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Abstract 

 

Subsurface geological characterization often requires solving a classification problem to 

obtain a model of facies that is later populated with continuous properties like porosity or 

permeability. The classification problem, which consists of assigning a single category to 

any unsampled location based on observed data, is analyzed and solved in this thesis 

using geostatistical and machine learning tools. 

This research proposes an easy-to-implement heuristic technique that uses 

geostatistical criteria, such as correct classification of the observed data and good 

reproduction of the global proportions of categories, to obtain from the SVC algorithm a 

boundary classifier. This boundary is used to generate the facies model. 

The case studies show that the implementation of the proposed technique is highly 

automatic. The responses are comparable in terms of prediction accuracy to those 

obtained by the conventional geostatistical approach. They also show how simple 

information from SVC allows for an improvement in the response of conventional 

geostatistical indicator simulation models. 
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1 Introduction 

Investment decisions in the petroleum and mining industries rely on resource 

characterization of sites of economic interest based on observed data. In the petroleum 

industry, it is necessary to predict the prevalence of net and non-net facies (e.g. sand or 

shale) at locations to be drilled.  Similarly, in the mining industry, the classification of ore 

or waste is determined before mining an area.  In the simplest case, resource 

characterization can be broken into three distinct phases: geology modeling, petrophysics 

or grade modeling, and decision modeling. 

In many cases, the geology model is first constructed.  This can be accomplished 

using expert geological information to manually draw or digitize the geologist’s vision of 

the subsurface, or it can be done using cell-based, object-based or multiple point statistics 

modeling approaches. 

Once the geology model is constructed, continuous properties are then populated in 

this same model.  In the case of a reservoir, these properties are petrophysical in nature 

such as porosity and permeability.  In mining, these properties are usually metal and/or 

mineral grades. The values associated to any one location are highly dependent on the 

corresponding geology. 

Finally, the resource model is processed through some type of response function for 

decision making.  For a petroleum reservoir, the flow characteristics are of primary 

importance to production so the response function is usually a flow simulation; while, in 

the mining industry, production is dependent on the classification of ore and waste which 

is based on economics of mining ore and moving waste. 

In the first phase of modeling, the type of modeling is considered to be discrete or 

categorical modeling, while the second phase is clearly the construction of a continuous 

model.  Depending on the field of application, the third phase can result in continuous 

and/or discrete models. This thesis is concerned with categorical modeling, in particular 
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the modeling of facies or rock types. It considers both geostatistical and machine learning 

tools to solve the problem of assigning a single facies/rock type to a location. 

Characterizing a site is not only the prediction of the value of geological variables at 

multiple locations; it also includes the quantification of the uncertainty associated to 

those predictions. This thesis shows that conventional geostatistical models that take 

information from a machine learning algorithm may improve uncertainty quantification. 

 

1.1 Problem Setting 

 

This thesis is aimed at the analysis of the classification problem, which is defined as the 

problem of assigning a single category to an unsampled location based on a limited set of 

observed data. Consider the case of two facies shown in Figure 1.1. A single facies, white 

for sand or black for shale, must be assigned to the unsampled location u (u represents a 

vector of coordinates) based on 10 observed data. Figure 1.1 shows how information 

about the facies at specific coordinates is collected by drilling wells. 

 

 

Figure 1.1: Classification problem. A single facies, white for sand or black for shale, must be 

assigned to the unsampled location u based on 10 observed data. 
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Several approaches can be applied to solve this problem, Figure 1.2 illustrates a 

method in which a selected subset of neighbouring data is linearly combined to estimate 

the facies at the location u. Seeing that the result of combining the observed data is 

neither white nor black, a grey scale rule is used to assign a single facies to the 

unsampled location u. 

 

 

Figure 1.2: A linear combination of neighbouring data plus a rule is used to assign a single facies 

to the unsampled location u. 

 

Figure 1.3 shows a method in which the observed data is used to generate a boundary 

that separates sand (white) and shale (black) data. The boundary is then used as a 

classifier to assign a single facies to the unsampled location u. 

 

Figure 1.3: A boundary classifier is used to assign a single facies to the unsampled location u. 
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The first approach presented belongs to the geostatistics field; the weights to linearly 

combine the data are calculated by kriging and a classification rule is defined based on 

conditional probabilities. The second approach belongs to the machine learning field; the 

parameters that define the boundary classifier are calculated using the support vector 

classification (SVC) algorithm. 

Although the geostatistical approach to solve the classification problem is mainly data 

driven, the results are by no means objective; that is, the subjectivity of the modeler 

greatly influences the algorithmic responses. To put it in another way, the responses from 

kriging are not only influenced by the quantity and quality of the observed data, but also 

by the expertise of the modeler. Furthermore, the ability of the modeler to make 

appropriate geostatistical modeling decision might significantly impact the time to obtain 

a response. On the other hand, the machine learning approach, specifically, the SVC 

algorithm has the ability to generate almost fully data driven responses with limited 

influence of the modeler. Contrary to the geostatistical approach, the time to get a 

response from the SVC algorithm is little influenced by the modeler because it is mostly 

computational time. 

The use of support vector machines (SVM) to model spatially distributed data is not 

new, but the studies published have reached diverse conclusions.  For instance, 

Wohlberg, Tartakovky and Guadagnini (2006) use SVC for lithofacies delineation and 

concluded that SVC slightly outperform geostatistic in reconstructing the boundaries 

between two geological facies. Kanevski et al. (2001) compare SVM to geostatistical 

approaches to analyze continuous and categorical reservoir data. They concluded that the 

responses of both approaches are quite good. Kanevsky, Wong and Canu (2000) explore 

the use of a hybrid machine learning-geostatistical method for the analysis of pollution 

data. They reported the results as promising. In contrast, Gilardi and Bengio (2005) 

discuss the use of machine learning for environmental data and concluded that kriging is 

more reliable than SVM to estimate continuous data. Gilardi and Dubois (2000) also 

using environmental data reported that the results obtained using SVM are worse than 

those obtained using kriging. 

Unlike most of the literature reviewed, this research does not try to demonstrate the 

superiority of one approach over the other. The basic idea is that under certain conditions, 

the solution to the classification problem from both approaches should tend to converge 

to a unique response that balances the flexibility of kriging to incorporate subjective prior 
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knowledge with the less subjective data-driven response of the SVC algorithm. If the 

responses tend to converge, then it should be possible to use valuable information 

obtained from the SVC model to improve the response of conventional geostatistical 

models (or hybrid geostatistical-machine learning models). 

 

1.2 Objectives and Scope 

 

The goals of this thesis are: (1) to analyze geostatistical and machine learning (SVC) 

algorithms to solve the classification problem, (2) to discuss the practical application of 

those algorithms and their responses, and (3) to develop new concepts to solve the 

classification problem. 

To achieve the above goals, the following objectives are set: (1) to translate the SVC 

algorithm to classical geostatistical notation, (2) to prepare a synthetic classification 

problem that allows the assessment and comparison of the responses of the different 

approaches, and (3) to propose a new algorithm to solve the classification problem using 

a hybrid of geostatistical and machine learning tools. 

The scope of this thesis is limited to the analysis of binary classification problems in 

two dimensions. Geostatistical simulation is addressed using cell-based techniques. 

 

1.3 Proposed Approach 

 

This thesis proposes an easy-to-implement technique to solve the problem of facies 

classification. The proposed technique obtains from the SVC algorithm a boundary 

classifier with good prediction property, correct classification of the sampled data set and 

good reproduction of the global proportions of facies. The novel technique adopts a 

heuristic approach to select the parameters required to implement SVC. It is based on the 

performance of the boundary classifier on the observed data and the unsampled locations. 

The practical implementations show how information obtained from SVC can be used 

to construct a conventional (hybrid) geostatistical model that better classifies unsampled 

locations compared to the model built without the SVC information. They also show that 

a set of simulated realizations generated with the model, using information from the SVC 

response, reproduces better the semivariogram and the global facies proportions. Further, 
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the simulated realizations yield better prediction properties compared to a set of 

realizations that does not use the SVC information. 

GSLIB (Deutsch and Journel, 1998) and LIBSVM (Chang and Lin, 2001) are used to 

perform the classification and simulation tasks required for this research. MATLAB code 

was written to implement the proposed technique and to manipulate, visualize and 

analyze the information. 

 

1.4 Outline of the Thesis 

 

Chapter 2 contains a literature review of geostatistical and machine learning concepts. 

The geostatistical section includes the description of fundamental concepts as random 

variables and random functions, and the algorithms for modeling categorical variables 

such as indicator kriging and sequential indicator simulation. The machine learning 

section presents the concepts of statistical learning theory and the structural risk 

minimization principle. The novelty is the translation of the description of the SVC 

algorithm to classical geostatistical notation. 

 

Chapter 3 introduces a heuristic technique to select the parameters of a SVC 

machine. A practical implementation example is presented using a synthetic reference 

data and a large sampled data set. Results are analyzed and issues discussed. 

 

Chapter 4 presents another application of the proposed technique but using a small 

data set sampled from the same reference data. It also shows how information obtained 

from the SVC response is used to generate conventional geostatistical classification and 

simulation models with improved responses. 

 

Chapter 5 recapitulates the conclusions of the thesis and provides other ideas to 

complement and/or to expand the presented research.  

 

Appendix A contains the MATLAB code written to develop this research. 
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2 Fundamental Concepts 

The technique proposed in this thesis is based on well known algorithms within 

geostatistics and machine learning. Specifically, kriging and simulation algorithms for 

categorical data on the geostatistics side, and the support vector classification (SVC) 

algorithm on the machine learning side. 

Only fundamental concepts needed to describe the aforementioned algorithms will be 

presented. The reader interested in geostatistics is referred to the introductory books of 

Isaaks and Srivastava (1989) and Goovaerts (1997). Chiles and Delfiner (1999) and 

Journel and Huijbregts (1978) offer a more theoretical treatment of the subject, while 

Deutsch (2002) offers a more practical approach. On machine learning, essential 

references are Vapnik (1998, 1999). A good introductory book is Hastie, Tibshirani and 

Friedman (2001). Burges (1998) and Kecman (2001) contain an excellent description of 

the SVM algorithms and its variants. 

 

2.1 Geostatistics 

 

Geostatistics refers to a field of applied statistics, wherein a set of spatial statistical tools 

are used to make inferences, usually related to naturally occurring phenomena.  While it 

originated in the mining industry (Krige, 1951; Matheron, 1970), it has since found use in 

other natural resource sectors including the petroleum industry, environmental, forestry 

and agriculture. 

