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Abstract

Homogeneous Charge Compression Ignition (HCCI) has the potential to significantly

reduce engine out oxides of nitrogen (NOx) emissions, while maintaining a high fuel

efficiency compared to existing lean-burn spark ignition engines. HCCI is character-

ized by compression induced autoignition of a lean homogeneous air-fuel mixture. The

challenge with HCCI combustion is the high cyclic variation due to the lack of direct

ignition control leading to cycles with high emissions. Advances in control strategies

and microcontrollers mean that it is now possible to experimentally test these control

strategies for HCCI combustion. In this thesis two advanced control strategies will

be developed and experimentally implemented on a single cylinder research engine.

To control HCCI combustion it is necessary to combine fast actuators, in-cycle

control and model based cycle-to-cycle control. Using a high speed ignition system

which can add energy to the cylinder in under 10 µs, an in-cycle controller was

developed and experimentally tested. The proposed controller was able to successfully

reduce the standard deviation of combustion phasing and indicated mean effective

pressure (IMEP) by up to 34% and 28%, respectivly. Based on the success of the

in-cycle controller, it was coupled with a cycle-to-cycle controller for the experimental

implementation of a multiscale controller. When compared to the single actuation of

the in-cycle control strategies, the advantages of MIMO controller showed a significant

improvement in the prediction and prevention of misfire cycles. This control approach

provided a clear increase in indicated efficiency from 28.09 % to 29.42 %, improved

IMEP from 2.88 bar up to 3.02 bar and helped to stabilize the operation point and a
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reduction of standard deviation for IMEP and CA50 by more than 65 % was achieved.

Three models have been developed for determining the emissions and performance

of HCCI. These models cover a wide range of modeling strategies from physics based

kinetics modeling to fully machine learning based black-box models. The first model

investigated was a physical kinetics model which is able to provide a breakdown of the

chemical species in the cylinder. An offline kinetics model was successfully created

and showed that the chemical components of the cylinder could be estimated using

a relatively simple kinetics model with 34 species and 36 reactions. To improve the

real-time capability of the model, a machine learning (ML) model was then inves-

tigated. The first ML model developed is a support vector machine (SVM) model

with the goal of determining the effect of different ML approaches and feature set

selection on the model quality for HCCI emissions prediction. A linear and a non-

linear SVM model were compared to a traditional artifical neural network (ANN)

model. This comparison showed for a small data set that SVM based models were

more robust to changes in feature selection and better able to avoid local minimums

compared the ANN leading to a more consistent model prediction. Finally a transient

engine performance and emissions model for HCCI was created using a deep neural

network (DNN) containing a long short term memory (LSTM) layer. This model

requires significantly more data than the SVM model. However, due to the recurrent

neural network the model is able to capture time dependencies in the data. This

resulted in an accurate model for transient engine operation with an error less than

5 % for all four model outputs. Of the models developed and tested the LSTM model

showed the greatest accuracy while preserving a simple model structure to allow for

real-time implementation.

Using the developed LSTM based DNN model a nonlinear model predictive con-

troller (NMPC) has been designed and experimentally tested. To successfully imple-

ment the NMPC, the open-source package acados which enables the integration of
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embedded solvers for nonlinear optimal control has been used. The NMPC online

optimization was tested on various processors to determine which provided the re-

quired realtime turnaround time. Of the six devices tested, all showed the possibility

to meet the real-time requirements. Therefore to keep implementation costs low a

Raspberry Pi 400 was chosen to test on the engine testbench. The implementation of

the acados NMPC on the Raspberry Pi 400 has been experimentally shown to follow

an IMEP reference with an RSME of 0.133 bar on the HCCI engine. The NMPC was

also able to observe constraints and keep the combustion phasing close to the target

value.
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Chapter 1

Introduction and Background 1

Global energy consumption is increasing due to rapid population growth and eco-

nomic development caused by the industrial revolution [17, 18]. According to the

International Energy Agency, Carbon Dioxide (CO2) emissions from the transporta-

tion sector grew by 92% from 1990 to 2020 and global CO2 emission levels are expected

to rise by 29% by the end of 2035 [19]. Additionally, the International Energy Agency

predicts that between 2020 and 2035 8.6 billion metric tons will be emitted [19]. In

Canada from 2000 to 2017, the CO2 emission level has increased by 19.2% with 44%

of that increase caused by the transportation sector [20]. Natural Resources Canada

reports that of the 69% of primary energy converted to secondary energy, 21% is de-

voted to the transportation sector. Of this amount, gasoline, diesel fuel, and aviation

fuels contribute the most: 58%, 28%, and 10% respectively [20].

This has caused governments around the world to introduce more stringent envi-

ronmental legislation for all sectors including transportation. Automobile manufac-

tures are responding by developing new propulsion methods in an attempt to meet

these targets. Currently, the G-20 countries account for 90% of the global vehicle

sales and 17 of these countries follow the European emissions legislation which has

been updated to Euro 6 in 2015 [21]. The Euro 6 environmental legislation further

reduces nitrogen oxide (NOx) emissions from 0.18 to 0.08 g/km over the previous
1 This chapter is partially based on [1, 15, 16]
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Euro 5 regulations [22]. These new regulations are challenging to meet using current

engines and require expensive exhaust gas aftertreatment systems such as selective

catalytic reduction, lean NOx traps and others [21, 23]. Additionally, the recent im-

plementation of the Euro 6d emissions standards implemented in January 2021 have

not changed the limits defined in the Euro 6 standard but rather added the need to

comply with real driving emission (RDE) testing. Ambient conditions, traffic, and

driver behavior can significantly affect RDE test results. The challenge with the RDE

legislation is that engines must operate cleanly under all conditions. Engine design

and calibration are thus much more challenging [24]. Complying with RDE legisla-

tion is such a large shift from previous testbench certification testing where current

engine calibration methods are becoming unworkable. To solve this problem intelli-

gent engine emission control strategies are now being deployed. These strategies take

advantage of Artificial Intelligence (AI) and optimal control strategies to integrate

the advanced after-treatment systems which are needed to meet the new regulations.

Some AI approaches give the system the ability to modify engine calibration during

real (on road) testing by adapting the controller based on the actual measured engine

operating condition. This is useful to meet RDE requirements.

One way to reduce emissions is to lower the engine out emissions and boost the

engine efficiency. Low temperature combustion methods to improve the engine out

emission levels while also improving engine fuel efficiency is being actively inves-

tigated [25]. Homogeneous Charge Compression Ignition (HCCI) is a combustion

method which utilizes a premixed homogeneous charge of fuel and air which is auto-

ignited from the rising temperature and pressure during compression [26]. HCCI has

shown promising engine out NOxemission reduction, however, the lack of a direct

timing control is a major control and modeling challenge [27]. The speed of the com-

bustion process also restricts the type of control strategies which can be tested due

to time constraints of current microprocessors.

2



HCCI was first introduced in 1979 under the name Active Thermo-Atmosphere

Combustion (ATAC) [28]. This combustion method has an emission reduction poten-

tial which is desired due to new more stringent environmental regulations. HCCI is

a combustion method that combines characteristics of Spark Ignition (SI) and Com-

pression Ignition (CI) engines. Similar to SI engines, the air and fuel mixture is

homogeneous at the the point of ignition. However, instead of utilizing an electrical

spark to initiate combustion, an HCCI engine relies on the compression of the fuel

and air mixture to increase the cylinder temperature and pressure above the auto-

ignition point of the fuel. As the mixture is homogeneous, the combustion process

begins at many points in the combustion chamber leading to a heat release that is

much faster than both SI and CI engines [29]. This rapid heat release and the high

compression ratios used allow for combustion that is closer to the ideal Otto cycle

and therefore offer thermodynamic efficiency benefits [30]. As HCCI combustion of-

fers many advantages including engine out emission reductions, fuel flexibility, and a

thermal efficiency increase, there are also drawbacks including ignition timing chal-

lenges, increased unburnt hydrocarbon and carbon monoxide emissions, as well as a

limited operating range [26].

The current state of the art research that has been performed in the area of HCCI

engine control with a focus on real-time engine control strategies is reviewed in this

chapter. This will help to provide the motivation for the work presented in this thesis

and allow for the main contributions to be defined. Finally, the organization and

structure of the thesis will be presented.

1.1 Homogeneous Charge Compression Ignition
(HCCI)

Homogeneous Charge Compression Ignition (HCCI) has shown promising engine out

emissions reductions, however, the lack of a direct timing control is a major control
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and modeling challenge [3, 27, 31]. Furthermore, increased Hydrocarbon (HC) and

Carbon Monoxide (CO) emissions have also been observed [9]. The main combus-

tion mechanism for HCCI is compression induced autoignition of a premixed charge,

leading to a high dependency on the in-cylinder gas mixture properties.

HCCI is a part-load combustion method, which is characterized by lean Low Tem-

perature Combustion (LTC). HCCI has the potential to significantly reduce NOx

emissions by as much as 99% when compared with current stratified lean-burn gaso-

line combustion [32–34]. With this reduction in engine-out emissions, expensive ex-

haust after-treatment systems can be reduced or simplified [35–37]. HCCI utilizes

rapid multi-site combustion, this in combination with reduced wall heat losses from

LTC leads to thermodynamic and fuel efficiency benefits of up to 30% over current

gasoline engines [38]. HCCI combustion allows for the use of any fuel that can be

vaporized in air and auto-ignited using the cylinder compression. This opens the pos-

sibility to use non-standard fuels instead of gasoline or diesel fuel. Therefore, various

standard biofuels including methanol and ethanol [39, 40] along with some newer

biofuels including rapeseed methyl ester [41], isopentanol [42], dimethyl carbonate

[43], butanol isomers [44] and others can be effectively burned in an HCCI engine.

There is also the possibilty to burn fuels containing water such as wet-ethanol, which

is ethanol that has not been completely distilled to save processing energy [45].

HCCI combustion is defined by compression induced autoignition and is therefore

highly dependent on the in-cylinder temperature, pressure and fuel mixture after

compression. The lack of a direct combustion timing control method like spark timing

in SI engines or injection timing in traditional CI engines is a major challenge of this

combustion method. Ignition timing is strongly dependent on temperature and can

be altered through intake air heating, increased compression ratio or Exhaust Gas

Recirculation (EGR) [29, 46–48]. When using internal EGR as a means to provide

the thermal energy required to achieve autoignition, a strong coupling between cycles
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can exist when the engine is operated near the misfire limit [49, 50]. Current cycle-

based control strategies only stabilize a small section of the operation range, which

is insufficient for practical engine deployment [51]. Therefore, a stabilizing controller

which works over a wide range of operating conditions is needed to reduce the cyclic

variations in combustion phasing and load, and prevent a spontaneous shift from

stable to unstable operation. Previous work in this area has been investigated by [27,

35, 52–55].

This section will focus on introducing the basics of HCCI combustion and some of

the challenges of controlling the process.

1.1.1 Combustion Metrics

There are various combustion metrics that are useful in describing not only HCCI

combustion but all internal combusiton engine combustion processes. These metrics

will be used throughout this thesis and will be defined below.

The indicated mean effective pressure (IMEP) is used to describe the average pres-

sure in the combustion cylinder during a cycle and is used to describe the load output

of the engine. The variation in the IMEP, σIMEP, is used to describe the stability of

the combustion where a low variation in IMEP is a smooth running engine that is

producing the same power output every cycle. The IMEP can be calculated using [56]:

IMEP =
work output per cylinder per mechanical cycle

swept volume per cylinder
=

1

Vd

∫︂
pcyldV (1.1)

Where Vd is the swept cylinder volume and dV is the change is cylinder volume.

The indicated work can be calculated using the enclosed area of a pressure vs volume

(p-V ) trace, which can easily be calculated from the measured cylinder pressure and

engine position. IMEP is normalized to the number of cylinders or cylinder volume

making it a good comparison between different engines, however, it does not consider

the frictional losses of the engine. Then by defining the limits of integration around
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both the main combustion from intake valve closing (IVC) until exhaust valve opening

(EVO) and for the negative valve overlap (NVO) period from exhaust valve closing

(EVC) till intake valve opening (IVO) the IMEP of each phase of the cycle can be

determined using:

IMEPmain =
1

Vd

∫︂ EVO

IVC
pcyldV (1.2)

IMEPNVO =
1

Vd

∫︂ IV O

EV C

pcyldV (1.3)

The pressure rise rate, dp/dϕ [bar/deg], of an engine gives a description of how

quickly the cylinder pressure is changing as a function of crank angle. At high pressure

rise rates engine damage can occur and prolonged operation at high pressure rise

rates can lead to engine failure [57]. Additionally, at elevated pressure rise rates the

acoustic combustion noise is undesirable for vehicle operator comfort. However, a

higher the pressure rise rate more closely resembles the ideal Otto cycle where the

quick combustion leads to efficiency benefits [56]. The pressure rise rate changes

throughout the combustion event, however, its maximum value is used to represent

the worst condition for that cycle and is given by:

dp/dϕ = max

⃓⃓⃓⃓
Pcyl(i)− Pcyl(i− 1)

ϕ(i)− ϕ(i− 1)

⃓⃓⃓⃓
(1.4)

Where Pcyl(i) and Pcyl(i − 1) are the current and previous cylinder pressure, re-

spectively.

The air-to-fuel ratio (AFR) is an important combustion metric that is used describe

the mass of air, ma, that is brought into the cylinder in relation to the mass of injected

fuel, mf , and is given by:

AFR =
ma

mf

(1.5)

For a given fuel chemistry it is possible to calculate the exact amount of fuel

required for a given amount of air for complete combustion, this is called the stoichio-
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metric AFR. The ratio of AFRact, to the stoichiometric AFR, AFRstoic, is defined as

the equivalence air-fuel ratio φ and lambda λ, which are given by:

λ =
1

φ
=

AFRact

AFRstoic

(1.6)

A value of lambda less than 1 which is rich operation where there is excess fuel for

the amount of oxygen while a value of lambda greater than 1 is lean engine opera-

tion where more oxygen is present for the given fuel amount. For HCCI combustion

the engine is operated in the lean operation conditions which is required to allow

significant cylinder charge dilution to help slow the extremely rapid combustion. Ad-

ditionally, this lean operation also provides fuel reduction benefits when compared to

traditional stoichiometric SI.

The heat release from the combustion of the fuel is calculated from the measured

incylinder pressure. Then using the heat realease it is possible to calculate the start,

duration and end of combustion as well as the combustion phasing CA50. The general

equation for the pressure analysis is given by [56]:

dQb

dϕ
= −mcv

dT

dϕ
+

dQw

dϕ
− p

dV

dϕ
+

dQf,e

dϕ
+

dQH2O,e

dϕ
+
∑︂
i

(hi − ui)
dmi

dϕ
(1.7)

To determine the heat release, both the combustion and NVO recompression phase

are considered where the transferred masses into the cylinder is zero. By neglecting

the blow-by mass flow[58] and assuming the mixture preparation takes place before

start of combustion, simplifies eqn 1.7 to become:

dQb

dϕ
= −mcv

dT

dϕ
+

dQw

dϕ
− p

dV

dϕ
(1.8)

By applying the ideal gas simplifications to the equation of state and differentiating

by ϕ results in:

p
dV

dϕ
+ V

dp

dϕ
= mR

dT

dϕ
+mT

dR

dϕ
+RT

dm

dϕ
(1.9)

Substituting eqn 1.9 into eqn 1.8 then yields the temperature gradient:

dT

dϕ
=

1

mR

{︃
p
dV

dϕ
+ V

dp

dϕ
−mT

dR

dϕ
−RT

dm

dϕ

}︃
(1.10)
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By applying the previously made assumption that the mass gradient is zero, the

equation 1.10 simplifies to the characteristic equation for the pressure trace analysis:

dQb

dϕ
= −cv

R

(︃
V
dp

dϕ
−mT

dR

dϕ

)︃
−
(︂
1 +

cv
R

)︂
p
dV

dϕ
+

dQw

dϕ
(1.11)

By assuming a constant gas composition dR/dϕ = 0 and using the gas relations

R = cp-cv and γ = cp/cv, the rate of heat release can be written as:

dQb

dϕ
= − 1

γ − 1
V
dp

dϕ
− γ

γ − 1
p
dV

dϕ
+

dQw

dϕ
(1.12)

Finally, by integration of the rate of heat release rate over the crank angle duration

of interest (from start to end of combustion) yields:

Qf (ϕ) =

∫︂ ϕEOC

ϕSOC

dQf (ϕ) (1.13)

To describe the timing and duration of combustion the crank angle for 50% net

heat release, CA50. CA50 is defined as the crank angle when 50% of the integrated

total heat release is reached as shown in Figure 1.1. CA50 describes the timing of the

combustion process and variations in CA50 influence the combustion efficiency and

temperature which in turn significantly changes engine out emissions. The CA50 is

often a controlled variable for HCCI engine control strategies as a specific CA50, which

varies between 5-8 CAD aTDC, is desired for maximum power and efficiency [35].

Similar to IMEP, the variation in CA50 is useful in describing the cyclic variability of

the HCCI combustion process. Not only is the combustion timing important but the

length of the combustion event is also valuable and is given by the burn duration as

the length in crank angle it takes for the combustion to proceed from 10 to 90% of the

complete heat release, CA10−90. For this work it is defined as the time in crank angle

degrees for the combustion to consume between 10% and 90% fuel mass, CA10−90 as

depicted in Figure 1.1.
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Figure 1.1: Normalized heat release showing CA10−90 and CA50 (adapted from [15])

Exhaust Gas Recirculation

To provide enough thermal energy for the HCCI auto-ignition process to begin it

is often necessary to retain some exhaust gas to increase the temperature of the

trapped cylinder charge. External or internal exhaust gas recirculation (EGR) are

often used [59]. External EGR involves routing the hot exhaust from the exhaust

manifold back into the intake manifold. Cooling of the exhaust gas occurs and the

ability to change the amount of EGR on a cyclic basis when using an external EGR

system is not possible [60].

When the exhaust gas remains in the combustion chamber or only leaves the cylin-

der briefly into either the intake or exhaust manifolds before being returned into the

combustion chamber is referred to as internal EGR [61]. When the exhaust is pushed

into the intake / exhaust port and then drawn back into the cylinder this is referred to

as intake or exhaust EGR [61]. This method allows changes in EGR on a cyclic basis,

however, it requires that one (or both) of the valves remain slightly open as the piston

passes top dead center (TDC). To accommodate this valve strategy it is necessary to
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prevent a collision with the valves so often deep valve pockets are machined into the

piston. This limits the piston shape to designs which provide inefficient in-cylinder

mixing. This type of internal EGR also leads to increased thermal losses as the hot

exhaust gas is drawn through the valves twice. There is also increased pumping losses

as the air must be pushed out of the cylinder and drawn back in past the valves which

act as a flow restriction.

Combustion chamber EGR is where the exhaust valve closes before the piston

reaches TDC and the intake valve opens late (after gas exchange TDC) called negative

valve overlap (NVO). This keeps the exhaust gas in the cylinder leading to reduced

pumping losses compared to the other EGR strategies. To minimize the rebreathing of

exhaust gas the valve timings are varied symmetrically around TDC. By increasing the

NVO duration the amount of exhaust gas that is trapped in the cylinder is increased

as shown in Figure 1.2.
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Figure 1.2: Effect of varying NVO duration on cylinder pressure from [15].
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1.1.2 Emissions

HCCI offers engine out emission benefits compared to SI and CI combustion engines.

The rapid combustion or short burn duration of HCCI helps keeps the cylinder tem-

perature low during the combustion process which helps to avoid the NOx formation

temperature [56]. As HCCI combustion is a lean homogeneous combustion there are

no fuel rich areas which greatly reduces the production of soot emissions. The lean

burn and low temperature combustion process does increase the amount of unburned

hydrocarbon (uHC) and carbon monoxide (CO) emissions, especially at low engine

loads [62]. The increased uHC are due to the low combustion temperature and flame

extinction at the cold cylinder walls [63]. The oxidation of CO to CO2is a relatively

slow process and the reaction rate further decreases with low temperatures, which

are found in HCCI combustion [63]. Both uHC and CO emissions, can be easily han-

dled using an aftertreatment oxidation catalyst assuming the exhaust temperature is

sufficiently high [56, 62].

1.1.3 Combustion Stability

Unlike SI or CI engines where ignition is controlled directly through an electrical

spark or fuel injection, for HCCI the conditions in the cylinder and chemical kinetics

of the fuel dictate when combustion begins. No direct method to control combustion

timing leads to a limited operating range. At low loads misfire limits HCCI operation,

while high pressure rise rates and peak cylinder pressures restrict high loads [29, 51].

The lack of direct ignition control can also lead to large cyclic variations with

correspondingly poor combustion stability [52]. Experimentally measured in-cylinder

pressure signals of three consecutive cycles are shown in Figure 1.3 as a function of

engine crank angle. Gas exchange TDC occurs at 360◦ crank angle (CA) and the

increase in in-cylinder pressure is due to the internal NVO. While combustion TDC

is at 720◦CA and the pressure rise is due charge compression and fuel combustion.
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Here cycle 1 is a good representation of a standard HCCI cycle with a normal com-

bustion phasing of 12◦CA after top dead center (aTDC), it is then followed by cycle

2 which can be considered a misfire with no combustion occurring. The incomplete

combustion residual fuel is transferred to the next cycle through internal EGR. As

the combustion phasing is very late, the in-cylinder temperature increases which in-

creases the temperature of the exhaust gas transferred to cycle 3. There is also the

possibility that during the negative valve overlap (NVO) recompression a portion of

the residual fuel ignites (as seen in cycle 3) and leads to a further temperature increase

of the residual exhaust gas. The result is an increase in the temperature of the fresh

air charge and the temperature after compression. This leads to an early combustion

phasing with a high pressure rise rate. These results are consistent with other re-

searchers [50, 64, 65]. It is thus essential to consider the coupling between subsequent

combustion events in HCCI since it is an auto ignition process that depends on the

in-cylinder conditions.
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Figure 1.3: Distinct cyclic variation in the in-cylinder pressure pcyl trace at n = 1500
1/min, IMEP = 4.0 bar from [15].

To understand the coupling between combustion cycles, a return map of CA50 is
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Figure 1.4: Distinct cyclic variation in combustion phasing CA50 return map at n =
1500 1/min, IMEP = 4.0 bar from [15].

shown in Figure 1.4. A return map is used to show the relationship between the com-

bustion phasing of the current cycle, CA50(i), and of the following one, CA50(i + 1).

When the two consecutive cycles are not correlated, the return map shows a stochas-

tic scatter of data points around the center of the return map. The spread of the

data points can be used to represent the stochastic variation from cycle to cycle [49].

When a distinct pattern or branching can be seen on the return map as is the case

in Figure 1.4, a direct coupling between cycles exists [55]. To effectively stabilize

combustion the spread of the data points and distinct ‘V’ should be reduced. Return

maps are often used in application where a short prediction horizon is desired. As

they only provide correlation information for a few cycles.

The HCCI CA50 cyclic variation shown in Figure 1.4 is highly undesired as an early

combustion phasing results in high pressure rise rates leading to increased combustion

noise and possible engine damage [66, 67]. Overall, high cyclic variation of combustion

also tends to reduce thermal efficiency and increase exhaust emissions [68]. The cycles

with a very late combustion phasing (partial combustion) lead to an increase in HC
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and CO emissions due to the unburnt fuel and low combustion temperatures. The very

early and rapid combustion cycles have increased combustion temperatures leading

to increase NOx emissions from these cycles. The combustion stability of an HCCI

engine has a significant impact on its emission levels and maintaining combustion

stability has been the focus of much research.

1.2 HCCI Control Strategies

This section will provide an overview of previous work regarding engine control strate-

gies applied to various traditional combustion processes with a focus on current re-

search covering HCCI combustion control.

1.2.1 Actuators for control

To stabilize HCCI combustion various control strategies utilizing a wide range of

actuators to change the in-cylinder state have been both tested in simulation and

experimentally implemented. Table 1.1 shows several control actuators that have

been developed and tested for HCCI combustion. Each method has its advantages

and disadvantages.

Intake air heating has been successful for achiving HCCI combustion but the re-

sponse time of the heater makes it unsuitable for cycle by cycle control [29]. External

exhaust gas recircultaion (EGR) is generally too slow to change the cylinder condi-

tions on a cycle-by-cycle basis and introduces another source of thermal energy loss,

however, it can be used in combination with other control strategies [47, 69]. Internal

EGR in the form of NVO through Variable Valve Timing (VVT) is a promising con-

trol method for both cycle-by-cycle and in-cycle control methods [70–72]. Using VVT

also offers reduced throttling losses as power output can be regulated by diluting the

incoming air charge with high EGR rates, however, they require a VVT system to

be added to the engine [71]. Variable compression ratio systems have shown they
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Table 1.1: HCCI Control Actuators (adapted
from [63])

Control Variable Actuator

Intake temperature [29] Electric heating

Exhaust gas recirculation [47, 69–72] External EGR

Variable valve timing

Exhaust rebreathing

Exhaust throttling

Compression ratio [46] Mechanical variable compression ratio

Mixture composition [40, 73, 74] Dual fuel

Pilot injection

NVO recompression injection

Temperature [75] Water injection

Spark assist [47] Spark plug

High energy spark system

have the ability to change the compression ratio of the cylinder on a cycle-by-cycle

basis [46]. Two fuels with different ignition properties has shown potential for HCCI

operation, however, this method requires two fuel sources and two separate injection

systems [40, 73, 74]. Various fuel injection strategies have shown increased combus-

tion timing control as well as reduced emissions [76]. Water injection had been shown

to decrease the pressure rise rate and delay combustion by reducing cylinder temper-

ature, however, like the dual fuel approach two injection systems are required and

often large amounts of water are used [75]. Spark assist is the utilization of an elec-

trical spark to initiate HCCI combustion which increases the cylinder temperature

and pressure so the remaining fuel air mixture can auto-ignite. This control strategy

has shown useful is extending the upper operating limit of HCCI but at the cost of

increased NOx emissions [47].
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1.2.2 Traditional engine control strategies

In the automotive industry, current Engine Control Units (ECUs) utilize (mostly)

feed-forward controllers. These controllers utilize a look-up table that relate parame-

ters such as commanded load or speed to specific controller outputs including fueling,

intake pressure and valve phasing. Often these tables are stacked with other tables

containing correction factors for various external conditions such as weather or spe-

cific engine operation states. These look-up tables are then used in a feedforward

controller which enables fast changes in operating points. The feedforward control is

then often coupled with a feedback controller which take a measurement of the current

engine operation to provide error compensation. Normally the feedback controller in

engine control is a Proportional Integral Derivative (PID) controller or a slow adap-

tation table. The first major addition of feedback control for combustion control is

the application of lambda regulation for SI engines where the current stociometric

ratio is measured using an oxygen sensor in the exhaust stream which is then used to

adjust the engine fueling to correct for variation in the injectors or intake system [56].

