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ABSTRACT 

Dermacentor albipictus (Packard) is an obligate, hematophagous 

ectoparasite commonly found on large ungulates in North America. At high 

infestation levels, the winter tick is known to cause severe pathology and may 

transmit diseases to its hosts. Knowledge of the genetic diversity in this parasite 

will allow us to accurately identify the tick to species and better understand how it 

interacts with its hosts and surroundings.  In this thesis, I developed and used 14 

microsatellite loci to re-examine the species boundaries and to investigate host 

specificity in this tick. I confirmed that D. albipictus consists of a single species 

but exhibits extensive genetic variation that is more associated with geography 

than host species. Information on species boundaries, geographically-associated 

genetic variation and extent of host specificity in winter ticks can have important 

implications in pest control and further research is desirable. 
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CHAPTER ONE 

General Introduction 

Ticks 

Ticks (Order: Ixodida) are members of the phylum Arthropoda. They 

belong in the class Arachnida and form the sub-class Acari with mites. There are 

currently three recognised families of ticks: the Ixodidae (hard ticks, 702 species), 

the Argasidae (soft ticks, 193 species), and the Nuttalliellidae (monotypic, 

Nuttalliella namaqua in South Africa) (Keirans et al. 1976, Barker and Murrell 

2004, Guglielmone et al. 2010, Mans et al. 2011). Ticks are presumed to be early 

lineages of terrestrial arachnids and are proposed to have originated between the 

late Silurian and the late Cretaceous (443 – 65 million years ago (MYA)) 

(Hoogstraal and Aeschlimann 1982, Lindquist 1984, Oliver 1989, Balashov 1994, 

Klompen et al. 1996, de la Fuente 2003). The oldest tick fossil found to date is a 

soft tick preserved in amber approximately 90 – 94 million years old (Klompen 

and Grimaldi 2001), suggesting that ticks might have already radiated into the 

families we see today during the Cretaceous period.  

Ticks are obligate, hematophageous ectoparasites, recognised as important 

veterinary and medical threats second in importance only to mosquitoes (Spach et 

al. 1993, Allan 2001, Parola and Raoult 2001). They have been found feeding on 

a wide variety of organisms including birds, mammals, reptiles, and amphibians 

(Bishopp and Trembley 1945, Oliver 1989, Burridge 2001, Smith et al. 2008). 

Blood-feeding behaviour in ticks is believed to have evolved in an ancestral tick 

lineage, with the different mechanisms for hematophagy evolving through 

multiple independent events between 92 – 120 MYA (Mans et al. 2002, Mans and 

Neitz 2004, Mans et al. 2011). 

Ticks are known for their ability to induce severe pathology (e.g. tick 

paralysis, anemia, and severe allergic reactions) in their hosts (Bishopp and 

Trembley 1945) and can vector a number of diseases including Lyme disease, 
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tularaemia, ehrlichiosis, and anaplasmosis (Bratton and Corey 2005). With 

midguts that are uniquely suitable for pathogen survival and long feeding periods 

interspersed with periods of ingestion and regurgitation, ticks are well adapted for 

effective disease transmission (Parola and Raoult 2001). Ticks can also act as 

reservoirs of tick-borne diseases by maintaining pathogens in a population via 

transstadial (between life stages) and transovarial (from female to offsprings) 

transmission (Parola and Raoult 2001).  

As important medical and veterinary pests, it is critical that we be able to 

identify tick species accurately and increase our understanding of interactions 

between ticks and their surroundings. Such knowledge will be invaluable for 

implementing efficient monitoring and control programs. Information on parasite 

genetic diversity can potentially serve as a tool for accurate identification of pest 

species and for increasing our understanding of host-parasite-pathogen 

interactions (Stockwell and Leberg 2002, Armstrong and Ball 2005, Magalhães et 

al. 2007). In this thesis, I focus on the genetic diversity of a particular species of 

hard tick that can be found throughout North America- Dermacentor albipictus, 

also known as the winter tick or moose tick.  

 

The winter tick – Dermacentor albipictus 

Dermacentor albipictus (Packard 1896) is an obligate ectoparasite that 

commonly parasitises large ungulates like elk (Cervus elaphus canadensis 

(Erxleben)), moose (Alces alces (Linnaeus)), and horses (Equus ferus caballus 

Linnaeus). It can be found across North America (Bishopp and Trembley 1945, 

Yunker et al. 1986, Samuel 2004) (Figure 1-1, Appendix A). The winter tick can 

be various shades of brown with grey dorsal patterning (Figure 1-2). Some 

individuals that are well ornamented may exhibit iridescence (Cooley 1938). Like 

all Ixodidae, the winter tick has an oval body shape that narrows anteriorly with 

eleven festoons on the posterior end of the opisthosoma (Figure 1-2) (Cooley 

1938). Its basis capitulum is rectangular when viewed both dorsally and ventrally 
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and is always wider than long (Figure 1-2A, 1-2C). Its palpi are short and broad. 

The hypostome is covered in three rows of dentition on either side of the median. 

Coxae I to IV increase in size posteriorly and spurs are present on all coxae 

(Figure 1-2B, 1-2D). Spiracle plates on D. albipictus are variable in shape but 

always consist of large goblet cells (Yunker et al. 1986, Leo et al. 2010). Dorsal 

prolongations on the spiracle plates may or may not be present (see Leo et al. 

2010 Figure 1). 

Life History 

In Alberta, Dermacentor albipictus produces one generation per year. Six-

legged larval ticks hatch around August and September and scale vegetation to 

begin questing for hosts (McPherson et al. 2000, Aalangdong and Samuel 2001, 

Allan 2001). Once on a host, the larvae immediately initiate feeding before 

molting into the eight-legged nymphal stage. Nymphs remain on the host 

throughout fall and winter, feeding continuously and becoming engorged. Once 

fully fed, the nymphs undergo their final molt to become sexually mature adults 

(January – May). Around March and April, mated females become engorged and 

detach from the host. They lay their eggs on the ground before expiring (Samuel 

2004). Reproductive success of winter ticks is dependent on a variety of factors 

such as the host species parasitised, host avoidance and grooming behaviour, and 

weather conditions (Drew and Samuel 1987, Samuel and Welch 1991, Welch et 

al. 1991).  

Importance in management and conservation 

 Heavy infestations of winter ticks on a host individual can result in severe 

anaemia, extensive epithelial damage, allergic reactions, loss of winter coats by 

hosts due to excessive grooming behaviour, and even death (McLaughlin and 

Addison 1986, Glines and Samuel 1989, Anderson 2002,). D. albipictus can also 

carry a variety of pathogens (Baldridge et al. 2009). It is considered an important 

veterinary and economical pest in the United States cattle industry due to its 

ability to transmit the bacteria Anaplasma marginale (Theiler) (Sonenshine 2003).  
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It is pertinent that we be able to identify D. albipictus to species at all life 

stages. Unfortunately, identifying ticks to species based on morphology is often 

difficult due to overlapping morphological traits (Brinton et al. 1965, Dergousoff 

and Chilton 2007). However, with recent advances in sequencing techniques, we 

are presented with an efficient method for species delimitation and identification. 

Although this method has many limitations and must be examined further for 

reliability, it can be very useful for pest species identification (Armstrong and 

Ball 2005, Rubinoff et al. 2006). This is particularly so when dealing with 

specimens of poor quality or juvenile stages (Hebert et al. 2003).  

Host-parasite interaction is a form of co-evolution whereby parasites and 

hosts reciprocally respond to selection pressures imposed by each other (Clayton 

et al. 1999). To counter parasite-induced pathology, host animals invest resources 

in costly immune defences (Sheldon and Verhulst 1996). In response, parasites 

evolve specialised mechanisms to avoid or overcome host immune defences 

(Antia and Lipsitch 1997, Gillespie et al. 2000). This evolutionary arms race 

between parasites and their hosts is an example of the “Red Queen Hypothesis” 

(Van Valen 1973). It is important that we obtain a better understanding of host-

parasite relationships as these interactions can affect host fitness in the form of 

decreased reproductive success (Baudoin 1975, Ebert and Herre 1996) and death 

(Boots and Sasaki 2002, 2003). The ability to associate genetic ‘strains’ of D. 

albipictus ticks to particular host species could be potentially useful for risk 

assessment of tick populations in a region. 

 

Microsatellites 

 In recent years, it has become increasingly easier for researchers to carry 

out fine-scaled genetic studies using markers like single-nucleotide 

polymorphisms (SNPs) and short tandem repeat regions such as microsatellites. 

Microsatellites are regions of the genome that usually consist of repeating regions 

1 to 6 nucleotides in length (Li et al. 2002, Kelkar et al. 2010). As co-dominant 

and (presumably) selectively neutral markers, microsatellites are ideal markers for 
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studies that investigate population structures, pedigree, kinship, and in some 

cases, species boundaries (Blouin et al. 1996, Kelkar et al. 2010, Lumley and 

Sperling 2011,). An added bonus to using microsatellites markers is that the 

evolutionary mechanism behind these markers is reasonably well understood 

(Schlötterer 2000). 

To date, most molecular studies on D. albipictus have been done via 

sequencing of common mitochondrial (16S ribosomal RNA and cytochrome 

oxidase I) and nuclear (internal transcribed spacer 1 and 2, lysozyme) markers 

(Crosbie et al. 1998, Leo et al. 2010). Using additional markers such as 

microsatellites can allow us to obtain better understanding of winter tick species 

boundaries and genetic variability.  

 

Scope of thesis 

The goal of my M.Sc. thesis is three-fold. My first objective is to develop a 

set of microsatellite markers that can be used as additional tools for studying D. 

albipictus genetic diversity in North America (Chapter 2). My second goal is to 

re-examine the species boundaries of D. albipictus through extensive genomic 

and geographical sampling (Chapter 3). Finally, I investigate the degree of host 

preference in D. albipictus whose host-dependent life cycle and limited dispersal 

capabilities may contribute selective pressures that can result in host 

specialisation (Chapter 4).  
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Figure 1-1. Map indicating the approximate jurisdictional distribution of 
Dermacentor albipictus ticks in Canada and the United States of America. States and 
provinces from which D. albipictus has been reported are coloured. Distribution is 
established based on literature reporting where D. albipictus has been collected or is 
present. Winter ticks are not reported in Nunavut, Newfoundland and Labrador, 
Prince Edward Island, Delaware and Alaska. A complete list of the sources used to 
create this distribution map is listed in Appendix A.  

= Records known for D. albipictus 
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Figure 1-2. Images of adult Dermacentor albipictus ticks: (A) dorsal view of a male, 
(B) ventral view of a male, (C) dorsal view of a female, (D) ventral view of a female. 
These images are available on the University of Alberta Strickland Virtual Museum 
(http://entomology.museums.ualberta.ca/searching_species_details.php?s=31506). 

A B 

C D 
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CHAPTER TWO * 

Isolation and characterization of 14 microsatellite loci developed for 

Dermacentor albipictus and cross-species amplification in D. andersoni and D. 

variabilis (Acari: Ixodidae) 

*A slightly modified version of this chapter has been published: 

Leo SST, Davis C, and Sperling FAH. 2011. Conservation Genetics Resources. 

doi: 10.1007/s12686-011-9553-x 

 

Winter ticks (Dermacentor albipictus (Packard)) are obligate ectoparasites 

that feed on blood of large ungulates. Heavy infestations of these parasites can 

result in severe pathology and host fatality (Samuel 2004). D. albipictus are also 

known vectors of Anaplasma marginale (Theiler) (Aubry and Geale 2011). To 

study D. albipictus biodiversity and population structure in North America, I 

developed microsatellite loci using three methods: (1) screening of genomic D. 

albipictus DNA via the universal linker and ligation protocol (Hamilton et al. 

