Nanonal lerary Bubhotheque natfenale

h

\]
{ <

If pages are missing. contact the umversny WhICh gran\ed the .
degree o . .

- Some pages may have andlsnnct pnnt especually if tneorlgnnal ‘

pages Were typed with a boor typewriter ribbon or if the univer-
sity sent us an infefor photocopy.

Prevuously copynghted matenals {(journal articles, publlshed
tests etc) are not fllmed '

\
Reproductxon in full or.in part,of this film is governed by the
Canadian Copyright Ac(R.SC. 1970, ¢. C-30. Please read
“the authorization forms which accompany this thesis.

'THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL 339 i1 BRI0Y

of Canada (k Canada .) ? Tw
. % canadian }heses Service - Services des theses !canadiennes ‘ ' ; v
v oL, . : Y R Yare .
™~ . -:' Ottawa, Canada R R) . ¢ A
K1A ON4- , ‘ ,
s ‘ .
. N ‘ ‘ L]
‘ \\ L7 » £ \
- . ~ N o e .
. . . K R \ N
R ,(B \ { L
‘ N ’ - | - T .‘ ,A \ - « . - w“
. \ ~"§% .) -
a ,/ - -
o CANADIAN THESES « ~ "\, THESES CANAD(@NNES i
L . - -) ~ - N
. { "~
. - , N v
| RSN . a e
* , L -
& ‘ ‘m ~
,, NOTICE AVIS
The qu‘ahty of this rnacroﬂch‘*e is heawly dependem upon the i La qualité de Cette microfiche débend grandement de la.qualité
quality of.the original thesue submitted for mxcrofllmnng Every de la thése soumise au m|crofulmage Nous.avons tout fait pour
effort has been made to ensure the hlghest quality of reproduc- assurer une qualité supeneure de reprodyction. '
\ tlon possmie . - : \-} R : .

N ' . .

8l manque des pas ee vemllez communiquer avec l'univer-

sité-qui & qgonfere Ie grade

!

La qualne dtmpreSS|on~Ue certalnes pages peut laisser a
désirer, surtout si les pages onqsnales ont été dactylographiées
a l'aide d' un ruban usé ou si l'université nous a fait parventr

une photocopie de qualité inférieure.

L.es documents qui font deja I'objet d'un dron d'auteur (articles
de revue, examens publiés, etc.) ne sont pas microfiimes.

La rep;roduction, méme partielle, ‘de ce mtcrofilrn est soumise
a la Loi canadienne sur je droit d'auteur, SRC 1970, ¢. C-30. -

Veuillez prendre connaissance des formules d'autorisation qui
- accompagnent cette thése.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

Canad"'

. ! ’ N
I* _National Library - Bibliothéque nationale . = . ‘ L, /

of Canada . du Canada ' : : it - . .
///J' Ottawa, Canada A e - o o o
! K1A ON4 ' R T 0-315-2331441"
\ B : T : I‘ . R
o CANADIAN THESES ON MICROFICHE SERVICE ~ SERVlCE DES THESES CANADIENNES SUR MlCROFlCHF f \
‘ PERMISION TO MICROFILM AUTORlSATION DE MICROFILMER S

. Pleas@ ‘print or type — Ecrire en lettres moulees ou dactylograpmer

v ! e
e , . AUTHOR - AUTEUR ,
F:IVI_Name Of“AJ(hOI ~ Nom complet de V'auteur . ST . o
[T STANN ""\ ('-»‘ C o
— v e ~
. . L
Date of Birth - Da(e de nav;s(mr e . — N ¢ Canadian Citizen - Citoyen canadien . :I/‘
500 : SRR e ! L . Yes Ou C l/” No Nen
e I o : ’ o ‘
(,ountry of Btrth - Lleu de naissance . ’ : Pvrmanmt A\idw s ,’“Resndonce fixe
BRI . . . o, . N Ve o L
A _]
0 Ve ' . .
@ ‘ {0 ~
» ‘\\\\ . \L ‘\\ N
. o ‘ . THESIS - THESE S o e
Title of Thesis = Titre de la these) v P ' : T L e '
. Cos . /o R
. . \ r AN l’ } .
/. . T Lt ’ U) i \ . . d «
R L T Cot : ‘ /
‘ . - /
\ - N)
. ' ' /' —~
- . / N 1
£) T h >
. ; ~ -
. :
w) ’ S_
» s ~— . N
.r; .
N AN
‘ [A . & -
/ ' - . N
Deqrep for wh|<,h thecns was prosomeo ‘ o . CYedr thig deq)r/ee conterren S
. Grade pourlequel cette these fut presentee o N LAnnee oo7rent|on de ce grade 7
kK o - N) :) t
Unersity = Universite ! Name of Supervisor - Nomldi directenr de these
HE ’ - A) »‘ C NI | '
B :'* . . . i . . A o }, |)
\ s 1 !]
0 "‘\3 ' : AUTHORIZATION AUTORISATION K
L S — RV —— S JU— ! -

v

Permission 5 hereby granted to the NATIONAL -LIBRARY OF CANADA to . _j L autorisaton est. par la presente. dcz/ordee ala BIBLIOTHEOUE NATIONALE

microfilm this thgsis and to lend or sell copies of-the film. . _\,/ DU CANADA de _microfilmer cette these et de preter ou ge vendre des ex-
. . . emplanres du tilm. '

The guthor reserves other publication rights, and nether the théSIS nor exten- .

sive extracts from 1t may be prnnted or otherwiss 'rcgrodu_ced without the "7~ " L auteur se reserve les autres droits de poblication. ni la these ni de long$ ex

authos's wntten permission traits de celle-ct ne doivent &tre wmprimes ou autrement reprodults sans

s ’ . /[‘5 ! autonsanon ecnte de l'auteur
| \F ' ATTACH FORM TO THESIS VEUILLEZ JOINDRE (‘E FORMULAIRE A LA THESE : {
A - T T Toate U IR

NL Gt BA O3

The University of Alherta:
e, *‘ A N b

s
4

o . N
*An Object Oriented Datahase Management System! for CAD Applications:

-~)
¢ ’ " ‘ ‘ ' . -
‘ 4
e
by , !
2 » N ,‘" e ey ' - X -
Lo Bopsi CHANDRAMC T 11
. R S - L
\ ’
. o o A thesis v .
‘submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree ! -
. of Master of Science
' -+
y) ——re—
YRR e
. , _ ‘ . RS
Department of Computing Science
r . ! S
-
.4
. \ .
Edmonton, Alberta

a Fall, 1985° N

ol

&

© o THE UNYERSITY OF ALBERTA

. L)
RELEASE FORM

..\'r\SHi OF AUTHOR: Hopsi (‘H:’\NDR.;\MG['I,I
TITLE OF THESIS: An Object Orwnt((l Dat x}mw \Lmagomcnt System for
" CAD Applications.
Dj G l l l FOR WHICH THIS THESIS WAS PRE \I NTE D: Master of Science

Y Iz:\H HH.H DI:(yHI',Iu (IR.‘\T\TI"D: 1985

V3
/ . 4 : g v .
1. Permission is hereby granted to The University of Alberta Library to
reprodude single copies of this ehesis and to Ignd or sell such copies for private,
scholarly or scientific research purposes only. 5
\

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’'s written permission. -,

/ ! .Y) .)
; | (
» (Signed) Cl“’J’V”\M‘L"
: Co ‘ IPermanent \ddr(:
. : 36, Thyagara¥a Gramani Street,
‘ L T Nagar.
: : " Madras 600 017, INDIA.
Iiated October & 1987 ' ' ‘ :

il It °

THE UNIVERSITY OF ALBERTA -
__‘FACULTY OF GRADUATE STUDIES AND RESEARCH **
A - o

AN

- 'Tl;e\unders'igned certify that they have read, and recomménd-'ito_._’thg
Facultvy’. of‘ Gradua;e Studies an-d Researc;],'for, acceptance, a Lhesis (If_ntit‘le('i'An
‘Object Orfented Databage Managem’ent'Sysiem fox; CAD A'pplit;a&i.o‘n's sub-
Eﬁitlod by‘ Bopsi CHANDRAMQULI in partial fvul“ﬁllment_ of the jl;equiremcnts for

the degreempf Master of Science.

%

To my family and friends

*,

ABSTRACT /

This thesis is concerned With database requirements for computer aided design

applications. Software tools greatly ease and simplify- complex proc€sses such as the

. ! N &)

desizn of VESE chips, large software.systems, mechanical ahd civil engineering works
. o .

and the &mposition of music, ete. It hax been well accepted. that databases are an
A .

important element in building these software tools. Experience with network and

* \]

relational dutabase management systems (IQPMS) in design environmeits hoe
. [') :

wyeeested that design tools require more flexibility, more data definition facilities, and

more duta manipulation power than what network and relational DBMss offer. The

main reason for this-is that these DBEMSs g aimed at business apphlications whose

‘mature s inherently dilferent from design applications.
The main contributions of this thesis care the formulation of a4 modcl for the
desian activity, precisgdéfinition of the database requirements of design appheations
. * 7 ’
and the desicn and implementation of 4 Database Mandgement System to satisfy what
13 : : :

we consider 1o be the most important of these requircments. The interesting features

of this DBMS are a simple view of the database as one consisting of Objects and

Properties. the provision for procedural derivation of the value of a property. a data
tvpe 'SET™ for specifving and manipulating call kinds of relationshyps. speetal
. - 2t .

mechanisms for specifying the constfaints on the contents and structure of Jthe
s :

database and the provision for dynamic updating oi' the structure of the database.

“Using the data type SET it is possible to represent and'manipuln‘»c a complex object

as u whole. A Data and Constraints Specification Language (DCSL), used to specify

the initial structure-of (he database, is designed and a compiler for the M:{go is

written using Lex and Yace, The compiler builds the initial structure of the datuabuse

from the specifications. Several routines are designed and implemented for dynamic,

definition and mangulation of data and relationships.
» , 4

. . B

u”!‘ '. . '
3 é:? > .

\ Acknowledgements

i : . .
, .

Fike to thank my supervisor. Dr. Mark Green, for his'valuable advice, for

gi;;.,himsvlf available for discussion in spi’t(‘N, his busy schedule, and his
14 .

; ‘ \

oement- and eniticisim at each stage of my research. The quality and

makin
ST

CTec
- . - X "

readability of this thesis depends to a large extenton his careful and patient reading of

the rought draft of the thesis. 1 would also like to express my gratitude for his

financial support . o, 4

Thanks are due to the members” of my examining committee, Dr. Wl

a

Armstrong. Dr. Fo Chan and Dr. B Girezye, for their helpful sugeestions and
L - o y A
comments, | would also hike o acknowledge the Teaching and Research Assistuutships

provided by the Department of Computing Seience.

,Maost of all. T owould like to thank my family and friends. for their support and
. ‘

vn(‘xmr:m(-mvnI/lhrouglmul my academic career,

¢

Chapter

Chapter 12 Introduction
L.E Complexity of the Design \r(l\l(\
The Lvolution of the nse ()f databases in design systems
The Problem Area

I.1. Objectives of the Thesis

Table of Contents

A ppr(mrh Taken oo PPN

151 Object Oriented [)('\wn
1.5.2. Object Orie ‘nted- \ﬂ\rvm\

1.6 Outhne of the Thesis

21 1. Versons

2.1.2. Abstractions in Design
2.2 The Concept of Computer-Aided Design

25 Computerized Design Favironment

hapter 2 A Model of the Design Activity
The Model .

24 The Design Database Management System

BT T Y I TR T VTR U PP SO SpRP R PR AT

Chapter @ Requirements of A Design Database Muanagement.-System o0

N \lnlll\ to Lepresent and Handle Complex Objects
2.0 ANultiple Bepresentations
22\ ersion Control
REEE onfizuration Control

3.5 support for Derived Data

s

5.9 User-Controlled Archiving of Data at Q_l)_j(‘(‘l Level
3100 Abitity to Handle Heterogenous Data
311, Repetitive Access to Duta
3.12. Reusability of Previously Specified Information
3.13. Dynamically Evolving Stfucture of the Database
S04 Constraint Specification Facilities
315 set Ortented Information Sterage and Retrieval

3160 Complex Computations

318 Support for both design and corporate databases

3T lnl('"rnmn with User- lnt(‘rfu‘m

517, Desten data vs Engineering data

264 'ouu*r\:nion'\l Transactions oo

: \p(ed of Internal/External Transformation

Vit

—-~

319, Support for Documentation AT JE OO P PP PP PP TR PR
220 Requirements Constdered for Design 0 RO TUITRTRI S
321 Summary 0L [e W
hapter 1 An Object Oriented Design Database Management System Lo
11 Introductton o T PP PR
L2 Overview oo O PP PRSI PR SO
13 Database AU PRSP
t.1. ()l)jv(‘(\ B ORI TR TURT OO U
100 Properties DEITUEUE TR
L00 Primary Property oo ST -
.02 Derived !’ropvrty .. PR
6, Ohject Class o R T
1.7 The Data Type SET and Relationship Properties ..
170 Modeling Relationships o T g R
{ T'.’.l{('l;:\liml\'hiplml:r,.........‘ R T
173 Complex ObJects 0 L e
1.2 Constraint Specifications SRUTT U B e
(0. The uses of the action TENULL oo
{10 The Data Definition and the Data Manipulation Functions ..
411, The Daca Definition !f:m}.:u:u:(' SR U
P11 1 Deseription of DOSL
P2 Sumple DOST Speetfieations oo e e
120 SUIIIATY o L PP T
i] :
hapter 5o fmplementation OO PP PRPRPOO T
DL IO C IO e N
D2 DB N
5.3 Ohjectsand Object Classes o0 0L
o4 Properties oo PP
S0 1. Primary Properties co J O PR
5402 Derived Properties o U OO
503, Structure of Type OBJECT o e
S04 Structure of Type SET L g
5. Communwation between the Apphication and the DBMS ... IR
S.6. Implementation of ACUIONS L0
S8 The Deriving FUnctlons oo
C5.6.2 The Constraint Functions .

2620 ENULL O WHENMODIFIED and WHENDELETED for Properties

5623 WIHIN_OBIECT _CLASS_DELETED and

- ' ‘ Vil

66
66
6=

70

-1 =1 =1
[SRR S A

'

WHEN_ORIECT _ADDED R AR IERTRNTareS L
S0 0 WHEN_DATABASE_DESTROYED and
WHEN_ORJECT _CLASS_CREATED o e

BT T he O POrators o
S N O hjectClusses o PRI o B R
ST \'isil(.)l)jv('l‘i .. . SUUUORORURUT L SOOI :
ST N st N embers o e o
S0V INOwWHerS L e ;'!‘
ST0 0 TraverseComplexObgect o L e

5.8 The Data Definition Language DOSL TP

DUOUSUINIATY PP

~

Chaprer 5 Pxnunples TR AU _
610N Chip Destgn Datahise ©

6.2 Dynamic Restructuring of the Database 0

f5.05.]ﬂ\:xmpl('; of the operators TR OSSP U TP TEPEPRTRURRON ‘

60 Vit Obgeets, VisitOwners, GetSETDATA and GerValye

602 VO hJee TOTNSES :
6.0 TraverseComplexOhjeet o
O L STIIVIIIEEN o o
Chapter 70 Coneclustons o0 R e
T Summary of Contributions 00 PP
T bamitations o OO SRR UROR
T osueeestions for Further Beseareh o
Peferences 0 PR RSO
.) ‘ . '
AL Formad Definttion of DOST,
A2 Decharations of Funetlons oo
A sample Constraint FUunctions o .

L.ist of Tables

Table
S0 The ‘“"lrl}(‘lllrt' ()f()h_j('(‘l Table .

H 2 The Structure of Property Table

' List of Figures '
-

Freure
20 Abstract Model of the Design ACUIVILY
22 Detailed View of the Design Activity .. L ‘
2ot betaded View of the Synthesis Tash . .
A1 AND Gate Object
30 Hierarchical Model of the +-AND Gate ()hjv(‘t. P
11 Ilivr:xr("h_\' of the Modeling Objeere 0
12 Strueture of a University Database 0
S Structare for a Primary Property O S
A2 Structure fora Derived Property L [T
H Structure for the Type SET Associated with the Owner
St struernre for the Type SE'T Associated with the Member
55 Decb non of "value_header™ ‘ ...
So6 Declargtion of "set_header” and "set ynfo”
ST (IQ(_-nvr:{.l strategy for Processing the NULL Valuwes . 0
dox Declaration of "name_Jist _header”
b Hierarehieal Model - fa \'l‘.\']‘('lllp

X1

| Ra

: .+ . Chapterl

b : B R Introduction

Most of the design environments for VLSI, software engineering', ship design. and

other jenginecring dctivities -are characterized b}'~ complex but similar information

&

management requitcments.” Th(‘re has been a growmg interest in usmg databaqes

- -
N

across a variety of such d\lsc1pllnes In this Lhcsm we ?Lg concerned with the analvsxs
of the database requirements of design e'nvi_rc')nmen,ts and the design and implémenta- ’

“tion of a database management system suitable for design environments.
: . ‘ i : N . -
V m . i ' N ' BN
1.1. Complexity of the Desigh Activity,
oo '

To ’illustrate the nature of the 1infoﬁmation management requirements of design

environments let us consider a- falrly complex deﬂgn domain, namely the dgslgn of

[¥)

ships. (zottm" the design of the ﬁhlp from the early qtagm to the pomtjh(‘re it
P 1] %

represents a stdble full\ funcuomng sea vessel is a proceqﬂ involving thousands of

man hours, thousands of plans and draw]ngs and enormous- financial résources. This

13

‘process is characterized by a massive and constantly growing amount of detail as the

a

design evolves towards the complex array of welds, joints, pipes, cables. fittings and
. . . . i . . .) .

©

. o : . .
~other components required to construct the engines, turbines, boilers. reduction gears

5

et¢. A similar scenario cin be given for other complex design ddm’ains like VLSI,

Architecture and Software Engincering..
The designers’ intellectual productivity is adversely affected oy the amount of

detail that they have to manage. Throughout the design activity, the designer experi-

k]

" ences short bursts ofjcr('ativi‘ty followed by relatively long periods of non-creative

data (technically called "Information M4nagement”). Accu-.

érduo(is ‘battle with

T

mulating and rc;@c
T 8

datxbase management systems come into play. They provide the designers, actually

lese data istime-consuming and tedious. Here is where the

N N N K ‘ . L \ N -
the developers of design tools, with the facilities they need. so they are not concerned

with the 'how' of information management.

1.2. The Evolution of the use of databases in design systems.

The earliest uses of computers in design were as a superior version of slide-rule,
. . \ . . . :
desk calculator or the book of tables. Even though ‘the information management

requirements were not less complex at that time, computers were not fast and big

enough to support design applicatiors: As the hardwdrc_\and software technology

~

™~

. . / . . » h C .o
‘advanced. new applications were conceived for. computers and the design application

was one of the major ones.
In the mid and late 1960's, when computerized design environments were begin-
‘ ‘

ning to appear. the design systems consisted of a set of programs operating on their

¥

own input and output files. One such e_xémple is COMME.\D I from IBM[38]. These

systems faced enormous problems of,lack of data integrity and consistency, high

amount of redundancy of data, frequent and costly conversion of data from.one format

" to another and lack of program-data independence. This situation is somewhat similar

~to the one faced by’ the business environment. But the business environment did not

.
.

have to spend time and money to develop data structures for modeling since their

modeling requirements were considerably simpler. In design environments the model-
ing requirements were so complex that considerable effort was spent in each system in
designing and constructing data structures used for modeling. One exception was the

work done by United Aircraft Research L.aboratories in cooperation with IBM[50]

which is more general in nature than most of the other systems of that time. But even

this was specific for ‘modeling 3-dimensional geometric objects. So it is appropriate to

| . . ‘ . .
say that the database technology has contributed more benefits to the design environ-

ments than to the business environments. The early 1970's saw many design systems

starting to use database management systems for their information management

requiremeénts. Ioven though the database management systems based on Hiorurchi%n}f

i

¢

/

P

2

and Network models were not ideal for modeling in design environments, the develop- -

‘ers of do\ig'n tools enjoyed all-the advantages that are usually attributed to datubase
\ : == -

m:mngom"ekn systems. The mid & late 1970's provided another significant improve-
ment in”the\use of database management systems in design systems when database
management systems based® on the Relational model were developed[2,56]. The Rela-

tional model’s simplicity, strong theoretical foundation and the powerful relational

ff‘xlgobrhav[l 5.16.44] are very uscful in modeling and manpipulatifig the design objects[29].

/
/

It was realized in the early 1980's that even relational database management sys-

tems have some shortcomings in their ability to act as modeling tools in design

‘environments. For example. it is difficult and unnatural to model the complex objects

yarts b(‘m" mdd(‘ out of sub-parts) that one encounters in design applications using
I p PT

the relational model (this and other related topics are dméu“ed in detail in chapter 3).

1.3. The Problem‘ Area

As noted in the last section, it has been generally felt by researchers that the

a

facilities provided by the existing database management systems are not. quite
.

<fficient for the design environment. There is a mismatch between what the design

tools expect and what the existing database management systems provide. The funda-

mental reason for this is that these database management systems are all intended for

~

business applications whose requirements are quite different from the reqijirements.of

design applications. So there has been considerable research effort in ﬁndnng wh'ut

features a database management system should have tg meet the expect'stlons oft

design on\'ironrrion’ts\ Also there is a general lack of an adequate model of the design

activity. A sufficiently sound model of the design activity is very useful in viewing its

information management requirements in the right perspective. That right perspec-

tive is the key for the success and utility of any design software in general.and the

dutabase munagement systems in particular. A careful study of such a model can also

»

shed some light in identifying requitements which have not yet been recognized, .

1.4. Objectives of the Thesis

The objectives of this thesis-are 1) to arrive at an adequate model of the d(;sign
activity so that rosg:;rcll in Computcr-Aidod Design can be based on a sc@l\foundn-
tion. 2) to d?‘ri\'(' a set of foquiroments ((i]réﬁgh a literature surv‘e.\? and through a
‘mrcful stu!dy of the model) that the design activity and hence the'dosign.tools_oxporl

of & database management system, and 3) to design and implement a pﬂbtﬁ'po of

database management system to provide the features we feel are most important. “This

i
Y

prototype can act -as an experimental tool for further research in computer-aided

e

design (for example, refinement of thé model of the design activity. integration of a

design database with a business database etc.) in addition to being used in desigp tool

= development and serving a useful and central role in computerized design environ-

|
’

ments, \,

1}

1.5. Approach Taken

The database management system we have designed is "object oriented”. We call

’

our system "object oriented” because the concept of "Objects™ is used to model the
. [e])

entitics of the real world. The term "object-oriented” is not new. Many programming

Janguages provide the necessary features to support the object oriented design metho-+~

~dology. Also, there are many database systems which are based on the concept of

"Objects™. We briefly describe below the objec(oriented design methodology and men-

tion some of the object oriented database systems.

: \\wml(l implement these operations. -

1.5.1. Object Oriented Design

Abstraction is a fundamental conceptual tool used for modeling real world
]‘)h(‘ll()m(‘n()n-. .\Ecordiﬁgly. many problem solving an(.l software aosign m‘?t,hodologivs
are based on the concept of abstraction. One such doaigxi methodology i; the object
oriented design mot’hodology.' The Object Oriented Design Mecthodology|6,49,59] is
suppo‘.rth{d by languages such as Simula[l7]. Smalltalk[22.30,31], Ada[3] and Modula-
2{60]. In, lﬁrmmmh()dolog\ the importance of software ol)j(‘chfs' as actors, each with it
own S(;'i ‘o} :q)[iﬁéhblv opor‘ations is recognized. Thc"softwaro designer would first iden-
tify objects :md.thoir attributes. The: designer would then proceed to identify the

. .
operations on the objects and then to establish the interfaces. Finally the designer

N

©1.5.2. Object Oriented Systems

There are many systems which are based on the concept of "Objects™. Among the

important ones are TANXIS[T.48,61]. ACM/PCM[&] and the event model{37]. Al these
. /.

systems are concerned with mod-ling real world entities and their semantic relation-

ships rather than pure data organization and hence can be classified as work in

Semantic/Conceptual Data Models{7]. They ali address the problems and difficulties

that arise in designing complete database systems. They emphasize the importance of
. L .

"modeling the dynimic/behavioral, not just the static aspects: of a real world

" phenomena and the need to integrate these two facets of the description. It.should be
mentioned that these systems are concerned with modeling real world phenomenon

whose structure does not chinge dynamically.

\
1.6. Qutline of the Thesis = .~ .

The organization of the thesis is as follows. Chapter 2 introduces a simple model
’ : s

Tar

of the design activity and describes various aspects of thist model. The elements of a
computerized design environment are discussed. In light of this model, the role of a

database management system is pointed out. Chapter 3 presents a detailed discussion

“on the requirements of a design database management system. Chapter 4 describes the

design principles and the model behind the database management system. that was

conceived after a study of the requirements described in chapter 2. Chapter 5 describes
| N o

the implementation of that database management system and the associated d:i u
5 7

definition and manipulation language. Chapter 8 provides examples to illustrate the

use and the important features of the database management system. Chapter 7 pro-
. 9 N .
vides the conclusion and a discussion on the scope for furthér research in this arca.

Thesappendices provide the formal definition of the data definition language and the

\

header declarations of the functions provided by the system.

"

Chapter 2

’

A Model of the Design Activity

In this chapter, we present a modo‘ of the design activity. This model is
presented here to put. in proper p(‘rr’pnc‘livo computer-aided design in general and -

design database management systems in particular.

The activity -"design” involves mainly information processing. This readily sug-

gests that computers can be ‘used to provide support for this activity since computers
no . :
are basically information processing machines. For any such support to be meaning-

ful and successful it is a fundamental requirement that one should have a clear under-
standing of the design activity. We need at least a crude model for the design ncti\'vi!_\'
<o that any decisions that we make on the form of computer support are appropriate::

We give below one such model which is quite adequate for our present purposes. Moxst

of the discussions in chapter 2-of this thesis are based on this model. This model is an

)

extended form of the one presented in[31] to include the concepts of versions and

abstractions, N

2.1. The Model -

Fie. 2.1 i~ a hichly ‘abstracted view of the design activity. Several things are
g nght) ¢ g A g

worth noting here. ’

-- the design goal derives out of some need for or desire
to evolve and is usually formulated outside the design activity.
Usually. it does not change for at least some period of time;

-- designer’s knowhow, in addition to various other resources,
is an important resource that is required to perform the design;

-- the major output of the design activity is information, o
i.e. the design, which is usually input to various other
activities like manufacturing, testing. marketing, maintenance ete.

Fig. 2.2 shows a detailed view of the design activity. This figure shows the design

activity as a feedback control loop. It should be noted where the two inputs "design

©

R -
Knowhow Design Goal
-
Design
Activity * . /
o ' .
1o Input/QOutput.
Design .
Operation.
, . e '
, 1 1
Y ’ N

Orther Activities N
wnig. Marketing etc.

Figure 2.1 Abstract M(_)dv(l*lqof't he Design Activity .

|

goal” and "knowhow " are represented in this figure.

’

“ A higher level-activity generates the design specifications from the design goal.