There are two main goals in geostatistics: (1) the estimation of the value of spatial 

variables at unsampled locations over an area of interest, and (2) the modeling of the 

uncertainty about these inferred values. The former goal can be obtained by kriging, 

while the latter requires a (sequential) simulation approach. 

Before describing the relevant geostatistical algorithms needed for this research, the 

foundation concept of random functions is introduced. The material presented in sections 
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2.1.1 and 2.1.2 follows Goovaerts (1997). Note that all the equations presented in these 

sections are provided only for categorical data. 

 

 2.1.1 Random Functions 

 

The random function (RF) concept allows the interpretation of a set of unknown values as 

a set of spatially dependent random variables (RV).  

“A RV is a variable that can take a series of outcome values according to some 

probability distribution” (Goovaerts, 1997, p. 63). By convention, a categorical RV at a 

location u that can take any one of K mutually exclusive discrete and non-ordered values 

is denoted by S(u) and its outcome by sk. 

S(u) is characterized by its conditional cumulative distribution function (ccdf) which 

provides for any ordering of the K outcomes sk, “the probability for any one of the 

categories sk` ordered lesser or equal to sk to prevail at u “(Goovaerts, 1997, p. 64). 

conditional to n surrounding data:  

 

 ' '

' 1 ' 1

( ; | ( )) ( ; | ( )) ( ) | ( )
kk

k k k

k k

F s n p s n Prob S s n
= =

 
= = = 

 
∑u u u∪

 

(2.1) 

 

where the probability for the category sk to prevail at u conditional to n surrounding 

data was defined as: 

 

 
( ; | ( )) { ( ) | ( )}k kp s n Prob S s n= =u u  (2.2) 

 

with the condition that the K probabilities p(u; sk|(n)) must be in the range [0,1] and 

sum to one. 

A RF is a set of RV in a finite domain A characterized by a multivariate ccdf. The 

multivariate ccdf of S(u) represents the spatial law of the RF and is denoted by: 
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where � represent the total number of locations. 

 

Indicator random variable I(u;k): To make possible the implementation of 

geostatistical algorithms that perform mathematical operations, the categorical RV S(u) 

(e.g. sand and shale) is transformed to a binary indicator RV (e.g. sand = 1 and shale = 0) 

by: 

 
1 ( )

( ; ) 1, ,
0  

kif S s
I k k K

otherwise

=
= =



u
u …  (2.4) 

 

Decision of stationarity. To perform geostatistical predictions, the multivariate ccdf is 

assumed to be invariant under translation within the domain A. Often this requirement is 

too strict and only second order stationarity is assumed; this decision of stationarity 

implies that the expected value is independent of the locations and the indicator 

covariance CI(h) between two locations only depends on a vector h. 

The relationship that exists between the indicator covariance and the indicator 

semivariogram γI(h) is used to obtain CI(h) : 

 

 ( ) (0) ( )
I I IC C γ= −h h  (2.5) 

 

where CI(0) is the variance of the data. In practice, to assure a licit indicator 

semivariogram, a mathematical model is adopted based on the experimental indicator 

semivariogram calculated by: 

 

 [ ]
( )

2

1

1
( ; ) ( ; ) ( ; ) 1,...,

2 ( )

�

I i i

i

k I k I k k K
�

γ
=

= − + =∑
h

h u u h
h

 (2.6) 

 

where N(h) is the total number of data pairs separated by the vector h. Description of 

licit semivariogram models can be found in Deutsch (2002 , p. 133). 
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2.1.2 Classification of Categorical Variables 

 

Kriging describes a set of linear regression tools used to estimate the value of a variable 

at any location u over an area of interest. As such, the estimator is a linear combination of 

the data surrounding the location u. It takes the form shown on (2.9) for an indicator RV. 

Categorical RV cannot be estimated as a linear combination of neighboring data; 

kriging applied to the indicator RV provides at each location u the conditional probability 

of occurrence of each category. This conditional probability can be used to allocate a 

single category to the location u in two ways: (1) in conjunction with some applied rule 

or (2) as input for a sequential simulation algorithm as presented in section 2.1.3. To 

illustrate both ways, consider the problem of estimating the category s at any location u 

over the domain A, based on the following set of n observed data: 

 

 { }( ); 1, , ; 1, ,ks n k Kα = =αu … …  (2.7) 

 

where k = 1, … , K indexes the number of mutually exclusive categories s1 , … , sK. 

 

Using a rule, the problem is addressed in three steps: (1) preprocessing of data, (2) 

indicator kriging and (3) classification rule. 

 

Preprocessing of data. As explained in (2.4), the categorical RV must be transformed to 

an indicator RV I (uα; k) by: 

 

 
1 ( )

( ; ) 1, ,
0  

kif S s
I k k K

otherwise

=
= =



α

α

u
u …  (2.8) 

 

Indicator kriging. Kriging applied to the indicator RV produces the conditional 

probability of occurrence of each category k at the location u. The estimated value of the 

indicator RV is: 

 

 [ ] { } { }*

1

( ; ) ( ; ) ( ; ) ( ; ) ; 1,...,
n

I k I k E I k E I k k Kα α α
α

λ
=

= − + =  ∑u u u u  (2.9) 
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where * denotes an estimate of the indicator RV and λα represents the weight assigned 

to I(uα;k).  The simple indicator kriging (SIK) estimator is obtained when the expected 

value E{I(u;k)} is considered constant and known throughout the domain A. 

The weights λα are determined to minimize the expected value of the error in the 

estimated under the constraint of unbiasedness of the estimator. The optimization 

problem: 

 
{ }
{ }

2
*

*

( ; ) ( ; )

( ; ) ( ; ) 0

minimize E I k I k

subject to E I k I k

λ
 − 

− =

u u

u u

 (2.10) 

 

leads to the simple kriging system of equations or the normal equations: 

 

 
1

( , ) ( , ) ; , 1,...,
n

I IC C nβ α β α
β

λ α β
=

⋅ = =∑ u u u u  (2.11) 

 

Other types of kriging are available, most of which are variants of simple kriging 

involving the imposition of constraints on the system of equations or the relaxation of 

stationarity of the mean. For instance, ordinary kriging requires the weights to sum to 

one, and universal kriging imposes a deterministic model of the mean to the system. 

An important property of kriging that will be recalled in the next chapters is the 

exactitude property. It means that kriging as an exact interpolator, reproduces the 

observed data at their locations. 

 

Classification rule. The most practical and simplest classification rule is to allocate the 

unsampled locations to the category with the largest conditional probability of occurrence 

(Goovaerts, 1997, p.356). The rule becomes: 

 

 
* *

( ) ( ; ) ( ; ') , ' ; 1,...,ks s if I k I k k k k K= > ∀ =u u u  (2.12) 

 

Note that this rule classifies correctly all the observed data due to the exactitude property 

of kriging. A different classification procedure can be found in Soares (1992). The 

alternative to the classification rule is using the kriged conditional probabilities to 

implement the sequential simulation principle as described below. 
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2.1.3 Simulation by Sequential Indicator Simulation (SIS) 

 

Consider now the problem of generating multiple realizations of the spatial distribution of 

S(u) in the gridded domain A, based on the set (2.7). 

The cell-based modeling technique known as sequential indicator simulation (SIS) is 

used to generate the realizations. The SIS algorithm (Journel and Alabert, 1988; Alabert 

and Massonat, 1990; Deutsch and Journel, 1998) is based on the sequential simulation 

paradigm (Isaaks, 1990). It requires coding the categorical data as indicator RV and it 

proceeds as follow: 

1. Define a random path visiting each node of the gridded domain A only once 

2. At each node u’:  

a. Estimate the K conditional probability values p(u;sk|(n)) using indicator kriging. 

The conditioning data is the set (2.7) and previously simulated values. 

b. Ensure that each conditional probability value is in the range [0, 1], and that their 

summation adds up to unity. 

c. The K conditional probability values define a probability distribution function for 

the indicator variable at location u’. Draw a simulated value from this function 

and add it to the conditioning data. 

3. Proceed to the next node along the random path and repeat steps above. Visit all the 

nodes to obtain a complete realization. 

4. Set a different random path and repeat steps 2 and 3 to generate a new realization. 

Implementation details of the SIS algorithm can be found in Deutsch and Journel 

(1998). 

 

Other algorithms are available to generate simulated realizations of categorical 

variables. The cell-based truncated gaussian simulation algorithm (Matheron et al., 1987; 

H. Beucher et al., 1993; Xu and Journel, 1993) “generates realizations of a continuous 

gaussian variable and then truncates them at a series of thresholds to create” (Deutsch, 

2002, p.204) realizations of the categorical variable. Object-based models that insert geo-

objects into a simulated field can be found in Deutsch and Wang (1996), and Holden, 

Hauge, Skare and Skorstad (1998). More recently, multiple-points statistics (MPS) 
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methods (Journel and Alabert, 1989; Guardiano and Srivastava, 1993; Strabelle and 

Journel, 2001) that use spatial moments greater than two have been used to generate 

simulated realizations. 

 

2.2 Machine Learning  

 

Machine learning refers to a branch of statistics and computer science (Gilardi and 

Bengio, 2005), whose goal is to learn a dependence between variables using a set of 

observed data.  

Since the first learning machine, the perceptron of Rosenblatt (1962), and the 

theoretical works of Vapnik and Chervonenkis (1974) about statistical learning theory, 

there has been a boom of machine learning algorithms, such as: neural networks (NN), 

support vector machines (SVM), linear discriminant analysis (LDA), etc. The machine 

learning algorithms have found application in many fields of science and engineering: 

speech and handwriting recognition, natural language processing, stock market analysis, 

bioinformatics, etc (Kecman, 2001, p.2-3). 

In the context of spatial data, the SVM algorithms allow to estimate the value of 

continuous (support vector regression - SVR) or categorical variables (support vector 

classification - SVC) at unsampled locations on areas of interest. The next section 

describes the SVC algorithm and its fundamental concepts. 

