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Abstract A general framework for threshold parameters in population dy-
namics is developed using the concept of target reproduction numbers. This
framework identifies reproduction numbers and other threshold parameters in
the literature in terms of their roles in population control. The framework is
applied to the analysis of single and multiple control strategies in ecology and
epidemiology, and this provides new biological insights.
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1 Introduction

Some of the most central quantities in theoretical biology are threshold param-
eters determining population persistence or disease invasibility, thereby pro-
viding biological insights regarding population protection and disease control.
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Reproduction numbers are threshold parameters that have been widely used
in population dynamics, especially for applications in ecology and epidemiol-
ogy. However, due to the complexity of biological problems and multiplicities of
their mathematical representations, there are often several different choices for
threshold parameters, leading to varied reproduction numbers (Bani-Yaghoub
et al. 2012; Cushing and Diekmann 2016). This has stimulated much discus-
sion (Cushing and Diekmann 2016; Heffernan et al. 2005; Keeling and Grenfell
2000; Li et al. 2011; Roberts 2007; van den Driessche 2017), and has even
led to many analog names (e.g., reproductive rates, reproduction ratios and
net reproductive values) coexisting in the literature. The purpose of this paper
is to identify these reproduction numbers based on their roles on population
control, identifying how they serve as threshold parameters for population dy-
namics. The tool used is an extended version of target reproduction numbers,
which was first introduced by Shuai et al. (2013) as a generalization of type
reproduction numbers (Heesterbeek and Roberts 2007; Roberts and Heester-
beek 2003). It will be shown that many reproduction numbers and related
threshold parameters are indeed target reproduction numbers corresponding
to specific population control strategies.

In epidemiology, the basic reproduction number (the average number of
secondary infections caused by a typical infectious individual introduced into
a completely susceptible host population; R0 > 0) often serves as a sharp
threshold parameter determining whether or not the infectious disease dies
out by R0 < 1 or > 1, respectively. The next-generation matrix method
(Diekmann et al. 2013; van den Driessche and Watmough 2002), in which
biological terms are classified as either disease transmission or transfer, leads
to a next-generation matrix K. This has become a standard tool for deriving
the basic reproduction number, which is defined as the spectral radius of the
next-generation matrix (i.e., R0 = ρ(K)), for many infectious disease models.
The basic reproduction number can be used to determine the herd immu-
nity fraction 1 − 1

R0
, which is the fraction of the host population needed to

become immune (e.g., via vaccine) in order to control the disease (Anderson
and May 1991). However, if the vaccine is only applied to a certain group
(group i) of the host population, then the type reproduction number Ti deter-
mines the vaccine coverage needed for group i in order to control the disease
among all groups, and the required fraction of vaccine coverage in group i is
1− 1

Ti ; see Heesterbeek and Roberts (2007); Roberts and Heesterbeek (2003).
Recently, a generalization of type reproduction numbers namely target repro-
duction numbers TC has been introduced for measuring strategies that control
only certain infection and/or transition terms during the disease transmission
process (Shuai et al. 2013). Specifically, the next generation matrix is decom-
posed into two parts: target matrix C of terms subject to change and residual
matrix K − C of terms not subject to change. Then the controlled reproduc-
tion matrix 1

TCC + (K −C) = K − (1− 1
TC )C has the spectral radius 1 at the

threshold value. That is, the required change for terms in C is measured by
the fraction 1− 1

TC , as established later in Theorem 1.
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In ecology, the population growth rate (λ > 0) and the net reproductive
value (the lifetime reproductive output of an individual; R0 > 0) are often
derived in matrix population models to determine whether the population
persists or goes to extinction (Caswell 2001). Let P denote a nonnegative
irreducible population projection matrix in the model (e.g., a Lefkovitch ma-
trix or a Leslie matrix), where P = T + F can be decomposed into two parts
according to their ecological meaning: transition matrix T and fertility matrix
F . Then the population growth rate determines the effort to be used to scale
both transition and fertility matrices in order to reach the threshold value
of one (crossing from extinction to persistence or from persistence to extinc-
tion). Specifically, the controlled population growth rate corresponding to the
controlled population projection matrix 1

λT + 1
λF is one. In contrast, the net

reproductive value R0 determines the effort needed to scale only fertility and
the resulting projection matrix T + 1

R0
F has growth rate one (Cushing and

Zhou 1994; Li and Schneider 2002). It will be shown later (Lemma 1) that
the net reproductive value R0 is a target reproduction number corresponding
to fertility control, while the population growth rate λ is a target reproduction
number corresponding to both fertility and transition control.

The connection between these threshold parameters in ecology and epi-
demiology has been well-recognized from both aspects, and these parameters
have also been widely used in population and disease control. Nevertheless,
a general mathematical framework is still missing to unify these parameters.
The consequence is that researchers often need to define, derive, and study
these threshold parameters anew for different classes of problems in ecology
and/or epidemiology. In this paper, we provide such a general framework on
threshold parameters using target reproduction numbers. First, we extend the
definition of the target reproduction number to a general setting so that it
unifies the above threshold parameters. Although the definition of the target
reproduction number is purely algebraic, a graph interpretation is presented to
provide biological meaning. We develop both algebraic and graphic approaches
to compute target reproduction numbers, and demonstrate their use for one or
multiple control strategies. Applications are illustrated using both ecological
and epidemiological models taken from the literature.

2 Target reproduction number

2.1 A general algebraic theory

Let A = [aij ] = B + C be a nonnegative irreducible n × n matrix, where the
nonnegative target matrix C = [cij ] consists of all targeted entries, and the
nonnegative residual matrix B = [bij ] consists of all entries not targeted. Note
that each aij may be divided into two parts, one part bij unchanged, and one
part cij subject to change, either a decrease or increase; that is, aij = bij +cij ,
1 ≤ i, j ≤ n. For controllability, matrix B is required to have ρ(B) < 1, where
ρ denotes the spectral radius.
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Definition 1 Let A,B,C be nonnegative n×n matrices such that A = B+C
is irreducible, C 6= 0, and ρ(B) < 1. Then the target reproduction number
TC > 0 is defined as

TC = ρ(C(I −B)−1), (2.1)

where I is the n× n identity matrix.

