INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

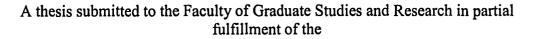
The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

UM®


University of Alberta

Proteome Profiling of Human Heart Tissues and Squamous Carcinoma Cells

by

Ć

Mulu Gebre Gebremedhin

requirements for the degree of Master of Science

Department of Chemistry

Edmonton, Alberta Fall 2005

Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre référence ISBN: Our file Notre retérence ISBN:

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manguant. To my parents and family

Abstract

This work focuses on two important areas of proteomics research: comprehensive proteome profiling of heart tissues, and relative quantification of proteins from squamous carcinoma cell lines and heart tissues. Trypsin digestion and microwave-assisted acid hydrolysis (MAAH) were used to generate peptide mixtures that were fractionated by twodimensional liquid chromatography (LC) and analyzed by electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) tandem mass spectrometry (MS). The proteome information generated by these methods can be used for understanding the protein expression alterations in related cell lines as well as failing heart tissues and other disease states.

Acknowledgments

I would like to thank my supervisor, Dr. Liang Li for his encouragement, guidance and support throughout my study.

Thanks also to Dr. Shaohua Wang and his Secretary Ms. Cherley at the Department of Surgery, University of Alberta for providing the tissue samples and helpful discussions via e-mail and for Cherley for her continued follow up on getting the samples.

I would also like to thank Dr. Manijeh Pasdar and Dr laiji Li, of the Department of Cell Biology at the University of Alberta for their collabrotive work on the cancer cells.

My thanks to all the members in Dr. Liang Li's research group for their collabration and their freindship. Special thanks to Mr. Chengjie Ji who worked with me on the cancer cells and assisted me in labeling tissue samples for quantification.

Thanks to Dr. Monica Palcic and her group for allowing me to use their laboratory and equipment.

I also thank my committee members, Dr. Manijeh Pasdar and Dr. Robert Campbell for their patience and very helpful suggestions to my thesis

My thanks and appreciation to the Department of Chemistry for giving me the opportunity to come here for my study.

I thank all the support from the Department of Chemistry. Especially the kind help and assistance from the general, purchasing, and post offices, the machine and electronic shop and the store room.

I also thank my family and my friends in Edmonton for their encouragement and support which made my stay here much easier and enjoyable.

Table of Contents

Chapter 1 1
Proteome Profiling of Human Heart Tissues and Squamous Carcinoma Cells 1
1.1 Introduction to mass spectrometry
1.1.1 Ionization techniques
1.1.1.1 Electrospray Ionization
1.1.1.2 Matrix-Assisted Laser Desorption/Ionization
1.1.2 Mass Analyzers7
1.1.3. Ion Detection
1.2 HPLC Separation of Peptides 17
1.2.1 Strong Cation-Exchange HPLC 19
1.2.2 Reversed-Phase HPLC 20
1.3 Protein Identification using Mass Spectrometry 21
1.4 Scope of the Thesis Work 23
1.5 Literature Cited

Chapter 2	28
Comprehensive Proteome Analysis of Diseased Human Heart Tissue	28
2.1 Introduction	29
2.2 Experimental Section	29
2.2.1 Materials and Reagents2	29
2.2.2 Extraction of Proteins	30

2.2.3 In-Solution Tryptic Digestion of SDS-Soluble Proteins	
2.2.4 Acid Hydrolysis of the SDS-Insoluble Proteins Pellet	
2.2.5 2D LC-ESI MS/MS 31	
2.2.6 2D LC-MALDI MS/MS 32	
2.2.7 Data Processing	
2.2.8 Safety Considerations	
2.3 Results and Discussion	
2.3.1 SDS-Soluble Protein Analysis	
2.3.2 Microwave-Assisted Acid Hydrolysis	
2.3.3 Tryptic Digestion versus Microwave-Assisted Acid Hydrolysis	
2.4 Conclusions	
2.5 Literature Cited	

i.

Chapter 3
Identification and Relative Quantification of Protein Mixtures from Squamous Carcinoma
Cells and Human Heart Tissue Samples
3.1 Introduction
3.2 Experimental Section
3.2.1 Material and Reagents 79
3.2.2 Protein Extraction and Sample Preparation
3.2.2.1 Squamous Carcinoma Cells 80
3.2.2.2 Human Heart Tissue 81
3.2.3 Protein Digestion 82

3.2.4 Isotope Labeling 82
3.2.4.1 Dimethyl Labeling of Peptide Mixtures from Squamous Carcinoma
Cell Lines
3.4.4.2 Dimethyl Labeling of Peptide Mixtures from Tissue Extracts
3.2.5 2D LC MS and MS/MS 84
3.2.6 Data Processing
3.3 Results and Discussion
3.3.1 Dimethyl Labeling 86
3.3.2 HPLC Separation of Peptide Mixtures 88
3.3.3 Quantification of Proteins in Squamous Carcinoma Cells using MALDI
MS
3.3.4 Quantification of Proteins in Tissue Samples using MALDI MS
3.3.5 Protein Identification using MALDI Qq TOF MS/MS
3.4 Conclusions 109
3.5 Literature Cited 110
Chapter 4 114

Conclusions and Future Work	114

List of Tables

Table 2.1 All Identified Proteins Using 2DLC-ESI-MS/MS and 2DLC-MALDI
MS/MS
Table 2.2 List of proteins detected in both trypsin and MAAH digests 68
Table 3.1 List of identified proteins differentially expressed between SCC9
and SCC9-E-cad Cells
Table 3.2 List of identified proteins differentially expressed between SCC9
and SCC9-Pg Cells 101
Table 3.3 List of identified proteins differentially expressed between heart tissues
samples of 1 and 2 105
Table 3.4 List of Identified Proteins Differentially Expressed between Heart
Tissue samples of 1 and 3 107

.

List of Figures

Figure 1.1 Schematic representation processes in electrospray ionization (ESI)
Figure 1.2 Principles of matrix-assisted laser desorption/ionization (MALDI)
Figure 1.3 Schematic of a quadrupole mass analyzer
Figure 1.4 Schematic of ion trap mass spectrometer 10
Figure 1.5 A Schematic diagram of a linear time of flight (TOF) mass analyzer 12
Figure 1.6 A schematic diagram of a reflectron time of flight (TOF) mass analyzer 14
Figure 1.7 Nomenclature of peptide fragmentation pattern under low energy CID 22
Figure 2.1 A flow chart of the experiment
Figure 2.2 UV chromatogram of cation exchange separation of the tryptic digest of
SDS soluble (A) and MAAH of SDS insoluble protein mixtures (B)
Figure 2.3 LC-ESI base peaks for fraction 1 (A), 2 (B) and 3 (C), respectively
Figure 2.4 (A) Reversed phase HPLC chromatogram of hydrolysates for fraction 3 (A), and
LC –MADLI MS spectrum showing glycine cleavage obtained from HPLC
fraction 3 (Figure 2.4A) for peptides with mass 1405.79 and 1462.79 Da 39
Figure 2.5 MALDI MS/MS spectra of peptides (A) 1405.79 Da and (B) 1462.79 Da 40
Figure 2.6 MALDI MS/MS spectra of selected membrane proteins: Three peptides that
represent three proteins with ID of Q8TB96 (A), Q96F46 (B) and Q9Y4D7
(C), respectively

Figure 2.7 Histograms showing the hydrophobicity ranges for all proteins identified from
SDS-soluble, SDS-insoluble and some common proteins (A) and molecular
weight ranges for all proteins identified from SDS-soluble and SDS-insoluble
mixtures (B) 42
Figure 2.8 Schematic graph showing: (A) the total number and overlap of proteins
identified from the in-solution tryptic digestion coupled with 2D LC-ESI
MS/MS and MAAH coupled with 2D LC-MALDI MS/MS and (B)
subcellular location of all the proteins identified
Figure 3.1 A flow chart of the experiment
Figure 3.2 Dimethyl labeling reaction scheme
Figure 3.3 UV chromatogram of cation exchange separation of the labeled tryptic digest
of SCC9 + SCC9-E-cad protein mixture
Figure 3.4 UV chromatogram of cation exchange separation of the labeled tryptic and
MAAH digest of sample 1 +2 protein mixtures
Figure 3.5 Reversed phase HPLC chromatogram of SCC9 + SCC9-E-cad obtained from
SCX fractions 2 (A), 3 (B) and 4 (C), respectively
Figure 3.6 Reversed phase HPLC chromatogram of SCC9 + SCC9-Pg obtained from
SCX fractions 2 (A), 3 (B) and 4 (C), respectively
Figure 3.7 Reversed phase HPLC chromatogram of tissue sample 1 + 2 obtained from
SCX fractions 1 (A), 2 (B) and 3 (C), respectively
Figure 3.8 Reversed phase HPLC chromatogram of tissue sample 1 +3 obtained from
SCX fractions 1 (A), 2 (B) and 3 (C), respectively
Figure 3.9 MALDI MS spectra showing 4 Da (A) and 8 Da (B) mass difference 94

Figure 3.10 MALDI MS spectrum obtained from SCX fraction 1 of combined sample 1
and 2 at 37 min. as the result of the MAAH. The inset shows the expanded view of
the peptide pair

.

List of Abbreviations

ACN	Acetonitrile
CAD	Collision-activated dissociation
CID	Collision-induced dissociation
CEM	Channel electron multiplier
СРВ	Cardiopulmonary bypass (CPB)
DC	Direct current
DTT	Dithiothreitol
DHB	2, 5-dihydroxybenzoic acid
2D	Two dimensional
2-DE	two-Dimensional Gel Electrophoresis
E-cad	E-cadherin
ESI	Electrospray ionization
FT-ICR	Fourier Transform Ion Cyclotron Resonance
FBS	Fetal bovine serum
GRAVY	Grand average of hydrophobicity
HCCA	α -cyano-4-hydroxycinnamic acid
HPLC	High performance liquid chromatography
ICAT	Isotope-Coded Affinity Tags
kDa	Kilo Dalton
LC	Liquid Chromatography
m/z	Mass-to-charge ratio
MALDI	Matrix-Assisted Laser Desorption/Ionization

MAAH	Microwave-assisted acid hydrolysis
МСР	Michrochannel plate
MW	Molecular weight
MS	Mass Spectrometry
MS/MS	Tandem Mass Spectrometry
MudPIT	Multidimensional protein identification technology
mM	millimolar $(1 \text{mM} = 10^{-3} \text{ M})$
ns	nanosecond $(1ns = 10^{-9} s)$
μL	microliter (1 μ L = 10 ⁻⁶ L)
μg	microgram $(1\mu g = 10^{-6} g)$
Pg	Plakoglobin
pI	Isoelectric point
Q	Quadrupole
RF	Radio frequency
RP-HPLC	Reversed phase high performance liquid chromatography
SCC9	Squamous Cell Carcinoma
SCX	Strong cation exchange
SDS	Sodium Dodecyl Sulphate
S/N	Signal to noise ratio
TFA	Trifluoroacetic acid
TOF	Time-of-Flight
UV	ultraviolet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

Chapter 1

Introduction:

Proteome Profiling of Human Heart Tissues and Squamous Carcinoma Cells

The terms proteome and proteomics were coined by Marc Williams and colleagues in the early 1990s, and have since been adopted by the research community at large. The proteome refers to the full complement of proteins encoded by the genome. Proteomics can be defined as the qualitative and quantitative comparison of proteome under different conditions to further unravel biological processes. In the rapidly evolving field of proteomics, there is considerable interest in developing methods for large-scale, rapid, and robust analyses of proteins from complex biological samples. Proteomics has traditionally used the separating power of two-dimensional gel electrophoresis for the identification of proteins and quantitative analysis of protein amounts in complex extracts. While this method has been successful in generating useful proteomics data on a number of biological systems, it has some limitations such as difficulties with membrane-associated, very acidic or basic, very low or high Molecular weight, and low abundance proteins which can be overcome by Shotgun proteomics is a gel-free method that uses in-solution shotgun proteomics. digestions of complex sets of proteins, with combinations of multidimensional liquid chromatography coupled with tandem mass spectrometry for peptide sequencing.

Mass spectrometry has become the method of choice for the rapid identification of proteins, determination of changes in protein expression and their modifications in proteome research. In mass spectrometry analysis, biomolecular ions are generated either by electrospray ionization (ESI) or matrix assisted laser desorption ionization (MALDI). These

soft ionization methods make it possible to ionize large, thermally labile biomolecules and transfer them to the gas phase without inducing extensive thermal decomposition. Mass spectrometry can be readily coupled with different separation methods. Two-dimensional gel electrophoresis coupled with mass spectrometry is the traditional way of analyzing complex protein mixtures. More recently, multidimensional liquid chromatography with mass spectrometry has become a powerful technique in identification and characterization of complex protein samples. Despite the different techniques developed, there are still challenges to detect hydrophobic and low abundance proteins. In order to identify and quantify complex protein mixtures, mass spectrometry can be coupled with stable isotope labeling strategies. In the subsequent sections, only the methods/instrumentations relevant to the experiments performed in this project will be discussed.

1.1 Introduction to Mass Spectrometry

Mass spectrometry is an analytical technique that measures the mass-to-charge ratio of individual ions. Molecular weight measurements by mass spectrometry are based upon the production, separation, and detection of molecular ions. A typical mass spectrometer includes an ion source, which ionizes the sample and generates gas phase ions, an analyzer, which separates ions according to individual mass-to-charge ratios, and a detector, which detects and amplifies ions. The choice of ionization method depends on the nature of the sample and the type of information required from the analysis. Soft ionization methods, such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), are widely used for biopolymer analysis.

1.1.1 Ionization Techniques

A variety of ionization techniques are used for mass spectrometry. The most common ionization methods for proteins and peptides are electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). MALDI offers higher tolerance toward sample contaminants, such as buffers, salts, and surfactants, higher speed of analysis, and lower sample consumption for each analysis than ESI. However, MALDI is not easily coupled with solution-based separation techniques, as is the case for ESI. ESI, unlike MALDI, can be easily interfaced with modern liquid phase separation techniques.

1.1.1.1 Electrospray Ionization (ESI)

Electrospray Ionization is an atmospheric pressure ionization technique applicable to a wide range of compounds in solution. It was first introduced by Dole in 1968¹. Electrospray ionization generates ions directly from solution (usually an aqueous or aqueous/organic solvent system) by creating a fine spray of highly charged droplets in the presence of a strong electric field. As the droplet decreases in size, the electric charge density on its surface increases. The mutual repulsion between like charges on this surface becomes so great that it exceeds the forces of surface tension, and ions begin to leave the droplet through what is known as a "Taylor cone". The ions are then electrostatically directed into the mass analyzer. Vaporization of these charged droplets results in the production of singly- or multiply-charged gaseous ions. The number of charges retained by an analyte can depend on such factors as, the composition and pH of the electrosprayed solvent, as well as the chemical nature of the sample. For peptides and proteins, the degree of protonation is dependent upon the number of basic sites. The ionization process and coupling of ESI to a mass spectrometer has been reported in the literature²⁻⁴. The ionization process is shown in Figure 1.1. For small molecules (< 2000 Da) ESI typically generates singly or doubly charged ions, while for large molecules (> 2000 Da) the ESI process typically gives rise to a series of multiply-charged species.

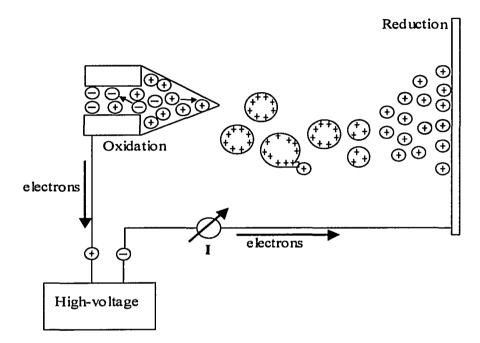


Figure 1.1 Schematic representation of processes in electrospray ionization (ESI).

Because mass spectrometers measure the mass-to-charge (m/z) ratio, the resulting ESI mass spectrum contains multiple peaks corresponding to the different charged states.

ESI allows very sensitive analysis of small, large and labile molecules, such as peptides, proteins, oligosaccharides, and polymers. Another advantage of ESI-MS is that ions are formed directly from solution, a feature that has established the technique as a convenient mass detector for liquid chromatography (LC), in particular, high performance liquid chromatography (HPLC). While past attempts to couple liquid chromatography with mass spectrometry resulted in limited success, ESI has made liquid chromatography-mass spectrometry routine, adding a new dimension to the capabilities of liquid chromatography characterization. ESI is often coupled to quadrupole or ion trap mass analyzers.

1.1.1.2 Matrix-Assisted Laser Desorption/Ionization (MALDI)

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), introduced in 1987 by two research groups independently⁵⁻⁷, has become a widespread analytical tool for peptides, proteins and most other biomolecules (oligonucleotides, carbohydrates, natural products, and lipids). The principle of MALDI is shown in Figure 1.2. The efficient and directed energy transfer during a matrix-assisted laser-induced desorption event provides high ion yields of the intact analyte, and allows for the measurement of compounds with high accuracy and sub-picomole sensitivity.

MALDI provides for the nondestructive vaporization and ionization of both large and small biomolecules. In MALDI analysis, the analyte is first co-crystallized with a large molar excess of a matrix compound (matrix to analyte ratio of >500:1), usually a UV-absorbing weak organic acid, after which pulsed UV laser radiation of this analyte-matrix mixture results in the vaporization of the matrix which carries the analyte with it. The matrix therefore plays a key role by strongly absorbing the laser light energy and causing, indirectly, the analyte to vaporize. The matrix also serves as a proton donor and receptor, acting to ionize the analyte in both positive and negative ionization modes, respectively.

Although the ionization mechanism is not well understood, it is widely accepted that, for proteins, ionization occurs via gas phase proton transfer reactions between excited matrix molecules and analyte molecules⁸.

The most common matrices used in peptide/protein analysis are α -cyano-4hydroxycinnamic acid (HCCA), 3, 5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), and 2, 5-dihydroxybenzoic acid (DHB).

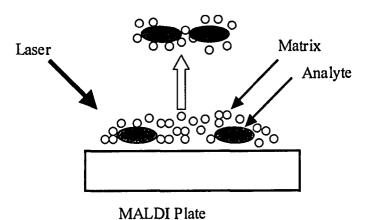


Figure 1.2 Principles of matrix-assisted laser desorption/ionization (MALDI).

Several sample-matrix preparation methods have been developed including dried-droplet⁸, vacuum-drying⁹, crushed-crystal¹⁰, fast evaporation^{11,12}, and two-layer method¹³. Of these, the dried-droplet and two layer methods are commonly used in our laboratory.

MALDI has had its biggest impact on the field of protein research. The ability to generate MALDI-MS data on whole proteins and proteolytic fragments is extremely useful for protein identification and characterization. For example, a protein can often be unambiguously identified by the accurate MALDI mass analysis of its constituent peptides (produced by either chemical or enzymatic treatment of the sample). The MALDI sample plate can be used for multi-sample preparation and automated sample analysis. Different parameters can be used to adjust and monitor MALDI autosampling, including: laser position, laser intensity, signal intensity, and mass range.

MALDI can be coupled with many mass analyzers, such as: time-of-flight (TOF), Fourier Transform Ion Cyclotron Resonance (FT-ICR), quadrupole ion trap, and magnetic sector. Among these mass analyzers, TOF is most commonly used with MALDI because its pulsed ion detection mode is well matched with the pulsed ionization in the MALDI process.

1.1.2 Mass Analyzers

After ions are formed in the source region they are accelerated into the mass analyzer by an electric field. The mass analyzer separates these ions according to their mass-to-charge (m/z) value. The selection of a mass analyzer depends upon the resolution, mass range, mass accuracy, scan rate and detection limits required for an application. Each analyzer has different design and operating characteristics. Analyzers are typically described as either continuous or pulsed. Continuous analyzers include quadrupole filters and magnetic sectors. These analyzers are similar to a filter or monochromator used for optical spectroscopy. They transmit a single selected m/z to the detector and the mass spectrum is obtained by scanning the analyzer so that different m/z ratio ions are detected. While a certain m/z is selected, any ions at other m/z ratios are lost, reducing the signal to noise ratio (S/N) for continuous analyzers. Single Ion Monitoring (SIM) enhances the S/N by setting the mass spectrometer at the m/z for an ion of interest. Since the instrument is not scanned, the S/N improves, but any information about other ions is lost. Pulsed mass analyzers are the other major class of mass analyzer. They have some distinct advantages. These instruments collect an entire mass spectrum from a single pulse of ions. This results in a signal-to-noise advantage similar to Fourier transform or multichannel spectroscopic techniques. Pulsed analyzers include: time-of-flight, Fourier ion cyclotron resonance, and quadrupole ion trap mass spectrometers.

Quadrupole Mass Analyzer. A quadrupole mass analyzer is essentially a mass filter that is capable of transmitting only the ion of choice. A quadrupole mass analyzer consists of four parallel rods that have fixed direct current (dc) and alternating radio frequency (RF) potentials applied to them as shown in Figure 1.3. Ions produced in the source of the instrument are then focused and passed along the middle of the quadrupoles. Their motion will depend on the electric fields so that only ions of a particular m/z will be in resonance and thus pass through to the detector. The RF is varied to bring ions of different m/z into focus on the detector and thus build up a mass spectrum.

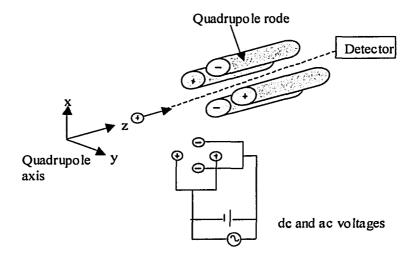


Figure 1.3 Schematic of a quadrupole mass analyzer.

The same absolute potential with different sign is applied to each rod. The two potentials applied are +(U+Vcos(wt)) (labeled '+' on Fig. 1.3) and -(U+Vcos(wt)) where 'U' is the fixed potential and Vcos(wt) is the applied RF of amplitude 'V' and frequency 'w'. The applied potentials on the opposed pairs of rods vary sinusoidally as cos(wt) cycles with time 't'. This results in ions being able to traverse the field-free region along the central axis of the rods but with oscillations amongst the poles themselves. These oscillations result in complex ion trajectories dependent on the m/z of the ions. Specific combinations of the

potentials 'U' and 'V' and frequency 'w' will result in specific ions being in resonance, creating a stable trajectory through the quadrupole to the detector. All other m/z values will be non-resonant and will hit the quadrupoles and not be detected. The mass range and resolution of the instrument is determined by the length and diameter of the rods.

Quadrupole Ion Trap Mass Analyzer. The quadrupole ion trap mass analyzer was introduced at the same time as the quadrupole mass analyzer and by the same person, Nobel Prize winner Wolfgang Paul¹⁴. The physics behind both of these analyzers is very similar. Quadrupole ion trap consists of two end cap electrodes and a ring electrode as shown in Figure 1.4. In an ion trap, a radio frequency voltage is applied to the ring electrode while the two end-cap electrodes are held at ground potential. One method of using an ion trap for mass spectrometry is to generate ions externally with electrospray and then inject them into the trapping volume. The ions are then ejected and detected as the radio frequency field is scanned¹⁵. It is also possible to isolate one ion species by ejecting all others from the trap. The isolated ions can subsequently be fragmented by collisional activation and the fragments detected to generate a fragmentation spectrum. The primary advantage of quadrupole ion traps is that multiple collision-induced dissociation experiments can be performed without having multiple analyzers. Other important advantages include its compact size and the ability to trap and accumulate ions to increase the signal-to-noise ratio of a measurement.

Ion trap mass spectrometry has recently undergone very rapid development and is emerging as a high performance technique that shows signs of becoming one of the leading tools in the discipline. These instruments allow tandem mass spectrometry experiments which are possible only by the use of combinations of multiple quadrupoles, such as the highly successful triple quadrupole instrument. Extension to high mass/charge measurements, the development of high resolution capabilities and the very recent demonstration of non-destructive, broad-band Fourier transform capabilities, all suggest an increased role in the future. Limitations occur in dynamic range, accurate mass measurement, and quantitative precision.

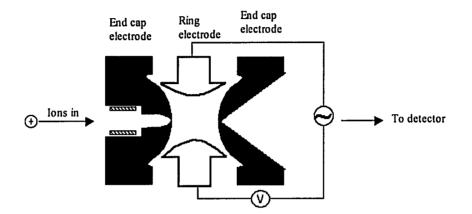


Figure 1.4 Schematic of ion trap mass spectrometer.

Time-of-Flight Mass Analyzer (TOF). A time-of-flight (TOF) analyzer is one of the simplest mass analyzing devices and is commonly used with MALDI. It separates ions in time as they travel down a flight tube^{16,17} (Figure 1.5). In the source of a TOF analyzer, a packet of ions is formed by a very fast (nano seconds) ionization pulse. These ions are accelerated into the flight tube by an electric field (typically 2-25 kV) applied between the backing plate and the acceleration grid. Since all the ions are accelerated across the same distance by the same force, they have the same kinetic energy. Because velocity (v) is dependent upon the kinetic energy ($E_{kinetic}$) and mass (m), lighter ions will travel faster.

$$E_{kinetic} = 1/2mv^2$$
 equation 1.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

 $E_{kinetic}$ is determined by the acceleration voltage of the instrument (V) and the charge of the ion (e × z). Equation 1.1 rearranges to give the velocity of an ion (v) as a function of acceleration voltage and m/z value.

$$v = [(2V.e)/(m/z)]^{1/2}$$
 equation 1.2

After the ions accelerate, they enter the flight tube. The ions drift through this fieldfree region at the velocity reached during acceleration. At the end of the flight tube they strike a detector. The time delay (t) from the formation of the ions to the time they reach the detector depends upon the length of the drift region (L), the mass to charge ratio of the ion, and the acceleration voltage in the source.

$$t = L. [(m/z)/(2V.e)]^{1/2}$$
 equation 1.3

Equation 1.3 shows that low m/z ions will reach the detector first. The mass spectrum is obtained by measuring the detector signal as a function of time for each pulse of ions produced in the source region. Because all the ions are detected, TOF instruments have very high transmission efficiency which increases the S/N.

The mass resolution ($R = m/\Delta m$) of a linear TOF mass spectrometer is usually very poor (generally less than 500). The following factors contribute to the poor resolution of the process: (a) different time of formation or acceleration of ions; (b) different initial locations of ions in space; and (c) different initial velocities of ions before acceleration. Time focusing can be achieved, in the case of laser desorption (LD) or matrix-assisted laser desorption/ionization (MALDI), by using pulsed drawout fields with sharp rise times or short laser pulses. A dual-stage extraction¹⁸ method is normally used for correction of the initial spatial distribution of ions in an ion source. And finally, initial velocity (or energy) distribution can be corrected partially by a time-lag focusing technique which is explained briefly below.

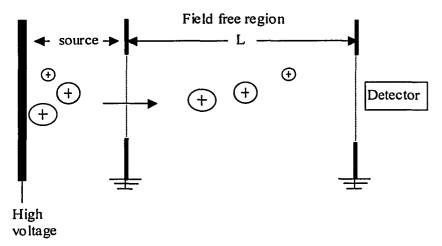


Figure 1.5 A schematic diagram of a linear time of flight (TOF) mass analyzer.

