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Abstract 
 

Three different studies related to geological uncertainty reduction in reservoir applications are 

performed in this thesis. The first study proposes an optimal realization reduction framework for 

quantifying geological uncertainty. The second study applies the optimal realization reduction 

framework to incorporate geological uncertainty into an application of vertical well placement 

optimization. The third study proposes a two stage Steam Assisted Gravity Drainage (SAGD) 

well drainage area (DA) arrangement optimization method and incorporates geological 

uncertainty to the SAGD arrangement optimization by using the optimal realization reduction 

framework.   

Geological uncertainty is reduced by generating and incorporating multiple realizations in the 

application of reservoir development or controls optimization. However, only few realizations 

are selected from a large superset for the reservoir application due to intensive computational 

efforts. The proposed optimal realization reduction method is a mixed integer linear optimization 

model which minimizes the probability distance between the discrete distribution represented by 

the superset of realizations and the reduced discrete distribution represented by the selected 

realizations. The results of applying the realization reduction method to various case studies 

show that the proposed method can effectively select realizations and assign probabilities such 

that the extreme and expected reservoir performances are recovered better than any of the other 

realization reduction methods. The optimal realization reduction method is then used to select a 

subset of realizations and incorporate them into a framework of robust vertical well placement 

optimization under geological uncertainty. Applying the well placement optimization framework 

to reservoirs demonstrate the similarity between the expected reservoir performance results from 
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well placement optimization using the realization reduction method and well placement 

optimization using all the realizations in the superset.  

SAGD is an increasingly popular in-situ method for extraction of bitumen from Alberta’s oil 

sands. The first stage of the model determines the optimal arrangement of the compact set of all 

the DAs that maximize the available bitumen. The second stage of the model selects a smaller set 

of DA and surface pad (SP) from the compact arrangement that maximize the available bitumen 

and minimizes the distance between the selected SPs. Results of applying the SAGD well 

arrangement optimization method to a reservoir lease area showed a compact DA arrangement 

with DAs containing higher bitumen content and SPs in close proximity to each other being 

selected. Geological uncertainty is incorporated to the optimization method by using selected 

realizations obtained from the optimal realization reduction framework. Results showed DA 

arrangement plan with higher expected bitumen and greater number of DAs within the compact 

arrangement. 
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Chapter 1 

Introduction

1.1 Background 

Reservoir geological properties are important parameters used in the design and optimization of 

oil extraction processes from reservoirs. These parameters dictate the ease with which oil can be 

extracted and also the quantity of oil that can be extracted. Optimal location of wells and the well 

controls depend on the geological properties of the reservoir. Geological uncertainty exists 

because it is not possible to know the exact geological properties of every section of a realistic 

reservoir. Techniques such as well exploration and core holes can give an idea of the geological 

properties of particular areas of the reservoir. However, the geological parameters of the areas 

between the exploration wells or core holes will still be unknown. As a result, geological 

uncertainty will always exist for a reservoir. Geological uncertainty is quantified by generating a 

large number of geological realizations of a given reservoir and then selecting a smaller subset of 

those realizations for determination of the performance parameter of interest such as Cumulative 

Oil Production (COP) or Net Present Value (NPV). Therefore, a realization reduction method 

which selects a smaller number of realizations from a larger superset of realizations is crucial for 

geological uncertainty reduction. 

An optimal realization reduction method is proposed in this thesis which selects a smaller subset 

of realizations from a larger set of realization. The realization reduction method is computed 

efficiently with minimal computational time and generates a smaller subset of realizations which 

is a good statistical representation of the larger superset of realizations. 

Well placement optimization determines the optimal positions of wells which maximize the 

production of the underground resources such as oil, gas or bitumen. On the other hand, well 

control optimization determines the optimal settings for a well, such as bottomhole pressure or 

injector flow rate, which results in either the maximum production of oil or maximum 
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profitability. It is important to incorporate geological uncertainty for both well placement 

optimization and well control optimization.  

In this thesis, a robust vertical producer well placement optimization under geological 

uncertainty is performed by incorporating a subset of realizations from the optimal realization 

reduction method. Steam Assisted Gravity Drainage (SAGD) wells are divided into Drainage 

Area (DA) and Surface Pad (SP). DA are sets of horizontal producer and injector wells in 

parallel under the ground. SP are the surface facilities from which the horizontal sets of injector 

and producer wells are drilled. A two-stage SAGD DA and SP arrangement optimization is 

proposed in this thesis. In addition, geological uncertainty is incorporated to the SAGD 

arrangement optimization by developing a robust optimization step using a subset of realizations 

obtained from the optimal realization reduction method. 

 

1.2 Motivation 
 

The motivation for the work proposed in this thesis stems from the lack of distance based 

realization reduction method using simple and easily computable measures for large and 

complex reservoir grids. The realization reduction method requires minimal computational effort 

for reservoir grids and also ensures that the selected subset of realizations is a good 

representation of the superset of realizations. As a result, geological uncertainty can be included 

for computationally expensive applications such as well placement or well control optimizations.  

The motivation for developing a SAGD DA arrangement optimization method is due to the 

increasing commercial use of SAGD method in the extraction of bitumen from the oil sands and 

the absence of structured framework for SAGD well placement in literature which incorporates 

geological uncertainty, by selecting a subset of realizations, to the developed SAGD DA 

arrangement optimization process.  
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1.3 Objective of Thesis 
 

The principle objective of the thesis is to propose an optimal realization reduction method and 

use the proposed method in various applications to show that the smaller subset of realizations 

selected from the proposed realization reduction method is a very good representation of the 

larger superset of all the realization.  

The specific goals of this thesis are broadly divided into three different parts as given: 

1. Propose an optimal realization reduction method which selects a smaller subset of 

realizations from a larger superset of realizations in order to quantify geological 

uncertainty associated with reservoir studies. Compare the performance of the optimal 

realization reduction method with respect to the performance of the full set of realizations 

in the superset.  

 

2. Apply the proposed optimal realization reduction method in an application of robust 

vertical well placement optimization to determine the optimal producer well locations. 

Compare the well placement plan using the realizations from the proposed optimal 

realization reduction method to the well placement plan using all the realizations in the 

larger superset of realizations. 

 

3. Propose a two stage SAGD well arrangement optimization method for selecting a 

compact set of DAs and SPs and then incorporate geological uncertainty to the proposed 

SAGD DA arrangement optimization method. A subset of realization obtained from the 

optimal realization reduction method is used in the proposed SAGD DA arrangement 

optimization. 

 

1.4 Thesis Outline 
 

The three different sub-objectives of the thesis are given in chapters 2, 3 and 4. The thesis is 

structured as follows. Chapter 2 provides a detailed description of the optimal realization 
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reduction method along with various case studies to illustrate the performance of the proposed 

method. Vertical well placement optimization under geological uncertainty is explained and 

applied to two different case studies in chapter 3. Chapter 4 proposes the two-stage SAGD DA 

arrangement optimization method, followed by an application of the proposed two-stage 

optimization method to a realistic reservoir lease area. Chapter 4 also provides a case study in 

which the optimal realization reduction method is used to incorporate geological uncertainty in 

the proposed SAGD DA arrangement optimization method. The thesis is concluded in Chapter 5.  

Chapter 2 provides the optimal realization reduction method. The background and summary of 

different realization reduction methods used in the literature are given in section 2.1. The 

problem statement for the optimal realization reduction method is given in section 2.2. Static 

measures are used in the proposed optimal realization reduction method and therefore section 2.3 

provides a detailed list of all the different static measures used. The algorithm of the proposed 

realization reduction method is given in section 2.4. The realization reduction method is applied 

to different case studies with increasing reservoir complexity and is given in section 2.5. The 

chapter is concluded in section 2.6. 

Vertical well placement optimization under geological uncertainty is given in chapter 3. Sections 

3.1 and 3.2 introduce the well placement optimization problem by providing a summary of 

literature review and the problem statement. The objective function and the methodology used in 

the vertical well placement optimization under geological uncertainty are given in section 3.3. 

The quantification of the geological uncertainty in the well placement optimization problem is 

explained in section 3.4. Section 3.5 provides the result and discussion of applying the vertical 

well placement optimization under uncertainty to two different case studies representing a two-

dimensional and a three-dimensional reservoir grid. The chapter is concluded in section 3.6. 

The two-stage SAGD DA arrangement optimization is proposed in chapter 4. The background 

associated with SAGD wells and the problem statement of the SAGD DA arrangement 

optimization is given in sections 4.1 and 4.2 respectively. Section 4.3 explains how the reservoir 

quality in terms of available bitumen is determined for the SAGD well arrangement 

optimization. The workflow for the SAGD DA arrangement optimization model and the 

description of the subsequent stages of the optimization model are provided in section 4.4. 

Section 4.5 provides a realistic case study where both the stages of the SAGD DA arrangement 
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optimization method were applied. The SAGD DA arrangement optimization problem under 

geological uncertainty is investigated in section 4.6. The results of a case study using the SAGD 

DA arrangement optimization under geological uncertainty by incorporating selected realizations 

obtained from the optimal realization reduction method are also given in section 4.6. Chapter 4 is 

concluded in section 4.7. Conclusion of the thesis and future work is given in Chapter 5.  
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Chapter 2 

Reservoir Geological Uncertainty Reduction1

2.1 Background and Literature Review 

Reservoir performance can be quantified by flow simulation which provides production 

parameters of interest such as the cumulative oil production (COP) rate and the net present value 

(NPV). All of the production parameters depend on the geological properties of the reservoir. It 

is very important to incorporate geological uncertainty in a reservoir model. Otherwise, the 

model may give an incorrect prediction of production parameters. To represent the geological 

uncertainty, multiple geological realizations are usually generated using geostatistical tools so as 

to obtain a broad range of possible geological properties for a reservoir. However, reservoir flow 

simulations cannot be run for all of the possible realizations due to the significant computer 

processing time. Therefore, in practice, only a small number of geological realizations are chosen 

to perform reservoir simulations to obtain a reservoir performance model which incorporates 

geological uncertainty. It is important to generate a large set of realizations so that the geological 

uncertainty space of the reservoir is adequately represented. A large set of realizations will result 

in a wide range of geological property of the reservoir. As a result, the subset of realizations 

selected from the large set of realization will be able to represent the geological uncertainty of 

the reservoir very well. Various methods for selecting geological realizations exist in the 

literature and can be broadly classified as follows: random selection method, static measure 

based ranking method, distance based kernel clustering technique and probability distance based 

realization reduction method.  

Random selection of a subset of realizations is the easiest method for implementation, but it may 

result in the wrong measure of geological uncertainty especially when the number of selected 

realizations is small. Many studies in the literature use the single static measure based ranking 

1 The content of this chapter is adapted from the following journal paper. Rahim S, Li Z, Trivedi J (2015), 
Reservoir Geological Uncertainty Reduction: an Optimization Based Method using Multiple Static Measures. Math 
Geosci doi:10.1007/s11004-014-9575-5 
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method to select geological realizations and to quantify the uncertainty in reservoir performance. 

The ranking method was introduced by Ballin et al. (1992). Ranking based reduction arranges 

realizations of an easily computable measure in an ascending/descending order and then selects 

the realizations that have low, medium and high measure values. The selected realizations are 

then used as input for flow simulations to obtain the reservoir production response. Deutsch 

(1998, 1999) developed software tools to rank realizations based on the number of connected 

cells, connectivity to a well location or connectivity between multiple wells. Deutsch and Begg 

(2001) proposed that ranking all of the realizations based on a measure and then choosing a 

subset of equally spaced realizations result in a better representation of uncertainty than choosing 

the low, medium and high performance realizations. A ranking based method for the Steam 

Assisted Gravity Drainage (SAGD) process using a measure known as connected contained 

bitumen was used by McLennan and Deutsch (2004). The connected contained bitumen was 

calculated using net cells connected to the SAGD producer well. The realizations with low, 

medium and high ranking measures were selected from the superset of realizations. In another 

study, McLennan and Deutsch (2005) used several measures based on statistical, volumetric, 

global and local connectivity metrics to select a subset of realizations. Fenik et al. (2009) used a 

ranking method based on connected hydrocarbon volume (CHV) to select a subset of realizations 

for a SAGD application. Li et al. (2012) adopted a static quality measure, which was a 

modification to the CHV measure, to rank geological realizations. Rankings based on the static 

quality measure showed improved performance over rankings based on CHV. While efforts have 

been made to improve static measures for ranking, the limitation of existing ranking methods for 

selecting realizations is that they rely greatly on the measure used. If the measure has poor 

correlation to the production performance parameter of the reservoir, then the selected 

realizations will not be a good representation of the superset of realizations. Furthermore, all of 

the selected realizations based on the ranking method have equal probability in the reduced 

distribution.  

The distance based kernel clustering method has also received lots of attention in the past. 

Scheidt and Caers (2009) used simplified streamline simulation results to compute the distance 

between realizations and to form a distance matrix. The uncertainty associated with the distance 

matrix is modelled using multidimensional scaling and kernel techniques. The superset of 

realizations is grouped into clusters using kernel k-means clustering, and a subset of selected 
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realizations can be extracted from the clusters. Scheidt and Caers (2010) compared the statistics 

associated with the traditional ranking method, the kernel k-means clustering method and the 

random selection method. They used the bootstrap technique to compute the confidence intervals 

of the P10, P50 and P90 quantiles of the reduced subset of realizations and showed that the 

distance based kernel clustering method provides the most robust results (Scheidt and Caers, 

2010; Park and Caers, 2011). Singh et al. (2014) used the kernel k-means clustering method to 

quantify uncertainty associated with various history matched geological models and to forecast 

production information. The distance matrix in the clustering method uses oil recovery factors 

between realizations. These clustering methods generally rely on streamline simulations to 

calculate distance between realizations, which is still computationally demanding for large 

reservoir models, and the problem has to be reformulated if the number of wells or well location 

changes. Additionally, simplified fluid flow assumptions are used for streamline simulations, 

which may undermine the geological heterogeneity of the reservoir, resulting in a poor 

representation of geological uncertainty (Gilman et al., 2002). There is a need for a realization 

reduction method that is computationally less expensive and provides a better representation of 

the original distribution than the current ranking methods.  

Apart from the ranking method and the clustering method, a probability distance based 

realization reduction/selection method associated with a scenario reduction technique for 

optimization under uncertainty (Dupacova et al., 2003; Li and Floudas, 2014) has been 

investigated recently. Following this direction, Armstrong et al. (2013) proposed a realization 

reduction method based on minimizing the Kantorovich distance between distributions and 

applied the method to metal mining. The method iteratively generates a random subset of 

realizations without replacements from the superset of realizations until the Kantorovich distance 

between the distributions is minimized. While their method relies on heuristic random searches 

to minimize the Kantorovich distance, a novel method is proposed in this work for geological 

realization reduction following the concept of probability distance minimization.  
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2.2 Problem Statement 
 

Static measures and geological data are used to develop a realization reduction method which 

can be easily computable for a large number of realizations and ensure that the selected 

realizations have a similar statistical distribution to the superset of all the realizations. An 

optimal realization reduction method is proposed in this thesis. The realization reduction method 

considers multiple static measures and geological properties to select geological realizations. 

Specifically, an optimal realization reduction model is developed based on the mixed integer 

linear optimization (MILP) technique. The proposed algorithm uses reservoir geological 

properties and static measures to quantify the dissimilarity between realizations and uses the 

Kantorovich distance to quantify the probability distance between the superset and the subset of 

realizations. The objective is to find a reduced optimal subset that has similar statistical 

distribution to the superset of all the realizations in terms of the reservoir production 

performance. 

 

2.3 Static Measures 
 

Static measures are simplified metrics designed to achieve a good correlation with the reservoir 

production performance variable of interest. Static measures are computationally much easier for 

evaluation when compared to reservoir flow simulation. It can be easily computed for a large set 

of realizations. Static measures can be classified into the following categories (Deutsch and 

Srinivasan, 1996; McLennan and Deutsch, 2005): (i) statistical static measures which quantify 

the statistical average of geological parameters, (ii) fractional static measures that determine the 

active fraction of the reservoir, and (iii) volumetric static measures which calculate the volume 

of a reservoir capable of oil transport. Details on the different static measures are given in the 

following subsections. 

 

2.3.1 Statistical static measures  
Statistical static measures considered in this paper are calculated for net cells in the reservoir. 

Any cell which has a porosity and permeability above a threshold value is defined as a net cell. A 
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binary indicator parameter net
cI  is used to denote whether a cell c in the reservoir grid is net 

( 1net
cI  ) or not ( 0net

cI  ). The idea of a net cell stems from the fact that if a section of the 

reservoir rock has very low porosity and permeability value, then that section of the rock will be 

unable to carry any oil through it. As a result, that non-net section of the rock plays no role in oil 

recovery from the reservoirs. Mathematically net
cI  is defined as  

 0 01,    if  and 
0,   otherwise

c cnet
c

k k
I

  
 


    (2.1) 

In Eq. (2.1), c  and ck  denote the porosity and the permeability of cell c, respectively, whereas 0  

and 0k denote the threshold values. 

 

Statistical static measures are the simplest measures for ranking realizations. The average net 

permeability ( netK ) for each realization is given by Eq. (2.2)  

 

net
c c

c
net net

c
c

k I
K

I




    (2.2) 

Indicator net
cI  is used in Eq. (2.2) to ensure that the average permeability is only calculated for 

the net cells. Using a similar idea, the average net porosity ( net ) for each realization is given by 

Eq. (2.3) 

 

net
c c

c
net net

c
c

I

I


 




    (2.3) 

The average net irreducible water saturation ( netS ) for each realization is given by Eq. (2.4) 

 

net
c c

c
net net

c
c

S I
S

I




    (2.4) 
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where cS  is the irreducible water saturation of cell c. Similar to average permeability and 

porosity, average irreducible water saturation is only calculated for the net cells. 

2.3.2 Fractional static measures 
Fractional static measures use indicator parameters to calculate the fraction of cells that are either 

net or locally connected to a well. These static measures provide a good basis for understanding 

the quality of a reservoir and the amount of oil that can be extracted from a reservoir.  

The fraction of net cells ( netF ) of a reservoir is also known as the net to gross ratio. It is 

calculated by the summation of net
cI  values of each cell and divided by the total number of cells N 

as given in Eq. (2.5) below 

1 net
net c

c
F I

N
  (2.5) 

As the number of net cells in a reservoir increases, the net to gross ratio increases as well. 

Therefore a higher net to gross ratio implies that the reservoir will have better oil production. 

