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ABSTRACT

This thesis deals with two nunerical schemes: wavelet transforms and tinite dif
ference approximation schemes. As a particular application of the discrete wavelet

transform, iinage compression is also discussed.

Wavelet analysis gives us a way to decompose functions by using scaling and <hift
of a single function. In real applications, cflicient algorithims to compute wavelet
transforms musi be studied. We first present @ new algorithm to compute continmons
wavelet transform at dyadic scales by applying quasi-interpolation and subdivision
techniques. Our algorithm is well connected to the standard algorvithme a trous and
can be considered as its extension. For discrete wavelet transform, we mainly study
wavelet transform coding and its application to image compression. Dillerent com
pression schemes and their behavior are studied with support of experiments and

examples.

For finite difference appre~imation, we first transform a inverse problem with an
unknown source parameter into an equivalent non-local parabolic equation. Finite dif
ference scheme is formulated for the new problem and the unknown source parameter
can be calculated through the inverse transformation via numerical differentiation,
We then tudy finite difference approximations to the solutions of some non local
narabolic equations subject to cc.tain kernel condition. The proposed finite differ-

- procedures preserve many properties of the solution. Both of these two equations
are analyzed by using the discrete version (modified) of the maximum principle for
parabolic finite difference schemes. Numerical computations are also presented to

support our theoretical analysis.
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Chapter 1

Introduction

%1.0. Preamble

In this thesis, we will study two numerical schemes: wavelet transforms and finite
difference approximation. As a particular application of the wavelet transform, image
compression is also discussed. As outlined in the following sections, we will study
a new algorithim to compute the continuous wavelet transform in Chapter 2 and
in Chapter 3 we will disenss wavelet transform coding and image compression. In
5

Chapter 4 and Chapter 5, we will study finite difference solutions of two parabolic

k]
equations which are both nonlocal and can be analyzed by the discrete maximuin
principle. In what follows, we may refer to a function as a signal or the other way

around. For f,g € L,(R"),

< [,g>= R"f(i)g(t)df-

£1.1. Compute Continuous Wavelet Transform By Subdivisicn

The wavelet transform gives us a way to decompose functions by using scaling and
shift of a single function ¥ (¢) called a wavelet. The continuous wavelet transform of

a function [ defined on " corresponding to the analyzing wavelet ¢(t) is defined as:

Ti(ba)= [ F(tnalt)e

where b€ R, a € R,a > 0, and ¢pq(t) = a~7(=2). Only very mild assumptions are

a

needed for the analyzing wavelet, therefore we have the freedom to choose the right



wavelet. This time-scale approach turned out to be very etficient [1][5]{6]{8][12](13].

Wavelet transforms have some nice properties; notably,

e Localization property: Normalfly we require *(1) to be either compactly sup-
ported or exponential decay in both time and frequency domain and thus get

local analysis.
e Reproducing property: If N(ag,a.bp,b) =< {ha, 0, >, then

+ o
T f(bo ao) = / / T [(b,a) K (o, a. by, b)dbda
4] Jopm

which shows the redundancy of the information contained in the transform and

thus gives vs the ability to cross reference [6](3)[12][13].

In real applications [6]{8][12]{13], efficient algorithms are necded to compute wavelet
transform. For the continuous wavelet transform, Holschneider, Kronland-Martinet,
Morlet and Tchamitchian [20] propesed the efficient algorithme a trous which is based
on a hole filling process. The hole filling process 1s limited in the sense that
uses spline interpolation that is restrictc. to piccewise constant and piecewise lin-
car splines. In scarch of an efficient algorithm with higher order accuracy, we extend
the algorithme a trous by just approximating the analyzing wavelet by a linear combi-
nation of refinable {'1- ~tions; approximating by quasi-interpolation in the spline case.
The refinability permits subdivision schemes to be applied in the computation which
lead to a very efficient new algorithm. The algorithm has an almost identical imple-
mentation as the algorithme a trous but the starting point is different. Our algorithm
coincides with the algorithme a trous in the one dimensional case if the initial approx-
imation is given by piecewise constant or piecewise lincar spline interpolation. This
coincidence reveals the connection between subdivision and hole filling, whic b are two

basic approaches to render given data and provide approximation. The al -orithmn is



an extension of the algorithme @ trous for it provides higher order approximation and
casily generalizes 1o higher dimensions. We will discuss these algorithms in Chapter

2.

£1.2. Image Compression By FW'T

Mathematically, it is equivalent to study a function or the coefficients in the se-
ries expansion of the function under certain bases. Viewing scries expansion as a
transform, we gain the transform coding scheme: code the coeflicients of the series
expansion. For given signals, with the right basis the series expansions could be very
sparse and most of the coefficients nearly equal to zero. By ignoring these small coef-
ficients and keeping only the large coefficients, w~ may still get a good approximation
of the original signals. This gives what is called a lossy compression scheme: there is
some loss of data. Orthogonal bases are naturally better suited to this scheme and
normally bases which possess fast transforms are applied since efficient computation
is needed. In Chapter 3, we will study this compression scheme in a general setting
and discuss several aspects. All our discussion is limited to the one dimensional case
since we use tensor product approach to deal with image compression. Experiments

of image compression are presented to support our discussion.

‘The efficiency of this scheme obviously depends on both signal and basis, more
precisely it depends on the sparsity of the series expansion. Our experiments are
mainly done by applying orthogonal wavelets: specially constructed #(z) such that
{1(2'a = j)}; jez form an orthogonal basis of Ly(R). Deveioped by Mallat [13], the
FW'T (fast wavelel transform) is an efficient algorithm to compute the coefficients of

wavelet series or continuous wavelet transform at dyadic values. FWT is also known



as Mallat’s algorithm. or the discrete wavelet transform. or the orthogonal wavelet
transform. With locality and scaling/shift nature, wavelets are extremely efficient
to match a change in the signal [4][5][6][8][12]. In other words, wavelets can mimic
the shape of the signal better than ordinary bases and the wavelet series is often
very sparse. As our example shows, orthogonal wavelets are especiaily su'ted for

compression.

§1.3. A Finite Difference Scheme For An Inverse Heat Equation

In Chapter 4, we will study a finite difference method for approximating the un-
known source paramecter p = p(t) and u = w(ax,y, ) of the following inverse problem.

Find v = u(z,y,t) and p = p(t) which satisly

wy = Au+ p(i)u+ f(z,y,t) in Qr,
u(z,y,0) = ¢(z,y), (z,y) €,

u(z,y,t) = g(z,y,1), on J0 x [0,T],
subject to the additional constraints
u(z™,y",t) = E(1) for fixed (z™,y") e, 0< i<,

where Qr = Q x (0,7], T >0, Q = (0,1) x (0,1), f,¢,¢9 and I # 0 arc known
functions, and (z*,y*) is a fixed prescribed interior point in 2. As usual, the boundary
of 2 is denoted by 9. In real applications, il u represents temperature then the
problem can be viewed as a control problem of finding the control p = p(t) such
that the internal constraint is satisfied. The problem above and other similar inverse
problems of identifying some unknown source parameter have heen studied by several

authors recently with different approaches [18][19][21][22]. We will study the backward



Fuler finite difference scheme, and this scheme will be shown to be stable in the
maximum nori by using the diserete version (modified) of the maximum principle

for parabolic finite difference schemes.

Notice that this problemn cannot be easily solved by finite difference scheme directly.

Therefore we define the following transformation:

oo, t) = (g exp(= [ p)s), 7)) = exv{= [ pls)ds).

T'hen

o, 1) —'(1)
ON "D

and the problem is transformed into the following parabolic equation

w(x,y,l) = p(t) =

vy = Av + 7'“)[(-7:,3/3” in QT?

'l’(-?’s?/, 0) = ¢(T7 y)a (:L’, ?/) € Q,
v(r,y,t) = r(t)g(z,y,t), cen 00 x [0,T],
subject to
v(x™,y",t)

r(t) = for fixed (z*,y") €, 0t <T.

E(t)
This problem is equivalent to the original one provided that the data is smooth
enough. Therefore a finite difference scheme is formulated for this problem, and the
scheme will be shown to be stable in the maximum norm. Once v is known numer-
ically the unknown (wu,p) can be calculated through the inverse transformation via
numerical differentiation. By controlling the step size in the numerical differentia-
tion, we can demonstrate the convergence of the approximation to u and p. Several
aspects, particularly the stability, of our numerical procedure are discussed. Also we
present some nuinerical computations for several examples to support our theoretical

analysis. Some extensions are also addressed.



§1.4. A Class of Non-Local Parabolic Equations

In the final Chapter, we will study finite difference approximations to the solution

of the following non-local parabolic equations:

U —Au=20 in Qr,
u(z,y,0) = ¢(z,y), (z,y) € 82,

w(z,y,t) = /7I\’(m,y,{,n)u(fﬂht)d{du on JQ x (0,717,
¢

where Qr = Q x (0,7), T >0, Q = (0,1) x (0.1), ¢(xr,y) £0 and KN(r,y,&n) are
known functions. In addition, it is assumed that for some constant 0 < p < | the

kernel K(z,y,€,n) satisfies

/q |K(x,y,€&n)|dédn < p <1,  Vi{z,y)e d

Equations similar to our problem here arise from some real problems, the deter-
mination of the unkuown source parameter and other related problems [3]{7]. And
they have been studied in different contexts. We will study finite difference approxi-
mations for the original problem. The proposed finite difference procedures preserve
monotonicity, the maximum principle and the exponential decay (if the kernel is non-
negative) of the solution for the original equation; therefore, they are considered as

good numerical approximations.

With the help of numerical integration, we propose both fully implicit and semi-

implicit schemes. The two schemes differ in the treatment of the condition

/Q |K(z,y,&n)|dédp < p <1, V(z,y) € 90

which is necessary in order to obtain numerical solutions that preserve as many prop-

erties of the solution as possible. Numerically, the fully-implicit scheme requires a



full-matrix system to be solved at eacii tire level due to wie boundary integration.
With small step sizes, the matrix will be diagonaliy-dominant and the corresponding
linear system can be solved by any standard method. The semi-implicit scheme is
casy to implement numerically since only a pent-diagonal matrix system needs to be
solved at each time level. Therefore, it is a very economical and fast algorithm. Both
the fully implicit and semi-implicit schemes result in an truncation error O(h? + 7).

We will prove that under the condition
[ 1K,y e mldedn < p <1, V(a,p) € 0
Ja

the numerical solutions of the two schemes are unconditionally stable. On the other
hand, if this condition is not satisfied, both of these two schemes may lose uncon-
ditional stability as demonstrated by ovr nuiuerical computations. The conditional

stability of general cases is also discussed.
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Chapter 2

Compute Continuous Wavelet Transform By

Quasi-Irterpolation and Subdivision Scheme

§2.0. Introduction

The idea of wavelet analysis is to decompose [unctions by using scaling and shift of
a single function #(¢) called a wavelet. The continuous wavelet transform(CWT),
or integral wavelet transform(IWT), of a function [ defined on I¢" corresponding

to an analyzing wavelet 3(t) is defined as:

’Tf(b,a):/ J(O)Pya(t)dl

Re
where b € R*,a € R,a > 0, and ¥ ,(¢) = a‘%d)(‘—;—b). Usually compactly supported
or exponentially decaying wavelets are used in order to get local analysis. The funda-
mental result governing the continuous wavelet transform is the following conclusion

by Grossman and Morlet [11][16]:

Theorem 0.1. If f(t) € L2(R"), then the following equations

2, 1 00 g(ia(llf
/Rn|f| dt = C(T/))/Il"/() I71(,a) a?’

1 e dadb
/= c(z/))/nv'/o TIbayboa=

hold if and only if \
Bl

i len w < o0

() = (2m)"

10



Note that only very mild assumptions are imposed on the analyzing wavelet, there-
fore we have the freedom to choose the right wavelet for a particular application. By
nsing very smooth wavelets, the continuous wavelet transform provides a very pow-

erful analysis tool which can be applied to several different arcas [11][22][23][24].

Numerically, the CWT can be computed by FFT based on the representation in
the frequency domain, but this is too expensive computationally [14]. Yet so many
real applications depend on the computation of CWT that an efficient algorithm to

compute it must be studied.

The standard fast algorithm to compute CWT is the algorithme a trous developed
by Holschneider, Kronland-Martinet, Morlet and Tchamitchian [19] which is based
on a hole filling process. When the hole filling process is viewed as a spline interpola-
tion process, the algorithn cannot accommodate spline interpolation of order higher
than piecewise constant, and piccewise linear [19]. Moreover, this algorithm was only

applied to the one dimensional case.

We introduce a new algorithm to compute the CWT. As opposed to hole filling,
we use approximation of the analyzing wavelet by refinable functions. Because of
refinability, subdivision schemes can be applied in the computation and this leads to
eflicient algorithms. We present a clear and general theoretical background for the
computation of CW'T' through this approach. In particular, if cardinal B-spline and
interpolation are applied with order no bigger than 2, our algorithm coincides with

the algorithme a trous.

"This chapter is organized as follows: in §2.1, we discuss the problems around the
computation of continuous wavelet transform and present the algorithme a trous.

The new algorithm will be presented in §2.2. In §2.3, we discuss the special case of
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cardinal B-splines and quasi-interpolations and show how our approach connects with
the algorithme a trous. In §2.4, we discuss box splines and quasi-interpolation to deal
with multidimensional computations. In §2.5, we discuss some numerical aspects of
our algorithm and give the error analysis. In §2.6, we summarize the coustructions of
quasi-interpoiants which is needed in the implementation of our algorithm. In §2.7,
we present some examples in one dimension to compare with the algorithme a trous.

Some multidimensional examples are presented in the last section.

§2.1. Computational Problems and algorithme a trous

To present the algorithm. we first introduce the following notations. For functions
defined on R", we define: Reflection: :f(1) = f(—t); Shift: =, f(t) = [(1 - b);
Dilation: o, f(t) = (t/a),a > 0; Convolution: K;g = ([ *¢)(t) = (¢ * [)(1); and
Sampling: S,f(n) = f(nh),h € R,h > 0. Vor sequences defined on 2", we define:
Translation: (T¢a)(n) = a(n — (), where ¢ € Z"; and we denote (T'a)(n) = e(n - 1)
in the one dimensional case; Dilation:

a(n/p), n = 0(mod p)
Dya(n) =
0, n # 0(mod p)

where p is a positive ‘nteger; Convolution: K,b= a*b = b+aq; Local Complexity:
L(a) = FZumyzol; and é; the Kronecker delta function, éx{y) = I, il j = k and 0

otherwise.

Throughout this chapter, we set W(t) = w)(t), where (1) is the analyzing wavelet.

Then the continuous wavelet transform is defined as:
T f(ba) =a 2K (0a9)) = a7 K;o,¥.
For a given scale a, we get the following discrete version of the continuous wavelet

12



transform:

(i — i)k

T*f(ih,a) = a”2h"Y 7. J(7R)¥( );

in other words,

{T"f(ih,a)} = a™Zh*{< [} + {ShouV}.

Since only dyadic scales are used in most applications, we are mainly interested
in computing the transform at scales: a,2a,---,2Va. That is, we need the following

sequences:
scale 2a: Spf * Spop,W, 0<i< N,

Since the key operation here is convolution, the complexity of the computation, as

defined in [19], is determined by th:» 'ocal complexity of the convolution sequence:
| K. = L(a).

Then |K, K,

= |K.| + [No| = L(a) + L(b).

Without loss of generality, we assume throughout this chapter that a = 1. Now
let’s look at a naive computation of the continuous wavelet transform. Suppose that

the wavelet W(1) is compactly supported. Then
l.[\'sh%”.pl = £(ShU2N\p) ~ 2N"£(Sh\p)

which tells us that the complexity is exponentially increasing. Therefore the naive
computation will not be realistic if we want to compute the transform at several

different scales.

The problem with the direct conmiputation can be reasoned as follows. For general
aalyzing wavelet W(¢), normally there is no easy relation between values {\P(%h)}

d {W(7h)}, that is, {\II(-%h)} wiich is needed in the next scale cannot be easily



generated from {W(jh)}. This results in a lot of repeated computation.  As the

number of sampled wavelet values increases, the coavolution wilt keep growing in an
. o s . .

exponential manner. To improve upon this situation, we try to use the values at

{¥(jh)} to generate approximate values at {W(jh/2)} when some component of J is

odd, that is, to fill the “hole”. With an ecasy relation between two consecutive levels,

the long convolution can be factorized into a series of small convolutions. In the one

dimensional case, this idea leads to the algorithme a trous.

