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Abstract

Persistent Homology broadly refers to tracking the topological features of a

geometric object. This study aims to use persistent homology to explore the effect

of Human Biotherapy on patients suffering from Clotridium Difficile Infection. The

data is presented in the form of several distance matrices and these are analyzed

applying summary statistics of persistent homology, namely barcodes, persistence

diagrams and persistence landscapes. It is found that there is a difference in the area

under the persistence landscapes before and after treatment in dimensions zero and

one. These differences are explored using projection onto lower dimensions using

isometric mapping. It is found that there are differences in the number of clusters

in dimension zero and the number and length of loops in dimension one.
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Chapter 1

Introduction

1.1 Clostridium difficile infection

“Clostridium difficile (Cdiff) is a bacterium that causes mild to severe diarrhea and

intestinal conditions. Cdiff infection is the most frequent cause of infectious di-

arrhea in hospitals and long-term care facilities in Canada and other industrialized

countries” [32] [34]. The reported incidence of healthcare associated cases of Cdiff

infection has increased over the last decade. With this increase, the costs of treat-

ment have increased substantially as well. For Canadian patients the average cost of

treatment increases by $10,000 to $20,000 if a patient suffers from Cdiff infection

[5].

Despite the negative connotation implied by the word ‘bacteria’, they are actu-

ally needed throughout the body to help it to function normally. However, antibi-

otics can reduce the normal level of healthy bacteria found in the gut microbiome.

With fewer bacteria left in the gut to fight infection, Cdiff bacteria can infiltrate the

body and produce toxins which can then lead to infection. The presence of Cd-

iff bacteria, combined with several patients taking antibiotics are the main reasons
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number of death mortality rate per 100 HA-CDI cases
2007 33 4.9
2008 25 5.0
2009 33 3.1
2010 88 6.1
2011 88 5.3

Table 1.1: Attributable mortality rate 30 days after date of positive culture per 100
healthcare-associated Cdiff infection (HA-CDI) cases

why healthcare facilities are most susceptible to Cdiff infection outbreaks. In this

context, microbiome refers to the ‘ecosystem’ found within the gut; namely the mi-

crobes, bacteria and the interaction between the gut and bacteria. Since a healthy

gut microbiome and immune system is the primary method of defense against Cdiff

infection, elderly patients are more susceptible to Cdiff infection.

Another important factor in the spread of Cdiff infection in Canada has been

the proliferation of a strain that is highly resistant to traditional treatments, namely

antibiotics. This strain is referred to as North American pulsed field (NAP) type

1 [28]. This strain was first found in the USA around 2000 and quickly spread

throughout Canada after being introduced to Montreal in 2002. In addition to being

more resistant to treatment, this strain also has more toxins that lead to infection. All

these factors combined to a steadily growing number of deaths and mortality rate

from Cdiff infection as shown in table (1.1) (Adapted from Public Health Agency

of Canada).

The primary transmission method for Cdiff infection within healthcare facilities

is by person-to-person spread through the fecal-oral route. The hands of the health-

care workers are often contaminated with spores from infected patients and then

spread to other patients. The Public Health Agency of Canada (PHAC) lays out

clear guidelines on prevention of Cdiff infection outbreaks. Most of these focus on
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personal hygiene and being attentive about contact between patients and healthcare

workers [20] [19].

The first cases of Cdiff bacteria causing infectious diseases were recorded in

1978 [4]. That same year part of the same research group reported on using oral

Vancomycin to treat Cdiff infection [41]. Since then, the preferred method of com-

bating Cdiff infection is through oral Vancomycin and another antibiotic known as

metranizadole. However, the effectiveness of these antibiotics is limited since they

also inhibit the growth of anaerobic bacteria that protect the gut from Cdiff infection

[17]. The disruption caused to the gut microbiome by these antibiotics explains the

recurrences that often follow after treatment using this method. Metronizadole is

the most commonly used antibiotic for mild Cdiff infections and the recurrence rate

has increased from 2.5% in 2000 to over 18% in 2011 [25]. High recurrence rates

are especially pronounced in the elderly population. Patients resistant to Metron-

izadole can be treated with Vancomycin, but this drug is losing its popularity due to

potentially harmful side effects [39].

An increasingly popular alternative to treatment with antibiotics is human bio-

therapy (HBT). This method aims to introduce healthy gut bacteria from a donor

into the gut of an afflicted patient. The procedure involves taking a stool sample

from a healthy donor, diluting it in water and then administering the resultant su-

pernatant via retention enema to a patient suffering from Cdiff infection. Unlike

antibiotic treatments which inhibit growth of healthy bacteria, this method rein-

vigorates the gut microbiome by providing it with the healthy bacteria needed for

Cdiff resistance. Summaries of two studies revealed a 92% success rate out of 333

infected patients in one [13] and 90% success rate out of 273 patients in another

[21].

Antibiotic treatments, especially Vancomycin, are also very expensive. A non-
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medical benefit of HBT is the reduced cost of the treatment when compared to

antibiotic treatments [33].

1.2 Objectives of the study

The main objective of the study is to explore the efficacy of the HBT treatment from

a topological standpoint. This study shall be split up as follows: the rest of chapter

1 will introduce DNA data and the topological methods that will be used. Chapter

2 will briefly review and link together the elements in chapter 1 as well as provide

the results of the data analysis and a conclusion.

On a very basic level, the study aims to look at the DNA sequences and how

the various topological features that they form in a space differ from patients before

and after HBT treatment. Before explaining the methods further, it is necessary to

briefly look at DNA data and how it is generated.

1.3 DNA and DNA sequencing

DNA is a microscopically small, double-helix shaped molecule that encodes the

genetic instructions used in the development of all known living organisms. It can

be thought of as a blueprint that has the instructions for all life to follow. The two

DNA strands carry complimentary building blocks of life, known as nucleotides.

The nucleotides are categorized into one of four types, namely guanine(G), ade-

nine(A), thymine(T) or cytosine(C). On the two complimentary strands, adenine

links only to thymine and cytosine links only to guanine. Hence for example, two

complimentary strands of DNA can have the following structure:

Strand 1: ATGCATGCATGC

4



Strand 2: TACGTACGTACG

Each combination of pairs is known as a base pair, and one sequence can be

millions of base pairs long.

However, the actual structure of DNA sequences is unknown, and hence DNA

sequencing is needed to figure out this structure. DNA sequencing proceeds as

follows:

• ‘Melt’ the sequence in order to denature it and separate the strands

• Isolate one of the strands and keep it in a solution of dideoxynucletides (ddn)

- The ddn’s are marked with four different colours that correspond to the

four nucleotides; A, C, G and T

• Attach a primer (endpoint) to the template strand

• Over time the various ddns will attach to the primer based on the template

strand and recreate the sequence

• The created sequence is passed under a scanner which reads the colour and

associates that colour to one of 4 nucleotides, thus effectively recreating the

sequence

It must be noted that the process is not fully accurate, and some mutations are

unavoidable. For example a sequencer may not notice a colour and leave it as blank

or assign the wrong colour. A plethora of modern sequencing methods exist and all

have their own advantages and disadvantages [14]. The main factors to consider are

the cost per sequence, the accuracy, the length in base pairs of the generated strands

and the time constraint.
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For this study, the Roche 454 sequencing procedure was used. This procedure

generates sequence reads with an average length of approximately 450bps and is

relatively cheap and fast. Unfortunately it is not possible to ensure that all the

sequences are of the same length, a problem that will be discussed in more detail at

a later stage.

The output from the 454 pyrosequencing is a multitude of DNA sequences of

varying lengths, with quality scores assigned to each of the nucleotides in the base

pairs. In recent years there has been a development in bioinformatic software and

several packages exist to allow analysis of DNA data. For this project, mothur

[37] was used to carry out the filtering, trimming, aligning references to databases

and checking for errors. Note that this process can create ‘gaps’ in the sequences,

where the software tries to align a sequence as best as possible to a known reference

sequence. Gaps will be illustrated by ‘-’ and their importance will be explained in

the next section.

1.4 Distance matrices

Once quality control has been carried out on sequences using mothur, the statis-

tical procedures can begin. This project aims to look at the topological features

of DNA sequences, and so it will be necessary to obtain data that can be used for

topological analysis. One such data format is a symmetric distance matrix between

points in an unknown d dimensional space.

A distance matrix can be created between DNA sequences in a specific sample

using one of several methods [38]. The method used here is commonly used by

researchers and is known as the onegap method. This method is best explained by

an example. Suppose there are two DNA sequences with the following base pair
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(bp) orientation.

Sequence A: AGCATTCGTATG

Sequence B: AGCAGTCT---G

Here there are two mismatches and one gap. The distance is calculated as the

number of mismatches divided by the length of the shorter sequence. The onegap

method treats any gap as a single position, so the three dashes are considered as

one gap. The length of the shorter sequence is then 10 base pairs (bp), and hence

distance = 3/10 = 0.3. The reasoning for treating several gaps next to each other

as one is as follows; gaps represent insertions and it is probable that a gap of any

length represents a single insertion. Alternative methods of distance calculation

exist, one such method ignores gaps altogether and another method penalizes each

gap individually.

It should be noted that these are technically not distances but dissimilarities,

with a value close to zero indicating that two sequences are similar and close to

one meaning that distances are dissimilar. However, the term distance will be

used throughout here for convenience. The pairwise distance between each pair

of unique sequences is calculated and these are formed into a symmetric distance

matrix. The significance of unique sequences is explained in the next section.

1.5 The data

Gut microbiome DNA samples were taken from 7 donors and 19 patients before

and after HBT treatment. Hence there are 45 samples that were found in total

(7+19+19). The total number of DNA sequences found in each of the samples is

presented in table (1.2). However, several of those sequences are identical and the

distance between identical sequences is going to be zero. Hence if all sequences
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description min max mean median IQR S.D.
pre 3230 15140 9534.9 9777 4972 3545.9
post 2294 28566 11308.11 10570 4881.5 6642.6

post-pre -373 426 57.53 28 199 184.26

Table 1.2: Descriptive statistics for total number of sequences

description min max mean median IQR S.D.
pre 147 879 428.89 364 183 217.26
post 185 1114 486.42 460 292 230.57

post-pre -373 426 57.53 28 199 184.26

Table 1.3: Descriptive statistics for unique number of sequences

are used the distance matrices will have a lot of zero elements that will not help in

the analysis. To solve this problem the unique sequences are taken. The number of

unique sequences in each sample is presented in table (1.3).

