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Abstract

We study ideal irreducible and band irreducible positive operators and

semigroups of positive operators on Banach lattices.

In Chapter 1, we consider irreducible positive operators. In particular,

we prove the following comparison theorem. Let T, S be two operators on a

Banach lattice such that 0 ≤ S ≤ T and r(T ) = r(S). Suppose that r(S) is

a pole of the resolvent R(·, S). Then T = S if either S is ideal irreducible, or

S is band irreducible with a σ-order continuous functional x∗0 > 0 such that

S∗x∗0 = r(S)x∗0 and T is σ-order continuous. We also provide some applications

of comparison theorems. We prove that if two positive operators are semi-

commuting with one of them compact and the other one irreducible then

they are commuting. We also prove that if two positive operators are semi-

commuting with one of them compact then their commutator is quasinilpotent.

These results answer questions in [1, 9].

In Chapter 2, we consider irreducible semigroups of positive operators. We

prove that for an ideal irreducible R+-closed semigroup S containing a non-

zero compact operator, if all the minimal-rank projections of S have the same

range, then there exist positive disjoint vectors x1, . . . , xr such that every op-

erator in S acts as a positive scalar multiple of a permutation on x1, . . . , xr; in

particular, the operators in S have a common eigenvector. We also establish

the dual version of this result for ideal irreducible R+-closed semigroups which

have a unique minimal-rank projection. Both of these results apply to commu-

tative semigroups. This study extends the approach invented in [36, 37] and

improves some results of [1] about peripheral spectra of irreducible operators.



In Chapter 3, we consider positive operators which have irreducible super-

commutants. We prove that if a compact operator K > 0 has ideal irreducible

super left-commutant or super right-commutant then it is non-quasinilpotent

and it acts as a positive scalar multiple of a permutation on some positive

disjoint vectors x1, . . . , xr which span the peripheral spectral subspace of K.

We also show that limn‖Knx‖ 1
n = r(K) for any x > 0 and that every oper-

ator semi-commuting with K commutes with it; in particular, [K〉 = 〈K] =

L+(X) ∩ {K}′. Similar properties are shown valid for K∗. We also prove

that the positive operators S > 0 in the following three chains have positive

eigenvectors: T ↔ K ↔ S, T ↔ S ↔ K and S ↔ T ↔ K, where T > 0 is

ideal irreducible, K > 0 is compact and ↔ stands for commutation.

This thesis is based on [19, 20, 21].



Preface

A positive matrix A is said to be irreducible if it does not have a block form[
A11 A12

0 A22

]
under any permutation of the standard basis. The classical Perron-

Frobenius theory explores the peripheral spectrum of irreducible matrices. We

present it following [1, Chapter 8].

Theorem. Let A > 0 be an irreducible matrix on Rn (n ≥ 2).

(i) The spectral radius r(A) is non-zero and is a simple root of its charac-

teristic polynomial fA, and ker(r(A)− A) = Span{x0} for some strictly

positive vector x0.

(ii) The peripheral spectrum σper(A) = r(A)G where G is the set of all k-th

roots for some k ≥ 1, and each point in σper(A) is a simple root of fA

with one-dimensional eigenspace.

(iii) If 0 ≤ B ≤ A and r(A) = r(B), then A = B.

This theory has been extensively studied and generalized to irreducible

operators on arbitrary Banach lattices. Following [23], we refer to results

of style of (i) as Jentzsch-Perron Theorem and to results of style of (ii) as

Frobenius Theorem. We also follow [30] to refer to results of style of (iii) as

comparison theorems.

For ideal irreducible positive operators whose spectral radius is a pole of

the resolvent, the Jentzsch-Perron part was established in [40, 38], the Frobe-

nius part was established via the various efforts of [33, 34, 39, 35], and the

comparison theorem was established in [10]. Similar properties have also been



established for band irreducible σ-order continuous operators whose spectral

radius is a pole of the resolvent, under some additional conditions, through

the efforts of [28, 4, 5]. We refer the reader to [23, 26], etc for more results

and history in this direction.

However, it had not been known whether these results applied to compact

operators until de Pagter proved the celebrated result that compact ideal irre-

ducible operators are non-quasinilpotent ([12]). The band irreducible version

was proved in [43, 22]. de Pagter’s Theorem has been extensively studied. It

was extended in [2, 3] to commuting and semi-commuting positive operators

that possess irreducibility and compactness in one sense or another (cf. also

[1, Chapters 9 and 10]). It was also extended in [14] to collections and semi-

groups of positive operators. In particular, Drnovšek proved that if a compact

operator K > 0 is locally quasinilpotent at a non-zero positive vector then its

super right-commutant [K〉 = {S ≥ 0 : SK ≥ KS} is ideal reducible.

In Chapter 1 of this thesis, which is based on [19, 20], we consider the

Jentzsch-Perron theorem for irreducible operators under some less restrictive

conditions and we develop a uniform approach to several versions of com-

parison theorems including the versions in [10, 4, 5]. We also show that the

conditions imposed on the band irreducible operators in [4] and [5] are equiv-

alent (cf. Theorem 1.14). Finally, we provide some applications of compari-

son theorems. In particular, we use a comparison theorem to show that the

semi-commuting condition is equivalent to commuting in some results of [1].

Specifically, we prove that if a compact operator K > 0 semi-commutes with

an ideal irreducible operator T > 0 then it commutes with T .

This result is improved to a much general form in Chapter 3, where we

prove that if a compact operator K > 0 has ideal irreducible super right-



commutant or super left-commutant then every operator semi-commuting with

K commutes with K. In particular, this implies that in the aforementioned

theorem of Drnovšek, we can replace the super right-commutant with super

left-commutant. A more thorough study of such operators K is conducted

in Chapter 3. We actually establish a Jentzsch-Perron-Frobenius theorem for

such operators K. Chapter 3 is based on [20].

The Perron-Frobenius theory has also been extended to semigroups of pos-

itive operators on Banach lattices. An approach was invented in [36] for irre-

ducible semigroups of positive matrices and then was extended to irreducible

semigroups of positive compact operators on Lp(µ) (1 ≤ p < ∞) in [37, Sec-

tion 8.7]. This approach was later also used in [27] to extend some of the results

to irreducible semigroups of positive compact operators on order continuous

Banach lattices.

In Chapter 2 of this thesis, we fully extend the approach to irreducible

semigroups of positive operators on arbitrary Banach lattices. The compact-

ness condition is weakened to that the semigroup contains a non-zero compact

positive operator. As an application of this study, we give an alternative proof

of the Frobenius theorems for irreducible operators whose spectral radius is a

pole of the resolvent, which are originally due to [35, 4, 5]. Chapter 2 is based

on [21].
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0.1 Basic notions on spectral theory

We briefly review some fundamental concepts on Banach spaces and spectral

theory. Standard references are [11, 1].

Throughout this chapter, F stands for either the set R of real scalars or

the set C of complex scalars.

Definition 0.1. A real-valued function ‖·‖ on a vector space X over F is

called a norm if it satisfies the following:

(i) ‖x‖ ≥ 0 for all x ∈ X, and ‖x‖ = 0 if and only if x = 0,

(ii) ‖αx‖ = |α| ‖x‖ for all x ∈ X and α ∈ F,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

In case ‖·‖ is a norm, the pair (X, ‖·‖) is called a normed space . If, in

addition, (X, ‖·‖) is complete, then it is called a Banach space .

When no ambiguity arises, we write X for (X, ‖·‖) for simplicity. We refer

to [11, Chapters III, VI and V] for basic properties of normed and Banach

spaces, especially, for their weak and weak-star topologies.

Definition 0.2. Let X and Y be two normed spaces over F.

(i) A linear operator T : X → Y is bounded (or continuous) if the

following is satisfied:

‖T‖ := sup
‖x‖≤1

∥∥Tx∥∥ <∞. (1)

We denote by L(X, Y ) the space of all bounded operators from X to Y

endowed with the operator norm defined by (1). In case Y = F, we write

X∗ for L(X,F) and call it the dual space of X.
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(ii) An operator T ∈ L(X, Y ) is invertible if there exists S ∈ L(Y,X) such

that TS = IdY and ST = IdX. In this case, we write S := T−1.

(iii) For T ∈ L(X, Y ), its adjoint operator T ∗ ∈ L(Y ∗, X∗) is defined by

T ∗y∗ := y∗ ◦ T for any y∗ ∈ Y ∗.

If X = Y , we write L(X,X) as L(X) for simplicity.

Definition 0.3. Let X be a complex Banach space. For an operator T ∈

L(X), we define its

(i) spectrum by σ(T ) := {λ ∈ C : λ− T is not invertible},

(ii) spectral radius by r(T ) := max{|λ| : λ ∈ σ(T )},

(iii) peripheral spectrum by σper(T ) := {λ ∈ σ(T ) : |λ| = r(T )},

(iv) resolvent set by ρ(T ) := C\σ(T ),

(v) resolvent by R(·, T ) : ρ(T )→ L(X);λ 7→ (λ− T )−1.

We refer to [11, Chapter VII] and [1, Chapter 6] for general spectral theory

of operators on complex Banach spaces. For operators on real Banach spaces,

we pass to their complexifications when considering spectral properties; cf. [1,

Section 1].

The following is a useful result on continuity of spectral radius.

Proposition 0.4 ([19]). Let X be a Banach space and (Tn) a sequence in

L(X) converging to T ∈ L(X). If σper(T ) is a spectral set then r(Tn)→ r(T ).

Proof. It is well known that lim supn r(Tn) ≤ r(T ); cf. [32, Chapter 1, Theorem

31]. It remains to prove r(T ) ≤ lim infn r(Tn). We imitate the proof of conti-

nuity of spectral radius on compact operators. Assume r(T ) > lim infn r(Tn).
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Take ε > 0 such that r(T ) > lim infn r(Tn) + 2ε. By passing to a subsequence,

we may assume r(T ) > r(Tn) + ε for all n ≥ 1.

Since σ(T )\σper(T ) is closed, we can take δ > 0 small enough such that

2δ < ε and σ(T )\σper(T ) ⊂ {z : |z| < r(T ) − 2δ}. Now for j = ±1, define

curves γj(t) = [r(T ) + jδ]eit, 0 ≤ t ≤ 2π. By Cauchy integral theorem, we

have ∫
γ1−γ−1

R(λ, Tn)dλ = 0, ∀ n ≥ 1.

On the other hand, we know that in a unital Banach algebra, for a invertible

and x with ||x|| < ‖a−1‖−1, one has ||(a − x)−1 − a−1|| ≤ ||x|| ||a−1||2
1−||x|| ||a−1|| ; cf. [32,

p. 5]. Using this, one can easily verify that R(·, Tn) → R(·, T ) uniformly on

γj’s. Therefore,

P =
1

2πi

∫
γ1−γ−1

R(λ, T )dλ = lim
n

1

2πi

∫
γ1−γ−1

R(λ, Tn)dλ = 0,

where P is the spectral projection of T for σper(T ). This is absurd.

We now introduce several important classes of operators.

Definition 0.5. Let X and Y be two normed spaces. An operator T ∈

L(X, Y ) is said to be

(i) finite-rank if its range Range(T ) is finite dimensional,

(ii) compact if T (BX) is relatively compact in Y where BX is the closed

unit ball of X,

(iii) weakly compact if T (BX) is relatively weakly compact in Y ,

(iv) strictly singular if T |Z : Z → T (Z) is not invertible for any infinite-

dimensional closed subspace Z of X.
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In case X = Y , an operator T ∈ L(X) is said to be power compact

(or weakly compact, strictly singular, etc) if there exists k ≥ 1 such that T k

satisfies the property.

Definition 0.6. Let X be a Banach space. An operator T ∈ L(X) is said to

be

(i) Riesz if for any ε > 0, {λ ∈ σ(T ) : |λ| > ε} 1 is a spectral set with

finite-dimensional spectral subspace,

(ii) peripherally Riesz if r(T ) > 0 and σper(T ) is a spectral set with

finite-dimensional spectral subspace.

The class of peripherally Riesz operators was introduced in [21]. We refer

to [11, Chapter VI] and [1, Chapters 2, 4 and 7] for relations and (spectral)

properties of these classes of operators. In particular, we refer to [1, Section

7.5] for equivalent characterizations of Riesz and peripherally Riesz operators

in terms of their essential spectra .

0.2 Asymptotic behaviors of peripherally Riesz

operators

We consider asymptotic behaviors of peripherally Riesz operators in this sec-

tion. We are motivated by [36] and the results are based on [21].

Throughout this section, X stands for a Banach space. Recall that we pass

to the complexifications whenever considering spectral properties of operators

on real Banach spaces.

1This set could possibly be empty.
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A set of operators on X is said to be R+-closed if it is norm closed and it is

closed under multiplication by positive scalars. Given a set A of operators on

a Banach space X, we write R+A for the smallest R+-closed (multiplicative)

semigroup containing A. In particular, if T is an operator on X, we write

R+T for the R+-closed semigroup generated by T . Clearly, R+T consists of

all positive scalar multiples of powers of T and of all the operators of form

limj bjT
nj for some sequence (bj) in R+ and some strictly increasing sequence

(nj) in N; these limit operators form the asymptotic part of R+T .

Given a semigroup S in L(X), we denote by min rank S the minimal

rank of non-zero elements of S ; we write min rank S = +∞ if S contains no

non-zero operators of finite rank.

The following observations on matrices are based on [36, Lemma 1] and

are critical to our study. We need the following standard lemma. Recall that

a vector u ∈ Cn is said to be unimodular if |ui| = 1 for all 1 ≤ i ≤ n. Let

Un denote the set of all unimodular vectors in Cn. Clearly, Un is a group with

unit (1, . . . , 1), with respect to the coordinate-wise product.

Lemma 0.7. If u ∈ Un then there exists a strictly increasing sequence (mj)

in N such that umj → (1, . . . , 1).

Proof. Since Un is compact, we can find a subsequence ukj → v for some

v ∈ Un. Passing to a subsequence, we may assume that mj := kj+1 − kj is

strictly increasing. Then umj = ukj+1u−kj → vv−1 = (1, . . . , 1).

Let A be a square matrix with r(A) = 1 and σ(A) = σper(A). Using

Jordan decomposition of A, we can write A = U +N where U is unimodular

(i.e. there is a basis under which U is diagonal and the diagonal is a unimodular

6



vector), N is nilpotent, and UN = NU . By Lemma 0.7, we can find a strictly

increasing sequence (mj) such that Umj → I.

Case N = 0. In this case, A = U , so that Amj → I.

Case N 6= 0. Let k be such that Nk 6= 0 but Nk+1 = 0. Then

An = (U +N)n = Un +

(
n

1

)
Un−1N + · · ·+

(
n

k

)
Un−kNk. (2)

Note that limn

(
n
i

)
/
(
n
k

)
= 0 whenever i < k. Therefore, if we divide (2) by

(
n
k

)
,

then every term in the sum except the last one converges to zero as n → ∞.

Denote rj = mj + k and cj = 1/
(
rj
k

)
, then limj cjA

rj = limj U
rj−kNk =

Nk. Moreover, we claim that if B = limj bjA
nj with (nj) strictly increasing,

then B is nilpotent (even square-zero) and bj → 0. Indeed, let e1, . . . , en be

a basis under which the matrix U is diagonal and diag(U) is a unimodular

vector. For x =
∑n

i=1 xiei, put ‖x‖ =
∑n

i=1|xi|. Clearly, this is a norm on

Cn and U is an isometry with respect to this norm. It follows from (2) that(
n
k

)−1
An − Un−kNk → 0 as n → ∞. Since U is an isometry and Nk 6= 0, the

sequence
(
‖Un−kNk‖

)
n
, and therefore

((
n
k

)−1‖An‖
)
n
, is bounded and bounded

away from zero. It follows from bjA
nj → B that the sequence

(
bj
(
nj

k

))
j

is

bounded, hence bj → 0. It also follows that bj
(
nj

k

)
Unj−kNk → B so that

B2 = limj

(
bj
(
nj

k

)
Unj−kNk

)2

= 0 because UN = NU and N2k = 0. This

proves the claim.

Now we can obtain the following two possible structures of the asymptotic

part of R+T when T is peripherally Riesz.

Proposition 0.8 ([21]). Suppose that T is peripherally Riesz with r(T ) = 1.

Let X = X1⊕X2, where X1 and X2 are the spectral subspaces for σper(T ) and

7



its complement in σ(T ), respectively. Let P be the spectral projection onto X1.

Then exactly one of the following holds:

(i) (“Unimodular” case) T|X1 is unimodular, and each operator in the asymp-

totic part of R+T is of form cU ⊕ 0, where c ≥ 0 and U is unimodular.

Some sequence (Tmj) of powers of T converges to P , P is the only non-

zero projection in R+T , and R+T contains no non-zero quasinilpotent

operators,

(ii) (“Nilpotent” case) The asymptotic part of R+T is non-trivial. For each

operator S = limj bjT
nj with (nj) strictly increasing, we have S = B⊕ 0

where B ∈ L(X1) is nilpotent (even square-zero) and bj → 0. Moreover,

R+T contains no non-zero projections.

Proof. Let T1 = T|X1 and T2 = T|X2 . Then r(T1) = 1 and r(T2) < 1. Since

σ(T1) = σper(T1) = σper(T ), the preceding observation applies to T1.

(i) Suppose that T1 has a zero nilpotent part. Then T1 is unimodular. Take

any S ∈ R+T . As X1 and X2 are invariant under S, we can write S = S1⊕S2.

Suppose that S = limj bjT
nj for some sequence (bj) in R+ and some strictly

increasing sequence (nj) in N. Then bjT
nj

1 → S1. Since T1 is unimodular, we

have that {‖T n1 ‖}n is bounded above and bounded away from 0. It follows

that (bj) is bounded and hence has a convergent subsequence. By passing to

a subsequence, we assume bj → b. If b = 0, then S1 = 0; if b 6= 0, then

S1/b = limj T
nj is also unimodular. Thus, S1 is always a scalar multiple of a

unimodular matrix. It also follows from r(T2) < 1 that S2 = limj bjT
nj

2 = 0.

So S has the form cU ⊕ 0. Furthermore, for every non-zero S ∈ R+T , the

restriction S|X1 is a non-zero scalar multiple of a unimodular matrix, so that

S is not quasinilpotent.

8



By the observation preceding this proposition, (T
mj

1 ) converges to the iden-

tity of X1 for some strictly increasing sequence (mj). Since r(T2) < 1, we have

T
mj

2 → 0. Therefore, Tmj → P . Finally, we show that P is the only non-zero

projection in R+T . Let Q ∈ R+T be a projection. Suppose first that Q = cT n

for some c > 0 and n ∈ N. Then 1
cmjQ =

(
1
c
Q)mj = T nmj → P n = P ; it

follows that c = 1 and Q = P . Suppose now that Q is in the asymptotic part

of R+T . By the preceding paragraph, it is easily seen that Q = Q1 ⊕ 0 where

Q1 is unimodular and is a projection in L(X1). Hence, Q1 is the identity on

X1 and, therefore, Q = P .

