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Abstract

Current medical imaging professional training uses an apprenticeship model

with students following an established doctor and viewing their cases, in what

is called a practicum. This posses an issue as students are limited to the cases

available during their practicum. To resolve this automated instruction can

aid in their education promoting both increased depth and breadth. To accom-

plish this we have created a new Intelligent Tutoring System, Shufti. Shufti

makes use of modern gamification and Intelligent Tutoring System designs to

augment the learning experience of mammography students. In Shufti we have

introduced a new reinforcement learning based technique for use in Intelligent

Tutoring System feedback selection in ill-defined domains, and have made use

of modern gamification techniques to increase learner engagement.
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Chapter 1

Introduction

1.1 Motivation

Analysis of medical images is an important tool in modern medicine. Modern

technology has changed how we explore and diagnose issues. Where once it

would be necessary to perform a risky exploratory surgery to determine the

source of an ailment, now an MRI can peer into the depths of the human body

from outside. Beyond simply making diagnosis easier, modern technology has

enabled remote diagnosis; an expert no longer needs to be present to provide

insight.

These advances, though, come with a downside: the volume and variety of

medical images produced has increased by leaps and bounds. With technolo-

gies such as Magnetic Resonance Imaging (MRI) becoming common place, the

demand for professionals able to analyze them has increased. Unfortunately

the current process of training such professionals follows an apprentice model

with medical students following a fully practicing doctor in what is known as

a practicum, during which they assist their instructor and review their cases.

This has proven historically adequate but has some downsides. The students

are only exposed to the cases that their instructor receives meaning that rare

conditions are not seen, resulting in a less than comprehensive education. In

addition, the limited number of cases seen by a doctor mean that the students

have a limited ability to practice. Further worsening this is the difficulty of

analyzing medical images, resulting in poor rates of detection [21].
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1.2 Problem Definition

An Intelligent Tutoring System could help with these issues in a variety of

ways. By increasing the students access to the cases including rare ones it

can improve the breadth of their experience. To induce practice one can use

techniques borrowed from serious games [30]. To retain the quality of instruc-

tion from tutoring [4] that a student receives during their practicum such an

environment can use intelligent tutoring techniques.

To this end we have created a medical imaging Intelligent Tutoring System,

Shufti. Shufti is a mammography Intelligent Tutoring System. Mammography

was chosen as the focus of Shufti over other medical imaging fields due to

the availability of data and the pressing need for more professionals able to

perform analysis of mammograms. It uses gamification and social techniques

to provide the learner with motivation to learn. To increase students access

to cases it draws cases from large existing databases of medical images. To

retain the benefits of tutoring it makes use of innovative student modelling to

provide adaptive learner specific feedback in a domain of study which, due to

its structure does not lend itself to normal techniques.

Serious games, games which are used to teach serious topics, are an up

and coming innovation in education [28][24]. Gamification has many bene-

fits such as being habit forming [35], resulting in more practice. Completion

can transform routine tasks into interesting challenges. Social features can

further improve the learning experience by allowing learners to share knowl-

edge amongst one another. Our implementation of gamification techniques is

explored in Section 6.3.

There are many large medical image databases online from which is it pos-

sible to draw exercises. Some examples are the Digital Database for Screen-

ing Mammography [13] or the Segmentation Chest Radiograph Database [31].

This enables students to see a broader set of cases than they normally would.

These databases also contain rare cases as well, allowing students to increase

the depth of the cases that they have seen by emphasizing rare or difficult

cases. Our use of these is outlined in the introduction to Section 6.
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An Intelligent Tutoring System can provide leaner specific adaptive feed-

back to the students, simulating such a tutoring experience. In Shufti’s case

a innovative form of Reinforcement Learning [29] based student modelling is

used to provide advice and feedback to the leaner. This was done due to med-

ical imaging being what is know as an ill-defined domain which is a domain

which does not lend itself to normal Intelligent Tutoring System techniques.

The motivation, challenges, methods, and validation of this are outlined in

Section 7.1.

Adaptive feedback can be achieved via many means, such as ELM-PE’s

automatic presentation of relevant information to the learner [33] or automat-

ically and pre-emptively pointing out mistakes as seen in The Logic Tutor: A

Multimedia Presentation [1]. It is also possible to guide the learner along the

discrete steps necessary for solving a task as shown in the ITS PETE [12].

Unfortunately though, such techniques are inadequate for use in Shufti as it

is a mammography ITS.

Mammography is known as an ill-defined domain, which means it assesses

problems which do not have a definitive answer and require the relation of

diverse, yet relevant concepts to solve them [18]. In this dissertation we will be

exploring the topic of Intelligent Tutoring Systems, with emphasis on feedback

and ill-defined domains. Given that conventional techniques for constructing

Intelligent Tutoring Systems are not effective in an ill-defined domain, this

study will focus on how Shufti processes and delivers feedback within this

framework to successfully provide training to its learners.

1.3 Thesis Statement

We have created a system that provides individualized adaptive feedback for

Intelligent Tutoring Systems in ill-defined domains.

Feedback selection in ill-defined domains is difficult for a variety of reasons,

most prominently due to ill-defined domains being more difficult for computers

to work in. For example, creative writing is unsuited to automatic reasoning

making it difficult to automatically issue effective feedback.
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1.4 Thesis Contributions

Put more specifically, the central contribution of this document is the intro-

duction of a new reinforcement learning based technique for selecting custom,

learner specific, feedback in ill-defined domains. Shufti, which was developed

concurrently with this study, uses this innovation to provide feedback to mam-

mography learners. Shufti also makes use of modern gamification techniques

so as to improve learner use of the system. Additionally this document con-

tains the design and structure of a learner simulator with which it is possible

to evaluate a feedback issuing system.

1.5 Research Methodology

We have created Shufti a new ITS, focused on mammography. In which we

employ a new method of selecting feedback to issue to learners. Alongside

that we have also incorporated gammifciation techniques to further improve

its effectiveness as a learning aid.

To validate the performance of the new feedback selection method in Shufti

it would have been desirable to make use of two courses teaching the diagnosis

of mammograms, one with access to the system and one without, for compar-

ison. Unfortunately we do not have access to such classes because of the small

practicum groups. We have instead created a realistic simulation of a mam-

mography course, with simulated learners that learn and react to feedback in

a realistic individual manner.

1.6 Document Structure

The content and structure of this dissertation is as follows: Chapter 2 is an

examination of the topic of Intelligent Tutoring Systems. It explores both the

definition of important concepts for the field, such as what is feedback, hint,

a domain model, a student model and a tutoring model.

In Chapter 3 we focus on what is a well-defined domain. What attributes

does a domain have to have to be well-defined. What is a typical structure of
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an ITS in such a domain. It also talks provides examples of existing ITSs in

well-defined domains.

In Chapter 4 we define what is an ill-defined domain in contrast with well-

defined domains. We then provides examples of existing ITSs in ill-defined

domains and the difficult of validating them.

Chapter 5 starts with a definition of feedback and its possible attributes.

We then provide an enumeration of each of these possible feedbacks so as

to explore the possibilities. Finally, we examine some existing methods of

providing feedback in ill-defined domains.

In Chapter 6 we introduce our new mammography ITS Shufti. We examine

its features, design, and structure.

Chapter 7 is a summary of how feedback in Shufti is provided via rein-

forcement learning; including a definition of what reinforcement learning is.

Chapter 8 begins with the design of a simulator for validating Shufti’s

feedback system. We then describe the exercises, courses, and learners within

this simulator. We then discuss the simulators used to select the reinforcement

learning algorithm, and parameters for Shufti’s feedback system and then con-

cludes with a discussion of the results of the evaluation.

Chapter 9 is an examination of other possible fields to which the techniques

used in Shufti can be used.
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Chapter 2

ITS Structure and Features

An Intelligent Tutoring System (ITS) is educational software which recreates

the one-on-one human tutoring experience by choosing effective pedagogical

techniques and stratagems to improve the learner’s performance. This is done

to simulate the effectiveness of a human tutor as described in Bloom’s “The 2

Sigma Problem” [4], in which the testing showed that 90% of tutored students

achieved the same level of mastery as the top 20% of conventionally instructed

students.

ITSs target many fields, or as we will refer to them domains. A domain is

a field of instruction which can be as broad as arithmetic or as narrow as how

to repair a particular device. A domain can often stretch beyond the normal

fields of instruction such as the training of military officers [6].

Intelligent Tutoring Systems attain their goal of simulating tutoring through

various means such as providing advice, guidance and information to the

learner. This can take the form of a simple score presented after an exer-

cise is completed, to advice and illustration of domain principles violated by

a user’s answer.

2.1 Hints and Feedback

Hints and Feedback are extremely important concepts in intelligent tutoring.

As a rule, in this manuscript, Hints are information that the user requests

specifically (for example clicking a button or following a link in an ontology)

and Feedback is unrequested information selected by the system to present to
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the learner, such as notifying them of a mistake.

2.2 Conventional ITS Structure

Though the focus of this document is on ITSs in ill-defined domains, it is

perhaps prudent to summarize the structure of a conventional Intelligent Tu-

toring System, in a well-defined domain. A conventional ITS structure is as

follows: a domain model, a student model, a tutoring model, and a user in-

terface [23]. The following sections examine each one of these models in turn,

briefly touching on some common techniques used in their design.

2.2.1 Domain Model

The domain model is the “understanding” of the field in which an ITS will

tutor; it provides the system the ability to reason using domain principles.

For an intuitive metaphor, a domain model can be thought of as an instruc-

tor’s knowledge of the subject matter they are teaching. They would use this

knowledge to validate the steps taken by the learner they are tutoring and to

suggest exercises and provide hints. There are many possible types of domain

models [22], though the majority fall under the label of expert systems.

Nkambou [22] defines expert system domain modelling as using an expert

system to reason about the domain in question. An expert system is a problem-

solving system which uses production rules to represent the dynamics of its

field. Nkambou further states that from an intelligent tutoring perspective,

there are three kinds of expert systems: Cognitive models in which the knowl-

edge representation and the reasoning method employed are understandable

to humans, Glass Box models in which the knowledge representation is un-

derstandable to humans but the reasoning mechanism is not, and Black Box

models in which neither the knowledge representation or reasoning are under-

standable. They vary in usefulness and power based on their transparency,

with the most transparent, Cognitive models, able to offer intermediate steps

to the learner during problem-solving, and the least transparent, Black box

models, only able to validate the learner’s actions and answers. Two other ex-

7



amples of domain models can be found in chapters of “Advances in Intelligent

Tutoring Systems” [23]. First, in Rule-Based Cognitive Modeling for Intelli-

gent Tutoring Systems [2] Aleven explores how a production-rule based expert

system can be used in an ITS. Second, in “Modeling Domains and Students

with Constraint-Based Modeling” [20] Mitrovic proposes the application of

constraints to the system to maintain the domain model’s consistency instead

of giving the system the ability to reason about the domain.

