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ABSTRACT

In this thesis, some important questions concerning the global behaviour of
the nonlinear dissipative dynamical systems in R™ are considered. These include
the correlation between geometric properties (e.g. the Hausdorff dimension) of the
global attractor, whose existence characterizes the dissipativity, and the dynamical
behaviour of the system; lower and upper estimation for the Hausdorff dimension
of the global attrractor; higher dimensional criteria of Bendixson and Dulac for the
nonexistence of periodic solutions, and the problem of global stability. Dynamical
systems having first integrals are also considered, in which case results are implied by
much less restrictive conditions than hitherto possible, the relaxation being directly
related to the number of independent first integrals. As an application of the general
theory, the global stability of the endemic equilibrium of the SEIRS models with
rather general nonlinear incidence rate in Epidemiology, which has been conjectured

and remained open since 1986, is completely solved.
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INTRODUCTION

In this introduction we give a brief outline of the thesis. We would like to do so
by minimizing the amount of technizalities involved so that we may emphasize the
various aspects which motivate the “hesis. More detailed and specific introductions
will be given at the beginning of each chapter.

The long-time behaviour of dissipative dynamical systems is characterized by
the presence of a global attractor A towards which all trajectories converge. This
is the largest compact invariant set in the phase spice and thus contains the most
important information regarding the asymptotic behaviour of the system.  The
structure of A may be very complicated even for a 3- dimensional system of ordi-
nary differential equations with quadratic nonlincaritics as in the case of the Lorenz
system (see [8]). Considerable evidence from numerical analysis suggests that the
Lorenz attractor may be a fractal set — a sct whose Hausdorff and topological di-
mensions are different(see [20]). The complex structure of the global attractor is at
least partially responsible for the ‘chaotic’ behaviour of the Lorenz system and some
other dissipative systems. It is therefore of great interest to study the implications
of the geometry of A on the dynamical behaviour of such systems.

Two monographs, Hale [5] and Temam [21], on dissipative dynamical systems
have appeared recently. Both of them primarily deal with systems in infinite di-
mensional systems such as systems generated from differential equations with delays
and from partial differential equations, where the structure of the global attractor
becomes more complicated due to the infinite dimensionality of the phasc space.
The existence anc different aspects of the global attractor are exploited, its finite
Hausdorff dimensionality is proved in spite of the fact that the phase space is of
infinite dimension. At about the same time, considerable cfforts have heen made to

restrict the infinite dimensional system onto a finite dimensional invariant manifold
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2 INTRODUCTION

(the inertial manifold) which contains the global attractor and attracts exponen-
tially the orbits outside, and thus transform the problem into a finite dimensional
one (sce [2]). Therefore it is of great importance to iivestigate the global behaviour
of finite dimensional dissipative systems through its global attractor. It is in this
arca, this thesis tries to make a substantial contribution.

There are two types of dynamical systems that are of interest to us: the discrete
system {T*}ren generated from the iteration of a nonlinear mapping T': U — R"
where U is a open set of R™ , and the continuous systems {@¢}:cr (or the flow)

generated from an autonomous system of ordinary differential equations
e = f(z) (0.1)

where the mapping z — f(z) € R" is C! in some open set D of R". The
cmphasis is on the latter. It is known that these two types of dynamical systems
can behave quite differently. On the other hand, the time one map T = ¢; of
the flow ¢; generates a discrete dynamical system. Therefore any result on the
discrete systems can be readily applied to flows and hence to ordinary differential
cquations.

We start the thesis by introducing, in Chapter I, the definitions of these two
types of systems and the related terminologies. After reviewing the usual concepts
for orbits, limit sets and invariant sets, we introduce dissipativity through the exis-
tence of a compact absorbing sct, and then define the global attractor as its w-limit
set. Some basic properties of the global attractor such as connectivity, attractivity
and stability are also discussed. The r:ain purpose of this chapter is to lay the
groundwork and provide an easy reference for the development in later chapters.
Most of the material in this chapter can be found in either [5] or [21].

Then, in Chapter I, we present a result which establishes a correlation between
the Hausdorff dimension dimpyA of the global attractor A and the asymptotic
behaviour of the dissipative system. Under certain connectivity assumptions on the
domain U of the mapping T , we prove that if dimygA < m+1 for some integer

m > 0, the system {T*}ien can not possess certain m-dimensional ctructures
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(the normal m-boundaries ) invariant under T or otherwise. For example when
m = 1, if the domainof T issimply connected, and dimyd < 2, then 4 contains
no rectifiable Jordan curves, invariant or otherwise. This is a generalization of a
result of R. A. Smith [17], who showed that A can not contain an invariant Jordan
curve.

This type of results can be useful in two different ways: on the one hand,
it gives us a way of obtaining lower estimates for the Hausdorff dimension of the
global attractor which is a well-known difficult problem. Suppose that D is convex
or there is a convex bounded absorbing set. By detecting the existence in 4 of a
normal m-boundary, invariant or not, our results will imply that dimyA > m+1.
The only other approach to this problem we are awarc of is given by R. Temam and
his colleagues (see [21], Chapter VII). Their method is to estimate the dimension of
unstable manifolds of hyperbolic equilibria; on the other hand, these results, when
applied to differential equations, give a weak condition precluding the existence of
some invariant structures such as periodic orbits and higher dimensional invariant
tori. The case m = 1 will be used in Chapter IV to derive Bendixson’s criterion
in R".

Our next subject deals with the problem of global stability for autonomous sys-
tem of ordinary differential equations. This is covered in Chapters IIL, IV, and V.
The stability problem is the most fundamental in the qualitative studies of differen-
tial equations. Let = = z(t,zo) denote a solution to (0.1) such that z(0,zq) = zq.
Then z(t,z0) is said to be stable, if for all Z sufficiently closc to zg, the solu-
tion z(t,z) stays arbitrarily close to z(t,zo) for all ¢ > 0. Sometimes a stronger
version, asymptotical stability, is useful which also require that all such nearby so-
lutions z(t,z) satisfy z(¢,Z) — z(f,z¢) — 0 as t — oco. It is of great interest
both in theory and in practice that we find out how far away Z can be from zq
so that these convergence properties of z(t,z) still hold. If they hold in the region
being considered, we say z(t,zo) is globally asymptotically stable, or simply glob-
ally stable. Most of the interest so far is on the global stability of an equilibrium

solution, namely a solution satisfying z(¢,z¢) = zo for all ¢, which is the most
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simple case. Even in this simple case the question is still very difficult to solve,
in part because of the lack of tools. The most common method is construction of
the Lyapunov functions. A Lyapunov function is a real valued function z — V(z)
which decr-ases along each solution to (0.1). The application of this very useful
idea is often hindered by the fact that, in many cases, Lyapunov functions are very
difficult to construct and there is practically no general way such a function may
be constructed.

Poincaré and Bendixson found a different route to this problem when the di-
mension of the system is 2. In what is now known as the Poincaré - Bendixson
theory (sec [6]), they proved that, when n =2, the omega limit set of any bounded
trajectory to (0.1) cither contains an equilibrium or is a periodic orbit. Therefore,
if # € D is the unique equilibrium of (0.1), which is also locally stable and (0.1)
is dissipative, to show Z is globally stable in D is equivalent to show (0.1) has
no nonconstant periodic solutions. Bendixson [1] also shows that if divf <0 ev-
erywhere in R?, then (0.1) has no nonconstant periodic solutions. This is now
what we call the Bendixson’s criterion. Dulac [4] generalized this to the following:
if D is asimply connecicd and div(af) <0 in D for some real-valued function
a >0, then (0.1) has no closed path in 7. Note that the Dulac’s conditions pro-
vide more flexibility by introducing the arbitrary function a. Therefore, for planar
systems, the problem of global stability can be solved by verifying that conditions
of Bendixson or Dulac hold in D.

Unfortunately, the theory of Poincaré and Bendixson does not hold for general
autonomous systems of dimension higher than 2, where more complicated dynam-
ics are possible and even chaos may be present, as in the case of the Lorenz system.
A lot of effort has been spent on special types of systems which behave like or can
be reduced to planar systems. For example, M. Hirsch and H. L. Smith proved that
3-dimensional monotone systems satisfy the Poincaré-Bendixson property (see the
survey paper of H. L. Smith [19] for references). R. A. Smith [18] has given some
conditions under which a n-dimensional system can be projected onto a planar

system. However, results for general systems are very scarce.
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If we look at the problem a little more closely, we can see that the first thing we
need to do in order to show global stability of the unique equilibrium is to prove the
nonexistence of nonconstant periodic solutions, since they are bounded solutions
which do not approach the equilibrium. This requires generalizations of the criteria
of Bendixson and Dulac to systems of arbitrary dimension. The research on this line
started only very recently. Works with full gencrality are due to R. A. Smith [17] and
J. S. Muldowney [10]. Smith proves that if A\ + A2 < 0 everywhere in a simply
connected open set D, where \; > --- > A\, arc ecigenvalues of %(%y + %IL),
then no piece-wise smooth Jordan curves can be invariant with respect to (0.1).
Muldowney proves a similar result under a more general condition [l.(g-%['z]) <0 in
D, where gf[z] is the second additive compound matrix of the Jacobian matrix
of
oz

, and p is the Lozinskii measure, or the logarithmic norm, corresponding to

a general vector norm in RN, N = ('2') If the norm is cuclidean, Muldowney’s
condition gives rise to that of Smith’s. When n = 2, both their results reduce to
Bendixson'’s criterion.

The second obstacle to proving the global stability is that, for higher dimen-
sional systems, the omega limit set of a bounded trajectory which contains no
equilibria may be more complicated than a Jordan curve. Thus a bounded trajec-
tory may not converge to the unique equilibrium Z cven in the absence of periodic
orbits. The insight of R. A. Smith shows us his higher dimensional generalization of
Bendixson’s criterion implies all bounded trajectories converge to certain equilibria.
In particular, if there is a unique equilibrium Z, Smith’s condition A; + A2 < 0
holds everywhere in the simply connected region D would imply that & is globally

stable in D. The proof of Smith’s result uses the C' Closing Lemma of Pugh.

Smith’s result will be expanded and generalized in this second part of the the-
sis. Our first goal is to obtain, in Chapter IV, higher dimensional generalizations
of Dulac’s criteria. Since this is a problem of great importance for its own right,
we discuss it in the context of both dissipative and nondissipative systems. For
dissipative systems, this is done by deriving concrete conditions which imply the

Hausdorff dimension of the global attractor dimyA < 2, by our main result in
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Chapter II. We devote the whole Chapter III to the upper estimation of dimpA.
For nondissipative systems, this is achieved by considering general functionals de-
fined on the rectifiable 2-surfaces with the same boundary, and their evolution
properties under the dynamics of (0.1). This is a generalization of Muldowney’s
method, which considers the areas of such surfaces. We prove that if D is simply
connected, and if for some N x N matrix-valued function = — A(z) which is
nonsingular and C! in D, and for some Lozinskii measure g in RN, N = ('2'),

aft
p(AfA™! + AE‘; AT <o (0.2)

holds everywhere in D, where A; denotes the directional derivative of A in the
direction of f, then no simple closed rectifiable curves can be invariant with respect
to (0.1). In particular, under this condition, (0.1) can not have orbits of the following
types: (a) periodic orbits; (b) homoclinic orbits; (c) a pair of heteroclinic orbits of
the same cquilibria; (d) heteroclinic cycles, since each case will give rise to a simple
closed invariant curve which is also rectifiable. When A = I, (0.2) reduces to the
condition of Muldowney. We would also like to note that the theory of compounded
cquations, which has matured only recently through the efforts of Schwarz [16],
Muldowney [10], [11], [12], and Li and Muldowney [7], has been instrumental in this
study. Then In chapter V, using Pugh’s C! Closing Lemma [13], [14], [15] and the
Centre Manifold Theorem [6], we prove that the Dulac type condition (0.2) and its
weaker forms imply that bounded trajectories converge to equilibria. Moreover, we
prove that these conditions also have severe restrictions on the structure of compact
invariant sets. These Autonomous Convergence Theorems, following R. A. Smith,
cnable us to develop a new geometric approach to the problem of global stability |
for higher dimensional autonomous systems of ordinary differential equations.

In the third part of the thesis, which is contained in Chapter VI, we discuss
autonomous systems having first integrals. Existence of first integrals often indi-
cates the presence of certain physical conservation laws manifested in the system.
Mathematically speaking, a first integral of (0.1) is a nonconstant real-valued func-

tion H(z) which is constant along each solution. Thus every solution to (0.1)
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stays on a lower dimensional invariant manifold defined by an equation H(r) = ¢
with ¢ being determined by its initial value. This means that, in the presence
of first integrals, systems in R"™ are only capable of displaying behaviour which
is typical of systems in lower dimensions. We prove that, in this case, the results
obtained in earlier chapters can now be proved under considerably less restrictive
conditions. For example, the Bendixson Criterion ;z(%fm) for gencral systems in
Chapter IV can be replaced by u(g—f[rnl) if the system has r independent first
integrals. This result will play an important role in Chapter VII where we resolve
some hitherto unsolved problems in Mathematical Biology.

A traditional approach to systems with first integrals is to employ the equation
H(z) = ¢ to reduce the number of variables, and thus reduce the dimension of the
problem. This often relies critically on the choice of coordinates in the invariant
manifold. In our study, the focus is on the implications for the lincar variational
equations. This leads to some new discoveries of the underlining geometry and novel
techniques.

A conscious effort has been made throughout the thesis to illustrate the gen-
eral theory by meaningful examples. Different aspects of the Lorenz system are
investigated in the corresponding chapters, making new contributions to the under-
standing of its complicated dynamics. A variety of concrete models from different
areas are given when each new class of systems is introduced in Chapter VI, pro-
viding motivations and insights. Moreover, in Chapter VII, our new gcometric
approach to global stability developed in Chapters III, IV, and V, as well as the
study on the systems with first integrals in Chapter VI is applied to Mathematical
Biology, where we are able to resolve the question of global stability of some epi-
demiological models, which has been a long-standing open problem in this arca. We
have reason to believe that this new approach will also find important applications
in other areas.

To conclude this introduction, we would like to make some notes on the no-
tations used in the thesis: capital letters A, B, D, X, Y, etc. are usually used

to denote matrices or sets. When there is a conflict between matrices and sets,
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letters for scts are bold-faced. For example, the global attractor is denoted by A
in Chapters I and II, but is denoted by a bold face A in Chapters III and IV, and
the letter A is reserved for matrices; lower case letters a, b, z, y, etc usually
denote variables in the phase space; calligraphic letters A, S, etc. are exclusively
reserved for functionals.

The sections are numbered within each chapter and subsections within each
section. For example, §6.2 represents Section 2 in Chapter VI, and §4.2.1 indicates
the first subsection of Section 2 in Chapter IV. Theorems, propositions, lemmas, and

corollaries are numbered together within each section. For example, Theorem 3.4.2

is in the section §3.4 of Chapter III
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CHAPTER !

DISSIPATIVE DYNAMICAL SYSTEMS

Since dissipative dynamical systems are the main subject of investigation in
this thesis, it is necessary to lay the groundwork before we proceed to detailed
discussions. This will be the purpose of the present chapter. We will carefully
define and discuss some key concepts and terminologies that are closely related to
later discussions and will be referred to throughout.

The most important concept — the concept of dissipativeness — is introduced
through absorbing sects, and dissipative dynamical systems are characterized by the
existence of a global attractor — the maximal compact invariant set which attracts
all bounded sets. Much attention will be devoted to some basic properties of the
global attractor for the simple reason that most interesting phenomena appear on
or near the global attractor for dissipative systems (See Hale [1] and Temam [4]).

Two types of dynamical systems are of interest: (a) discrete dynamical systems
generated by iteration of mappings from R™ to R" (discussed in the section §1.1);
(b) continuous dynamical systems generated from autonomous ordinary differential
cquations in R™ (discussed in the section §1.2). Even though the two are closely
interrelated, they can behave very differently. This is the main reason that we opt
to treat them separately. A drawback of such a treatment is that discussions in the
section §1.1 and §1.2 appear parallel. We adopt this approach for easy rcference
later.

A periodic system of ordinary differential equation in R" can generate either
a discrete dynamical system by the Poincaré map or a continuous dynamical system
on a product space, which is also called the skew-product flow (See Hale [1]). Since
both approaches will be employed in later chapters, they are discussed in full detail
in the section §1.3.

In section §1.4, as an illustration, the Lorenz model is analyzed. We will show,
Typeset by ApS-TEX
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by finding a bounded absorbing set, that the Lorenz equation is dissipative and
thus possesses a global attractor. This model will be used as an example in later

chapters where different aspects of this Lorenz attractor are discussed.

§1.1. Discrete Dynamical Systems

In this section we discuss the discrete dynamical system {T*}ren generated from
the iteration of a mapping T : R* — R". We define some key concepts and termi-
nologies such as orbits, limit sets, invariant sets, attracting, absorbing, etc. We focus
on the concepts of dissipativencss and global attractor as well as basic properties
of the global attractor such as existence, connectivity, stability and attractivity.

Suppose U C R™ is an open sct, and T : U — R" is a continuous mapping
such that T (U) C U. Let T° = id, the identity mapping in R". Define recur-
sively TF = T(T*-1), k > 1. We call {T*}32, the discrete dynamical system
generated by the mapping T.

For each z € T, the positive semi-orbit % (z) through z is defined as
A*(z) = Uk>oT*z. A negative semi-orbit through z is a sequence {zj + 7=
0,-1,—2,---} such that z¢ =z, Txj—y =z; forall j. An orbit through = isa
sequence {z; : j =0, £1, 2, ...} suchthat zo =z, Tz ==z; for all j.

Since T is not assumed to be one to one, there may be several orbits through
the same point. Moreover, since T(U) may not be equal to U, ncgative semi-orbits
of some points may not even exist.

A subset S C U is said to be invariant under T if, for cach z € S, a
complete orbit through z exists and is contained in S. It is positively invariant
under T if 4% (z) exists and is contained in S for all z € S. It is casy to scc
that S is positively invariant if and only if T'S C S; it is invariant if and only if
TS = S. The following are examples of invariant sets:

(1) A fixed point {zo}; namely Tz = 0.
(2) The periodic orbit {T*zo : 1 < k < m} of a m-periodic point Zg;

namely T™ 2y = zo.
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(3) A full orbit of any point.

The most important invariant sets are limit sets. For any subset B C U, the

w-limit set w(B) and the a-limit set a(B) of B are defined as
w(B) = Njxocl Ug>; T*B, (1.1)

and
a(B) = Nj>eclUr>; H(k, B), (1.2)
respectively, where
H(k,B) = UzepH(k,z)
and

H(k,z) = {y € U : thercis a negative semi-orbit {zr_;}72,

through z such that z_x =y }.

We characterize the limit sets in the following proposition whose proof can be

found in [1] or [4].
Proposition 1.1.1. Suppose z € U and B C U. Then

(1) y € w(z) if and only if there exists a sequence of integers nj — oo such
that T"z — y as nj — oo.

(2) y € a(z) if and only if there exists a sequence of integers n; — oo and a
sequence of points y,; suchthat T%y,, = r and y,; -y as j — oo.

(3) y € w(B) if and only if there exists a sequence of integers n; — co and a
scquence of points y,; € B such that T"y,, —y as n; — oo.

(4) y € «(B) if and only if there exists a sequence of integers n; — oo and a
sequence of points yn; € U such that T"%y,, € B forall n; and yn; — y

as nj — oo.
Let |-]| denote the vector norm in R™. Define

d(z,4) = inf o —y| (1.3)



I. DISSIPATIVE DYNAMICAL SYSTEMS 13

and
d(B,A) = supd(x, 4), (1.4)
r€B

for any two subsets A and B of R". A subset A is said to attract subset B if
d(T"(B),A) -0 as n — oco. (1.5)

The following lemma establishes the invariance of limit scts. For its proof, we

refer the reader to [1] or [4].

Lemma 1.1.2. Suppose B is a nonempty subset of U such that U.epvy*(x)
is bounded. Then w(B) is nonempty, compact, and invariant under T. More-
over, w(B) attracts B. If Ur>oH(k,B) is nonempty and bounded then o(B)

is nonempty, compact and invariant under T.

Corollary 1.1.3. For any z € U, if v*(z) is bounded then w(x) is noncmpty,
compact, and invariant; if Ux>oH(k,x) is nonempty and bounded then «o(x) is

nonempty, compact, and invariant.

A subset B C B C U is said to be absorbing if each compact subset By of U
satisfies T*(Bo) C B for all sufficiently large k. We say the discrete dynamical
system {T"}i‘;l is dissipative, or simply T 1is dissipative, if there is in U a
bounded absorbing set.

A global attractor for the mapping T is a nonempty compact sct A C U such
that A is invariant under T and attracts every compact subset of U. It follows
that such a set is necessarily unique. Moreover, it is the maximal compact invariant

set in U.

Remark. For dynamical systems in a space of infinite dimension, an absorbing
set is usually required to ‘absorb’ every bounded subset; namely, the subset DBy
in the definition is required to be bounded (see [1] and [4]). Since compact set is
necessarily bounded, this definition is stronger than the one we give here, when
the phase space is infinite dimensional. Since R" is locally compact, the two

definitions are equivalent in the context of the present chapter when U = R"™.
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However, when U is a bounded subset of R", our definition is more appropriete.

The same remark also applies to the global attractor.

Suppose that the global attractor A for T exists. Then T is dissipative;
namely, there is a hounded absorbing set B C U. In fact, if V C U is a neigh-
bourhood of A, then for each compact subset By C U, T*(B) C V when k
sufficiently large. Therefore V' is absorbing.

Converscly, as the following result demonstrates, a dissipative system always

possesses a global attractor.

Theorem 1.1.4. Suppose that T Is dissipative with a bounded absorbing set B.
Then A = w(B) is the global attractor for T.

Proof. First of all, since B is bounded, B is compact. B attracts B. Thus
v*(B) is bounded. It then follows from Lemma 1.1.2 that w(B) is nonempty,
compact and invariant. Moreover, w(B) attracts B. The orbit of every compact
subset of U cventually enters and stays in B and is therefore attracted by w(B)

as well. |

Remarks.

(i). The above discussion demonstrates that the dissipativity of T can be charac-

terized by the existence of the global attractor.

(ii). If B is the absorbing set in U, we actually have A = w(B) = N, T*(B).
In fact, since T%(B) C B for all sufficiently large %, we know w(B) C B. On the
other hand, it follows from T*(B) C clU;>k T/(B) that N, T*(B) C w(B).

(iii). The global attractor A = w(B) does not depend on the particular adsorbing

set B because of its attractivity.
Our next result concerns the connectivity of the global attractor.

Proposition 1.1.5. If there is a bounded connected absorbing set, then the global

attractor is also connected.
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Proof. Suppose B is a bounded absorbing set and is connected. Then A4 =
w(B) C B is the global attractor from Theorem 1.1.4. If 4 is not connected,
then there are open sets V and W suchthat VNW =0, A CVUW aud
ANV # 0, ANW # 0. By the continuity of T, T*(B) is connected for all & > 0.
Moreover, ¥ NT*(B) # 0 and WNT*B) # @ since AC THB) for all k> 0.
Therefore there is a z € T* (B)\ VUW. The sequence {rp}f, is contained in
B and thus is bounded and we may assume that 2y — r € A = w(B). Clearly

z ¢ U UV, which is a contradiction. O

In what follows, we will show that the global attractor, whenever it exists,
has the strongest stability. We say an invariant sct KX C U is stable if, for any
neighbourhood V of K, there is a neighbourhood W of K such that T*(W) C
V forall £>0. K is asymptotically stable if it is stable and attracts every point
in a neighbourhood. We say K is uniformly asymptotically stable if it is stable and

attracts a neighbourhood.

Remarks.

(i). In the above definition of stability for compact invariant set K, let V' =
Uk>oT*(W); then V' CV and TV' C V. Therefore, the stability of K can be
characterized as that each neighbourhood V of K contains a necighouhood V'

which is positively invariant.

(i1). As a result of (i), for a stable compact invariant set K, if K attracts a point
%, it attracts a neighbourhood of Z. Therefore, by continuity of T, K attracts
every point of U implies K attracts every compact subset of U . Since R" is
locally compact, this implies K attracts a neighbourhood. We therefore arrive
at an important conclusion, for a compact invariant set, asymptotic stability is
equivalent to uniformly asymptotic stability. It is also very important to note that
this equivalence no longer holds for dynamical system in an infinite dimensional
space (see Hale [1]). This is one of the remarkable difference hetween dynamical

system in finite and infinite dimensional spaces.
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We have seen that the global attractor attracts every compact subset of U.
Therefore it attracts a bounded neighbourhood of itself. As we shall see in the

following result, it is actually uniformly asymptotically stable.
Theorem 1.1.6. The global attractor A is uniformly asymptotically stable.

Proof. Since A attracts a neighbourhood, it suffices to show that A is stable.
Suppose A is not stable. Then from the definition of stability, there exist an
open neighbourhood V' of A, a sequence of integers nj; — oo, and a sequence of
points y; — y € A, as j — oo such that T*(y;) € V forall 0 <k < nj, and
T"+'(y;) ¢ V. Now thesequence {y;}32, is bounded, thus T"i(y;) is contained
in a bounded adsorbing set for all sufficiently large j. Without loss of generality
we may assume that T™ (y;) — z. Note that z € A since it is an w-limit point
of the set {y;}32,. Hence Tz € A. But this contradicts the fact that T 2 ¢V,

and this contradiction shows that A is stable and thus is uniformly asymptotically

stable. O

Remark. For the stability of the global attractor with respect to perturbations

of the map T, we refer readers to [1] or [4].

Because of its strong attractivity and strong stability, the global attractor cap-
tures the most interesting asymptotic behaviour of the dissipative system. In the
next chapter, we shall demonstrate some correlations between the geometric aspects

of the global attractor and the asymptotic behaviour of the dissipative system.

§1.2. Autonomous Systems of Ordinary Differential Equations

In this section we define and discuss the continuous dynamical system generated
by an autonomous ordinary differential equation in R™ . We shall relate the key
concepts of differential equations to those of dynamical systems. In particular, the
dissipativeness of a differential equation is shown to be equivalent to the existence
of a bounded absorbing set, and in turn can be characterized by the existence

of a global attractor. Since the proofs of most of the results in this section are



I. DISSIPATIVE DYNAMICAL SYSTEMS 17

essentially the same as those of the corresponding results in the section §1.1, they

are not included.
Let D C R™ be an open set and z — f(x) € R" be a continuous function

defined in D such that solutions to the autonomous system
' = f(z) (2.1

exist and are uniquely determined by the initial conditions. We denote by a(t,xq)
the solution to (2.1) such that z(0,z0) = zo.

For each z € D, from the existence and uniquencss assumption, the positive
(negative)semi-orbit vt(zo) = {z(t,20) : 0 <t < w} (7 (x0) = {x(t,x0)
—w < t < 0}) through o always exists and is uniquely determined by o,
where w > 0 can be oo or a finite number. The orbit through zo is Y(zo) =
~F(z9) Uy~ (20). For asubset B of D, we use the following notations:

(1) 7*(B) = UzeBy* (o),
(2) 7~ (B) = Uzenr™ (),
(3) ¥(B)="(B)Ur~(B)

A subset B is said to be positively invariant (negatively invariant)if z(t,B) C
B forall t > 0 (forall t < 0). It is invaeriant if =(¢t,B) = B for all t € R.
Equilibria, periodic trajectories and any complete trajectory are some examples of

invariant sets. More interesting invariant sets include homoclinic orbits, heteroclinic

orbits and heteroclinic cycles.

The most important sources of invariant sets are limit scts. For a subset B C

D, the w-limit set and o-limit set of B are dcfined as
w(B) = Ns>o0 cl Ueos z(t, B)
and

a(B) = Ng>o clUi>s z(—-t, B).

The following result characterizes the limit sets. Its proof is parallel to that of

Proposition 1.1 and can be found in [1] or {4].
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Proposition 1.2.1. Suppose £ € D and B C D. Then

(1) y € w(z) (a(z)) if and only if there exists a sequence of real numbers
tn = 00 (t, — —o0) such that z(tp,z) —y as n — oo.
(2) v € w(B) (a(B)) if and only if there exists a sequence of real num-

bers t, — oo (t, — —o0) and a sequence of points z, € B such that

z(tn,Zp) =y as n — oo.

A subset A C D is said to attract a subset B if d(z(t,B),A) — 0 as

t — oo.

The following lemma establishes the invariance of limit sets. For its proof, we

refer readers to [1] or [4].

Lemma 1.2.2. Suppose that B is a nonempty subset of D such that y+(B)
(v~(B)) is bounded. Then w(B) (a(B)) is nonempty compact and invariant.
Morcover, w(B) attracts B. If B is connected then w(B) (a(B)) is connected.

Define a mapping ¢, : D —» R™ by ¢i(zo) = z(t,z¢) for each t € R so that
x(t,zo) exists. Then each ¢, is a diffeomorphism and the one parameter family

of mappings {#:}icr satisfies the following semigroup property:

(1) di4s =¢109ds
(2) ¢éo = id, the identity mapping in R".

{é¢}ier is called the (continuous) dynamical system generated by (2.1). Some-
times it is also called the flow generated by (2.1). We see that the semi-orbits of

(2.1) can be written as
7H(2) = {¢e(2) : ¢ 2 0},
and
77 (z) = {u(z) : t <0},

and that the limit sets can be expressed as

w(B) = Nyxocl Urxs 4(B),
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and

OI(B) = 0520(}1 UtZs ¢_¢(B)

A subset B C D is positively (negatively) invariant with respect to (2.1) if
¢+(B)C B for t >0 (t £0), and is invariant if ¢,(B) = B forall t€ R. B
is attracted by A with respect to (2.1) if and only if B is attracted by A under

¢t, i.e.

d(¢«(B),A) -0 as t— oo.

The continuous dynamical system {#;}:er and its discrete counterpart
{T*}ren defined in §1.1, though they appear to be similar, behave quite differ-
ently. For example, a periodic trajectory of {#:}ier is a simple closed smooth
curve in R", whereas a periodic orbit of {Tk}keN is a finite set of points. How-
ever, they are related in many ways.

Suppose U C D is a subset such that the solution z(t,xq) of (2.1) exists for
all t>0 if zg € U. Let T =¢; then T* = ¢y for ecach k € N. In this way, the
continuous dynamical system {¢:}ier gives rise to a discrete dynamical system
{T*}ren. Therefore results obtained for discrete systems can be readily applied to
continuous systems generated by differential equations.

A subset Dy C D is said to be absorbing with respect to (2.1) if the solution
z(t,zo) exists for all ¢t >0 if 29 € D and cach compact subset B C D satisfics
that ¢,(B) C Dy for all sufficiently large t. The autonomous system (2.1) is said
to be dissipative if there exists a bounded absorbing sct.

When D = R", thereis another description of dissipativeness in the literature.
(2.1) is said to be uniformly ultimately bounded if there exists a constant b > 0 and
a positive function ¢(p) defined for all p > 0 such that every solution z(t,z¢) to

(2.1) with |z¢| < p exists for all ¢ > 0 and satisfies
|z(t,z0)] < b  forall t2>t(p).

Notice that the ball B = {z € R™ : ||z|| < b} is absorbing for (2.1), we can sece

the two concepts are equivalent in this case.
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A global attractor of (2.1) is a nonempty compact set A C D such that A
is invariant and attracts every compact subset of D under ¢;. It follows that
such a set is necessarily unique. Moreover, it is the maximal compact invariant set
in D. From the relation between the discrete dynamical system {¢:}icr and the
discrete dynamical system {T*}ren with T = ¢;, we can deduce thatif A is the
global attractor of (2.1) then it is the global attractor of the mapping T as defined
in §1.1. Using this relation and the corresponding results for discrete dynamical
systems in §1.1, we can prove the following results. We omit the proofs since they
arc very similar to the discrete cases.

Theorem 1.2.3. Suppose that (2.1) is dissipative, let B be a bounded absorbing
set. Then A = w(B) is the global attractor and A does not depend on the choice
of B.

Theorem 1.2.4. If there exists a bounded connected absorbing set, then the global
attractor is also connected.

An invariant set K C D is said to be stable if, for any ueighbourhood V of
K, there is a neighbourhood W of K such that ¢,(W) CV forall ¢t>0). K
is asymptotically stable if it is stable and attracts every point in a neighbourhood.
K is said to be uniformly asymptotically table if it is stable and attracts a neigh-
bourhood. As we have remarked in section §1.1, the last two concepts are actually

equivalent.

Theorem 1.2.5. The global attractor A is uniformly asymptotically stable.

Remarks.

(1) For discussions on the stability of the global attractor with respect to perturba-
tions of the vector field of (2.1), we refer the reader to [1] and [4].

(i1) As in the discrete case, the global attractor of a continuous dynamical sys-
tem also has the strongest attractivity and stability, it therefore captures the most

important asymptotic behaviour of the dynamical system, and of solutions of the

differential equation.
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§1.3. Periodic Systems of Ordinary Differential Equations

In this section nonlinear ordinary differential equations in R" which are periodic
in time are considered. We will discuss in detail as to how such a periodic equation
can be analyzed via the Poincaré map associated with the equation and through
the continuous dynamical system it generates on the product space S! x R" .
Suppose that D C R" is an open set and (¢,z) — f(t,z) € R" is a con-
tinuous function defined in R x D, and is periodic in ¢t with period w > 0,

ft+w,2) = f(t,2)

for all (t,z) € R x D. We assume that solutions to the w-periodic system
g = f(t,:l)) (31)

are uniquely determined by the initial conditions and denote by x(t;t,z¢) the
solution to (3.1) such that z(%e;t0,z0) = 0.

We define a mapping P: D — R" by
Pz = z(w;0,0) To € D (3.2)

From the periodicity of f we know that P is well defined. The mapping P is
called the Poincaré map associated with (3.1). In this way, the periodic system (3.1)
gives rise to a discrete dynamical system.

System (3.1) can be studied using the associated Poincaré map P. For exam-
ple, a fixed point of P corresponds to an w-periodic solution of (3.1); a periodic
point of P gives rise to a subhamonic solution of (3.1) and vice versa. Morcover,

asymptotic behaviour of the solution z(¢;0,z¢) can be well captured by that of

{Pn(zo)}nGN-

Remark. For each #, € R, we can define in the same way as in (3.2) a Poincaré

map

Pizg = z(w;jte,z9) for all zo € D.
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It is demonstrated in [5] that, for different choices of #g, the corresponding Poincaré
maps are topologically conjugate. In what follows, we always define P correspond-
ing to to = 0.

The periodic system (3.1) can also give rise to a continuous dynamical system
on a product space. Rewrite (3.1) as the following autonomous system in S! xR",

where S! is the unit circle,

' = f(6, z)
¢ =1 (3.3)

Let ¢, be the flow gencrated by (3.3). Then it is a continuous dynamical system
on S! x R™. If we denote t (modw) by [[t]] for any t € R, then [[t]] can be
identified as a point in S'. Now for any ([[to]],z0) € S! x D, the flow ¢; can be

expressed as

ée([[toll, o) = ([t + 2], z(t + to; to, z0) )-

Observe that a periodic solution of (3.1) of period commensurate with w corre-
sponds to a closed orbit of {¢(}ier on S! x D; a periodic solution to (3.1) of
period incommensurate with w, however, gives rise to a quasiperiodic orbit of
{#:}ten on S! x D.

The Poincaré map P can also be derived from the flow {¢:}ier on S! x D.
In fact, if we denote the projection from S! x D onto the second factor by = and

choose a global cross-section £y of S! x D by
o= {([lt],z) €S' x D : [t =0}, (3.4)

then ¥y is homeomorphic to D, and the Poincaré map defined in (3.2) can be
identified with the mapping P : £y — Xy given by P = md,. In this thesis we
will study the w-periodic system (3.1) using both the associated Poincaré map and
the flow {¢:}ier in S! x D generated by (3.1), depending on the circumstances.

The w-periodic System (3.1) is said to be dissipative if the associated Poicaré

map is dissipative, namely has a bounded absorbing set in D C R®. When D =
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R", (3.1) is said to be uniformly ultimately bounded if there exists a constant
b > 0 and a positive function h(p) defined for all p > 0 such that every solution
z(t;te,z0) to (3.1) with |zo| < p exists throughout #p <t < co and satisfies

|z(¢;t0,20)| £ b (3.5)

for all ¢ > to + h(p). The following result shows that when D = R", the concepts

of dissipativeness and uniform ultimate boundedness are equivalent.

Proposition 1.3.1. When D = R", system (3.1) is uniformly ultimately bounded
if and only if the associated Poincaré map P is dissipative, or equivalently, P has

a bounded absorbing set.

Proof. It is obvious that when (3.5) is satisfied, the bounded subset {r € R" :
|z] < b} is absorbing under P. Conversely, suppose P has a bounded absorbing
set B C R™ such that |z] < b for all z € B. Then for cach r > 0, there
exists a h(r) > 0 such that |P"(z¢)| < b for all n > h(r) whenever z9 € R
and |[ro| < r. This implies that z(¢;0,z¢) satisfies (3.5). For to € R, using the

following property of solutions to (3.1):
z(t;to,z0) = x(¢;0,2(0;t0,z0) ),
we can deduce that a general solution z(t;to,zo) also satisfies (3.5). Therefore
(8.1) is dissipative. 0
From Proposition 1.3.1 and Theorem 1.1.4 we arrive at the following result.

Theorem 1.3.2. Suppose the system (3.1) is dissipative. Then the associated

Poincaré map P has a global attractor in D.

§1.4. An Example: the Lorenz Model

In this section, as an illustration, we consider a system of threc differential equations

proposed by E. N. Lorenz [2] as an indication of the limits of predictability in



24 I. DISSIPATIVE DYNAMICAL SYSTEMS

weather prediction. The system is a three-mode Galerkin approximation (one in
velocity and two in temperature) of the Boussinesq equations for fluid convection

in a two-dimensional layer heated from below. The equations are
T =-—~or+0Y
Yy =rr—y—z2

2= -bz+zy (4.1)

where o, r, b are three positive parameters. The set of parameter values considered
by Lorenz himself are ¢ = 10, » = 20, b = 8/3. There has been a considerable
amount of numerical analysis on the Lorenz model for a wide range of parameters.
A good reference is [3]. The numerical analysis suggests the existence of a strange
global attractor for a certain range of parameters. In this section, we show that
(4.1) is dissipative and thus possesses a global attractor. In later chapters, we shall

discuss further properties of this attractor.

Theorem 1.4.1. If b > 1 the system (4.1) is dissipative and the global attractor

is contained in the region

D = {(z,y,2) €R® : |z| < p, ¥? + (2 —7)? < p?},

where p = 2\;;"_—1.

Proof. Let V(y,z) = y? + (z —r)?. Differentiating V along the solutions of
(4.1), we have

Vi =2yy +2(z—r)7
=2y(rr—y—zz)+2(z—r)(-bz+zy)

—2y% — 2022 + 2brz
_ 2- b)'r‘)z b? r?
1-b 2(b—1)

= -2V 4+ 2(1-b)(z

Thus V' < 0 whenever V < p',p' > p. Therefore if (z(t), y(t), 2(t)) is a
solution to (4.1) such that V(y(t0),2(t0)) = p’' then V(y(t),2(t)) < p' for all
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t > to. Thus |y(t)] < p' for all ¢t > ¢y. Now from the first equation of (4.1) we
have
() = 2zz' = 2z(~0z+0Y)
< 20l2](p' - |2)

when t > to. Hence |z(t)| is strictly decreasing whenever [z(t)] > p'. This shows

that for each p' > p, the bounded set
{(zay,z) € R3 : I:L‘I < p', y2 +(7‘ _ 2)2 < pl'l}

is absorbing in R3. Therefore (4.1) is dissipative and the global attractor is con-

tained in {(z,y,2) €R3® : |2] <p, y¥? + (r—2)2 <p}. a
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CHAPTER 11

LOWER ESTIMATES FOR THE HAUSDORFF DIMENSION
OF THE GLOBAL ATTRACTOR

As we have seen in Chapter I, for a dissipative system {T*}ren, the global
attractor captures the most interesting asymptotic behaviour of the system. It is
then of great interest to investigate implication. of the geometry of the global at-
tractor to the dynamical behaviour of the system. In this chapter, we establish a
corrclation between the Hausdorff dimension of the global attractor and the exis-
tence of certain invariant structures. The definition and properties of the Hausdorff
dimension are reviewed in Appendix C.

Our main results in this chapter may be best demonstrated by Theorem 2.2.3
of Section 2.2, which states that if, for some integer m > 0, the Hausdorff di-
mension of the global attractor A (dim;;A) is strictly less than m + 1, and
the domain of T satisfies certain connectivity assumption, then A contains no
normal m-boundary. The connectivity required of D is the notion of bounded
m-connectedness, which is defined in §2.1. When m = 0,1, this concept agrees
with pathwise connectedness and simply connectedness, respectively. Moreover, a
convex set is boundedly m-connected for all integer m > 0. The concept of normal
m-boundary is a natural extension to other dimensions of the concept of simple
closed curves with finite length. For example, when m = 0, this result allows us
to conclude that dimyA < 1 implies that A = {z} where {Z} is a globally
asymptotically stable fixed point. The case m = 1 contains a result of R.A. Smith
which says that no simple closed piece-wise smooth ¢ ves can be invariant under
{T*}ren if dimyA < 2. There is an inaccuracy in Smith’s hypotheses, which can
be corrected by adding a key assumption that T is 1-1in A. An example is given
to show that such an assumption is necessary.

