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Abstract 
 

Wildfire management agencies must continue to evolve and adjust to the dynamic nature of their 

industry. They face pressures that include a changing climate with the prospect of intense future 

fire seasons, tighter government budgets for wildfire detection and suppression, and the fast-pace 

of development of wildfire detection technologies such as remote-sensing devices, satellites, and 

drones. Alberta Wildfire, to fulfil its mandate of managing wildfire in the Forest Protection Area 

of Alberta, must adapt to these conditions by making cost-effective strategic decisions. As such, 

there is an increasing need for studies that examine the performance of Alberta’s wildfire detection 

system. This study offers two main contributions. First, we provide insights on the contribution of 

lookout towers in detecting wildfires and their role in the entire detection system. A production 

economics approach is employed to develop robust non-parametric Data Envelopment Analysis 

(DEA) models that estimate production frontiers that serve as a technical benchmark for lookout 

towers in Alberta’s detection system. Results from this analysis reveal a high-performing detection 

system and most lookout towers have high technical efficiency. Lookout towers operate close to 

the “state-of-the-art” technology frontier such that further productivity gains may require a new 

technology. Second, we explore the relationship between technical efficiency of lookout towers 

and local weather. We develop machine learning models that use local weather to classify lookout 

towers as technically (or productively) efficient or not. We find that weather can successfully 

predict a tower’s technical efficiency class, which suggests that there is a strong association 

between local weather and technical efficiency of wildfire detection.   
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Chapter 1. Introduction 

 

Forest fires have been increasing in severity and intensity worldwide (Westerling et al. 2006; 

Moreira and Pe’er 2018; Fernandes et al. 2016). Wildfires can quickly escape a containable size, 

cause destruction to the ecosystem, and endanger lives within a matter of minutes. In addition to 

local damage, wildfires impose negative externalities on a global scale. Wildland fires contributed 

to a substantial 23% of global forest loss in 2018 (Curtis et al. 2018). The wildfires in Canada in 

2017 emitted significant amounts of smoke that remained detectable in the stratosphere for eight 

months (Yu et al. 2019). The Australian wildfires in 2019-2020 produced enough smoke and 

pollutants to significantly damage the ozone chemistry (Bernath, Boone and Crouse 2022). 

Climate change leads to unexpected changes in global fire activity (Flannigan et al. 2009). 

It contributes to earlier snowmelts that are strongly correlated to higher temperatures during spring 

and summer months. This crucial time period marks the start of fire seasons (Westerling et al. 

2006). Higher temperatures provide ideal conditions for wildfires, and as a result wildfires are 

expected to increase in both duration and frequency, further extending the severity of fire seasons 

(Walker et al. 2019; Halofsky, Peterson and Harvey 2020; Hanes et al. 2019). Thus, considering 

these growing concerns, detecting wildfires early is increasingly important as future fire seasons 

and average temperatures are estimated to be more uncertain. 

Detecting wildfires is a crucial step in mitigating damage. In some cases, fires that go 

undetected in their initial phase may become destructive and costly wildfires. These fires increase 

the burden on management programs as they may have bigger burned areas and impose higher 

risks (Mendes, 2010). Early detection can reduce the probability of fires escaping out of control 
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and provides an opportunity for rapid suppression while minimizing firefighting costs (McFayden 

et al. 2019; Lindenmayer, Zylstra and Yebra 2022). 

Organizations responsible for wildfire detection programs utilize a mix of direct and 

indirect detection agents. McFayden et al. (2019) describe a wildfire detection system by 

classifying agents into the two categories. Detection agents such as aerial patrols, lookout towers 

and ground crews are dispatched at specific times or time periods to actively search for fires and 

in this sense are considered to be ‘direct’ (or planned) agents. On the other hand, ‘indirect’ (or 

unplanned) detection is conducted by passive agents that relay information about possible 

wildfires. These agents consist of the general public (e.g., campers or hikers), unplanned aircrafts 

(e.g., commercial, or private aircrafts flying over the wildlands and spotting potential fires), private 

industry workers, forest rangers, and reporting of fires using a hotline (McFayden et al., 2019; 

MNP LLP, 2020). These direct and indirect detection agents are also referred to as traditional 

agents as they have played a significant role in detecting wildfires in various parts of the world 

(Rego et al. 2013). 

Lookout towers are the most common planned wildfire detection agent across the world 

(Rego et al. 2013; Pompa-García et al. 2010; Kucuk et al. 2017; Fantini et al. 2022)1. These towers 

are strategically constructed with the goal of maximizing visibility of wildlands. As lookout towers 

have fixed locations, they provide continuous coverage of forest lands with the potential to 

immediately report wildfires in unpopulated regions (MNP LLP 2020). Furthermore, lookout 

towers have the capacity to adapt to new technologies that can supplement their performance. 

Traditionally, lookout towers are manned by observers that use a set of tools to carry out detection 

 
1 Kucuk et al., 2017 is based in Turkey. Pompa-Garcia et al., 2010 is based in Northern Mexico. Rego et al., 2013 look 

at Portugal and Spain. Fantini et al., 2022 is based in Sardinia. This literature shows various developed and developing 

nations that rely on lookout towers for wildfire detection. 
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(e.g., compasses, maps, scopes, and the Osborne Fire Finder). Lookout towers can be fitted with 

new technologies such as high-definition cameras and remote sensing devices to support the 

performance of observers (Bao et al. 2015). As lookout towers are already strategically placed in 

the wildfire landscape, the financial burden of implementing new technologies is reduced. 

This study focuses on wildfire detection in Alberta, Canada. The detection system 

developed by Alberta’s Wildfire Management Branch, i.e., Alberta Wildfire, offers an opportunity 

to examine lookout towers and many factors make Alberta an interesting case study. First, Alberta 

uses multiple commonly used traditional agents to carry out detection: aerial and ground patrols, 

lookout towers, and a public hotline. Lookout towers are an integral part of the system and have 

been used in Alberta for almost a century, partially because lookout towers are excellent in areas 

that are difficult to access by road. Lookout towers also play a major role in Alberta’s 

communication network and have the additional benefit of not obstructing wildlife (MNP LLP 

2020)2. Second, over the period of this research (2006 – 2021), Alberta Wildfire has been subject 

to significant fiscal challenges. Budget constraints have forced the agency to reduce the number 

of lookout towers. Our data indicates that, in 2006, 112 towers were active (i.e. reported fires) 

while this number decreased to 72 in 2021. Balancing the detection of wildfire in the context of a 

changing climate with a contracting government budget is a challenging task. Therefore, there is 

an increasing need for studies to develop methodologies for estimating the productive performance 

of lookout systems (chapters 4 and 5) and the drivers of technically efficient wildfire detection 

(chapter 6). 

 
2 The lookout tower system helped with Alberta’s First Responders Radio Communication System. A two-way radio 

used by first responders in remote areas. 
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This thesis offers two main contributions. First, we employ a production economics 

approach to wildfire detection that considers lookout towers as production units. We conceptualize 

a production process where the visibility profile of lookout towers serves as productive inputs to 

produce prompt and accurate wildfire detection. The main statistic estimated is the output-oriented 

technical efficiency score of lookout towers. Given a production characterization (i.e. technology), 

and holding the visibility profile of towers constant, the technical efficiency score indicates the 

proportional (or radial) increase in detection output (if any) that is necessary to place a lookout 

tower at the technical efficiency frontier. 

The approach is reminiscent of the detection function approach, where wildfire detection 

(extensive margin) is modeled as a function of detection inputs such as distance, topography, and 

air transparency (Rego and Catry 2006). In our production approach, the production of wildfire 

detection is framed in a process with two outputs. Specifically, we employ output measures at both 

the extensive (wildfire is detected or not) and intensive (wildfire detection time, from ignition to 

detection) margins to characterize production. For inputs, our model assumes that each lookout 

tower utilizes their visibility profile (range and characterization of visibility, e.g., directly vs 

indirectly visible area) to survey the land and report locations of potential wildfires. 

Technical efficiency scores are estimated using the non-parametric methodology of data 

envelopment analysis (DEA). No specific functional form is assumed, and the production frontier 

is determined by the outer envelope of the data. We use a bias-correction approach to correct for 

finite sample biases of technical efficiency scores based on envelopment techniques (Simar and 

Wilson 1998). The analysis allows us to let the data drive the construction of the technical 

efficiency frontier. This frontier is useful for policy as it reports the maximum (or technologically 

feasible) detection output given the visibility profile of each tower. Since visibility profiles are 
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fixed in the short-run, the analysis has the potential to inform long-run input adjustments. 

Considering the short-run variation in outputs, the analysis offers measurements of technical 

efficiency over multiple fire seasons. As the data envelopment is season-specific, the technical 

efficiency estimation is robust to technological changes and allows for the characterization of 

productive efficiency trends. 

The second main contribution is to develop insights into the drivers of technical efficiency. 

While the detection function literature sets out to fulfil a similar task by relying on a detection 

function (Rego and Catry 2006), we again rely on non-parametric models where the shape of the 

impact of drivers (e.g., weather) is determined by the data itself therefore avoiding 

misspecification biases. We develop machine learning models to classify lookout towers as 

technically efficient (production frontier units) or not technically efficient (units below the 

production frontier) based on weather variables such as air temperature, relative humidity, 

incoming radiation, precipitation and snow water equivalent, and wind speed. Machine learning 

models are trained using a sample of the dataset, their hyperparameters are tuned for optimal 

predictions, and then the models carry out predictions on unseen data points. 

The data for this study comes from two sources and encompasses the period from 2006 to 

2021. First, the data for wildfire detection production (outputs and inputs) was provided by AB 

Wildfire. The detection data includes key information on all wildfires that were used to build 

outputs (e.g., dates, detection agent and times, size, and location). The data also contains 

information on each lookout tower’s visibility profile, which is essential to measure detection 

inputs. Second, to examine the role of local weather on technical efficiency, we use data from the 

Alberta Climate Information Service. The ACIS collects meteorological data using numerous 

weather stations across the province, including lookout tower weather station observations. We 
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leverage their dataset for the purpose of predicting technical efficiency as a function of weather 

around a lookout tower, which allows us to rank the role of various weather components in driving 

technically efficient wildfire detection. 

 

1.1. Preview of Main Results 

 

Regarding the evaluation of lookout towers’ performance, we find the average bias-corrected 

(output-oriented) technical efficiency score to be 1.059. Holding the visibility profile of towers 

fixed, lookout towers must increase their detection output by an average of 5.9% to achieve the 

technical efficiency frontier. Using our main model, approximately 60% of towers are classified 

as technically efficient. We also find that the detection system becomes more technically efficient 

over time. In 2006, average bias-corrected (output-oriented) technical efficiency is 1.088 and 

decreases to 1.024 in 2021. 

 Regarding the drivers of lookout towers’ performance, our approach is to use machine 

learning algorithms to examine the role of weather variables (features) in predicting lookout tower 

(binary) technical efficiency class. Results indicate that our machine learning models show high 

predictive performance (Area Under the Receiver Operating Curve greater than 90). This suggests 

that the weather around a lookout tower is strongly associated with its technical efficiency 

classification. We also develop a method to combine the feature importance of various machine 

learning models to offer an overall rank of the predictive power of each weather variable. We refer 

to this method as the AUROC Weighted Permutation Feature Importance. While all the 

meteorological variables we consider play a role in predicting the technical efficiency of a lookout 



7 

 

 

tower, our model weighted measure indicates that humidity is the most important classification 

feature, followed by incoming radiation (second), wind speed (third), air temperature (fourth), 

precipitation (fifth), and finally snow water (sixth). 

 

1.2. Scope of the Work 

 

It is important to recognize that this work focuses on productive efficiency. The technical 

efficiency score compares detection output against an output benchmark determined by the 

production frontier. By design, the model allocates lookout towers to the detection frontier, or 

below it. As such, the model produces two important pieces of information: i) how many lookout 

towers are “frontier” towers and ii) for those lookout towers below the production frontier, on 

average, how far are they to the frontier. In both metrics, as discussed above, we find that the 

Alberta detection system performs extremely well with most towers at the technical efficiency 

frontier. Tower that are below the frontier are really close to it. On average, only a 5.9% increase 

in output detection is required to reach the frontier. This level of average inefficiency is much 

lower than typical DEA estimates reported in the literature. For example, in studying the technical 

efficiency of avoiding forest fire damage in European Union countries, Gutiérrez and Lozano 

(2013) find an average level of technical inefficiency ranging from 23.7% to 41.9%.  

Additionally, this work develops machine learning models to predict whether a lookout 

tower can be classified as technically efficient or not based on local weather variables. We find 

that most of the ML models trained in this thesis exhibit high classification performance. This 

implies that the weather around a lookout tower is a good predictor of technical efficiency 
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classification. Since weather is a non-discretionary factor (also referred to as environmental 

variables, refer to Simar and Wilson (2007)), the high performance of ML models incorporating 

weather suggests that there is limited room for other potential discretionary drivers of technical 

efficiency. While this represents a challenge for policy action, perhaps this result should not be 

surprising given that the level of technical efficiency in Alberta’s wildfire detection system is 

already very high. 

 This research shows how production economics can be applied to wildfire detection. It is 

important to acknowledge production reflects only one side of an economic system. As such, this 

work does not examine general equilibrium impacts. The analysis here does not serve as a 

comprehensive evaluation of the detection system and is not intended to be interpreted as a benefit-

cost analysis or an analysis of the economic efficiency of detection resources. In fact, it is pretty 

obvious that Alberta’s detection system produces great value for the Albertan public. For example, 

the annual budget allocated to Alberta’s lookout towers is approximately 1.4 million dollars (MNP 

LLP 2020). This value pales in comparison to the potential of damages of a single escaped fire. 

For instance, estimates from the recent wildfires in Hawaii value damages at approximately $6 

billion US dollars (CNN Business 2023). 

Finally, we note that this work is subject to data limitations. For instance, we have limited 

information about detection inputs and therefore the focus is on technical efficiency of the 

visibility profile of lookout towers. Additional information such as lookout observer characteristics 

(e.g. experience and fatigue), smoke column variables (e.g. color, trajectory, and position relative 

to wind), and commercial airline routes can also be incorporated in a production framework to 

measure technical efficiency of detection. Other limitations of this work are discussed in section 

7.1. 
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1.3. Thesis Structure 

 

The remainder of this thesis is organized as follows. Chapter 2 offers additional insights on the 

data. Chapter 3 describes key statistics of Alberta’s wildfire detection program focusing on the 

role of lookout towers. Chapter 4 develops the technical efficiency framework, including model 

specification and the estimation approach. Chapter 5 presents the technical efficiency results. 

Chapter 6 discusses applications of machine learning in the field of wildlife detection and presents 

the ML models employed to: i) classify towers as technically efficient (or not) and, ii) measure the 

importance of various weather variables in such a classification. Finally, Chapter 7 offers 

concluding remarks, with a discussion of the results and limitations of the work. 
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Chapter 2. Data 

 

This work leverages information from three datasets. The first is a fire-level dataset provided by 

AB Wildfire. The fire data contains information that explains fire characteristics from 2006 to 

2021. This includes variables such as the fire code used to identify each fire, fire start geo-

coordinates (latitude and longitude), and the agent detecting each fire. Additionally, the data 

contains the total area burned (when fire is extinguished). The dataset also provides time variables 

such as fire start and reporting dates and times. There are a total of 23,174 wildfires that were 

reported during the time-period chosen for the study, however, due to missing data and outliers 

(wildfire whose detection took longer than two weeks), the final working sample contains 21,269 

wildfires.  

 Table 2.1 shows summary statistics of fire-level variables. The table shows that unplanned 

detection accounts for 42% of fires in our sample. Lookout towers show the highest frequency out 

of all planned detection agents and account for 31% of wildfires detection. Average reporting delay 

(the difference between fire start time and the time the fire was reported) is approximately 12.4 

hours, but with significant variance (standard deviation of 38.6 is more than 3 times larger than 

the mean). Finally, the average area burned is approximately 150 ha. The distribution of this 

variable is extremely skewed with 14,061 small fires (class A, ha < 0.1) and only 319 large fires 

(Class E, ha > 200). 
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Table 2.1 Summary Statistics of Fire-level Variables 

Variable Mean Std. Dev. Min Max 

Detection Agent     

    Air patrol 0.110 0.313 0 1 

    Ground patrol 0.161 0.368 0 1 

    Lookout tower 0.308 0.461 0 1 

    Unplanned 0.421 0.494 0 1 

Reporting delay (hours) 12.377 38.621 0.0 335.317 

Area burned (ha) 150.6 5682.3 0.01 577,646.8 

Notes: Sample of 21,269 fires. 

 

The second dataset is at the tower-level. This lookout tower data contains tower 

characteristics such as the unique tower identifier, tower geo-coordinates, and the range of towers. 

Furthermore, AB Wildfire offered visibility analysis maps for each lookout tower. These viewshed 

analysis grid plots are utilized to categorize whether a section of land (25-by-25 meter squares) 

falls into visibility types of “directly visible”, “indirectly visible”, “screened”, or “blind” (further 

details are provided in section 4.4). Table 2.2 shows summary statistics of the visibility profile of 

the 127 lookout towers that were active (produced at least one detection in a given year) in the 

period 2006 – 2021. On average, an observer is able to directly visualize 557 square kilometers of 

the lookout tower’s surveillance region. 

Table 2.2 Summary Statistics of Tower-level Variables 

Variable Mean Std. dev. Min Max 

Area (km sq)     
Directly visible 557.3 322.8 55.9 1,645.2 

Indirectly visible 1,831.9 830.4 71.8 3,698.8 

Screened 1,146.5 496.0 76.9 2,934.6 

Blind 1,452.4 1,039.1 8.4 4,527.6 

    Total Area 4,988.0 127.9 4,060.6 5,026.5 

Notes: Sample of 127 lookout towers 
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 The third dataset contains weather station observations collected and maintained by ACIS. 

