Liquid Drop Breakup in Turbulent Flow

by
Cheng Zhong

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

Department of Mechanical Engineering
University of Alberta

(C) Cheng Zhong, 2018

Abstract

The focus of this study is to gain a fundamental understanding of liquidliquid dispersion formation in homogeneous isotropic turbulence. This information is crucial to improve the reliability of existing models that describe drop breakup in turbulent flow. These models inherit numerous assumptions, simplifications, experimental constants and fitting parameters. Visualization and quantification of drop behavior in homogeneous turbulence will allow assessment of these models. Direct numerical simulations were used to investigate the dynamics of drop behavior. The free energy lattice Boltzmann method was used to perform simulations.

The homogeneous isotropic turbulence was generated in a three-dimensional fully-periodic domain of 300^{3} lattice units in size using a forcing method. Three turbulent flow fields at different levels of energy input were investigated. Then, drops of different initial diameter were injected. The dispersed to continuous fluid viscosity ratios equal to $0.1,1$, and 10 were considered. The DNSs produce detailed description of the flow. The main goal of this study was to translate these data to the useful quantities that can be applied to assess the drop breakup models. This work specifically focused on understanding of drop interaction with turbulent structures. A normalized Q_{n} criterion was used to visualize the structures. Different combinations of a threshold value and a cutoff volume were studied to explore the effect of these two important parameters and to identify the best combination. The interaction between turbulent vortices and the drops was visualized by extracting coherent structures and tracking liquid-liquid interface in two phase turbulence. The three-dimensional

energy spectra of single phase and two-phase turbulence were also quantified. The statistical characteristics of liquid-liquid turbulence were investigated: the probability density function of vorticity, of normalized energy dissipation rate, and the eigenvalues of the strain tensor. By utilizing these tools, the guidelines are proposed for improvement of the breakup models.

Preface

A part of work in this study was presented in an extended abstract for the 26th Annual Conference of the CFD Society of Canada that was hosted at the University of Manitoba, June 10-12, 2018. Dr. Komrakova was the supervisory author of the abstract and was involved in the analysis of the results as well as the composition of the abstract.

Acknowledgements

I would like to appreciate my supervisor Dr. Alexandra Komrakova for her enthusiasm and professional guidance in my research. She encouraged me to jump out of the safe zone and explore more exciting things. Everytime I was struggling for a problem, she was always there with invaluable suggestion that helped me come up with new ideas. She also patiently gave me support on writing. Under her supervision, I can feel the improvement of my ability and extension of my knowledge.

I would also thanks to Dr. Carlos Lange who gave me invaluable advice not only on research but also on life.

My thanks to my friends: Feiyang Jiang, Muxi Li, Lei Li, Zhen Yang, Li Lei. I have a good time at University of Alberta with their help.

Financial support from the Natural Sciences and Engineering Research Council of Canada is greatly appreciated. I would also appreciate the computational resource provided by Compute Canada.

Finally, numerous thanks to my parents.

Table of Contents

Abstract ii
Preface iv
Acknowledgments v
1 Introduction 1
1.1 Applications of liquid-liquid systems 1
1.2 Introduction to CFD-PBE numerical framework 7
1.3 Assumptions made in breakup kernels 11
1.4 Introduction to coherent structures 12
1.5 Objectives and goal of the thesis 18
2 DNSs of liquid-liquid systems 20
2.1 Literature review on DNSs of turbulent liquid-liquid systems 21
2.2 Free energy lattice Boltzmann method with multiple-relaxation-time operator25
2.3 Turbulence generation. Single-phase flow simulations 33
2.4 Three-dimensional energy spectrum 35
2.5 Visualization method of coherent structures 43
3 Results and Discussion 48
3.1 Simulation parameters 49
3.2 Single phase flow 50
3.2.1 Energy spectra 50
3.2.2 Vorticity 53
3.2.3 Local energy dissipation rate 55
3.2.4 Eigenvalues of strain tensor 56
3.3 Effect of dispersed phase volume fraction 58
3.3.1 Energy spectra 58
3.3.2 Vorticity 59
3.3.3 Local energy dissipation rate 59
3.3.4 Eigenvalues of strain tensor 61
3.4 Effect of dispersed phase viscosity 62
3.4.1 Energy spectra 62
3.4.2 Vorticity 63
3.4.3 Local energy dissipation rate 63
3.4.4 Eigenvalues of strain tensor 65
3.5 Coherent structures 67
3.5.1 Single-phase flow 67
3.5.2 Two-phase flow 74
4 Conclusions 76
5 Future work 80
Appendix A MRT implementation 102
Appendix B Procedure and script for 3D fft and energy spec-trum104
Appendix C Procedure and script for coherent structures 109

List of Tables

3.1 Simulation parameters. Lattice units: [lu] - lattice units for length scale; [ts] - time step. 49
3.2 Turbulent kinetic energy and average energy dissipation rate calculated by different methods. 53
3.3 Parameters and results of coherent structures under effect of $Q_{t h} . N$ is the number of structures; $V_{\max }$ is the volume of the maximum structure. 68
3.4 Parameters and results of coherent structures under effect of
$V_{c r} . N$ is the number of structures; $V_{\max }$ is the volume of the
maximum structure.
3.5 Parameters and results of coherent structures of different flow
conditions. N is the number of structures; $V_{\max }$ is the volume of
the maximum structure; $V_{c s t}$ is the total volume of all structures;
V_{t} is the volume of the domain. 72

List of Figures

2.1 D3Q19 lattice arrangement. 28
2.2 Three-dimensional shell ingeration. 38
2.3 A random two-dimensional structure 47
3.1 Energy spectra of single phase turbulent flows at different energy inputs. (a) Energy spectra; (b) Compensated energy spec-
tra; (c) Dissipated energy spectra. 51
3.2 PDF of vorticity in single phase turbulent flows of different en-
ergy inputs . 54
3.3 PDF of normalized energy dissipation rate in single phase tur-
bulent flows of different energy inputs 55
3.4 PDF of eigenvalues of strain tensor of single phase turbulent
flows of different energy inputs 57
3.5 Energy spectra of two-phase turbulent flows of different dispersed phase volume fraction in Case 2. (a) Energy spectra; (b)

Dissipated energy spectra; (c) Compensated energy spectra. . 60
3.6 PDF of vorticity in two phase turbulent flows of different dispersed phase volume fraction in Case 2 61
3.7 PDF of normalized energy dissipation rate in two phase turbu-
lent flows of different dispersed phase volume fraction in Case

2 62
3.8 PDF of eigenvalues of strain tensor of single phase and two phase turbulent flows of different dispersed phase volume fraction in Case 2 63
3.9 Energy spectra of two-phase turbulent flows of different viscosity ratio at $\phi=0.05 \%$ in Case 2. (a) Energy spectra; (b) Dissipated energy spectra; (c) Compensated energy spectra. . 64
3.10 PDF of vorticity in two phase turbulent flows of different viscosity ratio at $\phi=0.05 \%$ in Case 2 65
3.11 PDF of normalized energy dissipation rate in two phase turbulent flows of different viscosity ratio at $\phi=0.05 \%$ in Case

2
3.12 PDF of eigenvalues in two phase turbulent flows of different viscosity ratio at $\phi=0.05 \%$ in Case 2 67
3.13 Coherent structures of different threshold $Q_{t h}$ extracted in Case
2. (a) $Q_{t h}=0.8, V_{c r} / V_{\max }=4 \%$; (b) $Q_{t h}=0.85, V_{c r} / V_{\max }=$
4%; (c) $Q_{t h}=0.9, V_{c r} / V_{\max }=4 \%$. 69
3.14 Coherent structures of different volume criterion $V_{c r}$. (a) $Q_{t h}=$ $0.8, V_{c r} / V_{\max }=0 \% ;(\mathrm{b}) Q_{t h}=0.8, V_{c r} / V_{\max }=2 \%$; (c) $Q_{t h}=$
$0.8, V_{c r} / V_{\max }=4 \%$.
3.15 Coherent structures and corresponding PDF of volume-equivalent

$$
\text { diameter. } Q_{t h}=0.8, V_{c r} / V_{\max }=4 \% \text {. (a) Coherent structures of }
$$

Case 1; (b) PDF of volume-equivalent diameter of Case 1; (c)
Coherent structures of Case 2; (d) PDF of volume-equivalent
diameter of Case 2; (e) Coherent structures of Case 3; (f) PDF
of volume-equivalent diameter of Case 3. 73
3.16 Drop/coherent structures and corresponding PDF of volume-
equivalent diameter in Case 2 at different time instants. $Q_{t h}=$
$0.8, V_{c r} / V_{\max }=4 \%$. (a) Drop/coherent structures at $t / t_{K}=$
10; (b) PDF of volume-equivalent diameter at $t / t_{K}=10 ;$ (c)
Drop/coherent structures at $t / t_{K}=15$; (d) PDF of volume-
equivalent diameter at $t / t_{K}=15$. 75

Chapter 1

Introduction

1.1 Applications of liquid-liquid systems

Emulsions and dispersions are of great interest in chemical industry [1, 2, 3], pharmacy [4, 5, 6, 7], electrochemistry [8, 9, 10], biology [11, 12, 13, petroleum industry [14, 15, 16], food [17, 18, 19], cosmetics [20, 21, 22], and agriculture [23, 24, 25]. In these systems, at least two immiscible liquids are agitated to generate a dispersed flow that ensures good contact between the phases and allows for the control of the interfacial area. The additional gases, liquids, or solids may also exist in these systems. When the liquids are agitated, multiple events occur in the system simultaneously: the breakup of drops, known as 'dispersion'; the merging of drops, known as 'coalescence'; and the suspension of drops [26]. These events results in the variance of drop size distribution (DSD) in the liquid-liquid system, thus, affects the final state of the system.

In an agitated vessel, for different operating conditions such as various impeller speed and agitation time, the different state of dispersed phase and phase contact will form. The variance of liquid-liquid interface or drop size distribu-
tion in the system results in the variance of mass transfer and heat transfer rates between the phases [11]. Due to various goals of industrial applications, the liquid-liquid systems are controlled to reach the different requirements on properties of flows such as the interfacial area, and, thus, drop size distributions. For example, a specific phase contact has to be formed in nitration reactions, because the reaction rate and temperature are mainly governed by the interfacial area; in suspension polymerization process, the generation of uniform beads is necessary [26], thus, a specific drop size distribution should be reached.

The thorough understanding of liquid-liquid system formation leads to improvement of industrial process, quantity and quality of products. For example, improvement of speed of liquid-liquid extraction in chemical industry fulfilled by interface control was provided in [2] in that study, the target analyte that exist in homogeneous aqueous phase was extracted into a waterimmiscible sedimented phase. The interference that would have resulted from organic-aqueous phase contact disappears.

In the chemical and biochemical industries, the exploration of immiscible liquid-liquid dispersion in stirred vessels is important because it commonly exists in industrial processes such as liquid-liquid extraction [27], and suspension polymerization [28]. In solvent extraction problem, a large interfacial area between two liquid phases is necessary to keep the mass transfer between two phases, which results in a requirement of continuous agitation [29]. In food and pharmaceutical industries, the emulsification often occurs when small drops (for example, $1 \mu \mathrm{~m}$) are distributed in continuous phases [30, 31]. Usually, the emulsion is stable and viscous, the rheological characteristics are non-Newtonian.

The demand on environment protection boosts the development of renewable energy such as biofuels [32, 33]. The liquid-liquid equilibrium state is vital in the design of separation and purification process of crude bioethanol and biodiesel fuel [12]. However, it is also proposed in [12] that the equilibrium data that is used to predict liquid-liquid equilibrium state is not available from experiments. Thus, a UNIQUAC Functional-group Activity Coefficients is introduced to gain equilibrium data. To have a higher product yields and prevent unexpected repolymerization in biofuel upgrading reactions [30], the hydrophobic zeolites are introduced to stabilize water/oil emulsions and catalyse reactions at liquid-liquid interface.

In an optic study, liquid-liquid systems are used as the lens in sensing, medical diagnostics [34, 35]. For example, by electrowetting or giving pressure on a water-oil interface, the optic properties of a drop will change with its shape. Based on this control of liquid-liquid interface, an easy adjustable tunable liquid lens are created for optic experiments [35].

The water-oil emulsions are also common in dyes and pigments problem [31, 36]. Due to the carcinogenic and mutagenic effect of effluents from industries such as printing, dyestuff manufacturing, these pollutants have to be diminished. Thus, liquid surfactant membranes and emulsion liquid membranes are used to remove or recover dyes from effluents [31].

In chemical industry, antibiotics are usually produced in a liquid-liquid system, therefore, the separation of antibiotics is very important. The aqueous system often consists of water and a room temperature ionic liquid. Solvent extraction methods such as liquid-liquid partitioning are studied to fulfill this goal [37.

Liquid-liquid dispersions are common in industries, but at the same time
they are complex. The predictive tools that provides a guideline on how to agitate the liquids in a given vessel in order to produce the dispersion with known properties are needed [38, 39, 40]. The control of liquid-liquid dispersion can improve the products, suppress undesired by-products, and optimize industrial processes [41, 42, 43]. Therefore, the comprehension of behaviour of the system on a drop scale is of significant, as well as the quantification of the interaction of the drop with the surrounding flow. Experiments and simulations can be used for these purposes.

A large number of studies on liquid-liquid systems were carried out experimentally 44, 45, 46, 47]. Through these experiments, phenomena, such as drop breakup and coalescence, were observed. Various theories and assumptions were also introduced from the observation and analyses. Experiments are needed to get more data about drop breakup.

One of the recent studies of a single drop breakup in a rotor-stator mixer combines experiment and simulation [48]. Several findings were outlined: the breakup event mainly exist at downstream region of stator and the inside of jet (the dispersed phase was inject in the system by jet); a larger mother drop increases the time that drop interacts with vortex; the increase of Weber number results in the increase of breakup probability; the distance between current state to the equilibrium state drop size decides the number of fragments after breakup.

A summary of various experiments on a single drop breakup in turbulent flows was given in [49]. With the development of experimental system, facilities of high precision are utilized to capture drops behavior in liquid-liquid system at a smaller length and time scale [50, 51]. Particle image velocimetry (PIV) method with high precision charge-coupled device (CCD) camera is often used
in liquid-liquid systems study. For example, four Photron Fastcam Ultima APX cameras were set up to obtain velocity field at a frame rate of 1000 Hz [50]. The total time of coalescence is around 600 ms . An experimental study on how dispersed phase volume fraction affects liquid-liquid velocity field was carried out in a baffled cylindrical tank stirred with a six-bladed Rushton turbine [51]. The diameter and height of tank are $0.14 m$. The tip speed is $1.3 \mathrm{~m} / \mathrm{s}$. The PIV system contains a Kodak Megaplus ES:1.0 CCD camera. However, they found that under this experimental setup, the dispersed phase volume fraction can only up to 10%.

Hasan [52] summarized experiments at different length and times scales in turbulent liquid-liquid systems. The breakup time, which is defined as the time taken from the start of deformation of mother drop to the occurrence of breakage, is an important parameter to predict the population of drops in the binary system. The experiments in his review have drop breakup time that varies from 1 ms to 100 ms , the diameter of mother drop varies from 0.1 mm to 3 mm , the breakup time will increase with the increase of drop size and vice versa. However, he pointed out that wide discrepancy exists in the measurement of breakup time because the start of deformation is usually not accurately recorded in experiments. Similar errors also occurs at the observation of occurrence of breakage: the resolution and frame rate limitation may result in the ignorance of infinitesimal satellite that is generated at first moments of breakup process. For the same reason, the record of drop size distribution in liquid-liquid system may be inaccurate, it will result in the inaccurate prediction of mass transfer and heat transfer.

Therefore, drawbacks and limitations still exist in the experimental study of liquid-liquid systems. With the development of computational technology,
the numerical study becomes a powerful tool that interacts with experimental study in the investigation of liquid-liquid systems.

As is denoted in Hasan's review [52], the breakup time decreases with the decrease of drop size. If the size of drop is decreased to much smaller scale, such as Kolmogorov length scale, the experimental facilities will not be able to capture the mother drop and daughters, as well as the breakup event because it will finish in a very short time. Thus, the experimental investigation at a very small length scale and time scale is not a good choice.

Besides, for a given experimental setup, the operating conditions are usually limited. For example, the dispersed phase volume fraction in the experimental setup given in [51] can only up to 10%. The modification of experiment is necessary if the investigation goes to a larger volume fraction.

In chemical industry, the study of mixing time in a liquid-liquid system is significant because it decides the performance of chemical reaction [53]. This is also a vital parameter that is taken into account for mixing system design, optimization, and scale-up from the laboratory scale to the industrial scale. It directly reflects the effectiveness of mixing system. Usually, it is challenging to investigate the mixing time in an industrial scale facility, experiments such as oil-water mixing were carried out in a laboratory size tank. The results obtained from the experiment were usually combined with laboratory scale empirical correlation, thus, problems may exist when extrapolating results to industrial scale agitated vessels [54]. Meanwhile, the experiment study didn't provide detailed localized information as well as the homogeneity degree at different locations [55, 56]. Therefore, the investigation on detail location is limited in experiments.

