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Abstract

Colorectal cancer (CRC) is a major public health concern. The current
population-based screening method used world-wide is fecal occult blood testing
(FOBT), however this test has very low sensitivity for both colorectal cancer and
adenomatous (pre-cancerous) polyps and is associated with low compliance.
Metabolomics is a new field of science to study small molecules of metabolism
and existing literature on metabolomics and CRC is limited. In this thesis, urine
metabolomics has been shown to represent a novel, non-invasive, well-accepted
screening tool for detecting CRC and adenomatous polyps with high sensitivity.
The metabolomic fingerprint of CRC and that of adenomatous polyps have been
explored to further understand metabolic changes in these disease states. After
curative treatment of CRC, the CRC metabolomic fingerprint has been shown to

remain.
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1.0 Introduction

1.1 Aims and Outline of Thesis

Colorectal cancer is a major public health concern. The development of a more
accurate, non-invasive, patient-accepted screening tool for colorectal cancer is
much needed. The main goal of this thesis is to explore the potential of urine
metabolomics as an effective diagnostic/screening tool for colorectal cancer and

colonic adenoma.

The rest of chapter 1 will highlight the Canadian public health perspective of
CRC screening. In chapter 2 the literature regarding metabolomics and
colorectal cancer will be reviewed. Chapter 3 will provide a detailed description
of the methodology used in this study, including recruitment strategies,
experimental design, as well as statistical analysis. The results of the colorectal
cancer experiment will be described in chapter 4 while the results of the colonic
adenoma experiments will be described in chapter 5. Chapter 6 will focus on
the metabolomic fingerprint of postoperative colorectal cancer patients, and
explores whether patients’ metabolite profile changes after their cancer has been

removed.

1.2 Colorectal Cancer Screening -- The Canadian Public Health
Perspective

Colorectal cancer (CRC) is the third most common cancer and the second most

frequent cause of cancer-related deaths in Canada. In 2006, an estimated 19,900



Canadians were diagnosed with CRC; 8500 died from the disease.! However,
CRC is a disease that can be cured if identified early, and even preventable if
found at the adenomatous polyp stage. The rest of this chapter will examine
current screening guidelines and summarize evidence regarding adherence, but
more importantly, the barriers to screening will be explored. Existing strategies to
improve adherence from both the clinical and public health perspectives will be

outlined.

1.2.1 Current Screening Modalities

Early detection and treatment of diseases has a potential to increase the lifespan of
patients and decrease health care costs. Colorectal cancer is a suitable disease for
screening since it is very common, it is serious with severe consequences, its
treatment is more effective at an earlier stage, and it has a detectable preclinical
phase (adenomatous polyps) that is fairly long and prevalent.” Current screening
guidelines, for individuals with average risk (age 50 or older with no risk factors),
recommended by the Canadian Association of Gastroenterology for colorectal
cancer consist of one of the following: fecal occult blood testing (FOBT) every 2
years, flexible sigmoidoscopy every 5 years, flexible sigmoidoscopy combined
with FOBT every 5 years, double contrast barium enema every 5 years, or
colonoscopy every 10 years.” Each of these test modalities has limitations or
potential risks associated with it. The most commonly used FOBT has been the
guaiac-based test Hemoccult II. Patients are instructed to avoid consuming red

meat, certain fruits and vegetables, and Vitamin C supplements for 3 days prior to



and during the stool collection in order to avoid false-positive and false-negative
results. Although large population-based randomized control trials have
demonstrated a survival benefit in patients who undergo annual or biannual
screening with FOBT?, the strict dietary measures and the handling of stool that
are required may preclude widespread acceptance by the general population and
in turn decrease compliance. Moreover, clinical studies using the Hemoccult test
have estimated a low sensitivity for small cancers and polyps (26% for cancers
and 13% for large adenomas).” Flexible sigmoidoscopy will miss proximal
colonic lesions, while barium enema exposes patients to radiation and is less
sensitive and specific than colonoscopy. Colonoscopy is the gold standard for
screening and it can also be used for treatment of precancerous lesions, however it
requires considerable resources and skilled personnel. Complications can result
from sedation or the procedure itself. The risk of bleeding is approximately 1:100
and that of perforation is 1.3 per 1000 for diagnostic colonoscopy and 1.4 per

1000 for therapeutic.’

1.2.2 The Effectiveness of Screening

Current CRC screening strategies save lives. The largest FOBT trial to date was
conducted in Nottingham, UK. From 1981 to 1991, this trial recruited 153,000
asymptomatic subjects between the ages of 45 and 74 and randomized them into
control or intervention groups. The intervention group received a Hemoccult
FOB test kit by mail every 2 years, which required self-collection of stool

samples. Positive tests led to further investigations. Follow up continued for 4



more years after the end of the trial. This study detected a 15% reduction in
colorectal cancer mortality in the intervention group compared to the control
group, even though only 38% or those in the intervention group completed all the

FOBTs.’

1.2.3 The Components of An Effective Screening Program

A screening program is much more than just a screening test, so when addressing
the issue of effectiveness of screening, it is important to distinguish between test
sensitivity and program sensitivity. Program sensitivity is the sensitivity achieved
over time through serial testing in a program. ® Test sensitivity can be improved
with development of new and advanced technology such as Fecal Immune
Testing (FIT), Stool DNA, and Urine Metabolomics etc.. Program sensitivity,
however, is highly reliant on patient compliance especially since colorectal cancer
screening requires repeat testing at regular intervals. The perfectly accurate and
harmless test would still have minimal impact on disease prevention if barriers
such as access, cost and awareness are not addressed. It is therefore important to
examine what the current uptake rate is in terms of CRC screening, what barriers
are preventing people from being screened and which populations should be

targeted.

1.2.4 Screening Compliance
A population-based study done in Montreal in 2007 surveyed 17,498 subjects in

four provinces (Ontario, NFL, Saskatchewan, and BC) and found that 70% of



respondents were not adherent to current CRC screening guidelines.” Similarly, a
population-based study done in Ontario, using administrative data only, showed
that of 982,443 screen-eligible men and women between the ages of 50-59, 79.5%
did not have any tests to screen for CRC during a 6-yr follow-up. '° In an Alberta
study, only 14.3% of average risk adults (n=1,476) were up to date on CRC

screening. !

1.2.5 Barriers to Effective Screening

A biopsychosocial framework can be used to better understand the disparities in
adherence to CRC screening guidelines. Clinically, it was noted that people with
health-care seeking tendencies, such as those who have a regular physician, those
who get flu shots or those with a chronic condition, were more adherent to the
guidelines. Psychologically, self-perceived stress was associated with increased
adherence to screening, likely due to increased chances of receiving preventive
health services. Since people who visit their physicians less frequently may be at
risk for not receiving preventive healthcare, perhaps invitations for CRC
screening should come from sources that are independent of physicians. While
environmental factors such as the availability and access to screening services
were not found to influence adherenceg, it has also been noted in the literature that
socio-demographic factors associated with increased adherence include male
sex'?, high-income level"®, and not working full-time’. Individuals who were
born in Canada and were Caucasian were more likely to adhere to the

guidelines'®. The effect that socioeconomic status (SES) has on screening



behavior was studied by Whaynes et al., using the Nottingham trial data. The
recruited subjects were divided into different socioeconomic groups based on the
deprivation index of their general practitioners, determined by their postal code.
Contrary to what was hypothesized, deprivation was not a significant factor in
determining colorectal cancer prevalence. However, those with lower SES were
less likely to accept the invitation to be screened, thus delaying the diagnosis and
resulting in cancers diagnosed at a later stage, thus increasing mortality.
Therefore, those with socioeconomic deprivation are disadvantaged by their lower
participation rate.”” These findings reinforced the need to tailor CRC screening to

underserved groups.

Several US studies have also studied the barriers to CRC screening. Focus group
interviews done at Harvard School of Public Health have identified three groups
of factors that moderate perceived personal risk for colorectal cancer: knowledge
factors, service system factors, and psychological or cognitive factors.
Knowledge factors include unawareness of general prevalence of colorectal
cancer (stark contrast to prostate or breast cancer), ignorance that women are just
as likely to get colorectal cancer as men, misconception that family history was
the single most important or even sole determinant of risk, and the assumption
that risk is symptom-dependent. Service system factors include lack of preventive
and screening information from providers and misconceptions about prior
negative results and necessity for repeated screening. Psychological factors

include concern with another health issue that offsets perceived risk for CRC,



disinclination to worry, and deference to authority of doctors who had not

encouraged screening.

A unique study by Klabunde et al. in 2005 looked at the barriers from the
perspectives of both physicians and patients and compared the two groups. They
used data from two large-scale surveys, namely the 1999-2000 Survey of
Colorectal Cancer Screening Practices (n=1235) and the 2000 National Health
Interview Survey (NHIS) (n=6497). Both primary care physicians and patients
more often identified patient-related factors (fear of finding cancer, belief that
screening isn’t effective, embarrassment/anxiety about screening tests, lack of
awareness of screening/CRC not perceived as a serious health threat) to be major
barriers compared to system-related factors (screening costs too much/is not
covered by insurance, physicians don’t actively recommend screening to their
patients, shortage of trained providers to conduct screening other than FOBT,
shortage of trained providers to conduct follow-up with endoscopic procedures).
The two groups also agreed on the fact that patients’ lack of awareness of the

need for screening and the lack of knowledge about CRC are important barriers.'®

In summary, the main barriers for CRC screening are lack of awareness and
misconceptions about the disease and lack of preventative information given to
patients by their physicians. While cost and insurance coverage were shown to be
barriers in some US studies'’, they were not shown to be barriers for screening in

Canada due to our public healthcare system. The target populations should be



those that are underserved and those with low SES and the provider of

information should not only be limited to physicians.

1.2.6 Overcoming Barriers to Screening

To overcome these barriers to screening, educational programs that address all
these factors should be developed and implemented. The primary message should
be that early detection and repeated screening for both men and women even in
the absence of symptoms or family history is beneficial and important.
Dissemination of knowledge is a key strategy to address some of these factors, but
in addition, changes in clinical practice need to be made, such as integrating
screening recommendations and follow-up as part of regular physical exams, and

having active notifications of screening results."

The method of recruitment for screening has traditionally been word of mouth
from physician to patient or via post mail (as in some large studies). With the
advancement of technology and the widespread use of electronic communication,
some have hypothesized that perhaps email would be a more efficient way of
notifying potential eligible screening subjects. However, a 2008 study in
Houston, Texas showed implementing colon cancer screening through email over
the Internet was no more effective than a mail-out reminder. The return rate for
FOBT was only 25%.'® This is perhaps because eligible screening subjects are
those over the age of 50 and this portion of the population may not be as

computer-literate as their younger counterparts.



Publishing guidelines on screening will help raise awareness, especially when
there has been a change, as recommended by an expert panel. In 2001, the
Canadian Task Force on Preventive Health Care revised its screening
recommendations for CRC from its 1994 assessment that there was “inconclusive
evidence to recommend screening in asymptomatic individuals over 40” (1994) to
“there is good evidence to include annual or biennial screening with FOBT (grade
A recommendation) and fair evidence to include flexible sigmoidoscopy (grade B
recommendation)... for average risk individuals at least 50 years of age.”"”
Subsequent to this publication, a study in the Canadian Journal of Surgery showed

that the proportion of primary-care physicians that recommended CRC screening

increased from 43% to 60%.%°

However, guidelines for physicians will only solve part of the problem. There is a
shortage of primary care physicians in Canada and resources will become even
scarcer as the baby-boomers continue to age. It has also been shown that people
who go to physicians regularly are not those at highest risk. Therefore, other
healthcare workers in the field need to be involved in the promotion of and
education on preventive health strategies. A recent Canadian study published in
2007 explored the idea for a workplace colorectal cancer-screening awareness
program. In 2003, the Toronto Police Service partnered with Sunnybrook and
Women’s College Health Sciences Centre in Toronto to implement such a

program. This program included first educating “trainers” with formal education



sessions performed by the head occupational health nurse using a 5-minute
videotape containing information about CRC screening and testimonials of
survivors of CRC. All trainers were also given ample opportunity for questions.
The trainers then went on to educate the other members of his or her unit.
Although 50% of members attended the program, only 13% completed the
questionnaires and agreed to participate. This program identified that nearly 1/3
(298 out of 965) of subjects as having average or above-average risk for
colorectal cancer, and would, therefore, benefit from screening.' Programs such as
this would increase awareness through education and relieve some of the burden
of addressing these potentially time-consuming issues from primary care
physicians who are already over-worked. Contrary to the US where a 1995
survey of 1720 private-sector workplaces showed that 35.2% of workplaces with
>750 employees have a cancer-screening program”', there may be little financial
incentive for employers in Canada to establish such programs due to the nature of

our public healthcare system.

1.2.7 Alberta’s Approach to Colorectal Cancer Screening

Similar to Ontario and Manitoba, Alberta is currently establishing a CRC
screening program. In 2006, the Expert Working Group sponsored by Alberta
Health and Wellness and the Alberta Cancer Board, recommended the adoption of
population based screening for colorectal cancer for all Albertans aged 5074
with annual fecal occult blood testing recommended as the primary screening tool

for those at average risk. To meet this mandate, Capital Health (now part of

10



Alberta Health and Wellness), which served a population of almost 2 million
people, established the Stop COlorectal cancer through Prevention and Education
(SCOPE) program as a comprehensive, integrated, population-based screening
program for residents of the Capital Health region. The program began as a pilot
in early 2008. The program encompasses educational information, risk
stratification as well as screening for both average and high-risk patients, and
colonoscopy for those individuals who test positive by screening. Eligible
subjects are currently referred to the program by their primary care physicians,
but once the full program is launched, individuals will be able to access the
program in several ways, including through HealthLink or through the website
(http://www.capitalhealth.ca/EspeciallyFor/Scope/default.htm). Education
sessions are held every month at the University of Alberta Hospital for eligible
participants, where nurse navigators give a group session on colorectal cancer and
screening. A website has been developed with helpful, easy-to-understand
information regarding CRC and the SCOPE program. Paper-based education and
information resources are available to individuals without access to the Internet.
The pilot not only served to correct the potential problems before launching the
full program, but it also provides a great opportunity for various research topics.
Every subject in the pilot will be taking a fecal occult blood test (FOBT), two
fecal immune tests (FIT), and providing a sample of their urine for metabolomic
analysis, as well as undergoing a colonoscopy. This is a unique opportunity to
compare the sensitivity and specificity of the fecal tests as well as the urine

metabolomics, using colonoscopy as the gold standard, in the same individual.
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Although this program is not set up specifically to target the under serviced
groups, it does increase awareness through education and health promotion.
Additionally, it changes the setting from a physician’s office to an auditorium and
increases efficiency by targeting a group of interested subjects rather than

individuals.

1.2.8 Role of the Community

Health is typically thought of as a function of individual decisions, but the role of
the community is vitally important. In an interview at the University of Toronto,
Malcolm Glad well, the author of Outliers, illustrates this point with the story of
Roseto. Roseto is a little town in the hills of Pennsylvania, which is a replica of a
town in southern Italy established in the 1880°s. This town is famous for the fact
that the death rate is half that of the US average, despite the fact that everyone
smoked, ate poorly, and was overweight. In this town of income equality and
social equality, no one became rich but everyone “lived forever”. Individually
bad decisions were made, but as a community no one died. This is a subtle
reminder that discussions regarding health should be started at the community

level and worked backwards to the individuals.??

1.2.9 Conclusion
Colorectal cancer is a major public health concern in Canada. It is a serious but
preventable condition, however, less than 30% of eligible individuals are

currently being screened appropriately. There are biopsychosocial reasons for the
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disparities in screening behaviors. Multiple studies have identified the barriers to
screening mainly as lack of awareness and lack of prevention information given
by physicians. Strategies to overcome these barriers include publishing clear
guidelines, establishing education programs, and workforce-initiated screening
programs. The Alberta SCOPE program is a local initiative to increase awareness
of colorectal cancer and in turn improve population health through primary and
secondary prevention. Developing more patient-friendly screening tests such as

urine metabolomics could also improve patient compliance.
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2.0 Metabolomics and Detection of Colorectal Cancer in Humans
— A Systematic Review

2.1 Abstract

Metabolomics represents one of the new “omics” sciences and capitalizes on the
unique presence and concentration of small molecules in tissues and body fluids
to construct a “fingerprint” that can be unique to the individual and, within that
individual, unique to environmental influences, including health and disease
states. As such, metabolomics has potential to serve an important role in
diagnosis and management of human diseases. Colorectal cancer (CRC) is a
major public health concern. Current population-based screening methods are
suboptimal and whether metabolomics could represent a new tool of screening is
under investigation. The purpose of this systematic review is to summarize
existing literature on metabolomics and CRC, in terms of diagnostic accuracies
and distinguishing metabolites. Eight studies are included'™®. A total of 12
metabolites (taurine, lactate, choline, inositol, glycine, phosphocholine, proline,
phenylalanine, alanine, threonine, valine, and leucine) were found to be more
prevalent in CRC and glucose was found to be in higher proportion in control
specimens using tissue metabolomics. Serum and urine metabolomics identified
several other differential metabolites between controls and CRC patients. This

review highlights the novelty of the field of metabolomics in colorectal oncology.
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2.2 Background

Colorectal cancer (CRC) is a leading cause of death in North America. Current
non-invasive screening methods are suboptimal in sensitivity and have poor
population compliance. Nuclear magnetic resonance (NMR)-based urine
metabolomics is a highly novel assessment of urine-excreted small molecules that
has potential to identify CRC and colonic polyps.” The potential for a simple
single urine test to identify CRC and/or colonic polyps is exciting and of great
interest to opinion leaders, politicians, scientists, physicians and patients given the

world-wide interest and movement to population-based colon screening programs.

Metabolomics is an emerging field of research downstream from genomics,
proteomics and transcriptomics and is a quantitative collection of low molecular
weight compounds, such as metabolic substrates and products, lipids, small
peptides, vitamins, and other protein cofactors'’, generated by metabolism. It is a
precise, consistent, and quantitative method to examine and describe cellular
growth, maintenance, and normal function."' It is currently being used as a mode
of research in many disciplines of medicine, including psychiatry'?, obstetrics',
gastroenterology'®, and oncology'>. This technology is however fairly new and
few human studies have been done to validate the results of existing cellular and
animal studies, especially in the field of colorectal oncology. This systematic
review aims to summarize the existing human literature on the diagnostic

accuracies of metabolomics in the field of CRC.
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Metabolomics can be performed on urine, serum, tissue, and less frequently, on
fecal extracts, saliva and amniotic fluid. It is ideal for studying the effects that
diseases and drugs have on the human body because it is downstream from
transcriptome and proteome and thus the changes are amplified and are
numerically more tractable. Also, the technology is generic such that a given

metabolite is the same in every organism that contains it.'®

The analytical techniques that make it possible to assay and quantitate
components of the metabolome and to extract useful signatures from those data
include liquid chromatography (LC) coupled with mass spectrometry (MS) and
gas chromatography MS (GCMS) and NMR spectroscopy.'” The outputs from
MS or NMR are analyzed using multivariate analysis such as partial least squares

discriminant analysis (PLS-DA) and principal component analysis (PCA).

2.3 Objectives

The primary objective of this systematic review was to summarize the reported
diagnostic accuracies of serum, urine, and tissue metabolomics for detecting
colorectal cancers in the adult population, using histopathology as the gold
standard. The secondary objective was to summarize evidence of the most
prevalent metabolites found in colorectal cancer, where studies have been carried

out.
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2.4 Methods

A protocol was prepared outlining the a priori design for this review, including
criteria for considering studies for this review, search methods, data collection
and analysis. In conjunction with a research librarian, a comprehensive,
systematic literature search was performed. MeSH headings and keywords were
used. Electronic searches through established databases [MEDLINE (Ovid)
(1950 - Feb. 2009), EMBASE (Ovid) (1980 - Feb. 2009), PubMed (Sept. 2008-
Feb. 2009), Cochrane Library (Issue 1, 2009), Scopus (Feb. 2009), Web of
Science (1900 - Feb. 2009)], grey literature (i.e. literature not identifiable via
conventional means) and conference proceedings were completed. No language
restrictions were applied. Published papers and abstracts, as well as unpublished

studies were included in the searches.

Broad screening of titles and abstracts were done by the author (HW). The

inclusion/exclusion criteria used are outlined below.

Design: All randomized, quasi-randomized, non-randomized, retrospective and
prospective cohort studies, and case-series were included. Single case reports and
reviews were excluded.

Population: All studies involving human adult subjects (> 18 years of age) with
primary CRC and with or without controls were included. For the serum and
urine studies, the cancer patients had not commenced any medical or surgical

treatment for their condition at the time of the index test. For the tissue studies,
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the cancer patients had completed at least a biopsy or surgical treatment of the
CRC at the time of the index test.

Index Tests: Serum, urine, or tissue metabolomics were the index tests of interest
for this review.

Target Conditions: The target condition was primary CRC.

Reference Standard: The reference standard used to define the target condition

was histopathological analysis of resected colorectal cancer specimens.
Outcomes: Studies were deemed suitable for inclusion if the sensitivity and
specificity values of the index tests were available or derivable from the data
reported in the primary studies or obtainable from the authors, or if there was
information on occurrence of specific metabolites listed that distinguished CRC
from controls.

Setting: Studies in any setting were included.

The assessment of the methodological quality of each included study was done by
two independent reviewers (HW, VT), using the QUality Assessment of
Diagnostic Accuracy Studies (QUADAS) tool,'® which is a 14-question tool that
evaluates spectrum bias, misclassification bias, disease progression bias, partial
verification bias, differential verification bias, incorporation bias, review bias, and
bias associated with study withdrawals and uninterpretable results. The

QUADAS tool questions are included in table 2.1.
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Table 2.1: The Quality Assessment of Diagnostic Accuracy Studies (QUADANS)

tool
ltem Yes No Unclear
Was the spectrum of patients representative of the patients who will receive () () ()
the test in practice?
Were selection criteria clearly described? 0 0O ()
Is the reference standard likely to correctly classify the target condition? () () ()
Is the time period between reference standard and index test short enoughto () () ()
be reasonably sure that the target condition did not change between the
two tests?
Did the whole sample of a random selection of the sample, receive () () ()
verification using a reference standard of diagnosis?
Did patients receive the same reference standard regardless of the index () () ()
test results?
Was the reference standard independent of the index test (i.e., the index text () () ()
did not form part of the reference standard)?
Was the execution of the index test described in sufficient detail to permit () () ()
replication of the test?
Was the execution of the reference standard described in sufficient detail to () () ()
permit its replication?
Were the index tests results interpreted without knowledge of the results of () () ()
the reference standard?
Were the reference standard results interpreted without knowledge of the () () ()
results of the index test?
Were the same clinical data available when test results were interpreted as () () ()
would be available when the test is used in practice?
Were uninterpretable/intermediate test results reported? () () ()
Were withdrawals from the study explained? () () ()

A standardized data extraction form was developed to collect the details of all
included studies. Each of the two reviewers (HW, VT) independently extracted

information from each study. Disagreements were resolved through discussion.

A qualitative synthesis of the results was done. Not enough homogenous data
was available to perform a proper meta-analysis since only one of the five
reviewed studies reported on sensitivity and specificity data. Sensitivity and
subgroup analyses were planned but not done due to lack of data. Potential
sources of heterogeneity are timing of index tests, threshold values for positive

and negative diagnosis, expertise in the performance and interpretation of the
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index tests, expertise in the interpretation of the reference standards. Subgroup
analysis was planned for the different type of index test (urine, serum, tissue
metabolomics) and the type of metabolite quantification — HPLC/MS vs. NMR.
Publication bias was not assessed as the number of studies included was less than

eight.

A table of the characteristics of included studies is shown in the Results section.

2.5 Results

2.5.1 Results of the Systematic Search

The electronic database searches resulted in 1019 items. After removing the 216
duplicate hits, 698 were excluded from broad screening of title and abstract
because they did not fit the inclusion criteria for the review. Out of the 105
studies that were retrieved for more detailed evaluation, 95 were excluded
because they were cancers other than colorectal. A grey literature search did not
reveal any additional useful studies. Ten CRC papers were retrieved in full and
reviewed for relevance in detail by the two reviewers (HW, VT) independently.
Five were excluded for various reasons listed in table 2.2. In the end, five studies

are included in this review. Figure 2.1 summarizes the trial flow.
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Figure 2.1: Flow of studies through the selection process

Paotentially relevant studies identified

and screened for retrieval — Pubmed,

Medline, Embase, Scopus and WoS

(All cancers)
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detailed evaluation

(All cancers)
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Gray literature Studies excluded n = 95
search Reason:
(Colorectal cancer) » Cancers other
n=0 than colorectal

entially appropriate studies to
included in the review
(Colorectal cancers)

Studies excludedn=5

Reason:

* Does not meet
inclusion criteria

2.5.2 Description of Included Studies

There were five studies that satisfied the criteria for inclusion in this review.
Table 2.3 lists the characteristics of the included studies'”. All studies were case
series published in English consisting of 30 to 84 samples in 15 to 44 patients.
Patient demographics were not reported in one study” and the setting was not
reported in another’. Four out of five studies” used tissue metabolomics as the
index test and one' used urine. Since one study” used both NMR and GC/MS

techniques, there were in total three NMR studies>*° , and three MS studies” > *.
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Only one study” had sensitivity and specificity results, but all had distinguishing

metabolites.
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Table 2.2: Characteristics of included studies

Author Design | Setting Age Patients | Samples Cancer | Index | Analytical Reference | Sens | Distinguishing PCA/PLS
Year (n) (n) Test technique standard Spec | metabolites results
Country

Ma CS Tertiary | 64+10 33 33 CRC Urine UPLC/MS HP N/A Y Y
2008 53-72
China

Chan CS Tertiary | 67+13 31 63 CRC Tissue NMR HP N/A Y Y
2009 GC/MS
Singapore

Piotto CS Tertiary | 68+12 44 84 CRC Tissue NMR HP N/A Y Y
2008 45-90
France

Denkert CS Tertiary ? 27 45 Colon | Tissue GC/MS HP 95% Y Y
2008 95%
Germany

Lean CS ? 37-82 15 30 CRC Tissue NMR HP N/A Y N
1993
Australia

CRC: Colorectal cancer; CS: Case Series; GC: Gas chromatography; HP: Histopathology; MS: Mass spectroscopy; NMR: Nuclear Magnetic Resonance; PCA:
Principal component analysis; PLS: Partial least squares; Sens: sensitivity; Spec: specificity; UPLC: Ultra-high performance liquid chromatography.
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2.5.3 Summary of Included Studies

Ma et al. 2008

This Chinese study used UPLC/MS to examine the urine samples of 24 CRC
patients both before and after their cancer operations, and that of 9 controls. They
noted that when compared to the healthy controls, preoperative CRC patients had
significantly increased levels of low-molecular weight compounds 283 and 234
(p<0.05), and these compounds decreased significantly after the operation. Using
PLS-DA analysis, the study demonstrated a clear and significant separation
between preoperative, post-operative CRC patients and healthy controls. The
authors concluded that once these pilot results are tested in a larger population, a
urine test has the potential to identify affected patients. The limitation of this
study was that the names of the distinguishing compounds were not identified,

only the molecular weights were presented.

Chan et al. 2009?

This study from Singapore looked at 31 colon cancer tissue samples from 31 CRC
patients and compared them to 32 matched segments of normal mucosa, from the
same patient, 5-10cm away from the cancer. This study is unique in that it used
both NMR and GC/MS techniques to analyze the samples. There were
distinguishing metabolites (p <0.05 for all except glycine (p=0.1751) and
phosphoethanolamine (p=0.0541)) identified with each technique, which are listed
in Table 4. PLS-DA plots could clearly distinguish cancer versus normal tissues

in both NMR and MS, and could even distinguish colon cancer versus rectal
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cancer when NMR was used. The limitations of this study were the inadequate
clinical information provided for each patient, and not all samples were analyzed

using both techniques.

Piotto et al. 2008

A total of 84 tissue samples consisting of cancer and normal mucosa from 44
patients were studied in this French paper, but it was unclear how many were
from each group. NMR spectra were obtained from the tissue samples. After
removing 12 outliers, PLS-DA model obtained for the remaining 72 samples
demonstrated very clear separation for the cancer versus healthy biopsies.
Distinguishing metabolites were also stated (statistically significant, but no p-
values specified). The authors of the study then proceeded to build a second PLS-
DA model consisting of only the distinguishing metabolites using the first 50
biopsies (27 cancer, 23 controls). The remaining 22 samples were subjected to a
blind classification process, where visual inspection showed that the cancerous
and healthy samples were classified in the correct region. This is the only study
where the index test was explicitly stated to be blinded from the results of the
reference standard. The limitation of this study, again, was that not enough
clinical information about the patients was provided, such as co-morbidities and

location of tumor.
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Denkert et al. 2008*

This German study used GC/MS to examine 45 tissue samples (27 colon cancer,
18 normal). In total, 82 distinguishing metabolites were identified (p< 0.01), some
not named. This is the only study to state a sensitivity and specificity value for
the index test for detection of CRC. Sensitivity and specificity were both
approximately 95%. PCA was able to separate CRC from normal tissues. The
authors concluded that metabolic signatures, as well as individual metabolites can
be detected from fresh-frozen tumor tissue of CRC and that these alterations can
be linked to relevant biochemical pathways. Again, minimal clinical information

regarding the patients was given.

Lean et al. 1993°

This Australian study used NMR tissue metabolomics to study 30 colonic samples
of CRC and matched normals in 15 patients. Distinguishing metabolites were
listed. Since this is an older study, there was no mention of PLS or PCA plots.
The unique part of this study was that it was able to identify 6 samples in the 15
‘normal’ group as abnormal, indicating that NMR was able to identify abnormal
colorectal mucosa, which is not morphologically manifest. A limitation was the

small amount of clinical information provided.

2.5.4 Methodological Quality of Included Studies

The quality assessment results for the individual studies are shown in figure 2.2.

All but one study had a clear description of the demographic, clinical features and
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the inclusion and exclusion criteria of the population studied, thus the
generalizability of the results may be compromised. The reference standard for
all the studies is histopathology; currently this is the gold standard for CRC
diagnosis. For the tissue studies, the samples used for the index test and that used
for the reference standard were obtained at the same time. For the urine study, the
urine was obtained from the patients at 7 a.m. on the morning of their surgery.
All of the study group received confirmation of the diagnosis by histopathology,
that is, the results of the index test did not influence the decision to perform the
reference standard, so partial verification bias was avoided. Since all patients
received the same reference standard regardless of the results of the index test,
differential verification bias was also avoided. Incorporation bias was not
applicable as the reference standard was completely independent of the index test.
The index tests were all described in sufficient detail to permit replication of the
test. The results of the reference standard was interpreted without the knowledge
of the result of the index test, however, it was unclear whether the index test
results were interpreted without the knowledge of the results of the reference
standard in all but one study. Relevant clinical data was not available in three of
the five included studies since the location of the CRC was not provided. There
were no withdrawals from the studies. Uninterpretable and/or intermediate results
were accounted for except in one study’, where 12 outliers were removed from

analysis, without a detailed explanation as to why they were excluded.
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Overall, the studies were strong in the technical aspects of test description, but
were weak in the amount of clinical information provided and small number of

subjects.

Figure 2.2: Risk of bias summary: review authors' judgments about each risk of
bias item for each included study. +: Yes (high quality); - : No (low
quality); ?: Unclear.
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2.5.5 Individual Metabolite Analysis
All five studies listed metabolites that could distinguish CRC patients from

controls. The results from each study are summarized in table 2.3. In tissue
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metabolomics, the metabolites that appeared in more than one study are denoted
with a “”” and those that appeared in more than two studies are denoted with a
“t”. The ones that were most often found to be in higher proportion in CRC
specimens are taurine, lactate, choline, inositol, glycine, phosphocholine, proline,
phenylalanine, alanine, threonine, valine, and leucine. The metabolite most often
found to be in higher proportion in normal control specimens was glucose. All
recent studies showed that CRC can be clearly distinguished from normal controls

on PCA or PLS-DA plots.

2.5.6 Update to Review

As the field of metabolomics is expanding very quickly, an updated literature
review done in June 2010 revealed three other papers that would fit the criteria for
this review6'8, two on serum and one on urine. The results of these studies are

also summarized in table 2.3.

Qiu et al. have recently published two studies, one on serum and one on urinary
metabolite profiling of colorectal cancer. Both studies had good separation
between CRC patients and healthy controls on orthogonal partial least squares
(OPLS) plots but neither had sensitivity and specificity data. In the serum study®,
using gas and liquid chromatography coupled with time-of-flight mass
spectrometry (GC-TOFMS) and ultra performance liquid chromatography-
quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS), respectively, 33

differential metabolites were identified, five of which were found using both
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techniques, namely increased levels of pyruvate and lactate, and decreased levels
of tryptophan, tyrosine, and uridine (p<0.05) in cancer patients. Oleamide was
the most depleted serum metabolite and pyruvate was the metabolite most
increased. In the urine study’, using GC-MS, 16 differential metabolites were
identified (p< 0.05 unless otherwise specified) including decreased levels of
succinate, isocitrate, citrate, 3-methyl-histidine (p=0.0582), histidine (p=0.0601)
and increased levels of 5-hydroxytryptophan, 5-hydroxyindoleacetate, tryptophan,
glutamate, 5-oxoproline, N-acetyl-aspartate, p-cresol (p=0.0961), 2-
hydroxyhippurate, phenylacetate (p=0.0875), phenylacetylglutamine, and p-
hydroxyphenylacetate in cancer patients. In both of these studies, adequate
clinical information was provided, but the index tests were not carried out without

the knowledge of the reference standard.

Ritchie et al.® used Fourier transform ion cyclotron resonance mass spectrometry
(FTICR-MS), LC-MS and NMR technologies and found significantly reduced
levels of serum hydroxylated polyunsaturated ultra long-chain fatty acids in CRC
patients. The authors were also able to validate their results in five independent
study populations of CRC patients and controls and reported an average area
under the curve (AUC) of 0.91 +/- 0.04, which translates into approximately 75%
sensitivity and 90% specificity. Clinical data was provided in this study but it
was unclear whether the index test was performed without the knowledge of the

reference test.
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Table 2.3: Summary of distinguishing metabolites identified in each reviewed

study

Study

Tissue metabolites
Chan (2009)

Fiotto (2008)

Denkert (2008)

Lean (1923)

Technique

NMR

MS

NMR

GCIMS

NMR

Decreased in CRC

Lipids
PEG
Glucose*

Fumarate

Malate
D-mannose
D-galactose
o-glucose
1-hexadecancl
Arachidonic acid

Myo-incsitol
B-glucose

Oleic acid
N-acetylglycine
Inositol sterecisomer
Galactonate y-lactone

"Metabolites that appeared in more than one tissuwe metabolomic study.
FMetabolites that appearad in three different tissue metabolomic studies.

Distinguishing metabolites

Increased in CRC

Choline-containing compoundst
Taurine*

scyllo-inositolt

Glycinet

FEG
Phosphoethanolamine
Lactate*
Phosphocholinet
Lactate*

Phosphate

L-glycinet
2-hydroxy-3-methylvalerate
L-prolinet
1-phenylalanine’

Fatty acids

Uridine

11,14 -eicosadiznoic acid
11-eicosenoic acid
1-0-heptadecylglycerol
1-ronocleaylglycerol
Propyl octadecancate
Cholesterol

Taurine*

Glutamate

Aspartate

Lactate*

Alaninet

Methionine
Hypoxanthine

Cysteine

Prolinet

Pherylalanine!
Threcninet

Uracil

Isoleucine

Leucinet

Valinet

Cholinet
Phosphoryl-cholinet
Glycerol phosphoryl-choline
Inositolt

Taurine*

Fucose

Alaninet

Glutamic acid/glutathione
Histidine

Leucinet

Lysine

Threcnine*

Valine*

CRC: Coloractal cancer; FTICR: Fourier transform ion cvdotron resonance mass spectrometry; GC Gas chromatography; LC Liguid chromatography, LMW Low
molacular waight, M5: Mass spectroscopy; NMR: Nudear magnetic resonance; PEG: Polvethylene glvool; QTOFMS: Quadrupale time-of-flight mass spectrometry;
TOFMS: Time-of flight mass spectrametny; UPLC: Ultraperformance liquid chromatography:
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Table 2.3: Summary of distinguishing metabolites identified in each reviewed
study. (Con’t)

Study Technique Distinguishing metabolites
Decreased in CRC Increased in CRC
Serum metabolomics
Qiu (2008) GC-TOFMS Urea Pyruvate
Waline Lactate
Leucine 2-hydroxybutanoic acid
Proline 3-hydrexybutanoic acid
Threonine Malic acid
Threonic acid Oleic acid
4-hydroxyproline
Citrulline
2-piperidinecarboxylic acid
Ornithine
Hippurate
Lysine
Tyrosine
Tryptophan
Oleamide
Uridine
UPLC-QTOFMS Tyrosine Glyecerol phosphate
Uridine Pyruvic acid
Fhenylalanine Lactate
Tryptophan Carnitine
Wyristic acid
Palmitic acid
Nervonic acid
Arginine
Glutamic acid
Nicotinamide
Dopamine
Ritchie (2010} FTICR-MS, LE-MS Hydroxylated polyunsaturated ultra
NIMR long-chain fatty acids
Urine metabolomics
Ma (2008) UPLC/MS LAWY 283
LW 294
Qiu (2010) GC-MS Succinate 5-hydroxytryptophan
Isocitrate 5-hydroxyindoleacetate
Citrate Tryptophan
3-methyl-histidine Glutamate
Histidine 5-oxoproline
N-acetyl-aspartate
p-cresol
2-hydroxyhippurate
Pherylacetate

Pherylacetylglutamine
p-hydroxyphenylacetate

"Metabolites that appeared in mare than one tissue metabolomic study.

FMatabolites that appearad in three differont tissue metabolomic studiss.

CRC: Coloractal cancer; FTICR: Fourler transform ion grdotron resonance mass spectrometry; GC Gas chromatography; LC Liguid chromatography, LMW Low
maolecular weight, M5: Mass spectrascopy; NMR: Nudear magnetic resenance; PEG: Polvethylene glvcol; QTOFMS: Quadrupale time-of-flight mass spectrometry;
TORMS: Time-of flight mass spectrometny; UPLC: Ultraperformance liquid chromatography:

2.6 Discussion

2.6.1 Summary of the Human Metabolomic Studies in CRC
A comprehensive literature search for studies related to urine, serum, and tissue

metabolomics and the detection of primary colorectal cancer in adult humans was
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completed. Up to June 2010 there were eight studies that met the
inclusion/exclusion criteria established for this review. In total, there were two

urine, two serum and four tissue metabolomic studies reviewed.

The main objective of this review was to summarize the diagnostic accuracies of
serum, urine, and tissue metabolomics for detecting CRC in the adult population,
using histopathology as the gold standard. However, since only two studies had

sensitivity and specificity reported, this objective was not satisfactorily achieved.

Instead, the existing publications focused on the differentiation of CRC specimens
from normal tissue based on the differences in metabolites detected. Therefore,
we were able to achieve our secondary objective in summarizing the most
prevalent metabolites found in CRC. In tissue, the two most distinguishing
metabolites for CRC are increased levels of taurine and lactate, while secondarily
important metabolites appear to be increased levels of choline, inositol, glycine,
phosphocholine, proline, phenylalanine, alanine, threonine, valine, and leucine,
and decreased glucose. In serum, the studies so far have shown increased levels
of pyruvate and lactate, and decreased levels of tryptophan, tyrosine, uridine, and
hydoxylated, polyunsaturated ultra long-chain fatty acids in patients with CRC.
In urine, increased levels of 5-hydroxytryptophan, 5-hydroxyindoleacetate,
tryptophan, glutamate, 5-oxoproline, N-acetyl-aspartate, p-cresol, 2-
hydroxyhippurate, phenylacetate, phenylacetylglutamine, p-

hydroxyphenylacetate, low molecular weight compounds 283 and 294 and
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decreased levels of succinate, isocitrate, citrate, 3-methyl-histidine, and histidine

are found in patients with CRC.

While the aforementioned studies focused on metabolomics in urine, tissue, or
serum, recent publications have shown promising results with fecal water
extracts'2’. One half of the studies included in this review used colonic tissue to
determine metabolomics. While tissue metabolomics provides promising results,
urine metabolomics represents a much less invasive method of testing compared
to tissue or serum metabolomics and would be a much easier platform to use for a
CRC screening tool. Besides, tissue metabolomics does not offer any obvious
advantages over histological analysis. So far, only two studies" ’ utilized urine as
the platform for study. Not only was urine metabolomics able to show the
differences between cancer and healthy subjects, both studies that utilized urine
metabolomics were also able to demonstrate a change in the metabolic profiling

after the cancer was surgically removed.

Taken together, the results of the various differential metabolites identified in
these studies provide a number of speculated alterations in biochemical pathways
in CRC. In tissue-based metabolomics, there is an up-regulation of amino acids
likely reflecting cellular needs for higher turnover of structural proteins.” The
higher level of uridine in CRC is thought to be associated with the higher
propagation rate of the tumor cells. Lower levels of malate and fumarate in CRC

are thought to be related to the higher metabolic rate of the tumors. Finally,
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decreased levels of lipids in CRC specimens is perhaps due to increased
utilization of lipids from increased membrane biosynthesis for cell propagation.”
Lean et al. stated that the higher levels of choline and phosphocholine seen in
CRC could be accounted for with increased phospholipid synthesis (necessary for
membrane turnover) in tumor cells.” In serum-based metabolomics, the increase
in pyruvate and lactate levels in CRC patients is reflective of altered glycolysis.
Alterations in arginine and proline metabolism, fatty acid metabolism and
oleamide metabolism are thought to account for the other differential
metabolites.’ In urine-based metabolomics, down-regulation of the tricarboxylic
acid (TCA) cycle, up-regulation of tryptophan metabolism and altered gut
microflora metabolism is suggested in patients with CRC. Abnormal glutamate

and histamine metabolism may also play a role in CRC.’