The target reproduction number TC defined above extends the one in Shuai
et al. (2013), in which each entry of A is either targeted or not targeted (i.e.,
each entry is not divided into two parts). If S is the set of (whole) entries
of A that are targeted, then the target matrix C and residual matrix B are
chosen as follows: if (i, j) ∈ S, then cij = aij and bij = 0; whereas if (i, j) 6∈ S,
then cij = 0 and bij = aij . In this situation, the target reproduction number
TC in (2.1) becomes the target reproduction number in Shuai et al. (2013).
Furthermore, when the target matrix C consists of only one or several rows
(or columns) of entries of A, the target reproduction number becomes the type
reproduction number, previously defined by Heesterbeek and Roberts (2007);
Roberts and Heesterbeek (2003).

The target reproduction number TC also works for situations where parts

of entires of A are targeted. For example, let A =
[ b11 + c11 b12

b21 0

]
with target

matrix C =
[
c11 0
0 0

]
and residual matrix B =

[
b11 b12
b21 0

]
. Then, by Definition 1,

the target reproduction number TC = ρ(C(I−B)−1) = c11
1−b11−b12b21 , provided

that 1− b11 − b12b21 > 0 equivalently ρ(B) < 1.

Let

AC(τ) = B +
1

τ
C (2.2)

denote the controlled matrix corresponding to the target matrix C with certain
population control effort τ > 0, thus every entry cij of C becomes cij/τ .
Since A is irreducible, the monotone property of the spectral radius of AC(τ)
holds (Berman and Plemmons 1979, p. 27), and thus ρ(AC(τ)) is monotone
decreasing as τ increases. The following result, which extends an earlier result
by Shuai et al. (2013, Theorem 2.2), describes the effort that is needed such
that the controlled matrix has spectral radius 1.

Theorem 1 Let A,B,C be nonnegative n× n matrices such that A = B +C
is irreducible, C 6= 0, and ρ(B) < 1. Then ρ(AC(τ)) = 1 if and only if τ = TC .

Proof It follows from ρ(B) < 1 that C(I −B)−1 is a nonnegative matrix. Let
xT ≥ 0 be a nonnegative left eigenvector of C(I − B)−1 associated with the
Perron eigenvalue TC = ρ(C(I − B)−1), i.e., xTC(I − B)−1 = TCxT . Hence
xTC = TCxT (I−B) = TCxT−TCxTB, which implies that xT (B+ 1

TCC) = xT .

This is, the nonnegative irreducible matrix B + 1
TCC has a nonnegative left-

eigenvector xT corresponding to the eigenvalue 1. By Perron-Frobenius Theory
(see, e.g., Berman and Plemmons (1979, Theorem 1.4) or Li and Schneider
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(2002, Theorem 2.1)), the spectral radius of B+ 1
TCC is the unique eigenvalue

with a nonnegative eigenvector, and thus ρ(AC(TC)) = ρ(B + 1
TCC) = 1. By

the monotone property of the spectral radius of AC(τ) (Berman and Plemmons
1979, p. 27), ρ(AC(τ)) = 1 if and only if τ = TC . ut

The following result shows that TC and ρ(A) always stay on the same side
of the value 1; see Shuai et al. (2013, Theorem 2.1) for an earlier result on the
target reproduction number, and also earlier results on the net reproductive
rate by Cushing and Zhou (1994); Li and Schneider (2002). As ρ(A) often
provides a sharp threshold for population dynamics, the various target repro-
duction numbers TC thus also serve as sharp threshold parameters and some of
them may have explicit and simpler expressions than ρ(A). Using the notation
of Berman and Plemmons (1979) for matrices X = [xij ] and Y = [yij ], the
inequality X < Y means xij ≤ yij for all i, j and X 6= Y .

Theorem 2 Let A,B,C be nonnegative n× n matrices such that A = B +C
is irreducible, C 6= 0, and ρ(B) < 1. Then the following statement holds:

(1) ρ(A) > 1⇐⇒ TC > 1;
(2) ρ(A) = 1⇐⇒ TC = 1;
(3) ρ(A) < 1⇐⇒ TC < 1.

Proof Since A is irreducible, AC(TC) = B+ 1
TCC is also irreducible. If TC > 1,

then AC(TC) < A = B + C and thus ρ(AC(TC)) < ρ(A) (see, e.g., Berman
and Plemmons (1979, p. 27)). By Theorem 1, ρ(AC(TC)) = 1. Therefore,
ρ(A) > 1. Similarly, if TC < 1, then AC(TC) > A and 1 = ρ(AC(TC)) > ρ(A).

ut

The relation between two target reproduction numbers of the same matrix
A is described in the following result, which extends an earlier result by Shuai
et al. (2013, Theorem 4.3). Biologically, less effort is required when targeting
more entries.

Theorem 3 Let A,B,C,B′, C ′ be nonnegative n× n matrices such that A =
B + C = B′ + C ′ is irreducible, C 6= 0, C ′ 6= 0, ρ(B) < 1 and ρ(B′) < 1. If
C > C ′, then one of the following statements holds:

(1) 1 < TC < TC′ ;
(2) TC = TC′ = 1;
(3) TC′ < TC < 1.

Proof If TC > 1, then, by Theorem 2, ρ(A) > 1 and TC′ > 1. In the following,
we prove TC′ > TC . Assume, on the contrary, that TC ≥ TC′ . Then

AC(TC) = B + 1
TCC

= B′ + 1
TC′

C ′ +B −B′ + 1
TCC −

1
TC′

C ′

≤ AC′(TC′) +B −B′ + 1
TC′

(C − C ′)
< AC′(TC′) +B −B′ + C − C ′
= AC′(TC′).
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Since both AC(TC) and AC′(TC′) are irreducible, ρ(AC(TC)) < ρ(AC′(TC′)).
However, by Theorem 1, ρ(AC(TC)) = ρ(AC′(TC′)) = 1, which is a contra-
diction. Therefore, 1 < TC < TC′ . The case with TC < 1 can be proved by
reversing all inequalities above. ut

2.2 Graph theoretic interpretation

The previous section uses matrix-theoretic results for target reproduction num-
bers. Alternatively, graph-theoretic results can be obtained to provide a pow-
erful tool for computing target reproduction numbers explicitly in terms of
cycle-unions of the related digraph. Let D = D(A) = D(B,C) be the weighted
multi-digraph associated with the residual matrix B and target matrix C; that
is, D consists of vertices labelled by 1, 2, . . . , n, and two arcs ji from vertex
j to vertex i (of weights bij and cij) if and only if bij > 0 and cij > 0, one
arc ji (of weight given by the nonzero value) if and only if one of bij and cij
is nonzero, and no arc if both of them are zero. An arc corresponding to an
entry in C is called a target arc. A cycle-union U of D is a subdigraph such
that each component of U is a cycle of length ≥ 1; that is, a cycle-union is
a union of vertex-disjoint cycles of D. Let c(U) denote the number of cycles
in such a subdigraph. The weight w(U) of a cycle-union U is the product of
weights of arcs in U . The empty digraph (consisting of no vertex and no arc)
is regarded as a trivial cycle-union with weight 1. See Moon et al. (2104) or
West (1996) for additional and detailed graph-theoretic definitions.

