot be measured, and 

the accuracy of the stress eccentricity at the ends is doubtful as it is calculated by the force 

measured at the restraining bars. 

Mottahed (Mottahed & Ran, 1995) performed both physical and finite element testing. The 

physical tests involved voussoir beams cut from two types of Durox bricks made of lightweight 
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concrete. Because the lightweight concrete has low values for Young’s modulus and 

compressive strength, the model beams failed at low transverse loads. This meant that the 

horizontal movement of both abutments was negligible; the abutments were therefore assumed to 

be rigid. This assumption, under which the tests were conducted, is valid; however, in reality, 

some small abutment movement occurs. Under the experimental conditions, almost all of the 

modelled voussoir beams failed by crushing at the high stress areas located at the ends and at the 

midspan. While Mottahed does not identify where crushing first occurred, the author believes 

that crushing occurred first at the abutments. This is because, as the beam deflects, the 

compressive stresses that are generated are being concentrated more at the ends than at the 

center. Consequently, the maximum stress generated at the ends is greater than that at the center. 

Talesnick (Talesnick, 2007; Talesnick, Bar Ya'acov, & Cruitoro, 2007) studied the behavior of 

voussoir beams comprised of 6 plaster blocks using a centrifuge. Voussoir beam models of two 

different geometries were investigated. While both have the same length and width, one has half 

the thickness of the other. Displacements at the ends of each block were monitored by 12 

LVDTs, and three pairs of strain gauges were used to measure the strain developed at the top, 

middle, and bottom of one of the blocks. Thrust was monitored by a load cell at the end. The 

model was subjected to accelerations of up to 90g. It was found that small rotation and 

displacement of the block near the abutment were required in order to set up a stable linear arch. 

Based on the two models tested, the thrust developed is independent of beam thickness. The 

depth of the strain distribution ranges from the whole thickness of the beam near the abutment to 

half of the beam thickness near the midspan. 

Yang (Yang & Shang, 2007) modelled the voussoir beam using plaster blocks. The schematic of 

his frame is shown in Figure 1-13. Stress sensor 1 in Figure 1-13 was used to monitor the 
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horizontal thrust during the test, and the initial constraining stress was applied by tightening the 

nut and measured using stress sensor 2. The span/depth ratio and the initial constraining stress 

was found to affect the behavior of the moment arm and the horizontal stress in the voussoir 

beam. The stress distribution was not investigated. 

 

Figure 1-12 Schematic representation (top) and image of Talesnick’s setup (bottom) (Talesnick, 2007; Talesnick et al., 2007) 
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Figure 1-13 Schematic diagram of Yang’s frame (Yang & Shang, 2007) 

1.3.3 Numerical Investigations 

Wright (Wright, 1974) did not think that an analytical approach was adequate to solve the 

voussoir model: “An analytical solution to the forces and stresses acting in a cracked beam was 

attempted but could not be solved without some prior simplifying assumptions which, it was felt, 

were more apt to be wrong than right.” Instead, his investigation procedure was to first model the 

behavior of voussoir beams with a finite element method. The formulas expressing the 

relationship between the parameters were then derived from the numerical analysis results (see 

Table 1-2). Moreover, the formulas were checked using the physical experiments. 

In the numerical model, the beams were self-loaded with rigid abutments (i.e., with fixed nodal 

points along the abutments). The points on the center line were allowed to move horizontally, but 

not vertically. Due to the limitations of the finite-element method, no separation or opening is 

allowed at discontinuities (which are found at the abutment and midspan of the voussoir beam in 

this model) (Jing & Hudson, 2002). The cracks were modeled by thin-column elements, while 

the closed cracks had the same modulus as the rest of the beam, and open cracks had a much 

lower modulus. For each model, several computer runs were performed to adjust the cracks to 

the “correct lengths” in order to properly model the behavior of discontinuities. 

Stress 

Sensor 2 

Stress 

Sensor 1 
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From the simulation results, the formulas of the moment arm at zero initial constraining stress 

(𝑧0 in Equation 1-4), the horizontal thrust (T in Equation 1-5) and the deflection at the centre (𝛿 

in Equation 1-6) were derived for a given span (s) and depth (t), initial constraining force (P), 

Young’s modulus (E), and the transverse load (Q) of the beam. 

For the stress at the abutments and midspan, Wright’s results indicate that the assumption used in 

Evans’s approach of 𝑛 = 0.5 and the extent of the compression zones (nt) being the same at the 

abutments and midspan is incorrect. The depth of the stress distribution at the abutment (nt) is 

about half as much as it is at the midspan (Nt), which is also less than 0.5t. As a result, the 

maximum stress at the abutment (𝐴) is much larger than the maximum stress at the midspan 

(𝑀). Wright’s results also indicate that the shape of the stress distributions acting at the 

abutments and midspan are not triangular. However, the stress distributions appear to approach a 

triangular shape in beams with a high span to depth ratio (s/t). In Wright’s follow-up analysis, a 

workable assumption for engineering design is that the same triangular stress can be distributed 

over the abutments and the midspan. This provides the formula for the maximum stress in the 

beam (σmax in Equation 1-7). 

𝐳𝟎 = 𝟎. 𝟒𝟒
𝐭𝟐

𝐬
+ 𝟎. 𝟗𝟏𝐭 Equation 1-4 
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𝟒𝐳
+ √
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+

𝐐𝐬(𝐐𝐬 − 𝟒𝐏𝐭)
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−
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𝟎.𝟐𝟐

𝒛𝑬
) Equation 1-6 

  

𝛔𝒎𝒂𝒙 =
𝟐𝑻

𝟑𝒙𝑨̅̅ ̅
 Equation 1-7 

  

Wright introduced an iteration procedure (Figure 1-14) to determine the maximum stress in the 

voussoir beam. 
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Figure 1-14 Iteration flowchart introduced by Wright to determine the maximum stress (Wright, 1974) 

In addition to considering instances with cracks only at the abutments and midspan, Wright 

examined the effects of having multiple transverse cracks. Based on this, it was determined that 
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the cracked beam causing maximum stress concentration is typically cracked at the abutment and 

midspan only. 

Table 1-2 Finite elements analysis by Wright (Wright, 1974) 

No. 
Span/Depth 

(s/t) 

Initial 

constraining 

load (P/tE) 

Transverse 

Load (Q/tE) 
Thrust (T/tE) 

Deflection 

(δ/t) 

Moment 

Arm (z/t) 

Centroidal distance at 

the abutment (
𝑥𝐴

t⁄ ) 

1 4 0 3.829E-07 2.374E-07 2.800E-06 0.8066 0.0542 

2 4 0 6.927E-07 4.293E-07 5.100E-06 0.8066 0.0535 

3 4 0 6.9269E-06 4.2925E-06 5.160E-05 0.8069 0.0535 

4 4 0 2.608E-05 1.624E-05 1.910E-04 0.8028 0.0600 

5 4 0 4.717E-05 2.923E-05 3.510E-04 0.8069 0.0578 

6 4 1.667E-04 1.647E-04 1.748E-04 5.910E-04 0.4712 0.2024 

7 4 1.667E-04 2.608E-04 2.074E-04 1.162E-03 0.6288 0.1301 

8 6 0 5.744E-07 5.190E-07 1.190E-05 0.8300 0.0528 

9 6 0 5.744E-06 5.211E-06 1.190E-04 0.8268 0.0551 

10 6 0 1.039E-05 9.443E-06 2.160E-04 0.8253 0.0550 

11 6 0 3.912E-05 3.555E-05 1.830E-04 0.8252 0.0550 

12 6 0 7.077E-05 6.430E-05 1.471E-03 0.8253 0.0536 

13 6 1.111E-04 7.076E-05 1.146E-04 6.430E-04 0.4630 0.2066 

14 6 1.111E-04 1.039E-04 1.281E-04 1.145E-03 0.6086 0.1365 

15 12 0 1.488E-06 1.949E-06 1.590E-04 0.8841 0.0371 

16 12 0 1.149E-05 1.939E-05 1.583E-03 0.8886 0.0373 

17 12 0 1.415E-05 2.402E-05 1.950E-03 0.8835 0.0371 

18 12 0 1.415E-05 2.592E-05 2.189E-03 0.8190 0.0573 

19 12 0 1.415E-05 2.608E-05 2.180E-03 0.8140 0.0584 

20 12 0 7.823E-05 1.339E-04 1.108E-02 0.8764 0.0364 

21 12 0 1.415E-04 2.441E-04 2.052E-02 0.8694 0.0414 

22 12 5.555E-05 4.941E-05 9.467E-05 4.830E-03 0.7829 0.0631 

23 12 5.555E-05 7.823E-05 1.418E-04 8.869E-03 0.8278 0.0493 

24 12 5.555E-05 1.415E-04 2.477E-04 1.740E-02 0.8571 0.0443 

25 24 0 2.298E-06 7.511E-06 2.333E-03 0.9177 0.0311 

26 24 0 1.565E-05 5.263E-05 1.648E-02 0.8919 0.0282 

27 24 0 2.298E-05 7.762E-05 2.462E-02 0.8881 0.0280 

28 24 2.777E-05 9.883E-06 3.852E-05 6.214E-03 0.7697 0.0590 

29 24 2.777E-05 1.565E-05 5.642E-05 1.215E-02 0.8278 0.0418 

30 24 2.777E-05 4.156E-05 1.452E-04 4.186E-02 0.8587 0.0305 
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In Wright’s numerical model, the “correct lengths” of the cracks at the midspan and abutments 

were determined by the researcher’s knowledge and experience. Notably, the numerical analysis 

results were highly determined by the length of cracks. The finite-element method may not be 

suitable for modeling the voussoir beam. The slide failure at the abutment was prevented by the 

fixed abutments in the model. The deflections at the center of the beam in the results were also 

questionable as the center line had been fixed in a vertical direction in the model. These 

limitations in the numerical model made it an inadequate representation of the voussoir beam in 

reality. 

Passaris et al. (Mottahed, Passaris, & Ran, 1993; Passaris, Ran, & Mottahed, 1993) performed a 

finite-element analysis of the voussoir beam, proving that the stress distribution at the abutment 

and midspan is linear and the depth of stress distribution at the midspan is twice what it is at the 

abutment. Ran et al. (Ran, Passaris, & Mottahed, 1994) used the finite-element method to 

examine the shear failure mode. Mottahed and Ran (Mottahed & Ran, 1995) performed both 

physical and finite element testing. The finite-element approach considered triangular stress 

distributions acting at the midspan and abutments and the depth of these distributions were 

assumed to be equal on both sides. The results showed that a linear analysis of the structure is 

inappropriate for describing the beam behavior. Based on these conclusions, equations were 

derived for the thrust, lever arm, centroid location, and crushing strength using non-linear 

analysis. 

Nomikos et al. (Nomikos, Sofianos, & Tsoutrelis, 2002) investigated the voussoir beam with 

multiple joints with the distinct element code, UDEC. The numerical results indicate that the 

beam deflection increases and the maximum strain at the abutment decreases with the increase in 

joint frequency and compliance. 
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Hatzor and Benary (Y. Hatzor & Benary, 1998) investigated the roof failure of an ancient water 

reservoir in stratified and jointed chalk using Discontinuous Deformation Analysis (DDA). 

According to the voussoir beam analysis procedure proposed by Beer (Beer & Meek, 1982; 

Brady & Brown, 1993), this case should have been safe against both sliding and crushing failure. 

By contrast, DDA predicted the shear failure of this case successfully. Hatzor concluded that 

Beer’s analysis (which he describes as “the classical voussoir theory”) failed to assess the 

stability of the voussoir beam by not considering the joint spacing and joint friction. 

Similar to Hator’s research, Bakun-Mazor (Bakun-Mazor et al., 2009) examined the roof 

stability of a free-standing quarry in stratified and jointed rock using an integrated approach of 

geologically based Discrete Fracture Network (geoDFN) with Discontinuous Deformation 

Analysis (DDA). According to the iteration method for voussoir beam analysis proposed by 

Diederichs and Kaiser (M. Diederichs & Kaiser, 1999c), the roof should fail by buckling; 

however, this is not what happened in the field in this case. Bakun-Mazor proposed that the 

current voussoir beam theory does not captured the arching mechanism in the stratified and 

jointed rock mass. 

Calibrated to Talesnick’s physical modeling results (Talesnick et al., 2007), Tsesarsky 

(Tsesarsky & Talesnick, 2007) modeled the multi-jointed voussoir beam with FLAC (Fast 

Lagrangian Analysis of Continua). Tsesarsky found the thickness of the compressive arch varies 

from 0.8t (where t is the thickness of the beam) at the abutment to 1t at the ¼ of the span, and 

has a value of 0.5t at midspan. This result was modified in his later research (Tsesarsky, 2012). 

The thickness of the compressive arch ranges from 0.3t to 0.4t at the abutment and is inversely 

proportional to beam stiffness. The thickness of the compressive arch ranges from 0.4t to 0.5t at 

the mid-span. 
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1.3.4 Discussion 

Based on the above literature review, a number of questions emerge with respect to assumptions 

about the stress distribution size and shape that lead to incompatibilities between results obtained 

by different investigators. All the analyses, except for Sterling’s, assume triangular-shaped stress 

distributions of equal size acting at the abutment and midspan. Sterling dealt with six different 

stress distribution shapes, of which the rectangular-shaped stress block, which had equal depth at 

the abutment and midspan, gave the best fit to his experimental data. Nevertheless, Wright’s 

results indicate that Sterling’s finding in this case was incorrect. His results indicated that the 

induced lateral stresses, developed at the abutments and midspan, increase in a non-linear 

manner and that the depths over which they act are not equal.  

In reality, the stress distribution along the boundary is not necessarily linear, and experimental 

studies are necessary to determine its exact geometry (Tsesarsky & Talesnick, 2007). Based on 

the review of the experimental investigations, no test results were able to give the stress 

distributions at the abutments and midspan as either the beam tested was an intact beam or the 

instruments used were limited. 

Two discontinuum numerical codes, UDEC and DDA, were employed to model the voussoir 

beams. However, the UDEC did not account for the crack developing inside the voussoir blocks, 

and the DDA is unable to give stress distributions at the edge of blocks. A new numerical code is 

needed to model the behavior of voussoir beams and to simulate all four failure modes of 

voussoir beams (shear sliding, buckling/snap through, crushing and cracking). 
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1.4 Research Objectives 

The objectives of this research are: 

a) To determine the arching mechanism that happened within the single-layer voussoir 

beam with joints at the center and abutment only; 

b) To develop the ultimate load analysis procedure to determine stability and deflection of 

the voussoir beams. 

c) To extend the procedure in order to analyze the segmental concrete liners which are 

widely used in mechanized tunneling.  
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1.5 Methodology 

Physical modeling, numerical modeling, analytical investigation, and a case study will be used to 

investigate the arching mechanism occurred in stratified and jointed rock and to develop the 

overall roof design procedure for the excavations in a stratified rock mass.  

The proposed research will start with physical modeling and numerical modeling in order to 

systematically investigate the behavior of voussoir beams under transverse loading. The 

theoretical analysis of voussoir beam with joints at the abutment and midspan only will inform 

the general design procedure for voussoir beams based on previous findings. The design 

procedure will be applied to determine the segmental concrete liner used in a City of Edmonton 

tunnel. 

1.5.1 Physical Modeling 

The experiments will be performed to test the behavior of a voussoir beam of a single layer with 

only three joints against transverse loading. The test results will be used to both verify and refine 

the theoretical analysis and to calibrate the numerical model. A digital image correlation system 

will be used for strain measurement. The stress distribution can be obtained from strain 

measured. 

1.5.2 Numerical Modeling 

Numerical modeling will be performed as a complementary research method to investigate the 

behavior of the voussoir beam. The effect of some factors upon the stability of the voussoir beam 

is not easy to model physically; numerical experiments will therefore be performed instead. 
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As discussed in the numerical investigation, a numerical method that can effectively capture the 

joints’ behavior and allow significant displacement along the joints would be the ideal code for 

numerical modeling. Phase2 of Rocscience is selected for the numerical modeling. 

1.5.3 Analytical Investigation 

The analysis will be based on a general form of stress distribution at the abutment and midspan 

with different depths of stress distributions. This form is under elastic buckling (i.e., no 

crushing), with the beam being free of any lateral stress. In order to resolve incompatibilities, a 

more generalized non-linear analytical analysis will be carried out that assumes the stress 

distributions at the abutment and midspan are described by a power function of the form, as 

shown in Equation 1-8. 

𝝈(𝒙) = 𝜷𝒙𝒌 Equation 1-8 

where k is a positive constant and where these stress distributions are of different depth. 

1.5.4 Case Study 

Segmental concrete liners are widely used in mechanical tunneling. In the City of Edmonton, the 

4-piece segment liners are used for TBM (tunnel boring machine) tunneling; however, there is 

always uncertainty about the joints strength of segmental liners. From this investigation, the 

voussoir beam theory will be applied to determine the stress and deflection of the stress riser 

(one type of joints) of segmental liner used by the City of Edmonton. Voussoir beam theory will 

provide an analytical method for the design of segmental tunnel liners. 
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1.6 Thesis Outline 

Chapter 1 introduces the research topic of voussoir beam theory. The items included are a brief 

introduction, the application, literature review, research objectives, and research methodology. 

Chapter 2 covers the selection and characterization of the synthetic rock. Appropriate materials 

need to be selected for the physical investigation of natural rock behavior. Two kinds of material 

were selected. Characterization tests were performed to obtain the mechanical properties of the 

selected material. 

Chapter 3 describes the physical investigation of the voussoir models. Voussoir beam models 

under transverse loading were tested. The application of the Vic-3d correlation system enables 

the direct measurement of the displacement on the surface of voussoir beam during the test. 

Chapter 4 covers the numerical investigation of the voussoir models. Phase2 was selected to 

model the behavior of voussoir beams. Numerical models were calibrated by the physical tests 

first. Voussoir beams of common range of span/depth ratios were modeled. 

Chapter 5 describes the theoretical modeling of the voussoir beams. A theoretical model was 

established based on a generic form of stress distribution. The results from the physical and 

numerical modeling were used to make the theoretical model solvable. 

Chapter 6 covers the application of the theoretical model to determine the mechanical behavior 

of stress riser of the precast segmental concrete liner. This chapter is based on the concrete liners 

used in City of Edmonton tunneling. Voussoir beam theory was firstly applied to analyze the 

performance of concrete liners. 
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Chapter 7 describes the conclusions, major contributions and recommendations for future 

research.  



31 

 

References 

Ahmed, M. (1990). A study of possible failure mechanisms for mining-induced seismicity in 

saskatchewan (Ph.D.). Available from ProQuest Dissertations & Theses (PQDT). (303854413). 

Bakun-Mazor, D., Hatzor, Y. H., & Dershowitz, W. S. (2009). Modeling mechanical layering 

effects on stability of underground openings in jointed sedimentary rocks. International Journal 

of Rock Mechanics and Mining Sciences, 46(2), 262-271. doi:10.1016/j.ijrmms.2008.04.001 

Beer, G., & Meek, J. L. (1982). DESIGN CURVES FOR ROOFS AND HANGING-WALLS IN 

BEDDED ROCK BASED ON VOUSSOIR BEAM AND PLATE SOLUTIONS. Transactions of 

the Institution of Mining and Metallurgy Section a-Mining Industry, 91(JAN), A18-A22.  

Betournay, M. (1987). A design philosophy for surface crown pillars of hard rock mines. Cim 

Bulletin, 80(903), 45-61.  

Brady, B. H. G., & Brown, E. T. (1993). Rock mechanics: For underground mining / B.H.G. 

brady, E.T. brown London; New York: Chapman & Hall, 1993; 2nd ed. 

Brady, B. H. G., & Brown, E. T. (2004). Rock mechanics: For underground mining Kluwer 

Academic Publishers. 

Diederichs, M. S. (2000). Instability of hard rockmasses: The role of tensile damage and 

relaxation (Ph.D.). Available from ProQuest Dissertations & Theses Full Text. (304676346). 

Diederichs, M., & Kaiser, P. (1999a). Authors' reply to discussion by A.L. sofianos regarding 

diederichs M.S. and raiser P.K. stability of large excavations in laminated hard rock masses: The 

voussoir analogue revisited. international journal of rock mechanics & mining sciences. 1999; 36: 

97-117. International Journal of Rock Mechanics and Mining Sciences, 36(7), 995-997. 

doi:10.1016/S0148-9062(99)00058-3 

Diederichs, M., & Kaiser, P. (1999b). Stability of large excavations in laminated hard rock 

masses: The voussoir analogue revisited. International Journal of Rock Mechanics and Mining 

Sciences, 36(1), 97-117. doi:10.1016/S0148-9062(98)00180-6 

Diederichs, M., & Kaiser, P. (1999c). Tensile strength and abutment relaxation as failure control 

mechanisms in underground excavations. International Journal of Rock Mechanics and Mining 

Sciences, 36(1), 69-96. doi:10.1016/S0148-9062(98)00179-X 

Evans, W. H. (1941). The strength of undermined strata. Trans. Inst. of Mining and Metallurgy, 

50, 475-500.  

Hatzor, Y., & Benary, R. (1998). The stability of a laminated voussoir beam: Back analysis of a 

historic roof collapse using DDA. International Journal of Rock Mechanics and Mining Sciences, 

35(2), 165-181. doi:10.1016/S0148-9062(97)00309-4 



32 

 

Hatzor, Y. H. (2012). Risk assessment of collapse in shallow caverns using numerical modeling 

of block interactions with DDA: Suggested approach and case studies. International Top-Level 

Forum on Engineering Science and Technology Development Strategy — Safe Construction and 

Risk Management of Major Underground Engineering, Wuhan China.  

Jing, L., & Hudson, J. (2002). Numerical methods in rock mechanics. International Journal of 

Rock Mechanics and Mining Sciences, 39(4), 409-427. doi:10.1016/S1365-1609#02#00065-5 

Miller, F., & Choquet, P. (1988). Analysis of the failure mechanism of a layered roof in long 

hole stopes at mines gaspe. Cim Bulletin, 81(911), 88-88.  

Mottahed, P., Passaris, E., & Ran, J. (1993). Strength of the jointed roof of an underground mine 

opening in stratified rock. Cim Bulletin, 86(972), 37-44.  

Mottahed, P., & Ran, J. (1995). DESIGN OF THE JOINTED ROOF IN STRATIFIED ROCK 

BASED ON THE VOUSSOIR BEAM MECHANISM. Cim Bulletin, 88(994), 56-62.  