ACIS is a government agency that manages climate and weather databases in Alberta. Weather 

data are collected using 501 meteorological stations placed around the province. A map of the 

locations of these weather stations is provided in Appendix G. The meteorological weather stations 

observations captured at an hourly level are interpolated across 6,900 townships in Alberta. 

Townships are 6-by-6 mile squares (93.240 square kilometers) that form a grid across the province. 

ACIS uses inverse distance weighed interpolation to obtain weather data for each township center. 

The nearest neighbor rule applies if no stations with non-missing observations are found within a 

certain radius from a township center (Alberta Climate Information Service 2019).  

 Table 2.3 offers summary statistics of weather variables reported at the township-month 

level, from 2006 to 2021. For example, average wind speed is approximately 10 kmh-1, monthly 

accumulated precipitation is on average 9.7 mm, and maximum temperature is, on average, 8.6°C. 

Table 2.3 Summary Statistics of Weather Variables 

Variable Obs. Mean Std. dev. Min Max 

Wind speed (kmh-1) 896,027 10.30 3.73 0.29 48.23 

Precipitation (mm) 935,802 9.74 15.04 0.00 562.72 

Snow water (mm) 935,802 25.78 45.05 0.00 1448.50 

Incoming radiation (MJ m-2) 1,141,582 394.95 236.26 27.38 939.57 

Humidity (%) 1,080,647 70.62 9.00 37.00 98.71 

Max air temperature (°C) 1,141,582 8.64 11.67 -23.13 33.68 

 

In the next chapter, we offer insights into the entire detection system, emphasizing the 

significance of lookout towers and the important role they play in wildfire detection. 
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Chapter 3. Lookout Towers and Wildfire Detection 

 

This section offers insights on Alberta’s wildfire detection program by describing key wildfire 

statistics from our data during the period of 2006 to 2021. Alberta is a large province with an area 

of 39 million hectares. The goal of AB Wildfire is to protect the designated Forest Protection Area 

(FPA) that accounts for two-thirds of the entire province. A reference map of Alberta’s FPA is 

included in Appendix A (Alberta Wildfire and FireSmart 2020).   

 
Figure 3.1 Fire Locations and Lookout Tower Surveillance Regions in Alberta  
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Figure 3.1 plots the spatial distribution of wildfires. The red dots represent 23,174 

wildfires, the green triangles represent the 127 lookout towers in our data, and the green circles 

represent the surveillance region (SR) of each lookout tower. The figure includes a significant 

amount of white space, this area corresponds to regions outside the mandate of AB Wildfire. The 

focus is on protecting the designated FPAs, therefore, the detection program is contained within 

it. Wildfires in our data by definition have a point of origin inside the FPA (AB Wildfire 2020, 

p.1). No towers exist outside this area and no fires are reported in these regions. Any fires outside 

the FPA are monitored by the respective county or municipality. 

Fires reported in Figure 3.1 have a size classification. Fire size class represents how big a 

wildfire is in terms of the final area burned which is measured in hectares. A fire class may change 

as the fire burns and gets bigger until the final burned area is estimated. Therefore, the final size 

is assigned after the given fire is completely extinguished. This variable can take the values of A, 

B, C, D, or E based on the following thresholds: fires of size less than or equal to 0.10 hectares 

(ha) are of size class A. Fires larger than 0.10 ha to 4.0 ha are of class B. Fires more than 4.0 ha 

but smaller than 40.0 ha are class C. Fires larger than 40.0 ha till 200.0 ha are class D, and any fire 

more than 200.0 ha in area is of size class E (AB Wildfire 2020, p.12). 

Figure 3.2 presents the number of fires grouped by size class over time. The data shows a 

downward trend in the number of fires over time. Fires less than 4.0 hectares, i.e., class A and B, 

are most common. 67.211% of fires are classified as size A and 25.411% are classified as size B. 

The remaining 7.378% are fires larger than 4.0 hectares and are either of size C, D, or E. The small 

proportion of large fires indicates that most fires are detected early when they are small and pose 

lower risks. This aligns with the goal of effective detection described by AB Wildfire as, “report 

all smokes before reaching a size of 0.10 ha or less” (Lookout Observer Manual 2022, p.21). 
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Figure 3.2 Frequency of Fires by Size Class 

 

Table 3.1 offers insights on detection operations by reporting the number and proportion 

of fires detected by the four agents. The table includes the relative contribution as a percentage of 

all fires detected by each detection agent across three intervals during the 16-year period: 2006 to 

2010, 2011 to 2015, and 2016 to 2021. 

 

Table 3.1 Detection Frequencies of Different Detection Agents over Time 

Detection agent 2006 - 2010 2011 - 2015 2016 - 2021 

 Freq. Percent Freq. Percent Freq. Percent 

Unplanned (UNP) 3,572 41.724 2,917 39.942 3,236 46.051 

Lookout Towers (LKT) 2,766 32.309 1,994 27.304 1,960 27.892 

Ground Patrol (GRP) 1,247 14.566 1,622 22.210 1,099 15.640 

Aerial Patrol (AIR) 976 11.401 770 10.544 732 10.417 
       

Total 8,561 100 7,303 100 7,027 100 
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Over the three intervals, unplanned detection agents (UNP) have the highest frequency by 

detecting most wildfires. There is a recent increase from the second interval to third interval. This 

agent costs AB Wildfire only 0.2% of the total spendings during the fiscal period 2015 – 2019 (fire 

year 2016 – 2020). The high participation by unplanned detection agents in Alberta is consistent 

with other wildfire agencies in different regions. Public reporting of wildfires is the most common 

detection agent in different countries. For example, public reporting contributed to 76.20% of all 

detections in Portugal and 55.90% in Spain (Rego et al. 2013). McFayden et al. (2019) find that 

48.90% of all reported fires in Ontario are via public reporting during the period 2011 to 2018. 

This is consistent with Alberta (40.25%) in the same period. Thus, signaling that the high 

contribution of public reporting of wildfires is a trait not exclusive to our dataset. 

Lookout towers detect 29.357% of fires across all periods. Detections by lookout towers 

experience a 5.005 decrease in percentage points from the first to the second interval and an 

increase of 0.588 percentage points in the following interval. Lookout tower expenditures account 

for 43.070% of the total expenditure in the fiscal year 2015 to 2019. The decreasing trend of 

lookout tower detections from the first interval (2006 – 2010) to the second interval (2011 – 2015) 

raises concerns.  

Ground patrols detect 17.334% of fires on average. The trend in their contribution increases 

from the first period to the second (7.644 percentage points) then decreases in the third period 

(6.57 percentage points). Note that ground patrols play a significant role in detecting wildfires, 

particularly those related to residential and recreational areas. This is partly because there are many 

wildfires in populated regions that are quickly identified and reported (MNP LLP 2020). As a 

result, GRP shows a higher contribution, however, this may not necessarily correspond to a higher 

impact to the wildfire management system (MNP LLP 2020).  
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Aerial patrol is the least active detection agent employed by AB Wildfire while being the 

most expensive detection method. Note that apart from specific aerial flights for patrolling, air 

patrols act as a backup to the lookout tower system by focusing on areas that are screened or blind 

(Lookout Observer Manual 2022, p.22). During the fiscal years 2015 to 2019 AB Wildfire spent a 

total of 16.96 million dollars on their detection program, the cost of aerial patrol represents 

56.830% of the total spending (MNP LLP 2020).  

 

Figure 3.3 Number of Fires and Contribution of Lookout Towers over Time 

 

Figure 3.3 illustrates the contribution of lookout towers for detecting wildfires in Alberta. 

It includes a stacked bar graph with the red bars representing the number of fires detected by 

lookout towers and the blue bars representing fires detected by all the other agents (UNP, GRP, 
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and AIR). The y-axis on the left-hand side represents the yearly frequency of fires. For a better 

insight on the performance of lookout towers, the figure is overlaid with two lines. These lines 

represent different ratios and are propagated within the dataset. The y-axis on the right-hand side 

labelled ‘ratio’ is the axis of reference when focusing on the two trends lines. 

The solid line represents the ratio of the number of fires to the number of active lookout 

towers, by year. A higher ratio shows that lookout towers carry, on average, a larger share of fire 

detection. From an economics perspective, this can be interpreted as a proxy for the demand for 

lookout tower detection. The data shows that the ratio of fires per tower exhibits a slight downward 

sloping trend from 2006 to 2021.  

The dotted line is as proxy for the average productivity of the existing lookout system. It 

represents the ratio of fires detected by lookout towers by the number of active lookout towers in 

a year. This ratio is associated with the productivity of lookout towers in the detection system. The 

data shows that this trend is decreasing over time.  

Additionally, our data also allows us to examine wildfires that originated outside the range 

of lookout towers. We find that 3,485 wildfires in the 16-year period (approximately 218 fires per 

year) are outside the surveillance region of all lookout towers. These fires can be seen in Figure 

3.1 as the red dots that lie outside the surveillance regions (green circles). Although observers 

focus on their surveillance region, fires outside these regions can also be detected by lookouts. 

However, lookout towers detect fires inside their surveillance region faster than the ones that are 

past their range. Thus, fires that are not in the surveillance region of towers may have a higher 

chance of going undetected from the time they start, especially in remote areas with very little 
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human presence. Exploring the data and looking at fires that do not lie inside a surveillance region 

can give us insights on how the detection program handles these fires.  

Figure 3.4 plots the frequency of fires outside the surveillance region of towers and shows 

how many of these fires were detected by the different detection agents. The total number of fires 

outside the surveillance region of towers is increasing over time, which is concerning. Figure B.1 

in Appendix B provides insight on these wildfires based on their size classes. Data in Figure 3.4 

show that there is a decreasing trend in the number of fires detected by lookout towers, but it is 

important to consider that the number of active lookout towers are reducing over time. Similarly, 

aerial patrols are detecting fewer fires outside the surveillance region during the 16-year period. 

On the other hand, ground patrols and unplanned agents show an upwards trend over time. 

 
Figure 3.4 Frequency of Detections outside Surveillance Region 
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Chapter 4. Technical Efficiency Framework 

 

4.1. Technical Efficiency 

 

The theoretical framework underlying the analysis conceptualizes a wildfire detection system 

where features of lookout towers are inputs (𝑥) in the production of fast and reliable wildfire 

detection, i.e., detection outputs (𝑦). In classical microeconomics, production is fully described by 

a production function, 𝑦 = 𝑓(𝑥). In reality, lookout towers with similar (or the same) input levels 

may produce varying levels of wildfire detection. Our framework accounts for this possibility by 

utilizing a set theoretic representation of wildfire detection technology. Specifically, we consider 

an output production set (also known as technology set) defined as: 

 𝑃(𝑥) =  {𝑦: 𝑥 can produce 𝑦}, (1) 

i.e., the set of all outputs (𝑦) that can be produced using inputs (𝑥). In other words, the set of 

outputs that are technically feasible given the inputs.  

Figure 4.1 depicts a production set with two outputs in the output space. The boundary of 

the production set is the production (or technology) frontier and defines the detection system’s 

production possibility set, where 𝑃 is a closed set. The feasible possibilities of output combinations 

are represented as the blue shaded region. The grey area represents any point outside the production 

possibility set which is unfeasible. The black dots represent examples of different production units 

(e.g., lookout towers) and their output combinations. It is typical to assume that  𝑃 is convex, with 
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free disposability of inputs and outputs and weak essentiality – units can choose to produce 

nothing, and non-zero level of outputs cannot exist with zero levels of inputs. 

 

Figure 4.1 Production Possibility Set and Distance Functions 

 

Convexity of the production set is a fundamental concept in production economics (Coelli 

et al. 2005; Chambers 1988). The assumption implies ‘no free lunch’: improvements in one output 

cannot be possible without adjusting the input vector or levels of another output. In input-space, 

this mathematical property ensures that no production unit can increase outputs without increasing 

their input levels. Moreover, a convex production set results in a concave production frontier in 

the output-space, which aligns with the notion of decreasing returns to scale in wildfire detection.  
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For a given technology level, the production frontier represents the maximum output that 

can be achieved from each input level. Hence, this frontier provides a natural feasible benchmark 

for production units. Malmquist (1953), Shephard (1981), and Farrell (1957) develop the concept 

of distance functions, which formalizes by quantifying a benchmark measure for productive 

performance as the scalar 𝜃 such that: 

 𝑑(𝑥, 𝑦) =  max{𝜃: 𝜃𝑦 ∈ 𝑃(𝑥)}, (2) 

The output of the distance function (𝜃) is known as the output-oriented technical efficiency 

of the production plan (𝑥, 𝑦), with 𝜃 ≥ 1. This measure answers the following question: “How 

much can output quantities be proportionally expanded without changing the input quantities 

used?” (Coelli et al. 2005, p.54). In other words, given a fixed input level, what is the maximal 

and feasible proportional expansion, or what proportional expansion makes a production unit 

technically efficient. Figure 4.1 illustrates this concept. The point with output combination 

(𝑦1
0, 𝑦2

0) corresponds to a technically inefficient lookout tower. 𝜃 represents the maximum factor 

by which this lookout tower can radially increase detection output and therefore be pushed to a 

technically efficient point 𝜃(𝑦1
0, 𝑦2

0), holding the inputs fixed. Therefore, production units that are 

technically efficient have an efficiency score of 1 and technically inefficient units are assigned a 

score of more than one. 

This measure can be interpreted in another way using fractions. What scalar (technical 

efficiency score 𝜃) when multiplied by the technically inefficient production plan (𝑦1
0, 𝑦2

0), will 

proportionally expand the lookout tower to the boundary of the production possibility set, deeming 

it technically efficient: 
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 𝜃(𝑦1
0, 𝑦2

0)  =  (𝑦1
efficient, 𝑦2

efficient),  

Where =  (𝑦1
efficient, 𝑦2

efficient) is a fully efficient (technically efficient and on the 

production frontier) production plan. The equation above can also be represented as follows: 

 
𝜃 =  

𝑦1
efficient

𝑦1
0 =  

𝑦2
efficient

𝑦2
0  . 

 

 

4.2. Parametric vs Nonparametric Estimates of Technical Efficiency 

 

Empirical measurement of technical efficiency score, 𝜃, requires an estimation of the production 

frontier. There are two main methodologies: parametric and non-parametric, or Stochastic Frontier 

Analysis (SFA) and Data Envelopment Analysis (DEA), respectively. The two differ in the 

incorporation of random errors, distribution assumptions of the random errors and inefficiencies, 

and restrictions on functional forms of the production frontier (Cooper W. William, Seiford and 

Zhu 2004). 

SFA was introduced by Aigner et al. (1977) and  Meeusen et al. (1977). It explicitly defines 

a production function and uses econometric techniques to estimate its parameters. This 

methodology calculates technical inefficiency by examining deviations of production units from 

the parametric production frontier. The deviations are either due to technical inefficiency, 

stochastic random errors, or statistical noise in the data. Incorporating errors or disturbance terms 

was introduced by Schmidt and Lemke (1976). This method also defines the theoretical statistics 

needed for inference and hypothesis testing (Aigner et al. 1977). However, parametric approaches 

have an important weakness. They force a functional relationship between inputs and outputs, 
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which creates a bias if the functional form is misspecified (Dhungana, Nuthall and Nartea 2004; 

Schmidt 1985). This can be a serious issue because the true production technology is unknown 

and often highly nonlinear. 

Non-parametric methods require fewer assumptions regarding the production technology 

(Cooper W. William et al. 2004). DEA, first introduced by Charnes et al. in 1978, provides a 

framework to measure the technical efficiency of production units (Hjalmarsson, Kumbhakar and 

Heshmati 1996). It is a fully nonparametric approach and does not assume any functional 

relationships between inputs and outputs, thus, minimizing the risk of an incorrectly specified 

functional form (Schmidt 1985). It only requires data on the production activities which can be 

easily accessed and applied. No data manipulation is needed such as assigning weights to variables, 

and it is easy to incorporate production technologies that use multiple inputs and outputs (Homburg 

2001). Conceptually, DEA finds the production set by constructing the smallest convex set that 

‘envelops’ the data. Empirically, it does so by solving a linear programming model that constructs 

a piece-wise frontier based on input and output observations (Coelli et al. 2005; Simar and Wilson 

2000). Appendix C discusses the DEA programming problem we use in our analysis. Once the 

frontier is estimated, DEA calculates technical efficiency scores using distance functions 

(Aldamak and Zolfaghari 2017). 

 

4.3. Bias-corrected DEA Scores 

 

Simar and Wilson (1998) develop a statistical treatment for DEA-based technical efficiency 

estimates. Despite the fact that DEA estimates of technical efficiency are computed from 
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mathematical programming techniques, Simar and Wilson demonstrate that, conceptually, DEA 

scores are measured relative to an estimate of the unknown true production frontier. They argue 

that nonparametric estimators such as DEA are based on a finite sample of inputs and outputs from 

production units. As such, they propose a data generating process that allows for the examination 

of sampling variations of DEA technical efficiency scores. 

While  Korostelev, Simar and Tsybakov (1995a, 1995b) show that, under weak general 

conditions, the DEA is a consistent estimator of the true production set, Simar and Wilson (1998) 

emphasize that DEA scores are biased in finite samples and develop a method to correct for the 

finite-sample biases. 

To understand the source of the bias, note that the envelopment frontier is heavily 

dependent on the sample. The observed sample can be thought of as being drawn from the true 

data generating process. While an infinitely large number of draws would result in a full depiction 

of the production frontier, finite samples do not capture the true production frontier in its entirety.  

