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ABSTRACT

This thesis represents the results of an investigation
into the iamplementaticn of a "one-pass compiler" for a
modified version of the ¢programming language ALGOL 68.
Modifications made to the original 1language consist of
additions and altexations that are considered to enhance the
language fros bcth a user's and an implementor's point of
view. These additions and alterations are discussed, with
examples, and a syntax for the modified version of ALGOL 68
is presented. Implementation dependencies and restrictions
imposed to facilitate one-pass implementation are discussed,
and techniques for some of the tasks which the ccmpiler must
perform are described. Special emphasis is placed on those
tasks peculiar to a cne-pass but not a "multi-pass"

compiler.
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CHAPTER I
INTFEODUCTICN

1.1 Introcduction

The Repcrt on the Algorithmic Language ALGCL 68 [1]
(hereinafter referred to as the Report) defines a new
programming language intended to bé the official successor
to ALGCL 60 [2]. In ccmparison with ALGOL 60, ALGCL 68 is
mcre powerful and has wider applicability. New data types
("modes") as well as new language constructions and
operations are introduced. With this greater complexity, a
more comgplicated descriptive technique is wused. The
description of ALGOL 68 consists of a syntactic part,
formulated using a "two-level" syntax, and a semantic and

pragmatic part, formulated in the English language.

Since the publication of the Report, many proposals
ccncerning ALGOL 68 have been made. It is the first
objective of this thesis to comment on ALGOL 68 and some of
the proposals for additions and alterations. The second
objective is to describe a proposed "omne-pass coampiler" for

a large sutset of ALGOL 68. Comients on additions and
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alterations are made in the light of experience gained while

designing the one-fass igplementation.

The thesis presupposes considerable familiarity with
ALGCL 68. The first occurrence of any technical term or
notion from the Report will appear within guotation marks,
and where necessary, will be followed by a reference to the
particular section of the Regort in which the definition may
be found. Short :descriptions and examples are given
freguently to illustrate and clarify concepts being

discussed.

Chagter II of this thesis is concerned with commenting
on proposed additions and alterations to the language and
developing a mcdified syntax for ALGOL 68. This syntax
appears as Appendix A. Chapter 1III1 investigates general
aspects c¢f the ccmpiler and discusses restrictions imposed
to facilitate cne-pass igplementation. A description of some
of the mocdules of which the compiler is comprised appears in
Chapter 1V, along with discussion of some of the major
irplementation difficulties. Fipally Chapter V presents
conclusions gained from the investigation.

1.2 Notation and Syntax of the Report

Unless ctherwise noted, terminology and notation used
is the same as that of the Report. References to specific

parts of the Repcrt appear between brackets and are given as



R fcllowed Ly the section numbers and then, if necessary, a
letter indicating the section or paragraph to which

reference is teing made. For example, [R1.3] or [(R3.0.1.Db].

ALGCL 68 is defined in three stages; the "strict
language", the ‘"“extended language", and the "repesentatidn
language" [R1.1]. The syntax of the strict language is a set
of "production rules" for "potions". Sets of rules for the
language are ccaokined into sihgle rules with the aid of
wgpetanotions", the production rules for which are given by
the “metaproducticn rules" [R1.2]. A particular production
rule is ottained from a rule of the Report by replacing all
cccurrences cf a metanotion contained in the rule with the
same terminal production of the particular petanotion. This
is repeated for all metanotiomns throughout the rule. For
exanple,
vactual real field letter t digit one declarator: virtual

real declarer, real field letter t digit ore selector.'
is a particular production rule obtained from
'YICTAL NCNSTCWED field 1TAG declarator: virtual NCNSTOWED
declarer, NCNSICWED field TAG selector.'
VICTAI, NCNSICWED, and TAG are metanotions and have been
replaced throughout by the tersinal productions "actual',

“real", and “letter t digit one", respectively.

Note that when reading rules of syntax ":" may be read

as "may ke av, "," as ufclloved by a", and ";" as "or a".



Detailed consideration will be given to the extended
language and the representation language in Chapter II. The
representation language used for examples given in this

thesis is similar to that used in the Report.



CHAPTER II
CCNSICERATION OF MODIFICATIONS TO ALGCL 68

2.1 Introduction

The purpose of this Chapter is to discuss and comment
on some proposals for additions and alteratioans to ALGOL 68.
A syntax incorporating those additioms and alterations

thought to enhance the 1language appears as Appendix A of

this thesis.

The following quotation is extracted from a "formal
resolution made at a recent meeting of Working Group 2.1
(ALGCL)? in Novositirsk.

“,.. WGZ2.,1 (Working Group Z2.1] - in close
ccllakcration with many implementors and
pctential users - is considering several
froposals for correction, revision and also
expansion of the 1language defined. These
proposals may be classified in order of
increasing degree c¢f departure frcm the
present language as follows:

1. Corrections and clarifications to the
text of the Report without change to the
tcdy of tke language, but with correction of

tWorking Group 2.1 (ALGOL) , directed by Technical
Committee 2 (IC2) of the International Fzderation for
Information Processing (IFIP), cocmmissioned and guided the
writing of the Repcrt on ALGCL 68.



those things which were obviously in error.

Zz. Changes of a notational nature within the

existing concegtual framework of the

language, in order to ease implementation

and improve clarity.

3. Generalization of existing concepts and

introducticn of some mnew ones, so0 as to

increase the pover of the language and cpen

possitilities for future enhancements.

4., New ideas, mnot ripe for inclusion in

ALIGCIL 68+ +se" [3]

These categories are referred to during discussion of

certain propcsals within this Chapter. No proposals clearly
belonging' to category four have been included in the

modified syntax.

During the course of this investigation, many of the
gpropcsals for additions and alterations to ALGCL 68 were
studied. While some of these proposals were adopted because
they were considered to improve the language, cthers were
rejected because they belonged to category four, for example
[(4-1Q215, 5-1Q201)], or because they were thought to be
unsuitable, frcm either a user's or an inglementor's point
of view, for incorporation into the language. Froposals
considered within this thesis are referred as near to their
source as possible from available documents and literature.
Proposals not referenced may be considered to arise fron
this investigation (though perhaps simultaneously with

similar proposals arising elsewhere).



Attached to most sections of syntax in the Report are
semantic descriptions. With the syntactic modifications that
are inccrporated, corresgonding modifications to the
semantics are usually necessary. There are also sone
semantic changes belonging to category omne that should be
made, for example [ 6-proposal 8]). However, except for occa-
sional mention cf how the semantics might be modified, these
semantic changes will not be further discussed in this
thesis. Also fproposals ccncerhing "“transput" [R5.5.1.aa] and
associated matters (R10.5] are not considered in this

investigation.

Oone of the major criticisms directed at the Report
ccncerns the manner of presentation. In the preparation of
this thesis +the Report has been used as the defining
document while the companion volume [7] has teen used as a
primer. In this manner, anticipation of the meaning of some
sections of the Report was achieved and the task of

ccnprehension relieved.

The first three chapters of the FKeport are
intrcductory chapters; Chapter O is the "Introduction",
Chapter 1 describes the "language and Metalanguage", and
Chapter 2 defines relaticnships betveen “The Computer and

the Prcgram®.

The syntax of the wmetalanguage has been modified

scmewhat as otler syntactic changes have been introduced. In



Chapter 2 a "“particular-program" [R2.1.d]) beccmes a "serial-
clause" [R6.1] enclosed between begin and end or between

Farentheses as suggested in [ 8~proposal 9].

The torpics discussed in the remainder of this Chapter
are presented in the same order and with the same titles as
the Chapters of the Report, ccmmencing at Chapter 3. Note
that the syntax changes associated with some proposals may
extend over Chagters of the Report other than the one

currently Leing discussed.

2.2 Basgsic Tokens and General Comstructions

Chapter 3 of the Report introcduces the concept of a
representation language, strongly suggesting rather than
explicitly prescribing the regresentation(s) cf symbols. The
representation language for the proposed one-pass

igplementation to be discussed in this thesis is given in

Appendix C.

Several modifications have been made to the syntax of
Chapter 3 and to representation choices. It should be noted
that "indications" [R4.2] have been kept separate froﬁ non-
redefinable representations and that there is only one
representation per indication. In the present Report for
exanple, not and -~ are given as representations of the "not-

symbol". This means that if the following ‘"operation-



declaration" [EK7.5] is made;
ep not = (bocl b) bool: true
then the meaning of the "6perator" [R4e.3]) » is altered as
well and this could be somewhat cconfusing to the user. Under
the prorosed modification, not and -~ will initially
npossess" [R2.2.2.d) the same "routine" [R2.2.2.f, R2.2.3.4]
kut after the akove declaration, - will remain as declared
in the "standard-prelude" [R2.1.b, R10] (the declaration of
standard "mode-identifiers" [R4.1)], indications, operators,
and "procedures" [R6.0.1.£]). This is easier to implement as
no links need ke kept between the representations - and pnot.
For ease of writing operation-declarations in which the same
routine is possessed by different %“adic-indications"®
[R4.2.1.9], a proposal for “operator-bases" [6-proposal 30b]
might be adopted though this has not been included in the
mcdified syntax. Then the following would be possible;
op not = (bool b) bool: (blfalseltrue);

op - = (met): .

Full 1length representations of symbols that were
akbreviated within the Report have been intrcduced. For
example, frocedure and groc are both representations of the
wprocedure-symbol". This is done at the request of sone
potential US€ers {9-and cthers]}s In the case of the

wpriority~-symkcl", a shortened representation is added.

There are other representations that have been added
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in accordance with current proposals [10, 4-1C207A] and with
proposals to ke discussed later in this Chapter. since these
changes involve representations they are all of category
two. The “lexical analyzer" to be described in Chapter IV
will be constructed so that it will be a relatively simple

process tc alter and/or add representations.

An okjection to this regresentation 1language is the
chosen wetrcpping" convention (see Appendix C). Many
potential users have expressed annoyance at having to type
an apostrophe Lefore certain sequences of letters and
digits. Thus in the design of the conpiier, care has Dbeen
taken not to make special use of the apostrophe so that a
wreserved-wcrd" representaticn language may be investigated.
The reserved words would have blanks or special characters
(characters other than letters or digits) as delimiters.
currently, there are five representations that might be
confused with standard “identifiers" or wPAGS" [R4.1] in a
reserved-word implementation. win® and nout" possess
routines defined in the standard-prelude while in and out
are respective representations of the "in-symbol" and the
vout-symbcl®. "ret and nip® are nfiecld-selectors"
[R7.1.1.i] defined in the standard-prelude while re and im
are respective representations of the wreal-part-of-symbol"
and the "imaginary-part-of-synﬁol". Finally, "letter e
letter x letter i letter t" [R2.1%.e] might cause confusion

with exit, a representaticn of the wcompletion-symbol".
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These cases would have to be resolved if a reserved-vword

izplementation was being considered.

2.3 ldentificaticn and the Context conditions

Chapter 4 of the Report introduces identifiers,
indications, and operators, describing methods for their
jdentification and context conditions which a program must
satisfy to ke a "proper" program. naApplied occurrences" of
identifiers (indications and operators) identify "defining
occurrences® of identifiers (indications and operators)
found ky methods described in this chapter cf the Report.
The identification processes make use of “ranges" [ER4.1.1.e]
which have nuch in common with what in some other
programping languages are known as "blocks". In particular a
range defines the ‘“scope" [R2.2.4.,2] of tﬁe "names"

[R2.2.2.1, RZ.2.3.5] created by declarations within it.

Because it would require a special check to test
whether certain "mode-indications" [R4.2.1.b] could be
redefined or not, it was decided to allow thevprimitive
mode-indicaticns, int, real, kool, char, and format to be

redefined. Thus these <five "mentioned indications becone

"mode-standards" [ RU.2.1 oC]o

The "short-symbol" is introduced and syntax changes

are made so that as well as being able to have "long modes"



[R2.2.4.1], for example long real, it is [fossible to have
wshort modes", for example ghort int { 11-proposal 1]). This
gives an implementor the choice of internal representations
for the mode-standards, int, real, bits, and Lytes, while
not restricting his from accessing shorter lengths should he
not initially select the shortest length of internal
representation on the physical machine. Note that it is now
allowable to have any number of short-symbols or any number
of "lcng-symkcls" commencing an adic-indication. This

unifies the isplementation approach to adic-indications.

Scme changes are incorgporated for ndyadic-indications"
(R4.2.1.4)] and operator identification. Consider the

fcllowing example;

op + = (int a,b) int: skip

The first cccurrence of + is an indication-defining
occurrence. The second occurrence is an operator-defining
and an indicaticn-applied occurrence. The third is an
operator-applied and an indication-applied occurrence. At
present the operator-defining occurrence, as an indication-
applied occurrence, mnust identify an indication-defining
cccurrence. 1t is proposed that in operation-declarations,
no priority be associated with the operator-defining
occurrences. Friorities are associated only with operator-

applied cccurrences (as indication-applied occurrences).



Thus the second + above would be an opetator¥defining
' cccurrence Lut not an indication-aprlied occurrence.
Necessary syntax changes have been incorporated and the
ccrresponding alterations to the semantiés, and to the
process of operator identification, are not diificult. With
the proposed changes, the first occurrence of + above is a
terminal [production of “priority-FIVE-dyédic-indication",
the second a terminal production of "PRAM-djadic-indication"
and tte third a terminal production of "PRAM-priority-FIVE-
dyadic-indication". Examples such as the following are now

permitted;

a,b) int: (a<bjalk);
if ccndition them priority mim = 5;
print (3+42mind¥)
else priority min = 7;
print (3+2mind4) £i; ,

where "condition" is of “boolean" mode. In the present
language, this wculd viclate a context condition [R4.4.1.c])
and this context condition, because of the incorporation of
the syntax changes, has been dropped. If "condition"™ in the
above example is true, "“4" will be printed, if false "5"
will ke printed. This proposal originated as a by-product of
another proposal [U4-LQ215]). If included independently, then
a change to the definition of wprotection® ([R6.0.2.4] is

necessary. Erotection is the mechanism which allows
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unhampered definitions of identifiers, indications and
operators within ranges and rermits a meaningful "call®
[R8.6.2] withir a range, of a procedure declared outside it.
This is because in the semantics describing a call the
actual fprocedure body is copied in place of the call. This
is not in fact how calls would ever be implemented and it
would seem letter to eliminate the concept cf protection,
replacing it with semantics more closely Farallelling
inplerentation techniques. Nevertheless with the above
scheme it is possible to redefine protection to allow the
copying c¢f [frocedures but there will be cases where, after
protecticn, the identification process will still have to be
carried out for dyadic-indications in order to ascertain

their pricrities.,

In AIGCI 68, operators are identified not oanly by
their indications but also by the modes of their "operands"
(E8.4.1.c]. Currently, a grogrammer is not permitted to
define two operators whose operands possess modes that might
cause confusion. Such operands are said to have "loosely
related" wmodes [R4.4.2.c]). It is proposed to replace the
loosely related condition with the condition that a progranm
is not F[proper if there exists an operator in a “formula"
(R8.4] which identifies two operator-defining occurrences
[4-LQ205A]}. This resolves some ambiguities [12] and is not

as restrictive as the current language. Under this new
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proposal, operators with operands whose modes are loosely
related will te permitted, unless an applied cccurrence of
one of the crerators actually does lead to ambiguity. An
increase in overhead may be expected in caées where there
are several operators with the same indication as the
applied occurrence declared within the same "reach"
[R4sb8.2.a] (a range excluding all ranges ccntained within
it). A1l defining cccurrences in this reach will have to be
checked; the search may not terminate when the first
applicable operator is found. However, uheh checking
operators whose defining cccurrences are in the standard-
prelude, the search may terminate on finding the first
applicable operator, because applied ocurrences of operators
declared within the standard-prelude are known not to lead
to ambiguities. With the incorporation of this double
identification context conditicn, there may be programs
'uritten in a sukset of ALGOL 68 that are not fFroper programs
in revised ALGCL 68. This is because ambiguities may arise
due to the effect of certain features of ALGCL 68 not
included in the subset. With the definition of "sublanguage"
as in the Report [R2.3.c] this wculd mean that the subset

vas not a suklanguage.

Finally in this cChapter, another condition for
"shielding" [F4.4.4.a) (avoiding the description of modes
which require am infinite amount of storage) is added in

that a mode-indication will be shielded if it is contained



16

in an "actual-bound" of a "declarer" [R7.1]. This will
allow, as pointed out in [8-proposal 5], the following;
int i:=10; [1:10) zef (] real a;

mode B = [1:(i-:=1;

if i>0 then

——

ks
et

J = i3
a{j):=heap m £i; 6) ] real; .
This is egquivalent to the following example;

int i:=10; [1:10] ref [ ] real a;

Exoc t (int Jj) yoid: af[jl:=heap n;

(-]
0
(]

1]

]

[1:(i-:=1; if i>0 then b(i) £i; 6) ] real; .

This example is currently proper until the elaboration of
the call when, due to textual replacement, context
conditions beccme violated. No extra implementation probiems
are created, as the elaboration of an "actual-declarer" will
involve the execution of a corresponding sukroutine and this

subroutine may Le recursive.

2.4 Dengtations

Known in other languages as "literals" or "constants",
denotations are terminal groducticns of notions shose value
is independent of the "elaboration® [R6.0.2] of the program.
-As published, the Report inéludes an unsatisfactory method
cf ccnstructing “Lits-denotations" ([R5.2]. Essentially a
bits-denotation is defined as being a seguence of wflip-

symbols" and/or}"flop-synbois". Actual representations of
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bits-denctations using these symbols are wunwieldy, for
example, %1'0!'1¢1 or *1011. A proposal for "radix-
denotations" ([13-proposal 7], allowing more general bits-
denotaticns with radices 2, 4, 8 or 16, is adopted; for
example, 2r1010, 4r1231, 8r7605, 16r5a9f. The letters a
through £ are used for the hexadecimal "digits" 10 through
15. With the acceptance of this proposal the flip-symbol and
the flop-symkol are nc 1longer required and minor changes
must be made tc fcrmatted transput with the introduction of

“"bits-patterns" [E5.5].

In AIGCI 68, routines and formats are recognized to be
data objects and hence there exist "routine-denotations"
[R5.4)] and "format-denotations [R5.5)]. The syntax for
routine-denotations is altered according tc froposals to be

discussed in sections six and seven of this Chapter.

With the introduction c¢f short modes as mentioned in
the fprevious section, “short-integral-denotatioﬁs", "short-
real-denotations", amnd "short-bits-denotations"™ are per-

mitted.

2.5 PRhrases

Phrases are "declaraticns" or "clauses", These are the
bricks which make up a serial-clause and thus a particular-
program. Three types of clause defined in Chapter 6 of the

Report are the "collateral-clause" ([R6.2], the "closed-
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clause" [R6.3], and the "conditional-clause" (R6.4]s "“Case-
clauses® and “conformity- case-clauses" are introduced in
the Report by means of "extemsions®" [R9.4]. Hovever in the
syntax presented in Appendix A these case-clauses are
unified with the conditicmal-clause, as formulated in [14].
All extensions concerning these clauses are included in the
syntax as is the propcsal to require the matching of symbols
in ccnditicnalw, case-, and ccnformity-case-clauses. For
example, in a particular conditional-clause, it 1is
permissikle tc use sysbols from if, thef, then, else, elsf,
and fi, or fres (, |, |3, and ), but not from both. This
required smatching has been applied to other ccmstructions in
the syntax, for example, the nquote-symbols" delimiting
ncharacter-denotations" [RS5.1.4] and "string-denotations"
{R5.3], the "suk-symbol" and %hus-syabol®" of "slices"

[(R8.6.1], etc.