.
v

2

ased on these specifications, certiin imp"lorl‘:mt .(](’CiSiOI.lﬁ' on th(ﬂ‘d(‘.ﬁigp ,(‘ntit.\\' are
mde hf‘{nislirnll)ﬂ "I‘hi.q, is the v"synthesis" part of t‘:he design aétiﬁty. This s tl_m most’
creative part of t’l;v (l(“sigh actiAvity avnd'.in:\'oh'os the designer's technical knowlodgo.
expérience, judgement and intuition, .In most of the cases th(‘ldesign(’r is pot. a‘ware of
the comsequences of these él.(;;i'siolis with r_éspcct to the “desi.gr; specifications at this
. - -t : R : .
st age. The output of s;\:'nth('si#i‘s nn"intu,i-ti\'e (‘on,_.c‘;*ptual_ model of the Q.ntiv‘ty being
. (l(“\'if;n(‘(i. It must be "analyzed” 'Il»[l(l "evaluated” ag:nns(the design specifications. The

construction of the conceptual model is not a once-through sequence of actions but

involves the designer going over the model againcand again to fill in bits and pieces.

\/‘

0 }
Design igher
T ' Level -
Goal .
- ctivity

\

Design !
Specificatibus f¢ »

mxluut 1on

" Deviation

('h:u@

41! hesis

Knowhow

Achievement

1

\Pr(intm on

1

Result

.

Intuitive
Conceptual
Maodel

Input/Output.

Operation.

Manuafacturing

Fiegure 2.2

/‘\nalysis
N

Design

)
N
. AN
~
. \
, N

Markeling

Detailed View of the Design Activity

10

Clatms of ﬁ;;‘\l(‘(llr(‘(l design not withstanding, humans rarely design anything i o
campletelyestructured fashion. The end out put .ll‘l:l_\' be highly organized but i getting
there the designer is dikely to hop all over the design filling in information with varying
degree of details until he and the rmnTtx of analysis and evaluation agree that the
design meets the design specifications Thus while the deviations from the
specifications persist the appropriate design decisions {("synthesis™) must be corrected,
This s the inner feedback control loop. The results of the inner loop are presented as
":u‘hiv\'m‘nvnt" to t.hv gher level activity which imtially g('n(‘rulv(l\ the design
specifications, The higher level activity can change the design specifications after com-
paring the achievement with the design goul. This is the outer feedbuack con!r()lkl(mp.
- ,
The activities in the inner loop are performed again if the design specification s
changed, 'l‘lmﬁ.‘ especially for l:xrg(" and long-running pr’()j(*(‘t'«' Jlike the chemical power
plant, big .‘i("il‘ vessels, the space shuttle. big software systems ete., the design

spectfication s a moving target for the inner loop.

2.1.1. Versions

In practice. however, the output of the mnner loop. at the same time it is being

presented to the higher level activity, may be considered adequate for being sent to

activities like manufacturing ete. This essentially means that at the same time

development work is being done on the design. the design may be -considered as o

“limished design™ This creates "versions” for the design which 1s an important aspect

of the design activity,

[

2.1.2. Abstractions in Design

The syuthesis task is shown in further detail i fig. 1.3

Identify constituent

sub- pro(hf‘ta//

/ . Apply the Develop the

Design Activity

for suh-pry
, ('omho*iD

Ficure 2.3 Detailed View of the Synthesis Task.

conceptual model

or the product

»
_£a

*
-

.
Fig. 23 presents a recursive deseription of the whole design activity. The synthesis of

the product 1nvolves
~ /
(i) tdentifving further less complex products which go to muake the product:

(11) applyving the design activity to these less complex products;

(i11) composition: make decisions as to how these sub-products can be
combined to evolve the prgduct being designed.

Or, if the product can not be broken up further then its "intuitive conceptual model”
i~ formulated by making decisions on the model heuristically. Th ts1n a net-
work like product structure. Fach stage represents an abstraction: the lower the level.

-

the more detailed the abstraction is. In some practical cases. the network gets

'+
dmphficd to o hierarchy and henece the commonly known term “hierarchical design”,
It i anteresting to note that each fevel of abstraction can have versions. This s

hecnuse the design activity is applied to each sub-product and each one of these activi-

A

‘\.
ties can potentially canse versions. Thus these two concepts nainely "Abstraction”
and "\ersion” can cause an explosion of information which is difficult to manage
\

mannally .

2.2. The Concept of Computer-Aided Design

A« we mentioned earlier in tl“nis chapter, design s mamnly information processing
With ‘<\|11plll})» \ided Design (CAD) part of the information processing is delegated
1o the rmnpu'lvr. The concept of Computer-Aided Design can be adequately deseribed
as n process by which the computational and memory characteristies of the computer
are combined with the imagination and reasoning power of humans for the purpose of
destzning. .'m.'xI.\'lln;:«:md‘implmnvnting some complex entity or system([21]. Simplisti-

cally. CAD provides computer support for the design activity

2.3. Computerized Design Environment

lu thi~ <cction we present the software elements of a computerized desizn
environment and indicate the central role played by the database and the database

Hanacement system.

The model of the design activity fi(‘lpq us to i(lont/if.v the areas where computers
can be usefully (‘h]pl()_\'v(l. In other words, it helps us to identify the important and
necessary elements of a Computerized Design Environment. [t s generally accepted
that the synthesis and evaluation tasks are best done by t‘ho human with the aid of
computers whereas the analysis task is b(fst done by the computer (the knowhow being
conveved to the computer thorough data and programs). The fun(l:nmont:xl basis for all

the benefits of computerized design environment is that the human performs the tasks

*

{

he can do best. nanely adentifyine problems. applying economie and engineering
jndeenrent andsputting forth solutions to the problews and computers perform the
tashs they can do best, namely racing throngh mountarns of ‘data, searching, compar-
ing and caleulating with remarhable speed, ';irrur:\r_\‘ and rehability Thus the whole
aystem is tuned to inerease the intellectual prodocovity of the humans

I ven though the synthesis task s manly performed by o human, the computer
hus o very mportant ml(--tn play - The computer can md the designer i formalinimg
the conceptual model which s i the mind of the designer. Inoa computernized (lmrgn
environment. the formalized model ts the machine-readable representation of>th«' con-
ceptunl model. A machine-readable rvpr(-.wnt:ninn of the conceprual model can be
tructured as a4 darabase. Thus the first and a very important element of the desion
environment is the "Database”™. To transform the ron((‘mu:\l model primitives to the
database primitives de need 3 Data Model and the associated Databace Muanagemem
System. Some tools like smooth surface design aids, Colid modeling wids ete are also
very nseful i ronstructing this formal model. - Also highly desirable for the synthesis

tash would be an intellicent design assistant which can -learn from experienced

. desioners and help the novices in learning the art-of synthesis by assisting them with

the standards procedures. Another YMuty of the design assistant can be to help the
(lv\'i‘gnvr locate what he wants. It can be an'intelligent browser through tht: library of
rdesign information locating design entities given an in('(‘)mpl‘(‘te and fuzzy functional
s;)(‘rifir{xli()xlt«\})f them. This will be very helpful in the svnthesis task when the
(10‘,‘\i5:n(‘/r tries to realize each of the identified abstractions of the design ol»joct. The
design assistant can also do some routine tasks hke d(’t(‘rmini’ng" when the database
should be restructured. running batch jobs at appropriate times. producing various
statisties and reports on the status of the destgn activity (hike schedules for the design

tashs. report on incomplete design parts ete.). As techmques of artificial intellizence

are beecomine more advanced. the day the destgner can enjoy such anintélligent design

assistant s not far off

The communication between the designer and the formalized model takes phaee
through an intermediate representation of the model and thav the User Interface s

another important element of the design environment,
-

-

The design datais used by the analysis task to produce the appropriate informa-

’

tion for the evaluation task. There are various tools which accomplish the analyas

tanhs. Some examples are the different varieties of simulators, translators between
.

various represeatations of the design data to ard 1o the analysis task finite element

analvsis programs ete. These are generally termed "Analysis Aids™

In the evaluation task, when the results of the analysis task are interpreted, com-
puters can provide support to the designer by generating various tables and eharts for
comparing and making decistons. Such tools Itke mathematical subroutine packages
: \ \
are cenerally termed VEovaluation Ards” -

. B

From the above disenssion the eentral role plaved by the design database 1< evi-

dent Beth the synthesis and analyvsis tasks use the database. Also. as mentioned i the
L4 N N . .

Iist ~cction the deston s intended for various activities like manulacturing, testing ete.

Thus the database provides o common representation of the model for the varous

B

tashs of the design activity and for various other activities as well.

To summarize. the important elements of a design environment are,

1) The Database, the Data Model, the Database Management

.

syvstem and related tools:
. . n
2) Intellicent Design Assistant;,
3) User Interface,

Py Analysis Ards and

(23

R . ' . s . .
\._m‘ X ‘ . A } 1 5

- H) Evaluation Aids. . . n

}’2.4. The Design Database Management System

We have s;'on in the lasf. section that ‘the database is cent.ral to most of the design
tasks in'a 'C-omput_erf-aidvbd. (!o‘s‘i'gn environment. [t proyide_s a common repfoscmmiorg
of tho’concoptdal mod¢l for both the synthesis and analysis tasks. The ﬁtility of vari-\
' o (W)
. ous software tools that are intended to aid in design vdepends‘ver_v much on the facili-

.

ties provided by the database management system. Tools omerge to satisfy a partlcu-P

L] . L.
lar need in the design environment and their information managemeént requirements
B L - : L . ‘ - . :
are governed by the nature of the design activity. So the design database management
s_\‘\‘ton'ﬁ should be d('sign('d conﬁidoring the requirements of the design rxcti\'ity Thls

1% Bl

‘ensures that they prondo the facilities Umt the tools expect .and thus the de\e]opmont

of tools become (‘;nicr and economical. Thus the progr:immor‘s produétivity, to some
. - N " [. . kY
degree, depends on'the database management system.

//'"

Our mocl(‘] .also mdlc ites tlmt tha’dow'n information i1s.intended for. and uscd by,

. :
other activities hike njmnuf‘:clurmg purch'mnrr. mamtenauco etc. In a computerized
design environment this-essentially means that the database will, at the least, be con-
j€ull(‘d by tuh_os’o n'rtivitio."a'.‘ These activities also usually maintain détabascs for their
information nmh:xgomont roquiroments. Th("ir information.ma.nagem‘em requir(‘mems

LY

‘may be different .in nature from the requnremente of the deslgn actnnt\ but a substan-

¥
_ o Fe . .

tial dmount of the do"-lgn data will be. dupllcated to thelr databases. ror e\ample the

o /

lis(of m: normle is an 1mportant constituent of the database for purchasing and this

i

ddtd Orlf'll'ldf(‘\ Afrom the dcw’n -data. The facilities offered by the design database

e

3 - B
b

management sysiem would” to a large extent, determine the efforts involved in
transferring appropriate data to other databases. Integration of these databuases.
though diflicult due to the differences in-the information management requirements,

can solve many problems like integrity and consistency of data among the databases.

7

)
16

a

~

7
/ o

. N N N /
Design database management systems will play a key role/in bringing about a success-
. ~ e . « /

b
"

ful integration. - ‘ ' // : e
. . /v,’ N
The above discussion shows that the design /d’dtnbase management system 1s &
B s
very important and critical element in a design qﬁvironment.. The success and utility
: /

. . N //
of design environments largely depends on the database management system.

The model of the design activiiy we have presented serves a very useful role in

o

developing the design database management systems. The information management

requirements of the design activity, so far recognized as necessary by. rescarchers in

this field, can be identified with part;{cular aspects of the model so that these require-
ments can be put in proper perspective and further important requirements can -be

derived with this model as the basis. As we mentioned before. these requirements are
the basis on which the design database manugemen% systems should be developed <o

3 -
at the database management sys-

“that the gip betwegn what the tools expect and wh
tems provide is n:x/}/r‘owed.

2.5-Summary
,) .

F th/i,< chapter, we have introdu#fd and discussed an adequate model of the

.ith this model as the reference we have identified the potential areas

design activity. V

\v,}gé""ﬁ‘*'é‘b‘m-plxtors can emplg'ed to aid t‘he design activity. Again using the model,
we have stressed fho contrval and important role of‘ database manazement systems in
'vdcsigyn erl';jil;onmonts. We have also indicated how the_'-model can be used in d‘ev,eloping
‘the designﬂntﬁbusc management system. The next chapter describes the r.equirements
of a dcsi.gn dat ;sba.:(; management system and subsequent chap.tvrs describe the

devclopment of a'ﬂ'at—ﬁbasc management system based on these requirements.

HE=

Chapterlsl‘ x)
B . -l\

Requirements of A Design Datab#sé-M&nAg’ement System

As we nated in chapfer 1, it is the general feeling that there is a disagreement

between what the design tools expect and what the existing DBMSs provide. Out of

f
s

this arose many research _(;Horts to identify what Ithe rloquiremcwu-wf design database
management systems are(4,34,42,45,52]. The first DBMSs conceived for engineering
and design purposes such as the systems that evolved out of the IPAD project[33] are
maturing and several attempts have ibeen made to extend existing DBMSs to provide
c.:(p:xhililivs for sup[')ortil‘xg CAD applications[27,28,55]. These were practical attempts

A 4
to deteruniine the novel and intetligent ways to expandsthe scope of the use of didta-
buses and how existing DBMSs and data models can be adapted for CAD applications.

These systems have provided insights into identifying the short¢comings of the conven-

n pré\hws'iv e

tional databases in their use in design environments and in deriving a cor
set of information ‘management requirements for design environments. A careful stu}?g\f
’ b

——

. . - E . - . ' . ?

of the model we have deseribed 1n chapter 2 helped us to justify some of the requirg-

L A quire

ments and to augment this set of requirements. In this Chapter we desceribe such a

comprehensive set of requirements expected of a CAD DBMS which sets forth the

\ ,

foundation for this thesis. The discussion also sheds light on the direction current

research in this areais taking.

.

3.1. Ability to Represent and Handle Comp;lex Objects

This requirement derives from "the désigner’s need to refer to objects which often

«

consist of tens or even hundreds of items. The DBMS is required to manage the struc-

turesof u large complex object with several components interconnected in a potentially
complex manner. The structure used for representing such objects may obviously be

more complex than single records or sets of homogeneous records. It should be pnssible

to define thése objects so that some global operations such as delete, move, copy and

°

18

3

lock could be handled by the system on an object basis. Standard DBMSs doun't pro-

vide the facility to represent a complex object as a whole. For oxamplo; in the rela-
tional model the rep.rosentation is -entirely left to the user. He must represent a com-
plex object as a coliection of tuples in several relations and the relationship between
these tuples is expressed by mut%hing values. But this does not tell the system expli-
citly that all these related tuples for;xx a single compl(;x object. If an object is to be

deleted, the application program must use several DELETE tuple commands. Thus

the key here is to make the complex object known to the system.*

Let us consider, as an example, the design of electronic components. Even though

it is simpler than the objects involved in proper VLSI design it demonstrates the issues

involved in representing and manipulating complex objects. Consider a $-AND gate

object built out of three elementary 2-AND gate objects. Figure 3.1 shows the design.

The design is simple and self-explanatory.

Figure 3.1 4-AND Gate Object

The hierarchical model of the g‘ino object {both 4-AND and 2-AND gates) is shown in

ficure 3.2, This incidently describes both topological and graphical aspects of the

>

10

GATE-OBJECT

. / . V
GEROMETRY PINS BLOCKS CONNECTIONS

CONNECTION_PIECES

. Figure 3.2 Hierarchical Model of the 4-AND Gate Object

“objects. The object GEOMETRY contains the information about the r‘oordinzxtvs' ofv
the gate object. The objoc‘;ﬁ.l’lf\'.\‘ "spociﬁcs the .exterior pins of the gate object. "I"h(f
objoc{ PLOCKS confains information about objects used inside the gate object. The
object CONNECTIONS specifies the topology of the connections between objects.

The object CONNECTION-PIECES contzins information about how each conncction

iv actunlly represented graphically.

. This model cxu be mapped to relations as follows.

Relation GAT: tid : INT. name : STRING.....)
Belation GEOMETRY (gateid : INT, XEINT Y EINT.X2ZINT Y 2ZANT.)
Relation PINS(eateid (INT. no - INT class :STRING,X:INTY:INT)
Zelation BLOCKS(gateid : INT. no : INT, type : INT.x : INT ,y:INT....)
’.ol:;li’on'(‘(‘)f\l.\'li("l‘l()f\'.‘%(gatoid INT ,no: INT.,startblock : INT,
startpin : INT,endblock : INT, endpin : INT) :
zelation CONNECTION-PIECES(gateid : INT, conn-no: INT, NX: INT, Y 1 INT)
" The relations are fairly self-explanatory. The important thing to note here is
“how the hierarchical relationships are represeited in the relations. The child object
“always carrtes the primary key of the parent object. It can be shown that for the
diagram in ficure 2.1 a 1-AND gate is rzepr('sonted by 21 tuples in 6 relations. A tuple

in relation GATL actually identifies the object and the other 23 tuples are logically

linked tozether by the key of the various relations to define all the components of the

20)

ohject

As mentioned before, the problem with such a representation is that it does not

tell the system explicitly that all these logically linked tuples form a.single, complex

object. If the 4-AND gate is to be deleted then the application program has to issue

delete calls for all the 24 tuples. The same holds true for moving, copying or locking =

objects as a whole. This has scvere data integrity impl,icz'xtions. Maintaining the
integrity of data requires very carcfully programmed applications pcrf_orming the
operations. We call such representations of complex objects as APPLICATRION
IE)ICFINICI) (‘().;\H’H-]X OBJECTS in con-tms‘t fq HY.\"TEM DEFINED COMPLEXN
OBIECT wh&oin the DHT\H is aware of the complox object and is capable of d(;illf.:
v()p(‘r:nionsvon the object as a whole. Examples of systems which provide the I:xltvf

-

facility are deseribed below.

Many attempts have been made to incorporate the facihity of SYSTEM DEFINED

COMPLEEN OBJECT into DBMSs,

&

©3.1.1. 1P1P, o2 DBMS that was developed within the IPAD project at Boeing{33], has a
facility for definition, and manipulation of high-level user-defined objects. Changes are

propagated within the objects and deletion of the highest-level record in an object

triceers deletion of all the records constituting the object.

. 3.1.2. " Stonebraker[57] suggests the definition of abstract data types: By this
approach, new data types {Data Structures + Operations 6n them) for columns of a
relation such as boxes. wires and polygons become possible. A.P. Buchmann[9] is of

the opinion that this approach may be feasible for relatively simple objects but

A 't

appears rather complex for more elaborate objects.

3.1.3. K. A. Loric et al[28,42,43] have extended System R{2] by providing system

defined complex objects. They provide three new column types for relations: IDEN-

TIFIER. REF, and COMP_OF. The main features are:

3.1.3.1. The value stored in a column of one of these types is always the IDENWIF-

2
IER of some obgect.

3.1.3.2. IDENTIFIERS are byte strings of uniformn length, are unique system-wide,

and are generated by the sy<tem at tuple creation time. ldentifiers are never reused.

3.1.3.3. COMP_OF type signifies that the tuple belongs to the object(tuple) whose
[DENTIFIER value corresponds torthe value of the COMP_OF column. No cycles are

’

allowed in the tables related by COMP_OF.

3.1.3.4. The REF type is provided for linkages other than hierarchy in a complex
object. REF relationships are legal between component tuples of the same object and
between component tuples of one complex object and root tuple of another. REF is

not allowed between component tuples of two distinet complex objects.

3.2. MAultiple Represen‘tations‘

A design may be described by many alternative representations. For example, in
VIS a chip can be described by layout geometries, stick diagrams, block diagrams.
logic diagrams., !r:msisl'or netwdrks, functional specifications, behavioral specifications
or jJNI as programs which simulate the functions of the chip. -The design DBM>

<hould provide support for such vastly different representations of an object and sull

retain the vital fact that they are all incarnations of the same object. This is rough]}:
equivalent to the concept _of views in conventional DRHSH which are provided for rea-
sons such as security etc. In the _‘(lesign environment mu]tiplve representations are .
meant for separate dc‘si_gnv activities rather than for privacy :s-nd security reasons. o o
desirable that the DBMS should not impose an a priori assumption on the various

kinds of desion representations supported. Rather, it should support multiple represen-
g I I

tations without it understanding their internal ‘slrurturc. Higher level software should
be responsible for choosing the form of the representation and.its interpretation[31].
Such a feature provides both power and flexibility. One of the scenarios proposed[14] is
that (‘:u'h‘r(‘pr(‘son(ntion is under the control of a.‘subsystem. All the subsystems use
the basic data which deterministically describe the object being designed. Lach subsys-
tem utilizes a different model of the objeet \yhich is mor('&n:sturzzl to the representation
it 1s controlling. For oxamplo. in VI.SI (l(‘sig'n. a.simulution subsystem will view a par-
ticular device as a simnlation ROM with the specific signals appearing on specific ihput
and output pins; a logic diagrymming subsystem will .modol the same device as a set of
symbol drawing primitives with the specific signals appearing at specific coordinates on
the symbol: and & wire wrap routing subsystem may \"iew the basic data strictly in
terms of gvomvlric-qoor(iill:ltos. But all the three subsystems will use¢ the same basic

circuit duta which describe the device.

Nontrivial problems with multiple representations occur with update. When the-
basic data s updated. th(‘. derived ;l:\t:x (the various representations) go out of date. To
bring them up to date requires long-running programs which may not be run automati-
cally since they may require user input. For example, if a signal 1s changed the routing

and test generation subsystems must be rerun. The cost involved in synchronizing
.)

representations with the basic data may be prohibitive and some compromise must be,
. B ‘ !
reached regarding the tolerance period during which the representations can be out of

14

svne. More serious problems occur when the representation is updated and hence the

basic data goes out of sync as in the situation when a wire wrap connection is changed.

To understand the 1ssues involved the following analogy might help. A compiler

accepts w symbolic description (the basic data defining the program) as input and

. » o)) : L i
derives another representation in terms of machine code (derived representation). If we
change the machine code. what is the effect on the symbolic representation? The
. il

Y

changes made to one representation can not be propagated by .the DBMS to the basic

4 : °

dat o without an understanding of the semantics of the representation. Related issues
in the updating of views in :x’r('l:nionul model is discussed in[18] . An easy solution is
to prohibit updates to the representations. But this does not seem to be natural in a
design environment where the different représentations are used for separate design
activities. A more practical solution is to allow updates to rcproavﬁlulionw and

attempt to flag the discrepancies and try to 1wolate the update.

3.3. Version Control
.

As we mentioned in cliapter 2. the design activity is not a once-through sequence
of actions but is most often i(vr:xfiyo. Our model of thv‘dmign‘ activity shows this
explicitly (refer to the discussion of versions in chapter 2). The nature of the s.\'nth’vsi\"
task suggests that the design activity is highly tentative. Thus these two 11.*[)(;((.\'.
Herativeness and tegtativeness, result in more than one realization of the object which
the desizuer is trying to evolve. Versions can occur in a design environment in bhuasi-
cally two ways'15] First. a version can arise due to the use of different strutegies to
relize an object. This usually happens during the synthesis stage of the design
activity These versions are alternative design specifications s:\tisf‘\'i’ng‘ lh(" abstract

\ .
functional requirements of the object. Thus these versions are considered functionadly
equivalent. For example, a software module can be implemented in many ways each
representing o functionally equivalent version. The sc.cond kind of versions is due to
revistons and 1s thf‘ most common one. The old information about the object 1s
changed l)(‘(‘:nA]s(* 1S (‘i.t her incomplete or incorrect. In the context of our model of the
design activity, an incorrect design is one which does not meet the d(‘si.gn specifications
’gvn‘vrntvd by the higher level activity (i.e the design which does mot satisfy the inner
loop) and an incovmplvt(' design 1s one which does not pass the comparison with the
design goul done by the higher level activity (i.¢ the design which does not 's:ui.\f_\' the

outer loop} As mentioned in chapter 20 in practical circumstances these designs can

2

be released as finished designs. Also, these versions are usually retained to provide o
history mechanism so that the designer can review his earlier work. These two kinds of
versions are different since in the former case the versions are functionally equivalent
whereas in the latter case they are not. A design I)B.‘}i.\' should provide explicit sup-
port for both Kind of versions. There should be facilities to mark a particular version

as Released or Verified and Approved™ or "Unupdatable’ ete.

3.4. Conﬁguration Control

liumans can effectively deal with only one problem at a time. This general and

practical observation has led to the concept of abstraction. Usually the design activity
N L]
proceeds in different stages of abstraction. Fach stage is configured using the objects
which are at a more detailed stage of abstraction. Such an abstraction configuration is
nsnally a tree (hierarchy) or a directed acyclic graph. A node represents an abstrace-
tion. Fxamples of nodes in VEST design are chip, ALUL Shift Registers ete. The node
i~ connected by directed ares to those nodes which take place in ats configuration.
Those nodes from which no arcs emanate are the leaf nodes and for the purposes of
. ¢

desicn are constdered available. The information content of each node 1s composed of
the information pertaining to that node plus the information content of those nodes to
which it i~ connected. These are explicitly shown in our model of the design activity
(refer to the discussion of abstractions in chapter 2 and fig 2.3). The concept of
configuration is stmple if there is exactly one version for each node. Then the problem
reduces to controlling a complex object. But usually this s not the case as mentioned
previously . The DBMS should provide facilities for specifying precisely which versions
participate iy o particular configuration. No the configuration sperification facility
<hould inelude version specification as well. Sueh a facility can be helpful in determin-

I
ing the optimum configuration by simulation since a realization of a node which ix con-

sidered bad singly can o practice be really good as part of a whole object. Also. the

[

ability to control configuration should span across the multiple representiations of the

object Thus each representation has multiple configurations,

These three related issues, namely, multiple representations, version control and
conficuration control are the source of most of the complexity facing the developers of
design software. Fxplicit support from the DBMS to manage these issuesin an interre-

Iated manner can be highly useful in breaking the complexity barrier.

3.5. Support for Derived Data >

Derived data are those data which are derived from the basic dati deseribing the
object being destgned. For example, the series of tnput and output vecfors generated

N

by o test generator and the output of a simulator .'\r:\('\fCXLII.ll])l('* of derived data
Derived data can be iwvwnt for the low level parts too. To calculate the capacitance
between two celements one needs to know their overlap inform:ni()nr This can he

, : . ,
derived from the geometry of the elements, Derved data s present in commercial dard
haves as well For example. the number of items on order (derived data) equals items
ordered mimus items recerved (primary dura), I)(‘ri.\‘v(l data can be stored in the data-
‘ base s u opair consisting of an algorithm and the conditions under which the algorithm
i~ 1o be exceuted, or it can bhe stored as pure data (or as a combination of both). The
choree of which method to use depends on the frequeney of use of the derived data
{the fatter method s preferable af the frequency 1s high). on the frequency of update
to the data on which the derived data depends (if the update frequency is high then
the former method is better), the volume of the data (if the volume is high then the
former method is preferable} and the cost of computation of the derived data (if too
much computation is involved then the latter method ts better). The test generator
output is better-stored an the data base in pure data form, ‘whvr(-:s\ it s desirable to
run the simulator whenever the simulation data is required. Sometimes it may be

beneficial to implement both of the methods.