1999); (2) a genomic resource-based approach using expressed sequence tag 

(EST) libraries and in silico techniques; (3) adapting loci originally developed for 

D. variabilis (Dharmarajan et al. 2009). 

Fourteen micrograms of genomic DNA was extracted from five D. 

albipictus specimens (collected from mule deer (Odocoileus hemionus 

(Rafinesque)) in Oyen, Alberta), fragmented with NheI, and enriched for 

dinucleotide repeats [(GT)14 and (CT)14] (Hamilton et al. 1999) using 

SuperSNX24 linkers from Glenn and Schable (2005). Enriched fragments were 

cloned into pBSII SK+ and transformed into DH5α competent Escherichia coli 

cells. Insertion sequences of 259 recombinant clones were amplified using 

universal plasmid-specific T3 (5’AAT TAA CCC TCA CTA AAG GG3’) and T7 

(5’TAA TAC GAC TCA CTA TAG GG 3’) primers in 50 µL reactions consisting 

of 1X PCR Buffer (50mM Tris-Cl, pH 9.2, 1.8mM MgCl2, 10mM (NH4)2(SO4), 

0.1mg/ml BSA, 0.0025% (v/v) β-mercaptoethanol), 0.2mM of each dNTPs, 25 
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pmol of each primer, 1U Taq, and 4μl template DNA. The PCR protocol 

consisted of 30 cycles of 94°C for 15s, 52°C for 30s, and 72°C for 45s, with a 

final extension at 72°C for 300s. Amplified products were purified using 

ExoSAP-IT (Affymetrix, Santa Clara, CA), sequenced using Big Dye Kit and 

protocol (Applied Biosystems, Foster City, CA), and visualised on an ABI3730 

capillary sequencer (Applied Biosystems, Foster City, CA). Contigs of sequences 

were created using LaserGene (DNASTAR Inc, USA). Sixteen insertion 

sequences contained repeat motifs. 

EST sequences for D. variabilis and D. andersoni were downloaded from 

the National Center for Biotechnology Information database and aligned using 

Lasergene (DNASTAR Inc, USA). Contigs were scanned for repeat regions using 

a PERL script designed to search for microsatellite repeats (Beldade et al. 2006). 

Twenty-four contigs exhibited at least six simple sequence repeats.  

Primers were designed for the abovementioned 40 microsatellite loci using 

Primer3 (Rozen and Skaletsky 2000) and tested on D. albipictus specimens, along 

with 12 additional loci designed for D. variabilis (Dharmarajan et al. 2009). M13 

tails were added onto the 5’ end of all forward primers and amplification was 

performed using the protocol in Schuelke (2000). Microsatellite loci were 

amplified in 15 µL PCR cocktail consisting of 1X PCR Buffer (10mM Tris pH 

8.8, 0.1% Triton X-100, 50mM KCl, 0.16mg/ml BSA), 2.4mM MgCl2, 0.2 μM of 

each dNTPs, 4.8 pmol of the forward primer, 1.6 pmol reverse primer, 4.8 pmol 

labelled M13 primers, 1U Taq, and 4μl template DNA. Amplified products were 

diluted 1 in 5, co-loaded, and visualized on an ABI3730 automated capillary 

sequencer (Applied Biosystems, Foster City, CA) using GS500-LIZ (Applied 

Biosystems, Foster City, CA) as the size standard. Genbank accession numbers of 

sequences used to develop microsatellite loci are listed in Table 2-1.  

Fourteen loci (4 from screening an enriched genome, 8 developed from the 

EST libraries, and 2 developed by Dharmarajan et al. (2009)) that amplified 

successfully were validated using a panel of 17 D. albipictus specimens (collected 
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during an elk (Cervus elaphus canadensis (Erxleben)) monitoring project in the 

Waterton region, Alberta) using labelled primers. D. andersoni and D. variabilis 

collected from British Columbia and Nova Scotia respectively were used in cross-

species amplifications. Amplifications were performed in 15uL reactions 

containing 1X PCR buffer (10mM Tris pH8.8, 0.1% Triton X-100, 50mM KCl, 

0.16mg/ml BSA), 3.5mM MgCl2, 0.2mM each dNTPs, 2uM primers, 0.12U Taq 

and 2.5μl template DNA (extracted using the QIAamp DNA mini kit (Qiagen, 

Valencia, CA)). Amplification protocol included 35 cycles of 94°C for 15s, 59°C 

for 30s, and 72°C for 45s. Products were visualized on an ABI3730 capillary 

sequencer and genotyped using GeneMapper® with GS500-TAMRA as the size 

standard (Applied Biosystems, Foster City, CA).  

Of the 14 loci that amplified successfully in three Dermacentor species, 11 

were polymorphic in D. albipictus and D. andersoni, 12 in D. variabilis (Table 2-

2). All loci were polymorphic in at least one species. The allele size ranges of 

each loci differed slightly with overlap between species. The number of alleles 

per locus ranged from 1 to 13 for D. albipictus, 1 to 15 for D. andersoni and 1 to 

11 for D. variabilis, averaging at 4.07, 4.57, and 5.21, respectively. Loci 

developed from EST contigs tended to have fewer unique alleles and narrower 

allele size ranges compared to those developed from screening genomic DNA 

(Table 2-2). This is likely because ESTs are generally evolutionarily conserved 

regions of the genome and less prone to uncorrected slippage errors during DNA 

replication (Kelkar et al. 2010). 

Relevant genetic diversity statistics for 11 polymorphic microsatellite loci in 

D. albipictus were obtained using Excel Microsatellite Toolkit (Park 2001) (Table 

2-2). Expected and observed heterozygosity for polymorphic loci ranged from 

0.369 to 0.889 (averaging 0.623) and 0.294 to 0.824 (averaging 0.518) 

respectively.  

Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium tests were 

performed in Genepop 4.0.1 (Raymond and Rousset 1995, Rousset 2008). 
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Linkage disequilibrium tests revealed no significantly linked loci after applying 

Bonferroni correction. HWE analyses revealed significant heterozygote 

deficiencies in loci 6F and 3B after Bonferroni correction, but only locus 6F was 

significantly out of HWE. This may be due to the Wahlund effect, in which the 

presence of subpopulation structure may result in decreased heterozygosity. 

Compared to most other Dermacentor ticks D. albipictus has an uncommon one-

host life cycle (Samuel 2004) that may increase chances of inbreeding. However, 

since most loci were not significantly out of HWE, this lack of conformity to 

HWE is more likely due to null alleles (whereby mutations on the primer 

annealing site result in unsuccessful amplification of the allele). 

MICROCHECKER (van Oosterhout et al. 2004) identified both loci 6F and 3B as 

potentially having null alleles due to excess homozygosity. 

Although not all 14 microsatellite loci were polymorphic or in HWE, they 

are still potentially informative. Differences in size ranges between species are 

potentially useful in delimiting species boundaries (Lumley and Sperling 2011). 

Loci that are monomorphic in one species may be polymorphic in another. 

Furthermore, the validation panel in this study is a limited representation of the 

species in North America. Monomorphic loci in this panel may not remain so 

once genotyped across a wider geographical range (Jiang et al. 2011). Therefore, 

all 14 loci are useful markers and will be included in future studies on D. 

albipictus species boundaries and genetic diversity across North America (Leo et 

al. 2010). 
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Table 2-1. Genbank accession numbers of sequences used to develop the 14 
microsatellite loci. Sources for all sequences are listed. 

 

Microsatellite  
Loci Genbank Accession Numbers Source 

3B 
 

JF749832 Previously unpublished 

6F 
 

JF749835 Previously unpublished 

3-5E 
 

JF749834 Previously unpublished 

162 
 

JF749833 Previously unpublished 

est-068 
 

EX744344, EX744141 Anderson et al. 2008 

est-102 
 

EZ532493, EZ539996, EZ524700, 
EZ533776, EZ532354, EZ524833 

Jaworski et al. 2010 

est-103 
 

EZ539968, EZ529487, EZ524744 Jaworski et al. 2010 

est-120 
 

EZ532141, EZ524558, EZ540066 Jaworski et al. 2010 

daest-017 
 

EG364140, EG363695, EG364259, 
EG363924, EG36429 

Alarcon-Chaidez et al. 2007  

daest-135A 
 

EG363646, EG363364, EG363985 Alarcon-Chaidez et al. 2007  

daest-135B 
 

EG363646, EG363364, EG363985 Alarcon-Chaidez et al. 2007  

daest-212 
 

EG364090, EG363932, EG363408 Alarcon-Chaidez et al. 2007  

DV-28 
 

EF545257 Dharmarajan et al. 2009 

DV-31 
 

EF545250 Dharmarajan et al. 2009 
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CHAPTER THREE 

Extensive sampling and additional genetic markers confirm Dermacentor 

albipictus (Acari: Ixodidae) as a single species 

Introduction 

Implementation of effective targeted pest control requires quick, reliable 

identification of pest species (Rosen 1986, Ball and Armstrong 2008). 

Unfortunately, identifications based on morphology are not always reliable due to 

the presence of cryptic species (Bickford et al. 2007). Furthermore, species 

identification based on morphology is often dependent on a variety of factors 

including the investigator’s familiarity with the organism, specimen quality, and 

the life stage being identified (Hebert et al. 2003). Examination of parasite 

biology and behaviour (geographical distribution, host exploited, varying 

pheromone-induced responses, pest phenology, and symbiont presence) may 

provide alternate methods to pest identification (e.g. spruce budworm complex: 

Lumley and Sperling 2011). However, these alternatives are applicable only if the 

traits can be definitively associated with the species. In recent years, DNA 

sequencing has become indispensible for efficient delimitation and identification 

of important medical and agricultural pests (McManus and Bowles 1996, Gasser 

1999, Armstrong and Ball 2005).  

Using molecular techniques to identify pest species allows us to overcome 

problems with specimen quality and size, and may potentially differentiate cryptic 

species. The latter is particularly important for identifying closely related and 

morphologically similar organisms that exhibit varying efficiency in causing or 

transmitting diseases (e.g. Maingon et al. 2008, Estrada-Peña et al. 2009). 

However, caution must be exercised when using a single molecular marker to 

delimit and identify pest species. Limited knowledge on intra-specific genetic 

variation (Rubinoff et al. 2006, Ekrem et al. 2007, Galtier et al. 2009) can 

potentially lead to erroneous delimitation (Song et al. 2008, Sperling and Roe 

2009) and misidentification of pest species, which will in turn hinder monitoring 
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and control efforts (e.g. Meier et al. 2006). Extensive sampling across a species’ 

geographical range and genome allows us to account for as much intra-specific 

genetic diversity as possible (Elias et al. 2007). Such genetic information can be 

applied in combination with other identification methods to delimit and identify 

pest species via an integrative approach (Wiens 2007, Schlick-Steiner et al. 2010). 

The winter tick, Dermacentor albipictus (Packard), is an important 

veterinary parasite in North America. It is associated with severe pathology in its 

ungulate hosts (McLaughlin and Addison 1986, Glines and Samuel 1989, 

Anderson 2002, Samuel 2004) and is known to transmit anaplasmosis (Aubry and 

Geale 2011). The winter tick was originally described as two distinct species 

before observations on its ecology, life history, and hybridisation experiments 

resulted in both species being synonymised under D. albipictus (Cooley 1938, 

Ernst and Gladney 1975). However, recent genetic studies on D. albipictus 

revealed that this obligate ectoparasite exhibits extensive mitochondrial variation 

that suggested the presence of a species complex (Crosbie et al. 1998, Leo et al. 

2010). However, tick specimens in these studies either consisted of small sample 

sizes, or were collected within a limited geographical region. This limited 

sampling decreases the potential overall coverage of intra-specific genetic 

diversity in D. albipictus and may restrict our understanding of and our ability to 

delimit its species boundaries. 