There are a few metabolites that are particularly intriguing. Tryptophan was
decreased in the serum® and increased in the urine’ of patients with CRC, whereas
uridine, lysine, proline, and threonine were decreased in serum® and increased in
tissue™ and histidine was decreased in urine’ but increased in tissue’
metabolomics of patients with CRC. These findings suggest that serum, urine and
tissue metabolism are intimately correlated and that factors such as renal or
hepatic clearance may play a role in the metabolites identifiable by various testing
processes. This implies that, in order to secure a complete picture of the

metabolome and identify the alterations in the biochemical pathways of a specific
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condition, one needs to perform serum, urine, and tissue metabolomics of the

same patient and controls simultaneously, using the same techniques.

While there are differences in opinion as to the best analytical technique used to
study metabolomics, several recent reviews have noted that a combination of
techniques may be needed to provide a complete metabolome picture.”'
Nevertheless, it has been demonstrated that both NMR and MS are able to yield
PCA/PLS plots that can clearly distinguish CRC from normal controls. In 2009,
Chan observed that NMR was superior to MS in distinguishing colon cancer from
rectal cancer’. NMR is also faster to do, whereas mass spectroscopy requires

chromatography (liquid or gas) to separate out the metabolites first, which is an

additional expensive and time-consuming step.

2.6.2 Strengths and Weaknesses of the Review
This systematic review is the first to summarize existing published literature on

the role of metabolomics in detecting CRC in humans. While there are additional

24-26 27-29

publications on breast and prostate cancers, there are only few
publications on CRC. In fact, the majority of the papers included in this review
were published within the last 2 years. In completing this review, we were able to
highlight those metabolites that are currently found to be increased and/or
decreased in patients with CRC compared to those patients without CRC.

Nevertheless, it remains too early to project the true diagnostic or prognostic

accuracies of metabolomics in CRC.
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Given the lack of homogenous data, a meta-analysis of the diagnostic accuracies
and summary diagnostics could not be completed. Investigation of heterogeneity
and publication bias was also not assessed owing to insufficient data. The quality
of studies was very good in describing details of the index tests, and the more
recent studies provided sufficient clinical data. However, for the most part, it was
unclear whether the index tests were interpreted without the knowledge of the
result from the reference standard. This is a very important bias to address in

studies of diagnostic and prognostic tests.

2.6.3 Applicability of Findings to Clinical Practice and Policy

This review represents the first step in determining whether there is a role for
using metabolomics in the diagnosis and prognosis of CRC, and eventually as a
pre-cancerous screening tool to detect adenomatous polyps as the precursor to the
development of CRC. Metabolite identification unique to CRC will help
scientists to be more focused and accurate in testing specimens in the future. Once
the metabolomic “fingerprint” of CRC is firmly established, the next step would
be to test the accuracy of this “fingerprint” and these metabolites in a prospective
blinded study against the reference standard.” Other factors that could influence
metabolomics such as diet, drugs, stress, microbiota etc. all need to be explored as
well. Success with metabolomics as a diagnostic and prognostic tool is likely to

fundamentally change the physicians’ approach to health care.
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2.7 Conclusions

Clinically, metabolomics has the potential to become a tool for diagnosing CRC
and as an extension urine or serum metabolomics may represent a new, and less
invasive method of screening for CRC. The low adherence to current CRC
screening guidelines’*>? is multi-factorial, but having a less invasive and more
accessible test for screening will certainly improve compliance and improve
public health through primary and secondary prevention. While it is encouraging
to see the growth of metabolomics in colorectal oncology, appropriately powered,

blinded, prospective and clinically validated serum and urine metabolomic studies

are needed.

A version of this chapter (2.0) has been published.
Wang, Tso, Slupsky, Fedorak 2010. Future Oncology. 2010 6(9),1395-1406.

40



2.8

10.

11.

12.

13.

14.

15.

References

Ma Y-L, Qin H-L, Liu W-J, Peng J-Y, Huang L, Zhao X-P, Cheng Y-Y. Ultra-High
Performance Liquid Chromatography-Mass Spectrometry for the Metabolomic Analysis
of Urine in Colorectal Cancer. Digestive Diseases and Sciences 2009;54:2655-2662.
Chan ECY, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK,
Keun HC. Metabolic Profiling of Human Colorectal Cancer Using High-Resolution
Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) Spectroscopy and
Gas Chromatography Mass Spectrometry (GC/MS). Journal of Proteome Research
2009;8:352-361.

Piotto M, Moussalliech FM, Dillmann B, Imperiale A, Neuville A, Brigand C, Bellocq JP,
Elbayed K, Namer 1J. Metabolic characterization of primary human colorectal cancers
using high resolution magic angle spinning H-1 magnetic resonance spectroscopy.
Metabolomics 2009;5:292-301.

Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, Niesporek S,
Noske A, Buckendahl A, Dietel M, Fiehn O. Metabolite profiling of human colon
carcinoma - deregulation of TCA cycle and amino acid turnover. Molecular Cancer
2008;7.

Lean CL, Newland RC, Ende DA, Bokey EL, Smith ICP, Mountford CE. ASSESSMENT
OF HUMAN COLORECTAL BIOPSIES BY H-1 MRS - CORRELATION WITH
HISTOPATHOLOGY . Magnetic Resonance in Medicine 1993;30:525-533.

Qiu YP, Cai GX, Su MM, Chen TL, Zheng XJ, Xu Y, Ni Y, Zhao AH, Xu LX, Cai SJ,
Jia W. Serum Metabolite Profiling of Human Colorectal Cancer Using GC-TOFMS and
UPLC-QTOFMS. Journal of Proteome Research 2009;8:4844-4850.

Qiu YP, Cai GX, Su MM, Chen TL, Liu YM, Xu Y, Ni Y, Zhao AH, Cai SJ, Xu LX, Jia
W. Urinary Metabonomic Study on Colorectal Cancer. Journal of Proteome Research
2010;9:1627-1634.

Ritchie SA, Ahiahonu PWK, Jayasinghe D, Heath D, Liu J, Lu YS, Jin W, Kavianpour
A, Yamazaki Y, Khan AM, Hossain M, Su-Myat KK, Wood PL, Krenitsky K, Takemasa
I, Miyake M, Sekimoto M, Monden M, Matsubara H, Nomura F, Goodenowe DB.
Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum
of colorectal cancer patients: implications for early screening and detection. Bmc
Medicine 2010;8.

Wang H, Slupsky CM, Wong CK, Schiller DE, Fedorak RN. Is there a role for using
NMR urine metabolomics as a new method of screening for colorectal cancer? Volume
23 (Suppl. A): Canadian Journal of Gastroenterology, 2009.

Claudino WM, Quattrone A, Biganzoli L, Pestrin M, Bertini I, Di Leo A. Metabolomics:
Available results, current research projects in breast cancer, and future applications.
Journal of Clinical Oncology 2007;25:2840-2846.

Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by
numbers: acquiring and understanding global metabolite data. Trends in Biotechnology
2004;22:245-252.

Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, Doraiswamy PM, Krishnan
KRR. Metabolomic mapping of atypical antipsychotic effects in schizophrenia.
Molecular Psychiatry 2007;12:934-945.

Broadhurst DI, Brown M, Dunn WB, Carroll KB, Redman CW, Baker PN, Kell DB,
Kenny LC. The application of UPLC/LTQ-Orbitrap mass Spectrometry to human
metabolite biomarker discovery. A case study: Pre-eclampsia. Reproductive Sciences
2008;15:524.

Siffedeen JS, Rankin KN, Fu H, Dieleman LA, Slupsky C, Fedorak R. Metabolomics in
inflammatory bowel disease: Differentiating patients with or without IBD.
Gastroenterology 2008;134:A203-A203.

Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic
approach for identifying kidney cancer. Analytical Biochemistry 2007;363:185-195.

41



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Kell DB. Metabolomic biomarkers: search, discovery and validation. Expert Rev Mol
Diagn 2007;7:329-33.

Kaddurah-Daouk R, Kristal B, Weinshilboum R. Metabolomics: A global biochemical
approach to drug response and disease. Annual Review of Pharmacology and Toxicology
2008:653-683.

Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J. The development of
QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in
systematic reviews. BMC Med Res Methodol 2003;3:25.

Monleon D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B. Metabolite
profiling of fecal water extracts from human colorectal cancer. Nmr in Biomedicine
2009;22:342-348.

Bezabeh T, Somorjai R, Dolenko B, Bryskina N, Levin B, Bernstein CN, Jeyarajah E,
Steinhart AH, Rubin DT, Smith ICP. Detecting colorectal cancer by H-1 magnetic
resonance spectroscopy of fecal extracts. Nmr in Biomedicine 2009;22:593-600.

Dunn WB, Ellis DI. Metabolomics: Current analytical platforms and methodologies.
Trac-Trends in Analytical Chemistry 2005;24:285-294.

Lenz EM, Wilson ID. Analytical strategies in metabonomics. Journal of Proteome
Research 2007;6:443-458.

Robertson DG. Metabonomics in toxicology: A review. Toxicological Sciences
2005;85:809-822.

Bathen TF, Jensen LR, Sitter B, Fjoesne HE, Halgunset J, Axelson DE, Gribbestad IS,
Lundgren S. MR-determined metabolic phenotype of breast cancer in prediction of
lymphatic spread, grade, and hormone status. Breast Cancer Research and Treatment
2007;104:181-189.

Bullinger D, Frohlich H, Klaus F, Neubauer H, Frickenschmidt A, Henneges C, Zell A,
Laufer S, Gleiter CH, Liebich H, Kammerer B. Bioinformatical evaluation of modified
nucleosides as biomedical markers in diagnosis of breast cancer. Analytica Chimica Acta
2008;618:29-34.

Frickenschmidt A, Frohlich H, Bullinger D, Zell A, Laufer S, Gleiter CH, Liebich H,
Kammerer B. Metabonomics in cancer diagnosis: mass spectrometry-based profiling of
urinary nucleosides from breast cancer patients. Biomarkers 2008;13:435-449.
Whitehead TL, Kieber-Emmons T. Applying in vitro NMR spectroscopy and H-1 NMR
metabonomics to breast cancer characterization and detection. Progress in Nuclear
Magnetic Resonance Spectroscopy 2005;47:165-174.

Burns MA, He WL, Wu CL, Cheng LL. Quantitative pathology in tissue MR
spectroscopy based human prostate metabolomics. Technology in Cancer Research &
Treatment 2004;3:591-598.

Cheng LL, Burns MA, Taylor JL, He WL, Halpern EF, McDougal WS, Wu CL.
Metabolic characterization of human prostate cancer with tissue magnetic resonance
spectroscopy. Cancer Research 2005;65:3030-3034.

Sewitch MJ, Fournier C, Ciampi A, Dyachenko A. Adherence to colorectal cancer
screening guidelines in Canada. Bmc Gastroenterology 2007;7.

Rabeneck L, Paszat LF. A population-based estimate of the extent of colorectal cancer
screening in Ontario. American Journal of Gastroenterology 2004;99:1141-1144.
McGregor SE, Hilsden RJ, Li FX, Bryant HE, Murray A. Low uptake of colorectal
cancer screening 3 yr after release of national recommendations for screening. American
Journal of Gastroenterology 2007;102:1727-1735.

42



3.0 Methodology

This chapter gives an overview of the methods used for this study including
recruitment, samples handling, NMR and analysis. Specific details such as

number of patients for the study are stated in subsequent chapters.

3.1 Recruitment and Urine Sample Collection

Normal, Adenoma, Hyperplastic Polyp Subjects: Study subjects who had normal
findings, adenomatous polyps, or hyperplastic polyps on their screening
colonoscopy were recruited from the SCOPE (Stop COlorectal cancer through
Prevention and Education) pilot study — a population based study of over 1000
asymptomatic patients who are at average or high risk for colorectal cancer. The

SCOPE pilot study was carried out between April 2008 and October 2009.

The SCOPE study population consisted of patients on wait lists referred for
elective colonoscopy for screening purposes to the gastroenterologists
participating in the SCOPE program. Once identified, the patients received a
phone call from the SCOPE pilot nurse navigator. The nurse reviewed the
inclusion and exclusion criteria, and outlined the SCOPE Pilot and its objectives.
After patient questions were answered, the nurse requested verbal consent to
participate in the SCOPE Pilot study. Formal written consent was also obtained at
a later date to ensure participants understood the colonoscopy procedure and the
risks associated with the procedure, including the risk of perforation, bleeding,

infection, subsequent surgery, missed diagnosis of adenoma or cancer, and
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reactions to the medications used. Participants also had the opportunity to ask
questions about their participation in the Pilot with a registered nurse at the
information session and about the colonoscopy with the gastroenterologist prior to

the procedure.

Both average risk individuals and those with a family history of colon cancer or
polyps were included. Inclusion criteria for average risk were as follows:
asymptomatic, 50-75 years of age and no personal or family history of colorectal
cancer or polyps. Participants at increased risk for colorectal cancer were
included if they were 40-75 years of age with known personal or significant
family history of colorectal cancer or polyps. Potential study participants were
excluded if they were under 40 or over 75 years of age, unable to understand or
sign the informed consent, or had a recent history of visible hematochezia or
inflammatory bowel disease. Participants with significant co-morbidities were

also excluded.

Subjects participating in the SCOPE pilot study were each given a unique study
identification number when they attended the information session given by the
study nurses on colon cancer screening. The midstream urine sample was
collected at the end of the education session, in the mid-afternoon; subjects were
in their normal state, i.e. they did not have any diet modifications. In addition to
providing a urine sample, all patients completed a medical questionnaire, had a
FOBT (fecal occult blood test) and FIT (fecal immune test), prior to their

colonoscopy as part of the SCOPE study. The study urine sample container was
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pre-filled with 6 drops of dried sodium azide (27.3mg/mL) to prevent any

bacterial growth in the urine while it was waiting to be frozen.

Cancer Patients: All newly diagnosed colorectal cancer patients presenting to

general surgeons’ offices or the endoscopy suite in Edmonton and Grande Prairie
between Oct 2008 and June 2010 were screened for this study. Eligible patients
were identified by the general surgeon or gastroenterologist as those who have not
had any treatment for the colorectal cancer. The potential participant had an
opportunity to review the informed consent and ask questions. Those that chose
to participate signed the consent form and were assigned unique study
identification numbers. The study medical questionnaire was filled out either in
the surgeons’ offices or in the endoscopy suite. A urine sample was collected
from each patient before his/her surgery or neoadjuvant treatment in the pre-
operative admission clinic (normal state) or in the endoscopy suite (may be
fasting) using the study container pre-coated with sodium azide. Patients were
excluded if they had already undergone medical (chemotherapy), radiation, or

definitive surgical treatment for the CRC.

Post-op Patients: Those CRC patients that had curative treatment (surgery, or

surgery with adjuvant treatment) were contacted again between 3 months to 1
year after their treatment. They were asked to provide another urine sample in
their normal state. This sample was analyzed and compared to their pre-treatment
sample to see if their metabolomic fingerprint for colorectal cancer disappeared

after treatment.
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In all cases, subjects were also excluded if they were anuric, oliguric, had end-
stage renal failure, or were on hemo or peritoneal dialysis. Ethics approval for
this study was obtained from the Health Research Ethics Board at the University

of Alberta.

Urine was chosen as the biofluid for this trial on the basis of existing literature” >
suggesting that metabolomic profile of CRC can be identified through urine. A
urine sample is less invasive and more patient-friendly to obtain than a blood and
stool sample, respectively. These two qualities alone would make urine a more
compliant test and as stated previously, increasing patient compliance is a very

important factor in improving screening rates.

3.2 Nuclear Magnetic Resonance (NMR)

As mentioned in the chapter 2, NMR and mass spectrometry (MS) are the two
most used methods of quantifying the metabolites in the field of metabolomics.
NMR was chosen for this project since the equipment is readily accessible, the
expertise is available, and the process is faster than MS as it does not require the
chromatography step. NMR is not only rapid, but requires minimal or no sample
preparation, is non-destructive, robust, reproducible, quantitative, nonselective
and cost-effective, however, it is not as sensitive as MS, which can also detect a
wider range of metabolites.” The National High Field Nuclear Magnetic

Resonance Centre (NANUC) is located on the University of Alberta campus and
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is home to Varian 5S00Hz, 600Hz, and 800Hz NMR spectrometers and is equipped
with highly skilled and knowledgeable personnel. For this project, the 600 Hz
spectrometer was used since it was the most cost-effective. In June 2009,
NANUC acquired a Varian 768 AS sample handling robot, so since that time, the

urine samples were run with this robot (i.e. automated mode).

Generating the Spectra

The basis of NMR is that many atomic nuclei have an intrinsic spin (or angular
momentum). When placed in a magnetic field, these nuclei absorb energy from
any applied electromagnetic pulse and radiate this energy back out. The NMR
apparatus is a series of coils that produces a static magnetic field and smaller
induced excitation fields. The receiver picks up the induced voltage from the
precessing spins and this generates a signal that decays with time, or a FID (free
induction decay). Fourier transformation of the FID generates a more familiar
spectrum. The width of the peak is related to the rate of decay of the signal — the

faster the decay, the broader the peak.>°

Shimming

Signals decay faster when the magnetic field is inhomogeneous, i.e. the field
varies from place to place across the sample, so atomic nuclei in different
positions may resonate at different frequencies, such that the individual spins
spread out in different directions and the total signal is therefore smaller, and the

peak is broader. Shimming is used to adjust and eliminate the inhomogeneities in
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a magnetic field and thus increase the resolution of the signal and increase the
signal to noise ratio. Active shimming uses coils with adjustable current and
passive shimming uses steel pieces that get magnetized from the permanent or
superconducting magnet. The additional magnetic fields from the coil or effects
of the steel add to the overall magnetic filed of the superconducting magnet in
such a way that the total field becomes more homogenous. > In our experiments,

active shimming is used.

Chemical shift

The total magnetic field experienced by a nucleus is affected by its electronic
environment, i.e. neighbouring atoms, bond lengths, and angles between bonds,
and this is reflected in the spin energy levels (and resonance frequencies). The
variations of NMR frequencies of the same kind of nucleus, due to variations in
the electron distribution, is called chemical shift.> 6 Chemical shift is the reason

why we can identify metabolites based on the resonance frequencies of nuclei.

Water Suppression

Biological samples are in aqueous solution and therefore the signal from
hydrogen atoms in water (55M) is on the order of 10,000 times greater than the
metabolite resonances (<= 1mM). Suppression of the solvent signal is therefore
desirable to obtain information regarding the chemical makeup of the sample. The
transmitter offset (tof) is the exact position of the carrier frequency relative to the

lock frequency. The correct tof gives the lowest intensity of the water peak. The
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saturation frequency is the position of the water saturation pulse.” The tof and

saturation frequency are set to the same value in our experiments.

Pulse Width, Gain, Sweep Width
Pulse width represents the amount of energy used to excite the nucleus from the
resting state into the excited state. This needs to be optimized so that the nucleus

is maximally excited but not too much so that it ends back in the resting state.®

Gain is the amplification of the signal. If the gain is set too high, then the most
intense signal in the spectrum can overload the electronics necessary to observe
the signal. Too low a gain setting can mean that weak signals are not sufficiently

amplified and get lost in the noise.

Sweep width is the range of frequencies observed in a given spectrum. For
Varian spectrometers a sweep width of 10,000 Hz would mean that we observe

signals +5000 Hz from the carrier position.®

3.3 Urine Processing & Preparation

3.3.1 Urine storage & processing

The urine samples were labeled with a four-digit study identification number and
no patient information, thus the group assignment remained blinded for the
sample processing and analyzing steps. All urine samples were frozen at -80°C

within 24 hours of collection and if the samples could not be frozen immediately,
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they were stored at 4°C within 4 hours of collection. On the day of processing,
the samples were thawed and divided into four x ImL aliquots. After 50 uL of
sodium azide (27.3mg/mL) was added to each sample to prevent bacterial growth,

the samples were frozen again at -80°C until the day prior to NMR acquisition.

3.3.2 Sample Preparation — day before NMR

The day prior to NMR acquisition, the urine samples were thawed at room
temperature in the biohood. For the non-automated (manual) NMR acquisition,
585ulL of each sample was diluted (1:10) with 65uL of internal standard
consisting of 5 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), 100
mM imidazole, 0.2% sodium azide in 99% D20 (Chenomx Inc., Edmonton, AB)
to achieve a total volume of 650uL and stored at 4°C. For the automated
(robotic) NMR acquisition, 675uL of each sample was diluted (1:10) with 75uLL
of the same Chenomx internal standard to achieve a total volume of 750uL and

stored at 4°C.

3.3.3 Sample Preparation — day of NMR

On the day of NMR acquisition, the pH of each sample was measured. Various
concentrations of HCl and NaOH were added to the samples to achieve a pH
between 6.7 and 6.8 to minimize chemical exchange as the chemical shift will
change with pH. For the non-automated samples, an aliquot of 600uL of the
samples were placed in 5 mm NMR tubes and capped; for the automated samples,

700uL were used.
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3.4 NMR Acquisition

3.4.1 Manual/Non-automated Mode

One-dimensional nuclear magnetic resonance spectra were acquired using an
Oxford 600Hz NMR spectrometer with a Varian VNMRS two channel console
and running VNMRI software version 2.2C on a RHEL 4 host computer in the
NANUC. Before samples were inserted into the spectrometer, the outside of the
tubes were cleaned with ethanol and Kimwipes® to remove any debris or oils
from handling. Samples (600 uL) were set to a depth of 66 mm in the depth
gauge and then inserted into the spectrometer. All samples were run at a sweep
width (sw) of 7225.43 Hz and a gain of 18. The saturation frequency (sfrq),
transmitter offset (tof) and pulse width (pw) were all individually calibrated at the
start of each day. The tof typically ranged from (-213 to -215 Hz) and the pw
ranged from 6 to 8 us. Shims were optimized until an acceptable line width value
was obtained at relative peak heights of: 50% (< 1.0 Hz), 0.55% (< 12.0 Hz), and
0.11% (< 20.0 Hz) were achieved. Finally, during post-processing, zero filling
was used to increase the actual acquired data points to the next largest factor of 2,

and no weighting functions were applied.

We utilized the first increment of a 2D-'H, "H-NOESY pulse sequence for the
acquisition of IH-NMR data and for suppressing the solvent signal. Experiments
contained a 100 ms mixing time along with a 990 ms pre-saturation (~80 Hz

gammaB;). Spectra were collected at 25°C through a total of 32 scans over a
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period of 3.5 min; a total recycle delay of 5 s was also used (i.e. 1 s recovery

delay/saturation and a 4 s acquisition).

3.4.2 Automated/Robotic Mode

Automated runs followed exactly the same experimental parameters used in the
manual mode with the exception of an additional 30 s of equilibration time in the
NMR to allow the sample to equilibrate to 25°C. All sample handling was done
with a Varian 768 AS sample handling robot. The first sample of the batch was
manually shimmed to satisfactory line width values and subsequent samples were
automatically shimmed. Any spectra that did not meet acceptable line height

values were discarded and the sample was re run.

3.5 Post NMR Acquisition

3.5.1 pH Recheck

After the spectra were obtained, the samples were removed from NMR tubes with
glass Pasteur pipettes and transferred into eppendorf tubes. The pH of each
sample was then rechecked to ensure that the pH had not shifted a significant
amount. This was recorded and could be referenced if a particular sample

produced an unexpected spectrum. Samples were stored in the -80°C freezer.

3.5.2 Cleaning the NMR Tubes
The NMR tubes were first filled with bleach followed by soapy water, alcoholic

KOH (120 g/L) and concentrated HCI (360 g/L). Between each wash solution,

52



the tubes were rinsed out five times with double distilled H,O. After the tubes
were clean, they were inverted on an NMR rack and allowed to air dry for at least

48 hours prior to the next use.

3.6 Summary of Sampling Methods

* Prepare urine containers coated with 6 drops of sodium azide (27.3mg/mL)
* Collect midstream urine samples from desired study populations
¢ Store urine sample in -80°C freezer within 24 hours of collection; if the
samples cannot be frozen immediately, then store at 4°C within 4 hours of
collection
e Sample processing
o Thaw samples and aliquot four x ImL samples into eppendorf tubes
along with 50 uL of sodium azide (27.3mg/mL) and freeze at -80°C
* Sample preparation
o Day prior to NMR
= Thaw samples and take 585uL of each sample and dilute (1:10)
with 65uL of internal standard consisting of 5 mM sodium 2,2-
dimethyl-2-silapentane-5-sulfonate (DSS), 100 mM imidazole,
0.2% sodium azide in 99% D20 (Chenomx Inc., Edmonton,
AB) to achieve a total volume of 650uL. (manual NMR

acquisition mode) OR 675uL of each sample and dilute (1:10)

with 75uL of the Chenomx internal standard to achieve a total

volume of 750uL (automated NMR acquisition mode)

53



= Store at 4°C overnight
o Day of NMR
= pH each sample and add HCI or NaOH to achieve pH between
6.7and 6.8

= Aliquot 600uL (manual mode) OR 700uL (automated mode) of

the urine samples into 5 mm NMR tubes and cap
NMR Acquisition
o Oxford 600Hz NMR spectrometer with a Varian VNMRS two channel
console and running VNMRJ software version 2.2C on a RHEL 4 host
computer
o Calibrate saturation frequency(-213 to -215 Hz), transmitter offset (-
213 to -215 Hz) and pulse width (6 to 8 us) at the start of each day
o Sweep width = 7225.43 Hz and a gain =18
o Clean NMR tubes with Kimwipes®
o Set depth gauge to 66mm and insert samples into NMR magnet
o Optimize shims at relative peak heights of: 50% (< 1.0 Hz), 0.55% (<
12.0 Hz), and 0.11% (< 20.0 Hz)
Post NMR Acquisition
o Recheck sample pH and record
o Clean NMR tubes with bleach, soapy water, alcoholic KOH (120 g/L)
and concentrated HCI (360 g/L); between each wash solution, rinse

tubes five times with double distilled water
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3.7 Metabolite Analysis

3.7.1 Metabolite quantification

Once the spectra were acquired, quantification of metabolites was done using the
targeted profiling technique as implemented in Chenomx NMRSuite v7.0
(Chenomzx, Inc. Edmonton, Canada), which compares the integral of a known
reference signal (in this case DSS) with signals derived from a library of
compounds to determine metabolite concentration relative to the reference signal.
The quantification process was done by one individual and verified by a second
individual to optimize accuracy. The spectral analyses were also spot checked by
a third individual. Over 240 metabolites were considered and 72 were found to be
significant, that is, the spectral peaks of 72 metabolites in the compound library

were identified in the spectra of the study samples.

3.7.2 Normalization

Since hydration states of individuals can be different, the measured metabolite
concentrations were normalized to account for the different dilutions of the urine
samples. Traditionally, creatinine-normalization is done’ '°. However by doing
this, creatinine is eliminated from the list of metabolites that could potentially
contribute to the separation of normal vs. cancer/adenoma in the multivariate
analysis. In fact, when the raw metabolite concentrations were used to generate
an orthogonal partial least squares (OPLS) or partial least squares-discriminant
analysis (PLS-DA) model of normal versus cancer, creatinine was within the top

10 metabolites that most contribute to the separation of normal and cancer.
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Creatinine-normalization would have falsely eliminated this important metabolite.
Also, creatinine normalization is only useful if it can be assumed that the kinetics
of excretion of the metabolites studied is similar to creatinine, which is not the

case for this study.'* !

Since dilute urine is a reflection of more water content in the urine, and thus
proportionately lower concentration of all the metabolites in the urine, and vice
versa for a concentrated urine, it would make more sense to do total
normalization; i.e. dividing each metabolite concentration by the total metabolite
concentration. However, since there are high concentrations of urea in the
samples, if total normalization was done, it would resemble urea normalization
and thus could falsely nullify the contributions of urea to the model. Therefore,
the concentrations were normalized to the total measured concentration of all
metabolites minus the measured concentration of urea, i.e. [metabolite]/([total]-
[urea]). This method of normalization is superior to creatinine-normalization
because it essentially normalizes to the concentration of 68 metabolites rather
than one (creatinine). This normalization method was also used in Slupsky et
al..'” Table 3.1 gives an example of the R?Y (model’s fit of data) and Q* (model’s
predictability of data in 7-fold cross-validation) values of the normal vs. CRC
OPLS model built using each type of normalization (more on R*Y and Q? later).

It can be seen that normalizing to (total-urea) and log transformation gave the best
R?Y (0.478) and a relatively high Q*(0.355). Normalization was done using

Microsoft Excel v. 11.3.3.
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3.7.3 Transformation

Log transformation was done to account for the non-normal distributive nature of
the concentrations in the SIMCA-P+ v12.0.1 (Umetrics, Umea, Sweden) program.
The formula for log transformation is 10Log(C1*X+C2). For those
concentrations that have a value of 0, C2 is made to equal 0.5 to overcome the

issue of log (0) = .

Table 3.1: Model characteristics of normal vs. CRC OPLS model built using each
type of normalization, with and without log transformation

Prior to Log Transformation | After Log Transformation
RYY Q2 R’Y Q2
Raw ‘ 0.318 0.261 0.470 0.418
Concentration
Creatlm‘ne ‘ 0.376 0.270 0.410 0.314
Normalization
Total L 0.414 0.353 0.415 0.355
Normalization
Total-ur'ea ‘ 0.468 0.342 0.478 0.355
Normalization

3.7.4 Metabolite Selection

Finally, those metabolites that are not products of normal human metabolism, i.e.
xenobiotics, such as ibuprofen and salicylurate, were excluded. The internal
standard DSS was also excluded. Therefore, of the 72 metabolites, 69 were

included in the data analysis.

3.7.5 Statistical Analysis
SIMCA-P+ v12.0.1 (Umetrics, Umea, Sweden) was used to perform the

projection-based methods including principal component analysis (PCA), partial
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least squares discriminant analysis (PLS-DA), and orthogonal partial least squares
(OPLS). These methods convert the multi-dimensional data down to a more
manageable 2 or 3 main components based on variance. Projection based models
are conceptually very different than traditional regression models with
independent predictor variables. They are able to handle many, incomplete, and

correlated predictor variables in a simple and straightforward way."

Principal Component Analysis (PCA)

A PCA model is unsupervised and provides a summary, or overview, of all
observations or samples demonstrating groupings, trends, and outliers. PCA
makes it possible to extract and display systematic variation in the data.”* Each
PCA model is generated based on the direction in the data demonstrating the
highest variation, i.e. gender, age, diet, lifestyle, genes, unknown factors, etc.

which might be distinctly different from the direction separating the classes.'* '

Partial Least Squares (PLS)

Conventional PLS is used where a quantitative relationship exists between two
data tables X & Y it uses X to construct a model of Y, where the objective is to
predict Y from the X for new samples in the prediction set. Systematic variation
may reside in X which is not linearly correlated with Y — such variability in X is
called Y-orthogonal variation. Although Y-orthogonal variation in X does not
affect the predictive power of a PLS model, it may lead to some pitfalls regarding

interpretation and has potentially major implications in selection of metabolite
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biomarkers, i.e. positive correlation patterns can be interpreted as negligible or
negative. The score-loading plot based on the PLS model is perturbed by the

presence of Y-orthogonal variation in X."*'°

Orthogonal Partial Least Squares (OPLS)

OPLS is an extension to the supervised PLS regression method with an integrated
Orthogonal signal correction (OSC) filter, which removes the uncorrelated signals
resulting in information of the within-class variation. The OPLS method is
designed to handle variation in X that is orthogonal to Y. OPLS separates the
systematic variation in X into two parts, one that is linearly related (and therefore
predictive) to Y and one that is orthogonal to Y. The predictive variation of Y in
X is modeled by the predictive components. The variation in X which is
orthogonal to Y is modeled by the orthogonal components. This partitioning of
the X-data provides improved model transparency and interpretability, but does
not change the predictive power. OPLS is recommended to obtain a clearer and
more straightforward interpretation. It can also provide an understanding of the

interclass variation. >

3.7.6 Model Characteristics

The quality of a model is represented by R? and Q°. R? is the percent of variation
of the training set — X with PCA and Y with PLS — explained by the model. Itisa
measure of fit, i.e. how well the model fits the data. Q” is the percent of variation

of the training set — X with PCA and Y with PLS — predicted by the model
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according to cross validation. It indicates how well the model predicts new data
in 7-fold cross validation. The range for these parameters is 0 to 1, where 1
indicates a perfect fit. A large R*Y(close to 1) is a necessary condition for a good

model and a large Q”Y (Q”Y > 0.5) indicates good predictivity."

3.7.7 Fitting the Models

All models are auto-fitted using SIMCA-P+ v12.0.1 (Umetrics, Umea, Sweden).
The number of components is thus determined by the software. As the model
parameters are optimized, R* and Q? initially follow the same upward trend from
0 to 1. However as the models start to overfit, the trajectories diverge, R* toward
1 and Q’ falling back toward 0. It is assumed that the model will have achieved
its optimal predictive powers, and thus generalize well, at the initial point of
divergence.'® Auto-fitting in SIMCA is programmed to generate the number of

components that results in the largest R? and Q? values.

3.7.8 The Plots
The statistical model can be graphically represented in a variety of methods,
namely the scatter plot, loadings plot, variable importance plot (VIP), coefficient

plot, observed versus predicted plot.

Scatter Plot

The most visual way to look at the model is a two-dimensional or three-

dimensional scatter plot where the scores of the two groups of subjects are plotted
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and represented by different colors. This plot reveals groups, trends, outliers, and

similarities. An example is shown as figure 3.1.

Figure 3.1: An example of a scatter plot — normal (black squares) vs. CRC (red
diamonds) model
N vs Ca_total-bun.M3 (OPLS/O2PLS-DA), N vs. Ca xenobiotics removed L] Normal

t[Comp. 1}to[XSide Comp. 1] . Cancer
Colored according to classes in M3

to[1]

1]

RZX[1] = 0.0418948 RZX[XSide Comp. 1] = 0.0705972 Ellipse: Hotelling TZ (0.395)
SIMCAP+12.0.1 - 2010-06-14 17:06:14 (UTC-7)

A three dimensional plot of the PLS model is only possible when there are three
components. If a three-dimensional plot is generated with only two components
in the model, then the third dimension is by default separating based on the
sample number (Num). Hence, one can be falsely led to thinking that there is a
separation between the two groups. An example is shown as figure 3.2. One can
always manually add another component in order to demonstrate the model in 3D

but this is at the expense of lower Q” values.
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Figure 3.2: An example of a three dimensional scatter plot — normal (black
pyramids) vs. CRC (red pyramids) model

N QM10 (PLS-DA), N vs. Ca W oma

T[Comp. 1)/{Comp. 2
Colored according to gla€
|

'ses in M10 Il cancer

R2X[1] = 0.052841 R2X[2] = 0.05%9651

Loading Scatter Plot

The loading scatter plot displays the correlation or importance of the x-variables
in driving a particular group to the place that they are on the scatter plot. For
example, in the figure 3.3, urea and methanol are variables that play a strong role
in driving the normal group to the left side of the scatter plot while hypoxanthine

and dimethylamine are metabolites that drive the cancer group to the right side.
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Figure 3.3:

N vs Ca_total-bun.M3 (OPLS/O2PLS-DA), N vs. Ca xenobiotics removed

pg[Comp. 1)/po[Last comp.]

Colored according to model terms

An example of a loading scatter plot — normal vs. CRC model
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Variable Importance Plot (VIP)

SIMCAP+12.0.1 - 2010-11-04 14:54:59 (UTC-7)

The variable importance plot shows which metabolites are most contributing to

the separation of the two groups in a weighted fashion. The VIP score is an

absolute value representing the importance that each metabolite has on the

separation between the two classes; i.e. metabolite impact score.

Figure 3.4: An example of a VIP plot — normal vs. CRC model

N vs Ca_total-bun.M3 (OPLS/O2FPLS-DA), xenobiotics removed
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Coefficient Plot

The coefficient plot also demonstrates the most contributing metabolites in a
weighted manner but separates the two groups, i.e. those that are on the left side
of the plot are the metabolites that are higher in concentration in the cancer group

and those that are on the right side are those that are higher in the normal group.

Figure 3.5: An example of a coefficient plot — normal vs. CRC model
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Observed vs. Predicted Plot

The observed vs. predicted plot displays the observed values vs. the fitted or
predicted values for each subject. This plot allows us to determine the true
positives, false positives, true negatives, and false negatives and calculate

sensitivity and specificity with a range of cutoffs (see next section).
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Figure 3.6: An example of an observed vs. predicted plot — normal (black squares)
vs. CRC (red diamonds) model

N vs Ca_total-bun.M3 (OPLS/O2PLS-DA), N vs. Ca xenobiotics removed L] Normal
YPred($M3.DA(Cancen))/YVar($M3.DA(Cancer)) . Cancer
Colored according to classes in M3

1.0 SPGB B DO SRR IR GO SN LARR 22 2 R 2t 2 LR * *

08

06

04

YWar($M3.DA(Cancer))

02

-00

-0.2

-0.4

04 03 02 01 00 01 02 03 04 05 06 07 08 08 10 11 12 13 14 15
YPred[1]($M3 DA(Cancer))

RMSEE = 0.299581
SIMCAP+12.0.1 - 2010-12-06 18:23:17 (UTC-7)

3.7.9 Sensitivity & Specificity Calculations

To generate sensitivity and specificity data, arbitrary cutoff points for the
predicted value (YPred) were chosen where the two groups overlapped on the
Observed vs. Predicted plot. Those red diamond (cancer) dots that are to the left
of the cutoff are false negatives (FN), while those to the right are the true positive
(TP). Those black square (normal) dots to the left of the cutoff are the true
negatives (TN) and those that are to the right of the cutoff are the false positives
(FP) (figure 3.7). Sensitivity and specificity are calculated using the formulas
TP/(TP + FN) and TN/(TN+FP), respectively. With this data, a receiver operating
characteristics (ROC) curve of sensitivity versus 1-specificity was plotted and
area under the curve (AUC) was calculated. Stata/SE 10.1 (Stata Corporation,

TX, USA) was used to compute this.
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Figure 3.7: An example of an observed vs. predicted plot demonstrating how
sensitivity and specificity values are calculated

N vs Ca_total-bun.M3 (OPLS/O2PLS-DA), N vs. Ca xenobiotics removed L] Normal
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SIMCAP+12.0.1 - 2010-12-06 18:23:17 (UTC-7)

3.8 Clinical Data Acquisition and Analysis

Relevant clinical information such as age, gender, family history, comorbidities,
medications etc. was obtained from the study questionnaires and the patients’
medical charts and recorded in Microsoft Access database (Access 2007).
Histopathology and pathology results from colonoscopy and surgery were also
obtained from patients’ medical charts and used as the gold standard for

calculating the test diagnostics.

Clinical information was analyzed to examine the effects of clinical variables on
the metabolomic test results and specifically whether they contribute to discordant
results. The data was also stratified using clinical information such as gender,

family history etc. In addition, the profiles of the CRC samples were correlated
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with operative and histological findings to determine whether cancer location or

stage changed the metabolomic fingerprint.

3.9 Quality Assurance/Quality Control

There were various steps performed throughout the study to ensure accuracy and
good quality. During sample collection, all study individuals were instructed on
how to collect a midstream urine sample. All urine containers were inspected to
ensure there were no cracks and that they were properly coated with Sodium
Azide. All urine sample processing and pH adjusting were done by at least 2
individuals to ensure that samples were appropriately labeled and handled. Three
additional aliquots of each sample were stored in case of mishaps or if the first
sample could not be analyzed properly. The protocol used for this study was
based on SOPs from Dr. Slupsky’s lab as used in previous urine metabolomics
and IBD experiments. A pilot study using the first 53 subjects from the SCOPE

program was done to test and refine the protocols (results not shown).

In the analysis stages, all NMR fids were either manually run or checked (for the
automated samples) to ensure the fids were done properly. The spectral analysis
done by Chenomx was done by one individual, verified by a second individual
and then spot checked by a third individual The same version of the Chenomx

software and library of compounds were used throughout the analyses.
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4.0 A Novel and Highly Sensitive Test For Detecting Colorectal
Cancer Using Metabolomics From a Spot Urine Sample

4.1 Abstract

Background: Colorectal cancer (CRC) is the third leading cause of cancer-related
death in the Western World. However, if identified early, CRC is curable.
Current non-invasive fecal-based screening methods for CRC are cumbersome to
do and have low sensitivity. The science of metabolomics is the systematic study
of unique small molecule metabolite fingerprints in bio-fluids and/or tissues. The
metabolome represents the collection of all metabolites in and organism which, in
the human, are the end products of both somatic and bacterial cellular processes.
The extension of metabolomic fingerprints to their examination in disease states
and altered physiologic conditions represents the potential for a highly sensitive,

non-invasive, novel screening tool for detecting CRC.