Figure 4.2 illustrates this bias in the output-space. Consider an industry with the true (or 

theoretical) frontier given by the solid black line. The points A, B, C, D, E, F, G, H, and I represent 

production plans. Production plans A-F lie on the production frontier, while points G, H and I lie 

below the frontier. Now, consider a situation where the researcher only observes a sample 

represented by the red dots i.e., A, B, E, F, G, H, and I. Note that this sample does not include two 

data points (C and D). As we will discuss next, these data points are important because they 

represent radial benchmarks of the observed production units. Point C is should be the radial 

benchmark for unit H, and point D is the proper benchmark for unit I. 
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       Figure 4.2 Bias in Constructing DEA Frontier 

 

The red dotted line is one example of the frontier constructed when the researcher applies 

the envelopment methodology to the observed production plans. This frontier is the DEA frontier 

applied to this specific sample. The DEA estimates for production units with production plans A, 

B, E, F, and G will be estimated correctly, without a bias. The sample points A, B, E, and F lie on 

the true frontier and therefore, for these points, the envelopment frontier matches the true 

production process. As a result, their DEA scores (𝜃) are correctly estimated with a value of 1. 

Even though the observed point G does not lie on the true frontier, point B (which is the true radial 

benchmark for G) is in the sampling data. Thus, the estimate of the technical efficiency score for 
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G will not contain a bias. In this case, DEA will assign a technical efficiency score less than 1, 

thus correctly and without biases deeming G technically inefficient.  

However, a bias exists in the DEA scores for points H and I. Point H, which is a technically 

inefficient production plan, is observed in the sampling data while its true radial benchmark C is 

not observed. Therefore, the DEA frontier is constructed using point H. Unit H is considered to be 

technically efficient by the envelopment method when, in reality, it is technically inefficient. Thus, 

the DEA score of technical efficiency for point H will be biased upwards (DEA overestimates 

technical efficiency). A similar type of bias affects the DEA’s estimation of technical efficiency 

for unit I. Point I’ is not a sampling point, it is a convex combination of points H and E, constructed 

by DEA to serve as the radial benchmark for sample point I. This radial benchmark is not the true 

radial benchmark as I’ does not lie on the true frontier. The true radial benchmark for point I is 

point D, but this is not present in the researcher’s sample. Using the distance function, we can see 

that the true value of technical efficiency for point I is 𝑂𝐼/𝑂𝐷 but DEA assigns again a larger 

value of 𝑂𝐼/𝑂𝐼′.  

As mentioned above, DEA scores of technical efficiency is not computed using the true 

frontier and sample variation affects the estimated frontier (Long et al. 2020). Works in this 

literature have shown how an understanding of sampling variations can be used to address the bias 

of DEA technical efficiency measurements. Simar and Wilson (1998) develop a bootstrapping 

method that accounts for and corrects the DEA bias in technical efficiency estimates. It can be 

applied to multi-input or output models and provides a statistical treatment to envelopment 

estimators allowing for the construction of confidence intervals and for the correction of the DEA 

bias (Simar and Wilson 2000). 
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In short, bootstrapping is a statistical method that generates pseudo sub-samples that are 

drawn with replacement from the sampling dataset with the intention of testing the reliability of 

estimates3. It provides an approach to examine statistical properties of estimations and it can be a 

valuable tool when analytical solutions are not available (Abatania, Hailu and Mugera 2012). 

Bootstrap resampling is typically conducted a few hundred times (for the purpose of bias-

correcting technical efficiency scores, we use 399 repetitions). The estimations from all iterations 

together form a distribution that can be used for statistical inference and hypothesis testing (Long 

et al. 2020).  

We use figure 4.3 to explain the general intuition of Simar and Wilson’s bootstrapping 

method of bias correction. The solid line is the true production frontier. The frontier represented 

by the black dashed line going through production plans A, B, C, D, E, and M is the DEA frontier. 

As discussed above, DEA overestimates technical efficiency as the envelopment of the sample 

underestimates the true production set. The grey shaded region represents the deviation between 

the true frontier and the DEA frontier. Applying the bootstrap approach resamples the observed 

data. The figure illustrates one bootstrap iteration. In the figure, we assume the bootstrap iteration 

picks a sub-sample of points A, C, E, and M to construct a DEA frontier. This bootstrap DEA 

frontier is represented by the blue dotted line. The red region is the deviation between the DEA 

frontier and a bootstrapped DEA frontier. 

 

 
3 Sub-samples can be picked in more than one way, please refer to Appendix D for a short description of different 

types of bootstrapping approaches. 
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Figure 4.3 Theoretical Frontier vs DEA Frontier vs Bootstrap Frontier 

 

Technical efficiency estimates are computed for each bootstrap sub-sample and the process 

is repeated several times Each iteration picks a slightly different sub-sample; therefore, a different 

bootstrap frontier is used to calculate technical efficiency estimates at each iteration. The insight 

from Simar and Wilson is that the deviations between the bootstrap and DEA frontier can help 

account for the DEA bias in technical efficiency scores. The intuition behind this approach is that 

deviations between the bootstrap frontier and the DEA frontier mimic the deviations between the 

DEA frontier and the true theoretical frontier. This provides a bootstrap definition of the bias that 

can be used to bias-correct DEA estimates from the full sample. 
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Below we offer a summary of the technical efficiency framework developed by Simar and 

Wilson (1998). As the true production technology, 𝑃(𝑥), given by equation (1) is unknown, the 

DEA technical efficiency scores are given by replacing 𝑃(𝑥) with the envelopment estimate 𝑃(𝑥)̂ 

in the distance function (2): 

 𝜃 = �̂�(𝑥𝑖, 𝑦𝑖) =  max{𝜃: 𝜃𝑦𝑖 ∈ 𝑃(𝑥)̂}.  

The score 𝜃 is an estimate of true and unknown technical efficiency score 𝜃. As 𝜃 depends 

on 𝑃(𝑥)̂, the sampling properties of 𝜃 (an estimator for true efficiency) depend on properties of 

the method used to generate 𝑃(𝑥)̂. Simar and Wilson (1998, 2000) use the bootstrap approach to 

address the complex and possibly unknown sampling properties of envelopment estimators. 

Applying the concepts above to the bootstrap samples, the bootstrap technical efficiency score for 

a given iteration can be expressed as: 

 𝜃∗̂ = 𝑑∗̂(𝑥𝑖, 𝑦𝑖) =  max{𝜃: 𝜃𝑦𝑖 ∈ 𝑃∗(𝑥)̂}.  

where 𝑃∗(𝑥)̂ is the envelopment of the bootstrap subsample. The advantage of the bootstrap is that 

sampling distributions of 𝑃∗(𝑥)̂ are known since the DEA estimate 𝑃(𝑥)̂ is known. Assuming that 

𝑃(𝑥)̂  is a reasonable estimator of 𝑃(𝑥), the bootstrap distribution should mimic the sample 

distribution of the estimators which in turn mimics the true unknown distribution. As a result: 

 (𝜃∗̂ − 𝜃)~(𝜃 − 𝜃). (3) 

Note that the bias of the DEA estimator 𝜃 is given by: 

 DEA Bias = 𝐸(𝜃) −  𝜃,  

and the bias of the bootstrap estimate is: 
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 Bootstrap Bias = 𝐸(𝜃∗) −  𝜃,̂ (4) 

It follows that, according to (3): 

DEA Bias  ~ Bootstrap Bias. 

𝐸(𝜃∗) in (4) is estimated by the average of 𝜃𝑛
∗ , which is the DEA score for bootstrap sample 𝑛, 

with  𝑛 =  1, … , 𝑁 iterations. 

 
𝐸(𝜃∗) =

∑ 𝜃𝑛
∗𝑁

𝑛 = 1

𝑁
 =  𝜃∗̅̅ ̅ 

 

Therefore, the estimate of the bootstrap bias in equation (4) is: 

 Biaŝ = 𝜃∗̅̅ ̅  −  𝜃.  

Finally, the estimate of the bias can be used to correct the technical efficiency estimates. The bias 

corrected DEA score is obtained by subtracting the bias from standard DEA estimates: 

 

 Bias Corrected DEA Estimate  = 𝜃 – Biaŝ  

  = 𝜃 − (𝜃∗̅̅ ̅ − 𝜃)  

  = 2𝜃  −  𝜃∗̅̅ ̅. (5) 
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4.4. Wildfire Detection Technical Efficiency Model 

 

Technical efficiency analysis requires the specification of outputs and inputs used in production. 

For our purpose of estimating technical efficiency scores, we calculate inputs and outputs using 

data from AB Wildfire. We specify a model where, in each fire season (year), lookout towers are 

productive units that produce two detection outputs using their visibility profiles as inputs.  

 In our approach of characterizing lookout tower outputs to measure detection productivity, 

we incorporate the extensive and intensive margins for lookout tower detections. The extensive 

margin relates to the notion of knowing if the planned detection system (lookout towers) is carrying 

out detections or not. Once we incorporate this, we can evaluate the performance of lookout towers 

further by measuring how long it takes lookout towers to detect wildfires, explaining the intensive 

margin of detection output produced by lookout towers. Therefore, our analysis of technical 

efficiency of lookout towers accounts for both the extensive and intensive margins of outputs. 

The first output we consider is the proportion of wildfires detected (y1). This variable is the 

ratio found by calculating the fires detected by a lookout tower divided by the total number of fires 

in its surveillance region. The surveillance region is a circular area that the tower is responsible 

for monitoring. This area is calculated for each lookout tower using viewshed visibility plots. We 

note that it is possible for a tower to detect fires outside its surveillance region. Therefore, we use 

the convention that towers with the number of fires greater than the number of fires in a tower’s 

surveillance region have output, y1, normalized to one. Hence, y1 measures a desirable outcome 

that can range from 0 to 1. Higher values are correlated with higher tower productivity and lower 

values penalize the output of lookout towers as it fails to meet its mandate of detecting wildfires. 
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If a lookout tower fails to report a fire in its surveillance region it increases the risk the 

wildfire will grow to a destructive level (Mendes, 2010). Improving the proportion of fires detected 

by a lookout tower (y1) can reduce the number large wildfires (Rego et al. 2013).  Figure 4.4 shows 

a scatter plot of the proportion of fires detected across all lookout towers, by year. The red line is 

the fitted linear trend and is sloping upwards signaling that lookout towers are detecting a higher 

proportion of fires in their respective surveillance regions over time. 

 
         Figure 4.4 Proportion of Fires Detected by Lookout Towers 

 

The second detection output captures the speed of detection, namely average early 

detection (y2). To measure early detection, we first measure reporting delay as the time it takes for 

a lookout tower to detect fires. Measured in hours, reporting delay is the difference between fire 

start time and reported time. While technical efficiency analysis focuses on desirable outputs, 
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report delay is not a desirable outcome. Thus, we convert reporting delays into early detection by 

measuring the amount of time from detection to a later time threshold. We drop fires that were 

reported more than 2 weeks (336 hours) from the estimated fire start time as they may represent 

measurement errors and use 336 hours as the detection threshold. Therefore, average early 

detection measures the amount of time before 336 hours it took to detect a wildfire such that 

increases in y2 represent increases in wildfire detection. For example, if a fire is detected 100 hours 

after its ignition, then y2 = 236. If detection is faster, say 50 hours after ignition, then increases to 

y2 = 286. An alternative specification relies on inverting undesirable outputs. However, the inverse 

function adds an artificial (nonlinear) variation in the data hence fundamentally altering the data 

distribution. These fire outputs must be aggregated to the level of lookout tower in a fire season. 

Therefore, y2 is fire-level average early detection.   

Figure 4.5 shows a scatter plot of average early detection with a linear trend line. On 

average, the speed at which lookout towers are detecting wildfires is increasing over time. 

Detecting wildfires in time increases chances of controlling them before they grow resulting in 

minimizing expenditure and firefighting resources. In fact, the timeframe from when a fire starts 

to when it is detected plays an important role in successful suppression (Castro, Akhloufi and 

Couturier 2018; Amiri et al. 2022) Additionally, early detection leads to smaller burned areas, 

reduced carbon emissions, and fire suppression costs (Scholten et al. 2021; Steele and Stier 1998).  
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Figure 4.5 Average Early Detection Times Over Time 

 

Lookout towers can vary significantly in their detection performance (Kucuk et al. 2017). 

Many factors affect how well a tower performs, such as, geographical characteristics around the 

lookout tower (Sakellariou, Sfoungaris and Christopoulou 2022; Çoban and Bereket 2020). 

Lookout towers are designed and placed in regions that allow for wildfire surveillance by a human 

observer. Therefore, visibility around a lookout tower is essential. Lookout tower observers use a 

colored map with a scale of 1:100,000 which are constructed using viewshed analysis. The analysis 

maps help view their area of responsibility which we refer to as the surveillance region (AB 

Wildfire 2022). The observer visualizes smoke and uses the station’s instruments to map and report 

the fire position. 
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Figure 4.6 Line of Sight Viewshed Analysis for AB Wildfire Lookout Towers 

(Source: Lookout Observer Manual 2022, p.164) 

 

Figure 4.6 illustrates how the different visibilities are determined based on the line of sight 

from the observation point on a lookout tower to the landscape around it. Smoke seen from the 

point of view of the lookout tower observer can rise from a valley or beyond a hill or ridge causing 

the observer to not be able to see the ground (Lookout Observer Manual 2022, p.164). Therefore, 

it is crucial to know a visibility profile for a given tower. As such, following the line of sight (LOS) 

approach, areas around a tower are categorized into four distinct types. If the area is zero or more 

meters above the LOS, it is classified as visible (light grey). If it is up to thirty meters below the 

LOS, it is said to be indirectly visible (yellow). An area that is between thirty meters and a hundred 

meters below the line of sight is said to be screened (red) and any area that is more than a hundred 

meters below the line of sight is completely blind (green). In such a way, viewshed analysis of the 

surveillance regions is used to construct lookout tower visibility maps, as seen in Figure 4.7. The 
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visibility map of a lookout tower allows us to further assess its visibility profile. Using GIS tools, 

we compute the areas (in square kilometers) of the total surveillance region based on the four 

different visibility areas.  

 
Figure 4.7 Lookout Tower Visibility Map 

(Source: Lookout Observer Manual 2022, p.8) 

 

It is essential to consider the placement of lookout towers when building an effective 

detection system (Amiri et al. 2022). The landscape around a tower does not change, therefore, 

visibility areas of a lookout tower are fixed over time. Choosing the location for a tower is 
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equivalent to choosing its visibility. Towers with more favorable locations have larger directly 

visible areas. The range of a manned lookout tower and areas that are visible (as opposed to 

screened or completely blind) affect the number of fires the tower is expected to detect in a timely 

manner. Therefore, this characteristic of lookout towers can be thought of as inputs that are used 

in the production of wildfire detection. 

 In our production framework, towers with high visibility profile should produce superior 

wildfire detection performance. Visibility areas capture the different geographical attributes 

around a tower that can play a role in successful detection. High visibility increases the ability to 

provide accurate information about the location of a fire (Rego et al. 2013; Rego and Catry 2006). 

Visibility influences the time a wildfire takes to be detected, lookout towers with higher 

proportions of visible areas detect fires quicker (Sakellariou et al. 2022). Conversely, if a tower 

has low visibility and significant rugged or blind areas in its SR, fires can go undetected for longer 

which is harmful for the SR (Çoban and Bereket 2020). 

We specify the area directly visible (x1) and indirectly visible (x2) as wildfire detection inputs. 

Table 4.1 summarizes our input and output variables. We develop three output-oriented bias-

corrected DEA models with variable returns to scale.  

Table 4.1 Input and Output Variables for Data Envelopment Analysis 

Variables Unit Definition 

Fires detected (y1) Fraction Proportion of fires detected by a lookout tower 

Early detection time (y2) Hours Average early detection time 

Directly visible area (x1) km2 Area directly visible by lookout tower 

Indirectly visible area (x2) km2 Area indirectly visible by lookout tower 

 

Table 4.2 shows the combinations of outputs and inputs used in the respective models. All 

the models use a multi-output case by considering both detection outputs discussed above: 
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proportion of wildfires detected (y1) and average early detection (y2). Model A specifies a single 

input, the area directly visible (x1). Model B includes two inputs: areas directly (x1) and indirectly 

visible (x2). Finally, model C specifies a single input x3 that is the sum of both directly and 

indirectly visible areas (x1 + x2). Each model is estimated separately during the time period 2006 

– 2021.  

Table 4.2 DEA Models for Technical Efficiency Analysis 

Model Inputs Outputs 

A (2 outputs, 1 input) x1 y1 and y2 

B (2 outputs, 2 inputs) x1 and x2 y1 and y2 

C (2 outputs, 1 input) x3 = x1 + x2 y1 and y2 
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Chapter 5. Technical Efficiency Estimates for Wildfire Detection 

 

Table 5.1 offers summery statistics of the bias-corrected technical efficiency estimates of our 

models, pooled across all years. As the results across the three models are similar, we proceed to 

interpret model A which is the most parsimonious model. Mean output technical efficiency is 

estimated to be approximately 1.059. That is, on average, lookout towers must increase their 

detection output by 5.9% in order to become technically efficient. In other words, our results show 

that lookout towers are very close to the technical efficiency frontier and are performing well. 

There is very little room for towers to increase the production of detection outputs. The results also 

show that the distribution of technical efficiency is significantly skewed to the right. Many units 

have scores close to one such that the median technical efficiency is 1.005.  

Table 5.1 Bias-corrected Technical Efficiency Scores Pooled across All Years 

Model 25th quantile Median Mean 75th quantile 

A 1.001 1.005 1.059 1.032 

B 1.001 1.006 1.057 1.032 

C 1.001 1.005 1.058 1.031 

 

The scatter plot in Figure 5.1 illustrates bias-corrected technical efficiency measures for all 

lookout towers each year. To complement the scatter plot and understand the change in technical 

efficiency over time, a linear trend represented by the solid red line is included. The time trend 

line shows that the bias-corrected technical efficiency estimates are decreasing over time and 

approaching closer to a value of 1. The technical efficiency scores are reducing; therefore, lookout 

towers are becoming technically efficient in carrying out detection. For a more focused insight, 

yearly distributions of lookout tower technical efficiency scores are included in Appendix E. 