From table (1.3) the smallest number of unique sequences is 147. The nature

of DNA sequencing is such that as the number of sequence reads (total number of

sequences) increases, the number of unique sequences also increases due to errors

and mutations [36]. Pre-analysis with mothur is not able to catch all these errors

and hence as a precautionary measure it is standard operational procedure to take a

weighted subsample of the smallest number of sequences from all the samples, in

this case a subsample of size 147 is taken from all the sequences.

There are a couple of things that need to be noted. Firstly, the analysis here

does not strictly follow protocol. At this stage it is usual to classify the sequences

into operational taxonomic units (OTUs) but this project looks at distances between

individual sequences. Secondly, it is more customary to first take a subsample from

the total number of sequences in the samples and then take unique sequences from

the subsamples. However, gut microbiome data can sometimes have a few very

dominant sequences and several that are not as frequent [3]. As a result, following
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the standard procedure would result in some samples having less than 15 sequences

selected, which isn’t sufficient to investigate topological features.

1.6 Persistent Homology

Once the distance matrices have been calculated, the natural question that arises

is how to compare them. One of the first techniques introduced was the Mantel

test [26] which has some restrictions on the rank of the distance matrices. More

recently researchers have suggested computing a “compromise” distance matrix

for each group and then comparing each sample to the compromise [1]. Several

other methods exist and authors have made comparisons between them [23]. This

study uses an approach that compares the topological features of distance matrices,

broadly referred to as persistent homology. The main objective of this method is to

identify topological features of a dataset, be it a point cloud or a distance matrix.

The idea of persistence was developed in the late 20th and early 21st century by

independent groups of researchers. A full historical overview of developments in

persistent homology is presented in the article by Edelsbrunner and Harer [9].

Several definitions will have to be outlined and linked together. Most of the

definitions in this section have been adapted from several sources, [16] [15] [10]

[45].

Consider a distance matrix S which represents points embedded in some d-

dimensional space Y. Assume that S is sampled from some unknown k-dimensional

space X ⊂ Y, where k ≤ d. The goal of topological data analysis is to recover

information about X using S.

To represent such a topological space it is first necessary to decompose it into

many pieces. An example of these pieces is known as a simplex. Before defining a
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simplex it is necessary to introduce some other concepts.

A set of points x0, x1, . . . , xp in Rd is affine independent if for any real

scalar ai, the equations
∑

i ai = 0 and
∑

i aixi = 0 imply that a0 =

a1 = · · · = ap = 0

A d-dimensional space can have at most d + 1 affine independent points since

there are at most d linearly independent vectors. Using this property the next defi-

nition follows:

For a set of affine independent points x0, x1, . . . , xp in Rd, the p-dimensional

simplex spanned by x0, x1, . . . , xp is the set of all points in Rd for which

there exist nonnegative real numbers t0, t1, . . . , tp such that:

x =
∑p

i=0 tixi where
∑p

i=1 ti = 1

The points x0, x1, . . . , xp that span the simplex σ are referred to as the vertices

of σ. As an example for p = 0, 1, 2, 3 refer to figure 1.1. Here the 0-simplex is a

single point, a 1-simplex is a line segment joining two vertices, a 2-simplex is the

interior and boundary of a triangle and a 3-simplex is the interior and boundary of

a tetrahedron.

vertex

edge

triangle
tetrahedron

Figure 1.1: Illustration of undirected p-simplices for p = 0, 1, 2, 3

Often times it is necessary to introduce direction. Suppose there is a 2-simplex

spanned by three points x1, x2, x3, There are 6 ways of labelling the three vertices,

10



namely (x0, x1, x2), (x2, x0, x1), (x1, x2, x0), (x0, x2, x1), (x2, x1, x0) and (x1, x0, x2).

Moving along the edges, it can be seen that the first three are in one direction and

the last three are in the opposite direction. From this example, the first 3 orderings

are an equivalence class and the last three are a second equivalence class. Here

the vertices of a 2-simplex have the same orientation if one can be obtained from

the other by an even number of permutations in neighbouring vertices (xi, xi+1) →
(xi+1, xi). An oriented simplex σ is an equivalence class of a particular ordering of

the p + 1 vertices of a p-simplex. Oriented simplices upto p = 1, 2, 3 are shown in

figure 1.2. Note that a single vertex will not have direction.

a

a
a

b
b

bc

c

Figure 1.2: Illustration of directed p-simplices for p = 1, 2, 3

Any simplex τ spanned by a subset of x0, x1, . . . , xp is called a face of σ. A

simplicial complex K is defined as follows:

• if σ is a simplex belonging to K it follows that every face of σ also belongs

to K (closed under faces).

• if σ1, σ2 ∈ K, then either σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 is a common face of both

σ1 and σ2 (no improper intersections).

The largest simplex in K is also the dimension of K. Figure 1.3 shows collections

of simplices that do not represent a simplicial complex because they violate one of

the above conditions. Figure 1.4 shows an example of a simplex.

11



Figure 1.3: Illustration of collection of simplices that do not form a simplicial com-

plex. First case (left) has two edges intersecting at a vertex that is not part of the

complex. Second picture (middle) has an edge entering a simplex (triangle) at a

point that is not a vertex in the complex. The last picture (right) shows two trian-

gles that intersect along an edge that is not a face of any of the vertices

a

b

c

d

e

f

Figure 1.4: Example of a simplicial complex. It consists of 6 vertices (a, b, c, d, e

and f), 9 edges (ab, ac, cd, ce, be, ef), 5 triangles (abc, bcd, bde, cde, bce) and 1

tetrahedron (bcde)
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The next definition uses the concept of an abelian group. This is a set with

additive or multiplicative binary operator that is associative and commutative with

identity and inverse element.

A collection {gi} of elements of a group G generates G if for every g ∈ G there

exist integers {ai} such that finitely many of them are non-zero and g =
∑

i aigi. G

is finitely generated if {gi} is a finite set. If the integers ai are unique, {gi} is called

a basis of G. If an abelian group G has a basis, it is called free.

Combining previous definitions, a p-chain can be defined asC =
∑

i aiσi where

σi is an oriented p-simplex. Define Cp(K) as the set of all p chains on K, then this

set with the binary additive operator is a free abelian group with the oriented p-

simplices as a basis. The basis of oriented simplices is called a standard basis.

Cp(K) is a trivial group if p <0 or p >dim K.

A boundary homomorphism ∂p : Cp(K)→ Cp−1(K) is defined as:

∂pσ =
∑
i

(−1)i(x0, x1, . . . , xi−1, xi+1, . . . , xp) (1.1)

This equation describes the effect of the operator ∂ on a p-simplex σ = [x0, x1, . . . , xp].

Using the above definition, the boundary operator is applied to oriented simplices

and the results are shown in figure 1.5. The boundaries are given by:

∂1[a, b] = b− a

∂2[a, b, c] = [a, b] + [b, c] + [c, a]

∂3[a, b, c, d] = [b, c, d] + [a, b, d] + [d, c, a] + [c, b, a]

Note that −[a, c] is equivalent to [c, a].

Two subgroups of Cp(K) are of particular interest, namely cycle and boundary

groups. As mentioned in [16], the p-th cycle group is the kernel of ∂p : Cp(K) →

Cp−1(K), and is denoted by Zp(K). The p-th boundary group Bp(K) is the image

13



a

a
a

b
b

bc

c

d

Figure 1.5: Illustration of boundaries of oriented p-simplices for p=1, 2, 3 shown

in figure 1.2. Boundary of left figure is b - a, the middle figure boundary is [a, b] +
[b, c] + [c, a] and the right side has boundary [b, c, d] + [a, b, d] + [d, c, a] + [b, c, a]

of ∂p+1 : Cp+1(K) → Cp(K). In simpler terms a p-cycle is a p-chain with zero

boundary and a p-boundary is the boundary of a (p + 1) chain.

The boundary homomorphisms connect the chain groups. A sequence of abelian

chain groups connected with their boundary homomorphisms is known as a chain

complex. Denote the chain complex by C∗:

0 = Cp+1
∂p+1−−→ Cp

∂p−→ Cp−1
∂p−1−−→ . . .

∂2−→ C1
∂1−→ C0

∂0−→ C−1 = 0 (1.2)

Since dim(K) = p, Cp+1 is a trivial group since the highest simplex is a p-

simplex. The cycle and boundary groups are subgroups of the free abelian group

Cp. Using the fact that ∂p−1∂p = 0 for all p, each boundary of a p + 1 chain is

a p-cycle. In other words, Bp ⊂ Zp ⊂ Cp. The chains in Bp are cycles that are

boundaries of higher dimensional cycles. However, of interest here are cycles that

are not boundaries. This provides the motivation for equivalence groups known as

homology groups.

The p-th homology group Hp of a simplicial complex K is a quotient
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group such that:

Hp(K) = Zp(K)/Bp(K) (1.3)

From the above definition, the p-th Betti number is the rank of the homology

group Hp. Equivalently:

rank Hp = rank Zp − rank Bp (1.4)

The pth Betti number is denoted by βp. Betti numbers are used to describe the

topological properties of a geometrical object. In lower dimensions Betti numbers

have an intuitive interpretation:

• β0: number of connected components

• β1: number of loops

• β2: number of voids

Figure 1.6 gives a system of vertices and edges and table 1.4 gives the corre-

sponding Betti numbers. Note that the last two pictures are homotopy equivalent.

Intuitively this means that a filled in triangle can be compressed to a single pixel

and will still have the same topological features. A loop is not homotopy equivalent

to a point because it is not possible to compress the loop into a point.

a b c d e

Figure 1.6: Illustration of Betti numbers
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a b c d e
β0 4 2 1 1 1
β1 0 0 2 1 1

Table 1.4: Betti numbers for the 5 figures from figure 1.6

The question that arises is how to construct a simplicial complex. From the def-

inition of a simplicial complex and figure 1.4 it can be seen that a simplicial com-

plex consists of vertices, edges, triangles, tetrahedrons and their higher-dimensional

generalizations. What is needed now is a rule that defines when such at topological

feature will join the simplex. Such a rule is known as a filtration and the resulting

simplicial complex is known as a filtered complex. More formally, a filtration of a

complex K is a sequence of nested subcomplexes K0 ⊆ K1 ⊆ · · · ⊆ Km = K,

where a subcomplex is a subset Ki ⊆ Kj that is also a simplicial complex and

K0 = ∅

For this study, the filtration that will be used is the distance between points.