Peak broadening can be reduced by using a time-lag focusing TOF mass analyzer¹⁹⁻²³. In conventional MALDI-TOF instruments, the ions produced by a pulsed laser beam are immediately extracted from the source. An electric field created by continuously applying dc voltages to the source plates, including the repeller and the extractor, expels the ions from the source to the flight tube for mass analysis. In MALDI-TOF systems equipped with time-lag focusing, the general procedure is to introduce a time delay between ionization and extraction of the ions out of the ion source into the drift tube of the analyzer. During the time delay, the ions drift with the initial velocity imparted by the desorption event. Ions with a greater initial velocity drift faster than ions of lesser initial velocity; therefore, ions of greater initial velocity. After some time, the time delay, a voltage pulse is applied to create an electric field and accelerate the ions. The time delay and extraction potential are tuned to minimize the arrival

time distribution of the ions at the detector. One major drawback of using time-delayed extraction for initial velocity distribution correction is that it is mass dependent, which is problematic for a TOF mass spectrometer intended to record the entire mass range simultaneously.

Alternatively, an approach to mass independent compensation for the initial velocity distribution of ions has been possible with the invention of the ion mirror or reflectron. The reflectron, located at the end of the flight tube, is used to compensate for the difference in flight times of the same m/z ions of slightly different kinetic energies by means of an ion reflector (Figure 1.6). The idea is that the ions of higher kinetic energy penetrate deeper into the field and take a longer time to return than slow ions. Fast and slow ions are focused in time at the detector. Therefore, with proper geometry and voltage on the reflectron, the initial energy spreads are largely compensated, and the mass resolution is greatly improved. For a reflectron TOF, resolution is generally over 2000 and in some cases can be as high as 20,000. The spectral recording speed of TOF can be as high as 10,000 spectra/second, while other mass analyzers usually can only record up to 10 spectra/second. TOF has unlimited mass range; an ion of up to approximately 1 million m/z can be detected but detection is usually limited by the effectiveness of the ion detector.

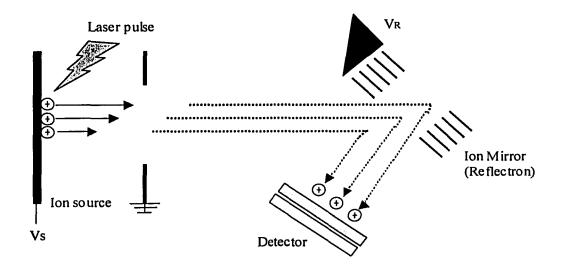


Figure 1.6 A schematic diagram of a reflectron time of flight (TOF) mass analyzer. Vs and V_R are voltages applied on the repeller and ion mirrors, respectively.

Fourier Transform Ion Cyclotron Resonance (FTICR) Mass Analyzer. The Fourier-transform ion cyclotron resonance mass spectrometer (FTICR-MS)^{24, 25} offers two distinct advantages: high resolution and the ability to perform tandem mass spectrometry experiments. First introduced in 1974 by Comisarow and Marshall, FTICR-MS is based on the principle of a charged particle orbiting in the presence of a magnetic field. While the ions are orbiting, a radio frequency (RF) signal is used to excite them and as a result of this RF excitation, the ions produce a detectable image current on the cell in which they are trapped. The time-dependent image current can then be Fourier-transformed to obtain the component frequencies of the different ions which correspond to their m/z.

Tandem Mass Spectrometry. To obtain more information on the molecular ions generated for example, in electrospray ionization and MALDI ionization sources, it has been necessary to apply techniques, such as tandem mass spectrometry (MS/MS), to induce fragmentation. Tandem mass spectrometry (abbreviated MSⁿ, where n refers to the number of generations of fragment ions being analyzed) allows one to induce fragmentation and mass

analyze the fragment ions. This is accomplished by collisionally generating fragments from a selected ion and then mass analyzing the fragment ions. Fragmentation can be achieved by inducing ion/molecule collisions by a process known as collision-activated dissociation (CAD). Collision-activated dissociation is accomplished by selecting an ion of interest with a mass analyzer and introducing that ion into a collision cell. The selected ion then collides with a collision gas (typically argon or helium) resulting in fragmentation. The fragments are then analyzed to obtain a fragment ion spectrum.

One example is the quadrupole-time-of-flight tandem mass spectrometer (QqTOF-MS), which is one of the most popular instruments currently used in proteomics research²⁶. Its popularity is due to the high sensitivity, mass accuracy and mass resolution of the TOF instrument for both precursor and product ions. QqTOF consist of a mass-resolving quadrupole (Q), an RF-only quadrupole (q), and a reflecting time-of-flight (TOF) mass spectrometer with orthogonal injection of ions. There is an additional RF quadrupole Q0 in which collisional damping and focusing of ions takes place. Therefore, QqTOF consists of three quadrupole and one TOF mass analyzers. Triple Quadrupole (QQQ)²⁷ mass spectrometry offers the highest absolute sensitivity for targeted compounds that require the measurement of only a few types of ions, however, the Q-TOF may provide better S/N, due to the increased specificity afforded by the higher resolution of Q-TOF systems for certain analytical situations. The first and third quadrupoles in triple quadrupole are mass filters, and the middle one is a collision cell. This allows the study of fragments that are useful in structural studies.

1.1.3 Ion Detection

Once the ion passes through the mass analyzer it is then detected by the ion detector, the final element of the mass spectrometer. The detector allows a mass spectrometer to generate a signal current from incident ions by generating secondary electrons, which are further amplified. Alternatively, some detectors operate by inducing a current generated by a moving charge. Some of the commonly used detectors are: electron multiplier, channel electron multiplier (CEM) or channeltron, microchannel plate multiplier, and scintillation.

An electron multiplier is one of the most common means of detecting ions. It is made up of a series of dynodes maintained at ever increasing potentials. Ions strike the dynode surface, resulting in the emission of electrons. These secondary electrons are then attracted to the next dynode where more secondary electrons are generated, ultimately resulting in a cascade of electrons. Typical amplification or current gain of an electron multiplier is one million.

Microchannel plate (MCP)²⁸, which consists of two microchannel plates made of a lead-glass inner surface placed in a chevron configuration, is part of continuous dynode multiplier detectors. Each ion that strikes the MCP creates a pulse of electrons at the anode. The pulse is amplified and is used to trigger a timing pulse which is sent to the ion counting device. Typically transient recorders and time-to-digital converters are used to digitize the ion current to form a mass spectrum. To be detected, the large ions generated must be converted into either electrons or low-mass ions at a conversion electrode. These electrons or low-mass ions are then used to start the electron multiplication cascade for amplication. The yield of secondary electrons from the conversion electrode is a function of the velocity of the ions to be detected^{29, 30}. To increase the detection sensitivity or increase the yield of

secondary electron generation, the acceleration potential may be increased, or postacceleration in the flight tube may be applied. This detector is commonly used for TOF and Q-TOF mass analyzers.

The photo multiplier conversion dynode or scintillation³¹ counter detector is similar to an electron multiplier where the ions initially strike a dynode, resulting in the emission of electrons. However, with the photo multiplier conversion dynode detector electrons then strike a phosphor screen. The phosphor screen, much like the screen on a television set, releases photons once an electron strikes. These photons are then detected by a photo multiplier, which operates with a cascading action much like an electron multiplier. The primary advantage of the conversion dynode setup is that the photo multiplier tube is sealed in a vacuum (photons pass through sealed glass), unexposed to the internal environment of the mass spectrometer. Thus the possibility of contamination is removed. A five year or greater lifetime is typical and, with sensitivity similar to electron multipliers, photo multiplier conversion dynode detectors are becoming more widely used in mass spectrometers.

1.2 HPLC Separation of Peptides

Proteins of interest to biological researchers are usually part of a very complex mixture of other proteins and molecules that co-exist inside the cellular medium. In biological samples, different proteins tend to be present in widely differing amounts. If such a mixture is ionized, for example using Electrospray or MALDI, the more abundant species have a tendency to drown out signals from less abundant ones. Additionally, even if this effect were negligible, the mass spectrum from a complex mixture would be very difficult to interpret due to the overwhelming number of mixture components that would be present. This problem is intensified by the fact that enzymatic digestion of a protein gives rise to a large number of peptide products.

Two methods are widely used to fractionate proteins, or their peptide products from an enzymatic digestion. The first method, generally used to fractionate complex whole protein mixtures is Two-Dimensional Gel Electrophoresis. The second method, High Performance Liquid Chromatography is used mainly to fractionate peptides after enzymatic digestion. In some situations, it may be necessary to combine both of these techniques.

2D-gel electrophoresis has become a standard technique in Proteomics for proteome separation. However, there are some drawbacks associated with this method: First of all, 2Dgel electrophoresis is time consuming and it is difficult to obtain reproducible results. Secondly, 2D-gel electrophoresis may not cope with a large number of proteins that might be of particular interest, e.g. acidic, basic, low abundance, or hydrophobic membrane proteins. Furthermore, laborious preparation steps are necessary to determine protein identities with MALDI-TOF.

Multidimensional HPLC^{32,33} for separation, coupled with mass spectrometry of proteome samples offers an alternative way to overcome the limitations associated with 2D-gel electrophoresis. A peptide mixture that results from digestion of a protein mixture is fractionated by one or two steps of liquid chromatography. The eluate from the chromatography stage can be either directly introduced to the mass spectrometer through electrospray ionization, or laid down as a series of small spots for later mass analysis using MALDI. The first dimension is usually strong cation exchange chromatography, coupled either off-line or on-line with the second dimension, reversed-phase chromatography.

1.2.1 Strong Cation-Exchange HPLC

Strong cation-exchange chromatography is probably the most useful mode of highperformance ion-exchange chromatography for peptide separations. The major separation mechanism of this mode of high performance liquid chromatography (HPLC) is electrostatic in nature. Ion-exchange packings may also exhibit significant hydrophobic characteristics. giving rise to mixed-mode contributions to solute separations³⁴. The utility of strong cation exchange chromatography packings, generally containing sulfonate functionalities, lies in their ability to retain their negatively charged character in the acidic to neutral pH range. At low pH, the side chain carboxyl groups of acidic amino acid residues are protonated. emphasizing any positively charged character of the peptides. Thus, by manipulating the pH of the mobile phase, the net charge of a peptide may be varied. In addition to overall net charge, other factors which may affect the retention behavior of peptides during ionexchange chromatography include peptide conformation, polypeptide chain length, charge distribution, and charge density. To understand peptide retention behavior during ionexchange chromatography completely, it is not sufficient merely to demonstrate that these various factors have an effect on peptide retention, it is also necessary to quantitate the relative contribution each factor makes to retention behavior. In ion-exchange methods, salt concentration and pH are typically the most important factors affecting selectivity and resolution.

Off-line fractionation of peptide mixtures using strong cation exchange chromatography is commonly used in proteomic research. Strong cation exchange chromatography is not only used for separation or fractionation of peptide mixtures but is

also used to remove some detergents, such as SDS, that are used to solubilize proteins in the proteome analysis.

1.2.2 Reversed-Phase HPLC

Reversed-phase high performance liquid chromatography (RP-HPLC) has become a widely used, well-established tool for the analysis and purification of biomolecules^{35, 36}. The reason for the central role that RP-HPLC now plays in analyzing and purifying proteins and peptides is resolution: RP-HPLC is able to separate polypeptides of nearly identical sequences, not only for small peptides such as those obtained through trypsin digestion, but even for much larger proteins. Polypeptides which differ by a single amino acid residue can often be separated by RP-HPLC. The separation in RP-HPLC relies on the interaction between the analyte (e.g., hydrophobic amino acid residues contained in the peptide) and the "hydrophobic" functions on the bonded phase of the packing surface. Usually, peptides, in order of increasing hydrophobicity, are eluted from the column by a gradient of increasing organic solvent (e.g., acetonitrile) concentration. The bonded phase in an RP column is non-polar or hydrophobic (usually C8 or C18 on silica columns). Less polar (more hydrophobic) analytes are more attracted to the hydrophobic bonded phase and spend longer associated with the bonded phase and are eluted later; the reverse is true for polar analytes.

Reversed-phase liquid chromatography separations can easily be interfaced on-line to electrospray or nanoelectrospray, or off-line to MALDI sources because of compatibility of solvents and lack of salts and detergents³⁷.

1.3 Protein Identification using Mass Spectrometry

Mass spectrometry (MS) has become a routine technique for protein identification due to its speed and high sensitivity. There are two approaches widely in use for high throughput protein identification: peptide mass fingerprinting and peptide fragmentation fingerprinting. Peptide mass mapping^{38,39} involves the digestion of the protein of interest by a proteolytic enzyme, such as trypsin, followed by identification of the resulting peptides using mass spectrometry. This approach, coupled to an understanding of the cleavage process, affords a peptide map that is unique for each protein and allows its identification by searching existing databases. The peptide map can be produced by either MALDI or ESI MS. MALDI-MS is commonly used because of its tolerance to samples with buffers and salts and is more sensitive. Another advantage of MALDI is that it almost exclusively produces singly charged ions for low mass peptides, which makes it more suitable for direct mixture analysis. When the m/z of peptides is the sole parameter in a peptide mass mapping, a sufficient number of proteolytic peptides with highly accurate masses are required to make an unambiguous identification of a protein, especially when dealing with large proteome To some extent, the use of either external or internal mass standards for databases. calibrating peptide masses can increase the peptide mass mapping mass accuracy. A modern MALDI-TOF instrument can routinely provide mass accuracy of better than 50 ppm with external mass calibration and better than 20 ppm with internal calibration. Since peptide mass mapping is often not sufficient for unambiguous identification of proteins, other methods are required for confirmation.

The other method for protein identification relies on the fragmentation of peptides in mixtures to obtain sequence information using tandem mass spectrometry⁴⁰⁻⁴³. The

fragmentations are produced either in a collision cell in a tandem mass spectrometer such as MALDI/ESI Oq-TOF, or within an ESI-ion trap. In an MS/MS based protein identification experiment multiple peptides are usually found and all of their fragment spectra are used to correlate to a protein. The types of fragment ions observed in an MS/MS spectrum depend on many factors, including: primary sequence, the amount of internal energy, how the energy was introduced, and charge state. In tandem mass spectrometry, two fragmentation-energy regimes of either high or low energy collisionally induced dissociation (CID) are used to generate fragmentation. Low energy CID is commonly used by most instruments (triple quadrupole, ion trap and quadrupole-TOF). The nomenclature shown in Figure 1.7 was first developed by Roepstorff and Fohlman (1984)⁴⁴ and later modified by Biemann (1990)⁴⁵. Fragments will only be detected if they carry at least one charge. If this charge is retained on the N- terminal fragment, the ion is classified as either a, b or c and if the charge is retained on the C- terminal, the ion type is either x, y or z. A subscript indicates the number of residues in the fragment. Among the series of ion types mentioned, b and y-type ions are often observed in low energy CID.

Figure 1.7 Nomenclature of peptide fragmentation pattern under low energy CID.

If both peptide mass mapping and peptide fragment ion fingerprinting fail to identify the protein, de novo sequencing of peptides can be carried out by using tandem MS. This method involves manual interpretation of the fragment ion spectra to determine the amino acid sequence.

1.4 Scope of the Thesis Work

In this thesis, proteomic analysis was applied to heart tissues and cancer cell lines. Full characterization of the human heart proteome is essential in understanding the protein expression alterations in failing heart tissues. Shotgun proteomics, which is based on the peptide analysis, has emerged as a powerful technique for heart tissue proteome identification. One critical step in applying the shotgun proteomics approach to generate a comprehensive proteome profile of tissues is to digest all the proteins, including soluble and insoluble proteins. In chapter 2, two dimensional liquid chromatography coupled with tandem mass spectrometry (2D LC-MS/MS) and microwave-assisted acid hydrolysis (MAAH) coupled with 2D LC-MALDI MS/MS techniques for more comprehensive coverage of proteome profiles from diseased human heart tissues are presented. Two steps were used to analyze extracted proteins. SDS soluble proteins were digested by trypsin, and the resulting peptide mixture was fractionated by strong cation exchange (SCX) chromatography into 10 fractions. Each fraction was further analyzed by an LCQ DECA tandem mass spectrometer. SDS-insoluble proteins were suspended in 25% TFA and digested with microwave irradiation for 10 minutes. The digests were fractionated by SCX chromatography into 9 fractions. Each fraction was analyzed by LC-MALDI MS/MS. From

these combined methods, a significant number of proteins were obtained and presented in this thesis.

Relative quantification of proteins is another focus of today's proteomic research. In chapter 3, the application of an isotope labeling strategy coupled with liquid chromatography laser desorption/ionization mass spectrometry (LC-MALDI) to quantify and identify differentially expressed proteins between E-cadherin-deficient human carcinoma cell line (SCC9) and its transfectants expressing E-cadherin (SCC9-E-cad) and plakoglobin (Pg-SCC9) is presented. This labeling strategy, known as stable dimethyl isotope labeling, labels the amino groups of N-termini and lysine to determine the proteins that are differentially expressed between two samples. Stable isotope dimethyl labeling strategy, similar to that used for squamous carcinoma cell line extracts, but with a slightly different protocol, was applied to quantify and identify heart tissue extracts.

1.5 Literature Cited

- 1. Dole, M. J. Chem. Phys, 1968, 49, 2240-2249.
- 2. Yamashita, M.; Fenn, J.B. J. Phys. Chem. 1984, 88, 4451-4459.
- Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M.; Fenn, J. B. Anal. Chem. 1985, 57, 675 - 679.
- 4. Kebarle, P.; Tang, L. Anal. Chem. **1993**, 65, 972A-986A.
- 5. Karas, M.; Bachmann, D.; Bahr, Y.: Hillenkamp, F. Int. J. Mass Spectrom. Ion Process, 1987, 78, 53.
- 6. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299-2301.

- Tanaka, K.; Waki, H.; Ido, Y.; Akita, S; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151.
- 8. Bokelmann, V.; Spengler, B.; Kaufmann, R. Eur. Mass Spectrom. 1995, 1, 81-93.
- Weinberger, S. R.; Boernsen, K. O.; Finchy, J. W.; Robertson, V.; Musselman, B. D. In proceedings of the 41st ASMS Conference on Mass Spectrometry and Allied Topics; San Francisco, CA, May 31-June 4, 1993; PP 775a-b.
- 10. Xiang, F.; Beavis, R. C. Rapid Commun. Mass Spectrom. 1994, 8, 199-204.
- 11. Vorm, O.; Roepstorff, P.; Mann, M. Anal. Chem. 1994, 66, 3281-3287.
- Edmondson, R. D.; Campo, K. K; Russell, D. H. In Proceedings of the 41st ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, Georgia, May 21- May 26, 1995; p 1246
- 13. Dai, Y.; Whittal, R. M.; Li, L. Anal. Chem. 1996, 68, 2721-2725.
- 14. Paul, W. Angew. Chem. Int. Ed. Engl. 1990, 29, 739.
- 15. March, R. E. J. Mass Spectrom 1997, 32, 351-369.
- Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, 1193A-1203A.
- Cotter, R. J. Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research; American Chemical Society: Washington, D. C., 1997.
- 18. Wiley, W. C.; McLaren, I. H. Rev. Sci. Instrum. 1995, 26, 1150-1157.
- Colby, S. M.; King, T. B.; Reilly, J. P. Rapid Commun. Mass Spectrom. 1994, 8, 865-868.
- 20. Vestal, M. L.; Juhasz, P.; Martin, S. A. Rapid Commun. Mass Spectrom. 1995, 9, 1044-1050.

- 21. Brown, R. S.; Lennon, J. J. Anal. Chem. 1995, 67, 1998-2003.
- Whittal, R. M.; Russon, L. M.; Weinberger, S. R.; Li, L. Anal. Chem. 1997, 69, 2147-2153.
- 23. Whittal, R. M.; Li, L. Anal. Chem. 1995, 67, 1950-1954.
- 24. Buchanan, M.V.; Hettich, R. L. Anal. Chem. 1993, 65, 245A-259A.
- 25. Wilkins, C. L.; Gross, M. L. Anal. Chem. 1981, 53, 1661A-1676A.
- Loboda, A. V.; Krutchinsky, A. N.; Bromirski, M.; Ens, W.; Standing, K. G. Rapid Commun. Mass Spectrom. 2000, 14, 1047-1057.
- 27. Yost, R. A.; Enke, C.G. J. Am. Chem. Soc. 1978, 100, 2274-2275.
- 28. Wurz, P.; Gubler, L. Rev. Sci. Instrum. 1996, 67, 1790-1793.
- 29. Beuhler, R. J. J. Appl. Phys. 1983, 54, 4118-4126.
- 30. Spengler, B.; Kirsch, D.; Kaufmann, R.; Karas, M.; Hillenkamp, F.; Giessmann, U. Rapid Commun. Mass Spectrom. 1990, 4, 301-305
- 31. Daly, N. R., Rev. Sci. Instrum. 1963, 34, 1116-1120.
- 32. Wolters, D. A.; Washburn, M. P.; Yates, J. R. III. Anal. Chem. 2001, 73, 5683-5690.
- 33. Washburn, M. P.; Woters, D.; Yates, J. R. III. Nat. Biotechnol. 2001, 9, 242-247.
- Lorne Burke, T. W.; Mant, C. T., Black, J.A.; Hodges, R. S. J. Chromatogr. 1989, 476, 377-389.
- 35. Yates, J. III. J. Mass Spectrom. 1998, 33, 1-19.
- 36. Mann, M.; Hendrickson, R. C.; Pandey, A. Annu. Rev. Biochem. 2001, 70, 437-473.
- Le Bihan, T.; Duewel, H. S; Figeys, D., J. Am. Soc. Mass Spectrom. 2003, 14, 719-727.
- 38. Gibson, B. W.; Biemann, K. Proc. Natl. Acad. Sci. 1984, 81, 1956-1960.

- 39. Greer, F. M.; Morris, H. R.; Forstrom, J.; Lyons, D. Biomed. Environ. *Mass Spectrom.* 1988, 16, 191-195.
- 40. Mclafferty, F. W., Ed.; Tandem Mass Spectrometry, Wiley-Interscience: New York, 1983.
- 41. Biemann, K.; Scoble, H. A. Science, 1987, 237, 992-998.
- 42. Biemann, K. Biomed. Environ, Mass Spectrom. 1988, 16, 99-111.
- 43. Yates, J. R., II; Specicher, S.; Griffin, P. R.; Hunkapiller, T. Anal. Biochem. 1993, 214, 397-408.
- 44. Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.
- 45. Biemann, K. Methods Enzymol. 1990, 193, 886-887

Chapter 2

Comprehensive Proteome Analysis of Diseased Human Heart Tissue

2.1 Introduction

Full characterization of the human heart proteome is essential in understanding the protein expression alterations in failing heart tissues. The causes of most heart diseases that result in heart failure are not well known, but are likely due to protein and gene expression alterations ¹⁻⁴. In order to compare the normal heart tissue with that of diseased heart tissue, the complete proteome profile of the healthy heart tissue is required. There are a number of alternative methods to separate and identify complex protein mixtures. One challenging step in most of these techniques is to extract and digest all the extracted proteins in order to identify all the protein components in the heart tissue.

Effective protein isolation methods, better protein separation and high-throughput identification techniques need to be established in order to identify all possible proteins in heart tissue. Two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry has been used to separate and identify proteins from human heart tissues ⁵. About three thousand spots were detected using 2DE from human heart tissue protein extracts, but only two hundred proteins were reported from these spots ⁵⁻⁸. As a result of a number of limitations in 2DE, some alternative technologies have been introduced. Recently, shotgun proteomics, which is based on peptide analysis ⁹⁻¹⁰, has emerged as a powerful technique for heart tissue proteome identification ¹¹. One critical step in applying the shotgun proteomics approach to generate a comprehensive proteome profile of tissues is to digest all proteins including soluble and insoluble proteins. In most cases, protein pellets

extracted from cells or tissues are not easily solubilized in most common solvents or buffers. Some detergents, such as SDS, can be used in solublizing such extracts, but a very high concentration of SDS can not be used as it can affect trypsin digestion, complicates the protein purification using the 2D liquid chromatography and also interferes with the mass spectrometry.

A new protein digestion method, microwave-assisted acid hydrolysis¹², developed by our group, was used to analyze membrane proteins. This method has become a promising technique to solve some of the problems encountered in shotgun proteomics techniques. MAAH is detergent-free and digests proteins in the absence of enzymes. SDS-insoluble proteins can be easily digested using this technique.

A method is presented to analyze the human heart tissue proteome using a combination of traditional shotgun proteomics techniques and MAAH for more comprehensive coverage of proteome profiles from diseased human heart tissues.

2.2 Experimental Section

2.2.1 Materials and Reagents

Trizol was purchased from Invitrogen Canada (Burlington, ON, Canada). 2, 5dihydroxybenzoic acid (DHB), bovine trypsin, dithiothreitol (DTT), iodoacetamide, trifluoroacetic acid (TFA), chloroform and sodium dodecylsulfate (SDS) were purchased from Sigma-Aldrich Canada (Markham, ON, Canada). HPLC grade acetonitrile (ACN), acetic acid, isopropanol and acetone were from Fisher Scientific Canada (Edmonton, Canada). Water was obtained from a Milli-Q plus purification system (Millipore, Bedford, MA).

2.2.2 Extraction of proteins

Human heart tissue was obtained from a person with heart disease and provided by Dr. Shaohua Wang (Cardiac Surgery Division, University of Alberta Hospital). The tissue was frozen in liquid nitrogen and stored at -80 $^{\circ}$ C. The thawed tissue was cut into pieces and homogenized in Trizol (60-100 mg of tissue/1 mL of Trizol). Samples were mixed at room temperature overnight. The debris was removed by centrifugation at 12,000 x g for 10 minutes at 4 $^{\circ}$ C. Chloroform was added to separate the solution into an aqueous phase and an organic phase. The aqueous phase was carefully removed after centrifugation at 12,000 x g for 15 minutes at 4 $^{\circ}$ C. Isopropanol was added at the last step to precipitate the protein from the organic phase. Detailed instruction was provided with the Trizol reagent and can be obtained in the manufacturer's manual. The protein pellet was then solubilized in 1% SDS. The SDS-insoluble protein pellet was kept at -80 $^{\circ}$ C. Protein concentration was estimated using the Bradford assay and approximately 6.5 μ g total protein/mg of tissue was extracted.

2.2.3 In-Solution Tryptic Digestion of SDS Soluble Proteins

The protein solution in 1% SDS was reduced with dithiothreitol (DTT) and then alklyated with iodoacetamide followed by acetone precipitation at -20 $^{\circ}$ C. The protein pellet was resuspended in 0.1% SDS. Solubilization of the proteins was achieved with 0.2 M NaOH ¹³. The mixture was diluted to a final SDS concentration of 0.05% and the pH was adjusted with 1mM NaHCO₃ to ~ 8.5. 20 mM CaCl₂ was added to the mixture to a final concentration of 2 mM CaCl₂. Finally, trypsin was added to the protein solution at a protein: enzyme ratio of 40:1 by weight and the solution was incubated at 37 $^{\circ}$ C overnight.

2.2.4 Acid Hydrolysis of the SDS-insoluble Protein Pellet

The SDS-insoluble protein pellet was washed three times with water and the supernatant was removed by a pipette. The sample was suspended in a 25% TFA solution and then divided into three polypropylene centrifuge tubes. Each tube was capped and sealed with Teflon tape and placed in a domestic 900W (2450 MHz) microwave oven. In order to absorb extra microwave energy, water in a loosely covered container was placed beside the sample vials. The sample was then exposed to microwave irradiation for 10 minutes. The entire sample was collected into one vial and dried in a vacuum centrifuge to remove the acid. The dried sample was dissolved in 0.1% TFA.