41 

 

 

 
                              Figure 5.1 Bias-corrected Technical Efficiency Scores Over Time 

 

The bias-correction procedure relies on resampling and averaging techniques; therefore, in 

finite samples, it derives individual tower technical efficiency scores that are greater than one. 

Note that this is not a weakness of the estimator as the DEA bias-correction approximates the true 

DEA score on average. However, it is still useful to have criteria to identify units that are at the 

production frontier (or arbitrarily close to it). Such a criterion is necessary because the true 

technical efficiency frontier is not explicitly identified in the bias-correction method. Therefore, 

to identify units at the technical efficiency frontier, we use the criterion that units with bias-

corrected scores less than or equal to 1 + 𝜀 are technically efficient. We use five different criteria: 

𝜀 ∈ {0.005,0.01,0.015,0.02,0.05}. For example, if we use 𝜀 = 0.01, towers with bias-corrected 

technical efficiency score 𝜃 ≤ 1.01 are considered to be technically efficient. Note that a score of 
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1.01 means that, given the visibility profile of the tower (i.e., holding constant), the lookout tower 

must increase detection output by 1% to be at the theoretical efficiency frontier. Therefore, for 𝜀 =

0.01, towers that need to improve detection output by 1% or less are classified as technically 

efficient towers, and towers that need to improve outputs by more than 1% are not at the technical 

efficiency frontier. 

Table 5.2 shows the number of towers, the number of fires and the proportion of technically 

efficient lookout towers for the various criteria, by year. As expected, the proportion of technically 

efficient towers increases as we use less stringent criteria. For the remainder of our study, we use 

1.01 as the threshold for classifying if a lookout tower is technically efficient or not. 

Table 5.2 Proportion of Technically Efficient Lookout Towers Based on Different Thresholds 

Year N 
Average 

𝜽 

Number 

of fires 

% effi. 

(1.005) 

% effi. 

(1.01) 

% effi. 

(1.015) 

% effi. 

(1.02) 

% effi. 

(1.05) 

2006 112 1.020 1,938 46.429 55.357 66.964 72.321 87.500 

2007 104 1.210 1,337 42.308 50.962 60.577 67.308 82.692 

2008 104 1.039 1,722 46.154 58.654 61.538 66.346 79.808 

2009 107 1.073 1,673 39.252 51.402 58.879 63.551 76.636 

2010 106 1.086 1,892 48.113 57.547 59.434 59.434 73.585 

2011 81 1.030 1,173 60.494 75.309 75.309 79.012 86.420 

2012 92 1.109 1,605 52.174 60.870 65.217 66.304 73.913 

2013 83 1.049 1,218 46.988 59.036 62.651 67.470 83.133 

2014 94 1.028 1,451 50.000 62.766 70.213 75.532 88.298 

2015 107 1.060 1,857 27.103 38.318 45.794 47.664 72.897 

2016 92 1.017 1,436 69.565 78.261 83.696 84.783 92.391 

2017 88 1.040 1,265 48.864 62.500 64.773 69.318 81.818 

2018 88 1.029 1,357 60.227 67.045 73.864 76.136 84.091 

2019 73 1.014 1,076 64.384 73.973 79.452 84.932 94.521 

2020 55 1.015 750 70.909 78.182 81.818 81.818 90.909 

2021 72 1.078 1,424 33.333 45.833 50.000 51.389 68.056 

Total 1,458 1.059 23,174 49.314 59.945 65.432 68.861 81.893 
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Figure 5.2 plots the proportion of technically efficient and not efficient towers for each 

year (𝜀 = 0.01 henceforward). The figure offers a visual depiction of column (%effi. 1.01) from 

Table 5.2. The blue area represents the proportion of technically efficient towers whereas red 

represents the proportion of lookout towers classified as not technically efficient. The percentage 

of lookout towers that are classified as technically efficient is increasing over time. Note that for 

all the years, except 2015 and 2021, there are more technically efficient towers (proportion more 

than 50%) than not technically efficient. 

        
    Figure 5.2 Classification of Lookout Towers 
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To further understand the relationship of the number of active towers and the number of 

fires on the proportion of lookout towers, we develop two simple regression models. Specifically, 

we estimate the following equation: 

𝑌𝑡 =  𝛽0 + 𝛽1𝑋𝑡 + 𝜀𝑡, 

where 𝑌𝑡 is the proportion of technically efficient lookout towers in year 𝑡 and 𝑋𝑡 is:  

Model (1): number of active towers in year, 𝑡, and  

Model (2): number of fires in year, 𝑡. 

Table 5.3 Regression Results 

 (1) (2) 

𝛽0 99.015*** 

(14.970) 

94.574*** 

(10.778) 

𝛽1 - 0.417** 

(0.162) 

- 0.023*** 

(0.007) 

N 16 16 

R2 0.321 0.420 
Standard errors are in parenthesis. * p<0.10, ** p<0.05, *** p<0.01 

 

The results of the two OLS regressions are presented in Table 5.3. For the first model, the 

number of towers in a year is negatively associated with the proportion of technically efficient 

lookout towers. The addition of one lookout tower is correlated with a reduction of 0.417 

percentage points (out of 100) in the proportion of technically efficient lookout towers in a year. 

In other words, the addition of two lookout towers is associated with a decrease in the proportion 

of technically efficient towers by almost one percentage point. On the other hand, for model (2), 

the addition of 40 wildfires in a year is associated with a reduction of the proportion of technically 

efficient lookout towers by approximately 1 percentage point.  
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We now shift our focus to the spatial distribution of technical efficiency. Figure 5.3 shows 

a heat map of technical efficiencies across the FPA. For each of the 127 towers we compute the 

average technical efficiency score from 2006-2021, where the lower score bound (most technically 

efficient lookout average) is 1.001, the upper score bound (least technically efficient lookout 

average) is 3.110, and the median score is 1.026. Shades of deeper green represent higher technical 

efficiency (lower technical efficiency scores), while weaker shades of green represent lower 

technical efficiency (higher efficiency scores). 

In the next chapter, we explore non-discretionary drivers of technical efficiency. The goal 

is to develop machine learning models to perform binary classifications of lookout towers. 

Specifically, we are interested in examining whether local weather information can be used to 

determine if a tower is at the technical efficiency frontier or not. 
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Figure 5.3 Heat Map of Average Technical Efficiency Scores 
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Chapter 6. Machine Learning to Predict Technical Efficiency 

 

The statistical tools offered by Machine Learning (ML) are widely used because of their ability to 

analyze complex datasets and make accurate predictions (Reichstein et al. 2019). This chapter 

applies machine learning to predict the technical efficiency of lookout towers. Specifically, we 

investigate the influence of weather conditions on a lookout tower’s ability to effectively convert 

visibility into successful wildfire detection. To study this, we train and tune a variety of 

classification models using weather variables as predictive features. We then evaluate the 

predictive performance of the models (section 6.4) and the feature importance of the weather 

variables (section 6.5). 

 ML is prevalent in the field of wildfire research. Papers in this literature often focus on 

using ML techniques to predict wildfire risk and use imaging algorithms to enhance wildfire 

detection. With regards to wildfire risk, many papers examine the relationship between weather 

and wildfire. Sakr et al. (2010) present a wildfire risk prediction model using Support Vector 

Machines (SVMs), accounting for weather conditions to predict wildfire hazard levels. Their study 

demonstrates the ability of ML models using high-frequency data on daily number of fires to 

accurately predict daily risk of wildfire occurrence. 

Janabi, Shourbaji, and Salman (2018) compare SVMs against a variety of Neural Network 

(NN) techniques for predicting forest fires. They develop four different neural network models: 

Cascade Correlation Network, Multilayer Perceptron Neural Network, Polynomial Neural 

Network, and Radial Basis Function. They find that SVM outperforms NN, and it is therefore more 

suitable for the task of predicting forest fires. 
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Stojanova et al. (2012) use predictive models such as K-Nearest Neighbors, Naïve Bayes, 

Bayesian Networks, SVMs, and Random Forests (RF) to estimate the risk of wildfire occurrence. 

Their models incorporate GIS data, remote sensing images, and weather forecast models to make 

predictions. They conclude that combinations of many Decision Tree (DT) models produce the 

highest accuracy in predicting the probability of a fire occurring at a specific location at a specific 

time. 

Xie et al. (2022) use SVM, RF, and XGBoost to study wildfire risk and compute feature 

importance values (feature importance is discussed in detail in section 6.5). Using data on wildfire 

triggering factors based on topography, human activities, and meteorology, the study finds that 

eXtreme Gradient Boosting (XGBoost) models exhibit better performance. They find that 

precipitation, air temperature, and land cover show significant effects when predicting wildfire 

occurrence and behavior. 

Dong et al. (2022) explore the effects of geographical and temporal variations on monthly 

time series of wildfires. They develop ML models such as XGBoost, RF, SVM, and DT. They find 

that XGBoost outperforms other models and that weather variations over time have a significant 

influence on the time series and spatial dispersion of wildfire occurrences. 

Collins et al. (2018) and Gibson et al. (2020) assess the performance of RF classifiers to 

map wildfire severity. The studies use satellite-based wildfire maps by using landscape imagery 

and biophysical characteristics, such as ground cover, vegetation, and soil. Collins et al. (2018) 

find that RF classifiers complemented with spectral data provide a reliable method for mapping 

fire severity across heterogeneous landscapes. Gibson et al. (2020) conclude that the model 

performs the best for cases when full forest crown scorch occurs.  
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Moreover, the literature has shown that the incorporation of imaging information can 

improve the performance of wildfire detection models. Zhang et al. (2018) develop a Region-based 

Convolutional NN (R-CNN) model for the purpose of detecting wildfire smoke from photos. Their 

study relies on simulated (synthetic) smoke imagery of two kinds: photos of actual smoke pasted 

on a forest background and smoke generated from a rendering software which is then inserted on 

a forest background. The study concludes that this type of NN model can identify and localize 

smoke from videos. 

Barmpoutis et al. (2019) train a R-CNN model for detecting wildfires using annotated 

terrestrial-based images. Their experiment aims to test the ML model using actual fire images and 

images that contain objects that are fire colored. The authors find that their model results in high 

true positives while reducing false positives from fire-colored objects. This can help in 

successfully determining wildfires using deep learning techniques. 

Dutta, Das, and Aryal (2016) examine the relationship between climate data and fire 

incidence. The study relies on NASA Active Fire and Burned Area satellite imagery and weather 

data. They demonstrate high accuracy in predicting hot-spots and correctly identifying bush-fire 

incidents in Australia. The authors believe predictive systems and statistical learning help 

understand climatic variations on bushfires within a weekly temporal scale. 

Zhao et al. (2018) construct SVM, Artificial Neural Network and CNN models to optimize 

wildfire detection. Their models rely on UAV imagery of wildfire and wildfire smoke to develop 

saliency methods for detection. The methods used in this study efficiently locate core fire regions 

and even very small ignition zones from the aerial images. 
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6.1. Weather Data as Machine Learning Predictors 

 

Severe fire seasons have been linked with higher air temperatures, lower humidity, variability in 

wind patterns, and rain-scarce regions (Jain et al. 2022). In fact, these variables are part of the most 

widely used wildfire weather index, the Canadian Fire Weather Index System (FWI). It is therefore 

important to account for weather in developing wildfire behavior and detection models in both 

operational and research contexts (Wagner 1987). In this study we use six meteorological variables 

as ML predictors: air temperature, humidity, incoming radiation, snow water, precipitation, and 

wind speed. 

Air temperature and relative humidity are two important factors that influence wildfire 

incidence (Abatzoglou et al., 2019). Higher maximum temperatures are favorable for wildfires 

(Walker et al. 2019; Halofsky, Peterson and Harvey 2020; Canepa and Drogo 2021). Low levels 

of humidity accelerate desiccation of biomass fuels, making them more combustible (Herawati 

and Santoso 2011). The term ‘crossover’ is widely used in the forestry industry in Canada, it 

explains a simple guideline for the threshold conditions of extreme fire behavior: when relative 

humidity is equal or lower than the air temperature (Lawson and Armitage 2008; Cruz and 

Alexander 2019). These two weather conditions working in opposite directions increase wildfire 

risk and can result in severe fire seasons (Jain et al., 2022). The 30-30-30 rule is another widely 

used rule of thumb for defining extreme fire behavior: temperature greater than 30 degrees Celsius, 

relative humidity 30% or lower, and winds of 30 kilometers per hour or more lead to fires that are 

difficult to control until weather conditions change (English, 2018; Mahdavi, 2023). Thus, in 

conditions favoring wildfire incidence and spread, lookout towers must maximize timely detection 

to perform efficiently to mitigate damages. 
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 Incoming radiation is a significant weather variable to consider when predicting if a 

lookout tower is technically efficient in detecting wildfires. There is a relationship between net 

radiation and soil moisture (Eltahir, 1998). Incoming radiation explains aridity which is an 

indicator of soil moisture and humidity (O et al., 2020). Larger wildfires tend to occur when fuel 

moisture is low which promotes easier fire ignition especially when temperatures are high, and 

humidity is low (conditions that reduce fuel moisture and increase fire spread risk) (Krueger et al., 

2015). Low fuel moisture leads to vegetation becoming more flammable, increasing severity of 

wildfires (Sharma et al., 2020). Therefore, we account for incoming radiation when exploring the 

association between weather and technical efficiency of wildfire detection. 

Wind speed, rainfall, and snow water equivalent affect wildfire risk and incidence. Higher 

recorded wind speeds are linked to lower fuel moisture which can influence the rate of spread and 

intensities of wildfires (Banerjee et al. 2020). Additionally, wind is one of the most important 

variables in the spread of a wildfire, making it a useful factor to consider (Lookout Observer 

Manual 2022, p.164). Lower precipitation promotes wildfire occurrence (Fang et al. 2021). 

Moreover, larger snow water equivalent values are linked to a smaller likelihood of wildfire 

severity (McGrath et al. 2023). Considering these studies, we account for wind speed, rainfall, and 

snow water around the vicinity of a lookout tower and explore if they affect technical efficiency. 

These findings support the significance of weather variables as predictors in machine 

learning algorithms. Table 6.1 summarizes the weather variables used in the machine learning 

algorithms, their units of measure, and a short description of what they measure. 

Meteorological data used as predictors in our machine learning models are provided by 

ACIS at the township level. While some towers have equipment to measure local weather, many 
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do not. To accurately reflect local weather, the weather station observations are aggregated to 

lookout tower-level by applying an inverse distance-based mean with a threshold of 150 

kilometers. Therefore, observations closer to the tower are given more weight in measuring 

weather than observations further away. The final step in preparing weather data is to aggregate 

monthly to yearly observations. We choose the months of April, May, June, and July to define the 

average of weather variables during the fire season. These months capture 75.29% of wildfires 

from our dataset.  

Table 6.1 Weather Variables as Predictors in Machine Learning Models 

Variable Definition 

Maximum air temperature (°C) The maximum recorded air temperature measured 

in degrees Celsius. 

Humidity (%) Relative humidity is a measure of the relative 

amount of moisture present in the air at a specific 

temperature recorded 2 meters above the ground. It 

is expressed as a percentage indicating how close 

the air is to being saturated with moisture (100% 

relative humidity). 

Incoming modelled radiation (MJ m-2) The amount of solar energy received per meter 

square estimated using daily maximum and 

minimum temperatures, date, station latitude and 

elevation, and other variables. Please refer to 

Appendix H for more information about the 

methodology used by ACIS to estimate incoming 

radiation. Measured in mega joules per meter 

square. 

Snow water equivalent (mm) The amount of water that would be obtained by 

melting the depth of snow. Measured in millimeters. 

Precipitation (mm) The amount of rainfall recorded in millimeters. 

Wind speed (kmh-1) Speed of wind measured at a height of 10 meters 

above the ground, a standard height for weather 

stations. Measured in kilometers per hour. 
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6.2. Machine Learning Algorithms  

 

Machine learning models can be categorized into two broad groups: regression models and 

classification models. Regression models are applied when the outcome or target variable is a 

continuous numerical value, for instance, predicting and estimating house prices (James et al. 

2013). On the other hand, problems that aim to assign output predictions to finite numbers or 

discrete categories are categorized as classification problems in machine learning (Bishop 2006). 

Therefore, classification models are preferred for predicting whether lookout towers are 

technically efficient based on weather variables. Technical efficiency is the target variable that is 

to be predicted. It is a binary variable with two levels, 0 indicating technical inefficiency and 1 

indicating that the lookout tower is technically efficient. Lookout towers with a technical 

efficiency score of 1.01 or less are classified as technically efficient while those with higher scores 

are said to be not technically efficient. 

The predictors used are the weather-related variables discussed in the previous section. 

Nine classification models are constructed: Regularized Logistic Regression, Naïve Bayes, K-

Nearest Neighbor, Support Vector Machines, Neural Networks, Decision Tree, Random Forest, 

Adaptive Boosting, and eXtreme Gradient Boosting. The inclusion of these nine classification 

models represents a variety of ML approaches. Therefore, evaluating these models offers a well-

rounded assessment of predicting the technical efficiency class of lookout towers based on weather 

variables. 

Logistic Regression aims to estimate the probability that the target variable belongs to the 

positive (lookout is technically efficient) or negative (lookout tower is not technically efficient) 
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class (James et al. 2013). The model estimates coefficients by maximizing the likelihood of the 

instance being in a given class in the training data. If the probability of an instance falling in the 

positive class is (0.50) 50% or more, the data point is classified into the said class (Géron 2019). 

On the other hand, an observation with a probability of the instance less than 50%, is classified 

into the negative class. In our application of the logistic regression model, we use the boosted 

logistic regression model. ‘Boosting’ in machine learning is a technique that aims to improve the 

performance of a model by combining weak learning algorithms into a stronger ‘ensemble’4. 

Ensembles train a series of models with the focus of correcting the errors in the predecessor models 

and sequentially improving overall predictability. Thus, we obtain a final model that progressively 

becomes more accurate (Hastie, Tibshirani and Friedman 2001; Géron 2019). In the context of 

logistic regression, boosting combines individual logistic regression models with each subsequent 

model focusing on rectifying the errors of its predecessor. As a result, enhancing the prediction 

capability of the final model. 