1.7 Vietoris-Rips Complex

Suppose there is a finite set of points S in d dimensions. The Vietoris-Rips complex

Vε(S) of S at filtration ε is given in equation (1.5) [45].

Vε(S) = {σ ⊆ S|d(u, v) ≤ ε,∀u 6= v ∈ σ} (1.5)

Here, σ are the k-simplexes in Vε(S), u and v are two points in S, and d is the

Euclidean distance between those two points. Each of the simplices σ has vertices

that are pairwise within distance ε. The VR complex is computed up to a maximum

filtration value ε′ . The complex can then be extracted at any ε < ε
′ . The evolu-

tion of the simplicial complexes over increasing values of ε can be tracked using
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persistence diagrams or barcodes.

Practically this can be explained as follows. Suppose we start with a set of

points in a space Rd. Consider the pairwise distance between points, ε. At the

start with ε = 0 there are no 1-simplices as none of the points are less than zero

length apart. The number of 0-simplices is equal to the number of points in the

point cloud. Gradually increase ε, i.e. the pairwise distance between points. If

the distance between two points becomes less than ε then those two points are

connected to form a 1-simplex. As ε increases more points will join and form

higher order simplices. Eventually for a high enough value of ε all the points will

join in a single component and β0 will be one.

In dimension one the number of loops is tracked. We are interested in cycles

that are boundaries. The objective is to find the non-bounding cycles that last a long

time before turning into bounding cycles. In other words we would like to find the

hollow “loops” that are created and “persist” for a long time before getting filled in

and becoming homotopy equivalent to a point for a high enough epsilon. Loops that

persist for a long time are thought to be true features and loops that are created and

destroyed quickly are thought to be noise. Hence persistent homology records the

life of topological features that are born and die. For example, consider 26 points in

R2 as in figure 1.7. At a filtration of zero, every point forms its own vertex and there

are 26 components; β0 in this case is 26. As the filtration increases to 0.5, vertices

start to join and form 1-simplices. There are now 17 individual components. At

filtration 0.7, a pair of 2-simplices are created and more points start to join. The

number of individual components here is 4. At filtration 1, several higher order

simplices exist and in addition there are three loops visible. At filtration 1.1 one

of the smaller loops has died and the loop has been “closed” at the bottom of the

graph.

17



ε = 0 ε = 0.5

ε = 0.7 ε = 1.0

ε = 1.1

Figure 1.7: Illustration of Rips complex construction. Three skew circles are con-
nected and 26 points are sampled from this shape with noise. At ε = 0, there
are 26 components (β0 = 26). At ε = 0.5, β0 = 17. At ε = 0.7, β0 = 4. At
ε = 1, β0 = 1, β1 = 3. At ε = 1.1, β0 = 1, β1 = 3.
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As the filtration increases several loops are created, and the “persistent” loops

are tracked. The topological features all have a time when they are created (birth)

and when they are destroyed (death). Hence each feature can be presented in a

form (bi, di), where bi and di represent the birth and death respectively of the ith

topological feature.

One way of keeping track of birth and death times is to use a barcode, which is a

multiset of intervals. Intervals are drawn as horizontal bars where the left endpoints

represent the birth of a topological feature and the right endpoints represents the

death of the feature. The values on the horizontal axis correspond to the filtration

at which the features were born and died. The difference between death and birth is

known as the persistence of the feature and more persistent features are represented

by longer bars.

A barcode can be expressed as the persistence equivalent of a Betti number.

The kth Betti number of a complex, βk = rank Hk = rank Zk - rank Bk can be used

as a numerical measure of Hk. The number of intervals in the barcode that span

the parameter interval is equal to the rank of the persistent homology group [12].

In particular, it can be thought of as the number of intervals that contain i, where i

represents the intervals. The barcodes for the example of 26 points in R2 is shown in

figure 1.8. Note that as the filtration increases the number of connected components

decreases and in dimension one the birth and death of the loops are recorded by the

left and right endpoints of the barcode intervals respectively.

An alternative representation of the birth and death times of features is known

as a persistence diagram. The births and deaths of the topological features are

presented by a set of points in R2. Every topological feature in each dimension is

expressed as xi = (bi, di), where the values bi and di represent the birth and death

times of the ith topological feature. Thus the births are drawn on the horizontal
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(a) Dimension 0 (b) Dimension 1

Figure 1.8: Illustration of barcode construction of point cloud in figure 1.7

axis and deaths on the vertical axis. Since deaths happen after births, all points lie

above the diagonal. The diagram also includes this diagonal to represent features

or homology groups that were born and died at the same filtration. The persistence

of a point, xi, is the persistence of the corresponding homology group and is equal

to the vertical (or horizontal) distance from xi to the diagonal. Figure 1.9 shows

the persistence diagram for the example from figure 1.8. Note how the triangles

corresponds to the loops and the circles are all on the left hand side, indicating that

all the individual vertices were born at time zero.

In order to carry out further statistical analysis, some additional concepts need

to be defined which are adapted from the paper by Bubenik [6]. A persistence

module M consists of a vector space Ma for all a ∈ R and linear maps M(a ≤ b) :

Ma →Mb for all a ≤ b such that:
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Figure 1.9: Illustration of persistence diagram

• M(a ≤ a) is the identity map

• for all a ≤ b ≤ c; if M(b ≤ c) and M(a ≤ b) then M(a ≤ c).

Consider a set of points in an unknown dimensional space, Rd. Perform the VR

complex on these points, which means replace each point, x, with Vx(r) = {y ∈

Rd|d(x, y) ≤ r}, a circle with radius r centered at x. This is analogous to equation

1.5 only with radius r instead of ε and points (x, y) instead of (u, v). The resulting

union is taken at different values of r and is defined as:

Xr =
n⋃

i=1

Vr(xi) (1.6)

At each value of r calculate H(Xr), which is the homology group of the re-

sulting union of circles. If r ≤ s the inclusion lsr : Xr ↪→ Xs induces a map
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H(lsr) : H(Xr) → H(Xs). In simpler terms as r increases the union of circles

grows and the resulting inclusions induce maps between the corresponding homol-

ogy groups. The images of these maps are the persistent homology groups. The

collection of vector spaces H(Xr) and linear maps H(lsr) is a persistence module.

For any real valued function f : S → R on a topological space S, the associated

persistence module, M(f), can be defined, where M(f)(a) = H(f−1((∞, a])) and

M(f)(a ≤ b) is induced by inclusion.

Let M be a persistence module. For a ≤ b the corresponding Betti number of M

is given by the dimension of the image of the linear map from Ma to Mb, i.e. [6]:

βa,b = dim(im(M(a ≤ b))) (1.7)

One possible definition for a persistence landscape is called the rank function

λ : R2 → R given by:

λ(b, d) =


βb,d if b ≤ d

0 otherwise
(1.8)

The coordinate system of birth and death times can be changed as follows; let

m =
b+ d

2
and h =

d− b
2

(1.9)

The rescaled rank function then becomes the function λ : R2 → R given by:

λ(m,h) =


βm−h,m+h if h ≥ 0

0 otherwise
(1.10)

The above definitions are equivalent and generally acceptable for practical pur-
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poses, however it is necessary to provide another definition of persistence land-

scapes that has some advantageous properties. Firstly, note that for a fixed t ∈

R, βt−v,t+v is a decreasing function; that is, βt−h1,t+h1 ≥ βt−h2,t+h2 for 0 ≤ h1 ≤

h2.

Using this, the persistence landscape can be thought of as a sequence of func-

tions λk : R→ R, where λk(t) = λ(k, t) defined as:

λk(t) = sup(m ≥ 0|βt−m,t+m ≥ k) (1.11)

Three properties of persistence landscapes are:

1. λk(t) ≥ 0

2. λk(t) ≥ λk+1(t)

3. λk is 1− Lipschitz

Intuitively a persistence landscape can be constructed from barcodes as follows.

Suppose there are 4 intervals (bi, di) as in figure 1.10. For each interval construct

an isosceles triangle that has as base the endpoints of the interval and height equal

to di−bi
2

. Construct these triangles and place them all on one graph, this will create

the contours.

In order to carry out statistical analysis, first assume that the persistence land-

scapes lie in a Lp(R2) for some 1 ≤ p < ∞. In this case, Lp(R2) is a separable

Banach space. Consider the data X as a random variable on some underlying prob-

ability space (Ω,F , P ), and so the corresponding persistence landscape λ(X) is

a Borel random variable with values in the separable Banach space Lp(S), where

S = R2. Let X1, X2, . . . , Xn be independent and identically distributed samples,
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Figure 1.10: Illustration of persistence landscape construction. Start with the bar-
code as in the top left. Next take the intervals one at a time and create the isosceles
triangles. Place all the triangles on one axis and finally, the topmost contour is de-
noted by λ1, the second contour denoted by λ2 and the third contour by λ3. Together
the contours are known as a persistence landscape.

and let λ(X1), . . . , λ(Xn) be the corresponding persistence landscapes. The mean

landscape λ(X)n is given by the pointwise mean:

λ(X)n(x, y) =
1

n

n∑
i=1

λ(Xi)(x, y) (1.12)

Using the strong law of large numbers and applying it to persistence landscapes,

λ(X)n → E(λ(X)) almost surely if and only if E||λ(X)|| <∞. Here || · || corre-

sponds to the Lp norm. Similarly, adapting the central limit theorem for persistence

landscapes; assume λ(X) ∈ Lp(S) with 2 ≤ p < ∞. If E||λ(X)|| < ∞ and

E(||λ(X)||2) < ∞ then
√
n[λ(X)n − E(λ(X))] converges weakly to a Gaussian

random variable with covariance matrix Var[λ(X)].

