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ABSTRACT

This thesis presents the results of a study involving
the ultimate and post-peak capacity of composite steel-
concrete ice resisting walls subjected to transverse and
longitudinal loadings. The main application of these
composite walls lies in the design of arctic offshore

structures subjected to large forces from moving sea ice.

Current design provisions in the Canadian fixed concrete
offshore code (CSA S473-M89) require the computation of the
ultimate capacity of the wall for strength, and the wall
energy absorption (post-peak) characteristics. Currently,
several methods exist for computation of the wall ultimate
strength. However, nearly all approaches require an estimate
of the concrete effectiveness factor, which is not readily
available. In addition, no successful method has been

derived which addresses the problem of post-peak behavior.

In this study, the finite element method is used to
determine both ultimate strength and post-peak capacity of a
selected composite wall system. Material nonlinearites in
the concrete and steel are considered, and the frictional
interface between steel and concrete is modelled. Numerical
results are compared with those obtained from experiment for

a variety of wall geometries and loading configurations.
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LIST OF SYMBOLS
A Actual area loaded by ice.
a Horizontal projection of shear crack. Also,

constraint quantities.

Ap Reference contact area.
aop,1,2 Curve fit constants for Willam-Warnke surface.
A Descending branch area obtained from a uniaxial

compressive cylinder test.

Act,ca Total and descending branch areas, respectively,

for concrete in tension or compression.

A, Bg Empirical constants for determining the fracture

energy ratio.

b Wall or specimen width.

bo,1,2 Curve fit constants for Willam-Warnke surface.
Co,s Cohesive strength parameters.

Cijk1 Constitutive tensor.

Cv,p,T Volumetric, deviatoric, and tangential

constitutive moduli respectively.

d Beam depth. Also, midspan deflection for the
analysed walls.

D,E,F Empirical constants for frictional strength
parameter, mgy.

do” Inelastic stress increment.

Eg s Initial and secant moduli of a uniaxial stress-
strain curve, respectively.

Ei,2,3 Orthotropic moduli.

E¢ Strain softening modulus.



F Yield surface.
f (n) Anisotropic weighting factor.
fe,t Uniaxial compressive cylinder and direct tensile

strengths of concrete, respectively.

fe Effective concrete "yield" strength.
feo Concrete biaxial strength.
feu,tu Concrete uniaxial compressive and tensile

strengths, respectively.

fni,n2 High compression strengths.

Fq Softening yield surface.

fy Steel yield strength.

Gi2 Shearing modulus.

Ge, cr Fracture energy in tensile fracture and

compressive crushing, respectively.

G?II Fracture energies for splitting and shear band
propagation, respectively.

hy,, Mesh spacings in specified directions "1" and
nan,

he, ¢ Mesh spacings in compression and tension
respectively.

k Hardening parameter.

ke, c Tensile and compressive descending branch decay
parameters, respectively.

Mo, o, s Frictional strength parameters.

n Exponent for concrete cylinder curve fit.

N, T Normal and tangential forces, respectively.



nj,4,x Direction cosines.

p Ice contact pressure.

o] Plastic potential surface. Also, global loads
calculated from internal stresses.

q Global displacements.

ry,» Maximum and minimum radii of the deviatoric

trace, respectively.

Sij Deviatoric stress tensor.

u,v Horizontal and vertical displacements,
respectively.

Vu Shear capacity of reinforced concrete beam.

w Deformation in the fracture pProcess zone.

a Concrete effectiveness factor.

Ol Proportionality constant for concrete cylinder

curve fit.

O 4 Kroenecker delta.

Ay ¢ Accumulated normal and tangential nodal

seperations, respectively.

€. Equivalent uniaxial strain when the equivalent

uniaxial compressive or tensile strength is

reached.

€ Strain tensor.

€N, Ti Normal and tangential strain components
respectively.

€, Equivalent uniaxial strain. Also, the strain at

which the applied stress is zero.



€v,p,T Volumetric, deviatoric, and tangential strain

components respectively.

O Concrete performance factor.
Y12u Equivalent uniaxial shear strain.
A Constraint forces for interface element. Also,

scaling factor for the displacement control

method.
Agisp Relative displacement norm.
Aload Relative load norm.
H Frictional coefficient.
\% Concrete effectiveness factor.
V1,2,3 Orthotropic Poisson's ratios.
0 Angle of similarity.
P Beam reinforcing ratio.
p,& Non-dimensional average stress coordinates.
O1,2,3 Principal stresses.
O Average normal stress.
Oc.t Equivalent uniaxial compressive and tensile

strengths, respectively.

Oij Stress tensor.

Oy, Ti Normal and tangential stress components
respectively.

Orer Ice reference stress.

Ov,p, T Volumetric, deviatoric, and tangential stress

components respectively.



In-plane stresses in the horizontal and vertical

directions, respectively.

Out of

plane stress.

Shear stress.

Average shear stress.

In-plane shear stress.

Stiffness matrix.

Constraint matrix.

Displacement control displacement vectors.

Displacement control reference load vector.

Vector
Scalar
Matrix
Vector

Matrix

at iteration 1i.

quantity at iteration i.

at iteration 1i.

in global and local space, respectively.

in global and local space, respectively.



1.0 INTRODUCTION

1.1 General

The idea for using composite steel and concrete walls
to resist ice loads was introduced in the late 1970's by
Hitachi Shipbuilding and Engineering Company (Adams,
1987). It was found that the composite walls exhibited a
high degree of strength and ductility, which are desirable

characteristics for exterior walls on offshore structures.

Composite construction utilizing exterior steel
plates with concrete infill was found to have many
desirable attributes in comparison with all steel and all
reinforced concrete construction. Sandwich composites can
utilize thin steel members for construction, since local
buckling of the steel is restrained by the concrete,
resulting in easier fabrication and better quality control
than all steel construction. Sandwich composites are
fabricated with the steel plates on the exterior faces of
the wall, which minimizes the problem of steel congestion
that is prevalent in offshore structures constructed of
reinforced concrete. Other features, such as ease of
connections between structural members, increased load
carrying efficiency due to concrete confinement from the
steel plates, and the use of automation and advanced

shipyard construction techniques, makes composite ice



resisting walls competitive with other forms of

construction (Gerwick and Berner, 1987).

Since then, a significant amount of research effort
has been invested in determining the structural behaviour
of these composite walls. A major part of this research
has been conducted by the Center for Frontier Engineering
Research (referred to in the following as C-FER), which
has been investigating the behaviour of composite ice
resisting walls since 1985. Initial work focused on the
behaviour of studded steel plates with concrete infill
(O'Flynn, 1987). Later work concentrated mainly on the
one-way wall system shown in Figure 1.1. The two steel
forming plates are connected along their length by a
series of vertical diaphragm plates. Concrete infill is
then placed in the cells between the diaphragm plates.
The wall thicknesses are in the order of 1.0 m, and spans
are in the order of 6.0 m. Extensive testing indicates
that significant strength and ductility are available from

this form of construction.

Several analytical techniques have been developed to
predict the ultimate strength of this construction form.
These techniques vary from the basic lower bound truss
models (Rogowsky and MacGregor, 1983) to empirical
equations based on dimensional analysis (Adams and

Zimmerman, 1987). However, all methods suffer from lack



of generality, which is discussed further in Chapter 2.
In addition, since the governing Canadian design code for
concrete offshore structures (CSA S474-M1989) requires
that an estimate of member ductility be made, the
difficult evaluation of post-peak strength must be made.
No existing analytical technique is yet available to

assess post-peak strength or ductility.

Composite ice walls generally have two distinct modes
of failure. The first mode, denoted as flexural, involves
significant yielding of the tension plate, and crushing
occurs in the concrete at the point of maximum bending
moment. The second mode, herein referred to as shear,
involves crushing of concrete struts which carry load into
the support region. The latter failure mode is of most
interest here, since many experimental investigators have
reported failures of this type, and no significant
analytical effort has been made to investigate this

failure mode.

In this study, the feasibility of using the finite
element method for the evaluation of both ultimate
strength and post-peak ductility is investigated.
Constitutive models for both concrete and the interface
between steel and concrete are developed and implemented
in a finite element program. Numerical models are

developed, analysed, and the resulting behaviour compared



with results obtained from C-FER's extensive testing

database.

It should be noted, herein, that a large portion of
C~-FER's test results are confidential. However, the
writer is grateful for the open cooperation of C-FER in
permitting the writer to present the test results of

series CF, TF and VTIT in this study.

1.2 Objectives of Study

The objectives of this study are as follows:

a) To conduct a literature review of all significant
work done which pertains to composite ice resisting
walls including design codes, testing, and classical

and numerical analysis.

b) To identify the important factors which must be
considered in the numerical modelling of the
structural behaviour of composite ice resisting
walls, and to develop a finite element model which

incorporates these factors.

c) To verify the finite element model by analysis of
actual tested wall configurations, and compare the
numerical results to the experimentally obtained

results.



d) To identify future work which is required to
accurately predict the structural behaviour of

composite ice resisting walls.
1.3 Organization of Thesis

This thesis is organized as follows. Chapter 2 is a
literature review of all significant work performed
pertaining to composite wall analysis and design, as well
as some of the viable constitutive modelling techniques
for concrete. Chapter 3 summarizes the important factors
which must be included in the analytical model, and
presents the development of the concrete constitutive
model. In addition, the theory for both the interface,
steel, and displacement control models are presented in
Chapter 3. Chapter 4 includes the development of the
finite element models, and Chapter 5 contains the
comparison of analytical to experimental results.
Finally, Chapter 6 summarizes the findings from the work
performed in this thesis, and identifies future research

that should be performed.
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2.0 LITERATURE REVIEW

2.1 General Background

The design and analysis of composite walls to resist
ice loadings in Canada is governed by CSA Standard S473-
M1989 - Steel Structures - Part III of the Code for the
Design, Construction, and Installation of Fixed Offshore
Structures. However, the provisions for composite wall
design contained here are general and vague in nature.
More applicable design information was found in CSA S474-
M1989 - Concrete Structures. The structural design
considerations of interest here include the wall section

forces and resistances, and the system ductility.

Wall section forces are determined through the use of
Clause 8.2. Clause 8.2.1 states that a linear elastic
analysis may be used to determine the sectional forces,
with the provision in Clause 8.2.4 that second order
(large deformation) effects be included where applicable.
The secant modulus of concrete and the gross cross
sectional area are recommended for use in the elastic
analysis (Clause 8.2.1), with the option of reducing
stiffness values due to cracking and other nonlinear

effects.

Clause 8.3 deals with the determination of factored

sectional resistances. Clause 8.2.1 of S474-M1989 states



that the sectional forces throughout the structure may be
determined through the use of an elastic analysis. The
section at which these forces occur must then be checked
for ultimate strength capacity. Two methods are given for
ultimate strength checks; the standard design methods of
CSA CAN3-A23.3 in Clause 8.3.2, and the more detailed
design methods given in Clause 8.3.3. Clause 8.3.3 is the
more economical design, since slab or shell action is
considered, but is often more difficult to apply. This
approach often requires the use of a finite element
analysis to determine the sectional forces at appropriate
checking points. The combined effect of all sectional
forces must then be considered in checking the sectional

strength.

Clause 8.4 considers the evaluation of system
ductility in the structure. A typical offshore structure
is designed to withstand loading from frequent ice events
which occurs once every 100 years (probability of
exceedance of 0.01) without significant permanent damage.
Clause 8.4 requires that the structure be able to resist
rare environmental loading events with a return period of
10000 years without a total collapse. Note that
significant permanent damage may occur from these loading
magnitudes. In order that structural integrity is
maintained for this event, requirements are placed upon

system ductility in two ways. The first requirement is to



design the structure so that global collapse of the
damaged structure does not occur after the event has
occurred (Clause 8.4.1). This means that the damaged
structure continues to stand under the action of permanent
loadings (eg. gravity and hydrostatic loads). The second
requirement ensures that individual members which could be
overloaded are provided with detailing which maintains
adequate energy absorption capabilities through large
deformations. This provides additional enerqgy dissipation
while local areas of the structure are failing, which
contributes to the overall protection of the structure.
Clause 8.4.4 states that adequate energy absorption is
defined as the ability of the members to sustain six times
the yield deflection while maintaining 50% of the yield
load. The yield load is defined as the ultimate load
attained by the structure, and the yield deflection is
defined as the deflection obtained at the intersection of
the yield load and a line drawn from the origin with a
slope equal to the initial tangent stiffness. Figure 2.1

illustrates the application of Clause 8.4.4.

For composite systems involving steel and concrete
sandwich panels, the determination of member resistances
and ductilities has been, almost exclusively, on the basis
of experimental data. This is because numerical
techniques developed for predicting the ultimate strength

and ductility of composite wall systems have not been



10

entirely successful. The difficulty in predicting the
ultimate strength lies in the prediction of the failure
mode of the wall, whether flexural or shear—-compression.
The evaluation of post-peak strength and ductility is
extremely difficult, and no attempt has been made to

predict composite wall post-peak response.

Considering the above discussion, it is the writer's
opinion that a sophisticated numerical technique is
necessary to evaluate composite wall strengths and
ductilities. The finite element method is ideally suited
for these predictions. Both pre- and post-peak structural
response can be easily incorporated into the finite
element model. Once confidence through comparison with
experimental results is obtained, the need for expensive

testing would be reduced significantly.

This chapter is a summary of the significant work
that has been performed in composite ice wall technology.
For the purposes of clearly defining the loads that are
resisted by ice-resisting walls, a brief summary of ice
loading is presented in Section 2.2 Section 2.3 is a
brief summary of significant testing programs performed
over the last ten years. Section 2.4 examines the various
analytical technigques used to predict wall ultimate
strengths. Section 2.5 summarizes the finite element

analytical work done on composite ice walls. Finally, as
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an introduction to Chapter 3, critical reviews of the most
recent concrete constitutive models are contained in

Section 2.6.

2.2 Ice Loading

This section serves as a brief overview of the
approach adopted for computing design ice loads in CSA
S471-M1989 - General Requirements, Design Criteria, the
Environment, and Loads, which serves as the governing
design standard for ice load calculation in Canada. The
above mentioned code closely follows the recommendations

made by Sanderson (1988) on design ice load calculation.

Two basic types of ice loads are considered in

offshore design: static and dynamic.

Static loads refer to loads applied by ice initially
in stationary contact with the Sstructure. Loading occurs
as a result of ice movement due to natural driving forces
applied to the ice. Typical examples include winter
landfast ice conditions, in which a structure is
surrounded by uniform first-year ice, and "winter
blocking" conditions, where a large ice feature becomes
lodged against the structure. Wind and current drag

generate the loads which act on the offshore Structure.

Dynamic loads refer to the state in which the ice

feature is not initially in contact with the structure,
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but arrives, and strikes it with significant velocity.
Examples include impact by multi-year ice floes, and

collisions by icebergs or ice islands.

Calculation of ice loads involves the extensive use
of probablistic methods, since ice contact pressure and
thickness have been experimentally determined to be random
variables. A general procedure is proposed by Sanderson

(1988), and proceeds as follows:

1) Determine the number of ice loading events of the

specified type which will occur in a specific year.

2) Determine an ice thickness probability distribution
by using available ice thickness data and the

information from 1).

3) Determine a peak contact pressure probability
distribution. A normal distribution is generally

adopted.

4) From 2) and 3), for a given contact area, determine a
contact force probability distribution. From this
distribution, it is possible to obtain design loads

for a given exceedence level.

Points 3 and 4 require more elaboration. The peak
contact pressure generated by ice is found to be highly

variable, and is dependent upon the loaded area. From an
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accumulation of pressure versus contact area data,
Sanderson (1988) proposed the following relationship

between pressure and contact area

p = Gref'\/”AA';r [2-1]

where Orer 1s the reference stress for a reference contact
area, Ay, of 100 m2, and A is the actual loaded area.
From statistical analysis of large scale pressure
measurements, the reference stress, O..s, has been
determined to be 0.92 MPa, with a standard deviation of
0.45 MPa. These guantities are assumed to apply for
global structural loading only. For highly localized ice
loads, Sanderson (1988) suggests increasing the pressure
value, p, to account for uncertainty in the occurence

frequency of such conditions.

Once the probability distribution curve has been
obtained for the given ice event, the loads are computed
based on a specified level of exceedence. The Canadian
standard CSA S471-M1989 specifies exceedence levels of
102 for frequent ice events, and 10”4 for rare ice
events. Frequent events are defined in S471 as events
which have an annual rate of occurence greater than
0.5/year. An important example is the loading caused by
first year ice, which may occur up to several thousand

times per year. Rare events are defined as events which
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have an annual rate of occurence less than 0.5/year. A

typical example may be iceberg loading.