(ii) Suppose now that T1 has a non-trivial nilpotent part. By the obser-

vation preceding this proposition, there exist sequences (cj) in R+ and (rj)

in N such that cj → 0, (rj) is strictly increasing, and (cjT
rj
1 ) converges to a

non-zero square-zero operator C on X1. It follows from cj → 0 and r(T2) < 1

that cjT
rj
2 → 0. Therefore, cjT

rj → C ⊕ 0. It follows that C ⊕ 0 6= 0 is in the

asymptotic part of R+T .

Suppose that S = limj bjT
nj for some (bj) in R+ and some strictly increas-

ing (nj). The observation preceding this proposition applied with A = T1

guarantees that bj → 0 and S|X1 is a square-zero operator. Furthermore,

r(T2) < 1 implies S|X2 = limj bjT
nj

2 = 0. Thus, S has the required form. In

particular, S cannot be a projection.

It is left to show that if Q = cT n for some c > 0 and n ∈ N then Q is not

a projection. Suppose it is. It follows from r(Q) = 1 = r(T n) that c = 1, so

Q = T n. Hence, the set of all distinct powers of T is finite. It follows from

cj → 0 that cjT
rj → 0, contradicting that cjT

rj → C ⊕ 0 6= 0.

Remark 0.9. Suppose that, in addition, rankT = min rankR+T <∞. Then

9



the nilpotent case in Proposition 0.8 is impossible. Indeed, otherwise, R+T

would contain an operator of the form C ⊕ 0 where C is a non-zero nilpotent

operator in L(X1), hence

0 < rankC ⊕ 0 = rankC < dimX1 ≤ rankT

since T is an isomorphism on X1; a contradiction. Thus, we have P ∈ R+T ,

where P is the spectral projection onto X1. It follows that rankT = rankP =

dimX1, so that T|X2 = 0. Hence, RangeT = X1, kerT = X2, and σ(T )

consists of σper(T ) and, possibly, zero.

We now apply the results to R+-closed semigroups of operators on Banach

spaces. The following is immediate by Proposition 0.8.

Proposition 0.10 ([21]). If an R+-closed semigroup S contains a peripherally

Riesz operator then S contains a finite-rank operator.

In particular, this proposition applies when S contains a non-quasinilpotent

compact or even strictly singular operator.

Can we find not just a finite-rank operator in S but a finite-rank projec-

tion? As in Remark 0.9, if there is a T ∈ S such that rankT = min rank S <

+∞ and T is not nilpotent then the spectral projection P for σper(T ) is in

S and rankP = rankT . The next result shows that in this case S contains

“many” projections.

Proposition 0.11 ([21]). Let S be an R+-closed semigroup. Suppose that

S ∈ S satisfies r := rankS = min rank S < ∞ and S is not nilpotent.

Then there exist projections P and Q in S with rankP = rankQ = r and

10



PS = SQ = S. Moreover, the condition “S is not nilpotent” may be replaced

with “AS is not nilpotent for some A ∈ S ”.

Proof. Suppose AS is not nilpotent for some A ∈ S or A = I. Then r(SA) =

r(AS) 6= 0. Clearly, rankAS = rankSA = r. It follows from RangeSA ⊆

RangeS and rankSA = rankS that RangeSA = RangeS. By Remark 0.9

applied with T = SA, the peripheral spectral projection P of SA is in S ,

rankP = r, and RangeP = RangeSA = RangeS, hence PS = S.

In order to find Q, we pass to the dual semigroup S ∗ = {T ∗ | T ∈ S }.

Note that S ∗, S∗, and A∗ still satisfy all the assumptions of the lemma, so

we can find a projection R ∈ S ∗ such that rankR = r and RS∗ = S∗. Then

R = Q∗ for some projection Q ∈ S with rankQ = r and SQ = S.

0.3 Banach lattices and positive operators

In this section, we review some basic notions on Banach lattices and positive

operators. Standard references are [42, 31, 1, 6].

Definition 0.12. A vector lattice (or Riesz space) is a real vector space

X with a partial order “≤” that satisfies the following:

(i) for any x, y, z ∈ X, x ≤ y implies x+ z ≤ y + z,

(ii) for any x, y ∈ X and 0 ≤ α ∈ R, x ≤ y implies αx ≤ αy,

(iii) for any x, y ∈ X, their supremum, denoted by x ∨ y, exists in X.

Some conventional notations will be used without specific explanations.

For example, “x ≥ y” means y ≤ x, x ∧ y means the infimum of x and y,

11



|x| := x ∨ (−x) means the modulus of x, and x+ := x ∨ 0 means the positive

part of x.

Definition 0.13. A net (xα)α∈Γ in a vector lattice X is said to be order

convergent to x, written as xα
o−→ x, if there exists another net (zβ)β∈Λ in X

satisfying the following:

(i) (zβ) is decreasing (i.e. β ≤ β′ implies zβ ≥ zβ′) and infβ zβ = 0,

(ii) for any β ∈ Λ, there exists α0 ∈ Γ such that |xα−x| ≤ zβ for all α ≥ α0.

Definition 0.14. A vector subspace Y of a vector lattice X is called

(i) a lattice subspace if Y with the order inherited from X is a vector

lattice in its own right,

(ii) a sublattice (or Riesz subspace) if it is a lattice subspace and for any

pair of vectors in Y , their suprema in X and Y are equal,

(iii) an ideal if it is a sublattice and for any x ∈ X and y ∈ Y with |x| ≤ |y|,

one has x ∈ Y ,

(iv) a band if it is an ideal and is order closed, i.e. for any net (xα) ⊂ Y ,

xα
o−→ x in X implies x ∈ Y .

Definition 0.15. (i) A normed lattice X is a vector lattice with a norm

‖·‖ such that |x| ≤ |y| implies ‖x‖ ≤ ‖y‖. If, in addition, (X, ‖·‖) is

(norm) complete, then X is called a Banach lattice .

(ii) A Banach lattice is said to be order continuous or have order con-

tinuous norm if xα
o−→ x implies xα

‖·‖−→ x.
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For A ⊂ X, we denote by IA (respectively, BA) the ideal (respectively,

band) generated by A in the vector lattice X.

Definition 0.16. Let X be a vector lattice. A vector x > 0 is called a

(i) weak unit if the ideal Ix generated by x is order dense in X, or equiv-

alently, the generated band Bx = X,

(ii) quasi-interior point ifX is a normed lattice and the ideal Ix generated

by x is norm dense in X.

Note that in normed lattices, bands are always (norm) closed. Hence,

quasi-interior points are always weak units. Note also that in order continuous

Banach lattices, the notions of bands and closed ideals coincide. Thus, the

notions of weak units and quasi-interior points also coincide.

We refer to [6, Chapters 3 and 4] for fundamental properties of Banach

lattices, especially, for equivalent characterizations of order continuous Banach

lattices.

We now introduce some basic notions on positive operators.

Definition 0.17. A linear mapping T on a vector lattice X is said to be

(i) positive if T maps positive vectors to positive vectors; in this case, we

write T ≥ 0,

(ii) strictly positive if T is positive and vanishes at no non-zero positive

vectors,

(iii) σ-order continuous if T maps order null sequences to order null se-

quences,

(iv) order continuous if T maps order null nets to order null nets.
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We denote by L+(X) the set of all positive operators on X. If T is positive

and non-zero, we write T > 0. We refer to [6] for general theory of positive

operators on Banach lattices. In particular, note that positive operators on

Banach lattices are (automatically) bounded. Note also that a positive oper-

ator is zero if it vanishes at a quasi-interior point or if it is σ-order continuous

and vanishes at a weak unit. It can also be easily verified that if T > 0 is

σ-order continuous then so is
∑∞

1
Tn

λn
for all λ > r(T ).

For the rest of this section, X stands for a Banach lattice. Recall

that the dual space of a Banach lattice is a Banach lattice under the natural

order.

Proposition 0.18. Let X be a Banach lattice and C 6= {0} a collection of

positive functionals on X.

(i) If BC = X∗, then for any x > 0, there exists x∗ ∈ C such that x∗(x) > 0.

(ii) Suppose X is order continuous. Then BC = X∗ if and only if for any

x > 0, there exists x∗ ∈ C such that x∗(x) > 0.

Proof. (i) Suppose there exists x > 0 such that x∗(x) = 0 for all x∗ ∈ C . Then

it is easily seen that BC vanishes at x. Thus, BC 6= X∗.

(ii) It remains to prove the “if” part. Suppose that X is order continuous

and BC 6= X∗. Let P be the band projection from X∗ onto BC . Then 0 6=

P 6= I. By [6, Theorem 3.59], there exists a band projection Q on X such that

P = Q∗. Clearly, 0 6= Q 6= I. Take any x > 0 in the range of I −Q. We have

x∗(x) = (Px∗)(x) = x∗(Qx) = 0 for all x∗ ∈ C .

Corollary 0.19. Let x∗ be a positive functional on a Banach lattice X.

(i) If x∗ is a weak unit of X∗ then x∗ is strictly positive.
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(ii) Suppose X is order continuous. Then x∗ is a weak unit of X∗ iff it is

strictly positive.

The following are two simple technical lemmas. Recall that two operators

T and S are said to semi-commute if their commutator TS − ST is either

positive or negative.

Lemma 0.20 ([19]). Let T, S ∈ L(X) be two semi-commuting operators. Sup-

pose Tx0 = λx0 and T ∗x∗0 = λx∗0 for some vector x0 > 0 and some strictly

positive functional x∗0 > 0 and some λ ∈ R. Then TS = ST if any of the

following are satisfied:

(i) x0 is a quasi-interior point,

(ii) x0 is a weak unit, and T and S are both σ-order continuous.

Proof. We only prove (ii); the proof of (i) is similar. Note that x∗0((TS −

ST )x0) = (T ∗x∗0)(Sx0) − x∗0(STx0) = λx∗0(Sx0) − x∗0(Sλx0) = 0. Since x∗0 is

strictly positive, we have (TS−ST )x0 = 0. Note also that TS−ST is σ-order

continuous. Thus, x0 being a weak unit yields TS − ST = 0.

Lemma 0.21 ([20]). For T > 0 on X, the following hold.

(i) If Tx0 = λx0 for some quasi-interior point x0 > 0, then lim infn‖T n∗x∗‖
1
n ≥

λ for any x∗ > 0. If, in addition, r(T ) is an eigenvalue of T ∗, then

λ = r(T ).

(ii) If Tx0 = λx0 for some weak unit x0 > 0, then lim infn‖T n∗x∗‖
1
n ≥ λ for

any σ-order continuous x∗ > 0. If, in addition, r(T ) is an eigenvalue of

T ∗ with a σ-order continuous eigenfunctional, then λ = r(T ).
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(iii) If T ∗x∗0 = λx∗0 for some strictly positive x∗0 > 0, then lim infn‖T nx‖
1
n ≥ λ

for any x > 0. If, in addition, r(T ) is an eigenvalue of T , then λ = r(T ).

Proof. We only prove (i); the proofs of (ii) and (iii) are similar. Suppose that

x∗ > 0. Then x0 being quasi-interior implies x∗(x0) > 0. Note that λnx∗(x0) =

x∗(T nx0) = T n∗x∗(x0) ≤ ‖T n∗x∗‖ ‖x0‖. Thus, ‖T n∗x∗‖ 1
n ≥ λ n

√
x∗(x0)/‖x0‖.

Letting n→∞, we have lim infn‖T n∗x∗‖
1
n ≥ λ.

Suppose now T ∗x∗ = r(T )x∗ for some x∗ 6= 0. Then λ|x∗| ≤ r(T )|x∗| ≤

T ∗|x∗|. Note that (T ∗|x∗| − λ|x∗|)(x0) = |x∗|(Tx0)− λ|x∗|(x0) = 0. Hence, x0

being quasi-interior yields T ∗|x∗| = λ|x∗|. It follows that λ|x∗| = r(T )|x∗| =

T ∗|x∗|. In particular, λ = r(T ).

We now include some spectral properties of positive operators on Banach

lattices. Recall that we pass to their complexifications whenever spectral the-

ory is considered. Observe first that if T > 0 then r(T ) ∈ σ(T ).

Lemma 0.22 ([25]). For an operator T ∈ L+(X), if r(T ) = 1 is a simple

pole of R(·, T ), then 1
n

∑n
i=1 T

i converges to the spectral projection of T for

r(T ) = 1.

Recall that Krein-Rutman Theorem asserts that any non-quasinilpotent

positive compact operator has a positive eigenvector for the spectral radius.

The following is a generalization.

Lemma 0.23 ([40]). For an operator T ∈ L+(X), if r(T ) is a pole of R(·, T ),

then the leading coefficient of the Laurent expansion of R(·, T ) at r(T ) is pos-

itive. Moreover, T as well as T ∗ has a positive eigenvector for r(T ).

We will need the following deep result essentially due to Lotz and Schaefer.

As has been observed in [7], the proof is a revision of that of [42, Theorem 5.5,
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p. 331].

Lemma 0.24 (Lotz-Schaefer). Let T ∈ L+(X) be a non-quasinilpotent op-

erator. Suppose r(T ) is a Riesz point (i.e. r(T ) is a pole of R(·, T ) with

finite-dimensional spectral subspace). Then T is peripherally Riesz.

We end this section with a structural result on finite-rank positive projec-

tions on Banach lattices.

0.25. The following observation is based on [42, Proposition 11.5, p. 214]. Let

P be a positive projection on a Banach lattice X; let Y = RangeP . It is easy

to see that Y is a lattice subspace of X with lattice operations x
∗
∧y = P (x∧y)

and x
∗
∨ y = P (x ∨ y) for any x, y ∈ Y . We denote this vector lattice by XP .

Note that this lattice structure is determined by Y , so that if Q is another

positive projection on X with RangeQ = Y then it generates the same lattice

structure on Y .

Suppose, in addition, that n := rankP < ∞. Being a finite-dimensional

Archimedean vector lattice, XP is lattice isomorphic to Rn with the stan-

dard order; cf. [42, Corollary 1, p. 70]. Thus, we can find positive *-disjoint

x1, . . . , xn ∈ XP that form a basis of XP . Furthermore, we can find positive

y∗1 . . . , y
∗
n ∈ X∗P such that y∗i (xj) = δij. Put x∗i = y∗i ◦ P , then x∗1 . . . , x

∗
n ∈ X∗+

and x∗i (xj) = δij. It is easy to see that P =
∑n

i=1 x
∗
i ⊗ xi.

0.4 Irreducible operators and semigroups

We now discuss some elementary properties of irreducible operators and semi-

groups which are the main objects in this thesis. Throughout this section,
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X stands for a Banach lattice with dimX > 1 and T stands for a non-zero

positive operator on X.

Definition 0.26. (i) A collection C of positive operators on X is said to

be ideal irreducible if there is no non-trivial (that is, different from

{0} and X) closed ideal which is invariant under each member of C .

(ii) C is said to be band irreducible if there is no non-trivial band which

is invariant under each member of C .

(iii) In particular, an operator T > 0 is said to be ideal irreducible (respec-

tively, band irreducible) if the singleton {T} is ideal irreducible (respec-

tively, band irreducible).

(iv) A positive operator T is said to be strongly expanding (respectively,

expanding) if it sends non-zero positive vectors to quasi-interior points

(respectively, weak units).

Recall that the notions of bands and closed ideals coincide in order con-

tinuous Banach lattices. Thus, the notions of ideal irreducibility and band

irreducibility also coincide on such spaces. In particular, they coincide on

Lp(µ)-spaces for 1 ≤ p < ∞ and on Rn. Note also that strongly expanding

(respectively, expanding) operators are ideal irreducible (respectively, band

irreducible).

We collect some elementary facts about irreducible operators.

Lemma 0.27. Fix λ > r(T ). The following statements are equivalent:

(i) T is ideal irreducible,

(ii)
∑∞

1
Tn

λn
is strongly expanding,
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(iii)
∑∞

1
Tn∗

λn
x∗ is strictly positive for any x∗ > 0.

Proof. The equivalence of (i) and (ii) is shown in [41, p. 317]. For (ii)⇔ (iii),

simply note that x∗
(∑∞

1
Tn

λn
x
)

=
(∑∞

1
Tn∗

λn
x∗
)
(x) and that y > 0 is a quasi-

interior point if and only if x∗(y) > 0 for any x∗ > 0; cf. [6, Theorem 4.85].

Lemma 0.28. Let T > 0 be ideal irreducible.

(i) If Tx = λx for some x > 0 and λ ∈ R, then x is a quasi-interior point

and λ > 0.

(ii) If T ∗x∗ = λx∗ for some x∗ > 0 and λ ∈ R, then x∗ is strictly positive

and λ > 0.

(iii) T is strictly positive.

Proof. (i) It is clear that λ ≥ 0. Pick any δ > r(T ). By Lemma 0.27 (ii), we

have that
∑∞

1
Tn

δn
x =

(∑∞
1

λn

δn

)
x is a quasi-interior point. Thus, λ > 0 and x

is a quasi-interior point. (ii) can be proved similarly using Lemma 0.27 (iii).

(iii) follows immediately from Lemma 0.27(ii).

Lemma 0.29. Let T > 0 be σ-order continuous. Fix λ > r(T ). The following

two statements are equivalent:

(i) T is band irreducible,

(ii)
∑∞

1
Tn

λn
is expanding.

Any of these two statements implies the following:

(iii)
∑∞

1
Tn∗

λn
x∗ is strictly positive for any σ-order continuous x∗ > 0.

Proof. (i) ⇔ (ii) can be proved similarly as for ideal irreducible operators;

cf. [41, p. 317]. For the last assertion, simply note that if y > 0 is a weak unit

then x∗(y) > 0 for any σ-order continuous x∗ > 0.
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Lemma 0.30. Let T > 0 be band irreducible and σ-order continuous.

(i) If Tx = λx for some x > 0 and λ ∈ R, then x is a weak unit and λ > 0.

(ii) If T ∗x∗ = λx∗ for some σ-order continuous x∗ > 0 and λ ∈ R, then x∗

is strictly positive and λ > 0.

(iii) T is strictly positive.

The following lemma handles relations between irreducibility of T and T ∗;

cf. [1, p. 356, Exercise 16].

Lemma 0.31. (i) If T ∗ is band irreducible, then T is ideal irreducible.

(ii) Suppose X is order continuous. Then T is ideal irreducible if and only

if T ∗ is band irreducible.