As mentioned in Bubenik [6], the above results of strong law of large numbers

and central theorem can be applied to obtain a real-valued random variable that

satisfies the CLT. Let λ(X) ∈ Lp(S) where 2 ≤ p < ∞ with E||λ(X)|| < ∞ and
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E(||λ(X)||2) <∞. Then for any f ∈ Lq(S) with 1
p

+ 1
q

= 1, let

Y =

∫
S

fλ(X) = ||fλ(X)||1 (1.13)

The second equality shows that here we are dealing with the L1 norm. From

this it follows that

√
n[Y n − E(Y )]

d−→ N(0,Var(Y )) (1.14)

The above results can be used for statistical inference. Suppose X1, X2, . . . , Xn

are an iid sample of the random variable X and similarly X ′1, X
′
2, . . . , X

′
n are an iid

sample of X ′ . Assume that all the above assumptions hold and Y is defined as in

equation (1.13). Define µ = E(Y ) and µ′ = E(Y
′
). The hypothesis of interest is

µ = µ
′ .

The sample mean Y = 1
n

∑n
i=1(Yi) is an unbiased estimator of µ and the sample

variance s2Y = 1
n−1

∑n
i=1(Yi − Y )2 is an unbiased estimator of Var(Y). Similar

results hold for Y ′ and s2
Y ′

.

Assuming that the samples are paired (before and after), the paired samples

t-test statistic can then be defined as:

t =
XD − µ0

sD/
√
n

(1.15)

Where XD is the average of the difference vector, V = [V1, V2, . . . , Vn] where

each Vi = Yi − Y
′
i and sD is the corresponding standard deviation of V .

There are several options for choosing a function based on persistence land-

scapes. A popular function considers the total area under the landscapes. A condi-

tion required for this is that the corresponding barcode needs to have a finite number
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of intervals. Since this is fulfilled in the distance matrix data that will be used, this

is a feasible assumption. In this case, take f to be the indicator function on the

support of λ(X).

X = fp(λ(k, t)) =

(∑
k

∫
R
[λk(t)]pdt

)1/p

(1.16)

Here 1 ≤ p <∞

1.8 Measure of Similarity

The test statistic defined in equation 1.16 will find if there is a difference in the

average area under the top k contours between groups 1 and 2. However, often it

is useful to visualize where these differences are. In other words, we would like to

visually represent the relationship between the elements of the distance matrix.

One possibility to achieve this is to look at the difference in the area under the

persistence landscapes. Consider a sample of points Si in a space of unknown but

finite dimension Rd where i = 1, 2, . . . , n. For the point clouds Si we can calculate

the homology groups, the barcodes and persistence landscapes. At the end of this

we will have n persistence landscapes. Equation (1.16) can be used to calculate the

area under the landscapes and of interest is the comparison of the area under the

landscapes. Suppose there are two persistence landscapes λ(k, t) and λ′(k, t). The

p-landscape distance between the two landscapes can be defined as:

||λ− λ′ ||p =

(∑
k

∫
R
|λk(t)− λ′k(t)|p

)1/p

(1.17)

For a pairwise comparison between n persistence landscapes, this will create

n× (n−1)/2 distances. These can then be embedded in a lower dimensional space
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using dimensionality reduction techniques explained in the next section.

An alternative to the comparison of persistence landscapes is to compare the

persistence diagrams using the Wasserstein distance.

Suppose there are two persistence diagrams X and X
′ . We are interested in find-

ing a mapping from X to X
′ such that the total distance between points is minimized.

Firstly, consider a bijection ϕ : X −→ X
′ that maps all points from X to X

′ . Note

that the number of points in X and X
′ doesn’t have to be equal, any extra points can

be mapped to the diagonal where birth time is equal to death time.

More formally, the Wasserstein distance between persistence diagrams (PDs) X

and X
′ is given by:

Wp(X,X
′
) = inf

ϕ:X−→X′

(∑
x∈X

(||x− ϕ(x)||)p
)1/p

(1.18)

If there is a mismatch in the number of points between the two samples, then

the Wasserstein distance maps these points to the diagonal where birth is equal to

death in the persistence diagram [10].

Suppose X = [x1, x2, . . . , xn] and X ′ = [x
′
1, x

′
2, . . . , x

′
m] are two persistence

diagrams. Construct a bipartite graph with vertices W = U ∪ V . U has a vertex for

each xi and m vertices corresponding to the diagonal, D. Similarly, V has a vertex

for each x′i as well as n vertices representing D. Take all edges from U to V to make

this a complete bipartite graph as shown in the second part of figure (1.11). Each

edge of the bipartite graph (xi, D) and (D, x
′
j) has weight ||xi−D|| and ||x′j −D||

respectively where ||a − b|| = minz∈b||a − z||. The edges between two vertices

representing diagonals are given weight zero to avoid mapping from one diagonal

to the other. The weighted bipartite graph can then by analyzed using the Hungarian

algorithm [30].

27



As mentioned by Munch [29], a minimum cost matching in the bipartite graph

gives a bijection ϕ : X −→ X
′ and the Wasserstein distance is given by the square

root of the sum of the squares of the weights of the edges. Figure 1.11 provides an

example of matching one persistence diagram to another. Let PD X = [a, b, c] and

PD X
′
= [x, y].

D

a

b

c

x

y a

b

c

x

y

D

D

D

D

D

Figure 1.11: Illustration of the Wasserstein distance computation. Find a matching
of points from X to X

′ such that the distance of assigning all points in X to all points
in X

′ is minimized. The bold lines indicate the optimal matching as calculated
by the Hungarian algorithm and the dashed lines are mappings from diagonal to
diagonal that have weight zero.

Similar to comparison with persistence landscapes, a pairwise comparison be-

tween n persistence diagrams will create n × (n − 1)/2 distances which can be

restructured into a distance matrix and visualized.

1.9 Dimensionality Reduction Methods

Two main methods of dimensionality reduction will be introduced here, multi-

dimensional scaling (MDS) [43] and isometric mapping (Isomap) [42]. MDS is

a well established method and details can be found in most multivariate analysis

textbooks [18]. Isomap was established as a non-linear alternative by Tenenbaum

in 2000.
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The problem of MDS can be set up as follows. For a set of pairwise distances

between n items, find a representation of the items in low dimensions such that

the new distances match the original ones as much as possible. The order of the

distances is compared in data from the original dimension to data in the lower di-

mension. However, these orderings are often not correct after embedding data in

a lower dimension. Hence scaling techniques attempt to find configurations in q

dimensions, where q < n(n− 1)/2, such that the match is as close as possible. The

measure of this closeness is known as the stress.

As mentioned earlier if there are n items then there will be m = n(n − 1)/2

pairwise distances. Assuming no ties, the similarities can be arranged in ascending

order:

s1 < s2 < · · · < sm (1.19)

Here the first item corresponds to the smallest pairwise distance, the second

item the second smallest and so on. We want to find a q-dimensional representation

of the n items such that the order of the pairwise distances between any two points

i and k matches the ordering above, only in reverse. A perfect match occurs when:

dq1 > dq2 > · · · > dqm (1.20)

So here the d1 refers to the inverse of the similarity s1. Note that in the perfect

case the order of the similarities and distances is the same in q dimensions as it

was in the original dimension. The stress measures how close the distances in the

current dimension match the original distances and is given by:
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Stress(q) =

{∑m
i=1(d

q
i − d̂

q
i )

2∑m
i=1[d

q
i ]
2

}1/2

(1.21)

Where d̂qi are numbers known to satisfy equation (1.20). The idea is to find a

representation of items in q-dimensions such that the stress is as small as possible.

Once the items are located in q dimensions, their n × 1 vectors of coordinates

can be treated as multivariate observations. If q is set to two or three, then this will

allow for a visualization of the information represented in the distance matrix. For

more details the book by Johnson and Wichern is good source of information [18].

a

b

a

b

Figure 1.12: Illustration of how MDS and Isomap would calculate the distance
between points a and b. Figure on the left shows MDS as taking the Euclidean
distance between points. Isomap on the right takes the geodesic distance between
points.

MDS works well when the distances are embedded in a linear space, however

its performance declines when the data are sampled from a non-linear space such as

a spiral in figure 1.12. In this case, it is useful to consider methods that capture this

non-linear embedding. One such method is Isomap proposed by Tenenbaum [42].

Isomap is a stepwise procedure and each step will be briefly described here.

Suppose there are n points in Rd. The first step involves finding which points

are neighbours of each other, based on d(xi, xj) where d is the distance between
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points xi and xj . Simply put, two points will be connected if they are less than a

certain distance apart. Two ways exist to check if two points are close, k-nearest

neighbour and epsilon method. The first method involves connecting two points

if they are within k of each others nearest neighbours, for k = 1, 2, . . . , n and the

second method involves connecting two points if the distance between them is less

than some ε. The connected points will create a graph G.

The second step will be to find the geodesic distances dG(xi, xj). Initially, set

dG(xi, xj) =


d(xi, xj) if xi, xj are connected by an edge

∞ otherwise
(1.22)

For each value of k = 1, 2, . . . , n replace all entries by the minimum of dG(xi, xj)

and dG(xi, xk)+dG(xk, xj). If two points were previously unconnected by an edge,

this algorithm will ensure that a graph is formed, assuming the epsilon or number

of nearest neighbors is high enough. The matrix of final values DG will contain the

shortest path distances between all pairs of points in G.

The final step applies classical MDS as described previously to the matrix of

graph distances, DG = dG(xi, xj) for i, j = 1, 2, . . . , n. This will construct an

embedding of the data in a d-dimensional Euclidean space that best preserves the

original point cloud’s intrinsic geometry.

Given enough data, MDS is guaranteed to recover the true structure of linear

manifolds and Isomap is likewise guaranteed to recover the structure of non-linear

manifolds.
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1.10 Hierarchical Clustering

The final technique that will be implemented in this study is the hierarchical clus-

tering algorithm. The technique that will be considered is agglomerative hierar-

chical clustering which starts with each object being in an individual cluster and

then merging objects as distance between them decreases. Hierarchical clustering

depends on the choice of linkage algorithm that is selected, and for this study single

linkage was used. Single linkage looks at the distance between the closest members

within clusters. Two other linkage types are complete linkage looks at the distance

between the furthest points in the clusters and average linkage, which looks at the

average.