 

2.2.1 Structural Risk Minimization Principle (SRM) 

 

The SVC algorithm implements the structural risk minimization (SRM) principle 

developed in statistical learning theory. SRM tries to minimize the bound of the 

generalization error defined as: 

 

 ( ) ( ) ( , / )emp confR R R g n≤ +w w w  (2.13) 

 

where R is a bound of the generalization error, Remp is the empirical error on the 

observed data and Rconf  is a confidence term that depends on the number of observed data 

(n), the complexity (g) of the modeling function, and the weights w that define the 

approximating function. 
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Figure 2.1: Bound of the generalization error. The optimum value corresponds to an appropriate 

level of empirical error and confidence (Modified redraw from Vapnik 1995, p.96). 

 

Figure 2.1 illustrates how the SRM principle defines a “trade-off between the quality 

of the approximation of the observed data and the complexity of the approximating 

function” (Vapnik, 1995, p. 95). 

 

2.2.2 Support Vector Classification (SVC) 

 

The support vector algorithm (Boser, Guyon and Vapnik, 1992) was initially developed 

for solving classification problems. Soon after, it was extended to deal with regression 

problems (Muller et al. 1997). The discussion presented in this section follows Kecman 

(2001, Chapter 2). The SVC algorithm seeks for the weight parameters w and the bias 

term b of a decision boundary (a hyperplane) of the form: 

 

 0b+ =Tw u  (2.14) 

 

The boundary will separate the categories given on the observed data with a maximum 

margin as illustrated in Figure 2.2. Vapnik (1999) shows that the SVC implements the 

SRM principle by controlling the model complexity through the width of the margin. The 

decision boundary will classify the binary category s at unsampled locations u according 

to the rule: 
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To highlight the differences between the geostatistical and the machine learning 

approaches to classify unsampled locations, SVC is used to solve the problem stated in 

section 2.1.2. SVC has the following steps: (1) preprocessing of data, (2) SVC training 

and (3) SVC testing. 

 

Preprocessing of data. Without loss of generality, suppose that the set (2.7) has two 

categories, s1 and s2. To perform SVC the set is coded as: 

 

 
1

2

1 ( )
( )

1 i ( )

if s s
i

f s s

=
= 

− =

α

α

α

u
u

u
 (2.16) 

 

 

Figure 2.2: Linear separable case. Basic SVC concepts: codification (±1), margin (M), weights 

(w) and support vectors. 

 

SVC training. Finding the weighting parameters w and the bias term b of the decision 

boundary (2.14) using the observed data is referred to as training the SVC. In machine 

learning jargon the observed data is called the training set. The percentage of observed 

data misclassified by the decision boundary is called training error or empirical error. The 

complement of the empirical error to add to unity is called in this thesis empirical 

accuracy. 
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The boundary (2.14) is determined to maximize the margin of separation between the 

categories s1 and s2 (Figure 2.2). If the data (2.7) is linearly separable, the optimization 

problem is expressed as: 
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 (2.17) 

 

where ||w|| represents the Euclidean norm of the vector w. This nonlinear optimization 

problem with inequality constrains is solved using the Lagrange formalism and leads to 

the following results for w and b: 
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where ηα are Lagrange multipliers and �sv is the numbers of support vectors; that is, 

training data whose ηα are not zero. Substituting (2.18) into (2.14) the boundary becomes: 
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An overlap of the categories may indicate that a plane that separates them does not 

exist. To deal with this case, the linear SVC was adapted (Cortes, 1995; Cortes and 

Vapnik, 1995) by the introduction of slack variables ξα (α = 1,…,n) in the optimization 

problem. The slack variables ξα relax the constraints in (2.17), so, some classification 

errors are permitted but at a certain cost. Now, the optimization problem is: 
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Here, P is a user-defined penalty parameter. The optimization problem has the same 

solution shown in (2.18), (2.19) and (2.20), the only difference is the bounds of the 

multipliers ηα 
that appear in the Lagrange formalism. 

To cope with data that is not linearly separable, the vectors u are mapped into a 

higher-dimensional space  by a map function Ф. In the space , the linear SVC 

algorithm is applied. The linear classifier in the space  will create a non-linear decision 

boundary in the original input space (Figure 2.3). 

 

 

Figure 2.3: The SVC algorithm is applied in a high dimensional space (Modified redrawn from 

Cristianini and Schölkopf , 2002, p. 40) 

 

The implementation of the SVC algorithm in the space  is done by using kernels; 

this consists of replacing the scalar product between training data with a kernel function 

in the formulation of the SVC algorithm. The kernel is a function in the input space of the 

vectors u, which returns the dot products of the images in some space , without even 

knowing the form of the map Ф: 

 

 ( ) ( ), ( )k = Φ Φ
α β α β

u ,u u u  (2.22) 

 

SVC testing. SVC testing means to use the decision boundary (2.20) to allocate a single 

category s to the unsampled location u according to the rule: 
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where K(u, uα) is a symmetric positive-definite matrix that contains the values of the 

kernel function. 

In the machine learning jargon the unsampled locations taken together are called the 

testing set. The percentage of unsampled locations misclassified by the decision boundary 

is called testing error or generalization error. The complement of the generalization error 

to add to unity is called generalization accuracy. 

 

2.2.3 Model Selection 

 

Model selection refers to the task of choosing a kernel function with its parameters and 

the penalty parameter P to train the SVC algorithm. Model selection can be considered 

part of the training SVC step, but it deserves an independent section due its importance in 

the performance of the classifier. 

 

Kernel selection. Basic licit kernels found in practice due its simplicity and good 

performance are the linear, the polynomial and the Gaussian radial basis function (Grbf) 

kernels. An extensive and in depth description of these and others more complex kernels 

can be found in (Cristianini and Shawe-Taylor, 2004). The special interest for this 

research is the Grbf kernel. It has the form: 

 

 ( )2
( ') exp ' ; 0k γ γ= − − >u,u u u  (2.24) 

 

where u and u’ represent any two different locations and γ is a kernel parameter that 

must be selected by the user. The reasons for choosing the Grbf kernel are:  

- The SVC algorithm trained with a Grbf kernel can separate correctly any arbitrary 

number of data (Burges, 1998, p.151). This is a very convenient property for 
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geostatistical applications, where it is desirable to classify correctly all the observed 

data. 

- Compared to the other basic kernels, the Grbf kernel has the advantage of having less 

numerical difficulties than the polynomial kernel (Hsu, Chang, and Lin, 2008), while 

the linear kernel can be considered a special case of the Grbf kernel (Keerthi and Lin, 

2003), and 

- The Grbf kernel has shown good performance in geostatistical applications, e.g. 

Wohlberg, Tartakovsky and Guadagnini (2006), Pozdnoukhov and Kanesky (2006) 

and Kanesky et al. (2001). 

 

Parameter selection. Training the SVC algorithm using the Grbf kernel implies 

simultaneous selection of the pair of parameters (P, γ), so that the boundary classifier can 

predict unsampled locations with the maximum generalization accuracy (or its 

complement, the lowest generalization error). Given that the true generalization accuracy 

is unknown, a proxy value is calculated usually by k-fold cross-validation. 

In k-fold cross-validation, the observed data is randomly divided into k equal sized 

subsets. Then, the SVC algorithm is sequentially trained using the k-1 subsets and tested 

in the remaining subset. Training is repeated k times and the percentage of data correctly 

classified for all the k subsets that are not included in the training data is recorded as the 

cross-validation accuracy (Abe, 2005, p. 73). 

To select the optimal pair of parameters (P, γ), the conventional approach calculates 

the k-fold cross-validation accuracy for every pair (P, γ) on a predefined grid-search and 

it chooses the one with the maximum value. To explore a wide range of parameter 

combinations, the grid is designed as an exponentially growing sequence of P and γ 

values (Hsu, Chang and Lin, 2008), for instance: 

 

 

3 2 8 9

10 9 11 12

{2 ,2 ,..., 2 ,2 }

{2 ,2 ,..., 2 ,2 }

P

γ

− −

− −

=

=
 

 

The selected pair of parameters (P, γ) is used to train the SVC algorithm with the 

complete set of observed data.  A theoretical description of cross validation along with a 

benchmark with others techniques for model selection can be found in Anguita, Boni, 

Ridella, Rivieccio and Sterpi (2005). 
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2.3 Summary 

 

This chapter showed how IK and SVC algorithms can solve the problem of classifying 

categorical variables at locations of interest, and how the SIS algorithm can generate 

multiple realizations of the spatial distribution of categorical variable using a 

probabilistic approach.  

The next chapter highlights some of the differences between the IK and SVC 

approaches, and a technique for SVC parameter selection that tries to reconcile such 

differences is proposed. Applications are presented throughout the following chapters. 
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3 Selection of SVC Parameters (P,γ)  

Chapter 3 introduces a heuristic technique to obtain from the SVC algorithm a boundary 

classifier with good generalization ability and desirable properties from the geostatistical 

approach, that is, correct classification of all the observed data and reproduction of the 

global facies proportions. 

First, the proposed technique is presented; second, implementation issues are 

discussed, and then a classification problem for a large data set is solved to illustrate its 

application. The classification problem was defined in Section 1.1 as the problem of 

assigning a single category to an unsampled location based on a limited set of observed 

data. The reference map is available, so the performance of the approach can be directly 

assessed.  These results are compared to the responses of the conventional application of 

geostatistics (IK) and machine learning (SVC) methods. 

 

3.1 Introduction 

 

To solve a classification problem, the SVC approach normally neglects the empirical 

accuracy in the process of selecting the pair of parameters (P, γ). The objective of the 

traditional model selection is to maximize a proxy of the generalization accuracy, 

therefore, in practice, obtaining an empirical accuracy of 100% is considered a 

suboptimal result associated to an over fitted boundary. In fact, it is often alleged that a 

classifier which explains correctly all the training data will not necessarily generalizes 

well. 

The conventional semivariogram based geostatistical approach constructs models that 

always classifies correctly all the observed data; it is a consequence of the exactitude 

property of kriging. Additionally, in practical applications, it is accepted that a measure 

of the quality of the response of a classification model is its ability to reproduce the 



22 

 

statistics (global proportions) of the observed data, assuming of course, that those 

statistics are representative of the population. 

In view of the above concepts, one can argue that a map estimated using SVC should 

be similar in terms of features and generalization accuracy to the map obtained by using a 

geostatistical classification model as long as: (1) the SVC algorithm is trained with a pair 

(P, γ) that produces a classifier with empirical accuracy of 100%, and (2) the categories 

obtained at the unsampled and sampled locations by testing the SVC algorithm have 

proportions that reproduces reasonably well the representative proportions of the 

observed data. The former point is equivalent to the exactitude property of kriging, while 

the latter point corresponds to reproduction of the input/target global proportions. 

