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Abstract

Multirate (MR) systems arise due to the limitations on the output sampling rates and 

input adjustment rates of the physical variables. They are inherently more complex 

and challenging than single-rate (SR) systems and yet, practically important.

The concept of ’lifting’, is used in this thesis to analyze multirate systems. It is 

shown that lifting techniques can give rise to intersample ripples in the closed-loop 

outputs of the MR system. These ripples can be eliminated if the lifted controller 

satisfies certain gain constraints or by incorporating an integrator at the input rate.

Due to the limitation on the sampling rates, control of multirate systems can be 

limited by the slowest available measurement, defined here as slow single rate (SSR) 

control. A natural problem of interest is to explore the benefits that lifted MR control 

systems can offer over SSR control systems. In this thesis, we address the performance 

issue: what are the upper and lower bounds on the performance of multirate systems? 

We also answer the question: can we get better performance with fast single-rate 

control (FSR) (sampling at faster rates)? The main contribution of this thesis is a 

proof that the optimal performance of MR systems is bounded above by that of SSR 

systems and bounded below by that of FSR systems, with the continuous-time LQR 

cost function and the generalized T^-norm as the benchmarks. In the presence of 

a model-plant mismatch, the sensitivity of the performance benefits is analyzed for 

first-order SISO systems.

Multirate representations of data are a special case of a more general class of 

representations, known as multiscale representations, which can capture the inher

ent different/multiple time-frequency scales. These representations are obtained by 

employing wavelet transforms.

The last part of this thesis focusses on monitoring of multiscale systems us

ing a combination of wavelet transformation with PCA, known as Multiscale PCA
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(MSPCA). It is shown that MSPCA has several advantages over conventional PCA 

both in the theoretical and practical aspects. MSPCA provides an enhanced sensi

tivity towards and discrimination between detection of incipient and abrupt faults. 

Application of MSPCA to sheet-break diagnosis using data from a major pulp and 

paper mill is presented to highlight the potential of this technique.
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“...The science of today is a light matter; the revolutions and evolu
tions which it will experience in a hundred thousand years will far exceed 
the most daring anticipations. The truths - those surprising, amazing, 
unforeseen truths - which our descendants will discover, are even now all 
around us, staring us in the eyes, so to speak, and yet we do not see them. 
But it is not enough to say that we do not see them; we do not wish to see 
them; fo r  as soon as an unexpected and unfamiliar fact appears, we try to 
fit it into the framework of the commonplaces of acquired knowledge, and 
we are indignant that anyone should dare to experiment further. ”

- Charles Robert Richet, Nobel Laureate in Medicine

You can control a mad elephant;
You can shut the mouth of the bear and the tiger;
You can ride a lion;
You can play with the cobra;
By alchemy you can eke out your livelihood;
You can wander through the universe incognito;
You can make vassals of the gods;
You can be ever youthful;
You can walk on water and live in fire;
But control of the mind is better and more difficult.

- Sage Thayumanavar
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Chapter 1 

Introduction

From a philosophical perspective, the objective of control can be termed analogous 
to the basic inherent human objective of maintaining a state of mind. The objectives 
could be, (i) holding the current state of mind for a desired period of time in the 
presence of disturbances both external and internal, and (ii) maintaining the stability 
of mind (Hi) reaching another state of mind from the present one in the absence 
or presence of disturbances. The first objective is analogous to controlling a given 
system at its current state (for now we use state in a general sense) over a finite 
time in presence of disturbances (regulatory problem). The second one is concerned 
with the stability of a system or analogous to the design of a controller to stabilize 
a given system while the third objective is equivalent to taking a system from one 
state to another or tracking a given signal (a combination of both servo problem and 
regulatory problem).

From a practical perspective, control objectives mainly arise due to the need for 
(i) quality control, (ii) safety measures, and (Hi) economic reasons, all of which give 
rise to a combination of both servo and regulatory problems. Quality control is more 
than a rule in process industry. Quality may be described in innumerable terms such 
as composition, temperature, hardness, strength, density, volume, etc. Each quality 
control problem is a challenge in its own due to the nature of each quality variable 
and its relationship with other process variables. Besides the quality variable, many 
a time it becomes necessary to control the quantity (or differential quantity) variables 
such as pressure, flow rate, production rate etc. Safety is a great motivating factor to 
constrain several process variables within certain operating limits. The importance of 
this problem in the operation of a plant requires no elaboration as it is well understood 
to be one among the foremost operating requirements. Economic reasons could be 
a combination of both quality and quantity factors, safety measures, meeting the 
market and supplier demands, cost-effective operations, etc. All control problems
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arising due to these factors could be classified either as servo or regulatory problems 
or a combination of both. In order to maintain a state of mind, it is necessary to 
know the functioning of our mind. In process control, this is equivalent to identifying 
the process (or the evolution of process states), preferably in a mathematical form.

Although identification can be performed in both the continuous-time domain 
and discrete-time domain, for all practical purposes, modern control theory demands 
analysis in the discrete domain implying the requirement of sampled signals. The fun
damental principle of sampling (Nyquist 1928, Whittaker 1935, Shannon 1949) states 
that a continuous-time signal can be reconstructed from its discrete-time counterpart 
without loss of information if the sampling frequency is at least twice as fast as the 
maximum frequency in the original signal. This is known as the Nyquist frequency 
or sampling rate. The theory of sampling is fundamental to discrete-time control and 
identification. Sampled models are natural descriptions for many natural phenomena 
in several areas besides the field of digital control. Examples of such situations are 
the rotation of a radar antenna, stock information, measurements using analytical 
instruments, etc. In practice, the sampling frequencies are 5-10 times faster than the 
Nyquist sampling frequency (twice the maximum frequency present in the continuous
time signal). Ideally, it is desirable to carry out both identification and control in the 
continuous-time domain. For this reason, it would be beneficial to sample signals at 
faster rates so that maximum process information can be extracted.

However fast we wish to sample a signal, limitations exist on the fastest possible 
sampling rate for a signal governed by the physical variable sampled, the hardware, 
etc. For example, in distillation columns, composition estimates can take anywhere 
between 5-30 minutes; molecular weight estimates in a polymerization reactor can 
take about 30-60 minutes of analysis time. This is a constraint imposed mainly 
by the physical variable which is being sampled. On the other hand, temperature, 
pressure and flow measurements can be obtained at a relatively faster rate. Therefore, 
if we consider a distillation column, for example, we would have different signals at 
different sampling intervals (or different sampling rates). Such examples with different 
sampling rates for different signals comprising a given system are common and given 
the term m u ltira te  system s. The term single-rate system s applies to those 
systems whose signals are all sampled at one identical rate.

Single-rate (SR) systems present relatively less complexity in terms of controller 
design, identification or monitoring than multirate (MR) systems. This is mainly 
because the mathematical complexity involved in dealing with SR systems is less 
intriguing than MR systems and also that MR systems are not as transparent as SR 
systems. Besides, MR systems are a more general case and include SR systems as a
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special case. There is a wide body of literature and theoretical framework on simple 
to advanced techniques for these SR systems.

On a relative basis, controller design techniques for MR systems have evolved at 
a slower pace and received less attention. The main hindrance being the increase in 
mathematical complexity and the scarcity of design tools as one moves from SR to 
MR systems. Moreover, it has been only in the recent two decades that technology 
has emerged to meet the hardware requirements for faster sampling. With the ad
vent of multiprocessors capable of operating at much faster sampling rates, it is now 
both feasible and practical to focus on design of multirate controllers. In addition, 
performance requirements increasingly stress the need for sampling at a faster rate 
because it can greatly aid in improving intersample performance.

The first half of this thesis focuses on issues related to MR control systems, 
particularly, (i) controller constraints arising in the design of MR lifted (the term 
lifting will be explained later) control systems, (ii) the benefits of MR control in 
comparison with the SR control and (Hi) robustness analysis of MR systems vs. 
SR systems. The entire set of ideas on multirate controller design and performance 
analysis is built on the lifting framework (see section 2.2 for lifting techniques). It is 
shown that a set of constraints exists on the resulting controller in order to ensure 
ripple-free outputs. In the context of performance, it is shown in both cases of state 
feedback and output feedback control that MR systems are practically superior to 
the slow SR (SSR) systems both for the regulatory and the tracking problem in the 
absence of model-plant mismatch. Besides, we prove that the lower bound on the 
optimal performance of MR systems is the optimal performance of the fast single
rate (FSR) (operating a t the greatest common divisor (g.c.d.) of all the sampling 
rates) systems.

In the presence of a mismatch, we consider a complementary but an interesting 
performance comparison problem. Our objective is to evaluate the commonly held 
belief that faster sampling rates, in general, can yield better performance. Therefore, 
we compare the superiority of fast single-rate systems over multirate systems in the 
presence of uncertainties. It is shown for first-order SISO systems that multirate 
systems can perform better than FSR systems. Theoretical expressions for those 
regions of uncertainty are established under which the superiority of MR systems 
holds.

The choice of lifting framework is due to the mathematical tractability and con
venience it provides in viewing MR systems as fictitious SR systems with increased 
input-output dimensionality. The practicality of lifting methodology lies’in the fact 
that it does not require the aid of a fast-rate model and encourages its use in chemical
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processes, such as distillation, polymerization, etc.

1.1 W hy Study Multirate Control Systems?

One of the most important factors motivating the study of MR systems is the prac
tical limitations that not all process variables can be sampled at the same rate. As 
discussed earlier, in a distillation column, the composition estimates take relatively 
longer times than the flow or temperature measurements. The presence of these 
multiple sampling rates renders the controller design problem challenging and com
plex. In such situations, control moves are usually limited by the slowest available 
measurement (s). In such a strategy, only the information at the slowest rate is uti
lized. On the other hand, from a performance point of view, it is motivating to make 
faster control moves and also improve intersample performance, see for e.g., Astrom 
and Wittenmark (1984). These requirements are met by a multirate controller that 
utilizes the entire information available in the multirate measurement set.

Then, it is intuitive that the multirate controller can yield a better closed-loop 
performance than a SSR controller. However, in making such a judgement it should 
not be forgotten that in practice, we can seldom obtain a perfect or accurate knowl
edge of the process, meaning that model-piant mismatch is inevitable. Therefore, 
the question that arises is: Do faster sampling rates necessarily imply improved per
formance in the presence of model-plant mismatch? This question arises from the 
question: is it necessary to respond to every process change when the complete pro
cess knowledge is unavailable? Also, in applying data analysis techniques, changes in 
a chemical process are usually observed by looking at changes in measurements which 
are typically corrupted with measurement and sensor noise. These questions leads us 
to acquire knowledge of an appropriate basis for a fair comparison and the measure 
of performance, indicating that the comparison problem is non-trivial.

The above factors therefore motivate and necessitate the study of MR systems, the 
related controller design techniques, the performance benefits tha t one can achieve 
over SR systems.

In the following section, a detailed introduction to multirate control is presented 
which highlights the uniqueness of MR control system analysis.

1.2 M ultirate Control
Several types of multirate systems arise due to (i) uniform input and non-uniform 
output sampling, (ii) non-uniform input and uniform output sampling and (Hi) non-
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uniform input and output sampling rates. Other cases of multirate systems arise when 
certain signals are irregularly sampled, such as the Melt Flow Index of a polymer in a 
Low Density PolyEthylene (LDPE) reactor (Lakshminarayanan et al. 1998). In this 
work, we particularly focus on the case when the outputs are sampled at a slower 
rate than that a t which the control moves are made. This case is more practically 
appealing since in chemical processes usually the outputs are available at a  rate slower 
than the rate at which the control moves are updated. However, it is assumed the 
sampling rate is fixed in time.

Multirate control systems pose challenging problems because of their time-varying 
nature. The time-varying nature is attributed to the disparity in the sampling pe
riods of the sampler and the hold elements, regardless of the time-invariance of the 
continuous-time system. Simply speaking, the challenge in the multirate control prob
lem occurs because the control moves have to be designed at a  rate different from the 
rate at which the information is available. In an optimal sense, the problem is excit
ing because two questions arise: (i) what is the optimal criterion? and (ii) how do 
we design the control moves in this optimal sense? The lack of available information 
at the same sample rate as the control signals in MR systems is a handicap in using 
SR control techniques. In order to overcome this drawback, from a traditional point 
of view, inferential control schemes have been developed to estimate the intersample 
output signals. Inferential schemes are mainly based on two methods: (i) intersample 
estimates based on a fast-rate process model, and (ii) intersample estimates based 
on other secondary measurements. By secondary measurements, it is meant they are 
not of primary interest to the control problem, but only used to estimate the primary 
measurements (the output signals). For example, in a distillation column, since the 
composition measurements take relatively longer periods of times, tray temperatures 
are used as secondary estimates to infer the primary composition measurements. Es
timation schemes that do not accommodate the infrequently measured output or the 
primary process variables were used by Brosilow and Tong (1978). Such estimation 
schemes often give biased estimates of the process output because of model-plant 
mismatch and the presence of disturbances. Estimation schemes that incorporate 
the infrequently measured primary process output into estimation schemes were first 
proposed by D’Hulster and van Cauwenberghe (1981). Guilandoust et al. (1987) pro
posed a multirate scheme that uses the infrequent primary measurements to update 
a transfer function based inferential process model which can be then used to update 
the primary variables from the secondary outputs.

Inferential relationships that are shown to have convergence properties have been 
stated formally and entirely as a  multirate estimation problem by Lu and Fisher
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(1990). Another method for estimation and filtering frequently used in chemical 
processes is the Kalman filtering strategy (Kalman 1960). The process models used in 
the Kalman filter approach are state-space models that result from writing a dynamic 
balance on the system states. In the multirate case, the multirate Kalman filtering 
strategy is employed. Glasson (1983) proposed the multirate Kalman filter algorithm 
with regard to applications in aerospace engineering. The extension of this multirate 
Kalman filter algorithm to non-linear/time-varying processes is discussed in Gudi 
(1995) with application to a fed-batch fermentation process.

Robustness issues of control systems with measurement difficulties, actuator or 
measurement failures are analyzed in the generalized inferential framework that takes 
into account both primary and secondary measurements by Lee and Morari (1992). In 
their work, the authors give a detailed analysis of various H i based optimal control 
schemes that make use of the separation principle and modified Kalman filtering 
approaches. The authors also make a comparison of the various design approaches 
on a high purity distillation column.

Inferential control based on a fast-rate model assumes the availability of a fast-rate 
model for direct use. The fast-rate models can be either obtained by fast discretization 
of a continuous-time model or by using multirate data by lifting schemes (Li et al. 

20006). The second method actually overcomes the practical limitation of obtaining a 
fast-rate model by other means. In the lifting scheme, the fast-rate model is essentially 
obtained by using only the multirate data, whereas otherwise it is necessary to have a 
continuous-time model which is not always practical. Moreover, the lifting approach 
does not involve the use of secondary measurements.

On a parallel note, other disciplines of engineering witnessed the evolution of 
several other schemes for the analysis of MR systems in a rigorous theoretical fash
ion. The origins of such work dates back to early 1950’s (Sklansky and Ragazz- 
ini 1955, Kranc 1957, Kalman and Bertram 1959, Jury and Mullin 1959, Freid- 
land 1961). Classical time-varying periodic discrete models have been used to describe 
MR systems because of their periodic nature, see for example, Berg e t al. (1988) and 
Grasselli e t al. (1995). In Berg e t al. (1988), the design of multirate controllers is 
performed using mainly two methods, ( i )  Discretization methods: (a) Discretization 
of the plant model and (b) Discretization of continuous-time LQG cost function; (it)  

Synthesis methods: (a) Successive loop closure methods, (b) LQG method and (c) 
Constrained Optimization method. The LQG method synthesizes a multirate con
troller by representing each hold as a  state in an augmented system, and “switching 
logic” matrices are used to coordinate the various sampling activities. A' lifting ap
proach to H 2 optimal synthesis for dual-Tate sampled data systems is discussed in
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Chen and Francis (1991a). The term dual-rate is given to the system whose inputs 
are all sampled at a uniform rate while all the outputs are sampled uniformly at a 
different rate. Multirate systems can also arise when the sampler and hold functions 
are chosen as a  part of the controller design process for a continuous-time plant. This 
view arises from the idea of generalized sampled-data hold functions, see for exam
ple, Arvanitis (1998) and Mirkin and Rotstein (1997). However, the last two decades 
witnessed the emergence of a convenient framework for the analysis of MR control 
systems known as lifting (Khargonekar et al. 1985, Araki and Yamamoto 1986, Meyer 
and Burrus 1975, Bamieh et al. 1991, Chen and Qiu 1994, Sagfors and Toivonen 1998). 
Khargonekar et al. (1985) showed how closed-loop zeros could be assigned by periodic 
controllers, concluding, for example, that the system gain margin could be increased 
without bound (even if there is a bound for time-invariant controllers). In Araki and 
Yamamoto (1986), the authors analyze multirate pole-placement assuming that the 
inputs and outputs can be paired off into loops having the same rate.

Ideas discussed in Kranc (1957) and Freidland (1961) are key to the development 
of lifting schemes which are used extensively in this work. The lifting framework 
was developed by Khargonekar et al. (1985). Lifting converts a given MR systems 
to a fictitious single-rate system by making use of the periodic nature of the mul
tirate system. The fundamental idea is to express each fast-rate signal as a vector 
and rearrange them suitably to give rise to a new vector at a slow-rate, but with in
creased dimensionality. Therefore, the resulting fictitious SR system has an increased 
input-output dimensionality and given the name lifted system. The controller is then 
designed for the lifted system using the rich theoretical framework established for the 
SR based control design techniques. The resulting controller is given the name lifted 
controller. Input moves designed using the lifted controller are inverse lifted taking 
into account the rearrangement involved during lifting and then passed through the 
zero-order hold. This method is superior to methods of inferential control in the 
sense that it eliminates the necessity of a fast-rate model since the lifted system can 
be identified directly from the multirate data. Additionally, the identified lifted sys
tem can provide information regarding the underlying fast-rate model (Li et al. 2001). 
Chapter 2 discusses the notion of lifting and its applications in greater detail. A more 
detailed and formal treatment is presented in Chen and Francis (1995).

A key motivating factor for MR control as discussed earlier is the closed-loop 
performance factor. It appears intuitive that MR systems should give better closed- 
loop performance than SR systems at the slow rate. However, to understand the 
effect of sampling rates on the closed-loop performance, a rigorous and fundamental 
analysis of the closed-loop performance of MR systems relative to SR systems is
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required. Issues such as the choice of a  suitable benchmark, conditions under which 
such a  comparison can be established, etc., have to be resolved prior to arriving at 
a theoretical conclusion to the comparison problem. For example, what signal in 
the system or its transformation would give a measure of the performance of MR 
vs. SR systems? Despite the practicality of this issue, until recently (Tangirala et 
al. 2000), only a handful of papers have addressed a  closely related issue (McEachen 
and Meyer 1991, Berg et al. 1988). In both papers (McEachen and Meyer 1991, Berg 
et al. 1988), the comparison is purely on the basis of simulation. The main drawback 
of the work reported in McEachen and Meyer (1991) is that it lacks a common ground 
for comparison. For instance, equal importance to input weights in the MR and SSR 
systems is not ensured because the design problem does not start from a continuous
time cost function, bur rather with a discrete-time one. In Berg et al. (1988), although 
the controllers are derived from the same continuous-time LQG cost function, the 
comparison is made only on the basis of simulation. Moreover, the MR system is 
modelled as a periodic discrete-time system, yielding a periodic LQG controller. In 
contrast, in this work, we give a theoretical proof that MR systems indeed give a 
better performance than SSR systems with their worst-case performance identical to 
that of SSR systems. Also, we show that the optimal performance of MR systems is 
bounded below by the optimal performance of FSR systems. The proof is built on an 
LTI framework using lifting techniques, with the continuous-time LQR cost function 
(state-feedback) as a benchmark.

These issues are discussed in Chapter 4 in a theoretical fashion with appropriate 
simulation results.

1.3 From Multirate Systems to Multiscale Systems
We begin this section by understanding the terms multiscale and multiscale represen
tation with a simple practical example.

Consider a geographical map of a city drawm to a low scale. At this scale, the 
resolution in the map is good, meaning two places actually close in distance can be 
seen distinctly on the map. However, the low scale would make the map dense and 
possibly illegible. But if the finer details are irrelevant, then the scale can be increased. 
Evidently, the resolution of the map becomes poorer, but with a  better overall picture 
of the city. In this way, we can build multiscale representations starting from the fine 
representations to the very coarse representation.

The above analogy closely resembles the method of representing a continuous-time 
signal with a sampled signal. In digital systems, the sampling interval decides the
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scale of the signal (as the scale in the map), and therefore the time resolution. Hence, 
the sampled signal is said to be a single-scale representation of the continuous-time 
signal. All process measurements can be said to fall under this category unless un
der rare situations where the sampling times are irregular. In a multirate sampling 
scheme, the sampled signals are at different scales (time resolutions). The finest 
resolution for each signal is given by its sampling interval. Each signals is in fact 
an approximation of the underlying signal at that resolution. However, this way of 
multiscale representation is elementary and a special case of the general multiscale 
representations. In a multiscale representation, we start from the finest resolution 
in time and go to coarser representations (approximations) of the signal using suit
able transformations. The importance of multiscale representation is clear from the 
following discussion.

In the earlier section, we indicated how closed-loop performance analysis could 
reveal the choice of sampling rates in a given system. Besides the performance issue, 
it is commonly known that variables in a chemical process that evolve slowly with time 
do not require fast sampling, whereas variables which change quickly with time require 
fast sampling. Many chemical processes in practice possess such characteristics where 
different physical variables have different rates of change. This behaviour is termed as 
m ultiscale since different time scales exist in one process. The multiscale behaviour 
also means that different frequencies (since the frequency of a signal is related to its 
rate of change) exist over different periods of time for different signals. Therefore, 
the term multiscale also refers to the different frequency scales.

With wide variations in the evolution times, it is intuitive to sample signals in a 
multiscale system at different rates depending on their rate of change. These different 
sampling rates in turn give rise to multirate systems. Thus, multirate systems also 
arise because of the multiscale behaviour of chemical processes.

In other words, multirate systems can be viewed as a special case of multiscale 
systems. This is because although the process is single-scale (all variables evolve 
approximately at the same rate) in nature, the multiscale nature could be introduced 
in the data due to different sampling intervals. It should be noted that the term 
multiscale is not limited to describing processes. Rather, the multiscale nature can 
also be introduced due to the representation of data with different sampling rates. 
Ftom this angle, multirate systems can be considered as a subset of multiscale systems. 
This motivates us to consider a more general analysis of multirate systems, i.e., 
multiscale systems.

An example of a multiscale system is a  fiuidized catalytic cracker where the resi
dence time in the reactor is significantly smaller than that in the regenerator. Other
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examples include chemical reactors in series with different residence times, chemical 
vapour deposition reactors (where coupling of fast and slow reaction occurs), etc.. 
Methods that extract information by representing the measured variables at various 
scales are more congenial for analysis of such data than conventional methods which 
perform analysis at a single scale. Besides, it is well-established that a  direct applica
tion of standard control methods to multiscale processes, without accounting for the 
multiple time-scales may lead to controller ill-conditioning, stiffness and closed-loop 
instability due to slightly non-minimum phase behaviour of the process (Kokotovic 
et al. 1986, Christofides and Daoutidis 1996a, Christofides 1998).

Multiscale analysis of systems involves integration of both time and frequency 
(scale) domain techniques providing a more general framework for modelling, control 
and monitoring of several multiscale systems. Multiscale modelling, control and mon
itoring based on wavelet analysis has been receiving increasing attention due to the 
attractive properties of wavelets in an integrated time-ffequency domain. Wavelet 
transformations have come into play to overcome the shortcoming of Fourier trans
forms in providing simultaneous time-frequency projection of a signal. Wavelets are 
not totally new to mathematicians or physicists but they were formalized in the 
early 1980’s (Grossman and Morlet 1984) as a result of the reactivating fundamen
tal collaboration between researchers in theoretical physics and signal processing. 
Wavelet transforms (Daubechies 1990, Daubechies 1988) have been shown to offer 
very good time-frequency localization properties over other techniques. Wavelets have 
also emerged as novel tools for analysis of non-stationary signals, data  compression, 
multirate signal processing, etc..

Wavelet filters offer several advantages over other linear filters (Bakshi 1999, Bak- 
shi 1998) due to their ability to represent data at various scales or different resolutions. 
Multiresolution representation or decomposition of data via wavelets (Mallat 1989) 
is a very useful property that forms the basis for multiscale estimation, control and 
analysis of systems using wavelets (Stephanopoulos et al. 1997, Dyer et al. 1998). 
Wavelet transforms of cross-spectrum data are shown to be useful in the detection of 
time delays for linear systems (Tabaru and Shin 1997). Identification of time-varying 
systems and model validation using wavelet techniques are discussed in Tsatsanis 
and Giannakis (1993) and Doroslovacki and Fan (1996). Although wavelet trans
forms cannot be directly employed to identify processes in the frequency domain, 
with certain approximations they can be used to identify two time-scale systems. 
These ideas were recently coined by Chaplais and Alaoui (1996). Multiscale MPC 
is obtained by formulating the MPC problem in the multiscale domain in order to 
overcome certain weaknesses of traditional MPC such as limited representation of
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model-plant mismatch, the inability to shape frequency response characteristics of 
the outputs through systematically selected weights in the objective function, just to 
mention a few (Karsligil et al. 1999). Applications of wavelets to other areas such as 
monitoring, pattern recognition and fault detection have also received wide attention 
in the last decade.

1.4 Multiscale Monitoring
Process Monitoring (PM) is usually on a higher level in the hierarchy of plant op
eration. Monitoring typically involves governing the safe operation, supervising sit
uations involving equipment failure, abnormal operating conditions, sensor failures, 
process drifts, etc. Many a time, it is of crucial importance to equip a  chemical plant 
with sensitive monitoring instrumentation involving advanced strategies. The area of 
process monitoring has been receiving increasing attention over the years. This area 
is formally defined as Fault Detection, Diagnosis and Isolation. Each of these areas 
involves intricate complex analysis with various ideas borrowed from pattern recogni
tion. Monitoring can be in general more challenging than a control or identification 
problem.

Among the well-established multivariate statistical techniques for statistical mon
itoring of chemical processes, Principal Component Analysis (PCA) (Kresta et al. 
1991, MacGregor 1994) has gained widespread popularity. Several extensions of con
ventional PCA have been proposed to take into account various factors such as process 
dynamics (Ku et al. 1995), changing operating conditions (Li et al. 2000c), monitoring 
of large-scale and complex processes (Nomikos and MacGregor 1994), etc. However, 
all these techniques are based on single-scale representation (same time-frequency lo
calizations at all locations) of the measurements and therefore suffer the disadvantages 
of single-scale methods (Bakshi 1999). Moreover, they do not exploit the advantages 
of multiscale representations. One of these disadvantages is their inability to adapt to 
the nature of the signal. They have a fixed time-frequency resolution which forces a 
trade-off between the extent of noise removal and the quality of retained features for 
signals with multiple scales. Other disadvantages occur with cases of non-stationary 
signals, presence of autocorrelated errors, etc. Some of these disadvantages will be
come clear when we discuss the Short Time Fourier Transform (STFT) in the ensuing 
sections. The multiscale nature of wavelet filters integrated with these multivariate 
statistical techniques offer certain attractive features such as improved detection of 
short-lived faults and incipient faults, automatic filtering of the scores and residuals 
at each scale (Bakshi 1998, Kosanovich and Piovoso 1997), etc. In addition, ap-
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proximate decorrelation of stochastic components due to wavelet decomposition of 
signals provides a justified environment for using PCA for sensor fault detection on 
autocorrelated data (Zhang et al. 1999).

In addition to the above features, multirate data can be conveniently fused to
gether with the help of wavelet transformations. Subsequently, one can apply a 
well-established single-scale monitoring technique such as PCA. This area of research 
is also recently emerging and gaining attention (Dyer et al. 1998).

In this work, the focus is on process monitoring in the multiscale framework. 
The advantage of multiscale framework is that it encompasses the case of multirate 
systems as well. Thus, measurements at different rates can be fused in an appropriate 
way to include all the available information for monitoring purposes. However, the 
present thesis highlights the use of wavelets for multiscale process monitoring only 
for single-rate systems. This is done by using a combination of wavelets and PCA, 
popularly known as Multiscale PCA (MSPCA). Future directions are also given to 
encompass multirate measurements for monitoring purposes.

1.5 Outline of this Thesis
The thesis is concerned with the discussion of: (i) multirate control, and (ii) multiscale 
monitoring of multivariate chemical processes. To enable easy travel through the 
thesis, each chapter begins with a statement of purpose giving the reader an Overall 
picture of the substance present therein.

Chapter 2 deals with control of multirate systems. The focus of Chapter 2 is to 
present the notion of lifting from a chemical engineering point of view. In this chapter, 
first an introduction to lifting techniques is presented. The discussion is supplemented 
with an application of lifting techniques to multirate control of a binary distillation 
column.

Chapter 3 forms the first part of one of the main contributions of this thesis. This 
chapter presents the issues involved in the multirate controller design problem. The 
presentation highlights the constraints on the controller gains to ensure ripple-free 
closed-loop outputs for both the servo and regulatory types of problems. Following 
this discussion, causality constraints are briefly reviewed. Parametrization methods 
are employed to design multirate/lifted controllers satisfying the gain constraints in 
Section 3.4. Experimental work along with results from simulations is presented 
wherever appropriate to corroborate the theoretical findings in the earlier sections. 
Future trails are laid for the design issues involved in the area of multirate control 
using lifting techniques.
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Chapter 4 presents the second part of contributions in the context of performance 
issues discussed in Section 1.2. Comparison of closed-loop performances of multirate 
and single-rate systems requires a benchmark that can provide a fair ground for both 
the systems. In this work, the continuous-time LQR cost function for LTI systems 
is considered for this purpose. Our objective is to give a theoretical proof that MR 
systems can perform better than single-rate systems at the slow rate in the absence 
of model-plant mismatch. Also, we give a lower bound for the performance of MR 
systems - the optimal performance of the associated fast-rate systems. We consider 
both set-point tracking and disturbance rejection problems. Tracking performance 
is compared for three classes of signals, namely, step, ramp and sinusoidal types of 
signals. The servo problem is tackled by converting it to a regular LQR problem and 
then using the results from the regulatory case. For the output-feedback case, the 
generalized ^ 2-norm (Bamieh and Pearson 1992, Khargonekar and Sivashankar 1992) 
is chosen as a benchmark. The superiority of MR systems over SSR systems is still 
shown to hold good.

In Chapter 5, novel results on the robustness analysis of the closed-loop perfor
mance comparison problem are given. It is intuitive that faster sampling should give 
better performance. However, in presence of model-plant mismatch, drawing definite 
conclusions is a non-trivial problem as mentioned in Section 1.2. With the continuous
time LQR cost function as a benchmark, we establish conditions on the uncertainty 
intervals for which first-order SISO MR systems give better performance than their 
fast single-rate (FSR) counterparts. Uncertainty is introduced in the form of gain 
and pole mismatch. Sufficient and necessary conditions are given for MR systems 
with integer sampling ratios, while only sufficient conditions are established for MR 
systems with rational sampling ratios. These results provide a new direction to the 
assessment of benefits of MR systems from a performance point of view. Simulation 
results are presented in Section 5.3 to confirm the theoretical results established in 
this chapter. In conclusion, future directions for further research in this area are 
given.

Multiscale analysis first appears in Chapter 6 with a brief discussion on multiscale 
systems. Wavelets are introduced in Section 6.2 with emphasis on their applications 
to multiscale or multiresolution analysis.

Combination of wavelet analysis with PCA, termed as Multiscale PCA (MSPCA) 
applied to Multiscale Process Monitoring is presented in Chapter 7. Advantages 
of MSPCA over conventional single-scale techniques with regard to sensitivity to 
fault detection, adherence to theoretical assumptions for SPM, etc. are illustrated in 
Section 7.3.2.

13
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A real-time application of MSPCA to industrial data for detecting sheet-breaks 
in a pulp and paper mill is presented in Chapter 8. The application illustrates the 
potential of MSPCA as an emerging multivariate statistical data  analysis tool in 
extracting useful information supplementary to process knowledge in solving process 
problems.

Conclusions to this work appear in Chapter 9 giving an overall summary and 
drawing inferences based on the overall work reported in this thesis. Future directions 
to the research are proposed towards the end of that Chapter.

14
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Chapter 2 

Multirate Control Design via 
Lifting

Purpose: To introduce the reader to the concept of lifting techniques from a chemical 
engineering perspective, with an illustration on a binary distillation column.

2.1 Background

Multirate control, as the term suggests, is concerned with the control of multirate 
systems. The term multirate arises due to the simple reason that different signals of 
a system are sampled at different or multiple rates. A schematic of a typical multirate 
system is shown in Figure 2.1.

Figure 2.1: A multirate system (output/input sampling ratio = n, n  6 Z +) (high 
frequency dots indicate fast-rate signals, low frequency dots indicate slow-rate signals 
and solid lines correspond to continuous signals)

In Figure 2.1, G represents a continuous-time SISO LTI system1 with different 
sample rates for the output and input. In particular, the output is sampled n  times 
slower than the input or equivalently, the sampling interval of the output is n  times 
larger than the input sampling interval, h. Accordingly, Hf stands for a fast-rate zero- 
order hold with sampling interval h and S  denotes a  slow-rate sampler with sampling

1In this work, in general, G  refers to a continuous-time LTI system, unless specifically stated  
otherwise.
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interval nh. Throughout the analysis, we base our focus on those MR systems whose 
outputs are available at a slower rate than the inputs since these situations are prac
tical and commonly encountered in the chemical process industry (e.g., distillation 
columns, polymerization reactors). Nevertheless, wherever appropriate, situations 
arising due to slow-control, and fast sampling are also considered for the sake of 
completeness.

For the original multirate system, it is appropriate here to introduce the definition 
of a single-rate system at the slow rate (SSR system) and a single-rate system at the 
fast rate (FSR system). An SSR system is a discrete-time system operating at the 
slowest sample rate of all the signal sampling rates in the corresponding MR system. 
In this case, the SSR system is defined as SG H , where H  is the fictitious zero-order 
hold at the slow sample interval nh. More generally, when the ratio of the sampling 
intervals are rational, i.e., n /m  (n and m are relatively prime), the SSR system 
operates over the least common multiple (l.c.m) interval of all the sampling intervals 
in the system. Similarly, an FSR system is defined as a single-rate system operating 
at the greatest common divisor (g.c.d) intervals of all the sampling intervals in the 
corresponding MR system. In the case of Figure 2.1, the FSR system is defined as 
SjG H f operating over the interval h. Both S j  and H, as introduced here for the sake 
of analysis, are fictitious sampler and zero-order hold with sampling periods h and 
nh respectively.

A general multirate control system is shown in Figure 2.2, where Sb represents the 
output sampler with period nh and Ha represents a zero-order hold with sampling 
interval mh. G represents a continuous-time LTI system and Cm represents the 
multirate controller. Signals r, d and y*, stand for the reference, disturbance and 
sampled output signals respectively. The simplest case of multirate system as depicted 
in Figure 2.1 is the case where the output sampling interval is an integer multiple of 
the input sampling interval.

Evidently, the major difference between single-rate and multirate systems is the 
non-uniformity in the sampling rates of the signals. Accordingly, if the continuous
time system is LTI, the corresponding multirate system is linearly periodically time- 
varying (LPTV) whereas the single-rate system is LTI. This major difference between 
MR and SR systems affects the course of analysis of MR systems in a way that makes 
the controller design more complicated and challenging than that of SR systems. 
Thus, it is more appropriate to analyze MR systems in the LPTV framework whereas 
SR systems can be analyzed in the LTI framework2.

The LPTV nature of MR systems makes the control methodologies in the LTI

2It is assumed that the original continuous-time system is LTI.
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Multirate controller

Figure 2.2: A typical multirate system (Ta ^  TJJ

framework inaccessible. In simple terms, the rate mismatch between the output and 
input samples is the primary source of complexities in MR systems. As explained 
in Section 1.2, one of the strategies to overcome this drawback is to estimate the 
missing or the intersample outputs so as to match the rate of manipulation of the 
inputs. Intersample estimation is the key to inferential control strategies. Estima
tion can be done either by means of a fast-rate model or with the aid of secondary 
variables. An example of the latter method is to estimate the distillate compositions 
(primary variable) in a distillation column using tray temperatures (secondary vari
ables). Traditionally, Kalman filters (Kalman 1960) have been used for optimal esti
mation strategies (Glasson 1980, Glasson 1983, Gudi 1995). Among Kalman filtering 
strategies various classes exist such as the ordinary Kalman filter, extended Kalman 
filter, non-linear Kalman filter, etc. An alternative method as mentioned earlier is 
to employ a fast-rate model (available at the g.c.d of all the sampling intervals) to 
estimate the intersample outputs. A fast-rate model can be obtained by discretizing 
a continuous-time model at the fast sample rate. Practically, this approach might 
be infeasible since it is difficult to obtain a continuous-time model for many physical 
systems. Moreover, it is not always possible to locate secondary variables to infer 
primary variables. Both these methods share a common ground in that they estimate 
intersample outputs for controller design.

