
A System-call based Model of Software Energy
Consumption without Hardware Instrumentation

Shaiful Alam Chowdhury, Luke N Kumar, Md. Toukir Imam
Mohomed Shazan Mohomed Jabbar, Varun Sapra, Karan Aggarwal, Abram Hindle, Russell Greiner

Department of Computing Science
University of Alberta, Edmonton, Canada

Email: {shaiful, lkumar, mdtoukir, mohomedj, vsapra, kaggarwa, abram.hindle, rgreiner}@ualberta.ca

Abstract—The first challenge to develop an energy efficient
application is to measure the application’s energy consumption,
which requires sophisticated hardware infrastructure and sig-
nificant amounts of developers’ time. Models and tools that
estimate software energy consumption can save developers time,
as application profiling is much easier and more widely available
than hardware instrumentation for measuring software energy
consumption. Our work focuses on modelling software energy
consumption by using system calls and machine learning tech-
niques. This system call based model is validated against actual
energy measurements from five different Android applications.
These results demonstrate that system call counts can successfully
model software energy consumption if the idle energy consump-
tion of an application is estimated or known. In the absence of
any knowledge of an application’s idle energy consumption, our
system call based approach is still useful to compare the energy
consumption among different versions of the same application.

I. INTRODUCTION
Battery-driven mobile devices such as smartphones and

tablets have become an indispensable part of our modern lives.
As of now, two-thirds of the Americans are reported to carry a
smartphone, and a significant portion of these users are depen-
dent on these devices to access the Internet1. Globally, at least
1.4 billion smartphones were in use by 2014 [2], coinciding
with a 70% increase in mobile data traffic observed within
the same year [4]. With recent technological advancements,
these mobile devices are equipped with different sensors and
peripherals that inspire the development of more sophisticated
mobile applications. Software developers continuously update,
maintain, and improve upon their existing applications to
satiate the user requests. Such updates, however, may lead
to increased software energy consumption that reduces the
availability of these battery constrained mobile devices, thus
harming the overall user experience.

In a recent survey, longer battery life has been reported as
the most desired smartphone feature [11]. Unfortunately, the
improvement in battery technology is insignificant compared to
the advancement in computing capability, implicitly advocating
the necessity of energy efficient software development. Pinto
et al. [14] observed that energy measurement related questions
are the most perplexing; these questions had fewer acceptable
answers on StackOverflow2.

The fundamental aim of our research is to save developers
from the complication of measuring actual energy consump-

1http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/ last
accessed: 22-Jun-2015

2http://stackoverflow.com/ last accessed: 22-Jun-2015

tion. In this paper, we propose multiple system call based
energy models for Android mobile devices with very accept-
able accuracy. Capturing system call traces of an application
is much easier than profiling energy consumption directly;
profiling a run of an application with strace provides the
developer with a count of system calls invocations. Developers
can directly use these system call counts with our model to
estimate energy consumption for their applications.

Our contributions include: a proposal and validation of
an accurate model that can estimate energy consumption of
unseen applications based on their system call counts; and a
demonstration that these models perform well at predicting
relative change in energy consumption performance between
multiple versions of the same application. Predicting energy
consumption of a completely new application is very challeng-
ing for two reasons: 1) System calls can not capture the idle or
mostly CPU bound energy consumption of an application and;
2) The set of system calls between two different applications
can be significantly different. In order to deal with the first
issue, our proposed models are evaluated for estimated idle
energy. For the second issue, we demonstrate a system call
grouping approach to generalize existing measurements. Our
system call grouping approach is accurate at modelling energy
consumption.

II. BACKGROUND
In this section, we define some of the common terms that

are frequently used in this paper.
a) Power and Energy: Power is the rate of work or the

transmission rate of energy. Energy is defined as the capacity
of doing work or the total power integrated over time [1]. The
unit of power measurement is the watt (W) whereas the unit
of energy measurement is joule (J) (1J = 1W · 1s).

b) System Calls: A system call is a fundamental in-
terface between an application and the operating system’s
kernel [1], [13], that provides the application with access
to hardware and process related services. Some of the com-
mon operations accessed via system calls are process con-
trol—create and terminate a process; file management—create
and read a file; and device management—request and access
a device3. Consequently, the number of different invoked
system calls can be used to estimate resource utilization of
an application.