2.2.5 2D LC-ESI MS/MS

The tryptic peptides were acidified with 0.1% TFA, supplemented with 20% ACN, and then loaded onto a strong cation exchange column (Biochrom, Terre Haute, IN, 2.1 x 150 mm). Fractions were collected using a fraction collector (Agilent) every one minute during a 40 min gradient from 2% to 80% solvent B (solvent A: 0.1% TFA and 20% ACN in water; B: 1M NaCl in 0.1% TFA and 20% ACN) at flow rate of 0.25 mL/min. Ten fractions were collected in 40 minutes. All collected fractions were reduced in volume to \sim 0.01 mL by vacuum centrifugation. Each fraction was injected onto a capillary C18 column (Vydac, 1 x 150 mm) with a gradient from 5 to 80% solvent B (solvent A: 0.1% acetic acid in water; 0.1% acetic acid in ACN). The LC-ESI MS/MS system used was a ThermoFinnigan LCQ DECA ion trap mass spectrometer (San Jose, CA). The mass spectrometer was operated in six segment data dependent mode (one mass spectrum followed by five CID spectra).

2.2.6 2D LC-MALDI MS/MS

ACN was added to the SDS-insoluble 0.1%TFA peptide solution to a final 20% ACN concentration and loaded onto a strong cation exchange column (2.1 x 150 mm). Nine fractions were collected during solvent gradient development, as described in the 2LC-ESI MS/MS section above. All collected fractions were reduced in volume to ~0.02 ml to remove ACN. Each fraction was diluted to ~ 0.1mL with 0.1% TFA. 0.1mL of each fraction was injected onto a capillary C18 column (Vydac, 1.0 x 150 mm). Gradient elution was performed with solvent A (0.1% TFA and 4% ACN in water) and B (0.1% TFA in ACN) at a flow rate of 40 μ L/min. Each fraction was collected every one minute and directly deposited onto a 100 well gold MALDI plate by the heated droplet interface. 1M DHB in 50% acetonitrile was used as a matrix. Peptides were analyzed by a QSTAR MALDI MS/MS mass spectrometer (MDS SCIEX, Concord, Canada).

2.2.7 Data Processing

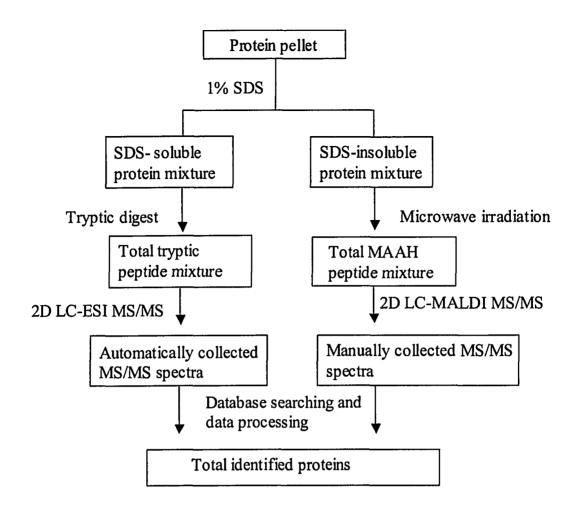
All MS/MS spectra were searched using the MASCOT algorithm (http://www.matrixscience.com). For the tryptic digest part, over 20,000 MS/MS spectra were searched against SwissProt with variable modification of methionine and cysteine. For the SDS-insoluble acid hydrolysis, the collected MS/MS spectra were searched against the database using the following criteria: no specification of enzyme type, variable modification of methionine and asparagine or glutamine (deamidation). The MS/MS spectra of the matched peptides were examined manually.

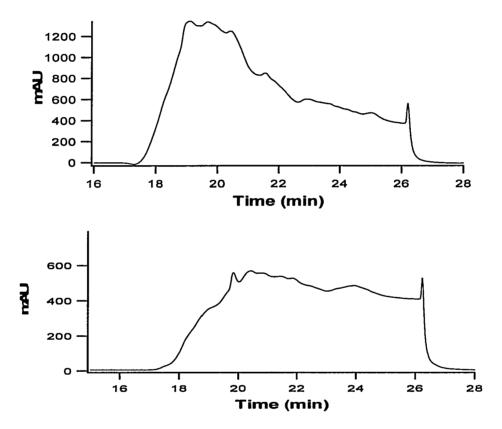
2.2.8 Safety Considerations

Procedures and cautions in handling liquid samples for microwave experiments can be found in the literature ¹⁴. Although the sample volume in each vial used in our experiment was about 33 μ L, care was taken during the microwave irradiation. To avoid any problems associated with the high concentration of the acid used, the capped sample vial was allowed to cool inside the microwave and opened under a fume-hood.

2.3 Results and Discussion

A flowchart of the experiment is presented in Figure 2.1. The entire extracted protein pellets were solublized in 1% SDS. However, it was observed that there was a substantial amount of protein pellet that was very difficult to dissolve in 1% SDS. Therefore, proteins were analyzed by two steps: SDS-soluble protein analysis and SDS-insoluble protein analysis.




Figure 2.1 A flow Chart of the experiment.

2.3.1 SDS-soluble Protein Analysis

The 1% SDS-soluble proteins were reduced and alkylated, followed by acetone precipitation. The protein pellet was then resuspended in 0.1% SDS. The protein pellet was not completely solubilized in 0.1% SDS. Therefore, 0.2 M NaOH was used for solubilization. The sample was trypsinized into peptides in the presence of SDS (0.05%). The resulting peptides were separated by strong cation exchange (SCX) chromatography. A total of 10 fractions were collected every one minute using a fraction collector. The UV-

absorbance chromatogram of the cation exchange separation of the tryptic digest from the SDS-solublized protein mixture is shown in Figure 2.2A

Each fraction was injected manually onto a reversed phase column and analyzed by LC-ESI MS/MS. The LC-ESI base peaks of the first three fractions are shown in Figure 2.3. Overall, more than 20, 000 MS/MS spectra were automatically collected and searched against the database.

Figure 2.2 UV chromatogram of cation exchange separation of the tryptic digests (A) and MAAH (B) of protein mixtures.

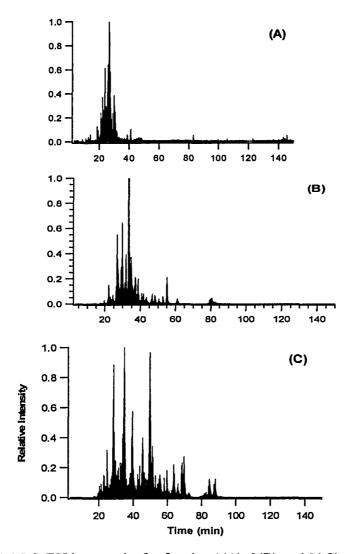
The most abundant proteins, such as myosin (light and heavy chains), serum albumin, tropomysin (alpha and beta) were observed in almost all fractions. However, the peptides that match to a single protein were obtained in different fractions, indicating the efficiency of the fractionation. The most important proteins, low abundance proteins, were the focus of our study. Overall, 236 proteins were identified using 2D LC-ESI MS/MS. Of these proteins, 21% are membrane and membrane-associated proteins.

2.3.2 Microwave-Assisted Acid Hydrolysis

The SDS-insoluble proteins were suspended in 25% TFA and digested with microwave irradiation for 10 minutes. The acid was removed by vacuum centrifugation and the residue was dissolved in 0.1% TFA. The digests were fractionated by SCX into 9 fractions. As shown in Figure 2.2B, the intensity of the UV-absorbance chromatogram of the SCX was similar to that obtained from the soluble protein pellets, indicating that a large number of peptides were generated by acid hydrolysis of the insoluble pellets. Each fraction was further separated by reversed-phase chromatography and deposited onto a 100 well gold MALDI plate by the heated droplet interface method ¹⁵. 1µL of 1M DHB in 50% acetonitrile was deposited onto each sample.

A MALDI Qq-TOF instrument was used to obtain both MS and MS/MS spectra as this instrument has high mass accuracy and resolution. Each MS/MS spectrum was collected manually using MALDI Qq-TOF and searched against the database.

The peptides generated by MAAH were from the C- and N-termini as well as peptides from internal fragmentation. A single or multiple amino acid cleavage from a single peptide is the other feature of this method. Although other amino acid cleavages are observed, cleavage at glycine is the most common. Glycine cleavage is easily identified from the MALDI MS spectra from the 57 Da mass differences.



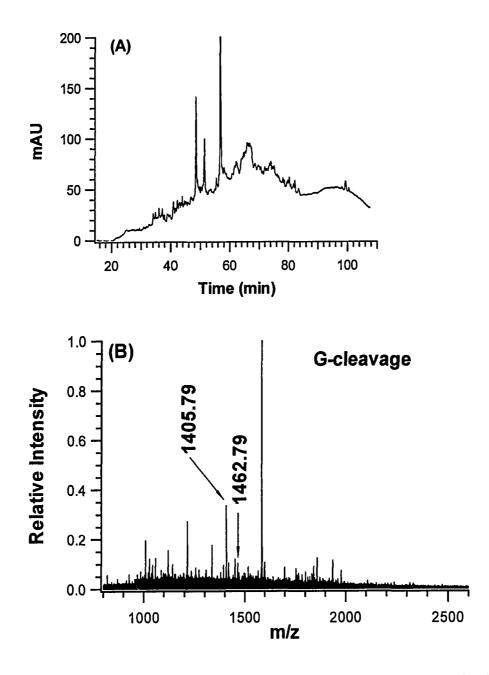

Figure 2.3 LC-ESI base peaks for fraction 1(A), 2(B) and 3(C), respectively.

Figure 2.4B is a MALDI MS spectrum that shows the glycine cleavage for peptides with mass of 1405.79 and 1462.79 Da eluted at 50 minutes from fraction 3 (Figure 2.4A). Two peptide sequences, AHYKLVPQQLAH and GAHYKLVPQQLAH, were identified based on the two MS/MS spectra shown in Figure 2.5A and B respectively and represent a protein with ID of P10606. Peptide pairs, such as APSRKFFGG and APSRKFFG, represent a protein with ID of P60174, were eluted in two consecutive spots at 22 and 23 min respectively in fraction 3 (not shown). KHSLPDLPYDYG and KHSLPDLPYDY,

representing a protein with ID of P04179, were observed at 28 and 30 min, respectively in fraction 3. PIISDRHGGYKPTD and PIISDRHGGYKPT, representing a protein with ID of P06732, were observed in the same spot at 27 min in fraction 3. CTGAHERTF and ACTGAHERTF, representing a protein with ID of Q13232, were also observed at 25 and 26 min, respectively, in fraction 3. These observations generally indicate that two peptides with a single amino acid difference have similar chromatographic retention times and can be easily identified from the MALDI MS spectra.

For demonstration purposes, three membrane proteins which were obtained only from the undissolved protein pellet have been selected. Protein Q8TB96 matched three peptides and an MS/MS spectrum of one peptide is shown in Figure 2.6A. Protein Q96F46 matched two peptides and an MS/MS spectrum of one peptide is shown in Figure 2.6B. Protein Q9Y4D7 matched two peptides and an MS/MS spectrum of one peptide is shown in Figure 2.6C.

Overall, 148 proteins were identified using this method. Of these 148 proteins, 121 were not identified by 2D LC-ESI MS/MS. These proteins could then be lost due to the lack of suitable solubilizing solvents or detergents. Therefore, microwave-assisted acid hydrolysis was demonstrated to be a promising technique to analyze very hydrophobic or proteins that are insoluble in detergents, such as SDS. The comparison of the two techniques, as applied to heart tissue proteins, is presented below. About 25% of the identified proteins are membrane or membrane-associated proteins.

Figure 2.4 (A) Reversed phase HPLC chromatogram of hydrolysates for fraction 3, (B) and LC-MALDI MS spectrum showing glycine cleavage obtained from HPLC fraction 3 (figure 2.4A) for peptides with mass 1405.79 and 1462.79 Da,.

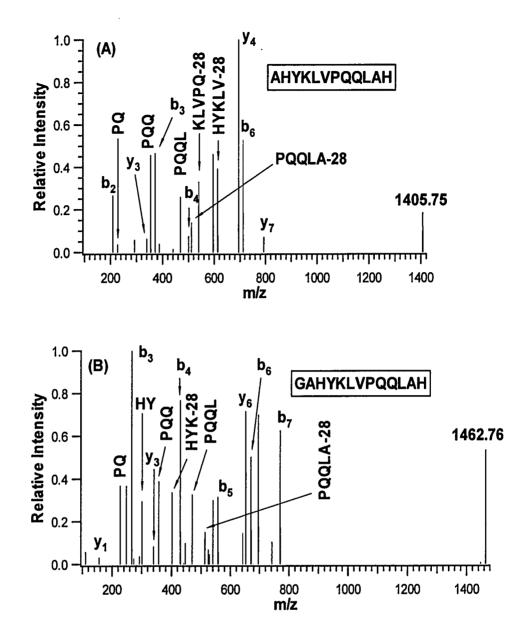


Figure 2.5 MALDI MS/MS spectra of peptides (A) 1405.79 Da and (B) 1462.79 Da

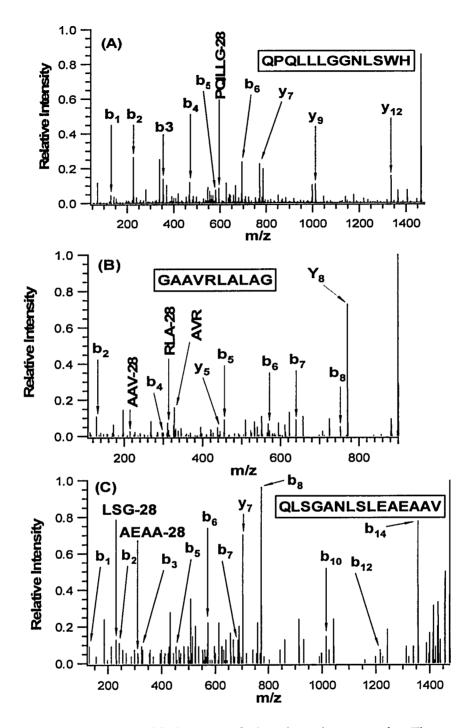
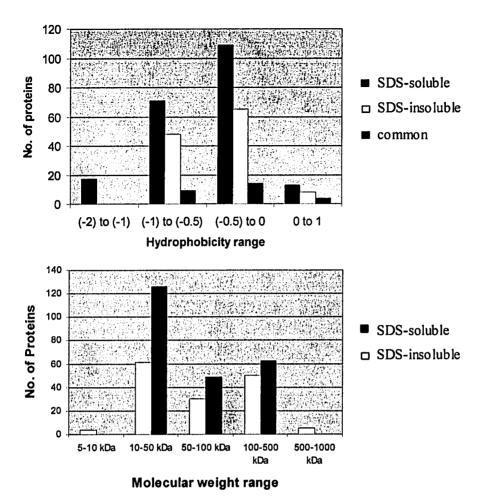
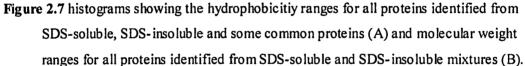
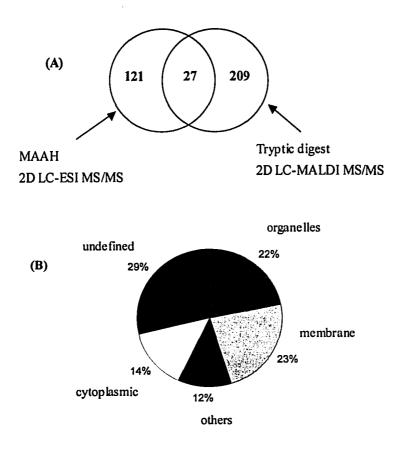




Figure 2.6 MALDI MS/MS spectra of selected membrane proteins: Three peptides that represent three proteins with ID of Q8TB96 (A), Q96F46 (B) and Q9Y4D7 (C), respectively.

2.3.3 Tryptic Digestion versus Microwave-Assisted Acid Hydrolysis


MAAH is much faster than in-solution tryptic digestion. Only 10 minutes were required to generate peptide mixtures. By comparison, in-solution tryptic digestion is usually performed overnight. The proteins identified using MAAH followed by 2D-LC MALDI Qq-TOF were 25% membrane or membrane-associated proteins.

The hydrophobicities of all identified proteins were estimated with the ProtParam program available at the EXPASY web site (http://us.expasy.org/tools/protparam.html). The

program calculates the grand average of hydrophobicity (GRAVY). Positive values are considered as hydrophobic and negative values are considered as hydrophilic. For comparison, the plot of number of proteins detected in SDS-soluble, SDS-insoluble and common proteins found in both mixtures against hydrophobicitiy is shown in Figure 2.7A.

Significantly lower and higher molecular weight proteins were obtained from the undissolved protein pellet than the SDS-soluble protein pellet. The smallest molecular weight protein obtained from the undissolved protein pellet was 7 kDa. However, the smallest molecular weight protein obtained from the SDS-soluble protein pellet was 10 kDa. Proteins as high as 1011 kDa (not shown in the histogram) were obtained from the undissolved protein pellet, but the highest molecular weight obtained from the SDS-soluble protein pellet was 479 kDa. A plot of number of proteins against molecular weight is given in Figure 2.7B for all proteins identified using LC-ESI MS/MS and LC-MALDI MS/MS. The undissolved protein pellet was washed three times with water to remove salts, detergents and soluble proteins. However, as shown in Figure 2.8A, this result shows that 27 proteins were obtained in both fractions.

Although extremely hydrophobic proteins were expected in the undissolved protein pellet, the identified proteins were not all very hydrophobic. One possible reason is that more washing could be used to make sure that all soluble proteins are removed. The other reason could be related to the aggregation of the proteins after the acetone precipitation which can complicate the digestion of the proteins with trypsin and this suggests that MAAH can solve such problems. However, lower and higher molecular weight proteins were obtained from the undissolved protein pellet than the SDS-soluble protein pellet. The subcellular locations of all the proteins are presented in Figure 2.8B. The list of all detected proteins using 2D-LC-ESI MS/MS and 2D-LC-MALDI MS/MS are shown in Table 2.1. The list of the common proteins which were obtained in both the tryptic and MAAH digests are shown in Table. 2.2.

Figure 2.8 Schematic graph showing: (A) the total number and overlap of proteins identified from the in-solution tryptic digestion coupled with 2D LC-ESI MS/MS and microwave-assisted acid hydrolysis coupled with 2D LC-MALDI MS/MS and (B) subcellular location of all the proteins identified: 22% were from organelles (mitochondrail, nuclear, ribosomal, endoplasmic recticulum, Golgi, lysosomal), 14% were cytoplasmic, 23% were membrane proteins (including integral, membrane-associated, type I, II and IV membrane proteins), 12% were classified as others (secreted, extracellular, interacellular, fibers, filaments and with multiple location). The location of 29% of proteins was not defined.

Access ID	Unique Peptide Sequence	Scor e	MW (kDa)	Subcellular Location	Soluble in 1% SDS?
P02768	AACLLPK	35	69.32	Secreted	Y
	AEFAEVSK	45			
	LCTVATLR	37			
	DDNPNLPR	34			
	FQNALLVR	57			
	QTALVELVK	41			
	TYETTLEK	30			
	LDELRDEGK	42			
	CCTESLVNR	51			
	LVNEVTEFAK	47			
	FKDLGEENFK	49			
	AVMDDFAAFVEK	85			
	AAFTECCQAADK	63			
	ETYGEMADCCAK	53			
	YICENQDSISSK	73			
	TCVADESAENCDK	110			
	ADDKETCFAEEGK	36			
	CCAAADPHECYAK	44			
	ADDKETCFAEEGKK	47			
	KVPQVSTPTLVEVSR	79			
	QNCELFEQLGEYK	86			
	QEPERNECFLQHK	45			
	VFDEFKPLVEEPQNLIK	47			
	SHCIAEVENDEMPADLPSLAA DFVESK	57			
	EFNAETFTFHADICTLSEKER	45			
	HPYFYAPELLFFAK	33			
	KQTALVELVK	56			
	LKECCEKPLLEK	85			
	MPCAEDYLSVVLNQLCVLHEK RPCFSALEVDETYVPK	49 30			
P17661	FANYIEK	46	53.37	Cytoplasmic	Y
	GTNDSLMR	33			
	LLEGEESR	37			
	AQYETIAAK	41			
	ADVDAATLAR	63 80			
	TSGGAGGLGSLR	82			
	VSDLTQAANK	71			
	KLLEGEESR	40			
		38			
		35 55			
		55 52			
	IESLNEEIAFLK	31 74			
	FASEASGYQDNIAR TNEKVELQELNDR	74 64			
	INLPIQTYSALNFR	04 47			
		41			

Table 2.1. All Identified Proteins Using 2DLC-ESI-MS/MS and 2DLC-MALDI MS/MS

P13533	FLEQQNAALAAEVNR TFGGAPGFPLGSPLSSPVFPR ADIAESQVNK AGLLGLLEEMRDER ANSEVAQWR AQLEFNQIK AVVEQTER DIDDLELTLAK DIDDLELTLAK DIDDLELTLAKVEK DTQIQLDDAVR GTLEDQIIQANPALEAFGNAK HADSVAELGEQIDNLQR KHADSVAELGEQIDNLQR KLEGDLK LELDDVTSNMEQIIK LQDAEEAVEAVNAK LQDLVDKLQLK LQDLVDKLQLK LQNEIEDLMVDVER MVSLLQEK NALAHALQSAR NLQEEISDLTEQLGEGGKK NLQEEISDLTEQLGEGGKNVH ELEK NLTEEMAGLDEIIAK SLNDFTTQR TECFVPDDKEEFVK TKYETDAIQR	98 37 30 38 37 26 60 43 27 60 43 27 60 43 27 61 32 52 81 55 62 36 32	223.55	Thick filaments	Y
P12883	NALAHALQSAR AGLLGLLEEMRDER KHADSVAELGEQIDNLQR HADSVAELGEQIDNLQR QKYEESQSELESSQK ADIAESQVNK ANSEVAQWR AQLEFNQIK AVVEQTER DIDDLELTLAK DTQIQLDDAVR GTLEDQIIQANPALEAFGNAK KLEGDLK LELDDVTSNMEQIIK LQNEIEDLMVDVER MVSLLQEK NLTEEMAGLDEIIAK	32 38 43 67 25 30 37 37 37 60 23 70 29 34 32 62	222.97	Thick filaments	Y
P08670	TKYETDAIQR EYQDLLNVK FADLSEAANR FANYIDKVR FLEQQNK GTNESLER ILLAELEQLKGQGK ISLPLPNFSSLNLR KLLEGEESR	32 56 64 29 45 45 49 46 40	53.488		Y

	KVESLQEEIAFLK	101			
	LLQDSVDFSLADAINTEFK LQDEIQNMKEEMAR	77 34			
	MFGGPGTASRPSSSR	38			
	NLQEAEEWYK	41			
	QDVDNASLAR	57			
	QQYESVAAK	49			
	QVDQLTNDKAR	57			
	QVQSLTCEVDALKGTNESLER	67			
	RQVDQLTNDK	33			
	SKFADLSEAANR	41			
	FADLSEAANR	64			
	TNEKVELQELNDR	64			
	TYSLGSALRPSTSR	24			
	VEVERDNLAEDIMR	31			
P06732	ELFDPIISDR	38	43.07	Cytoplasmic	
	EQQQLIDDHFLFDKPVSPLLLA	52			Y
	S GMAR GGDDLDPNYVLSSR	47			
	GTGGVDTAAVGSVFDVSNAD	69			
	R	00			
	GYTLPPHCSR	33			
	GQSIDDMIPAQK	45			
	KLEK	22			
	LGSSEVEQVQLVVDGVK	131			
	LNYKPEEEYPDLSK	58			
	LSVEALNSLTGEFK	78			
	PFGNTHNK	31			
	PFGNTHNKFK SFLVWVNEEDHLR	28 31			
	TDLNHENLK	28			
	VLTLELYKK	24			
P62736	AGFAGDDAPR	56	41.98	Cytoplasmic	Y
	AVFPSIVGRPR	63			
	DIKEK	28			
	DLYANNVLSGGTTMYPGIADR	44			
	DSYVGDEAQSK DSYVGDEAQSKR	50 35			
	EITALAPSTMK	35 40			
	FRCPETLFQPSFIGMESAGIH	40 34			
	ET				
	HQGVMVGMGQK	36			
	KDLYANNVLSGGTTMYPGIAD R	69			
	LDLAGRDLTDYLMK	34			
	RGILTLK	35			
	SYELPDGQVITIGNER	43			
		26			
	YA VAPEEHPTLLTEAPLNPK	37			
		51			

.