Proof. (i) Suppose T ∗ is band irreducible. Being the adjoint of a positive

operator, it is order continuous. Pick any λ > r(T ) and x∗ > 0. We have that∑∞
1

Tn∗

λn
x∗ is a weak unit of X∗ by Lemma 0.29 and thus is strictly positive

on X by Corollary 0.19. It follows that T is ideal irreducible by Lemma 0.27.

(ii) can be proved using similar machineries.

We end this section with the semigroup analogues of these properties. For

the rest of this section, S stands for a non-zero (multiplicative)

semigroup of positive operators on X. For x ∈ X, the orbit of x under

S is defined as S x = {Sx | S ∈ S }. The following proposition is well known;

cf. [37, Lemma 8.7.6] and [15, Proposition 2.1].

Proposition 0.32. The following are equivalent:

(i) S is ideal irreducible,
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(ii) every non-zero algebraic ideal in S is ideal irreducible,

(iii) for any non-zero x ∈ X+ and x∗ ∈ X∗+ there exists S ∈ S such that

〈x∗, Sx〉 6= 0,

(iv) ASB 6= {0} for any non-zero A,B ∈ L(X)+,

(v) for any x > 0, the ideal generated in X by the orbit S x is dense in X.

Proof. The equivalence of (i) through (iv) is [15, Proposition 2.1]. It is easy

to see that (i)⇒(v)⇒(iii).

The band irreducible versions are as follows.

Proposition 0.33. Suppose S consists of order continuous operators. The

following are equivalent.

(i) S is band irreducible,

(ii) BS x = X for all x > 0,

(iii) every non-zero algebraic ideal of S is band irreducible.

Proof. (i)⇒(ii) Suppose that S is band irreducible. It is easy to see that BS x

is S -invariant for every x > 0, so it suffices to prove that S x 6= {0}. For

each S ∈ S , since S is order continuous, its null ideal Null(S) =
{
x ∈ X :

S|x| = 0
}

is a band. Therefore,
⋂
S∈S Null(S) is a band. It is easy to see

that the intersection is S -invariant, hence it is zero. It follows that for every

x > 0 there exists S ∈ S such that Sx > 0, so that S x, and therefore BS x,

is non-zero.

For (ii)⇒(i), suppose that B is a non-zero proper S -invariant band. For

each 0 < x ∈ B we have BS x ⊆ B, hence BS x 6= X.
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(i)⇒(iii) Let J be a non-zero algebraic ideal in S . Take any x > 0.

Then y ∈ IJ x if and only if there exist S1, . . . , Sn ∈ J and λ ∈ R+ such

that |y| ≤ λ(S1 + · · · + Sn)x. In this case, for any S ∈ S we have |Sy| ≤

λ(SS1x+ · · ·+SSn)x, so that Sy is in IJ x. It follows that IJ x and, therefore,

BJ x is S -invariant.

Observe that J x and, therefore, BJ x, is non-zero. Indeed, suppose that

J x = {0} and fix any non-zero T ∈ J . Then for every S ∈ S we have

TS ∈ J so that TSx = 0. It follows that T vanishes on S x and, therefore,

on BS x. But BS x = X by the equivalence of (i) and (ii), so that T = 0; a

contradiction.

Thus, the band BJ x is S -invariant and non-zero, hence BJ x = X. Now

the required result follows from the equivalence of (i) and (ii) again.

The implication (iii)⇒(i) is obvious.

Corollary 0.34. Suppose that S is band irreducible and consists of order

continuous operators. The following statements hold.

(i) For any x > 0 in X and any order continuous x∗ > 0 in X∗, there exists

S ∈ S such that x∗(Sx) 6= 0.

(ii) US V 6= {0} for any non-zero U, V ∈ L(X)+ provided that U is order

continuous.

Proof. (i) Suppose not. Then x∗ vanishes on S x, hence on BS x = X, so that

x∗ = 0; a contradiction.

(ii) Suppose not, suppose US V = {0}. Since V 6= 0, there exists x > 0

with V x > 0. Then U vanishes on S V x and, therefore, on BS V x, so that, by

Proposition 0.33, U = 0; a contradiction.

22



We define the dual semigroup of S by S ∗ = {S∗ : S ∈ S }.

Proposition 0.35. (i) If S ∗ is band irreducible then S is ideal irreducible.

(ii) Suppose X is order continuous. Then S is ideal irreducible if and only

if S ∗ is band irreducible

Proof. (i) Pick any x > 0 and x∗ > 0. Since S ∗ is band irreducible and con-

sists of order continuous operators, we have BS ∗x∗ = X∗ by Proposition 0.33.

Hence, there exists S ∈ S such that x∗(Sx) = S∗x∗(x) > 0 by Proposi-

tion 0.18. It follows from Proposition 0.32 that S is ideal irreducible. (ii) can

be proved using similar machineries.
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Chapter 1

Irreducible Positive Operators
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1.1 Introduction

The results in this chapter are mainly taken from [19] and [20]. Throughout

this chapter, X stands for a real Banach lattice with dimX > 1 and T stands

for a non-zero positive operator on X.

Many efforts have been made to extend the classical Perron-Frobenius the-

ory (c.f. Theorem in Preface) to irreducible positive operators on arbitrary

Banach lattices. For example, combining the results in [40, 38, 35, 10], we

have the following.

Theorem 1.1. Let T > 0 be an ideal irreducible operator on X such that r(T )

is a pole of the resolvent R(·, T ).

(i) r(T ) is non-zero and is a simple pole of R(·, T ), ker(r(T )−T ) = Span{x0}

for some quasi-interior point x0 > 0 and ker(r(T )−T ∗) = Span{x∗0} for

some strictly positive functional x∗0 > 0.

(ii) σper(T ) = r(T )G where G is the set of all k-th roots of unity for some

k ≥ 1, and each point in σper(T ) is a simple pole of R(·, T ) with one-

dimensional eigenspace.

(iii) If 0 ≤ S ≤ T and r(T ) = r(S) then T = S.

Analogous results have also been established for band irreducible operators.

We would like to mention the following.

Theorem 1.2 ([4, 5]). Let T > 0 be a σ-order continuous band irreducible

operator on X such that r(T ) is a pole of R(·, T ). If any of the following are

satisfied:

(i) there exists a non-zero σ-order continuous functional on X,
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(ii) T as well as the leading coefficient of the Laurent expansion of R(·, T )

at r(T ) is order continuous,

then the results in Theorem 1.1 hold (in the Jentzsch-Perron part, x0 is now

a weak unit and x∗0 is σ-order continuous and strictly positive).

It deserves mentioning that Theorems 1.1 and 1.2 are applicable to compact

irreducible operators due to the following theorem. The ideal irreducible case

is conventionally referred to as de Pagter’s Theorem and the band irreducible

case is conventionally referred to as Schaefer-Grobler Theorem.

Theorem 1.3 ([12, 43, 22]). Let K > 0 be a compact operator on X. If

K is either ideal irreducible or σ-order continuous and band irreducible, then

r(K) > 0.

In this chapter, we establish some more versions of the Jentzsch-Perron

theorems and comparison theorems for irreducible operators.

Section 1.2 is devoted to the Jentzsch-Perron theorems. Observe first that

they hold under much weaker conditions than those in Theorems 1.1 and 1.2.

For example, the following can be found in [42, Theorem 5.2, p. 329] for ideal

irreducible operators and in [23, Theorem 4.12] for band irreducible operators.

Theorem 1.4 ([42, 23]). Suppose Tx0 = r(T )x0 and T ∗x∗0 = r(T )x∗0 for some

x0 > 0 and some x∗0 > 0. Then ker(r(T ) − T ) = Span{x0} if any of the

following are satisfied:

(i) T is ideal irreducible,

(ii) T is band irreducible and σ-order continuous and x∗0 is strictly positive.
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We are particularly interested in the dual version of Theorem 1.4. Namely,

we want to know when the eigenspaces of the adjoint operators are one-

dimensional. We provide several sufficient conditions for this property in

Proposition 1.10 and Theorem 1.12. We are also interested in the spectral

behaviors of irreducible operators at their spectral radii (Proposition 1.13).

As a consequence, we prove that the conditions (i) and (ii) in Theorem 1.2 are

equivalent (Theorem 1.14).

Section 1.3 is devoted to comparison theorems. When the dominating

operator is ideal irreducible with spectral radius being a pole of the resolvent,

the comparison theorem (Theorem 1.1(iii)) was established in [10] and was

applied to prove the following.

Theorem 1.5 ([10]). Suppose 0 ≤ S ≤ T and r(T ) = r(S). If r(T ) is a Riesz

point of R(·, T ), then it is also a Riesz point of R(·, S).

Using this theorem, Alekhno established the comparison theorems in Theo-

rem 1.2. We also mention the following result (cf. [8, Theorem 2.8 and Corol-

lary 2.12]).

Theorem 1.6 ([8]). Suppose 0 ≤ S ≤ T on Lp(µ) where 1 < p <∞ and µ is

σ-finite. Suppose also r(T ) = r(S). Then T = S if either T or S is irreducible

and power compact.

We show in Corollary 1.19 that Theorem 1.6 remains valid for general

Banach lattices. We also show in Theorem 1.21 that the power compactness

condition in Theorem 1.6 may be replaced with the (weaker) condition that

the spectral radius is a pole of the resolvent. Thus, Theorem 1.21 not only

includes the comparison theorems in Theorems 1.1 and 1.2 but also allows to

move the assumptions for T to the dominated operator S.

27



Section 1.4 is devoted to some application of comparison theorems. The

following is an extension of de Pagter Theorem; cf. [1, Theorems 10.25 and

10.26].

Theorem 1.7 ([1]). Let T,K > 0 be such that T is ideal irreducible and K is

compact.

(i) If TK ≥ KT then lim infn‖Knx‖ 1
n > 0 for any x > 0.

(ii) If TK ≤ KT then r(K) > 0.

The authors asked the following question ([1, p. 402]): can we obtain local

non-quasinilpotency of K in (ii) as we do in (i)? We prove that the answer

is affirmative. We actually prove a stronger result that in both cases of The-

orem 1.7 the operators T and K are commuting (Theorem 1.24). Finally, we

apply this result to prove that the commutator of two semi-commuting positive

operators is quasinilpotent if one of the operators is compact. This answers a

question in [9].

1.2 Jentzsch-Perron theorems

In this section, we establish several more versions of the Jentzsch-Perron Theo-

rem. In particular, we are interested in the eigenspaces of the adjoint operators

of irreducible operators. We also prove some auxiliary lemmas that will be of

frequent use in the sequel.

Recall that we always assume T > 0. For convenience, we denote

by x∗± the positive/negative parts of a functional x∗. We need the following

technical lemma.
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Lemma 1.8. (i) Suppose T ∗x∗0 = λx∗0 for some strictly positive functional

x∗0. Then for any x ∈ X such that Tx ≥ λx or Tx ≤ λx, we have

Tx± = λx±.

(ii) Suppose Tx0 = λx0 for some quasi-interior point x0 > 0. Then for any

x∗ ∈ X∗ such that T ∗x∗ ≥ λx∗ or T ∗x∗ ≤ λx∗, we have T ∗x∗± = λx∗±.

(iii) Let T be σ-order continuous. Suppose Tx0 = λx0 for some weak unit

x0 > 0. Then for any σ-order continuous x∗ ∈ X∗ such that T ∗x∗ ≥ λx∗

or T ∗x∗ ≤ λx∗, we have T ∗x∗± = λx∗±.

Proof. (i) Note that 0 = (T ∗x∗0 − λx∗0)(x) = x∗0(Tx − λx). Since x∗0 is strictly

positive, we have Tx = λx. This in turn implies λ|x| ≤ T |x|. Using what we

have just proved, we have T |x| = λ|x|. Hence, Tx± = λx±.

(iii) Note that (T ∗x∗−λx∗)(x0) = x∗(Tx0)−λx∗(x0) = 0. Since T ∗x∗−λx∗

is σ-order continuous and x0 is a weak unit, we have T ∗x∗ − λx∗ = 0. This

in turn implies λ|x∗| ≤ T |x∗|. Since |x∗| is also σ-order continuous, applying

what we have just proved, we have T ∗|x∗| = λ|x∗|. Hence, Tx∗± = λx∗±.

(ii) can be proved either similarly as (iii), or via (i) since x0 acts as a strictly

positive functional on X∗ such that T ∗∗x0 = λx0.

One can replace the spectral radius in Theorem 1.4 with a positive eigen-

value as follows. The proof is analogous to that of [42, Theorem 5.2, p. 329].

Lemma 1.9. Suppose Tx0 = λx0 and T ∗x∗0 = λx∗0 for some x0 > 0 and x∗0 > 0

and λ ∈ R. Then ker(λ− T ) = Span{x0} if any of the following are satisfied:

(i) T is ideal irreducible,

(ii) T is band irreducible and σ-order continuous and x∗0 is strictly positive.
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Proof. We only prove (ii); the proof of (i) is similar. Suppose, otherwise,

dim ker(λ − T ) > 1. Then there exists x ∈ ker(λ − T ) such that x± > 0.

By Lemma 1.8 (i), x± ∈ ker(λ − T ). Therefore, they are both weak units by

Lemma 0.30 (ii). This is absurd since x+ ⊥ x−.

We deduce the following “double” version of Jentzsch-Perron theorem.

Proposition 1.10. Suppose Tx0 = λx0 and T ∗x∗0 = λx∗0 for some x0 > 0

and x∗0 > 0 and λ ∈ R. If T ∗ is band irreducible (in particular, X has order

continuous norm and T is ideal irreducible), then ker(λ− T ) = Span{x0} and

ker(λ− T ∗) = Span{x∗0}.

Proof. Suppose that T ∗ is band irreducible. Then T is ideal irreducible by

Lemma 0.31. Applying Lemma 1.9(i) to T , we have ker(λ − T ) = Span{x0}.

By Lemma 0.28(i), x0 is a quasi-interior point. Thus, it acts as a strictly

positive functional on X∗ (cf. [6, Theorem 4.85]) such that T ∗∗x0 = λx0. Being

the adjoint of a positive operator, T ∗ is order continuous. Hence, applying

Lemma 1.9(ii) to T ∗, we have ker(λ − T ∗) = Span{x∗0}. Finally, observe that

if X is order continuous and T is ideal irreducible, then T ∗ is band irreducible

by Lemma 0.31 again.

We now establish another double version of Jentzsch-Perron theorem. For

this purpose, we need the following technical lemma on σ-order continuity of

eigenfunctionals. The idea of the proof has appeared in [43, 22, 23, 2]. Recall

that an operator S ∈ L(X) is order weakly compact if S[0, x] is relatively

weakly compact for all x > 0. This is a large class of operators containing all

compact operators, AM-compact operators and weakly compact operators. It

also includes strictly singular operators; cf. [31, Corollary 3.4.5].
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Lemma 1.11. (i) If T is σ-order continuous and order weakly compact,

then T is σ-order-to-norm continuous (i.e. xn ↓ 0 implies ‖Txn‖ → 0).

(ii) If T is power σ-order-to-norm continuous and T ∗x∗ = λx∗ for some

λ 6= 0, then x∗ is σ-order continuous.

(iii) If T is σ-order continuous and power order weakly compact and T ∗x∗ =

λx∗ for some λ 6= 0, then x∗ is σ-order continuous.

Proof. (i) Take xn ↓ 0. Then Txn ↓ 0. Since T [0, x1] is relatively weakly

compact, we have, by Eberlein-Smulian theorem, Txnj
→ y weakly for some

(nj) and y ∈ X. Since Txnj
is decreasing, it is straightforward verifications

that y = infj Txnj
= infn Txn = 0. Hence, ||Txnj

|| → 0 by Dini theorem

(cf. [6, Theorem 3.52]). This in turn implies that ||Txn|| → 0.

(ii) Suppose T k is σ-order-to-norm continuous for some k ≥ 1. For any

xn ↓ 0, we have ‖T kxn‖ → 0. Thus, λkx∗(xn) = T k∗x∗(xn) = x∗(T kxn) → 0.

It follows that x∗(xn) → 0. By [1, Theorem 1.26], x∗ is σ-order continuous.

(iii) follows from (i) and (ii).

Theorem 1.12. Suppose T is power order weakly compact, and Tx0 = λx0

and T ∗x∗0 = λx∗0 for some x0 > 0 and x∗0 > 0 and λ ∈ R. If T is either ideal

irreducible or band irreducible and σ-order continuous, then ker(λ − T ) =

Span{x0} and ker(λ− T ∗) = Span{x∗0}.

Proof. We only prove the band irreducible case; the other case can be proved

similarly. By Lemma 0.30 (i), x0 is a weak unit and λ > 0. Thus, x∗0 is σ-order

continuous by Lemma 1.11 (iii), and is strictly positive by Lemma 0.30 (ii). It

follows from Lemma 1.9 (ii) that ker(λ− T ) = Span{x0}.
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It remains to prove ker(λ − T ∗) = Span{x∗0}. Without loss of generality,

assume λ = 1. Suppose dim ker(1−T ∗) > 1. Then there exists x∗ ∈ ker(1−T ∗)

with x∗+ > 0 and x∗− > 0. By Lemma 1.11 (iii) again, x∗ is σ-order continuous.

Since x0 is a weak unit, Lemma 1.8 (iii) implies that x∗± ∈ ker(1 − T ∗). Let

k ≥ 1 be such that T k is order weakly compact. Then (T k)∗x∗± = x∗±. It

follows that

0 = x∗+ ∧ x∗−(x0) = inf
0≤x≤x0

(x∗+(x0 − x) + x∗−(x))

= inf
0≤x≤x0

((T k)∗x∗+(x0 − x) + (T k)∗x∗−(x))

= inf
0≤x≤x0

(x∗+(x0 − T kx) + x∗−(T kx)).

So we can take (xn) ⊂ [0, x0] such that x∗+(x0−T kxn) +x∗−(T kxn)→ 0. Using

order weak compactness of T k and Eberlein-Smulian theorem, we can assume,

by passing to a subsequence, that T kxn → y ∈ [0, T kx0] = [0, x0] weakly. In

particular, we have x∗+(x0 − y) + x∗−(y) = 0. It follows that x∗+(x0 − y) =

x∗−(y) = 0. Since x∗± are both σ-order continuous and lie in ker(1− T ∗), they

are both strictly positive by Lemma 0.30 (ii). This forces x0−y = y = 0. Thus,

x0 = 0, which is absurd. Therefore, dim ker(λ − T ∗) = 1, and consequently,

ker(λ− T ∗) = Span{x∗0}.