In AIGCL 68 it is possible to héve a mode "united
from" [R4.4.3.a] other modes. For example, in
mode ® = unicn(int, real);
m is united from the modes int and real. It is the fpurpose
of "“ccnformity-relations" [R8.3.2] to enable the programmer
to find out the current mode cf an "instance" [R2.2.1] of a
wyalue® ([R2.2.3] if the context permits this mode to be one

of a number of given modes. With the introduction of the

conformity-case-clause, which performas the same function, it
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would seem that the ccnformity-relation is nc 1longer
necessary and it has been omitted from the syntax of
Appendix A. However, perhaps after more experience of
programming in ALGQL 68, it may be found that a need does

exist in the language for ccnfcrmity-relations.

The form of <the proposed conformity-case-clause is

illustrated ky the following exanmfple;

0

ase€c unionintkoolreal in (int): skig,

(bool b):
out skip cesac; .
Note that the following examfple is permitted;
casec unionintreal in (bool b): skip,
(char c): skip
out skip cesac;
in which case the "out-clause" is always taken (exactly as
in if false then skip else skip £i ). "unionintboolreal” and
"unionintreal" are identifiers with obvious modes. The
"(int):", " (bcol b):%, and “"(char c):" in the above examples
are called "specifications". A required context condition
for the introduction of conformity-case-clauses is that no
two specifications in the ‘*"conformity-units"® of the “in-
clause" of a conforaity-case-clause may specify "related"®
[R4.4.3.k] mcdes. For example, in

casec unionintboolreal in (union(int, real)): skip,

(int) : skip cesac:

if "unicnintboolreal" possesses a value of integral mode



20

then it is not clear which alternative to take. Ihe above
context condition rules cut situations such as this because
union (int, real) and int are related modes. Note the
optional identifier in the specifications. If the instance
cf the value is to be used within the alternative, then an
identifier, which is then made to possess that instance, may

be included; if not, it may be omitted.

No change is made to the ranges of conditional- or

case-clauses [ 15-prorosal 18]. Thus in
if string x; read(x); x[1)#"*" then string+:=x fi;

the "x" in the in-clause (the "then-clause") will not
identify the #x" dJdeclared in the fconditional®. The
alternative is tc write

begin string x;

if read(x); x[ 1)#"*" then string+:=x fi end; .
The arguments for +the proposed ranges do not seem strong
enough tc warrant changing the present situation. With the
intrcduction of specifications within conformity-case-
clauses, many of the examples using the proposed ranges are

accounted for.

In Chapter 6 of the Report, "row-displays" and
nstructure-disglays" (R6.0.1] are introduced. For example,
in

{1:3] real x,Y:
x:=(1,2,3);
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y:=x+(2,3.14,4.5);

"(1,2,3)" and "(2,3.14,4.5)" are row-disglays and "x" and
"y" are cf mode "reference-to-row-of-real". In

struct(jnt i, real x, char c) z;

z2:=(1,2.3,%c") ;
"(1,2.3,%c")" is a "structure-display" and "z" is of mode
"reference-to-structured-with-integral-field-letter-i-and-
real-field-letter-x-and-character-field-letter-c".
At present it is rpermitted +to have row-displays but not
structure-displays as operands within formulas. With the new
context condition for the identification of ofperators it is
possikle to allow structure-displays as operands becau#e any
ambiguities cccurring will be found at the time of operator
identification. However, the time taken to identify
operators may te substantially increased if this is
permitted. The syntactic changes required to allcw
structure-displays as orerands are introduced in the syntax
of Appendix A. Because of the practiqal advantages of having
structure-displays as operands, it is planned to compare
efficiency of operator identification between the cases when
this is persitted and when it is not. Further discussion on

displays appears in section seven of this Chapter.

2.6 Unitary Declaratjons

Unitary declarations are of four tyres. "Mode~-
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declarations" [R7.2] provide the indication-defining
cccurrences of wmode-indications, "priority-declarations"
[R7.3] grovide the indication-defining occurrences of
dyadic-indications, “identity-declarations" [R7.4] provide
the defining cccurrences of mode-identifiers, and operation-
declarations prcvide the operator-defining occurrences of

operators.

When specifying modes in ALGOL 68, declarers are used.
Declarers are of three types: "actual", "formal", and
wyirtual" [R7.1], depending on the kind of "bounds" which
are permitted. An actual-declarer describes an instance of a
value of the corresponding mode while a virtual-declarer
describes the corresponding mode only. Fcrmal-declarers
currently have the greatest freedom and can te used to check
the ccmpatikility of bounds between formal-declarers in
"formal-parameters" [RS5.4.1.2€]) and actual-declarers in
“"actual-parameters" [E7.4.1.Db]. However, apart from
specifying the "flexibility" of the bounds in "multiple
jalues" [R2.2.3] (spoken of as "arrdys" in some other
languages) possessed by the corresponding actual-parameters,
formal-declarers do not yield very much. Their use for
checking ccspatibility of bounds is limited and a burden to
the igplementor. Cperators 1lwb and upb are defined in the
standard-prelude and these may be used to check bLounds, if
desired. It is therefore proposed to have only actual- and

virtual-declarers {5-proposal 171]. However, the
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specification cf flexibility remains to be considered. It is
Froposed to specify flexibility in the mode, for example
"flexible-row-of-real" specified by flex [ ] real, thus
making flexikility a property of the whole multiple value,
not of just one dimension. The either case (bounds which may
be "fixed" or flexible), if needed, may be represented by
union ([ ] real, flex [ ] real). The modifications required for
“flexible-rcw-of-" modes are difficult to formulate and
represent scme gquite extensive changes to the Report (it
would ke a category three prorosal). Attempts at a
formulaticn allowing comparatle use of flexikility to that
described in the Report have not been successful and formal-
declarers remain in the syntax of Appendix A. However, their
function has been reduced to specifying the flexibility of
tcunds and apart from this they are the same as virtual-
declarers. 1This proposal, together with another to forbid
"go-on-symbols" in actual- and fcormal-parameter-packs [16]
will prove useful in the "syntax analyzer" to ke described
in Chapter IV, These go-cn-symbols were included to allow
“side effects" as in the following example;
Broc P = ([ 1:] real a; [1:upb a] real b) real: skip; .

However, they ccmplicate the calling mechanism and if
formal-declarers are modified as proposed, then there is no

use for the go-on-symbol in formal-parameter-packs.

To improve ‘“orthogonality"® [R0.1.2]; a nevw class of
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modes, for exasmple, (][] real, is introduced to the

language [ 13-fprogosal 5]. The declarer [+]) real specifies

"row-rovw-of-real® while [ ] [] real specifies "row-of-row-of-

real"®. Thus it 4is now rfossible to have a "vector of

vectors", for examgle, [ ] string. Given the declaration,
i1:n,1:m] [1:1] geal x

it is rossikle to speak cf “x{2:3,5]" or wx[i,j]" or

“x{1i,31(k]", kut not of "x[i,j,k]v.

To improve clarity for both the syntax analyzer and
the user, the "void-symbol" is introduced for "virtual-void-
declarers" [R7.1.1.2)] [13-proposal 2]. For example, a
routine~denotation of a routine which has an integral-mode
rarameter and which dces not return a result may ke written;

(int a) yoid: skip .
void, however, does not become a primitive mode such as int
or real (ncw mode-standards). It may be that the syntax of
the Report is simplified by the Proposal to make void a mcde
[ 13-progosal 4}, but the concept of a "void-mode" is
somewhat confusing. In the Report, yoid has all the
properties of an empty class of values and thus there would
be no instance éf a value of the mode yoid. It is not
logical to declare
void empty = skip
as "empty" would then possess a value which is a member of
the empty class of values, and this is contradictory. Since

the class of modes denoted by void would be a subset of all
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other classes cf modes then it would not ke 1logical to
distinguish the modes union(int, real) and upnion(int, real,
void). If veoid is considered to be a structure with no
"fields® [R2.2.2.k] then there will exist instances of the
mode yoid and these will occupy zero storage. Implementation
proktlems then arise, for examgle, consider

{1:2] void a; a[1]:=:a[2]; .
Normally the space occupied ty an element of a multiple
value will ke equal to the "stride" [R2.2.3.3.Lk] of its last
dimensicn. In crder to be consistent with this, the "row-of-
vcid", whose e€lements occugy zero storage, should have a
stride cf zefo. Thus a[1] and a[2] will refer to the same
address and the value cf the “identity-relation" [R8.3.3]
af1]):=:af2] will ke true, unlike simila:'_ language
ccnstructs., It would seem that void is only “"virtually" a

mode and thus it remains a virtual-void-declarer.

Unitaiy-clauses (often abbreviated as "units") are the
entities in the language which -‘actually get things done.
Unitary-clauses are either "coercends" [F8.2] or closed-,
collateral-, or case-clauses. In the synfax of Appendix A
there are five kinds of coercends. These are routine-
denotations, "confrontations" [R8.3], formulas,  "cohesions"

[R8.5], and "kases" [E8.6])« Each of these coercerds may have
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any cne of the eight basic "“coercions" aprlied to it
depending on its ccntext, or syntactic position. These
ccercicns are "“dereferencing" ([R8.2.1), “deproceduring"
{R8.2.2], M"rroceduring" [R8.2.3]), Yuniting" [R8.2.4],
“rowing" ([R8.2.5)], "widening" [R8.2.6], "hipping" [E8.2.7],
and "voiding" [R€.2.8]). In the present Report there are five
syntactic positicns: "strong" fpositions, where all coercions
may be applied; "firm" rositions, where thé first four
coercions 1listed above may be aprlied; "weak" positions,
where the first twc may ke arplied; "soft" positiomns, where
only deproceduring may be applied; and “EMPTY" positionms,
where no ccercions may be apglied. With +the proposal to
akolish ccnfcrmity-relations, <the only position in which
coercions could not be applied (the right hand side of a
conformity-relation) disappears and when ccnfcrmity-case-
clauses are introduced a new "meek" position reglaces this
"EMFTIY" f[position. The meek position is essentially the same
as weak except that it is possible to completely dereference

the coercend.

Several proposals concerning coercion and belonging to
category one have been incorporated into the syntax of
Appendix A. These include the modifying of deproceduring as
proposed in [17] toc resolve an ambiguity; the allowing of

| (] pEec imt Ep = (i,3): pp;
in which "pp" is voided [ 18-proposal c]; and the hipping of

“vacuums" [K€.2.€.1.b] to resolve an ambiguity, as proposed



27

in [8-frcgcsal 1].

For clarity and ease of recognition, vacuums are now
represented Lty an ‘"open-symbol" £followed Ly a "close-
syabol", Thus vacuums appear as empty row-displays. Further,
if the symbol row were required to precede rou~displays, for
example rew(1,2,3), then row-disgplays of one element could
ke introduced. This would mean that a vacuum could ke row (),
that the rowing coercion could be eliminated, and that firm
structure-disglays cculd be permitted without affecting
operator identification to as great a degree as described in
section five of this Charter. Correspondingly if ggggx were
required to precede declarers specifying "row-of-" modes
then reccgnition of these would be simplified (see Chapter
IV) . At the same time, orthogonality would be improved if
structures of 2zero or one fields and unions of zero or one
nodes were permitted. The first of these involves problems
with a "structuring" coercion unless the symbol struct is
required kefore structure-displays. If unions of zero or one
mcdes were fermitted then, perhaps upion() would be
eguivalent to yvoid, and union(a) would be egquivalent to a.

These suggestions have not been incorporated into the syntax

c¢f Aprendix A.

With the proposal for “row-of-row-of-" modes, another
type c¢f rowing coercion is introduced. Rowing may now add

another "row-" to a mode already beginning with "“row"%,
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inserting a new "gquintuple" into the “descriptor"®
{R2.2.3.3), or it may add ‘“row-of-" to any mode,

ccnstructing a new descriptor with one quintugle.

Though a prorosal to remove proceduring £from the
language (4-1Q203A(7)] has met with some approval,
proceduring may still be found in the mcdified syntax.
Proceduring is an interesting concept and is grokably n6
mcre ccnfusing than some of the other coercions (or
extensions, for that matter). The effects of proceduring on
igplementaticn will be discussed in Chapter 1IV. The
following is an example in which proceduring is both elegant
and useful.

e andf = (beecl a, proc bool b) bool: (alk|false):;
tool:=bool1 andf bool2 andf bool3;
where "bocl", "bool1", "bool2", and "bool3" are of Loolean
mcde. Without proceduring, the "assignation" [R8.3.1] would

have to hg written as follows;

bcol:=bool1 andf (bool: bool2 andf (bool: kool3)) .

In order to wmake possible the construction of a
sublanguage which does not contain any proceduring, a
modified versicn of (13-prcposal 1] is adcpted. Routine
denotaticns become units and are no lcnger packed between an
oren-symbol and a close-symbol. They do not becone
confrontations, because, in the following context they would

then not ke called;
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eeej Yoid: skipi eee o
"Casts" [R8.3.4) are made to lock different <frcm routine-
denotations with the "cast-of-symbol" becoming ex or :: (if
ccnfcrmnity-relations disappear). Also the "heap-symbol" is
made mandatory ir "global-generators" [R8.5.1] [ 19-proposal
2], the reasons for this being mainly didactic, with
orthogonality Leing improved at the same time. It is then
possikle to allow assignations as “"boundscripts"
[R8e6e1e1.1] because. boundscripts may now be units without
causing ambiguity. For example, a[int:i] has a routine-
denotation as a "subscript" [R8.6.1.1.i ], a[heap int:i] has
a glcktal-generator as the lower bound of a “"trimmer"
[R8.6.1.1.£), and a(int ex i] bas a cast as a subscript.
Similar examples with assignations are af[i:=ipnt:j], a[i:=

heap int:3], a(i:=int ex j).

2.8 Extensions

Chapter 9 of the Report introduces extensions, which,
when aprlied to a programs in the strict language, produce a
program in the extended 1angua§e. Extensions, which mainly
ccncern “"cemments®, declaraticns, "repetitive statements",
and case~clauses, cause ALGCl 68 programs tc look more like
programs in certain other languages. However, extensions
seem out of place in a rigorously defined language such as

ALGOL 68. Their method of description eafploys nc formal
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techniques and, consequently, automatic methods of
recognizing a fprcgram in the extended language are
impossikle., If the features introduced ky extensions are
deemed necessary to be in the language then they should be
formally defined as part of the strict 1language. Sonme
features, for example "options" [R3.0.1.b], presently in the
definiticn of the strict language are no more than
extensions anyﬁay. Thus all extensions were studied and only
those considered necessary are included in the syntax of

Appendix A.

Ccmpents [R9.1] are included in the syntax Ly means of
"tokyls" which are one syntactic level higher than
“symbols", the terminals of the strict language. A tokyl may
optionally be replaced by a comment-sequence followed by the
particular symkcl., Care has been taken so that ccmments do
not appear within comments or string- or character-

denotations.

Contracted conditional-clauses, case-clauses, and
conformity~-case~clauses [R9.4] have been unified with
conditicnal~-clauses as mentioned 1in secticn five of this

Chapter.

A syntax for regpetitive statements [{RY9.3] is
incorporated €0 that a "repetitive-clause" becomes a
producticn of unitary-clause, repetitive statements being

specified by the extension as "“strong-unitary-void-clauses".
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The form of the repetitive-clause has been altered so as to
allow the definition of a meaningful range incorporating the
“control-identifier", the "while-clause" and the *do-
clause". Also all constituent clauses become serial—clauses.

Fcr example;

frcm 4 by 2 to 100 for i while condition 4

skips: .

The extensions ccncerning bounds [R9.2.f] and sub- and
bus- symkols ([R9.2.9] are easily incorporated into the
syntax while another extensicn [R9.2.d] has been obviated by
the acceptance cf a propocsal concerning routine-denotations

as in section seven of this Chapter.

The remaining extensions concexn declarations and as
demonstrated in [4-1Q203A(4) ] and [20-proposal 2] cause some
problems, especially since the order of applying extensions
tecomes important. If extensions had been formally defined
it is douktful that these cenrlications would have arisen,
and those extensions which cause confusion have not been
included in the modified syntax. Extensions across a
"becomes-symbcl" are also excluded. For exanmgle,

loc proc (int) imt:=(ipt a) int: skip;
may not be comntracted to
lcc proc:=(int a) int: skip; .
- In cases such as this the left-hand side is a generator and
not a formsal parameter as in similar contractions.

Generators cause the reservation of storage but this will
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have to be postroned, if such extensions are allowed, until

the contractiocn has been “uncontracted".

Many semantic modifications accompany the inclusion of
extensicns in the syntax. For example;
[1:n:=n+1] int a,b;
is a contraction of
[1:n:=n+1] int a, [1:n:=n+1] int t;
using present extensions. Thus, the assignation in the
contraction should be elaborated twice contrary to what a
user may suppose. In such declarations actual-bounds should
be elakorated only once and the semantics will have to
reflect this. Perbaps a suitable method of semantic
description would 1egard the whole declaration as a
“structure", the actual-declarer of which is elaborated once

only.
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CHAPTER III

A CNE-PASS CCMPILER

3.1 1Intrcduction

ALGCL 68 is defined in terms of "actions" performed by
a “hypothetical computer" {R2.2]. A model of this
hypothetical ccmputer, using a physical machine, is an
"implewentaticn" of ALGOL 68. A sublanguage of ALGOL 68 is a
language whose particular-prograas are particular-programs
of ALGOL €8 and have the same meaning. In an implementation,
the particular-program may be translated into a program in
the machine language of the physical machine. This
translaticn is best performed by the computer itself using a
special program called a “compiler". The particular-program
cr "source c[program" is written in the "source language",
ALGCL 68, and is compiled into the "cbject prcgram", written
in the "object language" or "object code"™ of the Ehysical
machine. The translaticn of the source program into the
cbject prcgram occurs at "compile-time", and the execution

of the ckject rrogram at “runtime".

A compiler must perform an "analysis" of the source
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program and then a ‘*“synthesis" of the objéct program.
. Schematically, the logical parts of a compiler are shown in
Figure 3.1. This diagram represents a 1logical connection,
rather than a time connection of the compiler parts. The
processes can ke performed in the order depicted by Figure
3.1, or they could be performed in a parallel, interlocked
manner. A ccmpiler which performs these processes in the
focrmer fashion is a "multi-pass" compiler; one that perforas
them in the latter fashion is a "one-pass" compiler. In a
one-pass compiler, the source text is processed once, and
executable olkject code produced immediately. Actually, very
few ccmpilers are truly ocne-pass. For example, the place in
the program to which contrcl is to be transferred Lty a jump
instruction (in ALGOL 68, go to 1, for example) is not
generally known when the jump instruction is encountered,
unless the transfer point precedes the jump. Thus some sort

of "kack-tracking" is necessary.

Scme languages are structured so that they camnnot be
translated in a reasomnable fashion by a one-pass compiler.
ALGOL 68 is, in fact, cne of these languages. Restrictions
to the language are necessary and these will te discussed in
secticn three of this Chapter. Also in ALGOL 68, there are
cases where it is necessary to scan ahead in the source text
in order tc resolve some indeterminations. These cases will

be discussed in Chapter IV of this thesis. Thus the proposed
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irplermentation is actually one-pass with some “cheating", in

the fcrm of rack-tracking and locking-ahead.

In a cne-pass compiler it is not necessary to store,
fcr any length of time, intermediate object code that might
be produced by a multi-pass coepiler. Nor, in a one-pass
compiler, should any functions of the ccmpiler be
duplicated. For example, in a multi-pass cdnpiler, certain
secticns of the source text, or slight modifications thereof
may te analyzed more than once, each time ky a dififerent

pass.

In a multi-pass coapiler, on the other hand, it is
Fossikle to ©produce mcre efficient object code fcr larger
subsets of the language and preSulably the lanquage itself.
Thus the choice of a one-pass or a multi-pass compiler

depends largely ‘on the objectives of the implementor.

