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Abstract

The focus of this study is to gain a fundamental understanding of liquid-

liquid dispersion formation in homogeneous isotropic turbulence. This infor-

mation is crucial to improve the reliability of existing models that describe drop

breakup in turbulent flow. These models inherit numerous assumptions, sim-

plifications, experimental constants and fitting parameters. Visualization and

quantification of drop behavior in homogeneous turbulence will allow assess-

ment of these models. Direct numerical simulations were used to investigate

the dynamics of drop behavior. The free energy lattice Boltzmann method

was used to perform simulations.

The homogeneous isotropic turbulence was generated in a three-dimensional

fully-periodic domain of 3003 lattice units in size using a forcing method. Three

turbulent flow fields at different levels of energy input were investigated. Then,

drops of different initial diameter were injected. The dispersed to continuous

fluid viscosity ratios equal to 0.1, 1, and 10 were considered. The DNSs pro-

duce detailed description of the flow. The main goal of this study was to

translate these data to the useful quantities that can be applied to assess the

drop breakup models. This work specifically focused on understanding of drop

interaction with turbulent structures. A normalized Qn criterion was used to

visualize the structures. Different combinations of a threshold value and a

cutoff volume were studied to explore the effect of these two important param-

eters and to identify the best combination. The interaction between turbulent

vortices and the drops was visualized by extracting coherent structures and

tracking liquid-liquid interface in two phase turbulence. The three-dimensional
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energy spectra of single phase and two-phase turbulence were also quantified.

The statistical characteristics of liquid-liquid turbulence were investigated: the

probability density function of vorticity, of normalized energy dissipation rate,

and the eigenvalues of the strain tensor. By utilizing these tools, the guidelines

are proposed for improvement of the breakup models.
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Chapter 1

Introduction

1.1 Applications of liquid-liquid systems

Emulsions and dispersions are of great interest in chemical industry [1, 2, 3],

pharmacy [4, 5, 6, 7], electrochemistry [8, 9, 10], biology [11, 12, 13], petroleum

industry [14, 15, 16], food [17, 18, 19], cosmetics [20, 21, 22], and agriculture

[23, 24, 25]. In these systems, at least two immiscible liquids are agitated to

generate a dispersed flow that ensures good contact between the phases and

allows for the control of the interfacial area. The additional gases, liquids, or

solids may also exist in these systems. When the liquids are agitated, multiple

events occur in the system simultaneously: the breakup of drops, known as

‘dispersion’; the merging of drops, known as ‘coalescence’; and the suspension

of drops [26]. These events results in the variance of drop size distribution

(DSD) in the liquid-liquid system, thus, affects the final state of the system.

In an agitated vessel, for different operating conditions such as various im-

peller speed and agitation time, the different state of dispersed phase and phase

contact will form. The variance of liquid-liquid interface or drop size distribu-
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tion in the system results in the variance of mass transfer and heat transfer

rates between the phases [11]. Due to various goals of industrial applications,

the liquid-liquid systems are controlled to reach the different requirements on

properties of flows such as the interfacial area, and, thus, drop size distribu-

tions. For example, a specific phase contact has to be formed in nitration

reactions, because the reaction rate and temperature are mainly governed by

the interfacial area; in suspension polymerization process, the generation of

uniform beads is necessary [26], thus, a specific drop size distribution should

be reached.

The thorough understanding of liquid-liquid system formation leads to im-

provement of industrial process, quantity and quality of products. For ex-

ample, improvement of speed of liquid-liquid extraction in chemical industry

fulfilled by interface control was provided in [2], in that study, the target

analyte that exist in homogeneous aqueous phase was extracted into a water-

immiscible sedimented phase. The interference that would have resulted from

organic-aqueous phase contact disappears.

In the chemical and biochemical industries, the exploration of immiscible

liquid-liquid dispersion in stirred vessels is important because it commonly

exists in industrial processes such as liquid-liquid extraction [27], and suspen-

sion polymerization [28]. In solvent extraction problem, a large interfacial

area between two liquid phases is necessary to keep the mass transfer be-

tween two phases, which results in a requirement of continuous agitation [29].

In food and pharmaceutical industries, the emulsification often occurs when

small drops (for example, 1µm) are distributed in continuous phases [30, 31].

Usually, the emulsion is stable and viscous, the rheological characteristics are

non-Newtonian.
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The demand on environment protection boosts the development of renew-

able energy such as biofuels [32, 33]. The liquid-liquid equilibrium state is

vital in the design of separation and purification process of crude bioethanol

and biodiesel fuel [12]. However, it is also proposed in [12] that the equilib-

rium data that is used to predict liquid-liquid equilibrium state is not available

from experiments. Thus, a UNIQUAC Functional-group Activity Coefficients

is introduced to gain equilibrium data. To have a higher product yields and

prevent unexpected repolymerization in biofuel upgrading reactions [30], the

hydrophobic zeolites are introduced to stabilize water/oil emulsions and catal-

yse reactions at liquid-liquid interface.

In an optic study, liquid-liquid systems are used as the lens in sensing,

medical diagnostics [34, 35]. For example, by electrowetting or giving pressure

on a water-oil interface, the optic properties of a drop will change with its

shape. Based on this control of liquid-liquid interface, an easy adjustable

tunable liquid lens are created for optic experiments [35].

The water-oil emulsions are also common in dyes and pigments problem

[31, 36]. Due to the carcinogenic and mutagenic effect of effluents from indus-

tries such as printing, dyestuff manufacturing, these pollutants have to be di-

minished. Thus, liquid surfactant membranes and emulsion liquid membranes

are used to remove or recover dyes from effluents [31].

In chemical industry, antibiotics are usually produced in a liquid-liquid

system, therefore, the separation of antibiotics is very important. The aqueous

system often consists of water and a room temperature ionic liquid. Solvent

extraction methods such as liquid-liquid partitioning are studied to fulfill this

goal [37].

Liquid-liquid dispersions are common in industries, but at the same time
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they are complex. The predictive tools that provides a guideline on how to

agitate the liquids in a given vessel in order to produce the dispersion with

known properties are needed [38, 39, 40]. The control of liquid-liquid disper-

sion can improve the products, suppress undesired by-products, and optimize

industrial processes [41, 42, 43]. Therefore, the comprehension of behaviour

of the system on a drop scale is of significant, as well as the quantification

of the interaction of the drop with the surrounding flow. Experiments and

simulations can be used for these purposes.

A large number of studies on liquid-liquid systems were carried out exper-

imentally [44, 45, 46, 47]. Through these experiments, phenomena, such as

drop breakup and coalescence, were observed. Various theories and assump-

tions were also introduced from the observation and analyses. Experiments

are needed to get more data about drop breakup.

One of the recent studies of a single drop breakup in a rotor-stator mixer

combines experiment and simulation [48]. Several findings were outlined: the

breakup event mainly exist at downstream region of stator and the inside of

jet (the dispersed phase was inject in the system by jet); a larger mother

drop increases the time that drop interacts with vortex; the increase of Weber

number results in the increase of breakup probability; the distance between

current state to the equilibrium state drop size decides the number of fragments

after breakup.

A summary of various experiments on a single drop breakup in turbulent

flows was given in [49]. With the development of experimental system, facilities

of high precision are utilized to capture drops behavior in liquid-liquid system

at a smaller length and time scale [50, 51]. Particle image velocimetry (PIV)

method with high precision charge-coupled device (CCD) camera is often used
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in liquid-liquid systems study. For example, four Photron Fastcam Ultima

APX cameras were set up to obtain velocity field at a frame rate of 1000Hz

[50]. The total time of coalescence is around 600ms. An experimental study

on how dispersed phase volume fraction affects liquid-liquid velocity field was

carried out in a baffled cylindrical tank stirred with a six-bladed Rushton

turbine [51]. The diameter and height of tank are 0.14m. The tip speed is

1.3m/s. The PIV system contains a Kodak Megaplus ES:1.0 CCD camera.

However, they found that under this experimental setup, the dispersed phase

volume fraction can only up to 10%.

Hasan [52] summarized experiments at different length and times scales

in turbulent liquid-liquid systems. The breakup time, which is defined as the

time taken from the start of deformation of mother drop to the occurrence of

breakage, is an important parameter to predict the population of drops in the

binary system. The experiments in his review have drop breakup time that

varies from 1ms to 100ms, the diameter of mother drop varies from 0.1mm to

3mm, the breakup time will increase with the increase of drop size and vice

versa. However, he pointed out that wide discrepancy exists in the measure-

ment of breakup time because the start of deformation is usually not accurately

recorded in experiments. Similar errors also occurs at the observation of oc-

currence of breakage: the resolution and frame rate limitation may result in

the ignorance of infinitesimal satellite that is generated at first moments of

breakup process. For the same reason, the record of drop size distribution in

liquid-liquid system may be inaccurate, it will result in the inaccurate predic-

tion of mass transfer and heat transfer.

Therefore, drawbacks and limitations still exist in the experimental study

of liquid-liquid systems. With the development of computational technology,
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the numerical study becomes a powerful tool that interacts with experimental

study in the investigation of liquid-liquid systems.

As is denoted in Hasan’s review [52], the breakup time decreases with the

decrease of drop size. If the size of drop is decreased to much smaller scale,

such as Kolmogorov length scale, the experimental facilities will not be able to

capture the mother drop and daughters, as well as the breakup event because

it will finish in a very short time. Thus, the experimental investigation at a

very small length scale and time scale is not a good choice.

Besides, for a given experimental setup, the operating conditions are usu-

ally limited. For example, the dispersed phase volume fraction in the experi-

mental setup given in [51] can only up to 10%. The modification of experiment

is necessary if the investigation goes to a larger volume fraction.

In chemical industry, the study of mixing time in a liquid-liquid system is

significant because it decides the performance of chemical reaction [53]. This

is also a vital parameter that is taken into account for mixing system design,

optimization, and scale-up from the laboratory scale to the industrial scale. It

directly reflects the effectiveness of mixing system. Usually, it is challenging

to investigate the mixing time in an industrial scale facility, experiments such

as oil-water mixing were carried out in a laboratory size tank. The results

obtained from the experiment were usually combined with laboratory scale

empirical correlation, thus, problems may exist when extrapolating results to

industrial scale agitated vessels [54]. Meanwhile, the experiment study didn’t

provide detailed localized information as well as the homogeneity degree at

different locations [55, 56]. Therefore, the investigation on detail location is

limited in experiments.

The disposal of material used in experiments is also a problem. Some
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liquids in experiments such as liquid-liquid extraction are pollutants for en-

vironment [31]. The oil-water binary system is the common among these

liquid-liquid systems, to dispose pollutions and clean the experimental facili-

ties, methods such as oil skimmers, centrifuges, and depth filters are adopted,

materials such as polyvinylidene fluoride membranes, boron nitride nanotubes-

coated stainless steel meshes, and marshmallow-like gels are utilized, thus,

extra budget and time are needed [57].

The demand of investigation on the bridge of local hydrodynamics of the

flow and the breakup events boosts the development of multi-scale numerical

frameworks.

1.2 Introduction to CFD-PBE numerical frame-

work

With the development of computational technology, the computational fluid

dynamics (CFD) becomes a powerful tool. Attempts to better understand

the dynamics of turbulent liquid-liquid systems resulted in the development

of a numerical framework that involves CFD simulations of flow coupled with

the solution of the population balance equation (PBE) that accounts for drop

breakup and coalescence. Various modifications of this framework are imple-

mented in commercial software [58, 59, 60]. The wide applications of CFD-

PBE numerical framework are reported: investigate drop breakup and coa-

lescence in a pulsed column [61]; simulate the fluidized bed spray granulation

[62]; study local hydrodynamics for cell proliferation and protein synthesis in

a stirred bioreactor [63].
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The population balance plays a critical role in industrial applications [64,

65, 66]. For example, it can be used to predict the nanoparticle precipitation

in production [67], forcast the granule growth behaviour [68], control crystal

size [69], predict bubble/drop/aggregation breakup and coalescence [70, 38, 71]

in agricultural chemicals, minerals, pharmaceuticals, etc. The application of

population balance not only covers liquid-liquid systems [72] but also gas-liquid

[73], solid-liquid [74] and gas-solid [75] systems. In the implementation of

population balance, variables such as the number, mass or volume of particles

of the dispersed phase are usually used to describe the population [76], the

distributions of particles and the way it affects system behavior are of great

interest in research.

The fundamental assumption of PBE is that there must be a number den-

sity of particles at each point, the equation is often coupled with conservation

equations for entities in continuous phase [76]. In liquid-liquid systems, the

breakup and coalescence of dispersed phases can be explained in terms of pop-

ulation balance because new particles can occur in breakup and coalescence

processes.

The derivation process of PBE was provided in [76] in detail, it presented

a general multi-dimensional form of the PBE:

∂f

∂t
+∇x · Ẋf +∇r · Ṙf = h (1.1)

where f denotes the number density function f(x, r, t) with external (x) and

internal (r) coordinates; Ẋ and Ṙ are velocities for external and internal coor-

dinates; h represents the resultant net generation rate of particles from birth

and death.
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In the liquid-liquid system, the continuity equation for the number density

function f is provided by [77]:

∂f(V )

∂t
+∇ · (~uf(V )) = S(V ) (1.2)

where V is the drop volume that is regarded as an internal coordinate; S(V )

are source terms consist of breakage and coalescence of the drop [77]:

S(V ) = Bc(V )−Dc(V ) + Bb(V )−Db(V ) (1.3)

where Bb and Bc are the birth rate due to breakage and coalescence; Db, and

Dc are the death rate due to breakage and coalescence.

In this study, the coalescence of drop is neglected. The source terms due

to breakage are then replaced by [78]:

S(V ) =

∫ ∞
d

β(V, V ′)g(V ′)f(V ′)dV ′ − g(V )f(V ) (1.4)

where β(V, V ′) is the daughter distribution function that illustrates the size

distribution of daughter drops split out from a mother drop of size V ′; g(V ′)

denotes breakup kernel (or frequency of breakup) of mother drop of size V ′.

The persistent challenge of such multi-scale simulations lies in the fact that

the results are highly dependent on the choice of the breakup and coalescence

sub-models (or kernels) that require specification of breakup time, breakup

frequency, number of fragments after the breakup, daughter size distribution,

etc [79, 80]. For example, even for a simplified PBE (Equation (1.4)) in which

only the breakup event in liquid-liquid flow is considered, the different choice

of breakup kernel significantly affects the results of PBE. In recent years, many
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breakup kernels were provided [81, 80, 82]. However, some obvious discrep-

ancies exist in these kernels, they may resulte in the non-accurate probability

of equal breakup, the dependence on energy dissipation rate, the ignorance

of small break fraction [70, 83]. A complete breakup kernel must contain the

breakup rate and daughter size distribution [83]. A common breakup kernel

(CT kernel) that takes the energy dissipation rate ε, dispersed phase density

ρc, and interfacial energy σ into account was proposed in [84]:

g(V ) = C1
ε1/3

V 2/9
exp

(
− C2σ

ρdε2/3V 5/9

)
(1.5)

where C1 and C2 are two constants. As another example, a multifractal (MF)

kernel is proposed in [85]:

g(V ) =

∫ αx

αmin

g(V, α)P (α)dα (1.6)

where α is singularity strength P (α) is the probability density. The detail

of expansion of each components were given in [85, 86, 87]. The comparison

of two breakup kernels were reported in [78]: the CT breakup kernel only

depends on the energy dissipation rate, other turbulent properties as well

as the effect of viscous stress are not involved; the MF breakup kernel is a

viscosity dependent kernel, it covers the effect of internal intermittency on

breakup such as the large fluctuations on turbulent dissipation rate). The

preassumption of both two breakup kernels is that drops breakup because of

the pressure fluctuation.

It was also demonstrated that the breakup rate can be over or under pre-

dicted by an order of magnitude depending on the underlying assumption of

drop/vortex interactions [88].
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Considering that the CFD-PBE is becoming an indispensable tool to anal-

ysis liquid-liquid systems, therefore, fundamentally well-justified sub-models

that can be used for CFD-PBE multi-scale simulations are highly needed. Be-

fore the development of sub-models, the major assumptions made in breakup

kernels are identified.

1.3 Assumptions made in breakup kernels

Several assumptions in breakup kernels are summarized:

• The large-scale deformation in which the unstable oscillations result in

drop break up is more frequent than the tearing mechanism that gener-

ates a small drop [89]. The observation of experiment revealed that the

unequal size breakup had higher probability compared to the equal size

breakup.

• In turbulent flow, only vortices of size equal to or smaller than the drop

size leads to the drop breakup [90]. Vortices larger than drop size merely

transport drops.

• With the kinetic energy E(λ) at vortex size λ, the daughter drop size

is confined by the minimum and maximum breakup fraction fv,min and

fv,max [83]. The dynamic pressure of vortex 0.5ρcu
2
λ must be larger than

the capillary pressure σ/r, it results in the minimum breakup fraction.

The vortex kinetic energy must be larger than increment of surface en-

ergy in breakup process, it results in the maximum breakup fraction.

• If a drop has volume v, the probability of breaking up into two daughter
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drops with volumes vfv and (1 − v)fv also stay at the range between

fv,min(v, E(λ)) and fv,max(v, E(λ)) [83].

• There is no mean relative velocity discrepancy between continuous phase

and dispersed phase. Therefore, the breakup event is only resulted from

turbulent velocity fluctuation [88].

• The relationship between daughter size distribution and the required

energy for daughter drop formation is linear. [79]

Among these assumptions, the interaction between drop and vortices is of

great interest. Attempts are made in finding relationship between breakup

event and surrounding vortex.

1.4 Introduction to coherent structures

Drop/vortex interaction is important because it affects the breakup mecha-

nism of assumption in breakup kernel, however, the data that are available

for this analysis are limited. To understand the drop/vortex interaction, the

visualization of coherent structures is used. The coherent structure is a region

concentrated with high vorticity that makes fluid move around a core, it is

coherent in space and temporally evolves vortical motions [91, 92]. Coherent

structures are regarded as the elementary components where vortices cluster

in turbulent flow [93].

Vortex is to be observed as an rotational region around a core. The con-

cept of vorticity proposed to describe a vortex was defined as the curl of

velocity (ω = ∇× υ). The identification of coherent structures commonly re-

lies on properties of vortices [94]. The turbulent coherent structures were
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investigated to reveal the information of turbulence such as pressure, velocity,

energy et al. Accurate, convenient and low cost methods were developed and

preferred by investigators. Those commonly used methods for the extraction

of coherent structures are Reynolds decomposition [95], Galilean (constant

convection velocity) decomposition [95], large eddy simulation (LES) decom-

position (low-pass filtering) [95], Q criterion [96, 97, 98, 99], Coherent Vortex

Simulation (CVS) [100, 101, 102], and Lagrangian method [103, 104].

Adrian et al [95] used Galilean decomposition, Reynolds decomposition,

and LES decomposition to visualize vortices in turbulent pipe flow when

Reynolds number equals to 50000. Two-dimensional vorticity contours were

given. The Reynolds decomposition was not good at vortices visualization be-

cause it extracted small-scale vortices well but missed large-scale properties.

Besides, the LES decomposition was found to be the best for vorticity visual-

ization due to the good presentation of eddies in all three layers of flow in the

pipe.

Q criterion is the widely adopted method for coherent structures extraction

due to its low computational cost. It is classified as a Eulerian method based

on the principle. In Q criterion, Q is defined as the balance between rotation

and strain rates. Thus, the region with positive Q indicates higher rotation.

Using this method, Dubief and Delcayre [96] obtained worms shape vortex

structures in isotropic free decaying turbulence. Furthermore, in a turbulent

mixing layer simulation, they realized that the large-scale span-wise vortices

together with stream-wise vortices were forcefully affected by two-dimensional

initial perturbations. As for the channel flow with Re = 160 and Ma = 0.3,

they found that it is the coherent structures at the inner region that bolsters

the turbulence flow. Besides, the second eigenvalues isosurfaces plots for these
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simulations were given. Q isosurfaces and second eigenvalues isosurfaces plots

were always near the same, but there was more noise in second eigenvalues

isosurfaces plot.

Using Q criterion, Kareem et al. [97] extracted vortex structures from large,

intermediate and fine scale homogeneous isotropic turbulent fields at Taylor

microscale Reynolds number equal to 81. The threshold values for three flow

fields are 5.406, 6.103 and 6.012 correspondingly. In order to generate clear

plots, structures with the volume lower than 4% of the maximum structure

volume were erased as noise. Vortex structures in fine scale flow were observed

to be more sprier in stretching than those in larger scale flow. In large scale

flow, structures were easier to stretch when the breakup of vortex occurs.

Ghasempour et al [98] studied structure properties in turbulent pipe flow

using Q criterion, the Reynolds number was 20000. They introduced a vortex

tracking method to capture single coherent vortices in turbulent flow through

its lifetime. Repeating the vortex cross-section, boundary and volume tracking

procedure, investigators can get lifetime tracking of a vortex, which helps to

identify properties of coherent vortex such as TKE, volume and aspect ratio.

They visualized the shape of a vortex from birth to break up. The variance of

captured TKE with the variance of threshold values was also given.

Later, a normalized Qn criterion was introduced [99]. The Q is normalized

by rotation squared. The simulation was still performed in a pipe, the thresh-

old value of Qn was selected as 0.1 to capture as many structures as possible.

Considering the fact that vortices can grow up after absorbing turbulent ki-

netic energy (TKE), they introduced morphological methods to simulate as

well as track the growth process and Biot-Sawart law to avoid overgrowth.

Properties of vortices and the probability distribution of TKE are found to be
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insistent with the dynamic Smagorinsky-Lilly subgrid scale model.

The Lagrangian method is also a popular method which is used to extract

coherent structures. Haller and Yuan [103] proposed that the vital difference

between Lagrangian method and Eulerian method such as Q criterion is that

the Lagrangian method focuses on the boundaries of structures instead of

the transitory properties. They defined material lines to depict boundaries of

structures. Moreover, a scrupulous structure extraction criterion was also pro-

vided. They performed this analytic criterion on a two-dimensional barotropic

turbulence flow for validation. The structures gleaned by them were found to

be in agreement with those derived from statistics.

Green et al [104] captured coherent structures using this Lagrangian method

in an isolated hairpin vortex flow and a fully developed turbulent flow. The

results were then compared to those obtained from Eulerian method - the Q

criterion. The Reynolds number was 180. By calculating the direct Lyapunov

exponent (DLE), they obtained Lagrangian coherent structures with better

detail. Moreover, the extraction was found to be definitely independent by

using Lagrangian method while the extraction procedure was determined by

the threshold value using Eulerian method. However, the Lagrangian method

needs more computational calculation due to the larger amount of data in-

volved in.

Farge and Schneider [100] proposed Coherent Vortex Simulation (CVS)

method based on Ha Minh’s semi-deterministic model. The principle of CVS

is computing the coherent structures, which is the organized part of a flow, and

modeling the incoherent turbulent environment, which is the random part of

a flow. The implementation of CVS method depends on the type of turbulent

flow owing to the nonlinear filtering pass. They performed CVS method on
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two-dimensional mixing layer flow and wavelet forced homogeneous isotropic

turbulent flow, the results were in consonance with those obtained by DNS.

Farge et al [101] also extracted coherent structures from three dimensional

homogeneous isotropic turbulent flow at Reλ = 150 using CVS method, the

computational domain consists of 2563 grids. They realized that the classical

Richardson’s scenario that the transmission of energy is accompanied by the

breakup of eddies is not able to demonstrate the energy cascade. Thus, they

claimed that the transfer of energy is the result of nonlinear vortex interactions.

The coherent energy transfers through the whole of inertial range. As for the

incoherent energy, it exists at the whole of inertial scales but dissipation just

occurs at the smallest scales.

Schneider et al [102] implement CVS method in three dimensional forced

and unforced turbulent mixing layers. The Taylor microscale Reynolds num-

ber was 150. The coherent structures gained by orthogonal wavelet basis was

represented by 3.8% of the wavelets but includes more than 99% of turbu-

lent kinetic energy in forced mixing layer. And in the unforced mixing layer

simulation, the obtained coherent structures was represented by 4.2% of the

wavelet. Moreover, the comparison of CVS filtering and LES filtering such as

the low-pass Fourier cut-off filtering was given.

Turiel et al [105] studied extraction of vortex structures using CVS in an

oceanic flow. They realized that the loss of energy in oceanic coherent flows is

relatively high. Furthermore, the incoherent part obtained was not in Gaussian

distribution, which made the wavelet decomposition unreal.

Other efforts on turbulent coherent structures were also made in last decades.

In 2001, Miyauchi and Tanahashi [106] studied the generalization of scaling law

of structure by comparing vortices in homogeneous isotropic turbulence, turbu-
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lence mixing layer, turbulent channel flows and MHD homogeneous turbulence

at the fine scale. Velocities such as azimuthal, axial and advection velocity as

well as length scales such as Kolmogorov microscale, Taylor microscale, and

integral length scale were analyzed as the characteristic indicators. The prob-

ability density function of the diameter of eddy and circulation were also given

to analyzing properties.

Samanta et al [107] performed DNS in both viscoelastic and Newtonian

fluids turbulent flow in a parallel-plate channel. The Reynolds number was

180. They used Karhunen-Loeve (K-L) analysis to study the time evolution

of coherent structures.

Experimental studies were also performed to analyze coherent structures.

Grulke et al [108] did an experimental study of coherent structures in turbulent

fluctuations of a simple magnetized torus (SMT) device. They found that the

physical properties of plasma can decide the shape of coherent structures.