c) Tail Energy and Application’s Idle Energy: Tail
energy leak is the phenomenon when a device component

3http://man7.org/linux/man-pages/man2/syscalls.2.html last accessed: 05-
May-2015

978-1-5090-0172-9/15/$31.00 c© 2015 IEEE

stays in high power usage state for a period of time even after
finishing its operation [1], [12], [13]. Such an energy leak is
one of the most undesirable features of mobile applications to
the energy-aware application developers. In contrast, we define
an application’s idle energy as the energy consumed by that
application when the application is running without any user
interaction. System calls typically do not capture such idle
energy profiles, which led us to design our generic energy
models in a way that works without application’s idle energy
(as described in Section V-C1). For simplicity, our Android
device’s idle energy consumption, approximately 0.7 joules
consumed per second, is included within each application’s
idle energy consumption estimation.

III. RELATED WORK
Prior studies related to modelling energy consumption

can be divided into three broad categories: utilization based
modelling, instruction based modelling, and modelling by
using system call traces.

Utilization Based Modelling: Utilization based energy
models [3], [19], [5] take into consideration the utilization
statistics of individual components and settings of a system
such as CPU, screen brightness, and Wi-Fi. Regression analy-
sis is conducted to model an application’s energy consumption
by using the utilization statistics and the corresponding energy
consumption. Utilization based models, however, suffer from
several issues [13]. For example, tail energy can not be
modelled by this approach of energy modelling.

Instruction Based Modelling: Seo et al. [16] estimated
energy consumption of distributed software systems imple-
mented in Java. Being a distributed system, their proposed
framework integrates component level energy estimation with
component’s communication cost as well. In order to esti-
mate software energy consumption using the cost of program
instructions, Shuai et al. proposed eLens [6]—a tool that
can estimate energy profiles at instruction level, method level,
and thus can estimate the energy consumption of the whole
software system. Instruction based energy models, however,
are platform dependent and complex to develop.

System Call Based Modelling: The drawbacks of the
widely explored utilization and instruction based approaches
motivated new energy modelling approaches, such as energy
model based on system call invocations. A system call based
approach is able to overcome the shortcomings of the uti-
lization based approaches for several reasons [13]. System
calls are only gateways that provide access to different I/O
components—thus capturing all the system calls invoked by
an application will indicate the majority of I/O components
accessed by an application. Moreover, system call based ap-
proaches do not suffer from tail energy phenomenon as such
approaches do not use resource utilization statistics directly.

Pathak et al. [13] modeled energy consumption of different
Android and Windows mobile phones using system call traces,
and the logs of context switch events were captured to estimate
CPU power consumption. Their proposed model is based on fi-
nite state machines (FSM), where each state in FSM represents
a power state of a specific component or a set of components.
Although such a model offers high accuracy, producing a FSM
for each hardware component requires expertise, time, and
measurement equipment.

Aggarwal et al. [1] followed a much simpler approach to
understand energy consumption of mobile applications. Instead
of using complicated FSMs, the authors used system call
counts as the model input. The proposed model can compare
two versions of an application to suggest if the difference in
energy consumption is statistically significant. Their model,
however, can not deal with unseen system calls and might
fail for new applications. Moreover, the actual amount of
application energy consumption can not be reported.

In our work, we are more interested to exploit different
machine learning approaches towards predicting an applica-
tion’s actual energy consumption so that a developer does not
need to worry about developing and maintaining complicated
hardware based measurement systems like the GreenMiner [9].

IV. METHODOLOGY
This section describes our hardware based energy profiler

(GreenMiner [9]), the process of collecting energy profiles
of different applications, the algorithms used for modelling
energy consumption, and the method of evaluating the perfor-
mance of our energy consumption models.

A. GreenMiner
In order to capture the energy profiles of the applications,

we used GreenMiner [9] as the test bed. GreenMiner consists
of five basic components: a power supply for the phones
(YiHua YH-305D), 4 Raspberry Pi model B computers for test
monitoring, 4 Arduino Unos and 4 Adafruit INA219 breakout
boards for capturing energy consumption, and 4 Galaxy Nexus
phones as the systems under test. The GreenMiner is fully
described in the prior literature [9], [15].