In this work, we base our controller design on a different strategy known as lifting. 
Lifting techniques have been in use since their origin from Kranc’s concept of switch 
decomposition (Kranc 1957) and the work by Freidland (1961). Formal treatment of 
lifting techniques was given by Khargonekar et al. (1985). The lifting methodology has 
been since popular in analyzing multirate systems and has been employed extensively
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in both controller design (Khargonekar et al. 1985, Araki and Yamamoto 1986, Ravi 
et al. 1990, Meyer 1990, Bamieh et al. 1991, Chen and Francis 1991a, Chen and 
Qiu 1994, Sagfors and Toivonen 1998, Tangirala et al. 2001) and performance analysis 
of multirate systems (Meyer 1992, Tangirala et al. 2000). The methodology is simple 
and offers powerful tools because of its capability of converting MR systems into 
time-invariant SR systems. However, the resulting SR systems have an increased 
dimensionality. For instance, lifting a SISO MR system whose outputs are sampled 
at a period 2h and inputs at a period h results in a  2-input, 1-output single-rate 
system with a sampling interval 2h. With the exception of increased dimensionality, 
the lifting operator serves a useful function of transforming an LPTV system to an 
LTI system. Lifting operators exist for continuous-time systems as well under the 
name of continuous lifting. Continuous-time lifting takes a finite-dimensional LTI 
(FDLTI) system in continuous-time to a discrete-time LTI system, but with infinite 
dimensional input/output spaces. In the following section, we discuss only discrete 
lifting with suitable illustrations since the work presented here extensively involves 
discrete domain analysis.

Multirate control using lifting methods is a three step design. The first step 
involves transforming sill signals available at different sampling rates (multi-rate) to 
fictitious signals available at a single uniform sampling rate (single-rate). This is the 
lifting step which results in fictitious signals (termed as lifted signals) of increased 
dimensionality, but where the 2-norm of the signals is preserved. The second step 
consists of designing a controller (termed as the lifted controller) for the single-rate 
system comprised of the lifted signals, using techniques available for SR systems. 
Finally, since the lifted controller gives the lifted input moves, the outputs of the 
lifted controller have to be inverse lifted to obtain the fast-rate input signals to the 
plant. A more detailed explanation with suitable examples is illustrated in Section 
2.3.

Multirate control performed this way has a number of advantages as discussed 
in Section 2.3. The concept of discrete lifting is discussed in detail in Section 2.2. 
Discrete lifting transforms a one-dimensional fast-rate signal to a set of slow-rate 
signals with increased dimensionality.

Design of lifted multirate control systems is concerned with two main issues. The 
first issue is that of causality, i.e., the lifted controller designed has to be causal, thus 
calling for a set of causality constraints on the controller. While the source of this 
problem is lifting (as it is a non-causal operation), the second issue, which is novel 
in this work, is due to  inverse lifting. Inverse lifting the lifted controller moves at 
steady state leads to the presence of intersample ripples in the closed-loop output.
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It is shown in this work that intersample ripples can arise in the closed-loop outputs 
if the controller fails to satisfy certain gain constraints. Thus, the lifted controller 
in addition to satisfying the causality constraints is also required to satisfy the gain 
constraints for all stable systems. Chapter 3 highlights the issue of intersample ripples 
and discusses in detail the source of these ripples, the conditions under which they 
arise and methods to eliminate or avoid them. Section 3.5 discusses the problem of 
causality constraints. It should be noted that causality constraints arise in all cases 
except when the output is sampled n (n 6 Z +) (Z + denotes the set of all positive 
integers) times slower than the input. The subsequent section utilizes parametric and 
optima! methods to design causal controllers which do not give rise to intersample 
ripples in the closed-loop outputs.

State-space design methods provide a convenient framework for design, especially 
to arrive at models for lifted systems. However, transfer functions formats are also 
used interchangeably with the state-space formats, whichever is more appropriate to 
the situation. The following notation is introduced in the discussions to follow. State- 
space matrices in the continuous-time are represented as {A, B ,C ,D )  and transfer 
functions are denoted by g(\), where we have used A =  z~l for the sake of convenience.

2.2 Discrete Lifting

In this section, we introduce the concept of discrete lifting, i.e., lifting signals in the 
discrete-time domain. We first discuss lifting discrete signals and subsequently extend 
it to lifting discrete-time systems.

Lifting techniques (Khargonekar et al. 1985) are essentially the result of concate
nation of fast-rate signals to form slow-rate signals with increased dimensionality. The 
concept of lifting originates from Kranc’s idea (Kranc 1957) of switch decomposition. 
It involves the simple idea of rearranging a fast-rate signal to give rise to a slow-rate 
signal with increased dimensionality. As an example, consider two multirate signals 
available at sample rates 2h and 3h.

u =  (u(0), u(2h), u(4h), ■■■}, y = (y(0), y(3h), y(6h), ■■■}

A rearrangement of these signals would give rise to the following vectored input and 
output signals

* u(0) u(6h) u(6nh)
u(2h) ) u(8h) 1 * * * 1 u((6n + 2)h)
it(4/i) u(10fr) u((6n +  4)/i)

4
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and

2={ y(0) y{6h) y(6nh)
y{3h) 7 y{9h) 7 * 7 y((6n +  3)h) }

where n is a non-negative integer. The idea is that both the resulting vectored 
signals u and y  are available at a uniform single period 6h, the least common multiple 
or l.c.m. of 2h and 3h. The above rearrangement is formally termed as lifting, 
represented by the operator L. More generally, lifting is represented by L n , where N  
denotes the order of lifting. In the above example, the order of lifting was N  = 3 in 
the first transformation, while N  = 2 for the second transformation. In this work, the 
subscript N  is dropped for the sake of simplicity. The resulting signals are referred to 
as lifted signals. In the above example, note that the signals u and y have an increased 
dimensionality. Thus, lifting converts a SISO multirate system into a MIMO single
rate system, i.e. a 3-input, 2-output system in this illustrative example. The process 
of moving back to u and y from u and y is termed as inverse lifting, represented by 
the operator L f f  or simply L~l. The combined transformation of lifting and inverse 
lifting is an identity transformation. In all the ensuing discussions, all lifted signals 
are denoted with an underline.

Now, we present the mathematics of the lifting operation. A discrete signal v on 
lifting yields a lifted signal represented by v and denoted as:

v = Lv

If the order of lifting v is for example, N  =  2, the operation can be represented using 
the system matrix representation of L as:

u(0)
v(l)
« (2)

' I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
0 0 0 0 0

:

u(0)
t / ( l )
v(2) (2.1)

where the identity matrix /  in equation (2.1) has the same dimensions as v (in this 
example, I  =  1). The dimension of v in equation (2.1) is N  =  2 times the dimension 
of v (in general, the dimension of v would be N  times the dimension of v). It is clear 
from (2.1) that lifting results in the localization signals in the time domain. It is 
an all-pass filter and changes the sampling interval of the original signal. Moreover, 
for the partition shown, [.L] is neither lower-triangular nor Toeplitz implying that as 
a system, L is non-causal and time-varying. The non-causal property of the lifting
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0 d> 0  j
L " 1 G i I

iff

(lifted system)

Figure 2.3: An example of a lifted system (high frequency dots indicate fast-rate sig
nals; low frequency dots indicate slow-rate signals and solid line corresponds to con
tinuous signals)

operator plays an important role in the design of lifted controllers. As explained later 
in Section 3.5, it is this property which gives rise to the undesired set of causality 
constraints. A very useful property of L is that it is norm-preserving. Thus, in the 
case of ^-norms. it can be shown that

I M k  = IMIa (2 .2)

In order to map the slow-rate signals (lifted signals) back to their fast-rate counter
parts, we need to introduce another operation known as inverse lifting denoted by 
L~l. Thus, L~l takes v to the space of v. Again choosing N  = 2, the operator L~l 
can be represented using the system matrix representation as:

[L-11 =

---
1

0 0 0 0 0 . . .  '
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0

(2.3)

The above representation of inverse lifting shows that as a system, L~l is causal and 
time-varying. The causal property of the inverse operation is essential to compen
sate for the non-causal operation involved during lifting. The time-varying nature 
is expected as the operation involves a change of sampling intervals (from slow to 
fast sampling interval). It should be noted that inverse lifting preserves the norms of 
signals as well. It is easy to see that LL~l = Im n  and L~lL  =  I m , where M  is the 
dimension of v. The former identity corresponds to mapping lifted signals back to the 
space of lifted signals, while the latter expression corresponds to mapping fast-rate 
signals back to the space of fast-rate signals.

So far we have discussed lifting (and inverse lifting) discrete signals.- Now, we 
extend these ideas to lifting discrete-time systems, specifically FDLTI systems.
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Lifting discrete-time systems is equivalent to lifting the input and output signals 
so that the resulting lifted signals have a sampling period equal to the l.c.m. of the 
sampling intervals of the original signals.

An important point to note here is that although we have discussed lifting with 
reference to MR systems, the operation is not limited to MR systems alone. In other 
words, lifting is concerned with signals (irrespective of whether they belong to MR 
or SR systems) rather than systems. Here, we are utilizing the potential of lifting by 
applying it to MR systems. Therefore, it should be kept in mind that the term lifted 
systems can be applied to systems resulting from lifting MR and SR systems as well.

For illustration purposes, we begin with the single-rate case, i.e., both the input 
and output signals are sampled over one identical interval hb/n, where hb is a base 
sampling period and n  is a positive integer. The purpose of doing so will become 
clear when we apply these results to lifting multirate systems subsequently. Now, we 
lift both the output ip and input <p such that the corresponding signals ip and 0 are 
available over the sampling period hb. Again, the output and input signals of the 
lifted system, ip and <p are fictitious signals.

If G f  represents the fast-rate discrete-time system, then the lifted system is rep
resented as Gi  = LGdL~l as shown in Figure 2.3. The dimension of the new system 
is increased by n-fold if the order of lifting is n. It is not difficult to show that G i is 
LTI as well.

Next, given gj,  which is the transfer function for the fast-rate model Gf,  we 
compute the transfer function for Gl , denoted as gi. First, we show the procedure 
for n  =  2 and then extend it to a general n e  Z +. Assuming that g/(A) is described 
in state-space terms as:

9 /W  = Af B f 1c D

then the system matrix representation of g/  can be written as:

[G/] =

D 0 0 0 -
C B f D 0 0

C A f B f C B f D 0
C A ) B f C A fB f C B f D

(2.4)

Each row (except the first one) of the system matrix is obtained by appending the 
beginning of previous row with the next impulse response coefficient. In a similar 
way, based on the functionality of lifting and inverse lifting operators, we can write 
system matrices for L  and L~l (equations (2.1) and (2.3) are given for n =  2). These 
derivations are clearly shown in Chen and FYancis (1995). Then, for n  =  2, the system
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matrix representation of the lifted system can be represented as:

D 0 0 0

CBf D 0 0

CAfBf CBf D 0

CA2f Bf CABf CBf D

I *

(2.5)

It can be noticed that [Gl] looks similar to [Gf] excepting the repartition of the 
blocks. The transfer function for the lifted system can be then arrived from equation 
(2.5) as:

r  a 2 AfBf B f 1
h W  = c D 0

CAS CBf D
(2.6 )

Observe that the state-space representation of §l clearly indicates that Gl is both 
FDLTI and causal. More generally, the following theorem is stated (Chen and Francis 
1995).

T heorem  1 The lifted system Gl in general, is FDLTI and written as,

r  a *, A T ' B f A r 2Bf  • • '  Bf  1

c D 0 • 0

9lW  = CAf CBf D • 0

CAnf x CAnf - 7B{ CAf~3Bf  • • • D

(2.7)

Proof. Proof of this theorem follows from the observation made earlier from equation 
(2.6). ■ 
Some important observation follow from the expression for the lifted system given by 
Theorem 1.

1. Lifting preserves the order of the system, i.e., the lifted system has the same 
number of states as the original system. This is a useful property as most 
optimal controllers designed for the lifted system will be of the same order as 
the original system.

2. Lifting preserves the stability of the system, i.e., if A  is stable, so is An.

3. Since lifting preserves the norms, ||^/||| =  Il^x.Ill/n - This property plays a 
great role in controller design, especially in minimizing intersample ripples in 
sampled-data systems.
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(a)

I
- i H f

(b)

Figure 2.4: (a) A multirate system (output/input sampling ratio = n, n  €  Z +) (b) 
Single-rate lifted system (high frequency dots indicate fast-rate signals; low frequency 
dots indicate slow-rate signals and solid line corresponds to continuous signals)

4. The operation results in an increase in dimensionality. As evident from equation 
(2.7), the lifted system is an (n x n) system. This feature of lifting results in an 
increase in controller dimensionality and may be a disadvantage for the design 
technique.

In the above case, we considered lifting as applied to a single-rate system at the fast 
rate. Now, we illustrate the application of these ideas to lifting a simple multirate 
system whose inputs are sampled at a rate n (n 6 Z +) times faster than the output. 
It is assumed that the input is sampled over the interval hb/n while the output is 
sampled at hb, the base period. The multirate system then is appropriately described 
in Figure 2.4(a), where the symbols in the blocks have their usual meaning. Figure 
2.4(b) is obtained from Figure 2.4(a) by using two properties: (i) the identity property 
of lifting and inverse lifting and (ii) S H / S f  =  S.  The components consisted by the 
dashed box comprise the lifted system Gl in this case. The tilde on the top of 
Gl is used to differentiate from the lifted system obtained in the earlier case. The 
inputs and outputs of the lifted system are available at the slow rate, hb. The major 
difference between the previous and the present situation is that we lifted both the 
signals in the former case whereas we lifted only the input in the latter one.

Having identified the corresponding lifted system, the next step is to .arrive at a 
transfer function for the lifted system. For this purpose, again we use the system
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matrix representations of the lifting and inverse lifting operators. In addition, we 
utilize the following relationship between SH f and the lifting operator, L :

S Hf = [  I  0 • • • 0 ] L (2.8)

The blocks comprising of SjG H f is none other than G/, the fast-rate discretized 
version of G. Therefore, the following equations follow in order:

- l
JnGl = S H f S / G H f L ;

=  [/ 0 ... 0] LnG fL ~ x 

n blocks 

= [I (T ... OfGl (2.9)

(2 . 10)

Using the transfer function for Gl from our earlier result in equation (2.7), the transfer 
function for Gl can be written as:

9L( A )  =
\A 'f A nf~lB f Anf~2B f  ••• B f ]

C D  0 0 (2 .11)

Observe from equation (2.11) that the lifted system is a (1 x n) system, i.e., one 
output and n  inputs respectively.

The reader should note that a continuous version of the above exists under the 
name of continuous lifting. This topic is beyond the scope of discussion here. Inter
ested readers may refer to Chen and Francis (1995) for a discussion on continuous 
lifting. In the following section, we illustrate the above ideas to control a multirate 
binary distillation column.

2.3 Application to Multirate Control
The analysis and design of multirate control systems involve mainly two approaches, 
namely, (i) the periodic discrete-time modelling approach, and (ii) the lifting method
ology. This work adopts the latter approach for the following reasons. The main 
advantage of the lifting approach is th a t it is conceptually simple and enables a con
venient analysis of stability and performance issues of multirate control systems. In 
addition, the lifting framework translates an MR system into a linear time-invariant 
(LTI) system, where as the former approach results in a time-varying system. Clearly, 
it is simpler to analyze LTI systems because of the rich framework of theory that ex
ists in this area (Khargonekar et al. 1985, Araki and Yamamoto 1986, Chen and
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Qiu 1994, Sagfors and Toivonen 1998). It is for this reason that we have chosen to 
analyze multirate system using the lifting framework.

Furthermore, the lifting methodology has the following advantages. Firstly, and 
importantly there is no necessity of estimating intersample outputs either by means 
of a fast-rate model or using secondary variables. The controller design is based on 
the lifted model, but not the fast-rate model. Secondly, this method encompasses the 
case where a fast-rate model is available. Lifted models can be built either from a fast- 
rate model or through direct identification of a  lifted model from the measurements. 
Since the focus of this work is to illustrate the design technique and the issues involved 
therein, we will adopt the former case, i.e., building a lifted from the fast-rate or a 
continuous-time model.

For illustration purposes, we choose a (2 x 2) distillation column, i.e., two con
trolled variables (distillate and bottoms compositions) and two manipulated variables 
(recycle and vapour flows). A distillation column is an appropriate choice as it ex
emplifies a classical multirate system. While the composition measurements can take 
15-30 minutes, flow rate measurements are available at a much faster rate. The non- 
linearity and the high interaction among the control loops pose a challenging multirate 
control problem. The single-rate control problem has been explored in detail by Sko- 
gestad (1997a). The typical configuration of a distillation column is shown in Fig. 
2.5. Detailed analysis and description of distillation columns are elucidated in several 
publications - see for example Skogestad (19976) and Skogestad and Postlethwaite 
(1996). The distillation column model used here is provided in Skogestad (19976). 
The following paragraphs briefly discuss the description of the process system, mod
elling of this system and the choice of controlled and manipulated variables for this 
system Skogestad (19976).

In a distillation column, we are interested in separating a mixture of two or more 
components. In this work, we consider a two component mixture entering the column 
at a feed flow rate F  with a lighter (more volatile) component composition zp. In all 
the discussions to follow, we only refer to the composition of the lighter component. 
Mass transfer occurs between the liquid and vapour phases at each stage (tray) in the 
column and the vapour at the top is condensed to get the distillate D highly rich in 
the lighter component with a composition xd • A portion of this distillate is recycled 
to the column at a  reflux rate R  to achieve higher purities. The liquid at the bottom 
of the column is partially reboiled to get a bottoms flow rate B  with a composition xb 
and the vapour boilup V. The condenser drum has a holdup of Mp and the bottoms 
a holdup of Mb - There are a  total of Nt  + 1 stages in the column including the total 
condenser at the top. The reflux flow rate R  is a measure of the energy consumption
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Figure 2.5: A typical distillation column with the RV-configuration

in the column and affects the separation (factor) significantly. The column contains 
a series of stages at each of which, a certain amount of separation take place. As 
the number of stages become very large, the energy consumption becomes minimum. 
On the other hand, with a minimum number of stages infinite energy reflux may be 
required. The external flows (D  and B) also influence the separation factor but in 
practice, only small variations in these flows are allowed as D /F  is kept close to zp 
to get high purity products.

The vapour-liquid equilibrium (VLE) between the two components, assuming to 
be constant, is given by,

y / (  i -  y)
x /( l -  X)

The quality of the feed, or the amount of liquid in the feed, is denoted by qp (1 in 
this example). This notation follows from (Skogestad 19976).

A first-principles model can be developed by writing down the mass and energy 
balances for the system. The following assumptions are made for the system:

1. Constant relative volatility a  (as defined above). This can be re-written as

_  a x  
^  1 +  (a  — l)x

2. The molar flows of the liquid and vapour along the column are constant. This 
means that the heat of vaporizations for the components will not differ signifi
cantly.
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3. Constant pressure throughout the column.

4. The liquid dynamics are linear and there is equilibrium a t every stage.

The balance equations give rise to a model with four inputs (R, V, D and B) 
and four outputs (x p , x b , M p, and Mb )- Disturbances may occur in the system 
due to changes in (F, zp, and qp). Conventionally, the column is first stabilized 
by closing the level loops associated with the condenser drum and the reboiler drum 
by manipulating D and B, respectively, thus leaving two controlled variables, the 
product compositions. The remaining inputs available for manipulation are R  and 
V. This is known as the RV-configuration which shall be adopted in this work. The 
open-loop system in this work refers to this 2 x 2  system. The column has a total of 
41 trays and the steady-state values are given below:

Quantity F zF R D V B X p x b

Value 1.0 0.5 2.7063 3.2063 0.5 0.5 0.99 0.01

All the flow rates are in [kmol/min] and compositions are in mole fractions.
Distillation columns are known to be highly non-linear in nature, mainly due to 

the nonlinear VLE. The nonlinearity in the distillation column is more pronounced 
at high purities where the gains drastically drop (in magnitude). Nevertheless, lin
ear models obtained by linearizing around a nominal operating point serve reason
ably well for the purpose of controllability and RGA (Relative Gain Array) analysis, 
and controller synthesis. In fact, linear models based on logarithmic compositions 
are much less dependent on the operating point. Using the non-linear model, a 
linear model relating the two inputs (R  . V ) and the logarithms of compositions 
(log . l°g (y z ^ -) ) is extracted using the linm od command in MATLAB.
The result is a continuous-time state-space model.

The linear model obtained is stable and contains 82 states (41 tray compositions 
and 41 holdups). In order to reduce the large number of dimensions in the original 
model, the balanced truncation technique is employed which allows the reduced order 
model to retain the strict causality in the system. The reduced order model consists 
of 5 states. Note that scaling (as described in Skogestad and Postlethwaite (1996)) 
was done prior to reduction. Figure 2.6 obtained for a step change in R  shows 
that the reduced-order model possesses similar characteristics as the original model. 
Similarities in responses are seen for all the four cases, i.e., responses of x p  and 
xb for step changes in R  and V. Also, it is clear that for a step change in R, 
this linear model gives a similar response as the non-linear model for the first 10 
minutes. The advantage of having a linear model based on logarithmic compositions
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Figure 2.6: Comparison of the 82-state model and the 5-state model (shown for xq) 
- hardly differ from each other

can be seen clearly from Fig. 2.7. Evidently it is useful in a linear controller design 
problem. The steady-state gains of the reduced-order model differs slightly from the 
original model as shown below. However, one can always use other techniques such 
as balanced residualization which preserve the steady-state gain in addition to the 
model-reduction (Skogestad and Postlethwaite 1996).

Reduced-order

G r ( 0 )  =
88.4936 -87.0628
109.4444 -110.5713 (2 .12)

Original model

G(0) = 88.4653 -87.0860
109.5031 -110.8809 (2.13)

The negative sign suggests that a change in the vapour boilup rate affects the 
compositions in the opposite direction.

Controllability analysis of the original model reveals 9 controllable states and the 
reduced-order model has 5 controllable states. The dominant time-constant is 193.05 
min. Additionally, the original model contains only 6 observable states whereas all 
the states in the reduced-order model are observable. Thus, the reduced-order model 
is of great use for controller design.
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Figure 2.7: Comparison of the non-linear and linear reduced-order models

In order to design the controller, it is necessary to assign the appropriate ma
nipulated variable to a controlled variable, based on a user-chosen criterion. Several 
such combinations arise in a 4 x 4 (including the uncontrolled levels) system. In 
the literature, both the issues, namely, one-point control (perfect control of one of 
the compositions) and two-point control (both the composition loops are closed) are 
discussed. Presently, we consider the two-point control. Economically, this is moti
vating because the optimal operating point generally corresponds to a given purity 
specification. For the 2 x 2  system, we assume the conventional i?V-configuration 
to control the compositions. In such a configuration, the recycle flow R  is chosen to 
control the distillate composition xq while the vapour flow V  is chosen to control 
the bottoms composition x b - There are certain other advantages in choosing this 
configuration. Firstly, there is hardly any time-delay between the reflux flow rate and 
the top composition, and similarly between vapour flow and bottoms composition. 
Secondly, this configuration is shown to be almost independent of the level control 
tuning (Skogestad 19976), whereas for the other configurations the level control tun
ing is very important. The levels are controlled, as aforementioned, by manipulating 
D and B  with proportional controllers (integral action assured by the holdups). We 
consider only the regulatory control problem using an LQG controller assuming that 
the disturbances are the feed flow rate F  and the feed composition zp.

Multirate measurements are comprised of the slow sampled compositions and the 
fast sampled flow rates. The compositions are assumed to  be available over a uniform 
sampling interval of n(n £ Z +) minutes while the inputs, i.e., flow rates are assumed
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Figure 2.8: Closed-loop response of xb with controller based on augmented plant
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to be available uniformly over a sampling interval of 1 min. We consider two different 
situations when n =  2 and n = 5. This situation corresponds to the fast-control, 
slow-sample case discussed in Section 2.2.

In order to obtain the lifted system, we first discretize the continuous-time model 
G> at the fast sample interval h^/n. Using this information in equation (2.7) and 
substituting n =  2 gives the discrete lifted model for the distillation column.

Thus, the lifted system has 4 inputs and 2 outputs. The subsequent step is to 
design a controller for the lifted system.

For the controller design using LQG techniques, the measurement and state noise 
covariance matrices are taken as identity. The input weighting is set to a large value 
compared to the output weighting in order to suppress huge input variations and thus 
obtain a smooth behaviour in the input moves.

A step-type disturbance is introduced in the feed flow F. In order to ensure re
jection of step-type disturbances, the closed-loop should contain an integrator. This 
condition translates to either augmenting the fast-rate plant with a fast-rate integra
tor, or, by augmenting the lifted plant with the lifted integrator. The closed-loop 
response for such an augmented system n =  2 is shown in Figure 2.8.

In Figures 2.9 and 2.10, we compare the closed-loop responses of xq  and x b for 
the multirate and single rate systems. Assuming that no constraints exist on the 
inputs, the reflux flow rate profiles for both systems are compared in Fig. 2.11.

From the figures, we see that the response of xq is more aggressive in the case 
of multirate control. For both values of n, the lifted multirate system reaches steady
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Figure 2.10: Comparison of closed-loop response o f xp  and xb  for mxdtirate and single 
rate systems (n =  5)
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Figure 2.11: Comparison of input profiles (reflux flow rate) for n =  2 and n =  5

state not later than the single-rate system. It should be noted that these are just 
figurative comparisons. It is inappropriate here, however, to decide on the better 
strategy based on the closed-loop performances due to the lack of a common ground 
for comparison. A detailed theoretical treatment of the performance comparison 
problem is discussed later in Chapter 4.

So far, we have illustrated am elegant way of constructing a multirate controller 
using lifting techniques without the necessity of estimating the intersample outputs. 
Typically, in a distillation column, inferential control is carried out with the aid of tray 
temperatures as secondairy variables. Also, multirate control using lifting techniques 
as seen above appears to give a smoother and quicker response than single-rate control 
scheme. The composition plots shown in the figures are plots of continuous-time 
outputs. Strictly speaking, in practice only discrete-time outputs are available. In this 
situation, however, since the column is described by a set of differential and algebraic 
equations, continuous-time outputs can be computed using integration. The purpose 
of plotting the continuous-time outputs will prove to be of great value as shown 
in the following discussion. The multirate control strategy employed earlier for the 
column included the augmentation of the fast-rate plant with a fast-rate integrator 
to handle step-type disturbances. Now, moving a step backwards, let us consider the 
MR control problem for the original plant. As usual, we lift the plant and design an 
LQG controller yielding a dynamic lifted controller. The resulting closed-loop system 
(taking n =  2) for a step-type disturbance yields the composition plots as sketched 
in Figure 2.12.
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Figure 2.13: Slow sampled composition plots for MR system without an integrator in 
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Figure 2.14: Fast sampled, composition plots for MR system without an integrator in 
the loop (n =  2)

There are two important observations that can be made here. Firstly, as expected, 
due to the absence of an integrator, both the compositions have an offset. However, 
the second observation is interesting. Both the compositions at their steady states 
contain regular oscillations or intersample ripples. Therefore, they are not strictly at 
steady state. Now, let us observe their discrete-time counterparts shown in Figure 
2.13.

Not surprisingly, the discrete signals show no oscillations suggesting that the in
tersample ripples have a period equal to or an integer dividend of the slow sampling 
interval, nh. To verify this conjecture, assume that the outputs are sampled using a 
fictitious fast-rate sampler S f. The resulting outputs are plotted in Figure 2.14.

Figure 2.14 clearly shows that the fast-sampled outputs contain periodic oscil
lations. It can be shown that the period of these oscillations is n, the ratio of the 
output/input sampling intervals.

This interesting phenomenon has its roots in the inverse lifting step connecting 
the lifted moves (made by the lifted controller) and the fast-rate inputs to the plant. 
In the following chapter, we will discuss this phenomenon in detail - the root cause 
for such an occurrence and methods to eliminate such intersample ripples in lifted 
systems. These methods culminate in a set of constraints on the controller gains for 
stable plants. Also, it is shown that the presence of a fast-rate integrator aids in 
eliminating these ripples for step-type disturbances and reference signals. •

In summary, we have demonstrated an application of a simple and powerful tool
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to the multirate control of a commonly occurring chemical engineering system. The 
application gave birth to two topics that require a broader and more general scope of 
analysis - the issue of intersample ripples in the closed-loop outputs of lifted multirate 
systems (discussed in the next chapter), and the issue of the closed-loop performance 
comparison of multirate and single-rate systems (discussed in Chapter 4).
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Chapter 3

Ripple-Free Conditions for Lifted 
M ultirate Control Systems

Purpose: To present constraints that exist on the gains of the lifted controller to en
sure ripple-free conditions in multirate control systems. It is shown that the presence 
of a fast-rate integrator eliminates these ripples1.

3.1 Introduction
Intersample performance is of prime interest in sampled-data systems analysis, (see, 
e.g., Grasselli et al. (1995), Longman and Lo (1997), Arvanitis (1998)). Generalized 
sampled-data hold functions (GSHF) (Kabamba 1987) have been used by Arvanitis 
(1998) to improve intersample performance in sampled-data systems. The focus of 
this section is on the presence of intersample ripples in closed-loop outputs of multirate 
sampled-data systems. In this context, Grasselli et al. (1995) have presented studies 
on dead-beat tracking of outputs of closed-loop multirate systems while addressing 
the elimination of intersample ripples. Grasselli et al. (1995) arrived at a set of 
constraints on the multirate controller by transforming the multirate system into a 
periodic discrete-time system and imposing the condition of dead-beat tracking of 
continuous-time signals. They arrived at a set of constraints on the controller from a 
tracking point of view. However, this study is concerned with the analysis of sampled- 
data systems in the lifted framework and shows that intersample ripples can exist in 
the closed-loop outputs. Moreover, the problem of eliminating intersample ripples is 
tackled in this work from a more fundamental point of view and not only for tracking 
but also for the regulatory problem.

The main contribution of this chapter is to show that intersample ripples occur

lA version of this chapter has been accepted for publication in Automatica, October, 2001 issue
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due to the presence of inverse lifting and non-identical gains of the lifted system; 
and that the imposition of a set of constraints on the controller gains can eliminate 
these intersample ripples. Results are presented in this work with a primary focus on 
step-type setpoint and disturbance signals with the idea that these concepts can be 
extended to other class of reference signals. Furthermore, using the internal model 
principle (Franklin and Emami-Nacini 1986), for step-type reference signals it is shown 
that the augmentation of a fast-rate integrator with the plant aids in overcoming these 
ripples.

By means of theoretical analysis and simulation results, we first show below that 
intersample ripples can arise in the outputs of closed-loop multirate systems with 
lifted controllers. The fact that lifted systems have non-identical gains interlinked 
with inverse lifting is the cause for this phenomenon.

3.2 Analysis of Gains
Consider the multirate system shown in Figure 2.1, where it is assumed that the 
output <t> is sampled at a rate n (n £  Z +) times slower than the input v. G represents 
a continuous-time LTI plant, while S  and Hf represent the slow-rate sampler and 
fast-rate zero-order hold, respectively. Figure 2.1(a) can be converted to Figure 2.1 
by using the property L~lL =  I  and the identity property, S H /S f  =  S.  As a result of 
lifting, v is of dimension n and the lifted system (enclosed in the box) has n  transfer 
functions relating 4> to v. Equivalently, this can be written as,

<f> =  [ G l ,1 G l ,2 ••• Gx,n ] V  (3.1)

where Gl =  S H jS jG H fL ~ l is the lifted system. The following result states that the 
gains of these n transfer functions are not necessarily identical.

Proposition 1 Consider a SISO multirate system SGHr where G represents a con
tinuous time stable LTI system and the output/input sampling ratio is a positive inte
ger n. Then, the gains of the n transfer functions of the lifted system G l = SG H /L~l 
are, in general, not identical.

Proof. Let G  =  (A ,B ,C ,D ) and Gj = (A f,B j,C ,D ) represent the continuous
time and fast-rate discretized state-space models respectively. Using system matrix 
representations, the transfer function for the lifted system G l  can be obtained in the 
A (A =  z_1) domain as

m -iD . A nr- 2Bf  ••• B }
0 ••• 0

r A nt \A nf- xB}
9l{X)  =  [ C  I ~D

(3.2)
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Then, the n transfer functions can be written as

9 l .  i(A) = A C { I - X A ns) - lAnf l B f  (3.3)

9lM  =  A C { I - \A '} ) - 1A'}-2B f  (3.4)

9lM )  =  A C { I - \ A nf ) - lB f  (3.5)

where it is assumed that D = 0 (for a strictly causal system).
Clearly, the steady-state gains are not identical, or equivalently, in general

fft.i(l) i1 <7i,2(l) #  • • • #  <k„(l) (3.6)

Furthermore, as anticipated, the sum of the lifted gains is identical to the gain of 
the fast-rate discretized system, G/. The above result is shown for SISO multirate 
systems with integer output/input sampling ratios. A general result for MIMO sys
tems is shown later. Consequences of non-identical gains in the closed-loop context 
will be discussed in section 3.3. For SISO and MIMO multirate systems with rational 
output/input sampling ratios, the observation is slightly different as shown below.

Here, we introduce the notation St, and Ha, denoting the output sampler and 
input zero-order hold with time periods Tf, and Ta respectively. Let the sampling 
ratio Tb/Ta in its simplest form be represented as n/m . The lifted system could then 
be written as,

Gl =  LmSbGHaLn 1

=  L mSbHhShGHhS hHaL~l

= {LmSbHhL ^ n){LmnGhL ^ n){LmnS hHaL - x) (3.7)

where Sh and Hh are the sampler and zero-order hold a t the fast sampling rate h 
and Gh with state-space model interval h. The fast sampling rate h is essentially the 
greatest common divisor of Ta and %. Lmn is the lifting operator of order m  x n, 
the least common multiple of m  and n. State-space approaches and system matrix 
representations can be used to arrive at the transfer function for Gf,.

For example, choosing % =  3/i and Ta =  2h, Gl can be represented as,

r (A l + A*k)Bh (A\ + A \)B h (Afc +  / )B fc 1
& (*) = c D 0 0

1 0 it C(A2h + Ah)Bh CBh + D 0
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Then, the row sum of the gains relating each of the lifted outputs to the lifted signals 
are identical. The proof is as follows:

fc= 1
=  D + C(I - A h)~l Bh (3-9)

92,l(l) + 92,2(1) +  92,3(1) =  C{A~h + Ah 4- I)B h +  D +

fc=l
D + C{I — A l) ( I  -  Ah) - lB h + C A \(I -  Ah)- i Bi 
D + C(I - A h) ' 1 Bh

k
(3 .1 0 )

In essence, the gains are identical and equal to the gain of the discretized system q  
A more general form of this result is stated below without proof.

P roposition  2 Consider a SISO multirate system SbGHa with rational output / inpUi 
sampling ratio Tb/Ta where G is a continuous-time LTI system. The lifted sysiem q l 
has (n x m) transfer functions where n /m  is the least reduced form of T b /f Then 
the transfer function,

9l W  =

tfi(A) $ u ( A) ‘ ' 9tn(A)
h i W 92,2 (X) ' • 92,n W

9m,lM 9m,2(A) • ■ & (  A)

(3.11)

satisfies the property that sums of the gains in each row are identical. In o t\er WOrds

9 u ( l )  +  • ■ • +  5 f ,n ( l )  =  92,1 (1 ) ------- +  §2t„ (1 )  -  • • • -  £ m ,l ( l )  H +  9m ,n(l) (3.12)

Next, the case of MIMO systems with integer and rational sampling ratios is 
considered. For the sake of convenience, a modified version of conventional lifting 
of multivariable signals is employed in this work and defined as follows. Consider a 
multivariable signal

z(fc) =  [ ui(fc) u2(h) ••• Umik) ]T

Then,
Lwz  =  z  =  [ Mi «2  • • • «m f  

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is the resulting lifted signal of order w  due to z ,  where

Mi =  [ u (*) IT

is the lifted signal of order w due to ut.
Analysis of MIMO systems in the multirate framework is carried out by using the 

results for SISO systems.