The fraction of locally connected cells ( LCF ) is the fraction of cells that are net and are connected 

to a producer well. A cell c is defined as locally connected if 1net
cI   and there is a path of net 

cells from cell c to a producer well. Therefore, all locally connected cells are net cells, but net 

cells are not necessarily locally connected cells. Mathematically LC
cI  is denoted by Eq. (2.6) 

1,    if 1 and connected to producer well

0,   if 0 or not connected to producer well

net
cLC

c net
c

I
I

I

  


(2.6) 

The fraction of locally connected cells is calculated using the binary variables net
cI  and LC

cI  as 

given by Eq. (2.7) 

1 net LC
LC c c

c
F I I

N
  (2.7) 
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Since the local connectivity calculation considers only active cells connected to a well, it is 

shown to be a good indication of production parameters such as COP or NPV.   

 

2.3.3 Volumetric static measures  
Volumetric static measures incorporate the volume of each cell in its calculation and therefore 

provide a good basis for determining the volume of oil each cell in the reservoir can produce.  
 

Net pore volume ( netPV ) is the simplest volumetric static measure that utilizes the volume of 

each cell and the corresponding porosity of that cell. The calculation of net pore volume is only 

for net cells since these are the only cells that have the ability to produce or transport oil. The net 

pore volume is given by Eq. (2.8) below  

 
net

net c c c
c

PV V I     (2.8) 

where cV  is the volume of cell c. 

 

Original oil-in-place (OOIP) is calculated for all cells in the reservoir and is calculated by the 

summation of the product of volume ( cV ), porosity ( c ) and the oil saturation (1 )cS  of cell c. 

OOIP is given by Eq. (2.9) below  

 (1 )c c c
c

OOIP V S      (2.9) 

where cS  is the irreducible water saturation of cell c. 

 

Net oil-in-place ( netOIP ), which is also known as net hydrocarbon volume, is simply the OOIP for 

the net cells of the reservoir. Therefore, in principle, netOIP  is expected to be a better static 

measure than OOIP. netOIP  is given by Eq. (2.10) below  

 (1 ) net
net c c c c

c

OIP V S I      (2.10) 



13 
 

Locally connected hydrocarbon volume ( localCHV ) is the OOIP calculated for net cells connected 

to the producer well (Deutsch, 1998). A cell is considered to be locally connected when an active 

cell pathway can be formed from the cell to a producer well so that the oil can be transported 

(McLennan and Deutsch, 2004). Locally connected hydrocarbon volume is given by Eq. (2.11) 

 (1 ) net LC
local c c c c c

c

CHV V S I I      (2.11) 

2.4 Proposed Realization Reduction Algorithm 
 

2.4.1 Dissimilarity between realizations 
Considering two geological realizations i  and 'i , a dissimilarity measure is used to quantify the 

difference between them. In this work, the dissimilarity between realizations is computed using 

the geological properties and the static measures introduced in the previous section. Specifically, 

the dissimilarity between two realizations i  and 'i  is evaluated by Eq. (2.12) 

 , ' ' '
,

 +          , 'i i ik i k ict i ct
k c t

c m m i i           (2.12) 

where ikm  is the value of the k type of static measure for realization i, ict  is the t  type of 

geological property value of cell c in the reservoir grid for realization i and   is a weight 

parameter which reflects the contribution of geological property data in the dissimilarity 

calculation. The geological property t  considered in this work is the porosity and permeability 

of all the cells in the reservoir. The static measure parameters are given a larger weight here to 

emphasize its importance in the dissimilarity evaluation (   is set as 0.01 in this work). Since 

static measures are easily computable for any given realization, the dissimilarity values between 

any two geological realizations can be calculated very efficiently. 

 

2.4.2 Kantorovich distance in realization reduction 
All of the geological realizations generated from geostatistical tools form a superset from which 

a subset containing a small number of realizations is to be selected for further investigation (e.g., 
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flow simulation). The objective of realization reduction is that the selected subset of realizations 

can represent the superset of realizations very well in terms of reservoir production performance. 

In this work, the aforementioned superset and subset are considered as two discrete probability 

distributions. The first distribution (also called the original distribution) consists of the superset 

of realizations, and each realization i has probability orig
ip . Notice that this probability value orig

ip

is normally set as equal to 1 | |I , where I  is the superset of realizations and I  is the set 

cardinality (i.e., total number of realizations). The second distribution (also called the reduced 

distribution) consists of a subset of selected realizations in which each realization i has 

probability new
ip . The reduced distribution can be viewed as an updated version of the original 

distribution with probabilities on each realization adjusted. All of the removed realizations have 

zero probability in the reduced distribution. 

The Kantorovich distance is a type of probability metric to quantify the dissimilarity between 

two probability distributions. It is defined by a transportation problem which minimizes the 

transportation cost associated with moving the probability mass from one distribution to the 

other distribution. The theory of optimal transportation was first introduced by Monge (1781) 

and rediscovered by Kantorovich (1942). For the realization reduction problem, the Kantorovich 

distance between the original distribution and the reduced distribution is defined by the optimal 

objective value of the following linear transportation problem 

, '
Kan , ' , '

'

, ' '

, '
'

, '

min  

 s.t.  '

 

 0    '

i i
i i i i

i I i S

new
i i i

i I
orig

i i i
i S

i i

D c

p i S

p i I

i I i S










 







  

  

    






(2.13) 

where i  and 'i  represent realizations, I  is the superset and S  is the selected subset, orig
ip  and 

new
ip  represent the probability of realization i in the original and the reduced distribution, 

respectively, , 'i i  is the decision variables representing the probability mass transportation plan 

and , 'i ic  is the dissimilarity between realizations. Dupacova et al. (2003) proved that the optimal 

objective value of the above problem is 



15 

Kan
orig
i i

i I S

D p d
 

  (2.14)

where , ''
mini i ii S

d c


  represents the transportation cost for a removed realization i I S   and it is 

the minimum dissimilarity between the removed realization i  and all of the selected realizations 

'i S . The optimal solution of '
new
ip  for problem (2.13) is 

' '
( ')

 'new orig orig
i i i

i J i

p p p i S


    (2.15) 

where , ' , ''( ') { | , , '' }i i i iJ i i i I S c c i S      , meaning that a preserved realization’s new 

probability is the sum of its original probability and the probability mass that has been 

transported to it. A removed realization is transported to the closest preserved realization. 

2.4.3 Realization reduction algorithm 
To select representative geological realizations, an optimization based realization reduction 

method is proposed in this work. The proposed realization selection/reduction method is based 

on a constrained mixed integer linear optimization technique, and it minimizes the Kantorovich 

distance between the original distribution and the reduced distribution as explained in previous 

subsection. Details on the proposed optimization model are stated below. 

First, binary variables iy  are introduced to denote whether the realization i  is removed ( 1iy  ) 

or not ( 0iy  ). Continuous variables , 'i iv  ( , '0 1i iv  ) are introduced to denote the fraction of 

the probability mass that is transported from realization i  to realization 'i . 

The objective function of the proposed realization reduction algorithm is to minimize the 

Kantorovich distance between the original distribution and the reduced distribution, which is 

given in Eq. (2.16) 

min orig
Kan i i

i I

D p d


 (2.16) 

where id  represents the cost of removing a realization i  (i.e., transporting and distributing its 

probability mass to preserved realizations). This cost is quantified by a weighted summation of 
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the transported probability mass, where the weight is the dissimilarity , 'i ic  between realizations. 

This scheme can be modeled by using Eq. (2.17) 

 , ' , '
'

     i i i i i
i I

d c v i I


       (2.17) 

Notice that the Kantorovich distance defined in problem (2.13) is based on a known subset S, 

while the objective in the proposed algorithm here is to find the optimal subset S that leads to the 

minimum Kantorovich distance. With the introduction of variables iy  and , 'i iv , the proposed 

optimization model will generate the optimal S that leads to the minimum Kantorovich distance 

as explained by the following constraints. The reader is also referred to Li and Floudas (2014) 

for detailed proof on this.  
 

The following set of constraints are necessary to enforce the logical relationship between 

variables iy  and , 'i iv . First, if a realization i  is removed ( iy =1), then all of its probability mass 

should be transported ( , ''
=1i ii I

v
 ). If a realization i  is selected/preserved ( iy =0), then its 

probability mass should not be transported to any realization ( , ''
=0i ii I

v
 ). The above logical 

relationship is reflected in Eq. (2.18) 

 , '
'

=      i i i
i I

v y i I


      (2.18) 

Furthermore, if a realization 'i  is removed ( 'iy = 1), then no probability mass can be transported 

to it ( , '= 0i iv ). If a realization 'i  is selected ( 'iy = 0), then the probability mass can be transported 

to it ( , '0 1i iv  ). This condition is modeled in Eq. (2.19) below 

 , ' '0 1     , 'i i iv y i i I         (2.19) 

The next constraint enforces the number of selected realizations. Assume the total number of 

realizations to be removed is R , then Eq. (2.20) ensures that R  realizations are removed 

 i
i I

y R


     (2.20) 

In the proposed realization reduction model, a subset of realizations representing the potential 

best and worst performance is also considered. Equation (2.21) below ensures that at least two 

realizations are selected from subset SBI   
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  1 2
SB

i
i I

y


      (2.21) 

where subset SBI  has two realizations which are identified using the following steps. For each 

static measure, the realizations corresponding to the top three highest static measure values are 

identified. Those identified realizations’ IDs are combined into a superset from which the two 

most frequent realizations are selected to form set SBI . Similarly, Eq. (2.22) ensures that at least 

two realizations are selected from subset SWI  in the reduced distribution  

  1 2
SW

i
i I

y


      (2.22) 

where subset SWI  has the top two most frequent realizations that represent the potential worst 

performance. For each static measure, the realizations corresponding to the top three lowest 

static measure values are identified. Those identified realizations’ IDs are combined into a 

superset from which the two most frequent realizations are selected to form set SWI . 

 

With the selected realizations (i.e., iy ) and the probability mass transportation plan (i.e., , 'i iv  ), 

the new probability of realizations in the reduced distribution new
ip  can be evaluated as follows 

 ' ' ' , '(1 )      'new orig orig
i i i i i i

i

p y p v p i I         (2.23) 

Notice that if realization 'i  is removed ( ' 1iy  ), then 0new
ip  . If realization 'i  is preserved (

' 0iy  ), then its new probability mass can be calculated as the sum of all of the probability 

mass that has been transported to it ( , '
orig

i i ii
v p ) and its original probability ( '

orig
ip ). 

 

Finally, the complete optimization model is composed of Eqs. (2.16) to (2.23), and it is a MILP 

optimization problem. This problem can be solved using a MILP solver such as CPLEX (IBM, 

2010).  

 

The complete MILP optimization model for the proposed optimal realization reduction method is 

summarized as follows 

 
min orig

Kan i i
i I

D p d



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Subject to 

 
, ' , '

'

     i i i i i
i I

d c v i I


  
 

 , '
'

=               i i i
i I

v y i I


   

 , ' '0 1     , 'i i iv y i i I    
 

 
i

i I

y R



 

 
 1 2

SB

i
i I

y


 
 

 
 1 2

SW

i
i I

y


 
 

 
' ' ' , '(1 )      'new orig orig

i i i i i i
i

p y p v p i I    
 

{0,1}    iy i I    

 

Input Parameters: 

R  the total number of realizations to be removed 
orig
ip  the original probabilities of realizations, i , is normally set as equal to 1

| |
orig

Iip  , where 

| |I  is the size of the set I  

, 'i ic  the distance between two geological realizations 

Variables: 

iy  binary variables which denote whether a realization is removed ( 1iy  ) or not ( 0iy  ) 

, 'i iv  continuous variables ( , ' [0,1]i iv  ) which denote the fraction of its probability mass that 

is transported from realization i  to realization 'i  
new
ip  continuous variables ( [0,1]new

ip  ) which denote the new probabilities of realizations i  

after optimal probability mass transportation. Notice that if 0new
ip  , it means that 

realization i  is removed 
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2.5 Case Study 
 
In this study, the proposed realization reduction method is applied to 3 different reservoir grids to 

quantify geological uncertainty. The grid size, dimension and the number of injector or producer 

considered in each of the study is different. The case studies demonstrate the applicability of the 

realization reduction method to reservoirs of different dimensions and complexity.  

2.5.1 Realization generation  
In all the case studies, a superset of 100 realizations are generated for realization reduction. For 

each realization, porosity values of the reservoir grid are generated in MRST using a built-in 

function ‘Gaussian Field’ with a range parameter of [0.2 0.4]. The function creates an 

approximate Gaussian random field by convolving a normal distributed random field with a 

Gaussian filter with a standard deviation of 2.5 (Lie et al., 2012).  

Permeability values are further generated from the porosity values using the Carmen-Kozeny 

relationship (Lie et al., 2012) as given by Eq. (2.24) 

 
3

2 2
1

2 (1 )
c

c
v c

k
A


 




    (2.24) 

In Eq. (2.24), ck  is the permeability of cell c, c  is the porosity of cell c, vA  is the surface area of 

spherical uniform grains with a constant diameter of 10×10-6 m and  is the tortuosity with a 

value of 0.81 (Lie et al. 2012). The irreducible water saturation ( cS ) values for each cell c were 

generated next from the porosity and permeability values using the Wyllie and Rose equation as 

given in Eq. (2.25) 

 
22.25100 c

c
c

k
S
 

  
 

    (2.25) 

To evaluate the static measures for different geological realizations in this case study, the 

threshold porosity is set as 0 0.25   and the threshold permeability is set as 13 2
0 1 10k m   to 

determine whether a cell is net or non-net.  
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2.5.2 Static measure based ranking 
The static measure based ranking method is applied to the different case studies to select a subset 

of 10 realizations from the superset of 100 realizations. In the static measure based ranking 

methods, all of the 100 realizations in the superset are sorted in ascending order based on a single 

static measure value. Ten realizations are evenly selected from the sorted list corresponding to 

ranks of 1, 12, 23, 34, 45, 56, 67, 78, 89 and 100. Realizations with ranks of 1 and 100 from the 

sorted list ensure that the realizations with the best and worst performance, as denoted by the 

static measures, are incorporated in the selected subset of realizations. In this study, the 

following static measures are used to perform realization reduction using the ranking based 

method: netK , net ,  netS , netF , LCF , netPV , OOIP , netOIP and localCHV .The performance of the 

selected subset of realizations using the proposed realization reduction framework is compared to 

the selected realizations using static measure based ranking method.  

 

2.5.3 Case Study 1 
The reservoir model used in case sudy 1 consists of a two-dimensional grid with a size of  21 × 

21 cells (441 cells) where each grid cell has dimensions of 5m × 5m in the X and Y directions, 

respectively. To check the performance of the proposed realization reduction method, Matlab 

Reservoir Simulation Toolbox (MRST) (Lie et al., 2012) is used to perform reservoir simulations 

on different geological realizations to obtain the production parameters for validation. The 

reservoir simulation is performed using 3 injector wells and 5 producer wells in MRST to 

calculate the COP and NPV of oil production for all the 100 geological realizations of the 

reservoir grid. The injector well locations are fixed at grid positions of [1 1], [1 11] and [1 21]. 

The producer well locations are fixed at grid positions of [21 1], [21 6], [21 11], [21 16] and [21 

21]. The porosity and permeability distribution of the seventy-fifth realization are given in Figs. 

2.1 and 2.2, respectively. The injector (I1, I2, I3) and producer (P1, P2, P3, P4, P5) well locations 

for the two dimensional grid is shown in Fig. 2.1.  
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Figure 2.1 Porosity distribution of the Case 1 grid for the seventy-fifth realization from the 

superset 

 

 

Figure 2.2 Permeability (m2) distribution of the Case 1 grid for the seventy-fifth realization 
from the superset 

 
The fluid properties and the economic data used in the reservoir simulation to obtain the NPV 

and COP for all the realizations are given in Table 2.1.   
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Table 2.1 Case study 1 parameters 

The total time horizon for the reservoir simulation is 500 days with 10 equal time periods. Oil 

production is calculated at each time period and the COP value is the cumulative oil production 

at the final time period. 

Applying the proposed realization reduction method, 10 realizations are selected from the 

superset of 100 realizations. The ID of the 10 selected realizations and the new probabilities of 

the realizations in the reduced subset are given in Table 2.2. The proposed MILP model had 100 

binary variables representing all the realizations in the superset. The CPU time for solving the 

proposed optimization model, using a computer system with 3.2GHz processor and 8 GB RAM, 

is less than a second. The NPV and COP values associated with the selected realizations are also 

provided in Table 2.2.  

Parameter Value 
Initial pressure pi 0 psi 
Oil viscosity μo at pi 5 cp 
Water viscosity μw at pi 1 cp 
Oil density ρo 859 kg/m3 
Water density ρw 1,014 kg/m3 
Relative permeability exponent for oil no 2 
Relative permeability exponent for water nw 2 
Residual phase saturation for oil Sro 0 
Residual phase saturation for water Srw 0 
Relative permeability for oil  kwmo at Sro 1 
Relative permeability for water  kwmw at  Srw 1 
Oil Price 100$/stb 
Water Production Cost 10$/stb 
Water Injection Cost 10$/stb 
Discount Rate 0% 
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Table 2.2 Realizations selected using the proposed method for case 1 

Realization ID Probability NPV ($) COP (m3/day) 

1 0.15 1,007,970 1,679 
3 0.19 941,162 1,618 
13 0.03 857,397 1,490 
31 0.13 899,902 1,543 
32 0.07 854,068 1,455 
48 0.02 1,077,550 1,832 
63 0.09 1,029,220 1,755 
65 0.13 1,004,200 1,719 
85 0.01 1,115,370 1,860 
94 0.18 946,938 1,605 

Static measure based ranking method is applied to obtain a subset of 10 realizations from the 

superset and the results are reported in Appendix A. The selected realization id, the 

corresponding static measure value, COP and NPV value from flow simulation for case study 1 

are reported in Table A.1 in Appendix A.  