We now study the spectral behaviors of irreducible operators at their spec-

tral radii. Suppose that r(T ) is a pole of R(·, T ) of order m. Let A−n

be the coefficient of (λ − r(T ))−n in the Laurent expansion of R(·, T ) at

r(T ) and P be the corresponding spectral projection. Then P = A−1 and

A−n = (T −r(T ))n−1P ; cf. [1, Lemmas 6.37 and 6.38]. It follows, in particular,

that if m > 1 then A2
−m = 0. Recall also that if m = 1 then PX = ker(λ−T );
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cf. [1, Corollary 6.40].

Proposition 1.13. Suppose r(T ) is a pole of R(·, T ). Let P be the corre-

sponding spectral projection. If T satisfies any of the following:

(i) T is ideal irreducible,

(ii) T is band irreducible and σ-order continuous and T ∗x∗0 = r(T )x∗0 for

some strictly positive functional x∗0
1,

then r(T ) > 0 and it is a simple pole of R(·, T ), PX = ker(r(T ) − T ) =

Span{x0} for some x0 > 0, and P ∗X∗ = ker(r(T ) − T ∗) = Span{x∗0}. In

particular, P = 1
x∗0(x0)

x∗0 ⊗ x0.

(i) is in [38, Theorems 1 and 2] (and in [40, Theorem 2] except the last two

assertions); see also Theorem 1.1. Variants of (ii) can be found in [22, 26, 4, 5].

We include here a simple proof combining the techniques of [38] and [40].

Proof. We prove (ii) first. By Lemma 0.23, there exists x0 > 0 such that

Tx0 = r(T )x0. By Lemma 0.30 (i), r(T ) > 0.

Let r(T ) be a pole of order m. Denote by A−n the coefficient of (λ−r(T ))−n

in the Laurent expansion of R(λ, T ) at r(T ). Observe that P ∗ is the spectral

projection of T ∗ for r(T ). Since T ∗x∗0 = r(T )x∗0, we have x∗0 ∈ P ∗X∗ and

P ∗x∗0 = x∗0. By Lemma 0.23, we can take x > 0 such that A−mx > 0. Then

0 < x∗0(A−mx) = (T ∗− r(T ))m−1(P ∗x∗0)(x) = [(T ∗− r(T ))m−1x∗0](x). If m ≥ 2,

then (T ∗ − r(T ))m−1x∗0 = 0, yielding a contradiction! Hence, m = 1, that is,

r(T ) is a simple pole.

By the remark preceding this proposition and Theorem 1.4 (ii), PX =

ker(r(T ) − T ) = Span{x0}. Thus, rank(P ∗) = rank(P ) = 1. It follows from

1By Lemma 0.23, what we really require here is strict positivity of x∗0, not its existence.
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0 6= ker(r(T ) − T ∗) ⊂ P ∗X∗ that P ∗X∗ = ker(r(T ) − T ∗) = Span{x∗0}. Now

it is straightforward verifications that P = 1
x∗0(x0)

x∗0 ⊗ x0.

The proof of (i) is similar, since in view of Lemmas 0.23 and 0.28, there

exist x0 > 0 such that Tx0 = r(T )x0 and a strictly positive functional x∗0 such

that T ∗x∗0 = r(T )x∗0.

As a consequence of this proposition, we prove that the conditions (i) and

(ii) in Theorem 1.2 are equivalent.

Theorem 1.14. Suppose T is band irreducible and σ-order continuous and

r(T ) is a pole of the resolvent R(·, T ). The following are equivalent:

(i) there exists a non-zero σ-order continuous functional on X,

(ii) the set of σ-order continuous functionals separates the points of X,

(iii) there exists a σ-order continuous functional x∗0 > 0 such that T ∗x∗0 =

r(T )x∗0,

(iv) the leading coefficient of the Laurent expansion of R(·, T ) at r(T ) is σ-

order continuous,

(v) any positive operator that commutes with T is order continuous.

Proof. (i)⇒(ii) follows from [43, Lemma 1]; (ii)⇒(i) is obvious. (i)⇒(iii) fol-

lows from [4, Theorem 1(c)]; (iii)⇒(i) is obvious. This proves (i)⇔(ii)⇔(iii).

Now assume (iii) holds. By Lemma 0.30, x∗0 is strictly positive. Hence,

Proposition 1.13 implies that the spectral projection P of T for r(T ) is σ-

order continuous, strictly positive and compact. Observe that each positive

operator that commutes with T also commutes with P . Hence, (v) follows from
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[1, Lemma 9.30]. (v)⇒(iv) follows because the leading coefficient commutes

with T and is positive by Lemma 0.23.

It remains to prove (iv)⇒(iii). The proof is analogous to that of [5, Theo-

rem 4.11]. We claim that the spectral projection P at r(T ) is strictly positive

and σ-order continuous. Let m be the order of r(T ) and A−n be the coefficient

of (λ− r(T ))−n in the Laurent expansion. If A−mx = 0 for some x > 0, then

A−m
∑∞

1
Tn

δn
x =

∑∞
1

Tn

δn
A−mx = 0 for any fixed δ > r(T ). By Lemma 0.29,∑∞

1
Tn

δn
x is a weak unit. Thus, since A−m is σ-order continuous, we have

A−m = 0, which is absurd. It follows that A−m is strictly positive. It also fol-

lows that m = 1, since, otherwise, A2
−m = 0, contradicting its strict positivity.

This finishes the proof of the claim, since P = A−1 = A−m now.

We now claim that P has rank 1. Since m = 1, we have A−2 = (r(T ) −

T )P = 0. Therefore, PT = r(T )P , yielding that
∑∞

1
Tn

δn
P =

(∑∞
1

r(T )n

δn

)
P .

Since P is strictly positive and
∑∞

1
Tn

δn
is expanding, it follows that

∑∞
1

Tn

δn
P ,

and therefore, P , is also expanding. If rankP > 1 then there exists x ∈

RangeP such that x± > 0. Since P is strictly positive, RangeP is a sublattice

of X; cf. [1, Theorem 5.59]. Therefore, x± ∈ RangeP . Since P is expanding,

they are both weak units, which is absurd, since x+ ⊥ x−.

It follows that P = x∗0 ⊗ x0 for some x∗0 > 0 and x0 > 0. Clearly, T ∗x∗0 =

r(T )x∗0. Since P is σ-order continuous, so is x∗0. This proves (iv)⇒(iii).

1.3 Comparison theorems

In this section, we establish several versions of comparison theorems. The

following lemma is straightforward to verify.
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Lemma 1.15. Suppose 0 ≤ S ≤ T . Then T = S if any of the following are

satisfied:

(i) T ∗x∗0 = S∗x∗0 for some strictly positive functional x∗0,

(ii) Tx0 = Sx0 for some quasi-interior point x0 > 0,

(iii) T is σ-order continuous and Tx0 = Sx0 for some weak unit x0 > 0.

The following is a generalization of [29, Theorem 4.3].

Lemma 1.16. Suppose 0 ≤ S ≤ T and T is ideal irreducible. Then T = S if

any of the following are satisfied:

(i) T ∗x∗0 = λx∗0 for some x∗0 > 0 and Sx0 ≥ λx0 for some x0 > 0,

(ii) Tx0 = λx0 for some x0 > 0 and S∗x∗0 ≥ λx∗0 for some x∗0 > 0.

Suppose 0 ≤ S ≤ T and T is band irreducible and σ-order continuous. Then

T = S if any of the following are satisfied:

(i’) T ∗x∗0 = λx∗0 for some strictly positive x∗0 > 0 and Sx0 ≥ λx0 for some

x0 > 0,

(ii’) Tx0 = λx0 for some x0 > 0 and S∗x∗0 ≥ λx∗0 for some σ-order continuous

x∗0 > 0.

Proof. We only prove (ii’); the other cases can be proved in a similar fashion.

By Lemma 0.30 (i), we know that x0 is a weak unit. Therefore, it follows

from λx∗0 ≤ S∗x∗0 ≤ T ∗x∗0 and Lemma 1.8 (iii) that λx∗0 = S∗x∗0 = T ∗x∗0. By

Lemma 0.30 (ii), x∗0 is strictly positive. Hence, it follows from T ∗x∗0 = S∗x∗0

and Lemma 1.15 (i) that T = S.
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Lemma 1.17. Suppose T and S are compact, 0 ≤ S ≤ T and r(T ) = r(S).

Then T = S if T is either ideal irreducible, or band irreducible and σ-order

continuous.

Proof. Suppose that T is band irreducible and σ-order continuous. By Schaefer-

Grobler Theorem 1.3, we have r(T ) > 0. Since T and S are both compact,

we have, by Krein-Rutman Theorem, that there exist x0 > 0 and x∗0 > 0 such

that Tx0 = r(T )x0 and S∗x∗0 = r(S)x∗0. Since S is also σ-order continuous,

we know that x∗0 is σ-order continuous by Lemma 1.11 (iii). It follows from

Lemma 1.16 (ii’) that T = S. The case when T is ideal irreducible can be

proved similarly using de Pagter’s Theorem.

Theorem 1.18. Suppose 0 ≤ S ≤ T , r(T ) = r(S), and Sk is non-zero and

compact for some k ≥ 1. Then T = S if T is either ideal irreducible or band

irreducible and σ-order continuous.

Proof. We only prove the band irreducible case; the other case can be proved

similarly. Without loss of generality, assume ||T || < 1. Put T̃ =
∑∞

1 Tm and

S̃ =
∑∞

1 Sm. Recall that r(T ) ∈ σ(T ) and r(S) ∈ σ(S). Thus, by the spectral

mapping theorem, it is easily seen that

r(T̃ T kT̃ ) = r(T )k

(
∞∑
1

r(T )m

)2

= r(S)k

(
∞∑
1

r(S)m

)2

= r(S̃SkS̃).

It follows from T̃ T kT̃ ≥ T̃ SkT̃ ≥ S̃SkS̃ that r(T̃ SkT̃ ) = r(S̃SkS̃).

Recall that T̃ is σ-order continuous. Hence, so is T̃ SkT̃ . By Lemma 0.29 (ii),

T̃ is expanding, hence so is T̃ SkT̃ ; in particular, T̃ SkT̃ is band irreducible.

Finally, note that since Sk is compact, so are T̃ SkT̃ and S̃SkS̃. Applying

Lemma 1.17 to 0 ≤ S̃SkS̃ ≤ T̃ SkT̃ , we have T̃ SkT̃ = S̃SkS̃.
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It follows from T̃ SkT̃ ≥ T̃ SkS̃ ≥ S̃SkS̃ that T̃ SkT̃ = T̃ SkS̃. Since T̃ is

strictly positive and SkT̃ ≥ SkS̃, we have SkT̃ = SkS̃. If Skx = 0 for some

x > 0, then SkT̃ x = S̃Skx = 0. But T̃ x is a weak unit, forcing Sk = 0, which

is absurd. Hence, Sk is strictly positive. Now it follows from SkT̃ = SkS̃ and

T̃ ≥ S̃ that T̃ = S̃. This in turn implies T = S.

We are now ready to present a generalization of Theorem 1.6 to operators

on arbitrary Banach lattices.

Corollary 1.19. Suppose 0 ≤ S ≤ T and r(T ) = r(S). Then T = S if any of

the following are satisfied:

(i) T is power compact, and is either ideal irreducible or band irreducible

and σ-order continuous,

(ii) S is power compact, and either S is ideal irreducible, or S is band irre-

ducible and T is σ-order continuous.

Proof. (i) By Lemma 0.28 (iii) or Lemma 0.30 (iii), each power of T is non-

zero, hence r(S) = r(T ) > 0 by [31, Corollary 4.2.6]. In particular, this implies

that each power of S is non-zero. By Aliprantis-Burkinshaw’s Cube theorem

([6, Theorem 5.14]), we know that S is also power compact. Thus the desired

result follows from Theorem 1.18.

(ii) Assume Sk is compact. By Lemma 0.28 (iii) or Lemma 0.30 (iii), Sk > 0.

Since S is irreducible, so is T . Now apply Theorem 1.18 again.

Remark 1.20. Lemma 1.17, Theorem 1.18 and Corollary 1.19 still hold if we

replace compactness involved by strict singularity and assume r(T ) > 0. The

same lines of arguments with minor modifications will work. For example,
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let’s look at the band irreducible case of Lemma 1.17. Suppose S and T are

now strictly singular. Since 0 < r(T ) ∈ σ(T ) and 0 < r(S) ∈ σ(S), r(T ) and

r(S) are poles of R(·, T ) and R(·, S), respectively; cf. [1, Exercise 8, p. 314

and Corollary 7.49]. Replacing Krein-Rutman Theorem with Lemma 0.23, we

get x0 and x∗0 as before. Since S is order weakly compact, Lemma 1.11 again

implies that x∗0 is σ-order continuous. Thus, Lemma 1.17 holds. Theorem 1.18

holds because the set of strictly singular operators also forms an ideal of L(X);

cf. [1, Corollary 4.62]. Corollary 1.19 holds because the power property also

holds for strictly singular operators (that is, if 0 ≤ S ≤ T and T is strictly

singular, then S4 is strictly singular; see Corollary 4.2, [18]).

Motivated by an idea from [8], we can also prove a variant of Corollary 1.19

replacing the power compactness condition with that the spectral radius is a

pole of the resolvent.

Theorem 1.21. Let 0 ≤ S ≤ T be such that r(T ) = r(S).

(i) Suppose that r(T ) is a pole of R(·, T ). Then T = S if T is either ideal

irreducible, or band irreducible and σ-order continuous with σ-order con-

tinuous2 x∗0 > 0 such that T ∗x∗0 = r(T )x∗0.

(ii) Suppose that r(S) is a pole of R(·, S). Then T = S if either S is ideal

irreducible, or S is band irreducible with σ-order continuous x∗0 > 0 such

that S∗x∗0 = r(S)x∗0 and T is σ-order continuous.

Proof. (i) Suppose first that T is band irreducible and σ-order continuous and

T ∗x∗0 = r(T )x∗0 for some σ-order continuous x∗0 > 0. Let P be the spectral

projection of T for r(T ). By Lemma 0.30 (ii), x∗0 is strictly positive. Hence, by

2By Lemma 0.23, what we require here is the σ-order continuity of x∗0, not its existence.
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Proposition 1.13, r(T ) > 0 is a simple pole of R(·, T ) and P = 1
x∗0(x0)

x∗0⊗x0 for

some x0 > 0. Without loss of generality, assume r(T ) = 1. Then PT = P is

compact, σ-order continuous and expanding (in particular, band irreducible).

Since r(T ) is a simple pole of R(·, T ), Karlin’s Theorem (Lemma 0.22)

implies 1
n

∑n
1 T

i → P . Therefore, since PS and PT are compact, we have, by

Proposition 0.4,

1 = lim
n
r

(
1

n

n∑
1

SiS

)
≤ lim

n
r

(
1

n

n∑
1

T iS

)
= r(PS)

≤r(PT ) = lim
n
r

(
1

n

n∑
1

T iT

)
= 1.

It follows that r(PT ) = r(PS) = 1. Now applying Lemma 1.17 to 0 ≤ PS ≤

PT , we have PT = PS. Thus, T = S due to strict positivity of P . The case

when T is ideal irreducible can be proved similarly.

For (ii), let P be the spectral projection of S for r(S). As before, one can

show that PS, and therefore PT , is (strongly) expanding. A similar argument

also gives r(PT ) = r(PS). Now applying Lemma 1.17 to 0 ≤ PS ≤ PT again,

one obtains PT = PS. Thus, T = S due to strict positivity of P again.

Remark 1.22. Recall that power compact operators are essentially quasinilpo-

tent; cf. [1, Definition 7.47]. Recall also that power compact ideal irreducible

(or band irreducible and σ-order continuous) operators are non-quasinilpotent;

cf. [31, Corollary 4.2.6]. Hence, the spectral radius of such an operator is a

pole of the resolvent; cf. [1, Corollary 7.49]. Therefore, it is easily seen that

Corollary 1.19 and Theorem 1.6 can also be deduced from Theorem 1.21.

We remark that the ideal irreducible case in Theorem 1.21(i) is just The-

orem 1.1(iii). Note also that the band irreducible case in Theorem 1.21(i)
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is equivalent to the two comparison theorems in Theorem 1.2. Indeed, it is

immediate by Theorem 1.14.

We refer to a recent preprint [24] for some other versions of comparison

theorems.

1.4 Quasinilpotency of positive commutators

Recall that we say two operators U, V ∈ L(X) semi-commute if their com-

mutator UV − V U is either positive or negative.

Lemma 1.23. Suppose T, S > 0 semi-commute and S2 = 0. Then T has a

non-trivial invariant closed ideal. If, in addition, both T and S are σ-order

continuous, then T has a non-trivial invariant band.

Proof. Without loss of generality, assume ‖T‖ < 1. Since S > 0 and S2 = 0,

it is easily seen that the null ideal Null(S) := {x ∈ X : S|x| = 0} and the

closed ideal I generated by Range(S) are both nontrivial closed ideals of X.

Suppose first TS ≥ ST . One can easily verify that Null(S) is invariant

under T . Suppose now T and S are σ-order continuous. Observe that although

Null(S) may fail to be a band, it contains all the bands generated by its

elements. Pick any 0 < x ∈ Null(S). If Tx = 0, then the band generated by x

is non-trivial and invariant under T . If Tx 6= 0, consider the band generated by

z :=
∑∞

1 T nx > 0. It is clearly invariant under T . Since Null(S) is invariant

under T , we have z ∈ Null(S). Thus, the generated band is also non-trivial.

Suppose now TS ≤ ST . Then one can easily verify that I is invariant

under T . Suppose now T and S are σ-order continuous. Pick any 0 < x ∈ I.

If Tx = 0, consider the band generated by x; if Tx 6= 0, consider the band
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generated by z :=
∑∞

1 T nx ∈ I. They are invariant under T . Since S > 0

and S2 = 0, we have I ⊂ Null(S). Thus the generated bands are contained in

Null(S) and, therefore, are non-trivial.

Theorem 1.24. Suppose T,K > 0 semi-commute and K is compact. Then

TK = KT if any of the following are satisfied:

(i) T is ideal irreducible,

(ii) T is band irreducible and both T and K are σ-order continuous.

Proof. We only prove (ii); the proof of (i) is similar. Without loss of generality,

assume ‖T‖ < 1. Then T̃ :=
∑∞

1 T n is σ-order continuous and expanding.

We claim that KT̃ and T̃K do not have a common non-trivial invariant band.

Otherwise, let B be such a band. If there exists 0 < x ∈ B such that Kx > 0,

then T̃ (Kx) is a weak unit. But T̃Kx ∈ T̃K(B) ⊂ B implies B = X, a

contradiction. Hence, B ⊂ kerK. Now pick any 0 < x ∈ B. Then T̃ x > 0

is a weak unit. From K(KT̃x) ∈ K(KT̃ (B)) ⊂ K(B) = {0}, it follows that

K2 = 0. This contradicts band irreducibility of T by Lemma 1.23, and thus

completes the proof of the claim.