 

3.2 Proposed Technique  

 

The proposed technique differs from the conventional SVC approach in the criteria to 

select the pair of parameters (P, γ). The new technique does not use the cross-validation 

accuracy; it makes use of the empirical accuracy and the proportions of categories in the 

estimated response to select the pair of parameters (P, γ). The heuristic parameter 

selection has the following steps:  

 

1) Select a grid-search for the pair of parameters (P, γ) 

 

2) Visit once the nodes of the (P, γ) grid-search and at each node: 

 

a. Train the SVC algorithm using the observed data and calculate the empirical 

accuracy. 

 

b. Test the SVC algorithm using all the locations in the domain of interest and 

the model obtained in step (2.a). Calculate the proportions on the resulting 

categorical map. 

 

3) Plot contour lines of the empirical accuracy and the proportions over the (P, γ) grid-

search. Select the node (P, γ) where the first contour of empirical accuracy of 100% 

intersects the closest contour to the target proportions. 
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Figure 3.1 shows the work flow for the proposed technique. 

 

 

Figure 3.1: Work flow for the proposed technique to select the SVC parameters (P, γ) 

 

3.3 Implementation Aspects 

 

Some implementation decisions to apply the proposed technique to real problems 

include: the selection of the (P, γ) grid-search and the computational time, the calculation 

of the empirical and the generalization accuracy, and the selection of the target 

proportion. These issues are discussed below. 
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3.3.1 Grid-search Selection and Computational Time  

 

The selection of the (P, γ) grid-search impacts the computational time spent by the 

proposed technique. Given that the SVC algorithm must be trained and tested at each 

node of the grid, the selection depends on the number of observed data (training set) and 

unsampled locations (testing set). For this reason, before discussing the selection of the 

(P, γ) grid-search, the aspects that influence the computational time for the proposed and 

the k-fold cross-validation techniques are analyzed and compared. 

 

Computational time. The number of observed data impacts the computational time of 

training the SVC algorithm. The proposed technique requires training the SVC algorithm 

once at each node, while the k-fold cross-validation technique requires training the SVC 

algorithms k times at each node. Therefore, considering only the SVC training, the 

proposed technique is faster than k -fold cross-validation. 

The number of unsampled locations impacts the computational time of testing the 

SVC algorithm. The proposed technique requires testing the SVC algorithm at each node 

of the grid-search, while the k-fold cross-validation only requires testing the SVC 

algorithm at the pair of parameters (P,γ) chosen in the training step. Therefore, 

considering only the SVC testing, the proposed technique is slower than k-fold cross-

validation. 

Training the SVC algorithm is a time consuming task; it solves an optimization 

problem to obtain the parameters that define the boundary classifier. Testing the SVC 

algorithm is a quick task; it just takes the calculated boundary to classify the unsampled 

locations. Consequently, as the proposed technique has fewer training calculation than 

the k-fold cross-validation, one can reasonably conclude that in the overall process, the 

proposed technique is computationally less time consuming to select the SVC pair of 

parameters (P,γ). 

Currently, there are no practical limitations in the number of data to train the SVC 

algorithm, the LIBSVM software implements the Sequential Minimization Optimization 

(SMO) algorithm (Platt, 1998) to solve the optimization problem and can efficiently deal 

with data sets up to around 10 000 samples. Kecman (2005, p.95) reports that the 

Iterative Single Data Algorithm (ISDA) for training kernel machines (Kecman, Huang, 

and Vogt, 2005) can efficiently solve data sets over one million points. 
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Finally, if the number of unsampled locations is too large, it is possible to reduce the 

computational time of the proposed technique by calculating the proportions required in 

step 2.b over a regularly sampled subset of those locations. Once a (P,γ) pair of 

parameters is selected, the SVC is tested using the complete set of locations in the 

domain. 

 

(P, γ) Grid-search selection.  To explore a wide range of parameter combinations, the 

grid-search is designed as an exponentially growing sequence of P and γ values. Common 

values to explore are: 

 

3 2 8 9

10 9 11 12

{2 ,2 ,..., 2 ,2 }

{2 , 2 ,..., 2 ,2 }

P

γ

− −

− −

=

=
 

 

However, it is not the range but the degree of discretization that ultimately determines 

the number of nodes in the grid-search, which consequently affects the computational 

time and the quality of the result. Keeping in mind that the training task has the greatest 

impact on the computational time, discretization of the exponents in intervals of 0.1 or 

0.2 can be used for sets of observed data up to 10000 nodes. 

For large sets of observed data (>10000) a two-step (P,γ) grid-search selection can be 

applied (Hsu, Chang, and Lin, 2008). First, a coarse grid (e.g. discretization of the 

exponents in intervals or 0.5 to 1) is used to identify a “good” region on the grid; and 

second, a finer grid (e.g. discretization of the exponent in intervals of 0.1 or less) on that 

region is defined to get the definitive SVC response. 

 

3.3.2 Empirical and Generalization Accuracy 

 

The empirical error is the percentage of observed data correctly classified by the SVC 

boundary: 

 

 

100

Empirical accuracy

�umber of sampled locations correctly classified

Total number of sampled locations

=

⋅

 (3.1) 
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Technically, the machine learning field would calculate the generalization accuracy as 

the percentage of unsampled locations correctly classified by the SVC boundary; 

however, in the spatial context, it is more natural to assess the performance of the 

boundary classifier considering all the locations of interest, sampled and unsampled 

locations. Accordingly, in this thesis the generalization accuracy is calculated as: 

 

 

100

Generalization accuracy

�umber of sampled and unsampled locations correctly classified

Total number of locations in the domainof interest

=

⋅

 (3.2) 

 

3.3.3 Target Proportions 

 

The target proportion in step 3 of the proposed technique is calculated from the observed 

data. It should be a representative proportion of the entire domain of interest. 

The observed data seldom is representative of the entire domain of interest, factors 

such as the density (or sparseness) and location of the data might affect its 

representativeness. The influence of these elements in the proposed technique is now 

discussed.  

 

Dense and regularly spaced data set: It is the most favorable case. The target 

proportions calculated from the observed data tend to be representative of the entire 

domain. The proposed technique produces a good response that it is comparable to the 

conventional geostatistical approach. The application in Section 3.4 illustrates this case. 

 

Dense data set with clusters: The target proportions calculated from the observed data 

tend to be non-representative of the entire domain. Cell-declustering or polygonal 

declustering techniques (Deutsch, 2002, p.50-57) can be applied to obtain a 

representative target proportion. The SVC algorithm is not affected by clusters. Clustered 

points are considered redundant and they do not appear in the resulting set of support 

vectors. Even if some clustered points are removed from the observed data, the response 

of the SVC algorithm does not change. The proposed technique will produce a good 

response in this case.  
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Sparse data set with or without out clusters: The target proportions calculated from 

sparse data may or may not be representative of the entire domain. Declustering 

techniques can be applied to look for representative target proportions, but the result 

might be non-conclusive or misleading. The application in Chapter 4 briefly discusses 

this issue and shows that the proposed technique produces a good response that it is 

comparable to the conventional geostatistical approach. With ancillary information the 

response of the proposed technique might be improved by using an anisotropic Gaussian 

radial basis function kernel and/or a modified version of the SVC algorithm for 

imbalanced data (Abe, 2005, p.65). The evaluation of these two concepts is beyond the 

scope of this research. 

 

Observed data located away from the limits of the domain: The SVC algorithm 

classifies unsampled locations based on a boundary that separates the set of observed 

data. Regions between the data and the limits of the domain might be incorrectly 

classified by the proposed technique based on SVC. For cases where the observed data is 

located far away from the limits of the domain or when those limits are poorly defined, 

the proposed technique is not recommended. 

 

The following example illustrates the application of the new technique to solve a 

classification problem using a relatively large set of data. This application shows that the 

responses of the proposed technique and the conventional geostatistical approach are 

similar under the favorable conditions offered by a large set of data. If the responses of 

both approaches did not converge in an advantageous scenario, it would not be 

reasonable to expect a good result from the proposed technique in solving the more 

challenging case of sparse data. 

 

3.4 Application 

 

A synthetic classification study for a large data set was prepared to illustrate the 

application of the proposed methodology. A reference data set of two facies was 

generated and a subset was sampled to be used as observed data.  

Three methods were used to allocate the facies at the unsampled locations of the 

reference data: (1) Ordinary indicator kriging (OIK) with a classification rule (2) SVC 
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with k-fold cross-validation, and (3) SVC with the proposed heuristic parameter 

selection. The results from each method are documented and discussed. 

 

3.4.1 Reference Data Set 

 

The reference data set is generated by unconditional Gaussian simulation using an 

isotropic spherical semivariogram model without nugget effect and a range of 200 m. The 

Gaussian field is transformed to a categorical variable of two facies, white (code 1) and 

black (code 0) using a threshold of 0 normal units. The noise or small scale variability in 

the map is removed by applying twice a moving window cleaning procedure. 

 

 

 

Figure 3.2: Map of reference data (top). Standardized experimental indicator semivariogram 

represented by dots, and standardized indicator semivariogram models represented by solid lines. 

Blue and red colors indicate the major and minor directions of anisotropy, respectively (bottom). 
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The reference data (Figure 3.2) has a resolution of 10 m x 10 m spacing that spans an 

area of 1km x 1km, so it contains 10000 nodes. The standardized experimental indicator 

semivariogram calculated with the reference data shows an anisotropic behavior, where 

the major direction of continuity is chosen as the East-West direction and the minor 

direction is the orthogonal North-South direction. The proportions for the white and black 

facies are 45.75% and 54.25%, respectively. For convenience, the Table 3.1 on page 36 

summarizes all the numerical results of Chapter 3.  

The standardized indicator semivariogram model is: 

 

 
max 0.27
min 0.19

( ) ( )
h
h

Sphγ =
=

=h h

 

 

The selection of a 1km. x 1km. box domain is not arbitrary; the objective is to avoid 

having to re-scale the data to the range [0, 1] which is a common practice to apply the 

SVC algorithm. 

 

3.4.2 Sampled Data (Observed Data or Training Data) 

 

A relatively large (2.25% of the reference data) sample was drawn to reduce the 

subjectivity in the construction of the geostatistical model, specifically, to facilitate the 

modeling of the semivariogram and the calculation of the representative global 

proportions. 