In this study, my goal is to re-examine the species boundaries of D. 

albipictus by increasing both genomic and geographical sampling of genetic 

diversity in the species. I sampled extensively across North America and used 

both sequence and microsatellite markers. Species boundaries of D. albipictus 

relative to two other partially sympatric Dermacentor species were determined 

based on congruence between molecular markers and other species traits (e.g. tick 

phenology, collection localities, host animals, and symbiont presence/absence) 

(Hillis 1987, Jackson et al. 2002, Rissler and Apodaca 2007). Effects of host 

species and geographical locality on tick genetic variation were further 

investigated in Chapter 4. 
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Material and Methods 

Specimens and DNA Extraction 

Dermacentor specimens were collected by collaborators from various 

localities in North America (Figure 3-1) and specimens were identified to species 

based on morphology (Yunker et al. 1986). Of the 649 tick specimens collected, 

49 were identified as Dermacentor variabilis (Say), 45 as D. andersoni Stiles, and 

555 as D. albipictus (Packard). All specimens were stored in 95% ethanol at room 

temperature or -20°C. Specimens were cut longitudinally, slightly off the midline 

using sterilized razor blades. The larger sections were stored as vouchers in 95% 

EtOH at -20 ˚C, while smaller sections were ground in buffer solution using 

autoclaved pestles. DNA was extracted using QIAamp DNA mini kits (Qiagen, 

Valencia, CA). Voucher specimens are deposited in the E. H. Strickland 

Entomological Museum (University of Alberta, Edmonton, AB, Canada). 

Sequencing and Genotyping 

I sequenced regions of several genetic markers: mitochondrial 16S 

ribosomal RNA (16SrRNA) and cytochrome oxidase I (COI), and nuclear internal 

transcribed spacer 2 (ITS-2). COI has been proposed as the standard marker for 

species delimitation in animals (Hebert et al. 2003). ITS-2 and 16srRNA have 

previously been used in studies on Dermacentor phylogeny (Zahler et al. 1995, 

Zahler & Gothe 1997, Crosbie et al. 1998). Primer sequences and annealing 

temperatures used to amplify and sequence these markers are summarised in 

Table 3-1. All polymerase chain reactions were performed in 20µL reactions 

consisting of millipore water, 1X PCR buffer (containing 15µM MgCl2), 2.5mM 

MgCl2, 0.25mM of each dNTPs, 0.1µM forward primer, 0.1µM reverse primer, 

0.125U/µL Taq polymerase, and 2.5µL of DNA template. Sequence contigs were 

created using SeqMan Pro (Lasergene® package, DNASTAR, Madison, WI) and 

sequence alignment was performed using Mesquite (Maddison and Maddison 
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2010) and CLUSTALW v.2.0.12 (Larkin et al. 2007) under default parameters. 

Sequence alignments were then assessed by eye in TextWrangler 

(http://www.barebones.com/products/textwrangler) and manually aligned if 

necessary. As both COI and 16SrRNA are mitochondrial markers, sequences from 

both markers were concatenated for additional analyses. 

Fourteen microsatellite loci (Leo et al. 2011) were amplified for all 

Dermacentor specimens. Allele amplification was performed as described in Leo 

et al. (2011). Amplified products were diluted 1.5 in 10, co-loaded, and visualized 

on the ABI3730 capillary sequencer (Applied Biosystems, Foster City, CA), sized 

using GS500-TAMRA size standard (Applied Biosystems, Foster City, CA), and 

genotyped using GeneMapper® (Applied Biosystems, Foster City, CA).  

Phylogenetic Analyses of Sequence Data 

Maximum parsimony (MP) trees were obtained for all datasets using 

heuristic search strategies in PAUP* ver. 4.0b10 [Altivec] (Swofford 2002) with 

1000 replicates, random sequence addition and TBR branch swapping routine. All 

characters were weighted equally and unordered (Fitch 1971). Branch supports 

were obtained via bootstrapping analyses performed in PAUP* with 1000 

replicates using heuristic search strategies, simple sequence addition, and the TBR 

branch swapping routine. 

The best evolution models and parameters for all datasets were determined 

via the Akaike Information Criterion (AIC) in MrModelTest ver. 2 (Nylander 

2004) (Table 3-2) and applied in both maximum likelihood and Bayesian analyses.  

Maximum likelihood (ML) analyses were performed in the program 

GARLi ver. 0.96b8 (Genetic Algorithm for Rapid Likelihood Inference) (Zwickl 

2006) using 2,000,000 cycles for each sequence dataset. The best trees determined 

by GARLi were retained for each dataset and branch support values were 

obtained via bootstrapping with 1000 replicates in GARLi. 
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Bayesian analyses were performed in MrBayes ver.3.1.2 (Huelsenbeck 

and Ronquist 2001, Ronquist and Huelsenbeck 2003). All Bayesian analyses were 

performed with two simultaneous runs, each with four chains (one heated and 

three cold), and using default temperatures. All analyses were run for 2,000,000 

cycles, with sampling every 500 generations, and a final burn-in of 1% (by which 

point stationarity had been achieved). Analyses were considered converged if the 

average standard deviation of split frequencies is less than 0.05 and when 

potential scale reduction factor (PSRF) values approached 1.00.  

Analyses of Microsatellite Data 

Microsatellite data from all specimens were analysed in structure ver. 2.3 

(Pritchard et al. 2000) to determine the most likely number of species present that 

can be inferred from the microsatellite data. Structure is generally used to resolve 

genetic structure within species, but has also been used to study and delimit 

species boundaries in several species complexes (e.g. Isenegger et al. 2008, 

Pinzón and LaJeunesse 2011, Lumley and Sperling 2011). Preliminary clustering 

analysis was performed on structure using the no admixture ancestral model and 

the independent allele frequency model. Ten iterations for each number of species 

(k) set from 1 to 10 was analyzed with MCMC running for 100,000 generations 

and initial burnin of 10,000 generations. The most likely k-value was determined 

using the method described by Evanno et al. (2005), after which a more thorough 

run was performed with an initial burnin of 50,000 generations and 500,000 

subsequent MCMC generations with k defined.  

Genetic Differences between and within Each Dermacentor Species 

 To investigate the amount of genetic differentiation between and within 

each tick species, I performed independent AMOVA analyses on each molecular 

dataset (COI, 16SrRNA, concatenated mtDNA sequences, ITS-2, and 

microsatellite) in Arlequin ver 3.5 (Excoffier and Lischer 2010). Pairwise 

comparisons and exact tests of differentiation were computed with 100 

permutations each using the distance method.  
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Comparing Variation between Molecular Markers 

Variance partitioning analyses based on inferred mtDNA lineages, ITS-2 

lineages, and microsatellite clusters were performed on all datasets as an indirect 

way of investigating if lineages/clusters inferred from another dataset could 

significantly explain observed variation in the markers-of-interest. For example, 

in order to investigate whether the distinct microsatellite clusters could be 

supported by COI data, I sorted COI sequences into groups that corresponded 

with microsatellite clusters determined by the structure program. If the variation 

in COI sequences corresponded with the variation in microsatellite data, I 

expected to observe significantly high variance percentage values (p-value < 0.05). 

Variance partitioning analyses were performed twice: the first included all three 

species of Dermacentor ticks in order to determine whether all molecular markers 

agreed on the species boundaries of D. albipictus, D. andersoni, and D. variabilis. 

The second included only D. albipictus specimens and was performed to examine 

whether different markers revealed corresponding genetic variation within D. 

albipictus. All analyses were performed in Arlequin using standard computations 

and 1000 permutations. 

Other Traits 

 I further investigated the species boundaries of D. albipictus using traits 

such as tick phenology, host species, collection localities, and endosymbiont 

presence. Deviation from known winter tick phenology and any associations 

between tick genetic variation and host animal or associated endosymbionts may 

be indicative of a species complex or a speciation event in progress (McGovern 

and Hellberg 2003, Kuhlmann et al. 2007). Host animals that were examined 

include moose (Alces alces (Linnaeus)), elk (Cervus elaphus canadensis 

(Erxleben)), horses (Equus ferus caballus Linnaeus), mule deer (Odocoileus 

hemionus (Rafinesque)), and white-tailed deer (Odocoileus virginianus 

(Zimmermann)). Tick collection localities were included in the analyses to survey 

the effects of geographically associated variation on observed genetic variation. 
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Primers and amplification protocols that were used to investigate the 

presence of Wolbachia spp. and Francisella-like endosymbionts (FLEs) are as 

described on the Wolbachia MLST website (Baldo et al. 2006) and in Scoles 

(2004) respectively. Wolbachia spp. is a known reproductive parasite that can 

induce reproductive isolation within host species (Ahantarig and Kittayapong 

2011). FLEs are endosymbionts of ticks (Scoles 2004) and may be potentially 

useful for delimiting Dermacentor species (Leo et al. 2010, Dergousoff and 

Chilton 2011). Variance partitioning analyses were performed using the AMOVA 

function in Arlequin to investigate which variable (host animal, collection region - 

as demarcated in Figure 3-1, or endosymbiont presence) best accounts for the 

genetic variation observed in these ticks.  

 

Results 

mtDNA sequences 

Results from MP (tree score= 826), ML (Ln likelihood = -5519.44), and 

Bayesian inference analyses on a 658bp region of the COI gene are summarised 

on a maximum likelihood tree (Figure 3-2). COI sequences successfully delimited 

both D. variabilis and D. andersoni as distinct and strongly monophyletic. The 

corrected average amount of nucleotide differences within D. variabilis and D. 

andersoni were 1.263% and 1.161% respectively. There was substantial genetic 

differentiation between D. andersoni and D. variabilis COI sequences (6.492%). 

On the other hand, COI sequences revealed the presence of two well supported 

lineages in the winter tick (Figure 3-2). The corrected average amount of 

nucleotide difference between both D. albipictus lineages was 6.294%, with an 

average of 0.472% within Lineage 1, and 0.514% within Lineage 2. There was 

also a significantly large amount of genetic differentiation between the two D. 

albipictus lineages based on FST calculations (Table 3-3). Both COI lineages were 

also significantly different from D. andersoni and D. variabilis (Table 3-3). 
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Results from phylogenetic analyses (MP tree score = 468, ML Ln 

likelihood = -2676.43) of a 495bp region of the 16SrRNA gene were similar to 

that from COI and are summarised in Figure 3-3. D. andersoni and D. variabilis 

were clearly delimited as monophyletic and strongly supported (Figure 3-3) with 

a corrected average nucleotide difference of 0.894% within D. variabilis, and 

0.224% within D. andersoni. Both D. andersoni and D. variabilis were 

significantly different from each other based on FST –values (Table 3-3), with a 

corrected average sequence difference of 3.167%. D. albipictus once again 

exhibited the presence of two distinct lineages (Figure 3-3; Crosbie et al. 1998, 

Leo et al. 2011). There was significant genetic variation between both lineages 

(Table 3-3), with a corrected average sequence difference of 2.501% (0.436% 

within Lineage 1, 0.649% within Lineage 2). There was significant genetic 

differentiation between 16SrRNA lineages and both D. andersoni and D. 

variabilis (Table 3-3). 

Concatenated COI and 16SrRNA sequences revealed D. albipictus to be 

monophyletic, albeit with weak bootstrap support values (MP tree score = 796, 

ML Ln likelihood = -5856.97). The two lineages were still present and strongly 

supported (Figure 3-4). AMOVA analyses and exact tests of differentiation of the 

concatenated mtDNA sequences revealed little nucleotide variation within D. 

albipictus lineages (average corrected nucleotide variation in Lineage 1= 0.806%; 

Lineage 2= 0.734%), D. andersoni (0.636%), and D. variabilis (1.328%). D. 

andersoni and D. variabilis were genetically different from each other (Table 3-3) 

(~5.428%). Based on FST calculations, mtDNA lineages in D. albipictus exhibited 

significant genetic differences between each other, against D. andersoni and 

against D. variabilis (Table 3-3). 

