Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

335 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfiiming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the

university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
RS.C. 1970, c¢. C-30, and
subsequent amendments.

Ve il

395, rue Wellington
QOttawa (Ontario)

Your tile  Votre rétérence

Our file  Notie réterence

AVIS

La qualité de cette microforme
dépenci grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

8§’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



University of Alberta

Spanwise Sezondary Instability of
Dean & Gortler Vortices

by

Yan Guo

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Department of Mechanical Engineering

Edmonton, Alberta

Fall / 1992



Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontaric}

Your tle  Vatre ieference

Our e Nolre réle-ence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant & l!a Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve ia propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de ceile-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-774@0-2

P 11e1



INTER-DEPARTMENTAL

TO

FROM

CORRESPONDENCE

Faculty of Graduate Studies & Research DATE July 9, 1692
2-8 University Hall

Warren Finlay, Assoc. Professor
Dept. of Mechanical Engineering

I ara writing this memo to indicate that Yan Guo has my permission to include
in his Ph.D. thesis the material from the paper listed below on which I am a jeint author.

Guo, Y. and Finlay, W.H., 1992, "“Spanwise Secondary Insi:c:ity of
Spatially Developing Vortices", Parts 1 and 2, submitted to Journal of
Fluid Mechanics.

Guo, Y. and Finlay, W.H., 1991 "Splitting, Merging and Wavelength

Selection of Vortices in Curved and/or Rotating Channels Due to Eckhaus
Instability”, Journal of Fluid Mechanics 228: §61-991.



University of Alberta

Release Form

Name of Author: Yan Guo

Title of Thesis: Spanwise Secondary Instability of Dean & Gortler
Vortices

Degree: Doctor of Philosophy

Year this degree granted: 1992

Permission is hereby granted to The University of Alberta Library to reproduce

single copies of this thesis and to lend or sell such copies for private, scholarly, or

scientific research purposes only.

The author reserves all other publication ard other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor
any substantial portion thereof may be printed or otherwise reproduced in uny

material form whatever without the author’s prior written permission.

Yan Guo

608 10145 1218St.
Edmonton, Alberta
Canada, T6G 2G8

Date : Tly 1S, 1992
v



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled Spanwise
secondary Instability of Dean & Gortler Vortices submitted by Yan Guo in partial
fulfillment of the requiremients for the degree of Ph.D.

Dr. Warren H. Finlg (Supervisor)

Y A 6%(;1{1

Dr. K. C. Cheng

1l bee

Dr. Th. Herbert

Masbigd

Dr. J. H. Masliyah /

o Vol P

Dr. K. I\fa,ndakumar

Date : jVL[H iS ,r%92

J




Abstract

Streamwise vortices found in curved channels (Dean vortices), rotating channels,
curved-rotating chanrely and in a concave boundary layer (Gortler vortices)
are simulated numericali 115ing spectral methods and Legendre spectral-element
methods. Both linear and nonlinear aspects of the secondary instability of these
vortices with respect to spanwise (transverse) perturbations are examined using
temporal and spatial stability theories. When the energy level of Dean or Gortler
vortices in the flow is low, the spatial growth of the vortices is governed by primary
instability. At this stage, the vortices with different wavelengths can develop at the
same time and do not interact with each other significantly. When certain vortices
reach the nonlinear stage first and become the dominant wavelength, spanwise
secondary instability sets in. For all cases studied, spatially developing Dean
and Gortler vortices are found to be most unstable 1o spanwise disturbances with
wavelength twice that of the dominant one. For Gértler vortices, the nonlincar
growth of these perturbations generates a small vortex pair in between two pairs
of vortices with long wavelength, but forces two pairs of vortices with short
wavelength to develop intc one pair. As a result, the structures of the dominant
Gértler vortices become irregular. For Dean vortices, these disturbances distort the
dominant vortices during their developing stage; when the dominant vortices reach
the fully developed stage, the stability boundary is a small closed loop in a2 Reynolds
number-wavenumber plane. Outside this loop, the nonlinear development of these
disturbances causes two dominant vortex pairs to merge into one pair if the dominant
wavelength is short, but generates a new vortex pair in between two dominant pairs
if the dominant wavelength is long. Thus spanwise secondary instability plays an

important role in wavenumber selection process for Dean vortices.
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CHAPTER 1

Introduction

Counter-rotating streamwise vortices caused by streamwise curvature have been
attracting many researchers’ attention for years. They can be found in many
applications and play an important role in the transition toward turbulence. For
open fluid systems where fluid particles are advected through the systems, Dean
vortices found in curved channels (Dean, 1928) and Goértler vortices near a concave
surface (Gortler, 1940) are two classical examples of such vortices. In this study,
we will examine numerically the secondary instabilities of these types of vortices
with respect to spanwise perturbations and their effects on wavenumber selection

and nonlinear development of these vortices.

in curved channels, steady two-dimensional vortices (Dean vortices) develop
above a critical Reynolds number Re. owing to centrifugal effects. The same type
of vortices are also found in channels with rotation or both curvature and rotation.
Dean vortices significantly change the flow pattern, boundary layer structure, and
the transition to turbulence. In a concave boundary layer, a similar vortex-type of
secondary flow develops due to a centrifugal instability as the boundary layer grows
thicker downstream. When the wall curvature is small, Gortler vortices provide

disturbances for three dimensional Tollmien-Schlichting waves and thus cause early
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transition. When the wall curvature is strong, Gortler vortices develop significantly
faster than Tollmien-Schlichting waves. The boundary layer is then dominated
by streamwise counter-rotating vortices and the transition toward turbulence is
characterized by the breakdown of these vortices. A better understanding of these
vortices may lead us a better understanding of many flows including the flows ncar
the concave surfaces of turbine blades and aerofoils, and coolant flows inside turbine
blades. Because of the analogies between the effects of curvature, rotation and
buoyancy, the study o. Dean vortices and Gortler vortices may also give some
insight into the effects of rotation and buoyancy on transitions in the flow on a
rotating plate and inside a rotating channel. Recently, some attention has been
paid to the similarity between the counter-rotating streamwise vortices found in
most transitional and turbulent wall bounded shear flows and Gortler vortices (cf.
Swearingen & Blackwelder 1987 for a review). Some studies suggest that these
vortices may be due to a Gértler instability resulting from streamwise curvature
(Cantwell, Coles & Dimotakies, 1978). Thus, Gortler vortices offer a simple model

to study the dynamics which govern the vortices in transitional and turbulent wall

bounded shear layers.

Ever since Dean (1928) and Gortler (1940) predicted the existence of a secondary
vortex-type motion in curved channels and boundary layers over concave surfaces,
many efforts have been made both experimentally and theoretically to understand
these vortices. Reviews of these efforts can be found in §2.1, §3.1 and §4.1. Most
previous research deals with primary instabilities (Dean or Gortler instability),
nonlinear evolutions of these vortices and secondary instabilities with respect to
streamwise disturbances. Though the instabilities predicted by theoretical works
over the years have been observed in experiments, many of the rich features revealed
experimentally are still unexplained for. The secondary instability of these vortices

with respect to spanwise disturbances (spanwise secondary instabilities) has never

been addressed before.



In this study, using both temporal and spatial instability theories and three
dimensional numerical simulations, we study the spatial development of Dean
vortices and Cortler vortices and their secondary instabilities with respect to
spanwise perturbations. We examine the roles of primary instability and spanwise
secondary instability in the wavenumber selection process and their effects on the
nonlinear evolution of Dean and Gortler vortices. Since both Gértler vortices and
Dean vortices are caused by centrifugal instabilities and share various similarities,

we compare and contrast the features of these two types of vortices.

In chapter 2, we study the spanwise secondary instability of the vortices found in
curved and/or rotating channels using a temporal approach and spectral methods.
In chapter 3, we develop a Legendre spectral-element method to study the spanwise
seccondary instability of spatially developing nonlinear vortices. As an application,
we examine the linear and nonlinear aspects of the spanwise secondary instability of
spatially developing Dean vortices. The same aspects of Gortler vortices are given
in chapter 4. Chapters 2, 3 and 4 are reasonably self-contained and the references

for each chapter are given at the end of the chapter. Final remarks are in chapter

5.



References

Cantwell, B.J., Coles, D.E. & Dimotakis, P.E. 1978 Structure and entrainment
in the plane of syminetry of a turbulent spot. J. Fluid Mech. 87, 641-672.

Dean, W.R. 1928 Fluid motion in a curved channel. Pro. Roy. Soc. London A,
121, 402-420.

Gortler, H. 1940 Uber eine drie- dimensionale instabilitat laminarer

Grenzschichten an konkaven wanden. Math Phys Kl 2, 1, also NASA TM. 1375
(1954).
Swearingen J.D. & Blackwelder R.F. 1987 The growth and breakdown of

streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255-290.



CHAPTER 2

Splitting, merging and
wavelength selection of vortices
in curved and/or rotating channel

flow due to Eckhaus instability

2.1 Introduction

'As the Reynolds number, Re, is increased, the flow in channels with
¢ither curvature or rotation or both undergoes a supercritical transition from
spanwise uniform one-dimensional (1D) Poiseuille type flow to a state with
spanwise periodicity containing two-dimensional (2D) streamwise-oriented vortices.
This transition is characterized by the 1D flow losing its stability to spanwise
perturbations, due to an imbalance of centrifugal, Coriolis and pressure forces. For
fixed curvature or rotation rate, the transition occurs when Re exceeds some critical

value Re.. When Re = Re., there is only one possible spanwise wavenumber .

1A version of this chapter has been published in J. Fluid Mech. (1991), vol. 228, pp.661-691.
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for the 2/ vortices (cf. Tritton & Davies 1985, Finlay, Keller & Ferziger 1988,
Alfredsson & Persson 1989, Finlay 1990 for a literature review on the primary
instability of 1D Poiseuille type flow to 2D vortices in channels with either curvature
or rotation, and Matsson & Alfredsson 1990 for channels with both curvature
and rotation). At higher Re, a continuous band of stable wavenumbers for the
2D vortices is expected. The limits of this band are given by several different
instabilities of the 2D vortices. For channels with infinite span, one of the most
important instabilities of the 2D vortices is due to spanwise perturbations. In this
paper, linear stability theory and flow simulation are used to examine this type of
instability numerically for the flow in channels with curvature or rotation or both.

The channel geometry is given in figure 2.1. The channel spacing is d = ro, — 7.
The streamwise and spanwise directions of the flow are given by 0 and z. The
Reynolds number is Re = Ud/2v, where U is the mean (bulk) streamwise velocity.
The radius ratio of the two walls is v = 7;/7,. The rotation number is defined
as Ro = Qd/2v, where Q is the rotation specd of the system about the z--axis.
The term rotating channel will be used to mean Ro # 0 and v = 1.0, while
the term curved channel refers to Ro = 0 and v < 1.0. Otherwise the channcl
has both curvature and rotation. The spanwise wavenumber of the vortices is
defined as a = md/\, where X is the spanwise vortex spacing. The term "two-
dimensional vortices” indicates that each velocity component depends only on the
two directions r and z. The flow is three-dimensional in the sense of having three
velocity components. In channel flow experiments, the spanwise dimension of the

channel is h and the aspect ratio I' = h/d is a finite number.

Instabilities induced by centrifugal and Coriolis forces have been studied for
many years. One classical example is Taylor-Couette flow. Years of effort by many
researchers (c¢f. DiPrima & Swinney 1985) has led to considerable knowledge about
the physics of the transition to turbulence in this geometry. Similar work is needed

for the flow in channels with curvature or rotation or both. A better understanding
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of transition in these channel geometries may lead us to a better understanding of
many flows including the flow inside impellers of centrifugal pumps or compressors,
coolant flow in turbine blades, and deep sea currents partitioned by submarine
ridges.

There has been some work done on the instabilities of 2D vortices in channels
with either curvature or rotation or both. Recently, Finlay et al. (1988) and Finlay
(1990) have examined numerically the instability with respect to perturbations that
cause the vortices to become wavy in the streamwise direction. This instability does
not restrict the spanwise wavenumber of the flow. These wavy vortices are similar
to oscillatory Rayleigh-Bénard convection or wavy Taylor vortices. Though the
flow in channels with either curvature or rotation or both bears some similarity to
Taylor-Couette flow, recent experimental studies in channels with large aspect ratio
([ > 40) show there is considerable unsteadiness that is not present in Taylor vortex
flow (cf. Ligrani & Niver 1988 for the curved channel, Alfredsson & Persson 1989
for the rotating channel and Matsson & Alfredsson 1990 for the curved-rotating
channel). When viewed in a spanwise-streamwise plane, the vortices cause long
streaks in experimental flow visualizations. These streaks are occasionally split
apart by new streaks or merge together (Alfredsson & Persson 1989, Matsson &
Alfredsson 1990). We will refer to these phenomena as the splitting and merging of
vortex pairs in this paper. These terms are always used to describe the behaviour
of two or more vortex pairs, not individual vortex tubes. In the curved channel,
spanwise motion, modulation and oscillation of vortices are also observed (Ligrani
& Niver 1988). These phenomena are not well understood. Studies on the
instability of 2D vortices to spanwise perturbations in Rayleigh-Bénard convection
and Taylor-Couette flow show that an Eckbaus instability restricts the band of stable
wavenursbers (Clever & Busse 1974, Riecke & Paap 1986). For Taylor vortices good
agreen en. exists between theoretical and experimental results for the band of stable

wavenumhers (Riecke & Paap 1986, Dominguez-Lerma, Cannel & Ahler 1986). If



vortices are created with wavenumber outside the stable region, Eckhaus instability
causes the vortices to change their wavelength so that it lies in the stable region.

But in channels with either curvature or rotation or both, little of such work has

been done.

The instability with respect to spanwise perturbations bears the name of
Eckhaus, since the first study of this type of instability was done by Eckhaus (1965,
Eckhaus’s work first appeared in 1963 in French in J. de Physique) for Tollmien-
Schlichting waves, using an amplitude expansion method. His result shows that
for a system of real eigenvalues and parameters, the band of stable wavenumbers
o is given by (ac — a_)/V3 < a — a. < (a4 — ac)/V3, where a_ and a, are the
wavenumbers on each branch of the neutral curve of primary instability for a given
Re. The Eckhaus criie> on has been proven valid in Rayleigh-Bénard convection and
Taylor-Couette ow for Re close to Re.. Stuart & DiPrima (1978) have corrected
the above criterion for a general periodic flow and demonstrated the equivalence
between the Eckhaus instability and the sideband instability of Benjamin & Feir
(1967). To our knowledge, the stability criterion they give is the only available
criterion for the flow in curved and/or rotating channels. However this criterion is

only valid in the region close to Re..

At low Re in curved and/or rotating channels, the wavenumbers of
experimentally observed vortices are close to those with the maximum growth rate
of primary instability ( = aximum primary growth rate, cf. Finlay et al. 1988,
Alfredsson & Persson 1989, Ligrani & Niver 1988). This suggests that perturbations
with these wavenumbers develop faster than others from the 1D flow, thus becoming
the dominant wavenumbers in the fully developed vortex flow. This is the only
available comment in the literature regarding a mechanism for spanwise wavenumber
selection in channels with either curvature or rotation. Yet this ~omment does not
apply to high Re where the observed wavenumbers are considerably smaller than

those with maximum primary growth rate (Finlay et al. 1988, Alfredsson & Persson



1989, l.igrani & Niver 1988).

fn this chapter, the Eckhaus instability of the flow in channels with either
curvature or rotation or both is studied. The formulation of the problem and
numerical method we use are briefly described in §2.2. In §2.3, we present
Eckhaus boundaries for channels with either curvature or rotation or both. We
discuss the splitting and merging of vortices in §2.4. A spanwise wavenumber
sclection mechanism is discussed in §2.5 and recurrent splitting and merging in
§2.6. Nonlinear flow simulations of splitting, merging and wavelength selection are

given in §2.7.

2.2 Theory and numerical methods

For steady, two-dimensional, streamwise-oriented vortices, the pressure gradient

VUp is a constant and the velocity of the flow can be represented by

uO:( la?k,u Lo% .n
z

o’rar}

ro

where ¥ is the stream function. The governing equations are the incompressible,

steady, Navier-Stokes equations:

1
w’ - vu® = —-;Vp + vV2u® — 2Qe, x u°

v-u = 0. (2.2)

Periodic boundary conditions are imposed in the z direction, since the flow is
assumed to have infinite span. Spectral methods are used to solve the above
cquations. We use a Fourier Galerkin method in the z direction and a Chebyshev
tau method in the r direction. To eliminate aliasing error, the 3/2 rule is used
to evaluate the nonlinear terms (cf. Canuto, Hussaini, Quarteroni, & Zang 1988).
Adcguate resolution is insured by monitoring the energies in the highest modes.

In our computation, the numbers of Fourier modes N and Chebyshev modes M
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vary from 16 x 16 to 20 x 26 (N x M) depending on Re,~, Ro and the spanwise

wavenumber « of the vortices. Normally we include only one pair of vortices in the

computational box.

Once the 2D vortex flow u® is found, its stability can be examined using linear
stability analysis. For small disturbances u’, the perturbation equation can be

linearized as

ou’ 1 o
61:. +u?-Vu' +u -V = —;Vp’+vV‘ u - 2Qe,; x u’

vV.u = 0. (2.3)
In general the perturbation u’ can be expressed as

u'(r, 8, 2) = G(r, z) exp [st + i(ch + bz)] (2.4)

where ¢ and b are the streamwise and spanwise wavenumbers of the perturbation.
Since we are only interested in the spanwise perturbation, we set ¢ = 0. Inserting the
above expression into (2.3), the stability problem becomes an eigenvalue problem:
the stability of u® is determined by o, ilie real part of the eigenvalue s = o + ww.

The flow pattern of the perturbation is given by
Real{i(r, z) exp(ibz)} . (2.5)

Fourier Galerkin and Chebyshev tau spectral methods are used to solve the above
eigenvalue problem. To reduce the number of unknown variables, the following

representation of the perturbation is used:
, 1
u=V><<pe,+—2-(1—-7)VxVxxer. (2.6)

Equation (2.3) then is reduced to two scalar equations: e, - Vx(2.3) and e, - V x
Vx(2.3). If the resolution of u® is N x M, the dimension of the resulting complex
eigenvalue problem is 2 x (M — 2)(N + 1), compared with (M — 1){N/2+1) + (M -
3)(N/2) for the wavy type instability where only the out-phase (or in-phase) modes
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are needed (Finlay et al. 1988, Jones 1981, 1985). Computation of the Eckhaus
instability is thus much more expensive than in the wavy inszability, especially when
N x M is large. Among 2x (M —2)(N +1) eigenvalues, we are only interested in the
cigenvalue with largest real part. We will use the term " Eckhaus eigenvalue™ to refer
this eigenvalue and " Eckhaus growth rate” to refer to the real part of this eigenvalue.
A similar method for solving the eigenvalue problem was used successfully by Clever
& Busse (1974) for Rayleigh-Bénard convection and by Nagata {1986, 1988) and
Jones (1985) for Taylor-Couette flows. More details of this method can be found in
their papers.

To avoid a singularity when v = 1.0 the nondimensional variables must be

chosen carefully. The following nondimensional variables (x,y, z,t) are used in our

forrmulation:
r/r Loty +1a -z

o 5 Y ) Y
1

7 5(1 — Yy
i

- o = 1 s
z2*r ?.a( Y)z

= £

4y

where z* and i* are dimensional, —1.0 €< z € 10and 0 < z < 2m. The
perturbation wavenumber b is thus non-dimensionalized by the spanwise wavelength
of the vortices 27 /A. The resulting codes were extensively verified by duplicating
the results of previous authors, including the Eckhaus boundary for Taylor vortices
obtained by Riecke and Paap (1986), the wavy instability (b = 0,d # 0) results fw"
Tayior vortices obtained by Jones (1983), and the wavy instability results obtained
:n channel flows with curvature or rotation by Finlay et al. (1988) and Finlay
(1920).

It has been reported (Zebib 1984, Gardner, Trogdon & Douglass 1989) that

the Chebyshev tau method produces spurious eigenvalues and in some cases it is
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difficult to distinguish true eigenvalues from spurious ones. In our problem, spurious
eigenvalues are also found. However, because only one spurious eigenvalue with
positive real part is produced by the Chebyshev tau method for each Fourier mode
and these spurious eigenvalues always have much larger magnitude (}s|) than the
true eigenvalues (cf Fox & Parker 1968), it is not difficult to distinguish between the
true and spurious eigenvalves. The spurious eigenvalues can also be found easily
by changing the number of modes used, i.e. M and N; this causes the spurious

eigenvalues to change drastically whereas the true eigenvalues vary little with M

and N for sufficiently large M and N.

It can be shown that for any spanwise periodic flow, the eigenvalue s = o + w
and the non-dimensional spanwise perturbation wavenumber b have the following
relation:

s(b) = s(xk X k) (2.7)

where 0.0 < b < 1.0 and k = 1,2,3,---(cf. Appendix A). This result reduces
the values of b we need examine to 0 < b < 1/2, since setting k = 1 shows that
s(b) = s(1 —b) (i.e. sis symmetric about b = 1/2) and setting k=2,3,4, - covers
the remaining b.

Equation(2.7) applies for any spanwise periodic flow. Our numerical results
verify (2.7) for both Taylor-Couette flow and the flow in channels with either
curvature or rotation or both. The numerical results given by Nagata & Busse (1983,
their figure 10) and by Paap & Riecke (1990, their figure 2) also demonstrate the
symmetry property of o about b= 0.5 for 0 < b < 1 in buoyancy driven shear layer
flow and Taylor-Couette flow. Some previous studies did not exploit this property
(2.7). Its immediate significance is to drastically reduce the range of perturbation
wavenumbers that need to be explored and thus to reduce computational expense.
In our studies, since the numerical difference between the eigenvalues s for0<b<

0.5 and 0.5 < b < 1.0 is less than 0.1% for the stated resolution, we only calculate s
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for 0 < b < 0.5. The values of s for 0.5 < b < 1.0 are obtained from the symmetry

property in {2.7).

2.3 Eckhaus stability boundary

The Eckhaus stability boundary is deterrined by a sign change in the Eckhaus
growth rate o as the parameters of the system are varied. Within the Eckhaus
boundary, the Eckhaus growth rate is always negative. In the region neighboring
the Eckhaus boundary, our numerical results show the eigenvalue with the maximum
Eckhaus growth rate is always real. The stability boundary is thus determined by
non-oscillatory perturbations. Figure 2.2 shows the Eckhaus boundaries for several
channels with either curvature or rotation or both. In a curved channel (y = 0.975)
with rotation, Matsson & Alfredsson (1990) find the primary instability occurs as
a Hopf bifurcation when —0.014 > Ro > -0.0164. Thus for Ro in this range there
are no steady 2D vortex solutions. The two cases we present in figure 2.2(c) at
Ro = —0.0125 and —0.02 are just outside the range of Ro for the primary instability
to appear as a Hopf bifurcation. Figure 2.2 shows that the Eckhaus stable region
for the flow in curved and/or rotating channels is a =mall closed region tangent to
the minimum of the neutral stability curve for the primary instability. In all cases

calculated by us, the Eckhaus boundary is only a weak function of v and Ro.

When compared to other spanwise periodic flows known to the authors, channel
flows with either curvature or rotation or both exhibit significant differences. Fot
example in Taylor-Couette flow, the Eckhaus boundary is an open region, i.e., for
any Re, there is always a band of stable wavenumber «. On the Eckhaus boundary,
the spanwise wavenumber of perturbations, b, approaches zero when Re is not very
high (Riecke & Paap, 1986). When Re is high, the boundary is given by b = 0.5
(Paap & Riecke, 1990). Paap & Riecke (1990) refer to this as a short-wavelength

instability, in order to distinguish it from the long-wavelength nature of the classical
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Eckhaus instability. “umerical calculations done by us for Taylor-Couette flow show
that as a moves away from the Eckhaus boundary, b approaches 0.5 vvhen Re is not
very high. As Re increases, this happens very quickly. This is consistent with the
results given by Paap & Riecke (1990). Our results also show that for any Re,«
and b, the eigenvalue with maximum real part is always real in the Taylor-Couette
problem. All parameters of the system are thus real and the stability criterion given

by Eckhaus (1965) is valid in the region near Re. (Riecke & Paap 1986)

In channels with either curvature or rotation or both, the situation is much
more complicated. We have studied the case of the curved channel with v = 0.975
most carefully. Our results show that near the left side of the Eckhaus boundary,
the eigenvalue with Eckhaus growth rate is real for any b. Figure 2.3 shows o(b)
at Re = 1.07Re. (figure 2.3a) and 1.225Re. (figure 2.3b) as a approaches the left
side of the Eckhaus boundary. Figure 2.3(a) shows that at Re = 1.07Re., b = 0.0
determines the Eckhaus boundary. Figure 2.3(b), however, shows that at Re =
1.225Re., b = 0.5 determines the boundary.