Now assume TK ≥ KT . Then T nK ≥ KT n for all n ≥ 1. Thus T̃K ≥

KT̃ ≥ 0. If T̃K has a non-trivial invariant band then it is also invariant under

KT̃ , contradicting the preceding claim. Thus, T̃K is band irreducible. Note

that T̃K and KT̃ are both compact and σ-order continuous and that r(T̃K) =

r(KT̃ ). By Lemma 1.17, we have T̃K = KT̃ , and therefore, TK = KT . For

TK ≤ KT , we have KT̃ ≥ T̃K. The same argument yields KT̃ = T̃K and

TK = KT .

We now see that the question following Theorem 1.7 has an affirmative
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answer; namely, in Theorem 1.7(ii) we can obtain local non-quasinilpotency

of K at non-zero positive vectors. See Chapter 3 for more properties of such

operators T and K.

We now turn to an application of Theorem 1.24. In [9], it is proved that

if two operators T > 0 and S > 0 semi-commute and are both compact, then

their commutator TS−ST is quasinilpotent. It is also shown there that there

exist two semi-commuting operators T > 0 and S > 0, neither of which is

compact, such that TS − ST is not quasinilpotent. The authors asked the

following question.

Question. Suppose T, S > 0 semi-commute and one of them is compact. Is

TS − ST necessarily quasinilpotent?

A partial solution of this question was given in [16, Theorem 3.6] and asserts

that the commutator is indeed quasinilpotent provided that, in addition, it

semi-commutes with the compact operator. We now prove that the question

has an affirmative answer in general.

To this end, we first recall some necessary notions. A collection C of closed

subspaces of X is called a chain if it is totally ordered under inclusion. For any

M ∈ C, the predecessor M− of M in C is defined to be the closed linear span

of all proper closed subspaces of M that belong to C. The following lemma is

straightforward to verify.

Lemma 1.25. Let C be a chain of closed ideals of X, M ∈ C. Then M− is a

closed ideal of X, M− ⊂M and C ∪ {M−} is chain.

Lemma 1.26 ([13]). Let C be a chain of closed ideals of X. Then it is maximal

as a chain of closed subspaces of X if and only if it is maximal as a chain of

closed ideals of X.
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Recall that a collection S of positive operators is called ideal triangu-

lations if there exists a chain of closed ideals of X such that each member

in the chain is invariant under S and the chain itself is maximal as a chain

of closed subspaces of X (cf. Lemma 1.26). Such a chain is called an ideal

triangularizing chain for S.

Theorem 1.27. Suppose T and K are two non-zero positive semi-commuting

operators such that K is compact. Then S := TK −KT is quasinilpotent.

Proof. Since replacing T with T +K does not change the commutator, we can

assume T ≥ K > 0. Let C be a maximal chain of invariant closed ideals of T

(existence of such a chain follows from Zorn’s lemma). Take any M ∈ C. It

is easily seen that M− is invariant under T . Hence, by Lemma 1.25, M− ∈ C.

We claim that the induced quotient operator T̃ on M/M− is ideal irreducible.

Suppose that, otherwise, J is a non-trivial closed ideal of M/M− invariant

under T̃ . We consider π−1(J) = {x ∈M : π(x) ∈ J}, where π is the canonical

quotient mapping from M onto M/M−. By [42, Proposition 1.3, p. 156],

π−1(J) is a closed ideal of M , and thus is a closed ideal of X. It is clearly

invariant under T , properly contains M− and is properly contained in M .

Thus, it is easily seen that π−1(J) is comparable with members of C. But

π−1(J) 6∈ C, contradicting maximality of C.

It follows that T̃ is ideal irreducible on M/M−. Since T ≥ K ≥ 0, both M

and M− are invariant under K; hence the quotient operator K̃ is well defined

on M/M−. Theorem 1.24 implies S̃ = T̃ K̃ − K̃T̃ = 0.

For each M ∈ C, let C̃M be a maximal chain of closed ideals of M/M−

(existence of such a chain follows from Zorn’s lemma). Put CM = {π−1(J) :

J ∈ C̃M}. Then CM consists of closed ideals of X each of which contains M−
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and is contained in M . Since S̃ = 0 on M/M−, each member of CM is invariant

under S. Thus, it is easily seen that C1 = C∪M∈C CM is a chain of closed ideals

of X each of which is invariant under S.

We claim that C1 is an ideal triangularizing chain for S. It remains to

prove C1 is maximal as a chain of closed subspaces of X. Suppose, otherwise,

there exists a closed subspace Y /∈ C1 such that C1 ∪ {Y } is still a chain.

Consider M := ∩J∈C,J⊃Y J and N := ∪J∈C,J⊂Y J . They are well defined since

{0}, X ∈ C. Note also that N ⊂ Y ⊂ M . It is easily seen that they are

closed ideals of X invariant under T . Since each member of C is comparable

with Y , it is easy to see that each J ∈ C either is contained in N or contains

M . Hence, by maximality of C, we have M,N ∈ C. It also follows that

N = M or M−, the predecessor of M in C. The first case is impossible,

since it forces Y = N = M ∈ C ⊂ C1. Hence, M− = N $ Y $ M . Note

that Y/M− is a closed subspace of M/M−. Clearly, Y/M− /∈ C̃M . Since Y is

comparable with each member of C1, Y/M− is comparable with each member

of C̃M , contradicting maximality of C̃M , by Lemma 1.26. This proves the claim.

Now note that for any N ∈ C1, we can find M ∈ C such that M− ⊂ N− ⊂

N ⊂ M , where M− is the predecessor of M in C and N− is the predecessor

of N in C1. Since S̃ = 0 on M/M−, S̃ = 0 on N/N−. Hence, by Ringrose’s

theorem ([37, Theorem 7.2.3]), σ(S) = 0, i.e. S is quasinilpotent.

We remark that an independent proof of this theorem can be found in [17].
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Chapter 2

Irreducible Semigroups of

Positive Operators
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2.1 Introduction

The results of this chapter are based on [21]. Throughout this chapter, X

stands for a real Banach lattice with dimX > 1 and S stands for a non-zero

semigroup of positive operators on X.

The classical Perron-Frobenius theory was extended to irreducible semi-

groups of positive matrices in [36] and [37, Section 5.2] and to irreducible

semigroups of compact positive operators on Lp-spaces in [37, Section 8.7]. In

particular, they have the following results for Lp-spaces.

Theorem 2.1. Let S be an irreducible semigroup of compact positive opera-

tors on Lp(Ω;µ) (1 ≤ p <∞ and µ is σ-finite). Let r be the minimal rank of

non-zero operators in R+S . Suppose that all the rank r projections in R+S

have the same range.

(i) There exists f ∈ Lp, almost everywhere positive, such that Sf = r(S)f

for all S ∈ S . Moreover, f is unique up to scalar multiples.

(ii) Every non-zero S ∈ S has at least r eigenvalues of modulus r(S), count-

ing geometric multiplicities, all of which are of form r(S)θ with θr! = 1.

(iii) There are r pairwise disjoint measurable subsets Ωi of Ω such that Ω =

∪r1Ωi and the r × r matrix representation of every non-zero S ∈ S

relative to the partition Lp(Ω1)⊕ · · · ⊕ Lp(Ωr) has exactly one non-zero

block in each block row and in each block column.

The same approach was employed in [27] to extend some of the results

in [36, 37] to irreducible semigroups of compact positive operators on order

continuous Banach lattices.

47



In this chapter, we extend the Perron-Frobenius theory to irreducible semi-

groups of positive operators on arbitrary Banach lattices. The approach and

some of the ideas we use are parallel to those used in [36] and [37], but in many

cases we had to develop completely new techniques. Moreover, we weaken the

condition that the semigroup consists entirely of compact operators; we only

require that the semigroup contains a non-zero compact operator or even a

peripherally Riesz operator.

The structure of this chapter is as follows. In Section 2.2, we study R+-

closed ideal irreducible semigroups containing a peripherally Riesz operator or

a non-zero compact operator. We show that such a semigroup contains finite-

rank operators and contains “sufficiently many” projections of rank r, where

r is the minimal non-zero rank of operators in the semigroup. In Section 2.3,

we discuss the special case when all such projections have the same range

(this is the case when S is commutative, in particular, when S is generated

by a single operator). We show that, in this case, there are disjoint vectors

x1, . . . , xr in X+ such that each operator in the semigroup acts on these vectors

as a scalar multiple of a permutation. In particular, x0 := x1 + · · · + xr is a

common eigenvector for S . In Section 2.4, we show that the dual semigroup

{S∗ | S ∈ S } has the same properties under the somewhat stronger condition

that S has a unique projection of rank r (which is still satisfied when S

is commutative). In Section 2.5, we apply our results to finitely generated

semigroups. We completely characterize S in the case when it is generated

by a single peripherally Riesz ideal irreducible operator T ; we show that T

acts as a scalar multiple of a cyclic permutation on x1, . . . , xr which span the

peripheral spectral subspace of T . In particular, we deduce the Frobenius

part in Theorem 1.1. We improve [1, Corollary 9.21] that if S and K are two
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positive commuting operators such that K is compact and S is ideal irreducible

then r(K) > 0 and r(S) > 0; we show that in this case limn‖Knx‖ 1
n = r(K)

and lim infn‖Snx‖
1
n > 0 whenever x > 0. In Section 2.6, we extend the results

of the preceding sections to band irreducible semigroups of order continuous

operators.

2.2 Semigroups containing finite-rank opera-

tors

The following generalization of de Pagter’s Theorem is of fundamental impor-

tance to our study and is often used together with Proposition 0.32.

Theorem 2.2 ([14]; cf. also [1, Corollary 10.47]). If S consists of compact

quasinilpotent operators then S is ideal reducible.

Suppose that r := min rank S < +∞; let Sr be the set of all operators of

rank r in S and zero. Then Sr is a non-zero ideal of S , so that S is ideal

irreducible if and only if Sr is ideal irreducible by Proposition 0.32. Also,

since the set of all operators of rank less than or equal to r is closed in L(X),

it is easily seen that Sr is R+-closed whenever so is S .

Proposition 2.3. If S is ideal irreducible R+-closed and contains a periph-

erally Riesz operator, then min rank S < +∞ and S contains a projection P

with rankP = min rank S .

Proof. By Proposition 0.10, r := min rank S is finite. By the preceding re-

mark, Sr is ideal irreducible, and therefore, Theorem 2.2 guarantees that Sr

contains a non-(quasi)nilpotent operator. Now apply Proposition 0.11.
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The following example shows that, in general, for a peripherally Riesz

operator T ∈ S , the peripheral spectral projection of T need not be in S .

Example 2.4. Let A =
[

1 1
0 1

]
and B =

[
0 0
1 0

]
, and let S = R+{A,B}. Clearly,

S is irreducible and the peripheral spectral projection of A is the identity.

We claim that I /∈ S . Indeed, S consists of all positive scalar multiples of

products of A and B and their limits. Any product that involves B has rank

one or zero; since the set of matrices of rank one or zero is closed, any limit

of products involving B is also of rank one or zero. On the other hand, it

follows from An =
[

1 n
0 1

]
that if S = lim bjA

nj then S is a scalar multiple of[
0 1
0 0

]
. Therefore, the only elements of S of rank two are the scalar multiples

of powers of A. Hence, I /∈ S .

Corollary 2.5. If S is ideal irreducible R+-closed and contains a non-zero

compact operator, then min rank S < +∞ and S contains a projection P

with rankP = min rank S .

Proof. By Proposition 2.3, it suffices to show that S contains a non-quasi-

nilpotent compact operator. The set of all compact operators in S is a non-

zero ideal, hence is ideal irreducible by Proposition 0.32(ii). Then it contains

a non-quasinilpotent operator by Theorem 2.2.

Throughout the rest of this section, we assume that S is an

ideal irreducible R+-closed semigroup with r := min rank S < +∞.

We denote by Sr for the ideal of all operators of rank r in S or zero; we will

write Pr for the (non-empty) set of all projections of rank r in S .

Lemma 2.6. For every non-zero S ∈ Sr there exists A ∈ S such that AS is

not nilpotent.
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Proof. Let J = S SS . Then J consists of operators of finite rank, hence

compact. Note that J is non-zero by Proposition 0.32(iv) and ideal irreducible

by Proposition 0.32(ii). Hence, by Theorem 2.2, J contains a non-quasi-

nilpotent operator. That is, there exist A1, A2 ∈ S such that 0 6= r(A1SA2) =

r(A2A1S) = r(AS) where A = A2A1.

Combining this lemma with Proposition 0.11, we show that S contains

“sufficiently many” rank r projections (cf. [37, Lemmas 5.2.2 and 8.7.17]).

Proposition 2.7. For every S ∈ Sr, there exist P,Q ∈ Pr such that PS =

SQ = S.

Corollary 2.8. For every non-zero x ∈ X+ and x∗ ∈ X∗+, there exist P,Q ∈

Pr such that Qx 6= 0 and P ∗x∗ 6= 0.

Proof. Since Sr is ideal irreducible, by Proposition 0.32(iii) there exists S ∈

Sr such that x∗(Sx) 6= 0. Now take P and Q as in Proposition 2.7.

Let P be a non-zero positive projection on X. Let XP be the lattice

subspace of X as in 0.25. Consider SP = {PSP|XP
| S ∈ S }, so that

SP ⊆ L+(XP ) (note that P need not be in S ). The following proposition

extends [37, Lemmas 5.2.1 and 8.7.16].

Proposition 2.9. If P is a positive finite-rank projection and PS P ⊆ S

then SP is an ideal irreducible R+-closed semigroup in L+(XP ).

Proof. It follows from PS P ⊆ S that SP is a semigroup. Let P =
∑n

i=1 x
∗
i⊗

xi as in 0.25; relative to the basis x1,. . . ,xn, we can view SP as a semigroup of

positive n× n matrices. Since S is ideal irreducible, by Proposition 0.32(iii),
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for each i, j there exists S ∈ S such that x∗i (Sxj) 6= 0, i.e., the (ij)-th en-

try of the matrix of PSP|XP
is non-zero. Hence, SP is ideal irreducible by

Proposition 0.32 again.

To show that SP is closed, suppose that PSnP|XP
→ A for some sequence

(Sn) in S and some A ∈ L(XP ). Put S = PAP ∈ L(X). Then PSnP → S,

so that S ∈ S because S is closed. Now A = PSP|XP
yields A ∈ SP .

Of course, the assumption that PS P ⊆ S is satisfied when P ∈ S . If,

in addition, rankP = r, we get the following much stronger result. We begin

with a technical lemma.

Lemma 2.10. Suppose that S is an R+-closed semigroup of matrices such

that every non-zero matrix in S is invertible. Then
{
A ∈ S | r(A) = 1

}
is a

closed group.

Proof. Let S × :=
{
A ∈ S | r(A) = 1

}
. Take any A ∈ S ×. Since S

contains no non-zero nilpotent matrices, the nilpotent case in Proposition 0.8

is impossible, hence some sequence of powers Amj converges to the peripheral

spectral projection P of A. In particular, P ∈ S , hence invertible, so that P =

I and σ(A) is contained in the unit circle. This yields that A is unimodular.

It follows from Amj−1 = A−1Amj → A−1 that A−1 ∈ S . Clearly, σ(A−1) is

also contained in the unit circle, so that A−1 ∈ S ×.

Suppose that 0 6= A ∈ S . Then 1
r(A)

A ∈ S ×, and the later matrix is

unimodular, so that |detA| = r(A)n. It follows that for A ∈ S we have A ∈

S × if and only if |detA| = 1. Therefore, S × is closed under multiplication.

It also follows that S × is closed.

We write GP :=
{
PSP|XP

| S ∈ S and r(PSP ) = 1
}

.
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Proposition 2.11. Suppose that P ∈ Pr. Then every non-zero element of

SP is invertible and, after appropriately scaling the basis vectors of XP , GP is

a transitive1 group of permutation matrices.

Proof. By Proposition 2.9, SP is irreducible and R+-closed. Since r = min rank S ,

every non-zero element of SP is invertible. It follows from Lemma 2.10 that GP

is a group. In particular, each matrix in GP has a positive inverse. It is known

that a positive matrix A in Mr(R) has a positive inverse if and only if it is a

weighted permutation matrix with positive weights, i.e., there exist positive

weights w1, . . . , wr and a permutation σ of {1, . . . , r} such that Axi = wixσ(i)

for each i = 1, . . . , r.

It is left to show that, after scaling xi’s, we may assume that all the weights

are equal to one (for all S ∈ GP ). We essentially follow the proof of [37,

Lemma 5.1.11]. Since SP is an irreducible semigroup of matrices, for each

i, j ≤ r there exists A ∈ SP such that Axi is a scalar multiple of xj. Put

A1 = I. For each i = 1, . . . , r fix Ai ∈ GP such that Aix1 = µixi for some

µi > 0. Replacing xi with µixi for i = 2, . . . , r, we have Aix1 = xi. It

suffices to show that with respect to these modified xi’s, all the matrices in

GP are permutation matrices. Let B ∈ GP . We know that B is a weighted

permutation matrix. Take any i and j such that λ := bij is non-zero. Put

C = A−1
i BAj. Then C ∈ GP and Cx1 = λx1, so that λ = c11 ≤ r(C) = 1.

Similarly, λ−1 is the (1, 1)’s entry of C−1, hence λ−1 ≤ 1 as well, so that λ = 1.

Finally, transitivity of GP follows from the irreducibility of SP .

Remark 2.12. It follows that the vector x0 = x1 + · · · + xr is invariant

under GP . Furthermore, for each S ∈ S , if PSP 6= 0 then the minimality of

1Transitive in the sense that for each i and j there exists A ∈ GP such that Axi = xj .
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rank implies that PSP is an isomorphism on XP , so that r(PSP ) 6= 0 and,

therefore, a scalar multiple of PSP is in GP . It follows that x0 is a common

eigenvector for SP with PSPx0 = r(PSP )x0.

2.3 Semigroups with all the rank r projections

having the same range

As in the previous section, S will stand for an R+-closed ideal irreducible

semigroup of positive operators on a Banach lattice, with r := min rank S <

∞. We will write Sr for the (ideal irreducible) ideal of all operators of rank r

in S and zero, and Pr for the set of all projections of rank r in S (which is

non-empty by, e.g., Corollary 2.5).

Let P ∈Pr and x0 be as in Remark 2.12. For x0 to be a common eigenvec-

tor of the entire semigroup S , it would suffice that (a) RangeP is invariant

under S and (b) PSP 6= 0 for every non-zero S ∈ S . We will see that, sur-

prisingly, (a) implies (b). The following proposition extends [37, Lemmas 5.2.4

and 8.7.18].