P roposition  3 Consider a MIMO multirate system SGH/  =  S H f S f G H / L ~ l L where 
G represents a p-input, q-output, continuous-time stable LTI system. The lifted sys
tem has (q x np) transfer functions. Then, the gains of every n of these p transfer 
functions of the lifted system G l are, in general, not identical. In other words, if

4>i
<p2

<Pl qxl

9 il  ••• ............ 5(1) o(1) 1 9v. 1 9p,n
9u  ••• gun ............ 5(*> . . .9v.l 9p,n

: : :

_ 9 u  • • • 9i,l ............ -(?) . . .9p, 1 9p,n qxnp

1
Un

J

(3.13)

npxl

represents the input-output relation of the lifted system, then every block as partitioned 
above obeys the result in Proposition 1. In equation (3.13), gfi relates the j th output 
to the Ith lifted component of the ith input signal.

P roposition  4 Consider a MIMO multirate system SbGHa with rational output/input 
sampling ratio Tb/Ta where G is a continuous-time LTI system. The lifted system, 
G l has (np x mq) transfer functions where n /m  is the least reduced form ofTb/Ta, 
for a p-input, q-output system G. I f the input-output relation of the lifted system is 
represented by (mq x np) transfer functions,

'  * ? > ' r  a (hl) ■91,1 . o(U)ffi.n ............ 0(u) ••• 9P,i

1

3i,i
-(l,m)
5l,n .............. a^'m} . . .9p.i

i(l.m)9p,n

: =
: : : ; ; ; :

*<•» 01,1 9\tn ............ 9p, l 9p,n

mqxl 1

..
1 9l,n ............ 9p,\ 9p,n mqxnp > >

(3.14)

npxl

then, each block as partitioned above obeys the result in Proposition 2.

The significance of each result under closed-loop conditions is elucidated below.
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Figure 3.1: Typical closed-loop multirate system (Tb/Ta =  n (n €  Z+))

3.3 Constraints on Controller Gains
Multirate controller design is a challenging problem for several reasons. Existing tech
niques assume that all the signals are available at a single rate. Hence, conventional 
methods of discretizing continuous-time models cannot be applied to obtain multirate 
discrete models. Moreover, the discrete multirate controller has to be periodic un
like the discrete single-rate controller. Lifting techniques bridge the gap between the 
multirate and single-rate systems by means of a linear transformation. The resulting 
lifted system is available at a  single rate and hence existing techniques can be applied 
to design a lifted controller. However, causality constraints arise (Meyer 1990, Ravi 
et al. 1990, Chen and Qiu 1994) on the resulting controller which make the design 
problem relatively more complex.

In addition to the causality constraints, it is shown here as a result of the above 
analysis and inverse lifting that further constraints arise on the controller gains in 
order to avoid intersample ripples in the closed-loop outputs. To begin with, the 
simplest case of a SISO system with integer output/input sampling ratio is considered.

SISO system s with integer output/input sam pling ratio

Lifting a SISO system with Tb/Ta =  n, an integer, results in a multi-input, single
output (MISO) system with n transfer functions. The lifted controller thus designed 
yields an n-dimensional lifted input signal based on the slow-sampled output. For 
implementation purposes, the n-dimensional lifted signal would have to be inverse 
lifted to get the fast-rate signal. It is known that at steady-state, for a  unit step 
change in the reference signal, the control signal is proportional to the pseudo-inverse
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of the gains of the system. Similarly for a multirate system as shown in Figure 3.1, 
if A r(t) = 1, then at steady-state, Cl would yield a lifted signal u, whose values 
are proportional to the pseudo-inverses of the gains of the lifted system. In Figure
3.1, r  is the reference signal and Cl is the lifted controller designed for the system 
SbGHaL~l.

Recall the observation in Proposition 1 that the gains of the n transfer functions 
are not identical, in general. Therefore, if the steady-state lifted signal

û (k) = [ tq u2 ... u„ ]T

then inverse lifting results in the steady-state fast-rate signal

ufs =  {u1,u 2,--- ,un,ui,U 2 , - ■ ■ ,un,---}  (3.15)

which essentially implies that the system is truly not at steady-state. From equation 
(3.15), it is evident that the input signal is periodic with a period Tb/T a = n. Hence, 
the closed-loop fast-rate output is oscillator}' as well. However, the slow-rate output 
would not exhibit any oscillatory behaviour.

In order to eliminate these ripples in the output, certain constraints arise on the 
controller gains such that the fast-rate input is truly at steady-state. One obvious 
condition is to require that all the n components of the steady-state lifted input share 
identical values, which leads to the following theorem.

Proposition 5 Consider a stable closed-loop system comprising the multirate system 
SbGHa and the lifted controller C l designed for the corresponding lifted system. I f  G 
is strictly stable and Tb/T a =  n, a positive integer, then the gains of the n transfer 
functions arising from C l need to be identical in order to ensure that there are no 
intersample ripples in the closed-loop output. Equivalently, if

cL(A) = [cf(A) 4 P 0  ••• (316)

then the following condition is required to ensure that no intersample ripples are 
present in the closed-loop output,

cf(l) =  c£(l) = . . - = c j ( l )  (3.17)

Proof. For the closed-loop system, the relation between the closed-loop input u* 
and the error e< can be written as,

u,(A) = cf(A)e(A) = --------------  r(A) (3.18)

1 + A)
»=1
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For set-point changes,
r(A )=  1

1 -A
If G is stable, the lifted system has finite gains and using the final value theorem, it 
is straightforward to show that

tf ( l)  =  « j(l)  =  •■• =  *£(!)

is necessary for all u ,’s to be equal.
If cf has an integrator, then a similar condition holds. In such a case, the controller 

can be written as,

cf(X) =  S H  (3.19)

where it is assumed that cf( 1) is finite. Substituting equation (3.19) in the closed- 
loop equation (3.18) for cf(A) and using the final value theorem yields the following 
result

cf(l) =  £f(l) = - •= < *(!)

In Proposition 5, it is shown that for a stable SISO system, even the presence 
of controllers with infinite gains does not necessarily eliminate intersample ripples in 
the output for step type reference signals.

However, a discrete integrator at the input sampling rate Ta, present in the plant 
as shown in Figure 3.12 can ensure a steady output at the fast rate. The following 
result is stated in this context.

P ro p o sitio n  6 Consider a stable closed-loop system comprising the multirate system 
SbGHa and the lifted controller C l designed for the corresponding lifted system Gl- 
Assume that G is strictly stable and Tb/Ta = n, a positive integer. I f  Ga, the fast-rate 
discretized system at the rate Ta, is augmented with the discrete integrator G ia at the 
rate Ta, or equivalently, G l with the lifted integrator Gl i  =  LnGiaL~l, then for step 
type reference signals, there are no intersample ripples in the steady-state output.

Proof. Augmenting G l with the lifted integrator G li is equivalent to lifting the 
system obtained by augmenting the fast-rate plant Ga = SaGHa with the fast-rate 
discrete integrator G/a. Firstly, since Tb/Ta =  n, a  positive integer, it is easy to note 
that

Gl =  SbGHaL~l = SbH aSaGHaL ~ l =  SbHaGaL~l
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GlGu  =  SbHaGaL ' lLnG iaL ll = SbHaGaG[aL~l = SbHaGuL~l

where Gu is the augmented state-space model of Ga with Gia and the identity property 
of lifting and inverse lifting is utilized.

Denote the poles of the fast-rate discretized plant Ga by Pi,p2 , • • • , pm (need not 
be distinct). With the augmentation of an integrator, there is an additional pole 
introduced to Ga at A =  1. Thus the augmented plant has poles pi,P 2 , - "  ,Pm, 1- 
From earlier discussions, it can be recalled that lifting preserves the order of the 
system and that the poles of the lifted system would be raised individually by a 
power n. Thus the resulting lifted system has poles p", p.", - • ■ ,p ^ ; 1 implying infinite 
gain for Gl -
For step-type reference signals,

With the augmentation of a fast-rate integrator on the plant side, the signals after 
inverse lifting would be Au* given by the closed-loop expression

Since Gli has infinite gains, using the final-value theorem it can be observed 
that the steady state error goes to zero at the sampling instants. This means that 
Aui(l) =  cf (l)e(l) =  0, where Aui is the input to the augmented plant G u. Thus, 
the fast-rate inputs to the plant are constant at steady-state. With a zero-order hold, 
the outputs should be steady.

■

The above argument shows that for set-point tracking of step type reference signals 
and plants with finite gains (Type 0), the controller gains have to be the same in order 
to avoid intersample oscillations. For plants with infinite gains i.e., the presence of 
an integrator in the plant, there is no restriction on the controller gains. Simulation 
and experimental results are illustrated below.

Experimental and simulation results

The simulated system is a second-order system

Auj(A) =  c‘ (A)e(A) = ---------------  >-(A)

i + ' w

(3.20)

i= l

(10s+l)(25s+l) (3.21)

with sampling periods Tb = 5 and Ta = 1 sec. Therefore, n =  Tb/T a =  5.
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Figure 3.2: Outputs of the closed-loop system with identical & non-identical controller 
gains - set point tracking (n =  5)

The lifted system has 5 transfer functions. A lifted controller is designed using 
LQG techniques and a unit step change is given in the reference signal. The continuous 
output profile for the closed-loop system for both cases of identical (top) and non
identical (bottom) controller gains are shown in Figure 3.2. In the latter case, the 
output clearly contains ripples whereas in the former case, the output is ripple-free. 
Identical controller gains during simulation are ensured by incorporating a linear 
matrix gain element whose function is to average the outputs of the lifted controller.

The unit step change is given at t = 50 and Figure 3.2 is shown for later times. 
Figure 3.3 shows how inverse lifting introduces oscillations in the inputs. The lifted 
signal is the output of the lifted controller. The circled points on the multivariable 
lifted signal are the values at the consecutive instants for the inverse lifted signal. 
Thus, different steadv-states introduce oscillations in the fast-rate input signal due 
to inverse lifting. Input profiles for both the cases can be seen in Figure 3.4.

In view of the results discussed in Propositions 5 and 6, experimental results of a 
multirate level control problem on the tank setup shown in Figure 3.5 are presented. 
For illustration purposes, the level is sampled every 9 seconds while the inlet valve 
moves are made every 3 seconds. Cl represents the lifted controller yielding the lifted 
input moves based on the slow-sampled output. The resulting lifted signal is inverse 
lifted giving a fast-rate signal which passes through a zero-order fast-rate hold (with 
a period of 3 seconds).

A proportional controller serves to illustrate the main result of interest. First, we
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Figure 3.3: Inverse lifting of the lifted controller output signal introduces oscillations 
in the inputs (n =  5)
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Figure 3.4: Inputs to the plant for the closed-loop system with non-identical and 
identical controller gains - set point tracking (n = 5)
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Tank

-1

n =  T jT h = 9 /3  =  3

Figure 3.5: Experimental Tank setup

consider a lifted proportional controller with n =  3 different gains. The open-loop 
tank is close to an integrator (unstable). Hence, in order to satisfy the assumptions 
in Propositions 5 and 6, the tank is stabilized by means of proportional feedback (not 
shown in the figure). Closed-loop experiments are carried out on the stabilized tank.

The fast-rate closed-loop output (sampled even' 1 second) and the slow-rate 
closed-loop output are shown at the top in Figure 3.6. Observe the intersample 
ripples in the fast-rate output (to the left) while the slow-sampled output is fairly 
flat (to the right). Presence of minor measurement and process disturbances can be 
seen in the slow-sampled output. At the bottom are shown the corresponding outputs 
when the controller gains are identical. In this case, the fast-rate output is ripple free. 
Thus, experimental results confirm the theoretical results discussed in Proposition 5. 
It might be misleading to mistake the ripples as noise in the fast-rate output at the 
top. However, there is hardly any noise as seen in the measurements as observed in 
the fast-rate output at the bottom.

Figure 3.7 shows the results discussed in Proposition 6. The closed-loop experi
ment is carried out by augmenting the lifted system with the lifted integrator. Results 
are shown at the top in Figure 3.7. The plot to the left represents the fast-rate output 
while the plot to the right shows the slow-rate output. The fast-rate output is ripple 
free as expected. The output signals at the bottom are obtained when the multirate 
control strategy is implemented on the unstable tank. For this purpose, the tank was 
not stabilized prior to carrying out the closed-loop experiment. In this case as well, 
the fast-rate output is ripple free.

Figure 3.8 shows the output and input profiles for the discretized plant augmented 
with a fast-rate integrator. Observe that the output tracks the step signal with no

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



OMaftntcoflftoNargrins Otffeftrt coMroiir grine

0 100 200 300 400 500
Time

totntfctf cofltreHf

furtftm

0 100 200 300 400 500
Time

idinHcl controiaf peine

0 100 200 300 400 500
Time

0 100 200 300 400 500
Time

Figure 3.6: Experimental results - multirate level control: (solid) output, (dashed) 
setpoint

WM M-mt Men* Mentor Witfi iM t-nie d te fv n  iiitoprtor

10

I_  83
e
s 6

4

2
100 200 300 400 5000

Tim*

UMtttooMitORfcgfitor)

I
I
8I
SIk

too

10

i s
I
ce 6

4

2
0 100 200 300 <00 500

Tme

Unstable plant (integrator)

10

1 8 0
? 6
Ia

4

2
0 100 200 300 400 500

Time

Figure 3.7: Experimental results - multirate level control: (solid) output, (dashed) 
setpoint

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



02
ISO 200 250 300

Tint
350 500100 400 450

300 350 500ISO 200 400100

Figure 3.8: Output and input profiles for set-point tracking in a plant augmented with 
an integrator - set point tracking (n  =  5)

oscillations.

SISO system s w ith  ra tiona l o u tp u t/ in p u t sampling ra tio

Typically, the output/input sampling ratio is a  rational number rather than an inte
ger. In this section, expressions for controller constraints are given for the case when 
Th/Ta is rational.

Let the sampling ratio 7&/Ta in its simplest form be represented as n /m . The 
lifted system, then, would have (m x n) transfer functions. The lifted controller 
would have (n x m) transfer functions relating the lifted input u to the lifted error
u. The following theorem states that the sum of gains of the lifted controller in each 
row should be identical.

P roposition 7 Consider a stable closed-loop system comprising the multirate system 
SbGHa and the lifted controller C l designed for the lifted system LnSbGHaL ^ f , where 
m /n  is the simplest form of the output/input sampling ratio Tb/Ta. If the controller 
matrix is represented by

cL{A) =
cf.lW  cf,2(^)

(3.22)
_ c£,i(A) c£,2(a ) • • • c£m(A) _ 

then the follouring condition is required to ensure intersample ripple-free output for
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the the closed-loop,

cf.iC1) +  £1,2( 1) "! b Ci,m( l)  =  • • • =  c ^ i(l)  -b c ^ (  1) H 1- c £ m(l)(3 .23)

Proof. Proof of this result is similar to that for Proposition 5 with an additional 
imposition that the components of the lifted input have to be identical at the output 
sampling rate Tb.

Defining P  =  GlCl and Q =  ( / +  P)~l , the closed-loop transfer function can be 
written as

=  ( /  +  P )~ 1Pr(A) (3.24)

<f>iW
<fo(A)

=  ( / - Q )

' n (A ) ' 
r2(A)

(3.25)

_ 0m(A) _ _ I'm (A) _

At steady state, it requires that

(3.26)

Using the final value theorem, for step-type reference signals, the above condition 
implies that,

<?l,l(l) +  91,2(1) +  • • • +  9l,m( l)  =  • • • =  9m,l(l) +  9m,2( 1) +  b 9m,m(l) (3.27)

The second condition for ripple-free output is similar to that in the proof of Proposi
tion 5, requiring that all the components of the lifted input signal be identical. The 
relation between u and r  can be written as,

u(A) =  C

u x( A)

_ u n{A) _

9u (A )  

9m, l(A )

9 l,m (A )

9m ,m (A )

(3.28)

n W

rm(A)

(3.29)

For ripple free outputs at steady state, the constraint on inputs can be written as

ui =  u2 =  • • • = u„ (3.30)

Applying the final-value theorem to equation (3.29) and using equations (3.27) and 
(3.30), it is easy to show that the following condition on the controller gains is required 
to ensure ripple-free outputs with step-type reference signals.

«?..(•) + • • • +  + • • • +  4,™(1) = ■ • ■ =  c‘ ,(l) +  • • ■ +  < „ (1 ) (3-31)
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Figure 3.9: Output (solid) of the closed-loop system with identical & unidentical sums 
of controller gains - set point (dashdot) tracking; rational sampling ratio (n /m  =  5/2)

Proposition 7 is corroborated by means of simulation on the system given in equa
tion (3.21). The sampling ratio n /m  is set to 5/2. For illustration purposes, a pro
portional controller is chosen for the lifted controller. Note that causality constraints 
exist on the controller. Causality constraints essentially imply that the D matrix 
in the state-space model of the lifted controller has to be block lower-triangular to 
ensure a causal controller. Keeping this in mind, the controllers with identical and 
non-identical sums of gains are chosen as

cL(A) =

' 1.6 0 ' 1.6 0
1.6 0 0.8 0
1.6 0 ; cl(A) = 1.6 0
0.4 1.2 0.2 1.6
0.6 1.0 1 ►—4 O 2.0

(3.32)

Observe that in the case of identical sums of gains of the controller, at the top in 
Figure 3.9, the continuous-time output is ripple free. In contrast to this, the output 
shown in the bottom contains periodic oscillations when the condition in Proposition 
7 is not satisfied.
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Figure 3.10: Output (solid) of the closed-loop MIMO (2 x 2) system with identical 
& non-identical controller gains - setpoint (dashdot) tracking; integer sampling ratio 
(n =  5)

MIMO system s w ith  integer output/input sampling ratio

For MIMO systems with integer sampling ratios, the constraints are similar to those 
for SISO systems. It is assumed here that all the inputs and outputs are sampled at 
a uniform rate. The following theorem gives the constraints on the lifted controller 
for MIMO systems.

P roposition  8 Consider a stable closed-loop system comprising the multirate system 
SbGHa and the lifted controller C l for the corresponding lifted system SbGHaL~l , 
where n = Tb/Ta, the output/input sampling ratio is a positive integer and G is a 
MIMO continuous-time LTI system. The lifted system has (np x q) transfer functions 
i f  G is a p-input, q-output system. If Cl relates the lifted input to the error as,

•  «p> ■ '  32(A) 3J(A) 3 2 (A ) '

t i n * 32(A) 31(A) ci,g( A)
el

;
=

:

* e3

JP)u l 33(A) cK(A)
.  e9

. « s ° . n p x l . 33(A) 3 1 ( a) n p x g

(3.33)

qx 1
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Figure 3.11: Output (solid) of the closed-loop MIMO (2 x 2) system with identical & 
non-identical sums of controller gains - set point (dashdot) tracking; integer sampling 
ratio (n /m  =  3/2)

then, the gains of the controller transfer functions as partitioned above should be 
identical within each partition to guarantee ripple-free outputs for tracking step-type 
reference signals.

Proof. Proof of this theorem makes use of the result for SISO systems with integer 
sampling ratio. In equation (3.33), c)fc(A) represents the controller transfer function 
relating the j th component of the ith lifted input to the kth error signal.

The partitions in the transfer function matrix in equation (3.33) represent the 
controller transfer function when the MIMO lifted system is broken down into MISO 
lifted systems. The idea is that each block could be viewed as a matrix of controllers 
for the lifted system formed out of a SISO system with every input-output pair. 
For example, the first block represents the controller for the lifted system obtained 
via lifting a SISO system comprised of the input-output pair {ui,<t>i) with integer 
sampling ratio.

Therefore, Proposition 5 holds good for each such partitioned block. Consequently, 
for step-type reference signals, the following condition ensures ripple-free output
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The above result is illustrated by application to a  simulated multivariable system 
given below:

r _ j  l _

G =
3 5+ 1  4 5 + 1

3 4
(3.35)

_ 5s + 1 6s +  1 .

In this case, the causality constraints do not arise because of the nature of the 
sampling ratio. The controller gains for the identical and non-identical cases are 
chosen as

cL(A) =

1.0 0.2 ' '  1.0 0.2 ‘
1.0 0.2

; cL(A) =
0.2 1.0

0.6 0.4 0.6 0.4
0.6 ■

o
0.4 0.6

(3.36)

Figure 3.10 shows the continuous-time outputs of the closed-loop system when G 
is a MIMO 2 x 2  system given in equation (3.35). The plot in the top depicts the 
output for the case when the condition in Proposition 8 is satisfied while the plot in 
the bottom shows the case of non-identical controller gains.

M IM O  system s w ith  rational b u t uniform  o u tp u t/ in p u t sam pling ratios

In this section, the case of MIMO systems with rational but uniform output/input 
sampling ratios is considered, i.e., all inputs are sampled at one common rate and 
all outputs are sampled at a uniform rate that is different from the input sampling 
rate. The result with respect to intersample behaviour is obtained by partitioning the 
controller transfer function matrix into blocks such that Proposition 7 can be applied 
suitably to get the following result.

P roposition  9 Consider a stable closed-loop system. comprising the multirate system 
SbGHa and the lifted controller Cl for the corresponding lifted system LmSbGHaL ~ l , 
where n /m  is the simplest reduced form ofTb/Ta, and G is a MIMO continuous-time 
LTI system. Assuming that the inputs and outputs are uniformly sampled, the lifted 
system has (np x mq) transfer functions if G is a p-input, q-output system. I f C l
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relates the lifted input to the lifted error as.

r t1) iui ' ^ ( A ) « ’(A) ..............
'

ui11 ^ ( A ) & ( \ ) .............................
■ ■ ■

=
;

; ; :  :  :

.................. -

.  «"?) . cStf(A) .................. % f ( \ )  ■ ■ ■

(3.37)

then the sum of controller gains within each block need to be identical to ensure no 
intersample ripples in the closed-loop output for step-type reference signals.

Proof. In equation (3.37), c^(A ) represents the controller transfer function 
relating the j th component of the ith lifted input to the k th component of the Ith error 
signal.

Following a similar argument as in Proposition 8, each block in the controller 
transfer function matrix of equation (3.37) represents the controller matrix for the 
lifted system obtained by every input-output pair. For example, the first block rep
resents the matrix of controllers for the lifted system obtained from the SISO system 

with rational sampling ratio n/m . With this view, the following condition 
needs to hold good for ripple-free output,

^ ’d )  +  • • • +  a )  =  + • • - +  =  • • ■ =  ^ ( i )  +  • • • +  4 s ? ( i )
V a  =  l, -- ,p; /? =  !,••• ,q

(3.38)

Figure 3.11 shows the continuous-time outputs of the closed-loop system when G 
is the continuous-time 2 x 2  MIMO system given in equation (3.35). The sampling 
ratio n /m  is set to 3/2. The controllers for this case are proportional controllers 
taking into account the causality constraint. It is worthwhile noting here that the 
controllers have been chosen merely to illustrate the result in Proposition 9. Extra 
tuning effort could easily be devoted to improve the performance. However, this is 
beyond the scope of this chapter. Optimal control design requires use of advanced
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control strategies which consider the gain and causality constraints on the controller 
in an algebraic form. For the present, the controllers are chosen as

cl(A) =  0.2 x

0 .5 0 0 .7 0 ' 0 .5 0 0 .7 0
0 .5 0 0 .7 0 0 .5 0 0 .7 0
0 .3 0.2 0 .4 0 .3

cjr(A) =  0 .2  x
0 .1 0 .7 0.8 0 .8

0 .6 0 0 .5 0 0 .6 0 0.5 0
0 .6 0 0 .5 0 0 .6 0 0 .5 0
0 .3 0.3 0 .3 0 .2 0 .6 0 .3 0 .7 0 .2

(3.39)

Similar observations are made in this case as in the SISO illustrations. When the 
controller gains do not satisfy the constraints specified in Proposition 9, the output 
exhibits oscillatory behaviour at steady-state.

The above analysis is now extended by a further result on MIMO systems when 
the inputs and outputs have distinct sampling rates, i.e., each of the signals has a 
sampling channel with distinct sampling rates and the ratios of all the output/input 
sampling intervals are rational numbers. This is the most general result in the present 
study. All of the earlier results are special cases of this result. From a pedagogical 
point of view, it makes sense to consider the simpler cases at first. The main result 
is presented as follows.

MIMO systems w ith  distinct sampling intervals

Consider a p-input, g-output continuous-time MIMO system G. Each of the p input 
channel has the respective sampling interval nnh (i =  1, • • • ,p), while each of the q 
outputs has the respective sampling interval rijh (j =  l ,--- ,p). Using the results 
obtained earlier, the following constraints on the controller need to be satisfied for 
the multirate system to have desired intersample behaviour. Consider the following 
new terms for the ensuing discussion.

The MIMO multirate sampler and zero-order hold, Sb and Ha are defined respec
tively as:

Sb =

where 5nj/, and Hmjh have sampling intervals rijh and m,7i respectively.
Let I represent the L.C.M. of all rtj & m* and the integers rT, =  l/rij, j  = 1, • • • ,q\ m* 
1/m.i, i =  1, • • • ,p represent the conjugates of the sampling rates with respect to I.

Sn i

H a =
'  Hmi

(3 .40)

5 « « . Hmp
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Further, define

L b = i : ‘ =

r ~ l"mi

£n, _ L *1,

(3.41)

The lifted system Gl is defined as Gl — LbSbHhGhShHaLa 1 where Gh is the dis
cretized model of G at the sampling interval h. Sh and Hh are the sampler and 
zero-order hold at the rate h, respectively.

Theorem  1 Consider a stable closed-loop system comprising of the multirate system 
S bGHa and a lifted controller C l designed for the corresponding lifted system Gl- If 
C l  relates the lifted input u to the lifted error e as,

c S P,1)(A) ••• c ^ ’”",)(A) .

and Gl is stable, then the closed-loop output is ripple-free if  and only i f  the sum of 
controller gains within each block are identical.

Proof. In equation (3.42), the controllers within each partition follow the same 
definitions as in equation (3.37).

Mathematically, the constraint on the controller gains can be expressed as

c<y”a ) + • • • + 4 3 ? d )  = 4 r a > + - + 4 5 ? « --- - - 4 f ( « + • • • + 4SU»)

(3.43)

Using a similar argument as in Proposition 9, it can be easily shown that equation 
(3.43) gives the required constraint on the controller gains for ripple-free outputs 
when the reference signal is a  step signal. ■

Although we have focused on the practical case of fast-control slow-sampled sys
tem, the general result in (3.43) can be used to arrive at constraints on the controller
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for the slow-control fast-sampling case. The following remark states this result for 
step-type reference signals.

R em ark  1 In the case of slow-control fast-sampling, the gains of the lifted system are 
identical when the sampling ratio is an integer. Accordingly, there are no constraints 
on the controller and the output is guaranteed to be ripple-free. When the sampling 
ratio is rational, results similar to the fast-control, slow-sampling case can be derived 
by treating the resulting control problem as a special case o f (3.42).

R em ark  2 The constraints on the controller gains developed here are applicable to all 
class of stable plants. Therefore, it is important to note that the constraints are robust 
with respect to change in model parameters. The robustness result implies that even 
with the change in model parameters or process operating conditions, it is essential 
that the lifted controller satisfy the constraints to ensure ripple-free outputs.

R em ark  3 As mentioned throughout this work, the results are valid for step-type 
reference signals only. In the case of non-step type reference signals, the results can 
be expected to be quite different and are not presented here. Secondly, all the results 
discussed so far have assumed a strictly stable continuous-time system G. However, 
the stability condition can be relaxed and the above results can be extended to unstable 
G as well with the sufficient condition of closed-loop stability.

R em ark 4 Extensions to unstable plants hold good except for integrating type in
stabilities. In the case of integrating type instabilities, no constraints exist on the 
controller as discussed below. Secondly, in all of the above cases, oscillations in the 
closed-loop output can be eliminated by filtering the inverse lifted input signal. The 
presence of a moving average filter thus, could aid in ripple-free output. The presence 
of an integrator (a moving average filter of infinite order) not only eliminates the 
ripples, but also ensures asymptotic step tracking. The setup for such a configura
tion when Tb/Ta = n, a positive integer, is shown in Figure 3.12. Gja represents the 
discrete integrator at the input sampling rate, Ta. The following result for a general 
multirate MIMO system with rational output/input sampling ratio, is given without 
proof.

Theorem  2 Consider a multirate system SbGHa. G is a stable continuous-time LTI 
system and the output/input sampling ratio Tb/Ta = n /m , where n and m  have no 
factors in common. Augment the corresponding lifted system, L mSbGHaL ~l with the 
lifted integrator LnG iaL~x, where G ia is the discrete integrator at the input sampling
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Figure 3.12: Closed-loop multirate system with augmented discrete integrator (Tb/Ta =  
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rate, Ta. Then, a controller designed for this augmented system will ensure asymptotic 
step-tracking and ripple free outputs.

The above result implies that there are no constraints on the controller gains if the 
lifted controller is designed for the augmented system described above. In practice, 
the implementation is done by actually inserting a lifted integrator in the closed-loop. 
When m =  1, Theorem 2 reduces to Proposition 6. Further implications indicate 
that if G contains an integrator (integrating type instabilities), then the constraints 
discussed in this work are no longer needed for ripple-free outputs.

Figure 3.13 shows the outputs of the closed-loop system when G is the (2 x 2) 
MIMO continuous-time LTI system in equation (3.35). The sampling ratio n /m  is 
set to 3/2 and the lifted plant is augmented with a lifted integrator of appropriate 
order. A proportional controller not satisfying Proposition 9 is chosen for the purpose. 
Note that this controller is not an optimal one for the augmented system, but chosen 
for illustration purposes only. The presence of the lifted integrator according to 
Theorem 2 ensures ripple-free outputs and asymptotic tracking of unit step changes 
in the reference signals, evident in Figure 3.13.

A remark is in order here for the class of ramp type reference signals. For a discrete 
system with zero-order hold, the closed-loop system tracks the discrete ramp with 
the presence of a discrete double integrator in the closed loop. However, continuous 
tracking is not guaranteed unless the continuous plant is pre-compensated with a 
double integrator. Therefore, the mere presence of fast-rate double integrators set- 
point changes would not suffice to track the continuous output. It is necessary to 
pre-compensate the continuous plant with an integrator and then further incorporate 
a fast-rate discrete integrator to ensure continuous tracking and ripple-free output.
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Figure 3.13: Outputs (solid and dash) of the closed-loop MIMO (2x2) system when the 
lifted system is augmented with a lifted integrator - unit set point (dashdot) tracking; 
integer sampling ratio (n /m  =  3/2)

3.3.1 Intersample Behaviour in the Presence of Disturbances

Here, we discuss the intersample behaviour in the presence of disturbances, in partic
ular, additive type disturbances both at the output and input nodes. For disturbances 
at the output node (such as in Figure 3.1), it is equivalent to adding another external 
signal to the output. Therefore, similar results as discussed for step-type reference 
signals hold good in the case of step-type disturbances. The procedure merely in
corporates the disturbance d in the reference signal r. In other words, the same 
constraints are required on the controller gains in order to ensure ripple-free outputs 
in the presence of step-type disturbances.

In the case of additive type input disturbances, it is not equivalent to adding 
another external signal. However, we show here that the resulting constraints are the 
same as in all the previous cases.

Consider the multirate system with disturbances added at the input side, i.e., 
now the fast-rate input to the plant is (u/ + df) instead of u/. We are interested in 
observing the effect of step-type change in d/ on Uf. Let us consider the SISO, integer 
sampling ratio case first. From Figure 3.1, the closed-loop transfer function between
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u and df (not shown in the figure) can be written as (assuming r = 0)

u
1 + SGHf L - lCLdf  

CLSGHf L~l J

C iSG H f
(3.44)

— — t —  d
1 +  g lc l -

1 + S G H f L - lCL~ 
ClGl j

(3.46)

(3.45)

where G l and Cl have their usual meanings. Note that the system is assumed to be 
closed-loop stable.

Observe that the product Gid is a scalar which allows us to use a similar argument 
as in Proposition 5 for step-type changes in df. Using the final value theorem and 
a similar argument as in Proposition 5, at steady-state we note that the controller 
gains need to be identical to ensure ripple-free outputs. Additionally, it can be shown 
that the presence of a fast-rate integrator on the plant side can also eliminate ripples 
in the closed-loop output.

All the other results shown earlier for MIMO systems with rational and integer 
sampling ratios can be shown to hold good as well for this class of input disturbances. 
For MIMO systems, the disturbances have to be lifted accordingly in order to use these 
results.

Having arrived at the constraints, the next step which is of theoretical importance 
is parametrization of all such lifted controllers. The following section presents some 
ideas on parametrization of a class of lifted controller satisfying these constraints.

3.4 Parametrization o f Lifted Controllers
We have seen so far that the lifted controller has to satisfy certain gain constraints 
depending on the sampling ratio in order to ensure ripple-free outputs. This section is 
devoted to designing a lifted controller that satisfies such constraints. We parametrize 
all such controllers which stabilize the closed-loop system by means of parametrization 
techniques due to Youla et al. (1976) and Kucera (1972). Only stable plants are 
considered here, as the case of unstable plants is beyond the scope of the discussion. 
The design problem is formulated in the state-space domain and we make use of the 
generalized setup as shown in Figure 3.14. The parametrization technique is briefly 
explained as follows.

Consider the generalized setup as shown in Figure 3.14 where Gd is the generalized
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Figure 3.14: Generalized setup of a discrete-time control system

plant with

Ad B\d Bid
&(A) = C\d Aw F>nd

_  Cid Aw 0
(3.47)

and K  represents the controller. Signal £ represents the controlled signal while u  rep
resents the exogenous input comprising of reference signals, disturbances and sensor 
noise. Measurements from the plant are represented by y while the controller outputs 
are taken into account by u. Note that we have deviated from the earlier use of Gd 
to represent only an input-output discrete-time system.

Our objective is to parametrize, i.e., express the class of controllers K  as a  function 
of a  parameter q that achieve internal stability for G. This problem is equivalent to 
internally stabilizing G22 (the system from u to y) under the assumption that (Ad, Bid) 
is stabilizable and (C2<1, Ad) is detectable.

Choose matrices F  and L such that Ad+BidF  and Ad+LCid are stable. Then, all 
stabilizing controllers for G can be parametrized by a linear fractional transformation 
of some arbitrary but stable system, as stated by the following theorem.

T heorem  3 The set of all (FDLTI and causal) K ’s achieving internal stability in 
Figure 3.14 is parametrized by the formula

(3.48)

where

Ad +  BidF  +  LCid —L —Bid

II F 0 - I
—Cid I  0

(349)

The controller K  in equation (3.48) is called a linear fractional transformation (LFT) 
of Q, which is FDLTI, causal and stable. Such a controller is represented as the 
input-output transfer matrix of the block diagram
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Figure 3.15: Parametrization of controllers - LFT of Q

As a special case, if Q = 0, K  reduces to Jn  with the transfer matrix

Aj, +  B^dF +  LC/2d - L
0

(3.50)

which is simply an observer-based controller for <?22-
Here, we apply Theorem 3 to lifted systems. Assume that the lifted MR system 

has the generalized form shown in equation (3.47) replaced with the corresponding 
matrices. Signals £, u, y and u are then represented with their lifted counterparts C, 
u, y and u. Thus, replacing Gd by Gl and K  by the lifted controller Cl , the lifted 
controller Cl is parametrized by a parameter Q as given in Theorem 3. However, 
a distinction here follows from the discussion in the earlier section that the class of 
controllers is restricted to those satisfying the gain constraints. In order to allow 
this, we have to translate the constraints on the controller gains to constraints on the 
parameter Q, which forms the objective of the following discussion.

We consider the situation when the plant is stable. Therefore, we can choose 
L =  0, F = 0. Translation of controller constraints to the parameter Q with L, F  ^  0 
is a non-trivial problem and beyond the scope of discussion.

3.4.1 Stable Plants with L =  0, F  = 0

With the choice of L and F , J  simplifies to:

J =
0 - I
1 922

(3.51)

First, we consider the case of SISO system with integer sampling ratio. Then, 
from Proposition 5 we require that Cl satisfies the condition

(3.52)
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to ensure ripple-free output. Since Cl is an LFT of Q, we can write:

Cl  =  i'll +  i ' l2 ? ( / -  i'22?) 1J21 

= - q ( I  -  g n q ) '1 (3.53)

after substituting for j  from equation (3.51). The dimensions of g22 is (1 x n) while q 
is (n x 1). Therefore the matrix that has to be inversed is a scalar, say p. Denoting 
cLti( 1) =  c (a constant), we get

(3.54)

c

•

c = 92(1)

c . .

which leads to the constraint on Q:

9i(l) =  ®(1) = = m  =  -
P

(3.55)

Therefore, for a SISO MR system with integer sampling ratio, the class of lifted 
controllers are parametrized by Theorem 3 along with equation (3.55).

