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ABSTRACT

This thesis is concerned with the problem of
minimal tests to detect stuck-at-0 and stuck-at-1 faults
in combinational networks. A procedure that generates a
minimal single fault test set for any irredundant network
is given. Fault masking is studied and a method is provided
to find multiple faults that are not detected by a test set
for single faults. Sufficient conditions for multiple
fault detection are derived and procedures to obtain both
a minimal and a nearly minimal multiple fault test set are
described. The problem of faults in redundant networks is
examined and it is shown how to obtain an optimal test set
for multiple fault detection. A lower and an upper bound
on the number of tests required to detect all single faults
in an irredundant network is given. PFinally, the probleﬁ
of fault diagnosis is briefly examined and methods for

obtaining the diagncstic test set are proposed.
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Chapter 1

INTRODUCTION

This thesis deals with the problem of tests for
detecting and locating faults in combinational networks.
To ensure the correct operation of a digital system,
the system must be tested periodically. If a failure
is detected, the faulty component must be identified and
replaced. The widening use of digital circuits together
with the increased complexity of the hardware being built
have emphasized the need for efficient testing procedures.
The necessity to protect the system against failures is
particularly strong with computers operating in a real-time
environment. Although fault masking and different types
of redundancy schemes can be used to combat failures, these
techniques do not eliminate the need of efficient testing

procedures since they are only capable of prolonging the

time interval between testing.



1.1 Assumptions and Definitions

The faults considered herein are faults that
produce a change in the logical behaviour of the circuit.

Such logical faults can be either permanent or intermittent

(i.e. transient). Although intermittent faults are
important, only permanent faults will be dealt with. Very
little has been said with respect to designing tests for
transient faults since such faults may disappear by the
time a test is applied.

Most permanent faults in logical circuits can be
represented [32] by an input or the output of some gate being
stuck-at-1l (denoted s-1) or stuck-at-0 (s-0). A single
fault occurs when only one connection in the network is

s-0 or s-1- A multiple fault consists of two or more single

faults occuring simultaneously. A test for a particular
fault is an input combination such that the output of the
correct network is 1 and the output in the presence of the
fault is 0, or vice versa. A test set is a set of one or
more tests. A test set that detects all faults of a given

type is said to be a complete test set. Since a test set

that is not complete is of little use, "test set" will be
used to denote a "complete test set" unless otherwise stated.
For any combinational network the set of all possible

input combinations represents a trivial example of a test

set which is complete. Because of its size such a test set



is only used for very simple circuits. The length of a

test set is the number of tests in the set. A complete
test set T for a given combinational network is said to be

a minimal test set if there does not exist a test set T'

such that the length of T' is smaller than the length of T.
Since each input or output line of &n n-input gate
may be s-0 or s-1, there are 2(n+l) single faults and
3n+1—l—2(n+l) multiple faults that may change the switching
function realized by a single gate. For any n-input OR, AND,
NOR, NAND or NOT gate, (n+l) input combinations are
sufficient to detect all faults on the inputs and output of
the gate; see Eldred [13] and Schertz [44]. For example,
the test set (abc, abc, abc, abc) detects all s-0 and s-1
faults on input and output lines of the OR gate in fig. 1.1a),
or the NOR gate in fig. 1.1b). Similarly, the test set
(abc, abc, aEc, abc) is a complete test set for the AND gate
in fig. 1.lc) or the NAND gate in fig. 1.1d). Unless
otherwise stated, it is assumed that the networks considered
are represented by diagrams where only AND, OR, NAND, NOR
or NOT gates appear. The reason for this restriction is
that the s-0 or s-1 fault model is not sufficient to
properly describe the faulty properties of the more complex
logical modules. For example, the test set (ab, ab, ab)
detects all s-0 and s-1 faulits on input and output lines of
the Exclusive-OR module in fig. 1l.2a). A practical

realizatior. of such a module is shown in fig. 1.2b). If input
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1 to gate A is open (this corresponds to the fault
"line 1 is s-1"), then the function realised in the presence
of this fault is b+ab, but the above test se£ does not
detect the fault.

A minimal test set for any combinational circuit can

always be selected from the fault table (or matrix) of

the network [25,35]. If n is the number of input variables
and m is the number of possible faults in the network, then
this table has 2" rows and m+l columns. The first column
of the table represents the output of the correct network
under each of the 2" possible input combinations. The
remaining m columns represent the output functions realised
by the network in the presence of the m possible faults.
By using this table, the problem of finding a minimal test
set is equivalent to the problem of selecting a minimal cover
[35]; however, due to the size of the fault table, the above
method is practical only in a limited number of cases.

The derivation of tests is greatly simplified when
it is assumed that only single faults occur. Using this
assumption, a number of methods for test set derivation have
been developed. Considerably less attention has been given
to the problem of multiple faults and to the problem of fault
detection in redundant networks. In redundant networks
certain faults are not detectable. This fact complicates
the derivation of the test set, specifically when multiple

faults are considered.



1.2 Previous Results

Present methods [9,16] for fault detection in
combinational circuits usually generate a single fault
test set that is nearly minimal. Until recently [5,12,29],
the problem of multiple fault detection has not been studied
extensively .

One of the earliest methods to generate tests for
irredundant circuits was described by Poage [35].. This
method derives literal propositions that describe the output
function and also represent the structure of the network.
These propositionsare then employed in generating the test
set. Although producing a minimal test set, this method
is very laborous even for simple networks.

Armstrong [2] has shown that a test that detects
a fault in the circuit must form a sensitized path from the
fault tested to the primary output. This method generates
a nearly minimal test set with a medium amount of
computational effort.

The path sensitizing concept was utilized by several
authors [10,21,38]. A well known method is the calculus of
D-cubes developed by Roth [41,42]. The D-algorithm mechanizes
the process of forming sensitized paths and also guarantees
that a test is generated for every detectable fault. There
is no guarantee, however, that the test set generated will

be a minimal test set.



A minimal test set for a two level network can
be generated by using the prime implicants of the function
realized by the network [28]. Paige [33] has employed prime
implicants to derive tests for irredundant multiple level
networks with certain structures. Bearnson and Carroll [4]
obtained similar results by using Boolean differences. The
big advantage of the above methods is that they require a
smaller amount of computation than the path sensitizing
methods or the analytical method of Poage [35]; however, they
are not applicable to an arbitrary network.

Schertz [44] studied the indistinguishability of
certain faults and has shown how to combine such indistin-
guishable faults into equivalence classes. He also defined
the class of restricted fanout-free networks. For such
networks any test set that detécts all single faults also
detects all multiple faults.

Recently, the first general solution to the problem
of multiple faults was given by Bossen and Hong [5]. ‘This
method (procedure G in [5]) is applicable to irredundant as
well as redundant combinational networks, but it may produce
a test set that is far from being optimal. Procedure NR[5],
which is claimed to generate a nearly minimal test set for
any irredundant network, does not guarantee detection of
all faults in networks with reconvergent fanout. Kohavi and
Kohavi [29] have shown how to generate a nearly minimal

multiple fault test set for networks with irredundant



Equivalent Sum of Products form.

Ramamoorthy [40] has considered the structural
properties of large systems represented by system graphs and
has derived some theoretical criteria for good diagnosibility.

The problem of fault detection in cellular arrays

2

has been studied by Kautz [24] and Friedman and Mennon [16].

1.3 oOutline of Current Results

The main objective of this study is to provide
methods that would generate a minimal, or a nearly minimal
test set for the detection of single as weil as multiple
faults in combinational networks.

Detection of single faults in irredundant networks
is treated in chapter 2. It is shown that in order to
detect all faults in the network it is sufficient to detect
all faul’s on input lines and fanout branches (called
checkpoints). The Equivalent Sum of Products form (denoted
ESP form) of a combinational network is defined and the
effect of faults upon the terms of this form is examined.
Finally, a procedure that generates a minimal single fault
test set is given.

The multiple faults not detected by a single
fault test set consist of a number of faults that prevent
detection of each other. 1In chapter 3, the conditions under
which fault masking occurs are stated and proved. It is

shown how to find multiple faults that are not detected by
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a single fault test set. If such undetected multiple faults
exist, then the multiple fault test set is obtained by
enlarging the single fault test set previously derived.
Some sufficient conditions for multiple fault detection are
given and it is demonstrated how these conditions can be
used to generate a nearly minimal multiple fault test set
with considerable saving of computational effort.

Chapter 4 deals with the problem of fault detection
in redundant networks. These networks are further complicated
by the fact that the detection of all detectable single
faults on checkpoints is not sufficient to detect all single
faults that are detectable. It is shown, however, that a
complete test set can be derived without considering faults
on all connections in the network. A multiple fault that
occurs in a redundant circuit may consist of detectable
single faults, or undetectable single faults, or both.
Multiple faults belonging to these three classes are
analysed, and a procedure that generates a minimal multiple
fault test set for any redundant network is given.

The generation of tests is much easier for networks
where the inversion parity of all reconverging paths is the
same. A simple method that derives a minimal single fault
test set for such networks is described in chapter 5. It is
shown that any single fault test set for a fanout-free
network detects all multiple faults of multiplicity two and

three. An alternative way of generating tests; which may be



11
suitable for large networks, is also described.

In chapter 6 some bounds on the length of a minimal
test set are given. It is shown that at least 2Up and at
most %p tests are required to detect all single faults in
a fanout-free network with p checkpoints, where p > 1.
Similar bounds are also derived for networks with fanout.

The problem of fault location is examined briefly

in chapter 7, and two methods for obtaining the diagnostic

test set are suggested.
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Chapter 2

SINGLE FAULT DETECTION IN IRREDUNDANT NETWORKS

A network is usually considered to be redundant
whenever parts of the network can be removed without changing

the output function. The following definition is a direct

conseguence.

Definition 2.1: A combinational network is irredundant

if it is possible to detect all permanent s-0 and s-1 faults
within the network.

To consider the set of all possible single faults
that can occur in a network would yield an incredibly complex
procedure for finding tests. It is therefore important to

reduce this set of faults to a subset occuring at specific

places in the network.

Definition 2.2: The checkpoints of a combinational

network are [5]

(a) all primary inputs that do not fanout and

(b) all fanout branches.

To illustrate, consider the network in fig.2.1. The

primary inputs are enumerated as checkpoints 1 to 4 while the

fanout branches are 5 thru 8.
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Figure 2.1 Network N2.1
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It will be now shown, that in order to detect all
single faults in an irredundant network, it is sufficient

to detect only the single faults on the checkpoints.

Lemma 2.1: [29] All single faults in an irredundant
combinational network are detected if and only if all singie

faults on the checkpoints are detected.

Proof: Whatever method is used for the generation of

the test set, in the actual circuit there must always be a
sensitized path (or paths) [2] from the fault tested to the
primary output of the network. Each connection belonging to
this path must carry a specific value (0 or 1) when the fault
is absent and the opposite value when the fault is present.
Any fanout-free network has a tree structure and there is
always a unique path from any input terminal to the primary
output of the network. If s-0 and s-1 faults on all the input
terminals are detected, then the sensitized paths include all
wires in the fanout-free network and consequently all single
faults within the network are detected as well.

A network containing fanout can be decomposed into
a set of subnetworks each being fanout-free and having all
inputs that are checkpoints. Therefore the result for fanout-
free networks holds, provided that a multiple fault produced by
a single fault in a subnetwork feeding a second net is detected
by the tests for single faults on the second network. Without

loss of generality, consider the case of two subnetworks where
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the output of the first subnetwork fans out to provide two
inputs to the second subnetwork. Suppose that none of the
tests that detect a single fault on these two inputs will
detect the multiple fault on both inputs. This can only
occur if there does not exist an input condition on the
remaining inputs such that the paths from neither input are
allowed to propogate to the output whenever both inputs are
identical. If this is the case then the output is not a
function of the two inputs since the inputs are always the
same in the fault-free network. This is a contradiction which

completes the proof of the lemma.

This result simplifies the problem considerably.
In order to find a minimal single fault test set for the

given network, a minimal test set detecting only those faults

on the checkpoints must be found.

2.1 The Equivalent Sum of Products Form

The test set for a given network depends on the
structure of the network as well as the Boolean function
realized by the network. Therefore both the structure and
the output function must be considered in the process of test
generation. A relatively simple expression describing the
output function of the network while preserving the important
structural properties is the Equivalent Sum of Products form

of the network. Because this form (or similar equivalents) has
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been used already by some authors [2, 35, 5] it is introduced

here only briefly by definition and simple example.

Definition 2.3: The Equivalent Sum of Products form

(denoted ESP(f)) of a network is obtained from the Boolean
expression describing the network by:

(a) for each checkpoint in the network associate a
subscript in the corresponding position in the expression

(b) expand the expression collecting subscripts, from
fanout points, onto the input literals such that the subscripts
attached to input variables in the resulting sum of products

expression denote the propagabing path of that particular input

variable

(c) do not discard redundant terms or literals.

For the network in fig. 2.1 the ESP(f) form is obtained by

expanding the expression
£ = (ajby)g (e3dy)q + (agby)g (c3d,)y

ESP(f) = + a

a15by5C37 * 315Pp59s7 T 216%38%8 + P2e®38%4s
With regard to notation, it should be pointed out

that if there are 10 or less checkpoints then the notation

used above is unambiguous since the digits 0 thru 9 can be

used; however if there are more than 10 it will be necessary

to insert commas between the numbers and the following

notation will be used:
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ESP(f) = al,5b2,5c3,7+a1,5b2,5d4,7+a1,6c3,8d4,8+b2,6c3,8d4,8

The terms of the ESP(f) form represent the set of
all conditions for which the output of the network is 1.
Similarly, the set of all conditions for which the output
of the network & is given by the complemented form ESP().
The ESP(E) form is obtained by first complementing the output

expression and subsequent expansion. For the netwerk in

fig. 2.1.

E o= (a;b,)g (c3d,) 5 + (agby)g (c3d))g
ESP(E) = a;,53;¢Pp6 + 215%3g * 315948 * 216P26%25 * P2sas T
+ byeCag T 81gPyeC37947 * C38%37%47 * C37947%s8

The notation ESP will be used for ESP(f) or ESP (£) where

no differentiation is necessary or when implying both.

Definition 2.4: The ESP form is irredundant if it .

contains no redundant terms or literals.

The ESP form is obtained by expanding the Boolean
expression describing the output function of the network.
This expression is given by the type and connections to the
gates in the network. As a result the ESP form is a function
of the network structure. When dealing with the two ESP

forms the following notation will be used:

ESP(f) = ZIX;. and ESP(f) = IY
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In an irredundant network the occurrence of any
single fault affects at least one Xi and at least one Y.
term. For the above example, the s-1 fault on checkpoint

2 (denoted by 2-1) would cause the term X2 = a15b25d47 to
become independent of variable b and X2 would grow into

X} = a;5d,,; 2-1 would also cause the growth of X and Y

1 77
and the disappearance of terms X4, Y5 and YG' The effect of
a particular fault upon a given xi or Yj term will be
established formally by using the definition of a normal
network. A normal network i§ 2 network having no
complemented input variables. Clearly, any given network
can be transformed into a normal network by adding inverters
to the primary input lines where necessary. Because of the
inability to distinguish between a fault at the input of an
inverter and the complemented fault at the output, any test
set detecting all faults in the original network also detects
all faults in the associated normal network and vice versa.
In order to simplify the discussion, only normal networks

will be dealt with.