The disposal of material used in experiments is also a problem. Some
liquids in experiments such as liquid-liquid extraction are pollutants for environment [31. The oil-water binary system is the common among these liquid-liquid systems, to dispose pollutions and clean the experimental facilities, methods such as oil skimmers, centrifuges, and depth filters are adopted, materials such as polyvinylidene fluoride membranes, boron nitride nanotubescoated stainless steel meshes, and marshmallow-like gels are utilized, thus, extra budget and time are needed [57].

The demand of investigation on the bridge of local hydrodynamics of the flow and the breakup events boosts the development of multi-scale numerical frameworks.

1.2 Introduction to CFD-PBE numerical framework

With the development of computational technology, the computational fluid dynamics (CFD) becomes a powerful tool. Attempts to better understand the dynamics of turbulent liquid-liquid systems resulted in the development of a numerical framework that involves CFD simulations of flow coupled with the solution of the population balance equation (PBE) that accounts for drop breakup and coalescence. Various modifications of this framework are implemented in commercial software [58, 59, 60]. The wide applications of CFDPBE numerical framework are reported: investigate drop breakup and coalescence in a pulsed column [61]; simulate the fluidized bed spray granulation [62]; study local hydrodynamics for cell proliferation and protein synthesis in a stirred bioreactor 63].

The population balance plays a critical role in industrial applications [64, 655, 66. For example, it can be used to predict the nanoparticle precipitation in production [67], forcast the granule growth behaviour [68, control crystal size [69], predict bubble/drop/aggregation breakup and coalescence [70, 38, 71] in agricultural chemicals, minerals, pharmaceuticals, etc. The application of population balance not only covers liquid-liquid systems [72] but also gas-liquid [73], solid-liquid [74] and gas-solid [75] systems. In the implementation of population balance, variables such as the number, mass or volume of particles of the dispersed phase are usually used to describe the population [76], the distributions of particles and the way it affects system behavior are of great interest in research.

The fundamental assumption of PBE is that there must be a number density of particles at each point, the equation is often coupled with conservation equations for entities in continuous phase [76]. In liquid-liquid systems, the breakup and coalescence of dispersed phases can be explained in terms of population balance because new particles can occur in breakup and coalescence processes.

The derivation process of PBE was provided in [76] in detail, it presented a general multi-dimensional form of the PBE:

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\nabla_{x} \cdot \dot{X} f+\nabla_{r} \cdot \dot{R} f=h \tag{1.1}
\end{equation*}
$$

where f denotes the number density function $f(x, r, t)$ with external (x) and internal (r) coordinates; \dot{X} and \dot{R} are velocities for external and internal coordinates; h represents the resultant net generation rate of particles from birth and death.

In the liquid-liquid system, the continuity equation for the number density function f is provided by [77]:

$$
\begin{equation*}
\frac{\partial f(V)}{\partial t}+\nabla \cdot(\vec{u} f(V))=S(V) \tag{1.2}
\end{equation*}
$$

where V is the drop volume that is regarded as an internal coordinate; $S(V)$ are source terms consist of breakage and coalescence of the drop [77]:

$$
\begin{equation*}
S(V)=B^{c}(V)-D^{c}(V)+B^{b}(V)-D^{b}(V) \tag{1.3}
\end{equation*}
$$

where B^{b} and B^{c} are the birth rate due to breakage and coalescence; D^{b}, and D^{c} are the death rate due to breakage and coalescence.

In this study, the coalescence of drop is neglected. The source terms due to breakage are then replaced by [78]:

$$
\begin{equation*}
S(V)=\int_{d}^{\infty} \beta\left(V, V^{\prime}\right) g\left(V^{\prime}\right) f\left(V^{\prime}\right) d V^{\prime}-g(V) f(V) \tag{1.4}
\end{equation*}
$$

where $\beta\left(V, V^{\prime}\right)$ is the daughter distribution function that illustrates the size distribution of daughter drops split out from a mother drop of size $V^{\prime} ; g\left(V^{\prime}\right)$ denotes breakup kernel (or frequency of breakup) of mother drop of size V^{\prime}.

The persistent challenge of such multi-scale simulations lies in the fact that the results are highly dependent on the choice of the breakup and coalescence sub-models (or kernels) that require specification of breakup time, breakup frequency, number of fragments after the breakup, daughter size distribution, etc [79, 80]. For example, even for a simplified PBE (Equation (1.4)) in which only the breakup event in liquid-liquid flow is considered, the different choice of breakup kernel significantly affects the results of PBE. In recent years, many
breakup kernels were provided [81, 80, 82]. However, some obvious discrepancies exist in these kernels, they may resulte in the non-accurate probability of equal breakup, the dependence on energy dissipation rate, the ignorance of small break fraction [70, 83]. A complete breakup kernel must contain the breakup rate and daughter size distribution 83]. A common breakup kernel (CT kernel) that takes the energy dissipation rate ε, dispersed phase density ρ_{c}, and interfacial energy σ into account was proposed in [84]:

$$
\begin{equation*}
g(V)=C_{1} \frac{\varepsilon^{1 / 3}}{V^{2 / 9}} \exp \left(-\frac{C_{2} \sigma}{\rho_{d} \varepsilon^{2 / 3} V^{5 / 9}}\right) \tag{1.5}
\end{equation*}
$$

where C_{1} and C_{2} are two constants. As another example, a multifractal (MF) kernel is proposed in [85]:

$$
\begin{equation*}
g(V)=\int_{\alpha_{\min }}^{\alpha^{x}} g(V, \alpha) P(\alpha) d \alpha \tag{1.6}
\end{equation*}
$$

where α is singularity strength $P(\alpha)$ is the probability density. The detail of expansion of each components were given in [85, 86, 87]. The comparison of two breakup kernels were reported in [78: the CT breakup kernel only depends on the energy dissipation rate, other turbulent properties as well as the effect of viscous stress are not involved; the MF breakup kernel is a viscosity dependent kernel, it covers the effect of internal intermittency on breakup such as the large fluctuations on turbulent dissipation rate). The preassumption of both two breakup kernels is that drops breakup because of the pressure fluctuation.

It was also demonstrated that the breakup rate can be over or under predicted by an order of magnitude depending on the underlying assumption of drop/vortex interactions [88].

Considering that the CFD-PBE is becoming an indispensable tool to analysis liquid-liquid systems, therefore, fundamentally well-justified sub-models that can be used for CFD-PBE multi-scale simulations are highly needed. Before the development of sub-models, the major assumptions made in breakup kernels are identified.

1.3 Assumptions made in breakup kernels

Several assumptions in breakup kernels are summarized:

- The large-scale deformation in which the unstable oscillations result in drop break up is more frequent than the tearing mechanism that generates a small drop [89]. The observation of experiment revealed that the unequal size breakup had higher probability compared to the equal size breakup.
- In turbulent flow, only vortices of size equal to or smaller than the drop size leads to the drop breakup [90]. Vortices larger than drop size merely transport drops.
- With the kinetic energy $E(\lambda)$ at vortex size λ, the daughter drop size is confined by the minimum and maximum breakup fraction $f_{v, \min }$ and $f_{v, \text { max }}$ [83]. The dynamic pressure of vortex $0.5 \rho_{c} u_{\lambda}^{2}$ must be larger than the capillary pressure σ / r, it results in the minimum breakup fraction. The vortex kinetic energy must be larger than increment of surface energy in breakup process, it results in the maximum breakup fraction.
- If a drop has volume v, the probability of breaking up into two daughter
drops with volumes $v f_{v}$ and $(1-v) f_{v}$ also stay at the range between $f_{v, \text { min }}(v, E(\lambda))$ and $f_{v, \text { max }}(v, E(\lambda))$ 83].
- There is no mean relative velocity discrepancy between continuous phase and dispersed phase. Therefore, the breakup event is only resulted from turbulent velocity fluctuation [88].
- The relationship between daughter size distribution and the required energy for daughter drop formation is linear. [79]

Among these assumptions, the interaction between drop and vortices is of great interest. Attempts are made in finding relationship between breakup event and surrounding vortex.

1.4 Introduction to coherent structures

Drop/vortex interaction is important because it affects the breakup mechanism of assumption in breakup kernel, however, the data that are available for this analysis are limited. To understand the drop/vortex interaction, the visualization of coherent structures is used. The coherent structure is a region concentrated with high vorticity that makes fluid move around a core, it is coherent in space and temporally evolves vortical motions [91, 92]. Coherent structures are regarded as the elementary components where vortices cluster in turbulent flow [93].

Vortex is to be observed as an rotational region around a core. The concept of vorticity proposed to describe a vortex was defined as the curl of velocity $(\omega=\nabla \times v)$. The identification of coherent structures commonly relies on properties of vortices [94]. The turbulent coherent structures were
investigated to reveal the information of turbulence such as pressure, velocity, energy et al. Accurate, convenient and low cost methods were developed and preferred by investigators. Those commonly used methods for the extraction of coherent structures are Reynolds decomposition [95], Galilean (constant convection velocity) decomposition [95], large eddy simulation (LES) decomposition (low-pass filtering) [95], Q criterion [96, 97, 98, 99], Coherent Vortex Simulation (CVS) [100, 101, 102], and Lagrangian method [103, 104 .

Adrian et al [95] used Galilean decomposition, Reynolds decomposition, and LES decomposition to visualize vortices in turbulent pipe flow when Reynolds number equals to 50000 . Two-dimensional vorticity contours were given. The Reynolds decomposition was not good at vortices visualization because it extracted small-scale vortices well but missed large-scale properties. Besides, the LES decomposition was found to be the best for vorticity visualization due to the good presentation of eddies in all three layers of flow in the pipe.

Q criterion is the widely adopted method for coherent structures extraction due to its low computational cost. It is classified as a Eulerian method based on the principle. In Q criterion, Q is defined as the balance between rotation and strain rates. Thus, the region with positive Q indicates higher rotation. Using this method, Dubief and Delcayre [96] obtained worms shape vortex structures in isotropic free decaying turbulence. Furthermore, in a turbulent mixing layer simulation, they realized that the large-scale span-wise vortices together with stream-wise vortices were forcefully affected by two-dimensional initial perturbations. As for the channel flow with $R e=160$ and $M a=0.3$, they found that it is the coherent structures at the inner region that bolsters the turbulence flow. Besides, the second eigenvalues isosurfaces plots for these
simulations were given. Q isosurfaces and second eigenvalues isosurfaces plots were always near the same, but there was more noise in second eigenvalues isosurfaces plot.

Using Q criterion, Kareem et al. [97] extracted vortex structures from large, intermediate and fine scale homogeneous isotropic turbulent fields at Taylor microscale Reynolds number equal to 81. The threshold values for three flow fields are $5.406,6.103$ and 6.012 correspondingly. In order to generate clear plots, structures with the volume lower than 4% of the maximum structure volume were erased as noise. Vortex structures in fine scale flow were observed to be more sprier in stretching than those in larger scale flow. In large scale flow, structures were easier to stretch when the breakup of vortex occurs.

Ghasempour et al 98] studied structure properties in turbulent pipe flow using Q criterion, the Reynolds number was 20000. They introduced a vortex tracking method to capture single coherent vortices in turbulent flow through its lifetime. Repeating the vortex cross-section, boundary and volume tracking procedure, investigators can get lifetime tracking of a vortex, which helps to identify properties of coherent vortex such as TKE, volume and aspect ratio. They visualized the shape of a vortex from birth to break up. The variance of captured TKE with the variance of threshold values was also given.

Later, a normalized Q_{n} criterion was introduced [99]. The Q is normalized by rotation squared. The simulation was still performed in a pipe, the threshold value of Q_{n} was selected as 0.1 to capture as many structures as possible. Considering the fact that vortices can grow up after absorbing turbulent kinetic energy (TKE), they introduced morphological methods to simulate as well as track the growth process and Biot-Sawart law to avoid overgrowth. Properties of vortices and the probability distribution of TKE are found to be
insistent with the dynamic Smagorinsky-Lilly subgrid scale model.
The Lagrangian method is also a popular method which is used to extract coherent structures. Haller and Yuan [103] proposed that the vital difference between Lagrangian method and Eulerian method such as Q criterion is that the Lagrangian method focuses on the boundaries of structures instead of the transitory properties. They defined material lines to depict boundaries of structures. Moreover, a scrupulous structure extraction criterion was also provided. They performed this analytic criterion on a two-dimensional barotropic turbulence flow for validation. The structures gleaned by them were found to be in agreement with those derived from statistics.

Green et al [104] captured coherent structures using this Lagrangian method in an isolated hairpin vortex flow and a fully developed turbulent flow. The results were then compared to those obtained from Eulerian method - the Q criterion. The Reynolds number was 180. By calculating the direct Lyapunov exponent (DLE), they obtained Lagrangian coherent structures with better detail. Moreover, the extraction was found to be definitely independent by using Lagrangian method while the extraction procedure was determined by the threshold value using Eulerian method. However, the Lagrangian method needs more computational calculation due to the larger amount of data involved in.

Farge and Schneider [100] proposed Coherent Vortex Simulation (CVS) method based on Ha Minh's semi-deterministic model. The principle of CVS is computing the coherent structures, which is the organized part of a flow, and modeling the incoherent turbulent environment, which is the random part of a flow. The implementation of CVS method depends on the type of turbulent flow owing to the nonlinear filtering pass. They performed CVS method on
two-dimensional mixing layer flow and wavelet forced homogeneous isotropic turbulent flow, the results were in consonance with those obtained by DNS.

Farge et al 101 also extracted coherent structures from three dimensional homogeneous isotropic turbulent flow at $R e_{\lambda}=150$ using CVS method, the computational domain consists of 256^{3} grids. They realized that the classical Richardson's scenario that the transmission of energy is accompanied by the breakup of eddies is not able to demonstrate the energy cascade. Thus, they claimed that the transfer of energy is the result of nonlinear vortex interactions. The coherent energy transfers through the whole of inertial range. As for the incoherent energy, it exists at the whole of inertial scales but dissipation just occurs at the smallest scales.

Schneider et al [102] implement CVS method in three dimensional forced and unforced turbulent mixing layers. The Taylor microscale Reynolds number was 150 . The coherent structures gained by orthogonal wavelet basis was represented by 3.8% of the wavelets but includes more than 99% of turbulent kinetic energy in forced mixing layer. And in the unforced mixing layer simulation, the obtained coherent structures was represented by 4.2% of the wavelet. Moreover, the comparison of CVS filtering and LES filtering such as the low-pass Fourier cut-off filtering was given.

Turiel et al [105] studied extraction of vortex structures using CVS in an oceanic flow. They realized that the loss of energy in oceanic coherent flows is relatively high. Furthermore, the incoherent part obtained was not in Gaussian distribution, which made the wavelet decomposition unreal.

Other efforts on turbulent coherent structures were also made in last decades. In 2001, Miyauchi and Tanahashi [106] studied the generalization of scaling law of structure by comparing vortices in homogeneous isotropic turbulence, turbu-
lence mixing layer, turbulent channel flows and MHD homogeneous turbulence at the fine scale. Velocities such as azimuthal, axial and advection velocity as well as length scales such as Kolmogorov microscale, Taylor microscale, and integral length scale were analyzed as the characteristic indicators. The probability density function of the diameter of eddy and circulation were also given to analyzing properties.

Samanta et al [107] performed DNS in both viscoelastic and Newtonian fluids turbulent flow in a parallel-plate channel. The Reynolds number was 180. They used Karhunen-Loeve (K-L) analysis to study the time evolution of coherent structures.

Experimental studies were also performed to analyze coherent structures. Grulke et al [108] did an experimental study of coherent structures in turbulent fluctuations of a simple magnetized torus (SMT) device. They found that the physical properties of plasma can decide the shape of coherent structures.

Staplehurst et al [109] did an experimental study for large-scale columnar structures based on the structure formation theory proposed by Davidson et al [110]. The experiment was performed in a homogeneous freely decaying rotating turbulent flow with $R o \approx 1$. They introduced two-point correlations in the axial direction to study columnar structures. The structure formation was found to be validated.

These references reveal that coherent structures are important in the study of drop behavior in liquid-liquid systems. To visualize coherent structures, the normalized Q_{n} criterion is the best method for this study due to its relatively low computational cost, meanwhile, it removes the limitation resulted from the order effect that occurs in the widely used method - Q criterion.

1.5 Objectives and goal of the thesis

The goal of this study is to develop various tools for analysis of data obtained from the direct numerical simulations (DNSs) of liquid-liquid dispersions in homogeneous isotropic turbulent flow. The results of such analysis will then be used to develop well-grounded sub-models for PBEs. The DNSs of liquid-liquid dispersions in a homogeneous isotropic turbulent flow field were performed using the diffuse interface free energy lattice Boltzmann method (LBM). The multi-relaxation-time (MRT) collision operator was used for the collision step. First, the fully-developed turbulence was generated in a three-dimensional fully-periodic cubic domain using a forcing method. Then, a drop of different size and viscosity ratio was injected into the turbulent flow field. The evolution of liquid-liquid interface and coherent structures was visualized. The statistical characteristics of turbulence were also presented.