In the neighborhood of the right side of the Eckhaus boundary, the eigenvalue
with Eckhaus growth rate is not real for all b when Re > 1.1Re.. For some b, a
complex conjugate pair has the maximum real part. Figure 2.4 shows the eigenvalue
s(b) for various a near the right side of the Eckhaus boundary at Re = 1.07Re.
(figure 2.4a) and Re = 1.225Re, (figure 2.4b). The eigenvalue has zero imaginary
part at Re = 1.07Re. so only o(b) is shown in figure 2.4(a). In figure 2.4(b) only the
positive imaginary part of the eigenvalue is shown. By using different numbers
of Chebyshev modes and Fourier modes, we have verified that these complex
eigenvalues are not spurious eigenvalues produced by the Chebyshev tau method.
Figure 2.4(a) shows that at Re = 1.07Re.,b = 0.25 on the boundary. Figure 2.4(
shows that at Re = 1.225Re.,b = 0.5 on the boundary. Figure 2.4 also shows that

the imaginary part of the eigenvalue which determines the Eckhaus boundary is

zero on the boundary.
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The value of b(Re) on the boundary is shown in figure 2.5. On both sides of the
boundary, b reaches 0.5 when Re > 1.175Re.. Clearly here the boundary defined by
the instability of 2D vortices to spanwise perturbations is not the classical Eckhaus
stability boundary (b — 0) found in Taylor-Couette flow. When Re < 1.125Re,
only the left side of the boundary is of the classical Eckhaus type. For simplicity, we
still call the entire boundary an Eckhaus boundary. Figure 2.6 shows a comparison
of the Eckhaus criterion (Eckhaus, 1965), primary stability boundary (Finlay et
al. 1988) and the Eckhaus boundary we have determined, all for a curved channel
with v = 0.975. The Eckhaus stability criterion does not apply to the right side of
the Eckhaus boundary even in the region close to Re.. On the left side, it is valid
with reasonable accuracy up to fie < 1.04Re.. In Taylor-Couette flow, the Eckhaus
stability criterion is valid with reasonable accuracy up to 1.1 Re. for both sides of the
boundary (Riecke & Paap, 1986). We believe that b # 0 and nen-real eigenvalues on
the right side of the boundary are the reason why the Eckhaus criterion is not valid
here. (Another case where the Eckhaus criterion does not apply is the inclined shear
layer driven by wall heating (Nagata & Busse 1683). There, the Eckhaus criterion
is invalid on both sides of the Eckhaus boundary even near Re.). Although the
perturbation equations for both Taylor-Couette flow and curved and/or rotating
channel flow have the same form (2.3), the base flow u° is not the same. In channel
flow, the streamwise component of u® decreases to zero away from a maximum near
the center of the channel, whereas in Taylor-Couette flow, the streamwise velocity is
maximum at a wall. We believe this may be responsible for the difference between

the Eckhaus instabilities in these geometries.

Beyond the top of the Eckhaus boundary, if Re/Re. is not too high and « is
not too small or too large, the eigenvalue with the maximum Eckhaus growth rate
is given by b = 0.5 and is real. In the curved channel with v = 0.975, we find the
eigenvalue with the maximum Eckhaus growth rate is entirely real in the region

of Re < 3.5Re. and 1.8 < a < 5.0. But at given Re there does exist a spanwise
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wavenumber o such that when a > o/, Eckhaus eigenvalues are complex for some

b # 0.5. For example, at Re = 2.0Re., o = 3.5.

When Re/Re. is very high, for example Re/Re. > 3.2 in rotating channels,
the real part of a complex conjugate pair is the largest for some o and so the
corresponding perturbation is oscillatory. For example, at Re = 472.5 (Re/Re. =
5.56) in the rotating channel Ro = 0.03, we find that when 2.0 < a < 3.0, an
oscillatory unstable mode has the largest o, but for a < 2.0 and a > 3.75 the most
unstable mode has zero imaginary part. Because the Eckhaus instability is likely
less important at high Re than the wavy instability, and the computation becomes

very expensive, only a few high Re cases have been explored. More work needs to

be done before this type of oscillatory unstable mode can be understood.

Results similar to those discussed above are found in all channels we examined.
In all cases, 2D vortices are unstable to spanwise perturbations when Re > 1.7Re,
(they are often unstable at even lower Re). Since the Eckhaus stable region is small
and most experiments have been done outside this region, the instability associated
with the most unstable mode, which usually has b = 0.5, is an important instability

in channel flows with curvature or rotation or both.

2.4 Splitting and merging of vortices

In channel flow experiments, vortex pairs are sometimes observed to merge
together (reducing the number of vortices across the channel) or to be split apart by
the formation of new vortex pairs (Ligrani & Niver 1988, Alfredsson & Persson 1989,
Matsson & Alfredsson 1990). In some cases, the merging and splitting of vortex
pairs happens repetitively (Ligrani & Niver, 1989). Similar phenomena have also
been reported by Finlay et al. (1988), Finlay (1989) and Bland & Finlay (1990} in
their numerical simulations of channel flows with curvature or rotation. We believe

that the splitting and merging of vortex pairs are associated with the instability of
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21) vortices to spanwise perturbations. In §2.3 our iinea:r stability results indicate
that no 20 vortex flow is stable to spanwise perturbations when Re > 1.7Re..
In order to understand how these 2D vortex pairs lose their stability to spanwise
perturbations and split apart or merge together, we examine the flow pattern of the
most unstable mode of linear stability theory. The flow pattern of the most unstable
mode is given by the eigenfunction (2.5), which has the larges: growth rate o. It
grows at the rate exp(ot).

2.4.1 Taylor-Couette flow

First, Taylor vortex flows are studied, because here linear stability theory
calculations (Riecke & Paap, 1986) and experimentai observation (Dominguez-
Lerma et al. 1986) of the Eckhaus boundary show good agreement. The pairing of
vortices has been discussed by Paap & Riecke (1990) using bifurcation diagrams.
Here we will discuss the splitting and merging of vortex pairs from the perspective

of the flow patterns of the nost unstable modes.

As mentioned before, as a moves away from the Eckhaus boundary in Taylor
vortex flow, the value of b corresponding to the maximum Eckhaus growth rate
increases from 0.0 to 0.5. Figure 2.7 and 2.8 show the Taylox vortices (figure 2.7a,
2.8a), their most unstable modes (figure 2.7b, 2.8b) and linear superpositions of
these two (figure 2.7c, 2.8c, 2.8d) at Re = 2.0Re. outside each side of the Eckhaus
boundary, where the maximum Eckhaus growth rate is given by b = 0.5 (the Eckhaus
boundary has qese = 1.188, arign: = 2.425). In figure 2.7(a) and 2.8(a), the centers
of the Taylor vortex pairs are at z/A = 0.0, 1.0 and 2.0, where the fluid flows from
the convex wall to the concave wall (the outflow region). The streamwise direction
is out of the plane of the plot. In figure 2.7(b), the unstable mode has three pairs
of vortices in the space of two pairs of base vortices. If the perturbation maintains

this character in the nonlinear state, one extra pair of vortices would be producad



18

out of every two base pairs. Figure 2.7(c) is a plot of the base flow (figure 2.7a)
superimposed with the most unstable eigenfunction (figure 2.7b). The kinetic energy
of the eigenfunction in figure 2.7(c) has been set to 1.4% of the base flow’s kinetic
energy. A new pair of vortices is seen at 2/A = 0.5 near the convex wall that splits
apart the pairs of vortices on either side of z/A = 0.5 in the base flow. This indicates
that splitting of vortices occurs upon exiting the left side of the Eckhaus boundary.
Outside the right side of the Eckhaus boundary (figure 2.8b), one vortex pair of
the unstable mode takes the space of two pairs of the base flow (except for small
weak secondary vortices near the walls). Figure 2.8(c) shows the most unstable
eigenfunction (figure 2.8b) superimposed on the base flow (figure 2.8a). The kinetic
energy of the perturbation is 7% of the base flow’s kinetic energy, which is not a
linear perturbation but the large perturbation is used for visual clarity. (The effect
of the perturbation on the base flow is qualitatively independent of the perturt: ‘ion
amplitude). The two vortex pairs centered at z/A = 1.0 and 2.0 in the base flow
are squeezed toward z/A = 1.5 by the two single vortices at z/A = 1.0 and 2.0 in
the eigenfunction. The two base vortices on either side of z/X = 1.5 are weakened.
This is seen more clearly when the percentage of the perturbation increases to 50%
in figure 2.8(d). If this character of the perturbation is maintained in the nonlinear
state, we can expect that the two vortices on either side of z/A = 1.5 in the base
flow will disappear. Thus one out of every two pairs of vortices will be lost, i.e.

merging of vortices occurs upon exiting the right side of Eckhaus boundary.

Our numerical results show that the number of vortices in the perturba.t,ior;
eigenfunction depends on b. Over a distance A/b, there is one extra pair (left side
of the boundary) or one less pair (right side of the boundary). For example when
a = 2.3 at Re = 1.5Re. (the right side of Eckhaus boundary has arigne = 2.28 at
this Re), the maximum Eckhaus growth rate is given by b= 0.1. The corresponding
eigenfunction shows that nine pairs of the perturbation vortices occupy the space of

ten pairs of the base flow, i.e. only one pair will be lost for every ten pairs of base
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vortices. Thus when « is close to the Eckhaus boundary where the most unstable
mode has small b, a relatively small number of vortices will be produced or lost for
a given number of base vortices. Further away from the boundary where the most

unstable disturbance has b = 0.5, a larger number of vortices will be produced or

lost.

In Taylor-Couette flow experiments, the spanwise wavenumber of the base vortex
flow can be controlled by using adjustable spanwise walls (Dominguez-Lerma et
al. 1986). Once Taylor vortices of desired wavenumber are developed at high
Re, the Eckhaus boundary can be found by decreasing Re until the flow loses
its stability. Usually only one pair of vortices is produced or lost when the flow
crosses the Eckhaus b :ndary. Based on our results, only a single pair appears
or disappears because as the flow crosses the boundary into the unstable region,
unstable perturbations occur witn b slightly greater than zero. When unstable
modes occur with b having a cert»in value, the finite span of the experimental device
allows an extra pair of vortices to be produced or absorbed: splitting or merging of
vortex pairs occurs. The resulting vortex flow will then have a wavenumber which

is inside the stable region.

The perturt ition flow pa..erns from the Eck’ s instability seem to explain
the Taylor-Couette experiment observations. But one should be cautious when
using the above results to explain the details of the splitting and merging processes
because the actual effects of the perturbations on the base vortices could be highly
nonlinear and dependent on finite span effects. For example, if certain pairs of
vortices begin to split or merge earlier than ¢ hers, the following readjustment
of spanwise wavenumbers across the span will change the wavenumbers of other
vortices and thus change the splitting or merging processes of these other vortex
pairs. However, we can say that splitting always occurs out the left side of the

boundary and merging out the right side.



2.4.2 Channels with either curvature or rotation or both

In channels with either curvature or rotation or both, most experiments have
been done outside the Eckhaus stable region, where the maximum Eckhaus growth
rate is positive and occurs at b = 0.5. Figure 2.9 and 2.10 show two vortex flows
(o = 2.0 in figure 2.9 and o = 4.0 in figure 2.10), their most unstable modes and
linear superpositions of base flows plus perturbations at Re = 2.0Re. in the curved
channel with v = 0.975. Other unstable modes for different o (at Re = 2.0Re.) can
be found in figure 2.11 (the small waviness in figure 2.11a,d along z/A =0.5,1.5is
caused by extremely small velocities being plotted with a fixed arrow size). At this
Re, all spanwise wavenumbers of the base flow are unstable to Eckhaus instability.
In all three figures, z/\ = 0,1.0 and 2.0 are the centers of the base vortex pairs,
where the fluid flows from the concave wall to convex wall (the inflow region). There
are three types of unstabie modes shown in figure 2.9, 2.10 and 2.11 that occur for
different ranges of . In figure 2.11(a), when o = 1.25, there are five vortex pairs of
the unstable mode in the space of two base pairs and the corresponding eigenvalue
(b = 0.5) is complex. For 2.0 < a < 3.5 (figure 2.9b, 2.11b — d), three vortex pairs
of the unstable mode take the space of two base pairs, though they do not have
equal intensity or spanwise wavenumber. For « in this range, the eigenvalue with
Eckhaus growth rate is always real for any b. In the range o > 3.5 (figure 2.105 and
figure 2.11€), there is only one vortex pair of the unstable mode in the space of two
base pairs. In this range, Eckhaus eiegnvalues are not always real for b # 0.5. But
the eigenvalue with the maximum Eckhaus growth rate is still given by b= 0.5 and

is real. Similar results are found in channels with rotation and curvature.

Heuristic arguments based on the flow patterns of the unstable modes in figure
2.9, 2.10 and 2.11 suggest some vortices in the unstable modes will generate new
vortex pairs, causing the splitting of base vortex pairs, and some will force base

vortex pairs together, causing merging. For example, in figure 2.9(b), a simple
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argument suggests it is more likely the vortex pair at z/A = 1.5 will develop
compared to the one at z/A = 0.5. This is because the large perturbation vortices
centered at z/\ = 1.0 and z/\ = 2.0 induce flow at the centers of the base vortices
on either side of z/A = 1.5 that causes them to spread apart. In contrast, near
z/A = 0.5 the large perturbation vortices induce motion at the centers of the base
vortices straddling z/A = 0.5 that causes them to move together, obstructing the
formation of the secondary vortex pair at z/A = 0.5 (or z/\ = 2.5). Figure 2.9(c)
shows the base flow (figure 2.9a) superimposed with the unstable mode (figure 2.9b)
whose kinetic energy has grown linearly to 7% of the base flow’s kinetic energy. It
can be seen that one new pair of secondary vortices begins to form at z/A = 1.5
near the concave wall. The original vortex pairs centered at z/\ = 1.0 and 2.0
spread apart from z/\ = 1.5 and are squeezed toward z/\ = 0.5 and 2.5. As the
energy level of the perturbation increases to 20% in figure 2.9(d), the new vortex
pair grows bigger and moves away from the concave wall. This is a splitting event,
since a new vortex pair appears between the base vortex pairs centered at z/A = 1.0
and 2.0. The two base vortex pairs centered at z/X = 1.0 and 2.0 will be split apart
by the new pair, yielding three pairs. Thus the vortex pair at z/A = 1.5 in the most
unstable eigenfunction is responsible for generating a new vortex pair in the outflow
region of the base low. When examining the eigenfunctions, the vortex pair which
generates the new pair can be identified easily by the fact that it is centered about

an inflow plane in the eigenfunctions.

As the wavenumber o of the base flow increases, the intensity of the pair
responsible for splitting becomes weaker, as is shown in figure 2.11(b — d). When
a > 3.5, this pair is absent, as shown in figure 2.10(b) and 2.11(e), and splitting
cannot happen. In addition, as a increases, the single vortices centered at z/\ =
0.0,1.0 and 2.0 in the most unstable eigenfunction become stronger. These vortices
are responsible for merging two base pairs together, as is seen figure 2.10 at a = 4.0.

Figure 2.10(c) shows the base flow (figure 2.10a) perturbed by 50% (kinetic energy)
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of the most unstable mode (figure 2 10b). Two neighboring vortices (centered at
z/X = 1.5) of the two base vortex pairs become smaller and weaker while the other
two become bigger and stronger. As the amplitude of the perturbation is increased
further, the two vortices on either side of 2/\ = 1.5 eveniiially disappear while the
other two vortices form into one pair. Thus two pairs merge into one pair. The
large perturbation amplitudes used to produce figures 2.9(d) and 2.10(c) are not
linear amplitudes, but are used for visual clarity. The qualitative effects of the

perturbations are independent of their amplitude.

The most unstable modes thus have two different effects on the base vortex flow,
associated either with splitting or merging. There is not a clear cut wavenumber «
that divides the efects of the most unstable modes into vortex splitting or merging
regions. For example at a = 3.0 in figure 2.11(c), the small vortex pair at z JA=0.5
tends to cause the appearance of a new pair in the base flow at z/A = 0.5, while the
single vortices at z/\ = 0.0, 1.0 and 2.0 tend to cause merging of the two vortex
pairs in the base flow on either side of 2/A = 1.5 and this merging effect in return
allows room for the appearance of the new pair. Thus when this eigenfunction is
imposed on the base flow, splitting and merging of vortex pairs are seen to occur at
the same time, but at spanwise locations separated by one wavelength. For general
« and b, we find no strict relation between b and the number of vortices in the most
unstable modes. It depends on both b and . But it is always true that base vortex
pairs with large wavenumbers merge whereas small wavenumbers split. Since base
vortices with a < 1.5 are not likely to occur experimentally because of the low
growth rate of the primary instability at this «, subharmonic splitting and meging
mechanisms will be the dominant feature of splitting and merging of vortex pairs
in channels with either curvature or rotation or both. Since all 2D vortices are
unstable to spanwise perturbations at high enough Re, the splitting and merging of

vortex pairs, as suggested by figure 2.8, 2.10 and 2.11, will continually occur.

Support for our above results can be found from existing flow visualizations in
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channels with either curvature or rotation or both given by various authors (Niver
& Ligrani 1990, Ligrani & Niver 1988, Alfredsson & Persson 1989, Matsson &
Alfredsson 1990) as well as in nonlinear simulations (§2.7). Splitting and merging of
vortex pairs is prevalent in these experiments. When visualized with reflective flakes,
in plan view the splitting of vortex pairs is indicated by two new bright streaks which
represents a vortex pair first appearing between two existing streaks. The existing
streaks are then split (spread) apart by the two new streaks. This is seen for example
in figure 2.6(d), (f) of Alfredsson & Persson (1989) in channels with rotation or in
figure 2.14(d) of Matsson & Alfredsson (1990) in a channel with both curvature and
rotation. The disappearance of vortex pairs is indicated by adjacent bright streaks
which occasionally meige together (cf. figure 2.6e of Alfredsson & Persson 1989,
figure 14d of Matsson & Alfredsson 1990). We suggest that subharmonic splitting
and merging are the mechanisms behind these phenomena. Splitting and merging of
vortex pairs can also be found in flat plate boundary layers with rotation (Masuda
& Matsubara, 1989) and concave wall boundary layer (Bippes, 1978) experiments.
A similar Eckhaus instability mechanism in these flows may cause the splitting and

merging of vortex pairs.

The actual splitting and merging processes observed in experiments are
complicated and nonlinear. Niver & Ligrani (1990) and Ligrani & Niver (1988)
provide observations of these processes in a curved channel (y = 0.979). During the
splitting of vortex pairs, according to their observation, new vortex pairs are formed
first near the concave wall between other pairs, then followed by a readjustmen.t
of spanwise wavenumber. When viewed in the radial-spanwise plane, the new
vortex pairs appear to "pop” out of the concave wall. Ligrani & Niver called them
secondary vortices. This observation is consistent with our result in figure 2.9(c) and
(d). The formation of the secondary vortices observed by Ligrani & Niver (1988)
may thus be due to Eckhaus instability.

Further numerical results show that base vortices which have secondary vortices
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between them are much more unstable to spanwise perturbations. For certain o we
find two base solutions exist, one with secondary vortices and one without. Such
non-uniqueness also occurs in Taylor-Couette flow (e.g. Meyer-Spasche & Keller
1985). Figure 2.12 shows the stream functions of the flows without and with such
secondary vortices in a channel with rotation (Ro = .03, Re = 472.5). The related
Eckhaus growth rate jumps from 0.059 in the absence of the secondary vortices
to 0.108 when the secondary vortices are present. Comparison for other a can be

found in figure 2.13 where there is always a large increase in the Eckhaus growth

rate when secondary vortices are present.

The above arguments are based on linear theory which only applies to the
beginning of splitting and merging processes prior to the onset of nonlinearity. In
experiments, spanwise periodicity is not imposed so that if any two vortex pairs start
to merge with each other earlier or more rapidly than others, neighboring vortex
pairs will move in, causing a decrease in spanwise wavenumber of these neighboring
vortices (readjustment of ), and suppression of their merging. Similarly, if certain
vortex pairs begin to split apart earlier or more rapidly than others, they will
tend to squeeze neighboring vortices and obstruct the splitting of these neighboring
vortex pairs. Thus it is not surprising that in experiments the splitting and merging
processes produce many patterns once the base vortices begin to lose their symmetry
and move toward or away from each other. However, two to three splitting and two
to one merging mechanisms are likely one of the major features of the transition

from vortex flow to turbulence in channels with either curvature or rotation or both.

2.5 Wavenumber selection

Our discussion in §2.4 suggests that the splitting and merging processes are
sensitive to the rate at which local perturbations develop, i.e. to the local

Eckhaus growth rate o. Vortices which yield smaller o produce a region where the



25

perturbations take a longer time to develop, so that splitting or merging processes
occuring elsewhere will suppress the splitting or merging of vortex pairs with low
Eckhaus growth rate. Thus vortices with relatively lower growth rate are more
likely to be observed in experiments. Figure 2.14 shows a plot of the Eckhaus
growth rate o(b = 0.3) vs. a at different Re in the curved channel with v = 0.975.
For Re > 2.2Re., o(a) has a minimum. When contours of o are plotted in a
(a, Re) plane this minimum appears as a valley and we call it the Eckhaus valley.
As Re increases, both sides of the valley become steeper. Based on our above
discussion, observed wavenumbers should be close to this valley. For Re < 2.2Re,,
o varies little with o and here Eckhaus instability does not play a major role in
the wavenumber selection process. Thus when e < 2.2Re., without any other
nonlinear selection mechanism the observed wavenumbers should be close to the
ones with maximum primary growth rate, since these vortices develop most rapidly
from the 1D Poiseuille type flow. Figure 2.15 shows the Eckhaus valley for v = 0.975
in comparison with the wavenumbers observed by Kelleher et al. (1980) in a curved
channel with v = 0.979. Also shown are the wavenumbers with maxirmum primary
growth rate and maximum pressure gradient (Finlay et al. 1988). For Re < 2.2Re,,
the observed wavenumbers are close to the ones with maximum primary growth rate.
For Re > 2.2Re., the observed wavenumbers are close to the Eckhaus valley. This

is consistent with our discussion.

A similar comparison can be found in figure 2.16 at Re = 175 and 472.5 in
channels with rotation. The wavenumbers were measured by Alfredsson & Persson
(1989) at three different downstream locations y/d = 40,80 and 120. In figure
2.16(a) the observed wavenumbers at y/d = 40 are closer to those with maximum
primary growth rate than the Eckhaus valley. As the downstream distance increases
to 80 and 120, the observed wavenumbers become much closer to the Eckhaus
valley. This suggests that near the entrance of the channel where the flow is still

developing from 1D Poiseuille type flow to 2D vortices, the primary instability
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plays an important role in wavenumber selection process. Once the 27 vortices
are more fully developed, the Eckhaus instability sets in and the wavenumbers of
the vortices are selected by the Eckhaus valley. This is particularly noticeable
for Ro > 0.05 (Re/Re. > 2.566) in figure 2.16(a), where the Eckhaus valley and
observed wavenumbers diverge significantly from the curve of maximum primary
growth rate.

In channels with rotation Ro < 0.23, the critical Reynolds number Re. decreases
as the rotation number Ro increases (Alfredsson & Persson 1989). So for a given Re,
Re/Re. increases as Ro increases. Our results indicate the Eckhaus valley becomes
deeper and narrower with increasing Re/Re., making it a more effective wavenumber
selection mechanism at higher Re/Re.. Figure 2.16(a) indeed shows that the
effect of the Eckhaus instability on wavenumber selection becorries more obvious as
Re/Re. increases. Figure 2.16(b) shows that at high Re/Re. (3.37 < Re/Re. < 6.3
in figure 2.16b) the Eckhaus valley provides a much better prediction for the observed
wavenumber than the primary instability.

Similar results are found in channels with both curvature and rotation. Figure
2.17 shows a plot of the maximum Eckhaus growth rate vs. a at different fs in
the curved channel with 7 = 0.975 and Re = 180. As |Roj increases in figure 2.17,
the slopes of the Eckhaus valley become steeper. Increasing |Rol is thus wmilar
to increasing Re in curved -hannels in that both cause an increase in the slope of
the side of the Eckhaus valley. Figure 2.18 shows the corresponding Eckhaus valley
and the wavenumbers which have the maximurm primary growth rate. Matsson &
Alfredsson (1990} provide experimental flow visualizations of vortices in channels
with both curvature and rotation but the wavenumbers of the vortices are not

available in their publication, so no comparison is made here.

Matsson & Alfredsson (1990) observe a range of Ro where rotation opposes
curvature and restabilizes the flow to a 1D state. When Ro = 0 at Re = 180,
they observe 2D vortices. When Ro decreases to —0.015, they observe a complete
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cancellation of vortices by rotation. In our numerical computation, we cannot obtain
any steady 2D vortices near this parameter range. As Ro decreases further, 2D

vortices begin to develop again in line with Matsson & Alfredsson’s results.

At sufficiently high Re/Re. and at locations far enough dowmstream from
the inlet, 2D vortices in curved and/or rotating channels lose their stability to
streamwise perturbations and develop into three-dimensional wavy vortices (Finlay
et al. 1988, Finlay 1990). The spanwise wavenumber selection process is then
no longer just determined by the Eckhaus instability. For example in the curved
channel with v = 0.975, 2D vortices first lose their stability to streamwise
perturbations at Re’. = 1.2Re. and o/, = 2.2, developing into undulating wavy
vortices (Finlay et al. 1988) and calculations by us show at Re”. = 1.92Re. and
o’ = 2.58, they develop into twisting vortices (other values of o require larger Re
for wavy vortices to develop). Little is known about the stability of 3D vortices in
channels with either curvature or rotation or both. The effect of the wavy instability
on wavenumber selection is unknown. In their numerical simulations, Finlay et al.

(1988) reported that streamwise waviness delayed the onset of vortex doubling to
higher Re.

Competition between Eckhaus instability and wavy instability will be dominated
by wavy instability when the corresponding growth rates of Eckhaus instability are
much less than those of the wavy instability. For example, in figure 2.16(a), the
ratio of the average Eckhaus growth rate to the wavy growth rate is about 0.7.
Here good agreement is found between the observed wavenumbers and the Eckhaus
valley. Thus, when the Eckhaus growth rate is not that much less than that of
the wavy instability, it appears that splitting and merging occur before the vortices
develop into 3D vortices and the Eckhaus instability plays an important role in
wavenumber selection. In figure 2.16(b) this ratio is 0.2, much smaller than in figure
2.16(a). The difference between the Eckhaus valley and the observed wavenumbers

suggests that there is som “flect due to the three-dimensionality of the vortices.
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However, little can be said on this issue without performing a stability analysis of

3D wavy voriex flow.