These look-up tables (or calibration maps) are generated on a test bench through

extensive testing to ensure the engine performs optimally while enhancing power

output, fuel economy, and durability. As emissions regulations become increasingly

more stringent, the development required for the creation of these calibration maps

is also becoming extremely complicated and time-consuming [77, 78]. PID controller

gains are tuned using the procedure of parameter optimization and fine tuned using

trial-and-error. The optimization process, also known as engine calibration, results in

finding look-up table values and controller gains [77, 78]. Due to increasing require-

ments for low-fuel consumption and emissions, the number of calibration parameters

have increased substantially, making manual test-bench calibration difficult and time-

consuming.
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1.2.3 Advanced control strategies

Beyond the feed-forward look-up table based control strategies traditionally used

in the automotive industry there has been a trend in both university research and

industry to implement more advanced engine control strategies for some aspects of the

engine controller. These advanced engine control methods are focused in two main

areas: 1) utilizing high speed calculations on specialized engine controllers combined

with fast actuators to allow for in-cycle control or 2) taking advantage of the increased

computational performance of the processors on the market to implement various

model based control strategies. Each of these areas will be described in more detail

below.

In-cycle engine controllers

Using the low latency and parallel computing advantages of a field programmable

gate array (FPGA) has increased their use in demanding in-cycle control applications

where calculation time is limited. For example, FPGA hardware is used to provide

closed loop control for the position of pneumatic valves [79]. Where the control is

experimentally implemented and the valve control is both stable and able to provide

a variety of valve strategies.

For HCCI control, FPGA hardware is used to calculate the heat release in real time

(calculation time of less than 0.02 CAD at 1200 rpm) which is then used for HCCI

combustion control [80]. The FPGA has also been used for a wide range of cylinder

pressure based calculations including wall heat losses and IMEP and others [81]. To

prevent an overshoot of IMEP in an HCCI engine where unburnt fuel is transferred

from the previous cycle an FPGA controller is used to correct the amount of injected

fuel in the next cycle [82]. An FPGA is used to calculate the real-time combustion

metrics, CA50 and IMEP, which are then used for closed-loop control in [83]. The

real-time calculated values were compared to offline post-processing results with ac-
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ceptable results. FPGA hardware has also been used to implement a physical based

gas exchange model that is used to calculate the cylinder state including in-cylinder

pressure, temperature and trapped mass each 0.1◦ CA in [84].

To control HCCI over a wide operating range, in-cycle individual control inter-

ventions have become necessary to stabilize the combustion process [85]. Such in-

terventions also aim to ensure low emissions [9] and high combustion efficiency [10].

Characteristic cycle-to-cycle dynamics or the reduction of the overall fuel consumption

are the focus of [86] and [87], respectively. These approaches have been implemented

using rule based-model free control. Thus, the potential of in-cycle control [88] by

fast manipulation of variables, such as water injection [3, 10] and actively controlled

glow plugs [89], has been demonstrated. Linear control laws for a single input and

a single output variable (SISO) to stabilize the combustion are also demonstrated

in [10].

These in-cycle control strategies have shown great potential to improve the HCCI

combustion process. Combining in-cycle control with effective HCCI actuators (Ta-

ble 1.1) can further improve HCCI combustion control. In addition, nesting fast

in-cycle control with slower cycle-to-cycle control can also provide HCCI combustion

stability improvements. This gap of in-cycle control with novel actuators and model

based control for HCCI combustion stability improvement identified in literature will

be investigated in this thesis.

Model based controllers

Model based controller s for cycle to cycle control are the subject of this section. Un-

like the in-cycle control strategies that utilize an FPGA most model based controllers

take advantage of traditional microprocessor based ECU’s which are readily available

and in use in current production vehicles. As each generation of processors become

more computationally powerful and energy efficient there is an increase capability

available for engine control strategies. The calculation speed available on processors
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limit the control strategy to cycle-to-cycle HCCI control. These cycle-by-cycle con-

trollers consider the previous cycle for control interaction in the subsequent cycle.

Therefore a prediction, often model based, of the upcoming combustion phasing is

needed. Controllers used to track engine load and speed requests within the HCCI

operating range and have been successfully implemented in cycle-to-cycle control [72].

Control strategies that have been simulated and experimentally tested which in-

clude feedforward and feedback control [90], model predictive controllers (MPC) [91–

93], and iterative learning controllers (ILC) [40]. All of these strategies control the

HCCI process and each have advantages and disadvantages.

For internal combustion engine applications in general, several model-based con-

trollers have been used for engine feedback control, such as the Linear Quadratic

Regulator (LQR) controller [94], Linear Quadratic Gaussian (LQG) controller [95],

Sliding Model Controller (SMC) [96–98], Adaptive [98, 99], and Model Predictive

Control (MPC) controller [100, 101]. Among these model-based controllers, MPC is

one of the most promising for dealing with the highly constrained nonlinear system

of ICEs [102]. MPC can provide an optimal real-time solution for meeting multi-

objective goals while addressing system and operational constraints. New variants

of MPC utilize optimization solvers and packages that are suitable for the real-time

operation of time-critical systems [100, 101].

MPC, has been increasingly used in industry during the past four decades, has the

following five main advantages: (1) it implicitly considers constraints on state, input,

and output variables, (2) it provides closed loop control performance and stability for

optimal problems with constraints, (3) it exploits the use of a future horizon while

optimizing the current control law, (4) it offers the possibility of both offline and real-

time implementations, and (5) it is capable of handling uncertainty in the system’s

parameters, delays, and non-linearity in the model [103].

Model based optimal control techniques take advantage of speed increases of real-
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time control hardware to allow for significant improvements in system modeling.

which has led to an increase in interest from various researchers over the past two

decades. MPC is a model based controller that is an effective control strategy widely

used in a range of applications from the chemical process industry to the other in-

dustries such as automotive, power and energy systems, manufacturing, aerospace,

healthcare, finance and others [104]. All of these applications take advantage of the

ability of MPC to provide an optimal control solution while allowing for the imple-

mentation of constraints on system states and controller outputs.

The models for the MPC controllers can be designed from various modeling meth-

ods including physics based models (white box), Machine Learning (ML) models based

on experimental data (black box) as well as a mix of the physics and experimental

data (gray box) [105]. Each of these models have their advantages and disadvantages.

However, independent of the type of the model, one challenge with MPC is the con-

troller sensitivity to model uncertainty and the required model computational time

for online optimization. Often a trade-off exists, where improving model accuracy

leads to increased model complexity and processing power requirements and these

complex models exhibit nonlinear behavior requiring a more complicated control law

such as Nonlinear MPC (NMPC) [106, 107].

1.2.4 HCCI performance and emissions modeling

Due to the complexity of combustion phenomena and the high number of subsystems

in ICE, physical-based model development is time-consuming and may become non-

linear and non-convex [102]. To capture the behavior of HCCI combustion, various

simulation models including stochastic, multi-zone and physical models have been

developed to predict the gas exchange and combustion processes [65, 86, 108, 109].

Detailed physical models are typically too computationally intensive for use in real-

time engine applications and so are often linearized around a specific operating point
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for implementation in processor based engine controllers [91, 110]. In addition, the

accuracy of the physics-based method is typically reduced, mainly due to lineariza-

tion or model-order reduction techniques. Data-driven or black-box models that use

measurement data directly for training ML methods are an alternative approach for

modeling. These models could be as accurate as 3D Computational Fluid Dynamics

(CFD) physical models and require significantly less processing time for implementa-

tion of model-based controllers in ECUs, however, they do require significant effort

for offline training [111–113].

Despite the many advantages of data-driven black-box models, there are two main

drawbacks: i) they are complex and could run a high risk of overfitting, particularly

when a large number of features are used [111–113], and ii) because they do not

contain physical models, their accuracy will decrease when the physics underlying

the model change [114, 115].

To meet current and the upcoming emission regulations a detailed understanding

of HCCI engine emission formation is essential. However, predicting the exact value

of engine out emissions using conventional physics-based models is still a challenge

for engine researchers due to the complexity of combustion and emission formation

modeling [114]. This has led researchers to consider machine learning (ML) based

methods which help to provide an accurate model while minimizing the computational

requirements [116].

ML techniques have been widely used for addressing engine performance, emission

modeling and control [117, 118]. To this end, different ML methods have been tested

and used for HCCI performance, combustion phasing, and emission modeling using an

Artificial Neural Network (ANN) [119–123], Extreme Learning Machine (ELM) [124–

126], Bayesian Neural Network (BNN) [127], Deep Neural Networks (DNN) [128],

and Least Squared Support Vector Machine (LS-SVM) [100, 101, 129]. Among these

methods, most researchers have focused on the prediction of engine performance,
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consisting of IMEP and CA50 [100, 101, 121, 124–126, 129] while a limited number

of researchers have studied emission prediction [119, 120, 122, 130]. ANN has been

the ML method that has been widely used for emission and performance prediction

for SI and CI engines [122, 131–133]. This has led researchers to consider ANN the

baseline ML method for engine modeling and control implementation. However, to

create an accurate model ANN requires a large data set which requires significant

engine testing time and results in high testing costs.

One of the most powerful machine learning methods that has shown remarkable

accuracy in the prediction of ICE emissions and performance is Support Vector Ma-

chine (SVM) [11, 115, 117, 131, 134]. SVM is a machine learning approach which

has been used for both classification and regression problems [135, 136]. By provid-

ing the SVM with a set of input and output pairs, it approximates a hyperplane to

retrieve a pattern that exists between given inputs and the corresponding outputs.

For HCCI, SVM has been used to predict combustion phasing, misfire, and high pres-

sure rise rates [137]. For example, it has accurately predicted CA50 with an error of

1.9% for transient load changes [137], and cyclic combustion variability [138]. Transit

Linear Parameter Varying (LPV) based models were developed to predict CA50 and

IMEP [100, 101, 129]. The accurate prediction capabilities and low computational

requirements of SVM has proven it is a powerful technique for predicting the complex

and highly nonlinear phenomena provided the motivation to apply this strategy to

emission formation in HCCI engines and compare the results to ANN. SVM has been

used to predict the performance and emissions of SI [139, 140] and diesel [11, 115,

117, 134] engines but, to date, has not been comprehensively investigated for HCCI

emissions prediction.

In ML, hyperparameter tuning, is often difficult due to local minima. In ANN,

a grid search for the number of neurons and number of hidden layers is usually

used to find optimal hyperparameters. Depending on the depth of the network, a

22



random search could be added during optimization [120]. Metaheuristic approaches

were also used to tune ANN hyperparameters such as Particle Swarm Optimization

(PSO) [141, 142] and Genetic Algorithm (GA) [143]. Compared with GA, PSO is a

relatively new heuristic search method based on collaborative behavior and swarming

in biological populations. Both GA and PSO are population-based search approaches

that depend on information sharing among their population members. Although

PSO and GA have a similar performance in terms of the accuracy of the solution,

it has been proven that PSO is computationally more efficient, and requires fewer

parameters that need to be defined for optimization [144, 145]. In SVM, there are

three main parameters to tune which are tolerated error, kernel function parameters,

and regularization coefficient.

A Recurrent Neural Network (RNN) for ML-based NMPC is structurally similar

to a feedforward neural network with the exception of backward connections used

to handle sequential inputs [146]. The advantage of the RNN is its computational

efficiency which is the result of parameter sharing. However, RNN cannot accurately

capture any long-term dependencies of the model as the prediction is solely based

on recent steps. This can also be described as the “vanishing gradient”, with the

contribution of earlier steps becoming increasingly small. The challenge with RNN

is the lack of long term memory; however, memory cells can be introduced to help

solve this problem. The most well-known form of these long-term memory cells is the

Long Short-Term Memory (LSTM) cell [146].

Combining LSTM and NMPC, denoted as LSTM-NMPC, has shown its potential

in optimal temperature set-point planning for energy efficient buildings [147], steam

quality of thermal power units [148], and for motion prediction of surrounding vehicles

in an autonomous vehicle [149]. With the success in these previous applications,

LSTM-NMPC is now being considered for systems requiring fast time steps such as

control of an internal combustion engine. To implement this, embedded programming
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techniques are required.

The structure of most of the previous work in ML-based MPC for ICEs has been

linear [100, 101, 121, 150] or a non-linear model that has been linearized [106, 124,

151]. Only a few previous researchers have explored a nonlinear data-driven struc-

ture [150, 152, 153]. Among these works, only one study was found that explores

ML-based MPC control of a CI engine where a linearized model of nonlinear ML-

based model was used to design and implement a controller [151]. Further, for con-

sidering real-time implementation only linear models such as linear parameter varying

(LPV) [100] or linearized model [124] have been successfully implemented experimen-

tally. All previous ML-based nonlinear MPC (NMPC) have only been implemented

in simulation [152, 153]. For HCCI, No previous experimental work has been found

considering data-driven-based NMPC using DNN with a LSTM layer.

1.2.5 Timing constraints

It is important to consider the computational complexity when considering HCCI con-

trol strategies. This applies to both the in-cycle controllers, which have an extremely

limited calculation window available, as well as the model based control strategies.

Figure 1.5 shows some possible in-cycle control actuation that can be used to con-

trol HCCI combustion. This figure considers two water injection events (blue drop)

one before the NVO recompression and one during the main compression. Two fuel

injection events (green drop) are considered as well as two spark interactions (yel-

low ‘lightning bolt’) one at the traditional timing and one late spark. By taking the

in-cylinder state at EVC for an engine speed of 1500 rpm, the available calculation

time before control actuation is approximately 0.22 ms for the start of the pre-fuel

(tEVC→SOIfuel) or pre-water injection (tEVC→SOIfuel) to influence the NVO period. This

timing constraint is no feasible using a traditional microprocessor based ECU but can

be easily achieved when using a FPGA based ECU. From IVC until a spark actuation
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(tIVC→sparkmain) is only 14.4 ms at 1500 rpm is available. For these control actions the

limited calculation time means that an FPGA must be used instead of a conventional

cycle-to-cycle ECU.
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Figure 1.5: HCCI control variables and available calculation time. Blue drop repre-
sents a water injection, green drop is a fuel injection event, while a spark actuation
is denoted by the ‘lightning bolt’.

The calculation window for a cycle-to-cycle controller is dependent on the speed

of the engine. At 1200 rpm, a complete four stroke engine cycle lasts 100 ms while at

1800 rpm only 66.7 ms are available. For the HCCI tests in this thesis an engine speed

of 1500 rpm is used which has a duration of 80 ms. Cylinder state calculations from

the last cycle must be complete before starting the calculation of any model based

controller. Figure 1.6 shows the time available for cycle-to-cycle model based control

if changes to the NVO duration are too be made. Here the FPGA based cylinder state

calculation are completed at 60 CAD aTDC and the control actuation to the valve

timing is required at 260 CAD aTDC leaving 200 CAD for the calculation (22 ms at

1500 rpm). To meet these real-time timing requirements, a computationally efficient
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algorithm is needed to provide feedback from one engine cycle to the next cycle for

any model based control strategies.
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Figure 1.6: Calculation time for model based controllers
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1.3 Problem Identification and Proposed Solutions

To simulate a steady state operating point the engine is operated in a conditioned

environment that keeps rotational speed, load, intake pressure and temperature, oil

and coolant temperature and exhaust pressure constant. Only one load and speed

is selected to reduce the experimental space and demonstrate the proposed emission

model.

Based on the literature review in the previous section, it is well understood that

HCCI has a narrow operating range and has high efficiency and low emissions within

specific operating conditions [25, 154, 155]. In vehicles, the limited load range is not

as critical in hybrid and electric range extender applications. These require only a

few efficient load and speed operating points as the electric part of the propulsion

systems are used to handle any transient loads. Therefore, the ability of HCCI to

greatly reduce engine out emissions as well as lower fuel consumption compared to

traditional combustion engines is beneficial. Even with all the benefits of HCCI,

there are still challenges that need to be overcome to allow for a wide adoption of

HCCI within industry. Research over the past 40 years has lead to improvements

in controlling HCCI. However, the combustion stability of the HCCI process still

requires improvement to allow for a wider operating range of both load and engine

speed. The vast improvement of engine control hardware, provides a platform to

implement improved advanced control strategies for HCCI. Two main methods to

improve the combustion stability are apparent from current research:

1. In-cycle control strategies requiring actuators and high speed controllers.

2. Model based control strategies utilizing physics based white-box models black-

box machine learning based models and combinations (gray box models).

Each of these two control strategies has their own advantages and disadvantages

which will be discussed in this thesis.
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1.3.1 In-cycle controller

These main objective of these controllers is to affect the combustion process within

the same combustion cycle. This requires high speed FPGA based engine models

and rapid actuators to quickly intervene into the combustion process. To improve

HCCI combustion stability, large cyclic variations need to be reduced. Previous

work considered the addition of direct water injection to improve the combustion

stability of the HCCI process [4, 15, 84]. This work showed a significant improvement

in combustion stability as the water injection was able to help prevent the early

combustion event that would normally follow a misfire cycle. The challenge with this

control stategy is nothing could be done about misfire cycles. Therefore, this thesis

will look to specifically address these misfire or extremely late combustion cycles by

adding a high energy spark actuator. Similar to the previous work [15], this high

speed spark will be controlled using a FPGA to enable rapid controller calculations

as shown in Chapter 3.

Another area that could be improved for the control of HCCI is combining various

previously tested real-time control strategies and have multiple control actions within

a single cycle. Combining these timescales within a cycle and cycle-to-cycle allows for

multi-scale control to even further improve HCCI combustion stability. This multi-

scale control strategy will be further investigated in this thesis in Chapter 4.

1.3.2 Model-based controller

As mentioned in Section 1.2, MPC a promising control strategy for the highly con-

strained nonlinear ICE combustion process. The use of a moving prediction horizon

allows control optimization while considering constraints on state, input and output

variables. MPC can also handle multi-variable systems. Since ICE is highly con-

strained, MPC is an ideal control strategy. The ability of MPC to inherently enforce

constraints can significantly reduce calibration and development time. Flexible han-
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dling of uncertainty, delays, and non-linearity in the model and the possibility of

real-time implementation are other advantages of MPC that make it applicable in

the automotive industry [103]. These MPC features have resulted in MPC being

investigated widely in the automotive industry. However, MPC requires additional

computing and memory resources compared with classic control and an accurate

model is also needed.

As the name suggests, a MPC controller has a model of the process embedded and

the performance of the MPC is directly dependent on the accuracy of this model.

The models for the MPC controllers can be designed from various modeling methods

including physics based models (white box) [156], Machine Learning (ML) models

based on experimental data (black box) [157] as well as a mix of the physics and

experimental data (gray box) [158]. Each of these models have their advantages

and disadvantages [114]. For all types of models, two challenges with MPC are: the

controller sensitivity to model uncertainty, and the required online optimization time.

Often a trade-off exists, where improving model accuracy leads to increased model

complexity and these complex models exhibit nonlinear behavior requiring a more

complicated control law such as Nonlinear MPC (NMPC).

Joint work focusing on control of diesel engines [2, 159], has shown that NMPC

is a useful method to control a diesel engine while meeting constraints. The current

work in literature and experience with diesel NMPC control provided the motivation

to investigate the experimental implementation of NMPC for HCCI. The experience

gained from diesel combustion control is applied to HCCI which is an unstable com-

bustion process.

In this thesis, three different modeling strategies for MPC are investigated: 1) A

physics based white-box model considering the combustion kinetics; a black box sup-

port vector machine model; and finally a transient long-short term memory model.

Since these three model strategies are quite different, Chapter 5 will present the HCCI
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modeling process. After comparing the performance of the three models in simulation,

the LSTM-NMPC was found to exhibit the best characteristics and thus was experi-

mentally implemented to test the online performance of the NMPC on the dSPACE

MicroAutoBox II (MABX II) prototype engine controller. The online results are de-

scribed in detail in Chapter 6. The processing power of the MABX II was insufficent

for cycle-to-cycle control using the developed NMPC. Therefore, the LSTM-NMPC

is then implemented on an external processor to allow for true cycle-to-cycle control

with detailed results in Chapter 6.3.2.

1.4 Thesis Outline and Contributions

1.4.1 Thesis outline

This thesis is organized into seven main chapters. Figure 1.7 shows the control struc-

ture tested and where each part is developed in this thesis. The goal of this thesis

is to develop a control strategy to improve the performance and emissions of HCCI

combustion by considering all of the parts of the traditional control loop including:

1) actuation, 2) fast sensing, 3) in-cycle HCCI control, 4) model based control with

constraints. While considering the entire control system one of the main goals of the

thesis work was to develop a control strategy that allowed for a significant reduc-

tion in the engine calibration effort while allowing for efficient engine control. The

chapters of this thesis are as follow:

• Chapter 1 provides background, motivation, and main contributions of this

thesis.

• Chapter 2 presents details on the two experimental engines used in this work

and the actuators and control systems tested.

• Chapter 3 presents details on the experimental implementation of in-cycle

engine control using a rapid ignition system.
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• Chapter 4 presents the combination of in-cycle and cycle-to-cycle controllers

for a combined multiscale control approach..

• Chapter 5 provides three different emissions and engine performance modeling

methods. One white-box kinetics model, one support vector machine black-box

steady-state model and one deep neural network transient engine model.

• Chapter 6 presents the development of the online NMPC utilizing the transient

ML engine model which has been experimentally tested.

• Chapter 7 presents overall conclusions from the work presented as well as

future work.

HCCI SCRE's: Ch2

0.1 deg GE model 
Developed in [14] 

FPGA

Rule based control: Ch 3,4

Pressure - Cyl, Int, Ext

Engine Position

Emissions
Measurment

NOx,
uHC,
CO,
CO2

MPRR, 
CA50,
IMEP

Reference 
CA50, 
IMEP

Fuel: Ch 4,6 

Water: Ch 4, 6

NVO: Ch 4, 6

Spark: Ch 3 

Constraints
MPRR,

NOx

Engine Out Emissions

Univ of Alberta RWTH Aachen

Actuators

Engine States

Cycle-to-cycle Control

In-cycle Control

Process Model:
Black box: ANN - Ch 4
White box: Kinetics - Ch 5.1
Steady state black box: SVM - Ch 5.2
Transient black box: LSTM - Ch 5.3

MPC: Ch 4
NMPC: Ch 6

Figure 1.7: Schematic of the thesis organization - contributions in the area of:
1) actuation, 2) fast sensing, 3) in-cycle HCCI control, 4) model based control with

constraints.
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1.4.2 Contributions

A summary of the main contributions of this thesis are (publications resulting from

each chapter are noted. A full list of publications can be found in Appendix A ):

• Chapter 2: Experimental setup

– Upgrading up a single cylinder research engine to allow for FPGA based

engine control strategies to allow for experimental implementation of in-

cycle control.

– Integration of prototype novel fast acting high energy spark actuation

experimentally to develop novel in-cycle HCCI control strategies using

spark.

• Chapter 3: In-cycle controller development and experimental valida-

tion using a rapid igniton system

– Development and experimental validation of in-cycle controller using a

high energy spark to reduce emissions and improve HCCI stability [8, 9].

– Experimental implementation of multi-scale control to combine an in-cycle

and cycle-to-cycle controller to improve HCCI stability. The developed

controller improved the combustion stability by 18% compared the the

previous in-cycle controller [5].

• Chapter 4: Combination of in-cycle and cycle-to-cycle controller for

development and experimental validation using a multiscale control

approach

– Experimental implementation of multi-scale control to combine an in-cycle

and cycle-to-cycle controller to improve HCCI stability. The developed

controller improved the combustion stability by 18% compared to the pre-

vious in-cycle controller [5].
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• Chapter 5: HCCI emissions and performance modeling

– A white-box kinetics model for real-time calculation of cylinder chemical

composition is developed for the FPGA hardware which is suitable for

in-cycle control.

– A black-box support vector machine model for HCCI emissions prediction

is developed for cycle-to-cycle control. This will allow for steady-state

emissions to be considered in an MPC [13].

– A deep neural network model containing a long short term memory

(LSTM) units for transient HCCI performance and emission modeling that

is suitable for MPC implementation [2].

• Chapter 6: Experimental implementation of NMPC for HCCI sta-

bility and emissions improvement

– A novel approach to augment LSTM in the NMPC problem (LSTM-

NMPC) by augmenting LSTM hidden and cell state into nonlinear op-

timization problem is described [14].

– State of the art realtime NMPC implementation on a real system using

LSTM. Executed on low-cost hardware .

• Method to develop realtime NMPC controller while significantly reducing cali-

bration effort.
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Chapter 2

Experimental Setup 1

In this chapter, details covering the specifics of the two experimental single cylinder

research engines (SCRE) are presented. The first engine is located at the University of

Alberta located in Edmonton, Alberta, Canada. The second SCRE is located at the

Teaching and Research Area Mechatronics in Mobile Propulsion at RWTH Aachen

University located in Aachen, Germany. These two engines are both setup for testing

of HCCI combustion and some similarities as well as a few major differences. The

work in this thesis focuses on these two experimental engines as their differences

allowed for different control and modeling of HCCI to be performed.

2.1 University of Alberta SCRE

The first experimental test engine is located at the University of Alberta which is

shown schematically in Figure 2.1. This SCRE is outfitted with a hinged Electro-

magnetic valve train (EMVT) (shown in Figure 2.2) is used to collect experimental

data for this thesis. The EMVT system utilize a hinged plate between two electro-

magnetic coils which are actively controlled using a dSPACE 1103 [160]. The valve

position is estimated by integrating the magnetic flux of the coil not in use. This

allows for closed loop control of the valve position to allow the valves to follow a

defined opening profile. The flexibility of the valve train allows for engine operation
1 This chapter is partially based on [8, 15]
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with a wide array of valve strategies including NVO. The engine geometry and testing

conditions are listed in Table 2.1.

Figure 2.1: University of Alberta SCRE schematic [160].

Fuel is injected into the SCRE intake port using two conventional fuel injectors,

which allows for a variable n-heptane to iso-octane ratio. Thus, the research octane

number (RON) of the injected fuel mixture can be adjusted between 0 (n-heptane)

and 100 (iso-octane) cycle by cycle as desired. The HCCI process is controlled by

the VVT system. To minimize compression losses the timings for EVC and IVO are

always symmetrical to TDC. EVO and IVC are fixed at 165 CAD and 585 CAD. The

injection into the intake manifold is fixed at 350 CAD for all experiments conducted

for in this thesis.

In-cylinder pressure is measured using a Kistler 6041 piezoelectric pressure trans-

ducer. The intake and exhaust manifold pressures are measured using Kistler 4045-A5
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Table 2.1: University of Alberta - Single cylinder research engine parameters

Parameter Value

Displacement volume 0.657 l

Clearance volume 0.0509 l

Stroke 88.9 mm

Bore 97 mm

Compression ratio 13.9:1

Engine speed 840 rev/min

No. of valves (In/Ex) 2/2

Valve train Hinged EMVT

Connecting rod length 159 mm

Crank shaft radius 44.5 mm

Piston area 7400 mm2

Oil and coolant tempera-
ture

90 ◦C

Fuel rail pressure 3 bar

Intake temperature 31 ◦C

Intake / exhaust pressure 910 mbar
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Figure 2.2: Hinged electromagnetic valve schematic for University of Alberta
SCRE [161].

piezoresistive pressure transducers. The angular position of the crank is measured

using a 0.1 CAD resolution optical encoder. All of these signals are input to the

dSPACE MABX II prototyping ECU [162].

The engine is operated in a conditioned environment that keeps rotational speed,

intake pressure and temperature, oil and coolant temperature and exhaust pressure

constant. The active inputs to the HCCI process are injected fuel mass, injection

timing and valve timings. All experiments are done at an engine speed of 840 rpm

and all temperatures are conditioned to limit additional variations as specified in

Table 2.1. The air-fuel ratio is varied as well as the power output.