L

e

D
S

. ! .
3.8. Conversational Transactions

[n a multi-user environment (as is the case in a design environment) the concept
of transactions 1s very important. X lr:um:u‘tinn 1s the basic umt of r()ns‘i%t‘('nry anil
TeCovery. Hvl.\wcn its start and end, a transaction executes many read and write
operations on the data o the database. Transactions in conventional database appt
cations are generally considered non-conversational; the transactions mvolve only a
few records, typieally tast for less than a second and do ;1()l involve interaction with
the user {even though they might have been issued interactively by the user). Transac-,
trons of such :\'n:nurv.do not adequately model the interactions encountered with the

. .
data n design applications[35.42.53)0 In design applications, manipulation of the
datiis mostly done interactively. The designer "checks out™ part of a design (usually
a collection of related records), works m;.il extensively over a long period of time (typ-
ealhy hours and at thmes davs) and finally submits ("check in™) the updated version to
the databuse l)u‘ring this period this part of the design may be inconsistent with
other parts of the (i(‘*if,{[l Also. it is highly desirable that the user \'(‘;\ionq SUPVIVG Sy s-
tem erashes This difference i/the nature of transactions calls for & .difﬁrvn(‘v in the
way locks are apphied to pieces of information when multiple users try to access the
database Ttis not acceptable to allow one user to acquire an exclusive lock sinee
other wsers could suffer intolerable response time on their transactions. A scheme suz-
costed by ROAL Lorie et al{2%42.43] involves the use of private databases. Wien a
designer wants to check out an object from the database the object is copied to the
destzner’™s private databases. H(.‘ works on this private database and when hé‘ i« done he
checks 1o at which time the object replaces the old version or creates a new vervon of
the object. During check out the object can be locked for read or write. Other .

designers cun still aceess the old object. for read alone if 1s "write” loched or for both

read ana write if it is read locked.

Regarding recovery. the usual recovery methods employed by DBM=s are not
suttable f\(').r design apphications. They undo the effect of tncomplete transactions and if
thicis done in a destgn environment hours and even days of useful work would be lost
The database should be restored to the most recent state possible. This can even be
past the Tast “save” done by the designer. The information on object locks should be

stored in non-volatile storage so that user sessions can survive system crashes,

3.7. Integration with User-Interfaces

A< adentified 1n chapter 2, the user interface is an important element in a design
cnvironment. It gives the user a human-oriented representation. and facilities f
manipulation. of the formalized model of the design object. The practice of handeod-
ing user iterfaces will die outgas User Interface Management Systems(UINSs)[25]0 Hike
the University of Alberta UINMSRG] become more popular. - This has created an addi-
tional burden (wiich did not exist when user-interfaces “\vro handecoded) for the
desieners of data base management systems. Design database management systems
<hould now provide features for easy and successful mntegration of the DRNS with the
UM Cooperation between both systems is necessary for a successful integration. 'Ithv
concept in\‘nI\('(l i~ ~simple, namely the internal (database) representation of the for-
muhized model should be transformed to its external (human-oriented) representation

and vice versa. BBut the ease of implementation of this concept depends equally on both

the svstems,

)
R

3.8. Speed of Internal/External Transformation

\s we mentioned e the Tast section, the database and the userinterface partici:
pate in o the Internal/Fxternal transformation and viee versa. The speed of
fnternal/External transformation is especially eritical sinee if the speed 15 too low 1t

. .
may cause the designer to be idle for some time. This mght affect ! he pr()(lurtivil:\‘ and
creativity of the designer. The speed of the user interface 1w a factor determining the
response time along with the speed at which data s retrieved from the database
Some requests from the user may in*.()l\'v traversing practically the whole database
and this is a time consuming operation. This calls for efficient data access mechanisms
;”.,(l database traversal mechanisms. Certain other factors which are discussed in other
sections of this_chapter: set oriented information storage and retrieval, keeping o
defined set of objects in main memory etc.. can contribute to this fast
tternal /s ternal transformation

3.9. User-Controlled Archiving of Data at Objeét Level

o

In o desion environment the design activity can be so high that 1t produces a

large amount of data. In particular,. the graphical information as<ociated with*u

-

desien tends< to inerease the amount of data. It 18 common observation that there are
periods of anactivity for some of the data, therefore. 1t can be archived to more
economical secondary storage. It is not advisable to arc.hi\'o on a disk basis: the user
will not know whut is being archived since it is the DBRMS which maps the data to
physical locations onto physical storage. It s highly desirable that the user {because he
18 lhf‘ person who knows) be provided with the facility to move a meaningful portion of
the database to the archive database. Here ;\glli[l the concept of complen objects s

hiehly useful

729
3:10. ABil’lt.)\'ﬁt;oﬁHaridlé Heterogenous Data

Present day. data models:support only homogeneous data (formated data). But in

. . o . ' M \. . ¢ -‘ N ‘ PR -
2 design envirgnment there are'situations where one has to represgnt and store hetero-

‘
¢

~genous data. Examples of such data-include images, text, miscéllancous facts, vectors
and matrices.. The interface to data should be expanded to accomodate such data. In

existing systems if one selects asrecord and accesses a field in it then this whole field is

returned. This is not a desirable policy since the field can be very long. say, 10 Mega »

" bytes. With'such a long field it may even be impossible to return the whole contents.

“The DBMS should provide facilities whereby one can access such long fields pie¢e-wise.
v . . . : : .

“An indicator (or cursor) can be initialized as a result of a retrieve operation on such a

ficld. The pieces should then be acéessible by moving the cursor along the length of the

field. o A

oo [

3.11. Repetitive Access to Data
: P :
This ts an efficiency issue that can not be ignored. It is a general experience that

design applications often need to access data repetitively while executing time-

consuming algorithms. When data structures are built in main memory the ovérhead

o i

of accessinig arecord is far less than the overhead for acgessing the record from disk.

For example, a placement program -will frequently need answers to the questions such

as "What arc all the signals touching each device? What are all the devices touched by

each signal®” and if the algorithms to answer these questions address a disk structure.

[i

the total execution time would be astronomical. Another occasion where the main

memory structure is better than the disk structure is when derived data is calculated.

Therafore, for complex algorithms, one should have a way of bringing logically related

‘are localized rather than being random. This fact can be used to determine which por-

dion of the database should be brought into main memors.

’

e

records into main memory. It is also a fact that in design applications accesses to data
4 .

3.12. Reusability of Previously Specified Information

The use of such a facility is obvious. The DBMS should provide facilities to sup-

port object libraries. The libmry objects should be parametrizable so that they can be

~

used over a wide range of applications. The library objects should be described by
- . : A

their functionality and interface, and not by their realization. "The DBMS should dis-

o

. . .) . oy . ' Nt
tinguish between a linked library object and a.copied library object. In the latter case

‘

the realization of thcphjo?t is modifiable by the do:s'i'gnor whereas in the former case it
is not. If thc-;ro:ll"iz:x'tio;) of the linko(lﬁlib;ar)' object 1s changod‘ then the ch'ango‘ should
be reflected in the instances \kfsed by the designer, but this 'willl not be the case with
copted lil)rur;\‘ objects. If the designer changes the realimtion of the copied library
()l“.jvrl and wants it stored in the library, the librarian modulo of the DBMS should
take care of prép(;rly versioning the new realization. Thus this issue.is closely related

to version and conficuration control.

[t is generally felt that "reinventing the wheel” is quite common in a design

environment even where libraries are present. Weinberg[38] noted that the probiem

with libraries is that "evervone wants to put something in, butao one want{k to take

anything out.” These are caused by unusable or cumbersome access methods. nade-

.

quate documentation. poor interface definition of the,objects (and hence poor adapta-

) .
d -

2

bility) and non-availability of intelligent browsers for the library:~.,.. .

.3.13. Dy,namically‘ Evolving Structure of the Database

It is rightly said that the main purpose of a design database is to be built whereas

the n.min purpose of 'm administrntive database is ton be .consult(g%l. This calls for a
dynamic 5(‘}1”1“1 facilhity. 'I.‘hc‘reqluirement» for d_vrrhliamic schema arises from the f:xc.t
that- the designer is trying to design conlpl(;x objects such as buildings. ships process
plants, air <~r:1ft.sv or digital cir‘ruits which does not exist yet in the real world. The

Yt

designer is constructing the structure of the model itself in dddition to specifying data

about the model. In the context of our model, both the inner loop and outer loop can

«

cause structural change to the model. The necessity to update the structure of the
'

model is triggered by diverse factors like results of performance measurement (say. by

’,

simulation), imagination and reasoning. change 1n apprpach, change in technology ete.

and as a result can not be anticipated 1n advance. So the RBMS should allow dynamic

restructuring of the database without much cost and performance penalty.

3.14. Constraint Specification Facilities

'

" In business environments, r‘onslr:iims are limitations on the valies that the data-
base can have. They are in general called data integrity constraints[16]. This is true
of dvsi;:n covironments as well. In :uldilion..since the structure_of the database can
change dvnamically we need to specify limitations on the structure of the database
too. Tim calls for new constraint specification me’ch:;nisms. Also, since Iho nature of

the design .'(clivit_\' is highly tentative as discussed in (‘hapl-(‘r‘Q. the data generated by
the designer may sometimes violate some-of the constraints even thouch the ﬁ-nnl pro-
.
diet sh(lmld comply \f’ith all the constrants. [t will be imappropriate to refuse update
to the database when some "non-crur}:_xl'7ronstrnint,s are violated. Th‘e_ meaning of the
term "non-crucial” is highly .xubj(‘ctiw'.v' It may happen that a "crucial® cgrwtruinl can
become "non-crucial” and vice versa as 111(; design précoods. This calls for flexible con-
straint specification facilities. One of the solutions can be to ask the designer at each
violation whether the violation is erucial or not. Non-crucial violations can be recorded
and luter, on the designer’s request. the state of the database can be cémparod against

-’

these violations to report the ones which'still exist.

For such solutions to be casily incorporated into the design software and for
eastly expressing the constraints on the structure of the database, the concept of con-
straint specifications should be generalized to include the specification of\actions[»l()}.

An action will be performed by the system whenever a specified condition occurs. Some

researchers call such specifications "Data-dependency: Specifications”™. With this

. . e . - . . .
notion of constraint specifications, the concept of derived data. which we discussed

earlier. ¢an be equivalently expressed as a constraint specification since the value of

the derived dati depends on'(constrained by) the values of some other data. Such con-

traints (or data-dependencies) can be enforced by the concepts of triggers{19]. produc-

‘tion rules[20] or alerters{10]. For example, Garrett and Foley[20]. use production rules

to enforce d:xt:1-d<‘p('nd<\niw. A production rule is an assertion and an action which is
L
Yy ‘

performed when the assertion is true. In their data-dependency view of the orguniza-

tion of & graphics application program, they introduce four sets of data-dependencies.

»
‘

There are data-dependencies between graphical input data and graphical output data

(for feedbuck purposes) between graphical input data and application data. within

i s

application data (for propagating updates to other dependent data and for enforcing

application-dependent design constraints)and between apphcation data and graphre.d
N

output data

Thus desien-database management system’™ should provide such flexible facilities

for con<traint specifications,

'3.15. Set Oriented Information Storage and Retrieval

{(‘trieﬁ\':xls from: a ®esiin daiabiace e vypically set-oriented rather than record at
a timel5]. Since the designer s int;reste(i in a plarticulnr object (usually quite complex)
which is composed of highly interrelated records, retrieving pieces of it is not ﬁsu:tll)‘
Very useful. This fact can be used to localize the storage of information which will
improve access efliciency considerably. The relational model is set-oriented in the
“ense lh’ll‘l it provides retrieval opo’rafions on relations which are sets of t uples. So rela-
tional I)B‘MH.& usually try to localize the storage of tuples of a particular relation. But

+ desien DBMS should try to localize highly related records. Here again. the notion of

system defined complex object i1s very useful. Since most of the time the designer will

be interested in a particular complex object, the storage of records of-a complex object

can be localized so that the access efficiency 1s improved.

3.18. Complex Computations

Many CAD applications require both large amounts of data and extensive
scientific and engineering computation. Existing DBMSs are usually limited to simple
\ : , ‘ .
computations and statistical summarizations. The design DBMS should provide facili-
ties for a carefully selected set of engineering and scientific computations. More impor-
tant than that is the flexibility for inclusion of new computations so that the DBMS
can be tuned for specific design domains. Such facilities can greatly reduce the

development time of application software (the design tools). -

{

3.17. Design data vs Engineerving data

Design .'ll]ll()lll.'lll()ll data can be divided o o types. design . data and engineer-
ing data. Design data is the set of data which describes the object being modeled.
ngineering dat is the set.of data “"ﬂhirh 1s utilized. by application programs as a
source of information but is not modified by them. Fxamples of engineering data
include various constants like wire thickness, pad size. other engineering constants
ete . data pertaining to code of practice, blockage maps for cell routers and symbol .
descriptions for graphies applications, d(‘si{ir{ rules ete. The structure of the engineer-
ing data can be as simple as a list of nume-value pairs (as in typical engineering con-
stants) or as cofnplex as goomolric:x‘l modoliing schemes (as in symbol descriptions for®
graphics applicatiens). Major considorationyshould be given to providing ownership
“and cohtrol tools for the two types of data in addition to providing an easy and flexible
interface to the two types of data. The responsibility of the design data falls on the
users (designers) who are :xuthorizc(.l to carry out the design. In this case, the users

<hould be given tools with which they can effectively manipulate thew portion of the

design database. Engineering data is generally maintained and controlled by a small

T

N

34

croup and 15 used by all the designers. The management of engineering data involves
{wo major issues: integrity of engineering "data and controlling of the impact of

change to engineering data. In this case, the small group which manage the above two

issues should be'provided with configuration management tools.

3.18. Support for both design and corporate databases

It is desirable to mvrg@ the computer aided design activity more into the full life
cvele of the object being designed. Taking the present day situation in design and
manufacturine environments, the CAD activity generally ceases when the design data
and documentation leaves the domain of the design database. As a result of this. data
which was present ‘in the design database |s often duplicated 1n many places like
where-used and l)i]i-bf-nmt(‘ri:il:« didtabases. Thus design automation ‘is so far mercely a
useful Afrom end to the complete hife cyele of the product. A sophi\lic:n;*(l database
maniagement :\\\l('m should pro\'idvlf:xciliti(‘s so that porlions-‘ of the design datubase
\:«\ml. relevant portions of the corporate dattubases can be meaningfully merged. This can
be as simple ax storing data like contract name, manufacturing machive name and
location. mill specifications ete. along with thre design data, or can be as complex as
definine meanineful interfaces {windows) between the design database and A\':xri(m\
other din :‘dm\(a\'wi! h controlldd data redundancy. In a real-lifessituation. this can have
impacts like reduced freedom for design database managers; Ioolls can not be ‘built' to
<uit the purposes of just designers, certain fined I;Il(] standard protocols must be agreed

upon with the other managers who are active users of the database.

3.19. Support for Documentation

i

Gipod documentation can aid in getting the proper perspective to 1}n<;h‘r:~t:m<i a
particular picce of design. Carlo Sequinla2] is of the opinion that "Design and Docu-
mentation should become synonymous™ The design DBMS should provide explicit
support for documentation of design objects. Documentation is best arranged as a
hidrarchy. The DBMS should provide facilities so that the documentation provided for

!

multiple representations of the saume object: can be treated as a whole. Automatic

i
documentation facilities should be provided wherever possible,

3.20. Requirements Considered for Design

So far. we have presented a comprehensive discussion on the desirable features of
« desion database management system. We do not claim that the requirements cited in

. 4 . ' . . .
this chapter are by any means exhaustive. Also. more experience with design systems

can sueeest further desirable features,

[t i~ nontrivial todevelop w database management system which can provide all
. Y
the fearures expected by design applications. In fact. it is debatable” whether some of

these features shonld be provided by the DBMS or by software external to the DBM~.
»

Several compromises have tosbe reached and several design decisions have to be
a4

evaluated under practical circumstances. As an aid to studying ‘some of the important
. t, ‘
requirements we desizned and impléemented a prototypel database management sys-
tem. The details of its design and implementation are described in the following
chapters. For the purposes of this design, we chose a sot of features which we con-
cidered important and which could be implemented in the limited period.of time avinl-
able. The following are the features that were chosen.
¥

1) Representaiion and Manipulation of Complex Objects.

2) Dynamic Restructuring of the Database.
\

\

3) Support for Detived Data.
1) Flexible Constraint Specifications,

We chose the issue of representation and manipulation of complex ohj'v(jls for two
reasons: First, ot s .imporl:mt by itself as we have discussed before in this chapter.
Second, many other requirements like archiving of data at object level, set oriented
information storage and retrieval. configuration control and object libraries are related
to the con(‘vpt;(.)f complex objects and they can be provided later using the support
provided by complex objetts. The importance of the other three requirements thut
were chosen, has already l)»(-(‘n (li.‘s'cussvd in this chapter We chose these three require-
ments for the following reasons @ First, we felt that the facilities to satisfy these

‘ - .
requirements make the database management system complete in the practical sense
and a4t the same time do not make it complex and unmanageable. - Second. we felt that

it wonld not be very difficult to design the facilities 1o satisfy these requirements and

that we would not face any hard implementation problems.

There are other equally. 1f not more, important requirements which we did not
consider at present in order to keep the first version of the system simple and manage-
. ' ’ " . : . " -
able One of these requirements, namely. "multiple representations™ is a complex issue
A

by itself and we have decided to investignte it at a later time. We will revisit the <ub-

ject of design DRMS requirements in chapter 7.

3.21. Summary ‘ -

o . . L3 . .
In this chapter, we have discussed the features that the design applications expect

of 4 database management system. We have selected four of these features for the

purposes of desicming and implementing w prototype database management system.
Orne of those features, namely, the representation and manipuliation of complex objeces
can act as a foundation for building a host of other features. Subsequent chapters

deseribe the desien” and implementation of the prototype databiase management

svstem.

v

Chapter 4

5}

An Objcét Oriented Design Database Management System

4.1. Introduction

In tlus chapter we present the desicn of a Database Management Syvstem that
provides the four important features that are mentioned in Chapter 3. To recapitulate.
the main objectiva of the design is to provide the following features:

- Representation and Munipulation of Complex Objects.
- Dynamice Restructuring of the Database.

- ~upport for Derived Data,

- Flexible Constraint Spectfications.

We first describe the structural aspects of our system. This includes a detailed
discussion on how refationships are modeled and how complex objects are represented.
This i lfol!mw(i hv the detwils of the constraint specification facihties provided by our
svetem We o then present the vartous functions pro’\'i(lod for the purposes of dura
defimtion and data manipulation. Finally we present the details of the dara definition
Finzuace, called "Duta and Constraint specification Language [DOSTL which is used

to specify the minal <tate of the database,
4.2. Overview

4.2.1. Da’.tabasé as a model!

A datubase 1s a4 model (or representation) of some real world phononwn()n[~17].

To explain what this really means, we take a short detour via more fundamental con-

<

cepts on modeling in general and data modeling in particular. This brief discussion is

~amed ar pottngan proper perspective the concept of o database as a model

Therc are three realms of interest in the philosophy of information These

realms are the real world . ideas about the real world existing in the minds 6f humans,

o

:nu.i symhols gn paper or some other storage medium representing these adeas[t]. The
¥ 4
information content in each of these realms differs subtly and significantly from one to
another The fundamental assumption is that the fiest realm, pamely, the “real world”
exists in some meaningful sense. No one in the scicntific discipline claims to have
kunowledge about 1ts structure and information content, if at all they are distinet. This
"true reality ™ is "perceived™ by humans through the sensory inbuts and s transformed
by the bram. These perceptions can be transformed into a "perceived model of real-
iy by o process known as scientific abstraction. This "perceived (mental) model of
reality” i the second realm. For all practical purposes we can tgnore the first realm.
=0, hereafter the term "real world” :xclu:llly_\“ refers to the svroﬁn(l reabm. The third
realin comes into picture as aresult of the desire to communicate this mental model to
.
comeone else or to "something™ else. Usually, this communication. agatn. nvolves
abetraction. While i€ may be true that the universe 1s "hest " deserihed by the complex
interaction of 210 raised to the power 81 quarks. the typical engineer abstracts o
m:n'hxne-‘ co a combimation of shafts, wheels, rivers ete. Different people abstract the
"perceived realiny o different fevels of detail based on their-interests and relevance to
therr present task A molecular bioJomist's view of a human being will be as a compley
structure of water, protein molechiles, DNA and other assorted (ll(‘{llif?\l* whereas an
insurance acent (as far as his professional activities are concerned) may view a human
betng as not much more than an age. sex, preyious health history and checkbook. The
third realm s concerned with this abstracted model of the "perceived reality™. The
model of the de atgn activity which we portrayed in Chapter 2 iy thus a model of the pro-

Ea

ceaa by which the sccond realm 13 abstracted to form the third realm.

The concept of Database can be described as one of the computerized tmplemen-
tations of the third realm Thus the database is an abstract model of the perceived
réality. The term Database Design refers to the process by which the structure of the

cecond realm is abstracted and transformed into the structure of the third realm. The

term Database Processing refers to the process by which the contents and actions of

the second realm are abstracted and transformed to the prinitivesof the chird realm.

The above discussion on modeling (‘()nm“ptw |)r<;\'i<l<'< an explanation of the mean-
ivn;: of databuse from a modeling point of view. We saw lh:n‘(lut:ul):w' design and pro-
cossing is essentially a modeling process. A database model provides the modeling
primitives that are used in this modeling process. 1t s essentially a vocabulary for
deseribing the structure and processing of a database. The part of the vocabulary
which is nsed for d('scri‘hing the structure of the database is called the "Data Definition
[anguace (DD and the part of the vocabulary which is used for deseribing the pro-
cessing of the database is called the "Data Manipulation Languace (DMLY The dara-

base manavement system is the software which implements the DDL and DML

4.2.2. Overview of our System

In our system. there are four modeling primitives that are given to modelers
They are "databuase™ "object elasses™ "objects” and ";)r()p("rtiv\" Objects model the
real world entities and prnbortlvs model the characteristics of the real world entities
Chjects can be crouped together tnto "Object Classes™ on the llmﬁis of similarities (u
process called "generalization™). This 1s left entirely to t}}(‘ user and there is no con-
<traint nnposed by the \\'sjtvm on the structure of the objects of an object class except
for the rv\n;ictinn that an object can be a member of only one object class. The data-
base i~ a4 set of object classes, an object class 1s a set of objects and an object is u set of
properties. The number of object classes in the database, the number of objects in an
ol..)jvct class and the number and the values of properties in an object can change over
time. These basic maodeling primitives, 4n:xmol.\', Database, Object. Object cluss and
Property are collectively ealled "Modeling Objects™ The hierarchy of the modeling

objectsis depieredan fig 11

Y

DATARASE

OPRJECT CLASSES

OBJECTS

PROPERTIES

Ficure 1.1 Hierarchy of the Modeling Objects

The rest of the chapter deseribes the design o detanl,

4.3. Détabase

The database models some real world phenomenon. It represents those facts of
the real world phenomenon that are of interest to the modelers. In our system. the

database i aset of "Object Classes™.

4.4. Objects
0 '

Objects modelvreal world entities. A real world entity can he o person. place,
thing. concept. or event (real or abstract) that as of nterest to the maodelers, \n
object i< uniquely identified by a system generated name. Objects contain information

S
ot the real world entities and on the relationship between the real world entities. An
object s similar to a tuple in the [(‘l:l(i()l\i;l model or a record in the CODASY T model
The nnigue name of the objeet s similar to the concept of the primary kevo An object

consists of properties which model the attributes {characteristics) of the real world

entities

4.5. Properties

\w we mentioned earlier ' attrbutes of the real world entities are modeled by
their properties. A property is typically used to model the following aspects of an
entity identificntion of the entity. characterization of the entity and relationship of

.

the entity with other entities. Each property consists of o name (which 1< unique

e
.

within wn objeer). a value and ats type and three actions. namely. TENULECAVHEN-

T

N DI D and \\'H},\l)lil.}‘:'l‘}'il),
'I'llt“‘)p(w‘of properties can be l.\"l‘lf(il’.lvl. RITALL 'I‘I-ZVX"[". OBJECT and SET.
'Hu; l_\;;v\ INTEGER, REAL and TEXT (a slri‘ng of characters) are (hp cgnventional
tvpes and need no explanation. A [)I‘()])(“N_\ of type SE'T can hzn’v‘a set of oijcl/\ as s
vadue. The type SET is the basic means of ogl)rossirlg relationships between objects.
Thus properties of type Slf'l' are termed "Relationship l“‘rop‘ertivs".‘ A property of type

OBJECT can have another object as its value: Optionally. an object class name can -
be specified for the properties of type ()H.][-f("l;f',_nd SET. The use of this specification
Sis explmined Later in this chapter when we discuss the constrant specifiction facilities

of tlie system.

- - ' 13
T

The type of a property cannot be ‘changed. If the type has to be changed. the
property should be deleted from the objeet and then added to the object again with

the new type. S _ ‘ .
. "‘)

The tlvlroo actions H*’;\'l'l‘)[‘, \VIIEN?\'!ODIFIED and WHENDELETED are used

for constraint specifications and are explained later in this chapter.

Properties are of two-kinds. namely, Primary Propc'rt‘ies and Derived Properties.

K
& - .

4.5.1. Pri’mary Pfopert&

. . . - 1% .
Primuary properties are:those Tundamental properties whose values can not be

~clerived from the values of any other properties. The dimensions of a chip. the name of

a

a module are (_‘xnmpl(‘s of primary propertres. |

.

4.5.2. Derived Property

' 4

Derived properties are those properties” whose values can be derived from the

values of other properties.-The area of a chip (since it can be derived from the dimen-

<ions of the chip) and the number of transistors in a chip are examples of derived pro-

perties. Derived properties have the following advantages:‘the respensibility of provid-

5

Cing the value of the property is-taken away from the user: the value of the property is
putomatically constrained against invalid data. In the case of a derived property. 1ts
value is represented by a piece of code an% its type is the type of the value returned by

that piece of code, Whenever the value of the derived property is accessed, that piece

N

of code” is executed and the value returned by that piece of code is returned as the

xilue of the property. The execution of the code each time the value is accessed can

\-,bKopti()n:x,Uj' suppressed. In this case the value of the property is the value returned
S, ' B .
by the previous execution of the code. . ‘
8 - ' . ..
o ‘ S

g . v,
Another use of derived properties is that a Iimnodfsupport for non-updatable

"views” of objects can be achicved through these properties. Forexample. if a particu-

|
B

p ‘ 14,

lar tool is interested only in the wiro‘inforrﬁation of a chip object; a‘n object, s.:xy.
"chip-view". can be defined with onc derived property "wires™. The pi;‘co of code
which derives the value of this property can access the wire i‘nformution from the chip
object and return this information as the value of the derived prop(‘;t.\' "wires" of the,

-
object "chip-view".

4.86. Object Class

An object class %lonotes a set of objects. An objgct class Is uniq.uol)' identified by o
svstem ‘gonor:xtod name. Thcn structure of an object class is same as the structure of an
object in the sense that an object cl‘:x‘s.ﬂ also (‘onsist@of a set of properties. Some pro-
perties of the object class are inhcritod' by lts objects at object creation time, Since the
praperties of an object class are used for defining th:(j structure of 1ts member objects.
these properties are sometimes called "definitional propcrli(w".in constrast to the term

"factual properties” which refers to the properties of the objects[48&].

Fvery database design involves the process culled "Generalization” whereby we
icnore the differences in objects and combine them into a single category[34]. When we

lump objects together we do.so on the basis of similarities. For example. transistors

' .

have enough <imilarities to distinguish them from. say. resistors, signals etc.. but they,

do have differences in. say. polysilicon size, “diflusion size, the location to put the®:
. Al

transistor etc. This similarity i1s captured by the concept f)f’" an "Object Class” {say.
9 ’ : ’ o ey G)
TRANSISTOR). and the differences are captured by the properties of individual
) >

objects of the object class. The process of finding the similarities (i.e generalization) is
‘highly application dependent (i.e dependent on,the real world pheromenon that the

dutabase designer wants to model). Hence it is desirable that as much flexibility as

possible is provided by the system for this "generalization” process.
e S . ,
In our system. the objects under an object class need not have ithe same set of
3 R N ’

ropertics: even the tvpes of properties of the same name can be different. The main
proj yi .

v

..