For the historical develcpments and a discussion of
the general techniques of comgiler-writing, the reader is
referred elsewhere. In particular, [22,23,24,25] were used

in the course of this investigaticn.
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COMEILER
ANALYSIS TABLES OF
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:. other
tables
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object code CODE ~1—1 —>
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SYNTHESIS
FIGURE 3.1. Logical Parts of a COnéilet.
3.2 Obijectives
The objectives of this implenentation are as follows:
(i) to implement a one-pass compiler for a large subset of
ALGCL 6E€.
(ii) to be modular im design.
(iii) to provide facilities for good error diagnostics and

runtime *debugging",
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A cne-pass ccmpiler was chosen in order to provide
fast turn-arcund (time taken to compile and execute a
program) for normal, small-to-medium size ALGCL 68 fprograas,
the type of programs one finds in an educational
envircnment. It is planned that the whole system should
reside in core, the only input/output being the source
program itself and the irput/output which the source program
carries cut. Only minimal local optimizations of object code
will be made, producing relatively inefficient object
programs in aksolute machine language, which the system will
execute immediately. Thus no expensive linkage-editing
(combining of object frograms) and/or 1loading (separate
insertion of a relccatable object program into the physical

machine) is necessary.

.Ihe modular design is employed so as to keep the
various tasks of the compiler distinct and well-defined. It
is proposed that some modules be included or excluded
depending on the setting of particular program switches. 1In
this way it uili be possible to study tﬁe relative effects
cf scme cf the features of ALGOL 68 on both compile-time and
runtime efficiency, and on the size of the compiler.
Conseguently, information concerning the development of

suklanguages for ALGOL 68 [26] may be obtained.

hecause of the possible use of the compiler in an
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educational environeent (or in any environment where
programs are teing developed and not just run), it is
nhecessary to provide facilities for good error diagnostics
and runtimse dekugging, all tco often neglected in the design

cf ccumpilers for high-level languages.

3.3 Restriction

The fcllecwing restrictions are made tc ALGOL 68 in

order to facilitate the cne-pass implementation.

1. Add the fcllowing context condition [R4.4.1.4)
concerning identification.

"d) No rroper particular-grogran in the sublanguage
contains an arplied occcurrence of a mode-identifier
(indication-applied occurrence of a dyadic indicatidn,
operatcr-agpglied occurrence of an operator) which is

textually trefcre its defining occurrence."

Consider the following exanmple;
kegin real x;
BIoc p = yoid: begin a x; ... end; ... .
In a strictly left-to-right scan of this text it is not
known whether a x is a "monadic-formula" [R8.4.1.g) or a
declaraticn c¢f a local varizble "x" until the defining

cccurrence of a is encountered. It is for this reason that

Mailloux suggests in (27] a special pass to process mode-
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indications, dyadic-indications and operators, Lkased on
their defining cccurrences. With the identification
condition above, a in the example could only be a mode-
indicaticn Ett a ccntext condition to be intrcduced later
will also exclude this case. The fact that this example is
jllegal will Le reported at inspectiom of a in a x because

no defining occurrence of a has yet been encountered.

The problem with mode-identifiers is okvious from the

following examgle;

tegin int i;
begin proc p = ¥oid: begin i:=1 end;
int i; .. .

Again, in a 1left-to-right scan, it is not known when
inspecting ;he applied cccurrence of "i" inm i:=1 whether it
identifies the defining cccurrence in the first line or one
that occurs later, as is the case here. It is for this
reason that Mailloux suggests a further fpass to process
identifiers kased on their defining-occurrences (now
recognizakle due to the prorosed first pass) in identity-
declarations (and in "labels" [R6.1.1.k] though these
wlakel-identifiers" [R4.1.1.b] are treated separately here) .
The example is illegal in the suktlanguage and this should be
reported cn inspecting the defining occurrence of "i" in int
i cn the third line. It is illegal because an applied
oCCcurrence bas cccurred textually before its defining

occurrence Ltut matters are further complicated Lecause



40

another defining occurrence was applicable (during the left-
to-right scan) when inspecting "i® in i:=1. Thus some record
must ke kept cf applied occurrences of mode-identifiers, anad
for similar reascns, of operators and indications (including
mode~indications) so that errors such as this may be
reported. Mailloux poiants out that policing this item is
likely to be alsost as costly as keeping the first two
passes and the unrestricted language. Methods of recording
applied occurrences exist and one of these will ke described

in Chapter IV of this thesis.

With the introduction of the above identification
condition, a modification of that presented in [27], the
identification problenms concerning mcde~identifiers,
operators, and dyadic-indications are resclved, requiring
“things tc ke definéd before their use". As noted by
Maillcux, this is not a serious restriction in that
“sensible" programmers "always" declare things before their
use. However it is now more arduous to write nutually
recursive operators and fprocedures. It is fortunate that
ALGOL 68 leaves a loophole which enables this to Le done
despite the requirements of the above identification

condition. Por exasmple;

(int a) real: begin ...; g a; ... €nd;

eR E =
QE 4 = (int E) imt: begin ...; E (b-:=1); ... end;

is now illegal, but may be rewritten as follous;
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‘proc (int) int g1;

9p p = (int a) geal: beginm ...; g1(a); ... end;
Eroc g = (int b) jnt: begin ...; p (b-:=1); ... end;

91:=q; op (int) int g = q; .

The reason that mode~indications were not included in
the above ccndition is that it is possible to have mutually
recursive modes in unrestricted ALGOL 68, and no loophole
such as the one employed above for operators exists to
enable the. alternative declaraticn of these mutually
recursive mcdes. For examgle, the following mode-

declarations cannct be rewritten to avcid recursive

definition:
bode a = struct(ref b a1, ref ¢ a2, int a3);
mgode b = struct(ref ¢ b1, ref a b2, real b3);
mode ¢ = struct(ref a c1, ref b c2, bool c3); .

Thus ancther context condition is defined which allows
recursive mode-declarations but requires definition before

actual use,

2. 1Add the following declaration conditions [R4.4.4].

w3d) 1If an indication-aggplied occurrence of a mode
indicaticn identifies an indication-defining occurrence of
that mode-indication, then it must also ‘'ultimately’
identify cne or more indication-defining occurrences of

mode-indications found by the following steps:
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Step 1: Each wmode-indication is said not to have been
encountered; the given indication-applied occurrence is
considered; |
Step 2: The considered {indication-applied} occurrence and
all mcde-indications which are the same terminal production
of 'MODE-mode-indication® are said to have Leen encountered;
the indication-defining ¢ccecurrence identified by the
considered occurrence is said to be ultimately identified by
the given occurrence, and is itself considered;

Step 3: If the constituent declarer of the mode-
declaration, of which the considered {indication-defining}
occurrence is a constituent contains one or more indication-
applied occurrences of not yet encountered mode-indications

(other than occurrences ccntained within a boundscript
contained within that declarer), theq each such {indication-
arplied} occurrence of each such mode-indication is
considered in turn, and for each one Step 2 is taken.

e) No proper particular-program in the sublanguage
contains a generator (a formal-parameter) whose constituent
declarer contains a mode-indication (other <than a mode-
indicaticn contained within a boundscript contained within
that declarer) which ultimately identifies an indication-
defining occurrence of a mode-indication which occurs later
in the textual order than the given declarer."

This conditicn is taken almost exactly frcm [28] and is

actually simpler than it appears. For example, in
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the applied cccurrence of a in the last 1line "ultimately"
identifies the indication-defining occurrences of a, then
;gg; (in the standard-prelude) and b, then bool and c¢. 1In
the identity-declaration a x (contracted from ref a x =
1oc a) a is a generator and =since all indication-defining
occurrences which it ultimately identifies textually precede

it, the example is thus permitted. However,

upicn a = (real, ref b);

o
]
-

mode b = int;
would not be allowed since when the declaration a x is
encountered a wultimately identifies real and b and no

defining cccurrence has yet been encountered for k.

It wouid @not be in order to require that defining
cccurrences of label-identifiers frecede applied occur-
rences, for then

eee 9O tC 1 eee 31: ...
would be illegal. In ALGOL 68 it is possible to omit the go
tc in a "jump" (R8.2.7.1.c] and this can cause prcblems for

the one-pass coapiler. For example, in
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Broc p = ¥oid: skip;
begin p;
p: skip end:
it is not known whether the seccnd occurrence of p is a jump
or nct. Thus go tgs vill be required in every jump. This may
be more restrictive than necessary Ltut it is 1less
ccnplicated to explain. For example, in
Rroc p = void: skip;
begin p: skip;
P end;
there is no proklem and the go to has been omitted. However
the r1equirement of go to alleviates protlems such as
recogrizing (11:12), by reducing the number of possibilities

for this ccnstruction. The following example,

F: skip;

tegin g0 to p;
F: skip end;

is legal for 1latel-identifiers unlike the corresponding
example £fcr lcde-idenfifiers. The compiler must carry out
tack-tracking in crder tc resolve examples such as the

latter. Thus the third restriction is as follows.

3. 1The syntax for a jump becomes [R8.2.7.1]

"c) MOID jumg: go to symbol, label identifier.™

4. The £final restriction concerns parallel processing.



45

There is no parallel processing and no use is to be made of
the fact that the user might write conmas instead of
semicolons, giving ‘*collateral elahoration" LRZ.Z.S.a,
R6.2.2]. The "parallel-symbol" will be ignored and if the

"sema-symbol" is used, an error message will ensue.

3.4 Implementatiop Dependencies

When designing a compiler for ALGOL 68 it is necessary
to choose the numker of different lengths of integers and
reals to Lte implemented. ALGOL 68 makes provision for an
infinite numkter of lengths but to actually have an infinite
nunter of 1lengths is, of course, impractical. It is then
necessary tc choose "internal® [R2.2.1] representations for
integral and real modes so that long modes and the newly-
added short mcdes wmay also have representations. As an
example c¢f this, consider a physical machine with "full-
word" and "half-word" integer arithmetic and "full-word" and
"doukle-word" real arithsetic. Then it would ke possible to
select a full-wcrd to représent integers and a half-word to
represent short integers. For reals, geal and long real may
correspond tc full- and double-words respectively. Certain

choices regarding kits and bytes must also be made.

In the standard-prelude of the Report there is a
secticn entitled "Envircnment Enquiries" [R10.1] in which

definitions are given for a number of identifiers and
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operators that enable the programmer to ascertain certain
features shich are dependent on a particular implementation.
The function of the identifiers is to supply information
such as the numker of different lengths of integers (the
identifier "int lengths") and reals ("real 1lengths"), the
number of widths of bits ("bits widths") and bytes ("bytes
widths"), the 1largest integral value ("max int"), the
Alargest long real value (“lcng max real"), the smallest real
value that can ke meaningfully added to or suktracted fron
cne ("swall real"), and sc fcrth. With the introduction of
short wmcdes, it is 1likely that additional environment
enquiries will ke made available so that, for example, the
number of short integer lengths and lbng integer lengths may
be ascertained. Twc operators, abs and repr are alsc defined
such that 135§ wa", for example; will return the integral
equivalent of the character "a", and repr 6, for exangle,
will return that character "x", if it exists, such that abs
wxt = 6, Further envircnment enquiries in the standard-
prelude concern transput, for’exanple, enguiries ccncerning
"channels" [R10.5.1.1] and Wexternal"™ [R2.2.1]
representations [R10.5.2.1] (the number of decimal digits
required to refpresent accurately the ' chosen internal
representations). These features all depend on the
particular machine on which ALGOL 68 is being implemented,

as well as depending on the implementor himself.
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The following example illustrates a problem. Let the
nunker of lengths of real be 2, i.e. "real 1leagths = 2%,

corresgcnding to geal and lcng real, say. Then what if the

programmer writes {
icng long real x := long long max real; ?
In the proposed isplementation, a warning will be given in
such cases and the above assignation will be comgiled as
long real x := long max real;
with "x" Dbeing considered to be of mode long lcna real, in

complete accordance with the Report.

The numker of longs able to précede a declarer depends
largely on how modes are stored. For example, long long long
real may ke stored with ‘a special counter in its de-
scription, which in this case would ke set to 3 (for shorts
this counter could ke negative). The situation is similar
for the nusker of refs and the number of rows (i.e. "row-"s
or "row-of-"s) that may precede a lode; Note however, that
runtime considerations will certainly restrict tke numker of
rows. In the akove case, where a counter is used, the
maximum numker of 1lcngs permitted would depend on the
maxiaum value which the counter could assume. Other nmethods
for storing mcdes exist [29] where the number of longs,
shorts, refs, or rous might depend on table size rather than
on the size of a counter. In the proposed implementation,

the restriccicns will not be severe. The number of longs or

shorts will depend on the size cf a counter, the number of
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refs on table size, and the nuaber of rous on runtine
considerations. No syntactic changes reflecting these
restrictions have been inccrporated into the syntax of

Appendix A.

It should ke noted that the Refport allows an infinite
number of identifiers to be defined within the standard-
prelude. For examgle, "long max int", "long long max int",
"long long long max int", etc. There will have to be a
special technique for storing and 1looking up such

identifiers.

Two other possible implementation dependencies are the
length of string-denotations and the maximum number of
letters or digits permitted in identifiers and indications.
In the proposed isplementation, it is hoped that these
limits will depend on table size (such entities must be
stored) rather than on scme feature of a particular physical

machine.
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CHAPTER 1V
A ONE-PASS IFMPLEMENTATION

4.1 Intycduction

This Chapter proposes an outline for a one-pass
ccmpiler for the sublanguage of ALGOL 68 detailed in Chapter
III of this thesis.

ALGCL 68 incorporates many concepts from other
programring languages, and basic techniques developed for
the compilation of these o£her languages ére sometimes
applicakle or perhaps partly applicable to the design of a
compiler for ALGCL 68. For imnstance, methods of handling
structured values are kncwn, at least partially, froa list-
and string-prccessing languages (for exanple, LISP [30] and
SNOBO1 (31]). Runtinme organization of ALGOL 60
inplementations emgploys stack techniques which, in
principle, may be used for ALGOL 68. However other concepts
intrcduced in ALGOL 68 make implementation difficult, and
cause proklems nct previously encountered in the design of

compilers for high-level programming languages.
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The remainder of this Chapter discusses the major
comgcnents of the compiler and systenm, giving techniques or
references to techniques for scme of the tasks which must be
performed within these _conponents. particular emphasis is
placed on those techniques that are peculiar to a one-pass

tut not a multi-pass comgiler.

4.2 Lexical Apalyzer

The lexical analyzer cr "“scamner" is that part of the
ccmpiler shich scans the characters of the source progran
from left to right, constructing the complete synbols of the
frogram, as well as copposing denotations and identifiers.
In general, the operaticas of lexical analysis are well-
defined and standard finite-autcmaton techniques [23-Chapter
3, 321 will be used for the scanner of the prcrosed one-pass

comgiler.

More specifically, tbhe lexical analyzer must perform
the following functioms:
1. Do the bookkeeping regquired to know where in the input
stream the ccmgiler is ofperating, fetching new source
records and listirg these if required. This part of the
scanner may Le somewhat izplementation-dependent due to the
inputsoutput cperatioms that are involved.
2. 1Ignore comments and insignificant blanks (those not in

string-denotations) that cccur in the source progran.
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3. Perform acticns specified by "compiler directives" or
perhaps as suggested in [R2.3.c ) "“pragmats". EFragmats enable
the user to sgecify, for example, whether or not a 1listing
of the source text is required, the column range of source
records, cptional features that the compiler rrovides, etc.
4. Ccmpcse symbols from the characters of the source text.
These symtols will have representations according to the
representation language given in Appendix C of this thesis.
5. Ccmpose identifiers from sequences of letters and
digits. |

6. Ccmpose and convert to internal form all denotations

except routine~- and format-denotations.

In the representation language of Appendix C, care has
teen taken to ensure that a sequence of characters may be
uniquely partitioned into symbols. For example,

a+:==3:/7%b
may ke partiticned uniquely as follows:
a +:= -/ % b

where "a" and "b" are mode-identifiers, +:= is a dyadic~
operator and -:/ and ?* are mcnadic-operators. This unigue
partitioning is desirable because the number of
rossibilities for syntactic analysis is therety reduced. The
syntai given in Appendix C for "dyadic-indicants" and
"monadic-indicants® (R4.2.1] which consist of special
characters (characters other thamn letters or digits) are

expressed using regular graamars [ 23-Chapter 3] to

’
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facilitate construction of the lexical analyzer.

If a given representation represents more than one
Symbcl then scme ccmplications arise. For example, +, -, =,
lo 1, in, out, :, (, and ) are such representations
according to the representation language given in Appendix
C. For ¢, -, and = the comfplications are minor and are
€asily resolved because of the liamited contexts in which the
corresponding symktols pay appear. For instance, +(-) nmay
appear as a representaticn of the "plus-symkol" ("minus-
symbol") in an "exponent-part" of a "real-denotation® or in
a "sign-frame" within a format-denotation. +(=) nmay also
arpear as a representafion cf the "add-symbcl® ("subtract-
symbol") within formulas, operation-declarations, or
priority-declarations. These cases are easily
distinguishable, as are the cases for = which will not be
detailed here. For |, ¢y in and Qgg the complications are
also minor and the immediately surrounding context will
determine €xactly which symbols these representations
represent. Complications with ( and : are more serious and

these will ke discussed in the next section of this Chapter.

4.3 Syntax Apalyzer

The syntax analyzer or "parser" analyzes the source
program, decomposing it inte its constituent rfarts, and

calling routines to perform specific functions dependent on
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the type cf construct currently being analyzed. The syntax

analyzer forams the nucleus of the proposed one-pass

ccagiler.

Most of the wmethcds developed for the syntactic
analysis of Frograms presune that the language in question
is at least bcunded-context [33]. ALGOL 68 does not fulfil
this conditicn and 4is not amenable to the usual, cBntext-
free analysis methods [ 23-Chapters 4,5,6)]. Research on the
automatic analysis of ALGOL 68 programs, guided by the two-
level syntax, is currently being carried out [34] but such
techniques will not be used in the proposed implementation.
The methcd of parsing selected for the proposed compiler is
that of a “tcr-down recursive descent" analyzer based on a
context-free syntax which describes a superset of ALGOL 68
and which afppears as Appendix B of this thesis. A context-
free gramsar fcr the language described by the two~level
syntax of Appendix A could not be generated automatically
from the syntax of Appendix A, since the two-level syntax
generates an infinite number of context-free production
rules. It is fcr this reason that the syntax of Appendix B
describes a sugerset of the language described by the syntax
of Appendix A. No prcblems arise however, as improper
programs which will be parsed as correct prcgrams in the
superset, will ke detected by routines called by the syntax

analyzer. During the development of the context-free syntax,
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much use was gade of [(35).

The top-down method of analysis known as recursive
descent [23-p. 97] is described as follows: for a given
ncnterminal U, there is a recursive procedure which parses
Fhrases for U. 1The procedure is told where in the source
text to tegin locking for a phrase for U, and hence the
method is "gocal-oriented" or ‘"predictive". The rrocedure
finds the frhrase by ccmparing the text at the point
indicated with right fparts of production rules for U,
calling cther frocedures to recognize subgoals when
necessary. Thus the subject language syntax is built into
the analysis program. Some advantages of this method are
that rules can be rearranged to fit the needs of the
procedures and to improve efficiency of the rarsing process,
and that cther routines for further syntactic analysis, for
ctecking context conditions, and for code generation may be
inserted anywhere within a procedure and not just at the end
when the phrase is detected. Two disadvantages with the
recursive descent me thod of analysis are that more
programming and debugging is required and that modifications
to the syntax are harder to incorporate than if other
methods of analysis were used. However, neither of these
disadvantages is thought to ke severe. In particular, in an
effort to reduce compile-time, the method of recursive
descent was selected and methods using Floyd-Evans

Production Language [36, 37] or modifications thereof, which
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are employed in scme other isplementations of ALGOL 68 [38,

39], were rejected.