2.6 Recurrent splitting and merging

The repetitive appearance of splitting and merging was first reported by Ligrani
& Niver (1988) in a curved channel (v = 0.979). It only occurred at certain Re
(Re = 2.03Re. and 2.14Re.). The flow visualization results obtained by Alfredsson
& Persson (1989) in channels with rotation (cf. their figure 6e) and by Matsson &
Alfredsson (1990) in channels with both curvature and rotation (cf. their figure 14d)
suggest that such a phenomenon also exists in rotating or curved-rotating channels.
For example in a curved-rotating channel at Re = 180,7 = 0.975, Ro = —0.025
(Rgure 14d of Matsson & Alfredsson 1990), we can see that a short time after
two vortex pairs split apart into three pairs, two of these three pairs merge back
into one and then split again with the other one into three pairs. The mechanism
behind this is still the subharmonic two to one merging and two to three splitting.
Our discussion in §2.4 indicates that when the flows resulting from splitting or
merging have the same Eckhaus growth rate as before the split or merge, the
repetitive appearance of splitting and merging will occur. This may happen in
two cases: a) where the Eckhaus valley is very flat and b) when the wavenumbers
of the flows resulting from splitting and merging alternate between opposite sides
of the Eckhaus valley where the Eckhaus growth rates are nearly the same. It is
difficult to predict when the second case will happen. Compared with the first
case, the conditions required for the second case are much more restrictive, so the
chance of it being observed is considerably less than case @). In the first case, the
Eckhaus growth rate is approximately the same for any vortex pair, so no vortex
wavenumber is significantly more stable than any other. There is thus a good

chance for the recurrent appearance of splitting and merging. In the curved channel
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with ~ = 0.975, this range is 1.7 < Re/Re. < 1.9 (figure 2.14). Ligrani & Niver
observed repetitive splitting and merging when close to this region. For Matsson &
Alfredsson’s case, the corresponding Eckhaus growth rate is shown in figure 2.17(a).
In the range —0.025 < Ro < —0.033, the Eckhaus growth rate curve is relatively
flat near its minimum value. Repetitive splitting and merging thus mostly appears

to occur in parameter regimes where the Eckhaus valley is relatively flat.

2.7 Nonlinear vortex splitting and merging

The results on splitting and merging given in §2.4, 2.5 and 2.6 are based on linear
stability theory. Nonlinearity sets in once a splitting or merging event develops past
the initial linear stage. In order to study the nonlinear aspect of the problem and
how it affects the validity of our linear theory results, we use the Galerkin spectral
numerical method of Moser, Moin & Leonard (1983) to simulate the axisymmetric,
time-dependent, incompressible Naver-Stokes equations in a curved channel. The
code is a modification of the one used to study wavy Taylor vortices by Moser et
al. (1983), wavy Dean vortices by Finlay et al. (1988), wavy vortices in rotating
channel flow by Finlay (1990) and to perform a direct simulation of turbulence
in the curved channel (Moser & Moin 1984, 1987). Periodic boundary conditions
are used in the spanwise direction. We will discuss two simulations. The first of
these demonstrates the nonlinear details of splitting and merging, while the second

demonstirates wavelength selection due to Eckhaus instability.

According to the linear stability analysis of §2.4, the spanwise wavenumber of the
most unstable disturbance is a/2 (i.e. b = 0.5), where « is the spanwise wavenumber
of base flow. In our first simulation, the spanwise computational domain is chosen
to initially include two complete vortex pairs. Small, two-dimensional rzndom
disturbances (< 0.1%U) are used to perturb the initial 2D vortex flow. The solution

progresses in time with constant mass flux imposed. The energies in the highest
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modes are monitored to insure that adequate resolution is achieved. The simulation
parameters are Re = 1.776 Re; and v = 0.975. The wavenumber of the initial

vortices is o = 2.0. At these parameters, we use 40 spanwise Fourier modes and 32

Chebyshev polynomials in the radial direction.

Figure 2.19 shows the flow velocity projected onto (r,z) plane at different time
steps. The initial conditions for the simulation are shown in figure 2.19(a). The
centers of the initial two pairs are at z/\ = 0.5 and 1.5. At ¢ = 5700d/2U in figure
2.19(b), a small new vortex pair has begun to form near z/A = 0.0 (and z/\ = 2.0).
The original pairs are squeezcd toward z/A = 1.0. During the early stage of the
simulation when the disturhances are very small, the temporal growth rate of the
disturbances is 0.0079, compared to 0.0080 for the most unstable mode from linear
stability analysis. This shows that the most unstable eigenfunction from the linear
theory is indeed the dominant unstable disturbance (and also further verifies our
linear stability code). The appearance of the new pair of vortices in figure 2.19(b) is
associated with a splitting event and is caused by the growth of the most unstable
eigenfunction from the random initial disturbances. The flow patterns obtained in
the nonlinear simulation up to this time are very similar to those obtained from the
linear stability analysis by imposing the most unstable eigenfunction on the base
flow, as depicted in figure 2.9(c) and (d). When ¢t = 6200d/2U (figure 2.19¢), the
new pair is well developed and the computational box is filled with three strong
pairs. At the same time, a merging process of the two original pairs has begun.
This can be seen more clearly in figure 2.19(d). The merging process is similar to
that depicted by linear stability analysis in figure 2.10(c): two neighboring vortices
of the two original vortex pairs become weaker while the other two vortices become
stronger. By the time t = 8450d/2U in figure 2.19(e), two vortices have completely
disappeared and the two original vortex pairs have merged into one pair. The new
pair of vortices that appeared due to splitting has adjusted itself so that the velocity

field of the flow has returned exactly to its original pattern, but with a spanwise
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shift of half a wavelength. The above splitting and merging processes continue
periodically in time. Compared with the predictions from linear theory in figure 2.9
and 2.10, the similarity is striking. The simultaneous splitting and merging eflects
of the most unstable eigenfunction discussed in §2.4 are demonstrated clearly in
figure 2.19. When splitting occurs, a new pair is always generated between two

base pairs. When merging occurs, two base pairs merge into one pair.

Outside the Eckhaus stable region, all wavenumbers are unstable. However, our
discussions in §2.5 indicate that vortices with wavenumber in the Eckhaus valley
are the least unstable to splitting and merging and are likely to be observed more
often in experiments. In order to study the validity of this result in the presence
of nonlinear splitting and merging processes and the interactions between vortices
with different wavenumbers, we select the aspect ratio of our computational box in
our second simulation to be 37 : 1. Periodic boundary conditions are again imposed
in the spanwise direction, but now over a spanwise extent three times larger than
in the first simulation. Since an integer number of pairs of vortices must appear
in the simulation region, the average wavenumber of the vortices is restricted to
n/3, where n is an integer. We use 96 spanwise Fourier modes and 16 Chebyshev

polynomials (in the radial direction) in this simulation.

We start the simulation using curved channel Poiseuille flow with low amplitude
random noise {< 0.1%U) superimposed and use Re = 2.2Re. in a curved channel
having v = 0.975. Figure 2.20 shows the time development of the pressure gradient
parameter Ap, defined as (Finlay et al. 1988)

13'.6_?‘ —
Ap= 28 ;99 5P
39

gl

(2.8)

where —(l/r)%g is the streamwise pressure gradient of curved channel Poiseuille
flow and —(1/ 'r)z”;%T is the streamwise pressure gradient of the vortex flow averaged

over the computational box.

After t = 500d/2U, finite amplitude 2D vortices develop rapidly. In figure 2.20,
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the corresponding Ap increases dramatically. Figure 2.21(a) shows contours of the
Stokes stream function at ¢ = 650d/2U. Excluding the three pairs near the center of
the box where a splitting event is underway, the average wavenumber of the vortices
at this time is 2.79. This is very close to the wavenumber o = 2.82 which has the
maximum primary instability growth rate (see figure 2.15). This demonstrates that
during the early stage of the development of vortex flow, the primary instability

does play an important role in wavenumber selection process, as suggested in §2.5.

As the solution proceeds in time, the flow goes through a sequence of splitting
and merging processes and there is a decrease in the average wavenumber of the
vortices until ¢ = 1300d/2U. For ¢t > 1300d/2U, the wavenumber of the vortices
remains near the Eckhaus valley, which is rather flat and lies between o = 2.1
and a = 2.35 (see figure 2.14). But it continues to fluctuate due to splitting and
merging events. The time record of Ap is useful for determining when splitting
and merging events occur, since according to Finlay et al. (1988), for a < 3.7
at fle = 2.2Re. and v = 0.975, the smaller « is, the smaller Ap is. Examining
Ap(t) and the velocity field, we find that whenever Ap decreases, merging processes
are underway, but whenever Ap increases, there are splitting processes dominating
the flow. Figure 2.21(b — g) show a typical cycle of the flow development from
t = 1850d/2U to 2099d/2U. In figure 2.21(b), the average wavenumber of the first 3
vortex pairs from the left side of the box is 2.37, while the rest of the vortices have a
wavenumber of 2.19, which is in the Eckhaus valley. There is a merging process just
underway between the first two pairs from the left. This merging process becomes
clearer in figure 2.21(c). For the rest of the vortices, there is a very small decrease
in wavenumber from 2.19 to 2.13. When ¢t = 1978d/2U in figure 2.21(d), one vortex
pair has completely disappeared. The pressure gradient Ap reaches a local minimum
(cf. figure 2.20).

In figure 2.21(c), there is a new pair beginning to appear near the left end of the
box. This becomes clearer in figure 2.21(d) and 21(e). Another new pair also begins
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to develop near the center of the box where the vortices have smaller a. The rest of
vortices remain essentially unchanged. When t = 2069d/2U in figure 2.21(f), the
new pair near the left side is almost fully developed. The other one near the center
continues to grow. The rest of vortices have been squeezed somewhat and there is
an increase in their wavenumbers (from 2.17 in figure 2.21d to 2.57 in figure 2.21f).
It can be seen the second and third pairs from the left in figure 2.21(f) have begun
a merging process. In figure 2.21(g), the new pair near the center has completed its
development. At this time, the wavenumber is nearly the same for all vortices and
the average wavenumber is 2.67. This high wavenumber causes a local maximum
in Ap. The merging of the second and third pairs from the left proceeds. As these
two pairs centinue to merge, the other vortices experience an adjustment in their
wavenumbers which results in smaller wavenumbers. From figure 2.21 and similar
results at other times in the simulation, we find that when the wavenumber of several
pairs of neighboring vortices is close to the Eckhaus valley, the wavenumber of these
pairs remains nearly constant for a long time and their adjustment due to splitting
and merging events is very weak, as is the case in figure 2.21(b — d). But when the
wavenumber of two or more neighboring pairs is not close to Eckhaus valley, there

is a rapid and large change in wavenumber.

The simulation results also show that when the average wavenumber of the
vortices is near the Eckhaus valley, the development of splitting and merging is
relatively slow. When the wavenumbers of vortices are far from the Eckhau_s
valley, the pressure gradient experiences rapid and large fluctuations as a result
of simultaneous multiple splitting or merging processes. A vortex flow with
wavenumbers far from the Eckhaus valley does not last long. Thus, when averaged

on time, the average wavenumber is close to the Eckhaus valley.

Figure 2.21 also demonstrates repetitive splitting and merging. In figure
2.21(b — g), the first 2 pairs from the left merge, and then this is followed by
a splitting event with the neighboring vortex pair on the left side. The above
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simulation results are consistent with our discussion in §2.5 and §2.6. For fully
developed two-dimensional vortex flow, Eckhaus instability plays an important role

in the wavelength selection process and splitting and merging of vortices occur

continuously.

2.8 Conclusion

Eckhaus instability was examined for the flow in channels with either curvature
or rotation or both, using linear stability theory and spectral methods. The
results explain several experimental phenomena. Curvature and rotation both cause
similar instabilities with respect to spanwise perturbations in these geometries. The
Eckhaus stable region was found to be a small closed region, different from any
other periodic flow known to the author. The stability criterion based on amplitude
expansion given by Eckhaus (1965) does not always apply, even in the region close
to Re.. Outside the Eckhaus stable region, splitting and merging of vortex pairs
occur and the spanwise wavenumbers are selected by the Eckhaus instability. Two
pairs of vortices are split apart by a new pair to yield three pairs if the wavenumber
of the vortices is smalil. If instead the wavenumber is large, the two pairs merge into
one pair. Most experimentally observed wavenumbers are the ones which are least
unstable to spanwise perturbations. At certain Re all vortices are equally unstable
to spanwise perturbations and repetitive splitting and merging of vortex pairs occur.
The wavenumber selection process as the flow proceeds downstream can be described
as follows. Near the entrance of the channel, the flow is one-dimensional Poiseuille
type flow. Further downstream, vortices with spanwise wavenumber near those
with maximum primary growth rate develop first. At these locations, the primary
instability plays an important role in the wavenumber selection process. Further
downstream, as the flow approaches fully developed two-dimensional vortex flow,

the Eckhaus instability or wavy instability sets in, depending on which has dominant
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growth rate. When Re is not too high, the spanwise wavenumber of the flow lies
in the Eckhaus valley, i.e. the region of low Eckhaus growth rate. When Re is

very high, the stability of three-dimensional vortices must be examined to predict

wavenumber selection.



FIGURE 2.1. The geometry of curved and/or rotating channel is shown. The flow
is periodic in z.
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FIGURE 2.2. Eckhaus stability boundaries are shown for curved and/or rotating

channel flow.The primary stability boundary is included for reference. (a) shown
for curved channels are Eckhaus: , v = 0.975 (Re. = 114.26, . = 1.98);

-, v = 07 (Re, = 3583, a. = 2.07); and primary: —— , v = 0.975;
-------- , v = 0.7. (b) shown for rotating channels are Eckhaus: —— , Ro = 0.005
(Re. = 198.95, a. = 2.01); ----, Ro = 0.25 (Re. = 44.30,a, = 2.46); and
primary: —-— , Ro = 0.005; ------- , Ro = 0.25. (c) shown for curved-rotating

channels are Eckhaus:

, ¥ = 0.975, Ro = —0.0125 (Re, = 275.4, a; = 1.96);
-—==, v = 0.975,Ro = —0.02 (Re, = 195.0,a, = 2.16); and primary: -——
v = 0.975, Ro = —0.0125; ------- , ¥ =0.975, Ro = —0.02.
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FIGURE 2.3. Eckhaus growth rate o as a function of spanwise perturbation

wavenumber b in a curved channel (y = 0.975) as the spanwise wavenumber

of 2D vortices approaches the left side of the Eckhaus boundary (oues:) at (a)

Re = 1.07Re. and (b) Re = 1.225Re.. In (a): oyt = 1.8; o, a=1.7; o ,a = 1.75;

A,a=18 +,a=1.85 In(b): awen=2355; o,a=16; o, a=1.8; A,
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FIGURE 2.4. Eckhaus eigenvalue, o + 7 w, as a function of spanwise perturbation
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FIGURE 2.7. Taylor vortices (a), their most unstable mode (b), and Taylor voriices

+ the most unstable mode (c¢) projecied onto the (r,z) plane at Re = 2.0fe,,

v = 0.75 and a = 1.17, outside the left side of the Eckhaus boundary (au.s. = 1.188);

In (c), the kinetic energy of the most unstable mode is 1.4% of the base flow’s kinetic

energy. b = 0.5 for the most unstable mode.
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FIGURE 2.12. Streamfunctions of 2D vortices in a rotating channel (Ro = 0.03) at
Re = 472.5, a = 2.0: (a) without secondary vortices; (b) with secondary vortices.
The Eckhaus growth rates are (a) o = 0.059 and (b) ¢ = 0.108.
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FIGURE 2.13. Comparison of the maximum Eckhaus growth rate o of 2D vortices
with secondary vortices ( o ) and without secondary vortices ( o ) at Re = 472.5
in a rotating channel (Ro = 0.03) for 1.75 < a < 5.0; b = 0.5 yields the maximum
Eckhaus growth rate for each a.
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FIGURE 2.14. Maximum Eckhaus growth rate ¢ as a function of the spanwise
wavenumber a of 2D vortices in a curved channel (y = 0.975) at Re: e,

Re = 1.5Re;; x, Re = 1.7Re.; o, Re = 1.9Re;; (O, Re = 2.2Re.; o, Re = 2.5Re;
o, Re = 2.8Re.; &, Re = 3.0Re;; *, Re =3.25Re.; + , Re =3.5Re..
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FIGURE 2.15. Eckhaus valley { o ), the curves of maximum primary growth rate
( o ) and maximum pressure gradient ( + ) of Finlay et al. (1988) in a curved
channel with v = 0.975, and the wavenumbers of 2D vortices observed by Kelleher

et al. (1980} ( x) in v = 0.979. The primary stability boundary (------- ) of Finlay
et al. is included for reference.
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FIGURE 2.16. Eckhaus valley ( o ), the curve of maximum primary growth rate
(e ) and the observed wavenumbers of 2D vortices of Alfredsson & Persson
(1989) in a rotating channel at different downstream locations y/d: o, y/d=40; x,
y/d=80; + , y/d=120. In (a), Re = 175; in (b), Re = 472.5.
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FIGURE 2.17. Maximum Eckhaus growth rate o as a function of the spanwise
wavenumber a of 2D vortices in a curved-rotating channel (v = 0.975) at Re = 180.
In (@), Ro < 0: o, Ro = —-0.025 A, Ro = —0.035, +, Ro = —0.045; o,
Ro = —0.055; o, Ro= —0.11. In (b), Ro > 0: =, Ro=0.015; A, Ro = 0.025;
+ , Ro =0.035; o, Ro=0.045; o, Ro = 0.055.
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FIGURE 2.18. Eckhaus valley ( o) and the curve of maximum primary growth rate
( o) for a curved-rotating channel (v = 0.975) at Re = 180.
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FIGURE 2.19. Nonlinear splitting and merging of vortex pairs at Re

1.776 Re.,7 = 0.975. The flow is projected onto the (r,z)-plane at time (a) 0,
(b) 5700d/2T, (c) 6200d/2U, (d) 6450d/2U and (e) 8450d/2U. The vortices in a)
and e) have a = 2.0.



56

02
0.1 \/\—\,\/\/
*\,f\,\r/\n\//\\»JN\
3 oo-
0.1 - /_V
02 T L T T T
0 500 1000 1500 2000 2500 3000

t (d/20)

FIGURE 2.20. The pressure gradient parameter Ap as a function of time at
Re = 2.2Re. in a curved channel v = 0.975 with aspect ratio I’ = 37 : 1 and

periodic spanwise boundary conditions.
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FIGURE 2.21. Contours of Stokes stream function for curved channel flow at
Re = 2.2Re., v = 0.975 are shown in the (r, z)-plane at time (a) 650d/2U, (b)
1850d/2U, (c) 1949d/2U, (d) 19784/2U, (e) 2009d/2U, (f) 2069d/2U and (g)
2099d/2U. The aspect ratio is ' = 3x : 1, with periodic spanwise boundary

conditions.
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CHAPTER 3

Spanwise secondary instability of
spatially developing vortices.
Part 1. Theory and application

to Dean vortices

3.1 Introduction

ICounter-rotating streamwise vortices caused by streamwise curvature have
attracted many researchers’ attention, and can be found in many applications.
Such vortices play an important role in the transition toward turbulence. Dean
vortices found in curved channels, and Gértler vortices near a concave surface are

two classical examples of such vortices.
In curved channels, Dean vortices significantly change the flow pattern, boundary

layer structure, and the transition to turbulence. In the growing boundary layer

on a concave wall with small curvature, Gortler vortices provide disturbances for

! A version of this chapter has been submitted to J. Fluid Mech. for publication.
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three dimensional Tollmien-Schlichting waves and thus promote early transition.
When the wall curvature is strong, Gortler vortices develop significantly faster than
Tollmien-Schlichting waves. The boundary layer is then dominated by strecamwise
counter-rotating vortices and the transition toward turbulence is characterized by
the breakdown of these vortices. A better understanding of these vortices may
lead to a better understanding of many flows including the flows near the concave
surfaces of t1irbine blades and aerofoils. Because of the analogies between the effects
of curvature, rotation and buoyancy, the study of Dean and Gortler vortices may
also give some insight into the effects of rotation and buoyancy on transitions in the
flow on a rotating plate and inside a rotating channel. In addition, recent attention
has been paid to the similarity between Gortler vortices and the counter-rotating
streamwise vortices found in most transitional and turbulent wall bounded shear
flows (cf. Swearingen & Blackwelder 1987 for a review). Some studies suggest
that these vortices may be due to a Gortler instability resulting from strecamwise
curvature (Cantwell, Coles & Dimotakies, 1978). Thus, Gortler vortices offer a
simple model for studying the dynamnics which govern the vortices in transitional
and turbulent wall bounded shear layers.

In this study, we use a spectral-element numerical method to study the instability
of spatially developing nonlinear streamwise vortices with respect to spanwise
perturbations. The effect of this instability on wavenumber selection and nonlinear
development of these vortices is examined. As a case study, we present our results on
Dean vortices in this chapter. Results on Gortler vortices are presented in the next
chapter as Part 2 of this study. Since some parts of the theory and numerical codes
developed in this study can only be justified and verified in the Gortler problem,

necessary information about Gortler vortices is introduced here.

The flow geometries for Dean vortices and Gortler vortices are shown in figures
3.1 and 3.2. The streamwise and spanwise directions of the flow are given by 6 and

z respectively. For Dean vortices the channel spacing is d = 7, — ;. The Reynolds
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number is Re = Ud/2v, where U is the mean (bulk) st reamwise velocity. The radius
ratio of the two walls is v = 7, /r,, which is 2 measure of channel curvature. The
spanwise dimensionless wavenumber of the vortices is defined as @ = wd/A, where

A is the dimensional wavelength of the vortices.

For Gortler vortices, we will restrict ourselves to the case of constant wall
curvature, i.e. the radius of the wall R is constant. The freestream velocity is

Us- The effect of the wall curvature is measured by the Gértler number

1
2
G — Ussbm (5,,,)

v R

where §,, is the momentum thickness of a Blasius boundary layer at the downstream
distance z = R# from the leading edge. The wall curvature can also be measured
by the ratio vy = (R — 6.99)/R, where .99 is the Blasius boundary layer thickness at

ug = 0.99U. In this study, the wavelength of the Gortler vortices is measured by

U A\?
A== (E)

where A is the dimensional wavelength in the spanwise direction. Both A and A are

the dimensionless parameter

constant in the streamwise direction.

Many studies have been done both experimentally and theoretically toward
understanding the primary and secondary instabilities and nonlinear development
of Dean vortices. Reviews can be found in Finlay, Keller & Ferziger (1988), Ligrani
& Niver (1988) and Matsson & Alfredsson (1990). Most theoretical efforts are based
on temporal theories. Finlay et al. (1988) examined theoretically and numerically
the linear and nonlinear aspects of secondary instabilities with respect to streamwise
perturbations using temporal theories and three-dimensional nurnerical simulations.
Their results show that streamwise perturbations cause Dean vortices to develop
travelling waves. Guo & Finlay (1991) studied the secondary instability with respect
to spanwise perturbation using a temporal theory. They find that the stability
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boundary is a closed loop in an (Re, «) plane. Outside the stability boundary, the
most unstable wavenumber is usually half that of the base Dean vortices. The
nonlinear development of these most unstable spanwise perturbations causes two
pairs of Dean vortices to split into three pairs if the wavenumbers of the vortices
are small and to merge into one pair if the wavenumbers are large. We referred
to this type of secondary instability as Eckhaus instability to credit the first work
of this kind done by Eckhaus (1965). The instability studied by Eckhaus is an
instability with respect to long wavelength perturbations. However, the secondary
instability studied by Guo & Finlay (1991) is more general, and in most cases is
of short wavelength nature. This has led to some confusion. In order to avoid this
confusion, we will refer to the secondary instability with respect to general spanwise

perturbations as ”spanwise secondary instability” (rather than Eckhaus instability)

in this study.

One drawback of temporal theories is the difficulty in comparing with spatially
developing experimental observations. Though the instabilities found by temporal
thecries (e.g. Finlay et al. 1988, Yang & Kim 1991, Guo & Finlay 1991, Ligrani
et al. 1992) have been observed in experiments, many of the rich features revealed
experimentally by Ligrani & Niver (1988), Alfredsson & Persson (1989), Matsson
& Alfredsson (1990, 1992) and Ligrani et al. (1992) are still unaccounted for,
particularly the spatial aspects of those instabilities. To overcome this drawback,
Matsson & Alfredsson (1990) studied the spatial primary instability. The spatial
development of Dean vortices and their secondary instabilities were studied b);
Bottaro, Matsson & Alfredsson (1991) using a time-dependent three-dimensional
finite-volume code. But due to the high cost of three-dimensional simulations, the
results they presented were limited. The details of the spatial evolution of the

primary instabilities and secondary instabilities are still not clear.

So far, the secondary instability of spatially developing streamwise vortices with

respect to spanwise disturbances has not been addressed in publications. In this
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study, applying the concept of parabolization to spatial instability theory and three-
dimensional numerical simulation, we develop a numerical method to study this
type of instability. Because Dean vortices are less controversial due to their parallel
nature, they are chosen to be our first case study. In this paper, we study the
spatial development of Dean vortices and their secondary instability with respect
to spanwise perturbations. In addtion, we examine the roles of primary instability
and spanwise secondary instability in the wavenumber selection process and their

implications on the nonlinear evolution of Dean vortices.

In §3.2 we describe the theories and numerical approaches developed in this
study. Code verifications are given in §3.3. We present in §3.4 our results
on the primary instability and nonlinear evolution of spatially developing Dean
vortices. The linear secondary instability of nonlinear Dean vortices with respect
spanwise perturbations is studied in §3.5 and §3.6. The nonlinear aspect of spanwise
secondary instability is presented in §3.7 and the splitting and merging of vortices
caused by this type of secondary instability and their effects on the wavenumber

selection are discussed in §3.8. Concluding remarks are given in §3.9.

3.2 Theory and numerical methods

For an incompressible flow in which the streamwise velocity is dominant and
has slow streamwise variation compared with cross-stream variation, the upstream
influence of disturbances is negligible. The Navier-Stokes equations then have a
parabolic nature in the streamwise direction. A disturbance generated locally
is swept downstream from the source and only affects the downstream flow. If
the disturbance grows downstream, then in the context of stability theory, these
statements imply the flow is locally convectively unstable (Huerre & Monkewitz,
1990). Though the stability of a flow requires a rigorous study in order to classify

it, we believe that if the use of parabolization can be justified, the stability of the
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flow is locally convective.