K-Nearest Neighbor (KNN) classification models attempt to estimate the conditional 

distribution of the target variable given a set of predictors based on neighboring instances of a 

given observation. The algorithm identifies K neighbors in the training data and estimates the 

classification of the lookout tower based on the majority class of the nearest neighbors to the 

lookout tower of interest (James et al. 2013; Bishop 2006). While this algorithm helps classify the 

target variable into the respective classes and does not impose assumptions on the distribution of 

the training data, predictions are sensitive to the choice of parameter K (number of neighbors). For 

small values of neighbors, the model tends to overfit. As this parameter gets larger the decision 

 
4 ‘Ensemble’ in ML is a technique that combines predictions and outputs of multiple individual models. The aim is to 

improve the overall performance by aggregating results of various models. As a result, the predictions collected are 

more robust and accurate as compared to any one individual model. 
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boundary becomes strict, tends closer to a linear boundary, and leads to a low-variance (the model 

is stable) but high-bias (model simplifies the patterns in the data) classification (Hastie et al. 2001; 

James et al. 2013).   

Support Vector Machines (SVM) split the data by constructing a decision boundary often 

called a hyperplane that maximizes the separation of the different classes. In a ℝn space, the 

hyperplane is of dimension ℝn−1. For instance, in a two-dimensional space, the hyperplane is a 

line. Using the training dataset, the algorithm decides an appropriate hyperplane by implementing 

support vectors. A support vector is a data point from the training data that lies closest to the 

hyperplane. These support vectors play a crucial role in defining an appropriate hyperplane that 

attempts to neatly dissect the two classes (positive and negative instances) (Bishop 2006). The 

model attempts to maximize the margin between the two classes by finding the best line or surface 

that separates the data while correctly classifying as many instances as possible. SVMs are good 

for complex classification when the data is small or medium-sized (Géron 2019) and can be useful 

for binary classification tasks in which there are two classes (James et al. 2013). One drawback of 

SVM models is that they may have difficulties defining hyperplanes if the dataset has overlapping 

or imbalanced class distributions, requiring fine tuning and modifications to the algorithm. 

Decision Tree algorithms follow a hierarchical model for learning (Alpaydin 2020). They 

consist of constructing trees by using a sequence of recursive splits. A Decision Tree is a structure 

resembling a flowchart with nodes representing an attribute (or feature). The tree begins with a 

root node by randomly choosing one predictor. Then splits are made with branches stemming out 

of the root node. The branches lead to internal nodes and are based on a decision rule (a logical 

argument or inequality). The final node is called the leaf node (terminal node) which rules the 

prediction or decision. In our case, the terminal nodes take up binary values of 1 for technically 
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efficient or 0 for not technically efficient. Recursive binary splitting (repeatedly dividing the 

dataset into homogenous sets based on criteria) eventually grows a classification tree. Thus, the 

feature space partition is captured within a single tree. The predictions are then made based on the 

predictors’ values in the unseen testing data (James et al. 2013; Hastie et al. 2001).  

The Random Forest approach refers to an ensemble of Decision Trees. DTs by themselves 

are noisy but benefit from averaging since they capture complex interaction between a set of 

predictors (Hastie et al. 2001). The Random Forest algorithm begins by drawing bootstrap samples 

from the data. For each sample, it grows a tree. The predictions of individual trees are collected 

and then the target variable is assigned its predicted class based on the class that gets the most 

votes (Liaw and Wiener 2002; Géron 2019).   

Neural Networks consist of layers of connected neurons that work together to find patterns 

in the dataset to make final predictions (Hastie et al. 2001). Goodfellow et al. (2017) and Géron 

(2019) discuss the workings of a neural network model. Neurons are the first component of a 

neural network. They are basic processing units that transform a given input instance into 

meaningful information for the neural network to learn from. Neurons also calculate the weighted 

sum of inputs which assigns an importance to each input. A component for the bias is also 

accounted for, allowing for finer tuning. This helps the network understand complex patterns. The 

information from each neuron is passed to an activation function. This function allows the neural 

network to learn complex relationships between different classes and features. The activation 

function can be thought of as a switch for each neuron. The output of the activation function acts 

as the input for the neuron in the next layer. This function produces an output between 0 and 1 

which signals how much activation is given to each neuron. Higher activation informs the network 

about how strongly the given neuron influences the learning of patterns in the training dataset. 
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This process is repeated till the final output is achieved in the last layer of the neural network. The 

weights and biases are adjusted based on the errors of the entire learning process. The goal is to 

reduce misclassification and improve the network’s learnability. The neural network model used 

in this study uses Principal Component Analysis (PCA) as a pre-processing step. PCA is a 

technique used to reduce the number of dimensions and therefore, the complexity of the dataset 

(Suleiman, Tight and Quinn 2016). It transforms the original inputs into principal components or 

uncorrelated features. One of the fundamental properties of the PCA is that it de-correlates 

variables in the data. These principal components are linear combinations of the original inputs 

and are sorted in order of variance. The components with higher relative variance capture 

variability in the data. Similarly, in a PCA Neural Network, the PCA approach simplifies data into 

components by reducing the number of dimensions. These simplified components act as predictors 

in the neural network. The aim of this approach is to concentrate the neural network’s learning 

towards the components that contribute more towards the variability in the data. 

Naïve Bayes is based on a probabilistic approach that relies on Bayes’ theorem to calculate 

the probability of instances belonging in either class. Similarly, Bayes’ theorem applied in an ML 

model finds the chances of an instance belonging to a particular class based on its predictor values. 

Naïve Bayes’ biggest assumption is feature independence. The presence of a feature in a class is 

independent of other features. In the training phase, the algorithm calculates probabilities, then 

uses unseen data to select the class with the highest probability as the final predicted class (Hastie 

et al. 2001; Alpaydin 2020) . 

An Adaptive Boosting (AdaBoost) classifier model starts by picking a simple model such 

as a Decision Tree. The model is trained, and predictions are made on the training set. Based on 

the performance of the model, the relative weights of misclassified observations are increased.  As 
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such, the ensemble learns from itself. Misclassified instances with higher weights need to be 

rectified in order to improve the prediction of the ensemble. As a result, the subsequent model 

focuses more on these data points that were previously classified incorrectly. A second model is 

trained, predictions are made, and the weights assigned to instances are updated accordingly. This 

process is repeated many times. The intuition behind increasing weights is as follows: if the first 

model predicts many wrong instances, the weights are boosted. Therefore, the second classifier 

model performs better on the wrong instances. Adaptive boosting adds predictor variables 

gradually to make the final model more accurate (Géron 2019). After all the predictors are included 

in the training phase, each of them is assigned different weights based on the accuracy of the 

weighted training set. Finally, predictions are made using the bagging approach. ‘Bagging’ is short 

for bootstrapped aggregation. Bagging is a technique in machine learning that trains many models 

on subsets of data. The bootstrapped predictions are aggregated which reduces variance and 

improves the stability of the ensemble (Alpaydin 2020). 

 Extreme Gradient Boosting (XGBoost) is the last algorithm we choose in this study. It is a 

boosting algorithm like AdaBoost that combines many models to create a robust final model by 

sequentially adding predictors to a learning ensemble, correcting its predecessor model along the 

way. It generates a combination of models that attempt to improve on the errors made by the 

previous model. The difference between extreme gradient boosting and adaptive boosting is that 

the XGBoost fits the new predictor to the residual errors made by the previous predictor whereas 

adaptive boosting adjusts the weights at every iteration. (Géron 2019). This algorithm is useful 

when the data has a significant amount of noise (Friedman 2001). While XGBoost can handle large 

datasets, it is computationally costly and contains many hyperparameters that require tuning to 

obtain the best performing model. 
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6.3 Model Training and Hyperparameters 

 

To achieve optimal predictive performance, machine learning models require training and fine-

tuning of hyperparameter. Typically, a trained model relies on a subset of the data to learn and 

build the model. As such, data is divided into two parts: the training sample and the testing sample. 

The training set in our analysis is 80% of the original dataset (with 20% in the testing dataset). 

Once training models are built, we apply them to predict the class (“technically efficient” or not) 

of the lookout towers. We use classification models where outcomes are measured in terms of 

discrete variables, often referred to as class labels, e.g., towers are either technically efficient or 

not technically efficient.  

The method of cross-validation (CV) is applied to train our models. CV is a data resampling 

approach that aims to prevent overfitting and estimate true prediction errors (Berrar 2018).  It is a 

training strategy that involves randomly dividing the set of observations into 𝑘-folds (or 

subsamples) of approximately equal sizes. The procedure involves 𝑘 iterations. We have 1,458 

tower-year observations in our entire dataset. Therefore, a 10-fold cross-validation will randomly 

divide the training data, which is approximately 1,166 observations (80% of 1,458), into 10 sub-

groups of approximately 116 – 117 observations. In the first iteration, one of the 10 sub-groups is 

set as the validation set and the model is trained on the remaining 9 (𝑘 − 1) folds. Once the model 

is trained it is used to predict the class label on the validation set (the sub-group that is held out). 

The procedure is repeated 𝑘 times till all the folds (or sub-groups) are held as the validation set in 

different iterations. Therefore, CV predicts labels using multiple unseen testing data subsamples. 
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In each iteration of the cross-validation method, the model’s predictive performance is 

calculated and stored. Usually, for regression machine learning models, the Mean Squared Error 

(MSE) statistic is used as the metric of performance. MSE measures the average squared difference 

between predicted values and actual values. A lower value indicating the model’s predictions are 

close to the actual values, as such, offering an appropriate estimate of performance. In a 10-fold 

CV, there are 10 different MSE values obtained for each iteration. The final model performance 

measures when using cross-validation are computed as the average of each iteration’s value (James 

et al. 2013; Rodríguez, Pérez and Lozano 2010).  

For classification models, MSE is not the best measure of performance therefore, measures 

such as sensitivity, specificity, and Area Under the Receiver Operating Characteristic curve 

(AUROC) are used (Kuhn and Max 2008). The performance metric of AUROC is discussed in 

detail in the next section (6.4 Model Assessment). We apply CV using the Receiver Operating 

Characteristic (ROC) curve to measure the performance for our models. The AUROC value for 

each iteration is averaged out. The formula is as follows: 

 

𝐶𝑉𝑘 =
1

𝑘
 ∑ 𝐴𝑈𝑅𝑂𝐶𝑖

𝑘

𝑖=1

 (6) 

Where:  

 

𝐶𝑉𝑘  = k-fold cross-validation  

𝐴𝑈𝑅𝑂𝐶𝑖 = AUROC value for i-th iteration 

 

Cross-validation allows for efficient use of limited data by ensuring that the models are 

trained and tested on many different portions and subsamples of the dataset. Additionally, this 

reduces chances of overfitting and provides better estimates about the model’s generalization 
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performance (how well the model performs on unseen data that was not incorporated in the training 

stage). Cross-validation is essential for hyperparameter tuning (Hastie et al. 2001). It helps inform 

the best model parameters after evaluating outputs across different combinations of parameters.  

Predictions from machine learning models depend on a particular model specification, that 

is, a choice of the levels of the models’ parameters. For example, in Decision Tree, one must 

specify how many splits the model should perform, or, in a Neural Network, how many layers to 

include in the model. These machine learning parameters, for example, ‘splitrule’ (for Random 

Forests) and ‘maxdepth’ (for XGBoost), are often referred to as hyperparameters. 

Hyperparameters influence the training of algorithms and have a significant influence on model 

performance (Wu et al. 2019).  Therefore, the parameters of any given machine learning model 

need to be tuned for optimal results. One way of tuning parameters is using a random search 

algorithm. Random search trains models by randomly picking a combination of hyperparameter 

values. The approach then compares the results from using different combinations of 

hyperparameters based on performance metrics and chooses the specific set of parameters values 

that leads to optimal model performance (Wu et al. 2019; Bergstra, Ca and Ca 2012).  The 

application of random search in this study is as such; the model picks a random combination of 

hyperparameter values. Then, after training, the model predicts the classes on testing data and 

saves the output metrics along with the hyperparameter values. This process is repeated 500 times 

in which the program randomly selects different hyperparameter values each time. As a result, we 

obtain a compilation of various hyperparameter values and the respective model output metrics. 

Our goal is to select the set of hyperparameter values that generates the best performing 

models. Using the complied dataset, we use linear splines to find specific parameter values that 

maximize the AUROC value. Certain models have parameter values that are strings and not 
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numeric. For example, in the K-Nearest Neighbor model, the parameter ‘kernel’ can take string 

values such as ‘biweight’, ‘gaussian’, or ‘rectangular’. In this case, dummy variables are generated 

for each possible value when the hyperparameter is a categorical variable and splines are created 

using each one of these dummy variables. Hyperparameters are divided into percentile intervals of 

20, 40, 60, and 80. Then splines are used to model AUROC as a function of the hyperparameters. 

Finally, the values that maximize the smoothed AUROC are the tuned parameters chosen for our 

machine learning models. A list of the tuned model-specific hyperparameters and their definitions 

is presented in appendix I.  

 

6.4. Model Assessment 

 

It is important to examine the performance of the different machine learning models by evaluating 

their ability to make predictions on new and unseen data. There are many statistics that can be used 

to measure a model’s predictive performance. These measures give a sense of how powerful the 

machine learning model is in predicting whether a lookout tower is technically efficient or not.  

The most basic output metric is the confusion matrix. Figure 6.1 shows a general 2-by-2 

confusion matrix used in a two-class problem. It is a tool that allows us to see frequencies of what 

the machine learning model predicts (prediction set) against the actual data (reference set). True 

positives (TP) are instances when the machine learning model correctly classifies a tower as 

technically efficient. Similarly, a true negative (TN) is when the machine learning model correctly 

predicts a lookout tower as not technically efficient. On the other hand, a false positive (FP) 

instance occurs when a lookout tower is not technically efficient in the dataset, but the ML model 
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predicts it to be technically efficient. Lastly, a technically efficient lookout tower that is classified 

as not technically efficient is a false negative (FN) instance. 
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Figure 6.1 Confusion Matrix 

 

Various measures of performance can be built based on the four values in the confusion 

matrix such as accuracy, precision, sensitivity (or recall), specificity, and F1 score. These measures 

are defined as follows: 

Accuracy = TP + TN

TP + TP + FP + FN
 

Precision = TP

TP + FP
 

Sensitivity (Recall) = TP

TP + FN
 

Specificity = TN

TN + FP
 

F1 score = 
2(

Precision × Sensitivity

Precision × Specificity
) 
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The Area Under the Curve for Receiver Operating Characteristic (AUROC) combines 

many of the measures above and is a popular metric in evaluating classification models. As such, 

we proceed to use the AUROC as our main model performance measure. The AUROC is based 

on the Receiver Operating Characteristic (ROC) curve. The ROC curve plots the true positive rate, 

i.e., sensitivity (recall), against the false positive rate, i.e., the ratio of instances belonging to the 

negative class incorrectly classified as positive (Géron 2019). Note that the false positive rate is 

equal to one minus the true negative rate (ratio of negative instances that are correctly classified 

which in fact is the true negative rate or specificity). Therefore, a ROC curve plots sensitivity 

against one minus specificity. 
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Figure 6.2 General ROC 

 

We use Figure 6.2 as a reference to discuss the characteristics of a general ROC curve and 

the intuition behind AUROC values. The figure shows a ROC curve from some ML prediction 

represented by the blue line. The axes are the metrics of sensitivity and 1 – specificity. The dashed 

red line represents the ROC curve of a random classifier model that predicts instances purely based 

on chance. This is undesirable for any machine learning model. In the context of our study, we 

would interpret this ROC curve by concluding that the model’s performance is no better than 

randomly guessing whether a lookout tower belongs to the ‘technically efficient’ class based on 

local weather around it. The green line represents a perfectly predictive model, i.e., the model 
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predicts all instances correctly. Any good classification model’s ROC curve should be as far away 

from dashed red line as possible and close to the green line, hugging the top-left corner of the 

graph.  

Finally, AUROC is the area under the ROC curve. A perfect predictive model (green ROC 

curve) where all predictions made are correctly will have a value of 100 (Google Developers 2023). 

An ML model that performs no better than relying on chance will have an AUROC approaching 

50 (dashed red ROC curve), such as the outcome of flipping a coin for an infinitely large dataset 

(Géron, 2019; James et al., 2013).  In other words, a model with AUROC equal to 50 is not able 

to separate instances into classes accurately and randomly guesses the class that an instance will 

belong to. Therefore, AUROC measures the trade-off between sensitivity and specificity in a 

classification task. As such, it speaks towards the discrimination ability of the model.  

 

Results 

 

In the discussion that follows, we use the AUROC to evaluate our nine ML models. Additional 

model assessment measures are available in Appendix J. Figure 6.2 plots the ROC for all models. 

Logistic Regression (Logit) has the lowest AUROC value of 70.236 followed by Naïve Bayes 

(71.035), Decision Trees (79.949), and Neural Network (81.930). Models with higher AUROC 

values include Support Vector Machines (92.388), eXtreme Gradient Boosting (91.849), Random 

Forests (95.383), Adaptive Boosting (94.108), and K-Nearest Neighbors (98.407). A high value 

indicates that the model is accurate at classifying whether a lookout tower is technically efficient 

(positive instance) or not (negative instance) based on the weather around them. The curve shows 
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a high true positive rate while maintaining a low false positive rate. Therefore, the model performs 

well and correctly predicts more true positives rather than false positives, highlighting the 

robustness of the model.  

One way to evaluate the AUROC values, is by following a rule of thumb used in the works 

of Adamecz-Völgyi, Henderson and Shure (2020): a model’s ability to predict is considered 

“good” if the AUROC is more than 80 and “great” if the AUROC is more than 90. Based on the 

results in Figure 6.4, models that perform great are SVM, XGBoost, RF, AdaBoost, and KNN. 