Staplehurst et al [109] did an experimental study for large-scale columnar

structures based on the structure formation theory proposed by Davidson et

al [110]. The experiment was performed in a homogeneous freely decaying

rotating turbulent flow with Ro ≈ 1. They introduced two-point correlations

in the axial direction to study columnar structures. The structure formation

was found to be validated.

These references reveal that coherent structures are important in the study

of drop behavior in liquid-liquid systems. To visualize coherent structures, the

normalized Qn criterion is the best method for this study due to its relatively

low computational cost, meanwhile, it removes the limitation resulted from

the order effect that occurs in the widely used method - Q criterion.
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1.5 Objectives and goal of the thesis

The goal of this study is to develop various tools for analysis of data obtained

from the direct numerical simulations (DNSs) of liquid-liquid dispersions in

homogeneous isotropic turbulent flow. The results of such analysis will then be

used to develop well-grounded sub-models for PBEs. The DNSs of liquid-liquid

dispersions in a homogeneous isotropic turbulent flow field were performed

using the diffuse interface free energy lattice Boltzmann method (LBM). The

multi-relaxation-time (MRT) collision operator was used for the collision step.

First, the fully-developed turbulence was generated in a three-dimensional

fully-periodic cubic domain using a forcing method. Then, a drop of different

size and viscosity ratio was injected into the turbulent flow field. The evolution

of liquid-liquid interface and coherent structures was visualized. The statistical

characteristics of turbulence were also presented.

The underlying objectives of the study are to

• Identify the fundamental assumption used to derive the drop breakup

kernels that significantly affect the drop size distribution. For instance,

most of the models preassume that drop breaks after interaction with

a single turbulent vortex. There is no either experimental or numerical

evidence for this. Another basic question is whether vortices of the

size greater than the drop diameter lead to drop breakup. Most of the

existing models are based on the assumption that only vortices of the

size equal to or smaller control drop breakup.

• Analyze the statistical characteristics of turbulence. For example, the

probability density distribution of vorticity.
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• Derive the calculation of three-dimensional spectrum of turbulence and

develop the tool for calculation.

• Implement the multi-relaxation-time collision operator for the lattice

Boltzmann method to improve the stability of simulations.

• Find an evidence for or disprove the outlined assumptions by visualiza-

tion and quantification of the results of high-resolution three-dimensional

DNSs of liquid-liquid dispersion in homogeneous isotropic turbulence.
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Chapter 2

DNSs of liquid-liquid systems

In Section 2.1, a literature review focused on direct numerical simulations of

turbulent liquid-liquid systems is presented. In Section 2.2, the free energy

lattice Boltzmann method is introduced, two different collision operators are

compared. In Section 2.3, the generation of single phase turbulent flow is

given. In Section 2.4, the calculation of three-dimensional energy spectra is

presented. In Section 2.5, the normalized Qn criterion and newly designed

boundary identification method are introduced for the visualization of coherent

structures.
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2.1 Literature review on DNSs of turbulent

liquid-liquid systems

Only studies of turbulent liquid-liquid systems using DNSs are reviewed here.

Due to the limited number of studies in this area, it is important to discuss

them in order to verify and validate the numerical methods that are used for

complex systems.

Derksen and Akker [111] simulated liquid-liquid dispersion in stirred three-

dimensional periodic domain. Two fluids with the same viscosity and density

were set in the simulation. The turbulent flow was generated by the lattice

Boltzmann method (LBM) in a 2563 cells domain. The initial droplet diameter

was 20 lattice units. The dispersed phase volume fraction was 16%. The fluid

was turbulent at the beginning, its turbulent kinetic energy (TKE) decayed

quickly after stepping into a short steady balance. They provided coalescence

and breakup process of droplets in cross-section view. The drop size distri-

butions (DSD) was also given. The DSD became wider with time, and more

small droplets were generated. It revealed that the breakup process was domi-

nant. To contrast, the coalescence process dominates if there was no turbulent

force injected into the fluid.

Komrakova et al [112] explored drop deformation and breakup in liquid-

liquid simple shear flow using LBM. Five dimensionless numbers, Reynolds

number Re, capillary number Ca, viscosity ratio λ, Peclet number Pe and

Cahn number Ch, were introduced to fully describe the liquid-liquid system.

The impact of Pe, Ch and mesh resolution on the mechanism of deformation

was studied. In 2015, Komrakova et al [113] studied the effect of Kolmogorov

scale resolution, energy input, viscosity ratio and dispersed phase volume frac-
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tion on deformation of droplets in a three-dimensional periodic domain. The

homogeneous isotropic turbulent flow was created by linear forcing. The com-

parison of kinetic energy spectrum in single-phase and two-phase was also

given. The Introduction of the second phase changes the energy spectrum

fiercely. They also highlighted the three drawbacks of the numerical method

they used: the numerical dissolution of small drops, over-estimation of drop

coalescence and the occurrence of spurious currents.

Hagiwara et al [114] investigated drop deformation in a turbulent channel

flow domain which was meshed as 64× 44× 32 by DNSs. Classification of five

different types of turbulent structures were provided: shear, convergence, eddy,

donor eddies and streaming. They were classified using the zone classification

method given in [115]. They found that the droplet was sharpened in the

shear-dominant region while squeezed in the convergence-dominant region.

The deformation in the eddy-dominant region was not obvious.

Scarbolo and Soldati [116] investigated drop dynamic in turbulent chan-

nel flow using DNS combined with interface tracking. The shear Reynolds

number was Reτ = 100 and Peclet number was Pe = 2.56 × 105. The four

different Weber numbers were We = 0.0053, 0.0106, 0.0212, 0.0424. The ratio

between Kolmogorov length scale and drop diameter was from 0.06 to 0.13.

The simulation domain was divided into 256× 128× 129 meshes. They found

the existence of interface generated discrepancy of surrounding velocity field,

which led to the vorticity generation. The figures that drop surrounded by

coherent structures were also given, the drop with low deformability was sur-

rounded by more coherent structures.

Roccon et al [117] studied viscosity effect on the breakup and coalescence

of drops in a wall-bounded turbulent flow. The 4πh × 2πh × 2h domain was
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divided into 512 × 256 × 257 meshes. Turbulent flows with Weber number

We = 0.75, 1.5, 3 were generated, the viscosity ratio between dispersed phase

and continuous phase were λ = 0.01, 0.1, 1, 10, 100 for each Weber number. 256

drops with diameter d = 90 meshes were injected into the turbulent flow at

Reτ = 150. The two-phase flow was tracked by the phase field method (PFM).

The average velocity of the mixture of two phases was observed always to be

increased in time due to the absorption of turbulent kinetic energy by drops.

Furthermore, the drop was not likely to deform at small Weber number We < 1

because the surface tension, which prevents the drop breakage, was dominant,

and the change of viscosity ratio didn’t affect drop breakup or coalescence

rate in this situation. In the contrast, drop tends to deform at larger Weber

number We > 1, and the increment of viscosity ratio drastically decreased the

breakup rate and increased the coalescence rate.

The DNS of drop/near-wall turbulence interaction was reported by Iwasaki

[118] et al. The simulation was resolved in a rectangular domain. A drop of

diameter equals to one-fourth of the wall distance was initially placed in the

range of 20 - 60 wall units from one moving wall. To investigate effects of

viscosity µd/µc and interfacial tension σ∗ = σ/ρU2
Wh of drop (where U2

W was

the speed of moving wall, h was half of distance between two moving walls),

three different cases were implemented: the fluid element µd/µc = 1, σ∗ = 0;

the viscous drop without interfacial tension µd/µc = 40, σ∗ = 0; the viscous

drop with interfacial tension µd/µc = 40, σ∗ = 0.01. An equal density was

set for dispersed and continuous phase. The Reynolds numbers Re∗ = UWh/ν

and Re+ = uτh/ν were 1300 and 82.6 respectively (where uτ was the friction

velocity). The liquid-liquid interface was tracked by VOF method. They

found that the deformation of high-viscosity drop was smaller compared to
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the deformation of fluid element; for the high-viscosity drop with interfacial

tension, the deformation nearly did not occur. Thus, both the high-viscosity

and interfacial tension suppress the deformation. They also extracted coherent

structures at near-wall region, the existence of drop with interfacial tension

was found to result in the attenuation of near-wall streamwise vortex. Besides,

in the wake flow region of drop, the occurrence of small vortex was observed.

Finally, in a wide region around the drop, the Reynolds-shear stress product

was observed to be higher than that in other region. They attributed this

phenomenon to the introduced translational flow by the drop.

Yuge and Hagiwara [119] studied non-isothermal turbulent upward chan-

nel flow by DNS. The hydrofluoroether-water binary system was used. The

Reynolds number Reτ was 180. Four identical drops were placed at near-

wall region and tracked by VOF method. Some conclusions were provided:

several types of secondary flows introduced by drops resulted in the increase

of Reynolds shear stress product, they were mitigated by the adjacent drops

in streamwise direction; The near-wall drops deformed large streamwise vor-

tices and mitigated small vortices; The drops increased heat transfer in binary

system.

Combining with various liquid-liquid interface tracking methods, the im-

plementation of DNS simulations helps exploring and explaining numerous

fundamental behavior and phenomena in turbulent binary systems that con-

tain multi-scales.
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2.2 Free energy lattice Boltzmann method with

multiple-relaxation-time operator

The diffuse interface free energy lattice Boltzmann method (LBM) proposed

by Swift et al. [120] is used here. In diffuse interface methods [121, 122, 123],

the interface is defined as a finite-thickness transition area where the variance

of physical quantities is continuous. To describe composition of system, the

order parameter ϕ is introduced [124, 125, 126]. It is regarded as the relative

concentration of two components. The solution of continuity and momentum

equations in conjunction with the Cahn-Hilliard convection-diffusion equation

for the order parameter is adopted to simulate behavior of binary mixture

[127]. Therefore, the continuity, momentum, convection-diffusion equations

decide density, velocity and order parameter respectively [128].

∂tρ+∂α(ρuα) = 0 (2.1a)

∂t(ρuα) + ∂β(ρuαuβ) = (2.1b)

− ∂βP th
αβ + ∂βν(ρ∂αuβ + ρ∂βuα) + ρFtα

∂tϕ+ ∂α(ϕuα) = M∂2ββµ (2.1c)

where uα is the velocity; the index α stands for the Cartesian directions x,

y, z; ρ and ν are the density and the kinematic viscosity of the mixture, respec-

tively; M is the mobility; Ftα is the forcing term to generate turbulence; P th
αβ is

the ”thermodynamic” pressure tensor which includes an isotropic contribution

Pidδαβ that represents the ideal gas pressure and the ”chemical” pressure tensor
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P chem
αβ [128]: P th

αβ = Pidδαβ + P chem
αβ . The ideal gas pressure is Pid =

ρ

c2s
,where

c2s is sound speed. The P chem
αβ =

[
A

2
ϕ2 − 3A

4
ϕ4 −Kϕ∂2ααϕ−

1

2
| ∂αϕ |2

]
+

K∂αϕ∂βϕ is an active scalar and the set of Equation (2.1) is intimately coupled,

because it is a function of order parameter ϕ [113]. µ(ϕ) = Aϕ−Aϕ3−K∂2ααϕ

is the chemical potential. Here, A < 0 and K are parameters of the free energy

model that are related to the surface tension and interface thickness.

In LBM model, the macroscopic equations are solved in two steps: stream-

ing and collision [129]. At each time step, particles stream to neighboring

lattice points along fixed lattice links in streaming process, then the velocity

distribution at each point relaxes towards equilibrium distribution in collision

process. Two discrete single-particle density distribution functions f(r, t) and

g(r, t) are used to describe the motion of fluid. The function f(r, t) solves the

continuity and momentum equations which are the Equation (2.1a) and (2.1b)

respectively, the function g(r, t) solves the convection-diffusion equation which

is the Equation (2.1c).

Usually, the single-relaxation-time collision operator, also known as the

Bhatnagar-Gross-Krook (BGK) operator [130], is adopted to solve the colli-

sion process. It is the simplest and widely used collision operator because

distribution functions are relaxed by a single dimensionless relaxation param-

eter τ . Under this scenario, the discrete lattice Boltzmann equations are given

as [131]:

fq (rα + cαq∆t, t+ ∆t)− fq (rα, t) =
−1

τf

(
fq − f eqq

)
+ Fq

gq (rα + cαq∆t, t+ ∆t)− gq (rα, t) =
−1

τg

(
gq − geqq

) (2.2)

where index q represents the number of discrete velocity directions; index α
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represents the Cartesian directions x, y and z; f eqq and geqq are the discretized

Maxwell-Boltzmann distribution functions (equilibrium distribution function);

τf and τg are dimensionless relaxation parameters; cαq is discrete velocity set

and Fq is the forcing term. The forcing term is incorporated as follows:

Fq = wq(cq · Ftα) (2.3)

The density ρ, local fluid momentum ρuα and order parameter ϕ are defined

as following:

∑
q

fq = ρ

∑
q

cαqfq = ρuα +
Ftα
2∑

q

gq = ϕ

(2.4)

The calculation of equilibrium equations is given by [132]:

f eqq =
wq
c2

(
p0 −K(∂2xxϕ+ ∂2yyϕ+ ∂2zzϕ) + cαqρuα +

3

2c2

[
cαqcβq −

c2

3
δαβ

]
ρuαuβ

)
+
K

c2
(wxxq ∂xϕ∂xϕ+ wyyq ∂yϕ∂yϕ+ wzzq ∂zϕ∂zϕ

+ wxyq ∂xϕ∂yϕ+ wxzq ∂xϕ∂zϕ+ wyzq ∂yϕ∂zϕ) (2.5a)

geqq =
wq
c2

(
Γµ+ cαqϕuα +

3

2c2

[
cαqcβq −

c2

3
δαβ

]
ϕuαuβ

)
(2.5b)

where wq is weight corresponding to the norm of cq, cs is the speed sound. p0

is the bulk pressure p0 = c2sρ +
A

2
ϕ2 +

3B

4
ϕ4. The distributions for q = 0 are
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given by:

f eq0 = ρ−
18∑
q=1

f eqq

geq0 = ϕ−
18∑
q=1

geqq

(2.6)

In this study, the D3Q19 lattice arrangement (three dimensions and nine-

teen discrete velocity directions) is adopted. As is shown in Figure 2.1, the

central point is connected with 6 central points in each face and 12 central

points in each edge of the cube. Only uniform cubic lattices are used here,

the mesh step ∆x and time step ∆t are taken as unity. Lattice Boltzmann

method operates in lattice space in so-called lattice units (lu).

Figure 2.1: D3Q19 lattice arrangement
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The discrete velocity sets and the weighting factors are defined as follows:

eq =


(0, 0, 0) q = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) q = 1, 2, ..., 6

(±1,±1, 0), (0,±1,±1), (±1, 0,±1) q = 7, 8, ..., 18

(2.7)

and

wq =


1/3, q = 0

1/18, q = 1, 2, ..., 6

1/36, q = 7, 8, ..., 18

(2.8)

The multiple-relaxation-time (MRT) collision operator is implemented con-

sidering that multiple physical quantities in collision process may relax on

different time scales [131]. It is used in this study to improve stability and

accuracy of the simulations. Premnath et al. [133] analyzed advantageous of

MRT operator by comparing with BGK operator. They proposed that numer-

ical instability occurs in the relatively low viscosities fluids simulation. Due

to computational constraints, the instability problems may be compounded in

three-dimensional flows when physics may not be adequately resolved. The

MRT operator is more stable than BGK operator because the different relax-

ation times can be individually relaxed to achieve stability. The MRT operator

is also flexible enough to incorporate additional physics which cannot be natu-

rally represented by BGK operator. In MRT operator, moments of distribution

functions such as momentum and viscous stresses are solved directly, which

provides a natural and convenient way to express various relaxation processes

happened in various time scales due to collisions.
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Therefore, the lattice Boltzmann equation which utilizes the MRT operator

is given by:

fq (rα + cαq∆t, t+ ∆t)− fq (rα, t) = −M−1S(mq −meq
q ) + Fq (2.9)

where M is a 19 × 19 transformation matrix which transforms distribution

functions f to velocity moments m:

m = Mf (2.10)

Define collision matrix Ŝ as follow:

Ŝ = M−1SM (2.11)

Therefore, the Equation (2.9) can be replaced by:

fq (rα + cαq∆t, t+ ∆t)− fq (rα, t) = −Ŝ(fq − f eqq ) + Fq (2.12)

The eigenvalues of S are all between 0 and 2 in order to maintain linear

stability and the separation of scales [134]. It can be easily represented that

BGK operator is a special case in which all relaxation times are equal, the

collision matrix is Ŝ = M−1 1

τ
IM =

1

τ
diag(I)T , where τ >

1

2
is the single

relaxation time of BGK.

The transformation matrix represents components of the 19 orthogonal

basis column vectors:

M =

[
ς0, ς1, . . . , ς18

]T
(2.13)
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The 19 orthogonal basis vectors ςqβ and derived transformation matrix M

are listed in Appendix. The corresponding 19 velocity moments are given

[135]:

m = (ρ, e, e2, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz)
T

(2.14)

where jx, jy, jz are momentum or mass flux (j = ρu); qx, qy, qz are heat

flux; pxx, pww, pxy, pyz, and pxz are components of the symmetric and traceless

strain-rate tensor; πxx and πww are fourth order moments which have the same

symmetry as the diagonal part of the traceless tensor pij. The last three vectors

are third order moments.

In MRT operator, the collision matrix (relaxation matrix) Ŝ is diagonal in

moment space M:

Ŝ = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18)
T

(2.15)

where parameter sq represent the inverse of the relaxation time (1/τ) of

the various moments m in reaching their equilibrium values meq. Because

the collision process conserves particular moments (density and components

of momentum) s0, s3, s5 and s7, the collision process values remain constant

under variation of corresponding relaxation times. Thus, the relaxation pa-

rameters for these moments can be set to zero when there is no forcing term

in the LBM. However, the collision matrix affects the forcing term in the effec-

tively explicit in MRT LBM with forcing term, the relaxation times for these

conserved moments should not be chosen as zero [133]. Therefore, they are set
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as 1 for simplicity. The collision matrix then becomes:

Ŝ = diag(1, se, se2 , 1, sq, 1, sq, 1, sq, sν , sπ, sν , sπ, sν , sν , sν , sm, sm, sm)T (2.16)

The equilibria of the non-conserved moments are given:

meq
1 = −11ρ+

19

ρ
(j2x + j2y + j2z )

meq
2 = ωε +

ωεj
ρ

(j2x + j2y + j2z )

meq
4,6,8 = −2

3
jx,y,z

meq
9 =

1

ρ
(2j2x − j2y − j2z )

meq
11 =

1

ρ
(j2y − j2z )

meq
10 = ωxxm

eq
9

meq
12 = ωxxm

eq
11

meq
13 =

1

ρ
jxjy

meq
14 =

1

ρ
jyjz

meq
15 =

1

ρ
jzjx

meq
16 = meq

17 = meq
18 = 0

(2.17)

In order to optimize the linear stability of the model, the parameters are

chosen as [136]: ωε = ωxx = 0, ωεj = −475/63, se = 1.19, s2e = sπ = 1.4,

sq = 1.2, sm = 1.98. The speed sound is cs = 1/
√

3 in lattice units of
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∆x = ∆t = 1. The kinematic viscosity ν and bulk viscosity ξ are:

ν =
1

3

(
1

sν
− 1

2

)
(2.18)

ξ =
2

9

(
1

se
− 1

2

)
(2.19)

The continuous phase and injected dispersed phase are of different kine-

matic viscosity. Thus, the kinematic viscosity of the mixture is a function of

order parameter [132]:

ν(ϕ) = νc
ϕ0 − ϕ

2ϕ0

+ νd
ϕ0 + ϕ

2ϕ0

(2.20)

where νc and νd are the kinematic viscosities of continuous phase and dispersed

phase, respectively. ϕ0 is set as 1.

2.3 Turbulence generation. Single-phase flow

simulations

In this study, the statistically stationary homogeneous isotropic turbulence is

generated in a three-dimension periodic domain. Due to the natural decay of

turbulence, the energy input is the necessity for the maintenance of turbulence.

Here, the energy input is organized by means of linear forcing that is proposed

by Lundgren [137]. The local force imposed in the liquid is proportional to

the local velocity

Ftα = Afuα (2.21)
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The parameter of force Af is

Af = ε/(3u2rms) (2.22)

where ε is the volume-averaged energy dissipation rate per unit mass; urms is

the volume-averaged root-mean-square fluid velocity. The dissipation rate ε

is an input parameter in turbulence generation, if the resolution of the Kol-

mogorov length scale ηK is fixed, then these levels of dissipation can be set

up by varying kinematic viscosity of the continuous phase νc due to the rela-

tionship ηK = (ν3c /ε)
1/4. The turbulence generation method does not allow to

have the root-mean-square velocity urms as an input parameter. therefore, as

the output parameter, the urms values were calculated every time step after

the simulation was performed. Derksen [138], Valino et al. [139] successfully

implemented this type of linear forcing in the environment of the LBM.

A non-zero velocity field is used to start with the turbulence generation.

It was initialized at t = 0 using the following relations

ux = uinitsin

(
2πj

λ0

)
uy = uinitsin

(
2πk

λ0

)
uz = uinitsin

(
2πi

λ0

) (2.23)

where λ0 = 1.01Ld/4, i = j = k = (1 : Ld) (corresponding to x, y, and z,

respectively); uinit = 5uK is the maximum velocity in the initial distribution;

Ld is the domain edge size; uK is the Kolmogorov velocity scale. This flow

field is divergence free.

To achieve statistical stationary quantities, it is necessary to run simula-
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tions for a longer period of time. Therefore, before injecting the dispersed

phase, all simulations have to be conducted long enough to ensure time-

invariant statistics. It ensures the full development of single phase turbulent

flow [113].

2.4 Three-dimensional energy spectrum

According to Kolmogorov’s theory [140], the kinetic energy enters the turbu-

lent flow at the largest scales of motion. With the breakup of eddies, the kinetic

energy is continuously transferred to smaller scales until the Kolmogorov scale

is reached. At this smallest length scale, the eddy motion is stable because the

Reynolds number is sufficiently small, and the kinetic energy is dissipated due

to viscous effect. This is also known as ‘energy cascade’. The energy cascade

consists of two subranges: inertial subrange and dissipation subrange. In in-

ertial subrange, the viscous effects are negligible, the inertial effect determines

the dominant energy transfer from large to small eddies. The energy cascade

in this subrange is described by:

E(κ) = Cε2/3κ−5/3 (2.24)

where C is a universal Kolmogorov constant, ε is the energy dissipation rate,

κ is the wave number. This spectrum is also referred to as the Kolmogorov

spectrum. In the dissipation subrange, the viscous effect is dominant, the

energy is dissipated.

Here gives the derivation of calculation of three-dimensional energy spec-

trum. Considering two points i and j with distance r in Cartesian coordinates,
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where r is the space vector between two points. The derivation of three dimen-

sional energy spectra calculation presented below is based on [141, 142, 143].

In homogeneous isotropic turbulent flow, the correlation function between ve-

locities of two measured points is given by [141]:

Rij(r) = 〈ui(x)uj(x+ r)〉 (2.25)

where the angle brackets denote ensemble averaging, ui and uj are velocities

at two points, x is the location in Cartesian coordinates.

A spectrum is defined as the Fourier transforms of a correlation function.

Thus, a pair of forward Fourier transform and inverse Fourier transform is

[141]:

f̃(κ) =
1

2π

∫ ∞
−∞

f(r)e−iκrdr (2.26)

f(r) =

∫ ∞
−∞

f̃(κ)eiκrdκ (2.27)

A three-dimensional spectrum is Φij(κ) calculated as [141]:

Φij(κ) =
1

8π3

∫∫∫ ∞
−∞

Rij(r)e−iκrdr (2.28)

where κ = (κ1, κ2, κ3), and κ = |κ|.

Inversely:

Rij(r) =

∫∫∫ ∞
−∞

eiκrΦij(κ)dκ (2.29)
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When i = j, we get:

Rii(0) = 〈u2i 〉 =

∫∫∫ ∞
−∞

Φii(κ)dκ (2.30)

The total turbulent kinetic energy Etke is an integrity of energy spectrum

E(κ). For simplicity, the direction of the Fourier modes is often removed

because it has no effect on the calculation. Thus, the length of of the wave

number vector instead of the vector itself is used: κ =| κ |= (κ21 + κ22 + κ23)
1/2.

This is obtained by integrating over the spherical shell S(κ), where κ denotes

the radius of the sphere. Figure 2.2 represents the shell of radius κ, the surface

denotes the energy spectrum (κ) of a specific radius κ. Therefore, the total

turbulent kinetic energy Etke is regarded as the sum of various (κ) which are

denoted by diferent surfaces of different radius κ.