The significance of this result lies in that it establishes a correlation between

the geometry of the global attractor and the dynamical behaviour of the dissipative
Typeset by ApS-TEX

26
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system. It can be useful in two different ways. On the one hand, it gives us a way of
obtaining lower estimates of the Hausdorff dimension of the global attractor which
is a well-known difficult problem. Suppose that D is convex or there is a convex
bounded absorbing set. By detecting the existence in A of a normal m-boundary,
invariant or not, we can conclude that dimyA > m + 1. The only other approach
to this problem we are aware of is given by R. Temam and his colleagues (see [9],
Chapter 7). Their method is to estimate the dimension of unstable manifolds of
hyperbolic equilibria.

On the other hand, this result, when applied to differential equations, gives a
weak condition to preclude existence of some invariant structures such as periodic
orbits and higher dimensional invariant tori. The case m = 1 will be used in
Chapter IV to derive Bendixson’s criterion in R".

We present our main result (Theorem 2.2.1 and Theorem 2.2.2 in Section 2.2)
in the general setting of discrete systems in a Banach space so that it can be used to
derive Bendixson’s criterion for delay differential equations and partial differential
equations. Development in this direction, however, is not in the scope of the present
work and will not be discussed.

In Section 2.1, we define the concept of normal m-boundary. Qur results for
discrete and continuous dynamical systems are discussed in Sections 2.2 and 2.3,
respectively. Applications to periodic ordinary differential equations are considered

in Section 2.3.

§2.1. Surfaces and Their Boundaries

The purpose of this section is to define the concept of normal m-bhoundary and
other related terminologies which will be used throughout the chapter.

Let U c R™*! be a bounded connected open set whose boundary OU i
smooth. Let U denote the closure of U. Let X be a gencral normed linear
space. A map ¢ € C(U — X) will be called a (m + 1)-surface in X, and
the restriction of ¢ to OU, denoted by Oy, is called the boundary of ¢. A map



28 II. LOWER ESTIMATES OF THE HAUSDORFF DIMENSION

Y € C(OU — X) will be called a m-boundary in X. A point = € 1(0U) issaid to
he regular if the tangent space at ¢ has dimension m. A m-boundary ¢ issaid
to be normal if it is one to one, Lipschitz continuous on U and has at least one
regular point. When m =1, a normal 1l-boundary is also called a simple closed
rectifiable curve. Note that a m-boundary ¢ is not necessarily the boundary of
a (m + 1)-surface. It will be said to be the boundary of a (m + 1)-surface o,
denoted by dp = o, if 0p(OU) = ¢(0U) =: T, and there exists a continuous
one to onc mapping S : I' = I' such that dp = Sy. This is also described as
¥ bounds a (m + 1)-surface . We can see from the definition that if ¢ is a
(m +1)-surface in X and F:X — X is a continuous mapping then Fy is also
a (m + 1)-surface in X and its boundary satisfies 9(F¢) = Fdp.

The trace of a (m + 1)-surface ¢ € C(U — X) is defined to be the subset
@(U) of X, and the trace of a m-boundary ¢ € C(8U — X) is %(8U). If the
trace of ¢ is contained in a subset B of X, we say that ¢ isa (m + 1)-surface
in B, or that B contains a (m + 1)-surface ¢. The same terminology also
applies to a m-boundary . The term ¢ bounds a (m + 1)-surface ¢ in B
should be understood as p(U) C B and Op = 3. As an example, a 0-boundary
can have as trace a pair of points or a single point. It is normal only if its trace is
a pair of distinct points. The trace of a 1-surface is a usual curve, and the trace
of a 1-boundary can either be a single closed curve or consist of a family of closed
curves with some of the curves possibly degenerate to points. It is normal only if
all the member curves of its trace are simple closed rectifiable curves. In particular,
the usual simple closed piece-wise smooth curves can be regarded as the traces of

normal 1-boundary by our definition (See Figure 2.1.1).

Whether a m-boundary can bound within an open set D C X a (m +
1)-surface is closely related to the connectivity of D. One can easily see that
D is path connected if and only if every 0-boundary bounds (is the boundary
of) a 1l-surface in D. The simply connectedness of D can be characterized by
the property that every 1l-boundary bounds a 2-surface in D. We say D is

compactly (boundedly) m-connected if, for each compact subset K of D and any
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family of m-boundaries {%q}aea in K, there exists a compact (bounded) set

B such that
KcBcD

and each ¥, boundsa (m+1)-surface in B. Obviously compact m-connectedness
implies bounded m-connectedness, and in a finite dimensional space the two are
equivalent. Moreover, if D is a convex subset of a Banach space X , then it is
compactly m-connected for all integers m. To sec this, notice that for a compact
set K C D, the closed convex hull ¢6(K) of K is also a compact subset of D.
Then a (m+1)-surface in D can be constructed as a cone on cach m-boundary.

Another example is shown in Figure 2.1.2, where D is the annular region.
The simple closed curve C shown in Figure 2.1.2(a) can be regarded as the trace
of a normal 1-boundary which can not bound any 2-surface in D, whereas the
pair of closed curves in Figure 2.1.2(b) is the trace of a 1-boundary which is the

boundary of a 2-surface whose trace is the region between these two closed curves.

Remark. The following discussions involve the Frechét differentiability of a normal

m — boundary in X.

(i). Since X is a general normed linear space, Frechét differentiability (almost
everywherein R™ ) of a Lipschitz continuous mapping % : R™ — X can no longer
be implied by the Rademacher theorem (see [5]) as is in the case when X is of finite
dimension. In fact, examples exist to show that a Lipschitz continuous mapping
from R to L!(0,1) may fail to be Frechét differentiable anywhere (see [10]). It is
a result of R. R. Phelps ([7]) which shows that every Lipschitz continuous mapping
¥ : R™ = X is Gateaux differentiable almost everywhere provided X is a Banach
space and satisfies the so-called ‘Radon-Nikodym property’. A Banach space X is
said to satisfy the Radon-Nikodym property if every Lipschitz continuous mapping
¥ : R — X is Frechét differentiable almost everywhere. Earlier results of N.
Dunford and B. J. Pettis [3] showed that such spaces include Banach spaces which
are reflexive. For example the L? spaces, when 1 < p < oo, have the Radon-

Nikodym property. Since, for a mapping 3% : R™ — X, Frechét differentiability
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is equivalent to Gateaux differentiability, Phelps’ result implies that 1 is Frechét
differentiable almost everywhere when X is a Banach space satisfying the Radon-

Nikodym property.

(ii). We assume that a normal m-boundary ¢ has at least one regular point;
namely, there exists at least a z € (8U) such that the tangent space at = has
dimension m . In the case when X is of finite dimension, this assumption is
implied by the lipschitzian continuity, because 9 is then rectifiable and thus has

many regular points. In fact, a version of Sard’s Theorem holds for such mappings

(sce [3]).
We will assume throughout this section that X is a Banach space which

satisfics the Radon-Nikodym property.
The following result which establishes a correlation between the existence of a

certain type of m-boundary in a compact set K and the Hausdorff dimension of

K is crucial to the development in this chapter.

Proposition 2.1.1. Assume that K is a compact subset of X and that there is
a normal m-boundary ¢ in K. Suppose, for each neighbourhood V of K, %
bounds a (m + 1)-surface in V. Then dimpyK > (m + 1).

The cas> m = 0 of this proposition may be proved as follows. Suppose 3 isa
normal 0-boundary in K. Then its trace is a pair of distinct points z; and z2 in
K. Let § >0 and {B;}; beacoverof K by open sets of diameter |B;| < é. Such
an open cover is called a §-cover of K (see Appendix C). Now V = U;B; is an
open neighbourhood of K. From the assumptions of the proposition we know that
¥ bounds a 1-surface ¢ whose trace v is a continuous curve in V connecting
r; and z (sce Figure 2.1.3). Interpolating v in V by a polygonal curve if
necessary, we may assume that + is rectifiable. Obviously, ) ;|B;| is greater
than the length of v which is bounded below by the distance d between z; and

r2. Therefore we arrive at

0<d_<_Z|Bi|
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for all é-covers {B;}; of K. This implies that the 1-dimensional Hausdorff mea-
sure of K satisfies H'(K) > 0, and thus dimy/ > 1 by the definition of
Hausdorff dimension (see Appendix C).

Before we proceed to prove the proposition for general m, some preparations
are needed. Suppose ¥ € C(0U — X) is a normal m-boundary. Then, from the
remark preceding Proposition 2.1.1, we know ¢ is Frechét differentiable almost
everywhere and it has at least one regular point. Thus its trace T' =(0U) has a
unique tangent space almost everywhere and the tangent space is of dimension m
at least at one point. Without loss of generality, we may assume that I' contains
0 and its tangent space at 0 is a m-dimensional subspace X; of X. Let X;

be a closed subspace of X complementary to X;. Then
X=X 06X
and there exists a constant ¢ > 0 such that
c(lea| +lz2]) < Jor +a2| < Joi] + 22|

for any z; € X;, 1 =1,2 (see [2}).
We now define a rotation mapping R : X — R™*! by

R(z) = (21, Jea])  z€X, (1.1)

where ¢ = 71 + z2, =i € X;, i = 1,2, and the vector z; is identified with its
coordinate vector with respect to a fixed basis in X;. We will assume that Rmt!
is endowed with the euclidean norm || -|. Then there are two norms on X, the
norm |-| inherited from X and the cuclidean norm || -|| of R™, and there are

constants cj,c2 such that
alzi| < ||zl £ e2lz| for all z; € X.

The following lemma gives the properties of the mapping R.

Lemma 2.1.2. There are constant K;,K, >0 such that

(1) Kilz| £ ||R(z)|| £ Kalz| forall z € X,
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(2) R is Lipschitz continuous with the Lipschitz constant LipR < K,

(3) R|x, isa linear isomorphism from X, onto the subspace of R™*!

{(yla"'vym-i-]) € Rm+1 P Ym4+1 = 0}'

Proof. (3) follows directly from the definition of R. To see that (1) is true, let
z€X, and ¢ =, + z2, z; € X, i = 1,2. Notice that

IR@) = {lle1]]? + lz2|?}
and

) 1
{llz1ll* + iz2*}? < llzall + |e2

c
< cs(|z1] + |z2]) < ?3 |z|
with ¢z = max{1, c2}. On the other hand,

{llz1]? + |22} = (llzall + |22])/V2
> cy(Jer] + |22])/V2 > ealel/V2,
with ¢4 = min{l,¢;}. Hence (1) is proved with K; = cs/V2 and K, = c3/c.
Now (1) and an obvious inequality
IR(z) — Rl < [R(z - y)li

imply (2) 0.

Our next lemma proves that there is a cone in X with its vertex at 0, which
is symmetric with respect to the tangent space X; of I' at 0, and contains a
small portion of T' around 0 (see Figure 2.1.5)
Let
B,(0)={z€X : |z|<r}

be the ball of radius r in X centred at 0.
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Lemma 1.2. For sufficiently small r > 0, a ball B.(0) can be found so that

B.(0)NT is contained in the cone
C={reX : |zz| L alr1]},

where the constant o depends only on T' and r.

Proof. Let ug € U besuch that (up) =0, ¥ is differentiable at uo and the

tangent map L of ¥ at ug is of maximal rank m. Then, for u € oU sufficiently

close to ug,
P(u) = L(u — ug) + h(u — uo)

where h satisfies |h(u — uo)| = o(|ju — uo||) for u sufficiently close to ug. Write

¥ = (1,%2), h = (h1,h2) in the coordinates for X = X1 @ X;3. Then

$1(u) = L(u — uo) + hi(u — uo)
Pa(u) = ha(u — uo).
Since L is of maximal rank, there is a constant ¢ > 0, such that
|L(u — uo)| = cfju — uol| for all wu.

and thus there exists a sufficiently small € > 0 such that

[$1(u)] 2 (¢ — &)llu — uol|
[2(u)| < ellu — uol-
for ug sufficiently close to u. Therefore
|2 (u)| < alshr(u)]

when u is sufficiently close to ug. The ball B.(0) can be chosen by the continuity
of ¥ 0.
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Proof of Proposition 2.1.1. The proposition will be proved by showing the

existence of a positive constant &9 such that
> IBi™ > €0 > 0
i

for all 6-covers {B;}; of K andall § >0. Now V = U;B; is an open neigh-
bourhood of K. Let ¢ € C(U — V) be a (m + 1)-surface bounded by % in
V. Then o(U) C V, 0p(8U) = (8U) and 8¢ is a one to one mapping from
OU to Op(0U). Let the subspaces X;,X2 of X and the mapping R be those
associated with 3 by Lemma 2.1.2. Then

Ro(T) € R(V) C U;R(B;). (1.2)

Hence

3

H™H (Rp(T)) < 3 H™(R(B:)) < Y IR(B)™ < KF+' Y |Bi|™,

(1.3)
where H™*! is the Hausdorff measure in dimension m + 1.
The next part of the proof is to show that
H™ (Rp(U)) > e > 0 (1.4)

for some ¢ independent of the cover {B;} and the (m + 1)-surface ¢. Then
(1.3) and (1.4) will imply 3 |B:i|™*! > €0 > 0, completing the proof.

Let the cone C = {z € X : |z2| < a|r1|} and the ball B,(0) be associated
with ¥(8U) by Lemma 1.2. Let I' =TI'N B,(0) be the portion of I' contained
in the cone C. Apply the rotation R to this configuration. Working in R™*!,

the range of R, we can see that the image of C under R is a cone C in

RT* = R™ N {yms1 >0}, given by
C={yeRT* : |1, »¥m)ll < @1|ym+1]}

where a; is a constant determined by « representing the cone C and by the

norm |-| of X. Here and in the following, we use the tilde over a set to indicate
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that it belongs to R™*!, Since I is a compact portion of T, taking into account
that i is one to one and R is bi-Lipschitz, a small ball E,(O) in R™! with

s < r can be chosen so that in R™+!
R(T) N B,(0) = R(I") N B,(0).

Namely, the part of R(%) intersecting B,(0) is contained in the cone C. Now the
boundary of the cone C splits the ball §,(0) into three parts: the half contained
in R™*! = R™t N {yn4+1 <0}, denoted by D;; the part contained in C; and
the remaining part, denoted by 52, which is contained in R?'H and does not
intersect C (see Figure 2.1.6) The volume of D, is a fraction of that of B,(0),
and thus

H™H(Dy) = apa ™ (B,(0)) = ags™*! (1.5)

where a2 > 0 is a constant determined by a; and m. Now we claim 52 18

covered by Rp(U) :
D, C Re(T). (1.6)
This and (1.5) will imply

0 < azs™t! = H™H(D,) < K™Y (Rp(T)),

proving the theorem.

To show (1.6), we use the topological degree theory. Take any point p in Ds.
The intersection number with R(T') = Ryp(U) of any ray emitting from p and
passing through 0 is either 1 or —1. This is because ¢ isonetooncon U and
R is one to one at 0. Therefore, for the mapping Ry : U Cc R™t! — R™H],
deg (R, U, D) = deg(Re, T, D))+ 1. Now deg ('ch,ﬁ,ﬁﬂ = 0 since Rep(U)
is totally containcd in R+, This implies deg (Re,U, 52) # 0. Therefore, from
the degree theory, D, C Rep(T). a

§2.2. Discrete Systems in a Banach Space
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R.A. Smith proved in [8] that for a continuous mapping T : R" — R" which
is dissipative with a global attractor A, if dimpA < 2 then no simple closed
piecewise smooth curve can be invariant under 7. He also applied this result to
derive Bendixson’s criterion for autonomous ordinary differential equations in R".
In this section, we will generalize Smith’s result and show that if dimy4d <m +1
for some integer m > 0, then A contains no normal m-boundary. Our results
are proved in a more general setting of discrete dynamical systems in a Banach
space so that they may be applied to derive Bendixson’s criterion for differential
equations with delays and for partial differential equations.

Let X be a Banach space and D C X an open subset. Let T: D — X be
a continuous mapping such that T(D) C D.

A m-boundary ¢ € C(8U — D) is said to be invariant under T if T’ =
¥(9U) is invariant under T.

Theorem 2.2.1. Assume that a compact set K C D attracts compact sets in D
under T. If dimpK < m+ 1, then there can be no normal m-boundary 1 in
K satisfying the following:

(1) + is invariant under T,

(2) T isonetooneon I' = ¢(0U),

(8) ¥ boundsa (m+ 1)-surface in D.

Proof. We prove the theorem by contradiction. Suppose that there isin K a
normal m-boundary ¢ satisfying (1), (2) and (3) in the theorem, we will show
that dimyKR >m+1. Let ¢ € C(U — D) bea (m+ 1)-surface bounded by .
Then for each neighbourhood V' of K, there existsa N >0 such that

T (p(U)) C V for all n > N.

Hence TNy € C(U — V). Moreover, )TN p)(0U) = TN8p(8U) = TN (y(dV)) =
¥(8U) since 1 is invariant under T. Therefore V contains a (m + 1)-surface
which has 7 as the boundary. The Proposition 2.1.1 in §2.1 then implies that
dimgK >m+ 1. O
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Theorem 2.2.2. Assume that D is compactly (boundedly) m-connected. Sup-
pose that there exists a compact invariant subset K of D which attracts compact
(bounded) sets in D, and that T isonetooneon K. If dimyK <m+1, then

there can be no normal m-boundary in K.

Proof. Suppose % is a normal m-boundary in K. If 3 isinvariant under T,
then Theorem 2.1 implies dimyK > m+1. If ¢ is not invariant under 7. Then
{T™)}, £, is a family of m-boundaries in K. By our assumptionin D, there

exists a compact (bounded) subset B of D such that
KcBcD

and each T"y boundsa (m+1)-surface ¢, in B. Since K attracts B, there
exists, for each neighbourhood V of K, a N >0 such that

T™(B) cV  foralln < N.

In particular, TN(p-n(T)) C V, and thus TNyp_n is a (m + 1)-surface in
V. Moreover, &(TNp_n)(@U) = TNOp_n(8U) = TNT-N({aU)) = $(aU),
and thus TVyp_n is a (m + 1) — surface which has % as the boundary. The
Proposition 2.1.1 of §2.1 then implies dimyK > m + 1. This, however, contra-

dicts the assumption that dimyK < m + 1, and therfore the theorem is proved.

a

Remark. Since, when X is of infinite dimension, bounded subsets of X may
not be compact. The attractivity assumption on the compact invariant set K in
Theorem 2.2.2 is weaker than that required for a global attractor. As a matter
of fact, when a compar* ‘nvariant set K exists which attracts compact sets, the
mapping T is called by Hale (sce [6]) ‘compact dissipative’, which is differcnt from
T being dissipative. Some other notions of dissipativity for dynamical systems in

infinite dimensional spaces as well as related examples can also be found in [6].

Next, we assume that the mapping T is dissipative and denote the global

attractor in D by A. Then A is the maximal compact invariant subset of D
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and attracts bounded subsets of D. From Theorem 2.2.1 and Theorem 2.2.2 we

can derive the following results.

Theorem 2.2.3. Suppose dimyA < m+ 1 for some integer m > 0. Then there

can be no normal m-boundary i in A satisfying the following:

(1) ¥ is invariant under T,
(2) T isonetooneon I' = (3U),
(3) ¥ boundsa (m + 1)-surface in D.

Theorem 2.2.4. Suppose that D is boundedly m-connected and T is one to

one on the global attractor A. If dimyA < m+ 1, then there can be no normal

m-boundary in A.

When m =1, Theorem 2.2.3 yields the result of R.A. Smith.

Theorem 2.2.5. Suppose D is simply connected and A is the global attractor
of T in D. If dimyA <2, then A contains no invariant simple closed piecewise

smooth curve on which T 1is one to one.

Remark. In his result (Theorem 5, [8]), Smith does not assume that T is one
to one, and the result as s.ated is false as the following example demonstrates. In
fact, in his proof there is a tacit assumption that T is one to one, as stated in

Theorem 2.2.5.

Example. Let C be the complex plane. We consider a mapping T : C — C
which will be defined in three steps. More precisely, we will define T as T =
T3 o T; o T}, where the mappings T7,T2,T3 are as follows:

(i) T, contracts C onto the closed unit disc U C C and leaves U un-
changed:

P
Tz FD if |z2| >1
z, 1if|z|<L
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(ii) T, squeezes U onto the half of the unit circle C = 8U contained in the

region Rez >0:
Tz = \/1_-_—?+ iy, ifz=z+iy andz®+y*<1.
(iii) T3 doubles the argument of each point on C':
T3z =e%®  if z=¢" 0€(0,2n]

The mapping T is obviously continuouson C, and is dissipative because of Tj. It
is also easy to check that the unit circle C is invariant and attracts compact subsets
of C under T. Obviously dimyC = 1. The mapping T cvades Theorem 2.2.2

since T isnot 1-1 on C.

The significance of Theorem 2.2.3 and Theorem 2.2.4 is two-fold.

(I). They provide a way of obtaining lower estimates of the Hausdorff dimension of

the global attractor. The following result is in this spirit.

Theorem 2.2.7. Assume that D is convex and T is one to one on the global

attractor A. Suppose A contains a normal m-boundary. Then dimyA > m+1.

Proof. Since convex set is boundedly m-connected, the theorem follows from

Theorem 2. ° O

When m =0, 1, this yields the following results.

Corollary 2.2.8. Suppose that D is path connected and T in one to onc on the
global attractor A. If A contains more than one point, then dimyA > 1.

Corollary 2.2.9. Suppose that D is simply connected and T in one to one

on the global attractor A. If A contains a simple closed rectifiable curve, then

dimyA > 2.

The assumptions on the absorbing set in Corollary 2.2.8 and Coreilfary 2.2.9
imply that D is boundedly O-connected and 1-connected, respectively. Thus
both results follow from Theorem 2.2.4.
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It is a well-known fact that, for a dynamical system {T*}ien in an infinite
dimensional space, it is not realistic to assume T is a one to one mapping on the
whole space. For example, a differential delay equation z' = f(z) can generate
a discrete dynamical system {T*}ren in the space of all continuous functions on
[-1,0), and usually T is not one to one because of the lack of backwards uniqueness
of the solutions of the delay equation. However, as Hale demonstrates in (6], it is
very often that T is one to one on the global attractor. In the case of the delay
cquations, it is proved in [6] Chapter IV that T is one to one on the global attractor
when f is analytic. This shows that the assumption that T is one to one on the
attractor is reasonably realistic.

Estimating dimyA from below is well-known to be a hard problem. The only
other approach known to us is provided by R. Temam, C. Foias and A. Eden (see [9]
Chapter 7). By establishing that the unstable manifolds of equilibria are contained
in the global attractor and estimating the dimension of the unstable manifolds at
hyperbolic equilibria, they obtain a lower bound for dimpyA. It is important to
note that neither of the two approaches here can provide a nontrivial fractional

lower bound to dimpyA.
(II). Theorem 2.2.3 and Theorem 2.2.4 also provide a sufficient condition to rule

out the existence of certain invariant structures. The following result is a typical

example.

Corollary 2.2.10. Suppose that D is simply connected and the global attractor

A satisfies dimyA < 2. Then no simple closed rectifiable curve in D can be

invariant under T.

§2.3. Ordinary Differential Equations in R"

We have seen in Chapter I that a periodic (including autonomous) ordinary differen-
tial equation in R"™ can generate a discrete dynamical system in R". In the case

of autonomous equations, this is given by {T*}xen with T = ¢;, where {¢¢}ier
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is the flow generated by the differential equation, while for an w-periodic equation,
this is given by {P*}ren, where P is the associated Poincaré map. Since both T
and P are diffeomorphisms, results in §2.1 can be readily applied to both cases.
This is the subject of the present section. In the subsection §2.3.1, autonomous
equations are treated. In §2.3.2, w-periodic equations are discussed. In both
cases, much attention is being paid to implications to the asymptotic behaviour of

solutions.

§2.3.1. Autonomous Systems

Consider an autonomous system in R”

where the function = +— f(z) € R™ is C!in an open subset D of R". Let ¢
be the flow generated by (3.1). Assume that (3.1) is dissipative with the bounded
absorbing set Dy C D. Then we know from Chapter I that A = w(Dy) is the
global attractor which is the maximal compact invariant set in D and attracts
every compact subset of D under ¢,.

Apply Theorem 2.2.3 and Theorem 2.2.4 to the diffeomorphism ¢, for any

fixed ¢ we have the following results.

Theorem 2.3.1. If dimyA < m + 1, then there can be no normal m-boundary
in A which bounds a (m + 1)-surface in D.

Theorem 2.3.2. Suppose that D is boundedly m-connected. If dimpyA < m+1,

then there can be no normal m-boundary in A.
This gives a lower estimate of dimpyA.

Theorem 2.3.3. Suppose that the absorbing set is convex. If A contains a normal

m-boundary, then dimgA >m + 1.

Remark. The m-boundary in Theorem 2.3.3 need not be invariant.
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When m = 1, Theorem 2.3.1 gives us a weak criterion for the nonexistence of

simple closed rectifiable curves which are invariant with respect to system (1.1)

Theorem 2.3.4. Suppose D is simply connected. If dimy A < 2, then no simple

ciosed rectifiable curve in D can be invariant with respect to (3.1).

Remarks.
(i) Since a periodic trajectory give rise to a simple closed curve invariant with
respect to (3.1), under the condition dimyA < 2, Theorem 2.3.4 tells us that (3.1)

can not have periodic trajectories.

(ii) Theorem 2.3.4 was first obtained by R. Smith [8]. It provides the weakest

condition so far for a dissipative system not to possesse periodic trajectories.

(iii) Theorem 2.3.4 can be used to derive higher dimensional Bendixson’s criteria
for dissipative systems (3.1). We will see in Chapter IV that, using the upper
estimates on dimyA given in the Chapter III, concrete criteria can be derived from
Theorem 2.3.4. which not only preclude periodic solutions but also trajectories of
the following types:

(1) a homoclinic trajectory;

(2) a pair of heteroclinic trajectories of the same equilibria;

(8) a heteroclinic cycle.

§2.3.2. Periodic Systems

Consider a periodic system in R"
g = f(t,z) (3.2)

where the function (t,z)+ f(t,z) € R" is C! in R x D for some open subset
D of R" andis w-periodic in £. Let P be the Poincaré map associated with

(3.2). Assume that (3.2) is dissipative and Dy C D is a bounded absorbing set.
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Then, from Chapter I, we know A = w(Dyp) is the global attractor for P and A

is the maximal compact invariant set in D and attracts bounded subsets of D

under P.
Applying Theorem 2.2.3 and Theorem 2.2.4 to the Poincaré map P and taking

into account that P is a diffeomorphism, we have the following results.

Theorem 2.3.5. If dimyA < m + 1, then there can be no normal m-boundary

in A which bounds a (m + 1)-surface in D.

Theorem 2.3.6. Suppose that D is boundedly m-connccted. If dimpyA < m+1,

then there can be no normal m-boundary in A.
‘In particular, when m =, 1, we have the following results.

Theorem 2.3.7. Suppose that D is pathwise connected. If dimpyA < 1, then
A = {z¢} where z¢ is a globally asymptotically stable fixed point of P in D.

Proof. The assumptionon D implies that D is boundedly 0-connected. There-
fore by Theorem 2.2.4, A is a single point zo if dimyA < 1. From the maximal
invariance of A we know ¢ is the only fixed point of P and the global stability
of z¢ follows from that of the global attractor given in Theorem 1.1.6 in Chapter

L.

Theorem 2.3.8. Suppose D is simply connected. If dimpyA <2, then A con-

tains no simple closed rectifiable curves.

Theorem 2.3.7 has the following implication to the asymptotic behaviour of

solutions to (3.2).

Theorem 2.3.9. Suppose that (3.2) is dissipative and D is path-wise connccted.
If dimyA < 1, then (3.2) has a unique w-periodic solution which is globally
uniformly asymptotically stable.
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Proof. Recall that a fixed point 7o of the Poincaré map P corresponds to a

w-periodic solution to (3.2), and the stability of zo under P is equivalent to

the uniform stability of the corresponding w-periodic solution. Therefore, Theo-

rem 2.3.9 follows from Theorem 2.3.7.

Theorem 2.3.8 also has strong implications to the asymptotic behaviour of

solution to (3.2), which will be discussed in Chapter IV, where we will see that

under the conditions of Theorem 2.3.8, (3.2) can not have quasi-periodic solutions.
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(a) A simple closed curve C.

(b) A pair of simple closed curves.

Figure 2.1.2

o

Figure 2.1.1 A normal 1-boundary
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Figure 2.1.2. Figure 2.1.3.

Case m = 0.

Figure 2.1.4. A cone C at 0.
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f Ym+1

(a) The boundary of C splits B, (0).

(b) A ray emitting from P and passing through 0.

Figure 2.1.5.



CHAPTER I

UPPER ESTIMATE OF THE HAUSDORFF DIMENSION
OF COMPACT INVARIANT SETS

In this chapter we discuss upper estimation for the Hausdorff dimension dimpyA
of the global attractor A of a dissipative dynamical system. The foundation for de-
velopment on this subject was laid by a beautiful result of A. Douady and J. Oesterlé
[3] for discrete systems. They proved that, fora C!' mapping F: R® — R" and a
compact set K C R" such that F(K)D K, dimyK < d provided wg,x(F) <1

where
wy,k(F) = sup wa,(F)
z€EK
and
wa,z(F) = aa(z) - -+ - ar(z) agyq()
with k=[d], s=d—k, and

ar(z) 2 - 2 an(z) 20

are the singular values of DF(z), the tangent map of F' at z € K. This work
was subsequently generalized to mappings in infinite dimensional spaces by P. Con-
stantin, C. Foias and R. Temam [2], J. M. Ghidaglia and R. Temam [6], A. Eden,
C. Foias, R. Temam [5] and P. Thieullen{10].

The idea used by Douady and Oesterlé to obtain upper estimates of dimyK
is to examine the change of volume in various dimensions under the tangent map
DF(z). Their result may be intuitively interpreted as follows: for an integer k£ > 0,
if the k-dimensional volume is contracted by DF(z) uniformly with respect to
z € K, then dimygK < k. The fractional upper bound is obtained by a more
delicate argument involving the elliptic Hausdorff measure. In fact, wi (F) can
be regarded as the ly-operator norm of /\k DF(z) , the k-th exterior power of
DF(z), which, from Appendix B, describes the change of k-dimensional volume

Typeset by ApS-TEX
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under the linear mapping DF(z) . One of our contributions to this subject is stated
in Theorem 3.1.2. It allows the use of general vector norms of /\k DF(z) , based on
the fact that all such norms in a finite dimensional space are equivalent. As we will
see in Section 3.2, this leads to more easily computable and often better estimates
for dimyK, since singular values are often difficult to compute.

As we have seen in Chapter I, periodic differential equations in R" gencrate a
discrete dynamical system in R™. The result of Douady and Oesterlé can thus be
applied to obtain upper estimates for the Hausdorff dimension of compact invariant
sets (including limit sets and the global attractor) of dissipative periodic ordinary
differential equations. This was first done by R. A. Smith [8]. He also considcred
general nonautonomous equations. Our method presented here is to use the com-
pound equations to study the evolution of volumes under the flow of differential
equations. This method as well as a general condition of Dulac type derived from it
given in (3.11) and its weaker form stated in Theorem 3.2.4 will play a very impor-
tant role throughout this thesis. The theory of compound matrices and compound
equations is outlined in Appendix B.

In Section 3.1, we state the result of Douady and Oesterlé for discrete sys-
tems; in Section 3.2, applications to ordinary differential equations are discussed;
in Section 3.3, we present a more detailed study for autonomous differential cqua-
tions, where more general techniques are developed and more general conditions
derived. These techniques and conditions will be used in Chapter IV to develop
higher dimensional Dulac criteria. Also in this section, possibilities of estimating
the Hausdorff dimension of limit sets using information on the limiting trajectories
are discussed. Finally in Section 3.4, as an illustration of our method, upper esti-
mates for the Lorenz attractor are obtained. Our estimates are comparable to those

of A. Eden [4] and V. A. Boichenko and G. A. Leonov(l}.

§3.1. A result of Douady and Oesterlé for Discrete Dynamical Systems

Let U be an open subset of R* and F: U — R" bea C' mapping. For cach



//

50 I11. UPPER ESTIMATES OF THE HAUSDORFF DIMENSION

z € U, let DF(z) denotc the tangent map of F at z. DF(z) is a bounded
linear operator on R"™ for each fixed z and depends continuously on z in the

topology given by the induced operator norm. Let
a1(z) > az(z) = -+ 2 aa(z) 20

be the singular values of DF(z), i.e., eigenvalues of the square root of the positive

semidefinite operator DF(z)* DF(z).
Suppose that K C U is compact, and d is a real number, 0 < d < n. Write

d=k+s with k =[d] and s = d -k, the integer and noninteger part of d,

respectively. Define
we,o(F) = an(z) -+ ar(z) ag4.(2)
and
wi,k(F) = sup wq,z(F).
z€K
The following result, due to A. Douady and J. Oesterlé [3], provides an upper

cstimate of the Hausdorff dimension of a negatively invariant compact set. Its proof

can be found in [3] or [9].

Theorem 3.1.1. (Douady - Oesterlé) Suppose K is a compact set such that
F(K)D K. If wak(F)<1 forsome 0 <d<n, then dimgK < d. Moreover,
if d<1 then dimyK =0.

Remarks.

(i). Since F is C!, the condition wgx(F) < 1 actually implies the strict in-
cquality dimyK < d. In particular, the d-dimensional Hausdorff measure of K
is zero.

(ii). From the Appendix B we know that when d is an integer wg (F) is the
matrix norm of /\k DF(z) , the k-th exterior power of the linear operator DF(z)

induced from the I normin R". For d =k + s, the following is obvious

wa,o(F) = wi " (F) Wity (F).
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(iii). The assumption wg x(F) <1 implies that
wd,z(F™) = 0 as m — oo

exponentially and the exponential rate is uniform with respect to = € K. As a

matter of fact, Theorem 3.1.1 can be proved under this weaker condition.

(iv). Theorem 3.1.1 has been generalized to dynamical systems in infinite dimen-
sional spaces. For the case of Hilbert spaces, this was done by P.Constantin,
C. Foias, and R.Temam [2] and by J.M. Ghidaglia and R.Temam [6]. General-

izations to general Banach spaces were given by a recent work of P. Thieullen {10].

Now let |-|x and |-|x4+1 denote general vector norms in /\k R" and /\k+I R",
as well as the matrix norms they induce in the spaces of (3) x () and (,.3,)x (3)
matrices, respectively. Define

k k+1
Qu:(F) = |NDF@)|,”" |\ DF@)[iy, for s€K

and
Qa,i(F) = sup Qa,(F).
zeK
Obviously, when both |- |[x and |-|k41 are lp norms, Qg x(F) agrees with
wq, Kk (F).

Suppose Q4 k(F) < 1. Then
Qa(F™) = 0 as m — 0o

exponentially and the exponential rate is uniform with respect to z € K. Since all

vector norms on a finite dimensional vector spacc are equivalent, this would imply
wa(F™) -0 as m-— o0

exponentially with a uniform exponential rate with respect to z € K. Using the
remark (iii) following Theorem 3.1.1 we arrive at the following generalization of

Theorem 3.1.1.
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Theorem 3.1.2. Suppose that K C U is a compact set such that F(K) D K. If
Qa,k(F) <1 for some 0 <d < n, then dimyK < d. Moreover, if d <1 then

dimy K = 0.

If the mapping F is dissipative with a bounded absorbing set B C U, then
A = w(B) is the global attractor in U. In particular, A is compact and invariant

under F. The following upper estimate for dimpy A follows from Theorem 3.1.2.
Theorem 3.1.3. If Qua(F) <1, then dimyA < d. Moreover, if d <1 then

dimyA = 0.

Remark. From Corollary 2.2.9 of Chapter II, we also know that when dimyA <
1, A = {z}, where # is a globally asymptotically stable fixed point of F.

£3.2. Compact Invariant Sets of Ordinary Differential Equations

Let D C R™ be an open sct and the mapping (t,z) — f(t,z) € R® be C! in

R x D. We consider the general nonautonomous system of ordinary differential

equations
' = f(t, z). (2.1)
Let x(t,zo) denote the unique solution to (2.1) such that z(0,z0) = zo, and —g—£

be the Jacobian matrix of f. The linear variational equation of (2.1) with respect

to z(t,zp) is given by
v®) = L1, a(t,20)) ) (22)

Suppose that there exists an open set Dy C D such that z(¢,z¢) exists and
z(t,z0) € Dy for all 0 <t < 7 for some 7 > 0 when zo € Do. Then we
can define, for 2il 0 <t < 7, a mapping Fy : Dy — D by Fiy(zo) = z(t,zo).
Its tangent map DFi(zo) = %(t,xo) satisfies the linear system (2.2). From the
Appendix B we know that the k-th exterior power 2(t) = /\k DFy(zq) of the
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linear mapping DF(zo) satisfies the k-th compound equation of (2.2)
oflH
Z'(t) = b—ﬁ- (¢, z(t, x0)) 2(t). (2.3)

We denote by |- |r and |- |g+1 the vector norm in /\k R" and A'Y'R",
as well as the induced matrix norm on the space of (}) x (}) and (;},) % (x341)
matrices, respectively. We also let pur and pr41 denote the Lozinskil measures
corresponding to |- |r and |- |k4+1, respectively. From Theorem A.3.1 of the

Appendix A we have the following inequality:

i t
l/\DFt(mO)li < exp/(; [ (_g_i_

forall zg € Dy and 0<t <7, i=k, k+1. For simplicity of notation, we write

(2.4) as
i t (4]
|\ DFu(z0)]; < exp/0 i <g§ )

Thus, in this convention (2.4) leads to

[i
(,\,x(,\,mo))) dA (2.4)

k k41
IA DF(zo)|,""| \ DFi(z0)|1, <

t _ Qi[k] Q_f_-[k+ll
exp/o [(1 gy ) ¥ omnlp, ) (2.5)

for all £g € Dy and 0 <t < 7. Theorem 3.1.2 and (2.5) yield the following
result which provides an upper estimate for the Hausdorff dimension of compact

negatively invariant sets of F;.

Theorem 3.2.1. Suppose that there exists an integer k € [0,n — 1] and a real

number s € [0,1] such that

r (K] (k+1]
/0 [(l—s)uk (—g{? ) + S pk41 (%Jg;: )] <0 (2.6)

for all z¢ in a compact set K C D. If F;(K) D K, then dimyK <k + s.
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Remark. The norms |-|x and |:|x41 in Theorem 3.2.1 are not necessarily the

same. If both |-|r and |- |x41 are the Il norms, then Theorem 3.2.1 is first

proved by R. A. Smith [8].
Now suppose that the system (2.1) is w-periodic, i.e., for some w >0

flt+w, z) = f(¢, =)

forall (t,z) e RxD. Let P 1. iated Poincaré map defined by Pzo =
z(w,zg). As a special case of The ".1. we have the following corollary.
Corollary 3.2.2. Suppose (hat .~ 1) is a corpact set such that P(K) D K

and that therec exists an integer k € [C.n — 1] and a real number s € [0,1] such

w (k] [k+1]
/0 [(1—3)1% (g—i ) + 8kt (g{; )] <0 (2.7)

for all =9 € K. Then dimyK < k+s.

that

In particular, suppose that P is dissipative and A C D is the global attrac-
tor. Then dimyA < k4 s if (2.7) holds on A.

Next we assume that (2.1) is autonomous, namely, f(¢,z) is a function of z
only. Let ¢; be the flow generated by (2.1). Suppose K C D is a compact set
invariant unde: the autonomous system (2.1). Then ¢,(K) = K for all ¢ € R.
The following corollary is a direct result of applying Theorem 3.2.1 to ¢;.

Corollary 3.2.3. Suppose that (2.1) is autonomous and that K C D is a com-
pact invariant set. If there exists an integer k € [0,n — 1] and a real number

s € [0,1] such that

t (k] (k+1]
/0 [(l—s)yk (%i— ) + S k41 (gg ):l <0 (2.8)

for all 9 € K and for some t >0, then dimyK < k + s.

In the case when (2.1) is dissipative with the global attractor A C D, A is
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the maximal compart invariant set. Therefore dimyA < b+ s if (2.8) holds for

all z € A.

For a compact invariant set K, define

I L o™ A A
(1) = sup - L@, 2,
a®. 1) = sp 3 [ (G (e 20) ) @ (29)
and
qrx(K) = limsup qx(K, t). (2.10)
t—o0

Since K is compact and invariant, these quantities are well-defined. We would
like to point out that g; obviously depends on the choice of the vector norm |- [x
in RV, N = (}), and the corresponding Lozinskii mecasure jx. When the norm
| - |¢ is chosen as the l; norm, the quantity ¢& has also been considered by
R. Temam [9] as an upper bound for the global Lyapunov exponents in the context
of evolution equations in Hilbert spaces. Temam uses a trace formula involving
projections to finite dimensional subspaces rather than the compound matrices. In
the case of finite dimensional spaces, by choosing different vector norms in RN,
we may obtain from (2.9) and (2.10) different and often easier calculations of g¢x.
More generally, for 0 <d <n, let k=[d] and s =d—k be the integer and

noninteger part of d , respectively. We can define similarly the following quantities:

. 1 [t 3f[k] af[k+l]
(K, t) = Sup ‘t'/o [(1 +8) pk (0_::: + stk | oo

q4(K) = limsup qa(X, t).
t—oo

and

Theorem 3.2.4. Suppose that (2.1) is autonomous and that K is a compact

invariant set. If qi(K) <0 for some 0 <d < n, then dimyK <d.

Proof. Suppose g¢4(K) < 0. Then, for some § > 0, there exists a ¢ > 0 such
that
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which implies that (2.8) holds for all z¢ € K. Therefore from Corollary 3.2.3 we
know that dimyK < d. O

Corollary 3.2.5. Suppose A is the global attractor of the autonomous system
(2.1). If qi(A) <0 for some 0 <d<n, then dimyA < d.

