
An Analysis of Join Processing
in Sensor Networks

by

Alexandru Coman
Mario A. Nascimento

Jörg Sander

Technical Report TR 06-24
November 2006

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton, Alberta, Canada

Abstract

Wireless sensor networks have received much attention recently. Given

their autonomy, flexibility and large range of functionality, they can be used

as an effective and discrete means for monitoring data in many domains. Typ-

ically the network autonomy implies a limited and relatively small amount

of energy for its operation. Hence, an important challenge they pose is how

to process queries, i.e., manage and communicate data, in an energy-efficient

manner within the network. In this paper we consider the problem of how

to process join queries in a wireless sensor network. Unlike other types of

queries, join queries have received little attention in the literature, despite

their importance. We propose a few strategies for processing join queries,

focusing on where (which sensor node(s)) to process data, and investigate

their performance across several scenarios. Not surprisingly, our experiments

show that no single strategy can be considered competitive for all scenarios.

In order to avoid the potential high cost of using a fixed strategy for process-

ing all queries, we develop a cost-based model that can be used to select the

best join strategy for the query at hand. Our results confirm that, given a set

of queries, selecting the join strategy based on the cost model is always better

than using any fixed strategy for all queries.

1 Introduction

Recent technological advances, decreasing production costs and increasing capa-

bilities have made sensor networks suitable for many applications, including en-

vironmental monitoring, warehouse management and battlefield surveillance. To-

day’s sensors are no longer just simple sensing devices wired to a central moni-

toring site, but they have computation, storage and wireless communication capa-

bilities. Most of these devices are battery operated, which highly constrains their

life-span. In addition, it is often not possible to replace the power source of thou-

sands of sensors. Energy efficient data processing and networking protocols must

be developed in order to make the long-term use of such devices possible. Hence,

our focus is on energy efficient processing of queries over sensor networks.

Users query the sensor network to retrieve the collected data on the monitored

environment. The most popular form for expressing queries in a sensor network is

using a declarative language [23, 15] such as SQL. The data collected in the sensor

1

network, be it stored or collected on demand, can be seen as one relation distributed

over the sensor nodes, called the sensor relation in the following. The queries

typically accept one or more of the following operators [25]: selection, projection,

union, grouping and aggregations. Continuous queries also allow special operators

that specify the duration of the query [23, 15] and, sometimes, the frequency of

sensing. The join operation was mostly avoided. We present two applications

where joins are an important operation for satisfying the users’ information need.

In this paper we focus on the processing of the join operator in sensor networks.

Recently, a few works tackled some aspects of the join processing problem. Bonfils

and Bonnet [2] consider the problem of placing a correlation operator (i.e., a special

join) at a node in the network. Pandit and Gupta [16] propose two algorithms

for processing a range-join operator in the network and Yu at al. [24] propose

an algorithm for processing equi-joins. These works study the self-join problem

where subsets of the sensor relation are joined. Abadi et al. [1] propose several

solutions for the external join problem, where the sensor relation is joined with a

relation stored at the user station. A third type of join is the internal join where the

sensor relation is joined with relations stored locally at the nodes, such as historical

statistics or pre-loaded relations.

Since the energy required by sensing and computation is three to four orders

of magnitude less than the energy used for communication [15, 25], we are inter-

ested in minimizing the energy cost of communication during query processing.

We study this problem in a peer-to-peer sensor network environment where each

sensor node is only aware of the existence of the other sensor nodes located within

its wireless communication range, and the query can be initiated (or introduced)

locally at any sensor node.

1.1 Motivating Applications

Environmental Monitoring. National Parks administration is interested in long-

term monitoring of the fauna and flora in the managed park. A sensor network

is deployed over the park, with the task of monitoring various phenomena (e.g.:

temperature and humidity) and well as observe the animals (sound, video or RFID

sensing). Park rangers patrol the park and, upon observing certain patterns, they

2

Pattern Query Query type

An animal is found dead What other animals have been in the surrounding Historical spatiotemporal
region around the (estimated) time of death? range query

Animals are found dead What animals have been in all the regions around Historical spatiotemporal
in several regions the (estimated) times of death? range query with self-join
A forest patch is affected What were the conditions in the region before Historical spatiotemporal
by an illness the illness occurred? range query
Several forest patches What were the conditions common in all Historical spatiotemporal
are affected by an illness the regions before the illness occurred? range query with self-join
Certain conditions are What other regions have had these conditions? Continuous/historical temporal
discovered range query with external join

Table 1: Sample queries for environmental monitoring

query the sensor network to find information of interest. For instance, upon finding

two animals killed, the rangers need to find what animal, possibly ill of rabies, has

killed them. The query could be “What animal has been around both killed animals

before the estimated time of death?”. If joins cannot be processed in-network, then

two, possibly long, lists of animals appearing in each region will be retrieved to be

joined at the user station. On the other hand, if the join is processed in-network,

only one animal ID is retrieved, saving the communication cost for retrieving all

animals appearing in the two regions. Other instances of patterns, the respective

queries and their type are summarized in Table 1.

Traffic Monitoring. The city police and administration are interested in ex-

tending the monitoring of the criminal activities over most of the city. As the

cost of installing power and communication lines is very high, they are interested

in an autonomic wireless solution. Each monitoring device consists of a camera

for sensing, computation and storage, specialized hardware for image processing,

equipment for wireless communication and a solar-rechargeable power source. The

cameras could take snapshots periodically and store them locally. The collected

snapshots would be automatically discarded after a while. The monitoring de-

vices would form a distributed network. While the nodes of this sensor network

have more capabilities than those used in the environmental monitoring applica-

tion, they are still constrained on the energy resource available at any given time.

Table 2 presents several queries and their type for this environment.

Our query examples cover several types of queries. We believe that real sensor

network deployments will have multiple roles, ranging from long-term monitoring

to event alerts. It is unlikely that a processing solution could perform best for all

3

Query Query type

What vehicles passed area X when the accident/crime happened? Historical spatiotemporal range query
Have any of the vehicles in the list passed area X Historical spatiotemporal range query
last week? with external join
Alert when any of the vehicles in a given list pass area X. Continuous spatial range query

with external join
What vehicles have passed area X on Sunday and area Y Continuous spatiotemporal range query
on Tuesday? with self-join
What vehicles have passed area X within 2 minutes from Continuous/historical spatiotemporal
the moment the noise level exceeded the threshold? range query with internal join

Table 2: Sample queries for traffic monitoring

query types. As the energy efficiency is of primary concern, each type of query

should be optimized differently and several processing solutions will coexist in the

network.

1.2 Our Contributions

In this paper, our contributions are three-fold:

� We analyze several strategies for processing join queries. We investigate

their suitability for certain scenarios (i.e., a combination of query and net-

work characteristics) and their performance under various conditions.

� We develop cost models to estimate the processing cost of each strategy. We

use these models in a query optimizer to dynamically select the most energy

efficient processing strategy for a given query and sensor network.

� In an extensive experimental evaluation we show that each processing strat-

egy performs best under certain conditions. We also show that dynamic

strategy selection by the model-based query optimizer outperforms every

processing strategy alone. Moreover, the optimizer makes close to optimal

strategy selections in most cases.