B. Data Collection
Data was collected using four sequential steps.
Step 1: We chose five open source applications (Firefox,

Calculator, Bomber, Blockinger and FeedEx) for the Android
platform to conduct our experiments; we selected these five
applications as they are from different domains and their
version control repositories are readily available. Multiple
versions of these applications were built from their version
control repositories. Table I describes each of the applications.

Step 2: A separate test case for each application was
designed to emulate the realistic usage of the application by
an average user. For example, to simulate an average user
scenario of reading a web page in the Firefox web browser,
the test opened and slowly scrolled through the Wikipedia web
page on American Idol for 4 minutes. For Calculator, another
test performed several simple calculations such as metric
conversions, and solves a quadratic formula. For games, such
as Bomber and Blockinger, simple game playing scenarios
were designed. Likewise, FeedEx’s test case was to emulate
reading RSS feeds.

Step 3: GreenMiner was used to run the applications and
test scripts to collect the energy consumption. In order to
collect system call profiles, the strace -c option was used.
The strace profiler was run separately from the actual energy
measurement test in order to avoid the overhead that might
contaminate the actual measurement.

Step 4: As variation was observed in both energy con-
sumption and system calls over different runs, multiple runs
(10) were measured to calculate averages for both system call
counts and energy consumption measurements [1], [8].

Applications Type No. of versions No. of system calls Time period of commits of versions
Firefox Browser 156 52 Jul, 2011 - Nov, 2011

Calculator Android Calculator 101 25 Jan, 2013 - Feb, 2013
Bomber Android game 79 47 May, 2012 - Nov, 2012

Blockinger Android game 74 56 Mar, 2013 - Aug, 2013
FeedEx Android news reader 21 70 May, 2013 - Apr, 2014

TABLE I. DESCRIPTION OF THE APPLICATIONS

C. Algorithms and Implementations
In order to model applications’ energy consumption, we

employed two of the most commonly used machine learning
approaches: linear regression and support vector regression
(SV). Linear regression has a tendency to overfit training
data, which we addressed by using regularization with 10-
fold cross validation. We used the linear regression algorithm
implemented within MATLAB, considering system calls as our
feature vector and energy consumption as the observed values.

In ε-SV regression [18], the main goal is to find a function
f(x) that does not deviate more than ε from the true values.
In this work, a kernelized SV regression model [17] is used
using the SVM light [10] implementation with a linear kernel.
Success using linear kernel—instead of more complicated
RBF, polynomial, and sigmoid kernels—is beneficial, as linear
features tend to be more interpretable [7].

D. Evaluation
In order to show the accuracy of our proposed models, we

compare the performance of our models, in terms of mean
squared error (MSE), with a theoretically controlled baseline
model. Predictions in the baseline model are the actual energy
measurements summed with normally distributed errors. The
mean of the distribution is 0, and the standard deviation is 10%
of the average of the actual measurements. Taking average for
the standard deviation is valid for all of our applications (ex-
cept FeedEx), as the variation in energy consumption among
different versions is very low; for FeedEx, we used 10 joules
as the standard deviation. For the baseline model, the MSE
of the actual values and the predicted values are taken for
1000 different runs4, and then the average MSE is reported.
This simple way of evaluating our models’ accuracy alleviates
the difficulty of comparing with other earlier methodologies
described in Section III. The fixed 10% error for standard
deviation in our baseline model is inspired by the performance
of the previous models. For example, the error of eLens in
predicting software energy consumption was with in 10% of
the actual measurements [6]. This gives us implicit knowledge
on the performance of our proposed models compared to the
earlier models.

V. EXPERIMENTS
We have three different experiments with three different

objectives, each intended to address a different prediction prob-
lem relevant to software developers. These three experiments
include: 1) train on a single application and test on the same
application; 2) train on a set of applications and test on the
same set of applications; and 3) train on multiple applications
and predict on an unseen application.

A. Train on a Single Application and Test on the Same
Application

In this experiment, the software energy consumption pre-
diction model is trained on a single application (80% training
data) and tested on the same application (20% test data). This
type of model is proposed for software developers who are
working with a single application, but continuously developing
new versions. For example, Firefox is not immediately de-
ployed to the end-users. The developers build nightly versions
each day known as Mozilla nightly. A more stable nightly
version is known as Aurora. The Beta version comes after
successful testing of Aurora. And a completely stable Beta is
released as Firefox5. If the energy consumption profiles can be
captured for the existing versions of Firefox using test bed like
GreenMiner, then an energy consumption prediction model can
be developed. As a result, new version’s energy profile may
be estimated rather than expensively measured.