The observed data is sampled from the reference map at nominally 70 m x 70 m 

spacing. Figure 3.3 shows the map of the 225 samples.  
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Figure 3.3: Map of 225 samples at nominally 70 m x 70 m spacing. 

 

3.4.3 Classification by Indicator Kriging 

 

As explained in Chapter 2, the geostatistical approach usually has the following steps: 

Preprocessing of data, exploratory data analysis, variography, kriging and classification.  

 

Preprocessing, analysis and variography of the data.  The data does not need to be 

pre-processed, the facies have been already coded as 1 (white) or 0 (black).  

The exploratory data analysis aims for representative statistics of the variables of 

interest. In this case, the samples are regularly spaced; there is no visual evidence of 

clusters; therefore, declustering is not required. The sample proportions for the white and 

black facies of 45.89% and 54.11%, respectively, are considered representative of the 

population. 

The standardized experimental indicator semivariogram (Figure 3.4) shows the major 

direction of anisotropic in the East-West direction and the minor direction of anisotropic 

in the North-South direction. The standardized indicator semivariogram was modeled as: 

 

max 0.28
min 0.19

( ) ( )
h
h

Sphγ =
=

=h h  

 

As expected, there are minor differences between the indicator semivariogram model 

of the reference data and the indicator semivariogram model of the data sampled. 
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Figure 3.4: Dots represent the experimental standardized indicator semivariogram. Solid lines 

represent the standardized indicator semivariogram model, blue and red for the major and minor 

directions of anisotropy, respectively. 

 

Indicator kriging. The white and black facies are categorical variables; they cannot be 

estimated as a linear combination of neighboring data. The indicator kriging algorithm 

provides a probability map for the facies. The map, in conjunction with a classification 

rule, can be used to assign a single facies to each location. 

Figure 3.5 shows the map of conditional probabilities of occurrence for the white 

facies at the resolution of the reference data set obtained by ordinary indicator kriging 

(OIK). 

 

Figure 3.5: Ordinary indicator kriging map for the white facies 

 

Classification. For the binary problem at hand, the classification rule presented in 

Section 2.1.2 is equivalent to use a threshold rule that allocates the locations to the facies 
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whose probability of occurrence is greater than 50%. The rule is simple and it provides 

results that can be compared to that obtained by the SVC algorithm. 

 

 

Figure 3.6: Map of facies after applying a threshold rule of 50%. 

 

The threshold rule is applied to each location to get the map of facies shown in Figure 

3.6. When this categorical map is compared node to node to the reference map, it has a 

generalization accuracy of 91.51%. The estimated map has proportions for the white and 

black facies of 44.86% and 55.14%, respectively. 

 

3.4.4 SVC using Cross-validation  

 

The SVC algorithm has the following steps: Preprocessing of data, model selection 

(kernel selection and cross-validation), SVC training and testing. 

 

Preprocessing of data. The SVC algorithm requires the facies to be coded as -1 and 1; 

however, the LIBSVM software can receive the facies as 0 and 1, so there is no need for 

additional re-coding. 

To avoid numerical difficulties due to the use of very large numbers during the 

calculations of the kernel matrices (Hsu, Chang, and Lin, 2008) the coordinates should be 

linearly rescaled to the range [0, 1]. The reference data is already in the recommended 

scale. 
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Model selection. Model selection implies the definition of the kernel and its parameters, 

and the definition of the penalty parameter P. Since the kernel was chosen to be the Grbf, 

only the pair of parameters (P, γ) must be tuned. 

An 81x81 grid-search space for the pair of parameters (P, γ) was defined to do 10-fold 

cross-validation. More specifically, the grid-search has the following sequence of values: 

 

 2 1.9 1.8 5.8 5.9 6 3 3.1 3.2 10.8 10.9 11
{2 , 2 ,2 ,..., 2 , 2 ,2 } ; {2 , 2 , 2 ,..., 2 , 2 , 2 }P γ− − −= =  

 

For each pair (P, γ) in the grid-search the cross-validation accuracy is calculated. The 

pair with the highest accuracy is selected to train the SVC algorithm.  

 

Figure 3.7: Response surface (top) and contour lines (bottom) of the cross-validation accuracy. 

The flag shows the maximum value of 91.56% at the pair (log2P, log2 γ) = (-0.1, 7.7). 



34 

 

Figure 3.7 shows the surface and the contour lines of the cross-validation accuracy, 

where the maximum value is 91.56% at the pair (log2P, log2 γ) = (-0.1, 7.7). 

 

SVC training and testing. Once the pair (log2P, log2 γ) = (-0.1, 7.7) is selected, the SVC 

algorithm is trained using the 225 sampled locations. The result is a boundary classifier 

with 216 support vectors. The boundary is used to classify all the locations (sampled and 

unsampled locations) in the domain of interest. 

Figure 3.8 shows the categorical map obtained after the testing procedure. The map 

has a generalization accuracy of 91.37%. The proportions of white and black facies are 

44.5% and 55.5%, respectively. 

 

Figure 3.8: Map of facies obtained by k-fold cross-validation technique.  

 

3.4.5 SVC with Heuristic Parameter Selection 

 

The heuristic technique differs from the conventional SVC algorithm in the criteria to 

select the parameters (P, γ). Using the 81x81 grid-search defined in Section 3.4.4 the key 

aspects of the procedure proposed in Section 3.2 are sketched in Figure 3.9. First, the 

empirical accuracy contour map (Figure 3.9 a) and proportion contour map (Figure 3.9 b) 

are plotted; and then, the maps are combined to find the intersection point between the 

100% empirical accuracy contour line and the target proportion of 45% contour line 

(Figure 3.9 c). In this case, the intersection was found at the pair (1.6, 6.9) which is used 

to train the SVC algorithm. Figure 3.10 shows the real combined contour map generated 

for this example. The node flagged at (log2P, log2 γ) = (1.6, 6.9) is the intersection 
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between the empirical accuracy contour of 100% and the contour of 45.15% white 

proportion, which is the nearest value to the target 45.89% proportion. 

As before, once the pair (log2P, log2 γ) = (1.6, 6.9) is selected, the SVC algorithm is 

trained using the 225 sampled locations. The result is a boundary classifier with 137 

support vectors. The boundary is used to generate the map of facies shown in Figure 3.11. 

This estimated map has a generalization accuracy of 91.46%. The proportions of the 

white and black facies are 45.15% and 54.85%, respectively. 

 

 

Figure 3.9: Empirical accuracy contour map (a), proportion contour map (b) and combined map 

(c) to find the intersection point between the 100% empirical accuracy contour line and the target 

proportion of 45% contour line. 
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Figure 3.10: Contour lines of the empirical accuracy (grey scale) and the proportions of white 

facies of the estimated categorical maps. The flag shows the intersection node (log2P, log2 γ) = 

(1.6, 6.9). 

 

Figure 3.11: Map of facies obtained by the proposed technique.  
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3.5 Discussion 

 

Numerical results of Chapter 3 are summarized in Table 3.1. The three methodologies 

produce similar numerical results, which is a direct consequence of having a relatively 

large amount of data regularly spaced.  

 

Table 3.1: Summary of numerical results of Chapter 3  

Technique 
Generalization 

accuracy (%) 

Proportions of facies (%) 
Number of 

support vectors 
White Black 

Reference data N.A 45.75 54.25 N.A 

Observed data 

(225 samples) 
N.A 45.89 54.11 N.A 

Geostatistical 

approach - OIK 
91.51 44.86 55.14 N.A 

SVC heuristic 

approach 
91.46 45.15 54.85 137 

SVC k-fold 

cross-validation 
91.37 44.5 55.5 216 

N.A: Not apply 

 

Comparing the conventional SVC to the proposed heuristic SVC approach, the latter 

not only has slightly better generalization accuracy, but less support vectors which is a 

desirable sparse property for the SVC classifiers.  

The conventional geostatistics OIK technique produces slightly better generalization 

accuracy than the conventional and the proposed SVC algorithm. However, the SVC 

algorithms have the advantage of being totally automatic. As they do not require any 

subjective modeling decisions, the results are fully reproducible based only on the 

observed data. 

The example presented here confirms that the responses of the OIK algorithm and the 

proposed SVC algorithm tend to converge, at least, for large data sets. 

 



38 

 

4 Application to Sparse Data 

Chapter 4 is concerned with the use of a small set of observed data to classify a much 

larger set of unsampled locations and to generate simulated realizations. The synthetic 

case presented shows the major difference between the geostatistical and machine 

learning approaches to solve the classification problem. It also shows how simple 

information from SVC allows for an improvement in the response of conventional 

geostatistical classification and indicator simulation models. 

Three sections are developed: the first section implements the proposed technique to 

solve a classification problem based on a sparse data set. The result is compared to 

conventional OIK and SVC; the second section explores the effect of using SVC 

information on the performance of geostatistical realizations; and, the third section 

summarizes and discusses the results. 

 

4.1 The Misleading Data Point 

 

This case study shows that for small data sets, the best geostatistical model is not 

necessarily the one that uses all the available data. This statement might seem odd from 

the geostatistics perspective, but it is sound from the machine learning approach of 

maximizing the generalization accuracy. The case study has the following steps: 

 

(1) A synthetic reference 2D data set with two facies is generated. A subset of 50 

samples is randomly drawn to be used as observed data. 

 

(2) The SVC algorithm is trained to obtain a boundary which is used to assign the facies 

to all the locations (sampled and unsampled locations) of the domain under study. 

Information about how the observed data is classified by the SVC boundary is 

collected. 
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(3) Two facies maps are generated in parallel by OIK with a classification rule. One map 

does not account for the information collected in step 2, while the other map uses this 

information in its construction. 

 

To reduce the influence of subjective decisions on the results, complete access to the 

reference map is assumed for steps 2 and 3. This allows the true generalization accuracy 

to be calculated and used to select the SVC parameters (P,γ). In the same way, the 

semivariogram and statistics of the reference map are available to generate the 

geostatistical model. 

 

(4) The pair of SVC parameters (P, γ) is selected by the proposed technique without 

information from the reference data. The SVC is then tested to get an estimated map. 

 

(5) The pair of SVC parameters (P, γ) is selected by conventional k-fold cross-

validation. The SVC is then tested to get an estimated map. 