The underlying objectives of the study are to

- Identify the fundamental assumption used to derive the drop breakup kernels that significantly affect the drop size distribution. For instance, most of the models preassume that drop breaks after interaction with a single turbulent vortex. There is no either experimental or numerical evidence for this. Another basic question is whether vortices of the size greater than the drop diameter lead to drop breakup. Most of the existing models are based on the assumption that only vortices of the size equal to or smaller control drop breakup.
- Analyze the statistical characteristics of turbulence. For example, the probability density distribution of vorticity.
- Derive the calculation of three-dimensional spectrum of turbulence and develop the tool for calculation.
- Implement the multi-relaxation-time collision operator for the lattice Boltzmann method to improve the stability of simulations.
- Find an evidence for or disprove the outlined assumptions by visualization and quantification of the results of high-resolution three-dimensional DNSs of liquid-liquid dispersion in homogeneous isotropic turbulence.

Chapter 2

DNSs of liquid-liquid systems

In Section 2.1, a literature review focused on direct numerical simulations of turbulent liquid-liquid systems is presented. In Section 2.2, the free energy lattice Boltzmann method is introduced, two different collision operators are compared. In Section 2.3, the generation of single phase turbulent flow is given. In Section 2.4, the calculation of three-dimensional energy spectra is presented. In Section 2.5, the normalized Q_{n} criterion and newly designed boundary identification method are introduced for the visualization of coherent structures.

2.1 Literature review on DNSs of turbulent liquid-liquid systems

Only studies of turbulent liquid-liquid systems using DNSs are reviewed here. Due to the limited number of studies in this area, it is important to discuss them in order to verify and validate the numerical methods that are used for complex systems.

Derksen and Akker [111] simulated liquid-liquid dispersion in stirred threedimensional periodic domain. Two fluids with the same viscosity and density were set in the simulation. The turbulent flow was generated by the lattice Boltzmann method (LBM) in a 256^{3} cells domain. The initial droplet diameter was 20 lattice units. The dispersed phase volume fraction was 16%. The fluid was turbulent at the beginning, its turbulent kinetic energy (TKE) decayed quickly after stepping into a short steady balance. They provided coalescence and breakup process of droplets in cross-section view. The drop size distributions (DSD) was also given. The DSD became wider with time, and more small droplets were generated. It revealed that the breakup process was dominant. To contrast, the coalescence process dominates if there was no turbulent force injected into the fluid.

Komrakova et al [112] explored drop deformation and breakup in liquidliquid simple shear flow using LBM. Five dimensionless numbers, Reynolds number $R e$, capillary number $C a$, viscosity ratio λ, Peclet number $P e$ and Cahn number $C h$, were introduced to fully describe the liquid-liquid system. The impact of $P e, C h$ and mesh resolution on the mechanism of deformation was studied. In 2015, Komrakova et al [113] studied the effect of Kolmogorov scale resolution, energy input, viscosity ratio and dispersed phase volume frac-
tion on deformation of droplets in a three-dimensional periodic domain. The homogeneous isotropic turbulent flow was created by linear forcing. The comparison of kinetic energy spectrum in single-phase and two-phase was also given. The Introduction of the second phase changes the energy spectrum fiercely. They also highlighted the three drawbacks of the numerical method they used: the numerical dissolution of small drops, over-estimation of drop coalescence and the occurrence of spurious currents.

Hagiwara et al 114 investigated drop deformation in a turbulent channel flow domain which was meshed as $64 \times 44 \times 32$ by DNSs. Classification of five different types of turbulent structures were provided: shear, convergence, eddy, donor eddies and streaming. They were classified using the zone classification method given in [115]. They found that the droplet was sharpened in the shear-dominant region while squeezed in the convergence-dominant region. The deformation in the eddy-dominant region was not obvious.

Scarbolo and Soldati [116] investigated drop dynamic in turbulent channel flow using DNS combined with interface tracking. The shear Reynolds number was $R e_{\tau}=100$ and Peclet number was $P e=2.56 \times 10^{5}$. The four different Weber numbers were $W e=0.0053,0.0106,0.0212,0.0424$. The ratio between Kolmogorov length scale and drop diameter was from 0.06 to 0.13 . The simulation domain was divided into $256 \times 128 \times 129$ meshes. They found the existence of interface generated discrepancy of surrounding velocity field, which led to the vorticity generation. The figures that drop surrounded by coherent structures were also given, the drop with low deformability was surrounded by more coherent structures.

Roccon et al [117] studied viscosity effect on the breakup and coalescence of drops in a wall-bounded turbulent flow. The $4 \pi h \times 2 \pi h \times 2 h$ domain was
divided into $512 \times 256 \times 257$ meshes. Turbulent flows with Weber number $W e=0.75,1.5,3$ were generated, the viscosity ratio between dispersed phase and continuous phase were $\lambda=0.01,0.1,1,10,100$ for each Weber number. 256 drops with diameter $d=90$ meshes were injected into the turbulent flow at $R e_{\tau}=150$. The two-phase flow was tracked by the phase field method (PFM). The average velocity of the mixture of two phases was observed always to be increased in time due to the absorption of turbulent kinetic energy by drops. Furthermore, the drop was not likely to deform at small Weber number $W e<1$ because the surface tension, which prevents the drop breakage, was dominant, and the change of viscosity ratio didn't affect drop breakup or coalescence rate in this situation. In the contrast, drop tends to deform at larger Weber number $W e>1$, and the increment of viscosity ratio drastically decreased the breakup rate and increased the coalescence rate.

The DNS of drop/near-wall turbulence interaction was reported by Iwasaki [118] et al. The simulation was resolved in a rectangular domain. A drop of diameter equals to one-fourth of the wall distance was initially placed in the range of $20-60$ wall units from one moving wall. To investigate effects of viscosity μ_{d} / μ_{c} and interfacial tension $\sigma^{*}=\sigma / \rho U_{W}^{2} h$ of drop (where U_{W}^{2} was the speed of moving wall, h was half of distance between two moving walls), three different cases were implemented: the fluid element $\mu_{d} / \mu_{c}=1, \sigma^{*}=0$; the viscous drop without interfacial tension $\mu_{d} / \mu_{c}=40, \sigma^{*}=0$; the viscous drop with interfacial tension $\mu_{d} / \mu_{c}=40, \sigma^{*}=0.01$. An equal density was set for dispersed and continuous phase. The Reynolds numbers $R e^{*}=U_{W} h / \nu$ and $R e^{+}=u_{\tau} h / \nu$ were 1300 and 82.6 respectively (where u_{τ} was the friction velocity). The liquid-liquid interface was tracked by VOF method. They found that the deformation of high-viscosity drop was smaller compared to
the deformation of fluid element; for the high-viscosity drop with interfacial tension, the deformation nearly did not occur. Thus, both the high-viscosity and interfacial tension suppress the deformation. They also extracted coherent structures at near-wall region, the existence of drop with interfacial tension was found to result in the attenuation of near-wall streamwise vortex. Besides, in the wake flow region of drop, the occurrence of small vortex was observed. Finally, in a wide region around the drop, the Reynolds-shear stress product was observed to be higher than that in other region. They attributed this phenomenon to the introduced translational flow by the drop.

Yuge and Hagiwara [119] studied non-isothermal turbulent upward channel flow by DNS. The hydrofluoroether-water binary system was used. The Reynolds number $R e_{\tau}$ was 180. Four identical drops were placed at nearwall region and tracked by VOF method. Some conclusions were provided: several types of secondary flows introduced by drops resulted in the increase of Reynolds shear stress product, they were mitigated by the adjacent drops in streamwise direction; The near-wall drops deformed large streamwise vortices and mitigated small vortices; The drops increased heat transfer in binary system.

Combining with various liquid-liquid interface tracking methods, the implementation of DNS simulations helps exploring and explaining numerous fundamental behavior and phenomena in turbulent binary systems that contain multi-scales.

2.2 Free energy lattice Boltzmann method with multiple-relaxation-time operator

The diffuse interface free energy lattice Boltzmann method (LBM) proposed by Swift et al. [120] is used here. In diffuse interface methods [121, 122, 123], the interface is defined as a finite-thickness transition area where the variance of physical quantities is continuous. To describe composition of system, the order parameter φ is introduced [124, 125, 126. It is regarded as the relative concentration of two components. The solution of continuity and momentum equations in conjunction with the Cahn-Hilliard convection-diffusion equation for the order parameter is adopted to simulate behavior of binary mixture [127]. Therefore, the continuity, momentum, convection-diffusion equations decide density, velocity and order parameter respectively [128.

$$
\begin{align*}
& \quad \partial_{t} \rho+\partial_{\alpha}\left(\rho u_{\alpha}\right)=0 \tag{2.1a}\\
& \partial_{t}\left(\rho u_{\alpha}\right)+\partial_{\beta}\left(\rho u_{\alpha} u_{\beta}\right)= \tag{2.1b}\\
& \quad-\partial_{\beta} P_{\alpha \beta}^{t h}+\partial_{\beta} \nu\left(\rho \partial_{\alpha u_{\beta}}+\rho \partial_{\beta} u_{\alpha}\right)+\rho F_{t \alpha} \\
& \quad \partial_{t} \varphi+\partial_{\alpha}\left(\varphi u_{\alpha}\right)=M \partial_{\beta \beta}^{2} \mu \tag{2.1c}
\end{align*}
$$

where u_{α} is the velocity; the index α stands for the Cartesian directions x, $y, z ; \rho$ and ν are the density and the kinematic viscosity of the mixture, respectively; M is the mobility; $F_{t \alpha}$ is the forcing term to generate turbulence; $P_{\alpha \beta}^{t h}$ is the "thermodynamic" pressure tensor which includes an isotropic contribution $P_{i d} \delta_{\alpha \beta}$ that represents the ideal gas pressure and the "chemical" pressure tensor
$P_{\alpha \beta}^{c h e m}$ [128]: $P_{\alpha \beta}^{t h}=P_{i d} \delta_{\alpha \beta}+P_{\alpha \beta}^{c h e m}$. The ideal gas pressure is $P_{i d}=\frac{\rho}{c_{s}^{2}}$, where c_{s}^{2} is sound speed. The $P_{\alpha \beta}^{c h e m}=\left[\frac{A}{2} \varphi^{2}-\frac{3 A}{4} \varphi^{4}-K \varphi \partial_{\alpha \alpha}^{2} \varphi-\frac{1}{2}\left|\partial_{\alpha} \varphi\right|^{2}\right]+$ $K \partial_{\alpha} \varphi \partial_{\beta} \varphi$ is an active scalar and the set of Equation (2.1) is intimately coupled, because it is a function of order parameter φ [113]. $\mu(\varphi)=A \varphi-A \varphi^{3}-K \partial_{\alpha \alpha}^{2} \varphi$ is the chemical potential. Here, $A<0$ and K are parameters of the free energy model that are related to the surface tension and interface thickness.

In LBM model, the macroscopic equations are solved in two steps: streaming and collision [129]. At each time step, particles stream to neighboring lattice points along fixed lattice links in streaming process, then the velocity distribution at each point relaxes towards equilibrium distribution in collision process. Two discrete single-particle density distribution functions $f(\mathbf{r}, t)$ and $g(\mathbf{r}, t)$ are used to describe the motion of fluid. The function $f(\mathbf{r}, t)$ solves the continuity and momentum equations which are the Equation (2.1a) and 2.1b respectively, the function $g(\mathbf{r}, t)$ solves the convection-diffusion equation which is the Equation (2.1c).

Usually, the single-relaxation-time collision operator, also known as the Bhatnagar-Gross-Krook (BGK) operator [130], is adopted to solve the collision process. It is the simplest and widely used collision operator because distribution functions are relaxed by a single dimensionless relaxation parameter τ. Under this scenario, the discrete lattice Boltzmann equations are given as 131:

$$
\begin{align*}
& f_{q}\left(\mathbf{r}_{\alpha}+\mathbf{c}_{\alpha q} \Delta t, t+\Delta t\right)-f_{q}\left(\mathbf{r}_{\alpha}, t\right)=\frac{-1}{\tau_{f}}\left(f_{q}-f_{q}^{e q}\right)+\mathbf{F}_{q} \tag{2.2}\\
& g_{q}\left(\mathbf{r}_{\alpha}+\mathbf{c}_{\alpha q} \Delta t, t+\Delta t\right)-g_{q}\left(\mathbf{r}_{\alpha}, t\right)=\frac{-1}{\tau_{g}}\left(g_{q}-g_{q}^{e q}\right)
\end{align*}
$$

where index q represents the number of discrete velocity directions; index α
represents the Cartesian directions x , y and $\mathrm{z} ; f_{q}^{e q}$ and $g_{q}^{e q}$ are the discretized Maxwell-Boltzmann distribution functions (equilibrium distribution function); τ_{f} and τ_{g} are dimensionless relaxation parameters; $\mathbf{c}_{\alpha q}$ is discrete velocity set and \mathbf{F}_{q} is the forcing term. The forcing term is incorporated as follows:

$$
\begin{equation*}
\mathbf{F}_{q}=w_{q}\left(\mathbf{c}_{q} \cdot \mathbf{F}_{t \alpha}\right) \tag{2.3}
\end{equation*}
$$

The density ρ, local fluid momentum ρu_{α} and order parameter φ are defined as following:

$$
\begin{align*}
\sum_{q} f_{q} & =\rho \\
\sum_{q} c_{\alpha q} f_{q} & =\rho u_{\alpha}+\frac{F_{t \alpha}}{2} \tag{2.4}\\
\sum_{q} g_{q} & =\varphi
\end{align*}
$$

The calculation of equilibrium equations is given by [132]:

$$
\begin{align*}
f_{q}^{e q}= & \frac{w_{q}}{c^{2}}\left(p_{0}-K\left(\partial_{x x}^{2} \varphi+\partial_{y y}^{2} \varphi+\partial_{z z}^{2} \varphi\right)+c_{\alpha q} \rho u_{\alpha}+\frac{3}{2 c^{2}}\left[c_{\alpha q} c_{\beta q}-\frac{c^{2}}{3} \delta_{\alpha \beta}\right] \rho u_{\alpha} u_{\beta}\right) \\
& +\frac{K}{c^{2}}\left(w_{q}^{x x} \partial_{x} \varphi \partial_{x} \varphi+w_{q}^{y y} \partial_{y} \varphi \partial_{y} \varphi+w_{q}^{z z} \partial_{z} \varphi \partial_{z} \varphi\right. \\
& \left.+w_{q}^{x y} \partial_{x} \varphi \partial_{y} \varphi+w_{q}^{x z} \partial_{x} \varphi \partial_{z} \varphi+w_{q}^{y z} \partial_{y} \varphi \partial_{z} \varphi\right) \tag{2.5a}\\
g_{q}^{e q}= & \frac{w_{q}}{c^{2}}\left(\Gamma \mu+c_{\alpha q} \varphi u_{\alpha}+\frac{3}{2 c^{2}}\left[c_{\alpha q} c_{\beta q}-\frac{c^{2}}{3} \delta_{\alpha \beta}\right] \varphi u_{\alpha} u_{\beta}\right) \tag{2.5b}
\end{align*}
$$

where w_{q} is weight corresponding to the norm of c_{q}, c_{s} is the speed sound. p_{0} is the bulk pressure $p_{0}=c_{s}^{2} \rho+\frac{A}{2} \varphi^{2}+\frac{3 B}{4} \varphi^{4}$. The distributions for $q=0$ are
given by:

$$
\begin{align*}
& f_{0}^{e q}=\rho-\sum_{q=1}^{18} f_{q}^{e q} \\
& g_{0}^{e q}=\varphi-\sum_{q=1}^{18} g_{q}^{e q} \tag{2.6}
\end{align*}
$$

In this study, the D3Q19 lattice arrangement (three dimensions and nineteen discrete velocity directions) is adopted. As is shown in Figure 2.1, the central point is connected with 6 central points in each face and 12 central points in each edge of the cube. Only uniform cubic lattices are used here, the mesh step Δx and time step Δt are taken as unity. Lattice Boltzmann method operates in lattice space in so-called lattice units (lu).

Figure 2.1: D3Q19 lattice arrangement

The discrete velocity sets and the weighting factors are defined as follows:

$$
e_{q}=\left\{\begin{align*}
(0,0,0) & q=0 \tag{2.7}\\
(\pm 1,0,0),(0, \pm 1,0),(0,0, \pm 1) & q=1,2, \ldots, 6 \\
(\pm 1, \pm 1,0),(0, \pm 1, \pm 1),(\pm 1,0, \pm 1) & q=7,8, \ldots, 18
\end{align*}\right.
$$

and

$$
w_{q}=\left\{\begin{align*}
1 / 3, & q=0 \tag{2.8}\\
1 / 18, & q=1,2, \ldots, 6 \\
1 / 36, & q=7,8, \ldots, 18
\end{align*}\right.
$$

The multiple-relaxation-time (MRT) collision operator is implemented considering that multiple physical quantities in collision process may relax on different time scales [131]. It is used in this study to improve stability and accuracy of the simulations. Premnath et al. [133] analyzed advantageous of MRT operator by comparing with BGK operator. They proposed that numerical instability occurs in the relatively low viscosities fluids simulation. Due to computational constraints, the instability problems may be compounded in three-dimensional flows when physics may not be adequately resolved. The MRT operator is more stable than BGK operator because the different relaxation times can be individually relaxed to achieve stability. The MRT operator is also flexible enough to incorporate additional physics which cannot be naturally represented by BGK operator. In MRT operator, moments of distribution functions such as momentum and viscous stresses are solved directly, which provides a natural and convenient way to express various relaxation processes happened in various time scales due to collisions.