The following result provides an alternative way to compute the target
reproduction number TC .

Theorem 4 Let A,B,C be nonnegative n× n matrices such that A = B +C
is irreducible, C 6= 0, and ρ(B) < 1. Then τ = TC satisfies the following
characteristic equation

αrτ
−r + αr−1τ

−(r−1) + · · ·+ α1τ
−1 + α0 = 0. (2.3)

Here r is the rank of the target matrix C and for 1 ≤ i ≤ r,

αi =
∑
Ui

(−1)c(U
i)w(U i), (2.4)

where the sum is over all cycle-unions U i of D that contains i target arcs of
C.

Proof By Theorem 1, τ is equal to TC when 1 is an eigenvalue of the controlled
matrix AC(τ) = B+ 1

τC. That is, det(I−B− 1
τC) = 0. Applying a determinant

expansion formula in Moon et al. (2104, Proposition 2.2) yields∑
U

(−1)c(U)w(U) = 0, (2.5)
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where the sum is over all cycle-unions U of the weighted multi-digraph DC
associated with matrices B and 1

τC. Note that DC has the same vertex and
arcs sets as those of D but different weights; specifically, the weight of each
target arc in DC equals 1

τ of the weight of the target arc in D. Thus the weight
of each cycle-union U of DC in (2.5) contains the factor τ−1 the same number
of times as the number of target arcs in U . Since U is the union of vertex-
disjoint cycles of DC , U contains at most r target arcs, where r is the rank
of the target matrix C. Rewriting (2.5) according to the power of τ−1 gives
(2.3) with the coefficient αi of the term τ−i equal to the sum of weights of all
cycle-unions that contain i target arcs. ut

Graph reduction rules by de-Camino-Beck and Lewis (2007, 2008) have
previously been used to derive the characteristic equation (2.3). Our new re-
sult Theorem 4 shows that the coefficients in the characteristic equation can
be interpreted as cycle-unions of the graph/network. Thus the characteristic
equation can be derived by computing all cycle-unions in the network. For a
complex network, the graph reduction rules (de-Camino-Beck and Lewis 2007,
2008) can be applied to reduce the network before applying Theorem 4.

If the rank of the target matrix C is 1, then Theorem 4 gives an explicit
expression for the target reproduction number in terms of cycle-unions as
derived in the following result. Earlier results of this type have previously been
established by Rueffler and Metz (2013); Rueffler et al. (2103) for the net
reproductive value R0, which is a target reproduction number corresponding
to fertility control as shown later in Lemma 1.

Theorem 5 Let A,B,C be nonnegative n× n matrices such that A = B +C
is irreducible, C 6= 0, and ρ(B) < 1. If the rank of the target matrix C is 1,
then

TC =

∑
U

(−1)1+c(U)w(U)∑
V

(−1)c(V)w(V)
, (2.6)

where the sums are over all cycle-unions U and cycle-unions V of D(B,C)
that do and do not contain a target arc in C, respectively.

Proof Since the rank of C is 1, r = 1 and the characteristic equation (2.3)
with (2.4) gives

α1T −1C + α0 = 0 (2.7)

with

α0 =
∑
V

(−1)c(V)w(V) and α1 =
∑
U

(−1)c(U)w(U),

where cycle-unions U and V are given as above. Solving TC from (2.7) gives
(2.6). ut
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If cij = aij for some i and 1 ≤ j ≤ n and cij = 0 otherwise, then TC
becomes the type reproduction number Ti targeting all entries in row (or
column) i of A (Heesterbeek and Roberts 2007; Roberts and Heesterbeek
2003). If cij = aij for some i, j and cij = 0 otherwise, then TC becomes the
target reproduction number Tij targeting only one entry (i, j) of A (Moon et al.
2104; Shuai et al. 2013). The following results follow directly from Theorem 5,
and have previously been established by Moon et al. (2104, Theorems 4.1 and
5.3) by using generating functions for walks in a digraph.

Corollary 1 Let A be a nonnegative n×n irreducible matrix, and Ti and Tij
be well defined for some i, j. Then

Ti =

∑
Ui

(−1)1+c(Ui)w(Ui)∑
Vi

(−1)c(Vi)w(Vi)
, (2.8)

where the sums are over all cycle-unions Ui and cycle-unions Vi of D(A) that
do and do not contain a vertex in row (or column) i, respectively; and

Tij =

∑
Uij

(−1)1+c(Uij)w(Uij)∑
Vij

(−1)c(Vij)w(Vij)
, (2.9)

where the sums are over all cycle-unions Uij and cycle-unions Vij of D(A) that
do and do not contain arc ji of weight aij, respectively.

An illustration of these results is given for a perennial weed, scentless
chamomile, in Section 3.4.

A characteristic equation such as (2.3) can be extended to the case where
multiple control strategies are applied for matrix A. For example, let S be the
target set with effort τ and U be the target set with effort σ. Let Ã = [ãij ] be
the controlled matrix after these two control efforts, then

ãij =


aij if (i, j) 6∈ S ∪U,
1
τ aij if (i, j) ∈ S, (i, j) 6∈ U,
1
σaij if (i, j) ∈ U, (i, j) 6∈ S,
1
τσaij if (i, j) ∈ S ∩U.

Then using an argument similar to that in the proof of Theorem 4, the char-
acteristic equation such that ρ(Ã) = 1 is

r∑
i=0

s∑
j=0

αijτ
−iσ−j = 0, (2.10)
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where r, s are the ranks of the target matrices corresponding to S and U, and

αij =
∑
Uij

(−1)c(U
ij)w(U ij).

Here the sum is over all cycle-unions U ij that contain i target arcs in S and
j target arcs in U. The characteristic equation (2.10) can be used to derive
minimum cost population control strategies; see Sections 3.4 and 4.2 for ap-
plications in ecology and epidemiology, respectively.