Phylogenetic analyses (MP tree score = 182, ML Ln likelihood = -1556.15) 

on a 495 bp region of ITS-2 gave a topology in which all three Dermacentor 

species were strongly monophyletic (bootstrap support values >70). There were 

little variation among individuals within species (Figure 3-5; corrected average 

sequence difference within species: D. albipictus = 0.022%, D. andersoni = 
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0.368%, D. variabilis = 0.361%). All three species of Dermacentor ticks 

exhibited substantial genetic difference between species (D. albipictus vs. D. 

andersoni = 1.665%; D. albipictus vs. D. variabilis = 2.331%; D. andersoni vs. D. 

variabilis = 2.076%) and these differences were uniformly significant based on 

FST calculations (Table 3-3).  

Microsatellite loci 

All 14 loci were polymorphic for D. albipictus (Table 3-4), reflecting the 

fact that these loci were chosen because they exhibited variation within D. 

albipictus (Chapter 2, Leo et al. 2011). Of the 14 loci, 3 were monomorphic for D. 

andersoni, and 2 were monomorphic for D. variabilis (Table 3-4). An average of 

15.79 alleles per locus was obtained for D. albipictus, 5.43 for D. andersoni, and 

7.21 for D. variabilis. Size ranges of alleles for all 14 loci differed slightly 

between each species with substantial overlap (Table 3-4). Results from structure 

analyses clustered the three species of Dermacentor ticks into five genetic groups 

(Ln probability= -13953.3) (Figure 3-6A). Both D. variabilis and D. andersoni 

individuals were clustered as discrete groups (Figure 3-6A) that were significantly 

different genetically (Table 3-3). On the other hand, D. albipictus specimens were 

divided into three clusters (Figure 3-6A), all of which exhibited significant 

genetic differences among themselves based on FST calculations (Table 3-3). 

Genetic differences among D. albipictus clusters were less than those observed 

between tick species (Table 3-3). 

Agreement between molecular markers 

 Variance partition analyses revealed varying degrees of agreement 

between molecular markers when examined at the species level and within D. 

albipictus alone (Table 3-5). When all three Dermacentor species were included 

in the analyses, mitochondrial lineages significantly explained 27.40% of the 

variation observed in microsatellite data and 91.53% of sequence variation in ITS-

2 sequences (Table 3-5). ITS-2 species lineages significantly explained the 

observed variation in all mitochondrial datasets (43.41 to 70.91%, Table 3-5). 
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ITS-2 species lineages also accounted for 34.89% of the variation observed in 

microsatellite data (Table 3-5). Microsatellite clusters significantly explained 

87.41% of the variation in ITS-2 sequences, as well as the variation in 

mitochondrial sequences (30.94 to 53.44%, Table 3-5).  

 The two D. albipictus mtDNA lineages failed to significantly account for 

variation observed in D. albipictus microsatellite data and ITS-2 sequences (Table 

3-5). On the other hand, microsatellite clusters significantly explain small 

amounts (1.60 – 6.87%) of the variation observed in both mtDNA and ITS-2 

sequences (Table 3-5). I did not analyse the effect of ITS-2 lineages on 

mitochondrial markers and microsatellite data as there was only one ITS-2 lineage 

in D. albipictus. 

Other species traits 

 According to collection records, the majority of winter ticks sampled were 

adults (91.51%), with larvae (2.39%), nymphs (3.98%), and eggs (2.12%) making 

up smaller proportions. Adult winter ticks were collected primarily from January 

to May, whereas eggs, larvae, and nymphs were collected in May, October, and 

from February to March respectively. Collection dates for all winter tick 

specimens, regardless of life stages, fell within previously established seasonality 

(Samuel 2004). 

Larval, nymphal, and adult winter ticks were collected from elk (9.02%), 

moose (42.35%), horses (4.12%), white-tailed deer (5.49%), and mule deer 

(39.02%). Variance analyses revealed that the species of the host animal being 

exploited did not significantly account for variation observed in COI (% var. = 

10.81, p-value = 0.403), 16SrRNA (% var. = 0.00, p-value = 0.840) or ITS-2 (% 

var. = 21.61, p-value = 0.095) sequences. However, host animals did significantly 

account for some of the variation observed in the microsatellite data (% var. = 

7.37, p-value = 0.000) (see Figure 3-6C) and was further investigated in Chapter 4. 
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Wolbachia sp. was not detected in any D. albipictus specimens. However, 

of the 390 winter ticks tested, 70.77% were positive for FLE. Once again, 

variance analyses revealed that FLE presence/absence did not significantly 

account for variation observed in mtDNA or nuclear sequences (COI: % var. = 

0.64, p-value = 0.181; 16SrRNA: % var. = 0.78, p-value = 0.210; ITS-2: % var. = 

-0.43, p-value = 0.547). However, it did significantly account for a very small 

amount (0.61%) of variation observed in microsatellite data (p-value = 0.010). 

Collection locality did not have a significant association with observed 

mtDNA (COI: % var. = 10.01, p-value = 0.194; 16SrRNA: % var. = 10.54, p-

value = 0.352) and ITS-2 variation (% var. = 2.59, p-value = 0.077). It did, 

however, account for a significant amount of the variation observed in 

microsatellite data (% var. = 10.04, p-value = 0.007) (see Figure 3-6D). The effect 

of geographical locality on winter tick genetic diversity was examined in greater 

detail in Chapter 4. 

 

Discussion 

Species boundaries of D. albipictus 

Studies on D. albipictus life history, geographical distribution, and biology 

provided ample evidence supporting D. albipictus as an evolutionary, ecological, 

and reproductively isolated species under de Queiroz’s (2007) unified species 

concept (Hooker et al. 1912, Cooley 1938, Samuel 2004). Results from this 

molecular study using two mitochondrial, one nuclear, and 14 microsatellite 

markers provided additional genealogical evidence supporting D. albipictus 

species status as distinct from D. andersoni and D. variabilis. All molecular 

markers delimited D. albipictus, D. andersoni, and D. variabilis with a high 

degree of agreement and there was little room for debate on the species 

boundaries among the three tick species. D. albipictus is therefore a discrete 
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species that maintains its genomic integrity with no substantial gene flow across 

species boundaries to D. andersoni and D. variabilis (Sperling 2003).  

On the other hand, conflicting patterns of variation between molecular 

markers revealed complex genetic diversity within D. albipictus. While ITS-2 

sequences revealed little to no variation among D. albipictus specimens (Figure 3-

5), phylogenetic analyses on mtDNA indicated the presence of two lineages 

within D. albipictus, both of which were closely related to another one-host 

Dermacentor tick - D. nitens Neumann (Hebert et al. 2003) (Figures 3-2, 3-3, 3-4). 

Conversely, analyses on microsatellite markers suggested that D. albipictus 

consists of three distinct clusters (Roques et al. 2002) (Figure 3-6A). However, if 

D. albipictus truly consists of a species complex, I should obtain correspondence 

among lineages/clusters from the different molecular markers (Harr et al. 1998, 

Dettman et al. 2006), which was not the case (e.g. Figure 3-6B). This lack of 

agreement between different molecular markers indicates that while there is 

extensive and structured genetic diversity in D. albipictus, there is currently 

insufficient genealogical evidence to justify formally recognising components of a 

species complex.  

Observations on winter tick phenology and comparisons between genetic 

variation and other traits (collection localities, hosts exploited, and endosymbiont) 

also revealed little evidence for the presence of cryptic species (de Queiroz 2007, 

Butler 2008). No winter ticks life stages, regardless of geographical locality, were 

collected outside of their previously established seasonality (Samuel 2004) and 

there was no significant correlation between sequence variation and species traits 

(Table 3-5).There were some associations between microsatellite variation and 

species traits, but these were limited (<12%) and may potentially be explained by 

the inherent evolutionary dynamics of microsatellite markers (Schlötterer 2000) 

as discussed below. 

Extensive genetic variation in D. albipictus 
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There are many factors that may explain the presence of extensive intra-

specific genetic variation in D. albipictus. Leo et al. (2010) discussed the roles 

hybridization, introgression, and retained ancestral polymorphism might have had 

in causing the variation observed in mtDNA. Varying mutation rates in different 

molecular markers may also account for the variation observed in each molecular 

marker (Brown et al. 1982, Moriyama and Powell 1997). However, results from 

this study suggested that biological or environmental factors may account for the 

extensive variation I observed in D. albipictus microsatellite data. 

Results from variance partitioning analyses suggested that extensive 

genetic variation observed in D. albipictus microsatellite markers could be 

associated with environmentally correlated variables such as geographical 

locations and host preference (Figures 3-6B and C). As one-host ticks, D. 

albipictus dispersal is strongly dependent on host movement (Samuel 2004). 

Similarly, the intimate relationship between ticks and their hosts can promote 

evolution of host specificity (McCoy et al. 2001). With their rapid mutation rates, 

high levels of polymorphisms and selective neutrality (Schlötterer 2000, Kelkar et 

al. 2010), microsatellites will be more sensitive to subtle differences between tick 

populations. Knowledge on any associations between variation in tick 

microsatellite markers and factors such as endosymbiont diversity, ecoregions, 

climate conditions or host animals will be potentially useful for risk assessment of 

tick populations and for tracking sources of newly established tick populations in 

previously unoccupied habitats. 

Conclusion 

The objective of this study was to survey a greater proportion of the intra-

specific genetic variation present in the winter tick, through extensive genomic 

and geographical sampling, in order to re-examine the species boundaries of 

Dermacentor albipictus. Based on the results of this study, I arrived at the same 

conclusion as Leo et al. (2010): D. albipictus is a genealogically distinct species 

and does not consist of a species complex. However, my expanded genomic and 
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geographical sampling scheme revealed the existence of large amounts of intra-

specific genetic variation in each molecular marker that are not congruent with 

each other and have no current explanation. This variation may potentially be 

associated with ecological and environmental variables that I have not explored in 

this study. It will be instructive to further explore these associations, with the aim 

of providing useful information for more efficient design, implementation and 

monitoring of tick control and wildlife management policies. 
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Table 3-2. Summary of the models of evolution and parameters obtained from the 
Akaike Information Criterion (AIC) in MrModelTest ver. 2 (Nylander, 2004) for 
cytochrome oxidase I (COI), 16S ribosomal RNA (16SrRNA), concatenated 
mtDNA and internal transcribed spacer 2 (ITS-2) sequences. These evolutionary 
models and parameters were used in the model-based maximum likelihood and 
Bayesian analyses. 
 