2.2.2 Student Model

A student model is the conception of a student’s knowledge and emotional

state as outlined in Woolf [34]. Woolf states “A student model in an intelligent

tutor observes student behaviour and creates a qualitative representation of

their cognitive and affective knowledge”.

There are many possible techniques for student modelling. One can store

student proficiencies, ranging from simple numeric rankings, to complex net-

works of interrelated skills. Many student models will learn rules about what

the student does and does not know, while other’s will attempt to place stu-

dents into stereotypical categories of learners.

2.2.3 Tutoring Model

Tutoring models as described in Bourdeau and Grandbastien [5] are the sec-

tions of the ITS devoted to selecting pedagogical strategies, such as selecting

exercises for the learner to perform and what feedback of hints to provide.

They do this by incorporating information from the student model and the

domain model. They range in complexity from simple lists of exercises done

in order to complex systems which select exercises based on predictions of

student performance and educational gains.
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Chapter 3

ITS Examples in Well-Defined
Domains

In this chapter we will explore what a well-defined domain is and examine

three Intelligent Tutoring Systems which have been successful in educational

contexts. First is a web based Lisp programming ITS called ELM-PE, which

stands for Episodic Learner Model - Programming Environment, created by

Weber and Mollenberg [33], chosen as an example of how the framing of a

problem can influence how well-defined its domain is. Second is Logic Tutor[1]

which is a Java based symbolic logic ITS by Abraham et al, chosen as it is an

excellent example of an ITS in a well-defined domain. Third we will explore

ActiveMath, a mathematics ITS [19], chosen as it is both an ITS in a well-

defined domain and is in use in real world classrooms. Lastly we will touch on

some other interesting ITSs and developments.

3.1 Well-defined Domains

A domain is called well-defined if it has all of the following attributes: verifia-

bility, formal theories, a well-defined task structure, clearly defined concepts,

and a decomposable task structure [10]. These attributes also enable the use

of conventional intelligent tutoring techniques and domain modelling. In this

section we will examine each one of the attributes and indicate why it is nec-

essary.
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3.1.1 Verifiability

A well-defined domain must have verifiable answers - such as in arithmetic

where there is only one correct answer for a given problem - or, at the very

least, the ability to distinguish a correct answer from an incorrect answer.

Problems in ill-defined domains lack verifiability in that they commonly do

not have a truly correct answer. For example, consider a writing exercise

in which the goal is to write an interesting story. It is possible to write an

interesting story and it is possible for one to manually determine if a story

is interesting, but there is no one correct answer to the exercise “write an

interesting story”. In other words, an ambiguous notion of correctness is one

of the possible features of an ill-defined domain, which is in conflict with the

idea of verifiability.

3.1.2 Formal Theories

A well-defined domain must have a clear cut set of rules, or formal theorems

within which one can reason and solve problems. An example of the use of

formal theorems is symbolic logic in which the entire problem space is well-

defined and there are rules which can be applied in all situations. Contrast

this with the case of performing a medical diagnosis. In medicine there are

only vague notions of formal theories, such as the effects of a drug on a disease.

This vagueness and lack of theories frustrates the creation of domain models

which results in ill-defined domains. It is interesting to note that generally

when one has fully fleshed out domain rules one also gains the attribute of

verifiability but the opposite is not always true.

3.1.3 Well-Defined Task Structure

A well-defined domain must have a regular task structure or, as stated in

Fournier-Viger et al. [10], be a “Problem Solving Domain”. A problem solv-

ing domain is one in which there is one correct answer, where given enough

information such an answer can be determined, without the use of the solver’s

judgement. This contrasts with other structure such as design or analytics. In
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the case of design, novelty is the desired meaning that there is no one correct

answer. In the case of an analytical domain the learner is required to use their

judgement which results in any answer being ambiguous. Another notion of

this is idea that a domain has a well defined task structure if it is possible

to automatically generate exercises with in it. This is due to the regularity

in domain tasks and subject matter necessary to generate them in a realistic

manner.

3.1.4 Clearly defined concepts

For a domain to be well-defined, the concepts within it must have a clear

definition, without ambiguity. For example, a triangle is a well-defined concept

with no ambiguity, something is either a triangle or not a triangle. This is not

always present within a domain. For example, the various styles of art are

not well-defined and a work’s inclusion in a particular style is based more on

consensus of the community and the statements of the artist than on any hard

definition. However, clear, unambiguous definitions are necessary if one is to

reason about concepts within a domain.

3.1.5 Decomposable task structure

For a domain to be well-defined it must be possible to decompose problems

within it to a sequence of separate and independent steps. For example, when

solving a logic problem, the correctness of a given step can be determined

from the current state and the desired end state. The correctness of steps

taken before the current step have no influence on whether or not the current

choice is correct. Contrast this with designing an engine, a problem which is

composed of many overlapping sub-problems where the solution to one affects

the correct solution to the others. As an example, let us assume an engineer

has to design an engine to meet specific requirements for dimensions, output

and weight. Not only does the engineer have to decide how many cylinders

are required but this then, in turn, affects the dimensions of the cylinders

and the weight of the engine. Because the engineer cannot decompose each

of the tasks into discrete problems which do not impact other elements of
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the overall solution, the number of permutations and combinations becomes

unmanageable. This effectively results in what we call an ill-defined domain.

3.2 ELM-PE

As stated above, in the introduction to this chapter, ELM-PE [33] is a Lisp

programming tutoring environment which teaches novice computing science

students how to program Lisp, a non-trivial task as the system is both teaching

the concepts behind computing science and the language syntax in which to

communicate them. This is accomplished by providing an editor with three

modes: Listener mode in which the system provides minimal assistance, only

simple error messages are displayed for syntax errors; Editor mode in which

the assistive (tutoring) features are enabled providing a structure of code or

template for the user to complete; and lastly Exercise mode where the most

assistance is provided.

In Listener mode the user is presented with a simple Lisp code editing

environment in which they are told only of the syntax errors in the code they

enter. This is the system’s starting state and is minimally assistive, lacking any

example output or guidance (templates). This can be thought of the system

acting as a normal editor or IDE.

Editor mode is more assistive, providing templates for common program-

ming patterns in Lisp which the learner is required to fill in. In this mode the

learner is given significant assistance including examples of similar code and

a visualization of the evaluation of their code. This system will only accept

syntactically correct Lisp code and will provide explanations for why any given

piece of code is incorrect. It should be noted though that the system will only

provide feedback or assistance to correct code syntax. It does not provide any

assistance to help ensure the code logic is correct.

Finally, Exercise mode provides a high level of assistance encompassing all

of the prior levels and additionally extending its assistance and feedback to

include on the fly evaluation of a program’s output in order to attempt to find

logical errors and to provide feedback on how to resolve them. This is done by
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Figure 3.1: Logic Tutor’s UI

comparing the student’s produced output with a list of anticipated erroneous

outputs. The system also makes use of a cognitive model to provide hints to

help students to get “unstuck”.

Overall the system appears to work quite well. Students who made use

of it outperformed those who did not by 40 percentage points. There are

some possible improvements to the system’s feedback design; the feedback is

fitted to the situation and not adapted to a particular learner. In addition the

necessity of manually creating lists of wrong answers makes it time consuming

to create new exercises for the system.

3.3 The Logic Tutor: A Multimedia Presen-

tation

Logic Tutor is a symbolic logic tutoring environment in which students are

taught how to perform formal logical proofs using symbolic logic. Symbolic

logic is a field well suited to intelligent tutoring techniques as it can be fully

modelled using a computer. The system takes the form of a Java application

in which the students are tasked to perform step by step logical proofs.

To perform these proofs the student is provided a set of logical predicates

such as a =⇒ b. Students must then enter the next transformation of the

predicates, step by step, so as to prove some property. The system provides

feedback to the user when they have made two mistakes. This feedback is
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Figure 3.2: ActiveMath’s UI

determined by comparing the mistakes with a set of mistake patterns, a similar

process to the ELM-PE list of output errors. Errors are highlighted using

colour to draw the student’s attention. If multiple mistakes are made the

fields of the answer are checked to see if they are filled in with the correct type

of data. Next, the syntax of the formula is checked followed, then finally the

correct application of the rules of symbolic logic is checked for.

The system stores user’s exercise actions allowing them to be reviewed. It

also has an automatic exercise generator to produce an unlimited number of

possible exercises for students to practice on. These features make Logic Tutor

an excellent review tool for students.

3.4 ActiveMath and MathTutor

ActiveMath, created by Melis [19], is a web based mathematics Intelligent

Tutoring System, in which the authors aim to “support truly interruptive,

exploratory learning”[19] by adaptively presenting information to the learner.

ActiveMath stores mathematical principles as a set of rules as well as a list of

pedagogical goals for the learner to achieve. When a learner selects a topic the

system produces a custom course based on the set of rules and a modelling of

the student’s current competencies.
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Students are modelled based on their history and the system’s estimation

of their competency at solving mathematical problems. When the student

submits an exercise, their model is updated based on their performance on the

last exercise. Interestingly, ActiveMath allows students to modify their own

models to correct misconceptions that the system may have about them.

Mathematical principles within the system are represented in a semantic

XML called OMDoc, which is a math principle description language. While

students are performing exercises, the system uses a computer algebra system

to evaluate the transformations they have used to solve the problem in order

to determine if they matches one or more of the mathematical principles in

the OMDoc database. If so, the student is allowed to continue. Otherwise

they are notified of the error.

Another mathematics related ITS is MathTutor by Aleven et al. [3] which

enables students to study mathematics subjects as varied as algebra, data

analysis, and geometry. To model the domain it uses Example Tracing.

Example Tracing Tutors store a series of generalized examples of exercise

solutions, and compare the actions taken by the learner with these examples. If

the learner takes an action which is inconsistent with the example, the system

provides feedback indicating what the error was. The system can also offer the

learner hints about the next possible step in solving the problem. More detail

about MathTutor can be found in “Scaling Up Programming by Demonstra-

tion for Intelligent Tutoring Systems Development: An Open-Access Web Site

for Middle School Mathematics Learning” [3].

3.5 Other notable developments

Some additional developments in intelligent tutoring systems include: The use

of Bayesian networks to model learners intentions in well defined domains [7].

Which is an interesting approach and one that has proven useful in well defined

domains. Another unique ITS design approach is having the student examine

their own problem solving process [8]. An idea which is similar to the replay

and review functionality present in Shufti, and can be seen in Figure 6.9.
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Chapter 4

Ill-defined Domains

The examples presented in the last chapter, Chapter 3.1, are all related to

mathematics, however the techniques used in these examples cannot be applied

to all domains. Examples of fields where these techniques cannot be used

include writing, architecture and art. These are known as ill-defined domains.

An ill-defined domain is a domain which lacks one or more characteristics

of well-defined domains namely, verifiability, formal theories, A well-defined

task structure, clearly defined concepts, and a decomposable task structure

as defined in Lynch et al. [18], Fournier-Viger et al. [10] and enumerated in

Section 3.1.

4.1 Examples of ITSs in Ill-defined Domains

The following section gives examples of ITSs which are in ill-defined domains.