The engine coolant is run through a flat plate heat exchanger which is connected to

the building cooling water system. This helps to remove heat from the engine while

in operation. The engine coolant temperature can also be increased using a electric

heater which is controlled using the Taylor Dynopro2 system.
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The oil is supplied to the engine through an external oil conditioning system which

filters, heats and pressurizes the oil which is supplied to the engine. The oil temper-

ature is regulated along with the oil pressure which is set to 3.5 bar ±0.1 bar for all

experiments in this work.

2.1.1 Data acquisition and engine control systems

A National Instruments Data Acquisition System (DAQ), model PCIe-6351, was used

to record cylinder pressure at a 0.1◦CA resolution for use in offline post-processing

analysis. Additionally, the in-cylinder and manifold pressure measurements are si-

multaneously input to the Field Programmable Gate Array (FPGA) board in the

prototyping ECU. The FPGA board is located within the dSPACE MABX II pro-

totyping ECU where detailed information is provided in Table 2.2. The MABX II

contains two main boards: a CPU and FPGA. The CPU (ds1401) was used to im-

plement the controllers developed in this work.

The Xilinx Kintex-7 FPGA contained within the MABX II was used to calculate

combustion metrics in real-time. IMEP, CA50and MPRR are calculated and are

transferred from the FPGA to CPU for use as inputs for control. Details regarding

the real-time calculation of these properties can be found in [81, 163].

2.1.2 Emission measurement

To measure engine-out emission emissions, an electrochemical NOx sensor, and MKS

Fourier-Transform Infrared Spectroscopy (FTIR) were used. The sensors sample di-

rectly from the engine exhaust pipe.

A production amperometric NOx sensor (ECM-06-05) was used in the experiments.

All the sensor working parameters were set using the sensor control module (ECM-

NOxCANt P/N: 02-07). The sensor control module was connected to the dSPACE

MABX II via a Controller Area Network (CAN) to record the NOxemissions.

The exhaust gas measurement is done using a MKS MultiGas 2030 FTIR Sys-
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Table 2.2: Rapid prototyping ECU Specifications

Parameter Specification

Processor dSPACE® 1401 IBM PPC-750GL

Speed 900 MHz

Memory 16 MB main memory

I/O dSPACE® 1511

Analog input 16 Parallel channels

Resolution 16 bit

Sampling frequency 1 Msps

Analog output 4 Channels

Digital input 40 Channels

Digital output 40 Channels

FPGA dSPACE® 1514 Xilinx® Kintex-7

Flip-flops 407600

Lookup table 203800

Memory lookup table 64000

Block RAM 445

DSP 840

I/O 478

tem [164]. The FTIR analyzer was used to measure the concentration of various

chemical components in the exhaust gas. The FTIR spectrometer passes an infrared

beam through a gas sample, obtains the interference pattern of the gas, and identifies

the gas composition based on the absorption spectrum of the gas constituents. The

sample exhaust gas passed through two heated filters (Flexotherm Flex) connected

by sample lines (Flexotherm) heated to 191◦C to avoid water vapor condensation in

the sample gas. The sample data was collected at a 5 Hz frequency using the mks

Series 2000 MultiGas analyzer software version 10.1.
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Finally, the air-fuel ratio λ is measured by a Bosch series-build oxygen sensor

powered by ECM electronics to convert the sensor measurement to an anolog signal

which is provided to the dSPACE MABX II.

2.2 RWTH Aachen SCRE

The SCRE located at RWTH Aachen University is also outfitted with a fully vari-

able EMVT. This engine has been specifically designed to operate with the EMVT

system. The flexibility of the valve timing allows for any desired valve timing to be

implemented and changed on a cyclic basis if desired. Engine operation with combus-

tion chamber exhaust gas re-circulation through NVO is useful for HCCI combustion

and can be easily achieved with this setup. This allows for a wide operating range

of HCCI combustion timings to be implemented. The FEV Europe GmbH (FEV)

designed EMVT system is depicted in Figure 2.3 [165, 166]. This figure shows an

armature which is located between two electromagnetic coils, one to provide opening

force and one to close the valve. Two valve springs provided the restoring force to re-

turn the valve to its resting position of half open. The position of the electromagnetic

valves are measured using FEV conductive lift measurement sensors. The position of

the valve is used for closed-loop control of the valve position, which will be discussed

later. This EMVT system differs from the one at the University of Alberta (described

in section 2.1) as the linear motion of these valves can be directly measured using a

position sensor, however, the linear motion when compared to the hinged actuation

of the UofA system results in longer travel distances and thus higher valve landing

velocities. The schematic of the valves and engine head is shown in Figure 2.4.

One challenge with the EMVT systems is that to protect the valves against a

possible collision with the piston. To achieve this, the piston must be manufactured

with deep valve pockets to allow space between fully open valves and the piston face

at Top Dead Center (TDC). This is the worst case and these engine are called free

40



Figure 2.3: Electromagnetic valve schematic from [167].

running. The deep piston pockets lower the cylinder compression ratio to 12:1. The

engine specifications and testing conditions are defined in Table 2.3.

The dynamometer controller is set to hold speed constant despite changing engine

torque for all experiments is this work. The engine speed is regulated to a set value

and the torque produced by the engine is measured using a HBM U2A/200kg load

cell. The angular position of the engine is measured using a Heidenhain ROD 430

encoder which has a 0.1 degree angular resolution.

The intake air is conditioned before it reaches the engine. Using two Roots-type

superchargers powered by a variable frequency drive controlled electric motor the

intake pressure can be adjusted up to 1.8 bar boost. The temperature of the intake air

is also controllable using an in-line air heater to provide various intake temperatures

and is controlled using the ADAPT system described later. The volume of air entering

the engine is measured using an Aerzen gas flow meter which provides an overall flow

rate entering the engine.

The exhaust back pressure can also be controlled using a pneumatically powered
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Table 2.3: RWTH Aachen University - Single cylinder research engine parameters

Parameter Value

Displacement volume 0.499 L

Stroke 90 mm

Bore 84 mm

Compression ratio 12:1

Engine speed 1500 rev/min

No. of valves (In/Ex) 2/2

Valve train Linear EMVT

Max. valve lift (In/Ex) 8 mm/8 mm

Valve angle (In/Ex) 22.5◦/22.5◦

Valve diameter (In/Ex) 32 mm/26 mm

Intake air pressure 1013 mbar

Exhaust pressure 1013 mbar

Oil and coolant temperature 90 ◦C

Engine speed 1500 rpm

Fuel rail pressure 100 bar

Intake temperature 50 ◦C
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Figure 2.4: RWTH Aachen SCRE photo [168].

valve. For this work the back pressure in the exhaust system is regulated to 1013

mbar ± 25 mbar for all experiments.

The in-cylinder pressure is measured using a using a Kistler 6041 piezoelectric

pressure transducer that is mounted between the intake and exhaust valves. The

intake and exhaust manifold pressures are measured using Kistler 4045A piezoresistive

pressure transducers. To convert the output from the three pressure sensors to a

voltage, three Kistler charge amplifiers are used. Each charge amplifier and pressure

transducer are calibrated as a pair to reduce the amount of measurement error.

The fuel used for all testing in this work is conventional European RON 96 gasoline

containing 10% ethanol. The fuel is pressurized first using a low pressure fuel pump

up to 6 bar and then up to 100 bar using a high pressure pump before injection
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directly into the combustion chamber. The fuel pressure is measured using a rail

pressure transducer. The amount of fuel injected is measured using a FEV Seppeler

fuel measurement system. This system can only be used for steady state fueling

measurements, as is requires multiple cycles to record the time to inject a known

volume of fuel. However, it can also be used to calibrate an injector function to

determine the fuel injected for a known injection duration for in-cycle measurements.

The fuel injector used as a BMW 13537589048 piezoelectric outward-opening hollow

cone injector. This injector is powered by Siemens VDO injection controller which is

used to provide the necessary voltage to open the injector.

Similar to the fuel injection system, the distilled water that is direct injected into

the combustion chamber is first pressurized to 6 bar using a low pressure pump.

Then an electronically controlled high pressure pump is used to pressurize the water

to injection pressure ranging from 15-175 bar. This pressure is measured using a rail

pressure transducer and is used for closed-loop control of the rail pressure. The direct

injection of water is provided through a BMW 13537589048 piezoelectric outward-

opening hollow cone injector. This injector is powered using VEMAC VAPA power

electronics which provide the required voltage to open the injector. It also allows

for customization of the injection opening profile, however, for this work the opening

profile was not adjusted.

The engine coolant is run through a flat plate heat exchanger which is connected

to the building cooling water system. This helps to remove heat from the engine

while in operation. The engine coolant temperature can also be increased using a

electric heater which is controlled using the ADAPT system. For all tests the coolant

temperature is maintained at 90 ◦C ±2◦C.

The oil is supplied to the engine through an external oil conditioning system which

filters, heats and pressurizes the oil which is supplied to the engine. The oil tem-

perature is regulated to 105 ◦C ±2◦C which helps to ensure any water in the oil is
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evaporated. The oil pressure is set to 5.4 bar ±0.2 bar for all experiments in this

work.

2.2.1 Emissions measurement

An emission measurement system is used to determine the composition of exhaust

gas. The two measurement devices used are an Eco Physics CLD700REht for NO

and NOx measurement and a Rosemount NGA 2000 which provides measurements of

unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxygen concentration.

The specifications of the emission measurement system is provided in Table 2.4.

Table 2.4: Accuracy of emissions measurement system

Gas Maximum Detection level Resolution Accuracy

NOx 10000 ppm 0.1 ppm 0.1 ppm 1% of reading

uHC 5% 0.04 ppm 0.1 ppm 1% of reading

CO (low) 2500 ppm 0.1ppm 0.1ppm 1% of reading

CO (high) 10% 0.1% 0.1% 1% of reading

CO2 18% 0.1% 0.1% 1% of reading

O2 25% 0.1% 0.1% 1% of reading

2.2.2 Data acquisition and engine control systems

Engine control is provided by three main systems. The first system is an A&D

ADAPT system which provides control of engine operating parameters including

load, speed, oil and water temperature and pressure, exhaust back pressure, and

intake temperature. This system also is used for low speed data acquisition which is

described in the following section.

The main engine control is provided by a dSPACE MicroAutoBox II (MABX)

prototyping ECU which contains both microprocessor and FPGA modules. This
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ECU is used for the implementation of all control algorithms to provide control of

the valves, ignition, water and fuel injection timing and water rail pressure. The

software that is run on the MABX is complied using Matlab Simulink. This makes

implementing and testing controllers easier and provides a user friendly interface.

Another advantage of using the MABX II is that it is connected to a computer

running dSPACE ControlDesk which provides access to the variables in the control

algorithms and allows for adaption the engine controller during engine operation.

More detailed technical specifications are provided in Table 2.2. The same MABX II

is used for both the engine at the University of Alberta and RWTH Aachen University

which allows easy code transfer.

A dSPACE DS1103 is used to provide closed-loop control of the EMVT system.

The DS1103 runs an FEV created C-code based controller which uses the valve po-

sition sensors to determine the correct valve opening and closing currents based on

the desired valve opening and closing times from the MABX. The DS1103 is also

connected to the same computer running dSPACE ControlDesk as the MABX II,

this provides access to enable the starting sequence for the valves and allows for the

maximum current applied to the EMVT’s to be adjusted if necessary.

Data collection for offline processing is recorded by two systems. The cyclic data

is recorded using an FEV Combustion Analysis System (CAS) which records cylin-

der and manifold pressures along with engine angle, measured injection and ignition

current, lambda, valve position, and other engine data at a 0.1 CAD resolution. The

averaged data from all recorded cycles such as air flow, fuel consumption, emissions

composition, and various temperatures including intake, exhaust, coolant, oil, and

cylinder head temperature are recorded using the A&D ADAPT system. This data

is recorded at a sampling rate of 10 Hz and averaged for the complete measurement

set. This data is used for post-processed analysis of the combustion process.

The dSPACE ControlDesk computer is used to record results which were calculated

46



on the processor and FPGA modules of the MABX II. This data is used for the

development and evaluation of the control applications running on the MABX II.

The extraction of values from the FPGA to the MABX processor is limited to prevent

overruns. This does not affect the operational speed of the FPGA but it does limit

the data collected from the FPGA.

2.2.3 Rapid Ignition System

The rapid ignition system (RIS) is designed for providing the ability to have a spark

begin immediately after the ignition trigger signal is received. To achieve such a fast

response, a high-frequency current system is utilized. Traditional ignition systems

utilize stored magnetic energy by charging a coil which is used to provide a spark

between the gap of the plug. However, these conventional ignition systems require

significant charging time (typically 3-10 ms) when compared to the desired control

action speed needed here. In the RIS, the high frequency current supplied to the pri-

mary coil from the power supply unit generates an alternating magnetic field, and the

field yields alternating high voltage on the secondary coil immediately. Thus the RIS

does not require charging time, allowing for the spark to begin within approximately

5-10 µs, which is approximately 1000 times shorter than that of conventional sys-

tems which have charging times between 1500-4000 µs [169]. The RIS has sufficient

bandwidth for the proposed control strategy.

2.3 Summary of chapter

This chapter provided the details of the two experimental SCRE’s used for the data

generation and experimental testing of the developed controllers in this thesis. The

details on the operating conditions and engine control systems and data acquisition

systems have been presented. The main difference between the two SCRE’s is the

displacement volumes and the fueling systems. With one engine having a port-fuel
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injection system and the other having direct injectors. The engine controllers on

both engines are the same dSPACE MABX II prototyping ECU allowing for testing

of controllers at both locations.
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Chapter 3

In-Cycle HCCI Engine Control
using Rapid Ignition System 1

This chapter focuses on the design and implementation of a high speed spark

actuator to implement an in-cycle HCCI combustion controller. The main objective

of this controller is to affect the combustion process within the same combustion

cycle. To accomplish this high speed FPGA based engine models and rapid actuators

to quickly intervene into the combustion process are used. To improve HCCI

combustion stability, large cyclic variations need to be reduced. The cyclic variability

of CA50is used. Figure 1.3 shows the experimentally measured cylinder pressure

signal of three consecutive cycles. Cycle 1 is typical of a standard cycle with a CA50of

12◦ CA aTDC. It is then followed by cycle 2 which can be considered a incomplete

combustion with a very late combustion phasing. Then, due to the incomplete

combustion, residual fuel is transferred to the next cycle (cycle 3) through internal

EGR. As the combustion phasing is very late in cycle 2, the in-cylinder temperature

increases which increases the temperature of the exhaust gas transferred to cycle 3.

There is also the possibility that during the NVO recompression a portion of the

residual fuel ignites (as seen in cycle 3) and leads to a further temperature increase

of the residual exhaust gas. Additionally, combustion during the NVO recompression

increases the pre-reactions leading to an increase in H2O2 formation. This increase
1 This chapter is based on [8, 9]
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in temperature and combustion radicals leads to an early combustion phasing with

a high pressure rise rate as in cycle 3. An early combustion phasing is not desired as

the high pressure rise rate leads to increased combustion noise and possible engine

damage [66, 67]. Overall, high cyclic variation of combustion also tends to reduce

thermal efficiency and increase exhaust emissions [68].

The return map for the combustion phasing, CA50 is shown in Figure 1.4. A

return map is used to show the relationship between the combustion phasing of the

current cycle, CA50(i), and of the next one, CA50(i + 1). In stable operation, two

consecutive cycles are not correlated so the return map would show random scatter

around the combustion phasing mean and the spread of the data points represents

the stochastic variation from cycle to cycle [49]. However, when a distinct pattern

or branching can be seen on the return map, as in Figure 1.4, a coupling or relation

between cycles exists. To effectively stabilize combustion the spread of the data

points and distinct ‘V’ should be reduced.

In previous work, the cyclic variation of HCCI has been reduced by preventing

the early combustion following a misfire (cycle 3 in Figure 1.3) by using direct

water injection to cool the trapped exhaust gas which retards combustion phasing

back to the desired value [3, 7, 10]. However, this control strategy leaves cycle

2 unaffected and the engine experiences a misfire resulting in higher emissions

and lower efficiency. The use of water injection adds the requirement for a

second injection system and the requirement for a high quality water source for

implementation in production vehicles [75]. To prevent a complete misfire during

cycle 2 in Figure 1.3 a spark interaction is presented in this chapter. This spark

will be used only when necessary. This spark will not be active during ‘normal’

HCCI combustion to help preserve the NOx benefits of HCCI combustion by
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keeping the combustion temperature low. The rapid ignition system presented in

Section 2.2.3 provides a method to provide a rapid intervention to the combustion

process in the means of adding additional energy through a spark to help initi-

ate the auto-igniton process. The following section presents the development of

the high speed in-cycle control strategy used to help stabilize the combustion process.

3.1 Pressure based control strategy

The high cyclic variability of HCCI combustion can be seen when examining the

range of in-cylinder pressure of 200 cycles at a specified crank angle as seen in Figure

3.1. In this figure, the motoring pressure (cylinder pressure without combustion) can

be seen where all the cycles overlap when late combustion occurs. This difference

between measured cylinder pressure compared to the baseline motoring pressure

provides a method to determine if auto-ignition has started.
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Figure 3.1: Cyclic variability in the cylinder pressure during HCCI combustion at n
= 1500 1/min, IMEP = 4.0 bar

The large variation in cylinder pressure presented in Figure 3.1 shows that at a

given crank angle there is a large variation in cylinder pressure which is typical of
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HCCI combustion. By selecting a specific CA and then examining the correlation

of the in-cylinder pressure with the combustion phasing of that cycle are shown in

Figure 3.2. When considering the correlation between cylinder pressure and the

combustion phasing of that cycle at an engine angle before TDC (-10 or -5◦ CA

aTDC) is it very difficult to observe anything other than cycles with very early

combustion phasings. This is not useful for spark control where distinguishing

late cycles from early ones is the goal. However, when considering the cylinder

pressure after 0◦ CA aTDC a clear correlation between the combustion phasing

and the cylinder pressure is apparent. This has limited applications for the spark

to have maximum impact on the combustion it should be as early as possible. At

5◦ CA aTDC a clear distinction between cycles with a combustion phasing later

than 10◦ CA aTDC and earlier than 10◦ CA aTDC can be made. These cycles

(CA50> 10◦ CA aTDC) are considered as having a late combustion phasing and

spark support is needed.
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Figure 3.2: Correlation between upcoming combustion phasing and cylinder pressure
measured at a specified crank angle aTDC. n = 1500 1/min, IMEP = 4.0 bar

At 5◦ CA aTDC, if the cylinder pressure has not exceeded 26 bar it is assumed

that the combustion will be late or misfire and a spark is required. There will be
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some cycles when the spark will be activated even though the ignition timing is only

slightly retarded at around 12◦ CA aTDC, however, it is important to actuate the

spark as early as possible to ensure enough time for the flame to propagate through

the fuel/air mixture.

3.2 Heat release based control strategy

The increase in cylinder pressure due to the start of the combustion process, can also

be shown using the accumulated heat release. The advantage of using heat release

compared with measured pressure is that a very large change in heat release values

are observed at the start of the combustion process. So, the effect of signal noise

can be reduced. Figure 3.3 shows a similar result to the pressure based correlation

(Figure 3.2) but now the heat release at a specified angle aTDC is correlated to the

combustion phasing of that cycle.
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Figure 3.3: Correlation between upcoming combustion phasing and cumulative heat
release at a specified angle aTDC. n = 1500 1/min, IMEP = 4.0 bar

Again angles before 0◦ CA do not provide any information on the current state

of the combustion. Similar to the pressure correlation, 5◦ CA aTDC is selected as

the timing when to check if combustion has begun. If not the spark is activated.
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Only the correlation at 5◦ CA aTDC near the transition area of 0 J heat release

is shown in Figure 3.4. A heat release threshold of 0 J is selected as a physical

representation of the start of combustion. Below this threshold a combustion phasing

of approximately 15◦ CA aTDC or later is predicted.
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Figure 3.4: Selected threshold of 0J heat release for start of combustion using
correlation between upcoming combustion phasing and cumulative heat release at
5◦ CA aTDC

3.3 Ignition timing constraints

The above two control strategies are then implemented on the FPGA side of the

engine controller as shown schematically in Figure 3.5. The proposed feedforward

control strategy takes the cylinder pressure or cumulative heat release at an engine

angle of 5◦ CA aTDC and compares it to the specified threshold (discussed in the

previous section). If it is determined that the combustion has yet to begin the rapid

ignition system (RSI), that was presented in Section 2.2.3, is activated for the spark

to begin.

With HCCI combustion the cylinder state is very close to the auto-ignition point of
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Figure 3.5: Feedforward spark control structure

the fuel and air mixture even in cases of late combustion or misfire. Therefore only a

small amount of additional energy is required for the auto-ignition process to begin.

However, after the piston reaches TDC the expanding cylinder volume lowers the

cylinder pressure and increases the amount of additional energy required for com-

bustion to begin. Therefore, it is desirable to have the spark occur as early as possible.

The FPGA is used as it is capable of in-cycle control. Using the rapid calcu-

lation rate of the FPGA allows for the calculation of the entire gas exchange process

including heat release using the existing model that has been developed in [84].

The gas exchange process is calculated on the FPGA every 0.1◦ CA which provides

the heat release rate in 3.525 µs [84]. Therefore the engine can be operated up to

4728 rpm before the resolution of the heat release rate can not be maintained within

0.1◦ CA. As HCCI is a low-mid speed combustion method that is generally limited

to around 3000 rpm the proposed control strategy can be applied to the entire HCCI

operating range [108].

The total calculation of the heat release and the controller comparison is com-

pleted with a delay of only 301 FPGA samples (or 3.76 µs for the FPGA used in

this study). When combined with the high speed of the RIS ignition system the

spark begins in 5-10 µs (0.045-0.09 ◦ CA at 1500 1/min) after the engine reaches
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5◦ CA aTDC. Therefore when using an FPGA based model and RIS system the

spark can occur when the cylinder state is close to auto-ignition and provide the

maximum time for the fuel to burn before the exhaust valve opens. Using the

proposed control strategy with traditional ignition systems (which require around

3-10 ms for coil charging) would significantly reduce the amount of time for the fuel

to burn as shown in Figure 3.6.

tIgn.avg. traditional = 6.5 ms / 59◦CA

tIgn.fast traditional = 3 ms / 27◦CA

tIgn.RSI = 5-10 µs / >0.1◦CA
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Figure 3.6: Ignition discharge time based on control signal at 5◦ CA aTDC. Gray
area represents variation in traditional ignition systems

When using a FPGA the total number of logical gates and memory on the board are

limited. So when additional controllers are implemented it is important to determine

the required additional resources. The proposed controller consumes under 1 % of

the available flip-flops and look-up tables on the Xilinx FPGA while the gas exchange

model uses approximately 65% [84].

3.4 Combustion stability

The proposed feedforward controller was tested, using both the in-cylinder pressure

and heat release as control input, on the RWTH SCRE (defined in Section 2.2). The

goal is to reduce the cyclic variation as shown in Figure 1.3. The performance of the
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controller in stabilizing the combustion phasing is shown in Figure 3.7. The CA50

for 1000 consecutive cycles are plotted with the controller being activated after 500

cycles. The variation in combustion phasing after cycle 500 is significantly reduced

when the controller is enabled as shown by the reduction in standard deviation of

CA50 from 6.89 to 5.3 ◦ CA or a reduction of 23%.
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Figure 3.7: Combustion phasing, CA50, stability improvement with in-cycle controller
based on heat release at 5◦ CA aTDC. The controller is activated after 500 cycles.
Here, n = 1500 1/min, NVO= 133◦ CA, IMEP = 4.0 bar.

During uncontrolled operation there are eight cycles with a combustion phasing

later that 30◦ CA aTDC (considered a misfire). After the controller is activated no

cycles with a combustion phasing greater than 30◦ CA aTDC occur. This demon-

strates the controller eliminates misfire cycles. During the controlled operation, the

most extreme retarded combustion phasing is 27.4◦ CA aTDC which occurs at cycle

516. Since the spark is fired at 5◦ CA aTDC it takes 22◦ CA for 50% of the fuel to

burn. This is still a long delay which helps to justify the need in having the spark as

early as possible.

Figure 3.7 also shows that the number of early combustion phasing cycles

have been greatly reduced even though the spark does not directly effect these cycles.
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This reduction in cycles with a very advanced combustion phasing is attributed to

the fuel being burnt in the desired cycle instead of being transferred to subsequent

cycles. Thus the proposed control method reduces the coupling between subsequent

cycles.

The torque (IMEP) produced as a function of cycle for the controller inactive

and then activated is shown in Figure 3.8. With the spark controller inactive, there

are numerous cycles with a low IMEP having a very late and inefficient combustion.

With the spark controller activated there is a significant reduction in the number

of cycles with a very low IMEP. The controller action results in a reduction of the

standard deviation of IMEP from σIMEP= 0.312 bar to σIMEP= 0.222 bar. This

represents a 28.9% reduction in the standard deviation of IMEP showing a significant

improvement in the combustion stability of HCCI.

Control inactive Control active
σIMEP = 0.312 bar σIMEP = 0.222 bar
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Figure 3.8: IMEP stability improvement with in-cycle controller based on heat release
at 5◦ CA aTDC. The controller is activated after 500 cycles. Here, n = 1500 1/min,
NVO= 133◦ CA, IMEP = 4.0 bar.

The spark controller effectiveness to decouple subsequent cycles is depicted in Fig-

ure 3.9. When the controller is inactive (red squares) the characteristic ‘V’ shaped

spread of data (presented in Figure 1.4) is observed. When the controller is acti-

58



vated (blue circles) the arms of the return map are significantly reduced down to a

more stochastic circular distribution of data. The developed controller is effective

in eliminating the cycles with an extremely retarded combustion phasing which then

prevents subsequent cycles with a very advanced combustion phasing. However some

cyclic coupling does remain.
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Figure 3.9: Effect of tested spark controller based on heat release on the combustion
phasing return map

A summary of the tested control strategies at various operating points is listed

in Table 3.1. For all the operating points tested an increase in the average IMEP

was found for active control. The control strategy improves the average combustion

efficiency over 500 cycles by delivering more power at a constant fueling. Very little

change in the average combustion phasing is observed. The controller is preventing

both very retarded and advanced combustion phasing cycles.

The standard deviation of both IMEP and combustion phasing are significantly re-

duced when the controller is activated. This reduction demonstrates the effectiveness

of the controller to stabilize HCCI combustion and will result in a smoother engine

operation. The reduction in average peak pressure rise rate (dp/dϕ) is also shown
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Table 3.1: Combustion stability improvement due to feedforward rapid spark con-
troller. Control input of cylinder pressure (pres) and heat release (HR) are both
shown.

Control
input

IMEP [bar] CA50[◦CA] ∆σIMEP
[%]

∆σ
CA50[%]

∆dp/dϕ
[%]

Inter-
actions
[cycles]

Con-
troller

Off On Off On

Pres 2.86 2.89 9.4 9.6 -21.2 -12.9 -1.0 117/500

Pres 4.03 4.04 11.0 11.1 -13.8 -2.5 -1.4 25/500

HR 2.71 2.72 9.4 9.4 -5.0 -1.9 -1.6 71/500

HR 3.92 3.96 11.0 10.8 -25.2 -34.3 -0.8 121/500

HR 4.02 4.05 11.1 11.1 -28.9 -23.0 -1.9 86/500

in Table 3.1. This improvement is relatively small since the proposed controller does

not directly reduce the pressure rise rate and is only active for a small number of the

500 cycles.