1.3 Organization

The remainder of this paper is organized as follows. Section 2 presents an overview

of sensor networks, as well as the characteristics of the data. Section 3 details the

problem statement and presents four solutions for processing the join operator in

4

the sensor network. We also build cost models for each of the presented solutions

in this section. We discuss several optimizations and extensions in Section 4. The

evaluation of the investigated solutions and a discussion of results is presented

in Section 5. Section 6 describes some of the research work related to ours and

Section 7 concludes the paper.

2 Preliminary Background

2.1 Sensor Networks

In spite of the relative novelty of the architecture and the small number of real-life

deployments, sensor networks are considered a highly promising technology that

will change the way we interact with our environment [19]. Typical sensor net-

works will be formed by hundreds to tens of thousands of small, radio-enabled,

sensing nodes. Each node is capable of observing the environment, storing the ob-

served values, processing them and sharing them through wireless communication.

While most of these capabilities are expected to rapidly grow in the near future, the

energy source, be it either a battery or some sort of energy harvesting [10, 17], will

remain the main limitation of these devices due to the relatively slow progress in

energy storage and harvesting technologies. Nowadays sensor nodes have a large

variance in capabilities, ranging from the bulky and powerful Sensoria nodes [21]

to the small but limited Mica Motes [5].

In our work we consider a sensor network formed by thousands of fixed nodes.

Each node has several sensing units (e.g., temperature, humidity, RFID reader), a

small processor, few megabytes of flash memory, a fixed-range wireless radio and

it is battery operated. These characteristics encompass a wide range of sensor node

hardware, which extends the applicability of our research. Further on, we consider

that each node is aware of its location, which is periodically refreshed through

GPS [6] or a localization algorithm [20] to account for any variation in a node’s

position. Each node is aware of the nodes located within its wireless range, which

form its neighborhood. A node communicates with nodes other than its neighbors

using multi-hop routing over the wireless network.

As sensor nodes are not designed for user interaction, users access the sensor

5

sensor node

query originator

mobile user station

Figure 1: User interaction with the sensor network

network through user stations, which connect to one of the sensor nodes in their

vicinity (Figure 1). The sensor node acts as a gateway in the sense that the node

receives the user queries from the user station and returns the answer to it, without

other nodes being aware of the user station. We call this node query originator in

the following.

2.2 Data Model

Nodes acquire observations periodically and the observations are stored locally

for future querying. The data stored in the sensor nodes forms a virtual relation

over all sensors, denoted
���

. As nodes store the acquired data locally, each node

holds the values of the observations recorded by its sensing units and the time

when each recording was performed. On a conceptual level, the schema of the

relation stored at a node ��� is
� ���	��
������������������������������! #" 1, where ��
�$� denotes the

location of the sensor node ��� , ��% is a recorded value for sensing unit & and ' is the

number of sensing units. The virtual relation
�(�

is the union of the node relations� ��)+* � � , ,.-0/����1� , where � represents the number of sensors nodes. Thus,

the virtual relation
� �

stores spatio-temporal data.

2.3 Query Model

In this paper we analyze the join processing problem in sensor networks for join

queries having the sensor relation
� �

as one of the joined relations, while the other

relation could be
���

(self join), a relation stored at the user station (external join)

1An actual implementation may use a different organization. For instance, 243�576 should be stored
only once in 8 6 .

6

A B

J

R

R

R R

R
R

R

i

j

k m

o
n

p

ops

ops

ops
ops

ops

ops
A

A

A
B

B

B

opsJ

U
U

opsB

Figure 2: Query tree and notations

or a relation stored in the network (internal join). For clarity of presentation, we

consider self join queries only in the following. In Section 4 we show that our

analysis of the self join problem applies to the external and internal joins as well.

We impose no restrictions on the join conditions, that is, any tuple from a re-

lation could match any tuple of the other relation. For each occurrence of the
� �

relation we consider that the query contains a spatial selection predicate constrain-

ing the tuples of the relation to belong to a region2. For instance, the query “What

animals have been in both regions around the times of interest?” from our example

in Section 1 can be expressed in an SQL-like language as:

SELECT S.animalID
FROM

� �
as S,

���
as T

WHERE S.location IN Region A
AND T.location IN Region B
AND S.time IN TimeRange A
AND T.time IN TimeRange B
AND S.animalID = T.animalID

Let us denote with
�

the restriction of
� �

to the sensor nodes in Region A and

with � the restriction of
� �

to the sensor nodes in Region B. In our presentation

we will refer to the joined relations as
�

and � , but they are in fact restrictions of

the
� �

relation to the respective areas as specified in the query. The query may also

2The sensor relation ��� can be expressed as ��� constrained to the entire sensor network area.

7

contain other operators (selection, projection, etc.) on each tuple of
� �

or the result

of the join. Since our focus is on join processing, we consider the relations
�

and

� as the resulting relations after the operators that can be applied on each node’s

relation have been applied. We consider operators that can be processed locally

by each sensor node � � on its stored relation
� � and thus they do not involve any

communication. We denote with � the result of the join of relations
�

and � ,

including any operators on the join result required by the query: � -0
������ � ���
	

� " . We consider operators on the join result can be processed in a pipelined fashion

immediately following the join of two tuples. Figure 2 shows a general query tree

and the notations we use.

3 Strategies for Processing Join Queries

3.1 Problem Statement

We are interested in evaluating the merits of several join processing strategies and

deriving the conditions under which a strategy performs best. In our analysis we

categorize the strategies based on the location where the join operation is carried

and if a semi-join is used. We analyze the following processing strategies:

� External Join: the join is processed externally;

� Internal Join: the join is processed at the location of one of the joined

relations;

� Mediated Join: the join is processed in the network at a location other than

the locations of one of the joined relations;

� Local Semi-Join: the join is processed using a semi-join at the location of

one of the joined relations;

� Mediated Semi-Join: the join is processed using a semi-join at a location

other than the locations of one of the joined relations.

Before we proceed on discussing the join processing strategies, let us model the

energy cost � of transmitting data in the sensor networks. These costs will be used

8

as building blocks for modelling the cost of each strategy. Let us first introduce the

following definitions:

Definition 1: The distance between sensor nodes � % and � � in the sensor

network area is the Euclidean distance between their locations � % and � � . We

denote this distance with ������� 6 . �

Definition 2: The distance between a sensor node � % and a region
���

is the

average distance between �(% and a node in
� �

: �	�
���� -
��� ����� � � 6������������! ���" . �

For the large scale sensor networks considered in our work, most queries will

involve the sensor relation constrained to relatively small regions from the network.

We approximate the location of a relation by the location of the centroid # � of the

region
� �

where the relation is distributed. Thus, we have �����$��� -%�&���(')� .