It is important to reiterate that not every domain is equally ill-defined and

how one approaches a domain can directly influence how well it is defined.

First we will examine Code Hunt [25] a computer programming ITS as it

contains an interesting approach to dealing with the open-endedness of pro-

gramming. We will then discus PETE [12], an engineering ethics ITS, which

was chose because the field of ethics lacks almost all of the attributes of a

well-defined domain from Section 3.1. And finally we will discuss SlideTutor,

an ITS which focuses on Pathology as it is both relevant to later sections in-

volving medical imaging and has an interesting approach for dealing with the

lack of formal theories within pathology.
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Figure 4.1: CodeHunt’s UI

4.1.1 Code Hunt

CodeHunt [25] is a computer programming ITS which, unlike ELM-PE de-

scribed in Section 3.2 , is in an ill-defined domain. The main argument for

why Code Hunt is in an ill-defined domain hinges on the lack of structure in

the problems the learner attempts to solve.

Learners are presented with an editor, some test cases, and a submit but-

ton. The goal is to write a small program which satisfies the test cases and

then submit their program for evaluation. If the student succeeds, they are

awarded points which contributes to their ranking within the system. If the

student’s program fails the tests, the system offers advice on how to correct

the problem, which is also known as “feedback”.

Because there is no enforced structure there are endless possible answers to

any exercise, resulting in an ill-defined task structure. Additionally, because

in programming every part of the program is interrelated the problem also

contains overlapping subtasks. These two attributes - lack of a well-defined

task structure and a lack of a decomposable task structure - result in the

domain being ill-defined.

Due to this, the system has to employ new and innovative techniques to

provide feedback to the learner. For all students it records their use of the

system, including the time and the current code entered. When a learner
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has not succeeded at an exercise, their current answer is clustered with other

students histories. From the current answer’s neighbours, the system then

looks at the subsequent changes made by those who ultimately succeeded and

uses that as a feedback to the learner.

4.1.2 PETE

Figure 4.2: PETE’s UI

In PETE by Goldin et al. [12] learners performing ethical case studies

(for example a non-FDA approved artificial heart being used as a temporary

replacement while a patient is waiting for a donor.)

The student is presented with an ethical case study and would first deter-

mine the ethical concepts it contains. Next, the student would identify the

stake holders, and then finally the would recommend a reasonable solution to

the problem. This is presented in a web-based interface where the student

manually enters their answer for each step in sequence. They are able to go

back and change their answers to prior questions but not to advance to later

steps until they have answered the current step. This is done to enforce a

common structure for the ethical dialogue.

When they have completed a step they are presented with the systems

“gold standard” answer and the answers of their peers. The system has no
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form of student ranking or scoring and is instead designed to facilitate the

exploration of ethics by the student.

This is an excellent example of an ill-defined domain for a number of rea-

sons. First of all there is no one correct answer to such ethical dilemmas

resulting in a lack of verifiability. Secondly, ethics has no formal domain the-

orems with which to automatically reason. Third of all, the task structure is

ill-defined as it is a judgment based task. And finally, the domain suffers from

open textured concepts in that most ethical terms and ideas lack comprehen-

sive definitions.

To deal with these problems, Goldin et al. have done two things: they

have manually created definitions of ethical terms, and they have created a

gold standard for what the correct answer to each step should be, in effect

imposing a model on the domain. This model is not comprehensive but it is

consistent with itself and current ethical thinking.

4.1.3 SlideTutor

SlideTutor is a pathology Intelligent Tutoring System created by Crowley et

al. [9]. In it, learners are tasked with performing pathological diagnoses on

tissue samples in a simulated pathology tool. The samples are presented as

high resolution slides in a desktop application.

The learners select evidence for various conclusions using various annota-

tion functionalities. They are then told if their diagnosis is correct or incor-

rect. During the process the students are offered automatic advice (feedback)

on what the appropriate next step would be.

Pathology is an ill-defined domain for many reasons. First of all there are

no formal theorems with which to reason about the domain. Secondly the

task is analytical in nature and thus has an ill-defined task structure. And

finally, the concepts within the field are open to interpretation and are not

comprehensively defined.

To resolve this issue Crowley et al. have created an artificial model. They

had expert pathologists diagnose tissue samples while creating annotations of

their reasoning and highlighting the regions they are referring to. From this
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information they produced a model of diagnosis for each exercise providing

the system with a list of possible actions at each step of the process.

4.2 Validation of ITSs in Ill-defined Domains

Validating an ITS is a difficult task. One requires both a means to determine

if the system is functioning correctly and a way to determine if its pedagogical

goals have been met.

Empirical validation of a system’s performance on students is the most

common approach to validation (as was done with ActiveMath and MathTu-

tor) however this requires finding a body of students to perform the validation

with.

Unfortunately it is often difficult to find a suitable group of students, and

as a consequence many system remain unvalidated. Self [27] has argued that

too many validations are focused on the pedagogical approach, and neglect to

show if the system will work properly in general. Some systems have followed

Self’s advice and have adopted a general validation approach, such as with

CodeHunt where they do not examine the learning gains made by the users

but simply evaluate if the system has issued a useful feedback.

Our own solution to this problem can be found in Section 8 where we

propose a compromise between the empirical approach and the theoretical

validation approach.
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Chapter 5

Feedback

In this next section we will describe feedback as a concept in ITS. We will com-

prehensively categorize possible feedback strategies in order to fully explore

the problem space.

It is important to note that many of the feedback structures proposed in

the following sections are commonly referred to as hints, but we have chosen

to make a distinction. Hints are information that the user has requested by

performing an action such as pressing a hint button. Feedback is information

that the tutor provides in an unprompted manner, produced as a side effect

of the learners actions.

5.1 Feedback: a Definition and Exploration

Feedback is an important concept in Intelligent Tutoring Systems. It is in-

formation provided to the learner in an unprompted manner by the system.

Feedback has three main attributes: Timing, Polarity and Specificity.

Timing of feedback determines where and when the learner will receive

new information from the system. It falls into three categories: Pre-exercise

Feedback, Post-Exercise Feedback and Concurrent Feedback.

Pre-exercise feedback is feedback which occurs before an exercise is per-

formed such as presenting the relevant concepts for an exercise before the

learner attempts it.

Post-Exercise feedback is feedback taking place after the learner has com-

pleted an exercise and can be things such as a score or a list of mistakes made.
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Concurrent feedback, which is what we normally think of as feedback, is

feedback which occurs during the solving of the exercise. It is broken into

two sub-categories, one which takes place before a user takes an action and

one which takes place after the student has taken an action. This distinction

is necessary as anticipatory (pre-action) feedback will most likely be different

from reactionary (post action) feedback.

Feedback polarity determines the goal of the feedback, for example, is it

intended to prevent or correct an error (Negative Feedback) or is it intended

to indicate that the learner is on the right track and to further encourage

their actions (Positive Feedback). An example of a negative feedback would

be highlighting the latest error the learner made. An example of positive

feedback would be displaying to the user the name of the concept they just

used.

Specificity of feedback determines the actual content of the feedback. It

could be a simple encouragement, the notification of an error, or guidance

to the correct course of action. This attribute can fall into three categories:

General Statements which have no direct relevance to the exercise in question

such as “good job” or “are you sure that’s right”, Exercise Specific Domain

Knowledge which is general domain knowledge directly relevant to the question

at hand, and, finally, User Action Specific Information which is information

directly relating to the user’s individual actions and how they will alter the

current state of the exercise. It is important to note that the Specificity of

feedback refers to the content of the feedback not to the means of selecting

the type of feedback to issue. For example the system may issue positive post

action general statement feedback in response to the user taking a correct

action.

The attributes of feedback outlined above do not necessarily define all

of the possible categories of feedback. It is conceivable that attributes other

than Timing, Polarity and Specificity can be used to qualify types of feedback.

Additionally even within the categories outlined, there may be some ambiguity,

particularly when it comes to Specificity. Fitting feedbacks into hard and fast

categories is not always trivial.

22



In the following sections we will examine a number of useful permutations

of feedback, providing examples, commenting on the feedback’s impact on the

learning process, and determining its suitability for use in ill-defined domains.

5.2 Permutations of Feedbacks

5.2.1 Positive, Pre-Exercise Feedbacks

Positive, Pre-Exercise, General Statements

This is defined as positive statements made to the learner before the learner

performs an exercise such as: “you’re in the top 10% of your class”. These are

rather simple in nature and are not related to the domain of the ITS. They can

allow the learner to gauge their performance relative to their peers or their

past. In general, this is an extremely simple form of feedback that can be

implemented in almost all cases, including ill-defined domains. In fact, many

systems incorporate this form of feedback without expressly acknowledging

that it is a form of feedback such as in online games where the user is presented

with information about their current ranking relative to other students.

Positive, Pre-Exercise, Exercise Specific Domain Knowledge

Some systems take the above idea of providing relevant information to the

learner a bit further and in effect provide directly useful information about

the upcoming exercise to the learner. This could be things like pointing out

directly relevant examples, (similar to when an instructor reviews important

concepts before a mid term) or it could be something as simple as explaining

big-O notation in an algorithms course or how to do matrix multiplication

in a linear algebra course. This is generally quite easy to implement and

like the above General Statement feedback, does not require any sophisticated

techniques. Many applications will provide a “tip of the day” during the initial

startup which can also be thought of as an example of this feedback.
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Positive, Pre-Exercise, User Action Specific

This permutation of feedback does not appear to have any merit as the user

has not yet taken any sort of action and it would therefore make little sense

to attempt to talk about their actions. Perhaps if one had a user model of

incredible sophistication it might be possible, but to our knowledge no such

model exists.

5.2.2 Positive, Post-Exercise Feedbacks

Positive, Post-Exercise, General Statements

This combination is similar to Positive, Pre-Exercise, General Statements as

seen in Section 5.2.1 with the exception that the feedback is being presented

after the learner has completed an exercise. This allows the system to di-

rectly comment on the learner’s performance in solving the last question or

exercise. This could take the form of a statement such as “You did well on

that question” or an actual quantitative score on the exercise. This form of

feedback does not rely on any techniques more sophisticated than producing a

simple score or ranking of users and thus is well suited to ill-defined domains,

needing only verifiability. An example of this feedback can be found in almost

any educational software in the post-exercise score summary presented to the

learner.

Positive, Post-Exercise, Exercise Specific Domain Knowledge

Similar to the General Statement feedback described above this feedback is

comprised of useful information for the learner presented after an exercise has

been completed. Unlike the above feedback, however, we are now able to

present information regarding domain principles or domain rules which may

be relevant, allowing the system to communicate to the learner what they did

right in an exercise specific manner. An example of this would be a statement

such as “In questions involving integrals of ex you perform above average”.

This method requires the system to have some notion of the domain knowledge

required for each question, resulting in it generally being outside of the purview
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of ITSs in ill-defined domains.

Positive, Post-Exercise, User Action Specific

This is the most specific of the Positive, Post-Exercise techniques. The system

comments directly on discrete actions that the learner has taken in the process

of solving an exercise. This can take the form of highlighting efficiencies or

pointing out the deeper meaning of the action taken by a successful attempt.