3.5 Emission benefits

In general, the NOx benefits of HCCI occur due to the rapid multi-site low temper-

ature combustion. This is reduced when a spark is used to initiate the combustion

process. However, with the addition of a spark to an HCCI engine results in an

improvement in combustion stability. Since the spark creates a single point of

ignition that propagates through the cylinder and increases the local gas temperature

to above the NOx formation temperature. The proposed HCCI control strategy is

expected to increase NOx emissions. The proposed control strategy should reduce

the uHC emissions related to misfire by providing a spark to help the combustion

process begin, while preserving the benefit of not having a spark when not needed.

The proposed ignition control strategy was compared with the cases of no spark
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interaction (HCCI) and having a spark every cycle at 5◦ CA aTDC spark assist

compression ignition (SACI). For each ignition strategy three measurements were

performed for 30 s then averaged.

Figure 3.10 shows that the expected increase NOx and NO emission was ob-

served when the spark was always used. The nitrogen oxide emissions are similar

between the HCCI case and the HCCI controller operation. This result is expected

as the spark is only used in approximately 10% of cycles and in these cycles the

combustion occurs very late and as the cylinder gas is expanding which results in a

combustion temperature below the NOx formation temperature.
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Figure 3.10: Comparison of nitrogen oxide emissions between control strategies. Error
bars represent two standard deviations.

The unburnt hydrocarbon emissions for these cases can be seen in Figure 3.11. When

the controller is enabled the lowest HC emissions are observed. Compared the HCCI

case (No spark) an improvement of 6.6% is achieved. However, the case where the

spark occurs every cycle actually has the highest HC emissions. When a spark is

always a hotter more complete combustion for every cycle is expected. However, the
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very late spark timing leads to SACI combustion which often has a very high cyclic

variability at very late spark timings [170, 171]. This high cyclic variability leads to

unstable combustion and increased HC emissions. Similarly, the carbon monoxide

emissions are also increased in the SACI case as seen in Figure 3.12 which matches

the HC emission results.
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Figure 3.11: Comparison of unburnt hydrocarbon emissions between control strate-
gies. Error bars represent two standard deviations.

The high cyclic variability of the SACI case as seen by the large standard deviation

of the emissions was observed. This indicates that when the spark was used every

cycle the combustion stability is decreased compared to the pure HCCI operating

condition. This decrease in combustion stability is attributed to an increase in the

amount of fuel burnt using flame propagation compared to the autoignition of HCCI.

The high experimental uncertainty (large standard deviation) is due to the statics of

the limited number of tests performed. However, the basic benefit of the proposed

control strategy is demonstrated. The impact to the engine emission output, further

research is needed to allow for a larger data set. Further tests would allow more

conclusive statistical data one the relationship of the spark input on the engine out

emissions.
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Figure 3.12: Comparison of carbon monoxide emissions between control strategies.
Error bars represent two standard deviations.
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3.6 Summary of chapter

In this chapter, the rapid ignition system was combined with the fast calculation rate

of an FPGA based engine controller to experimentally test an ignition controller. This

controller utilizes one of cylinder pressure or heat release to determine if the auto-

ignition process of HCCI has started. The proposed controller was experimentally

and was able to successfully reduce the standard deviation of combustion phasing

and IMEP at multiple HCCI operating points. The controller required a spark in

approximately 10% of cycles at the operating points tested. This led to nitrogen

oxide levels similar to the pure HCCI case while showing an improvement of 6.6% in

unburnt hydrocarbon emission and a reduction of 4.0% of Carbon Monoxide emissions

over the pure HCCI operation.
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Chapter 4

Combined In-Cycle and
Cycle-To-Cycle HCCI Engine
Control 1

In-cycle control approaches, like the rapid ignition controller described in Chapter 3,

utilize a control intervention within a cycle and have shown great potential to stabilize

HCCI. The described approaches have been implemented using a model-free, rule-

based control. In addition to the work presented in Chapter 3, the potential of in-cycle

control [88], such as water injection [3, 10], and actively controlled glow plugs [89]

have been demonstrated. In many cases, linear single input single output (SISO)

control is used to stabilize the combustion. The chosen operating variables show a

great potential to stabilize the combustion, despite only using one input variable to

the in-cycle controller. For enhanced controller performance and to fully stabilize

HCCI it is expected that both the cycle-to-cycle and in-cycle timescales need to be

considered for multiscale control. In this section, the modeling approach of a split

autoregressive process (Figure 4.1) is utilized [10].

The split autoregressive process describes the autoregressive character of HCCI by

separating the process into the main combustion (MC) and intermediate compression

(IC). Two separate feedback loops are used due to the timescale separation. For each

individual cycle i, the behavior of the sub-processes can be described depending on
1 This chapter is based on [5, 10]
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Figure 4.1: Multi-scale control strategy for HCCI combustion based on Wick et.
al [10]

certain feedback variables xi,MC, xi,IC such as CA50. Cyclic input variables for both

timescales ui,MC, ui,IC such as water- or fuel injection duration are considered.

Thus, in this section the potential of a controller on multiple timescales will be

presented.

In the following section, the feedback variables xi−1 from each cycle are discussed

such that an adequate representation of the process is ensured. Furthermore, operat-

ing variables ui to control the process are identified.

4.1 Selection of Feedback Variables

4.1.1 Main Combustion (MC)

For the MC, the feedback variables xi,MC the accumulated heat release QMC and the

combustion phasing CA50 (eq. 4.1) have been selected as:

xi,MC =

⎛⎝ QMC

CA50

⎞⎠ (4.1)

The heat release QMC results from the integral of the heat release rate, which

can be determined using the 1st law of thermodynamics based on the measured in-

cylinder pressure p(φ). Thus, QMC is dependent on the thermo-chemical in-cylinder
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state. In addition, CA50 is found to provide information on the combustion timing

and thus on the pressure trace of the entire cycle. In several studies, CA50 is used

to represent the chemical or thermodynamic state. For example, the influence of

the mixture composition and the intake temperature at various SOIF to maintain a

constant CA50 have been investigated [172]. The influence of the in-cylinder state has

also been found to have a significant impact on the following IC and MC. Thus CA50

was used as feedback and the target variable for a linear MPC approach [173]. In this

work, it is assumed that there is a sufficient representation of the in-cylinder state by

the chosen feedback variables heat release QMC and combustion phasing CA50.

4.1.2 Intermediate Compression (IC)

For the IC, the feedback variables xi,IC are calculated from the measured cylinder

pressure and are defined as follows:

xi,IC =

⎛⎜⎜⎜⎝
QIC

mF,res

mW,IC

⎞⎟⎟⎟⎠ (4.2)

The heat release during IC, QIC, influences the resulting in-cylinder state. Combus-

tion during IC changes the chemical and thermodynamic state resulting in a change

to the measured in-cylinder pressure trace, which changes QIC. This change in QIC

has a strong effect on the subsequent MC, so that QIC should be taken into account

for the developed control approach. On its own QIC is not sufficient to represent the

in-cylinder state. Therefore, the residual fuel mass mF,res is also chosen as a controller

input variable of the IC. Since the unburnt residual fuel mass trapped in the com-

bustion chamber causes an enrichment of the mixture if the fuel injection duration

remains constant. The amount of the residual fuel is one possible variable to repre-

sent the mixture composition and thus the in-cylinder state after the gas exchange.

Additionally, the water injection during IC, mW,IC, is included as a controller input
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variable for the MC. If water is injected during the IC, it cools down the mixture and

has a direct influence on the thermodynamic and chemical cylinder state before MC.

4.1.3 Selection of Operating Variables

In addition to the feedback variables of the process xi−1 and xi, the in-cylinder state

after IC is also dependent on cycle individual operating variables ui. The selected

operating variables are derived from experience and previous work [10, 82]. These

variables have a strong influence on the thermodynamic and chemical in-cylinder state

and are:

ui,MC =

⎛⎝ tF, MC

mW, MC

⎞⎠ (4.3)

ui,IC = mW, IC (4.4)

for the MC and for the IC.

Water injection during IC mW, IC and MC mW, MC can be used to effectively delay

the start of combustion through both the cooling and charge-diluting effects [10]. This

can prevent early combustion phasing in the MC and reduces the risk of unwanted

self-ignition during IC.

Adjusting the fuel injection duration tF, MC can be used to account for any residual

fuel in the cylinder and is used to keep the total fuel mass for each cycle constant in

order to prevent mixture enrichment and the resulting high pressure gradient during

combustion [82]. Previous work indicated that it is necessary to measure these op-

erating variables ui and their interaction with the above defined feedback variables

on multiple timescales. Those variables are used to represent the thermo-chemical

charge state but are much less complex than the full charge state to enable real-time

computation.

The variables selected are found to be a sufficient representation of the complex

HCCI combustion process and are real-time capable.
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4.2 Design of Multiple Input Multiple Output
(MIMO) Controller using Artificial Neural
Network (ANN) based Inverse Models

Data driven models have been used to model complex non-linear systems and their

success has been used to provide the motivation to investigate them in this work.

Overall, nk = 7300 cycles were recorded with 75 % being used for training of the

ANN. The remaining 25 % of the data serves as a validation data set. For example,

data driven models are useful to demonstrate novel measurement methodologies [174].

This model type is well suited to capture the nonlinear process behavior. Previous

work provided a range of network sizes and network typologies for identifying the

HCCI process behavior to achieve a promising model and control results [174]. Using

the same topology, multilayer perceptrons with 3 hidden layers and 13 neurons each

are applied in the next section.

4.2.1 ANN Modeling Approach

A nonlinear control policy f is fit to the data through inversion of the controlled

system. To achieve this, a ANN is used to generate the inverse process models, where

the cause-effect-relationship is reversed. Then the required control interventions can

be determined from the desired behavior of the system. This means that the required

operating variable interventions ûi, are estimated with a function f on the basis of

the current state, represented by the feedback variables xi−1, and the required target

state of the next cycle xi,target as:

ûi = f(xi−1, xi,target) (4.5)

During the ANN model training a cost function J is minimized, based on the mean

square error (MSE). So the following optimization problem is solved:
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min(J) = min( 1
nk

nk∑︂
k=1

||(ui,k − ûi,k)||2) (4.6)

min(J) = min( 1
nk

nk∑︂
k=1

||(ui,k − f(xi−1,k, xi,k,W,B))||2) (4.7)

Where k is the k-th training data set, the overlined variables are normalized for

the training process of the ANN to account for different orders of magnitude. W is

the weight matrix and B is the bias matrix of the ANN. This means that during the

training process of the ANN the matrix W and the matrix B are tuned to achieve a

minimum MSE over all training data sets nk. After training the ANN, the solution of

the optimization problem is given by the ANN. Thus, the application of these models

in control algorithms leads to an explicit NMPC based on inverse process models.

Such controllers have already been used in other applications, such as diesel airpath

control [175] or the control of chemical reactors [176].

Explicit MPC does not need real-time optimization on the engine control unit

(ECU) and requires only low computational power [176]. The explicit MPC based on

the ANN model, has then been ported to real-time hardware.

To address the cyclic coupling of the HCCI process (Figure 4.1) in the model

approach, two models are trained accordingly, for the cycle-to-cycle and the in-cycle

timescales respectively. The structure of the applied models, including the input and

output variables, is shown in Figure 4.2.

Clearly the control model inputs must be available at the appropriate time in the

real-time system. Thus for the cycle-to-cycle model, the execution takes place after

the end of the expansion (190 °CA aTDC), for the in-cycle model after the end of the

IC phase (412 ° CA aTDC). For the cycle-to-cycle model only the feedback variables

of the last cycle xi−1,MC are available at execution time are shown in Figure 4.2a.

In the cycle-to-cycle model, the required operating variables including

ûi,IC (eq. 4.4) and ûi,MC (eq. 4.3) are required to achieve a desired target state of the
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(a) Cycle-to-cycle ANN for estimation of operating variables on the cycle-to-cycle
scale ûi,IC, ûi,MC

In-Cycle-Scale (MC)

In-Cycle
ANN

xi−1,MC

xi,IC

xi,MC,target
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(b) In-cycle ANN for estimation of operating variables on the in-cycle (MC) scale ûi,MC

Figure 4.2: Inverse model structure to describe the HCCI cycle-to-cycle and in-cycle
(MC) scale according to the split autoregressive process

entire cycle xi,target. The target state of the MC xi,MC,target (eq. 4.1) and IC xi,IC,target

must be defined as model inputs.

Since the feedback variables of the IC xi,IC are already known after the IC and can

therefore be included in the in-cycle ANN for the MC as an additional input. The

target state for the MC xi,MC,target must still be set and since the IC is completed, the

operating variables ûi,IC are available. These MC variables affect the MC so they are

used as an input into the model. For this purpose, they are included in the feedback

variables from the IC xi,IC in order to consider them. Using the aforementioned

variables, only the required operating variables for the MC ûi,MC are estimated.

No model for the in-cycle control of IC is used since this model would set the

operating variables in such a way that a target state after IC is reached without con-

sidering the target state of the MC. For example, a cycle-specific operating variable

intervention by an IC model can prevent heat release in the IC. Since such an IC
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model has no knowledge about the influence of the intervention on the MC. An over-

compensation with a negative influence on the next MC could then occur. This could

lead to control deviations that cannot be rejected by the in-cycle (MC) model and a

lower overall control performance can be expected. Thus an in-cycle model for IC is

not used. For the multiscale control concept that is introduced later, the operating

variables calculated with the C2C-ANN for MC are discarded and recalculated with

additional information using the in-cycle-ANN. This provides a consistent comparison

between the applied controlled strategies.

4.2.2 ANN Model Results

How the trained ANN output differs on the cycle-to-cycle and in-cycle timescale is

examined. As described above, the in-cycle model is expected to have a significant

improvement in comparison to the cycle-to-cycle model. To evaluate this, the error E

is defined as the difference between the ANN output ûi and the measured variables ui.

E = ûi − ui (4.8)

The probability density function (PDF) Φ for each element of E with the following

property:

∫︂ ∞

−∞
Φ(E)dE = 1 (4.9)

The PDF Φ as a function of the error E for all three elements of ui are shown in

Figure 4.3. The probability distribution of the error is also displayed as a percentage

using the bars. The results for the cycle-to-cycle models are indicated by dashed lines

and light bars and for in-cycle models by the solid lines and dark bars respectively.

In addition, Table 4.1 lists MSE and the Pearson correlation coefficient (PCC) r for

all operating variables for both model timescales. Both Table 4.1 and Figure 4.3 are

based on the validation data set which is not used during the training process.
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(c) Probability density function of required fuel injection duration t̂F, MC

Figure 4.3: Modeling results: Probability density function of model error for cycle-
to-cycle and in-cycle scale
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Table 4.1: Performance of ANN based cycle-to-cycle and in-cycle inverse process
models

Variable Quality
measure

Cycle-to-cycle In-cycle ∆%

m̂W, IC MSE 3.35 mg2 - -

PCC r 0.731 - -

m̂W, MC MSE 3.73 mg2 2.93 mg2 -21.5%

PCC r 0.709 0.807 +13.8%

t̂F, MC MSE 0.010 ms2 0.011 ms2 +6.9%

PCC r 0.710 0.721 +1.6%

For the predicted water pre-injection mass m̂W, IC (Figure 4.3a), which is only

estimated in the cycle-to-cycle model, the PDF shows a characteristic Gaussian dis-

tribution. 48.81% of the cycles have a maximum error of 1.2 mg, 75.23% of the cycles

are within a window of 2.16 mg. An MSE of 3.348 mg2 is obtained and the PCC

is r = 0.731.

For the water injection mass during the MC m̂W, MC, a completely different prob-

ability distribution is observed (Figure 4.3b). Near zero, the PDF becomes sharply

peaked, which indicates a significant accumulation of the error in this window. To-

wards the outside, the curve becomes considerably flatter. This behavior is observed

for the cycle-to-cycle as well as for the in-cycle model, whereas the peak is more

distinctive for the latter. The in-cycle model tends to smaller errors and 60.42% of

the cycles are within an error window of 1.2 mg. For the cycle-to-cycle model, only

50.80% is obtained. This results in a reduction in MSE of 21.45% and an increase in

PCC of 13.82% in favor of the in-cycle model.

The PDF of the model error for the fuel injection duration t̂F, MC (Figure 4.3c)

shows a similar characteristic as for the water main injection m̂W, MC, whereas the
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peak around zero is even more significant in this case. In contrast to the water

injection, there is only a slight difference of the PDF of cycle-to-cycle and in-cycle

model for the fuel injection. This means, the required fuel mass can already be

predicted quite accurately on a cyclic base. Nevertheless, a better control performance

is expected from the in-cycle model, since the overall model performance including the

water injection is significantly better. The error window of 0.096 ms contains 72.30%

of the cycles for the cycle-to-cycle model and 72.75% for the in-cycle one. For the

cycle-to-cycle model, an MSE of 0.0102 ms2 is obtained, which is slightly better than

the MSE of the in-cycle model of 0.0109 ms2. However, for the in-cycle model a small

increase of the PCC r of 1.55% is observed.

The results yield the following conclusion: For the cycle-to-cycle model, a relatively

large number of operating variables ûi must be computed using only the feedback

variables xi−1,MC. This leads to an increased uncertainty in the cycle-to-cycle model.

However, it is obvious that the in-cycle model performance for the estimated water

injection can be significantly increased compared to the cycle-to-cycle one.

This is attributed to an improved representation of the thermodynamic cylinder

state by consideration of the additional information from the IC. Thus, the model

error is significantly decreased on the in-cycle scale.

4.3 Controller Results and Validation

To test the developed controllers the RWTH SCRE, defined in Section 2.2 is used.

Then the validation measurements were performed by splitting a measurement of 995

cycles into 5 intervals of about 200 cycles each. Table 4.2 provides an overview of the

distribution of the different control approaches used during the measurement.

Figure 4.4 provides an overview of CA50, IMEP and the heat release (QIC) dur-

ing IC. As well the applied operating variables, the injected water mass during IC

(IC mW, IC) and MC (mW, MC) and the fuel injection duration (tF, MC) from the differ-
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Table 4.2: Controller results split into approximately 200 cycles intervals

Phase Cycle Abbreviation Control approach

1 1-197 Controller disabled

2 198-401 C2C-SISO Linear model free cycle-to-cycle
SISO

3 402-620 MS-SISO Linear model free multiscale SISO

4 621-805 C2C-MIMO ANN cycle-to-cycle MIMO

5 806-995 MS-MIMO ANN multiscale MIMO

ent control approaches are compared to the base uncontrolled case. Additionally, the

indicated thermal efficiency ηi is noted. The intervals for each controller evaluation,

as defined in Table 4.2, are indicated by the dashed black lines. In addition, the color

of each interval varies from a light gray for the uncontrolled case to black for the

MS-MIMO controller. Furthermore, the CA50 return map for all control approaches,

in the same color scheme, is shown in Figure 4.5.

Phase 1: Controller Disabled:

During the uncontrolled case in phase 1, there is a strong variance of the CA50

with a maximum value of 27.45 °CA aTDC observed and a minimum value of

−10.95 °CA aTDC. Likewise, IMEP shows significant outliers, which indicate the

combustion instability of the selected operating point. In addition, the typical CA50

return map can be seen in Figure 4.5 for each control approach as a reference in the

background.

Phase 2 and 3: Reference SISO-Controllers:

For the evaluation of the MIMO control concepts (discussed in Phase 4 and 5), the

model-free rule-based SISO controls from preliminary work are used for comparison.
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Figure 4.4: CA50, IMEP, heat release in IC QIC and operating vari-
ables mW, IC, mW, MC and tF, MC for different controller concepts @ IMEP=3 bar,
n=1500 min−1
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Figure 4.5: CA50 return map for different controller concepts compared to open-loop
operation @ IMEP=3 bar, n=1500 min−1
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The Phase 2 and 3 concepts utilize cycle individual direct water [10] and fuel [82]

injections. The applied control approaches are shown schematically in Figure 4.6.

CA50i−1 mW,IC

mF,Res −∆tF,MC

mW,MC

CA50i

z−1

C2C-SISO

MS-SISO

Figure 4.6: Structure of model free MS-SISO control approach and model free C2C-
SISO control approach (dashed box)

In phase 2, the C2C-SISO control [10] is applied. As shown in the dashed box

in Figure 4.6 the operating variable mW, MC is determined using a linear control law

dependent on the CA50 of the previous combustion cycle. The intention is to prevent

an early combustion phasing, which is expected after a late combustion, by delaying

the combustion using direct water injection.

In phase 3 the MS-SISO controller combines the main findings of the preliminary

work. Here, two independent water injections[10] mW, IC and mW, MC are used as

the control variables, which are dependent on the CA50 of the previous combustion

cycle. Additionally, the fuel injection duration[82] tF, MC is adjusted such that possible

residual fuel mass mF,Res is compensated by shorter injections to keep the overall fuel

mass constant.

As shown in fig 4.4 in phase 2 the C2C-SISO approach is capable of decreasing

the variance in CA50 and IMEP. However, there are still significant outliers. The

combination of multiple rulebased control laws in phase 3 results in several early

combustion cycles and an increase of σCA50 of 10.9 % compared to the C2C-SISO

approach (cf. Figure 4.7a).
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However, it was shown in preliminary work, that those operating variables have

a high potential for stabilization, the high non-linearity of the process results in

insufficient controller performance of rulebased SISO approaches. Thus, in phase 4

and 5 non-linear model-based methods are investigated.

Phase 4: ANN Based Cycle-to-Cycle C2C-MIMO Controller:

The following two approaches use MIMO controllers with ANNs from Figure 4.2a and

4.2b to match the high non-linear process behavior. Phase 4 in Figure 4.4 shows the

results of the C2C-MIMO controller.

For model based concepts in phase 4 and 5 the following target values are set:

xi,target =

⎛⎜⎜⎜⎝
CA50i,target

Qi,MC,target

Qi,IC,target

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
8 °CA aTDC

480 J

20 J

⎞⎟⎟⎟⎠ (4.10)

Contrary to the SISO concepts, it is apparent that this ANN based approach

more frequently applies the adaption of fuel injection duration. Overall, the standard

deviation of CA50 and IMEP were reduced by 49.1% and 50.0% respectively (Fig-

ure 4.7)using the C2C-ANN. Additionally, less fuel is injected and the mean IMEP

is increased to 2.94 bar, showing a clear improvement of the indicated efficiency to

ηi = 29.08 % compared to ηi = 28.09 % for the uncontrolled case.

Nevertheless, as shown in Figure 4.4, there are two outliers in CA50 in cycles 734

and 743 which are directly counteracted by an additional water injection in cycles 735

and 744. Thus, water injections are generally applied following very late combustion

phasing with CA50 > 20°CA aTDC.

Cycles 735 and 744 correspond to the both extreme right data points in the CA50

return map in Figure 4.5c. The effect of the water injection is obvious as the data

points are shifted upwards compared to the reference cycles, approaching the target

for CA50. Thus a rapid, early combustion is prevented. The point cloud spread
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becomes tighter showing the stabilization of the process compared to the SISO ap-

proaches.

Phase 5: ANN Based Multiscale MS-MIMO Controller:

In Figure 4.4, the MS-MIMO concept is applied in phase 5 showing a slightly dif-

ferent behavior than the C2C-MIMO concept. Here, the controller interventions are

mainly performed by adjusting the fuel injection. However, the variation in fuel

mass (∆tF,MC) is significantly lower than what was observed for the C2C-MIMO con-

troller. The water injection before the IC is no longer applied at all and only in two

cases water injection is applied for the MC following late combustion cycles. The

two water injection interventions match with the two peaks of QIC, meaning that this

information is taken into account by the in-cycle-ANN. Furthermore, the trace shows

no peaks with QIC > 75 J. This confirms the assumption made during the mea-

surement that a higher heat release in the IC can be suppressed by cycle individual

control interventions.

This MS-MIMO approach results in a further reduction of the process fluctuations

in CA50 and IMEP. A reduction of the standard deviation for CA50 and IMEP

of 67.3% and 68.2% is achieved. Even compared to the C2C-MIMO approach, a

significant reduction in standard deviation for CA50 and IMEP of 35.7% and 36.4%

is obtained. Additionally, there is a significant increase in IMEP to 3.02 bar while

shifting the indicated thermal efficiency further up to 29.42 % leading to an 1.2 %

higher efficiency than for the C2C-MIMO approach. In Figure 4.5d, the point cloud is

further reduced showing even more stable combustion than the C2C-MIMO approach.

Since the two model-based MIMO controllers use the same cycle-to-cycle-ANN for

control, the difference in controller interventions can only be based on the in-cycle

ANN. The latter model has considerably more information about the process and is

therefore noticeably better at predicting which operating variables are required for

the MC. This clearly shows the relevance for multiscale control approaches for HCCI
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using a second feedback loop within each cycle.

Only a single HCCI operating point was examined but for a real vehicle the method-

ology needs to be applied over a wider operating range. This would require additional

measurements and retraining of the ANN which is beyond the scope of this thesis.

Nevertheless, the methodology has a high potential over the whole HCCI operating

range, as it provides a database with a very high dynamic and increased variance to

address the high non-linearity of HCCI.

4.4 Summary of chapter

To further improve the combustion stability of HCCI, the in-cycle controller was ex-

panded with the addition of cycle-to-cycle controller. Here a cycle-to-cycle model for

the entire cycle and a in-cycle model was created for several time scales according

to the split autoregressive process. By taking into account additional feedback vari-

ables from the intermediate combustion, it was shown that the model quality can be

significantly increased and the validation error reduced. These MIMO models were

then each implemented in a control structure, and ensuring the real-time capability.

A C2C-SISO control approach presented in [15] and a new MS-SISO controller with

linear control rule were used for a baseline comparison. Both of the MIMO controllers

significantly stabilize the operating point compared to the SISO controllers. Specif-

ically when compared to the C2C-MIMO control, the MS-MIMO controller reduces

the standard deviation of IMEP and CA50 by 18.2%.
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Chapter 5

HCCI Emission and Performance
Modeling 1

Accurate models are essential to model based control strategies. Due to the complex

combustion process and the large variation in fuel properties emission models are

often complex and difficult to implement in model based control. Finding an accurate

emission model for the HCCI combustion process is one goal of this chapter. It is also

important that these emission models are suitable for real-time implementation on

the engine controller. These models can then be embedded in a MPC to predict the

engine out emissions and to allow the controller to consider emissions. Finding this

balance between modeling accuracy and quick computational time resulted in these

two approaches:

1. high speed FPGA based kinetics model

2. blackbox machine learning models

Each of these two models took a different approach to provide a model with high

accuracy and the possibility of rapid calculation. The goal of the first approach was to

take advantage of the parallel computing power of the FPGA to get an accurate real-

time physics based emission calculation. While the second approach took advantage of

data driven machine learning models that are quick to execute in real-time but require
1 This chapter is partially based on [13, 177]
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significant training data. These methods will be presented in the next sections.

5.1 White-Box Chemical Kinetics Modeling

Real-time measurement of in-cylinder conditions, such as gas temperature and com-

position are extremely difficult to directly measure and often require advanced optical

systems [178]. A detailed HCCI model can estimate these emission states and can

then be used for estimating other states used in a controller. This has been found

essential for implementing reliable closed loop controllers [7]. Based off a measured

in-cylinder pressure trace a multi-zone kinetics model determines gas temperatures,

compositions and combustion phasing, providing the information needed for a con-

troller to reduce emissions. A simpler single zone model is not capable to calculate

pollutant emissions but reduces the calculation effort drastically. Temperature and

combustion phasing can still be predicted and used as in-cycle control input [9, 179].