 COI 16SrRNA Concatenated 
mtDNA ITS-2 

Model of Evolution GTR+I+Γ HKY+Γ HKY+I+Γ GTR+I 
-ln Likelihood 5656.01 2760.45 6018.06 1562.29 
K 10 5 6 9 
AIC 11332.02 5530.89 12048.12 3142.58 

     
Base Frequencies     
A 0.3167 0.3607 0.3343 0.2357 
C 0.1714 0.1327 0.1527 0.2787 
G 0.1281 0.1364 0.1139 0.3131 
T 0.3838 0.3703 0.3991 0.1725 

     
Substitution Model     
Ti/Tv ratio - 0.9799 1.5101 - 

     
Substitution Rates     
A-C 1.0956 - - 1.2643 
A-G 4.6428 - - 2.3988 
A-T 1.2503 - - 3.2511 
C-G 1.8478 - - 0.9467 
C-T 3.8803 - - 4.4298 
G-T 1.0000 - - 1.0000 

     
Among-site Rate 
Variation     
Proportion of 
invariable sites (I) 0.3231 0.0000 0.4509 0.4340 

Variable sites (Γ)  
(ɣ-distribution) 0.7739 0.7542 0.7511 Equal rates for 

all sites 
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Table 3-3. Pairwise comparisons of genetic differences between 
lineages/clusters/species based on phylogenetic results inferred from COI, 
16SrRNA, ITS-2 sequences and 14 microsatellite markers. Statistically significant 
p-values are italicised and underlined. 
Markers   FST p-value 
COI     
 Lineage 1 Lineage 2 0.925 0.000 
 Lineage 1  D. andersoni 0.885 0.000 
 Lineage 1 D. variabilis 0.887 0.000 
 Lineage 2 D. andersoni 0.912 0.000 
 Lineage 2 D. variabilis 0.920 0.000 
 D. variabilis D. variabilis 0.842 0.000 
16SrRNA     
 Lineage 1 Lineage 2 0.806 0.000 
 Lineage 1  D. andersoni 0.916 0.000 
 Lineage 1 D. variabilis 0.853 0.000 
 Lineage 2 D. andersoni 0.839 0.000 
 Lineage 2 D. variabilis 0.787 0.000 
 D. variabilis D. variabilis 0.820 0.000 
Concatenated mtDNA     
 Lineage 1 Lineage 2 0.863 0.000 
 Lineage 1  D. andersoni 0.876 0.000 
 Lineage 1 D. variabilis 0.831 0.000 
 Lineage 2 D. andersoni 0.875 0.000 
 Lineage 2 D. variabilis 0.858 0.000 
 D. variabilis D. variabilis 0.831 0.000 
Nuclear ITS-2     
 D. albipictus D. andersoni 0.971 0.000 
 D. albipictus D. variabilis 0.973 0.000 
 D. andersoni D. variabilis 0.851 0.000 
Microsatellite     
 Cluster 1 Cluster 2 0.070 0.000 
 Cluster 1 Cluster 3 0.112 0.000 
 Cluster 1 D. andersoni 0.320 0.000 
 Cluster 1 D. variabilis 0.381 0.000 
 Cluster 2 Cluster 3 0.068 0.000 
 Cluster 2 D. andersoni 0.323 0.000 
 Cluster 2 D. variabilis 0.376 0.000 
 Cluster 3 D. andersoni 0.262 0.000 
 Cluster 3 D. variabilis 0.312 0.000 
 D. andersoni D. variabilis 0.311 0.000 
 

40



Table 3-4. Size ranges and number of alleles obtained for each of the 14 
microsatellite marker genotyped in D. albipictus, D. andersoni, and D. variabilis. 
The number in parenthesis following each size range indicates the number of 
alleles obtained for the locus in each species.  
 

Locus  D. albipictus 
size range 

D. andersoni 
size range 

D. variabilis 
size range 

3B  137-177  
(17) 

139-161 
(9) 

119-165 
(10) 

6F  129-255 
(38) 

137-259 
(16) 

145-261 
(20) 

5E  186-252  
(21) 

183-258 
(15) 

177-210 
(8) 

162  332-370  
(16) 

330-370 
(7) 

306-376 
(12) 

est-068  166-205  
(6) 

202-205 
(2) 

202-208 
(3) 

est-102 166-187 
 (5) 

178 
(1) 

178 
(1) 

est-103 222-264 
(5) 

231 
(1) 

219-231 
(4) 

est-120 230-238 
 (4) 

235-237 
(2) 

226-244 
(4) 

daest-017  177-261  
(26) 

193-220 
(7) 

192-201 
(4) 

daest-135A  157-223  
(12) 

181-205 
(4) 

181-205 
(4) 

daest-135B 223-271 
 (5) 

235 
(1) 

223-250 
(7) 

daest-212 156-204 
(5) 

150-162 
(2) 

162 
(1) 

DV-28  166-240  
(21) 

200-212 
(3) 

200-386 
(13) 

DV-31  106-152  
(12) 

138-158 
(6) 

132-142 
(6) 
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Figure 3-1. Map of collection localities for D. albipictus (closed circles), D. 
andersoni (open square), and D. variabilis (crosses) specimens across North America. 
The approximate jurisdictional distribution of D. albipictus in Canada and the United 
States of America was established based on literature records and is indicated by the 
shaded region. Collection localities were classified into geographical regions as 
follows:  [1]  Yukon (Yu) =  Yukon Territory; [2] northern Alberta (nAB) =  Grande 
Prairie,  Peace River, Whitburn; [3] central Alberta (cAB) = Edmonton, Elk Island 
National Park; [4] eastern Alberta (eAB) = Oyen, Chauvin, Dillberry Lake Provincial 
Park; [5] southern Alberta (sAB) = Waterton region, Crowsnest Pass; [6] western US 
(wUS) = California, Idaho, Wyoming, Oklahoma; [7] northeastern US (neUS) = 
Minnesota, Michigan, New Hampshire. 

= Jurisdictions known for D. albipictus 

Legend 
= D. albipictus 
= D. variabilis 
= D. andersoni 

1 

2 

3 
4 

5 

6 

7 
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Figure 3-2. Maximum likelihood tree for all unique mitochondrial cytochrome 
oxidase I (COI) haplotypes found in Dermacentor albipictus, D. andersoni, and D. 
variabilis specimens. Maximum parsimony and maximum likelihood bootstrap values 
(MP/ML) are indicated above the branches. Bayesian inference support values are 
indicated below the branches. The information in parentheses indicates the number of 
specimens sequenced from each region. Regional codes are the same as those in 
Figure 3-1, with the addition of Saskatchewan (SK), Manitoba (MB), Nova Scotia 
(NS), and British Columbia (BC). The names of each unique haplotype in this figure 
correspond with those in Leo et al. 2010, with new haplotypes being labelled in 
increasing numerical order. 
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Figure 3-3. Maximum likelihood tree for all unique mitochondrial 16S ribosomal 
RNA (16SrRNA) haplotypes found in Dermacentor albipictus, D. andersoni, and D. 
variabilis specimens. Clade support, haplotype information in parentheses, and 
locality codes are the same as those in Figure 3-2. Haplotype names in this figure 
correspond with those in Figure 3-2 and Leo et al. 2010 (multiple 16SrRNA versions 
of a COI haplotype are differentiated by letters).  
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Following page:  
 
Figure 3-4. Maximum likelihood tree for the concatenated mitochondrial markers 
(COI and 16SrRNA) obtained from Dermacentor albipictus, D. andersoni, and D. 
variabilis specimens. Clade support, haplotype information in parentheses, and 
locality codes are the same as those in Figure 3-2. Haplotype names in this figure 
correspond with those in Figure 3-2 and Leo et al. 2010. 
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Figure 3-5. Maximum likelihood tree for all unique internal transcribed spacer 2 
(ITS-2) alleles sequenced from Dermacentor albipictus, D. andersoni, and D. 
variabilis specimens. Clade support, haplotype information in parentheses and 
locality codes are the same as those in Figure 3-2.  
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CHAPTER FOUR 

The role of host specificity versus geography in genetic differentiation 

between populations of the winter tick, Dermacentor albipictus (Acari: 

Ixodidae) 

Introduction 

Host specificity is a commonly studied aspect of host-parasite interactions. 

It represents the degree to which a parasite is restricted in its association with 

particular host species (Dick and Patterson 2007). A host specialist is a parasite 

whose host range is strongly limited to only one or a few closely related host 

species (Niogret et al. 2010). Conversely, a host generalist is a parasite that can 

feed on a broad range of suitable hosts that are available in its habitat (Niogret et 

al. 2010). The degree of specificity between parasites and their hosts can 

influence the establishment and sustainability of parasite populations in a region 

(Hoogstraal and Aeschlimann 1982, Dick and Patterson 2007). Increased 

understanding of degrees of host specificity in parasites will not only allow us to 

better understand the ecological and evolutionary aspects of host-parasite 

interaction, it can also serve as an important tool for efficient implementation of 

pest monitoring and control strategies (Stockwell and Leberg 2002).  

Host specificity, or the breadth of a parasite’s host range, depends on a 

series of ecological and behavioural factors that may influence both parasites and 

their hosts (Askew 1994, Shaw 1994, Sasal et al. 1999, Seppälä et al. 2008). 

Parasite dispersal capability, coupled with corresponding host ecology and 

behaviour, directly influences the number and abundance of potential host species 

that a parasite may encounter in a habitat (Jaenike 1990, McCoy et al. 2001, Dick 

and Patterson 2007). Parasites that have access to low numbers of potential host 

species are less likely to switch between hosts, leading to increased host 

specificity. This is especially so as parasites evolve mechanisms that allow them 

to more effectively parasitise the limited host choices available to them (e.g. 

overcoming specific host immune defences) (Jaenike 1990, Gandon and Van 
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Zandt1998, Lively and Dybdahl 2000). Given enough evolutionary time, host 

specialisation in combination with reproductive isolation can potentially result in 

parasite speciation (Bush 1994). 

In this study, I investigated host specificity in an important North 

American tick. Dermacentor albipictus (Packard) (also called the winter tick) is 

capable of causing extensive pathology and can potentially vector a variety of 

disease-causing organisms (McLaughlin and Addison 1986, Glines and Samuel 

1989, Anderson 2002). There has been no molecular studies investigating host 

preferences in D. albipictus, a species that commonly parasitise large ungulates 

such as moose (Alces alces (Linnaeus)), elk (Cervus elaphus canadensis 

(Erxleben)), mule deer (Odocoileus hemionus (Rafinesque)), white-tailed deer 

(Odocoileus virginianus Zimmermann), horses (Equus ferus caballus Linnaeus), 

cattle (Bos primigenius Bojanus), and mountain sheep (Ovis ammon (Linnaeus)) 

(Cooley 1938). On some occasions, this tick has also been found on humans 

(Homo sapiens Linnaeus), mountain lions (Puma concolor (Linnaeus)), and 

wolves (Canis lupus Linnaeus). Having such a taxonomically diverse range of 

potential host species is likely to impose a variety of selective pressures on the 

ticks, such as differential immune defences and host ecology. Additionally, as a 

one-host tick that spends most of its life cycle on a single host individual (Samuel 

2004), reproduction and dispersal in D. albipictus is limited and highly host-

dependent (Samuel 2004). If host populations have narrow geographical ranges 

that do not overlap with those of other potential host species, the winter tick’s 

access to novel host species will be severely limited. This could result in the 

parasite developing specific adaptations to host species available to them in a 

region (Gandon and Van Zandt 1998, Lively and Dybdahl 2000).  

Evolutionary change cannot occur without genetic variation. Host 

specialisation is usually caused or accompanied by corresponding changes in 

genes that allow more efficient parasitism of a particular host species (Frank 1993, 

Hamilton et al. 2005). Host-dependent mating coupled with limited parasite 

dispersal will further isolate parasite populations genetically. Host specificity in 
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parasites can therefore be studied as genetic divergences among tick populations 

collected from different host species (McCoy et al. 2001, Magalhães et al. 2007). 

Here, we used 14 microsatellite loci to examine genetic variation among ticks 

collected from elk, moose, mule deer, white-tailed deer, and horses across North 

America (Leo et al. 2011). If winter ticks exhibit high degrees of host specificity, 

we expect to observe significant genetic divergence among ticks collected from 

different sympatric host species. This divergence should be more pronounced than 

that among tick populations collected from allopatric conspecific hosts (McCoy et 

al. 2001). We also conducted isolation-by distance analyses to account for the 

effect of geographical distance alone on the genetic structuring of these tick 

populations (Magalhães et al. 2007).  