The algorithme & trous: For a filter F € 1(Z), iff O = (Dy 4+ T'DaK 1), then the

continuous wavelet transforms are computed in the following way:
scale 28 S, fx O'S, ¥, 0 <1 < N.

The fellowing result by Holschne -+, Kronland-Martinet, Morlet and 'T'chamitchian

[19] tells the efficicncy of the algorithme a trous.
Theorem 1.1. Suppose G, F' € 15,(Z) and O is defined as: O = Dy +T'Dy Ky, then
Kovg = Kay Kp, -+ Ky,
with Fy = 8o + TDyF, Fipy = Do F; and Gy = DN G Morcover,
Ky Kry - Kry | = L(G)+ N[1+ L(F)].

Implementation of the algorithme a trous:

scale 1: Ksvf;
scale2:  Fy =60+ TDF, X,=Kpf,
g1 = D5V, Ky X1,
scale 27:  F; = DyF;_,, X; = Kp,_, X;,
g; = Dagj_y, Kq, X5 for2 <5 <N.
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Examples 1.2. lor the filter F/(0) =1, F'(i) = 0, if 2 # 0, we have

\Il(-%), j even
(OV)(j) = A
U(451), j odd

P
This provides us with a piccewise constant approximation. Notice that Fy = 6o + 6;.
Examples 1.3. For the filter /(0) = F(1) = 1, F(i) = 0, if 7 # 0,1, we have

‘IJ(%), J even
(OW)(y) = _ A
{U(IF) + V(7)) 2, j odd

This provides us with a piecewise linear approximation. Notice that Iy = %60 + 6, +

L,

Mathematically, the algorithme @ trous uses an auxiliary function g such that:
O'Syg = S(crg)jg, for ;>0

as the approximation of the analyzing wavelet W. The function g(¢) also interpolates

W(t):
g(jh) = ¥(ih), forall j € Z

The two examples given are piecewise constant and linear approximations. A nat-
ural question is whether higher order splines can be applied in this approximation.
Bounded by the construction of the filter F' and the above equations, the algorithme a
trous cannot use higher order spline interpolations. The reason is that the algorithme
d trous requires cardinal interpolation of g to W, but for the cardinal interpolation
splines, the filter I cannot be finite except when the spline order is less than two. To
get smoother approximation to the analyzing wavelet, ' must be constructed very
carcfully. As Deslauriers ' Dubuc’s work [12][13] shows, the hole filling process will
normally end up with fractal curves and the smoothness of the generated function

remains yet to be studied.
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§2.2. Compute CWT By Subdivision

Instead of insisting on hole filling, we study the approximation of the analyzing
wavelets by lincar combination of the shifts of a single refinable function. 'The retin-
ability provides us with an efficient subdivision scheme to replace hole filling. The

approach also applies to computation in higher dimensions.

Suppose ¢ is a refinable function, that is, it satisfies the refinement equation
$(1) = Thezmb(R)(2 — k),

with refinement mask b. Suppose further that all of the h-shifts of ¢ form a Riesz

basis of Ly(R™), that is,

Cillally < ISsemad(t — i, < Collall,,

for any a € [,(Z™), with fixed constants C'y and Cz, such that 0 < ¢} < 7y, Let
c(j)=oh), j€Z".

This sequence connects the discrete values of {g(jh)} with the coefficients {d(;)} of
the approximation by h-shifts of the function ¢. With the commutability of convolu-

tion and subdivision, we gain an efficient algorithm to compute CW'T.

The idea of subdivision originated in the study of computer aided geometric design
and corner-cutting algorithms. For a reference, one may refer to Cavaretta, Dahmen
and Micchelli [4) and the references listed there. The following elementary results
about subdivision are needed for the presentation of the new algorithm. We give
very easy proofs to correspond with our notational setting and make our discussions

complete.
Lemma 2.1. If g(1) = Sreznd(k)@(t — kh), then Sig = d * c.

16



Proof: Shg(j) = g(Gh) = ieznd(k)p(jh — kh) = d*c. O

Lemma 2.2. (Subdivision) If (1) = Sieznd(k)d(t — kh) = Tyezndd(k)p(2t — kh),
then dd = Dyd + b.

Proof: According to the refinability of ¢(1),
g(t) = Tireznd(k)d(t — kh)

= ZkEZ"(l(k)ZJEZ"b(])¢(2t - 2kh - ]h)
= Lreznd(k)Lpeznb(p — 2k)$(2t — ph)
= Vpezn Lieznb(p — 2k)d(k)@(2L — ph)

= pemdd(p)d(21 — ph).
From the linear independence of {¢(t — kh)}, we get

dd(p) = Theznb(p — 2k)d(k)
= Treznb(p — 2k)D2d(2F)

= Lieznb(p — k) Dod(k),
which gives us dd = Dad + b. O

Lemma 2.3. If g(t) = 5 ;emdd(j)¢(2t — jh), then Spozg = dd * c.
Proof: Shoag(7) = g(71/2) = Tiezndd(k)$(jh — kh), that is, Spoeg =dd *c. O
Lemma 2.4. For any two scquence p and q, Da(p * q) = Dap * Dagq.

Proof: We just need to look at even integers. If j = 2k, then

Dy(p+q)(i) = (p*q)(F)
= Lieznp(glk = 1)
= Y 1ezn Dap(21) D2q(2k ~ 21)
= YieznD2p(21)D2q(5 — 20),
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since Dap(i) = Daq(i) = u, if i £ 0 mod(2), therefore,

Dy(p*q)3) = Zigzn Dap(D) Daq(j — 1)

which gives what we want. O

Finally, as a direct consequence of the definitions, we have
Lemma 2.5. £(D%a) = L(a), for all k > 0.

These preliminary results imply easily our main result.
Thecorem 2.6. If g(t) = 3 ;e4nd(J)¢(t — Jh), then

Sho'é.g =b*x Dyl v % D'zk_]b * [).ﬁ'd* ¢, k=0

Proof: By induction, the conclusion when & = 0 is guaranteed by Lemma 2.1, Suppose

U

the conclusion is true up to k, then according to Lemmas 2.2 and 2.3, Spaobt'y =
Da(bx Dab+-- -*D«f"b* ng)*b*c. Lemma 2.4 and the commutability of convolution

give the results we want. O

Suppose ¥(t) is the given analyzing wavelet and let g(t) = 3 ;e nd(7)d(l ~ jh)
be a good approximation of W(t). Then the continuous wavelet transform can be

approximated by

(i—7g)h

0 : _ —% n - J
TOf(ih,a) = a 7S SN

or equivalently,
{T°f(ih,a)} = a~ 2 h*{Spf} * {Shouy}

which is similar to the algorithme a trous. Naturally we require that g() approximate
¥(t) well. The error introduced by this approximation will be studied in the following

sections. We will see that as long as g approximates W well in the L,-norm, the
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numerical error will be small. Therefore the interpolatory condition
g(jh)y =¥(jh), je 2"
is not necessary when applying this algorithm.
Following the previous discussions, we compute the continuous wavelet transform
at dyadic scales by
scale 29 Spf % Sp(02)g, 0 < j < N.
According to Theorem 2.6, we summarize this approach as an algorithm.
Algorithm 2.7. Compute the continuous wavelet transform by

scale 270 Spf xb* Dyb* D%b*---Dg—lb* Déd*c, 0<j3<N.

Implementation of Algorithme 2.7: let ff = Spf *c,
scale 1: g =d, K, ff;
scale 2. Iy =0, Xi=Kpff,
g1 = Dy, Kg, Xy;
scale 27 I, = DyFy, Xj=Kr,_, X5,
g; = Dagj1, K, Xj; for2<j < N.

Notice that the implementation pattern of our algorithm is almost identical to
the algorithme @ trous. The difference is that we substitute interpolation by quasi-
interpolation and thus provide higher order approximation which leads to a more ac-
curate computation of CWT. Refinability is required to apply the subdivision scheme.

Viewing these two schemes in the one dimensional case, we see that the sequence Fy

here in this scheme is the refinement mask and thus can be understood more clearly.
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Indeed, our algorithm coincides with the algorithme a trous if the approximation is
by interpolation for spline spaces of order 1 and 2. Therefore the algorithm can be

considered as an extension of the algorithme a trous.

Theorem 2.8. If gt) = %eznd(j)d(t—ih), then K, ox, = Kypypospt-tpappe, @nd

(KoK s+ Kppory K pgg el = £(c) + kE(B) + £(d)

Proof: According to Theorem 2.1 and Lemma 2.5, {KyKp,p- - Npr-r, Kpny K| =
2

|Ks| + | Kpyo| + -+ + |K[)§"b| + | K| + |I\"D§d| = L(c) + kL(b) + L£(d). O

This theorem shows the complexity of Algorithm 2.7 and we shall see that it is a
fairly fast algorithm. In the one dimensional case, it has the same performance as
the algorithme a trous. Its speed depends on the length of the mask sequence. Some

details about implementation will be discussed in the last two sections.

§2.3. Cardinal B-splines and Quasi-interpolation: Univariate Case

Now let us discuss how our approach applies to higher order spline approximations
where the algorithme @ trous cannot be used. In the special case when ¢(f) is the
cardinal B-spline of order k, the approximation of the analyzing wavelet W(t) can be
given by the well-studied quasi-interpolation. First we give a brief overview of B-
splines and quasi-interpolation. Recall that cardinal B-spline of order k& when & > |

is defined as:

Mi(t) = My—1 * x(0,)(¢)
starting with My(t) = x(0(t). The following theorem summarizes some of the basic

properties of B-splines(cf [3][26]).
Theorem 3.1. If M,(t) is cardinal B-spline of order k, with k > 1, then
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i. Mi(t) = 0, suppMi(t) = [0, kh].
2. M(1) € C*=*(R) and is a polynomial of order k — 1 on (ih, (i + 1)k).
3. EJEZMA'(I‘ — _]’l) =1.

4. Recurrence relation:

Mi(t) = Gt Ma-1(8) + g M (t — B).

The sequence ¢ = {Mg(jh)}, can be computed easily by the recurrence relation,
from which we also see that ¢(j) = §,(7) if and only if £ = 1,2. The cardinal B-spline

is refinable and the refinement mask is finite, more precisely
M (t) = Zjezb(j)Mk(zt —7h)

where

and b(7) = 0 otherwise.

Example 3.2. When & = 1, the refinement mask sequence is: b = 8 + 6; and the

sequence ¢ is 2 ¢ = 8. Il f(1) = jezd(5)Mi(t — jh), then d(5) = f((5 + 1)R).

Example 3.3. When & = 2, the refinement mask sequence is: b(j) = %60 + 6, + %62

and the sequence cis : ¢ = 8;. If f(t) = ¥jezd(j)Ma(t — jh), then d(j) = f((5 +1)h).

From Example 1.1 and Example 1.2, we see that our algorithm coincides with
the algorithme @ trous in these two cases. And these are the only cases in which
they coincide as shown by the fact that ¢ = é; is a delta function if and only if
k = 1,2. For characterization of compactly supported refinable splines, one may

refer to Lawton, Lee and Shen [21]. These two algorithms take different approaches
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to generate the values at the finer mesh: filling holes or subdivision. These two
techniques have been studied in other arcas with a common purpose: v nder the
given data and provide an approximation to the function which provides e diserete
data. The above observation reveals the connection between these two aporoaches in

the context of computation of CWT.

The next thing we need to check is the approximation order of the quasi-interpolation
of B-splines. This approach has been well studied in approximation theory. Here we
list the following result of Jia and Lei [20] to support our discussion of continuous

wavelet transform computation.
Theorem 3.4. If ¥ € C*¥(R) and decays exponentially, then for | < p < oo, there
exists g(t) = Y_jezd(j)Mi(t — jh) which decays exponentially and which salisfics

v~ gll, < Ch

for some positive constant C'.

§2.4. Box Splines and Quasi-Interpolation: Multivariate Case

As a natural extension of cardinal B-splines to the multivariate case, box splines
provide bases for spline approximation of functions in higher dimensions. lor a given
h > 0, we define (cf de Boor, Héllig and Riemenschneider [3]) a box spline M=(t)

corresponding to an invertible n x n integer matrix = by

M= !

== mX:—:mh

where O, = (0, A]*. If ZU( is a matrix formed from Z by the addition of the column
( € Z", then
h
M: =/ M’-‘-‘ . —'l dt
=U¢ 0 =( ¢)
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‘Thus we can define the box spline Mz for any n X s integer matrix = with rank n.
‘T'his definition differs from the standard one [3] by the introduction of the scaling

factor h and box splines can be defined corresponding to any n x s matrix = [3].

Set k =s —n -+ | and define
m = min{#Z : rank(Z\ Z) < n}

where Z\ Z denotes the matrix obtained by removing the columns from Z and #2 is
the number of columns in matrix Z. The box spline M=, as defined above, has some

nice properties. We summarize them into the following Theorem(cf [3]).
Theorem 4.1. If = is a n x s integer matriz which has rank n, then

1. M=(t) > 0, suppM= = =0,,.

2. M= € C™2(R") and is piccewise polynomial of degree m — 1.

3. jemMs(t — jh)=1.

4. Recurrence velation: if Mz\¢,€ € = are continuous al x = =t, then

(s —n)hM=(z) = ZEGE{tEAla\E(x) + (h = tg)Mz\¢e(z — €h)}.

The sequence ¢(j) = M=(jh),j € Z™ can be computed by the recurrence relation.

"The box spline Mz is refinable and the mask sequence is finite. More precisely(cf [3]),

Theorem 4.2. If (;,(s,- -+, (s are the s columns of a n x s integer matriz = of rank

n, then bor spline M= satisfies
Mz(t) =3 5ub(5)M=(2t — jh)
where the mask sequence can be computed as
b= 2078 [0 + 8¢, ] # (80 + 6¢,) % -+ * [d0 + 6¢,]-
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As for the quasi-interpolation of box splines, following Jia and Lei {20], we have

he following appioximation order.

Theorem 4.3. [f ¥ € C*(R") and decays crponentially, then for 1 < p < oo and
m n X s inleger malriz = of rank n, there crist g(t) = 3" ;cmd(jYM=(t — jh) which

#couys exponentially and which satisfies
W —gl', < CR™
wiere C > 0 is a posilive constant.

The connection between cardinal B-splines and box splines is that when = =

[1,1,-+-,1] is a 1 X k matrix, then M=(t) = M(t). And m in this case is k.

§2.5. Error Analysis

In our algorithm, we use an auxiliary function which is a lincar combination of
shifts of a refinable function to approximate the analyzing wavelet (). Numerical
error is thus introduced by this approximation. Here we present some hasic error

analysis for this algorithm.

According to the previous definitions, we have, for all 7 > 0,

{TOf(3h,29)} — {T*f(ih,29))
= 27FRN(Sf) * (Shod¥) ~ RM(Sk]) * (Suodg)
= 27 (Shf) * Shod(¥ — g)
= 27 RY(Sif) * Spjar (¥ — g).
As we compute the continuous convolution by means of a discrete convolution, we
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need first some results which measures the error of this first step.
Lemma 5.1. Supposc g is continuous and has ezponential decay, then
i Y -n
1Sugll, < CR77|ig]l,,,
Jor 1 < p < oo and here C is a positive constant.

Proof: If [lg]|, = 0, then ¢(t) = 0 which will guarantee our conclusion. For llgll, >0,
we gain our conclusion by considering the Riemann Sum of integration, since our

conditions guarantee that g(t) is also Riemann summable. O

Theorem 5.2. Suppose W and g are conlinuous and have erponential decay, where
9l1) = Thermd(k)$(L — kh), and
|¥ - gll, < Ch™,
for some | < p< oo, m >0 and with constant C > 0. Then
15172 (¥ = I, < Comloin=rto
Here C is a positive constant.

Proof: From Lemma 5.1 and the given conditions, we get:

||Sh/21(‘1’ - g)lip
oin/p|p|~/P -
< C2MPIAITYR||IW — g,
< | p| TP R

< ngn/plhlm—n/p

which gives the result we want. O

Note that the estimate in Theorem 5.2 cannot be improved generally, since nor-

mally the estimates in Lemma 4.1 are sharp. We can see from these basic ¢stimates

25



in order that to reduce the order of the truncation error, higher order approximation
is needed; particularly when we need to compute CW'T at quite a few scales. Turning
to the truncation error, from the structure of our algorithm and the previous results,

we get the following conclusion.
Theorem 5.3. Suppose ¥ and g arc conlinuous and have erponential decay, where
4(t) = Thend(k)$(t — kh), and
v~ gll, < Ch™

for 1 < p < oo, m 20 and with constant ' > 0. Then

T~ [(ih,2) = TOf(ih, )|}, < C2% W™ || S0 Sl

T f(ih,29) = TOf(ih,29)|| , < C2=% hm+ |8 1),

(17 f(ih,27) = TOf (ih, 20)]], < C2E (|0 ]]...