§3.3. Autonomous Systems

In this section we give more detailed treatment on the upper estimate of the Haus-
dorff dimension of compact invariant sets of autonomous systems. Applications of
some of the techniques and results in this section will be seen in Chapter IV where
we derive Bendixson'’s criterion for dissipative autonomous systems in R".

Let D C R™ be an open set and z — f(z) € R® be a C! mapping defined

for all 2 € D. Consider the autonomous system

Let z(t,T¢) denote the unique solution to (3.1) such that z(0,z¢) = zo. Then the
k-th compound equation of the linear variational equation of (3.1) with respect to
z(t,z9) is given by
orfl
VW) = 25 (et 20)) 3(0) (32)
where —g—f_ is the Jacobian matrix of f, and -g—-zt[k] is the k-th additive compound
matrix of gﬁ (see Appendix B).
Consider a real-valued function (z,y) +— V(z,y) defined for (z,y) € D x RY,

N = (:) We assume that V is locally Lipschitz continuous in its domain and
.1
hlirgl_'. 7 [V(z + ha, y + hb) — V(z, y)]

exists for all (z,y) € D x RV and all (e,b) € R* x RV,
For each (z,y) € D x RV, we define I./(:c,y) by

. (33)

(4]
1% (:c +hf(z), y+h % (x)y) - V(z, y)

V(z,y) = lim 1
h—ot

h



1III. UPPER ESTIMATES OF THE HAUSDORFF DIMENSION 57

Then

. ov* ov* ofl¥l
Ve = 5 f@) + 5 ARy (3.4)

almost everywhere since V is lipschitzian and therefore differentiable almost ev-

erywhere. When k =n,
. ov* ov ..
V(e,y) = 5= fl@) + Eg(dwf)y- (3.5)

Suppose now that z(t) is a solution to (3.1) and y(¢) is a solution ~f the
k-th compound equation (3.2). Let V(t) = V(z(t), y(t)). We have the following

result.

Lemma 3.3.1. D} V(t) = V(x(t), y(t))
for almost all t > 0.

Proof. Since z(t) and y(¢) satisfy (3.1) and (3.2), respectively, for sufficiently

small h > 0,

o(t+ ) = o(t) + h f(a(t)) + olh)

(]

vt +h) = y(®) + h L @0)y(e) + o).

Thus
DY V() = Jim = [V(alt +h), y(t +B) = V(a(t), y(t)) ]
(]
= Em 1 V(a0 +hFEO) 0O L (#()u(D)
~V(z(t), y(t)) + R(t, k)]
where
af Kl
R(t, h) = V(2(t) + h f(=(t) + o(h), y(t) +h 5= (2(t)) y(t) +o(h)) -

[£]
V(z(t) + h f(z(t), y(t) + R g—i— (z(t)) y(t)).
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It follows from the Lipschitzian continuity of V' that

) 1
hllf{)l+ ZR(t’ h) =0

for almost all t > 0. As the result,
D} V(1) = V(=(t), u(t)).

g

Theorem 3.3.2. Suppose that K C D is a compact invariant set and that there

exist constants a, b> 0 and a function V(z,y) such that

(1) V(z,y) 2 alylk,
(2) V(z,y) < ~blyl,
forall € K and ye RN, N =(}). Then dimpyK < k.

Proof. For cach zo € K, consider the solution z(t,z¢) of (3.1) and a solu-
tion y(t) of the k-th compound equation (3.2). Let V(t) = V(z(t),y(t)). Then

Lemma 3.3.1 gives us
DI V(t) = V(x(), y(i)) < —bly(t)|x for all t>0.

Thus
t
alul < V() < VO — b [ )lds
0
Tlerefore
1 b [t
Ol < 2VO) — 2 [ lus)lkds.
a Jo
Gronwall’s Lemma implies

WOk < 2V(0) exp (~ ). (36)

Using a similar argument tc that used in the proof of Theorem 3.1.2 we can show

that (3.6) implies dimpy K < k. a
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For practical purposes, we are interested in a general class of V' given by
V(z, y) = |A(z)yl (3.7)

where || is a vector norm in RY, N = (}), and = — A(z) isa Nx N
matzix-valued function. We assume that 4 is C' and A(x) is nonsingular for

all z € K. As a result, there exists a constant ¢ > 0 such that

Viz,y) > el (3.8)
forall z€ K and y RV,
Now it fcllcaws from the definition of \./ that
—W(=B)V <V < u(B)V (3.9)
where
af[k]
B=A;A' + A~ A7 (3.10)
Jdr
and g is the Lozinskii measure corresponding to the |-| in RY, and A; is

the matrix obtained by replacing each entry a;, of A by a—;—;’-* f , its directional

derivative in the direction of f.

When A4 =1, wehave B = %f[k] and p(B)=M\+---+ A and —p(-DB)=
An—k+1 + +-+ + Ay in the case when |y| = |y"'y|%, where A} < --- < A, are
eigenvalues of the symmetric matrix (%5* + gf)/?. When k =n, —u(-DB) =
p(B) = divf, so that V =divfV, which is the familiar formula of Liouville and
Jacobi (see [7]).

Theorem 3.3.3. Suppose K C D is a compact invariant set. If
A7) <0 (3.11)
on K, then dimyK < k.

Proof. Since K is compact, there exists a § > 0 such that (3.11) implies

( =1 -4?i[k] -1 -
p(AfA +A3:c AT') < -56<0 onkK.
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Then (3.9) implies

V(z,y) £ —6V(z,y) < =bly|

for all z € K and y € RV, where
b=26 max |A(z)].

Thus V(z,y) satisfies the assumptions (1) and (2) in Theorem 3.3.2. Therefore
dimyK < k. a

Remark. Theorem 3.3.3 still holds if the condition (3.11) is replaced by

ﬂ[k]

— _1 —
p(—As A Aaa:

471) <0 onK.

This can be shown using a time reversal argument.
When A = I, Theorew: 3.3.3 yields the following corollary.

Corollary 3.3.4. Suppose that one of

£ oflH
p(-éit- ) <0, p(-—é—i— ) <0 (3.12)

holds on a compact invariant set K. Then dimyK < k.

Corresponding to the I, I}, and Iy norm of RN, N = (Z), the conditions in
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(3.12) take the following form:

. of, of

O TSk

e 5
re(i)

<0

for all k-tuples (¢) = (41,+- ,2k), 1 €4y <--- <1 < n,

. of
@ Yoy
re(i) T qg()
re(i)

ofr

Oz, <0

for all k-tuples (7) = (41, ,ik), 1 <5y < -+ < Sy

() A 4o+ M < 0,

(iv) Z ofr - Z Q-f—q

S Ll
re(i)

>0

for all k-tuples (z) = (i1, ,%), 1 <4y < -+ <13 €,

w Y& ¥

Iy
re(i) g¢ (1)
r€(i)

of
Oz,

>0

for all k-tuples (¢) = (41, ,%k), 1 <) < -+ < Sn.

(Vl) /\n—k+l + -+ /\n > 0’

61

where A; > --- ), are eigenvalues of the symmetric matrix (%* + %)/2 (i11)

and (vi) give Smith’s conditions, which may be difficult to compute. Conditions (1)

(ii) (iv) and (v), however, can be easily computed from the equation (3.1). When

A(z) # I, the corresponding expressions are more tedious but not more difficult to

calculate and they provide the added flexibility of having N? arbitrary functions

(entries of A(z) ) at our disposal. This flexibility is exploited in Chapter VII where

we apply these techniques to biological modcls.

When k = n, A(z) is a real-valued function. We thus have the following

corollary of Theorem 3.3.3.
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Corollary 3.3.5. Suppose there exists a real-valued function a >0 such that
Ja* )
— f + adivf < 0. (3.13)
Oz

Then dimyK < n.

Remarks.

(i). Condition (3.13) can be rewritten as
div(a f) < 0 on K, (3.14)

which is a condition of Dulac type.

(ii). Corollary 3.3.5 still holds if (3.13) is replaced by

div(af) >0 onK.

Sometimes a weaker form of the condition (3.11) is desirable. Assume that K
is a compact invariant set for (3.1), and let k be an integer and A(zx) be the
N x N matrix-valued function considered in (3.7). Define the following quantities

which are generalizations of qr(K,t) and ¢i(K) defined in (2.10):
1
gr(K,t) = sup - / p(B(z(s,z0)) ) ds (3.15)
zoeK t Jo
with the N X N matrix B given in (3.10), and

g1 (X) = limsup g (K, ). (3.16)
t—oo

Obviously when A = I, §ix(K) = gx(XK).
Now suppose Gp(K) = —6 < 0 for some function A(z) and integer 0 < k <
n. Then (3.15) and (3.16) lead to

t
/ 1 ((z(s,z0))) ds < =6t forall 29 € K. (3.17)
0
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Let V(z,y) be the function defined in (3.7). Let z(t) = x(¢,r9) and y(t) be a
solution to the k-th compound equations (3.2). Then, from (3.8), there exists a

constant ¢ > 0 such that

V(t) =: V(2(t),y(t)) 2 cly(t)] forall t>0.
Lemma 3.3.1 and (3.9) imply that

DFV(t) = V(a(t),y(t)) < u(B)ly(t)|
for almost all ¢ > 0. Therefore
cl®] < V) S VO + [ Bl

for all ¢t > 0. By Gronwall’s lemma we have

()] < —i—V(O) exp /0 " (B)ds < %V(O) exp(=61)

for all ¢ > 0, which implies that |y()] — 0 as t — oo exponentially with a
uniform exponential rate with respect to zo € K. The :2me argument as in the

prouf of Theorem 3.3.2 leads to the following result.

Theorem 3.3.6. Suppose K is a compact invariant set for (3.1) . Then dimp il <
k provided §i(K) < 0 for some integer 0 < k <n and N x N matrix-valued
function A(z).

In the following, the Hausdorff dimension of limit sets to (3.1) will be estimated
from above using information along the limiting trajectories.

Let B C D be a nonempty subset. We assume that 4+(B) is bounded.
Then from Lemma 1.2.1 in Chapter I we know that w(B) is nonempty, compact,
invariant, and attracts B.

Let ¢, denote the flow generated from (3.1). Fora T > 0, we define

t+T (]
pk(t,T,B) = sup /t I (% (¢,—(z))) dr (3.18)

z€B
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and

pe(T,B) = liirisotsp rx(t, T, B). (3.19)
These quantities are well-defined from our assumptions on B.

Theorem 3.3.7. Suppose v*(B) is bounded. If px(T,B) <0 for some T >0
and integer k, then dimpyw(B) < k.

Proof. Suppose # € w(B). Then there is a sequence of points z, in B and
a sequence of real numbers ¢, > 0 such that ¢,,(zn) — Z, as n — oo. Let
U = b, (zn), then for any ¢ >0, Gi(yn) — 6:(3) and Deu(yn) — De(z) as
n — 0o, which implies D¢y (y,)¥) — D¢y(2)F) as n — 0. Now 44, (2zn) =

¢¢( #1,(xx)). Thus by the chain rule
D¢ttt (zn) = Déi(yn) Do, (Tn)-

Therefore

Dé¢y(yn) = Dorye, (:1:,,) D¢y, (mn)_l-

which implies the following relation for the k-th compound matrices,
Dée(yn)® = Dgryr,(za)® (D1, (za)™)".
Let Y(t) = Dérye,(zn) Dés.(zn)~'. Then for Appendix B,

-;—it-Y(t) = gi_t (Se41a(z0)) Y (2)

and
Ly = 7 (buaten) YO
dt Oz HalTn )
For a vector norm |-] in RN, N = (}), and the corresponding Lozinskif

measure f, we have

T (k]
|Dér(yn)P| < exp/o u (g—i (¢r+tn($n))) dr

tatT (%]
= exP/t Iz (g‘f" (¢r(mn))) dr.

T
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Thus
|Dér(2)P| = 1ing°|p¢,-(yn)(k)| < ePHTB) o
n—
Therefore dimpyw(B) < k by Theorem 3.1.2. O
In particular, when B = {z¢}, we have the following corollary of Thco-
rem 3.3.7.

Corollary 3.3.8. Suppose y*(zo) is bounded. If, for some T >0,

T gfld |
limsup/ #(—6—.1:_ (z(7,20))) dr < 0 (3.20)
t—o0 t

then dimpw(zg) < k.

In the spirit of Theorem 3.3.7 and Theorem 3.1.2, we may define the following
quantities:

pd(t, T, B) =

t+T 3f[k] of [k+1]
igg/z [(1 — 8)pk (55 (¢1—(-"3))) T Silk+ (5; (¢,(z)))] dT(3.21)

and
pa(T, B) = limsup pa(t,T, B) (3.22)
t—o00

where d = k + s, and prove the following result using a similar argument to that

in the proof of Theorem 3.3.7.

‘Theorem 3.3.9. Suppose that y*(B) is bounded. If p4(T,B) < 0 for some
T>0 and 0<d<n, then dimyw(B) < d.

Corollary 3.3.10. Suppose the semi-orbit v*(zo) is bounded. If, for some T >
0,

[k+1]

t+T (k)
liﬁi}p[ [(l—s)uk (-g% (¢r($0))) + Spk41 (é (¢r($0)))] dr <0
(3.23)
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then dimpw(zp) < k + s.

§3.4. Dimension of the Lorenz Attractor

‘We consider the Lorenz equation

T =—-0zx+0y
Yy =rz—-y-—-=zz
2= ~bz+zy (4.1)

where o, r, b are three positive parameters. We have shown in Chapter I that
(4.1) is dissipative and its global attractor L is contained in the region

D = {(z,y,2) €R® : || <p, ¥’ + (2 =7) < p*},

rb

261"
Numerical evidence shows that for certain range of parameters, (4.1) demon-

where p =

strates chaotic behaviour, and suggests that its global attractor L is a set with
complex geometry. In this section we shall apply the theory developed in §3.2 and
§3.3 tu estimate the upper bound for the Hausdorff dimension of L, which is one
of the indicators of the complexity of the geometry of L.

The Jacobian matrix J and its compounds are given in the following;:

[ —¢ o O
J=|r—z -1 —:Z (4.2)
| y m r—
[—0 -1 -z 0
JA = T —b-o o (4.3)
| -y r—z —=b-—-1

JB = trJ = -0 -b-1 (4.4)

Since JB! is a negative number, Corollary 3.3.4 implies that dimyL < 3. On
the other hand, numerical results suggest that (4.1) has many periodic solutions.

As a result of Theorem 2.3.4 of Chapter II, we know dimyL > 2.
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Theorem 3.4.1. Suppose (4.1) has periodic solutions. Then
2 < dimyL < 3.
In what follows, we shall use the methods in Theorem 3.2.1 of §3.2 to obtain

finer upper estimate of dimyL.

Let ¢; be the flow generated by (4.1). Then
¢

D¢P| < exp [ (7
0

|D4P| < exp (—(o + b+ 1)t).
Thus
|DP|'~° [ D$P|° < exp /Ot (1= 9n(I®) = st + b+ 1)1].
Suppose now
p(J®) <M on L

and we choose sy so that

M
= . 4.5
Y +o+b+1 (4.5)
Then
D¢ |DsP|" < 1
for all s < sg. Therefore dimyL < 2+ sp.
To obtain M, we choose the norm in R3 = R(2) as
|(u, v, w)] = Vu? + v? + a|w|, a>0. (4.6)

Then from the Appendix A we know the Lozinskii measure of J (21 corresponding

to this norm can be estimated by
1
p(/¥) S max {~(o+1) + Z VP + (=25 ~(b+1) + a0}

1
<max { —(o+1) + 2 ~(b+1) + ac}.
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Choose a > 0 so that
—(o+1) + -}x-p = —(b+1) + ac
ie.
ca’ + (o —b)a — p =0. (4.7)
Then
p(J@) < —(b+1) + ao.

Now cquation (4.7) yields

1 2 z
a_%[b—a-i-((a—b) + 40p) ]
1 20rb | L
= — | b - —b)? 2
20-[ ot (0= + =) }
hence
1 . 2 20rb |1
R _ 2 4.
M 5 [ (c+5+2)+ (e =) + \/;__1) ] (4.8)
and (4.5) implies the following result.
Theorem 3.4.2.
M
i < .
dimpl € 2+~ (4.9)
with M given in (4.8).
When b= $, 0 =10, r =28, (4.9) yields
dimyL < 2.4. (4.10)

Different upper estimates than (4.9) may be obtained by choosing different

vector norms |(u,v,w)| than that in (4.6).

Upper estimates for dimpyL are also obtained by R.A. Smith [8], R. Temam
[9], A. Eden [4], and V. A. Boichenko and G. A. Leonov [1]. When the parameter
values are b = 8/3,0 = 10, r = 28, the upper bourd in (4.10) is better than
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those of Smith and Temam, and is comparable to those of Eden and Boichenko and

Leonov.
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CHAPTER 1V

CRITERIA OF BENDIXSON AND DULAC
IN HIGHER DIMENSIONS

In this chapter we develop general methods for proving the nonexistence of
certain types of structures which are invariant with respect to an autonomous system

of differential equations in R"
2 = f() (0.1)

where the function z — f(z) is assumed to be C! for z in an open subset D
of R™. These invariant structures include periodic orbits, homoclinic orbits, hete-
roclinic cycles, and higher dimensional invariant tori. These methods will produce
concrc  :onditions which, compared with most existing results on this subject, are
more general and flexible and easier to compute.

The work in this field dates back to a classic result of Bendixson [1] in 1901 for
2-dimensional systems, which states that, when n = 2, (0.1) has no nonconstant
periodic solutions if divf # 0 on R2. A result of Dulac [6] generalizes this to the
statement that, if n =2 and div(af) # 0 on a simply connected open subset
D of R2?, where « is a continuous real-valued function on D, then there is no
closed path of (1.1) which lies entirely in D. A flurry of results on the nonexistence
of periodic solutions systems of higher dimensions appeared in the next several
decades. Most of these results, however, deal with only special types of equations
arising from mechanics and other applied fields. The first generalizations of the
results of Bendixson and Dulac for general equations (0.1) of arbitrary dimension
n seem to belong to R. A. Smith [9] [10] and J. S. Muldowney [8] in the late 1980’s.

Smith shows in [9] that if Ay > A2 > -+ > A, are the eigenva'ues of
%(gf* + gf), where g% is the Jacobian matrix of f and the asterisk denotes
transposition, then all bounded semi-orbits of (0.1) tend to an equilibrium if A; +

A2 <0 on R". In particular, no nonconstant periodic solution can exist under

Typeset by ApS-TEX
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thesn circumstances. Smith also treats situations where A, + A2 < 0 holds only
on subsets D of R". More generally, Theorem 2 of [9] shows that the Hausdorff
dimension of any compact invariant set of (0.1) is less than 2, if A; + Ay < 0,
and Theorem 5 then implies that no simple closed contour is invariant if (0.1) is
dissipative. Thus, for example, a dissipative system satisfying Smith’s condition
A1 + A2 < 0 can have no homoclinic orbits.

In (8], Muldowney proves that if ;t(%f;-m) <0 or ;t(—%flz]) < 0, then
(0.1) has no nonconstant periodic solutions. Here %5[2] is the second additive
compound discussed in the Appendix B, and g is the Lozinskil measure corre-
sponding to a vector norm | - | as defined and discussed in Appendix A. When
ly| = (v*y)3, #(%%[2]) = A1 + A2 so that u(—%m) < 0 is Smith’s condition in
this case; here u(_gg[ﬂ) < 0 means An—1 + Ap > 0. The advantage of using
the Lozinskii measure is in that other choices of norm often lead to expressions
u(:h%m) which are easier to calculate or estimate than cigenvalues. Results of
both Smith and Muldowney reduce to that of Bendixson when n = 2.

The argument of [8] that the condition A; 4+ A2 < 0 implies the nonexistence
of closei:l paths is roughly as follows. First, this condition implies that the area
of a surface decreases as it evolves under the dynamics of (0.1). By considering,
in a certain zeneralized sense, a surface of ‘minimum arca’ whose boundary is C,
a closed path (and therefore an invariant set) of (0.1), we find that its boundary
continues to be C and that its area decreases as it evolves over a short time
interval. The minimality of the original surface area is thus contradicted so that no
such closed path can exist. The condition A,_; + A, > 0 similarly implies that
surface areas increase in the system (0.1) and the same conclusion may be deduced
from a time reversal. The result for general Lozinskif norms g is obtained in the
same way by considering different measures of surface area in this argument. This
method is more suitable to deal with nondissipative systems.

In this chapter, both approaches are employed to derive generalizations of Du-
lac criteria. In §4.1, we show that concrete conditions derived in Chapter IIT which

imply the Hausdorff dimension of the global attractor is less than 2 will be higher
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dimensional Dulac criteria for dissipative systems. The case of nondissipative sys-
tems is discussed in §4.2, where we consider more general functionals than areas for
surfaces with a fixed boundary C. By examining the behaviour of these function-
als under the dynamics of (0.1), we arrive at new criteria for the nonexistence of
invariant closed curves for general autonomous systems. Even in the case n = 2
our approach yields a slightly more flexible formulation of the results of 1''ndixson
and Dulac than the traditiona! oncs. The same strategy is used in §4.3 to study
higher dimensional invariant surfaces.

Also of intere:  to us here is the stability problem for periodic solutions to
autonomous systems (0.1). It is well known that an appropriate notion of stability
for nonconstant periodic solutions is the orbital stability. When n = _, a criterion
for the orbital stability of a periodic solution z = p(t) to (0.1) of least j -ried w
is given by Poincaré (see [6] or [7]) which says that p(t) is asymptotic.lly orbitally
stable with asymptotic phase if f(;” div f(p(t))dt < 0. This criterion is generzs"7ed
to the case n = 2 in §4.4. It will be used in Chapter VII, together witl: ‘he

Poincaré-Bendixson property, to show the nonexistence of periedic solutions for
certain concrete equations arising from Mathematical Biology.

In §4.5, w-periodic systems are considered. Under a similar integral condition,
we show that, if a weak Dulac type condit on in integral form holds, the only possible
periodic solutions to the periodic system are those whose period are « “mimensurate
with w. In §4.6, as an illustration, the general theory developed here is applied to
the Lorenz model. We are able to identify regions free of periodic solutions for this
cquation. Further applications will be seen in Chapter V and VII, where we take

on the problenr of global stability.

§4.1. Dissipative Systems in R”

We consider an autonomous system in R”

' = f(z) (1.1)



IV. CRITERIA OF BENDIXSON AND DULAC 73

where z — f(z) € R® isa C! fuuction defined on an open set D C R™.

We a: me that (1.1) is dissipative with a bounded absorbing set Dy C D.
Ther A = w(Dg) ist! - global attractor of (1.1) in D. Recall a result in Chapter
II

Theorem 4.1.1. Suppose J is simply connected. If dimj;A < 2, then no simple

closed rectifiuble cnirve in A can be invariant.

Since a periodic trajectory gives rise to a simple closed rectifiable curve in D,

condition dimpyA < 2 implies that (1.1) has no periodi: solutions.

Corollary 4.1.2. Under the assumptions of Theorem 4 1.1 tiie systam (1.1} has

no periodic solutions.

In the following we will use the upper estimates for dimy A in Chepter I to
lerive concrete conditions which ensure dimyA < 2, and thus by Theorem 4.1.1
preclude the existence of invariant simple closed rectifiable curves.

Let |-| denote a vector normon RN, N = (}), #s well as the induced matrix
norra for N x N matrices. Let p be the corresponding Lozinskil measure. We
will consider a real-valued function (z,y)+— V(i,y) defined for (z,y) € D x RN
which !~ examined in Chapter iII. The following result follows from Th+: . ‘e 4.1.1

and the case k =2 of Theorem 3.3.2 in Chapter III.

Theorem 4.1.3. Assume that D is simply connected. Suppose there is a function

V(z,y) such that

V(z, y) 2 alyl, (1.2)
Ve, y) < —bly] (13)

for all (z,y) € A x RY. Thep no simple closed rectifiable curve in D can be

invariant with respect to (1.1).

Let = A(z) bea (}) x (}) matrix lu-d fusetiou that is C'' and non-
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singular in A. Consider the function V' given by

V(z,y) = |A(z)y] (1.4)
Since A(z) is nonsingular and C' on A, V(z,y) satisfies (1.2). From th~

discussion in §3.3 of Chapter III, we know that V satisfies (1.3) if the following

condition holds:

Ap A7 4 ‘Q-J:mA'l <5« A 1.5
i Ay -r—Aam <§< 0 on A. (1.5)

‘Therefore, bv Theorem 4.1.3, we have the followir < genrral eritsrion of Dulac type.

Theorem 4.1.4. Suppose D is simply conne. ica. 11 (1.5 is satisfied, then no

simple closed rectifiable curve in 1) can be invariant with respect to (1.1).

Remarks.

(1). Theorein 4.1.4 still holds if (1.5) is replaced by
aftd
al —Ap A7 — ,.45; A1) £6<0 on A (1.6)

This can be shown using Theorem £.1.4 and a time reversal argument.

(ii). We will see in Chapter V that, under the assu. -+ .ns of Theorem 4.1.5, (1.1)
can not have orbits of < 1e following types (See Figure 4.1.1):

(1) periodic orbits;

(2) homoclinic orbits;

(3) a pair of heteroclinic orbits of the same equilibria;

(4) heteroclinic cycles,
since in each case, under the condition (1.5), the orbits give rise to simple closed
rectifiable curves which are invariant with respect to (1.1). Note that this conclusion
is stronger than what can be inferred from Theorem 4.1.1, since the invariant curves

arising from orbits of types (2) - (4) may not be rectifiable.

Let A = I, we have the following result, which is first proved by J. S. Mul-

downey [§].
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Theorem 4.1.5. Assume that D is simpiy connected. Suppose one of the follow-

2 BN
(af ) <0, ,1(—9— 0. (L.7)

Oz

holds on the glob. . attra~tor A. Then no sx.mp]e cIosed rect:ﬁab]c curvein D can

ing conditions

be invariant with respect to (1.1).

If the Lozinskii measure in (1.7) is computed with respect to the 11, leo, l2
norms of RY, we arrive at the following concrete conditions cach of which is

Bendixson’s criterion when n = 2.

Theorem 4.1.6 (Rendixson’s Criterion in R" ). Suppose D is simply con-
nected. Then no simple closed rectifiable curve whicl: is ir variant with respect to
(1.1) can exist if any one of the following conditions folds on the global attractor

A

(i) su iafr gﬁi-}-q; (-ng—'i +!~t;fi' ) : 15r<s§n}<0,

):1_<,r<s$n}<(),

. ofs Ofr
(i1) sup] ('9 ai: + ; ( 6£q +

(iii) Ay + A2 <0,

. . afr ‘afa afq affl . N
(iv) 1nf{ Az, + Bz, - q;m ( —“_6:1:, + 9z, :1<r<s<ngy >0,
o Oy (|0k] 4| \
== - : s <
(v) in f{ax, 9z, q#”<0xq + 7z, 157‘<<s_nJ >0,

where \; > --- > )\, are eigenvalues of the symmetric matrix (Q‘L + %)/2.

Proof. If y € R" and |y| = 3, lyil, sup;|yi| or (y‘y)li, then the Lozin-

skil measure pu( %5[2]) is the expression in (i), (ii) or (iii) and —p( —;—3‘5[2]) is the
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expression in (iv), (v) or (vi), respectively.

Remark. We can sce that (iii) and (vi) give Smith’s conditions. Conditions (i) (ii)
(iv) and (v) can be easily computed from the equations of (1.1), whereas conditions

(iii) and (vi) may be difficult to calculate.

Let £ +— A(x) bea N x N matrix-valued function, N = (;), considered
in (1.4) and (1.5). The following are special cases of the quantities gx(t, K) and
gr(K) defined in (3.15) of Chapter III for compact invariant sets.

1 [
G2(t, A) = sup - / p( B(z(s,z0)) ) ds (1.8)
:rEAt 0
with
G g%

B = AfA +A;; A7, (1.9)

and
72(A) = limsup ¢2(¢, A). (1.10)

t—oo

Theorem 3.3.6 in Chapter III when k = 2 showsthat g2(A) < 0 implies dimpyA <
2. We thus have the following iesult.

Theorem 4.1.7. Assume that D is simply connected. If 3»(A) < 0, then no

simple clesed rectifiable curve in D can be invariant.

Remark. The condition §2(A) < 0 is less restrictive than (1.5) which requires
that p(B) < 0 holds pointwisely on A. Applications of both Theorem 4.1.4 and
Theorem 4.1.7 will be seen in Chapter V and VII.

84.2. Non-dissipative Systems.

In this section, we derive similar conditions obtained in the section §4.1 for au-
tonomous systems which are not necessarily dissipative. Our method is to study

the evolution of some general functionals, defined on surfaces with a fixed boundary
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C, under the dynamics of (1.1). We show that any conditions which guarantee that
such a functioual decreases along the solutions of (1.1) will give rise to criteria of
Bendixson or Dulac type for (1.1). In the subscction §4.2.1, the notions of rectifi-
able 2-csurfaces and simple closed curves are defined. Then gencral functionals will
be defined on the rectifiable 2-surfaces with a fixed simple closed rectifiable curve
as their boundary. Properties of such surface functional, especially their evolution
along the solutions of (1.1) are also studied. In §4.2.2, two general criteria preriud-
ing the existence of simple closed rectifiable curves invariant with respect to (1.1)
are obtained based on the study of these surface functiorals. Concrete Dulac type
conditions derived from these criteria generalize ™. results in [8] and [9]. Ewven
in the case n = 2 our approach yields a. slightly more flexible formulation of the

results of Bendixson and Dulac than the traditional ones.

§4.2.1. Evolation of Surface func.icnals

We first of all recall a special case of our definition in Chapicer II for normal closed
surfaces. Let U = B2(0,1), the euclidean unit ballin R? andlet U and 9U be
its closure and boundary, respectively. If D C R", a function ¢ € Lip (U — D)
will be described as a simply connected rectifiable 2-surface m D; a function
¥ € Lip(0U — D) is a closed rectifiable curve in D and will be called simple if it
is one-to-one. Moreover, if 1 is the restriction to U of a function ¢ : U — D,

we denote this by 9 = %. If D is an open, simply connected set, then
(¢, D) = {p € Lip(T — D) : (dU) = $(aV)} (2.1)

is nonempty for each simple closed rectifiable curve # in D. To sce this, let
(r,0) be polar coordinates in R2. Since #(dU) is homotopic to a point in D
there is a continuous function (r,9) — @(r,8) € 3 with @(r,0) = ¢(r,27) and
3(1,8) = ¥(1,8), 0<r<1,0<6<2r Tofind v € 3 (¥,D), we construct
a lipschitzian approximation to @ as follows. We partition U into triangular

regions (a region intersecting 8U imay have a portion of QU as onc of its sides)
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and let o(u) = @(u) = ¥(u) if u€ U and @(u) = @G(u) if u is a vertex in the
interior of U; by interpolating linearly in the triangles we find ¢ € Lip(U — R")
such that ¢ = 9. Moreover, since D is open, @(U) C D by continuity if the
triangular partition is fine cnough so that ¢ € Y (v, D).

If Dy is the domain of f in (1.1), we consider functionals & on the surfaces

Lip(U — Do) of the form

Se = [Us(so(u), o= p(u) A g2 p(u)) du - (22)

where u = (uj,us) and (z,y) — S(z,y) is a real-valued function with z €
Dy, ye RN, N = (;’) We require also that S be locally Lipschitzian on its
d~ ° ~-Athat limy_o+ 3[S(z+ha,y+hb)—S(z,y)] existsforall (z,y) € DxRN
;) € R" x RN, The integral in (2.2) exists since the partial derivatives
o st almost everywhere in U and are bounded by the lipschitz constant of
®.
We define .§' by

Se) = Jim, 3 S (o+ hs@y+1 25 @) -5@y)|. @3

e DG 2 . . - . .
Thus S = g—f I+ %*g{[ ]y almost everywhere, since S is Lipschitzian and

therefore differentiable almost everywhere. When n = 2, ..:3' = %* f+ %g(div fy.

Proposition 4.2.1. Suppose g € Lip(U — R"*) and ¢i(u) = z(t,po(u)). Then
@ € Lip(U — R™), the right-hand derivative D}Sp, exists and

DfSp, = /—;SG% 2=t N 52 ¢1) (2.4)

as long as ,(u) exists for each u € U.

Proof. For each u € U, ¢,(u) is a solution of (1.1). Therefore z(t) =
an ) = F(two() g po(u) satisfes G = 5L(pe(w))zi, i = 1,2 and
y(t) = 3—?‘-;-99,(10 A a—‘z;got(u) satisfies % = %lzl(cp,(u))y. It follows that

: 1 a d 3 3
;.llﬁ)lJr 5 [5(991+h, Bu; Pt+h A Buz 80t+h) - S(‘Pt’ Fu; Pt A Bug Sot)]
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exists and equais S(gpt, 3Pt N3 -cpg) From this and the Lebesgue Dominated

(‘onvergence Theorem we deduce Propos1t10n 4.2.1.

The surface area, counting multiplicities, of (U) is Sy¢, = [zl (,ul(p, A
au2<p¢| Here S(z,y) = |yl = (¥* y)1/? is the €2 norm of y € RN. For this

functional

(2]
S@y) = S ; (gf +3E)

and therefore
e (2) + Aa(@)) S(2,) < 5(2,9) € (Mi(@) + Aa(2)) S(z,y)  (25)

where A > A2 > -+ > A, are theeigenvalues of -;-(g{-‘%-%f), since the eigenvalucs
of %(g—ﬁ* + %f)[?] are A\i+A;, 1<i<j<n (sec Appendix B, Proposition 2.6).
Thus the surface arca of ,(U) incroesr: {decreases) in t as long as o(U) lies
in a set where Ap—1 +An >0 (A= - 0).

If z+— H(z) isa C' real symmetric (}) X (3) matrix-valued function and
S(z,y) = y*H(zjy, then

. [2]= (2]
S(z,y) =y (Hf + 5[ H+ Hgf ) Y, (2.6)
/

where H; is the matrix obtained by replacing cach entvy hi; of H by (hij)f =
-%1- f, its directional derivative in the direction f. Ti: this case Sy, increases
(decreases) if ¢¢(U) lies in a set where Hy+3- o ]*H+H%{-[ ]
definite.

A general class of functionals § in which we are interested is given by S(x,y) =

is positive (negative)

|A(z)y|, where | - | is any norm on RN, N =(3), and z — A(z) isa C!
nonsingular real N x N matrix-valued function. In this case, it follows from (2.3)

that
_u(-B)S < 5 < W(B)S, (2.7)

where B= A;A™1+ A %E[z, A~! and g is the Lozinskil measure corresponding
ol | When A=1, B=2" and u(B)=A +X, —p(~B)=dnoi+Au in
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the case that |y| = (y*y)i. When n=2, —u(—B)=pu(B)=divf so that (2.7)
gives S= (div £)S, the familiar formula of Liouville and Jacobi ([7], page 44).

We now consider functionals A on Lip(U — R"™) defined by

0p Op |
= a— N — 2.8
A /U Ou,y A Ouz ( )
where | - | is any norm on RV and p > 1. For example, if |y| = (y*y)* and

p=1, A is the surface area of ¢(U). We show that, if Jp is a simple closed

curve, then Ay has a positive lower bound which depends only on | - |, p and

dyp.

Proposition 4.2.2. Suppose 1 is a simple closed rectifiable curve in R™. Then

there oxists § > 0 such that

for all ¢ € &(¢,R™).

P.oof. Sinceall normsin RV are equivalent, it is sufficient to prove the proposi-
tion in the case that ly| = (y*y)!/%. It also suffices to prove the siatement for
¢ € (¢, K), where K is the convex hull of %(0U). This follows from the
fact that if fI is any (n — 1)-dimensional hyperplane in R™ which does not
intersect ¥(8U) and ¢ € E(y,R"), by orthogonal projection onto II, if nec-
cssary, we can find & € Z(),R") such that AP < Ap and H(U) does not
cross II. Next, observe that f:" [¢¥'|> > 0, where (6) = ¥{cosf,sinb), s‘nce ¥
is one-to-one. Choose the continuous function b from U to R™ such that, if
b(6) = (boe))(6), foz’r b*y' is sufficiently close to f:" [¢'|? to ensure fozw ' > 0.
Then the function b may be extended continuously to R™ and b may be approx-
imated on R™ by a C! function a such that ap(dU) = ay(0U) is sufficiently
close to 02" b*y' to ensure ap(0U) > 0, where a is the 1-form defined by
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a =Y nir)dei. But Stokes’ Theorem implies

cw(@U ) = dap(T)

where y(u) = 52-0(u) A p(u), zi(u) = 522(c) - grk(e), = =p(u), ()=
(31,i2), i =1,...,N = (}). Since @ is C' on R" and p(u) € K, there is
a constant M independent of ¢ such that |z(u)] < M for all v € U. Thus
Holder’s Inequality implies

0 < a(3U) = ap(dV) < /U =l Iy

(e (o)

< mv M(Ap)7.

We conclude that Proposition 4.2.2 holds with é = [a(0U)/ s M 7. a

A functional S of the form (2.2) is said to be strongly decreasing with respect
to (1.1) on D C R™ if there exist constants p, a, b witiu p 2 1, « 20, b >0
and a+ b >0 such that

S(z,y) < —(a + blyl”) (2.9)

if ze D and y € RN,
It follows from Propositions 4.2.1, 4.2.2 that
D}Syp, < —(ar + b6) (2.10)

if ¢y € X(,D) and D is a set where (2.9) holds.
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£4.2.2. Bendixson’s Criterion

A subset B of D is invariant with respect to (1.1) if =(¢,B) = B for all t €
(—00,00). A simple closed rectifiable curve % in D is invariant with respect to

(1.1) if ¥{(0U) is invariant with respect to (1.1).

Criterion I. Suppose that 3 is a simple closed rectifiable curve in D which is

invariant with respect to (1.1). Then there cannot exist a functional S of the

formn (2.2) such that (a) and (b) are satisfied:

(a) —oo<m=inf{Sy:¢p € Z(y,D)}.

(b) There is a sequence of surfaces ¢* € £(¢,D) such that m —= limg—oo Sk
and S is strongly decreasing with respect to (1.1) on {z{t p*({U)) : t €
[0,¢], k=1,2,...} for some € > 0.

Criterion II. Suppose that 1 is a simple closed rectifiable curve :a £? which i;

invariant with respect to (1.1). Then there cannot exist a functional S such that

(a) and (b) are satisfied:

(a) —oo<m=inf{Syp:p € L(y,D)}.

(b) There is a surface @ € L(,D) such that S is strongly decreasing with
respect to (1.1) on {z(t,o(U)) :t Z [R,00)} for some R > 0.

To establish these criteria, observe that the invariance of ¥ implies ¢ €
(s, D} if o € (¢, D) aslong as p;(u) exists for each u € U. From Proposi-
tion 4.2.1 and (2.10) the conditions of Criterion I imply S¢* < Sp* — (ar + bd)e,
where ¥(u) = z(t,0¥(u)), k =1,2,.... Since p* € X(¥,D) implies ¢* €
S(¢, D) and limsupy_., Sp* < m — (ar + br)e < m we have a contradiction of
(a).

Similarly, the conditions of Criterion II imply S¢: < Spr — (am + b6)(t —
R), R <t < oo, sothat ¢ € L(¢¥,D) and limy.eoSp; = —00 < m, again

contradicting (a).
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We now deduce more concrete expressions from these criteria, beginning with

six conditions in R™ each of which is the Bendixson’s criterion when n = 2.

Theorem 4.2.3 (Bendixson’s Criterion in R"). A simple closed rectifiable
curve which is invariant with respect to (1.1} cannot exist if any one of the following

conditions is satisfied on R" :

r a ]
(i) up{af a£s+§ (-g%i—+g£—):l§r<sgn}<0,
g#r,s
. 3fr Ofs ofr Ofs
) .1 < gy
(ii) sup{ 613 + ;r ( 3c, + as,|) 1<r<s<ny <0,

(111) A+ A2 <0,

. afr _L_ afq afq . .
(iv) lf{a'cr+3z,._q;s(0mr+0ms :1<r<s<ny >0,
. JOfr  0fs ofr| | |9fs )
— : < “
(v) 1nf{ Bz, + Bz, q;a ( oz, + oz, 1<r<s<np>0,
(vi) Ap—1+ A >0.
where Ay > --- > A, are eigenvalues of (%z[* + gf).

Proof. This result may be deduced from either of the preceding criteria. However,
since solutions of (1.1) do not necessarily exist globally, the technicalitics in using
Criterion I are fewer. If y € RN and ly| = sup; lyil, >_;lvif or (y*y)%, then
the Lozinskii measure #(%[2]) is the expression in (i), (ii) or (iii) and —( —:—jfm)
is the expression in (iv), (v) or ‘vi}, respectively. It follows from (2.7) with A =1
that, if S(z,y) = ly|, S is strongly decreasing with respect to (1.1) on any compact
subset of K" if the cerresponding condition (i), (ii) ot (iii) holds and that S is
strongly decreasing on compacta with respect to (1.1) with reversed time if (iv),

(v) or (vi) holds. Since S¢ > 0 for every ¢, it remains «nly to show that, if
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1 is a simple closed curve, there is a sequence in (3, D) which minimizes S
over &(,R"), where D = {z : |zi| < ¢;} satisfies ¥(0U) C D. This follows
from the observation that, if ¢ € L(¥,R") and @i(u) = —c;i, @i(u), ci as
‘Pi(u) € (—oo, "'Ci], (—C,',C.'), [C,‘,OO), i =1,...,n, then ¢ € 2("/)1D) and
SP < Sy, since |52-F A 32-3| < 520 A 2= p- O

Any of the criteria (i), ... ,(vi) of Theorem 3.3 may be modified, following
Smith [9], by replacing f by af, where ~ — a(z) is a positive C! scalar-
valued function. This amounts to a change of the independent variable ¢ and
give. a generalization of [heorem 2.3 in the spirit of Dnlac (see [8], Remark (d)).
This arbitrary function introduced irto the criteria may be replaced by ('2‘)2 such
functions if we consider the functional S defined by (2.3) with S(z,y) = |A(z)y],
where z — A(z) isa C' nonsingular () x (3) matrix-valued functiva on D.
Here Sy = fU|A(Lp)g;-l,<p/\ —6,%‘;2,4,0]. It follows from (2.7) that g’(m,y) < 0 when-
ever u(B) <0 - icre p is the Lozinskil measure corresponding to | - | and that
S is strongly du.reasing on sets where p(B) < —b < 0. Similarly ..S(a:,y) >0
when --u(—B) > 0.