Let apq...s W be a term of the ESP form of a given
normal network. The fault p-1 will cause the term to become
independent of variable a, since the value on checkpoint p
is 1 irregardless of the value of the applied variable. By
the same reasoning, the fault P-0 would cause the
disappearnace of the term a W. The subscripts

Pd...S
asscciated with each literal denote the path through which
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the effect of a particular variable propogates to the output.
If a fault occurs along this path, then such a fault will
cause either the disappearance or growth of the given term,
depending on the coincidence, or the discrepancy, between
the value on that line in a fault-free circuit and the wvalue
imposed by the fault. Consequently, a fault k-1 (or k-0),
where X € p,g,...,s, will cause the term apq.'.sw to become
independent of variable a if the value at k in the fault-free
circuit under input aW is 1 (0). The value at k in the
fault-free circuit can be determined from the inversion
parity along the path p,q,...,k. For the term a

Pgd...S
the value at k under input aW is 1 (0), if the inversion

14

parity along the path p,q,...,k is even (odd). The dual
situation applies if the literal is primed for the term
qu‘..sw grows due to fault p-0 and it disappears due to
fault p-1l. To summarize, by using the definition of a
normal network the effect of a fault upon a particular
term can be determined from the literal (primed or unprimed)
and the inversion parity along the particular path.

The effect of faults on Xi and Yj terms suggests,
that the complete test set could be derived by checking for
the presence and growth of the Xi and Y. terms. In

definitions 5 and 6 following, the notation t € P.Q means

that the test t is contained in the intersection P.Q.
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Definition 2.5: A test t checks for the presence of the

term X # 0, if t e X . I X..
o . i
iFa

Definition 2.6: A test t checks for growth of the

term Xi = aW (or Yj = aW) due to literal a, if t ¢ w.f

(or t € W.f), where £ and f is the output function and its

complement, respectively.

There is a difference in how a test which checks for
presence and a test which checks for growth of some Xi or
Yj can be used. It is possible to derive a test set for a
special class of networks by generating tests which check
for the presence and growth of X (or Yj) terms only, and
consequently use only one of the two ESP forms. It is

difficult, however, to do so for the following cases:

1. The network has reconvergent fanout. The
previous discussion suggests, that a test checking for growth
of the term aW due to literal a should detect all faults
‘which make the term indpendent of variable a, and that a
test checking for the presence of some term should detect
all faults which cause the disappearance of the same term.
This is true in the first case (the only exception is
defined in lemma 3), but it is not true in the second one
when the network contains reconvergent fanout. Reconvergent
fanout within the network may cause what is called reconver-

gent fanout cancellation [2]. This happens when the inversion
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parity along all the reconverging paths is not the same.
The inversion parity of a reconverging path is defined to
be the number of inversions, modulo 2, along the path
between the specified fanout node and the node of recon-
vergence. The network in fig. 5.2 illustrates the
difficulties caused by reconvergent fanout. For this
network the ESP(f) form is

ESP(£) = a;5Pp5%3 * ajgdy * b,edy
Faults 1-0 and 2-0 cause disappearnace of a15b2503. Both
the tests ty = abcd and t, = abed check for the presence of
Xl = a15b25c3; however, only t, detects s-0 faults on
checkpoints 1 and 2. Test t, does not detect the above
mentioned faults because it sensitizes two paths with
different jnversion parity. This corresponds to the fact,
that although fault 1-0 causes the disappearance of Xy.
it also causes growth of X, = 516d4 into X} = - Since
ty € Xé, tl does not detect the fault.
2. The ESP form of the network is redundant. If

the ESP form is redundant, it is impossible to check for
the presence of some X, such that X - I ii = ¢.. This fact

iFa
complicates the search for a minimal test set.

3. Multiple fault analysis. The problem of
deriving a minimal multiple fault test set 1is difficult
when oanly one of the two ESP forms is used. It will be

shown in chapter 3, that by using both the ESP (£)



Figure 2.2 Network N2.2
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and ESP(F) forms the multiple fault analysis is greatly

simplified.

For the reasons stated above, the approach based
on checking for growth of both Xi and Yj terms must be
used if fault analysis for the general class of networks
is desired. The following lemma defines the faults
detected by a test checking for growth of some nonzero

term, where term means either a Xi or Y. term.

Lemma 2.2: Let N be a given normal network with
ESP(f) = I X; and ESP (£) = 2 Y. If a test t checks for
the growth of a nonzero term apq._.SW due to literal a,
then t detects the following faults on all checkpoints
associated with literal a:

-s-1 fault cn checkpoint p,

—s-1 fault on checkpoint k € p,g,...,s if the
inversion parity along the path P:ds.--,k is even,

-g-0 fault on checkpoint k € p,g9,...,S if the
inversion parity along the path Psgs.-.,k is 0dd.

If a is replaced by a then s-1 faults become

s-0 faults and vice versa.

Proof: If t checks for growth of X, = apq SW due to
1iteral a, then t ¢ W.E = Waf and the output of the
network under t is 0, unless there is an s-1 fault on

checkpoint p (input terminal). It follows from the way
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the ESP form is obtained that the output would be also
changed if some line k along the path p,g,...,s is s-1
(no inverters or even number of inverters between p and

k) or s-0 (odd inversion parity).

For the network in fig. 2.1 the test abecd checks

for the growth of the term Y7 = a16b26c37d47 due to

literal 4, since abcd € a1gPpC7- £ = abed:
because the network in fig. 2.1 is a normal network,
test abcd detects fault 4-1 and fault 7-1 (the inversion
parity between checkpoints 4 and 7 is even).

It should be noted that for the purpose of the
Lemma 2 and Lemma 3 NOR and NAND gates are considered as
OR and AND gates, respectively, followed by an inverter.
Lemma 2 does not define faults detected by a test checking
for growth of zero term. Although terms of the form
aquW, where p # g, do not pose a problem, care must be

taken when terms of the form apqaprw are dealt with.

Lemma 2.3: If test t checks for the growth of a

term a..

. a W due to literal a, then t detects
ij.e..kx"pg...r

faults on the following checkpoints:

(a) on any checkpoint x such that x € i,j,...,k

and X £ P,gsees,L
(b) on any checkpoint x such that x ¢ i,j,...,k
and X € p,q9,...,r and such that the inversion parity along

the path i,j,...,x and p,q9,...,X 1is not the same.

-4
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The type of faults detected is determined as described in

Lemma 2.

Proof: If t checks for growth of Xa = aij...kapq...rw

due to literal a, then t € aW.f and will detect all faults
which:

1. Cause Xa to become independent of variable a,
and

2. Do not make the term aW disappear

This corresponds directly to conditions (a) and

(b) stated above.

For example, for the network in fig. 2.2,

ESP(E) = 3).3,+b, 3, + S8, + a10yeC3 * 315216026 * 21626725
The test abcd checks for growth of Y. = 2158 g0y due to
literal a. This literal is associated with checkpoints 1

and 6. The input combination abcd detects fault 6-1, but
does not detect fault 1-1, because this fault causes term Y5

to disappear.

Lemma 2.4: If a test t checks for growth of a term
aabs...eYW due to literals a, b,... and e, then t detects
faults on those checkpoints which are common to literals a,

b,... and e.

Proof: If t checks for growth of Xi = ab...eW due to
literals a, b,... and e, then t € W.f and it will detect

those faults which make the term Xi independent of all the
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variables a, b,...,e. Such faults occur on checkpoints

common to all the literals.

For example, for the network in fig. 2.1 test abcd
checks for growth of Y7 = al6b25c37d47 due to literals a
and b. It detects fault 6-1, because this fault would cause
growth of Y, into Y) = c;.d,., and abcd € Y).f. Fault 1-1
would cause growth of Y, into Y = b,C3,d,,. Test abcd
does not detect this fault, since abcd is not contained in
the intersection bcd.f = abcd.

In this section we have established the effect of
faults upon the terms of the two ESP forms and defined the
faults detected by a test that checks for growth of somé term.
A method that derives a complete test set will now be

described.

2.2 The Single Fault Procedure

The following procedure generates a minimal single

fault test set for an irredundant combinational network.

Procedure 2.1:

1. Evaluate the ESP(f) = I X, and ESP(f) = ¢ Yj

forms of the given network.

2. For each Xi and Yj generate all terms Xi and Y5

which are one variable less. For each Xi compute Zk = Xi.f.

For each Y! compute W = V! . f,
3 °omP m o %3
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3. If there exists some Xi or Yj term having more
than one %, or W term that is zero, then repeat step 2 with
those Xi or Y5 terms having common checkpoints, by removing
the variables with common checkpoints according to Lemma 4.

4. Choose a minimal cover MCl covering all the Zk
and Wh terms. MCl can be obtained by using the method of
pairwise intersections [28].

5. Construct the checkpoint covering. table where
the column headings aré the checkpoints of the network and
the row headings are the members of {Mcl}. Entry (i,j) is
1 (0) if test i detects s-1 (s-0) fault on checkpoint j.

For the Z, and W terms obtained in step 2 the entries are
filled according to Lemma 2 and 3, for those obtained in
step 3 according to Lemma 4.

6. Find a minimal cover MC, such that all check-

points are checked for s-0 and s-1 faults. MC, is a minimal

2
single fault test set Ts’

Validity of the Procedure: In order to establish the

validity of the procedure it is to be proved that the
procedure generates a test for every single fault in any
irredundant network, and show that the test set generated
is a minimal test set.

Any fault in an irredundant network causes growth of
some Xi or Yj term due to one or more literals. Procedure

2.1 first generates cne variable less terms for each X. and
S i



28
Yj term. The corresponding Zk and Wﬁ terms represent tests
to detect all faults which cause some Xi or Yj grow due to
one variable, and most (if not all) of the faults which
cause growth due to more than one literal. Step 3
guarantees that a test is also generated for any fault of
the latter type for which a test may not have been generated
in Step 2.

Minimality of'Ts follows from the fact that MCl is
a minimal covering of all Wk and Zm terms. Because Ts is
selected from MCl as a minimal test set detecting all s-0
and s-1 faults on the checkpoints it is also (Lemma 2.15 a

minimal test set for the entire network.

The Equivalent Normal Form as used by Armstrong [2]
is similar to the ESP form employed by procedure 2.1;
however, there are some significant differences between the
two methods. In [2], tests are generated sequentially and
a scoring function is used to select the next test. The
resulting test set is nearly minimal. Armstrong has
conjectured, but not proved, that a complete test set will
be generated. On the other hand, procedure 2.1 derives a

minimal test set, and step 3 of this procedure guarantees

the completeness of the test set.
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Example 2.1l: Consider the circuit in fig. 2.1 whose

Karnaugh map is given in Table 2.1. Table 2.2 is obtained
by performing steps 1 and 2 of procedure 2.1. Minimal
covering MC,, of all the Z, and W ferms can be obtained
by inspection: MC; = (abcd, abcd, abcd, abcd, abcd, abcd,
abcd, abcd, abcd), and step 5 yields Table 2.3. From this
table, MC, = (abcd, abcd, abcd, abecd) = T_ is a minimal

single fault test set.

Procedure 2.1 derives a minimal test set that
detects all single faults. This test set may not detect
all multiple faults. The problem of multiple fault

detection will be examined in the following chapter.



TABLE 2.1

Karnaugh Map for Network N2.1

ab
cd

00 o01 11 1o

00 0 0 1 0

01 0 0 1 0

11 1 1 0 1

10 0 0 1 0

TABLE 2.3

Checkpoint Covering Table for Network N2.1

1 2 3 4 5 6 7
abcd 0 0 0 0 - 0 0
abcd - 1 1 - 1 - -
abed - 1 - 1 1 - -
abcd 1 - 1 - 1 - -
abed 1 - - 1 1 - -
abcd 0 0 - 1 0 - 1
abcd 0 0 1 - 0 - 1
abed - 1 0 0 - 1 -
abed 1 - 0 0 - 1 -




TABLE 2.2
Testing Table for Network N2.1
T Al
Xi Xi pA -Xi.f Cove;ed by
[
a15b25c37 a? a?fd X
ac abc
bec abc X
a15b25d47 a? a?fd X
ad abd
bd abd
216%3g%4g | 3¢ | acd
ad acd X
cd abcd X
byeC38dgg | P | bed
bd becd
cd abcd X

(Continued on p. 32)
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TABLE 2.2 (Continued)

Y. Y Ww=y!.£f Covered b
3 j | w3 el
s
a15a16b26 ab abEd _
ab abc ,abd X
215%38 a acd
(o] abc
21598 a acd
a abd X
a16b26b25 aE a?c,abd X
ab abcd X
b25d48 E bcé X
d abd X
b25c38 ? bcé X
c abc
a16b26c37d47 abc abid X
abd abcd
acd abcd X
bed| abcd
c38c37d47 Sd acé,bcd X
cd abcd
c37d47d48 cé acdibcd X
cd abcd X

32



33

Chapter 3

MULTIPLE FAULT DETECTION IN IRREDUNDANT NETWORKS

The problem of how to detect all faults, single as
well as multiple, has received much less attention than the
single fault problem. One reason is that the total number
of faults in a combinational network with n lines is 3t-1
[33] and the complexity of the calculations necessary to
consider all of them is tremendous. It will be shown,
however, that only a very small fraction of this total
number must be considered. Some faults (such as s-0 faults
on the input and output lines of an AND gate) are
indistinguishable. They can be combined into equivalence
classes [43] and any test which detects a fault belonging to
a class detects all faults in that class. From now on any
equivalence class of single faults will be considered as a
single fault. Even more important is the fact, as in the
case of single faults, that only faults on the checkpoints
must be considered. It will be prowd that any multiple
fault within a given network is equivalent to some multiple
fault on the checkpoints of the same network. Two faults,
F, and F,,are equivalent if and only if the two Karnaugh

maps representing the output function of the network in the
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presence of F, and F2, respectively, are the same. The

multiplicity of a multiple fault is defined to be the number

of single faults which occur together. For example, the
multiplicity of a single fault is 1, multiplicity of a

multiple fault consisting of two single faults, is 2, etc.

Lemma 3.1: [5] Any multiple fault in a combinational
network with n checkpoints is equivalent to some rmultiple

fault of multiplicity k among the checkpoints only, where

1< k <n.

Proof: (i) Networks without internal fanout have a tree-
like structure, where the gates represent the nodes and the
primary output is the root of the tree. A s-0 (s-1) fault
on the output line of a gate is equivalent to some s-0 or
s-1 fault(s) on one or more inputs of that gate. Consequently,
it is possible to find an equivalent fault pattern on the
input checkpoints of the network. The multiplicity of this
new pattern cannot be greater than the total number of
checkpoints, which is n. The two fault patterns are equiva-
lent in the sense that their effect upon the network function
is the same and any test detecting the input fault pattern
detects also the original pattern. Hence, if all multiple
faults among the input checkpoints are detected, all
multiple faults within the network are detected as well.