X,

™

") 45

iden behind the concept of object classes is to group objects of similar structure under

o

a common name. The concept of object class helps to easily define and initialize the

properties of objects of similar structure. All objects belong to some object class or

other. The default object class of an"obyj(‘ct i1s 'SYSTEM'. The object class of an

N L 3
object can be changed at any time.

At object creation time, the object inherits all the properties. their initial values
o r "\w . . .
dand the constraintspecifications, if fgﬁ\ of its object class, Subsequently, the values of

4 . 5 . : o ‘
the prof‘y‘%‘rtm\ of the ()}& can be changed. new properties can be added to the object
: ' . A , < : : : ; R
and the inherited properties can be deleted from the object. Afyer the creation time
Iy t -~

N

o

1€ versa.

L

the modifications done on the object class do not affect the object. and

¢

When the object 7@!.1\‘\ of an object is changed. there 1s no effect on the structure of the

object or on the vulues of the properties of the object. If a common operation on the’

members of an objo@ class is 1o be performed. say. updating the vahie of a property or
N . l.
adding a property. a function provided by the system called VisitObjects, can be used.
This fanction, along with othier functions geovided by the system, is deseribed later in
this chaprer. 2 Lo
. .
For example. the structure of tramsistors in a circuit would be almost 1dentical to

ench other, ('xct-];t that. some transistors might have more or less prop(;rties d(‘p(‘ndil.lg'
on their application An objoct’ class 'I‘l’.:\.\'ﬁlS'I‘(}R can be défined. An individual
tr':m.\iwor can be first defined by Hpg‘;Cif;)'iIl,'!; that 1t belongs to the object class
'I‘Ii;\f’\'.\'l.\"l‘()l’.. It will inherit all the prépertio&, their inttial values and constraint

_specifications, if any. of the object class TRANSISTOR. Then its property set can be

altered or the default mitial valuey can be changed as necessary . *

An‘object elass can be defined using another object class. For example, if object

dnystems where the objert elass is homogeneous, i.e. where the structure of the objects in the
e hieet clesas the e the coliestion of objerts in an object elass s sometimes called the ezten-

eren ol the obgeet r}'p-“.‘;]

16

class A s defined using the object class | the object class A inherits the proper-
&

ties, their initial villuessand constraint speccations, if any, of the object class B. But

the object class A does no@"’%'w}'wril the objects of object class B and there is no associa-
tion between the objects of object class A and object class B. After the definition, the
two object classes are independent of each other. This facility is provided to ease the

task of the ‘definition of an object class whose property set is a superset or subset of

that of some other object class,

The concept of object class definition is roughly similar to the concept of "Record
Definition” in the (‘(’)I.)i’\.\'\jl, mO(‘lol or ‘Relation Definition” 1n the relational model.
Al of them are used 1()- d('ﬁn(* the strllct;lro of a set of similar real world entities. The
similarity ends here. A< mentioned before, the objects under an object class need not
have the same set of properties: even the types of proportio.‘;\ of the same name can vb(‘
different. We also provide (}!(‘ facility to change the®object class of an object. Unlike
the CODASYL and relational model the concept of relationship does n‘m immvolve

. » - L
object classes This is due to the way in which we view the concept of object clusses:
object (‘h\w(\ facilitate objeet definition and creation and group similar objects undéw

4 COmImon name.

'I‘hclt)'p(‘ of inheritance we have adopted is generally called "stitic inheritance”
because the inheritance is‘d()no at object/object class creation t.-ime. After creation the
modifications done to the parent object class do not affect the objects and object
classes which are created using the parent object class. This is in contrast to "dynamic
inheritance” where the c'h’:mg(‘s made to the f)ureqt obj‘cct class are reflected in the

objects and object classes created using the parent object class.

4.7. The Data Type SET and Relationship Properties

A property is a relationship property if its type is SE'T. The type SET defines the

powerset of the set of all objects. Thus the property of type SET can have a set of
} - ’ .)
objects as its value. Relationship properties are the basic means by which relation-

<hips between objects are established. Also, these are the means by ‘which complex

objects are (onsirlx‘é&e(l and manipulated.

CThe definition of relationship involves the specification that the type of a pro-
perty is "SETT and optionally. the specification of the name of an object class. Later
when objects are included in the set (i.e when the value of the property is updated) the

relationship -between the owner (of the property) object and the member object is

established.

4.7.1. Modeling Relationships

With the primitives mentioned above, it is interesting to mote how concepts like
PN and MUN relationships are modeled inour system. We will use the following
example of wuniversity database involving UNIVERSITY. DEPARTMENT, PROFES-
SORS, STAFE and STAFF_UNION to illustrate the modeling of relationships. There
i« u 1:N relationship (pure hierarchical relationship) between a umversity and it~
departments since a department can belong to only one university. There is an M:N
relationship (complex network relationship) between departments and professors since
4 department can employ 0 ur more professors and a professor can be employed by 0 or

o ,
more departments. There i” 2" 1:N relationship between a department and the stafl,
and there is o 1:N relationship between a stafl union and the stafl. This 1s because =
«tafl member can not work in more than one department and can.not be a member of
. . . . k]

more than one <tafl union Stafl is said to be in "simple network relationship” with

the department and the stafl union The relationships are depicted in figure 420 Il

waff member can be a member of two stafl unious (for our example, we huve assumed

18

UNIVERSITY

W

STAFF_UNION DEPARTMENTS
]

N N X
STAFF PROFESSORS

.I"'ignrc";i.‘z Structure of a University Database

thiut it does not happen) then the simple network r(*l:xti(’)nshi‘p br(‘:zvks down: the relu-
tionship between the stafl and the staff union then becomes an N relationship. e a

\
complex network relationship

. 14

“The way these relationships are modeled in our design is different from other
<l;uv:xl>:1.w models. With other databuse mo}lo]s. the definition o‘f. the relationships
involves the object classes (();"(lllﬂlilé()ll.* concepts) of the partners (;f th(’ rol:nﬁionship.
For example. in the CODASYL model. to model the 1:N relationship hetween
DEPARTMENT and STAFED o SET has to be d(‘ﬁnc‘d with- the DEPARTMENT
record fobject elass) s the owner and the STAFF record fobject class) us the member.
In such definitions, object Cl:l\ﬁ'(“.\ aet as a typing mechanism on the partuers of the
relationship. In our systemsghe concept of object class is not »in"v\'ol\-'('d_ in the modeling
of the r,('l:uion‘ships. As will be explained subs(‘qu.onlly, the name of the relationship
property plays an import ant role in this process. We discuss below t.he key concepts
associated with relationship properties. This helps to explain as clearly and as unambi-
guously as possible how the various kinds of relationships can be modeled.
et us assume the following for illustr%xtion purposes: thorc is a4 university object
U with o relationship property "departments™ there are department objects D1 and D
with the f(%:x!i()ﬂ‘«‘hip propertics "professors™ and "stafl” and they are members of the

refationship property "departments” of U there are professor objects 1. P2 P11 and

' : 449

P2 are the members of the relationship property "professors” of both Db and D27 there
s a stafl nnion object SUT with the relationship property "unionmember”. There is a
[- '

stafl object ST which is a member of the relationship properties "unionmember” of SUI

and "stafl” of D1, .

4.7.1.1. The value of a relationship property can be a set of objects. This means that

the set can contain objects belonging to different object classes and can contain objects

with totally different structures.

4.7.1.2. The set s uniquely identified by the pair fobject name.property vame). The:
first name s called the "owner™ of the set and the second name is called the "tag”™ of the

sel. The set.asidentified by the pair.is called the parent of its members. For example.

N

consider the set of the department object DI uniquely identified by the pair
(D1 "professor<"). D1 is called the owner of the set and "professors”™ s called the tag of

s " . "y oo ! . :
the set. The set (D1."professors”) is thie parent of the professor object P1.

4.7.1.3. Anobject can be a member of two (or more) sets (identified by different tugs)
owned by the same object. Tn that case. the object is considered to have two (or more)

different parents. In our example. there is no such instance. -
) ’ A » 7 ~. ¢ N

.

.
' o

4.7.1.4. An object. "knows™ to which set(s) (as identified by the pair} it belongs to.
Thus the professor object 1 "knows™ that it belongs®d the sets (D1, professors”) and

(D2 "professors™).

4.7.1.5. We say that o objectisin "SIMILAR RELATIONSHIP" through a tag with

two for more) objects if it belongs to two (or more) sets with this tag, owned by these

e [y

" obyects. Thus professor object 1 s in "SIMIL AR RELATIONSHIP with (l(‘}):iﬂlﬂ(‘lll

. -

“objects D and (D2 through the tag "professors™ It should be noted here that the

4 e
structures of DI oand D2 can be different and they can possibly belong to different

,

H

object clusses. We say that an ‘vf(‘)hjvct isin "NONSIMILAR RELATIONSHIP” \\'ith.
one or more objects if it belongs to two (or more) sets. owned by these object< with
different tags and if it is not in similar r(‘l:\tionshipﬂ with any objects through any of
these (different) ;:xgs. The staff object S1 is in NONSIMILAR RELATIONSHIP with
the stafl union object SUI :md'tho department object D1. This will not be lruo. if S
in SIMILAR RELATIONSHIP with ptllor objects either through the tag '"unionﬂf
mvm.b('r" or "staff". It sllg;lll(l be noted that an object can be in nonsimilar relationship
with a single object. But l‘hi..s is not true of .%imil:xr relationship.

\\'i'l-:h’:lho.\e concepts, it is possible to describe the three general notions of rela-

- . \\.V :
tionships. A pure hierarchy (12N relationship) is achieved when one or more ohjects

N

are members of the same <ot ind th(‘i\.' are not members of any other set. The set
(lﬂ"d‘(‘})ﬂﬁln(‘,«n(") with the members D1 and D2 is an instance of a pure hierarchy. We
st a simple network relationship (1.e two or more pure 1N relationships)if an object
i~ in . NONSIMILAL RELATIONSHIP willi. other objects. The sets
(~U T "unidnmember™) and (DU "stafl”) with their (common) memhber S1 constitute an
instance of a simple network relationship. We get a comblvx network relationship
(NN -ﬁ%niknn‘hip) if an object 15 1n SIMILAR I’.\lflu\'l'l()f.\'ﬁllll’ with two (0 r more)
objects The sets (]>1,";)r()f<‘<s6rs"—), and (D2, "professors™) with their (réﬁnmon)

member P'1 constitute an instance of a complex network relationship.

It can'be seen that the name of the tag plays an important role in the modeling of
(li[f(tront kinds of relationships which occur in redl life situations. Let us take the con-
“cept of M:N relationship to explain the role played by the tag. The key point which
establishes the M:N relationship between DEPARTMENT and PROFESSORS is the
fact that cach professor object "knows”™ all the objects with which it has "SIMILAR
EELATIONSHIP™ throuch the tag "professors”. This essentially r.n(‘:ms that each p]'”()_
fessor "knows" all the departments in which he/she s (‘;npl()yv(i, Thus. as far as rela-

tionships are concerned. the role played by the tag (the objects having the same.tay

O

constitute a set of objects defining one partuer of the relationship: in our example.
DEPARTMENT) 1S gill\il:\r' to the role played by the Object Class (or analogous con-
cepts) with other models (in the CODASYL model, the record DEPARTMENT would
be used to define one partner of the relationship). Other models assume (impheitly)
that objects of the same structure will have the R:\.m(‘ relationships with other objects.
which probably is true for business applications. ()u.r‘ system provides the flexible
facility by which situations which do not satisfy the above assumption can also be

easily m()d("lv(i.

The relationship instantiation actually h:tpp(‘nﬁ when the size of the set of the
owner object increases from 0 to 1 and ot just when the owner object 15 ereated. Son
our system the conventional differences among r('lzn\ionship (l(‘ﬁni;ion time, relation-
hip instantiation time and relationship modification time (includes the set member
Tnitialization time) have decreased” One of the situations when these three times coin-
cide is wlhen an object is createdwith a relationship property (re'stionship definition)
wnd with an initial value for that property (relationship instantiation and relationship
nm(lifir:uio.n)‘ Our data definition Language, which will be deseribed su'bx‘(‘(w("nrl}'. I
<capable of expressing such situations.

4.7.2. Relatioqshiprl)«a{z\

\,

.

NSometpmes r(‘]:xtl(mshlps can have some characteristics (attributes). In our exam-
ple. a professor works in several.departments. The salary a professor is paid by
department belongs to the relationship between the professor and the department; it is

4 . o ,
neither a property of the individual department nor a property of the professor since
its meaning depends on both the professor and the department. We provide a facility
to miodel such situations. The characteristics of a relationship can be modeled using a

special property which comes into existence automatically (i.e-automatically provided

by the system) when the relationship is established and continues to exist as long as

r

the! relationship exists. The name of the special property is called "SETDATA" which

is of type ORIECT. This property does not either belong to t‘%(' owner of the set or to

. N . -
the member of the set It belongs to the relationship between the owaner_and the

member. We are restricting the type of this property to OBJECT but this does not

\

sacrifice the generahty. The value of this property, viz. any object, can have proper:

coties of all allowed types
. Ay

4.7.3. Com})]ex Objects

As we mentioned before, relationship propertids are the basic means by which the

!
complex objects ire constructed. But, it should belmentioned that a relationship pro-

perty need not necessarily be used for the ‘construction of a complex object. It can be

used for other purposes, such as grouping of a set of values under a common name.

So. megencral. wosubset of the relationship properties participate in the construction

1

of complex objects. Thus in the context of complex objects, a reference to the term
“retationship property ™ actuadly refers to a relationship property from this subser.

3

Representation of a Complex Object

),

4.7.3.1.
A relationship property basicilly establishes the connection between a more com-

plex object and w less complex object. The complex object can be depicted us a

iy
3

40

the nodes. The inclusion of an object A as a member of a relationship property of

dirccted acvelic craph in which the owners and members of all sets are represented by

object Bis represented as a ditected are from B to A. The tag can be thought of as the

0

nume of the directed arc. Theinformation associated with the are represents the SET-

DATA. The information associated with the node represents the properties {(and their

vialues) that do not participate in the construction of the complex object.

Thus relationship properties are the means by which complex. objects are builte.

Taking the example of the ©-AND gute presented in Chapter 3 (please refer to figure

2.2). the gate object will have relationship properties, say., “geometry ", "pins",
“hloek<". and “connections”. The relationship property "geometry” will have o
GEOMETEY object as its member, the relationship property "pins™ will have PIN
objects as its members and $o on. An example of & VLSE chip is presented in Chapter
6T his also illustrates how o complex object can be butlt using relationship properties,
It can be seen from these two examples that the complex objects encountered ing 151

desten are usually hierarchical in nature.

We provide a function "TraverseComplexObject™ for manipulating a ch;‘m‘fuy
object as a whole This function is explained in detail Tater in this chapuaer. ' £

- v

4.8. Constraint Specifications

The importance and uscfulness of automatic enforcement of (‘()ll!\lrililll\.()l'l the
contents of the datais well understood 'l‘h.v,romnmnl_\' known kiud- of (*on\tr:lin}\ are
ficld constraint {i.e constraint on just the valie of a property). intrurecord constran:
(i ¢ constraint among the values of properties of an object) and interrecord (‘()Il\'Ir.:lHH
(1.c.constraint among properties of different ()hjg‘ct\ and also on the membership of
relationship properties of an object)[391 LI (‘h(‘n[lv‘J] reports a classification of cou-
otraint~ which he uses to show how constraints can be spectfied an his Butiy-
llvl:x'li()n\hip model. There can be other constraints which use data that need not.
necessarily be found in the database. Taking an example from the business environ-
ment. Chere cin be o constraint that if an order worth more than a specified limit i~
received after 1P on the last day of the week, it should not be accepted This con-
<traint uses the time of day and the day of the week whicl; nced not necessarily be part
of the database

Our view of coustraints is general in nature. As a conseguence, the primitives we
provide for enforcing constraints are very flexible :ﬁ‘d(‘m:m(lvd by the design apphicsn-

tion~. There are two broad categories of constraints, They are

1) Constraints on the contents of the database.
Y Constraants on the stracture of the database.
The necessity to provide constraints on the structure of the database arises from the

fundanrental fact that we allow modifieation of the structure of the database.

To determine the databuase opertions that may need constraints, we need 1o

identify what constitute the contents and the structure of a database.

Fagentially . the contents of the database is said to depend on the following:

) The number of objectsin all object elasses of the ddtabase

S he .\ e of propertics of the objectsan the database.

23T he existence of the database.
stmibarly Cthe structure of the database 15 smd to d(‘p('ml:()n the following:

DT he nmunmber of object classes.

21T he nunmber of properties o the objeets

31T he types of the properties in the objects.

:,‘I}l(('\’l\{('“(‘(' (‘f I}H' (1.’l(-’l}).’l"~',
We ean now determine the database operations that may need constrannts The
mumber of objects 1o the database 1s changed when an obj(‘cl 1s created or when an
object i~ delered. The vadue of o property needs to be momtored n two situntions
when the value dees not exist and when the value 1« updated. The number of object

clisse< is chaneed when an object class is added or deleted. The number of properties

in an object needs to be constraine operty is added to the object or deleted

\
from the object. Tl type of a property needs to be monitored when the property i

:\(l;i('(i to the object S'inco the type of & property can n;>t be changed, there 1s no need
to monitor l}u; tv.\'pv of a properfy after the property ix added to the objeet. Of course
lh'v. exi~tence of the database is to be monitored wheyn the database is dvsqu}g:gl

We have the following schem® for constraint specifications and enforcement of

A\

N

v
database integrity It shoald be noted that all the actions mentioned below are purely

()]ili()ll.’l!

4.8.1. When the datubase s created, there are no constraints,

4.8.2. Two actions, namely, WHEN_OBINCT_CLASS_CREATED and
WHEN_DATABASE_DESTROYED can be associated with the database. The action
WHEN_OBIECT_CLASS_CREATED will be executed automatically by the system
when oo new object class s ereated. If 'it returns YES then the object class is cteated
orherwise it s not ereated. The defanlt object class "SYSTENMT :1]\\:.:_\'7«' exists and

’

hrenee I creation cannal be constrained. The action

£

he.d

Al A A
WHEN_DATADASE_DESTROYED will be executed automatically by the syetem

when an attempt s made to destroy the database. If it returns YES then the datubase

¢

s destroved otherwise 11is not destroved.

4.8.3. Two actions, .n.';mvly. \\ HEN_OBIECT _CLASS_DELETED and
WHEN_OBRIECT_ADDED can be avsociated with each object class o The action
\‘»IIE__(>I'1.II_'Z("l'_(‘I.:\.\'.\'_J)[l.lAI:'[‘lfD will be exccuted automaticully by the system
when the object class s deleted . it r& urns YES then the object cluss s dedeted oth-
erwise 1t s not deleted The object class "™SYSTEM™ always exists and 18 automati-
cally constrained - bb_\' the system against -dclotnon. The action
WHEN_OBJLCT_ADDED will be “executed automatically by (7hp system .when an
object is added to this ol)lj(‘ct class. If it returns YES tilon the objectis added other-

wise 1t i~ not added.

4.8.4. Two actions. namely, WHEN_JPROPERTY_ADDED and
WHEN_ORIFCT _DFLETED can be associated with each object. The action
WIHTN_PROPERTY_ADDED 15 exeented :111!&%3:1“(‘:\”}' by the S)'SI(’}lX«, when @ pro-

perty is added to an object or object class.” This action can also, monitor the type of

A

-

the property added. 1Tt returns YES then the property is added otherwise it is not
added. The action WHEN_OBRJECT_DELETED s exccuted automatically by the
svstem when an object is deleted. I it returns YES then the object is deleted other-

. Lo o’
wise 1t is not deleted.

4.8.5. Three actions, namely, IFNULL, WHENMODIFIED, and WHENDELETED
can be associated with each property. The action IFNULL is executed automatically
when the value of the property is accessed and is found to be not present (NULLY.
NUT L valnes should be monitored cautiously. There can be situations where o value
of & property can not be NULL and a defaul value must be provided. Also.any two
NULL valnes need not” be, semantically equal. A detawled discussion of .\‘Ul'ltl, vilues
and the use of the TFNULL action follows subsequently. The action WHENMODI-
FILD s executed automatically by the system when the value of the property s
modified 1 it returns YES then the modification is carried out otherwise it is not cur-
ri&l ont. The conventional field constraints, intrarecord constraints and interrecord
constraint~ are spectfied through this action. The action \\'lII’..\I‘)[‘,].!:']‘I".I) S
automatically executed by the system when the property is deleted. If it returns YN

then the property will be deleted otherwise it will not be deleted.

4.8.8. [t is interesting to observe the relationship between the modeling object to

which an action is associated and the operation the action is intended to constrain. For

+
~

this purpose please refer to the modeling hierarchy depicted in figure 4.1, If the
operation involves addition of a modeling object to another modeling object (1.e crea-
tion) then the action is associated with the latter modeling object. Otherwise the

action is associated with the modeling object itself. For example, the action constrain-
Tl
ing the creation of an object is associated with its object cliass whereas the action con-
) ™
straining the deletion of tn object is associated with 1tself. This relationship can be

<tated as follows: the actions .are associated with the "nearest available ancestor”,

@

considering that a modeling objéct is the nearest available ancestor of itself after it is

‘ i B |
created. o '
-

4.8.7. Tlic actions return a \'a% and this is the means by the which the constrainis
: aluc . ‘ Y

e ! , ,
are enforced. Also, the actions can cause some side effects. Revifiting our previous

example, if an order worth more than a specified limit.is received after 4 .M. on the

' ’ . - - ‘“ ..
last day of the week. in addition to denia

: . . s

N AN YES). the action can, say. send .3 mail message ™o the supervisor concerned

of acceptance olf‘the order.(by not returning

4 4
regarding this.

w

4.8.8. An -action is.a pl(‘(‘(‘ of code in the lmpl(@entqtlon language (m our case.)

All the action specifications are optlon%} If the action is not specified thn s

v

equivalent to an | action returning zi value of YF,S. There are ad\'antages‘m‘ eXpressing .

. . ' . K

an action as statements in the implementation language. First, we achieve full gen-
rrality. Constraint specifications in addition to ensuring data integrity should be

capable of taking arbitrary corrective measures. By expressing the actions as state-

e . “ . “
. k)

ments in - the implementation language. such arbitrary corrective measures can be

specified using the implementation language statements and the data definition and.

m: :mpul ition prnmln(‘s prmldcd by our system. Scco'nd, the implementation of con-

straint <p(‘(‘lﬁ(‘dll0n mechanisms becomes casy. If a separate conﬂmmt Gpe(‘nﬁcatlon

l(m"n ige ¢ q).lbl(‘ of O\prossmg arbltr'xr\ correctlf’?ﬁme%urm is to be uqed the develop-

ment, implementation and jntegration of the language with the system is a much

hardeér task.
9

4:8.9. The constraint specification mechanism of our system is similigt in concept to
triggers[19], alerters[10] or production riles{20]: We have already discussed the con-
cept-of production rules in Chapter 3 when we described the importance of constraint

“specifications. These concepts involve the specification of a condition and an dction

L

n&
M.

which is executed by the sys:tem when the condition becomés true. In our system, the
conditions are specified implicitly.- For = example, the action
\\'.}lli’j%_f);\'l‘:\BASI*‘,_DI'ZSTROYI‘]D, has an im"‘.plicit condition specification. say. "if
“database destroyed”. In éther words, the conditions are fixed and pre-specified by the

system. We do not lose generality since we have a complete set of such conditions that

i

can affect the contents or structure of the database. On the other hand, the advan-
tages are: the user need not specify the conditions exphicitly; and the actions are as<o-

. N . :
ciated with specific modeling objects which is more natural and meaningful.

4.8.10. We mentioned before that an object class can he optionally specified for the

propertics of type OBJECT and SET. The database designer. if ho/sl‘xe so wishes, can

effectively use this object class specification for restricting the value of these properties

through the \\'HI{.\I.\iOl)]HICD action. For example. 1he,\‘VIIFLN.\]O[)IFIEI) action

>

~ R
can impose such a restriction on a property of type SET by returning NO whenever a

—

. : '
member of the sét does not belong to'this object class.

4.9. The uses of the action IFNULL

We mentioned previously that-the IFNULL action can be associated with cach
) . r

g>r<>;)o;t)'...]t is automatically (*,\'oc_ul'(*d by the system if the fo'llp’%g coﬁ;l\it-ion occurs:
on an :mom.pt toraccess the value of the prop("‘rt_\". the value of t;1>o property is absent
{i.e NULLY). For a (‘1orivod pr()“pqr.ty this condition occurs if the action which ;ierives‘ the
value of the pro‘porll-)' rotm'-l (the exact details of this are explained in Chapter 6}.

LY

We will now takels detailed look at the uscfulness of the IFNULL action. *

The IFNULI, action can providc a default value for the property. Provision of
. . o P :

nstraint mechanism. H the constraint is that the

default values can be viewedd

r. . y

value of a particular properiégninot be NULL, one of the solution can be to deny

those updates which violate this constraint. As we discussed in Chapter 3, this solution
. . S

is not appropriate for design applications. The update can be allowed but the

) AN
constraint is modeled as the action IPNULL which can either provide a default value,

generate i warning message. or take some other appropriate action.
Another important use of the II'NULLgction is to interpret the meaning of NULIL
" l‘. .

#

values. The NULL values are in general a problem to handle and their interpretation

can'not Be generalized and built into ‘the system. In the relational model, due to the

. . n - A
+

" ‘i v N
lack of a jgnechanism to interprét NULL values, unexpected and surprising results can
occur during join, relational and boolean operations[39]. If a property has a NULL,

, : S » , : P
 value then i ﬁ‘?’hi"'b(“'ﬁntorpr(‘t(‘d tn many different ways depending on the context and
& . . -

e hence two NULL values can not in general be considered semantically, logically or

relationally “equal. First, NULL values of two "properties .of different types are
inherently different 1% semantics Second. a .NVLL value can mean that the value is
; - BRI 3
unaviilable or that the value is-inappligable at that time or it can mean many other
things. Taking an example from software. design, a module imports the procedure. sav.
_»\\loc:nl(»\1v’ln(>p\" and the module from which thix procedure 1w imported has a value of
NULL This can mean many things including:
\ ‘ : ‘”
‘ 1)°At the present moment the module hame is'not known.))
2) There are severaks which supply-AllocateMemory and o
. A . ‘ .
decision on which mf#lule to import it from has not been made. \
LN ‘ o
2) At the present moment the procedure AllocateMemory is not needed
A

P
P

1) At the present moment the designer is not sure if the

v s

L

procediure AllocateMemory is needed or not.
A

. . " . Lo URTIE o \ ') ' .