Histogram and CDF plot showing the distribution between the original superset of 100 

realizations and selected subset of 10 realizations using the proposed method is given in Figs. 2.3 

and 2.4, respectively. It is evident from the histograms that the shape of the distributions between 

all the realizations and selected realizations using the proposed method is very similar. The 

histogram and CDF plot also shows the distributions of selected subset of realizations from netK , 

LCF  and netOIP  based ranking. The other ranking based methods have significantly different 

distributions compared the full set of realizations. 
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Figure 2.3 Histograms using NPV for (i) superset of all 100 realizations (top) and 10 

selected realizations using (ii) the proposed method, (iii) Knet ranking, (iv) FLC ranking 
and (v) OIPnet ranking 

 

The CDF plot shows that the selected realizations from the proposed method almost cover the 

entire distribution of the original superset of realizations. LCF based ranking method does not 

incorporate realizations from the superset which denote the best and worst performances in terms 

of NPV. On the other hand, netK based ranking method does a good job of incorporating the 

realizations denoting the best and worst NPV amongst the original full set of realizations. 
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Figure 2.4 CDF plot comparison using NPV between the superset of realizations and 
selected set of realizations using (i) the proposed method, (iii) Knet ranking, (iv) FLC 

ranking and (v) OIPnet ranking 

 

Plots of COP versus time period for the selected subset of realizations using the proposed 

method and different static measure based ranking method are given in Fig. 2.5. The COP plots 

of the selected realizations (green) are superimposed over the COP plots of all the realizations in 

the superset (grey) to compare how the selected realizations are distributed amongst the superset 

of realizations. The COP plots of the selected realizations from the proposed method evenly 

cover the entire range of COP plots from the full set of realizations. The selected realizations are 

spread throughout the superset of realizations confirming that the proposed method selects a 

subset of realization which has identical characteristics to the superset of realizations.  The COP 

plots for the selected realizations using LCF  and netOIP ranking does not incorporate realizations 

which have lower oil production values from the full set of realizations. 
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Figure 2.5 COP versus time plot for 10 realizations selected from (i) the proposed method, 
(iii) Knet ranking, (iv) FLC ranking and (v) OIPnet ranking 

To check the quality of the selected realizations, expected production parameters are also 

calculated for comparison. The expected COP is calculated by the summation of all the products 

between the probability of selecting a realization and the corresponding COP values of that 

realization, as given by the following equation 

.Expected i i
i

COP COP p (2.26) 

where ip  is the probability of a selected realization i  and iCOP  is the corresponding COP value 

of that selected realization. The expected COP for the subset of realizations obtained using the 

proposed method is calculated using Eq. (2.26). Selected realizations using the static measure 

based ranking methods have equal probabilities of being selected, and therefore, the expected 

COP for the subset of realizations is the mathematical average of the COP values for the selected 

realizations. Using a similar idea, the expected NPV is calculated using Eq. (2.27) 
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 .Expected i i
i

NPV NPV p     (2.27) 

where ip  is the probability of a selected realization i  and iNPV  is the corresponding NPV 

value. Similarly, the expected NPV from the static measure based ranking method is the 

mathematical average of the NPVs of the selected realizations since all the selected realizations 

have equal probabilities.  

The highest, lowest, and expected values of both NPV and COP of the superset of 100 

realizations, the subset of 10 realizations using the proposed method and the subset of 10 

realizations using  ranking method based on various single static measures are given in Table 

2.3. The proposed method has an expected NPV and COP value which is close to the expected 

NPV and COP value of the superset of all the realizations. The realization with the maximum 

NPV and COP value of the superset of realizations is incorporated in the subset of realizations 

obtained from the proposed method. In this case study, ranking based on net and OOIP have the 

realizations denoting both the best and worst case performance from the superset of realizations.  

 

Table 2.3 Reservoir simulation results of all realizations and selected realizations of case 1 

 maxNPV
(×106) 

minNPV
(×106) 

expNPV
(×106) 

maxCOP
(×103) 

minCOP
(×103) 

expCOP
(×103) 

All realizations 1.115 0.837 0.964 1.860 1.429 1.627 
Proposed method 1.115 0.854 0.959 1.860 1.455 1.632 
Ranking       

netK  1.115 0.854 0.973 1.860 1.455 1.646 

net  1.115 0.837 0.967 1.860 1.429 1.636 
,iw netS  1.115 0.853 0.971 1.860 1.455 1.640 

netF  1.115 0.902 0.978 1.860 1.501 1.648 

LCF  1.044 0.894 0.963 1.760 1.494 1.628 

netPV  1.115 0.867 0.972 1.860 1.472 1.654 
O O IP  1.115 0.837 0.966 1.860 1.429 1.646 

netOIP  1.115 0.902 0.976 1.860 1.501 1.657 

localCHV  1.044 0.894 0.963 1.760 1.494 1.628 
Note: NPVmax, NPVmin and NPVexp are the maximum, minimum and expected NPV from all/selected 
realizations, respectively; COPmax, COPmin and COPexp are the maximum, minimum and expected COP 
from all/selected realizations, respectively. 
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An expected COP plot, as calculated using Eq. (2.26), is generated to compare the performance 

of the proposed realizations reduction method. The expected COP plot which compares the 

expected COP of the proposed method and the various single static measure based traditional 

ranking method at each time period is given in Fig. 2.6. The part of the plot at the eight time 

period is magnified to closely visualize the figure. It is desired to have the expected COP from 

the realization reduction methods close to the expected COP of the full set of realizations. The 

magnified part of Fig. 2.6 confirms that the expected COP of the reduced set of realizations using 

the proposed method at the 8th time period is close to the expected COP from all the realizations. 

However, the expected COP from LCF and localCHV  ranking is the closest to the expected COP of 

the superset of all the realizations. Other ranking based methods have expected COP values 

much higher than the expected COP from all the realizations in the superset.  

 

Figure 2.6 Expected COP plots of the different realization reduction methods; the figure 
inside is a magnified version of the plot to show the details 
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2.5.4 Case Study 2 
Case study 2 has a larger reservoir grid with different number and location of wells as compared 

to the previous case study. In case study 2, a two-dimensional model consisting of 40 × 40 grid 

cells (1600 total cells) with dimensions of 5m in both X and Y directions is generated. Grid 

locations of 4 vertical injectors at [8 35], [16 35], [24 35], [32 35] and 4 vertical producers at [8 

5], [16 5], [24 5], [32 5] were fixed in the reservoir. The porosity and permeability distributions 

of the seventy-fifth realization are given in Figs. 2.7 and 2.8 respectively. In addition, the fixed 

injector (I1, I2, I3, I4) and producer (P1, P2, P3, P4) locations are given in Fig. 2.7.  
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Figure 2.7 Porosity distribution of the Case 2 grid for the seventy-fifth realization from the 
superset 

Figure 2.8 Permeability (m2) distribution of the Case 2 grid for the seventy-fifth realization 
from the superset 
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MRST reservoir simulator is used to obtain the performance paramaters of NPV and COP from 

the oil production data.  The fluid properties used in the reservoir simulation for case study 2 are 

given in Table 2.4. The economic data used for calculation of NPV is also provided in Table 2.4.  

 

Table 2.4 Case study 2 parameters 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

The total reservoir simulation time horizon for case study 2 is 3000 days. The total time is 

divided into 10 equal periods for the calculation of both NPV and COP. 

 

The static measures for case 2 are calculated in a pre-processing step since the static measure 

values were used in the distance calculation of the proposed method. The proposed MILP model 

had 100 binary variables corresponding to each realization in the superset. Similar to the 

previous case, the computational processing time for solving the proposed MILP realization 

reduction model is less than a second. Applying the proposed method, the 10 selected 

realizations’ ID and the new probabilities of those realizations obtained from the proposed 

method are given in Table 2.5, along with the associated flow simulation NPV and COP values. 

As expected, a broad range of NPV and COP values are covered by the selected realizations 

from the proposed method.  

Parameter Value 
Initial pressure pi 5,080 psi 
Oil viscosity μo at pi 1.18 cp 
Water viscosity μw at pi 0.325 cp 
Oil density ρo 865 kg/m3 
Water density ρw 929 kg/m3 
Relative permeability exponent for oil no 2 
Relative permeability exponent for water nw 2 
Residual phase saturation for oil Sro 0 
Residual phase saturation for water Srw 0 
Relative permeability for oil  kwmo at Sro 1 
Relative permeability for water  kwmw at  Srw 1 
Oil Price 86$/stb 
Water Production Cost 36$/stb 
Water Injection Cost 18$/stb 
Discount Rate 0% 
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Table 2.5 Realizations selected using the proposed method for case 2 

Realization ID Probability NPV ($) COP (m3/day) 
3 0.17 1,276,140 5,091 
25 0.01 1,427,390 5,608 
33 0.15 1,344,940 5,212 
46 0.14 1,238,330 4,846 
59 0.02 1,150,250 4,545 
73 0.15 1,342,980 5,269 
76 0.03 1,457,430 5,640 
89 0.13 1,374,660 5,368 
92 0.15 1,230,330 4,959 
97 0.05 1,183,520 4,596 

The ranking based on a single static measure is applied and the realization ID, corresponding 

static measure value, COP and NPV value from the flow simulation for case 2 are reported in 

Table A.2 in Appendix A. Figure 2.9 shows the histogram of the superset of realization and the 

selected subset of realizations obtained using the proposed method and netK , LCF  and netOIP

based ranking methods. It is clearly evident from the shape of the frequency distribution that the 

distribution from the proposed method is very similar to the distribution of the superset of all 

realizations. The similar shape of both the histograms confirms the similarity in the statistical 

distribution of the reduced realizations from proposed method and the full set of realizations. 

Both the extreme NPV values of the histogram for all the realizations are also covered by the 

histograms of the proposed method. The distributions of other ranking based methods have either 

significantly different shape than the distribution of the NPV for all the realizations or do not 

cover both extremes of the histogram for all the realizations. 
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Figure 2.9 Histograms using NPV for (i) superset of all 100 realizations (top) and 10 

selected realizations using (ii) the proposed method, (iii) Knet ranking, (iv) FLC ranking 
and (v) OIPnet ranking 

 

The CDF plot of the full set of realizations and the selected set of realization obtained from the 

proposed method and other ranking based method is given in Fig. 2.10. The CDF plot further 

confirms that the proposed method ensures that the realizations representing the best and worst 

case NPV values from the superset are incorporated in the selected subset of realizations. No 

other ranking based realization reduction methods contain realizations with both the best and 

worst case NPVs. The CDF plot for the proposed method does not deviate significantly from the 

CDF plot of all the realizations. Fig. 2.10 reaffirms the similarity in the distribution of the subset 

of realizations from the proposed method and the superset of realizations from all the 

realizations. 
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Figure 2.10 CDF plot comparison using NPV between the superset of realizations and 
selected set of realizations using (i) the proposed method, (iii) Knet ranking, (iv) FLC 

ranking and (v) OIPnet ranking 

 

The COP versus time period plot for the 10 selected realizations from the proposed method and 

all 100 realizations from the superset are shown in Fig. 2.11. Figure 2.11 also has the COP 

versus time period plot for 10 selected realizations obtained from ranking  based methods using 

the following static measures: netK , LCF  and netOIP . The selected subset of realizations from the 

proposed method is evenly spread among the superset of realizations. Figure 2.11 confirms that 

the reduced distribution from the proposed method is a good representation of the superset of 

realizations since the reduced subset contains realizations which have the best and worst COP 

values at each time period. COP plots from selected realizations obtained using netK ranking 

method shows a very uneven spread of realizations when compared to the superset of all 

realizations.  
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Figure 2.11 COP versus time plot for 10 realizations selected from (i) the proposed method, 

(iii) Knet ranking, (iv) FLC ranking and (v) OIPnet ranking 

 

The expected COP and NPV values for the reduced subset of realizations using the proposed 

method and the ranking based methods are calculated using Eq. (2.26) and Eq. (2.27), 

respectively. The best, worst and expected NPV and COP values for all the realizations in the 

superset,  selected realizations from proposed method and selected realizations from the various 

static measure based ranking method is given in Table 2.6. Subset of realizations obtained using 

the proposed method contains both the worst and best NPV and COP values from the superset of 

realizations. The expected NPV and COP from the 10 selected realizations using the proposed 

method is very close to the average NPV and COP values of the complete set of 100 realizations. 

The proposed method selects realization ensuring the best and worst realizations are included 

and ensures that the expected NPV and COP values of the reduced distribution is close to the 

expected NPV and COP values of the superset of realizations. Amongst the ranking based 

methods, OOIP  based ranking is the only ranking based method containing the realizations 
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which has both the best and worst NPV/COP from the superset and has an expected NPV/COP 

close to that of the full set of realization. 

 

Table 2.6 Reservoir simulation results of all realizations and selected realizations for case 2 

 maxNPV
(×106) 

minNPV
(×106) 

expNPV
(×106) 

maxCOP
(×103) 

minCOP
(×103) 

expCOP
(×103) 

All realizations 1.457 1.150 1.294 5.640 4.545 5.083 
Proposed method 1.457 1.150 1.297 5.640 4.545 5.104 
Ranking       

netK  1.344 1.195 1.269 5.455 4.732 5.024 

net  1.344 1.195 1.282 5.455 4.732 5.043 
,iw netS  1.344 1.150 1.268 5.455 4.545 5.023 

netF  1.427 1.169 1.287 5.608 4.557 5.075 

LCF  1.427 1.212 1.319 5.608 4.675 5.169 

netPV  1.427 1.169 1.299 5.608 4.557 5.089 
O O IP  1.457 1.150 1.296 5.640 4.545 5.082 

netOIP  1.427 1.169 1.286 5.608 4.557 5.072 

localCHV  1.427 1.212 1.319 5.608 4.675 5.169 
 

The expected COP at each time period of the 10 selected realizations obtained from the proposed 

method and all the static measure based ranking methods are given in Fig. 2.12. The magnified 

section of the plot at the eight time period shows that the expected COP from the subset of 

realizations obtained from the proposed method is close to the expected COP from all the 100 

realizations in the superset. However, for case 2, several ranking based realization reduction 

methods have expected COP which is closer to the expected COP of the full set of realizations. 

On the other hand, some ranking based realization reduction methods have expected COP which 

show significant deviation to the expected COP of all the realizations.    
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Figure 2.12 Expected COP plots of the different realization reduction methods; the figure 

inside is a magnified version of the plot to show the details 

 

2.5.5 Case Study 3 
Case study 3 is a realistic three dimensional reservoir model with a grid size of 60 × 220 × 5 

(66000 total cells) and cell sizes of 6.096 m × 3.048 m × 0.6096 m. The reservoir has one 

vertical injector well placed at the centre of the grid with position [30 110] and four vertical 

producer wells placed at the four corners of the grid with positions [1 1], [60 1], [60 220] and [1 

220]. The reservoir grid size, fluid properties and well locations for the case study are obtained 

from the SPE 10 comparative solution project model 2 (Christie and Blunt, 2001). Figure 2.13 

shows the three dimensional grid with the mean permeability field calculated from all 100 

realizations in the superset. The locations of the vertical injector well (I1) and the four producer 

wells (P1, P2, P3, P4) are also included in Fig. 2.13.  
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Figure 2.13 Three dimensional grid structure of the mean permeability distribution (mD) 
of the reservoir with the injector and producer locations 

Detailed fluid properties and cost data used for the simulation of the given reservoir are provided 

in Table 2.7. 

 

Table 2.7 Case study 3 parameters 

 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

Parameter Value 
Initial pressure pi 6,000 psi 
Oil viscosity μo at pi 3 cp 
Water viscosity μw at pi 0.3 cp 
Oil density ρo 849 kg/m3 
Water density ρw 1,025 kg/m3 
Relative permeability exponent for oil no 2 
Relative permeability exponent for water nw 2 
Residual phase saturation for oil Sro 0.2 
Residual phase saturation for water Srw 0.2 
Relative permeability for oil  kwmo at Sro 1 
Relative permeability for water  kwmw at  Srw 1 
Oil Price 100$/stb 
Water Production Cost 10$/stb 
Water Injection Cost 10$/stb 
Discount Rate 0% 
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In addition to NPV and COP, the other production parameter evaluated in the simulator for case 

3 is the water cut of the reservoir. The simulation time horizon is set as 360 days and is divided 

into 12 equal periods.  

 

For illustrative purposes, the porosity distribution of the seventy-fifth realization is given in Fig. 

2.14. Each subfigure represents a layer of the three dimensional grid. From left to right, the 

subfigures represent the porosity distribution of layers 1 to 5 of the grid.  

 

 

Figure 2.14 Porosity distribution of the Case 3 grid layers for the seventy-fifth realization 
from the superset 

The permeability distribution of all the layers of the seventy-fifth realization, in units of milli-

Darcy, is given in Fig. 2.15.  

 

 

Figure 2.15 Permeability (mD) distribution of the Case 3 grid layers for the seventy-fifth 
realization from the superset 
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In this case study, the realization reduction results from the proposed method are compared to the 

traditional ranking method, kernel k-means clustering method and random selection method. A 

subset of 10 realizations was selected from the superset of 100 realizations to investigate the 

effectiveness of the proposed method.  

 

Based on the generated geological realizations, different static measures stated in section 2.3 are 

calculated in a pre-processing step. Those measures are used to compute the dissimilarities 

between realizations as defined in Eq. (2.12). The proposed MILP model is built next, which has 

100 binary variables corresponding to each realization in the superset. The optimization problem 

is solved using the CPLEX solver in a desktop computer with a 3.2GHz processor and 8 GB 

memory in less than one second. It is important to note that the optimization framework for the 

realization reduction method is solved very efficiently even for a large reservoir grid. The 

solution of the optimization problem includes the selected realizations’ IDs and their new 

probabilities. For comparison purposes, the selected realizations’ IDs, probabilities, NPV and 

COP values associated with the selected realizations are reported in Table 2.8. 

 

Table 2.8 Realizations selected using the proposed method for case 3 

Realization ID Probability NPV ($) COP (m3/day) 
3 0.04 43,207,700 114,482 
8 0.2 50,161,200 124,532 
20 0.11 46,223,000 118,840 
41 0.14 51,491,500 126,455 
64 0.01 55,497,500 132,245 
76 0.15 47,146,400 120,175 
79 0.05 53,198,600 128,922 
80 0.01 43,664,800 115,143 
85 0.19 49,291,600 123,274 
99 0.1 48,695,600 122,414 

-  

Results from the ranking method are the realizations’ IDs. The probabilities of the selected 

realizations are assumed to be equal (i.e., 0.1 in this case). The selected realizations’ IDs, the 

corresponding static measure values, COP and NPV value from flow simulation are reported in 

Table A.3 of Appendix A. 
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2.5.5.1 Kernel k-means clustering  
The kernel k-means clustering method proposed by Scheidt and Caers (2009) was applied to this 

case study. The workflow is as follows: 

 

1. Computation of the dissimilarity matrix. While the literature generally uses simplified 

flow simulation results to calculate the dissimilarity, the same dissimilarity values used 

by the proposed method were used for clustering in this study.  

2. Classical Multidimensional Scaling (MDS) was used to transform the dissimilarity matrix 

into reduced dimensional data in Euclidean space.  