In many applications, the developing vortices such as Dean and Gortler vortices
are ciused by relatively mild curvature (the ratio 4 > 0.9). For such developing
vortices, e length scales in the streamwise direction are much longer than those in
the cross-stream directions, and the streamwise velocity component is much larger
than in any other direction, even when the vortices become nonlinear (but before
the cnset of short wavelength wavy types of secondary instabilities such as twisting
waves found by Finlay et al. 1988). Thus the use of parabolization is justified for
Dean and Gortler vortices. The primary instabilities which cause these two types

of vortices can be considered as locally convective instabilities.

The numerical simulations from both Guo & Finlay (1991) and this study show
that when splitting or merging of Dean vortices and Gortler vortices occurs, the flows
can still be treated as parabolic because of slow streamwise variations and dominant
streamwise velocities. Thus the secondary instability of Dean and Gortler vortices
with respect to spanwise perturbations, which causes the splitting an:d merging of
vortices, can aiso be considered as a locally couvective instability.

It has been shown by numerous theoretical studies that the primary insiabilities
associated with Dean and Gortler vortices are nonoscillatory. Many experimental
observations also indicate that before the onset of any secondary instabilities,
Dean and Gértler vortices are basically time-independent, spatially developing

flows. Thus the primary instabilities of these two vortices are nonoscillatory spatial

instabilities.

There are some differences in the experimental observations of the spanwise
secondary instability which causes the splitting and merging of Dean vortices in
curved channel flows. While Matsson & Alfredsson (1992) favour the steady spatial
development of splitting and merging of vortices, Ligrani’s experiments (1991)

showed significant unsteadiness. Theoretically, there are many similarities between
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primary instability and spanwise secondary instability. Using temporal theories,
Guo & Finlay (1991) show that this type of secondary instability of fully developed
Dean vortices is nonoscillatory. The difference between these two instabilities is
that the base flow is one dimensional curved channel Poiseuille flow for primary
instability and two dimensional fully developed Dean vortices for spanwise secondary
instability. A similar situation can be found in Taylor-Couette flow (Riecke &
Paap, 1986). Because of the similarity between primary and spanwise secondary
instabilities, we believe that spanwise secondary instability of Dean vortices is a
nonoscillatory spatial instability. The support for this conclusion can also be found
from the experimental measurements done by Matsson & Alfredsson (1992) and
Ligrani et al. (1992). The time-averaged flow patterns from both sources reveal
the spatial developments of splitting and merging of vortices. If the splitting and
merging of vortices are time-dependent, it is likely that the time-averaged flow
patterns would not show any particular pattern. The unsteadiness observed by
Ligrani (1991) was probably due to time-dependent perturbations at the entrance

of the channel.

For Gortler vortices, no attention has been given to spanwise secondary
instability either theoretically or experimentally. Whether this instability is time-
dependent or not is unknown. Qur results show it is not oscillatory. From our
experience with Dean vortices and Taylor vortices (Guo & Finlay, 1991), we do not
see any reason why it should be time-dependent. In this study, we will assume this
instabilitv is a non-oscillatory spatial instzability. Even if it is time-dependent, the
spatial aspect of this instability is still worth studying.

To summarize, the primary instabilities of both Dean and Gortler vortices can
be treated as nonoscillatory spatial instabilities of locally convective nature\.r_) This
allows us to represent developing Dean and Gértler vortices using the steady, three-

dimensional, parabolized Navier-Stokes equations. It is also likely that the spanwise

sccondary instability of Dean and Gortler vortices is a nonoscillatory instability of
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locally convective nature. Thus the spatial aspect of this instability can be studied

by steady parabolized methods.

3.2.1 Three-dimensional parabotized Navier-Stokes equations and
spectral-element methods

For steady flow with slow streamwise variation, the streamwise diffusion terms
can be neglected and the pressure influence on the streamwise momentum equation
can be considered as invariant in the cross-stream plane. With the above
simplifications, the system of governing equations is non-elliptic in the streamwise
direction and a marching strategy can be used. This version of the parabolized
Navier-Stokes equations and its variations have been explored extensively by many
researcicis (cf. Fletcher 1988 for a review). Since the geometries we study here

have radius ratio v > 0.9, this version of the parabolized Navier-Stokes cquations

can be applied safely.

For simplicity, a Cartesian coordinate system is used to demonstrate the
formulation of our numerical methods. Choosing z as the streamwise direction
and z as the spanwise direction, the steady parabolized Navic “~g equations

can be written in the streamwise direction as

ou, @ o _ 0p 1 [0%*ur: o u,
2u:"6‘1‘:" +%(uyuz)+5;(uzuz)—fz—— 3. T Re (-5?/—2'4' 572 ) 3.1)
and in the cross-streamn plane (y, z) as
o g 0 _ Op 1 (8%, | O%uy
(,Tz(u,uy) + 5y—(u.yuy) + gz(u,uy) - fy= —5; + Tie ( 5y° + 572
0 o a Jp 1 (6%u, azuz) .
— - = —fi=—mt — | =+ — 3.2
a:r(u.‘ru'Z) + 6y(uyu2) + az(uzuz) f z + Re (6112 + 622 ( )

The continuity equation is

5y 0z Oz (3-3)
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In equation (3.1), p is the pressure averaged across the (y, z) plane. For channel
flows, the velocity u is non-dimensionalized by the mean streamwise velocity /. For
growing boundary layers, u is non-dimensionalized by the free stream velocity Ux.
In a (y, z) plane, the equations (3.1-3.3) are elliptic. In the streamwise direction, the
variable = behaves like time ¢ in a two-dimensional Navier-Stokes problem. Non-
slip boundary conditions are used at walls. In the spanwise direction, z, periodic
boundary conditions are used for both Dean and Gortler vortices. In the case of
boundary layer flow on a concave wall, homogeneous Neurnann boundary conditions

are applied in the y direction far away from the wall.

Control volume methods (Patankar & Spalding 1972), finite difference methods
(Rubin et al. 1977) and finite element methods (Baker, 1983) have been used to
solve the equations (3.1-3.3). In this study, a Legen:.re spectral-element method
is used (Renquist, 1988 and Maday & Patera, 1989). The combination of the
high accuracy of spectral methods with the geometry flexibility of finite element
methods makes the spectral-element methods particularly suitable for this study.
For example, in this study the matrix system resulting from the stability analysis
(sce §3.2.2) is complex and full, and a direct solver is needed. The numerical work
associated with a direct solver is proportional to O(K3N¢), where K is the number
of elements and N is the order of polynomials within each element. The numerical
truncation error € of a finite element method decreases algebraically with K but
exponentially with N. For a given ¢, high order methods offer the best choice,.
since by using relatively high order polynomials within each element and relatively
few clements, the problem can be tackled more efficiently. This is the advantage
of spectral-element methods over h—type finite element methods for the s: .bility

problem.

The advantage of spectral-element methods over spectral methods is that to
switch from Dean vortices to Gortler vortices, we only need to modify the boundary

conditions, which requites only minor code changes. This advantage helps us to
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verify the numerical codes developed in this study and gives us confidence in our
results for the Gortler problem. Boundary layers can also be captured casily by

using small elements near the wall. Thus there is no need tc usc a coordinate

transformation.

In a (y, z) plane, the equations (3.1-3.3) are discretized by a Legendre spectral-
element method. In the streamwise direction, a third order Adam-Bashforth scheme
is used for the nonlinear convection terms and force terms, while a backward
Euler scheme is used for the viscous terms. Though (3.1-3.3) are different from
any examples given by Regnqusit (1988) and Maday & Patera (1989), following
the procedures they give and standard variational principles, the discretization of
(3.1-3.3) in a (y, z) plane is straightforward. Within each element, the velocity u
is represented on (N + 1)(N + 1) Gauss-Lobatto/Gauss-Lobatto Legendre nodes
by Legendre Lagrange interpolating polynomials of degree N. The pressure p is
represented on (N — 1)(V — 1) Gauss/Gauss Legendre nodes by Legendre Lagrange
interpolating polynomials of degree (N — 2). The resulting matrix system can be

written in tlie streamwise direction as

o+l _ e 2 .
nU [/ +L 3‘ _ Fz)u—l — _BP;H»I _ _[%EAUL*MJ (34)
{=0

2B7

and in the cross-stream directions as

B;+IU?+I - B;U,n 2 n-{ n+1 n+1 .
Az + Zﬂz(a - )" = —DP! — RCAU (3.5)

The continuity equation is
: BT
Trrn Trn+l __ n+1 n
~DyUy* - DIUIT = & (ur+t - uzp) (3.6)

Equation (3.5) contains two equations, obtained by setting i = y and z. The symbol
UP is the vector consisting of the values of u; at the Gauss-Lobatto/Gauss-Lobatto
nodes at step n; P.n + 1 is the streamwise pressure gradient averaged across the

(y, z) plane at step n+1; P™*! is the vector consisting of the values of the pressure p
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at the Gauss/Gauss nodes at step n+ 1. The symbols A, B and D; are the standard
Laplace matrix, mass matrix {lumped) and gradient matrices; B;" is the lumped
mass matrix of u, on the Gauss-Lobatto/Gauss-Lobatto nodes at step n, and B,
is the mass matrix on the Gauss/Gauss-Lobatto nodes. Ci and F; (i = z,y, 2) are
from the convection and force terms. The coefficient 8; = 23/12, ~16/12 and 5/12
for [ = 0,1 and 2. More details about the discretization of (3.1-3.3) can be found
in Appendix 3.

The following strategies arc used to march the solutions of (3.4-3.6) in the
streamwise direction. The streamwise momentum equation (3.4) is marched first
from step n to step n + 1 to give U,™*'; B,™*' is then calculated from U.™*'. For
the flow on a concave wall, P**! is set to zero. For channel flow, P;*! is found by
forcing the flow rate

Q= / u™*dydz

to be constant. This is done by a steepest descent iterative method. Oace Ut
and B,"t! are known, P+t "' and U,"*! can be solved from the cross-stream
momentum equations (3.5) and the continuity equation (3.6) using a glcbal iterative
Uzawa scheme similar to the one used by Renquist (1988). Due to u =0 at walls,
the popular pressure Poisson equation decoupling approaches (for example Patera,
1984 and Kleiser & Schumann, 1984) are not applicable for (3.2-3.3). Preconditioned
conjucate iterative methods similar to those used by Renquist (1988) are used to

dea! with the resulting linear matrix problems.

Our codes are written in a cylindrical coordinate system. For ease of
implementation, the computational variables for the velocities are chosen to be
O, = ru,, ¢¢ = Tug and ¢, = ru,. The streamwise direction is the azithmuthal
direction. All of the secondary effects caused by the streamwise curvature are
treated as force terms. In order to keep the equivalence between the divergence

matrices in the continuity equation and the transpose of the gradient matrices DT,
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the Navier-Stokes equations are carefully arranged in the streamwise direction as

5906 00 o (éréa) + a ((«’5:459) +2¢r¢o 1 2 90,
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and in the cross-stream directions as
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The continuity equation is

or 0z r o0

3.2.2 Spanwise secondary instability of spatially developing flow

Once the developing Dean vortices and Gortler vortices u® are found from (3.1-

3.3), the stability of u® can be studied by substituti g
u=u’+u

into the Navier-Stokes equations, where u’ is the perturbation. For small spanwise
perturbations, the resulting stability equations can be linearized and u’ can be
written as

u’ = texp (i3z) 3.7

where (3 is the wavenumber and 11 is the complex eigenfunction. In some cases it is

more convenient to use the non-dimensionalized wavenumber b = G/a, where a is
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the wavenumber of the base Hlow u®. The flow pattern of the perturbation is given
by the real part of (3.7).

Assuming that the perturbation u’ has slow streamwise variation, the terins 5‘%
in the stability equations are much smaller than the other terms involving second

derivatives and therefore can be neglected. This gives the parabolized stability

equations. They can be ~ .iiten in the streamwise direction as
8 / o- 1 [Ba, O
2-&- (uxuz) +w, = ‘}—Z-E [a—y + 9% ] (3.8)
2" in the cross-stream directions as
2 /o~ 9 /o~ o 0P 1 [8Pdy | PPuy)
55 (u,uy) + E.‘ (uyu,) +w, = —a -+ 'R'E —a—'y—{ + a2 J
3 / o- 0 / o- _ op .. 1 [8%a, &%,
3 (uzug) + 3z (u,u,) +w, = 32 B + Re | 5y + 522 (3.9)
The continuity equacion is
Jiy ( a AN Ot
B A L= = 1
By 5z + 26) ) 3 (3.10)
where
_ 8 Q~ -~ 0 6 Y 0~ - 0 1 4 . 6&1 2 ~
w, = 55 (uyu‘ + uyu,») + (82 + 13) (u,u. +uzu,~) - e (22@ 52 1,

and i = r,y and 2. The equations (3.8-3.10) deal with steady, spatially evolving
perturbations, and are a specialization of the general parabolized stability equations

explored by Bertolotti, Herbert & Spalart (1990).

The discretization of the stability equations (3.8-3.10) by the spectral-element
method follows that of (3.4-3.6). In the streamwise direction, a third order Adam-
Bashforth scheme is used for the w; terms and a backward Euler scheme for the
rest of the equations. The solutions of (3.8-3.10) are marched in the streamwise
direciion t w.:ther with (3.4-3.6) by first marching the base Aew u® from step n to

s¢p n 41 using the equations (3.4-3.6). Then 42+! is obtzined from (3.8) and p™*!,
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ap*t! and a7*! from (3.9-3.10) using a strategy similar to that of (3.4-3.6). The

matrix systemn for p**! is full and complex, and a direct solver from LINPACK is

used.

Once the perturbation u’ is found, the energy growth rave o of the perturbation

can be calculated by

l
g=(lne"*' —Ine™)—

Azx

where e is the energy of the perturbation defined by
= [ 1w Pdyde.

and ! is the length scw - .-od 0 non-dimensionalize . For Dean vortices, the
ch~nnel half-width, d/2, is used. For Gortler vortices, the streamwise distance x
from the leading edge is used. In cylindrical coordinates, Ax = Af(r, — r;)/2 for
channel flows and Ar = RAS for growing boundary layers. In some cases, the
growth rate o, defined by

l

Iﬂ+ll .

o1 = (In|uz maz — 10Uz’ ]

is also used. For the linear stability equations (3.8-3.10), the absolute energy level

of the perturbation u’ is irrelevant.

There is no need to develop a new code to study the nonlinear aspects of spanwise
secondary instability. Instead, once the most unstable wavenumber 3 is found from
the linear analysis, the nonlinear development of this perturbation can be studied
using the same code that produces the base flow u® by using a computational box
with a larger spanwise length which can hold n pairs of base vortices in (3.1-3.3).
Here n is the minimun: number which makes n x 8/a an integer. Our results show
that the most unstable wavenurnber for spanwise secondary instability in this study
is usually a/2. So only two pairs of vortices need to be included in a comput ~*ional

box in order to study the nonlinear dynamics i spanwise secondary instability.
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In this study, the orders of the polynomials used for each spectral element are
8, 10, or 12. For the simulation and stability analysis of Dean vortices, usually 2 to 4
clements are used in the radial directions, depending on Re. For the simulation and
stability analysis of Gortler vortices, the number of elements in the radial direction
varies from 3 to 6. The computational grid extends to at least 86.g9 normal from
the wall, where 649 is the Blasii:s boundary layer thickness at us = 0.99U. In
the spanwise direction, the number of elements depends on the aspect radio of
the computational box. The minimum is two. Since most computations in this
study were done on our own IBM/RISC 6000 work-stations and our access to these
computers is unlimited, relatively high resolutions are used in most cases. The

results presented here are also tested by using different resolutions.

3.3 Code veiification

Since the nurnerical schemes we use to discretize and solve the parabolized
Navier-Stokes equations (3.1-3.3) and the related stability equations (3.8-3.10) have
never been reported before, proper code verifications are crucial. In this study, two
codes are developed. The "simulation code” simulates the developing flow, while

the "stability code” examines the stability of this flow.

As a first step in insuring that the spectral-element methods in our codes work
properly, we set the streamwise velocity u; = 1 and only consider the cross-
stream momentum equations (3.2) and the continuity equation (3.3). The resulting
eatiations are identical to the unsteady two-dimensional Navier-Stokes equations
for which there are closed form solutions (Kim & Moin, 1985). The code was then

tested against those solutions and found to be correct.



3.3.1 Veirification of simifiaion code for developing flows

For channel flows, we usually start a simulation with the velocity profile for a
straight channel as the initial conditions. The solution reaches a fully developed
state after a certain distance downstream. In order to test the convergence of the
code, artificizi perturbations are also added to the initial conditions in some cases.
For fully developed flow, our simulation code can accurately duplicate the velocity
and pressure of the fully developed nonlinear Dean vortices given by Finlay et al.

(1988) and Guo & Finlay {1991), regardless of what initial conditions are used to

start the simulations.

The simulations of developing D.-:n vortices cannot be verified directly because
the velocity and pressure of the developing Dean vortices depend both on the
initial conditions and the streamwise location and there are no such data available.
However, through the manipulation of initial flow conditions, our nurncrical
resuits can be made to match the data given by Matsson & Alfredsson (1992)
experimentally and by Bottaro et al. (1991) numerically. Another indirect
verification is given by the fact that the streamwise growth of developing Decan
vortices from the simulation code is accurately predicted by the stability code, i.c.
both our codes give the same growth rates for linear Dean vortices (see §3.4). Since
these two codes use different theories and formulations, it is unlikely that both codes

have errors which make them give the same results.

With minor code changes to deal with boundary conditions, the simulation code
can be applied to growing boundary layer problems. The code accurately duplicates
the Blasius velocity profile for the flat platc <Schlichting, 1955). For the concave
boundary layer, the growth of developing Gértler vortices is well predicted by *c
stability code. Spatially developing nonlinear Gértler vortices are a topic of .
recent papers. The most comprehensive experimental measurements are giv.:

Swearingen & Blackweld~r (1987). The most detailed numerical simulation is giv.
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by Lee & Liu (1592) by solving an equation set similar to (3.1-3.3) using a control
volurme method. The results obtained by our simulation code are in good agreement
with those given by Swearingen & Blackwelder (1987) and Lee & Liu (1992). Since
the detailed structure of Gortler vortices depends on the initial conditions and
there is no fully deveioped state (unlike Dean vortices), we choose not to present the
simulations of spatially developing Gortler vortices as a part of our code verification

here; instead we will discuss them in Part 2 of this study (Guo & Finlay, 1992).

The simulation code duplicates fully developed Dean vortices (which are two
dimensional in the cross-stream plane) and the growing flate plate boundary layer
(which is a streamwise developing flow with one dimension in the cross-stream
plane), and gives the same growth rates for developing Dean vortices and Gortler
vortices as the stability code does. Thus we believe the numerical methods we use
to deal with the three-dimensional parabolized Navier-Stokes equations are correct

and the simulation code is properly implemented.

3.3.2 Verification of spanwise secondary stabiiity code for spatially
developing flows

Using the spatial stability code described in §3.2.2, we can accurately duplicate
the primary instability boundary fromn a temporal theory (Guo & Finlay, 1991) by
setting the base flow u® to be one-dimensional curved channel Poiseuille flow in
(3.8-3.10). The growth rates given by the spatial stability code are the same as
those given by our simulation code, which further verifies our simulation code. We
can also accurately duplicate the results given by Matsson & Alfredsson (1990) for

the primary spatial instability associated with Dean vortices.

When the base flow is set to be fully developed Dean vortices, the stability
code duplicates the instability boundary of spanwise secondary instability given by
Guo & Finlay (1991) using temporal theory (i.e. the ”"Eckhaus boundary” in their
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paper). The code also gives growth rates and eigenfunctions of spanwise sccondary
instability of spanwise periodic ilow that are symmetric in b about b = 3/a = 0.5,
and the following relation discussed by Guo & Finlay (1951) (using the temporal

theory) is still true:

f(b) = f(bxn) (3.11)

Here f(b) represents the spatial growth rate and eigenfunction at b, and n =
1,2,3,---. Since equation (3.11) can be derived analytically for any spanwise
periodic base flow (cf. Appendix A), we believe our stability code is working

properly for fully developed flows.

No comparable data are available for verification of the stability analysis of
nonlinear spatially developing vortices with respect to spanwise perturbations.
Instead, we will use the linear stability analysis of Gortler vortices in the
spatially growing boundary layer as verification of our stability analysis of spatially
developing flows with respect to spanwise perturbations. When the base flow u’ is
set to be Blasius boundary layer flow (Schlichting, 1955) in (3.8-3.10), the stability
code is equivalent to the global marching method used by Hall (1983), except that
no scaling is used here. First, our code confirms Hall’s results that the stability
boundary depends very much on how and where the initial perturbations are used
to start the analysis. Further downstreamn, our results confirm the statement of Day,
Herbert & Saric (1990) that the growth rates converge to a unique curve which does

not depend on the initial perturbations.

Figure 3.3 shows the typical development of the growth rates for Gortler vortices
with the wavelength parameter A = 62. Also given for comparison are the growth
rates calculated by Day et ai. (1990) using a local approach (Floryan & Saric, 1984)
and a global marching method (Hall, 1983). In figure 3.3, zo is the streamwise
location of the neutral point given by the local method. For A = 62, the neutral

S 6rtler number from the local method is G6 = 0.998. It can be seen that our neutral
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points depend on the initial perturbations and locations used to start the marching.
The difference between the data given by Day et al. and ours for z/zo < 4.0 is due
to the different initial perturbations used to start the marching. Day et al. use the
cigenfunctions from local theory as the initial perturbations. It is to be expected
that the cigenfunctions from local theory converge to the ’asymptotic’ curve faster
than arbitrary perturbations. The fluctuations in the growth rate o, of |16’ | maz
are associated with the varying locations of grid points in the cross-stream plane
when using the spectral-element methods. Since the integration of |u’ |2 over the
cross-stream plane is less affected by the uneven grids, we will use only the energy

growth rate o in the rest of this paper.

A comparison of the perturbation velocity profiles is given in figure 3.4 for A = 62
at z/zo = 4. The agreement is reasonable. In figure 3.4, u,' is scaled by Uoxo/v. It

is worth mentioning that du,'/8r = 0 at the wall and our result faithfully reproduces

this fact.

3.4 Spatial primary instability and development of
nonlinear Dean vortices

Having verified our codes, let us now examine curved channel flow. One purpose
here is to further establish the credibility of the methods and theories developed
in this study, since consider.' . work has been done on curved channel flows with
large aspect ratio, both numerically and experimentally. All cases presented in this

paper are in a curved channel with radius ratio v = 0.975.

By setting the base flow u® to be curved channel Poiseuille flow in the stability
code (3.8-3.10), we first study the spatial primary instability of Dean vortices.
Figure 3.5 shows contours of the spatial (energy) growth rate o of Dean vortices in
a curved channel for v = 0.975. The contour line ¢ = 0.0 represents the neutral

stability boundary. It is identical to the one from temporal theory. The contours
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are in good agreement with those given by Matsson & Alfredsson (1990). For
any Re beyond Re. = 114.16, there exists a band of unstable wavenumbers and
one of them has the largest growth rate. As Re increases, the band of unstable
wavenumbers broadens and the difference between the growth rates of the most
unstable wavenumber and neighboring wavenumbers becomes smaller. This suggests
that at high Re the wavenumber selection mechanism of primary instability is not
as strong as at low Re. We also notice that the most unstable wavenumbers from

spatial theory are almost the same as those from temporal theory (Finlay et al.
198R).

Figure 3.6 shows the spatial development of the energy of nonlinear Dean vortices
at Re = 2.186Re.. Only one pair of vortices are included in the computational box
and periodic boundary conditions are used in the spanwise direction. The initial
velocity field used to start the simulation is u® = (0, u1p[1.0 +sin(2raz) x 1075},0),
where u,p is the velocity profile of curved channel Poiseuille flow and « is the
wavenumber. The most unstable wavenumber at this Re is near a = 2.5. It can be
seen that the spatial growth of the vortices .5 essentially exponential. This confirms
the experimental observations given by Matsson & Alfredsson (1992). The growth
rate o can be calculated from the slope of the energy growth curve. For example
when a = 2.0, the energy growth rate is 0.1, well predicted by spatial stability
theory (see figure 3.5). Our results also show that the streamwise length needed
for Dean vortices to become {uliy developed depends on both the growth rate and

initial perturbation amplitud:

We have done many otl: .. .iations with different patterns and energy levels
for the initial perturbation= 7 spatial growth of Dean vortices for all these cases
is generally like that in fg.re 3.6. When the difference between the growth rates
of Dean vortices with different wavenumbers is small, the wavenumber favoured by
the initial perturbations can reach the fully developed state first (due to its higher

initial energy) even if it has a smaller growth rate.
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3.5 Spanwise secondary instability of fuily developed
Dean vortices

Using fully developed Dean vortices as the base flow u® in (3.8-3.10), we can
examine the spatial instability of the Dean vortices with respect to spanwise
perturbations. As mentioned in §3.3, our results show that spatial theory gives
the same stability boundaries as those given by temporal theory (Guo & Finlay
1991). OQur further numerical results show that the growth rate and the related
eigenfunction of spanwise secondary instability do not depend on the initial
eigenfunctions used to s’art the marching of the stability code when Re < 2.8RRe..
They always converge to the same value and pattern regardless of the initial
conditions. When Re > 2.8Re., some types of initial conditions cause the spatial
oscillation of growth rates and eigenfunctions. Since Dean vortices will likely
develop into wavy vortices (Finlay et al. 1988) and become time dependent when

e > 2.8Re., we will restrict our discussion to Re < 2.8Re..

As in the case of temporal theory, the spatial growth rate ¢ and the flow pattern
of the perturbation (3.7) are symmetric in b about b = 0.5. The value b = 0.5
is the most unstable wavenumber for most of the region exterior to the stability
boundary in the (o, Re) plane. Examinations of the perturbation reveal the same
flow patterns as those given by temporal theory (Guo & Finlay 1991, figure 11). In
the space of two pairs of base Dean vortices, there are three vortex pairs if the Dean
vortices have small wavenumber and there is only one pair if the Dean vortices have
large wavenumber. As in the case of temporal theory (Guo & Finlay, 1991), the flow
pattern of the perturbation indicates that the spanwise secondary instability of fully
developed Dean vortices causes two pairs of Dean vortices with large wavenumber

to merge into one pair and two pairs with small wavenumbers (a < 3.0) to split

into three pairs.