Therefore, the lattice Boltzmann equation which utilizes the MRT operator is given by:

$$
\begin{equation*}
f_{q}\left(\mathbf{r}_{\alpha}+\mathbf{c}_{\alpha q} \Delta t, t+\Delta t\right)-f_{q}\left(\mathbf{r}_{\alpha}, t\right)=-\boldsymbol{M}^{-1} \boldsymbol{S}\left(\boldsymbol{m}_{q}-\boldsymbol{m}_{q}^{e q}\right)+\mathbf{F}_{q} \tag{2.9}
\end{equation*}
$$

where \boldsymbol{M} is a 19×19 transformation matrix which transforms distribution functions f to velocity moments \boldsymbol{m} :

$$
\begin{equation*}
m=M f \tag{2.10}
\end{equation*}
$$

Define collision matrix $\hat{\boldsymbol{S}}$ as follow:

$$
\begin{equation*}
\hat{S}=M^{-1} S M \tag{2.11}
\end{equation*}
$$

Therefore, the Equation (2.9) can be replaced by:

$$
\begin{equation*}
f_{q}\left(\mathbf{r}_{\alpha}+\mathbf{c}_{\alpha q} \Delta t, t+\Delta t\right)-f_{q}\left(\mathbf{r}_{\alpha}, t\right)=-\hat{\boldsymbol{S}}\left(f_{q}-f_{q}^{e q}\right)+\mathbf{F}_{q} \tag{2.12}
\end{equation*}
$$

The eigenvalues of S are all between 0 and 2 in order to maintain linear stability and the separation of scales [134]. It can be easily represented that BGK operator is a special case in which all relaxation times are equal, the collision matrix is $\hat{\boldsymbol{S}}=\boldsymbol{M}^{-1} \frac{1}{\tau} \boldsymbol{I} \boldsymbol{M}=\frac{1}{\tau} \operatorname{diag}(\boldsymbol{I})^{T}$, where $\tau>\frac{1}{2}$ is the single relaxation time of BGK.

The transformation matrix represents components of the 19 orthogonal basis column vectors:

$$
\begin{equation*}
\boldsymbol{M}=\left[\varsigma_{0}, \varsigma_{1}, \ldots, \varsigma_{18}\right]^{T} \tag{2.13}
\end{equation*}
$$

The 19 orthogonal basis vectors $\varsigma_{q \beta}$ and derived transformation matrix \boldsymbol{M} are listed in Appendix. The corresponding 19 velocity moments are given [135]:
$\boldsymbol{m}=\left(\rho, e, e^{2}, j_{x}, q_{x}, j_{y}, q_{y}, j_{z}, q_{z}, 3 p_{x x}, 3 \pi_{x x}, p_{w w}, \pi_{w w}, p_{x y}, p_{y z}, p_{x z}, m_{x}, m_{y}, m_{z}\right)^{T}$
where j_{x}, j_{y}, j_{z} are momentum or mass flux $(\boldsymbol{j}=\rho \boldsymbol{u}) ; q_{x}, q_{y}, q_{z}$ are heat flux; $p_{x x}, p_{w w}, p_{x y}, p_{y z}$, and $p_{x z}$ are components of the symmetric and traceless strain-rate tensor; $\pi_{x x}$ and $\pi_{w w}$ are fourth order moments which have the same symmetry as the diagonal part of the traceless tensor $p_{i j}$. The last three vectors are third order moments.

In MRT operator, the collision matrix (relaxation matrix) $\hat{\boldsymbol{S}}$ is diagonal in moment space \mathbb{M} :

$$
\begin{equation*}
\hat{\boldsymbol{S}}=\operatorname{diag}\left(s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}, s_{9}, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15}, s_{16}, s_{17}, s_{18}\right)^{T} \tag{2.15}
\end{equation*}
$$

where parameter s_{q} represent the inverse of the relaxation time $(1 / \tau)$ of the various moments \boldsymbol{m} in reaching their equilibrium values $\boldsymbol{m}^{e q}$. Because the collision process conserves particular moments (density and components of momentum) s_{0}, s_{3}, s_{5} and s_{7}, the collision process values remain constant under variation of corresponding relaxation times. Thus, the relaxation parameters for these moments can be set to zero when there is no forcing term in the LBM. However, the collision matrix affects the forcing term in the effectively explicit in MRT LBM with forcing term, the relaxation times for these conserved moments should not be chosen as zero [133]. Therefore, they are set
as 1 for simplicity. The collision matrix then becomes:

$$
\begin{equation*}
\hat{\boldsymbol{S}}=\operatorname{diag}\left(1, s_{e}, s_{e^{2}}, 1, s_{q}, 1, s_{q}, 1, s_{q}, s_{\nu}, s_{\pi}, s_{\nu}, s_{\pi}, s_{\nu}, s_{\nu}, s_{\nu}, s_{m}, s_{m}, s_{m}\right)^{T} \tag{2.16}
\end{equation*}
$$

The equilibria of the non-conserved moments are given:

$$
\begin{align*}
m_{1}^{e q} & =-11 \rho+\frac{19}{\rho}\left(j_{x}^{2}+j_{y}^{2}+j_{z}^{2}\right) \\
m_{2}^{e q} & =\omega_{\varepsilon}+\frac{\omega_{\varepsilon j}}{\rho}\left(j_{x}^{2}+j_{y}^{2}+j_{z}^{2}\right) \\
m_{4,6,8}^{e q} & =-\frac{2}{3} j_{x, y, z} \\
m_{9}^{e q} & =\frac{1}{\rho}\left(2 j_{x}^{2}-j_{y}^{2}-j_{z}^{2}\right) \\
m_{11}^{e q} & =\frac{1}{\rho}\left(j_{y}^{2}-j_{z}^{2}\right) \\
m_{10}^{e q} & =\omega_{x x} m_{9}^{e q} \tag{2.17}\\
m_{12}^{e q} & =\omega_{x x} m_{11}^{e q} \\
m_{13}^{e q} & =\frac{1}{\rho} j_{x} j_{y} \\
m_{14}^{e q} & =\frac{1}{\rho} j_{y} j_{z} \\
m_{15}^{e q} & =\frac{1}{\rho} j_{z} j_{x} \\
m_{16}^{e q} & =m_{17}^{e q}=m_{18}^{e q}=0
\end{align*}
$$

In order to optimize the linear stability of the model, the parameters are chosen as 136]: $\omega_{\varepsilon}=\omega_{x x}=0, \omega_{\varepsilon j}=-475 / 63, s_{e}=1.19, s_{e}^{2}=s_{\pi}=1.4$, $s_{q}=1.2, s_{m}=1.98$. The speed sound is $c_{s}=1 / \sqrt{3}$ in lattice units of
$\Delta x=\Delta t=1$. The kinematic viscosity ν and bulk viscosity ξ are:

$$
\begin{align*}
\nu & =\frac{1}{3}\left(\frac{1}{s_{\nu}}-\frac{1}{2}\right) \tag{2.18}\\
\xi & =\frac{2}{9}\left(\frac{1}{s_{e}}-\frac{1}{2}\right) \tag{2.19}
\end{align*}
$$

The continuous phase and injected dispersed phase are of different kinematic viscosity. Thus, the kinematic viscosity of the mixture is a function of order parameter [132]:

$$
\begin{equation*}
\nu(\varphi)=\nu_{c} \frac{\varphi_{0}-\varphi}{2 \varphi_{0}}+\nu_{d} \frac{\varphi_{0}+\varphi}{2 \varphi_{0}} \tag{2.20}
\end{equation*}
$$

where ν_{c} and ν_{d} are the kinematic viscosities of continuous phase and dispersed phase, respectively. φ_{0} is set as 1 .

2.3 Turbulence generation. Single-phase flow simulations

In this study, the statistically stationary homogeneous isotropic turbulence is generated in a three-dimension periodic domain. Due to the natural decay of turbulence, the energy input is the necessity for the maintenance of turbulence. Here, the energy input is organized by means of linear forcing that is proposed by Lundgren [137]. The local force imposed in the liquid is proportional to the local velocity

$$
\begin{equation*}
F_{t \alpha}=A_{f} u_{\alpha} \tag{2.21}
\end{equation*}
$$

The parameter of force A_{f} is

$$
\begin{equation*}
A_{f}=\varepsilon /\left(3 u_{r m s}^{2}\right) \tag{2.22}
\end{equation*}
$$

where ε is the volume-averaged energy dissipation rate per unit mass; $u_{r m s}$ is the volume-averaged root-mean-square fluid velocity. The dissipation rate ε is an input parameter in turbulence generation, if the resolution of the Kolmogorov length scale η_{K} is fixed, then these levels of dissipation can be set up by varying kinematic viscosity of the continuous phase ν_{c} due to the relationship $\eta_{K}=\left(\nu_{c}^{3} / \varepsilon\right)^{1 / 4}$. The turbulence generation method does not allow to have the root-mean-square velocity $u_{r m s}$ as an input parameter. therefore, as the output parameter, the $u_{r m s}$ values were calculated every time step after the simulation was performed. Derksen [138], Valino et al. [139] successfully implemented this type of linear forcing in the environment of the LBM.

A non-zero velocity field is used to start with the turbulence generation. It was initialized at $t=0$ using the following relations

$$
\begin{align*}
& u_{x}=u_{i n i t} \sin \left(\frac{2 \pi j}{\lambda_{0}}\right) \\
& u_{y}=u_{i n i t} \sin \left(\frac{2 \pi k}{\lambda_{0}}\right) \tag{2.23}\\
& u_{z}=u_{i n i t} \sin \left(\frac{2 \pi i}{\lambda_{0}}\right)
\end{align*}
$$

where $\lambda_{0}=1.01 L_{d} / 4, i=j=k=\left(1: L_{d}\right)$ (corresponding to x, y, and z, respectively); $u_{i n i t}=5 u_{K}$ is the maximum velocity in the initial distribution; L_{d} is the domain edge size; u_{K} is the Kolmogorov velocity scale. This flow field is divergence free.

To achieve statistical stationary quantities, it is necessary to run simula-
tions for a longer period of time. Therefore, before injecting the dispersed phase, all simulations have to be conducted long enough to ensure timeinvariant statistics. It ensures the full development of single phase turbulent flow [113].

2.4 Three-dimensional energy spectrum

According to Kolmogorov's theory [140], the kinetic energy enters the turbulent flow at the largest scales of motion. With the breakup of eddies, the kinetic energy is continuously transferred to smaller scales until the Kolmogorov scale is reached. At this smallest length scale, the eddy motion is stable because the Reynolds number is sufficiently small, and the kinetic energy is dissipated due to viscous effect. This is also known as 'energy cascade'. The energy cascade consists of two subranges: inertial subrange and dissipation subrange. In inertial subrange, the viscous effects are negligible, the inertial effect determines the dominant energy transfer from large to small eddies. The energy cascade in this subrange is described by:

$$
\begin{equation*}
E(\kappa)=C \varepsilon^{2 / 3} \kappa^{-5 / 3} \tag{2.24}
\end{equation*}
$$

where C is a universal Kolmogorov constant, ε is the energy dissipation rate, κ is the wave number. This spectrum is also referred to as the Kolmogorov spectrum. In the dissipation subrange, the viscous effect is dominant, the energy is dissipated.

Here gives the derivation of calculation of three-dimensional energy spectrum. Considering two points i and j with distance \boldsymbol{r} in Cartesian coordinates,
where \boldsymbol{r} is the space vector between two points. The derivation of three dimensional energy spectra calculation presented below is based on [141, 142, 143]. In homogeneous isotropic turbulent flow, the correlation function between velocities of two measured points is given by [141]:

$$
\begin{equation*}
R_{i j}(\boldsymbol{r})=\left\langle u_{i}(\boldsymbol{x}) u_{j}(\boldsymbol{x}+\boldsymbol{r})\right\rangle \tag{2.25}
\end{equation*}
$$

where the angle brackets denote ensemble averaging, u_{i} and u_{j} are velocities at two points, \boldsymbol{x} is the location in Cartesian coordinates.

A spectrum is defined as the Fourier transforms of a correlation function. Thus, a pair of forward Fourier transform and inverse Fourier transform is [141]:

$$
\begin{gather*}
\tilde{f}(\kappa)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(r) e^{-i \kappa r} d r \tag{2.26}\\
f(r)=\int_{-\infty}^{\infty} \tilde{f}(\kappa) e^{i \kappa r} d \kappa \tag{2.27}
\end{gather*}
$$

A three-dimensional spectrum is $\Phi_{i j}(\boldsymbol{\kappa})$ calculated as [141]:

$$
\begin{equation*}
\Phi_{i j}(\boldsymbol{\kappa})=\frac{1}{8 \pi^{3}} \iiint_{-\infty}^{\infty} R_{i j}(\boldsymbol{r}) e^{-i \boldsymbol{\kappa} \boldsymbol{r}} d \boldsymbol{r} \tag{2.28}
\end{equation*}
$$

where $\boldsymbol{\kappa}=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)$, and $\kappa=|\boldsymbol{\kappa}|$.
Inversely:

$$
\begin{equation*}
R_{i j}(\boldsymbol{r})=\iiint_{-\infty}^{\infty} e^{i \boldsymbol{\kappa} \boldsymbol{r}} \Phi_{i j}(\boldsymbol{\kappa}) d \boldsymbol{\kappa} \tag{2.29}
\end{equation*}
$$

When $i=j$, we get:

$$
\begin{equation*}
R_{i i}(0)=\left\langle u_{i}^{2}\right\rangle=\iiint_{-\infty}^{\infty} \Phi_{i i}(\boldsymbol{\kappa}) d \boldsymbol{\kappa} \tag{2.30}
\end{equation*}
$$

The total turbulent kinetic energy $E_{t k e}$ is an integrity of energy spectrum $E(\kappa)$. For simplicity, the direction of the Fourier modes is often removed because it has no effect on the calculation. Thus, the length of of the wave number vector instead of the vector itself is used: $\kappa=|\boldsymbol{\kappa}|=\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right)^{1 / 2}$. This is obtained by integrating over the spherical shell $S(\kappa)$, where κ denotes the radius of the sphere. Figure 2.2 represents the shell of radius κ, the surface denotes the energy spectrum (κ) of a specific radius κ. Therefore, the total turbulent kinetic energy $E_{t k e}$ is regarded as the sum of various (κ) which are denoted by diferent surfaces of different radius κ.