Proposition 2.13. The following are equivalent:

(i) all projections in Pr have the same range,

(ii) all non-zero operators in Sr have the same range,

(iii) S(RangeP ) = RangeP for all non-zero S ∈ S and P ∈Pr,

(iv) The range of some P ∈Pr is S -invariant.

Proof. (i)⇒(ii) follows from Proposition 2.7.
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(ii)⇒(iii) Let S ∈ S and P ∈ Pr. Since Sr is ideal irreducible, SSr 6=

{0}, so that ST 6= 0 for some T ∈ Sr. It follows from RangeT = RangeP

that SP 6= 0. Since SP ∈ Sr, we have RangeSP = RangeP .

(iii)⇒(iv) is trivial.

(iv)⇒(i) Suppose that RangeP is S -invariant for some P ∈Pr. Take any

Q ∈Pr. We have QS P 6= {0} by Proposition 0.32(iv), so that QSP 6= 0 for

some S ∈ S . By assumption, SP = PSP , so that QPSP 6= 0, hence QP 6=

0. This yields rankQP = r. By assumption, RangeQP = Q(RangeP ) ⊆

RangeP , but, trivially, RangeQP ⊆ RangeQ. Since all the three ranges

are r-dimensional, the inclusions are, in fact, equalities, so that RangeP =

RangeQP = RangeQ.

Next, we would like to provide a few examples.

Example 2.14. Suppose that x, y ∈ X+ and x∗, y∗ ∈ X∗+ such that x∗(x) =

y∗(x) = x∗(y) = y∗(y) = 1. Let P = {x∗⊗x, y∗⊗x, x∗⊗y, y∗⊗y}. Then P is

a semigroup of projections. Let S = R+P, the semigroup of all non-negative

scalar multiples of the elements of P. Clearly, P is exactly the set Pr of the

minimal rank projections in S with r = 1, and the ranges of the elements of

S are Spanx and Span y. In particular, all the ranges are the same if and

only if x = y.

Example 2.15. More specifically, take in Example 2.14 X = R2, x =
[

1
2
1
2

]
,

y =
[

1
3
2
3

]
, and x∗ = y∗ = [1, 1]. Then P = {P,Q} where P =

[
1
2

1
2

1
2

1
2

]
and

Q =
[

1
3

1
3

2
3

2
3

]
are ideal irreducible and have different ranges.

Example 2.16. Again in Example 2.14, take X = R2, x = y =
[

1
1

]
, x∗ =[

1
2
, 1

2

]
, and y∗ =

[
1
3
, 2

3

]
. Then P = {P,Q} where P =

[
1
2

1
2

1
2

1
2

]
and Q =

[
1
3

2
3

1
3

2
3

]
are both ideal irreducible and have the same range.
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Example 2.17. Again in Example 2.14, take X = R2, x = y =
[

1
1

]
, x∗ =

[1, 0], and y∗ = [0, 1]. Then P = {P,Q} where P =
[

1 0
1 0

]
and Q =

[
0 1
0 1

]
. Even

though neither P nor Q is ideal irreducible, they generate an ideal irreducible

semigroup. Note that P and Q have the same range.

For the rest of this section, we assume that all the projections

in Pr have the same range. This condition looks rather strong at the

first glance. However, it will follow immediately from Proposition 2.28 that

it is satisfied for commutative semigroups, and, in particular, for semigroups

generated by a single operator.

We now prove a Banach lattice version of [37, Lemmas 5.2.5 and 8.7.19,The-

orems 5.2.6 and 8.7.20]. Denote by Y the common range of the projections

in Pr. For a non-zero S ∈ S we denote by SY the restriction of S to Y ; we

write SY = {SY | S ∈ S } and G :=
{
SY | S ∈ S , r(SY ) = 1

}
. Note that

SY = SP and G = GP for every P ∈ Pr, cf. 0.25 and Proposition 2.11. In

particular, G is a transitive group of permutation matrices in the appropriate

positive basis x1, . . . , xr of Y . The following lemma follows immediately from

Proposition 2.13(iii).

Lemma 2.18. For each non-zero S ∈ S , the restriction SY is an isomorphism

of Y . In particular, r(SY ) > 0 and 1
r(SY )

SY ∈ G.

It follows, in particular, that S contains no zero divisors and no non-zero

quasinilpotent operators.

Theorem 2.19. There exist disjoint positive vectors x1, . . . , xr such that every

S ∈ S acts as a scalar multiple of a permutation on xi’s.

Proof. The statement follows immediately from Lemma 2.18 and Proposi-

tion 2.11 except for the disjointness of xi’s. By 0.25, we know that Y is a
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lattice subspace of X, and the positive vectors x1, . . . , xr form a basis of Y

and are disjoint in Y . The latter means that for each i, j ≤ r with i 6= j, we

have P (xi ∧ xj) = 0 for every P ∈Pr. It now follows from Corollary 2.8 that

xi ⊥ xj in X.

Corollary 2.20. All the operators in S have a unique common eigenvector

x0. Namely, Sx0 = r(SY )x0 for each S ∈ S . Furthermore, x0 is positive and

quasi-interior.

Proof. Let x1, . . . , xr be as in the theorem. Put x0 = x1 + · · · + xr. Since

each S ∈ S is just a scalar multiple of a permutation on xi’s, it follows

that x0 is a common eigenvector for S . Clearly, the ideal Ix0 generated by

x0 is invariant under S , hence is dense in X; it follows that x0 is quasi-

interior. It is left to verify uniqueness (of course, up to scaling). Indeed,

suppose that y is also a common eigenvector for S . Then for each P ∈ Pr

we have y ∈ RangeP = Y . It follows that y is a linear combination of xi’s.

In particular, viewed as an element of Rr, it is a common eigenvector of the

transitive group of permutations G, so that it has to be of the form (λ, . . . , λ);

it follows that y = λx0.

Note that the semigroup in Example 2.15 has no common eigenvectors.

2.21. Other eigenvalues of S . Since every element of G is a permutation

matrix with respect to the basis x1, . . . , xr of Y , its Jordan form is diagonal and

unimodular. It follows that every non-zero S ∈ S has at least r eigenvalues

of modulus r(SY ) (counting geometric multiplicities). If we scale S so that

r(SY ) = 1 then (SY )r! is the identity of Y ; it follows that these eigenvalues

satisfy λr! = 1.
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2.22. Block-matrix structure of S . Let Xi = Ixi for each i = 1, . . . , r. Then

X = X1 ⊕ · · · ⊕ Xr is a decomposition of X into pair-wise disjoint closed

ideals, and for every non-zero S ∈ S the block-matrix of S with respect to

this decomposition has exactly one non-zero block in each row and in each

column.

Proposition 2.23. If T ∈ S is peripherally Riesz then r(TY ) = r(T ). Fur-

thermore, if r(T ) = 1 then the component of T corresponding to σper(T ) is

unimodular.

Proof. Without loss of generality, r(T ) = 1. By Lemma 2.18, S has no non-

zero nilpotent elements. It follows that the nilpotent case in Proposition 0.8 is

impossible, hence the peripheral spectral projection P of T is in S and there is

an increasing sequence (mj) in N with Tmj → P . In particular, (TY )mj → PY .

It follows from r(T ) = 1 that r(TY ) ≤ 1. Suppose that r(TY ) < 1. Then

(TY )mj → 0, hence PY = 0. But this contradicts PY being an isomorphism by

Lemma 2.18.

Corollary 2.24. If every non-zero operator in S is peripherally Riesz then

spectral radius is multiplicative on S .

Proof. Let S, T ∈ S . By Proposition 2.23, r(S) = r(SY ), r(T ) = r(TY ),

and r(ST ) = r(SY TY ). Since SY and TY are scalar multiples of permutation

matrices by Theorem 2.19, it follows that r(SY TY ) = r(SY )r(TY ).

For each non-zero S ∈ S we have r(S∗) = r(S) ≥ r(SY ) > 0 by Lemma 2.18.

The following refinement is immediate by Corollary 2.20 and Lemma 0.21.

Corollary 2.25. For every non-zero S ∈ S and non-zero x∗ ∈ X∗+, we have

lim infn‖S∗nx∗‖
1
n ≥ r(SY ). In particular, S∗ is strictly positive.
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Example 2.26. In Example 2.14, take X = R2, x =
[

1
0

]
, y =

[
0
1

]
, and

x∗ = y∗ = [1, 1]. Then P = {P,Q} where P =
[

1 1
0 0

]
and Q =

[
0 0
1 1

]
. Now

the semigroup generated by P and Q is irreducible, however P and Q have

different ranges and neither P ∗ nor Q∗ is strictly positive.

Remark 2.27. Let x1, . . . , xr be a disjoint positive basis of Y as before. Sup-

pose that P ∈Pr, then, as in 0.25, we have P =
∑r

i=1 x
∗
i⊗xi for some positive

functionals x∗1 . . . , x
∗
r. Observe that these functionals are disjoint. Indeed, by

Riesz-Kantorovich formula, if i 6= j then

(x∗i ∧ x∗j)(x0) = inf
{
x∗i (u) + x∗j(v) | u, v ∈ [0, x0], u+ v = x0

}
≤x∗i (xj) + x∗j(x0 − xj) = 0,

hence (x∗i ∧ x∗j)(x0) = 0. Since x0 is quasi-interior, it follows that x∗i ∧ x∗j = 0.

2.4 Semigroups with a unique rank r projec-

tion

As before, we assume that S is an ideal irreducible R+-closed semigroup of

positive operators on a Banach lattice X with r = min rank S < +∞.

In the previous section we showed that if all the rank r projections have

the same range then S has some nice properties. In this section, we will

show that many of these properties are also enjoyed by the dual semigroup

S ∗ = {S∗ | S ∈ S } provided that S has a unique projection of rank r. Even

though this is, obviously, a stronger assumption, the following proposition

implies that it is still satisfied for commutative semigroups. It is analogous to
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[37, Lemmas 5.2.7 and 8.7.21].

Proposition 2.28. The following are equivalent:

(i) Pr consists of a single projection,

(ii) every P ∈Pr commutes with S ,

(iii) some P ∈Pr commutes with S .

Proof. (i)⇒(ii) Suppose that Pr = {P} and let 0 6= S ∈ S . It follows from

Proposition 2.13(iii) that PSP 6= 0. Hence, PS and SP are non-zero elements

of Sr. Applying Proposition 2.7 to PS and SP we get PS = PSP = SP .

(ii)⇒(iii) is trivial.

(iii)⇒(i) Suppose P ∈Pr commutes with S . It follows that PSP = SP

for all S ∈ S , hence by Proposition 2.13(iv), all the projections in Pr have

the same range. Therefore, P = QP = PQ = Q for every Q ∈Pr.

Throughout the rest of the section, we assume that S has a

unique projection P of rank r. This condition allows us to “dualize” the

results of Section 2.3 for S ∗, even though S ∗ may not be ideal irreducible.

Suppose Pr = {P}. As in Section 2.3, we denote Y = RangeP = XP . We

can write it as P =
∑r

i=1 x
∗
i ⊗ xi as in Remark 2.27. It is easy to see that P ∗

is a projection onto XP ∗ := RangeP ∗ = Span{x∗1, . . . , x∗r} in X∗. For every

non-zero S ∈ S , it follows from Proposition 2.28 that PSP = SP = PS,

so that P ∗S∗P ∗ = S∗P ∗, and, therefore, XP ∗ in invariant under S∗. Note

that r(P ∗S∗P ∗) = r(PSP ) = r(SY ) 6= 0 by Lemma 2.18. As in Section 2.3,

if r(SY ) = 1 then S ∈ G (since P is unique, we write GP = G) and S acts

as a permutation matrix on x1, . . . , xr. It follows from x∗i (xj) = δij that S∗

acts as a permutation matrix on x∗1, . . . , x
∗
r (namely, as the transpose of the
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matrix of S on x1, . . . , xr). Moreover, since G is transitive on x1, . . . , xr, the

group G∗ := {S∗ | S ∈ G} is transitive on x∗1, . . . , x
∗
r. In particular, we have

S∗x∗0 = x∗0, where x∗0 = x∗1 + · · ·+ x∗r.

Corollary 2.29. For every non-zero S ∈ S , the operator 1
r(SY )

S∗ acts as

a permutation of x∗1, . . . , x
∗
r. In particular, S∗x∗0 = r(SY )x∗0 for each non-

zero S ∈ S . The functional x∗0 is strictly positive and is a unique common

eigenfunctional for S ∗.

Proof. Uniqueness is proved exactly as in Corollary 2.20. It is left to prove

that x∗0 is strictly positive. Fix x > 0. By Proposition 0.32(iii), there exists

S ∈ S with x∗0(Sx) 6= 0. Since r(SY ) 6= 0 by Lemma 2.18 and x∗0(Sx) =

(S∗x∗0)x = r(SY )x∗0(x), we have x∗0(x) 6= 0.

The following proposition should be compared with Proposition 2.23.

Proposition 2.30. Let 0 6= S ∈ S . If r(S) is an eigenvalue of S or S∗ then

r(SY ) = r(S).

Proof. We know that Sx0 = r(SY )x0 and S∗x∗0 = r(SY )x∗0. Since x∗0 is strictly

positive and x0 is quasi-interior, the proposition follows from Lemma 0.21.

In view of Corollary 2.29, the following fact is the dual version of Corol-

lary 2.25 and also follows from Lemma 0.21. Clearly, Corollaries 2.29 and 2.31

extend [37, Lemma 5.2.8 and Corollary 8.7.22].

Corollary 2.31. For every x > 0 and every non-zero S ∈ S we have

lim infn‖Snx‖
1
n ≥ r(SY ). In particular, S is strictly positive.

This means that not only every non-zero S ∈ S is not quasinilpotent, but

it is not even locally quasinilpotent.
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We would like to point out that Corollaries 2.29 and 2.31 generally fail if

instead of assuming that S has a unique minimal projection we only assume,

as in Section 2.3, that all the rank r projections in S have the same range.

Indeed, the semigroups in Examples 2.16 and 2.17 are irreducible, R+-closed,

have exactly two distinct projections P and Q of rank r each, and they have

the same range. Nevertheless it is easy to see that the dual semigroup S ∗ in

Example 2.16 has no common positive eigenfunctionals (as P ∗ and Q∗ have

no common eigenfunctionals), while the operators P and Q in Example 2.17

are not strictly positive.

Recall that a positive operator T is strongly expanding if Tx is quasi-

interior whenever x > 0.

Corollary 2.32. The projection P is strongly expanding iff r = 1.

Proof. Note that P is strictly positive by Corollary 2.31. If r = 1 then RangeP

is the span of x0, hence Px is a positive scalar multiple of x0 whenever x > 0.

On the other hand, if r > 1 then Px1 = x1 ⊥ x2, hence Px1 is not quasi-

interior.

Example 2.33. Fix n > 2 and let S be the semigroup of all positive scalar

multiples of all permutation matrices in Mn(R). Then S is not commutative;

nevertheless, the identity matrix is the unique element of Pr.

Commutative semigroups

In view of Proposition 2.28, all the results of Sections 2.3 and 2.4 apply to

commutative semigroups. In particular, the group G is a commutative tran-

sitive semigroup of permutation matrices. Every matrix in such a group is a

direct sum of cycles of equal lengths; it follows, in particular, that Sr|Y is a
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multiple of the identity on Y for each S ∈ S . See [37, Lemma 5.2.11] for a

proof and further properties of such groups of matrices.

2.5 Applications to finitely generated semigroups

Singly generated semigroups

Suppose that T is a positive ideal irreducible peripherally Riesz operator on

a Banach lattice X. We now present a version of Perron-Frobenius Theorem

for T , extending [37, Corollaries 5.2.3 and 8.7.24]. In addition, we completely

describe R+T (cf. Proposition 0.8). For simplicity, scaling T if necessary, we

assume that r(T ) = 1. Let X = X1 ⊕ X2 be the spectral decomposition for

T where X1 is the subspace for σper(T ), and T = T1 ⊕ T2 the corresponding

decomposition of T . Clearly, R+T is ideal irreducible. Since it is commutative,

all the results of Sections 2.3 and 2.4 apply to it. We will see that, surprisingly,

the asymptotic part of R+T is very small: it consists of finitely many operators

and their positive scalar multiples.

Proposition 2.34. Under the preceding assumptions, dimX1 = min rankR+T ,

X1 has a basis of disjoint positive vectors x1, . . . , xr such that T1 is a cyclic

permutation of x1, . . . , xr, and R+T consists precisely of all the powers of T , of

the operators T k1 ⊕ 0 for k = 0, . . . , r− 1, and of their positive scalar multiples

(and zero).

Proof. By Proposition 2.23, T1 is unimodular. Hence, we are in the uni-

modular case of Proposition 0.8. In particular, the peripheral spectral pro-

jection P is the only non-zero projection in the semigroup. It follows that

r := min rankR+T = dimX1, Pr = {P}, and X1 coincides with Y in the
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notation of Section 2.3. This implies by Theorem 2.19 that X1 is a sublattice

generated by some disjoint sequence x1, . . . , xr and T1 is a permutation of xi’s.

We claim that this permutation is a cycle of full length r. Indeed, otherwise, T1

has a cycle of length m < r, i.e., after re-numbering the basis vectors, T1 acts

as a cycle on x1, . . . , xm. But then the closed ideal generated by x1, . . . , xm is

invariant under T and is proper as it is disjoint with xm+1, . . . , xr.

It follows that T r1 is the identity of X1, so that the set of the distinct powers

of T1 is, in fact, finite. Suppose that 0 6= S = limj bjT
nj for some (bj) in R+

and some strictly increasing (nj) in N. By Proposition 0.8, S|X2 = 0 and

S|X1 = limj bjT
nj

1 . Since the set of the distinct powers of T1 is finite, it follows

that S|X1 is a scalar multiple of a power of T1.

Remark 2.35. Suppose T is an ideal irreducible operator such that r(T ) is a

pole of the resolvent R(·, T ). By Proposition 1.13 and Lemma 0.24, we know

that T is peripherally Riesz. Thus, the Frobenius part in Theorem 1.1 follows

immediately from Proposition 2.34.

Semigroups generated by two commuting operators

In [1, Corollary 9.21], the following extension of de Pagter’s theorem was estab-

lished: suppose that S and K are two non-zero positive commuting operators

such that S is ideal irreducible and K is compact, then r(S) > 0 and r(K) > 0.

Moreover, K is not even locally quasinilpotent at any positive non-zero vector

x, i.e., lim infn‖Knx‖ 1
n > 0; cf. [1, Theorem 9.19]. Using the results of the

preceding sections, we can now strengthen this conclusion even further.

Proposition 2.36. Under the preceding assumptions on S and K, there exists

a quasi-interior vector x0 ∈ X+, a strictly positive functional x∗0, and a positive
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real λ such that Sx0 = λx0, S∗x∗0 = λx∗0, Kx0 = r(K)x0, and K∗x∗0 = r(K)x∗0.