To support the above arguments and understand how the spanwise sccondary
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instability develops nonlinear!y, we performed spatial simulations using two pairs
of fully developed Dean vortic:s as the initial conditions. Our simulations show
that spanwise perturbations do grow up in the way predicted by linear spanwise
secondary instability. The growths of these perturbations are basically exponential
and the growth rates are well predicted by the linear secondary stability theory.
As in the case of temporal theory (Guo & Finlay, 1991, figure 19), the nonlinear
growth of these perturbations eventually causes two pairs of Dean vortices to split
into three pairs if the Dean vortices have a small wavenumber, or merge into one

pair if the Dean vortices have a large wavenumber.

Figure 3.7 shows a typical case of splitting and merging of Dean vortices at
Re = 2.0Re. in a curved channel with v = 0.875. The simulation was started
with curved channel Poiseuille flow as the initial flow conditions. No artificial
perturbations are introduced except numerical truncation error. For visual clarity,
the curved channel is shown as a straight channel with the streamwise direction in 6
(rad). In figure 3.7, four pairs of Dean vortices with & = 2.0 reach the fully developed
stage at § = 10.0. At 6 = 15.0, two merging events are observed simultaneously and
the number of vortex pairs becoines two. Shortly afterward, a new pair of vortices
begins to appear at § = 20.0. At almost the same time, the two old pairs resulting
from the upstream vortex merge begin to move closer. At 8 = 23.0, these two pairs

are merged into one pair.

There also exists a wavenumber for a given Re which has the smallest growth
rate of spanwise secondary instability. This wavenumber is very close to that given
by temporal theory (the "Eckhaus valley” in Guo & Finlay, 1991). In general, the
growth rates of the spanwise secondary instability of fully developed Dean vortices
are smaller than those of the primary instability. Table 3.1 lists typical values of
these growth rates. It can be seen they are almost eight times smaller than those
of primary instability in most cases. Small growth rates suggest that in order to

observe the splitting and merging of Dean vortices in a finite streamwise distance,
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relatively high energy levels of disturbances are needed. For example in figure 3.7
when no large disturbances are present, the first merging event takes 5.0 radians to
develop. Our later sirmalations show that Dean vortices which are distorted due to

a variety of factors are more likely to split or merge. We will discuss this issue in
83.7.

3.6 Spanwise secondary instability of spatially
developing Dean vortices

The interactions that occur between developing Dean vortices are not weil
understood. In most experimental observations and numerical simulations, Dean
vortices with a well-defined wavenumber are seen at a specific location in a channel.
One myth is that the development of one wavenumber inhibits the growth of
other wavenumbers so that only one wavenumber is observed at one location. To
resolve this issue, we next examine the spatial instability of developing vortices
with respect to spanwise perturbations by marching the base flow u® and the
eigenfunction @ together using both the simulation code and the stability code.
In this section, all cases are presented at Re = 2.0Re. in a curved channel
with v = 0.975. The initial flow condition used to start the simulation coile is
u® = (6,u1p (1.0 + sin(2raz) x 107%),0); (0,uip,0) is used as the real part of the
initial eigenfunction to start the stability code (the imaginary part is zero). We
have tried different forms of initial eigenfunctions and found no differences in the

growth rate and perturbation pattern of spanwise secondary instability.

3.6.1 Dean vortices with large wavenumber

Figure 3.8 shows the development of both the energy of Dean vortices in the
base flow and the perturbation associated with spanwise secondary instability. The

wavenumber of the base Dean vortices is @ = 4.0. The perturbation wavenumber
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is B = 2.0 (b =0.5). In figure 3.8 when 8 < 1.5, the growth rates of the base Dean
vortices and the related perturbation are 0.071 and 0.09, which are equal to the
growth rates of primary instability at & = 4.0 and 2.0 {(see figure 3.5). This suggests
that wher the Dean vortices in the base flow have small amplitude, the growth of
each wavenumber is governed by piimary instability. Different wavenumbers do
not interact with each other. This is to be expected since small amplitude Dean
vortices do not alter the base flow significantly and the base flow is essentially curved
channel Poiseuille flow. This result can also be shown analytically using linear
stability theory. When the amplitude of Dean vortices is small, the wrtices can be
renresented as the small perturbation in (3.7) but with multiple wavenumbers. Then
the stability equations can be linearized and decoupled into several sets of stability
equations, one set for each wavenumber in the perturbation. The base flows in
these stability equation sets are curved channel Poiseuille flow. The small vortices
with one wavenumber thus do not have any influence on the stsbility equations for
other wavenumbers. The growth of each wavelength is purely governed by primary
instability.

The growth rate of the perturbation remains near 0.09 until § = 1.75, where
the base Dean vortices have reached a significantly nonlinear level. When the base
Dean vortices are fully developed at 8 = 3.0, the growth rate of the perturbation
changes to 0.019. This value is very close to the one given by the spanwise secondary
instability using the fully developed Dean vortices a = 4.0 as the base flow. Thus
the cnergy of the perturbation with b = 0.5, which grew initially due to a primar};
instability, is transferred into a spanwise secondary instability once the base vortices
become strongly nonlinear (at 8 > 2.5 or so). In figure 3.8 we also notice that the
energy of the perturbation never stops growing while the base Dean vortices are
developing. This is true even when the fully developed base vortices are stable to

spanwise gerturbations.

For the perturbations with other wavenumbers (i.e. b # 0.5), our numerical
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results are similar to those in figure 3.8. When the base vortices are linear, the
growth of these perturbations is dictated by primary instability. When the base
vortices enter the nonlinear stage and become fully developed, these perturbations
continue to grow, at a rate given by spanwise secondary instability. This growth
rate is smaller than that at b = 0.5. When Re > Re,, there is a band of unstable
base wavenumbers a which have positive primary growth rate. Thus, when the base
vortices are developing, there will be a band of perturbation wavenumbers b = 3/«
which are unstable. These perturbations will have positive growth rate even in the
nonlinear region of the base vortices. Thus, prior to fully developed, Dean vortices

are always unstable to a range of perturbation wavenumbers.

Figure 3.9 shows the spatial development of the radial velocity component of the
base flow and the perturbation in figure 3.8. In figure 3.9(a), the base Dean vortices
become visible at § = 1.76. There are two vortex pairs in the domain becausc
b= 0.5. When 6 > 2.5, the base vortices become fully developed. In figure 3.9(b),
it can be seen that though there is always one pair of vortices in the perturbation,
the shape of the perturbation begins to change at 6§ = 1.76, where the base tHow
develops into nonlinear Dean vortices. From 6 = 1.76 to 3.0, the perturbation
pattern experiences a spanwise shift. The increased density of the contour lines also

indicates an increase of energy in the perturbation. By 8 = 3.76, the shape of the

perturbation stops changing.

The flow patterns of the base flow and the perturbation at § = 1.26 and 4.26 e
shown in figure 3.10 in the cross-stream plane. The grid point velocities in figure
3.10 (and all other vector plots in the rest of the paper) are shown on the grid
points actually used in the computation. Figure 3.10(a) and 3.10(b) show the base
Dean vortices at @ = 1.26 and 4.26. There are two pairs of vortices in the domain.
It is interesting to see that the flow pattern of the linear Dean vortices in figure
3.10(a) does not differ much from the nonlinear one in figure 3.10(b). The related
perturbations in figure 3.10(c) and 10(d) have different flow patterns, though both
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of them have only one pair of vortices in the space of two base pairs. The shape
of the perturbation at @ = 1.26 in figure 3.10(c) is that of a primary instability
cigenfunction with o = 2.0. The shape of the perturbation at § = 4.26 in figure
3.10(d) is quite similar to those given by Guo & Finlay (1991) using a temporal
theory. Compared to figure 3.10(c), the spanwise shift of the perturbation vortices
at @ = 4.26 is shown clearly in figure 3.10(d). Thus the character of the perturbation
changes from a primary instability eigenfunction to a spanwise secondary instability

cigenfunction once the base vortices reach their saturation amplitude.

To demonstrate the effect of this type of perturbation on the base flow, 50% of
the perturbation in figure 3.10(d) is superimposed on the base flow in figure 3.10(b)
and the result is shown in figure 3.10(e). It can be seen that the two base vortices
near 2z/u = 1.6 and 2.4 in figure 3.10(b) are being forced together in figure 3.10(e)
and become smaller. These two vortices are separated by an outflow region where
the fluid Aows from the convex (inner) wall to the concave (outer) wall. A similar
situation is found by Guo & Finlay (1991) when a temporal method is used. In the
context of temporal theory, they find that the nonlinear development of these types

of perturbations leads to the merging of two vortex pairs into one pair.

3.6.2 Dean vorices with small wavenumber

Figure 3.11 shows the energy development of a flow similar to the one in figure
3.8 but with the base Dean vortices having a = 2.0 and the perturbation having
8 = 1.0 (b =0.5). For # < 1.0 where the energy level of the base Dean vortices is
low, the growth rates of the base Dean vortices and the perturbation are 0.09 and
0.036, which are equal to the growth rates of primary instability at the wavenumbers
a = 2.0 and 1.0 (figure 3.5). For 1.0 < # < 1.6 where the nonlinearity of the base
Dean vortices sets in, the growth rate of the perturbation begins to increase. When

the base Dean vortices reach the fully developed state at 8 = 2.75, the growth rate
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of the perturbation switches to 0.0155, which is equal to the onc given by spanwise

secondary instability using fully developed Dean vortices (with a = 2.0) as the base

flow.

The spatial developments of the velocity components u,.° and u,’ are shown in
figure 3.12. In figure 3.12:1; *he base Dean vortices become visible at § = 1.26 and
reach a significantly nonline«. lovel at & = 1.5. There are two vortex pairs in the
domain. In figure 3.12(b), the related perturbation has only one pair of vortices for
6 < 1.26. At 8 = 1.26 in figure 3.12(b), two new small vortices can be seen near the
concave w=ll. The new vortices continue to grow downstream. By 8 = 2.76, the flow
pattern of the perturbations stops changing and there are three pairs of vortices in
the space of the two base vortex pairs. The energy of the perturbation continues

to grow downstream. A spanwise shift of the perturbation pattern can also be seen
from 8 = 1.26 to 2.76.

The flow patterns of the base fow and the perturbation of figure 3.11 at 8 = 0.76
and 3.26 are shown in figure 3.13. At 8 = 0.76, the base flow has two vortex pairs
(figure 3.13a) ard the related perturbation has one pair (figure 3.13c). The flow
pattern of the perturgation is similar to that given by primary instability at a = 1.0.
At 6 = 3.26, the number of vortices in the perturbation increases to three pairs
(figure 3.13d) while the number of the base vortices remains at two pairs (figure
3.13b). The effect of the perturbation on the base flow is illustrated in figure 3.13(e)
through the superimposition of 100% of the perturbation (figure 3.13d) on the base
vortices (figure 3.13b). In figure 3.13(e) near 2z/d = 0.8, it can be seen that a small
vortex pair with an inflow region at its center is generated near the concave wall
while the two old pairs with inflow regions at their centers near 2z/d = 2.4 and 5.5
in figure 3.13(b) are squeezed together towards 2z/d = 4.0 in figure 3.13{(e). This
situation is almost identical to that discussed in Guo & Finlay (1991). In Guo &
Finlay (1991), the temporal simulations show that the nonlinear development of

these perturbations results in the appearance of a new vortex pair.
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We find a similar resuit for base Dean vortices with other wavenumbers. If
the fully developed Dean vortices are within the stability boundary of spanwise
sccondary instability (i.e. they are stable and lie within the ”"Eckhaus boundary”
in Guo & Finlay, 1991), we find that the growth of the perturbation is similar to
that in figure 3.8 and 3.11 before tlie base Dean vortices reach the fully developed

state. Once the base vortices become fully developed, the perturbation decays.

To summarize the above discussions, our study in this section shows that,
when the energy level of Dean vortices in the base flow is low, the stability
of each wavenumber is dictated independently by primary instability. Multiple
wavenumbers can develop at the same time until a dominant wavenumber in the base
flow reaches the nonlinear stage. As the dominant Dean vortices develop nonlinearly
towards their fully developed state, spanwise secondary instability sets in and the
perturbations associated with the wavenumber b = 0.5 become the most unstable
and can continue to grow. The development of one wavenumber does not inhibit the
development of other wavenumbers. Once the vortices are strongly nonlinear, the
cnergy in wavenumbers other than the dominant one and its harmonics appears to
be transferred from independently growing primary instability eigenfunctions into
spanwise secondary instability cigenfunctions. When the dominant Dean vortices
are fully developed, the perturbations will continue to grow (at a new rate) if
the dominant vortices are outside the stability boundary of spanwise secondary

instability.

3.7 Simulation of spliting and merging of Dean
vortices

To support the arguments in §3.6, in this section we study the nonlinear

aspects of spanwise secondary instability using the simulation code. The initial



flow condition used to start the simulation code is
u = (0,u1p(1.0 + (sin(4raz) + esin(4nB8z)) x 1074),0) (3.12)

where o is the wavenumber of the dominant Dean vortices and 3 is the perturbation
wavenumber. In equation (3.12), € is used to adjust the energy level of the
perturbation relative to the dominant vortices. Two pairs of dominant vortices
are included in the computational box. The energy in spanwise Fourier modes is
also monitored. The energy in spanwise Fourier mode k; is defined by (Finlay et al.
, 1988)
E(ks) = (k) [ a0 ko)

where c(k) = 0.5 for k = 0 and c(k) = 1 for k # 0; G(r, k,;) is the spanwise
Fourier transform of u. In the case of b = 0.5, before the spanwise perturbation
becomes nonlinear the energy in the first mode comes mostly from the perturbation

with b = 0.5 and the energy in the second mode mostly from the dominant Dean

vartices.

3.7.1 Dean vortices with large wavenumber

Figure 3.14 shows the development of the velocity component u, with the
dominant wavenumber o = 4.0 and the perturbation wavenumber 3 = 2.0 (b = 0.5).
In this simulation, € = 0.08. T'wo pairs of the dominant Dean vortices become visible
at @ = 2.75. At @ = 3.0, they are fully developed. A complete vortex merging event
can be seen at 6 = 4.25 shortly after the dominant wavenumber reaches the fully
developed state. From 8 = 3.0 to 4.0, we can see the left pair of the dominant

vortices is somehow weaker than the right pair.
The energy development of figure 3.14 is shown in figure 3.15. We can see that
bedose thn vyvizrgy in the second Fourier mode reaches the nonlinear state at 8 = 2.0,

the enwrgy growth rates in the .oeomid ssd first modes are 0.07 and 0.09, which
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are equal to the growth rates of primary instability at @ = 4.0 and 2.0. (These
growth rates are obtained from the simulation and are the same as those in figure
3.8 obtained from the spanwise secondary instability analysis, which confirms our
stability results). Before the Dean vortices in the base flow reach a nonlinear ievel,
the growth of each wavenumber is purely governed by primary instability. When
the dominant Dean vortices enter the nonlinear stage at 8 = 2.0, the energy growths
in the second and first modes begin to slow down. When the dominant wavenumber
reaches the fully developed state at 8 = 3.5, the energy in the first mode continues
to grow from 6 = 3.5 to 4.0 but at the new rate 0.02, which is close to the growth
rate of spanwise secondary instability of fully developed Dean vortices a = 4.0
(cf. figure 3.8). Further downstream, nonlinear interaction between the dominant
wavenumber and the perturbation can be expected because the energy level in the
first mode is comparable to that in the second mode. At § = 4.25, the sudden
drop of the energy in the second mode indicates the beginning of nonlinear vortex
merging.

The flow pattern of figure 3.14 is shown in cross-stream planes in figure 3.16. At
0 = 1.51 in figure 3.16(a), there are two pairs of vortices with outflow regions at their
centers near 2z/d = 1.2 and 2.7. At this stage, the vortices are basically linear. Both
pairs have almost the same strength. At @ = 3.01 in figure 3.16(}), the dominant
vortices are more or less fully developed. We can see there are some distortions
on the vortex pair near 2z/d = 1.2. We believe these distortions are due to the
growth of the energy in the first Fourier mode (associated with the perturbation
3 = 2.0). These distortions provide high perturbation levels for the nonlinear
development of spanwise secondary instability that soon follows. At 6 = 3.76 in
figure 3.16(c), the vortex pair between 2z/d = 1.6 and 2.4 is squeezed towards
2z/d = 2.0 and becomes smaller, while the other vortex pair grows bigger. This
development continues downstream. At 6§ = 4.81 in figure 3.16(d), the two small

vortices near 2z/d = 2.0 in figure 3.16(c) disappear completely and there is only
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one pair of vortices in the domain. The vortex merging event is completed.

Comparing figure 3.16(c) to figure 3.10(e), we can see the merging event roughly
follows what is predicted by the stability theory: one vortex pair separated by an
outflow region is squeezed and weakened by spanwise secondary instability, and
eventually two pairs of vortices merge into one pair. From figure 3.16(b) and figure
3.16(c), we also see the flow pattern switches from d...orted Dean vortices to the

vortex merging pattern predicted by the secondary stability theory.

During a vortex merging event, the vortex structures can become highly
asymmetric and irregular due to the nonlinear development of spanwise secondary
instability and the nonlinear interactions bet'veen different wavenumbers. But when
the merging event is complete, the vortex structures become symmetric again. In
experiments, time-dependence of the flow will probably occur due to time-varying

inlet perturbation conditions. How this will affect vortex merging process needs

further study.

We can control the streamwise location of a vortex merging event by adjusting
¢ in equation (3.12). Figure 3.17 shows the development of the energy for a flow
similar to that in figure 3.15, but now with € = 0.05. It can be seen more clearly
that the energy growth rate of the first Fourier mode switches from the primary
growth rate ¢ = 0.02 when ¢ < 2.0 to the growth rate ¢ = 0.02 of spanwise
secondary instability when @ > 3.5. The merging event is completed by § = 5.5.
Our simulations show that when small € is used, the dominant Dean vortices are
less distorted when their amplitude saturates and the structures of the vortices are
more symmetric, like those in figure 3.7 and Guo & Finlay (1991, figure 19). In

addition, the merging event takes longer streamwise distance to complete when a

smaller ¢ is used.
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3.7.2 Dean vorices with small wavenumber

Figure 3.18 shows the evolution of the velocity component u, of a flow similar to
that in figure 3.14, except the dominant wavenumber is a = 2.0 and the perturbation
wavenumber is 8 = 3.0 (b= 1.5) and Re = 2.186Re.. In this sirnulation, € = 0.25.
We choose b = 1.5 here instead of b = 0.5 because the growth rate of the primary
instability at 8 = 3.0 is larger than that at 3 = 1.0 (b = 0.5). When the dominant
wavenumber enters the onlinear stage, the growth rate of the spanwise secondary
instability is the same for both b = 1.5 and 0.5 (cf. equation 3.11). Thus, b = 1.5
will generate more perturbation energy than b = 0.5 will when entering the spanwise
secondary instability stage (a simulation with & = 0.5 confirms this). In figure 3.18,
it can be seen that the two dominant vortex pairs reach a fully developed stage at
6 = 2.25. Shortly afterwards at 8§ = 4.0, a new vortex pair appears between the
two dominant vortex pairs and the dominant pairs are pushed apart a little. For
0 > 4.5, the domain is filled by three pairs of vortices. This is a vortex splitting

cvent.

The How pattern of figure 3.18 is shown in cross-stream planes in figure 3.19.
At @ = 2.5 in figure 3.19(a), there are two equal strength pairs of vortices with
inflow regions near 2z/d = 1.8 and 5.8. Downstream at § = 4.0 in figure 3.19(b),
the two dominant pairs are pushed apart and a small vortex pair can be seen at
2z/d = 3.9 near the concave wall. This new vortex pair has an inflow region at its
cenier. As this new vortex pair grows downstream, it pushes the two dominant pairs
further apart in figure 3.19(c). By 6 = 6.0 in figure 3.19(d), the vortex splitting
event is complete and three pairs of vortices occupy the whole domain. Comparing
figure 3.19(b) to figure 3.13(e), we can see that the vortex splitting pattern is well
predicted by linear secondary stability thecry. A small new vortex pair is generated
first near the concave wall in between two dominant vortex pairs. It has an inflow

region at its center. Two dominant vortex pairs are pushed apart by the new pair.
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The development of the energy in spanwise Fourier modes shows a similar
situation to that in figures 3.15 and 3.17, except that here the energy in the third
Fourier mode is used to monitor the growth of the perturbation with b = 1.5. As in
the case of vortex merging, the streamwise location of a vortex splitting event can

be controlled by adjusting € in equation (3.12). An increase in € causes a splitting

event to become visible earlier upstream.

When perturbations with b # 0.5 (or 1.5) are used, results similar to those in
§3.6 are obtained if the perturbation energy level is much lower than that of the
dominant vortices and there is no nonlinear interaction between the perturbation
and the dominant vortices. In other words, before the dominant vortices become
fully developed, the growth of the perturbation with low energy level is governed by
primary instability. When the dominant vortices are fully developed, the growth rate
of this perturbation is given by spanwise secondary instability. If the perturbation
level is high and comparable to that of the dominant vortices, some energy of the
perturbation with b # 0.5 is converted into perturbations with b near 0.5 due to
nonlinear interactions between the dominant vortices and the perturbation with
b # 0.5. As a result, the growth of the perturbation with b = 0.5 dominates the
flow in some cases and the nonlinear vortex splitting and merging discussed early in
this section occur. If the growth of the perturbation with & = 0.5 does not dominate

the flow, vortex splitting and merging still occur but in a different (irregular) way.

Similar results are also found at other  and Re. From the above discussions we
conclude that the instability of developing Dean vortices to spanwise perturbations
is essential to vortex splitting or merging in curved channels. Initial perturbations
at the channel entrance, as well as the growth rates of primary instability and

spanwise secondary instability all play irnportant roles in the first appearance of

vortex splitting or merging.
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3.8 Wavenumber selection and irregularity of Dean
vortices

Our discussions in §3.4 show that the growth rates of primary instability do not
vary significantly with « for a band of wavenumbers near the one with the maximum
growth rate. The wavenumber selection mechanism of primary instability is not
strong for this band of wavenumbers. Since the nonlinear growth of Dean vortices
depends on both the growth rate of primary instability and the perturbations at
the entrance of a channel, the wavenumber with the maximum growth rate is not
necessarily the one that will be observed in experiments. The observed wavenumbers
could be in a band near the most unstable wavenumnbers, especially for high Re
where the differences between the primary growth rates for different wavenumbers
arc small. If the perturbations have cqual energy for 21l wavenumbers (e.g. low level
broadband turbulence), then upstream of any vortex splitting or merging event,
the observed wavenumber should be close to the one with the maximum growth
rate. At high Re (> 2.0Re.), the spatial development of Dean vortices is very
sensitive to small disturbances due to a large primary growth rate. For example at
Re = 2.186 Re.. in figure 3.6, a perturbation level less than 10~3U is enough to make
Dean vortices visible in a streamwise distance of # < 5.0 rad. (With only numerical
crror as perturbation, vortices require much longer length to develop.) Thus we
believe that the preference of Dean vortices for certain spanwise locations observed

by Matsson & Alfredsson (1992) may be due to disturbances caused by the channel

geometry.

In §3.5 and §3.6, we have shown that the developing Dean vorticez are unstable
to spanwise perturbations. The nonlinear growths of these spanwise perturbations
cause vortex merging and splitting. As a result, the wavenumbers of Dean vortices
are changed. Since the first round of vortex splitting and merging events depends

on the initial perturbations at the channel entrance and the growth rates of primary
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instability and spanwise secondary instability, it is difficult to predict the favoured
wavenumbers which survive the first round of vortex splitting and merging. Further
downstreamn as the splitting and merging of vortices continue to occur due to the
instability of fully developed Dean vortices with respect to spanwise perturbations,
the wavenumbers which have the minimum growth rate of spanwise sccondary
instability are more likely to be observed. More discussion on this wavenumber

selection mechanism can be found in Guo & Finlay (1991).

The perturbations needed for splitting and merging of vortices to occur can also
come from the interactions between vortices with different wavenumbers. Figure
3.20 shows such a case at v = 0.975 and Re = 2.186 Re.. The initial perturbations
used to start the simulation have a wavenumber of 2.5 for the left two vortex pairs
and 3.0 for the remaining three vortex pairs. The maximum amplitudes of the initial
perturbations are 0.01% of curved channel Poiseuiie flow. In figure 3.20, the Dean
vortices of a = 3.0 and 2.5 reach a fully developed state at 8 = 2.5. Then, near the
two interfaces between vortices with different w.+7z 1mbers, a merging event among
the vortices with a = 3.0 and a splitting eve’ = .eriy tne vortices with a = 2.5
begin to develop one after another. When the same parameters are used but with
only one wavenumber initially in the flow, splitting or merging events are not visible

in the same length of the channel.

Since Dean vortices are unstable all the time to spanwise perturbations for
Re > 1.5Re. (outside the stability boundary of spanwise secondary instability), they
are constantly distorted by all other disturbances, e.g., the development of multiple
wavenumbers during their linear development and vortex splitting or merging during

their nonlinear development. Observation of irregular Dean vortices should be

rather common.
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3.9 Conciluding remarks

The material presented in this chapter shows that spatially developing Dean
vortices are unstable ‘o spanwis~ perturbations. When the vortices are small and
linear, spanwise perturbations with multiple wavelengths can coexist and grow at
the same time at the rates given by primary instability. When some of these vortices
grow strong enough to become the dominant wavelengths and nonlinearities set in,
spanwise secondary instability becomes the dominant instability. Perturbations
with twice that of the dominant wavelengths are found to be most unstable.
Nonlinear growth of these perturbations distorts the dominant vortices. When
the dominant Dean vortices become fully developed, their stability bouridary to
spanwise perturbations is a small closed loop. Outside the stability boundary, the
nonlinear development of these perturbations causes two pairs of vortices with short
wavelength to merge into one pair and generates a new pair of vortices between two
pairs of vortices with long wavelength. The vortex splitting and merging patterns

are well predicted by linear spanwise secondary instability.