2.3 Testing Programs

This section serves only as a brief overview of the
existing test programs performed in the last ten years. A
much more comprehensive review is available in Kennedy and

Cheng (1987).

Over the last ten years, over 160 composite wall
specimens of various configurations have been tested as
one or two span beams under a variety of loading patterns
(Kennedy and Cheng, 1987). Structural configurations
included shear connectors on top and bottom plates,
vertical diaphragm plates, and longitudinal steel
stiffener plates. Span to depth ratios varied from 2 to

10.

Composite wall failures typically occurred as a
result of either flexural or tied arch behaviour.
Flexural failures were initiated by the yielding of the
tension plate, which was followed by localized crushing in
the maximum moment region. Figure 2.2 illustrates a
typical flexural failure. Tied arch failures occurred as
a result of localized crushing of a compressive strut in
the wall. This type of failure is illustrated in Figure

2.3.
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In most of the test programs, post-failure ductility
was either not measured, or not reported. Notable
exceptions were the test program of C-FER, which is
mentioned in more detail in Chapter 4, and the program
carried out by Kennedy and Cheng (1987). 1In the C-FER
tests, failure occurred as a result of shear compression
failure at the support region in nearly all of the tests.
The span to depth ratios in the tests varied from 4 to 6,
which is near the limits of deep beam behaviour
(MacGregor, 1988). 1In the Kennedy and Cheng tests,
failure occurred as a result of plate tearing, which was
induced by membrane action as the composite wall
experienced large deformations. The span to depth ratios

of these tests were fairly large, varying from 18 to 30.

2.4 Analytical and Design Methods

There are currently three different methods commonly
in use for predicting the strength of composite ice

resisting walls:
a) Reinforced concrete design methods

b) Empirical design equations based on curve fits of

experimental data

c) Plasticity methods, both lower and upper bound
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Traditional reinforced concrete design equations
contained in CSA A23.3-M84 for flexural/shear members such
as beams involve checking the capacity of the section for
both bending moments and shear forces. The CSA Standard
S474-M1989 code for concrete offshore structures further
considers the combined effects of coincidental bending,
shear, and axial loading on section capacity. The
flexural capacity method assumes the existence of strain
compatibility between the tensile reinforcing steel and
the concrete, and that the beam is slender so that no deep
beam action exists. The former assumption is certainly
not true in the case of concrete sandwich panels, since
significant slip and separation occurs between the steel
plate and concrete infill. The latter assumption is not
always true, since deep beam action becomes important for
span to depth ratios less than 5 (MacGregor, 1988).
Proposed full scale designs tend to be even stockier. 1In
addition, it was concluded by the Center for Frontier
Engineering Research (Stephens and Zimmerman, 1990) that
the simplified method for shear contained in CSA A23.3-M89
was inappropriate for use with composite members.
Therefore, it can be seen that traditional reinforced
concrete design methods are inapplicable to the design of

composite sandwich panels.

Two empirical design equations have been proposed by

Zsutty (1968), and the Center for Frontier Engineering
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Research (Adams and Zimmerman, 1987). These equations
were derived by applying the techniques of dimensional
analysis and statistical regression to multiple sets of
test data. The equations calculate the shear capacity,
Vy, of a member which fails along a diagonal crack with a
horizontal projection, a, as shown in Figure 2.4. The

simplified C-FER equation is written as follows:

v, = 1:35%cbdp (2.2]

(a/d)l.3

where f. is the uniaxial cylinder compressive strength,
and p is the mechanical reinforcing ratio. The dimensions
b and d represent the wall width and depth respectively

(see Figure 2.4).

Although potentially useful in the range of
parameters tested, the applicability of these equations
outside that range is unknown, and the effects of changes
in loading or structural configuration (eg. in-plane
loadings, studs, multiaxial stress states) is also
unknown. Further testing is required to ascertain these
effects. 1In addition, the empirical approach provides no
visualization of the flow of forces or the mechanism of

failure.

Lower bound plasticity methods include the strut and
tie models recommended by CSA A23.3-M84, and used by other

authors (Rogowski and MacGregor, 1986, O'Flynn, 1987) to
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predict the ultimate strength of deep flexural members.
The lower bound plasticity models assume the existence of
a statically admissible stress field in the member. The
internal stresses in the member do not exceed the yield
strength of the material anywhere, and the material is
assumed to be of sufficient ductility to develop the
specified stress field. If these conditions are met, then
a lower bound estimate of the load is obtained. Figure
2.5 shows a typical strut and tie model for a concrete
corbel. The concrete strut carries the vertical load, P,
and the top reinforcing steel carries the horizontal

component of the concrete strut.

Similar models can be developed for reinforced
concrete beams and composite wall systems. However, there
are three main problems with using strut and tie models
for predicting ultimate strengths of composite walls.
Firstly, since the model represents a lower bound of the
exact failure load, undue conservativity can be realized
by an incorrect selection of the strut and tie model.
Secondly, due to the condition of enforcing a statically
admissible stress field, the reinforcing steel must be at
the centroid of the biaxially confined concrete, termed
the "nodal zones". This is usually not the case for a
composite sandwich panel, where the steel is on the
outside of the concrete. Finally, for lower bound

plasticity models, the concrete and steel is assumed to be
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rigid plastic material. Since concrete is not rigidly
plastic by nature, the concrete "yield" strength, f., is
usually defined as the uniaxial concrete strength, £,
multiplied by a reduction factor to account for the lack

of ductility:

fe = V.. [2.3]

The quantity Vv, termed an "effectiveness" factor,

attempts to replace the brittle concrete stress strain
curve with that of a ductile material (see Figure 2.6).
The effectiveness factor is influenced by many variables,
such as concrete confinement due to plane strain
conditions, tensile steel running through the strut, etc.
Uncertainty in the effectiveness factor makes it difficult

to estimate the design concrete strength.

Upper bound plasticity methods for concrete sandwich
panels include the diagonal crack mechanism models
developed originally for concrete beams with no shear
reinforcement by Nielsen and Braestrup (1978), and
subsequently modified by Kemp and El-Safi (1982). The
upper bound plasticity methods assume a kinematically
admissible failure mechanism for the member. Energy
considerations are then used to determine the upper bound
failure load. The assumed failure mechanism is a diagonal
crack which extends from the support region to the top of

the concrete beam, which is shown in Figure 2.7. 1In the
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Nielsen and Braestrup model, discussed here for brevity,
the bottom concrete piece is assumed to translate in a
direction denoted by the displacement vector v in Figure
2.7. It was found from energy considerations that the
reinforcing ratio had a significant influence on the shear
strength of the beam. If the reinforcing ratio is
sufficiently high, it would force the bottom concrete
piece to translate vertically, and the longitudinal steel
would have no influence on the shear strength of the beam.
Kemp and El-Safi (1982) modified the failure mechanism by
including rotations of the end blocks, and Stephens and
Zimmerman (1989) included the effects of in-plane loads
applied at the end of the beam. All three investigators

claimed good correlation with experimental results.

The upper bound plasticity methods seem to show the
most promise in predicting ultimate strengths of composite
ice walls. However, their applicability is far from
general, especially for two way behaviour such as slab
assemblies. Also, the effectiveness factor is used in
upper bound theory as well as lower bound theory, and, for
reasons mentioned above, makes the determination of design

compressive strength difficult.

It is also noted here that there is no particularly

successful analytical tool available at present which
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evaluates the post-peak strength of composite ice

resisting walls.
2.5 Finite Element Analyses

Although extensive work has been performed regarding
finite element analysis of reinforced concrete, relatively
little effort has been placed into finite elemen£ analysis
of concrete sandwich panels. A handful of investigators
have examined the response of these composite members in
the pre-peak response region. No investigation regarding
the post-peak behaviour of composite ice walls has been

undertaken.

Perhaps the most significant finite element analyses
of sandwich panels were performed by Matsuishi et al.
(1978) , who analysed beam sandwich specimens consisting of
top and bottom plates fastened together by a number of
vertical stiffeners spaced at regular intervals. An
elastic plastic constitutive model was adopted for the
concrete, and the interface between the steel and concrete
was simulated by use of a spring linkage element. Good
correlation was observed between experiment and analysis
for load-deflection and ultimate load predictions. As
well, cracking patterns were similar to those observed
experimentally. The observed failure was in flexure, and
no post-peak response was reported for either experiment

or analysis. Similar analyses were conducted by Matsuishi
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and Iwata (1987) on a composite wall configuration which
included longitudinal stiffeners. Again, good correlation
was observed between experiment and analysis. The failure

was also flexural.

Bangs (1988) performed a nonlinear analysis of
composite ice walls tested by Matsuishi et al. (1978) and
Nojiri and Koseki (1986). The concrete was idealized as
elastic plastic material with a tension cutoff, and
perfect bond was assumed between steel and concrete. The
analysis results were similar to those of the test

results, but, again, the failure was flexural in nature.

Other crude approximations using linear elastic
concrete models have been reported by Corder and Wang

(1990), and Bangs and Machemehl (1989).

It is noted here that no finite element analysis was
reported that was able to simulate a shear compression
failure in a composite ice wall, even though many test
results were reported in which this was the observed

failure mode.
2.6 Concrete Constitutive Models

An important aspect of predicting the structural
behaviour of composite ice walls using the finite element
method is the use of an appropriate concrete constitutive

model. For reasons explained in Chapter 3, the model must
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be able to consider the three dimensional constitutive
response of concrete. In order to predict response in the
post-failure region, appropriate softening rules must be
utilized. The model should also be robust in nature ie.

numerical instability should be minimized.

A large number of concrete constitutive models have
appeared in the last 15 years. Many models appeared for
use with reinforced concrete, and some were suited to the
analysis of unreinforced concrete in tension. However,
there were few models capable of simulating the three
dimensional constitutive response of unreinforced concrete
in both the pre- and post-peak regions with considerable

numerical stability.

Concrete constitutive models can be divided into two
major categories: smeared crack models, and discrete crack
models. The former is suited to identification of the
general behaviour of the structure, while the latter is
suited to following the history of certain major discrete
crack propagation. 1In this study, the smeared crack

approach is adopted.

A large variety of constitutive models have been
published in this category. Historically, orthotropic and
hypoelastic models (Darwin and Pecknold, 1974, Elwi and
Murray, 1980) have been and continue to be the most

popular approach. Their popularity stems from simplicity
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and the ability to account for the more recent advances
regarding fracture energy, nonlocal effects, etc. Other
models such as elastic plastic models are making a recent
comeback (Pramono and Willam, 1989, De Borst, 1984), and
appear to be quite promising. 1In addition, the microplane
model advocated by Bazant (1984) is notable because of the

micromechanical treatment of stresses and strains.

The work presented in this report is based on an
orthotropic model built on the equivalent uniaxial strain
concept advocated by Darwin and Pecknold (1974) and used
successfully by Elwi and Murray (1980), Link et al.
(1988), and Link and Elwi (1990). A full development of
the model is presented in Chapter 3. However, in this
section, two of the most recent generalized models are
reviewed. These include the microplane model proposed by
Bazant and Prat (1988), and an elastic-plastic model based
on fracture energy considerations (Pramono and Willam,

1989).
2.6.1 Microplane Model

The microplane model represents a micromechanics
approach to modelling concrete behaviour. Originally
presented by Bazant (1984), the fundamental assumption is
that the stress-strain relation can be specified
independently on various planes in the material, assuming

that the strain components on the plane are the resolved
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components of the strain tensor. The constitutive
behaviour of each plane is governed by the volumetric,
deviatoric, and tangential components of total strain gy ,
€, and €p; respectively. The tangential component of
strain, €pj, is a strain vector on the tangent plane to the
normal component, €. The normal and tangential components

of strain are shown in Figure 2.8.

The total volumetric, deviatoric, and tangential
stress components Oy, Op, and Op; are assumed to be

functions of the total strain components

Oy = CyEy, [2.3a]
Op = Cpep, [2.3Db]
Or = Cr€r. [2.3c]

Here, Or and & are the magnitudes of the tangential
stress and strain vectors, Op; and &, respectively.
Differentiating Equations 2.3, the incremental

constitutive relationship for the microplane is formed as

doy = Cydey + €ydCy [2 . 4a]
ch = CDdED + SDdCD [2 . 4b]
dor, = CTdeT + STdCT [2 . 4C]

The second term on the right hand side in Equations

2.4 represents stress increments due to inelastic

behaviour, and can be denoted as -doj, where j is a stress
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identifier which is either Vv, D, or T for volumetric,

deviatoric, or tangential respectively.

Using the principle of virtual work, it is possible
to relate the work done on the microscale to the
macroscopic work as

ﬁélt-doij&ij:f (doydey + dorideri) £(n)dS. [2.5]
S

The surface integral in Equation 2.5 represents the
integral over a unit sphere. The quantity f(m) is a
weighting function to account for initial anisotropy in
the material. This function is equal to 1 in the case of

isotropic material.

The derivation for the incremental constitutive
relationship is given in detail in Bazant and Prat (1988).
Using Equation 2.5 in conjunction with the constitutive
relationships given in Equations 2.4, and the definitions
of the microplane strain (shown in Figure 2.8), the

following constitutive relationship is obtained

d0;;5 = Cijkmd€kn — dOij, [2.6]

where

Ciskm = 537; ((Cp - Co)ninsngng + %(CV - Cp)ninydyn

s [2.7]

+ i‘-CT (nink8jm + ninmSjk + njnkﬁim + njnmﬁik) ) f (n)ds,
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and

dc;{j = '53— (ninjdc;%(niSrj+nj8ri—2ninjnr)dc;r) f(n)ds.
T [2.8]

The subscripted "n" quantities are the components of
the microplane unit normals, and 6U is the Kronecker
delta. Thus, the macroscopic constitutive response of
concrete is equivalent to the summation of the

constitutive response on all microplanes.

Bazant and Prat (1988) assumed exponential forms of
the constitutive moduli Cy, Cp, and Cr as a decaying
function of their corresponding strains. The decay
coefficients were obtained from curve fitting results of
multiaxial tests. Good correlation was obtained between
analysis and experiment. Further implementation of a
nonlocal softening model into the microplane model was

performed by Bazant and Ozbolt (1990).

Although the microplane model shows good promise for
general multiaxial simulation of concrete constitutive
response, much more development work needs to be
undertaken. The decay parameters used to determine the
constitutive moduli are not calibrated sufficiently
against macroscopic strength values (eg. compressive and
"tensile strengths) and no attempt is made by Bazant in

this area. The spherical integrals in Equations 2.7 and
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2.8 require the use of several integration points on the
hemisphere per Gauss point, which increases solution time
dramatically. These shortcomings make the microplane
model unwieldy for the analysis of general concrete
structures. Indeed, the writer is not aware of any
publications which utilize the microplane model to analyse

full scale structures.

2.6.2 Elastic Plastic Fracture Energy Model

The elastic plastic fracture model developed by
Pramono and Willam (1989) attempts to incorporate the mode
of failure into the determination of descending branch
properties by the use of fracture mechanics. The model
incorporates isotropic hardening and softening rules,
using a modified form of the failure criteria developed by

Leon (1936), expressed as

2
F (01,03, k) = [(1—k) °212 + "1',"3} - k’meZ - k%co, [2.9]
f.. fe fe

where 0; and O3 are major and minor principal stresses, k
is a hardening parameter which varies in value from 0 to
1, ¢, is a cohesion parameter which assumes a value of 1.0
at peak stress, and my is a frictional strength parameter
which is expressed in terms of the material cohesion, ¢,

as

2 2
m = EEE_T:TEL_. [2.10]
frfe
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Equation 2.9 represents a closed surface which
expands uniformly for hardening. The authors claim that
the performance of the constitutive model is extremely
sensitive to the existence of non-associative flow
behaviour. A plastic potential function, Q, is proposed

of similar form to the failure criterion, F

2
Q(03,03, k) = [(1—k) o °1'°3J - kK’me2 - k%c,, [2.11]

£ fe fe

where the frictional strength parameter, my, is expressed

as a function of the major principal stress, Oy, as

g(n;—f =D exp(E(g-l;i)) + F. [2.12]

The quantities D, E, and F are empirical constants

obtained from curve fits of test data.

Softening initiates in the model when the hardening
parameter, k, reaches one. The softening surface, Fg,

reduces to (setting k equal to one in Equation 2.9)

- 2
Fe(01,03) = [%J - m -, [2.13]
fe fe

where mg and cg are the frictional strength parameter and
cohesion in the softening region. Values are chosen for
ms and ¢s such that the failure surface decreases in size
in a region defined by two transitional points. The

transitional points denote the hydrostatic stress which is
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necessary to change the mode of failure from brittle to
ductile (plastic). These transitional points are shown in
a deviatoric plot in Figure 2.9. At a cohesion value of
zero, only frictional resistance is mobilized, and the
surface collapses to that of a granular material with zero

cohesion (see Figure 2.9).