Here C is a positive constant and 1 < p < oo.

Proof: By the definition of 7" and 7%, with the help of Theorem 5.2, we get
T°f(ih,27) = T*f(ih, 2],

< I27FA(SKS) * Sy (W = g)ll,
< 27 R[Sk (Y - )l 1Sk,

< CFh RS, S]],

< C2FR|SS,-

Other two inequalities can be proved in the same way. O

Remark 5.4. Let ¢ be the B-spline of order k or the box spline Mz with an n « 3

integer matrix of rank n, let m = min{#Z : rank(Z\ 7) < n} where #7 is the
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number of columns in matrix Z. Suppose the analyzing wavelet ¥(t) € C™(R") and
decays exponentially, the quasi-interpolant g(¢) = 3 ;eznd(7) M=(t — jh) exponentially

decays, and
NSy (W — g)||p < C2in/ppm-n/p
where (' is a positive constant and 1 < p < oco. Therefore we have

|| T=f(ik,27) — TOf(ih, 29)||, < C2% h™|

Sufllis
1T 7 (ih,29) — TOf(ih,2)||, < C27FR™ (IS, fl];,
T f(ih,2) = T°[(ih, 27)||,, < C2% A™||Sh Sl
where (7 is a positive constant.

It is clear that higher order accuracy is needed, then either higher order approxi-
mation or increased sampling frequency (that is, smaller ) is necessary. The higher
order approximation improves accuracy within a given sampling frequency without

much cost.
§2.6. Implementation With Quasi-Interpolation

Quasi-interpolation originated in finite element analysis and approximation theory.
One may refer to Strang and Fix [28], Dahmen and Micchelli [9], de toor [2] and Chui
and Diamond [6] for details. From the discussion of the last section, **= know quasi-
inter: .« ‘on can provide higher order approximation, and thus leads to more accurate
computations. The realization of quasi-interpolation is typically done as follows. For
a given 7 X s integer matrix = with rank n, denote m = min{#72 : rank(Z\ Z) < n}.

If we have a bounded hinear functional A such that the operator

QD) = X, juM=(t — GRIAS(R - +ih)
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reproduces polynomials of order m—1, then for f() € C'™(R) with exponential decay,

we have
QS ~ fll, <CR™

where C is a positive constant and 0 < p < co.

Therefore it remains to find the right functional \ to get the quasi-interpolants of
certain approximation order. Actually there are several explicit construction schemes

to do this. Following [3], we present two vasic approaches of this construction.

Approach I. The functional X is given by

/\f = ZOSI('|<mhlalgﬁ'(o)(lpu./')(0)

where D is a differential operator and g¢.(¢) is a polynomial of degree |a|. These

polynomials can be generated by induction with

B [ /Lt"-‘ﬁ

galt) = — = ZOSﬂ«xmgﬁ(l’)’

T al

which starts with go(¢) = 1 and where

wf =3 Mz(Uh) f(~0).
Notice that {M=(lh)} is the sequence ¢ we used in our algorithm. Thus the quasi-

interpolant can be constructed explicitly according to the box spline used.

Approach II. Notice that derivatives up to order m — 1 are nsed in the previous
approach. We can also construct the functional A without using the derivatives. Such

a A can be constructed as
M o=@l (=ih)
where w is generated by

w=d6+tv+tvrkvt - Fv*--kv

m—1
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and v is defined by
v = (S() e Z]EZ"Mk(Jh)é]'

Clearly we have

d(i) = M(h-+ib) =3 w(j)f(ih = jh),

that is,

d=w*5hf.

Following this approach, once w is computed, we can implement our algorithm as:

Algorithme 6.2: let ff = S5, [ * ¢,

scale 11 g=w*x SV, K ff;
scale 2: Iy = b, X1 =K ff,
g1 = Day, Ky Xi:
scale ;I = Dylyoy, X5 = Kp_ X1,
g; = Dagj—1, Ky Xj; for2<j<n.
$2.7. Numerical Examples: Univariate Case

First we lock at the one dimensional case where we consider the commonly used

Mexican Hat wavelet

2
P(i) = (1 —t*)e” 7.
Notice that ¥ = 1 in this case. Following the two schemes given in §2.6, we can

construct the quasi-interpolants explicitly.

Example 7.1. For the lincar B-spline M;(t), by Approach I, we have go(0) =1 and
¢1(0) = 1. Thus the functional A given by Approach I is defined as

M = £(0) + f (0.
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For the Mexican Hat, the quasi-interpolant of approximation order 2 has coetlicient

sequence d gl ven by
3 Qh ? . : . (gh) _: .
d(]) = {l - (_].h)"}(fm '2) + h{(‘]h)‘ - 3(}’1)}( "') s ]t Z

Notice that for the algorithme a trous, we need interpolation. Here we can also
give up the interpolation requirement and use quasi-interpolation. They both have
approximation order of 2 and the only difference in computation is that different

sequence d is used.

For the quadratic B-spline M3(t), we have go(0) = 1, g1 (0) = 3/2 and ¢2(0) = 1.

Therefore the A in Approach 1is defined as
.3 ! H b
Af = f(0) + 3f D)+ [ (0)h2

For the Mexican Hat, the quasi-interpolant of approximation order 3 has coeflicient

sequence d given by

h)?

dij) = {1 —(ih}e

I|)2
2

+2{(jh)° — B(jh) e

Ih)2
LRI —(h)* + 6(jh)? — 3}e= 2

For the most commonly used B-spline, the cubic spline My(t), we have go(0) = 1,
91(0) =2, g2(0) = 11/6 and g4(0) = 1. Therefore the X given by Approach ©is defined
as

' [ s . , .
Af = 1(0) +2f (0)h + [ (0)h* + JPHO)A”.
For the Mexican 1lat, the quasi-interpolant of order 4 has the cocflicients d(y) given

by
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Lm?

d(j)= {1 —=(jh)}e "3

+2R{(jR)* = 3(j 1\ e

UL (GR)* + 6(jR)? — 3}e™ 3

LJ_)_

+h*{(h)® — 10(jh)* + 15(jh)}e™ 2

Example 7.2. When applying Approach 11, we get the following computation of the

quasi-interpolants of the Mexican Hat. For the linear B-spline M,(t), we have

v =6y~ 51,
and w is computed as
w = 250 - 61.
For the quadratic Ms(t), we have
1 1
= by — =6 — =62,
v 0 5 175 2
and w is computed as
3 5 1 1
=38 — =6 — =by + =63 + —ba.
w 0= 5%~ 2+ 5 3+ 7%

For the cubic spline M4(t), we have

1 2 1
=8y — =8 — =6y — =6
v 0 6 1 352 6 3,
and w turns oul to be
35 25 35 47 8 17
v =48y ~ 8 — — by — ——=b3 + — 04 + —=b5 — —b — ==6
w0y =0 = g0 = G0t 7e0at 7505 T on% T g% T

Example 7.3. Following our error discussions in §2.5, we have
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{TOf(ih,29)} = {T=f(ih,29)}
= 27T R(ShS) * (Snod W) — hU(SuS) + (Shadg)
= 27T WS, f) * Sho(V — g)

= 27T hM(S0S) * Spy (¥ — g).

For a given signal f, the computational errors are mainly determined by
l)_L q
Z 2;.;1/21(\1’ —_ g)

Let E(3) = 2'12'”5',1/2,(\11 —9)ll, Table 7.4 and Table 7.5 show the approximation
error of the Mexican Hat by using Approach 1 with & = 0.1 and £ = 0.05 respectively.
Table 7.6 show and Table 7.7 show the approximation error of the Mexican Hat
by using Approach Il with A = 0.1 and A = 0.05 respectively. We can sce from
these experiments that higher order approximation is beneficial. We also observe
that Approach 1 is better than Approach Il in these computations. In the lincar
case, we have three different implementations: the lincar algorithme a trous, quasi-
interpolation by Approach I and quasi-interpolation *y Approach I1. In Table 7.8 and

Table 7.9, we compare these three approaches with h = 0.1 and & = 0.05 respectively.

Quasi-interpolations also give better results in this casc.

Table 7.4. Approach I: /1 =0.1
h =0.1 | Linear quadratic | cubic
E(0) 0.0149376 | 0.0021506 | 0.0005142
E(1) 0.0105625 | 0.0015236 | 0.0003657
E(2) 0.0074688 | 0.0010975 | 0.0002585
E(3) 0.0052812 | 0.0007760 | 0.0001830
E(4) 0.0037344 | 0.0005490 | 0.9001294
E(5) 0.0026406 | 0.0003882 | 0.0000915
E(6) 0.0018672 | 0.0002745 | 0.0000647
E(7) 0.0013203 | 0.0001941 | G.0000457
E(8) 0.00093%6 | 0.0001372 | 0.0000323
E(9) 0.0006601 | 0.0000970 | 0.0000228
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Table 7.5. Approach I:

h =0.05

h = 0.65

Linear

quadratic

cubic

0.0037460

0.0002705

0.0000324

0.0026488

0.0001913

0.0000231

0.0018730

0.0001379

0.0000163

0.0013244

0.0000975

0.0000115

0.0009365

0.0000690

0.0000081

0.0006622

0.0000488

0.0000057

0.0004682

0.0000345

0.0000040

0.0003311

0.00002441

0.0000028

0.0002341

0.0000172

0.0000020

0.0001655

0.0000122

0.0000014

Table 7.6. Approach II:

h=0.1

h =0.1

linecar

quadratic

cubic

o]
%]

0.0298752

0.0189414

0.0223314

—
S—

]
I NCOIN

0.0211250

0.0134195

0.0158314

—
3]

0.0149376

0.0095165

0.0112041

t—
()
w

0.0105625

0.0067292

0.0079234

0.0074688

0.0047582

0.0056031

Lt

0.0052812

0.0033646

0.0039620

[=2 3 %

1]

0.0037344

0.0023791

0.0028015

0.0026406

0.0016823

0.0019810

=s
0|~

0.0018672

0.0011895

0.0014007

el

PR Py PRy PRy P-iy PRy P-Eg - By iy PRy
B8

e o | e I [ | o | e | e

_
Tl
e~
<

0.0013203

0.0008411

0.0009905

Table 7.7. Approach II:

h =0.05

h =0.05

linear

quadratic

cubic

0.0074921

0.0024226

0.0014729

0.0052977

0.0017130

0.0010424

0.0037460

0.0012141

0.0007372

0.0026488

0.0008585

0.0005213

0.0018730

0.0006071

0.0003686

0.0013244

0.0004293

0.0002606

0.0009365

0.0003035

0.0001843

0.0006622

0.0002146

0.0001303

0.0004682

0.0001517

0.0000921

0.0003311

0.0001073

0.0000651
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Table 7.8. Linear Case Comparison: & = (.1

h = 0.1 || algorithme a trous | Approach I | Approach 11
E(0) 0 0.01149376 | 0.0298752
5{(1) 0.0487458 0.0105625 | 0.0211250
[ £(2) 0.0517037 0.6074688 | 0.01.19376
E(3) 0.0426406 0.0052812 | 0.0105625
E(4) 0.0322978 0.0037344 | 0.0071638
E(5) 0.0235961 0.0026406 | 0.0052812
E(6) 0.0169528 1 0.0018672 | 0.0037344
E(7) 0.0120822 i 0.0013203 | 0.0026406
E(8) 0.0085768 0.0009336 | 0.0018672
E(9) 0.0060766 0.0006601 | 0.001:3203

Table 7.9. Linear Case Compariscn:

h = 0.0

h = 0.05 [[ algorithme a trous | Approach T | Approach 1]
E(0) 0 0.0037460 | 0.0074921
E(1) 0.0243937 0.0026488 | 0.0052977
1(2) 0.0258651 0.0018730 | 0.0037460
E(3) 0.0213325 0.0013244 | 0.0026488
E(4) 0.0161598 0.0009365 | 0.0018730
E(5) 0.0118073 0.0006622 | 0.0013244
E(6) 0.0084837 0.0001682 | 0.0009365
E(7) 0.0060465 0.0003311 0.0006622
E(8) 0.0042923 0.0002341 | 0.0004682
E(9) 0.003041! 0.0001655 | 0.0003311

§2.8. Numerical Examples: Multivariate Case

Multivariate quasi-interpolants can be constructed in a similar way as in the one
dimensional case. Following Approach 1 and Approach I, we just need to find the
proper functional A\. We consider the two dimensional case in this section. As a
comparison the one dimensional case, we use the two dimensional Mexican Hat

2242

Plz,y)=(1—-2*—y?)e™ 2
as our analyzing wavelet. We consider the two most commonly used two dimensional
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hox splines [3] which correspond to the linear and the quadratic B-splines respectively

in the one dimensional case.

Example 8.1. Consider the box spline M=z where

101
“lo 11

with m = {#7% : rank(Z\ Z) < 2} = 2. The sequence c is now

(1)

o(7) = M=(jh) = oun(5), JE€ VA
When applying Approach [, the functional p is given by
l‘f = f(_’l"a _h)

where the polynomials g, are given by

g(0,0)(t) = 1»
dao(t) = 110 41,

gt} = 1O 4 1.

Thus the functional A is given by
Af = f(0) + hD1O £(0) + RDY) £(0).
As for Approach 11, we have
v(7) = é(0.0) = b(1.1)

and w is simply

w = 26(0’0) - 6(]‘1).

Remark: Under an affine map y = Pt — (3, 3?), where P is

1 -4
P= :
0
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the function M=(P 'y + (1,1)) is a piccewise linear function defined on a hexagonal

mesh and has function value 1 at the origin.

Example 8.2. Consider the Zwart element, that is the box spline M= where
o1 -1

10111

with m = {#Z : rank(Z\ Z) < 2} = 3. The sequence ¢ is now

i =(0,1),(1,1),(0,2),(1,2);

U]

c(7) = M=(jh) = {

0, otherwise.

When applying Approach 1, the functional g is given by
“f = (f(o’ _h') + f(—h, —II) + I(O, —Zh) + f(_hs —_2h))/1

and the polynomials g, are
g(0,0)(t) = 13
— (1,0) L1
Jao)(t) = (10 4 3
go.(t) =1ON + 3,

gu.(t) = g9a.0(t)g0,1(t) ,

(2,0)

g(2,0)(t) =3 + %t(l'0)3

goa(t) = 55~ + §HON 41,
Thus the functional A is given by

3h2 o
A = f(0) + %D“’O) f(0) + %’-‘D("v') f(0) + %’—D("” [(0) + K2DO f(0).

As for Approach 11, we have
) 1 .
v(7) = b(0,0) — 2(5(0,1) + 60,1y + 60,2) + 601.2))
and w turns out to be
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w= 3600 = 3b00 ~ 3500 — 16802 — §80.2) *+ 60ea) + 503
+1803) + 2623 + T804+ §00a) + 169(2.)-
Example 8.3. We can compute the quasi-interpolants of the Mexican Hat by using

cach of the box splines presented in the previous two examples with the guidance of

the two approaches. Similar to the one dimensional case, we notice that
S ~dn ~
E(3) =277 |Su2 (¥ = g)ll , = 277 {|Sh(¥ = 9)||-

Thus we test || Sy(¥ — g)]|., by using different step size k. Call the box spline in Exam-
ple 8.1 as M, and the box spline in Example 8.2 (that is Zwart-Element) as M. The
first two columns of Table 8.4 show the error distribution of E(0) = ||Sa(¥ — g)||s
by using M, and the two approaches respectively. The seven rows of Table 8.4 cor-
respond to h = 0.4, 0.25, 0.2, 0.1, 0.05, 0.025, 0.0125 respectively. Thus we can
compare the accuracy of these two approaches. In the last two columns of Table 8.4,
we repeal the computations in the first two columns by using the Zwart-element, that
is M,. These computations demonstrate exactly the approximation order as predicted

in theory.

In Table 8.5 and Table 8.6, we list the the subdivision error

E(5) = 2% ||Sh2 (¥ — 9)ll

for M, and M, with h = 0.4, 0.2 and by Approach I and Approach II respectively.