I'hus the lIll(f,pr((.!ll()Il. 1s very much apphcatlogs%p,(u‘ﬁc. The tool developer (or th(.

database designer) s th(-“%os(pogon to interpret them. and the interpretation can be.
Ry !)

oxprcssvT{ through the action IFNULL.

v

There hus to be some mechanism by which the interpretation can be quantified so ¢
t

!

|

that it can be made known to those who access-the value. Basically, this calls for some

conventidns 1o be éstablished. 1t 1s very diflicult to arrive at a general {across all

N

Y 5 . -

o S 00,

applications) set ;)f meanings for NULL values. So it will be unnatural to 'pr(\(l('t(‘rm‘im-
and build the interpretations of \:LH values into the system. The following is the
simple convention scheme that wo_h:n'e decided to follow. The "IF‘N%}&,L" action
should return an integer. 'I‘!ne \'aluchqf 0 1s reserved for indicé}ting that lh;’ \;u,luo is nm‘
.;\'l'l,l,. If & value of -1 is returned, then it means that the property does not w:{nt‘ its
NULL value to be interpreted and is equivalent to the gituétion wi.lor(‘-no "TFNULLY
action is associated with that property. For relational operations (I'i~ke equal, greater
than and less than etc) on NULL values, the numerical value returned by the
CIFNULL™ action can be used. All other into_rprctations‘ are to be agreed 111'}0114).\' the
parties imvolved © the one who u.c‘c:‘ssos the value of a property. the one who su‘pplirw.
, N

the interpretation of the NULL value of the property and the "IFNULL"™ action associ-
. ‘ .

o

ated with that property. The second and third parties will be the same in most of the

w

3v such agreement. the interpretations can be passed to whoever i<

_ . | 0.
imterested in them. This s roughly similar to the concept of crror numbers that arc

circumstances, |

. used by some operating systems to indicate the occurrence of certain conditions The
® , . '
ersor number and its Interpretation are agreed apriors by the user programs and the

4

operating svste.

i

In the éxumple of software design mentioned above. suppose that an automatic
‘design decumentation tool exists. The tool can report why (i.e the interpretation) the
name of the module from which the procedure AllocateMemory is imported. is NULL.

In this situation® the interpretation of this NULL value has to be made known to the -

JFNULL action by the user (i.; the software designer) so that ii can pz;ss the i'merpr('-
tation to the documentation tool. ,'I‘hcj user should p‘rov;de the interpretation in thi:.\
case since he knows what this Nl'l,!.A value means. The way this 1s provided can take
verious forms including the following: the IFNULL aetion can ash the user for 1“1(‘

imterpretation: or the user ean prespecify the interpretation as the value of a property
N N N ! 4

.
i

and the IFNULL action can access this value. This is to be decided by the database

61

¥l v
R

designer. Whatever way this is done, the documentation tool is quite unaware of this.

Y . . ey,)
It only needs to know what cach integer value returned by the IFNULL action means.
A :
o e :
! h

h

.~\no|hﬁ into‘rvsting example of the interpretation of:&\”l,l, values occurs in V1,51
desien. Tet us assume that. a cell Contain\g other cells (cqllod "inner cells™} and an
important property of each cell is its location with respect to the immediately sur-
rounding cell. What are the interpretations of the NULL value of the property "loca-
xion"?x The database designer might think of the following. |
4.9.1. The cell is an inner céll and the value of "location” is not known yet. The

database designer assigns a value of 1 to this NULL value.
/

4.9.2. The cell does not use any other cell and is developed quite independently of
other cells. “Tt can be used at a later date as the innermost cell of other appropriate
cells. NULL seems te be the appropriate value in this case. The database designer

assigns a value of 2 to this NULL value.

4.9.3. The cellis the ()ll((‘r;ll()ﬁl cell. 'l‘h(“ \':duouf\ll'l,], is stored instead of a valne of
(().(‘)) due to the dvnamie nature of the design agtivity. An outermost cell today can
becotme an ~inn(.'r cell of some dLhor cell tomorrow. So until 1tis known for corﬁxin thut
a cell will be the outermost cell it seems natural to set the value of "location™ to
NULL. The database desiguer assigus a value of 3 t()uthis NULL value.

A tool which dr:nw the stilrk di.'lagmm of the cells needs the interpretation of
l}ll(‘.‘ﬂ(‘ \l&l vialues for drawing the dizxgrzxms; propérly. An IFNULIL, action associated
with lhlv pfopcrly "location” can determine by itself to 'wlnich of the three categories a
c“('ll belones and accordingly return the interpretation value. Let us assume that a cell
“uses the r<":ili(')11§lli[) praoperty "Call” to sro.ro the names of the cells it contains. If the
r.('l‘l: 18 not member of a set with the tag "Call” (which means that the cell is

presently the outermost cell) then the IFNULL action should return 3.1 the relation-

ship property "Call™ does not have any value and the cell is not a member of a set with
the tag "(':\I.l" (which means that the cell does not use any other cells and is developed
indop(‘;ulontly of other cells), then th("llv‘NULL action should return 2. In other cases
it should return 1 to indicate that the cell is an inner cell and the value of its property

"location™ 18 not known yet.

4.10. The Data Definition and the Data Manipﬁlation Functions

We present below the various functions that are pfovidod for the purposes of
insertion. deletion. modification and querying of the contents of the database and for
the purposes (?f- changing the structure of the database. Those functions which are
concerned with the stricture of the database are the means by ;vhich dynamic restric-
turing of the database s achieved.

We give a listing of the names of the functions, a brief functional descriptions of
tlﬂ‘n\ and the actions they exeente, if any. For all I}vw‘functlons the n:xm:o of the (illlil:
bise is [):1\\'(-'(1 as one of the parameters. For the sake of br('\'it_\" thisl;m(l other obvious
parameters are not mentioned-below. The full header declarations in 1he syntax of the
programming language C are.given in Appendix 2. » -
4.10.1. CreateDatabase. This function creates a database.)

) | . ' }\
4.10.2. DestroyDatabase. This function destroys a database. It executes the action
WHEN_DATABASE_DESTROYED.

4.10.3. NewObject. This function creates a new object class. ‘or a new object under

an object class . and returns Its name. It executes the actions

WHEN_ORJECT_ADDED and WHEN_OBJECT_CLASS_CREATED s .

4.10.4. DeleteObject. This function deletes an object or object class. Tt exccutess | .

the actions \\'Hllf\l._()H.H‘]("l‘__[)lil,[‘)'l‘l‘,l) and \\'l1I’,f\'__OB.lI’.('T_('l,:\.\'S_J’)Iil,li'l‘lil).

63

4.10.5. GetObjectClass. This function returns the object class of an object.

4.10.6. SetObjectClass. ;l‘llis function adds :m object to an object class. [t c.\'('-'
cutes the action WHEN_OBJECT_ADDED.

4.10.7. AddProperty. This function adds a property to an object or object class.
It exccutes the action WHEN_PROPERTY_ADDED.

4.10.8. DeleteProper@®. This function deletes a property from ‘an object or object

1
class. It executes the oo oon WHENDELETED.
4.10.9. SetValue. Ti - tur rion stores the value of a property: For the type SET,
the new members areinciad. @ n the set. The old members are discarded. Tt executes

the action WHENMODIFIED

S -

4.10.10. GetValue. This function retrieves the value of a property. For the type
SET. all the membérs of the set are returned. It executes the action TENULLf the
valne is NULL and returns the interpretation provided by the IFNULL action. Ht

returns 04f the value 1s not NULILL.

)

4.10.11. GetType. This function returns the type of a property. .

2,

0

1 4.10.12. GetObjectClass_ PROPERTY. This function returns fhe pane of the
“object class that is specified for the properties of type SET and OBJECT. It takes the

object and property name as parameters,

A i

4.10.13. SetObjectClass_PROP"ERTY. This function stores the name of the
“object class for the properties of type SET and ()B.II’,(\'I‘. It takes an object, a pro-

perty name and an object cluss as parameters.

- , 61

4.10.14. VisitObjects. \'isil()l)jvct(sﬁl:xk(‘x the object class and a funrltion as
parameterds Jt visiis cach object in the object class and calls the specified function
’ witllt't'li‘v;z;bjoct name as 'purumotor. If this function returns -1 for an object then \’isi-
tObjects quits visiting the rest of the ijécts in the object class. The value returned

by VisitObjects is the name of the last object it visited.

4.10.15. VisitObjectClasses. \'isit()l)jec;ﬁ'l:tssos ‘tuk(‘s a function :;s parameter. Tt
visits each ohject class and calls the specified function :with the name of the object
cliss as parameter. If this function returns -1 for any object class then VisitObjectC-
Fasses quits visiting the rest of tho.oijct classes in the d:n‘(;sbaso, The value returned
by VisitObject Classesis the 11;1n1t‘ of the last object class it visited

The following are the operations which are specific to relationship properties.

4.10.18. AddMember. This function adds a member to a set. It executes the action

WHENMODIFIED.

.

4

4.10.17. DeleteMember This function deletes a member from a set. It executes the

action WHENMODIFIED.

4.10:18. GétSCTDATA. This function takes the names of the owner. member and

tag of a st as parameters. It returns the -vaJue of SETDATA, e the relationship

. . ’ N |
information between the owner and the member.

4.10.19. SetSETDATA. This function takos‘ the names of the owrner: mémber and

tag of a set, a“.ho value of SETDATA as parameters. It stoges the value of SET-
DATA.

-

4.10.20. VisitMembers. VisitMembers takes the owner and tag of a set. und a

’
8

function as parameters. It visits cach member of the set and executes the specified

function with the owner. member and tag as parameters. If this function returns -1 for

a member then VisitMembers quits visiting the rest of the members, The value

returned by VisitMembers is the name of the last member object it visited. .

4.10.2). VisitOwners, \'isil()\\'n(‘r; (:11;(‘&% the ‘mombor and the tag of a set, and a
function as parameters. If the tag 1s "ALL™ then VisitOwners visits all owners of the
member and (‘\t‘c'lll(;s the specified function with the owner. member and the tag as
p:nr:m.wtvrs. Otherwise. it visits cach of the owner object with which the member is in
USIMILAR RELATIONSHIP (through the lug).,:m(l executes the specified function
with the owner, member and llu-"tv’:\g as parameters If this function returns -1 for an
owner object then VisitOwners (lll-lls»'\'iiﬁitill‘g the rest of the owners. The value

returned by VisitOwners is the name of the last owner objeet it visited.

4.10.22. TraverseComplexObject. The function TraverseComplexObject s used
to manipnlate o complex ohject®as a whole. This function takes the name of an object
(the rootyf the complex object) and the name of a function as parameters. 1t visits

’

“‘.\'V.\tmn:niculll_\' all the objects of the (‘()Ill])]l‘\v()l)j(.‘\CI and calls the specified Tunction
with the <>l>j‘<'ct name as parameter. I this function returns -1 for an object then
'l"rv:n'(‘r'w,-('()xnvp]v\(\)bj(‘ct does not visit the members of the relationship properties of
: . ' | »
that object. For each object it then calls a user-written function
"l‘rovidv_}lcl:ntiml\hi;')._J’rop('rti<-~" (with the name of the object and a structure as
parameters) to get lhos‘(' relationship properties of the object which participate in the
traversal M the user wants ull the relationship properties of the object ta participate
in the traversal then the user can use the function "retrieve_all_rel_properties™ which
18 provided by the system.

B

4.10.23. retrieve_all_properties. This function retrieves all the properties of an
object or object class. The traversal functions desceribed above, numely, VisitObjects,

: , .
VisitObjectClasses. VisitMembers, VisitOwners and TraverseComplexObject, take a

\

‘ £33

function as one of the parameters. This funiction can use "retrieve_ll_properties™ 1o

access all the properties of an object or object elass.

4.11. The Data Definition Language

For most of the applications the initial structure of the database will be known i

advance. The data definition language aids in building that static structure of the

database. Y :

The data defimtion language we have (105ignbd is called "Data and ('()Ilslrzlilxl~
an-ciﬁc:xlion Language™{(DCSL, pronounced "dee-see-yes-el™). It provides facilities for
object cluss definition, object definition? instantiation and imittalization, and Con-
straint Specification. A brief deseription of DCSL s given below followed by s;nnplv

data definttion 1in DOSIL.

4.11.1. Description.of DCSL

We give below a brief description of the database defimtion language DCSL. The

formal defintion of the langunge is given in Appendix 1.

The Object Class defimtion and Object defimtion are distinguished by a header
) .
The header "ORIJECT CLASS™ denotes an’obje¢t class. The header "OBJECT™ denotes

an object. What follows tmmediately :nf((‘r;’{h(‘ header is the name of the object or
object class This name is used to refer td the ohject or object class elsewhere in the
<pvci[ic:xtioh. After the name of lho object or object class the specifications of its pro-
perties are given. The specifications of the properties of the object or object class are
;;iwn. sequentially. That is, the complete specification of a property is followetd by the

complete specificat:on of the next property and so on.

v

Fach property is given a name and 1s followed by a separator ™" JThis name is

nsed to refer to the property elsewhere in the specification. After this separator follows

a

theerest of the specifications for the property. The key word DERIVED specifies that

3

the property is o derived property. The additional specification STATIC means that
the aetion which dvr.i\v\ the value ;)f the property need not be executed each time the
property i accessed. The rest of the specification of a property consists of type
specification. value specification and constraint specification.

The valid type specifications are INTEGER, REAL, TEXT, OBJECTT and SET.
The type specification for derived properties involves specifying the type of the value
returned by the action. The action can r(-turn’ any of the valid types mentioned above, .
Por the types SET and OBJECT there can be an optional 'sp('ciﬁ(‘:nion of an object
class The name of this objeet class is given after the key word OF. A< we mentioned
hefore, the name of this object class is not used by the system as such. It is specified
for two reasons @ first, it improves the readability of the specification. Without this
specification the structure of the database may not be clear. So the name ¢f the
objeet elass shonld be ’xpw‘lfi('d if it is known. Second. the WHENMODIFIED action
can use this object elass name for restricting the. value of these properties. For the
tyvpe ST there (‘:m- be an additional (()pti()fl:\l) specification of an object cluss. The
name of the objieet class follows the key words SETDATA OF. This object class name

R
specifies the object class of the object which will store.the r("‘ﬁxtiomhip data. 'resently

this is provided for documentation purposes only and the compiler ignores this

specification. If. asva future extension to the system. the: WHENMODIFIED action can
be specified for the property HI-Z'I'D‘_»\'I'.-\ too, thvn}this specification should be stored
for usc by such WHEUNNODIFIED actions. ‘ \(

The value of a property if'gi\'('n b(‘twocﬁ the delimite; "9¢([" and "¢]". For
derived properties. the action which d_eri\'k;*s the value of the property is sporif'it'd
between the delimiters.

The three constraint specifications for prop?‘rtics. namelv, [FNULL, WHENMO-

DI and WHENDELETED should be specified in thai order but any W them can

(SN

be omitted. These speaifications consist of two parts: the name of th on and the
. o~
action. The action is specified between the delimiters "0 and "¢,

Ior a property, the type definition is mandatory: the imitial value as well as the
o

constraint specificattons are optional.

A limited support for commenting 1s provided. Comments should start with

"COo# " and should be o a separate line,

4.11.2. Sample DCSL Specifications

We wive below a sample data defimtion in DCSL. This definition does not model
any real life situations. Some practical examples are presented in Chapter 6. We use

this definttion to deseribe the miscellaneous features of DOSL not deseribed above,
OBRMECT ClASS object Zelass] ‘
propertyS - TENT €["Thisis a string™ (]
property SET OF object _elassl
SETDATA OF object_elassh
“Cfobjectlobject2 O]
WHENDELETED ([return(canitbedeleted()):]
properiy? REAL S 2970 /]
IENULL [cheeknull(): ()
WHENMODIFIED “Cf checksetmembership(): ¢!
propertys s OBIECYT OF object_classt “(object2(]
_ WHENMODIFIED, “¢[checksetmembership(): (] ' S
properiy s DERIVED INTEGER “[derivedvalue- >int _value = 100: (]
WHENMODIFIED “[checksetmembership(): “¢] _ ‘
propertyt - DERIVED SET €Clderivedvalue.set value = derivesetvalue().}

END N

Co# We specify that objectl belongs to the object class
Ce# object_cluss] '

ZCT object

CLASS ¢ object_elass]
property i INTEGER €[33 /]
property7 o INTEGER

CO# An example of a derived property for which STATIC is specified.
Co# Alsoillustrates that the action returns -1 to indicate that the
“(# value can not be derived and hence the value 1s NULLL
y .
propertyi - DERIVED STATIC REAL (1 if{cale_geal(derivedvaluet= = 0)
return(-1): (] '
WHENMODIFIED [checksetmembership(): (]

N

ORJTCT CLASS objectelins?
CLASS S obyect_elussd T e -
WHEN_ORBJFCT_DELETED ([rv(urn(chvckdgI('Mt”ﬂ()):
WHEN PROPERTY _ADDED “ r(‘tllrn(rhvck xddl@ion()) e,.nr'l

pmporw I REAL "'[1231456 ¢/ T
WHEN_ORILCT_CLASs_PELETED ¢ [n‘turnl%llf Nl(lnnfk));
prupvrl‘\l CsET
WHEN_OBINCT_ADDED
END :
ulz HCT object? g

CLASS objectelass?
REMOVE - property®, property t (]
END

ORJECT CONSTRAINTS
WHEN_D AT YBASE_DESTROYED
WHEN_ODRIFECT _CLASS_CREATED:
END

(" .

> . LI

SSeveral things are.worth not-

N

1z

The special property "CLASS" 15 used 1 g ﬁ;ﬁ';}“-‘ the object class of an object and

allo 16 specily an object cliss using the defpifs f. another ()bjc‘tt-.ﬂ:,ux “HEMOVE”

3 B0

joct class and thiswill typically be
I e

cluss SYSTEM.

Fortnahizing

properties of type SIT nnd ()B.U"ﬂ

. . N Sy
be defined elsewhere in the data definition: oth(\rmw it |9 dn"errpr N

) 5
=

' . . T CEL L n L ey
It should be noted how the various' constraints are specifidd, The action<

- g M .

TENULE"WHENMODIFIED™ and "WHENDELE Il D" are as::()(‘i:at-(:(l‘,‘wi.tli the 'pro-‘

N \%mf PR b
perties concerned as m<ntmu<‘(l before. I()r other ,xctlons the name ol #ie g?(loh 1s
ws .

: . 24
specified as the name of a special property and the prqp(‘rly I .scldul to Ih(*“’ nearest
ﬂ ‘r
available ancestor” as discussed before. The action itsell is specified between the

T

dehmmters " [and "] as the value of the special property. For example, the action
! [

"

SWHEN _ORIECT _DELETED” which monitors the deletion of an object s wpv("‘

5 \

the value of o property "WHEN_ORIECT_DELETED® and the property is added to
.)) 5 C o
that object. H}(ﬁ actions "WHEN_OBJECTDELETED” and
oot '

"\\VIH':_J'H(>|'lfl\"l'_“-\l)l)l':l)" actually belong to the objects but they can be
specifivd as properties of an object elass too, so that all the objects of this object elass
will iuherit them The special object CONSTRAINTS has two properties. They are

)

used 1o store the actions that ean be assoctated with the databiase,

. An action s a piece of code tn the mmplementation language. In our case. an

action s o piece of code 1n the programming language O The syntax of this code is

cheched by the ¢ comptler and not by any component of our system. A~ will be

explinned an Chapter 5, the actions are formed into functions and these functions are

exeented whenever the specific condition for the action deenrs These functions are
-

passed appropriate parwmeters For example, for the derived property propertyh of

object _elass T the aetion which derives the value of the property uses the parameter

“derivedvalut”™ to return the derived value of the property. The details of these
e o

parameters are explaned i Chapter 50 Tt should also be noted that in propertys of -

objectt thesaction which derives the value of the property uses the “return”™ statement

taretnrn -1 toandicate that the value can not be derived and hence the value 1s NE11,.

4.12. Summary

Inothis chapter we have prosvnlt‘d@c do‘ﬂign of an object oriented database

managemeny system. The database is, viewed as s model (or representation) of some

real w ()Ff(_’i;; phenomenon. lh basicT concepts regarding the modeling primitives are
» .

ant

discussed. The detuilsof how relationships are established and how constraints are

specified are presented. The mechanism by which relationships are represented and

nianipulated enables the huandhng of complex objects. easy. The constraint

o

Pt |
[o—

spociﬁcuti.on scheme is (iésignod to be flexible and powérfﬁl z;s demanded by the design.
:xp‘j)liczttioxis. Thé vuri'oils pfimitivcs for processing of’thc dz}‘tabase' éﬁd for nia.intainixng
“the structure; of the database are listed. T>}.1ve'design of a Data Deﬁnif:ioﬁ La‘naéuage .and\ .
its description a're,;.)roscnted. The next chapter discusses tﬁ_e implementqtibn details of

our database management system. ' o i

Chapter 5 -
¢ » - Implementation
5.1. Introduction : . ‘ . .

P

<

\

In this chapter. we discuss the implementation details of our prototype database
managemend system. The current implementation runs under the UNIX (4.2 BsD)

operating system on a VAN 11/780 and is written in the programming language C[36].

©

“Fhe compiler for the Data Definition Language DCSL is written using Yacc[32] and

.

Lex[41]. The system is implemented 'using the data management routines of

FDI3[23.21]. A short description of FDB is provided followed by the impl(‘méntutio'n

details of our svetem. et
. C L Y
‘ . . N ‘ A
6.2. FDB : N & ‘ ¥
"’ /' ' rs A

Pl s a frame Jhsed database management system. It is based on the model of

.

Tframes” and “slots™. Bhe database consists of frames @nd a frame is a collection of

AN

Jots. There are two kinds of frames. namely. "ordinary” frames and "meta” frames.

i -

The "meta” frames are used to describe the-structure of other frames and "ordinary”

d

frames arce used to store data Each slot has a name, a value and a type field. The type
of the value of a slot can be INTEGER. REALSTRING or FRAMI A value-of type

FERAME is a pointer to a frame and is the means by which complex structures are buih

. i . .

N

in FDB. There are various data management routines available for the following primi-

addition of slots to a frame and dele

- .

tive tasks :creation and deéstruction of frames,

tion of slots from a frame. storing and retrieving the value of slots.

N H " . . .‘ ey . . ° . @.
& FDB, thodgh it provides only primitive facilities, "has been successfully used for

1
R

building applicatigns[11.23]. It is also 2n invaluable tool for prototyping other higher
ievel database management systems. Its flexible facilities are very useful in testing out

new ideas 1noa'<hort time’ It abstracts out the low level details of storage management

_and provides a simple and adequate set of data management routines {based on the -

model of frames and slots). We have successfully utilized this aspect of FDB for proto-
! . .

L

typing our system. The rest of the chapter-describes the implementation details %f the

varjdus components of out sy@&].) » , - « : o

.
s r

i

5.3. Objects and Object Classes

Fach object is an FDB "ordinary” fram® The name of the object is the name of
* .

the "ordinary™ frame. Each object class is an FDB "meta” frame. The name of the’
object class is the name of the "meta” frame. Since the framés are identified with
. ’ ‘ ' ’ ’ }) ’ s
unique integers the names of objects and object classes are also integers. The type of

these names is actually OBJECT which is a "typedef” of int. Frames-are also used to

store some system information and to build the structures required for storing the

o

information associated with the properties. p
. '

E o ¢
5.4. P.rop_erties . , ‘ ‘ ’
') ’ &

Properties are nmplemented using the "slote” of FDB. The name of a propertyof

an object (or object cluss) is the name of a slot and this slot is added to the frame
which nnplvmgm.\ that ()b]ﬂ!‘rl {or-object elass). Consequently, the type of the name of
2 ’ 5 o .

a property is aostring (1o chior 7)) Let us eall this slot the "start slot™ of a property.

~Phe concept of a property.is at a higher level than the concept of a slot. So the infor-
L) | s

mation associated with each property is stored in a structure and this structuregdn be

accessed through the "start slot™ The details of this structure for a primary property
and a derived property are slightly different. ‘Akso, the structures for properties of type

i R A . . : L
SET and OBIFCT store more information than the structures for properties of other

tvpes. The structures are explained helow.

+

5.4.1. Primﬁ.ry Properties

S——
The structure associated with a primary property is shown |n fig 5.1.
OBJECT
FRAME : o
PROPERTY
FRAME
. : _value
w o . . L
start slot - o - > lype
“) " dfoull
. ,
, e , 4 : _whendeleted
L «:W———— : Lof ’ —
Cieni e SR co _whenmodified
o Al v ! .
8 .w : : ‘ e
- bv/J

Figugé 5.1 Stricture for a Primary Property”
% ‘ ' M
[

“The OBJECT _l‘R@%ﬁ'ﬁgimplomoms the object and the PROPERTY FRAMLE
. ' N ’ - 7

<tores the information associated with the property. The value of the start slot is the

vatue”

PEOPERTY FRAME. The PLOPERTY FRAME has four slots. The slot "_

* »

costores tl

4" N " " v- > » ’ o “
“value of the property and the slot _fyp(‘ stores the type of the property.
. Lo 3 ! L .
other three slots are used to implement the constramg specification. mecham<ms
[) ' L e .

The

and\are expluined subsequently.
1

5.4.2. Derived P_rbpérties | N
The structure O.f a derived of property is s‘hown m figure 5.2,
The OBJECT 'l’P\:\:\H']‘ ixnf):‘l(’*morltsi the object and the P_ROI’YIZZII'I‘Y. FRAME
stores the information related to th'o?‘p‘?oy;’orty. The value of t:ho start slot s this }I}L{Q«

PERTY FIH:\.\H') The values of the various slotvs of PROPERTY FRAMLE are

explained below. The piece of code which derives the value of a derived property.is

»

converted into a function. (the detalls of this follow later in this chapter) and the

name of this function is stored as the value of the slot "_procname”. The derived value

1 el

LN

L

5.4,3. Structure of Type OBJECT

OBJECT ,‘
FRAME S PRORERTY
FRAME

“
typef
—value.

start slot

v

_prochame X

v _Jsitstatic

Jfoull

W henmodified

| _whendeleted

Figure 5.2 Structure for a Derived Property

is stored in the slot "_value™ and the type of this value is stored in the slot "_type™. If

- ; ‘
the ~tor "_Jsitstatic” has a value of 1 then on subsequent accésses of the property
value. the value stored in the slot "_value” is returned without executing the function.

The slots "_fuull™. "_whenmodified”. "_whendeleted” are used to implement the con-

straint specification mechanisms and.are explained subsequently.

, .

For the type OBJECT. the PROPERTY FRAME has ::n.:;(hl\itionzx] slot

Y

"_objectelass” which stores the name of an object class. As mentioned before. the
L]

value of thisean be used by the, WHENMODIFIED action to monitor the value of &

property of type OBJECT.

5.4.4. Structure of Type SET

value™ slot of the

. For the types I.\IJ']‘I’.(}}CR. REAL, TENT and OBJECT the ‘"_
‘I’l(\({)I'lﬂH'l’\' FRAME directly stores the '\'a‘l;u’ of the property (prim:xr‘y‘qr derived).
Put for the 1)’;.)(; SET the ';_\'3Alll(’" slot syl‘oros {1r10t}1("r srtr‘ucl“urc as 1ts value.

The structures :xssorint‘od with the tyvpe .:\'ET are shown in figures 5.3 and 5.4, Fig-

ure 5.3 depicts the structure associated with the owner object:
¥ - . .

MEMBER FRAMES

HEADER FRAME

Juember
Co_next e --
_parent
OBJECT setdata
FRAME . |
PROPERTY
FRAME
—~alue
start slot ' _type
_fnull ?
— _whendeleted m
V _whenmodified
Owner Info Frame
‘sﬁx jy_?‘ *

_first

_Jast

_objectclass

_ownerinfo

%x) -

\e_:'b‘b ;
Type

Figure 5.3 Structure for €

For. cach member of the set the

&

MEMBEDR FRANMES of the setis mawntained. The HEADER FRAMLE:stores the names.

re is n MEMBER FRAME. A

SET Associated with the Owner

linked list of the
| » ,

of . the firft and last MEMBER FRAMEs i[l the linke‘:’f‘ l‘iét in the slots "_first™ and

"Jast” respectively. The slot "_objectcliss” stores the name of the oBfect class that is

spvcliﬁ‘vd for the set. As mentionec before thiy value can be used’;bﬁt\he WHENMODI-

FIED action to restrict the membership of th(’vS(‘t. The HE‘ADER FRAME stores the

owner information. namely, the name -of the OBIECT FRAME and the name of the

!‘*
\

tag (i.c the name of the property) in the slot "_owrerinfo™ The value of the "_value”

dot of PROPERTY FRAME is the HEADER FRAME. - EacfMEMBER FRAME has

*

four slots.. The slot "_member” stores the name of cthe mc‘mbor object, the slot
"_parent” stores the name of the HEADER FRAME, th_é slot " _fext”

of the 11(-.\"1'?_ MEMBER FRAMIE and the slot "_setdata” stores the relationship data {i.e

4

2
¢

stores the name
'

& 4

+

"SETDATA™) between the owner and the member. Figure 5.1 depicts the structure

associated with the member object.