(ii) Networks with internal fanout can be

decomposed into fanout-free segments. The proof follows from
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(i) above, since all the fanout branches are checkpoints.

Theorem 3.l: In order to detect all multiple faults

in an irredundant combinational network it is necessary and

sufficient to detect all multiple faults on its checkpoints.

Proof: The proof follows from the previous lemma.

3.1 Fault Masking and Minimal Test Sets for Multiple Faults

There is no need to consider all multiple faults on
the checkpoints of the network. A test set for single faults
of a given network does not detect those multiple faults that
consist of faults which prevent detection of each other. This

effect is called fault masking (see [17], [18]). Before going

into more detail, some notation will be introduced:’

pP-1 denotes an s-1 fault on checkpoint p,

p—-0 denotes an s-0 fault on checkpoint p,

fk denotes a single fault,

Fk denotes a multiple fault,

(fl'fZ) denotes multiple fault consisting of single

faults £, and £.,.

1 2
. 1] 1 . 3
fl’xi > Xi’ Yj > Yj denotes a fault fl causing growth
of X. to X! and Y. to Y!,
i i 3 3
(fl,fz):Yj + 0 denotes the multiple fault (fl’fz)’

causing the term Yj to disappear.
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Definition 3.1l: A single or multiple fault Fy is a

subfault of a multiple fault F2 = (fl’fz""' fn) if F1

is a subset of F2’

In a fanout-free network, the multiple fault
F = (fl’fz""' fn) causes the disappearance of the term

Xi' if at least one fault fk’ k=1,2,..., n, makes Xi

disappear. Conversely, F makes Xi grow if no fault

fk' kel,2,..., n, causes Xi to disappear and at least one

fault fm’ me l,2,..., n, makes Xi independent of some of
its variables. In the case of networks with internal fanout,
the effect of a multiple fault upon some X, or Y, term must
be established more carefully. For example, for the network

in fig.2.l1the term X b

1 = 215P55C34 disappears due to fault

(1-0,2-0), but it grows into Xi = 637 due to fault (1-0,2-0,

5-1). This term would also disappear due to fault (5-1,3-1)
or fault (5-1,7-1).

Definition 3.2: A fault f2 is said to mask a fault fl

(denoted f2/fl) under a test set T, if any test t in T that
detects fl when it occurs alone, does not detect the occurrance
of fl and f2 together, i.e., (fl'fz)'

Let fault fl cause the growth of Xi into Xi, and let
test t be contained in the intersection Xi.f, where £ is the
complement of the output function f. In other words t detects
fl, since £(t) = 0 in the fault-free network and £(t) =1

in the presence of fl‘ If some fault f2 masks fault £,, then
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the output of the network under test t in the presence of fl
and f2 must be the same as the output of the fault-free
network, i.e. £(t) = 0 in the presence of (fl,fz). From
this fact, some important relations between faults capable
of masking and the Xi and Yj terms can be deduced. These

relations are stated in Theorem 3.2.

Theorem 3.2:Let fault fl be detected by test ty (or test

ty) which checks for growth of Xl,Xz,...,Xp (or Yl'Yz"”'Yr)
due to fl' If fault f2 masks fault fl under test tx (ox ty),

then:

(a) fl detected by tx 1) f2:X1 > 0,.0ey XP -+ 0, and

2) there exists a term Yu such that

3 ) 1
Ya grows into Ya and t, € Ya

(b) fl detected by ty 1) f2:Yl - 0, Y, > 0,..0, Yr+0, and

2) there exists a term XB such that

''and t_ e X!.

X8 grows into X8 y 8

Proof: Only case (a) will be proved, since the proof

for (b) follows by duality.

1. Assume fl causes the growth of Xl only. Hence if fl
] T F s —

occurs X1+X , but tx € Xl.f and f1 is detected, unless Xl—O

due to some other fault. If fl causes growth of Xl,Xz,...,Xp

which are checked for growth due to fault fl by test tx’ then

f2 must cause disappearance of all of them in order to mask fl'

2. If only fl occurs, the output of the network under t,

is 1, and consequently fl:Yj + 0 for all Yj such that S Yj.
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When (fl’fz) occurs then £,:Xy> 0,...,Xp + 0 and some Y,
must grow to Y& and tx € Y& because the output of the
network under input tX is the same as the output of the
fault-free network. Provided that fl and f2 are the only
faults that occur in the network, then Ya grows due to f2
or (fl'fz)’ If some other faults occur simultaneously with

fl and f,, then ¥, may also grow due to such faults.

A single fault can be masked by both single and
multiple faults. To illustrate, suppose that fault fl is
detected by a test t that checks for growth, due to fl’ of
Xl’XZ""Xp' It is possible that no single fault causes the
disappearance of all terms Xl,Xz,...,X ; hoWever, if some

multiple fault Fz occurs such that F2:X1+ 0,ceey Xp+ 0,

then fl will not be detected when fl and F2 both occur. It
should be pointed out that, when masking is investigated,
the necessary and sufficient conditions for masking to occur
are the important features. Obviously, if some subfault of
F2 masks fault fl as well, then the occurrence of F2 is
sufficient but not necessary for fl to be masked. From now
on, by saying that a multiple fault F2 masks a fault fl’

it is understood that F2 masks fl’ but no subfault of F2

masks fl' Corrollary 3.lrestates the result of theorem 3.2

for this more general case (only one of the two dual versions

is stated).
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Corollary 3.l: Let fault f, be detected by a test t that

1
checks for growth, due to fl’ of Xl'X2’°"'Xp' ;f a
nultiple fault F2 masks fault fl under test t, then

1. FZ:X1+ 0,...4 Xp+ 0, and

2. There exists a term Ya such that Ya grows into

]
Ya and t € Ya'

If a fault F masks n individual faults, say faults
fl,fz,...,fn, then Fa causes the disappearance of all X, or
Yj terms that grow due to these faults. Consequently, Fa
will also mask any fault F that is a subset of {fl,fz,...,fn}.

Multiple faults that are not detected by a single
fault test set will now be considered. Let TS be a single
fault test set for the given network. A multiple fault
F = (fl'fZ""'fn) is not detected by TS if every fault
fk’ k=1,2,...,n is masked, under Ts’ by some subfault of F.
Suppose that fault fk is detected by a test tk such that the
output function f(tk) = 0 in the fault-free network. If
fault fk is masked, then, by theorem 3.2 there exists some
Yj term that grows into Yﬁ and tk € Yﬁ; however, if the
intersection Yi.f contains at least one test ti € Ts’ then
the growth of this term will be detected at the output.
Consequently, when looking for multiple faults that are not
detected by Ts’ it is sufficient to consider only those Xi

or Yj terms that are not checked by TS for growth due to

some fault.
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It is convenient to use an oriented graph for
describing the masking relations ambng a set of faults under
a given test set. The nodes of the graph are the faults
considered and an arc from node A to node B indicates
that fault A masks fault B under the given test set.
Assuming that the single fault test set Ts has been already

derived, the following procedure constructs the masking

graph.

Procedure 3.1l:

1. For any X, or Yj term that is not checked for
growth due to some fault perform step 2.

2. For any single or multiple fault F such that
F: X+ X! and x}.E.r =g (or F:¥,> ¥} and YI.£.T = )
construct the intersection

P = X!.X.f.T_ (or Y:'].Yj.f.Ts)
If P = {ti} # &, consider the set S of all faults detected
by {ti}. Remove from S all faults that cause term Xi
(ox Yé) to disappear. Then use the first condition of
theorem 3.2, or corrollary 3.1, to determine the masking
relations, under {ti}, between any fault £ € S and any
subfault of F. Disregard any masking relations between
two faults on inputs of the same gate.

3. When step 2 has been performed for all X and
Yj terms, construct the masking graph from the masking

relations obtained above.
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The validity of the procedure is established in

Appendix A. An example follows, that demonstrates the use

of this procedure.

Example 3.1l: For the network in fig. 3.1 test set Tsl’

T, = (abcdegh, abcdegh, abcdegh, abcdegh, abcedgh,
abcdegh, abcdegh) = (tl,tz,t.,t4,t5,t6,t7)

detects all single faults (see table 3.1). It is to be
determined whether Tsl detects also all multiple faults.
Table 3.2 lists all the Xi and Yj terms of the two ESP
forms, the terms Xi and Y%, and the corresponding Zk and Wm
teims, where Z, = Xi.f and Wm = Yé.f. The table also shows
how these Zk and Wm terms are covered by test set Tsl' The
term Xl = alb2c3d4e5 is not checked for growth due to faults
1-1, 2-1, 4-1 and 5-1. Xl grows due to the multiple fault
(1-1,2-1,4-1,5-1) into Xi = C3; but the intersection
Xi.f.Tsl contains test t3 and t4 and consequently this
growth will be checked at the output. Next, it is necessary
to check how Xl grows due to all faults that are subsets of
(1-1,2-1,4-1,5-1). Due to fault (1-1,2-1,4-1) Xl grows into

| 1 F = . . .
X1 C3egy where Xl.f.Tsl # and the intersection P 1is

P = Xl.Xl.f.Tsl = ce.(a+b+d).f.Tsl = tl

Test tl detects faults 6-0 and 7-0. Neither fault causes Xl

to disappear. Test tl detects fault 6-0 by checking for the

growth of Yl = a,9¢ and Y2 = ngG (see table 3.2) and both
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TABLE 3.1

Test Set Tsl for Network N3.1

t.=abcdegh - - - - -

1
t2=abcde§E 0 0 0 0 0
t3=£bcdé§h 1 - - - -
t ,~abcdegh - 1 - - -
t5=abEde§h - - 1 - -
t6=ab55egﬁ - ~ - 1 -

t7=ab6dégﬁ - - - -

|.-I




TABLE 3.2

Testing Table for Network N3.1

1 =1V F .
Xi Xi 2, Xi.f Covered by T,y
a b,cyd e abcd abcééﬁ
abce abcdeh
abde abcdeg X
acde abcdeg
bede abcdeg
alb2c3h7 abc absfdh+eh)
abh abcgh X
ach a5c§h X
bech abcgh X
de:9, de (§+§+E)de§ X
dg degh X
eg degh X
gehy g (d+e)gh X
h (a+b+c)gh X
. H W =Y!. by
YJ Yj . YJ £ Covered by sl
5156 a ag (de+h) X
g abcg (de+h) X
b,g¢ b bg (de+h) X
g abcg (de+h) X
5356 c cg (de+h)
g abcg (de+h) X
d, h a (abe+g)dh X
h (abe+g)deh X
egh, f (abc+g)eh_
h (abc+g)deh X

44
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terms disappear due to the multiple fault (1-1,2-1). But,
test tl is the only test that detects fault 6-0 and
consequently (1-1,2-1)/6-0 under Tsl' Fault 7-0 is
detected by checking for the growth of Y, = 3457. This
term disappears due to fault 4-1, hence 4-1/7-0. Because
test tl is the only test that is contained in the inter-
section il‘f'Tsl' there is no need to consider any other
term Xi. By repeating step 2 of procedure 3.1 with terms
X2,Y3 and YS’ the following masking . .relations are obtained:
7-1/4-0 (here fault 4-0 is chosen to represent the equi-
valence class (4-0,5-0)), 6-0/4-1, 6-0/5-1, 6-0/7-1,
7-0/1-1 and 7-0/2-1. In addition, fault 7-0 masks fault 6-1
under t3 and t4. This relation is disregarded, because
7-0 does not mask 6-1 under t5 and consequently under Tsl’
The masking graph obtained is given in fig. 3.2. From this
graph it is easy to observe that the multiple fault
Fl = (1-1,2-1,4-1,6-0,7-0) is not detected by Tsl’ The
graph also indicates that all subfaults of the multiple fault
F2 = (1-1,2-1,4-1,6-0,7-0,7-1) are masked. This fault
however, can be disregarded, because checkpoint 7 cannot be
both s-0 and s-1 at the same time. The same is true for
multiple fault F3 = (1-1,2-1,4-1,5-1,6-0,7-0), since fault
(4~1,5-1) is equivalent to fault 7-1. The multiple fault
Fl can be detected by any test that checks for growth of

some Xi or Yj term that grows due to Fl. For example,
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growth of Y, = 6356 into ¥§ = 53 and abcdegh is contained
in the intersection Yé.f. It should be noted that test set
Tsl was selected from a highly nonminimal covering of the Zk

and Wm terms. Procedure SF would produce test set Tgor

T, = (abcdegh, abcdegh, abcdegh, abedegh, abedegh,

and this test set detects all single as well as all

multiple faults.

If a multiple fault exists, that is not detected
by the single fault test set, then the masking graph has a
strongly connected subgraph, i.e. there is at least one
loop in the graph. If the masking graph does not have any
loops, then the test set detects all multiple faults,
since at least one subfault of any multiple fault is not
masked. For the above example, note that the multiple
fault (6-0,7-1) is detected, because 6-0 is not masked

if (1-1,2-1) does not occur, etc.

After finding the multiple faults that are not
detected by the single fault test set Ts' this test set is
enlarged to detect the undetected multiple faults. Procedure
3.2 given below derives a minimal multiple fault test set Tm
by adding a minimal number of additional tests to the test

set Ts generated by procedure 2.1.
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Procedure 3.2:

1. Perform steps 1-6 of procedure 2.1 to derive
the minimal single fault test set TS.
2. Use procedure 3.1 to construct the masking
graph and find the set M = (Fl'FZ”"FR) of multiple faults
that are not detected by Ts‘ If M contains only one fault,
find a test t that detects the fault, set T' = t and go to 5.
3. For each fault Fp in M and for all X and Yj

terms that grow due to Fp compute

X! such that F_:X.» X!, and 2 X!.E
i p i i k i

Y!.f
J

and the set Dp of all tests that detect fault F_ is

Y! such that F_:Y.» Y¥!, and W
J P 3 J ™

Dp = {union of all 2z, and W terms computed abovel.

4, Find a minimal test set T' such that it covers
all the Dp terms.

5. The multiple fault test set T is given by

— '
Tm TsuT.

The multiple fault set test derived by this
procedure is a minimal test set in that it contains the
single fault test set Ts as a subset. For a given network,
there may be a number of minimal single fault test sets,

- .
Tsl'Ts2"'°'Tsn (all of the same length). The associated

multiple fault test sets TmlDTsl,...,TmnDTsn, however,
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do not have to be of the same length. If a single fault

test set T,; checks for growth of as many X. and Yj terms
as possible, then the number of faults capable of masking
and also the number of undetected multiple faults is
minimized. Consequently,the associated multiple fault
test 'I'mi will be minimal. It is felt, that a necessary
and sufficient condition for choosing Tsi with the above
properties is as specified in step 4 of the procedure 2.1,

i.e., that MCl is a minimal cover (rather than any cover)

of all the Zk and Wﬁ terms.

Example 3.2: For the network in fig. 2.1 (see p.13),

test set Ts derived by procedure 2.1 is
T, = (abcd, abed, abed, abcd).