We just list the results with j =0, 1, 2, 3, 4. These co.nputations verify that
v PP LT L
2(5) = 277 |[Sh/2 (¥ = 9)lI,, = 272 ||Sh(¥ — 9)llo,

and once again we observe that Approach I is more accurate than Approach II.
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Table 8.4. Error Distribution of ||S,(V — g¢)||

N

M;y: Approach I | M;: Approach Il || My: Approach 1 | My: Approach 11
0.4205422 0.8410844 0.1193488 0.9189762
0.1780135 0.3560271 0.0323426 0.2986730
0.1160737 0.2321474 0.0167859 0.1592006
0.0297511 0.0595023 0.0021809 0.0222092
0.0074843 0.0149687 0.0002751 0.0028439
0.0018740 0.0037480 0.0000344 0.0003570
0.0004686 0.0009373 0.0000043 0.0000446

Table 8.5. Error Distribution of F(j) with A,

Approach | Approach [}

h=04

h =02

h=04

h=0.2

0.4205422

0.1160737

0.8410844

0.2321474

0.2102711

0.0580368

0.4205422

0.1160737

0.1051355

0.0290184

0.2102711]

0.0580368

0.0525677

0.0145092

0.1051355

0.0290184

0.0205931

0.0067729

0.0347382

0.0120470

Table 8.6. Error Distribution of F(j) with M,

Approach 1

Approach Il

h=04

h =202

h=04

h =02

0.1193488

0.0167859

0.9189762

0.1592006

0.0608828

0.0086013

0.4615911

0.0818611

0.0305858

0.0043172

0.2323837

0.0409451

0.0152361

0.0021277

0.1167059

0.0204811

0.0076293

0.0009840

0.0570554

0.0102405
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Chapter 3

Image Compression By Wavelet Transform Coding

§3.0. Introduction

Analyzing certain categories of signals is mathematically equivalent to analyzing
certain groups of functions which belong to certain spaces of functions. To study
these functions, we usually represent the function in a different form, e.g., the series

rpansion corresponding to a basis. In this chapter, we view series expansion as
a transform process. With invertible transforms, the transform will theoretically
represent all the information of the original signal. In some real applications, there
may be certain advantages to code the transform rather than the original signal.
This gives us a specific coding scheme: transform coding. We ueed to do some
computation to obtain the transform and to get the signal back. 'Therefore, efficient
computation schemes arc needed for real computations. Normally bases which possess

fast transforms are applied to this scheme.

For given signaus, if we pick the right basis, the series expansion can be very sparse
with most of the coeflicients nearly equal to zero. Again with the proper choice
of basis, these small coeflicients contribute little to the original function. As an
approximation, we may ignore the small coefficients by jrsi setting them Lo be zero,
thus keeping only the large coeflicients. We may still get a gosd sepresentation of the
original signals even if we omit a lot of the small coefficients. Then by coding the
remaining nonzero coefficients, we get what is called a compression scheme. Under the
inverse transform, the original signal will not be obtained exactly in theory (unless

the approximation is exact). Therefore this gives a lossy compression scheme, i.e.
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some information is lost. However, in real applications, compression schemes can
be extremely efficient, particularly when the compression is carried out by wavelet

transforms {4]]5]{9].

‘Theoretically this compression scheme can be applied to all kinds of bases. Since
compression is considered, we must represent the signal in a very efficient way without
correlation. It is usually most efficient to use some orthogonal basis. We only study
the transform coding compression scheme under orthogonal bases in this chapter.
Fo simplify the discussion, the function spaces considered in this chapter are square
integrable functions, namely Ly(R) and Ly(A), where A is a finite interval. We denote
both of them by Ly(K), with K denoting either the real line or a finite interval. All

the bases used are assumed to be orthonormal in Ly(K).

The efficiency of this scheme obviously depends on both the signal and the basis, i.e.
it depends on the sparsity of the series expansion. As we will see from the discussion
in the following sections, the cfficiency will also depend on the sampling frequency of
the signal since digitization is always involved in discrete signal processing. Several
aspects of this scheme are discussed here with support of theoretical discussion and
experimental results. All of our discussion is limited to one dimensional functions

since the tensor product approach can be used to deal with image compression.

$3.1. Compression Through Transform Coding

Decomposition: Let f € Ly(K), W = {w;};5, be an orthonormal basis of L2(K),
and [ = ¥i5a00; be the orthogonal expansion of f with respect to the basis W.

Then define the decomposition transform by

D(W.,-): Ly(K) — L(Z) : f = {ai}s;
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A partial decomposition transform can be defined by

D, (W) Ly(K) — L(Z): [ {”i}lgigy

L

Reconstruction: Let A = {a;},5, € (Z), and W = {w0(!)},5, be an orthonormal

basis of Lo(A'). Then the reconstruction transform is defined by
R(W,-) : (7)) — Ly(K): {“"}-'21 = i ait
Likewise, a partial reconstruction transform is defined by:
Ry(W,-) : 1o(Z) — La(K) : {ai} ¢ = Dicicntittn.
In this setting, the cocfficients A = {a;},5, gives all the information about f.
Mathematically, it is equivalent to study either the coeflicients or the signal [ itself,
i.c. properties of f are found by studying the coetlicients and vice versa. Here we cite

oniy the following energy preservation equation which is known as Parseval’s identity.

Theorem 1.1. If f € Ly(K) and W = {wi};5, is an orthonormal basis of La(K),

then

/1, = HDW, Dl

The quantity ||f]|2 = [rf2(t)dt is the energy of f, while the quantily A5 = Yl

is the energy of the sequence A.
Lemma 1.2. If W = {wi},,, is an orthonormal basis of Ly(K), then
2. limyaoo || D (W, -) — D(W,)|| = 0.

3. |[R(W, )| = || Ba(W,)}] = 1.
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4. limgo |1 (W, ) — R(W,)|| = 0.
5. RIW, )D(W,-) = I, the identity on Ly(K).

6. R(W, - )D(W, ) = I, the identity on [,(Z).

Proof: (1) and (3) follows from the Parseval identity and the facts Dn(W,wi) = e,
[|R(W, e0)|| = wi, if i < n, where e;(j) = &;. (2), (4), (5) and (6) follow from the

definitions of decomposition and reconstruction. O

Il we code A = {a};5, instead of coding the original signal f directly, we get
the transform coding scheme. Theoretically, the transform coding technique can be
applied associate even with nonorthogonal bases as long as we can have invertible
transform. For real time applications, we need computational speed when applying
the transform coding scheme. That is, we need to pick the right basis so that there
is fast decomposition and fast reconstruction. The orthogonality requirement is to

obtain a more efficient representation for the compression.

or nice bases, the computation can be very efficient. It is in these cases that
there are quite a few fast transforms, for example the traditional FFT/IFFT, the
newly developed FWT/IFWT, and the lapped transform for the Malvar basis. In
real applications, the signal is normally in discrete form and the data length is finite.

Therefore, partial decomposition and partial reconstruction are actually applied.

Now let’s introduce the compression scheme through transform coding. Before
we code A = {a;},5,, we do some approximation to A, A* = {a}},5,, and code A"

instead. If A* takes less storage after coding, then we gain a compression scheme:
C: 1y(Z) — 1,(2), C(A) = A~
A partial compression scheme can be similarly described:
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C"({ai}ISiSn) = {a:}lSiSH'
This just describes the process, the definition for the exact implementatics scheme

will depend on the particular application.

To get the original signal back, we neced to reconstruct the compressed signal
f* = R(W, A*). Normally, f # f* unless A = A*. Therefore, the complete process of

the compression scheme can be described » ' ws.

e Digitize the original signai f to get a i, sngth discrete version.

e Partially decompose the discrete version (fast transform of discrete signal).

e Compression via coding of the coefficients of the decomposition.

e Storage or transfer.

e Decode and reconstruction (fast inverse transform).

Due to storage limitations and the transfer speed, compression is often involved
in some applications. Several different compression schemes have been studied and
applied. These schemes can be divided into two categories, lossless and lossy com-
pression. The difference is whether after uncompression we can get a signal identical
to the original one or not. Compression through transform coding is clearly a lossy

scheme. Lossy compression certainly introduces errors and therefore, the error must

be well controlled in real applications.

Theorem 1.8. If f € Ly(K) and W = {w;},5, is an orthonormal basis of L,(K),

then

If — R(W,CD(W, f)II, < 11 = Cil - lI/1],-

Proof: By the Parseval identity, we get
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IS - ROW,CDW, N))ll; = IDW, [) = CDW, f)ll,.

From the defini won of C, we have

ID(W, [) - CD(W, 1)l
= |I(1 = C)DW, Nl
< I =Cll-IIDW, ),

= |[I=Cll- 71l

which is the result we want. O
Theorem 1.4. If [ € Ly(K) and W = {w;},,, is an orthonormal basis of La(K),
then
1S = Ba(W, CoDu(W, M)y < (i — Call + [|Dn — DIDIIfII,
where ln({"'i}lgign) = {“i}lsisn is an identity.

Proof: By the definitions of decomposition and reconstruction, we have

[ = R(W,D(W,f))
= R(W, Do(W, f) + (D = D)W, f))
= R(W, D,(W, f)) + R(W,(D — D) (W, f))

= [in(‘/‘/’ Dn(wv f)) + R(W7 ('D - Dn)(W, f))
Thercfore, we have

”f - Rn(W, CnDn(Wa f))||2

= ||Ru(W, Du(W, 1)) + R(W,(D = Du}(W, f)) = Bn(W, Co Dn(W, f))};,

and some standard estimates will give the result we want. O

The above simple results tell us that compression error is mainly determined by
[|1, — Cy|l which depends on the compression scheme we use, and by ||D, — D||

which depends on the approximation power of the subspace V,, = span{w;},¢;«,. For
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efficiency, we normally apply an orthogonal basis which possesses good approximation

power.

§3.2. Two Basic Compression Schemes

For given signal and basis, the compression error is mainly determined by the
approximation error introduced by the compression. More precisely, in order to reduce

the compression error, we neced to reduce
W=l
or
11~ Call

in the case of real implementation. If we consider just the eiror, the best choice
in theory is given by: C = I and C, = I,; the case without any approximation.
Unfortunately, this leads to no compression at all. Therefore, we have to allow com-
pression error to exist in some acceptable range and design the compression scheme

accordingly.

Another index to measure the efficiency of the compression scheme is the compres-
sion ratio (we also call it compression rate, or simply rate). Intuitively, compression
ratio is for measuring the success of compression. Notice that depending vn different,
compression schemes, the compression ratio can be defined in several difierent ways.
For example, we can define the compression ratio as the size ratio between the file
which stores the compressed data and the file which stores the original data. Before
we introduce a definition of compression ratio, we first introduce the following two

basic compression schemes:
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o Scheme It Given 0 < € < 1 and {ai}, ¢, let p be the largest integer such
that p < ne. A set J of cardinality p is chosen among the coefficients with the

following property: if j € J, then
la;| > la;), 1 ¢.7.
Then define
0, 1¢J,
i, S \7-
The compression scheme C,, is defined by: Cr({ai} <ica) = {ai hicicn-
o Scheme 11: For 6 > 0, Co({ai},cic,) = {8 }icicn> Whereal, 1 <2< n,is defined

by:

07 |(1,'| S 63
a;, clse.

Here & is called the tolerance.

In cither of the above compression schemes, we have: a} = a;, or ¢ = 0 depending

oni, on the magnitude of a;. Therefore, we define the compression ratio as:

_ 1
=" ;ZISiSn,ai‘;‘:Ol .

Clearly, the £ given in Scheme | is essentially the compression ratio and is fixed, while

the compression ratio in Scheme Il strongly depends on the data.

Theorem 2.1. Suppose p is the given compression ratio under Scheme I. Then

”f - Rn(”/s CnDn(W’f))“2 S (V 1 - P+ “D - Dn“)”f”z
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Proof: Suppose Dn(W.[f) = {ai}, ¢, and Cu({ai} cic) = {7} cicu- Scheme

gives a; = a;, or a; = (. 'Therefore,

_Z;ey|ag|"" > ).
ZlSiSulai'IZ

Therefore, we have
|2 2
EISiSnlai - (li|2 < (1 - p)zlSiSnlail')’
which implies
||1n - (/“n“ S \/1 - ;)
This gives the result with the help of theorem 1.2. O

Theorem 2.2. Suppose § is the given tolerance under Scheme 1, then
1f = Ba(W, Ca Du(W, M), < (VRE+ (1D = DD

Proof: Suppose Dn(W, f) = {ai} i, and Cr({ai} 1¢,<n) = {67} cicnr then Scheme
IT gives us

la; — a?| < 6.
Therefore 31 <i<ala: — ar]® < né?, which implies

1 = Call < /26

and this completes our proof with the help of Theorem 1.2. O

The main advantage of the firs .pproach is that the compression is according to
a previous's ziven compression ratio. The disadvantage is that a selection procedure
to sort ou: “..e large coefficients is required and this is typically done by a sorting

algorithm which will slov: down the computation speed. Another problem is that
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without knowledge of the distribution of the coefficients it will be hard to control
the error. For example, if all the coefficients are almo-i equal in magnitude and we
set 0.05 as the compression ratio, the error will be extremely large (the relative error
roughly equals 0.95). The advantage of the second approach is that through the chc' e
of t:lerance we have some control of the compression error. But the compression ratio

will fluctuate depending on the signal, the basis and the tolerance.

Since partial decomposition and reconstruction are always involved in rcal appli-
cations, a natural question is the behavior of these compression schemes for a large
n. Under the given conditions, we have the following asymptotic 1esults about the

compression.

Theorem 2.3. Suppose p is the given compression rat.o under Scheme I. Then

lim,,_‘oon - Rn(Wa CnDn(W7 f))||2 = 0.

Proof: Let f = ¥Tcicoo@iwi. For any A >0, there exist K such that N > K implies
IIf — gnil, < A, where gv = 51 cignaiws. Let gy = Rn(W, CnDn(W, f)). According
to the first compression scheme, for N large enough, the cardinality of the set J is

bigger than K'; hence ||f —gyll, £ A D
Theorem 2.4. Let A > 0, f € Ly(R). There exist No > 0 and € > 0, such that

under Scheme 1 with n > Ny and lolerance 6 < €, we have

”f - Rn(wa C'nDn(u/, f))|l2 < A

Proof: Let f = Ticicoo@itvi- For any A > 0, there exist K such that N > K implies
IIf = gnll, < A, where gv = Ticicnaiwi. Let € = min{ja;i| 1 a;i #0, 1 <2 < K},
No = K and take g = Rn(W,CnDn(W, f)). According to Scheme 11, for N > Np

and § < ¢, we have ||f — full, <If —gnll, <A O

51



From these results, we can see that if we keep increasing n in the partial decompo-
sition, the compression quality can be guaranteed by both of these schemes. In other
words, as the sampling frequency increases, we always end up with good compression
(lower compression error and lower compression ratio). However, the dilemmais that
increasing the sampling frequency means more data while the purpose of compres-
sion is to carry less data. Another problem is that to keep increasing the sampling

frequency is not always practical.

Clearly the compression ratio is determined by both the signal and the basis used
in the compression scheme. More precisely, it is determined by the sparsity of the
sertes expansion. Therefore, basis functions which better mimic the shape of the
signal are normally more efficient. If the signal is just a finite lincar combination
of the basis functions, then obviously the best basis has been found. Clearly, no
best basis for a compression scheme can be found without a priori knowledge about
the signal. A more efficient ‘rnplementation of this scheme comes from the problem

criteria and knowledge of the signals.

Example 2.5. If we use the Fourier basis and

-1, -1 <t<0,
f(t)={ )

1, 0<t<l,

then we have

[ty = %anoﬂ&l_‘)—“ =,

2n+1

However, if we apply Haar basis and let (¢) be the Haar wavelets, then
f(t) =927t +1).

Therefore the compressi>n by the Haar basis is far more efficient. This example also

shows us that if the signal is not smooth enough, applying the compression scheme
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with smoother hasis does not necessarily give better results.

Example 2.6. If f(t) = x(-1,;sin 7t and we use the Fourier basis, then
f(t) =sinnt, te€[-1,1]

where the Haar series has
2j+1 £

< [.tpi; >= L[2cos PHlm — cos fm — cos Gu], for 27 < j < 2

Therefore we have an infinite wavelet series and the compression by Fourier basis is

much better in this case.

$3.3. Wavelet Transforms

A sequence of subspaces Vi C Lo(R) forms a multiresolution analysis of Ly( 1)

[18], if they satisfy the following conditions:
I, CV,CVoCV,C---
2. Uiez Vi i1s dense in Ly(R).
3. Miez Vi = {0}
4. ¢(-) € Vi if and only if ¢(2:) € Viq,.