Combining with the Equation (2.30), we get:

Etke =

∫ ∞
0

E(κ)dκ

=
1

2
〈u2i 〉

=

∫∫∫ ∞
−∞

1

2
Φii(κ)dκ

=

∫ ∞
0

∮
1

2
Φii(κ)dS(κ)dκ

(2.31)

From Equation (2.31), the relationship is obtained:

E(κ) =

∮
1

2
Φii(κ)dS(κ)

=
1

2
Φii(κ)4πκ2

= 2πκ2Φii(κ)

(2.32)
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Figure 2.2: Three-dimensional shell ingeration
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In Equation (2.31), we can also get:

Etke =

∫∫∫ ∞
−∞

1

2
Φii(κ)dκ

=
1

2

∑
κ

Φii(κ)∆κ1∆κ2∆κ3

(2.33)

The total turbulent kinetic energy can be also calculated by:

Etke =
∑
κ

E(κ)

=
1

2
〈ũ?(κ)ũ(κ)〉

(2.34)

Combining with the Equation (2.33) and (2.34), the calculation of Φii is

given (in this study, the interval of wave number is the same):

Φii =
〈ũ?(κ)ũ(κ)〉

(∆κ)3
(2.35)

Substitute the Equation (2.35) into Equation (2.32):

E(κ) = 2πκ2Φii(κ)

= 2πκ2
〈ũ?(κ)ũ(κ)〉

(∆κ)3

(2.36)

where ũ?(κ) is the conjugate of ũ(κ).

To implement the Equation (2.36) in computer code, a process of three-

dimensional energy spectrum calculation is proposed:

1. Transfer the three physical space (in Cartesian coordinates) velocity

fields u(x, y, z), v(x, y, z), w(x, y, z) to Fourier space velocity fields ũ1(κ1, κ2, κ3),

ũ2(κ1, κ2, κ3), ũ3(κ1, κ2, κ3) using Fast Fourier Transfer (FFT), such as

the MATLAB function ‘fftn’.
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2. Calculate 〈ũi(κ1, κ2, κ3)ũ?i (κ1, κ2, κ3)〉, the angle brackets denote the en-

semble average. The emsemble average of a random variable x is given

as 〈x〉 =
1

V

V∑
n=1

xn. Thus, the 〈ũi(κ1, κ2, κ3)ũ?i (κ1, κ2, κ3)〉 of different

components are:

N∑ N∑ N∑
ũ1(κ1, κ2, κ3)ũ

?
1(κ1, κ2, κ3)

(N ×N ×N)2

N∑ N∑ N∑
ũ2(κ1, κ2, κ3)ũ

?
2(κ1, κ2, κ3)

(N ×N ×N)2

N∑ N∑ N∑
ũ3(κ1, κ2, κ3)ũ

?
3(κ1, κ2, κ3)

(N ×N ×N)2

where N is the number of points along the edge of the domain (N = 300

in our case).

3. Establish a Fourier space cube domain, the number allocated to each

point along the edge is order in this array: R = [0, 1, . . . , N/2,−N/2 +

1,−N/2+2, . . . ,−1]. This order is implemented to generate three dimen-

sional coordinates defined by vectors X, Y , Z using MATLAB intrin-

sic function ‘meshgrid’: [X, Y, Z] = meshgrid(R,R,R). Thus a Fourier

space length tensor r(κ1, κ2, κ3) of size N3 can be obtained in MATLAB,

the code is: r =
√

(X)2 + (Y )2 + (Z)2.

4. The length of wavenumber is divided into N/2 bins from 1 to N/2.

Therefore, the number of bins used in calculation is N/2.

5. The wavenumber is kw = [1, N/2]4x, where 4x = 2π/L

6. For the pth bin, record all locations L(κ1, κ2, κ3) of points that satisfy

the relationship:
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r(κ1, κ2, κ3)4x ∈
(
kw(p− 1) + kw(p)

2
,
kw(p) + kw(p+ 1)

2

]
.

The number of recorded points is N .

7. The energy in each bin p is

E(p) = 2πkw
2

(∑
ũ1(L)ũ?1(L)

N2
+

∑
ũ2(L)ũ?2(L)

N2
+

∑
ũ3(L)ũ?3(L)

N2

)
/
(
N4x3

)
,

where p ∈ [1, N/2]

8. Plot energy spectrum E(p) as the function of kw.

There are two ways to calculate the turbulent kinetic energy, the first one

is calculated from Fourier space velocity field:

Ev =
1

2
〈ũi(κ1, κ2, κ3)ũ?i (κ1, κ2, κ3)〉 (2.37)

The second one is calculated from the energy spectrum:

Ee =

∫ ∞
0

E(κ)dκ

=
∑

E(κ)∆κ

(2.38)

The energy dissipation rate is also calculated in two ways, the first one is

the average of local energy dissipation rate of all points:

εv =
∑

εp/L
3 (2.39)

where εp is the local energy dissipation rate of each point, it is given by

[144]:

εp = 2ν〈SijSij〉 (2.40)
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where ν is the kinematic viscosity of fluid, Sij is the strain rate[144]:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.41)

where the velocity gradient tensor is[144]:

∂ui
∂xj

=


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 (2.42)

The second way is based on the energy spectrum [140]:

εe =

∫ ∞
0

2νκ2E(κ)dκ (2.43)

The compensated energy spectrum is [140]:

Ec(κ) = E(κ)κ5/3ε−2/3 (2.44)

The Kolmogorov hypothesis predicts the −5/3 spectrum in inertial sub-

range. This power-law behavior is clearly visualized in the compensated energy

spectrum because it is flattened.

The dissipated energy spectrum is [140]:

Ed(κ) = E(κ)κ2ν (2.45)
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2.5 Visualization method of coherent struc-

tures

The visualization and quantification of drop/vortices interaction is a primary

source of information for developing the sub-models. The original Q criterion

method transforms a velocity field (vector) to a Q field (scalar), which is then

used to identify and visualize coherent structures. In this method, Q is defined

as the balance between rotation and strain rate [98].

Q =
1

2

(
Ω2 − S2

)
(2.46)

where Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
is the rotation rate, Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the

strain rate. These are the antisymmetric and symmetric parts of the velocity

gradient tensor correspondingly. Q is defined as the balance between rotation

and strain rates [98]. According to Equation (2.46), those areas with positive

Q values have higher rotation rate.

However, sometimes the absolute maximum Q value is several orders of

magnitude larger than the absolute minimum value. The wide range of Q

values decreases the accuracy of visualization. The normalized Qn criterion is

an advanced method which solves this problem since it removes the effect of

order resulted from the wide range of value Q. In this method, Qn is obtained

by normalizing Q with the rotation squared [99].

Qn =
Ω2 − S2

Ω2
(2.47)

For a given time instant, the process of extraction of coherent structures

43



included following steps [97]:

1. Calculate Qn values for the entire domain.

2. Set up a threshold value Qth for the Qn field. The selection of the

threshold value affects the visualization results. The extracted coherent

structures are small if the Qth is high (close to the maximum Qn value).

However, a low threshold may make the coherent structures too dense

to visualize.

3. Find the maximum Qn value and its location. The point with the max-

imum Qn value is regarded as the ‘starting point’ in a structure only if

this maximum Qn value is larger than the threshold Qth.

4. Identify all neighboring points from the ‘starting point’, points whose

Qn values higher than the Qth are sorted out as in the same structure.

5. Record all points in this structure in another group, then reset all Qn

values of these points to zero.

6. Repeat steps 3 to 5 until no more structure is extracted. Record the

maximum volume of the structure.

7. Set up a volume criterion Vcr. To make the visualization clear, structures

smaller than the volume criterion are regards as noise and are removed.

If the structure is larger than or equal to the Vcr, all Qn values of the

structure will be recorded. Usually, the volume criterion Vcr is set as

less than the 4% of the maximum volume of coherent structures Vcr ≤

4%Vmax [97].
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In Fig. 3.13, the coherent structures of single phase homogeneous isotropic

turbulent flow are presented, they are colored by the vorticity magnitude. The

maximum Qn value of the entire domain is 1 while the maximum unnormal-

ized Q value calculated by Equation (2.46) is 1.745 × 10−3. The minimum

meaningful Qn and Q values are 0, because only areas with positive values

have higher rotation rate.

In this study, a practical identification method is proposed to fulfill the

step 4 of the process. The method is explained based on a two-dimensional

structure. The three-dimensional structure identification can be achieved by

adding one more dimension in the identification process. Before introducing

the method, three operations have to be defined. Assume the Qn value of point

P is higher than the threshold value, only the nearest four points surrounding

P are checked. If a point in the domain has Qn value is lower than the threshold

value, the point P is then recorded as the ‘boundary point’. Assume a ‘moving

block’ that only departures from the ‘starting point’ and moves on points one

by one along with x and y directions; Assume a ‘flag’ on each point, set all

‘flags’ to zero at the beginning.

Fig. 2.3 covers a random complex two-dimensional coherent structure. The

‘starting point’ is marked with a star and with coordinate (0, 0). Assume that

this is the first structure. The process of two-dimensional structure identifica-

tion includes the following steps:

1. Beginning from the ‘starting point’, the ‘moving block’ moves to each

point one by one along with x and y directions. If the Qn value on

current ‘moving block’ is higher than the threshold value, then judge

the value of flag, change the flag of this point to I if the flag is zero,
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where I is the Ith structure that is under identification; If the flag is

not zero, then jump it and moves on the next point. Keep moving until

four ‘boundary points’ are recorded.

2. When ‘moving block’ moves on a point that is higher than the thresh-

old and has ‘zero’ flag, check all points along with the direction which

is perpendicular to the direction that the ‘moving block’ moves along

currently. If the flags of points are zero, then change them to I; if they

are not zero, then jump to the next point. This is called ‘perpendicu-

lar check’. Finish the ‘perpendicular check’ when two ‘boundary points’

are recorded. Only new ‘boundary points’ are recorded as the new gen-

eration ‘boundary points’. This step is regarded as the ‘second layer

check’.

In Fig. 2.3, the ‘moving point’ is now at (−3, 0). Check all points along

y direction (marked by arrows) until two ‘boundary points’ (−4,±2)

are recorded. Now all points between (−4, 2) and (−4,−2), (0, 0) and

(−4, 0) have flag ‘1’ because this is the first structure. By the end of step

1 and 2, all ‘boundary points’ that can be recorded are marked as circles

in Fig. 2.3, these points are classified as the first generation ‘boundary

points’.

3. All this generation ‘boundary points’ are regarded as ‘starting point’,

repeat these steps to get further generations of ‘boundary points’ until

no more new ‘boundary points’ are found.

In Fig. 2.3, the second generation ‘boundary points’ are marked as

triangles. All ‘boundary points’ are found and all flags in the structure

are changed to ‘1’ till now. The structure is successfully identified.
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Figure 2.3: A random two-dimensional structure

To extend to the three-dimensional structures extraction, several modifi-

cations need to be implemented in the operation definition and identification

process that were given above. The number of points which have to be checked

to ensure a ‘boundary point’ becomes six; One more direction is added in the

movement of ‘moving block’ and ‘perpendicular check’; The number of ‘bound-

ary points’ in steps 1 and 2 are six and four; A further layer check - ‘third layer

check’, which is similar to the ‘second layer check’ has to be added following

the ‘second layer check’.

The normalized Qn criterion extraction method coupled with the identifica-

tion method described above can obtain coherent structures accurately despite

the complexity of the vortices shape. With the unique ‘flag’ on each point,

the raw data of exact positions and number of coherent structures are also

obtained.
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Chapter 3

Results and Discussion

In this chapter, results of multiple cases of single-phase and two-phase tur-

bulent flow simulations are presented and discussed. The simulation cases

and parameters are summarized in Section 3.1. To investigate statistical char-

acteristics of liquid-liquid turbulent flow, the energy spectra, the probability

distribution function (PDF) of vorticity, energy dissipation rate, and eigen-

values of strain tensor of the single-phase flow is discussed in Section 3.2. In

Section 3.3, the effect of dispersed phase volume fraction on the energy spec-

tra, PDF of vorticity, energy dissipation rate, and eigenvalues of strain tensor

are presented. In Section 3.4, the effect of dispersed phase effect on the energy

spectra, PDF of vorticity, energy dissipation rate, and eigenvalues of strain

rate are shown. In Section 3.5, coherent structures of single-phase flow, and

coherent structures together with the liquid-liquid interface of two-phase flow

are given.

48



3.1 Simulation parameters

Three single-phase homogeneous isotropic turbulent flow fields were generated

in a fully-periodic cubic domain of size L×L×L = 300×300×300 lattice units

[lu]. The Kolmogorov length scale ηK is set equal to 1 [lu] for all simulations.

The flow field in conventional mixing devices is very inhomogeneous. This

means depending on location in the vessel, the drop will be exposed to different

flow conditions. To investigate the behaviour of drop under different turbu-

lent conditions, three cases characterized by different intensity of turbulent

flow field were considered. To replicate these flow conditions, three values of

relaxation time related to fluid viscosity were selected: τc = 0.54, 0.525, 0.5.

These relaxation times result in different values of viscosity of continuous phase

νc = c2s(τc − 0.5), they were then used in the Equation 2.20. The energy dis-

sipation rate was calculated according to the Kolmogorov correlation [140]

ε = ν3c /η
4
K , where ηK = 1 [lu]. The simulation parameters that characterize

three turbulent flow fields are shown in Table 3.1.

The turbulent generation approach did not allow to set the volume-averaged

root-mean-squared velocity urms a priori. For that reason, it was determined

as a result of simulation. Based on obtained value, four parameters were

calculated: Taylor micro-scale λ = (15νcu
2
rms/ε)

1/2 [140]; Taylor micro-scale

Table 3.1: Simulation parameters. Lattice units: [lu] - lattice units for length
scale; [ts] - time step.

Case # τc νc ε urms tK , [ts] teddy, [ts] λ, [lu] Reλ
Case 1 0.54 13.3 · 10−3 2.4 · 10−6 5.1 · 10−2 75 1102 14.85 56.91
Case 2 0.525 8.3 · 10−3 5.8 · 10−7 3.2 · 10−2 120 1770 14.87 57.07
Case 3 0.51 3.3 · 10−3 3.7 · 10−8 1.3 · 10−2 300 4424 14.91 57.41
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Reynolds number Reλ = urms/νc; Kolmogorov time scale tK = (νc/ε)
1/2; Eddy

turnover time teddy = u2rms/ε. Therefore, for all considered cases, λ ≈ 15 and

Re ≈ 57. Thus parameters are also presented in Table 3.1.

First, a fully-developed turbulent flow field was generated. Then a spherical

single mother drop was injected into the flow field of condition Case 2. The

size of drop varies to make the dispersed phase volume fraction to be φ =

0.02%, 0.05%, 3.35%. Further, 382 spherical mother drops were injected into

the same flow field, the diameter of each drop was 30 [lu], that makes the

dispersed phase volume fraction to be 20%. The effect of dispersed phase

viscosity was also investigated by setting the dispersed to continuous phase

viscosity ratio to µd/µc = 0.1, 1, 10.

3.2 Single phase flow

3.2.1 Energy spectra

Fig. 3.1 presents the comparison of energy spectra, compensated energy spec-

tra and dissipated energy spectra for Case 1, Case 2 and Case 3. As can be

seen from Fig. 3.1(a), the simulation domain of edge length L = 300 [lu]

resolves the inertial sub-range in three cases. However, the resolved inertial

sub-range in three cases are narrow. The Fig. 3.1(b) highlights this conclu-

sion: by multiplying the energy spectrum by κ5/3ε−2/3, the curve that denotes

inertial sub-range becomes a horizontal line in compensated energy spectra

plot. The horizontal region only exists in a range 8 < κ < 10. To resolve a

wider inertial sub-range, it is necessary to extend the size of the simulation

domain. In turn, this will increase the computational cost of DNSs.
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(a)

(b)

(c)

Figure 3.1: Energy spectra of single phase turbulent flows at different energy
inputs. (a) Energy spectra; (b) Compensated energy spectra; (c) Dissipated
energy spectra.
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In Fig. 3.1(a) the energy at low wave number (large length scale) is different

in three cases. The energy entered turbulence is maximum in Case 1 while is

minimum in Case 3. The discrepancy of energy between Case 1 and Case 2

is much smaller than that between Case 2 and Case 3. The energy entered

in Case 2 is nearly the same as the energy entered in Case 1. This proves

the parameter set in Table 3.1: the energy dissipation rate of Case 1 is 4.1

times larger than that of Case 2 while the energy dissipation rate of Case 2

is 15.7 times larger than that of Case 3. In Fig. 3.1(b), the dissipation ε and

wave number κ have no effect on the plot, because by scaling with κ5/3ε−2/3,

the relationship is obtained: E(κ)κ5/3ε−2/3 ε2/3κ−5/3 = ε0κ0. Thus, the three

curves nearly overlap in the compensated energy spectrum.

In Fig. 3.1(c), the energy of Case 1 dissipated fast at high wave number,

meaning that the higher energy input results in higher energy dissipation. By

scaled with κ2ν, the relationship is obtained: E(κ)κ2ν ∼ εκ1/3 ∼ ν3κ1/3, the

Kolmogorov −5/3 law becomes 1/3, the curve that represents the inertial sub-

range in the log-log is parallel to the straight line of 1/3 slope. The viscosity

in Case 1 is 1.6 times larger than that in Case 2, the viscosity in Case 2 is 2.5

times larger than that in Case 3. Due to the relationship of ν3 in dissipated

energy spectra, the discrepancy between Case 2 and Case 3 is far larger than

that between Case 1 and Case 2. As can be seen, at large wave number,

the higher energy input flow condition has higher energy dissipation. This

supports the conclusion from Fig. 3.1.

It is also noticed that there is minor difference in these plots for a given

time instant and the time-averaged data. Thus the energy spectra presented

here are based on one time instant.

The turbulent kinetic energy calculated by Equation (2.37) and (2.38), as
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Table 3.2: Turbulent kinetic energy and average energy dissipation rate calcu-
lated by different methods.

Case # Ev Ee εv εe ε
Case 1 3.5 · 10−3 3.1 · 10−3 1.6 · 10−6 2.3 · 10−6 2.4 · 10−6

Case 2 1.7 · 10−3 1.5 · 10−3 4.0 · 10−7 5.8 · 10−7 5.8 · 10−7

Case 3 2.5 · 10−4 2.2 · 10−4 2.4 · 10−8 3.5 · 10−8 3.7 · 10−8

well as the average energy dissipation rate calculated by Equation (2.39) and

(2.43) in three cases are given in Table. 3.2. Ev and Ee are the velocity-

based and energy spectrum-based turbulent kinetic energy; εv and εe are the

velocity-based and energy spectrum-based average energy dissipation rate.

As can be seen, the turbulent kinetic energy obtained from the velocity

field and energy spectrum are not exactly the same, the one from velocity

field is larger. For the average energy dissipation rate, the one obtained from

energy spectrum is larger than that from velocity field. Compared to the

energy dissipation rate ε, the results from energy spectrum are closer to these

values.

3.2.2 Vorticity

Vortex is to be observed as an rotational region around a core. The concept

of vorticity proposed to describe a vortex was defined as the curl of velocity

(ω = ∇× υ). The vorticity was calculated using the MATLAB intrinsic func-

tion ‘curl’. Fig. 3.2 represents the probability density function (PDF) of vor-

ticity in single phase turbulent flows of three energy inputs. The calculation of

vorticity was implemented for each lattice cube, thus, a three-dimensional vor-

ticity magnitude field of 3003 values was obtained. For a continuous variable X,

the probability density function f(x) satisfies the relationship
∫
f(x)dx = 1.
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Therefore, the probability density function for discrete random variable is

p(xi) =
ni
Nδx

, where ni is the number of variable at xi, N is the total num-

ber of variable, δx is the step between xi and xi+1. The probability density

function reveals the distribution of the variable.

As can be seen from the Fig. 3.2, the maximum density of vorticity in

Case 1, Case 2, and Case 3 are 74, 120, and 305, respectively. Therefore, with

the increase of energy input, the maximum density of vorticity decreases. The

maximum density of vorticity in Case 3 is 2.5 times of that in Case 2, and the

maximum density of vorticity in Case 2 is 1.6 times of that in Case 1.

Figure 3.2: PDF of vorticity in single phase turbulent flows of different energy
inputs

The increase of energy input also results in the increase of distribution of

vorticity, i.e. the distribution of vorticity is wider. It validates the energy

spectra in Fig. 3.1: for a given wave number (vortex of a given length scale),

the vortex in larger energy input flow condition contains more energy because
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the vorticity is higher.

3.2.3 Local energy dissipation rate

The energy dissipation rate reveals the rate at which the turbulent kinetic

energy is transferred into thermal energy with the dissipation of small eddies

[140]. The calculation is given from Equation (2.40) to (2.42). Fig. 3.3 repre-

sents the normalized PDF of energy dissipation rate in single phase turbulent

flows of different energy inputs at one time instant. The energy dissipation

rate of each lattice cube is calculated and normalized by the average dissipa-

tion rate of the corresponding case listed in Table. 3.1. For example, the curve

that denotes flow condition of Case 1 is obtained by scaling with the average

dissipation rate of Case 1 in Table. 3.1.

Figure 3.3: PDF of normalized energy dissipation rate in single phase turbulent
flows of different energy inputs

As can be seen in the Fig. 3.3, in the Case 1 and Case 2, most of the
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normalized energy dissipation rates in the region are smaller than the average

energy dissipate rate εave. The increase of energy input results in the decrease

of PDF of normalized energy dissipation rate. Further, both the maximum

and minimum values of normalized energy dissipation rate are smaller in the

higher energy input case. The PDF of ε/εave decreases at higher normalized

dissipation rate, finally, the PDF oscillates at a specific state. For example, in

Case 1, the PDF reaches the maximum value at ε/εave = 0.18, then it decreases

from 5.98× 105 to 1, finally, the PDF oscillates around 1. The distribution of

ε/εave is more discrete at higher value region.

3.2.4 Eigenvalues of strain tensor

The velocity gradient tensor given in the Equation (2.42) can be decomposed

into a symmetric strain tensor and an antisymmetric rotation tensor. The

vorticity in Section 3.2.2 describes the rotation rate of particles related to the

rotation tensor. In this section, the eigenvalues of strain tensor are studied to

reveal the compression and stretching. The strain tensor sij is given by:

sij =
1

2
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The eigenvalues of each strain tensor are calculated. The negative eigen-

value λ1 is most compressive while the positive eigenvalue λ3 is the most

stretching, the eigenvalue λ2 between λ1 and λ3 is either compressive or stretch-

ing [145].

The eigenvalues of strain tensor are calculated using MATLAB 2017 in-
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trinsic function ‘eig’ for each lattice cube. Fig. 3.4 represents the PDF of

eigenvalues of strain tensor of single phase turbulent flows of different energy

inputs, the red curves denote flow condition Case 1, blue curves denote flow

condition Case 2, and black curves denote flow condition Case 3; the dashed

curves represent eigenvalue λ1 (negative eigenvalue), solid curves represent

eigenvalues λ2, and dash-dot curves represent eigenvalues λ3 (positive eigen-

value), λ1 < λ2 < λ3.

As can be seen, in higher energy input flow condition, the distribution

of eigenvalues is wider. The increase of energy input results in the density

decrease of λ1, increase of λ2 and λ3. Therefore, in higher energy input flow,

the flow field is more stretching than compressive.

Figure 3.4: PDF of eigenvalues of strain tensor of single phase turbulent flows
of different energy inputs
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3.3 Effect of dispersed phase volume fraction

3.3.1 Energy spectra

In Fig. 3.5, the energy spectra for a single phase flow as well as for the

cases with different values of dispersed phase volume fraction φ in the flow

condition Case 2 are shown. The spherical drop of different sizes are injected

into the flow Case 2 to reach the different dispersed phase volume fraction

φ = 0.02%, 0.05%, 3.35% and 20%. For the larger dispersed phase volume

fraction, the energy at high wave number (small length scale) is larger. In

Fig. 3.5(a), the energy of φ = 20% at high wave number is around 105 larger

than the energy of single-phase flow. Therefore, the presence of deformable

liquid-liquid interface promotes the energy dissipation. This is more clear in

Fig. 3.5(b): the increase of dispersed phase volume fraction results in larger

energy dissipation rate. The similar conclusion was found in [146], which was

a study of solid-liquid dispersion: the larger dispersed phase volume fraction

led to a higher turbulent energy at high wave number, it is accompanied by

an increase of energy dissipation rate.

However, the slight decrease of energy in the inertial sub-range resulted by

the increase of dispersed phase volume fraction is noticed. The energy of the

condition φ = 20% around low wave number κ = 10 is the minimum among

different dispersed phase volume fraction cases. Therefore, in higher dispersed

volume fraction case, the energy covered by different size eddies is distributed

more uniformly. This conclusion is also supported by Fig. 3.5(c).

Another important finding of this work is that the implementation of MRT

mitigated the artificial significant (1010− 1012) energy gain at high wave num-

bers reported earlier [113]. This energy gain is obvious when the velocity at
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the diffuse interface is of order equals to the spurious velocity that represents

a numerical peculiarity of diffuse interface methods including LBM. There-

fore, by implementing the MRT collision operator, the magnitude of physical

velocity becomes larger than the spurious velocity.

3.3.2 Vorticity

Fig. 3.6 represents the PDF of vorticity in two phase turbulent flows of differ-

ent dispersed phase volume fraction. The increase of dispersed phase volume

fraction results in the increase of density of distribution at lower vorticity

(around 0) and decrease of density of distribution at higher vorticity (larger

than 3 × 10−3, smaller than −3 × 10−3). Therefore, in high dispersed phase

volume fraction case, the average vorticity magnitude of flow field is smaller.

3.3.3 Local energy dissipation rate

Fig. 3.7 gives the PDF of normalized energy dissipation rate in two phase

turbulent flows of different dispersed phase volume, the energy dissipation rate

for each lattice cube in domain is calculated and normalized by the average

dissipation rate of Case 2 (εave = 5.8× 10−7).