Combining with the Equation (2.30), we get:

$$
\begin{align*}
E_{t k e} & =\int_{0}^{\infty} E(\kappa) d \kappa \\
& =\frac{1}{2}\left\langle u_{i}^{2}\right\rangle \\
& =\iiint_{-\infty}^{\infty} \frac{1}{2} \Phi_{i i}(\boldsymbol{\kappa}) d \boldsymbol{\kappa} \tag{2.31}\\
& =\int_{0}^{\infty} \oint \frac{1}{2} \Phi_{i i}(\boldsymbol{\kappa}) d S(\kappa) d \kappa
\end{align*}
$$

From Equation (2.31), the relationship is obtained:

$$
\begin{align*}
E(\kappa) & =\oint \frac{1}{2} \Phi_{i i}(\boldsymbol{\kappa}) d S(\kappa) \\
& =\frac{1}{2} \Phi_{i i}(\boldsymbol{\kappa}) 4 \pi \kappa^{2} \tag{2.32}\\
& =2 \pi \kappa^{2} \Phi_{i i}(\boldsymbol{\kappa})
\end{align*}
$$

Figure 2.2: Three-dimensional shell ingeration

In Equation (2.31), we can also get:

$$
\begin{align*}
E_{t k e} & =\iiint_{-\infty}^{\infty} \frac{1}{2} \Phi_{i i}(\boldsymbol{\kappa}) d \boldsymbol{\kappa} \\
& =\frac{1}{2} \sum_{\boldsymbol{\kappa}} \Phi_{i i}(\boldsymbol{\kappa}) \Delta \kappa_{1} \Delta \kappa_{2} \Delta \kappa_{3} \tag{2.33}
\end{align*}
$$

The total turbulent kinetic energy can be also calculated by:

$$
\begin{align*}
E_{t k e} & =\sum_{\kappa} E(\kappa) \tag{2.34}\\
& =\frac{1}{2}\left\langle\tilde{u}^{\star}(\boldsymbol{\kappa}) \tilde{u}(\boldsymbol{\kappa})\right\rangle
\end{align*}
$$

Combining with the Equation (2.33) and (2.34), the calculation of $\Phi_{i i}$ is given (in this study, the interval of wave number is the same):

$$
\begin{equation*}
\Phi_{i i}=\frac{\left\langle\tilde{u}^{\star}(\boldsymbol{\kappa}) \tilde{u}(\boldsymbol{\kappa})\right\rangle}{(\Delta \kappa)^{3}} \tag{2.35}
\end{equation*}
$$

Substitute the Equation (2.35) into Equation (2.32):

$$
\begin{align*}
E(\kappa) & =2 \pi \kappa^{2} \Phi_{i i}(\boldsymbol{\kappa}) \\
& =2 \pi \kappa^{2} \frac{\left\langle\tilde{u}^{\star}(\boldsymbol{\kappa}) \tilde{u}(\boldsymbol{\kappa})\right\rangle}{(\Delta \kappa)^{3}} \tag{2.36}
\end{align*}
$$

where $\tilde{u}^{\star}(\boldsymbol{\kappa})$ is the conjugate of $\tilde{u}(\boldsymbol{\kappa})$.
To implement the Equation (2.36) in computer code, a process of threedimensional energy spectrum calculation is proposed:

1. Transfer the three physical space (in Cartesian coordinates) velocity fields $u(x, y, z), v(x, y, z), w(x, y, z)$ to Fourier space velocity fields $\tilde{u}_{1}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)$, $\tilde{u}_{2}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right), \tilde{u}_{3}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)$ using Fast Fourier Transfer (FFT), such as the MATLAB function 'fftn'.
2. Calculate $\left\langle\tilde{u}_{i}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right) \tilde{u}_{i}^{\star}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)\right\rangle$, the angle brackets denote the ensemble average. The emsemble average of a random variable x is given as $\langle x\rangle=\frac{1}{V} \sum_{n=1}^{V} x_{n}$. Thus, the $\left\langle\tilde{u}_{i}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right) \tilde{u}_{i}^{\star}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)\right\rangle$ of different components are:

$$
\begin{aligned}
& \frac{\sum^{N} \sum^{N} \sum^{N} \tilde{u}_{1}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right) \tilde{u}_{1}^{\star}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)}{(N \times N \times N)^{2}} \\
& \frac{\sum^{N} \sum^{N} \sum^{N} \tilde{u}_{2}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right) \tilde{u}_{2}^{\star}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)}{(N \times N \times N)^{2}} \\
& \frac{\sum^{N} \sum^{N} \sum^{N} \tilde{u}_{3}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right) \tilde{u}_{3}^{\star}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)}{(N \times N \times N)^{2}}
\end{aligned}
$$

where N is the number of points along the edge of the domain ($N=300$ in our case).
3. Establish a Fourier space cube domain, the number allocated to each point along the edge is order in this array: $R=[0,1, \ldots, N / 2,-N / 2+$ $1,-N / 2+2, \ldots,-1]$. This order is implemented to generate three dimensional coordinates defined by vectors X, Y, Z using MATLAB intrinsic function 'meshgrid': $[X, Y, Z]=$ meshgrid (R, R, R). Thus a Fourier space length tensor $r\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)$ of size N^{3} can be obtained in MATLAB, the code is: $r=\sqrt{(X)^{2}+(Y)^{2}+(Z)^{2}}$.
4. The length of wavenumber is divided into $N / 2$ bins from 1 to $N / 2$. Therefore, the number of bins used in calculation is $N / 2$.
5. The wavenumber is $k_{w}=[1, N / 2] \triangle x$, where $\triangle x=2 \pi / L$
6. For the p th bin, record all locations $\mathcal{L}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)$ of points that satisfy the relationship:

$$
r\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right) \triangle x \in\left(\frac{k_{w}(p-1)+k_{w}(p)}{2}, \frac{k_{w}(p)+k_{w}(p+1)}{2}\right] .
$$

The number of recorded points is \mathcal{N}.
7. The energy in each bin p is

$$
E(p)=2 \pi k_{w}{ }^{2}\left(\frac{\sum \tilde{u}_{1}(\mathcal{L}) \tilde{u}_{1}^{\star}(\mathcal{L})}{N^{2}}+\frac{\sum \tilde{u}_{2}(\mathcal{L}) \tilde{u}_{2}^{\star}(\mathcal{L})}{N^{2}}+\frac{\sum \tilde{u}_{3}(\mathcal{L}) \tilde{u}_{3}^{\star}(\mathcal{L})}{N^{2}}\right) /\left(\mathcal{N} \triangle x^{3}\right),
$$

where $p \in[1, N / 2]$
8. Plot energy spectrum $E(p)$ as the function of k_{w}.

There are two ways to calculate the turbulent kinetic energy, the first one is calculated from Fourier space velocity field:

$$
\begin{equation*}
E_{v}=\frac{1}{2}\left\langle\tilde{u}_{i}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right) \tilde{u}_{i}^{\star}\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)\right\rangle \tag{2.37}
\end{equation*}
$$

The second one is calculated from the energy spectrum:

$$
\begin{align*}
E_{e} & =\int_{0}^{\infty} E(\kappa) d \kappa \tag{2.38}\\
& =\sum E(\kappa) \Delta \kappa
\end{align*}
$$

The energy dissipation rate is also calculated in two ways, the first one is the average of local energy dissipation rate of all points:

$$
\begin{equation*}
\varepsilon_{v}=\sum \varepsilon_{p} / L^{3} \tag{2.39}
\end{equation*}
$$

where ε_{p} is the local energy dissipation rate of each point, it is given by [144]:

$$
\begin{equation*}
\varepsilon_{p}=2 \nu\left\langle S_{i j} S_{i j}\right\rangle \tag{2.40}
\end{equation*}
$$

where ν is the kinematic viscosity of fluid, $S_{i j}$ is the strain rate [144]:

$$
\begin{equation*}
S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{2.41}
\end{equation*}
$$

where the velocity gradient tensor is [144]:

$$
\frac{\partial u_{i}}{\partial x_{j}}=\left[\begin{array}{lll}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{3}} \tag{2.42}\\
\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}} & \frac{\partial u_{2}}{\partial x_{3}} \\
\frac{\partial u_{3}}{\partial x_{1}} & \frac{\partial u_{3}}{\partial x_{2}} & \frac{\partial u_{3}}{\partial x_{3}}
\end{array}\right]
$$

The second way is based on the energy spectrum [140]:

$$
\begin{equation*}
\varepsilon_{e}=\int_{0}^{\infty} 2 \nu \kappa^{2} E(\kappa) d \kappa \tag{2.43}
\end{equation*}
$$

The compensated energy spectrum is [140]:

$$
\begin{equation*}
E_{c}(\kappa)=E(\kappa) \kappa^{5 / 3} \varepsilon^{-2 / 3} \tag{2.44}
\end{equation*}
$$

The Kolmogorov hypothesis predicts the $-5 / 3$ spectrum in inertial subrange. This power-law behavior is clearly visualized in the compensated energy spectrum because it is flattened.

The dissipated energy spectrum is [140]:

$$
\begin{equation*}
E_{d}(\kappa)=E(\kappa) \kappa^{2} \nu \tag{2.45}
\end{equation*}
$$

2.5 Visualization method of coherent struc-

tures

The visualization and quantification of drop/vortices interaction is a primary source of information for developing the sub-models. The original Q criterion method transforms a velocity field (vector) to a Q field (scalar), which is then used to identify and visualize coherent structures. In this method, Q is defined as the balance between rotation and strain rate [98].

$$
\begin{equation*}
Q=\frac{1}{2}\left(\Omega^{2}-S^{2}\right) \tag{2.46}
\end{equation*}
$$

where $\Omega_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right)$ is the rotation rate, $S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$ is the strain rate. These are the antisymmetric and symmetric parts of the velocity gradient tensor correspondingly. Q is defined as the balance between rotation and strain rates [98]. According to Equation (2.46), those areas with positive Q values have higher rotation rate.

However, sometimes the absolute maximum Q value is several orders of magnitude larger than the absolute minimum value. The wide range of Q values decreases the accuracy of visualization. The normalized Q_{n} criterion is an advanced method which solves this problem since it removes the effect of order resulted from the wide range of value Q. In this method, Q_{n} is obtained by normalizing Q with the rotation squared [99].

$$
\begin{equation*}
Q_{n}=\frac{\Omega^{2}-S^{2}}{\Omega^{2}} \tag{2.47}
\end{equation*}
$$

For a given time instant, the process of extraction of coherent structures
included following steps [97:

1. Calculate Q_{n} values for the entire domain.
2. Set up a threshold value $Q_{t h}$ for the Q_{n} field. The selection of the threshold value affects the visualization results. The extracted coherent structures are small if the $Q_{t h}$ is high (close to the maximum Q_{n} value). However, a low threshold may make the coherent structures too dense to visualize.
3. Find the maximum Q_{n} value and its location. The point with the maximum Q_{n} value is regarded as the 'starting point' in a structure only if this maximum Q_{n} value is larger than the threshold $Q_{t h}$.
4. Identify all neighboring points from the 'starting point', points whose Q_{n} values higher than the $Q_{t h}$ are sorted out as in the same structure.
5. Record all points in this structure in another group, then reset all Q_{n} values of these points to zero.
6. Repeat steps 3 to 5 until no more structure is extracted. Record the maximum volume of the structure.
7. Set up a volume criterion $V_{c r}$. To make the visualization clear, structures smaller than the volume criterion are regards as noise and are removed. If the structure is larger than or equal to the $V_{c r}$, all Q_{n} values of the structure will be recorded. Usually, the volume criterion $V_{c r}$ is set as less than the 4% of the maximum volume of coherent structures $V_{c r} \leq$ $4 \% V_{\max }$ [97].

In Fig. 3.13, the coherent structures of single phase homogeneous isotropic turbulent flow are presented, they are colored by the vorticity magnitude. The maximum Q_{n} value of the entire domain is 1 while the maximum unnormalized Q value calculated by Equation 2.46 is 1.745×10^{-3}. The minimum meaningful Q_{n} and Q values are 0 , because only areas with positive values have higher rotation rate.

In this study, a practical identification method is proposed to fulfill the step 4 of the process. The method is explained based on a two-dimensional structure. The three-dimensional structure identification can be achieved by adding one more dimension in the identification process. Before introducing the method, three operations have to be defined. Assume the Q_{n} value of point \mathcal{P} is higher than the threshold value, only the nearest four points surrounding \mathcal{P} are checked. If a point in the domain has Q_{n} value is lower than the threshold value, the point \mathcal{P} is then recorded as the 'boundary point'. Assume a 'moving block' that only departures from the 'starting point' and moves on points one by one along with x and y directions; Assume a 'flag' on each point, set all 'flags' to zero at the beginning.

Fig. 2.3 covers a random complex two-dimensional coherent structure. The 'starting point' is marked with a star and with coordinate (0, 0). Assume that this is the first structure. The process of two-dimensional structure identification includes the following steps:

1. Beginning from the 'starting point', the 'moving block' moves to each point one by one along with x and y directions. If the Q_{n} value on current 'moving block' is higher than the threshold value, then judge the value of flag, change the flag of this point to \mathcal{I} if the flag is zero,
where \mathcal{I} is the \mathcal{I} th structure that is under identification; If the flag is not zero, then jump it and moves on the next point. Keep moving until four 'boundary points' are recorded.
2. When 'moving block' moves on a point that is higher than the threshold and has 'zero' flag, check all points along with the direction which is perpendicular to the direction that the 'moving block' moves along currently. If the flags of points are zero, then change them to \mathcal{I}; if they are not zero, then jump to the next point. This is called 'perpendicular check'. Finish the 'perpendicular check' when two 'boundary points' are recorded. Only new 'boundary points' are recorded as the new generation 'boundary points'. This step is regarded as the 'second layer check'.

In Fig. 2.3 , the 'moving point' is now at $(-3,0)$. Check all points along y direction (marked by arrows) until two 'boundary points' $(-4, \pm 2)$ are recorded. Now all points between $(-4,2)$ and $(-4,-2),(0,0)$ and $(-4,0)$ have flag ' 1 ' because this is the first structure. By the end of step 1 and 2, all 'boundary points' that can be recorded are marked as circles in Fig. 2.3, these points are classified as the first generation 'boundary points'.
3. All this generation 'boundary points' are regarded as 'starting point', repeat these steps to get further generations of 'boundary points' until no more new 'boundary points' are found.

In Fig. 2.3, the second generation 'boundary points' are marked as triangles. All 'boundary points' are found and all flags in the structure are changed to ' 1 ' till now. The structure is successfully identified.

Figure 2.3: A random two-dimensional structure

To extend to the three-dimensional structures extraction, several modifications need to be implemented in the operation definition and identification process that were given above. The number of points which have to be checked to ensure a 'boundary point' becomes six; One more direction is added in the movement of 'moving block' and 'perpendicular check'; The number of 'boundary points' in steps 1 and 2 are six and four; A further layer check - 'third layer check', which is similar to the 'second layer check' has to be added following the 'second layer check'.

The normalized Q_{n} criterion extraction method coupled with the identification method described above can obtain coherent structures accurately despite the complexity of the vortices shape. With the unique 'flag' on each point, the raw data of exact positions and number of coherent structures are also obtained.

Chapter 3

Results and Discussion

In this chapter, results of multiple cases of single-phase and two-phase turbulent flow simulations are presented and discussed. The simulation cases and parameters are summarized in Section 3.1. To investigate statistical characteristics of liquid-liquid turbulent flow, the energy spectra, the probability distribution function (PDF) of vorticity, energy dissipation rate, and eigenvalues of strain tensor of the single-phase flow is discussed in Section 3.2. In Section 3.3, the effect of dispersed phase volume fraction on the energy spectra, PDF of vorticity, energy dissipation rate, and eigenvalues of strain tensor are presented. In Section 3.4, the effect of dispersed phase effect on the energy spectra, PDF of vorticity, energy dissipation rate, and eigenvalues of strain rate are shown. In Section 3.5, coherent structures of single-phase flow, and coherent structures together with the liquid-liquid interface of two-phase flow are given.

3.1 Simulation parameters

Three single-phase homogeneous isotropic turbulent flow fields were generated in a fully-periodic cubic domain of size $L \times L \times L=300 \times 300 \times 300$ lattice units [lu]. The Kolmogorov length scale η_{K} is set equal to $1[l u]$ for all simulations.

The flow field in conventional mixing devices is very inhomogeneous. This means depending on location in the vessel, the drop will be exposed to different flow conditions. To investigate the behaviour of drop under different turbulent conditions, three cases characterized by different intensity of turbulent flow field were considered. To replicate these flow conditions, three values of relaxation time related to fluid viscosity were selected: $\tau_{c}=0.54,0.525,0.5$. These relaxation times result in different values of viscosity of continuous phase $\nu_{c}=c_{s}^{2}\left(\tau_{c}-0.5\right)$, they were then used in the Equation 2.20 . The energy dissipation rate was calculated according to the Kolmogorov correlation [140] $\varepsilon=\nu_{c}^{3} / \eta_{K}^{4}$, where $\eta_{K}=1[\mathrm{lu}]$. The simulation parameters that characterize three turbulent flow fields are shown in Table 3.1.

The turbulent generation approach did not allow to set the volume-averaged root-mean-squared velocity $u_{r m s}$ a priori. For that reason, it was determined as a result of simulation. Based on obtained value, four parameters were calculated: Taylor micro-scale $\lambda=\left(15 \nu_{c} u_{r m s}^{2} / \varepsilon\right)^{1 / 2}$ [140]; Taylor micro-scale

Table 3.1: Simulation parameters. Lattice units: [lu] - lattice units for length scale; [ts] - time step.

Case \#	τ_{c}	ν_{c}	ε	$u_{r m s}$	$t_{K},[\mathrm{ts}]$	$t_{e d d y},[\mathrm{ts}]$	$\lambda,[\mathrm{lu}]$	$R e_{\lambda}$
Case 1	0.54	$13.3 \cdot 10^{-3}$	$2.4 \cdot 10^{-6}$	$5.1 \cdot 10^{-2}$	75	1102	14.85	56.91
Case 2	0.525	$8.3 \cdot 10^{-3}$	$5.8 \cdot 10^{-7}$	$3.2 \cdot 10^{-2}$	120	1770	14.87	57.07
Case 3	0.51	$3.3 \cdot 10^{-3}$	$3.7 \cdot 10^{-8}$	$1.3 \cdot 10^{-2}$	300	4424	14.91	57.41

Reynolds number $R e_{\lambda}=u_{r m s} / \nu_{c} ;$ Kolmogorov time scale $t_{K}=\left(\nu_{c} / \varepsilon\right)^{1 / 2} ;$ Eddy turnover time $t_{e d d y}=u_{r m s}^{2} / \varepsilon$. Therefore, for all considered cases, $\lambda \approx 15$ and $R e \approx 57$. Thus parameters are also presented in Table 3.1.

First, a fully-developed turbulent flow field was generated. Then a spherical single mother drop was injected into the flow field of condition Case 2. The size of drop varies to make the dispersed phase volume fraction to be $\phi=$ $0.02 \%, 0.05 \%, 3.35 \%$. Further, 382 spherical mother drops were injected into the same flow field, the diameter of each drop was 30 [lu], that makes the dispersed phase volume fraction to be 20%. The effect of dispersed phase viscosity was also investigated by setting the dispersed to continuous phase viscosity ratio to $\mu_{d} / \mu_{c}=0.1,1,10$.