The concept of spanwise secondary instability proposed in this study is
a general instability of spatially developing vortices with respect to spanwise
perturbations. When the vortices in the base flow are linear, spanwise secondary
instability is equivalent to primary instability. = When the vortices in the
base flow enter the nonlirear stage, spanwise secondary instability controls the
growth of the energy involved in the distortion of the dominant vortices, vortex
splitting/merging, and the interactions between various wavenumbers and the
dominant wavenumbers. Because spanwise secondary instability rapidly destroys
vortex pairs with particularly large or small wavenumbers, this instability restricts

the spanwise scale of the vortices.

Since the ncnlinear development of spanwise secondary instability changes the

structure of the streamwise vortices significantly, understanding how tl.is type of
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instability affects the onset of other secondary instabilities is an important step

toward the understanding of transition and turbulence in a developing flow.



TABLE 3.1.
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The growth rates of primary instability (o1p) and spanwise

secondary instability (o2p) with b = 0.5 are listed as a function of Re/Re. and

wavenumber «a.

Re/Re. | a | oip 02D
1.7 2.4 10.077 | 0.0124
1.9 2.4 10.091 | 0.0143
2.2 2.4 1 0.109 | 0.0156
25 2.4 10.122 | 0.0160
2.8 2.4 1 0.134 | 0.0180
3.0 2.4 | 0.140 | 0.0190

3.25 | 2.5} 0.150 | 0.0200
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FIGURE 3.1. The geometry of curved channel flow is shown.
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FIGURE 3.2. The geometry of boundary layer flow over a concave surface is shown.

The strearnwise direction is 6.
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FIGURE 3.3. The growth rates o, of linear Gortier vortices with A = 62 are shown

as functions of streamwise distance from the leading edge z/xo, where z, is the

streamwise location of the neutral peint given by a local method. The values of

o1 { ----) are obtained with the initial eigenfunctions (~vg,0,0); the oy ( —— )

are obtained with the initial eigenfunctions (0,ug,0), where ug and vg are the

streamwise and vertical components of Blasius flow. The growth rates o, obtained

by Day et al. (1991) using a local method ( A ) and a global marching method (o)

are also given.
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FIGURE 3.4. Comparison of the eigenfunction components (a) #s and (b) @, of
) with the data obtained by Day et al. (1991) using a

linear Gortler vortices (

local method ( ------- ) and a global marching method ( o ). Distance from the wall
is n = yy/Us/vz. and u, is scaled by UeoTo/V.
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R.C/Rec

FIGURE 3.5. Contours of the spatial growth rate o of primary instability arc
shown as a function of spanwise wavenumber « and Re/Re, for a curved channcl
with v = 0.975, Re, = 114.26.
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wavenumber o = 2.0 (- ),25(——),4.0(—- —)and 4.5 (----) in a curved

channel with v = 0.975 at Re = 2.186 Re..
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FIGURE 3.7. Contour _ne velocity component u, of spatially developing Dean
vortices are shown in cross-stream planes from the streamwise location § = 7.0 to
24.0 rad in a curved channel v = 0.975 at Re = 2.0Re.. The inner wall is above the

outer wall and the flow proceeds downstream from top to bottom.
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a0 40 50 6o
0 (rad)
FIGURE 3.8. Spatial growth of the energy in the base Dean vortices a = 4.0 (——-)

and the related perturbation 8 = 2.0 (b = 0.5) of spanwise secondary instability
(----) in a curved channel v = 0.975 at Re = 2.0Re..



107

(b)

FIGURE 3.9. Contours of the velocity components (a) u.? of the base Dean vortices
and (b) u,’ of the related perturbation in figure 3.8 are shown in cross-strearn plancs
from the strcamwise location 8 = 0.26 to 4.26 rad with A0 = 0.5 rad. The inner

wall is above the outer wall and the flow proceeds downstream from top to bottom.



108

(a)
(%)

-
i ALY
1 ,mv.\.\%\.‘:_:_w TR AREREL
. W R A A R . N N A AR
.N/N:II‘..\U\\-\.\\\ - P .‘//Il:.ll\l"\u\\\\ v e s
A e O .‘\v\“ﬂl’f‘l///. . ”..“
o ! \ \\\l/////// IS T U ' Hx.l/é// [N “ N I
[] rd ' L ] ~ N\ //'. H
~\\ ///.. v _ . \ ____6
IAREEY) ITERR RN A IARREEY) /R |
.’///\‘\\.\\\\\\\\u ) PR ] —a///ol.\m\\\\\\\ , N ]
.,//7{\\\\“‘\\ PP T N R S AL
LN O ; .\\\\|L-.l...l-.’// A N
:\\c\)H/////,,, Lo , \..I/;%x//, o
._ \\\ NN ) -
.\ ~ /// Vov o e ' g ~. Vel
_:f OV ; ARREENT
Yoo aa '
BRI \\\\\\\...__ ‘A // RS
.¢”/ PP S S A IR .,//..II.\\‘I’\.\.\\\ PR
A e P S S L T T .“\\\\“\“’I/Jl' N “”“
.\\\\/i//,//ﬂ///’ [ I “ \\\'vl«/if/zz N ” Ll
’ I [T I I ) - N 3
_:T 2N JIRRRRRE ;,?:::___:;
./ ‘\» MR .-// - - ok ;o ” P
—/ \\\\\\\\ ’ L] L B -f// I’\\\‘\\\\\\ ’ -
.t//’(\l\l\\\‘\\\\ . e 2 v N e s w2 2t
. - e e e e ae- - . e e e o
.‘\\\t\]/’.i’// ~ s .\\\\u\.lllll.lln/”/'.”H“ [
— = o
\\\\11//////// ” ” v .._m .‘\\.\1111/ d \ ” ”””m
/4 1 ,j/j R TN . L,.Lr\rLlIs
3 .T. %) ; .e.n (2 oo

]
3.1418

4 a4
¢ 4w
>

« N m e meameme— - > s ¥
T
2.3502

[TLIKN

14708
2z/d

e s

SSN\AW/ S =

— - LMl

W e m % e lemma e o e e = cmwe > v = - e

ovess

FIGURE 3.10. For caption see facing page.

- ® % e Owmww m v a @ o TVma e 2 e t memme = =~ - >

\\\\\‘-.—_-,,,/ ,'.“\\\\\‘__—-"/1llll

VY % v N e et - - . .

0.0000

s
o

T



109

o

~.—- - - o e A e o wmm e e wm—— a O~ - -~ * e wr wm  Ee  we s e eme

N ‘ ﬁﬁ?aﬂ/’ el Y Y gpe— \<if\
i

RN
. (d)

é{f//// ,j/

\ ///

\\\ )
N \\\\\\\ Py Y4

< \“\\“_.-///ll

e T U S ]

¢ s e emem o w ~-
PR G
RN R N N

4
¢

A vmmN = S s

6 00;0; — ;7—3.‘: — ";0-‘- — - .l;:'- — —’;,C
To = T N IR
~N v s /C424n-_\;;; :;‘,_\.\ [ ,__~;‘ ;;:__,_‘..
NN\ S Sl vt =
i raa N
WAV 172 N\\U2 v mN7T N @
\\\ | # Wi /
H ,’fl'l\ ! ,~‘! \\.,' ,\“
/1 \ 1 IR I BN |
TR T
- \-/ \-, —
el / i \\:/ i \:/// \ "/
b /{'ég \§§\.:’,% % %I/ ’ 3 3:{/4 \ §:,.«r
/7 1 \\\\—”/ / l v P2 2 B R N i i \ \__f—’
— / / AN~ ~/ 0 NN~
e /LN N N— PR R Rk R I N e
peo sl IIIiTIITiImIIoL nIIIIIIICIIZ
0.0000 07864 18708 n.35ex 21416

2z/d

FIGURE 3.10. Base Dean vortices and the related perturbation in figure 3.9 are

projected onto the (r — 2) plane at 9 = 1.26 (a & ¢) and 0 = 4.26 (b & d). (e) shows
(8} +350% of (d).



110

3.0 4.0 5.0 6.0

0 (rad)
FIGURE 3.11. Spatial energy growths of the base Dean vortices a = 2.0 ( ——)
and the related perturbation 8 = 1.0 of spanwise secondary instability { -~--) in a

curved channel v = 0.975 at Re = 2.0Re..
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FIGURE 3.12. For caption see facing page.
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()

FIGURE 3.12. Contours of the velocity components (a) u,® of the base Dean
vortices and (b) u.’ of the related perturbation in figure 3.11 are shown in cross-
stream planes from the streamwise location 8§ = 0.26 to 3.26 rad with A8 = 0.25
rad. The inner wall is above the outer wall and the flow proceeds downstream from

top to bottom.
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FIGURE 3.14. Contours of the velocity component u, of developing Dean vortices
is shown in cross-stream planes from the streamwise location 7 = 0.16 to 6 rad with
AO = 0.15 rad in a curved channel v = 0.975 at Re = 2.0Re.. The simulation is
started with o = 4.0, 3 = 2.0 and ¢ = 0.08 in equation (3.12). Before the vortex
merging at 0 = 4.26, the wavenumber of the vortices is & = 4.0. The inner wall is

above the outer wall and the flow proceeds downstream from top to bottom.
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FIGURE 3.15. Spatial variatior of the total energy ( )} and the energy in the

first { ---- ) and the second ( —- — ) spanwise Fourier modes of ‘he Dean vortices

in figure 3.14.
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FIGURE 3.16. Dean vortices of figure 3.14 are projected onto the (r — 2) plane at
(a) 6 =1.51; (b) 8 =3.01; {c) @ = 3.76 and (d) § = 4.81 rad.
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FIGURE 3.17. Energy of a flow similar to that in figure 3.15 but with ¢ = 0.05 in

equation (3.12).
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FIGURE 3.18. Contours of the velocity component u, of develeping Dean vortices
is shown in cross-stream planes from the streamwise location § = 0.255 to 6 rad
with A0 = 0.25 rad in a curved channel with v = 0.975 at Re = 2.186Re.. The
sirnulation is started with o = 2.0, 8 = 3.0 and ¢ = 0.25 in equation (3.12). Before
the vortex splitting at 8 = 4.0, the wavenumber of the vortices is @ = 2.0. The
inner wall is above the outer wall and the flow proceeds downstream from top to

bottom.
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FIGURE 3.20. Contours of the velocity component u, of developing Dean vortices
is shown in cross-stream planes from the streamwise location § = 0.5 tc 7.5 rad with
Al = 0.5 rad in a curved channel v = 0.975 at Re = 2.186Re.. The simulation
is started with a = 3.0 for the right three vortex pairs and a = 2.5 for the left
two vortex pairs. The inner wall is above the outer wall and the flow proceeds

downstream from top to bottom
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CHAPTER 4

Spanwise secondary instability of
spatially developing vortices.
Part 2. Irregularity and

wavelength selection of Gortler

vortices

4.1 Introduction

In Part 1 of this study (Guo & Finlay, 1992), we developed a Legendre spectral-
clement based numerical methed to study the secondary instability of spatially
developing flows with respect to spanwise perturbations (spanwise secondary
instability). As an application, Dean vortices found in curved channels were studied.
In Part 2 of this study, we will numerically examine the linear and nonlinear aspects

of the spanwise secondary instability of spatially developing nonlinear Gortler

1A version of this chapter has been submitted to J. Fluid Mech. for publication.
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vortices and the effect of this instability on wavenumber selection and nonlinear

development of these vortices.

The flow geometry for Gortler vortices is shown in figure 4.1. The streamwise
and spanwise directions of the flow are given hy € and z respectively. We will restrict
ourselves to the case of constant wall curvature, i.e. the radius of the wall, R, is
constant. The freestream velocity is Us. The Gértler number at the downstream

distance = = RO from the leading edge is defined as

4 3
o= Ybm (152)

v R
where 6,, is the momentum thickness of a Blasius boundary layer. The wall
curvature can also be measured by the ratio v = (R — 6.99)/ R, where {99 is the
Blasius boundary layer thickness at up = 0.99U. In this study, the wavelength of

Gortler vortices is measured by the dimensionless parameter

1
U A\?
A== (T‘«z)

where ) is the dimensional wavelength in the spanwise direction. Both A and X are

constant in the streamwise direction.

Ever since Gértler (1940) predicted the existence of a secondary vortex-type
motion in boundary layers over concave surfaces, many efforts have been made
both experimentally and theoretically toward understanding these vortices. On a
concave wall with small curvature, Gortler vortices provide disturbances for three-
dimensional Tollmien-Schlichting waves and thus prémote early transition. When
the wall curvature is strong (as in this study), Gértler vortices develop significantly
faster than Tollmien-Schlichting waves. The boundary layer will then be dominated
by streamwise counter-rotating vortices and the transition toward turbulence will be
characterized by the breakdown of these vortices. A better understanding of these
vortices may lead to a better understanding of many flows including the flows near

the concave surfaces of turbine blades and aerofoils. Recently, attention has been
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paid to the similarity between Gortler vortices and the counter-rotating streamwise
vortices found in most transitional and turbulent wall bounded shear flows (cf.
Swearingen & Blackwelder 1987 for a review). Some studies suggest that these
vortices may be due to a Gortler instability resulting from streamwise curvature
(Cantwell, Coles & Dimotakies, 1978). Thus, Gortler vortices offer a simple modcl

for studying the dynamics which govern the vortices in transitional and turbulent

wall bounded shear layers.

A review of early theoretical works on Gortler vortices done by Hammerlin
(1955), Smith (1955), Tobak (1971) and Shultz-Grunow et al. (1973) can be found
in Herbert (1976). Due to the difficulties associated with the nonparallel nature of
the problem, there is wide d'sagreement even armnong some recent works. Floryan &
Saric (1984) solved the stability equations which include nonparallel effects using a
local method similar to the one used by Ragab & Nayfeh (1981). Their method gives
a unique neutral stability boundary. From the wavenumbers which have the largest
growth rate they propose a wavenumber selection mechanism which can explain the
experimental observations of Bippes (1972) well, but which has some problems with
the data from Tani (1962) and Tani & Sakagami (1962). Some recent experimental
observations (Winoto & Crane 1980, Swearingen & Blackwelder 1987) also show

some differences from this wavenumber selection theory.

Using a global marching approach, Hall (1983) solved the same problem and
proposed that the neutral stability boundary is non-unique. His results show that
the location of the first neutral point depends sensitively on both how and where a
boundary layer is disturbed. To clarify this issue Day, Herbert & Saric (1990) made
a comparison between the local methed and global marching. They conclude that
although the first neutral point cannot be defined uniquely using global marching, a
short distance from the leading edge the results from the global marching converge

to a unique asymptotic solution which is quite close to that given by the local
method.
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Most of the knowledge about the nonlinear evolution of Gértler vortices and
their secondary instabilities is provided by experimental observations (Aihara 1962,
Tani 1962, Tuni & Sakagami 1962, Tani & Aihara 1969, Bippes 1972, Aihara &
Koyama 1980, Aihara et al. 1984). More recently, Swearingen & Blackwelder (1987)
detailed these aspects of Gértler vortices using smoke-wire visualization and multiple
probe hot wire rakes. Relatively fewer theoretical efforts exist and most of these
rely heavily on simplifications. Among them are Aihara (1976) and Hall (1982).
Recently, a more detailed theoretical and numerical picture of nonlinear Gortler
vortices has begun to appear (Sabry 1988, Sabry & Liu 1991, Hall 1988, Liu &
Domaradzki 1990, Hall 1990). Using a global marching method and a combination
of spectral methods and a finite difference scheme, Hall (1988) was able to solve
the stability equations governing the nonlinear evolutions of Gortler vortices. But
neither the flow field of Gortler vortices nor a comparison with existing experimental
measurements was given in his paper. In his computations, only four Fourier modes
were used in the spanwise direction. From our experience with spectral methods,

this resolution is not enough to provide the details of the flow pattern.

The temporal evolution of nonlinear Gértler vortices was studied by Sabry (1988)
and Sabry & Liu (1991) using a temporal theory and a finite difference scheme. For
the first time, the quantitative comparison of nonlinear Gortler vortices between
numerical results and experimental observations (Swearingen & Blackwelder, 1987)
was given. Since Sabry’s study is based on temporal theory, the picture of spatial
nonlinear evolution is still incomplete. Very recently, Lee & Liu (1992) studied
spatially developing Gortler vortices by solving the parabolized three-dimensional
Navier-Stokes equations, thus unveiling some of the nonlinear details of spatially

developing Gortler vortices.

Because of the difficulties in getting accurate representations of nonlinear
Gortler vortices, so far the theoretical studies of secondary instability are less

convincing. For example, using the streamwise component of temporally evolving
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Gortler vortices (Sabry, 1988) as the base flow, Yu & Liu (1991) presented results
on the instability of Gortler vortices to streamwise perturbations which causes
waviness of the Gortler vortices. The same type of instability was also studied
by Liu & Domaradzki (1990) through time-dependent three-dimensional numerical
simulations with the help of a parallel flow assumption. To our knowledge, no work
has been done on the secondary instability with respect to spanwise perturbations.
In the case of Dean vortices, this type of instability causes splitting and merging of
vortices (Guo & Finlay, 1992). The study of this type of instability is essential to a

better understanding of the dynamics of Gortler vortices.

In this paper, using spatial instability theories and three-dimensional numerical
simulations developed in Guo & Finlay (1992), we study the spatial development of
nonlinear Gortler vortices and their secondary instability with respect to spanwise
perturbations on a concave wall with strong curvature. We examine the roles of
primary instability and spanwise scecondary instability in the wavenumber selection
process and their effects on the nonlinear evolution of Gortler vortices. Since
both Gértler vortices and Dean vortices are caused by streamwise curvature due
to centrifugal instabilities and share various similarities, we compare and contrast

the features of these two types of vortices.

We first present our results on the primary instability and spatial development
of nonlinear Gortler vortices in §4.2 and §4.3. In 8§4.4, we present the spanwise
secondary instability of spatially developing Gortler vortices. Vortex splitting and
merging caused by the nonlinear development of this type of secondary instability
are simulated in §4.5. A discussion on the possible forms of naturally occuring
perturbations near the leading edge in some experiments and their role in the

formations of Gortler vortices is given in §4.6.
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4.2 Primary instability: Gortler vortices

As mentioned in Guo & Finlay (1992), when dealing with primary instability
(Gortler instability), the stability theory and the methods we use in this study
are equivalent to Hall’s global marching method (1983). Though these types of
methods do not give a unique neutral point (Hall 1983 and Day et al. 1990), they
vield asymptotic solutions which are comparable to the results from local theory
(Floryan & Saric, 1984) a short distance downstream from the leading edge. Figure
4.2 shows the typical pattern of the (energy) growth rate o for different wavelength
parameters A obtained by setting the base flow u® to be Blasius boundary layer in
the stability code (3.8-3.10). The growth rate o is non-dimensionalized by the local
streamwise distance z from the leading edge. All runs are started at G6 = 0.8256
using (—vg, 0,0) as the initial eigenfunctions (both real and imaginary parts), where
vp is the vertical component of Blasius boundary layer flow. For these types of initial
perturbations, the growth rates o are always positive. Different initial conditions
only affect the growth rates for G6 < 2.8. For a given G&, the variation of the
growth rate ¢ with A is similar to that given by Floryan & Saric (1984) using a
local theory. For example the most unstable A is the one near A = 210 for most
Go; the growth rate o decreases for A < 210 or A > 210, as is shown in figure 4.2,
and does not differ much for 175 < A < 400.

Over a short distance downstream from the leading edge (G6 < 1.5), the growth
rate o varies considerably for different perturbations and can be very large for some
forms of perturbations. However, since the streamwise distance to this location
is short, the perturbations do not have enough time to develop into high energy
levels. A short distance from the leading edge, the growth rate ¢ only depends
on wavelength parameter A, local Gortler nurmber Go6 and the distance from the
leading edge z. So we do not believe the exact location of the neutral stability

boundary plays an important role in the development of nonlinear Gortler vortices
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on a concave wall with strong curvature. The energy level of initial perturbations

near the leading edge and the growth rate for Gé > 1.5 are more important.

4.3 Spatial development of nonlinear Gortler vortices

As in the case of Dean vortices (cf. Guo & Finlay, 1992), the spatial development
of nonlinear Gortler vortices depends both on the energy level of :-:itial perturbations
near the leading edge and the growth rate o. Through the manipulation of the
energy level of the perturbations near the leading edge, Gortler vortices with
strength comparable to those observed by Swearingen & Blackwelder (1987) can
be produced by our simulation code. Figure 4.3 shows the spatial development of
the streamwise velocity us of Gortler vortices with spanwise wavelength A = 1.8cm
on a concave wall with radius R = 3.2m. The free stream velocity U is 5m/s
and the kinematic viscosity v is 14.5 x 107%m/s?. The simulation is started at
a distance £ = 8cm from the leading edge using the initial flow condition u® =
(0.4vpsin(2mwz/\),up,0); vg and ug are the vertical and streamwise components
of Blasius boundary layer flow. The justification of the use of such initial flow
condition will be discussed in §4.6. Different initial conditions can also give Gortler
vortices of the same strength. In figure 4.3, the computational grid extends to 8cm

in the r direction. In the z direction, periodic boundary conditions are used.

Swearingen & Blackwelder (1987) published experimental measurements of
Gértler vortices with the same parameters as figure 4.3. The spatial development
of Gortler vortices from our simulation results are quite comparable to the time
averaged measurements given by Swearingen & Blackwelder (their figure 11). The
contour patterns are comparable for the downstream distance up to £ = 100cm. For
z > 100cm, the Gortler vortices begin to ¢evelop into time dependent wavy vortices

in the experiments of Swearingen: & Blackwelder and the vortices breakdown shortly

afterwards.
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Figure 4.4 shows a comparison of the streamwise velocity ue at different x
with data from Swearingen & Blackwelder (1987). The simulation is started at
z = 12.8cm with the same initial flow condition as in figure 4.3. It can be seen the
agreement is good up to z = 90cm. For z > 100cm, poor agreement may be due
to the onset of waviness in the experiments. It could also be due to the difficulty
associated with locating the center of the vortices in experiments, because we can
see in figure 4.3(d) and (e) that a small spanwise shift away from the centers of the
vortices produces velocity profiles that are quite different.

Figure 4.5 shows the growth of |up — upl,,,. in figure 4.4 compared with the
experimental measurements of Swearingen & Blackwelder. The difference between
our results and the experimental measurements are minor, especially in the growth
rate (the slope) for £ < 80cm. The maximum streamwise velocity of the Gortler
vortices from our simulations is always larger than in experimental measurements.
‘This may be associated with the difficulty in measuring |us|,,,, experimentally and
the time averaged method used to produce the data. By lowering the energy level
of the initial perturbations and increasing X to 2.0cm, we can match the data from
Swearingei and Blackwelder.

Also given in figure 4.5 is the linear growth prediction of Gértler vortices obtained
from the stability code using the same parameters. The amplitude of the linear
Gértler vortices is scaled to match the simulation code (since the perturbation level
in a linear analysis is irrelevant). It can be seen that the growth of the Gértler
vortices from the simulation code is well predicted by the stability code before
the vortices reach the strongly nonlinear stage at z > 60cm. The disagreement for
x < 20cm is caused by the different streamwise locations used to start the simulation
and the stability analysis. Since it is unlikely that the two codes have errors which
make them give the same growth rates, this result serves as part of the verifications

of the methods and codes used in this study.

The development of wall shear 1, = 8uy/30 is given in figure 4.6. The simulation
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is started with the same parameters as in figure 4.4. Again there is reasonable

agreement between our results and the experimental measurements.

Sabry & Liu (1991) and Lee & Liu (1992) give a similar comparison with the
experimental observations of Swearingen & Blackwelder (1987) using a temporal
theory and spatial parabolized methods. In general, their results from temporally
and spatially evolving Gortler vortices are quite similar to ours. Readers are referred
to Sabry & Liu (1991) and Lee & Liu (1992) for more details on the nonlinear

features of Gortler vortices, since this is not the main topic of this study.

4.4 Spanwise secondary instability of spatially
developing Gortler vortices

Guo & Finlay (1992) show that the spanwise secondary instability of developing
Dean vortices plays an impeortant role in the wavelength selection process. This
instability distorts the developing Dean vortices before they reach the fully
developed stage and provides perturbation energy for the splitting and merging
of vortices, which occur shortly after the Dean vortices reach the fully developed
stage. To see if similar ideas apply to Gértler vortices, we next examine the spanwise

secondary stability of developing Gortler vortices.

When the base flow develops from the Blasius boundary layer to Gortler vortices,
its stability can be analyzed by marching the stability code together with the
simulation code. Since Gértler vortices with large amplitude can only develop on a
concave wall with strong curvature, all cases presented in this paper use a concave
wall with radius R = 3.2m, freestream velocity U, = 5m/s and kinematic viscosity
v = 14.5 x 10~%m/s®. These parameters correspoud to strong curvature and are
also used by Swearingen & Blackwelder (1987) in their experiments. The initial

flow condition used for the base flow u® is

u’ = (e vpsin(2nz/A), ug, 0) (4.1)
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where ug and vg are the streamwise and vertical components of Blasius boundary
layer flow and e is used to adjust the initial energy level of the perturbation in the

base flow. The initial eigenfunction

i =(-vg, 0, 0) (4.2)

is used for both the real and imaginary parts of the related perturbation of spanwise
secondary instability.

Our numerical results show that the most unstable wavenumber & of spanwise
secondary instability is 0.5 for spatially developing nonlinear Gortler vortices. Since
Gortler vortices are also a spanwise periodic flow, the relation between the growth
rate, eigenfunction and b is the same as that of Dean vortices (see §3.1 in Guo &
Finlay, 1992)

f)y=f(b=xn). (4.3)
Here f(b) represents the spatial growth rate and eigenfunction at b, and n =
1,2,3,---. Unlike Dean vortices, there is no fully developed stage for Gortler
vortices. They are under constant spatial development. In addition, there is no

stable region for all cases we have studied.