Aim: The aim of this chapter was to use metabolomics from a spot urine sample
to develop a diagnostic test that would distinguish healthy subjects from patients
with CRC. We achieved this aim by building and refining a metabolomics model
that estimated the sensitivity and specificity of CRC relative to the gold standard
of colonoscopy or the diagnostic modality that was used to establish the diagnosis

of the cancer.

Methods: Urine samples were collected from 444 colonoscopy-negative normal
subjects and 116 CRC patients and analyzed using an Oxford 600Hz nuclear

magnetic resonance (NMR) spectrometer with a Varian VNMRS two-channel
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console. The 1H NMR spectrum of each urine sample was analyzed using
Chenomx NMRSuite v7.0 (Chenomx, Inc. Edmonton, Canada). The first 294
normal and 82 CRC samples were used as a training set to establish the diagnostic
metabolomic model of normal vs. CRC using multivariate analysis with the aid of
SIMCA-P+ v12.0.1 (Umetrics, Umea, Sweden) and STATA/SE 10.1 (TX, USA).
The model was then validated with the remaining 150 normal and 34 CRC urine

samples (the testing set).

Results: Using 69 metabolites, the normal and cancer groups could be separated
with a two-component orthogonal partial least squares (OPLS) model with a R*Y
of 0.478 (model’s fit of data), and a Q of 0.355 (model’s predictability of data in
7-fold cross-validation). Diagnostic accuracies were calculated using the
predicted values from the model and a sensitivity and specificity of 92.7% and
71.8%, respectively, were achieved. A receiver operating characteristics (ROC)
curve was generated and area under the curve (AUC) was calculated to be 0.931
(95% C10.902, 0.961). Validation of the model with 184 blinded samples
resulted in sensitivity and specificity values of 85.3% and 52.7%, respectively,
confirming the robustness of the model. Stratification by gender and family
history of cancer resulted in sub models that had even higher diagnostic

accuracies.

Conclusions: This is the largest reported study to demonstrate that NMR urine
metabolomics, as a diagnostic test, has the ability to distinguish normal healthy

subjects from CRC patients with substantially better accuracy than that of current
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fecal-based tests. Urine metabolomics has the potential to become an accurate,

non-invasive, and inexpensive screening tool for CRC.

4.2 Introduction

CRC is a major public health concern as it is a leading cause of morbidity and
mortality. In 2010, the National Cancer Institute estimates that there were
102,900 new cases of colon cancer and 39,670 new cases of rectal cancer and
51,370 combined colon and rectal cancer deaths in the United States.! The
Canadian Cancer Society estimates that in 2010 there were 22,500 Canadians
diagnosed with CRC and 9,100 died of it.> Current non-invasive screening
method for CRC is guaiac-based fecal occult blood test (FOBT), Hemoccult II,
which is a 3-day sample collection test that has a sensitivity for detecting CRC of
25%-38%. Newer fecal immunochemical tests (FIT) specifically bind to human
hemoglobin, and thus have a higher sensitivity for CRC (61-91%). However
many of the studies done for the FITs only provided estimates for sensitivity as
patients with negative results underwent flexible sigmoidoscopy or registry
follow-up only.* Colonoscopy is currently the gold standard for screening but it is
costly and has defined, non-negligible morbidity and potential mortality
associated with it. Metabolomics is an emerging field of research that
quantitatively identifies low molecular weight compounds, such as metabolic
substrates and products, lipids, small peptides, vitamins, and other protein
cofactors, generated by metabolism. Urine metabolomics is being investigated for

a potential role in screening tests for colorectal cancer and precancerous lesions.
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This chapter focuses on the metabolomic fingerprint of CRC, which is established

by comparing the urine metabolite profile of patients with CRC relative to

controls that have had a normal colonoscopy (unblinded training set). This

fingerprint will then be validated with a separate population of normal subjects

and CRC patients (blinded testing set).

4.3 Objectives

To identify the most influential metabolites that contribute to the separation,
in the spot urine metabolomic fingerprint, between patients with CRC and

those without CRC.

In patients with CRC and those without CRC, using an un-blinded training set
of the metabolomic fingerprint data defined above, to build and refine a model
that would estimate the sensitivity and specificity of urine metabolomics in

identifying CRC relative to the gold standard of colonoscopy or the diagnostic

modality that was used to establish the diagnosis of the cancer.

Using a blinded testing set of the metabolomic fingerprint data, to further
confirm the statistical models and the sensitivity and specificity of the spot
urine metabolomic fingerprint as a diagnostic test that would distinguish

patients with CRC from those without CRC.
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4.4 Materials and Methods

4.4.1 Recruitment and Sample Collection

Urine samples were collected from 444 colonoscopy-negative (normal) subjects,
1.e. subjects who had completely normal colonoscopy findings, aged 39-76
through a regional population-based screening program called SCOPE (Stop
COlorectal cancer through Prevention and Education) in Edmonton, Alberta
between April 2008 and October 2009. The screening population consisted of
average and high-risk individuals (personal or family history of CRC). All
screening subjects had a colonoscopy as the gold standard of their diagnosis. The

urine samples were collected prior to the colonoscopy.

Urine samples were also collected from 116 CRC patients through the practices of
general surgeons and gastroenterologists in Edmonton and Grand Prairie, Alberta
between October 2008 and June 2010. The urine sample of the CRC patients was
collected prior to any surgical or neoadjuvant chemoradiation treatment. All
cancer patients had a tissue diagnosis of colon or rectal cancer from biopsies
obtained during colonoscopy or from resected pathological specimens. All
removed colonic tissue was sent for histological analysis. Pathologists were

blinded to the urine metabolomic results.

In all cases, clinical information such as demographics, family history, co-

morbidities, smoking status, etc. was gathered in the form of a questionnaire and

from patients’ health records. Subjects were excluded if they were anuric,
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oliguric, have end-stage renal failure, or on hemo or peritoneal dialysis. Ethics
approval for this study was obtained from the Health Research Ethics Board at the

University of Alberta.

4.4.2 Sample Analysis

All urine samples were stored at -80°C until they were ready to be analyzed. The
day prior to NMR acquisition, each sample was thawed to room temperature and
was diluted (1:10) with internal standard consisting of 5 mM sodium 2,2-
dimethyl-2-silapentane-5-sulfonate (DSS), 100 mM imidazole, 0.2% sodium
azide in 99% D20. The samples were stored at 4°C overnight. On the day of
NMR acquisition, each sampled was adjusted to a pH between 6.7 and 6.8 and
aliquoted into Smm NMR tubes. One-dimensional nuclear magnetic resonance
spectra was acquired using an Oxford 600Hz NMR spectrometer with a Varian
VNMRS two channel console and running VNMRJ software version 2.2C on a
RHEL 4 host computer in the Canadian National High Field NMR Centre
(NANUC), Edmonton, Alberta. All samples were run at a sweep width (sw) of
7225.43 Hz. The saturation frequency (sfrq), transmitter offset (tof) and pulse
width (pw) were all individually calibrated at the start of each day. The tof
typically ranged from (-213 to -215 Hz) and the pw ranged from 6 to 8 us. Shims
were optimized until an acceptable line width value was obtained at relative peak
heights of: 50% (< 1.0 Hz), 0.55% (< 12.0 Hz), and 0.11% (< 20.0 Hz) were
achieved. Water suppression was performed. Spectra were collected at 25°C

through a total of 32 scans over a period of 3.5 min; a total recycle delay of 5 s
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was also used (i.e. 1 s recovery delay/saturation and a 4 s acquisition). The 'H
NMR spectrum of each urine sample was analyzed and quantitated using the
targeted profiling technique’ as implemented in Chenomx NMRSuite v7.0
(Chenomzx, Inc. Edmonton, Canada). The quantification process was done
independently by two individuals and verified by a third individual to optimize

accuracy. 294 metabolites were considered and 72 were found to be significant.

The spectral acquisition and quantification process were performed without the

knowledge of the pathology results.

4.4.3 Data Analysis

The first 294 normal and 82 CRC samples were used as a training set to establish
the diagnostic metabolomic model of normal vs. CRC using projection-based
methods and logistic regression with the aid of SIMCA-P+ v12.0.1 (Umetrics,
Umea, Sweden) and STATA/SE 10.1 (TX, USA). The metabolite concentrations
were normalized (to total metabolite concentration except urea) to account for the
dilutional differences in the urine samples. Log transformation was done to
account for the non-normal distributive nature of the concentrations. Finally,
those metabolites that are not products of normal human metabolism, i.e.
xenobiotics, such as ibuprofen and salicylurate, were excluded. Diagnostic
accuracies (such as sensitivity, specificity, and AUC for ROC curve) were
calculated from the statistical model and the model was then validated with 184

blinded urine samples (150 normal and 34 CRC), the testing set. The clinical
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characteristics of the two groups were compared and stratified models were built.
Chi squared test was used to compare proportional outcomes and student’s t-test

was used to compare continuous outcomes.

4.5 Results

4.5.1 Training Set Subject Characteristics

Table 4.1 lists the demographics and clinical characteristics comparing the normal
and the CRC groups in the training set. It is not surprising that the two groups are
quite different from each other. There are more females in the normal group
(60%) compared to the CRC group (43%), p=0.005. The average age for the
cancer group (68.6=1.2 years) is approximately 13 years older than that of the
normal group (55.3+0.5 years). There are more people in the normal group with
positive family history of CRC (69% vs. 25%, p<0.001) or any cancer (92% vs.
79%, p<0.001), but more people in the CRC group who smoke (20% vs. 9%,
p=0.010), have diabetes (23% vs. 5%, p<0.001) and have symptoms of
gastrointestinal bleeding (60% vs. 2%, p<0.001) and altered bowel habits (52%

vs. 4%, p<0.001).
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Table 4.1: Patient characteristics

NORMAL [N=294] CRC [N=82] p-

N (%) N (%) VALUE
Male:Female 117:177 47:35 0.005*
Average age (years=SEM) 55.3+0.5 68.6x1.2 <0.001*
FHx of Colon or Rectal 191 (69) 20 (25) <0.001*
cancer
FHx of Any Cancer 230 (92) 60 (79) <0.001*
Smoking 26 (9) 15 (20) 0.010%*
Diabetes 14 (5) 19 (23) <0.001*
GI Bleeding 5(2) 49 (60) <0.001*
Change in Bowel Habit 13 (4) 43 (52) <0.001*

Note: Not all % are calculated with the denominator of the total in each group as some clinical

information was missing or unknown. * p<0.05

Within the CRC group, patients presented with different stages of cancer (figure

4.1) at various locations of the colon (figure 4.2), and with different pathological

features (figure 4.3). The majority of the patients within this study (60%)

presented with stage three or four CRC, that is, the lymph nodes were involved or

there is presence of distal metastasis. Approximately one-third of the cancers were

right sided and one-thirds were in the rectum. About 35% of the cancers had

lymphocytic response, about 25% had lymphatic invasion, and less than 10% had

vascular invasion or perineural invasion.
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Figure 4.1: Colorectal cancer by stage
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Figure 4.2: Colorectal cancer by location
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Figure 4.3: Pathological features of colorectal cancer specimens
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4.5.2 Building the Models

Unsupervised principal component analysis (PCA) was unable to generate a
statistically significant model to separate out the two groups. However, using
two-component separation, a supervised orthogonal partial least squares (OPLS)
model was built with R”Y of 0.478, and Q* of 0.355. The OPLS scatter plot
shown below (figure 4.4) illustrates the normal group in black squares and the
cancer group in red diamonds. A crude exploratory data analysis shows that
although there is a degree of overlap, it is clear that the two groups are showing
up in different areas of the plot. A partial least squared discriminant analysis
(PLS-DA) model was also built and an extra component was added to generate a

3-dimensional scatter plot of the same data (figure 4.5).

Figure 4.4: OPLS scatter plot of normal (black squares) vs. CRC (red diamonds)

N vs Ca_total-bun.M3 (OPLS/O2PLS-DA), xenobiotics removed L] Normal
t[Comp. 1)/to[XSide Comp. 1] . Cancer
Colored according to classes in M3

to[1]

1[1]

RZX[1l] = 0.0418948 RZX[XSide Comp. 1] = 0.070597Z Ellipse: Hotelling TZ (0.95)

SIMCAP+12.0.1 - 2010-05-02 23:42:24 (UTC-7)
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Figure 4.5: PLS-DA 3-D scatter plot of normal (black pyramids) vs. CRC (red
pyramids)

N vs Ca_total-bun.M10 (PLS-DA), N vs. Ca . Normal
t[Comp. 1)/{Comp. 2Jt[Comp. 3] .
Colored according to classes in M10 Cancer

Ellipse: Hotelling T2 (0.95)

R2X[1] = 0.052841 R2X[2] = 0.05%651 R2X[3] = 0.0462103

To validate that this statistical model is not spurious and not overfit, permutation
tests were used and a validation plot was generated using SIMCA (figure 4.6).
Note that the validation plots can only be generated on the PLS-DA models.
Permutation tests help assess over-fitting by randomly permuting class labels and
refitting a new model with the same number of components as the original model.
An over-fit model will have similar R? and Q to that of the randomly permuted
data. Well-fit models will have R? and Q* values that are always higher than that
of the permuted data.” In this case, twenty models were generated based on the
data where the order of the Y-observations has been randomly permuted while the
X-matrix has been kept intact and the R* and Q” values for these models are
shown on the left side of the validation plot. The R? and Q7 values of the original
normal vs. CRC model are shown far to the right. This validation plot shows that

all the R? and Q? values for the randomly generated models are lower than the
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original points to the right, that is, the goodness of fit of this model is better than

‘random’ and the model is not over-fit.

Figure 4.6: Validation plot
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4.5.3 Diagnostic Accuracies

An Observed vs. Predicted plot (figure 4.7) was generated and a range of
sensitivity and specificity values were calculated based on different cut-offs. The
three representative pairs of diagnostic accuracies listed in table 4.2 were picked
according to the following criteria: the highest sensitivity that results in a
specificity of at least 50%, sensitivity and specificity that are similar in value and
a pair in between the previous two. Receiver operating characteristics (ROC)
curve is generated (figure 4.8) from the range of sensitivity and specificity values

and AUC is calculated to be 0.9314 (95% C1 0.9017, 0.9611).
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Figure 4.7: Observed vs. predicted plot of normal (black squares) vs. CRC (red
diamonds) model
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Table 4.2: Representative diagnostics and model characteristics for normal vs.

CRC OPLS model
Cut off level  Sensitivity  Specificity RY Q’ AUC
0.101527 98.780% 50.340%
0.212925 92.680% 71.770% 0.478 0.355 09314
0.279316 85.370% 85.370%

Figure 4.8: Receiver operating characteristics (ROC) curve for normal vs. CRC
OPLS model
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4.5.4 Metabolites
A Variable Importance Plot was generated to illustrate which metabolites

contribute the most to the separation between normal and cancer.

Figure 4.9: Variable importance plot of normal vs. CRC OPLS model
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The top 10 metabolites that contribute to the separation of normal and CRC (in
order of importance) are: hypoxanthine, dimethylamine, creatinine, urea, 3-
indoxylsulfate, adipate, methanol, guanidoacetate, 3-hydroxybutyrate, and
acetone. Specifically, the top 5 metabolites that are higher in concentration in the
cancer samples are adipate, 3-indoxylsulfate, hypoxanthine, dimethylamine, and
creatinine; and those that are higher in normal samples are urea, methanol, 3-

alanine, m-methylhistidine, and serine. This is shown by the coefficient plot

below.
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Figure 4.10: Coefficient plot for normal vs. CRC OPLS model
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4.5.5 Model Analysis

As there is overlap between the normal group and the CRC group in the OPLS
model generated, it was unclear what characteristics contributed to the overlap,
that is, what clinical characteristics do some of the patients with cancer have that
makes them behave like normal and vice versa. For this, the overlapping and
non-overlapping groups in the model were studied separately. Four groups were
generated: 1) Overlapping normal, 2) Non-overlapping normal, 3) Overlapping
CRC, and 4) Non-overlapping CRC groups. Since we are working with the OPLS
model, only one direction of separation had to be taken into consideration (left-
right). To generate the subgroups, we took all the normal (black square) data
points to the left of the left-most CRC (red diamond) data point and made this the
Non-overlapping normal group; and the remainder normal data points the
Overlapping normal group. The same process was done for the CRC data points.

(Figure 4.11)
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Figure 4.11: OPLS scatter plot of normal (black squares) vs. CRC (red diamonds)
model with overlapping and non-overlapping groups defined
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We looked at each combination of the different subgroups and examined the
metabolites that contribute to the separation separately in an attempt to narrow
down the list of metabolites that would give us a more powerful model. Next we
looked at clinical characteristics that may be different between the subgroups to

determine the best traits to stratify the groups to generate more predictive models.

4.5.5.1 Subdividing The Normal Group

4.5.5.1.1 Metabolites

e CRC vs. Non-overlapping normals

When the CRC group was plotted against the Non-overlapping normals group,
that is, the group of normals that was the most different from the CRC group, the
top metabolites that drove the separation were: dimethylamine, creatinine,
hypoxanthine, 3-indoxylsulfate, and methanol (table 4.3).

e CRC vs. Overlapping normals
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When the adenoma group was plotted against the Overlapping normal group, that
is, the group of normals that somehow resembled the CRC group
metabolomically, the top metabolites that drove the separation were: urea,

hypoxanthine, adipate, dimethylamine, and 3-indoxylsulfate (table 4.3).

e QOverlapping normals Vs. Non-overlapping normals

The Overlapping and the Non-overlapping groups of normal were plotted together
on a scatter plot, without the CRC group, to see what the metabolomic difference
was between these two groups of normals. The top 5 metabolites that contributed

to the separation between these two groups of Normal were: methanol, creatinine,

creatine, guanidoacetate and hypoxanthine (table 4.3).

Table 4.3: Summary of metabolites from sub-models of normal subjects

CRC vs. Non- CRC vs. Overlapping | Overlapping vs. Non-
overlapping Normal Normal overlapping Normal
Dimethylamine Urea Methanol
Creatinine Hypoxanthine Creatinine
Hypoxanthine Adipate Creatine’
3-Indoxylsulfate Dimethylamine Guanidoacetate
Methanol 3-Indoxylsulfate Hypoxanthine
Guanidoacetate Methanol 3-Indoxylsulfate”

Urea Creatinine n-methylhistidine”
Creatine Acetone Dimethylamine”
Cis-Aconitate 3-hydroxybutyrate Threonine
n-methylhistidine Guanidoacetate Cis-Aconitate
B-alanine -alanine Glycine

Adipate Trigonelline Methylguanidine
Pyruvate Isoleucine Carnitine

Citrate Valine Formate

Serine Lactate 2-Hydroxyisobutyrate

* Metabolites in Overlapping vs. Non-overlapping Normal model that are also part of CRC vs.
Non-overlapping Normal model. ** Metabolites in CRC vs. Non-overlapping Normal model that
are not in Overlapping vs. Non-overlapping Normal model.
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It was hypothesized that if we eliminated those metabolites that separate
Overlapping & Non-overlapping normal from the main model developed from the
Normal vs. CRC training set, perhaps we could minimize the difference between
the two normal groups and achieve greater separation between normal and CRC.
However, this was not the case as the R* and Q? values are much lower than that

for the main model (table 4.4).

Table 4.4: Summary of sub-model characteristics

Model RY Q’
Main Model (Normal vs. CRC Training) 0.478 0.355
Main model excluding the 9 metabolites in
Overlapping vs. Non-overlapping Normal model 0.373 0.226

that are also part of CRC vs. Non-overlapping
Normal model (denoted by )

Main model using only 6 metabolites in CRC vs.
Non-overlapping Normal model that are not in 0.206 0.172
Overlapping vs. Non-overlapping Normal model
(denoted by )

4.5.5.1.2 Clinical Parameters

Using logistic regression, clinical characteristics such as age, gender, family
history, etc of the normal group were tested for their odds of predicting the
dichotomous outcome of overlap with the CRC group or not. The odds ratios and
p-values are summarized in the table below (table 4.5). This is an exploratory

analysis to identify potential factors for stratification.
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Table 4.5: Clinical characteristics of the normal group and the odds of
overlapping with CRC group

Variable Odds Ratio p-value
Gender 2.491 <0.001*
Age 1.020 0.175
Smoking 1.574 0.293
Diabetes 1.045 0.937
CRC 1.266 0.369
Family 1* degree 1.130 0.616
History CRC/polyp
Any cancer 1.482 0.389
Symptoms GI bleed 0.189 0.138
Change bowel habits 2.667 0.143

* p<0.05

Demographics

In the normal group, the odds of resembling or overlapping with the CRC group
for males was 2.49 (95% CI 1.52, 4.07) times that of females (p<0.01). That is,

females were more different than the cancers compared to the males.

Within the normal group, age did not change the odds of overlapping with CRC,
OR 1.02 (95% CI1 0.99, 1.05). For every 10 years increase in age, the odds of
overlapping with CRC increased about 22% (OR=1.22), however, the 95% CI for
the OR is 0.915, 1.627, which included 1, therefore this was not statistically
significant. One of the limitations of using logistic regression on continuous
variables is that the model may have a threshold effect, a saturation effect, or a
binary effect that cannot be shown, i.e. logistic regression models assume that the
change from age 20 to 21 is the same as that from 60 to 61, which is not the case

in terms of risks for colorectal cancer. Therefore, we tested the age by categories
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of 5 years (figure 4.12) and found that none of the categories significantly
predicted overlap with CRC. Although the odds of overlapping with CRC in
those that were over the age of 70 was four times that of those that were younger
than 45, but this was not statistically significant (p = 0.096) and there might not
be enough numbers to see this effect. This was reflected by the wide 95%

confidence interval (0.779, 21.019).

Figure 4.12: Age of normal subjects divided by category
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Smoking History

Within the normal group, being a smoker or an ex-smoker did not increase the
odds of overlapping with the CRC group. Since metabolism is a reflection of
current status, ex-smokers could be classified as non-smokers and there still was

no statistically significant difference (OR = 1.57; 95% CI = 0.68, 3.66; p = 0.293),
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but since there were only 26 smokers, there might not be enough numbers to show

a difference.

Diabetes

Having diabetes did not increase the odds of overlapping with the CRC group
(OR =1.04; 95% CI = 0.35, 3.09; p = 0.937), although there were only 14 out of
294 subjects who had diabetes, and again this might be too few to show a

difference.

Family history

Within the normal group, having a family history of CRC did not increase the
odds of overlapping with the CRC group (OR = 1.26; 95% CI1=0.76,2.11;p =
0.369). Even when we divided the groups into those with a first-degree relative
with CRC and those that don’t, this highest risk group did not have increased odds
of overlapping with the CRC group (OR =1.13; 95% CI1=0.70, 1.82; p=0.616).
Having a family history of any cancer(s) did not increase the odds of overlapping

with the cancer group either (OR = 1.48; 95% CI = 0.61, 3.63; p = 0.389).

Gastrointestinal Symptoms

Within the normal group, having symptoms of gastrointestinal bleeding (OR =
0.19; 95% CI = 0.02, 1.71; p=0.138) or changes in bowel habits (OR = 2.67; 95%
CI1=0.72, 9.90; p=0.143) did not increase the odds of overlapping with the CRC
group, although the number of subjects with GI symptoms in this screening

population was small.
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Overall
After adjusting for age, smoking status, diabetes, family history of CRC, family
history of any cancer, GI bleeding, and bowel habits, gender was still statistical

significant in predicting overlap with the CRC group.

4.5.5.2 Subdividing The CRC Group

4.5.5.2.1 Metabolites

e Normal vs. Non-overlapping CRC

When the Normal group was plotted against the Non-overlapping CRC group,
that is, the group of CRCs that was the most different from the normal group, the
top metabolites that drove the separation were: hypoxanthine, urea, adipate,

acetone, and 3-hydroxybutyrate (table 4.6).

e Normal vs. Overlapping CRC

When the Normal group was plotted against the Overlapping CRC group, that is,
the group of CRCs that somehow resembled the normal group metabolomically,
the top metabolites that drove the separation were 3-Indoxylsulfate, creatinine,

dimethylamine, methanol, and 4-hydroxyphenylacetate (table 4.6).

e Overlapping Cancers Vs. Non-overlapping CRC

The Overlapping and the Non-overlapping groups of CRC were plotted together

on a scatter plot, without the normal group, to see what the metabolomic
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difference was between these two groups of CRC. The top 5 metabolites that
contributed to the separation between these two groups of CRC were urea,

hypoxanthine, trigonelline, n, n-dimethylglycine, and guanidoacetate (table 4.6).

Table 4.6: Summary of metabolites from sub-models of CRC patients

Normal vs. Non- Normal vs. Overlapping vs. Non-
overlapping CRC Overlapping CRC overlapping CRC
Hypoxanthine 3-Indoxylsulfate Urea’
Urea Creatinine Hypoxanthine
Adipate Dimethylamine Trigonelline”
Acetone Butyrate N,N-Dimethylglycine
3-Hydroxybutyrate B-Alanine Guanidoacetate
Dimethylamine Methanol Adipate’
Methanol n-Methylhistidine Tyrosine
Isoleucine Asparagine Lactate
Lactate Hypoxanthine Betaine
Creatinine Creatine Dimethylamine”
O-Acetylcarnitine” Guanidoacetate Acetone
Guanidoacetate 4-Hydroxyphenylacetate | Methanol
Trigonelline Carnitine Acetate
Citrate Tyrosine Isoleucine”
3-Aminoisobutyrate Trimethylamine Citrate”

* Metabolites in Overlapping vs. Non-overlapping CRC model that are also in Normal vs. Non-
overlapping CRC model. ** Metabolites in Normal vs. Non-overlapping CRC model that are not
in Overlapping vs. Non-overlapping CRC model.

Again we hypothesized that if we eliminated those metabolites that separate
Overlapping & Non-overlapping CRC from the main normal vs. CRC model
developed from the training set, perhaps we could minimize the difference
between the two CRC groups and achieve greater separation between normal and
CRC. However, again this was not the case as the model characteristics for the

new models are much lower than that for the original model, shown in table 4.7.
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Table 4.7: Summary of sub-model characteristics

Model R’Y Q’
Main model (Normal vs. CRC Training) 0.478 0.355
Main model excluding 11 metabolites in
Overlapping vs. Non-overlapping CRC model that 0.313 0.208
are also in Normal vs. Non-overlapping CRC model
(denoted by")
Main model using only 4 metabolites in Normal vs.
Non-overlapping CRC model that are not in 0.137 0.129

Overlapping vs. Non-overlapping CRC model
(denoted by )

4.5.5.2.2 Clinical Parameters

Logistic regression analysis was used to test the significance of various clinical

and pathological variables of CRC patients on the dichotomous outcome of

overlapping or non-overlapping with normals. The odds ratios and p-values are

summarized in table 4.8. This is an exploratory analysis to identify potential

factors for stratification.
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Table 4.8: Clinical characteristics of the CRC group and the odds of overlapping
with normal group

Variable Odds Ratio p-value
Gender 2.533 0.044%*
Age 1.000 0.993
Smoking 0.583 0.353
Diabetes 0.731 0.552
Family CRC 1.327 0.599
history Any cancer 0.285 0.043*
Fasting 0.345 0.032%*
Symptoms GI bleed 1.316 0.548
Change bowel 1.446 0.412
habits
Location of  Rectal vs. colon 0.545 0.222
cancer Left vs. right 1.503 0.390
Lymphatic 0.530 0.206
Vascular 0.685 0.598
Pathology of Perineural 1.088 0.902
Cancer Lymphocytic 0.873 0.795
Grade ns ns
Cancer stage Stage 2 vs. 1 0.500 0.396
Stage 3 vs. 1 0.266 0.071
Stage 4 vs. 1 0.194 0.046%*
CEA (>5 ng/L vs. <=5 ug/L) 0.441 0.149

* p<0.05

Demographics

In the CRC group, the odds of resembling or overlapping with the normal group
for males was 2.53 (95% CI 1.02, 6.26) times that of females (p=0.04). That is,
again, females were more different than the normals compared to the males. Age
did not change the odds of overlapping with normals, OR 1.00 (95% CI 0.96,
1.04). Even when age was subdivided into 5-year categories (figure 4.13), there
was no one category that statistically significantly predicts overlapping with

normals.
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Figure 4.13: Age of CRC patients divided by category
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Smoking

Within the CRC group, being a smoker or an ex-smoker did not increase the odds
of overlapping with the normal group. When ex-smokers were classified together
with non-smokers, there was still no statistically significant difference (OR=0.58;
95% CI=0.19, 1.82; p=0.353), but again, since there were only 15 smokers, there

might not be enough power to show this difference.

Diabetes
CRC patients who have diabetes did not have increased odds of overlapping with
the normal group (OR=0.73; 95% CI=0.26, 2.05; p=0.552), although there were

only 19 out of 82 subjects who had diabetes.
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Family history

Within the CRC group, there were 20 patients who have a positive family history
of CRC and this did not increase the odds of overlapping with the normal group.
However, having a family history of any cancer(s) had 0.21 (p=0.02) the odds of
overlapping with the normal group compared to those that did not have a family
history. That is, the metabolomic fingerprint of those CRC patients that have a
family history of any neoplastic process had statistically significant increased

odds of being different than that of the normal group.

Fasting

Since some of the CRC patients were recruited soon after their colonoscopy, they
were still in the fasting state. Within the CRC group, the odds of overlapping
with the normal group in those that were fasting was 0.28 times (95% CI=0.11,
0.76; p=0.012) that of those that are not fasting. That is, the metabolomic
fingerprint of those that were fasting were more different than the fingerprint of

the normals (not fasting).

Gastrointestinal Symptoms

Within the CRC group, having symptoms of gastrointestinal bleeding (OR=1.23,
95% CI1=0.50, 3.03; p=0.656) or changes in bowel habits (OR=1.45; 95%

CI=0.60, 3.50; p=0.412) did not increase the odds of overlapping with the normal

group.
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Location of CRC

When colon and rectal cancer were separated and compared in their odds of
overlapping with normal, the rectal cancers were more likely to be different than
the normals, but this difference was not statistically significant (OR=0.55; 95%
CI=0.21, 1.44; p=0.222). There was also no significant difference when left-sided
(including transverse, descending colon, sigmoid, and rectal) cancers were

compared to right-sided ones (OR=1.50; 95% CI=0.59, 3.81; p=0.390).

Cancer Pathology

Pathological characteristics of the CRC specimens such as lymphatic invasion,
vascular invasion, perineural invasion, and lymphocytic response, grade, and
stage, were examined to see if there was any that contributed to overlapping with
normal. None of these characteristics significantly predicted overlap with the
normal group. The TMN stage of the colorectal cancer was also analyzed and it
was found that the higher the stage (i.e. more advanced the cancer), the more
likely it was to be different than the normal group. Compared to stage 1 CRC,
stage 4 or metastatic CRC was one-fifth times as likely to overlap with the normal
group (OR=0.194, 95% CI1 =0.101, 2.477; p=0.046), that is, metastatic CRC was
more than five times as likely to be different than the normals compared to stage 1

CRC.
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CEA

Of the 82 CRC patients, 63 had CEA measured prior to their surgery. The highest
CEA value was 4669.7 ug/L. As the distribution of CEA was quite skewed, the
values were categorized into those within the normal range (less or equal to 5
ug/L) and those that are abnormal (above 5 ug/L). There were 45 people in the
normal CEA category and 37 in the abnormal CEA category. This reiterates that
CEA was not an accurate biomarker for CRC and should not be used for
screening purposes. When the two categories of CEA were tested for their
significance on the dichotomous outcome of overlapping or non-overlapping with
normals, the abnormal CEA group had more than twice the odds of being
different than the normals, but this was not statistically significant (OR=0.44;

95% CI=0.15, 1.34; p=0.149).

Summary

In summary, gender, family history of any cancer, and fasting were statistically
significant differences between the overlapping and non-overlapping CRC
subgroups. When these factors were tested with an overall logistic regression test,
they were still all statistically different. In fact, the effect size is even bigger
when all the variables were in the model, so ideally we should do 4-way or 6-way
stratification. However this would reduce the number of samples even more, thus

making it hard to use projection-based methods to analyze the data.

98



4.5.5.3 Stratification

The above method of model analysis allowed us to narrow down the specific
clinical characteristics by which to stratify the models — these were gender and
family history of any cancer. We also chose to stratify by family history of CRC
as this is a known risk factor for CRC®. We could not stratify based on fasting as
nobody in the normal group was fasting, but we did eliminate those in the CRC

group that were fasting to see if this would change the model significantly.

4.5.5.3.1 Gender

Separate male and female OPLS models were built for normal vs. CRC and their
model characteristics are shown in table 4.9. It was clear that the female model
had a numerically better R”Y, a comparable Q* value, and a numerically better
AUC compared to the main normal vs. CRC model developed from the training
set. Thus the urine metabolomics test for CRC should work better for females,
although it was unclear whether the differences were statistically or clinically
significant. The scatter plots for the male and female models are shown as figure

4.14 and 4.15, respectively.

Table 4.9: Characteristics of gender-stratified models compared to the main
normal vs. CRC model

Model R’Y Q° Sens Spec AUC AUC 95% CI

Main Normal vs.

CRC Training 0.478 0.355 93% 72% 0.9314 0.9017, 0.9611
Set Model

Male Model 0.437 0.269 94% 71%  0.9394 0.9017, 0.9772

Female Model 0.564 0.346 94%  73% 0.9588 0.9243,0.9934
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Figure 4.14: OPLS scatter plot of the male model of normal (blue diamonds) vs.

CRC (pink squares)
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Figure 4.15: OPLS scatter plot of the female model of normal (green diamonds)
vs. CRC (orange triangles)
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4.5.5.3.2 Family History of Any Cancer

The normal and CRC patients were also stratified by family history of any cancer
and one OPLS model was built for those with a positive family history of any
cancer and one for those without a family history of any cancer. The model
characteristics are listed in table 4.10. The positive family history model had
numerically better RY, Q% and AUC values compared to the main normal vs.
CRC model developed from the training set and the no/unknown family history of
cancer model had a numerically higher R*Yand AUC but a much lower Q°
compared to the main normal vs. CRC model. This is overall suggestive that
stratifying by family history of cancer can increase the accuracy of this screening
urine metabolomic test, although again, the statistical and clinical significance of
the differences in the model characteristics are unclear. The scatter plots for the

stratified models are shown as figure 4.16 and 4.17, respectively.

Table 4.10: Characteristics of models stratified by family history of any cancer
compared to the main normal vs. CRC model

Model R’Y Q* Sens Spec AUC AUC 95% CI

Main Normal vs.
CRC Training 0478 0355 93% 72% 09314 0.9017, 0.9611
Set Model

No/Unknown

family history of 0.638 0.146 96%  86% 0.9776 0.9532, 1.000
any cancer
Family history of

0.533 0416 93% 81% 0.9525 0.9246, 0.9805
any cancer
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Figure 4.16: Normal (orange triangles) vs. CRC (pink squares) OPLS scatter plot
of the no/unknown family history of any cancer groups
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Figure 4.17: Normal (green stars) vs. CRC (blue diamonds) OPLS scatter plot of
the positive family history of any cancer groups
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4.5.5.3.3 Family History of Colorectal Cancer

The normal and CRC patients were also stratified by family history of CRC and
one OPLS model was built for those with a positive family history of CRC and
one for those without a family history of CRC. The model characteristics are
listed in table 4.11. The no/unknown family history model had better R*Y,
comparable Q?, and higher AUC values compared to the main normal vs. CRC
model developed from the training set and the positive family history of CRC
model had a comparable R*Yand higher AUC but a lower Q* compared to the
main normal vs. CRC model. Thus, stratifying by family history of CRC could
increase the accuracy of this screening test, albeit by a small amount. Again, it
was unclear whether the numerical differences in model characteristics had any
statistical or clinical significance. The scatter plots for the stratified models are

shown as figure 4.18 and 4.19, respectively.

Table 4.11: Characteristics of models stratified by family history of CRC
compared to the main normal vs. CRC model

Model R’Y Q* Sens Spec AUC AUC 95% CI
Main Normal vs. CRC ) 10 355 930, 7206 09314 0.9017, 0.9611
Training Set Model

No/Unknown family 507 350 9505 79% 0.9616 0.9377, 0.9856
history CRC

Family history of CRC  0.479 0.267 95% 94% 0.9804 0.9641,0.9967
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Figure 4.18: Normal (black squares) vs. CRC (red diamonds) OPLS scatter plot of
the no/unknown family history of CRC groups
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Figure 4.19: Normal (green stars) vs. CRC (blue diamonds) OPLS scatter plot of
the positive family history of CRC groups
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4.5.5.3.4 Fasting

Since fasting at the time of urine collection, compared to non-fasting, in CRC
patients increased the metabolomic profile difference relative to the profiles of the
normals (not fasting), some of the separation of normal and CRC may be
overestimated. We excluded the 28 CRC patients that were fasting and the OPLS
model was rebuilt with the normal group vs. the 54 non-fasting CRC patients, the
model characteristics are summarized in table 4.12. The sensitivity and
specificity values of the non-fasting model were not that different from the main
normal vs. CRC model but as expected, the separation of the two groups was not
as good as in the main normal vs. CRC model, i.e. the R*Y and Q” values are
numerically lower. It is unclear whether this is statistically or clinically
significant. The differences in the model characteristics may be due to the fact
that some of the previously seen separation between the two groups was actually
from fasting rather than from the disease state of CRC, but this effect may also be
due to a smaller number of CRC patients in this new model. To resolve this, a

bigger model of non-fasting CRC patients needs to be built and analyzed.

Table 4.12: Main normal vs. CRC model compared to the normal vs. non-fasting
CRC model

Model RY Q° Sens Spec AUC  AUC 95% CI

Main Normal vs.

CRC Training 0.478 0.355 93% 72% 09314 09017, 0.9611
Set Model

Normal vs. Non-

o 0
Fasting CRC 0.436 0.295 93%  76% 0.9365 0.9016, 0.9714
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4.5.6 Validation with Testing Set

The robustness of the metabolomics model is reflected by how well it predicts
unknowns. Following our development of the metabolomics model with the un-
blinded training set (see above sections 4.5.2) we next used the blinded testing set
of 184 urine samples (34 cancer, 150 normal) to validate the ability of the

metabolomics model to distinguish normal from CRC patients.

To demonstrate that the testing set samples were matched and representative of
the training set, the clinical characteristics of the training set normal subjects were
compared to those of the testing set normal subjects (table 4.13). Other than
family history of any cancer (92% vs. 77%, p<0.001) and changes in bowel habit
(4% vs. 0%, p=0.009), there were no statistically significant differences between
the training and the testing set. The CRC patients of the training set were also
compared to the CRC patients of the testing set (table 4.14). Again, other than
family history of any cancer (79% vs. 53%, p=0.015), the two groups were fairly

similar to each other.
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Table 4.13: Clinical characteristics of normal subjects in training vs. testing set

Training Set Testing Set
[n=294] [n=150] p-value
N (%) N (%)
Male:Female 117:177 71:79 0.128
Average age (years + SEM) 55.3+0.5 56.4+0.7 0.148
Smoking 26 (9) 15 (10) 0.802
Diabetes 14 (5) 10 (7) 0.401
Rrrantily il;Ccancer 191 (69) 91 (65) 0.386
g y
History 230 (92) 115 (77) <0.001*
GI bleed 5(12) 2(1) 0.772
Symptoms  Change bowel -
habits 13 (4) 0 (0) 0.009

Note: Not all % are calculated with the denominator of the total in each group as some clinical

information was missing or unknown. * p<0.05
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Table 4.14: Clinical characteristics of CRC patients in training vs. testing set

Training Set Testing Set

(n=82) (n=34) p-value
N (%) N (%)
Male:Female 47:35 23:11 0.300
Average age (years + SEM) 68.6x1.2 67.9+2.0 0.756
Smoking 15 (20) 4 (12) 0.322
Diabetes 19 (23) 8 (24) 0.967
Family CRC 20 (25) 7 (21) 0.668
history Any cancer 60 (79) 18 (53) 0.015%*
GI bleed 49 (60) 22 (65) 0.619
Symptoms  Change bowel
P 43 (52) 19 (56) 0.735
Location Rectal vs. colon 23 (28) 7 (21) 0.404
of cancer  Left vs. right 55 (67) 21 (62) 0.584
Lymphatic 26 (35) 6 (21) 0.183
Vascular 9(12) 4 (14) 0.774
Perineural 11 (15) 2(7) 0.268
I;?%;’Illzi-‘r’ Lymphocytic 36 (56) 11 (48) 0.487
Well 62 (84) 24 (80) 0.644
Grade  Moderate 34 3 (10) 0.239
High 9(12) 3 (10) 0.755
Stage 1 15 (18) 6 (18) 0.989
Cancer Stage 2 18 (22) 11 (33) 0.204
stage Stage 3 33 (40) 8 (24) 0.105
Stage 4 16 (20) 8 (24) 0.572
CEA (>5 vs. <=5) 18 (29) 10 (40) 0.299

Note: Not all % are calculated with the denominator of the total in each group as some clinical
information was missing or unknown. * p<0.05

Diagnostic accuracies were calculated using the same cutoff (0.212925) from the
original model that resulted in a sensitivity of 92.7% and specificity of 71.8%.
The sensitivity and specificity from the validation samples were 85.3% and

52.7%, respectively.

When only the testing CRC samples were introduced as the prediction set to the

metabolomic normal vs. CRC model developed from the training samples (figure
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4.20), these testing CRC samples showed up on cancer side of the model (figure
4.21). However, when the 150 testing set normal samples were introduced
blindly to the original normal vs. CRC model developed from the training set, the
samples scatter on both sides of the plot (figures 4.22), which was as expected

with the calculated validation specificity of 52.7%.