MEMBER OBIECT 0
U OFRAME S \ | .
o PARENT_NFO FRAMES °
HEADRER . :
B _first > _OWner B
_parent: E Jast ’ . _t:w
| «{=hacktamember _.bd(‘ktohdr
_Next e — -
' ‘h.~
. 1;15: lnform rﬁ()n for (“tfh set .in which the oblvct “? ‘\:a.
% \m \ 13\1), frnnv Alinked mef’l’ AR \ 1_1\; gg 1 ined. Thie
'.:i. s !Q‘h, 2 o ; . ‘

V‘L‘HI \DE I frnm" Qoru lhio n,mu' of thg ‘lr\l I’ ARE \"I__J\

" . .\) f e

~ vhe [N N \] I \l__Ja\l . frxm(‘ n th(~lots _ﬁrst dll(] ;_J(l.ﬂi". r(‘spocti\cl\'.\"I'llx(*'.s'l(')(
‘ o

v 7_1»;1&(‘}\'!()m(*.mln‘rw of the HI \I)I I’ frame stor(\ the name of th(‘ ML \11’)1 R OBJLECT

L

?r:um'.:‘fl‘ht T _pare nt’ \l()l of th(‘ MEMBE l’ ()IH[T fmmo stores lh(name of the
HE -\I)I"ZI'E@I‘}{,-\T\il'.. .‘;ch PAR 5 \F_J\I () fmme h as four slots. " The slot " o:&‘nor"
stores the name of the (thc/r of - tho set, the slot "_tag” stores the name of tho tag of

111(-'561. the ‘.\l_ot "_next '<tons tho hame of the next P ARE N I_J\I O frame and lhc -

<ot "_backtohdr” stores the name’ of the HIC.-\UI'ZR fr_ame‘. . L,

'5.5. Communication between the Application and the DBMS

.

This section explains how the values of various types of data are communicated

between the application programs and the DBMS. The functions which are concerned
. 4
with this task can be classified into two groups. The first group contains the func-

tions GetValue, SetValue, the function which derives the value of a derived property,
and the IFNULL function {for passing the default value). These functions deal with

data of several types. The second group contains functions like GetSETDATA, Set-

o

TOSETDATA, GetObjectClass, SetObjyectClass, GetType and the IFNULL function (for
prssing the interpretation). These functions deal with the type INTEGER only. We
decided to adopt different strategies for the two classes of functions. On a choice

between orthogonality and ease of use we chose the latter.

The functions of the second category pass values as follows: Funetions which

-
. ' -

[)J‘l‘\‘ INTEGER data to the DEMS carry the value in a parameter of type INTEGER
(for exaniple. " SetSETDATA SetObject Class etc.). Functions which pass INTEGLR

data frone the DEMS do <o by.using the "return” statement (for example, Gerst e

DATA. GetObjectClass, Get'Type ete). ’

The functions of the first category pass values by passing a pointer to a unton

variable of type "value_header” whose declaration 1s given in figure 5.5, .
. .

union value_header { ‘ .
int it _value:
float real_value: ‘ : 3
char "text_value; + ‘
OBJECT object _valuei a
struct set_header set_value: -+,

b S

Figure .5 Declaration of "yzslue_he:xdorﬁ

A
-

. \x T - ’ . T
The system will use the approprigte Heltd of the union structure to retrievé{for Get-

vilue)or store (for SetValue) the value since it knows the type of he property. Tt

t

"~etValue™ a pornter to the anteger value. 1f the application w:&f: to fctri& a

Y

also the responsibility of the application to use the correct field for setting or retriev-
ing the values. Since C%loes not -allow passing unions to functions, a pointer to a
union has to be passed to SetValue too, even though it does not modify the value of
the union variable. The various fields of the umon (except "set_value”) should be self-

explanatory.

e

. n _— e ~ Vora, :
I'he field "set _value™ of the union "value_heblder™ 1s used fé%”\.ﬁ('ttulgx)r getting the
P , E '

values of type SET and s a structure variable of type "set_header”™ whose declaration

1« given in figure 5.6,

struet set_header {
OPJECT owner.
chur *tag:
struct set_jnfo *first_member;

}

striet set_nfo { ’ %
ORBRJECT member: & :)
ORI ser_data; G
struct ~set_jnfo *next, g

} W

Freure 5.8 Declaration of “set_header” and "set_nfo™

©

.

Jtis essentially a linked list. The first glement is the header of the set. The data

item "owner” contains the name of the owner object of the set and the data item "tag

"
VI

13

contains the “tag” of the set. The rest of the elements in the list areof type "set _nfo™”

Y

whose declaration also is given in figure 5.6. The data itemm "member” contains the
R S

namefol the Mymber object and the data item "set_data” contains the name of the

object which stores data about the relationship. The set header information which
may not be used in some circumstances actually facilitates the development of general
0

purpose set processing routines.

3

A~ an example, if the application wants to store an integer value it should pass

y.

>

=0

TENT value then it should pass "GetValue™ a pointer to a string (which is again o
pointer to a character) Similarly for a property of type SET. "GetValue™ will con-
struct Fh(‘]i;lik('(l list explained y:xb()vo and pass a pointer to the first element (header)
of the list. Likewise, for setting the value of a prop(‘rj‘t.\' of type SE'T (through Set-
Value), the application should construct the linked list and pass a pointer to the firv

\
element of the hist.

5.8. Implementation of Actions

The implementation of the various actions, namely. the action which derives the

value of a derived property and the actions which specify the constraints. are

.

explained in this section.

Faeh action is o piece of code in the programming l:mgu:\ge (". The code is con-
verted to a function with parameters by adding the necessary Csvntun bach function
i~ given o unique name. The actions. though they are not defined as functions by the
User. can rg.fc-rvnm-' t.}u‘ formal parameters and can use the "return” statement %hr‘

functions which derive the value of derived properties are called "deriving function”

and the functions which specify the constraints are called “constraint functions”.
; :

At the beginning of the run of the program. the addresses of all the deriving
functions and all the constraint functions are obtained from the symbol table and are
«tored in a main memory table. The main memory table establishes the mapping

" between the name of a function and its address. Whenever a function is to be exe-

-
.

cuted. its address is obtained from the main memory table and, is executed with the
. ’ . . - . - .
appropriate actual parameters. The details of the formal parameters of these func-

tions and where the names of thede functions are stored, are explained below.

5.6.1. The Deniving Functions

The name of a deriving function is stored as the value of the slot "_procname” of
'lln' PROPERTY FRAME (figure 5.2). This function is called by the function "Get-
Value™ The formal parameters of a deriving function are "object”. the name of the
object containing the derived property, "property”, the name of the derived property
and "derivedvalue™, a union variable of type "value_header” for returning (l.l(‘ derived

value. This function should return -1 (using the "return” statement) if the value can

not be derived. to indieate to GetValue that the value 1s NULL.

5.8.2. The Constraint Functions

The details of where the name of the constraint functions are stored. and the

number and names of their formal parameters depend on the database operation with

5.6.2.1. IFNULL, WHENMODIFIED and WHENDELE'E‘ED for Properties

which the construint s associated. They are explained below.

The ~fore "foull”. "_whenmodified™ and “_whendeleted™ of the PROPELRTY
FIDANML ~hown in ficures 501 and 5.2 are used to-store the names of these constraint

funciions

The "Jfnull” slot stores the name of the [FNULL constraint function and the for-
mal pur:bmu-rvr\ of this functién are "ol;j(‘ct". the in:sm(- of the object containing the
property. “property ", the pame A‘of the property, "d(‘f:mltv:x}uo;. a pointer to a
v"\':1111('Jx(‘:|<it-r" union™ variable for returning the default value and "defaultset™. =
pointer to an integer variable forindicating if a d.ofuult value has been prm'i;i(*d. The

. ” O
"_whenmodified” slot stores th‘o name of the WIHENMODIFIED constraint function
and the f('>rm:xl [)I;I‘.'HH(‘I-I(‘I’.\ of this function are "object™. the name of the object con-
taining the property. "property”, the name of lhf‘ property and “value”. the new value

for the property. 1t is expected that the old value will be accessed by this constranr

-

function using the GetVabue function provided by the system. The "_whendeleted”
<lot stores the name of the WHENDEFLETED cmw!r:xi‘nt function and the formal
p:n“:mu'tvr\ of.l s function are "oi)j('rt", the name of the object and "property”, the
name of the property. ICis expected that the value of the property willche accessed by

this constraint function using the GetValue function provided by the system.

The defanlt value of o property and the anterpretation of the NULL value of &
pProperty is (‘()ll\(;)'('ii by llu"ll'f\'l'l‘l‘ constraint function as follows. The IFNULL con-
straant function s culled by GetValue when it finds o NULL value. As mentioned
hefare, for derived properties, this condition occurs if the fun.ction deriving the value
returns -1 I the IENULD Tunetion wants to pro\‘idv a default value then it does <o

throneh the purameter "defaultvalue™ The variable pointed to by the parameter

"defanlrset™ 8 et to YES or NO to indicate whether a default value has been pro-

>

vieledd I <honld wse the Tretaru” statement to return the interpretation vabue of
NUTT A we mentioned in Chapter 400t returns -1f 1t does not waut to interpret the
N vadne GerValue, o turn. sets the global variable "DEFAVTTSET™ to the

value of the variable pointed to by the parameter "defaultset™ and returuns the

nterpretation of the NULL vialue @iven by the IFNULL function. A< we mentioned in

Chapter 1o coetNadne returns 00 the value s not NULL. .
. L]

“

The application program can effectively use the general’strastegy given in figure
\ Y

. B R
5700 wants 10 process the NULL value by itself: Y . i
interpret = (’ivt\'uluv(objoct.proporty.&'proportyva]'uéﬂ):f
if (interpret == 0 || (interpret.!= 0 && DEFAULTSET == &a'kES)
/* Value is avatlable: proceed */ :
else

/= NValue 1s, NULL. Use the interpretation if necessary. Fhe defanlt
value is not provided. So the value in "propertyvalue™is junk. */ .

Forure o

T Generat Strategy for Processing the NULE M alues
.’."
The parameter “propertyyvalue” of GetValue v used to get the viluesof the property

The code following the GetValue call is not necessary if the TFNULL aetion always
v
proy tdes awdefanle value

5.6.2.2. WHEN_OBIJECT_DELETED an(_l,.VV!IEN_PR()I’ER'I‘YJ\DI)ICI)

Two slots, namely, “_whenobjectdeleted”™ wnd "_whenpropertyadded™ are added

to the frame \\‘hu‘h‘ implements an object. The slot "_whenobjectdeleted™ <tares the
name of the constramt function WHEN_OBIECT_DELETED [The formal parameter
of this constrammt function s "object” “hich‘i«\ the name of the object. The <ot
"_whenpropertyadded™ stores the name of the construm fum'l.mn

WHEN _JEOPERTY_ADDED . The formal parameters of this constraut funetion are

¥

“object” the nawme ef the object or object elass to which the property i~ added Tpro-

perty S the name of the property and "ty pe™ the type of the property

5.6.2.3. WHEN_OBIJECT _CLASS_. DELETED and

WHEN_OBJECT_ADDED

Two <tots, namely "_whenobjecteltussdeleted™ and "_w henobyectadded” are added

Kl

to the frame which implements an object eluss The slot "_whenobjectelussdelered™
“tores l-h*m* of the constramt function WHIEN _()H.H,("]‘__('I";\S.\"_I‘)l.lv,'lzfl;l I b

'
1

formal sparameter of this constraint function is "objectelass™ which 1% the name of the . -
ohjeet eluss. The slot "_whenobjectadded™ stores the name of the constraint function’

. e s - e . + R 'l B) .
WHEN_ORBIECT_ADDED. The formal parameters of this constraint fugction are

"object”. the name of the object and "objectclass™ the name of thé object class to

> . BN

4

which the object is added. ’ o P

|
5.6.2.4. WHEN_DATABASE_DESTROYED and
5 v
WHEN_OBIJECT_CLASS_CREATED
Two sloth namely . "_whendatabasedestroyed™ and "_whenobjectelassereated™ are
, ‘ ¢
added 1o a frame meuntaned by the svstem. The name of the consraint funetion
WHENDATABASE_DESTROYED 15 <tored as the value of the Q:(gb"'_whvn(l:u:\-
.
B I R B
basedustroved and the name of the constrant fllnr‘HS()ll
o .
SWHEN_OBJECT_CLASS_CREATED™ 1< stored as the value of the <Jor "_whenob-
Jectelassereated™ These two functions do vot have any parameters (other than the
YL‘ N
A
databiase name)
5.7. The Operators ‘ @
The Jovic of the traversal operators (functions) provided by the <vatem are
exploned bolow Dretaled header dectarations of these functions as well as r}u'gmhvr
functions not deseribed below are civen in Appendix 2. : -
. *
O .
5.7.1. VisitObjectClasses
e This fanction takes o pointer to a function as parameter. A hst wf all object
classes i the database s maintained by the system. The hav of objeet classes s
seqguentially traversed. For each object class, the specified function 1s execnred with
e . _ . , .
the objectichiss name as the parameter,
5.7.2. VisitObjects . .

This fung®on tukes o potnter to a function and an ohject elass as parwmeters A

-

.

,‘ . " i' FEIN . . . B ” e N » .
st of all gbgrets i wwrobjeet class is mamtiained by the system. The Hst of objects in
E. 9 . . - . ; A
, - y , .

<3

the object cluss i sequentially traversed - For each object the specified funciion i
ob, b ﬁ Zh

v

exeeuted with the obpeTtges the parameter

®

. 5.7.3. VisitMembers o : ’ .
~ This takes the name of the owner, t}vc tag and a pointer to a function as p:xrfsme- :
. .-

tcrq It folldws 1ho list of MLMBFR fram(% associated” with the owner of tho set and .,
for mch momhor executes tf}f specified funftlon vmh the owner.object, mémber object

L }, - : : o .

and tag as p'ma.mmom . - R : B

. . . \“ . " . N <.

e

e ,
o

. } »

P

"5.7.4. VigitO‘Wne’rs' . .
S

‘ [
’] his function Ml\o« a mcmber and the tag ofa e(-t and a polnler to a funcllon as
\’
the nfember’

’ p sameters. It f()llo“ ho llﬂt of OWNE R_J'\Po}) frames- aqqocntod with
a

For ench owner with the sp(‘ciﬁ(‘d tag. the sp(‘c-lh(‘drfun(‘non i1s executed with

of aset. I :
s o

theownet” member and tag as phrm(‘tors.

5.7.5. TraverseComplexObject \

: . . '
L AL
Let us call"this .

v ’ .
This takes an object apd a pointer to a functioh as phrameters

“w . -9 v :) N
"Process_Object” with the object as
. . . as

)

It first executed "\P‘ro\c'ess_Objoci"
.~ function

function
user-writteqp

parameter. Then 1t executes the
It passes tho object and-a pointer to a structure

i rmxdo {ol:nionship_}’ro‘ponics"
drl able (of ty pc name_)ist_header) as p"ammot(‘r'% The structure declaration is given
’rovxd(‘_}mlatlonshlp_}’ropcrmw' to

1
f
!
'

in ficure 5.2 The structure variable is used by
provide the names of relationship propertics of the object that will participate in the
u

 traversal, '
.\:) .)
struct n: 1[1](’_]1\(_,})(’(1.(](’1'{ ’ '
char *name;
struct n‘xm(_lm_ho'ldor ptr to_ne\(_heador :
Fieure 5.8 Declaration of "name_Jist_hecader 9

It can be <een that the value returned b) "Provide_R elqtlon'«hlp_J’roportlos. s o
linked lise of character strings. The last element should have th(‘,\'a]uo of 0 for

ad .
\

“

I
ptr_to_néext_header. If all the relations<hip properties of -an object are to p:xrt-imp 1!(‘N
the traversal. the system function "retrieve_all_rel_properties”™ can hé used. This func- .
tion takes an object and a pointer to the above mentioned structure, and fills in the

structure with all the relationship properties of the object. .

N . “
B

= Then TraverseComplexObject visits the members of the relationship proffertics
L | ¥
! - A\l
returned by "Provide_Relationship_Properties”.» For each relationship property pro-

vided, and for each member of the ‘set defined by the relationship property. it recur-

sively calls atself.

The function which is pas<ed ‘gas' @ pnr:xm(’tor to all the above traversal operators
i ~ '
- -

can use the svstem provided function ” rolr.lmo wll_prop(‘rtws /to accesd all lho prop(r-

~ - -~ / -

ties of an object or-object cl:m —te 10\(-_,1|l_propbrno< _a}(os the name of an objorl
r , / .

— /

or'6bject class and & pointer to thé"s!ructur(‘ name_list_hc/(/md(’r (figure 5.8) as par®me-

1

‘/) L. .. :) . ~~
ter~. andfillsin the structure with all the properties of the object or object ®lass.

-

© 5.8. The Data Definition Lahguage DCSL

- The compiler for the Data Definition Language. DOSL s writton using the com-

piler writing tools Yace and Lex. I(* is used to write the-](‘\l(‘d] analyzer and Y nee s

"
nsed foewnite the Parcer. Iho compiler parses I{l(" DCSL specifications .md gonor ates

thie I‘l”@,sl‘rl\xc\‘ur(‘s as_explained pre\'io_us]_\' in this chapter. During the pariing phase,

\\ . . " ,

the comp‘ilvr builds.tables (main memory structures) whickj’) in"e used to gon(‘mto the .
FDB structures uring the genomtmn ph ase. Twao tablm E/re lmportant th(‘\ are the
T \

"Object Table™ and the "Property Table™ 'Iho structure of the.j tables are shown m -
N ° R " N o
Uables 5.1 and 5.2, ¢ , ' y

, .) . /
\ Object Name,| Status | Object Nuinbér

‘ -

K

Table 5.1 The Structure of Object Table

; e
' Y
) . <
o - . YN

Name | Type | Value | Index | derived | static | Ifnull

[

[N ~ : ’
-)
Table 5.2 The Structure of Property Table
(. . ! - 4
In object table. kach record stor(‘s’informmi(‘)n alwut an object” or object class.

The field "Object Name” stores. the name of the. object or*object class, the field

Status” tells whether the table entry refers to an object or object ¢lass and the field

"Object Number” stores the B name of the framge which implements the object or
object class. et

In the property table, each record stores information about a propertx. The field

"Name” stores the name of the property and the field

v 4

“T'vpe” stores the type of the property. For properties of type SET and ORJECT, the

ficld "Type” also <tores the name of the object class that is specifiedifor these proper-

ties. The field” "Value” stores its initial value, "Index” stores a pointer to the
corresponding object (1.e object of the property) entry in the object tuble. "derived”

<tores the inforination whether the [)foport) 15 a derived property or mot. "static”

“tores the information- . whether a derived property is‘st:ttic or not. "Ifnull™ stores the
. \ \ .

piece of code for the action '}'l}f_\',l'l,ll". "\\;hcnmod" stores the pi(‘ce.of C‘()dv for ﬂ)v

action "\\'lIIi.\'.\1;i>.l‘)ll’ll-",l)"‘.and “Whendel” sioros‘ the piece of code for the action

"WHENDELETED™. S ‘

5.9. Summary

In this chapter. we have described the implementation details of our prototype

database muanagement system. A description of the irnplf*mo\nt:nion of the various

Y

comrpotients of the system including how the communication between the DBMS and

~

the application programs take place and how the various actions are implemented, is

provided. The next chapter provides some practical exaniples to illustrate how our sys-

.

tem ean bhe used.
. : _ : Y

Je

Cfiapter.ﬁ _ N

;

i
J Examples

. .. . f -
In this chapter. we present examples of how to use our system. The various
\ :

facilities are illustrated with some real life examples. Though care has been takep to
present these exammples as correctly as possible, we do not make any claim to the

. ‘ I . ' S . - N : S
corfectnesy of their design. The main alm 1 presenting these examples here is to illus-

irate kot real life situations can be modeled using our system.
- 4 . & .
6.1. A Chip Design Database

¢

‘The ®llowing design of a VLSI chip database is taken from the Vdd system{i3]

implemented at Bell Laboratores. This/systom uses a database managemert system
'b N
based on the Belational model with some extensions. We use this example to illustrate

many of the'interesting features of our system.

Fige. 6.1 shows the hierarchical model of a chip.

e

. - CELL

-1 »
NETS I TRANSISTORS | CELLS

o CONTACT - |
SIGNALS cUTs L | | ENTERNS WIRES ‘

]["igurv 6.1 Hierarchical Model of a VLSI Chip
|
N

R

L “

0

S . . . : e . s ~. . .
For a detailed explanation on' fhe various terms (which are quite specific to VLSI

dismnain) pleasé see[13]. We give below a short description of the various components
. " " | ‘

of a chip

The £hip contains information cells, The compon(‘nt*;% a cell cun be wires. sig-
L . :
v ’ . r

nals, externs (input-and output ports of cells), ;contact cuts, transistors and calls

>
B

(which is called a "r:xll").,"l‘lw "eall" is the basic mechanism by which the chip hierar~

L4

“chy is built up. Anotherimportant cpncept is the notion of nets. A net is a maxrmal

.
Ny
’

«et. of wires which are electrically equivalent to each other. A signal name can,be

assizned to externs of cells at different levels of hierarchy to indicate thgt the signal is

V- .

prop:lg:lt(‘ across these cells. An extern is associated with a net anglshence a sienad

alvo is associated with a net. Contact cuts and wires are simil: lf'l\ part of some net.
Foach chip is organized as one database. The design is sp(‘gﬁod below in DCSIL.

- . >

OPJCT CLASS cell
creationdate - OBIJECT

celiname - TEXT . - ~ . 4
versionno INTEGER ©000 0 : ' \
estimatedmanhours - DER I\I D REAL (]
float estimate(): 1nt version; 1 : ‘ '
GetValue(object,"versionno .(\'\'(‘rﬁlon)' ’
if (version == 0 | version == 1) return (-1); else

derivedvalnes Sreal_value = estim: no(oby'rt property): ¢

IFNULL ¢
int version: ‘
GietValue(object "versionno™. & version):
if (version == 0) return{1):
*defaultset = YIS,
defaultvalue- > real_value = 500.0;

return(-1); -G .
estimatedeost = DERIVED REAL “¢f : .
~union value_header manhours; .
int int(‘rpr(*i' : .
imterpret = Get\ Aluo(obJoct "estimatedmanhours” & manhours);
lf(mt('rpr(t == ()
/* Value is there. no problems */
derivedvalue- >real_value = 1.3 manhours.real _value* i 83,
elseqf (l)lil’:\l'l'I‘\'I"I""‘\] S) A . N\

/A \Value is NULL: but default is-provided: proceed as usual

7 au’

1

» , ' B ' /
, . ‘ - o
butaive a warning. */ . . .
derivedvadues Peal_value = L5 manhours real_value*65 83, -
printf("eGst N based on deMult manfiours. Beware!™): }
else {1l (interpret == 1) :
/7 Value is NULL: the interpretation is "it is vegsion 07 2/
printf("FFor version no. 0'cost can not be estimated0);
/* Whatever the interpretation is, return a value of -

’

to gidicate to GetValue that cost_can not be (l'or‘vd. Y/
return (+1): } < __

extern_pets : DERIVED Hllm“ net
local_nets : DERIVED SET OF net
BeundingBox - ORJECT OF boxspees
STransistors : SET OF transistor SETDATA OF transistor_cell

-

Sstenals 0 SET OF signal ‘

Cuts ST OF cut SETDATA OF cut_cell

Fxterns » - SET OF extern SETDATA OF extern_cell

Wires CSET OF wire SETDATA OF wire_cell
Ceall o S SET OF cell sSE'TDATA OF eall_eell

Crossinfo DERIVED SET OF object _pairs

FND /
OB CT CLASS transistor
name : TENT _ »
transistortyvpe : TENXT WHENMODIEHD “1
return{checktransistortype(value- > text_value)), .
polysilicon_size t INTEGER '
diffusion_size : INTEGER
ditfuston_north AET OF wire
diffu-ron_south ¥ ST OF wire

aiute cSET OF wire

substrate CSET OF wire

BoundingBox L OBJECT OF bovspees
END

“O# An object of the object class transistor _cell
“(# stores the relationship data between o
C0# trun<istor and a4 cell

ORJECT CLASS transistor_cell

place ; OBJECT OF coordinates
reflection . REAL
rotation - REAL
NP L 4 . '
ORIECT CLASS net, - ’
name 'l‘Ffﬁq‘\
wires L SET OF wire .
cuts o SET GF ent

senals SET OF signal -
externs : SET (8 estern

N _ | S _
)

nanme:s

b

3@JH"1“VLAHS cut
Rl v STEN ‘
. cuttype 'I\"l'l'('l'l'.'
entsize cORSECT
END _
Co# An object of wbject class cut_gell stores the
Co# relationship data between a cut and a cell.
ORJECT CLASS cut _cell ’
location @ OB, h(T OF coordinates
WHENMODIFIED “¢f
refurn{checklocation{object, pr()port\ \Alll(->ll]t value)): ¢

\\Hl\lu1i111)<[n:ﬁnu\<n /
“o# 0 Thas prnp«;rl‘\' can not be deleted.
A. v
N

OBIECT CLANS extern
name - 'l'}f\-’l‘
fver O INTERGER

N :

“o# relationship data between an extern and w cell

OPALCT CLASS extern_eell

location o ORIECT OF coordinates ' . N
WHENMODIFIED ¢

ruurn(rh(cklof mon(obycl property, \dlll(->””

[~ 1y

ORJECT CLASS wire
layer : INTEGER
size o ORJECT

IND

Cc# An object of object class call_cell stores the
“C# relutionship data between a call and a cell.

ORGECT CLASS call_cell
location - ORJECT OF coordinates
PNELL 9]
*defaultset == TRULE: ‘ ,
defaultvalue- >object_value = setdefault();
/™ The function setdefault() can return the name
of anobject of object cluss coordinate with
the coordinares set to 0.0, 0.0 */ <]

value)); ©¢

<

Co# An objert of object class extern_cell stores the \

W ' ' ' - , O

-

s . ¥y '
reflection - BF AL ¢
rotiation REAL)
END . ’
OPILOT CLASS objectpars . -
objecti OO 8\
()‘)j(‘(‘l'_’ SO ,
“END
OPRJECT CLASS coordinates
Neoordinate - REAL ’
Yeoordinate RE AL
XD

;
i

opt.oer (v'l,v\,\'\" lm\\&(‘(‘\

leneth - HEATL
width - REANL
I'ND

The Do sl specification should be fuirly self-explanatory. Some of the important
points are detaled below.
S

i i

8.1.1. This evample ilhnstrates how wcomplex objeet can bestructured using relation-

%
“hip properties. A property of type SETis the basic means by which the connection

Letween one level and its Tower level 1o the hierarchy is established. In objeet cliass
el thore i aproperty "Call” which is of type SET and is intended to take cells as
. :

members. This establishes the hierarchy. Similarly. the property "Transistors™ s

intended to have any set of transistor objects asits value. The function TraverseCom-

y i
i

plexObject is provided for traversing a complex object. The functions VisitChildren

\umT'i/\ilf\ivmlwr\ can also be used for this purpose. xample of these functions follow

later in this chapter.
©
8.1.2. The object classes wkos(' names end with "_cell” agaglemplates for the objects

that will ~tore the relationship data (in the special property called SETDATA) For

example. the object of object class "transistor_cell”™ will store the reiationship data

between the objects “transistor” and “cell™. and the property SETDATA of this rela-

Honship will store this object as its vadue. These objects need not store the namet of

Py

ty

)

the partpers of the relntionship Thie mformation s mamntaned by the systen

-
!