5. There exist Riesz basis for Vi. i.e. there exists ¢ € Vp such that {#(- —j)}.ecz
forms a basis for V' \lso ¢ ~itisties (' lal], < ||C;ezaid(- — 5)ll, < Callall,, for

all a(-) € 3, w' I fixed constants Cy and 75 such that 0 < C, < C,.

If we write ¥, = Vi & W, as an orthogonal direit sum, then W; L W; if ¢ # j and
DiczW; is de se in Lo(R). Denote ¢;; = (2' - j), for i,j € Z. If there exists a
function ¥ such that ¢(-— j) L (- = 1), j #lad
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Wi=span{y;:j€ 2}, 1€ Z,
then o;; L gy fori# i #1, and ¥ is called an orthogonal wavelet.

Theorem 3.1. (8] If {Vik} forms a multiresolution analysis of Ly(R), then there
exists ¢ such that {4(- _j)}JtZ Jorme an orthonormal basis of Vi, and satisfying

¢ = rezh(k)d(2- —=k), where
h=Ther  Th(k— 12 —k)

is an orthogonal wavelet of Ly(R).

The sequence {h(k)},, is called the mask sequence and the sequence {g(k) beez =
{(=1)*h(k — 1)}1cz is called the auxiliary sequence. All the properties of ¢, and
thus of the wavelet 1, are fully represented by the mask sequence [18]. Normally we
re juire a wavelet with fast decay in both time and frequency domain in order to gain
local analysis. This locality is usually expressed by exponential decay or compact
support (there cannot be compact support in both time and frequency domain). It is
possible to construct a mask sequence of finite length which gives rise to compactly
supported orthogonal wavelets (but a finitely supported mask sequence does not, guar-
antee this). The compactly supported wavelets can have arbitrarily high regularity at
the expense of a longer mask sequence, thus a longer support, interval for the wavelet.
The Daubechies family of wavelets are excellent :xamples of compactly supported
orthogonal wavelets [6]. Our image compression examples in the last cetion are done

by using Daubechies’ wavelets D,, Dy and Dg. Dy and the well known Haar basis.

Wavelets provide us with a way to decompose functions into multichannels ac-
cording to the frequercy or in other words resolut:on. With this decomposition, we
gain very efficient function representation anc the signal can be filtered according to

different frequencies. The following diagram shows this decomposition:
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Viek, = Vi — - W
N\ N\
Wikk=1 e W
For a function [ € Ly(I?), define the following projection operators

P fr-—>f|v'_

Qi: f— f|w;
Then the above decomposition can be expressed in the following way:

I)i-Hcf — Pi+k—1f —_— e Pxf
~ N
Quinf - Qf

Multiresolution analysis and orthogonal wa lets provide a very efficient algorithm
known as the FW'T (fast wavelet transform) or Mallat’s algorithm. FWT refers to two
different procedures in the multiresolution analysis: decomposition and reconstruc-
tion. Sometimes the two procedures are distinguished with FWT referring to decom-
position while reconstruction is referred to as IFWT (inverse fast wavelet transform).
Let {a(i,5)}en = {212 < f, i ; >},ez and {63, ) ez = {212 < [, >};-GZ. Then
from the definitions of the mask sequence and the auxiliary sequence. the coefficients

from level 7 + 1 (scale 27¥1) 1o level ¢ (scale 2°) are related by
. l N \
a(i.j) = ﬁznezh(n —2f)a(z +1 =,

b(i, ) = Eznezg(n —2j)a(i + 1, n).
Thus in terms of coeflicient sequences, decomposition is described schematically Ly
- a(ia )
N

b(i+k—1,) b,

(l(i—{-k,-) — a(i+k_ ],.)

Likewise, the coefficients of level ¢ + 1 are reconstructed from level 7 by
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. : 1 ., : I . :
a(z+1,5) = 7-521162}"(] —2n)a(t,n) + %Znezgu = 2n)b(i, n):

Schematically by,
a(z+1,") — ceea(t + Ay

a(z,:) —
(1, ) b(i +k—1,)

The most remarkable propertv of wavelets is probably their locality which is ex-
tremely efficient in dealing with singularities [15){16]. More precisely, the scaling /shift
and locality combined together allows wavelet decomposition to mimic the shape of
a given signal normally better than with other bases. Consequently, wavelet expan-
sions in the above schemes are normally very sparse, i.e. the magnitude of most
of the coefficients is close to zero. Therefore wavelet transform coding is very good
for compression. These nice properties combined with the efliciency of FW'I' makes

compression by wavelet transform coding successful in many real applications [4][5][9].

Wavelet analysis gives the decomposition Viy, = V; (b W.. Lor a finer resolution

decomposition, multiresolution analysis has been generalized to wavelet packet anal-
p ’ y g l

ysis [19]. Wavelet packet analysis gives an orthogonal decomposition of subspace W,,.

If we denote
Wy, = Y h(k)wa(2 - —k),

Wons1 = 2 g(k)wn(2 - —K)

with wy = ¢ and w; = . Under the conditions of multiresolution, we have [19]
Theorem 3.2. Under the given conditions, the funclions
{Qi/zwn(? : “j)}i.jGZ
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with 20 < 1 < 2% for fired [ > O form an orthonormal basts of L2(R).

Let Vi, = span{w, (2 - =j)} .. then the wavelet packet analysis can be described

schematically as follows:

Vini-2
/
V2n.i—l
N
‘/:171—-1,1'-2
/
Vi
~\
":In—’z.x—Z
/
V?n——l,i—l
N\
":171—3,!—2

This makes multiresolution a special case of wavelet packet analysis. If {a(n.7,j)};c, =
{2/ < f,(wn),, >}Je',~ then decomposition and reconstruction in wavelet packet
analysis can be described by the following Split Algorithm:

Decomposition:  a(2n.1,j) = 71'2'Zkezh(k —2j)a(n,i+ 1,k),
ai2n — 1.1.j) = ——\}—Ezkezg(l: —2j)a(n.i+ 1, k).

a(dn,1—2,)

/
a(2n.t—1.+)
N
a(dn — 1,1 —-2.+)
/
a(n.i,-)
N\
a(dn — 2,1 - 2,-)
/
a(2n—-1,1-1.+)
N

e(4n — 3,7 -2,-)

Ut
-1



Reconstruction: a(n.i+1.j) = %Zkezh(j — 2)a(2n. i, k)
+ 35 kez9() — 2k)a(2n — Lilk).

a(dn.2 —2.+)

N
~
a(2n,1—1.+)
7 N
a{dn — 1.1 = 2,)
a(n,i1,-)
aldn — 2.1 —2.4)
N /!
a(2n—-1,1—-1.")
a
a(dn — 3.7 --2.)

From an algorithmic point of view, the Split Algorithm is just applying FW'T in a
balanced tree manner. Therefore the numerical performance of this algorithm is the
same as the FWT. Actually before wavelet analysis. the signai processing community
had designed a scheme called quadrature mirror filters and a fasy algorithm cailed the
Pyramid Algorithm {2]. From the algorithmic point of view, FWT and Split Algo-
rithm can be viewed as special cases of this more general algorithm. However, there is
multiresolution analysis behind the FWT and Split Algorithm while there is no such
structure for general quadrature mirrer filters. The significance of wavelet packet
analysis is that the spaces involved in the multiresuiution can be freely decomposed
according to an adaptive best basis selection scheme with the help of a cost index

such as entropy [4]. This turns out to be an extremely powerful compression scheme

for images.

$3.4. Image Compression



Mathematically, an imag ‘s a function of two variables defined on a compact
(normally rectangular) domain described by values at a discrete set of points (called
pixels). Therefore an image can be viewed as a function defined on certain grid or
simply trcated as a matrix. We only consider f € Lo(K x J), with K, J denote
finite intervals on the resl line. There are many discussions about intrinsically mul-
tiuimensional orthogonal basis, i.c. the results about the construction of intrinsicaliy
multidimensional orthogonal wavelets [22]. In order to simplify our discussion, we
only consider tensor product wavelets In that case we have the following well known

resuit(cl [8][18]{19]).

Proposition 4.1. If {Wi},,, and {U},5, are orthonormal bases of La(K) and La(J)
respectively, then {Wi(2)U;(y)}; s, is an orthonormal basis of Lo(IK x J).

Thus all the mathematics involved in tensor product case is virtually the single
variable case. Therefore the analysis about signal compression can be generalized to
image compressi in this case. As far as real implementations are concerned, we
can decompose each row then each column or vise versa. In the reconstruction, the
inverse transform is performed on each column and then on each row, in reverse order
to that of decomposition. From the algorithmic 1 vint of view, the main advantage of
the tensor product approach is that it can be i 1plemented in parallel which will be

very efficient.

§3.5. Examples and Experiments

Example 5.1. Multiresolution analysis gives us a way to decompose sigrals into
multiple chaunels according to different frequencies. Here we present in Figures 1-2,

the decomposition of a 512 x 512 x 8bpp (bpp is the abbreviation for bits per pizel )
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picture of Jupiter. If Figure 1 represents Vg x Vg, then it is decomposed by teunser
products of V4 and Wo = Wod - & W,y the four figures in Figure 2 represent the
projections Vg x Vg, Vg x l’ffo, W’o x V and Lf’o X W’o respectively. The decomposition
is conducted to the fifth level by D, and the four components are corresponding to
d(z)d(y), d(x)Y (3}, Y(x)d(y) and yia - *{y). This example illustrates the sparsity of

the wavelet series expansion.

Example 5.2. Now let’s look at the image compression by wavelet transforms. In
order to avoid the edge effects, first we use the Haar basis to do the compression to
an 480 x 512 x 8bpp image. We applied Scheme 1 to do this example and the results
are listed in Figures 3-12. As v can observe from these experiments, we can see that
the level of decomposition plays an important rule. Yet it does not. necessarily mean
deeper level decomposition will give better results. Another observation is that when
the decomposition level is not deep enough, the energy error is relatively small even

though the visual result is not good.

Example 5.3. Now let’s look at the image compression with wavelet transforms
by using D4. This time we use Scheme 1l to repeat the previous example for an
480 x 512 x 8bpp image. We list the results in Figures 13-23. Similar to the i xd
ratio compression case, the compression raiio and error are related to the level of
decomposition. As showed by the pictures, as the level goes deeper, the compression
ratio and error dropped dowr yet the visnal quality of the image remains basically
the same. Also we observe that the quality of the image is not fully represented by

the energy loss.

Example 5.4. Now let’s look at the image compression with wavelet transforms by

using D4. Scheme I is applied here to a 512 x 512 x 8bpp image. We list the results in
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Figures 24-25. Since a sorting algorithm is needed to get the portion of coefficients
with largest magnitude, the fixed ratio compression scheme is slower than the non-
fix ratio compression. However, to speed up the computation, we apply the sorting
algorithm only to each row and select coefficients based on a row by row basis. The
results are listed in Figures 26-27. We call this scheme as pseudo compression and the
given compression ratio is also called pseudo ratio. Clearly we see that the quality is
not as good as the results obtained by global sorting. Yet the speed is much faster

and can be implemented by parallel computation.

Remark: From the above examples, we can see that even a direct i .plicati- n of
the wavelet transform can turn out some very nice results. These results otice again
demonstrate the power of wavelet analysis. From our discussions, we can see clearly
that no best basis exists for compression in general. In image compression, the level of
decomposition plays an important role. From this point of view, the wavelet packets
technique is more adaptive with the help of entropy. Yet the problem with entropy is
that we know entropy only after transform. And this limits its function as index of
basis sclection. Therefore the choices of the best basis selection or adaptive scheme

remains an very interesting question both in theory and in application.
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Figure 1. (Example 5.1) A 512 x 512 x 8bpp digital image of Jupiter.
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Figure 2. (Example 5.1) Four components of Figure 1 under 5 levels of

decomposition using D4: ¢(z)é(y), #(x)Y(y), ¥(z)d(y), ¥(z)(y) parts

with left-right top-bottom order.
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Figure 3. (Example 5.2) Scheme I compression with 1 level of decompo-
sition using the D2 transform at various compression ratces. The original

image is at top left.
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Figure 4. (kxample 5.2 ) Scheme I compression with 2 levels of decompo-
sition using the D2 transform at various compression rates. The original

image is at, top left.
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Figure 5. (Example 5.2 ) Scheme I compression with 3 levels of decompo-
sition using the D2 transform at various compression rates. The original

image is at top left.
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Figure 6. (Example 5.2) Scheme I compression with 4 levels of decompo-
sition using the D2 transform at various compression rates. The original

image is at top left.
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Figure 7. (Example 5.2) Scheme I compression with 5 levels of decompo-
sition using the D2 transform at various compression rates. The original

image is at top left.
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Figure 8. (lixample 5.2 ) Scheme I compression with 6 levels of decompo-
sition using the D2 transform at various compression rates. The original

mmage is at top left.
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Figure 9. (Example 5.2) Scheme I compression with 7 levels of decompo-
sition using the D2 transform at various compression rates. 'T'he original

image is at top left.
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Figure 10. (Fxample 5.2) Scaeme 1 compression with 8 levels of decom-
position using the D2 transform at various compression rates. The criginal

liage is at top left.
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Figure 11. (Fxample 5.2) Scheme T compression with levels of decom-
position using the D2 transforn al various compression rates. 'l lie original

image is at top left.
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Figure 12. (Example 5.2) Percentage of preserved energy of the com-
pressed npages: plots here correspond to the levels of decomposition of
Figures 3-11. In cach plot, points correspond to decreasing rates of com-
pression as shown in the figures,
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Figure 13. (Example 5.3) Scheme 1l compression with 1 level of dc
composition using the D4 transform for increasing tolerance levels. The

original image is at top left.
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Figure 14. (Ixample 5.3) Scheme 11 compression with 2 levels of de-
composition using .he 14 transform for increasing tolerance levels. The
original image ts at top lefi.
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Figure 15. (lxample 5.3) Scheme 1 compression witl 3 levels of de-
composition using the D4 transform for increasing tolerance levels. The

original image is at top left.
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Figure 16. (Lxample 5.3) Scheme II compression with 4 levels of de-
composition using the D4 transform for increasing tolerance levels. The

original image iz at top left.
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Figu. - 17. (Example 5.3) Scheme 11 compression with 5 levels of de-

composition using the D4 transform for increasing tolerance levels. The

original image is at top left.



Original: D4 Level=6

100200300400500 1 002003000'1 300

TOL=100 TOL=115

100200300400500 100200300400500

TOL=150 TOL=170

00200300400500 100200300400500

100
200
300
400

100200300400500

TOL=130

100200300400500

TOL=190

100200300400500

Figure 18. (Example 5.3) Scheme 11 compression with 6 levels of de-
composition using the D4 transform for increasing tolerance levels. The

original image is at top left.
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Figure 19. (Example 5.3) Scheme Il compression with 7 levels of de-
composition using the D4 transform for increasing tolerance levels. The
original image is at top left.
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Figure 2u. (Mxample 525 Scheme 11 compression with 8 levels of de-
composition using the Dt transform for increasing tolerance levels. The
orviginal image is at top left.
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Figure 21. (Example 5.3) Scheme 11 compression with 9 levels of de-
composition using the D4 transforin for increasing tolerance fevels. The

original image is at top left.
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Figure 23. (Example 5.3) Percentage of preserved energy of the com-
pressed images: plots here correspond to the levels of decomposition as
shown in Figures 13-21. In ecach plot, points correspond to increasing

tolerance levels as shown in the figures.
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Figure 24. (Example 5.4) Scheme I compression with 9 fevels of decom-
position using the D4 transform al various compression rates. The original

image is at top left.
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Figure 26. (Example 5.4) Pscudo compression with 9 levels of decompo-
sition using the D4 transform at various compression rates. The original

image is at top left.
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Chapter 4

Numerical Determination of an Unknown coefficient

in Semi-linear Parabolic Equations

$4.0. Introduction

In this chapter we study a finite difference method for approximating the unknown
source parameter p = p(t) and u = u(x,y,t) of the following inverse problem. Find

w = u(e,y, L) and p = p(1) which satisiy

w, = Au+ p(Hu + f(x,y,t), in Qr,
u(a,y,0) = ¢(x,y), (z,y) € Q,

l“'(-'l'.a:‘/al) :g(;l’ay»t)’ on 9N x [O’T])
subject to the additional specification
w(x™,y" t) = K1), (z5,y") €Q, 0Kt <T,

where Qp = Q@ x (0,7}, T > 0,9 = (0,1) x (0,1), f, 8,9 and K # 0 are known
functions, and (2*,y*) is a fixed prescribed interior point in Q0 whose boundary is
denoted by 9§2. We call this equation semi-lincar due to the unknown product p(t)u.