The hierarchical clustering method is a stepwise procedure as well and more

details can be found in the book by Johnson and Wichern [18].

1. Start with n clusters each of which contains a single element and an n × n

distance matrix, D = {d(xi, xj)}

2. Find the nearest clusters based on the chosen linkage method and let the dis-

tance between the closest clusters be dC1,C2 , where C1 and C2 are the two

closest clusters.

3. Merge clusters C1 and C2 and label the new cluster as C1C2. Update the

distance matrix by:

deleting the rows and columns corresponding to clusters C1 and C2

adding a row and column giving the distances between cluster C1C2 and

the remaining clusters

4. Repeat steps 2 and 3 a total of n - 1 times. Record the elements in each cluster

and the distance at which they joined the specific clusters.
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Using single linkage, the distance between the cluster C1C2 and another cluster

Cj will be given as:

d(C1C2)Cj
= min{dC1Cj

, dC2Cj
} (1.23)

Where dC1Cj
and dC2Cj

are the distances between the nearest neighbours of

clusters C1 and Cj and clusters C2 and Cj respectively.
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Chapter 2

Results

2.1 Introduction

In recent years there has been an advance in the field of persistent homology. Sim-

ply put, persistent homology measures the d-dimensional topological features of a

space at different values of a filtration. As a simple example, consider a point cloud

in a 2-dimensional space. Here, we say that the n points in the 2D space are born

at diameter zero. Create a ball with diameter ε around each point and gradually

increase it. At every increase of the diameter ε track which points become con-

nected. As two or more points become connected, some of the components die and

we are interested in tracking which components persist. In this context, die means a

merging of two or more components into one. This will be covered in more detail in

section 2 but this example serves to illustrate the basic point of persistent homology.

The interesting question that arises is how to keep track of the n × 2 matrices

of birth and death times that are created for each sample. This project will consider

three such measures, barcodes, persistence diagrams and persistence landscapes.

Barcodes and persistence diagrams were the first measures to be introduced, but

34



the statistical pace of progress was rather slow. This changed after the introduction

of persistence landscapes by Bubenik in 2012 . The persistence landscapes have

useful statistical properties which will be explained in more detail in section 2.3.3.

This study will be split up as follows; section 2.2 will discuss the Clostridium

difficile bacteria, current techniques to combat it and will explain the data used for

this analysis. Section 2.3 will discuss the methods that will be used for this analysis,

namely; Vietoris-Rips complex, persistence diagrams, barcodes, persistence land-

scapes, Wasserstein distances and isometric mapping (Isomap). Sections 2.4 and

2.5 will present the results of these methods applied to the data. Finally, section 2.6

will conclude and present the key findings.

2.2 Clostridium Difficile Infection

Clostridium difficile is a bacterium whose presence can lead to Clostridium difficile

(Cdiff ) infection. This is a common type of infectious diarrhea that is common in

Canadian hospitals [34]. It is commonly found amongst elderly patients in hospi-

tals and long-term care facilities. Its presence can increase the costs of treatment

four-fold hence the need to find an effective way to treat it [44]. The human body

contains millions of bacteria in the gut, most of which help to protect the body

from infection. However, the combination of age and certain medications can kill

some of the healthy bacteria [22]. Without enough healthy bacteria to protect the

host body, Cdiff infection can quickly get out of control. An aggressive strain of

Clostridium difficile has emerged that produces more toxins than other strains [35].

It is more resistant to treatments than other strains and has been responsible for

many outbreaks of Cdiff since 2000. Table (2.1) shows the infection rates that have

been occurring in Canada from 2007 to 2011, note that there has been an increase
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Rate per 1000 patient admissions
Region

Western Central Eastern Overall
No.cases Rate No.cases Rate No.cases Rate No.cases Rate

2007 1180 4.08 1831 5.07 260 3.44 3271 4.51
2008 1060 6.35 1597 5.48 256 3.56 2913 5.49
2009 683 5.13 1401 4.98 161 2.74 2245 4.75
2010 1251 4.68 1266 5.13 155 2.04 2672 4.53
2011 1170 4.85 1910 6.21 101 2.20 3181 5.35

Table 2.1: Number of Healthcare-Associated-Clostridium difficile infection cases
and incidence rates per 1,000 patient admissions by region (adapted from Public
Health Agency of Canada)

in the rates.

2.2.1 Human Biotherapy

The current method of treating Cdiff is by using antibiotics. However, this method

has had reduced efficacy over the years as the Cdiff infection adapts to the drugs

and new drug-resistant strains of Cdiff are emerging. An alternative treatment is

known as Human Biotherapy (HBT). This methods involves taking a stool sample

from a healthy donor, diluting it with water and introducing it via retention enema to

the patient. Preliminary studies have shown this method to be more effective than

antibiotics. In addition, this method is cheaper than taking expensive antibiotics

[21].

2.2.2 The data

The objective of the study is to distinguish between patients before and after the

HBT treatment. The information that is provided about the patients are the DNA

sequences found in the gut microbiome of the donors, as well as the DNA sequences
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found in the patients before and after the treatment. In total, there are 7 donor sam-

ples as well as a before and after measurement for each of the 19 patients, giving

a total of 45 samples (7+19+19). For each of the 45 samples, DNA is collected

and sequenced using Roche 454 DNA sequencing. Interested readers can refer to

http://www.454.com for details of the process. Pre-processing is done using

the software known as Mothur [37] and follows the Standard Operating Procedure

outlined by Pat Schloss and explained by Rush et al [36]. Tables (1.2) and (1.3)

provide some descriptive statistics about the total and unique number of DNA se-

quences found in the 45 samples. Note that it is impossible to ensure that we have

an approximately equal number of sequences in each sample [24].

Recall that distance is calculated as the number of mismatches divided by the

number of base pairs in the shorter sequence (refer to Chapter 1). Note that there

are other definitions of distance, but the definition provided is the one most com-

monly used. In addition, the results do not vary significantly. As can be seen from

the definition, this is not technically a distance, but a similarity index. The possible

values range from zero to one, zero meaning that the sequences are identical, and

one meaning that there are no common base pairs between the samples. Most of the

DNA sequences found in the samples appear several times, and hence the distance

between them will be zero as they are identical. For this reason, the unique se-

quences are taken because otherwise there will be several zero values for distance,

which will not aid in calculation but will only increase the memory required for

computations.

Table (1.3) provides descriptive statistics about the number of unique sequences

found in the samples. In that table, the smallest number of unique sequences is 147.

DNA sequencing does not provide exact results, hence as the number of sequences

in a sample increases, some mutations inevitably occur and these are recorded as
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unique sequences [36]. In other words, as the total number of sequences increases,

the number of unique sequences is also inflated. For this reason, it is necessary to

subsample from the number of unique sequences. The smallest number of unique

sequences is 147, hence a weighted subsample of size 147 is taken from the number

of unique sequences. The pairwise distance between the 147 sequences is calculated

in each of the 45 samples. The pairwise distances are then converted into a 147 ×

147 distance matrix. Finally, the data that is used for the primary analysis is a col-

lection of 45 147 × 147 distance matrices. Several samples of size 147 × 147 will

be obtained to create a “bootstrap” sample whose goal will be to check for stability

of the results. Finally, the analysis will be repeated using all unique samples, which

isn’t technically correct from a biological viewpoint but is interesting from a statis-

tical standpoint. In addition to the DNA sequences, covariates such as gender, age,

medical history and others are available about the patients.

2.3 Methodology

2.3.1 Vietoris-Rips (VR) complex

Suppose there is a finite set of points S in d dimensions. The Vietoris-Rips complex

Vε(S) of S at filtration ε is given in equation (2.1).

Vε(S) = {σ ⊆ S|d(u, v) ≤ ε,∀u 6= v ∈ σ} (2.1)

Here, σ are the k-simplexes in Vε(S), u and v are two points in S, and d is the

Euclidean distance between those two points. Each of the simplices σ has vertices

that are pairwise within distance ε. The VR complex is computed up to a maximum

filtration value ε′ . The complex can then be extracted at any ε < ε
′ [45]. The
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evolution of the simplicial complexes over increasing values of ε can be tracked

using persistence diagrams and barcodes.

Figure 2.1: Points randomly sampled from snowman

Suppose there are 60 points randomly sampled from a snowman shape as in

figure 2.1 and considered here is the distance between the points. Gradually, ε

will increase and at each value of the ε the number of connected components will

be recorded. The number of connected components is known as the zeroth Betti

number, β0. More generally, the kth Betti number (βk) is referred to as the number

of k-dimensional holes of geometric objects. For visual purposes, the Betti numbers

are interpretable up to dimension 2. As mentioned in chapter 1, the name of the

objects that are tracked by the various Betti numbers are:

• β0: number of connected components

• β1: number of loops

• β2: number of voids
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From figure 2.1 it can be seen that as the filtration increases, several points will

join together and eventually all the points are combined into one component. This

is an example of the Vietoris-Rips (VR) Complex. More formal definitions of the

VR complex can be found in the paper by Zomorodian [45].

2.3.2 Barcodes and Persistence Diagrams

Once the Vietoris-Rips complex is constructed, the question arises how to analyze

the m × 2 matrix of birth and death times of the various connected components?

One possible way is to use a barcode in each dimension. A barcode is a multiset of

intervals where the horizontal axis records the birth and death of the components

and the vertical axis shows the component number. A barcode can be generalized

to dimensions higher than zero. For dimension one the barcode plot tracks the birth

and death of the loops, for dimension two it tracks the birth and death of the voids.

Looking at figure 2.1 visual inspection suggests that there will be three persistent

loops. Referring to the snowman example, the dimension 0 and dimension 1 bar-

codes are presented in figure 2.2.

As can be seen, the left endpoints of the barcodes correspond to the birth of the

k-dimensional topological features and the right endpoint corresponds to the death

of those topological features. At filtration zero in dimension zero, all the points are

their own components. As the filtration increases, the points start to combine in

dimension zero and loops start to form in dimension one. The three bars that are in

the dimension one barcode correspond to the three loops in figure 2.1.