We will say that D has the minimum property with respect to S 1ii, for each
simple closed rectifiable curve @ in D, there is a minimizing sequence ¢* €
v N) for § such that Uxp*(TU) has compact closure in D. It follows that,

.as this property and p(B) < 0, then ¢¥(u) exists for each u € U and
L%, 0<t<e¢g, for some ¢ >0, and that the conditions (a) and (b) of
Criterion I are satisfied for each simple closed rectifiable curve ¥ in I. Thus we

have the following theorem.

Theorem 4.2.4. Suppose that

(a) D kas ihe minimum property with respect to S(z,y) = |A(z)y|-
(2]
(b) u (A,A-‘ +A% A-1> <0 on D.

Then no simple closed rectifiable curve in D is invariant with respect to (1.1).

Remark. The condition (b) may be replaced by pu(—A;A™! ~ A,%MA“I) <0
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by using a time reversal argument.

With A =TI and D = R", we obtain Theorem 2.3 if | - | is any of the
three norms mentioned in the proof of that theorem. In fact the proof is simply a
demonstration that R™ has the minimum property with respect to S(x,y) = |y|.
The same argument applies equally well to any absolute norm, where | - | is said

to be absolute if |y| is unchanged by replacing the components y; of y by |ul.

Theorem 4.2.5. Suppose that one of

5j‘)':\. 3]"'[2]
“(6:1: ) <0, p(—a—x <0

holds on R™ where p is s+ Lozinskil measure corresponding to an absolute norm
|-] on RN, N = (}). Then no simple closed rectifizble curve in R" is invariant

with respect to (1.1).

The criteria for dissipative systems obtained in §4.1 can be shown to follow
from these two criteria as well. As a matter of fact, it follows from Criterion II
that if S satisfies (a) and (1.1) has an absorbing set Dy on which § is strongly

decreasing, then no simple closed curve 3 in D for which X(#, D) is nonempty

can be invariant with respect to (1.1). This gives the following result.

Theorem 4.2.6. Suppose that

(a) D is simply connected.

() w(AsA~? +A%£[2]A_1) .7 —6 < 0 on asct Dy which is absorbing with
respect to (1.1).

Then there is no simple closed rectifiable curve in D which is invariant with respect

to (1.1).

Remarks.

(G). ¥ S(z,y) = af(z), where a is C', then S = %%*f and S is strongly

. * . . .
decreasing on any set wherc g—: f < =6 < 0. Our criteria then translate into
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a weak form of the familiar observation that no nonconstant periodic solution can

exist if there is a real-valued function « which decereases along trajectories of (1.1).

(ii). Finally we observe that, when n = 2, Dulac’s criterion follows from con-
sideration of S(r,y) = a(x)y. Then, for any simple closed curve 3 with ¢ €
(¥, D), S¢ = fDx «, where D, is the region bounded by (dU), and so Sy
depends only on . If % is invariant and Dy C D, we may find a function
¢ € I(¢,D1) such that & A & = Fwre > 0 and the constant sequence
b=, k=1,2,... is minimizing for S. Also § is strongly decreasing on

b 9 !'?

. * . P " . .

D, if g—‘; f + adivf < 0. This is Dulac’s condition. Criterion I and I now both

. e s . .
imply Dulac’s criterion. Here it was not necessary to assume «(r) was of one sign.
In contrast, the higher dimensional analogue needed to consider S(,y) = |A(r)y|
where A(z) is nonsingular. This condition may be relaxed somewhat if a more
general definition of ‘strongly decreasing’ is given, replacing the constants «a, b of

(2.9) by functions a(zx), b(z) in which case one also neeas an extension of Propo-

sition 4.2.2 to a functional A =38 determined by (2.2) with S(x,y) = b(x)|y|".

§4.3. Higher Dimensional Invariant Structures

In this section, the idcas in the first two sections are further explored so that we can
derive conditions to preclude higher dimensional structures invariant with respect
to (1.1).

First of all, we assume (1.1) is dissipative with a bounded absorbing set Dy
and the global attractor A. Let U C R¥*! be a bounded connected open set with
boundary AU and closure U. For an integer k >0, recall that a (k + 1)-surface
in D isamapping ¢ € C(U — D) and a normal k-boundary in D is a mapping
) € C(8U — D) which is one to one and Lipschitz continuous on gU. D is called
boundedly k-connected if, for each compact subsct K of D and any family of
k-boundary {t)q }aea in K, there exists a bounded set B suchthat K C BC D

and each ¥, boundsa (k+1)-surface in B. The following resuits are established
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in Chapter I

Theorem 4.3.1. If dimjA < k + 1, then there can be no invariant normal

k-boundary in D which bounds a (k + 1)-surfacc in D.

Theorem 4.3.2. Suppose that D is boundedly k-connected. If dimpyA < k+1,

then no normal k-boundary in D can be invariant with respect to (1.

Using the upper estimates for dimy A developed in Chapter II1, we can derive
concrete criteria which preclude the existence of invariant normal k-boundary.
Let (ar,y) — V(x,y) be the real-valued function wich is Lipschitz continuous

on DxRN, N = (3) considered in §3.3 of Chapter III, and define

. . 1 af[k]
V(a,y) = lim o | V(e+hf(z), y+hz (z)y) — V(z,y) (3.1)

for all (z,y) € DxRY andall (a,b) € R* xR", asin (3.3) of Chapter III. Thus

. v av* aft
V) = 5o @) + 50 5 (32)

almost everywhere.

The following result follows from Theorem 3.3.2 in Chapter III.

Theorem 4.3.3. Assume that D is boundedly k-connected . Suppose that there
exists constants a, b >0 and a function V(zx,y) such that, for a vector norm |- |
in RN, N = (';),

(@) V(z,y) 2 aly|,

) Viz.y) < -blyl,

for all r in the global attractor A, and y € RY. Then no normal k-boundary

in D can be invariant with respect to (1.1).

Consider a general function V(z,y) given by

V(z,y) = |A(z)y] (33)
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where 7 — A(r) isa N x N matrix-valued function C!' aund nonsingular for all

x € A. TlLen from Chapter III we know that
Vir,y) 2 cly|
forall £ € A aad y € RV, and the constant ¢ is independent of r,y, and
—p(=B)V <V < u(B)V (3.4)
with

%]
B = A;A7! + .4%% 4! (3.5)

and p is the Lozinskii measure corresponding to the vector norm |+]. The following

results follows from Theorem 3.3.3 of Chapter IIL

Theorem 4.3.4. Suppose that D is boundedly k-connected. If
w(B) <0 on A, (3.6)

then no normal k-boundary in D can be invariant with respect to (1.1).

Remark. Theorcm 4.3.4 still holds if (3.6) is replaced by the following condition

w(—-B) < 0 on A. (3.7)

when A = I, Theorem 4.3.4 yields the following corollary.

Theorem 4.3.5. Assume that D is boundedly k-connected. Suppose that one

of
[4] GN
r (% ) <0, (-g—f ) <0 (3.8)

holdson A. Then no normal k-boundary in D can be invariant with respect to

(1.1).

Next, we will develop similar results when (1.1) is not assumed to be dissipative.
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We will consider a general class of functionals § defined on a family of
k-dimensional surfaces in R". We will say that a Lipschitzian function u — ¢(u)
from R¥ to R" isa rectifieble k-surface in R™ if its domainis U, the closure
of a noncmpty connected open set U C R¥ to which Stokes’ Theorem w(8U) =
dw(U) for C' (k—1)forms w is applicable. The restriction % = Jdp of such
a surface to the boundary AU of its domain is a normal (k — 1)-boundary if
¢ is one-to-one on 9U. Note that (0U) might have more than one connected

component but that sclf-intersections do not occur. We consider the functional

@ — Sy defined by

- Oy i
Sp = l[j’ A(p) a—u]- A A Jur (3.9)

where || is a norm on R, 7+ A(z) is areal C' nonsingular (}) x (})

matrix-valued function and w = (uy,...,ux). In the case that |-| is the ¢2 norm
and A = I we denote the functional defined by (3.9) by A. Note that Ay is the
k-dimensional volume of @(U) counting multiplicities and that, in particular (see

(5], page 25),
Ap > Hro(T) (3.10)
where H* is the k-dimensional Hausdorff measure.

Let x(t) be the solution to (1.1). The linear variational equation of (1.1) with

respect to x(t) is given by
0
y'(t) = —aé(:z:(t)) y(t). (3.11)

Suppose y'(t),...,y*(t) are solutions of (3.11), then R(%).valued function 2(t) =
y'(t) A --- A y¥(t) is a solution of the k-th compound equation of (3.11) (see

Appendix B, Theorem 3.1)

(k]
Z(t) = % (z(2)) =(2). (3.12)

If o is a rectifiable k-surface in R"™, let the k-surface ¢, be defined by
wi(-) = x(t,p0(-)). Since y(t) = %f—: satisfies (3.11) with z(t) = ¢, it follows
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that z(t) = %% Ao A 22t satisfies (3.12) and that w(t) = A(pe) O¥C A - A S0

Auy Oy

is a solution of

w'(t) = B(w)w(t) (3.13)
where
(%]
F=4;471 + A%{ A7 (3.14)

and Ag(zx) is the matrix obtained by replacing each entry in A(r) by its diree-

tional derivative in the direction f(x). It follows that

I Jp1
+ e B Y it 5
DSy, < /U;L(B(cp,)) ’A(‘p,)am Ao A D, (3.15)

as long as (U) is in the domain of f. Here p(B) is the Lozinskii measure of
the matrix B corresponding to the norm | - |. The inequality (3.15) follows from
the fact that D,jw(t)] < u(B(wi))w(t)| (see Appendix A, Theorem 3.1).

We investigate the implications of the condition
u(B) <0 (3.16)

holding in a subsct of R™. When A(z) = a(x)], a(x) >0 and k=n, p(B)=
1 div(af) so that (3.16) is Dulac’s condition. When A(x) = I and |- | is the

li, lo, I3 norm, then

o [ Loy o5 (125 |2
PO Gz, T ey, T 2 [ | T 0y, 1))
#(B) = ; [3fi, ., 9fi Ofi |, ., |9fu (3.17)
SUP() _a.’l,‘,'l + + 01‘,',‘ +j¢2(;) O:L‘j + + 0.’1,‘]' ’
LA+ F A

Thus, when k=2, A(z) =1 and |- | isthe £2 norm, (3.16) is Smith’s condition
A1+ A2 <0.

If o is a rectifiable k-surface in R™ such that ¢ (U) is a subsct of a
compact region D where (3.16) holds, then (3.15) implies that D} Sy, < -5y,

where 7 is a positive constant. Thus limy—o, Sy = 0. Since A is nonsingular,
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(3.10) implies S > vAp; > YH* 0 (U), where v is a positive constant. There-
fore, liny—nc H¥@(U) = 0. In particular, we have the following theorem which
gives the result of Butler et al. [2] when & = n. Recall that a set K C R"
is tnwariant (positively invariant) with respect to (1.1) if ¢(A) = K, for all

t (po(K) C K, forall t>0).

Theorem 4.3.6. Suppose (3.16) holdson D C R". Then any rectifiable k-surface
¢ such that o(U) is invariant with respect to (1.1) has k-dimensicnal Hausdorff

measure HE(U) = 0.
With an additional assumption about the set D where (3.16) holds, we draw
the conclusion that certain normal (k — 1)-boundary in D cannot be invariant,

reneralizing Dulac’s Criterion.
g !

Theorem 4.3.7. Suppose
(a) (3.16) holds on a bounded open positively invariant set D C R".

(b) o is a simple closed (k — 1)-surface such that ¢ = Oypo for some rectifiable

k-surface o in D.

Then (0U) is not invariant with respect to (1.1).

Theorem 4.3.8. Suppose

(a) (3.16) holds on an open set D C R™.

(b) v is a normal (k — 1)-boundary such that ) = Op§ for a sequence of rec-
tifiable k-surfaces o§ : U — K which satisfy limp_—.co Sp§ = m, where K
is a compact subset of D and m is the infimum of S¢ over all k-surfaces ¢
in D with o(0U) = ¢(0U).

Then (8U) is not invariant with respect to (1.1).

We prove both theorems with the aid of the following lemma which may be
cstablished using Stokes’ Theorem as in the case k¥ = 2 (See Proposition 4.2.2 in

section §4.2).
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Lemma 4.3.9. Suppose that o : U — R" is a rectifiable k-surface in R" such
that Oy is a normal (k — 1)-boundary. Then there is a constant 6 > 0 which

depends only on (0U) such that the k-dimensional volume Ap > 8.

Supposc that ¥ is invariant. Then the conditions of Theorem 4.3.7 and
Lemma 4.3.9 applied to (3.15), since (AU = ¢(OU) = ¢(OU), imply D} S¢, <
—n < 0 for all t > 0, where 5 is a constant. Therefore lime_oo S¢r = —o0,
contradicting S¢; > 0. Thus no such invariant (k — 1)-surface 3 can exist. Sim-
ilarly, the conditions of Theorem 4.3.8 imply DfS¢l < —p < 0, 0 <t <&,
for some ¢ > 0 and n = 1,2,.... so that Sp! < Se¢i — e which implies
limsup,,_.., Sp" < m —ne < m, contradicting the definition of m, if @} (V) =
0g(OU) = $(aU).

§4.4. Orbital Stability of Periodic Solutions

Our main result in this section concerns the orbital stability of a periodic orbit of
the system (1.1). We first recall the basic definitions (see [6]). Suppose (1.1) has a
periodic solution z = p(t) with least period w > 0 and orbit v = {p(t) : 0 <
t < w} . This orbit is orbitally stable if, for cach € > 0, there exists a 6 > 0 such
that any solution z(t), for which the distance of z(0) from « isless 6, remains
at a distance less than € from v for all ¢ > 0. It is asymptotically orbitally stable
if the distance of z(¢) from + also tends to zero as ¢ — oo . This orbit v is
asymptotically orbitally stable with asymptotic phase if it is asymptotically orbitally
stable and there is a b > 0 such that, any solution z(#) , for which the distance of
z(0) from ~ isless than b, satisfies |z(¢t) —p(t —7)] = 0 as t — oo for some
7 which may depend on z(0) .

When n = 2, the following orbital stability criterion for periodic solutions is

due to Poincaré.

Theorem 4.4.1 (Poincaré’s Stability Criterion). When n = 2, a periodic
orbit v = {p(t) : 0 <t < w} of (1.1) is asymptotically orbitally stable with
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asymptotic phase if
w
/ div f(p(t))dt < 0. (4.1)
0

Using the theory of compound equations as is developed in Appendix B, the
following result, which is a generalization of Poincaré’s stability criterion to higher

dimensional systems, is proved in [8].

Theorem 4.4.2. A sufficient condition for a periodic orbit v = {p(t) : 0 <t < w}
of (1.1) to be asymptotically orbitally stable with asymptotic phase is that the

lincar system
, ofl
()= (3 ()0 (42)

be asymptotically stable.

Concrete sufficient conditions for orbital stability of periodic orbits can be

derived using the Theorem A.4.2 of Appendix A. The following is a typical example.

Corollary 4.4.3. Suppose that, for some Lozinskii measure p,

w (2]
/0 T (g—f (p(t))) dt < 0. (4.3)

Then « is orbitally asymptotically stable with asymptotic phase.

Remark. When n =2, we know

af (2]

1 (5; (p(t))) = div f(p(1))

for all Lozinskii measures. Therefore (4.3) is the Poincaré’s criterion in this case.

Proof of Theorem 4.4.2. Let z = p(t) be a nontrivial w-periodic solution of

(1.1). Then the variational equation

y(t) = L pe) v (49)
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with respect to p(t) is a lirear system with a w-periodic cocflicient matrix. By
Floquet’s theorem (sce [7] p. 47), a fundamental matrix Y (1) of (4.4) may be

written in the form
Y (t) = P(t) exp(Lt), (4.5)

where the n x n matrices P(t), L are w-periodic and constant, respectively.
The stability character of (4.4) is, therefore, determined by the cigenvalues of L
which are called the characteristic ezponents. Since y = p'(t) is a nontrivial
w-periodic solution of (4.4), it follows that one of the characteristic exponents is
cqual to zero (mod27i/w). A fundamental resvlt in stability theory is that +
is asymptotically orbitally stable with asymptotic phase if the remainng (n —
1) characteristic exponents have negative real part. Now the sccond compound

equation (4.2) has fundamental matrix
Y(t) = PO exp (L)

by Theorem B.3.1 and Proposition B.2.10 in Appendix B. The characteristic expo-
nents of (4.2) are thus the eigenvalues of L2l which are sumns of pairs of eigenvalues
of L (see Proposition B.2.6 of Appendix B). Since L has at least one eigenvalue
zero, it follows that all the remaining (n — 1) cigenvalues of L are also ecigen-
values of L[, These eigenvalues must, therefore, all have negative real part since

Y®)(t) - 0, t - co. Hence, v is asymptotically orbitally stable. 0

Remark. There are several different proofs in the literature for the fundamental
result that all the remaining (n — 1) characteristic exponents of (4.4) have nega-
tive real part imply + is asymptotically orbitally stable with asymptotic phase; for
example, Coppel’s proof involves exponential dichotomy, contraction mapping prin-
ciple and reduction of order [3]; reduction of the dimension is also made possible in
Hale’s proof by construction of radial and angular coordinates around the periodic
orbit [6]; Hartman [7] uses his linearization and invariant manifold techniques in his

proof.
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An application of this result will be seen in Chapter VII, where it is used to-
gether with Poincar’e-Bendixson property to show the nonexistence of nonconstant

periodic solutions for some concrete models from Mathematical Biology.

$4.5. Periodic Solution of Periodic Systems
In this section we consider a w-periodic system
g = f(t,:l?) (51)

where (t,z) — f(t,z) is a function defined for (¢,z) € R x D, for some open set
D c R", such that solutions to (5.1) exist and are uniquely determined by their

initial conditions. We assume that f is w-periodic in ¢, namely
ft+w,z) = f(t,x) for all (t,z) € Rx D. (5.2)

Let P be the Poincaré map associated with (5.1). We assume that P is dissipative

with a bounded absorbing set Do C D. Then
A = N3, P"(Do) (53)

is the global attractor of P in D.

We have seen from Chapter II that if D is simply connected then dimyA <2
implies no simple closed rectifiable curve in A can be invariant under P. As the
following thcorem demonstrates, this has strong implication for the asymptotic

behaviour of solutions to (5.1).

Theorem 4.5.1. Suppose D is simply connected. If dimyA < 2 then any

periodic solution of (5.1) has period commensurate with w.

In order to prove this theorem, we need the following Lemma.

Lemma 4.5.2. Suppose a and f§ are two incomnmensurate real numbers. Then

the se!

S ={na(modf) : n€Z} (5.4)



96 IV. CRITERIA OF BENDIXSON AND DULAC
is dense in the interval [0, j].

Proof. We will prove the lemma for the case when 3 =1 and a > 0 is fira-
tional. The general case can be proved by considering o' = a/g. Now, since «
is irrational, there exists a 6 > 0 such that, for any 0 < 4 < 1, there exists a

sequence of integer pairs (pi,qr) with gx = 0 as k& — oco such that

0
|a—§—:—l]< Y

qk ai
Therefore gxa = pr +7+ 8¢5 =7+ 6g7 ' (mod1). Thus qrev — v as k — oo.
As a result, S is dense in [0,1]. 0

Proof of Theorem 4.5.1. Suppose that (5.1) has a nonconstant periodic solution
of least period w' incommensurate with w. Denote this periodic solution by @« =

z(t,zo) such that z(0) = z¢ and its trajectory in R" by
I' = {z(t,x9) : 0<t < W'}

Now, as a subset of R", T is & simple closed smooth curve. We want to show

that ' is invariant under P. For this we consider the sct
B = {P"(z0) : n€Z}.

B is invariant under P since it is a complete orbit through ,. Morcover, B is
an infinite set, for P"ry = r(nw,rp) and w' is incommensurate with w. Next
we know from the w'-periodicity of z(t,z¢), P"ro = z(nw,x¢) = z([nw), o)
where [t] = t(modw'), for each ¢ € R. From Lemma 4.5.2, we know that the sct
{[nw] : n € Z} is dense in [0,w']. Thus B = {z([nw],x¢) : n € Z} is dense
in . This implies that the simple closed smooth curve I' is invariant under P.
But this is impossible under the assumption dimyA < 2. Therefore the theorem

is proved. a

When f is C!, the following result follows from an upper estimate for the

Hausdorff dimension of A, Theorem 3.2.1 when s =0, k =2, in Chapter IIL
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Theorem 4.5.3. Assume that Dy is simply connected. If

w (2]
/ 1 (%2 (t,:r:)) dt < 0 (5.5)

for all z € A. Then any periodic solution of (5.1) has a period commensurate

with w.

Proof. The condition (5.5) implies dimyA < 2, by Theorem 3.2.1 of Chapter
111 0

Conjecture. Under the assumptions of Theorem 4.5.1 or Theorem 4.5.3, any

alinost-periodic solution of (5.1) is periodic with a period commensurate with w.

§4.6. An Example

In this section, we consider the Lorenz model given in the section §1.4 of Chapter I
and establish regions which contains no invariant closed curves and, in particular,

no periodic trajectorics. The system is

r = -0z + 0y
y' =rr-—-y-—xz
2= -bz+ zy (6.1)

where o, r, b are three positive numbers.

This dissipative system has been the object of intensive numerical investigation
which indicates that it has a strange attractor for a large range of values of the
parameters and that it has many periodic orbits (see [11], page 21). Any set not

containing periodic trajectories could therefore not completely contain the attractor.

We have seen in the section §3.4 of Chapter I1I that the Jacobian matrix J of
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the right-hand side of (6.1) and its additive compounds are

[ -0 o 0
J=r—-z2 =1 -r (6.2)
|y ¢ —=b
[0 -1 - 0
Je = x -b-o0o o (6.3)
| - r—z =b-1
B = trJ =~ - b - 1. (G.4)

First of all, (6.4) gives rise to /L(J["']) =trJ < 0. Henee Theorem 4.3.8 of §4.3
of this chapter implies that (6.1) has no invariant normal 2-boundaries.

Next we will try to identify regions which contain no invariant simple closed
curves.

‘vt 4y, |

If we choose S(z,y) = |y|, where [|y| = sup{y; ya|}, we find that

afl
“(5? ) <sup{-1,-b,=b—-1+ |yl + |z - r|}

sothat p(2L™) <o if
i+ 1z =l < b+ 1, (6.5)

which determines a cylinder Dy parallel to the r-axis. In this case the functional

S defined by (2.3) is

_ N1, p2)® | w1, p3)® T |2 en)
S¢—./_8up{[0(ul,u2) * MNuy,ug) | 7 | Oy, ug)

}. (65)

The cylinder Dy has the minimum property with respect to S, To see this, sup-
pose ¥ is a simple closed rectifiable curve in the half-space D:y+(z—r1) < e
Let ¢ € Z(,R?) and suppose that @(U) crosses the plane I :y +(z —r) = ¢,
specifically @o(u) + (pa(u) —7) > ¢ if u € Uy C U. Now consider the surface
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@ € L(, D) obtained by modifying ¢ so that this portion is reflected in II :
e(u) = p(u), ifueU\U
Fi(u) = pi(u), Fa(n) =c+r—ps(u), Falud=c—py(u). if ue Ul

Then @ € S(, D), $(U) does not cross II and, from (6.6), S = Sy. A similar
argument may be applied to planes y +(z —r) =¢ and z =k to deduce that,
if v is a simple closed rectifiable curve in Dy, then there is a compact box in Dy
which contains the curve and a minimizing sequence for § in (¥, Dy).

We conclude from Theorem 2.4 that the Lorenz system (6.1) has no invariant
rectifiable closed curve in the cylinder defined by (6.5).

This statement may be improved by a more judicious choiceof S. Let S(z,y) =

[Ay| where A = diag(l,1,a) and a is a positive constant; in fact

S(z,y) = sup{ y? + y%’ Ozlyal},

another norm. Now

L(Agf-mA‘]) <sup{-1+ (l o, b+ (—1- — 1o, =b—1+a(ly|+|z—r|)}
M oe = 5P a ' a ’ v ’
s e . QL[Z] -1 :
By optimizing the choice of the constant o we find u(A32"A7") <0 if
1 b
o+ Jo = vl < o i { T2, T2, (67

a larger cylinder than that defined by (6.5).

A similar argument to the one given previously now shows: The Lorenz system
(6.1) has no invariant rectifiable closed curve in the cylinder defined by (6.7).

In conclusion we note that the choice S(z,y) = Jy| = sup{ /42 + 42, |ys|}
leading to the “surface area” S in (6.6) gives stronger results than the more usual
norms |y| = sup{|y1, ly2l, lys|}: ol = Il + lg2| + lys| or |yl = (7 + 95 +43)/%
The first two, by easy computations, lead to the conditions (i), (ii) of Theorem 4.2.3
which, for the Lorenz system, hold on smaller sets than that specified by (6.5). The

third norm requires an estimation of the region where the expression A; + Az of
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Theorem 4.2.3 (ii1) is negative and this may be implemented using the approach of

Smith [9] but also leads to a smaller set than (6.7).
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(1) A perioic orbit. (2) A homoclinic orbit.
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(3) A pair of heteroclinic orbits. (4) A heteroclinic cycle.

Figure 4.1.1.

101



CHAPTER V

A GEOMETRIC APPROACH TO THE PROBLEM
OF GLOBAL STABILITY

In this chapter, we develop a new approach to the problem of global stability
for autonomous systems of differential equations. The approach is based on our
Dulac criteria discussed in Chapter IV and the C! Closing Lemma of Pugh [14]
(see also [13], [15]). It differs from the traditional method of constructing Lyapunov
functions in that it provides concrete and flexible conditions which can be computed
directly from the equations.

We start in §5.1 by introducing the notion of robustness for a Bendixson Crite-
rion under C! local perturbations of the vector ficld at every nonwandering point.
Then the Closing Lemma is used to show that if the autonomous system satisfies a
Bendixson Criterion which has this robustness, then every nonwandering point is an
equilibrium. This implies, for example, that every alpha and omega limit point is
an equilibrium if such a Bendixson Criterion is satisfied. In particular, if the system
is dissipative and has a unique equilibrium Z which is also locally stable, then this
assumption will imply Z attracts every point, and thus is globally asymptotically
stable.

In §5.2, we show that the Dulac criteria derived in Chapter IV all have this
required robustness. The Centre Manifold Theorem is then used to show that these
criteria imply each bounded trajectory converges to an equilibrium. We also prove
that they place severe restrictions on the structure of compact invariant sets.

The problem of global stability is taken in §5.3, where we prove that, if z is
the unique equilibrium, then Z is locally stable if any of our Dulac criteria holds.
Therefore these criteria will also imply the global stability of z .

Then in §5.4, we show how similar conclusions can be drawn when the Dulac
inequality is not strict. An example is given to illustrate the general theory.

We will see in Chapter VII that this new approach is applied to resolve an open
Typeset by ApsS-TEX
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problem in Mathematical Biology.

$5.1. The Closing Lemma and Wandering Point Conditions

Let the mapping « — f(z) from an open subset D of R"™ to R™ be such that

cach solution z(t) to the differential equation
' = f(z) (1.1)

is uniquely determined by its initial value z(0) = zo and denote this solution
z(t,xq).

A point x9 € D is wandering for (1.1) if there exists a neighbourhood U of
g and T >0 such that UNz(¢,U) is empty for all ¢ > T. Thus, for example,
any equilibrium, alpha limit point or omega limit point is nonwandering.

We first of all formulate the local version of the C!-Closing Lemma of Pugh
which plays an essential role in the development of this chapter. Let |-| denote
a vector norm on R" and the operator norm it induces for linear mappings from
R" to R". The distance between two functions f, g € C1(D — R") such that

f — g has compact support is
|f — gl = sup{|f(z) — g(z)| + |Df(z) — Dg(z)| : z€ D }. (1.2)

A function g € CY(D — R") is called a C! local e-perturbation of f
at 9 € D if there exists an open neighbourhood U of zp in D such that
supp(f —g) CU and |f—g| < e. Forsucha g we consider the corresponding

differential equation

' = g(x). (1.3)

Lemma 5.1.1. Let f € C'(D — R"™). Suppose that z, is a nonwandering point
for (1.1) andthat f(xo)# 0. Then, for each neighbourhood U of o and € > 0,

there exists a C' local e-perturbation g of f at zo such that

(1) supp(f-g) C U, and
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(2) the system (1.3) has a nonconstant periodic solution whose trajectory in-

tersects U.

A Bendizson Criterion for (1.1) is a condition satisfied by f which precludes
the existence of nonconstant periodic solutions to (1.1). A Bendixson Criterion is
said to be robust under C' local perturbations of f at xy, if for each sufficiently
small ¢ > 0 and neighbourhood U of =z, it is also satisfied by all C' local
e-perturbations ¢ such that supp(f—g)cC U.

Suppose now that f satisfies a Bendixson Criterion which is robust under C!
local perturbations of f at all nonwandering points of (1.1) which are not equilibria.
Then, for each C! local e-perturbation ¢ of f at such a nonwandering point and
when ¢ is sufficiently small, (1.3) can not have any nonconstant periodic solutions.
Therefore Lemma 5.1.1 implies that every noncquilibrium point of (1.1) must be

wandering. We thus have the following general wandering point theorem.

Theorem 5.1.2. Suppose a Bendixson Criterion for (1.1) is robust under C'
local perturbations of f at all nonequilibrium nonwandering points to (1.1). Then

every nonequilibrium point of (1.1) is wandering.

As a special case, the following result follows directly from Theorem 5.1.2.

Corollary 5.1.3. Suppose that (1.1) satisfies a Bendixson Criterion that is robust
under C' perturbations of f at all points of D. Then every nonwandering point

of (1.1) is an equilibrium.

Suppose D = R"™ and all solutions to (1.1) are bounded. Then for cach
zg € R™, w(zg) is nonempty and compact. Now assume that (1.1) has a unique
equilibrium Z in R™. Then the conditions of Theorem 5.1.2 imply that w(zy) = «
for all zo € R™. If moreover Z is a stable equilibrium of (1.1), then it is globally
asymptotically stable. As a matter of fact {Z} is the global attractor of (1.1) in
R". Therefore Z is a globally asymptotically stable equilibriumn. We thus have

the following general result on global stability.
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Theorem 5.1.4. Assume that
(1) D =R" and all solutions to (1.1) are bounded,
(2) & € R"™ is the unique cquilibrium of (1.1) in R",
(3) & is stable,
(4) (1.1) satisfies a Bendixson Criterion that is robust under C' local per-
turbations of f at each nonwandering point for (1.1) which is not an

cquilibrium.

Then {z} is the global attractor of (1.1) in R". In particular, Z is globally
asymptotically stable in R".

When D C R" is an open subset, results like Theorem 5.1.4 also holds if D
contains an absorbing set. Recall that a subset Dy C Dy C D is absorbing with
respect to (1.1) if solutions exist for all ¢ > 0 and each compact subset D; of
D satisfies z(t,D;) C Dy for all sufficiently large t. System (1.1) is dissipative
if it has a bounded absorbing set Dy C D. Since the trajectory of every solution
cventually enters Dy and stays there, it does not approach the boundary of D.
The conditions of Theorem 5.1.2 imply that its omega limit set is a singleton {z}

where £ 1is the unique equilibrium. Therefore we have the following local version

of Theorem 5.1.4.

Theorem 5.1.5. Suppose that
(1) there exists a bounded absorbing set Dy C D,
(2) Z € Dy is the unique equilibrium of (1.1) in D,
(3) z is stable,
(4) (1.1) satisfies a Bendixson Criterion that is robust under C! local per-

turbations of f at all nonequilibrium nonwandering points for (1.1).

Then {z} is the global attractor of (1.1) in D. In particular, Z is globally
asymptotically stable in D.

Remarks.
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(i). The condition (1) of Theorem 5.1.5 can be weakened so that the bounded subset
Dy only attracts all points of D . Under this weaker condition {&} also attracts
all points of D . This and the stability of # imply that {&} attracts every
compact subset of D, and thus is the global attractor in D.

(i1). We want to note that when & is hyperbolic, its stability can be casily deter-
mined by linearizing (1.1) at #. Therefore condition (3) is casy to check. Theo-
rem 5.1.4 and Theorem 5.1.5 thus provides a new and practical approach to the

problem of global stability.

(iii). In many cases a Bendixson Criterion would imply that the unique equilibrium
Z is locally stable. We shall sce that all the criteria we will discuss in the next
section have this property, thus the local stability assumption (3) on # can be
dropped in these cases. However, there are conditions which preclude nonconstant

periodic solutions but may not imply the local stability of .

§5.2. Autonomous Convergence Theorems

In this section, we examine some Bendixson criteria, as well as criteria of Dulac
type discussed in Chapter IV. We will show that they are robust under C' local
perturbations of f and thus imply that all nonwandering points of (1.1) are equi-
libria. Moreover, we will show that these conditions greatly restrict the structure

of limit sets of (1.1).

Let B denote the euclidean unit ball in R? and B, OB its closure and
boundary respectively. Recall that a function ¢ € Lip(B — D) is considered a
simply connected rectifiable 2-surface in D or, briefly, a surface in D; a function
¥ € Lip(0B — D) is a closed rectifiable curve in D, will be called simple if it is
one-to-one and we write ¥ = Oy if @(0B) = ¥(IB).

n

Let z — A(z) be a nonsingular (j) x () matrix-valued function which is

C! on D andlet |-| be a norm on R(3). We consider a functional S on the
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surfaces in D defined by
Oy Oy
550—/B|A(<P) 5. " Bu; (2.1)

if w=(u1,uz) and u— @(u) islipschitzianon B. If |y|* = y*y and A(z) =1,
then S¢ is the usual surface area of p(B) counting multiplicities. The set D
has the minimum property with respect to S if, for each simple closed rectifiable
curve ¢ in D, there is a sequence of surfaces ¢ in D which is a minimizing
sequence for S with respect to all surfaces ¢ in D with ¥ = dp and such that
Urp*(B) has compact closure in D. If n = 2, then any simply connected open
sct D has the minimum property with respect to any S, since Sy = [ 2(B) |A].
When n > 2, for example, if S is the usual surface area, then any convex open
sct D has the minimum property. The set 7 = R™ has the minimum property
with respect to S if A =1 and |-| is any absolute norm. In fact, if ¥ is
a sequence with ¢ = Op* which minimizes & in this case, then for any interval
T Cc R™ with 4(0B) C T we can obtain a sequence @* with S@* = Sp* and
@*(B) C Z, by reflection in the sides of the interval Z.

For a simply connected open set D which has the minimum property with

respect to S, we will assume that the generalized Dulac condition is satisfied:

o, o .
pulAsA™ + A A7)<0 in D. 2.2)
d Oz

Here p isthe Lozinskii measure corresponding to the norm |-| on R(3) considered
in (2.1) , Ay = (DA)(f) or, equivalently, As is the matrix obtained by replacing
cach entry a;; in A by its directional derivative in the direction f, %aii* f,
and %-IL[Z] is a ('2') X ('2‘) matrix, the second additive compound of the Jacobian
matrix %f. The condition (2.2) is equivalent to assuming that V(z,y) = |A(z)y|

is a Lyapunov function whose derivative with respect to the n + ('2’) dimensional

system
dy Of (2]

d
Z =@ Z=50 @ (2.3)

15 negative definite.
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When D does not necessarily have the minimum property with respect to S,
it will be assumed that there is a set Dy C D which is absorbing with respect to

(1.1) such that

(2]
p(AgA™ + A gf

35 ATy < -6<0 in Dy. (2.4)
Proposition 5.2.1. If (2.2) is satisfied in D, then the dimension of the stable
manifold of any equilibrium is at least (n — 1). If an equilibrium is not isolated,

then its stable manifold has dimension (n — 1) and it has a local centre manifold

of dimension 1 which contains all nearby equilibria.

Proof. For the definitions of centre manifold and stable or unstable manifold, sce

[10]. If z; is an equilibrium, then

[2] (2]
p(A -g% AT =p(AjA7 + A % A <o0 (2.5)

at z;, since f(r;)=0 implies Ag,)(z1) =0. If vi(x,) are the cigenvalues of
gf(ml) with Re vi(z1) > Rewo(z1) 2 -+ 2 Rewva(zy), then vi(zy)+vi(xy), 1 #
J, are the eigenvalues of %[2] (z1) and hence of A %[2] A~ (ry). Thus (2.5)
implies Re [vi(z1) + vj(z1)] < p[A %[2] A~Y(z1)] < 0 (see Proposition A.2.1,
Appendix A); therefore 0 > Re vp(z;) > -+ 2> Rewvp(zy) and only vi(xy) can
possibly have nonnegative real part; the stable manifold has dimension at least n—1.
If the equilibrium z; is not isolated, gf (z1) is a singular matrix, 0 = v (z;)
so the stable manifold has dimension (n — 1) and there is a 1-dimensional centre
manifold. Since all positive semitrajectories originating ncar z, are asymptotic to

a trajectory in the centre manifold, all equilibria near z, are in the centre manifold.

Theorem 5.2.2. Suppose D is simply connected, f isof class C' on D and
there exists a (}) x (3) matrix-valued function A which is also C' on D and

such that either (a) or (b) is satisfied:

(a¢) D has the minimum property with respect to S and (2.2) is satisfied.
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(b) Dg is an absorbing subsct of D with respect to (1.1) and (2.4) is satisfied.

Then:

(¢) Every nonwandering point of D is an equilibrium.
(d) Every nonempty alpha or omega limit set in D is a single equilibrium.
(¢) Any equilibrium in D is the alpha limit set of at most two distinct nonequi-

librium trajectories.

Proof. If (a) or (b) is satisfied by f, then a similar condition is also satisfied by all
C!-perturbations ¢ of f considered in Lemma 5.1.1. From the Criterion I and
Criterion II in §4.2.2 of Chapter IV, no such perturbations can have a nonconstant
periodic solution to (1.3). Thercfore every nonwandering point is an equilibrium
for (1.1).

To prove the assertion that each nonempty alpha or omega limit set is a sin-
gle equilibrium, first observe that since each limit point is nonwandering, it is an
equilibrium. Let z; € w(zo), the omega limit set of zg; if z; is an isolated
cquilibrium, then {z;} = w(zq¢) since w(zg) is locally a continuum and, if it has
more than one connected component, each component must connect to 9D. If
ry € w(xg) is not an isolated equilibrium, then Proposition 5.2.1 implies there is a
1-dimensional centre manifold containing all nearby equilibria associated with z;.
Every trajectory which intersects a neighbourhood U of z; is asymptotic to a tra-
jectory in the centre manifold. Thus lim;—o z(¢,2¢) = 1 so that w(z¢) = {1}
in this case also. The proof that a nonempty alpha limit set is an equilibrium z;
is the same. Moreover, since the stable manifold of z, has dimension (n—1), =z
has either a 1-dimensional centre manifold or a 1-dimensional unstable manifold.
Since all trajectories near the centre manifold are asymptotic to a trajectory in
that manifold ([12] P. 48) and the stable manifold is asymptotic to 2, at most
two nonequilibrium trajectories can share z, as their alpha limit. The uniqueness

of the unstable manifold implies the same conclusion in the other case.
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The equilibrium w(x¢) need not be isolated as is seen from the example

dr dr
—Etl = -, ——2 = 0.

dt

Here &% = div f = =1 < 0 so that (2.2) is satisfied with A = 1. D = R?
has the minimum property with respect to S, which is area in the plane in this
case, and the conditions of Theorem 5.2.2 are all satisfied. Each solution satis-
fies lime—oo (21(t), z2(t)) = lim—oo (21(0)e™%, 22(0)) = (0,22(0)) a nonisolated

equilibrium. a

When A = I, (2.2) becomes ;t(gfm) < 0. We thus have the following

corollary.

Corollary 5.2.3. The conclusion of Theorem 5.2.2 holds if D = R" and the
generalized Bendixson Criterion ;t(gfm) < 0 is satisfied in R", where p is the

Lozinskii measure corresponding to an absolute norm.

Conditions (1), (ii), (iii) of Theorem 4.2.3 in Chapter IV give concrete examples
of the condition pu( gf[’&’]) < 0. The conditions (iv), (v), (vi) of this thcorem are
examples of p( — %z[[?]) < 0 which, as we see below, has similar consequences.

Denote by (1.1)— the system (1.1) with f replaced by —f. The trajectorics
of (1.1)— are the same as those of (1.1) with the direction of the flow reversed.

From this we deduce the following corollary.