Definition 3: The location � � of a relation
�

distributed over the sensor nodes

in an region
���

is the centroid # � of the region
���

. �

Definition 4: The distance between two relations
�

and � in the sensor net-

work area is the Euclidean distance between their locations � � and �+* . We denote

this distance with � � * . �

The cost of transmitting data , from node � % to node � � using unicast multi-

hop routing is directly proportional to the size of the data �	- , the energy cost to

transmit (�/.) and receive (� �) one bit of information over one hop and the number

of hops between the two nodes 01����� 6 :
� ����% � � ����� - " - � �/.32 � � " � - 0����$� 6 � (1)

The number of hops is equal to the distance � ����� 6 between nodes � % and � �
divided by the average advance towards destination over one hop 45!687 . We denote

with 9;: the terms independent of �(% and � � , 9;: - � ��.�2 � � "�<=4&5!687 . Note that 9;:
is independent of the query and it network specific. We have:

� ����%	� � ����� - " ->9?: � - �	�
��� 6 � (2)

9

To transmit relation
�

distributed over
� �

to node � � , we transmit the subset of
�

stored at the nodes in
� �

to � � . We have:

� � � � � ����� � " -
����
%�� � 9?:��

� ���&����� 6 � (3)

where � � is the number of sensor nodes in region
� �

. We approximate �)�
�(� 6
with � � � 6 (see Definition 2) and we obtain:

� � � � � ����� � " ->9;:
�
��
%�� � �

� ��� � � 6 ->9?: � � � � � 6 � (4)

Finally, to transmit relation
�

to the nodes in
� * , we multicast relation

�
over

region
� * : we unicast

�
to the centroid of the region

� * and distribute
�

from

there over
� * using broadcasting. Each node in

� * transmits
�

once and re-

ceives it from every neighbor during broadcasting. Let � be the average number of

neighbors and � * the number of nodes in
� * . Thus, we have:

� � � � � ��� � " - � � � � # * ��� � " 2 � ��.32�� � � " � � � * � (5)

Let 9�� - � � . 2 �
	 � � " , which is independent of
�

and � . Note that 9�� is indepen-

dent of the query and network specific. Using Definitions 3 and 4 we have:

� � � � � ��� � " - 9 : � � � � * 2 9�� � � � * � (6)

We will use this notations when estimating the cost of each join processing strategy.

3.2 External Join

Most query processing solutions proposed in the literature do not consider the join

among their operators. Rather they focus on processing efficiently the selection,

projection and aggregation operators in the network, with the resulting data col-

lected at the user station. For these solutions we can process a join by separately

processing the query over the two relations, collecting the results (i.e.,
�

and �)

at the user station and performing the join externally. Figure 3(a) shows the data

10

R R

O

A B

Q(1)

A(2) B(2)

Q(1)

O

Q(1)

J(3)

B(2) RRA B

Q(1)

R

O

Q(1) J(3)
Q(1)

A(2) B(2)

J

RA B

(a) External Join (b) Local Join (c) Mediated Join

Figure 3: Join alternatives (w/o semi-join) - data flow and steps

flow (query � and relation
�

and �) and the processing steps for this solution.

The solution is a straightforward way for extending the current query processors

to handle joins and it would require no (or very little) modifications to existing

algorithms. We denote with � the location of the query originator node. The cost

����� . of processing the join is equal to the sum of the costs of processing the two

queries:

����� . - � � � ��� ��� � "�2 � � � ��� ��� * " ->9 : � � � ��� 2 9 : � * � * � � (7)

The external join is advantageous when the size of the relation � resulting

from the join is much larger than the sum of the two relations
�

and � or the

data extracted from the sensor network is re-used for other tasks, such as external

storing, other joins or building a model of the monitored environment. However, if

the join selectivity factor is low (highly selective join), the network wastes energy

for transmitting unnecessary tuples to the originator node and user station.

3.3 Local Join

An alternative for processing the join is transmitting one of the relations to the

location of the other relation, performing the join locally and returning the join

result to the originator node. At first, it may seem that it is advantageous to move

the smaller relation to the location of the larger one. However, as discussed next,

this may not be the most efficient case due to the cost of returning the join result

to the originator node. Let us formally analyze the problem. When joining the two

relations at the location of relation
�

, � is moved to the location of relation
�

, the

11

relations are joined locally at each node, and the result it transmitted to the query

originator. The energy cost is:

��� 6�� � � " - � � � � � ��� * "=2 � � � ���(�����#" ->9 : � * � � * 2 9�� � * � � 2 9 : ���	� ��� � (8)

Figure 3(b) shows the flow of data (query � , relation � and join result �) and the

steps of the Local Join solution. Similarly, when performing the join at the location

of relation � we have:

� � 6�� � � " - � � � � � ��� � " 2 � � � ���(��� � " ->9?: � � � � * 2 9�� � � � * 2 9?: � � �&* � � (9)

When the relation located closer to the originator node is also larger in size, it is

more efficient to process the join at its location to minimize the cost. Otherwise,

the two costs must be estimated and compared to decide the best join location. We

discuss in Section 4 how the originator node (or user station) may estimate the

parameters used in the cost models and how the accuracy of the estimates affects

the decision. For now, we assume these estimates are available. If the distances

between the originator node and the two relations are large compared to the extent

of each query region, the term expressing the cost of broadcasting in the query

region can be neglected, thus further simplifying the cost model.

Various algorithms could be used for joining relations
�

and � at the loca-

tion of
�

, respectively, � . However, this is beyond the scope of our analysis. In

our evaluation, we consider the following algorithm for processing the join at the

relation
�

: relation � is multicast to the nodes in the region
� �

; each node per-

forms locally the join between its local partition of the relation
�

and relation �
and the resulting tuples are sent using geographic routing to the originator node.

Note that the local joins can be performed in a distributed, pipelined fashion; as

soon as a node in
� �

receives a packet containing � ’s tuples it joins them with the

local partition of
�

and can send the result. Thus, only two buffers for the received

and outgoing packets are required at each node to process the join. The join is

processed at the location of � similarly. We do not include the cost of the local

processing in the total cost as it does not involve communication.

12

3.4 Mediated Join

A third alternative for processing the join is performing the join at a location differ-

ent than the location of the originator node or the locations of the involved relations.

To process the join, relations
�

and � are collected at location
�
� where they are

joined and the resulting relation � is transmitted to the originator node. Figure 3(c)

shows the data flow and the order of the processing steps. The cost of processing

the join at the intermediate location
�
� is:

��� � � - � � � � � ��� � "�2 � � � � � ���=* "
2 � � � ���(��� � " (10)

- 9?:�� � � � � 2 9;:�� * �&* � 2 9;: � � � � � � (11)

Note that the External Join is in fact an instance of the Mediated Join where loca-

tions
�
� and � coincide. In the general case, the challenge is to find the optimal

position for the join location such that the cost of processing the join is minimized.

We need to locate the optimal
�
� such that it minimizes the weighted sum of the

distances from
�
� to

�
, � and � , where the weights are the sizes of the data in-

volved in the join. This problem is known as the the weighted Fermat3 problem,

where one wants to find the point with the property that the weighted sum of the

distances from the point to the vertexes of a triangle is minimized. To find the op-

timal join location, we use the solution proposed by Greenberg and Robertello [8].

The main points of the solution are:

� The locations of
�

, � and � form a triangle where each location has as-

signed a weight equal to the amount of data it sends (� � or �=*) or receives

(� �).