Nomikos, P., Sofianos, A., & Tsoutrelis, C. (2002). Structural response of vertically multi-

jointed roof rock beams. International Journal of Rock Mechanics and Mining Sciences, 39(1), 

79-94. doi:10.1016/S1365-1609(02)00019-9 

Passaris, E., Ran, J., & Mottahed, P. (1993). Stability of the jointed roof in stratified rock. 

International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 

857-860. doi:10.1016/0148-9062(93)90036-D 

Ran, J., Passaris, E., & Mottahed, P. (1994). Shear sliding failure of the jointed roof in laminated 

rock mass. Rock Mechanics and Rock Engineering, 27(4), 235-251. doi:10.1007/BF01020201 

Sofianos, A. (1996). Analysis and design of an underground hard rock voussoir beam roof. 

International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(2), 

153-166. doi:10.1016/0148-9062(95)00052-6 

Sofianos, A. (1999). Discussion of the paper by M.S. diederichs and P.K. kaiser "stability of 

large excavations in laminated hard rock masses: The voussoir analogue revisited", international 

journal of rock mechanics and mining sciences, 36, 97-117 (1999). International Journal of Rock 

Mechanics and Mining Sciences, 36(7), 991-993. doi:10.1016/S0148-9062(99)00057-1 

Sofianos, A., & Kapenis, A. (1998). Numerical evaluation of the response in bending of an 

underground hard rock voussoir beam roof. International Journal of Rock Mechanics and Mining 

Sciences, 35(8), 1071-1086. doi:10.1016/S0148-9062(98)00166-1 

Sterling, R. L. (1977). ROOF DESIGN FOR UNDERGROUND OPENINGS IN NEAR-

SURFACE BEDDED ROCK FORMATIONS (Ph.D.). Available from ProQuest Dissertations & 

Theses (PQDT). (302852510). 



33 

 

Stimpson, B., & Ahmed, M. (1992). FAILURE OF A LINEAR VOUSSOIR ARCH - A 

LABORATORY AND NUMERICAL STUDY. Canadian Geotechnical Journal, 29(2), 188-194.  

Talesnick, M. L. (2007). Determination of shear interface parameters between rock blocks for 

centrifuge modeling. Rock Mechanics and Rock Engineering, 40(4), 405-418. 

doi:10.1007/s00603-006-0118-3 

Talesnick, M. L., Bar Ya'acov, N., & Cruitoro, A. (2007). Modeling of a multiply jointed 

voussoir beam in the centrifuge. Rock Mechanics and Rock Engineering, 40(4), 383-404. 

doi:10.1007/s00603-006-0104-9 

Tsesarsky, M. (2012). Deformation mechanisms and stability analysis of undermined 

sedimentary rocks in the shallow subsurface. Engineering Geology, 133, 16-29. doi: 

10.1016/j.enggeo.2012.02.007 

Tsesarsky, M., & Talesnick, M. L. (2007). Mechanical response of a jointed rock beam - 

numerical study of centrifuge models. International Journal for Numerical and Analytical 

Methods in Geomechanics, 31(8), 977-1006. doi:10.1002/nag.568 

van der Merwe, N. (2009). The challenges of mining old, shallow, small coal pillars. ISRM 

Newsletter no.8 

Wright, F. D. (1974). Design of roof bolt patterns for jointed rock. (USBM Grant Final Report). 

College of Engineering, University of Kentucky, distributed by National Technical Information 

Service, Springfield, Va.  

Yang, J., & Shang, Y. (2007). Experimental study on complete mechanical characteristics of 

voussoir beam in stratified rock. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock 

Mechanics and Engineering, 26, 2852-2857.  

  

  



34 

 

2 Selection and Characterizing the Synthetic Rock 

Two kinds of materials, concrete and plaster were selected for the physical modeling of voussoir 

beams. And a standard testing program was performed to characterize the two materials.  

The characterizing tests performed are (1) Uniaxial Compression Test, (2) Splitting Tensile 

Strength Test and (3) Sliding Friction Test.  

The results from the tests provided the basic material properties for physical modeling, and were 

used to calibrate the numerical model in Chapter 4 too. 

2.1 Selection of Synthetic Rock Material 

In order to model the voussoir beam behavior of natural hard rock or artificial hard material, the 

brittleness and heterogeneity are the two important characteristics required for the selected 

material. On the other hand, the strength of the selected material should be lower than the natural 

rock to minimize the size and capacity of laboratory facilities. Referenced to the previous 

research on rock behaviors (Cho, 2008; Cui, 2012), concrete and plaster are selected as 

experimental material. 

The mixing proportion for the two materials is in Table 2-1. Type GU Portland cement was used 

for concrete samples. Plaster of Paris which is local supplied was used for the plaster samples. 

And both concrete and plaster samples used the same sand, the concrete sand. The result of sieve 

analysis for the sand is in Figure 2-1. To be exactly, the concrete used is mortar essentially 

because no rock chippings or gravel used. 
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Table 2-1 Mixing proportion for experimental samples 

 Mixing Ratio by weight 

Concrete cement : water : sand = 2 : 1 : 6.24 

Plaster plaster : water : sand = 3 : 2 :2 

 

 

Figure 2-1 Sand Size Sieve Analysis 

  



36 

 

2.2 Specimen Preparation 

Specimens in the shape of both cylinder and prism beam were casted. The cylinder specimens, 

which have a diameter of 50mm and length of 100mm, were used for uniaxial compression test 

and splitting tensile strength test. The prism beam specimens were used in sliding friction test 

and the voussoir beam modelling. 

The making and curing procedure of concrete samples complied with ASTM C192 (ASTM, 

2015a). All of the concrete specimens tested were after 28 days of curing. 

The plaster specimens were removed from the molds several hours after casting. Then the 

specimens were put in laboratory for air dry. The water content in the specimen was monitored 

for 12 days after casting. The monitor result is shown in Figure 2-2. It is found that the water 

content in the specimen reaches an equilibrium level of 5.5 percent in weight at 7 days after 

casting. All the plaster specimens used in the followed tests were more than 12 days after 

casting. 
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Figure 2-2 Water Content in Plaster Specimen under Air Dry 
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2.3 Uniaxial Compression Test 

Uniaxial compression tests were performed according to ASTM C39 (ASTM, 2015b). The 

testing system is shown in Figure 2-3. The longitudinal strain was measured by three vertical 

LVDTs, and the transverse strain was measured by two horizontal LVDTs horizontally aligned 

and passing the center of the cylinder. The load was measured and recorded automatically by the 

loading frame. The rate of the loading frame is 0.005mm/s.  

Figure 2-4 shows the typical failure shape of the concrete and plaster specimens. Both specimens 

have a larger than 45 degrees of fracture. Figure 2-5 shows the behavior of six concrete 

specimens in uniaxial compression testing. Figure 2-6 shows the relationship between the 

longitudinal strain and transverse strain for two concrete specimens. The transverse strain wasn’t 

measured effectively for the other four concrete specimens. Figure 2-7 shows the behavior of 

four plaster specimens in uniaxial compression testing. Figure 2-8 shows the relationship 

between the longitudinal strain and transverse strain for two plaster specimens. The transverse 

strain wasn’t measured effectively for the other two plaster specimens. 
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Figure 2-3 Uniaxial Compression Test System 

 

Figure 2-4 Typical Failure Types in Uniaxial Compression Test; Plaster Sample left, Concrete Sample right 
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Figure 2-5 Uniaxial Compression Test results of concrete specimens 

 

 

Figure 2-6 Comparison of longitudinal strain and transverse strain of 2 concrete specimens 
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Figure 2-7 Uniaxial Compression Test results of plaster specimens 

 

Figure 2-8 Comparison of longitudinal strain and transverse strain of 2 plaster specimens 
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2.4 Splitting Tensile Strength Test 

Splitting tensile strength test was performed according to ASTM C496 (ASTM, 2011). The test 

frame is shown is Figure 2-9. Eight concrete specimens and three plaster specimens were tested 

for tensile strength. The typical failure of concrete specimens is shown in Figure 2-10. And the 

typical failure of plaster specimens is shown in Figure 2-11. The failure surface crossed the 

longitudinal axis of the specimen approximately. The testing result for concrete specimens is 

shown in Table 2-2. The testing result for plaster specimens is shown in Table 2-3. From the 

tests, the concrete has a tensile strength of 4.39 MPa, and the plaster specimen has a tensile 

strength of 0.94 MPa. 
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Figure 2-9 Testing frame with plaster sample for splitting tensile strength test 

 

      

Figure 2-10 Typical failure shape of concrete sample in splitting tensile strength test 

 

      

Figure 2-11 Typical failure shape of plaster sample in splitting tensile strength test 
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Table 2-2 Splitting Tensile Test Results for Concrete Specimens 

Concrete sample 1 2 3 4 5 6 7 8 

Length of sample, mm 104.77 104.31 102.48 105.36 106.62 106.42 104.31 104.48 

Diameter of sample, mm 52.8 51.96 51.86 52.5 51.89 51.79 52.86 51.92 

Maximum applied load, kN 33.4 31.8 37.4 39.5 39.4 40 41.1 38.9 

Splitting tensile strength, MPa 3.85 3.74 4.48 4.55 4.54 4.62 4.74 4.57 

Average Splitting tensile strength, MPa 4.39 

Standard Deviation of tensile strength 0.38 

 

Table 2-3 Splitting Tensile Test Results for Plaster Specimens 

Plaster sample 1 2 3 

Length of sample, mm 151.68 150.91 151.21 

Diameter of sample, mm 76.75 76.78 77.54 

Maximum applied load, kN 17.4 16.6 17.4 

Splitting tensile strength, MPa 0.95 0.91 0.95 

Average Splitting tensile strength, MPa 0.94 

Standard Deviation of Tensile Strength 0.02 
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2.5 Sliding Friction Test 

As the planar joints existing at the midspan and abutments of the voussoir beam model, it is 

necessary to investigate the behavior of the planar joint. Sliding friction tests on the planer 

continuous joint were carried out for concrete and plaster specimens. The testing system is 

shown in Figure 2-12. The system has load cell and LVDT in both shear and normal direction in 

order to measure shear force and displacement. The data were recorded by the data logger 

automatically. The samples were 50 mm by 50 mm and were put into the mold, see Figure 2-13. 

The normal load was applied on the top of the sample by loading weight when the normal stress 

was less than 500 kPa. Higher loads need to be applied via the cantilever arm at the bottom. 

Based on the available loading block, the plaster specimens were tested over normal stress 

ranging from 200 kPa to 800 kPa, and concrete specimens were tested over 250 kPa to 1 MPa. 

The relationship between shear displacement and shear stress for concrete specimen is shown in 

Figure 2-14. The relationship between shear displacement and shear stress for plaster specimen is 

shown in Figure 2-15. From the previous relationship, the sliding shear behavior of the joints 

was found, as shown in Figure 2-16. It is found that the joint friction angle for concrete is 30.6 

degrees and 36.7 degrees for plaster joint, as summarized in Table 2-4. 
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Figure 2-12 Direct Shear Test System with Data Logging 

     

 

Figure 2-13 Lower Part of the Mold with Plaster Specimen 
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Figure 2-14 Shear Displacement – Shear Stress curve for concrete specimen under 4 different normal stresses 

 

Figure 2-15 Shear Displacement – Shear Stress curve for plaster specimen under 4 different normal stresses 
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Figure 2-16 Direct Shear Behavior of Concrete and Plaster Planar Joint 

 

Table 2-4 Shear Properties of the Planar Joint 

 Friction angle of the planar joint, degree Mohr-Coulomb Shear Strength 

Plaster joint 36.7 𝜏 = 𝜎𝑛 tan 36.7° 

Concrete joint 30.6 𝜏 = 𝜎𝑛 tan 30.6° 
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2.6 Conclusion 

The results of material property test program were summarized in Table 2-5. The Coulomb 

Strength envelops were developed for concrete and plaster specimens respectively using 

Rockdata of Rocscience, as shown in Figure 2-17 and Figure 2-18. 

Table 2-5 Properties of experimental samples 

 Density 

kg/m3 

UCS and 

Standard 

Deviation 

MPa 

Young’s 

Modulus 

and 

Standard 

Deviation 

GPa 

Poisson’s 

ratio 

Splitting 

Tensile 

Strength 

and 

Standard 

Deviation 

MPa 

Internal 

Friction 

angle 𝞅 

Cohesion1 

c MPa 

Friction 

angle of 

joints 

Shear 

stiffness 

MPa/m 

Concrete 

Sample 

2203 41.98±6.29 5.72±1.42 0.32 4.386±0.38 54.2 6.81 30.6 316 

Plaster 

Sample 

1553 3.61±0.44 1.586±0.64 0.27 0.936±0.02 36.7 0.91 36.7 135 

 

Note: 

1 Internal friction angle and Cohesions were calculated according to the equations: 

c =
𝑈𝐶𝑆(1−sin 𝜑)

2 cos 𝜑
 and σ𝑇 =

2𝑐 cos 𝜑

1+sin 𝜑
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Figure 2-17 Concrete specimen Coulomb strength envelopes with a tensile cut-off in terms of principal stresses (left) and 
shear and normal stresses (right) 
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Figure 2-18 Plaster specimen Coulomb strength envelopes with a tensile cut-off in terms of principal stresses (left) and shear 
and normal stresses (right) 
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3 Physical Investigation on the Behavior of Voussoir Beams1 

3.1 Introduction 

Stratified rock masses are often encountered in underground excavations. The stratified roof is 

usually cut by discontinuities. The discontinuities could be joints or faults which existed before 

the excavation or the appearance of tensile fractures caused by the excavation. The stratified roof 

should therefore be treated as jointed beams rather than intact, elastic beams. It is widely 

accepted that the self-support ability of jointed beams develops from the compression arch 

formed within the beam under transverse loading. Voussoir beam theory is a method for 

assessing the stability of a stratified roof based on the arching mechanism, as shown in Figure 

3-1. Voussoir beam theory has been applied widely in the design and stability analysis of 

underground excavations. For example, it has been used for back-analyzing the failure of a 

mining roof (Alejano, Taboada, Garcia-Bastante, & Rodriguez, 2008), assessing the stability of 

an underground memorial site (Hutchinson et al., 2008), controlling the strata behavior in an 

underground long-wall mining face (Ju & Xu, 2013), and analyzing the roof collapse after the 

extraction of a coal pillar (Please et al., 2013). 

 

Figure 3-1 Voussoir beam analogy (M. S. Diederichs, 2000) 

____________ 

1 The content of this chapter has been prepared and submitted as a journal manuscript: Hu, C; Apel, D; Sudak, L; 

Szymanski, J; Liu, W. V. (2016) Physical Investigation on the Behavior of Voussoir Beams. International Journal 

of Rock Mechanics and Mining Sciences (Submitted) 
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The first analytical approach to describe the deformations of cracked roof beds was made by 

Evans (Evans, 1941). His analysis considers that cracks are created at the abutment and midspan 

of the rock beam. He assumes that the stress distributions induced at the abutments and midspan 

are triangular in shape and extend an equal distance, nt, over the depth of the beam. Furthermore, 

he makes an arbitrary assumption that n=0.5, i.e. the depth of induced stress equal to half of the 

thickness of the beam. The design procedure proposed by Evans was later modified by Beer and 

Meek (Beer & Meek, 1982). Subsequently, Sofianos (Sofianos, 1996) and then Diederichs and 

Kaiser (M. Diederichs & Kaiser, 1999b) noted some limitations in a simplified version of Beer 

and Meek’s method and proposed alternative ways of addressing the static indeterminacy of 

roof-bed analysis. Diederichs and Kaiser (M. Diederichs & Kaiser, 1999b) proposed an 

algorithm to test the stability of a voussoir beam against snap-through and crushing based on the 

assumption that there will be the same linear stress at the abutment and midspan. This procedure 

is accepted by Brady and Brown (Brady & Brown, 2004), which proposed that the distribution of 

horizontal stress at the center of the arch is parabolic and presented a new formula to determine 

the deflection of the arch. 

Wright (Wright, 1974) performed physical and finite element modeling to simulate cracked roof 

beams using limestone blocks and masonry bricks. From these results, he derived equations 

describing the thrust, the deflection, and the maximum stress generated by the beam. In addition 

to considering beams with cracks only at the abutment and midspan, he examined the effects of 

having multiple cracks throughout the beam. He showed that the worst case of a cracked beam, 

causing maximum stress concentration, is a beam that is cracked at the abutments and midspan 

only. Furthermore, Wright’s results indicate that the assumptions made in Evans’s approach, 

n=0.5 and the extent of the compression zones (nt) were the same at the abutments and midspan, 
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were incorrect. His results also indicate that the shape of the stress distributions acting at the 

abutments and midspan are not triangular; however, the stress distributions do seem to approach 

a triangular shape in beams with high span-to-depth ratios. 

Sterling (Sterling, 1977) carried out both analytical and experimental analysis of voussoir beams. 

His analytical work involved examining six different shapes for the stress distribution acting 

upon the abutments and midspan. In all the cases, he assumed that the depth of stress distribution 

at abutment equal to it at midspan, i.e. n=N. Based on laboratory testing of a model of cracked 

beams, Sterling concluded that the assumption of a rectangular stress distribution agreed more 

closely with his experimental results. 

Stimpson et al. (Stimpson & Ahmed, 1992) conducted physical testing on thick intact rock 

beams (i.e., the beams were not fractured) of limestone, granite and potash with span/depth ratios 

less than 5. These physical tests revealed a progressive failure mechanism dominated by tensile 

fracturing. This failure mechanism is characterized by three distinct stages. Stage I, the primary 

beam stage, terminates with the initiation of tensile cracking in the lower fibers at the midspan. 

This stage also marks the initiation of linear arching. As loading continues following midspan 

cracking, two diagonal cracks initiate and propagate very rapidly towards each abutment. Their 

development marks the end of stage II. Continued loading beyond the stage of diagonal cracking 

marks stage III. This stage is characterized by the ultimate failure of the rock beam which occurs 

either by the shearing of the rock above the diagonal crack or shearing along the diagonal crack. 

This shear failure mode, in the author’s opinion, is caused by the large axial forces developed in 

the arch, which cause the shear strength of the rock to be exceeded. Stimpson also conducted a 

discrete crack propagation finite element analysis for a typical intact rock beam. The results 

validated the progressive failure mechanism observed in the laboratory testing. 
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Mottahed et al. (Mottahed & Ran, 1995) performed both physical and finite element testing. The 

physical tests involved voussoir beams cut from two types of Durox bricks of lightweight 

concrete. Because the lightweight concrete has low values of Young’s modulus and compressive 

strength, the model beams failed at low transverse loads so that the horizontal movement of both 

abutments was negligible; therefore, the abutments were assumed to be rigid. This assumption, 

under which the tests were conducted, is valid; however, in reality, some small abutment 

movement occurs. Under the experimental conditions, almost all the model voussoir beams 

failed by crushing at the high stress areas located at the ends and at the midspan. The finite 

element approach considered triangular stress distributions acting at the midspan and abutments, 

and the depth of these distributions were assumed to be equal on both sides, i.e. n=N. The results 

showed that a linear analysis of the structure is inappropriate for describing the beam behaviour. 

Based on these conclusions, equations were therefore derived for the thrust, lever arm, centroid 

location, and crushing strength using non-linear analysis. 

Talesnick et al. (Talesnick et al., 2007) studied the behavior of voussoir beams comprised of 6 

plaster blocks using a centrifuge. Voussoir beam models of two different geometries were 

investigated. While both have the same length and width, one has half the thickness of the other. 

Displacements at the ends of each block were monitored by 12 LVDTs (Linear Variable 

Differential Transformer), and three pairs of strain gauges were used to measure the strain 

developed at the top, middle, and bottom of one of the blocks. Thrust was monitored by a load 

cell at the end. The model was subjected to accelerations of up to 90g. It was found that small 

rotation and displacement of the block near the abutment were required in order to set up a stable 

linear arch. Based on the two models tested, the thrust developed is independent of beam 
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thickness. The depth of the strain distribution ranges from the whole thickness of the beam near 

the abutment to half of the beam thickness near the midspan. 

Yang et al. (Yang & Shang, 2007) modelled the voussoir beam using plaster blocks. Stress 

sensor was used to monitor the horizontal thrust during the test, and the initial constraining stress 

was applied by tightening the nut and measured by stress sensor as well. The span/depth ratio 

and the initial constraining stress was found to affect the behavior of the moment arm and the 

horizontal stress in the voussoir beam. The stress distribution was not investigated. 

Based on the above literature review, a number of questions emerge with respect to assumptions 

about the stress distribution size and shape that lead to incompatibilities between results obtained 

by different investigators. All the analyses, except for Sterling’s, assume triangular-shaped stress 

distributions of equal size acting at the abutment and midspan. Sterling dealt with six different 

stress distribution shapes, of which the rectangular-shaped stress block, which had equal depth at 

the abutment and midspan, gave the best fit to his experimental data. Nevertheless, Wright’s 

results indicate that Sterling’s finding in this case was incorrect. His results indicated that the 

induced lateral stresses, developed at the abutments and midspan, increase in a non-linear 

manner and that the depths over which they act are not equal. Mottahed et al. (Mottahed & Ran, 

1995) does not identify where crushing first occurred. The author believes crushing occurs first 

at the abutments, because, as the beam deflects, the compressive stresses that are generated are 

being concentrated more at the ends than at the center. Consequently, the maximum stress 

generated at the ends is greater than that at the center. 

In reality, the stress distribution along the boundary is not necessarily linear, and experimental 

studies are necessary to determine its exact geometry (Tsesarsky & Talesnick, 2007). Based on 
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the review of the experimental investigations, no test results were able to give the stress 

distributions at the abutments and midspan as either the beam tested was an intact beam or the 

instruments used were limited. In this paper, a series of 2-block voussoir beams will be tested. 

The deflection and strain distributions at midspan and abutment will be measured by Vic-3D 

digital image correlation system. 
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3.2 Physical Investigation 

A series of tests is performed to investigate the behavior of a two-block voussoir beam under 

transverse loading; two of the tests are explained in detail below. The objectives of this series of 

tests are: (1) to investigate the behavior of voussoir beams; (2) to calibrate the numerical model 

for further investigation using the results from these tests. 

3.2.1 Testing Apparatus 

The testing apparatus consists of a constraining frame, loading system, and Vic-3D correlation 

system which will be discussed in detail in the following sections. 

3.2.1.1 Constraining frame 

The constraining frame consists of two end-plates of 25mm thickness, which are connected via 4 

screwed rods of 30mm, as shown in Figure 3-2. The vertical supports of the two abutment blocks 

are two limestone blocks. 