Figure 4.20: Original normal (black squares) vs. CRC (red diamonds) OPLS
scatter plot
N vs Ca_total-bun.M3 (OPLS/02PLS-DA), N vs. Ca xenobiotics removed - Normal
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Colored according to classes in M3
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SIMCAP+12.0.1 - 2010-06-14 17:06:14 (UTC-7)
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Figure 4.21: Testing set CRC samples (blue squares) superimposed on normal
(black triangles) vs. CRC (red diamonds) OPLS scatter plot

toPS[1]

tPS[1]

Figure 4.22: Testing set normal samples (blue squares) superimposed on the
normal (black triangles) vs. CRC (red diamonds) OPLS scatter plot

toPS[1]

tPS[1]

4.5.7 Commercialization
To commercialize urine metabolomics as a screening test for CRC, accuracy of
the test is very important, but for it to become a population-based test, the cost

needs to be reasonable. The normal vs. CRC model is currently built using 69
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metabolites, but if we can produce a model of acceptable diagnostic accuracies
using fewer metabolites, then the cost of the test would be much lower. From the
variable importance plot of the current model, we know, in order of importance,
the metabolites that contribute the most in the separation of the two groups. We
can capitalize on this by taking just the top metabolites and see what kind of
models we can build with them. The results are summarized in table 4.15. Using
the concentrations of only the top 10 metabolites, namely hypoxanthine,
creatinine, dimethylamine, 3-indoxylsulfate, methanol, adipate, urea,
guanidoacetate, 3-hydroxybutyrate, and acetone, a reasonable OPLS model can be
built (R*Y of 0.356, Q° of 0.343) with sensitivity and specificity of 86.6% and

75.5% respectively, and an AUC of 0.8723.

Table 4.15: Model characteristics and diagnostic accuracies of OPLS models built
with top contributing metabolites

Model R*Y Q2 Sens Spec AUC
Mi/lf:)dcelfc 0.478 0.355 92.7%  71.8% 09314
meg{ilsites 0.27 0.256 85.4%  67.7%  0.8362
meTtZgoll?tes 0.356 0.343 86.6%  75.5%  0.8723
meTtZg Olhstes 0.351 0.337 86.6%  75.2%  0.8786

Top 20 . .
bl 0.402 0.349 89.0% 74.5%  0.8988

Top 25 ) .
0437 0.381 89.0% 74.8%  0.9150

Top 30 . .
bl 0448 0.387 91.5%  643% 09174
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To ensure that the top metabolites in the variable importance plot were indeed
more important in establishing the metabolomic fingerprint of colorectal cancer,
we validated the process above by attempting to build models using the bottom
metabolites in the VIP list. It took 50 metabolites before we could even build an
OPLS model, and it was a poorly predictive one (R*Y of 0.224 and Q* of only

0.057). This validates the uniqueness of top metabolites as a diagnostic tool.

4.6 Discussion

4.6.1 Summary

Using projection-based methods, the role of urine metabolomics in distinguishing
normal subjects vs. colorectal cancer patients was examined in this chapter. PCA
was unable to separate the two groups but since each PCA model is generated
based on the direction in the data demonstrating the highest variation, i.e. gender,
age, diet, lifestyle, genes, unknown factors, etc. which might be distinctly

different from the direction separating the classes.”®, this is not surprising.

The training set of 294 normal subjects and 82 CRC patients was used to build the
OPLS model (R*Y = 0.478, Q* = 0.355), which was internally validated using
permutation testing. Sensitivity and specificity were calculated to be 92.7% and
71.8% respectively. The area under the curve was 0.9314. Although the normal
and the CRC patients were projected on different sides of the scatter plot, there
was some overlap. Each group was then subdivided into overlapping and non-

overlapping groups and analyzed to determine the best clinical characteristics by
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which to stratify the groups to improve the model. When stratified by gender,
family history of any cancer, and family history of CRC, the diagnostic accuracies
improved. The main normal vs. CRC model developed from the training set was
then externally validated with a blinded testing set of similar clinical
characteristics and diagnostic accuracies of 85.3% and 52.7% were achieved for
sensitivity and specificity, respectively. Lastly, models were built using only the
top metabolites and diagnostic accuracies were calculated. Using only the top 10
metabolites, sensitivity of 86.6% and specificity of 75.5% could be achieved,

suggesting commercialization potential for this test.

4.6.2 Patient and Disease Characteristics

It is obvious that the normal group was different than the CRC group in baseline
characteristics. Since the normal subjects were recruited from a screening
program and the CRC patients were recruited after they had a diagnosis of CRC,
it is not surprising that the two groups were different in many ways, including
gender, age, family history of CRC, family history of any cancer, smoking,
diabetes, and GI symptoms. However, each of these factors was analyzed
statistically to see if they falsely contribute to the separation of the two groups and
they didn’t; in fact, the diagnostic accuracies improved when the model was

stratified by gender, family history of any cancer and family history of CRC.

Sixty percent of the CRC patients were diagnosed with stage 3 or 4 CRC, that is,

the lymph nodes were already involved or there was evidence of distance
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metastasis, but the screening pilot study (SCOPE) only identified 2 malignant
polyps in 1200 asymptomatic subjects. This is partially explained by the fact that
the CRC patients are a lot older than the screening group and most of them had
not undergone regular screening in the past. About one-third of the CRC patients
had right-sided cancer that would have been missed if flexible sigmoidoscopy was

used as a screening test.

4.6.3 Model Characteristics

The goodness of an OPLS model is represented by R? and Q®. As mentioned
previously, R?Y is the percent of variation of Y explained by the model and thus
is a measure of how well the model fits the data. Q” is the percent of variation of
Y predicted by the model according to 7-fold cross validation and thus is a
measure of how well the model predicts new data. A large R*Y (close to 1) is
necessary condition for a good model and a large Q*Y (Q2Y > 0.5) indicates good

predictivity.” The R?Y for this study was 0.478 and the Q®Y was 0.355.

It can be difficult to produce high R*Y and Q”Y values in human studies due to
the high variability between individuals. Although a couple of metabolomic
studies in the literature were able to generate higher R”Y and QY values than the
current study, there were potential factors to suggest over fitting in those cases.
For example, Chan et al. 2009'° was able to produce an OPLS model of normal
vs. with CRC with R*Y and QY of 0.622 and 0.518, respectively. However, the

number in each group was 22 and 25 only and yet there were 1101 variables
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analyzed. It is always easy to find random multivariate correlations when the
number of variables greatly exceeds the number of samples.!' Qiu et al. 2010'
was able to construct a normal vs. CRC OPLS model with R*Y and QY of 0.763
and 0.467 respectively. Again their sample sizes for the groups were 60 and 63,

but 187 metabolites were analyzed.

Table 4.16 illustrates the RY and Q*Y values of different models that can be built
using our data and demonstrates that higher R”Y and Q”Y values can be obtained
with smaller sample sized models. However, larger sample sizes are more
representative of the mean and variance of the population and therefore the

models built using our original sample size is a more accurate reflection of reality.
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Table 4.16: Model characteristics and diagnostic accuracies of OPLS models built
with top contributing metabolites

Model (total n) # Normals # CRC RY Q’
Main CRC Model (376) 294 82 0.478 0.355
20 10 10 0.975 0.688
40 20 20 0.870 0.652
60 30 30 0.651 0.463
90 60 30 0.761 0.516
120 90 30 0.705 0.470
150 90 60 0.734 0.579
164 82 82 0.728 0.603

4.6.4 Diagnostic Accuracies

Urine metabolomics is being investigated for its role as a screening test for CRC.
It is not meant to replace the gold standard colonoscopy but rather to replace
current non-invasive fecal tests. For screening tests in general, a high sensitivity
1s more important than a high specificity, since a falsely negative result (missed
cancer) is of much more consequence than a falsely positive result (unnecessary
colonoscopy) for the patient. Specificity is obviously important as well since too
many unnecessary interventions will be costly to society, not to mention the
patient anxiety that a false positive test can cause. For this reason, we have

chosen the diagnostic accuracies to reflect the highest sensitivities but with a
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specificity of at least 50%. Area under the receiver operating characteristics
curve (AUC) of > 0.9 represents an excellent test, while a value over 0.8 1is still
likely to be good."" In our case, the main normal vs. CRC model had an AUC of

0.9314.

4.6.5 Metabolites and Metabolic Pathways

A more careful analysis of the top metabolites that drive the separation of normal
and CRC and the underlying biochemical pathways involved in generating these
metabolites may shine some light on the pathogenesis of CRC, or at least how

human metabolism is affected by CRC.

The top 10 metabolites that separated the normal group from the CRC group are
hypoxanthine, creatinine, dimethylamine, 3-indoxylsulfate, methanol, adipate,
urea, guanidoacetate, 3-hydroxybutyrate, and acetone. Mapping the differential

metabolites to their respective biochemical pathways as outlined in the Kyoto

Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/)

revealed alterations mostly in nucleotide, amino acid, and microbial metabolisms.

Hypoxanthine (increased in CRC) is a central intermediate in purine nucleotide
biosynthesis and is the extra cellular compound most directly related to
intracellular ATP. Increases in hypoxanthine in biofluids have been associated
with ATP depletion'®, and may underline the deteriorating state of the energy

level in CRC patients.
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Creatinine (increased in CRC), is a degradation product of creatine, a
phosphorylated molecule specific to muscle energy metabolism and was found to
be increased in the urine of patients with cancer and cachexia'®. Creatinine is also
involved in arginine and proline metabolism, along with urea (increased in
normal), and guanidoacetate (increased in normal). In addition, urea is involved
in purine and pyrimidine metabolism, and microbial metabolism in diverse
environments'’. Guanidoacetate is also a precursor of creatine, an essential

substrate for muscle energy metabolism.

Dimethylamine (increased in CRC) is produced by degradation of dietary choline
to trimethylamine, which is subsequently converted to dimethylamine by gut
microflora.'®!” Methanol (increased in normal) is also a product of microbial

metabolism. ">

3-indoxylsulfate is increased in the CRC group. It is a dietary protein metabolite,
and also the metabolite of the common amino acid tryptophan.'® Up-regulation of
tryptophan metabolism in patients with CRC has been suggested in the
literature.' 3-indoxylsulfate also strongly decreases the levels of glutathione, one
of the most active antioxidant systems of the cell'’, thus suggesting a possible

mechanism of pathogenesis for CRC.
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3-hydroxybutyrate is a ketone body that is raised in ketosis. It is involved in
butanoate (carbohydrate) metabolism and synthesis and degradation of ketones.
This metabolite is increased in CRC patients and this is not due to the fact that
some CRC patients were fasting at the time of urine collection. In fact, when the
fasting CRC patients were excluded and the model was rebuilt with just those that
were not fasting, 3-hydroxybutyrate moved up in the ranks to number three in
order of importance in separating normal and CRC. This is also seen for acetone.
The increase in 3-hydroxybutyrate and acetone in CRC patients cannot be
explained by diabetes either. Exploratory analysis revealed that the patients with
increased 3-hydroxybutryrate and acetone are not those with diabetes and vice
versa. Acetone is also typically derived from acetoacetate through the action of
microbial acetoacetate decarboxylases found in gut microflora such as

Clostridium acetobutylicum.”™

Adipate is particularly interesting. It is a food additive and acidity regulator and
was thought to be part of a probable carcinogenic DEHA (Di (2-ethylhexyl)
Adipate) as DEHA caused liver tumors in mice.”! In our subjects, adipate was
present in 23 out of 82 (28.0%) CRC patients but only in 7 out of 294 (2.4%)
normal subjects. The highest adipate level in one CRC patient was 13536 uM,
while that in the normal group was 64 uM. According to KEGG', adipate is
involved in microbial metabolism in diverse environments. It is unclear whether
in CRC, bacteria in the body are producing more adipate or that CRC is in part

caused by increased adipate in the body.

119



B-alanine, which is the 12" metabolite that separates normal from CRC, is
another metabolite that has a different distribution in the normal group compared
to the CRC group. It is found in 61 out of 294 or 20.7% of the normal subjects
and only 2 out of 82 or 2.4% of CRC patients. [-alanine is an amino acid formed
in vivo by the degradation of dihydrouracil and carnosine. It is also involved in
pyrimidine metabolism, propanoate metabolism, and pantothenate (vitamin B5)
and CoA biosynthesis."> B-alanine is a rate-limiting precursor of carnosine.
Muscle carnosine is increased with (3-alanine supplementation, which also results
in decreased fatigue in athletes and increase in total muscular work done.”*? Tt is
unclear whether the lack of p-alanine in CRC patients is a cause or a result of
CRC. Ifthe lack of -alanine is a result of CRC, then this could potentially

represent a mechanism of cancer-related fatigue.

Overall, in the limited literature on urine metabolomics and CRC, suggestions of
increased tryptophan metabolism and altered gut microflora metabolism in
patients with CRC were also observed in this study. In fact, many of the
metabolites that separate normal from CRC (dimethylamine, methanol, adipate,
urea, and acetone) are products of microbial metabolism. There have been many
studies in the literature demonstrating the role of gastrointestinal microbiota in
24-26

colorectal cancer by production of toxic and genotoxic bacterial metabolites.

As there are many more bacteria cells than human cells in the colon, it is not
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surprising that the differences in the metabolites of normal versus CRC patients

are reflections of different microbiota rather than human metabolism.

The top contributing metabolites identified in this study, however, were different
than those identified in the only other study in the literature on urine
metabolomics and colorectal cancer.'> This may be due to several differences
between the two studies. First Qiu’s study used GC-MS to quantify the
metabolites and our study used NMR and consequently the library of compounds
to identify the metabolite peaks were different as well. In addition, Qiu’s study
only identified and structurally validated 40% of the differential variables
detected. Secondly, the populations of patients were different between the two
studies. All of Qiu’s samples were collected from people in Shanghai, whereas
the samples for this study were collected from subjects in Northern Alberta
(Edmonton and Grande Prairie). The differences in ethnicity, climate, and diet
can significantly change the metabolite profile of individuals. Thirdly Qiu’s
controls were healthy volunteers, whereas the controls for this study are
colonoscopy-negative individuals. Also, since there were more variables (187)
than subjects (123 total; 63 control and 60 normal) in Qiu’s study, there could be

some random multivariate correlations.

4.6.6 Limitations

There are some limitations to this study. There were several occasions where

information provided by the patient on the questionnaires was inconsistent with
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what was identified in their medical records. In such cases and where
appropriate, the information regarding patients’ past medical history, family
history and medications was taken from the patients’ charts, as this was likely a
more reliable source. However information such as family history was only as
good a patients’ reporting. Additional information not provided by the patients
but found on their medical charts were supplemented to the database. There can

be bias/misinterpretations in filling out the questionnaires.

The number of metabolites analyzed from the urine samples is limited by the
number of metabolites contained in the Chenomx compound library. As
Chenomx is continually expanding their library, some of the newer metabolites

would have been missed in the older analyses.

Some of the CRC patients were fasting at the time of giving the urine sample.
This was because these patients were identified and recruited either right after
having a colonoscopy to confirm CRC or right before surgery. The state of
fasting affects one’s metabolic fingerprint, thus some of the separation between
normal and CRC may be falsely due to separation between non-fasting and
fasting. This was examined by building a separate model with the fasting CRC
patients excluded. This new model did have lower R? and Q° values but it is
unclear whether this is also due to a smaller sample size. This can be further

investigated as more CRC patients are recruited and analyzed.
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There were some differences in baseline characteristics between the training set
and the testing set. This was because the testing set samples were not
methodologically matched to the training set samples, but were simply
subsequently collected samples. To improve the robustness of this model, the
validation set should be comparable to the training set. This can be done by
increasing the number of validation samples or by matching the baseline

characteristics of the testing set to those of the training set.

4.6.7 Bias

4.6.7.1 Disease Progression Bias

Urine samples are collected at the education session for the normal group and the
pre-admission clinic for the CRC group. Ideally the results of the index test and
the reference standard are collected on the same patients at the same time to
minimize misclassification due to spontaneous recovery or to progression to a
more advanced stage of disease (disease progression bias). However, it is
unknown at this time whether the bowel preparation and the perioperative
medications used for colonoscopy (SCOPE subjects) and surgery (CRC patients)
affect one’s metabolomic profile, therefore the study was designed to collect the
urine while the subjects are in a natural state of hydration and health. Also,
practically speaking, the yield of urine collection is higher with this study design.
Moreover, disease progression bias may not be a problem for cancer as it would
be for infectious diseases as cancer does not spontaneously recover or progress

over the course of days.”’

123



4.6.7.2 Misclassification

Differential misclassification can occur if a CRC is missed and if the urine
metabolomics test is positive, then there’s bias towards null, i.e. the difference is
harder to detect. The polyp and CRC miss rate for colonoscopy is 2-6%.
Nondifferential misclassification can result when other unknown cancers such as
breast, ovarian etc. gives a positive test for urine metabolomics. This can happen

in both controls and cases.?’

4.6.7.3 Spectrum Bias

This study population is representative of the patients who will receive the test in
practice, that is, asymptomatic average and high-risk individuals undergoing CRC
screening. This is an advantage over existing studies in that it does not merely
consist of a group of healthy controls and a group known to have the target

disorder (spectrum bias).*’

4.6.7.4 Partial Verification & Incorporation Bias

Partial verification bias does not exist as all study patients went on to receive
confirmation of the diagnosis by the reference standard. Incorporation bias does
not exist as the index test (urine metabolomics) was not used in establishing the

final diagnosis.

4.6.7.5 Review Bias

Blinding was achieved as the index test was interpreted without the knowledge of
the result of the reference standard test, and vice versa (i.e. no review bias). The

index test was analyzed and interpreted in an independent laboratory.
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4.6.8 Strengths of Study

This is the largest study to demonstrate that urine metabolomics can separate
normal subjects from CRC patients. In addition to the large sample size of this
study, a significant strength is that the normals or controls in this study have all
had a colonoscopy and found to be normal — no inflammation or polyps. The
other strength of this study over existing ones in the literature is the amount of
clinical information such as family history, fasting state, and pathological features
of the CRC, gathered and analyzed. This allows for detailed analysis of the
variations seen in the metabolomic model and stratification based on clinical
characteristics such as gender and family history. Existing CRC screening
guidelines dictate different ages to start screening for those with a positive family
history of CRC compared to those without™ and several studies have suggested to
develop sex-specific recommendations for CRC screening™ *°. The urine

metabolomics test may be sex or age-specific as well.

Whenever possible, all subjects’ urine samples were collected in their normal
state of diet, hydration and activities etc. as to avoid confounding factors. This is
reflective of the situation that this test would be used in the future if it becomes a

population-based screening test.

Some common types of errors in design and analysis of metabolomics

experiments have been addressed in this study.'" The sample size is sufficient as
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the number of samples in this study exceeds the number of variables otherwise it
is a lot easier to find random multivariate correlations. Over fitting is avoided by
using an independent/blind testing set which is held back from model
optimization and used only to test the robustness of prediction in the final phase
of the study. Potential biases have been discussed and confounding variables

such as gender, smoking, family history etc. have been addressed.

4.7 Conclusions

With 655,000 deaths worldwide per year, CRC is the third leading cause of
cancer-related death in the Western World. Current population-based fecal occult
blood testing has low compliance and sensitivity. Urine metabolomics has been
shown to distinguish healthy subjects from CRC patients with high accuracy and

can represent a novel, highly sensitive, patient-accepted screening test for CRC.
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4.9 Appendix

Training Set Normal vs. CRC Baseline Characteristics

cs sex nc if training

| NC |
| Exposed Unexposed |
————————————————— o
Cases | 47 117 |
Noncases | 35 177 |
————————————————— o
Total | 82 294 |
| |
Risk | .5731707 .3979592 |
| |
| Point estimate |
| == m e +
Risk difference | .1752115
Risk ratio | 1.440275
Attr. frac. ex. | .3056882
Attr. frac. pop | .0876058
chi2 (1) =

cs famhx cca nc if training

| NC |
| Exposed Unexposed |
————————————————— o
Cases | 20 191 |
Noncases | 60 85 |
————————————————— o
Total | 80 276 |
| |
Risk | .25 .692029 |
| |
| Point estimate |
| == +
Risk difference | -.442029
Risk ratio | .3612565
Prev. frac. ex. | .6387435
Prev. frac. pop | .1435379
chi2 (1) =

cs fh_any ca nc if training

| NC |
| Exposed Unexposed |
————————————————— o
Cases | 60 230 |
Noncases | 19 21 |
————————————————— o
Total | 79 251 |
| |
Risk | .7594937 .9163347 |
| |
| Point estimate |
| == m e +
Risk difference | -.156841
Risk ratio | .8288387
Prev. frac. ex. | .1711613
Prev. frac. pop | .040975
chi2 (1) =
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.4361702

[95% Conf.

.0544165
1.14003
.1228301

8.00

.5926966

[95% Conf.

-.5514354
.2451742
.4676998

50.20

.8787879

[95% Conf.

-.2571182
.7280922
.0564743

13.88

Pr>chi?2

Pr>chi?2

Pr>chi?2

Intervall]

.2960066
1.819595
.4504271

= 0.0047

Interval]

-.3326226
.5323002
.7548258

= 0.0000

Interval]

-.0565638
.9435257
.2719078

= 0.0002



cs smoke nc if training ==

| NC |
| Exposed Unexposed | Total
_________________ o
Cases | 15 26 | 41
Noncases | 60 253 | 313
_________________ o
Total | 75 279 | 354
| |
Risk | .2 .09319 | .1158192
| |
| Point estimate | [95% Conf. Intervall]
| == m e e
Risk difference | .10681 | .01007 .2035501
Risk ratio | 2.146154 | 1.19909 3.841228
Attr. frac. ex. | .5340502 | .166034 .7396666
Attr. frac. pop | .1953842
o
chi2 (1) = 6.59 Pr>chi2 = 0.0103
cs dm nc if training ==
| NC |
| Exposed Unexposed | Total
_________________ o
Cases | 19 14 | 33
Noncases | 63 280 | 343
_________________ o
Total | 82 294 | 376
| |
Risk | .2317073 .047619 | .087766
| |
| Point estimate | [95% Conf. Intervall]
| == m e e
Risk difference | .1840883 | .0895777 .2785988
Risk ratio | 4.865854 | 2.551678 9.278809
Attr. frac. ex. | .7944862 | .608101 .8922276
Attr. frac. pop | .4574315
o
chi2 (1) = 27.14 Pr>chi2 = 0.0000
cs sympt gibleed nc if training ==
| NC |
| Exposed Unexposed | Total
_________________ o
Cases | 49 5 | 54
Noncases | 33 288 | 321
_________________ o
Total | 82 293 | 375
| |
Risk | .597561 .0170648 | 144
| |
| Point estimate | [95% Conf. Intervall]
| == m e e
Risk difference | .5804961 | .4733244 .6876679
Risk ratio | 35.01707 | 14.42348 85.01386
Attr. frac. ex. | .9714425 | .9306686 .9882372
Attr. frac. pop | .8814941
o
chi2 (1) = 175.15 Pr>chi2 = 0.0000

130



cs sympt bowelhabit nc if training

| NC |
| Exposed Unexposed | Total
_________________ o
Cases | 43 13 | 56
Noncases | 39 279 | 318
_________________ o
Total | 82 292 | 374
| |
Risk | .5243902 .0445205 | .1497326
| |
| Point estimate | [95% Conf. Intervall]
| mmm e e e
Risk difference | .4798697 | .3692193 .5905201
Risk ratio | 11.77861 | 6.661512 20.82646
Attr. frac. ex. | .9151004 | .8498839 .9519842
Attr. frac. pop | .7026663
o __
chi2 (1) = 115.80 Pr>chi2 = 0.0000
ttest age, by(nc), if training==
Two-sample t test with equal variances
Group | Obs Mean Std. Err Std. Dev [95% Conf. Intervall]
_________ o
0 | 294 55.2619 .4731272 8.112442 54.33075 56.19306
1| 82 68.63415 1.164505 10.54504 66.31715 70.95115
_________ o
combined | 376 58.17819 .5309904 10.29629 57.1341 59.22228
_________ o
diff | -13.37224 1.086158 -15.50798 -11.2365
diff = mean(0) - mean(l) t = -12.3115
Ho: diff 0 degrees of freedom = 374
Ha: diff < O Ha: diff != 0 Ha: diff > O
Pr(T < t) = 0.0000 Pr(|T| > |t]) = 0.0000 Pr(T > t) = 1.0000
CRC vs. Non-Overlapping Normals
N vs Ca_total-bun.M13 (OPLS/0O2PLS-DA), Ca vs. Non-Overlapping N * Cancer
t[Comp. 1)/to[XSide Comp. 1] * N - NOv
Colored according to classes in M13
7
6 - 1

tol1]

101

RZX[1] = 0.0558022 RZX[XSide Comp. 1] = 0.0632267 Ellipse: Hotelling T2 (0.985)

SIMCAP 12.0.1 - 2010-05-10 12:23:48 (UTC-7)
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-bun.M13 (OPLS/02PLS-DA), Ca vs. Non-Overlapping N

VIP[LasT comp.]

Nws Ca_total

0
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0
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0
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aun3|os|
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wjuexodiy
aulueal)y

Var ID (Primary)

SIMCAP 12.0.1 - 2010-05-10 13:58:49 (UTC-7)

CRC vs. Overlapping Normals

Cancer
N- Ov

-bun.M14 (OPLS/02PLS-DA), Ca vs. Overlapping N

t[Comp. 1)/to[XSide Comp. 1]

Nvs Ca_total

Colored according to classes in M14

1)

Hotelling TZ (0.95)

0.0735158 Ellipse:

11

RZX[XSide Comp.

= 0.0347069

RZX[1]

- 2010-05-10 12:25:01 (UTC-7)

SIMCAP+12.0.1

Fbun.M14 (OPLS/02PLS-DA), Ca vs. Overlapping N

VlF‘[LasT comp.]

Nvs Ca_total

40

|
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Overlapping vs. Non-Overlapping Normals

Nvs Ca_total-bun.M15 (OPLS/O2PLS-DA), N: Ov vs. NOv * N - NOv
t[Comp. 1)#to[XSide Comp. 1] * N- Ov
Colored according to classes in M15

tof1]

-40 -35 -30 -25 -20 15 <10 -05 00 0s 10 15 20 25 30 35 40
11

RZX[1] = 0.0275624 RZX[X§ide Comp. 1] = 0.0401908 Ellipse: Hotelling T2 (0.95)

SIMCAP+ 12.0.1 - 2010-05-10 23:06:14 (UTC-7)

Nvs Ca_total-bun.M15 (OPLS/O2PLS-DA), N: Ov vs. NOv

WIP[Last comp.]
30| T
25
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_ 15
= H
> I
10 ||
0s ‘ | |||||
| I
00 ||”||| “III”.!I.!!... Llgg
05
CL LR EYCE e S C o oL NRT RS EEL D RO POV OFTolow 2o0Tlon e LEET
[ttt i B S L B L et R B b ]
SR e ELECoCREE S EE S SESEEERE£2SE88eESE SSCGEEC oS EEESE 0t an 025t
ER D8RRI § 8- CEETEoS S0 ENCE0ETERE I8R5 2BasoeRs SR G IS0 CRC00SREDS
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Var ID (Primary)
SIMCAP+ 12.0.1 - 2010-0-11 01:31:32 (UTC-7)

Logistic Regression of Ov vs. NonOv Normals on predicting overlap with
adenoma

Gender

. logistic overlapping with cancer S_sex

Logistic regression Number of obs = 294
LR chi2 (1) = 13.80

Prob > chi2 = 0.0002

Log likelihood = -194.67543 Pseudo R2 = 0.0342
overlappin~r | Odds Ratio Std. Err. b4 P>|z| [95% Conf. Interval]
_____________ o
S sex | 2.491071 .6241658 3.64 0.000 1.524432 4.070655

In the normal group, the odds of resembling or overlapping with the cancer group for males is 2.49
(95% CI 1.52,4.07) times that of females (p<0.01). That is, females are more different than the
cancers compared to the males.
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Age

logistic overlapping with cancer age

Logistic regression Number of obs = 294
LR chi2 (1) = 1.86

Prob > chi2 = 0.1726

Log likelihood = -200.64549 Pseudo R2 = 0.0046
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
age | 1.020107 .0149642 1.36 0.175 .9911952 1.049862

Within the normal group, age does not change the odds of overlapping with cancers, OR 1.02
(95% C1 0.99, 1.05).

logit overlapping with cancer age

Iteration O: log likelihood = -201.57565
Iteration 1: log likelihood = -200.64564
Iteration 2: log likelihood = -200.64549
Logistic regression Number of obs = 294
LR chi2 (1) = 1.86
Prob > chi2 = 0.1726
Log likelihood = -200.64549 Pseudo R2 = 0.0046
overlappin~r | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
age | .0199073 .0146692 1.36 0.175 -.0088438 .0486585
cons | —-.8523324 .8167304 -1.04 0.297 -2.453095 .7484298

e 0.0199x 10 _ 1.220
95% CI=¢ 10 (0.0146) = 1.96 (10) (0.0146) _ 0915’ 1.627

For every 10 years increase in age, the odds of overlapping with cancer increases about 22%. The

95% CI for the OR is 0.915, 1.627. This includes 1, therefore there is no significance.

generate age cat =
(294 missing values generated)

replace age_cat=1 if age<=45 & age !=.
(38 real changes made)

replace age_cat=2 if age>45 & age <=50 & age !=.
(39 real changes made)

replace age_cat=3 if age>50 & age <=55 & age !=.
(84 real changes made)

replace age_cat=4 if age>55& age <=60 & age !=.
(64 real changes made)

replace age_cat=5 if age>60 & age <=65 & age !=.
(37 real changes made)

replace age_cat=6 if age>65 & age <=70 & age !=.
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(20 real changes made)

replace age_cat=7 if age>70 & age !=.
(12 real changes made)

tabulate age_cat

age_cat | Freq Percent Cum
____________ o
1| 38 12.93 12.93

2 | 39 13.27 26.19

3 | 84 28.57 54.76

4 | 64 21.77 76.53

5 | 37 12.59 89.12

6 | 20 6.80 95.92

71 12 4.08 100.00
____________ o

Total | 294 100.00

xi:logistic overlapping with cancer i.age_cat

i.age_cat _Tage_cat_1-7 (naturally coded; _Tage_cat 1 omitted)
Logistic regression Number of obs = 294
LR chi2 (6) = 7.13
Prob > chi?2 = 0.3090
Log likelihood = -198.01048 Pseudo R2 = 0.0177
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
_Tage cat 2 | .8521303 .3896334 -0.35 0.726 .3477741 2.087924
_Tage cat 3 | .8904762 .3496407 -0.30 0.768 .4124797 1.922393
_Tage cat 4 | 1.109347 .4580767 0.25 0.802 .4938393 2.492009
_Tage cat 5 | 1.494505 .7089571 0.85 0.397 .5898046 3.786926
_Tage cat 6 | .6623377 .3678585 -0.74 0.458 .2230114 1.967125
_Tage cat 7 | 4.047619 3.401909 1.66 0.096 .7794512 21.01892
Smoking History
xi:logistic overlapping with cancer i.s_smoke
i.s_smoke _Is_smoke 0-2 (naturally coded; _Is_smoke 0 omitted)
Logistic regression Number of obs = 279
LR chi2 (2) = 3.32
Prob > chi?2 = 0.1900
Log likelihood = -190.00159 Pseudo R2 = 0.0087
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
_Is_smoke 1 | 1.629347 .7034889 1.13 0.258 .699033 3.797777
_Is_smoke 2 | 3.019084 2.451486 1.36 0.174 .6147555 14.82682

Within the normal group, being a smoker or an ex-smoker does not increase the odds of
overlapping with the cancer group.

Since metabolism is a reflection of current status, ex-smokers could be classified as non-smokers.
logistic overlapping with cancer s_smoke YN

Logistic regression Number of obs = 279
LR chi2 (1) = 1.14
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Prob > chi2 = 0.2848

Log likelihood = -191.0902 Pseudo R2 = 0.0030
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o

s_smoke YN | 1.574074 .678634 1.05 0.293 .6761527 3.664422

Still no statistically significant difference, but smokers only 26, so may not be enough numbers to
show a difference.

Diabetes

logistic overlapping with cancer diabetes

Logistic regression Number of obs = 294
LR chi2 (1) = 0.01

Prob > chi2 = 0.9371

Log likelihood = -201.57254 Pseudo R2 = 0.0000
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
diabetes | 1.044586 .5779933 0.08 0.937 .3531465 3.089822

No statistically significant difference.

Family history

logistic overlapping with cancer s_fhcca

Logistic regression Number of obs = 276
LR chi2 (1) = 0.81

Prob > chi2 = 0.3688

Log likelihood = -189.04556 Pseudo R2 = 0.0021
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
s_fhcca | 1.265432 .331326 0.90 0.369 .7574782 2.114013

Within the normal group, having a family history of CRC does not increase the odds of
overlapping with the cancer group.

logistic overlapping with cancer st _degree relative with crc

Logistic regression Number of obs = 294

LR chi2 (1) = 0.25

Prob > chi2 = 0.6166
Log likelihood = -201.45029 Pseudo R2 = 0.0006
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
st _degree ~c | 1.129957 .2756153 0.50 0.616 .7005508 1.82257
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1* degree relative — no difference.

logistic overlapping with cancer s_fhca

Logistic regression Number of obs = 251
LR chi2 (1) = 0.74

Prob > chi2 = 0.3894

Log likelihood = -171.43385 Pseudo R2 = 0.0022
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
s_fhca | 1.481633 .6768466 0.86 0.389 .6051883 3.627359

The data on the family history of various cancers were combined and it was found that within the
normal group, those having a family history of any cancer(s) does not increase the odds of
overlapping with the cancer group.

Symptoms

logistic overlapping with cancer s _GIbleed

Logistic regression Number of obs = 293
LR chi2 (1) = 2.82

Prob > chi2 = 0.0933

Log likelihood = -199.34162 Pseudo R2 = 0.0070
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
s_GIbleed | .1890244 .2125285 -1.48 0.138 .0208677 1.712227

logistic overlapping with cancer s_GIhabit

Logistic regression Number of obs = 292
LR chi2 (1) = 2.47

Prob > chi2 = 0.1161

Log likelihood = -198.68493 Pseudo R2 = 0.0062
overlappin~r | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o .
s_GIhabit | 2.666667 1.784574 1.47 0.143 .7183429 9.899327

Within the normal group, having symptoms of gastrointestinal bleeding or changes in bowel habits
does not increase the odds of overlapping with the cancer group.

Overall test

logistic overlapping with cancer sex age smoke dm famhx cca fh_any ca
sympt gibleed symp
> t_bowelhabit if nc ==

Logistic regression Number of obs = 231
LR chi2 (8) = 22.13
Prob > chi?2 = 0.0047
Log likelihood = -147.229 Pseudo R2 = 0.0699
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Interval]

.289482
.073181
.992332
.649668
.890521
.597998
1.47502
18.8529

overlappin~r | Odds Ratio Std. Err. z P>|z]| [95% Conf.
_____________ A
sex | 2.9190098 .8853455 3.53 0.000 1.610958
age | 1.034737 .0192592 1.83 0.067 .9976696
smoke | 1.694832 .9341804 0.96 0.338 .5753734
dm | 1.659519 1.175265 0.72 0.474 .4141564
famhx cca | 1.283903 .5316059 0.60 0.546 .5702801
fh_any ca | 1.443366 .8532534 0.62 0.535 .4530899
sympt gibl~d | .1435988 .1706661 -1.63 0.102 .0139799
sympt bowe~t | 3.797069 3.104427 1.63 0.103 .764749
Normal vs. Non-overlapping CRC
N vs Ca_total-bun.M4 (OPLS/O2PLS-DA), N vs. Non-overlapping ca - Normal
t[Comp. 1]#to[XSide Comp. 1] * Cancer
Colored according to classes in M4
& - .0
s .
4
3
2 ¢
f .
=, .o .
2
3 hd
4 i
5 2
&
7 2
4 3 2 1 0 1 2 3 4 5 5 7 8 9
101
R2X[1] = 0.0398387 RZX[XSide Comp. 1] = 0.0712496 Ellipse: Hotelling TZ (0.95)
SIMCAP+ 12.0.1 - 2010-05-10 12:22:55 (UTC-T)
N vs Ca_total-bun.M4 (OPLS/0O2PLS-DA), N vs. Non-overlapping ca
WYIP[Last comp.]
401
35
30
25
20
% 15 F
0 I|| it ]
o ||l .||“||| , "
" |||IIIII a0 AN L s R LR L g
05
A0
FOUEE7E 0437 JEteSy U= or  @%F e ga MQLTE 8T ofr ST 5T OUIRcs

Var ID (Primary)
SIMCAP+ 120.1 - 2010-05-11 01:45:44 (UTC-7)

The top five metabolites for normals vs. non-overlapping cancers are:
*  Hypoxanthine

¢ Urea
* Adipate
* Acetone

*  3-Hydroxybutyrate

Normal vs. Overlapping CRC
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N vs Ca_total-bun.M3 (OPLS/O2PLS-DA), N vs. total -M4; N vs. overlapping - Normal
t[Comp. 1)/to[XSide Comp. 1] * Cancer
Colored according to classes in M3

tol1]

101

RZX[1] = 0.0315727 RZX[XSide Comp. 1] = 0.0864572 Ellipse: Hotelling TZ (0.95)
SIMCAP 12.0.1 - 2010-05-10 12:23:17 (UTC-7)

Nvs Ca_total-bun.M3 (OPLS/O2PLS-DA), N vs. total -M4; N vs. overlapping
VIP[Last comp.]

45

40

3sflT

30

25

20

VP[]

||I I '
II ..ﬁ”ll!““l ..II pd!

Adipate
Creatine
Urea
Pyruvate
Trimethyla
Threonine
3-Hydroxyi

Zndoxyls
12 Alanine
Butyrete
3-Hydroxyh
i~-Methylh
Oxogluta
Ethanol
Serine
Galactose

3-Hydroxyp

4-Hydroxyp
21

ES
Var ID (Primary)
SIMCAP+ 12.0.1 - 2010-05-12 23:41:52 (UTC-7)

The top five metabolites are for normals vs. overlapping cancers:
* 3-Indoxylsulfate
*  Creatinine
*  Dimethylamine
*  Methanol
* 4-Hydroxyphenylacetate

Overlapping vs. Non-Overlapping CRC

M vs Ca_total-bun.M11 (OPLS/O2PLS-DA), Ca; Ovvs. NOv * Ca-Ov
t[Comp. 1}ito[XSide Comp. 1] Ca- NOv
Colored according to classes in M11
*
4
3
2
1
* 4
g
-1
2
3
-4
5
5 4 3 2 Kl 0 1 2 3 4 5
1]
R2X[1] = 0.0545731 RZX[XSide Comp. 1] = 0.055849 Ellipse: Hotelling T2 (0.95)

SIMCAP+ 12.0.1 - 2010-05-11 09:01:37 (UTC-7)
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M vs Ca_total-bun.M11 (OPLS/O2PLS-DA), Ca; Ovvs. NOv
VIP[Last comp.]

VP[]

o
o

|

I —

(I

|

T DL PE RS p LLC LAYl ELD O BT EL b BT n 0 e 0 OEE ey
2 e S o e L - o B et
5 SR e E o S o R cE P e FEC S EB5RER D EEGSSECREgEsaE
SR ERERECS 5355535528 RES0EEEE2SRE383FED 2ER255EEEIES2E
Rt s L R e S TS503 " SREsm2T5
g o 2LScORFgEFI=T=SETUBNE T 8064, OFE 338903 ~3E283 3
= EFE"8 g £oPI0 SLIgEe™ 5 £ 78 VI Lo &5 QEEYE 2

a s 0" g ® = = ST aFE o

Var D (Primary)

SIMCAP+ 12.0.1 - 2010-05-11 09:02:19 (UTC-7)

The top five metabolites for these two groups of cancers are:
*  Urea
*  Hypoxanthine
*  Trigonelline
* N, N-Dimethylglycine
*  Guanidoacetate

Logistic regression of overlapping and non-overlapping CRC on predicting
overlapping with normal

logistic overla with normal S sex

Logistic regression Number of obs = 82
LR chi2 (1) = 4.15
Prob > chi?2 = 0.0417
Log likelihood = -53.564057 Pseudo R2 = 0.0373
overla wit~1 | Odds Ratio Std. Err. z P>|z]| [95% Conf. Interval]
_____________ o
S sex | 2.533333 1.169308 2.01 0.044 1.02519 6.260088

Age

logistic overla with normal age

Logistic regression Number of obs = 82
LR chi2 (1) = 0.00

Prob > chi?2 = 0.9925

Log likelihood = -55.637028 Pseudo R2 = 0.0000
overla wit~1 | Odds Ratio Std. Err. 4 P>|z| [95% Conf. Interval]
_____________ o
age | .9997992 .0213833 -0.01 0.993 .958755 1.042601

Within the cancer group, age does not change the odds of overlapping with normals, OR 1.00
(95% CI1 0.96, 1.04).
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generate age cat=.