Table 2.2 (see p.31) will be used when performing procedure
3.1. Step 2 of this procedure applied to the four xi terms
reveals no masking, since the intersection P is always empty.
Term Yl = Elsalsb26 is not checked for growth due to fault
6-1 (see Table 2.2) and it can grow into vy o= 515. The
intersection P contains test abcd and. the intersection
Y].£.T_ is empty. Test abcd detects faults 1-1,3-1,5-1
and 8-1 (see Table 2.3). Faults 1-1 and 5-1 cause Yi to
disappear, and fault 6-1 belongs to the same gate as 8-1.
Hence the only relation that is marked in the masking graph
(see fig. 3.3) is 6-1 masks 3-1. Term Y, = 515838 can

grow into 515 and 638’ respectively, but the intersection

P is empty in both cases. Step 2 performed with term
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Yy = 515 shows that fault 8-0 masks fault 3-1, and the

same argument with term Yé = 638 reveals that 5-0 masks 1-1.

Term Y7 = al6b26c37d47is not checked for growth due to

- - | -
fault 1-1 and fault 3~1. For the term Y7 b26d47'

P = abcd and v;.£.T_ = 4. Test abcd detects fault 1-1

and fault 5-1 by checking for growth of X, = a b

15°25°3"
Since 3-1 causes disappearance of Xl’ 3-1 masks fault 1-1

and fault 5-1. The same reasoning with term X d

3 T 216%38%s
shows that fault 1-1 masks fault 3-1 and fault 8-1.

Finally, step 2 of proc¢edure 3.1 performed with term YL = -38
indicates that 7-1 masks 1-1. The masking graph constructed
from the above masking relations is in fig. 3.3. From this
graph, it is seen that the following multiple faults are not
detected: (1-1,3-1), (1-1,3~-1,5-1), (1-1,3-1,8-1),
(1-1,3-1,5-1,8-1). Any one of the faults causes growth of

Y7 into Y% = b26d47 and Y%.f = abcd 4+ abcd.

Test set Tm

T, = (abcd, abecd, abed, abcd, abcd)

is one of the several minimal test sets that detect all

single and multiple faults.

Example 3.3: For the network in fig. 3.4, the two ESP

LN

forms are:

ESP(£) = a;,b,+b,C),d3 +a; ghseygta; gBdsgta, g 08 +a) 03503,
ESP () = B4b5d6+51854+54528d38+a17b5027d6+a17al8027+
t 819C7C25%3g%27P5dd 393y A 35Fa,4Cgd5d 0,
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By procedure 2.1, MC; = (abcd, abcd, abed, abcd, abed, abed,
abcd, abcd, abcd) and T, = (abed, abed, abcd, abed, abcd,
abcd). Procedure 3.1 shows that there are no undetected
multiple faults and Tm = Ts is a minimal multiple fault test
set for the network.

Procedure NR in [5] is claimed to generate a nearly
minimal multiple fault test set for any irredundant network.
The network in fig. 3.4 is a counterexample . By procedure NR
Abnormal True Tests = (abcd, abcd, abcd)

Tests (abcd, abcd, abcd) verify that checkpoints are
"normal." This test set does not detect all faults, because
test abcd, which is the only test detecting the fault 3-1, is
not contained in the set.

The method presented in this section generates a
multiple fault test set which is minimal. However, the cost
of obtaining this minimal set is reflected in the increased
computational complexity. In the following section a

considerably simpler method to derive a nearly minimal test

set will be described.

3.2 Sufficient Conditions for Multiple Fault Detection

Rather than looking for multiple faults that are
not detected by a given single fault test set, it is possible
to use a sufficient although not a necessary condition

(theorem 3.3) and derive the multiple fault test set
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directly. We shall first consider networks with an ESP

form such that all terms can be checked for growth as defined

in the following definition.

Definition 3.3: Growth of a te;m Xi is strongly
checked by a test set T, if for any single or multiple fault
F,; such that Fi :X,>X!, the intersection Xi.f is nonempty
and contains at least one test t & T.

A similar definition for growth of a Yj term follows
by duality. The following theorem specifies sufficient

conditions for multiple fault detection in irredundant

networks.

Theorem 3.3: Let N be an irredundant network with

ESP(f) = © X, and ESP(¥) = g Ys;. If a test set T detects all
single faults in N and strongly checks for growth of either

all Xi terms, or all Yj terms, then T detects all multiple

faults in N.

Proof: Let test set T detect all single faults in N.
In order to prove that T detects all multiple faults it is
sufficient to show that the masking graph, under T, does not
have any cycles. Suppose that test set T checks strongly
for growth of all Xi terms, and let Ta and Tb define a
partition on T such that all tests that produce the output

of one in the fault-free network are in Ta
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Any fault fa that is detected by some test ta € Ta

causes growth of some Yj into Y%, where ta € Yé.f. By

theorem 3.2, if fa is masked there exists term Xi that grows
into Xi and t, € Xi. However, since T strongly checks for
growth of all Xi terms, the intersection Xi.f will contain

at least one test from Tb and consequently growth of any

Xi term will be reported at the output. Hence, if any

fault fa that is detected by some test from Ta is masked,

then it is masked by a fault that cannot be masked under

test set T. In other words, no fault fa can belong to a

cycle of the masking graph.

Let fault fb cause growth of Xl’X2’°"' Xp. Fault

fb is masked under test set T, if there occurs a fault f2

(or Fz) that makes all the terms xl’XZ""’ Xp disappear.

It is sufficient to consider that fb is masked by f27 if

fb is masked by Fos then the following argument can be

applied to all components of F,. Two possibilities can

occur:

i) Fault f2 is detected by some test from Ta. Then fault
f2 cannot belong to‘a cycle of the masking graph as was
shown .above.

ii) Fault fz is detected by some test from Tb’ and then it
causes the growth of one or more Xi terms, say terms
Xp+l"'°’ X . Fault fz is detected by T, unless there

ptr

exists fault f3 (or F3) such that it causes Xp+l""'

Xp+r to disappear. Argument (i) and (ii) can now be
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repeated for fault f3. Obviously, any multiple fault either
contains at least one fault that is not masked under T, or

makes all the X, terms disappear and then the output of the

network would be constant.

For any network with at least one ESP form such
that all its terms can be strongly checked for growth, the
result of theorem 3.3 can be used to derive a nearly minimal
multiple fault test set which will be minimal sometimes.

The set of networks with an irredundant ESP form is a proper
subset of all such networks. Because an irredundant ESP

form does not contain any redundant terms or literals, it is
possible to check strongly for growth of all its terms. The

multiple fault test set is generated in the following two

steps.

Procedure 3.3:

1. Use procedure 2.1 to derive a minimal single fault
test set Ts.

2. If Ts strongly checks for growth of all Xi or all
Yj terms, then Tg is also a minimal multiple fault test set.
Otherwise enlarge Ts so that either growth of all Xi terms
or growth of all Yj terms is strongly checked. The resulting

test set is a nearly minimal multiple fault test set.

The above procedure derives the multiple fault test

set without performing the multiple fault analysis and for
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this reason the computational effort is low. This is

illustrated by the following two examples.

Example 3.3: Test set T

T = (abcd, abcde, abcd, abcde, abed, abode, abcde, abode)
is a minimal single fault test set for the network in

fig. 3.5. The ESP(f) form of this network is

ESP(f) = ajas + alb4 + a3b2 + b2b4 + b6c5 + c5d7 + c8d9e10
Because T strongly checks for growth of all Xi terms, it is

also a minimal multiple fault test set.

Example 3.4: Test set T, = (abcd, abcd, abed, abcd)

detects all single faults in the network in fig. 2.1. If
tests abcd and abcd are added to T, all the Y, terms are
strongly checked for growth. Test set Tm

T = (abcd, abed, abed, abcd, abed, abcd)

is a nearly minimal multiple fault test set, since the

length of a minimal multiple fault test set is five.

If a network has a redundant ESP form, then it is
not always possible to strongly check for growth of all
Xi or all Yj terms. It should be noted, that the network
itself does not have to be redundant; however, it is always

possible to weakly check as defined below.
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Definition 3.4: Growth of a term Xi is weakly checked
by test set T, if for any single or multiple fault Fr such
that szxi - Xi, the intersection Xi.f is either empty, or

if nonempty then it contains at least one test t e T.

For example, for the network in fig. 3.4 the ESP(f)

form is

ESP (f) b,+b,c. 4, +a

= 814D, +b,Cyqd347a) gbsCogtay gbgdygta; gCogdta; gdigds
Here, it is not possible to strongly check for growth of the

term X4 = a18b5d38' since X4 can grow, due to fault 5-0,
- e ' — = - - ' - -
into X4 = a18d38 and the intersection X4.f is empty. Tests

abcd and abcd are sufficient to weakly check for growth of
X4.

It is difficult to prove, that a test set which
detects all single faults and weakly checks for growth of
all Xi terms (or all Yj terms), also detects all multiple
faults. However, a test set that weakly checks for growth

of both the Xi terms and Yj terms detects all faults in the

network. Moreover, this result holds for irredundant as well

as redundant networks.

Theorem 3.4: Let N be a combinational network with

ESP(f) = I X; and ESP(f) = I Y5 If test set T weakly checks
for growth of all Xi and all Yj terms, then T detects all

detectable faults in N.
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Proof: Any single or multiple fault F in a combinational
network causes growth of one or more Xi and/or Y. term.
Provided that F is detectable, there must exist at least one
X; (or Yj) term, such that F: X; + X! and Xi.f # ¢. From
definition 3.4, any such nonempty intersection must contain
at least one test t € T. Because test set T weakly checks
for growth of all Xi and Yj terms, it must detect all detectable
faults. Fault F (single or multiple fault) is undetectable if
F: 'xl > x]'_,..., X > Xr‘;’ Yy > ¥iree., ¥ Y' and all the

intersections Xi.f,..., Xé.f,Yi.f,..., Y'!.f are empty.

Bossen and Hong [5] obtained a result equivalent
to that one of theorem 3.4 by performing "cause-effect analysis
for multiple fault detection", and they described a simple
method (procedure G in [5]) that derives a multiple fault
test set for any combinational network. However the test set

generated by this procedure may be far from minimal.
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Chapter 4

FAULT DETECTION IN REDUNDANT NETWORKS

In a redundant network certain faults are not
detectable, hence the output of the network is correct
in the presence of such faults. To ensure that the
output function realized by a redundant network is correct,
it is necessary to detect all detectable faults. It may
also be desirable to detect all faults, not only the
detectable ones, since the presence of an undetectable
fault removes some of the redundant properties of the
network. For this purpose, the network would have to be
supplied with additional testing points, being in effect
converted to a multiple output irredundant network.

This problem will not be considered herein.

A redundant network contains at least one
undetectable fault. Because any stuck fault on the output
of a gate is equivalent to a multiple fault on the inputs
of the same gate, a redundant network must contain at
least one undetectable fault on some of its checkpoints.
The set of undetectable faults on the checkpoints
characterizes the redundant properties of the network in

the sense, that corresponding to any single undetectable
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fault in the network there is an equivalent multiple

fault consisting of undetectable faults on the checkpoints.

4.1 Single Fault Detection

When deriving a single fault test set for a
redundant network, it is not sufficient to generate tests
that detect all detectable single faults on the checkpoints.
The test set derived in this way might not detect all
detectable single faults in the network.

First consider fanout-free networks. For
example, the network in fig. 4.1 has five checkpoints
enumerated 1-5. The remaining lines in the network are
denoted by the numbers 6-9. All single faults 1-0,2-0,
3-0,4-0,6-0 and 7-0 are undetectable. The fault 8-0,
however, is detectable and any complete test set must
contain a test for this fault.

Throughout this chapter denote

D - set of all detectable single faults on the

checkpoints

U - set of all undetectable single faults on the

checkpoints.

Lemma 4.1: Let N be a fanout-free redundant network.
If a test set T detects all single faults in D and all
detectable multiple faults that consist of single faults

from U, then T detects all single detectable faults in N.
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Proof: Let T' be the subset of T that detects all single
faults in D. If some detectable fault fa exists that is not
detected by T', then fa can occur along only those paths
that connect some undetectable faults on the checkpoints,
say faults fl’fz""’ fn’ and the primary output. A test
that detects the multiple fault (fl’fz""’fn) detects also
fault fa, since the two faults are equivalent. If T detects
all such detectable multiple faults, then it also detects

all detectable single faults in the network.

For the network in fig. 4.1 there are four
undetectable faults on the checkpoints. Faults 1-0 and 2-0
belong to the same equivalence class, and so do faults 3-0
and 4-0. Choosing 1-0 and 3-0 to represent the respective
equivalence classes, then the set U = (1-0,3-0). Fault 8-0
is equivalent to the multiple fault (1-0,3-0). A complete
single fault test set for this network can be generated
by considering all detectable single faults on the checkpoints
and the multiple fault (1-0,3-0).

It should be noted that the result of lemma 4.1 also
holds for all networks with fanout, where no primary input
fans out. Fanout on the input should not be considered as
true network fanout; however, it may be, in which case the
result of lemma 4.1 does not hold as is illustrated by the
following example. The network in fig. 4.2 has six
checkpoints enumerated 1-6. Test set (abc,abc,abc,abc,abc)

detects all detectable single faults on checkpoints.
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Single faults 1-1,3-0 and 6-0 are not detectable and so is
any combination of them. The above test set, however,
does not detect fault 7-0 which is a detectable fault.
Note that 7-0 is equivalent to the multiple fault
(2-0,3-0,5-0). The undetectable fault 3-0 masks fault 2-0
under test abc, and it also masks 5-0 under test abc.

The previous discussion suggests that the following
two approaches could be used to derive a single fault test
set:

1. Consider single faults on all lines in the
network and generate a test set that detects all such faults
that are detectable.

2. Consider only faults on the checkpoints of the
network, but derive a test set to detect single as well as
multiple faults. Because any fault is equivalent to some
single or multiple fault on the checkpoints, such a test set
will detect all detectable faults within the network.

The second approach provides a solution to single
and also multiple fault detection and it will therefore be
employed in this thesis. A test set detecting all
detectable single faults on the checkpoints (i.e. all single
faults in D) can be derived by procedure 2.1l. The set U of
undetectable single faults on the checkpoints is obtained
as a byproduct of this procedure, since if a fault p-0 (or
p-1) is undetectable, there will be no 0 (or 1) entry in the

p-th column of the checkpoint covering table.  In the
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following section the problem of multiple fault detection

will be examined.

4.2 Multiple Fault Detection

The presence of undetectable faults in redundant
networks complicates the search for a multiple fault test
set. Multiple faults in irredundant networks are of the same
type, i.e., they all consist of detectable single faults.
Whereas a multiple fault that occurs in a redundant network
belongs to one of the following three classes:

Class 1: only undetectable single faults occuring

simultaneously.

Class 2: only detectable single faults occuring
simultaneously.

Class 3: undetectable and detectable single faults
occuring simultaneously.

Multiple faults belonging to the above classes will now be
analysed and a method that derives a minimal multiple fault
test set will be described.