Table II shows the performance comparison between sys-
tem call based models, linear and SV regression, and the
baseline model. Both of our models outperform the baseline
with a clear margin in all of the cases. Not surprisingly,
the more robust SV regression outperforms the simple linear
regression model; FeedEx has a very low number of examples
(only 6 versions for testing and 15 for training), which could be
one of the reasons for its worse performance of SV regression
compared to the linear regression. For Firefox, although the
MSE for linear regression is much better than the baseline, it is
still much higher compared to the MSE for other applications.
Figure 1(a) depicts the prediction accuracy of SV regression
for Firefox. This shows the accuracy of our proposed models;
both the models were capable of capturing the fluctuations
between versions. For Firefox, however, there were three
versions in the test data that have different energy profiles than
other versions. Although our linear regression model could
capture the shape for those versions, the scale was not very
accurate6, thus contributing to an MSE that is larger than for
other applications. SV regression’s performance shows that it
handled such variation better.

B. Train on a Set of Applications and Test on the Same Set of
Applications

In this experiment, we address organizations and software
developers that develop multiple applications. Instead of mod-
elling each application’s energy profile separately, such devel-
opers seek a generalized energy consumption model for all
software applications. In order to build such a model, we used
both the linear and SV regression with all the 5 applications
in training (using combined 80% random measurements from

4different errors are produced in different runs from a normally distributed
error function, so multiple runs are required to have a stable average MSE

5http://mozilla.github.io/process-releases/draft/development overview/ last
accessed: 20-May-2015

6Figure is not included because of the lack of space

Applications Linear regression (MSE) SV regression (MSE) Baseline (MSE)
Firefox 234.15 32.17 884.02

Calculator 0.62 0.47 80.39
Bomber 0.98 0.73 255.68

Blockinger 0.22 0.10 190.07
FeedEx 1.77 31.39 33.91

TABLE II. PERFORMANCE COMPARISON (MSE) FOR TRAIN ON A SINGLE APPLICATION AND TEST ON THE SAME APPLICATION

0 5 10 15 20 25 30
Versions

140

160

180

200

220

240

260

En
er

gy
 (J

)

Firefox Vs Firefox

Prediction
Observed

(a) Firefox with SV regression

0 10 20 30 40 50 60 70 80 90
Versions

80

100

120

140

160

180

200

220

240

260

En
er

gy
 (J

)

ALL APP Vs ALL APP
Prediction
Observed

(b) Multiple apps with Linear regression

Fig. 1. Energy consumption estimates based on project history (80/20): actual versus predicted (for both single application and multiple applications)

each application), and then evaluate the prediction on the un-
used measurements (using rest of the 20% measurements from
each application). Each application has its own system call
profile. Some applications do call system calls unique to their
domain, while some system calls are called by all applications.
One method to address the variation in system call profiles
between applications is to either consider the union or the
intersection of the system calls invoked between applications.
For our mixed model (training on Firefox, Calculator, Bomber,
Blockinger, and FeedEx), we took the union of all system calls
from all the five applications. After conducting 10-fold cross
validation, we tested our models for the test data.

As in this experiment, the training data consists of all the
five applications, taking the average of the training values as
the standard deviation for the baseline model is not recom-
mended as different applications have different scales of energy
profiles. For simplicity, we chose standard deviation as 10
(joules) and thus get MSE of 485.72 for the baseline model.
For our models, the MSE for the linear regression and SV
regression models are 96.50 and 61.16 respectively, showing
the much superior performance of system call count based
models. Figure 1(b) shows the effectiveness of our proposed
models (using linear regression as the example) more clearly
by depicting the actual and predicted data for the mixed model.

When compared against the application specific models of
Section V-A, the MSEs of these multiple application models
are higher but still lower than the baseline of each set of models
(except FeedEx): average single application linear regression
MSE was 47.54 versus 96.50 for multiple applications; average
single application SV regression MSE was 12.97 versus 61.16
for multiple applications. Regardless, the multiple application

models all had MSE lower than the average baseline model in
almost all cases, and Figure 1(b) demonstrates that the model
performance is visually very acceptable.