Whereas NN is considered to be a good classifier model. On the other hand, Logit, NB, and DT 

have AUROC values of less than 80. 
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Figure 6.3 AUROC Graphs for Machine Learning Models 
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6.5. Feature Importance 

 

First introduced by Breiman (2001), feature importance is a model-independent approach that can 

be implemented across different machine learning algorithms (Pedregosa et al., 2011). Estimating 

feature importance is a posterior evaluation technique that evaluates the influence of predictors in 

a ML model. It helps understand which variables play a significant role in our machine learning 

models. Feature importance does so by ranking the influence of variables (predictors) in predicting 

whether lookout towers are technically efficient or not. The importance of a feature, a weather 

variable in this study, will be quantified by the increase in the prediction error of the model when 

the variable is removed from the dataset entirely. The intuition is that the magnitude of the drop in 

model performance after removing a feature shows how influential that feature is for the model to 

make accurate predictions. 

A specific type of feature importance is “permutation feature importance”. Instead of 

dropping a feature completely, like in the general feature importance approach mentioned above, 

permutation feature importance relies on randomly shuffling (or scrambling) a given predictor’s 

values while holding all other variables fixed. The model then predicts the class label, and the 

performance metrics are computed. Similar to traditional feature importance where a feature is 

completely omitted, in permutation feature importance, a feature is important if after shuffling its 

values, the model performance decreases significantly. The magnitude of the drop in model 

performance concludes how heavily the model relies on the given feature to make correct 

predictions. Conversely, a feature is less important if shuffling its values does not change model 

performance significantly (Molnar, 2020; Pedregosa et al., 2011). 
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Our approach for calculating permutation feature importance of weather variables follows 

a method discussed by Pedregosa et al. (2011). For feature 𝑗 of model 𝑚, each iteration 𝑘 scrambles 

the feature’s values randomly. Then the new AUROC value (𝑠𝑘𝑗) of the model is collected after 

the model has made predictions using dataset which now has the scrambled values for feature 𝑗. 

The magnitude of influence or “importance” of feature 𝑗 on the AUROC of the model is calculated 

by applying the following formula: 

 𝑖𝑗𝑘𝑚 =
𝑠𝑚 − 𝑠𝑘𝑗

𝑠𝑚
 (7) 

 

Where 𝑠𝑚 is the original AUROC of tuned model 𝑚 prior to any scrambling of feature 𝑗. 

This is carried out for each of the six weather variables for each model. Finally, the feature 

importance values are averaged out over the 𝑘 iterations (in our study we chose 1000 iterations): 

 
𝑖𝑗𝑚 =

1

𝐾
 ∑ 𝑖𝑗𝑘𝑚

𝐾

  (8) 

   

As such, the average permutation feature importance for each feature is computed. Figure 

6.4 shows the model specific feature importance. A higher permutation feature importance value 

indicates that the AUROC values reduced significantly when the given feature is shuffled. The 

given feature influences model performance to an extent and therefore is of some importance to 

the model. As seen in Figure 6.4, the permutation feature importance values vary from model-to-

model. 
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Figure 6.4 Permutation Feature Importance 
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To better understand the importance of weather variables on the technical efficiency of 

lookout towers and construct one measure of importance, we introduce a method that combines 

model-specific feature importance. We use the feature importance from all models but models that 

perform better than others are given more weight. The proposed formulation for calculating feature 

importance in our study is referred to as the ‘AUROC Weighted Permutation Feature Importance’. 

This is computed by multiplying the model-specific feature importance values by weights assigned 

to each one of the respective nine machine learning models. Thus, providing an aggregated feature 

importance value across all of our nine models. 

To accurately reflect the influence of different models in the final measure, each model is 

assigned a weight by using an inverse distance-based approach. A perfect model predicts all 

instances correctly and has an AUROC value of 100. This is used to rank the different models 

based on their ‘distance’ from being a perfect model. As such, the AUROC Weighted Permutation 

Feature Importance accounts for all model performances. The following equations are used to 

calculate the weights (w𝑚). First, we calculate the inverse distance: 

 
Inverse distance𝑚 =

1

100 −  AUC𝑚
 (9) 

 

Where AUC𝑚 are the values presented in Figure 6.2 for model 𝑚. Next, the weight (𝑤𝑚) is 

obtained by dividing the inverse distance and the sum of inverse distances given by the equation: 

 
w𝑚 =

Inverse distance𝑚

∑ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚
 (10) 
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Therefore, this process penalizes models that performed relatively poorly by assigning 

them a smaller weight. As such, models that performed relatively poorly will play only a small role 

in the final AUROC Weighted Permutation Feature Importance but are still accounted for. The 

follow equation defines our final permutation importance value: 

AUROC Weighted Permutation Feature Importance = 𝑤m × 𝑖𝑗𝑚 

 

Figure 6.5 presents a bar plot of the AUROC Weighted Permutation Feature Importance. 

The AUROC Weighted Permutation Feature Importance for humidity is 0.189, making it the most 

important weather variable that predicts the ability of lookout agents to efficiently translate the 

visibility profile of a tower into wildfire detection. Followed by incoming radiation (0.184), wind 

speed (0.171), and air temperature (0.151). Precipitation (0.110) and snow water equivalent (0.103) 

have the least influence on model performance when their values are scrambling. Thus, they have 

little importance in predicting whether a lookout tower will be technically efficient or not. 

Appendix K provides a table of weights assigned to each model and a plot of AUROC scores 

against model weights. Furthermore, we use the five different criteria to classify a lookout as 

technically efficient or not technically efficient (first introduced in Chapter 5) to test the robustness 

of the feature importance values. A report of this robustness check is included in Appendix L. 
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Figure 6.5 AUROC Weighted Permutation Feature Importance 

 

 

 

 

 

 

 

 

 



75 

 

 

Chapter 7. Discussion 

 

Climate change and unpredictable atmospheric patterns will result in increasingly uncertain fire 

seasons. In challenging environments, there is a continuous need for resource optimization to make 

sure that wildfire policy is as efficient as possible. This research develops a production economics 

framework to examine the technical efficiency of wildfire detection by lookout towers. The 

framework considers the fixed visibility profile of lookouts as inputs and measures variations in 

outputs that capture the extensive and intensive margins of wildfire detection, i.e., changes in the 

proportion of fires detected by lookouts, and the speed of detection (reporting delays). The 

approach can be adapted to assess detection agents’ performance in different settings. As such, our 

research develops a framework to assist wildfire management agencies make operational decisions 

and shape a superior detection system based on data-driven observations. 

We estimate the technical efficiency of wildfire detection in Alberta. The Albertan 

detection system is composed mainly of traditional detection agents (e.g., air patrol, ground crew 

patrols, and lookout towers). Traditional detection agents have certain advantages that make them 

prevalent in many geographical regions. For instance, detection systems that incorporate lookout 

towers maximize the land area visible and lookout towers provide constant monitoring of wildlands 

(MNP LLP 2020). Public fire hotlines perform exceptionally well in areas that have higher 

population densities (Rego et al. 2013). Aerial patrols are quick in deployment, can cover large 

areas, access remote areas, and carry firefighting crews prepared to start fire suppression. Ground 

patrols crews provide rapid response to potential reports of wildfires. 



76 

 

 

On the other hand, traditional agents also have drawbacks. For instance, traditional 

technologies are manned modes of detection, therefore, they create room for human errors 

(Dampage et al. 2022; Yuan, Zhang and Liu 2015). When deployed, ground patrols are exposed to 

harmful air pollutants (Reisen, Hansen and Meyer 2011). Aerial reconnaissance for wildfire 

detection has high operational costs and is dangerous for personnel when visibility is low due to 

heavy wildfire smoke (Slavkovikj et al. 2014; Tzoumas et al. 2022). 

Technological developments aligned with some of the negative aspects of traditional 

detection systems have led to the possibility of applying new technologies for wildfire detection. 

Remote sensing cameras, drones, deep-learning algorithms, and satellites are entering the market 

of monitoring wildlands and detecting wildfires (Bouguettaya et al. 2022; Allison et al. 2016; 

Zhang et al. 2019). However, these technologies come with their own set of challenges. For 

instance, the operation of drones is affected during conditions of heavy cloud cover or strong 

winds. Additionally, wildfire location can be accurately detected by drones only after the fire has 

reached a certain magnitude (Liu et al. 2022; Ichoku, Kahn and Chin 2012). The range of vision 

for machine-based lookout towers is lower than human-based watchtowers (Zhang et al. 2020). 

Therefore, a system of unmanned towers may require more lookout towers to be constructed to 

increase visibility coverage, working against the cost-effectiveness of replacing human observers 

with cameras (Zhang et al. 2020). Satellites can offer an alternative to cameras; however, they have 

the ability to survey the land ever so often. Satellites can be vulnerable to positional errors when 

detecting wildfires, leading to location estimates with errors of up to tens of kilometers (Liu et al. 

2022). Current satellites that use infrared sensors have several gaps in observation, especially 

during afternoons and early evenings. Unfortunately, these long periods of blindness are during 

peak burn times when temperatures are high, winds are strong, and humidity levels favor extreme 
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wildfire behavior (Government of Canada and Canadian Space Agency 2022). All these factors 

need to be considered in light of a possible transition in detection technology. 

Trade-offs for using different detection systems need to be closely examined to operate 

effectively. Lookout towers demand capital investments and, in a challenging fiscal environment, 

there is a need to consider their relevance (MNP LLP 2020). Lookout towers cost AB Wildfire 

approximately 7 million dollars (in total) during the five-year period of 2016 to 2020 (i.e., 

approximately 1.4 million annually). In 2019, the government budgeted $6.9 million for the next 

five years to maintain and improve lookout towers. An alternative system (e.g. cameras) may be 

evaluated in terms of its technical efficiency, associated costs, and other factors in order to make 

benefit-cost comparisons.  

Moreover, the thesis finds that weather patterns around the lookout towers during the fire 

season are important predictors of the technical efficiency classification, where the technical 

efficiency class denotes towers that are best-practice units and form the wildfire detection frontier. 

Recent research finds that new detection technologies are also influenced by weather. For instance, 

Zhang and co-authors find that weather influences the quality of camera and satellite images. 

Digital photos are good for detecting crown-fires while detecting ground or surface fires are still a 

challenge (Zhang et al. 2019)5. Even after minimizing these drawbacks, the incorporation of new 

technologies calls for testing phases which require trial and error and significant investments. 

Furthermore, human-based lookout towers have been gaining attention given the expected 

changes in Alberta’s labor and safety regulations. Working as an observer consists of working long 

 
5 Crown-fires burn the forest canopy which is made of foliage, branches, and fuels above the surface level. Surface 

fires burn fuels on the surface such as litter, duff, and forest residuals. Ground fires occur underground or below the 

surface and burn peat, dead vegetation, and move very slowly but are harder to suppress (These definitions are referred 

to from AB Wildfire’s detection data dictionary). 
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hours in isolation that can influence the performance of observers due to fatigue. With new labor 

regulations, decision-makers may have to hire more than one observer per tower, doubling the cost 

of manpower at the very least and further affecting the cost-effectiveness of lookout towers (MNP 

LLP 2020). More stringent hiring practices in the future can make operations difficult in an 

increasingly challenging surveillance environment. As institutional settings change, there is a need 

for continuous studies of the performance of lookout towers and detection systems.  

But institutions are not the only varying factor, and the future of wildfire detection must 

consider the changing global climate. The process of detecting wildfires has gained significant 

attention due to the growing concerns about frequency and severity of wildfires (Johnston et al. 

2020). Previous studies highlight one common point: the importance of early detection in 

mitigating the damages cause by wildfires (Diendéré and Kaboré 2023; McFayden et al. 2019; 

Lindenmayer et al. 2022). But what drives technical efficiency? The latter part of this study sheds 

light on the influence of weather variables in predicting technical efficiency of wildfire detection. 

Further understanding the influence of meteorological variables on technical efficiency can assist 

in making informed decisions about resource allocation. Understanding weather and how it affects 

lookout towers may guide decision-making about the right time for lookout tower maintenance, 

operational times, and which towers are to be manned more than others.  

This work also raises questions for future studies. For example, more research is needed to 

bridge the gap between wildfire science and production economics. Such research would facilitate 

the assessment of how new wildfire detection technologies compare to the existing lookout 

systems. In that, bias corrected technical efficiency analysis of data from other jurisdictions (e.g., 

those using drones, cameras, and/or other alternative technologies discussed above) is an important 

step to inform costs and benefits of varying detection system configurations. The envelopment 



79 

 

 

techniques employed in this study offer an opportunity to assess how different detection agents 

may perform as part of a mixed-technology detection system. With more detailed data, cameras, 

for example, can be directly compared to manned lookouts in a technical efficiency framework.  

 

7.1. Limitations 

 

This work has several limitations. First, DEA estimates of technical efficiency are sensitive to 

measurement errors and outliers. Nonparametric models used to estimate technical efficiency do 

not require assumptions about the shape of the production technology. Envelopment estimators 

like DEA rely on the enveloping data to estimate the production frontier. While this nonparametric 

strategy avoids production function misspecification errors, the nonparametric envelopment makes 

the DEA frontier sensitive to measurement errors and outliers. For instance, while referring to 

lightning maps is a good practice for estimating fire start times, these are often estimated by crews 

on the ground. Therefore, reporting delay (the difference between fire start time and fire reporting 

time) may be measured with error. However, as long as these measurement errors are random in 

the sense that they are not associated with the visibility profile of towers, our technical efficiency 

measures are still informative of the performance of the towers. A short discussion of outliers and 

how they can affect envelopment estimates is included in Appendix F. 

Second, there are limitations related to the weather data. The data is used to build machine 

learning predictors for lookout tower technical efficiency. As depicted in Figure H.1, numerous 

weather stations collect weather data, signifying that local weather is captured accurately. The 

stations capture the main meteorological variables that are relevant for wildfire behavior, however, 
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many observations are missing. To capture local weather around lookout towers and reduce 

missing observations, we applied an inverse distance weighted approach as discussed in the 

previous chapter. Additionally, only a few weather stations have the tools and sensors that provide 

the ability to detect incoming radiation. For stations without these sensors, the incoming radiation 

observations are modelled using extraterrestrial radiation, temperature, and station longitude and 

latitude. A summary of how ACIS models incoming radiation values is presented in Appendix I. 

While the estimations show a high agreement with real observed data, there is room for 

improvement by incorporating higher resolution of data and non-estimated data. 

Third, the inputs and outputs used in this research represent one way of characterizing 

lookout towers as production units. Lookout towers use their visibility profile to produce the 

maximum number of timely wildfire detections. The inputs, areas that are directly and/or indirectly 

visible from a lookout tower’s viewshed analysis, are fixed and not changing. Thus, inputs used in 

our study are not time-varying inputs. Given that the inputs we consider are fixed, our realization 

of the production function of lookout towers can be classified as short-run production. Different 

perspectives for the characterization of wildfire detection production functions are possible. 

Models of time-varying inputs can consider, for instance, the experience of lookout tower 

observers, fatigue and other characteristics of the observer, and staffing decisions of lookout towers 

indicating when a given lookout tower is staffed and active. A detection model with time varying 

inputs gives us a long-run perspective of the wildfire detection production function. Appendix M 

includes a discussion on the difference between short-run and long-run production functions. 

Moreover, it is also important to acknowledge that misspecification of inputs can impact the DEA 

estimate of technical efficiency. Our focus is on output-oriented technical efficiency given 
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visibility profiles. As a result, models with richer datasets that include, for example, fire and 

observer characteristics may produce different DEA estimates (Smith 1997). 

Fourth, we select AUROC as the metric to compare different models’ performance and 

construct the AUROC Weighted Permutation Feature Importance values. While AUROC is a 

widely used metric of performance and it indicates how well the ML model can differentiate 

between class labels, it tends to have drawbacks depending on the characteristics of the dataset 

(Mungo et al. 2023). Specifically, the AUROC is problematic when a dataset does not have equal 

distribution of classes, i.e., when it is considered to be an unbalanced dataset. To see this, note if a 

binary classification dataset has high density for a particular class (i.e., low density for the other 

class), the ML model can easily achieve high accuracy by predicting the prevalent class correctly. 

In these cases, because there is only a small number of observations in the low-density class (by 

definition), the ML model may perform poorly in predicting/classifying the data. While the actual 

dataset for our analysis is not heavily unbalanced with approximately 60% of technically efficient 

towers (40% not technically efficient), the sensitive characteristic of the AUROC metric should be 

kept in mind. The issue may not be prevalent in our analysis, but it is important to highlight the 

limitation that our dataset is not fully balanced.  
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Appendix A: Forest Protection Area in Alberta 

 

Forest Protection Area (FPA) are geographical areas assigned by the government. The aim is to 

protect these lands by mitigating damage from wildfires, invasive insects, and other negative 

factors. Figure A.1 depicts the FPA for the province of Alberta. The pink area is the designated 

FPA in which AB Wildfire actively detects, monitors, and suppresses wildfires.  

 
Figure A.1 Forest Protection Areas of Alberta 

(Source: AB Wildfire and Government of Alberta (2022))  
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Appendix B: Fires outside Surveillance Regions 

 

Figure B.1 plots the yearly frequency of wildfire by their class sizes. The magnitude of the entire 

bar represents the frequency of all wildfires that originated outside the surveillance region of the 

lookout towers. While the number of fires outside the surveillance region shows an increasing 

trend, most of these reported fires are of the size class of A, the smallest size (no bigger than 0.10 

ha). As such, it can be said that detection agents are identifying signs of potential fires early as 

compared to fires going undetected for longer till they grow into larger wildfires. 

 

 
Figure B.1 Frequency of Wildfires outside Surveillance Regions, by Size Class and Year 
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Appendix C: Output-oriented DEA Model (Variable Returns to Scale) 

 

The estimates of DEA technical efficiency results presented in Chapter 5 are Debreu-Farrell 

measures of technical efficiency. We use the model formulations as discussed by Coelli et al. 