4.4.1 Gditler vortices with long waveiength

Figure 4.7 shows the energy of the Gortler vortices in the base flow with
wavelength A = 2.13cm (A = 600) and the related perturbation of spanwise
secondary instability with A\; = 4.26cm (b = 0.5). Both the simulation code and
the stability code are started at z = 9.6cm with € = 0.05 in equation (4.1). It
can be seen that the energy of the perturbation always increases. This indicates
that the developing Gortler vortices, like developing Dean vortices, are not stable

to spanwise perturbations.

Also given in figure 4.7 is the energy of the perturbations with A = 2.13cm and
4.26cm obtained by setting the base flow u® to be Blasius boundary layer in the
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stability code. For 0.4m < x < 0.8m, the growth of the Goértler vortices in the base
flow is well predicted by linear theory. When x > 0.85m, the Goriler vortices reach
the nonlinear stage and their growth begins to slow down. As with Dean vortices,
the growth of the perturbation is well predicted by the primary instability growth
rate at A = 4.26cm for 0.4m < z < 0.7m where the energy level of the Gortler
vortices in the base flow is low. This indicates that small amplitude vortices with
varying wavelength in the base flow do not interact with each other significantly.

The growth of each wavelength is purely governed by primary instability. A similar

situation can be found in curved channel flow.

In fgure 4.7, the disagreement for z < 0.4m may partly be due to the fact that
the disturbance used to start the simulation is not the most unstable solution of the
parabolized Navier-Stokes equations. In general, although different initial conditions
lead to differeni solutions, vhe (most) unstable (or growing) eigensolutions will grow
out of the transient solution associated with a given initial condition and dominate

the solution downstream, while the other components of the transient solution will

decay.

When z > 0.7m in figure 4.7, the nonlinearity of the base Gortler vortices sets
in, and the growth of the perturbation increases. Here the spanwise secondary
instability begins to play an important role. The evolution of the streamwise
component ug® of the base Gortler vortices and the outflow component u,’ of the
related perturbation is shown in figure 4.8. At z = 0.52m and 0.68m, the patterns
of the perturbation (figure 4.8b) are the same as the ones with A = 4.26cm from
primary instability analysis. There is only one pair of vortices in the box. These
perturbation patterns grow downstream until z = 0.84m where the base Gértler
vortices have reached a considerable nonlinear level (figure 4.82). Then two small
additional single vortices begin to appear near the wall at the bottom of the two
original vortices and continuc to grow downstream. Unlike in curved channels (Guo

& Finlay, 1992, no spanwise adjustment of the perturbation pattern is observed.
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The flow patterns of the base flow and related perturbation at x = 0.68m and
1.0m are shown in figure 4.9. The grid point velocities in figure 4.9 (and all other
vector plots in rest of this paper) are shown on the grids actually used in the
computation. At z = 0.68m where :.ie Goértler vortices in the base flow are still
in their linez. stage, there are two pairs of vortices in the base flow (figure 4.9a)
and one pair in the perturbation, which has A\, = 2\ (figure 4.9¢). In figure 4.9(a),
we can see there is strong outflow away from the wall on the edge of the boundary
layer. This reflects the reality of the growing thickness of the boundary layer. At
this location, the amplitudes of the Goértler vortices are small and comparable to
the outflow velocity at the boundary layer edge. At £ = 1.0m in figure 4.9(b), the
Gortler vortices have reached the nonlinear stage. The amplitudes of the vortices
become much larger than the outflow velocity on the edge of the boundary layer.
The vortices also extend considerably further in the radial! direction. The numher
of vortex pairs in the perturbation increases to three in figure 4.9(d). There are two
additiv.ial vortex pairs near z/A = 0.75 and 1.75. The effect of the perturbation
of spanwise secondary instability on the base vortices is illustrated in figure 4.9(e)
through the superimposition of 100% of this perturbation on the base flow (figure
4.9b). The two vortex pairs with outflow regions (where the fluid flows away from
the concave wall) near z/A = 0.25 and 1.25 in figure 4.9(b) are pushed together
towards z/A = 0.75 in figure 4.9(e), creating space near z/\ = 1.75. Increasing
the percentage of the perturbation in figure 4.9(e) to 150% causes one small pair
of vortices to be produced at z/A = 1.75 near the wall with an outflow region at
its center. (Note that the definition of outflow region here is different from the one

used for curved channel flow in Guo & Finlay, 1992).

Compared with Dean vortices {figure 13e in Guo & Finlay, 1992), the effects of
the spanwise secondary instability on the base flow are quite similar in both cases.
The two vortices separated by a region where the fluid flows towards the concave

wall (near 2/ = 0.75 in figure 4.9¢) are squeezed together and become smaller while
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a small vortex pair is created near the concave wall in between the two dominant
pairs. As will be discussed in §4.5, the nonlinear development of this perturbation

causes the base flow te develop from two pairs of vortices into three pairs. We call

this process the splitting of Gortler vortices.

Our numerical results show that the perturbation pattern of spanwise secondary
instability is sensitive to the initial spanwise phase difference between the base
vortices and the perturbation, but is relatively insensitive to the actual flow patterns
of the initial conditions used for the base flow and the perturbation. Figure 4.10
shows a similar case to that of figure 4.9 at £ = 0.984m but with the base vortices
shifted z/A = —0.25 in the spanwise direction (figure 4.10a) relative to the phase
of the perturbation eigenfunction. A cosine function is used in equation (4.1) and
e = 0.1. Before the base vortices enter the nonlinear stage, the flow pattern c¢f the
perturbation is the same as the one in figure 4.9(c). When the base vortices become
nonlinear at r = 0.984m, the perturbation is shown in figure 4.10(b). We can see
that the perturbation pattern here is differert from that in figure 4.9(d), although
the total number of strong vortex pairs in figure 4.10(b) is still three. Figure 4.10(c)
shows the superimposition of 100% of the perturbation on the base vortices. The
overall effect of the perturbation on the base flow is similar to that in figure 4.9(e).
The two base vortex pairs with outflows at z/A = 0.0 and 1.0 in figure 4.10(a)
are squeezed towards z/A = 0.5 in figure 4.10(c). Two vortices separated by an
inflow region at z/A = 0.5 become smaller. A small vortex pair can be detected
at 2/\ = 1.5 near the concave wall. This new pair is closer to the vortex pair
near z/\ = 0.9 than the other pair. This is different from figure 4.9(e), where the
new pair is equidistant from the two dominant pairs. The energy development of
the perturbation in figure 4.10 is very similar to that of figure 4.7. The difference
between the growth rates of the perturbations in figures 4.9 and 4.10 is small.

Similar results are found for all A > 500. The larger A is, the stronger the extra

small vortices in the perturbation are, and the more likely a new pair of vortices will
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appear in the flow. Like the Dean problem, it is difficult to define a lower bound
on A at which the perturbation changes from having three pairs of vortices to one

pair (and which thus distinguishes vortex splitting from merging).

4.4.2 Godrler vortices with short wavelength

Figure 4.11 shows the development of the energy of the base Gortler vortices
with A = 0.749cm (A = 125) and the related perturbation of spanwise secondary
instability with A; = 1.498cm (b = 0.5) at the same parameters as those in figure
4.7. Also given are the energy of linear Gortler vortices from primary instability at
A\ = 0.749¢m and 1.498 cm. A similar situation to that in figure 4.7 is found here.
The growth of the base Gértler vortices is well predicted by primary instability
for 0.3m < z < 0.7m. For z < 0.7m where the energy level of the base Gortler
vortices is low, the growth of the perturbation is the same as the one from primary
instability. When z > 0.7m where the nonlinearity of the base Goértler vertices sets
in, the growth of the perturbation begins to change and the spanwise secondary
instability becomes visible. As in figure 4.7, the growth rate of the perturbation is
always positive.

Figure 4.12 shows the evolution of uJ and u,’ associated with figure 4.11. At
£ = 0.52 m and 0.68m in figure 4.12(a), the base Gortler vortices are in the
linear stage. At these two locations, the patterns of the perturbation in figure
4.12(b) are the same as the ones given by primary instability at A = 1.498cm.
Further downstream, as the base Gortler vortices become nonlinear, the shape of
the perturbation begins to change. This can be seen at z = 0.84m in figure 4.12(b).
But there is still only one pair of vortices in the perturbation. By z = 1.25m, the
shape of the perturbation is significantly different from that at z = 0.68m. The
total number of vortices in the perturbation remains one. There is no significant

spanwise shift of the perturbation pattern in figure 4.12(b). This is different from
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Dean vortices (figure 9 in Guo & Finlay, 1992). In the Dean problem, a significant
spanwise adjustment of the perturbation pattern is observed when the base Dean
vortices enter the nonlinear stage. As a result, the perturbation pattern there is

not sensitive to the initial spanwise phase difference between the base vortices and

perturbation.

The flow patterns of the base flow and the related perturbation at r = 0.68m
and 1.0m are shown in figure 4.13. At z = 0.68m in figure 4.13(a), the base Gortler
vortices are relatively small and the outflow at the edge of the boundary layer can
still be seen. The related perturbation in figure 4.13(c) has the same pattern as the
one given by primary instability at A = 1.498cm. At z = 1.0m in figure 4.13(b), the
base Gortler vortices become nonlinear. They have grown considerably in the radial
direction and have larger amplitudes. Compared to the cross-stream velocities of the
vortices, the outflow on the edge of the boundary layer have become much smaller.
The flow pattern of the related perturbation changes accordingly in figure 4.13(d),
although there is still only one pair of vortices in the space of two base vortex pairs.
Notice that the perturbation does not grow much in the radial direction. This can
also be seen in figure 4.12(b). This situation is different from that at A = 2.13cm in
figures 4.8 and 4.9. The superimposition of 50% of the perturbation (figure 4.13d)
on the base flow (figure 4.13b) is shown in figure 4.13(e). The vortices near z/A = 0.5
and 1.0 in figure 4.13(b) are squeezed together and become smaller while the other
two grow stronger and bigger. This situation is quite similar to that for Dean
vortices (figure 10e in Guo & Finlay, 1992}). In both cases, two vortices separated
by a region where the fluid flows towards the concave surface are squeezed together
by the perturbation of spanwise secondary instability and become smaller, while the
other two vortices grow bigger. If this analogy with Dean vortices continues further
downstream, merging of Gortler vortices would occur as a result of the instability

with respect to spanwise perturbations.

Like Gortler vortices with long wavelength, the perturbation pattern of spanwise
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secondary instability here is sensitive to the initial spanwise phase difference between
the base vortices and perturbation. Figure 4.14 shows a case where the base Gortler
vortices (figure 4.14a) are shifted z/\ = —0.25 in the spanwise direction from that
of figure 4.13(b) while the perturbation is unchanged. Before the base vortices enter
the nonlinear stage, the flow pattern of the perturbation looks like that in figure
4.13(c). At z = 1.169m where tke base vortices are nonlinear (figure 4.14a), the
perturbation pattern (figure 4.14b) is quite different from that in figure 4.13(d). On
top of the two vortices near the wall there are another two vortices, far away from
the wall. The effect on the base vortices is illustrated in figure 4.14(c) through the
superimposition of the perturbation (16.7%) on the base vortices in figure 4.14(a).
For the base vortex pair with an outflow region at z/A = 1.0 in figure 4.14(a),
the lower half of the vortex pair near the wall is squeezed together by the two
perturbation vortices near the wall in figure 4.14(b), so that its dimension in the
spanwise direction becomes less. The upper half of this vortex pair is amplified
by the two perturbation vortices away from the wall, and as a result it becomes
clongated in the radial direction and grows bigger. For the base vortex pair near
z/A = 0.0 (or 2.0) in figure 4.14(a), the lower half of the vortex pair near the wall
is enhanced by the two perturbation vorti.es near the wall (figure 4.14b) and grows
stronger, while its upper half is weakened by the two perturbation vortices away

from the wall. As a result, this vortex pair moves closer to the wall.

Figure 4.15 shows the energy of the base vortices and the related perturbation
from figure 4.14. It can be seen that the development of the energy in the.
perturbation is similar to that in figure 4.11. (The energy levels of the base vortices
in figures 4.11 and 4.14 are not the same). The perturbation growth rates in both
cascs are quite close.

The perturbations shown in figures 4.9, 4.10, 4.13 and 4.14 are four typical
patterns found in most cases. In all these cases, the perturbation wavenumber

b = 0.5 is used. When other perturbation wavelengths (b # 0.5) are used, our
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numerical results show that during the linear stage of the base Goértler vortices, the
perturbations grow at the rates given by primary instability at these wavelengths.
When the base vortices enter the nonlinear stage, these perturbations continue to
grow, but at the rates given by spanwise secondary instability. These secondary
growth rates are smaller than the one with b = 0.5. Since the perturbation growth
rate of spanwise secondary instability depends on the nonlinear development of the
Gortler vortices in the base flow, which again depends on the initial perturbations
used to start the simulation, it is difficult to define the growth rate of the spanwise
secondary instability as a function of Gortler number G6 and wavelength parameter

A. Other than b = 0.5 being the most unstable, no specific growth rate pattern is

given here.

The determination of b = 0.5 being the most unstable wavenumber for the
spanwise secondary instability of developing Gortler vortices is not trivial. Since
the growth rate depends both on the initial eigenfunctions used to start the marching
and the nonlinear development of the base Gortler vortices, it is difficult to compare
the growth rates with different b. Only with the help of the simulations with a large
spanwise computational box are we able to determine that b = 0.3 is the most
unstable wavenumber for the spanwise secondary instability of Gortler vortices.
For example, when more than three pairs of Gértler vortices are included in a
computational box, the splitting and merging of vortices mostly involves two pairs

of Gértler vortices and the flow patters are similar to those in figures 4.9, 4.10, 4.13

and 4.14 predicted by superimposing the perturbations with & = 0.5 on the base

Gortler vortices.

Using a local linear theory and a semi-analytical method, Floryan & Saric
(1984) found a similar result for the interaction of the streamwise vorticity in
the freestream with Gortler instability. Their results show that when there exist
streamwise vortices in the freestream, the most unstable wavelength of the Gortler

instability is twice that of the vortices in the freestream. In their study, they
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assume the amplitude of the vortices in the freestream is much larger than that
of the linear Gortler vortices. Qur discussions in this section show the spanwise
secondary instability sets in only when the base Gértler vortices become nonlinear.
Since the nonlinear effect of the streamwise vortices in the base flow is not considered
in Floryan & Saric (1984), the details of these types of interactions and how they

affect the wavelength selection in their work are uncertain.

To summarize the above discussions, developing Gortler vortices are always
unstable to spanwise perturbations. During the early stage of the evolution where
Gortler vortices are linear, the perturbations with other wavelengths also grow, at
the rates given by primary instability at these wavelengths. When the base Gértler
vortices reach the nonlinear stage, perturbations with wavelength double that of the
base Gértler vortices become the most unstable. These perturbations will grow at
different rates with different flow patterns. There are three pairs of vortices in the
perturbations for the base Gértler vortices with long wavelength (A > 500) and one

pair for the base flow with short wavelength.

4.5 Simulations of spliting and merging of Gortler
vortices

To our knowledge, the formation of naturally occurring Gér*'~~ vortices in
experiments is rather irregular and it is difficult to determine if chere is evidence
of splitting or merging of Gortler vortices from published data. In §4.4, our linear
stability analysis of spatially developing Gortler vortices predicts the existence of
splitting and merging of Gértler vortices. To support those arguments, we next
study the nonlinear development of spanwise secondary instability and the splitting
and merging of Gortler vortices using the simulation code with a large spanwise
computational box. In this section, the flow parameters used in all simulations are

Us = 5m/s, v = 14.5 x 10~®m/s® and R = 3.2m. The initial flow condition used
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to start the sirnulations is

u = (vp, upg + 0.03 ug (sin(47rz/\) + € sin(4wrz/X,)), 0) (4.4)

where ) is the dominant wavelength, A, is the perturbation wavelength, and ¢ is
used to adjust the energy level of the perturbation wavelength relative to that
of the dominant wavelength. Two pairs of dominant vortices are included in
the computational box since, in all cases studied, the most unstabie perturbation
wavenumber b is 0.5 or 1.5. The energy in spanwise Fourier modes is also monitored.
The energy in spanwise Fourier mode k, is defined by (Finlay et al. , 1988)

B(k.) = cfks) [ a(r,k.)?dr

where c(k) = 0.5 for k = 0 and c(k) = 1 for k # 0; Q(r, k.) is the spanwise Fourier
transform of u. In the case of b = 0.5, before the spanwise perturbation develops
nonlinearly the energy in the first mode comes mostly from the perturbation with

b = 0.5 and the energy in the second mode mostly from the dominant Gortler

vortices.

4.5.1 Gonler vortices with short wavelength

Figure 4.16 shows the flow patterns in the cross-stream plane of a simulation with
the dominant wavelength A = 0.749cm (A = 125) and the perturbation wavelength
A1 = 2X (b = 0.5). The simulation is started at the streamwise location z = 6.032m.
A relatively large € (e = 0.2) is used in equation (4.4). Figure 4.16(a) shows the
flow pattern at £ = 0.556m. There are two pairs of relatively weak vortices in the
domain. It can be seen that the vortices between z/A = 1.0 and 1.5 are smaller
than those between z/A = 0.0 (2.0) and 0.5. When compared to figure 4.13(e),
the flow pattern here is well predicted by the secondary stability theory in that
a pair of vortices separated by an inflow region (at z/A = 0.75 in figure 4.13e

and z/A = 1.25 in figure 4.16a) is made smaller than others. This is the linear
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stage of vortex merging. Further downstream at £ = 0.71m, the single vortex at
z/A = 1.5 grows bigger while the one at z/A = 1.0 continues to stay small. The
vortex pair with an outflow region near z/A = 1.75 grows bigger in the r direction
compared with the other pair centered near z/A = 0.8. These changes are seen more
clearly at z = 0.864 m in figure 4.16(c). The flow patterns in figure 4.16(c) and
figure 4.14(c) are quite similar. The lower half of the vortex pair near z/A = 1.75
in figure 4.16(c) is squeezed together while the upper half is elongated in the r
direction and grows bigger. The vortex pair near z/A = 0.8 is pressed towards
the wall (relative to the growing boundary layer thickness) and becomes shorter in
the r direction but wider in the spanwise direction. The vortex merging pattern
switches from that of figure 4.13(e) at £ = 0.556m to that of figure 4.14(c) when it
reaches = = 0.864m. This vortex merging pattern continues to develop nonlinearly
downstream. At z = 1.018m (figure 4.16d), the vortex pair near z/A = 1.75 is much
stronger and elongated in the r direction, while the other pair near z/A = 0.8 grows
only a little in the r direction. Further downstream at z = 1.171m in figure 4.16(e),
as the vortex pair near z/A = 1.75 moves away from the wall, its strength reduces.
The vortex pair near z/\ = 0.8 becomes stronger again. Our simulation shows that
further downstream, this vortex pair eventually occupies the whole domain and the

vortex pair near z/\ = 1.75 disappears totally as it moves away from the wall.

The energy in the first and second Fourier modes of the Gortler vortices in figure
4.16 is shown in figure 4.17. Also given is the perturbation energy of spanwise
secondary instability from figure 4.15. The perturbation energy level is scaled to
match the energy in the first Fourier mode. It can be seen that for z < 0.6m, the
energy in the second Fourier mode (which corresponds to the dominant wavelength)
is close to the total energy. This indicates that the dominant Gortler vortices are
in the linear stage and the energy in the harmonics of the dominant wavelength
is negligible. When z > 0.6m, the energy in the second mode begins to drop

(compared to the total energy) and the nonlinearity of this dominant wavelength
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begins to set in. For 0.45m < z < 0.6m, the energy growth in the first mode is well
predicted by spanwise secondary instability. Whisn z > 0.6m, the energy growth of
the first mode begins to slow down. By x > 0.9in, the energy level in the first mode
is quite comparable to that in the second mcde. From figure 4.16(c), we know that
the nonlinear development of the spanwise secondary instability begins to dominate
the flow at this point, and the interactions between different wavelengths become
visible.

Generally, the smaller € is, the greater streamwise distance over which the
prediction given by spanwise secondary instability for the energy growth in the
first mode is valid. This situation is similar to that for Dean vortices (§7 in Guo &
Finlay, 1992). It is not surprising that the linear prediction fails once nonlinearity
sets in. When ¢ is large, nonlinearity occurs early and there are three types of
nonlinearities involved: the nonlinearity of the dominant vortices, the nonlinearity
of perturbations and the nonlinear interaction between the dominant vortices and

perturbations. It is difficult to determine these nonlinear effects even with numerical

simulations.

Figure 4.18 shows the spatial development of the velocity component up
corresponding to figure 4.16. When z < 0.556m, the contour shapes of the two
vortices are almost the same. At z = 0.864m, the vortex merging becomes visible.
The middle mushroom becomes shorter than the other one (in the vertical direction).
This is seen more clearly further downstream. The nonlinear development of
spanwise secondary instability thus causes one mushroom in figure 4.18 to become.
smaller and the other to be larger in the r direction.

Other simulations we have done show that when a cosine function is used in
equation (4.4) for the dominant wavelength, the vortex merging pattern always
looks like that in figure 4.14(c) and no change in the vortex merging pattern is
observed. The structures of both vortex pairs are more symmetric and the vortex

merging process becomes visible earlier. For example, in order to obtain a flow
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pattern similar to that in figure 4.18, we use a smaller € (¢ < 0.1) in equation (4.4).

When more than two pairs of the dominant vortices are included in a
computational box, our simulations show that the vortex merging patterns are
similar to that of Agure 4.14(c) in most cases. The vortex merging pattern predicted

by figure 4.13(e) is only seen during the linear stage of vortex merging.

Compared to Dean vortices (§7 in Guo & Finlay, 1992), the vortex merging
process of Gortler vortices is different. In the case of Dean vortices, once a vortex
pair separated by the fluid flowing towards the concave wall is squeezed together
and becomes smaller, this flow pattern continues to develop until the squeezed
pair totally disappears. In the case of Gortler vortices, one vortex pair is pressed
towards the wall and becomes shorter in the r direction (relative to the undistorted
case), while its neighboring pair is elongated in the r direction and grows bigger.
Further downstream as this neighboring vortex pair moves away from the wall
and becomes weaker (probably due to a reduction of the centrifugal force which
drives the centrifugal instability), the remaining vortex pair begins to dominate the
domain. This phenomenon is not found in Dean vortices where the vortices occupy
the whole breadth of the channel and the convex wall prevents any escape. But
in both Dean and Gértler vortices, the nonlinear vortex merging patterns are quite

sirnilar to those predicted by spanwise secondary instability theory.

4.5.2 Gortier vortices with long wavelength

Figure 4.19 shows a simulation similar to that of figure 4.16 but with the
dominant Gortler vortices having A = 2.13 cm (A = 600) and the perturbation
having wavelength A\, = 2A/3 (b = 1.5); the perturbation level, ¢, is 0.8 in figure
4.19. We choose b = 1.5 because during the linear stage of the dominant vortices,
the growth rate of the primary instability at 2A/3 is larger than at 2X. So the

perturbation with 2A/3 will grow faster and generate more disturbance energy
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when spanwise secondary instability sets in. Once the dominant vortices entev
the nonlinear stage, the growth rate of the perturbation is the same at 2)\/3 and
2\ (cf. equation 4.3). At z = 0.474m in figure 4.19(a), there are two dominant
pairs of Gortler vortices with outflow regions near z/A = 0.6 and 1.8. There is also
a small single vortex appearing near z/\ = 1.25. Downstream at z = 0.627m in
figure 4.19(b), while the two dominant vortices are pronounced, the small vortex
near z/A = 1.25 has not decayed, but keeps growing. This flow pattern continues to
develop downstream. At z = 0.781m in figure 4.19(c), we can see the structure of
the dominant vortex pair near z/A = 0.6 has been modified significantly as a result
of the small vortex near z/\ = 1.25. By z = 0.93m in figure 4.19(d), the small
single vortex near z/\ = 1.25 in figure 4.19(c) finally develops into a small vortex
pair near z/\ = 1.0. There are three vortex pairs in the domain. Compared to
figure 4.10(c), the flow pattern in figure 4.19(d) is roughly predicted by the linear
stability theory. In both figures, the new vortex pair is gererated near the wall in
between the two dominant vortex pairs in a region where the fluid {lows towards

the wall. This new vortex pair is closer to one dominant pair than the other.

The spatial development of the velocity component ug is shown in figure 4.20.
The two dominant mushrooms can first be seen at = = 0.474m. They grow rapidly
downstream. At z = 0.627m, a small mushroom can be detected in between the two
dominant mushrooms. By z = 0.781m, the small mushroom is clear. It is closer to
the right dominant mushroom than to the left one. Adjusting €, we can control the
streamwise location of the appearance of this new pair of vortices. In figure 4.20, a
very large € = 0.8 is used. If we increase the wavelength of the dominant Gortler

vortices to A = 2.5cm, a smaller ¢ = 0.2 is enough to make the vortex splitting quite

visible in the same streamwise distance.

Other simulations done by us show that although most vortex splitting patterns
are similar to those in figure 4.19, there are still many other forms which are not

predicted by either figures 4.9 or 4.10 from the linear stability theory. For example,
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when a cosine function is used for the dominant wavelength in equation (4.4) and
¢ = 0.6, the resulting flow pattern at z = 0.909m is shown in figure 4.21. Oddly, the
flow pattern is more similar to the vortex merging pattern in figure 4.14(c). The
vortex pair at z/A = 0.5 is elongated in the 7 direction and moves away from the
wall, while the pair at z/\ = 1.5 is pressed towards the wall and becomes larger in
the spanwise direction. However further downstream, a new vortex pair is created
on top of the vortex pair at z/A = 1.5. As this new vortex pair grows downstream,

it splits apart the dominant pair from above, not below.