(82 missing values generated)

replace age_cat=1 if
(3 real changes made)

replace age_cat=2 if
(8 real changes made)

replace age_cat=3 if
(7 real changes made)

replace age_cat=4 if
(17 real changes made)

replace age_cat=5 if
(13 real changes made)

replace age_cat=6 if
(8 real changes made)

replace age_cat=7 if
(16 real changes made)

replace age_cat=8 if
(10 real changes made)

tabulate age_cat

|
¥
|
I
|
|
|
|
I
|
¥
|

age<=5

age>50

age>55

age>60

age>65

age>70

age>75

age>80

0 & age

& age<=55

& age<=60

& age<=65

& age<=70

& age<=75

& age<=80

& age

& age

& age

& age

& age

& age

& age

xi:logistic overla with normal i.age_cat
(naturally

i.age_cat

Logistic regression

Log likelihood = -51.2

74834

_Tage_cat_1-8

82
8.72
0.2730
0.0784

overla wit~1 | Odds Ra
______ S —
_Tage _cat_2 | .8333
_Tage _cat_3 | .6666
_Tage cat_4 |
_Tage _cat_5 | 2
_Tage _cat_6 |
_Tage cat_7 | .3888
_Tage _cat_8 |

tio S
333 1
667 .
.35 .
.75 3
1.5

889 .
.75 1

.188292
9622504
4620606
.976493
2.20794
5150346
.038328

Interval]

13.63294
11.28528
4.653733
46.79162
26.85505
5.213571

coded; _Tage cat 1 omitted)
Number of obs
LR chi2 (7) =
Prob > chi2 =
Pseudo R2 =
P>|z]| [95% Conf.
0.898 .0509387
0.779 .0393827
0.426 .026323
0.484 .1616208
0.783 .0837831
0.476 .0290079
0.835 .0497309

11.31088
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Smoking History

xi:logistic overla with normal i.s_smoke

i.s_smoke _Is_smoke 0-2 (naturally coded; _Is_smoke 0 omitted)

Logistic regression Number of obs = 75
LR chi2 (2) = 2.47
Prob > chi?2 = 0.2906

Log likelihood = -49.940654 Pseudo R2 = 0.0241

overla wit~1 | Odds Ratio Std. Err. z P>|z]| [95% Conf. Intervall]
_____________ o
_Is_smoke 1 | .8166667 .5203342 -0.32 0.751 .2342647 2.846969
_Is_smoke 2 | 1.96 1.047664 1.26 0.208 .6874953 5.58782

Within the cancer group, being a smoker or an ex-smoker does not increase the odds of
overlapping with the normal group.

Since metabolism is a reflection of current status, ex-smokers could be classified as non-smokers.

logistic overla with normal s_smoke YN

Logistic regression Number of obs = 75
LR chi2 (1) = 0.86

Prob > chi?2 = 0.3527

Log likelihood = -50.74455 Pseudo R2 = 0.0084
overla wit~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
s_smoke YN | .5833333 .3387864 -0.93 0.353 .1868783 1.820853

Still no statistically significant difference, but smokers only 15, so may not be enough numbers to
show a difference.

Diabetes

logistic overla with normal diabetes

Logistic regression Number of obs = 82
LR chi2 (1) = 0.35

Prob > chi?2 = 0.5527

Log likelihood = -55.460787 Pseudo R2 = 0.0032
overla wit~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
diabetes | .7309942 .3850243 -0.59 0.552 .2603603 2.052358

No statistically significant difference.

Family history

logistic overla with normal s_fhcca
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Logistic regression Number of obs = 80

LR chi2 (1) = 0.01
Prob > chi2 = 0.9129
Log likelihood = -53.834946 Pseudo R2 0.0001
overla wit~1 | Odds Ratio Std. Err z P>|z| [95% Conf. Intervall]
_____________ o
s_fhcca | 1.061776 .5823271 0.11 0.913 .3624054 3.110794
Within the cancer group, having a family history of CRC does not increase the odds of
overlapping with the normal group.
logistic overla with normal s_fhoca
Logistic regression Number of obs = 79
LR chi2 (1) = 4.93
Prob > chi2 = 0.0264
Log likelihood = -50.450127 Pseudo R2 0.0466
overla wit~1 | Odds Ratio Std. Err z P>|z| [95% Conf. Intervall]
_____________ o
s_fhoca | .3461538 .1697502 -2.16 0.031 .1323881 .905085

However, within the cancer group, those having a family history of other cancers (other than
colon, rectal, uterine, breast, ovarian cancer) have 0.35 (p=0.03) the odds of overlapping with the
normal group compared to those that do not have a family history. That is, the metabolomic
profile of those cancer patients that have a family history of ‘other’ cancers have statistically
significant increased odds of being different than the normal group.

logistic overla with normal s_fhca

Logistic regression Number of obs = 78
LR chi2 (1) = 6.61

Prob > chi?2 = 0.0101

Log likelihood = -49.106464 Pseudo R2 0.0631
overla wit~1 | Odds Ratio Std. Err z P>|z| [95% Conf. Intervall]
_____________ o
s fhca | .2075893 .1413695 -2.31 0.021 .0546426 .788639

The data on the family history of various cancers were combined and it was found that within the
cancer group, those having a family history of any cancer(s) have 0.21 (p=0.02) the odds of
overlapping with the normal group compared to those that do not have a family history. That is,
the metabolomic profiles of those cancer patients that have a family history of any neoplastic
process have statistically significant increased odds of being different than that of the normal

group.

Fasting

logistic overlap with normal fasting if nc==

Logistic regression
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Prob > chi2 = 0.0292

Log likelihood = -48.480415 Pseudo R2 = 0.0468
overlap wi~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o

fasting | .345098 .1710117 -2.15 0.032 .1306573 .9114888

Within the cancer group, the odds of overlapping with the normal group in those that are fasting is
0.35 times (p=0.032) that of those that are not fasting. That is, the metabolomic profiles of those
that are fasting are more different than the profiles of the normals.

Symptoms

logistic overlap with normal sympt gibleed if nc==

Logistic regression Number of obs = 82

LR chi2 (1) = 0.36

Prob > chi?2 = 0.5476
Log likelihood = -55.456237 Pseudo R2 = 0.0033
overlap wi~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
sympt gibl~d | 1.315789 .6003622 0.60 0.548 .5380271 3.217871

logistic overla with normal s_GThabit

Logistic regression Number of obs = 82
LR chi2 (1) = 0.67

Prob > chi?2 = 0.4115

Log likelihood = -55.299831 Pseudo R2 = 0.0061
overla wit~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
s_GIhabit | 1.446429 .6512329 0.82 0.412 .5984891 3.495729

Within the cancer group, having symptoms of gastrointestinal bleeding or changes in bowel habits
does not increase the odds of overlapping with the normal group.

Location of Cancer

Location of Cancer (colon vs. rectal)
Colon = 0; rectal = 1

logistic overla with normal s_locationl

Logistic regression Number of obs = 82
LR chi2 (1) = 1.50

Prob > chi?2 = 0.2211

Log likelihood = -54.888452 Pseudo R2 = 0.0135
overla wit~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
s_locationl | .545045 .270731 -1.22 0.222 .2058872 1.442897
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No significant difference.

Location of Cancer (left vs. right sided)
Right = 0, everything else = 1

logistic overla with normal s_location2

Logistic regression Number of obs = 82
LR chi2 (1) = 0.74

Prob > chi?2 = 0.3906

Log likelihood = -55.268547 Pseudo R2 = 0.0066
overla wit~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
s_location2 | 1.503401 .7137317 0.86 0.390 .5928865 3.812223

No difference.

CEA

logistic overla with normal cea

Logistic regression Number of obs = 63
LR chi2 (1) = 7.73

Prob > chi?2 = 0.0054

Log likelihood = -38.83666 Pseudo R2 = 0.0905
overla wit~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
cea | .9506619 .0292049 -1.65 0.100 .8951106 1.009661

CEA not statistically significant, but CEA distribution very skewed, therefore catergorized.

generate cea cat =
(82 missing values generated)

replace cea_cat = 1 if cea > 0 & cea <= 5
(45 real changes made)

replace cea_cat = 2 if cea > 5
(37 real changes made)

logistic overla with normal cea_cat

Logistic regression Number of obs = 63
LR chi2 (1) = 2.10

Prob > chi?2 = 0.1471

Log likelihood = -41.652122 Pseudo R2 = 0.0246
overla wit~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
cea cat | .4413793 .250454 -1.44 0.149 .1451478 1.342188
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Cancer Pathology

logistic overlap with normal 1i if nc ==

Logistic regression Number of obs = 74
LR chi2 (1) = 1.60
Prob > chi?2 = 0.2061
Log likelihood = -47.756974 Pseudo R2 = 0.0165
overlap wi~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
1i | .530303 .2660679 -1.26 0.206 .1983592 1.417737
logistic overlap with normal vi if nc ==
Logistic regression Number of obs = 74
LR chi2 (1) = 0.27
Prob > chi?2 = 0.6007
Log likelihood = -48.419336 Pseudo R2 = 0.0028
overlap wi~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
vi | .6845238 .492328 -0.53 0.598 .1671789 2.802823
logistic overlap with normal pni if nc ==
Logistic regression Number of obs = 71
LR chi2 (1) = 0.02
Prob > chi?2 = 0.9013
Log likelihood = -47.150644 Pseudo R2 = 0.0002
overlap wi~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
pni | 1.087838 .7404992 0.12 0.902 .2865135 4.130316
logistic overlap with normal lymphocyctic resp if nc ==
Logistic regression Number of obs = 64
LR chi2 (1) = 0.07
Prob > chi?2 = 0.7945
Log likelihood = -42.306129 Pseudo R2 = 0.0008
overlap wi~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
lymphocyct~p | .8730159 .4556764 -0.26 0.795 .3138571 2.428356
xi:logistic overlap with normal i.gradepath
i.gradepath _Igradepath 1-3 (naturally coded; _Igradepath 1 omitted)
note: _TIgradepath 2 != 0 predicts success perfectly
_Igradepath_ 2 dropped and 3 obs not used
Logistic regression Number of obs = 71
LR chi2 (1) = 0.16
Prob > chi?2 = 0.6858
Log likelihood = -47.535101 Pseudo R2 = 0.0017
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overlap wi~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
_Igradepat~3 | 1.351351 1.017582 0.40 0.689 .3088905 5.911968

tab overlap with normal gradepath gradepath
too many variables specified
r(103);

tab overlap with normal gradepath

Overlap_wi | GradePath
th_normal | 1 2 3| Total
[ —— N I ——
01 25 0 3 28
1] 37 3 6 | 46
___________ A
Total | 62 3 9 | 74

No statistically significant differences based on lymphovascular invasion, perineural invasion,
lymphocytic response or grade. Although all moderately differentiated tumors are in the
overlapping group...

Cancer Stage

xi:logistic overla with normal i.stage_of cancer

i.stage_of ca~r _Istage_of 1-4 (naturally coded; _Istage of 1 omitted)
Logistic regression Number of obs = 82
LR chi2 (3) = 5.70
Prob > chi2 = 0.1271
Log likelihood = -52.787022 Pseudo R2 = 0.0512

overla wit~1 | Odds Ratio Std. Err z P>|z| [95% Conf. Intervall]
_____________ o
_Istage of~2 | .5 .4082472 -0.85 0.396 .100918 2.477259
_Istage of~3 | .265625 .1948295 -1.81 0.071 .063086 1.118419
_Istage of~4 | .1944444 .1592346 -2.00 0.046 .0390597 .9679709

tab overlap with normal stage of cancer

Overlap wi STAGE_of Cancer

|
th normal | 1 2 3 4 | Total
e o e
0 | 3 6 16 9 | 34
1] 12 12 17 7 48
___________ o
Total | 15 18 33 16 | 82

Stage 4 cancers more likely not to overlap compared to stage 1 cancers, i.e. more different than
normals, OR 0.19 (p=0.05), but stage 2 and 3 cancers are not statistically different than stage 1
cancers.

In summary, gender, family history of any cancer, and fasting are statistically significant
differences between the overlapping and non-overlapping cancer subgroups. When these factors
are tested with an Overall test, they are still all statistically different.
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logistic overla with normal S_sex s _fasting s_fhca

Logistic regression Number of obs
LR chi2 (3) =
Prob > chi2 =
Log likelihood = -38.997903 Pseudo R2

overla wit~1 | Odds Ratio Std. Err z P>|z| [95% Conf.

_____________ o
S_sex | 3.500294 2.080689 2.11 0.035 1.091748
s_fasting | .1812088 .1102056 -2.81 0.005 .055018
s_fhca | .1793053 .1326809 -2.32 0.020 .0420463

Training Set vs. Testing Set

. insheet using training_and_testing_set normal_cancer.txt, clear
(94 vars, 560 obs)

Normal

ttest age, by(training), if nc==

Two-sample t test with equal variances

71
18.04
0.0004
0.1878

11.22242
.5968346
. 7646427

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o
0 | 150 56.44 .6635597 8.126913 55.1288 57.7512
1| 294 55.2619 4731272 8.112442 54.33075 56.19306
_________ e
combined | 444 55.65991 3857057 8.127323 54.90187 56.41795
_________ o
diff | 1.178095 8144886 -.4226564 2.778847
diff mean (0) - mean (1) t 1.4464
Ho: diff = 0 degrees of freedom = 442
Ha: diff < O Ha: diff != 0 Ha: diff > O
Pr(T < t) = 0.9256 Pr(|T| > |t]|) = 0.1488 Pr(T > t) = 0.0744

cs sex training if nc ==

| TRAINING |
| Exposed Unexposed | Total
_________________ o
Cases | 117 71 | 188
Noncases | 177 79 | 256
_________________ o
Total | 294 150 | 444
| |
Risk | .3979592 4733333 | 4234234
| |
| Point estimate | [95% Conf. Intervall]
| == m e e
Risk difference | -.0753741 | -.1729176 .0221693
Risk ratio | .8407588 | .6749364 1.047322
Prev. frac. ex. | .1592412 | -.0473216 .3250636
Prev. frac. pop | .1054435
o
chi2 (1) = 2.31 Pr>chi2 = 0.1284
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cs famhx cca training if nc ==

| TRAINING
| Exposed Unexposed
_________________ o
Cases | 191 91
Noncases | 85 49
_________________ o
Total | 276 140
|
Risk | .692029 .65
|
| Point estimate
| _______________________
Risk difference | .042029
Risk ratio | 1.06466
Attr. frac. ex. | .060733
Attr. frac. pop | .0411348
chi2 (1) =

cs fh_any ca training if nc ==

| TRAINING
| Exposed Unexposed
_________________ o
Cases | 230 115
Noncases | 21 35
_________________ o
Total | 251 150
|
Risk | .9163347 .7666667
|
| Point estimate
| _______________________
Risk difference | .149668
Risk ratio | 1.195219
Attr. frac. ex. | .1633333
Attr. frac. pop | .1088889
chi2 (1) =

cs smoke training if nc ==

| TRAINING
| Exposed Unexposed
_________________ o
Cases | 26 15
Noncases | 253 134
_________________ o
Total | 279 149
|
Risk | .09319 .1006711
|
| Point estimate
| _______________________
Risk difference | -.0074812
Risk ratio | .925687
Prev. frac. ex. | .074313
Prev. frac. pop | .0484424
chi2 (1) =

cs dm training if nc ==

TRAINING
Exposed Unexposed

—_——— et - — — — — 4+ — — + — — —_——— et ——— — — 4+ — — + — —

—_——— = — — — — + — — + — —

_ 4+ — —

149

.6778846
[95% Conf. Interval]

-.0539331 .137991
.921133 1.230551
-.0856195 .1873557

0.75 Pr>chi2 = 0.3860

.8603491
[95% Conf. Intervall]

.0738087 .2255273
1.085951 1.315481
.0791485 .2398219

17.50 Pr>chi2 = 0.0000

.0957944

[95% Conf. Intervall]

-.0666226 .0516602
.5062179 1.692742
-.6927421 .4937821

0.06 Pr>chi2 = 0.8022



Noncases | 280 140 | 420
_________________ o
Total | 294 150 | 444
| |
Risk | .047619 .0666667 | .0540541
| |
| Point estimate | [95% Conf. Intervall]
| mm e R
Risk difference | -.0190476 | -.065803 .0277078
Risk ratio | .7142857 | .3250475 1.569629
Prev. frac. ex. | .2857143 | -.5696295 .6749525
Prev. frac. pop | .1891892
o
chi2 (1) = 0.70 Pr>chi2 = 0.4012
cs sympt gibleed training if nc ==
| TRAINING |
| Exposed Unexposed | Total
_________________ o
Cases | 5 2 | 7
Noncases | 288 147 | 435
_________________ o
Total | 293 149 | 442
| |
Risk | .0170648 .0134228 | .0158371
| |
| Point estimate | [95% Conf. Intervall]
| mm e R
Risk difference | .003642 | -.0200504 .0273345
Risk ratio | 1.271331 | .2496096 6.475242
Attr. frac. ex. | .2134228 | -3.006256 .8455656
Attr. frac. pop | .1524449
o
chi2 (1) = 0.08 Pr>chi2 = 0.7719
cs sympt bowelhabit training if nc ==
| TRAINING |
| Exposed Unexposed | Total
_________________ o
Cases | 13 0 | 13
Noncases | 279 149 | 428
_________________ o
Total | 292 149 | 441
| |
Risk | .0445205 0 | .0294785
| |
| Point estimate | [95% Conf. Intervall]
| mm e R
Risk difference | .0445205 | .0208642 .0681769
Risk ratio | . |
Attr. frac. ex. | 1
Attr. frac. pop | 1 |
o
chi2 (1) = 6.84 Pr>chi2 = 0.0089
CRC group
ttest age, by(training), if nc==
Two-sample t test with equal variances
Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
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0 | 34 67.94118 2.019487 11.77553 63.8325 72.04985
1| 82 68.63415 1.164505 10.54504 66.31715 70.95115
_________ o
combined | 116 68.43103 1.009492 10.87256 66.43143 70.43064
_________ o
diff | -.6929699 2.22652 -5.103688 3.717749
diff = mean(0) - mean(l) t = -0.3112
Ho: diff = 0 degrees of freedom = 114
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.3781 Pr(|T| > |t]) = 0.7562 Pr(T > t) = 0.6219
cs sex training if nc ==
| TRAINING |
| Exposed Unexposed | Total
_________________ o
Cases | 47 23 | 70
Noncases | 35 11 | 46
_________________ o
Total | 82 34 | 116
| |
Risk | .5731707 .6764706 | .6034483
| |
| Point estimate | [95% Conf. Intervall]
| == e
Risk difference | -.1032999 | -.2935324 .0869327
Risk ratio | .8472959 | .6288244 1.14167
Prev. frac. ex. | .1527041 | -.1416705 .3711756
Prev. frac. pop | .107946
o
chi2 (1) = 1.07 Pr>chi2 = 0.3006
cs famhx cca training if nc ==
| TRAINING |
| Exposed Unexposed | Total
_________________ o
Cases | 20 7 27
Noncases | 60 26 | 86
_________________ o
Total | 80 33 | 113
| |
Risk | .25 .2121212 | .2389381
| |
| Point estimate | [95% Conf. Intervall]
|- - —— =
Risk difference | .0378788 | -.1308167 .2065743
Risk ratio | 1.178571 | .5516041 2.518166
Attr. frac. ex. | .1515152 | -.8128943 .6028855
Attr. frac. pop | .1122334
o
chi2 (1) = 0.18 Pr>chi2 = 0.6677
cs fh_any ca training if nc ==
| TRAINING |
| Exposed Unexposed | Total
_________________ o
Cases | 60 18 | 78
Noncases | 19 16 | 35
_________________ o
Total | 79 34 | 113
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.7594937 .5294118

Point estimate

Risk difference | .2300819
Risk ratio | 1.434599
Attr. frac. ex. | .3029412
Attr. frac. pop | .2330317
chi2 (1) =
cs smoke training if nc ==
| TRAINING |
| Exposed Unexposed |
————————————————— ettt s
Cases | 15 4 |
Noncases | 60 29 |
————————————————— ettt s
Total | 75 33 |
| |
Risk | .2 1212121 |
| |
| Point estimate |
| == m e +
Risk difference | .0787879
Risk ratio | 1.65 |
Attr. frac. ex. | .3939394
Attr. frac. pop | .3110048
chi2 (1) =
cs dm training if nc ==
| TRAINING |
| Exposed Unexposed |
————————————————— et ittt T 3
Cases | 19 8 |
Noncases | 63 26 |
————————————————— et it T 3
Total | 82 34 |
| |
Risk | .2317073 .2352941 |
| |
| Point estimate |
| == m e +
Risk difference | -.0035868
Risk ratio | .9847561
Prev. frac. ex. | .0152439
Prev. frac. pop | .0107759
chi2 (1) =
cs sympt gibleed training if nc ==
| TRAINING |
| Exposed Unexposed |
————————————————— ettt s
Cases | 49 22 |
Noncases | 33 12 |
————————————————— ettt s
Total | 82 34 |
| |
Risk | .597561 .6470588 |
| |
| |

Point estimate

152

.6902655

[95% Conf.

.0376489
1.020762
.0203398

5.89 Pr>chi2

.1759259

[95% Conf.

-.0647212
.5925316
-.6876736

0.98 Pr>chi2

.2327586

[95% Conf.

-.172906
.4779611
-1.028919

0.00 Pr>chi2

.612069

[95% Conf.

Interval]

.4225149
2.016214
.5040209

= 0.0153

Intervall]

.2222969
4.594691
.7823575

= 0.3219

Interval]

.1657324
2.028919
.5220389

= 0.9668

Interval]



Risk difference
Risk ratio
frac. ex.
frac. pop

Prev.
Prev.

cs sympt bowelhabit training if nc

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Prev.
Prev.

generate or_tumorlocation_rc

(560 missing values generated)

tab or_tumorlocation

OR_tumorlocation
Lt COL

Rect Above

Rect At

Rect Below

Rt COL

Rt COL & Sigmoid
Sigmoid

Transv COL

replace or_ tumorlocation_rc

|
+
|
|
|
|
|
|
|
|
+
|

(11 real changes made)

replace or_tumorlocation_rc

(40 real changes made)

replace or_tumorlocation_rc

(1 real change made)

replace or_tumorlocation_rc

(29 real changes made)

replace or_tumorlocation_rc

(5 real changes made)

replace or_tumorlocation_rc

(7 real changes made)

replace or_tumorlocation_rc

+
-.0494978 | -.2420296 .1430339
.9235033 | .6805655 1.253161
.0764967 | -.2531613 .3194345
.0540752
chiz (1) = 0.25 Pr>chi2 = 0.6185
TRAINING |
Exposed Unexposed | Total
________________________ o
43 19 | 62
39 15 | 54
________________________ o
82 34 | 116
I
.5243902 .5588235 | .5344828
I
Point estimate | [95% Conf. Intervall]
________________________ e
-.0344333 | —-.2332774 .1644108
.9383825 | .6527998 1.3489
.0616175 | -.3489003 .3472002
.0435572
chiz (1) = 0.11 Pr>chi2 = 0.7350
Freq Percent Cum
11 9.48 9.48
7 6.03 15.52
6 5.17 20.69
17 14.66 35.34
40 34.48 69.83
1 0.86 70.69
29 25.00 95.69
5 4.31 100.00
116 100.00
= 0 if or_ tumorlocation == "Lt COL"
= 0 if or tumorlocation == "Rt COL"
= 0 if or_ tumorlocation == "Rt COL & Sigmoid"
= 0 if or_ tumorlocation == "Sigmoid"
= 0 if or tumorlocation == "Transv COL"
= 1 if or tumorlocation == "Rect Above"
= 1 if or tumorlocation == "Rect At"

(6 real changes made)
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replace or_ tumorlocation rc = 1 if or_ tumorlocation == "Rect Below"
(17 real changes made)

tab or_tumorlocation_rc or_ tumorlocation rc

or_tumorlo or_tumorlocation_rc

|
cation rc | 0 1| Total
_______ e
0 | 86 0 | 86
1] 0 30 | 30
___________ O S
Total | 86 30 | 116

| TRAINING |
| Exposed Unexposed | Total
_________________ o
Cases | 23 7 30
Noncases | 59 27 | 86
_________________ o
Total | 82 34 | 116
| |
Risk | .2804878 .2058824 | 2586207
| |
| Point estimate | [95% Conf. Intervall]
|- - —— =
Risk difference | .0746055 | -.0925075 .2417184
Risk ratio | 1.362369 | .6463542 2.871568
Attr. frac. ex. | .2659847 | -.5471394 .6517583
Attr. frac. pop | .2039216
o
chi2 (1) = 0.70 Pr>chi2 = 0.4036
generate or_tumorlocation 1lr =
(560 missing values generated)
replace or_ tumorlocation lr = 0 if or_ tumorlocation == "Rt COL"
(40 real changes made)
replace or_ tumorlocation lr = 1 if or_ tumorlocation != "Rt COL"
(520 real changes made)
cs or_tumorlocation lr training if nc ==
| TRAINING |
| Exposed Unexposed | Total
_________________ o
Cases | 55 21 | 76
Noncases | 217 13 | 40
_________________ o
Total | 82 34 | 116
| |
Risk | .6707317 6176471 | .6551724
| |
| Point estimate | [95% Conf. Intervall]
| == e
Risk difference | .0530846 | -.1393431 .2455124
Risk ratio | 1.085947 | .8005879 1.473017
Attr. frac. ex. | .0791444 | -.249082 .3211214
Attr. frac. pop | .0572755
o
chi2 (1) = 0.30 Pr>chi2 = 0.5840
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cs 1li training

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

cs vi training

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Prev.
Prev.

cs pni training if nc

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

Cases

i

—_——— et - —— — — + — — + — —

—_——— et — — — — — 4+ — — + — —

—_——— et = — — — — + — — + — —

f nc ==
TRAINING
Exposed Unexposed
26 6
48 22
74 28
.3513514 .2142857
Point estimate
.1370656
1.63964
.3901099
.3169643
chi2 (1) =
f nc ==
TRAINING
Exposed Unexposed
9 4
65 24
74 28
.1216216 .1428571
Point estimate
-.0212355
.8513514
.1486486
.1078431
chi2 (1) =
TRAINING
Exposed Unexposed
11 2
60 26
71 28
.1549296 .0714286
Point estimate
.083501
2.169014
.538961
.456044
chi2 (1) =
1
TRAINING
Exposed Unexposed
36 11
28 12

+ - — + — —
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Total

32

70

102

.3137255
[95% Conf. Intervall]
-.04983 .3239613
.7562373 3.554993
-.3223363 .7187055
1.77 Pr>chi2 = 0.1831

Total

13

89

102

.127451
[95% Conf. Intervall]
-.1707183 .1282472
.2849328 2.543755
-1.543755 .7150672
0.08 Pr>chi2 = 0.7741

Total

13

86

99

.1313131
[95% Conf. Intervall]
-.0437132 .2107152
.5129994 9.170815
-.9493202 .8909584
1.23 Pr>chi2 = 0.2679

Total

47

40



Total

Risk

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

cs igradepath_ 1 training if nc

Cases

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

cs _Igradepath 2 training if nc

Cases

Risk difference
Risk ratio
frac. ex.
frac.

Prev.
Prev.

cs _Igradepath 3 training if nc

Cases

Risk difference

6

.562

4 23

5 .4782609

Point estimate

87

.5402299

[95% Conf.

-.1533473
.7289227
-.3718876

Interval]
.3218255
1.897728

.473054

0.48

.8269231

[95% Conf.

-.1281163
.853106
-.1721872

Pr>chi?2

0.4869

Interval]
.203792
1.285692
.2222088

0.21

.0576923

[95% Conf.

-.1758364
.0866463
-.8968322

Pr>chi?2

0.6440

Interval]
.0569174
1.896832
.9133537

.0842391
1.176136
.1497585
.1147086
chi2 (1) =
TRAINING |
Exposed Unexposed |
________________________ +
62 24 |
12 6 |
________________________ +
74 30 |
|
.8378378 8 |
|
Point estimate |
| == +
.0378378 |
1.047297
.0451613 |
.0325581 |
chi2 (1) =
TRAINING |
Exposed Unexposed |
________________________ +
3 3 |
71 27 |
________________________ +
74 30 |
|
.0405405 1 |
|
Point estimate |
| == m e +
-.0594595 |
.4054054
.5945946 |
.4230769 |
chi2 (1) =
TRAINING |
Exposed Unexposed |
________________________ +
9 3 |
65 27 |
________________________ +
74 30 |
|
.1216216 1 |
|
Point estimate |
|- +
|

.0216216
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1.39

.1153846

[95% Conf.

-.1090309

Pr>chi2

0.2387

Interval]

.1522741



Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

generate istage_ of cancer 1

1.216216 | .3534132 4.185418
1777778 | -1.829549 .7610752
.1333333 |

chi2 (1) = 0.10 Pr>chi2 = 0.7545

(560 missing values generated)

replace istage of cancer 1

1 if stage_of cancer 1 & stage_of cancer

(21 real changes made)

replace istage of cancer 1

0 if stage_of cancer != 1 & stage_of cancer

(94 real changes made)

cs istage_of cancer_ 1 training if nc

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

cs _Istage of 2 training if nc

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Prev.
Prev.

cs _Istage of 3 training if nc

Cases

=1
| TRAINING |
| Exposed Unexposed | Total
e it e e Fom -
| 15 6 | 21
| 67 27 | 94
- fom -
| 82 33 | 115
| |
| .1829268 .1818182 | .1826087
| |
| Point estimate | [95% Conf. Intervall]
| == m e e
| .0011086 | -.1548364 .1570537
| 1.006098 | 4273615 2.368562
| .0060606 | -1.339939 .577803
| .004329 |
o
chi2 (1) = 0.00 Pr>chi2 = 0.9889
| TRAINING |
| Exposed Unexposed | Total
- Fom -
| 18 11 | 29
| 64 22 | 86
- fom -
| 82 33 | 115
| |
| .2195122 .3333333 | .2521739
| |
| Point estimate | [95% Conf. Intervall]
| == e e
| -.1138211 | -.2979259 .0702836
| .6585366 | .3500418 1.238911
| 3414634 | -.2389105 .6499582
| .2434783 |
o
chi2 (1) = 1.62 Pr>chi2 = 0.2036
| TRAINING |
| Exposed Unexposed | Total
- fom -
| 33 8 | 41
| 49 25 | 74
- fom -
| 82 33 | 115
| |
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Risk

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

cs _Istage of 4 training if nc

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Prev.
Prev.

.402439 .2424242 .3565217

Point estimate [95% Conf. Intervall]

generate cea cat =
(560 missing values generated)

replace cea_cat=1 if cea > 5 & cea

(28 real changes made)

replace cea_cat=0 if cea <= 5 & cea

(60 real changes made)

cs cea_cat training if nc

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Prev.
Prev.

| ________________________________________________
| .1600148 -.0206637 .3406933
| 1.660061 .85948 3.20636
| .3976125 -.1634942 .6881199
| .3200296
o
chi2 (1) = 2.63 Pr>chi2 = 0.1051
| TRAINING |
| Exposed Unexposed | Total
o fom
| 16 8 | 24
| 66 25 | 91
o fom
| 82 33 | 115
| |
| .195122 2424242 | .2086957
| |
| Point estimate | [95% Conf. Intervall]
| == m e e
| -.0473023 | -.2168197 .1222151
| .804878 | .3815928 1.697696
| .195122 | -.6976964 .6184072
| .1391304
o
chi2 (1) = 0.32 Pr>chi2 = 0.5723
I =
I =
| TRAINING |
| Exposed Unexposed | Total
o fom
| 18 10 | 28
| 45 15 | 60
o fom
| 63 25 | 88
| |
| .2857143 4| .3181818
| |
| Point estimate | [95% Conf. Intervall]
| == m e e
| -.1142857 | -.3363713 .1077998
| .7142857 | .3847034 1.326227
| .2857143 | -.3262272 .6152966
| .2045455 |
o
chi2 (1) = 1.08 Pr>chi2 = 0.2992
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5.0 NMR Spot Urine Metabolomics as a New and Highly
Sensitive Screening Test for Colorectal Adenomatous Polyps

5.1 Abstract

Background: Colorectal cancer (CRC) is a major public health concern.
Adenomatous polyps are precursors of CRC and their identification is the basis
for population-based colon cancer screening programs. Current non-invasive,
fecal-based screening methods have poor diagnostic sensitivities (range 10-30%)
for adenomatous polyps and limited patient uptake due to their fecal nature.
Novel, patient-acceptable, highly sensitive CRC screening modalities are urgently
required. Metabolomics is a new science that identifies patterns of small

molecule metabolites and has been shown to predict health and disease states.

Aim: The aim of this study was to use metabolomics from a spot urine sample to
develop a diagnostic test that would distinguish healthy subjects from patients
with colonic polyps. We achieved this aim by building and refining a
metabolomics model that estimated the sensitivity and specificity of adenomatous

polyps relative to the gold standard of colonoscopy.

Methods: Through a prospective controlled study, urine samples were collected
from 354 subjects with normal colonoscopies, 243 subjects with colonic
adenomatous polyps (215 tubular, 28 villous) and 110 subjects with hyperplastic
polyps. One-dimensional nuclear magnetic resonance (NMR) spectra were
acquired using an Oxford 600Hz NMR spectrometer with a Varian VNMRS two-

channel console. The 1H NMR spectrum of each urine sample was analyzed
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using Chenomx NMRSuite v7.0 (Chenomx, Inc. Edmonton, Canada). The first
294 of the normal and 200 of the adenoma urine specimens were used as a
training set to establish the diagnostic metabolomic model using SIMCA-P+
v12.0.1 (Umetrics, Umea, Sweden). The model built was then validated with the
remaining 60 normal and 43 adenoma samples, as well as the hyperplastic

samples (the testing set).

Results: A two-component orthogonal partial least squares (OPLS) model for
normal vs. adenoma was built; R?Y = 0.396 (model’s fit of data), Q* = 0.25
(model’s predictability of data in 7-fold cross-validation). The model had a
sensitivity and specificity of 89.5% and 71.8%, respectively. A receiver operating
characteristics (ROC) curve was generated and area under the curve (AUC) was
calculated to be 0.891 (95% CI 0.864, 0.919). Validation of the model with 103
blinded samples resulted in sensitivity and specificity values of 72.1% and 40.0%,
respectively. When the hyperplastic samples were introduced blindly into the
adenoma model, exploratory analysis showed that they were more similar to the

adenomatous polyps than the normals.

Conclusions: This is the first study to demonstrate that NMR urine metabolomics,
as a diagnostic test, has the ability to distinguish normal healthy subjects from
patients with adenomatous polyps with far superior accuracy than that of current
fecal-based screening tests. Urine metabolomics has the potential to become an

accurate, non-invasive, and inexpensive screening tool for CRC.
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5.2 Introduction

Colorectal cancer can be curable if detected early and even preventable if
identified in the adenomatous polyp stage. The development of colorectal
carcinoma is a multi-step process that typically develops over decades and
requires mutational activation of many oncogenes coupled with the mutational
inactivation of tumor suppressor genes. Approximately 80% of the colorectal
carcinomas develop through the loss of heterozygosity (LOH) pathway involving
inactivation of APC gene. Other genes involved in the LOH pathway include K-
ras, DCC and p53." The cascade of events described by Fearon and Vogelstein
begins with a series of genetic mutations that transforms normal colonic mucosa
through adenoma to carcinoma.” Adenomatous polyps are precursors of CRC and
their identification is the basis for population-based CRC screening programs.
Once identified, adenomatous polyps can be removed endoscopically. Contrary to
adenomatous polyps, hyperplastic polyps are benign growths in the colon that

have no malignant potential.

Current world-wide population-based screening uses guaiac-based fecal occult
blood tests which only have a sensitivity 10-30% in detecting adenomatous
polyps.** Newer fecal immunochemical tests (FITs) use antibodies directed
against human globin and are thus more specific for colorectal bleeding. Initial

clinical trials have demonstrated that the diagnostic performance of several FITs
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is superior to standard guaiac-based tests in detecting both colonic adenomas (20-

67%) and cancers (61-91%).”

It was shown in chapter 4 that urine metabolomics can distinguish healthy
normals from CRC, but detecting adenomatous polyps is the key in preventing
CRC. This chapter examines urine metabolomic fingerprint for colonic

adenomatous polyps.

5.3 Objectives

* To identify the most influential metabolites that contribute to the separation,
in the spot urine metabolomic fingerprint, between patients with colorectal
adenomatous polyps and those without colorectal adenomatous polyps

* In patients with colorectal adenomatous polyps and those without colorectal
adenomatous polyps, using an un-blinded training set of the metabolomic
fingerprint data defined above, to build and refine a model that would estimate
the sensitivity and specificity of colorectal adenomatous polyps relative to the
gold standard of colonoscopy

¢ Using a blinded testing set of the metabolomic fingerprint data, to further
confirm the statistical models and the sensitivity and specificity of the spot
urine metabolomic fingerprint as a diagnostic test that would distinguish

patients with colorectal adenomatous polyps from those without.
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* To compare the sensitivity and specificity of the spot urine metabolomics test
with those of fecal occult blood test (Hemoccult II) and fecal immune tests,

namely Hemoccult II, Hemoccult ICT, and MagStream HemSp/HT.

5.4 Material & Methods

5.4.1 Recruitment and Sample Collection

Urine samples were collected from 707 subjects aged 39-76 through a regional
population-based screening program called SCOPE (Stop COlorectal cancer
through Prevention and Education) in Edmonton, Alberta between April 2008 and
October 2009. The screening population consisted of average and high-risk
individuals (personal or family history of CRC). The midstream urine samples
were collected from the screening subjects at the end of the education session
with subjects in their normal states, i.e. no diet modifications. The urine sample
containers were pre-coated with sodium azide drops (27.3mg/mL) to prevent
bacterial growth. The urine samples were frozen at -80°C within 24 hours of
collection and if the samples could not be frozen immediately, they were stored at
4°C within 4 hours of collection. All urine samples were collected prior to
colonoscopy, which was the gold standard for diagnosis. All polyps identified via
colonoscopy were removed using standard endoscopic techniques (polypectomy
snare with electrocautery or polypectomy forceps). All removed colonic tissue
was sent for histological analysis. Pathologists were blinded to the urine
metabolomics results. Each case was classified according to the most severe

lesion found on colonoscopy based on polyp size, number and histology. 354 out
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of 707 had normal colonoscopies, 243 out of 707 had adenomatous polyps, and
110 out of 707 subjects had hyperplastic polyps. A screen relevant neoplasm
(SRN) was defined as any adenoma 1.0 cm or greater in size, any adenoma with
villous components or high-grade dysplasia on histology or carcinoma of any size.
Subjects were excluded if they were anuric, oliguric, have end-stage renal failure,
or on hemo or peritoneal dialysis. Ethics approval for this study was obtained

from the Health Research Ethics Board at the University of Alberta.

5.4.2 Sample Analysis

All urine samples were stored at -80°C until they were ready to be analyzed. The
day prior to NMR acquisition, each sample was thawed to room temperature and
was diluted (1:10) with internal standard consisting of 5 mM sodium 2,2-
dimethyl-2-silapentane-5-sulfonate (DSS), 100 mM imidazole, 0.2% sodium
azide in 99% D20. The samples were stored at 4°C overnight. On the day of
NMR acquisition, each sampled was adjusted to a pH between 6.7 and 6.8 and
aliquoted into Smm NMR tubes. One-dimensional nuclear magnetic resonance
spectra was acquired using an Oxford 600Hz NMR spectrometer with a Varian
VNMRS two channel console and running VNMRJ software version 2.2C on a
RHEL 4 host computer in the Canadian National High Field NMR Centre
(NANUC), Edmonton, Alberta. All samples were run at a sweep width (sw) of
7225.43 Hz. The saturation frequency (sfrq), transmitter offset (tof) and pulse
width (pw) were all individually calibrated at the start of each day. The tof

typically ranged from (-213 to -215 Hz) and the pw ranged from 6 to 8
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microseconds. Shims were optimized until an acceptable line width value was
obtained at relative peak heights of: 50% (< 1.0 Hz), 0.55% (< 12.0 Hz), and
0.11% (< 20.0 Hz) were achieved. Water suppression was performed. Spectra
were collected at 25°C through a total of 32 scans over a period of 3.5 minutes; a
total recycle delay of 5 seconds was also used (i.e. 1 second recovery
delay/saturation and a 4 second acquisition). The 1H NMR spectrum of each
urine sample was analyzed and quantitated using the targeted profiling technique®
as implemented in Chenomx NMRSuite v7.0 (Chenomx, Inc. Edmonton,
Canada). The quantification process was done independently by two individuals
and verified by a third individual to optimize accuracy. 294 metabolites were

considered and 72 were found to be significant.

The spectral acquisition and quantification process were performed without the

knowledge of the pathology results.

5.4.3 Data Analysis

The first 294 normal and 200 adenoma samples were used as a training set to
establish the diagnostic metabolomic model of normal vs. adenoma using
projection-based methods and logistic regression with the aid of SIMCA-P+
v12.0.1 (Umetrics, Umea, Sweden) and STATA/SE 10.1 (TX, USA). The
metabolite concentrations were normalized (to total metabolite concentration
except urea) to account for the dilutional differences in the urine samples. Log

transformation was done to account for the non-normal distributive nature of the
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concentrations. Finally, those metabolites that are not products of normal human
metabolism, i.e. xenobiotics, such as ibuprofen and salicylurate, were excluded.
Diagnostic accuracies (such as sensitivity, specificity, and AUC for ROC curve)
were calculated from the statistical model and the model was then validated with
103 blinded urine samples (60 normal, 43 adenoma), the testing set. The clinical
characteristics of the two groups were compared and stratified models were built.
Chi squared test was used to compare proportional outcomes and student’s t-test
was used to compare continuous outcomes. Lastly the urine metabolomic results

were compared to the fecal test results.