 

 

Figure 3-2 Constraining frame 
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3.2.1.2 The loading system 

The load was applied by a servo-controlled loading frame, and a two-point load-spreading 

system was used, as shown in Figure 3-3. 

 

Figure 3-3 The two-point load-spreading system 

3.2.1.3 Vic-3D correlation system 

The displacement and deformation on the beam surface were measured by the Vic-3D 

correlation system, as shown in Figure 3-4. Photogrammetric analysis provides insights into the 

response of the rock mass during the application of transverse loading and assists in identifying 

the failure path that occurred. 

The Vic-3D correlation system tracks the deformation of the subset, shown in Figure 3-5. Only 

information at the center of the subset will be outputted after processing. In these tests, subset 

size suggested by the software is 35*35 pixels. The cameras used have a resolution of 

2048*2048 pixels. 

In typical setups, the Vic-3D correlation system can see an in-plane displacement accuracy of 

1/50,000 of the field of view.  This means that, if a 1-meter area is imaged, a 20-micron motion 

can be detected (Vic-3D 2010 reference manual2010).  
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As stated in the literature review, either strain gages or LVDTs were used to track displacement 

at several points. The Vic-3D correlation used in the test, the displacement in the whole surface 

can be monitored. Then the strain distribution at the joint of voussoir beam can be measured. 

    

Figure 3-4 Vic-3D correlation system, the cameras (left) and the image processing software Vic-3D (right) 

 

 

Figure 3-5 Undeformed and deformed image with subset 

 

The final set-up is shown in Figure 3-6. 
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Figure 3-6 Experiment Set-up 

3.2.2 Beam Specimen 

Concrete and plaster specimens were made for the tests, as shown in Figure 3-7. 

    

Figure 3-7 Plaster beam (left) and concrete beams (right) 

The properties of the plaster and concrete samples are detailed in Table 3-1. The Poisson’s ratio 

may be less accurate than other parameters because the instrument for transverse displacement 

measurement slightly pierced into the cylinder samples during test. 

Table 3-1 Properties of experimental samples 

 Density Uniaxial 

Compressive 
Splitting Tensile 

Young’s 

Modulus 

Poisson’s 

ratio 
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kg/m3 Strength MPa Strength Mpa Gpa 

Concrete Sample 

(after 28 days of curing) 
2203 41.98 4.386 5.72 0.32 

Plaster Sample 1553 3.61 0.936 1.586 0.27 

 

In order to be tracked by the Vic-3D correlation system, the front surface of the beam is painted 

with black speckles on a white background (see Figure 3-8).  

 

Figure 3-8 Two-block voussoir beam consisting of painted plaster samples 

All of the tests performed are summarized in  

Table 3-2. 
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Table 3-2 Summary of the Tests Conducted 

No. Type 

Size of Beam/mm Span

Depth
 

Size of End blocks/mm Loading 

rate 

mm/min 

Frequency of 

camera 

shooting 

sec./picture 

Note 
Span Depth Wide Length Depth Wide 

1 concrete 488 77 76 6.3 50 77 76 0. 5 5 
no initial stress, 

finger tight 

2 concrete 488 77 76 6.3 50 77 76 0.5 5 

initial stress 

applied, no end 

supporting block; 

slide 

3 concrete 488 77 76 6.3 50 77 76 0.5 8 slide at left end 

4 concrete 488 77 76 6.3 50 77 76 0.5 8 slide 

5 concrete 292 77 76 3.8 60 77 76 0.5 8 
initial stress 

applied, slide 

6 concrete 292 77 76 3.8 60 77 76 0.5 8 
slide with initial 

stress 

7 concrete 292 77 76 3.8 60 77 76 0.5 8 finger tight, slide 

8 plaster 488 77 76 6.3 50 77 76 0.5 8 no initial stress 

9 plaster 484 77 76 6.3 60 77 76 0.5 8 
initial stress 

applied 

10 plaster 296 77 76 3.8 60 77 76 0.5 8 
initial stress 

applied 

 

3.2.3 Typical Behaviour of Voussoir Beam Test 

The No.1 Concrete and No. 8 Plaster in  

Table 3-2 were selected to describe the behavior of a concrete voussoir beam and a plaster 

voussoir beam respectively during the test. 

3.2.3.1 Typical Behavior of Concrete Voussoir Beams 

1) Load – Deflection Relationship 

Four points on the beam’s front surface were selected to monitor the displacement of the beam 

(see Figure 3-9). To detect sliding at abutment, points P0 and P3 were selected. These will detect 

the slide at both sides of the voussoir beam near the abutments. The deflection at the centre was 

measured at points P1 and P2, located at the left block and right block near the centre, 

respectively.  
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Figure 3-9 Four Points Selected to Monitor the Deflection of Concrete 1 

The load-deflection relationship is shown in Figure 3-10. The load was applied by the MTS 

loading frame  controlled in specified speed of 0.5mm/min. Five deflections are presented. The 

load – MTS deflection gives the full failure path of voussoir beam tested. As the tracking of 

monitoring points was lost after large deformation happened, the other four deflections didn’t 

cover the whole failure path. The load – p1 and p2 average deflection gives the relationship 

between the load and the defection at the center of voussoir beam. The load – p0 and p3 average 

defection gives the relationship between the load and slide induced at the abutment. The 

relationships between the load and deflection of MTS and deflection at center of voussoir beam 

with slide deducted were presented as well.  
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Figure 3-10 Load–Deflection Relationship for Concrete 1 

2) Stress Distributions at the midspan and abutment 

In the linear range for Load-Deflection of the beam behavior, two images were selected for 

analyzing the stress distributions at the abutment and midspan of the voussoir model under 

transverse load. The parameters of the images are presented in Table 3-3. 

Table 3-3 Characteristics of the Two Images Selected 

Image Index Load/kN MTS displacement/mm 
Average deflection at point P1 

and P2 with slide deducted/mm 

Concrete1-033 2.05 0.6323 0.5273 

Concrete1-040 4.01 0.9256 0.8140 

 

Two lines, L0 and L1, were drawn at the abutment and midspan, respectively, to extract the strain 

along the two lines, as shown in Figure 3-11. 



67 

 

 

 

Figure 3-11 Two lines drawn at the abutment and midspan for Strain Extraction of Concrete 1 

It is observed that the area near the edges of the front surface is not covered by the contour in 

Figure 3-11. This is a result of the principles of Vic-3D image correlation and also the limitations 

of camera resolution. The depth of the uncovered area is nearly 5mm from the horizontal edges, 

which is around 7% of the depth of the front surface of the beam. This makes the deformation at 

the very top and very bottom of the beam unknown. This lost area is of high interest. At this 

stage, the strain of this area was approximated by the trend line.  

The positive strain is tension, and the negative strain is compression. The positive stress is 

compression.  

a) Image Concrete 1-033 

The contour of the horizontal strain 𝜀𝑥𝑥 is shown in Figure 3-12. 
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Figure 3-12 Strain 𝜺𝒙𝒙 contour of the Image Concrete1-033 

As the deformation at the very top and very bottom of the surface is unknown, a fitting method is 

used to find the strain distribution in this area. 

The strain measured along line L1 at the midspan is shown in Figure 3-13.  

There is a linear relationship between the strain and the beam thickness at the upper part of the 

beam, as shown in following equation: 

𝜺𝒙𝒙 = −𝟎. 𝟎𝟒𝟓𝟒𝒚 + 𝟑. 𝟐𝟏𝟔𝟑     when  𝒚 > 𝟒𝟓, with 𝑹𝟐 = 𝟏 Equation 3-1 

Where the 𝜀𝑥𝑥 is the horizontal strain in percent (%), and y is the coordinate of vertical axis, with 

0 at the beam bottom. 

The graph of above equation is shown in Figure 3-13. 
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Figure 3-13 Strain along the line L1 at the midspan of Image Concrete1-033 

Figure 3-13 shows the strain is in compression when 𝑦 > 70.84, and the thickness of the beam 

or the length of line L1 is  

𝒕 = 𝟕𝟓. 𝟒𝟖 Equation 3-2 

Therefore the ratio of the compression zone depth to the beam thickness at the midspan is 

𝑵 = 𝟎. 𝟎𝟔𝟏𝟒 Equation 3-3 

From the compressive strain in Figure 3-13 and the Young’s modulus of the concrete sample in 

Table 3-1, the compressive stress at the midspan is calculated, as shown in Figure 3-14. From 

Equation 3-1, the equation for stress distribution along line L1 at the midspan is 

𝝈𝒙𝒙 = 𝟐. 𝟔𝟎𝒚 − 𝟏𝟖𝟑. 𝟗𝟕   When  𝒚 > 𝟒𝟓 Equation 3-4 
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Where 𝜎𝑥𝑥 is horizontal stress in MPa, and y is in mm. 
 

 

Figure 3-14 Compressive Stress Distribution along line L1 at the Midspan of Image Concrete1-033 

The strain measured along line L0 at the abutment is shown in Figure 3-15.  

When𝑦 < 20, the best fitting relationship between the strain and the beam thickness is  

𝜺𝒙𝒙 = 𝟎. 𝟎𝟎𝟎𝟎𝟕𝒚𝟐 + 𝟎. 𝟎𝟎𝟖𝒚 − 𝟎. 𝟔𝟑𝟖    When 𝒚 < 𝟐𝟎, with 𝑹𝟐 = 𝟎. 𝟗𝟗𝟗𝟗 Equation 3-5 

The graph of the above equation is shown in Figure 3-15 too. 
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Figure 3-15 Strain along the line L0 at the abutment of Image Concrete1-033 

Figure 3-15 shows that the compression zone is extended over the whole depth of the beam. The 

ratio of the compression zone to the beam thickness at the abutment is 1, as shown in Equation 

3-6. Further investigation is needed to determine whether this is a consequence of the experiment 

setup. 

𝒏 = 𝟏 Equation 3-6 

The stress distribution at the abutment is shown in Figure 3-16. 

Similarly, the stress distribution at the lower abutment is: 

𝝈𝒙𝒙 = −𝟎. 𝟎𝟎𝟒𝟎𝟎𝟒𝒚𝟐 − 𝟎. 𝟒𝟓𝟕𝟗 + 𝟑𝟔. 𝟒𝟗𝟑𝟔   When  𝒚 < 𝟐𝟎 Equation 3-7 
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Figure 3-16 Stress Distribution at the abutment of Image Concrete1-033 

b) Image Concrete 1-040 

Similarly, the Image 1-040 was analysed in the same way as for Image 1-033. The contour of 

horizontal strain of Image Concrete 1-040 is shown in Figure 3-17. The strain along the midspan 

and abutment was extracted and presented in Figure 3-18 and Figure 3-20 respectively. With the 

Young’s modulus known, the stress distribution along midspan and abutment was obtained and 

shown in Figure 3-19 and Figure 3-21 respectively. 

The strain at upper midspan can be represented by the linear equation, Equation 3-8. And the 

strain at lower abutment can be represented by polynomial equation, Equation 3-12. The ratio of 

stress distributions to the total thickness of voussoir beam at midspan and abutment was obtained 

respectively, as shown in Equation 3-11 and Equation 3-15. 
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Figure 3-17 Horizontal Strain 𝜺𝒙𝒙 Contour of the Image Concrete1-040 

 

 

Figure 3-18 Strain along the line L1 at the midspan of Image Concrete1-040 
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The strain along L1 at the upper midspan: 

𝜺𝒙𝒙 = −𝟎. 𝟎𝟔𝟔𝟔𝒚 + 𝟒. 𝟖𝟕𝟑𝟔        when 𝒚 > 𝟒𝟓, with 𝑹𝟐 = 𝟏 Equation 3-8 

 

Figure 3-19 Compressive Stress along the line L1 at the midspan of Image Concrete1-040 

The stress along L1 at the upper midspan:  

𝝈𝒙𝒙 = 𝟑. 𝟖𝟏𝒚 − 𝟐𝟕𝟖. 𝟕𝟕          𝐰𝐡𝐞𝐧 𝒚 > 𝟒𝟓 Equation 3-9 

𝒕 = 𝟕𝟕. 𝟕𝟑𝟖𝟔 Equation 3-10 

𝑵 = 𝟎. 𝟎𝟓𝟖𝟔 Equation 3-11 
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Figure 3-20 Strain along the line L0 at the abutment of Image Concrete1-040 

The strain along L0 at the lower abutment: 

𝜺𝒙𝒙 = −𝟎. 𝟎𝟎𝟎𝟎𝟖𝒚𝟐 + 𝟎. 𝟎𝟐𝟑𝟖𝒚 − 𝟎. 𝟕𝟗𝟖     when 𝒚 < 𝟐𝟎, with 𝑹𝟐 = 𝟎. 𝟗𝟗𝟗𝟖 Equation 3-12 
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Figure 3-21 Stress Distribution along the line L0 at the abutment of Image Concrete1-040 

The stress along L0 at the lower abutment: 

𝝈𝒙𝒙 = 𝟎. 𝟎𝟎𝟒𝟓𝟕𝟔𝒚𝟐 − 𝟏. 𝟑𝟔𝟏𝟑𝟔𝒚 + 𝟒𝟓. 𝟔𝟒𝟓𝟔      𝐰𝐡𝐞𝐧 𝒚 < 𝟐𝟎 Equation 3-13 

𝒕 = 𝟕𝟔. 𝟏𝟎𝟔 Equation 3-14 

𝒏 = 𝟎. 𝟓𝟓𝟑𝟔 Equation 3-15 

3.2.3.2 Typical Behaviour of Plaster Voussoir Beams 

No. 8 Plaster in  

Table 3-2 is selected to show the behavior of plaster voussoir beams. 

The following analysis is similar to the one performed for the concrete voussoir beam above. 
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1) Load – Deflection Relationship 

Similarly, four points were selected to track the displacement at abutment and midspan of the 

voussoir beam as shown in Figure 3-22. The load-displacement relationship was presented in 

Figure 3-23. 

 

 

Figure 3-22 Four Points Selected to Monitor the Deflection of the Plaster 1 

 

 

Figure 3-23  Load–Deflection Relationship for Plaster 1 
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2) Stress Distributions at the midspan and abutment 

Within the linear range of load-deflection relationship, two images, Image Plaster 1-038 and 

Image Plaster 1-070 were selected to investigate the stress distribution characterises at midspan 

and abutment. The load and displacement of the two images are presented in Table 3-4. 

Table 3-4 Characteristics of the Two Images Selected 

Image Index Load/kN MTS displacement/mm 
Average deflection at point P1 

and P2 with slide deducted/mm 

Plaster 1-038 1.404 1.0022 0.5912 

Plaster 1-070 5.132 3.1389 3.291 

 

 

Figure 3-24 Two lines drawn at the abutment and midspan for Strain Extraction of Plaster 1 

The two lines, L1 and L0, to extract the strain distribution at midspan and abutment are shown in 

Figure 3-24. This image is the contour of the horizontal strain of image Plaster 1-070. 

a) Image Plaster 1-038 

The contour of the horizontal strain 𝜀𝑥𝑥 is shown in Figure 3-25. 
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Figure 3-25 Strain 𝜺𝒙𝒙 contour of the Image Plaster1-038 

Figure 3-25 shows that it is under compression over the whole beam thickness between the 

midspan and abutment. 

The strain along the midspan was extracted and shown in Figure 3-26. The strain was fitted by a 

linear equation, Equation -3-16. 
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Figure 3-26 Strain along the line L1 at the midspan of Image Plaster1-038 

The strain along L1 at the upper midspan: 

𝜺𝒙𝒙 = −𝟎. 𝟎𝟑𝟏𝟖𝒚 + 𝟐. 𝟏𝟏𝟗𝟑        when 𝒚 > 𝟒𝟓, with 𝑹𝟐 = 𝟎. 𝟗𝟗 Equation -3-16 
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Figure 3-27 Compressive Stress along the line L1 at the midspan of Image Plaster1-038 

With the Young’s modulus, the stress at the midspan was obtained as Equation 3-17. The ratio of 

stress distribution depth to beam thickness was got in Equation 3-19. The stress distribution at 

the upper part of midspan is shown in Figure 3-27. 

𝝈𝒙𝒙 = 𝟎. 𝟓𝟒𝟎𝟑𝒚 − 𝟑𝟑. 𝟔𝟏𝟐𝟏          𝐰𝐡𝐞𝐧 𝒚 > 𝟒𝟓 Equation 3-17 

𝒕 = 𝟕𝟓. 𝟏𝟒𝟓 Equation 3-18 

𝑵 = 𝟎. 𝟏𝟏𝟑𝟏 Equation 3-19 

Similarly, the strain along the abutment was shown in Figure 3-28 and fitted by Equation 3-20. 
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Figure 3-28 Strain along the line L0 at the abutment of Image Plaster 1-038 

 

𝜺𝒙𝒙 = −𝟎. 𝟎𝟎𝟎𝟐𝒚𝟐 + 𝟎. 𝟎𝟏𝟑𝟑𝒚 − 𝟎. 𝟔𝟕𝟗𝟏     when 𝒚 < 𝟐𝟎, with 𝑹𝟐 = 𝟎. 𝟗𝟗𝟓 Equation 3-20 
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Figure 3-29 Stress Distribution along the line L0 at the abutment of Image Plaster1-038 

The stress was calculated along L0 at the lower abutment. It was shown in Figure 3-29 and 

Equation 3-21. The ratio of stress distribution at abutment to the beam thickness is shown in 

Equation 3-23. 

𝝈𝒙𝒙 = 𝟎. 𝟎𝟎𝟑𝟏𝟕𝟐𝒚𝟐 − 𝟎. 𝟐𝟏𝟎𝟗𝒚 + 𝟏𝟎. 𝟕𝟕𝟎𝟓      𝐰𝐡𝐞𝐧 𝒚 < 𝟐𝟎 Equation 3-21 

𝒕 = 𝟕𝟔. 𝟏𝟔 Equation 3-22 

𝒏 = 𝟏 Equation 3-23 

a) Image Plaster 1-070 

The contour of the horizontal strain 𝜀𝑥𝑥 is shown in Figure 3-30. The strain along midspan was 

extracted and shown in Figure 3-31. 
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Figure 3-30 Strain 𝜺𝒙𝒙 contour of the Image Plaster1-070 

 

Figure 3-31 Strain along the line L1 at the midspan of Image Plaster1-070 
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The strain along L1 at the upper midspan can be fitted as: 

𝜺𝒙𝒙 = −𝟎. 𝟐𝟎𝟖𝟖𝒚 + 𝟏𝟑. 𝟕𝟓𝟐        when 𝒚 > 𝟒𝟓, with 𝑹𝟐 = 𝟎. 𝟗𝟗𝟖𝟒 Equation 3-24 

 

Figure 3-32 Compressive Stress along the line L1 at the midspan of Image Plaster1-070 

The stress along L1 at the upper midspan is shown in Figure 3-32 and Equation 3-25. The ratio 

of depth of stress distribution to beam thickness is calculated as shown in Equation 3-27. 

𝝈𝒙𝒙 = 𝟑. 𝟑𝟏𝟏𝟔𝒚 − 𝟐𝟏𝟖. 𝟏𝟎𝟕          𝐰𝐡𝐞𝐧 𝒚 > 𝟒𝟓 Equation 3-25 

𝒕 = 𝟕𝟓. 𝟎𝟗𝟖𝟒 Equation 3-26 

𝑵 = 𝟎. 𝟏𝟐𝟑𝟒 Equation 3-27 

The strain along the abutment was shown in Figure 3-33. 
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Figure 3-33 Strain along the line L0 at the abutment of Image Plaster 1-070 

 

The strain along L0 at the lower abutment was fitted by: 

𝜺𝒙𝒙 = 𝟎. 𝟎𝟎𝟎𝟒𝒚𝟐 + 𝟎. 𝟎𝟓𝟒𝟒𝒚 − 𝟑. 𝟑𝟎𝟖𝟖     when 𝒚 < 𝟐𝟎, with 𝑹𝟐 = 𝟎. 𝟗𝟗𝟗𝟖 Equation 3-28 
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Figure 3-34 Stress Distribution along the line L0 at the abutment of Image Plaster1-070 

The stress along L0 at the lower abutment was represented by Equation 3-29 and shown in 

Figure 3-34. The ratio of depth of stress distribution to the beam thickness was calculated and 

shown in Equation 3-31. 

𝝈𝒙𝒙 = −𝟎. 𝟎𝟎𝟔𝟑𝟒𝟒𝒚𝟐 − 𝟎. 𝟖𝟔𝟑𝒚 + 𝟓𝟐. 𝟒𝟕𝟕      𝐰𝐡𝐞𝐧 𝒚 < 𝟐𝟎 Equation 3-29 

𝒕 = 𝟕𝟓. 𝟎𝟗 Equation 3-30 

𝒏 = 0.666 Equation 3-31 
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3.3 Conclusion 

The characteristics of stress distribution are summarized in Table 3-5. From these physical tests 

utilizing the photogrammetric measures, it is firstly found that the stress distributions at the 

midspan and abutment are different both in shape and depth. And the stress distribution is 

changing as the loading changes as well. These are different from the assumptions made in 

previous analysis. These finds should be included the theoretical modelling of voussoir beams. 

It is should be noted the strain measured including not only the strain in the beam body but also 

the displacement of the joints. This resulted the relative large strain at the joints. 

The findings are summarized as following: 

1) The stress distribution at the midspan is best fitted by a linear function, and the extent of 

the distribution is much smaller than it is at the abutment. The depth of the distribution is 

changing with the loading increase. 

2) The stress distribution at the abutment is best fitted by a polynomial function, and the 

extent of the distribution is more than one half of the beam’s thickness. The distribution 

decreases rapidly with an increasing load. 

3) The maximum stress at the abutment is larger than it is at the midspan. The first stress is 

nearly three times that of the last one. 

4) The shear sliding failure at the abutments is likely to happen with the voussoir beams of 

high strength and low span/thickness ratio. For stable voussoir beams, sliding also 

happened at the beginning of the test, until it ceased at a certain stage. The load-bearing 

ability of the beam kept increasing at this time. This indicates the onset of stable arching 

after initial shear. 
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5) Except for the area near the top of the abutment, the whole beam is under axial 

compression. This means that the thickness of the arch developed is equal to the beam’s 

thickness. 

Table 3-5 Summary of the characteristics of stress distribution 

Sample 

Image 

No. 