From figures °.18 and 4.20, we sec that both splitting and merging types of
nonlinear development of spanwise secondary instability significantly :nodify the
mushroom shapes of the streamwise velocity and cause asymmetric vortex structures
and irregularity. Since mcst Géortler vortices breakdown for x > 1.2m for the
flow parameters we are using (cf. Swearingen & Blackwelder, 1987), the nonlinear
development of splitting and merging of vortices may not have sufficient streamwise
distance to develop fully. For example, in the case of vortex merging, the Gortler
vortices will probably break down before two vortex pairs develop completely into
one pair. Thus, in experiments only the beginning of the merging process is likely to
be observed. Because Gértler vortices are under constant spatial evolution, vortex
splitting may manifest itself through the later formations of some vortex pairs in
between other vortices. If we consider an observation of one vortex pair becoming
smaller while its neighbor grows bigger as the signature of vortex merging, and the
later appearance of some vortices in between existing vortices as the signature of
vortex splitting, then experimental evidence is plentiful (cf. Bippes 1972, Aihara
& Kovama 1980, Aihara et al. 1984 and recently Swearingen & Blackwelder 1987).
Since there are severe irregularities in most experimentally observed Gortler vortices
and no special attention has been given to the spanwise secondary instability of

Gortler vortices, we will not elaborate on experimental evidence any further.

Compared to Dean vortices (Guo & Finlay, 1992), Gértler vortices have a smaller
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growth rate of spanwise secondary instability. In order to observe vortex splitting
and merging (in figures 4.18 and 4.20), a large € is required. This indicates that the
interactions between (Gortler vortex pairs are not as strong as those between Dean
vortices.

When perturbations with & # 0.5 (or 1.53) are used, our simulations give
results similcr to those for Dean vortices when b # 0.5 (or 1.5) (§7 in Guo &
Finlay, 1992). That is, if the perturbation level is low and there is no nonlinear
interaction between the perturbation and the dominant vortices, the growth of the
perturbation is governed by primary instability before the dominant vertices become
nonlinear; when the dominant vortices enter the nonlinear stage, the growth rate of
this perturbation is given by spanwise secondary instability. If the perturbation
level is high, some energy of the perturbation with b # 0.5 can be converted
into perturbations with » near 0.5 due to the nonlinear interaction between the
dominant vortices and the perturbation with b # 0.5. As a result, the growth of the
perturbation with b = 0.5 dominates the flow in some cases and the nonlinear vortex
splitting and merging discussed earlier in this section occur. If the growth of the
perturbation with 4 = 0.5 does not dominate the flow, vortex splitting and merging
still occur but in a different (irregular) way and spanwise secondary instability is

still characterized by irregularities of the dominant Gortler vortices.

4.6 Wavelength selection and irregularity of Gortler
vortices

Using a local method, Floryan & Saric (1984) have examined the wavelength
selection mechanism of Gortler vortices. They conclude that wavelengths ncar
A = 210, which have the largest primary growth rate (see figure 4.2), are likely
to be observed. This theory explains Bippes’ observations (1972) well. In Bippes’

experiments when screens (disturbance generators) are used to generate isotropic
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random disturbances, the wavelength parameters A of the observed Gortler vortices
are near 210. But in the observations of Tani (1962), Winocto & Crane (1980) and
Swearingen and Blackwelder (1987), much longer wavelengths of naturally occurring

Gortler vortices are observed (A > 650).

In §4.2, we have shown that the growth rate of primary instability does not vary
significantly from A = 175 to 400 (cf. figure 4.2). For this wavelength range, the
wavelength selection mechanism of primary instability is weak. Our discussions in
84.2 also show that over a short distance downstream from the leading edge, the
primary growth rate varies considerably for different forms of initial perturbations.
This further widens the wavelength range favoured by primary instability, and
thus weakens (and complicates) the wavelength selection mechanism of primary
instability. If the perturbations near the leading edge are dcminated by a wavelength
within this widened wavelength range, this wavelength will have a better chance
to develop intc dominant vortices due to its higher initial energy level. If all
wavelengths in the perturbations have equal energy, wavelengths near A = 210
are more likely to be observed due to their slightly higher primary growth rate in

most cases.

Qur “*mulations of nonlinear Gortler vortices in §4.3 show that the growth rates
of primary instability are small compared to the streamwise length allowable for
Gortler vortices to develop. Relatively high energy levels for initial perturbations
(1% of Ux) are required in our simulations in order to obtain Gértler vortices with
a strength comparable with those observed by Swearingen & Blackwelder (1987).
(In the case of Dean vortices, the initial perturbations are less than 0.001% of
U.) This suggests that in the experiments of Swearingen & Blackwelder, there
exists a relatively high level of perturbations. According to the experimental
specifications given by Swearingen & Blackwelder, these large perturbations are
not in the freestream. At z = 10cm from the leading edge, the disturbances they

- measured have amplitude 1% of Ux (see figure 4.5). This indicates that somewhere
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in between the leading edge and £ = 10cm, large perturbations have been generated.
These perturbations cannot be produced by a Gortler instability because of its small

growth rate and the short streamwise distance to this location.

Since Bippes (1972) and Swearingen & DBlackwelder (1987) observed different
wavelengths for naturally occurring Gortler vortices, it is useful to compare
experimental devices between these two groups. In the experiments conducted by
Swearingen & Blackwelder (1987), the test section is essentially a variable width
curved channel. The perpendicular distance between the testing (concave) plate
and the convex plate is small. This design imposes restrictions on the vertical
velocity u, near the leading edge (where u, is of order 1% of Uy), and will generate
perturbations which reduce the value of u, compared with a free concave wall,
i.e. perturbations with u. = —eu, (where u, is the vertical velocity for a sirzie
free concave wall) will be generated. In Bippes’ experiments, concave plates wiih
constant curvature are towed in a water tank. We believe this setup imposes less
restriction on the vertical velocity u, near the leading edge. This is also manifested
by the fact that when disturbance generators (screens) are not used in Bippes’
experiments, the naturally occurring Gortler vortices are smaller and not well
defined. Another likely source of large disturbances is the misalignment of the
leading edge to the direction of the freestreamn Uy. Using the configurations of
Swearingen & Blackwelder (1987), our simulations show that a misalignment of half
a degree in the 7 or z directions will generate enough disturbances for the Gortler
vortices of the observed strength to develop. The common feature between the
large perturbations generated by either the restriction on u, or misalignment of the
leading edge to the freestream is that these large perturbations do not vary rapidly

in the spanwise direction, and they depend strongly on the experimental apparatus.
To simulate the eefect of leading edge misalignment, simulation was started
from z = 0.032m at Uy, = 5m/s,v = 14.5m/s?* and R = 3.2m with the initial

flow condition (vs,ug,0.01ug). This initial flow condition is intended to simulate
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1% misalignment (6.6 degree misalignment) of the freestream in the 2z direction.
The spanwise length of the computational box is 6cm. Figure 4.22 shows the
development of the streamwise velocity ug from z = 0.198m to z = 1.293m. Both
the strength and the wavelength of the dominant Gortler vortices (A = 2cm) are
comparable to those observed by Swearingen & Blackwelder (A = 2.13cm). The
evidence of vortex splitting due to spanwise secondary instability is also manifested
by the later formation of two small mushrooms in between the dominant IMusSilrooms.
When random initial perturbations or perturbations with rapid spanwise variation
are used in the simulations, we find the average wavelength of the dominant Gértler
vortices is very close to A = 210, the one with the largest primary growth rate. In
Bippes’ experiments, the perturbationé generated by screens are of rapid variation,

so the observed wavelengths of Gortler vortices are close to A = 210.

From the above discussions we conclude that wk  :lie perturbations near the
leading edge have both rapid and slow spanwise variations, there is energy for all
wavelengths and thus the wavelength selection mechanism of primary instability
plays a more important role. The wavelengths of the dominant Gdrtler vortices are
expected to be close to A = 210. When the perturbations near the leading edge have
only slow spanwise variation, longer wavelengths will be favoured and the dominant

Gortler vortices will have wavelength longer than A = 210.

Another important source of large perturbations is the leading edge itself.
When the freestream hits the leading edge, acoustic waves will be generated and
the flow near the leading edge is elliptic in nature. To determine the form and
strength of disturbances generated by the leading edge, it is probably necessary
to resort to a time-dependent, three-dimensional elliptical analysis. Very recently,
attention has been given to the leading edge receptivity of the Gortler problem (Hall,
1990). However, since large initial disturbances strongly influence the nonlinear
development of Gortler vortices on a strongly curved wall (see §4.3), the dominant

wavelengths of the initial perturbations may be the most important factor in the



wavelength selection process. We will not discuss the leading edge receptivity
probiem in this study. Readers are referred to Hall (1930) for more details.

The study in §4.4 and §4.5 shows that developing Gortler vortices are not stable
to spanwise perturbations. During the linear development of the dominant Goértler
vortices, vortices with other wavelengths grow independently at the rates given
by primary instability at these wavelengths. As the dominant Gortler vortices
develop into the nonlinear stage, perturbations with twice the dominant wavelength
continue to grow (most rapidly). The nonlinear growth of these perturbations can
generate new vortices or cause some dominant Gortler vortices to disappear. Since
the dominant Gortler vortices brezk down shortly after the onset of secondary
instabilities, we do not expect splitting and merging of vortices to affect the
wavelength selection process significantly. Instead, they will deform the dominant
Goértler vortices significantly and produce irregular vortices. This can be seen in
figures 4.18, 4.20, and 4.22.

Interactions between Gortler vortices with different wavelengths can also provide
large disturbances for the nonlinear development of spanwise secondary instability.
Figure 4.23 shows a simulation at U, = 5m/s, v = 14.5 X 10~-%m/s? and R = 3.2m.
The simulation is started with wavelength A = 2.5cm for the left two vortex pairs
and \ = 0.833cm for the rest of the vortices. When z < 0.506m, the interactions are
not obvious. The shapes of the mushrooms are relatively regular. At z = 0.67m,
the interactions become visible on the interfaces between regions with different
wavelengths. The second and third mushrooms from the left and the first mushroom
from the right begin to lose their symmetries. This can be seen more clearly further
downstream at z = 0.966m. At x = 1.12m, the interactions among the vortices
with smaller wavelength in the right half of the domain can also be seen, causing

distortions to the previously symmetric shapes.

The flow pattern of figure 4.23 at £ = 0.506m and 1.12m is shown in figure

4.924 in the cross-streamn plane. In figure 4.24(a), the flow pattern of the vortices is



156

relatively regular except for the two vortex pairs near z = 0.lcm and 5.5cm with
outflow regions at their centers. No interactions among the vortices with smaller
wavelength from z = 1.0cm to 4.0cm are seen. At z = 1.12m in figure 4.24(b), one
vortex near z = 0.lcm is pushed away from the wall by its neighbor near z = 0.75cm.
There are some distortions on the vortex pair near z = 5.5cm. The interactions and
distortions among the smaller vortices from z = 1.0rm to 4.0cm are less severe at

this stage.

Comparing to Dean vortices (figure 20 in Guo & Finlay 1992), the interactions
between Gortler vortices with different wavelengths are not strong. The interactions
do not change the wavelengths of the vortices significantly, but they do modify the

structures of the Gortler vortices and generate irregularity.

4.7 Conclusion

This study shows that spatially developing Dean vortices and Gértler vortices
share several similarities. Both of them are caused by streamwise curvature due to
centrifugal instability. Both of them are unstable to spanwise perturbations. When
the vortices are small and linear, spanwise perturbations with multiple wavelengths
can coexist and grow simultaneously at the rates given by primary instability. When
some of these vortices grow strong enough to become the dominant wavelengths
and nonlinearities set in, spanwise secondary instability becomes the dominant
instability. Perturbations with wavelength twice that ef the dominant wavelengths
become the most unstable. The nonlinear developerent of these perturbations can
cause two pairs of the vortices with short wavelengih to develop into one pair and
generate a new pair of vortices between two pairs of ve rtices with long wavelength.

There are some differences between these two types of vortices. Considering
the streamwise lengths over which the two types of vortices are allowed to develop,

the growth rates of both primary instability and spanwise secondary instability
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for Gortler vortices are considerably less than those for Dean vortices. In order
to observe the nonlinear development of these instabilities experimentally or
numerically, large perturbations are needed for Gortler vortices. Since Gortler
vortices have a smaller growth rate of spanwise secondary instability, the interactions
between the vortex pairs are not as strong as those for Dean vortices. Vortex
merging and splitting events generally do not have enough sireamwise length to
become strongly nonlinear and change the wavelengths of the vortices significantly,
as they do in the case of Dean vortices. Instead, distortion of the vortex structures
occurs. The details of vortex merging of Gortler vortices are also different from

those in Dean vortices. We believe these differences may be partially related to the

fact that Dean vortices have a streamwise pressure gradient while Gortler vortices

do not.

Spanwise secondary instability is an important instability for developing
streamwise vortices. Wher the vortices in the base flow are linear, spanwise
secondary instability is equ:.alent to primary instability. When the vortices in
the base flow enter the nonlinear stage, the secondary instability controls the
interactions between each vortex pair. It causes the distortion and irregularity of
the vortices. If there was no spanwise secondary instability, then when vortices of a
certain wavelength become nonlinear, all spanwise disturbances at other wavelengths
would decay. This would result in regular, symmetric nonlinear vortices like those
observed in Taylor-Couette flow. The irregular, nonsymmetric vortex structures
observed in curved channel and concave boundary layer experiments would not

occur if the spanwise secondary instability we have discussed in this paper did not

exist.

The study done by Guo & Finlay (1991) shows that in the context of temporai
theory, the streamwise vortices caused by rotation or by both rotation and
streamwise curvature in channel geometries have a spanwise secondary instability

(called ” Eckhaus instability” in Guo & Finlay, 1991) similar to that of Dean vortices.
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Whether the features of Dean and Gortler vortices found in this study exist for
vortices caused by rotation in a rotating channel or on a rotating flat plate, or those
caused by streamwise curvature found in transitional and turbulent wall bounded
shear flows remains to be seen. Since the ronlinear development of this type of
secondary instability modifies the vortex structures significantly (in both Dean and
Gort®. r problems), the study of this type of instability and its effects on the onset of
other secondary instabilities is a necessary step toward understanding the transition

to turbulence.



FIGURE 4.1. The geometry of boundary layer flow over a concave surface is shown.

The streamwise direction is 8.
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FIGURE 4.8. Contours of the velocity components (a) us° of the base Gortler
vortices and (b) u,.’ of the perturbation in figure 4.7 are shown in cross-stream
planes at r = 0.52, 0.68, 0.84, 0.93, 1.0 and 1.25m. The concave wall is shown as

a flat plate and the flow procecds downstream from top to bottom.
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(b)

FIGURE 4.12. Contours of the velocity components (a) ug? of the base Gortler
vortices and (b) u,” of the perturbation in figure 4.11 are shown in cross-strcam
planes at z = 0.52, 0.68, 0.84, 0.93, 1.0 and 1.25m. The concave wall is shown as

a flat plate and the flow proceeds downstrcam from top to bottom.
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) and the related

The energy of linear Goértler vortices from primary instability with A = 2.13cm
(----) and 4.26cm (- ) is also given.
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FIGURE 4.17. The total energy ( ) and the energy in the first ( — — ) and

second ( ---- ) Fourier modes of the Gértler vortices in figure 4.16 are shown vs.

streamwise distance. Also given is the energy of the perturbation from spanwise

secondary instability in figure 4.15 ( ------- ).
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(d)

2.13 cm (A = 600)

are projected onto the (r — z) plane at (a) £ = 0.474m; (b) z = 0.627m; (c)

FIGURE 4.19. Goértler vortices with dominant wavelength A

14.5 x 107%m/s? and
2.13cm, b = 1.5 and € = 0.8 in

0.781m and (d) z = 0.934m. Here, U, = 5m/s, v

R = 3.2m. The simulation is started with A

r =

equation (4.4).
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FIGURE 4.21. Gortler vortices similar to those in figure 4.19 but with € = 0.6 and

a cosine function used for the dominant wavelength in equation (4.4) are projected

onto the (r, z) plane at z = 0.909m.



FIGURE 4.22. Contours of the streamwise velocity ug of the Gortler vortices at
Ue =35m/s, v=14.5x 167%m/s? and R = 3.2m arc shown in cross-stream plancs
at = 0.198, 0.388, 0.518, 0.678, 0.838, 0.973, 1.078, 1.187 and 1.293m. The
spanwise length of the computational box is 6cm. The simulation is started at
z = 0.032m with the initial flow (vg, ug, 0.0lug), where vg and up are the
vertical and streamwise velocities of Blasius boundary layer flow. The concave wall

is shown as a flat plate and the flow proceeds downstream from top to bottomn.



FIGURE 4.23. Contours of the streamwise velocity us of the Gortler vortices at

Ux = 5m/s, v = 14.5 x 107°m/s? and R = 3.2m are shown in cross-stream
planes from z = 0.198 to 1.12m with Az = 0.1536m. The spanwise length of the
computational box is 10cm. The simulation is started with wavelength A\ = 2.5cm
for the left two vortices and A = 0.833cm for the rest of the vortices. The concave

wall is shown as a flat plate and the flow proceeds downstream from bottom to top.
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FIGURE 4.24. Gortler vortices in figure 4.23 are projected onto the (1 — 2) nlane
at (a) z = 0.506m and (b) £ = 1.12m.
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CHAPTER 5

Final remarks

This study shows spanwise secondary instability is an important instability for
spatially developing Dean and Gortler vortices. When the vortices in the base
flow are linear, spanwise secondary instability is equivalent to primary instability
(Dean or Gortler instability). When the vortices in the base flow enter the nonlinear
stage, it becomes an instability which measures the interactions between cach vortex
pair. It causes two vortex pairs to develop into one pair if the wavelength of
these vortices is short, and generates a nev: vortex pair in between two existing
pairs if the wavelength is long. Spatially developing Dean and Géortler vortices
are always unstable to spanwise perturbations. It will be interesting to know
whether the features of Dean and Gortler vortices found in this study exist for
vortices caused by rotation on a flat plate, or those caused by streamwise curvature
found in transitional and turbulent wall bounded shear flows. Since the nonlinear
development of this type of secondary instability modifies the vortex structures
significantly, the study of this type of instability and its affects on the onset of

other secondary instabilities is a necessary step toward understanding the dynamics

which govern these vortices.
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Appendix A

The proof of (2.7) follows. For any spanwise periodic flow, Fourier expansion can
be used in the z direction for the amplitude function i(r, 2) in (2.4). The general

non-dimensional perturbation associated with spanwise wavenumber b * k is

N

a = Z u,,(:z:) eznz st+ijdy+(tk+b)z]
N

=7

N
L4 .

= Z ul:(-‘k(x) e:lz st+i(dy+bz) _ Z u[:;;k(l') etlz st-+i(dy+bz)
I=-% =5

Sk
+ Z uiq:k(x) ezlz st+t(dy+b..)_

=%+1

For any small € > 0 there always exits an m > 0 such that when N > m the

following is true:

H+i-1 Xk
_ Z ul:{:k(x) e:lzest+s(dy+bz) + z ul:;:k(x) etlzest+|(dy+bz) < €. (AI)
=& =541

Taking the limit m — oo provides

[« <]

u = Z UL:FK(I) :lz st+l(dy+bz) (A2)

{=~—o0
Defining @, (1) = Guz«(z), then one obtains

i ﬁ:‘(l‘) einzest+i(dy+bz), (4A3)

n=—-00

which is just the perturbation associated with spanwise wavenumber b. Thus the
perturbation with wavenumber b has the same growth rate as that with wavenumber
b=+ k, but has the coefficients in the Fourier expansion shifted by Fk. Since the flow
pattern of a perturbation is given by (2.5), one can show the corresponding flow
patterns of (A.2) and (A.3) are also the same. One can also show that s(b) = s(=b)

by letting k = 0 and reflecting the z—axis about z = 0.



Appendix B

Discretization of parabolized Navier-Stokes
equations

For ease of illustrating our numerical formulation, the parabnlized Navier-
Stokes equations (3.1-3.3) are first discretized in the streamwise divection using the
schemes discussed in §3.2.1, i.e. a third order Adam-Bashforth scheme for nonlinecar

convection terms and an implicit Euler scheme for viscous terms. Equation (3.1)

then becomes

_ 1 v2 n4-1 +2'U.: ( n+l _onYy __ aﬁ e B.1
Re "’ U= Az \U= uz) = 9=~ oz (B.1)
where
62 82 2 a 3 3
2 _ - v 2 (. _
V= 597 + 352 gz gﬁ‘ {ay(uyu,) + Y (u.uz) fx}

and B; = 23/12, —16/12, 5/12 for i = 0, 1, 2. The equations (3.2-3.3) can be

written as

1 1
_Evzvn-{-l + Vpn+l + _A__E(u:+lvn+l . u:vn) =g ([32)
— div vt = Kl:;(u;“ - ul) (B.3)
where
d
V = b—;ey + a—z-ez, v = u.e, + u.e;,
2
==Y B {vV v -1}, f = fye, + fee..
=0

The solutions for u2*!, ug*!, uj*! and p*t! are sought in the domain Q with
homogeneous Dirichlet (or Neumann) velocity boundary conditicns on the domain

boundary 89. The equation (B.1) is a two-dimensional Helmholtz equation for u;*'

T
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and a standard finite element formulation is used. The equations (B.2-B.3) can be
viewed as a two-dimensional, unsteady, nonhomogeneous Stokes problem for v and
p and the equivalent variational statements are as follows: find the velocity v"+! in

the space H = [H}(S)]? and the pressure p™*! in the space Q = LL(€) such that

un+l vn+l - ‘U.:V"

k%(Vv"“,Vw)—(p"“,divw) + (=

Az W)
= (g,w) Vw e H (B.4)

; n+1 u:+l _ ’U;: 7
_divvtg) = (B WeeQ  (BS)

where the integration (¢, ) is defined as

($,¢) = /n Swdydz.

Here the function space HZ(€) is the Sobelev space and Lg() is square-integrable

space (cf. Carey & Oden, 1983).

In a spectral-element discretization, the domain Q is first broken into K disjoint
roctilinear elements 2. The variational statements (B.4-B.5) are then required for
polynomial subspaces H® < H and Q" C Q defined on the (. The spaces H"?
and Q" must satisfy certain conditions (e.g., Babuska-Brezzi conditions) in order
to make the discrete problem of (B.4-B.5) well posed and behaved. Readers are
refered to Maday & Patera (1988) and Carey & Oden (1983) for more details.

In a Legendre spectral-element method, the velocity u and all other terms except
the pressure p, are represented at the tensor-product Gauss-Legendre Lobatto points

in Q&. For example, the velocity u is expanded as:
N N

uk(y,2) = > ufh(y)hi(2) (y,2) € % (B.6)

1=0 j=0
where h; and h; are the N** order Lagrangian interpolants through the Gauss-
Legendre Lobatto points in k. The pressure p is represented at the tensor-product

Gauss-Legendre points in Q4:
N—-1N-1

Py, 2) =3 3 pEh(@)hi(2) (v,2) € Qe (B.7)

i=0 ;=0
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where h; and fzj are the (N — 2)* order Lagrangian interpolants through the Gauss-
Legendre points in Q. It can be shown that the velocity is continuous across the

elemental boundaries while the pressure is discontinuous.

Substituting the expansions (B.6-B.7) into (B.4-B.5) , we can generate the
discrete equations of the forms (3.5-3.6) by choosing test function w, = h,(y)h;(2)
and gn = hi(y)h;(z). When such test functions are used, the momentum equations
are projected into the space FI* while the continuity equation into Q*. Some basic
properties of Legendre polynomials and Legendre-Lagrangian interpolants can be
found in Rgnquist (1988). Since the integrations in (B.4-B.5) can be carried out

quite easily by Gauss quadrature formula, the derivations of the matrices in (3.5-3.6)

are straightforward.
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Appendix C
Discretization of stability equations

Using the numerical schemes described in §3.2.2, the spanwise stability equations

(3.8-3.10) are discretized first in the streamwise direction:

1 -n n4l . n.
—A VT 4 o (a2 - e = zmw (1)
Ll grzgnn 4 Ot 4 @t _0my = (C.2)
Re A:L‘ z
- @ . Gn—{—l (~n+l ~:) (C3)
where
- 0 a . 0 0 - =~ -
vV = .6_yey+ 5;-;-1[3 e, v =u,e, +u,e;, vV = Uyey + Uze;,
1 2
g= - (mOrat —va e A ), w ey +ue.

The solutions for az*!,ap*!,4;+! and F**' are sought in the domain Q with
homogeneous Dirichlet velocity boundary conditions on the domain boundary 992.
The equation (C.1) is a two-dimensional Helmholtz equation for 42*! and the
equations (C.2-C.3) can be viewed as a two-dimensional, unsteady, nonhomogeneous
Stokes problem for v and p, so the discretization of (C.1-C.3) on the cross-stream
plane follows that of (B.1-B.3). The perturbation pressure p**! is represented at the
tensor-product Gauss-Legendre points in 2 as the base pressure p is in (B.7). The
perturbation velocity @ and all other terms are represented at the tensor-product
Gauss-Legendre Lobatto points in §2; as the base velocity uisin (B.6). Theresulting

discrete equations can be written in matrix form as

__1__ rn+l 23;:5 4l Y 2 {

1 - - - ~
AU 4+ DB+ o (B - BIOY) = G, (C.5)
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_1__ 41 ¢ . » 1 n+lrm+l _ pnrmy __ oy
R AU+ (D2 +iBDP + (B3O B*M) = G, (C.6)
-~ - BT _ -
~ DU, — (D: +iBNTU: = 2207 - UD) (C.7)

Here the definitions of the matrices A, B., Bp, D and D, are the same as those
in (3.4-3.6). The matrix [ is the identity matrix. The vectors U, Uy, U, and P
are constructed from the discrete perturbation velocity @ and pressure p. It can be

shown that when a global iterative Uzawa scheme is used to solve (C.4-C.7), the

matrix system for ! is full and complex.