3 Applications to ecology

3.1 Net reproductive value as a target reproduction number

A discrete-time matrix model (Caswell 2001) for an age or stage structured
population is defined as

xt+1 = Pxt, (3.1)

where xt is a vector of ages/stages at time t and P is a nonnegative irre-
ducible matrix, customarily called a population projection matrix, which de-
scribes transitions from one age/stage to another one (Caswell 2001). The
spectral radius λ = ρ(P ) is called the (geometric) population growth rate,
which determines whether the population grows or goes to extinction, de-
pending on whether λ > 1 or λ < 1. (Note that λ is not strictly a rate as it
is dimensionless.) The projection matrix P can be decomposed, based on bio-
logical interpretations, as P = T + F , where T ≥ 0 contains the survivorship
transitions and F ≥ 0 contains the fecundities. Hence, T and F are called the
transition matrix and the fecundity matrix (or fertility matrix ), respectively.
The net reproductive value R0 is defined as the spectral radius of the next
generation matrix F (I − T )−1, that is,

R0 = ρ(F (I − T )−1); (3.2)

see Allen and van den Driessche (2008); Cushing and Zhou (1994); Li and
Schneider (2002). The following result shows that R0 is the target reproduc-
tion number that corresponds to the population control strategy targeting all
fecundities in the projection matrix.

Lemma 1 Suppose that ρ(T ) < 1. Then the net reproductive value R0 is the
target reproduction number TC as in (2.1) for A = P corresponding to the
target matrix C = F .

Proof Let A = P = B+C, B = T , and C = F in Definition 1. The the target
reproduction number TC as in (2.1) becomes TC = ρ(F (I − T )−1) = R0 by
(3.2). ut



10 Mark A. Lewis et al.

An illustration of this result is given for a Lefkovitch model for salmonid
conservation in Section 3.3.1.

By identifying λ = ρ(P ) = TP and R0 = TF with P ≥ F , the next result
follows directly from Theorem 3. This result previously appeared in Li and
Schneider (2002, Theorem 3.1) and Cushing and Zhou (1994, Theorem 3 and
Corollary 7).

Lemma 2 Suppose that ρ(T ) < 1 and T 6= 0. Then one of the following holds:

(1) 1 < λ < R0;
(2) λ = R0 = 1;
(3) R0 < λ < 1.

We remark that if T = 0, then the growth rate and the net reproductive value
are equal, i.e., λ = R0.

In the remaining part of this ecological section, we demonstrate the ap-
plications of target reproduction numbers with common types of projection
matricies P in the literature.

3.2 Application to n-stage Lefkovitch matrix model

Consider the following Lefkovitch matrix

P =



s1 + b1 b2 b3 · · · bn−2 bn−1 bn
t1 s2

t2 s3
. . .

. . .

sn−2
tn−2 sn−1

tn−1 sn


, (3.3)

where si ≥ 0 describes the probability of staying, ti > 0 describes the prob-
ability of transition, and bi ≥ 0 with bn > 0 describes the fertility (Caswell
2001). According to Lemma 1, the net reproductive value R0 is the target
reproduction number TC with the fertility matrix being the target matrix C,
that is,

C =


b1 b2 · · · bn−1 bn

0

 .

Notice that the target matrix C contains only part of the (1, 1) entry of P ,
demonstrating the extension of target reproduction numbers as described in



Target reproduction numbers with applications 11

Section 2. Since C has rank 1, Theorem 5 can be used to derive the following
explicit expression

R0 =
b1(1− s2) · · · (1− sn) + t1b2(1− s3) · · · (1− sn) + · · ·+ t1 · · · tn−1bn

(1− s1) · · · (1− sn)
,

i.e.,

R0 =
b1

1− s1
+

t1b2
(1− s1)(1− s2)

+ · · ·+ t1 · · · tn−1bn
(1− s1) · · · (1− sn)

. (3.4)

To assess the impact of control we consider the case in which the following
steps happen in each time interval in the order stated

– production of bi offsprings per survivor;
– survival with probability pi;
– proportion qi stays in the same class while proportion 1− qi moves to the

next class.

In terms of these quantities, si = piqi and ti = pi(1− qi).
When qi = 0 for all i, si = 0, ti = pi and P in (3.3) becomes a Leslie matrix

(Caswell 2001). As a consequence, the net reproductive value (3.4) becomes

R0 =
n∑
i=1

bi

i−1∏
j=1

pj , with the convention that
∏0
j=1 pj = 1. This agrees with

previous results on Leslie matrices; see, for example, Caswell (2001).

3.3 Application to 4-stage Lefkovitch matrix model, with a case study on
protecting salmonids

In this section we consider the Lefkovitch matrix in the form of (3.3) with 4
stages (i.e., n = 4) and discuss various population control strategies. That is,

P =


s1 + b1 b2 b3 b4
t1 s2 0 0
0 t2 s3 0
0 0 t3 s4

 , (3.5)

with si = p1qi and ti = pi(1− qi).
3.3.1 The target matrix C has only nonzero entries of bi for 1 ≤ i ≤ 4, i.e.,
control of offspring production. By Lemma 1, the target reproduction number
TC is the same as R0 as given in (3.4) with n = 4. That is, the controlled

projection matrix PC =


s1 + b1

R0

b2
R0

b3
R0

b4
R0

t1 s2 0 0
0 t2 s3 0
0 0 t3 s4

 has spectral radius 1.

3.3.2 The target matrix C has only nonzero entries of s1 and t1, i.e., control
of surviving probability p1 in stage 1. The corresponding target reproduction
number takes the form
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TC =
s1
m1

+
t1b2

m1(1− s2)
+

t1t2b3
m1(1− s2)(1− s3)

+
t1t2t3b4

m1(1− s2)(1− s3)(1− s4)
,

with m1 = 1− b1.

3.3.3 The target matrix C has only nonzero entry s4, i.e., control of surviving
probability at the last stage. The target reproduction number is

TC = T44 =
s4z

z − t1t2t3b4

with z = (1 − s1 − b1)(1 − s2)(1 − s3) − t1b2(1 − s3) − t1t2b3 encoding all
cycle-unions that do not contain the last stage.