5.4.4 Fecal Test Collection and Analysis

As part of the SCOPE pilot study, all screening subjects were required to obtain
stool samples for three fecal tests, namely the Hemoccult II® (Beckman Coulter
Canada Inc.), Hemoccult ICT® (Beckman Coulter Inc. USA) and the MagStream
HemSp/HT® (Fujirebio Inc, Japan and Fujirebio Diagnostics Inc, USA) occult
blood tests. Each participant was instructed on the proper use of each test kit
during the educational sessions. All study participants completed the three occult
blood kits from the same bowel movement on each of two consecutive days at
home 10 days prior to the booked date of the colonoscopy. No medication or
dietary restrictions were required prior to or during the stool collection except that
vitamin C supplements were to be discontinued three days prior. Stool samples
were not to be collected three days prior, during or three days after a menstrual

period, if they had bleeding hemorrhoids or if there was blood in their urine. The
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Hemoccult I and Hemoccult ICT stool specimens were to be obtained from 2
portions of 1 bowel movement and applied to the test card windows. MagStream
HemSp samples were to be obtained from multiple areas of the same bowel
movements using the collection probes (Hemetubes) provided. Once all stool
collections were complete, samples from day 1 and day 2 were placed in separate
plastic biohazard bag and delivered in person to an outpatient collection site.
Samples were stored at 4°C and analyzed within 4 days of receipt. All occult
blood stool samples were analyzed at a single laboratory according to standard
manufacturer’s instructions. Each occult blood test was analyzed independently
by trained laboratory personnel who were blinded to patient history and

colonoscopy results.’

5.5 Results

5.5.1 Training Set Subject Characteristics

Table 5.1 lists the demographics and clinical characteristics comparing the normal
and the adenoma groups. It is a little surprising that the two groups are quite
different from each other. There are more females in the normal group (60%)
compared to the adenoma group (41%) (p<0.001). The average age for the
adenoma group (59.4 + 0.6 years) is approximately 4 years older than that of the
normal group (55.3 = 0.5 years) (p<0.001). There are more people in the normal
group with positive family history of CRC (69%) or any cancer (92%) compared
to the adenoma group (61%, 71% respectively) (p=0.055, p<0.001, respectively),

and surprisingly more people in the normal group who have altered bowel habits
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compared to the adenoma group (4% vs. 0.5%, p=0.010). Smoking and diabetes

are equally prevalent for the two groups.

Table 5.1: Patient characteristics

NORMAL ADENOMA p-
[N=294] [N=200] VALUE
N (%) N (%)
Male:Female 117:177 118:82 <0.001*
Average age (years + SEM) 553 x0.5 59.4 0.6 <0.001*
FHx of Colon or Rectal 191 (69) 112 (61) 0.055
cancer
FHx of Any Cancer 230 (92) 141 (71) <0.001*
Smoking 26 (9) 29 (15) 0.058
Diabetes 14 (5) 8(4) 0.687
GI Bleeding 5(2) 6 (3) 0.340
Change in Bowel Habit 13 (4) 1(0.5) 0.010%*

Note: Not all % are calculated with the denominator of the total in each group as some clinical
information was missing or unknown.
* p<0.05

Adenomatous polyps were classified according to pathology — 87% of the
adenomas were tubular and 13% were tubulovillous or villous (figure 5.1).
Where multiple adenomas were found in the same patient, they were classified by
the largest or most histologically advanced lesion found. The presence of high-
grade dysplasia was also noted. A screen relevant neoplasm (SRN) was defined
as any adenoma 1.0 cm or greater in size, any adenoma with villous components
or high-grade dysplasia on histology or carcinoma of any size. There were 52 out
of 200 or 26% adenoma subjects with screening relevant neoplasms (figure 5.2).
The adenomas were fairly evenly distributed along the colon and rectum (figure
5.3) although the locations of the polyps were endoscopically determined by the

gastroenterologists/surgeons and there can be a lot of inter-observer variability.
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Figure 5.1: Adenoma by type

13%

Adenoma/Tubular

l ’ M Tubulovillous or Villous

87%
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Figure 5.3: Adenoma by location
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5.5.2 Building the Models

Unsupervised principal component analysis (PCA) was unable to generate a
statistically significant model to separate out the two groups. However, using
two-component separation, a supervised orthogonal partial least squares (OPLS)
model was built with R”Y of 0.396, and Q* of 0.250. The OPLS scatter plot
shown below (figure 5.4) illustrates the normal group in black squares and the
cancer group in red diamonds. A crude exploratory data analysis shows that
although there’s some degree of overlap, it is clear that the two groups are
showing up in different areas of the plot. A partial least squared discriminate
analysis (PLS-DA) model was also built and extra components were added so the

data can be represented using a three-dimensional scatter plot (figure 5.5).

Figure 5.4: OPLS Scatter plot of normal (black squares) vs. adenoma (red

diamonds)
N vs Adenoma total-bun -- newer version.MB (OPLS/O2PLS-DA), M vs. Adenoma (training set) L] normal
t[Comp. 1)/to[XSide Comp. 1] . adenoma
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Figure 5.5: PLS-DA 3-D scatter plot of normal (black pyramids) vs. adenoma

(red pyramids)
N vs Adenoma total-bun.M5 (PLS-DA) . normal
t[Comp. 1)/{Comp. 2]Jt[Comp. 3]
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The PLS-DA model was again internally validated using permutation tests and the
validation plot is shown as figure 5.6. Twenty models were generated and the R
and Q” values for these models are shown on the left side of the validation plot.
The R?and Q? values of the original normal vs. adenoma model are shown far to
the right. This validation plot shows that all the R* and Q* values for the

randomly generated models are lower than the original points to the right, that is,

the model is not over-fit.
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Figure 5.6: Validation plot
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5.5.3 Diagnostic Accuracies

SIMCAP+12.0.1 - 2010-12-31 04:45:53 (UTC-7)

A spectrum of sensitivity and specificity were again calculated using the

Observed vs. Predicted plot (figure 5.7). Three representative pairs of diagnostic

accuracies are listed in table 5.2. Receiver operating characteristics (ROC) curve

is generated (figure 5.8) from the range of sensitivity and specificity values and

AUC is calculated to be 0.8913 (95% CI 0.8639, 0.9187).
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Figure 5.7: Observed vs. predicted plot of normal (black squares) vs. adenoma
(red diamonds) model
N vs Adenoma total-bun - newer version.MB (OPLS/02PLS-DA), N vs. Adenoma (training set) . normal
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Table 5.2: Representative diagnostics for normal vs. adenoma OPLS model

Cut off level  Sensitivity  Specificity RY Q’ AUC
0.276579 97.50% 53.06%
0.422109 89.50% 71.77% 0.396 0.25 0.8913
0.491614 81.00% 80.61%

Figure 5.8: Receiver operating characteristics (ROC) curve for normal vs.
adenoma OPLS model

1.00

0.75

Sensitivity
0.50

0.25

0.00

0.00 0.25 0.50 0.75 1.00
1 - Specificity
Area under ROC curve = 0.8913
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5.5.4 Metabolites
The most contributing metabolites to the separation between normal and adenoma

are shown in figure 5.9.

Figure 5.9: Variable importance plot of normal vs. adenoma OPLS model

N vs Adenoma total-bun -- newer version.MB (OPLS/02PLS-DA), N vs. Adenoma (training set)
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The top 10 metabolites that contribute to the separation of normal and adenoma
(in order of importance) are: butyrate, serine, methanol, -alanine, asparagine, 3-
hydroxyphenylacetate, creatinine, histidine, trigonelline, and cis-aconitate.
Specifically, the top 5 metabolites that are higher in concentration in the adenoma
samples are asparagine, 3-hydroxyphenylacetate, histidine, trigonelline, and
creatinine; and those that are higher in normal samples are butyrate, serine,
methanol, $-alanine, and O-acetylcarnitine. This is shown by the coefficient plot

(figure 5.10).
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Figure 5.10: Coefficient plot for normal vs. adenoma OPLS model
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.
5.5.5 Model Analysis

As there is overlap between the normal group and the adenoma group in the
OPLS model generated, it was unclear what characteristics contributed to the
overlap, that is, what clinical characteristics do some of the patients with adenoma
have that makes them behave like normal and vice versa. For this, the
overlapping and non-overlapping groups in the model were studied separately.
Four groups were generated: 1) Normal Overlapping, 2) Normal Non-
overlapping, 3) Adenoma Overlapping, and 4) Adenoma non-overlapping groups.
Since we are working with the OPLS model, only one direction of separation had
to be taken into consideration (left-right). To generate the subgroups, we took all
the normal (black square) data points to the right of the right-most adenoma (red
diamond) data point (excluding the two obvious outliers) and made this the Non-

overlapping Normal group; and the remainder normal data points the Overlapping
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Normal group. The same process was done for the adenoma data points. (Figure

5.11)

Figure 5.11: OPLS scatter plot of normal (black squares) vs. adenoma (red
diamonds) model with overlapping and non-overlapping groups defined

N vs Adenoma totalbun - newer varsion M5 (OPLS/O2PLS-DA), N vs. Adenoma (training set) . normal
t[Comp. 1)ro[XSide Comp. 1) . adenoma

Colored according to classes i M5
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We looked at each combination of the different subgroups and examined the
metabolites that contribute to the separation separately in an attempt to narrow
down the list of metabolites that would give us a more powerful model. Next we
looked at clinical characteristics that may be different between the subgroups to

determine the best traits to stratify the groups to generate more predictive models.

5.5.5.2 Subdividing The Normal Group
5.5.5.2.1 Metabolites

e Adenoma vs. Non-overlapping Normal

When the adenoma group was plotted against the non-overlapping normal group,

that is, the group of normal that is the most different from the adenoma group, the
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top metabolites that drove the separation were: butyrate, serine, methanol, 8-

alanine, and isoleucine (table 5.3).

e Adenoma vs. Overlapping Normal

When the adenoma group was plotted against the overlapping normal group, that
is, the group of normal that somehow resembles the adenoma group
metabolomically, the top metabolites that drove the separation were: butyrate,

methanol, cis-aconitate, asparagine, and serine (table 5.3).

e QOverlapping Normal Vs. Non-overlapping Normal

The overlapping group and the non-overlapping group of normal are plotted
together on a scatter plot, without the adenoma group, to see what the
metabolomic difference is between these two groups of normal. The top 5
metabolites that contributed to the separation between these two groups of

Normal were: butyrate, serine, leucine, methanol, and -alanine (table 5.3).
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Table 5.3: Summary of metabolites from sub models of normal subjects

Adenoma vs. Non- Adenoma vs. Overlapping vs. Non-

overlapping Normal Overlapping Normal overlapping Normal
Butyrate Butyrate Butyrate*
Serine Methanol Serine
Methanol Cis-Aconitate Leucine
B-alanine Asparagine Methanol’
Isoleucine Serine B-alanine’
Leucine Tyrosine Isoleucine”
Trigonelline” Histidine Uracil’
2-oxoglutarate Urea 2-oxoglutarate
O-Acetylcarnitine Creatinine Valine
Creatinine 3-Hydroxyphenylacetate | Pyroglutamate
3- Valine O-Acetylcarnitine”
Hydroxyphenylacetate
Asparagine n-methylhistidine Threonine
Citrate” 2-Hydroxyisobutyrate Glutamine
Uracil Trimethylamine Urea
3-Hydroxymandelate Trigonelline Methylguanidine

* Metabolites in Overlapping vs.

Non-overlapping Normal model that are also part of Adenoma
vs. Non-overlapping Normal model. ** Metabolites in Adenoma vs. Non-overlapping Normal
model not in Overlapping vs. Non-overlapping Normal model.

It was hypothesized that if we eliminated those top metabolites that separate

overlapping & non-overlapping normal from the main normal vs. adenoma model,

perhaps we could minimize the difference between the two normal groups and

achieve greater separation between normal and CRC. However, this was not the

case as the R? and Q? values are not as good as that for the main model (table 5.4).
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Table 5.4: Summary of sub-model characteristics

Model

RYY

Main model (Normal vs. Adenoma)

0.396

0.250

Main model excluding the 9 metabolites in
Overlapping vs. Non-overlapping Normal

model that are also part of Adenoma vs. Non-

overlapping Normal model (denoted by *)

0.122

0.009

Main model using only 6 metabolites in

Adenoma vs. Non-overlapping Normal model

not in Overlapping vs. Non-overlapping
Normal model (denoted by *)

0.089

0.059

5.5.5.2.2 Clinical Parameters

Using logistic regression, clinical characteristics such as age, gender, family

history, etc of the normal group were tested for their odds of predicting the

dichotomous outcome of overlap with the adenoma group or not. The odds ratios

and p-values are summarized in the table below (table 5.5). This is an exploratory

analysis to identify potential factors for stratification.

Table 5.5: Clinical characteristics of the normal group and the odds of
overlapping with adenoma group

Variable Odds Ratio p-value

Gender 1.232 0.391
Age 1.015 0.314
Smoking 2.055 0.118
Diabetes 0.943 0.916

CRC 1.122 0.662
Family Any cancer 0.723 0.502
History
Symptoms GI bleed 1.071 0.940

Change bowel habits 0.601 0.371
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Demographics

In the normal group, gender and age did not change the odds of overlapping with
the adenoma group, OR 1.23 (95% CI 0.76, 1.98), p = 0.391 and OR 1.01 (0.99,
1.04), p = 0.314, respectively. Even when age was tested by categories of 5 years,
none of the categories significantly predicts overlap with adenoma. Although the
odds of overlapping with adenoma in those that were over the age of 70 was
almost three times that of those that were younger than 45, but this was not
statistically significant (p = 0.205) and there might not be enough numbers to see
this effect. This was reflected by the wide 95% confidence interval (0.557,

15.264) of the odds ratio.

Smoking History

Within the normal group, being a smoker did not increase the odds of overlapping
with the adenoma group (OR = 2.05, 95% CI = 0.83, 5.06; p = 0.118), but again
since there were only 26 smokers in the normal group, there might not be enough

numbers to show a difference.

Diabetes
Having diabetes did not increase the odds of overlapping with the CRC group
(OR =10.94, 95% CI =0.32, 2.79; p=0.916), although there were only 14 out of

294 subjects who had diabetes, and this might be too few to show a difference.
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Family history

Within the normal group, having a family history of CRC did not increase the
odds of overlapping with the CRC group (OR =1.12; 95% CI = 0.67, 1.88;
p=0.662). Having a family history of any cancer(s) did not increase the odds of
overlapping with the cancer group either (OR = 0.72; 95% CI = 0.28, 1.86;

p=0.502).

Gastrointestinal Symptoms

Within the normal group, having symptoms of gastrointestinal bleeding (OR =
1.07; 95% CI = 0.18, 6.51; p=0.940) or changes in bowel habits (OR = 0.60; 95%
CI=10.20, 1.84; p=0.371) did not increase the odds of overlapping with the CRC
group, although the number of subjects with GI symptoms in this screening

population was small.

5.5.5.3 Subdividing The Adenoma Group

5.5.5.3.1 Metabolites

e Normal vs. Non-overlapping Adenoma

When the normal group was plotted against the non-overlapping adenoma group,
that is, the group of adenoma that was the most different from the normal group,
the top metabolites that drove the separation were: serine, trigonelline,

trimethylamine, butyrate, and asparagine (table 5.6).
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e Normal vs. Overlapping Adenoma

When the normal group was plotted against the overlapping adenoma group, that
is, the group of adenomas that somehow resembled the normal group
metabolomically, the top metabolites that drove the separation were butyrate,

serine, methanol, 3-alanine, and creatinine (table 5.6).

e Overlapping Cancers Vs. Non-overlapping Adenoma

The overlapping group and the non-overlapping group of adenoma were plotted
together on a scatter plot, without the normal group, to see what the metabolomic
difference was between these two groups of adenoma. The top 5 metabolites that
contributed to the separation between these two groups of normal were

trimethylamine, trigonelline, asparagine, acetate, and histidine (table 5.6).
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Table 5.6: Summary of metabolites from sub models of Adenoma

Normal vs. Non- Normal vs. Overlapping | Overlapping vs. Non-

overlapping Adenoma Adenoma overlapping Adenoma
Serine Butyrate Trimethylamine”
Trigonelline Serine Trigonelline”
Trimethylamine Methanol Asparagine
Butyrate p-alanine Acetate
Asparagine Creatinine Histidine™
3-Hydroxyphenylacetate | 3-Hydroxyphenylacetate | Isoleucine’
Histidine Cis-Aconitate Pyruvate’
Methanol”~ Histidine 4-

hydroxyphenylacetate”

2-Oxoglutarate Asparagine Benzoate
Isoleucine Trimethylamine N-oxide | 2-Oxoglutarate’
Benzoate 3-Hydroxymandelate 3-

Hydroxyphenylacetate”

4-Hydroxyphenylacetate | Adipate Serine

Pyruvate Carnitine Citrate”

Cis-Aconitate O-Acetylcarnitine 3-Hydroxyisovalerate
Citrate 3-Indoxylsulfate Trimethylamine N-oxide

* Metabolites in Overlapping vs. Non-overlapping adenoma model that are also in Normal vs.
Non-overlapping adenoma model. ** Metabolites in Normal vs. Non-overlapping adenoma model
not in Overlapping vs. Non-overlapping adenoma model.

Again we hypothesized that if we eliminated those metabolites that separate

Overlapping & Non-overlapping adenoma from the main model, perhaps we

could minimize the difference between the two adenoma groups and achieve

greater separation between normal and adenoma. However, his was not the case

as shown in table 5.7.

183




Table 5.7: Summary of sub-model characteristics

Model RY Q’
Main model (Normal vs. Adenoma) 0.396 0.250
Main model excluding 12 metabolites in
Overlapping vs. Non-overlapping adenoma 0.237 0.127

model that are also in Normal vs. Non-
overlapping adenoma model (denoted by)

Main model using only 3 metabolites in
Normal vs. Non-overlapping adenoma model 0.186 0.181
not in Overlapping vs. Non-overlapping
adenoma model (denoted by )

5.5.5.3.2 Clinical Parameters

Logistic regression analysis was used to test the significance of various clinical
and pathological variables of adenoma patients on the dichotomous outcome of
overlapping or non-overlapping with normals. The odds ratios and p-values are
summarized in table 5.8. This is an exploratory analysis to identify potential

factors for stratification.
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Table 5.8: Clinical characteristics of the adenoma group and the odds of

overlapping with normal group

Variable Odds Ratio  p-value

Gender 0.434 0.031*
Age 0.989 0.632
Smoking 0.304 0.006*
Diabetes 0.425 0.255
Family history CRC 1.113 0.766

Any cancer 0.710 0.393
Symptoms GI bleed - -

Change bowel habits - -
Location of Rectal vs. colon 0.6875 0.410
Adenoma Left vs. right 0.753 0.497

Villous vs. Tubular 1.134 0.812
Pathology of Screening Relevant Neoplasm
Adenoma ——— g P 0.633 0.225

Note: There are too few people with symptoms to make any meaningful conclusions.
* p<0.05
pP=

Demographics

In the adenoma group, the odds of resembling or overlapping with the normal
group for males was 0.43 (95% CI 0.20, 0.93) times that of females (p=0.03).
That is, males were more different than the normal compared to the females. Age
did not change the odds of overlapping with normal, OR 0.99 (95% CI 0.95,
1.03); p=0.632. Even when age was subdivided into 5-year categories, there was

not one category that statistically significantly predicts overlapping with normal.

Smoking

Within the adenoma group, being a smoker did decrease the odds of overlapping
with the normal group (OR =0.30; 95% CI =0.13, 0.71; p = 0.006). That is,

smokers were more likely to be different than normal.
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Diabetes

Adenoma patients who have diabetes had decreased odds of overlapping with the
normal group (OR=0.42; 95% CI=0.10, 1.85; p=0.255), but this was not
statistically significant, although there were only 8 out of 200 subjects who have

diabetes.

Family history

Within the adenoma group, a positive family history of CRC (OR =1.11; 95% CI
=0.55, 2.25; p=0.766) and a positive family history of any cancer(s) (OR =0.71;
95% CI =0.32, 1.56; p=0.393) did not increase the odds of overlapping with the

normal group.

Gastrointestinal Symptoms

Since there were only six people with GI bleeding in the adenoma group and one
person with altered bowel habits, there was not enough numbers to make
meaningful conclusions regarding the effects of gastrointestinal symptoms on the

effects of overlapping with normal.

Location of Adenoma

When colon and rectal adenomas were separated and compared in their odds of
overlapping with normal, the rectal adenomas were more likely to be different
than the normals, but this difference was not statistically significant (OR=0.69;

95% C1=0.28, 1.68; p=0.410). There was also no statistically significant
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difference when left-sided (including transverse, descending colon, sigmoid, and
rectal) adenomas were compared to right-sided ones (OR=0.75; 95% CI=0.33,

1.71; p=0.497).

Adenoma Pathology

In the adenoma group, there were 174 subjects with tubular adenomas and 26 with
tubulovillous or villous adenomas. Villous adenomas were more likely to become
malignant than tubular ones', but logistic regression revealed that the villous
adenomas were not more likely to be different than normal compared to the

tubular ones (OR = 1.13; 95% CI = 0.40, 3.21; p=0.812).

A screen relevant neoplasm (SRN) was defined as any adenoma 1.0 cm or greater
in size, any adenoma with villous components or high-grade dysplasia on
histology or carcinoma of any size. There were 52 out of 200 or 26% adenoma
subjects with screening relevant neoplasms. The SRNs were more likely to be
different than the normals compared to the non-SRNs (OR = 0.63; 95% CI = 0.30,

1.32; p=0.225), but this did not reach statistical significance.

Summary

In summary, gender and smoking were statistically significant differences
between the overlapping and non-overlapping adenoma subgroups. When these
factors were tested with an overall logistic regression test, they were still all

statistically different. In fact, the effect size was even bigger when both variables
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were in the model, so ideally we should do 4-way stratification. However, since
there were only 55 smokers in total, four-way stratification would reduce the
number of samples further thus making it hard to use projection-based methods to

analyze the data.

5.5.5.4 Stratification

The above method of model analysis allowed us to narrow down the specific
clinical characteristics by which to stratify the models — these were gender and
smoking. We also chose to stratify by family history of colorectal cancer as this
is a known risk factor for CRC®, as well as family history of any cancer since this

stratification was performed for the normal vs. CRC analysis.

5.5.5.4.1 Gender

Separate male and female OPLS models were built for normal vs. adenoma and
their model characteristics are shown in table 5.9. Contrary to what was seen for
the normal vs. CRC analysis, the male model had a numerically better R’Y, a
comparable Q° value, and a numerically better AUC compared to the main model,
suggesting that this urine metabolomics test for adenomas would work better for
males, but the statistical and clinical significance for this was unclear. The scatter
plots for the male and female models are shown as figure 5.12 and 5.13,
respectively. Note when the male model was autofit, only one component was

generated, hence an extra component was added to generate a proper scatter plot
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shown here, but the R*Y and Q? values in table 5.9 are those from the autofit

model.

Table 5.9: Characteristics of gender-stratified models compared to the normal vs.
adenoma training set model

Model RY Q> Sens Spec AUC  AUC 95% CI

Main Normal
vs. Adenoma
Training Set
Model

Male Model 0436 0276 90% 74% 0.9027  0.8655, 0.9398

Female Model ~ 0.369 0.164 89%  63% 0.8836  0.8421, 0.9250

0.396 0.250 90%  72% 0.8913  0.8639, 0.9187

Figure 5.12: OPLS scatter plot of the male model of normal (orange triangle) vs.
adenoma (blue diamonds)

N vs Adenoma total-bun -- newer version.M10 (OPLS/02PLS-DA), Male Model . Adeno M
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RZX[1] = 0.0z81357 RZX[XSide Comp. 1] = 0.0651224 Ellipse: Hotelling TZ (0.35)
SIMCAP+12.0.1 - 2011-01-03 19:32:16 (UTC-7)
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Figure 5.13: OPLS scatter plot of the female model of normal (pink squares) vs.
adenoma (green stars)

N vs Adenoma total-bun -- newer version.M11 (OPLS/O2PLS-DA), Female Model Adeno FM
t[Comp. 1]#to[XSide Comp. 1] NormalFh
Colored according to classes in M11
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RZX[1] = 0.03455z5 RZX[XSide Comp. 1] = 0.0846759 Ellipse: Hotelling TZ (0.35)

SIMCAP+12.0.1 - 2011-01-03 19:33:24 (UTC-7)

5.5.5.4.2 Smoking

When stratified models for smoking were compared to the main adenoma model,
the diagnostic accuracies were not improved at all (table 5.10). Although the
smoking model had a better AUC, but the Q” for the model was only 0.04. This
was largely due to the fact that there were only 55 people in both the normal and
adenoma groups who smoke. The scatter plots for the smoking and non-
smoking/ex-smoking/unknown models are shown as figure 5.14 and 5.15,
respectively. Again, an extra component had to be generated to create a scatter
plot for representation of the data for the smoking model. The scatter plot for the
smoking model (figure 5.14) gives a false impression that the separation between
the two groups is very good, but in fact, the Q* for the model is only 0.04, re-
emphasizing that the model characteristics need to be interpreted together with the

scatter plots to get an accurate idea of what the data shows. It is also much easier
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to find random multivariate correlations when the number of variables exceeds

the number of samples, as is the case for the smoking model.

Table 5.10: Characteristics of smoking-stratified models compared to the main
normal vs. adenoma training set model

Model R’Y Q° Sens Spec AUC AUC 95% CI

Main Normal vs.

Adenoma Training 0.396 0.250 90%  72% 0.8913 0.8639, 0.9187
Set Model

Smoking Model 0.547 0.040 90% 88% 0.9430 0.8836, 1.000
Non/Ex

Smoking/Unknown 0378 0.223  90% 66% 0.8819 0.8514,0.9124
Model

Figure 5.14: OPLS scatter plot of the smoking model of normal (black squares)
vs. adenoma (red diamonds)
N vs Adenoma total-bun -- newer version. M58 (OPLS/02PLS-DA), Adenoma smoking L normal

t[Comp. 1)#o[XSide Comp. 1] . adenoma
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Figure 5.15: OPLS scatter plot of the non/ex-smoking/unknown model of normal
(black squares) vs. adenoma (red diamonds)
N vs Adenoma total-bun -- newer version.M53 (OPLS/0O2PLS-DA), Adenoma non smoking, ex or unknown = normal

t[Comp. 1)/to[XSide Comp. 1] A adenoma
Colored according to classes in M53
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5.5.5.4.3 Family History of Any Cancer

The normal and adenoma patients were also stratified by family history of any
cancer and one OPLS model was built for those with a positive family history of
any cancer and one for those without. The model characteristics are listed in table
5.11. The no/unknown family history model had a much better numerical R*Y,
Q?, and AUC values compared to the main model and the positive family history
of any cancer model had comparable model characteristic and diagnostic
accuracies to the main model. This is overall suggestive that stratifying by family
history of cancer can increase the accuracy of this screening urine metabolomic
test, but the statistical and clinical significance of this is unclear. The scatter

plots for the stratified models are shown as figure 5.16 and 5.17, respectively.
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Table 5.11: Characteristics of adenoma models stratified by family history of any
cancer compared to the main normal vs. adenoma training set model

Model R’Y Q° Sens Spec AUC AUC 95% CI

Main Normal vs.
Adenoma Training 0.396 0.250 90% 72% 0.8913 0.8639, 0.9187
Set Model

No/Unknown

family history of 0.573 0306 95% 88% 0.9502 0.9097, 0.9907
any cancer
Family history of

0.407 0.234 90% 73% 0.8957 0.8641,0.9272
any cancer

Figure 5.16: Normal (black squares) vs. adenoma (red diamonds) OPLS scatter
plot of the no/unknown family history of any cancer groups
N vs Adenoma total-bun -- newer version. M55 (OPLS/02PLS-DA), Adenorma NO FHx any CA L normal

t[Comp. 1)/to[XSide Comp. 1] A adenoma
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SIMCAP+ 12.0.1 - 2011-01-03 21:38:38 (UTC-7)
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Figure 5.17: Normal (black squares) vs. adenoma (red diamonds) OPLS scatter
plot of the positive family history of any cancer groups
N vs Adenoma total-bun -- newer version.M56 (OPLS/0O2PLS-DA), Adenoma FHx any CA L normal

t[Comp. 1)/to[XSide Comp. 1] A adenoma
Colored according to classes in M56
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5.5.5.4.4 Family History of Colorectal Cancer

The normal and CRC patients were also stratified by family history of CRC and
one OPLS model was built for those with a positive family history of CRC and
one for those without. The model characteristics are listed in table 5.12. The
no/unknown family history model had numerically better R*Y, comparable Q,
and higher AUC values compared to the main model and the positive family
history of CRC model had a comparable R*Yand higher AUC but a lower Q
compared to the main model. This is overall suggestive that stratifying by family
history of CRC can increase the accuracy of this screening test, but it is unclear
whether this is statistically or clinically significant. The scatter plots for the

stratified models are shown as figure 5.18 and 5.19, respectively.
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Table 5.12: Characteristics of models stratified by family history of CRC

compared to the main model

Model RYY Q° Sens Spec AUC AUC 95% CI
Main Normal vs.

Adenoma Training  0.396 0.250 90% 72% 0.8913 0.8639, 0.9187
Set Model

No/Unknown 0 0

family history CRC 0502 0267 91%  80%  0.9296 0.8934,0.9659
2;“813/ history of ) 414 0213 90% 74% 0.8990 0.8645, 0.9336

Figure 5.18: Normal (black squares) vs. adenoma (red diamonds) OPLS scatter
plot of the no/unknown family history of CRC groups

N vs Adenoma total-bun - newer version.M53 (OPLS/02PLS-DA), Adenoma NO FHx CRC . normal
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Figure 5.19: Normal (black squares) vs. adenoma (red diamonds) OPLS Scatter
plot of the positive family history of CRC groups
N vs Adenoma total-bun -- newer version. M54 (OPLS/02PLS-DA), Adenoma FHx CRC L normal
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5.5.6 Validation with Testing Set

The robustness the metabolomics model is reflected by how well it predicts
unknowns. Following our development of the metabolomics model with the un-
blinded training set (see above sections 5.5.2), we next used the blinded testing set
of 103 urine samples (43 adenoma, 60 normal) to validate the ability of the
metabolomics model to distinguish normal from patients with colorectal

adenomas.

Ideally the validation samples should be matched and completely representative
of the training set. The clinical characteristics of the training set normal subjects
were compared to those of the testing set normal subjects (table 5.13), and the
same was done for the adenoma subjects (table 5.14). As these validation

samples are simply subsequently collected normal and adenoma samples and not

196



methodologically matched, there are some differences between the training and
the testing set. In the normal group, the number of subjects with a positive
family history of CRC (69% vs. 54%, p=0.031) and family history of any cancer
(92% vs. 65%, p<0.001) were significantly more in the training set compared to
the testing set. The gender distribution and number of people with changes in
bowel habits were also approaching statistical significance. In the adenoma
group, the testing set subjects were older than the training set subjects (62.2x1.1
vs. 59.4+0.6; p = 0.034), and again the number of people with a positive family
history of CRC was significantly more in the training set than the testing set (61%

vs. 38%, p=0.008).

Table 5.13: Clinical characteristics of normal subjects in the training set vs.
testing set

Training Set Testing Set p-value
[n=294] [n=60]
N (%) N (%)
Male:Female 117:177 31:29 0.089
Average age (years + SEM) 55.3+0.5 55.7x1.1 0.684
Smoking 26 (9) 6 (10) 0.839
Diabetes 14 (5) 4 (7) 0.541
Family CRC 191 (69) 31 (54) 0.031*
History Any cancer 230 (92) 39 (65) <0.001*
GI bleed 5(12) 2(3) 0.410
Symptoms  Change bowel 13 (4) 0(0) 0.096

habits

Note: Not all % are calculated with the denominator of the total in each group as some clinical
information was missing or unknown.
* p<0.05
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Table 5.14: Clinical characteristics of adenoma patients in the training set vs.
testing set

Training Set  Testing Set

(n=200) (n=43) p-value
N (%) N (%)
Male:Female 118:82 27:16 0.646
Average age (years + SEM) 59.4+0.6 62.2x1.1 0.034%*
Smoking 29 (15) 10 (24) 0.166
Diabetes 8(4) 49 0.145
Family CRC 112 (61) 15(38) 0.008*
History Any cancer 141 (71) 27 (63) 0.298
Symptoms GI bleed 6 (3) 1(2) 0.810
Change bowel habits 1(0.5) 0(0) 0.642
Location of  Rectal vs. colon 30 (15) 8 (19) 0.555
Adenoma Left vs. right 149 (75) 27 (63) 0.119
Paifbeloy off Villous‘ vs. Tubular 26 (13) 2(5) 0.120
Adenoma Screening Relevant 52 (26) 13 (30) 0.570

Neoplasm vs. not

Note: Not all % are calculated with the denominator of the total in each group as some clinical
information was missing or unknown.
* p<0.05

Diagnostic accuracies were calculated using the same cutoff (0.491614) from the
original model that resulted in a sensitivity of 81.0% and specificity of 80.6%.
The sensitivity and specificity from the validation samples are 72.1% and 40.0%,

respectively.

When only the testing adenoma samples were introduced to the main normal vs.
adenoma model (figure 5.20) as the prediction set, these samples showed up on
adenoma side of the model (figure 5.21). However, when the 60 normal samples
were introduced to the original model blindly, the samples still tend to be more on
the adenoma side of the plot (figure 5.22), which is as expected with the

calculated validation specificity of 40.0%.
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Figure 5.20: Original normal (black squares) vs. adenoma (red diamonds) OPLS
scatter plot
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Figure 5.21: Testing set adenoma samples (blue squares) superimposed on normal
(black triangles) vs. adenoma (red diamonds) OPLS scatter plot

toPS[1]

tPS[1]

199



Figure 5.22: Testing set normal samples (blue squares) superimposed on normal
(black triangles) vs. adenoma (red diamonds) OPLS scatter plot

toPS[1]

tPS[1)

5.5.7 Validation With Hyperplastic Polyps

Hyperplastic polyps are benign growth of the colon that have no malignant
potential. When 110 urine samples from patients with hyperplastic polyps were
introduced blindly to the Normal vs. Adenoma model, exploratory analysis shows
that the hyperplastic polyps were more alike with the adenomatous polyps than
the normals (figure 5.23). This is further confirmed when we attempted to
establish an OPLS model between hyperplastic polyps and adenomatous polyps.
A meaningful model to separate the two groups could not be constructed; R*Y =
0.126, Q*=-0.0771. Since hyperplastic polyps are not pre-cancerous, we
expected them to behave more like normals than adenomas, however it seems the
model was more predictive of a growth and not powerful enough to distinguish

the type of tumor.
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Figure 5.23: Hyperplastic samples (blue squares) superimposed on normal (black
triangles) vs. adenoma (red diamonds) OPLS scatter plot

toPS[1]

tPS[1]

5.5.8 Adenoma Model vs. CRC Model

The normal vs. CRC model (chapter 4) is very different than the normal vs.
adenoma model. The metabolites that drive the separation between the normal
and CRC groups are completely different than those that drive the separation
between normal and adenoma; the top ten in each model are summarized in table

5.15. Creatinine and methanol are the only two metabolites in common.
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Table 5.15: Comparison of top ten contributing metabolites from the normal vs.

CRC model and the normal vs. adenoma model

N vs. CRC Model N vs. Adenoma Model
Hypoxanthine Butyrate
Dimethylamine Serine

Creatinine Methanol

Urea B-alanine
3-Indoxylsulfate Asparagine

Adipate 3- Hydroxyphenylacetate
Methanol Creatinine
Guanidoacetate Histidine
3-Hydroxybutyrate Trigonelline

Acetone Cis-Aconitate

While histologically it is believed that normal colonic mucosa transforms to
carcinoma through adenomatous polyps®, metabolomically this spectrum of
events is not so clear. We attempted to investigate this matter further by
superimposing the CRC training set onto the normal vs. adenoma model (figure
5.24) as well as superimposing the adenoma training set onto the normal vs. CRC
model (figure 5.25). When the CRC samples are tested in the adenoma model,
exploratory data analysis revealed that the CRC samples were distributed on both
sides of the plot, although there’s slightly more on the adenoma side and
particularly a few outliers on the adenoma side. When the adenoma samples are
tested in the CRC model, they are evenly distributed on both sides of the plot,
suggesting that there is no resemblance of adenomatous polyps to CRC

metabolomically.
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Figure 5.24: CRC training samples (blue squares) superimposed on normal (black
triangles) vs. adenoma (red diamonds) OPLS scatter plot
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Figure 5.25: Adenoma training samples (blue squares) in normal (black triangles)
vs. CRC (red diamonds) OPLS scatter plot
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5.5.9 Comparison of Urine Metabolomic Test to Fecal Tests

The diagnostic accuracies of urine metabolomic test for adenoma was compared
to the three fecal tests as part of the SCOPE pilot study and the sensitivity and
specificity for each test are summarized in table 5.16. The diagnostics of the fecal
tests were calculated from the raw SCOPE trial data. Urine metabolomics far

outperformed the currently used Hemoccult II FOBT in sensitivity (89.5% vs.
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3.0%). The newer fecal immune tests had slightly higher sensitivities (13.8% for
Hemoccult ICT and 18.8% for MagStream HemSp/HT) but still far inferior to the
urine metabolomics test. The specificity of the urine metabolomics test was not
as high as that of the fecal tests (71.8% vs. 99.0%), but as mentioned previously,
it is more important for a screening test to have a higher sensitivity than
specificity. Even when the adenomas were divided into villous and tubular
subgroups, then sensitivity of the MagStream HemSp/HT test merely reached

50% for villous adenomas.

Table 5.16: Diagnostic accuracies of the urine metabolomics test for adenomas
compared to fecal tests

Test Sensitivity (%) Specificity (%)
Urine Metabolomics 89.5 71.8
Hemoccult II 3.0 99.0
Hemoccult ICT 13.8 94.2
MagStream HemSp/HT 18.8 92.8

5.5.10 Commercialization

To commercialize urine metabolomics as a screening test for adenoma, accuracy
of the test is very important, but for it to become a population-based test, the cost
needs to be reasonable. The normal vs. adenoma model is currently built using 69
metabolites, but if we can produce a model of acceptable diagnostic accuracies
using fewer metabolites, then the cost of the test would be much lower. From the
variable importance plot of the current model, we know, in order of importance,
the metabolites that contribute most in the separation of the two groups. We can

capitalize on this by taking the top metabolites and see what kind of models we
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can build with them. The results are summarized in table 5.17. Using the
concentrations of the top 10 metabolites, namely butyrate, serine, methanol, [3-
alanine, creatinine, asparagines, 3-hydroxyphenylacetate, histidine, trigonelline,
and cis-aconitate, a reasonable OPLS model could be built (RZY 0of 0.301, Q2 of
0.284) with sensitivity and specificity of 87.5% and 60.9% respectively, and an

AUC of 0.8474.

Table 5.17: Model characteristics and diagnostic accuracies of OPLS models built
with top contributing metabolites

Model RYY Q’ Sens Spec AUC
Main
N 0.396 0.250 89.5% 71.8%  0.8913
Model
me?a%%ﬂtes 0.256 0.250 87.0% 61.2%  0.8314
meTtZgoll?tes 0.301 0.284 87.5%  60.9%  0.8474
meTtZg Olhstes 0.333 0.304 87.5%  62.9%  0.8639
mgcggozlges 0.336 0.298 88.5%  62.2%  0.8615
meTtZg ozhstes 0.361 0.313 87.5%  69.7%  0.8771
Top 30 . .
bl 0362 0.303 87.5%  68.7%  0.8768

To ensure that the top metabolites in the variable importance plot were indeed
more important in establishing the metabolomic fingerprint of colorectal
adenoma, we validated the process above by attempting to build models using the

bottom metabolites in the VIP list. It took 65 metabolites before we could even
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build an OPLS model, and it was a poorly predictive one (R*Y of 0.195 and Q° of

only 0.030). This validates the uniqueness of top metabolites as a diagnostic tool.

5.6 Discussion

5.6.1 Summary

The role of urine metabolomics in distinguishing subjects with a normal
colonoscopy from subjects found to have colorectal adenoma(s) was examined in
this chapter. The testing set of 294 normal subjects and 200 adenoma patients
was used to build the OPLS model (R*Y = 0.396, Q* = 0.250), which was
internally validated using permutation testing. A spectrum of diagnostic
accuracies, namely sensitivity and specificity were calculated and the area under
the curve was found to be 0.8913. A representative pair of sensitivity and
specificity was 89.5% and 71.8% respectively. When the study subjects were
stratified by gender, family history of any cancer, and family history of CRC, the
diagnostic accuracies improved. The main model was then externally validated
with a blinded testing set of 103 urine samples and sensitivity and specificity of

72.1% and 40.0% were achieved.

To our surprise, the subjects with hyperplastic polyps resembled the subjects with
adenomatous polyps rather than the normal subjects. And interestingly, the
metabolites that drive the separation between normal and adenoma are completely

different than those that drive the separation between normal and CRC.
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Models were then built using only the top metabolites and diagnostic accuracies
were calculated. Using only the top 10 metabolites, sensitivity of 87.5% and
specificity of 60.9% could be achieved, suggesting commercialization potential
for this test. The diagnostic accuracies of the urine metabolomics test for
adenoma are far superior than those of the fecal occult blood test and newer fecal

immunochemical tests.