If « represents temperature then the problem can be viewed as a control problem
of finding the controt p = p(t) such that the internal constraint is satisfied.

The problem above and other similar inverse problems of identifying unknown
source parameter have been studied by several authors recently [4, 5, 9, 10, 11,
12]. in [6] Cannon, Lin and Wang proposed a predictor-corrector finite difference

scheme based upon the Crank-Nicolson method which resulted in a truncation error
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O( (Ax)2+(At)? ). Numerical results [5] have shown that the procedure is convergent
but there is no theoretical justification.

Here, we will study the backward Fuler finite difference scheme. This numerical
procedure results in an error O( (A)* 4 (A1) ) and will be shown to be stable in the
maximum norm by using the discrete version (modified) of the maximum principle
for parabolic finite difference schemes.

This chapter is organized as follows: In Section 1.1 the finite differ oo scheme is
formulated via a transformation, and some necessary preparations are given via sonie
lemmas. In Section 4.2, the stability of our numerical procedure is discussed, and in
Section 4.3 some extensions and comments are given. In Section 1.4 we discuss the
approximation of w and p in terms of the approximation obtained for the transformed
problem. Finally we discuss some numerical computations for several examples which
support our theoretical analysis.

Before closing this section, let us define the following transformation:

t ¢
o(z,5,0) = u(ey, expi= [ pls)ds),  r(t) =exp{= [ pla)ds),
0 JO
and

u(z,y, 1) =~ P(t)=%%.

The transformation: (u,p) — (v,7) allows us to climinate the p(f)u term from the

original equation. We sec that (v,r) satisfies

v = Av+ T(t)f(l‘,'lj,t), in (u)T’
v(z,y,0) = é(z,y), (z,y) € Q,

v(z,y,t) =r(t)z,y,t), on N = {0,T],
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subject to

AT
rll) = 1(—’—,,—.’(’73)—’—), (", y") €Q, 0S LT

It clearly follows that ¢ satisfies the foliowing non-local parabolic equation

v = Av+ oz, y", O F(x,y,t), in Qr,

'”(:"7?/70) = (f’(may)v (1',]]) € Q,
o(r,y,t) = v(x", y", 1) . on 9N x[0,T],
where
Flayy, )y = ey, 1)/ E(1), Gz, y,t) = g(a,y, )/ E(1).

We sce from [2, 3, 5] that the above problem is equivalent to the original problem
provided that the data is smooth and compatible. Vhercfore the finite difference
scheme is formutated for this problem, and will be shown to be stable in maximum
norm. Once v is known numerically the unknown (u,p) can be calculated through
the inverse transformation via numerical differentiation. We consider the numerical
procedure to be a reasonable one since by controlling the step size in the numerical

differentiation, we can demonstrate the convergence of the approximation to u and p.

44.1. The Backward Euler Scheme

Let N be a positive integer, and b = Az = Ay = 1/N, z; = ih, y; = jh, where
i.j=0,---,N. Let M > 0 be a positive integer, and 7 = T/IM,t,=nt,n=20,--, M.

For a i oth function P(x,y) € C*(9), we have the following result.
Lemma 1.1. Assumec that P € C*)) and (iy, jo) is such that

(3“’ y‘) € [miosmio*-l) X [yjo7yj0+l)'
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Then we have

h— 6, h-« h—6.6
1)“- L= — ll ) ; ____“__i__!{ )-'i~
(1’ ’.I/ ) h h I(If‘ I/J0)+ II ,II(IQ
67 6,
o h hl P{rg1s¥jor1) + O(h?),
where
b =7 — by, b, =y

Proof: It follows from Taylor’s expansion that

h =6,
P(a™,y") = —= P(2i,y7) +

h h

U 41 ) -+ hv

- .'/_Iu :

(\

/1~

61‘ 2
—P(xig41. 07+ O(h7).

‘(
oy
I(Ilufl

o

'/Jn )

Similarly, P(a;,,y") and P(2iy41,y") can be expanded intermsof P yjoa1), P, 4,,),

and P(Tig41,Yjo)s P(Xig41,Yjo+1)s respectively. O

The obvious truncation of the above equation is used to approximate v(a”,

Yyl

in our finite difference procedure. The backward Fuler finite difference scheme can

now be defined. Find {v};} such that

v — vl ! _ Vi oty F ol ol — A e
T h?
,j=1,-- N—1, mn
- ¢ly]’ l’j = r)? 1’ 7/V
oy =GRl {7} (O, N} #0, = >1,
where
o= h—6xh—5w 7‘ h=b 6y1)" 1 ﬁh—byqu b, (5,,
h h o h b ot ho h wthie T op

and where F, = F'(z;,y;,t5) and (77, = Gzi Yy, ta)-

nl

lu+l.Jr:+ 1

n >,



I is clear that the above scheme is a semi-implicit finite difference procedure since
w(r”,y", 1) is appro~imated using values at the previous level. This scheme results in
a truncation error of O(h? + 7), which is the same as the standard backward finite
difference scheme for parabolic equations. 1t is also casy to sce that any standard
nmimerical solver for parabolic equation can be used to solve this scheme. Tor cxample

the alternating direction method couid he nsed very effectively.
Lemma 1.2. The following incquality holds:

[oX] < max v n > 0.

< pdnax, foisl-

Proof: It follows directly from our discretized scheme of vl and the definition of bz

and 6,. O

Let us define

Vip1,5 — Vi - Ui — Vio,j
Aty ;= =13 ADv;; = —L———2
W I ? r Yl
[

and similarly define At and Ay, Thus, we have
A2y, . — (A° 2V o = -At “AH)v. -
Ah”h] - (Ar + Ay)vly] - (Az A:r + Ay Ay )UI,J

it . . 2y, . .. ..
L R T L 4v;
h?

and for any w;; that

A2 . . , . 2 2
A(wioi,) = wiiAnveg + vip  Adwig + i Adwi; + Afwioy; Al v

+Ajll‘,‘_; i A:Tv,‘_lyj + A;w,-,j_l A;U,',]' 4+ A;_wi,j_l A;-'U,',]‘_l.

It is convenient to state our convergence estimate here.

Theorem 1.3. Assume that v € CY*(Qr). Then, there exist hg > 0 and 70 > 0,
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depending upon the data f, g, and IX, d = dist({x” y™).00) and T >0, such that for
all 0 < h < hy and 0 < 7 < 1y, there exists a positive constant (7 > 0, depending on
d, T and the C** norm of v, such that

max o' = ve{r,y, 0] < C(h*+ 7).

ton

Proof: See section 4.2. O

§4.2. Convergence

This section is devoted to the proof of Theorem 1.3. First let us rewrite the

difference scheme as

pn. — il
. L) A2 . - . , .
d - J —_—Ahvf:j-i—l"fj ot =1 N1, ol
1,j - [I9Al ".} T My ? 4
o o  n—1 .o
vy =G ol {iL,i}O, N} #0, n>1,

The proof of Theorem 1.3 consists of the following several steps.
STEP 1: Let ef; = o}, —v(2, 95, 4,). Then we see from the equation of o, the above

scheme and Taylor expansion that ¢l satisfies

J
et — 67.1._1
1,7 1,) _ 2 n oo, n=1 n o L. . ’ B
== Ajels + ['i,j(’- + ¢ i,y =l N =1, =1,
o _ Yoy —
ci,j"ot 1,7 _07]‘7""‘,\/
n _omo ool . _on Cos — 9 o
ci,j — "i,j(‘* Ti,j’ {7;,]}“{0, N} —_ m, (1 f ],

where €7; and 7', arc the truncation error induced by the discretizations of the dif

LR,
(]

ferential equation and boundary conditions respectively.
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Lemma 2.1. Assume that o € (4(Qq) and the data are smooth. Then there are

Jositive constants I, and Cy = Co(]|v|leaz) such that
! ) i

max < Colh® 4 7). max |7 < Colh? + 7).
0<1 <N 0<ne M T 1 ()<,J<\ o<ncAs Y

max || < K. m 7] <
0<1, <N, G<n<M o 0<i, <N, ()<n< M

Proof: The first two inequalities follow from Taylor expansion. and the last two
inequalities follows from the smoothness of the data F. (Gand I/ #0. O
STEP 2: Let wie.y) =1+ Q{(r =) +(y— vy *)2}. where @ > 0 is a positive

constant to be chosen below. Let

¢ o=w;, Y 1.y =0,1,--- N, 0<n< A

1,7 UVEREIA

Then it follows from the formula for v that

h—é;, h—é, h —é;9, .

n n
cr = —— Wy 4o Yin i+ iy o1 Yis
h h 0:J0 T1o.J0 h  h O to-J0+1

6 h_éyw- o + = Y
h A Yig+1g0 Yig+1,j0 A hulo+1J0+1 1041.Jo+1°

= Y+ QYL

where
- h — (S h—é, 5 . h or by
)-- - - h Il (6 + 6 ) )lo JO h 71_(6 + h - b ) ) 10 Jo+1
& h — 6, b,
+—h— ; ((h - &)+ 52 ) ,OH’JO + —h'*h—((/ -6 ) + 52) :0+1 Jo+1-

Lemma 2.2. We have

Y2 < h* max  |¥, 0<n<AM
o<i g SN
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Proof: It follows from the formula for Y2, and the definitions of ¢, and &,. O
Upon using the transformation about YU with some elementary calculations, we

find that Y7 satisfies

Yh - ){n_—l jon Al
iJ i 2y - iy m—1 n—1 3
——— = NV (T QYY) 4
T wi,; W,
200 A +
Ly Ay, . :X_yu b \ty Atwiy,
t+1, . + iJ+1 \ + s vy T
w; w; wy,,
Atu { w0
+ -1 Aty Ty el +yn y gl
+A )’_I J . A!/ )'-J o Au ’x.,l“l o
wi, w;, uy
1] =1 V-1, [EESNTEC Y
Y o= 0 ij=0.1 N,
'H T”
YL o= OV QYA 2 N £ e L
wy, uy
Step 3: Let A > 0 and
moo . My ryn N . !
}i.j—( ”Zi._]" ].J—U.l." ..'\. l S” S ‘I
Then Z' satisfies
. Znr. — zrl ‘ Fn T | _ AT
¢ - 4 1J — Af,Z,"J + (— -J(/n—l + (2 n—l —.\I,._ﬂ_. e /n
T w;; w,, T
A2, . I A+,
+ 77 Aru 1 + Zm Ayw"J + Aty AJ‘ lf'_"_li
“i41,5 \ ST r g
Wi, (O w,,
A+u A+ -1 JAE T
+ =1y +om By Aty Ty W
+AT L, — +AJZY +AJZ : .
wy j wy, 'J
i, =1,--- N -1, l<n<M,
Zy = 0 1,7 =0,1 N
~1] . ] = U, Ly,
Gr T
g -1 -1 —\ty, "1 - ' -
zZr, = " —L(Z 4+ Q7 ¢ ';;—, {i.j ({0 NV}, 2L
1] v

Lemma 2.3. For all i,j,==0,1.--, N for which the differences are e fined, we hawve

lAiwi” <20 lAgw,-'Jl Atwiy,

w,j Wi Wi

INA
e
L
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Atw

AF f A+‘ll),' j - 1]
i,._J_'————“) 'Jl 5262, |' v ‘ji ll S2Q3 l__'/__’_'l| S2Qa
w; w; ; Wy,
1 |
—| € e d = dist( (z",y"),00),
lw,»,ji— 1 + Qd? dist((=7,y7),09)

provided that b2 < x*,y" <1 —u/2

Proof: It is an clementary argument which we omit. O
STEP 4: In this step, we prove that there exist ho = ho(d, K') > 0, 70 = 1o(d, K) > 0,

such that for a0 < h < hy, 0 <7< 70

n ¥ 2
max < Co(h® 4+ 7).
0<i <N, 0<n<M fial < Col )

. - . . . . - .
Assume that the maximum of [Z}] is a.tained at (i%, 5%, n ) and that Z% .. > 0.
4 B
I'hen there are two cases:
Case I. Assume (i, %) is a boundary point and M* = Z ;.. Then it follows from

Je .
LY

the previous step, Lemma 2.1, Lemma 2.2 and Lemma 2.3 that for any A > 0,

K(1 + Qh?)
1+ Qd?

where Cy depends only upon v and T'. If we sclect @ and A such that

M < M* 4 Co(h? + 7),

Q 2 h < d
= — 1
d? ~ V2K

we find 1 = K 4+ Q(d? - h*) > 1 and

g
M < Co(h* 4+ 7)

< Co(h? .
STy gEE—w S G+

Case I1. If (:*,j*) is an interior point, then we take

b < minfas, —}

y <min{=—=, —==1}

- 20 V2K

It follows from the discrete maximum principle and STEP 3 that either

-V

M < K(M* 4+ QM) +4QM” + Co(h? +7)

T
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or for A > 0 large enough, we have for some 7z € (0, 7) and suflicientiy small 7 > 0

that

M- < Co(h?* + 1)
= Ae Ve — {K(1 + Qh?) +4Q}

Selecting A = 2{ K (1 + Q) + 4Q + 1} and 15 > 0 such that for 7 < 7y

1 In?2

e™ANE > AT > A > 5 or TS 1= "

we see that
Ae™ Ve — {I(1 4+ QhY) +4Q) > 1

which in turn implies M* < Cy(h? + 1), where Cy depends upon o, 10 K and .

.

By a similar argument we can assume that Z% ;. < 0 and obtain the corresponding

inequality. O

STEP 5: It is casy to sce from the above two steps that

max Y| < C(h® + 7).
0<ij<N, 0<n<A ' *Y

where C > 0 depends upon v, K, d and T" > 0. Finally, recalling that ¢ = w, ;¥"

VAR 3]
we have that
max ler.] < C(A% + 7).
0<ij<N, 0<n<M ' ¥

Therefore, Theorem 1.3 has been proved. O

§4.3. A Non-uniform Grid Scheme
Let us consider the one-dimensional problem:
vy = Av + v(z”, t; F(x,t), in Qr,
v(z,0) = ¢(z), e

v(0,8) = Gi(t)o(z™,t), v(l,t) = Galt)u(z",t), =" €(0,1), te (0,7
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Let by = 2 /k* and hy = (1 —z")/(N — k%), where 1 < k* < N, and z; = ihy for

k. rpe = k"h and z; = thy fori = K+ 1, -, N;and Al, =t,—1,—, n=

= 0,1,
I,--+, M. Let h = max{hy, hy} and 7 = max{ At,}.

Thus. the finite difference approximation to the soluiion of this problem can be

defined as follows:

-1 n n <
v — vl o+ ok, — 20!
t ) i+l 1—1 m > %
Al = ¥ + F; v, i=1, k=1, n2>1,
0
Ve — Vie Voo hvgegy + havl — (h1 + hg)ol o me1
= 2 + Fko 'Uk- )
Al." h;hg(h] + ’Zg)
) -1 n n n
vt — ol vt o, — 2] }
1 1 — 1+ :’] 1+an. 7—'——l€*+1°N'—1 77,21
Al ,Iz k* > I ’ ’ ’
‘n ‘2
W=y i =01, N
ot = Gropst, o = GhuEs Lo >1.

Theorem 3.1. Assume that v € CY* Q7). Then, there exist hg > 0 and 10 > 0

dependent upon d = min{z*,1 — 2"}, and therc ezists C > 0, depending upon T > 0

and the C*% norm of v such that for all0 < h < ho and 0 < 7 < 7o we have

o<i<N, GEngh [oif = v(@ta)l < (A" + 7).