3.2 Single phase flow

3.2.1 Energy spectra

Fig. 3.1 presents the comparison of energy spectra, compensated energy spectra and dissipated energy spectra for Case 1, Case 2 and Case 3. As can be seen from Fig. 3.1(a), the simulation domain of edge length $L=300$ [lu] resolves the inertial sub-range in three cases. However, the resolved inertial sub-range in three cases are narrow. The Fig. 3.1(b) highlights this conclusion: by multiplying the energy spectrum by $\kappa^{5 / 3} \varepsilon^{-2 / 3}$, the curve that denotes inertial sub-range becomes a horizontal line in compensated energy spectra plot. The horizontal region only exists in a range $8<\kappa<10$. To resolve a wider inertial sub-range, it is necessary to extend the size of the simulation domain. In turn, this will increase the computational cost of DNSs.

Figure 3.1: Energy spectra of single phase turbulent flows at different energy inputs. (a) Energy spectra; (b) Compensated energy spectra; (c) Dissipated energy spectra.

In Fig. 3.1(a) the energy at low wave number (large length scale) is different in three cases. The energy entered turbulence is maximum in Case 1 while is minimum in Case 3. The discrepancy of energy between Case 1 and Case 2 is much smaller than that between Case 2 and Case 3. The energy entered in Case 2 is nearly the same as the energy entered in Case 1. This proves the parameter set in Table 3.1: the energy dissipation rate of Case 1 is 4.1 times larger than that of Case 2 while the energy dissipation rate of Case 2 is 15.7 times larger than that of Case 3. In Fig. 3.1(b), the dissipation ε and wave number κ have no effect on the plot, because by scaling with $\kappa^{5 / 3} \varepsilon^{-2 / 3}$, the relationship is obtained: $E(\kappa) \kappa^{5 / 3} \varepsilon^{-2 / 3} \varepsilon^{2 / 3} \kappa^{-5 / 3}=\varepsilon^{0} \kappa^{0}$. Thus, the three curves nearly overlap in the compensated energy spectrum.

In Fig. 3.1(c), the energy of Case 1 dissipated fast at high wave number, meaning that the higher energy input results in higher energy dissipation. By scaled with $\kappa^{2} \nu$, the relationship is obtained: $E(\kappa) \kappa^{2} \nu \sim \varepsilon \kappa^{1 / 3} \sim \nu^{3} \kappa^{1 / 3}$, the Kolmogorov $-5 / 3$ law becomes $1 / 3$, the curve that represents the inertial subrange in the $\log -\log$ is parallel to the straight line of $1 / 3$ slope. The viscosity in Case 1 is 1.6 times larger than that in Case 2, the viscosity in Case 2 is 2.5 times larger than that in Case 3. Due to the relationship of ν^{3} in dissipated energy spectra, the discrepancy between Case 2 and Case 3 is far larger than that between Case 1 and Case 2. As can be seen, at large wave number, the higher energy input flow condition has higher energy dissipation. This supports the conclusion from Fig. 3.1.

It is also noticed that there is minor difference in these plots for a given time instant and the time-averaged data. Thus the energy spectra presented here are based on one time instant.

The turbulent kinetic energy calculated by Equation (2.37) and 2.38, as

Table 3.2: Turbulent kinetic energy and average energy dissipation rate calculated by different methods.

Case \#	E_{v}	E_{e}	ε_{v}	ε_{e}	ε
Case 1	$3.5 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$1.6 \cdot 10^{-6}$	$2.3 \cdot 10^{-6}$	$2.4 \cdot 10^{-6}$
Case 2	$1.7 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$4.0 \cdot 10^{-7}$	$5.8 \cdot 10^{-7}$	$5.8 \cdot 10^{-7}$
Case 3	$2.5 \cdot 10^{-4}$	$2.2 \cdot 10^{-4}$	$2.4 \cdot 10^{-8}$	$3.5 \cdot 10^{-8}$	$3.7 \cdot 10^{-8}$

well as the average energy dissipation rate calculated by Equation (2.39) and (2.43) in three cases are given in Table. 3.2. E_{v} and E_{e} are the velocitybased and energy spectrum-based turbulent kinetic energy; ε_{v} and ε_{e} are the velocity-based and energy spectrum-based average energy dissipation rate.

As can be seen, the turbulent kinetic energy obtained from the velocity field and energy spectrum are not exactly the same, the one from velocity field is larger. For the average energy dissipation rate, the one obtained from energy spectrum is larger than that from velocity field. Compared to the energy dissipation rate ε, the results from energy spectrum are closer to these values.

3.2.2 Vorticity

Vortex is to be observed as an rotational region around a core. The concept of vorticity proposed to describe a vortex was defined as the curl of velocity $(\omega=\nabla \times v)$. The vorticity was calculated using the MATLAB intrinsic function 'curl'. Fig. 3.2 represents the probability density function (PDF) of vorticity in single phase turbulent flows of three energy inputs. The calculation of vorticity was implemented for each lattice cube, thus, a three-dimensional vorticity magnitude field of 300^{3} values was obtained. For a continuous variable X, the probability density function $f(x)$ satisfies the relationship $\int f(x) d x=1$.

Therefore, the probability density function for discrete random variable is $p\left(x_{i}\right)=\frac{n_{i}}{N \delta x}$, where n_{i} is the number of variable at x_{i}, N is the total number of variable, δx is the step between x_{i} and x_{i+1}. The probability density function reveals the distribution of the variable.

As can be seen from the Fig. 3.2, the maximum density of vorticity in Case 1, Case 2, and Case 3 are 74, 120, and 305, respectively. Therefore, with the increase of energy input, the maximum density of vorticity decreases. The maximum density of vorticity in Case 3 is 2.5 times of that in Case 2, and the maximum density of vorticity in Case 2 is 1.6 times of that in Case 1.

Figure 3.2: PDF of vorticity in single phase turbulent flows of different energy inputs

The increase of energy input also results in the increase of distribution of vorticity, i.e. the distribution of vorticity is wider. It validates the energy spectra in Fig. 3.1: for a given wave number (vortex of a given length scale), the vortex in larger energy input flow condition contains more energy because
the vorticity is higher.

3.2.3 Local energy dissipation rate

The energy dissipation rate reveals the rate at which the turbulent kinetic energy is transferred into thermal energy with the dissipation of small eddies [140]. The calculation is given from Equation (2.40) to 2.42 . Fig. 3.3 represents the normalized PDF of energy dissipation rate in single phase turbulent flows of different energy inputs at one time instant. The energy dissipation rate of each lattice cube is calculated and normalized by the average dissipation rate of the corresponding case listed in Table. 3.1. For example, the curve that denotes flow condition of Case 1 is obtained by scaling with the average dissipation rate of Case 1 in Table. 3.1.

Figure 3.3: PDF of normalized energy dissipation rate in single phase turbulent flows of different energy inputs

As can be seen in the Fig. 3.3, in the Case 1 and Case 2, most of the
normalized energy dissipation rates in the region are smaller than the average energy dissipate rate $\varepsilon_{\text {ave }}$. The increase of energy input results in the decrease of PDF of normalized energy dissipation rate. Further, both the maximum and minimum values of normalized energy dissipation rate are smaller in the higher energy input case. The PDF of $\varepsilon / \varepsilon_{\text {ave }}$ decreases at higher normalized dissipation rate, finally, the PDF oscillates at a specific state. For example, in Case 1, the PDF reaches the maximum value at $\varepsilon / \varepsilon_{\text {ave }}=0.18$, then it decreases from 5.98×10^{5} to 1 , finally, the PDF oscillates around 1 . The distribution of $\varepsilon / \varepsilon_{\text {ave }}$ is more discrete at higher value region.

3.2.4 Eigenvalues of strain tensor

The velocity gradient tensor given in the Equation (2.42) can be decomposed into a symmetric strain tensor and an antisymmetric rotation tensor. The vorticity in Section 3.2 .2 describes the rotation rate of particles related to the rotation tensor. In this section, the eigenvalues of strain tensor are studied to reveal the compression and stretching. The strain tensor $s_{i j}$ is given by:

$$
s_{i j}=\frac{1}{2}\left[\begin{array}{lll}
\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}} \\
\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{2}} & \frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}} \\
\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}} & \frac{\partial u_{3}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{3}}
\end{array}\right]
$$

The eigenvalues of each strain tensor are calculated. The negative eigenvalue λ_{1} is most compressive while the positive eigenvalue λ_{3} is the most stretching, the eigenvalue λ_{2} between λ_{1} and λ_{3} is either compressive or stretching [145].

The eigenvalues of strain tensor are calculated using MATLAB 2017 in-
trinsic function 'eig' for each lattice cube. Fig. 3.4 represents the PDF of eigenvalues of strain tensor of single phase turbulent flows of different energy inputs, the red curves denote flow condition Case 1, blue curves denote flow condition Case 2, and black curves denote flow condition Case 3; the dashed curves represent eigenvalue λ_{1} (negative eigenvalue), solid curves represent eigenvalues λ_{2}, and dash-dot curves represent eigenvalues λ_{3} (positive eigenvalue), $\lambda_{1}<\lambda_{2}<\lambda_{3}$.

As can be seen, in higher energy input flow condition, the distribution of eigenvalues is wider. The increase of energy input results in the density decrease of λ_{1}, increase of λ_{2} and λ_{3}. Therefore, in higher energy input flow, the flow field is more stretching than compressive.

Figure 3.4: PDF of eigenvalues of strain tensor of single phase turbulent flows of different energy inputs

3.3 Effect of dispersed phase volume fraction

3.3.1 Energy spectra

In Fig. 3.5, the energy spectra for a single phase flow as well as for the cases with different values of dispersed phase volume fraction ϕ in the flow condition Case 2 are shown. The spherical drop of different sizes are injected into the flow Case 2 to reach the different dispersed phase volume fraction $\phi=0.02 \%, 0.05 \%, 3.35 \%$ and 20%. For the larger dispersed phase volume fraction, the energy at high wave number (small length scale) is larger. In Fig. 3.5(a), the energy of $\phi=20 \%$ at high wave number is around 10^{5} larger than the energy of single-phase flow. Therefore, the presence of deformable liquid-liquid interface promotes the energy dissipation. This is more clear in Fig. 3.5(b): the increase of dispersed phase volume fraction results in larger energy dissipation rate. The similar conclusion was found in [146], which was a study of solid-liquid dispersion: the larger dispersed phase volume fraction led to a higher turbulent energy at high wave number, it is accompanied by an increase of energy dissipation rate.

However, the slight decrease of energy in the inertial sub-range resulted by the increase of dispersed phase volume fraction is noticed. The energy of the condition $\phi=20 \%$ around low wave number $\kappa=10$ is the minimum among different dispersed phase volume fraction cases. Therefore, in higher dispersed volume fraction case, the energy covered by different size eddies is distributed more uniformly. This conclusion is also supported by Fig. 3.5(c).

Another important finding of this work is that the implementation of MRT mitigated the artificial significant $\left(10^{10}-10^{12}\right)$ energy gain at high wave numbers reported earlier [113]. This energy gain is obvious when the velocity at
the diffuse interface is of order equals to the spurious velocity that represents a numerical peculiarity of diffuse interface methods including LBM. Therefore, by implementing the MRT collision operator, the magnitude of physical velocity becomes larger than the spurious velocity.

3.3.2 Vorticity

Fig. 3.6 represents the PDF of vorticity in two phase turbulent flows of different dispersed phase volume fraction. The increase of dispersed phase volume fraction results in the increase of density of distribution at lower vorticity (around 0) and decrease of density of distribution at higher vorticity (larger than 3×10^{-3}, smaller than -3×10^{-3}). Therefore, in high dispersed phase volume fraction case, the average vorticity magnitude of flow field is smaller.

3.3.3 Local energy dissipation rate

Fig. 3.7 gives the PDF of normalized energy dissipation rate in two phase turbulent flows of different dispersed phase volume, the energy dissipation rate for each lattice cube in domain is calculated and normalized by the average dissipation rate of Case $2\left(\varepsilon_{\text {ave }}=5.8 \times 10^{-7}\right)$.

In the Fig. 3.7, the maximum PDF of $\varepsilon / \varepsilon_{\text {ave }}$ is 2.4×10^{6} around $\varepsilon / \varepsilon_{\text {ave }}=$ 0.18 in drop-free turbulence, the maximum PDF of $\varepsilon / \varepsilon_{\text {ave }}$ is 3.5×10^{6} around $\varepsilon / \varepsilon_{\text {ave }}=0.11$ in turbulence with $\phi=20 \%$. Therefore, the increase of liquidliquid interface results in the increase of the maximum PDF of $\varepsilon / \varepsilon_{\text {ave }}$, and the decrease of value of $\varepsilon / \varepsilon_{\text {ave }}$ that has the maximum PDF.

However, the increase of dispersed phase volume fraction results in the decrease of PDF at higher value of the normalized energy dissipation rate

Figure 3.5: Energy spectra of two-phase turbulent flows of different dispersed phase volume fraction in Case 2. (a) Energy spectra; (b) Dissipated energy spectra; (c) Compensated energy spectra.

Figure 3.6: PDF of vorticity in two phase turbulent flows of different dispersed phase volume fraction in Case 2
$\left(\varepsilon / \varepsilon_{\text {ave }}>0.38\right)$. For example, at $\varepsilon / \varepsilon_{\text {ave }}=2$, the PDF of $\varepsilon / \varepsilon_{\text {ave }}$ equals to 1.05×10^{5} in $\phi=0$ while equals to 5.73×10^{4} in $\phi=0.20 \%$.

3.3.4 Eigenvalues of strain tensor

Fig. 3.8 represents the PDF of eigenvalues of strain tensor of single phase and two phase turbulent flows of different dispersed phase volume fraction, the black curves denote the case $\phi=0$ (single phase), red curves denote the case $\phi=0.02 \%$, blue curves denote the case $\phi=0.05 \%$, green curves denote the case $\phi=3.35 \%$, magenta curves denote the case $\phi=20 \%$; the dashed curves represent eigenvalue λ_{1}, solid curves represent eigenvalues λ_{2}, and dash-dot curves represent eigenvalues $\lambda_{3}, \lambda_{1}<\lambda_{2}<\lambda_{3}$.

As can be seen, the increase of dispersed phase volume fraction results

Figure 3.7: PDF of normalized energy dissipation rate in two phase turbulent flows of different dispersed phase volume fraction in Case 2
in the increase of the maximum probability density, and the increase of λ_{1}, decrease of λ_{2} as well as λ_{3}. This reveals that the increase of liquid-liquid interface boosts the compression.

3.4 Effect of dispersed phase viscosity

3.4.1 Energy spectra

The energy spectra in the flow condition Case 2 with different viscosity ratios $\mu_{d} / \mu_{c}=0.1,1,10$ at dispersed phase volume fraction $\phi=0.05 \%$ are presented in Fig. 3.9. As is shown in Fig. 3.9(a) and (c), the change of viscosity ratio has no effect on the inertial sub-range. However, at high wave number, the small scale eddies in large viscosity ratio case contain less energy, the increase of dispersed phase viscosity suppresses dissipation rate.

Figure 3.8: PDF of eigenvalues of strain tensor of single phase and two phase turbulent flows of different dispersed phase volume fraction in Case 2

3.4.2 Vorticity

Fig. 3.10 represents the PDF of vorticity in two phase turbulent flows of different viscosity ratio, the viscosity ratio μ_{d} / μ_{c} is $0.1,1$, and 10 . As can be seen, the change of viscosity nearly has no effect on the PDF of vorticity: the maximum is 125.5 in the case $\mu_{d} / \mu_{c}=1,122.3$ in the cases $\mu_{d} / \mu_{c}=0.1$ and $\mu_{d} / \mu_{c}=10$.

3.4.3 Local energy dissipation rate

Fig. 3.11 gives the PDF of normalized energy dissipation rate in two phase turbulent flows of different viscosity ratio, the energy dissipation rate or each lattice cube in domain is calculated and normalized by the average dissipation rate of Case $2\left(\varepsilon_{\text {ave }}=5.8 \times 10^{-7}\right)$.

As can be seen, the maximum PDF is 2.63×10^{6}, it occurs around $\varepsilon / \varepsilon_{\text {ave }}=$

Figure 3.9: Energy spectra of two-phase turbulent flows of different viscosity ratio at $\phi=0.05 \%$ in Case 2. (a) Energy spectra; (b) Dissipated energy spectra; (c) Compensated energy spectra.

Figure 3.10: PDF of vorticity in two phase turbulent flows of different viscosity ratio at $\phi=0.05 \%$ in Case 2
0.18 in three viscosity ratios cases. It is noticed that the variance of viscosity ratio μ_{d} / μ_{c} has no obviously influence on the PDF of normalized energy dissipation rate.