3.3.4 An immediate application of the Lefkovitch matrix (3.5) is to the
salmonid model proposed by Huang and Lewis (2015, Appendix C), in which
s1 = s2 = 0 and b1 = b2 = b3 = 0. That is, the projection matrix for protecting
salmonids takes the following form

P =


0 0 0 b4
t1 0 0 0
0 t2 s3 0
0 0 t3 s4

 . (3.6)

First the net reproductive value R0 is the target reproduction number
T1 (targeting all entries in the first row or the first column). Since the first
row and the first column both contain only one non-zero entry, it follows
from Theorem 5 that R0 = T1 = T21 = T14. Biologically, in order to protect
endangered salmonids (i.e., R0 < 1), either the average number of fertilized
eggs produced per adult, b4, could be increased by b4(1/R0 − 1), i.e., the
average number of fertilized eggs produced per adult becomes b4/R0 (actually
this leads to a controlled reproductive value Rc = 1, thus a little bit more
increase is needed), or the proportion of eggs that hatch to fry stage each
year, t1, could be increased to t1/R0.

Since the second row contains only one non-zero entry, T2 = T21 = T32 =
R0. For example, to control the proportion of fry that survive to the juve-
nile stage each year, t2 could be increased to t2/R0. Similarly, other tar-
get reproduction numbers can be calculated to measure the change of s3,
t3 or s4 needed in order to protect the endangered population. The increase
of s4 could be achieved by reducing the harvest for adult salmonids, thus
T44 = s4(1 − s3)/((1 − s3) − t1t2t3b4) guides the needed amount of harvest
reduction.

3.4 Application to controlling scentless chamomile

Scentless chamomile (Matricaria perforata) is an invasive weed in north Amer-
ica, found in agricultural farmland and disturbed habitats. It is a perennial
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a31

a13

a23

a32

a21
a11

Fig. 1 Digraph D(A) for scentless chamomile, as given by matrix (3.7). For a full biological
explanation of the weights, see the text.

with three stages: seed bank (in the ground, 1), rosettes (2), and flowering
plants (3). Biological transitions can be represented either by weights in a life-
cycle graph or by entries in a projection matrix. In a given year, seeds in the
seed bank will remain in the seed bank with probability a11. They will germi-
nate from the seed bank into a rosette with probability a21, and germinate into
a flower with probability a31. They will die with probability 1−a11−a21−a31.
Rosettes will transform into flowers with probability a32, and die with proba-
bility 1 − a32. The flowers contribute to all fecundities as follows. In a single
year, flowers will produce a13 seed bank seeds per flower, will produce a23
rosettes per flower, and will produce a33 new flowers per flower. Then the
original flower will die. Full details of the life cycle dynamics can be found in
de-Camino-Beck and Lewis (2007).

The resulting projection matrix for the growth of scentless chamomile (de-
Camino-Beck and Lewis 2007, 2008) is

A =

a11 0 a13
a21 0 a23
a31 a32 a33

 . (3.7)

The corresponding weighted digraph D(A) is given in Figure 1. There are
multiple biological control measures for scentless chamomile. Generally, they
can target either the seed production (e.g., seed weevils) or the plant growth
(e.g., gall midges) (Hinz and McClay 2000). Controls affecting seed production
will reduce a13, a23 and a33. Controls affecting plant growth will reduce a21,
a31 and a32. They may also have a smaller affect on a33, but we do not consider
this. For completeness we also consider the possibility that level of seeds in
the seed bank can be controlled by removal of soil infested with seeds, thereby
reducing a11. However, in practice, this is not a typical method for control.

In what follows we first consider the three different strategies in isolation,
and then consider a mixed strategy.

3.4.1 We consider the case where the target matrix C has only nonzero
entries ci3 = ai3 for 1 ≤ i ≤ 3, so that the target matrix is the fecundity
matrix (de-Camino-Beck and Lewis 2007, 2008). Since this matrix has rank



14 Mark A. Lewis et al.

1, by Corollary 1,

T3 =
a33 + a13a31 + a23a32 + a13a32a21 − a11a33 − a11a23a32

1− a11
, (3.8)

provided a11 < 1. In the denominator, 1 is the weight of an empty digraph
while a11 is the weight of the cycle-union consisting of a loop (i.e., cycle of
length 1) at vertex 1. In the numerator of T3, the first four terms are the
weights of four cycle-unions that consist of only one cycle and contain exactly
one target entry, while the last two terms are the weights of two cycle-unions
that each consist of two cycles and contain exactly one target entry (see Figure
1). The target reproduction number T3 agrees with the expression of the basic
reproductive ratio R0 in de-Camino-Beck and Lewis (2007) derived by graph
reduction rules, agreeing with Lemma 1.

3.4.2 We next consider the case where the target matrix C has only one
nonzero entry c11 = a11, i.e., control of the survival probability of seeds. By
Corollary 1, the target reproduction number is

T11 =
a11(1− a33 − a23a32)

1− a33 − a13a31 − a23a32 − a13a32a21
, (3.9)

provided that the denominator is positive. Biologically this positivity means
that the growth of scentless chamomile can be controlled by only targeting
the survival probability of seeds. Note that all terms in (3.9) are the weights
of cycle-unions in D(A), and all terms in (3.8) also appear in (3.9) but are
relocated based on whether the term contains a target entry.

3.4.3 In the last single strategy, the target matrix C has only nonzero entries
c21 = a21, c31 = a31, and c32 = a32, i.e., control of the growth terms. From
(2.1), the target reproduction number TC = ρ(C(I −A+C)−1). Since matrix
C has rank 2, it follows that, provided a11 < 1, a33 < 1,

TC = ρ
([

0 qa13a21
a32 qa13a31 + qa23a32(1− a11)

])
, (3.10)

with q = 1/((1 − a11)(1 − a33)). Alternatively, an explicit equation involving

TC can be derived as follows. Let Ã =

 a11 0 a13
a21/σ 0 a23
a31/σ a32/σ a33

 be the controlled

matrix. By Theorem 1, the target reproduction number TC is the value of σ
such that ρ(Ã) = 1. By Theorem 2 and applying formula (3.8) to matrix Ã, it
follows that ρ(Ã) = 1 if and only if

T3(Ã) =
a33 + a13a31σ

−1 + a23a32σ
−1 + a13a32a21σ

−2 − a11a33 − a11a23a32σ−1

1− a11
= 1.

Solving this gives a quadratic equation in σ−1, namely,

a13a21a32(σ−1)2+(a13a31+a23a32−a11a23a32)σ−1+(−1+a11+a33−a11a33) = 0.
(3.11)
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When multiplied by σ2, this agrees with the characteristic equation of the
matrix in (3.10). As shown in Theorem 4, the terms in (3.11) have graphical
interpretations: the coefficient of the quadratic term corresponds to the weight
of the cycle (or cycle-union in general) that contains two target entries, the
coefficient of the linear terms corresponds to the weights of cycle-unions that
contain one target entry, and the constant term corresponds to the weights of
cycle-unions that do not contain any target entry (including the empty digraph
of weight 1).