Understanding the degree of host specificity and the presence of any 

geographically-associated genetic variation in D. albipictus will allow wildlife 

officials to assess the threats winter ticks may pose to potential hosts in a region 

and potentially determine origins of newly emerging tick populations. For 

example, there have been speculations that an emerging D. albipictus population 

in the Yukon Territory was either introduced into the region via elk translocation 

or the result of natural range expansion due to climate change (Yukon Fish and 

Game Association 2007, Environment Yukon 2011). Results from this study may 

potentially allow us to investigate the origin of this tick population in a previously 

naïve region as well as assess the threat it may pose to economically-important 

ungulates (e.g. moose) in the region. 

 

Material and Methods 

Specimen collection and DNA extraction 

Collaborators collected Dermacentor albipictus specimens from various 

localities in North America (see Figure 3-1 in Chapter 3). Ticks were collected 

from a variety of host animals, including elk (Cervus elaphus canadensis 
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(Erxleben)), horses (Equus ferus caballus Linnaeus), moose (Alces alces 

(Linnaeus)), mule deer (Odocoileus hemionus (Rafinesque), white-tailed deer 

(Odocoileus virginianus Zimmermann), and mountain goats (Oreamnos 

americanus (Blainville)). All ticks were first identified to species using the key by 

Yunker et al. (1986). Detailed collection information (locality and host animal) 

were recorded for analyses. Genomic DNA was extracted using the QIAamp 

DNA mini kit (Qiagen, Valencia, CA). Remaining sections of ticks were stored as 

vouchers in 95% ethanol at -20˚C in the E. H. Strickland Entomological Museum 

at the University of Alberta (Edmonton, Alberta, Canada). 

Microsatellite genotyping 

Fourteen microsatellite loci developed for D. albipictus (Leo et al. 2011) 

were amplified in all specimens. Allele amplification was performed as described 

in Leo et al. (2011). Amplified products were diluted 1.5 in 10 for visualization 

on the ABI3730 capillary sequencer (Applied Biosystems, Foster City, CA) using 

GS500-TAMRA (Applied Biosystems, Foster City, CA) as the size standard. All 

specimens were genotyped using the program GeneMapper® (Applied 

Biosystems, Foster City, CA).  

Analyses 

Only specimens (n = 493) with good information on collection locality 

and host association were used in the analyses. An average of 2.49 (ranging from 

1 to 14) specimens were sampled from each host individual. Winter ticks were 

sorted into populations based on host association and collection locality. In order 

ensure a reasonable sample of genetic variability, only populations containing 

more than five specimens were used in analyses. Tick populations collected from 

localities within 200km of each other were pooled, giving a final count of 14 

winter tick populations as listed in Table 4-1. Linkage disequilibrium and Hardy-

Weinberg equilibrium tests were performed for each population using GENEPOP 

ver. 4.1 (Raymond and Rousset 1995, Rousset 2008). The Excel Microsatellite 
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Toolkit (Park 2001) was used to obtain relevant gene diversity statistics for each 

population.  

Microsatellite data from all specimens were analysed in structure ver. 2.3 

(Pritchard et al. 2000). Preliminary clustering analysis was performed using the 

admixture ancestral model and correlated allele frequency model. Ten iterations 

for each k-value, set from 1 to 10, were analyzed with MCMC running for 

100,000 generations and initial burn-in of 10,000 generations. The most likely k-

value was determined using the method described by Evanno et al. (2005), after 

which a more thorough run was done with an initial burnin of 50,000 generations 

and 500,000 subsequent MCMC generations with k defined.  

Tick populations were further sorted into groups for analyses of genetic 

differentiation among each host species (e.g. the elk group contained EL_ABC, 

EL_ABS, and EL_YUK (see Table 4-1)), and among collection regions where a 

mixture of host species was present (e.g. central Alberta: EL_ABC, HO_ABC, 

and MO_ABC)). Average number of alleles and overall Nei’s gene diversities 

(Nei 1987) between groups were compared using Wilcoxon two-sample tests 

(Wilcoxon 1945) and two-sample T-tests. If host specificity was present, I 

expected to observe significant differences in allele counts or gene diversities 

among ticks collected from different hosts.  

Presence and amount of genetic structuring within each group of tick 

populations were estimated using two different methods. The first used Wright’s 

F-statistics (Wright 1951). Standard AMOVA, locus by locus AMOVA, and 

pairwise population comparisons were computed using the distance method with 

10,000 permutations each, using the program Arlequin ver 3.5 (Excoffier and 

Lischer 2010). Population differentiation within each group was also examined by 

looking at genotype distribution among tick populations. Tests of genotypic 

differentiation were carried out in GENEPOP using unbiased log-likelihood (G) 

based exact tests (Goudet et al. 1996). Analyses in GENEPOP were carried out 

using Markov chain Monte Carlo methods with 100,000 iterations each. 
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All 493 ticks, sorted based on their collection locality, were included in 

isolation-by-distance analyses. Pairwise FSTs for all collection localities were first 

obtained in Arlequin and subsequently regressed against estimated geographical 

distances “as the crow flies” between populations. Significance of isolation-by-

distance effects were investigated using a series of Mantel tests (Mantel 1967) 

performed in the program R ver. 2.13.2 (http://www.R-project.org) using the 

library package ‘ecodist’. Scatter-plots and trend-lines were also plotted in R. 

 

Results 

Genetic diversity among different populations of winter ticks 

Results from structure analyses grouped 493 winter ticks into three 

genetic clusters (-Ln P= 14487.96) which appeared to correspond more with 

collection locality than host species (Figures 4-1, 4-2). A bar-plot, with specimens 

sorted according to host animals and collection regions, revealed low degrees of 

association between microsatellite clusters and particular host species (Figure 4-1). 

Conversely, when genetic clusters were mapped to collection locality, they 

appeared to associate strongly with particular geographical regions: 1) western US, 

southern and central Alberta; 2) Yukon Territory, northern and central Alberta, 

and a little of Michigan; 3) northeastern US, eastern Alberta, and central Alberta 

(Figures 4-1, 4-2). Central Alberta is the only collection region where all three 

genetic clusters were present (Figure 4-2). 

Allele counts for winter tick populations ranged from 1 to 13 for those 

collected from elk, 1 to 11 for horses, 1 to 19 for moose, 1 to 14 for mule deer, 

and 1 to 10 for white-tailed deer. Average allele counts, gene diversity, and 

observed heterozygosity for each tick population are summarised in Table 4-2. 

Analyses using GENEPOP detected no linkage disequilibrium within or across 

tick populations. Two tick populations (MO_ABN and MO_WYO) showed 

significant deviations from Hardy-Weinberg equilibrium after Bonferroni 

66



correction (Table 4-2). These deviations suggested the presence of processes 

leading to non-random associations of alleles, such as local inbreeding, fine-

scaled structuring, or genetic bottlenecks (FIS-values > 0, Table 4-2). Significant 

isolation-by-distance effects were observed when all available tick specimens 

were included for analysis (r = 0.686, p-value = 0.000; R2 = 0.471, p-value = 

0.000) (Figure 4-3A).  

Variation within host association groups 

 Average allele numbers and gene diversities obtained from three 

populations of elk-parasitising ticks are summarised in Table 4-2. The overall 

average allele count in ticks collected from elk was 5.50 (±1.27) and overall gene 

diversity was 0.442 (±0.085). Genotypic tests (Combined test, χ2 = infinity, df = 

22, p-value = 0.0000) and F- statistics (Table 4-3) both indicated significant 

overall differentiation among populations of ticks collected from elk in different 

regions. Isolation-by-distance analysis revealed a weakly negative and statistically 

insignificant (r = -0.0485, p-value = 0.374; R2 = 0.00235, p-value = 0.960) 

correlation between population genetic differences and geographical distance 

(Figure 4-3B).  

 Overall average allele count and gene diversity obtained from tick 

populations on horses in central and southern Alberta were 4.71 (±1.02) and 0.421 

(±0.092) respectively (Table 4-2). Genotypic tests (Combined test, χ2 = 40.38, df 

= 18, p-value = 0.0019) and F-statistics (Table 4-3) both indicated significant 

overall differentiation between the two tick populations. Isolation-by-distance 

analysis using all available ticks collected from horses in three collection 

localities revealed a strongly negative relationship between tick genetic 

differences and geographical distances (r = -0.375, p-value = 0.667; R2 = 0.141, 

p-value = 1.000). However, the observed trend is statistically insignificant (Figure 

4-3C).  

 Average allele counts obtained from seven populations of ticks collected 

from moose are summarised in Table 4-2. The overall average allele count was 
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11.29 (±2.40) and average gene diversity was 0.434 (±0.088). Genotypic tests 

(Combined test, χ2 = infinity, df = 28, p-value = 0.0000) and FST calculations 

(Table 4-3) both indicated significant overall differentiations between ticks 

collected from different regions. Isolation-by-distance analyses revealed that as 

geographical distances increased, pairwise genetic differences increased between 

ticks collected from ten different localities. However, the relationship is not 

statistically significant (r = 0.572, p-value = 0.079, R2 = 0.328, p-value = 0.079) 

(Figure 4-3D). 

 The average allele count and gene diversity observed from the tick 

population collected from mule deer and white-tailed deer in eastern AB are 

presented in Table 4-2. No genotypic or F-statistics tests were performed on these 

population as ticks from both host species were collected within a single region. 

Isolation-by-distance analysis revealed that for ticks collected from mule and 

white-tailed deer, genetic differences between populations increased as 

geographical distances increased (mule deer = r 0.391, p-value = 0.195; R2 = 

0.153, p-value = 0.298; white-tailed deer: r= 0.544, p-value = 0.333; R2 = 0.296, 

p-value = 0.419) (Figures 4-3E and F). Both relationships were statistically 

insignificant. 

Overall variation among host species 

 Ticks collected from moose tended to exhibit significantly higher overall 

average number of alleles per locus compared to those collected from other hosts 

(Table 4-4). This is possibly due to the extensive number of ticks (n = 215) 

sampled from moose relative to other host species. There were no significant 

differences in average allele numbers observed in ticks collected from elk, horse, 

mule deer, and white-tailed deer (Table 4-4). Wilcoxon two-sampled analyses and 

t-tests revealed no significant differences in tick gene diversity among host 

species (Table 4-4). Furthermore, pairwise genetic differences between 

populations collected from the same host species were not significantly different 
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from those observed in populations collected from different host species 

(Wilcoxon two-sample test: n1 = 25, n2 = 66, W = 1274.5, p-value = 0.266). 

Variation between sympatric host species 

Analyses investigating genetic divergence between ticks from different 

sympatric host species were performed only on populations where multiple host 

species were present in the same region. Collection regions that contained mixed 

host species were central Alberta, southern Alberta, and eastern Alberta (Table 4-

1). 

Genotypic differentiation tests revealed no significant genetic differences 

between ticks collected from mule deer and white-tailed deer in eastern Alberta 

(Combined test, χ2 = 29.03, df = 22, p-value = 0.144). F-statistics also revealed no 

significant genetic differences between ticks collected from either deer species in 

the region (FST value = 0.007, p-value = 0.569) (Table 4-3). However, both 

genotypic tests and F-statistics performed on ticks collected from elk, horses, and 

moose in the central Alberta region revealed significant but moderate amounts of 

genetic differences among populations from different host species (Combined test, 

χ2 = infinity, df = 24, p-value = 0.000) (Table 3: FST value = 0.096, p-value = 

0.000). Similarly, analyses on tick populations collected from horses and elk from 

southern Alberta revealed significant moderate genetic differences in ticks 

collected from different host species (Combined test, χ2 = 105.76, df = 22, p-value 

= 0.000) (Table 4-3: FST value = 0.139, p-value = 0.000).  