An alternative representation is known as a persistence diagram. Here, the hor-

izontal axis corresponds to the birth time of the k-dimensional topological features

and the vertical axis corresponds to the death of those topological features, with
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(a) Dimension 0 (b) Dimension 1

Figure 2.2: Barcodes for snowman point cloud data (2.1) in dimensions zero and
one. There is one persistent component, β0 = 1, and three persistent loops, thus
β1 = 3.

points on the diagonal line symbolizing trivial objects for which birth is equal to

death. Barcodes provide the same information as persistence diagrams and to illus-

trate this figure 2.3 shows the persistence diagrams generated for the snowman data

in dimensions zero and one.

Barcodes and persistence diagrams provide the same information and picking

one over the other is usually a matter of preference. Barcodes are slightly more

useful if two or more components have the same birth and death time, as these will

be represented separately, whereas on persistence diagram they will be shown as

one component.

2.3.3 Persistence Landscape

Statistical analysis using barcodes and persistence diagrams is limited because the

Fréchet mean is not unique. Some advances have been in this area, but the pace
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(a) Dimension 0 (b) Dimension 1

Figure 2.3: Persistence diagrams for snowman data (2.1) in dimensions zero and
one. There is one persistent component, β0 = 1, and three persistent loops β1 = 3.

of progress was slow. For these purposes it is necessary to introduce Persistence

Landscapes [6]. They are constructed from either barcodes or persistence diagrams

but have the additional benefit of being useful for statistical analyses. The main

advantage of landscapes is that unlike barcodes and persistence diagrams they are

functions, and so the vector space structure of its underlying function space can be

used [6]. This function space is a separable Banach space and the theory of random

variables with values in such spaces can be applied. More specifically, continuous

random variables in a Banach space satisfy the Strong Law of Large Numbers and

Central Limit Theorem [6]. Hence t-tests and other statistical procedures such as

ANOVA can be used to analyze persistence landscapes.

Their construction is briefly explained with an example in figure 2.4.

Suppose we begin with the barcode plot in (a). Consider the intervals one at

a time. Each of the intervals in the barcode has a start and end time. These are

the birth and death times of each topological feature respectively. Define t as the

current filtration value. Start with t at the birth and gradually increase it up to the
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Figure 2.4: Example showing construction of Persistence Landscape from Barcode

death of the component. At each value of t calculate h = min(d− t, t− b)+, where

b and d represent the birth and death times respectively. Here “+” is used to avoid

negative values. Next, plot the values of h vs t. This creates an isosceles triangle

like in figure 2.4b, where the maximum height occurs at the midpoint between the

birth and the death time. Repeat the procedure for the other two horizontal bars as

in figure 2.4. Finally, the persistence landscape can be obtained as follows.

Suppose there are j intervals of birth death times, where bj and dj correspond to

the birth and death times of the jth interval respectively. The persistence landscape

of these j intervals represents a map λ : N× R→ R, where λ is shown in equation

(2.2)

λk(t) = kthlargest value of{hj}nj=1 (2.2)

Where h is defined previously and is calculated for each of the j intervals and at

each filtration t; k is the maximum number of overlapping intervals.

In the examples provided, the topmost contour of the persistence landscape is

taken to be λ1, the second top contour is λ2 and so on until k.
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As explained earlier, persistence landscapes have the advantage that statistical

analyses can be performed using them. One such test considers the area under the

persistence landscapes. Equation (2.3) gives the area under the persistence land-

scapes

X = fp(λ(k, t)) =

(∑
k

∫
R
[λk(t)]pdt

)1/p

(2.3)

Here, p corresponds to the Lp space that is used, which is set to one for this

project. Here, setting p to one means that X is equal to the total area under the k

landscapes. In this formula, the k corresponds to the minimum maximum number

of overlapping intervals. For example, suppose there are three samples. Sample A

has 10 maximum overlapping landscapes, sample B has 3 maximum overlapping

landscapes and sample C has 7 maximum overlapping landscapes, then only the top

3 landscapes will be considered for the analysis.

H0 : µ1 = µ2

HA : µ1 6= µ2

(2.4)

Here µ1 and µ2 correspond to the average area under the k landscapes from pre

and post samples. For our data, a paired t-test is carried out to test that there is a

difference in the area under the top k persistence landscapes in dimensions zero and

one. It is carried out for dimension two but not with all the samples as not all of

them have any topological features in dimension two. In addition to a paired t-test,

a paired permutation test can be carried out if the number of samples is quite small.

The tests in equation (2.4) identify if there are any differences in the landscapes

between before and after HBT groups. If there are differences present, the next
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goal is to see where these differences lie. Visualization will be done in terms of

DNA sequences and groups (pre, post and donor) by obtaining coordinates in low-

dimensional Euclidean space. To obtain embedded coordinates, two dimensionality

reduction methods will be applied; multidimensional scaling (MDS) and isometric

mapping (Isomap). For MDS and Isomap, distance is calculated using two methods:

• Distance based on PL similar to equation (2.3).

• Wasserstein distance between persistence diagrams for each dimension.

2.3.4 Measures of similarity

Firstly, we explain the distance based on PL.

Suppose there are two samples that have landscapes denoted as λk(t) and λ∗k(t).

Then distance can be measured by equation (2.5). This compares pairwise the area

under the top k contours between λ and λ′

||λ− λ′ ||p =

(∑
k

∫
R
|λk(t)− λ′k(t)|p

)1/p

(2.5)

One of the drawbacks of distance measure based on equation (2.5) is that only

the top k landscapes are considered and the rest are discarded. This problem can be

overcome using Wasserstein distance which can be defined as follows.

Suppose there are two persistence diagrams X and Y. We are interested in finding

a mapping from X to Y such that the total distance between the points is minimized.

Firstly, consider a bijection ϕ : X −→ Y that maps all points from X to Y. Note that

the number of points in X and Y doesn’t have to be equal, any extra points can be

mapped to the diagonal where birth time is equal to death time.

More formally, the Wasserstein distance between PDs X and Y is given by:
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Wp(X, Y ) = inf
ϕ:X−→Y

(∑
x∈X

(||x− ϕ(x)||)p
)1/p

(2.6)

If there is a mismatch in the number of points between the two samples, then

the Wasserstein distance maps these points to the diagonal where birth is equal to

death in the persistence diagram [10].

2.3.5 Dimensionality Reduction Methods

In this section brief explanations of Multidimensional scaling (MDS) and Isometric

mapping (Isomap) are provided.

The main objective of MDS is to display the information contained in a distance

matrix. The algorithm reduces to the user specified number of dimensions while

attempting as best possible to preserve the distances between the points as specified

by the distance matrix.

Suppose there is a distance matrix D defined as follows:

D =



d1,1 d1,2 . . . d1,n

d2,1 d2,2 . . . d2,n
...

...
...

dn,1 dn,2 . . . dn,n


(2.7)

The goal of MDS is to find n vectors such that ||xi − xj|| ≈ di,j for all i, j ∈ 1,

..., n. The vector norm taken here is the Euclidean distance, which is analogous to

classical MDS.

And alternative proposed by Tenenbaum is called Isomap. This is analogous

to MDS except that it is more accurate when the intrinsic structure of the data is

nonlinear [42].
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As an example of such a nonlinear structure consider a Swiss roll. Classical

MDS would take the Euclidean distance between the points and project it to lower

Euclidean space. However, this misses the curl that is inherent in the Swiss roll.

Isomap procedure uses the following algorithm:

• Construct the neighborhood graph. For two points u and v, if they are closer

than ε or if u is one of the k nearest neighbors of v, connect the points and

calculate the distance between them, d(u, v).

• Compute the shortest paths. If (u, v) are linked by an edge then set d(u, v)

equal to the length of that edge. Otherwise, set it to infinity. Iteratively,

for each value of w = 1, 2, . . . , n update the distance between u and v as

min{d(u, v), d(u,w)+d(w, v)}. The final distance matrix will contain the

shortest path from points u to v.

• Construct d-dimensional embedding. The final step involves performing MDS

on the distance matrix computed in the previous step.

Isomap is sensitive to the values of ε or k that are used in the first step. Setting

k equal to the number of points is analogous to the MDS procedure.

These two techniques allow for the visualization of the topological features. The

one-dimensional topological features (loops) can be found by visual inspection or

more formally they can be found using the software Shortloop [8]. Shortloop takes

as input a point cloud in 3 dimensions and for a user specified filtration will find all

the loops that exist in the point cloud.

2.4 Results on individual DNA sequences

This section presents the results of analysis on individual DNA samples.
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2.4.1 147 unique sequences

The first procedure carried out is the most computationally intensive one; the com-

putation of the Vietoris-Rips complex. This is carried out using the phom package

in R [40] on the Westgrid computer network. When calculating the VR complex,

the values specified by the user are the maximum dimension to use and the max-

imum filtration. These values must be increased with care since this will greatly

increase the computational time. For this project, the maximum ε was set to 1.

Since the maximum distance between any two points is one, there will not be any

new topological features created at values higher than this. The maximum dimen-

sion was set to two. A trial run was made up to dimension three but no topological

features were detected at this dimension.

All 45 samples had persistent homology in dimensions zero and one. However

in dimension two, only 12 of the pre samples and 15 of the post samples have

persistent homology.

2.4.2 Barcode and persistence diagrams

Once the VR complex is calculated, it can be visualized using barcodes and persis-

tence diagrams. All 45 samples had persistent homology up to at least dimension

one, hence there are at least 90 barcode diagrams and persistence landscapes. Hence

only the diagrams that have multiple features will be presented here, the remainder

can be found in the Appendix. Figure 2.5 shows a selection of barcodes for patient

9. Figure 2.6 shows the corresponding persistence diagrams.

At first glance there does not appear to be anything interesting but there are some

general trends. Firstly, note that the dimension zero barcode for the ‘pre’ samples

have components that die a lot sooner than in the ‘post’ samples. Secondly, many
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(a) pre09, dim0 (b) pos09, dim0 (c) pre09, dim1 (d) pos09, dim1

Figure 2.5: Barcode for patient 9 before and after treatment in dimensions zero and
one

(a) dimension zero (b) dimension one

Figure 2.6: Persistence diagrams for patient 9 before and after treatment in dimen-
sions zero and one. Note that the triangles have birth at time zero but are moved
slightly for visual purposes
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of the intervals in dimension one are very short, hence it is possible that these may

be noise and not true topological features. However, the birth and death times of

these loops are smaller for the pre samples than for the post samples, which may

indicate that there is a true difference in the topological structure in dimension one

between the two groups.