 

4.1.1 Reference and Sampled Data 

 

The same reference data set described in section 3.4.1 is used for this exercise.  Figure 

4.1 shows the locations of 50 samples randomly drawn from the reference map. The 

proportions of white and black facies are 36% and 64%, respectively. 

 

 

Figure 4.1: Map of 50 randomly sampled locations 
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Figure 4.2: The declustered proportions versus the cell size. 

 

The sampled data does not reveal the statistics of the reference map. However, the 

application of a declustering method does not seem solving this lack of 

representativeness. The Figure 4.2 shows the cell-declustered proportions (Deutsch, 

1998) for the white facies versus the cell size. This plot does not allow choosing a 

proportion value conclusively; for that reason, the equal-weighted proportion of the 

sample is chosen as target proportion to apply the proposed technique. 

 

4.1.2 SVC using the True Generalization Accuracy 

 

The SVC algorithm has the following steps: Preprocessing of data, model selection and 

SVC training and testing. 

 

Preprocessing of data. As was explained in Chapter 3, it is not necessary to code the 

facies as -1 and 1, the LIBSVM software accepts them as 0 and 1. Neither is required to 

re-scale the coordinates. 

 

Model selection. This thesis only implements the Grbf kernel, so the task in model 

selection is to pick the pair of SVC parameters (P, γ). The 81x81 grid-search presented in 

section 3.4.4 for the pairs (P, γ) was kept. 

For each pair (P, γ) on the grid-search, the SVC algorithm is trained using the 50 

samples. The boundary classifier obtained assigns the facies to all the locations (50 
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sampled and 9950 unsampled locations) in the domain. The true generalization accuracy 

and the empirical accuracy are recorded. 

 

The contour lines of the generalization and empirical accuracies (grey scale) are 

plotted on the grid-search as shown in Figure 4.3. The arrow points to the maximum 

value of the generalization accuracy, which is 80.05% at the pair (log2 P, log2 γ) = (0.5, 

6.1). For convenience, Table 4.1 on page 53 summarizes all the numerical results of 

Section 4.1. 

 

 

Figure 4.3: Contour lines of the true generalization accuracy and the empirical accuracy (grey 

scale). Subplot shows the SVC solution map for the pair (log2 P, log2 γ) = (0.5, 6.1). The “x” 

identifies a misclassified location. 

 

SVC training and testing. In general, once the pair (P, γ) is chosen, the SVC algorithm 

is trained with the observed data and the output boundary is used to classify the sampled 

and the unsampled locations. In this case, all the procedure was done during the model 

selection step while calculating the true generalization accuracy. 

�
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Figure 4.3 shows that the best SVC solution is reached at the pair (log2 P, log2 γ) = 

(0.5, 6.1). The subplot in Figure 4.3 shows the estimated map at the scale of the reference 

data. It has a generalization accuracy of 80.05% and the proportions of white and black 

facies are 34.86% and 65.14%, respectively. It is worth noting that the pair (log2 P, log2 

γ) = (1.0, 6.3) produces a SVC solution with 80.04% of generalization accuracy, almost 

the same value reached by the best pair, but the proportions for this set of parameters are 

35.69% and 64.31% for white and black, respectively. Incidentally, these proportions are 

closer to the proportions of the observed data. 

Note that the SVC solution with the best generalization accuracy, does not classify 

correctly all the observed data. The solution lies on an area of the map with 98.0% 

empirical accuracy, which means that the boundary misclassified one location. The “x” 

on the subplot identifies the misclassified location. 

  

4.1.3 OIK Classification with Access to the Reference Map 

 

To limit the effect of subjective decisions in the construction of the geostatistical model, 

the reference semivariogram and global proportions of facies are assumed to be known. 

Since the SVC solution indicates that the maximum generalization accuracy is reached at 

the cost of misclassifying one location, two OIK classifiers are built in parallel, one 

considers the set of 50 samples, and the other, after deleting the sample misclassified by 

the SVC algorithm, only considers 49 samples (Figure 4.4). Results are contrasted and 

discussed. 

 

Figure 4.4: Map of 49 randomly sampled locations. The arrow points out the location deleted of 

the original set of 50 samples. 

�
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The geostatistical approach has the following steps: Preprocessing of data, exploratory 

data analysis, variography, kriging and classification. 

  

Preprocessing, analysis and variography of the data. The facies are coded as 1 (white) 

or 0 (black).  

In this exercise, the facies proportions of the reference map, 45.75% for white and 

54.25 for black, are assumed to be known. The reference data and the observed data with 

50 samples are described in sections 3.4.1 and 4.1.1., respectively. The set with 49 

samples has white and black proportions of 36.73% and 63.27%, respectively. 

The standardized indicator semivariogram model of the reference data (see Section 

3.4.1) is used. 

 

Indicator kriging. Figure 4.5 shows the maps of conditional probabilities of occurrence 

for the white category at the resolution of the reference data. The maps were obtained by 

OIK using the data set of 50 samples (top) and 49 samples (bottom).  

 

Figure 4.5: OIK maps for the white facies using 50 samples (top) and 49 samples (bottom) 
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The visual comparison of the maps clearly illustrates the effect of the deleted data, not 

only at its own location, but on the kriged results of surroundings locations. 

 

Classification. The 50% threshold rule is applied to each location to get the binary maps 

shown in Figure 4.6. The top map (50 samples) has a generalization accuracy of 80.43% 

and proportions for white and black facies of 34.98% and 65.02%, respectively. The 

bottom map (49 samples) has a generalization accuracy of 80.62% and proportions for 

white and black of 34.99% and 65.01%, respectively. 

 

 

Figure 4.6: Maps of facies obtained by OIK plus a classification rule. Results for 50 samples (top) 

and 49 samples (bottom). 

 

A comparison of the OIK classifiers to the SVC solution reveals that the former maps 

have slightly better generalization accuracy (80.4% and 80.6% to 80.1%) and 

reproduction of the reference facies proportions. It also can be seen that the geostatistical 
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model built with 49 samples offers slightly better results, in terms of generalization 

accuracy and reproduction of global proportions, than the model built with 50 samples. 

These results suggest that in presence of “perfect” information (that is, knowing the 

reference data), the geostatistical model generates better classifiers than the SVC 

algorithm; however, the information collected from the SVC algorithm helps to obtain a 

better response from the geostatistical model. 

In practical applications, the reference data is unknown, and the case of perfect 

information is nonexistent. The next section shows how the heuristic approach only uses 

the observed data to select the SVC parameters and to identify the information required to 

enrich the response of the geostatistical model. 

 

4.1.4 SVC with Heuristic Parameter Selection 

 

As described in Chapter 3, the heuristic parameter selection is based on the analysis of 

the contour lines of the empirical accuracy and the proportions of facies plotted on the 

grid-search. Figure 4.7 shows these curves for the white facies for this case study. 

The first aspect to check is the intersection point between the contour curves of 36% 

of proportion (recall that this is the proportion for white facies in the set of 50 samples) 

and the empirical accuracy curve of 100%. The heuristic approach states that the SVC 

algorithm trained with the pair of parameters (log2 P, log2 γ) = (2.8, 6.5) taken from that 

intersection will generate a map that is similar to the OIK map. 

The top-right subplot in Figure 4.7 shows the map obtained with the pair (log2 P, log2 

γ) = (2.8, 6.5) which, as predicted, is similar in features to the map obtained by OIK 

(Figure 4.6 top). It has a generalization accuracy of 79.67% and the proportions of white 

and black facies are 36.14% and 63.86%, respectively. 

The second aspect to check is the inflection point of the proportion curve of 36%. This 

point has the interesting characteristic of reproducing the target proportions with the 

lowest parameter penalty P. The lower the parameter penalty P the larger the margin, and 

a large margin is related with a boundary that generalizes well. Following this argument, 

the SVC algorithm trained with the pair of parameters taken from that inflection point 

should generate a solution with good generalization property. For this particular case, the 

pair of parameters (log2 P, log2 γ) = (1.1, 6.1) is very close to the second best pair (log2 P, 

log2 γ) = (1.0, 6.3) obtained by using the true generalization accuracy. 
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The bottom-left subplot in Figure 4.7 shows the map obtained with the pair (log2 P, 

log2 γ) = (1.1, 6.1). It has a generalization accuracy of 79.91% and the proportions of 

white and black facies are 36.12% and 63.88%, respectively. Note that this map 

misclassified the same location as the map depicted in Figure 4.3. Therefore, without 

knowing the reference data, it produces exactly the same information required to improve 

the geostatistical model. 

A corollary of the above discussion is that the proposed technique is able to fairly 

reproduce in one single run, the response of two geostatistical models and to identify the 

locations that make them different. For instance, compare the two maps in Figure 4.6 to 

the subplots in Figure 4.7. In practical applications, it would be possible with the 

proposed technique to anticipate the response of slightly different geostatistical models 

without even constructing them. 

 

 

Figure 4.7: Contour lines of empirical accuracy (grey scale) and proportions of white facies. 

Bottom-left subplot shows the SVC solution map for the pair (log2 P, log2 γ) = (1.1, 6.1). The “x” 

identifies the misclassified location. Top-right subplot shows the SVC solution map for the pair 

(log2 P, log2 γ) = (2.8, 6.6). 

�
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4.1.5 SVC using Cross-validation 

 

This section shows the result of the SVC algorithm trained using cross-validation. The 

81x81 grid-search of parameter pairs (P, γ) is kept and 10-fold cross-validation is 

performed at each node to calculate the cross-validation accuracy. 

Figure 4.8 shows the contour lines of the cross-validation accuracy. There are multiple 

points (log2 P, log2 γ) that produce a maximum value of 80.0% in the area bounded by the 

pairs (0.3, 4.8), (0.3, 3.9), (1.0, 4.8) and (1.0, 3.9). To select a single pair (P, γ) it is 

necessary to re-do the analysis with a finer grid. This clearly would make cross-validation 

computationally more expensive than the proposed technique. Moreover, when the “best” 

cross-validation zone is superposed with the true generalization accuracy contour map 

(Figure 4.3), it is evident that only generalization accuracies between 76% and 78% can 

be reached. In other words, in the best case the cross-validation result has 2% less 

generalization accuracy than the result obtained by the heuristic approach. 