Next we consider the case of SISO systems with rational output/input sampling 
ratio n/m . Then £22 is of dimensions (m x n) and q has dimensions (n x m). For the 
sake of convenience, we choose n = 3 and m  =  2 and later extend it to the general 
case. Then equation (3.53) can be written as:

S’1Cl,2 ’ 9 i,i 91,2

^ .1 ^2,2 = 92,1 92,2

-  ^3,1 ^3,2 . _ 93,1 93,2 _

’ 9 i,i 91,2
= 92,1 92,2

1 1—• 93,2 _

1
A l

1 “
3

«=i 

1 “
i=l

3

-1

i= l

~ Z X ^ .2
i= l

1 - E& fe)

I x x , i 9 i , 2

(3.56)

where we have absorbed the determinant of the rightmost matrix in Ax,.
Now, recall the constraints on the controller gains from Proposition 7 to ensure 

ripple-free outputs:

cf,i(l) +  c f2(l) =  cjxfl) +  c£2( 1) =  0^(1) +  ^ 2(1)
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Imposing these conditions on equation (3.56) and making use of Proposition 2, it 
is easy to see that the constraints on the lifted controller directly translate to the 
constraints on the parameter Q as:

9i,i(l) +  91,2(1) =  92,i(l) +  92,2(1) =  93,i(l) +  93,2(1) (3.58)

Constraints on Q for the general n /m  case then easily follow from equation (3.58).
Without further discussion, from equations (3.55) and (3.58) it is clear that con

straints given on the lifted controller in the most general case in Theorem 1 can be 
directly deUvered to constraints on the parameter Q. In other words, for a stable 
MIMO MR system with Ni inputs and N0 outputs, the constraints:

’(i) +  • • • + ( i ) = i t f W +■ • ■ + =  • ■ • = + • • • +
V a  =  1, • • • , Ni ; 0  =  1, • • • , N0 V i =  nx, • • • , nNx ; j  = ■ ■ • , m No

9  € K H ^ D )  (3.59)

along with Theorem 3 parametrizes all controllers which ensure ripple-free outputs 
with L — 0, F  =  0.

In the above parametrization and the discussions, we have implicitly assumed that 
the lifted controllers are causal. However, as mentioned earlier, as a result of lifting, 
causality constraints have to be specially imposed during the design process. The 
following section discusses this issue in detail. The purpose of the next section is to 
provide the reader with an awareness of this crucial issue that arises during the design 
process. We do not present a solution to this problem as it is beyond the scope of 
the discussion and is in itself an active area of research.

3.5 Causality Constraints
Causality constraints come into picture during the controller design process. Their 
presence have attracted the attention of several researchers involved in the application 
of lifting techniques to resolve the MR control design problem (Al-Rahmani and 
Franklin 1992, Voulgaris and Bamieh 1993, Chen and Qiu 1994, Qiu and Chen 1995, 
Colaneri and Nicolao 1995, Shu and Chen 1996, Qiu and Tan 1998, Sagfors and 
Toivonen 1998). These constraints are seldom an exception in the course of design, 
except when the ratio of output/input sampling intervals is an integer (as explained 
below). The issue of causality translates to the imposition of a  special structure on 
the lifted controller. In particular, the feedthrough term should possess a block lower- 
triangular structure. Several methodologies have been proposed to impose this special 
structure on the controller.
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As the term suggests, these constraints are related to the causality of the controller, 
i.e., the structure of the controller has to obey the principle of causality explained 
as follows. Recall the example discussed in Section 2.2 involving an MR system 
with integer I/O  sampling ratio. Upon incorporating lifting and inverse lifting in the 
appropriate order, we obtain the lifted transfer function of the system G l -

9l W  = \ A1 A y lBf  A nf~2Bf  •• • B ,
c D 0 ' 0

(3.60)

relating the closed-loop output y and the lifted input u of dimension n.
The structure of the feedthrough term, i.e., the D matrix for the resulting lifted 

system in equation (3.60) indicates the relationship between the current output and 
the set of current and future inputs in the slow sampling interval. The D matrix 
suggests that the current input is not a function of the future inputs in that slow 
sample interval, which is in accordance with the causality principle. For instance, if 
n =  3, the lifted input is u(0) =  [ u(0) u(h) u(2h) }T corresponding to the output 
y(0), and u(0) =  [ u(3h) u(Ah) u(5h) ]r  (the superscript T  indicates transpose) 
corresponding to the output y(3h), and so on. Clearly, y(0) cannot depend on u(h) 
and u(2h). Similarly, y(3/i) cannot depend on u(4h) and u(5h). This is indicated 
by the zeros in the D  matrix in equation (3.60). Therefore, the model obeys the 
causality principle. Now, let us make a few observations on the structure of the D 
matrix of the lifted controller.

Since the lifted system is of dimensions (1 x n), the controller structure would have 
dimensions (n x 1), i.e., n  outputs and 1 input. Thus, the lifted controller computes 
the lifted process input based on the slow-sampled process output. Assume that n =  3 
still holds good. From the earlier discussion, this means that based on the output 
y(6/i), for instance, the lifted controller designs the moves [ u(6h) u(7h) u(8h) ]T, 
which is in accordance again with the causality principle (note that this is not strictly 
causal which is required for discrete systems). In short, the controller is capable 
of computing only the future inputs based on the current output. Therefore, the 
controller obeys the causality principle as well, thus obviating the imposition of any 
causality constraints.

However, now consider the case of rational sampling ratio. Assuming a SISO 
system with output and input sampling intervals as 3/i and 2h respectively, we can 
import the results from Section 2.2. The resulting lifted model is then:

r A * (A * + A i)B h (A l + A l)B h (Ah + I )B h
9lW  = c D 0 0

1 o 3-W C (A2h + Ah)Bh CBh + D 0 (3.61)
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Let us briefly discuss the impact of such a lifted transfer function. Both the outputs 
and inputs are lifted unlike the previous case of integer sampling ratio. Therefore, the 
lifted output y(0) =  [ y(0) y(3h) ]r , for instance, is related to the lifted input u(0) = 
[ u(0) u(2h) u(4h) ]T. The structure of the D  matrix in equation (3.61) reflects 
two points. The first being that y(0) is dependent on u(0) only and second, y(3/i) 
is dependent on u(0) and u(2h) only. Again, this is in accordance with the causality 
condition. Thus, the lifted model is causal. Now, consider the requirements of the D 
matrix structure for the resulting controller. The controller should yield the moves for 
u based on y. However, at the time instant t = 0, only y(0) is available but not y(3/i) 
whereas we need both these measurements to design u(0) = [ u(0) u(2h) u(4h) ]T. 
This is the causality constraint problem (note that this problem did not arise when 
the sampling ratio was an integer). In order to account for this problem, causality 
constraints are imposed on the controller during the design process. This is done as 
follows. If a special structure known as the block lower-triangular structure is imposed 
on the D matrix of the lifted controller, then the causality problem is overcome. For 
example, consider the same MR system as in equation (3.61). If the feedthrough term 
D of the controller has the structure:

Dn 0

Dlc = £>21 0

£>31 £>32

then, u(0) and u(2h) can be designed just based on y(0), while u(4h) makes use of 
both y(0) and y(3h), which is in line with the causality principle. The structure 
shown in equation (3.62) is termed as the block lower-triangular structure.

Another situation which can give rise to this problem is when either the inputs 
or the outputs (or both) are not uniformly sampled, however the sampling ratios are 
integers. For example, in a 2 x 2 MIMO system, if the inputs are uniformly sampled 
every 2 seconds, but the outputs are sampled every 2 and 4 seconds respectively, then 
one of the outputs has to be lifted along with the inputs. Then the controller needs 
the second component (in this case) of the lifted process output in order to design the 
lifted input moves. In fact, this is a more practical situation than the case of both 
inputs and outputs sampled uniformly but at different rates.

An optimal solution this problem is far from trivial and handicaps several exist
ing solutions to the optimal control problems. In order to arrive at these structures 
in an optimal sense, several researchers have employed different approaches. A new 
framework known as the nest algebra is proposed in (Chen and Qiu 1994, Qiu and 
Chen 1995) to tackle the optimal V-i problem with the causality constraint. Con
strained model-matching is employed by Voulgaris and Bamieh (1993) to solve the
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optimal H i problem with the causality constraint. In (Sagfors and Toivonen 1998), 
the authors achieve this structure by posing the design problem as an Tia, optimiza
tion problem with additional, nonstandard positive-definiteness constraints and a set 
of coupling conditions along with a set of algebraic Riccati equations. A direct state- 
space solution is provided to the H 2 problem by Qiu and Tan (1998) using continuous 
lifting techniques. The plus points of these methods are evident. They are optimal 
in nature, rich in theory and yield causal controllers. However, all the schemes are 
controller specific, meaning H 2 or Woo type controllers. Additionally, these are fairly 
advanced techniques and difficult to obtain insights. Therefore, from a control engi
neering point of view and a practical perspective, there is a strong need for a practical, 
simple and easy-to-understand solution to this problem.

One proposed direction is a two-step method. The first step consists of designing 
a non causal controller.by relaxing the causality constraint, and the second step of 
approximating this non-causal controller to a causal controller. This could possibly 
simplify the design procedure and yield a practically appealing method. However, if 
not optimal, one has to guarantee robustness in terms of stability and performance for 
the resulting controller. In order to do this, theoretical expressions are necessary to 
arrive at the loss of performance and analyze the stability of the resulting closed-loop 
system.

Another direction to this problem is a sequential predictor-corrector method which 
consists of designing a non-causal controller, but using a predicted value for the un
known process output until it is available. Upon availability, the remaining control 
moves can be updated. The advantages of this method is it is simple and provides 
valuable insights into the process and the predictive capabilities of the model. How
ever, it may yield a linear time-varying controller and as mentioned earlier, robustness 
analysis of stability and performance may become an intractable problem.

In order to evaluate the performance of the resulting controllers from the above 
schemes, one can compare the performance with the performance of the corresponding 
lifted system for which the non-causal controller has been designed. In this manner, 
it is possible to get a measure of the loss of performance.

3.6 Summary
Lifting techniques are very powerful tools for designing MR controllers in the discrete 
domain. However, two issues that arise due to lifting and inverse lifting have to be 
taken into account. While the former one gives rise to causality constraints, a well 
known problem, we show that the latter one cam give rise to intersample ripples in

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the closed-loop outputs. In this chapter we have shown that for step-type reference 
signals: (1) intersample ripples exist in the closed-loop outputs of lifted MR control 
systems due to inverse lifting, (2) controller gains have to satisfy certain constraints 
in order to ensure ripple-free conditions, and (3) the presence of a fast-rate integrator 
eliminates intersample ripples without the necessity of constraining lifted controllers. 
As a result, unstable plants with integrating type instabilities allow us to relax these 
constraints on the controller. Parametrization of all such lifted controllers for stable 
plants with L =  0, F  =  0 shows that the constraints on the controller directly translate 
to the constraints on the parameter Q. On the other hand, deriving constraints on 
Q for observer-based and state-feedback controllers is a non-trivial problem and not 
considered here.

3.7 Future Work

Future work involves research in the following directions:

•  Parametrization of state-feedback and observer-based controllers.

•  Provision of a practical and simple sub-optimal solution to the causality con
straint problem in a tractable framework.

•  Exploring the existence of other optimal solutions which yield a causal lifted 
controller.
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Chapter 4

Performance Comparison of 
M ultirate Systems vs. Single-rate 
System s

Purpose: To answer the question: does multirate control offer incentives over single
rate control? if  yes, what are they and in what sense? To provide a theoretical ground 
for comparison and establish the conditions under which MR control systems can be 
compared with single-rate systems1.

4.1 Motivation
One of the primary reasons for moving to MR control from SSR control is the intuitive 
idea that the former gives better performance than the latter. In general, faster 
discretization is desired and attractive for emulating continuous-time systems and 
meeting certain performance specifications.

The question of interest that arises in the context of performance analysis is then: 
do MR systems give better performance than SSR systems and if yes, then what is 
the extent of performance improvement? It is intuitive on the other hand, that if all 
the outputs were available at a faster rate than that in the MR system, we could 
expect better performance than that given by the MR system. It is also for this 
purpose, that we had introduced in Chapter 2 a fictitious discrete system, Gf ,  at the 
fast sampling period h f , the greatest common divisor of the sampling periods of the 
multirate system. Gf is referred to as the fast SR system or simply, as FSR system. In 
an FSR system, control moves are designed assuming that all the signals are available 
over the sampling interval hf. Hence, from a pedagogical point of view, it is appealing

1A version of this chapter has been accepted for publication in the Journal of Dynamics of 
Continuous, Discrete and Impulsive Systems
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to raise the question: do FSR systems necessarily perform better than MR systems? 
In order to address these matters, this chapter considers the comparison by asking: 
what is a fair benchmark for comparison?

Interestingly, there has been no theoretical analysis to compare the closed-loop 
performance of closed-loop MR and SSR systems. However, there have been only a 
handful of papers that have addressed a closely related issue (McEachen and Meyer 
1991, Berg et al. 1988). In both papers (McEachen and Meyer 1991, Berg et al. 1988), 
the comparison is purely on the basis of simulation. The main drawback of the 
work reported in McEachen and Meyer (1991) is that it lacks a common ground for 
comparison. For instance, equal importance to input weights in the MR and SSR 
systems is not ensured because the design problem does not start from a continuous
time cost function, bur rather from a discrete-time one. In Berg et al. (1988), although 
the controllers are derived from the same continuous-time LQG cost function, the 
comparison is made only on the basis of simulation. Moreover, the MR system is 
modelled as a periodic discrete-time system, yielding a periodic LQG controller. The 
work reported in (Berg et al. 1988) is case-dependent, i.e., demonstrated for a specific 
problem and does not constitute a general proof. In contrast, here we give a theoretical 
proof to show that the performance of MR systems is bounded above by that of single
rate systems at the slow rate and below by single-rate systems at the fast rate. The 
proof is built in an LTI framework using lifting techniques, with the continuous-time 
LQR cost function as a benchmark for the state-feedback case and the generalized 
^ -n o rm  for the output feedback case.

Performance analysis of multirate control systems can be mainly approached in 
two ways, namely, (i) the periodic discrete-time modelling approach, and (ii) the 
lifting methodology. We adopt the latter approach because of the following reasons. 
The main advantage of the lifting approach is that it is conceptually simple and 
enables a convenient analysis of stability and performance issues of multirate control 
systems. In addition, the lifting framework translates a MR system into an LTI 
system, whereas the periodic discrete-time modelling approach results in a time- 
varying system. Clearly, it is simpler to analyze LTI systems because of the rich 
framework of theory that exists in this area (Khargonekar et al. 1985, Araki and 
Yamamoto 1986, Chen and Qiu 1994, Sagfors and Toivonen 1998). In this work, 
the advantage of lifting is evident by the theoretical framework it provides for the 
comparison of performances between MR and SSR (slow single-rate) systems, hitherto 
not presented.

Although in Berg et al. (1988) analysis of the MR control design problem is also 
done via the discretization of a continuous-time LQR cost function, the approach
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followed in this paper markedly differs from that of Berg et al. (1988). Firstly, Berg 
et al. (1988) have used the periodic discrete-time modelling approach; while in the 
present work we have used the lifting scheme. Models obtained using the former 
method are periodic in nature while lifted models are time-invariant. Additionally, 
the periodic cost function in Berg et al. (1988) yields a periodic/time-varying LQR 
controller, while the lifted cost function yields an LTI controller. Secondly, in Berg et 
al. (1988) the comparison problem is tackled mainly by applying the design techniques 
to two different plant models. The performances of MR and SSR systems are then 
compared by comparing the closed-loop responses and achieved design specifications. 
In contrast to this, the present work first compares the performances of MR and SSR 
systems on a theoretical basis, and then the results are illustrated by evaluation on 
an experimental plant model. Also, we have examined the extent of benefits obtained 
and the conditions under which such benefits can be expected as one moves from MR 
to SSR control schemes, with a clear theoretical analysis.

In short, the approach and contributions of this chapter can be summarized as:

•  Analysis of MR systems is performed in the lifting framework which yields 
finally an LTI controller unlike the periodic discrete-time modelling approach.

• The continuous-time cost function is used as a benchmark to overcome the 
discrepancies with discrete-time benchmarks at the fast or slow sample rates.

•  Performance comparison is first performed by establishing the equivalence be
tween the cost functions for the lifted and slow-rate cost functions.

•  A proof based on convex optimization ideas that MR systems perform no worse 
than SR systems at the slow rate and bounded below by the performance of 
SR systems at the fast rate. The proof is provided in an LTI setup which 
enables use of the rich theoretical framework available for the controller design 
of single-rate LTI systems.

•  Providing a platform for assessing the benefits of MR systems over SSR systems 
and FSR systems in a graphical way by plotting the relative improvement (to 
be defined later) in MR systems vs. the input weight and the sampling ratio.

We consider two separate situations. The first one is that of state-feedback control. 
An LQR cost function is used for this purpose, presented in Section 4.2. Next, we 
impose the restriction that the states are not directly accessible and incorporate the 
state estimation problem in the setup. This is the second situation. For this 
purpose, we choose the benchmark as the continuous-time generalized T^-norm. The
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relevant details are discussed in Section 4.5. Since the output feedback problem is 
more practical, it can be said the results for this case are more general. However, the 
motivation and the outline for the proof for the output feedback case is derived from 
the state feedback case.

The objective behind presenting a proof is from an academic point of view to 
establish the intuitive result in theory, and to pave way for further performance 
comparison analysis, for example, in the Hoo framework and the robustness analysis 
of performance improvement. The proof is new, non-trivial and established in the 
lifting framework which preserves the LTI property of the continuous-time system.

The ideas presented in the LQR case are valid for both the regulatory and servo 
control problems. We first prove the results for the regulatory problem and subse
quently import them to the servo problem. The tracking problem covers three classes 
of signals, viz, step, ramp and sinusoidal signals. The import of results from the 
regulatory problem is made convenient by converting the tracking problem into a dis
turbance rejection problem by means of suitable transformations. The entire problem 
is formulated in the state-space framework.

The chapter is organized as follows. Section 4.2 discusses the LQR equivalence of 
multirate systems and single-rate systems. In Section 4.3, we present the main result, 
i.e., the proof of the result that the closed-loop performance of MR systems is bounded 
above by that of SSR systems, and below by the performance of fast-rate control 
systems. Section 4.4 compares the performance of MR systems vs. SSR systems on 
an experimental setup comprising a level-control system; the objective is to control 
the level of water in a continuously stirred tank heater system by manipulating the 
inlet flow valve. The output feedback case starts to appear in Section 4.5 consisting 
of the proof of the main result that in general, MR systems perform better than the 
associated SSR systems. Finally, some concluding remarks with ideas for future work 
appear in Sections 4.6 and 4.7.

4.2 LQR Cost Function for Performance Evalua
tion

4.2.1 Choice of Benchmark

The original sampled-data multirate system requires the design of an optimal linear, 
causal and periodic controller. However, in the lifted framework, we require an opti
mal LTI, causal controller. The change of domain from a class of periodic .systems to 
LTI systems simplifies the multirate control design problem, and further elucidated
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Lifted
controller

r— -*&}—*

Figure 4.1: General closed-loop mxdtirate system (Tb/Ta =  n /m )

in section 4.3.
For reasons of practical industrial appeal, all the ensuing discussions assume that 

the inputs are available at a faster rate than the outputs and the term sampling 
ratio shall refer to the ratio of the sampling period of the output to the sampling 
period of the input. Figure 4.1 shows a block diagram of a general closed-loop system 
implementing the lifting strategy. In Figure 4.1, Gp represents a continuous-time LTI 
system and the remaining symbols have their usual connotations.

In the following discussions, the controller outputs in the MR, SSR and FSR 
systems are denoted by u, us and Uf. respectively. Fair comparison and evaluation 
of the performance of MR systems versus SSR and FSR systems require the choice 
of a benchmark. For instance, one can compare the variance of controller outputs 
as a  benchmark. However, such a comparison is unfair because the dimension of the 
controller output signal in the MR system, u, is different from those in the SSR and 
the FSR systems, us and Uf, respectively. Alternatively, if we compare the input 
signals to the plant, then the signals us and the fast-rate signal in the MR system 
L~lu are available a t different sampling rates which makes the comparison a difficult 
task. A similar problem with the sampling rates would arise if we choose the variance 
of the closed-loop outputs as a performance criterion.

With the above considerations in mind, we approach the problem from a funda
mental perspective. The above arguments focus only on discrete-time performance 
criteria. The motivation for implementing multirate control is to improve the in
tersample performance, or more rigorously, the continuous-time performance of the 
outputs. Therefore, it seems both intuitive and appropriate to choose a benchmark 
which includes the continuous-time performance of the system. With these ideas in 
mind, we choose the continuous-time LQR cost function Jc as a choice for the bench
mark problem. Subsequently, we derive the equivalent discrete-time cost functions 
for the MR, SSR and FSR systems, namely, Jl , Ja and J /, respectively, from Jc. 
Essentially, we impose weights on the continuous states and inputs, and arrive at the
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equivalent weights on the discrete states and inputs. In this way, all the weights in 
the discrete-time cost functions arise from one continuous-time cost function. The 
method of obtaining an equivalent single-rate cost function at a given sample rate 
from Jc is discussed at length in Chen and Francis (1991a). Preliminaries for arriving 
at an equivalent multirate cost function from Jc are derived in Tangirala et al. (1999).

With the design criteria in hand, the achieved closed-loop performance can be 
measured from the closed-loop data and the lowest of Jl , Js and J f would indicate 
the system with the best performance. The following paragraphs discuss this idea in 
more detail.

4.2.2 Performance Based Multirate Controller Design

One of the primary reasons for building a multirate controller is to improve intersam
ple ripples. We had argued earlier that it is not possible to design with an objective 
function comprising fast-rate states/outputs as it is impractical to measure the output 
at a faster rate, Hence it is motivating to derive an equivalent discrete-time system 
given a continuous-time cost function. Besides, this type of design provides a fair 
benchmark for comparing the closed-loop performances of multirate and single-rate 
systems. Results for single-rate systems are presented in Chen and Francis (19916). 
We consider the design problem in the continuous-time domain in the LQR framework 
and derive the equivalent multirate system.

Consider a SISO sampled-data system with sampling ratio n /m  a positive integer. 
i.e., m  = 1. Define hL as the LCM  of the sampling periods of all the signals comprising 
the MR system, which is equal to the output sampling period when m  =  1. Represent 
the generalized continuous-time LTI system G as:

x = Ax +  Bu 

z = CiX +  D\u 

y  = C2x

(4.1)

(4.2)

(4.3)

where z is the fictitious signal whose ||.||2 is to be minimized:

and the matrices C\ and DL are chosen such that:

(4.5)
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The equivalent, discrete single-rate system at a sampling rate h, would give rise to the 
cost function:

as given in Chen and Francis (19916). The weighting matrix can be summarized as

(  N'd *  )  “  ^  A l  =  M  (4.7)

where Ci and D\ are the solutions to (4.7) with

M = P e ' t ' f a  Di]etAdt (4.8)
Jo

and

i = ( o  o )  (4'9)
The SSR LQR cost function denoted by Js (the weights respectively by Qs, Rs and 
Ns), is obtained by setting h =  hi in equation (4.8) and using equations (4.6) through
(4.7).

00

Js = y^X xkQsxk +  u lR suk +  2 XfciV3Ufc) (4.10)
k= 0

We extend the results here to multirate MIMO systems in the lifted framework. 
If Gf represents the equivalent system at the fast rate hf, then for the multirate 

system, we can show using lifting techniques that the lifted system

4‘ - ( o « , H V c ) (4u>
represents the system from um to (zm, ym) where Gf is the equivalent discrete system 
obtained from Jc by setting h = hf. Here, zm is the lifted fictitious signal obtained in 
terms of the available states and lifted inputs. Sn is the discrete downsampler with 
the downsampling factor n. The state space model of the lifted system can then be 
written as

xk = ALxk + B u ik (4.12)

Z* = ClLx k + D\LUk (4-13)

y = C2LXk (414)

and the matrices A l, B l,C il ,C 2l ,D il  are obtained by using equation (4.11).
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H ,  * -- -  S.

Figure 4.2: Equivalent multirate system (SISO G and integer sampling ratio)

Using lifting techniques, we can obtain a state-space model for LG;L 1 (Chen 
and Francis 1995). Represent this model in transfer function form from t o ^ ,  as

A n B l i  1

L C l i D l i  J

Note that the states are available at the same rate in both the multirate and the 
single-rate system (at the slow rate) while the inputs are available at the fast rate in 
the former case.

The following remark is useful to compare the performance of MR and SSR sys
tems in the later sections.

R em ark 5 I f  (j4s, Bs) represents the discrete version of (A, B) at the slow rate hi, 
then it can be shown that (Al ,B l) and (AS,B S) are related as follows:

A l = A. (4.15)
n

Vz =  1, • • • ,ns (4.16)
3 =1

where ns is the number of states describing the system. B iti is the i j tk element of 
the lifted matrix B i  and Bsi represents the ith element of the column vector B..

For MIMO systems, Ba is a matrix and therefore equation (4.16) holds good for 
every column of Ba.

Having established a suitable benchmark for the comparison problem and shown 
the MR control design methodology, the next step is to link the MR and SR control
design problem. The importance of the second step will be clear once we establish
the proof of the main result.
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4.2.3 Linking MR and SR Control Design

For the LQR problem, the weights for the cost function Jl for the lifted system are 
calculated as

Finally, the cost function for the FSR system is obtained by setting h = hf in equation

The inputs and states in (4.19) are at the fast rate hf. It can thus be inferred 
that Jl is identical to Jc because lifting preserves the 2-norm of signals. Hence, all 
the cost functions Js, Jl and J/ are identical to Jc.

The discussions to follow express the relations between the weights for Jl in 
equation (4.18) and those for Ja in equation (4.10). As usual, we start with the 
simple case of SISO systems with integer sampling ratios and then proceed towards 
the general case of MIMO systems with rational sampling ratios.

SISO system s w ith  integer sampling ratios

Theorem  4 Given a continuous-time cost function Jc for a continuous-time SISO 
LTI system, Gp, the equivalent discrete cost functions J , for the slow single-rate 
system at the slow rate and Jl , the discrete cost function for the multirate system 
SGpHf arise in such a way that

J=1

where Rl — and Nl — ns is the order of the system Gp and N3i is the
weighting between the ith state and the input: Ns =  [NSI N Si • • • N,ni]T .

(4.17)

which allows us to write Jl as

(4.18)

(4.7):

(4.19)

Q s =  Q l
n n

(4.20)

(4.21)
«=i j=l
n

(4.22)
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Proof. Denote the transfer functions between (z ,u ) and (Zk,Uk) for the continuous
time and the fast rate discretized plants as

§(*) =
' A B  '
[C i Dr J ; 9 W  =

r  A f B f
1 4 / D if J

respectively. Also,

If

then

A f = eAhf

A =

B f

A B  
0 0

f  f .
/  eMdtB 

Jo

)

(4.23)

0 Re eiAdt

(  Ao Bi )  =  o o ) }
Now, consider the derivation of the equivalent discrete-system at the slow rate hb, 
given Jc. Representing the integral M  at the slow rate as Ms, and Mf a t the fast 
rate h f = hb/n, we can write

“  ~ (  Qc 0 \
\ Q  f U )

We know from earlier discussion that

M  -  I  Q-  N ’ \  ■ M  -  (  Q > N / \
r , )  ' M i ~ \  n ;  r ,  )

Using Cholesky factorization, we can write

Q c  0  \  _  ^y-T

(4.25)

(4.24)

0 Rc

The integral denoted by Ms can be split into n integrals since hb = n h f,

etATW TW etAdtAL
-  /Jo

•hr _ mhi
,tAT xirTe \VTW etAdt + ■■■ +

enhf

J  (n—1’

Note that the first integral in the above equation is Mf.  Using a change of variable 
for the rest of the integrals, we can rewrite equation (4.25) as:

M, =  M f + ehfATMf ehfA H------ 1- e^n~^hfATMf e^n~l)hfA (4.26)

Using equation (4.23) in equation (4.26), the kth (k = 2, • • • , n) term in (4.26) can be 
written as

(  A f '  0 W  V -  fl, + B ,A ,  + ■■■ + B / A f - '  \
+ . /  ) M , \  0 I  )
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Substituting equation (4.24) in the above equation and equating the individual terms 
on both the sides in equation (4.26) gives

Q a =  Q /  +  A / Q f A f  +  A j  Q f A 2j  H 1- A f  Q f A 1}  1

Rs =  Rf  + ( B j Q f B f  + B j N f  + N j B f  + Rf )-1-• • •

+ ( B j Q f Anf - 2Bf  + .--

+ B j Q f B f  +  B j N f  +  N jA nf ~2B f  + • • • + N j B } +  R f )

(4.27)

(4.28)

Ns =  Nf  + (A^Qf Bf  + A^ Nf ) + ( A f Q f A f Bf  + A y Q f B f  + A y N f ) + ---«r2/

+ ATf n xQf Anf - 2Bf  + -- + A Tf n lQf Bj  + A l} 

Using Cholesky factorization, we can write

N, (4.29)

(4.30)

Note that
Zk =  CifXk  +  DifUk

is the fictitious signal whose ||.||2 we seek to minimize.
Observing from our results that for the lifted system, Gi =  L„G/L~l representing 

the model between Zj. and u*, we can write,

4
i

1

A '- 'B f  Anf~2B } ■ Bf  ]
Cif p l f  _0 • 0

II CifAf C i / B f  Dij 0

. C i f A T 1 ClfAnf ~2B f ClfA y 2Bf ■ • Dlfm
r a l Bl 1
[ClL Oil J

(4.31)

(4.32)

Therefore, the equivalent weights in the cost function in the lifted system can be 
obtained as

( w f  r i )  =  [ (? i1
(4.33)

where we make use of equations (4.31) and (4.32).
Thus, Ql , N i  and R i  would be n,  x n s, n, x n  and n x n matrices, respectively. 

From equations (4.27), (4.30) and (4.33), it is easy to see that

Qs =  Q l (4.34)
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Obtaining from equation (4.33) and adding up all the elements, it can be seen 
that

R ■ =  E P i ,  (4 -35)
i = X  j = l

and similarly, adding up all the columns for each of the rows in N l , we get

N3t — * — 1) ' ' '  i ris
i = i

(4.36)

■

Significance: Given Jc, the equivalent single-rate and multirate systems arise in 
such a way that the states are given the same importance (which is expected since 
the states are available at the same rate in both the systems). The slow-rate input 
weights in the SSR system distributes over the lifted inputs in the MR systems such 
that equation (4.21) is satisfied, while the cross-term weights between the states and 
inputs in the SSR system translate to those in the MR system as in equation (4.22).

SISO system s w ith  ra tiona l sam pling ratios

Here, we consider SISO systems with rational sampling ratio Tb/Ta = n/m . For the 
sake of brevity and without further discussion we state that the result in Theorem 4
applies to the case of rational sampling ratios as well. Proof of this result is similar
to that as in the case of integer sampling ratio in Theorem 4.

However, the lifted system defined in equation (4.11) needs to be re-defined for 
this case as:

U  0 \  =, (  L ( l 0
0 LmSnHf  J  f  \  o S fH mL - 1

where I is the l.c.m. of the sampling intervals, nh and mh are the output and input 
sampling intervals respectively, and the subscript /  stands for the fast rate system 
over the sampling interval h.

As a result, B l  in equation (4.12) and D \ l  in equation (4.33) have to be modified 
accordingly. For instance, if the output and input sampling intervals are 3h and 2h 
respectively, then the modified B i  and D u  are obtained as:

■ (
(4.37)

B L = BL

'  1 0 0  ■ '  i 0 0  ■

1 0 0 i 0 0

0 1 0 •m ~ 0 1 0

0 1 0

(5 t-1 II tr*

0 1 0

0 0 1 0 0 1

0 0 1 0 0 1

(4.38)
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The relations between the weights in J l and Jf  can be then obtained by substi
tuting the modified D u  from equation (4.38) into equation (4.33).

M IM O system s

Relations between the weights discussed so far also apply to MIMO systems. In this 
work, we lift multivariable signals by lifting individual signals and then augmenting 
them together. Multivariable lifting defined this way is particularly useful for gen
eralizing the SISO case equivalence presented in Theorem 4 to MIMO systems. The 
weighting matrices in the cost functions are now of different dimensions. Therefore, 
the relations given in equations (4.20)-(4.22) need some generalization. Consider, for 
example, a  2-output, 2-input system, with integer sampling ratio, n =  2. Then R, will 
be a (2 x 2) matrix, whereas R i  will be a (4 x 4) matrix partitioned into 4 sub-blocks 
as shown below:

R ,  = Rdll RdU 
Rd21 Rd22 (4.39)

Here, Rs is the weighting matrix for [ u i(k) u2(k) ]. On the other hand, R i  is the 
weighting matrix for [u^k)  u2(^)] :

R l =

R lu Rl 12 R lu Rlu
RL21 RL22 RL23 RL24
RL31 RLZ2 RL33 Rl34

_ RL41 Rl\2 RL43 R l44

(4.40)

Here, u,(k) represents the itH lifted input at the kth instant. The relation between Rs 
and R i  is that the sum of the elements in each of the blocks in R l  is equal to the 
corresponding element in Rs. In other words, RsU = R l u  -I- R l  12 +  RL21 +  RL22 and 
so on. The cross-term weight between the states and lifted inputs N i can be similarly 
partitioned into 2 blocks, one for each lifted input. Then, Nan =  N m  + N l 12 and 
so on. The general result with the assumption that all the inputs are uniformly 
sampled with sampling interval, Ta, and all the outputs are uniformly sampled over 
one sampling interval, 7i, is stated as follows.

T heorem  5 Consider a (q-output, p-input) MIMO system SbGHa, where G is a 
continuous-time LTI system, and the ratio of sampling intervals Tb/Ta = n, a positive 
integer. Given a continuous-time LQR performance criterion, Jc, then for impulse 
type disturbances, the weights in the equivalent discrete-time SR and M R LQR cost
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functions are related as follows:

Q s =  Q l (4 -41)

R si3 =  £  R l u  (4-42)
block ij

NLiJ «' =  ! , " •  (4.43)
block ij

Proof of the above result is not given here for the sake of brevity.
As in the case of SISO systems, Theorem 5 can be generalized to MIMO systems 

with rational sampling ratios as well.
Now, we return to the comparison problem. The LQR design problem for the 

discrete-time systems consists of minimizing the corresponding objective functions 
subject to the corresponding models. The relations between the weights given in 
Theorems 4 and 5 are useful to observe the connection between the LQR optimization 
problems for the MR, SSR and FSR systems. The following remark establishes the 
link between J i  and Js.

R em ark  6 Given that both the MR and SSR cost functions are derived from the 
same Jc (therefore the weights satisfying Theorem 5); then with the constraint that all 
the fast-rate input moves in a MR system are identical over the sampling period I, the 
MR cost function Jl in equation (4-18) becomes identical to the SSR cost function
J 3.

We illustrate this by a simple example for a SISO system. The validity of the above 
remark for MIMO systems is then a straightforward extension. Consider, for example, 
a multirate SISO system, with n = 2, and a Jc such that we arrive at

OO

Js =  5 ^ ( i 2 + u2 + 2xu) (4.44)
fc=0

Denoting the lifted input by u =  [ui u2]', we arrive at

Jl =  ( x 2 +  [“ i «2] (  } / 4  )  [«i “ 2]' +  2x[l/2 l/2]]u! u2]^ (4.45)

Observe that the relations in Theorem 4 are satisfied. Now, impose the constraint 
on J i  that u\ =  u2. Then, it is clear after substitution that the constrained Jl is 
identical to J3.

Note that if the relations between the weights as in Theorem 4 are satisfied, it is 
not necessary that they should arise from the same Jc. In other words, the converse of
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Theorem 4 need not necessarily hold good. The above example is to  merely illustrate 
Remark 6.

The following remark relate Jl to Jj  for the rational case.

R em ark  7 Given that both the MR and FSR cost functions are derived from the 
same Jc (therefore the weights satisfying the relations given in equation (4-33); then 
with the constraint that all the fast-rate input moves in an FSR system are identical 
over the input sampling period mh, J j in equation (4-19), the constrained FSR cost 
function J f is identical to the MR cost function Js derived from Jc.