In the Fig. 3.7, the maximum PDF of ε/εave is 2.4× 106 around ε/εave =

0.18 in drop-free turbulence, the maximum PDF of ε/εave is 3.5× 106 around

ε/εave = 0.11 in turbulence with φ = 20%. Therefore, the increase of liquid-

liquid interface results in the increase of the maximum PDF of ε/εave, and the

decrease of value of ε/εave that has the maximum PDF.

However, the increase of dispersed phase volume fraction results in the

decrease of PDF at higher value of the normalized energy dissipation rate
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(a)

(b)

(c)

Figure 3.5: Energy spectra of two-phase turbulent flows of different dispersed
phase volume fraction in Case 2. (a) Energy spectra; (b) Dissipated energy
spectra; (c) Compensated energy spectra.
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Figure 3.6: PDF of vorticity in two phase turbulent flows of different dispersed
phase volume fraction in Case 2

(ε/εave > 0.38). For example, at ε/εave = 2, the PDF of ε/εave equals to

1.05× 105 in φ = 0 while equals to 5.73× 104 in φ = 0.20%.

3.3.4 Eigenvalues of strain tensor

Fig. 3.8 represents the PDF of eigenvalues of strain tensor of single phase and

two phase turbulent flows of different dispersed phase volume fraction, the

black curves denote the case φ = 0 (single phase), red curves denote the case

φ = 0.02%, blue curves denote the case φ = 0.05%, green curves denote the

case φ = 3.35%, magenta curves denote the case φ = 20%; the dashed curves

represent eigenvalue λ1, solid curves represent eigenvalues λ2, and dash-dot

curves represent eigenvalues λ3, λ1 < λ2 < λ3.

As can be seen, the increase of dispersed phase volume fraction results
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Figure 3.7: PDF of normalized energy dissipation rate in two phase turbulent
flows of different dispersed phase volume fraction in Case 2

in the increase of the maximum probability density, and the increase of λ1,

decrease of λ2 as well as λ3. This reveals that the increase of liquid-liquid

interface boosts the compression.

3.4 Effect of dispersed phase viscosity

3.4.1 Energy spectra

The energy spectra in the flow condition Case 2 with different viscosity ratios

µd/µc = 0.1, 1, 10 at dispersed phase volume fraction φ = 0.05% are presented

in Fig. 3.9. As is shown in Fig. 3.9(a) and (c), the change of viscosity ratio

has no effect on the inertial sub-range. However, at high wave number, the

small scale eddies in large viscosity ratio case contain less energy, the increase

of dispersed phase viscosity suppresses dissipation rate.
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Figure 3.8: PDF of eigenvalues of strain tensor of single phase and two phase
turbulent flows of different dispersed phase volume fraction in Case 2

3.4.2 Vorticity

Fig. 3.10 represents the PDF of vorticity in two phase turbulent flows of

different viscosity ratio, the viscosity ratio µd/µc is 0.1, 1, and 10. As can be

seen, the change of viscosity nearly has no effect on the PDF of vorticity: the

maximum is 125.5 in the case µd/µc = 1, 122.3 in the cases µd/µc = 0.1 and

µd/µc = 10.

3.4.3 Local energy dissipation rate

Fig. 3.11 gives the PDF of normalized energy dissipation rate in two phase

turbulent flows of different viscosity ratio, the energy dissipation rate or each

lattice cube in domain is calculated and normalized by the average dissipation

rate of Case 2 (εave = 5.8× 10−7).

As can be seen, the maximum PDF is 2.63×106, it occurs around ε/εave =
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(a)

(b)

(c)

Figure 3.9: Energy spectra of two-phase turbulent flows of different viscosity
ratio at φ = 0.05% in Case 2. (a) Energy spectra; (b) Dissipated energy
spectra; (c) Compensated energy spectra.
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Figure 3.10: PDF of vorticity in two phase turbulent flows of different viscosity
ratio at φ = 0.05% in Case 2

0.18 in three viscosity ratios cases. It is noticed that the variance of viscos-

ity ratio µd/µc has no obviously influence on the PDF of normalized energy

dissipation rate.

3.4.4 Eigenvalues of strain tensor

Fig. 3.12 represents the PDF of eigenvalues of strain tensor of two phase

turbulent flows of different viscosity ratio µd/µc, the red curves denote the

case µd/µc = 0.1, the blue curves denote the case µd/µc = 1, the black curves

denote the case µd/µc = 10; the dashed curves represent eigenvalue λ1, solid

curves represent eigenvalues λ2, and dash-dot curves represent eigenvalues λ3,

λ1 < λ2 < λ3. As can be seen, the variance of viscosity ratio nearly results in

no variance of PDF of eigenvalues. Thus, both the compression and streching
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Figure 3.11: PDF of normalized energy dissipation rate in two phase turbulent
flows of different viscosity ratio at φ = 0.05% in Case 2

are impervious from the variance of viscosity.
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Figure 3.12: PDF of eigenvalues in two phase turbulent flows of different
viscosity ratio at φ = 0.05% in Case 2

3.5 Coherent structures

3.5.1 Single-phase flow

In normalized Qn criterion, the selection of threshold value Qth and cutoff

volume Vcr is important because it directly affects the extraction of coherent

structures. Therefore, the effects of Qth and Vcr are investigated on the flow

condition of Case 2.

Fig. 3.13 presents coherent structures extracted under different Qth in Case

2, the structures are colored by vorticity magnitude (‖ ∇ × u ‖). This figure

reveals the effect of Qth. In Table 3.3, the parameters and results of coherent

structures under effect of Qth were listed.

Vcr is the cutoff volume, Vmax is the volume of the maximum structure. N is

the number of coherent structures in the domain. As can be seen, the increase
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Table 3.3: Parameters and results of coherent structures under effect of Qth.
N is the number of structures; Vmax is the volume of the maximum structure.

Figure # Qth Vcr/Vmax N Vmax
Figure 3.13(a) 0.8 688 10162
Figure 3.13(b) 0.85 4% 778 5784
Figure 3.13(c) 0.9 879 2470

of Qth results in the increase of the number of structures and decrease of the

size of structures. The color remains the same in three sub-figures because the

change of Qth has no influence on the vorticity field.

Therefore, Qth should be carefully selected. If Qth is large (close to 1),

the size of structures will be small. It results in the lack of information in

visualization, for example, part of important vortices maybe neglected; if Qth

is too small, the structures will be too dense to visualize. When Qth = 0.8,

the total volume of extracted coherent structures is 4.1% of the volume of the

domain, it matches the published result [97]. Thus, in this study, Qth = 0.8 is

regarded as a suitable threshold value for visualization.

Fig. 3.14 gives coherent structures extracted under the same Qth, but the

noises are removed under different Vcr. The structures are colored by vorticity

magnitude (‖ ∇ × u ‖). In Table 3.4, the parameters and results of coherent

structures under effect of Vcr were listed.

As can be seen, the increases of Vcr results in the decrease of the number of

structures. Only 20% of number of structures remain when the Vcr is increased

from 0 to 2% of the largest structure, but 62% of number of structures are left

when the Vcr is increased from 2% to 4% of the largest structure. Therefore,

the deduction of noise is more obvious at the beginning of increase of Vcr. With

the increase of Vcr, the deduction of noise becomes weak. It is because the
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(a)

(b)

(c)

Figure 3.13: Coherent structures of different threshold Qth extracted in Case
2. (a) Qth = 0.8, Vcr/Vmax = 4%; (b) Qth = 0.85, Vcr/Vmax = 4%; (c) Qth =
0.9, Vcr/Vmax = 4%. 69



Table 3.4: Parameters and results of coherent structures under effect of Vcr.
N is the number of structures; Vmax is the volume of the maximum structure.

Figure # Qth Vcr/Vmax N Vmax
Figure 3.14(a) 0 5521
Figure 3.14(b) 0.8 2% 1114 10162
Figure 3.14(c) 4% 688

noises are successfully removed. The cutoff volume Vcr = 4%Vmax is regarded

as a suitable value.

In Fig. 3.15, coherent structures of different cases and the corresponding

probability distribution function (PDF) of volume-equivalent diameters are

presented. In Table 3.5, the parameters and results of coherent structures of

different flow conditions were listed. Vcst is the total volume of all coherent

structures, Vt is the volume of domain. The volume-equivalent diameter of

each structure is calculated by de =

(
6Vcs
π

)1/3

, where Vcs is the volume of the

structure. In Fig. 3.15(a), (c), (e), the coherent structures are colored by the

vorticity magnitude (‖ ∇× u ‖). As can be seen, the decrease of energy input

results in the decrease of vorticity magnitude. It can be also concluded that

in Case 1 and Case 2, the number of structures and the volume of the largest

structure are respectively the same. It is attributed to the little difference in

energy input in Case 1 and Case 2 represented in Fig. 3.1(a). In Fig. 3.15(b),

(d), (f), all bins are of the same width. The volume-equivalent diameter of

structures in Case 3 is larger than that in Case 1 and 2. Therefore, the lower

energy input results in the decrease of the number structures and increase of

the size of structures. The assumption is that in a lower energy input flow

condition, the flow is less turbulent, from Fig. 3.1(c) the dissipation rate is

less, the vortices remain large size, thus the number of structures is small. To
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(a)

(b)

(c)

Figure 3.14: Coherent structures of different volume criterion Vcr. (a) Qth =
0.8, Vcr/Vmax = 0%; (b) Qth = 0.8, Vcr/Vmax = 2%; (c) Qth = 0.8, Vcr/Vmax =
4%. 71



Table 3.5: Parameters and results of coherent structures of different flow con-
ditions. N is the number of structures; Vmax is the volume of the maximum
structure; Vcst is the total volume of all structures; Vt is the volume of the
domain.

Figure # Qth Vcr/Vmax N Vmax Vcst/Vt
Figure 3.15(a) 686 13882 4.1%
Figure 3.15(c) 0.8 4% 688 10162 4.3%
Figure 3.15(e) 363 25937 3.4%

the contrary, a flow field with larger energy input is more turbulent, from Fig.

3.1(c) we know the dissipation rate is larger, the vortices in flow field tend to

break up into smaller vortices, it leads to the large number and small size of

structures.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: Coherent structures and corresponding PDF of volume-equivalent
diameter. Qth = 0.8, Vcr/Vmax = 4%. (a) Coherent structures of Case 1; (b)
PDF of volume-equivalent diameter of Case 1; (c) Coherent structures of Case
2; (d) PDF of volume-equivalent diameter of Case 2; (e) Coherent structures
of Case 3; (f) PDF of volume-equivalent diameter of Case 3.
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3.5.2 Two-phase flow

Visualization of turbulent flow field together with the liquid-liquid interface

provides valuable information on how drop/vortices interaction occurs. The

most commonly used assumption in breakup models is that only vortices of

the size equal to or less than the drop size are responsible for drop breakup.

In Fig. 3.16, drop/coherent structures and the corresponding PDF of the

volume-equivalent diameter of structures are presented. The results are pre-

sented for two time instances: the first one t = 10tK stands for the state just

before the breakup, and the second state t = 15tk is after drop disintegra-

tion, where tK is the Kolmogorov time scale. The liquid-liquid interface is

colored by a solid color (gray), and coherent structures are colored by vor-

ticity magnitude. The threshold value Qth = 0.8 together with the cutoff

volume Vcr = 4%Vmax makes the total volume of extracted coherent structures

to be 4.3% of the simulation domain. This volume of structures ensures the

clearance of visualization.

The number of coherent structures in Fig. 3.16(a) and (c) are 714 and 700,

respectively. Thus, there is no obvious difference in numbers of structures.

The PDF of volume-equivalent diameter of structures is calculated by de =(
6Vcs
π

)1/3

, where Vcs is the volume of the structure. As can be seen from Fig.

3.16(b) and (d), the size of structures slightly decreases after the breakup of a

drop. The turbulent kinetic energy of extracted coherent structures is 4.07%

and 4.05% of the total kinetic energy in Fig. 3.16(a) and (c). This phenomenon

is explained by the Kolmogorov hypothesis that energy transforms to a smaller

scale with the breakup of vortices. The most volume-equivalent diameter of

coherent structures is equal to or smaller than 15 [lu], which is also close to
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the Taylor micro-scale given in Table 3.1. The injected mother drop had a

diameter of 30 [lu], which was larger than the vortices. After the breakup,

the daughter drops that did not drop again were smaller than the vortices.

Therefore, this result validates the general assumption that only vortices of

size equal to or smaller than drop size are responsible for the breakup event.

Our results also indicate that not a single but multiple vortices interact

with the drop at the same time. This interaction was revealed when a mother

drop was injected into turbulent flows: a breakup of the drop took place.

(a) (b)

(c) (d)

Figure 3.16: Drop/coherent structures and corresponding PDF of volume-
equivalent diameter in Case 2 at different time instants. Qth = 0.8, Vcr/Vmax =
4%. (a) Drop/coherent structures at t/tK = 10; (b) PDF of volume-equivalent
diameter at t/tK = 10; (c) Drop/coherent structures at t/tK = 15; (d) PDF
of volume-equivalent diameter at t/tK = 15.
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Chapter 4

Conclusions

Liquid-liquid dispersions generated by the agitation of two immiscible liq-

uids are of great importance in chemical and petroleum industries, pharmacy,

biology, food, and cosmetics. In these multi-phase systems, the drop size

distribution (DSD) of the dispersed phase defines dispersion properties. For

that reason, the ability to predict and control the DSD is crucial. One of

the modeling approaches used to estimate the DSD is based on the solution

of population balance equations (PBEs). The persistent limitation of this ap-

proach is that the results heavily rely on the choice of breakup and coalescence

models (kernels). In this study, direct numerical simulations (DNSs) are used

to study a single drop behavior in homogeneous isotropic turbulence to under-

stand the mechanisms of drop breakup. The results are necessary to develop

well-grounded sub-models that can be incorporated into PBE modeling and

improve its reliability.

In this study, three single phase flow conditions of different energy in-

put were investigated in a three-dimensional cubic domain of size 3003 [lu].

Then a spherical drop of different sizes was injected into the flow of con-
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dition Case 2 to reach the different dispersed phase volume fraction φ =

0, 0.02%, 0.05%, 3.35%, 20%. This is fulfilled to study the effect of dis-

persed phase volume fraction. the density and viscosity of drop are set to be

the same with density and viscosity of continuous phase. Further, the dis-

persed phase to continuous phase viscosity ratio µd/µc is set as 0.1, 1, and 10

to explore the effect of viscosity ratio under condition φ = 0.05% in Case 2.

In the energy spectra of these single phase and two phase turbulent flow

conditions, the inertial sub-range is observed to be resolved in the simulation

domain. The increase of energy input, the increase dispersed phase volume

fraction, as well as the decrease of viscosity ratio can promote the energy

dissipation rate at high wave number. The increase of dispersed phase volume

fraction can also makes the distribution of energy contained by eddies more

uniform.

In the PDF of vorticity, as can be seen, the increase of energy input results

in the increase of vorticity magnitude in flow field, the increase of dispersed

phase volume fraction results in the decrease of vorticity magnitude, the vari-

ance of viscosity does not change the PDF of vorticity. Combined with the

conclusion about energy dissipation rate at high wave number, it is assumed

that the variance of ability at which the turbulent kinetic energy is transferred

into thermal energy has no relevance on the variance of PDF of vorticity.

In the PDF of normalized energy dissipation rate, the increase of energy

input results in the decrease of the probability density of normalized dissipation

rate. The introduction of drop increases the PDF of normalized dissipation

rate at low rate region: the maximum probability density increases from 2.4×

106 to 3.5× 106 with the increase of φ from 0 to 20%. At high rate region, the

probability density in high dispersed phase volume fraction is smaller. As for
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the viscosity ratio, the effect on PDF of normalized energy dissipation rate is

not obvious.

In the PDF of eigenvalues of strain tensor, both the increase of energy

input, and the decrease of dispersed phase volume fraction can result in the

decrease of the negative eigenvalue λ1, as well as the increase of middle eigen-

value λ2 and positive eigenvalue λ3, they promote the streching. The variance

of viscosity ratio does not change the PDF of eigenvalues.

Coherent structures are extracted by the normalized Qn criterion. The

effect of threshold value Qth and the cutoff volume Vcr were investigated. It is

found that the increase of Qth results in the increase of number of structures

and decrease of size of structures, the increase of Vcr results in the decrease

of the small structures, the deduction of noise is obvious at the beginning of

the increase of Vcr, the deduction effect is recessionary with the continuous

increase of Vcr. The combination of Qth = 0.8 and Vcr/Vmax = 4% is found to

be a suitable group for extraction of all cases in this study. This combination

of parameter ensures that the extracted volume of structures is enough for

visualization, and prevents a overcrowd visualization.

The coherent structures in three cases of different energy input are ex-

tracted, the corresponding PDF of volume-equivalent diameter reveals that

the lower energy input results in the larger size of structures.

A general assumption in breakup models is that only vortices of size equal

to or smaller than the drop size are responsible for breakup event. To verify

the assumption, the liquid-liquid interface together with coherent structures

at the time instants right before and after breakup are tracked and extracted,

the corresponding PDF of volume-equivalent diameter is also given. The sim-

ulation results reveal that the coherent structures are all of size equal to or
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smaller than the drop size, the assumption is validated in this study.

The development of tools for this study is based on Fortran 90 and MAT-

LAB 2017. In Fortran 90, the MRT collision operator is implemented for the

lattice Boltzmann method. In MATLAB 2017, the program of the normalized

Qn criterion coupled with the newly designed boundary identification method

is created; the calculation of three-dimensional energy spectra is also fulfilled

in MATLAB 2017. Besides, other analysis tools of statistical characteristics

of liquid-liquid turbulent flow are developed relying on the interaction of For-

tran 90 and MATLAB 2017. The visualization is finished in Paraview. These

tools improve the stability of generation of turbulence, provide analysis and

visualization of drop/vortex interaction as well as the statistical characteris-

tics of turbulence. They are significant for the later use in the breakup kernel

development for PBE.
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Chapter 5

Future work

In this study, several numerical tools to analyze large-scale sets of data were

developed. Together with the DNSs approach, this framework is a strong foun-

dation to study fundamentals of drop breakup in turbulent flow and extraction

of information relevant for breakup models.

Further comprehension of interaction between vortices and drop is needed.

In this study, coherent structures of the entire flow field and liquid-liquid in-

terface are presented for the preliminary understanding of interaction between

vortices. In the future, more attention can be paid to coherent structures that

close to the drop. Further, the time evolution of important coherent structures

close to the drop also deserves an observation.

Deeper investigation of statistical characteristics of liquid-liquid turbulent

flow is necessary. Besides the visualization of breakup event and vortices/drop

interaction, the analysis of statistical characteristics such as the correlation of

transversal and longitudinal velocity provides a quantitative description and

comprehension of the binary system.

Finally, the development of more efficient analysis tools is recommended.
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For example, it takes hours to extract coherent structures for only one case in

this study. Due the large amount of data generated by DNS, the program for

analysis and visualization has to work faster in order to investigate more cases

from different aspects.
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Appendix A

MRT implementation

The transformation matrix M is derived as:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1
0 −4 4 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0
0 0 0 −4 4 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 −2 −2 −2 −2 1 1 1 1
0 −4 −4 2 2 2 2 1 1 1 1 −2 −2 −2 −2 1 1 1 1
0 0 0 1 1 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 0 −2 −2 2 2 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 −1 1 −1 1
0 0 0 0 0 0 0 −1 −1 1 1 1 −1 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 1 1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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The 19 orthogonal basis vectors ςqβ are given:

ς0β =‖ eβ ‖

ς1β = 19 ‖ eβ ‖2 −30

ς2β = (21 ‖ eβ ‖4 −53 ‖ eβ ‖2 +24)/2

ς3β = eβx

ς5β = eβy

ς7β = eβz

ς4β = (5 ‖ eβ ‖2 −9)eβx

ς6β = (5 ‖ eβ ‖2 −9)eβy

ς8β = (5 ‖ eβ ‖2 −9)eβz

ς9β = 3e2βx− ‖ eβ ‖2

ς11β = e2βy − e2βz[0]

ς13β = eβxeβy

ς14β = eβyeβz

ς15β = eβzeβx

ς10β = (3 ‖ eβ ‖2 −5)(3e2βx− ‖ eβ ‖2)

ς12β = (3 ‖ eβ ‖2 −5)(e2βy − e2βz)

ς16β = (e2βy − e2βz)eβx

ς17β = (e2βz − e2βx)eβy

ς18β = (e2βx − e2βy)eβz

(1.1)

where β ∈ {0, 1, . . . , 18}.
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Appendix B

Procedure and script for 3D fft

and energy spectrum

The three dimensional velocity fields u, v, w are inputs, the calculation is in

MATLAB. Part of code is referred from the GitHub user ‘fdietzsc’ , the link

is: https://github.com/fdietzsc/hita.

1 clc

2 clear

3 filepath1='/home/grad1/cheng/CZ Jan ...

16/twophase/d300c6 case3/velx/';

4 filepath2='/home/grad1/cheng/CZ Jan ...

16/twophase/d300c6 case3/vely/';

5 filepath3='/home/grad1/cheng/CZ Jan ...

16/twophase/d300c6 case3/velz/';

6 filepath4='/home/grad1/cheng/CZ Jan ...

16/twophase/d300c6 case3/energy spectrum/';

7 etak=1; %Kolmogrov scale
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8 nu=(0.0005*0.1+1-0.0005)*8.3E-003;

9 epsilon=5.8E-007; %energy dissipation rate

10 dim=300;

11 avespectrum=0;

12 counter=0;

13 for t=12:1:12

14 u=reshape(load([filepath1,'velx',num2str(t,'%04i'),'.dat']),&...

15 [dim,dim,dim]);

16 v=reshape(load([filepath2,'vely',num2str(t,'%04i'),'.dat']),&...

17 [dim,dim,dim]);

18 w=reshape(load([filepath3,'velz',num2str(t,'%04i'),'.dat']),&...

19 [dim,dim,dim]);

20 uu fft=fftn(u);

21 vv fft=fftn(v);

22 ww fft=fftn(w);

23

24 muu = abs(uu fft)/length(u)ˆ3;

25 mvv = abs(vv fft)/length(v)ˆ3;

26 mww = abs(ww fft)/length(w)ˆ3;

27

28 muu = muu.ˆ2;

29 mvv = mvv.ˆ2;

30 mww = mww.ˆ2;

31

32 k end = (dim)/2;

33

34 rx=[0:1:dim-1] - (dim)/2+1;

35 ry=[0:1:dim-1] - (dim)/2+1;

36 rz=[0:1:dim-1] - (dim)/2+1;

37

38 R x=circshift(rx',[(dim)/2+1 1]);
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39 R y=circshift(ry',[(dim)/2+1 1]);

40 R z=circshift(rz',[(dim)/2+1 1]);

41

42 [X,Y,Z]= meshgrid(R x,R y,R z);

43 r=(sqrt(X.ˆ2+Y.ˆ2+Z.ˆ2));

44

45 dx=2*pi/dim;

46 k=[1:k end].*dx;

47 kll=[1:k end];

48

49 spectrum=zeros(size(k,2),1);

50 bin counter=zeros(size(k,2),1);

51 for N=2:k end-1

52 picker = (r(:,:,:)*dx <= (k(N+1) + k(N))/2) & ...

53 (r(:,:,:)*dx > (k(N) + k(N-1))/2);

54 spectrum(N) = sum(muu(picker))+...

55 sum(mvv(picker))+...

56 sum(mww(picker));

57 bin counter(N) = size(find(picker==1),1);

58 end

59

60 picker = (r(:,:,:)*dx <= (k(2) + k(1))/2);

61 spectrum(1) = sum(muu(picker))+...

62 sum(mvv(picker))+...

63 sum(mww(picker));

64 bin counter(1) = size(find(picker==1),1);

65

66 picker = (r(:,:,:)*dx > (k(end) + k(end-1))/2 & ...

67 r(:,:,:)*dx <= k(end));

68 spectrum(end) = sum(muu(picker))+...

69 sum(mvv(picker))+...
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70 sum(mww(picker));

71 bin counter(end) = size(find(picker==1),1);

72

73 spectrum = spectrum*2*pi.*k'.ˆ2./(bin counter.*dx.ˆ3);

74

75 avespectrum=avespectrum+spectrum;

76 counter=counter+1;

77 end

78 avespectrum=avespectrum/counter;

79

80 y = [kll; avespectrum'];

81 fid = fopen([filepath4,'average spectrum.dat'], 'w');

82 fprintf(fid, '%15.8E %15.8E\n', y);

83 fclose(fid);

84

85 compk=kll;

86 kll=kll/(2*pi/etak); %scale kll

87 energy=avespectrum/(epsilonˆ(2/3)*etakˆ(5/3));

88

89 slope1=epsilonˆ(2/3)*kll.ˆ(-5/3);

90

91 scaled=[kll;energy';slope1];

92 fid = fopen([filepath4,'average spectrum scaled.dat'], 'w');

93 fprintf(fid, '%15.8E %15.8E %15.8E\n', scaled);

94 fclose(fid);

95

96 %-----------------compensated energy spectrum------------

97 compspectrum = avespectrum.*compk'.ˆ(5/3)*epsilonˆ(-2/3);

98 compk=compk*etak;

99 compensated = [compk;compspectrum'];

100 fid = fopen([filepath4,'average spectrum compensated.dat'], ...
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'w');

101 fprintf(fid, '%15.8E %15.8E\n', compensated);

102 fclose(fid);

103

104 %------------------Dissipation energy spectrum-----------

105 dissspectrum = avespectrum.*compk'.ˆ2*nu;

106 dissk=compk*etak;

107 dissipated = [dissk;dissspectrum'];

108 fid = fopen([filepath4,'average spectrum dissipated.dat'], ...