Corollary 5.2.4. If the system (1.1) -satisfies the conditions of Theorem 5.2.2 or
Corollary 5.2.3, then the same conclusions may be drawn for (1.1) except that the

statements about alpha and omega limit sets should be interchanged.

Even in the case n = 2, this result gives a somewhat stronger conclusion than

that usually drawn from Bendixson’s criterion.
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Corollary 5.2.5. Suppose D C R? is simply connected and
divf(z) < 0 (>0) in D.

Then every nonwandering point with respect to (1.1) is an equilibrium; every
nonempty alpha or omega limit set is a single equilibrium; any equilibrium is the

alpha (omega) limit set of at most two distinct nonequilibrium trajectories.

A subset K of D is positively (negatively) invariant with respect to (1.1) if
z(t, K) C K forall t>0 (t<0) andisinvariantif z(¢,K) =K forall ¢t. The
alpha and omega limit sets of a trajeccory are important examples of invariant sets
and we have seen in the preceding discussion that these are very simple for systems
which satisfy Dulac’s Condition or its higher dimensional generalizations. In fact

we will show that any compact set which is invariant in such a system is at most

1-dimensional.

Theorem 5.2.6. Suppose that f satisfies the conditions of Theorem 5.2.2 and
K C D isacompact set which is invariant with respect to (1.1). Then its Hausdorff

dimension satisfies
dimg K < 1.

In particular, if K is also connected, then dimyK = 0 or 1 depending on

whether K contains one point or more than one point.

Proof. Since K is compact, Theorem 5.2.2 implies that every trajectory in K
is either an equilibrium or is asymptotic at both ends to an equilibrium and that
every alpha limit is an isolated equilibrium. Let K, be the set of equilibriain K
and K, its set of cluster points. If z € Kj. then Proposition 5.2.1 implies that
there is a neighbourhood U(z) of z such that all equilibria in U(z) lie in a 1-
dimensional C! local cent.e manifold o(z) at z. A finite set of neighbourhoods
U(zi), 1 = 1,...,N, covers the compact set K(',. The set K is composed of

complete trajectories of the following three types:
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(i) trajectories in one of the 1-dimensional manifolds o(x;), i=1,...,N,
(ii) the finite set of equilibria Ky \ U;o(x),
(ii) nonequilibrium trajectories whose alpha and omega limit sets are each single

equilibria of type (i), (ii).

Any trajectory or any smooth arc has Hausdorff measure zero in dimension
s > 1 (see Appendix C or [5]). From this it follows that the set of all trajectories
of types (i), (ii) has s-dimensional measure zero. Morcover there are at most
finitely many trajectories of type (iii). Otherwise there would exist a rectifiable
simple closed curve composed of trajectories of types (ii) and (iii) together with
a finite number of invariant arcs from o(z;), ¢ = 1,---,N. It has been shown in
Chapter IV that conditions of Theorem 5.2.2 preclude the existence of such invariant
curves. We therefore conclude that the set of trajectories of type (iii) also has zero
s-dimensional measure, if s > 1, and dimp/ < 1 (sce Appendix C). If K is
also connected and contains more than one point, then the sum of the diameters of
the sets in any open cover exceeds the distance between any pair of points in K

which allows us to conclude dimy K > 1 and therefore dimy K = 1. 0

Remarks.

(i). Smith, [16] Theorem 7, shows that, if Aj(x) > Ax(x) =2 --- 2 Au(z) are
the eigenvalues of %[gf*(:v) + %I[(r)], then cach bounded semitrajectory of (1.1)
converges to an equilibrium if A;(z) + A2(z) < 0 in R". This also follows from
Corollary 5.2.3 of this paper since p( %5[2]) = A+ if |-] is the cuclidean norm on
R(3). Our result shows that the same conclusion can be drawn if the boundedness
assumption is replaced by one of existence of an alpha or omega limit point of
the semitrajectory. The domain R™ may be replaced by any convex open set D
since such sets have the minimum property with respect to S which is the usual
surface area in this case. The domain may also be any open set D which is simply

connected and has an absorbing subset Dy in which A(z)+X2(z) < -6 < 0 holds.

Analogous results may be inferred from conditions of the form A, —j(z)+ An(z) > 0,
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since —;z( - %é[ ]) = Ap-1 + An. Smith’s proof shows that his condition implies
dimj K < 2 for any compact invariant K; in fact we see from Theorem 5.2.6 that

his condition implies dimy K < 1.

(ii). An carlier result of Hartman and Olech [8] is somewhat related to observations
of this paper. They show that if z = 0 is the only equilibrium of (1.1) and it
is locally asymptotically stable, then it is globally asymptotically stable provided
A(z) + XA(z) €0 in R™ and [;°p= oo where p(u) = min {|f(z)|: |z| = u}.

(iii). In a recent paper [2] on the celebrated Jacobian Conjecture, DruZowski and
Tutaj assume that f is a polynomial map of R® with f(0) =0, gf(x) nonsin-
gular for all z and all eigenvalues having negative real parts at equilibrium points.
They prove that 0 is a globally asymptotically stable solution of (1.1) provided
A1 + X2 <0 for all z € R". It is intcresting to speculate if their condition can be

replaced by /t(gfm) < 0 for an arbitrary Lozinskil measure.

In the rest of this section, we assume that (1.1) is dissipative with a bounded
n

absorbing set Do C Do C D. Let A(x) be the (3) x () matrix-valued function

defined earlier, and let

[2]
B=A;A7 + A% A™! (2.5)

Let |-] be a vector norm on R(;), and g be the Lozinskii measure corre-
sponding to |-|. For every solution z(t,zq) of (1.1) with z¢ € Dy, we define the

following quantitics,

t
of.Dut) = sup 3 [ u(Blals,z0))) ds (26)
ro€Dg 0
and
q(f, Do) = li?lsup q(f, Do, 1). (2.7)

These quantities are well-defined since Dy is a bounded absorbing set.
A similar quantity Gi(A") is defined in (2.9) in Chapter III, where K is a

compact invariant set and % is an integer. Here Dj is a bounded absorbing set.
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We know that A = w(Dy) C D is the global attractor in D. Theorem 4.1.7 in
Chapter IV establishes that §2(A) < 0 is a Bendixson Criterion. This implies
g(f, Do) < 0 is also a Bendixson Criterion. We will show in the following that it
is robust under C! local perturbations of f at all nonequilibrium nonwandering
points of (1.1). Once this is established, we are able to show that all the results ob-
tained under the condition (2.2), namely u(B) < 0 pointwise in D , can be proved
under the weaker condition ¢(f, Do) < 0. Applications of this weaker condition will
be seen in Chapter VIIL

For a nonwandering point z9 € D of (1.1) which is not an equilibrium, cach
sufficiently small neighbourhood U of z( initially leaves itself completely, along
the solutions of (1.1), and will eventually come back to intersect itself. The smaller
the U, the longer it takes for U to come back. The following quantities are then
well defined.

T(U; z9) =

min{t >0 : z(t,U)NU #0, and 3 t; <t such that «(¢;,,U)NU =0}

(2.8)

and
7(zg) = sup{7(U; o) : U is a sufficiently small ncighbourhood of zy } (2.9)

When zy is an equilibrium 7(z¢) is defined to be zero. We call 7(ig) the
minimum return time at the nonwandering point zg. It follows from the continuous
dependence on initial conditions that zq is an equilibrium if and only if 7(iq) = 0.

In fact, we have the following result.

Lemma 5.2.7. A solution z(t,z¢) to (1.1) is periodic if and only if 7(zy) is

finite, in which case 7(z¢) Is the minimum period.

Proof. Suppose z(t,z¢) is a periodic soluticn of least period T. If T = 0. then
z¢ isan equilibriumand 7(z9) =T =0. Supposenow T > 0. Then 7(U;z0) < T

for all sufficienily small neighbourhoods U of z¢ by the continuous dependence
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of solutions on the initial conditions, and thus 7(z¢) < T. If 7(z0) <t < T, then
there is a sequence of points {zx} such that zx — z¢, k — 00, and z(f,zi) = =k,
for ecach k. This leads to z(,z9) = z9, and thus contradicts the minimality of
T.

Suppose now zo is nonwandering and 7(z¢) < oo. If z¢ is not an equilib-
rium, then T = 7(zo) > 0. Therc exists a sequence of points {z,} and a sequence
of numbers {t¢,} such that z, - 29 as t - 00, T/2<t, <T foreach n and
T(tn,Tn) = T¢ as n — o0o. Let {t,,} be a convergent subsequence of {t,} and

assume t,, —to as ng — oo. Then to > T/2 > 0. Moreover,
|(to, o) — xOI < IIIT(to,l'o) - m(tﬂumﬂh)l + lz(tnumnk) — o),

which implies z(tg,x¢) = o, i.e. x(t,z9) is a periodic solution to (1.1). O

Lemma 5.2.8. Suppose 7(z9) = +00. Then the condition ¢(f,Do) < 0 is robust

under C' local perturbations of f at wo.

Proof. Let 6 = —q(f,Dg) > 0. Thercexistsa T > 1 such that

ot

| w(Bae) b < -F (210)

for all t > T and all £ € Dy. The assumption 7(z9) = +oo implies that
f(x0) #0 and 7(U;z0) > T for all sufficiently small neighbourhoods U of zy.
Let II he o transversal to the vector f(xg) at zo and E be a sufficiently small

ball in II centred at xy. Consider the flow box
E={z(t,E) : —agt<a}

generated by the evolution of the ball E ¢ II along the solutions of (1.1) for a small
time interval [—a,a] (see Figure 5.2.1). Let 'y = 2(a,E) and I'_ = z(—a, E).
By taking the ball E C I and a > 0 sufficiently small, we can ensure that all
solutions of (1.1) startingin ¥ leave £ andthat 7(X;z0) > T. As a consequence,

cach solution starting at I'y leaves & and returns to I'_ , if it ever returns, at
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a time greater than T. We may also assume that the time ecach solution spends in
Y is bounded by some { > 0.

Now, let ¢ be a C! local e-perturbation of f at xy such that supp(f —
g) C L, and consider the differential equation (1.3). Dy will be an absorbing
set for (1.3) if ¥ is sufficiently small since f and g agree on Dy \ L. If the
trajectory of a solution y(t,yp) of (1.3) never intersects ¥ after a certain time,
then it coincides with the trajectory of a solution to (1.1) for all sufficiently large

time. Thus, for such a solution, it follows from (2.7) that

1t )
't‘/ 1(By(y(s,90))) ds < 1
0
where B, is defined in (1.2) with f being replaced by g.
Suppose the trajectory of y(f,yo) intersects ¥ infinitely often. We may
assume that yo € I'y. Let tp =0 and

T <81 <t €8 <lg € o0 < 8y <y < oo
be such a sequence that

(i) s; and ¢; are the time y(t,yo) intersects I'— and T';, respectively, cach
time it returns to X,
(i) y(t,y0) €T si<t<t; foreach i2>1,
(iii) y(t,yo) ¢ ¥ ti<t<siy1 foreach :>0.

Then we have

(iv) ti —si <t foreach i2>1,

(v) sig1 —ti > T foreach i2>0.

(vi) y(t,yo) coincides with the solution z(¢,y;) of (1.1) for ¢; <t < s;41, where
¥i = y(ti,yo) for each i > 0. (See Figure 5.2.2)
Since g is a C! e-perturbation of f, we may choose € sufficiently small

so that

6(Bs(@) — n(By(w)] < 3=
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for all =,y in X.

Therefore, for cach @ > 0,

tigr

/ " ( By(y(t ) )dt = / u( By(a(t,u:)) )dt +

N ts

/t. P41 ((Bs(z(t,yi))) — n( By(y(t,30))) ] dt

é 8
S -3 (tigr —t:) + (i1 — sis1) yhs

) 6 6
< 3 (tivs — i) + 1 < ~1 (tiz1 —ti) (2.11)

Thus for all sufficiently large ¢, assume that t, <t < t,4+; for some n, we have
¢

2| o) = 5 [T up + 5 [ usy)

- %g / W(B) + 7 / u(By)

1=0

IN
|
| Oy
& | =
H
|
AH
wt
*
S+
p e
+
o~ | =
T~
>
~~
o)
()
~—

If t—t, > T, then 1 f"n #(By) < —$=ta for a similar reason used in deriving

(2.11). Therefore, in this case

1 [t 6
+ | ueo) < 5.

If t—t, <T, then =2 < T and thus h>1- % > 1 when t is sufficiently

large. Hence in this case,

1 [ §tn  t—tn 6
= B) < —== -,
- /0 MBy) < —3 7 + 5 maxu(By(2)) < — 5

Therefore, when t is sufficiently large,

1/ §
7 / 1t( By(y(s,v0))) ds < T for all yo € Dy.
0
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This leads to ¢(g,Do) < 0. Thus the lemma is proved. ]

Proposition 5.2.9. If ¢(f,Dy) < 0. Then the dimension of the stable manifold
of any equilibrium is at least (n — 1) . If an equilibrium is not isolated, then its
stable manifold has dimension (n — 1) and it has a centre manifold of dimension

1 which contains all nearby equilibria.

Proof. Suppose z; is an equilibrium. Then z(¢,2;) = x; for all ¢ > 0. Thus

g(f, Do) < 0 implies

(2]
7 (A g—i A_l) <0
at x;, for f(x;) =0 implics Aj;,)(x1) =0. The rest of the proof is essentially

the same as that of Proposition 5.2.1. a

Now we can show that the conclusions of Theorem 5.2.2 remain true if the

condition (2.2) is replaced by the weaker condition ¢(f, Dg) < 0.

Theorem 5.2.10. Suppose D is simply connected and Dqy is an absorbing set

for (1.1). If ¢(f, Do) < 0, then the following hold

(1) Every nonwandering point of D is an equilibrium;
(2) Every nonempty alpha or omega limit set in D is a single equilibrium;
(3) Any equilibrium in D is the alpha limit sct of at most two distinct nonequi-

librium trajectories.

Proof. Since D is simply connected, Theorem 4.1.7 of Chapter IV implies that
q(f, Do) < 0 is a Bendixson Criterion. Therefore 7(z¢) = +o0o for every nonwan-
dering point z¢ which is not an equilibrium for (1.1), by Lemma 5.2.7. It then
follows from Lemma 5.2.8 that ¢(f,Dp) < 0 is robust under C' local perturba-
tions of f at every nonequilibrium nonwandering point for (1.1). Thus (1) follows
from Theorem 5.1.2. Proofs for (2) and (3) are exactly the same as those of (d) and
(e) of Theorem 5.2.2. a
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Now, using the same proof as that of Theorem 5.2.6, we can show that this
weaker condition ¢(f,Dp) < 0 also has the same restrictions on the dimension of

compact invariant sets as those implied under (2.2).

Theorem 5.2.11. Assume that D 1is simply connected and Dy is a bounded
absorbing set for (1.1). Suppose K C D is a compact set which is invariant with
respect to (1.1). If ¢(f,Dg) < 0, then its Hausdorff dimension dimyK < 1. In
particular, if K is also connected, then dimyK =0 or 1 depending on whether

K contains one point or more than one point.

Remark. As we mentioned earlier in Chapter IV, when A = I and |-| is the
cuclidean norm on RY, ¢(f, Do) is related to a quantity ¢, considered by R.
Temam ([17], with the difference being that Temam defines ¢ on a compact invari-
ant set (e.g. the global attractor), while we define ¢(f, Dg) on a bounded absorbing
sct which usually contains a neighbourhood of the global attractor. Temam proved
in [17] that if g2 < 0 on the global attractor A, which always exists when thereis a
bounded adsorbing set, then dimyA < 2. Here under a slightly stronger condition

q(f,Dp) < 0, we are able to show dimyA < 1.

More generally, we can consider a real-valued function (z,y) — V(z,y) de-

fined for (z,y) € D x RN, N = (}) . We assume that V is locally Lipschitz

continuous in its domain and
.1
Jm o [V(z + ha,y + hb) — V(z,y)]
exists for all (z,y) € DxRY andall (a,b) € R*xRY. Foreach (z,y) € DxRY,
we define 1./(ar,y) by

. . 1 af[zl
V(z,y) = lim — V(e +hrfl@)hy+hz (2)y) - V(zy)|. (2.12)

Then we have seen in Theorem 3.1.3 of Chapter III that

ov* of®

Ve = G i@+ 5 2 @y (213)
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almost everywhere.
Suppose D is simply connected. We have established in Theorem 4.1.3 of
Chapter IV that the following condition gives rise to a Bendixson Criterion: there

exist constants a,b > 0 such that
V(z,y) 2 alyl, and V(x,y) < -bly| (2.14)

for all (z,y) e Dx RN, N = ('2') Condition (2.14) is clearly robust under C'!
local perturbations of f at all points of D. Therecfore our wandering point theorem
(Theorem 5.1.2) implies that every nonwandering point in D is an equilibrium. In
fact, as the following result shows, all conclusions we draw from (2.2) or ¢(f, Dg) <

0 remain true under the condition (2.14).

Theorem 5.2.12. Assume that D 1issimply connected and that (1.1} is dissipa-
tive. Then the conclusions in Proposition 5.2.1, Theorem 5.2.2 and Theorem 5.2.6

remain valid under (2.14).

Proof. The assertions in Proposition 5.2.1 on the dimension of the stable man-
ifold and existence of centre manifold at a equilibrium =z is proved by showing
that the real parts of all eigenvalues of %f[z](xg) are negative. This follows from
Theorem 3.3.2 in Chapter III that (2.14) implies the second compound equation of
the linear variational system of (1.1), with respect to any solution, is asymptotically
stable. Conclusions in Theorem 5.2.2 and Theorem 5.2.6 can be proved under (2.14)

using the original proofs without change. O

§5.3. Global Stability

Throughout this section, we assume that z is the only equilibrium of (1.1) in D .
Recall that an equilibrium =z is said to be stable if, for cach € > 0, there exists
6 > 0 such that |z —z¢| < 6 implies |¢i(z) — zo| < €, where ¢ is the flow
generated by (1.1); zo is said to attract a subset B of D if d(¢(B),z4) — 0



V. GLOBAL STABILITY 121

as t — 00 ; xo is said to be asymptotically stable if it is stable and attracts every
point in a neighbourhood; z¢ is uniformly esymptotically stable if it is stable and
attracts a neighbourhood. It has been established in Chapter I that, for a stable
equilibrium zg, it attracts every point in a neighbourhood if and only if it attracts
a neighbourhood, namely attracts all the points in the neighbourhood uniformly. It
then follows that asymptotic stability is equivalent to uniform asymptotic stability.
We want to point out this equivalence of asymptotic stability and uniformly asymp-
totic stability in general is only true for dynamical systems in R"™ . As a matter of
fact, examples exist (see [7]) to show that this equivalence does not hold for some
dynamical systems in infinite dimensional spaces.

We would also like to remark that zo attraction of every point in a neighbour-
hood does not necessarily imply that z¢ is stable. This can be demonstrated by
an equilibrium with a homoclinic orbit (Figure 5.3.1). Concrete examples to show
this can be found in [7] and [9].

The basin of attraction of zo is the union of all the points which are attracted
by zo . If zo is asymptotically stable, then it follows from the continuous depen-
dence on initial values that its basin of attraction is an open subset of D . If zy
is a stable equilibrium and its basin of attraction is D, then we say that z¢ is
globally asymptotically stable. Sometimes this is also called asymptotically stable in
the larye.

The problem of global stability is very interesting and very important in the
analysis of nonlinear systems of differential equations which model some natural
phenomena. In Chapter VII, we will see how this problem arises in a model from
Epidemiology. It is well known that this problem is also very difficult to solve.
The only approach in full generality which is widely used thus far is construction
of Lyapunov functions (or functionals). The following theorem is a typical result of

this type, a proof of which can be found in [6] or [7).

Theorem 5.3.1. We assume that (1.1) is dissipative and Z is the only equilib-

riumin D. Suppose there existsa C! function V(z) which satisfies the following:
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(a) V(z)>0 forall r€ D, and =0 only when z = &,
(b V(z) = %%* f(z) £0 forall z€ D and =0 only when = = &.

Then Z is globally asymptotically stable.
Remarks.

(i). The smoothness of V' can be weakened so that V is locally Lipschitz and
.1
tim o [V(z + hf(e)) — V(2)] (3.1)

exists for all z € D.

(ii). If conditions (a) and (b) only hold in a neighbourhood of #, then & is locally

asymptotically stable.

Theorem 5.3.1 has many variations, but most of them requirc that V be
positive definite in some sense as in the condition (a) of this theorem. We will
see in the following that this positive definiteness assumption can be dropped. A
More general result is formulated in §5.4 in the discussion of LaSalle’s Invariance

Principle.

Proposition 5.3.2. Suppose there exists a C! function V(z) such that

y ov*

V(iz) =: e f(z) <0 whenever f(z) # 0. (3.2)
Then every nonwandering point is an equilibrium.

Proof. Since (3.2) implies that every periodic orbit has to stay in the set where
V(z) = 0, (4.2) is actually a Bendixson’s Criterion, which is also robust under local
C° perturbations of f at every nonequilibrium point of D. Hence the proposition

follows from Theorem 5.1.2. O

Theorem 5.3.3. Suppose that D; C D is a positively invariant subset and = is
the only equilibrium in D,. If (3.2) holdsin D, , then % is globally asymptoti-
cally stablein D, .
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Proof. The positive invariance of D; and Proposition 5.3.2 imply that w(z¢) = Z
for all 2o € D;. Therefore # attracts every point of D). It remains to show
that Z is locally stable. Since V strictly decreases along any nonequilibrium
trajectory, we know V(z) < V(z) for all z € D, and the equality holds only
when z = Z. Now the new function V) =V — V(Z) satisfies conditions (a) and

(b) of Theorem 5.3.1. Therefore # is globally asymptotically stablein D,. O

Now suppose Dy is an absorbing set and (3.2) holds on Dy. Since every tra-
jectory in D eventually enters and remains in I’y, we can conclude from Propo-
sition 5.3.2 that Z attracts every point in D. A similar argument to that in the
proof of Theorem 5.3.3 shows that conditions (a) and (b) hold on Dy which implies
that Z is locally stable from the remark (ii) following Theorem 5.3.1. Therefore Zz
is globally asymptotically stable in D. We thus have the following global version

of the above theorem.

Theorem 5.3.4. Assume that (1.1) is dissipative. Suppose (3.2) holds in D
and & is the only equilibrium. Then % is globally asymptotically stable in D.

Remarks.

(i). The conclusion in the above theorem remains true if (3.2) is only assumed to

hold on a bounded absorbing set Dy C D.

(ii)). If D = R", instead of assuming that (1.1) is dissipative, we can impose the

following condition
V(z) 200 as [z — oo.
and the theorem still holds.

(iii). Proposition 5.3.3 and Theorem 5.3.4 may also be proved using the ‘Invariance

Principle’ of LaSalle (see[11]). We will discuss this in more detail later in the §5.4
of this chapter.
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Corollary 5.3.5. Assume that D is simply connected and that Dy C D is a
bounded absorbing set and contains a unique equilibrium #. Suppose there exists

a C! function = — a(z) € R™ such that

(1) a‘f(l') < 0, if f(z) #0, x € Dy,
(2) 81, =0, in Dy forall i,j =1,--- ,n.

Then % is g]obal]y asymptotically stable.

Proof. This follows the fact that (2) implies 4% = a for some scalar function V

and then (1) shows that (3.2) is satisfied in Dy. 0

Remark. The conditions of Corollary 5.3.5 are satisfied if f satisfies ‘,%L; -

af; _ .o . _ . ,
3= =0, 4,J =1,---,n, since we may then choose @ = —f. Then, for example
5?.3 - ‘3—5 = 0 is a ‘Bendixson Criterion’ for the 2-dimensional system z' =

P(z,y), ¥' = @Q(z,y). The result may be considered as saying that vector ficlds

near one which is irrotational have no periodic orbits.

One drawback of results like Theorem 5.3.4 is that the function V (often
called Lyapunov function after the Russian mathematician who invented the idea)
is hard to construct and that different forms of f neced different treatments. In
the rest of the section, we present some concrete criteria for global stability which
can be easily computed from the equation (1.1). These criteria are based on the
autonomous convergence theorems discussed in §5.2.

Let (z,y) — V(z,y) be a locally Lipschitz continuous real-valued function
defined for (z,y) € R®* xRN, N = (;) considered in §5.2, and I./(m,7) be as
defined in (2.12). Then

ov* ov* Bf

V(wy)———f()+ P CK

almost everywhere. Using Theorem 5.2.12, we can prove the following result on

global stability.
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Theorem 5.3.8. Assume that D issimply connected and that (1.1) is dissipative
and has a unique equilibrium = in D. Suppose there exist constants a,b > 0 such
that

(1) V(z,y) 2 alyl,

(2) V(z,y) < ~bly|

for almost all (z,y) € Dx RN, N = (7). Then Z is globally asymptotically
stable in D.

Proof. Clearly {z¢} is globally attracting since Theorem 5.2.12 implies it is the
omega limit set of every trajectory. Moreover it is stable since otherwise it would
be both the alpha limit set and the omega limit set of some homoclinic trajectory
v = {z(t) : t € (~00,00)}. In this circumstance we assert that C = yU {zo} is
the trace of a rectifiable simple closed curve. This curve is invariant with respect to
(1.1), z(¢,C) =C, and existence of such an invariant curve is not possible under the
assumptions of the theorem by Theorem 4.1.3 of Chapter IV. It remains to prove
that C is rectifiable. Since v isin the C' centre manifold or unstable manifold
of zo, and this is 1-dimensional, it is only necessary to show that v4+ = {z(t): t €
[1,00)} is the trace of a rectifiable curve. This is rectifiable if it also approaches its
omega limit through a 1-dimensional centre manifold. If it does not approach z
through a centre manifold then, by the Centre Manifold Theorem, it approaches
zo exponentially in time. Thus |f (a:(t))l < Ce™t for some constants C, A > 0,
since f(zo) = 0. Considering 7(s) = (1—s)7!, y(s) = z(7(s)), s € [0,1), we find
y'(s) = f(z(7(s)))7'(s) so that [y'(s)] < Ce "(I7!(s) = Ce21=9)7'(1 — 5)~2
and y' is bounded with y[0,1) = v4. O

Remark. From the above proof we can also draw an important conclusion: under
the conditions (1) and (2) in Theorem 5.3.6, the simple closed invariant curves
arising from the following types of orbits of (1.1) are all rectifiable,

(1) homoclinic orbits;

(ii) a pair of heteroclinic orbits connecting the same two equilibria;

(iii) heteroclinic cycles.
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(see Figure 4.1.1).

Therefore, as we have seen in Theorem 4.1.3 of Chapter IV, when D s simply
connected and (1.1) is dissipative, existence of periodic orbits as well as orbits of
types (i) (ii) (i) is precluded by the conditions (1) and (2) in Theorem 5.3.6. As we
will see in the following discussion, these orbits can not exist under the assumptions

of Theorems 5.3.7, 5.3.9 and Corollary 5.3.8.

As is discussed in previous chapters, a general form of the function V' which

is interesting to us is given by
V(e,y) = |A(z)y

where z — A(z) isa N x N matrix-valued function nonsingular and C' in D,
and || is a vector normin RN | N = ('2‘) Let p be the corresponding Lozinskil
measure. Then the assumptions on A and the following general condition of Dulac
type

T : |
u(AfA +A3:v A)<0 in D (3.4)

implies V' satisfies the conditions (1) and (2) in Theorem 5.3.6. Therefore we have

the following result.

Theorem 5.3.7. Assume that D simply connected and (1.1) is dissipative and
has a unique equilibrium z. Suppose (3.4) issatisfied. Then z is globally asymp-

totically stable in D.

Remark. Theorem 5.3.7 remains valid if (3.4) only holds on a bounded absorbing

set Do C D.

With A = I, Theorem 5.3.7 gives rise to the following corollary.

Corollary 5.3.8. Under the assumptions of Theorem 5.3.7, & is globally asymp-
totically stable if one of

arkl oflal
#(bé ) <0, ﬂ(gj—:- ) <0 (3.5)
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holds in D.

Remark. When the Lozinskii measure p is calculated corresponding to the I,
Il and I normson RN, (3.5) gives rise to the following concrete conditions each

imply the global asymptotic stability of £ under the assumptions of Theorem 5.3.7

s afr afa afq afq . 1
(i) sup{ axa+q§(amr+axa .13r<s§n),<0,

(ii) sup{afr-{-afs-i-v (3fr + afs,\):1§7'<s$n}<0,

dz, Oz, q:rd,a Oz, Oz,

(iii) A + A2 <0,

.\ .o Of | Ofs ofq| , |9fq
- 1< <

(iv) mf{axr + Bz, #Z” ( B, + Bz, 1<r<s<n; >0,

. JOfr | Ofs ( ofr| | |9fs

- 1< <

(v) mf{axr + Bz, Z |5, + Br, <r<s<ng>0,

g#ns
(vi) Ap—1 4 A >0.
where A; > --- > A, are eigenvalues of ihe symmetric matrix 2(5-[ + 55)

The follewing quantities are defined in (2.6) and (2.7) of §5.2,

of.Dovt) = sup + [ u(Bla(r,aw)) ar

zo€Dy
q(f, Do) = limsup ¢(Do,1)
t—00

where
aftd
B — -1 -1
Af A + A —6.1: A

as is given in (2.5). In the following, we will omit f from these notations, since

there will be no ambiguity.
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An autonomous convergence theorem (Theorem 5.2.10) is proved under the
condition ¢(Dg) < 0. Moreover, ¢(Dp) < 0 also implies that the unique equilib-
rium Z is locally stable since otherwise & will be both the alpha and omega limit
set of a homoclinic orbit I'. Now the simple closed invariant curve T'U {#} is
rectifiable under the condition q(Dy) < 0 for the same reason as given in the proof
of Theorem 5.3.6, and thus is precluded by ¢(Dg) < 0 if D is simply connected.
Therefore, 7 is globally asymptotically stable under this condition. This yields the
following result on global stability under a weaker condition than (3.3).

Theorem 5.3.9. Assume that D is simply connected and that (1.1) is dissi-
pative with a bounded absorbing set Dgy. Suppose & is the unique equilibrium of

(1.1). Then z is globally asymptotically stable provided q(Dp) < 0.

Applications of these global stability results will be scen in Chapter VII.

§5.4 Weak Dulac Conditions and LaSalle’s Invariance Principle

Let z — V(z) € R be a real-valued C' function defined for « € D. Define, for
each z € D,

. ov
V() = 5 f@) (4.1)
Suppose G is a subset of D. A C! function V is said to be a Lyapunov
function on G if T}(:v) <0 forall z€G. Let

E={ze@nD : V(z) = 0} (4.2)

and M be the largest invariant set in E. The following result is a version of

LaSalle’s Invariance Principle [11].

Theorem 5.4.1. Suppose V is a Lyapunov function on G and ~y*(zy) is a
bounded semi-orbit of (1.1) which lies in G. Then the w-limit set of y*(zg)

belongs to M; thatis z(t,z¢) -+ M as t — oo.
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We have mentioned earlier that Theorem 5.3.3 and Theorem 5.3.4 can be de-
rived from this Invariance Principle. In fact condition (3.2) implies V' is a Lya-
punov function on D,. Since Z is the only equilibrium, M = {Z}. Therefore Z
attracts every point. The local stability of Zo can be proved as before.

Compared with Theorem 5.4.1 or results of similar type, the Invariance Prin-
ciple has the advantage of providing information on the limit sets with less restric-
tive conditions. It has proved to be very useful in the analysis of global stability.
LaSalle’s Invariance Principle is usually stated for functions V' which are only Lip-
schitz continuous. However, as the following result shows, stronger conclusions can

be drawn when V is a smooth function.

Theorem 5.4.2. Suppose V € C!(D — R) is a Lyapunov function on G. Then

all nonwandering points of (1.1) in G are contained in M .

Proof. Observe that, if z is not an equilibrium and 1./(93) < 0, all trajectories
depart from a small neighbourhood of z and, since V strictly decreases along
trajectories in a neighbourhood of z, no trajectory returns. Therefore ail nonwan-
dering pointsin G are containedin E. Moreover, since the set of all nonwandering

points is closed and invariant, the theorem is proved. a

Next we will examine what can be concluded under the following weak Dulac

condition.

-1 af[2] -1 :
pl AfA +A6_x A <0 in D. (4.4)

Let D; be the subset of D where (4.4) is strict and D, = D\ D;.

Theorem 5.4.3. Suppose D is simply connected, and there is a matrix A of

class C! such that either (a) or (b) holds:
(a) D has the minimum property with respect to S and (5.4) is satisfied on D.

(b) Dy is an absorbing compact subset of D and (5.4) is satisfied on Dy.
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Then the conclusions (c), (d), (e) of Theorem 5.2.2 hold if in those statements

D is replaced by D;.

This may be seen by again supposing that 29 € D; is nonwandering and
f(zo) # 0. Then, choosing the neighbourhood U of z¢ in Lemma 5.2.1 a suffi-
~iently small subset of the region where (4.4) is strict, we find a system C'-close
to (1.1) which also satisfies (4.4), strictly near z¢ and has a nontrivial periodic
trajectory intersecting U. Then, using Criteria I, II of Chapter IV in cases (a), (b)
respectively, we find a contradiction as before. Thus we must have f(xp) =0 if
z9 € D; is nonwandering.

The Corollaries 5.2.3, 5.2.4, 5.2.5 may also be modified in this way. Similarly
the considerations leading to Theorein 5.2.6. suitably altered, lead to a modification

of that result.

Theorem 35.4.4. Suppose D is simply connected,
(a) f satisfles condition (b) of Theorem 5.4.3,
(b) D, isinvariant and

(¢) at most a finite number of trajectories in X N Dy have a limit point in Ds.

Then dimy(K ND;)<1.

This result is established by applying the proof of Theorem 5.2.6 to the com-
plement in KND; of the at most 1-dimensional set in K'ND; consisting of those
trajectories with limit points in D;.

The condition (¢) may of course be difficult to establish in general and may
require the use of more than one functional & or function V' or extensions of the

ideas considered here.

Remark. Theorems5.2.6,5.3.7, 5.4.4 are somewhat surprising in view of estimates
on Hausdorff dimensions of attractors due to Smith [16], Temamn [17], Boichenko
and Leonov [1}], Eden, Foias and Temam [4]. These results, which seem to give good

estimates on attractors whose dimension is greater than 2 even in delicate cases such
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as the Lorenz system, would only give 2 as an upper bound in some cases where
Theorems 5.2.6, 5.4.4 would give a bound 1 and Theorem 5.3.7 would give a value
0. For example, in the terminclogy of [4], conditions such as (2.2) would imply that
p1(z) + pa(z) < 0, where py > g2 > -+ 2 pn are the local Lyapunov exponents
which in turn implies that any invariant compact set has Hausdorff dimension less

than 2.

Example. Consider the dissipative system

dz dza
—(-l-t-l- =T — .'1):1;, E— = —IT9 (45)

of Eckmann and Ruelle cited by Eden [3]. Here the global attractoris K = [-1,1]x
{0} so that dimpyK =1.

If V(z) =23, wefind 2¥" f(z) = —22% so we could infer independently from
this that K has dimension at most 1 since Theorem 5.4.2 implies it is located on
the z;-axis. Since there is more than one equilibrium, we conclude dimyK = 1.

Alternatively consider A(z) =3 +1 so that

1 of 2 1 2

AfAT + A 7 A7l = 223522 +1)7! — 323
and the weak Dulac condition (4.4) is satisfied with D, = {(0,0)}. At most a finite
number of trajectories can have limit points in D, since otherwise we could find
an invariant rectifiable simple closed curve which cannot exist by Criterion II of

Chapter IV. Theorem 5.4.4 therefore implies dimpyK < 1.
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Figure 5.2.1. A flow box X.

y(t;

y(ti+1)

Figure 5.2.2. A trajectory intersecting ¥ many times.
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Figure 5.3.1. A fixed point with a homoclinic orbit.
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CHAPTER VI

AUTONOMOUS SYSTEMS WITH FIRST INTEGRALS

In this chapter, we consider the nonlinear problems discussed in earlier chapters
in the context of autonomous systems possessing first integrals. Existence of first in-
tegrals often indicates the presence of certain physical conservation laws manifested
in the system. Mathematically speaking, a first integral is a nonconstant real-valued
function H(z) which is constant along each solution. Thus every solution stays
on a lower dimensional invariant manifold defined by an equation H(z) = C with
C being determined by its initial value. This means that systems in R" having
first integrals are only capable of displaying behaviour which is typical of systems
in lower dimensions. We prove that, for such systems, the results obtained in ear-
lier chapters can now be proved under considerably less restrictive conditions. For
example, the Bendixson Criterion #(%12]) for general systems in Chapter IV can
be replaced by pu( gf[rnl) if the system has r independent first integrals. This
result will play an important role in Chapter VII where we resolve some hitherto
unsolved problems in Mathematical Biology.

A traditional approach to systems with first integrals is to employ the first
integrals to reduce the number of variables, and thus reduce the dimension of the
problem. This often relies ~ritically on the choice of coordinates in the invariant
manifold. In our study, tin- for'is is on the implications to the linear variational
equations. This leads to the discovery of a nice geometric characterization (The-
orem 6.4.2) which is crucial to the development. Then techniques from exterior
algebra are used to establish the main result for linear theory (Theorem 6.1.6).
This enables us to develop nonlinear results by the methods discussed in earlier
chapters.

After the linear theory is established in §6.1, we deal with the case when the

first integrals are affine in sections §6.2 and §6.3. The general case is treated in the

Typeset by Ap4S-TEX
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final section §6.4.

§6.1. Linear Systems with an Invariant Subspace

In this section, we discuss a special class of linear systems of ordinary differential
equations which leave a subspace of R"™ invariant. The linear variational equations
of many nonlinear autonomous systems which we will study in the following scctions
belong to this class. We will see that behaviour of these special lincar systems
determines the geometry of the corresponding nonlinear systems. Hence results in
this section are essential to the study of the asymptotic behaviour of solutions to
the nonlinear systems in the following sections.

Let (,) and ||-|| denote the euclidean inner product and norm, respectively,
and ¢t +— A(t) be a n xn matrix-valued function continuous in R. We consider

the linear system of n differential equations
z'(t) = A(t) z(t) (1.1)
subject to the condition that there exists a constant matrix B, such that
BA(t) =0, for all te€R. (1.2)

We denote the k-rnel of B by V, and its orthogonal complement in R™ by V.
Then R" =V, . Vit and Vit = Im B* (sec [13] Theorem 12.10), where the
asterisk denotes the transposition. Moreover, if rankB =r, then dimVy =n -,
dimVit =r.

Let X be the solution space of (1.1) and Ay be the subspace of X' consisting
of those solutions z = z(t) of (1.1) with z(ty) € Vi, for some t; € R. The
subspace Vy of R™ is said to be invariant with respect to (1.1) if z(t) € V for
all te€ R, when z = z(t) is a solution in Ajp.

Theorem 6.1.1. Suppose (1.2) is satisfied. Then Vy is invaria.at with respect
to (1.1).
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Proof. From (1.1) and (1.2) we have (Bz(t))’ = BA(t)z(t) = 0. Hence, for every
solution z = z(t) of (1.1), Bz(t) = Bz(to) for all ¢,¢p € R, which leads to the

conclusion of the theorem. O

Remark. In the rest of this section, our interest will primarily be in the behaviour
of solutions in A), or equivalently speaking, we will study (1.1) restricted to the

invariant subspace V). We will see later that the need for this consideration arises

in the following sections.

For vectors uj,...,ux € R®, ujA:--Aui denotes their exterior product, which
is a vector in AKR* 2 RN, N = (Z) An inner product and the corresponding
norm can be defined canonically in AFR™ from those of R" (see Appendix B).
We will also denote them by (, ) and ||:]|, respectively, for simplicity of notation.

We nced the following property of this canonical inner product in A¥R™.

Lemma 6.1.2. Suppose uj,...,ux,v;...,9m € R?, and (u;,vj) =0, 1<:<k,
1<73<m. Let A=uyA---Aug,A=vi A---Avy,. Then

(A Ay,2 AA) = (A,2) 5, A) (1.3)
for all € A*R™ and y € A™R".

Proof. Since each element in AFR™ is a linear combination of terms like e; A
.-+ Aeg, Wwemay assume that z = u, /\---/‘\u',c and y =v;A---Av,,; the general
casc can be proved using the bilinearity of (, ). By definition

Dy1 D

) (1.4)
D21 D2 ) (k+m)x(k+m)

(A/\y,a:/\A)=det(

where D;; are blocks given by
Dyy = ((ui, u;) ek, | Drz2 = ({ui, v5))kxm,
Doy = ({v;, u;))mxk, D2z = ({v;,9;))mxm-

Observe that detD;; = (A,z), detDg; = (y,A) by definition, and D2 =0 from

the assumptions, the lemma is proved by expanding the determinant in (1.4). O
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Let X(f) be the fundamental solution of (1.1) with X (¢p) = I,,xn, for some
to € R, where I,x, isthe nxn identity matrix. The following result is essential

to all developments in this section.

Proposition 6.1.3. Assume that the system (1.1) satisfies (1.2). If u € R",
and w € Vg+. Then

(X()u,w) = (u, w) for all te€ R. (1.5)

Proof. Since Vit 2 Im B*, we can assume w = B*v, for some v. Now

%(X(t)u,w) = (A(t) X (t)u,w) = (BA()X(t)u,v) =0
for all t € R, hence (X (t)u,w) = (X(to)u,w) = (u,w). a

In the following, for a n x n matrix A, and integer 1 < k& < n, we use
Al¥l to denote the k-th additive compound matriz of A. Thisisa N x N matrix,
N = (2) A survey on the definition and properties of additive compound matrices
together with their connections to differential equations is provided in Appendix B.
Here we only mention a few properties that will be used in this chapter. We refer
the readers to the Appendix B for their proof.