This method of delivering feedback is the hardest to perform in an ill-defined

domain and is generally the province of systems used in well-defined domains.

It requires that the domain have the features of formal domain theorems and

a lack of overlapping sub problems as stated in Section 4. CodeHunt uses this

type of feedback to advise the learner about how to fix any problems in the

exercise.

5.2.3 Positive, Pre-Action Feedbacks

Positive, Pre-Action, General Statements

We have now reached the more difficult forms of feedback as they take place

not before or after an exercise but during the exercise. This alone requires that

the domain possess one of the traits of being well-defined. In order for there

to be pre or post action feedbacks it must be possible to break the problem

into discreet tasks such as the steps necessary to solve a mathematic problem

or selecting regions of an image. This requirement means the task must not

contain overlapping sub problems as described in Section 3.1.5 and must also

have a well-defined task structure. Assuming this condition is met, positive

pre-action general feedback could perhaps take the form of positive encourag-

ing statements delivered before the user acts however, as of this writing we

do not know of any systems which implement this. Ultimately, like all gen-

eral statement based feedbacks, this is the least specific to the domain and

hence offers the learner the least assistance. This is not to say that General

Statements cannot provide useful information to the learner, for example a

statement like “keep going” can tell the user that the system believes they are
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on the correct path in a domain which has verifiability but does not have a

decomposable task structure and hence is not well-defined.

Positive, Pre-Action, Exercise Specific Domain Knowledge

This type of feedback allows some systems to produce quite useful results, such

as in ELM-PE [33] where the user is presented with templates of code to fill in,

and a list of related concepts and examples of similar code, all relevant to the

exercise at hand. Like other Exercise Specific feedbacks, this method requires

the system to know things about the exercise in question. In particular it has to

know what concepts need to be understood in order to solve the given exercise

so that it can present from those concepts. Unfortunately this requires the

domain to not be ill-defined, as it needs formal theories, and like all exercise

concurrent feedbacks it is necessary for the solution of the problem to be

divisible to discreet actions.

Positive, Pre-Action, User Action Specific

This is a particularly problematic permutation of feedback as it requires us

not only to provide the feedback before the user acts, but also to correctly

predict what action they are going to take. As far as we are aware no Intelli-

gent Tutoring System has attempted this (most likely due to the difficulty of

producing a user model which can successfully predict user actions, although

it is possible that a sufficiently sophisticated statistical model might be able

to predict user’s actions with some amount of accuracy).

5.2.4 Positive, Post Action Feedbacks

Positive, Post Action, General Statements

Like the pre-action based methods described in Section 5.2.3, this method

requires the exercise be decomposable into discrete actions to which the system

can react. It is made up of general statements about the users’ actions such

as “good job” or “that was the right choice”. Though lacking in exercise

specific content these statements can be still useful as was stated in Self’s

work, “only 40% of tutor student dialog has tutorial content” [27]. Like all
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forms of feedback the timing must be chosen carefully as one could reinforce

an incorrect action by virtue of being unable to specify what was correct.

Positive, Post Action, Exercise Specific Domain Knowledge

This feedback contains domain related knowledge. It is a powerful form of

feedback where the system can directly state what would be a useful domain

principle to the user such as in LogicTutor (Section 3.3) where after the student

has acted, the system can suggest the follow up step based on their choice

of logical transformations employed in their proof. It requires some form of

domain model so as to select the appropriate information to give to the learner

generally necessitating formal rules or theorems and well-defined concepts to

be present in the domain.

Positive, Post Action, User Action Specific

This is one of the most interesting forms of feedback in which the system

reacts to how the user has answered the question. That is to say, it is not

just reacting to the fact the user has answered the question, it is reacting to

the content of their answer. This goes beyond reacting to an improvement

or worsening of the state of the exercise and speaks to the actual domain

and educational content of the feedback given. An example of this feedback

would be providing additional background information as to why the correct

choice was correct. This feedback requires the domain be some what well-

defined, requiring formal theorems, well-defined concepts, and a well-defined

task structure. These features are necessary as this feedback does not just

state if the user was correct but why they were correct.

5.2.5 Negative, Pre-Exercise Feedbacks

Negative, Pre-Exercise, General Statements

As discussed earlier while positive feedback is feedback intended to cause the

user to continue a correct course of action negative feedback (the much more

common variant) is used to correct the user’s actions such as notification of an

error, or information which may prevent a future error. Negative pre-exercise
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general statements feedback is simply the system making general statements

not with the intention of encouraging or discouraging the learner, but with the

intention of avoiding future error. For example, a trigonometry ITS might issue

feedback like “Remember, the length of the hypotenuse is equal to the square

root of the sum of the squares of the other two sides,” before commencing an

exercise. Incidentally, negative feedback is not negative in tone, in fact it can

be quite positive and it is intended to correct the user’s mental model of the

system.

Negative, Pre-Exercise, Exercise Specific Domain Knowledge

Domain knowledge by itself can quite often prevent future mistakes, such as

in the case of a statistics application where many potential errors can be

prevented by simply stating the probabilities of all possible outcomes must

sum to one. This level of specificity requires we have some form of domain

model, unlike the one before as we need to know what exact domain concepts

are relevant to the upcoming problem. It is possible to hand annotate the

exercises with useful domain concepts, but this restricts the possible problems

to ones generated from a template.

Negative, Pre-Exercise, User Action Specific

Like its positive counter part, this form of feedback requires the ability to

predict the learners specific or likely actions. As of this writing the authors

know of no system which has such capabilities.

5.2.6 Negative, Post-Exercise Feedbacks

Negative, Post-Exercise, General Statements

Negative Post-Exercise feedback is a difficult thing to conceptualize as useful

but in reality it can be. For example, telling the learner how long their peers

took to complete the same exercise, or what the average score was can be

helpful (although the latter is only possible in domains with verifiability.)

Interestingly, things like a learner’s score can be viewed by the learner as
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Negative (the learner has a particularly low score relative to his peers) or

Positive (the learner is performing better than most of his peers).

Negative, Post-Exercise, Exercise Specific Domain Knowledge

This feedback type overlaps with its positive counterpart as, once again, it is

restricted to simple statements however now it can contain general exercise

specific domain principles. This can take the form of a post-exercise general

tip such as “Remember, all statements must end with a semi-colon,” when

the user has failed to use semi-colons appropriately in a programming ITS. To

produce such statements one can either use knowledge of a well-defined domain

or hand create appropriate statements for ill-defined domains. Unfortunately,

like all of the exercise specific domain knowledge feedback, this requires some

way to determine which, if any, domain principles are relevant which generally

restricts automatic generation of this feedback to well-defined domains.

Negative, Post-Exercise, User Action Specific

This is a common form of feedback in domains where there are no overlapping

sub problems and there is verifiability. In its simplest form this feedback can

be an enumeration of the mistakes made by the learner examples of which can

be found in almost all e-learning software. In a more robust form, in domains

with formal theorems or an artificial set of rules, it can take the form of a direct

statement. This statement can be used to inform the learner which domain

principles were violated and what they can do to avoid the same mistakes in

the future.

5.2.7 Negative, Pre-Action Feedbacks

Negative, Pre-Action, General Statements

This feedback contains only general statements intended to prevent the user

from making a mistake. These could take the form of stating general domain

principles that the system believes the user is unaware of, or simple messages

about upcoming difficulty. Depending on the amount of domain knowledge

contained within the message it may not be necessary to have a well-defined
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domain to provide this form of feedback. For example, in an ill-defined domain

with a well-defined problem structure and a step by step exercise process, it

would be possible to record the success rates of students on various steps

allowing the system to generate feedback for upcoming difficulty.

Negative, Pre-Action, Exercise Specific Domain Knowledge

With this form of feedback the system can express directly relevant domain

concepts to the learner before they make a mistake. This could be something

such as restating the core principles of the domain to the user, or domain rules

directly relevant to the problem. This feedback is mostly restricted to domains

in which the system has a notion of what would be relevant information to the

learner.

Negative, Pre-Action, User Action Specific

This is the most difficult form of feedback to provide as it is extremely difficult

to anticipate the learner’s forthcoming action as well as what the next correct

action should be. This requires a domain which has formal theorems, dividable

subtasks, and a lack of an open field task structure. As of writing we do not

know of any ITS that uses this form of feedback. That said it may be possible

to achieve this by forming a statistical model of reasonable user actions in

order to guard against common mistakes.

5.2.8 Negative, Post-Action Feedbacks

Negative, Post-Action, General Statements

Negative Post-Action feedbacks are the most commonly associated with the

name “feedback”. They are issued in reaction to the learner taking an incorrect

action. They seek to notify the learner of a mistake they have made, and

prompt them to correct it. When used with General Statements it is a simple

notification that the student has made an error. For example, if the user

makes a mistake the system can state “You should examine your last action”,

prompting the user to contemplate their last act. These can be offered in any

domain which has verifiability and the task is one comprised of discreet steps.
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Negative, Post-Action, Exercise Specific Domain Knowledge

This is a more specific version of the above with only the additional require-

ment that the system be able to reason about the domain concepts directly

related to the given question. Much like the exercise specific methods, this

can be done by either having a domain model which can reason about the

questions or by direct annotation of the question manually. Such a feedback

can be seen in ELM-PE, where the system will indicate if the learner’s answer

will produce the an incorrect output and then checks to see if this error is part

of a list of common errors to resolve.

Negative, Post-Action, User Action Specific

This is the most effective feedback variety which simulates the actions of an

effective human tutor. It is a corrective statement directly highlighting the

user’s error or providing the learner with suggestions about how to resolve an

error. Unfortunately it requires the domain be well-defined or, at the very

least, have the properties of formal theories, verifiability, a lack of overlapping

sub problems, non open textured concepts, and a suitable task structure. It

is also the most common form of feedback for ITSs in well-defined domains.

An example of this can be found in LogicTutor (Section 3.3) where after the

student has acted erroneously the system directly indicates the location of the

mistake.

5.3 Feedback selection in Ill-defined domains

Now that we have enumerated the possible feedback combinations we will now

examine the methods with which a system can select a suitable feedback for

a learner. In particular we will be examining the efforts to provide feedback

in ill-defined domains. We will first examine and enumerate the approaches

outlined in Fournier-Viger et al. [10]. We will then examine the coding ITS

CodeHunt [25]. And later on, in Section 7.1, we will propose a new method of

selecting feedback based on Reinforcement Learning.
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5.3.1 Existing methods of feedback selection in Ill-defined
domains

There are many ways of creating an ITS capable of providing feedback in ill-

defined domains. Some examples include forcing structure onto them, creating

a partial task model, using existing case studies and using existing evaluation

metrics. Over this next section we will touch upon each of these techniques,

exploring their advantages and limitations.