8.1.3. The (lvri\'\f\prmwr!uw “eotpmatedmanhones™ and "estimatedeost” of Teell”

.
Alhietrate how the derived values, defunlt value of a NULL valoe and the mterpreta-

7

tion wi the NUTLL value are communicated to the application proerams. The action
which derives the value of "estimatedmanhours”™ first checks the value of the properts

. v - . . . -
“Ceraon”. 1f the value is 0 or 1 then it returns a value of <1 to indicate that the Nalue s

a

. . . v . . E)
NULLD Otherwise-it ealls estimate() (we are not coucerned with how estinate(] esti-
mate= the valied to extimate the value 1t sets the parnmeter "derivedvalue” (whieh s
N [
a Cvalue_hieader™ wnion \:ninlﬁv) to the value returned by estimate (uaing the field

real_value dnee the type of the property s REAL) I should be noted that the action

.
alvo uses the parameters “objeet™ and “property™ whose values i this case are the

"

name of the eell objeet and the name of the property, namely. "estimatedmunbours™

G e tests the valnf returned by this acrion af s -1 then o ealls the TENULL

action The 18 b D1 action, again. cheeks the version of the celli f the value 1~ not
| L

('1||].’1| to 0 thien it sets the variable p()lll(r'(l to |>)‘ the puarimeter "defaaltset” to Y-

cet~ the varabde pornted to bysthe parameter "defaultvalue”™ te 500.0 and retvorans -1 to

icdieate that the NULL i< not interpreted: otherwise it returns I to indieate that the

mterpretation of this NULT salue s 1

The wetion which derves the value of "estimatedcost™ first calls Get\ alue to

:1(‘(‘«;-./!}1" vialive of "estimatedmanbours™ If GetValue returns 0 then the value s not

-

S and henee it caleulates the cost according to the given formula and accordingly

-

cet~ the varible pointed to by the parameter "derivedvalue™; oth(‘;wiw tf the global
varabie DEFAGLTSET s <ot to YES (by GerValue) then n addition to caleuluting
the costoit prints o warninge message that the costoas baed on a default value, Other
wise it decodes the nterpretation of the NULL value, if the value returned by cier-

k. ¢
Calue v 1 then the meanine is "NULL sinee Version Nooof the cell 1< 0" and it accord-

‘
-

ey prints aomessages and retnrens wovadue of -1 to CretValue to andieate that the
. " L]

vidue can not be derved (henee NULT Y -

B.1.4. The property “Crossinfo” of the object chve “eell™ s of type DIRIVED ST
i~ also «pecificd that the et will contain objects of objectcfuss “objectpaars” ach

“Q‘” of "objectpars” contains the names of two objects which overlap. A eell can

contain many such pars and henee the type SET. This s a derived property beeause

~

}hr overlap infnrnm“ﬁn depends onthe dimension and location of the objects i the

cell : ‘ /

. .

6.1.5. The properties "local iet<" and "extern_net<” of "eell” are deryved properties

beennse their valiues ean be calculated from the values of the properties "signals”,

“Cars" TExrerns” and TWires" of-"eell”

8.1.8. ‘[he property “size” an object class Tware™ a8 of tyvpe ORJECT O We do ot
<pecify from which object elass the value should come from sinee 1t s not known at
) »

the present moment '

- ¢

8.1.7. “ome constramt specifications are illustrated. There are many instances of

v

WHENMODIFTED specifiention for properties For example, the WITENMODIE D
spectfication of property "transistortype” of object cluss "Cransistor” ensures ‘l hat only
\';ll(] natnes (xtri}lg\) are stored as the transistor type. As specified. this is achieved
throueh the neer-written function "checktransistortype()”. The new value of the pro-
perty “transistortype” {(1e the parameter "\‘:11\1("" 1o t})(‘ WHENMODIFHD function) i~
passed as pariaineier to this function. A sample implorﬁorit:uion of this function s
civen in Appendin 2 A more complicated function is needed to momtor the value of
the property “location™ of objects of the object classes Teut _cell” and Textern_eell”0 AN

cpeeificd. the funerion “ehecklocation()” does the job. It takes the name of the object.

the tame of the property and the new value as parameters. Assample implementation

. N ity

of this funcnion 1€ piven o Appendin 20 For the property “location™ of object el -
“eut _eell” we have used the WHENDELETED specification to ensare thatat will never
get deleted The reason is due to the semantics of the object class "cut el If we
Alow the property “location™ to be deleted, we will Jose the tmportant informatian
thai there is o property “location™ between a eell and @ ent Vor sake of brevity, we
omitted this constrant specification for other properties for which this kind of con-

! e .

<trant should has e heen speaified .
h I
6.2. Dynamic Restructuring of the Database.

We illustrate below a practical situation in which the facility to restruconre the

database will be l!"]pfnl

A desten rule cheeker ehecks each cell to determine whether the desizn of the cell
mecets aoset of desion roles With our orgamization of the chip. the design rule checker
will check the colls recursively 10 cell A calls cell B then Bomust be cheehed i addi-

Gon to N Inoa sitnacion when only A is modified and not Bothen such o checkher will 4
do anpecessary work by cheeking oo second time. (Of course. 1t s necessyry to check
\
the tnteraction between the eall of Band other components of A} A simple solution 1o
provent this s 1o add o property “checked” to all cells, This will act as o flar Ir can
beoset ta Y1~ to indicate that the cell has been checked sinee last modified whd NO o
mdicate that 1t needs to be checeked | The checker can safely skip a cellaf the cell and
all the cells that 1t calls are marked YES. In our example, the design rule check of A
Vo

v

will <kip BThis “checked” nformation could have been stored by the design rule

checker outside the database This is highly undesirable: it involves more work to do

that and it is nnnaturad since Chat information is actually part of the design informa-

fon nntil the desizn s fully fimshed (te untl further update s prevented)

There are several reasons why the property "chiecked™ would not be included

all the cells during the “database decign stage. Firstly, this problem of unnecessary

”

P .
ll!“'\lr'.'vll rule cheeking miay not have ocenreed ta the databiase rl(wu;nc*r ‘.m‘un("_\ evenaf

., ' .
the properts e omeluded ac the database desien stave, there s not mach meaning
keeping that informatpen with the design data after the design bias been fully checked

and the destgn has been frozen. Wath our facibity, the properties can be added (uaney

the Tunction AddProperty) when the (lvslgn‘ru]v cheek s first gmtuated. When the

destgn of the ehipas finally over and no further update s allowed these properties i

be removed (using the function ocletel roperty)

-

We have taken this real ife example of design rule cheeking toilhstrate he ani.

ity of dyvnamie restructuring of the databuase. There are many ot her circunstances
!
w e this Facility can be effectivels used. Some desien iuformation which will beowirh
. A !

e database adwinvs, might not have been thought of wt the yntial design of the diarae

bave 1 or example, a situation like the following will warrant this facility. say . fown

boes of documentation has to be added ro tranastor objects which are to beosedbonty

e spectie places. this decision s taken after finding o that some serious desizy
errars are f'«»nw\l"nll} cansed l)) Improper ise of these transistors In onr SAsten ¢
properts ~av, “Gondeline b orUse " of type TENT cun be added to those specfic transs

tor objects and the documentation can be stored as the value of this property i

<honld be noted here that the flexibility we km\'(' allowed for the members of an objeer
’

elass ie useful for dealing with such situations. Assuming that all transisror objects are

under the ohjeet class transistor, a restriction of homogeneous structure of member

»

objects of an object class widl force the inclusion of this property to all transistor

objects which is probably unnatural and unnecessary.

/

R - ' B

8.3. Examples of the operators

L

In this section we present some simple: examples to illustrate how the operators (¢
: . ‘ I

I . ' o - . :
functions) can be cflectively used. The database name is not passed as parameter to

the varicus operators in order to reduce the length of code.
S - , .

\

H

C . s . 7
-.8.3.1 VisitObj'ects, ViéitOwn_ers, GetSETDA’I‘/A and GetVa.IUe
Suppose 1t is of lmerc<t to us.to e\ecute thc follomng quer\ "Find all transistors

+

-8 mthm "X units of the bounding box of the nnmodmtol\ sur-

a I

whose boundi
'l\'hw'f()llowing'codo will accomplish this. It is assumed that all transis-

- . + "
rounding cell”.

tor ohjects are undc?>tho object class transistor. ~

Aule_check _transistors{):

{ 8 _ ; 4
. . ' : N 1
int (*check_surrounding_cell) ():- : j ~

) ~- . '
VisObjectsftrunsistor.check \urr()un(hng cell): e :

“check ~11rroundmg (‘(‘”(Ob_](‘(‘l)

ORJFCT. object: ,
{lnl (prlm_)f condition Qﬂl\fl(‘d) ():
VisitOwners{object. "transistors’ “print _f_ con(lmon

} ’) . . ') !

satisfiedfowner, m(’mbor 1% w)

atlﬂﬁod) 7 s

print Jf_condition_
OBJECT owner,member: -)

~ char "tag b
< {OBJECT rol.nmndnpd.ﬂa co]l__boundmf'_l’m\ tr(m\l'«tor_bo ading_box;

int Is_Jt_satisfied:
relationshipdata = GMHLTD ATA(owner, member t'w) Y
GetValue{owner, BDUndmgBO\ &(‘ell_boundmg_box) '
GetValue{member."boundingbox™ & transistor ounding_box}: .
chockcondlt10n(coll_boundm } box, ' '
transistor_boundinghox. relatlonthpdqtd)

if[]s_j"r_sntkﬁvd == TRUL) prmtob_)ect(membor)

-

Is_jt_satisfied =

e

Thd funcfions check_surrounding_cell, prmt_}f condmon all<ﬁod checkcondi-

.

tion and printobject are to be written by the user.

09
“The functions VisitObjects and VisitOwners do most of the job. VisitObjects
visits each ?r:insiﬂt()(r object and calls the function check_surrounding_cell with the

name of the object as parameter. ‘check_surrounding_cell calls VisitOWners. Visitown-

ers visits the owners of the transistor object with tag "trapsistors” and calls the fune-

tion print jf_condition_satisfied with the cell object, the transistor object and the tag

/

"transistors” (the owner, the member and the tag in the general case) as parameters.

In this gase there will be only one owner(i.e cell). print_f_sondition_satisfied prints

tlie contents of the transistor object if the-condition specified before is satisfied.
A :

To check the condition. the relationship information .between thefeell and the

N

transistor (which is the location information) has to be retrieved. Th(s s accom-
plished by the GetSETDATA function. Using the function GetValue the bounding box
\ .) ‘H

vilues of the cell and th(* transistor are retrieved. The user-written function

.o " A e i et o - .
cheekcondition” cheeks the specified condition. If the condition is satisfied. the user

written function “printobject” prints the contents of the transistor object.

The query we just discussed is fairly general and can be used as a model for
“whole cluss of cimilar querijes.

6.3.2. VisitObjectClasses

Suppose. all: objects of the database have to be visited and a function. say.

Verify_Time_Stamp has to be executed for each one of them. The following code will
:1@66n1plish i

- Kil_Oldies() : '
|

int Operate_on_object(}):

Visit Object Classes(();)or:xt(‘_orl_ol)j<‘ct):

"~ Operate_on_object{object_class)
C OPJRCT objeat _class:

int Vernify_Time_Stamp():

100

’

,\’I\it(\l>j(’ct§(,obj<'ctcI:lss.\‘orif_v__;[‘im(‘_}it amp);
\ v ‘ A)
_\'i;it(\bj(‘ct(‘l:lssos is used to visit all the object classes in the database. It visits'

) A,
""e:ar]{&bjoct class in the dasabase and calls the function "Operate_pn_pbject™ with the

. \ .) ' @
name of\the object elass as parameter. The function "Operate_on_object” calls Visi-
l,t(()bj(*cts. VisitObjects visits cach object in the object class and calls the function
b ’

S "Verify_Time_Stamp”™ with the name of the object as parameter.

This query can be trivially generalized to exceute any function on all objects of

the database.

6.3.3. TraverseComplexObject

'
i
\

. . . i . . . i . N
TraverseComplexObject is very useful” in manipulating a complex object as u

- -) . :
whole. Tt s a very general and powerful function and as a result it expects the user to

provide some guding information (in the form of few lines of code) as it traversex the
complex object,
. Al
I'or our chip database let us discuss how TraverseComplexObject can be used. As
o ' B '
we mentioned in previous chapters, TraverseComplexObject visits all objects of a com-
N . s . .

M °

plex object and executes a specified (user-written or library) fuiiction for each one of
them. For each objdct the user. should provide all the relationship properties thar

TraverseComplexOBject shouldt visit.

\ .
I t
1 4

\

TraverseComplexObject (Rootcell .Process_Object);

Process_Object{object)
OBJECT object:

/™ Do whateveris to be done with the object, like displaying it on the display
devices or compiling statistics, checking design rules. applying
locks. ete. Functions like Visit Members anid VisitOwners can sometimes
be useful for this purpose. C

o/

]

ot
: 101

Provide_Jlelationship_Properties(object name_Jist).
OBJECT object:
aruet name_Jist_header *name_Jist;
{ ’ .
object _class = GetObjectClass{object): . -
switch(object _elass) {
case (cell).: fill_except _Crossinfo{object name _Jist):

: return:
case (SYSTEM): \'vry_:p('ciﬁc_procmsi-ng(obj(‘('t.nnmo_Jistr:
T return: ; , -
default : retrieve_nl_rel_properties(object.name_Jist): ‘
return: . :

TraverseComplexObject ini//i‘:})y visits the root cell and executes the function
l‘ré)rvss_()l)jvn. Then ot ox(‘curtcsa the function Provi,do_}\?olntionship_}”ro‘portios (this
name is built into 'I"r:n'vru(‘('(‘)mplv.\'.(‘)bjcc(). This function. based on the object cluss
to which the object belongs. provides the necessary relationship properties. For object

class "cell” we do not want the property (of type SET) "Crossinfo” to be visited by
TraverseComplexObjeet This is taken care of by the user-written function
|

fill_except _Crossitifo. For abject classes| "transistor”. "net”."wire”™, "cut”, "signal”.

"extern” the svstem function retrieve_all_rel_properties is used to fill ih all the rela-
N / B .
tionship properties of the objects. The fact that the object classes "wire™. "out™ "sig-
) -

nal™ and “extern” do not have any relationship properties aretmade known to Traver-
. E P ki .

«eOhject through retrieve_all_rel_properties. For object class SYSTEM the user-
written function very_specific_processing takes.care of filling in the relationship pro-

. : A '
perties for these objects,

B8.4. Summary-' '

In this chapter. we have provided practical examples to ilfustrate how to use our

csvstem. The data definition of o VLSI chip database is specified in DCSL. Some pric-

t1ical situations. when the facilities provided for dynamic restructuring of the databuse

N

can be helpful, are illustrated. -Examples of how to use some of the fundétions provided

by the systems are provided. Thus this chapter Hlustrates the various aspects " our

N

* 102

system - including derived properties, constraint specifications, the facilities for

dynamic restructuring of the database, how n complex object is represented, and how

the function TraverseComplexObject can be used to manipulate a complex object as a
' |

. ,) - i .
whole. The next chapter provides the conclusions and a discussion on the scope for

further rescarch iefhis area.

Chapter 7

Conclusions ~.

In this chapter. we summarize the contributions of this thesis, point out’ some

lHmitations of the present design and discuss the scope for further research in this areu.

7.1. Summary of Contrib_ut';ons
This thesis s concorn(‘(l: with the :xnul_\'si‘.': of the d:nnb'uso requirements of design

environments, and the design and impl(‘m‘(‘ntntion of a database management system
<uitiable for the same. First, -W(‘ presented a model of the design activity. Such
madel 1 very u.\('f'ul to put .in proper perspective computer-aided design in general and
the requirements of a design database management system in particular -~ We then
presented a comprehiensive set of database requirements for computer-aided design
applications. We chose four of these requirements for the purposes of designing and
Cimplementing a prm(‘)ly;)('f\(l(‘ﬁjigrw databuse manngmn(‘*nt svstem. The dosig‘n 1s aimed
at prlm iding the facilitifs to <:1¥isf!\' the following requirements:

-lepresentation and .\1:xnipul:xtion.0f Complex Objects.

-Dynamic Restructuring ()f the I‘)Iut:xb:wo.

-“fu]»pnrl for Derived Data,

-

-Flexible Comsteaint Specifications.
: ~—

: L7
Then we presented | the implementation details of our system and some real life exam-

ples toillustrate hojw our system is used.

.

We say that dur system is "Object Oriented” since the concept of "Object™ is the
means by which the real.world entities are modeled. We now briefly describe fiow. the -

facilities offered Yy Bur system satisfy the four requirements mentioned above.
. . . BN . .

Y

The type RET and the operators TraverseComplexObject. VisitAfembers and
VicitOwners mhkesthe representation and manipulation of complex objects possible

The dvnamic frestrncturing of the database 1s achieved by the provisions to add and

«

104

detete o property, and to add and delete an ohject cluss, The concept of a Derived Pro-

I3

yerty provides the support- for derived data The variouns "actions” provide a flexible
I A I I

.

and powerful constraint specificatioh mechanism. In :\d(l.ition, the :;cti()xn IFNULL can
be used to capture the semantics of the NULL value. In our view. constraint
specification is not just specifying when to allow or disallow updates to the ‘d:;t:xb:ma
According to the circunutuncos. alternate (corrective) measures may need to be taken.

Using the various actions, such measures can be specified.
)

7.2. Limitations ™.

LY

[he design we have presented can be deseribed as the first and preliminary ver-

sion of our system. A'wo major features are missing from the present design. First,

there are no facilities to specify or modify the various actions for an already existing
.

datubase and there are no facilities for specifyving them dynamically. Presently the

actions can only be specified through DOSL t.e. the actions can be specified only when

N
N

the initial static structure of Ahe database is specified. Since the actions are ©

modificd actions wvailable in the present run of the program. An immediate solution is

{

to.extend DOST (or design another tin\h\ngu:xgo) to-specify statically the actions (and

~
~

possibly updates to the structure and contents of the database) for un already existing

database Seécond, the

T————

the property SETDATA ("'}']"e action WHENDELETED has no meaning for ¢his pro-
perty since this property can never be deleted by the wuser). The muain reason wh;
Afur‘lli(i(*i\ 1o <p(:cif_\: these actions are not provided, is' that the property SETDATA
comes into (-lekt(‘nrx()nl)‘ when a moml?cr s added to a set. .\'peci‘fying these actions
statically has only limited m(‘:x‘ning since these uactions, then, have to be associated
with the tag of the set. l_vlowm er this (‘:19 possibly '-bo implemented as an immediate

.

wolution. We mentioned before that DCSL presently ignores the "SETDATA OF”

105

specificntion When the facilities 1o specify these actions for SETDATA are imple-
mented, the name of the object class specified after the "SETDATA OF" should be
stored and made accessible to the WHENMODIFIED action for monitoring the vidue

>
of the praperty.

7.3. Suggestions for Further Research

In this section. we discuss the possibilities for further research in this area.

7.3.1. First. the usefulness of the system should be studied by using i1t in a large <cale
Feallife situation. This experience can be vuw('l. to pragmatically evaluate the \"urif)n\
desion <lv(‘i.~i('>n\ and hence modify them :xppropré:m-l_\', if (](‘Em(‘(l NECESSATY .]m;m.r_—
tant questions hike

-1 the flexibility allowed for the members of an object class .

realiy necessary?

N\,
\

- Does this flexibility have any serious impact on the overall
understandabitity of Nue struct e of the datiabuse?

honld be answernble after such practical experience with the system:

7.3.2. The constraint specification mechanisms should be studied in further detail. In
‘onr system, the constraints are associated with individual object classes, objects and
properties. ‘This might prove to be an overkill. This issue should be studied further to
determine if there is any Joss of generality, in the practical sense, if, say. the con-
<traints of the properties of an object are generalized irnito one constratnt associafed

with the objeer.

7.3.3. The other requirements mentioned in Chapter 3 should be studied 1o deter-
mitte lrow they can beoif possiblel incorporated into the system. The requirements like
handling multiple representations, configuration control and version control should

be wiven priority for snch a stndy. The requirements like archiving of data at object

L .

¥

: 101

livel. object libraries and configuration control should be studied to determine if they

can besimplemented using the support provided by complex objects. Efforts should be

. o \
taken to determrine how our system and the University of :\Ibvri:""Vl“\H[‘Jﬁ] could

communicate with each U!Jlt‘l’"f(k the purposes of building user interfaces for the

(l(‘\i}.{ll tools) ’ . . ' .
. . » / _

7.3.4. \We have already stressed the importance of the model of the design activity. A

,
model better than the one we have presented should be developed. Presently the model
. : - 4 .
does not represent the following two aspects of the design activity: the interactions of
subroals during the synthesis task and the verification task to verify if o devel of
abetraction is correctly represented by its detailed abstraction at the lower levels,

Alvo. the model should be revised to more explicitly and accurately depict the design

activity inoa-compterized design environment. In addition. models of 1ndividnal
-

t

desien activities, such as VIS and “software design, should be developed These

models can ereatly help in the design of ‘the database for these applications. Thus,
. A .

the eonerat model of the desten activity cun be useful for the design of the darabase

inanaecment system whereas the models of the individual design applications can be

nseful for the desien of the databases for these applications.

References

ANSI/NB/SPARC, Study Group on Data Base Management Systems: Interim

Heport, FDT Bulletimn of ACM - SIGMOD 7.2 (1977),

AMOND Astraban et alo System R Relational Approach to Database Management

VON Transartions on Database Systems 1.2 (June 1976)

J
J D dehbiah et aloin Referenece Manwal for the Ada Programming Language.

Department of Defence. Honevwell Tueo and Alsys, July T9x2e

-

AL Atkincon and N Wisemman, Pata .‘\1:111:\;;('1;1('1” Requirements for Large scade
Diesien and Production. ACM-STGDA Newsletter 7.1 (Narch 1977), 2-16.
JoDennert, A Database Muanagement System for Desian bogineers, Procecdings of
the 16th Design Automation Conferencelas Vegas Nevada, June 19X 268273

(i Booch, in Software Fongimeering Wiath A ria,‘»H(*nj:mnv’rrlﬂ ummings, New York

1 G-,

v Doraidi, .l,‘f\iylop(>n|<)\ and KT Wong, Generalization/Spectalization as o
Pasis for Software Specification. in On Coneceptual Modelling: Perspectives from
Artificial Intelligence. Databases, and Programming L anguages. ML Brodie,).

Mylopoulos and JW Schmidt {ed). Springer-Verlag, 1984, 87-117,

‘AL, Brodie and D Ridjanovic, On the Design and Specification of Database

Transactions, in On Conceptual Modelling: Perapectives from Artificial

Intelligence. Databascs. and Programming Languages. N 1. Brodie. J. Mylopoulos

}
Ay

and DWW sehmidt fed) Springer-Verlag, 1981, 230-3 12

AP Buchmann, Current Trends in CAD databasgs, Compigter Aided Design 16,7

}

¥ 3

(Mayv TOXT), 1202126, oL J
N ' LR

£ .)’

H

e

10

1O

\ fO~

O Pouneman and s Clemons Eflicrently monitoring relational datahises,

VoM Transactrtons on Database Systems § 2 {September 197G), 36582

i3 Chandramouli, Compnter Aided Design Tool for Objecy Oriented Software

K

Desagn, CMPUT 51 Course P'roject Report, Unaveratty of :f\lhrrln, Dee 19%1

W
1. Chen, The Futity-RBelationshop Model-Towards Unified View of Data,

VN Transactions on Database Systemas 1(19T6), 9-36,

A f

Kune-chao Chu John o Bishiburn, Peter Honeyman and Y. Edmund Tien, Vdd -
AN T Dresion Diatabase system, Enygieeering Design Applications. Proceedings of

\
Yuroal Mecting. Sponsored By 1P and ACA1TOR3 2057

ol Chadnet and D Nash Conceptsin CAD Databiase Structures, Joth esign
} I *]

Vutoncation «onference. June 1976, 200-201
P Codd A Pelational Model for arge Shared Databuankhs, Comm A 106
(Tane- 107,

11 ol Belationad Distabase A Practical Foundation fujnﬂrmlm‘n\nl\. Comn
ot

) 2!
VoA 3 ey 10N 200 109- 11 -

b bl and AT Houre, Therarchical Program Structures, in Sructurea
Programoning. O -0 Dbl EAV Dijkstraand © LB Hoare (ed)). Academie Press,

New York, 1OT20 1T0-220

U Daval and A Bernstein, On the Updatability of Relational Views, 5th

P Rt

j .
International Conference on Very Large Databases, 1980, 36R8-377.

Bl Fawaran. Aspects of o trigger subsystem in anintegrated database system,
: .

Proc. 2nd International Conference on Software Engineering, October 14762140
’ .

250,

{

N1 Garrett and J 1 Foley, Graphies Programming Using o Database Sysrem

with Deperidenes Declarations, ACM Transactions on Graphies 102 {April 1082,

S

i

It

1610

[NALYE A

N Gl DA Bisen and ¢ W Roses batabase Concepts ‘l'w(l in the

OGO Compyter- Aided Design System, A CM-5T0:04 Newasletter 7.1 (Mareh
[T T A A
A Goldberg gnd D Bobson, Smalltalk-S0: The I anguage and sts lmplementation,

Addison Wesley, 1GR3

A Green, M Puarnell JH Vreengak and M2 Vrengak, Experiences wath o Graphical

Dt Base system. Rrocecdings of Graphies Inferface S0 VO 207-270

ML Green s DR - A Frame Rased Database System . Department of Coroputing

Setence, Universily of Hberta . 1051

N Green L Desieon Notations and User Interface Management Systems, in {ser

Iutorface Mawagenent Systenes, Springer-\erlag, 10%5

Mo Green The Umiversity of Alberta UINES, Procs of STGOGRAPH S 1985 2050-

SR

AN Hardwiek Datending the Belational Database for Desion Applications,
; I

'rocecdmgs of the 20st Design Automation Conference [TORE 110116
; :

oo Haskin and B borie. On batending the Functions of o Felational Database
svetem. Proc 1082 ACM-STGMOD Conference on Management of Data. Orlando.
R b

ALNL Havnie, Tutorial: The Relational Data Model for Design Automation.

I'roceedings of the 20th Design Automation Conference. 19%3. 599-607.

PO Tngalls, The smalltalk-76 Programming System -- Desten and
fmplementation. Conference Reoerds of the Fifth Annual A CM Sympossurm on thy

Privciples of Programming Languages. JTanuary 197 9-16.

DL Tnealls, Design Principles Behind Smalltalk, BY TED August 1951, 286-24G

110

20 s 0 Johneon Yace Yot Another Comder ('nnlpl|l'r,(‘nmp s Tech Bep

Noo 0 Beld Paboratories NMureas HiE Svew Jersey Tuly 1970

Vol Johoson, b Sehwertzer and ol Warkentine, A DBMS faeliny for
Fandline struetured Eongineerimg Eutines: Fogineering Deaggn \ppheations, .