The rate of softening is governed by a material
strain softening modulus, denoted Ef. Since macroscopic
softening is a structural property rather than a continuum
property, equivalent continuum concepts must be utilized
in order to avoid mesh non-objectivity. The strain
softening modulus is then a function of the compressive
shear band spacing, h.. The approach of Bazant and Oh
(1983) is adopted for hydrostatic tension. In
compression, the authors claim that compressive failures
are due to the result of shear band formation, therefore,
the fracture energy release rate for shear, GP, must be
included in evaluating Ef for compression. From the
equivalence of strain energy in splitting compression, an
expression is derived relating the shear band spacing in

compression, h., to the tensile band spacing in tension, bt

I
hc=—GIiIt. [2.14]
Gt
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The ratio of fracture energies in Equation 2.14 is
assumed to be a function of the degree of confinement.
This ratio is expressed as

II 114 '
Ge . As(ﬁ - £t—) + Bs(ﬁ - f—t-) + 1, [2.15]

Gt fo  f£¢ fe £

where A; and Bg; are empirical constants determined from
confinement tests. The overall effect of Equation 2.15 is
to decrease the effective shear band spacing, h., which
will decrease the slope of the compressive descending
branch, Ef. This results in a more ductile (plastic)

failure as the confinement increases.

Pramono and Willam (1989) compared analytical results
of a series of concrete cylinders subjected to varying
levels of confinement. Good general agreement was found
between experiment and analysis. The mesh used for the
model was not reported, and the authors did not mention
whether any parametric studies were performed regarding

mesh objectivity.

The constitutive model shows good promise in
analysing structures which undergo compressive strain
softening, since a rational procedure was used to
incorporate failure modes in the model. However, the
concept of isotropic hardening and softening in concrete
seems dubious. This would imply no compressive strength

in any direction after the tensile strength decreased to
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zero, which does not make physical sense. Since the model
is relatively new, it has not been used to analyse any
full scale structures, which makes it difficult to

evaluate in terms of solution stability.

To summarize, the microplane model derived by Bazant
and Prat (1988) is unwieldy to use because of the lack of
calibration of microproperties to the macroscale and the
excessive computational effort required, and the elastic
plastic fracture model reported by Pramono and Willam
(1990) has dubious assumptions regarding softening and
hardening. Both models have not been extensively used in
the analysis of full scale structures, making the

evaluation of solution stability difficult.

As mentioned in the introduction, the constitutive
model required should be able to consider the effects of
triaxial stresses in both the hardening and softening
ranges. The model must also be numerically stable, and
simplicity is an added benefit. It is felt that the
hypoelastic constitutive model presented in Chapter 3

meets these requirements.
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3.0 MODELLING CONSIDERATIONS

3.1 General

To accurately predict the load-deformation behaviour

of composite ice resisting walls, it is important to

38

identify the main characteristics which must be considered

in the finite element model. Figure 3.1 shows a typical

composite ice wall specimen which was tested by the Center

for Frontier Engineering Research, Edmonton (Zimmerman,
1987). The wall consists of a sandwich of two horizontal
steel plates which are fastened together by a series of

vertical web plates. Concrete infill is then placed in

the wall cavities. In some configurations (not considered

in this study), steel studs are placed along the top and
bottom plates in order to enhance the composite behaviour

of the wall system (O' Flynn, 1987).

On offshore drilling platforms, the walls are
subjected to highly concentrated loads imposed by ice
sheets. The ice pressure magnitudes are in the order of
15 MPa for small areas (less than 1 m2), diminishing to 3
MPa for larger areas (5-10 m2) . Typically, the cells are
1.0 m deep, and the span between the bulkheads is 4.0 to
6.0 m long. At low load levels, and for this aspect
ratio, shear deformation would dominate the behaviour of

the concrete cells adjacent to the supports. The
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principal tensile stresses are diagonally oriented in the
cells adjacent to the supports, and are more or less

longitudinally oriented in the midspan cells.

As the load increases within the service load range,
the concrete loses adhesion with the steel, and slip
occurs in the steel cells at certain interfaces. Cracking
then takes place, allowing the composite wall system to
carry the load into the support bulkheads utilizing truss
action as shown in Figure 3.2. The concrete infill in the
cells acts as compressive struts, while the web and bottom
plates act as tension ties. This stage is represented by
line O-A in Figure 3.3, which shows a typical load vs.

midspan deflection plot.

As the load/deformation level is further increased,
two different modes of behaviour can be identified. TIf
the bottom steel plate yields before the concrete crushes,
a load plateau results, which is denoted by Line A-B in
Figure 3.3. If the concrete crushing strength is reached
in the strut areas before the bottom steel plate yields,
the load level will decrease to some residual level, which
is shown by Line A-C in Figure 3.3. This load level is
typically in the order of 50% of the peak load, and
represents the ability of the structure to assume a
different load path configuration. Concrete crushing can

also occur after the steel plate yields, which results in
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plate yielding and loading decrease (line B-D in Figure

3.3)

Aside from wall proportions and geometry, the

structural factors which control the load-deformation

response of composite ice resisting walls are as follows:

a)

b)

Concrete constitutive behaviour - the
uniaxial tensile and compressive strengths
determine the wall cracking and crushing loads.
If the wall is restrained from out of plane
strain, the concrete is confined, and the strut
strength is increased. The post-peak response
of the concrete is important in determining the
level of residual load reached once the

compressive struts crush.

Steel-concrete interface behaviour - the
amount of slip that occurs between the steel
and concrete determines the stiffness of the
structure. If there is no slip, the wall will
behave in the manner of a reinforced concrete
beam in flexure. If significant slip is
introduced, strain compatibility between the
steel and concrete is lost, and significant
load redistribution occurs. In addition, it
has been observed experimentally that the steel

plates separate from the concrete in certain
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places (Zimmerman, 1987). These boundary
effects must be included in the finite element

analysis in order to obtain an accurate model.

c) Steel constitutive behaviour - steel
yielding increases ductility of the composite
wall system. If yielding is suppressed, the
concrete crushes first, and the full flexural
plastic capacity of the wall cannot be reached.
Therefore, the existence/absence of steel
yielding must be detected to allow for an
accurate prediction of failure load and system

ductility.

This chapter is outlined as follows. Firstly, the
concrete constitutive model used here is described. The
model adopted is incremental orthotropic, utilizing a
secant modulus approach. Next, the method used to
simulate the behaviour of the steel concrete interface is
described. The model assumes Coulomb friction, and
utilizes constraint equations to enforce stick, slip, and
separation states (Katona, 1984). A brief description of
the steel constitutive model is then given. Finally, the
displacement control method used to capture post-peak load

deformation behavior is explained.
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3.2 Concrete Constitutive Model
3.2.1 General

It is proposed to use a constitutive model of the
hypoelastic form to model the stress-strain behaviour of
concrete subjected to two dimensional (axisymmetric, plane
stress, and plane strain) geometry configurations. The
model is limited to the small strain - small displacement
formulation, and no creep, thermal or rate effects are
considered. Stated simply, hypoelastic materials are
those whose rate of stress is a function of the rate of

deformation and stress history (Truesdell, 1955).

The constitutive equation for hypoelastic materials

can be written in the form
dcij = Cijkldekl, [3 . 1]

where the constitutive tensor, C;iji, is a function of the
stress history. In this study, the orthotropic form of
hypoelasticity is chosen because of its flexibility and
simplicity in modelling salient features of concrete
behaviour, such as inclusion of multiaxial stress states,
and rotation of average principal cracking and crushing
axes. The concept of equivalent uniaxial strain is used
as a damage measure in order to decouple the triaxial
stress-strain behaviour into a series of uniaxial

responses.
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The model adopted and implemented here is based, in
part, on that used by Elwi and Murray (1979) in analysing
the nonlinear response of nuclear containment structures.
The form of the orthotropic constitutive equations is
described first. Next, the equivalent uniaxial responses
of concrete are outlined as functions of stress ratios,
failure modes, and mesh refinement. The effect of
cracking/crushing on the elastic moduli, Poisson's ratio,
and the shear stiffness are then examined. Finally,

implementation of the constitutive model is described.

3.2.2 The Constitutive Equations

An orthotropic material contains nine independent
variables in the constitutive matrix. If the constitutive
relationship is referred to the principal axes of
orthotropy, there is no interaction between shear stresses
/strains, and normal strains/stresses. Since the material
model is intended for use in two dimensional problems, the

constitutive matrix reduces to 4X4 in size.

Using the form of an incremental Hooke's law and
inverting, the constitutive matrix can be written in the
form (Elwi and Murray, 1980)

E1(1-n33) VEiE; (M31M23+M12) YE1E3 (Ma2M23+Ma1) O

do, dgy
E2 (1-1%1) YE2E3 (M12M314M23) O
do: = de; [3 2]
’ .
do; Sym. Ea (1—'!]%2) 0 des
dTiz d¥iz

Gi20



44

where TMiz2, M23, and Ms1 are equivalent Poisson’s ratios
based on an estimate of Poisson's ratios in the principal

planes of orthotropy, Vi, Va2, and Vvj:

Tﬁz = V1Vgz, [3.32]
N33 = VaVi, [3.3b]
Tl§1= V3Vi, [3.3¢]
0=1 - N2, - M35 - M3 - 2MaMaiMa. [3.3d]

Equations 3.2 can be written in the form

dcl{ E;B1; EiBj, EiBj3 0 de,
e o —_ EoBy; E2Bz; E2B2j 0 de, [3 .4]
do3 E3Bi3 E3Bz3 E3Bs3 0 des |
dTt;, 0 0 0 G12 dYi2
or
do; = E;j (Bj:de; + Bjode; + Bjsdes), [3.5a]
(no sum)
dTyz = Gi2dYi2. [3.5Db]

Note that no summation is implied in Equations 3.5a
and b. It is now possible to express the stress increment
components in terms of damage measures referred to as
equivalent uniaxial strain increments, d€iy. Rewriting

Equation 3.5 in terms of d€;, yields

{no sum)
dti2 = G12dY12ur [3.6b]
where
de;, = E; (Bji;de, + Bjode, + Bjs3des), [3.7a]

(no sum)
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dYi12y = dY12. [3.7b]

Again, no summation is implied for Equations 3.6a and
b, and Equations 3.7a and b. Total equivalent uniaxial
strains can be found by rearranging equation 3.6 and

integrating over the loading path

€y = f do;/E; (no sum). [3.8]
load path

Equation 3.8 defines a damage measure at the
orientation of the axes of orthotropy. This makes it
possible to decouple the axes, and treat the constitutive
behaviour of each direction as an equivalent uniaxial
response. This uniaxial behaviour in any given direction
is primarily a function of confinement (stress ratios) and
type of failure mode, which is discussed in more detail in

subsequent sections.

It remains to define the axes of orthotropy in the
material. Previous definitions have included fixed crack
models, where the axes of orthotropy remain fixed in the
direction of the first crack formation, and rotating crack
models, where the orthotropic axes follow the direction of
principal stresses or strains. Fixed crack models are
applicable when the principal axes of stress/strain do not
rotate appreciably, such as the case where flexural
behaviour dominates (Balakrishnan, et al., 1988). This

study is primarily directed to structures which undergo
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significant rotation of the principal axes of stresses and
strains. A rotating crack/crush model is, therefore,
adopted here. The axes of orthotropy are assumed to
follow the principal strain axes, and co-axiality of
stresses and strains is maintained. This assumption has
implications on the integral of Egq. 3.8, and will be

discussed in the implementation section (Section 3.2.8).

An incremental constitutive relationship is next
defined for the principal axes of orthotropy. It is now
necessary to describe the basic uniaxial curves adopted
for compression and tension, and to identify and evaluate

the factors which change these curves.
3.2.3 Basic Uniaxial Stress-Strain Curves

Before describing the models adopted for uniaxial
compression and tension, it is necessary to define the
parameters which describe the shape of the stress-strain
curve. Figure 3.4 shows a typical uniaxial stress-strain
curve for concrete in compression and tension. The
quantities which are required for a complete description
of the stress-strain curve are the uniaxial compressive
strength, O., the strain at which the compressive strength
is reached, &, and the descending branch decay parameters

in tension and compression, k¢ and k. respectively.
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The Saenz (1964) curve has been widely adopted as an
adequate description for a uniaxial stress strain curve.
This curve is used here for the pre-peak regions in both

tension and compression,and is written as follows
O = Eu/ (1 + (Re = 2) (E,/Ec) + (€u/E0)?), [3.9]
in which
Re = Eo/Es, [3.10]

where the quantities E, and E; are, respectively, the
initial slope of the curve, and the secant slope measured

at the peak of the curve.

The descending branches in tension and compression
are described by exponential decay parameters, k. and k.
respectively. The stress-strain relationships for tension

and compression are written as
O = Ope kel - &) [3.11a]

O = Ocekelta - &), [3.11p]

where O and O. are tensile and compressive strengths

respectively.

Equations 3.11 assures that the stress level reduces

to zero at infinite strain.
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The equivalent uniaxial description of concrete in
compression and tension is now complete. It remains to
apply this uniaxial curve in a triaxial stress field,
taking into consideration the effects of stress ratios and
failure modes. As stress levels are increased,
degradation in elastic constants occurs which affects
deformation levels in the structure. In addition, once
the stress state reaches the descending portion of the
curve, stress results are non-objective with respect to
mesh refinement. These factors must be dealt with for a

complete description of the concrete material model.
3.2.4 Concrete Ultimate Surface

In order to evaluate stress levels and elastic
moduli, the effects of changing stress ratios on the
ultimate uniaxial parameters mentioned in the previous
section must be considered. This is done by using a
triaxial ultimate strength surface for both principal
stresses and equivalent uniaxial strains. The triaxial
strength surface of Willam and Warnke (1975) is herein
adopted as an accurate description of concrete behaviour
under triaxial stresses. The triaxial strength surface
evaluates the average nondimensional shear stress, 5;, as a

function of the average nondimensional normal stress, O,

and the angle of similarity, 0, which are defined as

Ea = o-ii/3fcul [3 .12a]
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To = Vsiys:4/582,, [3.12p]

172

cosB=(01+6,-203) /Y2 ((6,-6,) 2+ (6,-03) 2+ (03-01) 2) /2, [3.13]

in which sjj is the deviatoric stress tensor which is

written as

Sij = O — ckkSij/3. [3.14]

Physically, the strength surface intersects the
deviatoric plane in three symmetrical segments, forming a
closed and continuous surface. Figure 3.5 shows a
deviatoric trace of the strength surface, which is
described in the devatoric plane by a radius function, r.
The relationship between the average shear stress, E;, and

the radius function, r, may be written as
T, = r(0,0,). [3.15]

The expression for the radius function is written as

follows

_ 2 2_ 1/2
r 2r1r2cose+r2(2r1 rz) (41-”12003 e+5r1 4r1r2) , [3.16]

4r12c0329+ (r-2r,) 2
where
ri, = rg - rf. [3.17]

The variables r; and r, are the minimum and maximum

radii of the deviatoric trace respectively. These radii
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vary parabolically with the average stress, Ea, and are

expressed as

ry ap + a16a + aza, [3.l8a]

r, = by + b0, + b,02. [3.18D]

Figure 3.6 is a plot of T, VS 3; on the rendulic
plane. It is seen that r; and r; are the bottom and top
curves respectively. The coefficients a; and b; are chosen
so that the variables r; and r, pass through a set of
control points on the rendulic plane. In the five
parameter Willam and Warnke (1975) model, these points are
the uniaxial compressive strength, f.,, biaxial compressive
strength, £, uniaxial tensile strength, f:y,, and one
arbitrary high compression point on each rendulic trace,
fn; and fp;. In addition, the two radii traces must
intersect at the same point in average tension (Ea = 0).

These points are marked on Figure 3.6.

It is now possible to evaluate the three O;. values
required in Sections 3.2.1 and 3.2.2. It now remains to
evaluate three equivalent uniaxial strains associated with
O;.. The procedure adopted by Elwi and Murray (1980) is
used here. An equivalent uniaxial strain surface is
assumed, which is similar in form to the strength surface.
Values on the surface correspond to equivalent uniaxial

strains at ultimate strength.
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The procedure used to determine the equivalent
uniaxial strength is fairly simple in nature. If
incremental proportionality of loading is assumed, it is
possible to draw a straight line from the origin to any
stress/strain point and obtain the required ultimate
strengths/strains. This approach allows for the
assessment of damage in at least one direction. But, it
may not be adequate in all cases, since the mode of

failure becomes important in tensile stress states.