3.4.4 Eigenvalues of strain tensor

Fig. 3.12 represents the PDF of eigenvalues of strain tensor of two phase turbulent flows of different viscosity ratio μ_{d} / μ_{c}, the red curves denote the case $\mu_{d} / \mu_{c}=0.1$, the blue curves denote the case $\mu_{d} / \mu_{c}=1$, the black curves denote the case $\mu_{d} / \mu_{c}=10$; the dashed curves represent eigenvalue λ_{1}, solid curves represent eigenvalues λ_{2}, and dash-dot curves represent eigenvalues λ_{3}, $\lambda_{1}<\lambda_{2}<\lambda_{3}$. As can be seen, the variance of viscosity ratio nearly results in no variance of PDF of eigenvalues. Thus, both the compression and streching

Figure 3.11: PDF of normalized energy dissipation rate in two phase turbulent flows of different viscosity ratio at $\phi=0.05 \%$ in Case 2
are impervious from the variance of viscosity.

Figure 3.12: PDF of eigenvalues in two phase turbulent flows of different viscosity ratio at $\phi=0.05 \%$ in Case 2

3.5 Coherent structures

3.5.1 Single-phase flow

In normalized Q_{n} criterion, the selection of threshold value $Q_{t h}$ and cutoff volume $V_{c r}$ is important because it directly affects the extraction of coherent structures. Therefore, the effects of $Q_{t h}$ and $V_{c r}$ are investigated on the flow condition of Case 2.

Fig. 3.13 presents coherent structures extracted under different $Q_{t h}$ in Case 2 , the structures are colored by vorticity magnitude $(\|\nabla \times u\|)$. This figure reveals the effect of $Q_{t h}$. In Table 3.3, the parameters and results of coherent structures under effect of $Q_{t h}$ were listed.
$V_{c r}$ is the cutoff volume, $V_{\max }$ is the volume of the maximum structure. N is the number of coherent structures in the domain. As can be seen, the increase

Table 3.3: Parameters and results of coherent structures under effect of $Q_{t h}$. N is the number of structures; $V_{\max }$ is the volume of the maximum structure.

Figure \#	$Q_{t h}$	$V_{c r} / V_{\max }$	N	$V_{\max }$
Figure 3.13 (a)	0.8		688	10162
Figure 3.13				
Figure	b)	0.85	4%	778
3784				

of $Q_{t h}$ results in the increase of the number of structures and decrease of the size of structures. The color remains the same in three sub-figures because the change of $Q_{t h}$ has no influence on the vorticity field.

Therefore, $Q_{t h}$ should be carefully selected. If $Q_{t h}$ is large (close to 1), the size of structures will be small. It results in the lack of information in visualization, for example, part of important vortices maybe neglected; if $Q_{t h}$ is too small, the structures will be too dense to visualize. When $Q_{t h}=0.8$, the total volume of extracted coherent structures is 4.1% of the volume of the domain, it matches the published result [97]. Thus, in this study, $Q_{t h}=0.8$ is regarded as a suitable threshold value for visualization.

Fig. 3.14 gives coherent structures extracted under the same $Q_{t h}$, but the noises are removed under different $V_{c r}$. The structures are colored by vorticity magnitude $(\|\nabla \times u\|)$. In Table 3.4. the parameters and results of coherent structures under effect of $V_{c r}$ were listed.

As can be seen, the increases of $V_{c r}$ results in the decrease of the number of structures. Only 20% of number of structures remain when the $V_{c r}$ is increased from 0 to 2% of the largest structure, but 62% of number of structures are left when the $V_{c r}$ is increased from 2% to 4% of the largest structure. Therefore, the deduction of noise is more obvious at the beginning of increase of $V_{c r}$. With the increase of $V_{c r}$, the deduction of noise becomes weak. It is because the

Figure 3.13: Coherent structures of different threshold $Q_{t h}$ extracted in Case 2. (a) $Q_{t h}=0.8, V_{c r} / V_{\max }=4 \%$; (b) $Q_{t h}=0.85, V_{c r} / V_{\max }=4 \%$; (c) $Q_{t h}=$ $0.9, V_{c r} / V_{\max }=4 \%$.

Table 3.4: Parameters and results of coherent structures under effect of $V_{c r}$. N is the number of structures; $V_{\max }$ is the volume of the maximum structure.

Figure \#	$Q_{t h}$	$V_{c r} / V_{\max }$	N	$V_{\max }$
Figure 3.14 (a)		0	5521	
Figure 3.14				
(b)	0.8	2%	1114	10162
Figure 3.14				

noises are successfully removed. The cutoff volume $V_{c r}=4 \% V_{\max }$ is regarded as a suitable value.

In Fig. 3.15, coherent structures of different cases and the corresponding probability distribution function (PDF) of volume-equivalent diameters are presented. In Table 3.5, the parameters and results of coherent structures of different flow conditions were listed. $V_{\text {cst }}$ is the total volume of all coherent structures, V_{t} is the volume of domain. The volume-equivalent diameter of each structure is calculated by $d_{e}=\left(\frac{6 V_{c s}}{\pi}\right)^{1 / 3}$, where $V_{c s}$ is the volume of the structure. In Fig. 3.15 (a), (c), (e), the coherent structures are colored by the vorticity magnitude $(\|\nabla \times u\|)$. As can be seen, the decrease of energy input results in the decrease of vorticity magnitude. It can be also concluded that in Case 1 and Case 2, the number of structures and the volume of the largest structure are respectively the same. It is attributed to the little difference in energy input in Case 1 and Case 2 represented in Fig. 3.1(a). In Fig. 3.15(b), (d), (f), all bins are of the same width. The volume-equivalent diameter of structures in Case 3 is larger than that in Case 1 and 2. Therefore, the lower energy input results in the decrease of the number structures and increase of the size of structures. The assumption is that in a lower energy input flow condition, the flow is less turbulent, from Fig. 3.1(c) the dissipation rate is less, the vortices remain large size, thus the number of structures is small. To

Figure 3.14: Coherent structures of different volume criterion $V_{c r}$. (a) $Q_{t h}=$ $0.8, V_{c r} / V_{\max }=0 \%$; (b) $Q_{t h}=0.8, V_{c r} / V_{\max }=2 \%$; (c) $Q_{t h}=0.8, V_{c r} / V_{\max }=$ 4%.

Table 3.5: Parameters and results of coherent structures of different flow conditions. N is the number of structures; $V_{\max }$ is the volume of the maximum structure; $V_{c s t}$ is the total volume of all structures; V_{t} is the volume of the domain.

Figure \#	$Q_{t h}$	$V_{c r} / V_{\max }$	N	$V_{\max }$	$V_{c s t} / V_{t}$
Figure $3.15(\mathrm{a})$			686	13882	4.1%
Figure $3.15(\mathrm{c})$	0.8	4%	688	10162	4.3%
Figure 3.15(e)			363	25937	3.4%

the contrary, a flow field with larger energy input is more turbulent, from Fig. 3.1(c) we know the dissipation rate is larger, the vortices in flow field tend to break up into smaller vortices, it leads to the large number and small size of structures.

Figure 3.15: Coherent structures and corresponding PDF of volume-equivalent diameter. $Q_{t h}=0.8, V_{c r} / V_{\max }=4 \%$. (a) Coherent structures of Case 1; (b) PDF of volume-equivalent diameter of Case 1; (c) Coherent structures of Case 2; (d) PDF of volume-equivalent diameter of Case 2; (e) Coherent structures of Case 3; (f) PDF of volume-equivalent diameter of Case 3.

3.5.2 Two-phase flow

Visualization of turbulent flow field together with the liquid-liquid interface provides valuable information on how drop/vortices interaction occurs. The most commonly used assumption in breakup models is that only vortices of the size equal to or less than the drop size are responsible for drop breakup.

In Fig. 3.16, drop/coherent structures and the corresponding PDF of the volume-equivalent diameter of structures are presented. The results are presented for two time instances: the first one $t=10 t_{K}$ stands for the state just before the breakup, and the second state $t=15 t_{k}$ is after drop disintegration, where t_{K} is the Kolmogorov time scale. The liquid-liquid interface is colored by a solid color (gray), and coherent structures are colored by vorticity magnitude. The threshold value $Q_{t h}=0.8$ together with the cutoff volume $V_{c r}=4 \% V_{\max }$ makes the total volume of extracted coherent structures to be 4.3% of the simulation domain. This volume of structures ensures the clearance of visualization.

The number of coherent structures in Fig. 3.16(a) and (c) are 714 and 700, respectively. Thus, there is no obvious difference in numbers of structures. The PDF of volume-equivalent diameter of structures is calculated by $d_{e}=$ $\left(\frac{6 V_{c s}}{\pi}\right)^{1 / 3}$, where $V_{c s}$ is the volume of the structure. As can be seen from Fig. 3.16(b) and (d), the size of structures slightly decreases after the breakup of a drop. The turbulent kinetic energy of extracted coherent structures is 4.07\% and 4.05% of the total kinetic energy in Fig. 3.16(a) and (c). This phenomenon is explained by the Kolmogorov hypothesis that energy transforms to a smaller scale with the breakup of vortices. The most volume-equivalent diameter of coherent structures is equal to or smaller than $15[\mathrm{lu}]$, which is also close to
the Taylor micro-scale given in Table 3.1. The injected mother drop had a diameter of 30 [lu], which was larger than the vortices. After the breakup, the daughter drops that did not drop again were smaller than the vortices. Therefore, this result validates the general assumption that only vortices of size equal to or smaller than drop size are responsible for the breakup event.

Our results also indicate that not a single but multiple vortices interact with the drop at the same time. This interaction was revealed when a mother drop was injected into turbulent flows: a breakup of the drop took place.

Figure 3.16: Drop/coherent structures and corresponding PDF of volumeequivalent diameter in Case 2 at different time instants. $Q_{t h}=0.8, V_{c r} / V_{\max }=$ 4%. (a) Drop/coherent structures at $t / t_{K}=10$; (b) PDF of volume-equivalent diameter at $t / t_{K}=10$; (c) Drop/coherent structures at $t / t_{K}=15$; (d) PDF of volume-equivalent diameter at $t / t_{K}=15$.

Chapter 4

Conclusions

Liquid-liquid dispersions generated by the agitation of two immiscible liquids are of great importance in chemical and petroleum industries, pharmacy, biology, food, and cosmetics. In these multi-phase systems, the drop size distribution (DSD) of the dispersed phase defines dispersion properties. For that reason, the ability to predict and control the DSD is crucial. One of the modeling approaches used to estimate the DSD is based on the solution of population balance equations (PBEs). The persistent limitation of this approach is that the results heavily rely on the choice of breakup and coalescence models (kernels). In this study, direct numerical simulations (DNSs) are used to study a single drop behavior in homogeneous isotropic turbulence to understand the mechanisms of drop breakup. The results are necessary to develop well-grounded sub-models that can be incorporated into PBE modeling and improve its reliability.

In this study, three single phase flow conditions of different energy input were investigated in a three-dimensional cubic domain of size 300^{3} [lu]. Then a spherical drop of different sizes was injected into the flow of con-
dition Case 2 to reach the different dispersed phase volume fraction $\phi=$ $0,0.02 \%, 0.05 \%, 3.35 \%, 20 \%$. This is fulfilled to study the effect of dispersed phase volume fraction. the density and viscosity of drop are set to be the same with density and viscosity of continuous phase. Further, the dispersed phase to continuous phase viscosity ratio μ_{d} / μ_{c} is set as $0.1,1$, and 10 to explore the effect of viscosity ratio under condition $\phi=0.05 \%$ in Case 2 .

In the energy spectra of these single phase and two phase turbulent flow conditions, the inertial sub-range is observed to be resolved in the simulation domain. The increase of energy input, the increase dispersed phase volume fraction, as well as the decrease of viscosity ratio can promote the energy dissipation rate at high wave number. The increase of dispersed phase volume fraction can also makes the distribution of energy contained by eddies more uniform.

In the PDF of vorticity, as can be seen, the increase of energy input results in the increase of vorticity magnitude in flow field, the increase of dispersed phase volume fraction results in the decrease of vorticity magnitude, the variance of viscosity does not change the PDF of vorticity. Combined with the conclusion about energy dissipation rate at high wave number, it is assumed that the variance of ability at which the turbulent kinetic energy is transferred into thermal energy has no relevance on the variance of PDF of vorticity.

In the PDF of normalized energy dissipation rate, the increase of energy input results in the decrease of the probability density of normalized dissipation rate. The introduction of drop increases the PDF of normalized dissipation rate at low rate region: the maximum probability density increases from $2.4 \times$ 10^{6} to 3.5×10^{6} with the increase of ϕ from 0 to 20%. At high rate region, the probability density in high dispersed phase volume fraction is smaller. As for
the viscosity ratio, the effect on PDF of normalized energy dissipation rate is not obvious.

In the PDF of eigenvalues of strain tensor, both the increase of energy input, and the decrease of dispersed phase volume fraction can result in the decrease of the negative eigenvalue λ_{1}, as well as the increase of middle eigenvalue λ_{2} and positive eigenvalue λ_{3}, they promote the streching. The variance of viscosity ratio does not change the PDF of eigenvalues.

Coherent structures are extracted by the normalized Q_{n} criterion. The effect of threshold value $Q_{t h}$ and the cutoff volume $V_{c r}$ were investigated. It is found that the increase of $Q_{t h}$ results in the increase of number of structures and decrease of size of structures, the increase of $V_{c r}$ results in the decrease of the small structures, the deduction of noise is obvious at the beginning of the increase of $V_{c r}$, the deduction effect is recessionary with the continuous increase of $V_{c r}$. The combination of $Q_{t h}=0.8$ and $V_{c r} / V_{\max }=4 \%$ is found to be a suitable group for extraction of all cases in this study. This combination of parameter ensures that the extracted volume of structures is enough for visualization, and prevents a overcrowd visualization.

The coherent structures in three cases of different energy input are extracted, the corresponding PDF of volume-equivalent diameter reveals that the lower energy input results in the larger size of structures.

A general assumption in breakup models is that only vortices of size equal to or smaller than the drop size are responsible for breakup event. To verify the assumption, the liquid-liquid interface together with coherent structures at the time instants right before and after breakup are tracked and extracted, the corresponding PDF of volume-equivalent diameter is also given. The simulation results reveal that the coherent structures are all of size equal to or
smaller than the drop size, the assumption is validated in this study.
The development of tools for this study is based on Fortran 90 and MATLAB 2017. In Fortran 90, the MRT collision operator is implemented for the lattice Boltzmann method. In MATLAB 2017, the program of the normalized Q_{n} criterion coupled with the newly designed boundary identification method is created; the calculation of three-dimensional energy spectra is also fulfilled in MATLAB 2017. Besides, other analysis tools of statistical characteristics of liquid-liquid turbulent flow are developed relying on the interaction of Fortran 90 and MATLAB 2017. The visualization is finished in Paraview. These tools improve the stability of generation of turbulence, provide analysis and visualization of drop/vortex interaction as well as the statistical characteristics of turbulence. They are significant for the later use in the breakup kernel development for PBE.

Chapter 5

Future work

In this study, several numerical tools to analyze large-scale sets of data were developed. Together with the DNSs approach, this framework is a strong foundation to study fundamentals of drop breakup in turbulent flow and extraction of information relevant for breakup models.

Further comprehension of interaction between vortices and drop is needed. In this study, coherent structures of the entire flow field and liquid-liquid interface are presented for the preliminary understanding of interaction between vortices. In the future, more attention can be paid to coherent structures that close to the drop. Further, the time evolution of important coherent structures close to the drop also deserves an observation.

Deeper investigation of statistical characteristics of liquid-liquid turbulent flow is necessary. Besides the visualization of breakup event and vortices/drop interaction, the analysis of statistical characteristics such as the correlation of transversal and longitudinal velocity provides a quantitative description and comprehension of the binary system.

Finally, the development of more efficient analysis tools is recommended.

For example, it takes hours to extract coherent structures for only one case in this study. Due the large amount of data generated by DNS, the program for analysis and visualization has to work faster in order to investigate more cases from different aspects.

Bibliography

[1] K Bäumler, M Wegener, AR Paschedag, and E Bänsch. Drop rise velocities and fluid dynamic behavior in standard test systems for liquid/liquid extraction - experimental and numerical investigations. Chem. Eng. Sci., 66(3):426-439, 2011.
[2] MA Farajzadeh, M Bahram, S Zorita, and BG Mehr. Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system. J. Hazard. Mater., 161(2-3): 1535-1543, 2009.
[3] F Pena-Pereira, I Lavilla, and C Bendicho. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review. Spectrochim. Acta, Part B, 64(1):1-15, 2009.
[4] D Attwood. Surfactant systems: their chemistry, pharmacy and biology. Springer Science \& Business Media, 2012.
[5] PG Mazzola, AM Lopes, FA Hasmann, AF Jozala, TCV Penna, PO Magalhaes, CO Rangel-Yagui, and JA Pessoa. Liquid-liquid extraction of
biomolecules: an overview and update of the main techniques. J. Chem. Technol. Biotechnol., 83(2):143-157, 2008.
[6] SC Cunha and JO Fernandes. Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquidliquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS). Talanta, 83(1): 117-125, 2010.
[7] Gh Bahrami, SH Mirzaeei, and A Kiani. Determination of acyclovir in human serum by high-performance liquid chromatography using liquidliquid extraction and its application in pharmacokinetic studies. J. Chromatogr. B, 816(1-2):327-331, 2005.
[8] S Liu, Q Li, and Y Shao. Electrochemistry at micro-and nanoscopic liquid/liquid interfaces. Chem. Soc. Rev., 40(5):2236-2253, 2011.
[9] C Bora and SK Dolui. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Comput. Theor. Polym. Sci., 53(4):923-932, 2012.
[10] G Herzog, V Kam, and DWM Arrigan. Electrochemical behaviour of haemoglobin at the liquid/liquid interface. Electrochim. Acta, 53(24): 7204-7209, 2008.
[11] AG Volkov. Liquid interfaces in chemical, biological and pharmaceutical applications. CRC Press, 2001.
[12] H Kuramochi, K Maeda, S Kato, M Osako, K Nakamura, and S Sakai.