C. Training on Multiple Applications and Predicting on an
Unseen Application

In this experiment, the energy consumption prediction
models are trained on multiple applications and tested on
an unseen application. Realistically, a model capable of pre-
dicting unseen application’s energy consumption would be
very useful, as any organization can use this model for any
of their applications. Predicting energy consumption for an
unseen application, however, is very challenging, as the new
applications can have a set of system calls that were never
encountered in the training phase. Furthermore, system calls
cannot capture the idle energy consumption of an application,
making it even more difficult to predict a new application’s
energy consumption profile. We describe addressing these
issues below:

1) Addressing Application Idle Energy: System calls do
not capture idle or CPU bound energy consumption of an
application. This led us to control and deduct applications’
idle energy from our dataset. Using the GreenMiner, we
observed the power use time series for some of the versions
of the five applications. In the time series, we observed flat
periods at regular intervals for all the applications; this is the
time when the user (i.e., our automated test script) was not
interacting with the system—thus, these intervals represented
the applications’ idle behaviour.

Although with models like this, the idle energy of an
application must be estimated in order to predict its total

Groups System calls Semantics
Memory mapping mremap, munmap, brk, madvise, mprotect, mmap2 System calls that are related to address mapping or similar functions.

Stat lstat64, fstat64, stat64, statfs64, access System calls that return file information.
Socket setsockopt, socket, bind, connect,getsockname,socketpair etc. System calls related to socket operations.

TABLE III. EXAMPLES OF GROUPING SYSTEM CALLS

Applications Linear Regression (MSE) SV Regression (MSE) Baseline (MSE)
0.7 0.8 0.9 1 X 0.7 0.8 0.9 1 X

Firefox 985.85 109.36 253.45 1418.09 253.45 1478.39 272.84 87.85 923.42 87.85 628.43
Calculator 5.92 79.56 373.10 886.54 5.92 6.65 85.62 384.49 903.27 6.65 89.57

Bomber 4313.15 2968.06 1873.81 1030.41 5.26 4480.84 3107.35 1984.71 1113.05 2.69 255.53
Blockinger 541.73 127.17 47.00 301.20 47.00 627.61 166.56 39.89 247.59 39.89 324.87

FeedEx 1563.18 1184.63 869.26 617.09 662.47 1084.21 791.98 562.94 397.10 425.21 98.97

TABLE IV. PERFORMANCE COMPARISON (MSE) FOR UNSEEN APPLICATIONS

energy consumption, these types of models are still very useful
to compare the energy consumption between two versions of an
application (regardless of the actual idle energy consumption).

The idle power usage deducted from our dataset are 0.7,
0.9, 1.30, 0.9 and 0.98 watt for Calculator, Firefox, Bomber,
Blockinger and FeedEx respectively. These power usages were
multiplied by the duration of the experiments to get the total
idle energy for each of the applications. After deducting the
idle energy consumption, the average energy consumption of
Firefox, Calculator, Bomber, Blockinger, and FeedEx were
44.79, 22.65, 18.00, 64.94 and 43.17 joules respectively. This
shows that our selected applications are very different in their
energy consumption patterns. The similar energy profiles for
Firefox and FeedEx is expected because of the similar nature
of the applications—they are both HTTP clients.

2) Addressing Unseen System Calls: In our dataset, Firefox
has five system calls (brk, getpeername, sigaction, utimes
and sendmsg) that are not present in any other application.
Similarly, three system calls of FeedEx (bind, socketpair,
and ftruncate) are also absent in the combined set of the
four other applications. This is problematic for our energy
prediction model as these system calls can not be modeled
during the training phase. The two simple approaches for
dealing with unseen system calls, i.e., intersection and union
of all the system calls, thus fail to offer an accurate energy
consumption model. This led us to design a new feature
encoding technique—grouping similar system calls together
so that the group names can be used as the features instead of
using the actual system calls.

Table III shows a snapshot of our grouping mechanism
from a total of 28 groups. We collected the function/behaviour
of a system call using the man command in Linux. Using
the semantics, we grouped similar system calls together. For
example, if an application uses getuid whereas another uses
geteuid, we counted the occurrences of those system calls
under the same group name—GetUid. This is because of our
hypothesis that these types of system calls should contribute
to the same amount of energy consumption. This proposed
grouping approach can be used to model energy consumption
of other platforms besides Android.