The cycles and cycle-unions used to calculate the target reproduction num-
bers can be interpreted biologically in terms of the organism’s life cycle. For
example, in (3.11), the term containing two target entries, a13a21a32, starts
with flowers, goes to the seed bank (a13), then to rosettes (a21), then back
to flowers (a32). The terms containing one target entry and a single cycle
are as follows: flowers-seed bank-flowers (a13a31) and flowers-rosettes-flowers
(a23a32). The term containing one target entry and the union of two cycles is
flowers-rosettes-flowers (a23a32) multiplied by seed bank-seed bank (a11). The
terms containing no target entries are as follows: the empty digraph (−1), seed
bank-seed bank (a11), flowers-flowers (a33), and the product of the latter two
representing the union of the two cycles.

3.4.4 Now we consider the minimum cost population control strategies for
the scentless chamomile matrix A in (3.7) with the combination of control
strategies in 3.4.1 and 3.4.3 above, i.e., control of fecundity and growth. In
order to determine the minimum cost control effort, consider the controlled

matrix Ã =

 a11 0 a13/τ
a21/σ 0 a23/τ
a31/σ a32/σ a33/τ

 with τ > 1 and σ > 1, and set ρ(Ã) = 1,

which is equivalent to setting T3(Ã) = 1 by Theorem 2. It follows from (3.8),
since a11 < 1, that

τ−1(a33 + a13a31σ
−1 + a23a32σ

−1 + a13a32a21σ
−2 − a11a33 − a11a23a32σ−1)

1− a11
= 1,

thus
τ =

a13a32a21
1− a11

σ−2 +
(
a23a32 +

a13a31
1− a11

)
σ−1 + a33, (3.12)

namely,

a13a32a21τ
−1σ−2+

(
a13a31+a23a32−a11a23a32

)
τ−1σ−1+(a33−a11a33)τ−1−1+a11 = 0.

(3.13)
Suppose the costs per unit of effort for control strategies with respect to strate-
gies 3.4.1 and 3.4.3 are d1 and d2, respectively. We assume, for illustration,
that τ − 1 and σ− 1 measure the efforts needed for the control matrix Ã, and
the corresponding total cost function is defined as D = d1(τ − 1) + d2(σ − 1).
Using (3.12), it follows

D(σ) = d2(σ− 1) +d1
a13a32a21
1− a11

σ−2 +d1

(
a23a32 +

a13a31
1− a11

)
σ−1 +d1(a33− 1).

(3.14)
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It can be verified that the minimum cost D∗ = D(σ∗) is achieved when σ = σ∗

where σ∗ is a critical point of D(σ). In particular, σ∗ is the unique positive
root of

D′(σ) = d2 − 2d1
a13a32a21
1− a11

σ−3 − d1
(
a23a32 +

a13a31
1− a11

)
σ−2 = 0,

or equivalently

(σ∗)3 − d1
d2

(
a23a32 +

a13a31
1− a11

)
σ∗ − 2

d1a13a32a21
d2(1− a11)

= 0.

Figure 2 illustrates the cost minimization process graphically. It is possible
to control the populations when values of σ and τ fall above the solid curve.
The straight line shows the cost curve for various different costs. The minimum
cost, and resulting values σ = σ∗ and τ = τ∗ occur when the cost curve is
tangent to the control curve.

4 Applications to epidemiology

4.1 Basic reproduction numbers as target reproduction numbers

Consider an ordinary differential equation compartmental model for infectious
diseases. Let J be the Jacobian matrix, representing the linearization of the
dynamics of the populations in the disease compartments at the disease-free
state. Following the next generation matrix method (Diekmann et al. 2013,
2010; van den Driessche and Watmough 2002), consider a decomposition of J
as J = F −V , where F and V represent the transmission matrix and transfer
matrix, respectively. In particular, the inverse of V exists, and both F and
V −1 are nonnegative. Then the basic reproduction number R0 is defined as the
spectral radius of the next generation matrix FV −1, that is, R0 = ρ(FV −1).
It sometimes happens that several terms in the disease models might have
arguable biological interpretations or customarily be treated in a certain way
for mathematical simplicity, resulting in a different decomposition of J =
F̃ − Ṽ , another next generation matrix F̃ Ṽ −1, and another basic reproduction
number R̃0 = ρ(F̃ Ṽ −1). Since both next generation matrices FV −1 and F̃ Ṽ −1

correspond to the same stability problem of matrix J , it follows that R0 and
R̃0 always stay on the same side of the threshold value 1; see, for example,
Knipl (2016, Proposition 2.1). Set A = FV −1, and thus R0 = ρ(A). Then
the following result shows that R̃0 is actually a certain target reproduction
number for matrix A, which extends and provides biological insights to earlier
results by Bani-Yaghoub et al. (2012, Section 3.2) and Saad-Roy et al. (2015,
Theorem 1).

Theorem 6 Suppose that J = F − V = F̃ − Ṽ , the inverse of V and Ṽ both
exist, and F, F̃ , V −1, Ṽ −1 are nonnegative. If F − F̃ > 0 and ρ((F − F̃ )V −1) <
1, then R̃0 = ρ(F̃ Ṽ −1) is the target reproduction number TC as in (2.1) for
A = FV −1 corresponding to the target matrix C = F̃ V −1.
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Fig. 2 Demonstration of the calculation of minimum cost control for the scentless
chamomile system studied in Section 3.4.4. The solid curve describes the relationship be-
tween fecundity control (τ) and growth control (σ) given by equation (3.12). Control is
achieved for all points (σ, τ) lying above this curve. The dashed line shows the total cost
function which achieves minimum cost. This is achieved at the value (σ∗, τ∗) given by the
dot. The lower dotted line shows that control cannot be achieved for a lower than minimum
cost, and the higher dotted line shows that when costs are higher a range of fecundity and
growth values are available for successful control. For illustrative purposes, the coefficients
for each power of σ in (3.12) were taken equal to 1 and d2/d1 was taken equal to 1. The
dashed curve shows a total cost of D = 1.6 d1 and the upper and lower dotted curves show
D = 1.9 d1 and D = 1.3 d1, respectively. These values yield (σ∗, τ∗) = (1.52, 2.08).
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Proof Since A = FV −1 and C = F̃ V −1, it follows that B = A − C = (F −
F̃ )V −1. Notice that F − F̃ = V − Ṽ , and thus B = (V − Ṽ )V −1 = I − Ṽ V −1.
Hence, the target reproduction number (2.1) becomes TC = ρ(C(I −B)−1) =
ρ(F̃ V −1V Ṽ −1) = ρ(F̃ Ṽ −1) = R̃0. ut

Biologically, the basic reproduction number R0 = ρ(FV −1) can be re-
garded as the target reproduction number for A = FV −1 corresponding to
the target matrix C = A = FV −1, i.e., targeting all entries in A.