In order to find a minimal set of tests that detects
all class 1 multiple faults that are detectable, it is
necessary to consider all multiple faults consisting of two
or more undetectable faults from the set U. If this set
contains a class of equivalent faults, then the number of

faults can be reduced by choosing only one fault to represent
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the class. A multiple fault F = (fl'f2""’fn)' where
fl’fz""’fn are undetectable faults, is detectable, if
there exists at least one term Xi (ox Yj) which grows into
Xi (oxr Yﬁ) due to F and the intersection Xi.f gor Y%.f) is
nonempty. Note that the term Xi grows due to F if it does
not disappear due to some fault fk € F (see section 3.1).

Now, let us assume that a test set T has been derived,
that detects all single faults from the set D and all
detectable multiple faults consisting of the single faults
in the set U. Then any detectable multiple fault that is
not detected by T contains at least one fault fk € D. On
the other hand if such a multiple fault is not detected, then
fk must be masked.

Let F = (fl'fz""'fn) be a multiple fault of

class 2. Because all the individual faults £, ,£f £

1'7727°°"'"n
are detected by T, F is not detected by T only if every fault
fk' k=1,2,...,n, is masked by scmé subfault of F. The
treatment of this type of multiple fault is the same as in
the case of irredundant networks, and if such undetectable
multiple faults exist, then the masking graph under test set
T contains a strongly connected subgraph.

A multiple fault that belongs to class 3 consists of
at least one detectable and at least one undetectable fault
occuring simultaneously. Let F = (ful”"’fum’fdr"°’fdn) be

such a fault, where fui' i=1,2,...,m are undetectable

faults, and fdj j=1,2,...,n, are detectable faults. A
r



68
test set T detects every fault fdj and also every detectable
subfault of (£ ul’ u2,...,f ). F will be not detected by T
if every one of the detectable faults is masked. This will
happen if at least one of the following two cases occurs:

1. The detectable faults mask each other. Then the
masking graph under test set T will have at least one loop.
2. One or more undetectable faults mask some
detectable faults, which, in turn, can mask other detectable
faults. 1In this case, there will be at least one path in the

masking graph, such that the initial node in the path

corresponds to some undetectable fault.

Provided that the number of undetectable faults is
not very large, the approach outlined above can be used to
derive a minimal multiple fault test 'set with an effort

comparable to that one required by irredundant networks.

Example 4.1: To illustrate, a multiple fault test set

will be derived for the network in fig. 4.3. The ESP forms

of the network are:

ESP(£) = ajcbyCy + 31,0, + 3,4 + Byoc, + B 7d5
ESP(£) = a;4c,dy + byc,dy + apb, Gy + S58,3, +

* 336319Pp7 + 217P57P56

A minimal test set that detects all detectable single faults
on checkpoints is derived by procedure 2.1. Table 4.1 and
Table 4.2 are obtained by performing steps 2-5 of this

procedure. From Table 4.2 test set T
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TABLE 4.1

Testing Table for Network N4.3

70

X; X! |2, =X}. £ | covered Y. Y! | W =Y!.f |Covered
by T J ] J by T
a16b26c3 ab abc X a16c4d5 ff fcﬁ X
ac @ ad acd X
be| & cd P
c 7. - = = - ==
- —— P2gCqds | DS | bed X
a17c4 a acd X ?? becd X
c @ cd ]
al7d5 a acé X al7b27c3 a? a?f X
d abcd X ac abcd X
= = — bc abcd X
b27c4 b bcd X — —
I s (B8
527d5 5 53 X cc {atb)cd X
d abcd X al6al7b27 Eb ?bc X
ab ab (c+d) X
al7b27b26 a? a?c X
ab ab (c+d) X
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T = (abcd, abcd, abcd, abcd, abed, abcd)

detects all detectable single faults on checkpoints. Fault
6-1 is the only fault that is not detectable, hence U = (6-1)
and T also detects all class 1 multiple faults (there are not

any). Next, the masking graph is constructed. Term

Xl = a16b26°3 is not checked for growth due to literals a and
b (see Table 4.1). For the term Xi = C3; the intersection
TABLE 4.2

Checkpoint Covering Table for Network N4.3

i1 2 3 4 5 6 17
abcd o o 1 - - - 0
abcd - - - 1 1 - -
abcd - 1 - - 0 - -~
abcd i - - - 0 - -
abcd - - - 0 - - -
abcd - - 0 - - 0 -

X3 .E.T=¢ and the intersection X].Xj.f.T contains test

abcd. This test detects fault 4-0 by checking for growth of

=

1= a16c4d5 and Y, = 5265455‘ Since both terms disappear

due to fault 6-1 or fault (1-1,2-1), 6-1/2-0 and (1-1,2-1)/4-0.
The masking graph is in fig. 4.4, where the remaining masking
relations have been obtained as a result of the unchecked
growth of X2 and Xy In fig. 4.4, fault 1-0 is chosen to

represent the equivalence class (1-0,2-0) and fault 3-0

represents the equivalence class (3-0,6-0). The masking graph
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does not have any cycles, but there is a path starting with
the undetectable fault 6-1. This fault masks fault 4-0 and
test set T should be enlarged to detect the multiple fault
(6-1,4-0). Because no Xi term grows due to (6-1,4-0) into
X} such that Xi.f # #, and the same is true for all Y. terms,
fault (6-1,4-0) is not detectable and test set T detects

all detectable faults in the network. This example also
shows that a detectable fault in a redundant network may

become undetectable in the presence of some other undetectable

fault.

It should be noted that the number of undetected
multiple faults is larger when the paths in the masking graph
are longer than those in fig. 4.4. For example, consider the
masking graph in fig. 4.5, where fl is an undetectable fault
and fz,f3,...,fn are detectable faults. Any multiple fault
F = (fk’fk+l"°" fk+m)’ where k > 1, m < n-k, and any
multiple fault F = (fl’f2'°"’ fk-z’fk’fk+l"”) is detected,
since fk is not masked if fk-l does not occur. However, all
the multiple faults (fl,fz), (fl’fZ’f3)""' (fl’fz”"’fn)
are not detected and the test set must be enlarged to detect
all such faults that are detectable. In addition, provided
that the masking graph has more than one path and/or loop,
there are undetected multiple faults that correspond to

combinations of these simple cases. Because no line in the

network can be s-0 and s-1 at the same time, a limit is placed
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on the number of such faults that must be practically

considered.

The following procedure can be used to derive a

minimal multiple fault test set for a redundant network.

Procedure 4.1:

1. Evaluate ESP(f) = IX; and ESP(f) = IY

J
2. For each X5 and Yj term compute all terms Xi

and Yﬁ that are one variable less. For each Xi and Y! term
compute Z, = Xi.f and W = Yé.f.

3. For any 2, or Wﬁ term that is empty, repeat
step 2 with the corresponding Xi or Y5 term.

4. Find a minimal covering MC of all the Zk and Wm
terms generated above.

5. Construct the checkpoint covering table, where
the column headings are the checkpoints and the row headings
are the members of MC. The entries are filled in according
to lemma 2.2,2.3 and 2.4. From this table f£ind the set U
of single undetectable faults. For each class of equivalent
faults in this set, keep only one fault to represent the
class.

6. Form the set Gl of all class 1 multiple faults
that consist of single faults in the set U. For each fault
F e Gl' add a new column to the checkpoint covering table
and fill the entries in this column. If some fault is not

detected by any one of the tests represented by the row
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headings of the table, mark this fault as undetectable.

7. From this table, select a minimal test set T
that detects all detectable single faults and all class 1
multiple faults that are detectable. If T = MC, stop.

8. TUse procedure 3.1 to comstruct the masking
graph and from this graph find the set G, of all multiple
faults that are not detected by T. For each fault F € 62
add a new column to the table and £ill in the entries, but
for only those rows that do not belong to T.

9. From the table select a minimal test set T'
that detects all detectable faults from G,- The multiple
fault test set Tm =T yT'.

The minimal covering MC derived in step 4 of the
above procedure represents a test set that weakly checks for
growth of all Xi and Yj terms. By theorem 3.4, such a test
set detects all detectable faults in the network. Therefore,
any detectable multiple fault considered in step 6 and 8
must be detected by some member of MC. Provided that MC is
a minimal covering of the Zk and W terms, then the test set
Tm generated by the above procedure will be a minimal test set.
However there may be more than one minimal covering of the 2y
and W terms, and to prove the minimality of T, it would be
necessary to show that the length of T is independent of
the choice of the minimal covering. This is rather difficult,
but practice indicates that a minimal test set is generated

in every case.
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Example 4.2: Procedure 4.1 will be used to derive a

test set for the network in fig. 4.6. The ESP forms of
this network are

ESP(f) = a;b,cyd, + a b.d, + b.c.d

ESP (f)

1l
o
o'
+
o
o2

TABLE 4.3

Checkpoint Covering Table for Network N4.6

1 2 3 4 5 &6
abcd i - - - 0 -
abcd - -1 - =0
abcd i - - - 0 -
abcd - - 1 - -0
abecd - - 0 0 1 -
abcd o 0o - - - 1

The zk and Wh terms generated in step 2 are

Z, : abcd, abed, abd, bed

W : ab(c+d), ab(c+d), b(c+d), (a+b)cd, (a+b)cd, (a+b)d
Step 3 produces two additional Z, terms, acd and abc. A
minimal covering MC of all the Zk and Wh terms above is
MC = (abecd, abed, abed, abed, abed, abed)

Lemma 2.2 and 2.3 are used to £ill the entries in the
checkpoint covering table (Table 4.3). From this table
it is seen that faults 2-1 and 4-1 are undetectable. The
only term which grows due to both 2-1 and 4-1 is the term

— 1 —
Xl = alb2c3d4. However, for the term Xl = a;C3; the
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intersection ac.f = #. Hence the fault (2-1,4-1) is
undetectable. The following minimal test set T is selected
from Table 4.3

T = (abcd, abcd, abed, abcd)
Procedure 3.1 produces only one masking relation and this
is (3-1,4-1)/6-1. This relation has been obtained as a
result of the unchecked growth of the term X, = alb2c3d4.

Because fault 3-1 is not masked, theére is no need to enlarge

T and this test set is also a minimal multiple fault test

set.

The inevitable price paid for the minimal test set
generated by procedure 4.1 is the increased complexity of
the computations involwved, specifically when the number of
undetectable faults is large. The minimal covering MC
computed in step 4 of this procedure corresponds to the test
set derived by the method of Bossen and Hong [5]. Obviously,
the effort required to obtain such a test set is considerably
smaller. On the other hand, there is a difference in the
length of the test set generated. Denoting by £ the length
of a minimal test set Tm as derived by procedure 4.1 or by
procedure 3.2, and by &' the length of the test set generated

by procedure G[5], then the following comparison can be made:

network N2.1 L =5,8'" =9
network N4.2 2 =6,2'" =6
network N4.5 L = 4,8" = 6

network N3.4 2 = 6,8"

I
(X)
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From which the conclusion can be made that while the

pProcedure is more complex it derives a smaller test set for

some examples.

4.3 Concluding Remarks

It should be pointed out that in redundant networks
the problem of multiple fault detection is more important than
in irredundant networks. It is often argued, that detection
of single faults is sufficient provided that the time span
between testing is short. This may be true for irredundant
networks, but it is not true for the redundant ones. For
example, let Nl be an irredundant network, N2 a redundant
network, and Tl and T2 a single fault test set for Nl and Nz,
respectively. For Nl the following sequence of events
(fl occurs, Tl applied (fl removed) , f2 occurs, Tl applied)
results in detecting fault fl as well as fault f2. However,
if fl is an undetectable fault that masks some detectable
fault f2 under test set T2 in network N2, then after the

sequence

(fl occurs, T, applied, f2 occurs, T, applied)
N2 may no longer operate correctly, but the network passes

the test both times.

It is felt that for this reason the problem of fault
detection in redundant networks should never be restricted

to only single faults.
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Chapter 5

FAULT DETECTION IN SPECIAL NETWORKS

The test generation methods presented in chapters
2-4 employ both the ESP(f) and ESP(f) form when deriving the
test set. In this chapter, a method which uses only one of
the two forms to generate a test set for networks with
equal inversion parity of all reconverging paths will be
described. Some additional results for fanout-free networks
are given in section 5.2, and an alternative way of
generating tests is shown in section 5.3. Finally, the

problem of fault testing in multiple output networks will

be discussed.

5.1 Networks With Egqual Inversion Parity of all Reconverging
Paths

The set of networks with equal inversion parity of all
reconverging paths (denoted networks with EIP) consists of all
networks where the number of invertgrs, modulo 2, along any two
reconverging paths is the same. In such networks any fault
causes the growth of either Xi term(s) or Yj term(s). This
is also true for any fault in a fanout-free network and from
this point of view the set of all fanout-free networks may
be considered as a proper subset of the set of networks with
BEIP, If the ESP form of a network with EIP contains a term

apW, then it cannot contain a term EPU. Thus, the set of
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functions realized by networks with EIP is a subset of

unate functions.

5.1.1 Single Faults

Because the inversion parity of all paths connecting
some checkpoint and the output of the network is the same,
no fault causes both the disappearance of an Xi (or Yj) term
and the growth of another Xi (or Yj) term at the same time.
Consequently, if a test checks for the presence of a term,

then it detects all faults that cause the disappearance of

the same term. Lemma 5.1 states this result formally.

Lemma 5.1: Let N be a normal network with ESP(f) = ZXi
and ESP(f) = ZYj. If a test t checks for the presence of

the term a;,  1P0 ..

reconverging paths in N is the same, then t detects the

W and the inversion parity of all

following faults:

- s-0 and s-1 faults on checkpoints i and p, respectively,
- s-0 and s-~1 faults on checkpoints k and r, respectively,
provided that the inversion parity along the path
i,j,«..,k (p,9,...,r) is even,

- s-1 and s-0 faults on checkpoints k and r, respectively,
provided that the inversion parity along the path
i,j,...,k (P;,9s...,r) is odd.

Test t also detects faults on all checkpoints associated

with literals in W. The type of fault is determined as

described above.
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Proof: If test t checks for the presence of some term,
say X,/ then t is contained in the intersection xa.‘n ii and
the output of the fault~free network under input t ?séal. If
a fault fl occurs, such that fl:Xa* 6, then the output of
the network is 0 because t is not covered by any Xi term,
and no Xi term can grow due to fl because of the EIP property.
Hence t detects any fault that causes the disappearance of
Xye It was shown in chapter 2,.that for a normal network

such faults can be determined from the type of literal

(primed or unprimed) and the inversion parity along the

particular path.

If a network has an irredundant ESP form, then it
is possible to check for the presence of every Xi or every
Yj term. A minimal test set for such networks with EIP can
be generated while using only one of the two forms. The

following procedure summarises the necessary steps.

Procedure 5.1:

1. Evaluate either ESP(f) = IX; or ESP (£) = Iy, .
(In steps 2 to 6, it is assumed that ESP(f) is used) .

2. For every term Xi generate all terms Xi that are
one variable less. For each Xi compute Z, = Xi.f.

3. If there eXists some Xi term having more than
one 7, term that is empty, then repeat step 2 with those Xi
terms having Zk terms that are empty and common checkpoints,

by by femoving the variables with common checkpoints according
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to lemma 2.4.