The term additive comes from the property (A + B)¥l = Al 4 B, if
Al,.-.;An are the eigenvalues of A, then all the possible sums of form A;, +
ot A, 1<14 <.+ <12 £ n, give the eigenvalues of Al¥: in the two extreme

cases when k=1 and n, we have
Al =4 and A =tr(4), (1.6)

respectively.
The connection between additive compound matrices and linear systems of

ordinary differential equations can be seen from the following proposition, a proof

of which can be found in the Appendix B.
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Proposition 6.1.4. Suppose z,(t),...,zx(t) aresolutionsof (1.1). Then y(t) =

zy(t) A--- Azg(t) is a solution of the linear system

y'(t) = AM)y(2). (1.7)

Equation (1.7) is called the k-th compound equation of (1.1). When k =1
and n, as a result of (1.6), (1.7) becomes the original system (1.1) and the well-
known Liouville equation (see [5], Chapter V), respectively. To see the latter, recall
that u3 A---Au, = det (uy,...,u,) for any n vectors uj,...,u, in R", where
(u1,...,un) denotes the n x n matrix with the i-th column given by the coordi-

nate vector of wu;.

Let w;,---,ux be k linearly independent vectors in R". Then X(t)uy,:--,
X(t)ur are k linearly independent solutions to (1.1). Let {wj,---,w,} be an

orthonormal basis of the subspace V- and set
Qt) =2 X(t)ur A--- A X(t)ug.

Then y(t) =Q(t) and 2(t) = X()wy A--- A X(#)w, AQ(t) are solutions to (1.7)

and following linear system
2(8) = AFH() 2(2), (1.8)

respectively. The following relation is important.

Proposition 6.1.5. For any k elements u,,--- ,ux in Vj,
19N < | X(B)ws A--- A X(t)wr A Q)] (1.9)
forall t e R.

Proof. If ui,...,u; arelinearly dependent,so are X(t)u;,...,X(¢)ux, from the
uniqueness of solutions of the linear system (1.1). This leads to Q(t) := X(t)u; A
-+ A X(t)ur = 0; the proposition holds trivially. Now assume that u;,...,ux are
linearly independent, so that Q(t) #0 for all ¢t € R. We claim the following: for
all t e R,
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(1) (X@wy A ANXBwr,wr A Aw,) =1,
(2) (X(@t)wr A--- AX(wr AQ2),wy A--- Awp AQ2)) = ||Q)|?,
(3) llwi A+ Awe AQUE)| = IR,

Observe that (X(#)wi,w;) = (wi,w;) = b5, 1<i,j <r, forall ¢t € R, by Propo-
sition 6.1.3. Thus (X (2)wiA- - -AX ()wy, w1 A- - -Awy) = (X (e, w) -« - (X (), wy)
=1, from the definition of the inner product in A"R". Hence (1) follows.

To show (2), observe (X(t)ui,w;) = (u;,w;) =0, forall t€e R,i=1,...,k,
and j = 1,...,r. Then the identity follows from choosing A = X(t)w; A--- A
X@we, A =y =Q(t),z =w; A+-- Aw, in Lemma 6.1.2, and using (1). Identity
(3) can be proved in the same way.

Using the Schwarz inequality in (2), we have
NI < IXWwi A AXw, AQR)| - ||wi A+ Awe. AQ)].

The inequality in (1.9) now follows from (3) and the fact ||2(t)|| # 0 for all ¢t € R.
a

Now suppose that the linear system (1.8) is asymptoticaily stable. Then
X@wi A~ AX@)w, AQE) - 0 as ¢t — oo, which implies, by (1.9), that
Q(t) - 0 as t — oco. We thus have the following result which is an attempt to

study the stability of (1.1) when restricted to the invariant subspace V.

Theorem 6.1.6. Assume that the system (1.1) satisfies (1.2), and rankB =r.
Then for any wuj,...,ux € Vo, limy_oo X(t)us A -+ A X(t)ugx = 0 if the lincar

system (1.8) is asymptotically stable.

Let |-| denote a general vector normin RN, N = ( ktr)y and the matrix norm
it induces for N x N matrices. Let p be the corresponding Lozinskii measure.

Then the following corollary follows from the above theorem and Theorem A.3.4 of

Appendix A.
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Corollary 6.1.7. Under the assumptions of Theorem 6.1.6, X(t)u; A---AX()ux

—0 as t — o0, if

t
km [ p (A“'*'](s)) ds = —co. (1.10)
t—oo to

In particular, if p (A["+'1(s)) < -6 < 0, then the convergence has exponential

rate 6.

§6.2. Nonlinear Autonomous Systems with an Invariant Linear Subspace

Let D C R™ be a convex open set, and = +— f(z) € R® bea C! function defined

in D. We consider the antonomous system in R"
7' = f(z) (2.1)

under the following assumptions:

(H;) The Jacobian matrix gf of the vector field f of (2.1) can be written as

%(T) = —vl + A(z) for all z in D, (2.2)

where v is a constant, and z — A(z) is a n X n matrix-valued function.

( Hz ) There exists a constant matrix B with rankB = r , such that
BA(z) =0 for all z in D. (2.3)

We will call a nonlinear system (2.1) satisfying ( H; ) and ( Hz ) an au-
tonomous system with an invariant linear subspace. Examples of such systems
will be given later in the section.

The motivation for the name of such systems comes from the observation that
the linear subspace kerB of R" is invariant with respect to the linear variational

equation

(1) = 2L (alt,20))u(t) (24)

for any solution r = z(t,zp) of (2.1), in the sense that y(t) € kerB forall te R
if y(0) € kerB . This can be shown be observing that, after the change of variables
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y(t) = u(t)exp(—wrt), (2.4) becomes u'(t) = A(x(t,x0))u(?), satisfying the condi-
tion BA, * x9)) =0 for all ¢. Therefore the claim follows from Theorem 6.1.1
in §6.1.

The following result shows that such a system has an invariant (n—r)-dimensional

affine manifold.

Theorem 6.2.1. Under the assumptions (H;) and (H), the (n—r)-dimensional
affine manifold

I'={ze D : B(z —z) =0}, for some & € R", (2.5)
is invariant with respect to (1.1).

Proof. Since

= —vB(z - )

1
’/0‘ B?—f-(:i + s(z — 7)) ds(x — &)

forall z and Z in D, from (2.2). Choosing # as an equilibrium point of (2.1)

in D, we have
(Bz) = —vB(z - 7). (2.6)

It is easy to see that the invariance of I' follows from (2.6). a

Remarks.

(i) As we shall see from the examples of systems with an invariant lincar subspace
given later in the section, possessing an invariant affinc manifold is a main char-
acteristic for such systems. However, as Theorem 6.2.1 demonstrates and, as we
will discover throughout this section, the property of having an invariant lincar
subspace :amelv satisfying ( H; ) and (H;), determines much of the underlining

geometry of the system (2.1).

(i) We can see from (2.6) tha: .y - # 0, then T is the global centre manifold in

D (the stable centre manifold when v > 0, and the unstable centre manifold when
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v<0);if v=0, Bz gives a set of r independent linear first integrals, and T’
is one of the level surfaces defined by these first integrals. In the former case, it
is sufficient to study the flow generated by (2.1) on the global centre manifold T}
even in the latter case, occasions may occur when we need to consider the flow on
I'. For instance, to study a specific periodic solution, it suffices to study the flow

on the level surface T on which this periodic orbit lies.

(iii) Recall that if ¢, is the flow generated by (2.1) and Dé¢(xo) is its tangent
map at g, then D¢¢(z¢)u is a solution of the linear variational equation (2.4)
for any u € R" . Moreover, since I' is an invariant manifold, if u is a vector
tangent to I' at zq € ', then the vector D¢(zo)u is tangent to I' at ¢.(zo).
From this discussion and the fact that the tangent space of the affine manifold T’
is kerB at every point, we arrive at the following: (a) the subspace kerB of R"
is invariant with respect to (2.4); (b) we need only study those solutions of (2.4)
which stay in kerB for all time if our interest is in the flow on I'. This leads us to

the same consideration as discussed in the remark following Theorem 6.1.1 in §6.1.

Before we discuss in detail the properties of the system (2.1) satisfying (H;)
and (H2), some concrete examples may help us to gain insight and intuition into

such a system.

Examples of systems satisfying (H;) and (H,).

(1). The SEIRS models in Epidemiology. These systems will be analyzed in full
detail in Chapter VII, we thus refer readers to Chapter VII for their equations and

properties.

(ii). The chemostat models. A typical chemostat model is given by the following
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system of ordinary differential equations:

my S, ma STy

' _ 1 _ ¢ _ —
S =1-5-0738 @m+s
m; S
$'1=~'L'l(al_ll_s"1)
myS
x;=m2(a2-z§-5_1) (2.7

which models two competing micro-organisms z;,z2 feeding on the nutrient S in
a chemostat, where m;,a;, 1 = 1,2 are positive paramecters. We can easily verify
that (2.7) satisfies (H;) and (Hp) with D=R3, v =1, B=(1,1,1), r =1,

and that the 2-dimensional simplex in R3

I' = {(S,(B],:Bz) € Ri : S+1L‘1 + &y = 1}
is the affine invariant manifold. For detailed treatment on the chemostat models,
readers are referred to [1] and [7], as well as the bibliographies in these papers.

(iii). A chemostat model with an exzternal inhibitor. The following system is a
variation of the chemostat model (2.7). In addition to the micro-organisms z,,z2

and the nutrient S, it has an external inhibitor p for the micro-organism ;.

my Sz me Sz
§'=1-85- 55 f0) - g
mS
$'1=$1(al_l+_sf(11)—1)
" maS _
! 61’213 )
p=1—P~K+p (2.8)

Again m;,a;, 1 =1,2 and 6, K are positive parameters, and the function f(p) >
0 represents the degree of inhibition of p on the growth rate of z,. Adding up

all the equations of (2.8), we can see that the 3-dimensional simplex in R*

I' = {(S,xl,mg,p)ERi : Sbxy +.'L'2=1}
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is the global centre manifold. Moreover, by calculating the Jacobian matrix of (2.8),
we can verify that (H;) and (H;) are satisfied, with D = R4, v =1, B =
(1,1,1,0), and r =1. Detailed treatment on (2.8) can be found in [7].

(iv). A model in Chemical Kinetics. The following system is considered in [14] as a

model for the monomolecular reaction networks in chemical reactions:

zy = —azx; + dzx3
zh = —(b+e)zy + axy + cx3
zy = (c+d)z3 + bz,

Ty = ez (2.9)

where z; > 0 is the concentration of the reactant A;, t = 1,2,3,4, and a,b,c,d,e

are reaction rates for various first order reactions involved. It is easy to check that
(2.9) satisfies (H;) and (H;) with D=R%, v=0, B=(1,1,1,1), r=1, and
the 3-dimensional hyperplane defined by

zy + a2 +23 +24 =C

(which is called a conservation law), for each C, is a level surface for the linear

first integral z; + z2 + 3 + 24.

In the rest of the section, we readdress some of the nonlinear problems discussed
in the earlier chapters in the context of autonomous systems satisfying (H;) and
(H2). Since these two conditions impose restrictions on the behaviour of the linear
variational equations of (2.1), we would expect that these results hold for (2.1)
under less restrictive conditions. In fact, as we will see throughout this section,
the degree of relaxation on the conditions in these situations is directly related to

rankB.

Our first subject is the upper estimation for the Hausdorff dimension of compact

invariant sets for (2.1) under the assumptions (H;) and (Hy).
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Let K CT' be a compact set invariant with respect to (2.1). Let
/\1(17) Z /\2(22) 2 2 /\,,(;IT)

be the eigenvalues of the symmetric matrix %(gf* + —g{) As a special case of
Theorem 3.2.1 of Chapter III, we know that dimyK < k + s, for some integer

k > 0 and real number 0 < s < 1, provided
A](IB) + -+ /\k(.’l‘) + S/\k+1((l?) < -6 <0 (210)

for all z € K.
The following result shows that the same estimate can be obtained for (2.1)

under less restrictive conditions when (H;) and (H;) are satisfied.

Theorem 6.2.2. Assume that (2.1) satisfies (H,) and (Hz), and that K CT
is a compact set invariant with respect to (2.1). Suppose, for some integer k > 0

and 0<s<1, §>0,
Al(:l!) + -0 /\k+,—(.’17) + SAk+,-+1(IlI) + rv S ) <0 (211)

for all x € K. Then dimyK < k + s.

A remark is in order before we proceed to prove the theorem.

Remark. Since (2.10) implies Ag41(z) < 0, and thus Ag4i(z) <0, 1 =1,2,---,
r + 1, we can see that the condition (2.11) is weaker than (2.10) in the case when
v = 0. Moreover, the degree of relaxation ( r ) is equal to the number of independent

linear first integrals ( rankB ).

Proof of Theorem 6.2.2. The proof is based on a remark made earlier in Chapter
ITI, where we point out that dimpyK < k + s provided
k k+1
IA Do) I\ De(a)||* = 0 as t— oo
exponentially and the exponential rate of convergence is uniform with respect to

all z € K, where ¢; is the flow generated by (2.1), D¢,(z) is the tangent map
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of the diffcomorphism ¢, at z, and ||-|| denotes the euclidean norms in R(%)
and R(kzl) .

To illustrate the idea of the proof, we shall prove at first the case v =0. The

case v # 0 can be dealt with by the same idea and a change of variable.

Suppose v = 0. Let z = z(t,z0) be a solution to (2.1). The linear varia-
tional equation (2.4) with respect to z(¢,zo) is a linear equation in R" with a
invariant subspace Vy = kerB of R". Therefore, from Proposition 6.1.5 of §6.1,

its fundamental matrix D¢,(zo) satisfies the following;:

I\ Dée(zo) (ur A+ Aui)l| = |Dge(wo)ur A=+ A Dbe(o)uil|

S ||D¢,(xo)u1 A A D¢>¢(:ro)u,~ A D¢¢(mo)w1 A A D(}St(:l‘o)wr”

i+r
= ”/\ Doy(zo)(ur A - Aui Awg A+ Aw, )|

i+4r
< IA Douzolllus A+ A Ay A A

t+r

< I Dée(ao)l flus A -+ Awil],
which implies
i+4r

IA Do)l < | A\ Dée(zo)l

forall £ >0 and integer i > 1, where u;,---,u; are linearly independent vectors

in Vo and {w;,:--,w,} is an orthonormal basis for Vj".

Since /\i+r D¢(zo) is the fundamental matrix of the (¢ 4+ r)-th compound
equation of (2.4), we have, from Theorem A.3.1 of Appendix A

i+r

I\ Dée(zo)]l < exp / Da(&(r) + -+ + Mg (a(r))] dr
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for all ¢ > 0. Therefore, letting : =%k and k+ 1, we have

k+1

k
IA Dée(zo)lI'~* | A\ Dée(0)"

¢
< exp/ [(1 —8)( M+ M) F (M + e+ ’\k+r+l)] dr
0

t
=exp/ ()\1 + o Apger + 3/\k+r+l)dT
0

which shows that [|A* Déy(z0)]|*=* IA*+" Déu(z0)||* has the convergence property
we require. Therefore dimyK < k+ 1 in this case.
Now for the general v, let u(t) = y(t)exp(vt), then the linear variational

equation (2.4) becomes
W'(t) = Ale(t,20))u(t)

satisfying BA(z(t,z0)) =0 forall ¢ >0 and all 2o € D. From the proof for the

case v = (0, we have
i i+r
I\ (Dg: exp(wt)]l < | A\ (D: exp(vt))]
Thus

i+r

IA Déell < |\ Dol exp(rvt)
t
< exp/ (A1 4+ Xigr +rv)dr
0

for : =k and k+1. Now it is easy to sec that (2.11) implics the same convergence

property required for || /\k Déo||'~*)IA*t! DéyJ|*. Therefore the theorem is proved.

We would like to note that the sum A; +:--4+ Ax of the %k largest eigenvalues
of %(gf* + gf) is the Lozinskii measure of the k-th compound matrix %z[[kl
of gf corresponding to the euclidean norm on R Ifa general vector norm
|| and the corresponding Lozinskii measure are used in the above proof instead,

Theorem 2.2.1 of Chapter II can give us the following more general and more flexible
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form of the above Theorem 6.2.2, which reduces to Theorem 6.2.2 when the norms

are cuclidean.

Theorem 6.2.3. Under the assumptions of Theorem 6.2.2, if, for some Lozinskii

[k+7) [k+r+1]
1-3)p (% ) + sp (g—i ) < —rv (2.12)

on K, then dimyK < k + s.

measure pu,

Remark. Theorems 3.2.4, 3.3.2, 3.3.3, and 3.3.6 in Chapter III can also be gen-
cralized to (2.1) satisfying (H;) and (H2) in the spirit of Theorems 6.2.1 and
6.2.2.

Our next topic is to derive Bendixson and Dulac criteria for autonomous sys-
tems (2.1) satisfying (H;) and (H2). The interest is in the conditions which
preclude existence of periodic orbits on the invariant manifold I

Suppose T' is simply connected. Let B be the unit ballin R? with boundary
OB and closure B. For a simple closed rectifiable curve % € Lip(dB — T'), the

sct
2(#,T) = {p € Lip(B—T) : ¢(8B) = 4(8B)}
is not empty (see Chapter IV, §4.2.1). Consider the functional A on Lip(B — I)
defined by
Op  Op
o = [lz2n 52 2.13
o= [1z5n 520 (213)
where p = (p1,p2) € B, and the norm || -] is the euclidean norm on RY, N =

(";7). Therefore Ay is the usual surface area of o(B). The following result

follows from Proposition 4.2.2 in Chapter IV.

Proposition 6.2.4. Suppose 1 is a simple closed rectifiable curve in I'. Then

there exists a § > Q such that

Ap > 6
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for all ¢ € L(,T).

Let u be the Lozinskil measure corresponding to a vector norm on R(-4a),
The following result shows that the condition

[r+2]
7 (g—f ) < —rv (2.14)

is a Bendixson criterion for (2.1) satisfying (H;) and (H_).

Theorem 6.2.5. Assume that (2.1) satisfies (H;) and (H2) and

(a) either T' is bounded or T' contains a bounded absorbing set,

(b) (2.14) holds on T.

Then no simple closed rectifiable curvein T' can be invariant with respect to (2.1).

Proof. As we have seen in the proof of Theorem 6.2.2, it suffices to prove the
theorem for the case v = 0. The general case can be dealt with in the same way
after a change of variables in the linear variational equation (2.4).

For each zg €I, the solution = = z(t,z¢) to (2.1) exists and stays in I’ for
all t > 0. The linear variational equation of (2.1) with respect to z(¢,z¢) can now

be written as
y'(t) = A(z(t,20)) y(t) (2.15)

which satisfies BA(z(t,zq) =0 forall ¢ > 0. It then follows from Theorem 6.1.6 in
the first section of this chapter that (2.14) implies y;(t)Ay2(t) = 0 as ¢t — oo, for
any two solutions y1(t),y2(¢t) of (2.15) such that By;(0) =0, i = 1,2, uniformly
with respect to all x4 €T

Suppose now ¥ € Lip(0B — I') is a simple closed rectifiable curvein I' which
is invariant with respect to (2.1), and ¢ € X(y,I'). Let oi(p) = z(t,¢(p)), p =
(p1,p2) € B. Then ¢, € Z(,T") for each ¢t > 0 by the invariance of . Thercfore
Apy > 6 >0 for all t> 0. Moreover,

02 _ 0s(tg) Bp
Op;  Ozo Op;

i=1,2,
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are two linearly independent solutions to (2.15) with respect to ¢.(p), and B%%?— =

Bg’?'_- =0, :=1,2. Hence

%A-a—"o—t—-)O as t— 00

opr  Op:
uniformly for almost all p € B. Therefore Ap; — 0 as t — oco. This contradicts
Ap, > 6. The theorem is proved. O

Some remarks are in order.

Remarks.

(i) We would like to note that in the pi.of of Theorc: 1 6.2.5 only the flow of (2.1)
restricted to the invariant affine manifold I' is relevant. Therefore, the theorem
still holds if we relax the assumptions (H;) and (H;) to the following:

(H,) There exists a constant matrix B such that rankB = r and the affine

manifold
I'={c€eD : Bla—%)=0} forsome €D

is invariant with respect to (2.1).

(H,) The Jacobian matrix %f of f can be written as
3}
—a%(a:) = ~vIxn + A(z) on T,

and

BA(z) =0 on TI.

(ii) Theorems 5.1.3, 5.1.4, 5.1.7 can also be modified for (2.1) satisfying (H;) and
(H2).
For example, suppose IT' is bounded or contains a bounded absorbing set. Let

&+ V(z,y) be a real-valued function defined on ' x RV, N = ( r:2). Define I./
by

af [r+2]

V(e,y) = Jm, % [V (“v thi(z), y+hiz,  +rvl )y) - V(z, y)]
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Then

o 9V* ov* [aflr+?
V—-ajv-f(:v)-f-a- ((—9; +rvl )y

almost everywhere if V' is assumed to be locally Lipschitz. Now the conclusion of

Theorem 6.2.5 holds if V' satisfies the following conditions:
V(z,y) 2 alyl, and V(z,y) < —blyl, (2.16)

for all (z,y) € T x RV, where |-| is a vector norm in RV, and a,b > 0 are
some constants.

Let z — A(z) be a N x N matrix-valued function which is C' and non-
singular for z € . Define V(z,y) = |A(z)y|. Then V satisfies (2.16) if the

following general Dulac condition

o o8
n(Ap A +A-6-; A™Y < —rv (2.17)

holdson T.
Suppose Dy C Dy C T is a bounded absorbing sct in . Then no simple
closed rectifiable curve in T' can be invariant with respect to (2.1) if Gr42(Dg) <

—rv , where §Gr4+2(Dp) is defined as

Gr42(Do) = liinsup gr+2(t, Do) (2.18)
~+00
and
1 t
gr+2(t, Do) = sup -/ p( B(z(s,z0)) ) ds (2.19)
2€Dg t 0
with
[r+2]
B=A;A7" + A%wji AL (2.20)

(iii) Once again, these conditions are directly related to r = rankB. In particu-
lar, when v = 0, they are determined by the number of independent linear first

integrals.
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(iv) When the Lozinskii measure p is calculated corresponding to the Iy, loo, I
normson RV, N = (,~ +2) (2.15) gives rise to following concrete conditions each

is Bendixson’s criterion when n =2 and r = 0.

fn afir+z afn aftr-n _
sup(,){ o+ ——6-'51',4.2 + ,#,-IZ,- . | | +o =) }< —rv
t| a l',- 2 a a
L O o D I ([ RSPt PR

ALY =7 SRR A
Mt Arpr < =1y

respectively.

(v)y When r=n—~2,r+2=n, and N = (r-?—Z) = 1. Therefore A(z) in (2.17)is

a real-valued function a(z), and (2.17) becomes
diviaf) < —(n-2)wv.

For example, when n =3, and v =0. (H;) and (H;) imply that (2.1) has a
linear first integral. Our results here say (2.1) has no periodic orbits if the Dulac
condition div(af) < 0 is satisfied on I'. This is also in accordance with the fact

that the flow of (2.1) on I' is 2-dimensional.

(vi) As we have demonstrated in Chapters IV and V, our Bendixson criterion and
Dulac criteria preclude the existence in I' of orbits of the following types:

(1) periodic orbits;

(2) homoclinic orbits;

(3) a pair of heteroclinic orbits of the same equilibria;

(4) heteroclinic cycles.

Our next result concerns the orbital stability of periodic orbits to (2.1) satis-

fying (Hl) and (Hz)

Let = = p(t) be a periodic solution to (2.1) of least period w. Assume that
its orbit v = {p(t) : 0 <t <w} is contained in the invariant manifold T.
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Theorem 6.2.6. Assume that (2.1) satisfies (H;) and (H;). Then a sufficient
condition for a periodic orbit v = {p(t) : 0 <t <w} C T to be asymptotically

orbitally stable with asymptotic phase is that the linear system

[r+2]
() = (%ﬁ (p(?)) + ruI) 2(t) (2.21)

is asymptotically stable.

Using the relation of Lozinskii measure with the stability of lincar systems

given in Theorem 4.2 of Appendix A, we have the following corollary.

Corollary 6.2.7. Under the assumptions of Theorem 6.2.6 , v is asymptotically

orbitally stable with asymptotic phase if

w [r42]
/(; w (% (p(t))) dt < —rv (2.22)

where p is the Lozinskif measure corresponding to a vector norm in RN, N =
n
(r+2)'

Proof of Theorem 6.2.6. It suffices to prove the theorem assuming v = 0. The
general case can be proved in the same way after a change of variables in the lincar
variational equation of (2.1). From (H;), the lincar variational equation (2.4) with

respect to p(t) can be written as
y'(t) = A(p(t)) y(2). (2.23)

satisfying BA(p(t)) = 0 for all ¢ > 0. From the Floquct theory (see [5]), a

fundamental matrix Y'(¢) of (2.23) can be written in the form
Y(t) = P(t) exp(Lt).

From Theorem 6.1.1 in §6.1, we know BY(t) = B for all t. In particular,

Bexp(Lw) = B, which implies

exp(L*w)B* = B*.
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Since rank 2 = r, the matrix L*, hence L, has at ieast r+ 1 eigenvalues equal
to 0, counting the one correspond to the nonconstant periodic solution z = p(t).
Now the real parts of the characteristic exponents of the system (2.21) are all
negative if (2.21) is asymptotically stable. Using the same argument as in the proof
of Theorem 4.4.2 in Chapter IV, we know that these characteristic exponents are

the eigenvalues of L™t which are of the form
’\i1+"'+/\ir+za lsil<"'<ik.§n,

where Aj,..., A, are the cigenvalues »f L. Since L has at least (r + 1) eigen-
values zero, it follows that the remaining (n — r — 1) eigenvalues of L are also
characteristic exponents of (2.21), thus have negative real parts. Hence, v is

asymptotically orbitally stable with asymptotic phase. O

We have seen in Chapter V that, for a general autonomous system, a Bendixson
Criterion which is robust under C! local perturbations of the 1.ctor field at all
nonequilibrium nonwandering points will imply that every nonwandering point is
an equilibrium. The proof relies on Pugh’s C! Closing Lemma for vector fields. To
develop similar results for autonomous systems having an invariant linear subspace,
it is cssential to establish a C! Closing Lemma. for such systems. More precisely,
let f€ CY(D — R") be a vector field satisfying (H;) and (H;) with a constant
matrix B, and an invariant manifold I' determined by B. Suppose that zo € '
is a nonwandering point for (2.1) and that f(zo) # 0. We want to investigate
the possibility of closing up the nonwandering orbit at o by smoothly perturbiug
f locaily near zo so that the resulting vector field ¢ also satisfies (H;) and
(H:). Morcover, the same affine manifold I' is also invariant with respect to the

corresponding differential equation
' = g(z) (2.24)

This is cquivalent to requiring that the perturbation g satisfy (H;) and (H:)

and share the same constant matrix B with f. Considering the remark (i) follow-
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ing the proof of Theorem 6.2.5, we need only requirc that g satisfies the weaker
assumptions ( H'l) and (H;) The following result is an adapcation of Pugh’s Clos-
ing Lemma to systems satisfying (H;) and (H3), a proof of which is provided in

the Appendix D.

Lemma 6.2.8. Let f € C!'(D — R") be a vector feld satisfving (Hy) and (H»).
Suppuse that x¢ € I' is a nonwandering point for (2.1) and that f(x¢) 3£ 0. Then
ifor cach neighbourhood U of zo and ¢ > 0, there exists a ' e-perturbation
of f, g€ CY(D — R"), such thai

(1) supp(f--g) C ¥,

(2) g satisfies (1¥,; and (H,) with the same matrix B,

(3) the svstemn (2.20) has a nonconstant periodic solution whose trajectory inter-

sects U.

Remark. We want to emphasize again that g is only required to satisfy the

weaker assumptions (H;) and (Hj).

Once this is established, we can derive autonomous convergence theorems for
systems (2.1) satisfying (H;) and (H;), based on the Bendixson Criterion (2.14)

obtained in Theorem 6.2.5 earlice in this section.

Theorem 6.2.9. Assume that T' is simply connected. Suppose
(a) T is either bounded or contains a bounded absorbing set,

(b) (2.14) is satisfied on T.

Then:

(¢) Every nonwandering point of [ is an equilibrium.

(d) Every nonempty alpha or omega limit set in D is a single equilibrium.

(e) Any equilibrium in D is the alpha limit set of at most two distinct nonequi-

librium trajectories.

Now suppose Z is the ouly enuilibrium in I'. Then Theorem 6.2.9 gives the
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following result on the global stability of . The proof is parallel to that of Theo-
rem 5.3.6 in Chapter V.

Theorem 6.2.10. Suppose that

(a) (2.1) - tisfies (H,) and (H3),

(b) T is cither bounded or contains a bounucu absorbing set,
(¢) (2.14) is satisfiedon T.

(d) & is the only equilibrium in T.

Then Z is globally asymptotically stable in T.

Remarks.

(1) When v # 0, T is globally attracting. Therefore, in Theorems 6.2.9, 6.2.10,
I' can be replaced by D

(i1) Obviously, condition (2.14) cau be replace by more general Dulac type conditions

discussed in the remark (ii) following the proof of Theorem 6.2.5.

$6.3. Autonomous Systems with an Invariant Affine Manrifold

The method developed in §6.2 can be used to derive similar results for a more general
class of autonomous systems. In this section, we discuss the class of autonomous
systems of differential equations possessing many invariant adine manifolds. Before
we give the formal definition, we would like to present an example which riotivates
our consideration.

The following system of equations are proposed by M. Eigen and P. Schuster
[4] (sce also [6]) as a model for the self-organizing and self-regulating phenomena

observed in prebiotic evolutions and in animal behaviour,
$:'=mi[Gi($1,”"wn)—¢] t=1,---,n, (3.1)

where ¢ = Z?_ﬂ r;G;, and all the variables z; are assumed to be nonnegative.
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Eigen and Schuster call such a system a dynamical system under constant or-
ganization. In the special case when each G is linear, it is called hypercycle. One
prominent feature of such a system is that it leaves the boundary and all faces of

the following region

n

D= {zeR] : Zm;Sl}

=1

invariant.

Observe that adding all the equatious in (3.1) leads to th following

n n

Qo) =o(1 = ) ). (3.2)

i=1 =1
This implies the (n — 1)-dimensional simplex

n

I'={zeR} : Y = =1} (3.3)

i=1
is invariant with respect to (3.1).
However, identity (3.2) is different from the corresponding identity (2.6) for
systems satisfying (H;) and (H:) in that ¢ is a nonconstant function.
If we look at the Jacobian matrix of (3.1), we will see further differcuces be-
tween (3.1) and systems satisfying (H;) and (Hz). Let f(z) = (fi(x), -+, n\))
denote the vector field of (3.1). Then fi(z) = zi(Gi — ¢), for cach . Summing

up elements in each column of the Jacobian matrix g—f, we have

SO _ L 00 ) e
7z, = —¢ + Ery (1 - zm,>, for cach 7.

i=1 1=}
This time, the sum is the same ( —¢ ) for each column only on the invarviant manifold

I.

This example motivates the following hypothesis for this class of systems.

(L3) Thereis a constant matrix B such that rankB = r and the (n—r)-dimensional

affine manifold

I'={ze€eD : B(r-z)=0} for some T € D (3.4)
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1s invariant with respect to (2.1);

(H4) The Jacobian matrix -g—f can pe written as
af
—a;(m) = —v(z) Inxn + A(z) on T, (3.5)

and
BA(z) =0 on T, (3.6)

where z + v(z) is a real-valued function.

The autonomous system (2.1) satisfying (H3) and (Hg) will be called an
autonomous system with an invariant effine manifold. Note that we do not require
v(z) to be of one sign in D. We write —v(z) in (3.5) for easy comparison with
the corresponding condition in (H;).

For the model (3.1), the affine manifold is the simplex in (3.3), B isthe 1xn
matrix (1,---,1), r=1, and v(z) = ¢(=z).

We shall see in the following that, for such a system, the subspace kerB of
R" is only invariant under the linear variational equations (2.4) for those solutions
staying in the invariant manifold I'. Let z¢ € I'; then the solution z(t,zg) to
(2.1) satisfies z(t,z9) € ' for each ¢ at which it exists. Therefore, from (3.5), the

linear variational equation (2.4) for z(¢,z9) can be written as
y'(t) = —v(z(t,z0)) y(t) + A(z(t, z0)) y(2). (3.7)
The change of variables u(t) = y(t)exp jg v(z(s,z9))ds leads to
u'(t) = ?A(x(t,a:o))u(t) (3.8)

satisfying BA(x(t,rn)) = 0 for ail t. Therefore (3.8) is a linear system having
an invariant subspace kerB discussed in §6.1. As a consequence, kerB is also
invariant with respect tc (3.7).

Now it is not hard to see that, once we restrict our attention to the invariant
affine manifold T', results obtained for autoromous systems (2.1) satisfying (H;)

and (Hz} can be proved in exactly the same way for (2.1) which satisfies (H3)
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and (Hj), only replacing the constant v by the function »(x). We will simply

state the corresponding results without giving detailed proof.

Theorem 6.3.1. Assume that (2.1) satisfies (H;) and (H,), and that the
compact set K CI' is invariant with respect to (2.1) . Suppose, for some integer

k>0 and 0<s <1,

[k+7) [k+r+1]
(1—-s)p (Z—i (w)) + spu <g—£ (L)) < —rv(x) (3.9

on K. Then dimyK < k + s.

Theorem 6.3.2. Assume that (2.1) satisfies (H3) and (Hs) and
(a) T is simply connected,

(b) either T' is bounded or T' contains a bounded absorbing set,
(¢) u(%z[[r-*.z](m)) < —rv(z) on TI.

Then no simple closed rectifiable curve in I' can be invariant with respect to (2.1).

Let = = p(t) be a periodic solutiun to (2.1) of least 1.o.10d w. Assume that
its orbit ¥ = {p(t) : 0 <t < w} is contained in the invariant manifold T.
Mcdifying Theorem 6.2.6 and Corollary 6.2.7, we have the following results on the

orbital stability of ¥ when (Hj) and (H,) are assumed.

Theorem 6.3.3. Assume that (2.1) satisfies (H3) and (Hy). Then a sufficient
condition for a periodic orbit v = {p(t) : 0 £t < w} C T be asymptotically
orbitally stable with asymptotic phase is that the lincar systcin

af[r+2]
Z'(t) = . (p(t)) + ru(p(t))I) z(t) (3.10)

is asymptotically stable.

Using the relation of Lozinskil measure with the stability of linear systems

given in Theorem 4.2 of Appendix A, we have the following corollary.
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Corollary 6.3.4. Under the assumptions of Theorem 6.3.3, v is asymptotically
orbitally stable with asymptotic phase if

w af[r+2]
/ u(-a-; (p(t))+ru(p(t>))dt<0 (3.11)

where u is the Lozinskii measure corresponding to a vector norm in RN, N =
n
(r+2)'

Remark. Theorems 6.3.2, 6.3.3 remain valid under more general Dulac type con-

ditions discussed in the remark (i) following Theorem 6.2.5 in §6.2.

Given in the following is another example of systems satisfying (H;) and
(Hy) but noi (H;) and (H,).
Example. A homogencous system of degree 1. Consider a autonomous system of

the form
= Az + f(z) z € RT, (3.12)

where A = (aij)nxn is @ n X n constant matrix, and = — f(z) is a continuous
function and is homogeneous of degree 1, namely f(Az) = Af(z) forall A >0
and z € R". The components z; of z are restricted to be nonnegative, and we
assume the components f; of f satisfy fil,._o > 0. Hence the positive cone R}
of R™ is invariant with respect to (3.12).

The system (3.12) can be transformed into a system satisfying (Hj3) and (Hy).

Introducing the variable

B z
y E?:l Ti ’
we note that Y y; =1, and y satisfies

y' = Ay - < > aijj) y — (Z fi(y)> y + f(y) (3.13)

1,7=1 i=1

Adding all the cquations in (3.13) we have

(i ys)' = (Xn: aijy; + gfs(y)> (1 - gyi) :

i=1 i,j=1
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Therefore the (n — 1) simplex

r={yeRz:}:y.-=1} (3.14)
i=1

is invariant with respect to (3.12).

Calculating the Jacobian matrix J of the vector field of (3.12), we have

J=A—(Zauy;+bl(y))l+a—f

1,j=1

n n 3,
—y(;a’in"'again E_f Zlb—f_

Adding the elements in each column of J, we have, for the j-th one,

(o) () (E58)

vJ_ i=1

Therefore, on T', the sum is the same for each column and is equal to

- (Z aijy; + Zfi(y)) : (3.15)

i,j=1
This shows that (3.12) satisfies (H3) and (H,) with D=R}, B =(1,---,1),
r=1, T givenin (3.14) and —y(z) given in (3.15).

§6.4. Autonomous Systems with First Integrals

In this section, we will develop similar results obtained in sections §6.2, §6.3, partic-
ularly the Bendixson and Dulac criteria, for autonomous systems having nonlincar
first integrals. In systems which model physical phenomena, existence of first inte-
grals corresponds to the presence of certain conservation laws, such as conservation
of mass, energy, momentum, etc. Efforts will be made to demonstrate the similari-
ties between this nonlinear theory and the linear one in previous sections. We will
explore the restriction of the existing conservation laws on the lincar variational
equations, and the implications of this to the geometry of the flow. The exterior

p-oduct technique presented in section §6.1 again plays an important role.
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Let D C R" be an open subset, and z — f(z) € R"® be a function which is

C! for r € D. We consider the autonomous system in R"
' = f(=z). (4.1)

A real-valued function z — H(z) defined for z € D and not identically
constant in D is said to be a first integral for (4.1) if H(z(t,z¢)) remains con-
stant along each solution z(t,zo) of (4.1). If H is C?, this is equivalent to H
satisfying the following condition

%vli f(z) =0 forall z e D. (4.2)

Throughout this section, we will only deal with first integrals which are C!. Sup-
pose H(z) is a first integral for (4.1). Then, for each ¢ > 0, the surface H(z)=-¢
in R™ will be called a level surface determined by H. It follows from (4.2) that
cach trajectory necessarily stays on one of the level surfaces. In particular, each
periodic trajectory stays on a level surface. We denote by VH(z) the gradient
vector of H. All vectorsin R™ will be assumed as column vectors. We also use
(,) and '-|| to denote the euclidean inner product and norm in R™, respectively.

Since H(z(t,z9)) = H(zo) for all ¢t and zo € D, we have, by differentiating

with respect to =z,
. Oz *
VH(a,u} = % (t, 270) VH($(t, :L‘o ))

where the asterisk denotes the transposition of matrices. Therefore for each u € R"®,

we have

(VH(:II()), u) = (%*(t,mo)VH(m(t,wo)), u)

= (VH(altm0)), (i 0)u)

for all ¢t and all x9 € D. Note that y(t) = %(t, Zo)u is a solution to the linear

variational equation

V(0 = X (alt,20)) y(0). (43)
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We arrive at the following result.

Proposition 6.4.1. Let H be a first integral for (4.1), and y = y(t) be a

solution to the variational equation (4.3). Then
(VH (a(t,0)), y(t)) = (VH(zo), y(0)) (4.4)

for all z9 € D, and t € R".

Remarks.

(i) This result is in the same spirit as Proposition 6.1.3 for the affine case.

(ii) Since (VH (z(t,z0)),y(t)) represents the length of the projection of y(t) onto
the vector VH(z(t,z0)), (4.4) may be interpreted geometrically as that the lin-
earization of the flow for (4.1) preserves the infinitesimal length in the normal

direction of each level surface.

(iii) We will demonstrate in the following that the geometrical observation given
in Proposition 6.4.1 is the foundation for all development in this section, just as

Proposition 6.1.3 is for the affine case.

(iv) As a special case of (4.4), letting y(t) = ;’Tﬁ)(t,xo )VH(zo), we have
a *
( —a:tio (t, (L‘O)VH(J'o), VH(.’I:(t,xo)) ) — ||VH(:I:0)||2 (4.5)

Two first integrals H;, H; for (4.1) are said to be independent if VH,(x)
and VHy(z) are linearly independent vectors in R" for all ¢ € D. Suppose
that (4.1) has r independent first integrals H;,---,H,. A level surface will then
be determined by r equations Hi(z) = ¢i, ¢ = 1,---,7. We will denote it by
I(¢1, -+ ,¢r) or T when ¢,---,¢r are not essential. Since VH;(z) # 0 for cach
¢ is implied, we know that the level surface in this case is a (n — r)-dimensional
smooth surface. In section §2. “'.e first integrals are given by Bz, T' is an affine

surface, its normal vectors ace the transpose of row vectors of the 1i-atrix B.
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Let Y(t) be the fundamental matrix of (4.3) such that Y (0) = I. For &k

clements u;,---,u; in R", set
Q) = Y(t)uy A+ A Y()u.

Using Proposition 6.4.1 above and Lemma 6.1.2 in §6.1, we can prove the following
result. The proof is parallel to that of Proposition 6.1.5, the corresponding result in

the affine case; it is sufficient only to replace w; by VH;(zg) forcach 1 <i<r.