3) Modification of the Algorithms: The offset parameter
for both Linear and SV regression—although is valid when
a fraction of data of the test application is used with the
training dataset—is problematic in case of predicting energy
consumption for unseen application; this parameter adds an

extra offset value in our model without having any knowl-
edge of the unseen application. In the case of developing a
generalized model that can be used for any new application,
our model must rely only on the weights of the system calls.
In order to resolve this issue, we set the intercept (which is
not system call) of all the examples as 0 (forcing offset to be
0) instead of the offset found by the linear regression model.
Similarly, when using SV regression we set the parameter b
as zero while running svm learn in SVM light7.

We also validated our trained models in a different way
than the previous experiments. Instead of applying 10-fold
cross validation over the 80% training data, we select one of
the applications for cross validation, and three other applica-
tions for training. This way we have better understanding on
how our model is going to work for a completely unknown
application. When both the training and cross validation ac-
curacies are very good and close to each other, we test our
model on our test application—the application that was never
used for training or cross validation.

Table IV shows the performance of both the algorithms
with the baseline. We present the performance of our models
with different estimations of idle power usage (0.7, 0.8, 0.9,
and 1.0 watt) for all the applications in order to show how
inaccurate the results would be if the developers estimate
their application’s idle energy different than the actual idle
energy (X in the table). This statistics makes more sense when
the MSE of our models are very low (e.g., Calculator and
Bomber). For example, if the developers estimate Calculator’s
idle power usage as 0.8 instead of 0.7 watt, the MSE becomes
79.56 for linear regression, which is still lower than the
baseline model’s MSE.

In general, the performance of our models show that in
many cases a 0.1 idle watt error in estimation still results in a
model that performs better than the baseline model. When the
correct idle energy was added—i.e., the X columns—both the
models outperform the baseline model for all the applications
except FeedEx. The superior performance of SV regression
over Linear regression could be its resilience to not over-
fitting the training data. The poor performance with FeedEx
measurements for both of our models is not surprising as
the variation in energy consumption among different versions
of FeedEX is the highest of all the applications, thus the
idle energy consumption we estimated for FeedEx could be

7http://svmlight.joachims.org/ last accessed: 01-May-2015

inaccurate. We observe, however, very accurate prediction for
Calculator and Bomber, and to a lesser extent for Blockinger.
This is because of the fact that these applications do not
have any system calls that are not present in the training data
comprised of other applications, which is not true for Firefox
and FeedEx. This implies that collecting more applications’
measurements containing more possible system calls will help
us to develop a more robust generalized model.

VI. DISCUSSION
The accuracy of both of our models with linear features is

encouraging because it means we can interpret what the models
have learned. Furthermore, it suggests that counts of system
calls do model energy consumption behavior in an application.
The theory behind the success of the linear models is that they
simplify the states of the FSMs in eprof by Pathak et al. [12]. A
specific system call represents the usage pattern of an specific
resource, e.g., read for reading a file. Thus, energy profiles
of all the resources that an application uses can be captured
by profiling the different system calls counts invoked by that
application. Although system calls typically do not directly
capture CPU usage, they are often correlated with memory
usage. Thus sometimes memory related system calls can be
expected to capture some CPU usage.

Our final generic system call based model is useful to
any application developer as one can estimate the energy
consumption of an application without any hardware instru-
mentation; rather an estimation of application’s idle energy
and a measurement of system calls are sufficient. Even if the
idle energy estimation is incorrect (more than 0.1 watt off) the
model works relatively, as the error from a constant offset—
application idle parameter—will disappear when 2 versions of
the application are compared. Only the change in CPU usage
between the 2 versions will have an unseen affect.

We recommend that developers follow a rule of thumb
for estimating the idle energy of their application: if their
application only operates on user input and has no background
processes—audio, animation, networking threads, etc.—then
set application idle to the idle of the device (for our smart-
phones it was near 0.7 watt); if the application has background
processes, especially networking, then idle usage should be
higher (0.8 watt or 0.9 watt); where as if the application is a
game with a 30 fps or higher event loop and utilizes graphics
then the idle should be even higher (1.0+ watt).