Additional analyses where sufficient sampling was available (i.e. at least 

five ticks sampled per host individual) revealed no genetic structuring among 

ticks on each host individual in central and eastern Alberta (cAB: overall FST = -

0.0875, p- value = 0.882; eAB: overall FST = -0.0799, p- value = 0.965). There 

was also no genetic structuring of ticks among host individuals in eastern Alberta 

(overall FST < 0.000, p- value = 0.0000). On the other hand, there was 

significantly moderate genetic structuring of ticks among different host 

individuals in central Alberta (overall FST = 0.140, p- value = 0.0000).  
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Discussion 

 Host preference or specificity in arthropod pests can significantly 

influence conservation efforts and pest control strategies. Here, we investigated 

the degree of host specificity in a wildlife pest of North America (the winter tick - 

Dermacentor albipictus) using fourteen polymorphic and presumably selectively 

neutral microsatellite loci. Comparison of gene diversity between populations of 

winter tick revealed significantly high amounts of variation among ticks collected 

from conspecific hosts in neighbouring localities (Table 4-3). Conversely, 

although significant amounts of genetic divergence were observed among tick 

populations collected from different sympatric host species, these FST values were 

lower than those from conspecific hosts. Results from this study suggested that 

geography has a larger effect on winter tick genetic variation than host specificity. 

Low but significant variation in ticks from different sympatric hosts 

 The presence of low but significant structuring (Table 4-3: average FST ≈ 

0.080) among ticks collected from different sympatric host species in central and 

southern Alberta suggested that ticks might exhibit some host preference. 

However, the overall amount of genetic differences is lower than that observed 

between ticks collected from allopatric conspecific hosts (Table 4-3: average FST 

≈ 0.150). This implies that there may be other factors in the regions that may have 

contributed to the development of such genetic structuring. 

The presence of low but significant genetic divergence observed among 

host species in central and southern Alberta may be explained by restricted 

movement of farm horses kept in fenced private properties and elk populations 

maintained within an enclosed national park. Fine-scaled analyses, with limited 

sampling, revealed that ticks collected from mule and white-tailed deer in eastern 

Alberta exhibited no genetic structuring among host individuals. Conversely, ticks 

on elk and moose individuals in central Alberta exhibited significantly moderate 
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genetic structuring among host individuals. The presence of physical barriers to 

host and parasite dispersal may explain the presence of genetic structuring 

between tick populations on different host individuals in central Alberta, although 

more extensive sampling is necessary. Barriers to dispersal may also explain the 

observed genetic structuring in southern Alberta. 

Low amounts of specialisation in winter ticks? 

There are several factors that may explain the low degree of host 

specificity in D. albipictus including host migration behaviour and distribution, 

human-mediated translocation of host animals (and ticks) over large distances, 

and winter tick host seeking cues and behaviour. This factors acting in tandem, 

can significantly decrease selective pressures for developing host specificity 

(Daszak et al. 2000, Dick and Patterson 2007). 

Development of host specialisation is partially dependent on parasite 

dispersal, which is in turn dependent on host dispersal (McCoy et al. 2003). 

Ungulate hosts of winter ticks such as moose and elk are known to travel 

distances up to 150km annually in search of suitable grazing grounds, 

overwintering sites, and mates (Thomas and Irby 1990, Mauer 1998, Berger 2004, 

Nelson et al. 2004). Such extensive host dispersal can potentially weaken 

isolation-by distance effects between both host (Cullingham et al. 2010, 

Cullingham et al. 2011) and tick populations (Figure 4-3). Overlapping 

geographical distributions of winter tick hosts can also decrease the possibility of 

developing host specificity. In North America, moose, elk, mule deer, and white-

tailed deer have distributions in local habitats that may overlap to varying degrees. 

Winter ticks in these overlapping regions are therefore likely to be exposed to a 

larger number of potential host species than expected, which would decrease the 

possibility for host specialisation.  

In addition to host migratory behaviour and geographical distributions, 

human-mediated movement of potential winter tick hosts can overcome 

limitations of host and parasite dispersal (Storfer 1999, Stockwell and Leberg 
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2002). Privately owned horses can be transported over large geographical 

distances between properties. Similarly, ungulates such as elk are often 

translocated across North America as part of conservation efforts to replenish or 

reintroduce ungulates into areas where they had been extirpated (Sifton and 

Stephen 2002, Frair et al. 2010, Parks Canada 2010). If the animals were not 

thoroughly examined or treated for parasites before they were moved, populations 

of winter ticks carrying unique alleles may be unintentionally introduced into new 

regions, hence decreasing reproductive isolation and further suppressing 

development of host specificity (Daszak et al. 2000).  

Winter ticks rely on a series of cues when host seeking, such as body heat 

and carbon dioxide concentration. They also climb vegetations to specific heights 

that, more often than not, correspond to the torso heights of large ungulates 

(McPherson et al. 2000). Winter tick questing heights therefore encompass a large 

variety of animals sharing similar body sizes (McPherson et al. 2000). 

Additionally, it has been noted that winter ticks that detached from their hosts 

prior to completion of their life cycles (either as a result of host grooming or host 

death) will usually endeavour to parasitise another host as soon as possible (W. 

Samuel pers. com. January 2012). These new hosts may include other ungulate 

species passing through the area or even predators and scavengers feeding on the 

original host. Such opportunistic parasitism behaviour in D. albipictus has the 

potential to increase parasite exposure to multiple host species, leading to 

decreased host specificity. 

Implications for conservation and tick control 

Results from this study suggested that genetic variation in winter ticks 

were more strongly associated with geography than host species. This knowledge 

on geographically-association genetic variation can be a useful tool for tracing 

origins of newly discovered tick populations. For example, the presence of a new 

population of winter tick in the Yukon Territory in the mid-1990s (Environment 

Yukon 2011) has been attributed to two potential sources: translocation of elk 
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from Elk Island National Park (Yukon Fish and Game Association 2007, 

Canadian Broadcasting Corporation News 2008), and natural expansion of tick 

populations due to global warming (Canadian Broadcasting Corporation News 

2007, Environment Yukon 2011). Additional and separate analyses comparing 

genetic differentiations between tick populations revealed that ticks from the 

Yukon Territory were more genetically similar to ticks collected in central 

Alberta (FST ≈ 0.033) than those collected in northern Alberta (FST ≈ 0.044), 

suggesting that tick in the Canadian territory were introduced primarily from Elk 

Island National Park.  

The low degree of host specificity in winter ticks also has important 

implications for conservation of ungulate wildlife in North America. If winter 

ticks are not limited in terms of which host species they can parasitise, 

introduction of winter ticks or potential hosts into an area may have severe 

impacts on regional ecology. For example, naïve hosts in the Yukon Territory (e.g. 

moose, caribou) that share overlapping distributions with infected elk may lack 

the necessary immune defences against introduced parasites that may in turn 

result in extensive host pathology and death (Storfer 1999, Stockwell and Leberg 

2002). There is also an increased chance of cross-species transmission of tick-

borne diseases that may become newly or even more firmly established in a 

region (Stockwell and Leberg 2002). This emphasises the need to account for all 

potentially susceptible host species in the region when monitoring and controlling 

newly established tick populations. 

Conclusion 

I investigated host specificity in D. albipictus across North America by 

examining genetic differences between tick populations using fourteen 

microsatellite loci. Based on the results of this study, I conclude that the winter 

ticks exhibit relatively low amounts of host specificity. Instead, results in this 

study indicated a greater geographical aspect to observed genetic variation in the 

winter tick. Low degrees of host specificity in this wildlife parasite may be 
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attributed to host distribution and migratory behaviour, extensive and artificial 

dispersal of ticks due to human interference, and the tick’s generalist and 

opportunistic host seeking behaviour. Knowledge of the lack of host 

specialisation in the winter tick and association between tick genetic diversity and 

geographical locality constitute additional factors that should be considered in 

wildlife conservation policies and tick monitoring and control.  
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Table 4-1. List of populations into which Dermacentor albipictus specimens were 
divided for analysis of host associations, including number of specimens, host 
animals and collection locality. Collection localities that were less than 200km 
apart were pooled as a single population (i.e. northern, central, southern, and 
eastern Alberta). Populations with less than 5 individuals were removed from 
analyses. 

Population Population 
Code N Host Animals Collection 

Locality/Region 
1 EL_ABC 10 Elk central Alberta, CAN 
2 EL_ABS 17 Elk southern Alberta, CAN 
3 EL_YUK 16 Elk Yukon Territory, CAN 
4 HO_ABC 10 Horse central Alberta, CAN 
5 HO_ABS 8 Horse southern Alberta, CAN 
6 MO_ABC 38 Moose central Alberta, CAN 
7 MO_ABN 81 Moose northern Alberta, CAN 
8 MO_IDH 32 Moose Idaho, USA 
9 MO_MIC 11 Moose Michigan, USA* 
10 MO_MIN 20 Moose Minnesota, USA 
11 MO_NHS 13 Moose New Hampshire, USA 
12 MO_WYO 20 Moose Wyoming, USA 
13 MD_ABE 183 Mule deer eastern Alberta, CAN 

14 WT_ABE 24 White-tailed 
deer eastern Alberta, CAN 

northern Alberta = Grande Prairie, Whitburn, and Peace River 
central Alberta = Edmonton and Elk Island National Park 
southern Alberta = Crowsnest Pass and Waterton region 
eastern Alberta = Dillberry Lake Provincial Park, Oyen, and Chauvin  
* Ticks were collected only from Isle Royale National Park located in Michigan, 
USA. 
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Figure 4-2. Visual representation of associations between collection locality and 
microsatellite clusters obtained from structure analyses. The pie charts indicate the 
proportion of specimens in each collection locality assigned to a genetic cluster and 
colours on the pie charts correspond to those in the bar-plot in Figure 4-1. Specimens 
were allocated to specific genetic clusters for which their assignment probability 
values were more than 50%.   
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Figure 4-3. Comparison of genetic differentiation among all Dermacentor albipictus 
populations collected across North America (A), as determined by pairwise FST values 
regressed on geographical distance in kilometres. Ticks were also sorted according to 
host species for additional analyses: B) elk, C) horses, D)  moose, E) mule deer, and 
F) white-tailed deer. 
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CHAPTER FIVE 

General Conclusions 

Thesis Summary 

Parasite genetics is an emerging research field in which we can survey how 

heritable variation in parasites reflects vector competency and influences their 

interactions with other organisms and surrounding environmental conditions 

(Archi et al. 2009, Morrison et al. 2010, Estrada-Peña et al. 2009, McCoy et al. 

2001, Louhi et al. 2010, Archie and Ezenwa 2011). Studies have shown that 

genetically similar but discrete parasites can cause different types of pathology 

(e.g. Morrison et al. 2009), vector different strains of disease-causing bacteria 

with varied efficacy (e.g. Maingon et al. 2008), and have dissimilar survival and 

reproductive success under different conditions (e.g. Agrawal 2000, Lyimo et al. 

2012). These factors can influence how diseases and parasite populations may be 

maintained in a region (Fukunaga et al. 2000). Better understanding of pest 

species boundaries and how intra-specific genetic variation can influence pest 

behaviour is crucial for efficient parasite control. The objective of my thesis was 

to obtain a better understanding of genetic variation in the winter tick 

(Dermacentor albipictus (Packard)), an important veterinary parasite. In this 

thesis, I developed and used 14 microsatellite loci to re-examine the species 

boundaries of D. albipictus and to investigate degrees of host-specificity in this 

obligate ectoparasite.  

In Chapter 3, I re-examined the species boundaries of D. albipictus via 

extensive genomic and geographical sampling. I determined that the winter tick 

consists only of a single species and is not a species complex (Chapter 3). 