 

 

Figure 4.8: Contour lines of cross-validation accuracy. Multiple pairs (log2 P, log2 γ) have the 

maximum value of 80.0% on the area bounded by (0.3, 4.8), (0.3, 3.9), (1.0, 4.8) and (1.0, 3.9).  
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So far, the synthetic case has shown that the generalization accuracy of the response 

of a geostatistical classification model was increased by using information from the SVC 

solution. The next section explores the impact of incorporating such information into 

geostatistical indicator simulation. 

 

4.2 Impact on Geostatistical Indicator Simulations 

 

In the same line of reasoning as section 4.1.3, sequential indicator simulation (SIS) is 

used to generate two sets of 1000 realizations each. One set considers the observed data 

set with 50 samples, and the other, after deleting the sample misclassified by the SVC 

algorithm, only considers 49 samples. Both sets were created using the semivariogram 

model and the facies proportions of the reference data. Both sets of realizations are 

validated on the following bases: 

  

- Reproduction of semivariogram model 

 

- Reproduction of global proportions of facies,  and 

 

- Generalization accuracy 

 

4.2.1 Sequential Indicator Simulation (SIS) 

 

Figure 5.1 shows some examples of SIS realizations generated following the procedure 

described in Section 2.1.3. Clearly, it is not possible by visual inspection to conclude 

about the quality of the realizations, objectives measures must be applied to evaluate 

them. The next sections are devoted to compare the two sets of realizations.  
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Figure 4.9: Simulated realizations generated by SIS. Realizations using 50 samples (left) and 49 

samples (right). 

 

4.2.2 Validation of Realizations 

 

In the practice of geostatistics, the consistency of a set of simulated realizations is 

validated by checking that on average, the realizations honors (1) the data, (2) the global 

proportions of facies, and (3) the semivariogram model (Leuangthong, McLennan and 

Deutsch, 2003). Visually, a check of reasonableness of the models is required. 

The first element of the check list is assured by the exact interpolation property of 

kriging. The analysis of the second and third elements is provided below. The visual 
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inspection is evidently subjective; instead, an analysis of the generalization accuracy is 

included. 

 

Semivariogram reproduction. Figure 4.10 shows that both sets of realizations seem to 

similarly reproduce the indicator semivariogram model. Due to the sparse samples and 

the tendency of SIS to generate pixelated realizations (Deutsch, 1998), the realizations 

exhibit a small nugget effect that does not match exactly the indicator semivariogram 

model. 

Arguably, in the minor direction, the set of realizations generated with 49 samples 

have a slightly better reproduction of the indicator semivariogram model than the set of 

realizations generated with 50 samples. 

 

 

 

Figure 4.10: Semivariogram reproduction. The indicator semivariogram models are represented 

by the solid red lines. The experimental indicator semivariograms from the simulations are 

represented by the dashed black lines and their average indicator semivariograms by the solid blue 

lines. 
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Global proportion reproduction. Figure 4.11 shows the histograms of the global 

proportion of white facies for the two set of realizations under study. The arrows points to 

the reference proportions of white facies which is 45.75%. 

The histogram generated with the model of 49 samples is slightly more accurate and 

precise than the histogram generated with the model of 50 samples. The former not only 

has on average a slightly better reproduction of the global proportions (40.4% to 39.5%) 

but its range is smaller. 

 

 

Figure 4.11: Histograms of global proportions for the white facies. The arrows points to the 

reference proportion of white facies, 45.75%. 

 

Generalization accuracy. The best possible comparison between the two set of 

simulated realizations is based on how close every realization is to the reference map. A 

measure of the proximity of one realization to the truth (or reference) is what we have 

called the generalization accuracy. 

 

Figure 4.12 shows the histograms and the cumulative distribution function (cdf) of the 

generalization accuracy for the two sets of realizations. The histograms show that the 

realizations from the set generated with 49 samples have, on average, slightly better 

generalization accuracy than the realizations generated with 50 samples (70.4% to 

70.1%). Moreover, an inspection of the histogram tails indicates that in the overall the 

best realization belongs to the set generated with 49 samples (maximum generalization 

accuracy of 79.2%), while the worst realization belongs to the set generated with 50 

samples (minimum generalization accuracy of 58.5%). 
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The superimposed cdfs plainly shows the differences between the two set of 

realizations. In a quantile to quantile comparison, a realization taken from the set 

generated with 49 samples will better explain the truth compared to a realization taken 

from the set generated with 50 samples. 

 

 

 

Figure 4.12: Histograms (top) and cumulative distribution functions (bottom) of the 

generalization accuracy for the two sets of realizations. 

 

4.3 Discussion 

 

Table 4.1 summarizes the numerical results of the Section 4.1. Based on it, the following 

statements can be made: 
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With “perfect information” OIK produces maps that generalize better than the maps 

obtained by SVC. However, the differences in performance are negligible and the SVC 

algorithm has the advantage of being automatic and almost fully data driven. 

 A good geostatistical model does not necessarily use all the available data, even when 

the observed data set is small. This counter-intuitive statement is supported by the results 

of the synthetic case presented. The responses of the geostatistical model built with 49 

samples outperformed the model built with 50 samples. Information collected from the 

SVC solution was used to improve the response of the original geostatistical model. 

The proposed heuristic parameter selection for the SVC algorithm outperformed the 

conventional SVC with k-fold cross-validation. The former produces a classifier with 

better generalization accuracy and it was able to reconcile the results of the SVC and OIK 

algorithms. 

Finally, all three analyses presented in Section 4.2 suggest that the set of realizations 

generated with 49 samples is a better representation of the truth than the set generated 

with 50 samples. The former not only has a better indicator semivariogram and global 

proportions reproduction, it also has better generalization properties than the latter 

simulations. 

  



54 

 

Table 4.1: Summary of numerical results of Section 4.1  

Technique 
Generalization 

accuracy (%) 

Proportion of facies (%) 
Number of support 

vectors 
White Black 

Reference data N.A 45.75 54.25 N.A 

Observed data 

(50 samples) 
N.A 36.00 64.00 N.A 

Observed data 

(49 samples) 
N.A 36.73 63.27 N.A 

OIK classifier 

(49 samples) 
80.62 34.99 65.01 N.A 

OIK classifier 

(50 samples) 
80.43 34.98 65.02 N.A 

SVC – knowing the 

reference data 
80.05 34.86 65.14 45 

SVC – heuristic 

approach 

(Inflection point) 

79.91 36.12 63.88 43 

SVC – heuristic 

approach 

(Intersection point) 

79.67 36.14 63.86 46 

SVC 

cross-validation 
76 to 78 N.C N.C N.C 

N.C: Not calculated. N.A: No apply. 
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5 Conclusions and Future Work 

Like the responses obtained from the spatial data itself, the conclusions extracted from 

this research depend on the desired level of analysis. The following three perspectives, 

from the more general to the more specific, are worth emphasizing: (1) geostatistics and 

machine learning fields; (2) indicator kriging and support vector classification 

algorithms, and (3) large data set and small data set problems. 

 

Geostatistic and machine learning fields: Geostatistics is a field of applied statistics 

that has found a well deserved place in resource sectors where the analysis of spatial data 

is important, for instance, mining, petroleum and environmental industries. Geostatistics 

has its foundations on random function theory and it responses are highly influenced by 

the expertise of the practitioner. The last feature offers flexibility and the opportunity of 

introducing in the model intangible knowledge beyond the observed data; the cost is the 

inclusion of subjectivities to the model that might not be positively appreciated. 

Machine learning is a branch of statistic and computer science with a very broad area 

of application, for instance; speech and hand-writing recognition, medical diagnosis, 

bioinformatics, etc. Machine learning looks for dependence between variables using a 

limited number of observations. Its mathematical foundation is based on statistical 

learning theory and its responses are data driven. Once an algorithm has been chosen for 

the problem at hand, there is little room for subjectivities compared to geostatistics. The 

last characteristic allows repeatability of the response with little influence of the 

practitioner; the cost is less flexibility to introduce ancillary information. 

The practical examples presented in Chapters 3 and 4 illustrate how the proposed 

geostatistical-machine learning approach allows the creation of models for spatial data 

with a reasonable equilibrium between the subjectivity and flexibility of the modeler 

dependent geostatistical approach and the objectivity and rigidity of the data driven 

machine learning approach. 



56 

 

Indicator kriging and support vector classification algorithms: Indicator kriging and 

support vector classification are the basic algorithms implemented in this research to 

solve the classification problem. 

This research shows that if the practitioner has perfect knowledge of the reference 

data, he can construct an IK model that slightly outperforms the SVC algorithm response 

in terms of generalization accuracy. The advantage of the IK over SVC resides in its 

flexibility to directly capture, via the indicator semivariogram model, the spatial patterns 

that exist in the reference data. The SVC with an isotropic Gaussian radial basic function 

kernel is an universal classifier that allows easy automation with only two parameters to 

tune. The cost of such simplification is that capturing information beyond the observe 

data set is not straightforward. 

In spite of the results obtained here, two practical facts must be considered in favour 

of SVC. First, the practitioner does not know the reference data, so IK will not always 

outperform SVC. Second, the SVC algorithm is fully data driven and automatic. 

Chapter 4 showed that a (hybrid) IK-SVC model outperformed the conventional IK 

approach.  Even more important, the improved classification model was critical to 

generate sets of geostatistical realizations that, taken altogether, are a better 

representation of the reality than the set generated without information from the SVC 

response. 

 

Large and small data sets: Chapter 3 showed that the response from the conventional 

IK approach and the SVC algorithm tends to converge when the set of observed data is 

large. A large data set means that the semivariogram and the calculation of representative 

statistics for the geostatistical model can be more easily determined. 

For small data sets, Chapter 4 showed that the IK and the SVC algorithms produce 

different solutions to the classification problem. The difficulty to calculate reliable 

experimental indicator semivariograms and representative statistics increases the 

subjectivities in the geostatistical model. In such cases, the fully data driven SVC 

algorithm can be considered most robust than its counterpart IK algorithm. Here, 

robustness means that the response of the algorithm is less dependent on the expertise of 

the practitioner. 
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5.1 Summary of Contributions 

 

Two new and complimentary concepts are introduced in this thesis. The first one is a 

novel technique for selecting the parameters of a SVC machine for spatial categorical 

data. The second concept is an illustration about how a (hybrid) geostatistical-machine 

learning model for categorical spatial data might lead to classification and simulation 

models with improved responses. 