4. For each term X, compute W = Xa.iga ii'

5. Find a minimal covering MC of all the Zy and
Wh terms generated above.

6. Construct the checkpoint covering table where
the column headings are the checkpoints and the row headings
are the members of MC. The entries for rows that cover the
Zk terms are filled according to lemmas 2.2,2.3, and 2.4,
and the entries for rows that cover the Wﬁ terms according
to lemma 5.1.

7. From the checkpoint coveriﬁg table select T, as
a minimal test set detecting all s-0 and s-1 faults on

checkpoints.

The above procedure generates a minimal single fault
test set for any network having either an ESP(f) or ESP ()
form that is irredundant. The minimality and completeness of
the test set with respect to faults that cause growth of
Xi terms follows from the proof of procedure 2.l. Provided
that the ESP(f) form is irredundant, it is possible to check
for the presence of every Xi term and therefore a test will
be generated for any fault tnat causes some xi to disappear.
A test tl that checks for the presence cf the term Xa detects

all faults that cause X, to disappear. A test t such that

2'
t, e X .X,. I X. detects only those faults causing
2 a""B iZa,B 1
14
disappearance of Xa as well as XB’ i.e., faults on only those
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checkpoints common to Xa and XB' Thus, by generating tests
that detect the largest number of faults it is ensured that a

test set with a minimal number of tests will be derived.

A complete test set for networks that do not have at least

one ESP form that is irredundant cannot be, in general, derived
by the above procedure. However, if every checkpoint is
associated with at leagf one term X such that X . I ii £ 8,
then the above proceduie can be applied and it wili#groduce

a minimal test set. This is illustrated by the following

example.

Example 5.l: For the network in fig. 5.1 the ESP{f) form

is

ESP(f) = c. +b

a17S5 + byyC5 * ajgdg + bygdy + b3d,
Steps 2-4 produce table 5.1 and a minimal covering of all
the Zy and Wm terms is
MC = (abcd, abed, abcd, abcd, abcd, abcd)
From table 5.2 a minimal single fault test set Ts is
T, = (abcd, abed, abed, abed, abed)

Because Ts checks strongly for the growth of all Xi terms,

it also detects all multiple faults.
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Figure 5.1 Network N5.1



TABLE 5.1

Testing Table for Network N5.1

X. x! |z, =x!.f W= .0I X,
i i k 71 a i#o i
a14%s a iEEa %
abcd
c b bed
2775 - abcd
c abcd
a18d6 _ a abcd _—
. abcd
d abd
d b bed
2876 __ abcd
d abd
d b abd
374 _ - (a+c)bd
a bcd
TABLE 5.2

Checkpoint Covering Table for Network N5.1

1 2 3 4 5 6 7 8

abcd - - 0 - 1 1 - -
abcd i 1 - 0 - - 1 1
abcd - 0 - - 0 - 0 -
abed 60 - - - =0 - 0
abcd - 0 - = -0 -0

abcd - - 1 1 - - - -
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5.1.2 Multiple Faults

In the preceding section it was shown how to derive
a minimal single fault test set for networks with EIP from
only one of the two ESP forms. In general, it is difficult
to perform a complete multiple fault analysis without using
both the ESP(f) and ESP(E). Provided that is is possible
to strongly check for growth of all terms of the particular
ESP form being used, multiple fault analysis can be avoided
and a nearly minimal multiple fault test set can be derived
directly. In the special case of a network with EIP, it is
sufficient to fulfill conditions that are less stringent.

The set of all single faults in a network with EIP
is partitioned into two blocks A and B:

A = set of all faults causing growth of Xi terms

B = set of all faults causing growth of Yj terms.
Tt follows from theorem 3.2 that any fault fa € A can be
masked only by some fault fb e B,and vice versa. Now,
suppose that a test set TS detects all single faults in a
network N with ESP(f) = IX; and ESP (%) = IY,. If some
multiple fault F exists, that is not detected by Ts’ F must
contain at least one fault fa e A and at least one fault
fb e B, since two or more faults belonging to the same
set cannot mask each other. Conseguently, there must exist

at least one term Xi that grows into Xi where
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'UE =
XiofoTs ¢
-
and xi.xi.f. T, # 8 (5.1)
and at least one term Yj that grows into Y5 where
Yj°f'Ts =g
. = =
and Yj.Y.f. Ts # & (5.2)

The test set Ts detects all multiple faults if
either (5.1) does not hold for any Xi term, or if (5.2)
does not hold for any Yj term. Note that (5.1) or (5.2)
does not hold if at least one of the two equations is not
satisfied.

The above fact can be exploited when a multiple
fault test set is to be derived. Aas an exXample, consider
the network in fig. 5.2, where
ESP(£) = a;;by,c3d, + a;gb,oC.d
Test set
T, = (abcd, abcd, abed, abod, abdd, abed)
is a minimal single fault test set. Ts does not check for
growth of Xl due to variable b, and for growth of X2 due to
variable a. However the intersections

X!.X

1-%5 abcd (abcd + abed)

.f.Ts @

abcd (abed + abcd)

-
x3.%, P

are empty and hence TS also detects all multiple faults.

E.T
S
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5.2 Multiple Faults in Fanout-Free Networks

In section 3.1 an example was given, where a single
fault test set for a fanout-free network does not detect
a multiple fault of multiplicity five. Similarly, for the
network in fig. 5.3, the test set Ts
Ts = (abcdeg, abcdeg, abcdeg, abcdeg, abcdeg, abcdeg)
does not detect the multiple fault (2-1,4-1,5-0,6-0). The
multiplicity of this fault is four. However, it will now be
shown that any single fault test set for a fanout-free

network detects all multiple faults of multiplicity two and
three.

Lemma 5.2: Let N be a fanout-free network with ESP(f) = ZXi
and ESP(f) = ZYj;then no two checkpoints appear together

within both a single Xi and a single Yj term.

Proof: For a one level network realized by a single NAND
gate with p inputs hl'hZ""'hp’ the ESP forms are
ESP(f) = hy + h, + ... +1‘1p (5.3)
ESP(E) = hy-Bye...hy (5.4)
Without loss of generality, the above equations can be used
to represent the ESP forms of any one level network, since
for any AND, OR, or NOR gate with p inputs the ESP forms

are similar to (5.3) and (5.4). The lemma can now be proved

by induction.
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(a) Clearly, for any one level network no two checkpoints
appear within both a single Xi and a single Yj term.
(b) Let N be an n~level fanout-free network with r checkpoints
1,2,...,r, and let the ESP forms of N be

ESP (£)

zxi (5.5)

ESP (f) TY. (5.6)

J

By assumption, no two checkpoints of N appear within both a
single X, and a single Yj term in (5.5) and (5.6). Let N'
be an (nt+l)-level network obtained from N by replacing the r
checkpoint variables with r gates Gl’GZ""’Gr' Let ESP(gk)
and ESP(§k) be the ESP forms of the network corresponding to
gate Gk' for k=1,2,...,r. The ESP forms for the network
N' are obtained by substituting ESP(g,) and ESP(§k), for
k=1,2,...,r, into (5.5) and (5.6). It follows from eguations
(5.3) and (5.4) that if two checkpoints appear within both a
single Xi and a single Yj term, that they must have done so
in (5.3) and (5.4), which is a contradiction. Hence no two
checkpoints appear within both a single Xi term and a single
Yj term.

It should be noted that the result of lemma 5.2
may not hold for networks that contain other types of logical
gates than AND, OR, NAND, NOR and NOT. For example, for
an Exclusive-OR gate with two inputs, a and b, the ESP forms

are

ESP (f)

I
V]
 ad
o'l
J
+
u

ESP (£)
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Here, two checkpoints appear within both a single Xi and a
single Yj term. Networks which contain such more complex
logical modules should not ke considered as fanout-free,
since a practical realization of the module is likely to
contain fanout (see section 1.1). The following theorem

has been proved by Hayes [18].

Theorem 5.1: Any single fault test set TS for a fanout-

free network also detects all multiple faults of multiplicity

two and three.

Proof: The theorem will be proved by showing that no
two or three single faults can form a closed masking graph.

(2) Consider the multiple fault F = (fl'fZ)' Let fault fl

be detected by a test t which checks for growth due to £, of

1
some Xi term, say Xl' In the course of this proof we shall

simply write fl:Xl - Xi instead of "fault fl is detected

by test t ¢ T that is contained in the intersection Xi.f,
. "

where fl.Xl > Xl .

If fz/fl’ then f2: Xl > 0, consequently f2: ¥, > Yé

If fl/fz’ then fl: Y2 > 0.

Fault fl cannot mask fault f2 however, because fl and f2

are faults on two different checkpoints and they cannot

appear together within both Xy and Y, (lemma 5.2).



(b) Consider the multiple fault F = (fl'f2’f3)

Let fl: Xl > Xi

If fz/fl’ then f2: X 0, and f2: ¥, > Yé
If f3/f2, then f3: Y2 -~ 0, and f3: X3 > Xé
If fl/f3, then fl: X3 + 0, and fl: Yl > Yi

The last statement is a contradiction, because no single
fault in a fanout-free network can cause growth of some Xi
as well as some Yj term. Since fl causes growth of Xl’ fl
cannot mask f3. Hence, if test set Ts detects all single

faults it also detects all multiple faults of multiplicity

two and three.

A single fault test set Ts for a fanout-free network
also detects a large portion of multiple faults of multiplicity
greater than three. If two or more single faults occur that
belong to the same class of equivalent faults, then all such
faults can be represented by only one fault. Hence Ts will
also detect any multiple fault F = (fl'fZ""’fn) such that

faults fl’fz""’fn do not belong to more than three different

equivalence classes.
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5.3 Test Generation for Large Circuits

For large circuits, the number of terms in the
ESP form may become very high. Thus, although the use of the
ESP forms for test generation is desirable, specifically for
the purpose of multiple fault detection, the test generation
methods described earlier may not be feasible when the
network is very large. Also, it is often required to derive
tests for only certain faults, or to find all tests which
detect a particular fault. A method that can be used in
such cases will now be described.

We denote by p-d the fault "checkpoint p is stuck at
d", where d is 0 or 1, but not both at the same time. 2
test t detects fault p-d, if, under input t, the output of
the correct network is different from the output of the
network in the presence of the fault p-d. Let £(p-d) denote
the output function realized by the network in the presence
of fault p-d. Then the set T(p-d) of all tests detecting
fault p-4d is:

T(p-d) = £(p-4) @ £,
where f is the output of the correct network.

Let Z be the Boolean expression describing the
function realized by the network. For each checkpoint of
the network, there is a subscript attached in the corresponding
position in the expression. For example, for the network in

fig. 5.4 this expression is
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Z = (25,85 (c48505)10) -+ ((c3586) 13- (P78g) 150+ (P7%g) 13-
Since the logical value on checkpoint p is the presence of
fault p-d is & regardless of the value of the variable(s)
applied, f(p-d) can be obtained from Z by substituting 4 for
any literal or subexpression that is associated with subscript
p. In contrast to the evaluation of the ESP form, all the
Boolean identities can be used when computing f (p-d) from Z.
Tt should be noted that when the notation above is used, the
range of a NOT operator may not be.defined properly. For
example, when computing £(10-0), it may not be clear whether to
substitute 0 for the expression c4§5e6 or for the expression
c4ase6. This can be solved by using a special symbol
(e.g., "=") and by including parenthesis to define the range
of every operator. The previous notation is satisfactory,
however, provided that a diagram of the network is used at
the same time. This latter solution will be employed herein.
Assuming that £ is the function realized by the
network, then the set T(p-d) of all tests that detect fault

p-d can be computed in the following two steps:

Procedure 5.2:

1. Compute £ (p-d) by substituting 4 into Z for any
literal or subexpression that is associated with subscript p.
When evaluating £ (p-d), disregard all subscripts and use all

Boolean identities.
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2. Compute T (p-~d) from the formula:

T(p-d) = £(p-d) & £f.

A nearly minimal, or a minimal single fault test set
for an irredundant network is obtained by:

- form the set S of all s-0 and s-1 fault test
checkpoints, such that every class of equivalent faults is
represented in this set by only one fault.

- compute T(fa) for every fault fa € S

- find a nearly minimal, or a minimal covering of

all the T sets computed above.

The extension of the above method to redundant

networks is straightforward and it follows from the discussion

in section 4.1.

Example 5.2: The network in fig. 5.4 realizes the

function £ = ab + ¢ + bce, and the output expression Z for

for the network is

Z = (alb2c3.(c4d5e6)lo).((c4d5e6)ll.(b7c8)12+(b7c8)12.e9.

To compute T (1-1l) evaluate f (1-1)

£(1-1) = (l.bc.cde).(cde.bc) + bce =
= (b+c+cde). (cde + b+c) + bce = ¢ + boe.
Hence T(1-1) = (c + bEE)G}(EB + ¢ + bce) = abec

Similarly, in the presence of the multiple fault (4-1,11-1)

the function realized is
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£(4~1,11-1) = (abc.(l.de)) . (l.bc) + boe =
= ab + ¢ + bde + boe
T (4-1,11-1) = (ab + ¢ + bde + bce) & (ab + ¢ + boe) =

abcde

I

Although the above method can be used to generate
tests for specific multiple faults, it is more difficult
to generate a complete multiple fault test set, unless a
large number of multiple faults is considered. Relative
to the D-algorithm [41], this method will generate a test
for every detectable fault with a computational effort that
compares favourably. In addition, provided that a minimal

covering of the T sets is selected, the resulting test set

is minimal.

5.4 Multiple Output Networks

The problem of fault detection in multiple output
networks is not substantially different from that in
networks with a single output. A test set for a multiple
output network can be obtained by generating a test set for
the circuitry associated with each output separately and then
taking the union of all such tests as the test set for the
multiple output network. However, the test set derived in
this way is not likely to be minimal. In order to obtain a

minimal test set, all the outputs must be considered at the
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same time.

The ESP form of a multiple output network is the

union of the ESP forms for every individual output. The
test generation methods described earlier can be used for
multiple outputs without change, provided that they are
applied to this "composite" ESP form. This is demonstrated

by the following example.