P68133	AGFAGDDAPR GYSFVTTAER DSYVGDEAQSK DSYVGDEAQSKR EITALAPSTMK DLTDYLMK HQGVMVGMGQK LDLAGRDLTDYLMK QEYDEAGPSIVHR SYELPDGQVITIGNER VAPEEHPTLLTEAPLNPK LCYVALDFENEMATAASSSSL EK	56 33 50 35 40 33 39 24 29 43 37 33	42.02	Cytoplasmic	Y
P60709	AGFAGDDAPR AVFPSIVGRPR DSYVGDEAQSK DSYVGDEAQSKR EITALAPSTMK HQGVMVGMGQK SYELPDGQVITIGNER DLYANTVLSGGTTMYPGIADR	80 47 58 56 47 85 33	41.74	Cytoplasmic.	Y
P12829	ALGQNPTNAEVLR HVLATLGEK IDFTADQIEEFK IDFTADQIEEFKEAFSLFDR MLDFETFLPILQHISR NKEQGTYEDFVEGLR SVKIDFTADQIEEFK VFDKESNGTVMGAELR VLGKPKPEEMNVK	75 51 77 55 74 72 56 45 26	21.42		Y
P49454	DLQEK	22	367.37	Nuclear	Y
P07951	ATDAEADVASLNR EAQEKLEQAEK HIAEDSDR IQLVEEELDRAQER KATDAEADVASLNR KYEEVAR LATALQKLEEAEK LEEAEKAADESER RIQLVEEELDR	73 29 35 35 83 35 51 49 45	32.83		Y
P12882	ADIAESQVNK ANSEVAQWR DIDDLELTLAK DIDDLELTLAKVEK HADSVAELGEQIDNLQR KHADSVAELGEQIDNLQR KLEGDLK TKYETDAIQR	33 37 60 43 36 45 33 32	222.98	Thick filaments	Y
P11055	ADIAESQVNK ANSEVAQWR	30 37	223.89	Thick filaments	Y

Q9Y623	DIDDLELTLAK DIDDLELTLAKVEK EQDTSAHLER HADSVAELGEQIDNLQR KLEGDLK TKYETDAIQR ADIAESQVNK ANSEVAQWR DIDDLELTLAK EQDTSAHLER KLEGDLK	60 70 36 33 32 30 37 60 36 33	222.87	Thick filaments	Y
O15230	TKYETDAIQR IRIDSLSAQLSQLQK KLESTESR LEEALQRK	32 26 31 39	399.45	basement membranes	Y
P06753	LQEKEDLQELNDR SCRCDIGGALGQSCEPR LKEAETR SLEAQAEK	41 31 40 43	32.80		Y
Q01449	KYEEVAR LEEAEKAADESER SVAKLEKTIDDLEDELYAQK GKVAATK GVVNKDEFK DGIICK ETYSQLGK GVVNKDEFK EAFSCIDQNR LNGTDPEEAILSAFR VSVPEEELDAMLQEGK GSSNVFSMFEQAQIQEFK ETYSQLGKVSVPEEELDAMLQ EGK	33 66 39 29 38 24 41 38 46 29 71 101 54	19.45		Y
P04792	AQLGGPEAAK YTLPPGVDPTQVSSSLSPEGT LTV EAPMPK KYTLPPGVDPTQVSSSLSPEG TLTVEAPMPK VSLDVNHFAPDELTVK	56 49 41 27	22.78	Cytoplasmic	Y
P21810	DLPETLNELHLDHNK DLPETLNELHLDHNKIQAIELE DLLR EISPDTTLLDLQNNDISELR ELHLDNNK LGLGHNQIR NHLVEIPPNLPSSLVELR	24 44 42 31 57 51	41.65	Secreted	Y
P01028	HLVPGAPFLLQALVR LELSVDGAK	56 31	192.77		Y
P10721	EGEEFTVTCTIK	26	109.86	Туре І	Y

	ENSQTK	24		membrane	
P19021	IPVDEEAFVIDFKPR	42	108.33	Туре І	Y
P00739	AVGDKLPECEAVCGKPK	45	39.01	membrane Secreted	Y
P00354	AGAHLKGGAK VVDLMAHMASK	56 45	35.88	Cytoplasmic.	Y
Q9H3K6	FEGKPLLQR	34	10.12		Y
P07900	RAPFDLFENR	50	84.54	Cytoplasmic.	Y
Q9U112	EAGGAFGKR EQLAALKK	33 32	12.25	Mitochondrial.	Y
Q9Y490	AHATGAGPAGR	38	269.72		Y
P02787	HQTVPQNTGGK APNHAVVTR	37 33	77.05	Secreted.	Y
O43920	ECKIEYDDFVECLLR	33 42	12.39	Mitochondrial inner membrane	Y
075781	RQAEIENK	40	42.08	Membrane- associated	Y
P30086	YVWLVYEQDRPLK	54	20.93	Cytoplasmic	Y
Q8NCM2	QVAEILK	39	111.91	Integral membrane	Y
P51888	VLEKLPGLVFLYMEK	37	43.81	Secreted	Y
P06576	ADKLAEEHSS AIAELGIYPAVDPLDSTSR EGNDLYHEMIESGVINLK FLSQPFQVAEVFTGHMGK IMDPNIVGSEHYDVAR LVLEVAQHLGESTVR TIAMDGTEGLVR VLDSGAPIKIPVGPETLGR	39 58 35 58 35 39 45 62	56.56	Mitochondrial.	Y
P07355	RAEDGSVIDYELIDQDAR KELASALK KLMVALAK AYTNFDAERDALNIETAIK TPAQYDASELK	62 25 24 45 37	38.47	plasma membrane.	Y
P18669	TDLEKDIISDTSGDFR TNQELQEINR HYGGLTGLNK VLIAAHGNSLR KAMEAVAAQGK ALPFWNEEIVPQIK	42 41 44 36 66 32	28.67		Y

	AMEAVAAQGK	31			
P02743	IVLGQEQDSYGGKFDR DNELLVYK AYSDLSR	62 44 35	25.39	Secreted.	Y
Q12797	RSNEVLR	31	85.50	Type II membrane	Y
P62807	EIQTAVR HAVSEGTK LAHYNK LAHYNKR QVHPDTGISSK	34 49 28 32 31	13.77	Nuclear	Y
Q9BPU6 P02749	QKAMGK KFICPLTGLWPINTLK	36 44	61.42 38.30	Cytoplasmic Secreted	Y Y
P19429	AKESLDLR AYATEPHAK ISADAMMQALLGAR KNIDALSGMEGR	39 38 83 69	23.88		Y
P09382	DSNNLCLHFNPR	56	14.585		Y
O96000	AFDLIVDRPVTLVR	43	20.64	Mitochondrial inner membrane	Y
P52294	KEAAWAITNATSGGSAEQIK	39	60.25	Cytoplasmic and nuclear.	Y
P02144	HGATVLTALGGILK HGATVLTALGGILKK HLKSEDEMK KDMASNYK VEADIPGHGQEVLIR GHHEAEIKPLAQSHATK	65 60 32 30 51 42	17.05		Y
P17540	EVENVAITALEGLK GTGGVDTAAVADVYDISNIDR HTTDLDASK ITQGQFDEHYVLSSR LIDDHFLFDKPVSPLLTCAGM AR LSEMTEQDQQR RGTGGVDTAAVADVYDISNID R	33 62 34 62 57 47 59	47.52		Υ
P13073	AHESVVK DHPLPEVAHVK HLSASQK SEDFSLPAYMDRR	26 41 40 28	19.58		Y
P01160 O43242 P02545	NLLDHLEEK HDADGQATLLNLLLR RVDAENR LKDLEALLNSK KLESTESR	41 51 35 29 26	16.71 60.98 74.14		Y Y Y

P62258	LICCDILDVLDKHLIPAANTGES K	50	29.17	Y
	LAEQAERYDEMVESMK	32		
	AAFDDAIAELDTLSEESYK	33		
P04406	VIHDNFGIVEGLMTTVHAITAT QK	69	35.92	Y
	AGAHLQGGAKR	57		
	GALQNIIPASTGAAK	54		
P24752	TPIGSFLGSLSLLPATK	78	45.20	Y
(24)02	IHMGSCAENTAK	42	-10.20	•
0 40 400			004.44	
Q13439	QENLLKR QEVVDVMK	37 33	261.14	Y
014055	-		CE 40	v
Q14055 P62937	MAAATASPR SIYGEKFEDENFILK	41 38	65.13 17.88	Y Y
P02937	VSFELFADKVPK	36	17.00	T
00000	RAPFDLFENK		00.40	v
P08238 P02511	APSWFDTGLSEMR	37 49	83.13 20.16	Y Y
F02311	HEERQDEHGFISR	21	20.10	I
	HFSPEELK	53		
	KQVSGPER	30	•	
	QDEHGFISR	26		
	VLGDVIEVHGK	43		
	VLGDVIEVHGKHEER	47		
	RPFFPFHSPSR	26		
P30048	HLSVNDLPVGR	48	27.69	Y
P35442	IRLCNSPVPQMGGK	45	129.95	Y
O94966	SSCAKVQTR	36 32	151.34 50.91	Y Y
P48735	GKLDGNQDLIR GRPTSTNPIASIFAWTR	32 57	50.91	T
	HAHGDQYK	25		
	LIDDMVAQVLK	40		
	LNEHFLNTTDFLDTIK	29		
	NILGGTVFREPIICK	45		
	TIEAEAAHGTVTR	33		
P99999	TGPNLHGLFGR	44	11.62	Y
	GIIWGEDTLMEYLENPKK	43		
P47985	RLEVLDSTK	44	29.65	Y
	EIEQEAAVELSQLRDPQHDLD	36		
	R			
014727	IMVAAKNK	36	141.84	Y
P04075	ADDGRPFPQVIK	34	39.29	Y
	ALANSLACQGK FSHEEIAMATVTALR	26 43		
	GILAADESTGSIAK	23		
	IGEHTPSALAIMENANVLAR	50		
	YTPSGQAGAAASESLFVSNH	77		
	AY			
	ELSDIAHR	43		

	AAQEEYVKR	37			
Q16718	ELSDIAHR KLEDQLQGGQLEEVILQAEHE	34 39	13.33		Y
	LNLAR	•••			
P69905	TYFPHFDLSHGSAQVK VGAHAGEYGAEALER MFLSFPTTK	36 71 29	15.13		Y
	VLSPADKTNVK	40			
P51970	HCAEPFTEYWTCIDYTGQQLF R	33	19.97		Y
	FDECVLDKLGWVRPDLGELS K	29			
P20774	RLDFTGNLIEDIEDGTFSK ESAYLYAR DFADIPNLR	75 54 36	33.92		Y
P30533	HAESVGDGER	42	41.47		Y
Q9H2C1	FGTKCAGCAQGISPSDLVR	45	44.41	Nuclear	Y
O60237	LQEAQLELADIK	51	110.42	Cytoplasmic	Y
P11310	ANWYFLLAR	67	46.59	Mitochondrial	Y
P05155	GVTSVSQIFHSPDLAIR	38	55.15	Secreted.	Y Y
Q9NYQ8	SSNTALLNR KGELQVAK	39 34	479.39		Ŷ
Q14112	IESALLDGSER EGTSLGEVGGPDLK	54 67	151.39	Secreted	Y
Q8WUJ3	LVQYLNAVPDGRILSVAVNDE GSR	47	152.99		Y
	AVVDVPMPKK	52			
Q9P0L0	HEQILVLDPPTDLK FKGPFTDVVTTNLK	36 27	27.32	Type IV membrane	Y
Q86XX4	EDGRLVIEFK	57	442.93	Type I membrane	Y
Q9Y6M9	QHPQPYIFPDSPGGTSYER	40	21.7	Mitochondrial inner	Y
P07099	GGHFAAFEEPELLAQDIR	37	52.95	membrane Membrane- bound	Y
P51884	SLEDLQLTHNK	69	38.43	Secreted	Y
	NNQIDHIDEK	45			
	VANEVTLN	32			
Q99466	AGPCPPRGCSNGGTCQLMPE K	63	209.62	Type I membrane	Y
	ELRDQAGLAPADVAHQR	57		protein	
Q06830	TIAQDYGVLKADEGISFR	69	22.11	Cytoplasmic.	Y
P00367	GASIVEDKLVEDLR	43 55	61.39	Mitochondrial	Y
	DSNYHLLMSVQESLER HGGTIPIVPTAEFQDR	31			

P49748	AGLGSGLSLSGLVHPELSR	46	70.39	Mitochondrial inner membrane	Y
P01023 P11783	TEHPFTVEEFVLPK NKEQGTYEDFVEGLR VFDKESNGTVMGAELR	54 35 39	163.28 10.62	membrane	Y Y
P01011 P60660 Q9P2G4	NLAVSQVVHK VLDFEHFLPMLQTVAK DICELVINK LQPATLHCR	63 44 45 35	47.65 16.80 100.35	Extracellular	Y Y Y
P04083	GVDEATIIDILTKR KGTDVNVFNTILTTR	72 52	38.58		Y
Q9Y277	LTLDTIFVPNTGKK	43	30.66	Outer mitochondrial membrane	Y
P35498	RDSLFVPR	60	228.97	Integral membrane	Y
Q92629	GLKLEGDSEFLQPLYAK	63	32.18	Type II membrane	Y
P12109	VFSVAITPDHLEPR VAVVQYSGTGQQRPER	34 41	108.55	membrane	Y
P68366	IHFPLATYAPVISAEK	37	49.92		Y
Q13705	SDLTAVLADFGLAVR	71	57.64	Type I membrane	Y
P52732	DEVYQILEKGAAK	49	119.27	membrane	Y
Q16082 P50213 P01842	AALSHDGILNLEAPR SNVTAVHK AGVETTTPSK SYSCQVTHEGSTVEK	54 40 48 46	20.23 39.59 11.24	Mitochondrial.	Y Y Y
P01859	VVSVLTVVHQDWLNGK	65	35.88		Y
P49815 Q16891	IKVLDVLSFVLLINR KVQAAQSEAK LRACQLSGVTAAAQSCLCGK	58 42 38	200.75 83.68	Cytoplasmic Mitochondrial inner membrane	Y Y
P13804 O95169	LLYDLADQLHAAVGASR GGDPSKEPER	75 43	35.08 21.76	Mitochondrial Mitochondrial inner membrane	Y Y
Q9C0A0	SPLGGFQGCMR	39	145.32	Type I membrane	Y
Q96RV3	TSSTNSAKTR DILGGPISLGNIR	41 56	258.65	Integral membrane	Y
Q9P0M6	HILLAVANDEELNQLLK	38	39.93	Nuclear	Y
P32119	KEGGLGPLNIPLLADVTR LSEDYGVLKTDEGIAYR	85 40	21.89	Cytoplasmic	Y
Q9Y512	TKDDIIICEIGDVFK	52	51.96	Integral membrane	Y
Q9P2S2	QLTIFNSQAAIK	34	184.98	Type I	Y

	QLTIFNSQAAIKIGGR	47		membrane	
Q6NZI2	AHATTSNTVSK	32	43.47	plasma membrane	Y
P63267	EIVR AGFAGDDAPR EITALAPSTMK	25 72 60	41.85	Cytoplasmic	Y
	HQGVMVGMGQK AVFPSIVGRPR	47 47			
	DSYVGDEAQSK DSYVGDEAQSKR	80 49			
	SYELPDGQVITIGNER	69			
	VAPEEHPTLLTEAPLNPK	40			
	DLYANNVLSGGTTMYPGIADR KDLYANNVLSGGTTMYPGIAD R	21 65			
	LCYVALDFENEMATAASSSSL EK	125			
P63261	EIVR	25	41.77	Cytoplasmic	Y
	AGFAGDDAPR EITALAPSTMK	72 60			
	HQGVMVGMGQK	47			
	AVFPSIVGRPR	47			
	DSYVGDEAQSK	80			
	DSYVGDEAQSKR	49			
DIOFOF	SYELPDGQVITIGNER	69	000.00	That at a film on a set of	~
P13535	KLEGDLK ANSEVAQWR	33 37	222.63	Thick filaments	Y
	ADIAESQVNK	30			
	EQDTSAHLER	36			
	TKYETDAIQR	32			
	DIDDLELTLAK	60			
Q8IUG5	AGVISRLEK	47	285.01	Cytoplasmic	Y
Q9UKX3	KLEGDLK	33	223.54	Thick filaments	Ŷ
	MVSLLQEK	32			·
	ADIAESQVNK	30			
	EQDTSAHLER	36			
	TKYETDAIQR	32			
O43526	AGGAGAGKPPKR	43	95.85	Integral	Y
	EHVDRHGCIVK	47		membrane	
P29016	QVKPEAWLSSGPSPGPGR	55	36.939	Type I membrane	Y
Q07507	YFESVLDREWQFYCCR	48	24.005	Secreted	Y
Q14118	EQIAGLSRR	64	97.581	extracellular	Y
				and type-I membrane	
Q9NX02	DLAAVLVVSR	49	120.52	Cytoplasmic	Y
095672	VCLGQANR	65	87.82	Type II	Ý
				membrane	
P36542	SEVATLTAAGK	59	32.99	Mitochondrial.	Y
P02763	YVGGQEHFAHLLILR	72	23.51	Secreted.	Y
Q96KN8	KMVNK	60	30.28		Y
P30049	AQAELVGTADEATR	61	17.49	Mitochondrial	Y

Q13151	KLFVGGLK	43	30.84	Nuclear	Y
P14854	NCWQNYLDFHR	57	10.06		Y
1 14004	FPNQNQTR	38			
P12814	EALER	42	103.06	Cytoplasmic.	Υ
1 12011	DGLKLMLLLEVISGER	38			
O94851	EMASAQEPDKLSMVMYLSK	36	126.69	Cytoplasmic	Y
Q12873	MPDKDDIR	54	220.69	Nuclear	Y
P12277	LAVEALSSLDGDLAGR	52	42.64	Cytoplasmic	Ý
F 12211	LAVEALOOEDODEAON	UL.	-12.0-1	Cytopiacinic	•
P46100	KDYTALTK	35	282.57	Nuclear	Y
140100	KVQDGLSDIAEK	30	202.07	1100.001	•
			44.40	O tenlesse's	v
P00558	VLPGVDALSNI	40	44.48	Cytoplasmic	Y
P06733	AAVPSGASTGIYEALELR	61	47.04	Cytoplasmic	Y
	FTASAGIQVVGDDLTVTNPK	36			
Q86UR5	MTDLGRLGAFITK	41	189.08		Υ
QUUUN	GTASDAER	41			
D07000			AA 65	Luccomol	v
P07339	EGCEAIVDTGTSLMVGPVDEV	71	44.55	Lysosomal.	Y
D04706		72	30.64	Outer	Y
P21796		12 47	30.04	membrane of	T
		47		mitochondria	
	QK				
				and plasma membrane	
504500		50	00.04		v
P24539	HVVQSISTQQEK	56	28.91	Mitochondrial.	Y
	LAQLEEAK	49			
	SQQALVQK	45			
000450		~~	E4 40		Y
P56159	FLNFFK	60	51.46	Attached to the	1
P50159	FLNFFK	60	51.46	membrane	T
P14625	LISLTDENALSGNEELTVK	60 60	51.46 92.47		r Y
				membrane	Y
				membrane Endoplasmic	Y Y
P14625	LISLTDENALSGNEELTVK	60	92.47	membrane Endoplasmic	Y
P14625 Q9H0E7 P42684	LISLTDENALSGNEELTVK KMELIQPK INTTADGK	60 45	92.47 81.15	membrane Endoplasmic reticulum Cytoplasmic.	Y Y
P14625 Q9H0E7	LISLTDENALSGNEELTVK KMELIQPK	60 45 51	92.47 81.15 128.34	membrane Endoplasmic reticulum	Y Y Y
P14625 Q9H0E7 P42684 P00403	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR	60 45 51 37	92.47 81.15 128.34 25.56	membrane Endoplasmic reticulum Cytoplasmic. Integral	Y Y Y
P14625 Q9H0E7 P42684	LISLTDENALSGNEELTVK KMELIQPK INTTADGK	60 45 51	92.47 81.15 128.34	membrane Endoplasmic reticulum Cytoplasmic. Integral	Y Y Y Y
P14625 Q9H0E7 P42684 P00403	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR	60 45 51 37	92.47 81.15 128.34 25.56	membrane Endoplasmic reticulum Cytoplasmic. Integral	Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK	60 45 51 37 51	92.47 81.15 128.34 25.56 123.98	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane	Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER	60 45 51 37 51 41 34	92.47 81.15 128.34 25.56 123.98 32.93	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane	Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER	60 45 51 37 51 41	92.47 81.15 128.34 25.56 123.98	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Integral membrane Mitochondrial,	Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK	60 45 51 37 51 41 34	92.47 81.15 128.34 25.56 123.98 32.93	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Integral membrane Mitochondrial, peroxisomal	Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ	60 45 51 37 51 41 34	92.47 81.15 128.34 25.56 123.98 32.93	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Integral membrane Mitochondrial, peroxisomal and	Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L	60 45 51 37 51 41 34 72	92.47 81.15 128.34 25.56 123.98 32.93 22.03	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Integral membrane Mitochondrial, peroxisomal	Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ	60 45 51 37 51 41 34	92.47 81.15 128.34 25.56 123.98 32.93	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Integral membrane Mitochondrial, peroxisomal and	Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L	60 45 51 37 51 41 34 72	92.47 81.15 128.34 25.56 123.98 32.93 22.03	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Integral membrane Mitochondrial, peroxisomal and	Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044 Q9NYA3	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L	60 45 51 37 51 41 34 72	92.47 81.15 128.34 25.56 123.98 32.93 22.03 79.92	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Integral membrane Mitochondrial, peroxisomal and cytoplasmic	Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044 Q9NYA3 P05413	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L QEVEGLEGK QVASMTKPTTIIEK	60 45 51 37 51 41 34 72 62 55	92.47 81.15 128.34 25.56 123.98 32.93 22.03 79.92 14.73	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Integral membrane Mitochondrial, peroxisomal and cytoplasmic	Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044 Q9NYA3 P05413 P42338	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L QEVEGLEGK QVASMTKPTTIIEK EAGLDLR	60 45 51 37 51 41 34 72 62 55 42	92.47 81.15 128.34 25.56 123.98 32.93 22.03 79.92 14.73 122.76 101.54	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Nitochondrial, peroxisomal and cytoplasmic Cytoplasmic Integral membrane	Y Y Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044 Q9NYA3 P05413 P42338	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L QEVEGLEGK QVASMTKPTTIIEK EAGLDLR GLSVLQK	60 45 51 37 51 41 34 72 62 55 42	92.47 81.15 128.34 25.56 123.98 32.93 22.03 79.92 14.73 122.76	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Nitochondrial, peroxisomal and cytoplasmic Cytoplasmic Integral	Y Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044 Q9NYA3 P05413 P42338 P42261	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L QEVEGLEGK QVASMTKPTTIIEK EAGLDLR GLSVLQK	60 45 51 37 51 41 34 72 62 55 42 56 80	92.47 81.15 128.34 25.56 123.98 32.93 22.03 79.92 14.73 122.76 101.54 41.92	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Mitochondrial, peroxisomal and cytoplasmic Cytoplasmic Integral membrane Mitochondrial	Y Y Y Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044 Q9NYA3 P05413 P42338 P42261	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L QEVEGLEGK QVASMTKPTTIIEK EAGLDLR GLSVLQK DGTVTAGNASGVADGAGAVII ASEDAVK HYAHTDCPGHADYVK	60 45 51 37 51 41 34 72 62 55 42 56 80 49	92.47 81.15 128.34 25.56 123.98 32.93 22.03 79.92 14.73 122.76 101.54	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Nitochondrial, peroxisomal and cytoplasmic Cytoplasmic Integral membrane	Y Y Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044 Q9NYA3 P05413 P42338 P42261 P42765	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L QEVEGLEGK QVASMTKPTTIIEK EAGLDLR GLSVLQK	60 45 51 37 51 41 34 72 62 55 42 56 80	92.47 81.15 128.34 25.56 123.98 32.93 22.03 79.92 14.73 122.76 101.54 41.92	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Mitochondrial, peroxisomal and cytoplasmic Cytoplasmic Integral membrane Mitochondrial	Y Y Y Y Y Y Y Y Y
P14625 Q9H0E7 P42684 P00403 O15068 P12235 P30044 Q9NYA3 P05413 P42338 P42261 P42765	LISLTDENALSGNEELTVK KMELIQPK INTTADGK VVLPIEAPIR EDLRLALK TAVAPIER LAADVGK ALNVEPDGTGLTCSLAPNIISQ L QEVEGLEGK QVASMTKPTTIIEK EAGLDLR GLSVLQK DGTVTAGNASGVADGAGAVII ASEDAVK HYAHTDCPGHADYVK	60 45 51 37 51 41 34 72 62 55 42 56 80 49	92.47 81.15 128.34 25.56 123.98 32.93 22.03 79.92 14.73 122.76 101.54 41.92	membrane Endoplasmic reticulum Cytoplasmic. Integral membrane Mitochondrial, peroxisomal and cytoplasmic Cytoplasmic Integral membrane Mitochondrial	Y Y Y Y Y Y Y Y Y

P45379	ALSNMMHFGGYIQK	34	35.771		Y
	DLNELQALIEAHFENR EEEENRR	67 27			
	KAEDEAR KVLAIDHLNEDQLR	42 41			
	MEKDLNELQALIEAHFENR	30			
	VLAIDHLNEDQLR	39			
Q9UKX2	EQDTSAHLER HADSVAELGEQIDNLQR	34 36	222.91	Thick filaments	Y
	KHADSVAELGEQIDNLQR	43			
	DIDDLELTLAKVEK	42			
P08123	GPSGPQGIR	26	129.46		Y
	GVVGPQGAR	31			
	GPAGPSGPAGK	27			
	HGNRGETGPSGPVGPAGAV GPR	38			
P08133	GLGTDEDTIIDIITHR	56 81	75.74	Stress fibers	Y
	GFGSDKEAILDIITSR DLEADIIGDTSGHFQK	33			
	GTVRPANDFNPDADAK	29			
	SLHQAIEGDTSGDFLK	30			
P11021	DNHLLGTFDLTGIPPAPR	55	72.33	Endoplasmic	Y
	ITITNDQNR VYEGERPLTK	24 25		reticulum	
	AKFEELNMDLFR	60			
	IINEPTAAAIAYGLDKR	45			
	ALSSQHQAR	39			
	KSDIDEIVLVGGSTR				
007040		39 33	10 74	Mitochondrial	Y
P07919	EQCEQLEK ERLELCDER	33 40	10.74	inner	T
	SHTEEDCTEELFDFLHAR	70		membrane	
P20674	ILEVVKDK	32	16.774	Mitochondrial	Y
F200/4	WVTYFNKPDIDAWELR	47	10.774	inner	•
				membrane	
P01009	FNKPFVFLMIEQNTK	54	46.737	Secreted	Y
	GTEAAGAMFLEAIPMSIPPEV K	48			
P68871	VHLTPEEK	38	15.87		Y
	VNVDEVGGEALGR	65			
	SAVTALWGK	54			
	LLVVYPWTQR FFESFGDLSTPDAVMGNPK	20 76			
	FFESFGDLSTPDAVMGNPK	70			
P07437	SGPFGQIFRPDNFVFGQSGA GNNWAK	28	49.67		Y
	GHYTEGAELVDSVLDVVR	37			
		39			
BO 4 O 4 O	LHFFMPGFAPLTSR	32	07.05	Outerslag sets	V
P31946	LAEQAERYDDMAAAMK EMQPTHPIR	52 33	27.95	Cytoplasmic	Y
P00505	ISVAGVTSSNVGYLAHAIHQVT K	34	47.48	Mitochondrial	Y

P14618	KAEAQIAAK NLDKEYLPIGGLAEFCK IENHEGVR KASDVHEVR	32 41 27 48	57.81		Y
P01857	LAPITSDPTEATAVGAVEASFK LNFSHGTHEYHAETIK RFDEILEASDGIMVAR TTPPVLDSDGSFFLYSK GPSVFPLAPSSK	69 33 37 46 37	36.11		Y
	FNWYVDGVEVHNAK THTCPPCPAPELLGGPSVFLF PPKPK	58			
P25705	AVDSLVPIGR EAYPGDVFYLHSR EGDIVKR EIVTNFLAGFEA EPMQTGIK GMSLNLEPDNVGVVVFGNDK	46 61 31 46 24 59	59.75	Mitochondrial inner membrane	Y
	NVQAEEMVEFSSGLK TGAIVDVPVGEELLGR TGTAEMSSILEER VLSIGDGIAR VVDALGNAIDGK HALIIYDDLSK ILGADTSVDLEETGR	69 47 64 35 56 32 108			
P40925	LGVTANDVK EVGVYEALKDDSWLK ESAFEFLSSA GEFVTTVQQR	30 67 27 44	36.29	Cytoplasmic	Y
P14555	SQLCECDKAAATCFAR EAALSYGFYGCHCGVGGR	34 35	16.08	Membrane- associated	Y
Q99798	CCVTHDCCYK AKDINQEVYNFLATAGAK DLGGIVLANACGPCIGQWDRK FNPETDYLTGTDGKK	27 33 43 27	85.43	Mitochondrial	Y
	GHLDNISNNLLIGAINIENGK KQGLLPLTFADPADYNK	29 37			
P07585	LNRPLTLSEK KASYSGVSLFSNPVQYWEIQP	36 37	39.75	Secreted	Y
	STFR VPGGLAEHK	29			
	AHENEITK VVQCSDLGLDKVPK	31 29			
P40926	KGEDFVK SQETECTYFSTPLLLGK LTLYDIAHTPGVAADLSHIETK VAVLGASGGIGQPLSLLLK VDFPQDQLTALTGR	26 57 83 72 67	35.53	Mitochondrial	Y
P08574	HGGEDYVFSLLTGYCEPPTG	40	35.39	Mitochondrial	Y