However, the parasite exhibited different patterns of intra-specific genetic 

variation depending on which molecular marker one was looking at. Nuclear ITS-

2 revealed little intra-specific variation in D. albipictus and indicated that the 

species is monophyletic. This may be the result of ITS-2 having the lowest 

mutation rate relative to all other markers used in the study (Moriyama and 
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Powell 1997, Kelkar et al. 2010) since slower evolving genes tend to produce 

weaker phylogenetic signals.  

On the other hand, results from phylogenetic analyses on mtDNA markers 

(COI and 16SrRNA) revealed the presence of two strongly divergent lineages 

similar to those previously found in Crosbie et al. (1998) and Leo et al. (2010).  

Leo et al. (2010) suggested that the diverse genetic variation observed in winter 

tick mtDNA may be due to hybridization, introgression, or retained ancestral 

polymorphism. However, based on the lack of congruence between molecular 

markers and the known life history and phenology of D. albipictus (Hooker et al. 

1912, Samuel 2004), recent hybridization and introgression is unlikely to explain 

such divergent mtDNA variation although older events of this kind remain a 

possibility. Retained ancestral polymorphism (whereby there was a recent merger 

of two previously distinct species of Dermacentor ticks, with ITS-2 sequences 

from one of the species having undergone a selective sweep and becoming 

established in the other species) is therefore the most plausible explanation for the 

presence of the two distinct mtDNA lineages. This study reiterated the challenges 

of delimiting and identifying species using only a single type of genetic marker 

(see also Elias et al. 2007, Galtier et al. 2009). An integrative multi-character 

approach to species delimitation and identification, as exemplified in this study, is 

a more reliable method for species delimitation as it not only decreases 

vulnerability to errors, it also allows researchers to identify new  associations 

between genetic diversity and other variables (e.g. such as host animal and 

geography: Chapters 3 and 4). 

Variance partitioning analyses in Chapter 3 suggested that extensive 

microsatellite variation in D. albipictus could be associated with factors such as 

geography and host species. When this was further examined in Chapter 4, I 

found that the winter tick exhibited low levels of specificity for any particular 

ungulate host species (Chapter 4). However, observed genetic differences 

between populations of D. albipictus appeared to be associated with geographical 

location (Chapter 4).  A brief analysis in structure ver. 2.3 (Pritchard et al. 2000) 
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revealed three genetic clusters that were associated with three particular 

geographical regions: 1) western US, southern, and central Alberta; 2) Yukon 

Territory, northern and central Alberta, and part of Michigan; 3) northeastern US, 

eastern Alberta, and central Alberta (Chapter 4). The presence of all three genetic 

clusters in central Alberta suggests there is something evolutionarily interesting 

occurring in the region that deserves further research.  

The presence of geographically-associated genetic variation in D. 

albipictus can be potentially useful for assessing veterinary and economic threats 

that particular parasite populations may present in endemic regions. It had been 

shown that populations of ticks inhabiting different ecoregions exhibit varying 

efficacy for vectoring diseases and causing pathology (Estrada-Peña et al. 2009, 

Lysyk 2010). Similarly, such geographically-associated genetic assemblages can 

be used to trace the origins of new tick populations in previously naïve habitats. 

For example, results in Chapter 4 indicated that the newly established population 

of winter ticks in the Yukon Territory was more genetically similar to ticks in 

central Alberta than northern Alberta (Chapter 4). This suggests there is a high 

likelihood that ticks in the northern Canadian territory were introduced from 

central Alberta (in particular, Elk Island National Park) when infected elk were 

translocated into the region. However, the difference in tick genetic similarity 

between regions was not statistically significant (Chapter 4); therefore I could not 

rule out natural range expansion due to factors like climate change as a potential 

cause (Ogden et al. 2006). 

With their polymorphic nature and selective neutrality (Schlötterer 2000), 

microsatellites are very sensitive to subtle differences between populations and 

species. Microsatellites have therefore been useful for species delimitation and 

identification in several organisms and are particularly popular in studies on 

population structure and genetic diversity (e.g. Lumley and Sperling 2011, Feijoo 

et al. 2011, Afanas’ev et al. 2011). However, microsatellite markers have several 

limitations that can result in erroneous interpretation of results. These limitations 

can arise from both technical issues and biological factors. 
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An example of technical issues common to microsatellites is null alleles, 

in which an allele fails to amplify due to nucleotide substitutions at primer 

binding regions. This can severely influence allele frequency estimation 

(Pemberton et al. 1995). Size homoplasy, whereby alleles of the same size 

(electromorphs) do not share a common evolutionary history, is also another 

potential problem when dealing with microsatellites as they inhibit a researcher’s 

ability to accurately compare evolutionary processes between species or 

populations (Estoup et al. 2002). Microsatellites are also limited by the fact that 

primers are usually species specific and will often fail to work in distantly related 

species (Dallimer 1999, Primmer et al. 2009, Zane et al. 2002). Attempts to 

genotype Ixodes ticks using the microsatellite loci developed in Chapter 2 gave 

poor results (not reported) with only 2 out of 14 loci genotyping successfully. 

This degree of species specificity limits a researcher’s ability to perform 

phylogenetic studies at higher levels. 

In addition to technical issues, real biological processes such as kinship or 

other hierarchical genetic structure can result in significant deviations from Hardy 

Weinberg equilibrium (Dharmarajan et al. 2011). Unfortunately, such 

heterozygote deficits are often attributed to technical issues which may in turn 

result in erroneous interpretations of results in population genetic studies 

(Dharmarajan et al. 2011). It is therefore important that researchers have a good 

understanding of the life history and biology of their study organisms and to be 

aware of how natural biological processes may explain unexpected patterns in 

their results.  

 

Future Research 

The presence of distinctly divergent mtDNA lineages and geographically-

associated microsatellite variation in D. albipictus needs to be investigated further. 

This can potentially be performed via high throughput genotyping by sequencing 

techniques, such as RAD-sequencing (Elshire et al. 2011). This approach enables 
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researchers to sample tens of thousands of single-nucleotide polymorphisms 

(SNPs) simultaneously in hundreds of specimens, allowing for more extensive 

surveys of genetic variation. This genetic information can be used to perform 

comprehensive phylogenetic studies including all 34 recognised Dermacentor 

species to determine the evolutionary origin of the proposed incomplete lineage 

sorting in D. albipictus mtDNA. The same method could also be applied to 

investigate potential associations between winter tick genetic diversity and other 

ecological or environmental variables that were not examined in this thesis. 

Understanding these associations can potentially allow us to quantify interactions 

between D. albipictus and its surrounding environmental variables which will in 

turn be critical for designing and implementing efficient tick control and wildlife 

management strategies. 

Ticks are capable of vectoring a diverse variety of diseases, such as 

anaplasmosis, ehrlichiosis, tularaemia, and Lyme disease (Bratton and Corey 

2005). Unfortunately, due in part to difficulties in culturing microorganisms in 

laboratories, there have been few studies aimed at characterising the complete 

genetic diversity of bacterial symbionts in these parasites (e.g. Yuan 2010, 

Blomstrom 2010). Fortunately, a newly emerging bioinformatics approach known 

as metagenomics can enable researchers to study microorganism assemblages and 

genetic diversity without having to use standard culturing methods (Handelsmann 

2004, Risenfeld et al 2004). Knowledge of associations between tick-borne 

bacterial genetic diversity with particular tick species, ecoregions or host animals 

can be critical tools for diagnosis of diseases. An extensive survey of bacteria in 

ticks can also potentially result in identification of previously unknown disease 

causing agents. Such information will be crucial for health officials when 

planning and establishing disease surveillance and tick control programmes. 

In order to be able to establish efficient pest control strategies and to better 

model or predict range expansion of parasites and diseases, we need to increase 

our knowledge on the many interactions between host-parasite-pathogen systems 

and their surrounding landscape variables. This can be achieved using a newly 

93



developed research approach known as integrated landscape genomics (James et 

al. 2011). Landscape genomics will allow us to incorporate genetic information 

obtained (usually via high-throughput sequencing methods) from each species in a 

system and relate it to other spatial variables (e.g. altitude, vegetation, 

temperature, and humidity). This allows researchers to quantify interactions 

among each species and their surrounding landscape that may be critical for 

predicting and modelling the spread of ticks and tick-borne diseases across a 

geographical region.  

In the near future, I hope to apply an integrated landscape genetics 

approach (James et al. 2011) to investigate similarity in population structures 

among mammalian hosts, ticks, and disease-causing agents in Canada. Using 

corresponding geographical patterns of genetic variation among hosts, ticks, and 

pathogens will allow us to identify and explain associations between species 

migration and geographical heterogeneity. This will help us to better comprehend 

spatial population dynamics in this host-parasite-pathogen system and should be 

useful for modelling the spread of tick-borne diseases across the country 

(Bjørnstad et al. 1999). It may also allow us to identify biotic and abiotic 

variables that may influence the establishment and expansion of these diseases in 

Canada. Such a study exemplifies the kind of multi-disciplinary, collaborative 

approaches needed for advances in understanding the biology and control of 

complex disease systems (Ostfeld 2011). 
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APPENDIX A 

Listed below are literature/sources of information from which an 

approximate distribution of the winter tick Dermacentor albipictus was estimated 

(Figure 1-1). Presence of the organism in a state or province was based on 

literature in which they were either reported present or collected as part of a tick 

surveillance survey and other research purposes. This is by no way a complete list 

of all literature available on the topic.  

The references are listed according to states or provinces in the United 
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BIOGRAPHY 

 As a Singaporean city-girl, born and raised in the concrete forest of high-

rise apartments, shopping malls and office buildings, I hated and feared all forms 

of insects and arachnids. I shuddered at the thought of having insects in the 

vicinity of my person and would refuse to touch any pictures that bore an image 

of an arthropod. I never once entertained the thought of developing any interest in 

entomology or acarology, much less making the most disgusting and creepiest 

member of them all, the blood-sucking ticks, the main focus of my M.Sc. thesis. 

 I spend most of my formative years schooling in Singapore and attended 

pre-University level education at Hwa Chong Institution before immigrating to 

Canada to begin my undergraduate studies at the University of Alberta. My first 

year as an undergraduate was a carefree, fun and wonderful experience. Then 

came second year when I had to take an Entomology course as part of my degree 

requirements. Given my fear of anything with more than two pairs of legs that are 

not considered seafood, you can imagine the trepidation with which I first 

attended Dr. Felix Sperling’s Introductory Entomology lecture. But as I continued 

forcing myself to attend one lecture after the other, I began to appreciate the 

complexity of arthropod body forms and gradually started to see more than just 

creepy freaks of nature when looking at these organisms. The introductory course 

perked my interest to such an extent that I approached Dr. Sperling at the end of 

the semester to discuss the probability of doing an NSERC summer undergraduate 

project under his tutelage. Thus began my foray into the fascinating, if a little 

strange, world of entomology, much to my parents’ shocked dismay and my 

brother’s unending horror (I like to think they have since grown accustomed to 

this strange twist in my life). 

 I have been a member of the Sperling lab since 2007, and have worked on 

several fascinating projects that allowed me to explore my growing interest in 

molecular genetics and entomology. I started out studying the population structure 

of Halobates sericeus on the Pacific Ocean in the summer of 2007, before moving 



on to work on Dermacentor albipictus genetic diversity for my undergraduate 

project (2008-2009). Said undergraduate project has subsequently snowballed into 

my current Master’s thesis.  

 I also spent two summers working as a technician assistant at the City of 

Edmonton Environmental Service Laboratory (formerly under the Department of 

Asset Management and Public Work). There, I met a wonderful group of people 

with the most devious sense of humour and deep appreciation for entomology. 

Their passion for their work further spurred me toward my own studies and 

research.  

 These past few years spent in the Sperling lab and with my friends at the 

City of Edmonton have been a wonderful learning experience. I will carry the 

memories of my time here as I make my way through life. 
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