It should be noted that the syntax analyzer is not to
ke constructed directly frcm the syntax of Appendix B but
rather frcm a contracted syntax in which rules are ordered

to obtain a miniral amount of back-tracking.

The syntax of Appendix B contains twe intrinsic
ambiguities. The first involves certain constructions which
may e parsed as either slices or calls; for €xanmple,
a(i,j). However, in Chapter III of this thesis, a
restricticn was imposed to ensure that the defining
cccurrence of a mode-identifier would precede any applied
occurrence. In an example such as a(i,j) then, the defining
occurrence of "a" should have been encountered and whether
the given ccnstruction is a slice or a call may be
deterained Ly inspecting the mcde of wawn, If no defining
occurrence of "a®" exists, then the bProgram containing the
construction is not a proper particular—pfogram in the sub-
language and an error message will result. The second
intrinmsic ambiguity in the comntext-free syntax involves
"indicantew [R4.2.1], mcnadic-indicants, and dyadic-
indicants. For instance, a may be a terminal Production of
any of these and consequently a a and (1:1) 8 a each allow
two interpretations. In the case that a is an indicant, the

two ccnstructions above are identity-declarations. If a is a
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monadic-indicant in the first constructicn cr a dyadic-
indicant in the second construction then the ccnstructions
are fornmulas. This asmbiguity is resclved by way of
restricticns imposed in Chapter 1III, by requiring mode-
indicaticns, monadic-operators, and dyadic-indications

(dyadic-operators) to be declared before use.

Majcr ccmplications in the syntactic analysis are
caused by the indeterminations that exist concerning left
rarentheses and right parentheses (less importantly, since a
right rarenthesis must have a corresgonding left
parenthesis). In ALGOL 68 parentheses are “overloaded", that
is, there are many constructions which [farentheses may
délinit. According to the syntax of Appendix A and the
representation language of Appendix C the left parenthesis
is either a representation of open~syakol or a
representaticn of ‘"“brief-conditional-begin-", "brief-case-
begin-", or ‘*brief-conformity-case-begin-symkol". A left
Farenthesis encountered in a 1left-to-right scan of the
sourcé stream may fall into one of two categories as
fcllowuws:

(i) A 1left rfarenthesis, the 1left context of which is
sufficient to determine the construct which the left
rarenthesis rprecedes. For example, in each of struct(int i,
real r) and struct s = (real a, b) the struct to the left of

the left farenthesis determines the following construct as a
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(ii) 2al1 otker 1left farentheses. The fcllovwing are
constructs (with examples) that a left parenthesis belonging

to this category may tegin:

vacuum ()

routine-denotation (@ a) b: skip
actual-declarer (L1:12)a a
virtual-declarer (,2)a a

closed-clause (a a; skip)
ccllateral-clause (skip, skip)
conditional-clause (bool|skip|skip)
case-clause (intiskip, skiplsgkip)
conformity-case-clause (union| (a a): skipiskip)

vhere a and }» are mode-indications, and "11%, wi2", ®a%,
"bool", "int", and "union" are identifiers. Note that the
left parenthesis beginning a specification (in the new
conformity-case-clause) belongs to category (i) as the

specification is distinguishable by context tc the left.

Wwhen analyzing the program, context to the left is
taken intc account by the mechanisms <¢f recursive descent
and so fparentheses belonging to category (i) cause no
cecmgplications. However, iﬁ general, an infinite context to
the right ray ke required toc distinguish the parentheses in
category (ii). 1Ivo approaches to this problem will be
discussed. First, it is possitle to consider all

intergretations of the comstruction in parallel, eliminating
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cases as analysis of the source text proceeds. Finally vwhen
context to the right has eliminated all tut one case, the
effects of the incorrect interpretations must ke cancelled.
This approach is very difficult for a one-pass compiler and
would require extensive back-tracking. The second approach,
the one adopted irn the progosed implenmentation, is tc employ
a look-ahead algorithm which will be ‘initiated at left
parentheses belonging to category (ii) and will divide the
constructs intc at least four classes' as follcus: (a)
vacuums, (b) virtual-declarers, (<) routine-denotations, and
(d) all cther constructs beginning with left parentheses
belonging to category (ii) . Fortunately, it is not
immediately necessary to distinguish all cases mentioned in
category (ii). The particular construct that must be
discerned is the routine-denotation. For examgle, consider a
a in (a a; skip) and (a a) b: skip. In the first case, a
closed-clause, a a is an identity-declaration. In the sécond
case, a routine-denotation, a a is a formal-parameter. These
constructs require different actions by the compiler and

thus the cases must be distinguished.

Note that if array was required before declarers
~specifying vrow-of-" modes then virtual- and actual-
declarers would nct appear in category (ii) above and

comgplications would be scmewhat reduced. .

The look-ahead algoriths is simple in principle and is
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tased primarily on the particular symbols that may appear
between left and corresponding right parentheses, excluding
any text surrcunded by inner parentheses. The following are
the particular symbols fcr the first three of the akove four
classes:

(a) vacuums: empty (i.e. nc symbols at all).

(b) virtual-declarers: empty, ",", :, "mode-swords", mode-
indications, mode-identifiers, tags.

(c) routine-denotations (i.e. fcrmal-parameter-packs): ",",
node-words, mode-indications, mode-identifiers, tags, (, ).
{e )o (/o /)¢ ¢, £lex, either (these latter three may appear
only ketween (s and /) or [ and ] ).

Mode-words include the following symbols which are
associated with declarers: proc, union, Struct, ref, long,
Short, and void. For vacuums and virtual-declarers the look-
ahead algorithm scans past the corresponding right
parenthesis, to distinguish between cases such as () and
(J)ceal. As soon as a decisicn is reached the algorithm
terminates, Extra information is utilized in this
ccnnecticn; for example, the occcurrence of | cr {: implies a
ccnditional-, case-, or conformity-case-clause; the
occcurrence of ; implies a conditional-, case-, conformity-
case-, or closed-clause. Note that this algorithm assumes
the acceptance c¢f wmodifications tc formal-parameter-packs
and formal-declarers as outlined in Chagter i1 and

incorrorated in the syntax of Appendix A of this thesis. The



60

hew restrictions concerning formal-declarers imply that the
algorithe should not usually have to look far to the riéht,
even though technically speaking, the context to the right
is still untounded. The 1look-ahead algorithm will be
attached to the syntax analyzer and 1exica; analyzer in such

a way that lexical analysis will not be performed twice.

Fcllowing the application of the look-ahead algorithnm,
a construct beginning with a left parenthesis and kelonging
to class (d) as defined above may be a closed-, ccllateral-,
conditicnal-, case-, or conformity-case-clause, or an
actual-declarer. Except for one special case a construct
such as this is fprocessed from left to right with further
discernment occurring as mcre source text is analyzed. The
remaining special case is the locally amkiguous construction
(11: expression) where nlqn is an identifier and
"expression" is a wunit. Here the overloading of : causes
problems. If : is the "label-symbol" then "11n is a label-
identifier and the conmstruction is a closed-clause. If : is
the "up-to-symkol" then the construction is part of an
actual-declarer specifying a "row-of-" mode. Because of the
definition-before-use restriction, if "11" is not defined
then it may cnly be a label-identifier. However, if it is
defined, then it may be either a label-identifier or a mode-
identifier and the construct may correspondingly be a

closed-clause or part of an actual-declarer. Note that the
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case where "11"* is a Jjump has been excluded in the
considered sublanquage. The identifier that cccurs between
the open-symtol and the 1label- or up-to-symbol of this
special case will Lke called, for the furpcses of this
discussion, the “MABEL" identifier ("11" in the above
example) . This special case will be detected by the look-
ahead algorithm. The MABEL identifier will ke assumed to be
a laktel~-identifier unless it identifies. the defining
cccurrence of a mode-identifier, in which case it will be
assumed to ke an applied occurrence of this mode-identifier
and an entry for the MABEL identifier will be made in a
special talkle. At any applied occurrence of a l;bel-
identifier, this special table will be inspected. If the
table ccntains an entry that the applied occurrence of the
label-identifier could identify as a defining occurrence,
then the corresponding MABEL identifier will be assumed to
ke a label-identifier. The necessary modifications to tables
will be made and lack-tracking will occur in that the code
generated under the assumption that the MABEL identifier was
a mode-identifier, and the construct was part of an actual-
declarer, must be replaced by the code that precedes entry
to a range. Finally when the corresponding right parenthesis
is processed, the immediate right context will verify or
contradict the assumption and the entry for the MABEL
identifier in the special table may be deleted. In tﬁe case

of contradiction, an error message will ensue.
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The major disadvantage of using specific criteria,
such as those mentioned above, during compilation is that
errors occurring in a prcgram could be very misleading [40].
Lifficulties iﬁ error handling are inherent in the 1language
since there exist gany syntactically similar but
semantically different constructions. The error handling
strategy to be used in this implementation is as
follows: £fcllowing the detection of an error, the source
program will be scanned tc the «right until a symbol is
fcund, which together with the 1left context already
analyzed, delimits the section of program containing the
error. The symbols which delimit error sections vary
depending on the type of error. The matching of symbols, as
required in the syntax of Appendix A, will be used in the
search for error-delimiting symbols. No attempt will be made
to correct errors occurring in a source program and no
otject code will ke generated following the discovery of an
error, though analysis will continue. Several techniques for
reducing the number of consequential errors (that is, errors
resulting frcm a previous error) are being investigated.
Scme errors, for example, doubly-defined identifiers, do not
cause frotlems as far as delimiting is concerngd tut may
cause many consequential errors. It would be an advantage to
report at least the Fossibility that am error is

consequential.
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4.4 1ITable Structure

The follcwing are the main tables of the propcsed one-
Fass ccmgiler,
1. Lexical apalysis table - used by the lexical analyzer to
generate unigque integers for such tokens as “confrontation-
tckens", "declaration-tokens", “"syntactic-tokens", "sequen-
cing-tokens", and "hip-tckens",
2. 1Indication and identifier table - contains actual
sequences cf characters used for identifiers and
indications.
3. Standard-prelgde table - contains entries for orerators,
indications, Frocedures, and some of the identifiers which
are‘declared in the standard-prelude.
4. Main takle - contains entries for each operator,
indication, and identifier occurring within the progranm
keing comgiled.
5. Declarer takle - contains entries for each declarer

occurring in the progranm beirg compiled.

Other tables will certainly exist within the compiler;
for examgle, a table to assist in code generation will be
hecessary, bLut tables such as this will not Le detailed in
this investigation. The 1lexical analysis and standard-
prelude tables are of fixed sizes. The cther three tables
menticned abcve and the compiler-stack (used by the

recursive descent routines) will vary in size depending on
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the particular-program being compiled. If an overflow
occurs, free storage will be redistributed so that the
overflow condition disapgears, if possible, according to an

algorithm given in [41].

The main table will initially e empty. Anyv
declaration of an operator, indicaticn, or identifier will
cause an entry to ke made in this table. In order to reduce
search time, entries will be made using hash addressing
techniques with gquadratic rehash to resolve ccllisions (23-
Chapter 9]. The information contained in an entry imn the
main taltle depends on the type of entry. [39-Chapter 5]
gives a detailed description of the type of inforpation that
will ke stored in the main table. A scheme sisilar to that
described in [27] is wused to represent the static block
structure of a program in order that correct identification
of ideﬁtifie:s, indications, and oﬁerators may be made. A
modification is necessary however, in that ranges are not
immediately recognizable to a one-pass coumpiler during a
left-to-right scan even with the look-ahead algorithm as
given in the previous section. In [42] "corrals" are defined
as ccnstructs which have the same context as serial-clauses
(including serial-clauses themselves) and it is proved that
no errors will occur in the identification of indications,
operators, or identifiers if all corrals eixcert "“formal-

PARAMEIERSY ([R5.4.1.c] are considered as ranges. It is
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Possitle to distinguish formal-PARAMETERS frcem other corrals
by use of the lock-ahead algorithm. Sc, for the purposes of
identification cf operators, indications. and identifiers,
the algorithm in (27] is used but with corrals, excluding
formal-PARAMEIERS, replacing ranges. 1In the sequel, when
“corral" is mentioned, it is to be assumed that formal-

EARAMETEFS have Lkeen excluded.

When an applied occurrence of an OfFerator, indication,
or identifier is encountered, the main +table will be
searched‘for the ccrresponding defining occurrence. 1In the
case that a defimning occurrence is not found then the
standard-prelude takle will be searched (also wusing hash-
addressing) . If the defining occurrence is found in this
table then the entry will be transferred to the main table.
In this way, only those operators, identifiers, and
indications declared in the standard-prelude shich are used
in the fparticular-progranm being compiled will appear in the
main table. If the defining cccurrence is not found in the
standard-prelude table then for indications and operators an
error message will be given; for identifiers a final
possitility exists. A routine will be called to check
whether the identifier is cne of the infinity of identifiers
declared in the standard-prelude which, for practical
reasons, is not yet stored in the standard-prelude table;
for example, "long long long max int", If this check fails,

then an error message will be given,
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As noted in Chapter III it is also necessary to record
applied cccurrences of indications, identifiers and
operators so as to ke able to report errors such as the one

in the follcwing example:

mode hippo = real; .
At compile-time, whenever a new corral is enccuntered within
the source prcgram, the compiler will reserve a flag for
each indication and identifier having a defining occurrence
which could be identified by an applied occurrence in the
corral. These flags will be stored in the main table with
their correspcnding indications and identifiers and will
initially be set off (a flag may be "on" or "off"). When an
applied occcurrence of an indication or identifier is found
tc identify a defining. occurrence, then the flag
corresponding to that defining occurrence will be set on.
Wwhen the compiler exits frcm a corral the set of flags for
the corral being left will be "“or%"ed (in the Boolean sense)
with the set of flags for the corral being re-entered. In
this way a record will be kept of those indications and
jdentifiers whose defining occurrences were identified by
applied cccurrences at deeper 1levels of nesting. Upon
encountering the declaration of an indication or identifier

which is the same sequence ¢f marks as an already existing
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and accessible defining cccurrence (declared within an outer
range), the flag for this existing defining occurreance in
the current set of flags will be inspected. If it is on,
then any applied occurrence already processed would (and
should) have identified this new defining occurrence and an
error message will be given. If the inspected flag is off,

then the processing of the declaration will te ccmpleted.

The above algorithm cannot be applied to operators
because of the copmplex mechanism of operator identification
and the acceptance of +the double-identification context
condition, with the consequent abolition of the loosely
related condition. The following example should illustrate

this:

chino i;
op rhino = (real i) void: skip:
op rhing = (int i) yoid: skip; .

In a left-to-right scan of the above example, the formula
thing i is fcund to contain an operator rhino which
identifies the rhino declared in the outer range, and has an
operand of reference-to-integral mode. Following this
fcrmula are two operation-declarations. The first of these
declares an operator whose representation consists of the
same sequence of marks as an already applicable defining

cccurrence Lkut its operand is of real mode and hence this
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declaraticn should not result in any error messages. The
second declaration defines an operator whose representation
also consists of the same sequence of marks. However its
operand is of integral mcde and now troukle arises. The
operator of tke formula xhino i should identify this
defining occurrence since "i" can be dereferenced from
reference-to-integral mcde to integral mode. With the
removal of the 1loosely related condition, it would now be
impossible to find corresponding flags within the set of
flags for operators, if these had been created. The solution
involves the recording cf all operator-applied occurrences
and the mcdes of the operands before coercion. In the case
that an oferand is a "balance" [R6.2.1.e] or a collateral-
clause, the mcdes of the components must be recorded. At the
declaration cf an operator, these applied occurrences must
te inspected sc as tc¢ determine whether the operator-
defining cccurrence in the new declaration could have been
identified. 1This solution is very expensive and in the
prorcsed implementaion it will not be used. Rather, it is
proposed to use a similar algorithm to that described above
for indications and identifiers. A flag will te created for
each operator with a distinct representation, and for each
operator whose representation is the same as that of sonme
cther operators, but whose operand(s) are of different
mcde (s) than thcse of the other operators. Thus an error

message will be given in the case of the declaration of an
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operator which is the same symbol as, and whose operand(s)
are of the same mode(s) as the operand(s) of, an already
existing applicable operator-defining occurrence which has
been identified Ly an operator-applied occurrence at a
deeper level cf nesting. A warning message will be given in
the case of the declaration c¢f an operator which is the sanme
symbol as an already existing agplicable operator-defining
occurrence which has been identified by an oferator-applied
occurrence at a deeper 1level of nesting. In the above
example, the twoe inner operaticn-declaraticns would thus
Froduce warning messages. This method is chosen because it
is much less expensive than the coumplete solution even
though, technically speaking, the proposed compiler is not
now a compiler for a suklanguage of ALGOL 68. It will be
possitkle to write Frograms in the sulklanguage, the
elakoration of which will be different than that specified
by the Report. For the chosen algorithm, the maximum number
of flags necessary is equal to the wmaximum number of
indications, identifiers, and operators times the maximum

depth of nesting of corrals.

The task of representing mcdes in a suitable manner at
compile-time is not trivial, because the set of nodes is
infinite and modes may ke defined recursively. The declarer
table is ccnstructed in such a way as to enable the storing

and efficient manipulation of modes [29, 39-Chapter 5, 43,
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44, 45]. When processing the declarer of a mode-declaration
the indication of which ultimately identifies (see Chapter
I1I) an indication-aprlied occurrence vhose indication-
defining occurrence has not yet been encountered, then this
declarer must ke "remembered" so that when the missing
indicaticn-defining occurrence is encountered, processing of

the declarer may be continued.

The algorithm for determining the "equivalence" of
modes given in [44] is not immediatly applicakle in a one-
pass ccnpiler since this algorithm efficiently tests a set
of modes already given, whereas in a one-pass compiler,
declarers must ke processed as they are encountered, rather
than all at once. Cne alternative is to use " an algorithm.
similar tc those given in [29, 46] for the pair-wise testing
ct eguivalence. However, another alternative to be
considereé arises from [47], where a method «cf ordering
mocdes is outlined. An algorithm based on this method would
order modes as the corresponding declarers were entered in
the declarer talle and equivalence could ke checked at the
same time. This ordering of modes has other advantages that
will prove keneficial during compilation [47].

4.5 Coercions and Identification of Operator

The prcktlem of deterrining coercion steps 1is not

unique to ALGCL 68 but it is much more complex than in other



n

high-level languages because there are more coercions and

because there is a potential infinity of modes in ALGOL 68.

The task of operator identification is also included
in this section lkecause of the rcle of coercions in this
process. Initially the identification of operators proceeds
analogously tc the identification of indications. However,
in ALGCL 68, the mode(s) of the operand(s) of an operator
are also considered in the identification process. The
mode(s) of the operand(s) of an applied occurrence of an
operator ("a [rriori" modes) must be "firmly coercible"
[R4.4.3.a] to the mcde(s) of the fcrmal-parameter(s) given
in the ccrresgonding operation-declaration ("a posteriori®
modes). Cperator identification is also complicated by
“"balancing®™ and by collateral-clauses. In the general
problem there is a set (perhaps infinite) of a posteriori
modes and a set of a pricri modes. A unigque sequence of
ccercions must ke found from a mode in'the a rriori set to a
mode in the a pcsteriori set such that constraints imposed

by ccntext are satisfied.