3.2.5 Modes of Failure

For some stress states, the assumption of incremental
proportionality may not yield the correct uniaxial
stresses/strains. An important example is the biaxial
case of high uniaxial tension with low compression in the
perpendicular direction, which results in low compressive
strength predictions. However, the low strength is
probably unrealistic, because the tensile damage due to
cracking causes relatively little damage in the
perpendicular direction. This also applies in the case of

both biaxial tension-compression and triaxial tension.

However, compressive crushing causes significant
damage in all perpendicular directions. This is because
high compressive stresses cause distributed microcracking
in the concrete matrix, which would tend to weaken the

concrete in all directions. A simple biaxial example of
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this is the reduction in tensile strength due to high

uniaxial compression.

Taking into consideration the above discussion, the

following rules are stipulated for mixed modes (Elwi and

Murray, 1980)

a) Triaxial compression - the uniaxial stress/strain

parameters are determined from the ultimate surfaces

described in Section 3.2.4.

b) Compression-tension modes - the tensile stress/strain
parameters are determined from the ultimate surfaces.
The compressive strength/strain is set equal to the
uniaxial strength/strain, f., or €y if the calculated

values from the ultimate surfaces are greater than

these quantities.

c) Triaxial tension - the tensile stress/strain parameters

are set equal to Oy, Or &, if the calculated values
from the ultimate surfaces are less than these

quantities.

The equivalent uniaxial parameters for the three
orthotropic directions are now completely defined. It is
next necessary to examine the change in elastic moduli

which occurs with increasing strain levels.
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3.2.6 Change in Elastic Moduli

Figure 3.7 shows two typical loading/unloading
segments on a uniaxial compressive stress/strain curve.
Before the ultimate strength is reached (Path A-B), the
concrete unloads along the initial modulus, E. However,
once the descending branch portion of the curve is reached
(Path B-C), extensive microcracking in the concrete matrix
causes degradation in the elastic modulus, and the
material unloads along a reduced modulus, E,. Similar

effects occur for concrete in tension.

Early attempts to model this stiffness decrease with
increasing strain levels have mainly concentrated on using
the tangent moduli of the uniaxial stress-strain curve.
However, this approach can cause numerical instabilities,
especially when negative moduli are used in the descending
branch portion (Elwi and Murray, 1979). Later attempts
used zero moduli (Massicotte et al., 1990, and Ramm and
Kompfner, 1984). 1In this study, in order to maintain
numerical stability, the concrete is modelled as a
fracturing material. And for simplicity, no plastic
strain is introduced. This is done by utilizing the
secant modulus of the uniaxial stress—-strain curve as the

strain level increases.

Values of Poisson’'s ratio are affected significantly

by the direction of applied uniaxial strain. If the
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uniaxial strain is compressive, the subsequent
microcracking in the concrete results in significant
lateral expansion. The curve fit from Elwi and Murray
(1980) of uniaxial data from Kupfer, Hilsdorf, and Rusch
(1969) is adopted as an adequate description of Poisson's

ratio variation in compression

V = vo(1 + 1.3763a - 5.360% + 8.58600°%), [3.19a]

where
o = €./€c. [3.19Db]

A thermodynamic limit of 0.5 is placed upon Poisson's
ratio in compression, although there is a possibility of
dilatation which corresponds to unstable microcrack
propagation (Kotsovos and Newman, 1977). This dilatation
would result in a decrease in Poisson's ratio after the
concrete ultimate strength is reached. Due to the lack of
experimental data pertaining to Poisson's ratio in the
post-peak range, the incompressible limit of 0.5 is

retained here.

In tension, Poisson's ratio remains constant until a
definite pattern of microcracks in the mortar forms. This
occurs at approxiamtely 50% of the ultimate tensile
strength. After this point, Poisson's ratio gradually
decreases as the microcracking becomes more extensive

until a macrocrack forms across the cracking plane. The
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crack is then wide enough so that no lateral movement
occurs due to the applied stress. The expressions used by
Elwi and Murray (1980) are adopted for Poisson's ratio in

tension
Vi = Vg 0 < €,/8. £ 0.5, [3.204]
Vi = 2Vo (1 - €;,/€ic) 0.5 < €;,/€;c < 1.0, [3.20b]
Vi = 0.0 1.0 < €;y/€ic. [3.20¢]

Note that Equation 3.20b implies a linear reduction

in Poisson's ratio between 50% and 100% of €ic.

The shear modulus, Gi;;, is reduced as tensile and
compressive strains are increased. 1In tension, this is
due to the reduction in shear interface transfer stiffness
as the crack widens, whereas in compression the shear
modulus reduction is due to the proliferation of
microcracks throughout the concrete matrix Many
investigators (eg. Balakrishnan et.al, 1987) have proposed
stiffness reductions with increasing tensile strain. 1In
this study, a simple linear modulus reduction with
increasing tensile and compressive strain is assumed. The
strategy used for the shear modulus reduction is to
determine the direction of greatest damage, and use that
direction as a basis for reducing the modulus. The

estimate of damage used here is the reduction in normal
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moduli, E;, relative to the initial Young's modulus. The

reduction in shear modulus can be written as

G2 = Glzo(EEi )r [3.21]

where the modular ratio, E;/Ejo, is taken as the smallest

value for the in-plane directions, namely i = 1 and 2.

It was mentioned previously that co-axiality between
principal stresses and strains was maintained. Previous
studies have concentrated on expressing the shear modulus
as a function of the total normal stresses and strains
which maintains automatic co-axiality. In this study, it
is assumed that the principal stress model accurately
describes concrete constitutive behaviour. In other
words, the influence of shear stresses on the orthotropic
planes is small. For this reason, the total shear stresses

are set to zero for each stress increment.

The local constitutive description for the concrete
material is now complete. It is next necessary to
describe and evaluate the nonlocal (mesh dependent)
behaviour which occurs due to strain localization in

compression and tension.

3.2.7 Nonlocal Softening Behaviour

In the recent past, the phenomenon of strain

softening in concrete under tensile stresses beyond the



57

ultimate tensile strength has been extensively
investigated. It is generally agreed that the post peak
response of concrete using point (constitutive) models can
not be objective with respect to mesh refinement unless
the descending branch of the tensile stress strain curve
is chosen to account for strain localization in the crack

process zone (Bazant and Oh, 1983).

Although extensive work has been carried out on
concrete in tension, the problem of strain localization
for concrete in compression has yet to be addressed. Many
different constitutive models utilize uniaxial compressive
stress—strain curves that include softening branches.
Using such a constitutive model will result in non-
objective behaviour in compression similar to that
developed in tensile models. 1In addition, there is
experimental evidence of strain localization in
compressive cylinders from the results of tests performed
by Chen and Yamaguchi (1985), who found that the slope of
the descending branch in compression was strongly

influenced by the cylinder length.

It is proposed here to use a unified approach for
both tension and compression localization following the
approach adopted by Bazant and Oh (1983). The area under
the descending branch is related to a fracture crushing

energy which is assumed to be a material constant.
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Although readily available for uniaxial tension, crushing

energies in compression have not yet been defined.

In order to describe the strain softening phenomenon,
it is best to use a simple uniaxial model such as that
used by De Borst (1985). Figure 3.8a shows a tensile
specimen discretized with m elements along its length.
These elements can be idealized as a series of springs
along the length of the specimen, shown in Figure 3.8a.
The material stress-strain curve is approximated by two
linear segments (see Figure 3.8b). The descending branch
of the curve reaches zero stress at a multiple of the
strain at which peak stress occurs, ng€.. If all springs
have identical properties and loading is uniform, the
springs deform uniformly, and the output stress-strain
curve matches the input stress-strain curve everywhere.
However, if one spring is deformed more than the others
(representing a fracture process zone) in the descending
branch of the stress-strain curve, this spring will follow
path A (loading) in Figure 3.8b, while the other springs
will follow path B (unloading). The cumulative effect of
this structural response gives rise to the incremental
stress-strain relationship of the descending branch, which

can be expressed as (De Borst, 1985)

AG = —L—IEAs. [3.22]

3P
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It is readily seen from Equation 3.22 that as the
number of elements, m, increases, the decrement in stress,
Ao, increases for constant n and Age. This results in a

higher rate of softening with increasing mesh refinement.

The crack band theory as proposed by Bazant and Oh
(1983) removes this localization by utilizing the fracture
mechanics model proposed by Hillerborg (1985) in a smeared
sense. Figure 3.9 is a plot of stress versus crack
displacement for a tensile specimen. It is found from
experiment that this curve is invariant with respect to

specimen size.

The area under the stress versus crack displacement
curve is defined as the fracture energy, Ge¢, which is the
amount of energy consumed by crack formation per unit area

of the crack plane. This can be expressed as

Wmax
Ge = odw, [3.23]
0

where dw is the crack elongation in the fracture zone, and

Wnax 18 the crack displacement at zero stress.

The deformation in the crack zone, W, can be viewed

as being caused by strains within the fracture zone

he
W =f edl, [3.24]

0
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where h. is the width of the fracture zone. If the strain
is uniformly distributed along the width of the fracture

zone, Equation 3.24 can be rearranged to form

G &
2t = ode. [3.25]
he 0

The quantity €, is the strain at which the stress
level is zero. Stated simply, the area under the
descending branch of the input uniaxial stress strain is
equal to the fracture energy divided by the fracture zone
width. In theory, this fracture width reduces to zero in
the limit. However, due to inhomogeneities in the
material, this width is several times the aggregate size
(Bazant, 1985). In conventional finite element analysis,
the width of the fracture zone is restricted to the

spacing of the Gauss sampling points.

As mentioned in Section 3.2.3, tensile and
compressive uniaxial descending branches are described by
exponential decay parameters, k. and k. respectively.. It
is necessary to determine the required value of the decay
parameters for a given mesh refinement and fracture or
crushing energy. The method of determining k¢ will be
discussed first; the expressions that result can then be

used to determine K.
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The area under the input uniaxial descending branch

for tension or compression, A.4, is given by the expression

Beg = ]“O'dz-:. [3.26]

0

Note that A,y is used to describe the uniaxial
descending branch in both tension and compression. The
upper limit of the integral is infinity because the stress
is zero at infinite strain. Substituting Equation 3.11a

into Equation 3.26 and integrating yields

Acg = S, [3.27]
ke
But, for tension
A = 3L, [3.28]
he

Equating Equations 3.27 and 3.28 yields the following

expression for ke

ke = Jtbe [3.29]
G
Values of fracture energies, G¢, are readily

available for concrete in tension.

As discussed earlier, it is proposed to use a unified
method to describe the strain localization which occurs in
both tension and compression. It is assumed in this study

that a crushing energy in compression, G.., exists, which
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is independent of specimen size. From Equation 3.29, it
is then possible to relate the compressive decay

parameter, k., to the crushing energy, Ge:

ko = Selfle [3.30]
Ger

However, unlike the case of uniaxial tension there
are no known values for crushing energies. Link and Elwi
(1989) performed a parametric study of uniaxial concrete
cylinders, attempting to relate A.q to the area obtained
from a concrete cylinder test, A.. The study included
three different mesh refinements, two different concrete
strengths, and four different input areas for a total of
24 analyses. From the parametric study, it was possible

to relate the crushing energy, Ger, to Ac

Gor = 209.2A%:25, [3.31]

Details of the study are given in Appendix A. It
remains to obtain the descending branch area for concrete

cylinders of different strengths.

Figure 3.10 is a plot of effectiveness factors, «, at

1.5% strain versus concrete strengths obtained from
Neilson (1984). The effectiveness factor is an attempt to
estimate strength reductions due to lack of ductile
behaviour in concrete. Figure 3.11 shows that the

effectiveness factor is a measure of the stress level of a
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perfectly plastic stress block with the same area as a
concrete cylinder specimen. From this plot, descending
branch areas can easily be obtained. The total area

underneath the plastic stress block is calculated as
Act = OOE,. [3.32]

If the area under the ascending branch, Aca, is
subtracted from Equation 3.32, the area under the
descending branch, A., is left. Assuming the ascending
portion of the stress-strain curve to be parabolic, A. can

be written as

A. = OO, - §ccec. [3.33]

Data for the effectiveness factor, o, is available to
a maximum strain of 1.5%. Setting g, equal to 0.015,
substituting Equation 3.33 into 3.31, and 3.31 into 3.30,
the following expression for k. is obtained

3 hc
209.262-25(0.0150 - 0.667¢.)

ke [3.34]

Equations 3.30 and 3.34 complete the description of
the concrete constitutive model.
3.2.8 Implementation of Constitutive Model

Figure 3.12 is a flowchart of the proposed

constitutive model. Given global stresses {0}, global

strains {€}j, and local orthotropic moduli {E} at the start



of an iteration, it is desired to obtain updated

quantities {o)i*!, {e}i*!, and {E}'"' at the end of the

iteration.

In step 1, the global strains are updated; in step 2,
the principal strain components and transformation angle,
B, are determined. Since the principal strains are used
as reference for the orthotropic axes, the global
stresses, {0Ji, the global strain incremeht, (ASE, and the
global constitutive matrix, Bﬂé, are transformed to these

local axes. A trial local stress tensor, {cﬁgl is then

calculated in step 3.

Equivalent uniaxial strains, {g)i}!, are obtained in
step 4 by dividing the trial stresses by the orthotropic
secant moduli, (EF. This method of calculating equivalent
uniaxial strains is in contrast to previous calculation
methods, in which the stress increment was divided by the
tangent modulus to obtain the equivalent uniaxial strain
increment. This strain increment was accumulated over the
loading path to obtain the total equivalent uniaxial
strain measures (Darwin and Pecknold, 1974). However, as
mentioned earlier, the use of tangent moduli in the
softening region can cause numerical instabilities in the
solution. The calculation procedure adopted here is
consistent with the use of secant methods, which have

proven stability.

64
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Using Equations 3.12-3.18, it is then possible to
evaluate the uniaxial curve parameters, {Gk and kﬂc in step
5. In step 6, the stress tensor and elastic properties
are updated in each of the orthotropic directions. Figure
3.13 shows an example of the updating process for uniaxial
compression. The trial stress level, Gﬂ?, is checked
against the stress level computed by using Equations 3.9-
3.11. If the material is loading (increasing compressive
strain), the stress level is updated to of”, which falls
on the calculated stress-strain curve. This is denoted by
path A in Figure 3.13. The orthotropic elastic modulus,
Ei, is also updated as a secant modulus to E*!., If the
material unloads, the orthotropic modulus retains its
original value, and the stress is decreased along this
line, which is denoted by path B. Orthotropic Poisson's
ratios and the shear modulus are updated by using
Equations 3.19-3.21. The new local constitutive matrix,
[Cﬁfl, is formed by the new elastic properties in step 7.
Finally, the stresses, strains, and constitutive matrix

are transformed back to the global axes in Step 8.
3.3 Interface Element Description
3.3.1 General

As previously mentioned in Section 3.1, a proper
finite element model of composite ice resisting walls must

include the effects of frictional slippage and separation
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along the steel-concrete interface. Many attempts have
been made in the past to obtain a contact algorithm which
converges quickly and provides accurate results. Two main
methods have been researched; these are the penalty

function method, and the Lagrangian multiplier method.

The penalty function method attempts to enforce
conditions of contact by the use of stiff springs
(Herrman, 1977) or thin layer elements placed between the
contact surfaces (Desai, 1982). The method has the
advantage of easy finite element implementation; in
addition, no extra degrees of freedom are introduced in
the stiffness equations as for the Lagrangian multiplier
method. However, overly stiff springs or thin layers may
cause ill conditioning in the stiffness equations,

resulting in a substantial loss of accuracy.

The Lagrangian multiplier method enforces conditions
of contact by using Lagrangian multipliers as extra
degrees of freedom in the stiffness equations. These
multipliers represent the constraint forces which are
necessary to maintain contact. The augmented set of
equations has no conditioning problems, hence, accuracy is
increased over that of the penalty function method.
However, the extra degrees of freedom increase the size of
the stiffness matrix, resulting in increased solution

times. It was decided that accuracy was of paramount



67

importance, and that the extra solution time required by
the Lagrangian multiplier method was negligible, hence the

Lagrangian multiplier method was chosen.