Theorem 7 Let F, F̃ , V, Ṽ satisfy assumptions in Theorem 6, and F > F̃ .
Set R0 = ρ(FV −1) and R̃0 = ρ(F̃ Ṽ −1). Then one of the following holds:

(1) 1 < R0 < R̃0;
(2) R0 = R̃0 = 1;
(3) R̃0 < R0 < 1.

Proof By Theorem 6, R̃0 = TC , where TC is defined as in (2.1) with A = FV −1

and C = F̃ V −1. On the other hand, R0 = TC′ with C ′ = A. Since F > F̃ , it
follows that C ′ > C, and thus the relations between R0 = TC′ and R̃0 = TC
follow from Theorem 3. ut

4.2 Application to heterogeneous infectious disease control

Heterogeneity exists and plays an important role in infectious disease trans-
mission. Mathematical models have been employed to understand the disease
dynamics and to evaluate the disease intervention and control strategies. For
example, the multi-group type of models (which also are called Lagrangian
models (Cosner et al. 2009)) have been used to investigate the effect of the
core group in sexually transmitted infections (Lajmanovich and Yorke 1976),
and to model the spatial spread of infectious diseases (Lloyd and May 1996).
It turns out that the basic reproduction number R0, defined as the spectral
radius of the next generation matrix (Diekmann et al. 2013; van den Driessche
and Watmough 2002), generally determines whether the disease dies out from
all groups or persists at an endemic level at each group (Guo et al. 2006; Laj-
manovich and Yorke 1976; Lloyd and May 1996). Hence, in order to eradicate
the disease from all groups, various disease intervention and control strategies
need to reduce the value of the (controlled) reproduction number below 1; see,
for example, Chow et al. (2011); Heesterbeek and Roberts (2007); Roberts
and Heesterbeek (2003). In this section, we evaluate group-targeted vacci-
nation strategies (Chow et al. 2011) by incorporating the vaccine cost into
target reproduction numbers.

An n-group infectious disease model applicable for viral diseases such as
measles or influenza leads to an n × n next generation matrix A = [

βijNi

d+γ ],

where d is the birth and death rate, γ is the recovery rate (thus 1/γ is the
mean infectious period), βij is the mass action transmission coefficient from
infectious individuals in group j to susceptible individuals in group i, and Ni
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is the constant total population in group i. To simplify our exposition, we
consider a 2-group model and take

A =
[a11 a12
a21 a22

]
, (4.1)

where aii represents the within-group transmission in group i (i = 1, 2), while
aij represents the between-group transmission in group i due to infectious
individuals in group j (j 6= i). Suppose that a vaccine can be employed to
target host individuals in group i with a cost per unit effort di; that is, it costs
dipi to effectively vaccinate a fraction pi (0 < pi ≤ 1) of the host individuals in
group i. In reality, di might depend on the population size of group i, the type
of vaccine applied, and the cost covering the utility and human resource. The
within-group and between-group transmission after the vaccine effort applied
in group i become aii/τi and aij/τi with τi = 1/(1−pi) ≥ 1. This removal of a
vaccinated proportion, pi, from a population of size Ni reduces the population
size to (1 − pi)Ni. With target sets Sτi = {(i, j)|j = 1, 2} for i = 1, 2, with
effort τi, the controlled next generation matrix is

Ã =
[
a11/τ1 a12/τ1
a21/τ2 a22/τ2

]
. (4.2)

Then the type reproduction numbers T1, T2 can be calculated using Corollary 1
and assuming a11 < 1, a22 < 1:

T1 =
a11 + a12a21 − a11a22

1− a22
= a11 +

a12a21
1− a22

, (4.3)

and

T2 = a22 +
a12a21
1− a11

. (4.4)

Applying (4.3) for matrix Ã in (4.2) gives

T̃1 = a11τ
−1
1 +

a12a21τ
−1
1 τ−12

1− a22τ−12

. (4.5)

From Theorem 2, ρ(Ã) = 1 iff T̃1 = 1, and since τi = 1/(1− pi) it follows that

1 = a11(1− p1) +
a12a21(1− p1)(1− p2)

1− a22(1− p2)
. (4.6)

Let D = D(p1, p2) denote the cost function with vaccination among two groups
that effectively vaccinates fractions pi of the group populations. Then, by
assumption,

D = d1p1 + d2p2, 0 ≤ p1, p2 ≤ 1. (4.7)

The minimum cost group-targeted vaccination strategies can be investigated
by minimizing the cost function D in (4.7) subject to the constraint (4.6).
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Theorem 8 Suppose that R0 = ρ(A) > 1, a11 < 1, and a22 < 1. Let T1, T2
be as defined in (4.3)-(4.4). Then the cost function D(p1, p2) in (4.7) subject
to (4.6) achieves the minimum D∗ = D(p∗1, p

∗
2) where p∗1 and p∗2 satisfy the

following conditions.

(1) If a11a22 < a12a21, then either p∗1 = 0 or p∗2 = 0.

(1a) If, in addition,
d2
d1

> r̄ :=
1− 1

T1
1− 1

T2
, then p∗1 = 1− 1

T1
and p∗2 = 0.

(1b) If, in addition,
d2
d1

< r̄, then p∗1 = 0 and p∗2 = 1− 1

T2
.

(2) If a11a22 > a12a21, then p∗1 and p∗2 depend on the following constants

p̄1 = 1−
a22 −

√
d2
d1
a12a21

a11a22 − a12a21
and p̄2 = 1−

a11 −
√

d1
d2
a12a21

a11a22 − a12a21
. (4.8)

(2a) If

r∗ :=
(a22 + a12a21 − a11a22)2

a12a21
<
d2
d1

< r∗ :=
a12a21

(a11 + a12a21 − a11a22)2
,

then 0 < p∗1 = p̄1 < 1− 1

T1
and 0 < p∗2 = p̄2 < 1− 1

T2
.

(2b) If
d2
d1

> r∗, then p∗1 = 1− 1

T1
and p∗2 = 0.