Persistence diagrams allow plotting of several points on the same diagram,

which makes pairwise comparisons easier. Here the pre and post components are

plotted on the same graphs. Note that persistence diagrams can be difficult to read

for dimension zero where all the intervals start at zero, and hence all the components

appear in one vertical line.

2.4.3 Persistence Landscapes

As mentioned earlier, statistical analysis using barcodes and persistence diagrams

is limited. This is because these descriptors are not functions, and so properties

of the underlying function space cannot be used. Some work in this area has been

done by researchers [16] [11] [27]. Persistence Landscapes have the advantage

that traditional tests such as t-tests and ANOVA can be carried out using them [6].

Figure 2.7 shows the persistence landscapes for patient 9, in dimensions zero and

one.

(a) pre09, dim0 (b) pos09, dim0 (c) pre09, dim1 (d) pos09, dim1

Figure 2.7: Persistence landscape for patient 9 before and after treatment in dimen-
sions zero and one
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t-test permutation test
dim 0 0.00636 0.0048
dim 1 0.00831 0.0076
dim 2 0.2591 0.3477

Table 2.2: t-test and permutation test results comparing treatment effects

From the landscapes, the post samples have slightly longer intervals than the

pre in dimension one.

2.4.4 Comparison of area under PLs

As mentioned earlier, the area under the persistence landscapes can be compared

using equation (2.3). The hypotheses to be tested are in equation (2.4). Note that

k has to be the same for all samples. For testing the hypothesis in dimension zero,

each sample has 147 overlapping persistence landscapes, hence k is set to 147. For

dimension one, one of the samples only has one persistence landscape, hence only

the areas under the top landscape can be compared. This is a drawback of the

persistence landscape method. The results of the paired t-test and permutation test

are presented in table (2.2).

(a) pre, dim0 (b) post, dim0 (c) pre, dim1 (d) post, dim1

Figure 2.8: Average persistence landscape for pre and post patients in dimensions
zero and one. In dimension zero the post group has a denser grouping of contours,
which means that there are more clusters than in the pre samples. In dimension one
the pre group has three persistent loops on average and the post sample has two.
However, the post sample loops are more persistent than the pre samples.
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Table (2.2) shows that there is a difference in the total area under the 147 land-

scapes in dimension zero and under the topmost landscape in dimension one. There

is no difference under the topmost landscape between pre and post samples in di-

mension two. Note that for dimension two only 11 of the 19 patients had persistent

homology up to dimension two for both pre and post samples. The average per-

sistence landscape is presented in figure 2.8. This shows the average of each of

the kth contours for k = 1, 2, ...,maxOI, where maxOI is the maximum number of

overlapping intervals, which is 147 in dimension zero and 9 in dimension one. This

is shown in equation 2.8.

λk =
1

n

n∑
i=1

λik (2.8)

Here λik refers to the kth contour of sample i. The difference in area under the

landscapes can also be interpreted in another way. A small p-value means that there

is a difference in the average area under the top k landscapes between the pre and

post samples. This means that the either the length of the topological features is

different, or there is a difference in the number of features. One of the objectives of

the next section will be to identify where these differences are.

To visualize where the topological features are, it is necessary to project to

lower dimensional Euclidean space by applying Isomap or MDS. Isomap was used

to embed the data in 3 dimensions. MDS was also attempted but the results are

similar so Isomap results will be used throughout. Once the data are reduced to a

coordinate system they can be plotted in a 3D scatterplot. This is done in figure 2.10

for patient 9 before and after the HBT treatment. The Javaplex library created in

MATLAB [2] is then used to identify which 1-simplices make up the longest loops

on the original distance matrices. Once these are available, they can be visualized
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on the 3D scatterplot.

(a) pre09 (b) pos09

Figure 2.9: Scree plots showing residual variance of dimension reduction using
Isomap

Some distortion is expected since the scree plots in figure 2.9 show that there is

high residual variance in three dimensions. The loops obtained from the distance

matrix are projected onto 3 dimensions via Isomap. The projection using MDS is

presented in the appendix. The 2 most persistent loops in pre 09 have 6 vertices

each, and the only persistent loop in post 09 has 8 vertices which are marked (see

figure 2.10). Figure 2.24 in section 2.5.3 shows the 2 most persistent loops for

donor 2 and patient 18. It can be seen that the most persistent loops are generally

close to each other and in some cases share an edge. The appendix contains the

loops found in the remaining patients projected onto 3D using Isomap.

In addition to the DNA sequence data, other covariates from the data are avail-

able. Variables selected include age, sex, success of treatment, the use of various

medication (metronizadole, vancomycin, antibiotics), resistance to said medication,

abdominal pain and whether or not the patient had a fever. ANOVA and ANCOVA

can be performed using the area under the landscapes as the dependent variable. No

noteworthy results were discovered hence these sections are not included.
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(a) pre09 (b) pos09

Figure 2.10: Most persistent loop on β1 Isomap embedded coordinates for pre 09
and post 09. (a) The loops consist of sequences 6, 24, 30, 64, 137, 141 and 129,
141, 137, 144, 1 ,2. The loops share an edge [137, 141]. (b) The one loop consists
of sequences 133, 147, 74, 137, 3, 58, 127, 79

2.4.5 Full distance matrices

In the next sections, the procedures of the previous section are repeated, only this

time using the full distance matrices, instead of taking subsamples of size 147.

Recall that this is not the standard procedure when dealing with DNA data, but it

would be interesting to see if results are consistent or different. The number of

unique sequences in each sample ranges from 147 in pre patient 13, to 1118 in

post patient 18. Performing the VR complex on a 1118×1118 distance matrix is

incredibly computationally intensive and hence the analysis was carried out up to

dimension one. A more computationally efficient algorithm is being developed by

researchers in France but it is still experimental [7].

2.4.6 Barcodes and persistence landscapes

Figure 2.11 shows the barcode diagrams from the VR complex using the original

distance matrices. Note that similar patterns are observed as when subsample of
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size 147 was used. These plots are similar to the plots obtained using a subsample

of size 147. Since more points are used, there are more bars in the barcode. Since

persistence diagrams show the same information as barcodes, they are not included

here.

(a) pre01, dim0 (b) pos19, dim0 (c) pre09, dim1 (d) pos19, dim1

Figure 2.11: Barcode for patient 9 before and after treatment in dimensions zero
and one, using all unique sequences

Figure 2.12 illustrates the corresponding persistence landscapes.

(a) pre01, dim0 (b) pos19, dim0 (c) pre09, dim1 (d) pos19, dim1

Figure 2.12: Persistence Landscapes for patient 9 before and after treatment in
dimensions zero and one, using all unique sequences

Using paired t-test and permutation test to compare the average area under the

landscapes, table (2.3) shows that there are differences between pre and post sam-

ples for both dimensions zero and one.
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t-test permutation test
dim 0 0.0044 0.0042
dim 1 0.0136 0.0102

Table 2.3: t-test and permutation test p-values comparing area under persistence
landscapes using all sequences

2.4.7 Isomap on original distance matrices

Like with the 147 unique sequences, the original distance matrices can also be

embedded in 3 dimensions to see where the differences reported in table (2.3) lie.

Figure 2.13 shows the 3D scatterplot for patient 9 before and after treatment using

all unique sequences. The filled in points represent those that were selected as a

subsample of size 147 used in the original analysis. It can be seen that the spread

of the points is roughly evenly spread out throughout the point cloud, symbolizing

that it is possible that the analysis with a subsample of 147 unique sequences has

similar results to that when using all the samples.

(a) pre09 (b) pos09

Figure 2.13: Scatterplots for patient 9 showing points that were selected in the
subsample of size 147 as well as the remaining points

In figure 2.14 it can be seen that when using subsamples of size 147 and when

using all sequences the post sample has three visually separable clusters, whereas

for the pre sample there appears to be a more even spread and the clusters aren’t
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(a) pre09 147 (b) pre09 all (c) pos09 147 (d) pos09 all

Figure 2.14: Scatterplots for patient 9 showing the Isomap embedded coordinates
for pre and post samples for both subsamples of size 147 and all sequences.

easily visible. Generally, the post samples has more clusters than the pre sample

and these are more clearly visible.

2.5 Results of comparing patients with donors

In this section, the pairwise distance between persistence landscapes and the Wasser-

stein distance between persistence diagrams is calculated for the three groups (donor,

pre, post)

2.5.1 Pairwise comparison between landscapes

The objective here is to find a pairwise difference between the persistence land-

scapes and visualize it using Isomap embedded coordinates. Using equation 3, this

will create 45 combination 2 comparisons between the samples, which can be ar-

ranged into a 45×45 distance matrix. Next, Isomap is performed to embed the data

into 3-dimensions to allow for visualization. Figure 2.15 shows the scree plots for

dimensions zero and one.

The residual variance for dimension zero is much lower than for dimension one,

which means that the results of this section are more reliable for dimension zero

than dimension one. Figure 2.16 shows the 3D embedded coordinates as calculated
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(a) dimension 0 (b) dimension 1

Figure 2.15: Scree plots showing residual variance from embedding system in lower
dimension using Isomap

by Isomap of the pairwise distance between the samples, separated by a selection

of covariates.

Looking at the dimension zero plots (figure 2.16a-c), what stands out from the

above plots is that the donors form a cluster on the right side of the graph, and the

majority of the pre samples are on the left side of the graph. The post samples are

roughly in between the donors and the pre samples. This is to be expected since the

post samples contain sequences from both the pre group and the donors. Generally,

the females are closer to the donors than the males.

One of the objectives of the study was to see if we can predict which donors

are used for which patient. One way to do this will be to look at the plot and see

which donors are closest to the post samples. Figure 2.18 shows the 3D plots in

dimensions zero and one. From this plot, the distance between the points can be

measured and the donor closest to each of the post samples will be taken as the

predicted donor for that patient. However, this is based on the 3D scatterplots that

were reduced from the original unknown dimensions using Isomap.