Several variations of this method are available,
including node to surface contact (Bathe and Chaudhary,
1985), and node to node contact (Katona, 1984). The former
method is more suitable for large deformation contact
problems, and since the composite ice wall problem can be
adequately described with small displacement theory, the
node to node contact algorithm derived by Katona (1984)

was adopted. A brief description of this method follows.
3.3.2 Constraint Equations

The contact algorithm utilizes the classical
Lagrangian multiplier equations derived from virtual work
principles. The augmented stiffness equations can be

written in the form (Katona, 1984)

[KCTJf Aq \={AQ } [3.35]

cCo ‘ AL l Aa

where hﬂ is the usual finite element stiffness matrix, and
Rﬂ is a matrix which enforces constraint conditions
between displacements. The constraint condition can be

written as

[claq) = {aa). [3.36]
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For the contact problem, the quantities {Aa} and LAK}
represent incremental nodal separations and contact
forces, respectively. Since the node to node contact
method does not introduce any stiffness terms in ﬁﬂ, the
constraint equations can be separated from the augmented
stiffness matrix and assembled in the global stiffness
matrix as separate interface elements. The "stiffness"”

matrix of the interface elements can be written as

[Kline = [O CT]. [3.37]

co

These elements, hereinafter referred to as the "gap
elements", also have analogous "load" vectors which can be
expressed as

{A0}ine ={ 0 } [3.38]
Aa

ngt{ffness" matrices and "load”™ vectors can be
written for three basic states of interface behaviour;

fixed, slip, and free.
3.3.3 1Interface States

Before describing the interface states of behaviour
in terms of finite element matrices, it 1s necessary to
define the convention used to describe the interface
geometry. Figure 3.14 shows the nodes which are assumed

to be contact pairs. The normal to the interface is
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inclined at an angle ¢ with the global axis, and the nodes
are separated in the local coordinate directions by

distances Ay and A;, respectively.

For the fixed state, two constraint equations are
required to describe the relative movement between nodes.

These are expressed in terms of global axes as

[ Au1

-cos$ -sind cosd¢ sind || Av, /Aa [3.39]
\ .

v, ot
-

sing -cos¢ -sind cosd || Au,

AVZ

where Aa and Ab are, respectively, the relative normal

and tangential movements to be imposed on nodes 1 and 2.
If the nodes are coincident, the quantities Aa and Ab are

zero. However, if overlap exists, these movements can be

nonzero.

The slip state requires one constraint equation
restraining relative normal movement and the specification

of the incremental tangential constraint force

Au,
Av,
Au,
Av,

(—cos¢ ~sin¢ cos¢ sin¢ X

Ak = T, [3.40D]



70

In this case, the quantity T represents the
tangential force in excess of the allowable sliding force.

Assuming Coulomb friction, T is written as
T = A - My, [3.41]

where pis the friction coefficient, and Ay and Ay are the
accumulated normal and tangential forces respectively at

the nodes.

The free state requires the specification of both

incremental constraint forces as follows

Ahy = N, [3.42a]

Ahy = T, [3.42p]

where N and T are the negative total accumulated interface

forces, and are given by
N = -Ay, [3.43a]

T = -Arp. [3.43D]

The "stiffness" and "load" matrices used for each
state are shown in Table 3.1. The values N and T are the
specified normal and tangential forces to be used in
calculating the "load" vector. Criteria for changing
states within an iterate, such as fixed to free, are next

described.



3.3.4 Criteria for Changing Interface States

As the interface forces and displacements are
updated, it becomes necessary to update the interface
state for changes in loading. For example, if a fixed
interface node pair is placed under tensile loading, the

nodes separate, and the state is then free.

Table 3.2 is a decision matrix which gives criteria
for changing states within an iteration. In order to
change from fixed to slip, the frictional force UAy must
be overcome. The change in fixed or slip to free occurs
when tensile contact loads are encountered. Note that

there is no slip to fix state change. Once an interface
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pair slips, it is assumed to maintain the slip state until

the end of the load step. If additional load steps are
imposed, all slipped points are reset to fixed. In order

to change from free to fixed, the nodes must penetrate

each other. Table 3.3 shows the specified values required

in the "load” vector to maintain the given state changes.

The description of the interface element is now
complete. It remains to describe the implementation

procedure.

3.3.5 Implementation Procedure

Figure 3.15 is a schematic of the procedure used in

the finite element implementation of the interface model.
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Given the following values at the start of a load
increment; the contact forces lﬁ and k%, the accumulated
nodal separations, A; and A%, the interface "stiffness”
matrix hﬂim, and the interface "load" vector {AQﬁht, it is

i+l

IATI

. . o4 i+1 i+1 i+1
desired to obtain updated quantities KN+, ;+ ’ A§+

; i+1
[K]i;%: and ‘AQ}i;t at the end of the load increment.

In step 1, the contact forces and nodal separations
are updated. The interface state is then checked in Step
2 by using Table 3.2 to see if a change in state is
necessary. Table 3.1 is used to update the interface
nstiffness" matrix, and the "load" vector is updated in
Step 3 by using Table 3.3. Convergence to the correct
states is measured by using the convergence criteria for

the global finite element system.
3.4 Steel Constitutive Model

A simple bilinear Von Mises isotropic hardening steel
model was adopted to represent the loading-unloading
behaviour in the steel plates. The isotropic hardening
model assumes that the yield surface expands uniformly
with plastic deformation. This was felt to be adequate,
since significant loading-unloading phenomena, such as
hysteresis loops due to cyclic loading, were not
considered in the study. 1In these cases, kinematic
hardening, where the yield surface translates with

increasing plastic deformation, would be more appropriate.
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The theory and implementation of Von Mises hardening
models is well documented in the literature (Owen and
Hinton, (1985), Chen (1982), Bathe (1982)) and, therefore,

will not be repeated here.
3.5 The Displacement Control Method

As described earlier, the evaluation of structural
ductility in ice-resisting walls requires the
determination of load-deformation behavior after the peak
load has been reached. Traditional methods, such as the
Newton-Rhapson algorithm, fail if the applied load
decreases with increasing deformation. It is therefore
necessary to adopt a solution strategy which can capture

this important regime of behavior.

Two methods are commonly used to compute post-peak
response in structures; the constant arc length method,
and the displacement control method (Ramm, 1980). The
displacement control method is adopted here because of its
simplicity, and the availability of a stable displacement

control point (the midspan of the tested specimens).

The strategy of the displacement control method is
best described throﬁgh the use of a simple example.
Figure 3.17 shows the case of a beam which deflects from

its initial configuration at A to a new configuration at B

under a load increment, AP. The displacement increment
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between A and B at midspan is denoted by Agas. It is
desired to apply a specified displacement increment at

this location, and evaluate the change in load, AP, that

is consistent with this displacement increment.

To achieve this, it is necessary to decompose the
displacement increment, {Aq), into two parts; one part
based on the unbalanced loads,{AqyinI, and one based on a
reference load vector, {Aq)“JI, which is parallel to the

applied load vector
(Aq) = ar{ag)®* + {aq) V. [3.44]

The superscripts "i" represent the iteration number,
since the strategy is iterative. The quantity Al(“ is a
scaling factor, which represents the amount that the
reference load vector displacement must be scaled to
obtain the correct control displacement, Agas. The
quantities {Aq}UAI and.{Aq}(i)II are obtained from (Ramm,

1980)
[K]{aq) ™™ = {ao)™, [3.45]

[K] D {aq)MT = (r¥)D. [3.46]

The load vectors {AQ) and {R*} are unbalanced load and
reference load vectors respectively. Figure 3.16
graphically illustrates the two displacement components in

Equation 3.44 in global displacement space.
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It now remains to compute a scaling factor, AK(”,
which gives the correct control displacement, Aqgag.
Equation 3.44 must hold for the control displacement as

well as the global displacement, ie.
Adas = ALVAqas’ T + Agls' ™. [3.47]

An expression for Y is obtained by rearranging

Equation 3.47

: (i) 11
ALY - Adas - Adpp [3.48]

Agss*

Figure 3.17 graphically illustrates the procedure.
On the first iteration (from point A to point 1 in Figure
3.17), the unbalanced loads are theoretically zero.

Equation 3.48 then reduces to

Y - Adas [3.49]
Agas’

For all subsequent iterations, the control
displacement has already been applied. This means that

Aqas is zero, and Equation 3.48 then becomes

) Ag D IT

ALY = - 298 [3.50]
Figure 3.18 is a flowchart of the procedure used in

implementing the displacement control method. Given the

reference load vector, {R*}, and the specified control

displacement, AqQas, it is desired to obtain the updated
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load and displacement levels, {P} and {q}, which are

consistent with the control displacement level.

In steps 1 and 2, the scaling factor for the first
iterate, AA(D, is obtained from Equation 3.49. The load
and displacement vectors, {P} and {q}, are updated in step
3. These three steps represent the movement to Peoint 1 in
Figures 3.16 and 3.17. 1In step 4, the unbalanced load
vector, {AQ}Q), and stiffness matrix, [K]'Y, are updated.
These quantities are then used to determine the
displacement components {Aq)”JI and.{Aq}UJII in step 5. The
correct scaling factor, AK(“, is determined in step 6 by
using Equation 3.50. Finally, the load and displacement
vectors are updated in steps 8 and 9, and represent the
movement from Point 1 to Point 3 in Figures 3.16 and 3.17.
Iteration is performed until the desired solution accuracy

is obtained.
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"Stiffness"”
State U4 2 Uz Vo AN AT "Load"
0 0 0 0 -C -S 0
0 0 0 0 -S -C 0
0 0 0 0 Cc -S 0
Fixed
0 0 0 0 S Cc 0
-C -S Cc S 0 0 Aa
S -C -S o 0 0 Ab
0 0 0 0 -C 0 -ST
0 0 0 0 -S 0 CT
0 0 0 0 o 0 ST
Slip
0 0 0 0 S 0 -CT
-C -S o S 0 0 Aa
0 0 0 0 0 1 T
0 0 0 0 0 0 CN-ST
0 0 0 0 0 0 SN+CT
0 0 0 0 0 0 -CN + ST
Free
0 0 0 0 0 0 -SN-CT
0 0 0 0 1 0 N
0 0 0 0 0 1 T
C=cos¢
S=sind
Table 3.1 "Stiffness"™ and "load" quantities

for interface states



lteration i+1 Fix Slip Free
i
. An<O An<O
F
Ix arepin | Arspan | MO
Slip — AnN<O AN>O
Free An< O —_— AN>0

Table 3.2 Decision matrix for interface states

fteration i+ 1 Fix Slip Free
i
Fix Aa=0 Aa=0 N=’)\,N
Ab=0 T=prn-A1| T=a7
. Aa=0 N =-AN
Slip T=pAN-AT| T=-At
Aa=-AN N=0
Free Ab=0 _— T=0
Table 3.3 Specified values for "load" vector
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Applied loads
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Concrete

‘ infill \ '{
72 | \/ 72

Steel plates Web plates

Figure 3.1 Typical C-FER composite ice
wall specimen
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nodal Tension
zone tie

Figure 3.2 Strut and tie action in a composite
wall
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Figure 3.3 Load vs. midspan deflection of

composite ice wall
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Figure 3.4 Proposed uniaxial stress-strain

curve for concrete
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Figure 3.5 Deviatoric trace of Willam-Warnke
strength surface
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N
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Figure 3.6 Rendulic trace of Willam-Warnke
strength surface



Figure 3.7

Elastic modulus degradation
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Figure 3.8a Spring analogy for strain
localization

Figure 3.8b Stress-strain paths for strain
localization
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Crack width, w

Figure 3.9 Fracture energy definition
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Figure 3.10 Effectiveness factor versus
concrete strength
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o * A1 = area under uniaxial curve
Az = area under uniform stress block
cc p— —— ——
A1 = A2
A4

QGC¢

A2

€ €

Figure 3.11 Effectiveness factor definition



Given {0}, (e}, {Ae}g, [Clg (E}:, (vIY, Gl

1) Update global strains

()it = {e1y + {Aelg

2) Refer {e}i'!, (0} [Clg to local coordinate

system
e}y = (e11't, B
B = transformation angle used in transformation

matrix [T]
(o}l = [T1{o}}

[c1i = [T17[CI5IT]

3) Obtain a trial local stress tensor
{AG}1 = [Cli{Ael,

(o’ = {o} + {Ao)y

4) Calculate equivalent uniaxial strains
(e = (o)iT/(E)s

{E}; = orthotropic direction moduli

5) Define uniaxial curve parameters O., €.

1+1
}

{c}1"" = O¢ Equations [3.13]-[3.18],Section 3.2.4

Figure 3.12 Flow chart for constitutive model
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i
{eY = e

6) Update stress tensor {O'}i”, direction moduli

{E}**?, poisson's ratio {v}**!, and shear modulus Gi,

(o = (o Equations [3.9]-[3.11]
(B} = (E}*? Secant modulus update
{(vit = (vi*? Equations [3.19]-[3.20]
G, = Gi3’ Equation [3.21]

7) Compute [C]i*!

(e}, it 6if* = (1t

8) Refer quantities back to global system
{61y = T1%{oi"

[cii*t = [rirc1dttr®

Steps 1-8 obtain
(orgt, (eyg’t, ciitt, (Eittl, vttt el

Figure 3.12 (cont'd) Flow chart for constitutive model
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Figure 3
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.13 Stress updating example
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Figure 3.14

Interface geometric description
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Given 1;, x;r AA-N: Ax'.l'r A;r A;I dAur dA!r [K]:jl.'ntl (AQ}int

1) Obtain trial constraint forces and gap
displacements

A=Al ANy
x;+l = A,; + A?&g

AT = AL + dAg
A;+l = A; + dAT

2) Update interface state and "stiffness" matrix

[KE.e = [RK}EEL Tables 3.1, 3.2

3) Update "load" vector

{AQi.e = {AQ)it: Table 3.3

Steps 1-3 obtain Az, A", Ay, AFY, [REi, {Aoktl

Figure 3.15 Implementation procedure for interface element
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(aq) = a2 aq)"

{a)

Figure 3.16 Displacement control method in
global displacement space

AqhE

AQhd

dc

Figure 3.17 Displacement control method in
local displacement space
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Given (R*}, Aqas

1)

2)

3)

1)

5)

6)

7)

8)

9)

10)

K]V {Aq) T = (R*) = Aqiy®

A = Ada gquation 3.49
Agin*

{p} = {p} + ALV {R¥)
{a} = {a) + A V{ag)?
update [KJ*, {ag}?

(1) I

K]V {Aq) T = (R*) = Aqi}

K] {aq) ™™ = {ag) = Aqfy)™

(1) 11

AV = - AJA(*;T Equation 3.50
Aqay

() = {p} + ALY (Rx)

{q) = {q) + P {aq)®* + {aq) P "

Go to 3. Iterate until desired accuracy is

obtained.

obtain (P}, {Q).

Figure 3.18 Flowchart of displacement control method
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4.0 FINITE ELEMENT ANALYSIS OF ICE RESISTING WALLS

4.1 Introduction

The constitutive models for steel, concrete, and
interface elements have been implemented into a finite
element code for two dimensional structural analysis. The
finite element code, SINAAPS, (an acronym for the Static
Incremental Nonlinear Analysis of Axisymmetric and Planar
Structures) represents a modification of the previous
FEPARCS (Finite Element Program for the Analysis of
Reinforced Concrete Structures) code developed by Elwi and
Murray (1980). Major enhancements have been added to the
code, including the ability to trace post-peak load-
deformation responses by using the displacement control

method (Elwi, 1990).

Three different test series were chosen for the
verification of the finite element model. These included
the C-FER CF test series, the C-FER TF test series
(zimmerman and Stephens, 1990), and the VTT test series
(Hassinen, et al., 1989). The combination of the three
test series encompasses a variety of loading types and

boundary conditions which may be encountered in the field.

The chapter layout is as follows. Firstly, the three
test series are described in greater detail. Next, the

finite element models of selected walls from each series
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are presented. Results from the analyses are then

described and compared with test results in Chapter 5.

4.2 Test Series Description

4.2.1 CF Series

The CF series represents a total of fourteen 1/4
scale beam specimens which were tested by Mr. Tom
Zimmerman of C-FER, as part of his Ph.D. thesis research
at the Department of Civil Engineering, University of
Alberta. Figure 4.1 shows the general configuration of a
typical test specimen. The top and bottom plates are
connected by welds to a series of continuous vertical
diaphragm plates. Concrete infill was then placed between

the shear cells to form the composite wall.

Figure 4.2 shows the test frame used to load the beam
specimens. The specimen is loaded along the bottom plate
by a series of 45 tonne hydraulic loading jacks which bear
against a large concrete reaction beam. The beam is then
supported at two points against a steel reaction head tied
down to the concrete block. Loading jacks were placed
along the ends of the specimens in order to simulate
continuity at the supports. Roller bearings were used for
the loading jacks so that the loading would stay normal to

the top plate surface. Roller bearings were used at
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reaction points so that the reactions were vertical at all

times.