This section describes the translation of a kinetics mechanism to a real-time imple-

mentation on an FPGA. Here, a preexisting detailed chemical combustion mechanism

is validated for a single cylinder research engine (SCRE), extending an existing gas

exchange model, that is available both in post processing [180] as well as real-time

operation [15, 163], providing the initial conditions to the combustion model. This

section is structured into four subsections. First the mechanism is presented, then

the combustion model is described and its performance analyzed. In the third part

the transfer of the model to Simulink is explained and mathematical problems for

porting the model to the FPGA are described. The performance of the FPGA model

is described in the last step.

5.1.1 Mechanism

For real-time combustion modeling a chemical kinetic mechanism describing HCCI

combustion is needed. Gasoline is made up out of several hundred chemical com-
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pounds and therefore too complex for subsequent real-time implementation [181,

182]. Instead, primary reference fuel (PRF) mechanisms that model iso-octane and

n-heptane, are used. The mechanism used here is from Tsurushima [183] which is

derived from the work of the Lawrence Livermore National Laboratory (LLNL) [184].

A process has been developed that has a modular form to allow most mechanisms in

Chemkin [185] or Cantera [186] format to be used. The Tsurushima mechanism con-

sists of 34 species and 48 reactions, of which 46 are elementary and 2 are three-body

reactions. The mechanism is based on a kinetic model for PRF from Tanaka [187]

with a very simple high temperature mechanism and a modified low temperature

model. The mechanism has been validated using a shock tube and gas sampling in an

HCCI engine, and is known to have reduced precision in simulating ignition timings

due to its small size.

5.1.2 Combustion model

The combustion model describing the in-cylinder conditions can be separated in three

parts:

• geometry

• thermodynamics

• reaction kinetics

The interactions between the three parts of the kinetics model describing the in-

cylinder state are summarized as shown in Figure 5.1. These equations represent

a physics based model of the combustion process and can be used to calculate the

in-cylinder state.

Geometry is the driving factor for the compression ignition and solely consists

of extensive values. The combustion itself in the reaction kinetics part is described

entirely intensive and the thermodynamic part links the two together. Two main
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V = Vc + s(α)Ap

dC = νkf
∏︂

Cν
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dQW = αh∆TAW
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dQ− pdV
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dC
Mρ
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mRT
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pressure 1st law
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Thermodynamics
Mechanism

Mathematics

Figure 5.1: Schematic display of the combustion kinetics model highlighting the three
separate components.

versions of the model are developed. The first one calculates the pressure internally

while the second one is based on measured combustion chamber pressure.

Geometry

The geometry of an internal combustion engine can be represented by:

• piston position s(t)

• piston speed ṡ = ds(t)
dt

• cylinder volume V (t)

• change in volume dV (t)

• crank angle α

• connecting rod length r

The piston equation which describes s(t) as a function of the crank angle α and
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connecting rod to crank ratio λs is:

s = r ·
[︃
1− cos(α) + 1

λs
·
(︃
1−

√︂
1− λ2

s · sin2(α)

)︃]︃
(5.1)

With the known geometric parameters bore diameter Dbore and clearance volume Vc

the volume can be calculated as:

V = Vc + s · D
2
bore

4
· π (5.2)

The derivative of equation 5.1 with respect to time results in the following equation:

ṡ =
ds
dt

= r · sin(α) · λs · cos(α)√︁
1− λ2

s · sin2(α) + 1
. (5.3)

For the change in volume equation 5.2 is derived with respect for time by using ds

from equation 5.3.

V =
ds
dt

· D
2
bore

4
· π (5.4)

Thermodynamics

The thermodynamic part of the model describes the intensive properties:

• temperature T

• pressure p

• density ρ

based off of extensive values from geometry and mass m. Pressure and density are

calculated using the ideal gas law assumption:

p =
m ·R · T
M · V

(5.5a)

ρ =
p ·M
R · T

(5.5b)

The pressure is only needed when when the model is used to predict future values and

in that case the measured pressure trace can not be used. Temperature is calculated

using the first law of thermodynamics

∆U =
∑︂

Q−
∑︂

W (5.6)
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For a closed system, the first term is:

dU
dt

= m · cv,m · dT
dt

. (5.7)

Substituting eqn 5.7 into eqn 5.6 by solving for dT
dt

results in:

dT
dt

=
dQchem

dt − dQwall
dt − p · dV

dt
m · cv,m

. (5.8)

Where chemical energy, heat transfer through the walls and piston work have been

incorporated using the wall heat transfer model as [188]:

dQwall

dt
= ah · (T − Tw) · (π ·Dbore · s+ 2 · Apiston) . (5.9a)

ah =

(︁
(ds

dt + 1.4) · p · 10−5
)︁0.8 · 130

T 0.4 · V 0.06
(5.9b)

and heat release dQchem:
dQchem

dt
=

∑︂
i

ui ·
dYi

dt
(5.10)

which is driven by the change in mass fractions Yi as well as the internal energies ui

both provided by the reaction kinetics.

Reaction kinetics

The reaction kinetics calculate the species concentration and require the chemical,

thermodynamic and kinetic properties of the mixture to describe the chemical prop-

erties of the gas. Heat capacity (cv) and internal energy (u) are based on NASA

polynomials [189] while the molar masses (M) are constant for each species that only

change for the mean value but never for one component. The reaction kinetics mech-

anism is the change in species concentration for species i in a reaction with all species

n is:
dCi

dt
= νi · kf

∏︂
n

Cνn
n . (5.11)
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The empirical factor kf describes the speed of the reaction that is temperature de-

pended and is determined using the Arrhenius equation:

kf = Af · T b · exp( −Ea

R · T
) . (5.12)

Some reactions have both a forward and reverse reactions that are simultaneously

occurring, and thus is accounted for in the combustion mechanism to maintain

thermodynamic equilibrium. To obey equilibrium conditions, Cantera handles these

reverse reactions by introducing an equilibrium factor KC:

KC =
kf

kb
(5.13)

and uses that as a starting point to calculate the reverse (backwards) speed factor

kb. KC can also be calculated from the free Gibbs energy:

∆g = Σi [νprod,i · (hi − T · si)− νreac,i · (hi − T · si)] (5.14)

resulting in:

KC = (
p0

R · T
)Σνnet · exp(−∆g

R · T
) . (5.15)

Using KC to calculate kb provides the retarding of the progression rate caused by the

reverse reaction without violating the equilibrium condition [190]. Species fractions

as needed for equation 5.10 are correlating to concentration as follows.

dYi

dt
=

dCi

dt
· Mi

ρ
(5.16)

The mechanism describes both the components properties as well as a set of reactions

for the combustion of iso-octane and n-heptane which is initially implemented in the
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open source Cantera software. The Tsurushima mechanism only utilizes two types

of reactions, elementary and three-body. The elementary reactions follow the form

of equation 5.11. To describe a reaction with a third and inert collision partner, an

additional concentration Cm describing the rest of the mixture with all species n:

Cm =
∑︂
n

ϵn · Cn . (5.17)

The efficiency vector ϵn is accounting for oscillation frequencies that can make a

lighter molecule absorb more kinetic energy.

5.1.3 Model performance

A single zone model is calculated offline using MATLAB and Cantera which is ca-

pable of simulating the combustion process. Inputs to the calculation are the initial

conditions provided by the sensors and gas exchange model. The calculated cylinder
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Figure 5.2: Comparison between calculated and measured (average over 250 cycles)
pressure for a post processed single zone model applying the Tsurushima mechanism
in MATLAB and Cantera

pressure is displayed in Figure 5.2a and compared to the average measured cylinder

pressure (over 250 engine cycles). The slight discrepancy between the measured and

the calculated pressure trace during the compression is attributed to a slight initial
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condition mismatch between the model and measurement. During combustion (detail

Figure 5.2b) three main differences were observed. The measured combustion starts

earlier, shows a less steep pressure rise rate and does not reach as high peak pressure

as the simulation. This difference is attributed to the simplification of the simulation

model - the whole combustion chamber is simulated as one zone at only one temper-

ature. So the combustion temperature is the same throughout the cylinder and is

either taking place in its entirety, with a 100% conversion efficiency, or not at all in

the model.
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(a) Global reaction: fuel, O2, CO2 and H2O
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Figure 5.3: Gas composition calculated by a single zone model using the Tsurushima
mechanism, complete conversion and over stoichiometric conditions.

This is a simplification of the experimental combustion since the model has no

delay through colder or less fuel rich zones in the cylinder, neither is there transport

mechanisms taking intermediate products out of the combustion. This directly leads

to the steeper pressure rise caused by a faster combustion in the model and is also

the cause for the higher peak pressure [191]. The model assumption of complete

combustion releases more energy that causes a higher pressure. In Figure 5.3 the

species fractions O2, CO2, H2O, fuel, HC and CO from the Tsurushima mechanism

are displayed around TDC. The combustion occurs starting at -10 CAD and proceeds

to completion at 9 CAD aTDC. The concentrations of the products CO2 and H2O
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rise during combustion. Because of the residual gas from the last cycle is trapped

inside the cylinder, CO2 and H2O concentrations are not zero before combustion. O2

is consumed during the combustion, leading to a drop in concentration. After the

simulated combustion is over at 9 CAD there is still oxygen left in the cylinder since

the operating point is lean. The hydrocarbon species fractions in Figure 5.3b are

further separated into overall unburned hydrocarbons uHC including everything that

has at least one C-atom and one H-atom, and intermediate hydrocarbons iHC that

excludes the two fuels iso-octane and n-heptane. At the beginning of the combustion

a rise in overall uHC concentration can be seen. This is not an indicator for a growth

in hydrocarbons, which would contradict mass conservation, but rather displays iHC

having bigger molecular weights leading to bigger mass fractions. HC concentrations

are zero at 9 CAD marking the end of combustion, while CO continues to oxidization

to CO2 until 30 CAD. The lack of transport mechanisms in a single zone model

make them unsuitable to accurately simulate emissions apart from final products

of a complete combustion (compare to Figure 5.3). Figure 5.4 shows the measured

pressure as well as intermediate hydrocarbon mass fraction. The quantitative values

of the two traces is not of interest here, but rater their timing in relation to each

other. The calculation of iHC, either based on the measured pressure trace or based

on an internally calculated pressure, allows to predict combustion phasing 10 to 15

CAD ahead. This knowledge will be useful for the application of a rapid spark system

avoiding misfires in real-time.

5.1.4 Simulink model

MATLAB combined with Cantera was found to be a flexible and modular way to

switch mechanisms and initial conditions easily. These programs are built to run

offline on a desktop computer which utilizes a high clock rate processor, allowing

for operation with great flexibility and in a wide range of applications. However,
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Figure 5.4: Measured pressure and iHC mass fraction versus CAD for the post pro-
cessed model

these processor based calculations are orders of magnitude too slow for a real-time

application on an engine. Real-time calculations must be completed in the available

time and require significant optimizations when porting the offline model. These

real-time calculations are therefore very specific and not meant to allow for flexibility.

The goal is a highly specialized and optimized model, that is capable of meeting

the strict real-time timing requirements. A FPGA provides the general capabilities

needed to run a specialized set of equations at high rates. The whole offline model,

including the chemical kinetics calculations from Cantera, has to be ported using

the Xilinx System Generator Blockset, a Simulink based programming language that

allows for compiling very high speed integrated circuit hardware description language

(VHDL) running on the FPGA. The steps to port the Cantera and Matlab based

model (presented in Section 5.1.2) to Simulink is described.

In the first step, the post-processed model is replicated exactly in Simulink. Mean-

ing that the exponential equations 5.12 and 5.15 are calculated by Simulink. Simulink

is capable of handling exponents but shows reduced efficiency. FPGAs are based on
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fixed point operations and therefore are inherently inefficient and imprecise when cal-

culating exponents. In a second step these equations have to substituted by lookup

tables. kf as a function of temperature can be directly translated in a lookup table

following equation 5.12. Figure 5.5 shows the relative error between the solution of

the Simulink model and the solution of the MATLAB model. The peak itself results

from a relatively small deviation in combustion phasing that results from the error

tolerances of the Simulink ODE solver. This error will not propagate further since

the discretized model is no longer using a variable step size ODE solver. The error
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Figure 5.5: Relative error between the MATLAB and the Simulink pressure trace for
different resolutions of T in the kf lookup table.

for 3 different resolutions on the temperature axis of the kf lookup table is also shown

in Figure 5.5. It can be seen that for a resolution less than 1 K no significant im-

provement in error is observed. The exponential in equation 5.15 are dependent on

temperature and on gas composition through Gibbs free energy. For the Tsurushima

mechanism with 34 species the lookup table would need 36 dimensions which is not

practical as the maximum lookup table size in Simulink is 30 dimensions. Simplifi-

cations must be made to avoid this. Which are the equilibrium factor KC which is
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provided in 2 separate lookup tables of 2 dimensions, temperature and KC. One table

is for a typical lean unburned mixture and the other for a burned mixture.

5.1.5 FPGA model

A variable step size solver is not suitable for real-time implementation as a fixed time

step is used for the combustion model on the FPGA. Unlike processor based comput-

ers, that are capable of doing a broad variety of tasks in any order, a FPGA performs

a fixed set of calculations. Those calculations are all completed at the exact same

time and truly parallel with a set clock rate. This unique feature makes the FPGA

ideal for combustion simulations where the calculations and the reactions progression

must be calculated at the same time. To calculate all reactions at the same time in

Simulink, but without generating 34 sets of blocks, a quadratic matrix was used for

the stoichiometric factors in equation 5.11. That causes a problematic exponential

for FPGA implementation. Additionally, most of the time, this exponential results

in a power of zero anyways. This is avoided by precalculating the reaction expo-

nential by setting the stoichiometric exponents that are known. Therefore, only the

participating concentrations are connected to the reaction block.

As the FPGA has a fixed clock rate and therefore requires the solution step size

to be predefined. The first approach was to run the model using the smallest time

step, identified in the variable time step offline simulink model. This was found to

be 1.6373e-10 s. This would result in the FPGA solver starting the calculation at

IVC with the smallest needed step size (∆tmin) that is necessary to calculate the

combustion around TDC, where the changes in the ODE are the steepest. A discrete

solver that is fast enough to keep up with the real process could align with the

measured pressure at the pressure sensors resolution of a tenth of a CAD, and would

finish the simulation and provide emissions immediately after combustion. In addition

to that it would provide the SOC before there is any significant or measurable heat
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release. A mildly optimized model has been generated for the FPGA requiring 25

sequencial logical calculations per solver step. Thus the minimal time step possible on

the FPGA is: ∆tFPGA = 25 · fclock, with the clock rate fclock = 12.5 ns. That results

in a minimal step size of 3.125e-7 s which is 1908 times the minimal time step of the

ode23tb Matlab solver of 1.6374e-10 s. Figure 5.6 shows the calculated temperature

of a discrete solver with the step size ∆tFPGA. During one rotation at 840 rpm the
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Figure 5.6: Temperature calculated with an external pressure trace at the minimal
FPGA step size ∆tFPGA = 3.125e-7 s.

FPGA can calculate 228,576 steps which equals 0.0523% of the steps needed for a step

size of ∆tmin = 1.6374e-10 s. This means the current FPGA hardware is only able

to calculate 0.1886 CAD of combustion during one revolution of the engine. Since a

model with a resolution of 0.1 CAD is needed, this meant that with the current FPGA

hardware, it was not possible to run a fully white-box kinetics model in real-time.

With future improvements in the clock rate of FPGA boards it could be possible to

implement a realtime whitebox kinetics based model for engine control.
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5.2 Machine Learning Methods: Steady State
Models

The FPGA based physical kinetics model developed in the previous section provided

detailed information of the chemical composition of the cylinder throughout the com-

bustion process, however, even with the parallel computation power of an FPGA it

was not possible to calculate the emissions in real-time. In order to get an emission

model that can be used within a MPC, ML methods are explored to find an accurate

emission model of the HCCI process that are suitable for realtime implementation.

Data is nessary for the machine learning methods using and will be described next.

It is well understood that HCCI has a narrow operating range and has high ef-

ficiency and low emissions within specific operating conditions [25, 154, 155]. In

vehicles, the limited load range is not as critical in hybrid and electric range extender

applications. These require only a few efficient load and speed operating points as

the electric part of the propulsion systems are used to handle any transient loads.

To simulate a steady state operating point the engine is operated in a conditioned

environment that keeps rotational speed, load, intake pressure and temperature, oil

and coolant temperature and exhaust pressure constant. Only one load and speed

is selected to reduce the experimental space and demonstrate the proposed emission

model.

Active input factors to the HCCI combustion process include injected fuel mass,

injection timing and valve timings. These variables were chosen to be varied as they

significantly affect the combustion process and the resulting engine out emissions at

a given load and speed operating point. They also strongly influence the combustion

stability of the HCCI process which has a significant effect on the engine out emis-

sions [3, 7]. As the HCCI process is sensitive to operating conditions, a relatively

small change in an input parameter can result in a significant change in engine out-

put parameters. These engine input parameters have also been explored in previous
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work regarding HCCI emissions modeling [132]. The variation in engine inputs is

summarized in Table 5.1.

Table 5.1: Range of HCCI engine input parameters

Engine Input Min Max Mean

SOI [deg aTDC] 455.9 495 473.4

mf [mg] 2.7 2.96 2.86

NVO [deg] 173 201.6 187.7

The process of creating a machine learning based emission model can be broken

into two main steps. First, the required data for emission modeling of the HCCI

engine was collected as discussed in Section 2. Figure 5.7 schematically shows the

data collection and emission modeling. During data collection, fuel amount (mf ),

negative valve overlap duration (NVO), and start of fuel injection (SOI) are the main

inputs while intake pressure (Pin) and intake temperature (Tin) are held constant

during data collection. The power output of the engine is represented by IMEP and

the operating points are chosen to keep the output load approximately constant for all

tests with an IMEP of 3.5 ± 0.2 bar. Holding IMEP constant while varying mf , SOI,

and NVO results in varying combustion efficiency and a trade-off between different

emissions.

For these tests, λ, CO, CO2, NOx, and HC emission were measured. All manip-

ulated and conditioned input and engine output variables in the emission modeling

section are used as inputs to the data-driven system. Using unsupervised learning,

different feature sets by interpolation of these inputs are created, and these features

are the main inputs of the PSO-based SVM method. In this study, both Nonlinear

SVM (NLSVM) and Linear SVM (LSVM) are considered for emission modeling using

different feature sets, and PSO is used to optimize the hyperparameters of both the
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Figure 5.7: Schematic of data collection and proposed emission modeling using PSO-
based LSVM and NLSVM

LSVM and NSVM. This method was compared with the benchmark Artificial Neural

Network (ANN) emission modeling [120].

5.2.1 Support Vector Machine

The main idea of the regression form of SVM, also called Support Vector Regression

(SVR) is to find an optimal hyperplane, y(ui), such that y(ui) is as flat as possible

and it has the maximum deviation of ϵ for all training data [192]. In other words,

the optimization problem is to find the flattest function with the maximum error

tolerance ϵ. Therefore, the optimal hyperplane which describes the training data,

{ui, zi}, can be defined as:

y(ui) = wTui + b (5.18)

where ui and zi are input and target of the training data and w and b are found

by solving the SVM algorithm for regression problems. The optimization problem to
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find the optimum hyperplane y(ui) is defined as:

Minimize: 1

2
||w||22

Subject to:

{︄
zi −wTui − b ≤ ϵ

wTui + b− zi ≤ −ϵ
i = 1, ..., n

(5.19)

where the flatest function is achieved by minimizing 1
2
||w||22 and the tolerance is

achieved by solving for the defined constraints. A schematic of SVM regression is

shown in Figure (5.8) where the main objective of SVM is shown as the orange line

estimating a proper function by the maximum deviation of ϵ.

Figure 5.8: SVM regression and support vectors (based on [117])

For those data points within a defined tolerance (ϵ), y(ui) has been found such

that it predicts all pairs of learning data within a defined error. If all the data

points lay within the defined tolerance, the optimization problem is feasible. However,

occasionally the algorithm cannot converge within the defined constraints and the

current optimization problem becomes infeasible. To overcome the infeasibility of

Eq. (5.19), a penalty variable (ζi) or so called slack variable has been added to the

original optimization problem as:

−ϵ− ζ−i ≤ zi − yi ≤ ϵ+ ζ+i (5.20)

To consider these penalty variables, the Soft Margin Loss Function (SMLF) has been

added to optimization problem which is defined as [193]:
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Minimize: 1

2
||w||22 + C

n∑︂
i=1

(ζ+i + ζ−i )

Subject to:

⎧⎪⎨⎪⎩
zi −wTui − b ≤ ϵ+ ζ+i
wTui + b− zi ≤ ϵ+ ζ−i
ζ−i , ζ

+
i ≥ 0

i = 1, ..., n

(5.21)

where C is a regulatory parameter to set the trade off between tolerated error

and the smoothness of the model.

To consider constraints in the optimization problem the Lagrangian function is

calculated as

L =
1

2
||w||22 + C

N∑︂
i=1

(︁
ζ−i + ζ+i

)︁
−

N∑︂
i=1

α+
i (−zi + yi + ϵ+ ζ+i )−

N∑︂
i=1

µ+
i ζ

+
i

−
N∑︂
i=1

α−
i (zi − yi + ϵ+ ζ−i )−

N∑︂
i=1

µ−
i ζ

−
i

(5.22)

where α+
i , α−

i , µ+
i , and µ−

i are the non-negative Lagrangian Multipliers. The La-

grangian is solved by calculating the partial differential with respect to the optimiza-

tion variables as

∂L

∂w
= 0 → w =

N∑︂
i=1

(α+
i − α−

i )ui (5.23a)

∂L

∂b
= 0 →

N∑︂
i=1

(α+
i − α−

i ) = 0 (5.23b)

∂L

∂ζ+i
= 0 → α+

i + µ+
i = C (5.23c)

∂L

∂ζ−i
= 0 → α−

i + µ−
i = C (5.23d)

where Eq. (5.23a), Eq. (5.23b), Eq. (5.23c) are SVM expansion, bias constraints,

and the box constraint, respectively [117]. By substituting Eqs. (5.23a)-(5.23d) into

Eq. (5.22) the Quadratic Programming (QP) problem can be defined by
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Minimize: L =
1

2

N∑︂
i=1

N∑︂
j=1

(α+
i − α−

i )(α
+
j − α−

j )ui
Tuj

−
N∑︂
i=1

(α+
i − α−

i )zi + ϵ

N∑︂
i=1

(α+
i + α−

i )

Subject to:

⎧⎪⎨⎪⎩
∑︁N

i=1(α
+
i − α−

i ) = 0

0 ≤ α+
i ≤ C

0 ≤ α−
i ≤ C

(5.24)

which can be used in a compact version following [194]:

Minimize: 1

2
αTHα + fTα

Subject to: Aeqα = Beq

(5.25)

where

α =

⎡⎣ α+

α−

⎤⎦ , H =

⎡⎣ H −H

−H H

⎤⎦ , f =

⎡⎣ −zi + ϵ

zi + ϵ

⎤⎦ ,

H =
[︁
ui

T uj

]︁
, Aeq = [1...1 − 1...− 1] , Beq = [0]

(5.26)

In order to calculate b, the Karush-Kuhn-Tucker (KKT) conditions are used where

[195, 196]:

α+
i (−zi + yi + ϵ+ ζ+i ) = 0 (5.27a)

α−
i (zi − yi + ϵ+ ζ−i ) = 0 (5.27b)

µ+
i ζ

+
i = (C − α+

i )ζ
+
i (5.27c)

µ−
i ζ

−
i = (C − α−

i )ζ
−
i (5.27d)

must be fulfilled at the optimum point. Based on these equations, only five follow-

ing cases are possible as
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α+
i = α−

i = 0 (5.28a)

0 < α+
i < C, α−

i = 0 (5.28b)

0 < α−
i < C, α+

i = 0 (5.28c)

α+
i = C, α−

i = 0 (5.28d)

α−
i = C, α+

i = 0 (5.28e)

To find the support vector, where |zi − yi| is exactly equal to ϵ, only 0 < α+
i <

C, α−
i = 0 and 0 < α−

i < C, α+
i = 0 must be fulfilled. Therefore, b can be calculated

as

b =
1

|S|

S∑︂
i∈S

(zi −wTui − sign(α+
i − α−

i )ϵ) (5.29)

where S represents the support vector set based on Eqs. 5.28b and 5.28c as:

S = { i | 0 < α−
i + α+

i < C} (5.30)

Therefore, by solving Eqs. 5.29 and 5.25 and substituting w and b into Eq. 5.18,

y(ui) is obtained as [117]:

y(u) =
N∑︂
i=1

(α+
i − α−

i )ui
Tu

+
1

|S|

S∑︂
i∈S

(zi −wTui − sign(α+
i − α−

i )ϵ)

(5.31)

Kernel tricks

The structure of the dot product in Eq. (5.31) is a simple linear kernel which fails to

capture any nonlinear behavior of the process. The inner product of Eq. (5.31),ui
Tuj,

can be replaced by a nonlinear kernel K(ui,uj). By replacing the linear kernel with a
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nonlinear kernel, using so called kernel tricks, brings nonlinear pattern recognition at

a reasonable computational cost [197]. In this study the RBF (Radial basis function)

kernel function is used as

K(ui,uj) = exp

(︃
||ui − uj||22

2σ2

)︃
(5.32)

where σ is the Gaussian variance and ||.||2 is the two norm. Therefore, the prediction

function, y is calculated as [197]:

y(u) =
n∑︂

i=1

(α+
i − α−

i )K(ui,u) + b (5.33)

This study examines different interpolations of different features that also play the

precise role of the polynomial kernel.

Hyperparameters optimization: Particle Swarm Optimization (PSO)

To calculate the hyperparameters for both the LSVM and the NLSVM, Particle

Swarm Optimization (PSO) has been used. The LSVM and NLSVM hyperparame-

ters are (CLSVM, ϵLSVM) and (CNLSVM, ϵNLSVM, σ), respectively. PSO is an optimization

method that optimizes a candidate solution iteratively with regard to the given cost

or merit function [198, 199]. To train the SVM models, a total of 70 engine operating

points were available for the University of Alberta engine presented in Section 2.1.

Then 80% of the data was used for training, 10% for cross-validation, and 10% as

test data. Cross-validation data is used to tune the hyperparameters of the optimiza-

tion methods. The cost function to find the LSVM and NLSVM is defined based on

the Mean Square Error (MSE) of training and cross validation datasets. Hence, the

hyperparameter calculation is defined as the following optimization problem:
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[CLSVM, ϵLSVM] = arg min
(︁ 1

ntr

ntr∑︂
i=1

(ztr,i − ytr,i)
2

+
1

ncv

ncv∑︂
i=1

(zcv,i − ycv,i)
2
)︁

[CNLSVM, ϵNLSVM, σ] = arg min
(︁ 1

ntr

ntr∑︂
i=1

(ztr,i − ytr,i)
2

+
1

ncv

ncv∑︂
i=1

(zcv,i − ycv,i)
2
)︁

(5.34)

Where CLSVM and CNLSVM are the regulatory parameters for linear SVM and non-

linear kernel SVM, respectively. The index tr and cv represent training and cross-

validation data set and n denotes number of data points in the data-set (i.e. ntr is

number of training data points). The tolerated error for linear SVM is ϵLSVM and for

nonlinear kernel SVM is ϵNLSVM. The target data and prediction data are illustrated

by z and y, respectively and σ is the Gaussian variance of RBF kernel. The PSO

algorithm was used to solve for the hyperparameters. The PSO-based SVM algorithm

is shown in Algorithm 1 and Algorithm 2 for linear and RBF kernel of SVM, respec-

tively. The number of particles in the swarm set for both the LSVM and NLSVM

model is set to 200 while the maximum iteration number is limited to 400 and 600

for LSVM and NLSVM, respectively.