� If the weight at a location is greater than the sum of the weights at the other

locations, then the join should be processed at that location.

� If the weights are equal and one of the angles of the triangle is larger than
��� <�� , the join location is at the vertex where the angle occurs.

3This problem is also know as the three factory problem, the three villages problem and the
weighted Steiner problem. Steiner has analyzed it in a general context involving three or more
locations.

13

� Otherwise, the location
�
� lies in the triangle. The derivation of the optimal

location involves non-trivial trigonometry and analytical geometry, but the

terms expressing the optimal join location are computationally inexpensive.

For further details see [8].

In [4, 16] the authors also investigate finding the optimal join location for this

scenario. They consider that the optimal join location is the weighted centroid of

the triangle formed by
�

, � and � . The centroid has the property that it minimizes

the weighted sum of the squared distances, and thus it is not optimal.

Once the optimal location
�
� is known, we need an algorithm to process the

join. Pandit et al. propose an index-based and a hash-based join algorithm for

processing range-join queries [16]. Our work is general with respect of the join

condition and thus their algorithms are not suitable for our problem. In addition,

we are interested in analyzing the alternative join locations rather than studying

various algorithms for a particular join location.

In our evaluation, we use a simple block-nested-loop-based algorithm for pro-

cessing the join at the intermediate location, which works as follows. As one of

the join relations must be stored at the join location to process the join, we use the

smaller of the two relation for this purpose. Let us assume that the smaller relation

is
�

. If
�

fits into one node, then we store it at the node located closest to location�
� . Otherwise,

�
is stored at the nodes located in region

�
� around the optimal

location. Each node in
�
� stores a partition of

�
. Next, � is multicast to the nodes

in
�
� , and each node locally joins its partition of

�
with � . Again, the processing

proceeds in a distributed, pipelined fashion. Once a packet of joined tuples is cre-

ated or the join finishes, the joined tuples are transmitted to the query originator.

As
�
� is much smaller than

� �
, the cost of distributing

�
at the nodes in

�
� is

negligible and it is not included for simplicity in Equation 11.

3.5 Join Processing with Semi-Joins

For join conditions with low selectivity it is often the case that many tuples of one

relation will not match any tuple of the other relation. Since transporting the tuples

over the network is costly, one wants to avoid transporting tuples that do not join. A

technique commonly used in distributed databases for reducing the cost of moving

14

O

Q(1)

A (4)

R Rsj

Q(1)

j B (4)j

j
sjB (3)

B (2) BA R

O

R

Q(1)

A (3)

sjJ

Q(1)

B (4)jA (4)j

sj
j

A (2)sjA BB (2)sj

sjB (3)j

(a) Local Semi-Join (b) Mediated Semi-Join

Figure 4: Join alternatives with semi-join - data flow

non-matching tuples is the semi-join [12]. In a semi-join, for each tuple only the

attributes appearing in the join condition together with a tuple identifier are used

for evaluating the join. Only this subset of a relation must be transported over the

network to evaluate the join. Once the join is evaluated, the tuple identifiers for

the joined tuples are returned to the original relation. The full tuples for the joined

tuples are then transmitted to the join location or the query result destination. The

semi-join technique assumes that the size of the sub-set of attributes transmitted

plus the size of the identifiers for the joined tuples is much smaller than the size of

the original relation.

As most sensor nodes have several sensing units, sensor tuples tend to have

a large number of attributes. If the join condition involves only some of these

attributes, it may be more cost efficient to employ the semi-join technique when

processing joins over the sensor data. In the following we discuss how semi-joins

can be used with local and mediated join processing.

3.5.1 Local Semi-Join

We consider first the case when the join is performed locally at the relation
�

. If

the selectivity of the join condition is low, sending the entire relation � at
� �

may

be unnecessary and expensive. When using semi-joins, part of each tuple of � is

sent to
���

, where it is joined with the tuples of
�

as for the Local Join. For each

semi-tuple of � matching a tuple of
�

, its identifier is returned to � . To obtain

the query result at the query originator, the entire tuples of the matching semi-

tuple of � must reach the originator. It is more efficient to send these entire tuples

15

directly to the originator node than through
�

. After the semi-join has been fully

processed at
� �

, the tuples of
�

that have joined one or more of the semi-tuples

of � are also sent to the query originator. Once the joined tuples from both
�

and � have reached the query originator, they can be joined externally at the user

station. Figure 4(a) shows the data flow and the processing steps. The cost of the

processing is:

��� � � 6 � � � " - � � � � � ��� *�� 6 "
2 � � � � � ��� * � 66 "
2 � � � ���(��� � 6 "
2 (12)

� � � ��� ��� * 6 " (13)

- 9;:�� *�� 6 � � * 2 9�� � *�� 6 � � 2 9?:�� * � 66 �
� * 2 9 � � * � 66 � * 2 (14)

9;:�� � 6 � ��� 2 9;: � * 6 �&* � (15)

where � � � represents the partition of � required for the semi-join, � ���� represents

the tuple identifiers for the tuples of � � � joined with tuples of
�

, and
� � and � �

are the tuples of
�

, respectively � , that joined during the semi-join. Similarly, if

the join is performed at � , the processing cost is:

��� � � 6�� � � " - � � � � � ��� � � 6 "�2 � � � � � ��� � � 66 "�2 � � � ���(���=* 6 "
2 (16)

� � � ��� ��� � 6 " (17)

- 9;:�� � � 6 � � * 2 9 � � � � 6 � * 2 9?:�� � � 66 �
� * 2 9�� � � � 66 �

� 2 (18)

9 : � * 6 � * � 2 9 : � � 6 � � � (19)

Note that the difference in cost between ����� � 6�� � � " and ����� � 6�� � � " is given by

the semi-join part of the cost, as the cost of sending matching tuples to the query

originator is the same. As the size of the tuple identifiers for the semi-joined tuples

is much smaller than the semi-join partitions, the cost difference is determined

mostly by
� ��� and � ��� . If

� � � is larger than � ��� , then
�

should be the semi-join

region, and � should be the semi-join region otherwise.

3.5.2 Mediated Semi-Join

In this approach both relations
�

and � send semi-tuples to an intermediate loca-

tion
�
� where these tuples are joined. Once the semi-tuples are joined, the identi-

16

fiers of the tuples participating in the join result are returned to the locations of the

joined relations. Then the nodes send the tuples contributing to the join result to

the query originator, where they are joined again to generate the query result. Fig-

ure 4(b) shows the data flow and the processing steps. The cost of the processing

is:

� ��� � � � - � � � � � ��� � � 6 "
2 � � � � � ��� *�� 6 "�2 � � � � � ��� � � 66 "
2 (20)

� � � � � ��� * � 66 " 2 � � � ���(��� � 6 "�2 � � � ��� ��� * 6 " (21)

- 9;:�� � � 6 � � � 2 9?: � *�� 6 �	* � 2 9;:�� � � 66 �
�
� 2 (22)

9;:�� * � 66 �	* � 2 � * 6 �	* � 2 � � 6 � ��� � (23)

To obtain the optimal join location that minimizes the cost of processing we need

to minimize � ��� � � � . The costs of sending the joined tuples from
�

and � to � is

independent of the join location. Thus, the cost we need to minimize is:

min � � ��� � � � " - min � � � � 6 � � � 2 � *�� 6 � * ��2 � � � 66 �
�
� 2 � * � 66 � * � " (24)

As only locations
� �

and
� * are involved, it is easy to see that the optimal join

location is on the line between
�

and � . Thus, we have that � � � 2 � * �.- � � * .