Furthermore, lim infn‖Snx‖
1
n ≥ λ and limn‖Knx‖ 1

n = r(K) > 0 whenever

x > 0.

Proof. Let S = R+{S,K}. Then S is ideal irreducible and commutative, so

that all the results of Sections 2.3 and 2.4 apply. In particular, by Corollar-

ies 2.20 and 2.29 there exist a quasi-interior vector x0 ∈ X+ and a strictly posi-

tive functional x∗0 such that Sx0 = r(SY )x0, S∗x∗0 = r(SY )x∗0, Kx0 = r(KY )x0,

and K∗x∗0 = r(KY )x∗0. Now put λ := r(SY ) and note that r(KY ) = r(K)

by Proposition 2.23. Also, observe that r(S) ≥ λ > 0 and r(K) > 0 by

Lemma 2.18.

It is left to show the “furthermore” clause. Fix x > 0. It follows from Corol-

lary 2.31 that lim infn‖Snx‖
1
n ≥ λ and lim infn‖Knx‖ 1

n ≥ r(K). However, we

clearly have lim supn‖Knx‖ 1
n ≤ r(K), so that limn‖Knx‖ 1

n = r(K).

Remark 2.37. (i) It is easy to see that lim supn‖T nx‖
1
n ≤ r(T ) for every

operator T and every vector x. Therefore, the conclusion limn‖Knx‖ 1
n =

r(K) in the theorem is sharp.

(ii) Corollary 2.25 yields lim infn‖S∗nx∗‖
1
n ≥ λ and limn‖K∗nx∗‖

1
n = r(K)

whenever x∗ > 0.

(iii) Clearly, the result (and the proof) remains valid if we require that K

is ideal irreducible instead of S. Moreover, the result can be extended

to any ideal irreducible commutative collection of operators containing

a compact or a peripherally Riesz operator. In this case, the result will

still be valid for every operator S in the collection (with λ depending on

S).
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2.6 Band irreducible semigroups

In this section, we will show that most of the results of the preceding sections

remain valid if we replace ideal irreducibility with band irreducibility under

the additional assumption that all the operators in S are order continuous.

This additional assumption is justified by the following two facts. For A ⊆ X

we write IA and BA for the ideal and the band generated by A, respectively.

Suppose that S is a positive order continuous operator. If S vanishes on a set

A ⊆ X+ then S also vanishes on BA. Furthermore, if J is an S-invariant ideal

then the band BJ is still S-invariant.

For the rest of this section, we will assume that S is a semigroup

of positive order continuous operators on a Banach lattice X. We

start with a variant of Theorem 2.2 for band irreducible case using the idea of

the proof of Lemma 1.11.

Proposition 2.38. If all the operators in S are compact and quasinilpotent

then S is band reducible.

Proof. Let F be the closed ideal generated by the union of the ranges of all the

operators in S . We may assume, without loss of generality, that dimF > 1

as, otherwise, F is a band and we are done. Applying Theorem 2.2 to the

restriction of S to F , we find a non-zero closed ideal J ( F such that J is

S -invariant. It follows that BJ is S -invariant. It is left to show that BJ is

proper. Suppose that BJ = X. Then for any x ∈ X+ we have xα ↑ x for some

net (xα) in J+. Let S ∈ S . Since S is order continuous, we have Sxα ↑ Sx.

Since S is compact, after passing to a subnet we know that (Sxα) converges

in norm; hence Sxα → Sx in norm. It follows that Sx ∈ J . Since x > 0 was

arbitrary, it follows that F ⊆ J ; a contradiction.
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2.39. One can now easily verify that the results of the previous sections remain

true for band irreducible semigroups of order continuous operators with the

following straightforward modifications.

• In Corollary 2.8, one has to assume that x∗ is order continuous.

• In 0.25, we now only consider order continuous projections. It is easy to

see that the functionals x∗1, . . . , x
∗
n defined there are also order continuous.

• Proposition 2.9 extends as long as P is order continuous.

• In Corollary 2.20, we replace “quasi-interior” with “a weak unit”.

• In 2.22, we replace Ixi with Bxi .

• In Corollary 2.25 we need to assume that x∗ is σ-order continuous, be-

cause in this case we still have x∗(x0) > 0 (recall that x0 is now a weak

unit). In particular, S∗ is strictly positive on σ-order continuous func-

tionals.

• In Corollary 2.29, the functional x∗0 is now order continuous because

x∗0 = x∗1 + · · ·+ x∗r and x∗1, . . . , x
∗
r are order continuous.

• Proposition 2.30 remains valid for S. For S∗ we can only say that if there

is a σ-order continuous eigenfunctional x∗ for r(S) then r(SY ) = r(S).

Apply Lemma 0.21(ii).

Next, we consider finitely generated semigroups. Let T be a band irre-

ducible σ-order continuous operator such that r(T ) is a pole of R(·, T ). To

apply our results, we need to require that R+T consists of order continuous

operators. For this purpose, it suffices to assume that there exists a σ-order
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continuous functional x∗0 > 0 such that T ∗x∗0 = r(T )x∗0 (cf. Theorem 1.14). By

Lemma 0.30, r(T ) > 0 and x∗0 is strictly positive. Hence, T is peripherally

Riesz by Proposition 1.13 and Lemma 0.24. Assume r(T ) = 1. Then all the

conclusions of Proposition 2.34 remain valid. In particular, the Frobenius part

of Theorem 1.2 follows.

Finally, we can also extend Proposition 2.36 as follows (it can also be

viewed as an extension of [1, Corollary 9.34]).

Lemma 2.40. Let S and T be two commuting non-zero positive σ-order con-

tinuous operators. If T is band irreducible then S is strictly positive.

Proof. Suppose not, suppose Sx = 0 for some x > 0. Without loss of general-

ity, ‖T‖ < 1, so that z :=
∑∞

n=0 T
nx exists. Clearly, Tz ≤ z. It follows that

Bz in invariant under T and, therefore, Bz = X. On the other hand, we have

Sz = 0, so that S vanishes on Bz, so S = 0; a contradiction.

Proposition 2.41. Suppose that S and K are two non-zero commuting posi-

tive operators such that K is compact, σ-order continuous and band irreducible.

Then there exists a weak unit x0 ∈ X+, a strictly positive functional x∗0, and

a positive real λ such that Sx0 = λx0, S∗x∗0 = λx∗0, Kx0 = r(K)x0, and

K∗x∗0 = r(K)x∗0. Furthermore, lim infn‖Snx‖
1
n ≥ λ and limn‖Knx‖ 1

n = r(K)

whenever x > 0.

Proof. Let S = R+{S,K}. Then S is commutative and band irreducible.

By Lemma 2.40, K is strictly positive. Thus, by [1, Lemma 9.30] that all the

operators in S are order continuous. Hence, all the results of Sections 2.3

and 2.4 apply with the modifications described in 2.39. The rest of the proof

is exactly as in Proposition 2.36 with the only exception that, instead of being

quasi-interior, x0 is now a weak unit.
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Remark 2.42. Using Corollary 2.25, which remains valid for band-irreducible

semigroups if x∗ is σ-order continuous, we can show, as in Remark 2.37(ii),

that lim infn‖S∗nx∗‖
1
n ≥ λ and limn‖K∗nx∗‖

1
n = r(K) whenever x∗ > 0 is

σ-order continuous.

Remark 2.43. As in Proposition 2.36, the result can be extended to any

commutative semigroup of σ-order continuous operators containing a band ir-

reducible operator and a non-zero compact operator. Indeed, by Lemma 2.40,

the compact operator is strictly positive, so that all the operators in the semi-

group are order continuous by [1, Lemma 9.30]. Now we can apply results of

Sections 2.3 and 2.4.
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Chapter 3

Positive Operators with

Irreducible Super-commutants
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3.1 Introduction

The results in this chapter are mainly taken from [20]. Throughout this chap-

ter, X stands for a real Banach lattice with dimX > 1.

For a positive operator T , recall from [1] that its super right-commutant

is defined by [T 〉 := {S ≥ 0 : ST ≥ TS} and its super left-commutant is

defined by 〈T ] := {S ≥ 0 : ST ≤ TS}. The main goal of this chapter is to

study spectral properties of positive operators which have irreducible super-

commutants.

Let {K}′ := {S ∈ L(X) : SK = KS} be the commutant of K. We would

like to mention the following variant of de Pagter’s theorem.

Theorem 3.1 ([1, Theorem 9.19]). Let K > 0 be a compact operator. If

limn‖Knx‖ 1
n = 0 for some x > 0, then L+(X) ∩ {K}′ is ideal reducible.

This can be viewed as a special case of [14, Theorem 4.3].

Theorem 3.2 ([14]). Let K > 0 be AM-compact (i.e. K maps order intervals

to relatively compact subsets of X). If limn‖Knx‖ 1
n = 0 for some x > 0, then

[K〉 is ideal reducible.

A natural question following Theorem 3.2 is that whether we can replace

the super right-commutant of K with the super left-commutant. Generally,

the answer is no. For example, take X = `2 and let L and R be the left and

right shifts on X, respectively. Then Le1 = 0 where e1 = (1, 0, 0, · · · ); in

particular, limn‖Lne1‖
1
n = 0. Since the order intervals in `2 are compact, L is

AM-compact. Put T = L + R. Then it is straightforward verifications that

T ∈ 〈L] and T is ideal irreducible; in particular, 〈L] is ideal irreducible.
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However, it is surprising that the question has an affirmative answer when

K is compact. In this case, we can actually prove that if either the su-

per right-commutant or super left-commutant of K is ideal irreducible, then

limn‖Knx‖ 1
n = r(K) > 0 for all x > 0 and every operator semi-commuting

with K commutes with it; in particular, [K〉 = 〈K] = L+(X) ∩ {K}′.

These results follow from a Jentzsch-Perron-Frobenius Theorem for such

operators K. Recall from Proposition 2.34 that an ideal irreducible peripher-

ally Riesz operator T acts as a positive scalar multiple of a cyclic permutation

on some positive disjoint vectors x1, . . . , xr which span the peripheral spec-

tral subspace of T . We prove in Section 3.2 that similar results remain valid

for peripherally Riesz operators which have ideal irreducible super commu-

tants (cf. Remark 3.6 and Theorem 3.5). In particular, they hold for compact

operators with ideal irreducible super commutants.

It deserves mentioning that although the super commutants are always R+-

closed semigroups, the results of Chapter 2 generally do not apply to them.

This is simply because the minimal-rank projections in the super commutants

may fail to have the same range. For example, one can consider the identity on

Rn (n ≥ 2). The super left/right commutant is the set of all positive matrices

and is clearly irreducible. But it is easily seen that all the band projections

Pi onto Span{ei} (1 ≤ i ≤ n) are minimal-rank projections in the super

commutants with different ranges.

In Section 3.3, we establish some Jentzsch-Perron theorems for operators

related to irreducible operators and compact operators. In particular, we

prove that the operators S > 0 in the following three chains have positive

eigenvectors: T ↔ K ↔ S, S ↔ T ↔ K and T ↔ S ↔ K, where T > 0

is ideal irreducible, K > 0 is compact, and ↔ stands for commutation. In
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the second and third cases, we can actually choose the eigenvectors to be

quasi-interior points. This implies, in particular, that r(S) > 0. Therefore, it

extends [1, Corollary 9.28]:

Theorem 3.3 ([1]). Let T, S,K > 0 be such that T ↔ S ↔ K, T is ideal

irreducible and K is compact. Then r(S) > 0.

In Section 3.4, we include the band irreducible analogues.

3.2 A Jentzsch-Perron-Frobenius theorem

Note that, for a positive operator T , the super commutants [T 〉 and 〈T ] are

both (multiplicative) semigroups containing the identity.

We also need the following fact. Suppose T, S > 0 are semi-commuting. If

TS ≤ ST then (TS)n ≤ SnT n for all n; if ST ≤ TS then (ST )n ≤ T nSn for

all n. Thus, in either case, we have r(TS) = r(ST ) ≤ r(T )r(S).

Lemma 3.4. Let K > 0 be a compact operator such that either [K〉 or 〈K] is

ideal irreducible. Then r(K) > 0.

Proof. Suppose first that [K〉 is ideal irreducible and r(K) = 0. Let K be the

algebraic ideal generated by K in the semigroup [K〉. Then each member in

K is of the form S1KS2 for some Si ∈ [K〉. It is clear that S1KS2 ≤ S1S2K.

Moreover, it follows from the remarks preceding this lemma that S1S2 ∈ [K〉

and r(S1S2K) ≤ r(K)r(S1S2) = 0. Therefore, r(S1KS2) = 0. It follows that

K consists of quasi-nilpotent compact operators. Hence, K is ideal reducible

by Theorem 2.2 and, therefore, so is [K〉 by Proposition 0.32. This contradicts

our assumption. Similar arguments work for the other case.

73



For the rest of this section, we assume that K is a non-zero com-

pact positive operator such that either [K〉 or 〈K] is ideal irreducible.

Then r(K) > 0 by the preceding lemma. We scale K so that r(K) = 1.

Theorem 3.5. Let P be the spectral projection of K for σper(K).

(i) There exist a quasi-interior point x0 > 0 and a strictly positive functional

x∗0 > 0 such that

Kx0 = x0 and K∗x∗0 = x∗0.

(ii) There exist disjoint positive vectors {xi}r1 and disjoint positive function-

als {x∗i }r1, where r = rank(P ), such that

P =
r∑
1

x∗i ⊗ xi; x∗i (xj) = δij, ∀ i, j.

(iii) K|PX is a permutation on {xi}r1 and K∗|P ∗X∗ is a permutation on {x∗i }r1.

In particular, there exists m ≥ 1 such that P = limnK
nm.

Proof. Suppose first that [K〉 is ideal irreducible. We apply Proposition 0.8 to

K. We claim that the nilpotent case in Proposition 0.8 is impossible. Indeed,

otherwise, cjK
nj converges to a non-zero finite-rank nilpotent operator N for

some nj ↑ ∞ and positive reals cj ↓ 0. Clearly, N is positive and compact.

Thus, Lemma 3.4 implies that [N〉 is ideal reducible. It is easy to verify that

[K〉 ⊂ [N〉. Hence, [K〉 is also ideal reducible, a contradiction. This proves the

claim. Using Proposition 0.8 again, we have P = limjK
nj for some nj ↑ ∞. In

particular, P > 0. It follows from 0.25 that the range PX is a lattice subspace

of X with lattice operations x
∗
∧y = P (x∧y) and there exist positive *-disjoint

vectors xi ∈ PX (i = 1, . . . , r) and x∗i ∈ X∗+ such that P =
∑r

1 x
∗
i ⊗ xi and

x∗i (xj) = δij.
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Being a spectral subspace, PX is invariant under K. Note that K|PX is

positive on the lattice subspace PX. Moreover, it follows from P = limjK
nj

that I|PX = limj(K|PX)nj . Thus, (K|PX)−1 = limj(K|PX)nj−1 is also positive

on PX. It is well known that a positive operator on Rr has a positive inverse

if and only if it is a weighted permutation on the standard basis with positive

weights, if and only if it is a direct sum of weighted cyclic permutations with

positive weights. Since σ(K|PX) = σper(K) ⊂ {z ∈ C : |z| = 1}, it is easily

seen that after appropriately scaling the basis vectors xi’s, K|PX is a permu-

tation on xi’s. We accordingly scale x∗i ’s so that we still have x∗i (xj) = δij

and P =
∑r

1 x
∗
i ⊗ xj. Note that Kxj = KPxj = PKxj =

∑r
i=1 x

∗
i (Kxj)xi

and that K∗x∗j = K∗P ∗x∗j = P ∗K∗x∗j =
∑r

i=1 x
∗
j(Kxi)x

∗
i . Hence, the matrix

of K∗|P ∗X∗ relative to {x∗i } is the transpose of the matrix of K|PX relative to

{xi}. It follows that K∗|P ∗X∗ is a permutation on x∗i ’s. Put x0 =
∑r

1 xi and

x∗0 =
∑r

1 x
∗
i . It is clear that Kx0 = x0 and K∗x∗0 = x∗0.

Since K|PX is a permutation on xi’s, we can take m ≥ 1 such that

(K|PX)m = I|PX . Denote by Q the spectral projection of K for σ(K)\σper(K).

Then r(K|QX) < 1. Thus (K|QX)n → 0 as n → ∞. It follows that Kmn =

(K|PX)mn ⊕ (K|QX)mn → I|PX ⊕ 0 = P as n→∞.

Since P =
∑r

1 x
∗
i ⊗ xi, it is easy to see that P is strictly positive if and

only if x∗0 is strictly positive and that P ∗ is strictly positive if and only if

x0 is quasi-interior. We now prove that both P and P ∗ are strictly positive.

It is easy to verify that the null ideal Null(P ) := {x ∈ X : P |x| = 0} is

a closed ideal invariant under [P 〉. Since [K〉 ⊂ [P 〉, we know Null(P ) is

also invariant under [K〉. From this it follows easily that Null(P ) = {0}.

Thus, P is strictly positive, and so is x∗0. Now for any T ∈ [K〉, we have

x∗0((TK −KT )x0) = x∗0(TKx0)− (K∗x∗0)(Tx0) = 0. By strict positivity of x∗0,
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we have KTx0 = TKx0 = Tx0. Thus, Tx0 ∈ ker(1 −K) ⊂ PX ⊂ Ix0 . This

implies that Ix0 is invariant under [K〉, hence Ix0 = X. It follows that x0 is

quasi-interior and thus P ∗ is strictly positive.

Since P is strictly positive, it follows from 0 = xi
∗
∧ xj = P (xi ∧ xj) that

xi ⊥ xj whenever i 6= j. We now prove that x∗i ’s are disjoint. Indeed, by

Riesz-Kantorovich formulas, for i 6= j,

0 ≤ (x∗i ∧ x∗j)(x0) = inf
0≤u≤x0

{x∗i (u) + x∗j(x0 − u)} ≤ x∗i (xj) + x∗j(x0 − xj) = 0.

Thus, (x∗i ∧ x∗j)(x0) = 0, yielding that x∗i ∧ x∗j = 0 since x0 is quasi-interior.

Now assume that 〈K] is ideal irreducible. We shall apply similar arguments.