5.2.2 Artificial Neural Network (ANN)

To compare the developed SVM to a traditional ML method, the proposed methods

will be compared to the conventional ANN methods presented in literature. A feed-

forward backpropagation network with single hidden layer and 15 neurons in each

hidden layer using Levenberg-Marquardt backpropagation training method has been

used in this study. This model with the same structure and number of neurons

was previously developed for a single cylinder HCCI Ricardo engine [120]. This is

a relatively shallow network which was chosen as there is a limited amount of data
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Algorithm 1: PSO-based linear kernel SVM algorithm
Result: HCCI emission model: y(u)
training data set: {u, z};
splitting data set: training {utr, ztr}, cross-validation {ucv, zcv}, and test {uts, zts}
;

Random hyperparameters: CLSVM, ϵLSVM;
Run Quadratic Programming of Eq. 5.25 to calculate α− and α+;
Calculate support vector sets based on Eq. 5.30;
Calculate model based on random hyperparameters using Eq. 5.31;
Set PSO options: MaxIterations1, MaxStallIterations2, FunctionTolerance3,
and SwarmSize4;

while i ∈ MaxIterations or d5 over MaxStallIterations ≥
FunctionTolerance do

Calculate cost function:
J(CLSVM, ϵLSVM) =

(︁
1
ntr

∑︁ntr
i=1(ztr,i − ytr,i)

2 + 1
ncv

∑︁ncv
i=1(zcv,i − ycv,i)

2
)︁
;

Run PSO algorithm to minimize J(CLSVM, ϵLSVM) and find hyperparameters;
Update hyperparameters: CLSVM, ϵLSVM;
Run Quadratic Programming of Eq. 5.25 to calculate α− and α+;
Calculate support vector sets based on Eq. 5.30;
Calculate model based on Updated hyperparameters using Eq. 5.31;
i = i + 1

end
1. Maximum number of iterations for optimization (= 400), 2. Positive integer (= 20), 3.
non-negative scalar: Iterations end when the relative change in cost function value over the
last MaxStallIterations iterations is less than FunctionTolerance (= 1e− 6), 4. Number of
particles in the swarm (= 200), 5. Relative change

available. The model training has been completed using the same parameters as used

in [120].

5.2.3 Feature Selection: Physical insights

A steady state emissions model is developed to predict the steady-state HCCI engine

emissions values of carbon dioxide (CO2), carbon monoxide (CO), unburnt hydro-

carbons (HC), and nitrogen oxides (NOx). The structure of the model is defined by

Eq. (5.18) where w and b are obtained by solving the SVM algorithm for a given

training data set, {ū, z}. Here, ū is the normalized Feature Set (FS). In total five dif-

ferent feature sets are tested. The training target set, z, is defined based on measured

steady-state CO2, CO, HC, and NOx values. To develop the model, 70 experimental
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Algorithm 2: PSO-based RBF kernel SVM algorithm
Result: HCCI emission model: y(u)
training data set: {u, z};
splitting data set: training {utr, ztr}, cross-validation {ucv, zcv}, and test {uts, zts}
;

Random hyperparameters: CLSVM, ϵLSVM, σ;
Run Quadratic Programming of Eq. 5.25 to calculate α− and α+;
Calculate support vector sets based on Eq. 5.30;
Calculate model based on random hyperparameters using Eq. 5.32 and 5.33;
Set PSO options: MaxIterations1, MaxStallIterations2, FunctionTolerance3,
and SwarmSize4;

while i ∈ MaxIterations or d5 over MaxStallIterations ≥
FunctionTolerance do

Calculate cost function:
J(CLSVM, ϵLSVM, σ) =

(︁
1
ntr

∑︁ntr
i=1(ztr,i − ytr,i)

2 + 1
ncv

∑︁ncv
i=1(zcv,i − ycv,i)

2
)︁
;

Run PSO algorithm to minimize J(CLSVM, ϵLSVM, σ) and find
hyperparameters;

Update hyperparameters: CLSVM, ϵLSVM, σ;
Run Quadratic Programming of Eq. 5.25 to calculate α− and α+;
Calculate support vector sets based on Eq. 5.30;
Calculate model based on Updated hyperparameters using Eq. 5.32 and 5.33;
i = i + 1

end
1. Maximum number of iterations for optimization (= 600), 2. Positive integer (= 20), 3.
non-negative scalar: Iterations end when the relative change in cost function value over the
last MaxStallIterations iterations is less than FunctionTolerance (= 1e− 6), 4. Number of
particles in the swarm (= 200), 5. Relative change

data points are available where 56 points (80 %) are used to train the model and 14

(20 %) points to test the model.

Due to the lack of direct ignition control in HCCI, unlike conventional spark ignition

in gasoline engines, the start of combustion depends on the in-cylinder conditions

including pressure, temperature and gas mixture. However, these factors can only be

influenced indirectly. The inputs used to set cylinder conditions and therefore affect

the combustion are: Negative Valve Overlap (NVO) in CAD; Injected Fuel Mass per

cycle (mf ) in mg; and Start of Injection (SOI) in deg aTDC.

Symmetric NVO is used to change the percentage of fresh air and exhaust gas

within the cylinder, called internal Exhaust Gas Recirculation (EGR). This changes

both the amount of oxygen in the cylinder as well the temperature of the cylinder
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charge. Generally, a lean mixture is desired for reduced NOx emissions, however, at

very lean mixtures the fuel flammability limit of the fuel may be exceeded leading

to combustion instability which results in high cyclic variability and increased HC

emissions. NVO also impacts the cylinder temperature after compression, where a

higher cylinder temperature results in an earlier auto-ignition process. The injected

fuel mass directly changes the amount of fuel that is added to the cylinder. However,

it is important to note that a fraction of the unburnt fuel is transferred between cycles

due to the trapped EGR within the cylinder. The amount of transferred fuel changes

depending on the combustion efficiency of the last cycle and the EGR rate (determine

by the NVO duration) [84]. The start of injection impacts the mixture homogeneity

and can lead to stratified mixtures. This can change the start of combustion and the

emissions levels. To test a wide range of cylinder conditions before combustion these

parameters were varied (NVO, mf , and SOI).

Additional operating factors that are held as constant as possible are: intake tem-

perature (Tin); intake pressure (Pin); and indicated mean effective pressure (IMEP)

which is representative of applied engine load. IMEP, Tin, and Pin are variable in-

puts to the HCCI process but they were held constant for this measurement set to

reduce the number of input parameters. However, these three factors (Tin, and Pin)

are included to account for unwanted fluctuations. The measured lambda value (λ)

is used for modeling, although, it can also be accurately estimated using measured

intake air flow and injected fuel demand or calculated using an online gas exchange

model making it a causal variable which is useful for future control applications [84].

Now different feature sets are used to train data driven models. The first feature

set uses 7 inputs to create a linear model, L7. The first extension of this feature set

is considering cross correlations between the variables (mf ×NVO,mf ×SOI,NVO×

SOI, λ×NVO, λ×SOI, λ×mf ) resulting in the L13 feature set. The cross correlations

with Tin, Pin, and IMEP are not taken into account as to not over interpret the effect
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of possible fluctuations. Then higher order correlations are also considered by adding

the squares of the input variables, FS S14. Additionally, 2 more FS are added (S20

and S26) that consider the square of the cross correlations. Details of the five FS’s

can be found in table 5.2. From a machine learning point of view, these FS’s plays

the exact role of a polynomial feature set. The only difference is that the redundant

higher dimensional feature has been removed based on physical insight expertise.

110



Table 5.2: Features u1 − u26 for the five different feature sets L7 − S26. u1 − u7 are
linear features, u8 − u14 are squared features, u15 − u20 are cross correlations, and
u21 − u26 are the squared cross correlations. L stands for linear and S stands for
squared

[Features u1 − u26 for the five different feature sets L7 − S26]

name →
L7 L13 S14 S20 S26

feature ↓

u1 = mf x x x x x

u2 = NVO x x x x x

u3 = SOI x x x x x

u4 = Tin x x x x x

u5 = Pin x x x x x

u6 = IMEP x x x x x

u7 = λ x x x x x

u8 = m2
f x x x

u9 = NVO2 x x x

u10 = SOI2 x x x

u11 = T 2
in x x x

u12 = P 2
in x x x

u13 = IMEP2 x x x

u14 = λ2 x x x

u15 = mf × NVO x x x

u16 = mf × SOI x x x

u17 = NV O × SOI x x x

u18 = λ× NVO x x x

u19 = λ× SOI x x x

u20 = λ×mf x x x

u21 = (mf × NVO)2 x

u22 = (mf × SOI)2 x

u23 = (NVO × SOI)2 x

u24 = (λ× NVO)2 x

u25 = (λ× SOI)2 x

u26 = (λ×mf )
2 x

As the dimensions and the range of the features are quite different, all of the

features should be normalized to improve the training performance [200]. Here the
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min-max normalization method is used to normalize the features

ū =
u−min(u)

max(u)−min(u)
(5.35)

All of features from Table 5.2 are normalized for ANN and SVM methods to eliminate

relative orders of magnitude difference between the features. By solving the SVM

algorithm for the training data set, {ū, z}, the approximate function, yss is obtained

to predict the steady-state values of CO2, CO, HC, and NOx.

5.2.4 ML Emission Model Comparison

To illustrate the method, the model for the CO emissions will be discussed in detail

with the other emissions being similar. The recorded data points are randomly split

into three sections where 80% of the collected data is used as training data to develop

the models. Then 10% of the data is used for model cross-validation. The remaining

10% of the data is called test data and is allocated for assessment of the models

where the same data is used for assessing all models including LSVM, NLSVM, and

ANN. To do this, the randomly chosen data points for each of the three data sets is

then kept constant between all models and feature sets to allow for a fair comparison.

Training and cross-validation data sets are used to train the model and calculate

hyperparamters. In LSVM and NLVM, the PSO algorithm is employed to calculate

the hyperparameters by solving the optimization problem of Eq. (5.34). The same

training and cross-validation data are used to train an ANN model using Levenberg-

Marquardt algorithm.

To rate the model quality the coefficient of determination (R2) is used. It is defined

by

R2 = 1−
∑︁

(zi − yi)
2∑︁

(zi − z̄)2
(5.36)

with zi being a measured value in the data set, yi being the models response to

the accompanying zi and z̄ being the mean of the measured data. A value of R2
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Figure 5.9: Comparison between R2 and Normalized RMSE values for CO for NLSVM
and LSVM with benchmark ANN method designed based on [120] in dependence of
the different feature sets.

value closer to 1 is judged as a better model fit to the data. The R2 estimate of

the relationship between the dependent variables based on an independent variable

may fail to tell the goodness of fit. Therefore, the Normalized Root Mean Square

Error (NRMSE) is used to capture the error between the model and actual values.

The Normalized version of RMSE is used to remove the dependency of RMSE to

scale output and generalize the model easily. NRMSE is defined by RMSE
σ

where

σ is the standard deviation and RMSE is defined as RMSE =
√︂

Σn
i=1(yi−ŷ)

n
where

yi is experimental value and ŷ is predicted value. This criteria provides a good

representation of how far the model prediction is away from the real data. Therefore,

the lower the NRMSE the closer the model is to the real value. Both of these methods

help to quantify the model fit.

Figure 5.9 shows both the R2 and NRMSE values for the training and test data for

the CO model. As expected the R2 and NRMSE values are the best for the training

data as the models were trained on this data set. As the model has never been trained

on the testing data this reduced prediction accuracy is expected and provides the best

representation of the model fit.

When comparing the coefficients of determination (R2) of the LSVM, NLSVM

and ANN models in Figure 5.9 a few key differences can be seen. First, when only

considering the training data the NLSVM and ANN models result in an improved R2
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value over the simplified LSVM model. Although this does not result in a significantly

improved model prediction performance when given the test data. Actually, the

LSVM outperforms the ANN model in most feature sets. Showing that the ANN

model can suffer from over fitting which is not seen with the simple LSVM model

when presented with unknown training data. This problem with a small network,

such as conventional ANN, can be reduced when using large datasets; however, when

limited data is available SVM shows a better prediction capability [117].

When comparing the different feature sets, all the three models result in fairly con-

sistent prediction accuracy irrespective of the number of features. This is especially

true for both linear and non-linear SVM models which only vary by 12% and 14%

R2 as the number of features is increased from 7 to 26. This is likely the result of

the SVM algorithm always converging to the global minimum while the ANN model

can converge to a local minimum as seen by the decrease in ANN model performance

going from L7 to L13. The convergence of the ANN model is highly dependent of

the initial choice of weights and bias values. This guarantee of global convergence is

one the major advantages of the SVM method [115, 117, 134, 201]. The main reason

for global optimization is that SVM uses Quadratic programming, which includes op-

timizing a function according to linear constraints. As ANN uses Gradient descent,

it makes ANN sensitive to randomization of weights parameters. This means that if

initial weights put cost function close to a local minimum, the accuracy of the model

will never increase past a certain threshold [131]. To avoid this, each ANN model

is trained in a loop with multiple randomization values, where the randomization is

reset until it reaches acceptable accuracy.

The findings from CO emissions can then be extended to HC, NOx, and CO2 as

shown in Figures 5.10-5.12. The trends seen between modeling methods vary slightly

between specific emissions as expected due to the physical differences in their produc-

tion mechanism. To do this, a Criterion for Methods Selection (CMS), JCMS(R
2), is
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Figure 5.10: Comparison between R2 and NRMSE values for HC for NLSVM and
LSVM with benchmark ANN method designed based on [120] in dependence of the
different feature sets.
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Figure 5.11: Comparison between R2 and NRMSE values for NOx for NLSVM and
LSVM with benchmark ANN method designed based on [120] in dependence of the
different feature sets.

defined as

JCMS(R
2) = R̄

2
(FS) − σ(R2

(FS)) (5.37)

where σ(R2
(FS)) is standard deviation of R2 and R̄

2
(FS) is average value of of R2 for

selected feature set, L7, L13, S14, S20, and S26. Table 5.3 shows criterion for method

selection, JCMS(R
2). This represents the lower bound of one standard deviation of

uncertainty of the model fit. This helps to select a model with the best fit while

ensuring the robustness of the model to changing feature sets. The goal is to have the

value close to 1. Here the best model fit score is highlighted in green and the worst

is shown in red.

Here 3 of the 4 emissions are best represented using the NLSVM model and the

other is best fit using LSVM. This shows that the SVM based models provide a stable
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Figure 5.12: Comparison between R2 and NRMSE values for CO2 for NLSVM and
LSVM with benchmark ANN method designed based on [120] in dependence of the
different feature sets.

Table 5.3: Criteria for method selection

JCMS(R
2) LSVM NLSVM ANN

CO 0.809 0.818 0.641

HC 0.612 0.864 0.838

NOx 0.877 0.710 0.799

CO2 0.884 0.944 0.725

prediction over the range of feature sets considered. A detailed analysis of the feature

set will be performed next.

5.2.5 Feature Selection

One important aspect to training the ML methods is the proper feature selection. It

is important to include any features that have a correlation to the outputs of interest.

However, the addition of extra features increase the model complexity and training

time which is undesirable for real-time model implementation. Figure 5.9 shows the

effect of feature selection on the model performance for CO emissions. The number

of features in each feature set increases from left to right.

The best R2
train value in all cases occurs for FS L7 (R2

ANN = 0.999), while R2
test

is maximized at S20 (R2
ANN = 0.959) for the ANN model. The R2 values are all

very close for the training data at approximately R2 ≈ 0.98, however, a significant
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difference can be seen between the R2 values of the test dataset. Generally as more

features are added model performance improves as seen in Figure 5.9 in the test data

for the ANN model. As the feature set is increased from L7 to S26 a continued increase

can be seen, with the exception of L13 which has a decreased model performance

with the training data using the ANN model. Improved model performance does not

necessarily result from increased features.

For CO emissions the best model performance on the test data occurs when using

the ANN model with S20 feature set. However, for simplified control purposes the

L7 feature set using the NLSVM model provides good a prediction capability with

only a 15.6% reduction in model fit, R2
test. As the main goal is to provide a real-time

model for control applications this simplified and robust NLSVM prediction model is

the desired choice for CO emissions prediction.

This feature analysis was extended to HC, NOx, and CO2 and is shown in Fig-

ures 5.10–5.12. To compare the increased feature sets to the base feature set

(FS = L7) a percent accuracy increase in R2 value is defined, as Criterion for Feature

Selection (CFS), JCFS(R
2), as:

JCFS(R
2) =

R2
FS −R2

L7

R2
L7

× 100% (5.38)

This provides the relative increase in performance compared to the simplest model,

which includes lambda as a feature, for the model type selected previously. Table 5.4

shows the improvement based on different feature sets. Here the simplest model is

chosen that provides a significant increase in prediction performance (∆R2 > 2%).

Overall, proper feature selection is required to gain the maximum model perfor-

mance. This does not mean including any and all features but rather a proper feature

exploration and selection is required. A suitable trade-off between accuracy and model

complexity results in the emission model for control purposes for CO, HC, NOx, and

CO2 are NLSVM-L13, NLSVM-L7, LSVM-L13, and NLSVM-L7, respectively. For

117



Table 5.4: Criteria for feature selection

feature set NLSVM- CO NLSVM- HC LSVM- NOx NLSVM- CO2

JCFS(R
2)

FS = L13 4.53% 0.41% 7.56% -1.75%

FS = S14 5.12% 2.60% -2.57% -1.38%

FS = S20 4.78% 0.59% 5.09% 0.34%

FS = S26 4.66% 0.28% 4.02% -0.17%

chosen FS L13 L7 L13 L7

this system, more features does not necessarily result in better model prediction per-

formance. Additionally, based on the data collected there is not a single modeling

method that should be used for all emissions.

5.2.6 Optimization and model training time

As the purpose of the proposed emissions models is hardware implementation, it is

necessary to evaluate the computational time requirements. There are two different

computational times of interest: 1) the offline one-time model training time and 2) the

online deployment time to execute the model. The training computational time for

optimization of the hyperparameters is shown in Figure 5.13a and the evaluation of

the model based on the optimized hyperparameters for the CO model is shown in Fig-

ure 5.13b. As shown in Figure 5.13a, PSO-based NSVM requires more optimization

time than LSVM. Part of this increase is because more optimization variables need to

be determined using PSO compared with LSVM. As shown, ANN has a optimization

time that is between NSVM and LSVM. For the ANN model, the optimization time

includes multiple ANN training runs to reduce the effect of the randomized starting

weights as described in Section 5.2.4. However, in addition to this optimization time

the ANN model also requires a grid search between the number of neurons and the

hidden layer size result in a significant computation time. However, as in this the-

sis, the structure of the ANN is chosen based on a benchmark model for comparison

purposes based on [120] so a grid search is not required. The optimization part of

118



modeling, even for the ANN grid search, does not affect the real-time implementation

for two main reasons: 1) in real-time, only the already trained model is evaluated, 2)

even with online learning, i.e., updating model in real-time, the model will be updated

based on optimized hyperparameters.

The model evaluation time is based on pre-optimized hyperparameters and this

evaluation time plays a crucial role in real-time implementation. As shown in Fig-

ure 5.13b, LSVM needs 67% and 32% lower evaluation time compared to ANN and

NLSVM, respectively. NLSVM also takes 52% lower computation time than ANN.

These results can be repeated for the other NOx, CO2, and HC models which result

in an average reduction in evaluation time for the LSVM model of 64% and 28% com-

pared to the ANN and NLSVM models, respectively. On average for the 4 emissions

the NLSVM requires 45% lower evaluation time than the ANN model.
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(a) CO - Optimization time
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Figure 5.13: Optimization and evaluation time comparison between LSVM, NSVM,
and ANN on an Intel i7-8700K PC

5.2.7 Chosen model performance

The model type and feature set selected in the previous sections for each of the four

emissions are evaluated compared against the experimental data. Figures 5.14a-5.14d

show the prediction performance of the selected models along with a ±5% band shown

in red.

The CO2 model has all predicted values within the ±5% error bands. For the

CO, HC and NOx models there is 56%, 97%, and 56% of the data points within the
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error bands, respectively. For the CO model there is a relatively large spread in the

cross-validation and test data. However, as there is a large spread in the CO levels

over the testing data points the model is still able to provide the modeling trends.

The NOx model has a larger spread in all of the data points. This could be a result

of the low level of NOx emissions from 35-70 ppm and the stochastic variation in the

HCCI combustion that is not captured in the steady state modeling. As only a single

cycle or a few cycles within a measurement can greatly increase the average emissions

levels a transient emission model is needed.

The effect of different machine learning approaches and feature sets on the model

quality for HCCI emissions prediction was described in this section. The goal was to

select an accurate and simple emission model for future real-time control implemen-

tation. First, linear and non-linear SVM models were compared to a traditional ANN

model. This comparison showed for a small data set that SVM based models were

more robust to changes in feature selection and better able to avoid local minimums

compared to ANN leading to a more consistent model prediction. For each of the

four emissions examined the best model type was determined by taking the highest

average R2 value less the variance in R2 over the various feature sets. This led to the

NLSVM being selected for 3 of the emissions and LSVM for NOx prediction.

Then the individual feature sets were examined. The base feature sets were ex-

tended by multiplying individual features together to explore in-feature interactions.

By comparing the individual features, with the base feature set (L7), the feature set

with an improved accuracy taking into account the increase in model complexity was

chosen. The steady-state emission models are chosen for control purposes with the

goal of implementing in MPC. For CO, HC, NOx, and CO2 the chosen models are

NLSVM-L13, NLSVM-L7, LSVM-L13, and NLSVM-L7, respectively. The NOx and

CO models have the largest prediction error while the HC and CO2 models are quite

accurate. The NOx model produced the least accurate results however it was still
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able to capture the trends in NOx production.
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Figure 5.14: Actual vs experiment- HCCI emission model. Dashed red line represent
± 5% of experimental data value
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5.3 Deep Neural Network - Long Short Term
Memory: Transient Model

In this section, the dynamic response of an HCCI engine will be modeled using a Long

Short-Term Memory (LSTM) based model. In this section IMEP, CA50, MPRR and

NOx concentration will be modeled. These are chosen as the first three are calculated

cycle by cycle using the measured in-cylinder pressure on the FPGA (see Figure 1.7)

and NOx is measured using a fast NOx sensor as described in Chapter 2.

The LSTM cell is the most well-known form of RNN with long-term memory

cells that are able to predict outputs while considering a long-term dependency. In

comparison to basic RNNs, LSTMs employ a hidden state that is divided into two

components: i) the short-term state h(k), and ii) the long-term state c(k) as shown in

Fig. 5.15. The long-term state goes across the network and initially enters the forget

gate and is multiplied by f(k). Each time step adds new values (memories) to the

input gate i(k). As a result, some data is added and some is deleted at each time

step [146].

Forget gate

input gate

output gate

LSTM cell

Element-wise multiplication Addition

Figure 5.15: Long-Short-Term Memory (LSTM) cell structure schematics

To model the HCCI engine-out emissions, a deep neural network with seven hidden

layers, including 6 Fully Connected (FC) layers and one LSTM layer, is proposed as

shown in Fig. 5.16. The input of this model is the duration of injection for both fuel
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(DOIfuel(k)) and water injection (DOIwater(k)), the negative valve overlap duration

(NVO(k)) which controls the amount of air in the cylinder, and two inputs from the

previous cycle. These inputs are the indicated mean effective pressure IMEP(k-1) and

the combustion phasing angle (CA50(k − 1)). These previous inputs are included in

the model to provide a feedback effect of two of the measurable engine performance

outputs. These two combustion metrics are chosen as IMEP is the requested load of

the engine and the performance of the controller to track IMEP will be evaluated.

CA50 is also an important combustion parameter is strongly related to the other

combustion characteristics including MPRR, engine efficiency and emissions. The

outputs of this model are the indicated mean effective pressure (IMEP(k)), Nitrogen

Oxides (NOx(k)), combustion phasing angle for 50% heat release (CA50(k)) and

Maximum Pressure Rise Rate (MPRR(k)).

This model structure is based on preliminary diesel combustion engine control

testing as well as for hydrogen diesel dual fuel operation [2, 202]. To capture the

nonlinearity of the HCCI combustion process with the LSTM, more LSTM hidden

units are needed which result in an increased number of hidden states and cell states.

As the hidden and cell states are also states in the MPC optimization the increased

number of states leads to an increased computational cost for the MPC controller

to find an optimal solution during real-time implementation. In preliminary work,

where an NMPC was implemented in real-time for diesel combustion control, doubling

LSTM hidden units resulted in approximately doubling computational turnaround

time from 63 ms to 130 ms. For engine control, this calculation time must be within

one engine cycle time for cycle-by-cycle control [1]. Similarly, for HCCI combustion, it

is necessary to keep the model calculation real-time capable. To minimize the number

of LSTM hidden units, Fully Connected (FC) layers are added before and after the

LSTM layer to boost the network’s capacity for estimating the engine’s nonlinearity

without significantly increasing the number of hidden and cell states.
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Figure 5.16: Structure of proposed deep neural network model for engine performance
and emission modeling. LSTM: Long-short term memory, DOI: duration of injection,
IMEP: indicated mean effective pressure, MPRR: maximum pressure rise rate, CA50:
combustion phasing for 50% heat release

To use this network inside a Nonlinear MPC (NMPC), a function using forward

propagation is needed. To perform forward propagation, first the LSTM and FC

layers computations are evaluated. A computational graph (Fig. 5.17) clarifies how

the equations of the model are obtained. The LSTM computations are

i(k) = σ
(︁
W⊤

u,iu(k) +W⊤
h,ih(k − 1) + bi

)︁
(5.39a)

f(k) = σ
(︁
W⊤

u,fu(k) +W⊤
h,fh(k − 1) + bf

)︁
(5.39b)

g(k) = tanh
(︁
W⊤

u,gu(k) +W⊤
h,gh(k − 1) + bg

)︁
(5.39c)

o(k) = σ
(︁
W⊤

u,ou(k) +W T
h,oh(k − 1) + bo

)︁
(5.39d)

c(k) = f(k)⊙ c(k − 1) + i(k)⊙ g(k) (5.39e)

h(k) = o(k)⊙ tanh (c(k)) (5.39f)

where (Wu,(f,g,i,o) are the weight matrices applied to the input vector u(k) and

Wh,(f,g,i,o) are weight matrices of the previous short-term state h(k). In this equation,

⊙, is an element-wise multiplication and b(f,g,i,o) are the biases. In Eq. 5.39, i(k) is

the input gate, f(k) is the forget gate, g(k) is the cell candidate, o(k) is the output

gate, c(k) is the cell state, and h(k) is the hidden state. Two activation functions are

used in Eq. 5.39 which are given as: i) tanh(z) activation function:

tanh(z) =
e2z − 1

e2z + 1
(5.40)
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ii) σ(z) activation function:

σ(z) =
1

1 + e−z
(5.41)

These activation functions are used to introduce non-linearity into the otherwise linear

layers. A FC layer equation with Rectified Linear Unit (ReLU) activation function is

defined as

zFC(k) = ReLU(W T
FCu(k) + bFC) (5.42)

where ReLU activation function is defined as

ReLU =

{︄
0 if z ≤ 0

z if z > 0
(5.43)

The computational graph of this part of the network is schematically depicted in

Figure 5.17. Based on this figure and using Eq. 5.39 and Eq. 5.42 the model equations

are:

zFC1(k) = ReLU
(︁
W T

FC1u(k) + bFC1
)︁

(5.44a)

zFC2(k) = ReLU
(︁
W T

FC2zFC1(k) + bFC2
)︁

(5.44b)

zFC3(k) = ReLU
(︁
W T

FC3zFC2(k) + bFC3
)︁

(5.44c)

zFC4(k) = ReLU
(︁
W⊤

FC4h(k) + bFC4
)︁

(5.45a)

zFC5(k) = ReLU
(︁
W⊤

FC5zFC4(k) + bFC5
)︁

(5.45b)

y(k) = W⊤
FC6zFC5(k) + bFC6 (5.45c)

where WFC,i and bFC,i are the weights and biases of the fully connected layer where

i ∈ {1, 2, 3, 4, 5, 6} and Wu,(f,g,i,o) are the weight matrices of the input vector u(k)

and Wh,(f,g,i,o) are the weight matrices to the previous short-term states h(k).