Proposition 6.4.2. For any k elements uy,--- ,ur in R", the corresponding

function Q0 satisfies
NI < 1Y () VHi(zo) A--- A Y(t) VH (z0) A Q1) (4.6)
for all t € R.
We would like to note that z(t) = Q(t) and
w(t) = Y($)VH (zo)A--- AY(#)VH(20) A Q1)

are solutions to the k-th and (k + r)-th compound equations of (4.1)

Z'(t) = ﬂ[kl(m(t zo)) z(t) (4.7)
Oz ’
w'(t) = %[Hr}(z‘(t,xo))w(t), (4.8)
respectively.
Suppose Hy,---,H, are independent. Let I" be a level surface. For each

x9 € I', we denote by T,,I' the tangent space of I’ at z3. Then T, is a
r-dimensional subspace of R", which is perpendicular to the subspace spanned
by {VH(zo), -+ ,VH(zy)}, for each zo € . Note in the affine case, ' is an
affine surface, thus its tangent space is ident‘cal at every point and is given by
Vo = kerB.

The following result follows from Proposition 6.4.2 and the definition of asymp-

totic stability.



166 VI. AUTONOMOUS SYSTEMS WITH FIRST INTEGRALS

Theorem 6.4.3. Assume that (4.1) has r independent first intcgrals Hy,--- , H,

and T is a level surface. For each x¢o € T', and any w,--- ,ux € T,,T,
tll’rgo} (they A AY@)up =0
if ilic linear system (4.8) is asymptotically stable.

Using Lozinskii measure, we obtain the following concrete conditions from The-

orem 6.4.3.

Corollary 6.4.4. Under the assumptions of Theorem 6.4.3, Y (t)uy A---A Y (t)uy

—0 as t — oo, if

) t af[k+r]
tgngo 5 W (z(s,z0)) | ds = —oo0. (4.9)
af lk+r]

Moreover, if p ( (z(t,z o))) < =6 <0, then the convergence is exponential

with an exponential rate 6.

Our main object in this section is to derive conditions which preclude peri-
odic solutions to an autonomous system (4.1) having independent first integrals

Hy,.-- ,H,. To this end, we have the following result.

Theorem 6.4.5. Assume that T' is a level surface determined by r independent
first integrals for (4.1). Suppose

(a) T issimply connected,

(b) T 1is either bounded or contains a bounded absorbing sct,

(© (&) <0 forall zeT.

Then no simple closed rectifiable curve in T' can be invariant with respect to (4.1).

The theorem can be proved exactly the same as Theorem 6.3.5 is proved in the

affine case. Suppose ¥ is a simple closed rectifiable curve in . Then for each
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v € (p,T), @e=2z(t,p) € Z(¢,T') forall t e R. Now (a) (b) imply that

%A—aﬁ—*o, as t— o0

Opr  9p2
uniformly for p = (p1,p2) € B, the unit ballin R2?, by Corollary 6.4.4. Therefore
Ap, — 0 as t — oo. Again this is impossible by Proposition 6.2.4.

Remarks.

(1) Generalizations of Theorem 6.4.5 in terms of Dulac-type conditions can be formed

as discussed in the remark followiug Theorem 6.2.5 in §6.2.

(ii) When r =n—2, r +2=n and condition (b) becomes

divf < 0. (4.10)

Sup; : now r =n—2, then n —r = 2. Therefore a level surface T is a
2-dimensional smooth surfacein R"®. The portion S of I' enclosed by the simple
closed invariant curve % is bounded and invariunt. Moreover, a 2-surface ¢ €
(4,I') can be chosen so that its trace ¢(B) is S, and Ay, is the 2-dimensional
surface area of S. Thus Ap, = constant > 0. Now the condition (4.10) holding
almost everywhere on I' will, then, imply Ap; — 0 as t — oco. Thus the theorem
can be proved under a weaker condition and without the assuming I' is bounded.

This discussion gives rise to the following corollary.

Corollary 6.4.6. Assume that (4.1) has n —2 independent first integrals, and
that a level surface T' is simply connected. Suppose (4.10) holds almost every-
where on T'. Then no simple closed rectifiable curve in T' can be invariant with

respect to (4.1).

Remark. Demidovich [3] proved a similar result assuming n = 3, r = 1. Using
a different analysis involving the cross product in R3, he shows that no periodic
solutions can exist on I' if (4.11) holds almost everywhere on I'. He also assume

C? smoothness on the level surface.
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Results concerning other nonlinear problems such as orbital stability for peri-

cdic orbi's and stability at large for equilibria on level surfaces can also be formu-

lated and proved similarly as in the previous sections. We will not discuss them

here.
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CHAPTER VII

APPLICATIONS IN MATHEMATICAL BIOLOGY

I this chapter, the general theory developed in previous chapters will be ap-
plied to resolve the question of global stability for some epidemiological r>dels,
w!'ich has been a long-standing open problem in Mathematical Biology. Ot .nary
differential equations have long been used to model the epidemics of infectious
diseascs in certain populations (of humans, flocks, bacteria, etc.). The epidemiolog-
ical models have evolved irom the earlier SIR, SIRS to the later ones such as SEI
and SEIS. The latest SEIR and SEIRS models receive considerable attention. The
SEIRS model is described by the following system of equations

S'=-AI?PS" +v -vS + 6R
E'=AI"S? — (e + v)E
I'=e¢E - (y+v)]

R =~I—(v+®R

where p,q,7,7,A,6, and e are nonnecgative parameters and S,E,I, and R de-
note the fractions of the population that are susceptible, exposed, infectious, and
recovered, respectively. Some notable features of the model: the birth rate and the
decath rate are assumed to be equal (denoted by v ) and in consequence the total
population is at an equilibrium; the incidence rate (the rate of new infections) is
described by the nonlinear term AIPS? which includes the traditional bilinear case
(p = ¢ =1); alatent period is introduced on the basis of the SIS and SIR models.
Individuals are susceptible, then exposed (in the latent period), theun infectious,
then recovered with the possibility of becoming susceptible again. If the immunity
is assumed to be permanent, which ameunts to assuming 6 = 0 in the equations,

the SEIRS becomes the SEIR model. In this case, individuals, once infected and
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recovered, will not become susceptible again. This is quite typical for some discases
such as measles and varicella.

Good surveys on the development of epidemiological models can be found in
a recent book by J. D. Murray [11] and @ survey paper by H. W, Hethcote, H.
W. Stech, and P. van dean T'.~ -~ “e 4], A detailed analysis on the SEIRS models
was given in 1986 by W.-L.. i H. W, ﬂethcote, and S. A. Levin [9], where local
stability of equilibria and possible Hopf bifurcations are carcfully investigated for
a wide range of prar .’ ers. We will oytliRe some of their resnlts in the following,
The proofs and more detciled study can be found in [9].

T e variables S,E,I,R are assum€d to L. nonnegative, which means the
feasible region for the SEIRS is the positive cone R4 of R'. Adding all the

equations, we have
(S+E+I+R) =-v(S+E+I*R-1),
which has the following implications: the S-dimepsional simplex
I'={(S,E,I,LR)eR], : S+E+I+R=1}

is positively invariant; the system is dissipative and the givhal attractor is contained
in T. Moreover, it suffices to study the d¥hamics cn tii «;mplex T.
When 0 < p <1, there are two possible equiljbria: the discase-free equilibrium
Py = (1,1,0,0) and the endemic equilibTium pP*. When 0 < p < 1, % is
unstable and all solutions starting near Py except those from the face of T" on
the coordinate plane E = I = 0 move away from Fo; P* is in the interior
of T' and is locally asymptotically stable. When p = 1, the contac. r.amber
o = Xe/(e + v)(y + v) satisfies a threshold condjtion: if ¢ <1, P is the only
equilibrium in T and is globally asymptotically stable; if ¢ > 1, P, becomes an
' unstable saddle with one of the two unstable eigepvectors pointing to the inside of
I' while P* emerges as a locally asymptOtically stable equilibrium in the interior

of T'. It was conjectured in [9] that P* s globally asymptotically stable wher ver

it belongs to the interior of I'; namely, when 0 < p<1, or p=1 and o > 1.
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This conjecture on the globai stability has caught the attention of many mathe-
matici2ns and mathematical biologists. However, it remained an open problem over
the years. A claim by Rinaldi [12] to have resolved the problem when p = ¢ =1
proved to be erroneous. In this ch-pter, usiug our new geomet.ic approach devel-
oped in Chapter V and our method of dealing with systems having an invariant

lincar subspace discussed in Chapter VI, we will give this conjecture an affirmative

ANsSwCer.

The strategies we use to deai with the SEIR and the SEIRS are quite different.
Both of them are new for this tvpe of problemn and both have the potential to

become useful general approaches to the problem o ¢ i ¥ s .ahility.

The SEIR model, the simpler of the two, i+ analyzed in the section §7.1. It
has been obscrved by H. L. Smith, P. Waltman an- others that the SEIR can
be reduced to & J-dimensional order-preserving system, and thus j.ossesses the
Poincaré-Bendixson property (see [5] or [13]). The key to proving the global stability
is then to rule out periodic orbits. This is done here by showing that any periodic
orbit of the SEIR, if there is one, is locally attracting. A simple application of
the Poincaré-Bendixson property can show that, if any perindic orbits exist, this
will lead to a contradiction, because of the local att., " ity of P*. This is an
unusual tactic. It is int~ Jduced in the work of G. J. Builer, S. B. Hsu and P.
Waltman [2] on a two diucusional autonoinous system reduced from a chemostat
modecl. Their way to show the local attractivity for periodic orbits is to apply the
orbital stability criterion of Poincaré for planar systems (see Chapter IV). It did not
reccive much attention after the work of Butler, Hsu and Waltman partly because
of the lack of higher dimensional generalizations of Poincaré’s criterion at the time.
As is mentioned in Chapter IV, this higher dimensional generalization has been
des sloped by J. S. Muldowney [10]. We believe that, with these orbital stability
criteria gradually becoming well known, this tactic will prove to be a very useful tool
in the analysis of stability problems for systems possessing the Poincaré-Bendixson

property.
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It is not obvious that the SEIRS mode! can be reduced to a system having
the Poincaré-Bendixson preperty. Our strategy for the SEIRS then is to use our
new geometric approach based on our autonomous converveiice throrems developed
in Chapter V. The th: -+ on the autonomous systems i iag an invariant linear
subspace established i:1 Chapter VI also plays an essential role in the analysis. These
will be discussed in the section §7.2.

Incidence rate—the rate of infection—-plays a very important role in these epi-
demiological models. We would like to remark that our method can deal with SEIR
and SEIRS models with very general forms of incidence rate without additional
difficulty. This suggests that they have advantazes over the usual approach of con-
structing Lyapunov functions, in which one Lyapunov function usually only works

for a specific type of nonlinearity.

77.1. Global Stability of the SEIR Models in Epidemiology

“'he 3EIR model in Epidemiology for the spread of un infectious disease is described

by the following system of differential equations:
S = -AI"S" +v —vS (1.1)
E' = )\I"S? — (e+v)E
I'=¢E — (y+v)I
R =4I -vR

Throughout this section, we shall assume that 0 < p < 1.
We have seen in the preliminary analysis given carlier that the 3-limensional

simplex in R}
= {(S,E,LR)eR} : S+ E+I+R =1}

is positively invariant with respect to (1.1), and it suffices to study the dynamics of
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(1.1) on the simplex T.
On T,

R(t) =1 - S(t) — E(t) — I(t).
Thus (1.1) reduces to the following 3-dimensional system:
S'=-AI"S"+v—-vS
E' =)I?"S? — (e+V)E
I'=€¢E - (v+v)I (1.2)

The dynamical behaviour of (1.1) on I' is equivalent to that of (1.2). Therefore in

the rest of the section we will study the system (1.2) in the region
I'={S,E,]) : 0<S,E,I<1, S+ E+ 1<}, (1.3)
and formulat« our results accordingly.

The main aim of the section is to prove the following result:

Theorem 7.1.1. If 0<p <1 or p=1 and o > 1, the endemic equilibrium

P* is globally asymptotically stable in the interior of T.

Remark. Once Theorem 7.1.1 is proved, the global dynamical behaviour of (1.1)

is completely determined when 0 < p < 1.

The proof of Theorem 7.1.1 will be given at the end of the section. At first, we

prove some basic properties of the system (1.2) that will be used later.

Proposition 7.1.2. The disease-free equilibrium Py is the only omega limit point

of (1.2} on the boundary of T.

Proof. It is easy to see that the vector field of (1.2) is transversal to the boundary
of T on all its faces except the S-axis which is invariant with respect to (1.2). On

the S-axis, the cquation S satisfiesis §' = v—vS, which implies that S(¢) — 1,
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as t — o0o. Therefore Pp is the only omega limit point on the boundary of T.

O

Proposition 7.1.3. Suppose 0 <p<1 or p=1 and o > 1. Then Py can not

be the omega limit point of any orbit starting in the interior of T.

Proof. Consider the function

e+uI

p .

L=F+

Its derivative along the solutions of (1.2) is

L' = AI"(S? - %I"‘”).

Suppose now p <1 or p=1 and ¢ > 1. In the feasible region close enough
to Py. we nlways have L' > 0 as long »« I > 0. Therefore Py can only be the

omega limit point of orbits on the invariu:.' S-axis. Thus the lemma is proved. O

Remark. From Proposition 7.1.2 and Proposition 7.1.3 we know that, when 0 <
p<1l or p=1 and o > 1, the system (1.2) is persistent in the sense described

in [1].

Our next result establishes the local attractivity for periodic orbits of (1.2),
when they exist. The proof uses the orbital stability criteria of J. S. Muldowney for

periodic orbits presented in “hapter IV.

Theorem 7.1.4. The trajectory of any nonconstant periodic solution to (1.2), if

it exists, is asymptotically orbitally stable with asymptotic phase.

Proof. The Jacchian matrix J(S,E,I) of (1.2) is given by
r—AgIPS11 —y 0 —ApIP-1 S
J(S,E,I) = AqIP S9! —e—v ApIP=159 |, (1.4)

0 € -y — v
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The second compound equation of (1.4) is given by the following 3 x 3 system:

X' = —(AgIPST 4 e+ 20) X + ApIPISUY + Z)
Y =eX - (AgIPS" ! 4+ v 4+ 20)2
2 = XqI"ST'Y —(e+ v+ 202 (1.5)

To show the asywiptotic stability of the system (1.5) we choose the following func-

tion:
whe x P =diag(1,E/I,S/qI), (X,Y,Z)* is the transpose of the row
vee <, and |-| is the norm in R*® -lefined by

(X, Y, Z)| = max{|X], Y], |Z]}. (1.7)

Suppose that the solution (S(t), E(t),I(t)) of (1.2) is periodic of least period w >
0. Then from Proposition 7.1.2, its orbit 4 remaius at a positive distance from the
boundary of 7. The matrix P and its inverse are thus well defined and smooth

along <. There is a constant ¢ > (0 such that
V(X,Y,2;8,B,I) > c(X,Y, Z)| (1.8)

for all (X,Y,Z) € R® and (S,E,I) €. Let (X(t),Y(t),Z(t)) be a solution of
(1.5) and

V(t) = V(X(@®),Y (1), Z(t); S(t), E(t), I(t)).

The right-hand derivative of V(t) exists and its calculation is described in the

Appendix A. Now we have by differentiation

D}V(t) < sup{gi,g2,93} V(2), (1.9)
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where

AIPS9

g1 = —AgI’PSTT —e+p

+ ApgIr 5!

d E E
g2 = 3 (log7) — AgIPST™! — v + = -,

d S AIPSY

= e =) — € — _— — 2
g3 dt(logI) € — 7+ P V.

I

- 2v

)

In fact sup{g1,92,93} is the Lozinskii measurc with respect to the vector norm ||

in R® (see Appendix A).

From the second and last equations in (1.2) we have the following:

ArrsT  E
= E ety
eE I'
_I g _;- i Y + V.

From (1.10) we find

w w d S
J{ gs dt=‘/0 {'d—E(IOgT)—’)’—V—E-

=—(vy+viw+ {log;;: — ]ogE}

=—(y+vw < ~vw,

(1.11) implies

EI

} dit

“ Y(d E
- P gi—1
/0 g2 dt = ,[ { t(log I) IS v+

JO

w

< —ww+ {log—E—-{-logI}
I 0

and (1.10) leads to

/.‘h dt=/ {(p-—l)r\ql”Sq“+(p—-1)e+(p~2)l/+1“
0 0

<{(p-1)e+(p-2}w+plogE|, <—-vw.

S —vw,

I }(lt

E

(1.10)

(1.11)
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Therefore

[P
/ sup{n,g2,93} dt < —vw < 0.
0

Since cach g¢; is w-periodic in ¢, this and the inequality (1.9) imply that V() —
0 as t — oo. Thus (X(t),Y(¢),Z(t)) = 0 as t — wo from (1.8). As a result,
the linear system (1.5) is asymptotically stable and the orbit v of the periodic
solution (S(t), E(t),I(t)) is asymptotically orbitally stable with asymptotic phase
by Theorem 4.4.2 of Chapter IV. a

Before presenting the proof of Theorem 7.1.1, we will study further dynamical
behaviour of the SEIR model (1.2).

A7 autonomous system z' = f(z) in R" is said to be monotone if, for
some diagonal matrix H = diag(e,--- ,€,) where each ¢; is either 1 or -1,
HOf/AzH has nonnegative off diagonal elements. It is proved in [13] that the flow

of such a system preserves the partial order in R" defined by the orthant
K={(z1,,zn) €R" : 2;>0,i=1,---,n}.

It is easy to check by considering the Jacobian matrix of the system (1.2) that

this system is monotone in R*® and the corresponding orthant is
{(S,E,])eR® : §<0, E>0, i <0}.
It is known that ~uch systems have the Poincaré-Bendixson property [5] [13].

Theorem 7.1.5. For an irreducible monotone system in R®, any compact omega

limit set containing no equilibria is a closed orbit (see [13], Theorem 2.4 ).

Using Theorem 7.1.5 we can show that the system (1.2) possesses the following

strong Poincaré-Bendixson property.

Theorem 7.1.6. Any compact omega limit set of (1.2) in the interior of T is

cither a closed orbit or the endemic equilibrium P*.
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Proof. “rpvesc that Q is an omega limit set of (1.2) in the *. " vior of T. If Q
does not cuutain P*, then it contains ne equilibria since P* is the only interior
equilibrium. Theorem 7.1.5 will then imply that  is a closed orbit. Suppose
contains F~. Since P* is asymptotically stable whenever it exists in the interior
of T, any orbit that gets arbitrarily close to P* must converge to P*. Thus
= {P*}. O

Now we are ready to present the proof for Theorem 7.1.1.

Proof of Theorem 7.1.1. The basin of attraction U of tlie endemic equilibrium
P* is arelatively open subset of T since P* islocally asymptotically stable. If U
is not all of T, then its boundary OU has nonempty intersection with the interior
of T, we denote this intersection by £. Now I is obviously invariant and thus X
contains a nonempty compact omega limit set ~ which is in t! - interior of T by
Proposition 7.1.2 and Proposition 7.1.3. Moreov~r, ~ obvious: ' does not contain
P* and thus contains no equilibria. We can thi: ¢ aclude from Theoreny 7.1.6
and Theorem 7.1.4 that 4 is a nontrivial periodic orbit which is asymptotically
orbitally stable with asymptotic phase. But this contradicts the fact that %, hence
r

v, is contained in the alpha limit set of P*. The contradiction shows that & 1is

the interior of T' and thus P* is globally asymptotically stable. a

§7.2. Global Stability of the SEIRS Models

In this section, we consider the SEIRS models with 6 > 0. The equations are
S'= -AI"S?" + v —vS + bR (2.1)
E' = XI*"S% — (e + V)E
I'=e¢E —(y+v)I

R =~I - (vR + §R)
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Becnuse of the R term in the first equation, if we again try to eliminate R
using R =1—-5—FE -1, the resulting 3-dimensional system does not necessarily
preserve an order in R3. Therefore the Poincaré-Bendixson property, which is

crucial to the analysis of the SEIR in §7.1, will no long hold in this situation.

The idea then is to use the geometric approach based on the autonomous

convergence sheorems developed in the Chapter V, and the fact that the SEIRS has
an invariant 1-dimensional linear subspace.

The preliminary cnalysis of (2.1) has been given in the summary at the be-
ginning of the chapter. The dynamics of (2.1) will be analyzed in the following

invariant 3-dimensional simplex in R4
I ={(SE,I.LR)eR} : S+E+I+R=1}. (2.2)
The basic assumption on the parameters is
cither 0<p<l or p=1 and o>1,

where o = Ae/(e + v)(y + v) is the contact number when p =1.

The aim: of this section is to prove the following result.
Theorem 7.2.1. If 0 < p<1 or p=1 and o > 1, the endemic equilibrium

P* of (2.1) is globally asymptotically stable in the interior of T.

Remark. As in the case of tle SEIR, once Theorem 7.2.1 is proved, the global

dynamical behaviour of (2.1) is completely determined when 0 < p < 1.

The following lemma is important.

Lemma 7.2.2. Under the assumptions of Theorem 7.2.1, there is a positive con-

stant 0 < c <1, such that for any solution (S(t), E(t),I(t), R(t)) with (5(0), E(0),
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I(0), R(0)) in the interior of T,

liminf S(t), B(t), 1(t), R(t) > ¢ > 0,
liminf S(¢) + E(t) + I(¢) + () < 1=¢ > 0.

Remark. This lemma says that, under the assumptions of Theorem 7.2.1, (2.1}

is uniformly persistent in the sense of [1].

Corollary 7.2.3. Under the assumptions of Theorem 7.2.1, (2.1) has in the in-

terior of I' a compact absorbing set Dy.

Proof of Lemma 7.2.2. Using S+ EF+ I+ R =1, (2.1) can be reduced to the
following 3-dimensional system
E'=AI"1-E-I—-R)Y — (e + v)E
I'=€¢E ~ (y +v)I
R =~I - (WR + §R) (2.3)

with (E,I,R) in the feasible region
A={E,[LR)eR} : E+I+R<1]}.

Now (0,0,0) is the trivial equilibrium which is unstable with a 2-dimcusional
stable manifold. Moreover, ali trjectories startingin A necar (0,0,0) except those
starting on the R-axis leaves (0,0,0) (sce [9]). It is also casy to check from these
equations that the vector field points strictly inwards A at every point on the
boundary of A except on the R-axis. By a result of J. Hofbauer and J. W.-H. So
{(Theorem 4.1 [6]), we know that (2.2), hence (2.1), is uniformly persister:t. Thus

the lemma is proved.

Proof of Theorem 7.2.1. The Jacobian matrix J = J(S,E,I,R) of (2.1) is
given by
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[ —A\gIPS9~! 0 ~ApIP—159 6
AqIP S9! —€ ApIP~1519 0
J = —VI4x4 + (24)
0 € —y 0
5 0 0 v =

Let @ denote the second part of the decomposition in (2.3) and let B = (1,1,1,1).
Then B® =0 in Ri. Therefore (2.1) satisfies e assumptions (H;) and (Hz)
in §6.2, Chapter VI, with D = R}, B = (1,1,1,1}, r = 1, v = v, and the
invariant affine manifold T' as given in (2.2). Theorem 6.2.11 in §6.2, Chapter VI
suggests that we consider the third additive compcind matrix of J, which is given

by (see Appendix B)

JB = 3y Iixq + 0P

and
o3l = (2.5)
l’—/\qI”S"“l —€—7 0 0 6 |
| v —AqIPS? 1 —e—§ ApIP—159 ApIP~189
0 € ~AqIPS17 -y~ § 0
. 0 0 ‘ AgIPS9-1 —e—v—6|
Consider a 4 x 4 diagonal matrix
aR E S
A = diag(— -, = 6)
dla'g( I ? 17 I 9 qI) (2 6)
where a > 1 is chosen s that
(a~1)Ag < e+ 7. (2.7)

The matrix i is C! and is nonsingular in the interior of I'. We aiso want to set

1 -
B = max{2v, (1 — pe + (_Z +1)6, v+ 6 + v}.

(2.8)



182 VII. APPLICATIONS |N MATHEMATICA], BIOLOGY

Let f denote the vector field of (2,1)_ We want to compute the matrix

afla
B = A; 47! 4 A—aé A1 (2.9)

considered in (2.20) of the Remark (i1) following the proof of Theorem 6.2.5 in §6.2,

Chapter VI, for n =4, r =1, —§—£ = J. Note that, in this case, 1 +2=3, N =
4
(1) =() =4

Direct cal:ulation gives us

ARy {/ E S .
Af = dlag\-\ I..—-)f’ O, (I)f, (E—I—)f) (2.10)
(3]
A% 4 ~3ulixs + ABPIA!
Oz
and
ABCIAT = (2.11)
[ AgIPSI~1 — ¢ — 0 0 aqlt 7
%J}Tj ~AqIPSTTl e 6 py_;)_s_"_ pgAIr§a—!
0 A & —AgIPS1-t -y = § 0
AgI?rSs?
. 0 0 ‘Li;,-"‘ —€ — ‘)’ —_ 6‘

q
We choose the norm in R* 2 R(") as
(u,v,w, 2)| = max {lul, v, |w], |2]}. (2.12)

Then the corresponding Lozinskil measure #(B) can be calculated, according to

Proposition A.2.3 of Appendix A, as follows,

#(B) = max {g1, 92> 93, 91} (2.13)
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where g¢;,92,93, and g4 are given by

) 'R
g1 ==AIPS"  —e—v 4+ aq—R + (2—)] —3v
S I
rSe
g2 = —AIPST  —e— 6+ l‘% +p/\I S + pgAI*STY — 31
a

E E
g3 = —\gIP§! —‘7—5+'€T+(T)f——3l/

AgIPS9
E

S
g1=—-€e—y—6+ +(q—I")f—3l/.

Along each solution of (2.1), we have, from the cquations of (2.1),

R S v(1--5)
— = g \JPgeY AT
5 5 \IPS 5
AIPS?  E'
E _ETetY
eE I
TTTTYTY
I R

Now (2.15) implies

1 [t 1 [t E' d, S
o=t [{er B i)

E(t) , S() _ 5(0)}
E(0) * q¢I(t) qI(0)

= —y—-6-2v+ -}{ln

Now Lemma 7.2.2 implies that

1 E(ty S(t) S(0)
it {lnE(O) taw qI(O)}

t—oo t
Therefore, for all sufficiently large t > 0,

1

t
—/ g S—v7-6-2w < —v—p.
t 0
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(2.16)

(2.17)

(2.18)
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Similarly, using (2.16), we have

t t I
%/as=%/o{ —MIPSTI - -2+ T+ 5 ( )}
0 .

I(t) | EQ) E(O)}

+

1
< —6—2u++-t-{lnI(0) ) ~ T0)

< -v-p (2.19)

for all sufficiently large ¢ > 0. From (2.14) we arrive at

ot ¢ -
l/ ¢ = 1/ {((Y —1)AqI?5! _e__,y_ﬁq_"(_l__s_)

S(t R aR(0
< ((@=DAg—e—v— 3v) + % {a'qlnsg))) + GI(S) _ [((()))}

< -v—48 (2.20)
for all sufficiently large ¢ > 0. Finally, (2.17) implies

1/ 1 [ 1 1
Sf ga= > (p—DAIPST7 '+ (p—1)e+(=—-1)¢
t Jo t Jo o

E' 1R
+(— +p)v+pf+—f—3u}

+

E() 1, R@)
E(0) "R(0) }

< p-Det (G -6+ (G -2+ 3 {in
<—V—ﬂ (2.21)

for all sufficiently large ¢t > 0.
Now the quantities §3(t,Dp) and §s(Dyp), defined in (2.18) and (2.19) of
Chapter VI for r =1, can be estimated using (2.18) - (2.21) as follows

1 t
w(t, o) = sup [ W(B) < —v -5,
Dy 0
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and
g3(Do) =: li’minf(jg(t,Du) < -,
— 00

Since (2.1) satisfies (H;) and (Hz) and has an absorbing set Dy in T,
G(Do) < —v implies P* is globally asymptotically stable in the interior of T,
using Theorem 6.2.11 in Chapter VI, and the remarks follow it. Therefore the

theorem is proved. a

Remark. The same strategies and techniques used in §7.1 and §7.2 can also be
applied to solve similar problems in other types of epidemiological models such as
SEIRS with more general nonlinear forms of incidence rate, and SEIRS models with

variable total populations. However, we will not discuss them here.
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APPENDIX A

INDUCED MATRIX NORMS AND THE LOZINSKII MEASURE

Studies on the exponential growth of a general vector norm (1)} of solutions

z(t) to a linear system of ordinary differential equations
a'(t) = A(t)x(t)

play an essential role in the investigation of many nonlinear problems addressed
in this thesis. When |-| is the I norm, it is well-known that the exponential
growth rate of |z(t)] can be dectermined by the largest cigenvalue of the matrix
(A*(t) + A(t))/2, the symmetric part of A(t). It turns out that, for a general
vector norm ||, the exponential ratcof |2(t)| dependson p(A(t)) - the Lozinskid
measure of A(t) (sometimes p(A(t)) is atso called the Logarithmnic norm of A(t) ).
Eigenvalues are known to be difficult to compute, whercas the Lozinskil measure
can provide flexibility in calculation. This is the main rcason for the extensive use
of Lozinskii measure in the thesis. In this appendix, we review the theory on the
Lozinskil measure and provide the technical details not included in the text.

In Section A.1, definitions and properties of induced matrix norms are reviewed;
in Section A.2, the Lozinskii measure is defined and its propertics and calculations
are discussed; in Section A.3, exponential growth of |z(t)| is studied using the
Lozinskii measure. Its applications to the stability of lincar systems of ordinary

differential equations are presented in Section A.4.

§A.1. Induced Matrix Norms

Given a vector norm |-| in R", there is an induced norm in R"*" , the space

of all n x n matrices defined by

|Ali = sup |Az| (1.1)
z#0 |z}
z€R"

Typeset by ApqS8-TEX
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where the subscript ‘i’ indicates the induced norm. In what follows we shall always
use capital letters for matrices so that this subscript can be omitted. From the

homogeneity of vector norms and the finite dimensionality of R™ we can easily sce

that

|A] = sup [4z| = sup |Az|. (1.2)

x| <1 lzl |z]=1

Remark. Not all vector norms in R™®*" can be induced from some vector norm

in R™ using (1.1). Let A = (aij)nxn be a n X n matrix, define

Al = max la;j|.
Al = max_ o]
Then |-| is a vector norm in R"*". It can not, however, be an induced matrix

norm since it does not satisfy the submultiplicative property given in the following

Proposition A.1.1.

Proposition A.1.1. An induced matrix norm satisfies the submultiplicative prop-

crty:

|AB| < |A]|B|. (1.3)
Proof. For any z € R", we have
|Az| < |Al|z|, and |Bz| < |B]|z|.

Thus
|ABz| < |A(Bz)| < |A]|Bz| < |A]|B]]zl,
and this implies [AB| < |4||B|. a

Some common norms in R" are lo, li, and l; norm given by:

1

n n 2

max{|g;| : 1<j<n}, ) |zjl, and {le,-lz} ,
j=1 j=1

respectively, for every (z1,---,z,) € R".
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The following proposition gives the matrix norms induced from these common

vector norms in R". Its proof can be found in [1].

Proposition A.1.2. The matrix norm of a n xn matrix A = (aij)uxn induced

from the ls, |}, and I norm in R" are given by:

n
max{ZIa.ﬂ : 1_<_'i§n}, (1.4)

J)=1
ma.x{ZIa;jl : 13j§”}, (1.5)

=1
{Amax(4*4) } 3, (1.6)

respectively, where Amax(B) is the largest eigenvalue of a symmetric matrix B,

and A* is the transpose of A.

Remark. Suppose |-|; and |-]2 are vector normsin R" and R™, respectively.
Then there is an induced matrix norm on R™*", the space of all m xn matrices:

linear operators from R" to R™, defined by

Az
|Al12 = sup |Az]s = sup |Az|. (1.7)
leh#o 12l g0
TER™ r€R"

It is easy to check that |A]s2 also satisfies the submultiplicative property, assume
that A:(R™, |-|2) = (R*, |-|3) and B:(R", |-|;) = (R™, |-]z) aretwo lincar

operators (matrices), then

|4B13 < |Al23|Bli2.

§A.2. The Lozinskii Measure

Let |-| denote a vector norm in R™ and the matrix norm it induces in R"*".

The Lozinskii measure corresponding to |- | is defined by

[ hAl—
W(A) = Lm H+h4l-1

Jim h , (2.1)
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where I = I,xn is the n x n identity matrix, or equivalently
IL(A) = D+|I+hA|h=()- (2.2)

From the convexity of the matrix norm |-| we know that u(A4) in (2.1) and (2.2)

are well-defined. The following properties of g are established in [1].

Proposition A.2.1. pu has the following properties:
(1) —|A] € —p(=4) < p(4) < |4].
(2) p(aA) = ap(A), forala>0.
(3) max{p(A4) — pu(-B), ~p(—A)+ p(B)} < p(A+ B) < u(A) + u(B).
(4) p(A) is a convex function of A.

(5) —pu(=A) € Red < p(A), where A is any eigenvalue of A.

Let |-| be a vector norm in R™ and g be the corresponding Lozinskil

measure. If P isa n x n nonsingular matrix, a new vector norm can be defined

in R" by

|z|p = |Pz|.
It is casy to check that |-|p is a vector norm. Let pp denote the Lozinskil
measure corresponding to |- |p.

Proposition A.2.2. For any n X n matrix A,

up(4) = p(PAPTY). (2.3)

Proof. The matrix norm induced from |- |p is given by

|4lp = sup |Az|p = sup |PAz|

lz)p=1 |zlp=1

sup |PAP™}(Pz)| = sup |PAP y|
tz]p=1 ly|=1

= |PAP7Y.
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Thus

pp(d) =  lim [[+hdlp — 1

h—0+ h

. |I+hPAP“'| -1
= lim
h—0+ h

= pu(PAP™Y).

O

The following result gives the Lozinskil measures corresponding to some con-

mon vector norms in R™, a proof of which can be found in [1].

Proposition A.2.3. For any matrix A = (@ij)nxn, the Lozinskil measure p(A)

corresponding to the ln, 1}, and lz norms are given by

o {ai.' + z |aij] }, (2.4)

i

22 {ajj + ;laﬁl }, (2.5)
1 *
’\max(§ (A + A) )a (26)

respectively.

Remark. If the entries of A are allowed to be complex numbers, then the term

a;; in (2.4) and (2.5) should be replaced by Reay;, the real part of ai;.

2 -1
0 1

Direct calculation yields that A has two real eigenvalues 2, 1 which are contained

Example. Consider the matrix A =

in the interval [1, 2]. Using Proposition A.2.3, the Lozinskii measures p(A) and
p(—A) calculated corresponding to the l, !1, and Iz norm of R? are
34+ V2
2 ?
~3+V2
2 b

p(A) = 3, 2, and

pu(-A) = -1, 0, and
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respectively. From Proposition A.2.1 we know that the rcal parts of all eigenvalues
of A arccontained in theinterval [—p(—A4), p(A)]. Theseintervals corresponding
to the lo, 1), and Iz norm are given by

(0, 2], [%-—%,%4-—\}_—2], and [1,3],
respectively.

We observe that in this example that the /; norm yields the best upper es-
timate of the three; the lo norm gives the best lower estimate; the Iz norm

produces the interval of the smallest length.

Remark. As we have observed from the previous example, when Proposition A.2.1
is used to estimate the real parts of the eigenvalues of a matrix A, it is practical
to find the interval [—p(—A), u(A)] corresponding to several norms in R". The
real parts of the eigenvalues of A are then contained in the intersection of these
intervals. In the previous example, the intersection of the three intervals we have
calculated is [1, 2], which is the smallest possible. Another observation we may
make from the example is that the Lozinskil measures corresponding to the I
and !; norms are relatively casy to compute compared to the Lozinskii measure
corresponding to the I norm. Allowing us to choose the appropriate vector norms

to work with is one of the major advantages of the Lozinskii measure.

Next we shall provide a method for the estimation of u(A) corresponding to

some more technically constructed norms. A more detailed treatment can be found
in [3] and [4].

Let V), and V, be two subspaces of R"™ with dimV}, = r, dimV, = s,
r+s=n, aud

R = VeV

Then any n x n matrix A can be divided into blocks

A Ap
A =
[A21 Azz]
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and A;; can be regarded as a lincar operator from Vj to 15, 7,) =12,
Let |-|; and |-|z2 be the vector norms in Vi and V3, 4y and g the

corresponding Lozinskii measures, respectively. Define two vector norms in R" by
le| = leth + a2l (2.7)

and
lx] = max{|x]i, |v2]2} (2.8)

where z =, + 12 with z; € Vi, 1 =1,2.
The Lozinskii measures of A corresponding to the vector norms defined in
(2.7) and (2.8) are estimated in the following proposition, a proof of which can be

found in [4].
Proposition A.2.4. An upper bound for p(A) corresponding to the vector norms
defined in (2.7) and (2.8) is given by

max {p(An) + |A21he,  p2(A22) + Az } (2.9)
and

max { (A1) + |Ai2|21,  p2(A22) + |A21li2 }, (2.10)

respectively.

§A.3. Asymptotic Growth of Solutions to Linear Differential Systems

Consider a linear system of ordinary differential equations in R"
' (t) = A(t)z(t) (3.1)

where t — A(t) is a n x n matrix-valued function continuous in R. Let | -]
denote a vector norm in R™ and the matrix norm it induces on R"*". Let p be
the Lozinskii measure corresponding to |-|. We want to estimate the expouential

growth and decay rate of |z(¢t)] when z(t) is a solution to (3.1).
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Theorem A.3.1. Suppose z = z(t) is a solution to (3.1). Then

|z(t)] exp{ ——/ﬂt/t(A(T)) dr } and |z(t)| cxp{[ w(=A(r)) dr}

are decreasing and increasing in t, respectively.
Proof. We can write, for any t € R,
z(t+h) = z(t) + ha'(t) + o(h),

where

lim
h—0

lo(R)] _
0
Thus

z(t+h) = «(t) + hA(t)x(t) + o(h),

= (I + hA(t))z(t) + o(h),

and this implies

le(t +2)| < [T+ hA@®) ()] + lo(R)],
and

lz(t +h)| = lz(t)] < {II + RA@)| — 1}iz(t)] + |o(R)].

Suppose h > 0, then by definition
|z(t + k)| — |=(t)]

De(®)] = Jim, |
¢ U+ RADL = V1] + olh)
h—0+ h

= p(A®) =),

which implies that

i [Isto) exp{ - | ) ar} <o,
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and thus |x(2)] exp{—f; p(A(r)) dr} decreases in t as claimed. We can prove

the statement on |x(t)| C.\:p{f; p(=A()) dr} similarly by considering b < 0. O

Theorem A.3.1 yields the following estimates on the exponential growth and

decay rate of |z(t)].
Corollary A.3.2. Suppuse r(t) is a solution to (3.1). Then
¢ t
|m(s)|exp{-—/ p(—A(T)) dr} < et < | ()] oxp{/ (A(T)) (l-r} (3.2)
for all s <t.
When |-] is the l; norm, we know from §A.1 that
p(A@®) = M(t) and  p(-A(1)) = - (1)

where Aj(t) > --- > An(t) arc eigenvalues of the symmetric matrix (A*(t) +

A(t))/2. This leads to the following well-known result.

Corollary A.3.3. Suppose ||-|| is the Iy norm in R" and x(t) is a solution

to (3.1). Then
t ¢
|z(s)]| exp / An(r)dr < Jlz(@®))| < |lz(s)]|exp / M(7r)dr (3.3)
for all s <t.
The following result follows directly from Theorem A.3.1 or Corollary A.3.2.
Corollary A.3.4. In order for all solutions of (3.1) to satisfy
tlim |z(t)] = O,

it is sufficient that

¢
:ll.nolo/ p(A(7)) dr = —c0 (3.4)
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and necessary that

tll.nolo/ n(—A(r))dr = oo. (3.5)

5A.4. Applications to the Stability of Linear Differential Systems

The lincar system (3.1) is said to be stable (uniformly stable, asymptotically stable,
uniformly asymptotically stable) if the zero solution of (3.1) is stable (uniformly

stable, asymptotically stable, uniformly asymptotically stable) (see [2]).

Given in the following are necessary and sufficient conditions for the various

stabilities of (3.1). Their proofs can be found in [2].
Let X(t) be a fundamental matrix of (3.1), and 3 € R.

Theorem A.4.1. The linear system (3.1) is
(i) stable for any to € R if and only if there is a K = K(to) > 0 such that

IX(t)| £ K, t<t (4.1)
(ii) uniformly stable for to > B if and only if there exists a K = K(f8) >0
such that
X)) X7N(s) € K, to<s<t (4.2)
(iii) asymptotically stable for anv to € R if and only if

lim |X(t)| = 0; (4.3)

t—o00
(iv) uniformly asymptotically stable for to > B if and only if it is expo-
nentially stable; that is, there are K = K(8) > 0, and a = a(f) > 0 such

that

| X(#) X7}s)| € Kexp{—a(t—-s)}, t<s<t. (4.4)

The following concrete criteria for various stabilities of (3.1) are derived from

Theorem A.4.1 and Theorem A.3.1. Detailed proofs can be found in [1].
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Theorem A.4.2. The lincar system (3.1) is
(i) stable for any to € R if

t
limsup/ i(A(s)) ds < oo; (4.5)
¢

{—00 °

(ii) uniformly stable for to > B if there exists a M > 0, such that
t
/ p(A(T)) dr < M < oo, to <s <t (4.6)
3

(iii) asymptotically stable for any to € R if
t

lim 1t(A(s)) ds = —oo; (4.7)

t—oo to

(iv) uniformly asymptotically stable for to > f if there existsa A = A(f) such
that

p(A®) € =X <0, o<t (4.8)

Remarks.