Example 5.3: The network in fig. 5.5 realizes t¥o

functions, g and h, where g = abcd and h = c¢d + bc. The ESP

forms are

ESP(g) = alb2c5,9d6'9 + b c c d

3,7%4,7%5,9%, 9

ESP (g) = alb3,7 + alc4'7 + b2b3'7 + b2c4'7 + c5'9 + d6,9
ESP(h) = c5 10d6,10 * P3,5%4,8

ESP (h) =

°s5,10P3,8 * ©5,10%,8 * P3,8%,10 * ©4,8%,10

To generate a minimal single fault test set, procedure 2.1
is applied to the ESP forms above. Steps 2-4 of this
procedure produce Table 5.3. From this table, a minimal
covering MC of all the Zk and Wﬁ terms is

MC = (abcd, abcd, abcd, abed, abed, abed, abcd, abcd)
After the checkpoint covering table (Table 5.4) has been
filled in, it is discovered that the network is redundant,
because fault 7-1 is not detectable. The test set

T_ = (abcd, abcd, abed, abed, abed, abcd)

is a minimal test set that detects all single detectable

faults. Procedure 3.1 is now applied to determine whether
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TABLE 5.3

Testing Table for Network N5.5

' =% ! o
Xi Xi Zk Xi.g Covered by TS

alb2c5,9d6’9 abc abfd X

abd abcd X

acd abecd X

bcd abed X
P3,7%4,7%5,9%,9 | bcd bed X

bed becd

Y. Y! W =y"'. Covered by T
j j R ¥ s

alb3'7 a .1

b abcd X
alc4’7 a [

c abcd X
b2b3'7 b .3

b abcd X
b2c4,7 b "]

o] abcd X
05,9 1 abecd X
d6,9 1 abcd X
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TABLE 5.3 (Continued)

' =x'
X Xi Zk Xi.h Covered by Ts
°s,10%,10 ¢ cd X
a bed X
b3,8%,8 b bed
(o] bc X
Y. Y! W =yY'.h Covered by T
3 j m 3 ¥ %
05,10b3,8 c bc X
b bed X
c5,loc4,8 C bc X
cd X
b3 896,10 o bed X
d bcd X
4,8%,10 ¢ cd_ %
3 bea X
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there are any multiple faults that are not detected by Ts

TABLE 5.4

Checkpoint Covering Table for Network N5.5

1 2 3 4 5 6.7 8 9 10
abcd - - - - - 1 - - 1 1 X
abecd - - 0 - 1 - - 90 1 - X
abcd - 1 - 0 0 o0 0 - -0 X
abcd 1 - - - 0 0 - - - 90 X
abcd 0 0 - - 0 0 - - 0 0 X
abcd - - - 0 - - - 0 - -
abcd - - 1 1 - - - 1 1 - X
abcd - - - - 1 - - - 1 -

Term Y, = 52b3 5 (of the ESP(g) form) is not checked for
14
growth due to literal b. The intersection P is
= " v = = =h
P = Y3.Y3.g.Ts = abcd

Test abcd detects faults 2-1,4-0,5-0,6-0,7-0 and 10-0.
The only masking relation produced is 7-1/4-0, since all
the remaining faults are detected by checking for the growth
of terms that do not disappear due to fault 7-1 or 3-1.
Because of the unchecked growth of the term X. = b c

2 3,874,8
(of the ESP(h) form) it is also found that 4-0/6-0 and
4-0/10~-0 under test abed; however, both 6-0 and 10-0 are

detected by two additional tests. Test set TS is now

enlarged to detect the multiple fault (7-1,4-0).
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Term b3,8c4,8 grows due to this fault into b3 8 where

14
b.h = b(be + cd) = bed
Thus, test set
T, = (abcd, abcd, abed, abecd, abed, abcd, bed)

is a minimal test set that detects all detectable faults

in this network.
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Chapter 6
SOME BOUNDS ON THE LENGTH OF A MINIMAL TEST SET

With the increasing size of hardware being built,
it is not only important to minimize any particular circuit,
but it is also vital to keep the cost of fault diagnosis as
low as possible. 1In this chapter a lower and an upper bound
on the length of a minimal test set for irredundant circuits
will be derived. The problem of how to design circuits that
require short testing procedures will also be discussed.

Let z(TS) denote the leng%h of a minimal single fault
test set Ts' For any irredundant network with p checkpoints
Ts must detect 2p faults. Obviously, Ts cannot contain less
than two tests, since no single test can detect both a s-0
and s-1 fault on the same line. On the other hand, if every
fault should require a different test, l(Ts) would be egual
to 2p. These bounds, however, are quite rough and can be
improved considerably. For networks consisting of AND, NAND,
OR, NOR and NOT gates, the following two factors have great

influence on the length of a minimal test set for fault

detection:
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1. All faults that belong to the same equivalence

class are detected by the same test. Thus, one test is
sufficient to detect s-0 faults on all inputs of an AND or
NAND gate, and similarly only one test is sufficient to
detect s-1 faults on all inputs of an OR or NOR gate.

2. Certain faults can never be detected by the same
test. TFaults of this type are nonequivalent faults on inputs
of the same gate. For example, an AND gate with n inputs
requires n different tests to detect the s-1 faults on all
input leads. Similarly, an n-input OR gate needs n different
input combinations to detect the s-0 faults. It should be
pointed out, however, that two faults that belong to two
different equivalence classes may be detected by the same
test. TFor example, one test may detect s-1 faults on inputs
of several AND gates in a two level AND-OR network.

The above discussion and most of the results presented
in this chapter do not relate to networks built from other
types of gates such as Exclusive-OR gates. It can be shown
[16]1, that all single faults in any tree network consisting
of only two input Exclusive-OR gates can be detected by four
tests, where this number is independent of the size of the
network. Unless otherwise mentioned, only networks that
contain AND, NAND, OR, NOR and NOT gates will be dealt with.

Now consider irredundant fanout-free networks, or
networks where fanout is present on the primary inputs only.

Let N be such a network with p checkpoints. Any single fault
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test set for N must detect 2p faults. Denote these faults by
fl'fi'fZ’fé""' fp,fé, where fk is a s-0 fault and fi is a

s-1 fault on checkpoint k, or vice versa.

Lemma 6.1: Let fl and f2 be faults on any two checkpoints
of a fanout-free network. If fl and f2 are detected by the
same test, then faults fi and fé cannot both be detected by
the same test.

Proof: 1In a fanout~free network, faults are detected
by checking for the presence of Xi or Yj terms. Let fault
fl cause the disappearance of one or more Xi terms. If f2
can be detected by the same test as fl' then there exists
at least one term Xa such that Xa disappears due to fl as
well as due to f2. Because fl causes the disappearance of
an xi term, fi must make some Yj term zero. Faults fi and
fé can be both detected by the same test only if there exists

at least one Yj term that disappears due to both fi and £

t
5
Faults fl and fi, and faults f2 and fé, respectively, are
faults on the same checkpoints. It follows from lemma 5.2

that fi and fé cannot be detected by the same test.

An input limited fanout-free (ILFF) network is

defined to be a fanout-free network where the primary input
fans out. Fanout-free networks where no primary input fans
out are sometimes called tree networks. Bounds on the length
of test sets for tree networks have been derived by Hayes

i{i8aj. Theorem 6.1 specifies these bounds for ILFF networks.



109

Theorem 6.1l: If Ts isaminimal single fault test set
for an ILFF network with p checkpoints, where p > 1,

then

2Vp < (1) =

N W
o]

Proof: The lower bound will be derived first. The
test set Ts for a network with p checkpoints must detect 2p
faults, denoted fl’fi'fZ’fé”"’ £ ,fﬁ. Suppose that r

p

tests tl't2"“' t_ are sufficient to detect faults

r

fl'fz""’fp' Let q; be the number of faults detected by the

test ti' and ti detect faults f ., for i =1,2,...,r.

gi

It follows from lemma 6.1 that faults fi'fé""’f&i must be

detected by q; different tests. In other words, %(T)

l’f2""’f

cannot be smaller than
r
r + max (ql,qz,...,qr), where iglqiap

Z(Ts) will be minimal if each of the r tests detects the
same number of faults, which is %‘ Hence the lower bound is
given by the minimum of the function
= <3
h(r) r + =
This function has a minimum for r = \Vp, since

h'(x) =1 - pr'-2

h" (xr) = 2pr_3

L2 -
Hence, 2(Ts) >\p + = 2 N\p.
P

Now, the upper bound will be derived. Ts mist detect

2p faults. However, (qg+l) tests, rather than 2q tests, are

o~
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sufficient to detect the 2g faults on checkpoints that are
inputs to the same gate. Thus, at most r + p tests will be
required, where r is the number of gates such that all
inputs of the gate are checkpoints. Note that if all inputs
of some gate are not checkpoints, then the equivalent faults
on its inputs are detected by some test for the former. For
any network with p checkpoints, where P > 1, r is at most

2] -3
>+ Hence z(TS) < p + 5 5 P-

The network in fig. 6.1 has a minimal test set that
consists of eight tests. This is close to the upper bound,
since % p = % . 6 = 9. A minimal test set Ts for the network
in fig. 6.2 contains four tests

T, = (abcd, abcd, abcd, abcd)

The length of this test is identical with the lower bound,
since p = 4 and 2.Np = 4.

The upper bound can further be improved. It is con-
jectured that the least upper bound is p + I3§;§ . However,
the author has not been able to provide a rigorous proof
(Appendix B). The results derived above are valid for
fanout-free networks, or networks where only primary inputs

fanout. The bounds for the general case of networks with

internal fanout will now be derived.

Corollary 6.1l: Let N be an irredundant single output
network with p checkpoints that can be decomposed into k

fanout-free subnetworks Nl’NZ""’N . Let P; be the number
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of checkpoints in subnetwork Ni' for i = 1,2,...,k, and

let Ppax = max (pl,pz,...,pk). The length of a minimal

single fault test set T for network N satisfies the

following inequality

2\p

3
max® 4TS 3 p - 2(k-1)

Proof: 1If Py is the number of checkpoints in
subnetwork N, then by theorem 6.1 at least Z'Wﬁi tests are
needed to detect all single faults in Ni‘ Since
Ppax = max (Pl'PZ”"’pk)' E(Ts) must be greater than, or
can at best be equal to, ZWEmax.
tests are required to detect all single faults in subnetwork

Similarly, at most % P;

Ni‘ If the output of Ni fans out to provide inputs for
subnetwork Nj’ then at most %{pi + pj)-z tests are needed

to detect faults in both Ni and Nj; note that at least two
faults in Nj must be detected by tests for faults in Ni’
otherwise it would not be possible to propagate the effect
of faults in Ni through Nj’ If N is a single output network
that can be decomposed into k fanout-free subnetworks, then
(k-1) subnetworks provide inputs for some other subnetwork.

Hence z(Ts) is at most %-p-Z(k—l).

To illustrate, the bounds for the network in fig. 6.3
will be derived. This network has eight checkpoints and it
can be decomposed into three fanout-free subnetworks, where

P; =2, p, = 2 and p; = 4. The lower bound is Z‘Vﬁmax = 4,
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the upper bound is %&8 - 2.2 = 8. The network in fig. 6.4

has a minimal single fault test set of length four, and a
minimal multiple fault test of length five, as was shown
in chapters 2 and 3.

It should be pointed cut that the lower bound is
also a valid bound on the length of a minimal multiple fault
test set Tm’ since for any network 2(Tm)2 z(Ts). It is
more difficult to prove that Z(Tm) satisfies also the
upper bounds derived above.

The structure of the network has a great influence
on the length of a minimal test set. It was shown that the
number of tests depends on the number of checkpoints in the
network. Switching functions that are decomposable can be
realized by a multiple level network with a smaller number
of checkpoints than a two level realization corresponding
to the minimal sum of products (or product of sums) form of
the function. Furthermore, in such multiple level
realizations a single test can be expected to detect a
larger number of faults than a single test for the two
level network. For example, the network in fig. 6.4 realizes
the function £ = abc + abd + acd + bed. This network has
twelve checkpoints and needs at least nine tests to detect
all faults. The output function, however, can be decomposed

in the following way
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f =ab(c +d) + cd(a + b)

denoting g = ab, h = c¢d, f can be written as

f = gh + gh
The realization in fig. 6.4 is based on this decomposition.
The circuit has eight checkpoints and it needs only four
and five tests for single and multiple fault detection,
respectively. This compares favourably with the nine tests
required for the two level network. Similarly, a two level
AND-OR network realizing the function

f = abcdeg + abcdeg + abcdeg + abcdeg
has a minimal single fault test set of length 28. A three
level network utilizing the following decomposition

f = (abc + EEE)(deg + deg)
needs only 14 tests. Hence, from the testing point of
view, multiple level design based on decomposition of
switching functions is highly desirable. It should be
noted, however, that all functions are not decomposable.
The problem of decomposition of switching functions is

presented elsewhere [3,23].
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Chapter 7
FAULT DIAGNOSIS

When a fault is detected; it is necessary to
identify the faulty component so that it can be replaced .
Fault diagnosis will be considered under the single fault
assumption. The problem of fault diagnosis (or fault
location) is to generate a test set such that the location

of the fault can be determined from the response of the

network.

Because of the indistinguishability of certain
faults, it is not always possible to uniquely specify which

connection in the network is faulty. Two faults, £, and f

1
are said to be distinguishable,if there exists a test

2’

that detects f1 and does not detect f2, or vice versa.
Schertz [44] has shown how to combine indistinguishable
faults into equivalence classes. In a fanout-free network
where inputs can be assigned independently while testing,
two faults, fl and f2, belong to the same equivalence class
if and only if they are not distinguishable. In [44] only
the structure of the network has been considered when the
equivalence classes has been derived; when the values of

input variables cannot be assigned independently, there may
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be indistinguishable faults that are not equivalent in
the sense of [44]. For example, faults 1-1 and 4-1 in the
network in fig. 7.1 do not belong to the same equivalence
class. If the inputs are assigned as indicated in (a),
then faults 1-1 and 4-1 are distinguishable; however if the
inputs are assigned as in (b), then the two faults are not
distinguishable. Since the input applied to checkpoint 1
is not independent of the input applied to checkpoint 3
(and input at 2 is not independent of the input at 4), the
network in fig. 7.1 may not be considered as fanout-free.
In the following section, it will be assumed that all inputs

of a fanout-free network are accessible for testing.

7.1 Fanout-free Networks

It is difficult to derive a minimal diagnostic test
set, unless all pairs of faults to be distinguished are
considered. However, a nearly minimal diagnostic test set
can be often derived with computational effort comparable to

that required for fault detection.

Lemma 7.1l: Let N be a fanout-free network such that
both its ESP forms are irredundant. If a test set T checks
for the presence of all Xi and all Yj terms, then T
distinguishes between any two single faults that do not

belong to the same equivalence class.
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Proof: If both the ESP(f) and ESP(f) forms are

irredundant, then it is possible to check for the presence
of all X and Yj terms and T will detect all single faults
in N. Clearly, any two faults fl and f2, such that f1
causes some Xi to disappear while f2 makes some Yj disappear,
are distinguished, because such faults can never be detected
by the same test. Now, suppose that fault fl causes the
disappearance of terms Xl,Xz,..., XP and that all these

terms disappear due to fault f2 as well. If no other Xi

term disappears due to f2, then f1 and f2 are equivalent
because their effect upon the output function is the same.
Otherwise there must be at least one Xi term that disappears
due to f2 and does not disappear due to fl,and then T will

contain at least one test that will distinguish fl from f2.

A test set that checks for the presence of all xi
and Yj terms is not, in general, a minimal diagnostic test
set; however, an optimal test set for fault diagnosis is a
subset of such a set. It is conjectured that in order
to distinguish between any two distinguishable faults
within a network, it is sufficient to distinguish between
any two distinguishable faults on the checkpoints. A
test that checks for the presence of some term detects faults
on all checkpoints associated with that term. Therefore,
the problem of generating an optimal diagnostic test set

is equivalent to the problem of selecting a minimal set of
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X and Yj terms, such that for any two nonequivalent
faults fl and f2' this set contains at least one term
which disappears due to fl and does not disappear due to

f2' or vice versa. This is illustrated by the following

example.