'w');

109 fprintf(fid, '%15.8E %15.8E\n', dissipated);

110 fclose(fid);
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Appendix C

Procedure and script for

coherent structures

The simulation parameters are set in the ‘simparam’ module in FORTRAN 90.

In the main program, two subroutines are called: getvelocity.f90 and getq.f90.

The getvelocity.f90 extract velocity data from original data file, the getq.f90

generated Qn field from velocity. The main program is:

1 !------------------------------------------

2 !------------------------------------------

3 !---------------- Simulation parameters

4 !------------------------------------------

5 !------------------------------------------

6

7 module simparam

8 !

9 ! Simulation domain

10 !
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11 integer,parameter::ni=300,nj=300,nk=300

12 real(kind=8),parameter::dx=1.0d0,dy=1.0d0,dz=1.0d0

13 !

14 ! Liquid parameter

15 real(kind=8),parameter::nu=8.296E-003 !viscosity

16 !

17 end module simparam

18 !----------------------------------------

19 !----------------------------------------

20 !---------------- Main program

21 !---------------------------------------

22 !---------------------------------------

23 program main

24 use simparam

25 implicit none

26 !-----

27 integer::ifld

28 real(kind=8),dimension(:,:,:),allocatable::vx,vy,vz

29 allocate( vx(ni,nj,nk) )

30 allocate( vy(ni,nj,nk) )

31 allocate( vz(ni,nj,nk) )

32 do ifld=12,12,1

33 !-----------------------------------

34 ! Get velocity from VTK file

35 !-----------------------------------

36 call getvelocity(ifld,vx,vy,vz)

37 !-----------------------------------

38 ! Calculate q values

39 !-----------------------------------

40 call getq(ifld,vx,vy,vz)

41 enddo
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42 deallocate(vx)

43 deallocate(vy)

44 deallocate(vz)

45 end program main
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The getvelocity.f90 subroutine is:

1 subroutine getvelocity(ifld,vx,vy,vz)

2 use simparam

3 implicit none

4 integer,intent(inout)::ifld

5 real(kind=8),intent(inout)::vx(ni,nj,nk),vy(ni,nj,nk)

6 real(kind=8),intent(inout)::vz(ni,nj,nk)

7 integer ::jump,i,j,k,p,temp,d0,d1,d2,d3

8 character ::store

9 real(kind=8),dimension(1:ni*nj*nk)::q

10 character(len=71) datfile1

11 character(len=67) datfile2,datfile3,datfile4

12 datfile1(1:63)='/home/grad1/cheng/CZ Jan ...

16/twophase/d300c6 case3/paraviewv/vlc' !50+

13 datfile1(68:71)='.vtk'

14 datfile2(1:59)='/home/grad1/cheng/CZ Jan ...

16/twophase/d300c6 case3/velx/velx'

15 datfile2(64:67)='.dat'

16 datfile3(1:59)='/home/grad1/cheng/CZ Jan ...

16/twophase/d300c6 case3/vely/vely'

17 datfile3(64:67)='.dat'

18 datfile4(1:59)='/home/grad1/cheng/CZ Jan ...

16/twophase/d300c6 case3/velz/velz'

19 datfile4(64:67)='.dat'

20

21 102 format (e15.8,1X,e15.8,1X,e15.8)

22 103 format (A)

23 104 format (A,1X,I4,1X,I4,1X,I4)

24 105 format (A,1X,I1,1X,I1,1X,I1)
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25 106 format (A,1X,I8)

26 107 format (f6.3)

27 108 format (f6.3,1X,f6.3,1X,f6.3)

28

29 if (ifld .lt. 10) then

30 d0=0

31 d1=0

32 d2=0

33 d3=ifld

34 endif

35 !-------

36 if ((ifld .ge. 10) .and. (ifld .lt. 100)) then

37 d0=0

38 d1=0

39 d2=inT(ifld/10)

40 d3=ifld-d2*10

41 endif

42 !-------

43 if ((ifld .ge. 100) .and. (ifld .lt. 1000)) then

44 d0=0

45 d1=inT(ifld/100)

46 d2=ifld-d1*100

47 d2=inT(d2/10)

48 d3=ifld-d1*100-d2*10

49 endif

50 !-------

51 if (ifld .ge. 1000) then

52 d0=inT(ifld/1000)

53 d1=ifld-d0*1000

54 d1=inT(d1/100)

55 d2=ifld-d0*1000-d1*100
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56 d2=inT(d2/10)

57 d3=ifld-d0*1000-d1*100-d2*10

58 endif

59 datfile1(64:64)=char(d0+48)

60 datfile1(65:65)=char(d1+48)

61 datfile1(66:66)=char(d2+48)

62 datfile1(67:67)=char(d3+48)

63 !-------

64 datfile2(60:60)=char(d0+48)

65 datfile2(61:61)=char(d1+48)

66 datfile2(62:62)=char(d2+48)

67 datfile2(63:63)=char(d3+48)

68 !-------

69 datfile3(60:60)=char(d0+48)

70 datfile3(61:61)=char(d1+48)

71 datfile3(62:62)=char(d2+48)

72 datfile3(63:63)=char(d3+48)

73 !-------

74 datfile4(60:60)=char(d0+48)

75 datfile4(61:61)=char(d1+48)

76 datfile4(62:62)=char(d2+48)

77 datfile4(63:63)=char(d3+48)

78

79 open(unit=133,file=datfile1,form='formatted',status='unknown')

80 open(unit=212,file=datfile2,form='formatted',status='unknown')

81 open(unit=213,file=datfile3,form='formatted',status='unknown')

82 open(unit=214,file=datfile4,form='formatted',status='unknown')

83

84 do jump=1,9

85 read(133,'(A13)') store

86 enddo
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87

88 do k=1,nk

89 do j=1,nj

90 do i=1,ni

91 read(133,102)vx(i,j,k),vy(i,j,k),vz(i,j,k)

92 write(212,102)vx(i,j,k)

93 write(213,102)vy(i,j,k)

94 write(214,102)vz(i,j,k)

95 enddo

96 enddo

97 enddo

98 close(unit=133)

99 close(unit=212)

100 close(unit=213)

101 close(unit=214)

102

103 end subroutine getvelocity
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The getq.f90 subroutine is:

1 subroutine getq(ifld,vx,vy,vz)

2 use simparam

3 IMPLICIT NONE

4 integer,intent(inout)::ifld

5 real(kind=8),intent(in)::vx(ni,nj,nk),vy(ni,nj,nk),vz(ni,nj,nk)

6 integer ::jump,i,j,k,p,temp,ip,jp,kp,d0,d1,d2,d3

7 character ::store

8 real(kind=8),dimension(1:ni*nj*nk)::q,qq

9 real(kind=8)::omega2,s2,numerator,denominator

10 character(len=67) datfile10,datfile11

11

12 datfile10(1:59)='/home/grad1/cheng/CZ Jan ...

16/onephase/d300b1 case3/qval/qval'

13 datfile10(64:67)='.dat'

14 datfile11(1:59)='/home/grad1/cheng/CZ Jan ...

16/onephase/d300b1 case3/qval/qori'

15 datfile11(64:67)='.dat'

16

17 101 format (e15.6,1X,e15.6,1X,e15.6)

18 102 format (E11.3)

19 103 format (A)

20 104 format (A,1X,I4,1X,I4,1X,I4)

21 105 format (A,1X,I1,1X,I1,1X,I1)

22 106 format (A,1X,I8)

23 107 format (f6.3)

24 108 format (f6.3,1X,f6.3,1X,f6.3)

25 109 format (f12.3)

26
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27 if (ifld .lt. 10) then

28 d0=0

29 d1=0

30 d2=0

31 d3=ifld

32 endif

33 !-------

34 if ((ifld .ge. 10) .and. (ifld .lt. 100)) then

35 d0=0

36 d1=0

37 d2=inT(ifld/10)

38 d3=ifld-d2*10

39 endif

40 !-------

41 if ((ifld .ge. 100) .and. (ifld .lt. 1000)) then

42 d0=0

43 d1=inT(ifld/100)

44 d2=ifld-d1*100

45 d2=inT(d2/10)

46 d3=ifld-d1*100-d2*10

47 endif

48 !-------

49 if (ifld .ge. 1000) then

50 d0=inT(ifld/1000)

51 d1=ifld-d0*1000

52 d1=inT(d1/100)

53 d2=ifld-d0*1000-d1*100

54 d2=inT(d2/10)

55 d3=ifld-d0*1000-d1*100-d2*10

56 endif

57 !-------
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58 datfile10(60:60)=char(d0+48)

59 datfile10(61:61)=char(d1+48)

60 datfile10(62:62)=char(d2+48)

61 datfile10(63:63)=char(d3+48)

62 !-------

63 datfile11(60:60)=char(d0+48)

64 datfile11(61:61)=char(d1+48)

65 datfile11(62:62)=char(d2+48)

66 datfile11(63:63)=char(d3+48)

67 !-------

68 open(unit=216,file=datfile10,form='formatted',status='unknown')

69 open(unit=217,file=datfile11,form='formatted',status='unknown')

70

71 p=0

72 do k=1,nk

73 kp=k+1

74 if (kp.gt.nk) kp=kp-nk

75 do j=1,nj

76 jp=j+1

77 if (jp.gt.nj) jp=jp-nj

78 do i=1,ni

79 ip=i+1

80 if (ip.gt.ni) ip=ip-ni

81

82 p=p+1

83 numerator=-2.0d0*(vx(ip,j,k)-vx(i,j,k))*(vx(ip,j,k)-vx(i,j,k))&

84 &/(dx*dx)&

85 &-4.0d0*(vx(i,jp,k)-vx(i,j,k))*(vy(ip,j,k)-vy(i,j,k))&

86 &/(dy*dx)&

87 &-2.0d0*(vy(i,jp,k)-vy(i,j,k))*(vy(i,jp,k)-vy(i,j,k))&

88 &/(dy*dy)&
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89 &-4.0d0*(vx(i,j,kp)-vx(i,j,k))*(vz(ip,j,k)-vz(i,j,k))&

90 &/(dz*dx)&

91 &-2.0d0*(vz(i,j,kp)-vz(i,j,k))*(vz(i,j,kp)-vz(i,j,k))&

92 &/(dz*dz)&

93 &-4.0d0*(vy(i,j,kp)-vy(i,j,k))*(vz(i,jp,k)-vz(i,j,k))&

94 &/(dz*dy)

95

96 denominator= ...

1.0d0*(vx(i,jp,k)-vx(i,j,k))*(vx(i,jp,k)-vx(i,j,k))&

97 &/(dy*dy)&

98 &+1.0d0*(vy(ip,j,k)-vy(i,j,k))*(vy(ip,j,k)-vy(i,j,k))&

99 &/(dx*dx)&

100 &-2.0d0*(vx(i,jp,k)-vx(i,j,k))*(vy(ip,j,k)-vy(i,j,k))&

101 &/(dy*dx)&

102 &+1.0d0*(vx(i,j,kp)-vx(i,j,k))*(vx(i,j,kp)-vx(i,j,k))&

103 &/(dz*dz)&

104 &+1.0d0*(vz(ip,j,k)-vz(i,j,k))*(vz(ip,j,k)-vz(i,j,k))&

105 &/(dx*dx)&

106 &-2.0d0*(vx(i,j,kp)-vx(i,j,k))*(vz(ip,j,k)-vz(i,j,k))&

107 &/(dz*dx)&

108 &+1.0d0*(vy(i,j,kp)-vy(i,j,k))*(vy(i,j,kp)-vy(i,j,k))&

109 &/(dz*dz)&

110 &+1.0d0*(vz(i,jp,k)-vz(i,j,k))*(vz(i,jp,k)-vz(i,j,k))&

111 &/(dz*dz)&

112 &-2.0d0*(vy(i,j,kp)-vy(i,j,k))*(vz(i,jp,k)-vz(i,j,k))&

113 &/(dz*dy)

114

115 q(p)=numerator/denominator

116 qq(p)=0.5d0*numerator

117 enddo

118 enddo
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119 enddo

120

121 do p=1,ni*nj*nk

122 write(216,*)q(p)

123 write(217,*)qq(p)

124 enddo

125

126 close(unit=216)

127 close(unit=217)

128

129 end subroutine getq
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With the Qn field, the MATLAB code is then used to extract coherent

structures:

1 clc

2 clear

3 tic

4 filepath1='/home/grad1/cheng/CZ Jan ...

16/twophase/d300a6 case3/qval/';

5 filepath2='/home/grad1/cheng/CZ Jan ...

16/twophase/d300a6 case3/qnum/';

6 dim=300;

7 hh=waitbar(0,'calculating...');

8 aa1=22;

9 aa2=22;

10 interv=1;

11 for t=aa1:interv:aa2

12 q=reshape(load([filepath1,'qval',num2str(t,'%04i'),'.dat'])...

13 ,[dim,dim,dim]); %oringinal q 3d matrix

14 qcheck=q;

15 qcheck(qcheck>100)=NaN;

16 qqq=max(qcheck(:))

17 % threshold=0.8*qqq;

18 threshold=0.8;

19 qboundx(1)=0;

20 qboundy(1)=0;

21 qboundz(1)=0;

22

23 qboundx(:)=[];

24 qboundy(:)=[];

25 qboundz(:)=[];
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26 qnum=zeros(dim,dim,dim);

27 qfinal=zeros(dim,dim,dim);

28 n=1;

29 cutoffvolume=507;

30 q(q<threshold)=0;

31 qchange=q; %changeable q 3d ...

matrix

32

33 qmax=max(max(max(qchange)));

34 while qmax >= threshold

35 [r,c,v]=ind2sub(size(qchange),find(qchange==qmax));

36 for i=1:length(r)

37 %---------the max q is at point (x,y,z)--------

38 x=r(i);

39 y=c(i);

40 z=v(i);

41 %----------------------------------------------

42 xloc=x;

43 yloc=y;

44 zloc=z;

45 if qchange(xloc,yloc,zloc)>= threshold

46 thismaxpoint=true;

47 %--------------------large ...

loop------------------------------

48 while qchange(xloc,yloc,zloc) >= threshold ...

%move to +x direction

49 qnum(xloc,yloc,zloc)=n; %marked ...

this point in "nth" vortex

50 xx=xloc; %point ...

(xloc,yloc,zloc) is regarded as a temporary ...

origin
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51 yy=yloc;

52 zz=zloc;

53 %-----litte loop----------------------

54 while qchange(xx,yy,zz) >= threshold

55 qnum(xx,yy,zz)=n;

56 xxx=xx;

57 yyy=yy;

58 zzz=zz;

59 %----------very little loope-----

60 while qchange(xxx,yyy,zzz) >= threshold

61 qnum(xxx,yyy,zzz)=n;

62 zzz=zzz+1; %move to +zzz direction

63 if zzz>dim

64 zzz=zzz-dim;

65 end

66 end

67 qboundx(end+1)=xxx;

68 qboundy(end+1)=yyy;

69 if zzz==1

70 qboundz(end+1)=dim;

71 else

72 qboundz(end+1)=zzz-1;

73 end

74 zzz=zz;

75

76 while qchange(xxx,yyy,zzz) >= threshold

77 qnum(xxx,yyy,zzz)=n;

78 zzz=zzz-1; %move to -zzz

79 if zzz<1

80 zzz=zzz+dim;

81 end
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82 end

83 qboundx(end+1)=xxx;

84 qboundy(end+1)=yyy;

85 if zzz==dim;

86 qboundz(end+1)=1;

87 else

88 qboundz(end+1)=zzz+1;

89 end

90 zzz=zz;

91 %-----------end very little loop-----

92

93 yy=yy+1; %move to +yy direction

94 if yy>dim

95 yy=yy-dim;

96 end

97 end

98 qboundx(end+1)=xx;

99 if yy==1

100 qboundy(end+1)=dim;

101 else

102 qboundy(end+1)=yy-1;

103 end

104 qboundz(end+1)=zz;

105 yy=yloc;

106

107 while qchange(xx,yy,zz) >= threshold

108 qnum(xx,yy,zz)=n;

109 %----------very little loope-----

110 while qchange(xxx,yyy,zzz) >= threshold

111 qnum(xxx,yyy,zzz)=n;

112 zzz=zzz+1; %move to +zzz direction
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113 if zzz>dim

114 zzz=zzz-dim;

115 end

116 end

117 qboundx(end+1)=xxx;

118 qboundy(end+1)=yyy;

119 if zzz==1

120 qboundz(end+1)=dim;

121 else

122 qboundz(end+1)=zzz-1;

123 end

124 zzz=zz;

125

126 while qchange(xxx,yyy,zzz) >= threshold

127 qnum(xxx,yyy,zzz)=n;

128 zzz=zzz-1; %move to -zzz

129 if zzz<1

130 zzz=zzz+dim;

131 end

132 end

133 qboundx(end+1)=xxx;

134 qboundy(end+1)=yyy;

135 if zzz==dim;

136 qboundz(end+1)=1;

137 else

138 qboundz(end+1)=zzz+1;

139 end

140 zzz=zz;

141 %-----------end very little loop-----

142 yy=yy-1; %move to -yy direction

143 if yy<1
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144 yy=yy+dim;

145 end

146 end

147 qboundx(end+1)=xx;

148 if yy==dim

149 qboundy(end+1)=1;

150 else

151 qboundy(end+1)=yy+1;

152 end

153 qboundz(end+1)=zz;

154 yy=yloc;

155

156 while qchange(xx,yy,zz) >= threshold

157 qnum(xx,yy,zz)=n;

158 %----------very little loope-----

159 while qchange(xxx,yyy,zzz) >= threshold

160 qnum(xxx,yyy,zzz)=n;

161 yyy=yyy+1; %move to +yyy direction

162 if yyy>dim

163 yyy=yyy-dim;

164 end

165 end

166 qboundx(end+1)=xxx;

167 if yyy==1

168 qboundy(end+1)=dim;

169 else

170 qboundy(end+1)=yyy-1;

171 end

172 qboundz(end+1)=zzz;

173 yyy=yy;

174
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175 while qchange(xxx,yyy,zzz) >= threshold

176 qnum(xxx,yyy,zzz)=n;

177 yyy=yyy-1; %move to -yyy

178 if yyy<1

179 yyy=yyy+dim;

180 end

181 end

182 qboundx(end+1)=xxx;

183 if yyy==dim

184 qboundy(end+1)=1;

185 else

186 qboundy(end+1)=yyy+1;

187 end

188 qboundz(end+1)=zzz;

189 yyy=yy;

190 %-----------end very little loop-----

191 zz=zz+1; %move to +zz direction

192 if zz>dim

193 zz=zz-dim;

194 end

195 end

196 qboundx(end+1)=xx;

197 qboundy(end+1)=yy;

198 if zz==1

199 qboundz(end+1)=dim;

200 else

201 qboundz(end+1)=zz-1;

202 end

203 zz=zloc;

204

205 while qchange(xx,yy,zz) >= threshold
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206 qnum(xx,yy,zz)=n;

207 %----------very little loope-----

208 while qchange(xxx,yyy,zzz) >= threshold

209 qnum(xxx,yyy,zzz)=n;

210 yyy=yyy+1; %move to +yyy direction

211 if yyy>dim

212 yyy=yyy-dim;

213 end

214 end

215 qboundx(end+1)=xxx;

216 if yyy==1

217 qboundy(end+1)=dim;

218 else

219 qboundy(end+1)=yyy-1;

220 end

221 qboundz(end+1)=zzz;

222 yyy=yy;

223

224 while qchange(xxx,yyy,zzz) >= threshold

225 qnum(xxx,yyy,zzz)=n;

226 yyy=yyy-1; %move to -yyy

227 if yyy<1

228 yyy=yyy+dim;

229 end

230 end

231 qboundx(end+1)=xxx;

232 if yyy==dim

233 qboundy(end+1)=1;

234 else

235 qboundy(end+1)=yyy+1;

236 end

128



237 qboundz(end+1)=zzz;

238 yyy=yy;

239 %-----------end very little loop-----

240 zz=zz-1; %move to -zz direction

241 if zz<1

242 zz=zz+dim;

243 end

244 end

245 qboundx(end+1)=xx;

246 qboundy(end+1)=yy;

247 if zz==dim;

248 qboundz(end+1)=1;

249 else

250 qboundz(end+1)=zz+1;

251 end

252 zz=zloc;

253 %--------------------end little loop------

254 xloc=xloc+1;

255 if xloc>dim

256 xloc=xloc-dim;

257 end

258 end

259 if xloc==1

260 qboundx(end+1)=dim;

261 else

262 qboundx(end+1)=xloc-1;

263 end

264 qboundy(end+1)=yloc;

265 qboundz(end+1)=zloc;

266 xloc=x; ...

%reset xloc to original x (where max q exists)
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267 %------------------------------end large ...

loop----------------

268

269 %--------------------large ...

loop------------------------------

270 while qchange(xloc,yloc,zloc) >= threshold ...

%move to -x direction

271 qnum(xloc,yloc,zloc)=n;

272 %-----litte loop----------------------

273 while qchange(xx,yy,zz) >= threshold

274 qnum(xx,yy,zz)=n;

275 %----------very little loope-----

276 while qchange(xxx,yyy,zzz) >= threshold

277 qnum(xxx,yyy,zzz)=n;

278 zzz=zzz+1; %move to +zzz direction

279 if zzz>dim

280 zzz=zzz-dim;

281 end

282 end

283 qboundx(end+1)=xxx;

284 qboundy(end+1)=yyy;

285 if zzz==1

286 qboundz(end+1)=dim;

287 else

288 qboundz(end+1)=zzz-1;

289 end

290 zzz=zz;

291

292 while qchange(xxx,yyy,zzz) >= threshold

293 qnum(xxx,yyy,zzz)=n;

294 zzz=zzz-1; %move to -zzz
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295 if zzz<1

296 zzz=zzz+dim;

297 end

298 end

299 qboundx(end+1)=xxx;

300 qboundy(end+1)=yyy;

301 if zzz==dim

302 qboundz(end+1)=1;

303 else

304 qboundz(end+1)=zzz+1;

305 end

306 zzz=zz;

307 %-----------end very little loop-----

308 yy=yy+1; %move to +yy direction

309 if yy>dim

310 yy=yy-dim;

311 end

312 end

313 qboundx(end+1)=xx;

314 if yy==1

315 qboundy(end+1)=dim;

316 else

317 qboundy(end+1)=yy-1;

318 end

319 qboundz(end+1)=zz;

320 yy=yloc;

321

322 while qchange(xx,yy,zz) >= threshold

323 qnum(xx,yy,zz)=n;

324 %----------very little loope-----

325 while qchange(xxx,yyy,zzz) >= threshold
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326 qnum(xxx,yyy,zzz)=n;

327 zzz=zzz+1; %move to +zzz direction

328 if zzz>dim

329 zzz=zzz-dim;

330 end

331 end

332 qboundx(end+1)=xxx;

333 qboundy(end+1)=yyy;

334 if zzz==1

335 qboundz(end+1)=dim;

336 else

337 qboundz(end+1)=zzz-1;

338 end

339 zzz=zz;

340

341 while qchange(xxx,yyy,zzz) >= threshold

342 qnum(xxx,yyy,zzz)=n;

343 zzz=zzz-1; %move to -zzz

344 if zzz<1

345 zzz=zzz+dim;

346 end

347 end

348 qboundx(end+1)=xxx;

349 qboundy(end+1)=yyy;

350 if zzz==dim

351 qboundz(end+1)=1;

352 else

353 qboundz(end+1)=zzz+1;

354 end

355 zzz=zz;

356 %-----------end very little loop-----
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357 yy=yy-1; %move to -yy direction

358 if yy<1

359 yy=yy+dim;

360 end

361 end

362 qboundx(end+1)=xx;

363 if yy==dim

364 qboundy(end+1)=1;

365 else

366 qboundy(end+1)=yy+1;

367 end

368 qboundz(end+1)=zz;

369 yy=yloc;

370

371 while qchange(xx,yy,zz) >= threshold

372 qnum(xx,yy,zz)=n;

373 %----------very little loope-----

374 while qchange(xxx,yyy,zzz) >= threshold

375 qnum(xxx,yyy,zzz)=n;

376 yyy=yyy+1; %move to +yyy direction

377 if yyy>dim

378 yyy=yyy-dim;

379 end

380 end

381 qboundx(end+1)=xxx;

382 if yyy==1;

383 qboundy(end+1)=dim;

384 else

385 qboundy(end+1)=yyy-1;

386 end

387 qboundz(end+1)=zzz;
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388 yyy=yy;

389

390 while qchange(xxx,yyy,zzz) >= threshold

391 qnum(xxx,yyy,zzz)=n;

392 yyy=yyy-1; %move to -yyy

393 if yyy<1

394 yyy=yyy+dim;

395 end

396 end

397 qboundx(end+1)=xxx;

398 if yyy==dim

399 qboundy(end+1)=1;

400 else

401 qboundy(end+1)=yyy+1;

402 end

403 qboundz(end+1)=zzz;

404 yyy=yy;

405 %-----------end very little loop-----

406 zz=zz+1; %move to +zz direction

407 if zz>dim

408 zz=zz-dim;

409 end

410 end

411 qboundx(end+1)=xx;

412 qboundy(end+1)=yy;

413 if zz==1

414 qboundz(end+1)=dim;

415 else

416 qboundz(end+1)=zz-1;

417 end

418 zz=zloc;
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419

420 while qchange(xx,yy,zz) >= threshold

421 qnum(xx,yy,zz)=n;

422 %----------very little loope-----

423 while qchange(xxx,yyy,zzz) >= threshold

424 qnum(xxx,yyy,zzz)=n;

425 yyy=yyy+1; %move to +yyy direction

426 if yyy>dim

427 yyy=yyy-dim;

428 end

429 end

430 qboundx(end+1)=xxx;

431 if yyy==1

432 qboundy(end+1)=dim;

433 else

434 qboundy(end+1)=yyy-1;

435 end

436 qboundz(end+1)=zzz;

437 yyy=yy;

438

439 while qchange(xxx,yyy,zzz) >= threshold

440 qnum(xxx,yyy,zzz)=n;

441 yyy=yyy-1; %move to -yyy

442 if yyy<1

443 yyy=yyy+dim;

444 end

445 end

446 qboundx(end+1)=xxx;

447 if yyy==dim

448 qboundy(end+1)=1;

449 else
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450 qboundy(end+1)=yyy+1;

451 end

452 qboundz(end+1)=zzz;

453 yyy=yy;

454 %-----------end very little loop-----

455 zz=zz-1; %move to -zz direction

456 if zz<1

457 zz=zz+dim;

458 end

459 end

460 qboundx(end+1)=xx;

461 qboundy(end+1)=yy;

462 if zz==dim

463 qboundz(end+1)=1;

464 else

465 qboundz(end+1)=zz+1;

466 end

467 zz=zloc;

468 %--------------------end little loop------

469 xloc=xloc-1;

470 if xloc<1

471 xloc=xloc+dim;

472 end

473 end

474 if xloc==dim;

475 qboundx(end+1)=1;

476 else

477 qboundx(end+1)=xloc+1;

478 end

479 qboundy(end+1)=yloc;

480 qboundz(end+1)=zloc;
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481 xloc=x; ...