(i). It is well known that when A(t) in (3.1) is a constant matrix A, the stability
character of (3.1) is determined by the real parts of the cigenvalues of A. This is
no longer the case, however, if A(t) is not constant: the system (3.1) may not be
asymptotically stable even if the real parts of all eigenvalues of A(%) are negative
for all . In this case, the criteria given in Theorem A.4.2 may be very useful to

determine the stability of (3.1).

(ii). For applications of the Lozinskil measure in the study of dichotomy of (3.1),

readers are referred to [4].
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APPENDIX B

COMPOUND MATRICES AND COMPOUND EQUATIONS

In this appendix, we present a theory of compound matrices and compound
cquations which is extensively used in the thesis.

Most of the development on compound matrices have occurred in the context
of linear and multilinear algebra. There is an extensive classical body of work
dealing with algebraic aspects of compound matrices (see [2] [5] [7]). Good historical
accounts may be found in [8] and [12], or in [9] and its rcferences.

Applications of compound matrices to differential cquations began in the 1970’s.
The first treatment in full generality is due to Schwarz [13] in his study on the total
positivity of fundamental matrices to general linear systems. In his series of papers
[9] [10] [11], Muldowney systematically uses the theory of compound equations in
his study of some important linear and nonlinear problems of differential equations
such as dichotomy and stability theory, orbital stability of periodic solutions of non-
linear autonomous systems and higher dimensional gencralizations of Bendixson’s
criterion.

Here we present a treatment of the theory of compound cquations based on
multilinear algebra. It has the advantage of producing a more concise and casy-to-
follow presentation, even though familiarity with tensor algebra is required. Another
advantage of this treatment is that it facilitates expansion and further generalization
of the theory.

In Section B.1, fundamentals of tensor algebra are reviewed; in Section B.2,
compound matrices are defined as matrix representations for certain lincar operators
on the exterior product space of R™. Their calculations along with their algebraic
and spectral properties are also discussed; in Section B.3, compound equations are
introduced as equations describing evolution of volume elements of various dimen-

sions in R™.
Typeset by ApS-TEX
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$B.1. Exterior Products in R"

We denote the euclidean inner product and norm by (,) and || - ||, respectively.
We also let {¢;}}-, denote the standard orthonormal basis in R".

For any integer 1 < k < n, we wish to define a vector spacc ®k R" : the k-th
tensor product of R™ . We do so by describing its elements. Let uy,--- ,ux be k
clements of R™. Their tensor product u; ® --- @ ux is a k-linear functional on
R" defined by

k
ur @ @ug vy, ,vk) = [ (wj,v5) (1.1)
=1
for all vy,---,vx € R". The vector space ®k R" is the linear span of all elements

of form u @+ @uk, wui, -+ ,ur € R It is not hard to see that the set
{ei ® Qe : 1<41, -+ ,ix <n} (1.2)

is a basis of ®k R" and thus the dimension of ®k R" is nF.
An inner product (, )i can be defined on ®k R" canonically from that of

R". For two elements u4; ® ---Qu; and v; ®--- Q@ vx of ®kR", we define

k
(ul®...®uk’ vl®"'®vk)k=H(uj’vj) (1-3)

i=1
and extend this definition to all of ®k R" using the bi-linearity of the inner

product. We denote the norm derived from (, )¢ by |- |x ie.
18l = {(2, ®)}'/? (1.4)

forall ¢ € ®k R". Obviously when k=1, (,)r and | -||x coincide with (,)
and || ||, respectively.

Under (, )r and | - ||z, the basis of ®k R" given in (1.2) is orthonormal
since B

(eil Q- Qei, e, Q- Bej, )k
k

k
= Ileies) = T1&; = 6575,
s=1

s=1
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where §; is the Kronecker symbol, i.e.

{o, i #),

&=
1, i=].

J

We can see from its dimension that ®k R" is a huge space. What is more in-
teresting to us in this thesis is the subspace of ®k R" consisting of anti-symmetric

k-linear functionals on R", the so-called k-ezterior products or k-wedge products.

A permutation on the set of integers {1,---,k} is a bijective map
o:{1,---,k} = {1,.---,k}.

Such a ¢ includes a linear operator on &" R" in the following manner: if @ is
k . . :
an element of ®"R", i.e., a k-linear functional on R", a new clement o® €

®FR" is defined by its action on R™:
o® (v, ,0) = ®(Vo(1)s " 2 Va(h))
for all vy,--- ,ux € R". In particular, if ® =u; @+ ® ux, then
o(u1 ®- - Quk) = ua"(l)@"'@“a"(k).

where o~! is the inverse mapping of o. The product of two permutations o

and 7 is defined by the composition of mappings o o 7. Under this product all

permutations on {1,--- ,k} form a multiplicative group S; whose index is k!
An element ® € ®k R" is said to be symmetric if 0® =& for all o € Si;

anti-symmetric if o® = sgn(a) ®, where sgn (a) is such that

1, if o is cven,

sgn() = { —1, ifois odd.

All anti-symmetric elements in ®k R" form a subspace /\k R". In the rest

of the section, we want to describe elements of this subspace.

The alternation mapping Ay : ®k R" — ®k R" is dcfined by

A ® = 7]—' sgn(a) o® (1.5)
v . 0€S,:
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for all ® € ®k R". We have the following result, a proof of which can be found in

(1.

Proposition B.1.1. The mapping Ay satisfics:

(1) Ax is a homomorphism.
(2 A"R" = A(®"R").
(3) Ak|pxgre =id.

(4) Aixo Ax = A;.

For uy,--- ,u;x € R®, the element
Uy A Aug =: Ak(u1®---®uk) (1.6)

belongs to /\k R" by Proposition B.1.1. It is called the ezterior product of uy,---,
«wr. We know from the anti-symmetric property satisfied by the elements in /\k R"

that uy A---Aup =0 if w; = u; for some ¢ # j. We can also deduce from

Proposition B.1.1 that
{ei, Avo-Nei, 1 1< <~ <z <n} (1.7)

is a basis for /\k R™, since it is the image under the linear mapping A of the

basis of ®*R" given in (1.2). In particular, the dimension of AFR" s ()

Remark. It will be seen later that the order of elements in the basis given in (1.7)

is very important. Throughout this thesis we always assume that they are ordered

lexicographically.

As a subspace of ®k R", /\k R" inherits an inner product, we also denote

it by (, )r and the corresponding norm by || - ||&.
Proposition B.1.2. Suppose uj,--- ,ux, v1,---,vx € R®. Then

(ug A" Aug, vy A Avg )k = det((u"vf))lgi,jgn' (1.8)
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Proof. By the definition of exterior products and (1.3), we have
(ur Aee Aug, v Ao Aok,
= (Ak(w1 ® - Qui), Ar(v1 @+ ®Uk))k

= Z Z (sgn(a) Up-1(1) &+ * Q Ug-1(k)s sgn(r) Vet () Q- ® ‘l’r—l(k))k

oESE TES
k
=) ) sgn(o) sen(r) [T(o-100s vr-1)
o0€ES; TES: =t
k
- 5 sgn(0) [ v
oES, i=1
= det((u, ”j))lgi.jsn'

a

It follows from Proposition B.1.2 that the basis of /\k R" given in (1.7) is or-
thonormal. We want to see how elements of /\k R" can be expressed in coordinates
relative to this basis. Let u;,--- ,ux € R® and u; = Z;;l aijej, i =1, ,k.

Then

n n
Uy /\.../\uk = (Za,‘jej) A A (Zakjcj)
j=1 j=1

= Z Kiywig € Ao N €iy,y (1.9)
1 <<
where the sum is over all possible k-tuples of integers (iy,--- ,%) such that 1<

i3 < -+ <ix <n and k..., is the determinant of k x k block of the matrix

(a,-j)l<i<k formed by elements in the #;-th, ---, and #;-th row.
155%n

Example. For two vectors u = (1,0,2) and v = (0,2,1) in R? uAv isa

3
vector in R(2) = R3, Moreover,

10 2 2| .
0 2 0 1 9 1|¢N%

e; Neg + ‘0

et ANey + '1

u/\v=l

= 2e;Aex + ey Ae3 — dex Aes.
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In the special case when k =n, we have
up A Auy = |dCt(aij)15i,an| ey Ao Aen, (1.10)
which gives rise to the following important property.

Proposition B.1.3. Elements u,,--+ ,ux of R" are linearly dependent if and

only if uy A---Aug=0.

Proof. When k = n this follows dircctly from (1.10). If & < n, we may choose an
orthonormal basis {v;,-+- ,v} of the subspace of R" spanned by {uy,---,us},

and then use (1.10) to prove the proposition. O

What is most interesting to us here is the connection of exterior products with

volume elements in R".

Suppose u;,---,u; are linearly independent vectors in R". We denote by

K the k-dimensional parallelepiped (see Figure B.1.1) in R", i.e.

k k
’C={Z/\,‘u,‘:0S/\,‘SI,Zx\,‘=1}.
=1

i=1
In order to calculate the k-dimensional volume of K, denoted by Voli (IC), we

choose an orthonormal basis {v;,---,vx} of the subspace of R"™ spanned by

wuy, -+ ,ur and write

k
U; = E a;j vj, i1=1,---,k.
j=1

Then
Volk(K:) = Idet(aij)lﬁi,jsk .
On the other hand from (1.10)

up A+ Aug = |det(aij)| va A - Aok

Since |[v1 A+ Avi|lx =1, we arrive at the following result.
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Proposition B.1.4.

Vol (K) = Jlug A -+ A uglls. (1.11)

Example. For two vectors u,v € R",

wAv (u,u) (u,v)

e Aol = Id t (v,u) (v, v)]
— Tl o (u, v)? 1
= [l ol (1~ )

= ||lul{|[]| sin8

= Area of the parallelogram spanned by u and v,

where @ is the angle between u and v given by

(u, v)
el ol

cosf =

(See Figure B.1.2).

We summarize the above discussion in the following theorem.

Theorem B.1.5.

(1) wiA---Aug=0 & uy, -+ ,ur are lincarly dependent in R™.

(2) {ei, A---Aey, : 1<% <:--< it <n} is an orthonormal basis for /\k R".
(3) FK=K(uy, - ,ux) ={Xh,  hiwi : Tis, k=1, 0< A, , A <1,
then

Volk(K:) = “u] A A uk”k.

(4) (A Aug, v A Aoy = det((u"vi))lgi,jgk‘
(B) Mva A Auelle < fluall--- flusd]-

Remark. Let r and s betwointegersand A € A"R™ an Q€ A"R". Wecan

define more generally the exterior product AAQ of A and Q. It is an clement
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of A"P*R"™ given by
A/\Q(vl,--- ,v,.+,) =
=D 580(0) A(vo(r) 1 Va(n) UVa(re) » Vo(raa)- (1.12)

where the sum is over all permutations ¢ on {1,---,r + s} such that o(1) <
... <o(r) and o(r+1) < -+ < a(r +3). The followings are basic properties of

the exterior product A :

A isbilinearon AAR" x AR", (1.13)
AANQ = (-1)"QAA, (1.14)
AAN(QAO)=(AAQ)AO. (1.15)

Let A°R" =R and define
oo k
AR = & AR
k=1
Then AR™ is a vector space endowed with a multiplication given by A. AR™

is called the erterior algebra of R™ or the Grassman algebra of R"™. For more

dctails and further studies on this subject, readers are referred to [1], [6], and [14].

§B.2. Compound Matrices and Their Properties

In this section, we define and discuss the multiplicative and additive compound
matrices. In the Subsection B.2.1, two linear operators T¢¥) and T!¥ on /\k R"
are introduced. Then, in the Subsection B.2.2, compound matrices will be defined
as the matrix representations of these two linear operators. Algebraic properties of
compound matrices will also be discussed in this subsection. In the Subsection B.2.3,

we compute the norm of compound matrices and discuss their spectral properties.

§B.2.1 Induced Linear Operators on Exterior Product Spaces
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Let T : R®™ —» R" be a bounded linear operator. We will discuss two lincar

operators on /\k R" induced canonically from T. For wu;, - ,ux € R", define
T(k)(ul /\°--/\uk) = Tuy A+ ATuy (2.1)

and

k
T[k](ul A Aug) = Zu] A ATuj A Aug (2.2)
Jj=1

and extend the definition of T and T lincarly to all of /\k R". Then it
is easy to check that both T() and T¥ are linear operators on /\k R". The

following properties are direct results of (2.1) and (2.2).

Proposition B.2.1. Suppose Ti,T: are linear operators on R". Then

1) (M)W = 1V,
@) (Ty +T)H = T 4 1M,

Remark. T is sometimes called the k-th exterior power of T and denoted
by AFT.
We shall study 7¢*) and T by their matrix representations with respect

w the canonical basis of /\k R".

§B.2.2 Compound Matrices

Relative to the standard basis {e;,--- ,e,} of R", alinearopcrator T : R" — R"
can be represented by a matrix A = (a{ Jnxn in the following manner:

n
Te,'=Za{ej i=1,-,n.
i=1
Let A®) and Al¥l be the matrix representations of the lincar operators T*) and

T on AFR", respectively, relative to the basis

{6il/\"'/\eik : 15i1<"-<iksn}
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in the lexicographic order. Due to Proposition B.2.1, A®) and Al are called the
k-th multiplicative and the k-th additive compound matriz of A, respectively.
Obviously both A*) and Al are N x N square matrices, N = (}). Next we
calculate their entries in terms of those of A.

For any integer i = 1,--- ,N, N = (}), let () = (é1,-++,4x) be the i-th
member in the lexicographic ordering of all k-tuples of integers such that 1 <) <
o< <n. For (¢)=(, 0 y2k), ()= (1,0 1 Jk)y let ag)) denote the minor

of A determined by the rows (i,---,ix) and columns (j1, - ,Jk)-

Proposition 2.2. Let Y = AK®), Then, forany 1 < 4,7 < N, N = ('L'), the
entry y{ of Y 1is given by

vl =all). (2.3)

Proof. By definition
yl = (T (e, Ao Aeiy) ejy Ao Aej ),
= (Tei, N---ATe,, e, A+ Nejy ),
= det(Tei,, €j, )lSa,tSk
= det(a{:)ISs,tSk = ag))

a

Remark. The multiplicative compound matrix A%} can be defined even when

A is not a square matrix. Readers are referred to [7] and [9] for details.

Proposition B.2.3. Let Z = AXl. Then, forany 1 <i,j < N, N = (}), the

entry z! of Z is given by

ra:::+...+a:::, if (7) = ()

(_1 r+sajr

3,

if exactly one entry i, of () does not

occur in (j) and jr does not occur in (2),

{ 0, if (i) differs from (j) in two or more entries.
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Proof. By definition

'.i = (Tﬂkl(f.l /\"'Acichjl/\"./\(‘jk )k

[
"~

k
= 2:(8,'l A ATei, Ao Aci,y e, Ao-- Ay, )k

=1

(einr€5)  +ov (€ipr€ji)

I
™=

(Tei,e5) - (Tei,,€5,)

s=1
(cik’ejx) (efk’('jk)

2 Jr

st s

k . .

—_ N e

= a,-‘ v (l.-’
s=1

J - Tk

6 ... &

If () and (j) differ in two or more entries, then cach determinant will have at
least one row identically zero, and thus z,j = 0. In the case when (2) = (j), in the
s-th determinant for each s, the s-th rowis (--: ,a:::,- -+) and the remaining
rows all have off-diagonal elements zero and diagonal clements 1. Thercfore this
determinant is given by a:::, and z} = a::: + -+ a:::. Suppose now exactly one
entry i, of (¢) does not occur in (j) and j, does not occur in (z). Then all
determinants except the s-th one have at least onc row of zeroes and thus all vanish,
and the i,-th column in the s-th determinantis (0,-:-, (1,{.', . -())‘. Expanding

this determinant along the j,-th column, we find its valucis (—1)"** (l{:. As the

result, z,j = (=1)"+s a{:. a

The following results list algebraic properties of compound matrices A™) and

AlKL,

Proposition B.2.4. Let A,B be n x n matrices. Then

(1) (AB)® = A0 Bk,
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(2) If Inxn is the n x n identity matrix then Inn, = Inxn, N = (}).

(3) If A is nonsingular, sois A'Y) and (A("))_l = (A'l)(k).

(4) (AW)" = (a7)™.

(5) If A is symmetric (unitary, normal), so is AR,

(6) A=A, and A =dct A.

(7) If A is triangular, so is A®  and the diagonal element of A¥) correspond-

ing to the index (i) = (i1, -+ ,ik) IS @iyiy *** Qigiy-

Proof. The proofs for (1) — (6) are straightforward. To show (7) observe that

if A is upper triangular, so is every block a{l‘:ff{: of A, and at least one of its

diagonal elements is 0 if (i) > (j) in the lexicographic ordering; when () = (4),

J1eJe
iy ik

Proposition B.2.2. O

the diagonal elements of a are @i i,,*** »@ii,. Therefore (7) follows from

Proposition B.2.5. Let A,B be n x n matrices. Then
(1) (A+ B)H = AlH 4 BIK,
(2) If Inxn is the n x n identity matrix, then Ik, =kInxn, N = (}).
(3) (A" = (al)~.
(4) If A is symmetric (anti-symmetric), so is AlR,
(5) Al = A, and Al"l = tr(A).
(6) If A is triangular, so is Al¥l. Moreover, the diagonal entry of AlM corre-

sponding to the index (i) = (t1,*++ ,%k) IS @iyi, + -+ + Qigip-

Proof. The proofs for (1) — (5) are straightforward and (6) follows directly from
Proposition B.2.3. a

§B.2.3 Norms and Spectral Properties

The following result gives the spectral properties of A and AlK],
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Proposition B.2.6. Suppose Ay,---,A, are cigenvalues of a n x n matrix A.
Then
(1) The eigenvalues of A'®) are given by all possible products of the form:

’\l'l""\l'ks 1<y <<y <n.
(2) The eigenvalues of AlX are given by all possible sums of the form:
Ail+...+Aik’ lsil<"‘<ik51l.

(3) Suppose z1,---,zx are independent cigenvectors of A corresponding to
eigenvalues A;, -+ ,Ai,. Then x A--- Axy is the eigenvector of AR
and AlM corresponding to the cigenvalue A;, -+ Xi, and Xiy 4 -+ + Ay,

respectively.

Proof. Complexify R" to obtain C". Considered as a matrix over the field of
complex numbers, A can be transformed into a triangular matrix B by a change

of basis in C™; that is, there is a nonsingular complex matrix S such that
A=5BS"!

and diagonal elements of B are exactly the eigenvalues of A (sce (3] or [5]).
Both A and B can be considered as matrix representations of the same lincar
operator T : R® — R™ with respect to different bases of R". In the same way,
both A®) and B() are matrix representations of T(¥) relative to different bases
of /\k R". It then follows that A®) and B(*) have the same cigenvalues. Now
from Proposition B.2.4 we know B) s triangular; its eigenvalues are given by
its diagonal elements which are X;, + -+ X, 1 <75y <--- < ixr <n. Thus (1)
is proved. (2) can be proved using a similar argument, and (3) follows from the

definition of A% and Al O

Recall that for a vector norm |-] in R", the matrix normofa nxn matrix

A induced by |-| is defined as

|Al = sup |Az|.

z|=1
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In the rest of the section, we want to derive the matrix norm of A() induced by
the cuclidean norm || - || of R™.

The singular values of a nxn matrix B are the eigenvalues of the symmetric

matrix VB*B. We denote them by gy > -+ > op 2 0. The following theorem is

proved in [3].

Theorem B.2.7 (The Minmax Principle).

m

dimV=j |[[u|l=1

o; = max min |Bull
ueV

= min max || Bul,
W

m

dimW=m~j+1 |u|=1

where || - || is the matrix norm induced from the euclidean norm of R".

Corollary B.2.8. o, =||B|.

Proposition B.2.9. Fora n xn matrix A, and 1<k <n,

AP = o1--- 0. (2.7)
Proof. Since o?,---,02 are eigenvalues of A*A, products of the form
2 2 . .
a5 Ois 1<y <<y <n

are eigenvalues of A(¥)*A(*) hy Proposition B.2.6. Therefore oj, - 03, 1 <
i1 < --- < i < n are singular values of A(¥). Hence (2.7) follows directly from

Corollary B.2.8. a

The following important relationships are established in [9].

Proposition B.2.10. For a n xn matrix A,

(1) AW = D(I +rA)®)|, _, .
(2) (exp A)®) = exp(Al).
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§B.3. Compound Equations: Equations Governing the Evolution of Vol-

ume Elements

Let ¢ — A(tf) be a n x n real matrix-valued function defined and continuous in

R. We consider the linear system of ordinary differential cquations
x'(t) = A(t) z(t). (3.1)

Let X(t) beits fundamental matrix such that X(0) = I, and X({t)xo,- -, X(t)xs,
be k solutions of (3.1). We want to derive the differential equation their exterior
product y(t) = X(t)zo A -+ A X(t)zi satisfies.

Direct differentiation yields
d 5 d
ZY() = ; X(t)zo A-oe A (X(B)xi) Aeoe AX (g
k

3" Xtz A AA®R)X(B)zi Ao A X (D)

=1

= AM@B) X )z A A X = AR(2) y(2).
This leads to the following important result.

Theorem B.3.1. Suppose z,(t),---,zx(t) are solutions of the lincar system
(3.1). Then y(t) =z1(t)A--- Azx(t) is a solution of the lincar system
y'(1) = AN y(). (32)

The system (3.2) is called the k-th compound equation of (3.1), with Al¥l (1)
being the k-th additive compound matrix of A(t). Obviously, system (3.2) has

(7) equations.

Note that
XMzoA--AX(t)ze = XBt)zi A Ay

We have the following corollary of Theorem B.3.1.
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Corollary B.3.2. A fundamental matrix of the k-th compound equation (3.2)
is given by X®)(¢) if X(t) is a fundamental matrix of (3.1).

Remarks.

(i) Suppose K is the oriented k -dimensional parallelepiped in R" spanned by
k lincarly independent vectors z;,---,zx € R™. Let K evolve along the solu-
tions of (3.1) and let K(t) be its position at time t. Then K(t) is spanned by

X(t)zy,--- ,X(t)zx (see Figure B.3.1) and its volume is calculated as the norm of

the vector
X(t)xy A--- AX(t)zk,

which is a solution of the k-th compound equation (3.2). We thus reach the

following conclusion:

the k-th compound equation (3.2) describes the evolution of any

oriented k-dimensional parallelepiped under the linear system (3.1).

(ii) When %k = 1, the system (3.2) is identical to (3.1); when k = n, AlPl(t) =
tr(A(t)). Thus (3.2) becomes

y'(t) = tr(A(t)) y(2), (3.3)

for which a fundamental matrix is given by X{™(t) = det(X(¢)). Therefore the

n-th compound equation (3.3) is the familiar equation of Liouville and Jacob (see

[4)).
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Figurc B.1.1. A parallelopiped in R,

-

Figure B.1.2. A parallelogram in R?.

I

A parallelopiped X. The papallelopiped X(t).

Figure B.3.1. Evolution of a parallelopiped.
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the matrices A[k] in the cases n = 3, 4 are as follows.

= 3:
Fal 12 13——
1 “1 1
[1] - 1 2 3 _
A a 32 32 = A
al a2 43
L 3 3]
[ 1,2 3 - 3] )
aj+aj a) -a) (1) = (12)
(2] _ 2 1 3 2 i
A ag a +ag aj (2) = (13)
1 1 2 3
i -ag a, 32*83~ (3) = (23)
Ats] =ai *ag*a::::TrA.
= 4:
1 3 ]

[1] a 82 82 82
A = = A

al 82 83 84

3 3 3

Figure 3.2.2.
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APPENDIX C

HAUSDORFF MEASURE AND HAUSDORFF DIMENSION

Dimension is one of the main characteristics for complexity when we study the
geometry of compact sets. Of many definitions of dimension in use, for example,
Hausdorff dimension, fractal dimension, and Lyapunov dimension, etc., Hausdorfl
dimension is the oldest and the most important. It is mathematically convenient, as
it is based on measures, which are relatively easy to manipulate. A major disadvan-
tage is that in many cases it is hard to calculate or estimate cither analytically or
by computational methods. However, as many authors have pointed out, Hausdorff
dimension is essential in the study of the geometry of irregular sets, such as fractal
sets (see [3]).

In this appendix, we review the definitions and some simple properties of Haus-
dorff measures and Hausdorff dimension. More thorough trcatments on these sub-

jects may be found in [1] and [2].

§C.1 Hausdorff Measures

Let X be a normed linear space with norm |-|. Forasubset U C X, its diameter

is defined as
[U| = sup{|z —y| : 2,y €V }.

Obviously |U| is finite if and only if U is bounded. Let K C X bec a compact
set. A countable (or finite) open cover {U;}; of K is said to be a §é-cover if
0 < |U;} <6 for each 1.

Suppose s is a nonnegative number. For any é > 0 we define
e o]
3(K) = inf{z |Ui|* : {Ui}i is a é-cover of K }. (1.1)
i=1

Typeset by Aps8- 11X
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We can sce from (1.1) that 33(k) increases as § decreases since the class of
permissible covers of K is reduced. Therefore HJ(K) approaches a limit as

§ — 0. We write
HYK) = lim H3(K) = sup H;(K). (1.2)
6—0 6>0
We call H*(K) the s-dimensional Hausdorff measure of K. Obviously the value
of H*(K) could range from 0 to oo.

It can be proved (see [2]) that H?® is a regular metric measure. Thus it has

the following properties of measures.

Proposition C.1.1. H*® enjoys the following properties:

(1) 3°(0) = 0.

(2) H(E) < H(F) if ECF.

(3) H(UR\K;) = 32, H(K;), if {K;}{2, isa family of disjoint Borel sets.

Hausdorff measures generalize the usual ideas of length, area, and volume. It
can be shown that, when X = R", n-dimensional Hausdorff measure is a constant
multiple of the n-dimensional Lebesgue measure. More precisely, if K is a Borel

subset of R™ and |:| is the I3 norm, then
H"(K) = e, L™(K)

where L™ denotes the n-dimensional Lebesgue measure and the constant ¢, =
xin /2"(3n)! is the volume of the unit ball in R". Similarly, for an integer 0 <
m < n, if K isa m-dimensional submanifold of R", then H™(K) = ¢, L™(K).
For example, H°(E) is the number of points in E; H!(C) is the length of a
smooth curve C; H?(S) = imarea(S) if S is a smooth surface.

One of the important characteristics of the usual volume is its scaling property.
That is, on magnification by a factor A, thelength a curve will be multiplied by a
factor A, the area of a surface by a factor of A2, and the volume of a 3-dimensional
body by a factor of A3. As the following proposition shows, Hausdorff measure also

possesses the scaling property. A proof of this proposition can be found in [1].
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Proposition C.1.2 (Scaling Property). Suppose K C X isa compact set and
A > 0. Then

H'(AK) = MH(K), (1.3)
where MK = {A\z : =z € K'}.
A mapping f: X — Y from X to another normed lincar space Y with

norm |-|; is said to be Holder continuous if there exist constants ¢ > 0 and

a > 0 such that

|f(z) = f(y)h < clz —y|* (1.4)

for all z,y € X. The constant « is called the Hélder exponent. When o =
1, f is Lipschitz continuous. The following proposition describes how Hausdorff
measures change under Holder continuous mappings, a proof of which can be found

in [1].

Proposition C.1.3. Let K C X be a compact set and the mapping f: X =Y
- *isfy (1.4). Then, for each s >0,

H/*(f(K)) < /™ H(K).

In particular, if f is Lipschitz continuous, namely f satisfies (1.4) with a =

1, then
H(f(K)) < H(K)

for each compact K C X. If f is an isometry, that is

If(z) = f@h = |z — yl,

then H¥f(K)) = H*(K). Therefore Hausdorff measure is prescrved under iso-
metrics. Since a translation z ~— z + a is an isometry, we have the following

corollary.
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Corollary C.1.4. H® is translation invariant; namely
H' (K +a) = H(K)
for all compact K and a € X, where K+a={z+a; z € K}.

In the case when X is an inner product space with inner product (,) and

the norm |-| is given by |z] = (z,2)!/2, since the rotation in X is an isometry,

H* is also rotation invariant.

§C.2. Hausdorff Dimension

Hausdorff measure H? is defined for all s > 0. It turns out, however, that H*(K)
is either zero or infinity for most s. In fact, for two real numbers 0 < s <t and

a 6-cover {U;}i of K, we have from (1.1) that
ZIUl'It < 5t ZlUlla

which leads io HE(K) < §*7*3H(R’) for all § > 0. Letting é — 0, we see that
if H*(K) < oo then H'(K)=0 forall t >s. A graphof H*(K) against s is
shown in the Figure C.2.1 . Observe that thereis a 0 < d < oo at which H°(K)
jumps from oo to 0. This suggests that d be considered as a dimension of K.

The Hausdorff dimension of a compact set K is defined as
dimgK = inf{s : H(K)=0} = sup{s : H'(K) =+o0}. (2.1)
We can see from the definition that it is possible that dimyK = oo. In this case

H*(K) =00 for all s >0. Suppose dimyKR < co. Then

o0, ifs <dimyK
0, ifs>dimykK.

3C(K) = {

However, when d = dimyK, H?YK) may be 0,400, or may satisfy 0 <
HYR) < co.



APPENDIX C. HAUSDORFF MEASURE AND DIMENSION 223

As a simple example, let C be the unit circle in R?. We know that H!(C) =
LY(C) = 2x. Thus dimyK =1 and H*(C) =00 if s <1 and HYC) = 0 if
s > 1, which is what we would expect. Similarly, a A-dimensional submanifold of
R" has Hausdorff dimension k.

Some fractal sets have fractional Hausdorff dimensions. For example, the Can-
tor middle third set in [0, 1] has Hausdorff dimension d = log?2/log 3.

The following are some properties of Hausdorff dimension.

(i) monotonicity. If E C F then dimyE < dimyF. This follows from the
property of Hausdorff measure that H*(E) < H*(F) for cach s > 0.

(i) countable stability. If {K™}°2, is a (countable) family of compact sets, then

dimpy US2, K, = sup{dimy K, }.
n

It follows from the monotonicity property (ii) that dimy USZ, K, 2> dimy K, for
each n. On the other hand, the measure property H*(U%,) < Yoo HY(K,) for
all s > 0 gives the opposite incquality.

These simple properties can be used to find the Hausdorff dimension of some
sets. For example, if K is a countable set, then from the countable stability
dimy K = 0 since the Hausdorff dimension of a single point is obviously 0. In
particular, the Hausdorff dimension of the set Q of rationals in R is 0, cven
though Q is densein R.

The following proposition which shows how Hausdorff dimension changes under
Hélder continuous mappings follows from the corresponding property for Hausdorff

measure given in Proposition C.1.3.

Proposition C.2.2. Suppose K C X is compact and the mapping f: X =Y

satisfies a Holder condition on K
If(z) = f(y)h £ clz — y|” z,y € K.
Then

dimy f(K) < -(—1- dimy K.
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As a special case we have the following corollary.

Corollary C.2.3.
(1) ¥ f : X — Y is a Lipschitz continuous mapping, then dimy f(K) <
dimy K for each compact K C X.
(2) If f:X —Y isa bi-Lipschitz mapping, namely

alz—yl < If(z) - fWh € c2le -yl zyeX

where 0 < ¢; < ¢ < 00, then dimy f(K) = dimpyK.

§C.3. Bibliography for Appendix C
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APPENDIX D

AN ELEMENTARY PROOF OF THE CLOSING LEMMA

The purpose of this appendix is to give an elementary proof of a restricted
version of the C' Closing Lemma which is needed in the thesis.

In the section §D.1, alocal C! Closing Lemma for general autonomous system
is formulated and proved. In §D.2, a similar result is proved for autonomous systems

having an invariant linear subspace discussed in Chapter VI.

§D.1. A Local Closing Lemma for General Autonomous Systems

We consider an autonomous system in R"
2 = f(z) (1.1)

where the function z — f(z) € R® is C' for z in an open subset D of R".
We formulate in the following a local version of the C!-Closing Lemma of Pugh
which plays an essential role in the development of Chapter V.

Let |-| denote a vector norm on R™ and the operator norm it induces for
linear mappings from R™ to R". The distance between two functions f,g €

CY(D — R") such that f — g has compact support is
|f = gl = sup{|f(z) — g(2)| + |Df(z) — Dg(z)| : =€ D}. (1.2)

A function ¢ € CY(D — R™) is called a C! local e-perturbation of f
at zo € D if there exists an open neighbourhood U of z¢ in D such that
supp(f —g) C U and |f —g| < €. For such a g we consider the corresponding

differential equation

g = g(z). (1.3)

Typeset by Ap4S-TEX
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Lemma D.1.1. (Local C' Closing Lemma). Let f € C'(D — R"). Suppose
that zo is a nonwandering point for (1.1) and that f(xo) # 0. Then, for each
neighbourhood U of zo and € >0, there exists a C' local e-perturbation g
of f at x¢ such that

(1) supp(f—g) C U, and

(2) the system (1.3) has a nonconstant periodic solution whose trajectory in-

tersects U.

Proof. We first observe that, if = — F(z) is a differentiable function with
bounded convex domain V C R™ and range in R™, then the Mean Value Theo-
rem gives

maE

8m~(Ci)(bj~aj)’ t=1,...,m
=1

Fy(b) - Fi(a) =

for some points c!,...,c™ on the line segment joining a and b. It follows that,
if the matrix [25i(c')] is nonsingular for all sets of m colinear points eV, i=
J
1,...,m, F is one-to-one. In particular, F is onc-to-onc if it is sufficiently
C!-close to the identity map z+— z on V.
If pe R*1 and p >0, let |p| = (p*p)'/* and B, = {p: |p| < p}. For
p, pi € By,, let the C' function p+— 7i(p) be defined by

7i(p) = p, p <Ipl <2p
7i(p) = p+ pi(P® — IpI*)? /0", Ipl < p. (1.4)
Evidently 7;(0) =p; and 7; is a diffeomorphism if |p;] is sufficicntly small since

this implies 7; is C!-close to the identity. Also 7',-(—172,,) =B, p if [pi| is small.
This implies that

-1. 5 =
T2 =T1 0Ty " ¢ ng — sz (15)

is a diffeomorphism which satisfies 712(p2) = p1, and which is close to the identity

map if p;,p; are sufficiently close to 0.
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Next, if 6 >0 and t € [—26,26], define t+ A(t) by

AMt) =0, —26<t< -6
At) = (t+6)%(1/8° - 3t/6* +6t2/8°), —-6<t<0
At) =1, 0<t<26. (1.6)

It is easily checked that A is of class C? on [—26,26], X(t) = 30(t + 6§)%t2/6°,
—6 <t <0 and therefore

0< M) <1, 0<N()<15/85, —26<t< 26 (1.7)

Without loss of generality, we may assume that 0 is the nonwandering point
in the Closing Lemma. Since 0 is not an equilibrium, we may also assume that
the disc {0} x Bz, in the hyperplane z; =0 is transversal to the flow of (1.1). If
Ip| < 2p, let o(t,p) = z(t,(0,p)). For & sufficiently small, ¢ is a diffeomorphism
on Bys3,, where Bj, = (—6,6) x B,. We may also assume that ¢(B2s,2,) C U.

Now consider 3 defined by
¥(t,p) = ¢(t,p) + M) [ (8, T12(p)) — ¢(t, p)] (1.8)

if (t,p) € B2s2,- We wish to show that ¢ is a diffeomorphism with ¥(B2s,2 p) =
©(Bz2s,2,) when |pi1],|p2| are small. From (1.4), (1.5), (1.6), (1.7), we find

¥(B2s20\Bs,p) = ¢(B2s2,\Bs,) and, since 3 is Cl-close to ¢ if p;,p, are
close to 0, w(B2sz2p) C (B2sz2p) and (9B2s2,) = ¢(0B2s,2p) = 0p(Bas,2p)-

When |pi],|pz| are small, ¢~ o1 is Cl-close to the identity and therefore a

diffeomorphism; the preceding discussion implies ¢! 04(B2s25) C Ba2s2py ¢ 10

¥(0B2s2,) = 0Bas2,. The Invariance of Domain Theorem ([1], p. 50) implies

1

the complement of ¢! o ¥(B2s,2,) does not intersect Bas2, and thus ¢~ o

¢v(_B_25,2,,) = P-ga,g‘.. Therefore ¢(§25,2p) = <p(§25,2,,) and 9 is a diffeomorphism

when p; and p; sre close to 0 as asserted.
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Define z — g(z) by

9(z) = f(=), x € D\9(Bzs,20)
o@)= S W) & =Y(6D) () € Baray (1.9

For each zo = ¥(to,po) € ¥(B2sz2,) the equation (1.3) has a solution x(t) =
%(t, po),

|t] < 26, which is also a solution of (1.1) for —26 <t < —6 and 0 <t < 26
and may be continued as a solution of both (1.1) and (1.3) for [t| > é. Since
g(z) = f(z) if = € D\¢(Bs,), to complete the proof of Lemma 2.7 it suffices
to prove that ¢ is of class C! on (Bzsz,), is C'-close to f on t(DB2s:2p)
if |p1], |pz| are small and that pi,p. may be chosen so that (1.3) has a periodic
trajectory which intersects ¥(B2s2p) = @(B26,2p)-

From (1.9), if = € ¥(B2s,2p),

g(z) =Goyp~'(z),  Dg(z)=DG oDy~ (),
where

G(t,p) = (1.10)
Fle(t,p)) + M) [f(t, T12(p)) — Fo(t,p))] + N (&) [ (t, 112(p)) — (2, p)]-

Similarly
f(z) =Fop™'(z), Df(z)=DF oDy (),
where

F(t,p) = f(p(t,p))-

Thus g € C' and G, ¥~! and their partial derivatives are uniformly close to the
corresponding expressions for F, p~! respectively if p,,p; are closc to 0. Thus
g has the desired approximation property with respect to f.

To prove the assertion about a periodic trajectory, since 0 is nonwandering

and {0} x Bs, is transversal to the flow of (1.1) at 0, there exist p1,p2 € Bz,
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arbitrarily close to 0 such that (0,p;) = ¢(~T,pz) for some T > 0. Now

z(t) = p(t,p2), -T<t<-26
z(t) = ¢(t,p2)1 ~26 <t S 0

where the points p;,pz determine 72 in (1.5), (1.8), is a solution of (1.3) which

satisfies
$(0) = ‘P(Oap2) + ’\(0)[90(011)1) - ‘P(OaPZ)] = ‘P(O’pl) = (Ovpl) = IE(—T)

and is therefore periodic of period T; see Figure D.1.1.

The argument given here may also be modified to obtain an equation (1.3) with

a periodic solution whose trajectory contains the nonwandering point 0.

$D.2. Autonomous Systems with an Invariant Affine Manifold

In this section, we show that Lemma D.1.1 also holds for autonomous systems
satisfying (H,) and (H:) in §6.2 of Chapter VI. More precisely, let B and T

be the constant matrix and the invariant affine manifold determined by (H;) and

(H;) , we prove the following result.

Lemma D.2.1. Let f € C'(D — R™) be a vector field satisfying (H,) and

(Hz). Suppose that zo € T' is a nonwandering point for (2.1) and that f(zo) # 0.

Then for each neighbourhood U of z¢ and e > 0, thereexistsa C! e-perturbation
of f, g€ C'Y(D — R"), such that

(1) supp(f-g) CU,

(2) g also satisfies (H,) and (H;) with the same matrix B,

(3) the system (1.3) has a nonconstant periodic solution whose trajectory inter-

sects U.

Remark. As we have noted in the Lemma 6.2.8 of §6.2, we only require that g¢
satisfy the weaker assumptions (H;) and (H,). This version of the local closing
lemma is sufficient for deriving Theorem 6.2.9 of §6.2, Chapter VI.
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Proof. Let g be the e-perturbation of f obtained by Lemma D.1.1. Then ¢
satisfies (1) and (3). It remains to show that g satisfies (2).
We claim the following;:

(a). the mapping 712 : B2, — By, defined in (1.5) prescrves the affine manifold
I.

(b). Bg(z)=0 on TI.

As in the proof of Lemma D.1.1, we may assume that 0 € T is the nonwan-
dering point and thus I' is linear. Since 7; preserves lines through p;, ¢ = 1,2,
we can see that (a) follows from the definition of 712 in (1.5). To see (b), note that
g(z) = Goy~(z) for z = P(t,p) € B2s2, and G is given in (1.10). Using the
fact that

Bf(z) =0, and Byp(t,p) = constant (2.1)

for (t,p) = v~ '(z) and z € ', we can see from (1.10) that BG(t,p) = 0 for
(t,p) € B2sz2,, and p€eT.

Now for (¢,p) € Baszp, and p € T, let D, and D, denote the partial
derivative with respect to ¢t and p, respectively, and D, , = (D¢, Dp). We have

BD,G(t,p) = BDz fDyp(t,p) + A(t)[BD f Dip(t, 712(p))
— BD. fDyp(t,p)]
= —vB [Dyp(t,p) + A(t)(Dep(t, 112(p)) — Dip(t, p))]

= —VBDl¢(t, P),

and

BD,G(t,p) = BDzfDpp(t,p) + A(t)[BD: fDyp(t, m12(p))D112(p)
- B—;".\ff‘DP(p(tv p)]
= —vB[Dpp(t,p) + Mt)(Dpp(t, T12(p)) D7i2(p) ~ Dpp(t, p))}

= —vBD,y(t,p).
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Therefore BD; ,G(t,p) = —vBD, p(t,p). This implies
BDg(z) = BDG o Dy~!(z) = —vB,

for all = = ¥(t,p), (t,p) € Basz2,, and p € I'. Obviously this holds for z €
I'N D\ ¢(Bas2,) trivially. Therefore the lemma is proved. 0O
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