Example 7.1l: A diagnostic test set will be derived for

the network in fig. 7.2, where the checkpoints are enumerated

1-7, while the remaining lines 8-12. The ESP forms are

albzc3 + alb2d4 f es9¢ + e5h7
ESP (f) = a,eg + a;9gh, + bzés + bogch, + c3d4é5 + c3d,gchy

We denote by Ai the set of checkpoints associated with the

ESP (£)

term X..
i

Thus A, = (1,2,3)

A test set that checks for presence of Xl = 513223 detects

faults 1-1,2-1 and 3-1. Because faults 1-1 and 2-1 are

equivalent, we choose checkpoint 1 to represent this

equivalence class. Then, the A sets are

Al = (1,3) AZ = (1,4) A3 = (5'6) A4

Denoting by Bj the set of checkpoints associated with the

= (5,7)

term Yj and choosing checkpoints 3 and 6 to represent the
equivalence classes (3-0,4-0) and (6-0,7-0), respectively,

the following B sets are obtained

B, = (1,5) B, = (1,6) By = (2,5) B, = (2,6)

It is now necessary to find a minimal set SA of A sets such

that for any two checkpoints p and g, where p,q, € (1,3,4,5,6,7),
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TABLE 7.1

Fault Dictionary for Network N7.2

Fault in Equiv. Class

Failing Test (s)

1-0

2-0
(1-1,2-1,8-1,10-0)
3-1

4-1
(3-0,4-0,8-0)
5-1
(5-0,9-0,11-0)
6-1

7-1
(6-0,7-0,9~1)
(10-0,11-1,12-1)

12-0

ts5

ts
£ty

1

2

7+t
5867t
37%

3

4
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SA contains at least one A set that includes p but does
not include q, or vice versa. It is easy to see that all
four A sets must be chosen, i.e.
Sa = (Bys25,85,2))
However, only four B sets are sufficient and the set SB is
Sg = (By1sB3,Bg,By)
A test set T that checks for the preSénbe“bf“éorresponding

Xi and Yj terms is

(abcdegh, abcdegh, abcdegh, abcdegh, abodegh,

abcdegh, abedegh, abcdegh) =

]

(tl’t2’°°”t8)
Table 7.1 represents the fault dictionary for network

N7.2 and the above test set.

In fanout-free networks whefe AND and OR gates
alternate, every single fault equivalence class spans at
most one gate. Thus, every féult can be identified to
within a pair of interconnections in the network. A method
that finds such fault-locatable realizations was described

by Friedman and Menon [16].

7.2 Networks With Reconvergent Fanout

Faults in circuits with reconvergent fanout cannot
be located as closely as in fanout-free networks. Even if
the inputs can be assigned independently while testing,

there may be indistinghishable faults in the same fanout-free
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subnetwork, as well as indistinguishable faults in two
different fanout-free subnetworks. For example, in the
network in fig. 7.3 faults 1-1 and 4~1 are indistinguishable
and so are faults 2~0 (or 3-0 or 7-0) and 10-0.

Currently available methods.for fault diagnosis
[7,9] usually assume that a complete or a partial fault
table is given, and they use this table to select the
diagnostic test set. Thus, considerable effort is needed
to build the fault table and additional effort is required
to select the test set. A method for deriving an optimal
test set for diagnosis without constructing the fault table
of the circuit will now be described.

Let us denote by f(fa) the function realized by
the circuit in the presence of the fault fa. The set
D(fa,fb), of all tests that distinguish between faults fa
and fb’ is

D(f,,£) = £(£)@E(f) = E(£)@E(£)
The function f(fa) can be easily obtained from the ESP (f)
form of the network. The effect of faults upon the terms
of the ESP forms has been established in chapter 2, and the
following is a brief summary of how a s-0 or s-1 fault on
checkpoint p of a normal network influences term apq...sW:

1. In the presence of the fault p-1

term a W changes to 1.W =W

pq-o.s

term a W changes to 1.W = 0.W = 0
S qhg...s g
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Figure 7.3 Network N7.3
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2. 1In the presence of the fault p-0

term apq...sw changes to 0.W= 1.W=W
term apq...sw changes to 0.W = 0

Similarly, faults g-1 and g-0 have the same effect as
faults p-1 and p-0, respectively, provided that the
inversion parity between p and g is even, and the opposite
effect when the inversion parity is:odd. Thus, the function
£(p-1) or £(p-0) is obtained from the ESP(f) form by
applying the rules above to every literal that is associated
with checkpoint p, removing all subscribts, and using all
the Boolean identities to simplify the resulting expression.
To generate a diagnostic test set by.considering all
pairs of faults on checkpoints would require a large amount
of computation. Because a complete test set for fault
diagnosis has to detect all faults, it is reasonable to
expect that a test set for fault detection is a subset of
an optimal diagnostic test set. Assuming that a single or
multiple fault test Tl has been derived, the following
procedure generates a test set T2, such that (Tlu T2) is an

optimal test set for fault location.

Procedure 7.1l:

l. From the checkpoint covering table, find the
set of all fault pairs (fa,fb), such that faults fa and fb
are not distinguished by Tl. When forming these pairs,

select one fault to represent each class of equivalent fauits.
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2. Use ESP(f) or ESP(f) depending on which has a |
smaller number of terms, to evaluate f(fa) or f(fa) in the
manner described above (step 3 assumes ESP(f) used).
3. For every pair (fa,fb) compute
D (fa,fb) = £ (fa) @Df (fb)
4., Test set T, is any covering, preferably minimal,

of all the D(fa,fb) terms computed in step 3.

It should be noted that if D(fa,fb) = @4 for some

fa and fb' then faults fa and fb are not distinguishable.
TABLE 7.2

Test Set T, for Network N7.4

1 2 3 4 5 6 7 8

abcd o - 1 - - - - 1

abcd o 0 - - 1 - - 1

abcd 0 Q - - 0 0 1 -

abcd - - - - - 1 - 1

abecd - 1 0 1 - - - 0

abced 1 - - 0 - - o0 -

Example 7.2: Test set Ty (see Table 7.2) is a minimal

test set which detects all faults in the network N7.4.
Choosing faults 3-0,4-C, and 5-0 to represent the equivalence
classes (3-0,2-1), (4-0,7-0) and (5-0,6-0), respectively,

it can be observed from table 7.2 that the following fault

pairs are not distinguished by Tl: (3-0,8-0), (1-1,4-0),
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(4-1,3-0), (4-1,8~0) and (7-1,5-0). The ESP(f) form of

this network is

-

ESP(f) = a,-b, + b,C 37 *+ a18b5c28 + a18b5d38 + a18c28d +

1774 4727

+ a;gd3gdg

For the pair (3-0,8-0)

d

£(3-0) = ab + 0 + abc + ab + acd + ad =
= ab + ab + ad
When evaluating f£(8-0), note that the inversion parity

between 3 and 8 is even, whereas between 2 and 8, or 1 and

8, it is odd.

£(8-0) = 3b + bod + b+ B+ d + & =
=a+b+d+c
D(3-0,8-0) = (ab + ab + ad)® (a + b+ d + ¢) =
= ab + abcd

In the same way it is found that

D(1-1,4-0) = ad + bcd + abc
D(4-1,3-0) = ab + abcd + abcd
D(4-1,8-0) = &

D(7-1,5-0) = &

Hence the fault 4-1 is not distinguishable from fault 8-0,
and 7-1 is not distinguishable from 5-0. Each of the tests
abcd, abc, or abd covers all the nonzero terms. Choosing
T, = abcd, the resulting test set is

LUT, = (abecd, abcd, abecd, abcd, abed, abed, abcd) =

= (tl’tzlt3l' sey t7)



TABLE 7.3

Fault Dictionary for Network N7.4

Fault in Equiv. Class

Failing Test (s)

1-1

2-0

3-1
(2-1,3-0,9-0)
(1-0,9-1,10-1)
10-0

4-1

7-1
(4-0,7-0,12-0)
5-1

6-1
(5~-0,6-0,11-0)
8-0
(8-1,11-1,13-0)
(12-1,13-1,14-1)
14-0
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Test abcd checks for the presence of the term X2 = b4527d

This term disappears due to the following single faults:

37°

4-0,2~1,3-0 and 7-0. Network N7,4 is not a network with

EIP, but since no Xi term can grow due to fault 2-1 or 3-1
into Xi such that abcd ¢ Xi, test abcd detects all the single
faults above. From this fact and from Table 7.2, the faul:

dictionary in Table 7.3 is constructed.

With modern LSI technology the degree of diagnostic
resolﬁtion required is usually determined by the smallest
replacable modules of the system. Hence, there is no need
to distinguish any two faults that belong to the same
module and the diagnostic test set would be generated by
considering only those fault pairs (fa,fb), where fault fa

and fault fb are faults in two different modules.
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Chapter 8
CONCLUSIONS

The methods developed in this thesis derive the
test set by checking for growth and/or presence of the
terms in the ESP form(s) of the network. The ESP form
describes the function realised by the network while
preserving the important structural properties. It is for
these reasons the ESP form is appropriate for test
generation. A brief summary of the advantages of the
approach taken herein is now presented, together with a
discussion of the disadvantages, and suggestions for ways
of circumventing them. It appears that the main advantages
are as follows:

1. single fault detection. The test set generated
by procedure 2.1 or 5.1 is minimal. The computational effort
required by procedure 5.1 compares very favourably with
almost any other method.

2; Multiple fault detection. It is felt that the
ESP form is able to solve the multiple fault problem more
easily than the other methods, such as those based on path
sensitizing. The results in section 3.1 provide an insight

into conditions under which fault masking occurs and the
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results are also used to obtain minimal multiple fault
test set (procedure 3.3). For most practical purposes it
may be preferable to derive a nearly minimal test by
utilizing the result of theorem 3.3, or theorem 3.4, since

the computational effort is considerably smaller.

When a single fault test set is derived for networks
with unequal inversion parity of all reconverging paths,
both the ESP(f) and ESP(f) forms are employed by procedure
2.1l. However, the number of terms in at least one of the
two forms may be large for some networks. A test set for
such networks can be also derived by checking for the presence
and growth of only Xi (or only Yj) terms, provided that it
is ensured that reconvergent fanout cancellation does not
occur. -

If the ESP form is redundant, it may not be possible
to check for presence of every term. If this is the case,
it is suggested to extend procedure 5.1 in the following way
(assume ESP(f) is used):

- generate tests that check for growth of all Xi

terms, and tests that check for presence of every term xa such

that X .1 X. # &.

o i i

- if a fault(s) is not detected by the tests generated
above, find a pair, or triple, etc..., of terms that all

disappear due to this fault and generate a test that checks

for presence of such a pair, or triple, etc., of terms.



134

Theorem 3.3 is very useful when only one of the
two ESP forms is used and a multiple fault test set is to
be derived. However, this theorem cannot be applied when
it is not possible to strongly check for growth of all
terms. A valuable extension of this work would be to prove
that the theorem also holds for the more general case of
the weak check.

The problem of checking experiments for sequential
machines has not been considered in this thesis. Although
a number of methods for generating such testing sequences
have been described [16,19,22,26,46]1, no satisfactory

solutions are available. This topic is also worthy of

further research.
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APPENDIX A
VALIDITY OF PROCEDURE 3.1

Procedure 3.1 finds the multiple faults that are
not détected by a single fault test set Ts by utilizing the
result of Theorem 3.2. It was shown in the proof of this
theorem, that if a test t detects fault fl and this fault is
masked, then there exists a term Ya (oxr XB) which grows into
Y& (or Xé) and t e\Y& (or t e Xé). Procedure 3.1 constructs
the intersection P = Xi.ii.f.Ts (or Y!.fj.f.Ts), although

J
it has not been proved that t € Y&.?a (or t ¢ x'.is).

B
In a fanocut-free network every variable is associated
with only one checkpoint. Therefore, if a term disappears
due to fault fl’ it cannot grow due to fault f2 when fl is
present. Consequently, t € Y&.?a (or t € Xé.ie) holds for

fanout-free networks.

For networks with internal fanout a term which
disappears due to fault fl may grow due to fault f2 when
El,fz) occurs. If this is fhe case, then fl and f2 are
faults in two different fanout-free subnetworks, say
subnetwork Nl and N2, such that the output of Nl fans out

to provide inputs for N,. Suppose that fault fl makes

the term Ya = UW disappear by making some literal, in U,
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become zero and that fl is detected by test tl £ Ya' If
Ya grows into Y& = W due to fault f2, then f2 masks fl

under t,, but ty £ Y&.?a. We shall now show that procedure

3.1 does not miss any undetected multiple faults for the
following reasons:

1. Fault fl is not equivalent to a fault on the
output of subnetwork Nl. Then there will be at least one
additional Yj term, say term YY' where YY = VW and U.V = 4,
and such that YY grows due to f2 into Y; = W. If Ya is not
checked for growth due to f2 by Ts’ then YY is not either,
and procadure 3.1 will not miss this masking relation since
t, e Y;.?Y.

2. Fault fl is equivalent to a fault on the output

of subnetwork Nl' Hence it is equivalent to a multiple
fault (f3,f4,...,fn) on inputs of N,. Two possibilities can
occur:

(a) Faults f3,f4,...,fn do not make term Ya
disappear. Then test set Ts will contain at least one
additional test that detects faults f3,f4,...,fn, and also
fl; hence f2 will not mask fl under Ts'

(b) Faults f3,f4,...,fn are detected by the same
test as fl' i.e. by tl. Then they cause term Ya = UW
to disappear by making some literal in W zero and Ya
cannot grow due to f2. Therefore fl will not be masked.
Thus, it is sufficient to construct the intersection
P = Xi.ii.f.Ts ( or Yj.?..f.Ts) in order to find the multiple

3
faults that are not detected by Ts'
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APPENDIX B
UPPER BOUND ON Z(TS) FOR ILFF NETWORKS

A single fault test set Ts for an ILFF network
with p checkpoints must detect 2p faults, denoted fl'
fl,fi,fz,f;,...fp,f;. Let r tests detect faults
fl’f2""’fp by checking for the presence of r X, terms
Xl' X2,..., Xr' Then at most p tests will be needed to
detect faults fi,f',...,f; and this will happen when all
terms are a distance 3 apart. The distance between two
terms Xl and X2 is the number of literals that appear in
Xl as well as Xz, such that the appearance is complemented

in Xy and not complemented in Xy, OX vice versa. If n is

the number of different literals in the ESP(f) form, then
[34]

r < 2ilog,n+l b1)

It is now conjectured that
r.nsp

if all the terms are to be a distance 3 apart.



p. and from (bl)
Then n < -

2 _ lo R
g
r < 2r 2 r

log2r < % - logzp + log2r

r < —B
log,p

—E
Hence L(T ) s r + p <p + Tog,p
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