We obtain that the join location should be at
� �

if � � � 6 2 � � � 66 � � *�� 6 2 � * � 66 and

the join location should be
� * otherwise. Since the optimal join location is either

�
or � , this approach is similar to the Local Semi-Join approach.

4 Discussion

In this section we discuss some issues that are relevant to our work, namely: per-

forming the join at a mediated location; the estimation of the join selectivity; relia-

bility of routing; region approximation; and processing external and internal joins.

Mediated Join. For the Mediated Join solution we have presented the problem

in terms of finding the best location for performing the join. A first issue is that

nodes are located at discrete location and there may be no node located at the best

location. This issue is trivially solved by performing the join at the closest node to

the best location. The nodes located in regions
� �

and
� * do not actually need

17

to know the location of this node as the geographic routing algorithm [11, 3] will

route the packets destined for the best join location to the nearest located node. A

second issue is the amount of storage the node performing the join has available.

If the relations to be joined are small (or at least one of them), the node may store

locally the smaller relation and perform a block-nested loop-like join in a pipelined

fashion, in which case only very little buffer space is required for the second rela-

tion and the join result. However, if the relations to be joined are large, more nodes

must participate in the join processing, and the node neighboring the best join node

will also participate in the join processing. Algorithms for performing the join in

such cases are beyond the scope of this paper, and we refer the reader to [16] for

two such algorithms. Even when the size of the join relations is sufficiently small

so that the best join node may perform the join alone, it may be useful the employ

the node’s neighbors to improve the reliability for highly unreliable networks. For

instance, the smaller relation could be stored not only at the best join node, but at

the next few nodes farther away from the best join location. If the best join node

fails during query processing, the geographic routing will automatically route the

data packets from the larger relation to the next closest node to the join location.

Estimation of Join Selectivity. Accurate estimation of join selectivity is im-

portant for any query processor as the query optimizer uses the estimate to choose

the most cost-effective processing plan. For our problem in particular, the estima-

tion errors may lead to using an expensive solution for processing the query, which,

in turns, would reduce unnecessary the network lifetime. The cost of obtaining the

estimation itself must also be considered, and it is typically a trade-off of estima-

tion accuracy. In our context, a communication-free solution is using past query

answers to estimate the join cardinality for new queries, but it may not be very

accurate. A more accurate solution is using samples of the query relevant data, at

the added cost of transferring these samples to the query originator node or user

station. End-biased samples [7] is a particularly attractive solution as it provides

highly accurate estimations with small sample sizes for correlated data, a typical

characteristic of sensor data. In any case, the cost of estimating the join selectivity

is very low compared to the cost of query processing, considering that very few

data must be communicated for the estimation.

Reliability. In this work no routing tree is built and maintained, but rather ge-

18

ographic routing is used for routing data. This effectively means that every data

packet is sent to a destination location rather than a specific node and data stops

at the nearest located node. In addition, data sent from node ��% to node � � could

follow a different route than data send back from ��� to � % as no routes are main-

tained. This approach alleviates the network reliability issue in part as a node on

the route from � % to a destination could die, but another route to the same desti-

nation will be discovered and used when the next data packet is sent. We employ

GPSR/GFG [11, 3] for geographic routing which guarantee packet delivery if a

route exist. A heartbeat technique [14] ensures that the neighbor lists are updated

regularly to account for transient or permanent node failures.

Region Approximation. In this work we have assumed that the query regions

are much smaller than the distance between the regions and the originator. As such,

we approximated each region by the location of its centroid when building the cost

model. For larger query regions or small distances to the originator node such an

approximation may not be sufficient. Using more realistic approximations of the

query regions and their effect on join processing and the the cost model is an open

problem.

External and Internal Joins. In out presentation we have focused on process-

ing the join between the data located a two regions in the network area. Neverthe-

less, we analyzed four general techniques that should apply equally well if only one

of the relations is a subset of the sensor relation
� �

. The other relation could be lo-

cated externally at the user station or internally at one or more of the sensor nodes.

Let us consider that relation
�

is the subset of the sensor relation
� �

and � is the

external or internal relation. If � is an external relation, we have that � * � -�� .
Fitting this case into the cost models it is easy to see that the external relation �
should be moved in the network and the join should be performed at the location of

relation
�

if the size of
�

is larger than the size of the external relation � plus the

join result � . REED [1] discusses several situations for joining the sensor relation

with an external relation. In the case of the join with an internal relation stored at

the sensor nodes (different than the sensor relation
� �

), we have two cases. If the

subset
�

of the sensor relation and the internal relation are located at the same set

of nodes, the join can be performed in the common region. Even more, if the join

involves equality conditions on the spatial attribute, the join is trivially performed

19

locally at each node and no data needs to be communicated during the processing

(except for the join result). If the subset
�

of the sensor relation and the internal re-

lation are located in different regions, the processing is similar to the one analyzed

in this paper.

5 Evaluation

We implemented a sensor network simulator in C++ to study the performance of

the solutions and evaluate the cost models. The sensor nodes’ placement follows

a uniform distribution over a two dimensional region. The query consists of a join

operation over the data from two distinct query regions from the network area. We

express the size of the query regions as a percentage of the size of the monitored

region. The query originator is one of the sensor nodes selected at random and the

query regions are distributed at random in the network area. A summary of query

and sensor network parameters and their default values used in our evaluations are

presented in Table 3.

A parameter particularly important in the evaluation is the ratio of the sizes of

relations
�

, � and � . We consider that the query selects a constant number of

tuples from each relevant node’s database (e.g., a temporal selection for a constant

size interval). At first it may seem that this setting results in relations
�

and �
having the same size due to the uniform node distribution. This is true only in

average. Otherwise, for a particular query with default sizes of query regions, the

ratio of the sizes of the relations
�

and � is up to 3 due to the small size of the

query regions and the sparseness of the nodes in the network area. The default

value for the selectivity of the join operator is 0.001 which results in the size of

the join relation � being close to the sum of the sizes of relation
�

and � for the

default query parameters. We further detail this aspect when we discuss the impact

of the join selectivity factor on the performance of the solutions.