%reset xloc to original x (where max q exists)

482 %------------------------------end large ...

loop----------------

483

484 %--------------------large ...

loop------------------------------

485

486 while qchange(xloc,yloc,zloc) >= threshold ...

%move to +y direction

487 qnum(xloc,yloc,zloc)=n;

488 %-----litte loop----------------------

489 while qchange(xx,yy,zz) >= threshold

490 qnum(xx,yy,zz)=n;

491 %----------very little loope-----

492 while qchange(xxx,yyy,zzz) >= threshold

493 qnum(xxx,yyy,zzz)=n;

494 zzz=zzz+1; %move to +zzz direction

495 if zzz>dim

496 zzz=zzz-dim;

497 end

498 end

499 qboundx(end+1)=xxx;

500 qboundy(end+1)=yyy;

501 if zzz==1

502 qboundz(end+1)=dim;

503 else

504 qboundz(end+1)=zzz-1;

505 end

506 zzz=zz;

507
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508 while qchange(xxx,yyy,zzz) >= threshold

509 qnum(xxx,yyy,zzz)=n;

510 zzz=zzz-1; %move to -zzz

511 if zzz<1

512 zzz=zzz+dim;

513 end

514 end

515 qboundx(end+1)=xxx;

516 qboundy(end+1)=yyy;

517 if zzz==dim

518 qboundz(end+1)=1;

519 else

520 qboundz(end+1)=zzz+1;

521 end

522 zzz=zz;

523 %-----------end very little loop-----

524 xx=xx+1; %move to +xx direction

525 if xx>dim

526 xx=xx-dim;

527 end

528 end

529 if xx==1

530 qboundx(end+1)=dim;

531 else

532 qboundx(end+1)=xx-1;

533 end

534 qboundy(end+1)=yy;

535 qboundz(end+1)=zz;

536 xx=xloc;

537

538 while qchange(xx,yy,zz) >= threshold
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539 qnum(xx,yy,zz)=n;

540 %----------very little loope-----

541 while qchange(xxx,yyy,zzz) >= threshold

542 qnum(xxx,yyy,zzz)=n;

543 zzz=zzz+1; %move to +zzz direction

544 if zzz>dim

545 zzz=zzz-dim;

546 end

547 end

548 qboundx(end+1)=xxx;

549 qboundy(end+1)=yyy;

550 if zzz==1

551 qboundz(end+1)=dim;

552 else

553 qboundz(end+1)=zzz-1;

554 end

555 zzz=zz;

556

557 while qchange(xxx,yyy,zzz) >= threshold

558 qnum(xxx,yyy,zzz)=n;

559 zzz=zzz-1; %move to -zzz

560 if zzz<1

561 zzz=zzz+dim;

562 end

563 end

564 qboundx(end+1)=xxx;

565 qboundy(end+1)=yyy;

566 if zzz==dim

567 qboundz(end+1)=1;

568 else

569 qboundz(end+1)=zzz+1;
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570 end

571 zzz=zz;

572 %-----------end very little loop-----

573 xx=xx-1; %move to -xx direction

574 if xx<1

575 xx=xx+dim;

576 end

577 end

578 if xx==dim

579 qboundx(end+1)=1;

580 else

581 qboundx(end+1)=xx+1;

582 end

583 qboundy(end+1)=yy;

584 qboundz(end+1)=zz;

585 xx=xloc;

586

587 while qchange(xx,yy,zz) >= threshold

588 qnum(xx,yy,zz)=n;

589 %----------very little loope-----

590 while qchange(xxx,yyy,zzz) >= threshold

591 qnum(xxx,yyy,zzz)=n;

592 xxx=xxx+1; %move to +xxx direction

593 if xxx>dim

594 xxx=xxx-dim;

595 end

596 end

597 if xxx==1

598 qboundx(end+1)=dim;

599 else

600 qboundx(end+1)=xxx-1;
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601 end

602 qboundy(end+1)=yyy;

603 qboundz(end+1)=zzz;

604 xxx=xx;

605

606 while qchange(xxx,yyy,zzz) >= threshold

607 qnum(xxx,yyy,zzz)=n;

608 xxx=xxx-1; %move to -xxx

609 if xxx<1

610 xxx=xxx+dim;

611 end

612 end

613 if xxx==dim

614 qboundx(end+1)=1;

615 else

616 qboundx(end+1)=xxx+1;

617 end

618 qboundy(end+1)=yyy;

619 qboundz(end+1)=zzz;

620 xxx=xx;

621 %-----------end very little loop-----

622 zz=zz+1; %move to +zz direction

623 if zz>dim

624 zz=zz-dim;

625 end

626 end

627 qboundx(end+1)=xx;

628 qboundy(end+1)=yy;

629 if zz==1

630 qboundz(end+1)=dim;

631 else
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632 qboundz(end+1)=zz-1;

633 end

634 zz=zloc;

635

636 while qchange(xx,yy,zz) >= threshold

637 qnum(xx,yy,zz)=n;

638 %----------very little loope-----

639 while qchange(xxx,yyy,zzz) >= threshold

640 qnum(xxx,yyy,zzz)=n;

641 xxx=xxx+1; %move to +xxx direction

642 if xxx>dim

643 xxx=xxx-dim;

644 end

645 end

646 if xxx==1

647 qboundx(end+1)=dim;

648 else

649 qboundx(end+1)=xxx-1;

650 end

651 qboundy(end+1)=yyy;

652 qboundz(end+1)=zzz;

653 xxx=xx;

654

655 while qchange(xxx,yyy,zzz) >= threshold

656 qnum(xxx,yyy,zzz)=n;

657 xxx=xxx-1; %move to -xxx

658 if xxx<1

659 xxx=xxx+dim;

660 end

661 end

662 if xxx==dim
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663 qboundx(end+1)=1;

664 else

665 qboundx(end+1)=xxx+1;

666 end

667 qboundy(end+1)=yyy;

668 qboundz(end+1)=zzz;

669 xxx=xx;

670 %-----------end very little loop-----

671 zz=zz-1; %move to -zz direction

672 if zz<1

673 zz=zz+dim;

674 end

675 end

676 qboundx(end+1)=xx;

677 qboundy(end+1)=yy;

678 if zz==dim

679 qboundz(end+1)=1;

680 else

681 qboundz(end+1)=zz+1;

682 end

683 zz=zloc;

684 %--------------------end little loop------

685 yloc=yloc+1;

686 if yloc>dim

687 yloc=yloc-dim;

688 end

689 end

690 qboundx(end+1)=xloc;

691 if yloc==1

692 qboundy(end+1)=dim;

693 else
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694 qboundy(end+1)=yloc-1;

695 end

696 qboundz(end+1)=zloc;

697 yloc=y; ...

%reset yloc to original y (where max q exists)

698 %------------------------------end large ...

loop----------------

699

700 %--------------------large ...

loop------------------------------

701

702 while qchange(xloc,yloc,zloc) >= threshold ...

%move to -y direction

703 qnum(xloc,yloc,zloc)=n;

704 %-----litte loop----------------------

705 while qchange(xx,yy,zz) >= threshold

706 qnum(xx,yy,zz)=n;

707 %----------very little loope-----

708 while qchange(xxx,yyy,zzz) >= threshold

709 qnum(xxx,yyy,zzz)=n;

710 zzz=zzz+1; %move to +zzz direction

711 if zzz>dim

712 zzz=zzz-dim;

713 end

714 end

715 qboundx(end+1)=xxx;

716 qboundy(end+1)=yyy;

717 if zzz==1

718 qboundz(end+1)=dim;

719 else

720 qboundz(end+1)=zzz-1;

144



721 end

722 zzz=zz;

723

724 while qchange(xxx,yyy,zzz) >= threshold

725 qnum(xxx,yyy,zzz)=n;

726 zzz=zzz-1; %move to -zzz

727 if zzz<1

728 zzz=zzz+dim;

729 end

730 end

731 qboundx(end+1)=xxx;

732 qboundy(end+1)=yyy;

733 if zzz==dim

734 qboundz(end+1)=1;

735 else

736 qboundz(end+1)=zzz+1;

737 end

738 zzz=zz;

739 %-----------end very little loop-----

740 xx=xx+1; %move to +xx direction

741 if xx>dim

742 xx=xx-dim;

743 end

744 end

745 if xx==1

746 qboundx(end+1)=dim;

747 else

748 qboundx(end+1)=xx-1;

749 end

750 qboundy(end+1)=yy;

751 qboundz(end+1)=zz;
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752 xx=xloc;

753

754 while qchange(xx,yy,zz) >= threshold

755 qnum(xx,yy,zz)=n;

756 %----------very little loope-----

757 while qchange(xxx,yyy,zzz) >= threshold

758 qnum(xxx,yyy,zzz)=n;

759 zzz=zzz+1; %move to +zzz direction

760 if zzz>dim

761 zzz=zzz-dim;

762 end

763 end

764 qboundx(end+1)=xxx;

765 qboundy(end+1)=yyy;

766 if zzz==1

767 qboundz(end+1)=dim;

768 else

769 qboundz(end+1)=zzz-1;

770 end

771 zzz=zz;

772

773 while qchange(xxx,yyy,zzz) >= threshold

774 qnum(xxx,yyy,zzz)=n;

775 zzz=zzz-1; %move to -zzz

776 if zzz<1

777 zzz=zzz+dim;

778 end

779 end

780 qboundx(end+1)=xxx;

781 qboundy(end+1)=yyy;

782 if zzz==dim
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783 qboundz(end+1)=1;

784 else

785 qboundz(end+1)=zzz+1;

786 end

787 zzz=zz;

788 %-----------end very little loop-----

789 xx=xx-1; %move to -xx direction

790 if xx<1

791 xx=xx+dim;

792 end

793 end

794 if xx==dim

795 qboundx(end+1)=1;

796 else

797 qboundx(end+1)=xx+1;

798 end

799 qboundy(end+1)=yy;

800 qboundz(end+1)=zz;

801 xx=xloc;

802

803 while qchange(xx,yy,zz) >= threshold

804 qnum(xx,yy,zz)=n;

805 %----------very little loope-----

806 while qchange(xxx,yyy,zzz) >= threshold

807 qnum(xxx,yyy,zzz)=n;

808 xxx=xxx+1; %move to +xxx direction

809 if xxx>dim

810 xxx=xxx-dim;

811 end

812 end

813 if xxx==1
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814 qboundx(end+1)=dim;

815 else

816 qboundx(end+1)=xxx-1;

817 end

818 qboundy(end+1)=yyy;

819 qboundz(end+1)=zzz;

820 xxx=xx;

821

822 while qchange(xxx,yyy,zzz) >= threshold

823 qnum(xxx,yyy,zzz)=n;

824 xxx=xxx-1; %move to -xxx

825 if xxx<1

826 xxx=xxx+dim;

827 end

828 end

829 if xxx==dim

830 qboundx(end+1)=1;

831 else

832 qboundx(end+1)=xxx+1;

833 end

834 qboundy(end+1)=yyy;

835 qboundz(end+1)=zzz;

836 xxx=xx;

837 %-----------end very little loop-----

838 zz=zz+1; %move to +zz direction

839 if zz>dim

840 zz=zz-dim;

841 end

842 end

843 qboundx(end+1)=xx;

844 qboundy(end+1)=yy;
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845 if zz==1

846 qboundz(end+1)=dim;

847 else

848 qboundz(end+1)=zz-1;

849 end

850 zz=zloc;

851

852 while qchange(xx,yy,zz) >= threshold

853 qnum(xx,yy,zz)=n;

854 %----------very little loope-----

855 while qchange(xxx,yyy,zzz) >= threshold

856 qnum(xxx,yyy,zzz)=n;

857 xxx=xxx+1; %move to +xxx direction

858 if xxx>dim

859 xxx=xxx-dim;

860 end

861 end

862 if xxx==1

863 qboundx(end+1)=dim;

864 else

865 qboundx(end+1)=xxx-1;

866 end

867 qboundy(end+1)=yyy;

868 qboundz(end+1)=zzz;

869 xxx=xx;

870

871 while qchange(xxx,yyy,zzz) >= threshold

872 qnum(xxx,yyy,zzz)=n;

873 xxx=xxx-1; %move to -xxx

874 if xxx<1

875 xxx=xxx+dim;
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876 end

877 end

878 if xxx==dim

879 qboundx(end+1)=1;

880 else

881 qboundx(end+1)=xxx+1;

882 end

883 qboundy(end+1)=yyy;

884 qboundz(end+1)=zzz;

885 xxx=xx;

886 %-----------end very little loop-----

887 zz=zz-1; %move to -zz direction

888 if zz<1

889 zz=zz+dim;

890 end

891 end

892 qboundx(end+1)=xx;

893 qboundy(end+1)=yy;

894 if zz==dim

895 qboundz(end+1)=1;

896 else

897 qboundz(end+1)=zz+1;

898 end

899 zz=zloc;

900 %--------------------end little loop------

901 yloc=yloc-1;

902 if yloc<1

903 yloc=yloc+dim;

904 end

905 end

906 qboundx(end+1)=xloc;
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907 if yloc==dim

908 qboundy(end+1)=1;

909 else

910 qboundy(end+1)=yloc+1;

911 end

912 qboundz(end+1)=zloc;

913 yloc=y; ...

%reset yloc to original (where max q exists)

914 %------------------------------end large ...

loop----------------

915

916 %--------------------large ...

loop------------------------------

917

918 while qchange(xloc,yloc,zloc) >= threshold ...

%move to +z direction

919 qnum(xloc,yloc,zloc)=n;

920 %-----litte loop----------------------

921 while qchange(xx,yy,zz) >= threshold

922 qnum(xx,yy,zz)=n;

923 %----------very little loope-----

924 while qchange(xxx,yyy,zzz) >= threshold

925 qnum(xxx,yyy,zzz)=n;

926 yyy=yyy+1; %move to +yyy direction

927 if yyy>dim

928 yyy=yyy-dim;

929 end

930 end

931 qboundx(end+1)=xxx;

932 if yyy==1

933 qboundy(end+1)=dim;
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934 else

935 qboundy(end+1)=yyy-1;

936 end

937 qboundz(end+1)=zzz;

938 yyy=yy;

939

940 while qchange(xxx,yyy,zzz) >= threshold

941 qnum(xxx,yyy,zzz)=n;

942 yyy=yyy-1; %move to -yyy

943 if yyy<1

944 yyy=yyy+dim;

945 end

946 end

947 qboundx(end+1)=xxx;

948 if yyy==dim

949 qboundy(end+1)=1;

950 else

951 qboundy(end+1)=yyy+1;

952 end

953 qboundz(end+1)=zzz;

954 yyy=yy;

955 %-----------end very little loop-----

956 xx=xx+1; %move to +xx direction

957 if xx>dim

958 xx=xx-dim;

959 end

960 end

961 if xx==1

962 qboundx(end+1)=dim;

963 else

964 qboundx(end+1)=xx-1;
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965 end

966 qboundy(end+1)=yy;

967 qboundz(end+1)=zz;

968 xx=xloc;

969

970 while qchange(xx,yy,zz) >= threshold

971 qnum(xx,yy,zz)=n;

972 %----------very little loope-----

973 while qchange(xxx,yyy,zzz) >= threshold

974 qnum(xxx,yyy,zzz)=n;

975 yyy=yyy+1; %move to +yyy direction

976 if yyy>dim

977 yyy=yyy-dim;

978 end

979 end

980 qboundx(end+1)=xxx;

981 if yyy==1

982 qboundy(end+1)=dim;

983 else

984 qboundy(end+1)=yyy-1;

985 end

986 qboundz(end+1)=zzz;

987 yyy=yy;

988

989 while qchange(xxx,yyy,zzz) >= threshold

990 qnum(xxx,yyy,zzz)=n;

991 yyy=yyy-1; %move to -yyy

992 if yyy<1

993 yyy=yyy+dim;

994 end

995 end
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996 qboundx(end+1)=xxx;

997 if yyy==dim;

998 qboundy(end+1)=1;

999 else

1000 qboundy(end+1)=yyy+1;

1001 end

1002 qboundz(end+1)=zzz;

1003 yyy=yy;

1004 %-----------end very little loop-----

1005 xx=xx-1; %move to -xx direction

1006 if xx<1

1007 xx=xx+dim;

1008 end

1009 end

1010 if xx==dim

1011 qboundx(end+1)=1;

1012 else

1013 qboundx(end+1)=xx+1;

1014 end

1015 qboundy(end+1)=yy;

1016 qboundz(end+1)=zz;

1017 xx=xloc;

1018

1019 while qchange(xx,yy,zz) >= threshold

1020 qnum(xx,yy,zz)=n;

1021 %----------very little loope-----

1022 while qchange(xxx,yyy,zzz) >= threshold

1023 qnum(xxx,yyy,zzz)=n;

1024 xxx=xxx+1; %move to +xxx direction

1025 if xxx>dim

1026 xxx=xxx-dim;
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1027 end

1028 end

1029 if xxx==1

1030 qboundx(end+1)=dim;

1031 else

1032 qboundx(end+1)=xxx-1;

1033 end

1034 qboundy(end+1)=yyy;

1035 qboundz(end+1)=zzz;

1036 xxx=xx;

1037

1038 while qchange(xxx,yyy,zzz) >= threshold

1039 qnum(xxx,yyy,zzz)=n;

1040 xxx=xxx-1; %move to -xxx

1041 if xxx<1

1042 xxx=xxx+dim;

1043 end

1044 end

1045 if xxx==dim

1046 qboundx(end+1)=1;

1047 else

1048 qboundx(end+1)=xxx+1;

1049 end

1050 qboundy(end+1)=yyy;

1051 qboundz(end+1)=zzz;

1052 xxx=xx;

1053 %-----------end very little loop-----

1054 yy=yy+1; %move to +yy direction

1055 if yy>dim

1056 yy=yy-dim;

1057 end
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1058 end

1059 qboundx(end+1)=xx;

1060 if yy==1

1061 qboundy(end+1)=dim;

1062 else

1063 qboundy(end+1)=yy-1;

1064 end

1065 qboundz(end+1)=zz;

1066 yy=yloc;

1067

1068 while qchange(xx,yy,zz) >= threshold

1069 qnum(xx,yy,zz)=n;

1070 %----------very little loope-----

1071 while qchange(xxx,yyy,zzz) >= threshold

1072 qnum(xxx,yyy,zzz)=n;

1073 xxx=xxx+1; %move to +xxx direction

1074 if xxx>dim

1075 xxx=xxx-dim;

1076 end

1077 end

1078 if xxx==1

1079 qboundx(end+1)=dim;

1080 else

1081 qboundx(end+1)=xxx-1;

1082 end

1083 qboundy(end+1)=yyy;

1084 qboundz(end+1)=zzz;

1085 xxx=xx;

1086

1087 while qchange(xxx,yyy,zzz) >= threshold

1088 qnum(xxx,yyy,zzz)=n;
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1089 xxx=xxx-1; %move to -xxx

1090 if xxx<1

1091 xxx=xxx+dim;

1092 end

1093 end

1094 if xxx==dim

1095 qboundx(end+1)=1;

1096 else

1097 qboundx(end+1)=xxx+1;

1098 end

1099 qboundy(end+1)=yyy;

1100 qboundz(end+1)=zzz;

1101 xxx=xx;

1102 %-----------end very little loop-----

1103 yy=yy-1; %move to -yy direction

1104 if yy<1

1105 yy=yy+dim;

1106 end

1107 end

1108 qboundx(end+1)=xx;

1109 if yy==dim

1110 qboundy(end+1)=1;

1111 else

1112 qboundy(end+1)=yy+1;

1113 end

1114 qboundz(end+1)=zz;

1115 yy=yloc;

1116 %--------------------end little loop------

1117 zloc=zloc+1;

1118 if zloc>dim

1119 zloc=zloc-dim;
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1120 end

1121 end

1122 qboundx(end+1)=xloc;

1123 qboundy(end+1)=yloc;

1124 if zloc==1

1125 qboundz(end+1)=dim;

1126 else

1127 qboundz(end+1)=zloc-1;

1128 end

1129 zloc=z; ...

%reset zloc to original z (where max q exists)

1130 %------------------------------end large ...

loop----------------

1131

1132 %--------------------large ...

loop------------------------------

1133

1134 while qchange(xloc,yloc,zloc) >= threshold ...