Stress distribution at the abutment Stress distribution at the midspan 

Shape Size/n Shape Size/N 

Concrete 1 

033 𝜎𝑥𝑥 = −0.004004𝑦2 − 0.4579𝑦 + 36.4936 1 𝜎𝑥𝑥 == 2.60𝑦 − 183.97 0.0614 

040 𝜎𝑥𝑥 = 0.004576𝑦2 − 1.36136𝑦 + 45.6456 0.5536 𝜎𝑥𝑥 = 3.81𝑦 − 278.77 0.0586 

Plaster 1 

038 𝜎𝑥𝑥 = 0.003172𝑦2 − 0.2109𝑦 + 10.7705 1 𝜎𝑥𝑥 = 0.5403𝑦 − 33.6121 0.1131 

070 𝜎𝑥𝑥 = −0.006344𝑦2 − 0.863𝑦 + 52.477 0.666 𝜎𝑥𝑥 = 3.3116𝑦 − 218.107 0.1234 

 

 

 

 

 

 

 

 

 

 

 

 



90 

 

References 

Alejano, L. R., Taboada, J., Garcia-Bastante, F., & Rodriguez, P. (2008). Multi-approach back-

analysis of a roof bed collapse in a mining room excavated in stratified rock. International 

Journal of Rock Mechanics and Mining Sciences, 45(6), 899-913. doi: 

10.1016/j.ijrmms.2007.10.001 

Beer, G., & Meek, J. L. (1982). DESIGN CURVES FOR ROOFS AND HANGING-WALLS IN 

BEDDED ROCK BASED ON VOUSSOIR BEAM AND PLATE SOLUTIONS. Transactions of 

the Institution of Mining and Metallurgy Section a-Mining Industry, 91(JAN), A18-A22.  

Brady, B. H. G., & Brown, E. T. (2004). Rock mechanics: For underground mining Kluwer 

Academic Publishers. 

Diederichs, M. S. (2000). Instability of hard rockmasses: The role of tensile damage and 

relaxation (Ph.D.). Available from ProQuest Dissertations & Theses Full Text. (304676346). 

Diederichs, M., & Kaiser, P. (1999). Stability of large excavations in laminated hard rock masses: 

The voussoir analogue revisited. International Journal of Rock Mechanics and Mining Sciences, 

36(1), 97-117. doi:10.1016/S0148-9062(98)00180-6 

Evans, W. H. (1941). The strength of undermined strata. Trans. Inst. of Mining and Metallurgy, 

50, 475-500.  

Hutchinson, D. J., Diederichs, M., Pehme, P., Sawyer, P., Robinson, P., Puxley, A., & 

Robichaud, H. (2008). Geomechanics stability assessment of world war I military excavations at 

the canadian national vimy memorial site, france. International Journal of Rock Mechanics and 

Mining Sciences, 45(1), 59-77. doi: 10.1016/j.ijrmms.2007.04.014 

Ju, J., & Xu, J. (2013). Structural characteristics of key strata and strata behaviour of a fully 

mechanized longwall face with 7.0 m height chocks. International Journal of Rock Mechanics 

and Mining Sciences, 58, 46-54. doi: 10.1016/j.ijrmms.2012.09.006 

Mottahed, P., & Ran, J. (1995). DESIGN OF THE JOINTED ROOF IN STRATIFIED ROCK 

BASED ON THE VOUSSOIR BEAM MECHANISM. Cim Bulletin, 88(994), 56-62.  

Please, C. P., Mason, D. P., Khalique, C. M., Ngnotchouye, J. M. T., Hutchinson, A. J., van der 

Merwe, J. N., & Yilmaz, H. (2013). Fracturing of an euler-bernoulli beam in coal mine pillar 

extraction. International Journal of Rock Mechanics and Mining Sciences, 64, 132-138. doi: 

10.1016/j.ijrmms.2013.08.001 

Sofianos, A. (1996). Analysis and design of an underground hard rock voussoir beam roof. 

International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(2), 

153-166. doi:10.1016/0148-9062(95)00052-6 



91 

 

Sterling, R. L. (1977). ROOF DESIGN FOR UNDERGROUND OPENINGS IN NEAR-

SURFACE BEDDED ROCK FORMATIONS (Ph.D.). Available from ProQuest Dissertations & 

Theses (PQDT). (302852510). 

Stimpson, B., & Ahmed, M. (1992). FAILURE OF A LINEAR VOUSSOIR ARCH - A 

LABORATORY AND NUMERICAL STUDY. Canadian Geotechnical Journal, 29(2), 188-194.  

Talesnick, M. L., Bar Ya'acov, N., & Cruitoro, A. (2007). Modeling of a multiply jointed 

voussoir beam in the centrifuge. Rock Mechanics and Rock Engineering, 40(4), 383-404. 

doi:10.1007/s00603-006-0104-9 

Tsesarsky, M., & Talesnick, M. L. (2007). Mechanical response of a jointed rock beam - 

numerical study of centrifuge models. International Journal for Numerical and Analytical 

Methods in Geomechanics, 31(8), 977-1006. doi:10.1002/nag.568 

Vic-3D 2010 reference manual (2010). Correlated Solutions. 

Wright, F. D. (1974). Design of roof bolt patterns for jointed rock. (USBM Grant Final Report). 

College of Engineering, University of Kentucky, distributed by National Technical Information 

Service, Springfield, Va.  

Yang, J., & Shang, Y. (2007). Experimental study on complete mechanical characteristics of 

voussoir beam in stratified rock. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock 

Mechanics and Engineering, 26, 2852-2857.  

  

  



92 

 

4 Numerical Investigation on the Behavior of Voussoir Beams2 

4.1  Introduction 

The physical investigation described in the previous part provided direct insights into the 

behavior of voussoir beams under transverse loading, especially the shape of the stress 

distribution at the abutments and midspan. Nevertheless, due to the difficulties in physical setup, 

there are many variances between experiments which are difficult to control, such as horizontal 

confinement, joint conditions. It is hard/impossible to achieve the perfect symmetry in physical 

setup. This makes it hard to further the investigation on the behavior of voussoir beams by 

physical experiments. Numerical modeling was used to enhance the understanding of the 

voussoir beams behavior. 

The Finite Element Code, Phase2 8.0, was selected to numerically model the behavior of 

voussoir beams under transverse loading due to its capacity for modeling joints, providing 

multiple material models for rock, and providing flexibility for the staging of loading (Phase2 

features overview.2014). 

The uniaxial compression test and the direct splitting test were used to calibrate the numerical 

models. A series of numerical tests were performed, accounting for the common ratios of span to 

thickness for stratified rock strata encountered in the field. The results from the modeling are 

summarized and discussed in closing. 

____________ 

2 The content of this chapter has been prepared and submitted as a journal manuscript: Hu, C; Apel, D; Sudak, L; 

Szymanski, J; Liu, W. V. (2016) Numerical Investigation on the Behavior of Voussoir Beams. International Journal 

of Rock Mechanics and Mining Sciences (Submitted) 
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4.2 Phase2 Numerical Modeling 

4.2.1 Cohesion-softening friction-hardening (CSFH) material model 

Based on the laboratory test results, the linear Mohr-Coulomb model was considered the most 

appropriate for the intact concrete specimens. According to Edelbro’s research in Phase2 

modeling, the results from the cohesion-softening friction-hardening (CSFH) model best 

captured the observed rock behavior in the field (Edelbro, 2010). In the cohesion-softening 

friction-hardening (CSFH) model, peak cohesion equals to the tested uniaxial compression 

strength. The strength parameters used in the modeling were presented in Section 3 below, on 

Model Calibration. 

4.2.2 Indicator of Failure for Voussoir beams 

The maximum shear strain is the most reliable indicator of fallout according to Edelbro’s 

research (Edelbro, 2010). As noted below, the maximum shear strain was also found to be the 

most reliable indicator of failure for voussoir beams (see Section 4.3). 

4.2.3 Heterogeneous Approach 

The concrete specimens investigated were mixed by sand, cement, and water. The presence of a 

granular material, sand, made the concrete cement heterogeneous. According to Lan’s 

investigation (Lan, Martin, & Hu, 2010), the presence of material and geometric heterogeneity in 

intact rock can have a significant influence on intact rock behavior. The heterogeneity was 

treated by applying the Voronoi joint patterns by Lan (Lan et al., 2010) and Cui (Cui, 2012). The 

Voronoi tessellation option in Phase2   was used to simulate the geometric heterogeneity of the 

grains and/or clumps thought to be present in the concrete specimen, similar to the approach of 

Cui (Cui, 2012). Two-dimensional Voronoi tessellation is a process that randomly subdivides a 
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plane into non-overlapping convex polygons. A Voronoi joint network consists of joints that are 

defined by the bounding segments of these polygons (Dershowitz, 1985). This Voronoi 

tessellation scheme when combined with discrete joints can simulate both intact rock breakage 

and slip along a discrete joint. 

Phase2 is able to create the Voronoi tessellation pattern automatically. In the following models, 

the joint density was defined by using the average joint length equal to 1mm. This was a 

practical minimum selected for the computing capacity available. The Voronoi tessellation at this 

scale was experimental in Phase2 and several modifications were made by the developers of the 

software to accommodate this small-scale feature. 
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4.3 Model Calibration 

4.3.1 Uniaxial Compression 

The concrete specimen model in Phase2 has the same dimension as the specimen tested in 

laboratory, i.e., 50 mm diameter by 100 mm height. A steel cap and pedestal with a Young’s 

modulus of 200 GPa were put on the top and bottom of the sample, respectively, to simulate the 

end’s treatment for the physical sample tested. The steel cap and the sample were separated by a 

horizontal joint. There is also a horizontal joint between the pedestal and concrete sample. The 

bottom of the pedestal was fixed to prevent movement in both X and Y directions. The vertical 

sides of the cap and the bottom pedestal were fixed to prevent movement in X direction only. 

The model in Phase2 is shown in Figure 4-1.  

The CSFH Mohr-Coulomb Failure Criterion was used in the numerical model. Voronoi joint 

network was applied in the model to simulate the heterogeneity in the physical model. The 

parameters used in the numerical model are presented in Table 4-1. 

In the physical uniaxial compression test of concrete specimens, a vertical displacement rate of 

0.005mm/s was applied on the specimen. In the numerical modeling, a 7-staged vertical 

displacement was applied at the top of the cap, as shown in Table 4-2. 
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Figure 4-1 Concrete Cylinder Model in Phase2 

Table 4-1 Material Parameters Used in the Phase2 Model 

 

Unit 

Weight 

(MN/m3) 

Poisson’s 

Ratio 

Young’s 

Modulus 

(MPa) 

Dilation 

Angle 

(Deg) 

Normal 

Stiffness 

(MPa/m) 

Shear 

Stiffness 

(MPa/m) 

Tensile 

Strength 

(MPa) 

Friction Angle 

(deg) 

Peak Cohesion 

(MPa) 

Peak resid peak resid peak resid 

Concrete 0.021589 0.25 5720 27 N/A 4.4 0 52 56 8.5 4 

Steel cap 

and 

pedestal 

0.027 0.25 200000 N/A N/A 400 N/A 40 N/A 100 N/A 

Voronoi joint 5*108 5*107 4.4 0 52 56 8.5 4 

Joint between steel cap and concrete specimen, joint 

between steel pedestal and concrete specimen 
5*107 5*107 N/A 

 

Table 4-2 Staged Displacement and Vertical Strain in Numerical Model 

Stage 1 2 3 4 5 6 7 

Vertical Displacement in mm 0.16687 0.27104 0.35211 0.43241 0.5159 0.65791 0.72237 

Corresponding Vertical Strain in % 0.15 0.25 0.32 0.39 0.47 0.60 0.66 
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A comparison of the relationships of longitudinal stress and longitudinal strain to the physical 

test and numerical modeling is presented in Figure 4-2. From comparison, the numerical model 

is able to replicate the concrete specimen behavior in uniaxial compression test. The failure of 

joint in the model is shown in Figure 4-3. The yield elements are shown in Figure 4-4. In the 

modeling results, the concrete model has two symmetrical failure surfaces of approximately 45-

degrees. This may have been caused by the 2D simulation. 

 

Figure 4-2 Physical Testing Results and Numerical Modeling Results 
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Figure 4-3 Propagation of Joint Failure (mark as thick red lines), Stage 2 left, Stage 6 right 
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Figure 4-4 Yielded Elements, Stage 6 left, Stage 7 right 

4.3.2 Splitting Tensile Strength Test 

A 2-D concrete model was built in Phase2 to simulate the direct splitting test, as shown in Figure 

4-5 below. The diameter of the concrete sample is 50mm, which is the same as the tested 

samples. In the physical testing, the average peak load is 38.1kN. Accordingly, the peak uniform 

load applied in Phase2 is 7.6MPa. A five-staged load was applied to simulate the gradual loading 

process in laboratory testing. The staged load is shown in Table 4-3. The material model is 

specified in Table 4-1, which is the same as the uniaxial compression test. 
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The maximum shear strain with yielded elements is shown in Figure 4-6, Figure 4-7 and Figure 

4-8. The model failed at the same load as in the physical test. The two symmetrical failure 

surfaces could be caused by the two-dimensional modeling. 

From the calibration study, the numerical model can capture the key characteristics (the break 

pattern and deformation pattern) of concrete samples through the uniaxial compression test and 

direct splitting test. The same numerical model will be applied to model voussoir beams. 

 

Figure 4-5 Direct Splitting Model 

Table 4-3 Staged Load 

Stage No. 1 2 3 4 5 

Uniform Distributed Load, MPa 1.9 3.8 5.7 6.86 7.6 
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Figure 4-6 Maximum Shear Strain with Yielded Elements at Stage 1 (Left) and Stage 2 Loading (right) 

 

Figure 4-7 Maximum Shear Strain with Yielded Elements at Stage 3 (Left) and Stage 4 Loading (Right) 



102 

 

 

Figure 4-8 Maximum Shear Strain with Yielded Elements at Stage 5 Loading 
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4.4 Numerical Modeling 

4.4.1 Voussoir Beam Model 

A voussoir beam model was created in Phase2, as shown in Figure 4-9. This model has the same 

dimensions as the concrete Model 1, with a span/depth ratio of 6.3. 

All the material properties applied in the model except the normal stiffness and shear stiffness of 

the joints are shown above in Table 4-1. The behavior of the numerical model was compared 

with its physical test, using two load conditions where the first load is 2.05KN, and the second is 

4.01KN. Under the same load conditions, the physical test results of voussoir beams of the same 

dimensions are presented in Physical investigation of this research. 
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Figure 4-9 Voussoir Beam Model in Phase2 
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4.4.2 Normal Stiffness and Shear Stiffness for the Joints of Concrete Blocks 

Normal stiffness of the joints between concrete blocks has a major impact on the modeling of 

voussoir beams. Unlike the shear stiffness, the normal stiffness for joints between concrete 

specimens is difficult to test because of the hardness of the rock. Zangerl analysed 115 different 

laboratory and in-situ normal closure experiments in granitic rock (Zangerl, Evans, Eberhardt, & 

Loew, 2008). The results showed a very wide range of normal stiffness characteristic values. The 

normal stiffness is highly stress-dependent. It was found that 10mm-1 to 70mm-1 multiples of 

normal stress is the common range for normal stiffness. From the physical test, the stress at the 

abutment is approximately three times the stress at the midspan. Therefore, in the numerical 

modeling, it is assumed that the normal stiffness of the abutment joint (𝐾𝑛−𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡) is three 

times the normal stiffness of the midspan joint (𝐾𝑛−𝑚𝑖𝑑𝑠𝑝𝑎𝑛), as shown in Equation 4-1. 

Several researchers have simulated stratified rock mass behavior using Phase2 (Barla, Bonini, & 

Semeraro, 2011; Fortsakis, Nikas, Marinos, & Marinos, 2012; Perras, 2009). In the research 

described in this chapter, it is found that shear stiffness could not be 316 MPa/m, which was the 

value tested in the lab. If the shear stiffness is 316 MPa/m, the result from numerical voussoir 

beam model would significantly different from the physical model. Barton (Barton, 2007) 

suggested that the ratio of normal stiffness to shear stiffness is between 11 and 15 for a very 

good surface. In this chapter, the normal stiffness and shear stiffness ratio was selected to be 15, 

as the concrete joint is clean and well-mated, as shown in Equation 4-2 and Equation 4-3. 

𝑲𝒏−𝒂𝒃𝒖𝒕𝒎𝒆𝒏𝒕 = 𝟑𝑲𝒏−𝒎𝒊𝒅𝒔𝒑𝒂𝒏 Equation 4-1 

𝑲𝒏−𝒂𝒃𝒖𝒕𝒎𝒆𝒏𝒕 = 𝟏𝟓𝑲𝒔−𝒂𝒃𝒖𝒕𝒎𝒆𝒏𝒕  Equation 4-2 

𝑲𝒏−𝒎𝒊𝒅𝒔𝒑𝒂𝒏 = 𝟏𝟓𝑲𝒔−𝒎𝒊𝒅𝒔𝒑𝒂𝒏 Equation 4-3 
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Based on this assumption, the proper value of normal stiffness and shear stiffness was found by 

comparison with the physical testing results. 

4.4.3 Comparison with Physical Testing Results 

According to Equation 4-1, Equation 4-2 and Equation 4-3, several combinations of stiffness 

were tried and the results then compared with the physical modeling results. The stiffness shown 

in Table 4-4 was selected as the appropriate set of values to duplicate the voussoir beam behavior 

in the physical test. The abutment stress, as shown in Figure 4-10, is close to the stress measured 

in the physical test, described in Part 1 of this investigation. The stress distribution at the 

midspan, shown in Figure 4-11, is also close to the measured distribution. The differences of the 

deflections from the numerical modeling and physical modeling are presented in Table 4-5. The 

differences, especially the absolute differences, are within a reasonable range. 

The stiffness value in Table 4-4, combined with the material properties in Table 4-1, comprise 

the material properties used for the following numerical modeling. 

Table 4-4 Stiffness of Joints 

 Normal Stiffness, MPa/m Shear Stiffness, MPa/m 

Abutment Joints 5 * 106 3.33 * 105 

Midspan Joint 1.67 * 106 1.11 * 105 
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Figure 4-10 Abutment Normal Stress Distribution (“Thickness” is measured from bottom of the voussoir beam) 

 

 

Figure 4-11 Midspan Normal Stress Distribution (“Thickness” is measured from bottom of the voussoir beam) 
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Table 4-5 Deflection Comparison for the Physical and Numerical Tests 

 

Load 1 = 2.05kN Load 2 = 4.01KN 

Abutment 

Deflection/mm 

Midspan 

Deflection/mm 

Abutment 

Deflection/mm 

Midspan 

Deflection/mm 

Physical Test Results 0.10 0.63 0.11 0.92 

Numerical Modeling Results 0.07 0.60 0.11 1.10 

Difference/% 30% -5% 0% 19% 

 

4.4.4 Numerical Modeling 

A series of voussoir beams were modeled in Phase2 using the material properties from previous 

calibration research, shown in Table 4-1. The model is similar to the model used for calibration, 

shown in Figure 4-9, with the dimensions that differ specified in Table 4-6. 

Table 4-6 Numerical Investigation on Behaviour of Voussoir Beams 

No. 

Voussoir Models End Blocks 

Transvers 

Load/kN 

Span/Thickness Span/mm Thickness/mm Span /mm Thickness/mm 

Load 

1 

Load 

2 

1 3 300 100 50 100 2.05 4.01 

2 6 600 100 50 100 2.05 4.01 

3 8 600 75 50 75 2.05 4.01 

4 10 600 60 50 60 2.05 4.01 

5 12 600 50 50 50 2.05 4.01 

6 15 600 40 50 40 2.05 4.01 

7 18 720 40 50 40 2.05 4.01 

8 20 800 40 50 40 2.05 4.01 
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4.5 Conclusion 

The stresses induced at the midspan and abutment of the voussoir models are showed in Figure 

4-12, Figure 4-13, Figure 4-14, and Figure 4-15. The midspan deflections, depth of the stress 

induced at the midspan and abutment, and failure are summarized in Table 4-7. The findings 

from the numerical modeling are as follows: 

1) The stress induced at the abutment is nonlinear, and, at the midspan, it is linear; 

2) The stress induced at the abutment is approximately three times the stress at the midspan 

under the same transverse load; 

3) The ratio of the depth of stress induced at the abutment to beam thickness (n) is close to 

0.3 before crushing. After the crushing occurred, the ratio increased to close to 0.5. The 

ratio decreased to 0.3 until it fully crushed the beam; 

4) The ratio of the depth of stress induced at the midspan to beam thickness (n) is close to 

0.4 before crushing the beam. After the crushing occurred, the ratio increased to close to 

1 until it fully crushed the beam.
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Figure 4-12 Stress Distribution at Abutment under Load 1 (2.05kN) 
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Figure 4-13 Stress Distribution at Abutment under Load 2 (4.01kN) 
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Figure 4-14 Stress Distribution at Midspan under Load 1 (2.05kN) 



113 

 

 

Figure 4-15 Stress Distribution at Midspan under Load 2 (4.01kN)
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Table 4-7 Summary of Modeling Results 

No. 

Midspan 

Deflection 

under Load 

1, mm 

Midspan 

Deflection 

under Load 

2, mm 

Ratio of the depth 

of stress induced at 

the abutment to 

beam thickness, n 

Ratio of the depth 

of stress induced 

at the midspan to 

beam thickness, N 

Notes 

Load 1 Load 2 Load 1 Load 2 

1 N/A N/A N/A N/A N/A N/A Sliding failure at the abutment 

2 0.26 0.49 0.34 0.33 0.38 0.38 No crushing happened 

3 0.54 1.05 0.30 0.30 0.36 0.36 No crushing happened 

4 0.51 0.97 0.37 0.27 0.43 0.43 No crushing happened 

5 0.84 1.78 0.24 0.37 0.33 0.33 

Crushing happened at corner of both 

abutment and midspan 

6 1.56 3.17 0.48 0.51 1 1 

Crushing happened at corner of both 

abutment and midspan 

7 2.61 5.36 0.29 0.33 1 1 

Crushing happened at corner of both 

abutment and midspan 

8 N/A N/A 0.53 0.35 N/A N/A Crushing failure at the middle 
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5 Theoretical Modeling 

5.1 Derivation of the Centroids and Lateral Thrusts for the Stress 

Distributions located at the Abutment and Midspan of the beam 

The initial step in the theoretical analysis of the voussoir beam is the assumption regarding the 

shape and size of the horizontal compressive stress distributions acting at the abutment and at the 

center of the beam (which will be referred as “midspan” thereafter). In this model, the stress 

distributions acting at the abutments and at the midspan are assumed to be a general non-linear 

form, and the extent of the compression zones of the two distributions are assumed to be 

different, see Figure 5-1. 