3. Conversion of the Euclidean space to a feature space by using a Gaussian kernel (radial 

basis function) given by Eq. (2.28) 

 

2( , ) exp
2
m n

mn m n

x x
K x x


  

   
 

      (2.28) 

 

In the Gaussian kernel function, a kernel width, σ, value between 10% and 20% of the 

range of the distance measures was used based on the recommendation by Shi and Malik 

(2000). σ = 2000 was used in this study. 

4. Ten clusters were generated using k-means clustering. The realization ID closest to the 

centroid of each cluster was chosen as the representative realization from the kernel k-

means clustering.  

The realization ID, NPV and COP values from the 10 selected realizations using kernel k-means 

clustering are given in Table 2.9. All of the selected realizations of the clustering method have 

equal probabilities.  
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Table 2.9 Realizations selected using kernel k-means clustering for case 3 

Realization ID NPV ($) COP (m3/day) 
19 49,887,900 124,137 
99 48,695,600 122,414 
78 51,281,700 126,152 
66 50,017,000 124,324 
70 45,745,300 118,150 
92 53,209,000 128,937 
30 50,347,000 124,801 
87 51,628,000 126,652 
37 49,306,000 123,296 
24 47,640,100 120,888 

 
 

A subset of realizations is selected randomly to compare with the proposed method. Random 

permutation is used to generate 10 realization IDs from the superset. The realization ID, NPV 

and COP values from the 10 equiprobable randomly selected realizations are given in Table 2.10.  

 

Table 2.10 Realizations selected using random selection for case 3 

Realization ID NPV ($) COP (m3/day) 

12 52,791,900 128,334 
15 49,003,702 122,859 
44 49,679,300 123,836 
36 51,044,700 125,809 
51 50,191,100 124,575 
2 49,371,500 123,391 
81 49,966,000 124,250 
61 52,327,100 127,663 
75 48,834,300 122,614 
67 48,086,500 121,534 

 
Histograms and CDF plots were generated for the reduced subset of realizations obtained using 

the proposed method and the complete superset of realizations. The reduced subset of 

realizations obtained using the proposed method was compared to the reduced subset of 

realizations obtained from the static measure based ranking method, kernel k-means clustering 

method and random selection method.  
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Figures 2.16 and 2.17 presents the histogram and CDF plot showing the NPV distribution of the 

original superset of 100 realizations and the selected subset of 10 realizations using the proposed 

method, respectively. The shapes of the histogram in Fig. 2.16 between the superset of 

realizations and the selected subset of realizations obtained using the proposed method confirms 

similarities in the statistical characteristics between the two distributions. In comparison, the 

histograms of the selected realizations obtained by k-means clustering, netK  based ranking and 

random selection have a significantly different shape than the histogram from the superset. 

Figure 2.16 Histograms using NPV for  (i) superset of 100 realizations (top) and 10 selected 
realizations using (ii) the proposed method, (iii) kernel k-means clustering, (iv) Knet 

ranking and (v) random selection 

In addition to the CDF plot of the proposed method, Fig. 2.17 also has the CDF plots of the 

selected realizations obtained by random selection, k-means clustering and netK based ranking. It 

is evident from the CDF plots that the selected subset of realizations using the proposed method 

contains the realizations which have the maximum and minimum NPV values of the superset of 
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realizations. It is clearly evident that the distributions obtained from the subset of realizations 

using random selection and k-means clustering are a poor representation of the superset and 

neither of these methods incorporate the maximum or minimum NPV from the superset of 

realizations. 

 

 

Figure 2.17 CDF plot comparison using NPV between the superset of realizations and 
selected set of realizations using (i) the proposed method, (ii) kernel k-means clustering, 

(iii) Knet ranking and (iv) random selection 

 

Figure 2.18 shows the plot of COP versus time period for the 10 realizations selected from the 

proposed method, kernel k-means clustering, random selection and netK  ranking. Plots for the 

reduced realizations are all superimposed over the COP versus time plots for all 100 realizations 

from the original set of realizations. Figure 2.18 confirms that the selected subset of realizations 

from the proposed method generates a distribution that is a good representation of the 

distribution of the original superset as the selected realizations evenly covers the entire range of 

the original superset of realizations. The other realizations reduction methods have COP plots 

which are skewed and as a result not evenly covering the COP plots of the superset of all the 

realizations. 
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Figure 2.18 COP versus time plot for 10 realizations selected from (i) the proposed method, 
(ii) kernel k-means clustering, (iii) Knet ranking and (iv) random selection 

The maximum, minimum and expected NPV and COP values for the different realization 

reduction methods are given in Table 2.11. The proposed method selects realizations to preserve 

the characteristics of the superset, and this is verified by the small difference between the 

expected NPV value of the selected realizations by the proposed method (i.e., 4.901×107) and the 

expected NPV from all of the realizations (i.e., 4.907×107). The expected COP from the selected 

subset of realizations using the proposed method (1.229×107) is also very close to the expected 

COP from the superset of realizations (1.230×107). The proposed method leads to results 

containing the realization with the maximum and minimum NPV and COP values from the 

original full set of realizations as can be seen in Table 2.11. The other realization reduction 

methods’ results generally do not contain the realizations representing the maximum and 

minimum NPV and COP values. 
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Table 2.11 Reservoir simulation results of all realizations and selected realizations for case 
3 

 maxNPV
(×107) 

minNPV
(×107) 

expNPV
(×107) 

maxCOP
(×105) 

minCOP
(×105) 

expCOP
(×105) 

All realizations 5.550 4.321 4.907 1.322 1.145 1.230 
Proposed method 5.550 4.321 4.901 1.322 1.145 1.229 
Ranking       

netK  5.550 4.366 4.920 1.322 1.151 1.231 

net  5.550 4.366 4.941 1.322 1.151 1.234 
,iw netS  5.550 4.366 4.958 1.322 1.151 1.237 

netF  5.550 4.366 4.900 1.322 1.151 1.229 

LCF  5.550 4.491 5.007 1.322 1.169 1.244 

netPV  5.550 4.366 4.895 1.322 1.151 1.228 
O O IP  5.550 4.366 4.926 1.322 1.151 1.232 

netOIP  5.550 4.366 4.895 1.322 1.151 1.228 

localCHV  5.550 4.491 5.007 1.322 1.169 1.244 
Clustering 5.321 4.575 4.978 1.289 1.182 1.240 
Random 5.279 4.809 5.013 1.283 1.215 1.245 

 

The plots showing the expected COP values for the selected subset of realizations at different 

time periods using the proposed method, clustering method, random selection and ranking 

methods are shown in Fig. 2.19. A magnified part of the plot around the tenth time period shows 

that the expected COP of the selected realizations using the proposed method is closest to the 

expected COP of the full set of realizations. The expected COP values of the subset of 

realizations selected using random selection and kernel k-means clustering significantly deviate 

from the expected COP of the full set of realizations. Compared to the single static measure 

based ranking method, the proposed method and netK  based ranking method provides an 

expected COP value which is very close to that of the original superset of realizations.  
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Figure 2.19 Expected COP plots of the different realization reduction methods; the figure 
inside is a magnified version of the plot to show the details 

A further study was generated to check how the proposed realization reduction method 

represents the superset of realizations in the case of local reservoir performance criteria such as 

water cut and breakthrough time.  The water cut versus the time period plot for the selected 

realizations using different realization reduction methods is given in Fig. 2.20. To see how 

similar the distribution of the reduced realization is to that of the original superset of realizations, 

the water cut plots of selected realizations are superimposed over the water cut plots of all of the 

realizations in the superset. A magnified version of the water cut plots around the fourth time 

period is provided in Fig. 2.21 to show the water breakthrough of the selected realizations. The 

water cut plots confirm that the reduced subset of realizations from the proposed method is a 

good representation of the superset of realizations. Specifically, the maximum and minimum 

water cuts at each time period are recovered very well by the proposed method, while the 

selected realizations using random selection, k-means clustering or netK  based ranking do not 

cover the entire range of water cut plots for all of the realizations in the superset. It is evident 
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from Fig. 2.21, that the proposed method incorporates realizations which have the highest and 

lowest water breakthrough time among the superset of realizations. 

 

Figure 2.20 Water cut plots for 10 realizations selected from (i) the proposed method, (ii) 
kernel k-means clustering, (iii) Knet ranking and (iv) random selection.  

 

Figure 2.21 Water cut profiles around the fourth period 
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The results demonstrate that the proposed method generates a subset of realizations which gives 

a good representation of the superset of realizations in local criterion such as water cut. 

 

An extension of case study 3 is created on a new set of geological realizations to further evaluate 

the proposed realization reduction method to a realistic reservoir grid. The reservoir size, number 

and locations of producer/injector wells, fluid properties and economic parameters used in this 

additional study are same as that of case study 3. A new superset of 200 geological realizations is 

generated for the reservoir. Two different subset of realization are selected from the superset of 

200 geological realizations. The first subset consisted of 10 realizations to be selected from the 

superset and the second subset consisted of 20 realizations to be selected from the superset. 

Similar to case study 3, the proposed realization reduction method is compared to realization 

reduction methods of k-means clustering, random selection and ranking based methods.  

 

The results of the supporting case 3 study are given in Appendix B. The results from selecting 20 

realizations from the superset of 200 realizations are given in Figs. B.1 to B.4. Table B.1 gives 

the maximum, minimum and expected NPV/COP for the different realization reduction methods 

in selecting 20 realizations from a superset of 200 realizations. The results from selecting 10 

realizations from the superset of 200 realizations are given in Figs. B.5 to B.8. The maximum, 

minimum and expected NPV and COP is given in Table B.2  for the various realization reduction 

methods in the case of selecting 10 realizations from a superset of 200 realizations.  

 

The results of selecting two different subsets of realization from a superset of 200 realizations 

consistently shows that the subset of realizations selected using the proposed method has a 

statistical distribution which is very similar to the superset of all the realizations. In addition, the 

proposed method ensures the realizations showing the maximum and minimum performance 

from the superset of all the realizations are incorporated in the selected subset.  
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2.6 Conclusion 

A mixed integer linear optimization model is proposed to reduce the geological uncertainty in 

reservoir simulations by selecting a small subset of realizations from a larger superset of 

realizations. The proposed realization reduction method minimizes the probability distance 

between the original distribution of the superset of realizations and that of the reduced subset of 

realizations. The proposed realization reduction method calculates the probability distance 

between realizations using the geological property of the reservoir and static measures. The 

proposed method not only selects a smaller subset of realizations, but also assigns a new 

probability to each of those realizations. The proposed method is efficient and computationally 

inexpensive compared to other simplified flow based methods. As a result, the proposed method 

is a good candidate for complex realistic reservoirs. The case studies demonstrated that the 

selected realizations from the proposed method have very close statistical characteristics to the 

original distribution of the superset of all realizations. In comparison to realizations reduction 

methods of; ranking, kernel k-means clustering or random selection, the proposed method leads 

to a distribution which is a closer representation of the distribution obtained from all the 

realizations in the superset. The selected realizations from the proposed method have a good 

coverage of the superset of realizations in terms of the maximum, minimum and expected 

performances. The proposed method will be very useful for quantifying uncertainty in reservoir 

performance and reservoir development decision making. 



51 

Chapter 3 
Vertical Well Placement Optimization Under

Uncertainty 

3.1 Background and Literature Review 

The production amount of oil from reservoirs greatly depends on the well locations and the 

geological property of the reservoir. To achieve the maximum economic benefit, well placement 

optimization is necessary for determining the best locations for placing wells in a reservoir. 

Reservoir flow simulation is commonly used in well placement optimization problems. The well 

positions is determined by maximizing the output variable of interest such as the cumulative oil 

production (COP) or net present value (NPV) generated by a reservoir flow simulator. The 

objective function for the well placement optimization at each set of well position is obtained by 

running the reservoir flow simulator. As a result, the computational time for the flow simulator 

significantly increases with increasing size of the reservoir grid and the number of wells to be 

placed. The complexity of the well placement optimization problem is further increased by 

incorporating uncertainty associated with geological properties of the reservoir. Geological 

uncertainty in well placement optimization is reduced by incorporating multiple geological 

realizations of the reservoir in the optimization model. However, using a large number of 

realizations in well placement optimization is computationally infeasible and hence a smaller 

subset of realizations are selected and used in the well placement optimization model to account 

for geological uncertainty.  

In the literature, different methods have been used in well placement optimization to determine 

optimal well positions of a reservoir. In most cases, the objective function for the well placement 

optimization problem is to maximize the NPV or COP (Nasrabadi et al., 2012). Optimization 

methods used in well placement include: mixed integer programming (Rosenwald and Green, 

1974), gradient-based optimization using finite difference method (Bangerth et al., 2006), 

genetic algorithms (Bittencourt and Horne, 1997), simulated annealing (Beckner and Song, 

1995) and particle swarm optimization (Onwunalu and Durlofsky, 2010), etc. To capture the 
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geological uncertainty, calculation of COP or NPV is often based on flow simulation on multiple 

geological realizations. However, since flow simulation for a large number of realizations is a 

very computationally demanding task and impractical for larger realistic reservoirs with multiple 

wells, reducing the number of geological realizations for flow simulation becomes an important 

step in well placement optimization. Yeten et al. (2003) used the approach of using multiple 

equiprobable geological realizations in the determination of objective function of well placement 

optimization to account for the geological uncertainty associated in a reservoir. Since the use of 

multiple realizations in the well placement optimization results in an excessive number of 

reservoir simulations, Wang et al. (2012) selected a smaller subset of realization to quantify 

geological uncertainty in well placement optimization using k-means clustering. K-means 

clustering uses cumulative field oil production which requires to be calculated for every possible 

locations of well and therefore is computationally intensive. Yasari et al. (2013) used robust well 

placement optimization under uncertainty using a risk weighted objective function for multiple 

realizations. They selected a subset of realization from a superset by calculating the NPV for all 

the realizations using base case well position and then used ranking to select the small subset of 

realization. Similarly, Yang et al. (2011) combined Steam Assisted Gravity Drainage (SAGD) 

well production and placement optimization under uncertainty by selecting a subset of 

realizations using traditional ranking method based on the NPV of all the realizations for a base 

case scenario.   

3.2 Problem Statement 

In this chapter, vertical well placement optimization considering geological uncertainty is 

studied. The well placement optimization problem is solved using derivative free optimization 

method. Geological uncertainty is considered by selecting and incorporating a reduced subset of 

geological realization from a superset of realization in the well placement optimization model. 

An optimal realization reduction method using geological property of the reservoir and static 

measures is used in selecting the subset of realization. The objective function of the robust well 

placement optimization is a risk averted expected COP calculated from using a reduced number 

of realizations obtained from the optimal realization reduction method on a reservoir with fixed 
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number of wells. The well placement plan and performance parameters (COP and NPV) of well 

placement optimization results using the selected realizations from the optimal realization 

reduction method is compared to the well plan and performance parameters of well placement 

optimization  results using all the realizations in the superset.  

 

3.3 Robust Well Placement Optimization  
 

Well placement optimization is a computational intensive task. To evaluate the performance of a 

certain well placement plan (i.e., the decision variables), a reservoir flow simulation is performed 

for multiple geological realizations. So it is a simulation based optimization problem. Since there 

is no explicit objective function of the decision variables, derivative free optimization method is 

used in this work. Specifically, the derivative free optimization solver NOMAD is used in this 

work. NOMAD implements the Mesh Adaptive Direct Search (MADS) algorithm for 

constrained blackbox functions. The MADS algorithm is an extension of pattern search method 

for nonlinear constrained optimization problems and therefore is a derivative free method (Audet 

et al., 2009). In this work, the objective function for the well placement optimization problem is 

designed as maximizing the risk averted expected cumulative oil production from a set of 

realizations as given by (3.1). 

Max 2
xp

1

( )
RN

risk Expected i i E ected
i

COP COP p COP COP


       (3.1) 

where the expected COP is given by  

1

RN

Expected i i
i

C O P p C O P


          (3.2) 

In Eqs. (3.1) and (3.2), NR is the number of realizations used to determine the geological 

uncertainty, pi is the probability of a geological realization i , COPi is the cumulative oil 

production of realization i, γ is the risk averted factor. The blackbox function is the reservoir 

simulator which determines the COP value based on the positions of the producer wells. 

The robust well placement optimization used in this study is summarized in a flow diagram as 

given in Fig. 3.1. The steps in the well placement optimization under uncertainty are: 
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 Generate large number of geological realizations using a geostatistical method. 

 Select a smaller subset from those realizations using the proposed realization reduction 

model. The realization reduction model minimizes the probability distance between the 

discrete distribution represented by the superset of realizations and the reduced discrete 

distribution represented by the selected realizations. 

 Using the selected subset of realizations, perform well placement optimization by 

maximizing the objective function as given by Eq. (3.1). Each function evaluation calls 

on the reservoir simulator to calculate the COP. 

 The optimal well locations using the subset of realizations is obtained when the stopping 

criteria for the optimizer is satisfied. The stopping criterion for the optimizer is the 

maximum number of iterations. 

 Similarly, robust well placement optimization is also performed using all the realizations 

in the superset to obtain the optimal well locations from all the realizations. The well 

placement plan using the reduced subset of realizations obtained from the proposed 

method is compared to the well placement plan obtained using all the realizations in the 

superset.  



55 
 

 
 
 

Figure 3.1 Workflow for well placement optimization under uncertainty 

 

3.4 Geological Uncertainty Reduction 
 
Uncertainty associated with the geological properties of a reservoir may result in either higher or 

lower estimate of the production parameter. As a result, it is very important to consider 

geological uncertainty in well placement optimization to ensure feasibility and profitability of the 
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oil extraction process. In this study, the optimal realization reduction model given in Section 2.4 

is used to select a subset of realizations. The selected subset of realizations is then used in the 

evaluation of the objective function of the well placement optimization problem.   

The optimal realization reduction model based on mixed integer linear optimization (MILP) 

technique is used to select a smaller subset of realizations from the superset of realizations 

(Rahim et al., 2014). The proposed algorithm uses reservoir geological properties and static 

measures to quantify the dissimilarity between realizations, and uses Kantorovich distance to 

quantify the probability distance between the superset and the subset of realizations. The 

objective is to find out the optimal subset which has a similar statistical distribution characteristic 

to the superset of realizations. The complete MILP optimization model is explained in Section 

2.4 and is composed of Eqs. (2.16) to (2.23).  

In the calculation of the dissimilarity  , 'i ic  between realizations i and i’ for the realization 

reduction method, both geological properties and static measures are used. The geological 

properties used for the dissimilarity calculation are the porosity and permeability of the reservoir. 