P09493	VSLR QLEDELVSLQKK LATALQKLEEAEK KATDAEADVASLNR LEEAEKAADESER SKQLEDELVSLQK IQLVEEELDRAQER SIDDLEDELYAQKLK VLSDKLK SVTKLEK KYEEVAR HIAEDADR KLVIIESDLER RIQLVEEELDR LVIIESDLERAEER	48 51 83 49 65 35 81 35 39 38 58 58 45 28	32.69		Y
Q9H9E3	GVTSAVNIMHSSLQQGK	61	89.09	Golgi	Y
014647 Q8IWV2	ENKENKEK IEVQFPETVPTAKGATVK	50 37	200.56 113.45	Nuclear Attached to the membrane	Y Y
O60879	KKVKELR	55	126.23	membrane	Y
O95793	LAQIQQAK	49	63.51	Cytoplasmic	Ŷ
O15061	LADSSRTLRHIAPGPK	47	172.77	Cytoplasmic	Y
Q05639	STTTGHLIYK	39	50.78	Nuclear	Υ
Q8IUD2	DLKEK	45	128.24	Cytoplasmic and membrane- associated	Y
Q96C19	KQIKDMEK	43	26.69		Y
Q92945	SGEMIKKIQNDAGVR	49	72.71	Nuclear	Y
P14136	GTNESLER FLEQQNK	45 45	49.91		Y
Q08380	TLQALEFHTVPFQLLAR	53	65.33	Secreted	Y
Q9BVI0	DKEKNKEK	73	116.74	Nuclear	Υ
P51991	KIFVGGIK	62	39.80	Nuclear	Y
P02042	VHLTPEEK	38	16.03		Y
P34931	VEIIANDQGNR	49 50	70.73 61.05		Y
P10809 Q86UE4	KGVITVKDGK SDSDKSSSQVPPILQETDKSK	53 42	63.837	Mitochondrial Type II	Y Y
P61626	TPGAVNACHLSCSALLQDNIA	37	16.537	membrane	Y
Q9NZU5	DAVACAK VKGGDGIRIYK	35	40.833		Y
Q9N205 P07195	LKDDEVAQLKK	43	36.769	Cytoplasmic.	Ý
P21757	EEQVHLEQEIK	63	50.187	Type II	Ý
		44	307.60	membrane	Ŷ
P78559	DEVLQQKDK				
P41218	LKLVCGSHSFIKVIK	38	45.836	Nuclear and cytoplasmic	Y
P12036	EYQDLLNVK	56	112.64		Y