 

Figure 5-1 Half of the Voussoir Beam Model with General Stress Distributions 

Prior to analyzing the Voussoir Beam, the thrust and centroid locations due to the stress 

distributions must be determined. Therefore, calculations showing the thrust and centroid 

locations at the abutment and midspan will be examined separately.  

The general equation for stress distribution at both the abutment and the midspan is in the form 
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 = 𝜷𝒙𝒌 Equation 5-1 

Where 𝛽 and k is a constant. 

ABUTMENT 

Figure 5-2 illustrates a non-linear stress distribution where the stress at the abutment varies as a 

power form from a point of zero stress to a maximum stress, 𝜎𝐴, at the lower fibers over a depth, 

𝑛𝑡, of the beam. Only the lower half of the voussoir beam model is displayed in Figure 5-2. 

 

Figure 5-2 Stress distribution at the lower Abutment with the lower half of the model 

The value of 𝛽 can be determined as follows: 

When 𝑥 = 𝑛𝑡 then 𝜎 = 𝜎𝐴, from Figure 5-2. 

Therefore, using Equation 5-1 yields 

𝝈𝑨 = 𝜷(𝒏𝒕)𝒌𝟏  Equation 5-2 

𝜷 =
𝝈𝑨

(𝒏𝒕)𝒌𝟏
 Equation 5-3 

Hence, the equation of the stress block at the abutments is 

𝝈𝑨(𝒙) = 𝝈𝑨 (
𝒙

𝒏𝒕
)

𝒌𝟏

                                                                                              Equation 5-4                                                                         

The area under the curve in Figure 5-2 represents the lateral thrust (𝑇𝐴)                                                              
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𝑻𝑨 = ∫ 𝝈𝑨(𝒙)𝒅𝒙 =
𝝈𝑨

(𝒏𝒕)𝒌𝟏
∫ 𝒙𝒌𝟏𝒅𝒙

𝒏𝒕

𝟎

=
𝝈𝑨𝒏𝒕

𝒌𝟏 + 𝟏
 Equation  5-5 

The line of action of the resulting lateral thrust, 𝑇𝐴, is assumed to act horizontally through the 

centroid of the non-linear stress block. The equation of the centroid for the stress block at the 

abutment is given by: 

𝒙𝑨̅̅ ̅ = 𝒏𝒕 − 𝒙𝑨                                                                                                   Equation 5-6 

where 

𝒙𝑨 =
𝟏

𝑻𝑨
∫ 𝒙𝝈𝑨(𝒙)𝒅𝒙

𝒏𝒕

𝟎
=

𝟏

𝑻𝑨

𝝈𝑨(𝒏𝒕)𝟐

𝒌𝟏+𝟐
= (

𝒌𝟏+𝟏

𝒌𝟏+𝟐
)𝒏𝒕                                                            Equation 5-7 

Hence, the equation of the centroid for the stress block at the abutment is given by 

𝒙𝑨̅̅ ̅ =
𝒏𝒕

𝒌𝟏 + 𝟐
 Equation 5-8 

MIDSPAN 

Figure 5-3 illustrates a non-linear stress distribution where the stress at the center of the beam 

varies as a power form from a point of zero stress to a maximum stress, 𝜎𝑀, at the upper fibers 

over a depth, 𝑁𝑡, of the beam. 

 

Figure 5-3 Stress distribution at the upper Midspan with the upper half of the model 
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The determination for the stress distribution, the thrust (𝑇𝑀) and the centroid (𝑥𝑀̅̅ ̅̅ ) at the midspan 

is similar to that at the abutment. The stress distribution, the thrust (𝑇𝑀) and the centroid (𝑥𝑀̅̅ ̅̅ ) at 

the midspan are given by: 

𝝈𝑴(𝒙) = 𝝈𝑴 (
𝒙

𝑵𝒕
)

𝒌𝟐

               Equation 5-9 

𝑻𝑴 =
𝝈𝑴𝑵𝒕

𝒌𝟐 + 𝟏
 Equation 5-10 

𝒙𝑴̅̅ ̅̅ =
𝑵𝒕

𝒌𝟐 + 𝟐
 Equation 5-11 
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5.2 Derivation of the Moment Arm and Eccentricities of the Voussoir Beam 

As the voussoir beam model is not hinged at the lower abutment and upper midspan, it is 

indeterminate in its actions and is subject to internal stress and abutment forces as a result of 

thermal expansion. 

Normally the Voussoir Beam is a statically indeterminate structure, but because of the uniform 

loading condition (i.e. self-weight of the beam) a solution can be obtained by analyzing only half 

of the structure, as shown in Figure 5-4. Please noted, the shear force at the bottom of abutment 

is not plotted in Figure 5-4 for the neat of the figure. The shear force is a result of normal stress 

induced at abutment and the relative movement at the abutment. There is no shear force at 

midspan as no relative movement between the two blocks of voussoir beam. 

 

Figure 5-4 Force Diagram for Half Span of Voussoir Beam 

Let 𝛾 be the unit weight of the voussoir beam and let the beam be of unit depth. Therefore, the 

weight of half the rock beam is given by: 
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𝑾/𝟐 =
𝜸𝒕𝒔

𝟐
 Equation 5-12 

There is no frictional force at the centre as there is no relative movement between the two blocks. 

The only frictional force happens at the abutment; the magnitude of the friction is equal to half of 

the weight of the block according to the force equilibrium. 

From the force equilibrium, the thrust at the abutment, TA, and the thrust at the midspan, TM, 

must be equal even though the stress distributions are different. 

 𝑻𝑨 = 𝑻𝑴 Equation 5-13 

𝝈𝑨𝒏𝒕

𝒌𝟏 + 𝟏
=

𝝈𝑴𝑵𝒕

𝒌𝟐 + 𝟏
 Equation 5-14 

𝑵

𝒏
=

𝝈𝑨

𝝈𝑴
(
𝒌𝟐 + 𝟏

𝒌𝟏 + 𝟏
) Equation 5-15 

Let  =
𝑁

𝑛
 ,  𝜔 =

𝜎𝐴

𝜎𝑀
 then, 

 = 𝝎(
𝒌𝟐 + 𝟏

𝒌𝟏 + 𝟏
) Equation 5-16 

For moment equilibrium of the rock beam at the lower abutment, the moment associated with the 

gravitational load must be balanced by the moments of the end thrusts. i.e. 

∑ 𝑴𝑨 = 𝟎 Equation 5-17 

𝑻𝒛 =
𝑾𝒔

𝟖
 Equation 5-18 

𝑻 =
𝜸𝒕𝒔𝟐

𝟖𝒛
 Equation 5-19 

The distance between the line of the thrust at the abutment and that at the midspan (i.e. the 

moment arm z) is calculated as follows: 

𝒛 = 𝒕 − (𝒙𝑨̅̅ ̅ + 𝒙𝑴̅̅ ̅̅ ) Equation 5-20 

Given  𝑥𝐴̅̅ ̅ =
𝑛𝑡

𝑘1+2
 , 𝑥𝑀̅̅ ̅̅ =

𝑁𝑡

𝑘2+2
 then 
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𝒛 = 𝒕 − 𝒏𝒕 [
(𝒌𝟏 + 𝟏)(𝒌𝟐 + 𝟐) + 𝝎(𝒌𝟏 + 𝟐)(𝒌𝟐 + 𝟏)

(𝒌𝟏 + 𝟏)(𝒌𝟏 + 𝟐)(𝒌𝟐 + 𝟐)
] Equation 5-21 

Let  = [
(𝑘1+1)(𝑘2+2)+𝜔(𝑘1+2)(𝑘2+1)

(𝑘1+1)(𝑘1+2)(𝑘2+2)
], 

𝒛 = 𝒕(𝟏 − 𝒏) Equation 5-22 

Now let 𝑇 = 𝑇𝐴, combine Equation  5-5 and Equation 5-19 

𝝈𝑨𝒏𝒕

𝒌𝟏 + 𝟏
=

𝜸𝒕𝒔𝟐

𝟖𝒛
 Equation 5-23 

From Equation 5-22, 

𝝈𝑨𝒏𝒕

𝒌𝟏 + 𝟏
=

𝜸𝒕𝒔𝟐

𝟖𝒕(𝟏 − 𝒏)
 Equation 5-24 

𝝈𝑨 =
𝜸𝒔𝟐(𝒌𝟏 + 𝟏)

𝟖𝒏𝒕(𝟏 − 𝒏)
 Equation 5-25 

The value of the eccentricity corresponding to thrust TA and TB are, 

𝐞𝐀 =
𝐭

𝟐
− 𝒙𝑨̅̅ ̅ Equation 5-26 

Or 

𝐞𝐀 = 𝐭 [
𝒌𝟏 + 𝟐 − 𝟐𝒏

𝟐(𝒌𝟏 + 𝟐)
] Equation 5-27 

𝐞𝐌 =
𝐭

𝟐
− 𝒙𝑴̅̅ ̅̅  Equation 5-28 

Or 

𝐞𝐌 = 𝐭 [
𝒌𝟐 + 𝟐 − 𝟐𝑵

𝟐(𝒌𝟐 + 𝟐)
] Equation 5-29 
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5.3 The Derivation of the Arch Length Equation 

According to the principle that the internal compression of an arch will follow a parabolic profile 

when the load applied is uniformly distributed (Ambrose & Tripeny, 2012), the internal 

compression or thrust in the voussoir beam model will follow a parabolic profile as the only load 

is itself weight in the model, as shown in Figure 5-5. This parabolic profile passes through the 

centroids of the stress blocks at the abutment and midspan, and it can be represented as a smooth 

continuous curve in rectangular coordinates.  

 

Figure 5-5 The Shape of the Linear Arch 

Therefore, this parabolic arch profile can be expressed in the form 

𝒚 = 𝒂𝒙𝟐 + 𝒃 Equation 5-30 

The value of the constants, a and b, can be determined as follows: 

When x = 0 then y = z 

𝒃 = 𝒛 Equation 5-31 
                                                                                                         

When x = −s/2 then y = 0 

𝒂 = −
𝟒𝒛

𝒔𝟐
 Equation 5-32 

Hence the equation of the linear arch is 
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𝒚 = −
𝟒𝒛

𝒔𝟐
𝒙𝟐 + 𝒛 Equation 5-33 

                                                                                                        

Now the equation for the arch length is given by 

𝒍 = ∫ [𝟏 + (
𝒅𝒚

𝒅𝒙
)

𝟐

]

𝟏
𝟐⁄

𝒅𝒙 Equation 5-34 

But the total length of the arch is 

𝑳 = 𝟐𝒍 Equation 5-35 

Then 

𝑳 = 𝟐 ∫ (𝟏 +
𝟔𝟒𝒛𝟐

𝒔𝟒
𝒙𝟐)

𝟏
𝟐⁄𝟎

−
𝒔
𝟐

𝒅𝒙 Equation 5-36 

Integrating the above expression to obtain an exact solution is possible, but the result is 

complicated. Therefore, consider an approximate solution by expanding the integrand as a 

binomial Taylor series. 

(𝟏 +
𝟔𝟒𝒛𝟐

𝒔𝟒
𝒙𝟐)

𝟏
𝟐⁄

= 𝟏 +
𝟏

𝟐
(

𝟔𝟒𝒛𝟐𝒙𝟐

𝒔𝟒
) + (

−𝟏

𝟖
) (

𝟔𝟒𝒛𝟐𝒙𝟐

𝒔𝟒
) + ⋯ Equation 5-37 

Now considering the first two terms only, Equation 5-36 can be written as follows: 

𝑳 ≈ 𝟐 ∫ (𝟏 +
𝟑𝟐𝒛𝟐

𝒔𝟒
𝒙𝟐)

𝟎

−
𝒔
𝟐

𝒅𝒙  

≈ 𝒔 +
𝟖𝒛𝟐

𝟑𝒔
                                                                                                                          

Hence, the approximate length of the parabolic arch line, L, can be expressed in terms of the 

lever arm (z) and the span (s) by: 

𝑳 = 𝒔 +
𝟖𝒛𝟐

𝟑𝒔
 Equation 5-38 

Now, in order to evaluate the relative error associated in deriving Equation 5-38, the exact 

solution to the arc length is calculated.  

So from Equation 5-36 let 
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𝒙 = (
𝒔𝟐

𝟖𝒛
) 𝐭𝐚𝐧  Equation 5-39 

Therefore  

𝒅𝒙 = (
𝒔𝟐

𝟖𝒛
) 𝒔𝒆𝒄𝟐𝒅𝜽 Equation 5-40 

So Equation 5-36 becomes 

𝑳 = (
𝒔𝟐

𝟒𝒛
) ∫ 𝒔𝒆𝒄𝟑𝒅𝜽

𝟎

𝒕𝒂𝒏−𝟏(−
𝟒𝒛
𝒔

)

 Equation 5-41 

Therefore, integrating the above expression results in the exact value of the arch length which is 

given by: 

𝑳𝒆𝒙𝒂𝒄𝒕 =
𝒔𝟐

𝟖𝒛
{

𝟒𝒛

𝐜𝐨𝐬 [𝒕𝒂𝒏−𝟏(
𝟒𝒛
𝒔 )] 𝒔

+ 𝐥𝐧 |
𝟏

𝐜𝐨𝐬 [𝒕𝒂𝒏−𝟏(
𝟒𝒛
𝒔 )]

+
𝟒𝒛

𝒔
|} Equation 5-42 

The relative error (R.E.) due to the approximation is calculated using the following expression: 

𝑹. 𝑬. =
|𝑳𝒆𝒙𝒂𝒄𝒕 − 𝑳|

|𝑳𝒆𝒙𝒂𝒄𝒕|
  𝒂𝒏𝒅 𝑳𝒆𝒙𝒂𝒄𝒕 ≠ 𝟎 Equation 5-43 

By assuming a number of values for the lever arm (z) and span (s) the relative error due to the 

approximation can be evaluated. 

Table 5-1 Relative Error due to Approximation 

Span(s)/m Lever Arm(z)/m L/m Lexact/m R.E. 

50 2 50.2133 50.2125 1.62E-05 

100 4 100.4267 100.4250 1.62E-05 

150 6 150.6400 150.6376 1.62E-05 

200 8 200.8533 200.8501 1.62E-05 

250 10 251.0667 251.0626 1.62E-05 

300 12 301.2800 301.2751 1.62E-05 

 



126 

 

Clearly the magnitude of the relative error is on the order of 10-5. Thus the approximate solution, 

as given by Equation 5-38, can be used to approximate the exact solution without significant loss 

in accuracy.
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5.4  Derivation of Beam Shortening Equation 

In order to determine the stability of voussoir beams against buckling failure, the horizontal 

shortening of the beam needs to be investigated first. Making use of the symmetry, only half of 

the voussoir beam is investigated. As shown in Figure 5-1, half of the voussoir beam is 

constrained by two non-uniform distributed stresses, one of them is at the lower abutment and 

the other is at the upper midspan. As the horizontal stress distributions in the internal vertical 

sections are unknown, an approximation method is proposed to determine the mean horizontal 

stress in the beam, and then the shortening can be known from the elastic relationship.  

From the parabolic profile of internal thrust of voussoir beam in Figure 5-5-6, it is noticed that 

there is an intersection (point u in Figure 5-5-6) of the profile and the beam horizontal central 

line. So the thrust on this section is along the beam horizontal central line. A further assumption 

is made that there is uniform stress (σu) acting over this section. The average compressive stress 

in the beam will be estimated by the weighted mean of the average stresses between Au (𝝈𝑨𝒖) 

and uM (𝝈𝒖𝑴). This is validated from the physical testing which shows the entire beam is under 

compression except at the abutment and midspan joints. 

 

Figure 5-5-6 Compressive Stress Acting on the Arch Line 
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It is assumed that this section is at a distance “xu” away from the midspan section. Therefore, the 

point ‘u’, as defined by the coordinate system in Figure 5-5-6, has the following coordinates: 

𝒖(𝒙, 𝒚) = (−𝒙𝒖, 𝒆𝑨) Equation 5-44 

From Equation 5-33, at point ‘u’ Equation 5-44 becomes, 

𝒆𝑨 = −
𝟒𝒛

𝒔𝟐
𝒙𝒖

𝟐 + 𝒛 Equation 5-45 

The midspan thrust eccentricity (eM) is 

𝐞𝐌 = 𝐳 − 𝐞𝐀 Equation 5-46 

𝐞𝐌 = 𝐭 [
𝒌𝟐 + 𝟐 − 𝟐𝑵

𝟐(𝒌𝟐 + 𝟐)
] Equation 5-47 

And given that 

𝒛 = 𝐭(𝟏 − 𝒏)  Equation 5-48 

Then 

𝒙𝒖 =
𝒔

𝟐
[

𝒌𝟐 + 𝟐 − 𝟐𝑵

𝟐(𝒌𝟐 + 𝟐)(𝟏 − 𝒏)
]

𝟏
𝟐⁄

 Equation 5-49 

Now the stress acting on the arch from point “A” to “u” is defined as 

𝝈𝑨𝒖 =
𝑨

′ + 𝝈𝒖

𝟐
 Equation 5-50 

Similarly the stress acting on the arch from point “u” to “M” is defined as 

𝝈𝒖𝑴 =
𝝈𝒖 + 𝑴

′

𝟐
 Equation 5-51 

Hence, the equivalent horizontal stress acting on the arch is 

𝝈𝒂𝒓𝒄𝒉 = (
𝑨𝒖̅̅ ̅

𝑨𝑴̅̅ ̅̅
) 𝝈𝑨𝒖 + (

𝒖𝑴̅̅ ̅̅

𝑨𝑴̅̅ ̅̅
) 𝝈𝒖𝑴 Equation 5-52 

By Pythagorean Theorem, 
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𝑨𝒖̅̅ ̅̅ = √(
𝒔

𝟐
− 𝒙𝒖)

𝟐

+ 𝒆𝑨
𝟐  Equation 5-53 

𝒖𝑴̅̅ ̅̅ ̅ = √𝒙𝒖
𝟐 + 𝒆𝑴

𝟐  Equation 5-54 

𝑨𝑴̅̅ ̅̅ ̅ = √(
𝒔

𝟐
)

𝟐

+ 𝒛𝟐 Equation 5-55 

Now, where the arch line intersects the horizontal center of the beam the stress is assumed to be 

uniformly distributed over the entire beam height and is given by 

𝒖 =
𝑻𝒖

𝒕
 Equation 5-56 

From the beam equilibrium, 𝑇𝑢 = 𝑇, combining Equation  5-5, 

𝒖 =
𝝈𝑨𝒏

𝒌𝟏 + 𝟏
 Equation 5-57 

The stress, 𝐴
′ , which is the stress acting at the intersection of the arch line and abutment is given 

by 

𝑨
′ = 𝝈𝑨(

𝒙𝑨

𝒏𝒕
)

𝒌𝟏

 Equation 5-58 

𝒙𝑨 = (
𝒌𝟏 + 𝟏

𝒌𝟏 + 𝟐
)𝒏𝒕 Equation 5-59 

𝑨
′ = 𝝈𝑨(

𝒌𝟏 + 𝟏

𝒌𝟏 + 𝟐
)

𝒌𝟏

 Equation 5-60 

Similarly, at the midspan, the stress acting at the intersection of the arch line and abutment is 

given by 

𝑴
′ = 𝝈

𝑴
(
𝒌𝟐 + 𝟏

𝒌𝟐 + 𝟐
)

𝒌𝟐

 Equation 5-61 

As 𝜎𝐴 = 𝜎𝑀 
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𝑴
′ =

𝑨


(
𝒌𝟐 + 𝟏

𝒌𝟐 + 𝟐
)

𝒌𝟐

 Equation 5-62 

Now substituting Equation 5-50, Equation 5-51, Equation 5-53, Equation 5-54, Equation 5-55, 

Equation 5-57, Equation 5-60, Equation 5-62, into Equation 5-52, 

𝝈𝒂𝒓𝒄𝒉 = [
(𝒔

𝟐⁄ − 𝒙𝒖)
𝟐

+ 𝒆𝑨
𝟐

(𝒔/𝟐)𝟐 + 𝒛𝟐
]

𝟏/𝟐

{
𝝈𝑨

𝟐
[(

𝒌𝟏 + 𝟏

𝒌𝟏 + 𝟐
)𝒌𝟏 +

𝒏

𝒌𝟏 + 𝟏
]} + [

𝒙𝒖
𝟐 + 𝒆𝑴

𝟐

(𝒔/𝟐)𝟐 + 𝒛𝟐
]

𝟏/𝟐

{
𝝈𝑨

𝟐
[
𝟏


(
𝒌𝟐 + 𝟏

𝒌𝟐 + 𝟐
)𝒌𝟐 +

𝒏

𝒌𝟏 + 𝟏
]} 

 Equation 5-63 

Rearranging gives 

𝝈𝒂𝒓𝒄𝒉 =
𝝈𝑨

𝟐[(𝒔/𝟐)𝟐 + 𝒛𝟐]𝟏/𝟐
{[(𝒔

𝟐⁄ − 𝒙𝒖)
𝟐

+ 𝒆𝑨
𝟐]

𝟏/𝟐

[(
𝒌𝟏 + 𝟏

𝒌𝟏 + 𝟐
)𝒌𝟏 +

𝒏

𝒌𝟏 + 𝟏
] + [𝒙𝒖

𝟐 + 𝒆𝑴
𝟐 ]

𝟏/𝟐
[
𝟏


(
𝒌𝟐 + 𝟏

𝒌𝟐 + 𝟐
)𝒌𝟐 +

𝒏

𝒌𝟏 + 𝟏
]} 

  

Equation 5-64 

(𝒙𝒖
𝟐 + 𝒆𝑴

𝟐 )
𝟏/𝟐

= {
𝒔𝟐

𝟒

(𝒌𝟐 + 𝟐 − 𝟐𝑵)

𝟐(𝒌𝟐 + 𝟐)(𝟏 − 𝒏)
+

𝒕𝟐

𝟒
(

𝒌𝟐 + 𝟐 − 𝟐𝑵

𝒌𝟐 + 𝟐
)