The static measures used for the dissimilarity calculation between realizations are: netK , net , netS , 

netF , netPV , OOIP  and netOIP . Complete definition and equations used to determine the static 

measures are provided in Section 2.3. The above static measures are selected to determine the 

dissimilarity between the realizations since these static measures are properties of the reservoir 

and independent of the location of wells within the reservoir. As a result, the static measures are 

calculated once in the pre-processing step and therefore not required to be calculated for every 

set of producer well location evaluated during the well placement optimization. This reduces any 

additional complexity in the optimal realization reduction method caused by recalculation of the 

static measure every time a different well placement plan is generated by the blackbox optimizer. 
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3.5 Case Study  
 

3.5.1 Case Study 1 
Application of the proposed geological realization reduction method in well placement 

optimization is illustrated using a two dimensional reservoir model with 50 × 50 grid size (2500 

total cells) and each cell having dimensions of 5m × 5m. The reservoir has 5 fixed vertical 

injector well placed at grid positions: [8 45], [16 45], [24 45], [32 45] and [40 45]. The numbers 

of vertical producer well are fixed at 5. The objective function for the well placement 

optimization is evaluated using Matlab Reservoir Simulation Toolbox (MRST) (Lie et al., 2012) 

on different geological realizations. MRST provided the COP for each Producer well location 

plan selected by the optimizer. The simulation time horizon for the simulator is set as 3000 days 

divided into 10 equal periods. The fluid properties used by the MRST reservoir simulator are 

provided in Table 3.1. 

 
Table 3.1 Case study 1 parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The NPV was also obtained from the reservoir simulator. The cost data used in the calculation of 

the NPV are given in Table 3.2.  

 

 

 

 

Parameter Value 
Initial pressure po 5080 psi 
Oil viscosity μo at po 1.18 cp 
Water viscosity μw at po 0.325 cp 
Oil density ρo 865 kg/m3 
Water density ρw 929 kg/m3 
Relative permeability exponent for oil no 2 
Relative permeability exponent for water nw 2 
Residual phase saturation for oil Sro 0 
Residual phase saturation for water Srw 0 
Relative permeability for oil  kwmo at Sro 1 
Relative permeability for water  kwmw at  Srw 1 
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Table 3.2 Case Study 1 economic parameters 

Parameter Value 
Oil Price ($/STB) 86 
Water Production Cost ($/STB) 36 
Water Injection Cost ($/STB) 18 
Discount Rate (%) 0 

In this study, 100 realizations are generated to create a superset of realizations. A smaller subset 

of realization is selected from the superset of realizations to incorporate uncertainty associated 

with the geological property of the reservoir in the vertical well placement optimization. For 

each realization, porosity values of the reservoir grid are generated in MRST using a built-in 

function ‘Gaussian Field’ in the range of [0.1, 0.5]. The function creates an approximate 

Gaussian random field by convolving a normal distributed random field with a Gaussian filter 

with a standard deviation of 2.5 (Lie et al., 2012). Permeability values are further generated from 

the porosity values using Carmen-Kozeny relationship (Lie et al., 2012). Mathematically, 

Carmen-Kozeny relationship is given by Eq. (2.24). In the case study, the well placement 

optimization results using a subset of realizations from the proposed method are compared to 

optimization results from subset of realizations obtained using static measure based ranking 

method and random selection. 10 realizations are selected for the subset of realizations. In 

random selection, 10 realizations are arbitrarily selected from the superset of realizations.  

To evaluate the static measures for different geological realizations, a constant threshold porosity 

of 0 0.3   and threshold permeability of 13 2
0 3 10k m   is used to determine whether a cell is a 

net or non-net cell. Static measure based ranking method is applied next to obtain a subset of 10 

selected realizations from the superset of 100 realizations. In the ranking based methods, all the 

100 realizations in the superset are sorted in ascending order based on the static measure values. 

10 realizations are evenly selected from the sorted list with ranks 1, 12, 23, 34, 45, 56, 67, 78, 89, 

100. In this study, static measures of netPV and OOIP are used to perform realization reduction 

using the ranking based method. netPV  and OOIP  are calculated from Eqs. (2.8) and (2.9) 

respectively.  
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The decision variables for the case study are the X and Y locations of the 5 producer wells to be 

placed. The objective is to maximize the risk averted expected cumulative oil production after 

3000 days of simulation period.  The well placement optimization problem is simulated in an 

Intel Core i5 system using a 3.2GHz processor with 8 GB of installed memory. The well 

placement plans obtained from the well placement optimization under uncertainty for the case 

study using the subset of realizations from the optimal realization reduction method and all the 

realizations from the original superset are provided in Fig. 3.2. In Fig. 3.2, the fixed injector 

wells are denoted by blue dot and the producer well locations are denoted by red dot.  

(a)      (b) 
Figure 3.2 (a) Well placement plan using selected realizations from proposed method; (b) 

Well placement plan using full set of realizations 

It is evident from Fig. 3.2 that the producer well placement plan using a subset of realizations 

from the optimal realization reduction method is very similar to the producer locations from the 

well placement plan using all the realizations. Some of the producer wells have the same 

locations between the two different well placement plans obtained using optimization. The 

optimal producer well placement plans using selected realizations from OOIP  ranking, netPV

ranking and random selection are given in Figs. 3.3 to 3.4. 
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Figure 3.3 Well placement plan using selected realizations from OOIP ranking 

 

Figure 3.4 Well placement plan using selected realizations from PVnet ranking 
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Figure 3.5 Well placement plan using selected realizations from random selection 

The well placement plans obtained by using realizations selected from the ranking based and 

random selection method are not significantly different from the well placement plan obtained by 

using all the realizations in the superset. 

The expected COP, expected NPV, standard deviation between the COP values, standard 

deviation between the NPV values and the computational time for the well placement 

optimization methods by  using the subset of realizations using different realizations reduction 

methods and by using all the realizations in the the superset are given in Table 3.3.  

 

Table 3.3 Reservoir simulation results of all realizations and selected realizations of case 1 

 expCOP
(×104) 

expNPV
(×106) 

SDCOP
(×103) 

SDNPV
(×105) 

Simulation 
time 

(hours) 
All realizations 1.1529 2.5382 1.0004 2.2140 25 

Proposed method 1.1535 2.5482 0.9403 2.0042 2.5 

PVnet 1.1556 2.5438 1.4023 2.9852 2.5 

OOIP 1.1472 2.5200 1.4749 3.0709 2.5 

Random 1.1310 2.4983 1.2354 2.6118 2.5 
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It can be seen from Table 3.3 that the expected COP and NPV obtained from the well placement 

optimization plan from a subset of realizations obtained using the proposed optimal realization 

reduction method is very close to the expected COP and NPV from the well placement 

optimization plan obntained using all the realizations in the superset. Similarly, the standard 

deviation between the COP and NPV values obtained using the producer well plan from the 

subset of realizations using the proposed method and the producer well plan from the superset of 

realizations are very similar. Compared to the other realization reduction methods, the proposed 

method provides results which are closest to the results from using all the realizations. More 

importantly, the well placement optimization problem using a subset of realization takes only 

one-tenth of the computational time since the reservoir simulation time is greatly reduced by 

using a fraction of the realizations.  

The results for the well placement optimization are given in Figs 3.3 to 3.7. For all the results, 

the x-axis shows the number of iterations used by the NOMAD optimizer and the y-axis shows 

the output performance parameter. It is important to note that for each number of iterations used 

by the optimizer, 100 function evaluations have to be evaluated by the reservoir simulator in the 

case of using the full set of realizations in the superset. In the case of the reduced subset of 10 

realizations, 10 function evaluations have to be evaluated by calling on the reservoir simulator, 

per iteration used by the optimizer. Each of the figures contain a subplot, on the right, which 

shows the absolute difference between the output performance parameter of the well plans using 

the different realizations reduction methods with the output performance parameter of the well 

plan using all the realizations in the superset. This absolute error term is a good representation of 

the closeness of the output performance parameter obtained from the realization reduction 

methods with respect to the output performance parameter from using all the realizations in the 

superset.    

The objective function in the well placement optimization is the risk averted expected COP. The 

objective function versus the number of iterations used by the NOMAD optimizer for the 

different realization reduction methods are given in Fig. 3.3. As the number of iterations 

increases, the objective function of the well placement optimization between the superset of 
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(b) 

realizations and subset of realization  using the proposed method gets closer. The decrease in the 

objective function error as the number of iteration increases is evident from Fig. 3.3(b). 

Realization reduction using netPV  ranking has an objective function which is also very close to 

that of the full set of realizations as evident from Fig. 3.3(b), as it coincides with the objective 

function error of the proposed method. 

   
(a)      (b) 

Figure 3.6 (a) Objective function versus number of iterations using different realization 
reduction methods; (b) Error in objective function versus number of iterations using 

different realization reduction methods 

 
The expected COP versus the number of iterations for the optimizer of the different realization 

reduction methods is given in Fig. 3.4. It is clear that the the expected COP of the well placement 

plan using subset of realizations from the proposed method comes closest to the expected COP 

of the well placement plan using all the realizations as the number of iterations increases. It can 

be seen from Fig. 3.4(b) that the expected COP error from the proposed realization reduction 

method is very close to zero, confirming the similarity  with the expected COP of the well plan 

using all the realizations in the superset.  
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  (a)    
(a)      (b) 

 
Figure 3.7 (a) Expected COP versus number of iterations using different realization 

reduction methods; (b) Error in expected COP versus number of iterations using different 
realization reduction methods 

  
 

Figure 3.5 provides the plot of COP standard deviation and error in the COP standard deviation 

versus the number of iterations used by the optimizer for the different realization reduction 

methods. Figure 3.5 confirms that amongst the realization reduction methods, the subset of 

realizations selected by the proposed method has  COP standard deviation values which are 

closest to the standard deviation obtained using all the realizations in the superset. The COP 

standard deviation plot shows that all the other realization reduction methods have COP standard 

deviations which deviate significantly from the standard deviation obtained using the superset of 

all realizations.  
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(a)      (b) 

Figure 3.8 (a) COP Standard deviation versus number of iterations using different 
realization reduction methods; (b) Error in COP standard deviation versus number of 

iterations using different realization reduction methods 

 
The expected NPV and NPV standard deviation  plots versus the number of iterations used by 

the optimizer are given in Figs. 3.6 and 3.7, respectively. The expected NPV obtained from the 

proposed realization reduction method and netPV ranking method are both very close to the 

expected NPV of the full set of realization as shown in Fig. 3.6. Less variability is observed 

between the expected NPV values when compard to the expected COP values of all the different 

realization reduction methods.   
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(a)      (b) 

Figure 3.9 (a) Expected NPV versus number of iterations using different realization 
reduction methods; (b) Error in expected NPV versus number of iterations using different 

realization reduction methods 

 
However, the standard deviation of the NPV values between the different realization reduction 

methods shows the proximity of the proposed method to the full set of realizations. It is evident 

that the well placement plan obtained using the subset of realizations from the proposed method 

has the closest standard deviation amongst the NPV values when compared to the standard 

deviation of NPV values from the well placement obtained using all the realizations in the 

superset. In comparison to the full set of realizations, other realization reduction methods have 

significantly different standard deviation values of the NPV. 
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(a)      (b) 
Figure 3.10 (a) NPV standard deviation versus number of iterations using different 

realization reduction methods; (b) Error in the NPV standard deviation versus number of 
iterations using different realization reduction methods 

 

3.5.2 Case Study 2 
A three dimensional reservoir model with 30 × 30 × 5 grid size (4500 total cells) and each cell 

having dimensions of 10m × 10m × 5m is investigated to illustrate the use of the proposed 

geological realization reduction method in well placement optimization. The reservoir has 3 

fixed vertical injector well placed at grid positions: [1 1], [15 15] and [30 30].The numbers of 

vertical producer well are fixed at 4. Similarly, MRST is used to evaluate the objective function 

for the well placement optimization problem on different geological realizations. COP and NPV 

are evaluated by MRST for each Producer well location plan selected by the optimizer. The 

simulation time horizon for the simulator is set as 3000 days divided into 10 equal periods. The 

fluid properties used by the MRST reservoir simulator are provided in Table 3.4.  
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Table 3.4 Case study 2 parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The cost data used in the calculation of the NPV are given in Table 3.5.  

 
Table 3.5 Case Study 2 economic parameters 

Parameter Value 
Oil Price ($/STB) 86 
Water Production Cost ($/STB) 36 
Water Injection Cost ($/STB) 18 
Discount Rate (%) 0 

 
 
A superset of 100 geological realizations consisting of porosity and permeability for the reservoir 

grid are generated using a built in MRST tool and Carmen-Kozeny relationship (Lie et al., 2012). 

A subset of 10 realizations are selected from the superset using the following; proposed 

realization reduction method, netPV based ranking method, OOIP  based ranking method and 

random selection. The robust well placement optimization plan obtained using a subset of 

realization from the proposed method and the well plan obtained using the full set of realization 

is given in Fig. 3.8. In Fig. 3.8, fixed injector locations are given by the blue dot and the 

producer locations are given by the red dot. It can be seen from Fig. 3.8 that the two producer 

positions in the upper y-axis between both the well plans are close to each other.  
 

Parameter Value 
Initial pressure po 6000 psi 
Oil viscosity μo at po 3 cp 
Water viscosity μw at po 0.3 cp 
Oil density ρo 849 kg/m3 
Water density ρw 1025 kg/m3 
Relative permeability exponent for oil no 2 
Relative permeability exponent for water nw 2 
Residual phase saturation for oil Sro 0 
Residual phase saturation for water Srw 0 
Relative permeability for oil  kwmo at Sro 1 
Relative permeability for water  kwmw at  Srw 1 
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(a)      (b) 
Figure 3.11 (a) Well placement plan using selected realizations from proposed method; (b) 

Well placement plan using full set of realizations 

The mean and variance of the COP and NPV results from well placement optimization between 

different realization reduction methods are given in Table 3.6. Both the expected COP and 

expected NPV calculated from the well placement optimization results using subset of realization 

from the proposed method is very close to the expected COP/NPV value obtained from the well 

placement optimization result using all the realizations in the superset. As expected, the 

simulation time for the optimization is significantly reduced by using one-tenth of the 

realizations from the superset. Compared to case study 1 given in section 3.5.1, the 

computational time is higher for this case study since a larger three-dimensional reservoir grid 

with higher number of cells is used. The standard deviation of the COP and NPV results from the 

proposed method are also very close to that of all the realization as well.  
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Table 3.6 Reservoir simulation results of all realizations and selected realizations of case 2 

 expCOP
(×105) 

expNPV
(×107) 

SDCOP
(×104) 

SDNPV
(×106) 

Simulation 
time 

(hours) 
All realizations 3.1381 1.3192 2.4042 1.3049 30 

Proposed method 3.1333 1.2215 2.4573 1.4816 3 

PVnet 3.1630 1.8554 3.3463 2.1002 3 

OOIP 3.1719 1.8612 3.2948 2.1153 3 

Random 3.1279 1.8404 3.4044 1.9742 3 

 

The objective function of the well placement optimization versus the number of iterations for the 

superset of all realizations and different realization reduction methods are given in Fig. 3.9. As 

the number of iterations of the optimizer increases, the objective function of the different 

realization reduction methods converge to the objective function value from the superset of all 

the realizations as shown clearly in the objective function error plot of Fig. 3.9 (b).   
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(a)      (b) 
Figure 3.12 (a) Objective function versus number of iterations using different realization 

reduction methods; (b) Error in objective function versus number of iterations using 
different realization reduction methods 

 

Figure 3.10 shows the plot of expected COP and expected COP error versus number of iterations 

for the superset of realizations and the subset of realizations. A similar trend is observed as the 

expected COP of all the different realization reduction method almost converges to the expected 

COP from all the realization as the number of iterations increases. However, from the expected 

COP error plot of Fig. 3.10 (b), the COP error of the proposed method is the closest to 0 

confirming its similarity to the expected COP of the full set of realizations. 

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5
x 105

No. of iterations

O
bj

ec
tiv

e 
Fu

nc
tio

n 
(m

3/
da

y)

 

 

ALL
Proposed
OOIP
PVnet
Random

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18
x 104

No. of iterations

O
bj

ec
tiv

e 
Fu

nc
tio

n 
E

rro
r (

m
3/

da
y)

 

 
Proposed
OOIP
PVnet
Random



72 
 

 

(a)      (b) 
Figure 3.13 (a) Expected COP versus number of iterations using different realization 

reduction methods; (b) Error in expected COP versus number of iterations using different 
realization reduction methods 

 

The standard deviation of the COP values and the COP standard devation error versus the 

number of iterations for the superset of realizations and subset of selected realizations are given 

in Fig. 3.11. It is clearly evident from the figure that the COP standard deviation of the proposed 

method has the closest resemblance to the standard deviation of the superset of all realization. 

The COP standard deviation error plot shows that all the other realization reduction methods 

have a significant deviation when compared to the COP standard deviation from all the 

realization.   
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(a)      (b) 
Figure 3.14 (a) COP Standard deviation versus number of iterations using different 

realization reduction methods; (b) Error in COP standard deviation versus number of 
iterations using different realization reduction methods 

 
The expected NPV and NPV error versus the number of iteration of the optimizer for different 

methods are given in Fig. 3.12. Figure 3.12 confirms the close proximity of the expected NPV 

value of the subset of relaiztion selected from the proposed method and expected NPV of the full 

set of realizations. The proposed method shows superior performance in comparison to the other 

realization reduction methods. 
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(a) (b) 
Figure 3.15 (a) Expected NPV versus number of iterations using different realization 

reduction methods; (b) Error in expected NPV versus number of iterations using different 
realization reduction methods 

Finally, the standard deviation for the NPV values versus the number of iterations is given in Fig. 