(2c) If
d2
d1

< r∗ , then p∗1 = 0 and p∗2 = 1− 1

T2
.

Proof It follows from (4.6) that

p1 = p1(p2) = 1− 1− a22(1− p2)

a11 + (1− p2)(a12a21 − a11a22)
.

Thus

p′1 =
−a12a21

(a11 + (1− p2)(a12a21 − a11a22))2
< 0,

p′′1 =
2a12a21(a11a22 − a12a21)

(a11 + (1− p2)(a12a21 − a11a22))3
,

and the sign of p′′1 agrees with the sign of a11a22 − a12a21.
When a11a22 < a12a21, p1 = p1(p2) is a continuous curve in the p1-p2 plane

connecting (1− 1
T1 , 0) and (0, 1− 1

T2 ), which is decreasing and concave down as
p′′1 < 0. The cost function D = d1p1 + d2p2 corresponds to a series of straight
lines with different values D. The minimum value of D is obtained when one
of the straight lines cross one of the boundary points (0, 1− 1

T2 ) or (1− 1
T1 , 0).

When a11a22 > a12a21, the curve p1 = p1(p2) is decreasing and concave
up. The minimum value of D might be obtained when the straight line is
tangent to the curve p1 = p1(p2) at the interception point (p̄1, p̄2), where p̄1
and p̄2 are given as in (4.8). It can be verified that if the assumption in (2a) is
satisfied, both p̄i are in the biologically reasonable range between 0 and 1− 1

Ti .
Otherwise, the minimum value of D is obtained when the straight line crosses
the boundary point (1− 1

T1 , 0) or (0, 1− 1
T2 ); this is the case (2b) or (2c). ut
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Note that r∗ = r∗ = r̄ if and only if a11a22 = a12a21 (i.e., A and Ã are
singular matrices) provided R0 > 1. Biologically, if between-group transmis-
sion is larger than within-group transmission in a two-group disease model,
then the one-group vaccination strategy is better than the two-group vaccina-
tion strategy. On the other hand, if within-group transmission is larger than
between-group transmission (e.g., for infectious diseases that spread in several
geographic regions), then the two-group vaccination strategy might be more
cost-effective (especially when the cost per unit effort di in each group is rela-
tively comparable). For the latter situation, when the cost per unit ratio d2/d1
increases, (4.8) shows that it is better to increase vaccine coverage in group 1,
as p̄1 increases . We now illustrate these statements with specific examples.

Example 1: Let A = [aij ] =
[ 0.5 0.6

0.6 0.5

]
, then T1 = T2 = a11 + a12a21

1−a22 =

1.22. In this example, both within-group transmissions and between-group
transmissions are equal, with the latter being larger. By Theorem 2, R0 =
ρ(A) > 1. Note that a11 < 1, a22 < 1 and a11a22 = 0.25 < a12a21 = 0.36; all
assumptions in Theorem 8(1) are satisfied. By Theorem 8, a better vaccination

strategy is to target the group with lower cost per unit effort as r̄ =
1− 1

T1

1− 1
T2

= 1,

and more than p1 = 1− 1/T1 of the host population in this group needs to be
effectively vaccinated in order to eradicate the disease from both groups.

Example 2: Let A = [aij ] =
[ 0.6 0.5

0.5 0.6

]
, then T1 = T2 ≈ 1.11 and R0 =

ρ(A) > 1. In this case, within-group transmissions are larger. Since a11a22 =
0.36 > a12a21 = 0.25, by Theorem 8(2), r∗ = 0.9604, r∗ = 1.0412 and the
minimum cost vaccination strategy is determined by the cost per unit ratio in
two groups. Specifically, if r∗ < d2/d1 < r∗, then it is better to vaccinate both
groups with more than p̄i of the host population in each group i to require
immunity from vaccine. If d2/d1 > r∗, then it is better to vaccinate group 1
such that more than 1−1/T1 of the group population is effectively vaccinated.
If d2/d1 < r∗, then the better vaccination strategy is to target group 2 such
that more than 1− 1/T2 of the population in group 2 requires immunity from
vaccine.

Example 3: The results developed above can also be applied to diseases with
no between-group transmission such as a vector-borne disease (e.g., malaria)
or a heterosexually transmitted diseases (e.g., gonorrhea). Let A = [aij ] =[

0 a12
a21 0

]
be the next generation matrix for simple disease models in which

transmission happens due to host-vector contact for vector-borne diseases or
due to heterosexual contact for sexually transmitted infections (STIs). By
Theorem 8 (1), it is better to target either the vector population or the host
population for vector-borne diseases and target either the female or male group
for STIs, depending on the cost of corresponding one-group target strategies.
For example, in order to eradicate malaria, the mosquito population or the
susceptible human population needs to be reduced below a certain threshold.
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According to Theorem 8, it is better to apply all available resources to tar-
get only one population, either mosquito control or human protection (e.g.,
bed nets, vaccination), depending on the relative costs involved. However, our
underlying model is very simple, and since control or vaccination costs are
expected to be variable (e.g., rising when nearing a high vaccination rate), it
may be more effective to target both hosts. This could be the subject of further
research using more realistic and complicated infectious disease models.

5 Concluding remarks

We have developed a general mathematical framework, based on newly ex-
tended target reproduction numbers, which unifies threshold parameters in
theoretical biology. The extended target reproduction numbers include the
classical net reproductive value used in ecology, and the basic and type re-
production numbers used in epidemiology. These parameters delineate con-
ditions under which a population or disease persists or goes extinct. Specifi-
cally, knowledge of these target reproduction numbers aids in measuring the
change of certain parameter values in order to protect endangered species (e.g.,
salmonids, see Section 3.3), and to determine vaccination strategies for disease
control (e.g., a two group infectious disease model, see Examples 1 and 2 in
Section 4.2).

Our results on target reproduction numbers are developed algebraically,
but graph theoretic interpretations using cycle-unions in the digraph under-
lying the dynamics are also given. This approach leads to a characteristic
equation that is useful for deriving minimum cost population mixed control
strategies in terms of the cost of each individual control strategy (see Section
3.4.4 and Figure 2 for control of scentless chamomile, and Section 4.2 for dis-
ease control by vaccination). The general framework developed can be applied
to Leslie matrices, with extensions to Lefkovitch matrices for stage structured
populations, as well as to multigroup disease transmission models. Using pa-
rameter values and cost functions estimated from data, the results can be
applied to give practical suggestions for minimum cost control strategies to
control or preserve populations and to eradicate infectious diseases.
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