𝟐

}

𝟏/𝟐

 Equation 5-65 

Rearranging gives  

(𝒙𝒖
𝟐 + 𝒆𝑴

𝟐 )
𝟏/𝟐

= {
𝒔𝟐(𝒌𝟐 + 𝟐 − 𝟐𝑵)(𝒌𝟐 + 𝟐) + 𝟐𝒕𝟐(𝟏 − 𝒏)(𝒌𝟐 + 𝟐 − 𝟐𝑵)𝟐

𝟖(𝒌𝟐 + 𝟐)𝟐(𝟏 − 𝒏)
}

𝟏/𝟐

 Equation 5-66 

Now let 

𝝆
𝟏

= [𝒔𝟐(𝒌𝟐 + 𝟐 − 𝟐𝑵)(𝒌𝟐 + 𝟐) + 𝟐𝒕𝟐(𝟏 − 𝒏)(𝒌𝟐 + 𝟐 − 𝟐𝑵)𝟐]𝟏/𝟐 Equation 5-67 

Then  

(𝒙𝒖
𝟐 + 𝒆𝑴

𝟐 )
𝟏/𝟐

=
𝝆𝟏

[𝟖(𝒌𝟐 + 𝟐)𝟐(𝟏 − 𝒏)]
𝟏

𝟐⁄
 Equation 5-68 

[(𝒔
𝟐⁄ − 𝒙𝒖)

𝟐
+ 𝒆𝑨

𝟐]
𝟏/𝟐

= 〈{
𝒔

𝟐
−

𝒔

𝟐
[

𝒌𝟐 + 𝟐 − 𝟐𝑵

𝟐(𝒌𝟐 + 𝟐)(𝟏 − 𝒏)
]

𝟏/𝟐

}

𝟐

+ {
𝒕[(𝒌𝟐 + 𝟐)(𝟏 − 𝟐𝒏) + 𝟐𝑵]

𝟐(𝒌𝟐 + 𝟐)
}

𝟐

〉𝟏/𝟐 Equation 5-69 

Rearranging gives 

[(𝒔
𝟐⁄ − 𝒙𝒖)

𝟐
+ 𝒆𝑨

𝟐 ]
𝟏/𝟐

= 〈
𝒔𝟐(𝒌𝟐+𝟐){[𝟐(𝒌𝟐+𝟐)(𝟏−𝒏)]𝟏/𝟐−(𝒌𝟐+𝟐−𝟐𝑵)𝟏/𝟐}

𝟐

𝟖(𝒌𝟏+𝟐)𝟐(𝟏−𝒏)
+

𝟐𝒕𝟐(𝟏−𝒏)[(𝒌𝟐+𝟐)(𝟏−𝟐𝒏)+𝟐𝑵]𝟐

𝟖(𝒌𝟐+𝟐)𝟐(𝟏−𝒏)
〉𝟏/𝟐  

Equation 5-70 

Now let 
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𝝆
𝟐

= 〈𝒔𝟐(𝒌𝟐 + 𝟐){[𝟐(𝒌𝟐 + 𝟐)(𝟏 − 𝒏)]𝟏/𝟐 − (𝒌𝟐 + 𝟐 − 𝟐𝑵)𝟏/𝟐}𝟐 + 𝟐𝒕𝟐(𝟏 − 𝒏)[(𝒌𝟐 + 𝟐)(𝟏 − 𝟐𝒏) + 𝟐𝑵]𝟐〉𝟏/𝟐  

Equation 5-71 

Then 

[(𝒔
𝟐⁄ − 𝒙𝒖)

𝟐
+ 𝒆𝑨

𝟐]
𝟏/𝟐

=
𝝆𝟐

[𝟖(𝒌𝟐 + 𝟐)𝟐(𝟏 − 𝒏)]𝟏/𝟐
 Equation 5-72 

So substituting Equation 4-23 and 4-27 into Equation 4-19 results in the following expression for 

the average stress acting along the arch line: 

𝝈𝒂𝒓𝒄𝒉 =
𝝈𝑨

𝟐[(𝒔/𝟐)𝟐+𝒛𝟐]𝟏/𝟐
{

𝝆𝟐

[𝟖(𝒌𝟐+𝟐)𝟐(𝟏−𝒏)]𝟏/𝟐
[(

𝒌𝟏+𝟏

𝒌𝟏+𝟐
)𝒌𝟏 +

𝒏

𝒌𝟏+𝟏
] +

𝝆𝟏

[𝟖(𝒌𝟐+𝟐)𝟐(𝟏−𝒏)]
𝟏

𝟐⁄
[

𝟏


(

𝒌𝟐+𝟏

𝒌𝟐+𝟐
)𝒌𝟐 +

𝒏

𝒌𝟏+𝟏
]}                      Equation 5-73 

𝝈𝒂𝒓𝒄𝒉 =
𝝈𝑨

𝟐
[

𝟏{𝒏(𝒌𝟏+𝟐)𝒌𝟏(𝒌𝟐+𝟐)𝒌𝟐+(𝒌𝟏+𝟏)(𝒌𝟏+𝟐)𝒌𝟏(𝒌𝟐+𝟏)𝒌𝟐}+

𝟐{𝒏(𝒌𝟏+𝟐)𝒌𝟏(𝒌𝟐+𝟐)𝒌𝟐+(𝒌𝟏+𝟏)𝒌𝟏+𝟏(𝒌𝟐+𝟐)𝒌𝟐}

{(𝒔
𝟐⁄ )

𝟐
+𝒕𝟐(𝟏−𝒏)𝟐}

𝟏
𝟐⁄ {𝟖(𝒌𝟐+𝟐)𝟐(𝟏−𝒏)}

𝟏
𝟐⁄ (𝒌𝟏+𝟏)(𝒌𝟏+𝟐)𝒌𝟏(𝒌𝟐+𝟐)𝒌𝟐

]                                              Equation 5-74 

The elastic shortening of the arch is given by 

∆𝑳𝒂𝒓𝒄𝒉 = (
𝝈𝒂𝒓𝒄𝒉

𝑬𝒃𝒆𝒂𝒎

)𝑳                                                                                                  Equation 5-75 

Where 𝐸𝑏𝑒𝑎𝑚 is the modulus of elasticity of the voussoir beam. 
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5.5 Derivation of the Displacement Equation along the Abutment 

The horizontal thrust of the voussoir beam is resisted by the abutments, and resulted 

displacement of the abutments will influence the stability of voussoir beam. This section will 

examine the displacement of the abutment. 

As was shown in Figure 5-7, the load distribution acting on the abutment is statically equivalent 

to a concentrated thrust acting at the centroid. So consider this concentrated thrust, TA, to act on a 

vertical straight boundary, AB, of an infinitely large plate. Also considering any element, C, at a 

distance, r, from the point of application of the load which is subjected to a compression in the 

radial direction. 

 

Figure 5-7 Concentrated Thrust Acting at a point of a straight boundary 

To determine the stress components acting on element, C, requires the knowledge of the Airy 

Stress Function () (Timoshenko, Goodier, & Aitf_c-Fer, 1970). Since element, C, is in 

compression, the stresses are assumed to be negative by elastic convention. So the stress 

function, in terms of polar coordinates, can be defined as follows: (Diederichs & Kaiser, 1999) 
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 = −
𝑻𝑨


𝒓 𝐬𝐢𝐧  Equation 5-76 

It is necessary to verify that Equation 5-76 is an acceptable stress function. This requires that the 

stress function satisfy the equilibrium and compatibility conditions. The equilibrium conditions, 

in polar coordinates, are defined as follows: 

𝛛𝛔𝐫

𝛛𝐫
+

𝛛𝛔𝐫ѳ

𝐫𝛛ѳ
+

𝛔𝐫 − 𝛔ѳ

𝐫𝛛ѳ
+ 𝐑 = 𝟎 Equation 5-77 

𝟏

𝐫

𝛛𝛔ѳ

𝛛ѳ
+

𝛛𝛔𝐫ѳ

𝛛𝐫
+

𝟐𝛔𝐫ѳ

𝐫
+ 𝐒 = 𝟎 Equation 5-78 

Where R is the body force per unit volume in the radial direction, S is the body force per unit 

volume in the tangential direction.  

The compatibility equation in terms of polar coordinates is: 

(
𝛛𝟐

𝛛𝐫𝟐
+

𝛛

𝐫𝛛𝐫
+

𝛛𝟐

𝐫𝟐𝛛ѳ𝟐
) (

𝛛𝟐

𝛛𝐫𝟐
+

𝛛

𝐫𝛛𝐫
+

𝛛𝟐

𝐫𝟐𝛛ѳ𝟐
) = 𝟎 Equation 5-79 

The stress components are defined as follows: 

𝛔𝐫 =
𝛛

𝐫𝛛𝐫
+

𝛛𝟐

𝐫𝟐𝛛ѳ𝟐
 Equation 5-80 

𝛔ѳ =
𝛛𝟐

𝛛𝐫𝟐
 Equation 5-81 

𝛔𝐫ѳ = −
𝛛

𝛛𝐫
(

𝛛

𝐫𝛛ѳ
) 

Equation 5-82 

Substituting Equation 5-76 into Equation 5-80, Equation 5-81 and Equation 5-82 yields the stress 

component in the radial and tangential directions. 

𝛔𝐫 = −
𝟐𝑻𝑨 𝐜𝐨𝐬 

𝒓
 Equation 5-83 

𝛔ѳ = 𝟎 Equation 5-84 

𝛔𝐫ѳ = 𝟎 Equation 5-85 

This stress field automatically satisfies the equilibrium conditions given by Equation 5-77 and 

Equation 5-78 provided the body forces are zero. 
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The compatibility equation is satisfied by substituting Equation 5-76 into Equation 5-79 

−
𝟒𝑻𝑨 𝐜𝐨𝐬 

𝒓𝟑
+

𝟐𝑻𝑨 𝐜𝐨𝐬 

𝒓𝟑
+

𝟐𝑻𝑨 𝐜𝐨𝐬 

𝒓𝟑
= 𝟎 Equation 5-86 

Hence, the stress function, as given by Equation 5-76, satisfies both the equilibrium and 

compatibility equations respectively. 

The strain components in polar coordinate are defined as follows. 

є𝐫 =
𝛛𝐮𝐫

𝛛𝐫
 Equation 5-87 

єѳ =
𝛛𝐮ѳ

𝐫𝛛ѳ
+

𝐮𝐫

𝐫
 Equation 5-88 

є𝐫ѳ =
𝛛𝐮𝐫

𝐫𝛛ѳ
+

𝛛𝐮ѳ

𝛛𝐫
−

𝐮ѳ

𝐫
 

Equation 5-89 

According Hooke’s law for plane stress, 

є𝐫 =
𝛔𝐫 − 𝛎𝛔ѳ

𝐄
 Equation 5-90 

єѳ =
𝛔ѳ − 𝛎𝛔𝐫

𝐄
 Equation 5-91 

є𝐫ѳ =
𝟐(𝟏 + 𝛎)

𝐄
𝛔𝐫ѳ 

Equation 5-92 

Substituting equations 5-83, 5-84, 5-85, 5-87, 5-88 and 5-89 into equations 5-90, 5-91 and 5-92 

yields the following: 

𝛛𝐮𝐫

𝛛𝐫
= −

𝟐𝑻𝑨 𝐜𝐨𝐬 

𝑬𝒓
 Equation 5-93 

𝛛𝐮ѳ

𝐫𝛛ѳ
+

𝐮𝐫

𝐫
=

𝟐𝛎𝑻𝑨 𝐜𝐨𝐬 

𝑬𝒓
 Equation 5-94 

𝛛𝐮𝐫

𝐫𝛛ѳ
+

𝛛𝐮ѳ

𝛛𝐫
−

𝐮ѳ

𝐫
= 𝟎 

   Equation 5-95 

Integrating Equation 5-93 yields the following: 

𝐮𝐫 = −
𝟐𝑻𝑨 𝐜𝐨𝐬  𝐥𝐧 𝒓

𝑬
+ 𝐟(ѳ) Equation 5-96 

Where f(ѳ) is a function of ѳ only. 

Substituting Equation 5-96 into the Equation 5-94 and integrating yields: 
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𝐮ѳ =
𝟐𝛎𝑻𝑨 𝐬𝐢𝐧 

𝑬
+

𝟐𝑻𝑨 𝐬𝐢𝐧  𝐥𝐧 𝒓

𝑬
− ∫ 𝒇(ѳ)𝒅 ѳ + 𝒈(𝒓) Equation 5-97 

Where g(r) is a function of r only 

Substituting Equation 5-96 and 5-97 into Equation 5-95 yields: 

∫ 𝒇(ѳ)𝒅 ѳ + 𝒇′(ѳ) + 𝒓𝒈′(𝒓) − 𝒈(𝒓) =
−𝟐𝑻𝑨 𝐬𝐢𝐧 

𝑬
(𝟏 − 𝛎) Equation 5-98 

Equation 5-98 is satisfied by putting 

𝐠(𝐫) = 𝐇𝐫 Equation 5-99 

𝒇(ѳ) = −
(𝟏 − 𝛎)𝑻𝑨 𝐬𝐢𝐧 

𝑬
+ 𝑰 𝐬𝐢𝐧  + 𝑱 𝐜𝐨𝐬  

Equation 5-100 

Where H, I, and J are arbitrary constants to be determined from the conditions of constraint. 

So substituting equation 5-99 and 5-100 into equations 5-96 and 5-97, the expressions for the 

displacements become: 

𝒖𝒓 = −
𝟐𝑻𝑨 𝐜𝐨𝐬  𝐥𝐧 𝒓

𝑬
−

(𝟏 − 𝛎)𝑻𝑨 𝐬𝐢𝐧 

𝑬
+ 𝑰 𝐬𝐢𝐧  + 𝑱 𝐜𝐨𝐬  Equation 5-101 

𝐮ѳ =
𝟐𝛎𝑻𝑨 𝐬𝐢𝐧 

𝑬
+

𝟐𝑻𝑨 𝐬𝐢𝐧  𝐥𝐧 𝒓

𝑬
+

(𝟏 − 𝛎)𝑻𝑨 𝐬𝐢𝐧 

𝑬
−

(𝟏 − 𝛎)𝑻𝑨  𝐜𝐨𝐬 

𝑬
+ 𝑰 𝐜𝐨𝐬  − 𝑱 𝐬𝐢𝐧  + 𝑯𝒓 

Equation 5-102 

Assume that the constraint condition of the semi-infinite plate is such that the points on the x-

axis have no vertical displacement. i.e. 

𝒖,=𝟎 = 𝟎 Equation 5-103 

𝑰 + 𝑯𝒓 = 𝟎 Equation 5-104 

𝑰 = 𝑯 = 𝟎  Equation 5-105 

The radial displacement on the x axis is 

𝒖𝒓,=𝟎 = −
𝟐𝑻𝑨 𝐥𝐧 𝒓

𝑬
+ 𝑱 Equation 5-106 

Assume that a point of x axis at a distance d from the origin does not move laterally, then from 

Equation 5-106 we find 
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𝑱 =
𝟐𝑻𝑨 𝐥𝐧 𝒅

𝑬
 Equation 5-107 

So substituting equations 5-102 and 5-105 into 5-98 and 5-99 yields the following solution for 

the displacement: 

𝒖𝒓 = −
𝟐𝑻𝑨 𝐜𝐨𝐬  𝐥𝐧 𝒓

𝑬
−

(𝟏 − 𝛎)𝑻𝑨 𝐬𝐢𝐧 

𝑬
+

𝟐𝑻𝑨 𝐥𝐧 𝒅

𝑬
𝐜𝐨𝐬  Equation 5-108 

𝐮ѳ =
𝟐𝛎𝑻𝑨 𝐬𝐢𝐧 

𝑬
+

𝟐𝑻𝑨 𝐬𝐢𝐧  𝐥𝐧 𝒓

𝑬
+

(𝟏 − 𝛎)𝑻𝑨 𝐬𝐢𝐧 

𝑬
−

(𝟏 − 𝛎)𝑻𝑨  𝐜𝐨𝐬 

𝑬
−

𝟐𝑻𝑨 𝐥𝐧 𝒅

𝑬
𝐬𝐢𝐧  

Equation 5-109 

The lateral displacement on the straight boundary are obtained from Equation 5-109; Because uѳ 

is positive if the displacement is in the direction of increasing , the displacement is symmetrical 

with respect to x axis. The lateral displacement is as follow. 

𝒖,=/𝟐 = −𝒖,=−/𝟐 =
𝑻𝑨

𝑬𝒂𝒃𝒖𝒕
[(𝟏 + 𝛎) − 𝐥𝐧 (

𝒅

𝒓
)

𝟐

] Equation 5-110 

Therefore, the deformation for a single abutment is given by: 

∆𝑳𝒂𝒃𝒖𝒕 =
𝝈𝑨𝒏𝒕

(𝒌𝟏 + 𝟏)𝑬𝒂𝒃𝒖𝒕
[(𝟏 + 𝛎) − 𝐥𝐧 (

𝒅

𝒓
)

𝟐

] Equation 5-111 

And the deformation for two abutments is given by: 

∆𝑳𝒂𝒃𝒖𝒕 =
𝟐𝝈𝑨𝒏𝒕

(𝒌𝟏 + 𝟏)𝑬𝒂𝒃𝒖𝒕
[(𝟏 + 𝛎) − 𝐥𝐧 (

𝒅

𝒓
)

𝟐

] Equation 5-112 

It is reasonable to use the displacement at the lowest corner of the abutment as the displacement 

at this location has the most significant impact to the stability of voussoir beam, where 

 𝒓 = 𝒙𝑨̅̅ ̅ Equation 5-113 

It is reasonable to assume the distance (d) is equal to nt, the width of the stress distribution at the 

abutment. 

The Equation 5-112 is rewrite as  
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∆𝑳𝒂𝒃𝒖𝒕 =
𝟐𝝈𝑨𝒏𝒕

(𝒌𝟏 + 𝟏)𝑬𝒂𝒃𝒖𝒕

[(𝟏 + 𝛎) − 𝐥𝐧(𝒌𝟏 + 𝟐)𝟐] Equation 5-114 
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5.6 Derivation of Beam Deflection Equation 

Prior to any deflection of the voussoir beam, the centroid of the stress distribution (i.e. position 

of the initial thrust line) at the ends and center is located at points A and M respectively, as 

shown in Figure 5-8. As the beam begins to deflect it is assumed that: 

i each half of the beam remains elastic and rotates about an end with no crushing of the beam 

material; 

ii the compression arch is shortened by the deformation along the arch line and by the outward 

displacement of the abutments 

iii the compression arch becomes flatter (i.e. the arch height decreases), and 

iv the contact areas at the ends and center of the beam decrease causing the arch line to shift its 

position (i.e. the position of the new thrust line at the ends and center is located at points Ai and 

Mi respectively) 

 

Figure 5-8 Deflection of Half Voussoir Beam 
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The relationship between the induced lateral thrusts and beam deflection is the assumption that 

the shape of the arch, which operates longitudinally throughout the beam, is parabolic in shape. 

As shown in Section 5.3, the approximate length of the parabolic arch is given by: 

𝐋 = 𝐬 +
𝟖

𝟑𝐬
𝐳𝟐                                                                                                  Equation 5-115 

Let Li and zi be the arch length and the arch height at some deflected position of the voussoir 

beam respectively. Then the length of the arch line is given by: 

𝐋𝐢 = 𝐬 +
𝟖

𝟑𝐬
𝐳𝐢

𝟐                                                                                                       Equation 5-116 

Similarly, let Li+1 and zi+1 be the arch length and arch height at some incremental deflected 

position of the voussoir beam respectively. Then the length of the arch line, due to the 

incremental deflection, is given by: 

𝐋𝐢+𝟏 = 𝐬 +
𝟖

𝟑𝐬
𝐳𝐢+𝟏

𝟐                                                                                               Equation 5-117 

Now, the incremental shortening of the arch, ∆Li, results from the elastic compression of the roof 

beam as well as the elastic deformation of the abutments. 

∆𝐋𝐢 = 𝐋𝐢 − 𝐋𝐢+𝟏 = ∆𝑳𝒂𝒓𝒄𝒉 + 𝟐∆𝑳𝒂𝒃𝒖𝒕                                                                             Equation 5-118 

As stated in equation 4-30 and 6-37 

∆𝑳𝒂𝒓𝒄𝒉 = (
𝝈𝒂𝒓𝒄𝒉

𝑬𝒃𝒆𝒂𝒎
)𝑳                                                                                                           Equation 5-119 

𝟐∆𝑳𝒂𝒃𝒖𝒕 =
𝟐𝝈𝑨𝒏𝒕

(𝒌𝟏+𝟏)𝑬𝒂𝒃𝒖𝒕

[(𝟏 + 𝛎) − 𝐥𝐧(𝒌𝟏 + 𝟐)𝟐]                                                                                  Equation 5-120 

∆𝐋𝐢 = (
𝝈𝒂𝒓𝒄𝒉

𝑬𝒃𝒆𝒂𝒎
) 𝑳 +

𝟐𝝈𝑨𝒏𝒕

(𝒌𝟏+𝟏)𝑬𝒂𝒃𝒖𝒕

[(𝟏 + 𝛎) − 𝐥𝐧(𝒌𝟏 + 𝟐)𝟐]                                                                      Equation 5-121 

Thus, if the arch is shortened in compression by an incremental amount,  ∆Li, the new 

incrementally shortened arch height, zi+1, is determined from the following expression: 

𝐳𝐢+𝟏 = [
𝟑𝐬

𝟖
(

𝟖

𝟑𝐬
𝐳𝐢

𝟐 − ∆𝐋𝐢)]
𝟏/𝟐

                                                                                      Equation 5-122 
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However, it should be noted that if the expression (
8

3s
zi

2 − ∆Li) = 0 then zi+1 = 0 which 

implies that any further deflection of the voussoir beam will cause the moment arm to become 

negative thus making the resisting moment a moment assisting failure; consequently, failure will 

be an instantaneous buckling of the beam. 