P49790	KIKTAVR	51	153.89	Nuclear	Y
P51857	EKIAEGKVR	32	37.38	Cytoplasmic	Y
Q13415		47	97.36	Nuclear	Y
P49116	IQIVTDSASVERLLGK NDLFKLFK	50 41	65.41 42.87	Nuclear Integral	Y Y
P32248	NULFRLFR			membrane	
P07858	GQDHCGIESEVVAGIPR	71	38.75	Lysosomal	Y
P15259	AMEAVAAQGK	43 66	28.79		Y
	KAMEAVAAQGK ALPFWNEEIVPQIK	32			
Q8TB72	DAETDGPEKGDQKGK	42	114.21	Cytoplasmic	Y
	DGAAMYSLINALSTNR	50	6 169.26		Y
Q9BVV6 Q13029	KKVSHSSK	43	188.92	Nuclear.	Ý
P51531	KGKGGAK	30	180.76	Nuclear	Ý
			~~~~	O to stand	v
P61981	DSTLIMQLLR TAFDDAIAELDTLNEDSYK	57 65	28.32	Cytoplasmic	Y
P63104	DSTLIMQLLR	45	27.90	Cytoplasmic.	Y
O14626	DIKEK	39	37.53	Integral	Y
014020	UNCIN	00	01.00	membrane	•
P31947	DSTLIMQLLR	57	27.871	Cytoplasmic	Y
Q9BXT6	KQVEKIR	43	137.09		Y
P25786	QGSATVGLK	49	29.56	Cytoplasmic	Y
P30405	GSGDPSSSSSSGNPLVYLDV	43	22.04	and nuclear Mitochondrial	Y
1 00400	DANGKPLGR	40	22.04	Millourionanai	•
	IVITDCGQLS	41			
O95831	RVEHHDHAVVSGR	39	66.90	Mitochondrial	Y Y
Q9NTI2	RLNER	37	130.64 1	Integral membrane	Ŷ
P52815	EIKNYIQGINLVQAK	63	21.348	Mitochondrial.	Y
P46783	SAVPPGADKK	54	18.898	Cytoplasmic	Y Y
Q14192 Q99523	GFLTERDDILCPDCGKDI EQFLRLR	33 40	32.19 92.10	Туре І	Y
Q33020		40	52.10	membrane	•
P23327	HRGHGSEEDEDVSDGHHHH GPSHR	41	80.24	Sarcoplasmic reticulum	Y
Q8N127	ETKERTPK	30	169.58	Nuclear	Y
P46939	EKLAGLNQR	34	396.47	Neuromusc-	Y
Q9H1J7	EGELSTCGCSRTARPKDLPR	42	40.32	ular junction secreted	Y
-			40.00		
P10606	HYKLVPQQLAH GAHYKLVPQQLAH	49 80	13.69	Mitochondrial inner	Ν
	AHYKLVPQQLAH	45		membrane	
	TGLEREIMLAAKKGLD	32			
P05976	FVEGLRVFDKE	41	21.00		Ν
	TVMGAELRHVLATLGEK	31			
	PKKDVKKPVAAAAAAPAPAPA	26			
	PAP				

	APKKDVKKPVAAAAAAPAPAP APAP	35			
	PKKDVKKPVAAAAAPAPAPA	32			
O00268	PAPA PAAGGPAGVSGQPGPGAAAA APAP	45	110.05	Nuclear	Ν
	APAAGGPAGVSGQPGPGAAA AAPAP	45			
	AAGGPAGVSGQPGPGAAAAA PAP	29			
P04198	AGPAVASGAGIAAPAGAPGVA P	35	49.53	Nuclear	Ν
	AGPAVASGAGIAAPAGAPGVA PPRPG	38			
Q14686	GAPQLQANQN QPQPQLPQQQ	35 45	218.98	Nuclear	Ν
	IPAAPLTTN	39			
Q13232	GDFCIEVGKNLIHG ACTGAHERTF	32 49	19.00		Ν
	CTGAHERTF	45			
P87889	QPLSGNEQRGQPQAPQ QVPVRLQPQK	39 49	73.94	Cytoplasmic membrane	Ν
Q02221	GNHTLFHNSHVNPLPTGYEH	43	10.84	Mitochondrial	Ν
	P SHVNPLPTGYEHP	34		inner membrane	
Q9BV73	QGVQLGEVSG QQEQQQAQGQ	37 32	280.96 7	centrosome	Ν
P09211	SARPKLKAFLA GSLKASCLYG	42 28	23.21		Ν
P63316	GRIDYDEFLEFMK NDGRIDYDEFLEFMKGVE	29 30	18.39		Ν
	GDKNNDGRIDYDEFLEFMKG VE	30 31			
P60174	APSRKFFVG	33	26.52		Ν
	APSRKFFVGG SLKPEFVDIINAKQ	22 30			
P24311	SHQKRTPDFH SHQKRTPDFHD	51 33	9.15		Ν
	SPVGRVTPKEWRNQ SHQKRTPDFHDKYG	44 39			
	SHQKRTPDFHDKY SHQKRTPDFHDKYGNAVLA	29 27			
P15954	TPFLVVRHQLLKT	45	7.24		N
	SAFATPFLVVRHQLLKT SHYEEGPG	33 35			
	SHYEEGPGK	35 36			
Q9Y6Y8	QPDPESVVLGTDG	45 20	111.07 6	Endoplasmic reticulum	Ν
	QPDPESVVLGTD	30	-		

P25205	QEMPEKAPAGQL	47	90.98	Nuclear	Ν
P42356	AANPGPAEGAVGPKVALK	35	231.29		Ν
	AANPGPAEGAVG	37			
P78325	AANPGPAEGAVGPKVALK AANPGPAEGAVG	43 32	88.67	Type I membrane	Ν
Q99797	NVKPQGSRLDLFGE NVKPQGSRLDLF	65 67	80.61	Mitochondrial	Ν
Q92610	KGAAPGSQTGKKQQS AAPGSQTGKKQQS	45 35	137.55	Nuclear	Ν
Q9UGR2	WQQMEAHAGKASSSM KLAASVLDALDPPGPT	41 36	111.58	Nuclear	Ν
P08559	PPFEVRGANQWIKFKSVS PFEVRGANQWIKFKSVS	65 35	43.30	Mitochondrial	N
Q8TCE6	GQLIVQSAEDPEKSESHVIQ KLHKEM	40 33	40.51		Ν
P23193	VQTRSADEPMTT FVVCNECGNRWKF	55 47	33.97	Nuclear	Ν
P29966	GAPPEQEAAPAEEPA DKEEPAAAGSGAASPS	50 40	31.41		Ν
Q12962	AAPVSAGGAAPPEGAI	59	21.71	Nuclear	N
Q15596	QGNMGGNSMFSQQSPPHF AQRQREILNQHLRQR	46 37	159.16	Nuclear	Ν
Q14999	QLNDSAAEPGA	73 20	191.19	Nuclear	N N
Q9Y5A6	KPYVCTKCGKAFSH QVSTPPNEQKPVW	39 64	53.66	nuclear	IN
P62805	SGRGKGGKGLGK SGRGKGGKGLGKG	49 46	11.23		Ν
Q14571	PNNGQEVL IMCTGPEAGNTE	57 33	308.08	Integral membrane	N
Q06033	RSPFRLL RSPFRLLG	75 64	99.12		Ν
Q9NQT8	ISAKDVPT	45	202.67		Ν
P08246	QLNGSATINANVQV ALLLGGTALASEIVGGRR	52 60	28.52		Ν
Q9BQQ3	QPAGGAEGFHLH QPAGGAEGFHLHG	43 68	46.35	peripherical membrane	N
Q9NZM4	AGVSPQGAGLVIQKNL EPGALPQQPKAPQNLTFM QPQAQQPPQAP	42 35 29	152.89		Ν

Q96L91	LPNGSPGGAT NPEAKAAA APGALTTPGGSAPAQVVH	37 29 40	343.43		N
	AQGPAAVQQ	33			
Q9Y463	NEVYYAKK SYNLYDLLRNTH	31 79	69.20	Nuclear	Ν
P42658	PELSIIHCDLKPE VLSKIPHGDPQSLDPP ASHLLGGQGPEEDGGAGAKP	64 43 39	97.59	Type II membrane	N
Q9P2D1	KEADKSLLIGVFKH QPEAGAVSRGKNFDEESNA	43 39	252.48	Nuclear	Ν
Q03692	IGKPGAAGAPGQPGIPG	75	66.16		Ν
P02458	KGPPGPQGPAGEQG PGPRGRDGEPGTLGNPGPPG PPG	45 88	134.49		Ν
	PPG ERGRTGPAGAAGARGNDGQ PGPAG	70			
	AGPTGKQGDRGEAGAQPGP MG	40			
	AGPQGKVGPSGAPGED	26			
Q9BX69	KTQGGASNPALQ	38	116.49		Ν
O94812	NLLAKDPN LEALWELLLQAILQALG	37 31	131.90		Ν
P22004	QQQQLPR GVHVHPRAAGLVG	38 45	57.19		N
	RRLKTQEK	31			
O94833	NQFGDSQQL AAQLQEALLH	39 64	590.89	Cytoplasmic	Ν
P02452	PGEAGRPGEAGLPGAK	77	138.88		Ν
O95477	KEDSVSQSSSDAG	44	254.29		Ν
Q9Y696	KPADLQNLAPGTHPPF	55	28.77	trans-Golgi	Ν
Q8WWM 7	KPQPLQQPSQPQQPP KISLAPTDVKELSTKEPG	64 62	113.37	Membrane- associated	Ν
P07307	GAKLEKQQQ	45	35.19	Type II membrane	Ν
P53367	KMRNDVSVKLKFLEE KMRNDVSVKLKFLEEN	36 34	41.74		Ν
Q9H2W1	QDSLKKH PEPTNQGQDSLK	37 45	26.94	Integral membrane	Ν
Q12968	LFQQDAT EPEDREP	48 30	115.52	Cytoplasmic	Ν
O0048	KLKKERPDF	38	9.36	Mitochondrial	N

	SKLKKERPDF VDYSKLKKERPDF MLRQIIGQAKKH SVNVDYSKLKKERPDF	56 52 42 45		inner membrane	
O95298	EIFEKFHPIR GEIFEKFHPIR TYGEIFEKFHPIR	37 56 57	14.18	Mitochondrial inner membrane	N
O15031	QVNKLIHA	41	205.10	Type I membrane	Ν
Q9BXC0	VSCESFIMESANGWH VSCESFIMESAN	50 37	39.295	Integral membrane	Ν
Q9Y4D7	QLSGANLSLEAEAAV EQLDCGAAHLQHPLSILQP	75 64	211.95 9	type I membrane	Ν
Q10571	QSLQQQQQQQ PQQPPQQQPPPPPGLLVRQ RQSTPHSGPGVN	59 71 29	135.86		N
P01133	QDLKNGGQPVAGE ECQLGVHSC	36 88	133.86		Ν
Q8WYP3	LSILDRLLH	54	100.16	Cytoplasmic	Ν
Q13332	ILQPIEGIMG	48	217.09	Type I membrane	Ν
P23468	QTGVPGQP LREDQIPR QTPGMASHPPI	51 36 68	214.76	Type I membrane	Ν
Q9H4A3	QPQATQPTTLAS QQPPAAAAPGEQAVAGPA QQPPAAAAPGEQAVAGPAP QQPPAAAAPGEQAVAG QQPPAAAAPGEQAV	28 49 30 31 29	250.60	Cytoplasmic.	N
P23975	PQVQPENNGADTGP PQVQPENNGADTGPEQPLRA	40 56	69.33	Integral membrane	Ν
P38646	TGEQKEDQKEEKQ	68	73.68	Mitochondrial	Ν
Q9UPX8	QGSSMEIDPQAP	84	134.80	Cytoplasmic	Ν
Q7Z7G0	QNPPTNLTVVTVEG KTVVGSKKV	55 41	118.57		N
Q8TB96	QPQILLGGNLSWH QPQILLGGNLSWHP QPQILLGGNLSWHPA	43 55 31	68.06	Type I membrane	N
Q96AY4	YQALQRVL	34	177.62		Ν

÷

P08138	GAPGTMTSKR VGLVAYIAF	31 90	45.15	Type I membrane	N
Q9BYJ9	QAPSPQAAPQPQ GGAGSDSNSPGNVQPN SPGNVQPNSAPSVESH	30 34 81	60.87		Ν
O14949	SPFEQRAYPHVF TEEFERSKRKNPAAYENDK TEEFERSKRKNPAAYEN	38 59 30	9.77	Mitochondrial inner membrane	N
P14138	NTPEQTVPYGLSNYR	72	25.44	Secreted	Ν
P00387	TGITPMLQVIRAIMKD ITPMLQVIRAIMKD	45 35	34.08	cytoplasmic	Ν
Q10469	SLRKAQGIDNVL	46	51.55	Type II membrane	Ν
Q9UM54	KKREDDE	55 45	148.62	membrane	Ν
P04179	KEERNYH KHSLPDLPYDY KHSLPDLPYDYG GEPKGELLEAIKRDFG	45 48 57 68	24.71	Mitochondrial	Ν
P08519	KPQVEPK	38	501.32		Ν
Q9UIF8	KKLHVKGKKTNE	54	220.71		Ν
Q9H0R1	KPKISAHRK	44	54.767		Ν
Q15744	VAHCGQTAM	36	30.702	Nuclear	Ν
O75390	YGHAVLRKTD	42	51.712	Mitochondrial	Ν
P98088	NGIVVSRI	46	130.07	Secreted	Ν
O14686	QQVSLLAQ	51	563.83	Nuclear	Ν
Q13415	LKPRTRCAAP	33	97.36	Nuclear	Ν
Q00888	KRRDGTGGV	42	47.07	Secreted	Ν
Q92545	QPQEPQPERLSPAP	42	197.59		N
Q9UEW8	РVТААААААРАААТААРАРАА Р РVТААААААРАААТААРАРАА	53	59.64	Cytoplasmic and nuclear	N
Q9ULV3	VQPQVQPQAH QLLQLQQLLQQS VQPQVQPQ	43 33 29	100.03	Nuclear	N
P41220	KQQAFIKPSP KQQAFIKPSPE	92 83	24.38		Ν
P36957	PAEAPAAAPKAEPTAAAVPP PAEAPAAAPKAEPTAAAVPPP	71 58	48.64	Mitochondrial	Ν

.

	A				
	AA	37			
Q8NH93	SDPRLQNPMYFF	41	36.63	Integral membrane	Ν
P08473	ESAIDSRGGEP	44	85.38	Type II membrane	Ν
P35555	DINECAQNPL DINECAQNPLD	34 54	312.31	membrane	Ν
Q9H251	NVTGAVDADEGPNAIVYYF	45	369.53	Type I membrane	Ν
P23526	KPQVDRY	39	47.58	Cytoplasmic	Ν
Q9UGJ1	KTPPTAVTEHD	59	76.09	Centrosome	Ν
P38570	ARVQNITQVGSVTK	43	130.09	Type I membrane	Ν
Q6VAB6	KSHEFQLGHR	38	93.58	Cytoplasmic and membrane- associated	N
P78415	DNPRRSPPGAG	45	52.12	Nuclear	Ν
P54725	QPQFQNMRQ	48	39.61	Nuclear	Ν
Q7Z2W7	QGGGKETLKAIN	34	127.65	Integral membrane	Ν
Q8NB12	KVPNENIRL	49	56.62	Nuclear and cytoplasmic	Ν
Q9UBE8	AAAAAAAAAAQMLNPGQ AAAAAAAAAAQMLNPGQQ	48 53	57.05	Nuclear	Ν
Q99497	KDKMMNG KDKMMNGG	36 40	19.89	Nuclear, and cytoplasmic	Ν
Q14767	KPVCEPPCQN	39	195.06	Secreted	Ν
P51816	HSEQSTF	54	144.74		Ν
P56696	GIPKNSVPQNPNNKNEP IQAAQWRL	40 38	77.09	Integral	N
Q00056	NTKMRSSN QPPAQAKGPAHGLHAS	35 40	34.48	membrane Nuclear	N
Q9HBL0	GASPLSSQPL	51	185.68	Focal adhesions	Ν
Q9Y6N7	DELPNQDGHSAGSM KGEPATLNCKAEGR VVDMRTNPGDP	65 44 53	180.93	Type I membrane	Ν
Q9Y6V0	QMQLTPGSSPTQAPIGED KPPAQPLGPA	64 32	566.66		Ν
P11717	RNPACSGANICQV	43	274.31	Type I membrane	N
Q9Y5Y9	KYYNAM	53	220.57	Integral	Ν

,

	PGDKIHCL	42		membrane	
Q86UK5	ELSASEMLTKS	71	147.95		Ν
Q8NF91	KEDVSSIVMSTLRE KATLDTALS QELGMEG	39 77 57	1011.0	Type IV membrane	Ν
Q96F46	GAAVRLALAG RQSVQSDQ	92 83	96.13	Type I membrane	Ν
P20585	QVDPGAAAAAAAAAAAAPPA P	53	127.46		Ν
	QVDPGAAAAAAAAAAAPPA PPAPA	60			
	QVDPGAAAAAAAAAAAAPPA PPA	68			
Q8WUU4	GEGAGAAATAGVQEPGAPGS GAQAGPG	46	50.81		Ν
	GAGAAATAGVQEPG	39			

## Table 2.2 List of proteins detected in both trypsin and MAAH digests

Name	Access ID	Unique Peptide Sequence (trypsin digest)	Unique Peptide Sequence (MAAH)
Desmin	P17661	FANYIEK GTNDSLMR LLEGEESR AQYETIAAK ADVDAATLAR TSGGAGGLGSLR VSDLTQAANK KLLEGEESR QVEVLTNQR DNLLDDLQR EYQDLLNVK VAELYEEELR IESLNEEIAFLK FASEASGYQDNIAR	SPLSSPVFPRAGFGSKG SQAYSSSQRVSSYRRTFG SPVFPRAGFGSKG SSPVFPRAGFGSKG
Putative phosphoglycer ate mutase 3	P18669	HYGGLTGLNK VLIAAHGNSLR KAMEAVAAQGK ALPFWNEEIVPQIK AMEAVAAQGK	SPAGHEEAKRG IKEGKRVLIAAH
Voltage- dependent anion-selective channel protein 1	P21796	WNTDNTLGTEITVEDQLAR TDEFQLHTNVNDGTEFGGSI YQK	GHKLGLGLEFQA HKLGLGLEFQA

Creatine kinase, M chain	P06732	ELFDPIISDR EQQQLIDDHFLFDKPVSPLL LAS GMAR GGDDLDPNYVLSSR GTGGVDTAAVGSVFDVSNA DR GYTLPPHCSR GQSIDDMIPAQK KLEK LGSSEVEQVQLVVDGVK LNYKPEEEYPDLSK LSVEALNSLTGEFK PFGNTHNK PFGNTHNKFK SFLVWVNEEDHLR TDLNHENLK VLTLELYKK	PIISDRHG PIISDRHGGY PIISDRHGGYKPT PIISDRHGGYKPTD PNYVLSSRVR SYEVFKELFD PNYVLSSRVRTG PFGNTHNK
Serum albumin precursor	P02768	AACLLPK AEFAEVSK LCTVATLR DDNPNLPR FQNALLVR QTALVELVK TYETTLEK LDELRDEGK CCTESLVNR LVNEVTEFAK FKDLGEENFK AVMDDFAAFVEK AAFTECCQAADK ETYGEMADCCAK YICENQDSISSK TCVADESAENCDK ADDKETCFAEEGK CCAAADPHECYAK ADDKETCFAEEGK KVPQVSTPTLVEVSR QNCELFEQLGEYK QEPERNECFLQHK VFDEFKPLVEEPQNLIK SHCIAEVENDEMPADLPSLA ADFVESK EFNAETFTFHADICTLSEKE R HPYFYAPELLFFAK KQTALVELVK LKECCEKPLLEK MPCAEDYLSVVLNQLCVLH EK	DAHKSEVAHRFK DAHKSEVAHRFKDLG AHKSEVAHRFKDL DAHKSEVAHRFKDLG DAHKSEVAHRFKDLG DAHKSEVAHRFKDLGE DAHKSEVAHRFKDLGE DAHKSEVAHRFKDLGEE
Troponin I	P19429	RPCFSALEVDETYVPK AKESLDLR AYATEPHAK ISADAMMQALLGAR KNIDALSGMEGR	SSDAAREPRPA AAREPRPAPA

Alpha-actin 2	P62736	AGFAGDDAPR AVFPSIVGRPR DIKEK DLYANNVLSGGTTMYPGIA DR DSYVGDEAQSK DSYVGDEAQSKR EITALAPSTMK FRCPETLFQPSFIGMESAGI HET HQGVMVGMGQK KDLYANNVLSGGTTMYPGIA DR	PPERKYSVWIG PPERKYSVWIGG SIVGRPRHQG APRAVFP APRAVFPS DDAPRAVFP DEAQSKRGIL VTHNVPIYEG SYVGDEAQSKR SYVGDEAQSKRG RVAPEEHPTLL TFYNELRVAPEEH LVKAGFAGDDAPR GQVITIGNERFR) SGLVKAGFAGDDAPR SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRA SGLVKAGFAGDDAPRAVF YALPHAIMRLD YALPHAIMRLDLA YALPHAIMRLDLA
Myosin light polypeptide 4	P12829	ALGQNPTNAEVLR HVLATLGEK IDFTADQIEEFK IDFTADQIEEFKEAFSLFDR MLDFETFLPILQHISR NKEQGTYEDFVEGLR SVKIDFTADQIEEFK VFDKESNGTVMGAELR VLGKPKPEEMNVK	FVEGLRVFDKE TVMGAELRHVLATLGEK APAPAPAPAPAPEAPKEPAF D
Myosin light chain2a	Q01449	GKVAATK GVVNKDEFK DGIICK ETYSQLGK GVVNKDEFK EAFSCIDQNR LNGTDPEEAILSAFR VSVPEEELDAMLQEGK GSSNVFSMFEQAQIQEFK ETYSQLGKVSVPEEELDAM LQEGK	KVAATKQAQRG TRGKVAATKQAQR TRGKVAATKQAQRG PEEAILSAFRMFD GTRGKVAATKQAQRG PSGKGVVNKDEFKQLLL NIDYKSLCYIITHGDEKEE PSGKGVVNKDEFKQLLLTQ ADKF PEEAILSAFRMF GTDPEEAILSAFRMFD
Myoglobin	P02144	HGATVLTALGGILK HGATVLTALGGILKK HLKSEDEMK KDMASNYK VEADIPGHGQEVLIR GHHEAEIKPLAQSHATK	HHEAEIKPLA HGQEVLIRLF HHEAEIKPLAQ HGQEVLIRLFKG HHEAEIKPLAQSHA IPGHGQEVLIRLFK AMNKALELFRKDMA HGQEVLIRLFKGHPE
Heat-shock protein beta-1	P04792	AQLGGPEAAK YTLPPGVDPTQVSSSLSPE GTLTV EAPMPK KYTLPPGVDPTQVSSSLSPE GTLTVEAPMPK VSLDVNHFAPDELTVK	TERRVPFSLL TERRVPFSLLR TERRVPFSLLRGP GPEAAKSDETAAK

•

Glyceraldehyde -3-phosphate dehydrogenase , liver	P04406	VIHDNFGIVEGLMTTVHAITA TQK AGAHLQGGAKR GALQNIIPASTGAAK	PSKIKWGDA PSKIKWGDAG GPSGKLWRD GKVKVGVNGFGRIG SNRVVDLMAHMASKE PITIFQERD NPITIFQERD GAKRVIISAPSAD PSKIKWGDAGAEYVVE KLVINGNPITIFQERD
NADH- ubiquinone oxidoreductase 15 kDa subunit	O43920	ECKIEYDDFVECLLR	TPPPHHIGKGEPRP PFLDIQKRF
Serum amyloid P-component precursor	P02743	IVLGQEQDSYGGKFDR DNELLVYK AYSDLSR	HTDLSGKVFVFPR HTDLSGKVFVFPRE YVIIKPLVWV KVFVFPRE
Creatine kinase, sarcomeric	P17540	EVENVAITALEGLK GTGGVDTAAVADVYDISNID R HTTDLDASK ITQGQFDEHYVLSSR LIDDHFLFDKPVSPLLTCAG MAR LSEMTEQDQQR RGTGGVDTAAVADVYDISNI DR	PVIKLRHN PVIKLRHNG IKVPPPLPQFGKK PVIKLRHNGY PVIKLRHNGYD
Cytochrome c oxidase subunit IV	P13073	AHESVVK DHPLPEVAHVK HLSASQK SEDFSLPAYMDRR	AHESVVK AHESVVKSE AHESVVKSED AHESVVKSEDF
Alpha crystallin B chain	P02511	APSWFDTGLSEMR HEERQDEHGFISR HFSPEELK KQVSGPER QDEHGFISR VLGDVIEVHGK VLGDVIEVHGKHEER RPFFPFHSPSR	REEKPAVTAAPKK TIPITREEKPAVTAAPKK
Fructose- bisphosphat e aldolase	P04075	ADDGRPFPQVIK ALANSLACQGK FSHEEIAMATVTALR GILAADESTGSIAK IGEHTPSALAIMENANVLAR YTPSGQAGAAASESLFVSN HAY ELSDIAHR AAQEEYVKR ELSDIAHR	grpfpqvikskg Rpfpqvikskg
Peroxiredoxin 2	P32119	KEGGLGPLNIPLLADVTR LSEDYGVLKTDEGIAYR	SDTIKPNVDDSKEYFSKHN SKEYFSKHN

Peroxiredoxi n 1	Q06830	TIAQDYGVLKADEGISFR	SDTIKPD SDTIKPDVQKKSKEYFSKQK
Hemoglobin alpha chain	P69905	TYFPHFDLSHGSAQVK         WGAHAGEYGAEALER         MFLSFPTTK         VLSPADKTNVK	AHKLRVD TVLTSKYR HAHKLRVD SHGSAQVKGH FPHFDLSHG LHAHKLRVD DLHAHKLRVD YFPHFDLSHG SVSTVLTSKYR TYFPHFDLSH SDLHAHKLRVD TYFPHFDLSHG LSDLHAHKLRVD KTYFPHFDLSHG LSDLHAHKLRVD SAQVKGHGKKVADAL KTNVKAAWGKVGAHAG ALSDLHAHKLRVD SAQVKGHGKKVADAL KTNVKAAWGKVGAHAG TTKTYFPHFDLSHG LSALSDLHAHKLRVD HAGEYGAEALERMFL SFPTTKTYFPHFDLSHG LSALSDLHAHKLRVD HAGEYGAEALERMFL VLSPDKTNVKAAWGKVGAHA G SFPTTKTYFPHFDLSHG SLDKFLASVSTVLTSKY PNALSALSDLHAHKLRVD SPADKTNVKAAWGKVGA H VLSPADKTNVKAAWGKVGA HAG DMPNALSALSDLHAHKLRVD VLSPADKTNVKAAWGKVGA HAG DMPNALSALSDLHAHKLRVD VLSPADKTNVKAAWGKVGA HAG DMPNALSALSDLHAHKLRVD VLSPADKTNVKAAWGKVGA HAG
Myosin XVIIIB	Q8IUG5	AGVISRLEK	EGQSIVGKGLGTPK KAEKTRTGGL
ATP synthase B chain	P24539	HVVQSISTQQEK LAQLEEAK SQQALVQK	PVPPLPEYGGKVRY PVPPLPEYGGKVRYG

Elongation factor Tu	P49411	HYAHTDCPGHADYVK DKPHVNVGTIGHVDHGK	AVEAKKTYVRD AVEAKKTYVRDKPHVNVG
Malate dehydrogenase Thioredoxin-	P40926 P30048	KGEDFVK SQETECTYFSTPLLLGK LTLYDIAHTPGVAADLSHIET K VAVLGASGGIGQPLSLLLK VDFPQDQLTALTGR HLSVNDLPVGR	EDFVKTLK SIKKGEDFVKTLK PARVNVPVIGGHAG SPLVSRLTLYDIAH PAVTQHAPYFKG
dependent peroxide reductase			PNGVIKHL
Hemoglobin beta chain	P68871	VHLTPEEK VNVDEVGGEALGR SAVTALWGK LLVVYPWTQR FFESFGDLSTPDAVMGNPK	ALAHKYH VHLTPEEK NALAHKYH HGKKVLGAF NPKVKAHGK AHGKKVLGAF VANALAHKYH GVANALAHKYH PKVKAHGKKVL PKVKAHGKKVLG NPKVKAHGKKVLG NPKVKAHGKKVLGA NPKVKAHGKKVLGAF GNPKVKAHGKKVLGAF GNPKVKAHGKKVLGAF GNPKVKAHGKKVLGAFSD VHLTPEEKSAVTALWG PKVKAHGKKVLGAFSD NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKKVLGAFSDG NPKVKAHGKVVAGVANALAHKYH

## **2.4 Conclusions**

The application of combined methods to the analysis of proteins from human heart tissue was demonstrated in this study. Peptides were generated by both in-solution trypsin digestion and MAAH from SDS-soluble and -insoluble protein mixtures, respectively. Strong cation exchange chromatography was used to fractionate the peptide mixtures generated from the two methods in order to simplify the complex peptide mixtures further. LC-ESI MS/MS was used to analyze the fractions collected from the trypsin digestion. However, LC-MALDI MS/MS was used to analyze the peptides collected from the MAAH

Using this combination of two methods, a wide range of proteins, in terms of GRAVY and molecular weight were identified. Significantly lower and higher molecular weight proteins were obtained from the SDS-insoluble protein mixture than the SDS-soluble protein mixture. Therefore, some of the problems encountered in the analysis of shotgun proteomics could be solved by generating peptides by MAAH from SDS-insoluble proteins.

## **2.5 Literature Cited**

- 1. Chien, K. R. *Nature* **2000**, 407, 227-232.
- Tan, F. L.; Moravec, C. S.; Li, J.; Apperson-Hansen, C.; McCarthy, P. M. et al. *Proc. Natl. Acad. Sci.* USA 2002, 99, 11387-11392.
- Boheler, K. R.; Volkova, M.; Morrell, C.; Garg, R. et al. *Proc. Natl. Acad. Sci.* USA 2003, 100, 2754-2759.
- 4. McGregor, E.; Dunn, M. Hum. Mol. Genet. 2003, 12, 135-144.
- Jager, D., Jungblut, P. R., Muller-Werdan, U., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 771, 131-153
- Thiede, B; Otto, A; Zimny-Arndt, U; Müller, E C; Jungblut, P. *Electrophoresis* 1996, 17, 588-599.

- Muller E.-C.; Thiede B.; Zimny-Arndt U.; Scheler C.; Prehm J.; Muller-Werdan U.; Wittmann-Liebold B.; Otto A.; Jungblut P. *Electrophoresis* 1996, 17, 1700-1712.
- Corbett, J. M., Why, H. J., Wheeler, C. H., Richardson, P. J. et al., Electrophoresis 1998, 19, 2031-2042.
- 9. Link, A. J., Eng, J., Schieltz, D. M. et al., Nat. Biotechnol. 1999, 17, 676-682.
- Washburn, M. P., Wolters, D., Yates, J. R. 3rd, Nat. Biotechnol. 2001, 19, 242-247.
- 11. Rusel, C.; Tan, T.; Kinter, M.; Bond, M. Proteomics 2004, 4, 1505-1516.
- 12. Zhong, H.; Marcus, S.; Li, L. J. Am. Soc. Mass Spectrom, 2005, 16, 471-481.
- Nandakumar, M. P.; Shen, J.; Raman, B.; Marten, M.R. J. Proteome Res. 2003, 2, 89-93.
- 14. Kingston, H. M.; Haswell, S. J. (Editors), Microwave-Enhanced Chemistry:
  Fundamentals, Sample Preparation, and Applications. ACS: Washington, D.C.,
  1997.
- 15. Zhang, B.; McDonald, C.; Li, L. Anal. Chem. 2004, 76, 992-1001.

#### Chapter 3

# Identification and Relative Quantification of Protein Mixtures from Squamous Carcinoma Cells and Human Heart Tissue Samples

## **3.1 Introduction**

One area of focus in proteomics research is identification and relative quantification of complex protein mixtures from cells, tissues or body fluids. Proteomics research on quantification is mostly relative quantification or profiling proteomics. It is used for the identification of proteins that are differentially expressed between different samples. This approach holds promise for identifying disease markers that could be important in early detection and diagnosis, and in monitoring the efficacy of a treatment, and eventually could lead the way to the design of novel treatments¹. One application of this approach is in the comparison of changes in protein expression between normal and transformed squamous carcinoma cell lines. Using similar approaches, it is possible to characterize global alterations in protein expression associated with processes of human heart disease.

The traditional method for quantitative analysis of protein mixtures was twodimensional gel electrophoresis (2-DE) in combination with an MS based technique, like peptide mapping or MS-sequencing (MS/MS)²⁻⁷. Although widely used, the 2-DE/MS technique has limitations when dealing with very large or small proteins, proteins having extreme pIs, and membrane or low-abundance proteins. The chromatography-based mass spectrometric method, multidimensional protein identification technology (MudPIT)⁸, has been shown to overcome the drawbacks in 2-DE and thus represents a powerful alternative to 2-DE. The methods include digestion of complex protein mixtures and data-dependent

LC/MS/MS analysis of the resulting peptides, followed by protein identification through database searching  $^{2-10}$ . This approach can be complemented by quantitative profiling of the complex protein digests such as isotope-coded affinity tags (ICAT)¹¹⁻¹⁴. ICAT is based on modifying the side chain of cysteine residues with either a light or heavy isotope-labeled biotin tag. These reagents enrich cysteine containing peptides and also provide a relative measurement of the amount of protein present in two different samples. One of the drawbacks of this technology is that it fails to quantify cysteine-free proteins in the given sample. Apart from targeting the thiol group of cysteine, different tagging strategies for proteome analysis by mass spectrometry have been reported¹⁵⁻³⁴. For example, a different isotope coding procedure has been described by Hsu et al.³⁵, who labeled amino groups of the N-termini and lysine side chains by reductive amination using d₀-and d₂-formaldehyde, resulting in a mass shift of 4 amu. In this labeling strategy, dimethylamino groups are formed, incorporating two isotopicaly labeled moieties. The application of the method towards digests of standard protein mixtures and cell lysates are reported³⁵⁻³⁶. The compatibility of this method with two-dimensional liquid chromatography has been evaluated recently by our group and reported³⁷. A chemical labeling strategy that specifically labels the N-terminus of all peptides in a digested sample with either light or heavy tagging reagent group can also be done. In this method, to prevent the incorporation of multiple labels, amino groups of lysine side chains are blocked by guanidation³⁸⁻³⁹ prior to N-terminal labeling⁴⁰. In the first work of this study, stable dimethyl isotope labeling of the amino groups of N-termini and lysine groups was applied to quantify and determine the proteins that are differentially expressed between an E-cadherin-deficient human carcinoma cell line (SCC9) and E-cadherin- and plakoglobin-expressing SCC9 transfectants. A squamous

carcinoma cell line (SCC9), which lacks plakoglobin (Pg) and E-cadherin and doesn't assemble desmosomes, was used as a control in this study. SCC9 cells have both  $\alpha$ -and  $\beta$ catenins but display unusual expression of N-cadherin, which is not normally expressed in Plakoglobin is a multifunctional cytoplasmic protein. It is a major epithelial cells. component of both desmosomes and adherens junctions. Desmosome and adherin junctions connect cells together and anchor the cytoskeleton to the plasma membrane. Loss of cell adhesion and alterations in the expression of cadherin are common features of malignant cells and markers for aggressive tumor growth and poor prognosis. The two other cell lines used in this study were made by introducing E-cadherin and plakoglobin expression and they are referred to as SCC9-E-cad and SCC9-Pg, respectively. As reported ⁴¹⁻⁴², transfection of SCC9 cells with E-cadherin cDNAs induces a morphologic transformation from fibroblast to epidermoid which coincides with downregulation of the endogenous N-cadherin and increased synthesis and stability of the catenins, but introduction of Pg cDNA into SCC9 cells enables them to form desmosomes and induces a fibroblast to epidermoid transition ⁴²⁻ ⁴³. However, unlike the effects of E-cadherin expression, these Pg-induced changes coincide with increased stability and a steady-state level of N-cadherin and decreased level and stability of  $\beta$ -catenin, without any significant effects on  $\alpha$ -catenin. Part of this work is published in The Journal of proteome research ⁴⁴.

The second part of this work is the relative quantification of protein mixtures extracted from human heart tissue samples. In chapter 2, it was stated that full characterization of human heart proteome is essential in understanding the protein expression alterations in failing heart tissues. A significant number of proteins from human heart tissue have been detected and the goal of this work was to establish a comprehensive method to profile as many proteins from heart tissue as possible.

The other strategy for comparing changes in protein expression between normal and diseased heart tissue is to apply global stable isotope labeling combined with multidimensional liquid chromatography and mass spectrometry to complex protein mixtures from two control tissue extracts. In this work three different heart tissue samples from the same patient, taken at different stages of surgical intervention, are compared. Stable isotope dimethyl labeling strategy, similar to that used for squamous carcinoma cell line extracts but with a slightly different protocol, was used. Although trypsin is expected to cleave with equal propensity at lysine and arginine, it is reported that signals from arginine-containing peptides are generally stronger. It is postulated that the higher ionization efficiency of arginine-containing peptides is due to the very high basicity of the guanidine functionality in the side chains of arginine residues. Based on this, a recent focus of research has been directed toward increasing mass spectral signal intensities from lysine-containing peptides ⁴⁵⁻ ⁴⁷. In this work, all the lysine side chains of the digested peptides of the tissue extracts were first blocked by guanidation and then followed by dimethyl labeling with formaldehyde reagent.

## **3.2 Experimental Section**

## **3.2.1 Materials and Reagents**

2, 5-dihydroxybenzoic acid (DHB), bovine trypsin, dithiothreitol (DTT), iodoacetamide, trifluoroacetic acid (TFA), and sodium dodecylsulfate (SDS) were purchased from Sigma-Aldrich Canada (Markham, ON, Canada).  $d_0$ -formaldhyde (37% wt. % solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in  $H_2O$ ) and sodium cyanoborohydride were purchased from Sigma-Aldrich (Oakville, ON, Canada).  $d_2$ -formaldehyde (~20% w/w solution in deuterated water) was obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA). HPLC grade acetone and acetonitrile were purchased from Fisher Scientific Canada (Edmonton, Canada). Water used in this experiment was obtained from a Milli-Q plus purification system (Millipore, Bedford, MA).