In fact, we only need to modify the proof of strict positivity of P and P ∗. It

is easy to verify that the ideal IPX 6= {0} is invariant under 〈P ] and thus is

invariant under 〈K]. Therefore, IPX = X. On the other hand, we clearly have

IPX = Ix0 . Hence, Ix0 = X. It follows that x0 is quasi-interior and thus P ∗

is strictly positive. We claim that x∗0 is strictly positive. Suppose, otherwise,

x∗0(x) = 0 for some x > 0. Then x∗i (x) = 0 for 1 ≤ i ≤ r. Note that, for

any T ∈ 〈K], 〈(K∗T ∗ − T ∗K∗)x∗0, x0〉 = x∗0(TKx0) − x∗0(KTx0) = 0. Hence,

K∗T ∗x∗0 = T ∗K∗x∗0 = T ∗x∗0. In particular, T ∗x∗0 ∈ ker(1 − K∗) ⊂ P ∗X∗ =

Span{x∗i }r1. It follows that x∗0(Tx) = (T ∗x∗0)(x) = 0 for any T ∈ 〈K]. By

Proposition 0.32, 〈K] is ideal reducible, a contradiction. It follows that x∗0 and

P are both strictly positive.

Remark 3.6. Note that the operator K in Theorem 3.5 can be replaced with

a peripherally Riesz operator R > 0. The same proof goes along. One can

also deduce Proposition 2.34 from Theorem 3.5. Indeed, let T > 0 be an ideal

irreducible peripherally Riesz operator with r(T ) = 1. It suffices to prove that
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T |PX is a cyclic permutation on the disjoint vectors xi’s. Suppose, otherwise,

T |PX has a cycle of length m < r. Without loss of generality, assume that

T |PX has a cycle on x1, . . . , xm. Then the closed ideal I{x1,...,xm} is non-zero

and invariant under T . Since I{x1,...,xm} is disjoint from xr, it is proper. This

contradicts ideal irreducibility of T .

Modifying the following example, one can see that for the operator K in

Theorem 3.5, K|PX can be an arbitrary permutation.

Example 3.7. Consider T =

[
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]
and K =

[
0 1
1 0

1 0
0 1

]
. Then K ↔ T and

T is irreducible (in particular, [K〉 and 〈K] are both irreducible). Note also

that the peripheral spectral projection ofK is the identity and thusK|PX = K.

The following corollary shows that K has nice local behaviors.

Corollary 3.8. For any x > 0 and x∗ > 0, we have

0 < inf
n
‖Knx‖ ≤ sup

n
‖Knx‖ <∞,

0 < inf
n
‖Kn∗x∗‖ ≤ sup

n
‖Kn∗x∗‖ <∞.

In particular, we have limn‖Knx‖ 1
n = 1 for all x > 0 and limn‖Kn∗x∗‖ 1

n = 1

for all x∗ > 0.

Proof. Pick any x > 0. Since P is strictly positive, we have Px > 0. Therefore,

K|PX being a permutation implies that

0 < lim inf
n

∥∥(K|PX)nPx
∥∥ ≤ lim sup

n

∥∥(K|PX)nPx
∥∥ <∞. (3.1)

Let Q be the spectral projection of K for σ(K)\σper(K). Since (K|QX)n → 0,
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it follows from (3.1) and Knx = (K|PX)nPx+ (K|QX)nQx that

0 < lim inf
n
‖Knx‖ ≤ lim sup

n
‖Knx‖ <∞.

This implies, in particular, that K is strictly positive. Therefore, we have

0 < inf
n
‖Knx‖ ≤ sup

n
‖Knx‖ <∞.

Taking the n-th root, we have limn‖Knx‖ 1
n = 1 for all x > 0. The dual case

follows from a similar argument.

The following is immediate by Theorem 3.5 and Lemma 0.20.

Corollary 3.9. Every operator semi-commuting with K commutes with K.

In particular,

[K〉 = 〈K] = L+(X) ∩ {K}′.

We remark that the ideal irreducible case in Theorem 1.24 is an immediate

consequence of Corollary 3.9.

Corollary 3.10. For any 0 < S ↔ K, there exist λS ≥ 0, x > 0 and x∗ > 0

such that

Sx = λSx and S∗x∗ = λSx
∗.

Proof. Since SP = PS, the lattice subspace PX is invariant under S. It

is straightforward verifications that the matrix of S|PX relative to {xi} is

(x∗i (Sxj))i,j and the matrix of S∗|P ∗X∗ relative to {x∗i } is (x∗i (Sxj))j,i, the

transpose of (x∗i (Sxj))i,j. Since both matrices are positive, they have positive

eigenvectors for the spectral radius. It follows that there exist 0 < x ∈ PX

and 0 < x∗ ∈ P ∗X∗ such that Sx = r(S|PX)x and S∗x∗ = r(S|PX)x∗.
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The following example shows that we can not expect λS > 0.

Example 3.11. Let K be as in Example 3.7. Put S =

[
0 0
0 0

0 1
0 0

]
. Then

S ↔ K, but S is nilpotent.

3.3 More Jentzsch-Perron type theorems

Let T > 0 be ideal irreducible and K > 0 be compact. Corollary 3.10 implies

that if T ↔ K ↔ S and S > 0 then S has a positive eigenvector. We now

prove that if S ↔ T ↔ K then S also has a positive eigenvector.

The following proposition has been proved in Section 2.5 using semigroup

techniques. We now give a direct elementary proof.

Proposition 3.12. Let T,K > 0 be such that T is ideal irreducible, K is

compact and T ↔ K. Then there exist 0 < λ ≤ r(T ), a quasi-interior point

x0 > 0 and a strictly positive functional x∗0 > 0 such that

Tx0 = λx0, T
∗x∗0 = λx∗0; Kx0 = r(K)x0, K

∗x∗0 = r(K)x∗0.

Proof. Without loss of generality, assume ‖T‖ < 1. Then
∑∞

1 T n is strongly

expanding by Lemma 0.27. Hence, so is K̃ := (
∑∞

1 T n)K(
∑∞

1 T n). It follows

that K̃ is an ideal irreducible compact operator. By de Pagter’s Theorem,

r(K̃) > 0. Applying Theorem 1.1 to K̃, we obtain a quasi-interior point

x0 > 0 and a strictly positive functional x∗0 > 0 such that

ker
(
r(K̃)− K̃

)
= Span{x0} and ker

(
r(K̃)− K̃∗

)
= Span{x∗0}.

Since T ↔ K̃, these one-dimensional spaces ker
(
r(K̃)−K̃

)
and ker

(
r(K̃)−
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K̃∗
)

are invariant under T and T ∗, respectively. Thus, there exist λ, δ ∈ R

such that

Tx0 = λx0 and T ∗x∗0 = δx∗0.

Note that δx∗0(x0) = T ∗x∗0(x0) = x∗0(Tx0) = λx∗0(x0). Hence, δ = λ. Since

T > 0 can not vanish on quasi-interior points, we have r(T ) ≥ λ > 0. Since

K ↔ K̃, a similar argument yields 0 < µ ≤ r(K) such that

Kx0 = µx0 and K∗x∗0 = µx∗0.

By Krein-Rutman Theorem, r(K) is an eigenvalue of K. Thus, µ = r(K) by

Lemma 0.21.

The following is immediate by Proposition 3.12 and Lemma 0.20.

Corollary 3.13. Under the conditions of Proposition 3.12, every operator

semi-commuting with T commutes with T . In particular,

[T 〉 = 〈T ] = L+(X) ∩ {T}′.

Corollary 3.14. Under the conditions of Proposition 3.12, for any S ∈ {T}′,

Sx0 = λSx0 for some λS ∈ R. If, in addition, S > 0, then r(S) > 0.

Proof. By Proposition 3.12 and Lemma 1.9, we have ker(λ− T ) = Span{x0}.

Since S ↔ T , we know Sx0 ∈ ker(λ − T ). Thus, Sx0 = λSx0 for some

λS ∈ R. If S > 0 then Sx0 > 0 since x0 is quasi-interior. It follows that

r(S) ≥ λS > 0.

Remark 3.15. Suppose X is order continuous. Then for the operator T in

Proposition 3.12, we have ker(λ− T ∗) = Span{x∗0} by Proposition 1.10. Thus
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if R ∈ {T ∗}′, then Rx∗0 = λRx
∗
0 for some λR ∈ R. Note also that x∗0 is a weak

unit of X∗ by Proposition 0.18. Hence, if, in addition, R is non-zero, positive

and σ-order continuous, then λR > 0. In particular, r(R) > 0.

Remark 3.16. Sirotkin in [44] proved a Lomonosov-type theorem for positive

operators on real Banach lattices, which implies that if T > 0 is non-scalar,

K > 0 is compact and S ↔ T ↔ K, then S has a non-trivial invariant

closed subspace; cf. [44, Corollary 2.4]. Proposition 3.12(3.14) implies that, in

such a chain, if S is also non-scalar, then either T has a non-trivial invariant

closed ideal, or S has a non-trivial hyperinvariant closed subspace (namely,

the eigenspace of S for λS).

We now prove that if T ↔ S ↔ K then S also has a positive eigenvector.

Proposition 3.17. Suppose T > 0 is ideal irreducible and K > 0 is compact.

Then there exist a quasi-interior point x0 > 0 and a strictly positive functional

x∗0 such that for any S ∈ L(X) with T ↔ S ↔ K, one has

Sx0 = λSx0, S∗x∗0 = λSx
∗
0,

for some λS ∈ R.

Proof. Without loss of generality, assume ‖T‖ < 1. As before, it is easily seen

that K̃ := (
∑∞

1 T n)K (
∑∞

1 T n) is a compact ideal irreducible operator. Thus

by Theorem 1.1, there exist a quasi-interior point x0 > 0 and a strictly positive

functional x∗0 > 0 such that

ker
(
r(K̃)− K̃

)
= Span{x0} and ker

(
r(K̃)− K̃∗

)
= Span{x∗0}.
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Since S ↔ K̃, these one-dimensional spaces are invariant under S and S∗,

respectively. Now the proposition follows easily.

The following is immediate by Proposition 3.17 and Lemma 0.21.

Corollary 3.18. Under the conditions of Proposition 3.17, if S > 0, then

r(S) ≥ λS > 0, lim infn‖Snx‖
1
n ≥ λS for any x > 0, and lim infn‖Sn∗x∗‖

1
n ≥

λS for any x∗ > 0. Moreover, λS = r(S) if r(S) is an eigenvalue of either S

or S∗.

Corollary 3.18 clearly improves Theorem 3.3.

Remark 3.19. In Propositions 3.12 and 3.17, the operator K can also be

replaced with a peripherally Riesz operator R > 0. Simply note that Proposi-

tion 0.8 yields a compact operator to take the position of R.

We end this section with a few interesting criteria on ideal reducibility

improving Theorems 1.7 and 3.2 when K > 0 is compact. The following is

immediate by Lemma 3.4, Theorem 3.5 and its corollaries.

Proposition 3.20. Let K > 0 be compact. Then [K〉 and 〈K] are both ideal

reducible if any of the following are satisfied:

(i) r(K) = 0, or lim infn‖Knx‖ 1
n < r(K) for some x > 0, or lim infn‖Kn∗x∗‖ 1

n <

r(K) for some x∗ > 0;

(ii) there exists S ∈ L(X) such that either SK > KS or SK < KS.

Recall that if T, S > 0 are semi-commuting then r(TS) ≤ r(T )r(S).

Proposition 3.21. Suppose T,K > 0 are semi-commuting and K is compact.

Then T is ideal reducible if any of the following are satisfied:
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(i) r(K) = 0, or lim infn‖Knx‖ 1
n < r(K) for some x > 0, or lim infn‖Kn∗x∗‖ 1

n <

r(K) for some x∗ > 0;

(ii) r(TK) = 0, or lim infn‖T nx‖
1
n < r(TK)

r(K)
for some x > 0, or lim infn‖T n∗x∗‖

1
n <

r(TK)
r(K)

for some x∗ > 0;

(iii) there exists a quasinilpotent operator S > 0 semi-commuting with T ;

(iv) there exists S ∈ L(X) such that ST < TS or ST > TS.

Proof. (i) is clear by Proposition 3.20. For the other assertions, we prove by

way of contradiction. Assume that T is ideal irreducible. Then TK = KT

by Theorem 1.24. It is easy to verify that TK > 0. Since TK ↔ T , we have

r(TK) > 0 by Corollary 3.14. Replacing K with TK in Proposition 3.12, we

have

Tx0 = λx0, T
∗x∗0 = λx∗0; TKx0 = r(TK)x0, (TK)∗x∗0 = r(TK)x∗0.

Applying Lemma 0.21 to TK, we have, for any x > 0,

r(TK) = lim
n
‖(TK)nx‖

1
n ≤ r(K) lim inf

n
‖T nx‖

1
n .

The dual case can be proved similarly. This proves (ii). (iii) follows from

Corollaries 3.13 and 3.14. (iv) follows from Corollary 3.13.

3.4 Band irreducible analogues

Many results in Sections 3.2 and 3.3 remain valid if we replace ideal irreducibil-

ity with band irreducibility and assume additionally that all the operators and
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functionals involved are (σ-)order continuous.

We start with the modifications for Section 3.2. For this purpose, we

need a few technical lemmas. The first one is a band irreducible version of

Lemma 3.4. The proof is analogous except that instead of Theorem 2.2, we

use Proposition 2.38.

Lemma 3.22. Let K > 0 be a compact operator and S a band irreducible

semigroup of order continuous operators containing K. Suppose S is con-

tained in either [K〉 or 〈K]. Then r(K) > 0.

The second one is a semigroup version of Lemma 1.23.

Lemma 3.23. Let N > 0 be an order continuous nilpotent operator and S

a semigroup of order continuous operators. Suppose S is contained in either

[N〉 or 〈N ]. Then S is band reducible.

Proof. Suppose Nk > 0 but Nk+1 = 0 for some k ≥ 1. Replacing N with Nk,

we may assume N2 = 0. As in the proof of Lemma 1.23, it is straightforward

to verify that if S ⊂ [N〉 then Null(N) is a nontrivial band invariant under

S and if S ⊂ 〈N ] then the band generated by the range of N is nontrivial

and invariant under S .

The third one handles order continuity of limit operators.

Lemma 3.24. Suppose that T ∈ L+(X) is order-to-norm continuous (i.e. T

maps order null nets to norm null nets). Then every operator in R+T is

order-to-norm continuous (in particular, order continuous).

Proof. It suffices to consider operators in the asymptotic part of R+T . Suppose

S = limj bjT
nj for some positive reals (bj) and strictly increasing (nj). Pick
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any net (xα) such that xα ↓ 0. By passing to a tail, we may assume that

(xα) ⊂ [0, x] for some x > 0. Fix any ε > 0. Pick j such that ‖S− bjT nj‖ < ε.

Then ‖Sxα‖ ≤
∥∥S− bjT nj

∥∥‖xα‖+
∥∥bjT njxα

∥∥ ≤ ε‖x‖+
∥∥bjT njxα

∥∥. Therefore,

lim supα‖Sxα‖ ≤ ε‖x‖. It follows that Sxα → 0.

The last one is an analogous version of Lemma 1.11. The proof is similar

and thus is omitted.

Lemma 3.25. Let K > 0 be order continuous and AM-compact.

(i) K is order-to-norm continuous.

(ii) If K∗x∗ = λx∗ for some λ 6= 0 then x∗ is order continuous.

Now we replace the common assumption in Section 3.2 with that either

[K〉 or 〈K] contains a band irreducible semigroup S of order contin-

uous operators containing K. The reason of this assumption is that the

super commutants need not consist of order continuous operators even when

K is order continuous.

Observe that now we still have r(K) > 0 by Lemma 3.22. As before, we

scale K so that r(K) = 1.

3.26. The other modifications for Section 3.2 are listed below.

• Theorem 3.5 remains valid except that x0 is now a weak unit and x∗0 is

order continuous and strictly positive.

The proof goes along similar lines. We claim as before that the nilpotent

case in Proposition 0.8 is impossible. Indeed, otherwise, N would be a

positive nilpotent operator such that S ⊂ [N〉 or S ⊂ 〈N ] according to

S ⊂ [K〉 or S ⊂ 〈K], respectively. By Lemma 3.25, K is order-to-norm
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continuous. Thus, N is order continuous by Lemma 3.24. It follows from

Lemma 3.23 that S is band reducible, a contradiction.

That x∗0 is order continuous follows from K∗x∗0 = x∗0 and Lemma 3.25.

All the other arguments work as before except that we can not expect

P ∗ to be strictly positive now. It is only strictly positive on σ-order

continuous positive functionals.

• In Corollary 3.8, we need to assume that x∗ is σ-order continuous.

• In Corollary 3.9, we only have that every σ-order continuous operator

semi-commuting with K commutes with K.

It deserves mentioning that for the super right-commutant we can simply

take S = [K〉. It follows from the following lemma which is an extension of

[1, Lemma 9.30].

Lemma 3.27. Let K > 0 be compact and order continuous. If K is strictly

positive (in particular, [K〉 is band irreducible), then [K〉 consists of order

continuous operators.

Proof. Let K be strictly positive. Suppose T ∈ [K〉. Take xα ↓ 0 and let y

be such that Txα ≥ y ≥ 0 for all α. By Lemma 3.25, K is order-to-norm

continuous. Thus, ‖Kxα‖ → 0 and therefore, ‖TKxα‖ → 0. It follows that

‖KTxα‖ → 0. Therefore, Ky = 0. Since K is strictly positive, we have y = 0.

This proves T is order continuous. It remains to show that if [K〉 is band

irreducible then K is strictly positive. Indeed, otherwise, Null(K) would be a

nontrivial invariant band of [K〉.

The modifications for Section 3.3 are very minor and are listed below.
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3.28. • In Proposition 3.12, we need to assume that T > 0 is σ-order

continuous and band irreducible and K > 0 is σ-order continuous and

compact. Now x0 is a weak unit and x∗0 is strictly positive and order

continuous.

• In Corollary 3.13, we only have that every σ-order continuous operator

semi-commuting with T commutes with T .

• In Corollary 3.14, the “in addition” case extends as long as S is σ-order

continuous.

• In Proposition 3.17, we need to assume that T > 0 is σ-order continuous

and band irreducible and K > 0 is σ-order continuous and compact.

Now x0 is a weak unit and x∗0 is strictly positive and order continuous.

• In Corollary 3.18, we need to assume that x∗ is σ-order continuous.

For the dual case in the “moreover” part, we only have that if r(S)

is an eigenvalue of S∗ with a σ-order continuous eigenfunctional then

λS = r(S).

Note that S is automatically order continuous in this case. Indeed, it

is immediate by [1, Lemma 9.30] since S commutes with the σ-order

continuous, strictly positive and compact operator K̃.

• In Proposition 3.20, we replace the super-commutants by a semigroup of

order continuous operators which contains K and is contained in one of

the super-commutants. In (i), we assume x∗ > 0 is σ-order continuous.

In (ii), we assume S is σ-order continuous.
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• In Proposition 3.21, T is band reducible if all the operators and func-

tionals involved are assumed to be σ-order continuous.
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