For example, if the output and input sampling intervals are 3/i and 2h respectively, 
the fast-rate control strategy updates the control moves every h units. If we now 
restrain that the moves are updated every 2h units instead of h units, then we get 
the lifted MR control strategy (which updates control moves every 2h units). This 
is because the same conlinuous-time cost function and fast-rate model are used in 
deriving the individual cost functions and also given the assumption that there is no 
model-plant mismatch.

R em ark  8 All the resulting three discrete-time cost functions are convex in nature 
because of the positive semi-definiteness of the weights.

Intuitively one would expect that MR systems can outperform SSR systems in terms 
of optimal closed-loop performance. This is because of the extra degrees of freedom 
available in MR systems (e.g. in manipulating u). Similarly, one can expect FSR 
systems to outperform MR systems. In the following section, we present the main 
results for the state-feedback case; the proof that the optimal performance of MR 
systems is, in general, better than that of SSR systems and bounded below by that 
of FSR systems.

4.3 Multirate Control vs. Single-Rate Control

4.3.1 Regulatory Problem

First, we relate the performances of MR and SSR systems. Using previous results and 
ideas in optimization, the following result is stated in the LQR framework (assuming 
full knowledge of the states) and no model-plant mismatch.

T heorem  6 Consider a closed-loop multirate sampled-data system comprising of a 
MIMO continuous-time LTI system Gp, a sampler Sb, and a zero-order hold Ha.
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Given a continuous-time LQR cost function Jc and that Tb/Ta =  n / m,  a rational 
number, then the optimal performance of multirate systems is bounded above by the 
optimal performance of slow single-rate systems and below by the optimal performance 
of fast single-rate systems. In other words, if  J f „  J l  and J s are the cost functions for 
the FSR, lifted MR and SSR systems respectively, then for impulse type disturbances,

Jopt,f ^  Jopt,L ^  Jopt,s (4.46)

Remarks and Significance: The proof is relatively straightforward based on results 
in Section 2. The idea is to show that the class of controllers for the SSR systems 
belong to a subspace of controllers for the MR systems which themselves belong to a 
subspace of controllers for the FSR systems. We consider the regulatory problem for 
impulse type disturbances.

Proof.
Part 1:

The controller design problem for SSR systems can be stated as:

min Js (4.47)

subject to the model (As, Bs) among the class of LTI, causal controllers; and for MR 
systems as,

min Jl ' (4.48)

subject to the model (A l , B l ) among the class of LTI, causal controllers.
Next, we impose the constraint on MR systems that all the fast-rate input moves 

are equal,

u x(k) = u2(k) = ••• = u n(k) (4.49)

where Uj(k) is the j th component of the lifted signal u at the kth instant. Then, the
model ( A l , B l ) reduces to (A S, BS) and from Remark 6, J l reduces to J3. Therefore,
the objective function in (4.48) takes the form of that in (4.47).

It is well known that the minimum value of a constrained convex cost function can
not be lesser than that of the corresponding unconstrained cost function. Therefore, 
from Remark 8 and the above observations, the right-hand inequality follows,

Jopt,L 5s Jopt,s

Part 2:

The proof for the lower bound is as follows.
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The controller design problem for FSR systems can be stated as:

min J f  (4.50)

subject to the model ( A j ,  B f )  among the class of LTI, causal controllers.
When the sampling ratio is rational, Remark 7 indicates that is a special case 

of Jf (i.e., with the constraint of identical control moves over each input sampling 
interval mh). Therefore, based on similar arguments as in Part 1,

Jopt.f — Jopt,L

R em ark  9 For the integer sampling ratio case, the optimization problems for the 
FSR and MR systems in (4-50) and (4-48) are identical (no model-plant mismatch 
and control moves are made at the same fast rate). Hence, the optimal performances 
of both the systems for the integer case are identical (equality sign).

The importance of Theorem 6 is that it provides a benchmark for a fair comparison 
of FSR, MR and SSR systems and establishing the superiority of one system over other 
on a theoretical basis. Besides, it can illustrate the relative benefits one can achieve 
with FSR over MR systems or MR over SSR systems with the changes in sampling 
ratio and the tuning parameters, for example, the input weight Rc. Later in Section 
4.4, we illustrate this point by means of simulation on an experimental model.

In the next section, we deal with the tracking problem.

4.3.2 Servo Problem

Firstly, we convert the given step-tracking servo problem into an equivalent regulatory 
problem (see Problem 4.3-5, Anderson and Moore (1990)) and then compare the 
performances for the regulatory problem. Then, these ideas are extended to the 
class of ramp and sinusoidal signals. The transformation of the servo to regulatory 
problem is equivalent to augmenting the continuous-time system with the reference 
model. Thereby, continuous-time tracking is ensured.

S tep tracking

To ensure step tracking, the continuous-time plant is augmented with the reference 
model of the step signal, which is an integrator. Thus, the inputs to the augmented
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system would be u where u is the input to the unaugmented system. The state space 
model for the augmented plant takes the form:

where y represents the reference signal. Defining W  =  (CA lB) *, and using the 
following transformation (Anderson and Moore 1990),

the cost function in (4.52) can be converted to the regulatory cost function:

In (4.54), Qc = [ C  0 ] r £ ? c [  C  0 ]. Thus, if w —> 0, y  —► y and tracking is ensured.
The new cost function described in (4.54) along with the state-space model in

(4.55) forms a standard LQR problem and the solution is a state-feedback controller 
relating ii to (u , x , y ). Thus, for the step-tracking problem we can derive the corre
sponding continuous-time LQR cost function as described in (4.54) and its equivalent 
slow-rate and lifted counterparts. Consequently, a similar result as stated in Theorem 
6 holds good for the step-tracking situation as well. In the discussion to follow, we 
suggest suitable transformations for ramp and sinusoidal signals to arrive at similar 
results for these types of signals as well.

Ramp tracking

Since ramp signals have a non-zero constant time-derivative the transformation used 
in the case of step-signals has to be slightly modified with the inclusion of one more 
state. Also, now since the plant is augmented with a double integrator, the cost 
function changes its form to:

(4.51)

Therefore, the cost function for step tracking is accordingly defined as:

(4.52)

(4.53)

(4.54)

with the new state-space model as:

y - y  = [ C  0 }w (4.55)

(4.56)
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After some suitable manipulations, the required transformation can be arrived at as:

(x + fciy +  k2y \
u + k3y + k4ij I (4 57)

u +  k5y J
where the constants k[s are given as:

Arguing in a similar way as in the case of step-tracking, Theorem 6 can be extended 
to the ramp tracking problem as well.

Sinusoidal signals

Finally, we deal with the class of sinusoidal signals. Sinusoidal signals are of special 
interest since they introduce complex modes in the eigenvalues of the augmented sys
tem. It is well-known that complex eigenvalues of continuous-time systems can impose 
restrictions on the sampling rates in order to retain controllability and observability 
of their discrete-time MR and SR counterparts.

The Laplace transform of the sinusoid sin (cut) is implying we should min
imize both the input moves and its second derivative. This suggests the following 
continuous-time cost function for minimization purposes:

k i =  —A~lBk3 

fa = A_1(ki — Bk4) 

k3 = (CA~lB)~1 

k4 =  (CA~lB)~1CA~lk 

ks = k3

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

giving rise to the new state-space model:

A B O
0 0 /  ii y — y = [ C Q Q ] w  (4.63)
0 0 0

The modified cost function takes the form:

(4.64)

where Qc = [ C  0 0 \TQC{ C 0 0 ] .

Q c 0  0
0 R d  0
0 0 i?c2

(4.65)
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The transformation and the transformed cost function are of the form:

w
x + fciji +  k2y \  

=  j u + k3y + k4y J 
u +  k3y +  key )

Qc 0 0
0 Rci 0
0 0 Rc2

(4.66)

(4.67)

The constants in equation (4.66) are given as the solution of:

A
- I
C
0

- u 2I  B  0 
A O B  
0 0 0 
C O O

1-£f
1 1---01

k2 0
k3 - i
k4

---1
o

1

5̂

k6

—u 2k4

—  /Cq

(4.68)

(4.69)

(4.70)

such that the new state-space model takes the shape:

w =

model takes

/  o ° \
0 0\  U2I I :) y - y  = [C  0 0 ]«/ (4.71)

With the above transformation, it can be observed that MR systems can outperform 
SR systems at the slow rate in the case of sinusoid-tracking as well.

More generally, the results stated in Theorem 6 can be stated for the servo problem 
as follows.

T heorem  7 Consider a closed-loop multirate sampled-data system comprising a MIMO 
continuous-time LTI system Gp, a sampler Sb, and a zero-order hold Ha. Given a 
continuous-time LQR cost function Jc and that.Tb/Ta =  n/m,  a rational number, then 
for tracking the class of step, ramp and sinusoidal signals, the optimal performance of 
the multirate system is bounded above by the optimal performance of slow single-rate 
systems and below by the optimal performance of fast single-rate systems.

Although Theorem 6 focuses on impulse type disturbances, it can be shown with 
marginal effort that similar arguments hold good for step-type, ramp and sinusoidal 
class of disturbances as well. This can be shown by appropriately modifying the LQR 
cost function for these class of signals as well.

From the relations derived in Theorem 5 and equation (4.33), it can be expected 
that as the input weight, Re and hence R„ Rl and R f -*oo, J l —> J,  and Jl -* Jf-
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In other words, for very large input weights Rc, all the optimal performances of FSR, 
MR and SSR control systems should be expected to be identical.

In the next section, we illustrate the results for the regulatory problem in accor
dance with Theorem 6 on an experimental model of a SISO system.

4.4 Results on an Experimental Model
The setup is a (2 x 2) continuously stirred tank heater system in which the level 
is maintained by manipulating the input valve position. For the present, we are 
interested in only controlling the level. Disturbances are due to a a sudden change in 
the outlet flow rate or a sudden change in the level.

The following first-order model describes the relation between the level and inlet 
flow valve position in the discrete time

c'W = d ^ li8  (472>
at the fast-sample period of h =  4 seconds.

Define the relative improvement in the closed-loop performance of FSR system 
(over MR system) and the MR system (over SSR system) as

. j  = L z J k  (4.73)
Jf Jl

First, let us consider the FSR and MR systems. Figure 4.3 shows the rela
tive improvement J/,re/ in the fast-rate system over the multirate system as we 
change two parameters - the input weight Rc and the sampling ratio n /m . While 
Rc varied on a log scale from 10-2 to 103, the set of sampling ratios n /m  were 
(1,5/4,3/2,2,7/3,8/3,3,11/3,4,9/2,19/4,5). The state-weighting Qc was set to 100.

As Remark 7 indicates, whenever the sampling ratio is an integer, the relative 
improvement is zero V Rc, implying identical performances for the FSR and MR 
systems. In the non-integer case, the plot confirms the result stated in Theorem 6. 
As we can see, the improvement is not linear in the sampling ratio. In fact, we can see 
three sets of identical peaks. The identical nature is clear for those sets corresponds
to the input sampling intervals Zh and 4h, while the pair corresponding to to 2h is
somewhat hidden. This point corroborates our arguments in Remark 7 and Theorem 
6 that the difference in performances between both these systems is only due to the 
difference in the input sampling rates.

Now let us turn towards Figure 4.4 which shows the 3-D plot of Jl^  'ws. Rc and 
n/m . The plot confirms our observations in Theorem 6. As in the earlier plot, the
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Relative improvement of FSR over MR sjrctans vs. R vs. (n/m)

Sampling ratio (n/m)

Figure 4.3: Variation of relative improvement in the closed-loop performance of FSR 
over MR systems with input weight Rc and sampling ratio n /m.

improvement is not linear in sampling ratio. In fact, the largest peak corresponds 
to that ratio with the largest l.c.m., which is 68 (n/m  =  19/4). This is expected 
as the SSR system operates at the l.c.m. of the sampling intervals. Therefore, the 
improvement can be said to increase as the l.c.m. increases. When the sampling ratio 
is unity, all the systems are identical as confirmed in the plots.

An important observation to note is that as the input weight Rc becomes very 
large, all the three systems give identical performances. As mentioned earlier, this is 
due to the fact that the corresponding input weights also become very large rendering 
all the input moves highly damped. Then, although the inputs are made at the fast 
rate, the magnitude is considerably small making the controller very sluggish. In 
other words, the extra degrees of freedom available with the FSR and MR system are 
curbed to such an extent that they behave like a SSR system. Theoretically speaking, 
as Rc —* oo, the optimal controller gains for each of these systems become identical 
and hence the optimal performances also tend to be identical.

So far, we have assumed that all the states are accessible for the LQR problem. 
Under these conditions, we proved that FSR systems give a lower bound for the 
optimal performance of MR systems which in turn gives a lower bound for that of 
SSR systems.
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Relative improvement of MR over SSR systems vs. Rc vs. (nrtn)
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Figure 4.4: Variation of relative improvement in the closed-loop performance of MR 
over SSR systems with input weight Rc and sampling ratio n/m.

In the next section, we impose a practical restriction that the states are not 
available and hence include the state estimation problem. However, we only compare 
the performances of MR and SSR systems. The reason for such a choice is that 
with the approach presented below, the comparison of FSR and MR systems is more 
complex them the problem of comparing MR and SSR systems.

4.5 A Step Further: Output Feedback Control

Here, we choose the sampled-data (SD) setup to represent MR and SSR systems. 
The continuous-time generalized H^-norm for SD systems (Bamieh and Pearson 1992, 
Khargonekar and Sivashankar 1992) is proposed as a benchmark. The main result is 
a proof that the superiority of MR systems over SSR systems in the state-feedback 
case holds for the output feedback case as well. The proof is constructed using lifting 
techniques and optimization ideas.

The design problem for SR SD systems is well known (Levis et al. 1971, Chen and 
Francis 19916, Bamieh and Pearson 1992, Khargonekar and Sivashankar 1992) and 
for dual-rate SD systems (Chen and Francis 1991a). Optimal design of multirate SD 
systems has also been widely addressed (Araki and Yamamoto 1986, Voulgaris and 
Bamieh 1993, Chen and Qiu 1994, Chen and Francis 1995, Qiu and Chen 1995, Sagfors

93

Sampling ratio (n/m)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•••. Ht

Figure 4.5: A general sampled-data system

and Toivonen 1998). The novelty in this work is the comparison problem.
The main result is arrived at by showing that the set of optimal, causal and FDLTI 

controllers for SSR systems is a subset of the optimal, causal and FDLTI controllers 
for the lifted MR systems.

The choice of sampled-data setup is due to a few important reasons. SD sys
tems allow us to obtain the benefits of digital technology while taking into account 
the continuous-time performance and design specifications. Besides, many practi
cal situations give rise to sampled-data systems. Another relevant factor is that 
both multirate and single-rate systems can be conveniently viewed as special cases of 
sampled-data (SD) systems.

A typical sampled-data system as shown in Figure 4.5 consists of a continuous-time 
plant, G, coupled with a digital controller, K*. As a combination, HaKdSb quantize 
a continuous-time signal y, process that digital signal using a  digital computer or 
based on a discrete-time control law, and then convert the resulting digital signal v  
back into a continuous-time one, u. A few references for good reading are Ragaziini 
and Franklin (1958), Astrom and Wittenmark (1984) and Chen and Francis (1995).

Moving from state-feedback control to output feedback control involves the state 
estimation problem is well known. It seems obvious at this stage that LQG schemes 
would be the immediate choice for this situation. However, we deviate here and pose 
the comparison problem in the Hz setup. Due to the periodic and hybrid nature of SD 
systems, the continuous-time generalized Hz-norm defined for SD systems (Bamieh 
and Pearson 1992, Khargonekar and Sivashankar 1992) appears more appropriate 
as a  benchmark than the T^-norm or the classical LQG cost function. This choice 
accounts for the entire sampling period over which both MR and SSR systems are 
periodic, instead of merely looking at the initial time t =  0. Besides, Hz is a more 
general case and encompasses the LQG scheme as well. The additional benefit is that 
the state estimation problem is easily integrated into the comparison problem than

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in the LQG framework.
In Figure 4.5, assume G is FDLTI, causal with a state-space model:

' A Bi B2
9(s) = Ci 0 D\2

c2 0 0
(4.74)

Note that we have taken Dn  and £>2i as zero to ensure finiteness of the H 2 norm and 
for the reason that S  is not defined on impulsive functions.

The generalized H 2 measure (Bamieh and Pearson 1992, Khargonekar and Sivashankar 
1992) for an /i-periodic SD system is given as,

J = ^ J r2d r ) / (4.75)

where

J r = (4.76)

with ST =  S(t — t ) and e, (t =  1, • • - ,m) are the m  unit basis vectors in R™. Note 
that the quantity J  =  J / V h  can be interpreted as the root-mean square of JT. We 
shall use this normalized performance index rather than simply J  itself.

The generalized performance spec defined above is very useful when the time of 
applying the input is unknown. This is a practical situation as the input can enter 
at any instant in the interval over which the SD system is periodic.

The controller design methodology employed here is similar to that of Voulgaris 
and Bamieh (1993) in their work on hybrid multirate systems. The methodology 
involves continuous lifting of exogenous signal and the controlled signal, and discrete 
lifting of input/output signals. Continuous lifting results in a system with infinite 
input/output spaces. To find a solution, this infinite-dimensional system is associated 
with a finite-dimensional system. In Voulgaris and Bamieh (1993), a solution is given 
to this optimal generalized H2 control problem. These results are directly imported 
here to prove the final result.

The following section gives the main result for the output feedback case. The 
novelty in the main result is the theoretical establishment of the superiority of MR 
control systems over SSR control systems in the absence of model-plant mismatch.

Problem formulation is done in the state-space domain. The notation followed 
here is standard. Discrete lifting with a factor n  is denoted as L„, while continuous
lifting with a period nh  is denoted as Wnh. All lifted signals and systems shall be
denoted by an underline; for example, a fast rate signal v  upon lifting becomes v.
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w

(a) MR sampled-data system (b) Associated SSR sampled-data
system

Figure 4.6: MR system with integer sampling ratio and its associated SSR system

Subscripts on the sampler and zero-order hold indicate their period of operation; for 
instance, Sh is a sampler with period h.

4.5.1 Main Result: Performance Comparison

In Figures 4.6(a) and 4.6(b) are shown the corresponding MR system with integer 
sampling ratio and the associated SSR system, respectively. Blocks Snh and Hnh are 
the slow sampler and zero-order hold, respectively, while block Hh takes the place of 
a fast-rate zero-order hold. The multirate controller is represented by Km r  while the 
corresponding slow single-rate controller is represented by K s r - It is assumed that 
G is a continuous-time, FDLTI, causal, MIMO system. The subscripts /  and s on v 
refer to the fast and slow rate signals, respectively.

For the sake of simplicity, initially a proof for the case of integer sampling ratio is 
given with the aid of Figures 4.6(a) through 4.7. The proof for the rational case is then 
briefly sketched on similar lines as the integer case. The following result (Bamieh and 
Pearson 1992, Khargonekar and Sivashankar 1992, Voulgaris and Bamieh 1993, Chen 
and Francis 1995) is useful for later analysis.

R em ark  10 The optimal performances of the MR and SSR systems shown in Figure 
4-6 are identical to those of shown in Figure 4-8-

T heorem  8 For the SD system shown in Figure 4-5, choose a continuous-time gen
eralized "Hi cost function as in equation (4-75) with period nh. Then, in general, the 
optimal performance of the MR system is better than the optimal performance of the 
associated single-rate system at the slow rate and in the worst case, identical to that
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(a)  Lifted MR system (b) Lifted SSR system

Figure 4.7: Introducing lifting operators in the fast-rate channels of MR and SSR 
systems

of the SSR system. Equivalently,

Optimal ||£J£H||2 < Optimal ||t^ 'K||2rss/i i (4.77)

where and tRRR are the transfer functions from u  to C, for the MR and SSR SD 
systems shown in Figure 4-8.

Proof. Initially, assume that the sampling ratio is an integer, n.
Starting with Figures 4.6(a) and 4.6(b), notice that both are n/i-periodic system 

(h is the fast sampling interval). The set of admissible controllers for the MR system 
are linear, nh-periodic meaning K mrU =  UuK mr {U is the time delay operator 
over h) and causal; while for the SSR system, the admissible controllers are linear, 
time-invariant and causal.

For the SSR system, we can write the output of the slow-rate zero order hold as 
HkShHnh. Then, continuously lift z and w with a period nh, and discretely lift the 
outputs of the fast-rate samplers in both the systems. With this step, we obtain the 
configurations shown in Figure 4.7.

The hybrid lifted system G and the controllers in Figure 4.7 are defined as,

' Wnh 0 n
0 Snh

G =

K m r  =  LnK MR 

Ksr  =  LnSh.H„hKsR

0
HkL - 1

(4.78)

The resulting system is infinite-dimensional due to the presence of continuous 
lifting operators. Hence, we need one more step before proving the main result. This 
final step is to associate this resulting system with a finite-dimensional system. Details 
of this step and a controller design procedure for the associate finite-dimensional LTI
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system are provided in Voulgaris and Bamieh (1993). Figure 4.8 shows the resulting 
SD setup where the FDLTI lifted system is represented as G and the exogenous 
signals are now represented as £ and w. The associated FDLTI system is arrived 
at by ensuring that the resulting finite-dimensional SD system will have the same 
H 2-norm as the infinite-dimensional one.

Denoting Jmr =  and Jssr = ll<f5R|ll' fche optimal performances for the
individual systems in Figure 4.8 can be written as,

SSft||2
J m r  — 11^*.. II2 J s s r  —

K \ t R  r i s R

Observe that by performing the Ho equivalent discretization, we have ensured equiv
alence between both the cost functions.

The key point to note is that,

K mr —

'  K,  ' '  I '

k 2
; K sr =

I
K sr

Kn I

(4.79)

In arriving at equation (4.79), we have made use of equation (4.78) and the relation 
(Chen and Francis 1995),

I
I

Therefore, Ksr is a special case of K mr

=!> Jmr ^  Jssr

For the rational case, assume sampling intervals 2h and 3h for the hold and 
sampler, respectively. Then, the g.c.d. and l.c.m. of the sampling intervals are h and 
6h, respectively. As in the integer case, introduce fast-rate (at h) samplers and hold 
in the measurement and output channels of both systems. Following this, discrete 
lifting is done by a factor of 6 and continuous lifting at the period of 6h. The infinite
dimensional lifted system and the lifted controllers for both systems can be written 
as:

‘ W€k 0 
0 L6Sh _

L6Sh H2h KmrS$h Hh Lg1 
L>6ShH6hKsRS6hHhLfil

G =

K mr =  

K sr =

0
0

HhL7l
(4.80)

(4.81)
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(a) Lifted M R  system (b) Lifted SSR system

Figure 4.8: Associated finite-dimensional systems for the lifted MR and SSR control 
systems

The associated finite-dimensional system can be found in similar ways as earlier. 
Using properties of lifting, K sr can be easily simplified to:

K s r  =

For the MR system, we can write:

K S r  0 
K s r  0

K s r  0

0
0

(4.82)

6x6

K m r  =  LeShHihKM R.S3hHhL& 1

=  L s S h H i h L ^ L z K M R L ^ L iS z h H h L s 1

K n
K n
* 2 1

* 2 1

* 3 1
* 3 1

0 0 K 12

0 0 K\2 
0 0 K22 

0 0 K22 

0  0  * 3 2  

0 0 K 32

0 0 
0 0 
0 0 
0 0 
0 0 
0 0

(4.83)

where we have assumed a causal LTI controller:

" * 1 1  
*21LzK mrL2 1 =
*■31

* 1 2

* 2 2

* 3 2

Looking at equations (4.83) and (4.82), it can be clearly inferred that K s r  is a special 
case of K m r ■ Hence,

-Jmr — JsS S R

The equality sign occurs when the optimal performances are identical, or equiva
lently, when the optimization problems yield the same controller. Also, heavy input
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weighting can dampen the extra degrees of freedom that are possessed by the MR 
and FSR systems. As a result, both the systems start to behave like the SSR system. 
In essence, the equality sign comes into play when the weighting on the inputs goes to 
infinity. Although in chemical processes weighting on the inputs are necessary, such 
large weighting factors on input weights are rare as it practically implies an open-loop 
situation. Similar arguments hold for the rational case as well. Therefore, it can be 
concluded without much loss of generality that MR systems yield better performance 
than the associated SSR systems.

4.6 Conclusions and Summary
In this chapter, we have addressed the performance comparison problem for the mul
tirate and the associated slow and fast single-rate systems from a theoretical point of 
view which has been so far considered on the basis of simulations.

By means of theoretical analysis and the equivalence between the derived MR 
and SR discrete-time cost functions, we have proved the fundamental result that with 
state feedback control and for impulse type disturbances, FSR systems provide a lower 
bound for the optimal performance of MR systems which in turn are bounded above 
by the optimal performance of SSR systems. In addition, for the output-feedback case 
(stochastic case), we have shown that with the continuous-time generalized 7-f 2-norm 
as the benchmark, MR systems perform better than the associated SSR systems in 
absence of model-plant mismatch. They yield identical performance, in the presence 
of large input weights. In practice, the input weights Rc can be relatively small, 
implying that for all practical purposes, MR systems indeed perform better than SSR 
systems and FSR systems perform better than MR systems.

The results of this chapter provide upper and lower bounds on the quadratic cost 
function for MR systems. In case of large input weights, we show that Jl — Js, 
however, with small input weights, the results show a definite advantage on imple
menting MR control. In our opinion, these are theoretical results of great interest 
with practical appeal and not necessarily obvious. Finally, our analysis gives a picture 
of the extra benefits one can achieve by implementing MR control over SSR control 
depending on the input weights and the sampling ratio.

With marginal effort, results in this work can be shown to hold good even when 
each of the inputs and outputs sampling rates are distinct. Also, since step-type 
disturbances can be transformed into impulse-types by means of suitable transfor
mations, the results need not necessarily be restricted to the class of impulse-type 
disturbances only.
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4.7 Journey Ahead
With the provision of a new benchmark for comparing the performances of FSR, 
MR and SSR systems, it is important to explore the doorways to other possible 
benchmarks for this cause. This is in itself a non-trivial problem.

Future work consists of:

•  Comparing FSR and MR systems in the output feedback case.

•  Analyzing the output feedback problem in the Hoo setup.

•  Considering the presence of model-plant mismatch. The measure J re; is sensitive 
to the model parameters in G or G/. Thus, it is both of practical importance 
and challenging to perform a robustness analysis on the relative improvement 
in the closed-loop performance of MR systems. Such a robustness analysis of 
the performance comparison problem is more difficult and challenging than the 
comparison problem discussed so far.
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Chapter 5

Robustness Analysis of the 
Performance Comparison Problem

Purpose: To analyze and assess the superiority of fast single-rate (FSR) over multi
rate (MR) control systems and MR over slow single-rate (SSR) control systems using 
LQR control in presence of model-plant mismatch.

5.1 Motivation
In the previous chapter, it was shown that the performance of FSR systems is, in 
general, better than that of MR systems which is in turn better than that of the 
SSR systems. This is true provided the design is based on a continuous-time LQR 
cost function and there is no model-plant mismatch. However, what is of practical 
interest is the performance comparison in the presence of a model-plant mismatch. 
Then, the natural question to consider is: does the fast-rate control strategy (that 
is if there was a  scope for sampling the measurements at the same fast rate as the 
inputs) always give a better performance than the multirate strategy (where the 
measurements are usually sampled at a slower rate than the inputs)? Or, is the 
performance of MR control systems always better than that of SSR systems in the 
presence of model-plant mismatch? In this chapter, we tread this path. Our objective 
is to gain an insight into the comparison problem in the presence of mismatch; check 
for those uncertainty regions where the superiority of one over another does not hold 
and finally, arrive at analytical expressions (if possible) for these uncertainty regions 
in terms of known model and design parameters.

It is a commonly held belief that faster sampling rates can yield better perfor
mance. On the other hand, it is also widely known that faster sampling rates can 
push the zeros of discrete system outside the unit circle (cf Astrom et al. (1984)),
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which means non-minimum phase zeros. That non-minimum phase zeros pose lim
itations on the closed-loop performance of LTI systems is a well known and widely 
addressed issue. However, it has been shown that with the aid of periodic digital 
controllers, one can arbitrarily increase the gain margin especially for unstable plants 
(Francis and Georgiou 1988). Additionally, periodic control allows for the possibility 
of relocating the non-minimum phase zeros (Khargonekar et al. 1985, Lee et al. 1987). 
These results lead us to believe the possibility of improving closed-loop performance 
using multirate control instead of single-rate control.

With the advances in digital technology and the theories for multirate systems, it 
is interesting and challenging to analyze performance benefits with multirate sampling 
especially when we desire to make fast control moves at the expense of sampling the 
outputs at a faster rate. From a practical point of view, it is necessary to understand 
whether a benefit is achieved by moving from MR to fast-rate systems given the 
presence of model uncertainties. On similar grounds, it is important to know whether 
we can achieve any benefit when we opt for MR control rather than SSR control in 
the presence of uncertainties. This is indeed an open problem and demands a rigorous 
analysis.

This work is partly motivated by some interesting results on the superiority of 
multirate inferential schemes over fast-rate single-rate schemes in the context of robust 
stability by Li et al. (2000a).

We consider only parametric uncertainties here. This is a preliminary analysis 
that is helpful in providing an initial insight into the robustness problem. The novelty 
in this work lies in the fact that we show that slower output sampling rates can be 
beneficial from a performance point of view when it is intended to make control moves 
at the fast rate in the presence of model uncertainty.

To carry out this analysis we require two pieces of information: (1) a benchmark for 
evaluation, and (2) an uncertainty structure. Here, we use the continuous-time LQR 
cost function as a benchmark and employ a  simple parametric additive uncertainty 
representation. To arrive at a general analytical result and make conclusions for 
MIMO systems is a difficult task and beyond the scope of the discussion. Therefore, 
in this thesis, we consider only a first-order SISO system. Parametric uncertainties 
are introduced in the gain and pole parameters.

5.2 Robustness Analysis
In order to assess the robustness, we obtain expressions for the difference in the LQR 
cost functions for the fast-rate and MR systems in terms of the model uncertainty. We
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will compare the robustness of these two systems for both performance and stability.
The notation in the following sections has its usual meaning. However, since we 

consider only first-order SISO systems, all matrices are treated as scalars, i.e., the 
uncertain continuous-time state space model is represented as (a, 6 , c, d) .  Estimated 
parameters are denoted with a hat; for example, an estimated pole is represented as 
a whereas the corresponding uncertain pole is a.

5.2.1 FSR systems vs. MR systems

In order to design a controller using the LQR technique, two items are essential: (%)
the input and state weights, and (ii) a state-space model of the plant. Following
the approach in Chapter 4, we start from continuous-time LQR cost function and 
then obtain equivalent discrete lifted multirate and single-rate cost functions. The 
following cost-functions are then equivalent:

ro o

I (xTqcx +  uTrcu)dt (5.1)
Jo

OO

y ^ (x fq Lxi +  u f  TLUt +  2xJnLul) (5.2)
1=0 
OO

+  u lr suk -I- 2xlnjUk) (5.3)
fc=0

where the weights in equations (5.2) and (5.3) are obtained using results obtained in 
Section 4.2.2.

The objectives of the LQR problems are:

min Jl s.t. xi+i =  cllxi +  6^  (5.4)

min Jr s.t. Xk+i = d fik +  b/Uk (5.5)
kf

Integer sampling ratio

We have already observed that for integer sampling ratios, (5.4) and (5.5) yield identi
cal optimal performance indices in absence of model plant-mismatch. This is natural 
since the lifted model consists of lumping together the intermediate states over the 
slow-sampled interval using the fast-rate model.

Assume d =  d =  0 and that the sampling ratio is an integer, n. The state-feedback 
control law for the MR and SFR systems yields:

xi+i =  {aL -  bLki)xi (denote j L =  (aL -  bLki.)) (5.6)

x k+i = (o/ -  bfkf )xk (denote 7 /  =  (af  -  bf k/)) (5.7)
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Therefore, the achieved cost function (obtained by implementing the control law on 
the plant) equals the estimated (optimal) cost functions:

OO OO
JL = X o (% 2 iL wL7lL)xo and Jf  = w p ) )x 0 (5.8)

1=0 fc=0

where

WL =  (qL +  k [rLkL -  2nLkL) ; wf = {qf  +  k jr f kf  -  2nf kf ) (5.9)

In the absence of model-plant mismatch, from the previous section it is known that 
JL =  Jj. Hence, it can be shown that over a period of n/i, the corresponding terms 
in (5.2) and (5.3) are identical. This is explained as follows. Assuming xo = 1, w i 
is the cost incurred for the lifted system during the first nh period (by putting / =  0 
in (5.2)) and Wf + jJ w f'j f  (by putting k = 1 in (5.3) and model equals plant) is the 
cost incurred for the FSR systems during the first nh period. Then,

w i  =  W f  -b j j w f l f  H b 7 j (n-1)u ; /7 ^ -1)

= ui/(l +  7 / +  ' '  • +  (5-10)

However, with the introduction of model-plant mismatch, the achieved cost functions 
given in (5.8) differ from their designed optimal ones and also from each other. We first 
consider those class of plants due to a  mismatch in the parameter bf, i.e., bf =  bf+Ab. 
All other parameters are fixed.
Mismatch in the gain parameter:

For a first-order SISO system, the difference in the achieved cost functions A J  = 
J f — Ji, can be written as:

W f  W l
A J  = Jf  -  JL =

1 - 7 /  1 - 7 )
W f

r [ ( l  — 72)  - a ( l  - 7 / ) ]  ( 5 . H )
(1 — 7 /)(l — 7£)' 

where (5.11) is obtained by using (5.10). From the definition of 7 /,

7 f  = af  -  bfkf — CLf — b fkf -  (Ab)kf  = 7 /  -  (Ab)kf  (5.12)

From the equivalence of the cost functions for the nominal plant, the controllers kf 
and k i  can be related as,

kL =  [ 1 7 /  • • • 7 / -1  ]Tkf  (5.13)
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Further define A =  [ a7} 1 a7} 2 • • • 1 ]r  and T = [ 1 7 /  • • • 7/ 1 ]T- With
equation (5.13) we can write,

7 l  = * l ~  = aL -  fiJ b /T k f = aL -  /3(bf  + Ab) = 7 L -  0(Ab) (5.14)

where /3 = A r Tkf is a scalar. Also, using equation (5.13), it can be shown that

Substituting equation (5.15) into equation (5.14) and using equation (5.12) in equa
tion (5.16), we obtain a quadratic inequality in terms of Ab,

Let us carefully look at the solution of the above quadratic problem, i.e., the situation 
when the performances of both the systems are identical. Firstly, it is clear that when 
Ab  =  0, A J  =  0 V n, kf. However, it is interesting to notice that a non-zero value of 
Ab  can also yield A J  =  0. This means that in presence of a model-plant mismatch, 
sampling the output signal at a slower rate can yield the same performance as when 
the output signal is sampled at a faster rate. In fact, four cases arise depending on 
the values of p and q, which in turn depend on the sampling ratio n and feedback

2. If p =  0, then A J  — 0 <f=> Ab = 0

3. If q =  0, then A J  = 0 <=> Ab = 0

It can be easily shown that the case when p =  0, q = 0 does not arise because there 
is no solution satisfying these conditions. For the second and third cases, it is not 
possible to arrive at explicit solutions in terms of n and kf. Therefore, they would
have to be numerically computed. However, our primary interest is the first case.
Given n and kf, the value of Ab  is computable from equation (5.17) as:

7 l  =  7 f

From equation (5.11), we can translate the condition.

(5.15)

A J  > 0 <=> (1 -  7! )  -  a ( l  ~  7 f )  >  0 (5.16)

p(A 6 )2 +  2q(Ab) >  0 (5.17)

where p, and q are known quantities, expressed as,

p =  (akj ~(S2); q=  (/?7? ~ akf 7 7 ) (5.18)

gain kf.
2a

1 . If p and <7 ^ 0 , then A J  = 0 <=>■ Ab — 0 or Ab = ----

(5.19)

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It is clear that the roots of equation (5.17) are real V Qc,R c,n. Therefore, we can 
conclude that in situations excepting cases 2 and 3 discussed above, the superiority 
of FSR systems over MR systems holds iff.

min(0,6 2 ) < Ab < max(0. do) (5.20)

To summarize, we are able to give expressions for those intervals of uncertainty 
where MR systems can perform better than FSR systems, in terms of model and 
design parameters. Next, we consider the case of pole mismatch with all other pa
rameters fixed.
Mismatch in the pole parameter:

Consider the class of plants arising when a / =  d / - ( l  — e)d/, where e €  TZ, the 
set of real numbers. Then,

7 f  = af -  bfkf = 7 /  -  (1  -  e)af

and

_n—1 1 n—2^n—27 i  =  endj -  [ en ‘ay ‘ e“ ‘ay 1 ] bfkf

(5.21)

(5.22)

Equation (5.22) can be in fact rearranged to give,

—(en -  1) 0

7L = 7l ~ [  a} • • • af  ] 0 (e"-1 -  1) 0

0 ( « - l )  J

bfTkf

=  7  l — d / A T E 6 / r f c /  

=  7L - f ( e ) a /

= 7/ -  (1 -  e)g(€)d/ (5.23)

where g(e) is a polynomial in e of order (n - 1 )  such that g(l) ^ 0 .  The last equation 
is a result of the fact that /(e) =  0 iff e = 1.