## **3.2.2 Protein Extraction and Sample Preparation**

#### **3.2.2.1 Squamous Carcinoma Cells**

The human squamous carcinoma cells SCC9 are derived from carcinomas of the tongue (American Type Culture Collection (ATTC), Rockville, MD) and provided by Dr. M. Pasdar (Department of Cell Biology and Anatomy, University of Alberta, Edmonton, Alberta, Canada). The cell lines were maintained in minimum essential medium (MEM) (Sigma, St. Lous, MO) supplemented with 10% fetal bovine serum (FBS). The cells were prepared by Dr. M. Pasdar's research group. SCC9 cells were grown to about 80% confluency in 150 mm tissue culture dishes. The cells were washed three times with 150 mM sorbitol in 10 mM phosphate buffer (pH 7.0) prior to scraping with a rubber policeman and the cells pellets were stored in aliquots at -80 °C. Two transformations of the SCC9 cells were performed by Dr. Padar's group. SCC9 cells transfected with E-cad cDNA are referred to as SCC9-E-cad in this report. The SCC9-E-cad cells show decreased N-cadherin and increased catenin expression (compared to the control cell line SCC9). SCC9 cells transfected with Pg cDNA are referred to as SCC9-Pg cells in this study. This cell line shows increased N-cadherin and decreased B-catenin expression, the opposite of that observed for SCC9-E-cad.

The sample preparation of the squamous carcinoma cells for 2D liquid chromatography and MALDI MS are explained below. CytoBuster Protein Extraction Reagent (Novagen) was used to extract proteins from the cell lines. The amount of extraction reagent added was based on 150  $\mu$ L/ 10⁶ cells. The mixture was incubated while shaking at room temp. for 5 min. The extracts were centrifuged for 5 min at 15,000 x g (4 °C) and the supernatant was transferred into a new test tube. Protein concentration was estimated using the Bradford assay.

#### **3.2.2.2 Human Heart Tissue**

Human heart tissue samples were obtained from a person with heart disease and provided by Dr. Shaohua Wang (Cardiac Surgery Division, University of Alberta Hospital). Three different samples were obtained from the same patient. The first sample (sample 1) was taken prior to cardiopulmonary bypass (CPB) surgery. The second (sample 2) one was taken during CPB surgery, and the third (sample 3) after CPB surgery. The tissue was frozen in liquid nitrogen and stored at -80  $^{\circ}$ C.

Protein extraction was made with CelLytic^{MT} reagent. The tissue was cut into pieces and homogenized in CelLytic MT reagent (1 g of tissue/ 20 mL of reagent). The lysed sample was centrifuged for 10 min at 14,000 x g (4 °C). The protein-containing supernatant was transferred into a chilled test tube. Protein concentration was estimated using the Bradford assay. Reduction and alkylation was done using standard procedures. Salts and other small molecules were removed using a 3000 Da molecular weight cut-off membrane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#### **3.2.3 Protein Digestion**

The digestion of the protein extracts from the squamous carcinoma cell lines was made using trypsin with a procedure similar to that described in chapter 2. In the case of protein extracts from heart tissue, two approaches to digestion were used. While attempting to denature the protein mixture at 95 °C, a small amount of protein precipitate was observed. For this reason, MAAH was used to digest proteins in addition to trypsin. The protein solution was reduced with dithiothreitol (DTT) and then alklyated with iodacetamide using standard procedures. The pH of the mixture was adjusted with 1 mM NaHCO₃ to ~8.5. 20 mM CaCl₂ was added to the mixture to a final concentration of 2 mM CaCl₂ Finally, trypsin was added to the protein solution at a protein: enzyme ratio of 40:1 by weight and the solution was incubated at 37 °C overnight. The undissolved part was suspended in aqueous solution followed by the standard reduction and alkylation steps. The mixture was then divided into three vials and 25 % TFA was added and microwave-assisted acid hydrolysis was carried out using the procedures described in chapter 2. The hydrolyzates were collected into one vial and dried in a vacuum centrifuge to remove the acid and then the dried sample was dissolved in 0.1% TFA. Finally both the peptides from the trypsin and MAAH digestions were mixed together.

#### **3.2.4 Isotope Labeling**

#### 3.2.4.1 Dimethyl Labeling of Peptide Mixtures from Squamous Carcinoma Cell Lines

The same amount (~200  $\mu$ g protein mixture) of each sample of the peptide mixtures obtained from the squamous carcinoma cell lines was labeled as follows. The sample volume was reduced to about 150  $\mu$ L. 150  $\mu$ L 0.2M acetate buffer was added into each vial

(pH = 6) containing SCC9, SCC9-E-cad and SCC9-Pg respectively. The mixtures were vortexed and 1M sodium cyanoborohydride was added to each vial (4 x volume of formaldehyde used). The mixture was vortexed and mixed either with  $d_0$ -formaldehyde or  $d_2$ -formaldehyde (4% (w/w) in water, 5 µL). In this particular experiment SCC9 was labeled with d (0) and SCC9-E-cad and SCC9-Pg were labeled with d (2). The mixtures were vortexed and incubated at 37 °C for 3 h while shaking. 15 µL 1M NaHCO₃ was added to each vial and vortexed for 1 h at room temp. 10 µL 1M NH₄HCO₃ was added to each vial, vortexed and incubated at room temp for 30 minutes. Finally each sample mixture was acidified by adding 10% TFA.

## **3.4.4.2 Dimethyl Labeling of Peptide Mixtures from Tissue Extracts**

Only the tissue samples were studied under this category. The first sample which was taken prior to cardiopulmonary bypass (CPB) surgery was considered as sample 1 in this study. The second, taken during CPB surgery, as sample 2, and the third, after CPB surgery, as sample 3. About 250  $\mu$ g of protein mixture of each sample was taken for the analysis. The  $\epsilon$ -amino groups of all lysine were blocked by adding 100  $\mu$ L 2M O-methylisourea in 100 mM NaHCO₃, adjusting the pH to over 10.5 with 2M sodium hydroxide and incubating the resulting mixture at 65 °C for 10 min (guanidination). The reaction was stopped and the pH adjusted to 8 by adding 10% TFA. Then, the guanidinated peptide solution was mixed with 10  $\mu$ L 1M sodium cyanoborohydride. The mixture was vortexed and mixed with d₀, ¹²C-formaldehyde or d₂, ¹³C-formaldehyde (4% (w/w) in water, 3  $\mu$ L). The mixtures were vortexed, incubated at 37 °C for 2 h and acidified by adding TFA. In this study, sample 1 was labeled with d₂, and samples 2 and 3 were labeled with d₀.

#### 3.2.5 2D LC MS and MS/MS

For the squamous carcinoma cell lines study, labeled SCC9 peptide mixtures were combined with the same amount of SCC9-E-cad and SCC9-Pg cell lines, respectively. The labeled tissue samples were mixed as explained below. Labeled peptide mixtures of Sample 1 (considered as a control) were combined with the same amount of sample 2 and sample 3, respectively. For the tissue samples, the combined sample was further desalted using a cartridge. The mixture was acidified with 0.1% TFA and ACN was added to a final concentration of 20% ACN. Each combined labeled peptide mixture was loaded onto a strong cation exchange column (2.1 x 150 mm). 10 fractions were collected from the squamous carcinoma cell lines and the tissue samples when the column was eluted with the solvent gradient described in the 2DLC-MALDI MS/MS section of chapter 2 above. All collected fractions were reduced in volume to ~0.01 ml to remove ACN. Each fraction was injected onto a capillary C18 column (Vydac, 1.0 x 150 mm). Gradient elution was performed with solvent A (0.1% TFA and 4% ACN in water) and B (0.1% TFA in ACN) at a flow rate of 40 µL/min. Each fraction was collected every one minute and directly deposited onto a 100 well gold MALDI plate using the heated droplet interface. 1µL of 1M DHB in 50% acetonitrile was deposited onto each sample. Peptides were analyzed by a QSTAR MALDI MS/MS mass spectrometer (MDS SCIEX, Concord, Canada).

#### **3.2.6 Data Processing**

Peptide sequences were automatically identified by database searching of the MS/MS spectra against the Swiss-Prot database using the MASCOT algorithm

(http://www.matrixscience.com). For the proteins from the squamous carcinoma cell lines, MS/MS data were searched twice; in one case with  $d_0$  dimethyl labeling and in the other with  $d_2$  dimethyl modification, using trypsin as the enzyme requirement. In the case of tissue extracts, MS/MS data were searched four times as follows: with no enzyme requirement (no enzyme), with trypsin as enzyme and for each case with  $d_0$  and  $d_6$  dimethyl-N-terminus modification.

#### **3.3 Results and Discussion**

Figure 3.1 shows the workflow for protein quantification and identification using stable isotope labeling, LC-MALDI MS and MS/MS. Two control protein mixture extracts were initially digested with trypsin or MAAH and then labeled with either the light or heavy forms of formaldehyde for dimethylation (in the case of the tissue samples, the  $\varepsilon$ -amino group of the lysine group was first blocked by guanidination). The labeled peptide mixtures were then combined. SCX chromatography was used to fractionate the complex labeled peptide mixtures (but the labeled tissue samples were desalted before fractionation). Each fraction was further separated by RP-LC and collected onto a gold MALDI target using the heated droplet LC-MALDI interface. A matrix (DHB) was added to each spot on the target. Peptide pairs with significant differences were selected from the MALDI MS spectra and MALDI MS/MS analysis and sequence database searching was subsequently done on the peptide pairs to identify the protein pairs with the significant difference.

## **3.3.1 Dimethyl Labeling**

Formaldehyde reacts with both the N-terminus and the  $\varepsilon$ -amino groups of lysine residues of a peptide to form Schiff bases, which are then reduced with sodium cyanoborohydride to form secondary amino groups that are relatively more reactive than their original primary amino groups. Subsequently, each of these more-reactive species reacts with another formaldehyde unit and is then reduced to form the end product that bears dimethyl-substituted tertiary amino groups ³⁵⁻³⁶. The reaction mechanism is shown in Figure 3.2.

As mentioned in the experimental section, the tissue samples were labeled using a different procedure. In this case the  $\varepsilon$ -amino groups of lysine were first blocked by guanidination by reaction with O-methylisourea, and then followed by reductive amination of the N-terminal. However, d₂, ¹³C-formaldehyde was used as heavy isotope reagent instead of d₂, ¹²C-formaldehyde reagent. As a result the value of m/z for this isotopic pair differs by 6 mass units.

86

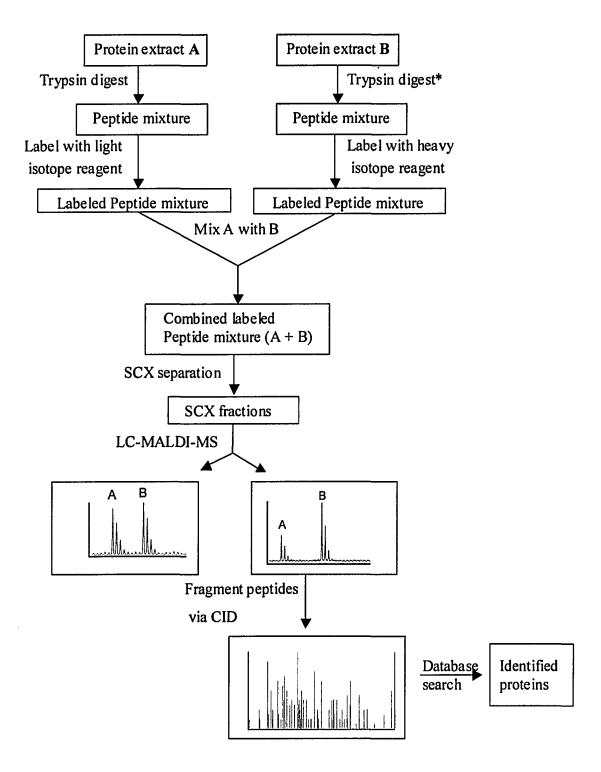



Figure 3.1 A flow chart of the experiment. * incase of the tissue sample, MAAH also used for digestion

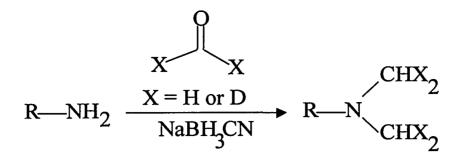
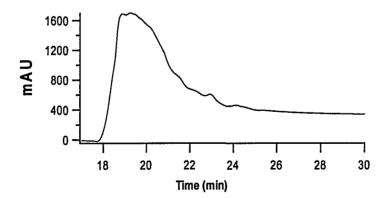
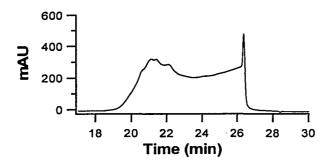
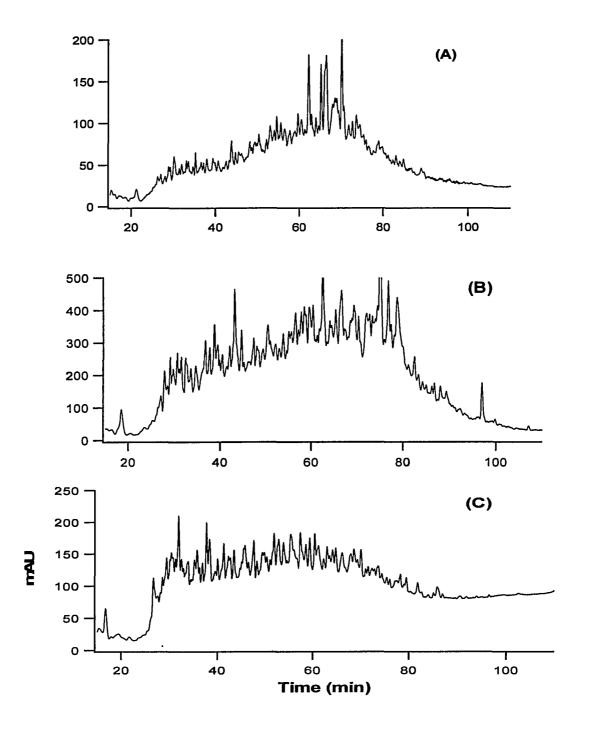




Figure 3.2 Dimethyl labeling reaction scheme.

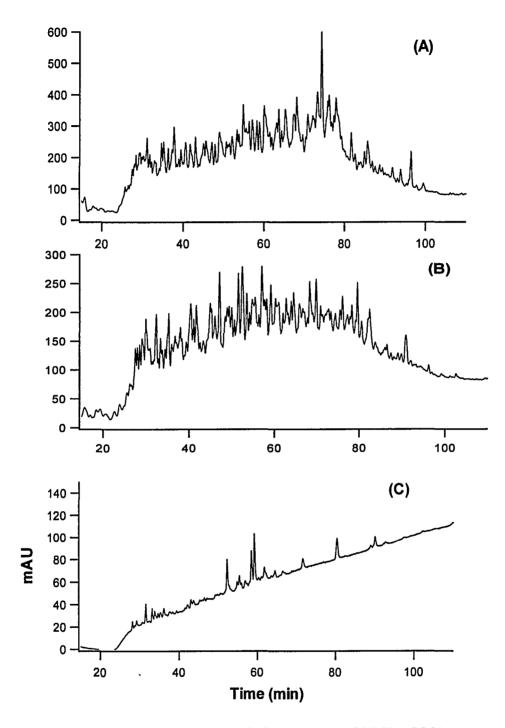
## **3.3.2 HPLC Separation of Peptide Mixtures**


Global isotope labeling of protein mixtures produces a large number of peaks, which requires a relatively pure sample or greater separation power to resolve these peaks. In this experiment, two dimensional liquid chromatography was used to simplify the complex nature of the sample mixtures. The combined labeled peptide mixtures were first fractionated using SCX. which also served to remove SDS which had been used to solubilize squamous carcinoma cell line extracts. In each combination, ten fractions were collected every one minute during a 40 min gradient as described in chapter 2.

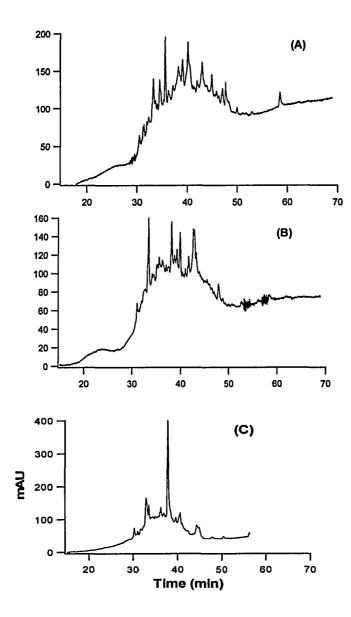



**Figure 3.3** UV Chromatogram of cation exchange separation of labeled tryptic digest of SCC9 + SCC9-E-cad protein mixture.

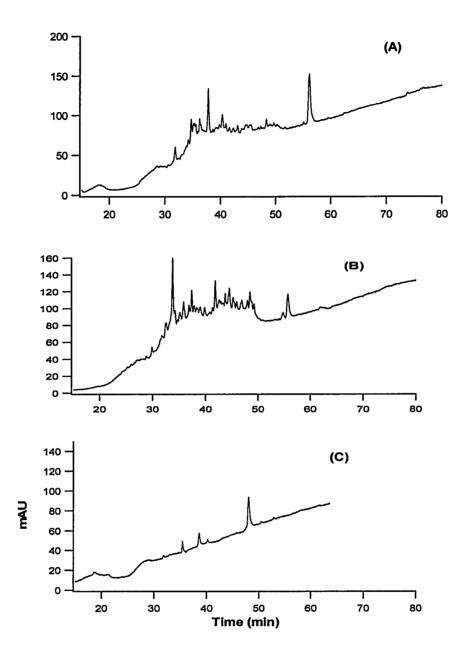
The UV-absorbance chromatogram of the cation exchange separation of the tryptic digest from the squamous carcinoma cell line extract (SCC9 and SCC9-E-cad) is shown in Figure 3.3.


The heart tissue protein extracts were digested using trypsin and MAAH. The peptide mixtures from the tryptic and MAAH digestions were combined and labeled after a guanidation step using the dimethyl labeling procedure explained in the experimental section, and then fractionated using SCX. The UV-absorbance chromatogram of the cation exchange separation of the tryptic and MAAH digest from the tissue extract (sample 1 & 2) is shown in Figure 3.4. Each fraction collected from the SCX column was injected into an RP-LC column and deposited onto a gold MALDI target every one minute at a flow rate of 40  $\mu$ L/min. As an example, the first three reversed-phase HPLC chromatograms of the squamous carcinoma cell lines (SCC9 & SCC9-E-cad, SCC9 & SCC9-Pg) obtained from SCX fractions 2, 3 and 4 respectively are shown in Figure 3.5 and 3.6 respectively. The HPLC chromatograms of the tissue extracts (sample 1&2 and sample 1&3) obtained from SCX fractions of 1, 2 and 3 respectively are also shown in Figure 3.7 and Figure 3.8, respectively.




**Figure 3.4** UV chromatogram of cation exchange separation of the labeled tryptic and MAAH digest of sample 1 +2 protein mixture.




**Figure 3.5** Reversed phase HPLC chromatogram of SCC9 + SCC9-E-cad obtained from SCX fractions 2 (A), 3 (B) and 4 (C), respectively.



**Figure 3.6** Reversed phase HPLC chromatogram of SCC9 + SCC9-Pg obtained from SCX fractions 2 (A), 3 (B) and 4 (C), respectively.



**Figure 3.7** Reversed phase HPLC chromatogram of tissue sample 1 + sample 2 obtained from SCX fraction 1 (A), 2 (B) and 3 (C), respectively.



**Figure 3.8** Reversed phase HPLC chromatogram of tissue sample 1 + sample 3 obtained from SCX fraction 1 (A), 2 (B) and 3 (C), respectively.

### 3.3.3 Quantification of Proteins in Squamous Carcinoma Cells using MALDI MS

The importance of the dimethyl labeling method for quantitative analysis using MALDI-MS, based on the presence of stable isotopes, has been reported in the literature^{35-37, 44}.

In this work, the dimethyl labeling method has been applied to quantify proteins in squamous carcinoma cell lines. More than five thousand pairs were detected from all MALDI-MS spectra collected. However, only about 300 pairs showed relative abundance ratios of greater than 2. In this method, the expected mass difference between the pairs is 4n (where n could be 1, 2, 3, 4 etc) depending on the number of lysine present in the peptide. If the peptide has no lysine residues, the expected m/z difference is 8 (Figure 3.9 B). Relative quantification determination of protein levels in the mixture is made by comparing the intensity ratios between the mono isotopic pair.

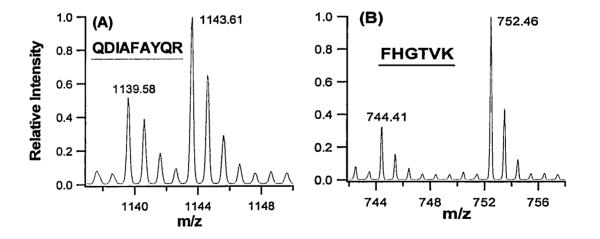



Figure 3.9 MALDI MS Spectra showing 4 Da (A) and 8 Da (B) mass differences respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

### 3.3.4 Quantification of Proteins in Tissue Samples using MALDI MS

The compatibility of dimethyl labeling with 2D-LC was reported recently by our group⁴⁴. The reagents used in dimethyl labeling are inexpensive and also commercially available. The derivatization procedure for dimethyl labeling is relatively fast and simple when compared to some of the other methods. The ionic state is not changed significantly by dimethyl modification, and so the ionization efficiency of the fragment is more likely to be conserved. With this method the dimethyl modification is a global labeling that labels not only lysine residues but also the N-terminus of the peptide, without significant isotopic effects. However, as a result of the multiple labeling, searching the peptide pairs with mass differences of 4, 8, 12, 16, 20, etc in the MALDI spectrum manually could be time consuming.

However, the focus of the second work is on the relative quantification of protein mixtures extracted from heart tissue samples. The procedure used in this method is similar to that used for the relative quantification of squamous carcinoma cell lines. In this method, lysine side chains were blocked by guanidation prior to N-terminal labeling to prevent the incorporation of multiple labels. The N-terminus of all peptides in a digested sample was specifically labeled either with light or heavy formaldehyde reagent through the reductive amination reaction. The expected mass difference between the peptide pairs is only 6 Da. The labeling procedure of this experiment was carried out by Chengjie Ji (from our group).

Trypsin was not the only digestion technique used in this work, microwave-assisted acid hydrolysis (MAAH) was also used to digest some of the insoluble proteins. Figure 3.10 shows the MALDI spectrum of peptide pair obtained as the result of the MAAH.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

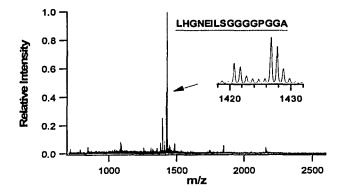



Figure 3.10 MALDI MS spectrum obtained from SCX fraction 1 of combined sample 1 and 2 at 37 min. as the result of the MAAH. The inset shows the expanded view of the peptide pair.

Overall, over 2000 peptide pairs were detected from all the SCX fractions of a single combination. Of these, 160-216 pairs show significant differences, that is, in excess of a two-fold difference.

### 3.3.5 Protein Identification Using MALDI QqTOF TOF MS/MS

Once the peptide pairs with significant differences were detected from the MALDI spectrum, the next step was to fragment those peptides using MALDI MS/MS to identify the proteins. Only peptides that showed a difference in relative abundance were targeted for identification by tandem MS. Each MS/MS spectrum was collected manually using MALDI Qq-TOF and searched against the database. The introduction of E-cad and Pg expression produced significant changes in the protein expression in SCC9-E-cad and SCC9-Pg cells. Table 3.1 shows the list of proteins identified from the combination of SCC9 and SCC9-E-cad cell lines. E-cadherin expression in SCC9 cells led to the downregulation of 10 (ratio >2) and upregulation of 43 proteins (ratio <1), as shown in Table 3.1. Among the down regulated proteins are prothymosin alpha, DNA replication licensing factor MCM7, and

deoxycytidine kinase and nucleosome assembly protein 1-like 1. These proteins are directly involved with cell proliferation and have been shown to be up regulated in various tumors or carcinoma cell lines ⁴⁴. Some of the other down regulated proteins such as peroxiredoxin 2, T-complex protein 1, epithelial protein lost in neoplasm, and long-chain-fatty-acid-CoA ligase 4 are involved in actin polymerization, protein folding or metabolic and oxidative pathways, and exhibit increased expression in tumors and transformed cells. The reduced expression of these proteins is consistent with decreased growth and the induction of an epidermoid morphology in SCC9 cells expressing E-cadherin. The upregulated proteins include collagen or collagen-binding precursor proteins involved in cell-matrix adhesion, a number of cytoskeletal and actin binding proteins, such as cortactin, transgelin, and caldesmon. The list of all the up regulated proteins with a ratio of SCC9/SCC9-E-cad of less than 1 is shown in Table 3.1. The expression of six proteins between the two cells lines was validated by immunoblotting and immunofluorescence microscopy⁴⁴ (result not shown).

Introduction of plakoglobin plays a role in mediating cell-cell adhesion and is associated with transcription factors that induce changes in the expression of genes involved in cell fate determination and proliferation. In this work, plakoglobin expression in the SCC9 cells led to the down regulation of 50 and up regulation of 32 proteins, respectively, as shown in Table 3.2. Unlike the E-cadherin expression, most of the proteins are found to be down regulated proteins. However, four of the down regulated proteins: epithelial protein lost in neoplasm, DNA replication licensing factor MCM7, prothymosin alpha and nucleosome assembly protein 1-like 1, which are listed as down regulated proteins in E-cadherin expression cells are also observed as down regulated proteins in the combination of SCC9 and SCC9-Pg cell lines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some significant protein changes were detected in the initial work on the relative quantification of tissue samples. The tissue samples were taken from the same patient at different surgical operation stages (as explained in the experimental section). About 32 common proteins with significant changes were detected between the tissue sample taken prior to CPB and that taken during CPB. Also, changes in 24 proteins were detected between the tissue sample taken prior to CPB and that taken prior to CPB and that taken prior to CPB and that taken after CPB. Tables 3.3 and 3.4 show the list of proteins and ratios of isotope pairs of peptides between sample 1 and the two other samples (2 and 3).

### Table 3.1 List of Identified Proteins Differentially Expressed betweenSCC9 and SCC9-E-cad Cells

Name	Access ID	Unique Peptide Sequence	SCC9/ SCC9-E- cad ratio	Average ratio
Annexin A2	P07355	SVPHLQK	0.492	0.503
		AYTNFDAER	0.601	
		QDIAFAYQR	0.516	
	}	SALSGHLETVILGLLK	0.457	]
		LSLEGDHSTPPSAYGSVK	0.501	
		AYTNFDAERDALNIETAIK	0.449	
Glyceraldehyde-3-	P04406	FHGTVK	0.306	0.345
phosphate		LTGMAFR	0.35	
dehydrogenase, liver		VVDLMAHMASKE	0.353	
		LISWYDNEFGYSNR	0.33	
		VIISAPSADAPMFVMGVNHEK	0.389	
4F2 cell-surface	P08195	HWDQNER	0.401	0.364
antigen		WWHTGALYR	0.349	
heavy chain		IKVAEDEAEAAAAAK	0.335	
	ĺ	IGDLQAFQGHGAGNLAGLK	0.392	
		VKDALEFWLQAGVDGFQVR	0.354	
		SLLHGDFHAFSAGPGLFSYIR	0.357	
Collagen-binding	P50454	GVVEVTHDLQK	0.151	0.165
protein 2 precursor		LQIVEMPLAHK	0.18	
		LFYADHPFIFLVR	0.165	
		TGLYNYYDDEKEK	0.164	
		LSSLIILMPHHVEPLER	0.152	

<u> </u>		QHYNCEHSK	0.206	
		KPAAAAAPGTAEK	0.101	
		TDGALLVNAMFFKPHWDEK	0.163	-
		AVLSAEQLRDEEVHAGLGELL R	0.202	-
Glyceraldehyde-3-	P00354	FHGTVK	0.304	0.288
phosphate		LTGMAFR	0.357	
dehydrogenase,	[	VGVDGFGR	0.14	
muscle		VVDLMAHMASKE	0.358	
		LEKPAKYDDIKK	0.279	
Ribosome-binding	Q9P2E9	KAEGAPNQGR	0.352	0.291
protein 1		KAEGTPNQGK	0.259	
		KVEGAQNQGK	0.261	
Clathrin heavy chain	Q00610	LEKHELIEFR	0.502	0.495
1		RKDPELWGSVLLESNPYR	0.488	
Epithelial protein lost	Q9UHB6	GNYDEGFGHRPHK	2.96	2.73
in neoplasm	]	SKGNYDEGFGHRPHK	2.51	
Transferrin receptor	P02786	HVFWGSGSHTLPALLENLK	0.471	0.463
protein 1		EAGSQKDENLALYVENQFR	0.456	
Putative RNA-binding	P98179	YYDSRPGGYGYGYGR	0.459	0.423
protein 3		GFGFITFTNPEHASVAMR	0.387	
Calreticulin precursor	P27797	KVHVIFNYK	0.471	0.490
The second s		KIKDPDASKPEDWDER	0.509	
Peroxiredoxin 2	P32119	KEGGLGPLNIPLLADVTR	2.88	
Ribonucleoprotein A0	Q13151	EDSARPGAHAK	0.383	_
Myosin heavy chain,	P35579	THEAQIQEMR	0.29	0.41
type A		TRLQQELDDLLVDLDHQR	0.53	$\neg$
Procollagen-lysine	Q02809	LTHYHEGLPTTR	0.365	0.362
		HTLGHLLSLDSYR	0.36	
Catenin delta-1	O60716	GIPVLVGLLDHPK	0.539	
Heat shock protein	P07900	QKAEADKNDK	2.29	5.86
HSP 90-alpha	_	RAPFDLFENRK	9.44	-1
Caldesmon	Q05682	EAEGAPQVEAGKR	0.242	0.265
		QKEFDPTITDASLSLPSR	0.288	-1
Ubiquitin-like protein NEDD8	Q15843	ILGGSVLHLVLALR	0.492	
Triosephosphate isomerase	P60174	TATPQQAQEVHEK	0.468	
Treacle protein	Q13428	ELLPLIYHHLLR	0.467	
DNA replication licensing factor MCM7	P33993	LAQHITYVHQHSR	2.36	
T-complex protein 1	P50990	ELEVQHPAAK	2.11	
L-type aminoacid transporter 1	Q01650	ALAAPAAEEKEEAR	0.343	
Prothymosin alpha	P06454	AAEDDEDDDVDTKK	2.09	
Prolyl 4-hydroxylase	O15460	KGTAVFWYNLLR	0.104	0.126
alpha-2 subunit precursor		SQVLDYLSYAVFQLGDLHR	0.149	
Tubulin beta-4 chain	Q13509	LHFFMPGFAPLTAR	0.45	
Caveolin-1	Q03135	YVDSEGHLYTVPIR	0.485	

Deoxycytidine kinase	P27707	HESWLLHR	2.49	-
EH-domain	Q9NZN4	LLEALDEMLTHDIAK	0.444	
containing protein 2				
Alpha-1 catenin	P35221	EKQDETQTK	0.294	
Enabled protein homolog	Q8N8S7	VHIYHHTGNNTFR	0.323	
Transducin â-like 2 protein	Q9Y4P3	EKPQQHNFTHR	0.391	
Long-chain-fatty-acid- -CoA ligase 4	O60488	AKPTSDKPGSPYR	2.37	
Golgi apparatus protein 1 precursor	Q92896	EAEEREPK	0.248	
Mitotic checkpoint serine/threonine- protein kinase BUB1	O43683	MGPSVGSQQELR	12.9	
Collagen alpha 1(I) chain precursor	P02452	GDKGETGEQGDR YHDRDVWKPEPCR	0.018	0.06
Carbonic anhydrase IX precursor	Q16790	QLHTLSDTLWGPGDSR FPAEIHVVHLSTAFAR	0.23 0.045	0.137
Transgelin	Q01995	HVIGLQMGSNR KYDEELEER	0.21	0.159
Kinectin	Q86UP2	TAEHEAAQQDLQSK	0.227	
Peroxiredoxin 4	Q13162	IPLLSDLTHQISK	0.465	
Prolyl 4-hydroxylase alpha-1 subunit precursor	P13674	FILAPAKQEDEWDKPR	0.276	
Collagen alpha 1(V)	P20908	GVQGPPGPAGKPGR	0.139	
Lysyl hydroxylase 2	O00469	VVFAADGILWPDKR	0.296	
Collagen alpha 1(III)	P02461	KHWWTDSSAEKK	0.202	
Annexin A6	P08133	GLGTDEDTIIDIITHR	0.200	
Src substrate cortactin	Q14247	HESQQDYSK	0.345	
Nucleophosmin	P06748	MTDQEAIQDLWQWR		0.392
		DSKPSSTPR		~
Tropomyosin beta chain	P09493	AEQAEADKK	0.433	
Tropomyosin 1 alpha chain	P07951			
Nucleosome assembly protein 1- like 1	P55209	AKIEDEKKDEEKEDPK	2.32	
Protein kinase C, alpha type	P17252	EHAFFR	0.464	
Protein kinase C, beta type	P05771			

IgG receptor FcRn large subunit p51		LREHLEK	0.309
Zinc finger CCHC domain containing protein 2	Q9C0B9		

# Table 3.2 List of Identified Proteins Differentially Expressed betweenSCC9 and SCC9-Pg Cells

Name	Access ID	Unique Peptide Sequence	SCC9/ SCC9-Pg	Average ratio
			ratio	
Ezrin	P15311	KENPLQFK	2.542	2.380
		EKEELMLR	2.462	
		DDRNEEKR	2.044	
		ITEAEKNER	2.434	
		FVIKPIDKK	2.372	
		IQVWHAEHR	2.284	
		APDFVFYAPR	2.116	
		AQEEAERLEADR	2.563	
	1	KEDEVEEWQHR	2.167	
		RKPDTIEVQQMK	2.020	
		RKEDEVEEWQHR	2.579	
	}	AKEELER	2.974	
Tubulin beta-1 chain	P07437	YLTVAAVFR	1.999	2.367
		KLAVNMVPFPR	2.890	
		LHFFMPGFAPLTSR	2.345	
		EIVHLQAGQCGNQIGA K	2.235	
Talin 1	Q9Y490	KIFQAHK	2.646	2.469
		QKLHTDDELNWLDHG R	2.567	
		LASEAKPAAVAAENEE IGSHIK	2.193	
Epithelial protein lost	Q9UHB6	EDKPAETKK	2.677	2.737
in neoplasm.		ASSQQEKEDKPAETK	2.976	
		SKGNYDEGFGHRPHK	2.901	
		HEVEKSEISENTDASG K	2.392	
Brain acid soluble	P80723	EKPDQDAEGK	0.115	0.188
protein 1	1	AEPEKTEGAAEAK	0.205	
		EGEKDAAAAKEEAPK	0.206	
		KTEAPAAPAAQETK	0.214	
	1	KAEGAATEEEGTPK	0.223	
		EKPDQDAEGKAEEK	0.163	

Radixin	P35241	KENPLQFK	2.542	2.263
		FVIKPIDKK	2.372	
		APDFVFYAPR	2.116	
		RKPDTIEVQQMK	2.020	
Tropomyosin alpha 3	P06753	ALKDEEKMELQEIQLK	2.670	2.472
chain		YSQKEDKYEEEIK	2.274	
Annexin A1	P04083	KALTGHLEEVVLALLK	2.948	2.507