Figure 4.3 shows the basic configuration of all the
specimens in the CF series, and Table 4.1 is a brief
summary of all the series results. The series represents
a variety of different concrete strengths, plate
thicknesses, and span to depth ratios. As the specimens
were loaded, large diagonal cracks appeared in the cells
adjacent to the supports. These shear cracks caused
little degradation in the wall stiffness. As well, a
flexural crack occured in the midspan region. Shear
failures, reported for all specimens except CF-2, were
initiated by concrete crushing in the support vicinity,
followed by general crushing and cracking distributed
throughout the cells adjacent to the support. After the
peak load was reached, the load gradually decreased until
a residual load level was reached. Figure 4.4 shows a
typical failed specimen, and Figure 4.5 is a typical load
versus midspan deflection plot. The ultimate load for all
walls except Specimen CF-8 was reached before the bottom
steel plate yielded. Residual strengths after the peak

load was reached varied from 50-98%.

After examination of the test results, it was decided
to perform analyses on specimens CF-4, CF-5, CF-8, and

CF-13. Specimen CF-4 was the first wall analysed, and is
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similar in loading and geometry to specimens CF-6 and
CF-7. Specimen CF-5, which had a relatively low
compressive strength of 36.3 MPa, was chosen to see
whether the model could accurately determine the influence
of concrete strength on the peak load. Specimen CF-8
represents a change in stiffener spacing near the support,
and has properties which are similar to specimen CF-11.
Lastly, specimen CF-13 represents a change in loading

geometry, and is similar to specimen CF-14.

A number of walls were not considered for analysis.
Specimens CF-1 to CF-3 were excluded because the beam
rollers were set on Teflon pads, which provided in-plane
restraint. The magnitude of these restraint forces would
be difficult to estimate. Specimen CF-10 was rejected
since extra shear reinforcement was provided in the shear
cells, rendering the modelling difficult. Since the
models were restricted to symmetric loading, specimen CF-9
was excluded. It was felt that CF-8 would be
representative of the effect of stiffener spacing, hence

specimen CF-12 was not analysed.

It is felt that analysis of the four walls mentioned
above is representative of eight of the fourteen walls

tested.
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4.2.2 TF Series

The TF series was a research program conducted by
C-FER (Zimmerman and Stephens, 1990) to assess the effect
of combined in-plane and transverse loading on shear
capacity. Eight wall specimens were tested in all.

Figure 4.6 is a typical TF ice wall specimen. The
configuration is similar to that of the CF series, except
that the wall specimen is welded to a pair of steel legs
filled with concrete which are meant to simulate the
effects of bulkheads. In addition, a pair of tie-down
plates are placed at the ends of the specimen to maintain
support continuity. The specimen is attached to a loading
reaction frame, as shown in Figure 4.7. The reaction
frame is a sequence of two large C sections welded
together, and can accommodate both tensile and compressive
in-plane loads applied by eight 60 tonne hydraulic jacks.
Transverse loading was applied by using a distribution
beam which transferred load from the MTS loading head to a
series of roller assemblies on the specimen. A series of
rollers was used at the load reaction points for TF-1 to
TF-4, and is shown in Figure 4.8a. Because an uneven load
distribution was obtained from this setup, a more
sophisticated roller setup was used for TF-5 to TF-8 (see
Figure 4.8b). The second roller setup included a rocker
assembly to allow for joint rotation as well as

translation.
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The specimens were first subjected to in-plane
loading, then transverse loading was applied. Stroke
control was used so that the post-peak response could be

captured.

Table 4.2 is a summary of all the series results.
Specimens TF-1 to TF-4 were subjected to longitudinal in-
plane loading, while specimens TF-5 to TF-8 were subjected
to tensile loading. The failure mechanism was much the
same as for the CF series, with diagonal cracking and
crushing occuring in the cell adjacent to the supports and
in the beam span where loading was applied. However. the
first crushing did not always take place nearest the
support, but rather at the top right hand corner of the
shear cell. Figure 4.9 shows a typical failed specimen.

Residual strengths varied from 70% to 90%.

Three walls were analysed from this series. These
included specimens TF-1, TF-2, and TF-4. The objective
was to test the finite element model's ability to evaluate
the effect of confining load upon shear capacity.

Specimen TF-3 had no in-plane loading, and since the CF
series also had no in-plane loading, it was felt that an

analysis of TF-3 would be redundant.

From the test results of TF-5 to TF-8, which were
subjected to tensile axial forces, it is seen that there

is a small variation in the ultimate load of these
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specimens. This is probably because the concrete
separated from the steel when the axial load was first
applied and thus transmitted no tensile axial force
through the concrete. Hence, the concrete would act as
though no axial load was imposed, and the ultimate load
would be similar to a specimen with no in-plane load if
the specimen failed in shear. Comparing the ultimate

loads of TF-5 to TF-8 with TF-3 confirms this.

4.2.3 VTT Series

The VTT test series was conducted at the Technical
Research Centre of Finland (Hassinen, et. al., 1989), and
consists of four composite ice walls. The intent was to
determine the ultimate capacity of a specific wall
configuration, shown in Figure 4.10, under static and

cyclic loading.

Figure 4.11 shows the loading apparatus used in the
testing. Two concentrated loads were applied by means of
a distribution beam which transferred the load to two
rollers. Rollers were also used at the beam reaction
points. The cyclic loading was applied for 2000 cycles at

a load range of 800 kN.

Table 4.3 summarizes the series results. It is seen
that, since the specimens were of near identical geometry

and material properties, the failure loads are similar for



the static tests. It is also observed that the cyclic
loading tests show no decrease in strength due to fatigue.
Failures occurred in shear which were similar to both the

CF and TF series.

Since all tests were nearly identical, it is only
necessary to perform one analysis in the VTT series.

Specimen VTT3 was chosen as the representative wall.

4.3 Finite Element Models

4.3.1 General

The determination of proper material properties for
concrete and steel require extensive testing. However,
the three test series described above reported a limited
amount of material data. Hence, it is necessary to use
empirical relationships between the reported and
undetermined parameters to obtain estimates for a complete

description.
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For concrete, a large amount of empirical data exists

relating the concrete uniaxial strength, fé, and other
material data. The initial modulus of elasticity is

estimated by using the ACI equation (ACI, 1989)

E = 5000V f¢. [4.1]

MacGregor (1988) determined that the multiplying

factor of 5000 should be modified to 4400 in the Edmonton
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area to account for local aggregate stiffnesses. This
modified value is adopted here in the CF, TF, and VTT
series, even though the VIT series was conducted in
Finland. It was felt that the error introduced into the

VITT series results would be small.

The uniaxial strain corresponding to the ultimate
stress, €., shows little variation with changing f. (ACI,
1982). Typical values range between 0.002 to 0.003. A

value of 0.0025 was chosen here.

The uniaxial tensile strength, f{, is usually hard to
determine experimentally, and is usually, approximately,

taken as
£. = 0.33VEL. [4.2]

To complete the description of the Willam and Warnke
(1975) strength surface, it is necessary to obtain the
biaxial strength and strain, fo and €x, and the high
strength and strain points. In the absence of any other
data, values from Elwi and Murray (1980), which were
developed for 40 MPa concrete, were adopted, and are

listed in figure 4.12.

Experimental values for the fracture energy in
tension, G¢, are limited, and there seems to be no
relationship between Gf and the tensile strength, fe .

Tests by Gopalaratnam and Shah (1984), and Peterson (as
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used by Rots et. al.,1985) indicate that Gsf ranges from
0.05 N/mm to 0.15 N/mm. 1In this study a value of 0.10

N/mm is used.

Values for the descending branch decay parameters for
tension and compression are taken from Equations 3.29 and
3.34 respectively. It is noted here that the descending
branch value for compression, k., should vary with
confinement. However, test data regarding confined
compressive softening is scarce, hence, the uniaxial value
of ke is assumed to be representative for confinement

effects.

The mesh spacing, h., is uniform for a perfectly
square mesh. However, for a slightly rectangular mesh, h.
differs in each direction. An area average is taken as a

representative mesh spacing
he = Yhih,, [4.3]

where h; and h; are Gauss point spacings in the "1™ and "2"

directions of Figure 4.13 respectively.

It is uncertain whether the walls are closer to
conditions of plane stress or plane strain. For the CF
series, the aspect ratio of specimen width to depth is
approximately 1.5, which is not by itself large enough to
warrant the assumption of plane strain conditions.

However, the relatively thick plates which form the steel



102

cells are used for formwork, which are able to carry
transverse forces generated from restraining concrete
expansion. Figure 4.14 shows the mechanism of load
transfer into the plates. Because the concrete strut is
in compression, expansion would occur in the transverse
direction due to the Poisson effect. 1In order for no
expansion to occur, the steel plates must restrain the
concrete. Transverse forces along the steel-concrete
interface act as restraint, and are transferred as
frictional forces. The plates must be thick enough to
carry these forces without significant yield. Although
calculations have not been specifically made, it is
assumed that the plates are of sufficient thickness for
this to be the case. It should also be noted that the
diaphragm steel plate at this point is not highly stressed
in compression. This adds further confinement, and
minimizes the effect of Poisson's ratio in the steel

plate.

The TF and VIT series have plates which are much less
stocky. However, the width to depth aspect ratio is
approximately 3 for both test series. This may be

sufficient to approximate plane strain conditions.

It is suggested here that the final test of the
assumption of plane stress/plane strain lies in the

comparison of analytical results with test data.
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4.3.2 Loads and Boundary Conditions

Figure 4.15 shows the finite element mesh used for
specimens CF-4 and CF-5. Because of symmetry, only one
half of the wall needs analysis. Eight noded quadratic
isoparametric elements were used with a 3X3 Gauss
integration order. Loading from the hydraulic jacks was
applied as a series of pressure loads on the top steel
plate. To simulate shear transfer across the steel-
concrete interface, the elements were double noded at
those points, and gap elements of the type described in
Chapter 3 were placed there. The concrete cores are thus
connected to the steel plates by means of gap elements.
If all gap elements were to separate, the problem would
become numerically unstable. To avoid this situation, a
number of fixed points were used to keep the core inside
the steel plates, shown in Figure 4.15. At the support, a
stiff plate was placed to represent the use of a 75 mm
bearing plate. Similar configurations were generated for
specimens CF-8 and CF-13, shown in Figures 4.16 and 4.17

respectively.

The finite element mesh for the TF series is shown in
Figure 4.18. Since the end caps were fairly thick, in-
plane loads were placed on the specimen ends as uniform
pressure loading. To conform with experimental procedure,

the in-plane loading was imposed before transverse loading
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was applied. Since the specimen legs were fairly stocky,
and no failure in this region was observed for any of the
experiments, the legs were idealized as a series of linear
elastic elements. This also resulted in considerable
geometric simplification of the model. Instead of a
series of rollers, one roller was used at the support.
This was because portions of the legs tended to 1lift off
some of the rollers as the legs translated with increased
transverse loading. This means that the support region
would partially rotate as well as translate. It was also
felt that the flexural stiffness of the legs would have a
negligible influence on the stiffness and failure load of
the specimen. Rollers were placed at the tie-down
positions to simulate the deformation restraint occuring

there.

Figure 4.19 is the finite element mesh used for the
VTT series. Since the specimens were simply supported
with no overhanging loads, the end caps were neglected in
the analysis. This proved to be an unwise decision, as
will be discussed in Chapter 5. Although bearing plates
were used at the supports, they were not included in the

analysis for similar reasons.

The formulation used in the analysis consisted of
small displacement and infinitesimal strains. It was felt

that there was not significant catenary action developed
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in any of the tests within the deformation range tested.
Some of the tests, however, showed large rotations in the
steel plate closest to the support after the onset of
shear failure. This took place at a sufficiently advanced

loading stage not to have had much effect on analysis.

The solution strategy employed was exclusively
displacement control for all specimens with the exception
of the TF series. 1In the TF series, the in-plane loads
were applied using a standard Newton-Rhapson technique,
and the transverse loads were then imposed using
displacement control. The vertical displacement at the
wall center at the plate top was used as the control
displacement. Loading was applied in the form of
displacement increments of 1 mm; this was felt to be
adequately small enough to capture essential behavioural

characteristics. Relative load and displacement norms,

Aioaa and Xﬁ£p, were used as convergence criteria:

- Ag
ldlsp /J%(D)l [4 . 4]

(A_QM [4.5]

)"load (RXR} r

where Aq and q represent incremental and total
displacements respectively, and AQ and R are incremental
and arc length reference loads respectively. Values of

0.05 were used for both load and displacement norms.
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Table 4.4 is a summary of the basic input parameters
used in the analysis of the eight walls. In order to
facilitate numerical stability when steel yielding was
encountered, a hardening slope of 0.02E was used.

Specimen CF-4 was analysed using three different Gauss
integration orders, 2x2, 3x3, and 4x4. This was done in
order to verify the objectivity of the proposed post-peak
constitutive model developed here. A friction coefficient
of 0.5773 was used for the steel-concrete interface in all
analyses, corresponding to a friction angle of 30° as

supported by Kennedy and Cheng (1987).
4.4 Execution

It is of practical interest to describe the pre- and
post- processing strategy utilized to model the problems,
and to generate the results. Figure 4.20 is a flowchart
showing the sequence used in model generation, analysis,
and results processing. The general purpose pre- and post
processing program PATRAN (PDA, 1991) was used to generate
the model finite element meshes, loadings, and material
properties. The program PATRAN allows for a fast and
efficient means of generating complex geometric models.
The model description is written into an ASCII file called
a neutral file. The ASCII format was used in order to
maximize portability between different computing

platforms. The neutral file must be translated into a
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format readable to the SINAAPS finite element program.
This is performed by using a translator program named
PATSI developed by the writer which reads the PATRAN
neutral file, and writes a SINAAPS input file. The
analysis is then performed, and ASCII plot files are
written. These files contain information pertaining to
mesh geometry, stresses and stress history, and

deflections.

The model generation and finite element analysis was
performed on an Apollo DN10000 workstation at C-FER, which
has significant speed and storage capabilities. The
capability to output graphical information is, however,
somewhat limited on the Apollo. Therefore, it was decided
to use microcomputers to process the graphical
information. The Macintosh was judged to be superior in
generating and processing graphical results. A graphics
program named SINPLOT was written by the author to read in
the plotfiles and generate graphical output. The program
utilizes standard PLOTLIB routines to draw deformed
shapes, stress trajectories, and nonlinear effects
(cracking, crushing, etc.). The drawings can then be
modified for presentation by using any standard Macintosh

drawing program, such as MacDraw.
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Figure 4.4 Typical failed specimen
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Figure 4.5 Typical load versus midspan
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Figure 4.6 Typical specimen from the TF series
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Figure 4.7 Schematic of test frame for TF series
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Figure 4.20 Model pre- and post- processing
. strategy
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5.0 FINITE ELEMENT RESULTS

5.1 Introduction

As expected, the finite element analyses of the eight
walls generated a significant amount of output results.
In order not to be repetitive, and to facilitate insight
into the structural behaviour of the walls throughout the
loading regime, the results of three walls are presented

in detail. These are CF-4, CF-8, and TF-1.

Detailed results are presented in terms of load vs.
midspan deflection curves, plots of nonlinear effects such
as crack location and orientation and compressive
softening locations, and local stress plots. Local
stresses are taken here to mean the normal stresses in the
principal axes of orthotropy. In certain cases, the
stress distribution in the steel plates is also shown.

For walls not presented in detail, only the load vs.

midspan deflection curves are presented.

5.2 Specimen CF-4

This specimen was the first wall to be analysed. At
that point, it was necessary to gain confidence in the
model refinement with respect to the performance of the
concrete constitutive relationship. The basic issue here

was mesh dependency, with other aspects of the model
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having been tested elsewhere. Since the width of the
fracture process zone is the governing factor, and that
has been tied to the integration point spacing, it was
felt that varying the integration order would represent a
change in the effective mesh refinement. This would
enable a determination of a suitable degree of mesh
refinement necessary for accuracy, and also determine
whether the model was objective with respect to mesh

refinement.