The Erocesses of operator identification and
determinaticn of coercions form a major part of an ALGOL 68
compiler and the problems involved for a one-pass compiler
seem to ke nc more ccmplex than those involved for a multi-
Fass comfpiler. An investigation of implementation techniques

for these processes within the [Froposed one-pass compiler
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has not yet keen completed. piscussion of the processes and
algorithms for scme of the tasks involved may be found in

[12' 39"Chapter 7' ‘N‘, “8' ugp 50 ]o

More or less standard technigues exist for
synthesizing ckject code once tle requisite information has
teen gathered during the analysis phase of ccmpilation.
several prcblems remain for the one-pass compiler and these

will ke discussed in this section.

The proposed one-pass compiler will generate object
code directly, locating it within the runtinme environment so
that when compilation has finished, execution may kLegin
immediately. [39-Chapter 11] contains a detailed description
of code generaticn for an ALGOL 68 compiler. Because of the
availability of compile-time tables at runtime, it is
possitle that scme of the runtime routines might be
interpretive; for exapple, routines for the elatoration of
declarers. Transput routines will be based on algorithms
presented in {511 and thus format-denotations will be
ccapiled as suggested in that reference. Only Very local

optimizations will be made during code generation.

several runtime cpticns will Dbe available; for
example, initialization-hefore-use-checking, tound-checking,

state-checking, and scope-checking as well as diagnostic and
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debugging aids. These checks are provided as cptions because
a ccrrect p:ober particular-program in the suklanguage will
not require them. Cf these checks, scope-checking warrants
the most attention and a discussion of scope-checking for a
multi-pass ccmpilgr may be found in [39-Chapter 8], the
problem not having been investigated as yet for this one-

pass implementaticn.

One of the problems that a cne-pass compiler must
solve is that of code generaticn for jumps. Often, when an
applied occurrence of a label-identifier is [frocessed, the
defining occurrence which it identifies will not yet héve
been enccuntered, or it may have been encountered but in an
outer range, in which case the compiler cannot ke certain
whether or mnot it really is the defining occurrence.
Therefore, special action wusing indirect tranching is
scmetimes necessary. If the defining occurrence of the
constituent latel-identifier of a Jjump has already been
encountered within the same range as the jump, then code for
the jump may ke generated directly. Otherwise, a kLranch
instruction which transfers control to some reserved
lccaticn in the "ccffin" (descriked in section seven of this
Chapter), will ke generated, and an entry for the applied
occurrence of the label-identifier within the jump will be
created in the main table. This entry will be flagged as not

having been ccmpleted and will contain a pointer to the
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reserved location in the ccffin and a pointer to a defining
occurrence (in an outer range) it might identify, if one
exists. When the corresponding defining occurrence is
encountered or verified (by re-entering the range containing
the defining cccurrence that the applied occurrence might
identify) then the transfer [foint is known and a tranch
instructicn tc this transfer point will be inserted in the
reserved location, thus completing the indirect tranch. Many
slight @©cdifications of this agproach exist, depending on
the instruction set of the physical machine fcr which the

compiler is keing implemented.,

Another prcblem peculiar to a one-pass compiler is the
generaticn of code for coercions. In general, when a
coercend is encountered it is not known what coercions, if
any, are to ke performed until further source text is
processed. The proceduring coercion affects whether or not a
coercend is elahciated and thus provision must be nade for
the =situation when a given coercend is not elakorated, but
procedured. All cther coercions folliow elaboration of the
coercend, and prcvision must be made for inserting code for
these or at least branching to the code. Instead of
detailing the method of solution, three examples will be
given, illustrating the rroblems and the techniques used to
sclve then,

Example 1:

This example illustrates why coercions are not, in general,
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found until it is too late to insert the code for then
directly in place in the object program. Consider a opr b,
where "a"® and "b" represent any coercends, and opr
represents any operator. TFirst the coercend "a" will be
processed and an a priori mode (or modes) obtained. The
operator opr will then be scanned but, in general, it will
not yet be known what operator-defining occurrence this
operator-applied cccurrence identifies. Thus the coercend
wp" pust ke processed in crder to obtain the a pricri mode
(or modes) cf the right operand so that operator
identification may be cospleted. Once the identification is
complete then and only then will the coercions for "a" and
""" be known.
Example 2:
Consider a coercend in a context such that dereferending and
then widening must occur. lLet "a" denote the coercend and
wcode (a)" the code generated for the elaboration of "a".
Then the following seguence of “pseudo-instructions"
represents the flow of the code that will be generated.

1: Jumg to 2.

2: Code(a).

3: Jumg to €.

4: Perhaps other code (generated while the compiler

discovers the coercions required for "a%).
5: Jumg to €.

6: [Lereference (2) (nvan represents the result of
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elakorating code(a)).

7: Widen(6).

8: Jumg to 4.

9:  eee
The transfer points for jumps and the locations from which
jumps are made may be repembered by employing stack
technigques.
Examgle 3:
Consider a coercend in a context such that widening,
proceduring, and rowing pust occur. "“a" and “code(a)" are as
in example 2. The following segquence of pseudo-instructions
represents the flov of the code that will be generated.

1: Jumg to 10.

(8]

Code (a) .

3: Jumg to 6.

4: Perhaps cther code.
S: Jumfp to 13.

6: Widen(2).

7: Epilcg.

g€: Prclog.

¢: Jumf to 2.
10: Foutine Lkuilder(8).

11: Fow (10) .«

-d
N
..

Jumg tc 4.

13

“prolog" and "epilog" represent standard code generated for
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procedure entry and exit. "“Routine builder"® takes the
location of the Frocedured coercend ("8" in the above) and
builds a representation for the procedure (envircnaent

informaticn must be added).,

4.7 Rubptime Environment

Little detail will be given in this discussion of the
runtime environment, again because investigation is
inccmplete and because there exist methods prorosed for
multi-pass compilers that will, with 1little modification,

suffice for the prcposed one-pass compiler.

When an AlGOL 68 object program is running, three
separate rparts of storage may be distinqguished.
1. The “coffin" contains object-code and constant data for
the rrogranm.
2. The ™"stack", on which is allocated the space for most
‘locally declared ckjects, for intermediate results, and for
organizational entities.
3. The “"heap", on which space is allocated for all global
" generaticns, and for local Objects whose storage

requirements may vary during elaboration.

The stack and the heap will occupy opposite ends of an
area of storage and grow towards each other as space is

allocated on each of them. The recovery of space from the
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stack will te achieved using stack technigues similar to
those of ALGOL 60 implementation [23-Chapter 8, 25). Space
will te recovered from the heap whenever a collision between
the stack and heap is imminent. The process of recovering
space from the heap is known as garbage-collection and
techniques for this are described in detail in [ 27, 39-

Chapter 10, 52].

The stack will be organized procedure-wise, that is,
the stack will consist of blocks of storage called stack
cells, each of which is the storage local tc¢ a particular
invocaticn of a routine. {39-Chapter 10, 53] contain further
details of runtime environment including the representation

of values and detailed stack organization.

The runtime environment will include facilities for
runtime debtugging and rost-mortem dumps. If requested, a
modified copy of the source program will be retained during
elakoration o¢f the object program. This copy of the source
Frogram may e compacted scmevhat because the compiler
tables will also be retained, remembering that the
iwrplementation is a compile-and-go system. Traces, statement
counts, and pcst-mortem dumps will then be made available to

the user in a similar fashion to that descriked in [54].
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CHAPTER V

CONCIUSICN

The objectives of this investigation were twofold.
Pirstly, a syntax for a modified versionm cf ALGCL 68'was
developed. This syntax, together with a ccrresponding
ccntext-free syntax and a representation language, appear as
Appendices to this thesis. The modifications made to the
language descrited in the Rerort, consist of additions and
alterations considered to enhance the language from a
user's, as well as an implementor's point of view. Included
among the wmodifications were some of the many suggestions
for additions and alterations proposed since the publishing
of the Report, as well as some changes arising out of this
investigation. The wmodifications and reasons for their
incorporation are discussed in Chapter II of this thesis.
Some suggestions for semantic changes are included but
emphasis is generally on syntactic rather than semantic

details.

The seccnd cbjective of this thesis was the design of

a one-pass ccmgiler for ALGOL 68. Implementation
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dependencies and restrictions imposed to facilitate the one-
pass isplementaticn are discussed in Chapter III. Chapter IV
describes techniques for some of the tasks which the
compiler must perform. Experience gained while designing the
compiler was of considerable importance in the consideration

cf modificaticns to the language.

Al1GCL 68 is a poverful programming language
incorgporating and generalizing many concepts frcm other
programming languages and from current literature. As well
as this, many new features are introduced and these give
rise to difficulties hitherto unencountered in the
igplementation of programming languages. Implementation of
ALGOL 68 is thus more difficult and more expensive than,'for
example, the implementation of ALGOL 60. Chapter IV of this
thesis is by no means complete in its description of the
proposed cne-pass ccmpiler and there remain many problems on
which further research must be carried out. These problens
however, are not just peculiar to one-pass ccmpilers but to
nulti-pass compilers as well., At this stage it would seen
that a one-pass compiler for the given suklanguage of AiGOL
68 may Le ccnstructed, provided that a multi-pass compiler
for the unrestricted language is possible. The quality of
object code produced by this one-pass compiler will be poor
wvhen compared with that code which could be groduced by a

multi-pass compiler. This is because of the extra



81

information available to +the nwulti-pass compiler ' when

generating okject code.

It is proposed to implement a one-pass compiler based
on the design presented in this thesis. The compiler will be
written in a low-level language of a particular physical
machine. A 1lcw~level language is chosen so that efficiency
of the compiler is imgroved, déspite the incréases in
programming and debugging time. There are two proposed
usages for the ccmpiler, Firstly, it will be wused in an
educational environment providing fast turn-around for
normal, small-to-medium size programs, together with good
debugging and diagnostic facilities. Secondly, the compiler
will te used to experiment with the inclusion and exclusion
of various features of ALGOL 68, thus giving scme idea of
the cost, with respect to both efficiency énd size, of
including certain of these features in AILGOL 68 and its

sublanguages.
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APPENDIX A

A MODIFIET ALGOL 68 SYNTAX

This syntax is presented in the sanme oxder as that of
the Report, with ccrresponﬁing section numbers and headings.
Vertical 1lines in the left margin dénote those parts of the
syntax that are additions or alterations. Omissions in the
ordering sequence correspond to productions present in the

Report but not included in this syntax.

1.2.1. Metaproduction Rules of Modes

a) MODE: MCOD; UNITED.
b) MOOD: TIPE; STOWED.
c) TYFE: EFIAIN; format; PROCEDURE; reference to MCDE.
d) PLAIN: INTREAL; boclean; character. '
e) INIFEAL: INTEGRAL; REAIL.
| £) INTEGRAL: SHCNGSETY integral.
| g) REAI: SHCNGSETY real.
lha) SHONGSETY: long LONGSETY; short SHORTSETY; EMPTY.
lhb) LCNGSETY: long LONGSETY; EMPTY.
thc) SHORTSETY: short SHORISETY; EMETY.
lhd) SHCNG: short; long.
i) EMFE1Y: .
j) PROCEDURE: procedure PARAMETY MOID.
k) PARAMETY: with PARAMEIERS; EMPTY.
1) PAFAMETEFS: PARAMETIER; PARAMETERS and PARAMETER.
ma) PARAMETER: MCDE parameter.
imb) PRAMETEFS: parameter and MODE PRAMETERS; farameter.
n) MOID: MCDE; void.
| o) STCWED: structured with FIELDS; ROWS of MODE.
P) FIEIDS: FIFID; FIELDS and FIELD.
ga) FIELD: MODE field TAG.



Igb)
r)
s)
t)

u)
v)

w)
X)
Y)
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FOLDS: field TAG and FIELDS; field TAG.

TAG: ILETIER; TAG LETTER; TAG DIGIT.

LETIER: letter ALPHA; letter aleph.

ALPHA: a; b; c; d; e; £; g; h; i; Jj; k; 1; m; n; o; p;
g; £; s; t; u; v; wi x3 y; 2.

DIGIT: digit FIGURE.

FIGURE: zero; one; two; three; four; five; six; seven;
eight; nine.

UNITED: unicn of 1LMOODS MOOD mode.

LMOODS: LMOOD; LMOCDS 1MOOT.

LMCCL: MOOD and.

1.2.2. Metaproduction Rules Associated with Modes

{ ba)
{ bb)
c)
e)
f)
g)
{ h)

i)

3)
k)
1)
m)
n)
o)
P)
q)
r)
s)

1 t)

(ua)
{ub)
luc)
va)
{vb)
i w)

X)
Y)

ROWS: row; RCWS row.

KOW: row; row of.

ROWSETY: ECWS; EMP1IY.

NONROW: NCNSTOWED; structured with FIELDS.

NCNSICWREL: TYPE; UNITED.:

REFETIY: reference to; EMPTY.

NCNEROC: FLAIN; format; reference to NCNERCC;
Frocedure with FARAMETERS MOID; UNITED;
structured with FIELDS; row of MODE.

FRAM: procedure with RMODE parameter MOID;
procedure with LMODE parameter and RMCDE parameter
MOID.

LMCLCE: MCDE.

RMCDE: MODE.

LMCCTI: MCCD and.

LMOODSETY: MOOD and LMCODSETY; EMPTY.

RMOCDSETIY: RMOODSEIY and MOOD; EMPTY.

LOSETY: LMOODSETY.

BOX: IMCCDSETY box.

LFIELDSETY: FIEIDS and; EMETY.

RFIELLSETY: and FIELDS; EMPTY.

CCMELEX: structured with real field letter r letter e
and real field letter i letter m.

BITS: structured with row of boolean field SHCNGTHETY
.letter aleph.

SHCNGTHETIY: LENGTH LENGTHETY; SHORTH SHCETHETY; EMPTY.

LENGTHETY: IENGTH LENGHTHETY; EMPTY.

SHORTHETY: SHORTH SHORTHETY; EMETY.

LENGIH: letter 1 letter o letter n letter g.

SHORTH: letter s letter h letter o letter r letter t.

BYIES: structured with row of character field
SHCNGTHETY letter aleph.

STRING: row of character; character.

MABEl1: MODE mode; label.



1.2.3. Metaproduction Rules Associated with Phrases and

Coercion
a) PHEASE: declaration; CLAUSE.
b) CLAUSE: MCID clause.
! ¢) SCME: serial; unitary; CLOSED; choice; chooser; in;
out; repetitive; FEOBYT; while; do.
{ d) CLCSED: closed; collateral; CONFASE.
{ £f) CCNFASE: conditional; case; conformity case.
g) SORT: strong; FEAT.
| h) FEATI: firm; meek; weak; soft.
§) STIRM: strong; firm.
k) ATAETED: ADJUSTED; widened; rowed; hipped; voided.
1) ADJUSTED: FIITED; procedured; united. ‘
m) FITTED: dereferenced; deprocedured.
| n) CCNFETY: conformity; EMPTY.
| o) FRCBYT: from; by; to.

1.2.4, Metarroduction Rules Associated with Coercends

a)
b)
c)

a)

ea)

| eb)
| ec)

£)

9)
h)
i)
J)
k)
1)
m)
n)

COERCEND: MOID FORM.

FORM: confrontation; FCRESE.

FOFESE: PRICEETY ALIC formula; cohesion; base;
routine denotation.

ADIC: dyadic; monadic.

PRICRITY: priority NUMBER. '

PRIORITIES: PRIORITY; priority NINE glus one.

PRICRETY: PRIORITIES; EMPTY.

NUMBER: one; TWO; THREE; FOUR; FIVE; SIX; SEVEN;
EIGHT; NINE.

TWC: one plus one.

THREE: 1IWO plus one.

FOUR: THREE plus one.

FIVE: FCUR plus one.

SIX: FIVE plus one.

SEVEN: SIX plus one.

EIGHT: SEVEN plus one.

NINE: EIGHT plus one.

1.2.5. Cther Metagroduction Rules

a)
ka)
bb)

c)

d)

e)

f)
g)

VICTIAL: VIRACT; formal.

VIRACT: virtual; actual.

VIFEAL: virtual; formal.

LOWPER: lower; upper. '

ANY: RIMNC; suppressible KIND; replicatakle KIND;
replicatakle sugpressible KIND.

KIND: sign; zero; digit; point; exronent; complex;
string; character.

NOTICN: ALEHA; NOTICN ALPHA.

SEPARATCR: LIST separator; go cn tokyl; completer;

89
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sequencer.
h) 1IST: list; sequence.
i) PACK: pack; package.
j) BRACKET: bracket; packet; fpack.
k) RALIX: twc; four; e€ight; sixteen.
1) MATCH: strop; brief.

2.1. The Computer and the Frogranm

a) Frcgram: open symbocl, standard prelude, liktrary
frelude option, particular program, exit, library
postlude option, standard postlude, close symbol.

b) standard prelude: declaraticn prelude sequence.

c) litrary prelude: declaration prelude seguence.

d) particular program: strong serial void clause PACK,
comment sequence option.

e) exit: go on symbol, letter e letter x letter i letter
t, lakel symbol. )

f) library rostlude: statesent interlude.

g) standard postlude: strong void clause train.

3.0.1., General Constructions

b) NOTICN cpticn: NOTION; EMPTY.

c) chain of NCTIONs separated by SEPARATORs: NOTICN;
NOTICN, SEPARATOR, chain of NOTIONs separated by
SEPAFATICEs.

d) NOTICN LIST:
chain of NOTIONs separated by LIST separators.

e) list separator: comma tokyl.

f) sequence separator: EMETY.

g) NOTICN 1IST proper:

NOTICN, 1IST separator, NOTION LIST.

h) NOTION pack: open tokyl, NCTION, close tokyl.

i) NOTION package: begin tokyl, NOTION, end tokyl.

j) NOTICN kracket: sub tokyl, NOTION, bus tokyl.

k) NOTION packet:
alternate sulk tokyl, NOTION, alternate bus tokyl.

1) NOTION tokyl: comment sequence option, NCTIGN symbol.

3.0.2. letter Tckens
b) LETITER: LETTER tokyl.
3.0.3, Diagit Tckens

c) digit token: DIGIT.
d) DIGIT: DIGIT tckyl.
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3.0.9, Comments .

b) comment: MATCH comment tokyl, comment item sequence
cpticn, MATCH comment symbol.
c) conmment item: character token; cther comment itenm.
d) character token: LETTER symbol; DIGIT symbol;
point symbol; times ten to the power symbol;
open symbol; close symbol; comma symkol;
space symtol; plus symbol; minus symktol.

4.1.1. Identifiers

a)* identifier: MABEL identifier.

b) MABEL identifier: 1TAG.

c) TAG LETIER: TAG, LETTEF.

d) TAG DIGIT: TaG, DIGIT.

e)* range: rrogram; SORT serial CLAUSE;
rrocedure PARAMETY MOID routine denotation;
SORT MOID conformity unit; dc loop rart.

4,21, Indicaticns

a)* indication:
MODE mode indication; PRIORETY ADIC indication.
b) MODE mode indication:
mode standard; comment sequence option, indicant.
c) mode standard: toolean tokyl; character tokyl;
format tokyl; string tokyl; sema tokyl; file tokyl;
SHCNG tokyl sequence option, integral tokyl;
SHONG tokyl sequence option, real tokyl;
SHONG tokyl sequence option, complex tokyl;
SHCNG tokyl segquence option, bits tokyl;
SHCNG tokyl sequence option, bytes tokyl.
d) PRIORITIES ADIC indication: ADIC indication.
e) ALIC indication: SHONG tokyl seguence cption, comment
sequence cption, ACIC indicant.
g)* adic indication: PRIORETY ARIC indication.

4.3.1. Cperators

a)* operator: FRAM PRIOREIY ADIC operator.
b) PRAM PRIORETY ALIC operator: PRIORETY ADIC indication.
d) * ALIC operator: PRAM PRIORETY ALIC operator.