For training with experimental data, a standard cost function [146] of this network

is defined as

J(W, b) =
1

m

m∑︂
k=1

L (ŷ(k), y(k)) +
λ

2m

L∑︂
l=1

||W [l]||22 (5.46)
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Figure 5.17: Computational graph of proposed deep network– FC: Fully Connected,
LSTM: Long-Short Term Memory
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where L (ŷ(k), y(k)) is the loss function, m is number of data points, ŷ(k) is measured

output and y(k) is predicted output. A Mean Squared Error (MSE) loss function is

used that is

L (ŷ(k), y(k)) =
1

m

m∑︂
k=1

(ŷ(k)− y(k))2 (5.47)

In Eq. 5.46, λ, is the regularization coefficients and ||W [l]||22 is the Euclidean norm

which is defined as

||W [l]||22 =
n[l]∑︂
i=1

n[l−1]∑︂
j=1

(w
[l]
ij )

2 (5.48)

5.3.1 Experimental Data Generation

To develop this deep network, which has 8480 learnable parameters, a large data

set was collected using the RWTH engine (details in Section 2.2). The experimental

single cylinder HCCI engine was run for 65,000 consecutive cycles, and the inputs

including DOI of fuel, DOI of water, and NVO duration are changed randomly using

a Pseudo-random binary sequence (PRBS). This PBRS is used to change both the

amplitude and frequency of these three combustion inputs. However, as HCCI is

a highly sensitive combustion process, the inputs could not be changed completely

randomly over the entire operating range of interest (2-4 bar IMEP). Therefore the

bounds of the PRBS signal are manually restricted during data collection to ensure

that combustion is possible. For example as the range on fuel DOI is increased the

NVO duration is decreased to allow more air into the cylinder to mix with the ad-

ditional fuel and the range on water DOI is increased to help reduce the maximum

pressure rise rate. This prevents combinations of a long NVO duration (minimum

intake air) and maximum fuel injection which would result in undesirable rich com-

bustion. This also prevents a large water injections when the engine is operating at

very low fuel amounts and subsequently low load. At these low loads, a large water

injection would completely extinguish the combustion. Using previous engine map-
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ping experience, bounds on the PRBS signal were defined over a wide range of inputs

while ensuring viable HCCI combustion [3, 15]. The PRBS inputs to the SCRE for

data generation are plotted verses engine cycle in Figure 5.18a.

The resulting engine performance and emission outputs from the PRBS input to

the system for the 65,000 cycles can be seen in Figure 5.18b. The engine outputs

show the expected relations such as the increase in NOx emissions as the IMEP and

MPRR increases. When looking at all 65,000 cycles it is clear that there is a significant

variation in the engine outputs resulting from the PRBS input as well as from the

inherent stochastic variation in the HCCI combustion process.

To better visualize the variation in engine inputs and to confirm that an adequately

large input and frequency range to the HCCI process has been performed, a histogram

of all HCCI inputs are shown in Figure 5.19. Here the both the variation in the

value and the number of consecutive cycles the input is applied for is shown. For

the fuel injection duration (shown in Figure 5.19a) the variation is approximately

Gaussian centered at 0.7 ms. A similar distribution can be seen for the NVO duration

(Figure 5.19e) where the spread of data is a little more evenly distributed for NVO

durations between 180 and 230 CAD. The distribution of water injection amount

is heavily skewed to low (or no) water injection as seen in Figure 5.19c. This is a

result that water could not be randomly injected and for low engine loads no water

was injected as for any random water injection durations below 0.85 ms the water

injection was set to zero as the injector is not able to consistently open for extremely

short durations. For the number of consecutive cycles for each input step the values

vary evenly between 75 and about 200 cycles. It should be noted that each input was

changed independently of each other so while the fuel injection was kept constant the

NVO and water injection could also change. Therefore the number of cycles where

all inputs remained constant was quite short, with an average of 48 cycles, as shown

in Figure 5.20.
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The resulting variation in the engine outputs can also be shown in Figure 5.18b. An

approximately 2 bar load variation of IMEP can be seen in Figure 5.21a. The IMEP

distribution only approximates a Gaussian distribution as there is slightly more cycles

with 2.4, 2.6 and 3.1 bar as shown by the spikes in the histogram. These spikes are

attributed to the PRBS input signal not being Gaussian. A large load range for HCCI

combustion is obtained especially considering no external intake air path variations

were made such as changing the boost pressure or intake temperature. The variation

in CA50, is approximately Gaussian. As shown in Figure 5.21b, where the average

combustion phasing is approximately 6 CAD aTDC which is desirable as the most

efficient combustion phasing traditionally lies in the range of 5-8 CAD aTDC [56].

Similarly, Figure 5.21d shows a Gaussian distribution of the maximum pressure rise

rate centered at 5 bar/CAD. Keeping the MPRR below about 8 bar/CAD helps to

ensure long engine life and quiet combustion. Finally, the NOx emission histogram

(Figure 5.21c) shows that HCCI generally produces low NOx emissions with the ma-

jority of cycles producing around 40 ppm of NOx emissions. However, there are still

cycles with up to 400 ppm of NOx emissions. These high emitting cycles must be

avoided to fully take advantage of the low emissions of HCCI combustion. Overall,

the collected engine data has acceptable variation over the HCCI operating range of

interest to allow for the creation of a data driven ML model that is accurate over the

desired operating range.

5.3.2 LSTM Model Training

Since the data generated above has sufficient variation in amplitude and frequency it

is now used for the data driven LSTM model. Before beginning the training process,

the various model options must be chosen and are summarized in Table 5.5. To

train this ML model, the Adam algorithm was used in the MATLAB Deep Learning

Toolbox©. The loss function vs epoch for the proposed deep network is presented in
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Figure 5.22. Additionally, the validation loss function converges to the training loss

function, suggesting that neither overfitting nor underfitting has occurred [146]. It

is also possible to see that within relatively few iterations (approximately 50 epochs)

the model training approaches the minimum after 3450 epochs.

Table 5.5: Selected training options for proposed deep network to predict HCCI
performance and emissions

Name Value

Optimizer Adam

Maximum Epochs 3500

Mini batch size 512

Learn rate drop period 1000 Epochs

Learn rate drop factor 0.5

L2 Regularization 10

Initial learning rate 0.001

Validation frequency 64 iteration

Momentum 0.9

Squared gradient decay 0.99

With the chosen network, an acceptable loss is achieved during the training process.

Now the model prediction is checked for the validation data and is compared to the

experimental values as shown in Figure 5.23. Where the final 10,000 cycles (of the

68,000 total cycles) are used for validation of the developed model. The comparison

between the model and experimental data show that for all four model outputs an

acceptable prediction is possible. The developed LSTM model is able to accurately

capture steps and transients for both engine performance outputs (IMEP, CA50 and

MPRR) as well as for engine-out emissions (NOx). Some differences between the

model and experiment, specifically for the IMEP and CA50 prediction are observed

as a couple misfire cycles (or extremely late combustion cycles) that the model is

unable to predict located between cycle 1000 and 1900. Since misfire cycles are
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inherently difficult to predict the LSTM model struggles. It can be seen that the

prediction for both IMEP and CA50 look like filtered values which is partially due

to the large inherent variation in HCCI combustion that can not be predicted using

the inputs provided to the model. However, overall the model prediction is quite

good and the transient performance of the model is also quite good as shown by the

tracking performance of the NOx emissions.

The accuracy of this model for each output can be summarized as shown in Ta-

ble 5.6. For accuracy, the Root Mean Square Error (RMSE) and Normalized Root

Mean Square Error (NRMSE) are used which is defined as

RMSE =

√︄∑︁N−1
k=0 (ŷ(k)− y(k))

N
(5.49)

NRMSE =
RMSE

ymax − ymin
(5.50)

As presented in Table 5.6, MPRR is the most difficult parameter for the model to

predict as shown by the 4.7% error in validation while other outputs are predicted

with less than 4% error. The prediction of IMEP is quite good with an error of less

than 2.8% for both training and test data. Even the NOx emission prediction, which

is generally more difficult to predict compared to the engine performance parame-

ters, is within 4% for the validation data. The model prediction accuracy could be

improved by adding more hidden and cell states to the LSTM layer; however, this

is not guaranteed as the HCCI process contains significant stocastic behavior that is

dificult to model. Additionally, by adding more states, a significant increases in the

computational time of the model on the real-time hardware occurs. Therefore, this

model has been improved only by adjusting the number of hidden units of the fully

connected layers. As the developed model utilizes only 4 cell and and 4 hidden states

and provides an accuracy of under 5% error it will be used for the NMPC design in

the next chapter.
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Table 5.6: RMSE and normalized RMSE of DNN model vs Experiment– RMSE: root
mean square error, IMEP: Indicated mean effective pressure, FQ: Fuel Quantity. PM:
Particle matter, MPRR: maximum pressure rise rate

Unit Training Validation

yIMEP
[bar] 0.074 0.077

[%] 2.7 2.8

yNOx

[ppm] 18 16

[%] 4.2 3.8

yMPRR
[bar/CAD] 1.6 1.7

[%] 4.4 4.7

yCA50
[CAD] 1.5 1.6

[%] 3.4 3.6
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Figure 5.18: PRBS data generation on single cylinder research engine for DNN model
training
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Figure 5.23: Validation for LSTM-based DNN model vs. experimental data – a) –
Indicated mean effective pressure (IMEP), b) –Nitrogen Oxides (NOx), c) – Maximum
pressure rise rate (MPRR), d) –Combustion phasing angle (CA50)
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5.4 Summary of chapter

This chapter described two different approaches to modeling the emissions from HCCI

combustion. The first was a physics based approach where the combustion was mod-

eled using a chemical kinetic model of the fuel in one combustion zone. Conservation

of energy is used for the cylinder temperature and the ideal gas law is used for the

cylinder pressure. When the chemical reactions are considered directly and the re-

action progression rates are calculated a detailed representation of the cylinder state

at each crank angle is known. Even the kinetics model with a reduced number of

reactions requires a step size of approximately 1.6e-10s which is about 2000 times

slower than what is possible when using current FPGA hardware.

The second approach focused on machine learning based models which require a

large amount of computation to train (offline) but are much more computationally

efficient to implement in real-time. Specifically, the effect of different machine learning

approaches and feature sets on the model quality for HCCI emissions prediction was

shown. The goal of this investigation was to select an accurate model while also

selecting the simplest model that still has an acceptable prediction capability for real-

time control implementation in an MPC. For stationary data, a linear and a non-linear

SVM models were compared to a traditional ANN model. This comparison showed

for a small data set that SVM based models were more robust to changes in feature

selection and are better able to avoid local minimums compared to ANN leading to a

more consistent model prediction. For each of the four emissions examined the best

model type was determined by taking the highest average R2 value less the variance

in R2 over the various feature sets. This led to the NLSVM being selected for 3 of

the emissions and LSVM for NOx prediction.

Unlike the kinetics model, that implements the physics of the combustion process

directly, for the ML models the opportunity to apply knowledge of the system is in

the individual feature selection. The base feature sets were chosen by considering
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known inputs to the combustion process. These were extended by multiplying the

individual features together to explore in-feature interactions. By comparing the

individual features with the base feature set (L7) the feature set with an improved

accuracy that is acceptable given the increase in model complexity was chosen. In

this study, the emission models chosen for control purposes for CO, HC, NOx, and

CO2 are NLSVM-L13, NLSVM-L7, LSVM-L13, and NLSVM-L7, respectively. The

NOx and CO models have the largest prediction error while the HC and CO2 models

are quite accurate. The NOx model produced the least accurate results however it

was still able to capture the trends in NOx production.

The next ML model tested was a long short term memory model surrounded by

fully connected layers to provide a transient process model unlike the quasi-stationary

model resulting from the SVM. This model requires significantly more data than

the SVM model, however, due to the recurrent neural network the model is able to

capture time dependencies in the data. This resulted in an accurate model with an

error less than 5% for all four model outputs (IMEP, CA50, MPRR and NOx). Of the

models developed and tested the LSTM model showed the greatest accuracy while

preserving a simple model structure to allow for real-time implementation. For this

reason, the LSTM ML model will be used within a model predictive controller in the

next chapter.
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Chapter 6

Nonlinear Model Predictive
Control Experimental
Implementation for HCCI 1

The development of the nonlinear model predictive controller (NMPC) using the

LSTM model developed in Section 5.3 for HCCI performance and emissions is the

next step. The development of the NMPC and its experimental implementation is

described in this chapter. In NMPC, the current control input is computed by solving

a nonlinear program at each sample time. The underlying optimization problem con-

sists of a model based prediction of the system’s behavior, starting from the current

state. The selected cost function minimizes engine-out NOx emissions while simul-

taneously trying to reduce fuel and water consumption while tracking a requested

output load (IMEP) and combustion phasing (CA50) for an HCCI engine. The op-

timization also must consider constraints placed on control action and states of the

model.

The development of control algorithm in real-time on the dSPACE hardware

through MATLAB/ Simulink is demonstrated in this section. The overall devel-

opment process is schematically shown in Figure 6.1. Four main steps are followed

to get a real time NMPC. The first two steps are the collection of engine data for

model development and validation are described Section 5.3. The third step is the
1 This chapter is partially based on [1, 2, 16, 202]
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offline simulation and tuning of the NMPC where the objective (cost) function and

physical constraints are defined and tuned to get acceptable controller performance.

The fourth and final step is the transition of the MPC optimizer to the embeded pro-

cessor using acados. In this chapter, the NMPC has been implemented in MATLAB/

Simulink using the open source package acados [203].

As the success of the real-time NMPC is highly dependent on the calculation time of

the online NMPC this chapter also investigates the performance of acados running on

various embedded processors and the communication with the main engine controller

the dSPACE MABX II. Finally the results on the online NMPC are presented.
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6.1 HCCI NMPC Creation

6.1.1 Nonlinear State-Space Representation

The model structure of the Deep Neural Network as shown in Figure 5.17, derived in

the section 5.3, must first be formulated using a nonlinear state-space representation

to allow for integration into acados. The developed model is the sequence of fully

connected layers applied to the inputs of the network (Eq. 5.44), an LSTM layer and a

set fully connected layers applied to the output of the model (Eq. 5.45). The network

is defined as:

zFC3(k) = fFC,in (u(k)) (6.1)⎡⎣c(k)
h(k)

⎤⎦ = fLSTM (c(k − 1), h(k − 1), zFC3(k)) (6.2)

y(k) = fFC,out (h(k)) (6.3)

Now, eliminating the intermediate value zFC3(k) results in⎡⎣c(k)
h(k)

⎤⎦ = f (c(k − 1), h(k − 1), u(k)) (6.4)

y(k) = fFC,out (h(k)) (6.5)

The hidden and cell states are now grouped in an overall state vector x(k) =[︂
c(k − 1), h(k − 1)

]︂⊤
, the resulting system of equations becomes

x(k + 1) = f (x(k), u(k)) (6.6)

y(k) = fFC,out (x(k + 1)) (6.7)

is close to the standard nonlinear state-space representation of a dynamic system.

However, in the standard formulation, the output depends only on the current state

x(k) and input u(k). One way to make the LSTM based network conform to the

standard form is to adapt the definition of the engine cycle, accounting for the output
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after the control actions to the following cycle. Here, the next state in the output

function is replaced by its definition, resulting in a nonlinear output function

x(k + 1) = f (x(k), u(k)) (6.8a)
y(k) = fFC,out (f (x(k), u(k)))

= g (x(k), u(k))
(6.8b)

with x(k) the model states from above, y(k) the model outputs, and u(k) the model

inputs. These are:

x(k) =

⎡⎣c(k − 1)

h(k − 1)

⎤⎦ ∈ R8, (6.9a)

y(k) =

⎡⎢⎢⎢⎢⎢⎢⎣
yIMEP(k)

yCA50(k)

yNOx(k)

yMPRR(k)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R4, (6.9b)

u(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yIMEP(k − 1)

yCA50(k − 1)

uDOI,fuel(k)

uDOI,water(k)

uNVO(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R5. (6.9c)

The model is dependent on the IMEP and CA50 from the previous cycle as inputs

for the next cycle.

A positive definite weighting matrix for the control inputs would thus force an

unnecessary compromise between tracking the output and the manipulated variables.

By introducing the change of manipulated variables as new inputs [204, 205], the

positive definite weighting matrix now only drives the change to be zero, posing no
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conflict in reaching the desired output setpoints.⎡⎣x(k + 1)

u(k)

⎤⎦
⏞ ⏟⏟ ⏞

x̃(k+1)

=

⎡⎣f(x(k), u(k − 1) + ∆u(k))

u(k − 1) + ∆u(k)

⎤⎦
⏞ ⏟⏟ ⏞

f̃(x̃(k),∆u(k))

(6.10a)

⎡⎣ y(k)

u(k − 1)

⎤⎦
⏞ ⏟⏟ ⏞

ỹ(k)

=

⎡⎣ g(x(k))

u(k − 1)

⎤⎦
⏞ ⏟⏟ ⏞

g̃(x̃(k))

. (6.10b)

Both the absolute inputs as well as their rate of change can be penalized in the cost

function.

6.1.2 Optimal Control Problem

Given Eq. 6.10, the discrete Optimal Control Problem (OCP) is defined as follows

min
∆u0,...,∆uN
x̃0,...,x̃N
ỹ0,...,ỹN

N∑︂
i=0

∥ri − ỹi∥
2
Q + ∥∆ui∥2R

s.t. x̃0 =
[︂
x(k), u(k − 1)

]︂⊤
,

x̃i+1 = f̃(x̃i,∆ui) ∀i ∈ H \N,

ỹi = g̃(x̃i,∆ui) ∀i ∈ H,

umin ≤ Fu · ũk ≤ umax ∀i ∈ H,

ymin ≤ Fy · ỹk ≤ ymax ∀i ∈ H

(6.11)

where H = {0, 1, . . . , N}. The subscripts i indicate that the variables are part of the

internal computations of the NMPC controller, whereas x(k) and u(k − 1) are the

actual model’s current state and the previously applied control input, respectively.

In this formulation, the nonlinear output function is stated as part of the constraints

by introducing the augmented output as an optimization variable, allowing a linear

least squares cost function. After augmenting the controls into the state vector the

NMPC states and outputs can be written as
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x(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yIMEP(k)

yCA50(k)

yNOx(k)

yMPRR(k)

c(k − 1)

h(k − 1)

DOI,fuel(k)

DOI,water(k)

NVO(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R15, (6.12a)

u(k) =

⎡⎢⎢⎢⎣
∆DOI,fuel

∆DOI,fuel

∆NVO

⎤⎥⎥⎥⎦ ∈ R3. (6.12b)

The reference r̃i and the weighting matrix Q are selected such that deviations from

the requested IMEP and CA50 are penalized while minimizing NOx emissions as well

as the amount of injected fuel and water

r̃i =

⎡⎣rIMEP,i, rCA50,i, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0

⎤⎦⊤

, (6.13)

Q = diag (qIMEP, qCA50, qNOx , qMPRR, 0, 0, 0, 0, 0, 0, 0, 0, rDOI,fuel, rDOI,water, 0) .
(6.14)

The specific cost function J is specified as
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J =
N∑︂
i=0

∥rIMEP,i − yIMEP,i∥2qIMEP
+ ∥rCA50,i − yCA50,i∥2qCA50⏞ ⏟⏟ ⏞

Reference Tracking

+ . . . (6.15)

∥yNOx,i∥
2
qNOx⏞ ⏟⏟ ⏞

Emission Reduction

+ . . . (6.16)

∥uDOI,fuel,i∥2rDOI,fuel
+ ∥uDOI,water,i∥2rDOI,water⏞ ⏟⏟ ⏞

Fuel / Water consumption reduction

+ . . . (6.17)

∥∆ui∥2R⏞ ⏟⏟ ⏞
Oscillation Reduction

(6.18)

The weighting matrix R is a diagonal matrix with positive elements defined as

R = diag(r∆uDOI,fuel , r∆uDOI,water , r∆uNVO) (6.19)

One advantage of NMPC is the ability to impose constraints on inputs and outputs.

Fu and Fy are diagonal matrices in eqn 6.11 with ones at the locations of bounded

outputs and inputs.

The IMEP of the engine is limited in order to keep the engine running near the

operating range that was used to develop the LSTM model. The load range of 1-

6 bar IMEP is also chosen as this is the range in which open loop testing has shown

that HCCI is possible using the naturally aspirated intake conditions. The limits

on CA50 imposed are a range of 0-17 CAD aTDC which removes any extremely

early and late cycles without over constraining the NMPC optimization. The upper

limit for NOx is are used to constrain peak emissions levels and can be set to meet

emission standards. A limit of 300 ppm for NOx, was selected based on the data

collected during the PRBS system identification (shown in Figure 5.18b) that shows

high emissions over 300 ppm are possible. Controlling the maximum pressure rise rate

(MPRR) is crucial in combustion engines to ensure quiet and safe engine operation

at various engine loads. MPRR is the rate at which the pressure increases in the

cylinder and the maximum permissible MPRR is engine and application-dependent.

If MPRR is too high, the increased pressure rise rates can lead to engine damage and
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acoustically loud combustion. However, a higher MPRR is closer to the ideal Otto

cycle where all the heat is released instantaneously and therefore is a more efficient

combustion. Here, a high limit of 15 bar/CAD (for a production engine) constraint

is implemented.

Constraints are also imposed on the DOI for both the fuel and water injections.

These constraints are set approximately 50% higher than the maximum value that

was used during PRBS data generation. This is to allow the controller flexibility but

also ensuring the NMPC solution is within an acceptable range.

Table 6.1 summarizes the implemented limitations on outputs and manipulated

variables. In future testing these specified limits could be modified to meet legislation

or design constraints. Here, to investigate the potential of the method, not overly

restrictive constraints were chosen.

Table 6.1: Constraint Values

Lower bound Variable Upper bound

1 bar yIMEP 6 bar

0 CADaTDC yCA50 17 CADaTDC

0 ppm yNOx 500 ppm

0 bar/CAD yMPRR 15 bar/CAD

0 ms uDOI,fuel 1.50 ms

0 ms uDOI,water 1.00 ms

150 CAD uNVO 360 CAD

6.2 Implementation of NMPC in Simulation

The control algorithm development using MATLAB/ Simulink is demonstrated in

this section. As the engine combustion cycle repeats, depending on engine speed, the

available computation time for the NMPC controller is dependent on the speed of the

engine. At 1500 rpm, one engine cycle lasts 80 ms. To meet the real-time require-
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ments, a computationally efficient algorithm is needed to provide feedback from one

engine cycle to the next cycle. The NMPC controller is implemented in MATLAB/

Simulink using the open source package acados [206], since simulation results [202]

indicate that it outperforms MATLAB’s MPC toolbox in terms of computation time,

both with fmincon and the FORCES PRO [207, 208] backend.

The plant model is passed to acados through the discrete dynamics interface, as no

discretization is required. For computation of the Hessian in the underlying Sequential

Quadratic Programming (SQP) algorithm, the Gauss-Newton approximation is used

by selecting the non exact Hessian option. The resulting Quadratic Problems (QPs)

within the SQP algorithm are solved using the Interior Point (IP) [209] based QP

solver hpipm [210], that is provided by the acados package [206]. Although when

compared to the Active Set based QP solvers such as qpOASES [211], hpipm using the

IP method has a higher computation time on average. However, worst case peaks,

which are critical for feasible realtime implementation are lower [210].

The OCP in Eq. 6.11 leads to a band diagonal structure in the matrices of the

QPs within the SQP algorithm, which can be exploited by hpipm. Fully condensing

the problem improves the computation time compared to passing the sparse but high

dimensional problem formulation. The difference in runtime is attributed to the state

vector having a higher dimension than the control input vector and the modeled

engine dynamics only require small prediction horizons of three cycles. The resulting

OCP structure allows the fully condensed problem formulation to take full advantage

of the condensation benefits [204, 205]. In this work, partial condensing using the

hpipm solver has been used. Full condensing using the hpipm solver has also been

tested and showed very little improvement in either controller performance or solver

time.

Tuning of the weights, setting the number of allowed SQP iterations and determin-

ing the prediction horizon are done by means of model in the loop simulations, where
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the NMPC controller is run compared to the internal plant model. Through these

stimulative studies, the allowed number of SQP iterations is limited to five while the

prediction horizon is set to three. Previous work has shown that the cycle-to-cycle

dependency of HCCI lasts approximately two cycles so a prediction horizon of three

cycles is sufficient [7].

For the offline NMPC design, the controller is tuned to follow a reference for

requested load (IMEP) for a set of six steps that are within the range that the LSTM

model has been trained. Figure 6.2 shows the final tuned NMPC resulting from

the offline-model-in-the-loop testing. The first three sub figures show the controller

actions for the fuel and water injection amounts along with the NVO duration. The

commanded engine inputs are within the expected values for the all three inputs and

they are all within the constraints set in Table 6.1.

Figure 6.2d-g show the engine outputs predicted by the engine model. It can be

seen that the NMPC is able to closely track the requested IMEP with just a slight

delay after each step change in the reference. This slight delay is caused by the NMPC

cost function, eqn 6.15, which also has weights on the rate of change of the outputs to

prevent oscillation which has the effect of damping the response of the controller. The

reference for the NOx emissions has been set to 0 in order to minimize the emissions

and its easy to see that the predicted NOx emissions are well below the constraint of

500 ppm applied to the system. The reference for MPRR has been set to 3 bar/CAD

as ideally the pressure rise rate needs to be minimized for engine life span and acoustic

noise reduction however higher pressure rise rates are often coupled with improved

efficiency and therefore the target is set to a realistic value. Finally, the reference

for CA50 is set to 5 CAD aTDC to keep the engine running at an efficient operating

point. Overall, NMPC is able to keep the combustion phasing at the setpoint quite

well with only very slight deviation of under 1 CAD during the steps in IMEP. The

one step at cycle 700 when the load is increased significantly results in a slightly larger
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overshoot in CA50 of 1.8 CAD as the controller tries to minimize the cost function

for all the variables.