When forcing structure onto a domain, one can create consistent but not

comprehensive rules for the domain, such as in SlideTutor [9], described in

Section 4.1.3. The authors produced a domain model which, while not com-

prehensive, is sufficient for guiding students to replicate the action of an ex-

pert. This is done by using the model to provide positive and negative pre-

action exercise specific feedback. A related method is to create constraints

on what comprises a valid action such as avoiding mechanical singularities in

the CANADARM tutor [10]. This enables it to provide Negative Post-Action

User Action Specific feedback in cases where the constraints had been violated.

These techniques are suited to many problems, but they cannot replicate the

results of a similar system in a well-defined domain. The construction of such

rules can also be both time consuming and error prone.

Creating a partial task model is a similar idea, but, instead of forcing a

model onto an entire domain, one discards the sections of the domain which

are ill-defined and focuses on a well-defined subset of the domain. In domains

which support creating a partial task model this can be a powerful technique

enabling the use of conventional ITS feedback selection techniques. Unfortu-

nately many domains lack a well-defined segment in which to use this technique

for example, writing.

Making use of pre-existing case studies allows a system to apply structure

to judgment based domains, such as in PETE [12], where the authors have

curated a set of case studies from which students can learn and explore. This

technique has some value as it allows us to impose verifiability on a domain

which would otherwise not have it. For example, this technique could enable
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the system to inform the learner they have missed an ethical concept so they

can attempt to replicate the judgement exhibited by experts in the field. In

effect this is a form of Negative Post-Action Feedback.

Finally we come to using existing evaluation metrics. This can be doing

something like key-word analysis or making use of a writing quality metric. It

enables us to impose some form of verifiability on domains where such metrics

exist, allowing the use of at least general feedbacks.

5.3.2 Collaborative methods of feedback selection

Collaborative methods are an effective alternative to the methods outlined

in the prior section. Instead of imposing structure or attempting to acquire

structure from case studies, these methods use the most proficient students

as a template for those less proficient. An example of this can be found in

CodeHunt [25], which is described in depth in Section 4.1.1. Students using

CodeHunt are tasked with writing a small computer program which is required

to pass some tests. If their program fails these tests their solution is compared

with the history of other learners. From this the system can recommend a next

course of action. The system looks for learners who were in a similar situation

and later resolved it. Once such a learner is found, the successful resolution

is provided to the learner as a User Action Specific feedback. This method is

interesting and worth pursuing in domains which can support it i.e. ones in

which novelty is not desired. It is suited to both problem solving domains and

analytical domains.
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Chapter 6

Shufti

Shufti is an Intelligent Tutoring System that focuses on teaching mammogra-

phy - the diagnosis of mammograms or x-rays of the breast. An example of a

mammogram can be found in Figure 6.1.

Shufti is a Ruby on Rails application using PostgreSQL as its store of data.

It is made up of 14861 lines of Ruby and 1822 lines of Javascript. It makes

use of competitive features, game design, and automatic custom feedback to

aid learners and to encourage them to practice their skills with the system.

Learners are presented with exercises which they complete as a form of

practice for mammography. There are four kinds of exercises: Presence exer-

cises, Dual Image Heat Grid exercises, Dual Image Grid exercises, and Dual

Image Polygon exercises. Exercises are ranked by difficulty with Presence ex-

ercises being the easiest and Dual Image Polygon exercises being the most

difficult. Users are limited to only one difficulty or “level” at a time and are

promoted based on their performance. A total of 1883 mammograms drawn

from the Digital Database for Screening Mammography [13] were used for

these exercises.

We will now turn to Shufti’s design and how this relates to Shufti’s peda-

gogical goals and use of gamification to accomplish those goals.

6.1 User Summary Screen

Shufti’s User Summary Screen (Figure 6.2) presents users with a variety of

information including a graph showing how their score has progressed, a list of
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Figure 6.1: An example mammogram.
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Figure 6.2: The User Summary and Home Screen for Shufti

their past exercises, and scores with links to details about each specific exercise

and, finally, a set of statistics summarizing their level, usage, overall score and

number of exercises completed.

The purpose of the summary screen is to provide the learner with a concise

summary of their activities and to serve as a jump-off point for all the other

functions in Shufti such as starting an exercise or reviewing past exercises.

6.2 Exercises

The main component of Shufti is the mammography exercises. These exercises

task the learner with making diagnoses of varying difficulty and goals. When

a learner is done with an exercise they submit it for evaluation. They receive

a score and a summary of errors and correct diagnoses. They have the ability

to cancel an exercise although this results in a score of Zero.

Learners are given various tools such as zoomed views and (on exercises

harder than Presence exercises) automatic feedback to help them complete the

exercises.

Once they have completed their exercise they can see the correct answer,

how their peers preformed, a replay of their mouse movements and the com-
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ments of their peers on the exercise.

We will now examine the unique features of each type of exercise and

explain how a learner would experience them.

6.2.1 Presence Exercises

Presence exercises are the simplest ones. In them the learner determines if

a lesion is present within the provided mammograms. They give a simple

“yes” or “no” answer to each exercise. This is similar to a coarse attempt

at determining if there’s anything unusual present in the breast tissue at all.

The exercises are of limited difficulty showing large lesions when present. The

purpose of these exercise is to acquaint the learner with mammograms and

teach them to identify fairly obvious lesions (the minimum size of lesions in

Presence exercises is 32 pixels by 32 pixels). Learners in this exercise are

scored as a simple pass fail with a correct answer giving them a score of 1000

and a incorrect answer a score of 0, this range was chosen to match the range

of scores in the other exercises.

6.2.2 Dual Image Heat Grid Exercises

Dual Image Heat Grid Exercises task the learner with directly indicating where

they believe lesions exist, if any, in a given mammogram. This is to have the

learner practice locating any cancerous lesions within the breast instead of just

the fact that the are present. They do this by selecting squares in an 8 by 8

grid which has been superimposed over each breast in the mammogram. Each

square in the grid is an average of 100 pixels by 66 pixels. This proved to be

ergonomically suitable. When a user is satisfied with their answer they submit

their exercise for evaluation.

While the learner is answering an exercise they are given “Hot” and “Cold”

feedback (similar to the game in which one person guides another to an object

or location by continuously stating if they have moved closer to (warmer)

or further from (colder) the object). In Shufti this takes the form of the

thermometer displayed in the right region of Figure 6.7. The thermometer

changes to yellow if the user hovers over a square with a immediately adjacent
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F1 = 2
precision · recall
precision+ recall

Figure 6.3: F1 score

to a square containing a lesion and it turns red if the user hovers directly over

a square which contains a lesion. At all other times the thermometer remains

blue. In order to prevent the learner from abusing the thermometer to quickly

produce a correct answer, the thermometer only changes yellow or red if a

learner has hovered over a particular square for at least 30 seconds (assuming

that square contains or is adjacent to a lesion).

Once a learner submits their answer Shufti assess it and gives them a

score. This score is determined by multiplying the F1 score [15] by 1000 in

order to give a score out of 1000. F1 score, a common statistical measure

used in document retrieval, is the harmonic mean of a answer’s Recall (the

proportion of all of the lesion-containing squares in the mammograph correctly

selected by the user) and precision (the proportion of the squares selected by

the user which correctly contained a lesion). For example consider the exercise

answer visible in Figure 6.9. In it the yellow boxes are the answer, the green

areas are where the user selected correctly and the red areas are where the

user selected incorrectly. The precision is defined as the number of correctly

selected squares divided by the total number of selected squares, in this case

5 squares are selected correctly, and a total of 9 squares were selected giving

a result of 5/9 or 0.5 for precision. The recall is defined as the number of

correctly selected squares divided by the number of squares in the answer, in

this exercise 5 squares were selected correctly and the entire answer is 8 squares

large producing a recall of 5/8 or 0.625. The formal definition of F1 score can

be seen in Figure 6.3 and by using the numbers from the above example we

get a F1 score of 0.59. The only exception to this is when there are no lesions

in the mammogram in which case the user’s score starts at 1,000 and they are

penalized by 200 points for each erroneous selection (with the minimum score

being zero).

An example of the process of answering a Dual Image Heat Grid exercise
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Figure 6.4: A view of a exercise with the zoom controls present.

can be seen in Figures 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9. In Figure 6.4 we see

the various zoom tools available: a mouse following zoom that displays the

region immediately around the mouse, a square zoom which shows a zoomed

view of the last grid square passed over, and the whole image zoom which

can be used to magnify the entire image. In Figure 6.5 we can see a cold

feedback being issued indicating that the mouse cursor has been away from

the location of the lesion for some time. Figure 6.6 we can see a warm feedback

that indicates that there is a lesion near the users cursor. In Figure 6.7 we

see a hot feedback which indicates that there is a lesion under the students

cursor, this information is only given if they hover over the square for some

time. Next, in Figure 6.8 we can see a possible solution to the exercise. In

Figure 6.9 we can see the results of submitting the answer in Figure 6.8. In

Figure 6.9 the yellow outlined boxes represent the correct answer, the green

filled boxes represent where the student has selected correctly, and the red

filled boxes represent where the student selected incorrectly. Also in Figure

6.9 in the overlain red box we can see the replay controls, which enable the

learner to view their own mouse movements over the grid.
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Figure 6.5: A cold feedback has been issued as can be seen from the blue or
cold thermometer.

Figure 6.6: A warm feedback has been issued as can be seen from the yellow
thermometer.
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Figure 6.7: A hot, or red, thermometer means our mouse of hovering over a
lesion.

Figure 6.8: An example selection of where the student thinks the lesion is.
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Figure 6.9: A view of the after exercise .

6.2.3 Dual Image Grid Exercises

Dual Image Grid Questions are substantially harder than Dual Image Heat

Grid questions because the hot and cold feedback is no longer offered to the

learner. All other features are the same including the user interface and score

computation.

6.2.4 Dual Image Polygon Exercises

The final and most difficult exercise variety is the Dual Image Polygon exercise.

In Dual Image Polygon exercises, the learners are tasked with specifying the

exact shape of a suspected legion by defining a polygon overlaying the image.

This approximates how a radiologist indicates the extent of a lesion using a

marker circling it’s extent, and better matches the polyignal lesion areas in

our answer set. To create this polygon they select the polygons vertices one

by one on top of the mammogram. These vertices can be moved or deleted in

order to further refine the shape of the lesion. An example of this process can

be seen in Figure 6.10.

Once the learner believes they have adequately defined the lesion or lesions
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Figure 6.10: Dual Image Polygon Exercises’s User Interface

they submit their exercise and are given a score. This score is also based on the

F1 score, as was described in Section 6.2.2, but how the Precision and Recall

are computed has changed. Recall is now computed as the size of intersection

between the selected areas and the correct areas divided by the total correct

area’s size in terms of pixels. Precision is now also in terms of pixels and is

computed as the size of the intersection of the selected areas with the correct

areas divided by the total selected area. This results in both the minimizing

incorrect areas, while also not missing any lesion area being valued.

6.2.5 Promotion

After exploring each of the possible levels and exercise we can now talk about

how users move between each one. In Shufti students are assessed and given

any appropriate promotions after an instructor defined number of exercises.