		AAYLQETGKPLDETLK K	2.066	
Alpha-actinin 1	P12814	KTFTAWCNSHLR	2.413	2.318
•		ILAGDKNYITMDELR	2.129	
		KAGTQIENIEEDFRDG	2.413	
Vimentin	P08670	FANYIDKVR	2.420	2.391
		ILLAELEQLKGQGK	2.362	
Nucleosome	P55209	GIPEFWLTVFK	2.578	3.014
assembly protein 1-		KYAVLYQPLFDKR	2.824	
like 1		AKIEDEKKDEEKEDPK	3.640	
Annexin A2	P07355	SVPHLQK	0.252	0.320
		SALSGHLETVILGLLK	0.279	
		WISIMTER	0.431	
Clathrin heavy chain	Q00610	EHLELFWSR	0.206	0.272
1		KVGYTPDWIFLLR	0.262	
		KFDVNTSAVQVLIEHIG NLDR	0.347	
Early endosome	Q15075	AAVEQEKR	2.785	2.789
antigen 1		HNEESVSKK	2.792	
Rho GDP-dissociation	P52565	EGVEYR	4.279	4.693
inhibitor 1		IDKTDYMVGSYGPR	5.139	
		YIQHTYR	4.659	
Nucleophosmin	P06748	ADKDYHFK	0.393	0.417
·		MTDQEAIQDLWQWR	0.440	
60S ribosomal protein L6	Q02878	AGEKVEKPDTK	2.903	2.903
Filamin A	P21333	KIQQNTFTR	1.99	2.094
		DAPQDFHPDRVK	2.199	
H14_HUMAN	P10412	AASGEAKPK	3.796	3.434
-		KAASGEAKPK	3.072	
Colligin 1	P29043	LFYADHPFIFLVR	0.155	0.179
Colligin 2	P50454	TGLYNYYDDEKEK	0.226	
		LSSLIILMPHHVEPLER	0.157	
Calreticulin precursor	P27797	FYGDEEKDKGLQTSQ DAR	2.506	2.506
Transferrin receptor	P02786	HVFWGSGSHTLPALL	0.335	0.377
protein 1		ENLK		
	000000	RLYWDDLK	0.419	
60S ribosomal protein	Q02543	SRFWYFVSQLK	0.445	0.463
L18a		SRFWYFVSQLKK	0.482	
Heat shock cognate 71 kDa protein	P11142	MVQEAEKYKAEDEK	3.699	

Neutral alpha-	Q14697	YSLLPFWYTLLYQAHR	0.353	0.296
glucosidase AB		ALLDSLQLGPDSLTVH	0.253	
precursor		LIHEVTK		
		DGDKPEETQGK	0.281	
Filamin C	Q14315	SSHTYTR	3.372	
60S ribosomal protein	P27635	GPLDKWR	2.828	3.289
L10 60S ribosomal protein L10	]	LHPFHVIR	3.751	
Elongation factor 1-	P04720	TIEKFEK	2.167	2.565
alpha 1	Q05639	EHALLAYTLGVK	2.963	
EF12_HUMAN		GSFKYAWVLDKLKAE RER		
ACTA HUMAN	P62736	RGILTLK	2.871	3.053
ACTH_HUMAN	P12718	AVFPSIVGRPR	2.769	
ACTS_HUMAN	P02568	DSYVGDEAQSKR	3.519	
ACTG_HUMAN	P02571			
Prolyl 4-hydroxylase	O15460	KGTAVFWYNLLR	0.410	0.430
alpha-2 subunit precursor		YHHGNR	0.451	
40S ribosomal protein	P46783	HFYWYLTNEGIQYLR	0.373	
S10			0.070	
40S ribosomal protein	P60866	DTGKTPVEPEVAIHR	2.3434	
S20 28 kDa heat- and	Q13442	AREEEEQKEGGDGAA	2.386	
acid-stable	010442	GDPK	2.000	
phosphoprotein				
Splicing factor	Q05519	KSESDKDVK	3.425	
arginine/serine-rich 11				
Nonhistone	P05204	LSAKPAPPKPEPKPK	2.654	
chromosomal protein				
HMG				
Myosin heavy chain nonmuscle type A	P35579	AGKLDPHLVLDQLR	2.870	
Ubiquitin thiolesterase	P15374	VTHETSAHEGQTEAP	2.105	
_L3		SIDEK		
Treacle protein	Q13428	ELLPLIYHHLLR	0.382	
Prothymosin alpha	P06454	AAEDDEDDDVDTKK	2.710	
Myosin regulatory	P24844	NAFACFDEEASGFIHE	0.341	
light chain 2	D40040	DHLR	0.401	
HLA class I	P10316	HKWEAAHVAEQLR	0.461	
histocompatibility antigen				
Complement	Q07021	AFVDFLSDEIKEER	0.395	
component 1	301021		0.000	
Dynein heavy chain,	Q14204	IWAHEALR	0.435	
cytosolic				
Calnexin precursor	P27824	EIEDPEDRKPEDWDE	2.198	
Thumpedin kete 4	00000		4.025	
Thymosin beta-4	P62328	KTETQEKNPLPSKETI EQEK	4.925	

Actin-like protein 3	P61158	LKPKPIDVQVITHHMQ	3.366
	F01150	R	3.300
Triple functional	075962	IVFGNIHQIYDWHR	0.289
domain protein	P06733	KLNVTEQEKIDK	2.479
Alpha enolase			
Eukaryotic translation initiation factor 2 subunit 1	P05198	YKRPGYGAYDAFK	4.127
Eukaryotic translation initiation factor 3 subunit 6	P60228	HLVFPLLEFLSVK	2.210
Heterogeneous nuclear ribonucleoproteins A2/B1	P22626	EDTEEHHLRDYFEEY GK	3.404
26S proteasome non- ATPase regulatory subunit 2	Q13200	EKEEDKDKK	3.534
Translationally controlled tumor protein	P13693	GKLEEQRPER	2.438
ERO1-like protein alpha precursor	Q96HE7	MLLLEILHEIK	0.237
Thioredoxin	P10599	MIKPFFHSLSEK	2.278
40S ribosomal protein S4, X isoform	P62701	ECLPLIIFLR	0.389
DNA replication licensing factor MCM7	P33993	LAQHITYVHQHSR	2.665
Eukaryotic translation initiation factor 5A	P10159	EDLRLPEGDLGKEIEQ K	2.479
DNA replication licensing factor MCM4	P33991	THIDVIHYR	2.310
80 kDa nuclear cap binding protein	Q09161	LFVWEILHSTIR	0.393
Cyclin-dependent kinases regulatory subunit 2	P33552	QIYYSDKYFDEHYEYR	3.693
ARP2/3 complex 34 kDa subunit	015144	ARPDAEKK	2.009
Ornithine aminotransferase, mitochondrial precursor	P04181	FAPPLVIKEDELR	3.084
Lupus La protein	P05455	YKETDLLILFKDDYFAK	2.468
T-complex protein 1, eta subunit	Q99832	KADKVEQR	2.637
4F2 cell-surface antigen heavy chain	P08195	VKDALEFWLQAGVDG FQVR	0.380
MR11_HUMAN	P49959	DIIHFFR	0.359
Citrate synthase, mitochondrial	075390	ALGVLAQLIWSR	0.348
precursor	l	<u>l</u>	

	T =		
apurinic or apyrimidinic site	P27695	QRWDEAFR	0.357
	<b>D</b> 55000		0.704
26S proteasome non-	P55036	DKKEEDKK	2.731
ATPase regulatory			
subunit 4			
Glutathione	P78417	NKPEWFFK	2.665
transferase omega 1	[		
Laminin beta-1 chain	P07942	KYEDNQR	2.804
precursor			
Cell division control	P06493	AFGIPIR	2.227
protein 2 homolog			
Ubiquitin carboxyl-	P51784	QAWSGHHR	0.461
terminal hydrolase 11			
Golgi-associated	Q9H4G4	AHNEYR	0.433
plant pathogenesis-			
related protein 1			
General vesicular	O60763	LEVGIQAMEHLIHVLQT	0.265
transport factor p115		DR	
Splicing factor 3	Q15459	KKEEEEKEKER	3.240
subunit 1			
Protein transport	Q15436	FGEYHKDDPSSFR	0.334
HLA class I	P30481	THVTHHPISDHEVTLR	0.233
histocompatibility			
antigen			
TBA8_HUMAN	Q9NY65	QLFHPEQLITGKEDAA	3.881
TBA6 HUMAN	Q9BQE3	NNYAR	
TBA1 HUMAN	P05209		
TBA4 HUMAN	P05215		
TBA2_HUMAN	Q13748		
Nucleoside	P2239	DRPFFPGLVK	0.227
diphosphate kinase B			

## Table 3.3 List of Identified Proteins Differentially Expressed betweenHeart Tissue Samples of 1 and 2

Name	Access ID	Unique Sequence	Peptide	Sample Sample ratio	2/ 1	Average ratio
Hemoglobin	P69905	TYFPHFDL		0.369		0.423
alpha chain		LRVDPVNFK		0.445		
		TYFPHFDLSHG		0.353		
		AHAGEYGAEALE	ER	0.425		
		VGAHAGEYGAE	ALER	0.421		
		TYFPHFDLSHGS	AQVK	0.519		
		MFLSFPTTK	· · · · · · · · · · · · · · · · · · ·	0.405		

		TYFPHFDLSH	0.451	
Hemoglobin	P68871	SAVTALWGK	0.505	0.389
beta chain	1 0007 1	VHLTPEEK	0.45	
		LLVVYPWTQR	0.286	
		VVAGVANALAHKYH	0.316	
10 kDa heat	P61604	FLPLFDR	2.10	
shock protein				0.001
Serotransferrin	P02787	YLGEEYVK	0.402	0.394
		HQTVPQNTGGK	0.387	
Glyceraldehyde	P04406	LISWYDNEFGYSNR	0.456	0.453
-3-phosphate,		AGAHLQGGAK	0.367	
liver	1	LVINGNPITIFQER	0.512	
		GALQNIIPASTGAAK	0.478	[
Smooth muscle	P63267	AVFPSIVGRPR	0.478	0.444
gamma actin		AGFAGDDAPR	0.423	
		EITALAPSTMK	0.432	
Cellular myosin	P35579	SMAVAAR	0.422	0.410
heavy chain, type A		QASMPDNTAAQKV	0.398	_
Chromodomain	Q9P2D1	IGQSKSVK	0.469	0.437
-helicase-DNA- binding protein		SLLIGVFK	0.406	
7 Aftiphilin	Q6ULP2	SSGTGTEPVAKLK	0.079	
Probable G-	Q8IZ08	EAGAAVR	0.490	
protein coupled receptor 135	QUILUU			
Citron Rho-	014578	LPAGAVR	0.460	0.428
interacting kinase		KHAMLEMNAR	0.397	
Creatine kinase	P06732	YYPLK	0.540	0.425
M-type		LMVEMEKK	0.457	
in type		LSVEALNSLTGEFK	0.346	
		LGSSEVEQVQLVVDGV K	0.356	
Integrin beta-5	P18084	LAEEMRK	0.410	
Importin beta-1 subunit	Q14974	ELITILEK	0.376	
Glycine	P23415	SPEEMR	0.349	0.390
receptor alpha- 1 chain		SPEEMRK	0.432	
precursor Bullous	094833	AELSRQLEGILK	0.412	0.406
pemphigoid	004000	QRGEEMIAR	0.400	
antigen 1 Notch 2	Q04721	ADAAKR	0.395	0.424
		CTCKKGFK	0.453	
Transcription	O15226	DRATELAVKLLQK	0.331	
factor NRF				

.

		YLRMR	4.816	7
Procollagen- lysine	Q02809	SEDYVDIVQGR	2.230	
Regulator of G- protein signaling 16	015492	TLAAFPTTCLER	3.923	
Ankyrin repeat domain protein 11	Q6UB99	HDRDHFK	3.516	
Protein MICAL- 3	Q7RTP6	GFLAAMDSAWMVR	3.258	
Acetyl-CoA acetyltransfera se	P24752	TPIGSFLGSLSLLPATK	0.334	
Zinc finger and BTB domain containing protein 9	Q96C00	LHGNEILSGGGGPGGA	0.423	
DNA ligase IV	P49917	DTDLNQLK	0.362	
Acidic mammalian chitinase	Q9BZP6	HCVNGVTYQQNC	0.432	
Forkhead box	Q8WXT5	KGNYWSLDPASQDMF	2.323	2.211
protein D4B		QLTPGAHLPHPF	2.101	-
		GAHLPHPF	2.210	
Golgi	Q8TBA6	NASNIYSK	3.020	2.847
autoantigen	1	AVAAKDSQLAVLK	2.182	
2		EPDDELLFDFLNSSQ	3.341	
Protocadherin	Q96JQ0	NEHAPAFAR	2.450	2.395
16		QDGGSPPRSTT	2.340	
Filamin C	Q14315	DAGEGLLTVQILGPEG	3.05	
Serine/threonin e-protein kinase receptor R3	P37023	RLAADPVLSGLAQMM	3.35	

### Table 3.4 List of Identified Proteins Differentially Expressed betweenHeart Tissue samples of 1 and 3

Name	Access ID	Unique Peptide Sequence	Sample 3/ Sample 1	Average ratio
Serum albumin precursor	P02768	QTALVELVK	0.54	0.454
		FKDLGEENFK	0.434	7
		YLYEIARR	0.448	
		FPKAEFAEVSK	0.477	
		LSQRFPK	0.375	7
Vimentin	P08670	ILLAELEQLK	0.356	0.423
		FANYIDKVR	0.415	

······		FLEQQNK	0.498	
Hemoglobin beta	P68871	LHVDPENFR	0.348	0.416
chain		VAHHFGK	0.485	
10 kDa heat shock protein	P61604	FLPLFDR	2.10	,,,,,,,
Citrate synthase, mitochondrial precursor	075390	VVPGYGHAVLR	0.435	
Kinesin-like protein KIF12	Q96FN5	LLADSLGGR	0.25	
Mitogen-activated protein kinase kinase kinase kinase 6	Q8N4C8	QEINMLK	0.375	
Acylamino-acid- releasing enzyme	P13798	SFNLSALEK	0.295	
Phosphoglycerate kinase 1	P00558	AEPAKIEAFR	2.33	
Phosphoglycerate	P18669	VLIAAHGNSLR	0.456	0.444
mutase 1		KAMEAVAAQGK	0.501	
		AMEAVAAQGK	0.375	
Isocitrate dehydrogenase	P48735	LIDDMVAQVLK	0.398	0.467
		GRPTSTNPIASIFAWTR	0.567	
		TIEAEAAHGTVTR	0.436	
ADAM 29 precursor	Q9UKF5	НІІНІК	0.494	
NF-kappa-B essential modulator	Q9Y6K9	EVEHLK	2.141	
Red protein	Q13123	KISAIIEK	0.425	
Haptoglobin	P00738	FTDHLK	0.484	
Proactivator	P07602	LVGYLDR	2.271	2.201
polypeptide precursor		QEILAALEK	2.130	
Thioredoxin reductase 1, cytoplasmic	Q16881	NGPEDLPK	0.414	
Potassium voltage- gated channel subfamily B member 1	Q14721	RNGSIVSMNMK	0.256	
Zinc finger protein HRX	Q03164	KGRGNLEK	0.445	
Keratin, type II cytoskeletal 2 epidermal	P35908	SRGRGGGGGGFR	2.34	

Low-density lipoprotein receptor- related protein 2 precursor	P98164	ERATLGGNFR	0.453	
Cell division protein kinase 4	P11802	GPRPVQSVVP	0.324	
Angiopoietin 1 receptor precursor	Q02763	PRGLNLLPK	0.245	
Peroxiredoxin 2	P32119	KEGGLGPLNIPLLADVTR	0.235	

### **3.4 Conclusions**

Comparing the relative abundance of each protein present in two or more complex samples can be accomplished using isotope-coded tags incorporated at the peptide level. The ideal strategy to introduce a stable isotope label for quantitative proteomics should be able to label proteins from any source: cell culture, tissue, or biological fluid. It should be capable, if possible, to introduce only one label per peptide to simplify data analysis. It should be relatively inexpensive, simple to perform, and go to completion under mild reaction conditions.

The dimethyl labeling method coupled with two dimensional liquid chromatography and mass spectrometry has been found to be effective for profiling expressed proteins in tumor cells. With this method, all the amino groups, both from the N-terminus and lysines, are labeled. More than 5000 peptide pairs have been detected for example between SCC9 and SCC9-E-cad cells. However, only about 300 pairs showed significant differences, that is, over a 2 fold change. Overall, 53 proteins were detected from the combination of SCC9 and SCC9-E-cad cell lines. However, from the combination of SCC9 and SCC9-Pg cell lines, about 82 proteins were detected. From the single peptide ratio and average ratio, it shows that most of the protein expression changes between the combined cell lines are over 2 fold. These studies could be useful to assess changes in a disease state or to distinguish specific state during disease progression. Dimethyl labeling is a powerful chemical labeling strategy for protein mixtures extracted not only from cell lines but also proteins from tissue extracts. It proved useful in a comparison of proteins from diseased and healthy heart tissues and for protein extracts from the same patient taken at different stages of surgical procedure. However, in this protocol, the lysine side chains are blocked by guanidation prior to N-terminal labeling to prevent the incorporation of multiple labels. Therefore, the mass difference between the labeled peptides is always 6 mass units. More than 2000 pairs from a single combination and 160-216 pairs showed significant differences. The number of proteins detected from the combination of sample 1 and 2 and sample 1 and 3 were 32 and 24 respectively.

### **3.5 Literatures Cited**

- 1. Wu, W.; Hu, W.; Kavanagh, J. J. Int. J. Gynecol. Cancer 2002, 12, 409-423
- 2. Chelius, D.; Zhang, T.; Wang, G.; Shen, R. Anal. Chem. 2003, 75, 6658 -6665.
- Link, A. J.; Eng, J.; Schieltz, D. M.; Carmack, E.; Mize, G. J.; Morris, D. R.;
   Garvik, B. M.; Yates, J. R., III. *Nat. Biotechnol.* 1999, 17, 676-82.
- Shevchenko, A.; Jensen, O. N.; Podtelejnikov, A. V.; Sagliocco, F.; Wilm, M.; Vorm, O.; Mortensen, P.; Shevchenko, A.; Boucherie, H.; Mann, M. *Proc. Natl. Acad. Sci. U.S.A.* 1996, 93, 14440-45.
- Gygi, S. P.; Rochon, Y.; Franza, B. R.; Aebersold, R. Mol. Cell Biol. 1999, 19, 1720-30.
- Garrels, J. I.; McLaughlin, C. S.; Warner, J. R.; Futcher, B.; Latter, G. I.;
   Kobayashi, R.; Schwender, B.; Volpe, T.; Anderson, D. S.; Mesquita-Fuentes,
   R.; Payne, W. E. *Electrophoresis* 1997, 18, 1347-60.

- 7. Boucherie, H.; Sagliocco, F.; Joubert, R.; Maillet, I.; Labarre, J.; Perrot, M. *Electrophoresis* **1996**, *17*, 1683-99.
- Washburn, M. P.; Wolters, D.; Yates, J. R., III. Nat. Biotechnol. 2001, 19, 242-7.
- Spahr, C. S.; Davis, M. T.; McGinley, M. D.; Robinson, J. H.; Bures, E. J.;
   Beierle, J.; Mort, J.; Courchesne, P. L.; Chen, K.; Wahl, R. C.; Yu, W.; Luethy,
   R.; Patterson, S. D. *Proteomics* 2001, 1, 93-107.
- Davis, M. T.; Spahr, C. S.; McGinley, M. D.; Robinson, J. H.; Bures, E. J.;
   Beierle, J.; Mort, J.; Yu, W.; Luethy, R.; Patterson, S. D. Proteomics 2001,
   1, 108-17.
- Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R.
   *Nat. Biotechnol.* 1999, 17, 994-9.
- Smolka, M. B.; Zhou, H.; Purkayastha, S.; Aebersold, R. Anal. Biochem.
   2001, 297, 25-31.
- Griffin, T. J.; Gygi, S. P.; Rist, B.; Aebersold, R.; Loboda, A.; Jilkine, A.; Ens,
   W.; Standing, K. G. Anal. Chem. 2001, 73, 978-86.
- Zhang, R.; Sioma, C. S.; Wang, S.; Regnier, F. E. Anal. Chem. 2001, 73, 5142-9.
- 15. Leitner, A.; Lindner, W. J. Chromatogr. B 2005, 813, 1-26.
- Peters, E.C.; Horn, D.M.; Tully, D.C. Brock, A. Rapid Commun.Mass Spectrom.
   2001, 15, 2387.
- Peters, E.C.; Brock, A.; Horn, D.M.; Phung, Q.T.; Ericson, C.; Salomon, A.R.;
   Ficarro, S.B.; Brill, L.M. LC–GC Eur. 2002, 15, 423.

- 18. Beardsley, R.L.; Reilly, J.P. J. Proteome Res. 2003, 2, 15-21.
- 19. Kuyama, H.; Watanabe, M.; Toda, C.; Ando, E.; Tanaka, K.; Nishimura, O. Rapid Commun. Mass Spectrom. 2003, 17, 1642.
- 20. Chelius, D.; Shaler, T.A. Bioconjugate Chem. 2003, 14, 205.
- 21. Gevaert, K.; Goethals, M.; Martens, L.; J. van Damme,; Staes, A.; Thomas, G.R.; Vandekerckhove, J. *Nat. Biotechnol.* 2003, 21, 566.
- Staes, A. Demol, H.; J. van Damme, Martens, L.; Vandekerckhove,
   J.; Gevaert, K.; J. Proteome Res. 2004; 3, 786-791.
- Kuhn, K.; Thompson, A.; Prinz, T.; M[°]uller, J.; Baumann, C.; Schmidt, G.; Neumann, T.; Hamon, C. J. Proteome Res. 2003, 2, 598-609.
- Prinz, T.; M"uller, J.; Kuhn, K.; Sch"afer, J.; Thompson, A.; Schwarz, J.; Hamon, C.;
   J. Proteome Res. 2004, 3, 1073-1081.
- 25. Chakraborty, A.; Regnier, F.E.; J. Chromatogr. A 2002, 949,173.
- 26. Geng, M.; Ji, J.; Regnier, F.E.; J. Chromatogr. A 2000, 870 295.
- Ji, J.; Chakraborty, A.;Geng, M.; Zhang, X.; Amini, A.; Bina, M.; Regnier, F.E.; J. Chromatogr. B 2000, 745 197.
- 28. Kindy, J.M.; Taraszka, J.A.; Regnier, F.E.; Clemmer, D.E. Anal. Chem. 2002, 74, 950-958.
- 29. Liu, P.; Regnier, F.E. J. Proteome Res. 2002, 1, 443-450.
- 30. Liu, P.; Regnier, F.E. Anal. Chem. 2003, 75, 4956-4963.
- 31. Xiong, L.; Andrews, D.; Regnier, F. J. Proteome Res. 2003, 2, 618-625.
- Ren, D.; Penner, N.A.; Slentz, B.E.; Regnier, F.E. J. Proteome Res.
   2004, 3, 37-45.

- 33. Mason, D.A.; Liebler, D.C. J. Proteome Res. 2003, 2, 265-272.
- 34. M[°]unchbach, M.; Quadroni, M.; Miotto, G.; James, P. *Anal. Chem.*2000, 72, 4047-4057.
- 35. Hsu, J.-L.; Huang, S.-Y.; Chow, N.-H.; Chen, S.-H. Anal. Chem. 2003, 75, 6843-6852.
- Hsu, J.-L.; Huang, S.-Y.; Shiea, J.-T.; Huang, W.-Y.; Chen, S.-H. J. Proteome Res.
   2005, 4, 101-108.
- 37. Ji, C.; Li, L. J. Proteome Res. 2005, 4, 734-742.
- 38. Beardsley, R. L.; Reilly, J. P. Anal. Chem. 2002, 74, 1884-1890.
- 39. Kimmel, J. R. Guanidination of proteins. *Methods Enzymol.* **1967**, 11, 584–589.
- 40. Zappacosta, F.; Annan, R. S. Anal. Chem. 2004, 76, 6618-6627.
- 41. Li, Z.; Gallin, W. J.; Lauzon, G.; Pasdar, M. J. Cell Sci. 1998, 111, 1005-1019.
- Parker, H. R.; Li, Z.; Sheinin, H.; Lauzon, G.; Pasdar, M.; Cell Motil. Cytoskeleton 1998, 40, 87-100.
- Hakimelahi, S.; Parker, H. R.; Gilchrist, A. J.; Barry, M.; I, Z.; Bleackley, R. C.;
   Pasdar, M. J. Biol. Chem. 2000, 275, 10905-10911.
- 44. Ji, C.; Li, L.; Gebre, M.; Pasdar, M.; Li, L. J. Proteome Res. 2005, 4, 1419-1426.
- 45. Brancia, F. L.; Oliver, S. G.; Gaskell, S. J. Rapid Commun. Mass Spectrom.
  2000, 14, 2070-2073.
- Beardsley, R. L.; Karty, J. A.; Reilly, J. P. Rapid Commun. Mass Spectrom.
   2000, 14, 2147-2153.
- 47. Hale, J. E.; Butler, J. P.; Knierman, M. D.; Becker, G. W. Anal. Biochem.
  2000, 287, 110-117.

#### Chapter 4

#### **Conclusions and Future Work**

Mass spectrometry (MS) combined with different separation techniques has proven to be a powerful method in proteomic research. Two types of MS are used for most work in proteomics: matrix-assisted laser-desorption-ionization time-of-flight (MALDI-TOF) instruments and electrospray ionization tandem mass spectrometry (ESI-tandem MS) instruments. Recently, mass spectrometry has become a useful technique in the quantitative analysis of differential expression. Some stable-isotope-based methods have been developed and applied extensively in this comparative analysis because they are well suited to mass spectrometric analysis. The overall analysis depends on several factors, such as extraction, sample preparation, separation methods and choice of mass spectrometry.

In chapter 2, two combined methods for the identification of proteins from human heart tissue are demonstrated. Protein extraction, sample preparation, digestion and peptide fractionation can have a major impact on the identification process. Some alternative protein extraction reagents that are applicable for heart tissues are commercially available. Trizol reagent was found to be efficient at extracting proteins from heart tissue. However, one of the challenging steps in the extraction process and sample preparation is to solublize the protein pellets obtained from the Trizol extraction. While surfactants, such as SDS, are commonly used in solubilizing protein extracts, their presence and concentration in a protein sample can potentially affect both the enzymatic digestion process and the subsequent analysis of the resulting peptides by mass spectrometry. For this reason, 1% SDS was used to solubilize the protein pellets and then finally diluted to about 0.05% SDS. However, a significant proportion of protein pellets was observed to be insoluble in 1% SDS. A new protein digestion method, microwave -assisted acid hydrolysis (MAAH), developed by our group, was used to analyze the SDS-insoluble proteins. This method has become a promising technique to solve some of the problems that are encountered in shotgun proteomics techniques. MAAH is detergent-free and digests proteins without enzymes or leaving residual chemicals.

Due to the complex nature of the peptide mixtures obtained by trypsin digestion or microwave-assisted acid hydrolysis, two-dimensional liquid chromatography has been used to fractionate the complex mixtures. The use of strong-cation exchange chromatography not only fractionates the peptide mixtures but also serves to remove detergents, such as SDS. Before identification of the protein by mass spectrometry, the intensity of SCX UVabsorbance chromatographs indicates the presence of a large amount of peptides in the mixture. It was demonstrated that reversed-phase chromatography is very useful to further separate the fractions collected from the SCX HPLC.

Protein identification has been analyzed using two different mass spectrometry instruments. Analyzing the SDS-soluble protein mixture collected from SCX fractions has been carried out using an electrospray ionization tandem mass spectrometry (ESI-tandem MS) instrument. Although an additional step was required to remove salts and detergents from the fractions, LC-ESI-tandem MS system was found to be fast and convenient process. MALDI is known to be tolerant to detergents and salts and also sensitive. High mass accuracy and high resolution is expected from the MALDI-QTOF instruments. Therefore, SCX fractions collected from MAAH digests were analyzed with this instrument. In this experiment the heated droplet LC-MALDI interface was found to be very useful to collect

the effluents from RP-HPLC. There are many factors that may limit the high throughput identification of the proteins analyzed using MALDI-QTOF. The first one is the selection of peptide masses from the MALDI spectrum. Only peptide masses that have high intensity were selected for fragmentation using CID. Those peptides with low intensity are missed due to the low quality of MS/MS spectra collected. The other factor is related to the quality of the spectra collected because all the MS/MS spectra are collected manually. The collected MS/MS spectra are searched. A significant number of proteins are reported in this work using the two different digestion methods followed by LC-ESI ion trap and LC-MADI-QTOF. The proteins with at least two matched peptides obtained in both methods gave high confidence in the identification of proteins.

In chapter 3, global isotope labeling strategy was applied to compare the protein expression changes between carcinoma cell lines and also heart tissue samples. Quantitative analysis of the relative abundance of expressed proteins is an essential issue in comprehensive proteomics. Using global-isotope labeling, coupled with mass spectrometry based techniques, to quantify changes in protein abundance between two samples is a simple and practical way for profiling biological differential regulation.

Since the most popular labeling method, ICAT fails to identify peptides lacking cysteine residues, dimethyl isotope labeling, which labels both the N-termini and lysine residues of the peptides generated by trypsin or MAAH digestion, was used. This method has several advantages, including the use of the inexpensive and commercially available reagent, formaldehyde. The dimethyl labeling procedure is also fast and simple when compared to some of the other methods. The labeled peptide mixtures were first fractionated using SCX HPLC and salts were removed by RP-HPLC followed by the deposition of the

effluents onto the MALDI plate with the help of heated droplet interface. Peak pairs separated by mass difference of 4n in the MALDI MS spectrum were selected, where n is the number of dimethyl labeling sites in the peptide. For the sample combinations of SCC9 and SCC9 E-cad, about 5480 pairs were detected. However, Only 320 peptide pairs showed significant changes, that is, 2-fold or above, and were selected for fragmentation or CID to identify the proteins. All the collected MS/MS spectra were searched against the Swiss Prot database using the MASCOT program. The purpose of applying this method to the carcinoma cell lines was to determine proteins differentially expressed between an E-cadherin-deficient human carcinoma cell line, SCC9, and E-cadherin and plakoglobin-expressing SCC9 transfectants. Therefore, better understanding of the cadherin-catenin system in the regulation of cell proliferation, invasion and intracellular signaling during cancer can be obtained.

In chapter 3, using a similar method to that reported, the quantification and identification of heart tissue proteins is reported. The objective was to identify the proteins that are differentially expressed in the different tissue samples. The samples were obtained from the same patient at different surgical steps. The first sample was taken prior to cardiopulmonary bypass (CPB). The second was taken during CPB, and the third, after CPB. While attempting to denature the protein mixture at 95 °C, a small amount of protein precipitate was observed. For this reason, MAAH was also used to digest proteins, in addition to trypsin. Although trypsin is expected to cleave with equal tendency at lysine and arginine, it is reported that signals from arginine-containing peptides are generally stronger. It has been reported that the higher ionization efficiency of arginine-containing peptides is due to very high basicity of guanidine functionality in side chain of the arginine residue.

Based on this, a recent focus of research has been directed toward increasing mass spectral signal intensities from lysine-containing peptides. In this procedure, all the lysine side chains of the digested peptides of the tissue extracts were first blocked by guanidation and then followed by dimethyl labeling using formaldehyde reagent. The advantage of this method is that the mass difference between the peptide pairs is only 6, unlike the dimethyl labeling method mentioned above. From the MALDI spectra, more than 2000 peptide mass pairs were selected from a single combination and 160-216 pairs showed at least 2-fold differences. From these pairs, 24 and 32 proteins were identified from samples 1+3 and 1+2, respectively. The comparison of protein expression and detection of the differentially expressed proteins by dimethyl isotope labeling could be useful for biomarker discovery.

Although a significant number of proteins were detected from the combination of trypsin and MAAH digests of proteins coupled with mass spectrometry, an effective protein isolation method, fast sample preparation and automated peptide separation and high-throughput identification techniques still need to be established in order to identify all possible proteins in heart tissue. In particular, an effort should be made to automate the collection of MS/MS spectra in MALDI-QTOF instruments.