5.6.2 Patient and Disease Characteristics

The normal and the adenoma group are quite different from each other in terms of
age, gender, family history of CRC and family history of any cancer, and
gastrointestinal symptoms, but each of these factors was analyzed statistically to
see if they falsely contribute to the separation of the two groups and they didn’t;
in fact, the diagnostic accuracies improved when the model was stratified by

gender, family history of any cancer and family history of CRC.

It was anticipated that villous adenomas or screen relevant neoplasms would be

more different than tubular ones, but this was not the case.

5.6.3 Metabolites and Metabolic Pathways
The top 10 metabolites that separated the normal group from the adenoma group
were butyrate, serine, methanol, B-alanine, asparagine, 3-hydroxyphenylacetate,

creatinine, histidine, trigonelline, and cis-aconitate.
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Butyrate was only found to be present in 3 out of 200 (1.5%) adenoma patients
while it was found in 109 out of 294 (37%) of normal patients. Butyrate is a
short-chain fatty acid generated by microbial fermentation of dietary fibre.’
Short-chain fatty acids in general are one of the proposed health-promoting
effects of prebiotics. Butyrate has been shown to increase apoptosis in both colon
adenoma and cancer cell lines in a p5S3-independent way, thus contributing to the
protection against CRC.'" It also influences a wide array of cellular functions
affecting colonic health, as such that besides being anti-carcinogenic'', it may
have anti-inflammatory potential'2, affect the intestinal barrier' and play a role in
satiety'* and oxidative stress."> Epidemiological studies have been inconclusive
and direct evidence for a protective effect of butyrate on colorectal carcinogenesis

in humans is lacking.'

Serine was another metabolite that was present more in the normal group than the
adenoma group — 35 out of 200 (17.5%) adenoma vs. 157 out of 294 (53%)
normals. Serine is an amino acid derived from glycine that plays a central role in
cellular proliferation and altered levels of serine and glycine have been noted in
patients with psychiatric disorders'’ and neurological abnormalities'®. Serine is
an active component of serine protease, which is a group of enzymes that cleaves
peptides. Certain serine proteases have been shown to act as tumor
suppressors.”® Furthermore, certain serine protease inhibitors have been reported
to promote angiogenesis, induce tumor cell migration, and enhance the invasive

20-22 23-25

potential of pancreatic, breast and lung cancer cells . It unknown whether
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higher urine levels of serine reflect a higher systemic level and whether higher
levels of serine in the normal group allows for more serine proteases to form and
thus offers a protective effect for colonic adenomas. As serine is also involved in
microbial metabolism®®, this difference in the presence of serine between the
normal group and the adenoma group could also represent a difference in the

microbiota of the two groups.

Since methanol is mainly a product of microbial metabolism, the differences in its
presence in the two groups may reflect the differences in the microbiota of the

two groups.”

[-alanine was only present in 8 out of 200 or 4% of adenoma patients and 61 out
of 294 or 20.7% of normal subjects. As mentioned in chapter 4, it was only
present in 2 out of 82 or 2.4% of CRC patients as well. This metabolite was
discussed in detail in Chapter 4. Histidine is a metabolite that is present more in
the adenoma subjects compared to the normal group. In the (3-alanine metabolism
pathway [KEGG] *°, carnosine either metabolizes to -alanine or histidine, hence
in adenoma patients, carnosine may be preferentially metabolizing to histidine

rather than $-alanine.

Asparagine was found in more adenoma subjects than normal subjects. Itis a

non-essential amino acid involved in alanine, aspartate, and glutamate

metabolism, cyanoamino acid metabolism, and nitrogen metabolism. It is present
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in abnormal concentrations in neurological'® and psychological disorders®’ as well

as leukemia?®. However, its role in colorectal and colonic adenoma is unclear.

3- Hydroxyphenylacetate, present in more adenoma patients than normal subjects,
is a product of phenylalanine metabolism and a substrate of tyrosine metabolism.

It is also a metabolite of microbial metabolism.

Creatinine and cis-aconitate are both increased in adenoma patients. Creatinine is
involved in arginine and proline metabolism and is increased in the urine of
patients with cancer and cachexia®. Cis-aconitate is a TCA cycle intermediate

but is also a metabolite of microbial metabolism.

Trigonelline is an alkaloid originating from dietary sources, particularly coffee™,
therefore the difference in this metabolite between the two groups may simply be

a reflection of dietary differences.

Overall, 5 of the top 10 metabolites could be products of microbial metabolism
(butyrate, serine, methanol, 3-hydroxyphenylacetate, and cis-aconitate),
emphasizing the importance of microbiota in the development of adenoma and
CRC. The human colonic microbiota consists of approximately 10" bacterial
cells and more than 1000 different bacterial species, and it plays a pivotal role for
the maintenance of human health’' and several studies have indicated the

importance of the intestinal microbiota in the development of various conditions
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including inflammatory bowel disease®?, cancer™, and even obesity™".

5.6.4 Colonic Adenoma vs. CRC

Metabolomically speaking, colonic adenomas are different than CRCs. Since
adenoma is an intermediate step in the pathway of normal colonic epithelium’s
progression to CRC, it was anticipated that the metabolites that drive the
separation between normal and adenoma would be quite similar to those that drive
the separation between normal and CRC, but the concentrations would not be as
high. However, completely different metabolomic fingerprints were seen in the
two models. This may be because the adenoma metabolomic fingerprint simply
reflects intermediate genetic changes in the multi-step process of the colorectal

cancer pathway.

5.6.5 Limitations

As mentioned in the previous chapter, there may have been potential
misinterpretation on the patients’ part in filling out the questionnaire and
moreover, the analysis was limited by the number of metabolites contained in the

Chenomx compound library.

There were also some differences in baseline characteristics between the training
set and the testing populations. This is because the testing set samples were not
methodologically matched to the training set samples, but were simply

subsequently collected samples. To improve the robustness of this model, the

211



validation set should be completely comparable to the training set. This can be
done by increasing the number of validation samples or by selecting only those
subjects that have matching baseline characteristics to the training set to validate

the model.

5.6.6 Bias
The concepts of disease progression bias, misclassification, spectrum bias, partial
verification bias, incorporation bias, and review bias addressed in chapter 4 also

apply to this study.

5.6.7 Strengths of Study

This is the largest study to demonstrate that urine metabolomics can separate
subjects with normal colons from patients with colonic adenoma. The controls in
this study are not merely healthy volunteers but rather colonoscopy-negative
controls. This eliminates metabolomic fingerprints associated with other colonic
disease and disorders. The robustness of the model was internally tested with
permutation testing and also externally validated with a blinded testing set. The
sample size was large enough to avoid random correlations when using

multivariate analysis. Potential biases and confounders have been addressed.

5.7 Conclusions

CRC is a preventable disease if identified at the adenomatous polyp stage. Since

the development of CRC from normal colonic epithelium takes years and multiple
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genetic mutations need to occur, regular screening can detect CRC in its early
stages or in the pre-cancerous adenomatous polyp stage. In this chapter, urine
metabolomics has been demonstrated to distinguish normal healthy subjects from
patients with adenomatous polyps with far-superior accuracy than that of current
guaiac-based and immunochemical fecal tests. Spot urine metabolomics test has
the potential to become a new and highly sensitive screening tool for CRC and

colonic adenomas.

213



5.8

10.

11.

12.

13.
14.

15.

16.

17.

18.

References

Gordon PH, Nivatvongs S. Principles and Practice of Surgery for the Colon, Rectum, and
Anus. Informa Healthcare, 2006.

Fearon ER, Vogelstein B. A GENETIC MODEL FOR COLORECTAL
TUMORIGENESIS. Cell 1990;61:759-767.

Allison JE, Tekawa IS, Ransom LJ, Adrain AL. A comparison of fecal occult-blood tests
for colorectal-cancer screening. New England Journal of Medicine 1996;334:155-159.
Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA, Ross ME, Colorectal Canc
Study G. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an
average-risk population. New England Journal of Medicine 2004;351:2704-2714.
Whitlock EP, Lin JS, Liles E, Beil TL, Fu RW. Screening for Colorectal Cancer: A
Targeted, Updated Systematic Review for the US Preventive Services Task Force.
Annals of Internal Medicine 2008;149:638-+.

Chang D, Weljie A, Newton J. Leveraging latent information in NMR spectra for robust
predictive models. Pacific Symposium on Biocomputing 2007 2007:115-126.

Wong CK, Fedorak RN, Prosser C, Stewart ME, Van Zanten S, Sadowski DC. A
comparison of guaiac and immunochemical fecal occult blood tests to colonoscopy for
the detection of colonic polyps and cancer: submitted 2010.

Wilschut JA, Habbema JDF, Ramsey SD, Boer R, Looman CWN, van Ballegooijen M.
Increased risk of adenomas in individuals with a family history of colorectal cancer:
results of a meta-analysis. Cancer Causes & Control 2010;21:2287-2293.

McMillan L, Butcher SK, Pongracz J, Lord JM. Opposing effects of butyrate and bile
acids on apoptosis of human colon adenoma cells: differential activation of PKC and
MAP kinases. British Journal of Cancer 2003;88:748-753.

Hague A, Manning AM, Hanlon KA, Huschtscha LI, Hart D, Paraskeva C. SODIUM-
BUTYRATE INDUCES APOPTOSIS IN HUMAN COLONIC TUMOR-CELL LINES
IN A P53-INDEPENDENT PATHWAY - IMPLICATIONS FOR THE POSSIBLE
ROLE OF DIETARY FIBER IN THE PREVENTION OF LARGE-BOWEL CANCER.
International Journal of Cancer 1993;55:498-505.

Scheppach W, Bartram HP, Richter F. ROLE OF SHORT-CHAIN FATTY-ACIDS IN
THE PREVENTION OF COLORECTAL-CANCER. European Journal of Cancer
1995;31A:1077-1080.

Segain JP, de la Bletiere DR, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L,
Bonnet C, Blottiere HM, Galmiche JP. Butyrate inhibits inflammatory responses through
NF kappa B inhibition: implications for Crohn's disease. Gut 2000;47:397-403.

Finnie A, Dwarakanath AD, Taylor BA, Rhodes JM. COLONIC MUCIN SYNTHESIS
IS INCREASED BY SODIUM-BUTYRATE. Gut 1995;36:93-99.

Cherbut C. Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract.
Proceedings of the Nutrition Society 2003;62:95-99.

Rosignoli P, Fabiani R, De Bartolomeo A, Spinozzi F, Agea E, Pelli MA, Morozzi G.
Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated
human colonocytes and HT29 tumour cells. Carcinogenesis 2001;22:1675-1680.

Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review
article: the role of butyrate on colonic function. Alimentary Pharmacology &
Therapeutics 2008;27:104-119.

Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato
M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M. Decreased serum levels of D-
serine in patients with schizophrenia - Evidence in support of the N-methyl-D-aspartate
receptor hypofunction hypothesis of schizophrenia. Archives of General Psychiatry
2003;60:572-576.

Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG. Free amino acid and
dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids
2007;32:213-224.

214



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Selzer-Plon J, Bornholdt J, Friis S, Bisgaard HC, Lothe IMB, Tveit KM, Kure EH, Vogel
U, Vogel LK. Expression of prostasin and its inhibitors during colorectal cancer
carcinogenesis. Bmc Cancer 2009;9.

Bajou K, Noel A, Gerard RD, Masson V, Brunner N, Holst-Hansen C, Skobe M, Fusenig
NE, Carmeliet P, Collen D, Foidart JM. Absence of host plasminogen activator inhibitor
1 prevents cancer invasion and vascularization. Nature Medicine 1998;4:923-928.

Bajou K, Peng H, Laug WE, Maillard C, Noel A, Foidart JM, Martial JA, DeClerck YA.
Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated
apoptosis. Cancer Cell 2008;14:324-334.

Liu GH, Shuman MA, Cohen RL. COEXPRESSION OF UROKINASE, UROKINASE
RECEPTOR AND PAI-1 IS NECESSARY FOR OPTIMUM INVASIVENESS OF
CULTURED LUNG-CANCER CELLS. International Journal of Cancer 1995;60:501-
506.

Buchholz M, Biebl A, Neessbe A, Wagner M, Iwamura T, Leder G, Adler G, Gress TM.
SERPINE2 (protease nexin I) promotes extracellular matrix production and local
invasion of pancreatic tumors in vivo. Cancer Research 2003;63:4945-4951.

Candia BJ, Hines WC, Heaphy CM, Griffith JK, Orlando RA. Protease nexin-1
expression is altered in human breast cancer. Cancer Cell Int 2006;6:16.

Yang SF, Dong QG, Yao M, Shi MP, Ye JD, Zhao LX, Su JZ, Gu WY, Xie WH, Wang
K,DuYZ, LiY, Huang Y. Establishment of an experimental human lung
adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by Tc-99m-
MDP bone scintigraphy. Nuclear Medicine and Biology 2009;36:313-321.

Kyoto Encyclopedia of Genes and Genomes (KEGG): http://www.genome.jp/kegg/,
Accessed Nov 2010 to Jan 2011.

Do KQ, Lauer CJ, Schreiber W, Zollinger M, Gutteckamsler U, Cuenod M, Holsboer F.
GAMMA-GLUTAMYLGLUTAMINE AND TAURINE CONCENTRATIONS ARE
DECREASED IN THE CEREBROSPINAL-FLUID OF DRUG-NAIVE PATIENTS
WITH SCHIZOPHRENIC DISORDERS. Journal of Neurochemistry 1995;65:2652-
2662.

Peng CT, Wu KH, Lan SJ, Tsai JJP, Tsai FJ, Tsai CH. Amino acid concentrations in
cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing
chemotherapy. European Journal of Cancer 2005;41:1158-1163.

Eisner R, Stretch C, Eastman T, Xia JG, Hau D, Damaraju S, Greiner R, Wishart DS,
Baracos VE. Learning to predict cancer-associated skeletal muscle wasting from H-1-
NMR profiles of urinary metabolites. Metabolomics 2011;7:25-34.

Casal S, Oliveira M, Alves MR, Ferreira MA. Discriminate analysis of roasted coffee
varieties for trigonelline, nicotinic acid, and caffeine content. Journal of Agricultural and
Food Chemistry 2000;48:3420-3424.

O'Keefe SID. Nutrition and colonic health: the critical role of the microbiota. Current
Opinion in Gastroenterology 2008;24:51-58.

Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N,
Sakuraba A, Yajima T, Higuchi H, Nagamu I, Ogata H, Iwao Y, Nomoto K, Tanaka R,
Hibi T. Imbalance in intestinal microflora constitution could be involved in the
pathogenesis of inflammatory bowel disease. International Journal of Medical
Microbiology 2008;298:463-472.

Lupton JR. Microbial degradation products influence colon cancer risk: the butyrate
controversy. Journal of Nutrition 2004;134:479-482.

Cani PD, Delzenne NM, Amar J, Burcelin R. Role of gut microflora in the development
of obesity and insulin resistance following high-fat diet feeding. Pathologie Biologie
2008;56:305-309.

215



5.9

Appendix

Normal vs. Adenoma Group

cs sex na if tr

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Prev.
Prev.

cs fh_any ca na if training

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Prev.
Prev.

aining

.59
Poin

1

.6054054
Poin

.8748267
.1251733
.0502323

Unexposed

.3979592
t estimate

1920408
.482564
3254929
.163439

[\
e
1SS
—_——— = — — — — + — — + — —

.692029

t estimate

0866236

[\
~J
o
—_——— et = — — — — 4+ — — + — —

|

Unexposed |

______________ +

230 |

21 |

______________ +

251 |

|

.9163347 |

|

t estimate |

______________ +

2077919 |
. 7732357

.2267643 |
.1002802

216

.4757085

[95% Conf.

.103855
1.235901
.1908734

17.60

.6572668

[95% Conf.

-.1756562
.7601904
-.00675

3.69

.8244444

[95% Conf.

-.2796234
.7020123
.1483147

Pr>chi?2

Pr>chi2

Interval]

.2802267
1.778457
.4377149

= 0.0000

Interval]

.002409
1.00675
.2398096

= 0.0548

Interval]

-.1359604
.8516853
.2979877



cs smoke na if

Cases
Noncases

Risk difference

Risk ratio
Attr. frac. ex.
Attr. frac. pop

t

chi2 (1) =

—_——— - — — — — + — — + — —

33.11 Pr>chi2 = 0.0000

.1165254

[95% Conf. Intervall]
-.0037987 .1179369
.9813688 2.649176
-.0189849 .6225242

cs dm na if training ==

Cases
Noncases

Risk difference

Risk ratio
Prev. frac. ex.
Prev. frac. pop

Cases
Noncases

Risk difference

Risk ratio
Attr. frac. ex.
Attr. frac. pop

raining ==
NA
Exposed Unexposed
29 26
164 253
193 279
.1502591 .09319
Point estimate
.0570691
1.612395
.3798047
.2002607
chi2 (1) =
NA
Exposed Unexposed
8 14
192 280
200 294
.04 .047619
Point estimate
| ________________________
-.007619
.84
.16
.0647773
chi2 (1) =

—_——— et = — — — — + — — + — —

3.61 Pr>chi2 = 0.0575

.0445344

[95% Conf. Intervall]
-.04409 .0288519
.359071 1.965071
-.9650707 .640929

.03

.0170648

Point estimate

.0129352

1.758

.4311718
.2351846

—_——— et ——— — — + — — + — —

217

0.16 Pr>chi2 = 0.6870

.0223124

[95% Conf. Intervall]

-.0149727 .040843
.5439239 5.681978
-.8384924 .824005

0.91 Pr>chi2 = 0.3397



cs sympt bowelhabit na if training ==

| NA |
| Exposed Unexposed | Total
_________________ o
Cases | 1 13 | 14
Noncases | 199 279 | 478
_________________ o .
Total | 200 292 | 492
| |
Risk | .005 .0445205 | .0284553
| |
| Point estimate | [95% Conf. Intervall]
| == m e e
Risk difference | -.0395205 | -.065117 -.0139241
Risk ratio | .1123077 | .0148094 .8516893
Prev. frac. ex. | .8876923 | .1483107 .9851906
Prev. frac. pop | .3608505
o __
chi2 (1) = 6.71 Pr>chi2 = 0.0096
ttest age, by(na), if training==
Two-sample t test with equal variances
Group | Obs Mean Std. Err Std. Dev [95% Conf. Intervall]
_________ o
0 | 294 55.2619 .4731272 8.112442 54.33075 56.19306
1| 200 59.44 .5528655 7.818699 58.34977 60.53023
_________ o
combined | 494 56.95344 .3710253 8.246449 56.22446 57.68243
_________ o
diff | -4.178095 .7328069 -5.617912 -2.738278
diff = mean(0) - mean(l) t = -=5.7015
Ho: diff = 0 degrees of freedom = 492
Ha: diff < O Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |[t]) = 0.0000 Pr(T > t) = 1.0000
Adenoma vs. Non-overlapping Normal
N vs Adenoma total-bun -- newer version.M39 (OPLS/02PLS-DA), Adenoma vs. NOv Normal * adenoma
t[Comp. 1]#to[XSide Comp. 1] * normalNo

Colored according to classes in M339
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Overlapping vs. Non-Overlapping Normal
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Logistic regression of overlapping vs. non-overlapping normals on predicting overlap with

adenoma

. logistic overlap w_adenoma sex

Logistic regression

Number of obs

294
0.74
0.3898
0.0019

Log likelihood = -199.14304
overlap w_~a | Odds Ratio std. Err.
sex | 1.232 .2995005

LR chi2 (1) =

Prob > chi2 =

Pseudo R2 =

z P>|z]| [95% Conf.
0.86 0.391 .7650375

. logistic overlap w_adenoma age

Logistic regression

Number of obs
LR chi2 (1)

220

294
1.02



Prob > chi2 = 0.3128

Log likelihood = -199.00348 Pseudo R2 = 0.0026
overlap w_~a | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o

age | 1.014918 .0149368 1.01 0.314 .9860611 1.04462

logistic overlap w_adenoma smoke

Logistic regression Number of obs = 279
LR chi2 (1) = 2.66

Prob > chi?2 = 0.1032

Log likelihood = -188.0823 Pseudo R2 = 0.0070
overlap w_~a | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
smoke | 2.054563 .9451159 1.57 0.118 .8339883 5.061499

logistic overlap w_adenoma dm

Logistic regression Number of obs = 294
LR chi2 (1) = 0.01

Prob > chi?2 = 0.9158

Log likelihood = -199.50725 Pseudo R2 = 0.0000
overlap w_~a | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
dm | .9430894 .5220193 -0.11 0.916 .3187098 2.790682

logistic overlap w_adenoma famhx cca

Logistic regression Number of obs = 276
LR chi2 (1) = 0.19

Prob > chi?2 = 0.6622

Log likelihood = -188.30439 Pseudo R2 = 0.0005
overlap w_~a | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
famhx cca | 1.121809 .2948914 0.44 0.662 .6701348 1.877912

logistic overlap w_adenoma fh any ca

Logistic regression Number of obs = 251
LR chi2 (1) = 0.46

Prob > chi?2 = 0.4958

Log likelihood = -168.93426 Pseudo R2 = 0.0014
overlap w_~a | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o .
fh any ca | .7234043 .3486446 -0.67 0.502 .2812837 1.860448

logistic overlap w_adenoma sympt gibleed

Logistic regression Number of obs = 293
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LR chi2 (1) = 0.01
Prob > chi?2 = 0.9401
Log likelihood = -198.97272 Pseudo R2 0.0000
overlap w_~a | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
sympt _gibl~d | 1.071429 .9864239 0.07 0.940 .176317 6.51077
logistic overlap w_adenoma sympt bowelhabit
Logistic regression Number of obs 292
LR chi2 (1) = 0.80
Prob > chi?2 = 0.3707
Log likelihood = -198.03521 Pseudo R2 0.0020
overlap w_~a | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
sympt bowe~t | .6010453 .3422883 -0.89 0.371 .1968602 1.835086
generate age cat n =
(597 missing values generated)
replace age _cat n = 1 if age <=45 & training == 1 & na==
(38 real changes made)
replace age cat n = 2 if age >45 & age <=50 & training == 1 & na==0
(39 real changes made)
replace age cat n = 3 if age >50 & age <=55 & training == 1 & na==0
(84 real changes made)
replace age cat n = 4 if age >55 & age <=60 & training == 1 & na==0
(64 real changes made)
replace age cat n = 5 if age >60 & age <=65 & training == 1 & na==0
(37 real changes made)
replace age _cat n = 6 if age >65 & age <=70 & training == 1 & na==0
(20 real changes made)
replace age cat n = 7 if age >70 & age <=75 & training == 1 & na==0
(10 real changes made)
replace age _cat n = 7 if age >75 & training == 1 & na==
(2 real changes made)
xi:logistic overlap w_adenoma i.age_cat n
i.age_cat n _Tage_cat _n_1-7 (naturally coded; _Tage cat n 1 omitted)
Logistic regression Number of obs 294
LR chi2 (6) = 4.85
Prob > chi?2 = 0.5632
Log likelihood = -197.0877 Pseudo R2 0.0122
overlap w_~a | Odds Ratio Std. Err z P>|z| [95% Conf. Intervall]
_____________ o
_Tage_cat_~2 | .754902 .3519603 -0.60 0.546 .3027138 1.88256
_Tage_cat_~3 | .740991 .2976893 -0.75 0.456 .3371686 1.628466
_Tage_cat_~4 | .75 .3151672 -0.68 0.494 .3291295 1.709054
_Tage_cat_~5 | .6862745 .3232919 -0.80 0.424 .2725911 1.727763
_Tage_cat_~6 | 1.083333 .6250331 0.14 0.890 .3496699 3.35634
_Tage _cat ~7 | 2.916667 2.462909 1.27 0.205 .557327 15.26383
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Normal vs. Non-overlapping Adenoma

N vs Adenoma total-bun -- newer version.M8 (OPLS/O2PLS-DA), N vs. Non-overlapping Adenoma L normal
t[Comp. 1]/to[XSide Comp. 1] * adenoN
Colored according to classes in M8
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11]
RZX[1] = 0.0245451 RZX([XSide Comp. 1] = 0.0484159 Ellipse: Hotelling TZ (0.95)
SIMCAP4 12.0.1 - 2011-01-03 01:13:58 (UTC-7)
N vs Adenoma total-bun -- newer version.M8 (OPLS/02PLS-DA), N vs. Non-overlapping Adenoma
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Normal vs. Overlapping Adenoma
N vs Adenoma total-bun -- newer version. M7 (OPLS/02PLS-DA), N vs. Overlapping Adenoma = normal
t[Comp. 1]#to[XSide Comp. 1] * adenoOv
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N vs Adenoma total-bun -- newer version.M7 (OPLS/O2PLS-DA), N vs. Overlapping Adenoma

VIP[Last comp.]

50

45

4.0

lL
4

apwoy
apaniid

auuoaLy |
AR
apnddiy
ajeozuag
auwenH

aune |
ajpuodng
ajipe |
wenBoshid
aushl
Uody-sues

asopeRs
asolAX
ypexodAH
a0eopuEND

ajequoosy
IAXOIPAH-E
apepe]
jopuuEyy
QAXOIDAH-E

b

el

1oulury
asoon|
apn)
dAXOIPAH-
032419
(==

il

LL -

WA |
eain
auEal)
auRk9
3Ry
BuaLiojey
B -d
aules,
jouBL}3
enBoxo-z
IAXOIPAH-Z
auanajos|
BUISOJA |
auiana
weldywig

apedipy
WAXOIPAH-E
BlAyRWL |
aubeledsy
1H
W05
dAX0IpAH-E
auuEaI)

auuag
apiing

Yar ID (Primary)

SIMCAP+ 12.0.1 - 2011-01-03 01:22:29 (UTC-7)

Overlapping vs. Non-Overlapping Adenoma

adenoN

.

N vs Adenoma total-bun -- newer version.M36 (OPLS/O2PLS-DA), Ov. vs. NOv Adenoma
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Logistic regression of overlapping vs. non-overlapping adenomas on predicting overlap with
normal

logistic overlap w_normal sex

Logistic regression Number of obs = 200
LR chi2 (1) = 5.03

Prob > chi?2 = 0.0249

Log likelihood = -100.27704 Pseudo R2 = 0.0245
overlap w_~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
sex | .4348024 .1676927 -2.16 0.031 .2041757 .9259332

logistic overlap w_normal age

Logistic regression Number of obs = 200
LR chi2 (1) = 0.23

Prob > chi?2 = 0.6323

Log likelihood = -102.67686 Pseudo R2 = 0.0011
overlap w_~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
age | .9894264 .021969 -0.48 0.632 .9472914 1.033435

logistic overlap_ w_normal smoke

Logistic regression Number of obs = 193
LR chi2 (1) = 7.26
Prob > chi?2 = 0.0070
Log likelihood = -96.182492 Pseudo R2 = 0.0364
overlap w_~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
smoke | .304321 .1305558 -2.71 0.006 .1312685 .7055103
logistic overlap w_normal dm

Logistic regression Number of obs = 200
LR chi2 (1) = 1.19
Prob > chi2 = 0.2751
Log likelihood = -102.19571 Pseudo R2 = 0.0058
overlap w_~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
dm | .4248366 .3194789 -1.14 0.255 .0973005 1.854936

logistic overlap w_normal famhx cca
Logistic regression Number of obs = 185
LR chi2 (1) = 0.09
Prob > chi2 = 0.7665
Log likelihood = -97.81216 Pseudo R2 = 0.0005
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overlap w_~1 | Odds Ratio std. Err. 4 P>|z]| [95% Conf.
_____________ o
famhx_cca | 1.113095 .4008858 0.30 0.766 .5495012

logistic overlap w_normal fh any ca

Logistic regression Number of obs =
LR chi2 (1) =
Prob > chi2 =
Log likelihood = -102.17687 Pseudo R2
overlap w_~1 | Odds Ratio std. Err. 4 P>|z]| [95% Conf.
_____________ o .
fh any ca | .7096354 .2849676 -0.85 0.393 .3230124

logistic overlap w_normal sympt gibleed

note: sympt gibleed != 0 predicts success perfectly
sympt gibleed dropped and 6 obs not used

Logistic regression Number of obs
LR chi2 (0) =
Prob > chi2 =
Log likelihood = -101.35252 Pseudo R2
overlap w_~1 | Odds Ratio std. Err 4 P>|z]| [95% Conf.
_____________ o .

logistic overlap w_normal sympt bowelhabit

note: sympt bowelhabit != 0 predicts success perfectly
sympt bowelhabit dropped and 1 obs not used

Logistic regression Number of obs
LR chi2 (0) =
Prob > chi2 =
Log likelihood = -102.55494 Pseudo R2
overlap w_~1 | Odds Ratio std. Err 4 P>|z]| [95% Conf.
_____________ o .

generate polyp location_rc =
(597 missing values generated)

replace polyp location rc = 1 if polyp location == "Rt COL"
(67 real changes made)

replace polyp location rc = 1 if polyp location == "Transv COL"
(32 real changes made)

replace polyp location rc = 1 if polyp location == "Lt COL"
(30 real changes made)

replace polyp location rc = 1 if polyp location == "Sigmoid"

226

Interval]

2.254738

199
0.76
0.3845
0.0037

Intervall]

1.559019

194
0.00

0.0000

199
-0.00

-0.0000



(76 real changes made)

replace polyp location rc = 2 if polyp location == "Rectum"
(38 real changes made)

tab polyp location_rc

polyp locat

I
ion_rc | Freq. Percent Cum.
____________ o
1 205 84.36 84.36
2| 38 15.64 100.00
____________ o
Total | 243 100.00

logistic overlap w_normal polyp location_ rc

Logistic regression Number of obs = 200

LR chi2 (1) = 0.65

Prob > chi?2 = 0.4198
Log likelihood -102.46587 Pseudo R2 = 0.0032
overlap w_~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
polyp loca~c | .6875 .3129592 -0.82 0.410 .2817049 1.677842

generate polyp location lr =
(597 missing values generated)

replace polyp location 1lr = 1 if polyp location == "Rt COL"
(67 real changes made)

replace polyp location 1r = 1 if polyp location == "Lt COL"
(30 real changes made)
replace polyp location 1r = 2 if polyp location == "Transv COL"
(32 real changes made)
replace polyp location 1r = 2 if polyp location == "Lt COL"
(30 real changes made)
replace polyp location 1lr = 2 if polyp location == "Sigmoid"
(76 real changes made)
replace polyp location 1r = 2 if polyp location == "Rectum"
(38 real changes made)
tab polyp location 1r
polyp locat |
ion_1r | Freq. Percent Cum.
____________ o
1] 67 27.57 27.57
2 | 176 72.43 100.00
____________ o
Total | 243 100.00

logistic overlap w_normal polyp location 1r

Logistic regression Number of obs = 200
LR chi2 (1) = 0.48
Prob > chi?2 = 0.4897
Log likelihood -102.55275 Pseudo R2 = 0.0023
overlap w_~1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall]

_____________ e —_———————
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polyp loca~r | .7532468 .3140636 -0.68
browse
generate path vt =
(597 missing values generated)
replace path vt = 1 if path == "T"
(170 real changes made)
replace path vt = 1 if path == "A"
(41 real changes made)
replace path vt = 2 if path == "V"
(27 real changes made)
replace path vt = 1 if path == "T-"
(4 real changes made)
replace path vt = 2 if path == "v-"
(1 real change made)
tab path_ vt
path_vt | Freq Percent Cum
____________ o
1| 215 88.48 88.48
2 | 28 11.52 100.00
____________ o
Total | 243 100.00
logistic overlap w _normal path vt
Logistic regression
Log likelihood = -102.76262
overlap w_~1 | Odds Ratio std. Err. 4
_____________ o
path vt | 1.134307 .6022994 0.24

Age of adenoma patients divided by category

Training Set Adenoma: Age by Category

25

Percentage

41-50

51-55 56-60 61-65

Age

66-70

0.497 .3326839 1.705465
Number of obs 200
LR chi2 (1) = 0.06
Prob > chi2 = 0.8106
Pseudo R2 = 0.0003

P>|z]| [95% Conf. Intervall]

0.812 400641 3.211482

71-83
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generate age cat_a =
(597 missing values generated)

replace age
(20 real chan

replace age
(48 real chan

replace age
(39 real chan

replace age
(42 real chan

replace age
(30 real chan

replace age
(17 real chan

replace age

cat_a =1 if

ges made)

cat_a = 2 if

ges made)

~cat_a = 3 if

ges made)

cat_a = 4 if

ges made)

~cat_a =5 if

ges made)

cat_a = 6 if

ges made)

cat_a = 6 if

(1 real change made)

browse

tab age_cat

I
¥
1|
2 |
3|
4 |
5 |
6 |
¥
|

_a

age <=50 & training == 1 & na==
age >50 & age <=55 & training == 1 & na==
age >55 & age <=60 & training == 1 & na==
age >60 & age <=65 & training == 1 & na==
age >65 & age <=70 & training == 1 & na==
age >70 & age <=75 & training == 1 & na==
age >75 & training == 1 & na==
Percent Cum
11.50 11.50
24.00 35.50
19.50 55.00
21.00 76.00
15.00 91.00
9.00 100.00
100.00

xi:logistic overlap w normal i.age_cat_a
_Tage_cat_a 1-6

i.age_cat_a

Logistic regr

Log likelihoo

ession

d = -100.13927

_Tage_cat_~2
_Tage_cat_~3
_Tage_cat_~4
_Tage_cat_~5
_Tage_cat_~6

1.052632
1.157895
.4210526
.6917293
1.052632

.7081884
.8184287
.2695311
.4836999
.8823487

(naturally coded; _Tage cat_a 1 omitted)

Number of obs = 200

LR chi2 (5) = 5.30

Prob > chi?2 = 0.3799

Pseudo R2 = 0.0258

| z P>|z| [95% Conf. Interval]
it e
| 0.08 0.939 .2815826 3.93502
| 0.21 0.836 .2897469 4.627212
| -1.35 0.177 .1200747 1.476459
| -0.53 0.598 .1756805 2.723635
| 0.06 0.951 .2035976 5.44227

logistic overlap w_normal srn if training ==

Logistic regr

Log likelihoo

ession

d = -102.07628

overlap w_~1

| Odds Ratio

_____________ e —_———————

| .6333333

.2384834

Number of obs = 200

LR chi2 (1) = 1.43

Prob > chi2 = 0.2317

Pseudo R2 = 0.0070

z P>|z| [95% Conf. Intervall]
-1.21 0.225 .3027681 1.324813
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logistic overlap w_normal sex smoke

Logistic regression Number of obs = 193
LR chi2 (2) = 13.79

Prob > chi?2 = 0.0010

Log likelihood = -92.915551 Pseudo R2 = 0.0691
overlap w_~1 | Odds Ratio Std. Err z P>|z| [95% Conf. Intervall]
_____________ o
sex | .3695259 .1510271 -2.44 0.015 .1658649 .8232567

smoke | .287499 .1269998 -2.82 0.005 .1209557 .6833546

Training vs. Testing Set

Normals

tab training na

| NA
Training | 0 1| Total
___________ O S
0 | 60 43 | 103
1] 294 200 | 494
___________ O S
Total | 354 243 | 597
ttest age, by(training), if na==
Two-sample t test with equal variances
Group | Obs Mean sStd. Err Std. Dev [95% Conf. Intervall]
_________ o
0 | 60 55.73333 1.080612 8.370381 53.57103 57.89563
1| 294 55.2619 .4731272 8.112442 54.33075 56.19306
_________ +____________________________________________________________________
combined | 354 55.34181 .4329874 8.14661 54.49025 56.19337
_________ o
diff | .4714286 1.155427 -1.800981 2.743838
diff = mean(0) - mean(l) t = 0.4080
Ho: diff = 0 degrees of freedom = 352
Ha: diff < O Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.6582 Pr(|T| > |t]|) = 0.6835 Pr(T > t) = 0.3418

cs sex training if na==

| Training |
| Exposed Unexposed | Total
_________________ o
Cases | 117 31 | 148
Noncases | 177 29 | 206
_________________ o
Total | 294 60 | 354
| |
Risk | .3979592 .5166667 | .4180791
| |

230



| Point estimate

Risk difference | -.1187075

Risk ratio | .7702436

Prev. frac. ex. | .2297564

Prev. frac. pop | .1908147
chi2 (1) =

cs famhx cca training if na==

| Training
| Exposed Unexposed
_________________ o
Cases | 191 31
Noncases | 85 26
_________________ o
Total | 276 57
|
Risk | .692029 .5438596
|
| Point estimate
| _______________________
Risk difference | .1481693
Risk ratio | 1.27244
Attr. frac. ex. | .2141086
Attr. frac. pop | .1842105
chi2 (1) =

cs fh_any ca training if na==

Training
Exposed Unexposed

|
|
_________________ o
Cases | 230 39
Noncases | 21 21
_________________ o
Total | 251 60
|
Risk | .9163347 65
|
| Point estimate
| _______________________
Risk difference | .2663347
Risk ratio | 1.409746
Attr. frac. ex. | .2906522
Attr. frac. pop | .248513
chi2 (1) =
cs smoke training if na==
Training

Exposed Unexposed

Cases 26 6
Noncases 253 53
Total 279 59
Risk .09319 .1016949

Point estimate

—_——— et —— — — — 4+ — — + — — —_——— = — — — — + — — + — —

+———— — + — — + — —
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[95% Conf. Intervall]

-.2569782 .0195632
.5808339 1.02142
-.0214196 .4191661

2.89 Pr>chi2 = 0.0893

.6666667
[95% Conf. Intervall]

.0078654 .2884733
.9905459 1.634558
-.0095443 .3882137

4.67 Pr>chi2 = 0.0307

.8649518
[95% Conf. Intervall]

.14088 .3917893
1.166503 1.70371
.1427367 .4130457

29.41 Pr>chi2 = 0.0000

.0946746

[95% Conf. Intervall]



Risk difference | -.008505
Risk ratio | .916368
Prev. frac. ex. | .083632
Prev. frac. pop | .0690335
chi2 (1) =
cs dm training if na==
| Training
| Exposed Unexposed
_________________ o
Cases | 14 4
Noncases | 280 56
_________________ o
Total | 294 60
|
Risk | .047619 .0666667
|
| Point estimate
| _______________________
Risk difference | -.0190476
Risk ratio | .7142857
Prev. frac. ex. | .2857143
Prev. frac. pop | .2372881
chi2 (1) =

cs sympt gibleed training if na==

| Training
| Exposed Unexposed
_________________ o
Cases | 5 2
Noncases | 288 58
_________________ e
Total | 293 60
|
Risk | .0170648 .0333333
|
| Point estimate
| _______________________
Risk difference | -.0162685
Risk ratio | .5119454
Prev. frac. ex. | .4880546
Prev. frac. pop | .4050992
chi2 (1) =

cs sympt bowelhabit training if na==

| Training
| Exposed Unexposed
_________________ o
Cases | 13 0
Noncases | 279 60
_________________ o
Total | 292 60
|
Risk | .0445205 0
|
|

Risk difference | .0445205

Risk ratio |

T S I

—_—— et —— — — — + — — + — —

—_— . - ——— — + — — + — —
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-.0928345
.3947803
-1.127083

0.04

.0508475

[95% Conf.

-.086696
.2435531
-1.094837

0.37

.01983

[95% Conf.

-.0640484
.1017059
-1.576922

0.68

.0369318

[95% Conf.