Recalling equation (5.16), we again consider the situation when A J  =  0. This 
can happen only when (1 — 7 /)  — a ( l  — yj) =  0. Using equations (5.21) and (5.22), 
we can write this condition as:

(1—y£)—«(1—7/) =  -F(e) =  ( l - e ) 2 a }(a -g 2 (e))+2(l-e)af (r fg (e ) -a j/)  = 0  (5.24)

From equation (5.24), as expected, it is clear that e =  1 is a  root of'F (e) =  0. 
Moreover, as observed in the earlier case of mismatch in b, in this case too there exist
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values of e different from unity that yield identical performances for both systems. 
Since g(t) is a polynomial of order (n — 1). there are a total of 2n roots for equation
(5.24) including e = 1.

Although the (2n — 1) values of e cannot be computed explicitly, it is of interest to 
compare the situation with the earlier case of gain mismatch. In the former situation, 
there was only one point beside the trivial solution A 6 =  0 for which both the systems 
gave identical performances. Thus, the number of solutions were independent of the 
sampling ratio, n. In contrast, here the uncertainty region is divided into (2n — 1) 
(unequal) intervals, at the nodes of which, MR control achieves identical performance 
as the fast-rate control. This implies that as the sampling ratio increases, the un
certainty interval encompasses more and more such points of identical performance. 
However, it should be noted that if the roots are complex, the number of intervals 
would be different from (2 n — 1).

Due to the dependency of the number of zeros of F(e) on n, it is not possible 
to arrive at an explicit condition as in equation (5.20). The winner among the MR 
and fast-rate control systems in the given uncertainty interval for the parameter a 
depends on the sign of F(e) in that interval. A positive sign would indicate that MR 
system is a better choice than fast-rate systems.

R ational sam pling ra tio

Now, consider the above situations (gain and pole mismatches) when the sampling 
ratio is rational. From Chapter 4, we know that the performance of fast-rate systems 
gives a lower bound on the performance of MR systems. The strict equality holds 
good for integer sampling ratios. When the sampling ratio is rational, the inequality 
comes into role. Therefore, equation (5.10) does not hold good in this case. Define,
d =  1 + 7 /  H 1- 7 /  (/ is the l.c.m. of the sampling intervals). Also, the relations in
equations (5.13) and (5.15) no longer hold good. Hence, we define (3 =  where

to write 7 l  = 7 £, — /3(Ab). Then, the difference between the optimal performances 
can be written as:

A =  [ {alf~l + alf 2 +  • • • +  alf m) ■■■ (a!I—(n—l ) m — 1
7 + ••• + 1) f

W f  U)L

1 —7/ 1 - 7 1
1 (p(A6 )2 +  2<j(A6 ) +  f) (5.25)

(1 — 7 / ) ( l  — 7 l )
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where p, q and f  are defined as,

p  =  ( wLk)  -  w f p 2) ; q =  ( w f f i n f L - WL i f k f )  ; f  =  w f ( l  -  f t )  -  w L( \  -  f t )

(5.26)

In the integer case, I = n, w i = aw/ and equation (5.15) simplifies to equation 
(5.18) with f =  0.

The sign of (7/ — Ji)  is determined by the sign of the quadratic expression in 
equation (5.25). Note that the denominator is always positive for stable closed-loop 
systems. Also, since A J  < 0 when A b =  0, f  < 0 V Rc.

As earlier, we investigate conditions when A J  =  0. Four possibilities arise:

1. If p &c q 7̂  0, then A J  =  0 iff (Ab) = (Ab)i or (Ab) = (Ab)2 .

2. If p =  0, then A J  =  0 iff Ab  =  — ■?—
2 q

3. If q =  0, then A J  =  0 iff (Ab ) 2 =  - t
V

4. If p =  q =  0, then A J  =  0 iff r  = 0

where (Ab)i and (A b ) 2 are the roots of quadratic expression in (5.25). Cases 2 and 
3 assume that f ^  0. We are mainly interested in the case p, q ^  0. In fact, the last 
case arises only when the input weight becomes large.

In order for (Ab)i and (Ab ) 2 to be real, we require that (q2 — pr) > 0 . It is hard 
to comment on the sign of (q2 — pr) given the known parameters. However, it can
be said that as Rc becomes large, one of the roots will tend to zero (since f  tends to
zero).

From the above discussion, it can be stated that for the rational sampling ratio 
case, FSR systems perform better than MR systems iff,

(A 6)i < Ab < (Ab ) 2 where (Ab)i < (Ab ) 2 (5.27)

Again, these intervals can be estimated with the help of known model and design 
parameters.

Now, consider the pole-parameter mismatch case. The results are similar to those 
in the integer sampling ratio case, except that now we would have 21 nodes where the 
MR systems will yield identical performance as the FSR systems. Additionally, the 
quantity E  has to be modified to a  new quantity E in accordance with the definition 
of A.

Robust stability
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So far, we have analyzed and compared the performance of these systems in pres
ence of a model-plant mismatch. However, we have assumed inherently that both 
systems obey the conditions of closed-loop stability. Here, we include the stability 
conditions in an explicit fashion as they are crucial to the earlier analysis. We only 
consider the gain mismatch case as the pole-mismatch case is beyond the scope of 
this discussion.

The common interval for which both the control systems are stable and J /  <  Ji 
is given by (for the rational case)

max (5.28)

Given the model and design parameters, the above interval can be easily computed.
Using the expression given above, we can compare the robust stabilities of MR

and FSR system. Since y i  is closer to zero than 7 /, it turns out that lifted MR
systems are more robustly stable than the associated FSR systems whenever /3 «  kf. 
Additionally, whenever /3 > kf, the MR system is more robust on the lower bound, 
with the FSR system on the upper bound.

It is interesting to compare this result with that given by Li et al. (2000a), where 
it was shown that dual-rate inferential systems are, in general, more robustly stable 
than their associated FSR systems.

In the next section, we perform a similar analysis for MR systems vs. SSR systems.

5.2.2 MR vs. SSR systems

Define,

ws =  (q3 4- k jr sk, -  2n 3ks) (5.29)

ft =  ( ^ A i ) f c .  (5.30)
t

Then, 7, =  7s -  ft(A6). Note that ft > j3 and hence, y i > ys.
We directly analyze the rational sampling ratio case. The difference in perfor

mances can be written as:

wr tv,
A J  = JL - J S =  — L— ------- —

1 -  T l  1 -  7?

1 (p(A6)2 +  2?(A 6 )+ f) (5.31)
( l - l £ ) ( l - 7 ? )

where p =  (u>,/32 -  wLQ,2), q = (wLQ ia -  ws(3yL) and r  =  wL(l -  y2) -  iv3(l -  t£). 
Here, as per earlier discussion, r  <  0 since J i — J„ < 0 when Afe =  0.
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Based on our earlier analysis, we can directly state that MR systems perform 
better than SSR systems iff,

(A 6)x <  A b<  (A6)2 , (Aft)! < (Aft) 2 (5.32)

where (A 6)x and (A 6)2  are the roots of the quadratic expression in equation (5.31). 
It is not guaranteed that the roots are always real.

For the pole mismatch case, as in earlier situations, it is easy to see that we would 
have 21 nodes at which the SSR systems can give identical performance as the MR 
systems.

In the following discussion, we show that MR systems are more robustly stable 
than SSR systems in presence of gain mismatch.

Robust stability

As in the earlier analysis, we can write the common interval for which both the 
control systems are stable and Jc < Ja as (for the rational case)

max ( 2 ^ A ,  (A 6) i )  < Ai> <  min ( ^ A ,  (Ai>)2)  (5.33)

Recall that fl > (3 and hence ox > 7 s- Therefore, we can rewrite the above condition 
as,

max (A 6) i )  < A 6 < min (Aft)a)  (5-34)

From the above expression, an interesting conclusion arises - MR systems are more 
robustly stable than SSR systems to gain mismatches.

In the next section, we present simulation results that allow us to gain more insight 
into the behaviour of these systems in presence of a gain mismatch.

5.3 Simulation Results
Consider the experimental model used in Chapter 4 at the fast sample rate h = 4:

Gf (z) = 0 1 - 16  (5.35)
A 1 z-0 .9868  v '

For illustration purposes, choose the control interval m = 3 and output sampling 
interval n =  5 fast sample units. The state weight Qc is set to 10 and the input 
weight Rc is varied on a log scale from 0.01 to 1000 in 30 intervals.

First, observe the plot of p, q and f  vs. log10 Rc shown in Figure'5.1(a). As 
expected, f  < 0 V Rc. Moreover, p and q pass through zero once and tend to zero as
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Ticadofp

ft*

(a) Variation o f p, q and f  with Rc (b) Trajectory o f roots with Rc

Figure 5.1: FSR vs. MR systems - performance comparison

Rc —* oo. As p —► 0, one root tends to zero and the other root tends to oo. This point 
is illustrated in Figure 5.1(b) where the roots of the quadratic expression in equation
(5.25) are plotted along with the trend of p.

The robust stability bounds along with the roots are plotted in Figure 5.2(a). It 
is seen that while the root with smaller magnitude always remains within the robust 
stability bounds, the other root reverses its sign and remains out of these bounds. 
Another point to note is that the roots for all values of Rc are real. Adjacent to this 
plot is shown how the bounds for robust stability are decided depending on (3 and 
k/. A flag value of “1” is used to indicate that the bounds of the FSR system decide 
the boundaries of robust stability while a value of “2” indicates that the bounds are 
decided by that of the MR system. This means that when the flag value is “1”, 
for example, then the bounds of the MR system are wider than that of the FSR 
system - meaning that the MR system is more robustly stable than the FSR system. 
As mentioned earlier, Figure 5.2(b) illustrates that for almost all situations when 
P < kj, MR systems are more robust than FSR systems with respect to stability.

Now, we compare MR systems with SSR systems. Similar plots are shown in 
Figures 5.3 and 5.4. An interesting observation to make is that Figure 5.4(b) shows 
that MR systems can tolerate larger intervals of uncertainty in the gain estimate 
than SSR systems for closed-loop stability. Our earlier theoretical analysis yielded 
the same conclusion.

The important point to note here is that a few complex roots were obtained with
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Figure 5.2: Effect of input weighting on MR and FSR systems (robustness analysis)
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(a) V ariation  o f  p , q and f  with Rc (b) Trajectory o f  roots with Rc

Figure 5.3: Effect of input weighting on MR and SSR systems (robustness analysis)
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MR & SSR systems - 0  and Q vs.
Rc

Figure 5.4: MR vs. SSR systems - performance comparison

the last few large values of Rc. However, one cannot make any general conclusions
about the nature of roots (complex or real) as Rc is varied.

5.4 Summary
In summary, for first-order SISO systems in the presence of model-plant mismatch:

•  Given model and design parameters, we can calculate intervals for parametric 
uncertainty from which one can directly infer the better of the FSR, MR and 
SSR systems for optimal performance and robust stability.

•  MR systems are more robustly stable than FSR systems for almost all cases of 
P < kf with a gain mismatch.

•  MR systems are more robustly stable than SSR systems in the presence of a 
gain mismatch.

•  In the presence of a pole mismatch, with the increase in I, there is an increase 
in the number of nodes of uncertainty at which among each pair of MR and 
FSR, MR and SSR systems give identical performance. However, it is hard to 
comment on the robustness of stability in such a situation.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  As input weight Rc becomes large, even in the presence of model-plant mis
match, all three systems tend to give identical performance.

5.5 Future work
Although the analysis here is based only on first-order SISO systems, it provides 
an insight into the robust stability comparison and optimal performance comparison 
problems. Comparison of robust stability of these systems for higher-order SISO 
systems and MIMO systems involves a well-known problem known as the stability 
radius problem. Inclusion of such an analysis is intended in the future so that a 
generalized inference can be made.

In the future, the objectives would be (i) to arrive at a general result for higher- 
order SISO systems and MIMO systems, and (ii) tackle this problem for output 
feedback systems.
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Chapter 6 

M ultiscale Analysis Using Wavelets

P urpose: To introduce the reader to wavelet theory from a filtering perspective with 
illustrated applications to process industry.

6.1 Multiscale Systems
So far in Chapters 2-5, we have discussed issues arising in the design of multirate 
control systems and the related performance benefits in comparison with single-rate 
systems both with and without model-plant mismatch. In Chapter 1, we noted that 
multirate systems are in fact, a special class of what are termed as multiscale systems.

Multiscale (MS) systems as defined in Chapter 1, are those class of systems whose 
variables evolve over different/multiple time-ffequency scales or, equivalently those 
which possess significantly differing time constants. Examples of such systems are 
in series chemical reactors with different residence times, chemical vapour deposition 
reactors (where coupling of fast and slow reaction occurs), etc. Another commonly 
occurring system is the ubiquitous distillation column with large number of trays 
where the effect of vapour boilup on the top product occurs relatively slowly than 
recycle flow. In fact, many industrial processes involve physico-chemical phenomena 
that occur in separate time scales.

Multiscale nature can also be introduced in the data for several reasons. First due 
to different sampling rates, which is none other than the multirate sampling scheme. 
Secondly, in the process industry, seldom do measured data contain contributions 
from a single scale since the overall contributions to a sample usually come from 
different localizations in time and frequency. In addition, the data is corrupted with 
noise due to stochastic events such as measurement noise, disturbances, faults, etc. 
that often occur in different time zones in different frequency bands. Fqr example, 
a typical process signal can be a combination of a  constant frequency disturbance
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with high-frequency noise, in the presence of slow equipment degradation added with 
intermittent abrupt sensor failures, etc. (Bakshi 1999). Clearly, these components 
occur at different times and belong to different frequency bands.

Identification, control and monitoring of multiscale systems can be more compli
cated and cumbersome than that of single-scale systems. Many a time, complicated 
system models are used to represent these type of systems. It is well-known that a di
rect application of standard control methods, or even modern control methods to such 
multiscale system models can lead to complicated or ill-conditioned controllers (high 
sensitivity), closed-loop instability, etc. (Christofides and Daoutidis 1996b. Kokotovic 
et al. 1986). To circumvent these problems, multiscale systems can be represented 
as a combination of models with fast and slow dynamics (Luse and Khalil 1985). 
This decomposition is advantageous for the reason that the design criteria for the 
slow dynamics differs considerably from that of the fast dynamics. Moreover, the 
degree of accuracy with which slow dynamics are identified is quite higher than that 
with the fast dynamics. In this context, singular perturbation theory has found a 
comfortable place in the theory of multiscale systems (Kokotovic et al. 1976, Saksena 
et al. 1984, O’Reilly 1980, Kokotovic et al. 1986, Khalil 1987). FVequency domain 
techniques have also found a strong application in this area. In this work, however, 
we are concerned with the analysis of multiscale systems in the time and frequency 
domains simultaneously using process data.

Representing measured data in terms of basis functions at a single scale is not 
efficient in separating the different frequency components of a signal, for example, 
dynamics from the stochastic component. In fact, any single-scale method is inher
ently forced to trade-off the extent of noise removal with the quality of the retained 
features (see for e.g., Bakshi (1999)). Now, let us look at it from a frequency do
main point of view. Raw measurements typically provide a good picture of the time 
variation, but, obscure the frequency information. Fourier transforms, which belong 
to the class of single-scale methods, give us an excellent picture of the underlying 
frequency information at the cost of losing the knowledge of time variations. This 
is acceptable for stationary signals, i.e., those signals whose frequency content does 
not vary with time. But, in reality, is stationarity a practical assumption? Chemi
cal processes seldom give rise to stationary signals. In speech recognition or musical 
tones where different scales (pitches) appear at different times, stationarity is far from 
being true. Non-stationary signals emphasize the need for a tool that enables us to 
view the frequency variations in time.

Therefore for multiscale systems, a more natural scheme would be the one that 
is capable of taking into account the underlying different time-frequency scales while
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achieving good separation between the deterministic and stochastic parts of a sig
nal. In filtering terminology, the multiscale method of interest should be capable of 
providing varying time-frequency resolution depending on the signal features.

Recently, the theory of wavelets has occupied a prominent place mainly in the 
analysis of non-stationary signals and data pre-processing. The wavelet transform is 
a powerful tool that allows decomposition of data into components whose frequency 
resolutions are matched to their scale. In other words, the low frequency components 
are well resolved in frequency, while the high frequency components are well resolved 
in time. In essence, they separate the slow and fast components of a signal in a way 
that is suitable for effective control and monitoring of MS systems. They also possess 
other attractive properties that have made them a popular choice for the analysis 
of multiscale systems. In the wavelet literature, the term scale is a synonym for 
frequency, despite the difference in their connotations.

Fault detection, needless to say is a crucial component of the safe operation of 
a plant. Existing fault detection methods are based on the stationarity assumption. 
Again, this assumption is more often impractical due to several reasons. Faults oc
curring in process industry rarely occur simultaneously. Besides, depending on the 
nature of the fault, they fall in different frequency categories. Conventional PCA (in
cluding its variations) assume that measurements possess single-scale characteristics, 
thus resolving different types of faults at the same level. Multiscale PCA (MSPCA) 
described by Bakshi (1998) first separates the characteristics of measurements into 
different time-frequency scales using wavelets and then builds PCA models on each 
of these scales.

In the ensuing section, we present an illustrative introduction to wavelets - the 
motivation, brief mathematical background and the filtering algorithm to implement 
wavelet transformations. These transformations form the basis of the multiscale anal
ysis discussed in this chapter.

6.2 Introduction to Wavelets
Over the last decade, the scientific literature has been inundated with a myriad of 
perspectives on wavelet theory. The theory of wavelets is not new, but rather known 
to mathematicians, physicists and scientists in various forms for several decades. It 
is the work by Morlet et al. (1982) that brought researchers from different disciplines 
together to provide a more unified framework of wavelet theory. In some school of 
thought, it is also believed that Fourier, in a  way, laid foundation with his pioneering 
work on frequency domain analysis. Fourier transforms are a foundation for many of
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the frequency domain techniques that have appeared in several disciplines.
Although wavelets can be introduced in many ways, an intuitive way is to begin 

with Fourier transforms. This is particularly useful for engineers and scientists as 
the motivation for wavelet transforms becomes clearly visible with the type of signals 
encountered in engineering and scientific systems. Because frequency domain analysis 
has close relations with filtering and the ease of implementation of wavelet transforms, 
we focus on the filtering perspective of wavelet transforms. For detailed historical 
details behind the development of wavelets, the reader is referred to Meyer (1986), 
Daubechies (1992) and Mallat (1998).

6.2.1 The Need for Wavelets: Why?

Process data is usually recorded as variations with time giving a direct view of the 
changes in the time domain. On many occasions, we are interested in how ’’fast” or 
’’slow” a particular variable changes with time leading us to the frequency regime. 
Ideally, we would like to convert the existing time information into frequency informa
tion. Joseph Fourier (1807) in his pioneering work addressed and solved this problem 
by proving that a periodic signal f (t)  can be decomposed into building blocks made 
up of sines and cosines. Fourier transforms (FT), as they are popularly known since 
then played a vital role in almost every engineering and scientific application. The 
Fourier transform of a signal f ( t ) is defined as:

/ + °o

/( t)e _,w£dt (Continuous) (6.1)
OO

/ N  = /M  exP ( ~ l“ ^~ )  (Discrete) (6.2)

where f(t) is sampled with interval T.  The set of values f[k] is the measurement 
of f (t )  in discrete-time. Equation (6.2) is of practical interest as it deals with sam
pled signals. In essence, a data sequence f  [n] is convolved with a class of complex 
exponential functions at different frequencies. Alternatively, it can be said that the 
sequence f[n] is decomposed into a set of building blocks that are sinusoidal waves, 
infinitely long in time and perfectly localized in frequency. The magnitude of each 
building block is a direct measure of the ’’strength” of the signal at that frequency. 
The basis functions or the building blocks come from the so-called transformation 
kernel: K(t,u>) =  e_twt.

In practice, we look at the magnitude of the complex FT to assess the frequency
content of a signal. Also, note that the inverse of Fourier transform provides a perfect
reconstruction of the original signal.
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Figure 6.1: Fourier transform, o f signal: f ( t )  = sin(27rlQt) -)- sm(27r50f) +
sin(2-jr200t) + sm(27r300f) - provides good frequency resolution

Figure 6.1 shows the FT of a signal /(f) =  sm(27rnif) +  sm(27rn2f)4-st'n(27rn3f) + 
sin(27rn4f) with ni =  10; n2 =  50; TI3 =  200; and n4 =  300 sampled at a frequency of 
1000 Hz (cycles/sec) (T = 1 ms). The plot clearly illustrates the capability of Fourier 
transform. The frequency resolution achieved with FT is high and evidently improves 
with the increase in sampling frequency. The upper limit to frequency resolution is 
decided by the sampling frequency of the discrete signal at hand, or by the Nyquist 
frequency. The term resolution is intuitively understood as the degree of detail in the 
respective domains.

Now, observe Figure 6.2 showing the FT of two signals. The transforms look 
similar with the exception of small ripples and the smaller amplitude in the second 
plot. The question is: could the underlying signals be similar in nature?. We already 
know the underlying time domain signature for signal 1. So, do the plots indicate a 
close resemblance of signal 2 with signal 1? Figure 6.3 answers our question indicating 
that signals 1 & 2 differ considerably from each other. While signal 1 contains four 
frequencies at all times, signal 2  contains these four frequencies over different non
overlapping time intervals. Essentially, the FT  fails to distinguish between two signals 
which contain identical frequencies but with different frequency distributions. What 
could be the reason for this drawback? Recall from the definition in equation (6.2) 
that the FT decomposes a signal into building blocks that are infinitely long in time, 
and, perfectly localized in frequency (sinusoidal waves never die with time but oscillate 
with a fixed frequency). By integrating (or summing) over the infinite time domain,
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(a) Fourier transform of signal 1 (b) Fourier transform of signal 2

Figure 6.2: Fourier transforms of two signals - look almost identical

we are unable to focus on the local features of this signal. This is a major drawback of 
FT in many situations. In situations that do not require the knowledge of frequency 
variations in time, FT is a powerful tool. Signal 1 is an example of a signal whose 
frequencies do not change with time while signal 2 is an example of a signal whose 
frequencies evolve with time. To summarize, FT  provides perfect frequency resolution 
but loses out entirely on the time resolution.

In order to overcome this drawback, Gabor (1946) introduced what is known as 
the Short-Time Fourier transform (STFT) or the Gabor transform. Although the idea 
is simple - slicing the signal using a finite length of the window and then performing 
its FT and STFT provides a good solution to the problem. Mathematically, the 
STFT is defined as:

/ + o o  1 f + o o

f{ t)g { t-u )e - '« d t = — j_  f{u j)g {u j-^ e - iu^ d w { Q .Z )

The transformation kernel in this case is the window function: K(u, £) =  g{t—u)e~xt*. 
It is the function g(t — u) which selects that slice of f ( t )  in the neighbourhood of u. 
Both the expressions are identical in equation (6.3) by virtue of Parseval’s theorem. 
The identity also means that the effect of windowing a function in time and performing 
the Fourier transform is equivalent to multiplying the FT of the window function with 
the FT of the signal in the frequency domain. Thus, STFT localizes the FT of the 
function, / ( u)  in the neighbourhood of £. The length of the window g(t — u) decides 
the time resolution of the resulting STFT. Because we have gained a resolution in
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(a) Signal 1 (b) Signal 2

Figure 6.3: Signals 1 & 2 - quite different from each other

time over the pure FT, it is intuitive that we lose out on the frequency resolution. In 
fact, the pure frequencies in the original FT become frequency bands localized in the 
neighbourhood of £. Figures 6.4(a) and 6.4(b) illustrate the STFT of the two signals 
discussed earlier. The plots clearly show the capability of STFT in distinguishing 
these signals. A Hanning window with a width of 32 units was chosen for this purpose. 
Upon an increase in window width to 512 units (one-fourth of the signal length), the 
STFT appears as in Figure 6.5. The plot shows marked improvement in frequency 
resolution at the loss of time resolution.

Based on Figures 6.2, 6.4 & 6.5, let us make a quick comparison with FT. While 
we had pure frequencies in FT, we now have frequency bands in STFT, but at the 
benefit of additional time information. The excellent frequency resolution in FT is 
now divided into good time and lower frequency resolution with STFT. However, on 
increasing the window length, we begin to improve on the frequency resolution but 
at the loss of distinction in time (note the overlaps in time in Figure 6.5).

As in the earlier case, the upper limit to the frequency resolution is limited by 
the Nyquist frequency of the discrete signal. As the window size gets larger the 
frequency resolution gets better and the transform asymptotically takes the shape of 
FT. However, the key observation to make is that we could not achieve both good 
time and frequency resolution simultaneously. In fact, the resolutions are governed 
by Heisenberg’s uncertainty principle that states that the energy spreads in  the time 
and frequency domains, at and <JU cannot be arbitrarily small simultaneously and are
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(a) S T F T  of signal 1 (b) ST F T  of signal 2

Figure 6.4: STFT of signals 1 & 2 using Hanning window (window width = 32 units) 
- capable of distinguishing signals 1 & 2
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Figure 6.5: STF T  of signals 1 & 2 using Hanning window (window width = 512 units) 
- loss in time resolution with increase in frequency resolution
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related ay the formula,
1

CTtCuj >  7) (6.4)

where

<*t = /  t2 \g{t)\2dt ; aw =  /  ~ 2 \g(u)\2du (6.5)
J — OO * / - o c

Here, we assumed that the window is normalized meaning ||g||2 =  1.
Equation (6.5) carries an important connotation: at and crw are independent of 

the parameters u and £. This means that once the window characteristics are fixed, 
the frequency resolution is fixed in the STFT. A useful way of looking at it is that 
the entire time-frequency domain is divided into boxes of same size. But, this is not 
the desired division of time-frequency plane. Ideally in order to capture the high- 
frequency features, we need to look through a narrow window and on the other hand, 
the low frequency or slow changes can be resolved well only by looking through a 
wide window. In other words, we need good time resolution for capturing the high- 
frequency components and good frequency resolution for capturing low frequencies. 
These conflicting requirements make the problem of time-frequency transform very 
challenging and interesting. The question remains: how do we accomplish these 
different resolutions? One way is to perform several STFT analyses with different 
window sizes. However, this can result in a highly redundant representation of the 
original signed and involves a large amount of bookkeeping.

Wavelet transforms offer an elegant solution to this problem by choosing a constant 
relative bandwidth:

in contrast to the constant bandwidth as in STFT. It is important to note that the 
uncertainty relationship given in equation (6.5) still holds good. The difference lies
in the fact that now. at and aw are each scaled by a factor -  and s respectively.s
However, the product remains invariant. The large amount of bookkeeping is avoided 
due to the fact that the different window sizes are obtained from the same mother 
wavelet function by varying the scaling factor.

In the next section, we give a detailed discussion on the mathematical background 
behind these transforms.

6.2.2 Wedding Tim e and Frequency: Wavelets

The idea behind wavelet transforms is similar to that of performing STFT analy
ses with different window sizes. However, the low frequency component of /(f) is

Aw
(6.6)
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extracted using a wide window and the high frequency component using a narrow

scaling and translating only one scaling function 4>(t). Such a commonness is absent 
in STFT. This is the basic difference between a wavelet transform and STFT. The 
role of the scaling function will be clear once we are familiar with wavelet functions.

The wavelets meaning ’’little waves” arise by scaling and translating a finite energy 
’’mother” wavelet function ip(t) with zero mean. The mother wavelet itself can be 
expressed as a linear combination of the scaling function (as seen later), and the 
wavelets can be then expressed as:

The values of scaling parameter s determines whether a compression or dilation of the
mother wavelet takes place. If s > 1, there is a stretching of ijj(t) along the time axis,
resulting in a wide window that is suitable for analyzing the low frequency features
of a signal. On the other hand, if 0 < s < 1, ip(t) is in a compressed state that is
suitable to analyzing the high-frequency components of the signal. The parameter
u as in STFT is the translation parameter, used to traverse along the length of the
signal. The factor -4= is a normalization factor so that the energy of the wavelets 

vM
is the same as mother wavelet. The Continuous Wavelet Transform (CWT) is then 
given by the formula,

From above, it is clear that CWT is the correlation at lag b between /(£) and the

window. These windows (basis functions) in a wavelet transform are obtained by

(6.7)

/+0O
K M m d t

*00

(6.8 )

wavelet dilated to a scale factor s. A classical example of a wavelet is the Mexican hat 
wavelet function obtained by taking the second derivative of the negative Gaussian 
function —e~‘2/2,

^(t) =  (1 -  2t2)e' t2 (6.9)

As in FT, the original signal /(f) can be restored perfectly using,

(6.10)

where is called the admissibility constant and is given by,

<  oo (6 .11)
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The reproducing kernel in this case is: fcuiS =  ( ^ ) .  Equation (6.11) imphes that
rp(Q) =  0 (assuming ip(.) is real) meaning ip{.) should have a zero average. Another 
way of interpretation is that the mother wavelet should be a small wave that should 
die off quickly with t. The zero average also indicates that the wavelet characteristics 
can be related to the impulse response of a band-pass filter g[n]. In fact, equation
(6.8) can be written as a convolution equation:

Wf(u,  s) =  f ( t )  * v s(u) ipa{t) =
V s

Equation (6.12) is of crucial importance in implementing wavelet transforms. The 
convolution results in filtering of f (t )  with a series of dilated band-pass filters.

The wavelet coefficients produced using equation (6.12) reflect the amount of 
correlation of the signal with the basis function at that scale and position.

Scaling function

Recall that since wavelets are zero average functions, wavelet transformation is iden
tical to band-pass filtering. Furthermore, filtering is equivalent to approximating the 
signal at a particular frequency resolution. Therefore, with wavelet transformations, 
we are in essence building approximations of a signal at different time-frequency res
olutions. It is intuitive that it requires infinite number of wavelets to decompose a 
function and reconstruct it without loss of information (since wavelet filters are band
pass filters). Assume that the we have built an approximation of a function Wf(u,  s) 
up to a scale s < s0. Then, we need a complement of information corresponding to 
W f ( u , s ) s > s0. This aggregate information is obtained by introducing a scaling 
function corresponding to scales s > 1, with its modulus defined as,

MoOP = f £  W ^ ) l2f  =  / +“  (6.13)

The above definition is reflective of our earlier representation of the mother wavelet 
function as a linear combination of the dilations and translations of a scaling func
tion. Using the above definition and the admissibility condition, it is easy to show 
that lim^—o 4>(u) =  Cy, indicating that the scaling function can be interpreted as an 
impulse response of a low-pass filter h[n].

With the introduction of a scaling function, now any finite energy signal /(f) 
can be expressed as a combination of finite number of scaling and wavelet functions. 
This is the basic idea behind the wavelet decomposition of a signal. The scaling 
function transformation or low-pass filtering builds an approximation of the signal
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Figure 6.6: Time frequency tiling with Delta, Fourier, STFT and Wavelet basis func
tions

while the wavelet transformation (high-pass filtering) gives the details (the remaining 
information) of the signal. Further, the approximation can be decomposed in a similar 
way. Thus, we achieve a  multilevel approximation of the signal as the scale parameter 
s assumes different values.

Figure 6.6 shows a comparison of the abilities of FT, STFT and CWT in dividing 
the time-frequency plane.

The raw sampled data belongs to the space spanned by delta functions, where the 
time resolution achieved is the best and limited by the sampling interval, however, 
with poor frequency resolution. In contrast, Fourier transformation rearranges the 
time-frequency tiling with the best possible frequency resolution limited by the sam
pling frequency. However, there is an entire loss of time information in the Fourier 
domain. Next, with the STFT, the information is re-arranged in time-frequency tiles
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of fixed area. The STFT is equivalent to linear filtering as we can write,

J —OO

where g^(u) =  g(—t)eli*.
But the desired tiling as we noticed earlier is that low-frequency components need

time-frequency tiling is given in the last plot, which is achieved with wavelet basis 
functions.

The CWT is a redundant representation of the signal as it maps a 1-D signal to a
2-D space. But, it is a translation-invariant representation, meaning if f T{t) =  f { t - r )  
is a translation of /(£) by r , then,

But, in practice, we use only the discrete version of the CWT by computing the 
transforms only at intermediate scales, in particular, at dyadic scales. This is accom-

shifted over large steps whereas high frequencies (small values of j )  will require small 
steps to capture the quick variations in the signal. In this way, the discrete wavelet 
transform (DWT) achieves the trade-off between time and frequency resolutions. The 
most popular DWT that is implemented is the dyadic one by setting ao =  2 and 
bo =  1. Note that the DWT is still the transform of a continuous-time signal. The 
DWT mentioned here should not be confused with the dyadic wavelet transform in 
the wavelet literature in which only the scale parameter s is discretized in dyadic 
levels, but not the translation parameter u. The dyadic wavelet transform maintains 
the translation-invariance of the CWT unlike the DWT.

Next, we are concerned with the implementation of wavelet transforms. The 
discrete wavelet transform (DWT) is a discrete convolution equation implemented 
using a two-step procedure known as the pyramidal algorithm due to Mallat (1989). 
The algorithm consists of first convolving the data with the low-pass and high-pass 
filters. The second step is the downsampling of the resulting convolved data. This 
is the key step and an attractive feature of wavelet transforms. At a first glance, it

wide windows in time and high-frequency windows need narrow windows. This ideal

W/(u, s) = f T* M u )  = Wf [ u  -  r, s) (6.15)

plished by discretizing the scaling parameter s =  aJQ and making translations in time 
proportional to that scale of the wavelet, u =  kboaJQ.

(6.16)

In this way, low frequency analyzing windows (meaning large values of j)  will be
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appears that downsampling might result in a loss of information. However, as we will 
see in the next section, downsampling in fact is a solution to remove the redundancy 
in the wavelet transforms.

6.2.3 Wavelet Filtering

Wavelet transform decomposes a signal into successive bands of low to high fre
quency. This decomposition is obtained by consecutive two channel filtering and 
downsampling operations applied only on the low frequency band at each stage of the 
decomposition.

We begin with a simple example. Consider a data sequence xx, i 2 ,X3 , • • • , i n 
of interest. Let us consider the decomposition of this sequence into an approxima
tion and detail. Choose a set of low-pass and high-pass filters known as the Haar 
filters (Haar 1910) whose impulse responses are h =  [ ^ -^ ]  and g =  re
spectively. Then, the filtered data sequence is di =  *gJ jp , TÎ jp , x-̂ p ,  • • • , and dx = 

, ^ p i  ‘ ‘ ' i respectively. Next, downsample by a factor of 2 (remove every 
other sample) to obtain oi =  i2^ i , • • • , and di =  a^jp-,S jjp ,
respectively. But we can still reconstruct the original sequence with this downsam
pled sequence as x x =  , i 2 = ai(I^ d x) , • •. r In fact, this is exactly the same
as upsampling ax and dx by a factor of 2 (insert zero in between samples) followed 
by convolution with h = [^-^-] and g = [^--^|]. The combination of filtering and 
downsampling steps can be repeated on the sequence ai until the desired stage. This 
is exactly the multiscale representation of a signal.

The above procedure of analysis (transformation) and synthesis (reconstruction) 
reflects the underlying principle of the pyramidal algorithm for the implementation 
of DWT. It was suggested by Mallat (1989). The idea is to obviate the need to 
convolve every sample of the original sequence with a long scale wavelet filter to obtain 
approximation and details at any given level. Instead, as we go to higher scales, the 
convolution sequences become shorter increasing the speed of the algorithm.

Each scale of wavelet ensembles a distinct band of frequencies in such a way 
that there is a minimum overlap of information among adjacent scales. This band- 
limitation of the wavelet is performed by dividing the time-frequency space into pro
portional width bandpass filters. In contrast, FT and STFT divide the time-frequency 
space into sequences of equal width bandpass filters. In the above decomposition, no
tice the filters satisfy the conditions (h, g) = 0 and h2 + g2 =  2. Filters that satisfy 
these conditions are termed as quadrature mirror filters (QMF). These are a special 
pairs of low- and high-pass filters whose every stage of filtering results in slicing out
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Figure 6.7: Splitting data into low and high frequency components - Wavelet filtering 
tree: Mallat’s pyramidal algorithm

the frequency band of the signal into two halves. Figure 6.7 is illustrative of this 
multistage filtering using the pyramidal algorithm.