Assuming that the expression, (
8

3s
zi

2 − ∆Li) > 0, then the deflection of the beam at its center is 

given by the following expression: 

𝛅𝐢+𝟏 = 𝐭 − (𝒙𝑨̅̅ ̅ + 𝒙𝑴̅̅ ̅̅ )𝐢+𝟏 − 𝐳𝐢+𝟏                                                                                  Equation 5-123 

Where 𝑥𝐴̅̅ ̅ and 𝑥𝑀̅̅ ̅̅  are the centroids of the stress distributions at the abutments and center 

respectively. Therefore, Equation 5-123 becomes 

𝛅𝐢+𝟏 = 𝐭 − (
𝒏𝒕

𝒌𝟏+𝟐
+

𝑵𝒕

𝒌𝟐+𝟐
)𝐢+𝟏 − [

𝟑𝐬

𝟖
(

𝟖

𝟑𝐬
𝐳𝐢

𝟐 − ∆𝐋𝐢)]
𝟏/𝟐

                                                     Equation 5-124 

Since N = λn, Equation 5-124 can be simplified to the following: 

𝛅𝐢+𝟏 = 𝐭 [
(𝒌𝟏+𝟐)(𝒌𝟐+𝟐)−𝐧𝐢+𝟏(𝒌𝟐+𝟐)−𝛌𝐧𝐢+𝟏(𝒌𝟏+𝟐)

(𝒌𝟏+𝟐)(𝒌𝟐+𝟐)
] − [

𝟑𝐬

𝟖
(

𝟖

𝟑𝐬
𝐳𝐢

𝟐 − ∆𝐋𝐢)]
𝟏/𝟐

                                       Equation 5-125 

Consequently, a complete explicit solution for the final deflection of the voussoir beam is not 

possible. An iterative procedure must therefore be used to evaluate the equilibrium states. 
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5.7 Estimation of Power Stress Distribution Parameters at the Abutment and 

Midspan 

The following Table 5-2 was prepared according to the numerical modeling results in Chapter 4. 

The centroid distance (𝑥𝐴 ) was calculated according to Equation 5-8. The moment arm (z) was 

calculated according to Equation 5-20. Midspan deflection (δ) was from the numerical modeling 

result as shown in Chapter 4. All the parameters have been treated as dimensionless. 

Table 5-2 Results of numerical modeling 

No. 
Span/Depth 

(s/t) 

Transverse 

Load (Q/tE) 

Deflection 

(δ/t) 

Moment 

Arm (z/t) 

Centroid distance at 

the abutment (
𝑥𝐴

t⁄ ) 

1 3 3.58E-06 n/a n/a n/a 

2 3 7.01E-06 n/a n/a n/a 

3 6 3.58E-06 2.60E-03 0.788 0.085 

4 6 7.01E-06 4.90E-03 0.791 0.0825 

5 8 4.78E-06 7.20E-03 0.805 0.075 

6 8 9.35E-06 1.40E-02 0.805 0.075 

7 10 5.97E-06 8.50E-03 0.764 0.0925 

8 10 1.17E-05 1.62E-02 0.789 0.0675 

9 12 7.17E-06 1.68E-02 0.83 0.06 

10 12 1.40E-05 3.56E-02 0.798 0.0925 

11 15 8.96E-06 3.90E-02 0.547 0.12 

12 15 1.75E-05 7.93E-02 0.539 0.1257 

13 18 8.96E-06 6.53E-02 0.594 0.0725 

14 18 1.75E-05 1.59E-01 0.584 0.0825 

15 20 8.96E-06 n/a n/a n/a 

n/a 16 20 1.75E-05 n/a n/a 

 

From Equation 5-19 and Equation 5-11, 

𝒙𝑴̅̅ ̅̅

𝒙𝑨̅̅ ̅
= 𝝀

𝒌𝟏 + 𝟐

𝒌𝟐 + 𝟐
 Equation 5-126 

From the beam configuration shown in Figure 5-4, 

𝒙𝑴̅̅ ̅̅

𝒙𝑨̅̅ ̅
=

𝒕 − (𝒛 + 𝒙𝑨̅̅ ̅)

𝒙𝑨̅̅ ̅
 Equation 5-127 

Equation 5-127 can be written in 
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𝒙𝑴̅̅ ̅̅

𝒙𝑨̅̅ ̅
=

𝟏 − (
𝒛
𝒕 +

𝒙𝑨̅̅ ̅
𝒕 )

𝒙𝑨̅̅ ̅
𝒕

 Equation 5-128 

From the Table 5-2, the mean value of Equation 5-128 is 2.2, i.e. 

𝒙𝑴̅̅ ̅̅

𝒙𝑨̅̅ ̅
= 𝟐. 𝟐 Equation 5-129 

Combining Equation 5-126 and Equation 5-129, 

𝝀 = 𝟐. 𝟐 (
𝒌𝟐 + 𝟐

𝒌𝟏 + 𝟐
) Equation 5-130 

As per both the physical and numerical investigation results in Chapter 3 and Chapter 4, the 

stress induced at the midspan is linear, and the stress induced at the abutment is nonlinear, can be 

represented by a quadratic function, i.e. 

 

𝒌𝟏 = 𝟐 Equation 5-131 

 

𝒌𝟐 = 𝟏 Equation 5-132 

So,  

 = 𝟏. 𝟕 Equation 5-133 

 

i.e.  

𝑵

𝒏
= 𝟏. 𝟕 Equation 5-134 

  

Or 

𝑵 = 𝟏. 𝟕𝒏 Equation 5-135 

As  
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𝐍 ≤ 𝟏 Equation 5-136 

 

𝐧 ≤ 𝟎. 𝟓𝟖 Equation 5-137 
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5.8 Voussoir Beam Analysis Procedure 

From Equation 5-15, the following equation can be obtained.  

𝝎 =
𝝈𝑨

𝝈𝑴
= 𝟐. 𝟔 Equation 5-138 

i.e. 

𝝈𝑨

𝝈𝑴
= 𝟐. 𝟔 Equation 5-139 

 

This is close to the numerical modeling result as in Chapter 5. So, the maximum stress in a 

voussoir beam (𝜎𝑚𝑎𝑥) is the maximum stress induced at abutment, 𝜎𝐴. i.e. 

𝝈𝒎𝒂𝒙 = 𝝈𝑨 Equation 5-140 

 

 From Equation 5-25, the maximum stress induced in a voussoir beam is: 

𝝈𝑨 =
𝟑𝜸𝒔𝟐

𝟖𝒛𝒏
 Equation 5-141 

i.e. 

𝝈𝒎𝒂𝒙 =
𝟑𝜸𝒔𝟐

𝟖𝒛𝒏
 Equation 5-142 

 

And 

 = 𝟎. 𝟖                                                                                               Equation 5-143 

According to Equation 5-24,  

𝒛 = 𝒕(𝟏 − 𝟎. 𝟖𝒏) Equation 5-144 

The Equation 5-67 can be rewritten as 
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𝝆
𝟏

= [𝟑𝒔𝟐(𝟑 − 𝟑. 𝟒𝒏) + 𝟐𝒕𝟐(𝟏 − 𝟎. 𝟖𝒏)(𝟑 − 𝟑. 𝟒𝒏)𝟐]𝟏/𝟐 Equation 5-145 

The Equation 5-71 can be rewritten as 

𝝆
𝟐

= {𝟑𝒔𝟐[𝟗 − 𝟖. 𝟐𝒏 − 𝟐(𝟔 − 𝟒. 𝟖𝒏)𝟏/𝟐(𝟑 − 𝟑. 𝟒𝒏)𝟏/𝟐] + 𝟐𝒕𝟐(𝟏 − 𝟎. 𝟖𝒏)(𝟑 − 𝟏. 𝟒𝒏)𝟐}𝟏/𝟐                     Equation 5-146 

The Equation 5-64 can be rewritten as 

𝝈𝒂𝒓𝒄𝒉 =
𝝈𝑨

𝟐
[

𝝆𝟏(𝟏𝟐𝟒.𝟖𝒏+𝟗𝟔)+𝝆𝟐(𝟏𝟐𝟒.𝟖𝒏+𝟐𝟏𝟎.𝟔)

𝟐𝟏𝟎.𝟔[(𝒔
𝟐⁄ )

𝟐
+𝒕𝟐(𝟏−𝟎.𝟖𝒏)𝟐][𝟕𝟐(𝟏−𝟎.𝟖𝒏)]

𝟏
𝟐⁄
]                                              Equation 5-147 

The Equation 5-114 can be rewritten as 

∆𝑳𝒂𝒃𝒖𝒕 =
𝟐𝝈𝑨𝒏𝒕

𝟑𝑬𝒂𝒃𝒖𝒕

[(𝟏 + 𝛎) − 𝟐. 𝟖] Equation 5-148 

The Equation 5-121 can be rewritten as 

∆𝐋 = (
𝝈𝒂𝒓𝒄𝒉

𝑬𝒃𝒆𝒂𝒎
) 𝑳 +

𝟐𝝈𝑨𝒏𝒕

𝟑𝑬𝒂𝒃𝒖𝒕

[(𝟏 + 𝛎) − 𝟐. 𝟖]                                                                       Equation 5-149 

In order to find the equilibrium position of the beam, the minimization of the 𝜎𝑚𝑎𝑥, the 

maximum induced stress of a voussoir beam is taken as the equilibrium solution. Base on the 

theoretical analysis in the previous sections, and reference to the voussoir beam analysis 

procedure proposed by Diederichs and Kaiser (Diederichs & Kaiser, 1999), the following 

voussoir beam analysis procedure is proposed. 

The iteration procedure is shown in Figure 5-9 Flow chart for determination of stability and 

deflection of a voussoir beam. The flow chart was separated into two parts as shown in Figure 

5-10 and Figure 5-11. 
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Figure 5-9 Flow chart for determination of stability and deflection of a voussoir beam 
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Figure 5-10 Flow chart for determination of stability and deflection of a voussoir beam - Part A 
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Figure 5-11 Flow chart for determination of stability and deflection of a voussoir beam - Part B 
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5.9 Summary 

Starting from a generalized form of stress distribution at both midspan and abutment, the 

equations for centroids and thrust, moment arm, arch length, beam shortening, abutment 

displacement were derived. It was found, and iteration procedure is needed to solve the voussoir 

beam structure. Based on the findings in physical and numerical investigations, and referenced to 

previous research, an iteration procedure was provided to determine the stability of voussoir 

beam and midspan deflection. 
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6  Application of Voussoir Beam Theory on Prediction of the 

Mechanical Behavior of Segmental Precast Concrete Liner Stress 

Riser 

6.1 Introduction 

The segmental precast concrete liners (SPCL) are widely used in soft ground tunneling by 

Tunnel Boring Machine (TBM). The segmental liners were continuously installed during 

tunneling. Most of time, this is the only liner to be installed, i.e. one pass lining. There is a long 

history of application of segmental liners in the construction of storm and sanitary tunnels by 

City of Edmonton. A storm tunnel under construction by City of Edmonton is shown in Figure 

6-1. 

 

Figure 6-1 A Strom Tunnel under Construction Using Segmental Concrete Liner in Edmonton 
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6.1.1 Structure of the Segmental Concrete Liner used in Edmonton 

The internal diameter of the segmental liners used by City of Edmonton ranges from 2340mm to 

4040mm. And the wall thickness varies from 110mm to 216mm. A pre-banded segment liner is 

shown in Figure 6-2. The segmental liner used in the case project has an internal diameter of 

2940mm. The structural drawing of the liner was shown in Figure 6-3 and Figure 6-4. To be 

concise, the drawing for Type A segment was included as the only difference to Type B 

segments is the ends. 

A minimal amount of reinforcing steel is placed in precast concrete segment liners to assist in 

resisting the forces and moments that develop during shipping, handling and erection. The 

reinforcing quantities placed normally are less than the minimums required by CSA for 

reinforced concrete. The liner segments are designed for the factored axial forces and moments 

between the longitudinal joints or stress risers using the provisions of CSA (CSA, 2014). 
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Figure 6-2 Pre-banded Segmental Liner 
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Figure 6-3 A full ring Segment Concrete Liner 

As shown in Figure 6-3, for the segment at the crown of tunnel, the longitudinal joints between 

segments locate at angular positions of 45° and 135°. The stress riser of the segment at the tunnel 

crown locates at angular position of 90°. The stress riser is shown as ‘F’ in Figure 6-4.
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Figure 6-4 Plan View of Segment Type ‘B’ 
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6.1.2 Mechanical Behavior of Stress Riser 

The tunnel liner should be strong in its capacity to resist normal forces and flexible in bending. 

For segmental concrete liner, the flexibility in circumferential bending is provided by knuckle 

joints between segments and enhanced by stress risers. During the interaction of soil and 

segment liner, there is elliptical deformation in the circular segment liners installed. The stress 

risers will have hair cracks after installation which will increase the liner flexibility. As a result, 

there is no bending moment in the liner after equilibrium state reached. 

When hair cracks happened at the stress riser in the tunnel, there is always a safety concern in the 

field. The existing segmental design method couldn’t provide the stress distribution at the stress 

riser. The risk of compressive failure at the stress riser cannot be evaluated. If there is 

compressive failure at the stress riser, tunnel reinforcement measures should be taken. Because 

of the uncertainty of the compressive stress distribution at stress riser at the crown of tunnel, 

reinforcement measures were taken when there are hair cracks if field worker required.  For the 

case project completed by City of Edmonton, tunnel reinforcement measures including circular 

steel ribs and steel straps were installed to “reinforce” the segment liner after hair crack was 

found in stress riser, as shown Figure 6-5. In the following, both the existing segmental design 

method and voussoir beam theory will be applied to analyze the segment liner under short term 

loading for the case project. The radial displacement at stress riser derived from existing solution 

and voussoir beam theory was used to compare the two solutions. 
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Figure 6-5 Hair Crack at Stress Riser and Reinforcements (Circular Steel Ribs and Straps) Installed 
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6.2 Determine Mechanical Behavior of Stress Riser 

6.2.1 Short Term Ground Loading 

In this analysis, only the mechanical behavior of stress riser under short term loading is 

considered. As stated in Section 6.1.1, there is no bending moment in the segmental liner during 

long term loading as the liner is relatively flexible. The loading condition will be different from 

short term loading. 

The case project shown in Figure 6-5 is a storm tunnel with an inside diameter of 2940mm and 

outside diameter of 3240mm. The geotechnical parameters and the tunnel parameters were 

presented in Table 6-1 and Table 6-2 respectively. The tunnel is located in clay till. 

Table 6-1 Geotechnical Parameters 

Depth 

Below 

Ground (m) 

Soil Type 

Bulk Unit Weight 

γ, kN/m3 

Effective 

Friction Angle 

(degrees) ø’ 

Coefficient of 

Earth Pressure at 

rest, ko 

Young’s 

Modulus 

Es, MPa 

Poisson’s 

Ratio, νs 

0-8 

Fill/Clay/ 

Clay Till 

20 20 0.65 50 0.45 

8-14 Sand 20 26 0.56 100 0.35 

14-17 Clay Till 20 22 0.62 70 0.40 

Below 17 Bedrock 21 25 0.58 200 0.40 

 

Table 6-2 Tunnel Parameters 

Outside 

Diameter of 

Tunnel, D, 

m 

Radius 

of the 

tunnel, 

R, m 

Thickness 

of Liner, 

t, m 

Depth of 

Ground at 

Tunnel 

Crown, m 

Depth of 

Ground at 

Tunnel Spring 

line, Ho, m 

Depth of 

Ground at 

Tunnel Invert, 

m 

Young’s 

Modulus of 

the Liner  El, 

MPa 

Poisson’s 

Ratio of 

the Liner, 

νl 

3.24 1.62 0.15 14.5 16.12 17.59 30,000 0.15 

 

As suggested in the geotechnical report, the vertical pressure, Pv, and horizontal pressure, Ph, can 

be determined from the equations below. 
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𝑷𝒗 = 𝟐. 𝟓𝜸𝑫 Equation 6-1 

𝑷𝒉 = 𝒌𝒐𝑷𝒗 Equation 6-2 

According to the parameters in Table 6-1 and Table 6-2, 

𝑷𝒗 = 𝟏𝟔𝟐𝒌𝑷𝒂 Equation 6-3 

𝑷𝒉 = 𝟏𝟎𝟎. 𝟒𝒌𝑷𝒂 Equation 6-4 

 

6.2.2 Analysis the mechanical behavior of stress riser using existing method 

For deep tunnels with depth to diameter ratios greater than 4 or 5, a method to determine 

moments, axial forces and displacement is presented by Ranken (Ranken et al., 1978). For the 

tunnel to be analyzed, the depth to diameter ratio is: 

𝑯𝟎

𝑫
= 𝟓 Equation 6-5 

So, the method is applicable. The solution assumes that the loads develop on the liner as the 

excavation proceeds and there is full slip between the surrounding soil and the liner. The solution 

is as follows: 

A flexibility ratio is defined to measure of the stiffness of the surrounding soil to the flexural 

stiffness of the tunnel liner. The flexibility ratio, F, is calculated from 

𝑭 = (
𝑬𝒔

𝑬𝒍
) (

𝑹

𝒕
)

𝟑

[
𝟐(𝟏 − 𝝑𝒍

𝟐)

𝟏 + 𝝑𝒔
] 

 

Equation 6-6 

From the parameters in Table 6-1 and Table 6-2,  

𝑭 = 𝟒. 𝟏𝟎 Equation 6-7 
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A compressibility ratio is also defined to measure of the extensional stiffness of the surrounding 

soil to the extensional stiffness of the tunnel liner. The compressibility ratio, C, is calculated 

from 

 𝑪 = (
𝑬𝒔

𝑬𝒍
) (

𝑹

𝒕
) [

𝟏 − 𝝑𝒍
𝟐

(𝟏 + 𝝑𝒔)(𝟏 − 𝟐𝝑𝒔)
] 

 

Equation 6-8 

From the parameter in Table 6-1 and Table 6-2,  

𝑪 = 𝟎. 𝟎𝟗 Equation 6-9 

To simplify the analysis, two parameters, Lf and Jf, were defined as follow: 

𝑳𝒇 =
(𝟏 − 𝟐𝝑𝒔)𝑪

𝟏 + (𝟏 − 𝟐𝝑𝒔)𝑪
 Equation 6-10 

𝑱𝒇 =
𝑭 + (𝟏 − 𝝑𝒔)

𝟐𝑭 + (𝟓 − 𝟔𝝑𝒔)
 Equation 6-11 

From the parameter in Table 6-1 and Table 6-2,  

𝑳𝒇 = 𝟎. 𝟎𝟐 Equation 6-12 

𝑱𝒇 = 𝟎. 𝟒𝟒 Equation 6-13 

The radial soil pressure on the tunnel liner, σr, is 

𝝈𝒓 =
𝑷𝒗

𝟐
[(𝟏 + 𝑲𝒐)(𝟏 − 𝑳𝒇) − 𝟑(𝟏 − 𝑲𝒐)(𝟏 − 𝟐𝑳𝒇) 𝒄𝒐𝒔 𝟐𝜽] Equation 6-14 

From the parameters in Table 6-1 and Table 6-2, 

𝝈𝒓 = 𝟏𝟐𝟖. 𝟔𝟎 − 𝟖𝟖. 𝟔𝟓 𝒄𝒐𝒔 𝟐𝜽 Equation 6-15 

The radial and tangential displacement of the tunnel liner, ur and vθ, respectively, are 

𝒖𝒓 =
𝑷𝒗𝑹

𝟐
(

𝟏 + 𝝑𝒔

𝑬𝒔
) [((𝟏 + 𝒌𝒐)𝑳𝒇 − (𝟏 − 𝒌𝒐)(𝟐𝑭)(𝟏 − 𝟐𝑱𝒇) 𝒄𝒐𝒔 𝟐𝜽)] Equation 6-16 
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𝝑𝜽 =
𝑷𝒗𝑹

𝟐
(

𝟏 + 𝝑𝒔

𝑬𝒔
) [((𝟏 − 𝒌𝒐)(𝑭)(𝟏 − 𝟐𝑱𝒇) 𝒔𝒊𝒏 𝟐𝜽)] Equation 6-17 

From the parameters in Table 6-1 and Table 6-2, 

𝒖𝒓 = 𝟎. 𝟎𝟎𝟎𝟎𝟗 − 𝟎. 𝟎𝟎𝟎𝟗𝟖 𝒄𝒐𝒔 𝟐𝜽 Equation 6-18 

𝝑𝜽 = 𝟎. 𝟎𝟎𝟎𝟒𝟗𝒔𝒊𝒏 𝟐𝜽 Equation 6-19 

The symbols and sign conventions for axial force 𝑃𝜃, shear force 𝑉𝜃 and moment 𝑀𝜃 in the 

tunnel liner are shown in Figure 6-6. 

 

Figure 6-6 Symbols and sign convention for existing analyze solution (Montgomery & Eisenstein, 1995) 

The equations for axial force𝑃𝜃, shear force 𝑉𝜃 and moment 𝑀𝜃 in the tunnel liner are: 

𝑷𝜽 =
𝜸𝑯𝒐𝑹

𝟐
[((𝟏 + 𝒌𝒐)(𝟏 − 𝑳𝒇) + (𝟏 − 𝒌𝒐)(𝟏 − 𝟐𝑱𝒇) 𝒄𝒐𝒔 𝟐𝜽)] Equation 6-20 

𝑽𝜽 =
𝜸𝑯𝒐𝑹

𝟐
[((𝟏 − 𝒌𝒐)(𝟏 − 𝟐𝑱𝒇) 𝒔𝒊𝒏 𝟐𝜽)] Equation 6-21 
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𝑴𝜽 =
𝜸𝑯𝒐𝑹𝟐

𝟐
[((𝟏 + 𝒌𝒐)

𝑳𝒇

𝟔𝑭
+ (𝟏 − 𝒌𝒐)(𝟏 − 𝟐𝑱𝒇) 𝒄𝒐𝒔 𝟐𝜽)] Equation 6-22 

From the parameters in Table 6-1 and Table 6-2, 

𝑷𝜽 = 𝟐𝟎𝟖. 𝟑𝟑 + 𝟓. 𝟗𝟖 𝒄𝒐𝒔 𝟐𝜽 Equation 6-23 

𝑽𝜽 = 𝟓. 𝟗𝟖 𝒔𝒊𝒏 𝟐𝜽 Equation 6-24 

𝑴𝜽 = 𝟎. 𝟐𝟖 + 𝟗. 𝟔𝟗 𝒄𝒐𝒔 𝟐𝜽 Equation 6-25 

The results from existing method are presented in Table 6-3 . The angular positions at 45°, 90° 

and 135° are marked as in red. The angular positions 45° and 135° are the locations for 

longitudinal joints. And the angular position 90° is the location of stress riser at the crown. The 

distribution of axial force in the liner and the radial displacement of the liner are presented in 

Figure 6-7 and Figure 6-8 respectively. 
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Table 6-3 Calculation Results from existing method 

Angular Position 

/degree 

Sigma-r  

/kPa 
u-r  /m 

Niu-theta  

/m 

P-theta  

/kN/m 

V-theta 

/kN/m 

M-theta 

/kN.m/m 

0 39.95 -0.0009 0 214.31 0 9.97 

15 51.826828 -0.0008 0.000245 213.51 2.99 8.671788 

30 84.274932 -0.0004 0.000424 211.32 5.1788 5.125007 

45 128.59988 9E-05 0.00049 208.33 5.98 0.280013 

60 172.92486 0.00058 0.000424 205.34 5.1788 4.564985 

75 205.37305 0.00094 0.000245 203.15 2.99 8.111775 

90 217.25 0.00107 1.3E-09 202.35 2E-05 -9.41 

105 205.37329 0.00094 -0.00024 203.15 -2.99 8.111801 

120 172.92527 0.00058 -0.00042 205.34 5.1788 -4.56503 

135 128.60035 9E-05 -0.00049 208.33 -5.98 0.279961 

150 84.27534 -0.0004 -0.00042 211.32 5.1788 5.124963 

165 51.827064 -0.0008 -0.00025 213.51 -2.99 8.671763 

180 39.95 -0.0009 -2.6E-09 214.31 -3E-05 9.97 

195 51.826593 -0.0008 0.000245 213.51 2.99 8.671814 

210 84.274525 -0.0004 0.000424 211.32 5.1788 5.125052 

225 128.59941 9E-05 0.00049 208.33 5.98 0.280064 

240 172.92446 0.00058 0.000424 205.34 5.1789 4.564941 

255 205.37282 0.00094 0.000245 203.15 2.99 -8.11175 

270 217.25 0.00107 3.9E-09 202.35 5E-05 -9.41 

285 205.37352 0.00094 -0.00024 203.15 -2.99 8.111827 

300 172.92568 0.00058 -0.00042 205.34 5.1788 4.565074 

315 128.60082 9E-05 -0.00049 208.33 -5.98 0.27991 

330 84.275747 -0.0004 -0.00042 211.32 5.1789 5.124918 

345 51.827299 -0.0008 -0.00025 213.51 2.9901 8.671737 

360 39.95 -0.0009 -5.2E-09 214.31 -6E-05 9.97 
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Figure 6-7 Axial Force in Segmental Liner 

 

Figure 6-8 Radial Displacement in Segmental Liner 
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However, the stress distribution at the stress riser cannot be derived from this closed form 

solution. Voussoir beam theory developed in previous chapters will be applied in following 

section. 