They are assessed to see if they have exceeded an instructor determined per-

formance level since their last evaluation. These parameters are set though

a configuration page available to the instructor. This design was chosen for

three reasons: First it prevents students from becoming trapped at a level

by an early performance as in the case where the students entire history is

considered. Second it prevents a single lucky exercise from promoting a stu-

dent who shouldn’t be, as is possible when only the students most recent
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performance is considered. Lastly by enabling a courses instructor to tune the

parameters used for promotion the rate at which leaners advance in difficulty

level is determined by instructors opinion on their students abilities and time

constraints.

6.3 Pedagogical Goals and Gamification

Shufti’s Pedagogical goals are to improve the breadth and depth of the knowl-

edge of medical imaging instruction. It is desirable for the learners to see and

analyze as many cases as possible. It is also desirable for them to gain as much

value out of each viewing as possible. To accomplish this, Shufti makes use

of modern gamification techniques, to have the learners view more cases than

they normally would, while also causing them to focus on their own perfor-

mance thus leading to deeper practice [24]. Gamification as described in Yee’s

Pedagogical Gamification [35] is a set of design principles used in the creation

of a set of challenges, or in education’s case exercises. These design principles

are: Displaying Progress, Maximizing Competition, Careful Difficulty Calibra-

tion, Providing Diversions, and Employing Narrative Elements. We will now

examine each of these principles and how it relates to Shufti’s design.

6.3.1 Displaying Progress

The display of a player progress is an important part of the game experience.

By showing how far a player has come they are encouraged and will continue

to play. In a serious game learners continue to practice encouraged by their

growing proficiency [11]. In Shufti, progress is displayed to the learner through

three means. First the learner’s score is prominently displayed at the comple-

tion of an exercises. The learner’s score is also tracked by a summary graph on

the summary page (Figure 6.2) enabling them to view their overall progress.

Second as they improve their skills they can ascend to a new level where they

are presented with more difficult exercises further indicating their progress.

Finally the learner has a chance of seeing the same exercise again, when this

happens they are notified at the en of the exercise, enabling them to see their
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own progress directly.

6.3.2 Maximizing Competition

Humans are naturally competitive, valuing the ability to compare oneself with

peers. To succeed against others can be a powerful drive. To encourage this,

Shufti optionally provides learners with an anonymized ranking where they

can compare themselves with their peers. This is similar to the leader boards

present in many popular online games. It also allows learners to see how their

peers answered exercises by overlaying colours on the mammogram indicating

the frequency that areas were selected as containing malignant lesions, enabling

a more focused comparison.

6.3.3 Careful Difficulty Calibration

Challenge can be a powerful motivator, it promotes engagement and overcom-

ing it is very motivating. But too much challenge can make a task appear

impossible and be discouraging. Likewise too little challenge results in a task

feeling trivial or boring. To balance these two requirements Shufti calibrates

its challenge through the use of the levels described in the beginning of this

chapter. In Shufti, students are first presented with the lowest level of dif-

ficulty, Presence Exercises. Once students have demonstrated mastery they

ascend to the next level. This process of mastery and ascension continues un-

til they reach the most difficult exercise type Polygon Exercises. This enables

Shufti to adapt to the learner and their proficiency providing both a constant

source of challenge and a display of the user’s progress.

6.3.4 Providing Diversions

It is also important to break up the learning experience, to reset the learner’s

attention. This can be done though diversions not directly related to the core

learning task. In Shufti’s case there are many things that learners can do

other than directly answering exercises. They have the ability to comment on

the exercises they have seen and to see their peers comments. They can see
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replays of their mouse movements over past exercises to review their actions.

They can also annotate the exercises so when they solve them again they can

see their past opinions and considerations.

6.3.5 Narrative Elements

Many games also provide narrative elements to further entice the learner. Un-

fortunately the analysis of medical images does not lend itself to this. Thank-

fully though it is not necessary for a game to have all of these principles to be

engaging [35]. A good example of this is chess which is quite engaging but has

no story at all.

Unfortunately at this time we can only speculate about the predicted effects

of gamification on leaner engagement in Shufti. This is due to our lack of access

to classes necessary to assess it. If possible in the future it would be desirable

to preform an experiment on two mammography classes: one given access

to Shufti with all of the gamification elements and a control class where the

gamification elements of Shufti are not present. We could then compare the

rate of usage of the system between the two classes to determine if there are

any effects on learner engagement.

6.4 Mammography as an Ill-Defined Domain

Medical Imaging and by extension mammography is an ill-defined domain

as it lacks some of the attributes of a well-defined domain as is argued by

Crowley et al. in SlideTutor: A model-tracing Intelligent Tutoring System

for teaching microscopic diagnosis [9]. Mammography lacks formal theories

(Section 3.1.2) as there is no theory of interpreting lesions like there would

be in physics. This lack of formal theorems means that the interpretation of

mammograms, including the location of lesions within them, is based on the

practitioners experience and judgment incorporating many non formal sources

of information and lacking a step by step process [26], thus mammography

does not have a well defined task structure (Section 3.1.3). Another argument

for why mammography does not have a well defined task structure is that
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as far as we are aware there is no way to automatically generate realistic

exercises within the domain. It also does not have clearly defined concepts

(Section 3.1.4), for example the line between a cancerous melanoma and a

benign one is not clear. However, medical imaging does have some properties

which make it possible to sill provide feedback namely verifiability (Section

3.1.1) and discreet sub problems (3.1.5). Medical imaging is verifiable when

there is human expert annotations available for use as a gold standard. Also

diagnosis of a medical image is comprised of independent of sub tasks, such

as each exercise is self contained. Due to these attributes it is possible to still

provide feedback to the learner.
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Chapter 7

Feedback Selection in Shufti

In this chapter we will examine the reinforcement learning based feedback

selection method used in Shufti to select feedback for learners. This includes

what reinforcement learning is, how it is employed in Shufti, and a selection of

algorithms evaluated for use. Additionally a rejected clustering based method

is examined.

7.1 Reinforcement Learning For Feedback Se-

lection

As mammography is an ill-defined domain, discussed in Section 6.4, it is neces-

sary to develop new methods with which to select feedback for learners. There

are many existing tactics with which to provide adaptive feedback in both well

and ill-defined domains. For example, in mathematics, a well-defined domain,

one can use a computer algebra system to detect errors in the students actions

and then indicate any errors found to the student. This results in a form of

Negative Post-Action User Action Specific feedback. For ill-defined domains

more unconventional techniques can be used. In Perelman and Grossman’s

Code Hunt [25], detailed in Section 4.1.1, how prior students resolved errors is

used as the basis for corrective feedback for students. Other existing methods

of providing feedback to leaners in ill-defined domains are discussed in Section

5.3.

We propose a new method of providing learner specific adaptive feedback,

which is in use in Shufti. This new method makes use of reinforcement learning
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algorithms [29] to model individual students to allow the system to determine

the most effective feedback strategy for a learner, even in the case that no

feedback at all is the best choice.

Reinforcement Learning is a branch of artificial intelligence which learns

how to solve non stationary problems in real time. It learns and adapts to

the problem even as the problem changes. These attributes are important as

learner’s feedback needs can shift over time and the system must be able to

react to changes and novel situations. The high level explanation of Reinforce-

ment Learning is thus: given an environment which provides a reward signal

and a state signal, control an agent/actor within that environment such that

over time the reward signal is maximized.

To characterize providing feedback to the learner in such an environment,

we did the following. First we chose a state representation derived from the

user’s score if they submitted the exercise immediately. For the reward it is

also produced from the same score as the state signal, in this case it is simply

the score that the user would receive.

Once given the state and reward signals the agent chooses from a list

of possible feedbacks to issue to the learner. The list is a set of General

Statements and, advice for the learner, labeled with a polarity, either positive

or negative. Positive feedbacks are reinforcing in nature, advising the learner to

continue with their current course of action. Negative feedbacks are correcting

in nature, and attempt to dissuade an incorrect course of action.

When the agent has issued a feedback it then updates its estimation of

what the feedback will do in the previously visited state situation. These

estimations are know as Q values.

Each learner has their own agent which, over time, learns their preferences

when it comes to feedback. The reinforcement learning algorithm learns which

feedbacks are effective in improving their performance and which ones make

the learner act incorrectly. This results in the system eventually issuing only

the feedbacks the learner likes and which are effective in helping them learn.

In the following sections we will first examine some select Reinforcement

Learning Algorithms, Then we will explain our choices when it comes to the
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characterization of providing feedback.

7.1.1 Reinforcement Learning algorithms

For this project we evaluated the following algorithms: SARSA [29], Q-Learning

[32], and SARSA Lambda [29]. These algorithms all employ Temporal Differ-

ence (TD) learning methods and were chosen due to their ability to correctly

attribute reward to actions and the ability to learn while acting. This is in

contrast to Monte Carlo methods which learn in a single batch [29].

SARSA (State Action Reward State Action) is the simplest of the algo-

rithms chosen and perhaps the simplest TD learning based method. A SARSA

agent works by maintaining a set of state actions and values Q(s, a) which are

its estimates of the values of the states. To take an action in state s it selects

from the possible Q-Values for that state. This selection is e-greedy which

means the agent selects the action a with the highest Q-Value, but e of the

time it acts randomly so as to explore. The agent then takes action a and

observes the next state s′ and the reward r. It then updates its Q-values using

the following update rule Q(s, a)← Q(s, a)+α[r+γQ(s′, a′)−Q(s, a)], where

α is the learning rate γ is the discount rate for future rewards and a′ is the

action that it will take next in s′. Over time its Q-Values will converge to their

true value under the e-greedy policy, this is known as an on-policy update rule.

Q-Learning on the other hand uses an off-policy method. As stated previ-

ously, Q-Learning is a TD method in that it learns as it acts. It works much

as SARSA does but with one difference - instead of SARSA’s update rule it

uses the following: Q(s, a)← Q(s, a) + α[r+ γmax′
aQ(s′, a′)−Q(s, a)], where

α is the learning rate and γ is the reward discount. Unlike SARSA however,

Q-Learning uses the maximum possible Q-value in its update rule, not the

one specified by the policy. Because Q-Learning chooses the max Q-Value to

use in its update rule instead of the one specified by its policy makes it an

off-policy method.

Despite the advantages of SARSA and Q-Learning over other RL methods,

both methods do have a downside. In both of these algorithms the update rule

only alters the last Q-Value of the last state and action, which means that it
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takes some time for the Q-Values to reflect rewards received after visiting them.

The solution to this problem is to use eligibility traces. Eligibility traces are

values associated with a state action pair that result in past pairs receiving

discounted changes to their Q-Values based on currently received rewards.

The RL algorithm we use to incorporate eligibility traces is SARSA-Lambda,

which uses a value λ to specify the discounted rate at which current rewards

are applied to past Q-Values. Its update rule is closer to an update process

and works as follows. For the last state and action s and a the eligibility trace

e(s, a) is incremented by one and then the current steps delta is computed

as δ ← r + γ ∗ Q(s′, a′) − Q(s, a) where s′ and a′ are the next state and the

on-policy action that will be taken. Next, every Q-Value is updated using the

rule Q(a, s) ← Q(s, a) + αe(s, a)δ, and then, finally, all the eligibility traces

are updated by e(s, a)← γλe(s, a). This process results in each past state ac-

tion pair being given a slowly descending level of credit for currently received

rewards, improving the learning rate considerably.