(2005). This study uses the output-oriented model with variable returns to scale. In the output-

oriented method, the program aims to identify technical inefficiency as the proportion expansion 

needed in detection output production with input levels being constant. The decision to pick an 

output-oriented model is clear as all lookout towers utilize their own fixed levels of visibility areas 

(does not change over time) as inputs in the production of detection outputs. 

Lookout towers as data points are represented by 𝑖, ( 𝑖 = 1, … , 𝐼). 𝑁 inputs are denoted by 

vector 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑁) where 𝑁 ∈ ℝ𝑁 while vector 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑀) for 𝑀 ∈ ℝ𝑁 denotes the 

outputs. Thus, the input matrix 𝑋  and output matrix Y (𝑀 × 1) represent the data for 𝐼 

observations. 𝜃 is a scalar and 𝑧 (𝐼 × 1) is a vector of constants. Therefore, for 𝐼 data points, 𝑀 

outputs, and 𝑁 inputs, the measure of output-oriented technical efficiency is calculated as: 

 max
𝜃,𝑧

𝜃  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

 

−𝑦𝑖𝑚𝜃𝑚 + ∑ 𝑧𝑖𝑦𝑖𝑚

𝐼

𝑖 = 1

≥ 0, 

 

𝑥𝑖𝑛 − ∑ 𝑧𝑖𝑥𝑖𝑚

𝐼

𝑖 = 1

≥ 0, 

 

∑ 𝑧𝑖

𝐼

𝑖 = 1

=  1, 

 𝑧𝑖 ≥ 0, 
 𝑚 = 1, … , 𝑀, 
 𝑛 = 1, … , 𝑁 
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Where 1 ≤ 𝜃 ≤ ∞, in which 𝜃 − 1 is the radial increase in detection output while holding inputs 

fixed. For example, if 𝜃 = 1.08, the lookout tower needs to improve detection by 8% (i.e., 1.08 −

1 = 0.08) to reach the technical efficiency frontier.  
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Appendix D: Types of Bootstrapping 

 

For estimation purposes of this thesis, we used the teradialbc command from the nspf R package 

(Bandunenko, Mozharovskyi and Kolomiytseva 2022). There are many types of bootstrapping 

techniques, and the bootstrapping procedure can follow different rules for picking sub-samples 

from the given dataset. In this study we consider two types of bootstraps: (1) homogenous or (2) 

heterogenous.  

As explained by Badunenko and Mozharovskyi, the two approaches differ in the way 

pseudo sub-samples are constructed. Homogenous bootstrap is straightforward and resamples from 

the original dataset with replacement. The average of the statistic of interest (for instance technical 

efficiency scores) is computed which is then compared to the original statistic, thus explaining the 

uncertainty of the original estimates. The heterogenous bootstrap divides the given data into many 

subgroups based on a criterion. These sub-groups are resampled to make a new sample. The 

process is repeated many times till a distribution of the estimates is formed. Both bootstrap 

approaches can be “smoothed”. A smoothed bootstrap simply forms a smooth version of the 

original dataset by considering all small fluctuations in the data (Badunenko and Mozharovskyi 

2016). We use the smoothed homogenous bootstrap to calculate the bias-corrected technical 

efficiency estimates for the lookout towers. 
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Appendix E: Yearly Distribution of Technical Efficiency Scores 

 

Figure E.1 provides histograms of the yearly distribution of bias-corrected technical efficiency 

estimates for model A. It can be noted that all the histograms are positively skewed (right skewed). 

Most of the technical efficiency estimates lie closer to one. Therefore, it can be said that most of 

the lookout towers in a year are very close to the technical efficiency frontier. To clearly visualize 

the behaviour of the bias-corrected measures of technical efficiency estimates, we chose 1.20 as 

the cut-off value for x-axis. Any lookout tower that can increase its production of detection outputs, 

holding the visibility areas in their SR fixed, by more than 20% is not included in Figure E.1. These 

lookout towers are considered in all other analysis and make up 5% of the total number of 

observations at the tower-year level. 
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Figure E.1 Histogram of Technical Efficiency Estimates for Model A, 2006 – 2013 
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Figure E.2 Histogram of Technical Efficiency Estimates for Model A, 2014 – 2021  
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Appendix F: Effect of outliers in Data Envelopment Analysis 

 

The discussions in Chapter 4 relies on the output-space to explain the production economics 

framework used in our study. In this section, we switch to the input-output space to discuss the 

effect of outliers and measurement errors. As mentioned, frontiers constructed using envelopment 

are sensitive to the dataset but are especially sensitive to outliers. Outliers in the data can arise 

from measurement errors or noise. Figure F.1 presents the theoretical frontier and DEA frontier 

for production in a slightly different manner. The solid black line is the theoretical production 

frontier in the input-output space. Similar to the output-space, the theoretical production frontier is 

defined as the boundary of the set of all feasible convex production (input-output) combinations. 

Thus, in the input-output space, it is a concave function defining the boundary of production sets. 

The production function follows the same assumptions but is just depicted in a different space.  

In this example, the true theoretical frontier is represented using the solid black line. The 

researcher’s observed dataset is made up of the red points: R, S, U, V, and W. Point S has some 

measurement error that leads to it being outside the theoretical feasible set. The observer cannot 

explicitly notice the influence of point S and the construction of the DEA frontier (dotted black 

line) is affected. The outlier causes the estimated frontier to cross the true production frontier. As 

a result, technical efficiency will be estimated incorrectly.  
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Figure F.1 Production Frontier and Outliers in Data 

 

One approach for finding outliers in data was proposed by Stosic and Sousa (2003). Sousa 

and Stosic (2005) examine and estimate DEA scores of technical efficiency for a few thousand 

municipalities in Brazil. The interesting aspect of their research is the preparation of their data 

using a unique resampling technique. The aim of this technique is to reduce the influence of outliers 

and errors in the estimation of technical efficiency. The authors find that approaches for dealing 

with outliers usually rely on heavy manual inspection of the data. Therefore, to detect outliers in 

large databases, the work of Stosic and Sousa (2003) introduces a combination of bootstrapping 

and jackknifing, referred to as the Jackstrap. 
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The Jackstrap approach resamples data to detect outliers automatically. It aids in making 

non-parametric estimates more robust. The general working of the Jackstrap is based on calculating 

the effect of removing one production unit on the estimates of technical efficiency of all other 

production units. The authors refer to the measure of influence of the production unit held out on 

the technical efficiency scores of other units as ‘leverage’. Leverage values are calculated for each 

production unit. Then, technical efficiency scores are calculated after dropping production units 

with the highest average leverage values. Their study concludes that the technical efficiency scores 

obtained from this approach provide more robust estimates. There is an opportunity to account for 

outliers by applying Jackstrap in our study after obtaining more observations to form a larger 

database. 
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Appendix G: Map of Weather Stations 

 

Figure G.1 shows the location of weather stations used by ACIS to collect meteorological data. 

The yellow dots are the ACIS weather stations. The pink dot (located at the lower right-hand side 

of the photo) is a weather station that was currently selected on ACIS’ web interface when the 

screen capture was taken. 

 
Figure G.1 Map of Weather Stations in Alberta 

(Source: Alberta Climate Information Service 2020) 
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Appendix H: ACIS’ Estimation for Modelling Incoming Radiation 

 

Some weather stations are not equipped with sensors to measure incoming solar radiation. For 

these stations, the value for incoming radiation is estimated using the equations mentioned below. 

The modelled values show an 87% agreement between measured and estimated daily radiation 

observations (ACIS 2019). 

First, data on the following variables is required: 

𝐺𝑠𝑐 = Solar constant (𝑀𝐽𝑚−2𝑑𝑎𝑦−1) 

𝑑𝑓𝑟 = Inverse relative distance 
𝐽𝑑𝑎𝑦 = Julian day 
𝑁𝑑𝑎𝑦𝑠 = Number of days in a year (366 in a leap year) 
𝑛𝑤𝑠 = Sunset hour angle 
𝑛𝑑𝑒𝑐 = Solar declination angle 
𝑒𝑙𝑒𝑣 = Station elevation (meters) 
𝑙𝑎𝑡 = Station latitude (radians) 

 

Second, the following equations are applied to calculate three intermediate variables that are 

needed to calculate an estimate for the extraterrestrial radiation: 

Inverse relative distance given is by: 

𝑑𝑓𝑟 = 1 + 0.033 ∙ 𝑐𝑜𝑠 (
2𝜋 ∙ 𝐽𝑑𝑎𝑦𝑠

𝑁𝑑𝑎𝑦𝑠
), 

the sunset hour angle is calculated as: 

𝑛𝑤𝑠 = 𝑎𝑟 𝑐𝑜𝑠(−𝑡𝑎𝑛(𝑙𝑎𝑡) ∙ 𝑡𝑎𝑛(𝑛𝑑𝑒𝑐)), 

and the solar declination angle is found using the following equation: 
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𝑛𝑑𝑒𝑐 = 0.409 ∙ 𝑠𝑖𝑛 (
2𝜋 ∙ 𝐽𝑑𝑎𝑦𝑠

𝑁𝑑𝑎𝑦𝑠
− 1.39). 

Using these three calculated variables along with the other variables mentioned earlier, the estimate 

for the extraterrestrial radiation (𝑅𝑎) is calculated as: 

𝑅𝑎 =
1440

𝜋
 𝐺𝑠𝑐 ∙ 𝑑𝑟𝑓(𝑛𝑤𝑠 ∙ 𝑠𝑖𝑛(𝑙𝑎𝑡) ∙ 𝑠𝑖𝑛(𝑛𝑑𝑒𝑐) + 𝑐𝑜𝑠(𝑙𝑎𝑡) ∙ 𝑐𝑜𝑠(𝑛𝑑𝑒𝑐) ∙ 𝑠𝑖𝑛(𝑛𝑤𝑠)). 

 

Finally, the value for the estimated solar radiation (𝑅𝑠) is given by applying 𝑅𝑎 in the following 

equation: 

𝑅𝑠 = 𝐾𝑡 × 𝑅𝑎 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5. 

Where: 

𝑅𝑠  = Estimated solar radiation  
𝑅𝑎 = Extraterrestrial radiation 
𝑇𝑚𝑎𝑥  = Daily maximum air temperature 
𝑇𝑚𝑖𝑛 = Daily minimum air temperature 
𝐾𝑡 = Adjustment coefficient (equal to 0.16) 
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Appendix I: Machine Learning Model Specific Hyperparameters  

 

Table I.1 provides the model specific hyperparameters and their tuned values that maximize the 

smoothed AUROC curve for the given ML model. The definition of each hyperparameter is found 

in the various R packages written by: Venables and Ripley (2002), Karatzoglou et al. (2004), Weihs 

et al. (2005), Alfaro, Gámez and García (2013), Schliep and Hechenbichler (2016), Wright and 

Ziegler (2017), Tuszynski (2021), Therneau and Atkinson (2022), Chen et al. (2023), Karatzoglou, 

Smola and Hornik (2023). These works developed different machine learning packages and are 

collectively applied using the caret package in RStudio (Kuhn et al. 2023).  

 

Table I.1 Model-Specific Hyperparameters 

Model Hyperparameter 

Logistic 

Regression 

nIter (100) 

An integer, describing the total number of iterations for boosting or the number of decision 

stumps to use. Decision stumps are one node decision trees. 

Naïve 

Bayes 

fL (0) 

A factor for Laplace correction. The default factor is 0 (no correction). 

 

Usekernel (TRUE) 

A logical parameter. If true, a kernel density estimate is used for estimating the density. A 

normal density is estimated if set to false. 

 

adjust (1) 

An integer for bandwidth adjustment. It is an input for Kernel Density Estimation. The 

bandwidth in KDE represents the amount of spread in the KDE kernel function. 

Neural 

Network 

Size (20) 

Number of units in the hidden layer. By default, the model fits a neural network with one 

hidden layer. 

 

Decay (0.000128) 

Weight decay parameter that uses the sum off squares of the weights as a penalty. This 

helps with the optimization process and to avoid over-fitting. 
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Decision 

Trees 

Cp (0) 

The role of the complexity parameter is to save computing time by pruning off splits that are 

not worthwhile. It informs the program that any split that does not improve the model fit by 

the value of cp, will be pruned off. 

K – 

Nearest 

Neighbor 

Kmax (25) 

Maximum number of neighbors. 

 

Distance (1.439) 

Minkowski distance parameter. The distance is measured between two points in N-

dimensional space. 

 

Kernel (Inverse) 

Kernel type to use in the program. Options include “rectangular”, “triangular”, 

“epanechnikov”, “biweight”, “tri-weight”, “cos”, “inverse”, “gaussian”, and “optimal”. 

Support 

Vector 

Machines 

Sigma (1.640) 

The sigma parameter determines how much a training example influences the decision 

boundary. For lower values of sigma, the reach is further. A high value of sigma forces the 

SVM boundary to be dependent on points that are closest to the decision boundary (ignoring 

points further away). Conversely, lower values of sigma will construct a boundary that 

accounts for points further away. Higher values lead to ‘flexed’ decision boundaries; lower 

values lead to a boundary that is more linear.  

 

Cost (914.342) 

This parameter is the tradeoff between misclassification of training examples and the 

simplicity of the decision boundary. Lower values lead to a smoother decision surface while 

higher values aim to classify all training points appropriately. 

Random 

Forest 

Mtry (5) 

The number of randomly selected predictors to split at each node. Default value is the square 

root of the total number of predictors. 

 

Splitrule (gini) 

Splitting rule chosen for how cut-off points are picked. This parameter for classification and 

probability models can take the following values: ‘extratrees’, ‘gini’ (default), and 

‘hellinger’.  

 

Minimum nodesize (1) 

Minimal node size with a default value of 1. This parameter affects how the decision tree is 

constructed. It is the number of instances in the last node. If splitting a node into two nodes 

results in one of them being smaller than the value of this parameter, the node is not split 

(making it a leaf node). It is a stopping criterion for the depth of the decision tree. 
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eXtreme 

Gradient 

Boosting 

(XGBoost) 

Nrounds (816) 

Number of iterations, in classification models, it is the number of trees to grow. The default 

value is 100. 

 

Max.depth (10) 

Maximum depth of a tree. The default value is 6. 

 

Eta (0.265) 

Shrinkage parameter controlling the learning rate. After each round, the feature weights are 

shrunk to reach the optimal results. Lower values cause slower computation and should be 

supported by a higher number of iterations. Default value of 0.3 with a range of (0,1). 

 

Gamma (0.602) 

A minimum loss reduction is needed before making an additional split on the leaf node of 

the tree. Higher values lead to conservative models. The default value is 0 and this parameter 

has a range of (0, inf). 

 

Subsample (0.818) 

Subsample percentage controlling the number of observations selected for constructing a 

tree. For instance, a value of 0.5 randomly collects half the data to grow trees with an aim to 

avoid overfitting. The default value is 1 and has a range of (0,1). 

 

Colsample_bytree (0.533) 

Subsample ratio of columns. The number of predictors supplied to construct a tree. Default 

value of 1 with a range of (0,1). 

 

Rate_drop (0.304) 

Fraction of trees dropped. Range of (0,1). 

 

Skip_drop (0.799) 

The probability of skipping a dropout. Range of (0,1). 

 

Min_child_weight (1) 

Minimum sum of instance weights required in a child. Default value of 1 with a larger value 

leading to a conservative model. 

Adaptive 

Boosting 

Mfinal (99) 
Number of iterations for boosting or the number of trees to grow. The default value is 100. 

 

Maxdepth (21) 
Maximum tree depth. It is a stopping criterion for how trees are constructed. 

 

Coeflearn (Freund) 
Coefficient for the learning method to use. Options include “Breiman”, “Freund”, “Zhu”. 

The default is Breiman. 
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Appendix J: Performance Measures for Machine Learning Models 

 

Table J.1 provides model output metrics for all the machine learning models implemented in the 

study. The definitions of these metrics and descriptions are discussed by various authors and 

websites such as: the machine learning foundational courses by Google Developers (2023), 

machine learning textbooks authored by Hastie et al. (2001), Bishop (2006), Pedregosa et al. 

(2011), James et al. (2013), and Alpaydin (2020). 

Root Mean Square Error (RMSE) measures the average magnitude of errors between 

predicted and actual values. Lower RMSE signifies better accuracy and model predictions are 

closer to the actual values. As seen in Table K.1, RMSE scores are lower for models that perform 

better than others, for instance, the RMSE for Logit is 0.561 (AUROC of 70.236%) while the 

RMSE for KNN is 0.281 (AUROC of 98.407%). Accuracy is calculated the proportion of correctly 

classified instances out of the total number of instances, a higher value of accuracy is desired. 

Kappa measures the agreement between predicted and actual classifications by considering that 

agreement can happen by chance. A high kappa value signifies that there is actual agreement 

between predicted and actual classes, and it is not just by chance. Kappa values indicate that models 

of KNN (0.834), RF (0.827) and AdaBoost (0.791) are much better than random classifiers in 

predicting the binary classes correctly. While models with a lower kappa value such as Logit 

(0.294) have a lot of room for improvement. 

The F1 statistic is the harmonic mean of precision and recall (sensitivity). It balances the 

trade-off between precision and recall. Higher F1 scores are preferred as they indicate better overall 

performance by considering both the metrics of precision and recall. The models of KNN, RF, and 



111 

 

 

XGBoost show high F1 scores of 0.936, 0.933, and 0.899 respectively. Precision is defined as the 

proportion of correctly predicted positive instances out of all positive instances. A higher value of 

precision translates to a lower false positive rate (this is desirable if false positives are costly). 

Negative Predictive Value is proportion of correctly predicted negative instances out of all negative 

instances. Higher NPV values indicate a lower false negative rate, which is desirable especially in 

situations where false negatives are costly. The better performing models from the nine models we 

develop show higher values of NPV. 