Figure 5.1 shows the load vs. midspan deflection
curve obtained from three analyses of the CF-4 model
performed using 2x2, 3x3, and 4x4 Gaussian integration
rules. Pre-peak response was nearly identical for the
three cases. The peak loads differ somewhat in magnitude;
values of 4.02, 5.16, and 5.60 MPa were computed for the
2x2, 3x3, and 4x4 integration rules respectively. This
trend of lower strength values for decreasing integration
orders is probably due to the decrease in structural
redundancy for decreasing order. Figure 5.2 illustrates
this effect. Elements with different integration orders
are subjected to a stress field which increases from right
to left. Softening behaviour is assumed. Once the first
Gauss point becomes soft, the excess load (stress) is
redistributed to the adjacent Gauss points. For
increasing orders of integration, more capacity exists for

joad redistribution than lower orders. Hence, an increase
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in capacity with increasing orders is to be expected.
However, the wall ultimate load is expected to
monotonically converge to a unique value as the number of
integration points increases. This trend is seen by the
decrease in load difference between 2x2, 3x3, and 4x4

integration rules.

The post peak response of the three integration
orders is similar. The constitutive softening
relationships developed in Chapter 3 give consistent
descending branches for differing mesh spacings. Although
not conclusive, the softening relationships show good
promise in modelling concrete compressive softening

problems.

There is a significant amount of "chatter" in the
analytical results, i.e. stress increases and decreases.
This is probably due to the finite nature of the model.

As various Gauss points soften, a perturbation is set up
in the model. The load decreases until suitable load
redistribution occurs to warrant load increase. The load
will then increase until more regions soften, causing
another perturbation. As will be seen in the experimental
results presented, a similar effect exists in the test

data.

In all subsequent work a 3x3 Gauss rule is used,

because the 3x3 rule is exact for quadratic isoparametric
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elements, and gives sufficiently accurate results in both

the pre- and post-peak region for Specimen CF-4.

Figure 5.3 is a plot of equivalent distributed load
intensity versus midspan deflection for specimen CF-4 for
a Gauss integration rule of 3x3. It can be seen that the
numerical curve is somewhat stiffer in the pre-peak region
than the test results, but gives an adequate
representation of the wall behaviour. The peak load was
computed as 5.10 MPa, which compares favorably to the
experimentally obtained load of 4.91 MPa. The post-peak
response was fairly stable, and compares well with the
experimental curve. The residual load was calculated as
2.50 MPa, which is identical to the experimentally

obtained residual load.

It is interesting to describe the typical convergence
characteristics of the composite walls. Typically, no
convergence problems are encountered until first cracking
or crushing occurs. At this point, numerous iterates in
the order of 100 to 150 are required before the specified
convergence tolerances of 0.05 are met. This is due to
the high nonlinearity of much of the structure as it
loads. After the peak load is reached, localization
affects relatively small regions while the rest of the
structure unloads. The stiffness properties of the

unloaded parts of the structure do not change
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significantly. Convergence is then stable throughout the

post-peak range.

Using the secant modulus of concrete for stiffness
calculations, relatively few problems were encountered
with convergence. The numerical stability of the solution

was quite robust, and convergence was always obtained.

Figures 5.4 and 5.6 through 5.10 are plots of the
nonlinear effects in the concrete at midspan displacement
levels of 5.0, 8.0, 10.0, 12.0, 20.0, and 40.0 mm
respectively for specimen CF-4. The nonlinear effects are
plotted at the Gauss points. Cracks caused by the in-
plane stresses, Oy, Oy, and Ty, are identified by a solid
line; cracks caused by the out of plane stress, O,, are
denoted by a diamond shape, and compressive softening
points are identified by an octagonal shape. At 5.0 mm,
extensive diagonal cracking has formed in the wall cells
closest to the support. Cracking had also formed in the
midspan cell. This cracking pattern is consistent with
the observed experimental result in Figure 5.5. At 8.0
mm, softening has initiated in the element nearest the
support plate, and the far diagonal corner of that cell.
At 10.0 mm, which was the deflection at which the ultimate
load was reached, softening had propagated through these
two elements and into others. As deformation levels

increased, the damage level increased in the main shear
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cell, which was evidenced by an increase in cracking.
However, the softening regions maintain a nearly constant
size after a deflection of 12.0 mm. This means that
strain localization was occuring in this region. At the
termination of the analysis (Figure 5.10), extensive
damage was evident in the shear cell, and especially near
the support region. The test experienced similar damage,

which is shown in Figure 5.11.

It was experimentally observed that major concrete
spalling occurred in the support region when the ultimate
load was reached, an indication of major crushing
accompanied by cracks caused by out of plane stresses. 1In
the test, the damage in the cell increased as deformation
levels were increased in the post-peak region, a trend
also observed in the analysis. Thus, the analysis
prediction of failure was identical to experimentally

obtained results.

Evidence of strain localization near the diagonal
corners can be observed by examination of Figures 5.12 to
5.17, which are deformed shapes at deformation levels of
5.0, 8.0, 10.0, 12.0, 20.0, and 40.0 mm. The deflections
are magnified by 10 for deformation levels of 5.0, 8.0,
10.0, and 12.0 mm, and 1 for midspan deflections of 20.0
and 40.0 mm. It can be seen that localized deformation

takes place in the support region and at the upper
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diagonal corner, thus indicating strain localization. The
deformed shape at a deflection of 40.0 mm is similar to

that obtained by experiment (see Figure 5.11).

It is seen in Figures 5.12 to 5.15 that separation
occurs in the lower right hand corner of the wall cell
nearest the support, and that there is major slippage
occurring between the horizontal plates and the concrete
core. The separation was also observed in the test. Such
large relative movements between the steel and concrete
means that it is impossible to predict the load-
deformation behaviour of the composite walls using

conventional reinforced concrete elements.

Figures 5.18 to 5.23 show local stress trajectories
in the concrete for midspan deflections of 5.0, 8.0, 10.0,
12.0, 20.0, and 40.0 mm. The classical strut model is
clearly seen in Figure 5.18a. Figure 5.18b shows the
development of compressive struts in the model. 1In the
central cell (denoted by Cell 1 in Figure 5.18b), a
horizontal strut spans across to the top of the first
diaphragm plate. A minor strut spans down to the bottom
of the first diaphragm plate. The load from the central
cell is then transferred by diaphragm plate action to the
cell nearest the support (denoted by Cell 2). This strut
then spans to the support. As well, the load on the

overhanging cell (identified as Cell 3) also struts into
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the support. Thus, the analytical behaviour supports the
concept of a strut and tie model to predict failure loads

in the walls.

Examination of Figures 5.19 through 5.23 gives an
insight into the redistribution of load occurring in the
structure after peak load. It can be seen that the stress
levels decrease significantly in the support region after
peak load; the stresses attempt to "flow around” the
softening region and enter the support by means of the
diaphragm and bottom plates. Such load redistribution is
the reason that a residual load is recorded in the tests.
The promotion of this redistribution is the key to

providing ductility in a shear compression failure mode.

It is observed in Figure 5.17 that transfer of forces
in the support region imposes severe flexural deformation
of the plate. It would thus appear that a successful
design should account for plate bending stiffness.

Indeed, it was observed in subsequent tests at C-FER that
plate failures due to tearing occurred in specimens with

very thin plates.

In Figures 5.18 through 5.23, and in all subsequent
local stress plots, the steel plate stresses are not
plotted. These stresses were neglected because the stress
magnitudes were large in comparison with the concrete

stresses. This resulted in confusion when both stress



quantities were plotted simultaneously. Plate stresses

are discussed in detail in Section 5.5.

5.3 Specimen CF-8

Figure 5.24 is a plot of load versus midspan
deflection for specimen CF-8. Again, the pre-peak
response is somewhat stiffer than the test, perhaps
indicating the need to use a lower friction angle. Two
analyses were performed for this wall. The initial
analysis that was performed assumed that the steel was
experiencing plane strain conditions. It was found that
this resulted in premature failure of the wall when
compared with experimental data as can be seen in Figure
5.24 indicated with empty squares. The second analysis,
denoted by black diamonds, assumed that the steel was

experiencing plane stress conditions. Since it was not
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possible to perform an analysis where the steel was plane

stress and the concrete was plane strain, a plane strain

analysis was conducted with the plate yield stress reduced

to approximate plane stress conditions. This called for
yield stress reduction of 11.1%. When this was done, it

was found that the bottom steel plate had yielded

a

significantly, as evidenced by the extended yield plateau

in Figure 5.24, and in addition, a better estimate of the

ultimate load was obtained. The large variation in load-

deformation behaviour for the change in yield strength
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shows that the steel plate is not restrained entirely
against lateral expansion. However, it was found that the
residual load was not significantly affected by a yield
strength change. The ultimate computed equivalent
distributed load obtained from the second analysis was
6.85 MPa, which compared favorably to a reported
experimental load of 6.66 MPa. The test was terminated
before a stable residual load could be determined, so
there is no comparison of post-peak response. In the
following, only the results of the second analysis are

presented.

Figures 5.25 and 5.27 through 5.31 show nonlinear
effects in the concrete for midspan deflections of 5.0,
8.0, 10.0, 20.0, 25.0, and 40.0 mm respectively. At 5.0
mm, diagonal cracking can be identified in all shear
cells. As well, major cracking occurred at midspan. This
cracking pattern is identical to that observed in Figure
5.26, which is a photograph of the cracked specimen. As
the midspan deflection increases, softening initiates at
the diagonal corners in the shear cell nearest the
support. Softening gradually propagates through the cell
and extensive cracking in the plane of the specimen is
observed, denoted by diamond shapes. At the analysis
termination, extensive damage exists in the shear cell at
the support, which is corroborated by the photograph of

the failed specimen in Figure 5.32.
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Progression of strain localization at the top
diagonal corner of the first shear cell can be seen by
examination of Figures 5.33 through 5.38, which are
deformation plots at midspan deflections of 5.0, 8.0,
10.0, 20.0, 25.0, and 40.0 mm. Localized deformation is
present in this location as the midspan deflection is
increased. It is also noted that large separations occur
at the bottom right hand corner of this cell, and in the
middle cell at the bottom plate. Unfortunately, close up
photographs of this region for specimen CF-8 were not
available to verify this observation. The deformed shape
at the analysis termination is similar to the photograph

shown in Figure 5.32.

Evidence of strut and tie action is seen in Figure
5.39, which is a plot of the stress trajectories at a
midspan deflection of 5.0 mm. Struts along the diagonals
of the cells are evident, again supporting the rationale
for using a strut and tie model to compute ultimate loads.
Figures 5.40 through 5.43 are stress trajectory plots for
midspan deflections of 8.0, 10.0, 12.0, 20.0, 30.0, and
40.0 mm., and illustrate the load redistribution that
occurs in the softening range. Once the top diagonal
corner in the first shear cell becomes soft, it is
observed that the main compressive strut changes
direction, and attempts to span across the first shear

diaphragm, as evidenced in Figure 5.42. In addition, some
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load is carried into the support by the formation of a
secondary strut as the stresses attempt to "flow around”

the soft area.
5.4 Specimen TF-1

Figure 5.44 is the load versus midspan deflection
plot for specimen TF-1. It should be remembered that
specimen TF-1 was tested under a constant longitudinal
compression force of 1965 kN. It is observed that the
pre-peak response is close to the experimentally obtained
results. The computed ultimate load is 5600 kN, which is
identical to the test ultimate load. The calculated post-
peak response is much lower than the experimental curve,
which perhaps suggests that triaxial confinement has a
significant effect upon concrete post-peak behaviour

({Pramono and Willam, 1989).

Figures 5.45 to 5.49 show the progression of damage
through the structure at application of in-plane load and
midspan deflections of 5.0, 8.0, 10.0, 15.0, and 40.0 mm
respectively. It is seen that the failure mode is similar
to the two walls previously described, with crushing
occurring at the top and bottom diagonal corners of the
shear cell closest to the support, followed by extensive
damage in this cell. This failure mode also compares

favorably with the failed specimen shown in Figure 5.50.
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Figures 5.51 and 5.52 show the deformed shapes at
midspan deflection levels of 8.0 mm (magnified 10 times)
and 40.0 mm (not magnified). It is again seen that strain
localization occurs at the top and bottom diagonal
corners. The displaced shape at 40.0 mm (Figure 5.52)
differs slightly from the failed specimen in Figure 5.50.
There is pronounced curvature of the top plate at the test
termination. This may have been impossible for the model
to capture, since a greater degree of mesh refinement and

a large deformation formulation may be necessary.

Figures 5.53 and 5.54 are stress trajectory plots at
midspan deflection levels of 8.0 mm and 40.0 mm
respectively. The strut and tie action is again evident
in Figure 5.53. After the peak load is reached, the load
attempts to strut into the support around the soft
diagonal corners, similar to the other two walls mentioned

earlier.

5.5 Plate Stresses

In order to further check the performance of the
finite element model, the stress levels in the steel
plates must be examined. Two examples are included here;
specimens CF-4 and CF-8. Since the local stress
trajectory plots for CF-4 and CF-8 favour the concept of a

strut and tie load carrying mechanism, the plate stresses
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are checked against the results of a simple strut and tie

model.

Figures 5.55 and 5.56 show the strut and tie models
adopted for specimens CF-4 and CF-8 respectively. It is
assumed that the top and bottom steel plates carry full
compressive and tensile loads. In other words, no
longitudinal concrete struts form. The concrete
compression struts are assumed to form between the angles
of 15° and 75°, which is consistent with the provisions
set out in the general method for shear in CSA CAN3-A23.3-

M89 (CSa, 1989).

Figure 5.57 shows the computed top and bottom plate
stress levels for specimen CF-4 at a midspan deflection
level of 10.0 mm. The corresponding load level, P, was
582.9 kN. It can be seen that the stresses obtained from
the finite element model are close to the stresses
computed from the strut and tie model for the bottom
plate. The post-peak stress distribution is also plotted
in Figure 5.57 at a midspan deflection level of 40.0 mm
(load level of 297.2 kN). It is observed that the ratio
between top plate stress levels at and after peak load is
approximately 2.0, which is in agreement with the ratio of

peak to residual load.

Significant stress level differences occur between

the finite element and truss models in the top plate. The
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compressive loads in both the central and support regions
are lower than predicted by the truss model. Examination
of the local stress trajectories in Figure 5.20 indicates
that a compressive block forms in the central region of
the plate. This means that the concrete assists in
carrying the compressive load, thereby decreasing the
stress intensity in the top plate; It is also seen from
Figure 5.57 that the tensile load in the top plate near
the support is lower than that predicted by the truss
model. Examination of the assumed strut and tie model in
Figure 5.56 indicates that the stress in that area can be
computed by using the compressive strut on the overhanging
edge of the specimen. It can be seen in Figure 5.20 that
the compressive strut does not span from the load point to
the support center; instead, the strut spans from the load
point to the edge of the support plate. This has the

effect of lowering the stress intensity in the top plate.

Figure 5.58 shows the stress distribution in the
diaphragm plate referred to as diaphragm plate 1 in Figure
5.55. The finite element model predicts stresses which
are lower than those calculated using the strut and tie
model. This could be due to partial strut action from the
load point to the support center; the net effect of this
is to reduce the load level in the diaphragm plate.
Examination of the local stress trajectories in Figure

5.20 confirms this.
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Figure 5.59 is a plot of the stress distributions in
the top and bottom plates of specimen CF-8 at a midspan
deflection of 20.0 mm. The corresponding load level, P,
is 793.6 kN. It is again seen that the finite element
model produces results which are consistent with the strut
and tie analogy for the bottom plate. As for specimen CF-
4, there are significant differences in predicted stress
levels for the top plate. Examination of local stress
trajectories in Figure 5.41 indicates that a compressive
stress block exists in the central region similar to that
found in specimen CF-4 which has the tendency to reduce
the stress intensity in the top plate. The compressive
strut on the overhanging edge of the wall spans from the
load point to the support plate edge, which reduces the
stress intensity in the top plate near the support,

similar to specimen CF-4.

Figure 5.60 shows the stress distribution in the
plates designated as diaphragm plates 1 and 2 in Figure
5.56. The stress level for diaphragm plate 1 is close to
the truss model stress level; however, the computed stress
level in diaphragm plate 2 is significantly lower than the
truss model prediction. It is evident from examination of
Figure 5.41 that partial strut action occurs from the load
point in the central region to the bottom of diaphragm
plate 1. This has the effect of reducing the load

intensity in diaphragm plate 2.
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To summarize, the finite element model produces plate
stress results which are consistent with the formation of
a strut and tie load carrying mechanism. Subtle
differences are seen in top plate stresses; these are due
to neglecting the effects of partial strut action in the

strut and tie model.

5.6 Results Summary

Figures 5.61 to 5.65 are load versus midspan
deflection for specimens CF-5, CF-13, TF-2, TF-4, and VTT3
respectively. Good correlation is observed between
analytical results and experiment for all tests, with the
exception of the prediction of the ultimate load for
specimen TF-4, and the residual load level for specimen
VIT3. The structural behaviour of specimens CF-5, CF-13,
and TF-2 was similar to that seen in specimens CF-4, CF-8,
and TF-1. Post-peak response was precipitated by
localized crushing at the diagonal corners of the cell

adjacent to the support.