We will compare these methods in Section 8.2.

7.1.2 Characterizing Medical Image Analysis as a Re-
inforcement Learning Problem

Now that we have described the algorithms that are used in the feedback

selection we can now be more specific in how we characterized the selection

of feedback as an RL problem. How a problem is posed to an RL system,

the states, rewards, and possible actions, is just as important as the algorithm

used to solve the problem. An incorrectly posed problem can have the RL

algorithm solve the wrong problem or learn in an inefficient manner thus it is

extremely important to properly pose the problem that should be solved.

The current score, as though the learner had submitted the exercise, is

computed. It is then discretized into a state signal with three possible val-

ues and is used as a state signal for the Reinforcement Learning agent. The

discretized score is placed in the ranges of greater that 0.5, less than 0.5 but

greater than 0.25 and less than 0.25. These ranges were chosen to efficiently

represent the difficulty of the mammogram diagnosis and to make the learning
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rate of the agent as rapid as possible. The reward signal of the agent is again

the learner’s score but it is not discretized. This reward signal was chosen

such that the system would learn the most effective feedbacks as quickly as

possible by observing its feedbacks effects during exercises.

The Reinforcement Learning agent is limited to positive feedbacks if the

learner has been improving their answer and is restricted to negative feedback

when the learner worsened the state of the exercise. This was done to both

bootstrap the learning process of the agent (it should not discourage correct

actions) and to ensure that the feedback is always of the correct type for the

medium term actions of the learner.

The division between negative and positive feedback is important as it

prevents the agent from issuing feedback which does not match the current

situation for example, issuing encouraging, positive, feedback when the learner

has made a mistake. At all times it is possible for the reinforcement learning

agent to choose to issue no feedback and, in fact, that is a common choice.

7.2 Clustering Students to select feedback

Another method of providing feedback to learners is a much more näıve ap-

proach of simply asking them if they liked a given feedback. For example by

using a simple prompt after a feedback has been issued. It is then possible to

use techniques found in recommender systems to select a feedback for a learner

[16] [17]. This is done by clustering the learner’s existing feedback preferences

on past exercises and placing them with a pear group, then using that knowl-

edge selecting the feedback which was liked the most by the users peers. We

did attempt to use this approach and a early version of Shufti, unfortunately

there are some issues with such an approach. First the cold start problem will

result in many poor feedbacks being issued to the learner. Second there is

a very large number of possible exercises so the dataset will likely be sparse.

Third using the current approach it applies feedbacks based on the current

exercise, not on the current situation, if we instead break up each exercise into

various sub states we then worsen the sparsity problem. Fourth and perhaps
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most critically prompting a user if they liked the issued feedback is rather dis-

ruptive. Ultimately we chose to use the reinforcement learning based approach

due to its lack of these issues.
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Chapter 8

Evaluation

This chapter describes how the feedback system was evaluated. Normally

when evaluating a system such as Shufti, a real classroom evaluation is de-

sirable. A real classroom evaluation would involve two mammography classes

one with access to the system and one without access, preferably with all the

other course materials being equal. We would then compare the performance

of the two classes to determine the effect of Shufti. Unfortunately we were

unable to obtain access to such a pair of classes as mammography is taught in

small groups during a doctors practicum. To still produce a validation we have

instead opted to use a simulated class for evaluation. We have created a simu-

lated course with simulated learners, with which to evaluate the correctness of

our feedback system. This has been argued for by Self [27] in which he argues,

that much as with the design of other complex systems such as aircraft, it is

desirable to determine the performance characteristics of a design before using

it in a real world context. This simulation enables us to do many things that

a classroom evaluation does not. A simulated course evaluation enables us to

quickly iterate on our systems design, bugs which could invalidate months of

waiting for results are detected in hours. It enables us to experiment with

what underlying algorithm provides us with the best performance. Once we

have selected an algorithm we can the engage in parameter tuning to find the

set of parameters which produce the best result, instead of guessing as we

would have to do under a class room evaluation. It also enables us to see the

effects of different numbers of feedback types, e.g. can the system preform well
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with lots of possible feedbacks to issue or is it limited to lower numbers. Given

the advantages and availability of a simulator based evaluation we ultimately

chose to create such a system.

8.1 Simulator Design

When one does not have access to suitable students, simulating learners is a

useful technique to evaluate the performance of an ITS’s design. To this end

we created a simulator for evaluating Shufti’s feedback selection mechanism

using a number of “episodes” as follows. Artificial learners were generated

and then presented with a series of randomly selected exercises. The learners

solved these exercises while the system provided them with feedback. Once

the process was complete we evaluated how well the system performed by

comparing the average learner’s score across a fixed number of exercises, with

other episodes using different settings and parameters. It is important to note

that we have endeavoured to make this simulator as realistic as possible in

particular with regards to the effects of feedback on the learners. Any given

feedback type has equal probability of causing a simulated learner to perform

worse than they could have or better. Which is to say that each simulated

learner has their own randomly generated feedback preferences. Over the next

few sections we will examine how an exercise is performed by a learner, how a

learner is generated, and finally how a complete episode is performed.

8.1.1 Simulated Exercises

There are a number of steps in a simulated exercise. Initially, the learner is

presented with a new exercise and the feedback subsystem is given an oppor-

tunity to issue a feedback. The learner will then choose which action to take,

and will decide if it is happy with the state of its current solution. If so, the

learner will submit the exercise for evaluation. If not, the process repeats from

the second step, when feedback can be issued. This order was chosen to pro-

vide the feedback system with the opportunity to issue a feedback before the

simulated learner has acted at all, much as it would in a real world scenario.
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When the feedback system chooses to issue a feedback based on the current

state of the exercise, the learner reacts to it by temporarily altering the likeli-

hood it will worsen the exercise state rather than improve it. This is done by

changing pwrong using the following equation pwrong ·feedbackEffectn. Where

pwrong is the likelihood of the learner making a mistake, and feedbackEffectn

is the effect that the given feedback has on the learner When feedbackEffectn

is above 1 then the feedback’s effect is to worsen the learner’s performance on

the exercise, if it is lower than 1 then the feedback improves learner’s perfor-

mance on the exercise. It is important to note that the change to pwrong is

specific for each feedback type and learner. This is done in order to simulate

how real learners react in different ways to different kinds of feedback.

The first step taken by the simulated learner when choosing an action is

to decide whether it will take an action that will improve the exercise state or

one which will worsen it.This decision is made by comparing its pwrong with a

random number in the range 0 to 1. Once the learner has decided, it changes

the current answer so as to reflect its choice. The mechanics of improving or

worsening the exercise state are specific to the exercise type, and in the case

of our simulator we chose to focus on Shufti’s dual image grid exercises as

described in Section 6.2.3.

To improve the exercise state for a dual image grid question the simulator

follows the following algorithm:

1. Gather the yet to be selected correct squares and put them in Sanswer.

2. Gather all the currently selected squares and put them in Sattempt.

3. Take the intersection of Sanswer with Sattempt and place it in Scorrect. This

will produce the set of currently selected squares that are also part of

the correct answer.

4. Remove any member of Scorrect from Sattempt and store the result in

Swrong.

5. Gather all squares that are neighbours of the currently selected squares

and are also part of the answer and place them in Sneighbours.
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6. Place all the un selected non neighbour squares which are part of the

answer in Spossible.

7. Now randomly designate a square to improve from Sneighbours, Swrong,

Spossible, With the weights of 1, 0.6 and 0.5 respectively, or in other

words, a square in Sneighbours is twice as likely to be selected as any give

square in Spossible.

8. Finally take the previously designated square and if it is in Sneighbours or

Spossible place it in the current answer by selecting it. If it is in Swrong,

remove it from the current answer by deselecting it.

This will result in the exercise being improved in a believable manner, with

adjacent correct answers more likely to be added than wrong answers removed

and adding distant correct squares as the least likely activity.

To worsen the exercise state the learner follows a similar process:

1. Gather the yet to be selected correct squares and put them in Sanswer.

2. Gather all the currently selected squares and put them in Sattempt.

3. Take the intersection of Sanswer with Sattempt and place it in Scorrect. This

will produce the set of currently selected squares that are also part of

the correct answer.

4. Remove any member of Scorrect from Sattempt and store the result in

Swrong.

5. Gather all squares that are neighbours of the currently selected squares

and are also not part of the answer and place them in Sneighbours.

6. Place all the un selected non neighbour squares which are not part of

the answer in Spossible.

7. Now randomly designate a square to worsen from Sneighbours, Scorrect,

Spossible, With the weights of 1, 0.625 and 0.375 respectively, or in other

words, a square in Sneighbours is twice as likely to be selected as any give

square in Spossible.

57



8. Finally take the previously designated square and if it is in Sneighbours or

Spossible place it in the current answer by selecting it. If it is in Scorrect

remove it from the current answer by un selecting it.

After performing this process the answer will either contain one more in-

correct square or one less correct square thus worsening the state. As with the

improvement scenario, the weights were chosen in order to represent learner’s

tendency to select squares adjacent to the existing selection.

Once the simulated learner has acted the simulated learner decides if it is

going to submit the exercise or continue. It does this by determining if the

following is true 100 <= timeWeight∗numberOfSteps+scoreWeight∗score

where timeWeight represents the impatience of the learner, numberOfSteps

is the number of times the exercises answering process has taken so far,

scoreWeight represents the learner’s ability to estimate if the current an-

swer is correct, and score is the score the learner would get if it submitted the

exercise in its current state.

This should, in effect, simulate how an individual learner would act while

answering an exercise providing us with a useful benchmark of how well the

feedback system learns a learner’s feedback preferences. Now that we have

explained the process by which the simulated learners answer an exercise we

will now explain the parameters chosen for the simulated course, why they

were selected and the range of values tried.

8.1.2 Simulated Courses

The context being simulated was the use of Shufti as an instructional aid to

students learning mammography. The classes of 10 simulated learners com-

pleted exercises and learned in a simulated manner as described in the next

section. The number of exercises the learners completed was 450, or 5 a day

for 90 days. This represents a reasonable course load and number of exercises

completed.
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8.1.3 Simulated Learners

The simulated learners are essentially a set of values and behaviours which

approximate the actions of a real mammography student. They slowly improve

over time much as a real student would, and are able to make mistakes and

become impatient, just as real students do. Additionally, each student is

unique in how it will react to various stimuli and situations.

In order for learners to be realistic simulations they have to produce practi-

cal answers to the exercises similar to those produced by real students and they

have to improve their performance over time in a reasonable manner similar

to that of real learners slowly improving over a course.

The learners must also have their own unique preferences for feedback,

replicating how some students thrive on praise and some simply want correc-

tion or no interaction at all.

And finally, the learners have to be able to decide when they are done an

exercise and wish to submit it. Over this next section we enumerate each of

these features and the parameters involved, their purpose, how we chose the

values for them and why we chose them.