3.13. Furthermore, the standard deviation of the NPV values from the proposed realization 

reduction method is closest to the standard deviation  of the NPV values from all the realizations 

as evident from the NPV standard deviation error plot of Fig. 3.13 (b). All the other realization 

reduction method have a large error in the standard deviation of the NPV values. 
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(a)      (b) 
Figure 3.16 (a) NPV standard deviation versus number of iterations using different 

realization reduction methods; (b) Error in the NPV standard deviation versus number of 
iterations using different realization reduction methods 

 

Both the case study demonstrate that the proposed realization reduction method can be applied in 

the application of vertical well placement optimization for geological uncertainty reduction. The 

proposed realization reduction method has both the mean-variance values of performance 

parameters such as COP and NPV very close to the mean-variance value of performance 

paramaters such as COP and NPV from the full set of relaizations. As a result, the subset of 

realization selected from the proposed method creates a distribution with very similar 

performance parameter to that of the full set of realization. Using the subset of realization from 

the proposed method ensures similarity to the superset of all realization and at the same time 

significantly reducing the simulation time of the well placement optimization.  
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3.6 Conclusion 
 

A framework for vertical well placement optimization with geological uncertainty reduction is 

proposed in this section. The well placement optimization is formulated as a risk averted 

optimization problem by considering geological uncertainty. The optimization problem is solved 

using a derivative free optimization method. Geological uncertainty is incorporated into the 

robust optimization model which calculates the objective function based on a set of realizations 

obtained from the optimal realization reduction method. The optimal realization reduction 

method is a mixed integer linear optimization model provides a subset of realization with a 

similar statistical distribution characteristic to the superset of realizations. The realization 

reduction model used in the well placement framework is independent of well positions and 

depends on the reservoir geology. Results from the case studies show that the well placement 

optimization problem using the optimal realization reduction method is computationally very 

efficient. The well placement plan obtained using the smaller subset of realization and the well 

placement plan obtained from the superset of realizations have similar; expected COP, expected 

NPV, standard deviation of COP and standard deviation of NPV values. Using a reduced number 

of realizations obtained from the optimal realization reduction method resulted in a significant 

reduction in the computational time for the well placement optimization problem due to a 

substantial decrease in the number of function evaluations required by the optimizer. 
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Chapter 4 
SAGD Drainage Area Arrangement Optimization

4.1 Background and Literature Review 

Alberta’s oil sands are the third largest proven global reserves of oil with current estimates of 

26.6 billion cubic meter of crude oil (AER, 2014). Majority of the oil sands in Alberta are 

divided into three geological areas of Athabasca, Peace River and Cold Lake. In terms of area, 

Athabasca oil sands are the largest. Most of the bitumen reserves in Alberta’s oil sands are deep 

underground and therefore cannot be extracted using mining methods. 80% of the reserves in the 

oil sands are extractable using in situ methods whereas the remaining 20% are extractable using 

surface mining methods. The prominent in situ methods used currently in the oil sands are; 

Cyclic steam simulation (CSS), Steam assisted gravity drainage (SAGD) and primary 

development methods. SAGD accounts for almost 52% of the in situ method used to extract 

bitumen currently from the oil sands.  Currently, around 16 SAGD projects are operational in 

Alberta’s oil sands and many more are under development. Examples of some of the prominent 

SAGD operations with significant bitumen production are: MacKay River and Firebag operation 

of Suncor Energy, Foster Creek and Christina Lake operations of Cenovus Energy and Jackfish 

operations of Devon energy (AER, 2014). 

SAGD operations use super-heated steam to decrease the viscosity of the bitumen in the 

underground reservoir. As a result, the bitumen can easily flow and pumped up to the surface. 

SAGD wells consist of 2 horizontal wells which are in parallel. Steam is injected to the upper 

injector well and the melted bitumen flows to the lower producer well by gravity. The Bitumen 

from the producer well is pumped to the surface and transported to bitumen processing facilities. 

The major SAGD facilities are; Surface pad (SP), Drainage Area (DA) and Central Processing 

Facility. The SP is the surface facilities from which multiple producer and injector well pair are 

drilled. DA is the set of parallel wells under the reservoir attached to the same SP. Central 

processing facility is a surface facility which produces the super-heated steam required by each 
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of the injector wells. Steam is supplied from the central processing facility to each of the SP 

through pipelines. SAGD well pairs are drilled in areas which have a higher amount of bitumen 

as determined by the geological properties, such as porosity and permeability, of the reservoir.  

Optimization methods for the placement of SAGD DA and SP are relatively new in academia. 

Current practice of commercial placement of SAGD wells rely on reservoir characterization and 

engineering judgement. Kumar (2011) developed an optimal SAGD well arrangement using a 

space packing optimization of a compact and non-overlapping set of DA. Geometric 

transformations of global rotation, global translation and column translation are used by the 

space packing algorithm to maximize the recoverable bitumen. Restrictions such as non-

placement of SP over surface restrictions or non-placement of DA in thief zones are avoided by 

incorporating a penalty function in the objective function equation. Manchuk and Deutsch (2013) 

used an adaptive grid search algorithm to determine the optimal arrangement of DAs. The 

optimization algorithm determines the positions and orientations of the SPs and DAs over a 

reservoir area to economically maximize the recoverable bitumen. The objective function is 

maximized by the optimization algorithm by performing possible geometric transformations of 

global rotation, global translation, column rotation and column translation to a compact set of 

DA. The optimization algorithm ensures a DA is not selected if a SP cannot be placed on either 

side of that DA due to surface constraint. 

4.2 Problem Statement 

A two-stage optimization method is formulated for selecting the DA and SP arrangement of 

SAGD wells in this chapter of the thesis. The objective of the first stage is to obtain an optimal 

compact arrangement of all the DAs and SPs within the reservoir lease area by maximizing the 

available bitumen. The compact arrangement is defined by the angle of rotation and amount of 

translation in both the x and y directions of the compact set of DAs which maximize the total 

available bitumen. Objective of the second-stage of the optimization method is to provide a plan 

for initially selecting a set of DAs and SPs from the compact arrangement of all the DAs. A 
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dynamic DA and SP selection plan, which maximizes the available bitumen and at the same time 

minimizes the distance between the selected SPs, is obtained. A blackbox based derivative free 

optimization is used for the first stage and a MILP optimization model is proposed for the second 

stage of the SAGD DA arrangement optimization. Furthermore, geological uncertainty is 

incorporated to the first stage of the optimization method by using a subset of realizations 

obtained from the optimal realization reduction method. 

4.3 Available Bitumen 

In Alberta’s oil sands, bitumen deposits are found in underground porous mediums between 

impermeable rocks. The impermeable rocks play a crucial part to trap and deposit the bitumen 

under the ground. The top surface of the bitumen deposit below the impermeable section of rocks 

is defined as the top continuous bitumen (TCB) and the bottom surface of the bitumen deposit is 

defined as the bottom continuous bitumen (BCB). The BCB and TCB of a bitumen deposit are 

determined from data obtained from well logs or exploratory drills. Net continuous bitumen 

(NCB) is the total thickness between the TCB and BCB that meets certain minimum criteria for 

reservoir quality. In this study, NCB is calculated for cells which are above a critical threshold 

porosity and permeability value. A higher permeability value ensures better flow of bitumen and 

therefore higher recovery of bitumen whereas a higher porosity value ensures a higher amount of 

bitumen. As a result, NCB is a good indication of the amount of bitumen available for extraction 

by the SAGD wells. Figure 4.1 illustrates how NCB is calculated along the elevation of the 

reservoir. In Fig. 4.1, black portions of the reservoir have lower porosity and permeability value 

and therefore not included in the determination of NCB.  
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Figure 4.1 Net Continuous Bitumen Calculation 

The NCB value is used to calculate the available bitumen. Available bitumen is the quantity of 

bitumen available for production along all the wells in a single DA. It is calculated by summing 

up the NCB of all the cells inside the rectangular DA. Mathematically, available bitumen is 

given by the following expression 

.
i

available
i c c

c DA
R NCB ar



  (4.1) 

where, available
iR  is the available bitumen for i DA, cNCB is the net continuous bitumen for cell c 

and car  is the fraction of area of cell c inside i DA. Available bitumen is calculated for each of 

the DA. It is desired to place a DA which would maximize the available bitumen. This will 

ensure that the placement of SAGD wells will produce the highest amount of bitumen. In this 

study, the reservoir quality in terms of bitumen production is represented by the available 

bitumen.  
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4.4 Optimization Model 

In the optimization model, a compact and non-overlapping arrangement of DA is considered. 

Commercial SAGD well placement uses a compact arrangement of DAs to ensure maximum 

accessibility of the available resources. The compact arrangement of DAs ensures that the 

available bitumen between any 2 DAs are included in the calculation of total available bitumen. 

The DAs and SPs are rectangle in shape and two possible locations of SP are considered for each 

DA. The DA and SP dimensions are considered to be fixed in this study and as a result, fixed 

numbers of parallel injector/producer wells per DA are considered. The first step of the 

optimization model determines the position and orientation of the compact set of all the DAs, 

which can be packed within the lease area, by maximizing the available bitumen. The input from 

the first step of the optimization model is used in the second step of the optimization model to 

develop a selection plan for DAs and SPs. The detailed explanation of the optimization method is 

provided in the following subsections. 

4.4.1 Optimization workflow 
The overview of the two stages of the SAGD DA arrangement optimization method is given in 

Fig. 4.2. The optimization workflow of Fig. 4.2 is summarized as follows: 

 Initially the input to the blackbox optimizer has to be provided. The input includes the

reservoir grid, geological data of the reservoir, any surface restrictions on the reservoir

grid and the fixed dimensions of each DA and SP in the compact arrangement.

 The objective function of the blackbox optimizer is to determine the optimal orientation

and position of the compact arrangement of the entire set of DAs which maximizes the

total available bitumen. The orientation is represented by the angle of the compact DA

arrangement from the horizontal x direction. The position is represented by the

translation of the compact DA arrangement along both the x and y direction.

 The blackbox optimizer runs till the stop criteria of the optimizer is satisfied. The results

of the blackbox optimizer are the optimal orientation and location of the compact set of
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DAs. Two possible locations for SPs are fixed with respect to the location of each DA in 

the compact arrangement. The output from the blackbox optimizer is the optimal 

arrangement of all the DAs and SPs in the compact set. 

 The inputs to the second stage of the optimization method are the fixed locations of all 

the DAs and possible SPs in the compact arrangement and the number of DAs to be 

selected at a given time period. A MILP optimization model is used for the second stage 

of the optimization method.   

 The MILP optimizer selects DAs and SPs by maximizing the available bitumen and at the 

same time reducing the distance between the SPs. The MILP optimizer can be run 

multiple times to select DA and SP from the compact arrangement.  This enables a 

dynamic selection plan for DAs and SPs at different time periods.  

 The outputs from the MILP optimizer are the locations of the selected DAs and the 

corresponding SPs at the given time period.    
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Figure 4.2 Overview of Optimization method 
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4.4.2 Stage 1 - Compact arrangement of DA 
The first stage in the optimization method is to generate an initial compact arrangement of DA 

which would cover the entire grid. There is no explicit equation for the objective function 

representing the available bitumen being a function of the decision variables of orientation and 

translation of the compact set of DAs. Instead, a Matlab program (Matlab, 2012) is developed 

which calculated the total available bitumen as a function of the orientation and position of the 

compact set of DAs. Therefore, a derivative free blackbox based optimization method is used in 

this work which calls on the developed Matlab program for total available bitumen calculation. 

The derivative free optimization solver NOMAD is used in this work. NOMAD implements the 

Mesh Adaptive Direct Search (MADS) algorithm for constrained blackbox functions. The 

MADS algorithm is an extension of pattern search method for nonlinear constrained optimization 

problems (Audet et al., 2009).  

In this step, the objective function for the compact DA arrangement optimization problem is 

designed as maximizing the total available bitumen and is given by Eq. (4.2) 

Max 
1

( , , )
allDA

available
i

i

R x y


  (4.2) 

Where available
iR is the available bitumen for i DA, allDA is the total number of DAs in the 

compact arrangement. In addition, upper and lower bounds for the following decision variables 

were applied: orientation, translation along x direction and translation along y direction, as given 

by Eqs. (4.3) to (4.5), respectively.  

ub lb    (4.3) 

ub lbx x x   (4.4) 

ub lby y y   (4.5) 

The following restrictions were also applied to the optimization problem: 

 A DA was considered only if it’s area was 80% or more inside the lease boundary
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 A DA was considered only if its total available bitumen was above a certain threshold 

value 

 A DA was considered only if it had at least one possible location for placing a SP. For a 

feasible SP location, the SP had to be placed inside the lease boundary and could not be 

placed on top of any surface restrictions. Surface restrictions are areas on the surface 

ground level where SPs cannot be built. Examples of surface restriction could be rivers, 

lakes, roads or conserved forest areas. 

Stage 1 of the optimization method can be represented by the following pseudo code. 

Algorithm: Generate a compact DA-SP arrangement plan for SAGD wells  

Input: Grid size with the lease area boundaries, surface restriction on the grid, NCB for each cell 

in the x-y plane, DA dimensions, SP dimensions, DA-SP spacing, upper and lower bound on the 

geometric transformations applied to the compact arrangement of all DAs by the optimizer, 

stopping criteria for the optimizer 

Output: Optimal orientation (θ) and positions (∆x, ∆y) of the compact arrangement of all DAs 

1. Initialize a compact DA arrangement based on the grid specifications   

2. If the stopping criterion for the blackbox optimization (ԑ) is not satisfied then, 

 Optimize the orientation (θ) of the DA arrangement  

 Optimize the translation (∆x, ∆y) of the DA arrangement  

a. Compute R ( , , )available
i x y   of each DA  

b. Make a summation of the available bitumen from all the DA in the compact 

arrangement 
1

R ( , , )
allDA

available
tot i

i
R x y



    
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c. If totR >
k
totR  then ( , , )k

tot totR R x y    and save the corresponding 

configuration. k is the index representing the number of iteration as used by the 

optimizer. 

d. If  
k
totR >

1k
totR 

 then save the corresponding ( , , )x y    configuration 

3. Update the orientation and position parameters 

4. Use the optimal configuration of the compact set of DAs and SPs ( , , )opt opt optx y   to fix 

the compact DA arrangement and then perform the next step of the optimization  

 

4.4.3 Stage 2 - DA and SP selection plan  
The objective of the second optimization step is to select a smaller number of DAs and SPs from 

the compact arrangement of all the DAs. The objective of the second step of optimization is to 

provide an insight on which DAs and SPs to construct since commercial development of SAGD 

wells initially start by developing a smaller number of DA for producing bitumen from the oil 

sands. Additional development of DAs and corresponding SPs at a later time period occurs after 

oil production begins from the initially selected SAGD wells. The initial number of DAs to be 

developed is selected such that the amount of available bitumen is maximized but at the same 

time costs associated with pipelines are minimized. Having SPs close to each other ensures that a 

smaller length of pipeline supplying steam to each SP from the central processing facility is 

required. Similarly, smaller amount of pipeline is required to transfer the bitumen mixture from 

the SPs.  As a result, the MILP optimization model maximizes the available bitumen from the 

selected DAs and at the same time minimizes distance between SPs. The inputs to the MILP 

model are: orientation of the compact set of DA, translation of the compact set of DA and the 

user specified number of DAs to be selected. Fixed compact arrangement of all the possible DAs 

and SPs is obtained from the optimal orientation and translation parameters of the compact 

arrangement. The complete MILP model is explained as follows.  

The objective function of the second stage of the SAGD DA arrangement is given by Eq. (4.6) 
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, '
, '

Max available
i i i i

i I i i I
x R d

 

          (4.6) 

Where ix  is a binary variable denoting whether i  DA is selected ( 1ix  ) or not ( 0ix  ), available
iR  

is the available bitumen for i  DA, γ is a weight parameter which reflects the contribution given 

to minimizing the distance between SPs (γ = 0.001 used in this study), , 'i id  is the distance 

between the SPs of i and 'i DAs, I  is the number of DAs in the compact DA arrangement plan 

obtained from the previous stage. The decision variables of the MILP model are the binary 

variables of ix  and ,i jy which denote whether a DA is selected or not and whether a SP is 

selected or not, respectively. The weight parameter γ can be changed based on the importance of 

minimizing the distance, and therefore the cost, between all the SPs in the optimization problem. 

Equation (4.7) ensures the number of DAs selected is based on the user specified information 

           i
i I

x nDA i I


           (4.7)  

Where nDA is the number of DAs to be selected as provided by the user. 

Equation (4.8) ensures that 1 SP location is selected per DA 

,      i i j
i I

x y i I


            (4.8) 

Where ,i jy  is a binary variable denoting whether the SP will be placed on j  position for i DA (

,i jy =1) or not ( ,i jy =0). There are 2 possible j positions considered for each SP and denoted by 

either position 1 or position 2. The j positions are along the 2 edges of the width of the DAs. 

The center x and y position of the SPs are given by the next set of Eqs. (4.9) and (4.10) 

 ,1 ,21 . 2 .      i i iSPx SP Centerx y SP Centerx y i I         (4.9) 

 ,1 ,21 . 2 .      i i iSPy SP Centery y SP Centery y i I          (4.10) 

Where iSPx  is the x center position of the i  selected DA, iSPy  is the y center position of the i  

selected DA, 1SP Centerx  and 2SP Centerx  are the x center position of SP along the 1 and 2 
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positions respectively, 1SP Centery and 2SP Centery are they center position of SP along the 1 

and 2 positions respectively, ,1iy denoting whether the SP will be placed on 1 position for i DA     

( ,1 1iy  ) or not ( ,1 0iy  ) and ,2iy denoting whether the SP will be placed on 2 position for i  DA      

( ,2 1iy  ) or not ( ,2 0iy  ). The following parameters are obtained from the compact arrangement 

of DAs as obtained from the output of the first stage of the optimization: 1SP Centerx ,

2SP Centerx , 1SP Centery and 2SP Centery . 

The distance between the x and y center points of any two SPs can be linearized by Eqs. (4.11) 

and (4.12) 

, ' '    , 'i i i id SPy SPy i i I           (4.11)

, ' '    , 'i i i id SPx SPx i i I           (4.12) 

The complete MILP model is given by Eqs. (4.6) to (4.12). This problem can be solved using a 

MILP solver such as CPLEX (IBM, 2010).  