A. Threats to Validity
The idle energy that we estimated for our five applications

were from simple time-series observations. It would be more
accurate to develop separate test cases with no user interaction
for each of the applications so that actual idle energy can be
obtained. The test cases we designed might not have covered
all the significant features of our applications. External validity
is hampered by using only one brand and make of smartphone.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have presented multiple system call

based energy models using multiple versions of five Android
applications: Firefox, Calculator, Bomber, Blockinger, and
FeedEx. Our experiments provide support that system calls
can be used to predict the energy consumption of mobile
applications. Furthermore, we show that the energy consump-
tion of unseen applications can be estimated without hardware
instrumentation using measurements from 3rd-party applica-
tions measured with hardware instrumentation—primarily by

accounting for the idle energy use of a particular application.
Using a dynamic trace of system calls and a estimate of idle
application energy usage, a developer can accurately, within
a certain error tolerance, estimate the energy use of their
application without a hardware power meter. This context is
useful for the average developer who does not have access
to energy measurement infrastructure, but seeks to control for
application energy consumption during software evolution.

Future work includes building a more general model
trained on more systems with more features including CPU
usage, and different code features, such as depth of inheritance.
Our long term goal is to help software developers during
development by notifying them of potential negative effects
their code changes might have on an application’s energy
consumption.

REFERENCES
[1] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia.

The Power of System Call Traces: Predicting the Software Energy
Consumption Impact of Changes. In CASCON ’14, 2014.

[2] Banerjee, Abhijeet and Chong, Lee Kee and Chattopadhyay, Sudipta and
Roychoudhury, Abhik. Detecting Energy Bugs and Hotspots in Mobile
Apps. In FSE 2014, pages 588–598, Hong Kong, China, Novemeber
2014.

[3] A. Carroll and G. Heiser. An Analysis of Power Consumption in a
Smartphone. In Proceedings of the USENIXATC’10, 2010.

[4] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2014-2019. Technical report, Cisco, February 2015.

[5] M. Dong and L. Zhong. Self-constructive High-rate System Energy
Modeling for Battery-powered Mobile Systems. In Proceedings of the
MobiSys ’11, pages 335–348, June 2011.

[6] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating Mobile
Application Energy Consumption Using Program Analysis. In ICSE
’13, pages 92–101, 2013.

[7] T. Hastie, R. Tibshirani, and J. Friedman. Support vector machines and
flexible discriminants. In The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics.

[8] A. Hindle. Green Mining: Investigating Power Consumption Across
Versions. In ICSE ’12, pages 1301–1304, June 2012.

[9] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky. GreenMiner: A Hardware Based Mining Software
Repositories Software Energy Consumption Framework. In MSR 2014,
pages 12–21, Hyderabad, India, May 2014.

[10] T. Joachims. Making large-scale support vector machine learning
practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods, pages 169–184. MIT Press, 1999.

[11] I. Moura, G. Pinto, F. Ebert, and F. Castor. Mining Energy-Aware
Commits. In MSR 2015, Florence, Italy, May 2015.

[12] A. Pathak, Y. C. Hu, and M. Zhang. Where is the Energy Spent Inside
My App?: Fine Grained Energy Accounting on Smartphones with Eprof.
In EuroSys ’12, pages 29–42, Bern, Switzerland, April 2012.

[13] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-
grained Power Modeling for Smartphones Using System Call Tracing.
In EuroSys ’11, pages 153–168, Salzburg, Austria, April 2011.

[14] G. Pinto, F. Castor, and Y. D. Liu. Mining Questions About Software
Energy Consumption. In MSR 2014, pages 22–31, 2014.

[15] K. Rasmussen, A. Wilson, and A. Hindle. Green Mining: Energy
Consumption of Advertisement Blocking Methods. In GREENS 2014,
pages 38–45, Hyderabad, India, June 2014.

[16] C. Seo, S. Malek, and N. Medvidovic. Component-level energy
consumption estimation for distributed java-based software systems.
volume 5282 of Lecture Notes in Computer Science, pages 97–113.
Springer Berlin Heidelberg, 2008.

[17] A. J. Smola and B. Schölkopf. A tutorial on support vector regression.
Statistics and computing, 14(3):199–222, August 2004.

[18] V. Vapnik. The nature of statistical learning theory. Springer, 2000.
[19] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,

and L. Yang. Accurate Online Power Estimation and Automatic
Battery Behavior Based Power Model Generation for Smartphones. In
Proceedings of the 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, 2010.