6.2.3 Application of Voussoir Beam Theory 

Voussoir beam theory developed through investigation in previous chapter was applied to 

analyze the mechanical behavior of stress riser at the tunnel crown. The segment at tunnel was 

analyzed as a voussoir beam, as shown in Figure 6-9. Several approximations/assumptions were 

made for the analysis.  

1) The span of the voussoir beam, s, was taken as the chord length of the segment. The 

chord of the segment is shown as “A” in Figure 6-4. 

2) The thickness of the voussoir beam, t, was taken as the distance from the chord to crown 

of tunnel. The thickness of voussoir model is shown as “Z” in Figure 6-4.   

3) As the present of horizontal pressure and from analyzed result on the radial displacement 

in previous section, there is very minimum displacement at the two longitudinal joints 

which is the abutment joint in voussoir beam model. The abutment was assumed to be 

rigid, i.e., the Young’s modulus of the abutment is infinite. 

4) As the tunnel liners have relatively small radii of curvature and are convex outward into 

the surrounding soil, and there are no voids behind the liner, there will be no bucking 

failure and slide failure at the joints for the voussoir model. 

5) The short term loading on the liner is uniformly distributed. If the loading is not 

uniformly distributed, as the segmental liner is a flexible structure. The 

rotation/deflection happened at the joint/stress riser with higher stress magnitude will 
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redistribute the stress to be close to be evenly distributed. So this assumption can be 

applied as well. 

The input parameters required for voussoir beam analysis as shown Figure 5-9 are presented in 

the Table 6-4. 

Table 6-4 Parameters for Voussoir beam analysis 

Span of 

Voussoir 

Beam     S 

/m 

Thickness of 

Voussoir Beam             

t /m 

Modulus of 

Voussoir 

Beam  

Ebeam/Mpa 

Modulus of 

the Abument 

Eabut/MPa 

Unit Weight of 

voussoir beam             

γ / kN/m3 

External 

loading             

q / kPa 

Compressive 

strength of 

voussoir 

beam σc /MPa 

       

2.22 0.399 30,000 Infinite 23.5 162 40 

  

According the analysis procedure shown in Figure 5-9, the analyze result was obtained using an 

Excel sheet. The results are shown in Table 6-5. 
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Figure 6-9 Voussoir beam analysis for the segment at crown of tunnel 

 

According to the analysis procedure in in Figure 5-8, the equilibrium state is highlighted in Table 

6-5, where n=0.58. The midspan displacement at the stress riser is 1.5mm which is larger than 

the result from analysis using existing close form solution which is 1.07mm. This is may be 

because the segmental liner was modeled without joint in close form solution, this will be 

smaller displacement. The maximum compressive stress at midspan is 8.6MPa. The factor of 

safety of compressive failure is 

𝑭. 𝑺.𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒗𝒆 𝒇𝒂𝒊𝒍𝒖𝒓𝒆 =
𝝈𝒄

𝝈𝒎𝒂𝒙
 

Equation 6-26 
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From the analyzed result, the Factor of Safety is, 

𝑭. 𝑺. = 𝟓. 𝟑 Equation 6-27 

If using the limit state design method, the allowable compressive stress is: 

𝜶∅𝒄𝝈𝒄 > 𝝈𝒎𝒂𝒙 

 
Equation 6-28 

Where  

                   α is stress release parameter, 0.85 was selected as per Montgomery and Eisenstein’s 

report. (Montgomery & Eisenstein, 1995); 

                 øc is the concrete performance factor, 0.6 was selected as per CSA Standard on Design 

of Concrete Structures (CSA, 2014). 

From the analyzed result, the allowable compressive stress is: 

𝟐𝟎. 𝟒 𝑴𝑷𝒂 > 𝟖. 𝟔 𝑴𝑷𝒂 

 
Equation 6-29 

According to the both criteria, the Factor of Safety and Limit Sate of Design, the stress riser as 

the crown of tunnel is free from compressive failure, even with the appearance of hair crack. 
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Table 6-5 Analysis results according to Voussoir Beam Theory 

n Z0/m L/m Δ L/m Zchk Z/m σmax/kPa ρ1 ρ2 σarch / kPa 
ΔL_ne

w / m 

σmidspan / 

kPa 

Midspan 

deflection 

δ / m 

0.01 0.396 2.408 0.000 0.188 0.396 698622.07 6.83 3.23 190521.16 0.0153 268700.79 0.0000 

0.02 0.393 2.405 0.015 0.170 0.376 367661.88 6.79 3.22 101356.87 0.0081 141408.42 0.0166 

0.03 0.389 2.402 0.008 0.174 0.381 242154.28 6.74 3.21 67478.08 0.0054 93136.26 0.0088 

0.04 0.386 2.399 0.005 0.174 0.380 181746.91 6.70 3.21 51187.83 0.0041 69902.66 0.0059 

0.05 0.383 2.396 0.004 0.172 0.379 146088.51 6.66 3.20 41582.32 0.0033 56187.89 0.0045 

0.06 0.380 2.393 0.003 0.170 0.376 122508.87 6.61 3.19 35238.55 0.0028 47118.80 0.0037 

0.07 0.377 2.390 0.003 0.168 0.374 105753.80 6.57 3.19 30737.58 0.0024 40674.54 0.0031 

0.08 0.373 2.388 0.002 0.165 0.371 93236.50 6.52 3.18 27380.99 0.0022 35860.19 0.0027 

0.09 0.370 2.385 0.002 0.163 0.368 83532.59 6.48 3.17 24784.24 0.0020 32127.92 0.0025 

0.10 0.367 2.382 0.002 0.160 0.365 75792.35 6.43 3.17 22717.96 0.0018 29150.91 0.0022 

0.11 0.364 2.379 0.002 0.157 0.362 69477.31 6.39 3.16 21036.80 0.0017 26722.04 0.0021 

0.12 0.361 2.376 0.002 0.155 0.359 64229.54 6.34 3.15 19644.16 0.0016 24703.67 0.0019 

0.13 0.358 2.374 0.002 0.152 0.356 59801.86 6.30 3.15 18473.33 0.0015 23000.71 0.0018 

0.14 0.354 2.371 0.001 0.149 0.353 56018.04 6.25 3.14 17476.76 0.0014 21545.40 0.0017 

0.15 0.351 2.368 0.001 0.147 0.349 52749.06 6.21 3.14 16619.64 0.0013 20288.10 0.0016 

0.16 0.348 2.365 0.001 0.144 0.346 49898.27 6.16 3.13 15875.89 0.0013 19191.64 0.0016 

0.17 0.345 2.363 0.001 0.142 0.343 47391.87 6.12 3.13 15225.62 0.0012 18227.64 0.0015 

0.18 0.342 2.360 0.001 0.139 0.340 45172.49 6.07 3.12 14653.35 0.0012 17374.03 0.0015 

0.19 0.338 2.358 0.001 0.136 0.337 43194.91 6.02 3.12 14146.90 0.0011 16613.43 0.0014 

0.20 0.335 2.355 0.001 0.134 0.334 41422.96 5.98 3.11 13696.52 0.0011 15931.91 0.0014 

0.21 0.332 2.352 0.001 0.131 0.331 39827.42 5.93 3.11 13294.35 0.0010 15318.24 0.0014 

0.22 0.329 2.350 0.001 0.129 0.327 38384.38 5.88 3.10 12933.95 0.0010 14763.22 0.0013 

0.23 0.326 2.347 0.001 0.126 0.324 37074.09 5.84 3.10 12610.02 0.0010 14259.27 0.0013 

0.24 0.322 2.345 0.001 0.124 0.321 35880.15 5.79 3.09 12318.14 0.0010 13800.06 0.0013 

0.25 0.319 2.342 0.001 0.121 0.318 34788.76 5.74 3.09 12054.62 0.0009 13380.29 0.0013 

0.26 0.316 2.340 0.001 0.119 0.315 33788.28 5.69 3.09 11816.34 0.0009 12995.49 0.0012 

0.27 0.313 2.338 0.001 0.117 0.312 32868.78 5.64 3.08 11600.64 0.0009 12641.84 0.0012 

0.28 0.310 2.335 0.001 0.114 0.308 32021.78 5.60 3.08 11405.27 0.0009 12316.07 0.0012 

0.29 0.306 2.333 0.001 0.112 0.305 31239.97 5.55 3.08 11228.27 0.0009 12015.37 0.0012 

0.30 0.303 2.330 0.001 0.110 0.302 30517.04 5.50 3.07 11067.97 0.0009 11737.32 0.0012 

0.31 0.300 2.328 0.001 0.107 0.299 29847.49 5.45 3.07 10922.93 0.0008 11479.80 0.0012 

0.32 0.297 2.326 0.001 0.105 0.296 29226.51 5.40 3.07 10791.86 0.0008 11240.97 0.0012 

0.33 0.294 2.324 0.001 0.103 0.292 28649.91 5.35 3.07 10673.68 0.0008 11019.19 0.0012 

0.34 0.290 2.321 0.001 0.101 0.289 28113.97 5.30 3.07 10567.41 0.0008 10813.07 0.0012 

0.35 0.287 2.319 0.001 0.098 0.286 27615.44 5.25 3.06 10472.22 0.0008 10621.32 0.0012 

0.36 0.284 2.317 0.001 0.096 0.283 27151.41 5.19 3.06 10387.36 0.0008 10442.85 0.0012 

0.37 0.281 2.315 0.001 0.094 0.280 26719.32 5.14 3.06 10312.18 0.0008 10276.66 0.0012 

0.38 0.278 2.313 0.001 0.092 0.277 26316.88 5.09 3.06 10246.11 0.0008 10121.88 0.0012 
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n Z0/m L/m Δ L/m Zchk Z/m σmax/kPa ρ1 ρ2 σarch / kPa 
ΔL_ne

w / m 

σmidspan / 

kPa 

Midspan 

deflection 

δ / m 

0.39 0.275 2.311 0.001 0.090 0.273 25942.03 5.04 3.06 10188.63 0.0008 9977.71 0.0012 

0.40 0.271 2.308 0.001 0.088 0.270 25592.97 4.98 3.06 10139.31 0.0008 9843.45 0.0012 

0.41 0.268 2.306 0.001 0.086 0.267 25268.04 4.93 3.06 10097.75 0.0008 9718.48 0.0012 

0.42 0.265 2.304 0.001 0.084 0.264 24965.78 4.87 3.06 10063.62 0.0008 9602.22 0.0012 

0.43 0.262 2.302 0.001 0.082 0.261 24684.88 4.82 3.06 10036.60 0.0008 9494.18 0.0012 

0.44 0.259 2.300 0.001 0.080 0.257 24424.14 4.76 3.06 10016.46 0.0008 9393.90 0.0012 

0.45 0.255 2.298 0.001 0.078 0.254 24182.50 4.71 3.07 10002.96 0.0008 9300.96 0.0013 

0.46 0.252 2.296 0.001 0.076 0.251 23959.00 4.65 3.07 9995.91 0.0008 9215.00 0.0013 

0.47 0.249 2.294 0.001 0.074 0.248 23752.78 4.60 3.07 9995.16 0.0008 9135.68 0.0013 

0.48 0.246 2.293 0.001 0.072 0.244 23563.06 4.54 3.07 10000.57 0.0008 9062.72 0.0013 

0.49 0.243 2.291 0.001 0.070 0.241 23389.16 4.48 3.08 10012.05 0.0008 8995.83 0.0013 

0.50 0.239 2.289 0.001 0.068 0.238 23230.45 4.42 3.08 10029.51 0.0008 8934.79 0.0013 

0.51 0.236 2.287 0.001 0.066 0.235 23086.37 4.36 3.08 10052.90 0.0008 8879.37 0.0014 

0.52 0.233 2.285 0.001 0.064 0.232 22956.44 4.30 3.09 10082.19 0.0008 8829.40 0.0014 

0.53 0.230 2.283 0.001 0.063 0.228 22840.21 4.24 3.09 10117.37 0.0008 8784.70 0.0014 

0.54 0.227 2.282 0.001 0.061 0.225 22737.32 4.18 3.10 10158.47 0.0008 8745.12 0.0014 

0.55 0.223 2.280 0.001 0.059 0.222 22647.43 4.12 3.11 10205.51 0.0008 8710.55 0.0014 

0.56 0.220 2.278 0.001 0.057 0.219 22570.27 4.05 3.11 10258.56 0.0008 8680.87 0.0015 

0.57 0.217 2.277 0.001 0.056 0.216 22505.58 3.99 3.12 10317.70 0.0008 8655.99 0.0015 

0.58 0.214 2.275 0.001 0.054 0.212 22453.19 3.92 3.13 10383.05 0.0008 8635.84 0.0015 
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6.3 Conclusion 

As the stress distribution at the stress riser cannot be derived from the existing analytical method 

(closed-form solution), there is always the uncertainty of compressive failure at stress riser 

during the application of segment concrete liner. This safety concern will be more outstanding 

when visible hair cracks happened at the stress risers. 

One of the storm tunnels with internal diameter of 2940mm and 14.5 m ground cover was 

analyzed using both the existing method and voussoir method. The radial displacements at the 

stress riser derived from both methods are very close. The compressive stress obtained from 

voussoir beam method demonstrated the stress riser is safe on compressive failure. 

This investigation has contributed to the final rehabilitation plan for this section of tunnel shown 

in Figure 6-5. All the steel ribs and straps had been removed from the tunnel as the tunnel is 

structurally safe. The “reinforcement” is proved to be not required. The Figure 6-10 shows the 

tunnel after removed the “reinforcement”. 
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Figure 6-10 Tunnel after “Reinforcement” Removed
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7 Conclusion and Future Research 

7.1 Research Summary 

Voussoir beam theory, also named as arching action, has been widely accepted and applied in 

design and construction of both surface and underground structure. However, there are 

discrepancies between the voussoir beam models, for example, the shape and depth of the 

induced stress at abutment and midspan, the beam shortening equation, and etc. 

In this investigation, the behavior of voussoir beam under transverse loading was investigated 

through both physical and numerical modeling method. Then, an analytical model was built 

based on a general form of stress distribution at the abutment and midspan with different depths 

of stress distributions. Based on the results from physical and numerical investigations, an 

iteration procedure was proposed to determine the stability and deflection of voussoir beam. The 

voussoir beam model developed has been applied to analyze the mechanical behavior of stress 

riser, one type of joints of the segmental precast concrete liner used by City of Edmonton. The 

stress distribution at stress riser was first derived for the liner under short-term loading. 

7.1.1 Current Knowledge of Voussoir Beam Theory 

 The research on voussoir beam theory was reviewed based on the three investigation methods, 

analytical, experimental and numerical investigation. The discrepancies between the results 

obtained by different researchers were discussed. 

7.1.2 Selection and Characterization the physical modeling material 

Concrete and plaster were selected to model the natural hard rock or artificial hard material 

based on its brittleness, heterogeneity, local availability and capacity requirements on laboratory 
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facilities. The uniaxial compression test, splitting tensile strength test and sliding friction test 

were performed to characterize the material. The results obtained were used both in physical 

investigation and numerical investigations followed. 

7.1.3 Physical Investigation 

Voussoir beam models with abutments of concrete and plaster were tested under transverse 

loading. Vic-3D Correlation System, one photogrammetric analysis method, was applied to 

measure and analyze the displacement and deformation on the voussoir beam surface during 

transverse loading. It was found that the stress distributions at the midspan and abutment are 

different both in shape and depth. And the stress distribution is changing as the loading changes 

as well. These findings are different from the assumptions made in previous analysis. The 

findings are summarized as following: 

1) The stress distribution at the midspan is best fitted by a linear function, and the extent of 

the distribution is much smaller than it is at the abutment. The depth of the distribution is 

changing with the loading increase. 

2) The stress distribution at the abutment is best fitted by a polynomial function, and the 

extent of the distribution is more than one half of the beam’s thickness. The distribution 

decreases rapidly with an increasing load. 

3) The maximum stress at the abutment is larger than it is at the midspan. The first stress is 

nearly three times that of the last one. 

4) The shear sliding failure at the abutments is likely to happen with the voussoir beams of 

high strength and low span/thickness ratio. For stable voussoir beams, sliding also 

happened at the beginning of the test, until it ceased at a certain stage. The load-bearing 
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ability of the beam kept increasing at this time. This indicates the onset of stable arching 

after initial shear. 

5) Except for the area near the top of the abutment, the whole beam is under axial 

compression. This means that the thickness of the arch developed is equal to the beam’s 

thickness. 

7.1.4 Numerical Investigation 

Numerical modeling was used to further the investigation. The Finite Element Code, Phase2 8.0, 

was selected to numerically model the behavior of voussoir beams under transverse loading due 

to its capacity for modeling joints, providing multiple material models for rock, and providing 

flexibility for the staging of loading.  

The cohesion-softening friction hardening model was used in the material model. The maximum 

shear strain was the indication of failure for voussoir beams. The Voronor tessellation was 

applied to simulate the heterogeneity in voussoir beams.  Then the numerical model was 

calibrated by the uniaxial compression test and direct splitting test. From the calibration test, the 

numerical model can capture the key characteristics of concrete samples through the uniaxial 

compression test and direct splitting test. The same numerical model will be applied to model 

voussoir beams. 

The stress distribution and deflection of voussoir beam were compared between the results 

obtained by physical investigation and numerical investigation. Both of them are very close. The 

findings from the numerical modeling are as follows: 

1) The stress induced at the abutment is nonlinear, and, at the midspan, it is linear; 
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2) The stress induced at the abutment is approximately three times the stress at the midspan 

under the same transverse load; 

3) The ratio of the depth of stress induced at the abutment to beam thickness (n) is close to 

0.3 before crushing. After the crushing occurred, the ratio increased to close to 0.5. The 

ratio decreased to 0.3 until it fully crushed the beam; 

4) The ratio of the depth of stress induced at the midspan to beam thickness (n) is close to 

0.4 before crushing the beam. After the crushing occurred, the ratio increased to close to 

1 until it fully crushed the beam. 

7.1.5 Theoretical Modeling 

The analysis was based on a general form of stress distribution at the abutment and midspan with 

different depths of stress distributions. Under elastic buckling (i.e. no crushing), with the beam 

being free of any lateral stress, the incompatibilities were resolved by carrying out a more 

generalized non-linear analytical analysis. With the inputs from physical and numerical 

investigation results, an iteration procedure was provided based on Diederichs’s iteration 

procedure. 

7.1.6 Application of Voussoir Beam Theory on Segment Liner 

The stress distribution at the stress riser of segmental precast concrete liner cannot be derived 

from existing closed form solution. There is always the uncertainty about the compressive failure 

of the segment liner when hair crack happened at stress risers. To model one piece of segment 

liner as a voussoir beam, the two longitudinal joint as rigid abutment joints and stress riser as 

midspan joints, the stress distribution and deflection at stress riser were obtained. It shows the 

stress riser is free from compressive failure for the target project. This is verified in the field by 
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after the safely removing of temporary “reinforcing” measures. The deflection at stress riser is 

close to the results obtained from close form solution. 
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7.2 Major Contributions 

1) The stress distribution along midspan and abutment of voussoir beam was firstly 

obtained from physical tests with the application of image correlation technique. 

2) With calibration and validation to physical testing, voussoir beam behaviour has been 

investigated systematically using finite element code Phase2. 

3) An analytical model was derived starting from a general form of stress distribution at 

midspan and abutment for voussoir beam. Based on the findings from physical and 

numerical investigations, an iteration procedure was developed to determine the 

stability of voussoir beams and deflection at the midspan. 

4) The voussoir beam theory was applied to determine the mechanical behavior of 

segmental concrete liner. As far as the author’s knowledge, this is the only analytical 

method that is capable to analyze the interaction between segments of segmental liner 

to resist ground loading. 
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7.3 Recommendations for Future Research 

5) To evaluate the stability of the voussoir beam under crushing conditions, the same 

general procedure in analytical modeling can be used. The crushing conditions can be 

categorized as crushing of the voussoir beam at the ends only, the center only and at 

both the ends and center. 

6) To determine whether or not the stress intensity factors are in such a critical 

combination as to induce additional crack growth and propagation, the linear elastic 

fracture mechanics (L.E.F.M.) can be applied. 

7) To systematically investigate the impact of constraining force on the behavior 

voussoir beams. 

8) To apply voussoir beam theory on the failure of bedded footwall slopes. 

 