Proof: It follows from an argument similar to that given in Section 4.2. The only

difference is the auxiliary function w(z) =1+ Q(z — z*)%. O

$4.4. An Error Estimate for v and p

We recall our transforms

st EQue)
T e
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Also, we recall the results in [5], where v{x*,y*, ) > 0 for 0 < ¢ < T under various
assumptions upon the data. Under those assumptions, there exists a positive mumber
vo > 0 such that v{x",3",t) > vo > 0,0 <t < T. Our first application of Lemma 1.1

and Theorem 1.3 are to select h and 7 sufficiently small so that

Vo
lv(a™, y", tn) — v} < >
As our approximation to ul';, we consider
n Env?j ..
lfVi']-zT, i, =01, N, n=0,1,--- M

From Theorem 1.3, v > vg > 0, it is an elementary estimation to show that
|u?_]-—-W'i’fj|=O(h,2+T), i,j=0,1,--- N, n=0,1,--- M,
for h and 7 sufficiently small. We summarize these results in the following statement.,

Theorem 4.1. Let ¢ >0,g>0, f >0 and E >0 be such that ¢ € (*+(§2), g €
C1+el2(90 x [0,T)), E € C'*/2([0,T)), and f € C***(Qy) for some o, 0 < o < 1.
Let ¢(z*,y*) = E(0) > 0 and let the data ¢,g and , satisfy the usual compatibility

condition on OQ x {0}. Then, for h and 7 sufficie~tly small, we have that
Iu:]'—'W:}J =O(h2+T), i,j:(),l,"‘,N, n:O,l,"',M,

holds with W; defined by

M, T
Wy, = 2%

1,7

t,7=0,1,--- N, n=01,-- M

nn
U.

Proof: According to [5], both of the original and the transformed equations has unique
solution which is continuously depend on the data. The conclusion thus follows the

analysis preceding the statement of the theorem. O
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Turning now to p = p(l), we rzcall from our transform that
—7r'(t) E) 0  E(t)
) = r(l) - v(x*,y*, t);?—tv(:c",ﬂ,t)
() Ev(em,y 1) —v(a™,y “OE'(t)
- v(z",y*, 1) E(t)
Io"(l) —v( T, y", 1)
I£(t) v(z=,y*.t)

Consequently, an approximation for p involves the numerical computation of F'(t)

and ",‘,’ (x*,y", ). As
o vlv’ - ") —v(TT, :
'T—'("I"‘vy.al'n) ( +J) ( J ) + O(.]T)
ot JT
et —gn N
= e 4 O(—=+ — +J7)
JT JT JT

vt — h? 1 .
= =——24+0(—+-=+7J7),
JT T ]
we select j ~ v M and obtain

v n"*J — o7
O a7, 1) = -

h? 1/2
| = ( 1/2 + T / )
At this point for ¢ > 0 and fixed, we assume a relationship between h and 7(similar

to the stability condition of the forward difference scheme):

h? 2 1
_ /2
v i peTe,
Henee it follows that
()v v"“ 1
= /2
"y ) — | = 0(t7%).
bl ' JT

Set,
I Olas il O vt — ol

= jErT B jurT

‘Then, observing Theorem 4.1 we can state the following resuit.

Corollary 4.2. For h and 7 sufficiently small and h = 7% > 0 for p fizred, we
L
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have
lpn _ pnl — ()(Tl/’Z)
forn=0,1,--- M~ VM.

Proof: See the analysis preceding the statement of the corollary. O

§4.5. Numerical Results

In this scction we will present three numerical examples by using the numerical

procedure discussed in the proevious sections.

Example 5.1. Let u(x,y,t) = sin(rz) cos(ry)e" and p(t) = 12+ 1 be the solutions of
the original problem with the initial condition ¢(z,y) = sin{m.r) cos(wy), the boundary
condition g(z,0,t) = sin(zx)e”t, g(z,1,t) = —sin(wx)e™, g(0,y,1) = g(a,1,1) = 0,
f(z,y,t) = (272 — t? — 2)sin(wz) cos(my)e™ and the additional condition [(t) =
u(z*,y*,t) = 1/2e~* where (z*,y") = (0.25,0.25). By a simple calculation, we obtain
that v(z,y,t) = sin(nz) cos(ry)e */?~%, v(z,y,0) = ¢(x,y), F(a,y,t) = (—4n* -
2t? — 4)sin(wz) cos(ry) and G(z,y,t) = 2sin(rz)cos(my) on I Let [(v,n) =
max; ; [vF;—v(zi,y;tn )], the maximum error on cach level for v, F(u,n) = max; ; Joe;—
u(zi,Y;,ta)|, the maximum error on each level for u, and FE(p,n) = |p* — P(L.)].
Figures 1-6 show the error we calculated for this example. We find that all error are
within the limits predicted by the Theorem 1.3. Also, we noticed that the error for u
is usually less than the error for v.

Example 5.2. Here we take a simple model problem: ¢(z,y) = (1 -x), u(x,y,L) =0

¢ with

forz = 0,1, u(z,y,t) = z(l —z)e~t for y = 0,1, f(z,y,t) = 0 and B(t) = ke
(z*,y") = (0.25,0.25). We plot the level surfaces for » and u at ¢ = 0.5 and 1.0, and
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p(t) from 0 to 1. These results are listed in Figures 7-9.

Example 5.3. Here we take another simple model problem: ¢(z,t) = 1, u(z,y.t) =1
for y = 01,0 = 1, u(x,y,t) = 1 + y(1 — y)sin(5xt) for z = 0, f(z,y,t) = 0 and
I(t) = 2 — cos(hmt) with (x7,y") = (0.25,0.25). As we expected, p is periodic due
to the periodicity of the boundary values. We plot the level surfaces for v and u at

!t = 0.5 and 1.0, and p(t) from 0 to 1. These results are listed in Figures 10-12.

Remark 5.4. In our computations of the example 5.1, the restriction on the step
sizes of Corollary 5.2 is not satisfied for a particular g, but y varies from 1 to 1.9.

T'his shows a flexibility and rob:: ness of our numerical procedure.

Ren..rk 5.5. In example 5.1, it is casy to see that the error for p in all three cases
satisly |p" — p"| < C'y/7 with ¢ = 5. This has verified our theoretical prediction in

Corollary 5.2.

Remark 5.6. Our numerical procedure is semi-implicit and has no restriction on the
step sizes, but numerical differentiation estimate in Corollary 5.2 requires the same
step sizes restriction as the standard explicit forward Euler scheme. As numerical
differentiation is concerned, it might be better if the forward Euler method is used
in the computation of v. The rcason for using the backward Euler method in this
chapter is that it allows us a certain frecdom to choose the step size according our
needs as stated in Remark 5.4 that p can vary in certain range if it is not too small

or too large. This will become more important and necessary in higher dimensions.
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figure 7.
Numerical Solution of u at ¢==1.0 ( h=005, 7=0.001)
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Chapter 5

Finite Difference Approximations for a Class of Paraboiic

Equations With Non-lo«al Boundary Conditions

§5.0. Introduction

In this chapter we study finite difference approximations to the solution of the

following parabolic equations with non-local boundary condition:
u —Au=0 in Qr,
u(z,y,0) = #(x,y), (z,y) € 9,
u(x,y,t) = /Q K(z,y, & n)u(é,n, t)dédy, on J x (0,7,

where Qr = Q x (0,7), T > 0,Q = (0,1) x (0,1), ¢(x,y) # 0 and K(x,y,& 1) are
known functions. In addition, it is assummed that for some constant 0 < p < | the

kernel K(z,y,€,n) satisfies

/Q K (z,y,6,m)ldédy < p <1, Y(x,y) € il

In [4, 5] Day considered the one-dimensional problem on (=1L, L), L > 0, with

the boundary conditions
L L
u(—L,t) :/Lfl(:c)u(z,t)dm and u(l,t) = /l Lol )u(a, t)dr,
and showed that if

L L
/ Ifi(e)ldz <1 and /1 fo(z)|dz < 1,
-L -L

then, for the solution u,

U(t) = _pax, |u(z, t)]

115



is decreasing in L. The solution u represents the entropy in a quasi-static theory of
thermoelasticity {5, 6], so that Day’s results show that the maximum modulus of the
entropy is decreasing in time. In 8] Friedman extended Day’s results to a general
parabolic equation in n-dimensions of the form

¢ " ?2 n
S,))ilt* a;;{z,t) ‘ +Za, T, t +au_0
ol

tj=1

with a{w, 1) > 0 and with the initial and boundary conditions as given in our original

problem. Moreover, Friecdman proved that there exists Co > 0 and A > 0 such that
U(l) < Coe™™, >0,

i.e., U(t) decays to zero exponentially as t — oco. Problems similar to the abov.
also arise from the determination of the unknown source parameter {2, 9] and other

related problems {10].

For physical applications of the original problem, let us consider first the coupled

partial differential equations
al,, = b0, + 0o Bvzzy, Avxrrz = Bozz

which describe the quasi-static flexure of a thermoelastic rod [5]. Here 6(z,1) is the
temperature, 0y is a uniform reference temperature, v(z,t) is the transverse displace-
ment, a is the conductivity, b is the specific heat at the constant strain, the constant
A is the flexure rigidity and the constant B is a measure of the cross-coupling between
thermal and mechanical effects. We assume that the ends z = —L and z = L to be

maintained at the reference temperature 0 and to be clamped, that is
{-L,t)=06(L,t) =0,
w(—1,t) = us(—L,t) = w(L,t) = u(L,t) = 0.
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Let

b
u= "_(() - 0()) + 131[1-_,.
fo

be the entropy. Then after some mathematical manipulations [5] we obtain that u

satisfies

2
auy, = {b+ 007)1“

with the boundary conditions

008 .
u('_[/, t) = _?2(—)3—1—2? ‘/_II(L - 3 .",'}-ll(.r, ’.)({J',

0oB* L
u(lL,t) = —21)0/12112 /—L(L + 3 )u(x, )dr

and an appropriate initial condition.

For the second example we consider the conations [1, 3, 5]
aly, = b0, + 0pax(3A + 24wy
(A4 2p)vze = a3+ 2p)0,
which describe the heat conduction behavior of a slab —1, < x < [, made of ho-
mogeneous and isotropic material. Here 0(z,t) is the temperature, v, t) is the
displacement component in the direction of the z—axis, 0y is a uniform reference

temperature, a is the coeflicient of expansion, and A,y are the elastic moduli. The

boundary conditions are
0(—L,t)=0(L,t) =0y, v(—1,t)=0v(l,t)=0.

Let

u = -ob—(() - 00) + 0(3/\ + 2/1)7):1:
0

be the entropy, one has [5] that u satisfies
augy = b uy
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with the boundary conditions
L
u(—1L,t) =u(lL,l) = ———————/ u(z, t)dr,

where
3X + 2u)?
b>=b+40 ,2(——————.
) ) - Yo T 2p

For the detailed derivations of the above equations we refer to [1, 3, 5]. The condition
/ K (r,y,€,m)ldédny < p < 1, Y(z,y) € 00
0

implies for the first problem that 50oB% < 3bA* and for the second problem that

b —b

b

< 1 or Ope®(3X = 2u)% < (A + 2p)b.

Fairweather and Lopez-Marcos studied second-order methods to treat this type
of boundary conditions [11]{12]. Herc we study a less accurate yet simpler finite
difference schemes for the original problem. The finite difference procedures proposed
below preserve monotonicity, the maximum principle and the exponential decay (if
the kernel is non-negative) of the solution for the original equation; therefore, they

are considered as good numerical approximations.

Let h = Ax = Ay = 1/N for some integer N > 1, and let 7 > 0 be a small
step-size in time with ¢, = a7, n=0,1,---. Fora smooth function v € C*Q) we
assume that the following numerical integration formula is valid:

/ K(x,y,&n)v(&,n)dédy = Z Wit K (2,9, Ty Y1) Vmy + O(h?),

m,l=0
where w,,; > 0 are weights and vy, = (T, 1) With z,, = mAz, y1 = Ay, m,l =
0,1,---,N. For any 0 < p~ < 1, we restrict h to be so small, say for some hy > 0,

0 < h < hg, that

Z Wm 1 'l\ (3", Yy T, yl)l < P‘ = <1, (Tvy) € .

m, =0

N . 1+p
T2
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Here and throughout this chapter we assume that h is small cnougn so that this

condition is satisfied. In fact this serves as a discrete version of

[ARG . enldedn < p <1y Vi) € 09,

In order to obtain the numerical solution which preserves as many properties of the so-
lution as possible, this condition is necessary and cannot be considered as a constraint
on space discretization. For example the weights can be chosen by using trapezoidal

rule,

AxzAy, m,l=12,--- N—-1
Wy | = %A.’L‘Ay, m,l € {0, N};
;0zAy, otherwise.
Define the following shorthand notations:
gn . gn-l
g = ———,
tg -
2 Gi+r,i + gi-1i + Gign + i1 — 445,
A gi,j = h2 J .

We now define our first numerical scheme: Find {U.} such that
1,7

QU — AU =0, ij=12-N-1, nxl,
U =¢ij, 4,3=0,1,2,---,N,

Ui?j = Ki; ({U:n,l}) , {7} ﬂ{O, N}#D, n>1,
where

N
Kiy ({U20) = 3 ik (25, @my) Uy 13} HONY #0, =1,
m,[=0
This fully-implicit scheme requires a full-matrix system to be solved at cach time

level due to the boundary integration. For small & > 0, the matrix will be diagonally-

dominant. For the diagonal entries correspond to interior points this is obvious since
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the diagonal entry is 1+ 475 while there are exactly four nonzero off-diagonal entries
of —3&. For the diagonal entries which correspond to boundary grid points, when
{i,7}N{0, N} # 0 and h small cnough, we have

l1+p

Yo waalK (2,3 T y)] € —— < 1 —wi; K(zi,y5,20,9;5), (z,y) € D
{m.t}#£{ig) 2

‘This tells us the matrix is diagonally-dominant. Thus the resulting system can be

solved by Gaussian-elimination or any standard method.

Since the fuily implicit scheme results in an error O(h?® + 1), we may propose the

following numerically cconomical semi-implicit scheme: Find {W?,} such that

WL - MWL =0, 4,j=12,--N-1 n21,

W2, =éij, 4,4=0,1,2,-- N,

Wy = Ko ((WE'}), {6330 NY#0, n21
We will see that this semi-implicit scheme results in an error O(h? 4+ 7) (Theorem 2.2)
and is casy to implement numerically since only a pent-diagonal matrix system needs
1o be solved at cach time level. Therefore, it is a very economical and fast algorithm.
In addition, it is also unconditionally stable. Alternative methods, say ADI, may also

be used to solve the semi-implicit scheme.

§5.1. Stability, Monotonicity and Exponential Decay

In this section we prove some monotonicity, maximum principle and exponential
decay properties for our numerical solutions U, and W,. Define
43 i.j

" = max_ |U], W" = max_|W"|.
0<ij<N M 0<6,j<N 'J

Theorem 1.1. Assume that U}; is a solution of the fully implicit scheme and the
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initial approzimation UP; # 0 fori,j =1,2,---,N — 1. Then the following holds:

0< Um < U™, Vn > 1.

Proof: We show that
0<U'<U".

We observe that U™ > 0 for all n > 0. Consider the first two levels = 0 and n = 1.

Assume to the contrary that U° < U, then U' > 0. If U = U} . | = UL >0 ( the
case [.'}0,]-0 < 0 can be treated in a similar way) for some (7, jo). Then it follows [rom

the aiscrete maximum principle [7] that this maximum is attained at the boundary.
Thus (%o, jo) can be selected to be a baandary point. Then, we see from
N 14 p

Z W, lI"(‘T’ yal‘m?yl)l < P‘ = Ty <, (‘I"v;'/) cQ
m,l1=0

<

and our discretization schemes that
U' = |K;, ; {Ul < U!
10,J0 m,l >/p

which is impossible unless U' = 0 since p* < I. Thus U/° > U' > 0. By the fully
implicit scheme, U}; = 0 will lcad to UY; = 0 for ¢,j = 1,2,---, N — 1 which is a

contradiction. Thus, 0 < U! < U°.

Now, we consider the levels n = 1 and n = 2. By repeating the above argument
with U}; as the initial data, we can show that 0 < Ut <U'. Thus, 0 < U* < ™!

is proved by repeating the above argument for higher levels. O

Theorem 1.2. Assume that W[, is a solulion of the semi-tmplicil scheme a- .

initial approzimation ij £0 fori,j=1,2,---,N =1, then the following hol.
0<Wr<W™!, Vn2>l.
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Proof: We show first that W! > 0. If on the contrary W' = 0, we will get W2, =0

for i,j = 1,2,---, N — | by the semi-implicit scheme. This contradiction proves
W' > 0. By
& . .1+
L Wt | K (2, Y, T, y1)] < p° = ——2——6 <1, (z,y)€q,
m,l=0)
we get,

Wi < o WP < WO, {5,310, N} # 0.
If W' > W then according to the discrete maximum principle[7],
w! = max{,"j}n{o,/v};emlwil,jl <we

which is a contradiction. The remainder of the proof follows from an argument similar

to the above and mathematical induction. O

Remark: Theorem 1.1 and Theorem 1.2 imply the unconditional stability of nun
ical solutions U}, and W[, even though W[ is the solution of a semi-implicit finite

difference scheme.
In [8] Fricdman proved that U(t) decays exponentially when

/Q \K(z,y,€,m)ldédy < p<1,  V(z,y) € dQ

is satisficd. We have proved that both {U™} and {W"} possess the strict monotonicity.
In fact numerically there exists A > 0, as suggested by the examples of the last section,

Figure 6 and Figure i+, such that
Un+1
l]n

log ~ —AAt  as n — oo,

and the same is true for W™, This motivates the justifications of .he exponential

decay of U™ and W™ when the kernel is non-negative.
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Theorem 1.3. Under the assumption that U}; is the solution of the fully implicit

scheme, the kernel K(x,y,€,17) > 0 and

/9 | K (z,y,&n)|d€dn < p < 1, V(r,u) € 09,

7 0

there ezists a positive constant A > 0 such that for U® = max, ; [U/;],

Ut <% M for all n>0.