The predicted ultimate load for specimen TF-4 was
calculated as 7800 kN, which is significantly above the
reported failure load of 5876 kN. This specimen had the
highest reported concrete strength (68.0 MPa) and the
largest in-plane force (3000 kN, or 15.0 MPa confining
stress). This high confining stress would result in high

equivalent uniaxial strengths if the Willam and Warnke
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surface is used. The values of high compression strength
were taken for normal concretes (Elwi and Murray, 1979).
It is possible that these values may have to be adjusted
for high strength concretes. Uncertainty in boundary
conditions, in particular the roller configuration and
tie-down fixity, may also have an influence on the

prediction accuracy.

The predicted residual load for specimen VTT3 was
computed as 800 kN, which is below the reported residual
load of 1200 kN. In addition, the analytical results show
a sudden decrease in load after failure, followed by a
gradual load increase thereafter, which was not observed
in the test (see Figure 5.65). Closer examination of the
finite element model revealed that the model did not
include a support plate near the reaction point.
Inclusion of this plate may have had the effect of
widening the strut in the support area; hence, the load
redistribution capability of the structure may have been

increased.

The results for the eight walls are summarized in
Table 5.1. Ultimate and residual loads are compared with
experimental results. It can be seen that a good overall
correlation exists between analysis and experiment for
both ultimate and residual loads, with test to predicted

ratios of 0.93 and 1.09 respectively. The predictions for
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the CF series are excellent, with test to predicted ratios
of 0.96 and 1.01. The TF series shows more scatter and
less accurate predictions; test to predicted ratios are
0.87 and 1.37. As mentioned above, uncertainty in
boundary conditions for this test series and concrete
strengths at high confining pressures may account for the

differences.

To summarize, the finite element model provides
results which are consistent with physically observed

behaviour, both in the pre-peak and post-peak domains:

1) Pre-peak - The load vs. midspan deflection curves are
similar to those obtained from test results.
Cracking patterns are nearly identical to those
observed experimentally. Test to predicted ratios
for ultimate loads are good, and the failure mode is
correctly predicted. Computed plate stresses are
consistent with the concept of a strut and tie model,
which is generally accepted as the correct load

carrying mechanism.

2) Post-peak - Residual load predictions are good, and
the damage level in the cell adjacent to the support
is consistent with experimental observation.
Examination of the stress trajectories provides
insight into the load redistribution occurring after

ultimate load.
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The ability of the model to follow changes in the
load carrying mechanisms is excellent. In addition, by
using the secant based model for concrete, high numerical
stability was achieved. No significant convergence
problems were encountered. The proposed compressive
softening constitutive relationship gave results which
were objective with respect to mesh refinement. The gap
elements used presented no problems for solution
convergence, and realistically simulated separation and

sliding regions in the wall specimens.

Examination of the concrete stress trajectory plots
for the eight walls indicates that a strut and tie model
is adequate in computing failure loads of the composite
walls. It remains to compute adequate effectiveness
factors for the concrete, taking into consideration
confinement conditions and concrete strengths. A
parametric study using finite element models may be useful
in defining strut trajectories and effectiveness factors

for a variety of wall configurations.



Specimen Ultimate Load Test/ Residual Lload | Test/
FEA Test Predicted FEA Test Predicted
CF-4 5.16 4.91 0.95 2.60 2.50 0.96
CF-5 4.02 3.82 0.95 245 225 0.92
CF-8 6.82 6.66 0.98 3.80 - -
CF-13 7.85 7.59 0.97 3.70 4.20 1.14
TF-1 5600 5600 1.00 2500 4500 1.80
TF-2 5300 4550 0.86 2750 3200 1.16
TF-4 7850 5876 0.75 2800 3200 1.14
VTT-3 1920 1860 0.97 800 1250 1.56
Average: 0.93 Average: 1.09

Note: Ultimate and residual loads are in MPa for the CF series, and in

kN for both the TF and VTT series.

Average test/predicted ratio for the CF series

Ultimate Load: 0.96
Residual load: 1.01

Average test/predicted ratio for the TF series

Ultimate Load: 0.87
Residual Load: 1.37

Table 5.1

Summary of results

147
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Figure 5.1 Effect of integration order on results
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Figure 5.2 Structural redundancy illustration
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Displacement magnifier = 10

Figure 5.12 CF-4 deformed shape at d = 5.0 mm
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Displacement magnifier = 10

Figure 5.13 CF-4 deformed shape at d = 8.0 mm
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Displacement magnifier = 10

Figure 5.14 CF-4 deformed shape at d = 10.0 mm

Displacement magnifier = 10

Figure 5.15 CF-4 deformed shape at d = 12.0 mm
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Displacement magnifier = 1

Figure 5.16 CF-4 deformed shape at d = 20.0 mm
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Displacement magnifier = 1

Figure 5.17 CF-4 deformed shape at d = 40.0 mm
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Displacement magnifier = 10

Figure 5.33 CF-8 deformed shape at d = 5.0 mm

Displacement magnifier = 10

Figure 5.34 CF-8 deformed shape at d = 8.0 mm
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Displacement magnifier = 10

Figure 5.35 CF-8 deformed shape at d = 10.0 mm
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Displacement magnifier = 1

Figure 5.36 CF-8 deformed shape at d = 20.0 mm
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Displacement magnifier = 1

Figure 5.37 CF-8 deformed shape for d = 25.0 mm

e e e e vy

Displacement magnifier = 1

Figure 5.38 CF-8 deformed shape for d = 40.0 mm
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7 il 1 Displacement magnifier = 10
’ -

Figure 5.51 TF-1 deformed shape for d = 8.0 mm

Displacement magnifier = 1

Figure 5.52 TF-1 deformed shape for d = 40.0 mm
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6.0 SUMMARY AND CONCLUSIONS

A literature review was performed summarizing the
significant research regarding the design, testing, and
analysis of composite ice resisting walls. It was
concluded from examination of the current Canadian design
standard (CSA S474-M1989) that an estimate of member
ultimate strength and post-peak strength were essential
for an adequate limit states design. Current design
methods were found to concentrate principally on the
member ultimate strength, and were found to lack
generality. No design method was found to evaluate post-
peak strength, except for the case of very thin (membrane)

members.

Existing finite element analyses of composite ice
resisting walls were found to concentrate mainly on the
case of flexural failure, even though a substantial number
of tested specimens failed in shear-compression. No
evaluation of post—-peak behaviour was presented in any

previous finite element study.

A three dimensional hypoelastic concrete constitutive
model was developed which is able to consider stress-
strain behaviour in both the pre-peak and softening
ranges. A secant method was adopted in order to enhance

numerical stability, and the model included provisions for
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nonlocal (mesh dependent) effects due to softening in both

tension and compression.

The softening characterization involved the use of an
exponentially decaying descending branch in both tension
and compression. The fracture energy approach used by
Bazant and Oh (1983) was used as a basis for the rate of
stress decrease. Since no data was available reporting
uniaxial compressive fracture energy, a parametric study
was performed using concrete cylinders to obtain an
estimate of the compressive fracture energy. This was
used in conjunction with effectiveness factor data
reported by Neilsen (1980) to obtain a compressive

uniaxial descending branch.

Sophisticated finite element models of selected walls
from C-FER's database were developed. The selected walls
represented a variety of structural configurations and
loading types. The models included the interface between
the steel and concrete by utilizing Lagrangian multiplier
gap elements, and the steel was considered an elastic-
plastic material. Post-peak behaviour was traced by using

the displacement control method.

The models gave results which were consistent with
experimentally observed behaviour. The analytical load
versus midspan deflection curves were similar to those

obtained from experiment. Nonlinear effects, such as
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diagonal cracks in the shear cells and initiation of
crushing in shear critical areas, was duplicated in all
eight analyses performed. The models predicted the
failure mode correctly for all eight tests. Satisfactory
overall test to predicted ratios were obtained for both
ultimate strength and post-peak strength, with mean values
of 0.93 and 1.09 respectively. The obtained solutions
were numerically stable, thus indicating the robust nature

of the concrete constitutive model.

Overall, the assumption of plane strain boundary
conditions produced good results for both ultimate and
residual load levels. This assumption may not be valid
for the steel plates, as evidenced by the lack of a yield

plateau in the analysis of specimen CF-8.

The gap elements adopted in the analysis gave results
that were physically realistic. Areas of seperation and
frictional slip were consistent with those reported in
tests. The adopted friction coefficent of 0.5773 may have
been too large; finite element results were generally
stiffer in the pre-peak range. A value of 0.4 to 0.5 may

be more appropriate for use.

In all of the analysed walls, the observed load
carrying mechanism was similar to that of a strut and tie
model. Principal stress trajectories, along with plate

stresses obtained from a simple model, support this
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conclusion. After the peak load was reached, residual
loads were sustained as a result of significant stress
redistribution that occured in the concrete cells nearest

to the support.

Severe bending was detected in the bottom steel plate
at the support vicinity. This bending must be considered

in the formulation of a successful design criteria.
The following is recommended for future work:

a) Extension of the proposed model to three
dimensions. The current model supports plane
stress, plane strain, and axisymmetfic boundary
conditions. For punching shear in extremely
localized areas, and to determine the additional load
capacity due to the surrounding slab, a full three

dimensional analysis is recommended.

b) Evaluation of confinement effects on the compressive
fracture energy. As indicated by Pramono and
Willam (1990), a relatively small increase in
confinement dramatically increases the compressive
fracture energy. More research is required in this

area.

c) Evaluation of concrete triaxial behaviour for high
strength concretes. The predictions for the TF

series, which were subjected to significant
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longitudinal compressive loads, were somewhat less
successful than those of the CF series. This may
have been due to the overestimation of confinement

effects.

A numerical parametric study of composite walls
comprised of various structural configurations and
loadings. Such a study could be useful in
determining optimal designs for various offshore
conditions. In addition, the visualization of the
flow of forces in the model could provide the

designer with adequate guidance in the selection of

208

an appropriate truss model to determine the ultimate

loading.
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APPENDIX A - CONCRETE CYLINDER PARAMETRIC STUDY

As mentioned in Section 3.2.7, concrete compressive
softening has been found to be dependent both numerically
and experimentally upon specimen size. It is therefore
necessary to adjust the finite element input descending
branch to account for strain localization in compression
as well as tension. Values for fracture energy in tension
are commonplace, but crushing energies have yet to be

evaluated for different concrete strengths.

Ideally, the energy of crushing, G.,, should be
obtained from a uniaxial test. Unfortunately, there are
few uniaxial tests for which G, can be calculated. The
common cylinder test is not uniaxial because of
confinement effects and the load redistribution caused by

longitudinal cracking.

A typical uniaxial cylinder test consists of a
concrete cylinder situated between a loading platform and
a loading head. The descending portion of the stress-
strain curve is obtained by using stroke control on the
loading apparatus. This can either be achieved by using a
very stiff loading apparatus (Wang, et al., 1978), or by
using a load sharing device such as a steel jacket (Shah,
et al., 1981). Sulfur plattens are placed on the ends of

the cylinder to ensure a uniform bearing surface.
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Figure A.l1 shows a typical stress-strain curve
obtained from a cylinder test. Up to the ultimate
strength, there is little visible damage in the material.
After peak stress, large volumetric expansion occurs near
the cylinder midheight, and large radial cracks occur.

The expansion and cracking, shown in Figure A.2, are due
to the loss in circumferential stiffness, because the
concrete has no tensile capacity in this direction at peak
stress. In addition, there is a conical undamaged region
at the end caps, which is induced by the confining effect
of the end platens. The cracking and bulging causes
significant load redistribution in the cylinder, resulting
in somewhat higher stresses in this region (see Figure

A.2).

It is obvious that the stress distribution in Figure
A.2 is far from uniaxial. However, there is an abundance
of test data for standard cylinders. Therefore, it is
proposed that cylinders be used to obtain an estimate of

Gcr -

The method for calculating G is as follows. For a
purely uniaxial test, if the crushing energy, Ger, is a
material constant, and the area under the descending
branch, A., is constant for a given concrete and a given
cylinder configuration, then the following relationship

can be written relating G.r to Ac
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Ac = OcGers [A-l]

where Q. is a proportionality constant. Multiplying and
dividing the right hand side of Equation A.1 by the
sampling point spacing, h., the relation between the input
and output areas can be written as

A, = ache(%) = OchcBcq. [a.2]

(=]

Equation A.2 relates the input area, A., required for
a finite element analysis to obtain the correct uniaxial
output area, A.4. However, since a concrete cylinder test
is not truly uniaxial, Equation A.2 must be modified to
account for nonlinear effects due to confinement and

cracking. A power law of the form
Ac = (OchcAgg)” [A . 3]

is adopted to account for these effects. Equation A.3 can

be rearranged to form

(Ac) M/n
= A.4
Acq ach, [a.4]
But
Acd F= -Gﬁ. [A. 5]
he

When Equation A.5 is substituted into Equation A.4,

the final form of G., is obtained as



1/n .
Gy = Bl [a.'6]
O
It remains to obtain the parameters 0. and n. It is
possible to calculate the two constants from a finite

element parametric study of a series of cylinders.

Two series of standard cylinder tests at two
different uniaxial concrete strengths, fé, have been
analysed using FEPARCS (an acronym for the Finite Element
Analysis of Reinforced Concrete Structures). In both
series, the sampling point spacing, h., and the
compressive input area, A.q, have been varied. The output
areas obtained from the analyses, A., are plotted against
Acghe. From this plot, which is a form of Equation A.4, a
least squares fit can be performed to obtain the two

constants, 0. and n.

Three different meshes with increasing mesh
refinement were analysed. Figure A.3 shows the mesh
configurations used in the study. The approximate
sampling (Gauss point) spacings are 16.67 mm for the
coarse mesh , 10.0 mm for the intermediate mesh, and 5.0
mm for the fine mesh. Figure A.4 shows the boundary
conditions used in the analysis. Due to axisymmetric
considerations, only one quarter of the cylinder need be
modelled. The loading head of the cylinder was fixed to

reflect no slip conditions due to friction along this
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surface. The top of the cylinder was constrained to move
as a straight line to simulate the effect of a rigid
loading head. Loading was stroke (displacement)
controlled, and the total Lagrangian formulation was used
to include any unloading effects due to large

displacements.

Table 1 summarizes the values of all input parameters
for the two series. Two different concrete strengths,
53.5 MPa and 30 MPa, were used to determine if the results
were sensitive to concrete strengths. The two concrete
strengths were used with four different input areas for
each of the three meshes, totalling 24 different analyses
in all. Figure A.5 shows the input stress-strain curves
used in the analyses for compression and tension. A
linear descending branch was used in all analyses to avoid

complications.

Figures A.6 through A.8 show the average stress-
strain curves obtained from the coarse, intermediate, and
fine meshes respectively for f. = 53.5 MPa. All analyses
were able to attain ultimate strength equivalent to fe.

It is concluded that using f. from a cylinder test is
acceptable for use in a finite element analysis. It is
also observed that the area under the output stress-strain
curve increases with increasing Gg. Although not shown

here, the same conclusions were evident for fé = 30.0 MPa.
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Figure A.9 is a plot of the deformed shape of two
cylinders near the end of the analysis. The cylinder with
fL = 53.5 MPa had h. = 10 mm, and Acg = 1.338 MPa, while
the cylinder with f; = 30.0 MPa had h; = 10 mm, and Acg =
1.338 MPa. Before the ultimate strength is reached,
little lateral bulging was observed in the cylinder.

After the ultimate strength was reached, substantial
central bulging was noticed. 1In addition, strain
localization is present in these cylinders, as observed as

localized deformation in the central region.

Figure A.10 shows the damaged regions for the
cylinders described above. It is noted that there are
vertical radial cracks along the length of the member, as
evidenced by the diamond shapes. Softening appears to be
uniformly distributed along the specimen length, and a
conical undamaged region exists near the ends of the

specimens.

From the above discussion, it is concluded that the
finite element model is an adequate representation of
concrete cylinder failures. Therefore, the results can be

used in the determination of Ggr.

Figure A.11 is a plot of A. versus hcBeq.- A least
squares fit of the data resulted in the following values
for the constants 0. and n

a. = 0.00478, [a.7a]
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n = 0.80. [A.7D]

Substituting Equations A.7a and b into A.6 results in

the final form of G,
Ger = 209.2aL:25, [a.8]

The crushing energy, G., can now be determined by
obtaining the area under the descending branch of a

concrete cylinder.
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Figure A.1 Concrete compressive stress-strain curve
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Figure A.2 Confinement and deformation effects
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