We compare the solutions in terms of the average energy used per network

node for communication while processing a query. According to [18], the energy

used to transmit and receive one bit of information in wireless communication is

given by �/. -�� 2���� � 	 and � � -�� , where � is the distance to which a bit is

being transmitted, � is the path loss index, � and � capture the energy dissipated by

20

Parameter Value (default)

Network area 1000x1000
Wireless range 50
Number of neighbors 12 (1650 nodes)
Link quality (%) 100
Size of each query region 0.5% (70x70)
Number of tuples per node 100
Number of attributes per tuple 6
Join selectivity factor(JSF) 0.001
JSF estimation error 0
Number of attributes per join tuple 6
Number of attributes per semi-join tuple 2

Table 3: Network and query parameters

the communication electronics and � represents the energy radiated by the power-

amp. In our experiments, we use the following values for these parameters [9]:

� - � - � � � �<�� &�� , � - �
, and � - / ��� �<���&���<
	�� . All measurements are

averaged over 100 randomly generated sensor networks, with 10 random queries

over each network. We focus on the energy efficiency of the query processing

solutions only, making the measurements independent of the characteristics of the

MAC layer (for instance 802.11 radios consume as much energy in idle mode as

for receive mode, while other radios may switch to a low-energy state when idle).

We evaluate the performance of the External Join (Ext), Local Join (Loc), Me-

diated Join (Med) and Local Semi-Join (sjLoc) solutions. In addition, we evaluate

the cost of the Model-Based Join solution (Model) that uses our simple cost models

to choose and execute the most cost-efficient solution among the four. We compare

the cost of the investigated solutions against an Optimal Join solution (Optimal)

that would process every query using the most efficient of the four solutions.

We evaluate the impact of several parameters on the performance of the solu-

tions. Two of the parameters are characteristics of the sensor network: the network

density and the packet delivery success rate. We also investigate the effect of two

query characteristics on the performance of the algorithms: the size of the query’s

spatial range and the selectivity of the join operator.

21

 0

 20

 40

 60

 80

 100

 8 12 16 20

M
os

t E
ffi

ci
en

t (
%

)

Average Number of Neighbors

Ext
Loc

sjLoc
Med

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 12 16 20

E
ne

rg
y

U
se

 /
O

pt
im

al

Average Number of Neighbors

Ext
Loc

sjLoc
Med

Model

(a) (b)

Figure 5: Number of Neighbors

5.1 Impact of Network Density

We investigate first the effect of network density on the performance of the join

processing solutions. Figure 5(a) shows the percentage of queries for which each

solution performs best. The Local Semi-Join processing performs substantially

better than the other solutions when the network density is small. When the net-

work density increases, the External Join and Mediated Join perform better than

the Local Semi-Join. For very dense networks with 20 or more neighbors per node,

the External Join becomes the most efficient one for a majority of queries. This is

due to the larger number of nodes in the query regions. As more data participates

in the join and more join tuples are generated, it becomes more efficient to send

the relevant data to the user station and process the join there. In addition, in the

case of the Local Join and Local Semi-Join solutions, the cost of distributing the

semi-join tuples to the nodes in the query regions increases substantially for higher

network density. This effect can be better seen in Figure 5(b), where we show the

cost ratio of each processing solution against the cost of the Optimal Join. In spite

of the simple cost models, the Model-Based Join performs best for all network den-

sities, choosing a solution close or equal to the most efficient one for processing

the join. In fact, the cost of the Most-Based Join solution is within 7% of the cost

of the Optimal Join for all network densities, while the External Join performs up

to 327% worse, the Median Join up to 250% worse and the Local Semi-Join up to

192% worse than the cost of the Optimal Join. The Local Join performs poorly for

all network densities, in average between 380% and 602% worse than the cost of

22

 0

 20

 40

 60

 80

 100

 0.5 1 1.5 2

M
os

t E
ffi

ci
en

t (
%

)

Size of Query’s Spatial Range (% of area)

Ext
Loc

sjLoc
Med

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.5 1 1.5 2

E
ne

rg
y

U
se

 /
O

pt
im

al

Size of Query’s Spatial Range (% of area)

Ext
Loc

sjLoc
Med

Model

(a) (b)

Figure 6: Size of Query’s Spatial Range

the Optimal Join, performing best for less than 2% of the queries (Figure 5(a)).

5.2 Impact of Size of Query Regions

We varied the size of the query regions between 0.5% and 2% of the network area

for each query region (Figure 6). The increase in the size of query’s range has

a strong effect on the performance of the algorithms. For queries with regions

larger than 1% of the network area the External Join performs best for a majority

of queries (Figure 6(a)). The Model-Based Join solution outperforms all solutions

for all query sizes (Figure 6(b)), but for query regions of 1.5% or larger its cost is

very close to the cost of the External Join solution. As the External Join performs

best for most queries with query regions larger than 1.5% of the network area

and the Model-Based Join solution captures this behavior, the performance of the

two solutions converge. The cost of the Mediated Join converges as well to the

same value, since the best mediator position approaches or matches the position of

the originator node for large query regions. The increase in the size of the query

regions causes more nodes to be relevant to the query, and thus the amount of data

that participates in and is generated by the join increases. Therefore it becomes

more efficient to send the data to the user station over the shortest path (as in the

External Join solution) compared to moving it in the network over longer paths.

In addition, as we do not vary the the join selectivity factor in this experiment, the

query reaches a point where the size of the data resulting after the join becomes

larger than the participating relations. For our default join selectivity ratio (0.001),

23

 0

 20

 40

 60

 80

 100

 5 10 25 50 100

M
os

t E
ffi

ci
en

t (
%

)

Join Selectivity Factor (x0.0001)

Ext
Loc

sjLoc
Med

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5 10 25 50 100

E
ne

rg
y

U
se

 v
s.

 O
pt

im
al

Join Selectivity Factor (x0.0001)

Ext
Loc

sjLoc
Med

Model

(a) (b)

Figure 7: Join Selectivity Factor

this effect occurs when each query region covers 20 or more nodes. It is easy to

see that in this situation sending the data to the user station is the best solution,

behavior well captured by the Mediated Join which moves the join location at the

originator node.

5.3 Impact of Join Selectivity Factor

To evaluate the effect of the join selectivity factor on the performance of the solu-

tions, we varied the factor between 0.0005 and 0.01. The lower range corresponds

to 5 tuples being generated by the join of the data from each pair of nodes from

the two query regions, while the higher range corresponds to 100 tuples being gen-

erated for each pair of nodes. Considering our default size of the query regions

and network density, this effectively translates overall into the size of the join re-

sult being smaller than the joined data for the lower join selectivity factor (highly

selective join condition), and larger for the higher selectivity factor. Also note that

the join selectivity factor has no effect on the cost of the External Join as the join

is performed at the user station, and only a small effect on the cost of the Local

Semi-Join as the joining tuples from each query region are joined at the user sta-

tion as well. The solution most affected by the size of the join selectivity factor

is the Local Join since the join is performed at one of the query regions and the

join data is then transferred to the user station. While the Mediated Join also per-

forms the join at a location in the network, the mediated location is dynamically

selected at query time and it coincides for some queries with the location of the

24

0

20

40

60

80

100

1007550

M
os

t E
ffi

ci
en

t (
%

)

Packet Delivery Success Rate

Ext
Loc

sjLoc
Med

1

1.5

2

2.5

3

3.5

4

4.5

1007550

E
ne

rg
y

U
se

 v
s.