5.0. 1. Denotaticns
a) * denotation: PLAIN denotation; BITS denotation;

rovw of character denotation; format denotation;
procedure PARAMETY YOID denotation.
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5¢1.0. 1. Plain Denotations

a) * plain denotation: PLAIN denotation.

{ b)

SHONG INTREAL denotation:
SHONG tokyl, INIREAL denotation.

5.1.1.1. Integral Denotations

a)

integral denctation: digit token sequence.

5.1.2.1. Real Denotatiocmns

a)
b)
c)
1 4)
e)
f)
9)
I h)

i)

[ )

real denotation:

variakle point numeral; floating point numeral.
variabkle pcint numeral:

integral part option, fractional part.
integral part: integral denotation.
fractional part: point tokyl, integral denotation.
flcating pcint numeral: stagnant part, exponent part.
stagnant part:

integral denotation; variable point numeral.
expcnent part:

times ten to the power choice, power of ten.
times ten to the power choice:

times ten to the pover tokyl; letter e.
power of ten: plusminus option, integral denotation.,
plusminus: plus tokyl, minus tokyl.

5.1.3.1. Boclean Denotations

I a)

toolean denotation: true tokyl; false tokyl.

5.1.4.1. Character Denotatioms

{ a)
b)
| <)

character denctation:

MATCH quote tokyl, string item, MATCH quote symbol.
string iten:

character token; quote image; other string iten.
gquote image: MATCH quote symbol, MATCH quote symbol.

5.2.1. Bits Denotations

a)* bits denotation: BIIS denotation.

ba)

Ibb)

structured with row of boolean field LENGTH LENGTHETY
letter aleph denotation:
long tckyl, structured with row of boolean field
LENGIEETY letter aleph denotation.

structured with row of boolean field SHCRTH SHORTHETY
letter aleph denotatiomn:
shert tckyl, structured with row of toolean field
SECRTHETY letter aleph denotation.
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| ¢) structured with row of boolean field letter aleph
denotation: '
RADIX radix, letter r, RADIX byte seguence.

d) +two radix: digit two.

e) four radix: digit four.

f) eight radix: digit eight.

g) sixteen radix: digit one, digit six.

h)* byte: RADIX byte.

i) two byte: digit zero; digit one.

j) four byte: two byte; digit two; digit three.

k) eight byte: four byte; digit four; digit five;
digit six; digit seven.

1) sixteen Lyte:
eight byte; digit eight; digit nine; letter aj;
jetter k; letter c; letter d; letter e; letter £.

5.3.1. String Cenotatioms

a)* string denotation: row of character denotation.
{ by row of character denotation: MATCH quote tokyl, string
item sequence proper option, MATCH guote symbol.

5.4.1. FKoutine Lenotations

| a)* routine denotation:
procedure PARAMETY MOID routine Aenctation.

{ba) procedure MOID routine denotation: virtual MCID
declarer, routine tckyl, strong MOID unit.

{bb) procedure with FARAMETERS MOID routine denotation:
formal EARAMETERS pack, virtual MOID declarer,
routine tokyl, strong MOID unite.

1 Ci vIRACT EARAMETERS and EARAMETER:

VIRACT EARAMETEERS, comha tokyl, VIRACT EARAMETER.
fea) formal MCDE PRAMETERS: formal MNODE declarer, formal
¥NCDE EFAMETEES definition.

{eb) formal MCDE garameter and MODE PRAMETERS definition:
MODE mode identifier, ccuma tckyl, formal MODE
PRAMETERS definition.

lec) formal FMODE parameter definition:

MODE mode identifier.

{ed) formal MODE parameter and RMODE PRAMETERS definition:
MODE mode identifier, conma tokyl, formal RMODE
ERAMEIEES.

f)* VICIAL parameters pack: VICTAL PARRMETERS pack.

5.5.1. Format Lenotations

| a) format denotation: )
formatter tokyl, collection 1ist, formatter tokyl.
b) collecticn: picture; jnsertion option, replicator,
collection list pack, insertion option.
c) picture: MODE pattern option, insertion option.



d)
e)
f)
g)
h)

i)
)

k)
1)

m)
n)
o)
P)
q)

9u

inserticn: literal opticn, insert sequence; literal.
insert: replicator, alignment, literal option.
replicator: replication option. :
reglication: dynamic replication; integral denotation.
dynamic replication:
letter n, strong CLCSED integral clause.
alignment:
letter k; letter x; letter y; letter 1l; letter p.
literal: replicator, STRING denotation, replicated
literal sequence option.
replicated literal: replication, STRING denotation.
sign mould: loose replicatable zero frame, sign frame;
loose sign frame.
loose ANY frame: insertion option, ANY frame.
replicatakle ANY frame: replicator, ANY frane.
zerc frame: letter z.
sign frame: plusminus.
suppressible ANY frame: letter s option, ANY frame.

r)* frame: ANY frame.

5.5.2. Syntax of Integral Fatterns

a)
d)

e)
£)

integral pattern: sign mould option, integral mould;
integral choice pattern.

integral mould: loose replicatable suppressible digit
frame segquence.

digit frame: zero frame; letter d.

integral choice pattern:
insertiocn option, letter c, literal list pack.

5.5.3. Syntax of Real Fatterns

a)

b)

<)
d)

e)
£)

real pattern: sign mould option, real mculd;
floating pcint nould.
real mould: integral mould, loose suppressible point
frame, integral mould option;
locse suppressible point frame, integral mouild.
point frame: point tokyl.
flcating pcint mould:
stagnant mould, loose suppressible exponent frame,
sign mould option, integral mould.
stagnant mould: sign mould option, INTREAL mould.
exponent frame: letter e.

5.5.4. Syntax of Boolean Patterns

a)

b)

boolean pattern: insertion option, letter t, koolean
choice mculd opticn.

toclean choice mould: open tokyl, literal, coama
tokyl, literal, close tokyl.



5.5.5. Syntax of Character Patterns

a)
b)
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character pattern: loose suppressible character frame.

character frame: letter a.

5.5.6. Syntax of Complex Patterns

a)* complex pattern: COMPLEX pattern.

b)

<)

COMPLEX pattern: real pattern, loose sufppressitle
complex frame, real rattern.
complex frame: letter i.

5.5.7. Syntax of String Patterns

a)* string pattern: row of character pattern.

b)

c)

row of character pattern: loose string frame;
loose rerlicatable suppressitle character frame
SE€EqUENCE proper;
inserticn option, replication, suppressible
character frame.

string frame: letter t.

55.7A. Syntax of Bits Patterns

a)* bits pattern: structured with row of koolean field

b)

c)

letter aleph pattern.
structured with row of boolean field letter aleph
Fattern: radix sould, integral moulgd.

radix wmould: insertion option, RADIX radix, letter r.

5.5.8. Transformats

a)

structured with row of character field letter aleph
digit one transformat: firm format unit.

6.0.1. Fhrases

a) * SCME phrase: SORT SCME PHRASE.

b) * SCME expression: SORT SOME MODE clause.

C)* SCME statement: strong SOME void clause.

d)* MOLE constant: MODE FORM.

e) * MODE variakle: reference to MODE FORM.

f) * preccedure: REFETY EROCEDURE FORM.

g)* structure display: STIRM collateral structured with

FIEIDS and FIELD clause.

h) * row display: STIRM collateral ROW MODE clause.
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'b.1.1. Serial Clauses

| a)
I b)
I <)

d)

I e)
I £)

9)

{ h)

i)
I 3J)
I k)
i 1)

SORT serial CLAUSE: declaration prelude sequence
option, suite of SORT CLAUSE trains. :

declaration prelude: statement prelude cption, single
declaration, go on tokyl.

statement prelude: chain of strong void units
Separated by go cn tokyls, go on tokyl.

single declaration:
unitary declaration; collateral declaration,

SORT MOID unit: SORT unitary MOID clause.

suite of strong CLAUSE trains: chain of strong CLAUSE
trains separated by completers.

suite of FEAT CLAUSE trains: FEAT CLAUSE train;
FEAT CLAUSE train, completer, suite of strong
CLAUSE trains;
strong CLAUSE train, completer, suite of FEAT
CLAUSE trains,

SORT MOID clause train: label sequence option,
statement interlude option, SORT MOIL unit.

statement interlude: chain of strong void units
separated by sequencers, sequencer.

Seguencer: go on tokyl, label sequence option.

label: label identifier, label tokyl.

coppleter: completion tokyl, label.

6.2.1. Collateral Phrases

a)
b)
| c)
lea)

1 eb)

| £)

t 9)

| h)

cocllateral declaration:
unitary declaration list proper.

strong collateral void clause: parallel symbol option,
strong void unit list pProper PACK.,

STIRM collateral ROW MODE Cclause: -

STIRM MCDE balance PACK.

strong MCID CONFETY balance:

Etrong MOIL CONFETY unit list proper.

FEAT MOID CCNFETY balance: FEAT MOID CCNFETY unit,
comma tckyl, strong MOILD CONFETY unit list;
strong MCID CONFETY unit, comma tokyl, FEAT MCID
CONFETY unit;
strong MCID CONFETY unit, comma tokyl, FEAT MOID
CCNFETY ralance.

STIRM ccllateral structured with FIELDS and FIELD
structure clause: STIRM structured with FIELDS and
FIELD structure PACK.

STIRM structured with FIFLDS and FIELD structure:
STIRM structured with FIELDS structure, comma
tokyl, STIRM structured with FIELD structure,

STIRM stuctured with MODE field TAG structure:
STIRM MCDE unit. '
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6.3.%. Closed Clauses

a)

SORT closed CLAUSE: SORT serial CLAUSE FACK.

6.U.1. Conditional Clauses

a)

b)
C)
d)
e)
£)

9)

h)

i)

J)

k)

1)

m)

n)

SORT CCNFASE CLAUSE:

MATCH CCNFASE begin tokyl, SORT MATCH CCNFASE
chooser CLAUSE, MATCH CONFASE end tokyl.

SORT MATICH CCNFASE chooser CLAUSE:

CONFASE, SORT MATCH CONFASE choice CILAUSE.
conditicral: strong serial boclean clause.

case: strong serial integral clause.

conformity case: meek serial UNITED clause.

SORT MAICH conditional choice CLAUSE: MAICH thef
tokyl, SCET MATCH ccnditional chooser CLAUSE.

strondg MATCH CONFASE choice CLAUSE:
strong MATCH CONFASE in CLAUSE, strong MATCH
CCNFASE out CLAUSE option.

FEAT MATCH CONFASE choice CLAUSE: FEAT MATCH CONFASE
in CLAUSE, strong MATCH CONFASE out CLAUSE option;
strong MATCH CONFASE in CLAUSE, FEAT MATCH CONFASE
out CLAUSE.

SORT MATICH conditional in CLAUSE:

MATCH conditional in tckyl, SORT serial CLAUSE.

SORT MAICH case in MOIT clause:

MATCH case in tokyl, SORT MOID balance.

SORT MATICH conformity case in MOID clause:

MATCH conformity case in tokyl, SORT MOID
conformity unit;

MATCH ccnformity case in tokyl, SORT MCID
conformity balance. .

SOKT MATICH CCNFASE out CLAUSE:

MATCH CONFASE out tokyl, SORT serial CLAUSE;
MATCH CCNFASE out begin tokyl, SORT MAICH CCNFASE
chooser CIAUSE.

SOFT MOID conformity unit:

MODE specification, SCRT MOID unit.

MOLE specification:
cpen tokyl, formal MODE declarer, MOLE mode
identifier option, close tokyl, choice tokyi.

7.1 1. Leclarers

a) * declarer: VICTAL MCDE declarer.

b)

e)

{ fa)

VICTAL MODE declarer:
VICTAL MODE declarator; MODE mode indication.
VICTIAL structured with FIELDS declarator:
structure tokyl, VICTAL FIELDS declarator pack.
VICTAL MCDE field TAG and MODE POLDS continuation:



1£b)
| £c)

lra)

ib)
s)

| w)
x)
Y)

aa)

bb) *

lcc)

dad)
ee)

££f)

199)
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MODE field TAG selector, comma tokyl, VICTAL MODE
FCLDS continuation.

VICTAL MODE field 1TAG continuation:
MODE field TAG selector.

VICTIAL PODE field TAG and RMODE FOLDS continuation:
MODE field TAG selector, comma tokyl, VICTAL RMODE
FO1DS declarator.

field declarator: VICTAL FIELD declaratcr.

. VICTAL STCWED FOLDS declarator: VICTAL STOWED

declarer, VICTAL STOWED FOLDS continuation.
field selector: FIELD selector.
MODE field TAG selector: TAG.
VICTIAL NCNSTOWED FOLDS declarator: virtual NONSTOWED
declarer, VICTAL NCNSTOWED FOLDS continuation.
VIRACT reference to MODE declarator:
reference to tokyl, virtual MODE declarer.
formal reference to STOWED declarator:
reference to tokyl, formal STOWED declarer.
formal reference tc NONSTOWED declarator:
reference to tokyl, virtual NONSTOWED declarer.
VICIAL ECWS of STOWED declarator:
VICTAL FCWS rower BRACKET, VICTAL STOWED declarer.
VICTIAL ROWSE of NONSTOWED declarator: VICTAL ROWS rower
BERACKET, virtual NONSTOWED declarer.
VICTAL rcw EOWS rower:
VICTIALI row rowver, comma tokyl, VICTAL ROWS rower.
VICIAL row rower: VICTAL lower bound, up to tokyl,
VICTAL upger bound.
VIRMAL rcv rower: EMPTY.
virtual ICWPER bound: EMPTY.
actual IOWPEF bound:
strict LCWPEF bound, flexible tokyl option.
strict ICWFEF bound: strong integral unit.
formal ICWPEE bound:
flexible tckyl option; either tokyl.
VICTIAL EROCELCURE declarator:
Frocedure tokyl, virtual PROCEDURE plan.
virtual procedure with PARAMETERS MOID plan:
virtual EARAMETERS pack, virtual MOID declarer.
virtual MODE parameter: virtual MODE declarer.
virtual vcid declarer: void tokyl.
virtual procedure MOID plan: virtual MCID declarer.
parameters pack: VICTAL PARAMETERS pack.
VICTAL union of LMOCDS MOOD mode declarator:
union of tokyl, LMCODS MOOD and open box pack.
I10SETY 1MOOD open BOX: LOSETY closed LMCCD end ROX.
LOSETY closed LMOODSETY LMOOD end BOX:
LOSETY closed LMOODSETY LMOOD LMOOD end BOX;
LOSETY open LMOODSETY LMOOD BOX.
LOSETY closed LMOOLSETY LMOOD end LMOCT BOX:
LCSETIY closed LMOODSETY LMOOT LMOOD end ROX.
open LMCODS LMOCD BOX: LMOOLS LMOOD BCX;



hh)
1ii)

33)

open 1MOODS tox, comma tokyl, LMOOD ECX.
open IMCCD Fox: LMOOD Yox.
LMOCDS MCCD and box:
union of IMOODS MOOD mode mode indication;
union cf tokyl, open LMOODS MOOD and box pack.
MOOD and kox: virtual MOOD declarer.

7.2.1. Mode Declarations

i a)

| b)
| <)

I d)

mode declaration: mode tokyl, mode definition list;
union of tokyl, union mode definition list;
sructure tckyl, structured mode definition list.

mode definition: MODE mode indication, equals tckyl,
actual MCDE declarer.

unicn mode definition:
union of IMOCDS MOOT mode mode indication, egquals
tokyl, IMCODS MCOD and open box pack.

structured mode definition:
structured with FIEIDS mode indication, eguals
tokyl, actual FIELDS declarator pack.

7.3.1. Eriority Declarations

jaa)
|ab)

b)
c)
a)
e)
£)
9)
1)
i)
i)

priority declaration:
priority tckyl, priority definition list.

priority definition: priority NUMBER dyadic
indicaticn, equals tokyl, NUMBER token.

one token: digit omne tckyl. .

TWO token: digit two tckyl.

THEEE tcken: digit three tokyl.

FOUR tcken: digit four tokyl.

FIVE tcken: digit five tokyl.

SIX token: digit six tokyl.

SEVEN tcken: digit seven tokyl.

EIGHTI tcken: digit eight tckyl.

NINE token: digit nime tokyl.

7.4.1. Identity Leclarations

laa)

lab)
lac)

1ad)
| ae)

identity declaration:
formal MCDE declarer, formal MODE definition list:
heap tokyl. opticn, actual MODE declarer, actual
MODE definition list;
.procedure tokyl, procedure PARAMETY MCID definition
list.

formal MODE definition: MODE mode identifier, equals
tokyl, actual MODE parameter.

actual MODE definiticn: reference to MCDE mode
identifier, MODE initialization option.

MODE initialization: kecomes tckyl, MODE source.

rrocedure PARAMETY MOID definition:
procedure PARAMETY MOID mode identifier, equals
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tokyl, procedure PARAMETY MOID routine denotation.
b) actual MODE parameter:
strong MCDE unit; MCDE transformat.

7.5.1. Cperation Declarations

a) operaticn declaration:
operaticn tokyl, operator definition list;
operaticn tckyl, virtual PRAM plan, FRAM ALIC
operator definition list.

b) operator definition:
virtual ERAM plan, PRAM ALIC operator, equals
tokyl, actual PFAM parameter;
ERAM ALIC operator, equals tokyl, PRAMNM routine
denotaticn.

c) PRAM ADIC operator definition: PRAM ADIC operator,
equals tokyl, actual PRAM parameter.

8.1.1. Unitary Clauses

a) SORT unitary MOID clause: SORT MOID tertiary;
SORT repetitive MOID clause;
SORT MCID routine denotation;
SORT MCID confrcntation.
b) SORT MOID tertiary: SORT MOID secondary;
SORT MOID PRIORITIES ADIC fcrmula.
c) SORT MOID secondary: SORT MOID primary;
SORT MCID cohesion.
4) SORT MOIL primary: SORT MOID base;
SORT CICSED MOID clause.

B.1.2. FKepetitive Clauses

a) strong repetitive void clause:
do initializatiom part, do loop part.

b) do initialization part: strong from integral clause
option, strong by integral clause option, strong to
integral clause option.

c) do loop part: control identifier option, strong while
toolean clause option, strong do void clause.

d) strong FROBYT integral clause:

FROBYT tokyl, strong serial integral clause.

e) ccntrol identifier:

) for tokyl, integral mode identifier.

f) strong while boolean clause:
while tckyl, strong serial koclean clause.

g) strcng do veid clause:
do tokyl, strong unitary void clause.
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8.2.0.1. Coercends

a)* coercend: SORT COERCEND; SORTly ALCAPTEL to COERCEND.
b) * SORT coercend: SORT COERCEND.
c)* ACAPTED coercend: SORTly ALAPTED to COERCEND.

d)

e)
jfa)
£b)
9)

strong CCERCEND:

‘COERCEND; strongly ALAPTEC to COERCEND.
firm COERCEND: COERCEND; firmly ADJUSTED to COERCEND.
meek COERCEND: COERCEND; firmly FITTED to COERCEND.
weak COERCEND: COEEKCEND; weakly FITTED to COERCEND.
soft COERCEND:

COERCEND; softly deprocedured to COEFCEND.

8.2.1.1. Dereferenced Coercends

a)

b)

STIRMly dereferenced tc MODE FORM:
reference to MODE FORM;
STIRMly FITTED to reference to MODE FCRHN.
weakly dereferenced to reference to MODE FORM:
reference to reference to MCDE FORM;
weakly FITTED tc reference to reference to MODE
FORM. '

8.2.2.1. Deprocedured Coercends

laa)

lab)

b)

<)

STIFMly deprocedured tc MOID FORESE:
procedure MOID FORESE;
STIRMly FITITED to procedure MOID FORESE.
STIRMly deprocedured tc MODE confrontation:
frocedure MODE confrontation; '
STIRMly FITTED to procedure MODE confrontation.
weakly deprocedured to MODE FORM: procedure HMODE FORM;
firmly FITTED tc procedure MODE FORM.
softly deprocedured to MODE FORM: procedure MCDE FORM;
softly deprocedured to procedure MODE FORM.