%move to -z direction

1135 qnum(xloc,yloc,zloc)=n;

1136 %-----litte loop----------------------

1137 while qchange(xx,yy,zz) >= threshold

1138 qnum(xx,yy,zz)=n;

1139 %----------very little loope-----

1140 while qchange(xxx,yyy,zzz) >= threshold

1141 qnum(xxx,yyy,zzz)=n;

1142 yyy=yyy+1; %move to +yyy direction

1143 if yyy>dim

1144 yyy=yyy-dim;

1145 end

1146 end
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1147 qboundx(end+1)=xxx;

1148 if yyy==1

1149 qboundy(end+1)=dim;

1150 else

1151 qboundy(end+1)=yyy-1;

1152 end

1153 qboundz(end+1)=zzz;

1154 yyy=yy;

1155

1156 while qchange(xxx,yyy,zzz) >= threshold

1157 qnum(xxx,yyy,zzz)=n;

1158 yyy=yyy-1; %move to -yyy

1159 if yyy<1

1160 yyy=yyy+dim;

1161 end

1162 end

1163 qboundx(end+1)=xxx;

1164 if yyy==dim

1165 qboundy(end+1)=1;

1166 else

1167 qboundy(end+1)=yyy+1;

1168 end

1169 qboundz(end+1)=zzz;

1170 yyy=yy;

1171 %-----------end very little loop-----

1172 xx=xx+1; %move to +xx direction

1173 if xx>dim

1174 xx=xx-dim;

1175 end

1176 end

1177 if xx==1
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1178 qboundx(end+1)=dim;

1179 else

1180 qboundx(end+1)=xx-1;

1181 end

1182 qboundy(end+1)=yy;

1183 qboundz(end+1)=zz;

1184 xx=xloc;

1185

1186 while qchange(xx,yy,zz) >= threshold

1187 qnum(xx,yy,zz)=n;

1188 %----------very little loope-----

1189 while qchange(xxx,yyy,zzz) >= threshold

1190 qnum(xxx,yyy,zzz)=n;

1191 yyy=yyy+1; %move to +yyy direction

1192 if yyy>dim

1193 yyy=yyy-dim;

1194 end

1195 end

1196 qboundx(end+1)=xxx;

1197 if yyy==1

1198 qboundy(end+1)=dim;

1199 else

1200 qboundy(end+1)=yyy-1;

1201 end

1202 qboundz(end+1)=zzz;

1203 yyy=yy;

1204

1205 while qchange(xxx,yyy,zzz) >= threshold

1206 qnum(xxx,yyy,zzz)=n;

1207 yyy=yyy-1; %move to -yyy

1208 if yyy<1
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1209 yyy=yyy+dim;

1210 end

1211 end

1212

1213 qboundx(end+1)=xxx;

1214 if yyy==dim

1215 qboundy(end+1)=1;

1216 else

1217 qboundy(end+1)=yyy+1;

1218 end

1219 qboundz(end+1)=zzz;

1220 yyy=yy;

1221 %-----------end very little loop-----

1222 xx=xx-1; %move to -xx direction

1223 if xx<1

1224 xx=xx+dim;

1225 end

1226 end

1227 if xx==dim

1228 qboundx(end+1)=1;

1229 else

1230 qboundx(end+1)=xx+1;

1231 end

1232 qboundy(end+1)=yy;

1233 qboundz(end+1)=zz;

1234 xx=xloc;

1235

1236 while qchange(xx,yy,zz) >= threshold

1237 qnum(xx,yy,zz)=n;

1238 %----------very little loope-----

1239 while qchange(xxx,yyy,zzz) >= threshold
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1240 qnum(xxx,yyy,zzz)=n;

1241 xxx=xxx+1; %move to +xxx direction

1242 if xxx>dim

1243 xxx=xxx-dim;

1244 end

1245 end

1246 if xxx==1

1247 qboundx(end+1)=dim;

1248 else

1249 qboundx(end+1)=xxx-1;

1250 end

1251 qboundy(end+1)=yyy;

1252 qboundz(end+1)=zzz;

1253 xxx=xx;

1254

1255 while qchange(xxx,yyy,zzz) >= threshold

1256 qnum(xxx,yyy,zzz)=n;

1257 xxx=xxx-1; %move to -xxx

1258 if xxx<1

1259 xxx=xxx+dim;

1260 end

1261 end

1262 if xxx==dim

1263 qboundx(end+1)=1;

1264 else

1265 qboundx(end+1)=xxx+1;

1266 end

1267 qboundy(end+1)=yyy;

1268 qboundz(end+1)=zzz;

1269 xxx=xx;

1270 %-----------end very little loop-----
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1271 yy=yy+1; %move to +yy direction

1272 if yy>dim

1273 yy=yy-dim;

1274 end

1275 end

1276 qboundx(end+1)=xx;

1277 if yy==1

1278 qboundy(end+1)=dim;

1279 else

1280 qboundy(end+1)=yy-1;

1281 end

1282 qboundz(end+1)=zz;

1283 yy=yloc;

1284

1285 while qchange(xx,yy,zz) >= threshold

1286 qnum(xx,yy,zz)=n;

1287 %----------very little loope-----

1288 while qchange(xxx,yyy,zzz) >= threshold

1289 qnum(xxx,yyy,zzz)=n;

1290 xxx=xxx+1; %move to +xxx direction

1291 if xxx>dim

1292 xxx=xxx-dim;

1293 end

1294 end

1295 if xxx==1

1296 qboundx(end+1)=dim;

1297 else

1298 qboundx(end+1)=xxx-1;

1299 end

1300 qboundy(end+1)=yyy;

1301 qboundz(end+1)=zzz;
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1302 xxx=xx;

1303

1304 while qchange(xxx,yyy,zzz) >= threshold

1305 qnum(xxx,yyy,zzz)=n;

1306 xxx=xxx-1; %move to -xxx

1307 if xxx<1

1308 xxx=xxx+dim;

1309 end

1310 end

1311 if xxx==dim

1312 qboundx(end+1)=1;

1313 else

1314 qboundx(end+1)=xxx+1;

1315 end

1316 qboundy(end+1)=yyy;

1317 qboundz(end+1)=zzz;

1318 xxx=xx;

1319 %-----------end very little loop-----

1320 yy=yy-1; %move to -yy direction

1321 if yy<1

1322 yy=yy+dim;

1323 end

1324 end

1325 qboundx(end+1)=xx;

1326 if yy==dim

1327 qboundy(end+1)=1;

1328 else

1329 qboundy(end+1)=yy+1;

1330 end

1331 qboundz(end+1)=zz;

1332 yy=yloc;
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1333 %--------------------end little loop------

1334 zloc=zloc-1;

1335 if zloc<1

1336 zloc=zloc+dim;

1337 end

1338 end

1339 qboundx(end+1)=xloc;

1340 qboundy(end+1)=yloc;

1341 if zloc==dim

1342 qboundz(end+1)=1;

1343 else

1344 qboundz(end+1)=zloc+1;

1345 end

1346 zloc=z; ...

%reset zloc to original z (where max q exists)

1347 %------------------------------end large ...

loop----------------

1348

1349 %---------------till now, part of boundry points ...

are found and recorded, and are marked as 'nth' ...

in a new matrix ('nth' vortex)

1350 else

1351 thismaxpoint=false;

1352 end

1353 if thismaxpoint == true

1354 repeatboundlocs(1,1)=0;

1355 repeatboundlocs(:)=[];

1356 repeatboundlocs(1:length(qboundx),:) ...

1357 =[qboundx(:),qboundy(:),qboundz(:)];

1358 boundlocs(1,1)=0;

1359 boundlocs(:)=[];

165



1360 boundlocs=unique(repeatboundlocs,'rows');

1361 [row, colum]=size(boundlocs);

1362

1363 tempqboundx(1)=0;

1364 tempqboundx(:)=[];

1365 tempqboundy(1)=0;

1366 tempqboundy(:)=[];

1367 tempqboundz(1)=0;

1368 tempqboundz(:)=[];

1369 tempqboundx(1:length(boundlocs(:,1))) ...

1370 =boundlocs(:,1);

1371 tempqboundy(1:length(boundlocs(:,2))) ...

1372 =boundlocs(:,2);

1373 tempqboundz(1:length(boundlocs(:,3))) ...

1374 =boundlocs(:,3);

1375 tempvolume1=-1;

1376 tempvolume2=-2;

1377 %----------start with found boundary points---------------

1378 while tempvolume1~=tempvolume2

1379 repeatboundlocs(1:length(qboundx),:) ...

1380 =[qboundx(:),qboundy(:),qboundz(:)];

1381 boundlocs=unique(repeatboundlocs,'rows');

1382 tempqboundx(1:length(boundlocs(:,1)))=boundlocs(:,1);

1383 tempqboundy(1:length(boundlocs(:,2)))=boundlocs(:,2);

1384 tempqboundz(1:length(boundlocs(:,3)))=boundlocs(:,3);

1385 tempvolume1=tempvolume2;

1386 for boundnums=1:length(tempqboundx)

1387 xloc=tempqboundx(boundnums);

1388 yloc=tempqboundy(boundnums);

1389 zloc=tempqboundz(boundnums);

1390 if qchange(xloc,yloc,zloc)>= threshold
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1391 %--------------------large ...

loop------------------------------

1392 while qchange(xloc,yloc,zloc) >= threshold ...

%move to +x direction

1393 qnum(xloc,yloc,zloc)=n; %marked ...

this point in "nth" vortex

1394 xx=xloc; %point ...

(xloc,yloc,zloc) is regarded as a temporary ...

origin

1395 yy=yloc;

1396 zz=zloc;

1397 %-----litte loop----------------------

1398 while qchange(xx,yy,zz) >= threshold

1399 qnum(xx,yy,zz)=n;

1400 xxx=xx;

1401 yyy=yy;

1402 zzz=zz;

1403 %----------very little loope-----

1404 while qchange(xxx,yyy,zzz) >= threshold

1405 qnum(xxx,yyy,zzz)=n;

1406 zzz=zzz+1; %move to +zzz direction

1407 if zzz>dim

1408 zzz=zzz-dim;

1409 end

1410 end

1411 qboundx(end+1)=xxx;

1412 qboundy(end+1)=yyy;

1413 if zzz==1

1414 qboundz(end+1)=dim;

1415 else

1416
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1417 qboundz(end+1)=zzz-1;

1418 end

1419 zzz=zz;

1420

1421 while qchange(xxx,yyy,zzz) >= threshold

1422 qnum(xxx,yyy,zzz)=n;

1423 zzz=zzz-1; %move to -zzz

1424 if zzz<1

1425 zzz=zzz+dim;

1426 end

1427 end

1428 qboundx(end+1)=xxx;

1429 qboundy(end+1)=yyy;

1430 if zzz==dim

1431 qboundz(end+1)=1;

1432 else

1433 qboundz(end+1)=zzz+1;

1434 end

1435 zzz=zz;

1436 %-----------end very little loop-----

1437

1438 yy=yy+1; %move to +yy direction

1439 if yy>dim

1440 yy=yy-dim;

1441 end

1442 end

1443 qboundx(end+1)=xx;

1444 if yy==1

1445 qboundy(end+1)=dim;

1446 else

1447 qboundy(end+1)=yy-1;
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1448 end

1449 qboundz(end+1)=zz;

1450 yy=yloc;

1451

1452 while qchange(xx,yy,zz) >= threshold

1453 qnum(xx,yy,zz)=n;

1454 %----------very little loope-----

1455 while qchange(xxx,yyy,zzz) >= threshold

1456 qnum(xxx,yyy,zzz)=n;

1457 zzz=zzz+1; %move to +zzz direction

1458 if zzz>dim

1459 zzz=zzz-dim;

1460 end

1461 end

1462 qboundx(end+1)=xxx;

1463 qboundy(end+1)=yyy;

1464 if zzz==1

1465 qboundz(end+1)=dim;

1466 else

1467 qboundz(end+1)=zzz-1;

1468 end

1469 zzz=zz;

1470

1471 while qchange(xxx,yyy,zzz) >= threshold

1472 qnum(xxx,yyy,zzz)=n;

1473 zzz=zzz-1; %move to -zzz

1474 if zzz<1

1475 zzz=zzz+dim;

1476 end

1477 end

1478 qboundx(end+1)=xxx;
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1479 qboundy(end+1)=yyy;

1480 if zzz==dim

1481 qboundz(end+1)=1;

1482 else

1483 qboundz(end+1)=zzz+1;

1484 end

1485 zzz=zz;

1486 %-----------end very little loop-----

1487 yy=yy-1; %move to -yy direction

1488 if yy<1

1489 yy=yy+dim;

1490 end

1491 end

1492 qboundx(end+1)=xx;

1493 if yy==dim

1494 qboundy(end+1)=1;

1495 else

1496 qboundy(end+1)=yy+1;

1497 end

1498 qboundz(end+1)=zz;

1499 yy=yloc;

1500

1501 while qchange(xx,yy,zz) >= threshold

1502 qnum(xx,yy,zz)=n;

1503 %----------very little loope-----

1504 while qchange(xxx,yyy,zzz) >= threshold

1505 qnum(xxx,yyy,zzz)=n;

1506 yyy=yyy+1; %move to +yyy direction

1507 if yyy>dim

1508 yyy=yyy-dim;

1509 end

170



1510 end

1511 qboundx(end+1)=xxx;

1512 if yyy==1

1513 qboundy(end+1)=dim;

1514 else

1515 qboundy(end+1)=yyy-1;

1516 end

1517 qboundz(end+1)=zzz;

1518 yyy=yy;

1519

1520 while qchange(xxx,yyy,zzz) >= threshold

1521 qnum(xxx,yyy,zzz)=n;

1522 yyy=yyy-1; %move to -yyy

1523 if yyy<1

1524 yyy=yyy+dim;

1525 end

1526 end

1527 qboundx(end+1)=xxx;

1528 if yyy==dim

1529 qboundy(end+1)=1;

1530 else

1531 qboundy(end+1)=yyy+1;

1532 end

1533 qboundz(end+1)=zzz;

1534 yyy=yy;

1535 %-----------end very little loop-----

1536 zz=zz+1; %move to +zz direction

1537 if zz>dim

1538 zz=zz-dim;

1539 end

1540 end
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1541 qboundx(end+1)=xx;

1542 qboundy(end+1)=yy;

1543 if zz==1

1544 qboundz(end+1)=dim;

1545 else

1546 qboundz(end+1)=zz-1;

1547 end

1548 zz=zloc;

1549

1550 while qchange(xx,yy,zz) >= threshold

1551 qnum(xx,yy,zz)=n;

1552 %----------very little loope-----

1553 while qchange(xxx,yyy,zzz) >= threshold

1554 qnum(xxx,yyy,zzz)=n;

1555 yyy=yyy+1; %move to +yyy direction

1556 if yyy>dim

1557 yyy=yyy-dim;

1558 end

1559 end

1560 qboundx(end+1)=xxx;

1561 if yyy==1

1562 qboundy(end+1)=dim;

1563 else

1564 qboundy(end+1)=yyy-1;

1565 end

1566 qboundz(end+1)=zzz;

1567 yyy=yy;

1568

1569 while qchange(xxx,yyy,zzz) >= threshold

1570 qnum(xxx,yyy,zzz)=n;

1571 yyy=yyy-1; %move to -yyy
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1572 if yyy<1

1573 yyy=yyy+dim;

1574 end

1575 end

1576 qboundx(end+1)=xxx;

1577 if yyy==dim

1578 qboundy(end+1)=1;

1579 else

1580 qboundy(end+1)=yyy+1;

1581 end

1582 qboundz(end+1)=zzz;

1583 yyy=yy;

1584 %-----------end very little loop-----

1585 zz=zz-1; %move to -zz direction

1586 if zz<1

1587 zz=zz+dim;

1588 end

1589 end

1590 qboundx(end+1)=xx;

1591 qboundy(end+1)=yy;

1592 if zz==dim

1593 qboundz(end+1)=1;

1594 else

1595 qboundz(end+1)=zz+1;

1596 end

1597 zz=zloc;

1598 %--------------------end little loop------

1599 xloc=xloc+1;

1600 if xloc>dim

1601 xloc=xloc-dim;

1602 end
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1603 end

1604 if xloc==1

1605 qboundx(end+1)=dim;

1606 else

1607 qboundx(end+1)=xloc-1;

1608 end

1609 qboundy(end+1)=yloc;

1610 qboundz(end+1)=zloc;

1611 xloc=tempqboundx(boundnums); ...

%reset xloc to ...

original x (boundry point)

1612 %------------------------------end large ...

loop----------------

1613

1614 %--------------------large ...

loop------------------------------

1615 while qchange(xloc,yloc,zloc) >= threshold ...

%move to -x direction

1616 qnum(xloc,yloc,zloc)=n;

1617 %-----litte loop----------------------

1618 while qchange(xx,yy,zz) >= threshold

1619 qnum(xx,yy,zz)=n;

1620 %----------very little loope-----

1621 while qchange(xxx,yyy,zzz) >= threshold

1622 qnum(xxx,yyy,zzz)=n;

1623 zzz=zzz+1; %move to +zzz direction

1624 if zzz>dim

1625 zzz=zzz-dim;

1626 end

1627 end

1628 qboundx(end+1)=xxx;
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1629 qboundy(end+1)=yyy;

1630 if zzz==1

1631 qboundz(end+1)=dim;

1632 else

1633 qboundz(end+1)=zzz-1;

1634 end

1635 zzz=zz;

1636

1637 while qchange(xxx,yyy,zzz) >= threshold

1638 qnum(xxx,yyy,zzz)=n;

1639 zzz=zzz-1; %move to -zzz

1640 if zzz<1

1641 zzz=zzz+dim;

1642 end

1643 end

1644 qboundx(end+1)=xxx;

1645 qboundy(end+1)=yyy;

1646 if zzz==dim

1647 qboundz(end+1)=1;

1648 else

1649 qboundz(end+1)=zzz+1;

1650 end

1651 zzz=zz;

1652 %-----------end very little loop-----

1653 yy=yy+1; %move to +yy direction

1654 if yy>dim

1655 yy=yy-dim;

1656 end

1657 end

1658 qboundx(end+1)=xx;

1659 if yy==1
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1660 qboundy(end+1)=dim;

1661 else

1662 qboundy(end+1)=yy-1;

1663 end

1664 qboundz(end+1)=zz;

1665 yy=yloc;

1666

1667 while qchange(xx,yy,zz) >= threshold

1668 qnum(xx,yy,zz)=n;

1669 %----------very little loope-----

1670 while qchange(xxx,yyy,zzz) >= threshold

1671 qnum(xxx,yyy,zzz)=n;

1672 zzz=zzz+1; %move to +zzz direction

1673 if zzz>dim

1674 zzz=zzz-dim;

1675 end

1676 end

1677 qboundx(end+1)=xxx;

1678 qboundy(end+1)=yyy;

1679 if zzz==1

1680 qboundz(end+1)=dim;

1681 else

1682 qboundz(end+1)=zzz-1;

1683 end

1684 zzz=zz;

1685

1686 while qchange(xxx,yyy,zzz) >= threshold

1687 qnum(xxx,yyy,zzz)=n;

1688 zzz=zzz-1; %move to -zzz

1689 if zzz<1

1690 zzz=zzz+dim;
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1691 end

1692 end

1693 qboundx(end+1)=xxx;

1694 qboundy(end+1)=yyy;

1695 if zzz==dim

1696 qboundz(end+1)=1;

1697 else

1698 qboundz(end+1)=zzz+1;

1699 end

1700 zzz=zz;

1701 %-----------end very little loop-----

1702 yy=yy-1; %move to -yy direction

1703 if yy<1

1704 yy=yy+dim;

1705 end

1706 end

1707 qboundx(end+1)=xx;

1708 if yy==dim

1709 qboundy(end+1)=1;

1710 else

1711 qboundy(end+1)=yy+1;

1712 end

1713 qboundz(end+1)=zz;

1714 yy=yloc;

1715

1716 while qchange(xx,yy,zz) >= threshold

1717 qnum(xx,yy,zz)=n;

1718 %----------very little loope-----

1719 while qchange(xxx,yyy,zzz) >= threshold

1720 qnum(xxx,yyy,zzz)=n;

1721 yyy=yyy+1; %move to +yyy direction
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1722 if yyy>dim

1723 yyy=yyy-dim;

1724 end

1725 end

1726 qboundx(end+1)=xxx;

1727 if yyy==1

1728 qboundy(end+1)=dim;

1729 else

1730 qboundy(end+1)=yyy-1;

1731 end

1732 qboundz(end+1)=zzz;

1733 yyy=yy;

1734

1735 while qchange(xxx,yyy,zzz) >= threshold

1736 qnum(xxx,yyy,zzz)=n;

1737 yyy=yyy-1; %move to -yyy

1738 if yyy<1

1739 yyy=yyy+dim;

1740 end

1741 end

1742 qboundx(end+1)=xxx;

1743 if yyy==dim

1744 qboundy(end+1)=1;

1745 else

1746 qboundy(end+1)=yyy+1;

1747 end

1748 qboundz(end+1)=zzz;

1749 yyy=yy;

1750 %-----------end very little loop-----

1751 zz=zz+1; %move to +zz direction

1752 if zz>dim
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1753 zz=zz-dim;

1754 end

1755 end

1756 qboundx(end+1)=xx;

1757 qboundy(end+1)=yy;

1758 if zz==1

1759 qboundz(end+1)=dim;

1760 else

1761 qboundz(end+1)=zz-1;

1762 end

1763 zz=zloc;

1764

1765 while qchange(xx,yy,zz) >= threshold

1766 qnum(xx,yy,zz)=n;

1767 %----------very little loope-----

1768 while qchange(xxx,yyy,zzz) >= threshold

1769 qnum(xxx,yyy,zzz)=n;

1770 yyy=yyy+1; %move to +yyy direction

1771 if yyy>dim

1772 yyy=yyy-dim;

1773 end

1774 end

1775 qboundx(end+1)=xxx;

1776 if yyy==1

1777 qboundy(end+1)=dim;

1778 else

1779 qboundy(end+1)=yyy-1;

1780 end

1781 qboundz(end+1)=zzz;

1782 yyy=yy;

1783
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1784 while qchange(xxx,yyy,zzz) >= threshold

1785 qnum(xxx,yyy,zzz)=n;

1786 yyy=yyy-1; %move to -yyy

1787 if yyy<1

1788 yyy=yyy+dim;

1789 end

1790 end

1791 qboundx(end+1)=xxx;

1792 if yyy==dim

1793 qboundy(end+1)=1;

1794 else

1795 qboundy(end+1)=yyy+1;

1796 end

1797 qboundz(end+1)=zzz;

1798 yyy=yy;

1799 %-----------end very little loop-----

1800 zz=zz-1; %move to -zz direction

1801 if zz<1

1802 zz=zz+dim;

1803 end

1804 end

1805 qboundx(end+1)=xx;

1806 qboundy(end+1)=yy;

1807 if zz==dim

1808 qboundz(end+1)=1;

1809 else

1810 qboundz(end+1)=zz+1;

1811 end

1812 zz=zloc;

1813 %--------------------end little loop------

1814 xloc=xloc-1;
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1815 if xloc<1

1816 xloc=xloc+dim;

1817 end

1818 end

1819 if xloc==dim

1820 qboundx(end+1)=1;

1821 else

1822 qboundx(end+1)=xloc+1;

1823 end

1824 qboundy(end+1)=yloc;

1825 qboundz(end+1)=zloc;

1826 xloc=tempqboundx(boundnums); ...

%reset ...

xloc to original x (where boundry point)

1827 %------------------------------end large ...

loop----------------

1828

1829 %--------------------large ...

loop------------------------------

1830

1831 while qchange(xloc,yloc,zloc) >= threshold ...

%move to +y direction

1832 qnum(xloc,yloc,zloc)=n;

1833 %-----litte loop----------------------

1834 while qchange(xx,yy,zz) >= threshold

1835 qnum(xx,yy,zz)=n;

1836 %----------very little loope-----

1837 while qchange(xxx,yyy,zzz) >= threshold

1838 qnum(xxx,yyy,zzz)=n;

1839 zzz=zzz+1; %move to +zzz direction

1840 if zzz>dim
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1841 zzz=zzz-dim;

1842 end

1843 end

1844 qboundx(end+1)=xxx;

1845 qboundy(end+1)=yyy;

1846 if zzz==1

1847 qboundz(end+1)=dim;

1848 else

1849 qboundz(end+1)=zzz-1;

1850 end

1851 zzz=zz;

1852

1853 while qchange(xxx,yyy,zzz) >= threshold

1854 qnum(xxx,yyy,zzz)=n;

1855 zzz=zzz-1; %move to -zzz

1856 if zzz<1

1857 zzz=zzz+dim;

1858 end

1859 end

1860 qboundx(end+1)=xxx;

1861 qboundy(end+1)=yyy;

1862 if zzz==dim

1863 qboundz(end+1)=1;

1864 else

1865 qboundz(end+1)=zzz+1;

1866 end

1867 zzz=zz;

1868 %-----------end very little loop-----

1869 xx=xx+1; %move to +xx direction

1870 if xx>dim

1871 xx=xx-dim;
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1872 end

1873 end

1874 if xx==1

1875 qboundx(end+1)=dim;

1876 else

1877 qboundx(end+1)=xx-1;

1878 end

1879 qboundy(end+1)=yy;

1880 qboundz(end+1)=zz;

1881 xx=xloc;

1882

1883 while qchange(xx,yy,zz) >= threshold

1884 qnum(xx,yy,zz)=n;

1885 %----------very little loope-----

1886 while qchange(xxx,yyy,zzz) >= threshold

1887 qnum(xxx,yyy,zzz)=n;

1888 zzz=zzz+1; %move to +zzz direction

1889 if zzz>dim

1890 zzz=zzz-dim;

1891 end

1892 end

1893 qboundx(end+1)=xxx;

1894 qboundy(end+1)=yyy;

1895 if zzz==1

1896 qboundz(end+1)=dim;

1897 else

1898 qboundz(end+1)=zzz-1;

1899 end

1900 zzz=zz;

1901

1902 while qchange(xxx,yyy,zzz) >= threshold

183



1903 qnum(xxx,yyy,zzz)=n;

1904 zzz=zzz-1; %move to -zzz

1905 if zzz<1

1906 zzz=zzz+dim;

1907 end

1908 end

1909 qboundx(end+1)=xxx;

1910 qboundy(end+1)=yyy;

1911 if zzz==dim

1912 qboundz(end+1)=1;

1913 else

1914 qboundz(end+1)=zzz+1;

1915 end

1916 zzz=zz;

1917 %-----------end very little loop-----

1918 xx=xx-1; %move to -xx direction

1919 if xx<1

1920 xx=xx+dim;

1921 end

1922 end

1923 if xx==dim

1924 qboundx(end+1)=1;

1925 else

1926 qboundx(end+1)=xx+1;

1927 end

1928 qboundy(end+1)=yy;

1929 qboundz(end+1)=zz;

1930 xx=xloc;

1931

1932 while qchange(xx,yy,zz) >= threshold

1933 qnum(xx,yy,zz)=n;
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1934 %----------very little loope-----

1935 while qchange(xxx,yyy,zzz) >= threshold

1936 qnum(xxx,yyy,zzz)=n;

1937 xxx=xxx+1; %move to +xxx direction

1938 if xxx>dim

1939 xxx=xxx-dim;

1940 end

1941 end

1942 if xxx==1

1943 qboundx(end+1)=dim;

1944 else

1945 qboundx(end+1)=xxx-1;

1946 end

1947 qboundy(end+1)=yyy;

1948 qboundz(end+1)=zzz;

1949 xxx=xx;

1950

1951 while qchange(xxx,yyy,zzz) >= threshold

1952 qnum(xxx,yyy,zzz)=n;

1953 xxx=xxx-1; %move to -xxx

1954 if xxx<1

1955 xxx=xxx+dim;

1956 end

1957 end

1958 if xxx==dim

1959 qboundx(end+1)=1;

1960 else

1961 qboundx(end+1)=xxx+1;

1962 end

1963 qboundy(end+1)=yyy;

1964 qboundz(end+1)=zzz;
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1965 xxx=xx;

1966 %-----------end very little loop-----

1967 zz=zz+1; %move to +zz direction

1968 if zz>dim

1969 zz=zz-dim;

1970 end

1971 end

1972 qboundx(end+1)=xx;

1973 qboundy(end+1)=yy;

1974 if zz==1

1975 qboundz(end+1)=dim;

1976 else

1977 qboundz(end+1)=zz-1;

1978 end

1979 zz=zloc;

1980

1981 while qchange(xx,yy,zz) >= threshold

1982 qnum(xx,yy,zz)=n;

1983 %----------very little loope-----

1984 while qchange(xxx,yyy,zzz) >= threshold

1985 qnum(xxx,yyy,zzz)=n;

1986 xxx=xxx+1; %move to +xxx direction

1987 if xxx>dim

1988 xxx=xxx-dim;

1989 end

1990 end

1991 if xxx==1

1992 qboundx(end+1)=dim;

1993 else

1994 qboundx(end+1)=xxx-1;

1995 end
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1996 qboundy(end+1)=yyy;

1997 qboundz(end+1)=zzz;

1998 xxx=xx;

1999

2000 while qchange(xxx,yyy,zzz) >= threshold

2001 qnum(xxx,yyy,zzz)=n;

2002 xxx=xxx-1; %move to -xxx

2003 if xxx<1

2004 xxx=xxx+dim;

2005 end

2006 end

2007 if xxx==dim

2008 qboundx(end+1)=1;

2009 else

2010 qboundx(end+1)=xxx+1;

2011 end

2012 qboundy(end+1)=yyy;

2013 qboundz(end+1)=zzz;

2014 xxx=xx;

2015 %-----------end very little loop-----

2016 zz=zz-1; %move to -zz direction

2017 if zz<1

2018 zz=zz+dim;

2019 end

2020 end

2021 qboundx(end+1)=xx;

2022 qboundy(end+1)=yy;

2023 if zz==dim

2024 qboundz(end+1)=1;

2025 else

2026 qboundz(end+1)=zz+1;
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2027 end

2028 zz=zloc;

2029 %--------------------end little loop------

2030 yloc=yloc+1;

2031 if yloc>dim

2032 yloc=yloc-dim;

2033 end

2034 end

2035 qboundx(end+1)=xloc;

2036 if yloc==1

2037 qboundy(end+1)=dim;

2038 else

2039 qboundy(end+1)=yloc-1;

2040 end

2041 qboundz(end+1)=zloc;

2042 yloc=tempqboundy(boundnums); ...