The complete MILP optimization model for stage two of the DA-SP selection plan is 

summarized as follows 

 , '
, '

max available
i i i i

i I i i I
x R d

 

   

Subject to 

      i
i I

x nDA i I


    

,      i i j
i I

x y i I


    

 ,1 ,21 . 2 .      i i iSPx SP Centerx y SP Centerx y i I     

 ,1 ,21 . 2 .      i i iSPy SP Centery y SP Centery y i I     

, ' '    , 'i i i id SPy SPy i i I     

 , ' '    , 'i i i id SPx SPx i i I     

{0,1}    ix i I    
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, {0,1}    i jy i I  

Input Parameters: 

1SP Centerx   x center position of SP along the 1 edge of the DA 

2SP Centerx   x center position of SP along the 2 edge of the DA 

1SP Centery   y center position of SP along the 1 edge of the DA 

2SP Centery   y center position of SP along the 2 edge of the DA 

Variables: 

ix binary variables which denote whether a DA is selected ( 1ix  ) or not (

0ix  ) 

,i jy binary variables which denote whether a SP at j  location for i  DA is 

selected ( , 1i jy  ) or not ( , 0i jy  ) 

4.5 Case Study 

4.5.1 Application of DA arrangement optimization 
A realistic case study with a three dimensional reservoir grid is used to demonstrate the 

practicality of the optimization model used for SAGD DA and SP placement. A relatively large 

reservoir model with a grid size of 55 × 62 × 10 cells with cell dimensions of 100m × 100m × 

5m is considered for the case study. Matlab Reservoir Simulation Toolbox (MRST) is used to 

create the grid and the geological properties. The three dimensional grid is given in Fig. 4.3. 
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Figure 4.3 Grid representation of case study 

 

The geological data considered for the case study are the porosity and permeability of the 

reservoir. Porosity and permeability are generated for every cell of the grid using a MRST built 

in function of Gaussian Field (Lie et al., 2012). The porosity values are in the range of 0.1 to 0.5. 

Permeability is calculated from the porosity data using Carmen-Kozeny relationship. 

Commercial companies developing SAGD wells in the oil sands have reservoirs with irregular 

shaped lease boundary. Therefore, in this case study an irregular shaped leased boundary is used. 

The optimization model should not put a DA or SP outside the lease boundary. Areas on the 

ground level of the reservoir where a SP cannot be placed are known as surface restrictions. 

Examples of possible surface restrictions on oil sand reservoirs are lakes, rivers, roads and 

conservation areas. Therefore, surface restrictions were created within the lease boundary to 

demonstrate that the optimization model avoids placing a SP on top of any surface restrictions. 

The aerial view of the lease boundary and the surface restriction is given in Fig. 4.4. In Fig. 4.4, 

the leased area is represented as the white section, surface restriction is represented by the blue 

area and the grey parts represent the area outside the lease boundary.    
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Figure 4.4 Leased area with surface restriction of the reservoir for well placement 

 

The porosity and permeability distribution of the three dimensional grid is given in Figs. 4.5 and 

4.6 respectively. The dark blue regions in those figures represent the unleased area. Geological 

data is not available for the unleased area and therefore the porosity and permeability in that area 

is considered to be zero.  

 

Figure 4.5 Porosity distribution of the leased area 
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Figure 4.6 Permeability (m2) distribution of the leased area 

 

The geological data is used to calculate the NCB of the reservoir. The available bitumen of each 

possible DA location can then be calculated from the NCB of a section of the reservoir. NCB is 

calculated by summing the number of net cells along the z-direction (height) of the reservoir. In 

this case study, any cell with a porosity and permeability above a threshold value of 0.25 and 

1.1x10-13 m2 respectively, were considered to be a net cell. The aerial view of the NCB of the 

reservoir grid is given in Fig. 4.7.  

 

Figure 4.7 Aerial representation of the Net Continuous Bitumen 
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As expected, the maximum possible NCB value in Fig. 4.7 is 10. This is due to the fact that there 

are 10 cells along the z-direction of the grid.  

In order to provide SAGD well arrangement plan, a list of parameters specific to all the DAs and 

SPs in the compact arrangement are fixed. The fixed dimensions of the DA and SP are given in 

Table 4.1. Two possible locations of SP with respect to a specific DA were considered with a 

fixed DA-SP spacing. Fixing the dimension of the DAs and SPs resulted in a significant 

reduction in the complexity of SAGD well placement problem.  

Table 4.1 Fixed DA and SP dimensions 

 

 

 

 

 

The proposed two stage optimization method is applied to the reservoir. The results from the first 

step of the optimization method representing the orientation and translation along the x and y 

direction for the compact set of DA which maximizes the total available bitumen is given in 

Table 4.2. The black box optimization method provides an optimal compact arrangement of DAs 

and SPs. The total available bitumen in Table 4.2 is the sum of the available bitumen values of 

all the DAs in the compact arrangement. 

 

Table 4.2 First stage optimization results 

 

 

 

 

Parameter Value (m) 
DA length 850 
DA width 600 
SP length 150 
SP width 50 

DA – SP spacing 50 

Optimization Result Value  
θ 0.7229 rad 

∆x -64.45 m 
∆y -273.1 m 

Total Available Bitumen 16720 
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The plan for the compact arrangement of all the DAs from the first stage of the optimization is 

given in Fig. 4.8. The numbers on each of the DA quantifies the amount of available bitumen 

from that particular DA. The following observations can be made from Fig. 4.8: 

 A DA is not placed outside the lease area 

 A DA is not placed on areas which would result in a significant fraction of the DA area 

to be outside the lease boundary 

 A SP is not placed outside the lease area 

 A SP is not placed on any of the surface restrictions 

 A DA is not placed if there are no corresponding SP locations available due to either the 

surface restriction issue or the lease area issue 

It is important to note that due to surface restriction and lease boundaries, some DAs have only 

one possible location for the placement of SP.  

 

Figure 4.8 Compact DA placement plan from first step of optimization method 
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The next step of the optimization model uses all the possible DA and SP locations, as given in 

Fig. 4.8, obtained from the first stage of the optimization method as an input to provide a 

selected DA and SP placement plan. Initially, companies developing SAGD wells build a smaller 

number of DA and SP. Hence, DAs representing higher available bitumen are developed 

initially. In order to reduce financial impact, SPs are selected close to each other. Selecting SPs 

close to each other ensures a reduced cost associated with the piping which brings super-heated 

steam to the SPs from the central processing facility. Four time periods were considered in this 

case study. At each time period, 5 DA and corresponding SP locations were chosen for 

developing the SAGD area.  Therefore, by the end of the fourth time period, a total of 20 

4 5 DAperiod
period

 
 

 
DAs and SPs are selected. The results of the selected DA and SP at each 

time period are given in Fig. 4.9. DA and SP placement at each time period is represented by 

different color combination in Fig. 4.9. The DA and SP locations selected during the first, 

second, third and fourth time periods are given by red, blue, green and yellow colors 

respectively. As evident from Fig. 4.9, 5 DAs selected in the first time period have the highest 

available bitumen values and the SPs are placed as close to each other as possible. A similar 

trend is observed in the DA and SP placement plans for the other time periods as well. Generally, 

well plans are created with DAs having higher available bitumen and at the same time 

minimizing the distance between all the selected SPs.  
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Figure 4.9 DA and SP selection plan at different time periods from the second step of 
optimization method 

4.5.2 Decomposition of lease area 
The first stage of the optimization method was further tested by decomposing and breaking down 

the reservoir area into 3 different sections and applying the optimization method to each of the 

divided areas separately to obtain 3 different sets of compact DA arrangement plans. The first 

step of the optimization method is applied to each of those 3 areas to determine the optimal 

orientation and position for the compact set of DAs. Table 4.3 provides the results of the first 

stage of the optimization for the 3 different sets of compact DA arrangement plan. The optimal 

angle of rotation, translation along the x direction and translation along the y direction for the 3 
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areas are given in Table 4.3. The total available bitumen of each of the areas and the cumulative 

sum of the total available bitumen from all the 3 areas are also given in Table 4.3.   

Table 4.3 First stage optimization results using decomposed areas 

The compact arrangement of DAs and SPs obtained by breaking the total lease area into 3 

different sections is given in Fig. 4.10. The red dotted lines divide the lease area into 3 different 

areas. As expected, no DA or SP is placed outside the lease boundary and no SP is placed on any 

of the surface restricted areas. Furthermore, a DA was not placed in the compact arrangement if 

the DA did not have any corresponding position for the placement of at least one SP.  

Optimization 
results Area 1 Area 2 Area 3 

θ (rad) 0.6283 0.7362 0.5642 
∆x (m) 71.05 25.25 -66.45 
∆y (m) 386.2 -169.5 -395.6 

Available 
Bitumen 

4056 5646 5970 

Total Available 
Bitumen 15681 
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Figure 4.10 Compact DA placement plan from first stage of optimization method using 
decomposed area 

However, it is important to note that the cumulative total available bitumen from the 3 divided 

areas (15,681) is lower than the total available bitumen from the undivided compact DA 

arrangement plan of Fig. 4.8 (16,720). The reason behind the lower total available bitumen from 

the optimization of the decomposed lease area is due to suboptimal division of the lease area into 

3 sections. The suboptimal division of the lease area results in more constrained and restricted 

positions available for the placement of a DA and a SP. As a result less number of DAs can be 

placed within the leased area.  

Another study is performed to validate the reasoning provided for the lower total available 

bitumen from the decomposed area as given in Fig 4.10. In this case, the only difference was in 

how the lease area is divided into 3 different decomposed sections. Stage 1 of the compact DA 

arrangement optimization is then performed on the 3 sections of the lease area separately. Figure 

4.11 shows how the lease area is decomposed into 3 different sections as shown by the red dotted 

lines and the DA arrangement plan obtained from stage 1 optimization. The stage 1 optimization 

results and the total available bitumen from the 3 different sections are given in Table 4.4.  
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Figure 4.11 Compact DA placement plan from first step of optimization method using 
decomposed area 

 

It is evident from the plan in Fig. 4.11 that the DA arrangement between the 3 different areas are 

much compact than the DA arrangement plan in Fig. 4.10. The total available bitumen calculated 

by the summation of the available bitumen from all the different areas in Table 4.4 (16,947) is 

higher than the total available bitumen from the DA arrangement obtained from the undivided 

lease area of Table 4.2 (16,720). 

Table 4.4 First stage optimization results using decomposed areas 

 

 

 

 

 

Optimization 
results 

Area 1 Area 2 Area 3 

θ (rad) -0.9675 0.9362 0.6429 
∆x (m) 103.55 108.75 -178.45 
∆y (m) -421 226.7 59.4 

Available 
Bitumen 4082 7063 5802 

Total Available 
Bitumen 16947 
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As expected, decomposing a larger lease area into smaller sections and then applying the 

compact DA arrangement optimization method separately to those areas results in higher total 

available bitumen. However, it is important to ensure that the lease area is divided in a way as to 

ensure maximum DA placement. 

 

4.6 DA Arrangement Optimization Under Uncertainty 
 

Uncertainty associated with the geological data of the reservoir was incorporated to the first 

stage of the SAGD DA arrangement optimization by modifying the objective function of the 

blackbox optimizer given in Eq. (4.2). A robust optimization method was developed which used 

multiple geological realizations in the evaluation of the objective function value of the optimizer. 

The objective function for the DA arrangement optimization problem is designed as maximizing 

the risk averted expected total available bitumen from a set of realizations as given by Eqs. 

(4.13) and (4.14).  

  
2

1

max ( )
RN

available
risk Expected i i Expected

i

R R p R R


       (4.13) 

where the expected available bitumen is given by  

  
1

RN
available

Expected i i
i

R p R


         (4.14) 

In Eqs. (4.13) and (4.14), NR is the number of realizations used to determine the geological 

uncertainty, pi is the probability of a geological realization i , available
iR  is the total available 

bitumen of realization i, γ is the risk averted factor. The blackbox function determines the total 

available bitumen value based on the orientation and location of the compact set of DAs. A 

superset of 100 equiprobable realizations of the reservoir lease area is generated using MRST 

built in function ‘GaussianField’. The reservoir dimensions, lease area boundary and surface 

restrictions of section 4.5.1 are used in generating the superset of realizations.  The optimal 

realization reduction method proposed in section 2.4 is used to select a subset of 10 realization 

from the superset (Rahim et al., 2014). The dissimilarity between two realizations (Eq. (2.12)) is 
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represented by the geological properties of the reservoir and the following static measures: netK , 

net , netS , netF , netPV , OOIP  and netOIP . The static measures are properties of the reservoir grid 

and hence easily calculated in a preprocessing step. For comparisonal purpose, 10 realizations 

are selected using netOIP  based ranking method and 10 realizations are selected randomly. The 

selected realizations are used in the objective function evaluation using Eq. (4.13) of the 

blackbox optimizer to obtain a compact DA arrangement plan. In the robust optimization, only 

DAs that have available bitumen above the threshold value are considered in the calculation of 

the objective function of the optimizer. The robust DA arrangement optimization using the 

different realization reduction methods are performed using 2 different available bitumen 

threshold values. The results of the optimization showing the orientation and location of the 

compact DA arranagement obtained using the 3 different realization reduction methods are given 

in Table 4.5.  

Table 4.5 First stage optimization results for the different realization reduction methods 

The optimization results on Table 4.5 for the different realization reduction methods are used to 

calculate the total available bitumen from all the realizations in the superset. The results of the 

compact DA arrangement plan from the different realization reduction methods given in Table 

4.5 are used on all 100 realizations of the superset. The compact DA arrangement variables of 

the different realization reduction methods are applied to each realization in the superset and the 

expected total available bitumen and the standard deviation of the total available bitumen values 

Optimization 
results 

Optimal 
reduction 

OIPnet 
ranking 

Random 
selection 

Available bitumen 
threshold  >300 

θ (rad) 0.7854 0.7291 0.4712 
∆x (m) 271.15 206.8 -2.45 
∆y(m) 157.3 -192.9 -68.2 

Available bitumen 
threshold >100 

θ (rad) 0.3142 1.1854 0.4712 
∆x (m) -291.9 -106.8 -28.6 
∆y(m) -186.2 -177.6 -320.7 
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are calculated, as given in Table 4.6. As expected, increasing the available bitumen threshold 

value significantly decreases the expected total bitumen since less DAs are considered in the 

calculation of the expected bitumen. The optimal realization reduction method has the highest 

expected total available bitumen when compared to any the other realization reduction methods.  

Table 4.6 Comparison of optimization results for the different realization reduction 
methods 

 

The standard deviation of the total available bitumen is also the largest for the optimal realization 

reduction method. A possible reason for the higher standard deviation can be due to the fact that 

the optimal realization reduction method incorporates realization which represents the maximum 

and minimum performance parameter from the superset. As a result, the compact DA 

arrangement plan from the optimal realization reduction method creates a greater variability 

when all the realizations of the superset are considered. 

Histograms and the compact DA arrangement plan for the different realization reduction 

methods for available bitumen threshold value of greater than 100 are given in Figs. 4.12 to 4.17. 

Distributions and DA plans for available bitumen threshold value of 100 are considered because 

an available bitumen threshold value of 300 results in many realizations with a total bitumen 

value of 0 since many DAs are not included in the evaluation. A histogram of the total bitumen 

values of all the realizations in the superset obtained by using robust optimization results from 

the optimal realization reduction method is given in Fig. 4.12. 

Results Optimal 
reduction  

OIPnet  
ranking 

Random 
selection 

Available bitumen threshold >300 
Total expected bitumen 5445.7 5350.1 5102.2 

Standard deviation of total bitumen 7460.5 7236 7129 
Available bitumen threshold >100 

Total expected bitumen 11,359 11,009 11,117 
Standard deviation of total bitumen 5878.2 5670 5768.9 
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Figure 4.12 Histogram of total Bitumen of all the realization in the superset using robust 
optimization results from the optimal realization reduction method 

The histogram of the total bitumen of all the realizations in the superset obtained using robust 

optimization results from netOIP  ranking based realization reduction method is given in Fig. 4.13. 

 

Figure 4.13 Histogram of total Bitumen of all the realization in the superset using robust 
optimization results from the OIPnet ranking method 
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The histogram of the total available bitumen of all the realizations in the superset obtained using 

the compact DA arrangement plan obtained from randomly selected a subset of realization is 

given in Fig. 4.14.  

Figure 4.14 Histogram of total Bitumen of all the realization in the superset using robust 
optimization results from random selection 

The compact DA placement plan from the robust SAGD DA arrangement optimization using a 

subset of realizations obtained from the optimal realization reduction method is given in Fig. 

4.15. The compact arrange of the DA is ensured since most of the available area within the lease 

boundary has been used for placing a DA. Each number on DA is the expected total available 

bitumen calculated from the 10 selected realizations and the corresponding probabilities obtained 

from the optimal realization reduction method. 
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Figure 4.15 Compact DA placement plan from robust SAGD DA arrangement optimization 
with a subset of realizations selected from optimal realization reduction method 

Similarly, the DA arrangement plan obtained from the robust optimization using a subset of 

realizations from the netOIP  ranking based method is given in Fig. 5.16. In the calculation of the 

total available bitumen of each DA in Fig. 4.16, mathematical averages of the 10 selected 

realizations with equal probabilities were used.  
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Figure 4.16 Compact DA placement plan from robust SAGD DA arrangement optimization 
with a subset of realizations selected from OIPnet ranking method 

The SAGD DA placement plan for the robust placement optimization using a randomly selected 

subset of 10 realizations is given in Fig. 4.17. Equal probabilities are considered in the 

calculation of the mean total available bitumen value for each DA in the case of randomly 

selected realizations. 
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Figure 4.17 Compact DA placement plan from robust SAGD DA arrangement optimization 
with a subset of realizations selected from random selection 

In comparison of all the compact DA arrangement plans given in Figs. 4.15 to 4.17, the DA 

arrangement plan obtained using the optimal realization reduction method has the highest 

number of DAs within the lease boundary. The DA arrangement plans using optimal realization 

reduction method, netOIP  ranking method and random selection method has 49, 45 and 46 DAs 

respectively. Highest number of DAs are fitted in the compact arrangement obtained from using 

the optimal realization reduction method. 

4.7 Conclusion 

A two-stage optimization model for selecting optimal SAGD well plan proposed in this chapter 

selects optimal positions of the Drainage Area (DA) and a Surface Pad (SP) of SAGD wells. In 

the study, the reservoir quality in terms of the quantity of bitumen present is quantified using the 
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concept of net cells to determine the total available bitumen. The first stage of the proposed 

optimization method determines the optimal orientation and position of a compact set of all the 

DAs and SPs that can be packed within the lease area of the reservoir. The second stage of the 

proposed optimization method selects a user defined number of DAs and SPs from the compact 

arrangement of all the DAs which would result in maximum total available bitumen and at the 

same time decrease the distance between all the selected SPs. Limitations, such as surface 

restrictions and irregular shaped lease areas, are taken into consideration in the placement of 

DAs and SPs by the optimization model. The optimization method was applied to a realistic case 

study to determine a DA and SP placement plan for a lease area to develop SAGD facilities. The 

SAGD arrangement optimization model produced a plan with DAs being placed at areas with 

higher available bitumen content and ensured that the selected SPs were close to each other. 