Starting from a data sequence f[n], convolution with filters h[n] and g[n] results 
in splitting the original frequency band in approximately half frequency bands. The 
side-effect is a redundancy which is removed by downsampling by a factor of 2. Due 
to this step, the total number of samples at any level is the same as the number 
of samples in the low and high frequency bands put together at a lower level. For 
instance, if f[n] has 1024 samples, then each of ai[n] and di[n] would contain 512 
samples.

The tree-like structure in Figure 6.7 is referred to as the wavelet tree. One could 
also follow the path along the details at every level and apply the same steps as to 
the approximation. Then, the resulting tree would have branches on both sides and 
the resulting transform is known as the wavelet packet (WP) transform. The wavelet 
tree is then a subset of the wavelet packet tree. The wavelet packet approach is a 
generalization of Mallat’s algorithm. The WP transform gives the user the freedom 
to zoom into the specific frequency bands of the data. Thus, WP enables application- 
dependent frequency band splitting. Another advantage is that through arbitrary 
band splitting it can have frequency resolutions different from the octave band con-
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Figure 6.8: Wavelet transformation of signal 2 using D8 wavelets

stant relative bandwidth present in the wavelet transform. Nevertheless, in this work, 
we focus only on the wavelet tree algorithm because of its wide applications and most 
importantly, its relevance to many chemical processes. Data from chemical processes 
contain mainly low frequency components due to dynamics of the process, slow equip
ment degradation, etc. and relatively minor contributions from measurement noise, 
disturbances, etc. As we are mainly concerned with the separation of dynamic and 
stochastic components of a signal, the wavelet tree algorithm suffices for our situation.

Illustrated in Figure 6.8, is a wavelet transformation of signal 2 mentioned at the 
beginning of this chapter. The wavelet filter is a Daubechies filter with 8 coefficients 
(discussed in Section 6.3). We have divided the frequency band of the original signal 
into 5 octave bands. The original sequence contains 2048 samples. Scaling coefficients 
obtained in the lowest frequency band are plotted at the bottom of the figure. The 
higher frequency band wavelet coefficients di — d\ also appear in the Figure. The first 
stage of convolution followed by downsampling yields ai and di. In the second stage, 
ai is subjected to the same operation to obtain 0 2  and d^. This process continues 
until we reach the desired level. Observe how the number of samples decrease by a 
factor of 2 as one progresses from one level to another.

The natural topic of interest here is concerned with the design of wavelets to 
enable efficient separation, isolate singularities, etc. As we saw earlier, scaling and 
wavelet functions are characterized by the impulse responses of low and high-pass
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filters. Therefore, it is natural to build these filters which will then help us visualize 
the scaling and wavelet functions. These filters are constructed by tailoring certain 
properties of the wavelet to suit the needs of the application at hand. Most appli
cations of wavelet bases involve those wavelets which are capable of producing a few 
non-zero scaling coefficients (/, <pjtk) ■ This is true for most of the chemical engineering 
applications where a majority of the signal content is in the low frequency regime. 
Then, the design of ip  must be in such a way that the maximum number of close-to- 
zero wavelet coefficients (/, ipjjt) are produced. This property is useful for example, 
in data compression. Again, this depends on the regularity of / ,  the number of van
ishing moments of ip  and the size of its support (the range over which ip  is non-zero). 
Starting from a conjugate mirror filter, we relate the wavelet properties to conditions 
on the filter h[u\.

In the next section, we see how the design of wavelet filters is related to the gen
eration of embedded subspaces, popularly known as multiresolution analysis (MRA).

6.3 Multiresolution/Multiscale Analysis

To begin with, we recall some useful mathematical definitions for multiresolution 
analysis and then discuss the design of wavelet filters. Finally, we review the fast 
wavelet transform algorithm due to Mallat (1989) with some examples.

6.3.1 Multiresolution Spaces

One can recall the analogy of the map discussed in Section 6.1 to understand the 
theory of multiresolution or multistage approximation of a function. Each stage of 
resolution can be considered as a space and a subset of the resolution at a higher space. 
For instance, an approximation (say at level 1) of the signal (level 0) is a subset of the 
signal, while a  further approximation (say at level 2) is a subset of the approximation 
at level 1. The approximation of a function at a resolution 2-J is specified by a 
discrete grid of samples that provides local averages of /  over neighbourhoods of size 
proportional to 7?. A multiresolution approximation is thus composed of embedded 
grids of approximation.

In mathematical terms, the approximation of a function at a level j  can be defined 
as an orthogonal projection of the function on a space Vj C L2(5R). Then the detail 
at that level spans a subspace Wj. At a lower level j ' +1, the approximation spans the 
subspace Vj+i- The following definition is due to Mallat (1989) and Meyer (1986):

Definition 1 A sequence {Vj}jez of closed subspaces of L2(3?) is a multiresolution
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approximation i f  the following properties are satisfied.

v(j, k) e  z 2, f ( t )  e V j ^ = >  f ( t  -  2j k) e  Vj, (6.17)

V j e z , v j + l e V j  (6.18)

Vj e z ,  f ( t )  e V j * = >  f  Q) € Vj+i, (6.19)

lim Vj = =  0 (6.20)
J — + o o  J

lim Vj = Closure (U ^ ^ V j)  = L2(3t) (6.21)
j —* — o o

There exists a function called a scaling function 4>{t) such that {(f>(t — k ),k  € Z} is a 
basis for Vo-

The first property implies that Vj is translation invariant by an amount proportional 
to 2j . The second property implies causality for the space Vj.  Dilating functions by 2 
expands the details by 2 and the third property is the definition of approximation at 
a coarser resolution When the resolution goes to 0, the fourth property implies
that we lose all the details of / ,

lim ||P v /|| =  0 (6.22)
J — + O O  J

On the other hand, the fifth property indicates that when the resolution 2~j  goes to 
4-oo, the signal approximation converges to the original signal,

.lim 11/ — PvjfW — 0 (6.23)
J — 1 -0 0

The final property requires that there be a scaling function (p(t) such that the set 
{<p(f — fc), k € Z}  is linearly independent and any function f ( t )  G Vo is expressible as,

n=+oo

/(*) =  H  a(0 ,n)<K t-n) (6-24)
n= —oo

where a(0, n) belongs to the set of scalars.
An important class of MRA results when the set of <j>(t) and its integer translates 

form an orthonormal set. Further, notice that the above definition of MRA does 
not contain any mention of wavelet functions. Yet, based on the relations between 
the wavelet and scaling functions, MRA provides a natural setting for the wavelet 
functions.

Practically, the raw measurements is at the finest time resolution and assumed to 
be level 0. Then we build a level 1 approximation using the scaling function (low-
pass filter) and the remaining information as detail at level 1. Now, we split the
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approximation spanning Vj into Vi and W i. This process continues depending on the 
length of the data at hand.

From above, it is clear that

(6.25)

form a nested sequence. Since Vo C VLi, every vector in Vo belongs to VLi as well. 
Then, the scaling function 0(f) belonging to Vo must also be V_t . Therefore, it should 
be possible to express 0(f) as a linear combination of the basis for V_i, namely, 0(2f— 
n). With this property, the familiar dilation equation can be written as (Daubechies 
1990, Strang 1989, Mallat 1989),

Equation (6.26) is known as the dilation equation or the two-scale equation because 
0(f) is expressed as a function of its own dyadic dilation and translation. In general,

+ o o

which justifies the concept of nested sequences. Similarly, one can also write for the 
wavelet function

due to the fact that Wq C VLi.
The dilation equation is very useful in the design of wavelet filters.

6.3.2 Design of Wavelet Filters

The following discussion is related to the design of wavelet filters. We recall the 
basic properties of a set of orthonormal scaling functions which will be then suitably 
translated to conditions on filter coefficients.

1. The area of the scaling function should be unity,

(6.26)

(6.27)

(6.28)

(6.29)

2. It has unit energy:
r + o o

w o r n  =  /  m t ) d t = i (6.30)
J  — OO
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3. The set of <p(t) and its integer translates forms an orthonormal set

m U ( t - n ) ) = 8 ( n )  (6.31)

4. ip{t) is zero-mean:

/+ o o

ip{t)dt = 0 (6.32)
•OO

5. ip(t) is normalized to unity:

/+ o o

m ) U t  =  1 (6.33)
■OO

6. The set of ip{t) and its integer translates forms an orthonormal set

{ip{t), ip(t -  n)) =  5(n) (6.34)

7. Subspace Vj is orthogonal to Wy.

m ) A { t - n ) ) =  0 (6.35)

An additional condition imposed is that the wavelet function exactly fits a polynomial
of a certain degree. This degree is directly related to the vanishing moments of the

wavelet.
f + O O

tkip(t)dt =  0 for 0 < A: < p (6.36)
/J  — C

The vanishing moments of the wavelet determines how well it can capture the regu
larity of / .  It can be proved that if /  is regular and ip has enough vanishing moments 
then the wavelet coefficients [(/, ipj,k)] are small at fine scales.

Using the dilation equation (6.26) and the above conditions, we can arrive at 
conditions on the coefficients c[n] and a'[n]. For implementation purposes, we are 
concerned with FIR filters. The associated filters can be then obtained as:

% ]  =  ^  9[n] =  (6.37)

h[n] =  h[—n] <j[n] = g[-n] (6.38)

where the pairs (h[n],<j[n|) and (h[n],<j[n]) are the analysis (transformation /decom
position) and synthesis (reconstruction) filters respectively. Additionally, for the case 
of conjugate mirror filters,

g[n} = ( - l ) l- nh [ l-n ]  (6.39)
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The first set of orthonormal wavelets that appeared were the Haar wavelets (Haar 
1910) described by the wavelet filters used at the beginning of Section 6.3,

The Haar basis is special in the sense they were the first orthogonal wavelets to 
appear and are simple to comprehend. It is probably the only wavelet basis for which 
an explicit formula exists. Unfortunately, it is not so in general for most wavelet 
functions. Usually only an equation of the form given in (6.28) is given. On the other 
hand, the Haar wavelet is not suitable for description of smooth functions. However, 
it is very useful for detecting sharp/abrupt changes in the signal. The Haar filter is 
the only real compactly supported conjugate mirror filter that has a linear phase.

Daubechies wavelets were the first orthogonal and compactly supported smooth 
wavelets that appeared in the literature due to a pioneering work by Daubechies 
(1988). Daubechies wavelet filters exist for different number of coefficients. The 
number of coefficients for each filter is equal to 2p where p is the number of vanishing 
moments of that wavelet. With p =  1, we obtain the Haar wavelets. Figure 6.9 
shows the sketch of Daubechies’ wavelets for different vanishing moments. Notice 
how the smoothness increases as p increases. So far, we have discussed the decom
position or the analysis using wavelet filters. However, what constitutes MRA is the 
reconstruction of the original signal from their transformation using the synthesis 
filters. This is the inverse wavelet transform (IWT). With conjugate mirror filters, 
we attain perfect reconstruction of the original signal using FIR filters (Smith and 
Barnwell III 1986, Vetterli 1986). The algorithm for both wavelet transformation 
and reconstruction is reviewed in the next section with illustrative examples. The 
term decomposition is sometimes used synonymously with the therm transformation. 
However, strictly speaking, the decomposition step first involves transformation and 
then the reconstruction of the components in the individual frequency bands.

' 1 0 < t < ±
i p ( t )  = < —1 1 < x  < 1 (6.40)

0 otherwise

whose scaling function is,

1 0 < t < 1 
0 otherwise (6.41)

The Haar wavelet is related to the scaling function as:

rp(t) = <p(21) -  4>{2t -  1) (6.42)
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Figure 6.9: Daubechies scaling function <p and wavelet tp with p vanishing moments 

6.3.3 Fast Orthogonal WT and IWT

In this section, we review Mallat’s fast algorithm (Mallat 1989) for orthogonal wavelet 
transforms and inverse wavelet transforms.
Define,

+ o o

/ (« )=  £  a o W ^ - f c )  (6-43)
fc = r— OO

Since {<f>(t — k)}kez is orthonormal, in general,

aAn \ = (fit), 4>j ,fc) =  /  (6-44)

The associated discrete wavelet coefficients are then defined as,

dj[n] =  {f(t),ipj,k) (6-45)

In the last equation, dj[n\ is non-zero only for j  > 0.
A fast wavelet transform decomposes successively each approximation or succes

sively projects /  as Py^f into a a coarser approximation Pvj+lf  plus Pwj+lf ,  the
projection onto the wavelet space. The reconstruction proceeds in the opposite direc
tion, combining both the spaces into a space with higher time-resolution. Denoting 
x[n] =  x[—n] and
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Then the following Theorem due to (Mallat 1989) prescribes the algorithm for the 
wavelet transform (decomposition) and the inverse wavelet transform (reconstruc
tion).

Theorem  9 At the decomposition,
-fo e

ai+1[p] =  ^  h in ~  2PlaAn\ =  a j  *  M2P] (6-47)
n = —oc

-fo e

dj+i\p] = 9 {n -^ p )aAn) = ai 'k 9[2P\ (6-48)
n = — do

At the reconstructiorij
- fo o  -fo e

aM  = 5 Z  h\p -  2n]aj+l[n] + ^  g{p -  2n}dj+l[n] (6.49)
n = —o o  n = —oo

= aJ+i * h[n] + dj+i * g[n] (6.50)

The theorem above shows that the orthogonal wavelet decomposition and reconstruc
tion are performed with discrete convolutions with downsampling and upsampling 
respectively. The upsampling (insertion of zeroes) is necessary to cancel the fre
quency folding (aliasing) created during downsampling (Mallat 1998). For practical 
implementations of DWT, the original signal is assumed to be at level 0, the finest 
resolution. Therefore, the set of coefficients {ao} is the original signal.

We consider two illustrative examples. The first example is to compare the prop
erties of Haar and Daubechies wavelet transforms for a function f(t)  = 2 +  sin(7rt) +
0.6sin(27rf). In Figure 6.10, we build a multiresolution approximation of this smooth 
function with two different wavelets using Haar filters and Daubechies filters (4 coeffi
cients). The decomposition is performed upto level 3, to obtain the scaling coefficients 
a3 and details d3 ,d2,d\.

The way MRA is performed is that we start from the coarsest approximation and 
then gradually add details at every level. For a perfect reconstruction of the original 
signal, we need all the coefficients a3,d3,d 2 and d\. The coarsest approximation is 
obtained by reconstructing using a3 and setting di =  d2 =  ^3 = 0. This yields A 3 , 
the component of the original signal in that frequency band. At the next step, we 
include a2 and d2, setting all the other details to zero to get A2. Next we get Ai and 
then finally reconstruct the original signal.

Each of the four plots show the original function against approximations A3 , A2 

and A\. Observe that as we add each level of detail, we gradually approach the true 
form of the curve. Comparing Figures 6.10 and 6.11, it is clear that the convergence is
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Figure 6.10: Reconstruction at each level starting from the coarsest level - using Haar 
basis

Approximation at level 3 Approximation at level 2
15

a
I

©■o3
a
I

Approximation a t level 1 Perfect reconstruction
3.5

Q.

Time

3

a

Time

Figure 6.11: Reconstruction at each level starting from the coarsest level - using 
Daubechies basis
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Inverse Wavelet Transform of the DWT of a Signal 2
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Figure 6.12: IW T  - reconstruction of each component of the wavelet decomposition of 
signal 2 using D8  wavelets

much faster with Daubechies basis than with the Haar basis. The convergence rate is 
indicative of the influence of the number of vanishing moments on the approximation 
abilities of the wavelet. Here, the difference in the number of vanishing moments 
is one. In addition, D4 wavelets (Daubechies filters with 4 coefficients) are smooth 
functions unlike Haar wavelets.

We conclude this next section with the second example that is concerned with 
the signal 2 used at the beginning of this chapter. A 4-level wavelet decomposition 
is performed with D8 (Daubechies filters with 8 coefficients). First we show the 
reconstruction of individual components of the decomposition in Figure 6.12. In 
other words, we sketch A4. D4, D3 , D2 and D\. Then, in a separate plot in Figure 
6.13, we show A4, A 3 =  A4 +D4, A2 — A 3 -I- D3 , Aj =  A 2 +  D2 , Aq = f i t )  =  A\ +  D\.

In the next section, we discuss a few engineering applications particularly useful 
to process industry.

6.4 Application of Wavelets
The applications are mainly categorized into four sections. Many other applications 
exist, to include all of which is beyond the scope of discussion. Several books have
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Figure 6.13: MRA of signal 2 using D8 wavelets

been written addressing specific applications in this area. Here, we particularly focus 
on those applications which have close relevance to process applications.

6.4.1 Data Compression

One of the most well understood and widely applied application of W T is data com
pression. Data compression could also mean image compression. The basic idea is to 
utilize the potential of wavelets in capturing most of the signal information in a small 
set of coefficients.

Data storage is increasingly growing to be an important issue for data historians. 
Huge volumes of data  are collected every day to document/record routine process 
operation. The data archive is useful for many purposes such as research, modelling, 
improved control, performance assessment, process monitoring, etc. Therefore, effi
cient storage of data is of crucial importance to the industrial community. It is known 
that there is a strict relationship between the number of bytes needed in the storage 
of a function and its smoothness.

Process measurements are typically corrupted with sensor noise, measurement 
noise, process disturbances, etc. The dominant signal contains process characteristics, 
usually in the low frequency bands relative to that of the stochastic component. 
Using wavelet transformations we can achieve a separation between the dynamic and
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the stochastic components of these measurements. In particular, With orthonormal 
wavelet basis, we know that we can perfectly reconstruct the signal. However, in 
process industry, typically we are interested in discarding a  fair amount of noise while 
extracting the information pertinent to the dynamic behaviour of the process from 
the routine data. The dynamic components are typically captured in a few scaling 
coefficients. By storing the low-frequency scaling coefficients which can typically 
contain 80-90 % of the signal content, we can achieve a remarkable efficiency in the 
storage requirements. This is known under the data/image compression problem. 
If we consider signal 2, the original sequence contains 2048 samples. Then with a 
4-level decomposition, the number of samples reduce by a factor of ^  =  16. The 
compression ratio can get larger with the number of data samples.

In data compression, we also use the term quantization where we restrict the 
number of possible wavelet coefficients by varying them over a finite (preferably small) 
set of possible values. The B-spline wavelet is particularly useful in this regard. When 
the concern is only storage, the wavelet coefficients are further compressed methods 
using Huffman decomposition (Storer 1988). Ideally, we would be able to recreate 
the original signal given the compressed data, i.e., a lossless compression; otherwise, 
it is said to be a lossy compression. For the latter case, an objective measure of 
distortion or the quality of reconstruction is the mean squared value of error signal. 
However, the drawback with such objective measures is the lack of ability to reflect 
the magnitude of distortion as perceived by our senses. To overcome this, further work 
by Jayant and Noll (1984) lead to the characterization of compression as the removal 
of redundancy and irrelevancy. While the former results in lossless compression, the 
latter results in lossy compression. The key theoretical result related to the maximal 
amount of lossless compression possible for a given source is related to the entropy 
rate which is an important concept in information theory (Cover and Thomas 1991).

A benefit of linear compression is that it is still possible to apply many multivariate 
statistical techniques to the compressed data itself.

6.4.2 Wavelet Denoising

The term denoising finds its origin in the signal estimation problem. Estimating 
the underlying signal can be of great value to many applications that are either 
sensitive to the presence of noise or inapplicable due to a lack of understanding of 
the underlying signal. The arrival of wavelets have brought in with them a new 
tool for signal estimation. The principal work by Donoho et al. (1995) based on the 
idea of thresholding and then reconstructing the signal is instrumental to  the widely
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implemented wavelet denoising algorithm.
Most of the noise present in process measurements takes its seat in the higher 

frequency bands or at the finer scales. Filtering is a  well-known technique for ex
tracting the underlying signal. However, conventional filtering results in discarding 
these wavelet coefficients. This can be detrimental in many situations where the 
finer scales carry the information on abrupt changes in the process, sudden sensor 
failures, edge information, etc. To avoid complete disposal of wavelet coefficients 
(Donoho et al. 1995, Donoho 1995) introduced a thresholding method in which the 
wavelet coefficients below a certain thresholding are set to zero. There are two kinds 
of thresholding: (1 ) soft thresholding and (2) hard thresholding. Soft thresholding 
leads to less distortion of the object of interest.

Several methods have been suggested to compute the threshold. A common ap
proach is to compute the sample variance of the coefficients in a particular frequency 
band and set the threshold to a multiple of the standard deviation, a. The general 
procedure to denoise a deterministic signal contaminated by stationary stochastic 
errors can be described as a three-step method:

1. Decompose measured data on a selected family of basis functions

2. Eliminate wavelet coefficients at finer scales that are smaller than a selected 
threshold

3. Reconstruct the rectified signal

The Visushrink method determines the threshold at unit scale as

7 j =  <Tj-v/21ogJV (6 .51)

where a, is the standard deviation of the errors at scale j ,  N  being the length of the 
signal. The IWT of the scaling coefficients along with the thresholded coefficients 
gives the denoised signal. The higher the threshold, the better the noise removal. 
The statistical properties of this approach have been studied by Donoho et al. (1995). 

The factor \/2  log N  is included in equation (6 .51 ) to  improve the appearance of the 
rectified signal. The reason is that for uncorrelated Gaussian errors e<, the probability 
of not eliminating a coefficient representing the error decreases as the number of 
samples increases:

Pr{max(|ei| > \/\o g N )}  —► 0, N —► oo (6.52)

It is shown by Donoho et al. (1995) that the thresholding method gives a  nearly op
timal estimation of the underlying signal for a wide variety of theoretical objectives
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such as various error norms and smoothness. In many practical situations, the vari
ance of the coefficients at each scale is taken to be the variance of errors, Oj and may 
be estimated by the robust absolute median deviation as:

° j =  0 6>45median^ J ̂  6̂'53^

The above equation is valid assuming that in many practical situations, most of the 
wavelet coefficients in a multiscale decomposition of a measured signal correspond to 
errors.

Noise removal is always accompanied by some degradation of the underlying signal. 
Increasing the threshold results in more of the signal component being zeroed out 
along with the noise. Soft thresholding minimizes the contribution of the residual 
noise to some extent by reducing the magnitude of the residual noise in the thresholded 
high-frequency outputs. Also, the number of scales to which the signal is decomposed 
determines the quality of the signal, contaminating the rectified signals. On the other 
hand, if the decomposition goes too low in scale, then the details at the coarsest signal 
may hardly contain any contribution from the errors. The smoothness is highly 
influenced by the smoothness of the wavelet. Therefore. Daubechies filters are more 
efficient in maintaining the smoothness than the Haar filters.

Another practical approach for threshold estimation is the cross-validation. In this 
approach, the measured data is divided into training and testing data. The threshold 
is selected in such a way that the error is minimized for the testing data. The details of 
this method is discussed in the work by Nason (1996). The cross-validation method 
is claimed to give a better rectification, but involves intensive computations since 
different values of the threshold need to be calculated for selecting the best value.

The above two methods convey the basic philosophy of denoising based on thresh
olding. The problem of denoising is closely related to another well-known problem - 
outlier detection. This latter problem is also known as data rectification. In the next 
section, we discuss the wavelet application to this problem.

6.4.3 Outlier Detection

Outlier detection is one of the most common and difficult problems faced by mul
tivariate data analysts in dealing with process data. There are several factors that 
induce outliers into process data. Unfortunately, these outliers have a great influence 
on the process modelling capabilities both for control and monitoring. Because of the 
complexity of the problem, the detection of outliers still remains an open problem. 
Here, we discuss the application of wavelet thresholding to outlier detection.
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Outliers are of two types: (i) additive outliers and (ii) innovative outliers. Ad
ditive outliers affect the measurement level at the time of disturbance and influence 
model selection and prediction capabilities. Innovative outliers affect the measure
ment level with a memory and can be generally neglected unless multiple ones are 
present. Most of the existing methods for outlier detection are cumbersome to use as 
the number of variables increases. In general, they assume the data is representative 
of that generated from an ARIMA model. As a result, they are difficult to automate. 
Wavelet thresholding based outlier detections are in that sense easy to automate and 
can be extended to multivariate systems easily. Outliers are, by their very nature, 
localized high-frequency phenomena. If they occurred as anything other than isolated 
aberrations in the data, they would be considered part of the signal’s structure, but 
not an outlier. In such a case, they are extremely difficult to detect. In the rest of the 
discussion, we will deal with additive outliers and assume that they are detectable.

The basic idea in wavelet based outlier detection remains the same. We still choose 
a threshold and reconstruct the signal with the coefficients that pass the threshold 
test. The reconstructed signal is sometimes called the rectified signal.

Wavelet thresholding for rectification can create spurious features near large changes 
in the measured signal. This is related to the variation in the wavelet decomposition 
with the signal translation. One of the approaches that have been suggested to make 
the wavelet transform invariant to signal translations is that of Mallat and Zhong
(1992). However, these methods assume that: (i) the batch of data is of dyadic 
length and (ii) the errors are Gaussian. Moreover, if the values at the beginning 
and end are very different, artificial discontinuities can set in leading to errors in the 
signal ends. Several extensions to the wavelet-thresholding approach have also been 
developed for removing other types of errors (von Sachs and Schneider 1996).

Multiscale median filtering proposed by Nounou and Bakshi (1999) takes into 
account non-Gaussian errors. In the same work, a method for on-line rectification 
is proposed. The methodology comprises of decomposing the measured data on the 
selected family of wavelets or wavelet packets in the largest possible window of dyadic 
length. As new samples are collected, the window is translated so that the most recent 
sample is at a dyadic location for at least one translated window. As more samples 
are collected, the window size is increased to the largest possible dyadic length. The 
assumption is that the nature of random errors does not change over time. The 
resulting wavelet transform is translationally invariant.

In another development, Bilen and Huzurbazar (2000) consider the problem of 
detecting outliers in time series data and propose a general framework based on 
wavelets. Their method is not based on time-series models, and not restricted to  data
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generated from ARIMA processes. Again, the underlying idea is to use a thresholding 
approach. In their work, they propose a new estimate for <jj based on the mean 
absolute deviations from the median of the wavelet coefficients. It is claimed that 
their method is superior to that of the existing methods or at worse identical in 
performance to detection tests based on likelihood ratio tests.

Elsewhere, wavelets have been used in econometrics for outlier detection partic
ularly from an economist’s point of view (Greenblatt 1994). The method looks at 
the application of an order statistic outlier test to the most detailed level of wavelet 
coefficient computed using the Haar wavelet. In general, the Haar wavelet is good 
because it has good local properties and this application has no need for the greater 
regularity of smoother wavelets.

6.4.4 Process Identification, Control & Monitoring

Compared to the applications discussed so far, wavelets have been more extensively 
applied to empirical modelling, process control and monitoring. Of these three areas, 
we are primarily concerned with the application to process monitoring.

It is well known that the quality of empirical model depends on the quality of the 
measured data used for modelling. Preprocessing or prefiltering is a common approach 
to eliminate the effects of noise and other less relevant signal features. Since most 
data contain contributions from multiple scales, multiscale methods are expected to 
yield better empirical models than those obtained by conventional methods.

In the area of identification, the usual idea is straightforward. Perform wavelet 
thresholding of the measured data and then employ regression techniques. In Fourier 
regression, a regression model is built relating the power spectra and a dependent 
variable. Similarly, the wavelet transform can be used as a pre-processing step prior to 
regression. Essentially, this is a  scale-dependent regression. In this way, we can shape 
the model features in a certain frequency regime. A PLS-based regression technique 
with wavelet transformation is discussed in Alsberg et al. (1997). Other approaches 
to using wavelet in connection with regression are also available (Engel 1994, Sjoberg 
et al. 1995, Ogden and Parzen 1996). In other developments, wavelets have been 
used for identification of linearly time-varying systems (cf. Tsatsanis and Giannakis
(1993)).

In control, wavelets are combined with existing control design tools to  enhance 
their quality and provide additional features. One of the most popular ones is the 
Multiscale MPC (MSMPC) (Krishnan and Hoo 1999, Stephanopoulos et al. 1998). 
In (Stephanopoulos et al. 1998), the data is first projected on multiple scales and
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then, the objective functions, state equations, output equations and constraints on 
inputs and outputs are transformed into the multiscale domain. The resulting Mul
tiscale MPC satisfies all the input/output constraints given the problem feasibility 
and satisfies the frequency response specifications on the controlled outputs. In the 
same work, it is also claimed that MSMPC reduces the computational load through 
effective mechanisms.

At a higher level of hierarchy in the plant operation, process monitoring is a 
crucial task. As discussed earlier, process events occur at different times with different 
frequencies. Wavelets are capable of localizing these faults in an effective way. Wavelet 
based multiscale methods for Statistical Process Monitoring (SPM) have been recently 
shown to be very effective in providing enhanced sensitivity towards detecting process 
faults. One such method is Multiscale PCA (MSPCA) that combines the properties of 
wavelet and PCA by decomposing each variable on a selected wavelet basis. Following 
this, thresholding can be introduced as a part of data rectification. Finally, the matrix 
of coefficients is subjected to PCA which then gives a separate chart for each scale. 
The individual charts give the detection limits for each frequency band. While abrupt 
faults usually fall in the high frequency bands, incipient and persistent faults he in the 
low frequencies. This effective separation of faults makes MSPCA superior to PCA 
in many ways (Bakshi 1998, Luo et al. 1999, Zhang et al. 1999). The next chapter 
is devoted to discussing the methodology of MSPCA and its theoretical benefits over 
PCA. In Chapter 8, we present an application of MSPCA to an important industrial 
problem - the sheet-break diagnosis problem.

6.5 Summary
In summary, multiscale systems are a common occurrence and provide a  more gener
alized description of chemical processes. In these systems, events occur with different 
frequencies at different times. In this context, wavelet transforms are powerful tools 
for analyzing non-stationary signals. Existing methods extract all frequency bands 
at the same resolution. In contrast, wavelet transforms give a trade-off between the 
conflicting time and frequency resolutions as described by Heisenberg’s uncertainty 
principle. WT provide good time resolution for the high frequency and good frequency 
resolution for the low frequency components of a signal. In this way, they evolve as 
useful tools and provide effective results when combined with existing single-scale 
methods for many applications such as data compression, signal estimation, outlier 
detection, modelling, control and monitoring of processes.
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Chapter 7

M ultiscale Process M onitoring 
Using W avelets

Purpose: To give a detailed treatment of off-line MSPCA highlighting its key features 
that are advantageous over conventional PCA.

7.1 Introduction
Recent advances in computer technology and instrumentation techniques have en
abled us to collect large amounts of data from chemical processes. With the increasing 
data dimensionality, multivariate statistical tools such as Principal Component Anal
ysis (PCA), Partial Least Squares (PLS). etc. have gained much attention in recent 
years. PCA or PLS can be exploited to express the essential information contained in 
these measurements using a relatively small number of latent variables, thus reducing 
the dimensionality of the monitoring problem significantly. The idea of PCA was first 
introduced by Pearson (1901), and developed by Hotelling (1933). These ideas were 
further reviewed by Jackson (1980) and Wold et al. (1987). In recent years, PCA has 
been used in the statistical process control area such as process monitoring (Kresta 
et al. 1991), gross error detection (Tong and Crowe 1995), sensor fault identification 
(Dunia et al. 1996), etc.

Statistical Process Monitoring (SPM) via PCA involves the use of Hotelling T2 
and Q (also known as Square Prediction Error or SPE) charts. Time-independency 
and normal distribution of the measurements and residuals of PCA model are required 
for obtaining the statistical limits for the T 2 and Q charts, respectively. In practice, 
measurements from dynamic chemical processes do not satisfy the assumptions on the 
measurements resulting in the loss of statistical basis for the T 2 charts. However, not 
enough attention has been paid to these underlying assumptions (Luo et al. 1999).
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Wise et al. (1990) showed that the underlying distribution of data can vary substan
tially from normality without affecting the results, while autocorrelated measurements 
would certainly influence the results. Consequently, conventional PCA is not suitable 
for monitoring dynamic processes due to the presence of non-stationarities and time 
dependencies.

Wavelet decomposition of a signal results in approximately decorrelated wavelet 
coefficients of the stochastic part of the signal and a few set of large coefficients 
containing the trend of the process. Thus, wavelets provide a good separation between 
the deterministic and stochastic parts of a measured signal (Donoho et al. 1995). 
Typically, measurements from chemical processes are autocorrelated making them 
unsuitable for SPM by PCA. Conventional PCA is ideally suited for monitoring steady 
state processes based on the assumption that the measurements are time independent 
(uncorrelated) and normally distributed. Typically, most of the processes are in 
dynamic state, with various events occurring such as abrupt process changes, low 
drifts, bad measurements due to sensor failures, human errors, etc. Data from these 
processes are not only cross-correlated, but also auto-correlated. Applying steady- 
state PCA directly to dynamic systems can raise false alarms, making it insensitive 
to detect and discriminate different kinds of events.

Every event is associated with a certain frequency band according to its power 
spectrum. Wavelets are emerging tools to decompose a signal into various frequency 
bands providing simultaneous time-frequency domain analysis. In this work, we com
bine the potential of wavelets with the congeniality of PCA to monitor dynamic 
multivariate processes at different scales (frequencies). This multiscale monitoring 
strategy extends the suitability of PCA to statistically monitor processes based on 
autocorrelated measurements. Additionally, the resulting PCA models are more sen
sitive in detecting changes in a process.

It is shown here that this strategy helps in overcoming the shortcomings of con
ventional PCA by retaining the statistical basis for the monitoring charts. Moreover, 
since each event occurs over a certain frequency band, MSPCA possesses greater 
sensitivity in fault detection and process changes.

7.2 PCA and Statistical Assumptions
Consider a data matrix (zero-mean, unit variance) X  (m x n ), where m  is the number 
of observations, and n is the number of process variables. Then, X  can be decomposed
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as

X  =  T P T +  E (7 .1 )

where the columns of P  (n x p) are the principal component loadings, and the columns 
of T  (m x p) are the scores for each observation. The residual term E  can be expressed 
as

PCA methodology involves the computation of the loadings and scores using the 
covariance matrix of X. If the original variables are correlated, it is possible to sum
marize most of the variability present in the n variable space, in terms of a lower p 
dimensional subspace (p < <  n). Here, p represents the number of principal compo
nents. Two dimensional score plots (usually T\ vs. T?), Hotelling T 2 and Q statistics 
(SPE) are usually used to monitor the process. If the first two principal components 
can explain a large part of the variance, the two dimensional scores plot provides an 
intuitive insight into process variations. Any abnormal shift in the process will cause 
the scores to move out of the confidence limits in the 2-D scores plot. However, the 
T 2 statistic, which contains the information from all PCs retained in the model, may 
prove a better quantity to monitor when the number of retained PCs is much greater 
than two. The T 2 statistic based on the first p PCs is defined as

where A, is eigenvalue of the covariance matrix of X . The T 2 statistic given in eqn.
(7.3) can be considered as an ellipsoid in a p-dimensional space. Confidence limits for 
T 2 at confidence level (1 — a) relates to the F-distribution as follows:

where Fp>m_p is the upper 100a% critical point of the F  distribution with p and 
(m — p) degrees of freedom.

Variations in the process could be associated with the breakdown of the correlation 
structure among the measured variables while still within the confidence regions of 
T 2 charts. For this reason, monitoring the process only via T 2 charts alone is not 
sufficient. To overcome this problem, SPE charts are usually used together with T 2 
charts.

E = X ( I  — P P T (7.2)

(7.3)
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Let x, (1 x n) denote the ith multivariate observation whose corresponding score 
is U = XiP. The prediction from PCA model for x, is given by x; =  UPT = XiPPT. 
The p dimensional error vector is given by e, =  x, — x*. The SPE is then defined as

SP E  =  etef (7.5)

SPE can be considered as a measure of the plant-model mismatch. The confidence 
limits for SPE are given by Jackson and Mudholkar (1979). This test suggests the 
existence of an abnormal condition when S P E  > Qa, where Qa is defined as:

ca is the confidence limits for the 1 -  a  percentile in a normal distribution.
Note that the confidence limits calculated in equations. (7.4) are based on the 

assumptions that the measurements are time independent and normally distributed 
in the multivariate sense. The confidence limits in (7.6)-(7.8) were derived assuming 
that errors are random with zero mean and Gaussian distribution. In practice, the 
underlying distribution of the residuals and the scores can vary substantially from 
the Gaussian assumption without affecting the results due to the central limit the
orem (Wise et al. 1990). The highly autocorrelated data  would certainly affect the 
confidence limits for T 2 chart. On the other hand, improper choice of number of PCs 
retained in the model may lead to the autocorrelated residuals, which will influence 
the confidence iimits for SPE chart.