Sensitivity (recall) or true positive rate is the proportion of correctly predicted positive 

instances out of all actual positive instances. Higher sensitivity values indicate a lower false 

negative rate (desirable if false negatives are costly). Specificity is the true negative rate that 

measures the proportion of correctly predicted negative instances out of all actual negative 

instances. Higher specificity values indicate a lower false positive rate, which is desirable. 

Prevalence is the proportion of positive instances in the dataset. It is useful for understanding the 

distribution of the target variable if needed. 

Detection rate or true positive rate measures the proportion of correctly predicted positive 

instances out of all actual positive instances. Higher detection rate signals a stronger, more 

powerful model. Detection prevalence measures the proportion of instances predicted as positive 

out of the total number of instances. It is useful for understanding the distribution of the predicted 

positive class. Finally, balanced Accuracy calculates the average of sensitivity and specificity. It 

provides an overall measure of the model's performance in both positive and negative instances.  
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Table J.1 Output Metrics for ML Models 

 

  

Model Metrics 
Machine Learning Models 

Logit NB NN TREE KNN SVM RF XGBoost AdaBoost 
RMSE 0.561 0.558 0.457 0.497 0.281 0.628 0.287 0.351 0.315 
Accuracy 0.685 0.688 0.791 0.753 0.921 0.606 0.918 0.877 0.901 
Kappa 0.294 0.349 0.558 0.478 0.834 0.040 0.827 0.741 0.791 
F1-score 0.772 0.742 0.832 0.801 0.936 0.751 0.933 0.899 0.919 
Precision (Pos. Pred. Value) 0.675 0.728 0.795 0.767 0.903 0.601 0.903 0.874 0.887 
Neg. Pred. Value 0.721 0.625 0.784 0.728 0.953 1.000 0.944 0.881 0.925 
Sensitivity 0.902 0.757 0.873 0.838 0.971 1.000 0.965 0.925 0.954 
Specificity 0.370 0.588 0.672 0.630 0.849 0.034 0.849 0.807 0.824 
Prevalence 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592 0.592 
Detection Rate 0.534 0.449 0.517 0.497 0.575 0.592 0.572 0.548 0.565 
Detection Prevalence 0.791 0.616 0.651 0.647 0.637 0.986 0.634 0.627 0.637 
Balanced Accuracy 0.636 0.673 0.773 0.734 0.910 0.517 0.907 0.866 0.889 
AUROC 0.702 0.710 0.819 0.799 0.984 0.924 0.954 0.918 0.941 
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Appendix K: Feature Importance 

 

Feature importance values are presented for each model in Table K.1. Table K.2 supports the graph 

in Figure 6.4 and shows the values of the AUROC Weighted Permutation Feature Importance for 

the six predictors used in our machine learning models.  

 

Table K.1 Model-specific Permutation Feature Importance 

Feature 
Machine Learning Modles 

Logit NB NN TREE KNN SVM RF XGBoost AdaBoost 

Air Temp. 0.009 0.008 0.184 0.042 0.230 0.287 0.028 0.031 0.073 

Humidity 0.084 0.066 0.239 0.212 0.249 0.291 0.119 0.060 0.093 

Inc. Radiation 0.078 0.104 0.202 0.128 0.277 0.307 0.067 0.043 0.041 

Precipitation 0.045 0.010 0.124 0.056 0.164 0.204 0.035 0.034 0.034 

Snow Water 0.067 0.045 0.107 0.160 0.150 0.136 0.039 0.037 0.029 

Wind Speed 0.028 0.035 0.212 0.130 0.241 0.294 0.075 0.089 0.058 

 

 

Table K.2 AUROC Weighted Feature Importance 

Feature 
AUROC Weighted Permutation 

Feature Importance 

Humidity 0.189 

Inc. Radiation 0.184 

Wind Speed 0.171 

Air Temp. 0.151 

Precipitation 0.110 

Snow Water 0.103 

 

Figure K.1 plots the nine machine learning models based on the weights assigned to them. 

The dotted trendline shows the relationship between the AUROC values of the models and their 

assigned weights. Models with higher AUROC values are more powerful, therefore, they are given 
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a higher weight such as KNN, RF, and AdaBoost. These models have more influence on the final 

feature importance as compared to models that are not as powerful such as Logit and NB. 

 
          Figure K.1 Model Weights and AUROC 
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Appendix L: Robustness Check for AUROCs and Feature Importance 
 

The criterion that a lookout tower is deemed technically efficient if the bias-corrected technical 

efficiency is less than or equal to 1.01 and not technically efficient otherwise is used as the criterion 

to construct Figures 5.2 and 5.3 as well as for the OLS regressions shown in Table 5.3. In this 

section of the Appendix, we use the remaining criteria that are mentioned in Chapter 5, Table 5.2. 

In total, we choose five criteria for classifying a lookout tower as technically efficient (𝜃 ≤  1.005, 

1.010, 1.015, 1.020, 1.050). This Appendix provides AUROC scores for all the machine learning 

models as well as the AUROC Weighted Permutation Feature Importance values based on each of 

these five criteria. Table M.1 provides the models’ AUROC scores for each one of the classification 

criteria. 

 

Table L.1 AUROC Values for Different Classification Criteria 

 AUROC for different criteria 

ML Model 1.005 1.01 1.015 1.02 1.05 

KNN  97.370 98.407 97.869 97.664 97.722 

AdaBoost  96.064 94.108 96.312 96.562 94.990 

RF  95.839 95.383 96.304 95.666 95.570 

XGBoost  94.256 91.849  94.749 93.095 92.114 

SVM  91.936 92.388 88.010 90.492 88.301 

NN  74.651 81.930 77.344 80.523 71.876 

DT 76.633 79.949 77.530 78.210 70.349 

NB 63.849 71.035 65.423 67.354 58.857 

Logit 68.388 70.236 70.336 72.322 75.643 

 

Table L.2 tabulates the same rule of thumb we used in the results in section 6.4. A ML 

model’s ability to predict is labelled ‘great’ if the AUROC is more than 90 and ‘good’ if the 

AUROC is more than 80 (Adamecz-Völgyi, Henderson and Shure 2020). We add to this by 
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labelling a model’s AUROC as ‘unsatisfactory’ if it is below 80 and ‘poor’ if the AUROC is below 

70. We use the term performance category to refer to these labels.  

Table L.2 Performance Categories for Classifying AUROC Values 

Inequality Performance Category 

AUROC ≥ 90 Great (Gr) 

 90 > AUROC ≥ 80 Good (Gd) 

80 > AUROC ≥ 70 Unsatisfactory (U) 

 AUROC < 70 Poor (P) 

 

Table L.3 provides the performance category for the models at each classification. K-

Nearest Neighbors, Adaptive Boosting, Random Forests, and eXtreme Gradient Boosting have 

AUROC values of more than 90 in all the classification criteria. Support Vector Machines falls 

under either great or good categories. Neural Network performs unsatisfactory for the 1.005, 1.015, 

and 1.05 criteria but good for the 1.01 and 1.02 classification criteria. Decision Tree performs at 

an unsatisfactory level for all criteria while Naïve Bayes’ and Logistic Regression models are either 

unsatisfactory or poor in their AUROC values. 

Table L.3 AUROC Performance Categories for Different Classification Criteria 

 AUROC 

ML Model 𝜽 ≤ 1.005 𝜽 ≤ 1.01 𝜽 ≤ 1.015 𝜽 ≤ 1.02 𝜽 ≤ 1.05 

KNN Gr Gr Gr Gr Gr 

AdaBoost Gr Gr Gr Gr Gr 

RF Gr Gr Gr Gr Gr 

XGBoost Gr Gr Gr Gr Gr 

SVM Gr Gr Gd Gr Gd 

NN U Gd U Gd U 

DT U U U U U 

NB P U P P P 

Logit P U U U U 

 

Table L.4 provides the AUROC Weighted Permutation Feature Importance for the weather 

variables across the different classification criteria. Across all classification criteria, humidity is 
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the most influential with the highest AUROC Weighted Permutation Feature Importance value. 

Incoming radiation and wind speed place second or third based on the criteria we look at. For 

instance, for criteria 1.005, 1.01, and 1.05, incoming radiation is more influential than wind speed, 

but it is the other way around for criteria 1.015 and 1.02. Air temperature is the fourth most 

influential weather variable in predicting the technical efficiency class of lookout towers across all 

five criteria except criteria 1.005 (in which it is ranked second). Precipitation and snow water are 

the two least influential predictors across the five criteria. 

Table L.4 Feature Importance across Different Classification Criteria 

θ ≥ 1.005 θ ≥ 1.01 θ ≥ 1.015 θ ≥ 1.02 θ ≥ 1.05

Humidity 0.205 0.189 0.184 0.200 0.230

Incoming Radiation 0.155 0.184 0.156 0.138 0.175

Wind speed 0.146 0.171 0.166 0.148 0.167

Air temperature 0.154 0.151 0.144 0.128 0.156

Precipitation 0.103 0.110 0.090 0.088 0.112

Snow water 0.127 0.103 0.095 0.102 0.096

Feature
AUROC Weighted Permutation Feature Importance on Different Criteria
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Appendix M: Short-run versus Long-run Production Functions 

 

Wildfire detection requires the utilization of some inputs to produce detection outputs via a 

production process. Assume that a lookout tower produces wildfire detection, and this process is 

defined by a production function, 𝑓, which we assume uses two inputs: visibility profile 𝑉, and 

other inputs, 𝐼 (e.g., lookout observer experience). The output, 𝑄, can be expressed as a function 

of inputs as: 

 𝑄 = 𝑓(𝐼, 𝑉) (11) 

 

Production function in fundamental economic theory can be categorized as short-run 

production or long-run production. The short run is defined as the situation where at least one of 

the inputs that goes into the production process is fixed. In our case, the visibility profile is a fixed 

input used in the production of wildfire detections. Figure N.1 provides a graph of how detection 

output varies with the level of 𝐼. The black line provides a production function that produces output 

𝑄1 based on different levels of other inputs when holding visibility fixed at 𝑉1. Any movement 

along the production function shows that output increases (following diminishing marginal rate of 

return) as the level of other inputs increases given the fixed amount of visibility. This formulation 

of the production function is said to be a short-run production function. The function can shift 

upwards or downwards only if the fixed input (visibility profile) can vary. For instance, the dashed 

line provides a detection production function that shows how output changes based on different 

levels of other inputs if visibility is now fixed at 𝑉2. 
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Figure M.1 Short-run Production Function 

 

In contrast, the notion of long run production relies on none of the inputs being fixed, i.e., 

visibility and all other inputs can vary over time. The lookout tower now utilizes a mix of the 

inputs. They use varying quantities of both inputs (as compared to only choosing the level of other 

inputs when visibility is fixed) to produce a certain level of detection output. In this scenario, output 

changes as the combinations of inputs used change. To depict this graphically, we use isoquants. 

An isoquant is a graphical representation of all different combinations of inputs that can be used 

in the production of a specific level of detection output by a lookout tower. While it is possible to 

represent the production function using a general mathematical function such as equation (11), 

plotting this graphically can be challenging when dealing with multiple inputs of varying levels. 
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Isoquants help provide a more informative visualization of the production process by showing all 

various combinations of inputs that produce a feasible level of output. In our example, the lookout 

can use more of one input and less of another to produce the same output. 

 

 
Figure M.2 Long-run Production Function 

 

Figure N.2 includes two isoquants for two production levels: 𝑄1 and 𝑄2 as shown. The first 

isoquant depicts all input combinations of visibility and other inputs that can produce 𝑄1. For 

example, both the combinations (𝐼𝑎, 𝑉𝑎) and (𝐼𝑏 , 𝑉𝑏) produce the same amount of detection output 

(𝑄1). Additionally, with varying input levels, isoquants can shift upwards (or downwards) based 
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on factors such as technological improvements for efficient production, increased labor skills, or 

placement of the lookout tower (changing the visibility), all leading to a lookout tower being able 

to increase productivity in this example. The effect of this would cause the isoquant to shift 

upwards as shown by the second isoquant which now produces more output at level 𝑄2. As such, 

the scenario where input levels can change over time and vary output levels, is considered as long 

run production. 

The realization of lookout tower production used in our analysis is in the short run. The 

inputs (area directly and indirectly visible) are fixed and do not change over time. Assume a 

scenario where the decision maker can decide to easily relocate lookout towers. This changes the 

inputs that lookout towers use and therefore provides a long run perspective of lookout towers’ 

production process. As discussed in section 7.1, the addition of time-varying data would transition 

the realization of the detection production function from a short run approach and closer to the 

long run. As such, it will provide a different perspective on the production of wildfire detection by 

lookout towers over time. 
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Appendix N: Code Availability and Replication Guide for OSF 
 

We have created an Open Science Framework (OSF) repository that provides all necessary data 

files, working directory file structure, and codes to fully replicate all results presented in this study. 

The link to the OSF repository is: https://osf.io/ywpxf/. 

Before starting the replication process, be aware that: 

- The empirical work was performed using two software: Stata 17 and R 4.2.1. 

- The R codes provided use parallel processing and the code detects and uses the maximum 

number of cores of your machine. 

-  R codes (in the folder entitled “Codes”) include “library()” and "install.packages()" 

commands. The "install.packages()" code lines need to be uncommented if your machine 

does not have the required packages. Similarly, the Stata do file (entitled “5_Figures and 

Tables”, in “Codes”) requires two packages (tabout and logout) that need to be installed. If 

your Stata does not have these packages, please uncomment the “ssc install” commands 

and execute them. 

Please follow the instructions below to replicate all results. 

1. Download the zip file labelled “Replication” from the OSF repository and extract all items. 

The directory structure of the folder “Replication”, and the associated files, are as follows: 

Replication 

- Auxiliary 

- Permutation Importance 

- Codes 

- 1_Techincal Efficiency.R 

- 2_ML_Random_Search_and_Splines.R 

- 3_ML_Tuned_Models.R 

https://osf.io/ywpxf/


123 

 

 

- 4_ML_Robustness_Checks.R 

- 5_Figures_and_Tables.do 

 

- Figures 

- Raw Data 

- DEA_Dataset.dta 

- Fire_Database.dta 

- Monthly_Weather.dta  

- ML_Dataset.dta 

- ML_Dataset1.dta 

- ML_Dataset2.dta 

- ML_Dataset3.dta 

- ML_Dataset4.dta 

- TE_Database.dta 

- Tower_Database.dta 

 

- Results 

- Random Search Results 

- TE Results 

- Tables 

Note: The thesis uses Machine Learning to classify towers as Technically Efficient or not. 

The file “ML_Dataset.dta” is used in the main analysis where towers are classified as 

technically efficient if their bias-corrected efficiency score 𝜃 ≤ 1.01. The robustness checks 

in Appendix L use alternative classification criteria, namely:  

• 𝜃 ≤ 1.02 (calls the data file “ML_Dataset1.dta”),  

• 𝜃 ≤ 1.05 (calls the data file “ML_Dataset2.dta”),  

• 𝜃 ≤ 1.005 (calls the data file “ML_Dataset3.dta”), and 

• 𝜃 ≤  1.015 (calls the data file “ML_Dataset4.dta”). 

2. Open the folder “~/Replication/Codes” and execute the four R codes in the order below: 

• 1_Technical_Efficiency.R 

• 2_ML_Random_Search_and_Splines.R 

• 3_ML_Tuned_Models.R 

• 4_ML_Robustness_Checks.R 
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Note: the user must set the working directory in each R file, i.e. the path to the "Replication"  

folder (excluding the “Replication” folder). 

 

3. The computational times for the R codes are provided in the table below. Note that the 

times are based on a machine with the following specifications: 128GB RAM, AMD Ryzen 

9 3950X 16-core processor 3.49 GHz, and Windows 10 Enterprise as the OS. 

 

File name Computing time 

1_Technical_Efficiency.R ~ 1 min 

2_ML_Random_Search_and_Splines.R ~ 35 hrs 

3_ML_Tuned_Models.R ~ 2 hrs 30 mins 

4_ML_Robustness_Checks.R ~ 13 hrs 30 mins 

 

4. Open “~/Replication/Codes” and execute the do-file “5_Figues_and_Tables.do”. The table 

below shows the computing time in our machine. 

Note: the user again must set the working directory, i.e. the path to the "Replication" folder 

(excluding the “Replication” folder). 

 

File name Computing time 

5_Figures_and_Tables.do ~ 35 secs 

 

The codes produce figures and tables and store them in their respective folders. The tables below 

link figures and tables to their source codes. 
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Figure number Format Code 

3.2 .svg 5_Figures_and_Tables.do 

3.3 .svg 5_Figures_and_Tables.do 

3.4 .svg 5_Figures_and_Tables.do 

4.4 .svg 1_Technical_Efficiency.R 

4.5 .svg 1_Technical_Efficiency.R 

5.1 .svg 1_Technical_Efficiency.R 

5.2 .svg 5_Figures_and_Tables.do 

6.3 .svg 3_ML_Tuned_Models.R 

6.4 .svg 3_ML_Tuned_Models.R 

6.5 .svg 3_ML_Tuned_Models.R 

B.1 svg 5_Figures_and_Tables.do 

E.1 .svg 5_Figures_and_Tables.do 

K.1 .csv 3_ML_Tuned_Models.R 

 

  

Table number Format Code 

2.1 txt 5_Figures_and_Tables.do 

2.2 txt 5_Figures_and_Tables.do 

2.3 txt 5_Figures_and_Tables.do 

3.1 csv 5_Figures_and_Tables.do 

5.1 txt 5_Figures_and_Tables.do 

5.2 csv 5_Figures_and_Tables.do 

5.3 txt 5_Figures_and_Tables.do 

J.1 csv 3_ML_Tuned_Models.R 

K.1 csv 3_ML_Tuned_Models.R 

K.2 csv 3_ML_Tuned_Models.R 

L.1 csv 4_ML_Robustness_Checks.R 

L.4 csv 4_ML_Robustness_Checks.R 

 

 