8.2.3.1. Erccedured Coercends

a)

STIRMly procedured to procedure MOID FOEM: MOID FORM;
STIRMly dereferenced to MOID FORN; ‘
STIRMly procedured to MOID FORM;

STIRMly united to MCID FOERM;
STIKMly widened to MOID FORHN;
STIRMly rowed to MNOID FORM.

8.2.4.1. United Coercends

a)

b)

STIRMly united to union of LMOODS MOOD mode FORM:
cne cut of LMOOLS MOOD mode FORM;
scme of LMCODS MOOD and but not FORMNM.

cne out of LMOODSETIY MCOD RMOODSETY mode FCRM:
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MOCD FORM; ;
firmly FITTED to MOCD FORM;
firmly rrocedured to MOCD FORM.

c) scme of LMOCDSETY MOOD and RMOODSETY but not LCSETY
FORM:
scme of LMOODSETIY and MOOD RMOODSETY but not LOSETY
FCRN;
scme of LMOOLDSETY RMOODSETY but not MOOD and LOSETY
FO®RM,

d) some of and IMOCD MCOD RMOODSETY but not LMOOT LCSETY
FORM:
union of LMOCD MOOD RMOODSETY mode FCRM;
firmly FITTED tc union of LMOOD MOOD EMOODSETY mode
FORMN.

8.2.5.1. Widened Coercends

| a) strongly widened tc SHONGSETY real FORM:

SHCNGSETY integral FORM;
strongly FITTED to SHONGSETY integral FCEM.

b) strongly widened tc structured with REAl field letter
r letter e and REAL field letter i letter m FORM:
REAL FORM; strongly FITTED to REAL FORMN;
strongly widened to REAL FORM.

C) strongly widened to row of boolean FORM: BITS FORM;
strongly FITTED to EITS FORM.

d) strongly widened to row of character FORM: BYIES FORM;
strongly FITIED to BYTES FORM.

8.2.6.1. Rowed Coercends

laa) strongly rowed to REFPETY row ROWS of MODE FGCRM:
REFETY ROWS of MODE FORM:;
strongly ADJUSTED tc REFETY ROWS of MODE FCRM;
strongly widened to REFETY ROWS of MODE FORM:
strongly roved to REFETY RGWS of MODE FOEM.
lab) strongly rowed to REFETY row of MODE FOEM:
REPETIY MODE FORM;
strongly ADJUSTED to REFETY MODE FORM;
strongly widened to REFETY MODE FOENM;
strongly rowed to REFETY MODE FORM.

8.2.7.1. Hipped Coercends

| 2) strongly hipped to MOID base:

MCID skip; MOID jump; MOID nihil; MOID vacuunm.
b) MOIL skip: skip tokyl.
C) MOID Jump: go to tokyl option; label identifier.
d) reference to MODE nihil: nil tokyl.
e) KROWS of MODE vacuum: open tokyl, close tokyl.



8.2.8.1. Voided Coercends

a)

b)

strongly voided to void confrontation:
MCDE confrontaticn.

strongly voided to void FORESE: NONPROC FORESE;
strongly deprocedured to NONPRCC FORESE.

8.3.0.1. Confrontations

a)

MOID ccnfrontation: MCID assignation;
MOID identity relation; MOID cast.

8.3.1.1. Assignatioms

a)
b)

<)

reference to MODE assignaticn: reference to MCDE
destinaticn, becomes tokyl, MODE source.
reference to MODE destination:
scft reference to MODE tertiary.
MODE source: strong MODE unit.

8.3.3.1. Identity Relations

a)

b)

boclean identity relation:
scft reference to MODE tertiary, identity relator,
strcng reference to MODE tertiary;
strong reference to MODE tertiary, identity
relator, scft reference to MODE tertiary.

identity relator: is tokyl; is not tokyl.

8.3.“. 1. casts

a)

MOID cast: virtual MOID declarer, cast of tokyl,
strong MCID unit.

8.4.,1. Formulas

a)* SORT formula: SCRT MOID PRIORITIES ADIC formula.

b)

MO1D PRICRITY dyadic formula:
LMCDE ERICRITY operand, procedure with LMODE
parameter and RMODE parameter MOID PRIORITY dyadic
operator, KMCDE PRICRITY plus one operand.

c)* operand: MCDE PRIORITIES operand.

d)

e)

g)

MODE PRIGRITY operand: firm MODE PRIORITY dyadic
formula; MODE PRIOKITY plus one operand.

MOCE priority NINE plus omne operand:
firm MCDE priority NINE plus one monadic formula;
firm MCDE secondary.

MOID priority NINE plus one monadic formula:
gprocedure with RMODE parameter MOIL priority NINE
clus cne mcnadic operator, RMNODE priority NINE plus
one operand.
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h) * dyadic formula: MOID PRIORITY dyadic formula.
i) * monadic formula:
MCID priority NINE plus one monadic formula.

8.5.0.1. Cohes;ons
a) MOLE cohesicn: MODE generator; MODE selection.
8.5.1.1. Generators
a) MOLE generator:
MODE local generator; MODE global generator.
b) reference to MODE local generator:
local tokyl, actual MODE declarer.
c) reference tc MODE global generator:
heap tokyl, actual MODE declarer.
8.5.2.1. Selections
a) REFETY MODE selection: MODE field TAG selector, of
tokyl, weak REFETY structured with IFIEIDSETY MODE
field TAG RFIELDSETY secondary.
8.6.0.1. Bases

a) MOID base: MCID mode identifier; MOID denotation;
MOIL slice; MOID call.

8.6¢1.1. Slices

faa) REFETY ROWS of MODE slice:

weak REFETY ROWSETY ROWS of MODE primary, KCWSETY
FO#S leaving ROWS indexer BRACKET.

lab) REFETY MODE slice: weak REFETY ROWS of MODE primary,

ROWS leaving EMPTY indexer BRACKET.

b) row ROWS leaving row ROWSETY indexer:
trimmer option, comma tokyl, ROWS leaving FCWSETY
indexer;
subscript, comma tckyl, ROWS leaving row KOWSETY
indexer.

c) row ECWS leaving EMPTY indexer:
subscript, comma tokyl, ROWS leaving EMFTY indexer.

d) row leaving row indexer: trimmer option.

e) row leaving EMPTY indexer: subscript.

f) trimmer: strict lower bound option, up to tokyl, stict
upper tound option, nevw lower bound part option;
new lower bound part.

d) new lower tound part: at tokyl, new lower Lound.

h) new lower bound: strong integral unit.

i) sukscript: strong integral unit.

j)* trimscript: trimmer; subscript.

k) * indexer: RCWS leaving ROWSETY indexer.
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1) * boundscript: strict LOWPER bound; new lover bound ;

sukscript.

802.6.1O calls

MOIL call: firm procedure with PARAMETEFS MCID

a)
primary, actual PARAMETEES pack.
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AFPENDIX B

A CONIEXT-FREE SYNTAX

The context-free syntax given in this Appendix
descrites a superset of the nmodified syntax of ALGOL 68
given in Appendix A. It is a superset in the sense that the
transformation from the two-level syntax described in the
Report to context-free syntax greatly reduces the amount of
informaticn carried by the syntax. For €xample, neither
modes nor coercions are expressed in the context-free
syntax. Intrinsic ambiguities arising ina this syntax are

discussed in Chapter IV of this thesis.

Note that producticns with "empty" occurring on the

right-hand side have been Permitted in the following syntax.

The syntactic entities are given, as far as possible,
mremcnic representations Tecalling the notions of the syntax
given in Appendix A. Prefixes, infixes, and suffixes used in
the ccmposition of the syntactic entities are 1listed below
tcgether with their neaninés in terms of the syntax given in
Appendix A. This table should be regarded only as an aid for

reading the syntax.



ACessee.sactual
align...s.alignoent
assige....assignation
beg......kegin
bool.....tko0le€an
char.....character
ChOoi..c.sochoice
cl.;.....clause
clo......closed
col......collateral
collect..collection
conde....sconditional
conf.....conformity case
ccnfrent.confrcntation
COS.eeeeCONFASE
dec......declaration
decer....declarer
den..essdenotation
diq.....,digit
AOT.sssssd€clarator
dY.......dyadic
€tYesoees s EMPLY
€XPa+seses€EXponent
£10......floating

fOeeseessformal
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MO+ cese«asoOuld
MON.ees s ssMOnadic

NOSe ee o s ee NONSTOWED
ONgeeosssslOng
OP.esescssOperation
p.........priority
PaCeseesssparameter
pate.esseceespattern

PKe e e0 e s eepack
prel,.....prelude
Pric.ecec.eo.priority
FLOC......procedcre
Ptecscessspoint
ref..s s s reference to
relseecsso.relation
replic....replication
replit....replicated literal
rth.......COUtiNE
SeeesessesS€quence, list
S€TesessseSerial
shO.ceeessshort
SPeeseeessS€JUENcCe proper
specC......specification
Sta.......Statement

stag......stagnant
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form.....formula StaNeees s Standard
ideesecsocidentity ~ StOeeesees STOWNED
iden.....identifier Stfeeee...sStructured with
indescasesindication Sli.......SUite
initeeecesoinitialization suppress.. suppressible
insert...insertion SYeesseeesSYynbol
int......integer UNieseessssunitary
lab......label unio......union of
let......letter Viieeesosovirtual
lob......lower bound VOsesasseavVoid

Terminal fgroductions of this syntax are "letter",
wcharacter", "indicant", "dyindicant", "“moanindicant", and
all entities ending with %*sy®, For their representations,

see Appendix C.

program: clccl.
labsety: empty:
laksety, lab.
emnpty: .
lab: iden, lak*sy.
iden: letter;
iden, letter;
iden, digit.
digit: digO0*sy;
dignotO.
dignot0: digl*sy;
dig2*sy;
dig3*sy;
digl*sy;
digS*sy;
digb6*sy;
dig7+*sy;
dig8*sy;
digS*sy.

clause: clocl;



calel;
coscl.

clocl: begin*sy, sercl, end#*sy;
oren*sy, sercl, close*sy.

colcl: begin*sy, Ltalance, end*sy;
Ofren*sy, talance, close*sy;
parallel*sy, begin*sy, balance, end*sy;
parallel*sy, open*sy, balance, close*sy.
balance: unit, ccmma*sy, unit;
Falance, comma*sy, unit.

coscl: ccndbeg*sy, sercl, comdchoicl, condend*sy;
caselkeg*sy, sercl, casechoicl, casend*sy;
confbeg*sy, sercl, confchoicl, confend*sy;
cosbeg*sy, sercl, choicl, cosend#*sy.
condchoicl: stropthef*sy, sercl, condchoicl;
condincl, condoutclety.
casechoicl: caseincl, caseoutclety.
confchoicl: ccnfincl, confoutclety.
choicl: choicl?;
choicl2;
choicl3.
choicl1: kriefthef*sy, sercl, choicl1;
incl1, outclety;
incl1, outclt.
choicl2: incl2, cutclety;
incl2, ocutclz.
choicl3: incl3, outclety;
incl3, outcl3.
condincl: condin*sy, sercl.
caseincl: casein*sy, Lkalance.
confincl: ccnfin*sy, confunit;
confin*sy, confbalance.
incl1: in*sy, sercl.
incl2: in*sy, Lbalanmnce.
incl3: in*sy, confunit;
in*sy, ccnfkalance.
condoutclety: empty;
condout*sy, sercl;
condoutkeg*sy, sercl, condchoicl.
caseoutclety: emgty;
caseout*sy, sercl;
caseoutbeg*sy, sercl, casechoicl.
confoutclety: emgty;
confout*sy, sercl;
confoutbeg*sy, sercl, confchoicl.
outclety: empty;
out*sy, sercl.
outcl1: outkeg*sy, sercl, choicl1.
outcl2: ocutbeg*sy, sercl, chcicl2.
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outcl3: cutteg*sy, sercl, choicl3.
confbalance: confunit, comma*sy, confunit;
confbalance, ccuma*sy, confunit.
confunit: spec, unit.
spec: open*sy, fodecer, iden, close*sy, choice*sy;
open*sy, fodecer, close*sy, choice*sy.

.sercl: suitrains;
decprels, svuvitrains.
decprels: decprel;
decgrels, decprel.
decprel: decs, goon*sy;
staprels, decs, goon*sy.
staprels: unit, goon*sy;
staprels, unit, gocn*sy.
suitrains: train;
suitrains, completer, train.
train: laksety, unit;
train, goon*sy, labsety, unit.
completer: comgletion*sy, ladk.

unit: tertiary;
rtnden;
repetitivecl;
ccenfrent.
tertiary: seccndarys’
formula.
seccndary: primary;
cohesicn.
primary: clause;
tase.

rtnden: foparpk, vovidecer, rtn*sy, unit;
vcvidecer, rtn*sy, unit.
fcparpk: oren*sy, fopars, clcse*sy.
fopars: fopary i
fopars, COERa*sy, forac.
fopar: fodecer, iden;
fopar, coama*sy, iden.
vovidecer: videcer;
void*sy.

repetitivecl: fromclety, byclety, toclety, foridenety,
whileclety, docl.
fromclety: emptys '
from*sy, sercl.
byclety: empty;
ty*sy, sercl.
toclety: empty;
to*sy, sercl.
foridenety: €mpty;
for*sy, iden.
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whileclety: enmpty;
, while*sy, sercl.
docl: do*sy, unit.
ccnfrent: assig;
idrel;
cast.
assig: tertiary,
idrel: tertiary,
tertiary,
cast: vovidecer,

tecomes*sy, unit.
is*sy, tertiary;
isnot*sy, tertiary.
cast*sy, unit.

formula: mcnform;

dyform:

piform:
p2form:
p3form:
p4form:
p5form:
pé6form:
p7forms
p8form:
p9form:

ploperand:
p2operand:
p3orerand:
pl4operand:
FSoperand:
p6operand:
p7operand:
p8orerand:

p9operand:

dyform.
pl1form;
pzform;
p3form;
puform;
p5form;
p€form;
g7form;
p8forre;
p9form.
floperand,
F2operand,
g3operand,
pldoperand,
pSoperand,
p6éoperand,
p7operand,
p8operand,
f9operand,
piform;

ploperator,
p2operator,
p3operator,
pl4operator,
pSoperatcr,
p6éoperator,
g7operatorx,
F8operator,
pY9operatcr,

F2cperand.

p2form;

p3operand.

p3fcrm;

FYoperand.

riform;

Soperand.

pSform;

p6operand.

péform;

p7operand.

g7form;

g8ogerand.

p8form;

F9operand.

p9form;

g10operand.
p10operand: monform;
secondary.

p2operand.
p3operand.
ploperand.
pSoperand.
p6operand.
p7operand.
pBoperand.
pYoperand.
plOoperand.



mcnform: monind, plOoperand.
ploperator: dyind.
p2ogerator: dyind.
p3operator: dyind.
pu4operator: dyind.
pSoperator: dyind.
p6operator: dyind.
p7orerator: dyind.
p8operator: dyind.
p9operator: dyind.

monind: shongsety, monindicant.
dyind: shongsety, dyindicant.

cohesion: generator;
selecticn.
generator: local*sy, acdecer;
heap*sy, acdecer.
selection: iden, of*sy, secondary.

tase: iden;

: deng
Jumgs
skip*sy;
nil*sy;
slice;
call;
vacuum.

den: shongsety, intden;
shongsety, realden;
toolden;
charden;
shongsety, titsden;
stringden;
formatden.
shongsety: empty;
longs;
shorts.
longs: long*sy;
' lcngs, long*sy.
shorts: short*sy;
shorts, shcrt*sy.

intden: digit;
intden, digit.

realden: intden, pt*sy, intden, expety;

pt*sy, intden, expety;
intden, exp.
expety: eopty;
€xpe.

exp: letE*sy, plusminusety, intden.

112



113

Flusminusety: empty;
plus*sy;
pinus*ey.

boolden: true*sy;
false*sy.

charden: triefqucte*sy, stringitem, briefquote*sy;
stropguote*sy, stringitem, stropguote*sy.
stringitem: briefquote*sy, briefquote*sy;
stropquote*sy, stropgquote*sy;
character.

bitsden: dig2*sy, letE*sy, radix2bytes;
digi*sy, letR*sy, radixlbytes;
dig8*sy, letR*sy, radix8bytes;
digl1*sy, dig6*sy, letR*sy, radixi6bytes.
radix2kytes: radix2byte;
radix2bytes, radix2byte.
radix4bytes: radixlbyte;
radixdbytes, radixubyte.
radix8bytes: radix8byte;
radix8bytes, radix8byte.
radix16bytes: radixi6ébyte;
radix16bytes, radixiébyte.
radix2byte: digO*sy;
dig1*sy.
radixtbyte: radix2byte;
dig2*sy;
dig3*sy.
radix8byte: radixlbyte;
digl*sy;
dig5*sy;
dig6*sy;
dig7*sy.
radix16byte: radix8byte;
dig8*sy;
dig9*sy;
letA*sy;
letB*sy;
letC*sy;
letD*sy;
letE*sy;
letF*sy.

stringden: briefquote*sy, briefquote*sy;
stropquote*sy, stropquote*sy;
triefquote*sy, stringitemsp, briefquote*sy;
stropquote*sy, stringitemsp, stropguote*sy.
stringitemsp: stringitem, stringiten;
stringitemsp, stringitem.
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formatden: formatter*sy, collects, formatter#*sy.
ccllects: collect;
collects, comma*sy, collect.
collect: picture;
insertety, replicety, open*sy, collects, close*sy,
insertety.
picture: ratternety, insertety.
patternety: empty;
intrat;
realpat;
bcclpat;
charpat;
stringpat;
ccmplexpat;
bitsgat.
insertety: literalety, insertsety.
insertsety: empty;
insertsety, insert.
insert: replicety, align, literalety.
replicety: emgty:
replic.
replic: intden;
letN*sy, clause.
align: letK*sy;
letX*sy;
letY*sy;
letl*sy;
letP*sy.
literalety: empty;
literal.
literal: regplicety, stringcharden, replitsety.
regplitsety: empty;
replitsety, replic, stringcharden.
stringcharden: charden;
stringden.
signmoety: empty;
insertety, signframe;
insertety, replicety, zercframe, signframe.
zeroframe: letZ*sy. :
signframe: plus*sy;
minus*sy.

intpat: signmoety, intmo;
insertety, letC*sy, cren*sy, literals, close*sy.
intmc: insertety, replicety, suprressety, digframe;
intmo, insertety, replicety, suppressety, digframe.
digframe: zercframe;
letC*sy.
Supfpressety: e€mpty;
letS*sy.
literals: literal;
literals, ccmma*sy, literal.
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realpat: signmoety, realso;
floptmo.
realmo: intmo, insertety, suppressety, ptframe, intmoety;
insertety, suppressety, ptframe, intamc.
intmoety: enmpty;
intro.
ptirame: pt*sy.
floptmo: stagmo, insertety, suppressety, expframe,
signmoety, intmo.
stagmo: signmoety, intmo;
signmoety, realmc.
expframe: leti*sy.

toolpat: insertety, letB*sy, boolmoety.
bcclmcety: empty:
open*sy, literal, comma*sy, literal, close*sy.

charpat: insertety, suppressety, charframe.
charframe: letA*sy. '

complexpat: realpat, insertety, suppressety, complexframe,
realpat.
complexframe: letI*sy.