 

Heuristic SVC parameter selection: Based on a conceptual dissection of the IK and 

SVC algorithms; Chapters 3 and 4 introduced a methodology for SVC parameter 

selection when a Gaussian radial basis function kernel is used. The method uses 

geostatistical criteria to select the SVC pair of parameters (P, γ) and it looks for a 

convergence on the responses of both algorithms.  The proposed method is fully 

automatic and it offers an easy to use tool to the geostatistician for modeling facies. 

 

Geostatistical modeling:  The SVC algorithm is data driven, it is totally automatic and 

its response depends on the set of observed or training data. The IK algorithm is modeler 

dependent; its responses depend not only on the data but on the ability of the user to 

extract information from them. Chapter 4 illustrated how simple information from the 

SVC algorithm response can be used to generate geostatistical classification and 

simulation models with enhanced responses. 

 

Beyond these two very specific contributions, the author anticipates that this thesis 

will keep open the door for research on hybrid geostatistics-machine learning modeling 

that looks for an equilibrium between (1) the objective mathematical concepts of the 

statistical learning theory implemented in the learning machines, and (2) the solid, well 

established, flexible but oftentimes subjective approach of geostatistics for the analysis of 

spatial data. 

The above conclusions and contributions allow affirming that the goals and objectives 

appointed for this research were met. 
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5.2 Future Work  

 

The scope of this thesis is quite specific. This leaves plenty of room for expanding the 

research presented here towards practical implementation aspects, such as: the dimension 

of the problem, the anisotropy of the data, the non-representativeness of the observe data, 

the multicategory problem and the target proportion issue. 

 

The dimension of the problem: The construction of 2D models has limited applications 

in real life problems. The practice of geostatistics for mining and petroleum purposes 

requires the construction of 3D models. Since the SVC algorithm was initially developed 

to deal with very high dimensional problems, the extension of this thesis to 3D should be 

straightforward. However, it is work that should be done; the results already obtained 

should not be extrapolated directly without further evidence. 

  

The anisotropy of the data: Petrophysical properties often are not the same in all 

directions; there are some degrees of anisotropy in their behavior. Geostatistics deals with 

the anisotropy through the semivariogram which is modeled for orthogonal directions. 

The SVC algorithm response might be improved by the introduction of an anisotropic 

Gaussian radial basis function kernel rather than the isotropic kernel function used in this 

thesis. Further research would require modifying the LIBSVM software to implement the 

anisotropic kernel, and exploring the SVC model selection for more than two parameters. 

 

The non-representativeness of the observe data:  A preferential sampling campaign in 

areas with desirable petrophysical properties may lead to non-clustered sparse set of 

observed data exhibiting proportions that are not representative of the entire domain of 

interest. If there is ancillary information suggesting this situation, the proposed technique 

can be applied implementing a modified version of the SVC algorithm called imbalanced 

SVC (Abe, 2005, p.65). The SVC algorithm for imbalanced data allows the construction 

of a boundary classifier with asymmetric margins by selecting a different penalty 

parameter (P) for each category. Further research would require exploring the SVC 

model selection for more than two parameters. 

 

The multicategory problem: The mathematical description of the SVC algorithm is fine 

for binary problems but it is limited for multicategory applications. To solve 
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multicategory problems several techniques have been proposed, like the one-against-one 

(Kreβel, 1999), the one-against-all (Bottou et al., 1994), the all-at-once (Weston and 

Watkins, 1998) and the error-correcting output code (Dietterich and Bakiri, 1995). An in-

depth analysis of these techniques should be made to determine what is the most suitable 

for geostatistical applications. 

 

The target proportion issue: The proposed technique requires the selection of a target 

proportion to be reproduced. This selection is made subjectively by the modeler without 

considering the construction of the SVC machine. Since the SVC algorithm cannot 

reproduce any arbitrary target proportion, the existence of the intersection point between 

the 100% empirical accuracy and the target proportion contour lines is not guaranteed. 

Further research would require exploring the conditions that should satisfied the selected 

target proportion in order to guarantee its reproduction by the SVC machine and the 

existence of the intersection point. 
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Appendix A Matlab Code 

% Heuristic Support Vector Classification 

% By Enrique Gallardo. MSc Student 

% CENTRE FOR COMPUTATIONAL GEOSTATISTICS 

% UNIVERSITY OF ALBERTA 

% Revised : March 20,2009 

 

%======CLEAN WORKSPACE AND CLOSE ALL OBJECTS============== 

clear all 

close all 

%======LOAD DATA FILES====================================== 

 

%======LOAD SAMPLE IN GSLIB FORMAT ========================= 

newData = importdata('data.dat',' ',5);        %Import the file "data.dat" as structure 

data_m=newData.data;                                %Matrix Ax3 with coordinates and data 

xapps=data_m(:,1:2);                                  %Coordinates 

yapps=data_m(:,3);                                     %Labels or categories 

clear data_m; 

%=========================================================== 

 

%======LOAD REFERENCE DATA================================ 

load ReferenceImage;                              %Load file "ReferenceImage.mat" with the matrix 

%C. [e.g. 100x100 matrix] 

load XYcoordinates;                               %Load file "XYcoordinates.mat" containing the 

%variable xapp with the coordinates in GSLIB format 

yapp=reshape(C,10000,1);                          %Reshape the matrix C to GSLIB format [e.g. 

%10000 files and 1 column] 

xapp=xapp/10000;                                  %Rescale the coordinates to [0,1] if needed 

%=========================================================== 
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%=======DEFINITION OF SOME VARIABLES======================= 

bestcv_cr=0;                                      %Best cross-validation accuracy 

bestcvs=0;                                         %Best empirical accuracy 

bestcv=0;                                          %Best Generalization accuracy 

LOGC=[];                                          %Empty matrices to storage Penalty parameter C 

LOGG=[];                                        %Empty matrices to storage Kernel parameter Gamma 

CVH_cr=[];                                      %Empty matrices to storage cross-validation accuracy 

CVHs=[];                                          %Empty matrices to storage empirical accuracy 

CVH=[];                                           %Empty matrices to storage generalization accuracy 

NSVs=[];                                         %Empty matrices to storage Number of Support Vector 

propT=0                                           %Scalar to calculate global proportions 

PROP=[];                                          %Empty matrices to storage Global Proportions 

n_c=81,                                           %Number of C points in the grid-search [e.g. 81 points] 

n_g=81,                                           %Number of Gamma points in the grid [e.g. 81 points] 

%============================================================ 

 

%========GENERAL LOOP FOR THE GRID-SEARCH=================== 

for log2c = -2:.1:6,                              %Grid for C. [vector -2:0.1:6 has 81 points] 

  for log2g = 3:0.1:11,                     % Grid for Gamma. [vector 3:0.1:11 has 81 points] 

 

    %================CROSS-VALIDATION ACCURACY=============== 

    cmd = ['-v 10 -c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];            % see LIBSVM 

    cv_cr = svmtrain(yapps,xapps,cmd);                               % See LIBSVM for use of '-v' 

      if (cv_cr > bestcv_cr),                                         % Select best crossvalidation accuracy 

      bestcv_cr = cv_cr; bestc_cr = 2^log2c; bestg_cr = 2^log2g; 

      end 

    LOGC=[LOGC log2c];                                                          % Storage results 

    LOGG=[LOGG log2g];                                                          % Storage results 

    CVH_cr=[CVH_cr cv_cr];                                                      % Storage results 

    %========================================================= 

 

    %================EMPIRICAL ACCURACY===================== 

    cmd = ['-c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];            % See Manual LIBSVM 

    model = svmtrain(yapps,xapps,cmd);                                          % See Manual LIBSVM 

    [predicts_label, accuracys, dec_values] = svmpredict(yapps,xapps, model);   % 

%Estimating Empirical accuracy 

    cvs=accuracys(1,:);                                                    % Extract empirical accuracy 
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    Nsvt=[model.totalSV];                                              % Extract number of support vectors 

    if (cvs > bestcvs),                                                      % Select best empirical accuracy 

      bestcvs = cvs; bestcs = 2^log2c; bestgs = 2^log2g; 

    end 

    CVHs=[CVHs cvs];                                                            % Storage results 

    NSVs=[NSVs Nsvt];                                                           % Storage results 

    %============================================================ 

 

    %======GENERALIZATION ACCURACY USING REFERENCE DATA====== 

    [predict_label, accuracy, dec_values] = svmpredict(yapp,xapp, model);       % 

%Estimating Generalization accuracy 

    cv=accuracy(1,:);                                              % Extract Generalization accuracy 

    if (cv > bestcv),                                                 % Select best Generalization accuracy 

      bestcv = cv; bestc = 2^log2c; bestg = 2^log2g; 

    end 

    CVH=[CVH cv];                                                               % Storage results 

    %============================================================ 

 

    %======GLOBAL PROPORTIONS FOR LABEL OR CATEGORY 1========== 

    propT=mean(predict_label);                                                  %Proportions for Category 1 

    PROP=[PROP propT];                                                          %Storage results 

%============================================================ 

  end 

end 

%===========SAVING OUTPUTS==================================== 

save Finalresults;                                                                     %Save workspace  

%==========PREPARING PLOTTING ================================= 

CVHCROSS=reshape(CVH_cr,n_g,n_c);                                %Preparing variables to Plot 

CVH1=reshape(CVH,n_g,n_c);                                               %Preparing variables to Plot 

CVH1s=reshape(CVHs,n_g,n_c);PROP1=reshape(PROP,n_g,n_c);    %Preparing to Plot 

LOGG1=reshape(LOGG,n_g,n_c);LOGC1=reshape(LOGC,n_g,n_c); %Preparing to Plot 

PROP1=reshape(PROP,n_g,n_c);                                           %Preparing variables to Plot 

%============================================================= 

%==========CONTOUR PLOTS===================================== 

 

figure,contour(LOGC1,LOGG1,PROP1);title('Global Proportions');xlabel('LOG2 

(P)');ylabel('LOG2 (Gamma)'); 
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hold on; 

contour(LOGC1,LOGG1,CVH1s);title('Empirical Accuracy');xlabel('LOG2 

(P)');ylabel('LOG2 (Gamma)'); 

figure,contour(LOGC1,LOGG1,CVH1);title('Generalization Accuracy');xlabel('LOG2 

(P)');ylabel('LOG2 (Gamma)'); 

figure,contour(LOGC1,LOGG1,CVHCROSS);title('Crossvalidation 

Accuracy');xlabel('LOG2 (P)');ylabel('LOG2 (Gamma)'); 

 

%============================================================== 