Furthermore, the SAGD DA arrangement optimization method under geological uncertainty was 

studied by incorporating multiple geological realizations from the optimal realization reduction 

method.  The results of the SAGD DA arrangement optimization under geological uncertainty 

showed that a higher expected total available bitumen and a more compact DA arrangement plan 

with higher number of packed DAs, was obtained using the optimal realization reduction method 
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Chapter 5 
Conclusion

Geological uncertainty reduction and its application in reservoir development optimization are 

investigated in this thesis. An optimal realization reduction method is proposed which reduces 

geological uncertainty by selecting a smaller subset of realizations and incorporating them in 

reservoir studies. The realization reduction method is used to determine optimal producer well 

locations from a robust well placement optimization method. Additionally, an optimal SAGD 

well arrangement is determined using a two stage DA arrangement optimization model in this 

thesis. The optimal realization reduction method is applied to incorporate geological uncertainty 

in the proposed SAGD DA arrangement optimization model.  

The optimal realization reduction method is a MILP optimization model which uses geological 

properties of the reservoir and simple static measures to quantify the difference between the 

realizations. The optimal realization reduction method is studied using different reservoir 

models. The subset of realizations obtained from the proposed realization reduction method has a 

distribution with similar statistical characteristic as the distribution from the superset of all the 

realizations. In the calculation of the dissimilarity between two realizations in the optimal 

realization reduction method, various static measures and geological properties of the reservoir 

were considered. Static measures of localCHV and LCF  are dependent on the producer well 

locations and were calculated for vertical wells. In future, localCHV and LCF  could be modified to 

calculate for horizontal wells. These static measures could be added to the optimal realization 

reduction method for use in horizontal well applications. In addition to porosity and 

permeability, additional geological property of the reservoir, such as, water saturation could be 

incorporated in the calculation of the dissimilarity used in the optimal realization reduction 

method. 

The robust vertical well placement optimization under geological uncertainty is a blackbox 

optimization model which calls on the reservoir simulator at each function evaluation. Well 

placement plans were generated from reservoir models by using a subset of realizations from the 
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optimal realization reduction method and by using the superset of all the realizations. The well 

placement plan obtained from using a subset of realizations from the proposed method has mean 

and variance performance parameter values which are very close to the performance parameter 

values obtained from the well placement plan using all the realizations.  In this study, well 

placement optimization under uncertainty considers to determine the optimal producer well 

location with fixed injector locations. In future, an extension to this study could be to obtain an 

optimal injector and producer well locations under geological uncertainty. As a result, a well 

placement plan with optimal injector and producer locations would be obtained.  

The first stage of the DA arrangement optimization for SAGD wells uses a blackbox optimizer to 

generate an optimal compact arrangement for the set of all the DAs and the second stage uses a 

MILP optimization model to select a smaller number of DAs and SPs for development in the 

reservoir lease area. Selected realizations from the optimal realization reduction method are used 

to incorporate geological uncertainty to the first stage of the DA arrangement optimization 

model. A compact DA and SP plan with higher available bitumen content is obtained from the 

SAGD arrangement optimization method. In this study, geological uncertainty was incorporated 

to the first stage of the DA arrangement optimization method. In future, the study can be 

extended to incorporate geological uncertainty in the second stage of the SAGD DA arrangement 

optimization problem. This would lead to uncertainty being quantified in both stages of the 

SAGD DA arrangement problem. As a result, geological uncertainty would be included the 

selected DA and SP plan obtained from the second stage of the optimization method. 
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Appendix A: Result of the traditional ranking method using single 
static measure 
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Table A.1 Results for selected realizations using static measure based traditional ranking method for case 1 

Rank  

netK  

ID 32 22 62 15 2 36 21 25 92 85 
Measure 0.118297 0.125131 0.1305 0.133025 0.135416 0.138668 0.141106 0.145798 0.150113 0.177038 

NPV 854068 933089 948612 899776 1011890 1001050 952121 994556 1023790 1115370 
COP 1455.42 1525.08 1622.5 1538.54 1739.37 1658.81 1613.37 1691.51 1751.29 1860.24 

Rank  

net  

ID 32 54 72 67 45 64 47 40 92 85 
Measure 0.316289 .0321223 0.323595 0.326025 0.326926 0.32911 0.329989 0.332874 0.335263 0.349669 

NPV 854068 962562 837264 1001950 886049 999070 1010080 978815 1023790 1115370 
COP 1455.42 1604.15 1428.54 1667.5 1486.46 1698.21 1723.39 1680.78 1751.29 1860.24 

Rank  
,iw netS  

ID 32 54 34 44 59 68 100 25 92 85 
Measure 0.695634 0.698441 0.700001 0.701189 0.701692 0.702779 0.703499 0.704671 0.706054 0.713086 

NPV 854068 962562 852699 955461 969853 961850 1019180 994556 1023790 1115370 
COP 1455.42 1604.15 1466.04 1579.68 1638.93 1658.15 1689.56 1691.51 1751.29 1860.24 

Rank  

netF  

ID 20 55 49 19 18 56 1 47 92 85 
Measure 0.0793651 0.188209 0.263039 0.369615 .433107 0.498866 0.571429 0.641723 0.712018 0.936508 

NPV 902143 906049 931274 954019 958356 968877 1007970 1010080 1023790 1115370 
COP 1501.79 1562.1 1541.44 1606.42 1625.59 1626.98 1678.65 1723.39 1751.29 1860.24 

Rank  

LCF  

ID 1 14 25 41 55 71 89 93 58 87 
Measure 0 0 0 0 0 0 0 0.0566893 0.328798 0.834467 

NPV 1007970 896462 994556 962370 906049 976329 894100 953642 994775 1044260 
COP 1678.65 1510.83 1691.51 1655.95 1562.1 1617.49 1494.76 1606.59 1698.46 1760.18 

Rank  

netPV  

ID 86 55 49 19 18 66 40 47 92 85 
Measure 11.5151 26.8169 38.1039 52.4137 62.0978 72.4813 83.5513 93.3868 105.273 144.413 

NPV 866981 906049 931274 954019 958356 979883 978815 1010080 1023790 1115370 
COP 1472.47 1562.1 1541.44 1606.42 1625.59 1712.41 1680.78 1723.39 1751.29 1860.24 

Rank  
O O IP  

ID 72 15 26 94 19 68 64 65 61 85 
Measure 40.0763 40.8896 41.1899 41.5216 41.6606 41.8843 42.1673 42.3819 42.6353 43.9658 

NPV 837264 899776 923974 946938 954019 961850 999070 100420 1021670 1115370 
COP 1428354 1538.54 1578.38 1604.91 1606.42 1658.15 1698.21 1718.53 1765.73 1860.24 

Rank  

netOOIP  

ID 20 55 49 19 18 66 40 47 92 85 
Measure 3.42056 8.04557 11.3162 15.7602 18.5499 21.428 24.6179 27.6564 30.8813 41.3692 

NPV 902143 906049 931274 954019 958356 979883 978815 1010080 102790 1115370 
COP 1501.79 1562.1 1541.44 1606.42 1625.59 1712.41 1680.78 1723.39 1751.29 1860.24 

Rank 

localCHV  

ID 1 14 25 41 55 71 89 93 58 87 
Measure 0 0 0 0 0 0 0 2.46114 14.2243 36.2371 

NPV 1007970 896462 994556 962370 976329 894100 953642 994775 994775 1044260 
COP 1678.65 1510.83 1691.51 1655.95 1562.1 1617.49 1494.76 1606.59 1698.46 1780.18 
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Table A.2 Results for selected realizations using static measure based traditional ranking method for case 2 

Rank  

netK  

ID 63 29 39 26 34 99 36 74 49 5 
Measure 0.112065 0.119433 0.122698 .0124107 0.126492 .130122 0.133209 0.136253 0.141383 0.148686 

NPV 1198080 1278920 1994910 1246030 1271830 1280910 1298540 1212020 1332790 134440 
COP 4731.85 5091.02 4765.09 4734.71 4978.48 5053.3 5233.12 5046.22 5155.1 5454.71 

Rank  

net  

ID 63 71 39 42 19 81 90 100 49 5 
Measure 0.312485 .317619 0.319721 0.32057 0.321962 0.324233 0.326194 0.327711 0.33056 0.334495 

NPV 1198080 1221240 1994910 1277770 1302830 1286270 1321750 1342290 1332790 134440 
COP 4731.85 4764.65 4765.09 4960.83 5131.82 5147.38 4977.19 5341.66 5155.1 5454.71 

Rank  
,iw netS  

ID 63 57 59 77 24 13 90 74 58 5 
Measure 0.693443 0.696663 0.697792 0.698426 0.699165 0.700495 0.7015 0.702288 0.703849 0.705668 

NPV 1198080 1284730 1150250 1256880 1249910 1310660 1321750 1242020 132280 134440 
COP 4731.85 5073.8 4544.89 4953.51 4879.66 5261.48 4977.19 5046.22 5302.19 5454.71 

Rank  

netF  

ID 55 60 16 24 29 62 91 70 61 25 
Measure 0.04125 0.1625 0.238125 0.30875 0.366875 0.455 0.53125 0.58875 0.62375 0.88625 

NPV 1169440 129330 1245360 1249910 1278920 1275780 1292750 1336350 1351660 147390 
COP 4557.34 4799.58 4907.44 4879.66 5091.02 5057.55 5174.18 5189.61 5485.42 5608.21 

Rank  

LCF  

ID 1 15 31 44 60 73 86 100 52 25 
Measure 0 0 0 0 0 0 0 0 0.21125 0.88625 

NPV 1230740 1364860 1333880 1393770 1239330 1342980 121360 1342290 130410 1427390 
COP 4950.47 5233.38 5195.49 5499.21 4799.58 5269.27 4675.31 5341.66 5113.22 5608.21 

Rank  

netPV  

ID 55 60 16 24 3 62 17 93 5 25 
Measure 20.8152 82.5262 121.575 159.291 188.319 232.765 275.319 307.78 349.882 470.754 

NPV 1169440 129330 1245360 1249910 1276140 1275780 1395770 1363120 134440 1427390 
COP 4557.34 4799.58 4907.44 4879.66 5091.15 5057.55 5259.06 5269.66 5454.71 5608.21 

Rank  
O O IP  

ID 59 26 84 88 94 22 6 35 23 76 
Measure 145.802 148.334 149.285 150.215 150.91 151.625 152.399 152.79 153.7 156.112 

NPV 1150250 1246030 1273790 1267960 1296690 1267970 1294440 1362770 1338830 1457430 
COP 4544.89 4734.71 5045.54 4950.76 5044.21 5050.09 5234.43 5295.53 5278.34 5640.14 

Rank  

netOOIP  

ID 55 60 16 24 29 62 91 70 5 25 
Measure 6.33867 25.0174 36.7284 47.8371 56.4977 69.2924 82.499 91.7249 102.771 138.793 

NPV 1169440 129330 1245360 1249910 1278920 1275780 1292750 1336350 134440 1427390 
COP 4557.34 4799.58 4907.44 4879.66 5091.02 5057.55 5174.18 5189.61 5454.71 5608.21 

Rank 

localCHV  

ID 1 15 31 44 60 73 86 100 52 25 
Measure 0 0 0 0 0 0 0 0 32.7893 138.793 

NPV 1230740 1364860 1333880 1393770 1239330 1342980 1212360 1342290 1302410 55497500 
COP 4950.47 5233.29 5195.49 5499.21 4799.58 5269.21 4675.31 5431.66 5113.22 5608.21 
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Table A.3 Results for selected realizations using static measure based traditional ranking method for case 3 

Rank 

netK

ID 80 24 43 83 65 19 50 51 93 64 
Measure 0.110095 0.113903 0.114924 0.11577 0.116863 0.118037 0.119597 0.120212 0.122409 0.131013 

NPV 43664800 47640100 49763600 47196900 47191500 49887900 50219700 50191100 50699500 55497500 
COP 115143 120888 123958 120248 120240 124137 124617 124575 125310 132245 

Rank 

net

ID 80 24 43 85 65 19 50 51 93 64 
Measure 0.311739 0.314379 0.315108 0.315591 0.316291 0.317081 0.318101 0.318519 0.319887 0.325338 

NPV 43664800 47640100 49763600 49291000 47191500 49887900 50219700 50191100 50699500 55497500 
COP 115143 120888 123958 123274 120240 124137 124617 124575 125310 132245 

Rank 
,iw netS

ID 80 24 43 72 96 19 87 51 93 64 
Measure 0.69326 0.694931 0.695405 0.695669 0.696057 0.696555 0.697178 0.697428 0.69821 0.701384 

NPV 43664800 47640100 49763600 49652100 47135900 49887900 51628000 50191100 50699500 55497500 
COP 115143 120888 123958 123796 120160 124137 126652 124575 125310 132245 

Rank 

netF

ID 80 68 56 62 45 54 77 31 39 64 
Measure 0.035909 0.222848 0.268985 0.335848 0.392773 0.440894 0.502288 0.543212 0.608697 0.878879 

NPV 43664800 45863600 47688000 48427800 48545900 48458600 50192000 50381300 51238200 55497500 
COP 115143 118321 120958 122027 122195 122071 124577 124850 126089 132245 

Rank 

LCF

ID 1 17 33 44 61 74 90 5 57 64 
Measure 0 0 0 0 0 0 0 0.307818 0.535045 0.878833 

NPV 52264700 48021100 50265300 49679300 52327100 50131200 44909400 47378400 50267000 55497500 
COP 127572 121439 124683 123836 127663 124489 116941 120510 124685 132245 

Rank 

netPV

ID 80 68 56 94 67 54 77 31 39 64 
Measure 738.822 4641.51 5580.93 7031.45 8198.67 9263.33 10601.7 11416.1 12870.2 18871.5 

NPV 43664800 45863600 47688000 48411600 48086500 48458600 50192000 50381300 51238200 55497500 
COP 115143 118321 120958 122003 121534 122071 124577 124850 126089 132245 

Rank 
O O IP

ID 80 69 38 15 67 54 77 30 98 64 
Measure 6095.97 6185.46 6200.06 6218.59 6235.06 6248.6 6266.79 6275.41 6291.19 6382.59 

NPV 43664800 47095300 46945900 49003700 48086500 48458600 50192000 50347000 53302800 55497500 
COP 115143 120101 119885 122859 121534 122071 124577 124801 129073 132245 

Rank 

netOOIP

ID 80 68 56 62 67 54 77 31 39 64 
Measure 226.545 1411.89 1701.82 2133.68 2491.19 2802.07 3197.65 3452.49 3877.44 5630.32 

NPV 43664800 45863600 47688000 48427800 48086500 48458600 50192000 50381300 51238200 55497500 
COP 115143 118321 120958 122027 121534 122071 124577 124850 126089 132245 

Rank 

localCHV

ID 1 17 33 44 61 74 90 5 57 64 
Measure 0 0 0 0 0 0 0 1948.46 3399.02 5630.03 

NPV 52264700 48021100 50265300 49679300 52327100 50131200 44909400 47378400 50267000 55497500 
COP 127572 121439 124683 123836 127663 124489 116941 120510 124685 132245 
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Appendix B: Supporting study for case 3

Figure B.1 Histogram using NPV for superset of 200 realizations (top), 10 selected 
realizations using proposed method (bottom) 
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Figure B.2 CDF plot comparison using NPV between the superset of realization and 
selected set of realization using; (i) proposed method, (ii) Kernel k-means clustering, (iii) 

Knet ranking, (iv) random selection 

Figure B.3 COP versus time plot for 10 realizations selected from the (clockwise); (i) 
proposed method, (ii) Kernel k-means clustering, (iii) random selection, (iv) Knet ranking 
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Figure B.4 Expected COP plots of the different realization reduction methods 

Table B.1 Reservoir simulation results of all 200 realizations and 20 selected realizations 

maxNPV
(×107) 

minNPV
(×107) 

expNPV
(×107) 

maxCOP
(×105) 

minCOP
(×105) 

expCOP
(×105) 

All realizations 5.335 4.418 4.887 1.291 1.159 1.2267 
Proposed method 5.332 4.438 4.887 1.291 1.162 1.2267 
Ranking 

netK 5.242 4.501 4.865 1.278 1.171 1.2235 

net 5.168 4.501 4.865 1.267 1.171 1.2235 
,iw netS 5.168 4.501 4.858 1.267 1.171 1.2225 

netF 5.217 4.438 4.863 1.274 1.162 1.2232 

LCF 5.335 4.458 4.923 1.291 1.165 1.2319 

netPV 5.117 4.438 4.852 1.263 1.162 1.2216 
O O IP 5.117 4.418 4.848 1.260 1.159 1.2210 

netOIP 5.140 4.438 4.842 1.263 1.162 1.2201 

localCHV 5.335 4.458 4.923 1.291 1.165 1.2319 
Clustering 5.310 4.540 4.925 1.288 1.177 1.2322 
Random 5.018 4.501 4.823 1.246 1.171 1.2174 
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Figure B.5 Histogram using NPV for superset of 200 realizations (top), 10 selected 
realizations using proposed method (bottom) 
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Figure B.6 CDF plot comparison using NPV between the superset of realization and 
selected set of realization using; (i) proposed method, (ii) Kernel k-means clustering, (iii) 

Knet ranking, (iv) random selection 

Figure B.7 COP versus time plot for 10 realizations selected from the (clockwise); (i) 
proposed method, (ii) Kernel k-means clustering, (iii) random selection, (iv) Knet ranking 
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Figure B.8 Expected COP plots of the different realization reduction methods 

Table B.2 Reservoir simulation results of all 200 realizations and 10 selected realizations 

maxNPV
(×107) 

minNPV
(×107) 

expNPV
(×107) 

maxCOP
(×105) 

minCOP
(×105) 

expCOP
(×105) 

All realizations 5.335 4.418 4.887 1.291 1.159 1.2267 
Proposed method 5.332 4.438 4.882 1.291 1.162 1.2260 
Ranking 

netK 5.217 4.501 4.879 1.274 1.171  1.2256 

net 5.211 4.501 4.876 1.274 1.171 1.2250 
,iw netS 5.211 4.501 4.874 1.274 1.171 1.2248 

netF 5.116 4.438 4.868 1.260 1.162  1.2238 

LCF 5.115 4.630 4.877 1.260 1.189 1.2253 

netPV 5.116 4.438 4.860 1.260 1.162 1.2227 
O O IP 5.168 4.418 4.850 1.267 1.159 1.2213 

netOIP 5.116 4.438 4.874 1.260 1.162 1.2248 

localCHV 5.115 4.630 4.877 1.260 1.189  1.2253 
Clustering 5.211 4.540 4.880 1.274 1.177 1.2257 
Random 5.128 4.563 4.850 1.261 1.180 1.2213 