 O
pt

im
al

Packet Delivery Success Rate

Ext
Loc

sjLoc
Med

Model

(a) (b)

Figure 8: Packet Delivery Success Rate

query originator when the size of the join data grows larger. When this effect oc-

curs the Mediated Join and the External Join behave similarly (Figure 7(b)), and

in the efficiency graph (Figure 7(a)) we consider that the External Join is the most

efficient solution between the two. The experimental evaluation also shows that the

Mediated Join performs best for small selectivity factors, closely followed by the

Local Semi-Join. With the increase in the join selectivity factor (less selective join

condition), the Mediated Join approached the External Join in behavior and perfor-

mance, and the Local Semi-Join is only slightly affected. The Model-Based Join

solution is able to pick these effects on the solutions, performing best and within

8% of the cost of the Optimal Join for all join selectivity factor sizes. The perfor-

mance of the Local Semi-Join decreases slowly for increasing selectivity sizes, and

in our setup it is the most efficient of the four solutions for a majority of queries

when the size of the join selectivity factor is larger than 0.001.

5.4 Impact of Realistic Communications

Up to this point in our experiments we have considered a reliable communication

environment, where no messages (packets) are lost during transmission. This as-

sumption allowed us to investigate the performance of the solutions independent

of the communication environment. Unfortunately, the typical environments where

sensor networks operate affect the quality of transmission negatively, with packet

delivery failing at times. To capture this unreliable conditions, we have set each

communication link between two nodes with a packet delivery success rate. In

25

 0

 20

 40

 60

 80

 100

-20 -10 0 10 20

M
os

t E
ffi

ci
en

t (
%

)

Estimation Error (%)

Ext
Loc

sjLoc
Med

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-20 -10 0 10 20

E
ne

rg
y

U
se

 /
O

pt
im

al

Estimation Error (%)

Ext
Loc

sjLoc
Med

Model

(a) (b)

Figure 9: Join Selectivity Factor - Estimation Error

addition, the quality of communication links is typically not symmetric, so we var-

ied the delivery rate with up to 10% for the two directions of each communication

link. When a packet does not reach its destination in a one hop transmission, the

source node re-transmits it until it receives acknowledgement of receival. Figure 8

represents the performance of each solution under three packet delivery success

rates. Each success rate represents the lower bound in terms of success rate for the

links between two nodes located within the wireless communication range of each

other, while the higher bound is the 100% delivery (no packet loss). The delivery

success rates are randomly distributed in this interval. While the energy cost of

each solution increases for decreasing delivery rates, the relative performance of

the solutions remains unchanged. This suggests that the relative performance of

the solutions is not affected by unreliable communication mediums and the cost

model can be used to capture the relative performance of the solutions for unreli-

able communication environments as well.

5.5 Impact of the Estimation Accuracy for the Join Selectivity Factor

The cost models used in all solutions, except the External Join, use the join se-

lectivity factor to estimate the size of the resulting join relation. In our previous

experiments we have considered that this factor is estimated correctly to reduce

the influence of its error (if any) on the effects of the other parameters. In this

experiment we consider that the estimation of the factor is not accurate, and we

investigate the effect that the estimation error has on the performance of the so-

26

lutions. We consider both the underestimation and overestimation errors, varying

the error of the estimated join selectivity factor from �
� � �

to 2 � � �
from the

actual factor. Figure 9 shows the effect of this variation on the investigated solu-

tions. While quantitatively the performance of the solutions varies slightly from the

performance for accurate estimation, the relative performance of the investigated

solutions remains the same in spite of the estimation error.

5.6 Impact of the Location of the Query Regions and Originator Node

Our experiments so far have assumed a setup where the query originator could

be located anywhere in the network and there is no restriction on the location of

the query regions. We have investigated the performance of the solutions on three

more setups. In one of these setups the query originator is located in the upper-

left corner of the network area and the query regions can be anywhere (a typical

setup when using one fixed base-station). In the other two setups considered, one

with a randomly distributed originator and the other with a corner originator, we

restricted the locations of the query regions so that they are far away from each

other and the originator. The experimental evaluation on these three setups has

shown qualitatively similar behaviors of the solutions as for the setup discusses in

details above. This suggests that the relative performance of the solutions is not

affected by the relative locations of the query originator and query regions and that

the cost models, while simple, are sufficient for capturing the relative performance

of the algorithms in a variety of application scenarios.

5.7 Summary

Overall, the evaluation shows that no join processing solution performs best for

all queries. The Local Semi-Join is especially suitable when the query regions

are small and the network density is low. The External Join performs best for

dense networks and large query regions, while the Local Join does not perform

well under any investigated condition. The Mediated Join adapts well to the query

characteristics and it is a good alternative to the External Join and Local Semi-Join

solutions if performing the join at the user station is not acceptable. In any case,

as energy is a vital resource of the network, one should not settle to use only one

27

solution for processing all queries, but rather select for each query the best solution.

We have shown that using simple cost models to capture the relative performance

of the investigated solutions is an effective way of selecting an efficient solution

for each query, and it outperforms by a large margin processing all queries with the

same solution.

6 Related Work

Over the past few year, much research has focused on how to minimize the cost of

processing queries involving the sensor relation [14, 23, 22, 13]. The queries typ-

ically accept one or more of the following operators: selection, projection, union,

grouping and aggregations. In addition, the continuous queries allow special oper-

ators that specify the duration of the query [23, 15] and, sometimes, the frequency

of sensing. The join operation was mostly avoided either due to its complex nature

or due to the belief that it is of little importance in a sensor network. Recently,

several works tackled some aspects of the join processing problem.

Bonfils and Bonnet [2] consider the problem of processing a correlation opera-

tor (i.e., a special join) at a node in the network. The solution starts with a random

placement of the operator at a network node. The position is progressively refined

by moving the operator to the nodes with lower processing cost during the lifetime

of the continuous query. Two important assumptions are that the operator can be

fully processed on one node and that the lifetime of the query is sufficiently long

to refine the operator position from a random location to an optimal one. An ad-

vantage of the refinement is that the operator placements adapts to the change is

data during the query lifetime. For short continuous queries their solution would

perform much worse than the optimal cost due to the initial random placement,

while the solution is inadequate for historical queries.

Chowdhary and Gupta [4] propose an algorithm for performing the self-join

in-network over a processing region with several sensor nodes participating in the

join. The processing algorithm, called distribute-broadcast join, is a form of dis-

tributed block-nested loop join, where each node in the join area holds one block

of the outside relation while the inside relation is broadcasted over the join region.

The algorithm is similar in spirit with the algorithm we use for the Mediated Join.

28

Different from us, the authors consider a special shape for the join region and ar-

gue that this region is optimal. Along the same line, Pandit and Gupta [16] propose

two algorithms for in-network processing of the range-join operator. One algo-

rithm is a distributed form of a hash-join algorithm, while the other is a distributed

form of index-join and uses a B-tree structure distributed at the sensor nodes. Both

works [4, 16] consider that the optimal join location is the weighted centroid of the

triangle. The centroid has the property that it minimizes the weighted sum of the

squared distances, and thus it is not optimal.