€ 9 -
Proof: Let V(z,y,t) = e MQ2U° — —(z2 + ) where ¢ and A are two positive
1 1

constants to be chosen below. It follows casily that there exists ¢p > 0 such that
V(z,y,0) =2U° - 3(:1:2 +95)>U° on Q if 0<c<e
Also, since K; ;({1}) < p* < 1, we find
K;;({20°}) < p 2U° < 2U°,

and then, there exists a positive constant ¢; > 0 small enough such that for all

0<6_<_€1,
Ve > Kii({Vid), {63 (0N} #0, n> 1.

Thus, we choose ¢ = min{eg, ¢;}. It follows from a simple calculation that
c , . .
6t‘/,3 - Az‘/:l = e Antt (f - /\Cl\E(QUO - Z(:E? + 7/;)) ) Ly =402, N -1

where £ € (0,7). As Ae’ — 0 when A — 0, we have for some Ay = Ag(¢) > 0 (or

Ao = min{1/7,€/(2eU°)}) such that for all 6 < A < A,

QVE—AWVL >0, 4,j=1,2,--,N~1
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Now letting 27 = V% — U, with A = g and ¢ chosen above, we sec from ihe fully
implicit scheme and the analysis above that

WL, - A2 >0, 4,j=12-N=1, n2>1,

Z5>0,  4,j=0,1,2,-- N,

7> Ko (1Z0), {ddHONY#8, n2 1.
We now sho- . wat ZP; > 0. Assume that ng is the first level that Z7, may take the
negative values, then we have (i, jo) such that

7m0 min 27
ANPRES min Zi3 <0.

it follows from the discrete maximum principle [7] that (zo, jo) must be the boundary
point, otherwise 9,22, — A?Z*. < 0 which is not possible. Thus we have from the

“10,J0 “19,50 =

positivity of the kernel K that

— < Ky ({~229)) < 0 (—Z52)

“i0,30

which implies that Z"°. = 0, a contradiction. Hence, we have proved that U7, < V™.
l 10,0 p 1Y) .7

Using a similar argument by treating —U/"; it can be shown that U7; =2 V7. This

completes the proof. O
Theorem 1.4. Assume that W}, is the solution of the semi-implicit scheme and
[IRGenlden <p<t,  Wey)eon.
I there exists a posilive constant X > 0 such that W° = max; ; [W],

"< Wl ™Mn for all n>0.

Proof: 'The proof consists of an argument similar to that given in the proof of

Theorem 1.3. We therefore only give its outline.
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Let V(z,y,t) = e M(2W° —- i(.r2 + ¥*)) and as before. let ¢y be chosen so small
that V(z,y,0) > WO for 0 < ¢ < ¢p. Because the numerical integration uses the data
on the previous level for the boundary condition, we need to fiest select a Ay > 0 such
that 0 < A < A,

N> pt, de. eV2H0 S pral Y.

Since e™ — | when A — 0, the existence of such a Ag is not a problem. With ¢,

ard Ay chosen as above, we then select ¢ > 0 so small that for 0 <« < ¢

V> KVt D G0N £, n>

Using € = min{ep, €1} and the Ag selected above |, we select Ay > 0 such that for
0<A < /\],
VY — AR>S0, 4,j=1,2- N-L

We take A = min{Ag, A1 }. We omit the remainder of the proof which is the same as

that given in the proof of Theorem 1.1 with the ¢ and X as chosen here. O

§5.2. Convergence and Error Estimates

In this section we study the convergence and error estimates of the numerical

procedures proposed in section 5.0. First, we show the following result.
Theorem 2.1. Assume that in addition to

/Q|1((1-,y,§,,7,)|dgd7, <p<l,  Y(ry)ed
the kernel K in the original problem satisfies K € C*(9Y x Q) and

K(z,y,&,n)>20, ¥ (z,y,€,n) € Q0 ~ Q.



If the solution w of the original problem is known a priori to be sr.ooth enough.

w € CV(Qy), then there erists a positive constant € = Cliullen e HR|]e2) > 0 such

that the solution 17" of the fully implicit scheme satisfies

max |77, = ulx, y, 1a)] < C(h® + 7).

1.7

Proof: Let ¢} = U7 = ulriy, t) for all 7. j. n. Then we see from

\
~ - 1 + X

L Wt [N oy oyl < p° = 5 £ <1. (r.y)eQ

i =0 <

and the fully implicit scheme that ¢} satisfies

D, = AN =l =12 N =L 2L

D=0 i j=0.1.2- N,

1,7

o= K, {{a )+, N #0 n2 L

Here 7% and ¢!} are the truncation errors induced by the discretization of the differ-
ential e iation and numerical integration respectively. Then there exists Lo > 0 such

that
max |7 | < Lo(R* + 7). max [} | < Lo(h* + 7).
t,J.n - 1, b

We now define an auxiliary function 0(x.y) by

| — 22—y

Lo(h* + 7).

Oir.y) =

It is then easy to verifv that

Lo
)

-—A“’()w = Lo(h* 4+ 1) and 0<90,, < (h* + 7).
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Let Z7', — ¢, —0,, for all 7. j. n. We find from these results and the finite difference

scheme about €], that

QZY, = ANZT <00 =12 N =1 n>1,

70 =-0,,<0. ij=0.1.2,--- N,

1.7

2= Koy (1200) + Koy (1)) = 00y + e GIOHON £ 02 1.

We now show that there exists (7 > 0 such that 27 < Cth2+ )y forall i o I 2
has a positive maximum. then according to the discrete maximum principle it must
b+ attained at a boundary point. Assume that M = Z/ 5 0 with ny 2 1 is the

positive maximum. From the boundary condition in thie previous mequalities we see

that

M < p" M4 (p"+ )max|0;,| + max|c |
t.) 1,1

S .

< pt M+ P :+——[,U(h‘2 + 7).

which implies

P+ 3 2

M< — Ly} .

= 50 olh®+ 1)

Hence, we have proved that

pm+3 .
Cl.] .<_ 01,_} + mLu(hz + T).

If instead Z7; = €', + 6. then a similar argument gives

€, > —OLJ+-§{§f§i;5LU(h2+-T)
Therefore. we have
leisl < 1005+ z/il.—‘__%/ao”lz + 7)
< 13_"‘;_(;12 +7)



which is the result we want. The prool i+ complete. O

Theorem 2.2. Under the same assumptions of Theorem 2.1, let W, be the solution
of the semi-implicit schemne. Then for some positive constant C > 0, independent of

h and T, we have

max [W" — u(zi, v, ta)] < C(h* + ).

T

Proof: 'T'he proof follows by a similar argument to that given in the proof of Theorem

2.1.0

Remark: The error estimates in Theorem 2.1 and Theorem 2.2 are uniform for all

0 <t <1 with0 < T < oo. This is guaranteed by the condition

LK G emldedn <p <1, ¥w.y) €99

45.3. General Smooth Kernel K(z,y,£,7)

In this section we consider the effect on the original problem when the kernel

condition
[IE e mldedn <p <1, ¥(o,y) €09
is replaced by:

0< K(x,y,6,m) < Ko,  Y(z,9,&n) € 00 x .

In general if the condition
./slz |K(x,y,& n)|dédn < p <1, V(z,y) € 00
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is not satisfied, then the numerical procedure of the fully implicit and the semi-implicit
schemes may not be stable uniformly for 0 < { < co. This will be demonstrated both
theoretically and through numerical examples below. For these kernels, the stability
will depend upon Ky and 7' > 0. Here we consider a class of kernels which satis{y

0 < K(z,y,&,1) < Ko but not

/ [K(z,y, & n)dédn < p< 1, V(r,y)€ il
Q

We first consider the continuous problem. Let w(a, y) be an auxihiary function
I <w(a,y)=1+M((z—1/2)"+ (y - 1/2)h,  d>o,
where M and d (even) are two positive constants to be chosen. Clearly, we have

l (l
min_ w(z,y)=1+2M (—)
(x.y)€0Q (2,y) + 2
Let u(z,y, i) be a solution of the original problem with I satisfying 0 < K (w,y,& ) <

Ky. Let v(z,y,t) = Urwl) and find that v saisfics

w(z,y)
-V
v, = Av+2—v—w———v+—Aiv, in Qr,
w w
#(z,y,t)
2 = —— 0
v(z,y,0) w(z.7) (z,y) €

v(z,y,t) = /Q.R(:z:,y,{,n)v({,7])d£d7), (x,2) € 02, 1L >0,

where

Rz, y.6,m) = K (29,6, ) o)

w(z,y)

Thus, we have from 0 < K(z,y,&,1) < Ko that

Ko /
: < d 1.
[ 1RG.6mldedn < e w6 e
A simple calculation shows that if d is an even integer,
(1/2)"!
d+1 °

[ wl.myddy =1+ M
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Then it follows that

1+ MU g
(x ledy < K, gt 2 :
/“ |R(z,y,& n)|dédy < I\O1 M2 =TT as M — oo

Henee, taking d = 2K, and M = M(Ky) > 0 large enough, we can achieve

Ko < 2K,
(l+ 1~ 2:’\’0 + 1

[ 1€ ) dedn < 21, Y (z,y) €09
For w(z,y) chosen in this way, we have for some K; = K1(Ko) > 0 that |Aw/w} < K;.

Now consider the transformation v(z,y,1) = €Y (z,y,t) with A > K;. We find

that Y satisfies

vi = Ay 4o VY, (A“’ -~ A) W in Qr,
w w
: t
Y(r.y,0) = ?ﬁ’_"_), (z,y) € Q
w(z,y)

Vo) = [ Rap&nYEmndedn, (x,0) €8 120

Remark: We now sce from [5] that Y obeys the maximum principle and possesses the
monotonicity and exponential decay properties, which in turn results in monotonic
and stable numerical schemes if the above equation for Y is discretized as the fully

implicit scheme or the semi-implicit scheme we proposed.

Turning to numerical approximations for the original problem with the new kernel
condition, we let 7 = T'/N, where N is a positive integer. Numerical solutions to the
problem, Ul', or W, are defined as in the fully implicit scheme or the semi-implicit

scheme. We cannot expect that these two schemes have the monotonicity properties

as described in Theorem 1.1 and Theorem 1.2 when

/Q |K(2,y,€,m)|dédn < p <1,  V(z,y) € N

is not satisfied. However, we have the follo=ing local stability estimates.
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Theorem 3.1. Assume that U}'; is defined as in the fully implicit scheme or the semi-
implicit scheme for the original problem with 0 < K(x,y.&, 1) < Ko. If the solution
u of the original problem is known a priori to be smooth cnough, w € CV*(Qv), then

there is some constant C* = C*(||u]|ce2, || N |lc2s Wo, T) > 0 such that

max U} — ufzy, yj, 0] < CH (W2 4 7).

L/

Proof: The proof is similar to that given in section 5.2, so is outlined as below.

!

\ ) ) » - ,.\t, .Y
For this local convergence, we let UP; = ¢ w; Y/,

where A and w(r, y) are defined
as above. Thus, it follows from a simple calculation that Y, satisfies a difference
equation which is the discrete version of the equation for Y'(ax,y,!). Thus it {ollows
from Theorem 2.1 and Theorem 2.2 (The proof needs only minor modifications from

that given in Section 5.2, we therefore omit) that there exists a positive constant
b

C > 0 such that

max [V = Y(2i,y5,1a)] < C(R* +7),

(YN

where C is independent of Ky and T' > 0, and then, we obtain that

|Uirfj - U(IL‘,', Yi» tﬂ)' < eM"u}indUir,lj - U(mia?/j, tu)l < ("m(l"2 + T)a

which completes the proof. O
Remark: The constant C* above can be very large if Ko and 7' > 0 are very large.
This can be seen from the choices of d and K, in the above analysis, and also is

demonstrated in the examples in the last section. In other words although h and 7

are small, the error could be very big, even approaching oo as n — oc.

§5.4. Numerical examples
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We: shall report several numerical examples which support our theoretical justifi-
cations in the previous sections, i.c., stability, monotonicity and exponential decay as
| — 0o. Both semi-implicit and fully explicit schemes using the trapezoidal rule for
numerical integration are used in our computations.

Example 4.1. In order to demonstrate the error analysis and stability, we select
Q = [0,2x] x [0,27], ¢(x,y) = sin(x)sin(y) and K(z,y,&n) = £ Thus, for any real
constant k > 0, u(a,y, 1) = sin(z) sin(y)e~? is the solution with [ | K (z,y,&,n)|dén =
k. Figure | and Figure 2 show by using the semi-impiicit scheme that the error
distributions of u ( the maximum error on cach level via the time) with parameter
k varying from 0.1 to 4. Clearly, for & = 0.1, 0.3, 0.5 and k = 0.8, even k£ = 1.0,
the errors are under control as predicted by Theorem 2.1. On the other hand, for
k= 1.5, 2.5, 3 and k = 4, it is scen that the errors are under control only for a short
period of time, and then divergent to co as n — oco. This is the exact same result
as predicted by Theorem 3.1, i.e., the numerical schemes are stable locally depending
upon Ko > 0 and T'> 0. Figure 3 shows the error distribution of u by using the fully
implicit scheme. For 0 < & < 1 the error distributions of u in this example are almost
identical to the case of k = 1. Also we noticed that the fully implicit scheme is more
stable than the semi-implicit scheme.

Example 4.2. We now take a simple model problem with the same spatial domain
and kernel as in example 1, é(x,y) = sin(zy) and k = 0.8. Figure 4 and Figure 5,
by using semi-implicit and fully implicit schemes respectively, show the distribution
of 17" via the time t, which decreases to zero exponentially as t — oo. If we assume

roughly that for some A1), C(t) we have

U(t) ~C(t)eMt as t— oo,
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then A(t) can be calculated by the formula

\n 1 ; Un.+l
~-&Zog( I ) as t— o0,

Figure 6 and Figure 7, by using semi-implicit and fully implicit scheies respectively,
show the distributions of A(t) proposed above, and it is seen that A" approaches a
negative constant as expected. For the semi-explicit scheme we find A" ~ —0.145,
and the fully explicit A" ~ —0.1336, thus the difference is 1.2 x 107% which is within
the rate of the truncation error of the discretization.

With A" calculated above we then can compute C(t) by
C" e Ute™™ 35" g8 n - 00.

Figure 8 shows the distribution of C(t) computed by the semi-implicit scheme ac-
cording to the above assumption. In this cxample we see that (V1) also approaches
a constant. Figure 9 and Figurc 10 show the numerical solutions of w at { = 0.5 and

t = 1.0 with h = 7 /20 and 7 = 0.01.

Example 4.3. Taking the same model problem as in example 2 except that the
initial data is ¢(z,y) = (x — z)(7 — y) and k = 0.4. Figure 11, Figure 12 and Figure
13 show the distributions of U{t), A(t) and C({) using the semi-implicit scheme . It
is noticed that U(t) goes exponentially to zero very rapidly as £ — oo compared to
that in example 2. This is due to the fact that C(t) also approaches zero, not a fixed

constant as in example 2.

Remark: From these examples we have a rough idea how U(1) will behave as the
time advances, i.e., we can at least to estimate the parameter A mentioned in Section

5.1 by using our numerical semi-implicit or fully implicit schemes.
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Figure 2: The semi-implicit scheme
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Figure 8: The semi-implicit scheme
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MNumerical Solution of wat £ - 10 (5 ==/20, 7+ -001)
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Figure 9: The semi-implicit scheme
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Figure 10: The semi-implicit scheme
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Figure 12: The semi-implicit scheme
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Figure 13: The semi-implicit scheme
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