The first and perhaps most important feature of the simulated learners is

their ability to answer questions in a realistic manner as described in Section

8.1.1. The key learner parameter for this feature is pwrong which represents a

learner’s tendency to make mistakes. When a learner is generated, pwrong is

initialized randomly to a normally distributed value with a mean of 0.3 and a

standard deviation of 0.1, having a maximum of 1 and a minimum 0. These

numbers were chosen to replicate the average of 60% correct that a reasonable

student in a course should produce. The standard deviation is chosen to

account for the proportion of students which should be above average and

below average.

Learners also have to improve, and to simulate this, each time the learner

submits an exercise its pwrong is permanently changed to the result of pwrong ·

learningRate. This progression is chosen to resemble the diminishing returns

which learners experience as they progress though a subject. Initially their
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progress is quick as they fill large gaps in their knowledge, but later more

subtle mistakes are made and need to be corrected resulting in a reduction of

gains.

In our case we chose to generate the learner’s learning rates from a Normal

Distribution with a mean of 0.998 and a variance of 0.001, limiting the final

result to a maximum of 0.999 and a minimum of 0.994 which served to remove

unrealistic outliers. The values for mean and variance were chosen to have

the average learner be approximately 80% correct by the end of the simulated

course ends much as a typical real student would be. For an idea of the

learner’s progression see Figure 8.1.

The most critical feature to our evaluation is for each learner to have their

own unique reaction to various feedbacks. This is achieved by temporarily

perturbing pwrong by multiplying it by the feedbackEffectn when feedback

n is issued to the learner during a simulated exercise. These feedback effects

are determined once, randomly at the time of creation of the learner. They

are distributed on a Normal Distribution with a mean of 1.0 and a standard

deviation of 0.4. The mean in this case is chosen to give equal likelihood to a

student liking or disliking a given feedback. The variance is chosen to represent

the possible strength that a feedback can have on a student’s experience. This

means that the naive approach of issuing random feedbacks will have the same

approximate result as issuing no feedback at all, the system can only improve

the learner’s performance if it correctly determines the individual learners

preferred feedback.

Finally, learners have their submission values timeWeight and scoreWeight

which together control when they submit an exercise. These two parameters

are distributed Normally with a mean of 7 and standard deviation of 2 and

a mean of 50 and standard deviation of 5 respectively. This results in the

simulated learners taking an average of 10.3 cycles of the answering process to

decide to submit an exercise.

The combined features described in this section should result in a learner

which is both realistic and enables us to evaluate our feedback selection system.
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Figure 8.1: A typical simulated learner’s pwrong progression over exercises
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8.2 Algorithm Selection

Once we had a working simulator we were able to use it to select the best

reinforcement learning algorithm to underpin our feedback system. This is

important as some RL algorithms are more well suited to some problems than

others. We will now compare the three algorithms discussed in Section 7.1.1

Now that we had defined what we are comparing we had to decide how we

were going to compare them. A scenario was chosen in which the algorithms

would be evaluated over four runs totalling 450 exercise each with a total of

ten students. The feedbacks available would be two positive and two negative

with an additional no feedback response possible. To determine the which

algorithm performs the best we would average the class averages of four runs

for each method. As a test of significance we used a two tailed unpaired t test

to compute a p-value of each result vs. the baseline of no feedback selection

algorithm.

Algorithm Score Out Of 450 Proportion Correct p-value
None 271.13±15.58 0.603±0.0346 –
SARSA 336.29±6.45 0.747±0.0143 0.0005
Q-Learning 309.20±17.05 0.687±0.038 0.0290
SARSA-λ 348.34±2.58 0.774±0.005 0.0001

Table 8.1: The performances of the various algorithms

After running these tests, the results of which can be found in Table 8.1,

we found that SARSA-Lambda proved to be the highest performing method,

beating the closest competitor by 3 percentage points and the base line by 17.

The results also appear to be very significant with all methods clearing the

common p-value significance threshold of 0.05. This promising result led to

SARSA-Lambda being chosen for further tuning. As for why SARSA-Lambda

performed the best we can hypothesize that on-policy methods such as SARSA

and SARSA-Lambda will more quickly account for their exploration taking

them into incorrect actions. This is due to their use of the policy specified

Q-value in their update rules (unlike off-policy methods, such as Q-learning).

This speed of learning incorrect actions is important because if the simulator
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takes the wrong action it can drastically worsen the learner’s performance and

adversely impact the agent’s reward.

SARSA-Lambda out performed normal SARSA because its eligibility traces

sped up learning by ensuring past choices received credit more quickly than

with non-tracing methods.

8.3 Parameter Turning

Once we selected our algorithm (SARSA-Lambda) we explored the possible

values for its parameters. The possible tuning values are the learning rate

α, the reward discount γ, the exploration rate ϵ, and the tracing value λ.

Together these values can influence results in a positive or negative manner

and we wanted to attempt to yield a performance gain. Using the same method

as in the algorithm selection Section (8.2) we took an average of four runs to

ensure that the randomness in the simulation does not have a disproportionate

effect on the results. We also retain the two positive, two negative and one

non feedback options for the feedback system to select from.

ϵ α γ λ Average Score p-value vs. baseline
0.05 0.3 0.2 0.8 0.712 ± 0.047 0.0169
0.05 0.3 0.2 0.3 0.703 ± 0.037 0.0141
0.05 0.5 0.2 0.3 0.669 ± 0.027 0.0384
0.05 0.15 0.2 0.3 0.776 ± 0.013 0.0002
0.05 0.15 0.2 0.5 0.699 ± 0.025 0.0083

Table 8.2: The performance of SARSA-Lambda with various parameters

As illustrated in Table 8.2 the highest results yielded are 0.776 ± 0.013.

These were produced using SARSA-lambda with an ϵ of 0.05, an α of 0.15, a

γ of 0.3, and a λ of 0.3.

8.4 Results Discussion

Following algorithm and parameter selection, performance their performance

implications must be examined in more detail. To do this we compared the

existing baseline with runs using our best possible parameter values. We also
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evaluated the performance implications of using a larger set of feedbacks for

the algorithm to issue.

As shown in the previous section, using parameter values of ϵ at 0.05, α at

0.15, γ at 0.2, and λ at 0.3 we achieved an average learner score of nearly 78%

with a variance of 0.013 almost 18 percentage points better than our naive

baseline where the students performed at an average of 60% with a standard

deviation of 0.034. A two-tailed unpaired t-test of this result yielded a p-value

of 0.0002, much lower than the common significance threshold of 0.05 making

this a very significant result.

To see the effects of using a larger set of feedbacks we ran a set of tests using

different amounts of available feedbacks ranging from two to six feedbacks of

each polarity. We averaged sets of 4 runs with each learner completing 450

exercises, much as in Section 8.2. The results of this can be seen in Table 8.3.

Positive Feedback Negative Feedback Average Score
0 0 0.603±0.035
2 2 0.776 ±0.013
3 3 0.766 ±0.022
4 4 0.749 ±0.030
5 5 0.788 ±0.013
6 6 0.780 ± 0.011

Table 8.3: The performance of SARSA-Lambda with various parameters

As can be seen in Table 8.3, using different numbers of positive and negative

feedbacks does not have a large impact on the average scores. In this instance,

having five positive and negative feedbacks available achieved the best result

0.788 but that is only marginally better than having a set of two feedbacks

available (0.776). And using three feedbacks is marginally worse than using

two (0.766). This should mean that the feedback system can perform in a

variety situations with varying amounts of feedback possibilities. Incidentally,

it was not necessary to test using differing numbers of positive versus negative

feedbacks as only appropriate feedbacks are selected meaning the choice of a

particular positive feedback is largely divorced from the choice of a particular

negative feedback and vice versa..
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Ultimately using SARSA-Lambda with the appropriate parameters achieves

a significant gain over the baseline, suggesting that the use of the Shufti ITS

in a real-world learning situation would be of significant value to students in

the medical imaging field.
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Chapter 9

Future Applications

The innovations within Shufti are not limited to just the diagnosis of mam-

mograms. Other medical imaging tasks are similar enough to mammography

that the techniques in Shufti are still useful. Other medical imaging fields

where these techniques are applicable include dermatology and pathology. In

pathology, the goal is to analyze biopsies for diagnosis. This is done by find-

ing evidence of a condition in the biopsy. This process is similar to locating

lesions in mammograms. Therefore, it is possible to use the same structure

as Shufti’s grid or polygon questions in a pathology ITS. This would also al-

low us to use Shufti’s feedback system with minimal modification. Moreover,

as Shufti’s gamification techniques are already domain-independent, they are

easy to utilize in other medical imaging ITSs.

To illustrate the adaptability of the techniques in more depth, we will now

examine them in the context of dermatology. Dermatology is the diagnosis

and treatment of skin conditions and diseases [14]. For our proposes, we

will focus on the diagnosis section. To diagnose a skin disease, melanoma

in particular, the first step is a high-level visual examination. To do this

diagnosis, a dermatologists examines the skin area looking for evidence as to

what the condition is.

If we pose this problem as locating evidence of the condition in an image,

we can simply see the similarity of the problem to Shufti’s grid and polygon

exercises. Both involve locating regions of interest within an image. This

exercise also has the same domain attributes as mammography in Shufti. The
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domain is verifiable using an expert-produced gold standard. Neither does it

have formal theorems as it relies on the a medical professional’s judgment.

The domain is also made up of discreet sub-problems in that there are no

overlapping steps in performing a diagnosis. These similarities should enable

the use of the same gamification and feedback selection techniques as in Shufti.
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Chapter 10

Conclusion

Analysis of medical images is an important medical task requiring significant

training. At the moment students take part in a practicum in which they

follow the cases of an established medical professional. This practicum model

has many desirable attributes such as providing one-on-one tutoring to the

students. Unfortunately the cases seen by the students during their practicum

are limited to those seen by their instructor. An Intelligent Tutoring System

can provide access to many more cases improving the variety seen and allowing

for practice on rare cases. To this end we have created Shufti a mammography

Intelligent Tutoring System.

To create Shufti we have examined existing Intelligent Tutoring Systems

in well-defined and ill-defined domains. We examined the concept of feedback,

and produced a framework to categorize it. We added modern gamification

techniques to shufti, to increase student engagement.

It is still desirable to retain the benefits of the existing practicum system,

in particular the advice and guidance a tutor can provide. To do this we have

created a new reinforcement learning based feedback selection technique. This

method characterizes the system issuing feedback as a reinforcement learner

selecting an action, and uses the state of the exercise as the reinforcement

learning agents state signal.

Our study culminated in the investigation of the effectiveness of the feed-

back selection system in a course simulator, an investigation which yielded

promising results. Which we hope to later use in other medical imaging tasks,
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perhaps even extending the technique devised into other fields of instruction

which are verifiable. In closing, the data suggests that the Shufti ITS could

prove a useful addition to the field of mammography education, Despite these

encouraging results, each of the topics covered warrants further exploration

with particular focus on the simulation of learners and the feedback selection

system.
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