In order to account for the autocorrelation among measured variables, dynamic 
PCA (DPCA) was proposed by Ku et al. (1995). The dynamics are accounted for 
by including the lagged variables in the data matrix. However, the dynamic PCA 
model suffers from certain drawbacks. Firstly, the order of the process and the asso
ciated time delay are usually unknown quantities. Time delay estimation of chemical 
processes is quite difficult in practice. Therefore, the lagged data matrix in many 
situations may not capture the true dynamics of the process.

Equally important to note is that the incorporation of lagged variables does not aid 
in obtaining scores that are decorrelated. Thus, the assumption of time independency

Qa =  0 i  1 +
cQ/io v /2 0 2  0 ih o ( f io  — 1)

©i ©i
(7.6)

where

n

fo r  i = 1,2,3 (7.7)
j = P + 1

(7.8)
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Figure 7.1: ACF plots of z and the scores from PCA

is still violated hence invalidating the statistical basis obtained with the dynamic PCA 
model.

We illustrate this point by means of an example where the autocorrelated mea
surements: u, z and p are given by

u(Jfe) = 0.7u(k — 1) + w (k  — 1) (7.9)

z(k) = 0.8z(fc — 1) + 0.3u(fc — 1) (7.10)

p(k) = 0.5p(fc — 1) +  0.2u(k — 1) (7.11)

where w(t) is the white noise with unit variance. The data matrix, X  for a steady- 
state PCA analysis is arranged as follows:

X  = {u[k) z{k)  p{k)\ (7.12)

The autocorrelation function (ACF) of z  is shown in Figure 7.1(a). The strong au
tocorrelated feature indicates the strong time-dependence of the data. Consequently, 
the first PC also exhibits significant autocorrelation as shown in Figure 7.1(b). In this 
case, statistical control limits obtained for the T2 chart based on the time indepen
dency assumption are not valid. In order to account for the dynamics/autocorrelation, 
we consider the lagged data matrix for the dynamic PCA model given in Ku et al.
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Figure 7.2: Autocorrelation function of PC-1 from DPCA

(1995):

X  = [u(Jb) z (k) p(k) u(k -  1) z(k -  1) p(k -  1)] (7.13)

However, as shown in Figure 7.2 the first principal component still exhibits time- 
dependency. The autocorrelation in the scores are not eliminated by including the 
lagged variables. However, the inclusion of lagged variables can be useful for system 
identification purposes. Since any process measurement from a dynamic process in
variably contains autocorrelation, total elimination of autocorrelation in the scores is 
not possible. Nevertheless, one can separate the correlated dynamics from its stochas
tic counterpart and then build PCA models separately for each component. This is 
the basic philosophy of MSPCA. The following section discusses this philosophy in 
detail.

7.3 MSPCA for Dynamic Process Monitoring

7.3.1 Philosophy

Measured variables from a dynamic process may contain contributions from sev
eral events, such as process dynamics, sensor noise and fault, parameter .drifts, and 
operator-induced actions. Every event has its own frequency and time features. For
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Figure 7.3: ACF plots of wavelet coefficients and their reconstruction

instance, components of measurement noise are mainly localized in the high frequency 
band, while basic process dynamics are mainly localized in low frequency band. Since 
the data from practical processes are multiscale in nature, analyzing a process signal 
over various frequency ranges or scales may provide a multiscale, hierarchical descrip
tion of the signed (Bakshi and Stephanopoulos 1994). Consequently, PCA models 
built on wavelet transformed data at various scales or frequency bands would have 
some advantages.

Each PCA model at a certain scale can be expected to have more ability to de
tect the events whose spectrum is most significant at that scale. Here, PCA models 
are based on the wavelet coefficients rather than the reconstructed data over certain 
frequency bands. The benefit of monitoring the wavelet coefficients is that these co
efficients contain no significant correlation, while the reconstructed data still retains 
some time-dependent features. These issues are illustrated using the data generated 
in the earlier example. A 4-level wavelet transformation of the data is carried out 
yielding the representation of the signals over 5 frequency bands (a4 and d\ to d4). 
Figure 7.3(a) shows the ACF of the wavelet coefficients d4 z and the corresponding 
reconstructed data. This figure illustrate the decorrelating ability of wavelet trans
forms. Notice that the reconstructed signal still contains significant correlation.

The idea of multiscale PCA is to build individual models based on the wavelet
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Figure 7.4: Typical illustration of the MSPCA methodology

coefficients at each scale. A typical methodology is illustrated in Figure 7.4 where we 
break up the data into three bands - low, medium and high frequency bands followed 
by feature extraction using PCA. The PCA model at each scale provides a breakdown 
of the signal pattern in that frequency band. Consequently, MSPCA is expected 
to be more sensitive to abnormal events than conventional PCA. Off-line MSPCA 
involves the pattern search for an abnormal event in one or more frequency bands. 
In the on-line MSPCA, the dyadic data length required by wavelet decomposition 
poses computational problems and can induce detection delays. Recently, Bakshi 
(1998) has given an effective method for an on-line application of this technique that 
overcomes the hindrance of data length.

The enhanced sensitivity of MSPCA when compared to DPCA is highlighted in 
the next section, where we illustrate an application comparing MSPCA and DPCA 
in detecting a sensor failure over a short period of time.

7.3.2 Comparison with Dynamic PCA

Consider our earlier example in equations (7.9)-(7.11). A sensor failure is simulated 
by introducing a sudden mean shift of magnitude 1.0 in z  between sample times 
200-800.

The SPE and T 2 charts obtained using dynamic PCA are shown in Figures 7.5(a) 
and 7.5(b), respectively, where we have employed the same lagged data matrix as in 
equation (7.13). Both the charts fail to detect the sensor fault. A slight indication 
is given by the SPE chart; however, it is hard to draw any inferences based on the 
chart.
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Figure 7.5: Results from DPCA

Since sudden changes in processes contain mainly high frequency components, 
the beginning and end of abrupt events are expected to reflect in the PCA model 
based on the wavelet coefficients at a finer scale (first level of decomposition). The 
SPE chart shown in Figure 7.6(b) clearly indicates this point. Adjacent to this figure 
is the T 2 chart with MSPCA at finer scale is shown as well but it is insensitive to 
such a change. A note of caution is required while interpreting the time axis in the 
monitoring charts obtained using PCA on wavelet coefficients. At finer level, the time 
resolution is halved and therefore should be doubled when going back to the original 
time domain.

While the wavelet coefficients at finer level (the highest frequency band) are pri
marily sensitive to sudden changes, the ones at the lower frequency bands detect the 
persistence in the fault. For this purpose, we make use of the T2 and SPE charts 
using the coefficients at the coarser levels. Here, we only show the charts using the 
coarsest level coefficients. Figure 7.7 contains the SPE and T2 charts corresponding 
to the coarsest level (lowest frequency band) of wavelet transformation. The SPE 
chart is clear in showing the persistence of the fault while the T2 chart is insensitive 
to the fault. Since the original signals have been decomposed to four levels (5 fre
quency bands) in this example, we need to multiply the time index in the Figure 7.7 
by 24 to get the interval of fault persistence in the original time domain. The ACF of 
wavelet coefficients at the coarsest level is shown in Figure 7.8. The scaling function
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Figure 7.6: Results from MSPCA - highest frequency band
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Figure 7.7: MSPCA - lowest frequency band; SPE chart clearly captures the fault
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coefficients (lowest frequency coefficients) at this level are almost decorrelated. Thus, 
the confidence limits for the monitoring charts can be correctly calculated in this 
case, providing a sound statistical criteria to detect an abnormal event.

An important observation to be made for the lowest frequency band is by the 
comparison of situations in Figures 7.7 and 7.9. In the former case, 2-PCs were 
chosen (which explained 99.82%) to be included in the model, whereas in the latter, 
only 1-PC which explained 96.4% of the variance. In the latter case, both the SPE 
and T2 charts fail to detect the fault unequivocally. In fact, Figure 7.9 indicates that 
one has to be careful in choosing the number of principal components for correctly 
showing the fault in the SPE chart. At this level since the coefficients are almost 
noise-free, the 80% criteria for choosing the number of PCs cannot be conveniently 
applied as in the highest frequency band which mainly represents noise. Note that 
in this case, 2-PCs are chosen keeping in mind that there are two linear relationships 
present in the model. The underlying message here is that in practice, one has to be 
cautious in deciding on the number of PCs at the coarsest level and make best use of 
the apriori information that is available.

7.4 Conclusion &: Discussion
The underlying assumptions of applying PCA have not received enough attention in 
the past years. Since most industrial processes are dynamic systems, the measure
ments are usually time dependent. Results of applying PCA to monitoring these 
systems will be severely affected without taking into account the time-dependency 
of the measurements. Wavelet transformation of measurements result in signals with 
no significant correlation. Monitoring charts with PCA models based on the trans
formed data comply with the underlying statistical assumptions. Furthermore, we 
have shown by example that MSPCA is more sensitive to small disturbances than 
dynamic PCA .

Typically, the wavelet coefficients at the coarsest level would primarily contain 
the deterministic part of a signal while the higher frequency bands contain mainly 
the stochastic part. In this example, it is a matter of coincidence that the wavelet 
coefficients at the coarsest level are approximately decorrelated as well. In practice, 
for reasons mentioned above, the confidence limits for the charts in Figure 7.7 may 
not be valid. In such a case, we could monitor deterministic or low-frequency changes 
with heuristics based on process knowledge. This point is clearly illustrated in the 
ensuing chapter on an application to detection of sheet-breaks in a major pulp and 
paper mill.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this work, we have discussed the issues involved in conventional PCA and a way 
to overcome some of the drawbacks therein. Extensions of off-line MSPCA to on-line 
MSPCA is possible with some enhancements in the methodology (Bakshi 1998).

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8

Application of M ultiscale PCA to  
Sheet Break Diagnosis

Purpose: to illustrate the power of combining an innovative tool such as MSPCA 
with process knowledge in the detection of process problems.

Multiscale Principal Component Analysis (MSPCA) is an emerging multivariate 
statistical data analysis tool for fault detection and isolation. It is a result of the 
combination of wavelets, the emerging signal processing tool, with a widely familiar 
fault detection technique, PCA. Sheet breaks have attracted increasing attention 
among the industrial pulp and paper community for several reasons. Economically, 
they can degrade the efficiency of production and increase downtimes. In addition, 
they also pose a safety risk for plant personnel. With this motivation, in this chapter 
we show the capability of MSPCA in diagnosing the sheet break problem involved 
with a world scale paper producer. The MSPCA methodology involves breaking up 
data into different frequency bands of interest and then performing PCA on each of 
these bands. Use of available process knowledge is made wherever appropriate.

8.1 Introduction
The paper production process is complex and intricate due to the influence of several 
variables in the consistent and successful formation of a sheet. The mode of influence 
of all the variables in such a process is far too complicated to be explicitly assessed 
using process knowledge alone. Nevertheless, a great deal of process behaviour and 
variable interaction can be understood by a thorough analysis of process measure
ments. In this respect, multivariate data analysis has played a key role in process 
industry especially in the areas of process monitoring and control loop performance 
assessment. Besides, with the increase in on-line data acquisition systems in manu-
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facturing processes, the collection of process data during production runs is becoming 
routine. With the enormous amount of stored data rich in process information far 
from being utilized to its full potential, there is a strong need for the blending of 
multivariate data analysis with process knowledge.

It is of increasing importance both to the academic community and industry that 
the tools developed in the research division are translated to useable technology that 
is able to identify important causal relationships between breaks and historical process 
data. In this work we demonstrate the potential that lies in a blend of multivariate 
data analysis with process knowledge in solving process problems.

This present work is concerned with the off-line diagnosis of sheet-breaks occurring 
in a major pulp and paper mill. Off-line diagnosis is appealing mainly because, from 
a process benefit point of view, it is certainly meaningful and economical to eliminate 
causes for failure and thus streamline the process. In this way a significant portion 
of the process bottlenecks can be eliminated by careful off-line analysis resulting in 
relatively trouble-free process operation.

The results presented here are from a preliminary analysis of the enormous amount 
of data that was collected as a part of this project. Although the present analysis 
is mainly diagnostic in nature, our experience with MSPCA and the citations in the 
literature encourage us to believe that with additional work and quality data, an 
on-line process monitoring scheme can be constructed.

This chapter is organized as follows. Section 8.2 presents our motivation behind 
the project and this paper. Section 8.3 gives a substantial description of the problem 
of interest. Sections 8.4 and 8.5 cover the analysis of the results obtained by applying 
MSPCA to the sheet-break problem. Conclusions are given in Section 8.6.

8.2 Motivation
The issue of sheet break reduction is one of considerable interest to pulp and paper 
manufacturers. Sheet break is a significant contributor to lost market opportunity as 
well as increased downtime and greater operating expense. Besides these factors, the 
motivation for this work comes from the fact that sheet breaks are associated with 
a myriad of problems including decreased reliability and efficiency of pulp produc
tion, large financial cost, impaired paper quality control, safety concerns for plant 
personnel, etc. A pulp mill in Alberta, for example, reported a total of seventeen 
sheet-breaks in one month at an average cost of $25,000 per break. In more ex
treme cases, paper machines sheet-breaks have been documented to cause downtime 
in excess of two to four hours at a cost of up to $40,000 per hour. On higher-grade
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machines, the cost may be greater.
Based on the magnitude of this problem in the industry and the tremendous ROI 

(return on investment) associated with the prevention of sheet breaks, there has been 
a significant amount of research carried out in this area both in academia and industry. 
It is important to note, the focus of research in this area is only on breaks related to, 
or caused by slow process excursions or incipient upsets.

From an engineering point of view, the enormity and complex variability of a pa
per manufacturing process involves contributions from several events, such as process 
dynamics, sensor noise and fault, parameter drifts, operator-induced actions, etc. Ev
ery event can be associated with different time-frequency zones (scales). For instance, 
components of measurement noise are mainly localized in the high frequency band, 
while basic process dynamics are mainly localized in low frequency band. Similarly, 
sudden and/or short-lived faults such as machine breakdown, sensor failure, etc. live 
in the high-frequency domain while long-lived abnormalities such as persistent faults, 
equipment degradation, process drifts, etc. are located in the low-frequency regions. 
Due to this inherent multiple time-frequency scales, it is natural to analyze process 
signals over various frequency ranges or scales in a multiscale, hierarchical descriptive 
framework (Bakshi and Stephanopoulos 1994).

Multiscale analysis of signals is related to signal spectral separation and study of 
the effects of such signals in different time-frequency scales within a system. In this 
regard, wavelet filters (Morlet et al. 1982, Daubechies 1988, Mallat 1989, Daubechies 
1990) have emerged as powerful tools, and have been widely used in several disciplines 
of engineering for over a decade now. While the raw measurements present no clear 
picture of the spectral content, Fourier transforms of these measurements reveal excel
lent spectral information, but with a loss of information on variations in time domain. 
Wavelet transforms with certain attractive properties strike a compromise between 
these two representations by achieving a trade-off between the time and frequency 
resolutions. They are capable of separating the stochastic and deterministic parts of 
a signal by means of what is termed as multiscale decomposition or multiresolution 
analysis (Mallat 1989).

In mill-wide process monitoring systems, the ability to reduce data storage re
quirements is of great benefit. For this purpose, wavelets are being widely used as 
powerful data compression tools. Other applications to the pulp and paper industry 
include the work of Nesic et al. (1980) and Keller et al. (1999). This representa
tion allows improved estimation and visualization of the machine direction and cross 
machine variations. Other areas of wavelet applications are signal estimation, image 
processing, estimation of missing data, outlier detection, etc.
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Figure 8.1: Typical flowsheet of a paper machine

More importantly, wavelets have a strong potential as a beneficial data pre
processing tool for fault detection and diagnosis by providing useful insights into 
process characteristics. In this work, their potential is combined with the powerful 
ability of PCA to project measurements onto an orthogonal subspace with reduced 
dimensionality. PCA is amongst the most popular methods for extracting informa
tion or features from process measurements, and is applied extensively in a wide 
range of disciplines. In process operations and control, PCA is used to carry out 
data rectification, gross-error detection, disturbance detection and isolation, statis
tical process monitoring (SPM) and fault detection and diagnosis. In this regard, 
it has been shown by Zhang et al. (1999) and Bakshi (1998) that a combination of 
wavelets with PCA, termed multiscale PCA (MSPCA), has conceptual advantages 
over conventional, single-scale PCA.

With this motivation, we state the objectives of this work: (1) to uncover causes 
of breaks purely from a data analysis perspective, by analyzing massive volumes of 
data of a plant seated thousands of miles away from the mill, (2) to provide a strong 
ground for the development and installation of a process monitoring tool aimed at the 
reduction of breaks in the sheets from a paper machine and (3) illustrate the role of 
wavelet filtering as a tool in providing valuable insights into process characteristics.

8.3 Problem description
Figure 8.1 gives a compact sketch of the paper manufacturing unit1.

Ih t tp : / / v w . skogssverige. se/M assaPapper/Faktaom /eng/m assaopapptillv/paptillv. cfm
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Paper is produced on large, intricate machines, with the wood fibers introduced 
into the process as a dilute water mixture, then passing at high speed through a 
sequence of sheet formation, pressing, drying and finishing steps. The process is 
complicated by water and fiber recycles, and requires tight control of feed consistency, 
chemical addition, moisture content, rotation speeds, and tension in order to meet 
product quality specifications.

One of the main challenges of successful paper machine operation is avoiding 
breakages in the sheet. When a sheet break occurs (usually without warning), pro
duction time is lost, waste material must be recycled, and the sheet must be ”re- 
threaded” manually in order to resume production. This provides strong economic 
and safety incentives for the mill operators and technical support staff to understand 
the causes of sheet breaks, in order to modify or control the process to minimize 
their occurrence. Large volumes of operating data are typically collected and stored 
electronically, and this work is concerned with the problem of extracting useful infor
mation from such data to shed light on sheet breaks in a particular machine.

Sheet breaks occur due to various reasons. Literature highlights a variety of causes 
(Fisher 1975, Locke 1966, Rochealeau 1965, Mardon et al. 1969, Ibrahim 1981, Blimke 
et al. 1995, Li 1997) such as:

• White water re-circulation.

• Broke re-circulation.

• Paper machine stock system instability.

• High moisture profile of the sheet.

• Problems with sheet formation.

• Pulp quality of the stock.

• Wrinkles in the paper sheet.

Breaks are usually classified according to the location of their occurrence. They 
can occur mainly in the dryer section, couch section, press and wire sections. In Li
(1997), the author reports that about 61% of sheet breaks in an 11-month period took 
place in the dryer section, and various causes of sheet break in the dryer section are 
clearly explained. Therefore, sheet breaks can be caused by many factors and may 
also result from the contribution of several factors simultaneously.

The focus in this work is only on those sheet breaks occurring in the dryer section. 
Again sheet breaks can be classified as wet or dry breaks depending on whether they
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occur upstream or downstream respectively. Here, we consider wet sheet breaks 
in the dryer section, designated "type 4” breaks. In the subsequent discussions, 
we show by means of an application, the key role that wavelet filtering plays in 
extracting the dynamics of the process and in complementing the ability of PCA to 
compress enormous amounts of data into a compact space. Further, since wavelet 
transformations take into account the time-varying nature of the signal, it suffices to 
use steady-state PCA for constructing template models.

The following section illustrates the application of MSPCA to the sheet-break 
data with a detailed analysis.

8.4 Data Analysis

8.4.1 Objective

Our main objective in conducting this data analysis was to demonstrate the ability 
of the analytical techniques to locate valuable information in the data, with respect 
to diagnosing the root causes of sheet breaks.

The data contained a number of on-off sheet break indicator signals, each cor
responding to a different location on the paper machine. By visual inspection of 
these signals, and by comparing the total counts of break types, it was found that 
breaks in the dryer section, designated ’’type 4”, had the highest occurrence. There 
were also significant operating periods during which type 4 breaks did not occur. 
This presented the opportunity to develop a PCA model of break-free operation for 
comparison with upset conditions

8.4.2 Variable Selection and Data Cleaning

The initial data set contained process measurement and controller setpoint and output 
signals numbering 900 tags, covering the entire paper machine and ancillary equip
ment. Through a series of steps, as shown in Figure 8.2, the number of tags was 
reduced to 120, 70, and ultimately 10 key variables.

The initial reduction from 900 to 120 tags was performed by discarding variables 
known to be downstream of the type 4 break indicator, then discarding all setpoints, 
all controller outputs with an associated flow measurement, and variables with insuf
ficient information to contribute to the analysis. This last category includes signals 
with large amounts of missing values, constant signals, and signals that were archived 
with a wide data compression band. Data compression involves storing a new signal 
value only when it differs from the previously stored value by a specified amount.
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Figure 8.3: 2-level wavelet transformation and decomposition of a process measure
ment

While the intent is to minimize storage requirements, there is a danger that the spec
ified deviation can be so large that most of the useful information in the signal is 
lost.

By keeping or eliminating variables on the basis of the condition of each signal, 
it is likely that a number of important variables were excluded from the subsequent 
analysis. The final results should therefore be considered very preliminary.

8.4.3 Wavelet Filtering

The remaining 120 tags were then passed through a wavelet filter to remove the 
high-frequency variations. All measurements were subjected, using WAVELAB2, to a 
2-level wavelet filtering yielding three non-overlapping frequency bands. Daubechies 
filter with 6 coefficients was used for this purpose.

The wavelet filtering resulted in a set of coefficients, which were spread over three 
different frequencies. The lowest frequency coefficients primarily contained contri
butions from process dynamics and slow process drifts, while the coefficients in the 
remaining bands contained energies from the stochastic part such as measurement 
noise, disturbances, etc.

Several filtered signals were found to have low variance, and were rejected from 
the analysis, bringing the total number of tags to 70. This reduced set of signals

2Department of Statistics, Stanford University, h t tp : / /p la y fa ir .s ta n fo r d .e d u
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made up the input data for the initial principal component analysis.
Figure 8.3 shows the 2-level wavelet transformation and decomposition of a mea

surement (among the 70 measurements) using Daubechies filter with 6 coefficients. 
The plots clearly depict the power of wavelets in separating the deterministic and 
stochastic parts of a real-time signal corrupted with noise. The left panel shows the 
transformation starting with the high-frequency coefficients at level 1, d \ at the bot
tom going up to the low-frequency coefficients at level 2, a2. The transformation 
rightly shows that most of the information (or energy) of the measurement lies in 
the low-frequency region. Observe how the number of samples reduces by half as one 
moves across levels. On the right panel is shown the multiscale decomposition of the 
same measurement. The decomposition is equivalent to passing the original signal 
through a set of 5 band-pass filters. Signal A2 is obtained by reconstructing only that 
part of the original signal corresponding to a2 (by setting the coefficients d i & d2 to 
zero). Signals D i and D2 are obtained in a similar fashion. Perfect reconstruction 
can be verified by checking that the original signal is equal to A2 + D \ + D 2.

It is of theoretical advantage to use the wavelet coefficients shown in Figure 8.3(a) 
for the next step of PCA in lieu of the decomposed signal shown in Figure 8.3(b). 
An additional benefit is that data analysis is conducted on a much smaller number 
of samples, relative the original sample size, without significant loss of information.

Our implementation of PCA differed from the conventional way in that we per
formed a two-phase PCA. Further, in both phases we preferred to analyze the scores 
directly rather than the T 2 or SPE charts. The motivation behind this implementa
tion is explained later in Section 8.4.6. It suffices here to note that the first phase of 
PCA consisted of a data set that contained a normal operating region and a break. 
The second phase of PCA consisted of data that arose out of only the normal process 
operation.

8.4.4 Initial PCA Model

As mentioned in Section 8.2, the focus of this work is only on the influence of slow 
process phenomena on sheet breaks. Therefore, only the low-frequency coefficients 
were chosen for PCA analysis The initial PCA model captured 81% of the variance 
in the 70 input signals in 5 principal components. Trend plots of the scores for each 
component were compared with the sheet break signal to see if there were any con
sistent patterns associated with the breaks. As illustrated in Figure 8.5(a), the third 
principal component (PC-3) tended to ramp up immediately prior to type 4 breaks. 
Principal component loadings for PC3 indicated that only 10 tags were significant in
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Figure 8.4: MSPCA revealing the process drifts due to a sheet break

the calculation of this score.
It is interesting to note that PC-3 accounted for only 7% of the total variance 

observed in the 70 signals, after a cumulative 70% of the variance had already been 
explained by the first two principal components. The PCA modelling technique re
moves the variance explained by a given principal component before attempting to 
find the next principal component in the modified data. This example highlights the 
ability of PCA to extract valuable information from large amounts of data. In this 
case 15% of the signals, weighted to represent 7% of the total information in the time 
domain, yielded a derived signal bearing some relationship to the problem at hand.

The 10 important tags in PC-3 were then used as the input data for the final 
principal component analysis.

The final PCA model captured 89% of the variance in the 10 remaining signals in 
3 principal components. Scores for PC-1 of the final model were found to move 
abruptly, either up or down, prior to 30% to 40% of type 4 sheet breaks, as shown in

to PC-1. All of the tags were recognized as belonging to a group of closely related 
variables in a specific area of the plant.

8.4.5 Final PC A  Model

Figure 8.5(b). Principal component loadings indicated that all 10 signals contributed
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8.4.6 Remarks on PCA Implementation in the First Phase

We performed a PCA on the data set that consisted of a normal operating region 
and a break. The conventional way is to only include the normal operating region. 
The second phase consisted of PCA of data that covered only the normal operating 
regime. The motivation for a two-phase analysis is as follows. Since we were interested 
in capturing the signature of those patterns leading to a sheet break, including a break 
would certainly serve the purpose. Once the signature is obtained and the important 
variables that indicate or affect an impending sheet break may be identified. This can 
be done using the loadings plot and then verifying the cause and effect relationships 
using process knowledge. The first phase therefore formed the basis in providing a 
set of important tags for our second phase PCA analysis, which was concerned with 
purely building template models for normal operating regimes.

In both the phases, a graphical plot of the scores was preferred to the conven
tional Hotelling T2 and SPE charts. The preference came from the fact that we were 
mainly interested in identifying the signatures among the measurements (or a linear 
combination of the measurements) that could reveal some of the underlying causes 
of the sheet breaks. Moreover, since the PCA models were built on low-frequency 
coefficients, the scores would also be autocorrelated and hence the statistical limits 
are not reliable for monitoring purposes.
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8.5 Results
By visual inspection of the individual signals, the abrupt features corresponding to 
the breaks were located in a subset of the tags. Process knowledge was used to 
determine the root cause, which cannot be revealed for reasons of confidentiality, but 
which was related to operating practice in the mill. Interpretation of the root cause 
was confirmed by mill personnel.

The value in this analysis was in diagnosing the possible cause of type 4 sheet 
breaks, giving mill personnel the opportunity to focus on the problem to find a so
lution. At this time of writing, we are unable to report on any corrective action. 
However, it appears that modification to process equipment, process control or oper
ating practice could potentially reduce the occurrence of one type of sheet break by 
at least 30%.

In cases where a solution requires improved process control to avoid certain con
ditions, or forewarning of undesirable conditions, MSPCA can be deployed on-line 
to monitor the process. Development of a reliable on-line break predictor, which is 
beyond the scope of this study, involves considerable data analysis to maximize suc
cessful predictions, and minimize false predictions. Software and hardware currently 
exist to deploy this type of process monitoring reliably and economically.

8.6 Conclusions
Multiscale principal component analysis (MSPCA) was shown to be an effective means 
of locating the potential root cause of a particular type of paper machine sheet break, 
by extracting a small quantity of highly pertinent information from a large quantity 
of operating data.

The contribution of MSPCA in this project is summarized as follows.

• Principal component analysis (PCA) condensed the information in a multitude 
of process signals into a small set of scores. Variation in each score is inherently 
independent from the variation in all other scores. This feature of PCA al
lowed process variations correlated with sheet breaks to be retained and further 
analyzed, and unimportant information to be rejected from the analysis.

• Conversion of the raw signals to a set of wavelet coefficients provided a multiscale 
view of the data. This enhanced the effectiveness of PCA, by restricting the 
analysis to process variations in a narrower frequency band. Since the objective 
of this work was to detect gradual process changes that were correlated with
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sheet breaks, only the lower frequency range was studied. Medium- and high- 
frequency variations were removed from the analysis, and the number of samples 
to be analyzed was reduced by a factor of four.

• Consistent patterns in principal component scores were found to occur prior to 
30% to 40% of one type of sheet break, as detected by visual inspection. Further
more, application of process knowledge was required in the final interpretation 
of the potential root cause of the sheet breaks. MSPCA therefore served to 
complement human interpretation by highlighting the statistical importance of 
a small number of key process variables.
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Chapter 9 

Conclusions and Future Work

In this work, we have mainly focused on two classes of systems that are commonly en
countered in process industry, namely, multirate and multiscale systems. The former 
class of systems are in fact, a special case of the latter. Multirate sampling intro
duces explicit multiple time scales in the data due to multiple sampling intervals and 
therefore, is only one way of representing the underlying multiple time-scales in the 
process. Multiscale methods on the other hand, not only allow to deal with explicit 
multiscale nature in the data but also allow to capture the inherent multiple scales 
in a methodical way. Conventional methods are not appropriate for control or mon
itoring of multiscale systems as they assume availability of data at a uniform rate 
and project measurements onto a time-frequency plane that contains tiles of fixed 
resolution (single-scale).

Design of multirate controllers is challenging and complex due to their periodically 
time-varying (PTV) nature and lack of data at one uniform rate. Traditional methods 
make use of inferential strategies that estimate intersample outputs using a fast-rate 
model built on primary and/or secondary measurements. In contrast, in this work, 
lifting techniques, which design the fast-rate input moves based merely on the slow 
sampled outputs, were employed for the control of MR systems. The lifting strategy 
provides a more practical approach since it is independent of the existence of a fast- 
rate model and does not need any secondary measurement (s). The elegance in this 
method is due to the fact that it bridges the gap between the PTV and LTI systems 
by the transformation of an MR system into a fictitious single-rate system. In doing 
so, one can make use of well-established controller design tools for LTI single-rate 
systems. The resulting controller termed as the lifted controller gives the set of fast 
rate input moves (lifted input) that can be made over one slow sampling interval.

In arriving at a lifted controller, one has to take certain design issues into account. 
In this thesis, it has been shown that due to the nature of inverse lifting operator,
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outputs of closed-loop lifted linear MR systems can contain intersample ripples when 
tracking step-type reference signals. Although the controller yields a steady lifted 
input, from the viewpoint of the plant, the inputs are oscillatory thereby rendering 
the continuous-time output of the plant oscillatory. In order to eliminate these ripples, 
the lifted controllers have to satisfy certain gain constraints depending on the sampling 
ratio. On the other hand, pre-compensation of the plant with an integrator at the 
input sampling rate obviates these constraints and produces ripple-free outputs. What 
remains of interest is to check the impact of a linear lifted controller built for a non
linear system. In future, the question that needs investigation is: do linear lifted 
controllers fo r non-linear MR systems yield intersample ripples? and if  yes, how 
can they be eliminated? An inevitable issue with lifting strategy is the causality 
constraint on the controller, attributed to the non-casual nature of the lifting operator. 
A substantial amount of research has progressed in this direction involving the use 
of some advanced concepts with some computable solutions. However, there still 
remains a strong need for more practical solutions. Future work is concerned with 
exploring the existence of exact or approximate solutions to the causality constraint 
problem.

A strong factor that favours lifting techniques is the potential it holds as a tool for 
analyzing MR systems. This potential was explored in the work on the performance 
comparison of MR vs. SR systems. Using lifting techniques, a proof has been given 
to show that the closed-loop performance of MR systems is limited below by the 
performance of fast single-rate systems and above by that of slow single-rate systems. 
The proof provides a benchmark for the comparison of the performances of these 
systems, which in itself is a non-trivial problem, and provides a clear theoretical 
base for a result that has been so far only intuitively understood. Further, it also 
carries with it ideas useful when other benchmarks such as the 'Woo-norm are used for 
performance comparison. However, the superiority of one system over another is true 
at all times only in the absence of model-plant mismatch. In a practical situation 
when the model cannot capture the behaviour of the plant accurately, it is important 
to analyze the robustness of this superiority. In this context, preliminary results for 
first-order systems were obtained with the continuous-time LQR cost function as the 
benchmark. The focus of this analysis was mainly to highlight the fact that faster 
sampling rates need not necessarily yield better performance in the presence of model- 
plant mismatch. The next step in this direction is to provide a more thorough analysis 
that allows us to provide definitive answers to the performance comparison problem 
in presence of uncertainties for higher-order and MIMO systems. This analysis may 
involve the well-known stability radius problem. At this stage, however, it is hard to
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provide an intuitive answer to this problem.
On that note, we move on to briefly mention the multirate monitoring problem. 

Although not discussed elsewhere in this work, monitoring of multirate systems right
fully deserves the attention of a process engineer. Despite the huge accumulation of 
multirate data in many process industries, there is still a need for a practical method 
that can fuse these multirate measurements together in a simple way, allowing easy 
application of existing SR monitoring techniques. For this purpose, the lifting meth
ods can prove an appropriate choice due to their ability to transform an MR system 
to an SR system. The resulting lifted data matrix can then be used for monitoring 
using well-known techniques such as PCA, PLS, etc. If successful, this idea can be 
beneficial to industrial applications where one is frequently faced with the monitoring 
of multirate systems.

Multirate sampling introduces multiple scales (resolutions) in the data, thus mak
ing MR systems a special case of MS systems. MS systems are more general in the 
sense that the evolution times and frequencies of the physical variables may substan
tially differ from each other. Conventional methods fall under the single-scale category 
and therefore fail to exploit the multiscale nature of the data. A consequence of this 
drawback, for example in process monitoring, is that they provide equal sensitivity to 
different kinds of faults. In practice, however, it may be necessary to monitor some 
faults earlier than others.

In this work, we employed wavelet transformations, one of the foremost emerging 
techniques that allow multiscale representations of signals. The potential of wavelet 
transformation in providing a multiresolution analysis of signals was illustrated with 
an application of MSPCA to process monitoring. While the wavelet filtering allows 
us to zoom into data and separate the dynamics from the stochastic component of 
that measurement, PCA optimally re-orients most of the cross-correlated information 
in a subspace with much fewer dimensions. Thus, MSPCA combines the properties 
of wavelet transformations with PCA to yield template models for different frequency 
bands. In this way, MSPCA is able to provide enhanced sensitivity to different kinds of 
faults when compared to the conventional PCA. The main difference between wavelet 
filtering and conventional filtering is that it provides a time-frequency splitting in ac
cordance with the frequency regime. Low frequency components are resolved well in 
frequencies while the high frequency components are resolved well in time. The pyra
midal algorithm makes the computation of wavelet transformation very efficient and 
fast. Another advantage is that it is not required to recalculate the filter coefficients 
at every level. On the theoretical aspect, since wavelet coefficients in the high fre
quency bands are approximately decorrelated, the assumption of time-independency
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on the principal components is rightly justified using wavelet filtering. The present 
version of MSPCA discussed here is restricted to off-line analysis only. While off-line 
analysis is helpful in eliminating a significant portion of the bottlenecks in the process, 
it is equally important to detect and diagnose process faults on-line. The focus of 
future work would consist of developing MSPCA to meet the requirements of on-line 
detection and diagnosis.

The hierarchical decomposition in a wavelet transform results in compaction of 
energy in the lowest resolution scale which was exploited in early image coders. Re
cently the ffequency-space characteristics of wavelet transform coefficients have been 
exploited by making use of spatial structuring of wavelet coefficients. This has re
sulted in the wavelet packet transform which is a generalization of wavelet transform 
basis. It offers a rich set of decomposition structures so that wavelet decomposition 
can be performed according to a subset of wavelet packet bases. This subset can 
be selected as the one which minimizes a predefined, application specific cost func
tion. For process monitoring applications, this can be useful especially if one has 
a priori information about the frequency localization of process upsets. Future re
search involves the exploration of the ability of a wavelet packet based MSPCA and 
comparison of its performance with that of wavelet transform based MSPCA in the 
monitoring of multiscale systems.

In summary, lifting and wavelet transformation hold a strong potential in the 
analysis, control and monitoring of multirate/multiscale systems. This thesis gave 
a flavour of these techniques both in theory and practice using several examples. 
The underlying potential of these techniques, however, awaits exploration of their 
application to solving several other theoretical and real-life problems.
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