Procecdings of Annual Meeting Sponsored By TEPE and VO Ny 10=03, 3011

21 B Rtz A Database Approach for Managmg VEST Design Dt Procecdings ofs
the 10th Design Vtomation Conference las Vegas, Nevada, June 1TOx2 27 (22K

»

S0 Ry and s Werss Dreen Transaction Management s Procecdmige of the

J1at Design Automation Conferenee 10N 092-60.0

a0 W Rernichan and DAY Ratehie on The ¢ Programming Langrage rentice-

La

Tl e TOT~.

ST b s and Do NMebead. A Unified Maodel and Methodology for Conceptual
Diatabase Desizn,in Cn Conceptual Modelling. Perapectives from Artaficial
Irite Uige niee . Databases. and Programming [anguages. ML Brodie My lopoulo-

and N =ehnndt fed oS primeer-Nerlag, TOXE 3138331
] g ,

S L Knapoe A Compnter Oriented Mechamenl Design Systeni. Procecdings of the
] A Y

Share Destgn Automatrion Workshopa, June 23-25 1755,

SG DAL Kroenke in Databaze Processing: Fundamentals, Design. Implementation.

science Besearch Associates Ine., 1983,

10 CoNGE Lafue, Integrating Language and Database for CAD ,“\})‘I)lir:mnn\

Comprter- Aided Design 113 (May 1979), 127-131.
11N B Lesk. Loy A Texical Analyzer Generator, Comp. Sei. Tech Bep. Na. 30,

0

el Liaboratories. Murray Hill, New Jersey. October 1975

12, AL Lorie, Issues in Databases for Design Applications, in Fiale Structures for

Databases for ¢ A1 0 Lnecarnacao and Lo Krause {ed). North - Hollaand

\
\

.

Pablishione Commpany T2 004229

1N Fore and Walfred Plouffe, Complex Objects and Their Use i Desgrn
Transactions, 'ngineering Design Applications, Proceedings of A nnwal Meeting,

ponvored By 10EF and A4 A0 1983 105121

tr Danvid Naveroon The Theory of Belational Databaaes, Computer Science 'ress,

1GR3

. [. .
17 D Meleod, ko Naravanaswamy and ke Vo Bapa Baoo Ao Approach to
-
information Management for CAD/VEST Applications. Engmeering Design

1;)1>/x?ﬂhnna, Proceedings of Annwal Mceting, Sponsored By IFEL and ACM

[G= B000

.

A - Rehaele B Mittmand and © 1L Carlson o A Comparison of relationad amd

CODASYL approaches to data-base management, Comput. Surveys 8 1 (March

o

M 1

.

£ N ALk Another Look at Databases, FDT. Bulletsn of A 7M. SIGMOD 6

(1074 1%

I A Topoulos. oA Bernstern and H KT Wong, A Langnage Facihiny for

Destening Interactive Database-Intensive Applications, ACM Transactions on
[tatabase Systemsa 502 (June TOR0). TR5-207.

19 T, Bentseh, Objeet Oriented Programming. ACM SIGPLAN ,\'()f:'r(‘.« Notvces 17,0
(September 1982), 51-57.

50 ¢ Robinson, A Data structure for a Computer Aided Design System.
Procecdings of the Shave Design Automation Workshops Muy 16-10. 1066

Vo1, .Gl schleehtendahl, CAD Process and H}‘\‘t(‘fn Design. in Lecture Notes in

(‘um'puh"r ,\'rir‘n‘r(', ("oymputvr atded design. Modcelling. Systems Erngimeering, ¢ 41

Systems, Springer-\erlag, 1OR0, 380-42G.

()0 /‘V

61

.
Eras s

o - . S 12

v

- CUL Sequiin . Managing \A'L.f\'lq(‘omp'loxity. An Outlook. Proc. of the 11:'/;‘[5 711

(January 1983,
T W. Sidle. Weaknessesof Commereial Database Management Systems in

Fngineering Application. Proceedings of the 17 Design Automation Conference. =

".’\I:‘nrapolj.q. MN, June 1980, 57-61. ‘ w

»

J. Smith d“d D. Smith, Ddt abase ‘\bqtr actions: f\ggreg'mons and Gcnomhmtlons
A ('.\I Transactions on Databasc .S'y.stcma 2.2 (\eptombor 1977). 10 5-133. :
. . : q:

i

David ¢TSmitkand Barry 5. Wagner: A Low Cost, Transportable, D:xt:x ‘

&

Management. System for LI/ VLSI 1)0sigr:1‘ Proceedings of the r9th Design

Automation Conference, 1982, 283-260

e

 .‘\1., R Stonebraker. 'i‘ho Design and Implementation of INGRES, 4CM -

LY . §
Transactions on Database Systems 1.3 (September 1976). .. >

MUR. Stonebriker. B. R ub(‘nstoln and ’\ (:uttm'm ‘\ppllcatlon of Abstract I)xr a

I\pu and Abstract Ith(\ to CAD Data B ases, [ngm(’crmg [)cstgn 1;);)[:rahom

]ror(tdrn%e of hmua(\Iu{mg Sponsorrd /!y 1111 and 1M 1‘)8’ 10

G ,\\'vinb(‘rg cin The l’syrhologyjof Computer Prograraming, Van Nostrand-

einfold. Tyt

R. Wiener and . .\'Iin’govcc. in Software Engincering with Modula-? and Ada. John
X .“‘1 E 5 5 , - . N

Wiley & Sons . 1984, /

N Wirth, in [’rmramnnng in Modula-2 %prmgor Verlag,]982

HRT. \\'onrv—, Design an.,cl Verification of Interactive Infiormation Systems us:iri;:. \

T \\J\ 7(’rhmml l.(port (SRG-129. Department of(omputer Smcnr(b nncrnh/

nf Tovronlu. :\‘p'ri’I 1081,

9
0

* v ; AppendrxAl o ‘ N

o Formal Deﬁmtlon of/DCSL ' .
In this appendix we give the formal deﬁnition/,bf our dat,a definition language
. , | C
DCSL. To keep the definition reasonably small and readable we have omitted the

lexical devel (terminal) definitions and have described them in comments.

0
’

The formal definition is written in the terminology of Yacc[32]. A grammar rule
- has the form: : , : ' L

Nonter : andnames:
Nonter represents a nonterminal name, and anynames represents a sequence of zero or
more ‘names and literalss A name 1s eithera nonterminal or a terminal (token).symbol.

The colon and the semicolon arethe punctuations. If there are sv\"&rul rules with the
same left hand side | the vertical bar " is{xused to avoid rewriting the left hand side.

Comments are provided-bétween the delimiters /" and "*/". We have followed the

convention of writing the tokens (terminal symbols) in capital letters.

Y .)
i ‘ 4
p 4
. " FORMAL DEFINITION OF DCSL, ”
7 - \ _
desl : Ob_](l(‘f desl | /* empty right hand side s
<)b)d\f " object _classidefn {object _deéfn:

objectoclass_defu : OBJECT CLASS [* OBJE ('I and CLASS are key vxords /
dot'ult\ﬁyob_] defn:

'\)(

" object_defn - ORJE CT /% OBIECT is & key word */ ; (
(1(1‘111((1_0})J_,(]cfr1, . . '

=

detuiled obJ defn : II)I}\..III IER gwrgport_defn LEND:;
/7 IDENTIFIRE sgarts with* lott(‘r followed by a soquenro

of 0 or more letters, digits or "_". END is a key word */ .
property_defn :x_propert.}@_dofn property_defn |

a_property_defn IDENTIFIER propertyspees |spl_propertydefn;
' A
propertyspecs prim.lr)sp(cs constr:xinldof:ﬂ derivedspees constraintdefn:

derivedspecs : DERIVED derived_type_value_specs
[IDERIVED STATIC derived _type_value_specg,, 1.

derived_type_value_spees typespees [C_CODE ‘('(7“]“.
/* C_CODE is Cslanguage statements */

Gpespees - INTEGER |} EAL | TEXT
. /* INTEGER, REAL and TEXT are km words */ C

| setdefn l()bJ('ctdofxl , ‘ » ,
setdefn . SET setdataspees | SET ()I IDENTIFIER Setdataspecs

/ SET and OF are key words ”/ . . .

setdataspees L Sh TDATA OF IDENT 13 IER | /* \I TDATA is a key word” /
ohjectdefn SORIECT JOBIECT OF II)I',f\ TIFIER ; o

Srimaryspees ANTEGER INTEGERVALUE [REAL REALVALUE
III\IIl\I\\llI!sotdofn.\ll\\lll \

Hobjectdefn OBJIECTVALUE o A
/T INTEGERVAL UL - an integer with A(moption:xi sign AN)
REEALVALUE - areal number with an optional sign, a string of |
numbers possibly containing a decimal point.. dnd an !
optional exponent field cont aining an I or ¢
‘ followed by o possibly signed integer
TENTVALUE - astring enclosed in quotes
SETVALUE S S one or more object names (IDENTIFIERs) se par: ited by
comma or “hn(spaces
OPRJECTVALUR - a name of an ObJ(cI (IDENTIFIER) */
constraintdefn ifmullspees wh(‘n‘modifiodspocx whendeletedspecs:
ifnullspees 11 NULL constraintspeces |;
'wllt‘nmo(]ifiodfspo(‘s : \\'}Hf.'\I.\i(ﬂ)]]*‘}'lﬂf) constraintspecs |;
whe nd(l(t((l&poc . WHENDELETED constraintspecs |
/7 IFNULLL \\}H NMODIFIED and WHENDELETED are key words / -
constraintspees "'E"["('_('()l)['},'('{ R
<P C_CODE “language statements ™/

spl_propertydefn :: spl_propertyname Spl_propert yvvalue
POLARS W IDENTIFIER ,
| REAMOV Wtc& /* REMOVE s a l\(‘\ word */
spl_propertyngme - WHEN_DATABASE_DESTROYERD
PWHEN_OBIFECT_CLASS CREATED

]
i

| WHEN_OBIJECT_CLASS_DELETED
I WHEN_OBJECT_ADDED

[WHEN_OBJECT_DELETED
FWHEN_PROPERTY_ADDED:

spl_propertyvalue O 7[LC_CODE "¢

FeHIOVesSpecs ' 20 [PROI’.I':R'I‘\J.\'"‘;\Mlf.\' NN
/* PROPERTYNAMES is a sequence of one or more property

names (IDENTIFIERs) separated by comma or white spaces. */°

; ' . Appendix A2
Declarations of Functions

In this appendix, we first explain how to run the program. called "desl”, which
processes the DOSL specifications. Then we provide the header declarations of the

functions provided by the system, in the syntax of the programming language €.

1. ToRun decsl

The command to run the "desl” program is:

desl databaseniame deslfilename
where databasename is the name of the database, to be g‘;n'cn by the user, and
Cdeslfilename’is the file name containing the DCSE specifications. "dest” will create

database with the given name and build the initial structure of the database as

<

specified in DOSLL

w

2. Header declarations of functions

The structure e larations that are relevant to the functions provided by the
' a

ayitem are @iven in o aapter 5. Another important structure which i~ used by these -
® ' - .
functions is the data . e structure "DATABASE". The various structure declarations

¢

and the varions constant declarations like "OBJ", "OBJCLASS™ "YES"™ "NO" ete.. are

in the file “DEMS. LT and this file shouid be included by all the application program-.

S CreateDat ubugeldbstruct .dbname)
DATARASE “dbstruct: ‘
char “dbnume;

“CreateDatabase ereates a database with the name "dbname” and initializes the
, _ -

dat abase structure variable "dbstruct™” This variable is used by the other functions to

refer to the database

DestroyDatabuase(dbstruct) - :
DATALASE dbstruct; -~

DestrovDatabase destroys the database "dbstruct”.

116

‘ : E , 17

Co

o ORJECT NewObject{dbstruct flag.obj-ctelass)
DATABASE dbstruct;

. mt flag: v
‘ OBJECT objectelass: .
This function creutes a new object class or a new object. It returns the name of the
objeet or object class created. It returns -1 if it can not be created. If the flagis
"OBRJ" then a new object is created and if the flagis "OBJCLASS™ then a new object

class is created. The properties. their initial values. and constraint specifications of the

object elass "objectelass™ are inherited by the new object or object cliss.

DeleteObject{dbstruct,object)
DATABASE dbstruct; a
ORJECT object: ‘ ‘
This function defetes an object or object class. Tt returns’=1if it can not be deleted.
N\ v i ’
The parameter "object™ is the name of the object or object elass. _)

opJLeT GetObjectClass{dbstruct object)
DATABASE dbstruet:
ORJECT object:

-

Thi~ function returns the object class of an object. The paramerer "object™is the
name of (‘%9“});1(‘“' If "object” refers to an object class then GetObjectClass returns

-1.

SetObject Class(dbstruct,object.objectclass)
DATABASE dbstruct, ‘

OBJECT object.objectelass; ‘ .
A

This function adds.an object to an object class. The prﬁtmewr "object™ 1s the name of

the object and the parameter "objectclass™ is the name of the object class.

AddProperty(dbstruct.object.propertyname,propertytype)
DATABASE dbstruct;

OBJECT object:

char “propertynuame;

it properiytype:

-

Thi~ function adds o (primary or derived) property to an object or object class. The

parameter "object™ is the name of the object or object class, the parameter

.

11K

"propertyname” is the name of the property and the parameter "propertytype” is the

type of the property. The type is one of the following constants: INTEGER, REAL,

TENT, OBIECT, ‘:m;] SET for primary properties, and DERINTEGER, DER_REAL,
DELR_TENT. DER_OBIECT and DER_SET for derived properties. This function

returns -1 if the property ¢ vu not be added.

DeleteDropert y(dbstruct .object .propertyname)

DATABASE dbstruct; , .
ORJECT object:

char “propertyname:

This function deletes a property from an object or objegt class. The parameter

"object ™ is the nanme of the object or object class and the parameter "propertyname” 1s

l

the name of the property.

SetValue(dbstruct.object propertyname.value)
DATABASE dbstruct; '
OLJECT object:
“char *propert yniume:
union vilue_header *vaulue:
This function stores the value of a property. The paranicter "object™ s the name of
-y

the object or objeet eluss, the parameter “propertyname” is the name of the property
and the parmgneter “value” is the new value of the property. For derived properties.

the new value is stored as the "static” value of the property.

GetValue(dbstriuct.object propertyname,value)
DATABASE dbstruct:
OBRJECT object,
char “propertyname:
union value_hieader *value;
This function retrieves the value of a property. The parameter "object™ is the name of

s

the obyeet or object class, the parameter "propertyname” is the name of the property

and the parameter "value™ s the new value of the property.

114

SetStatic(dbstructobject propertynan o flag)
DATABASE dbstruct;
OBJECT ohject:
“char *propertyname;
it flag:

This function is used with derived properties. This function sets the "static” status of
1l X

a derived property. 1f the value of the parameter "flag”is 1 then the derived property

i« <ct 1o "static”, otherwise it is sel to "non static”

IsitStatic(dbstruct object propertyname)
IPATARASE dbstruet:~
OBJECT objeet:
char * propertynaane;
This fuuction 1s used with derived properties. This function returns 1if the derived

4

property is static: otherwise it returns 0.

CetTypeldbstrurt.object propertyname)
DATARASE dbstruet:

ORI T object:

char “propertyuame;

This function returns the type of a property. The parameter "object™ is the name of

the object or object ctuss of the property. the parameter "propertyname "~ the name
. ’ .)]
of the property. The type name returned is one of the following constants: INTEGER

REALLTENT. ORIECT and SET for primary properties, and DER_INTEGER.

«

DU \.l,. DEN_TENT. DER_OBIECT and DER_SET for dernived properties.

OpJFCT (l(‘(()l)_j(‘(‘l(lass PROPE I’ TY {dbstruct, ochct prop(‘rt\mmo)
DATABASE dhstrucet,

OBJECT object:

char “propertyname:

This function returns the name of the object class that is specified for the properties of-

type SET and ORJLE I The parameter "object™ is the name of thé object and the

f .
parameter "prop(‘rt_\'n:nn(‘" is the name of the property of type SET or OBILCT.

v 120

SetOhjectClass _PROPERTY (dbstruct .object,property name. objecteliss)
DATABASE dbstrucr: :

OBIECT object;

char *propertyname:

OBJECT objectclass;

This function stores the name of the object class for the properties of type SET and
ORJECT . The parameter "object”™ is the name of the object and the parameter

"sropertyname” is the name of the property and the parameter "objectclass” 1s the
I \ , \

name of the object cluss.

VisitObjects{dbstruct. objectelass func)
: DATABASE: dbstruet;
OBJIECT objecteluss:

int (“func) ().

The parameter "objectelass™ 1s the name of the object class and the parameter "func”
i« a pointer to a function returning an integer (the actugl parameter will be the name
of 2 finction returning an integer). VisitObjects visits the objects of an object cliss
and executes the function pointed to by "fun;‘". VisitObjects passes the name of the
object as parameter to this function. If the function pointed to by "func” returns -}

for wn objeet then VisitObyects quits visiting the rest of the objectin the object cliuss

\ it ‘hjectClasses(dbstruct func)
DATABASE dbstruet:
it (“func)():

The parameter "funce™ is & pointer to a function returning an integer
VisitObject Classes visits each objeet class in the database and calls the function
pointed to by “func” with the hame of the object class :;s parameter. If this function
returns -1 for any object class then VisitObjectClasses quits visiting the rest of the
. 'Y

object classes in the database. (

The following fln;cl._i()n.\ are specific to a property of type SET. The valdt of
property of type SET is a set of objects. In the following functions. the p:tr:tmvl(‘kr

"owner” is the name of the owner of the set, the parameter "taz™ 1s the tug of the <ot

(]

(i.e the name of the property of type SET). the parameter "member™ i the name ol a
member of the et and the parameter "fune™ is o pomter to a funetion returning an

mteger

-

AddMember(dbeatruct ow ner.tag member)
DATABASE dbstruet;

OBJECT owner,

char "tag:

OBJECT member;

This function adds a member to a set,

DeleteMember(dbstruct.owner. tag member)
DATABASE dbstruet:

ORIJLCT owner;

char "tag: -

OPJECT member,

This function deletes w member from a set.

ORIECT Get SETDATA¢dbstruct.owner.tag.member)
DATADRASE dbstruct;

ORILCT owner:

char "tar

ORJECT member,

This funetion returns the value of SETDATA e the relationship information

between the owner aud the member of . set

OPRJECT sersETDATA(dbstruct.owner tag.member.value)
DATABASE dbstruet: :

ODRIECT owner,

char "ty

OBJECT member:

OBJECT viadue; .

It <tores the valne of SE'TDATA e the relationship information bhet ween the owner

and the member of aset. The parameter "value™ s the value of SETDA T,

A\t Members dbstractowner tag funed
DA TARASE dbstruet,

ORI T owner:

char "tag:

it {ane) ()

vt Members visits each member of the set and calls the function pomted to by "func”
with the owner, member and tag as parameters. If this function returns -1 for a

member then VisttMembers quits visiting the rest of the members,

VicitOwpers{dbstruet member e fune)

DATARASE dbatruet,

OPIECT member,

char "tac. .

mmt (Cfene) O
If the vadue of the parameter "tag™ s the strmg "_ALL™ then VisitOwners visits all
owners of the member ;n.ui cadls the function pointed to by "func™ with the owner,
member and the tag as parameters. Otherwise it visits each of the owner object with
which the lnwm'{u}i\ in CUSINDEHE A R AT >T§Sllll""(t}|r<;llul1 the tae) and calls the
function pointed to by "fune™ with the owner, 'm(‘mlwr and the tag as parameter< If

this function returns =1 for an owner object then VisitOwners quits visiting the rest of

the < wners

TraverseComplexOhjectfdbstruetobject func)
DATABASLE dbstruet:

ORJECT objecet,

it (fanc) () ‘ |

The parameter "object™ is the nume of the root object of a complex object. Tt visits
systematically all the object< of the complex <)l)jcct and calls the function pointed to
by "fune” wil.h the object name as parameter. If this function returns -1 for an object
then TraverseComplexObject does not visit the members of the rcl:tti‘on\hip
properties of thut object. Foreach object it then calls a nser-written function
"rovide_Jlelationship_froperties” to get those relationship properties of the object
whieh participate in the traversal. A sample header declaration of this funstion is

civen below,

U

l'r()\i(lt'_].'(‘lnlinn?«hip__]’rulwrlim((”)stru(‘i,nl)j(‘(‘!,li*(iw
DATABASE dbsteruet;

ORJECT objeet: e

struet name_Jist _header Yhst,

The declarations of "name_Jist_header™ is given in Chapter 5. 1f the user wants all the

relationship properties of the object to participate in the traversal then he can use the
fanction “retrieve_dl_rel_properties” which is provided by the system. The

1

varameters to this function are the same as Provide_Relationship_Properties.
I I

3. Parameters to the Deriving and Constraint functions

We have mentioned in Chapter 5 that an actions formed into a C function and
i ‘ . .
the funetion is given a umqgue name. We summarize here the names of the formal

parameters to these functions. In the following declarations this unigue name of

function is refered to by the name "umquename”
.

3.1. The Deriving Functions

uniquename{dbstructobject property . derivedvyalue) / .

DATARASE dbstruee "

Pt T obyeet,

char “property,

union value_header *derivedvalue:

The parameter "objeet™ 15 the name of the object containing the derived property,

the parameter “property ™ is the name of the derived property and the parameter
"derivedvalue” is for returning thé derived value of the property. This function <hould

retnrn -1 {usine the “return” statement) if the value cannot be derived. tondicate to

CeetVialue that the value 1s NULT.
3.2. The Constraint Functions

3.2.1. IKNULL Y

uniquenameldbstruetobject property defaultvalue defanltser)
DATABASE dbstruct; \
oOpIraT ()I»Jt'('(, '

char "property;

wntop value_header "defaultvalue;

int “delaultset;

The paraneter "objeet™ s the name of’thv object contawining the property, the
parameter "property ™ is the name of the property. the parameter "defaultvalue™ s for
returning the defanlt value. This function should assign YES to the parameter
"Jefaultset™ to indicate if a default value has been provided and should assien NO
otherwise The nterpretation of the NULL value is returned using the "return”.

statement

3.2.2. WHENMODIFIER

antquename{dbstruct.object property value)
AT ARASE dbstruct; N
OBJECT object: \
char “property;

unton value_header “value:

Fhe parameter "abyect " is the name of the object, the parameter Tpropersy ™ i b

J
7

" "o :\)
name of the property and the parameter "value™ 1s the new value for the property.

v

3.2.3. WHENDELETED

aniquename(dbstruct.object property)
DATABASE dbstruct:

ORJECT object:

char *property:

The parameter "object”™ is the name of the object and the parameter "property™ is

the name of the property

3.2.4. WHEN_PROPERTY_ADDED

nmgquename(dbstruet ohjeet property type)
DATABASE dbstruen:

ORIECT objyeer:

char “property;

it ty pe,

[" . " - . . ’
"Ihe parameter "object™ is the name of the object or object class to which the
property s added. the parameter "property " is the name of the property and the

Loy
N \
paratmeter “type” s the ty pe of the property,

3.2.5. WHEN_OBJECT_DELETED

mnquename(dbatruet object)

DAT VBASTE dbstrucr:

ORJECT objeet
The parameter "objeet™ 1< the name of the object w hirlxdvlvlml

3.2.6. WHEN_OBJECT_ADDED

nniquenameldbstruet.object obyectelass)
DATABASE dbarraer:

OBRJECT ohject:

OPIECT obpectelass,

The parameter "object™is the name of thie object and the parameter "objectelas”
i~ the name of the object elass to which the object is added " If the object s a new

object then the value of the purameter "object™ s 0

3.2.7. WHEN_OBJECT_CLASS_DELETED

uniquename(dbstruet.objectelass)
DATABASE dbstruct:
OBJECT objectelass:

The parameter "objectelass™ is the name of the object class which s deleted.

3.2.8. WHEN_OBIJECT_CLASS_CREATED

nntgquenamef{dbstruct)
DATABASE dbstruet:

3.2.9. WHEN_DATABASE.DESTROYED

~

uniquenamg(dbstruct)
DATABASE dbstruct:

Appendix A3

v

. - Sample Constraint Functions
A
In Ihl\ appendix we pronde the C functions checl\transmtort\ pe() and
"checklocation()” that are used in the WHENMODIFIED constraint functions in
4
- Chapter 6. "checklocation()” is used for the property "location” of the object classes
"cut_cel]” and "exgern_cell”, and "checktransistortype()” is used for the property

“transistortype” of the object class "trahsistor”. With the comments provided in the

body of the finetions, they should be fairly soﬁ-oxplun:;tor)'.

. - checktransistortype(transistor_type)
char “trunsistor_type;

/¥ If the transistor type 1s NTYPE or PTYPE return YES
else retnrn NO», 7/ oL

if (stremp(transistor_type.,"NTYPE™) = = 0 [
stremp{transistor_tyvpe,"PTYPE") == 0)
retarng Y else return((NO:

} - &
\ RU

< . . |

checkloe: \t ion{owner.object, proport\ newvy d]ll(’)

OBIECT owner, ol)Jocl

char “property: ' " » .

ORIECT newvalue:

4 ' : N R
unton -value_header oldvalue; o :
union value_header oldNvalue:
union value_header eldYvalue:
unton-vilue_hecader newXvalue;
union value_header newYvalue;
unton value_header ownervalue;
int objectelass; '
float length, width:

&

‘ — ,
[Let us assume that there 1s a general restriction that the new
coordinates should be within 2 units of the
. old coordinates 7/

[/ Get the'old coordinates */ SR ‘ .
3 . . B t

GetValue(objeet.property. &oldvalue);

«

GetValue(oldvalue.object _value "Neoerdinate’ & oldXvalue);
GetValue(oldvalue.object _value."Yecordinatd”. & oldYvalue);
GetValue(newvalue,"Xcoordinate™ & new Xvalue):

GetValue(newvalue,"Ycoordinate™ & new Yvaluey;

/™ cheek for general restriction */

if(fabs{oldXvalue real_value - newXvalue.real_value) > 2 1
(oldYvalue.real_value - newYvalue.real_value) > 2)

return(NO);
/* Now check for specific restrictions */
/= Get the dimensions of the surrounding cell */

GetValue(lowner,"Boundingliox™ & ownervalue):
GetValue(ownervalueant _value"length™ . &length); ‘
GetValuefownervalueant _value "width™ &width):

/™ Assum'e that the coordinates are with respdct to the
surrounding.cell. For both cut and extern, their |
location can not be outside the surrounding cell */
| S : . .

iF{ NewXvaluereal_value < 0.0 | New Xvalue real_value > Tength)

return{ NO): .
if (NewYvalue.real_value < 0.0 | NovaaIuc.rc‘al»_;\'alll(‘ > width)

return{NO): o

objecteliss = GetObjectClass{object);

switch (objectelass) { ..
. .
/™ for cut.only restriction is that 1ts location should be
instde the surrounding cell. */ ’
case(cut_cell) o return(YES): break:
S ’ .
/* Tor extern. its location should be on the sides of
the surrounding cell 7/ ‘
case{extern_cell}
/7 Return YES if it is on anyone of the sides else return NO */
f (NewXvalue.real_value == 0.0
New Yvalue real_value == 0.0 |
NewXNvalue.real_value == width |
’ NewYvaluereal_valne == length) return(YES
else returu(NOY: break:
} | \

128