The NMPC performance characteristics can be seen in Figure 6.3 where the calcu-

lation time of the NMPC running on a Intel i7-9700 PC can be seen. The calculation

time in simulation on the PC is much faster than the required NMPC turnaround

time. The number of SQP iterations required to achieve convergence can be seen in

Figure 6.3b where it can be seen that for most cycles the solver takes 1 iteration.

With a few spikes up to the maximum of three iterations especially after IMEP steps

are applied. Finally, the cost has been calculated according to eqn 6.15 where it can

be seen that during transients the cost spikes due to the deviation between the refer-

ence and actual state. However, the cost reaches a steady value within a few cycles

as the controller is able to bring the system to the reference. As the model used for

the simulation has no stochastic behavior the NMPC finds a solution for each IMEP

step and remains at that operating point.

Overall the controller performance and solution times in the offline simulation looks

very promising and can now be ported for use on an embedded processor for real-time

engine control testing.
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Figure 6.2: acados offline NMPC simulation showing controller outputs and predicted
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6.3 Experimental NMPC Implementation

6.3.1 acados NMPC on MABX II

After tuning the NMPC offline, the algorithm is directly deployed to the embedded

processor of the MABX II. The required cross-compiled libraries of acados can be

obtained by following the “Embedded Workflow” in the acados documentation [212].

Figure. 6.4 illustrates the implementation of the acados NMPC running on the MABX

II. Here the measured states provided by the real-time FPGA calculation (developed

in [15]) of MPRR, CA50 and IMEP along with the measured NOx emissions are

augmented with the LSTM states (also see schematic in Figure 1.7). The LSTM

states are the current cell and hidden states which are estimated by the derived DNN

model that is running in parallel to the real engine. All of these inputs are then fed

to the NMPC for online optimization.

On the MABX II engine controller, the NMPC shows a maximum turnaround

time of 56.0 ms and an average of 43.3 ms which is too slow to allow for cycle-to-cycle

control, as NMPC turn around of 22 ms is needed, as shown in Figure 1.6. However,

to test the controller concept the LSTM model was retrained with the one cycle delay

in the model and the cycle-to-next-cycle NMPC was experimentally implemented as

shown in Figure 6.5. For the online control performance testing shown, the NMPC is

able to follow the requested IMEP steps while keeping both the NOx emissions and

MPPR below the specified constraints. When compared to the simulation results,

the online NMPC only used a single cycle of water injection during the increase in

load step where the water is used to help prevent a large pressure MPRR when the

fuel is greatly increased to provide the requested power. The one challenge with the

implemented controller is there is a significant variation in the CA50 during the load

steps. The average CA50 follows the target value of 7 CAD aTDC, however, the cycle

to cycle variations are quite large with an oscillation of around 8 CAD. These large

oscillations in CA50 are likely the result of the one cycle delay and the controller not
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being able to directly affect the next cycle. Longer time scale oscillations are also

present in the NOx emissions and matching oscillations are also visible in the MPRR

especially between cycles 95-120. These are likely due to the large cycle to cycle

change in fueling and will be resolved in true cycle-to-cycle control as implemented

next.
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Figure 6.5: Realtime cycle to next cycle NMPC experimental results: Showing IMEP
reference tracking performance with one cycle delay.
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6.3.2 acados Embedded Hardware Calculation Time Com-
parison

Due to the processor speed of the dSPACE MABX II (IBM PPC 750GL single core

CPU at 900 MHz) and the time constraints of the HCCI process, it was not possible

to complete the calculation of the NMPC in the required 22 ms and therefore it is

necessary to evaluate the computational performance of the acados implementation

on additional embedded hardware. To evaluate the potential of acados on a wide

variety of hardware the dSPACE MABX II was compared to six other systems. This

benchmark was performed for future research projects.

A wide range of systems were tested including the high performance industry stan-

dard engine controller development hardware the dSPACE SCALEXIO labbox which

contains an Intel Core i7-6820EQ. Three inexpensive Raspberry Pi prototype boards

were also tested as they have shown excellent computation performance and were

recommended by the acados developers. The three Raspberry Pi boards tested were

the Pi3, a Pi 4B and the Pi 400. Finally, two windows based personal computers

(PC’s) were also evaluated, one laptop with an Intel Core i5-8365UE processor and a

desktop with an Intel Core i7-9700. The various processors were tested by compiling

the acados libraries for their specific processors and testing the calculation time using

a model in the loop (MiL) simulation. The average calculation time on the various

devices for the NMPC calculation is shown in Table 6.2.

The MiL results show that of all the tested devices significantly outperform the

baseline dSPACE MABX II which is expected as the MABX II has the oldest and

slowest clock rate processor of the devices tested. When looking at calculation times

of the various devices tested it can be seen that the calculation time scales with

the clock rate of the CPU tested. All of the devices tested (other than the base-

line MABX II) are able to complete the NMPC execution in under the 22 ms time

constraint presented in Section 6.1. For this work, the Raspberry Pi 400 is selected
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Table 6.2: Processor NMPC execution time for HCCI MiL simulation

System Calculation Time [ms]

dSPACE MABX2 (IBM PPC 750GL @ 900 MHz (baseline) 35

Raspberry Pi 3 Broadcom BCM2837 @ 1.2 GHz 13

Raspberry Pi 4B Broadcom BCM2711 @ 1.5 GHz 6.5

Raspberry Pi 400 Broadcom BCM2711 @ 2.2 GHz (selected) 4

dSPACE SCX Intel Core i7-6820EQ @ 2.8 Ghz 3.8

Laptop Intel Core i5-8365UE @ 1.6/4.1 GHz 1.3

Desktop Intel Core i7-9700 @ 3.0/4.7 GHz 0.7

for further testing for online engine control. At a cost of $100 Canadian Dollars the

NMPC calculation performance only consumes 18% of the available 22 ms. This

additional computation space will allow for increase model complexity if needed for

future testing.

The main challenge of running the NMPC optimization on an external processor is

the requirement that the communication time is also included in the total time for the

NMPC calculation to complete. The dSPACE MABX II will still be the main engine

controller which performs the in-cylinder state calculation on the FPGA and still

provides the actuator commands to the fuel and water injector along with controlling

the valve timings. Therefore the two way communication time from the MABX II to

the Raspberry Pi 400 and back to the MABX II must be determined. For this task two

communication standards have been tested including controller area network (CAN)

and User Datagram Protocol (UDP). The CAN network was tested as it is a well

defined bus communication standard that is already widely used in the automotive

industry which allows communication over two data wires with all devices on the bus

network. The UDP protocol was tested as it is one of the core internet protocol (IP)

standards that is commonly used for large and fast data transfer between PC’s. The

communication time over both of these protocols from the MABX II to the Raspberry
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Pi 400 and back to the MABX II is tested on isolated networks where the only devices

on the network are the two devices being tested and there is a simple counter with

an 8 byte message on the MABX II that is sent to the Pi and then returned to the

MABX II. This test should provide the best case communication times and the results

on the experimental implementation may vary depending on the number of devices

on the network and the actual message size needed. The test results are shown in

Table 6.3.

Table 6.3: Two-way communication from dSPACE MABX II to Raspberry Pi 400
and back for various communication protocols

Communication Standard 2 way time [ms]

CAN 4-6

UDP 1

The communication tests show that the return time for a message over the CAN

network varies between 4-6 ms while the communication over UDP results in the

message being returned in 1 ms. The increased communication time of the CAN

interface may also be higher as the Raspberry Pi needs to communicate with an

external MCP2517FD chip or the delay could be due to the implementation of the

CAN communication in the Matlab Simulink interface. However, the UDP communi-

cation time of 1 ms is acceptable and the expected complete NMPC calculation and

communication time on the Raspberry Pi 400 is 5 ms which is still well below the

22 ms calculation window. Therefore UDP communication will be used for subsequent

testing.

6.3.3 Realtime testing of acados on Raspberry Pi 400

As discussed in the previous section, running the NMPC on a separate embedded

processor has shown in simulation the potential to greatly improve the calculation

rate to allow for cycle-to-cycle control without a one cycle delay. The chosen system
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is the Raspberry Pi 400 which communicates with the main engine controller the

dSPACE MABX II using UDP. The NMPC structure and which parts are running

where is schematically shown in Figure 6.6. Essentially the NMPC calculation on

the Raspberry Pi is standalone from the main engine controller other than receiving

the current measured states (MPRR, IMEP, CA50 and NOx emissions) and IMEP

reference the entire NMCP is executed on the Raspberry Pi. Both the optimizer and

DNN LSTM model are calculated on the Pi where the calculated setpoint for the next

cycle is fed to the MABX II.
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Figure 6.6: Block diagram of the split LSTM-NMPC structure running on a Rasp-
berry PI 400 and MABX II

This decoupled structure also allows for the NMPC on the Pi to be updated without

re-flashing the MABX II and allows for implementing changes in the NMPC or acados

optimizer without restarting the engine during experimental testing. The modular

design of this structure allows for the NMPC to be executed on any external processor

that can interface with the MABX II over UDP. Figure 6.7 shows the experimental

testing of the designed LSTM based NMPC. Again a reference IMEP is provided

to the controller where a requested load is to be followed. Additionally, a reference

CA50 is again provided to keep the combustion phasing at the efficient operation that
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comes with operation at 6 CAD aTDC. Again the constraints specified in Table 6.1

are implemented.

The IMEP tracking performance of the implemented controller is quite good

with an RMSE of 0.133 bar while being able to keep the CA50 at the setpoint of

6 CAD aTDC with an RSME of 1.83 CAD. As expected the duration of fuel in-

jection corresponds with the requested IMEP. This trend is also seen in the NVO

duration where with increased fueling a reduced NVO is requested to allow more air

into the cylinder. Interestingly, again similar to the NMPC results on the MABX II

the NMPC (Figure 6.5) there is only a single cycle where water is desired during

an increased load step. This result is different from the offline simulation, shown in

Figure 6.2, where for the first two load steps water was requested even after the step,

however, the experimental results do match the second half of the offline simulation

where it was seen that water was only requested during IMEP changes.

The constraints applied to the system are obeyed for almost all of the cycles as there

is only one cycle (cycle 562) where the constraint for MPRR of 15 bar/CAD is slightly

exceeded with a cycle having a MPRR of 17 bar/CAD. This same cycle results in

NOx emissions of 305 ppm which is slightly above the constraint specified (300 ppm).

These constraint violations are only slightly over the specified thresholds and therefore

are likely due to a model-plant mismatch. This results from the model predicting a

slightly lower MPRR and NOx emissions that the experimental measurement.

The prediction of CA50 and IMEP from the LSTM model can be seen in Figure 6.8.

The model prediction is similar to the results of the offline model training results

shown in Figure 5.23 where both the predicted CA50 and IMEP appear damped

compared to the experimental values. However, for both engine performance metrics

the model is able to capture the trends quite accurately. For IMEP the model is

easily able to capture the trends quite well with an RSME of 0.09 bar while for CA50

the RSME is 1.27 CAD.
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One advantage of the LSTM model used in the NMPC implementation is the ability

for the cell and hidden states within the LSTM to vary depending on the current

output from the engine. This allows the model to adapt as the engine changes and

allows the LSTM to adapt while the controller is active. The change in the LSTM

states can be seen in Figure 6.9. These states are not physical states but rather states

resulting from the structure of deep neural network model used. The adaptation of

the states can be seen by the slow change in the states after the steps in IMEP are

applied. Specifically a large adaptation in states can be seen at the step applied

at cycle 350. Some of the states end up adapting more than others which remain

relatively constant during a specific desired IMEP.

The performance of the acados NMPC executed on the Raspberry Pi can be

evaluated as shown in Figure 6.10. The average execution time for the NMPC is

1.18ms and all the cycles take below 1.4 ms for the NMPC calculation for the 650

cycles tested. The calculation time is about 1 ms slower than the offline simulation

results (Figure 6.3) which took place on a PC, however, this is still well below the

22 ms available and shows that if needed the model complexity could be increased

when using the Pi 400 as an external processor. As for the required SQP iterations,

the limit of three iterations is hit on 71% of the 650 engine cycles which was not the

case for the offline simulation. This could be of the variation presented by the real

engine and the need for an increase number of iterations to deal with the stochastic

behavior of the HCCI combustion process. To check for further improvement in the

performance of the NMPC the number of iterations allowed could be increased from

three in future testing. Finally the value of the cost function (eqn 6.15) can be seen

in Figure 6.10c. When compared the the offline simulation, shown in Figure 6.2, the

value of the cost is similar during transients where the spike reach a value of around

3-5. However for a constant IMEP reference the value reaches approximately zero in

simulation while in the experiment the cost remains around 0.5. This is a result of
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using the same model in the NMPC and for the plant model in the simulation.

Overall, the performance characteristics of the NMPC executed on the Raspberry

Pi allows for cycle to cycle control which provides good load tracking and obeys

constraints. This shows the potential of experimental use of real-time NMPC using

a deep neural network model.

6.3.4 LSTM based NMPC Development Time

When compared to the extremely time and resource intensive of developing a tradi-

tional look-up table based control strategy the LSTM based NMPC provides a method

to allow for rapid controller development. Often one of the most significant drawback

of blackbox based models is the required training time for the model itself. For the

work presented, the data collected (65,000 engine cycles) took around one and a half

hours of testbench time to collect the required continuous data set. Using this data

the overall model training time varies based on the hardware used for the training

purpose and the model settings selected. For the model presented in Section 5.3 and

using the training settings given in Table 5.5 using an Intel I7-12700K based PC with

a NVIDIA RTX 3090Ti the training took between two and three hours depending on

the dataset used. Then taking advantage of the the flexibility of acados allows for

the model to be implemented in around one to two hours depending how many inputs

and outputs to the controller are desired. Therefore, using the process developed in

this thesis a model based controller can be implemented in under six hours which

includes data collection, model training and controller execution. This is significantly

less than the time for traditional engine control development which can save time

and reduce calibration effort. Another advantage of the proposed control develop-

ment method is the flexibility of the process which can be applied to other dynamic

and highly constrained systems.
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Figure 6.7: Experimental cycle to cycle NMPC implementation on Raspberry Pi 400:
Showing IMEP reference tracking performance
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6.4 Summary of chapter

The developed NMPC has been successfully experimentally implemented in real-time

using the acados embedded solvers for nonlinear optimal control. As the NMPC

requires an accurate and efficient model, a data driven deep neural network utilizing

a long short term memory (LSTM) has been developed and implemented for real-time

HCCI engine performance and emission prediction. The developed LSTM model with

four cell and four hidden states was first tested in an offline simulation which allowed

for tuning of the cost function weights. The offline simulation showed acceptable

control performance.

The NMPC with a prediction horizon of three, was then successfully implemented

on a dSPACE MABX II but the IBM PPC 750GL was not able to complete the online

optimization within the 22 ms requirement and required adjustment to the model to

allow for cycle-to-next-cycle implementation. Using this model with an added delay

allowed a proof of concept of the NMPC to be successfully experimentally tested where

IMEP reference tracking was possible, however, the system suffered from significant

oscillation due to the controller inability to directly interact with the subsequent

cycle.

For true cycle-to-cycle control, the next step was to find an external processor that

would decrease the calculation time of the NMPC to allow for real-time implemen-

tation. Of the six devices tested, all showed the possibility to meet the real-time

requirements even with a delay of 1 ms introduced due to the UDP communication

between the MABX II and external system. Therefore to keep implementation costs

low a Raspberry Pi 400 was chosen to test on the engine testbench. This will al-

low excellent flexibility for future NMPC engine control with machine learning based

models.

The implementation of the acados NMPC on the Raspberry Pi 400 has been

experimentally shown to follow an IMEP reference with an RSME of 0.133 bar. The
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tested controller was also able to observe constraints and keep the combustion phasing

around the target value. Another significant benefit of the developed control strategy

is the ability to develop a controller extremely quickly. By collecting a reasonable

amount of engine data it is possible to train the LSTM based model and implement a

NMPC on the hardware in significantly less time than traditional table based engine

control.
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Chapter 7

Conclusions

This thesis examined the experimental application of advanced control strategies to

improve the stability and reduce the emissions of homogeneous charge compression

ignition combustion. The first set of control strategies presented in Chapter 3 focused

on real-time in-cycle control strategies. These control strategies utilized high speed

actuators, such as high speed spark and direct water injection to quickly influence

the in-cylinder state. The parallel computational power of a FPGA is used to calcu-

late combustion metrics and to drive high speed actuation during the engine cycle.

Improvements in combustion stability and a reduction in emissions in HCCI engines

was achieved.

Then by combining an in-cycle controller with a cycle-to-cycle controller allowed for

a multiscale control approach to be developed and experimentally tested in Chapter 4.

Using an artificial neural network (ANN) to model the combustion process the purely

in-cycle controller was compared with the multiscale control approach. Experimental

testing of the multiscale controller resulted in a significant stability increase over the

pure in-cycle controller.

The next advanced control strategy focused on using a more traditional engine

control architecture (processor based control) but incorporated Machine Learning

(ML) for engine modeling, control, and emission reduction. First the development of

a physics based (white-box) model to capture the combustion kinetics was created
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as a baseline to compare the ML models. Then the application of ML to steady

state emission modeling was presented in Section 5.2 by modeling engine-out Nitro-

gen Oxide, Hydrocarbon, Carbon Monoxide, and Carbon Dioxide emissions using a

Support Vector Machine. Then, a third model utilizing a deep neural network with a

long short term memory (LSTM) model allowed for the creation of a dynamic model

for HCCI emissions and performance was presented in Section 5.3. This model pro-

vided a transient HCCI model capable of predicting engine out emissions and engine

performance for a range of engine loads from 2.5-4.0 bar IMEP.

The integration of ML and Model Predictive Control (MPC) was examined in

Chapter 6. The engine model needed for MPC was a ML model which was feasible for

realtime implementation. The design and experimental implementation of the MPC

on a prototyping engine control unit as well as on various other external processors

was presented. A short summary of the main results from each chapter are described

next.

7.1 In-cycle HCCI Control using Rapid Spark

This thesis provided the development and experimental implementation of an in-

cycle control strategy. The controller took advantage of the addition of a new high

speed ignition system with the ability to add energy to the cylinder in under 10 µs

(0.09 ◦ CAD at 1500 rev/min). The in-cylinder state calculated every 0.1 ◦ CAD

using a detailed gas exchange model on the FPGA provides the real time heat release

and cylinder state which are used as an input for the controller. Then considering

the in-cylinder state at various crank angles it was determined that by considering

the cylinder state at 5 cad aTDC provides sufficient information to determine if the

auto-ignition process has started or if additional energy is required. Using this infor-

mation, two controller inputs are considered: the cylinder pressure; and accumulated

heat release at 5 cad aTDC. Both controllers were able to successfully reduce the stan-
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dard deviation of combustion phasing and IMEP at multiple HCCI operating points.

In one operating point, before the controller is activated there was eight cycles with

a combustion phasing later that 30◦ CAD aTDC (considered a misfire). After the

controller is activated there are no cycles with a combustion phasing greater than

30◦ CAD aTDC, showing the controller is able to completely eliminate misfire cycles.

The controller commanded a spark in approximately 10% of cycles at the operating

point tested. Additionally, the addition of the reactive spark system has led to ni-

trogen oxide levels similar to the pure HCCI case while showing an improvement of

6.6% in unburnt hydrocarbon emission over pure HCCI. This work has been published

in [8, 9].

7.2 Multiscale HCCI Control

To combine the in-cycle controller benefits with a secondary cycle-to-cycle controller

a multi-scale control approach was developed. The first time scale is cycle-to-cycle

where the combustion phasing of one cycle is used to determine the amount of water to

inject during the following NVO recompression phase. Then using the heat released

in the NVO recompression in combination with the data from the previous main

combustion allows for determining the amount of water to inject (if any) into the

main compression phase as well if the fueling amount should be adapted. When

this information is used in a artificial neural network (ANN) it can be inverted and

used to directly influence the HCCI combustion. This control approach provided a

clear increase in indicated efficiency from 28.09 % to 29.42 %, improved IMEP from

2.88 bar up to 3.02 bar and helped to stabilize the operation point with reductions

of standard deviation for IMEP and CA50 by more than 65 %. The advantages of

MIMO controller over the single actuation in-cycle controller showed a significant

improvement in the prediction and prevention of misfire cycles. This work has been

published in [5].

174



7.3 HCCI Performance and Emission Modeling

For a model predictive controller the first step was to identify a suitable model for

HCCI. This thesis presented three models for capturing the HCCI combustion pro-

cess. These models cover the range of modeling strategies from fully physics based

kinetics modeling to fully machine leaning based black-box models. The first model

investigated was a one zone skeletal physical kinetics model which is able to provide a

breakdown of the chemical species in the cylinder. The goal for using this model was

to utilize the parallel computational capability of the FPGA to propagate forward

in time the chemical process reactions, since these reactions are mostly independent

they can be solved simultaneously. An offline kinetics model was successfully created

and showed that the chemical components of the cylinder could be estimated using

a relatively simple kinetics model with 34 species and 36 reactions. However, when

the model was transferred to the FPGA for realtime implementation at an engine

speed of 840 rpm the current FPGA hardware is only able to calculate 0.1886 CAD

of combustion during one revolution of the engine. Since a model with a resolution

of 0.1 CAD is needed this meant that with the current FPGA hardware, it was not

possible to run a fully white-box kinetics model in real-time.

To speedup the model, a machine learning (ML) model was then investigated. The

challenge with ML based models is that the model quality is strongly based on the

data used to train the model. The advantage of ML models are the relatively straight

forward implementation of the model in real-time. The first ML model developed is

a support vector machine model used to predict HCCI engine out emissions. This

model predicted the Nitrogen Oxide, Carbon Monoxide, Carbon Dioxide and unburnt

Hydrocarbon emissions from the HCCI engine. The effect of different machine learn-

ing approaches and feature set selection on the model quality for HCCI emissions

prediction was the result of this work. First, linear and non-linear SVM models were

compared to a traditional ANN model. This comparison showed that for a small data
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set that SVM based models were more robust to changes in feature selection and were

better able to avoid local minimums compared to ANN. In this case the SVM model

has a more consistent model prediction. For each of the four emissions examined the

best model type was determined by taking the highest average R2 value less the vari-

ance in R2 over the various feature sets. This led to the NLSVM being selected for 3 of

the emissions and LSVM for NOx prediction. Then, the individual feature sets were

examined. The base feature sets were extended by multiplying individual features

together to explore feature interactions. By comparing the individual features with

the base feature set (L7) the feature set with an improved accuracy but also considers

the increase in model complexity was chosen. In this thesis, the emission models cho-

sen for control purposes for CO, HC, NOx, and CO2 are NLSVM-L13, NLSVM-L7,

LSVM-L13, and NLSVM-L7, respectively. The NOx and CO models have the largest

prediction error, of R2 = 69% and R2 = 74%, respectively. While the HC and CO2

models are quite accurate with an R2 = 84% and R2 = 86%, respectively. Even the

NOx model, which produced the least accurate prediction, was still able to capture

the trends in NOx production. This work has been published in [13].

Finally a transient engine performance and emissions model for HCCI was created

using a deep neural network containing a long short term memory (LSTM) layer.

This model requires significantly more data than the SVM model, however, due to

the recurrent neural network the model is able to capture time dependencies in the

data. This resulted in an accurate model which is able to provide a model for transient

engine operation with an error less than 5% for all four model outputs (IMEP, CA50,

MPRR and NOx). Of the models developed and tested, the LSTM model showed

the greatest accuracy while preserving a simple model structure to allow for real-time

implementation. MPRR is the most difficult parameter for the model to predict as

shown by the 4.7% error in validation while other outputs are predicted with less

than 4% error. The prediction of IMEP is quite good with an error of less than 2.8%
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for both training and test data. Even the NOx emission prediction, which is generally

more difficult to predict compared to the engine performance parameters, is within

4% for the validation data. The modeling process was applied to diesel combustion

and has been published in [1, 2].

7.4 Nonlinear Model Predictive Control Experi-
mental Implementation

Using the developed LSTM based DNN model a nonlinear model predictive controller

(NMPC) has been designed and experimentally tested. To successfully implement the

NMPC, the open-source package acados which enables the integration of embedded

solvers for nonlinear optimal control has been used. Using the LSTM model with

four cell and four hidden states was first tested in an offline simulation which enabled

the offline tuning of the controller and allowed for controller feasibility testing. The

NMPC was then successfully implemented on a dSPACE MABX II where the IBM

PPC 750GL. However, only cycle to next cycle control was implemented as the NMPC

optimization was not able to complete the NMPC calculations within the engine cycle

time (22 ms) requirement. However, even with this one cycle delay, the NMPC was

able to provide acceptable IMEP reference tracking although some oscillation due to

the controller inability to directly interact with the subsequent cycle.

Then the NMPC online optimization was tested on various external processors to

determine which provided the calculation rate needed. Of the six various devices

tested all showed the possibility to meet the real-time requirements even with a delay

of 1-2 ms introduced due to the UDP communication between the MABX II and

NMPC external processor. To keep NMPC costs low a Raspberry Pi 400 was chosen

to test on the engine testbench. The implementation of the acados NMPC on the

Raspberry Pi 400 did not have a cycle delay and has been experimentally shown to

follow an IMEP reference with an RSME of 0.133 bar. The tested controller was also
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able to observe constraints and keep the combustion phasing around the target value.

The experimentally tested NMPC has an average execution time of 1.18 ms and a

maximum time of 1.4 ms. With the current controller setup the controller complexity

could be further increased if needed to allow for a more detailed calculation as only

10% of the cycle time is used.

Another significant benefit of the developed LSTM based NMPC control strategy

is the ability to develop a controller extremely quickly. By collecting a reasonable

amount of engine data (around 65,000 cycles in this case) it is possible to train the

LSTM based model and implement a NMPC on the engine controller in significantly

less time than traditional table based engine control strategies.

7.5 Future Work

This work involved the components of: modeling, control development, actuator inte-

gration, and the analysis of realtime hardware capability. The components were im-

plemented on a complex experimental system, the HCCI engine, which has actuator

and sensor constraints to protect the engine. As such, the successful implementation

of a new controller is time consuming and beyond the scope of this thesis. However,

possible ways to extend the work presented in this thesis include:

• Combining the rapid ignition controller with the multi-scale control strategy to

add another actuator for the controller to use.

• Including more emissions in the DNN LSTM model to allow for constraints on

a wide array of emissions.

• Use the steady state SVM model to provide an estimation of uHC emissions

from NOx emissions.

• Transfer learning of the developed model on the RWTH engine to the UofA

engine.
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• Use the developed realtime LSTM MPC method on a variety of systems such

as Hydrogen-Diesel dual fuel combustion and electric motor thermal derating.

• Use the developed realtime LSTM MPC method for control of HCCI utilizing

other zero-carbon fuels such as ammonia or hydrogen.

• Including additional inputs to the LSTM model such as: exhaust gas tempera-

ture (useful to set constraints on exhaust temperatures for aftertreatment sys-

tem), ion current (add more information on the chemical state), burn duration

(to allow for better shaping of heat release) or others.

• Test control strategy with additional disturbances and check sensitivity to op-

erating point.
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