Yu et al. [24] also propose a strategy for processing self-join queries in sensor

network. Their solution is targeted for processing equi-join queries over historical

data stored at nodes. The solutions constructs a synopsis (e.g., a histogram) of each

relation involved in the join. The synopsis are transmitted to a mediated location,

where they are used for finding which tuples of the two relation will certainly not

join. This information is returned to the sensor nodes storing the relation, which

will use will it to select only the join relevant tuples to participate in the join. The

join is then performed in network at a mediated location. The solution performs

best when the join selectivity is small and it is closest in spirit to our Mediated

Semi-Join.

The external join problem where the sensor relation is joined with a relation

stored at the user station is studied by Abadi et al. [1]. The external relation is

basically a relation containing filters to be applied on the sensor tuples. If the

external relation is small, it is flooded in the network and the join occurs locally at

each node. When the external relation is too large to be stored in the network, the

authors propose three techniques (bloom filters, partial joins and cache diffusion)

that help filter part of the sensor tuples. Non-filtered tuples are then join externally

after reaching the base station. An intermediate situation is when the external

relation fits into a group of nodes. While multiple groups of nodes a formed in

REED, this solution is closest in spirit with Local Join.

A research area closely related to our problem is distributed query process-

ing in traditional database systems. Kossmann [12] surveys the state-of-the-art in

the area. Some major differences for our problem is that in a sensor network the

database relations are distributed over devices with limited capabilities and hard

constrains on the energy resources, that the amount of information available at

29

each sensor node about the other partitions of the data (data location, distribution

of values, etc.) is limited (if not null), and that the nodes communicate wirelessly,

with all the issues this communicating environment brings into play. Nevertheless,

there are also a number of similarities: the query processor needs to select the par-

titions of the relation that must be used to construct the query answer; the query

optimizer must choose the location (server, node or neighborhood) where each op-

erator needs to be processed; and the optimizer has to use cost models to choose

the best plan and estimations affect these models.

7 Conclusions and Future Directions

While the technological advances have lead to sensors with reduced sizes and in-

creased capabilities, the sensor data management is still in its incipient stages.

Many works have focused on processing queries over the sensor network, but they

limited their focus on processing the selection and aggregation operators over the

sensor relation
� �

. Such queries were mostly filtering the sensor data in-network,

with any further processing done off-line. In this paper we have argued that the

join operator allows one to pose important queries on the sensor data. We have

also shown that the join operator can be pushed in-network together with the other

operators previously studied. We analyze several solutions for in-network process-

ing of the join between two relations, where at least one of the relations is the

sensor relation. We show empirically that no join processing solution performs

best for all queries. Using our cost models to choose at query time the most effi-

cient processing solution, we are able to reduce the cost of join processing with up

to 83% compared to processing every query with the same solution and perform

within 7% of the optimal processing cost.

In this paper we have investigated the processing of queries with one join op-

eration. An interesting open problem is in-network processing of queries joining

multiple sensor relation. The challenge is finding the best order for joining the

relations and, for each join, the most energy efficient processing solution. Any de-

cision on what solution to use for processing a particular join operator in the query

tree should consider its effect on processing of the other join operators in the tree.

30

References

[1] D. Abadi, S. Madden, and W. Lindner. REED: robust, efficient filtering and

event detection in sensor networks. In Proceedings of the International Con-

ference on Very Large Databases (VLDB), pages 769–780, 2005.

[2] B.J. Bonfils and P. Bonnet. Adaptive and decentralized operator placement for

in-network query processing. In Proceedings of the International Conference

on Information Processing in Sensor Networks (IPSN), pages 47–62, 2003.

[3] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed de-

livery in ad-hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

[4] V. Chowdhary and H. Gupta. Communication-efficient implementation of

join in sensor networks. In Proceedings of the 10th International Conference

on Database Systems for Advanced Applications (DASFAA), pages 447–460,

2005.

[5] Crossbow Technology Inc. MICA sensor platform. www.xbow.com.

[6] P.H. Dana. Global positioning system overview. The Geogra-

pher’s Craft Project, University of Colorado at Boulder. Available at

http://www.colorado.edu/geography/gcraft/notes/gps/gps.html, 1994-2000.

[7] C. Estan and J.F. Naughton. End-biased samples for join cardinality estima-

tion. In Proceedings of the 22nd International Conference on Data Engineer-

ing (ICDE), pages 20–31, 2006.

[8] I. Greenberg and R.A. Robertello. The three factory problem. Mathematics

Magazine, 38(2):67–72, 1965.

[9] W. Heinzelman. Application-Specific Protocol Architectures for Wireless

Networks. PhD thesis, MIT, 2000. http://www-mtl.mit.edu/research/ic-

systems/uamps/pubs/.

[10] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally powered sen-

sor networks. In Proceedings of the International Conference on Information

Processing in Sensor Networks (IPSN), 2005.

31

[11] B. Karp and H.T. Kung. Greedy perimeter stateless routing for wireless net-

works. In Proceedings of the International Conference on Mobile Computing

and Networking (MobiCom), pages 243–254, 2000.

[12] D. Kossmann. The state of the art in distributed query processing. ACM

Computing Surveys, 32(4):442–469, 2000.

[13] Y. Kotidis. Snapshot queries: towards data-centric sensor networks. In Pro-

ceedings of the International Conference on Data Engineering (ICDE), 2005.

[14] S. Madden, M.J. Franklin, and J.M. Hellerstein. TAG: a tiny aggregation

service for ad-hoc sensor networks. In Proceedings of the Symposium on Op-

erating Systems Design and Implementation (OSDI), pages 131–146, 2002.

[15] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The design of

an acquisitional query processor for sensor networks. In Proceedings of the

SIGMOD Conference on Management of Data (SIGMOD), pages 491–502,

2003.

[16] A. Pandit and H. Gupta. Communication-efficient implementation of range-

join in sensor networks. In Proceedings of the 11th International Conference

on Database Systems for Advanced Applications (DASFAA), 2006.

[17] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. Design

considerations for solar energy harvesting wireless embedded systems. In

Proceedings of the International Conference on Information Processing in

Sensor Networks (IPSN), 2005.

[18] T. Rappaport. Wireless Communications: Principles and Practice. Prentice-

Hall Inc., 1996.

[19] A. Ricadela. Sensors everywhere. Information Week, Jan. 24, 2005.

[20] A. Savvides, M. Srivastava, L. Girod, and D. Estrin. Localization in sensor

networks. Wireless sensor networks, pages 327–349, 2004.

[21] Sensoria Corp. WINS sensor platform. www.sensoria.com.

32

[22] M.A. Sharaf, J. Beaver, A. Labrinidis, and P.K. Chrysanthis. Balancing en-

ergy efficiency and quality of aggregate data in sensor networks. VLDB Jour-

nal, 13(4):384–403, 2004.

[23] Y. Yao and J. Gehrke. The Cougar approach to in-network query processing

in sensor networks. SIGMOD Record, 31(3):9–18, 2002.

[24] H. Yu, E.P. Lim, and J. Zhang. On in-network synopsis join processing for

sensor networks. In Proceedings of 7th International Conference on Mobile

Data Management, pages 32–39, 2006.

[25] F. Zhao and L. Guibas. Wireless sensor networks: an information processing

approach. Morgan Kaufmann, 2004.

33