stringpat: insertety, stringframe;

charframesp;

insertety, replic, surpressety, charframe.
stringframe: letT*sy.
charframesp: insertety, replicety, suppressety, charfranme,

' insertety, replicety, suppressety, charframe;

charframesp, insertety, replicety, suppressety,
charframe. : ’

bitspat: radixmo, intmo.
radixmo: insertety, radix, letR¥*sy.
radix: dig2#*sy;

diglx*sy;

dig8*sy;

dig1*sy, dig6*sy.

jumg: goto*sy, iden.

slice: primary, sukl*sy, indexers, busi*sy;
primary, suk2*sy, indexers, bus2*sy;
primary, oren*sy, indexers, close*sy.
indexers: trimscriptety;
indexers, comma*sy, trimscriptety.
trimscriptety: subscript;
trimmerety.
subscript: unit.
trimmerety: boundety, upto*sy, boundety, newlobety;
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newlokety.
boundety: emptys
unit.
newlobety: emgty;
at*sy, unit.

call: primary, ofren*sy, acpars, close*sy.
acpars: acpar;

acpars, comma*sy, acpar.
acpar: unit.

vacuum: ofpen*sy, close*sy.

decs: unidec;
decs, ccmma*sy, unidec.

unidec: modedec;
strdec;
uniodec;
pridec;
iddec;
opdec.

modedec: mode*sy, modeind, equal*sy, acdecer;

modedec, comma*sy, modeind, equals*sy, acdecer.
strdec: str*sy, modeind, equals¥sy, acfieldpk;

strdec, comma*sy, modeind, eguals*sy, acfieldpk.
acfieldpk: open*sy, acfieldors, closex*sy.
uniodec: union*sy, modeind, equals*sy, videcerspk;

uniodec, comma*sy, wodeind, equals*sy, videcerspk.
videcerspk: ogen*sy, videcersp, close¥*sy.
videcersp: videcer, ccmma*sy, videcer;

videcersp, comma*sy, videcer.

pridec: pri*sy, dyind, eguals*sy, dignotO; .
ptidec, comma*sy, dyind, equals*sy, dignotO.

iddec: iddecis;
iddec2s;
iddec3s.
iddec1s: fodecer, idacpar;
iddeci1s, comma*sy, idacpar.
idacpar: iden, equals*sy, acpar.
jddec2s: heapety, acdecer, ideninit;
jddec2s, comma*sy, ideninit.
heapety: emptys . : -
heap*sy.
ideninit: iden;
iden, becomes*sy, unit.
iddec3s: proc*sy, idrtnden;
idecdec3s, comma*sy, idrtnden.
idrtnden: iden, equals*sy, rtnden.
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opdec: opdecis;
opdec2s.
opdecls: op*sy, opacparly
ordec1s, comma*sy, cpacpart.
opacpar1: viplan, adicind, equals*sy, unit;
adicind, equals*sy, rtnden.
opdec2s: op*sy, viplan, opacparl;
opdec2s, compa*sy, cpacpar2.
opacpar2: adicind, equals*sy, unit.
viplan: open*sy, videcer, close*sy,
oren*sy, videcer,
vovidecer.
monind;
aYindo

vovidecer;
conmma*sy, videcer, close*sy,

adicind:

acdecer: acnosdor;

acstcdor;

modeind.

acncsdor: procdor;

uniodor;

acrefdor.

ref*sy, videcer.

acstrdors;

acrowdor.

acstrdor: str*sy, acfieldpk.
acfieldors: acfieldor;
acfieldors, comma*sy, acfieldor.

acstodor, iden;

vincsdor, iden;
modeind, iden;

acrefdor:
acstodor:

acfieldor:

acfieldor, comma*sy, iden.

acrowdor: subi*sy,
sukZ*sy,
open*sy,
subi1*sy,
sukz*sy,
open¥*sy.,
suk1*sy,
subZ*sy,
open*sy,

acrowvers: acIoWerj;

aCrowers,
acrowvers,
acCIrOVWErsS,
acrovers,
acrovers,
ACLOVETS,
acrowers,
acrovers,
acrovers,

bus1*sy, acstodor;
bus2*sy, acstodor;
close*sy, acstcdor;
bus1*sy, vinosdor;
bus2*sy, vinosdor;
close*sy, vinosdcr;
bus1*sy, modeind;

bus2#*sy, modeind;

close*sy, modeind.

aCrovwers, ccmna*sy, acrower.

acrover:

acbound: unit;

unit, flex*sy.

fodecer: fonosdor;
fostodor;
modeind.
foncsdor: procdor;

uniodor;

ackound, upto*sy, acbound.
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forefdor.
forefdor: ref*sy, fostodor;
ref*sy, vincsdor.
fcstodor: fostrdor;
forcwudor.
fostrdor: str*sy, open*sy, fofieldors, close*sy.
fofieldors: fofieldor;
fofieldors, comma*sy, fofieldor.
fofieldor: fostodor, iden;
vinrcsdor, iden;
modeind, iden;
fofieldor, coamma*sy, iden.
forowdor: sukl1*sy, forowersety, busi*sy, fostodor;
sub2*sy, forowersety, bus2*sy, fostodor;
open*sy, forowersety, close*sy, fostodor;
sub1*sy, forowersety, busi*sy, vincsdor;
subz*sy, forowersety, bus2*sy, vinosdor;
open*sy, forowersety, close*sy, vinosdor;
sub1*sy, forowersety, busi*sy, modeind;
sukZ*sy, forowersety, bus2*sy, modeind;
open*sy, forowersety, close*sy, modeind.
fcrovwersety: forcuerety;
forowersety, comna*sy, forowverety.
forowerety: enmgpty;
fokroundety, upto*sy, foboundety.
foboundety: enmpty;
flex*sy; -
either*sy.

videcer: vinosdor;
vistcdor;
modeind.

vincsdor: gprocdor;

uniodor;

virefdor.
virefdor: ref*sy, videcer.
vistodor: vistrdor;

vircwdor. ,
vistrdor: str*sy, open*sy, vifieldors, close*sy.
vifieldors: vifieldor;

vifieldors, comma*sy, vifieldor.
vifieldor: videcer, iden;
vifieldor, comma*sy, iden.

vircwdor: subl*sy, virowersety, busi*sy, videcer;

sub2*sy, virowersety, bus2#*sy, videcer;

open*sy, virowersety, close*sy, videcer.
viroversety: virowerety;

virovwersety, comma*sy, virowerety.
virowerety: empty;
ugto*sy.

procdcr: proc*sy, vovidecer;



uniodor:
mocdeind:

modestan:

proc*sy, open*sy, videcer, close*sy,
proc*sy, videcerspk, vovidecer.
unio*sy, videcerspk.

modestan;

indicant.
shongsety,
shongsety,
tool*sy;
char*sy;
format*sy;
shongsety,
shongsety,
string*sy;
sema*sy;
shongsety,
file*sy.

int*sy;
real*sy;

Ltits*sy:
bytes*sy;

complex*sy;

vovidecer;
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APPENDIX C

A REPRESENTATION LANGUAGE

This representation language for ALGOL 68 was designed
for the cne-pass irplementation proposed in this thesis. The
synbols for which representations are given correspond to
terminals of the syntax presented in Appendix A. Where such
a symtol is mentioned, the corresponding terminal from the
ccntext-free syntax given in Appendix B, if one exists,

follcws in parenthses.

The “"stropping"® convention (method of representing
bcld-faced or underlined symbols) chosen is that of a "hold-
face shift", that is, an apcstrophe ('), followed by a
sequence cf letters (upper cr lower case) or digits, ending
cn a "light-face shift", that is, any mark different from
the representation of a letter or digit. A symbol formed 1in
this fashion is called a "strop-word". Note that 'IF is a

different strcp-word than 'if.

The representations are grouped in an order similar to

that used in Chapter 3 of the Report.
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1. Letter Tokens

The producticn for the metanotion "ALPHA" is altered
[E1.1.4] as follows:
ALPHA: a; b; ... ; 2; lower case a; lower case b; ... ;
iouer case z.
Then the follcwing are representations for letter symbols;

letter a symkcl (letA*sy)
letter lcwer case a symbol
letter b symlol (letB*sy)
letter lcwer case b symtol
letter z symkol (letZ*sy)
letter lcwer case z synmtol

N N ocCwa >

The tersinal prcduction "letter" of the context-free syntax

includes all letter-tokens.

2. Denotation Tckens

Ligit Tckens.

digit zero symkol (digO*sy) 0
digit one symbol (digl*sy) 1
digit nine symbol (dig9*sy) 9

Following are other denotaticn-tokens.

Fcint synkol (pt*sy) .
Flus symkel (plus*sy) +
minus symbol (minus*sy) -
true symkol (true*sy) 'TRUE
false symkol (false#*sy) 'FALSE
formatter symkol (formatter*sy) 3

No representation has been provided for the "times-ten-to-
the-pcwer-symtol" (this was not included in the context-free

syntax).
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3. Character Tokens

These tckens are used in string- and character-
denotations and in ccmments. Representations for all of them
except the "“space-symbol" are given elsewhere in this
Appendix. Note, in Apgendix A, that "plus-i-times-symbol"
has been omitted from, and that plus-symbol and minus-symboi
have leen added to, the list of character-tokens as given in
the Report. The space-symbol is represented by a blank,
which will Le significant as it will appear in string- or
character- denotations or comments. Insignificant blanks
within the source text may aprear anywhere that comments

may; that is, Lketween but noct within symbols.

The terminal "character" of the context-free syntax
ccrresponds to the above character-tckens plus all terminal
productions cf "cther-string-item" and "other-comment-iten",
Productions are added [R1.1.5.c] for other-comment-item and
cther-string-item so that their terminal productions include
most, if not all, available graphic symbols of the physical
machine, apart from those already included as character-
tokens. Note that other-comment-item does not include
"ccnment-symkcl® and other-string-item does not include
quote-symktol among their respective terminal productions

[R1.1.5.c].



Confrcntation Tokens

kLeccmes symbol (Lecomes*sy)
is symbol (is*sy)

is nct symbol (isnot*sy)
cast of syakcl (cast*sy)

Declaration Tokens

long symkol (long*sy)
skort symbol (short#*sy)
structure symkol (str*sy)
reference to symbol (ref#*sy)
flexible symbol (flex*sy)
either symbol (either*sy)
Frocedure symbol (proc*sy)
union of symkol (unio*sy)
node symtol (mode*sy)
Friority symbol (pri*sy)
lccal symbol (local*sy)
heap symbcl (heap*sy)
operation symbol (op*sy)
void symkcl (void*sy)

Syntactic Tokens

Cren symkcl (open*sy)

close symbol (close*sy)

begin symkol (begin*sy)

end symktol (end*sy)

ccmbma symbol (comma*sy)

rarallel symbol (parallel*sy)

sub symbcl (sub1i*sy)

alternate sul symbol (sub2*sy)

tus symkcl (Lusi*sy)

alternate tus symbol (bus2#*sy)

Upto symltol (upto*sy)

at symbol (at*sy)

of symbol (of*sy)

label symbol (lab*sy)

routine symkol (rtn*sy)

equals synkol (equals*sy)

krief CCNFASE beginr symbol
(coskeg*sy)

strop conditional begin symbol
(condbeg*sy)

Stror case begin symbcl
(caselteg*sy)
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'LCNG

! SHCRT

'STRUCT !STRUCTURE
'REF 'REFERENCE
'FLEX 'FLEXIBLE
'EITHER

TPRCC 'PROCEDURE
'UNION

' MODE

'PRIO 'PRIORITY
'LOC '10CAL
‘HEAP

'OP 'OPERATOR
'VvoID

(

)
'"BEGIN

YENC

14
'PAR 'PARALLEL

-

'IF

'CASE



strcp conformity case begin symbol
(confbeg*sy)
brief thef sywbcl (briefthef#*sy)
strop thef syambol (strcpthef*sy)
brief CCNFASE in symbol (in*sy)
strop conditional in symbol
(condin*sy)
strof case in sysbol (casein*sy)
strzcp conformity case in synbol
(confin*sy)
trief CCNFASE out symbol (out#*sy)
strop conditional out symbol
(condout*sy)
strop case out synbol (caseout*sy)
strcp conformity case out symbol
(confout*sy)

tIN
{ !

‘E1SE
1001

1001

trief CCNFASE end symbol (cosend*sy) )

strop conditional end symbol
(condend *sy)
strog case end symbol (casend*sy)
strcp conformity case end symbol
(confend*sy)
trief CCNFASE out begin symbol
(outbeg*sy)
strogp conditional out begin symbol
{(ccndoutbeg*sy)
strop case out begin symbol
(caseoutbeg*sy)

171
*ESAC

SCESAC
s !
fELSF

'CUSE

strcp conformity case out begin symbol

(confoutbeg*sy)
choice symbol (choice*sy)
from symkol (from*sy)
ty symtol (ty*sy)
to symkol (to*sy)
for symkcl (for*sy)
while symbol (while*sy)
do symkol (do*sy)

7. Sequencing Tokens
go on symkol (goon*sy)

comgletion symbol (ccnpletion*sy)
go tc symkol (goto*sy)

8. Hip Tckens

skip symkcl (skip*sy)
nil symkol (nil*sy)

YQUSEC

YFRCM
*BY
'TO
'FCR
*WHILE
*DO

s s
'EXIT
1GOT0 'GO 'GO'TO

'SKIP
INIIL
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9. Special Tokens
brief quote symbol (briefquote*sy) "
strop quote symbol (stropquote*sy) *QUCTE
trief comment symbol ¥ ¢
strop comment symbol 'CCMMENT t'CO
'PRAGMAT ‘PR
When the gquote-symbol ‘'QUOTE commences a string- or

character-denotation, then the blank following it, if there
For example, 'QUOTE A'CUOTE is the same as "A", while
'*QUOTE; *QUOTE is the same as ";"., This is a consejguence of

the chosen stropping convention.

10. Mode Standards

integral symbol (int*sy) *INT 'INTEGER
real symkol (real*sy) 'REAL

koolean symbol (bool*sy) *BOCL *BOOLEAN
character symbol (char*sy) 'CHAR 'CHARACTER
format symkol (format*sy) *FORMAT

bits symkcl (bits*sy) ' 'BI1S

tytes symbol (bytes*sy) : YBYTES

string symkol (string*sy) *STRING

sema symkol (sema*sy) 'SEMA

complex symkcl (complex*sy) 'CONMPL 'CCMPLEX
file symtol (file*sy) 'FILE

The alternatives given are defined by inserting declarations
such as
'MODE 'INTEGER = 'INT

into the standard-prelude.

11. Other Terminals

Further terminals in the syntax are indicant, dyadic-

indicant, and monadic-indicant. In the context-free syntax
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these are: "ipndicant", *"dyindicant", and "monindicant"
respectively. Productions for these may be added [R1.1.5.c],
and this is dcne as follcwus;
indicant: strép word.
dyadic indicant: strcp wcrd;
special character dyadic indicant.
monadic indicant: strop word;
special character monadic indicant.
Special characters are those characters other than 1letters

and digits.

No streop-word may be a terminal production of both
indicant and monadic-indicant [R1.1.5.b]. Nc strop-word that
is given in sections two through nine of this Appendix
(these may ke <called "“program-words") may be a terminal
producticn of indicant, monadic-indicant, or dyadic-
indicant. No representaticn ccmnprising special characters
given in sections two through nine of this Appendix (these
may be called "special-symbols") may ke ¢groduced by
indicant, dyadic-indicant, or monadic-indicant, with the
exception of +, -, and =. Whether these marks are special-
symbkocls or not is easily distinguishable by context. These
conditions and the chosen stropping convention ensure that
"no segquence of representations of symbols can ke confused
with any other such sequence" [R3.1.2.c]. An example of an
ambiguity that results without the above conditions 1is as

follows;
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Note that since indicants, dyadic-indicants, and
monadic-indicants are themselves symbols, no blanks or

ccmments may ke emkedded within thenm,

The entity "special-character-dyadic-indicant" is
denoted by "D" and given as followus:

D: D [[F'1]]
D "/"
D ett
D =
T
nkn
ll/"
M=t

. ® § W %
-e @ O @

& we we

Special characters have been quoted to distinguish them from
syntactic marks. "I" has as its direct productions each
member of a set of special characters not including "*v,
Hon, Min, Nz, agn, BN, Mu, Bw, BN, wou, ugn, Ngn, nun,
wen o wpu_ e, wgn_ wjn, wgwm_ wfn_ opr Wgn, The entity
"special-character-monadic-indicant" is denoted by "M" anad

given as fcllowus:

Wk
ll/'l
" :ll
n=wn

Hzz==
we wo @e we

* @ 9§ W%

wgn  js defined as above. Now if "T" produces "+%", W0 u(n,
n e e wgua wgn and "%"®" then the above rules allow
representations as given below for standard "operator-

tokens", whose corresponding declarations will Le included



in the standard-prelude. TFor mnemonic reasons, the use of
"AB" as a suffix for ‘"and-becomes"
alternatives are given, these are introduced ky declaration

in the standard-prelude sc there

representaticn per indicant,
initially have the same meaning.

zinus and keccmes symbol
plus and tecomes symbol
times and keccmes symbol
divided Lty and kecomes symbol
over and Leccmes symbol
modulc and beccmes sysbol
prus and tecomes symbol
or symkcl

and symkol

differs frcem symkcl

is less than synmkcl

is at most symbol

is at least symtol

is greater thanm symbol
divided ky symbol

over symkcl

times syntol

add symbol

subtract symkcl

modulc symbol

th element cf symbcl
lovwer bound of symbol
upper tound of symbol
lover state of symlol
upper state of syamkol
entier symkol

nct symkol

down symbol

up symbcl

integral to sema symbol
sema to integral symbol
plus i times symtol
pover syakol

shift left syantol

shift right symtol
absolute value of symbol
kinal syrkol
representation of symktol
lengthen symtol

shorten symktol

sche

consistent.

be only

indicants

'MINUSAB =-:=

. YPLUSAB +:=

CTIMESAB *:=
'DIVAB /:=
'OVERAB %
*MCLAB %:
'PRUSAE +
‘OR

‘ANL &
INE ~= #
11T <

'LE <=
'GE >=
'GT >
'DIV /
'OVER %
'TIMES *
'BLUS +
*MINUS -
'*MOD %
'ELEM
'*IWB

‘UPB

YLWS

‘UES
*ENTIER
YNOT
'DCWN

'UP
'1LEVEL
‘LEVEL

I

YEGCW **
*SHL

'*SHER

"'AES

'BIN
'REPR
‘I1ENG
! SHCRTEN
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odd symkel 'opLC
sign syatol 1SIGN
round symktol *RCUND
real gart of symktol 'RE
imaginary part of symtbtol 'IM
conjugate of symbol *CCNJ
argument of symkol *ARG
bcolean to kits symbol 'PACK
characters to Lkytes symbol 'PACK
equality symbcl 'EQ =

It should te noted that the above gyntax for special-
character-monadic- and dyadic-indicanés does not permit *,
=, or ;s as monadic-indicants, nor ;re they permitted to
appear at the start of monadic-indicants. This is to prevent
ambiguities andsor indeterminations £from occurring. For
example; A**B could be A ** B or A * *B if * could be
monadic; A<=R could be A<= E or A < =B if = could be
monadic; in (/:A ..., the (/ may be an alternate-sub-symbol
or ,: may ke a monadic-indicant (this is resolvable at the
matching Lus-symbcl or close-symbol, but the indetermination
is not desiratle). 'TIMES, *EQ, and °'DIV, however, are
permitted as monadic-indicants. Note that :-=: was not given
as an alternate representation for the is-not-symbol. This
is Lecause A:-~=:B might be A: ~=:B where A: is a label and
~=:B is a monadic-formula or A :-~=: B where :-=: is the is-

not-sywmbcl.