.0208642

Pr>chi?2

Pr>chi?2

Pr>chi?2

.0758246
2.127083
.6052197

= 0.8393

Interval]

.0486008
2.094837
.7564469

= 0.5405

Interval]

.0315114
2.576922
.8982941

= 0.4102

Interval]

.0681769



Attr. frac. ex. | 1
Attr. frac. pop | 1 |
o
chi2 (1) =
Adenoma
ttest age, by(training), if na==

Two-sample t test with equal variances

Group | Obs Mean Std. Err
_________ o
0 | 43 62.18605 1.053001
1| 200 59.44 .5528655
_________ o
combined | 243 59.92593 4954417
_________ o
diff | 2.746047 1.288832
diff mean (0) - mean (1)
Ho: diff 0
Ha: diff < 0 Ha: diff !=
Pr(T < t) = 0.9829 Pr(|T| > |t]) =
cs sex training if na==
| Training |
| Exposed Unexposed |
————————————————— ettt s
Cases | 118 27 |
Noncases | 82 16 |
————————————————— et it T 3
Total | 200 43 |
| |
Risk | .59 .627907 |
| |
| Point estimate |
|- +
Risk difference | -.037907
Risk ratio | .9396296
Prev. frac. ex. | .0603704
Prev. frac. pop | .0496875
o
chi2 (1) =
cs famhx cca training if na==
| Training |
| Exposed Unexposed |
————————————————— ettt s
Cases | 112 15 |
Noncases | 73 25 |
————————————————— ettt s
Total | 185 40 |
| |
Risk | .6054054 375 |
| |
| Point estimate |
| == m e +
Risk difference | .2304054
Risk ratio | 1.614414
Attr. frac. ex. | .3805804
Attr. frac. pop | .3356299
o

233

2.77 Pr>chi2 = 0.0958
Std. Dev [95% Conf. Intervall]
6.904987 60.06101 64.31109
7.818699 58.34977 60.53023
7.723172 58.95 60.90185
.2072319 5.284861
t 2.1306
degrees of freedom = 241
=0 Ha: diff > 0
0.0341 Pr(T > t) = 0.0171
Total
145
98
243
.5967078
[95% Conf. Intervall]
-.1976529 .1218389
. 726343 1.215547
-.2155468 .273657
0.21 Pr>chi2 = 0.6457
Total
127
98
225
.5644444
[95% Conf. Intervall]
.0646676 .3961432
1.064308 2.448852
.0604226 .5916455



chi2 (1) =

cs fh_any ca training if na==

Cases
Noncases

Risk difference

Risk ratio
Attr. frac. ex.
Attr. frac. pop

Training |
Exposed Unexposed |
________________________ +
141 27 |
58 16 |
________________________ +
199 43
|
.7085427 .627907 |
|
Point estimate |
________________________ +
.0806357
1.12842 |
.113805 |
.095515 |
chi2 (1) =

cs smoke training if na==

Cases
Noncases

Risk difference

Risk ratio
Prev. frac. ex.
Prev. frac. pop

cs dm training

Cases
Noncases

Risk difference

Risk ratio
Prev. frac. ex.
Prev. frac. pop

Training
Exposed Unexposed

-.0878362
.6310881
.3689119
.3029787

H
e
w
[1SS
[\
—_——— = — — — — + — — + — —

Training
Exposed Unexposed

.04 .0930233
Point estimate

-.0530233
.43

.57
.4691358

[\
o
o
[1SN
w
—_——— et ——— — — + — — + — —
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7.10 Pr>chi2 = 0.0077

.6942149

[95% Conf. Intervall]

-.0770314 .2383029
.881684 1.444204
-.1341932 .307577

1.08 Pr>chi2 = 0.2980

.1659574

[95% Conf. Intervall]

-.2261595 .0504872
.3339057 1.192768
-.1927684 .6660943

1.92 Pr>chi2 = 0.1656

.0493827

[95% Conf. Intervall]

-.1439895 .037943
.1355934 1.363636
-.3636358 .8644066

2.12 Pr>chi2 = 0.1454



cs sympt gibleed training if na==

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

Training
Exposed

Unexposed
_________g___________I__
194 42
20 3
.03 .0232558

Point estimate

.0067442
1.29
.2248062
.192691

cs sympt bowelhabit training if na==

Cases
Noncases

Risk difference
Risk ratio
frac. ex.
frac. pop

Attr.
Attr.

generate path vt 01

Training
Exposed

Unexposed
_________1___________6__
199 43
20 3
005 0

(597 missing values generated)

replace path vt 01
(215 real changes made)

replace path vt 01
(28 real changes made)

cs path vt 01 training if na

Cases
Noncases

0 if path vt ==1

Training

1 if path vt == 2
Exposed Unexposed
- 6 2

174 41
20 3
.13 .0465116

Point estimate

—_——— = — — — — + — — + — —

—_——— et = —— — — + — — + — —
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.0288066
[95% Conf.

-.0441302
.1593635
-5.274963

0.06 Pr>chi2

.0041152

[95% Conf.

-.0047753

0.22 Pr>chi2

.1152263

[95% Conf.

Interval]
.0576186
10.44217
.9042344

= 0.8104

Intervall]

.0147753

= 0.6422

Interval]



+
Risk difference | .0834884
Risk ratio | 2.795 |
Attr. frac. ex. | .6422182
Attr. frac. pop | .5963455
+
chi2 (1) =
cs srn training if na ==
| Training |
| Exposed Unexposed |
————————————————— o
Cases | 52 13 |
Noncases | 148 30 |
————————————————— o
Total | 200 43 |
| |
Risk | .26 .3023256 |
| |
| Point estimate |
| mm e +
Risk difference | -.0423256
Risk ratio | .86 |
Prev. frac. ex. | .14
Prev. frac. pop | .1152263
+
chi2 (1) =

generate polyp location 1lr 01
(597 missing values generated)

replace polyp location 1r 01
(67 real changes made)

replace polyp location 1r 01
(176 real changes made)

cs polyp_location lr 01 training if na

| Training |
| Exposed Unexposed |
————————————————— ettt s
Cases | 149 27 |
Noncases | 51 16 |
————————————————— ettt s
Total | 200 43 |
| |
Risk | .745 .627907 |
| |
| Point estimate |
| == m e +
Risk difference | .117093
Risk ratio | 1.186481
Attr. frac. ex. | .1571718
Attr. frac. pop | .1330603
+
chi2 (1) =
generate polyp location_rc 01 =
(597 missing values generated)
replace polyp location rc 01 = 0 if polyp
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0 if polyp location_ 1

1 if polyp location_ I1r

.0051669 .1618099
.6892547 11.33402
-.4508425 .91177
2.42 Pr>chi2 = 0.1198

Total

65

178

243

.2674897
[95% Conf. Intervall]
-.1924546 .1078034
.5160583 1.433172
-.4331715 .4839417
0.32 Pr>chi2 = 0.5695

== 1
== 2

Total

176

67

243

.7242798
[95% Conf. Intervall]
-.0395001 .2736862
.9296349 1.514292
-.0756911 .3396252
2.43 Pr>chi2 = 0.1190

_location_rc



(205 real changes made)

replace polyp location rc 01 = 1 if polyp location rc ==

(38 real changes made)

cs polyp_location_rc 01 training if na ==
| Training |
| Exposed Unexposed |
————————————————— et it T 3
Cases | 30 8 |
Noncases | 170 35 |
————————————————— ettt s
Total | 200 43 |
| |
Risk | .15 .1860465 |
| |
| Point estimate |
| == m e +
Risk difference | -.0360465
Risk ratio | .80625 |
Prev. frac. ex. | .19375
Prev. frac. pop | .159465
o
chi2 (1) =
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1

.1563786

[95% Conf. Intervall]

-.1624483 .0903552
.3976245 1.634806
-.6348063 .6023755

0.35 Pr>chi2 = 0.5549



6.0 The Metabolomic Fingerprint of Colorectal Cancer Remains
After Curative Treatment

6.1 Abstract

Background: The urine metabolomic fingerprint of CRC could represent an early
detection method for this common disease, but it s unclear whether this urine

fingerprint persists in patients after curative treatment of CRC.

Aim: The aim of this chapter was to use projection-based methods to assess
whether there are any differences in the urine metabolomic fingerprint of pre and
post curative treatment CRC patients. Whether the CRC-predictive metabolites

changed after curative resection therapy was also studied.

Methods: Urine samples were collected from 23 CRC patients at 3 months to 1
year after curative treatment of the CRC. The urine samples were analyzed using
an Oxford 600Hz nuclear magnetic resonance (NMR) spectrometer with a Varian
VNMRS two-channel console. The 1H NMR spectrum of each urine sample was
analyzed using Chenomx NMRSuite v7.0 (Chenomx, Inc. Edmonton, Canada)
and the metabolite concentrations were subsequently compared to the pre-
treatment ones of the same patients. Projection-based models were used to

separate the pre and post-treatment samples.

Results: When analyzed as a group, the pre-treatment CRC urine metabolomic

fingerprint was not different from the post-treatment urine metabolomic
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fingerprint. Six out of 23 CRC patients showed a recovery tendency towards
normal. Only 2 of 10 CRC-predictive metabolites, hypoxanthine and 3-
hydroxybutyrate, returned towards normal following CRC curative resection and

treatment.

Conclusions: This study was not able to demonstrate a difference in the

metabolomic fingerprint of CRC after curative treatment.

6.2 Introduction

Colorectal cancer is among the leading causes of death in North America, but it
can be curable with surgical or a combination of surgical and medical treatments
if identified early. However, about half of those that are thought to be curatively
treated will develop recurrent or metastatic disease within 3 to 5 years of
treatment, despite the absence of clinical, histological, and biochemical evidence
of remaining overt disease after resection. The availability of validated biological
markers for detection of complete resolution of disease after treatment and for
early detection of recurrent disease can be one way to increase survival in these
colorectal cancer patients.' Several studies have been published with
distinguishing metabolites for CRC*”, but few have addressed what happens to
these metabolites after the CRC has been cured and whether any of the
metabolites could be used to detect CRC recurrence. The urine metabolomic

fingerprint for post-treatment CRC is being investigated in this chapter.
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Two recently published studies showed a clear and significant separation between
the urines of pre-op, post-op colorectal cancer patients and healthy controls using
advanced statistical methods.”® Ma et al. used UPLC/MS (ultra high
performance liquid chromatography / mass spectroscopy) to examine the urine
samples of 24 colorectal cancer patients both before and after their cancer
operations, and that of 9 controls. They noted that when compared to the healthy
controls, pre-op colorectal cancer patients had significantly increased levels of
low-molecular weight compounds 283 and 234, and these compounds decreased
significantly after the operation.” Qiu et al. examined the urine metabolite profile
of 60 CRC patients using GC/MS and showed metabolic alterations between the

preoperative and postoperative states.’

Given the results of the recent publications, we wanted to test this phenomenon in
our population of colorectal cancer patients -- that is, to examine what happens to
the metabolomic urinalysis of our CRC patients after they are cured by their
surgical +/- medical treatments. Curative treatment was defined as not having any
residual macroscopic cancer after surgery. We hypothesized that the

metabolomic fingerprint of colorectal cancer would change post treatment.

6.3 Objectives

* To assess, using projection-based modeling, differences in the urine

metabolomics of CRC patients before and after curative resection therapy
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* To determine if the CRC-predictive metabolites changed after curative

resection therapy

6.4 Material & Methods

6.4.1 Recruitment and Sample Collection

All patients in the training and testing CRC groups who met the inclusion criteria
were contacted for the post op study via telephone between 3 months to 1 year
after their CRC treatment when their diet, activities, medications etc. would have
returned to baseline. Those who were treated with adjuvant chemotherapy were
recruited 3 months to 1 year after they had completed their treatment to remove
the effects that chemotherapy would have on metabolism. Patients were not
recruited for the post-op study if they refused to participate, were unreachable by
telephone, lived out of town, did not have curative treatment(s), still undergoing
adjuvant treatment, or were deceased. Upon enrolling into the study, subjects
were asked whether there were any changes in their medical conditions,
medications, and family history since they were enrolled into the pre-op study.
Clinical information such as the stage of cancer, adjuvant therapy, and CEA levels
was collected from the patients” medical records. Specifically the CEA level
around the time of post op urine collection was noted. The urine samples were
collected from the patients in their normal state of diet and activity and in
containers coated with sodium azide. Patients were contacted by telephone and

urine containers were couriered to their place of residence.
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From January 2009 to August 2010, 116 CRC patients were screened for this
study and urine samples were collected from 23 patients (18 from the training set
and 5 from the testing set). At the time of screening, 33 patients were either out
of town, could not be reached via telephone or refused to participate in the study;
15 patients had either unresectable or metastatic CRC; 11 patients were deceased;
17 were still undergoing adjuvant treatment; and the rest were either past the 1

year post op time point or were still within 3 months of surgery.

6.4.2 Sample Analysis

All urine samples were stored at -80°C until they were ready to be analyzed. The
day prior to NMR acquisition, each sample was thawed to room temperature and
was diluted (1:10) with internal standard consisting of 5 mM sodium 2,2-
dimethyl-2-silapentane-5-sulfonate (DSS), 100 mM imidazole, 0.2% sodium
azide in 99% D20. The samples were stored at 4°C overnight. On the day of
NMR acquisition, each sampled was adjusted to a pH between 6.7 and 6.8 and
aliquoted into Smm NMR tubes. One-dimensional nuclear magnetic resonance
spectra was acquired using an Oxford 600Hz NMR spectrometer with a Varian
VNMRS two channel console and running VNMRJ software version 2.2C on a
RHEL 4 host computer in the Canadian National High Field NMR Centre
(NANUC), Edmonton, Alberta. All samples were run at a sweep width (sw) of
7225.43 Hz. The saturation frequency (sfrq), transmitter offset (tof) and pulse
width (pw) were all individually calibrated at the start of each day. The tof

typically ranged from (-213 to -215 Hz) and the pw ranged from 6 to 8
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microseconds. Shims were optimized until an acceptable line width value was
obtained at relative peak heights of: 50% (< 1.0 Hz), 0.55% (< 12.0 Hz), and
0.11% (< 20.0 Hz) were achieved. Water suppression was performed. Spectra
were collected at 25°C through a total of 32 scans over a period of 3.5 minutes; a
total recycle delay of 5 seconds was also used (i.e. 1 second recovery
delay/saturation and a 4 second acquisition). The 1H NMR spectrum of each
urine sample was analyzed and quantitated using the targeted profiling
technique' as implemented in Chenomx NMRSuite v7.0 (Chenomx, Inc.
Edmonton, Canada). The quantification process was done independently by two
individuals and verified by a third individual to optimize accuracy. 294

metabolites were considered and 72 were significant.

The spectral acquisition and quantification process were performed without the

knowledge of the pathology results.

6.4.3 Data Analysis

The twenty-three pairs of samples were analyzed using projection-based methods
with the aid of SIMCA-P+ v12.0.1 (Umetrics, Umea, Sweden). The metabolite
concentrations were normalized (to total metabolite concentration except urea) to
account for the dilutional differences in the urine samples. Log transformation
was done to account for the non-normal distributive nature of the concentrations.
Finally, those metabolites that are not products of normal human metabolism, i.e.

xenobiotics, such as ibuprofen and salicylurate, were excluded. The pre-
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treatment and post-treatment groups were compared to each other but also the
post-treatment group was checked against the normal vs. CRC model. In
addition, the concentrations of the top contributing metabolites in the CRC model
were examined in the pre and post-treatment groups to see if there were any
differences between the two states. This was statistically analyzed using paired
student’s t-test (STATA/SE 10.1 (TX, USA)) as the two groups of data were from

the same population of patients.

6.5 Results

6.5.1 Patient Characteristics
The demographics and characteristics of the patients enrolled in the post-
treatment study are listed in table 6.1. The average time of the post-treatment

urine collection was 8.8 months from surgery.
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Table 6.1: Post curative treatment patient characteristics

Post op
Patients
(n=23)
N (%)
Male:Female 17:6
Age at Diagnosis (years + SEM) 69420
Smoking 5(23)
Diabetes 5(122)
o CRC 4 (17)
Family history Any cancer 16 (70)
Symptoms GI bleed 11 (48)
Change bowel habits 12 (52)
Location of cancer Rectal VS: colon 8 (35)
Left vs. right 17 (74)
Lymphatic 4 (17)
Vascular 2(8)
Pathology of Perineural 0(0)
Cancer Lymphocytic 6(33)
Well 22 (96)
Grade Moderate 0
High 1(4)
Stage 1 13 (57)
Cancer stage Stage 2 5 (22)
Stage 3 5(122)
Stage 4 0(0)
Pre-op CEA (>5 vs. <=5) 4 (22)
Post-op CEA (at time of urine collection) (>5 vs. <=5) 1(5)
Adjuvant Chemotherapy 3(13)

Note: Not all % are calculated with the denominator of the total in each group as some clinical
information was missing or unknown.

6.5.2 Building and Analyzing the Models
An unsupervised principal component analysis (PCA) model was built using the

pre and the post-treatment CRC sample concentrations. Auto-fitting by SIMCA
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resulted in a two component model and a scatter plot was generated (figure 6.1).
The sample labels were shown on the plot to compare the individual pairs of pre
and post-treatment samples. The overlapped sample labels are clarified in the
textboxes shown in figure 6.1. Careful analysis of the scatter plot revealed that
there were three categories of samples. Ten pairs of pre and post-treatment
samples were within the same quadrant and fairly close to each other on the
scatter plot (6009, 6539, 6538, 6532, 7018, 7004, 7021, 6540, 6520, 7033). The
other 13 pairs were all on different quadrants on the scatter plot, nine across one
quadrant (5071, 7000, 7020, 5006, 7014, 5043, 6527, 5026, 6018) and four across

two (7012, 6013, 6512, 7022).

The clinical characteristics were analyzed against these categories to see if there
were any other correlating factors and there were not. For example, the three
patients who received adjuvant chemotherapy (7021, 5043, and 6013) were
evenly distributed with one in each category. There was also no specific pattern
for the three out the four subjects with elevated preoperative CEA that returned to

normal in the post-treatment state (6539, 7018, and 6013).

It is unclear whether these categories identified above are significant or even
meaningful since they are generated from a PCA plot and as previously stated,
PCA is unsupervised and can be separating based on many other factors and not

necessarily based on the pre and post-treatment groups. Supervised PLS or OPLS
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models were attempted to separate the pre and post-treatment groups, but could

not be generated as the Q”Y values were negative.
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Figure 6.1:
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The post-treatment samples were superimposed onto the original normal versus
CRC model OPLS scatter plot to assess whether the post-treatment samples were
more alike the CRC samples or the normal samples (figure 6.2). It is fairly clear
from exploratory data analysis that the post-treatment samples are distributed
mostly on the CRC side of the plot. More objectively, when Y-predicted values
were generated for the post-treatment samples, 17 out of 23 were higher than the

cutoff of 0.212925, that is, on the cancer side of the plot.

Figure 6.2: Post treatment CRC samples (blue squares) superimposed on normal
(black triangles) vs. CRC (red diamonds) OPLS scatter plot

toPS[1]

tPS[1]

To further illustrate any changes in post-treatment CRC samples compared to the
pre-treatment ones, a new Normal (n=294) vs. Pre-treatment CRC (n=23) OPLS
model was built (scatter plot shown in figure 6.3). The post-treatment CRC
samples (n=23) were superimposed onto this scatter plot and it can be seen that
three of the samples actually migrated to the normal side of the OPLS scatter plot
(6009, 6512, 7033) shown in figure 6.4. Three other samples also migrated

towards the normal side of the scatter plot and have Y-predicted values lower than

249



the cancer cutoff of 0.212925, that is, they would have been interpreted as normal
(6538, 6539, and 7014) (figure 6.5). This means that 6 of the 23 CRC patients
showed a recovering tendency towards normal state after they have had their
curative treatment(s). Interestingly, all these patients had early stage CRC (5/6
stage 1, 1/6 stage 2) and 5 out of these 6 patients did not have a family history of

CRC.

Figure 6.3: Normal (black squares) vs. pre-treatment CRC (red diamonds) OPLS
scatter plot
N_Pre_Post_op_concn_NEW.M4 (OPLS/O2PLS-DA), N vs. Pre-Ca L] Normal

t[Comp. 1}/to[XSide Comp. 1] . Pre-Ca
Colored according to classes in M4

&

tol1]
L R R - T T R~ S T

-5 -4 -3 -2 -1 0 1 2 3
1]

RZX[1] = 0.02910339 RZX([XSide Comp. 1] = 0.043595

Ellipse: Hotelling T2 (0.35) SIMCAP+12.0.1 - 2011-01-19 05:54:22 (UTC-7)
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Figure 6.4: Post-treatment CRC samples (blue squares) superimposed on the

toPS[1]

normal (black triangles) vs. pre-treatment CRC samples (red diamonds)
model specifically showing the three CRC samples that migrated to the
normal side of the scatter plot (7033, 6512, 6009)

=5009-p1

tPS[]

Figure 6.5: Post-treatment CRC samples (blue squares) superimposed on the

toPS[1]

normal (black triangles) vs. pre-treatment CRC samples (red diamonds)
model specifically showing the other three CRC samples that migrated
towards the normal side of the scatter plot (6538, 6539, 7014)

tPS[1]
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When the three groups (normal, pre-treatment, and post-treatment CRC patients)
were plotted on the same OPLS scatter plot, there was not a good separation
between the pre (red diamonds) and post-treatment (blue diamonds) groups.

(Figure 6.6)

Figure 6.6: OPLS scatter plot of normal (black squares) vs. pre-treatment CRC
(red diamonds) and post treatment CRC patients (blue diamonds)

N_Pre_Post_op_concn_NEW.M3 (OPLS/02PLS-DA) L] Normal
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6.5.3 Metabolites

The top ten contributing metabolites in the normal versus CRC model
(hypoxanthine, creatinine, dimethylamine, 3-indoxylsulfate, methanol, adipate,
urea, guanidoacetate, 3-hydroxybutyrate, and acetone) were analyzed to see if
their levels significantly changed after the curative treatment of CRC. Paired
student’s t-test was used to compare the concentrations of the metabolite

concentrations and the results are shown in table 6.2. Also shown in table 6.2 is
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the average concentration of the metabolites in the normal control group from the
previous normal vs. CRC analysis, to determine whether the post-treatment

changes in the metabolite concentration were towards that of the normal or not.

Table 6.2: Comparison of the concentrations of the top 10 contributing
metabolites generated from the normal vs. CRC model in the pre-
treatment and post-treatment samples using paired student’s t-test; also
shown is the average metabolite concentration in the normal control

group
Pre-treatment Post-treatment Normal
CRC CRC Control
) Average Average Average
srefilboliiies Metaboigite Metabo%ite vl Metabo%ite
Concentration Concentration Concentration
uM) uM) uM)
Hypoxanthine 55.5 79.9 0.398 18.2
Creatinine 10,162.4 20,973.6 0.064 5584.6
Dimethylamine 374.1 743.2 0.082 185.4
3-indoxylsulfate 259.8 526.0 0.056 126.1
Methanol 20.0 82.3 0.029 76.8
Adipate 7.0 0 0.328 0.7
Urea 150,026.4 343,737.4 0.074 141,544.5
Guanidoacetate 107.6 289.2 0.052 180.6
3-
e 19.7 3.7 0.058 13.3
Acetone 14.1 53.3 0.139 9.5

Several metabolites were quite different between the pre and post-treatment
groups; in fact, seven out of ten metabolites had p-values <0.1, namely creatinine,
dimethylamine, 3-indoxylsulfate, methanol, urea, guanidoacetate, and 3-
hydroxybutyrate. When these seven metabolites were more carefully analyzed, it
was determined that for three of them (methanol, guanidoacetate, and 3-

hydroxybutyrate), the direction of change from the pre to the post-treatment states
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was in the same direction as that towards the normal concentration. For example,
the average concentration of methanol was 76.8uM in the normal group and
20.0uM in the pre-treatment CRC group and this increased to 82.3uM in the post-
treatment CRC group. This showed a recovering tendency towards healthy state
in the post-treatment samples. However, for the other four metabolites
(creatinine, dimethylamine, 3-indoxylsulfate, and urea), the direction of change

was the opposite.

Examining the raw concentrations of the urine samples overlooks the effects of
different hydration states, thus the normalized concentrations of the metabolites
would likely give a more realistic representation of any differences between the
pre and post-treatment groups (table 6.3). Normalization was to total metabolite
concentration minus urea concentration, i.e. ([metabolite]/([total metabolite]-
[urea]). When the normalized data is examined, only hypoxanthine and 3-
hydroxybutyrate levels are different in the post-treatment state compared to the

pre-treatment state, both showing a recovering tendency towards healthy state.
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Table 6.3: Comparison of the normalized concentrations of the top 10
contributing metabolites generated from the normal vs. CRC model in
the pre-treatment and post-treatment samples using paired student’s t-
test; also shown is the normalized average metabolite concentration in
the normal control group

Pre-treatment Post-treatment Normal
CRC CRC Control
. Average Average - Average
MR e Normal;gzed Normal;gzed vaI;ue Normaligzed
Metabolite Metabolite Metabolite
Concentration Concentration Concentration
Hypoxanthine 0.00193 0.00111 0.031 0.00092
Creatinine 0.41833 0.40870 0.734 0.33153
Dimethylamine 0.01562 0.01435 0.259 0.01137
3-indoxylsulfate 0.01020 0.00992 0.858 0.00667
Methanol 0.00130 0.00188 0.209 0.00484
Adipate 0.00014 0 0.328 0.00005
Urea 7.00514 7.24626 0.784 10.42251
Guanidoacetate 0.00473 0.00576 0.344 0.01132
3-
e 0.00059 0.00013 0.033 0.00058
Acetone 0.00094 0.00080 0.550 0.00082

6.6 Discussion

6.6.1 Summary

The urine metabolomic fingerprint of post-treatment CRC patients was studied in
this chapter. Twenty-three urine samples were collected from CRC patients who
underwent curative surgical resection with or without adjuvant chemotherapy
approximately 3 months to 1 year post-treatment. Using projection-based
methods, a model to separate the pre and the post-treatment groups was attempted
but could not be built due to the lack of difference between the two groups. When

the post-treatment group samples were validated against the normal vs. CRC
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model (from chapter 4), they were more like the CRC patients, and when all three
groups were represented on in an OPLS scatter plot, the pre and post-treatment
samples could not be separated. However, a more targeted analysis of the pre and
post-treatment samples using a new normal vs. pre-treatment CRC OPLS model
demonstrated that 6 out of the 23 CRC patients’ metabolomic fingerprints showed
a recovery tendency towards normal. All of these six patients had early stage
CRC and 5 out of 6 had no family history of CRC. This could suggest that early
stage CRC metabolomic fingerprints are more likely to revert to normal after
treatment or that patients without a positive family history of CRC are not
‘genetically pre-dispositioned to have CRC’ and thus their metabolomic
fingerprint of CRC disappears after treatment, however, the number of patients in
this study is too small to draw any definitive conclusions. This will be explored

further as more post-treatment patients are recruited.

When the top CRC-predictive metabolites were analyzed, there were some
significant differences in seven out of the ten metabolites between the pre and
post-treatment groups, however, less than half of these showed a recovering
tendency towards normal. When the normalized concentrations were examined,
only 2 of 10 CRC-predictive metabolites, namely hypoxanthine and 3-
hydroxybutyrate, returned towards normal following CRC curative resection and
treatment. This explains why the post-treatment group, for the most part, did not

resemble the normal group when analyzed using the projection-based methods.
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6.6.2 Comparison to Literature

Unlike what is shown in the literature”°, the post-treatment patient samples in this
study could not be easily separated from the pre-treatment ones using projection-
based methods. There are several differences between this study and the two in
the literature. In Qiu’s study, the post-operative urine sample was collected on
the seventh day after surgery and in Ma’s study, the post operative urine sample
was also collected in the immediate post op period, although the exact timing was
unspecified. In contrast, for this study, the urine samples were collected 3 months
to 1 year after the definitive treatments are finished. There are many metabolic
changes in the immediate post-operative stages, such as recent bowel preps, fluid
and electrolyte derangements, perioperative medications, and altered activity
levels, therefore we elected to collect the post-treatment urine sample when the
subjects’ metabolisms would have presumably returned to their baselines.
Another advantage that this study has over the others is that only those patients
with curative intent were included, i.e. those with metastatic cancer were
excluded. In Qiu’s study, 9 of the CRC patients had stage IV or metastatic CRC,
so after the colon resection surgery there would have been residual CRC cells in
the body and hence metabolism would still be affected by these CRC cells.
Therefore, the separation of the pre and post-operative patients demonstrated in
the literature may not be due to the CRC being removed but rather a host of other
potential factors. Moreover, both Ma & Qiu’s study subjects are from China

whereas the patients for this study are from Northern Alberta (Edmonton and
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Grande Prairie). The differences in patient ethnicity, climate, and diet can also

significantly change the subjects’ metabolite profiles.

6.6.3 Limitations

The major limitation in this study is the small sample size, which makes it
difficult to use projection-based multivariate methods to analyze the samples.
After screening all 116 CRC patients included in the normal vs. CRC analysis
(chapter 4), only 23 subjects fit the inclusion criteria so far. About a third of the
patients were either out of town, cannot be reached via telephone or refused to
participate in the study. Due to the geographical distributions of Alberta, many
patients live in the small towns around the periphery of Edmonton and Grande
Prairie and traveled to the city to have their surgeries, but many find it quite
difficult or troublesome to travel to the city to participate in this follow up study.
At the cut-off time for recruitment into this study (Aug 2010) there were still
many CRC patients who were still undergoing adjuvant treatment or were within
three months of their surgery date, therefore in a few months time there will be

more patients that could qualify for this study.

As mentioned in the previous chapters, the number of metabolites analyzed for

this post-treatment group is limited by the Chenomx compound library.
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6.6.4 Strengths of Study

The advantages of this study, as stated above, are the timing of collection of the
post-treatment samples and the exclusion of the metastatic CRC patients.

These two modifications from the existing studies in the literature theoretically
result in a more homogenous patient population and also remove the potential

confounding perioperative changes in metabolism from the analysis.

6.7 Conclusions

This post-treatment study showed that when analyzed as a group, the pre-
treatment CRC urine metabolomic fingerprint was not different from the post-
treatment urine metabolomic fingerprint. However a quarter of the patients did
show a recovery tendency towards normal after curative treatment of their CRC.
Two of 10 CRC-predictive metabolites trend towards normal following CRC

curative resection and treatment.
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6.9 Appendix

tab sex if postop ==

Sex | Freq
____________ +

0 | 6

1| 17
____________ +

Total | 23

sum age 1f postop==

Variable | Obs

sum age if
invalid syntax

r(198);
sum age
Variable | Obs
age | 23

Famhx cca | Freq
____________ +
0 | 19
1| 4
____________ +
Total | 23
tab fh_any ca
FH ANY CA | Freq
____________ +
0 | 7
1| 16
____________ +
Total | 23
tab smoke
Smoke | Freq
____________ +
0 | 17
1| 5
____________ +
Total | 22
tab dm
DM | Freq
____________ +
0 | 18
1| 5
____________ +
Total | 23
tab sympt gibleed
Sympt GIble
ed Freq
0 12

Percent

69.3913

69.3913

Percent

Percent

9.731575

9.731575
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tab sympt bowelhabit

Sympt bowel

|
habit | Freq
____________ +
0 | 11
1| 12
____________ +
Total | 23

generate or_tumorlocation r
(46 missing values generated)

replace or_tumorlocation_rc
(6 real changes made)

replace or_ tumorlocation_rc
(2 real changes made

replace or_tumorlocation_rc
(6 real changes made)

replace or_ tumorlocation_rc
(1 real change made)

replace or_ tumorlocation_rc

(5 real changes made)

replace or_ tumorlocation_rc
(1 real change made)

replace or_tumorlocation_rc
(2 real changes made)

tab or_ tumorlocation_rc

or_tumorloc

|
ation rc | Freq
________ T4
0 | 15
1| 8
____________ +
Total | 23

generate or_tumorlocation 1
(46 missing values generated)

replace or_ tumorlocation 1r
(6 real changes made)

replace or_ tumorlocation 1r

Percent

c =.

or_tumorlocation

or_tumorlocation

or_tumorlocation

or_tumorlocation

or_tumorlocation

or_tumorlocation

or_tumorlocation

"Rt COL"

"Lt COL"

"Sigmoid"

"Rt COL & Sigmoid"

"Rect Below"

"Rect At"

"Rect Above"

Percent Cum
65.22 65.22
34.78 100.00
100.00
r =.
= 0 if or tumorlocation == "Rt COL"
= 1 if or tumorlocation == "Lt COL"
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(2 real changes made)

replace or_ tumorlocation 1r
(6 real changes made)

replace or_ tumorlocation 1r
(1 real change made)

replace or_ tumorlocation 1r
(5 real changes made)

replace or_ tumorlocation 1r
(1 real change made)

replace or_ tumorlocation 1r

(2 real changes made)

tab or_ tumorlocation_ 1lr
or_tumorloc |

ation 1r | Freq
________ SR
0 | 6
1| 17
____________ +
Total | 23
tab 1i
LI | Freq
____________ +
0 | 19
1| 4
____________ +
Total | 23
tab vi
VI | Freq
____________ +
0 | 21
1| 2
____________ +
Total | 23
tab pni
PNI | Freq
____________ +
0 | 21
____________ +
Total | 21

Lymphocycti |
c resp | Freq
______ %
0 | 12
1| 6
____________ +
Total | 18

Percent

Percent

Percent

or_tumorlocation

or_tumorlocation

or_tumorlocation

or_tumorlocation

or_tumorlocation
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tab gradepath

GradePath | Freq. Percent Cum.
____________ o
1| 22 95.65 95.65
3| 1 4.35 100.00
____________ o
Total | 23 100.00
tab stage
STAGE_of Ca |
ncer | Freq. Percent Cum.
____________ o
1| 13 56.52 56.52
2 | 5 21.74 78.26
3| 5 21.74 100.00
____________ o
Total | 23 100.00

generate CEA_ cat
=exp required
r(100);

generate CEA cat =.
(47 missing values generated)

replace CEA_cat = 0 if cea <=5 & cea !=.
(14 real changes made)

replace CEA_cat = 1 if cea > 5 & cea !=.
(4 real changes made)

tab CEA cat

CEA _cat | Freq Percent Cum

____________ o

0 | 14 77.78 77.78

1 4 22.22 100.00

____________ o
Total | 18 100.00

generate postcea_cat =
(47 missing values generated)

replace postcea cat = 0 if cea_at post op collection <=5 &
cea_at post op_collection !=.
(19 real changes made)

replace postcea cat = 1 if cea_at post op collection > 5 &
cea_at post op_collection !=.

(1 real change made)

tab postcea_ cat

postcea_cat | Freq. Percent Cum.

____________ o

0 | 19 95.00 95.00

1| 1 5.00 100.00

____________ o
Total | 20 100.00

tab post_op_chemoyn
Post_op Che |

moyn | Freq. Percent Cum.
____________ o

264



0 | 20 86.96 86.96

1| 3 13.04 100.00

____________ o

Total | 23 100.00
sum time from or

Variable | Obs Mean Std. Dev Min Max
_____________ o
time from or | 23 8.782609 3.204493 4 14

ttest hypoxanthine = hypoxanthine post

Paired t test

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o
hypoxa~e | 23 55.45652 12.37113 59.32983 29.80038 81.11267
hypoxa~t | 23 79.92609 29.67827 142.332 18.37711 141.4751
_________ o
diff | 23 -24.46956 28.36762 136.0463 -83.30041 34.36128
mean (diff) = mean (hypoxanthine - hypoxanthine p~t) t = -0.8626
Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.1988 Pr(|T| > |t]|) = 0.3977 Pr(T > t) = 0.8012
ttest creatinine = creatinine post
Paired t test
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o
creati~e | 23 10162.43 1432.794 6871.437 7190.998 13133.86
creati~t | 23 20973.58 5865.074 28127.91 8810.164 33137
_________ o
diff | 23 -10811.15 5553.426 26633.29 -22328.25 705.9481
mean (diff) = mean(creatinine - creatinine post) t = -1.9468
Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) !'= 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0322 Pr(|T| > |t]|) = 0.0644 Pr(T > t) = 0.9678
ttest dimethylamine = dimethylamine post
Paired t test
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o
dimeth~e | 23 374.1261 57.36578 275.1166 255.1567 493.0954
dimeth~t | 23 743.1565 212.9026 1021.045 301.6236 1184.689
_________ o
diff | 23 -369.0304 202.5175 971.2398 -789.026 50.96515
mean (diff) = mean(dimethylamine - dimethylamine ~t) t = -1.8222
Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0410 Pr(|T| > |t]) = 0.0820 Pr(T > t) = 0.9590

ttest indoxylsulfate= indoxylsulfate post

Paired t test

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o

indoxy~e | 23 259.8217 48.43363 232.2795 159.3765 360.2669
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indoxy~t | 23 525.9696 146.1294 700.8122 222.9157 829.0235

_________ o
diff | 23 -266.1478 131.6651 631.4437 -539.2046 6.908911
mean (diff) = mean(indoxylsulfate - indoxylsulfate~t) t = -2.0214
Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0278 Pr(|T| > |t]|) = 0.0556 Pr(T > t) = 0.9722
ttest methanol= methanol post
Paired t test
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o
methanol | 23 19.96087 3.251067 15.59157 13.21857 26.70317
methan~t | 23 82.35652 27.70549 132.8709 24.89885 139.8142
_________ o
diff | 23 -62.39565 26.78432 128.4531 -117.9429 -6.848374
mean (diff) = mean (methanol - methanol post) t = -2.329%906
Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0147 Pr(|T| > |t]) = 0.0294 Pr(T > t) = 0.9853
ttest adipate= adipate post
Paired t test
Variable | Obs Mean Std. Err Std. Dev [95% Conf. Intervall]
_________ o
adipate | 23 7.026087 7.026087 33.69593 -7.545126 21.5973
adipat~t | 23 0 0 0 0 0
_________ o
diff | 23 7.026087 7.026087 33.69593 -7.545126 21.5973
mean (diff) = mean(adipate - adipate_ post) t = 1.0000
Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.8359 Pr(|T| > |t]|) = 0.3282 Pr(T > t) = 0.1641
ttest urea= urea post
Paired t test
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o
urea | 23 150026.4 19722.01 94583.46 109125.4 190927.3
urea_p~t | 23 343737.4 101332.3 485972.7 133587.1 553887.8
_________ o
diff | 23 -193711.1 103395 495864.9 -408139.2 20716.98
mean (diff) = mean(urea - urea_post) t = -1.8735
Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0372 Pr(|T| > |t]) = 0.0743 Pr(T > t) = 0.9628
ttest guanidoacetate= guandidoacetate post
Paired t test
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
_________ o
guanid~e | 23 107.5609 21.88041 104.9348 62.18367 152.9381
guandi~t | 23 289.1783 90.95651 436.2121 100.546 477.8105
_________ o
diff | 23 -181.6174 88.51358 424.4962 -365.1833 1.948542
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mean (diff) = mean(guanidoacetate - guandidoacetat~t) t = -2.0519

Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0261 Pr(|T| > |t]|) = 0.0523 Pr(T > t) = 0.9739

ttest hydroxybutyrate= hydroxybutyrate post

Paired t test

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o
hydrox~e | 23 19.66087 7.455353 35.75462 4.199415 35.12233
hydrox~t | 23 3.747826 2.238558 10.73575 -.8946587 8.390311
_________ o o
diff | 23 15.91304 7.952478 38.13875 -.5793869 32.40547
mean (diff) = mean (hydroxybutyrate - hydroxybutyrat~t) t = 2.0010

Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.9711 Pr(|T| > |t]) = 0.0579 Pr(T > t) = 0.0289

ttest acetone= acetone post

Paired t test

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall]
_________ o
acetone | 23 14.1 3.251755 15.59487 7.356272 20.84373
aceton~t | 23 53.26957 26.61296 127.6313 -1.92234 108.4615
_________ o
diff | 23 -39.16957 25.52557 122.4164 -92.10637 13.76724
mean (diff) = mean(acetone - acetone_post) t = -1.5345

Ho: mean(diff) = 0 degrees of freedom = 22
Ha: mean(diff) < 0 Ha: mean(diff) !'= 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0696 Pr(|T| > |t]) = 0.1392 Pr(T > t) = 0.9304
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7.0 General Discussion and Conclusion

The role of urine metabolomics in the detection of colorectal cancer and polyps

was explored in this thesis project.

Chapter one highlighted the public health concerns of colorectal cancer screening
in Canada by summarizing the current screening modalities, effectiveness of
screening, current compliance rates for CRC screening and barriers to effective
screening. Some suggestions on overcoming the barriers were given and

Alberta’s approach to CRC screening was elaborated.

Chapter two provided an up-to-date systematic review of the existing literature on
the field of metabolomics and CRC in humans. Eight studies were included and
the distinguishing metabolites from each study were summarized. Tissue and

serum metabolomics were discussed in addition to urine metabolomics.

In chapter three, the methodology of recruitment, specimen processing and data
analysis were provided in detail. As well, the technical concepts of NMR were

discussed.

Chapter four demonstrated that using urine metabolomics and advanced statistical

analysis, a robust OPLS model could be built to distinguish colonoscopy-negative

controls from CRC patients with high sensitivity (92.7%). Using only the top ten
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metabolites, sensitivity and specificity of 86.6% and 75.5% respectively were

achieved, suggesting commercialization potential for this test.

Chapter five demonstrated that the urine metabolomic test diagnostics for
precancerous adenomatous polyps (sensitivity of 89.5% and specificity of 71.8%)
were far superior to the existing fecal tests. While the adenomatous polyp stage is
believed to be an intermediate step between normal colonic epithelium and
colorectal malignancy, the metabolomic fingerprint for colorectal adenomatous

polyps was found to be completely different than that of CRC.

In chapter six, advanced statistical models could not show any differences in the
metabolomic fingerprint of the pre and post-treatment CRC groups, however,
when analyzed individually, 6 out of 23 CRC patients showed a recovering
tendency towards normal and 2 of the top 10 CRC-predictive metabolites trended

towards normal.

7.1 Future Directions

This study is a work in progress. Work is ongoing to collect urine samples from
new CRC patients and post-treatment CRC patients to improve the normal vs.
CRC model and further investigate the changes to the metabolomic fingerprint of

CRC after curative treatment.
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The existing data is also being re-analyzed with the samples randomly distributed
first prior to being assigned to training and testing groups for both the CRC group
and the adenoma group. This method will minimize any clinical differences

between the groups and make the training and testing groups more comparable.

We plan to contact the adenoma patients from this study to obtain another urine
sample in order to study whether the adenoma fingerprint changes after the polyps
are removed. This has implications should the urine metabolomics test proves
useful as a commercial screening test. That is, if the urine metabolomic signature
remains after the polyps are removed, then this would represent an once-in-a-

lifetime test rather than an annual test.

In this thesis, the hyperplastic polyps were visually shown to resemble adenomas
rather than normals. This will be further investigated by building normal vs.
hyperplastic models to see if the metabolite fingerprint of hyperplastic polyps also
resembles that of adenomatous polyps. The hyperplastic polyps will also be
validated against the adenoma model to establish whether the urine metabolomic

test predicts growths or more specifically adenomatous growth.

Finally the CRC urine metabolomic fingerprint will be validated with the urine
samples of patients with other types of common adenocarcinomas such as breast
and prostate to determine whether it is specific enough for CRC or ifitis a

general adenocarcinoma fingerprint .
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