%reset ...

yloc to original y (where max q exists)

2043 %------------------------------end large ...

loop----------------

2044

2045 %--------------------large ...

loop------------------------------

2046

2047 while qchange(xloc,yloc,zloc) >= threshold ...

%move to -y direction

2048 qnum(xloc,yloc,zloc)=n;

2049 %-----litte loop----------------------

2050 while qchange(xx,yy,zz) >= threshold

2051 qnum(xx,yy,zz)=n;

2052 %----------very little loope-----
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2053 while qchange(xxx,yyy,zzz) >= threshold

2054 qnum(xxx,yyy,zzz)=n;

2055 zzz=zzz+1; %move to +zzz direction

2056 if zzz>dim

2057 zzz=zzz-dim;

2058 end

2059 end

2060 qboundx(end+1)=xxx;

2061 qboundy(end+1)=yyy;

2062 if zzz==1

2063 qboundz(end+1)=dim;

2064 else

2065 qboundz(end+1)=zzz-1;

2066 end

2067 zzz=zz;

2068

2069 while qchange(xxx,yyy,zzz) >= threshold

2070 qnum(xxx,yyy,zzz)=n;

2071 zzz=zzz-1; %move to -zzz

2072 if zzz<1

2073 zzz=zzz+dim;

2074 end

2075 end

2076 qboundx(end+1)=xxx;

2077 qboundy(end+1)=yyy;

2078 if zzz==dim

2079 qboundz(end+1)=1;

2080 else

2081 qboundz(end+1)=zzz+1;

2082 end

2083 zzz=zz;
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2084 %-----------end very little loop-----

2085 xx=xx+1; %move to +xx direction

2086 if xx>dim

2087 xx=xx-dim;

2088 end

2089 end

2090 if xx==1

2091 qboundx(end+1)=dim;

2092 else

2093 qboundx(end+1)=xx-1;

2094 end

2095 qboundy(end+1)=yy;

2096 qboundz(end+1)=zz;

2097 xx=xloc;

2098

2099 while qchange(xx,yy,zz) >= threshold

2100 qnum(xx,yy,zz)=n;

2101 %----------very little loope-----

2102 while qchange(xxx,yyy,zzz) >= threshold

2103 qnum(xxx,yyy,zzz)=n;

2104 zzz=zzz+1; %move to +zzz direction

2105 if zzz>dim

2106 zzz=zzz-dim;

2107 end

2108 end

2109 qboundx(end+1)=xxx;

2110 qboundy(end+1)=yyy;

2111 if zzz==1

2112 qboundz(end+1)=dim;

2113 else

2114 qboundz(end+1)=zzz-1;
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2115 end

2116 zzz=zz;

2117

2118 while qchange(xxx,yyy,zzz) >= threshold

2119 qnum(xxx,yyy,zzz)=n;

2120 zzz=zzz-1; %move to -zzz

2121 if zzz<1

2122 zzz=zzz+dim;

2123 end

2124 end

2125 qboundx(end+1)=xxx;

2126 qboundy(end+1)=yyy;

2127 if zzz==dim

2128 qboundz(end+1)=1;

2129 else

2130 qboundz(end+1)=zzz+1;

2131 end

2132 zzz=zz;

2133 %-----------end very little loop-----

2134 xx=xx-1; %move to -xx direction

2135 if xx<1

2136 xx=xx+dim;

2137 end

2138 end

2139 if xx==dim

2140 qboundx(end+1)=1;

2141 else

2142 qboundx(end+1)=xx+1;

2143 end

2144 qboundy(end+1)=yy;

2145 qboundz(end+1)=zz;
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2146 xx=xloc;

2147

2148 while qchange(xx,yy,zz) >= threshold

2149 qnum(xx,yy,zz)=n;

2150 %----------very little loope-----

2151 while qchange(xxx,yyy,zzz) >= threshold

2152 qnum(xxx,yyy,zzz)=n;

2153 xxx=xxx+1; %move to +xxx direction

2154 if xxx>dim

2155 xxx=xxx-dim;

2156 end

2157 end

2158 if xxx==1

2159 qboundx(end+1)=dim;

2160 else

2161 qboundx(end+1)=xxx-1;

2162 end

2163 qboundy(end+1)=yyy;

2164 qboundz(end+1)=zzz;

2165 xxx=xx;

2166

2167 while qchange(xxx,yyy,zzz) >= threshold

2168 qnum(xxx,yyy,zzz)=n;

2169 xxx=xxx-1; %move to -xxx

2170 if xxx<1

2171 xxx=xxx+dim;

2172 end

2173 end

2174 if xxx==dim

2175 qboundx(end+1)=1;

2176 else
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2177 qboundx(end+1)=xxx+1;

2178 end

2179 qboundy(end+1)=yyy;

2180 qboundz(end+1)=zzz;

2181 xxx=xx;

2182 %-----------end very little loop-----

2183 zz=zz+1; %move to +zz direction

2184 if zz>dim

2185 zz=zz-dim;

2186 end

2187 end

2188 qboundx(end+1)=xx;

2189 qboundy(end+1)=yy;

2190 if zz==1

2191 qboundz(end+1)=dim;

2192 else

2193 qboundz(end+1)=zz-1;

2194 end

2195 zz=zloc;

2196

2197 while qchange(xx,yy,zz) >= threshold

2198 qnum(xx,yy,zz)=n;

2199 %----------very little loope-----

2200 while qchange(xxx,yyy,zzz) >= threshold

2201 qnum(xxx,yyy,zzz)=n;

2202 xxx=xxx+1; %move to +xxx direction

2203 if xxx>dim

2204 xxx=xxx-dim;

2205 end

2206 end

2207 if xxx==1
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2208 qboundx(end+1)=dim;

2209 else

2210 qboundx(end+1)=xxx-1;

2211 end

2212 qboundy(end+1)=yyy;

2213 qboundz(end+1)=zzz;

2214 xxx=xx;

2215

2216 while qchange(xxx,yyy,zzz) >= threshold

2217 qnum(xxx,yyy,zzz)=n;

2218 xxx=xxx-1; %move to -xxx

2219 if xxx<1

2220 xxx=xxx+dim;

2221 end

2222 end

2223 if xxx==dim

2224 qboundx(end+1)=1;

2225 else

2226 qboundx(end+1)=xxx+1;

2227 end

2228 qboundy(end+1)=yyy;

2229 qboundz(end+1)=zzz;

2230 xxx=xx;

2231 %-----------end very little loop-----

2232 zz=zz-1; %move to -zz direction

2233 if zz<1

2234 zz=zz+dim;

2235 end

2236 end

2237 qboundx(end+1)=xx;

2238 qboundy(end+1)=yy;
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2239 if zz==dim

2240 qboundz(end+1)=1;

2241 else

2242 qboundz(end+1)=zz+1;

2243 end

2244 zz=zloc;

2245 %--------------------end little loop------

2246 yloc=yloc-1;

2247 if yloc<1

2248 yloc=yloc+dim;

2249 end

2250 end

2251 qboundx(end+1)=xloc;

2252 if yloc==dim

2253 qboundy(end+1)=1;

2254 else

2255 qboundy(end+1)=yloc+1;

2256 end

2257 qboundz(end+1)=zloc;

2258 yloc=tempqboundy(boundnums); ...

%reset ...

yloc to original (where max q exists)

2259 %------------------------------end large ...

loop----------------

2260

2261 %--------------------large ...

loop------------------------------

2262

2263 while qchange(xloc,yloc,zloc) >= threshold ...

%move to +z direction

2264 qnum(xloc,yloc,zloc)=n;
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2265 %-----litte loop----------------------

2266 while qchange(xx,yy,zz) >= threshold

2267 qnum(xx,yy,zz)=n;

2268 %----------very little loope-----

2269 while qchange(xxx,yyy,zzz) >= threshold

2270 qnum(xxx,yyy,zzz)=n;

2271 yyy=yyy+1; %move to +yyy direction

2272 if yyy>dim

2273 yyy=yyy-dim;

2274 end

2275 end

2276 qboundx(end+1)=xxx;

2277 if yyy==1

2278 qboundy(end+1)=dim;

2279 else

2280 qboundy(end+1)=yyy-1;

2281 end

2282 qboundz(end+1)=zzz;

2283 yyy=yy;

2284

2285 while qchange(xxx,yyy,zzz) >= threshold

2286 qnum(xxx,yyy,zzz)=n;

2287 yyy=yyy-1; %move to -yyy

2288 if yyy<1

2289 yyy=yyy+dim;

2290 end

2291 end

2292 qboundx(end+1)=xxx;

2293 if yyy==dim

2294 qboundy(end+1)=1;

2295 else
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2296 qboundy(end+1)=yyy+1;

2297 end

2298 qboundz(end+1)=zzz;

2299 yyy=yy;

2300 %-----------end very little loop-----

2301 xx=xx+1; %move to +xx direction

2302 if xx>dim

2303 xx=xx-dim;

2304 end

2305 end

2306 if xx==1

2307 qboundx(end+1)=dim;

2308 else

2309 qboundx(end+1)=xx-1;

2310 end

2311 qboundy(end+1)=yy;

2312 qboundz(end+1)=zz;

2313 xx=xloc;

2314

2315 while qchange(xx,yy,zz) >= threshold

2316 qnum(xx,yy,zz)=n;

2317 %----------very little loope-----

2318 while qchange(xxx,yyy,zzz) >= threshold

2319 qnum(xxx,yyy,zzz)=n;

2320 yyy=yyy+1; %move to +yyy direction

2321 if yyy>dim

2322 yyy=yyy-dim;

2323 end

2324 end

2325 qboundx(end+1)=xxx;

2326 if yyy==1
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2327 qboundy(end+1)=dim;

2328 else

2329 qboundy(end+1)=yyy-1;

2330 end

2331 qboundz(end+1)=zzz;

2332 yyy=yy;

2333

2334 while qchange(xxx,yyy,zzz) >= threshold

2335 qnum(xxx,yyy,zzz)=n;

2336 yyy=yyy-1; %move to -yyy

2337 if yyy<1

2338 yyy=yyy+dim;

2339 end

2340 end

2341 qboundx(end+1)=xxx;

2342 if yyy==dim

2343 qboundy(end+1)=1;

2344 else

2345 qboundy(end+1)=yyy+1;

2346 end

2347 qboundz(end+1)=zzz;

2348 yyy=yy;

2349 %-----------end very little loop-----

2350 xx=xx-1; %move to -xx direction

2351 if xx<1

2352 xx=xx+dim;

2353 end

2354 end

2355 if xx==dim

2356 qboundx(end+1)=1;

2357 else
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2358 qboundx(end+1)=xx+1;

2359 end

2360 qboundy(end+1)=yy;

2361 qboundz(end+1)=zz;

2362 xx=xloc;

2363

2364 while qchange(xx,yy,zz) >= threshold

2365 qnum(xx,yy,zz)=n;

2366 %----------very little loope-----

2367 while qchange(xxx,yyy,zzz) >= threshold

2368 qnum(xxx,yyy,zzz)=n;

2369 xxx=xxx+1; %move to +xxx direction

2370 if xxx>dim

2371 xxx=xxx-dim;

2372 end

2373 end

2374 if xxx==1

2375 qboundx(end+1)=dim;

2376 else

2377 qboundx(end+1)=xxx-1;

2378 end

2379 qboundy(end+1)=yyy;

2380 qboundz(end+1)=zzz;

2381 xxx=xx;

2382

2383 while qchange(xxx,yyy,zzz) >= threshold

2384 qnum(xxx,yyy,zzz)=n;

2385 xxx=xxx-1; %move to -xxx

2386 if xxx<1

2387 xxx=xxx+dim;

2388 end
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2389 end

2390 if xxx==dim

2391 qboundx(end+1)=1;

2392 else

2393 qboundx(end+1)=xxx+1;

2394 end

2395 qboundy(end+1)=yyy;

2396 qboundz(end+1)=zzz;

2397 xxx=xx;

2398 %-----------end very little loop-----

2399 yy=yy+1; %move to +yy direction

2400 if yy>dim

2401 yy=yy-dim;

2402 end

2403 end

2404 qboundx(end+1)=xx;

2405 if yy==1

2406 qboundy(end+1)=dim;

2407 else

2408 qboundy(end+1)=yy-1;

2409 end

2410 qboundz(end+1)=zz;

2411 yy=yloc;

2412

2413 while qchange(xx,yy,zz) >= threshold

2414 qnum(xx,yy,zz)=n;

2415 %----------very little loope-----

2416 while qchange(xxx,yyy,zzz) >= threshold

2417 qnum(xxx,yyy,zzz)=n;

2418 xxx=xxx+1; %move to +xxx direction

2419 if xxx>dim
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2420 xxx=xxx-dim;

2421 end

2422 end

2423 if xxx==1

2424 qboundx(end+1)=dim;

2425 else

2426 qboundx(end+1)=xxx-1;

2427 end

2428 qboundy(end+1)=yyy;

2429 qboundz(end+1)=zzz;

2430 xxx=xx;

2431

2432 while qchange(xxx,yyy,zzz) >= threshold

2433 qnum(xxx,yyy,zzz)=n;

2434 xxx=xxx-1; %move to -xxx

2435 if xxx<1

2436 xxx=xxx+dim;

2437 end

2438 end

2439 if xxx==dim

2440 qboundx(end+1)=1;

2441 else

2442 qboundx(end+1)=xxx+1;

2443 end

2444 qboundy(end+1)=yyy;

2445 qboundz(end+1)=zzz;

2446 xxx=xx;

2447 %-----------end very little loop-----

2448 yy=yy-1; %move to -yy direction

2449 if yy<1

2450 yy=yy+dim;
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2451 end

2452 end

2453 qboundx(end+1)=xx;

2454 if yy==dim

2455 qboundy(end+1)=1;

2456 else

2457 qboundy(end+1)=yy+1;

2458 end

2459 qboundz(end+1)=zz;

2460 yy=yloc;

2461 %--------------------end little loop------

2462 zloc=zloc+1;

2463 if zloc>dim

2464 zloc=zloc-dim;

2465 end

2466 end

2467 qboundx(end+1)=xloc;

2468 qboundy(end+1)=yloc;

2469 if zloc==1

2470 qboundz(end+1)=1;

2471 else

2472 qboundz(end+1)=zloc-1;

2473 end

2474 zloc=tempqboundz(boundnums); ...

%reset ...

zloc to original z (where max q exists)

2475 %------------------------------end large ...

loop----------------

2476

2477 %--------------------large ...

loop------------------------------
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2478

2479 while qchange(xloc,yloc,zloc) >= threshold ...

%move to -z direction

2480 qnum(xloc,yloc,zloc)=n;

2481 %-----litte loop----------------------

2482 while qchange(xx,yy,zz) >= threshold

2483 qnum(xx,yy,zz)=n;

2484 %----------very little loope-----

2485 while qchange(xxx,yyy,zzz) >= threshold

2486 qnum(xxx,yyy,zzz)=n;

2487 yyy=yyy+1; %move to +yyy direction

2488 if yyy>dim

2489 yyy=yyy-dim;

2490 end

2491 end

2492 qboundx(end+1)=xxx;

2493 if yyy==1

2494 qboundy(end+1)=dim;

2495 else

2496 qboundy(end+1)=yyy-1;

2497 end

2498 qboundz(end+1)=zzz;

2499 yyy=yy;

2500

2501 while qchange(xxx,yyy,zzz) >= threshold

2502 qnum(xxx,yyy,zzz)=n;

2503 yyy=yyy-1; %move to -yyy

2504 if yyy<1

2505 yyy=yyy+dim;

2506 end

2507 end
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2508 qboundx(end+1)=xxx;

2509 if yyy==dim

2510 qboundy(end+1)=1;

2511 else

2512 qboundy(end+1)=yyy+1;

2513 end

2514 qboundz(end+1)=zzz;

2515 yyy=yy;

2516 %-----------end very little loop-----

2517 xx=xx+1; %move to +xx direction

2518 if xx>dim

2519 xx=xx-dim;

2520 end

2521 end

2522 if xx==1

2523 qboundx(end+1)=dim;

2524 else

2525 qboundx(end+1)=xx-1;

2526 end

2527 qboundy(end+1)=yy;

2528 qboundz(end+1)=zz;

2529 xx=xloc;

2530

2531 while qchange(xx,yy,zz) >= threshold

2532 qnum(xx,yy,zz)=n;

2533 %----------very little loope-----

2534 while qchange(xxx,yyy,zzz) >= threshold

2535 qnum(xxx,yyy,zzz)=n;

2536 yyy=yyy+1; %move to +yyy direction

2537 if yyy>dim

2538 yyy=yyy-dim;
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2539 end

2540 end

2541 qboundx(end+1)=xxx;

2542 if yyy==1

2543 qboundy(end+1)=dim;

2544 else

2545 qboundy(end+1)=yyy-1;

2546 end

2547 qboundz(end+1)=zzz;

2548 yyy=yy;

2549

2550 while qchange(xxx,yyy,zzz) >= threshold

2551 qnum(xxx,yyy,zzz)=n;

2552 yyy=yyy-1; %move to -yyy

2553 if yyy<1

2554 yyy=yyy+dim;

2555 end

2556 end

2557 qboundx(end+1)=xxx;

2558 if yyy==dim

2559 qboundy(end+1)=1;

2560 else

2561 qboundy(end+1)=yyy+1;

2562 end

2563 qboundz(end+1)=zzz;

2564 yyy=yy;

2565 %-----------end very little loop-----

2566 xx=xx-1; %move to -xx direction

2567 if xx<1

2568 xx=xx+dim;

2569 end
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2570 end

2571 if xx==dim

2572 qboundx(end+1)=1;

2573 else

2574 qboundx(end+1)=xx+1;

2575 end

2576 qboundy(end+1)=yy;

2577 qboundz(end+1)=zz;

2578 xx=xloc;

2579

2580 while qchange(xx,yy,zz) >= threshold

2581 qnum(xx,yy,zz)=n;

2582 %----------very little loope-----

2583 while qchange(xxx,yyy,zzz) >= threshold

2584 qnum(xxx,yyy,zzz)=n;

2585 xxx=xxx+1; %move to +xxx direction

2586 if xxx>dim

2587 xxx=xxx-dim;

2588 end

2589 end

2590 if xxx==1

2591 qboundx(end+1)=dim;

2592 else

2593 qboundx(end+1)=xxx-1;

2594 end

2595 qboundy(end+1)=yyy;

2596 qboundz(end+1)=zzz;

2597 xxx=xx;

2598

2599 while qchange(xxx,yyy,zzz) >= threshold

2600 qnum(xxx,yyy,zzz)=n;
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2601 xxx=xxx-1; %move to -xxx

2602 if xxx<1

2603 xxx=xxx+dim;

2604 end

2605 end

2606 if xxx==dim

2607 qboundx(end+1)=1;

2608 else

2609 qboundx(end+1)=xxx+1;

2610 end

2611 qboundy(end+1)=yyy;

2612 qboundz(end+1)=zzz;

2613 xxx=xx;

2614 %-----------end very little loop-----

2615 yy=yy+1; %move to +yy direction

2616 if yy>dim

2617 yy=yy-dim;

2618 end

2619 end

2620 qboundx(end+1)=xx;

2621 if yy==1

2622 qboundy(end+1)=dim;

2623 else

2624 qboundy(end+1)=yy-1;

2625 end

2626 qboundz(end+1)=zz;

2627 yy=yloc;

2628

2629 while qchange(xx,yy,zz) >= threshold

2630 qnum(xx,yy,zz)=n;

2631 %----------very little loope-----
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2632 while qchange(xxx,yyy,zzz) >= threshold

2633 qnum(xxx,yyy,zzz)=n;

2634 xxx=xxx+1; %move to +xxx direction

2635 if xxx>dim

2636 xxx=xxx-dim;

2637 end

2638 end

2639 if xxx==1

2640 qboundx(end+1)=dim;

2641 else

2642

2643 qboundx(end+1)=xxx-1;

2644 end

2645 qboundy(end+1)=yyy;

2646 qboundz(end+1)=zzz;

2647 xxx=xx;

2648

2649 while qchange(xxx,yyy,zzz) >= threshold

2650 qnum(xxx,yyy,zzz)=n;

2651 xxx=xxx-1; %move to -xxx

2652 if xxx<1

2653 xxx=xxx+dim;

2654 end

2655 end

2656 if xxx==dim

2657 qboundx(end+1)=1;

2658 else

2659

2660 qboundx(end+1)=xxx+1;

2661 end

2662 qboundy(end+1)=yyy;
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2663 qboundz(end+1)=zzz;

2664 xxx=xx;

2665 %-----------end very little loop-----

2666 yy=yy-1; %move to -yy direction

2667 if yy<1

2668 yy=yy+dim;

2669 end

2670 end

2671 qboundx(end+1)=xx;

2672 if yy==dim

2673 qboundy(end+1)=1;

2674 else

2675 qboundy(end+1)=yy+1;

2676 end

2677 qboundz(end+1)=zz;

2678 yy=yloc;

2679 %--------------------end little loop------

2680 zloc=zloc-1;

2681 if zloc<1

2682 zloc=zloc+dim;

2683 end

2684 end

2685 qboundx(end+1)=xloc;

2686 qboundy(end+1)=yloc;

2687 if zloc==dim

2688 qboundz(end+1)=1;

2689 else

2690 qboundz(end+1)=zloc+1;

2691 end

2692 zloc=tempqboundz(boundnums); ...

%reset ...
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zloc to original z (where max q exists)

2693 %------------------------------end large ...

loop----------------

2694

2695 end

2696 end

2697 tempvolume2=sum(qnum(:)==n);

2698 end

2699

2700 if tempvolume2 >= cutoffvolume

2701 disp(['The volume of ',num2str(n),' th vortex is ...

',num2str(tempvolume2)])

2702 [x1,y1,z1]=ind2sub(size(qnum),find(qnum==n));

2703 for positions=1:length(x1)

2704 qfinal(x1(positions),y1(positions),z1(positions)) ...

2705 =q(x1(positions),y1(positions),z1(positions));

2706 qchange(x1(positions),y1(positions),z1(positions))=0;

2707 end

2708 else

2709 [x1,y1,z1]=ind2sub(size(qnum),find(qnum==n));

2710 for positions=1:length(x1)

2711 qnum(x1(positions),y1(positions),z1(positions))=0;

2712 qchange(x1(positions),y1(positions),z1(positions))=0;

2713 end

2714 n=n-1;

2715 end

2716 n=n+1;

2717 end

2718 qboundx(:)=[];

2719 qboundy(:)=[];

2720 qboundz(:)=[];
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2721 end

2722 qmax=max(max(max(qchange)));

2723 end

2724 saveqnum=reshape(qnum,[dimˆ3,1]);

2725

2726 fid = fopen([filepath2,'qnub',num2str(t,'%04i'),'.dat'], 'w');

2727 fprintf(fid, '%8.1f\n', saveqnum);

2728 fclose(fid);

2729 hintnumber=((t-aa1)/interv+1)/((aa2-aa1)/interv+1);

2730 hints=[num2str(hintnumber*100),'% is finished'];

2731 waitbar(hintnumber,hh,hints)

2732 % filename=[filepath2,'qnum',num2str(t,'%04i'),'.dat'];

2733 % save(filename,'saveqnum','-ascii')

2734 end

2735 toc

2736 close(hh)
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