More reliable predictions that use the original 45×45 distance matrices between

samples can be done using hierarchical clustering. [31]. This was carried out using
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(a) dim 0, by sex (b) dim 0, by success

(c) dim 0, by anti-biotic use (d) dim 1, by sex

(e) dim 1,by success (f) dim 1, by anti-biotic use

Figure 2.16: Pairwise differences between persistence landscapes embedded in 3D
using Isomap. In dimension zero a pattern of separation by gender is observed, but
no pattern when separating by success/failure of treatment and use of anti-biotics.
No patterns are visible in dimension one.
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predicted recipients
donor PL dim 0 PL dim 1

1 19 8
2 1 8 9 10 11 12 14 15 16 17 18 3 11 12 13 10 4
3 7
4 4 7 16 19
5 2 3 5 6 1 2
6 5
7 13 6 15 17 14 18

unknown

Table 2.4: Predicted recipients for each donor using pairwise comparsions between
PLs in dimensions zero and one

the single linkage algorithm. Dendrograms in figure 2.17 were created using the

subsamples of size 147 only since the results were similar to those obtained when

using all the sequences. The corresponding prediction are in table 2.4. From the

plots it appears that donor 2 was used for most of the patients.

(a) dim 0 (b) dim 1

Figure 2.17: Single linkage hierarchical clustering carried out on distance matrix
between samples computed by pairwise distance between PLs

2.5.2 Pairwise comparison using Wasserstein distance

This section is similar to the previous one, only instead of looking at the pairwise

distance between persistence landscapes, the pairwise distance between persistence
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(a) dimension 0 (b) dimension 1

Figure 2.18: Pairwise differences between persistence landscapes embedded in 3D
using Isomap. In dimension zero most of the pre points are on one side, and donors
are on the opposite side with the post samples being in the middle. In dimension
one difference are difficult to see as many of the pre and post samples are close
together. The donors are generally spread out from the pre and post samples.

diagrams is calculated using Wasserstein distance. Once the pairwise distances are

found, they are formed into a 45 × 45 distance matrix and the Isomap procedure

is repeated to embded the coordinates in 3 dimensions. Recall that Wasserstein

distance uses all points in a persistence diagram, and not the top k as in persistence

landscapes.

The Wasserstein distance results are similar to those obtained using persistance

landscapes, with donors clustered together on one side, pre on the other side and

post in the middle for dimension zero. For dimension one the pre are all clustered

tightly and the donors are spread out. The post samples are again somewhere be-

tween the two.

Figure 2.21 shows embedding in 3 dimensions and figure 2.22 shows the den-

drogram from the hierarchical clustering algorithm performed on Wasserstein dis-

tances between samples with table 2.5 showing the corresponding predictions. As
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(a) dimension 0 (b) dimension 1

Figure 2.19: Scree plots showing residual variance from reducing dimensionality
of Wasserstein distances using Isomap

predicted recipients
donor wasser dim 0 wasser dim 1

1 19 1 7 8 16
2 2 4 5 6 9 12 14 11 15 17 18 19 3 4 5 6 9 10 14 15 16 17 18
3 5
4 7 10
5 8 1
6 1 9
7 13 16 3 7 11 12 13

unknown

Table 2.5: Predicted recipients for each donor using Wasserstein distance in dimen-
sions zero and one)

with the pairwise distance between PLs, donor 2 seems to be the one that was used

for most of the patients.

A comparison using total number of unique sequences presented similar results

and is not included here.
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(a) dim 0, by sex (b) dim 0, by success

(c) dim 0, by anti-biotic use (d) dim 1, by sex

(e) dim 1, by success (f) dim 1, by anti-biotic use

Figure 2.20: Pairwise differences calculated using Wasserstein distance embedded
in 3D using Isomap
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(a) dimension 0 (b) dimension 1

Figure 2.21: Pairwise differences calculated using Wasserstein distance embedded
in 3D using Isomap. Similar to pairwise difference between PLs, a visual separation
can be made between males and females but not by success/failure of treatment
and antibiotic use. In dimension one the scatterplot is more spread out than when
looking at the pairwise difference between PLs, and there is a pattern that patients
for whom the treatment failed are further away from the donors than those for whom
it was successful.

(a) dimension 0 (b) dimension 1

Figure 2.22: Single linkage hierarchical clustering carried out on distance matrix
between samples computed by Wasserstein distance
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2.5.3 Comparing donors and HBT treatments in terms of DNA

sequences

From the dendrograms patients were identified that formed close clusters with donors.

For example donor 4 formed a cluster early with patient 7 and donor 2 formed a

cluster with patient 18. This section aims to compare the topological features be-

tween donors and patients that were identified as being extremely close. Figure

2.23 shows the 3D embedded coordinates for donor 4 and patient 7 and figure 2.24

shows the coordinates for donor 2 and patient 18. From the figures it can be seen

that donor 4 and patient 7 have a similar spread among the sequences and there are

2 distinct clusters. Donor 2 and patient 18 also have similar structures. The donors

generally have a wider spread, which would indicate more diverse DNA sequences

in those samples and a healthier gut microbiome.

(a) Donor 4 (b) Post 7

Figure 2.23: Donor 4 and post patient 7 3D embedded coordinates. Both samples
have roughly the same number of clusters and spread of the data. These points are
compared since they are close in the dendrogram in figure 2.17
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(a) Donor 2 (b) Patient 18

Figure 2.24: Most persistent loop on β1 Isomap embedded coordinates for don 02
and post 18. (a) the loops are formed by sequences 23, 134, 15, 20, 142, 3, 127 and
80, 140, 23, 123, 9, 20, 3 (b) loops formed by sequences 43, 57, 16, 69, 120, 4, 140,
10 and 7, 113, 32, 106, 46, 13

run 1 2 3 4 5
dim 0 4.1251 3.6772 3.5232 2.9521 3.9822
dim 1 4.0053 3.5229 4.1089 4.4156 3.9682
run 6 7 8 9 10

dim 0 3.7510 4.2129 2.8364 3.0825 3.1984
dim 1 3.4161 3.3107 3.1180 3.3080 2.8657

Table 2.6: Values of test statistic from different samples of size 147×147. The
critical value is T18,0.025 = 2.101

2.5.4 Bootstrap

While not a bootstrap in the traditional sense, the objective of this section is to check

that the results using different subsamples of size 147 are consistent. One way to

measure this is to look at the the value of the test statistic calculated in equation 2.3

and check that the values obtained are consistent. In 10 different subsamples of size

147, there was a significant difference in the area under the PLs in dimensions zero

and one.

The results of this experiment from 10 runs are in table (2.6).
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2.6 Conclusion

DNA sequence data was analyzed using three summary statistics of persistent ho-

mology; namely, barcodes, persistence diagrams and persistence landscapes. The

main objective was to see if there are any differences in the topological structure of

DNA sequences in the gut microbiome of patients before and after HBT treatment.

From visual inspection of barcodes and persistence diagrams it was seen that

the components in dimensions zero and one died sooner in the pre samples than in

the post samples. Persistence landscapes were able to present this difference more

formally, showing that there is a difference in the average area under the persistence

landscapes for pre and post samples. Alternative interpretation of this was that their

was a difference in the number and size of clusters in dimension zero, and the

number and amount of loops in dimension one. The pre samples had more clusters

than the post samples, whereas there was no visually obvious difference in the size

of the loops, but the loops were longer for the post samples.

Using information about the covariates, in the form of an ANCOVA test did not

yield any significant results.

Pairwise distances between both landscapes and persistence diagrams via Wasser-

stein distance were calculated. The results showed that donors samples and pre

samples were clearly separated with the post samples generally in between the two.

Information regarding covariates shows that there is a split by gender, and success

status of the procedure to a lesser degree. One of the secondary objectives was to

see if predictions can be made of which donors were used for which patients. The

predictions were not very reliable, and suggest that most of the patients received a

sample from donor 2.

Similar results were obtained when repeating the analysis with the full distance
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matrices. This is not surprising since the sampling done was weighted, and as a

result the most common sequences are selected more often than the rare ones. This

also explains the stability of the test statistic as different samples of size 147 are

taken.

For future work, it may be interesting to explore dimensions higher than 2. At

the moment computational resources are the bottleneck but the technology is rapidly

developing. Additionally, interest is developing in using covariates in topological

data analysis directly, and not simply as descriptive statistics.

Finally, one of the major drawbacks of this analysis is that information about

individual sequences is lost. This project looked at the topological structure created

by the sequences but no details were provided about the individual sequences. As

the biological technology and methods improve it may be interesting to incorporate

this information.
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Appendix A

Additional graphs

1.1 Patients 1-19 persistent loops embedded in 3D us-
ing Isomap

(a) pre01 (b) pos01

Figure 1.1: Patient 01 most persistent loops
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(a) pre02 (b) pos02

Figure 1.2: Patient 02 most persistent loops

(a) pre03 (b) pos03

Figure 1.3: Patient 03 most persistent loops

(a) pre04 (b) pos04

Figure 1.4: Patient 04 most persistent loops
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(a) pre05 (b) pos05

Figure 1.5: Patient 05 most persistent loops

(a) pre06 (b) pos06

Figure 1.6: Patient 06 most persistent loops
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(a) pre07 (b) pos07

Figure 1.7: Patient 07 most persistent loops

(a) pre08 (b) pos08

Figure 1.8: Patient 08 most persistent loops

(a) pre10 (b) pos10

Figure 1.9: Patient 10 most persistent loops
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(a) pre11 (b) pos11

Figure 1.10: Patient 11 most persistent loops

(a) pre12 (b) pos12

Figure 1.11: Patient 12 most persistent loops

(a) pre13 (b) pos13

Figure 1.12: Patient 13 most persistent loops
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(a) pre14 (b) pos14

Figure 1.13: Patient 14 most persistent loops

(a) pre15 (b) pos15

Figure 1.14: Patient 15 most persistent loops

(a) pre16 (b) pos16

Figure 1.15: Patient 16 most persistent loops
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(a) pre17 (b) pos17

Figure 1.16: Patient 17 most persistent loops

(a) pre18 (b) pos18

Figure 1.17: Patient 18 most persistent loops

(a) pre19 (b) pos19

Figure 1.18: Patient 19 most persistent loops
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1.2 Patient 09 persistent loops embedded in 3D using
MDS

(a) pre09 (b) pos09

Figure 1.19: Patient 09 most persistent loops embedded in 3D using MDS
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