Application of UNIFAC models for prediction of vapor-liquid and liquidliquid equilibria relevant to separation and purification processes of crude biodiesel fuel. Fuel, 88(8):1472-1477, 2009.
[13] AA Hyman, CA Weber, and F Jülicher. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 30:39-58, 2014.
[14] KAP Colati, GP Dalmaschio, EVR de Castro, AO Gomes, BG Vaz, and W Romão. Monitoring the liquid/liquid extraction of naphthenic acids in brazilian crude oil using electrospray ionization FT-ICR mass spectrometry (ESI FT-ICR MS). Fuel, 108:647-655, 2013.
[15] L Yang, BJ Azzopardi, A Belghazi, and S Nakanishi. Phase separation of liquid-liquid two-phase flow at a T-junction. AlChE J., 52(1):141-149, 2006.
[16] AZ Hezave, S Dorostkar, S Ayatollahi, M Nabipour, and B Hemmateenejad. Investigating the effect of ionic liquid (1-dodecyl-3methylimidazolium chloride $([\mathrm{C} 12 \mathrm{mim}][\mathrm{Cl}])$) on the water/oil interfacial tension as a novel surfactant. Colloids Surf., A, 421:63-71, 2013.
[17] X Wen, Q Yang, Z Yan, and Q Deng. Determination of cadmium and copper in water and food samples by dispersive liquid-liquid microextraction combined with UV-vis spectrophotometry. Microchem. J., 97 (2):249-254, 2011.
[18] H Abdolmohammad-Zadeh and GH Sadeghi. Combination of ionic liquid-based dispersive liquid-liquid micro-extraction with stopped-flow spectrofluorometry for the pre-concentration and determination of alu-
minum in natural waters, fruit juice and food samples. Talanta, 81(3): 778-785, 2010.
[19] P Viñas, N Campillo, I López-García, and M Hernández-Córdoba. Dispersive liquid-liquid microextraction in food analysis. a critical review. Anal. Bioanal.Chem., 406(8):2067-2099, 2014.
[20] X Jia, Y Han, C Wei, T Duan, and H Chen. Speciation of mercury in liquid cosmetic samples by ionic liquid based dispersive liquid-liquid microextraction combined with high-performance liquid chromatographyinductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 26(7):1380-1386, 2011.
[21] N Cabaleiro, I De La Calle, C Bendicho, and I Lavilla. Current trends in liquid-liquid and solid-liquid extraction for cosmetic analysis: a review. Anal. Methods, 5(2):323-340, 2013.
[22] N Memon, MI Bhanger, and MY Khuhawer. Determination of preservatives in cosmetics and food samples by micellar liquid chromatography. J. Sep. Sci., 28(7):635-638, 2005.
[23] B Khan, X Qiao, and LS Lee. Stereoselective sorption by agricultural soils and liquid-liquid partitioning of trenbolone (17α and 17β) and trendione. Environ. Sci. Technol., 43(23):8827-8833, 2009.
[24] A Bidari, MR Ganjali, P Norouzi, MRM Hosseini, and Y Assadi. Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction. Food Chem., 126(4):1840-1844, 2011.
[25] Q Wu, X Zhou, Y Li, X Zang, C Wang, and Z Wang. Application of dispersive liquid-liquid microextraction combined with high-performance liquid chromatography to the determination of carbamate pesticides in water samples. Anal. Bioanal.Chem., 393(6-7):1755-1761, 2009.
[26] VA Atiemo-Obeng, SM Kresta, and EL Paul. Handbook of Industrial Mixing. John Wiley \& Sons, Incorporated, 2004.
[27] F Valenzuela, C Fonseca, C Basualto, O Correa, C Tapia, and J Sapag. Removal of copper ions from a waste mine water by a liquid emulsion membrane method. Miner. Eng., 18(1):33-40, 2005.
[28] D Maggioris, A Goulas, AH Alexopoulos, EG Chatzi, and C Kiparissides. Prediction of particle size distribution in suspension polymerization reactors: effect of turbulence nonhomogeneity. Chem. Eng. Sci., 55(20): 4611-4627, 2000.
[29] AW Nienow, MF Edwards, and N Harnby. Mixing in the process industries. Butterworth-Heinemann, 1997.
[30] PA Zapata, J Faria, MP Ruiz, RE Jentoft, and DE Resasco. Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions. JACS, 134(20):8570-8578, 2012.
[31] M Djenouhat, O Hamdaoui, M Chiha, and MH Samar. Ultrasonicationassisted preparation of water-in-oil emulsions and application to the removal of cationic dyes from water by emulsion liquid membrane: Part 1: Membrane stability. Sep. Purif. Technol., 62(3):636-641, 2008.
[32] S Crossley, J Faria, M Shen, and DE Resasco. Solid nanoparticles that
catalyze biofuel upgrade reactions at the water/oil interface. Science, 327(5961):68-72, 2010.
[33] PS Nigam and A Singh. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci., 37(1):52-68, 2011.
[34] B Berge. Liquid lens technology: principle of electrowetting based lenses and applications to imaging. In Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on, pages 227-230. IEEE, 2005.
[35] L Dong, AK Agarwal, DJ Beebe, and H Jiang. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 442(7102): 551, 2006.
[36] M Gharehbaghi and F Shemirani. A novel method for dye removal: ionic liquid-based dispersive liquid-liquid extraction (IL-DLLE). CLEANSoil, Air, Water, 40(3):290-297, 2012.
[37] A Soto, A Arce, and MK Khoshkbarchi. Partitioning of antibiotics in a two-liquid phase system formed by water and a room temperature ionic liquid. Sep. Purif. Technol., 44(3):242-246, 2005.
[38] NB Raikar, SR Bhatia, MF Malone, and MA Henson. Experimental studies and population balance equation models for breakage prediction of emulsion drop size distributions. Chem. Eng. Sci., 64(10):2433-2447, 2009.
[39] J Lovick, AA Mouza, SV Paras, GJ Lye, and P Angeli. Drop size distribution in highly concentrated liquid-liquid dispersions using a light
back scattering method. J. Chem. Technol. Biotechnol., 80(5):483-601, 2005.
[40] S Maaß, F Metz, T Rehm, and M Kraume. Prediction of drop sizes for liquid-liquid systems in stirred slim reactors-Part I: Single stage impellers. Open Chem. Eng. J. Open, 162(2):792-801, 2010.
[41] CW Angle and HA Hamza. Predicting the sizes of toluene-diluted heavy oil emulsions in turbulent flow Part 2: Hinze-Kolmogorov based model adapted for increased oil fractions and energy dissipation in a stirred tank. Chem. Eng. Sci., 61(22):7325-7335, 2006.
[42] SN Maindarkar, H Hoogland, and MA Henson. Predicting the combined effects of oil and surfactant concentrations on the drop size distributions of homogenized emulsions. Colloids Surf., A, 467:18-30, 2015.
[43] S Maaß, N Paul, and M Kraume. Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred systems. Chem. Eng. Sci., 76:140-153, 2012.
[44] JO Hinze. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AlChE J., 1(3):289-295, 1955.
[45] GI Taylor. The formation of emulsions in definable fields of flow. Proc. R. Soc. London, Ser. A, Containing Papers of a Mathematical and Physical Character, 146(858):501-523, 1934.
[46] GE Charles and SG Mason. The coalescence of liquid drops with flat liquid/liquid interfaces. Journal of Colloid Science, 15(3):236-267, 1960.
[47] AE Handlos and T Baron. Mass and heat transfer from drops in liquidliquid extraction. AlChE J., 3(1):127-136, 1957.
[48] M Ashar, D Arlov, F Carlsson, F Innings, and R Andersson. Single droplet breakup in a rotor-stator mixer. Chem. Eng. Sci., 181:186-198, 2018.
[49] S Maaß and M Kraume. Determination of breakage rates using single drop experiments. Chem. Eng. Sci., 70:146-164, 2012.
[50] C Ortiz-Dueñas, J Kim, and EK Longmire. Investigation of liquid-liquid drop coalescence using tomographic PIV. Exp. Fluids, 49(1):111-129, 2010.
[51] FJE Svensson and A Rasmuson. PIV measurements in a liquid-liquid system at volume percentages up to 10% dispersed phase. Exp. Fluids, 41(6):917-931, 2006.
[52] BO Hasan. Breakage of drops and bubbles in a stirred tank: A review of experimental studies. Chin. J. Chem. Eng., 25(6):698-711, 2017.
[53] D Cheng, X Feng, J Cheng, and C Yang. Numerical simulation of macromixing in liquid-liquid stirred tanks. Chem. Eng. Sci., 101:272-282, 2013.
[54] Y Zhao, X Li, J Cheng, C Yang, and Z Mao. Experimental study on liquid-liquid macromixing in a stirred tank. Ind. Eng. Chem. Res., 50 (10):5952-5958, 2011.
[55] M Jahoda, M Moštĕk, A Kukuková, and V Machoň. CFD modelling of
liquid homogenization in stirred tanks with one and two impellers using large eddy simulation. Chem. Eng. Res. Des., 85(5):616-625, 2007.
[56] Feng Wang and Zai-Sha Mao. Numerical and experimental investigation of liquid- liquid two-phase flow in stirred tanks. Industrial \mathcal{E} engineering chemistry research, 44(15):5776-5787, 2005.
[57] Y Yu, H Chen, Y Liu, VSJ Craig, C Wang, LH Li, and Y Chen. Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup. Adv. Mater. Interfaces, 2(1):1400267, 2015.
[58] BV Balakin, AC Hoffmann, and P Kosinski. Coupling STAR-CD with a population-balance technique based on the classes method. Powder Technol., 257:47-54, 2014.
[59] A Vikhansky and A Splawski. Adaptive multiply size group method for CFD-population balance modelling of polydisperse flows. Can. J. Chem. Eng., 93(8):1327-1334, 2015.
[60] A Buffo, M Vanni, DL Marchisio, and RO Fox. Multivariate quadraturebased moments methods for turbulent polydisperse gas-liquid systems. Int. J. Multiphase Flow, 50:41-57, 2013.
[61] A Amokrane, S Charton, N Sheibat-Othman, J Becker, JP Klein, and F Puel. Development of a CFD-PBE coupled model for the simulation of the drops behaviour in a pulsed column. Can. J. Chem. Eng., 92(2): 220-233, 2014.
[62] Z Li, J Kessel, G Grünewald, and M Kind. Coupled CFD-PBE simulation of nucleation in fluidized bed spray granulation. Drying Technol., 31(15):1888-1896, 2013.
[63] H Zhang, K Zhang, and S Fan. CFD simulation coupled with population balance equations for aerated stirred bioreactors. Eng. Life Sci., 9(6): 421-430, 2009.
[64] DL Wright, R McGraw, and DE Rosner. Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interface Sci., 236(2): 242-251, 2001.
[65] IT Cameron, FY Wang, CD Immanuel, and F Stepanek. Process systems modelling and applications in granulation: A review. Chem. Eng. Sci., 60(14):3723-3750, 2005.
[66] DD Eberl, DE Kile, and VA Drits. On geological interpretations of crystal size distributions: Constant vs. proportionate growth. Am. Mineral., 87(8-9):1235-1241, 2002.
[67] HC Schwarzer, F Schwertfirm, M Manhart, HJ Schmid, and W Peukert. Predictive simulation of nanoparticle precipitation based on the population balance equation. Chem. Eng. Sci., 61(1):167-181, 2006.
[68] SM Iveson. Limitations of one-dimensional population balance models of wet granulation processes. Powder Technol., 124(3):219-229, 2002.
[69] H Briesen. Simulation of crystal size and shape by means of a reduced
two-dimensional population balance model. Chem. Eng. Sci., 61(1):104112, 2006.
[70] T Wang, J Wang, and Y Jin. Population balance model for gas- liquid flows: Influence of bubble coalescence and breakup models. Ind. Eng. Chem. Res., 44(19):7540-7549, 2005.
[71] M Vanni. Approximate population balance equations for aggregationbreakage processes. J. Colloid Interface Sci., 221(2):143-160, 2000.
[72] MM Attarakih, HJ Bart, and NM Faqir. Numerical solution of the bivariate population balance equation for the interacting hydrodynamics and mass transfer in liquid-liquid extraction columns. Chem. Eng. Sci., 61(1):113-123, 2006.
[73] T Wang, J Wang, and Y Jin. A CFD-PBM coupled model for gas-liquid flows. AlChE J., 52(1):125-140, 2006.
[74] CD Immanuel and FJ Doyle III. Solution technique for a multidimensional population balance model describing granulation processes. Powder Technol., 156(2-3):213-225, 2005.
[75] Cs Mihálykó, BG Lakatos, A Matejdesz, and T Blickle. Population balance model for particle-to-particle heat transfer in gas-solid systems. Int. J. Heat Mass Transfer, 47(6-7):1325-1334, 2004.
[76] D Ramkrishna. Population balances: Theory and applications to particulate systems in engineering. Elsevier, 2000.
[77] C Drumm. Coupling of computational fluid dynamics and population balance modelling for liquid-liquid extraction. 2010.
[78] Z Gao, D Li, A Buffo, W Podgórska, and DL Marchisio. Simulation of droplet breakage in turbulent liquid-liquid dispersions with CFD-PBM: comparison of breakage kernels. Chem. Eng. Sci., 142:277-288, 2016.
[79] C Tsouris and LL Tavlarides. Breakage and coalescence models for drops in turbulent dispersions. AlChE J., 40(3):395-406, 1994.
[80] H Luo and HF Svendsen. Theoretical model for drop and bubble breakup in turbulent dispersions. AlChE J., 42(5):1225-1233, 1996.
[81] CH Lee, LE Erickson, and LA Glasgow. Bubble breakup and coalescence in turbulent gas-liquid dispersions. Chem. Eng. Commun., 59(1-6):6584, 1987.
[82] L Hagesaether, HA Jakobsen, and HF Svendsen. A model for turbulent binary breakup of dispersed fluid particles. Chem. Eng. Sci., 57(16): 3251-3267, 2002.
[83] T Wang, J Wang, and Y Jin. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem. Eng. Sci., 58(20):46294637, 2003.
[84] CA Coulaloglou and LL Tavlarides. Description of interaction processes in agitated liquid-liquid dispersions. Chem. Eng. Sci., 32(11):1289-1297, 1977.
[85] J Baldyga and W Podgórska. Drop break-up in intermittent turbulence: Maximum stable and transient sizes of drops. Can. J. Chem. Eng., 76 (3):456-470, 1998.
[86] W Podgórska and J Bałdyga. Drop break-up and coalescence in a stirred tank. Task Quarterly, 7(3):409-424, 2003.
[87] C Meneveau and KR Sreenivasan. The multifractal nature of turbulent energy dissipation. J. Fluid Mech., 224:429-484, 1991.
[88] R Andersson and B Andersson. Modeling the breakup of fluid particles in turbulent flows. AlChE J., 52(6):2031-2038, 2006.
[89] RP Hesketh, AW Etchells, and TWF Russell. Experimental observations of bubble breakage in turbulent flow. Ind. Eng. Chem. Res., 30(5):835841, 1991.
[90] F Lehr and D Mewes. A transport equation for the interfacial area density applied to bubble columns. Chem. Eng. Sci., 56(3):1159-1166, 2001.
[91] M Lesieur. Turbulence in fluids, volume 40. Springer Science \& Business Media, 2012.
[92] J Jeong and F Hussain. On the identification of a vortex. J. Fluid Mech., 285:69-94, 1995.
[93] HE Fiedler. Coherent structures in turbulent flows. Prog. Aerosp. Sci., 25(3):231-269, 1988.
[94] AKMF Hussain. Coherent structures-reality and myth. Phys. Fluids, 26(10):2816-2850, 1983.
[95] RJ Adrian, KT Christensen, and Z-C Liu. Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids, 29(3):275-290, 2000.
[96] Y Dubief and F Delcayre. On coherent-vortex identification in turbulence. J. Turbul., 1(1):011-011, 2000.
[97] WA Kareem, S Izawa, AK Xiong, and Y Fukunishi. Extraction and tracking of multi-scaled vortices from a homogeneous isotropic turbulent field. J. Turbul., (8):N12, 2007.
[98] F Ghasempour, R Andersson, N Kevlahan, and B Andersson. Multidimensional turbulence spectra-identifying properties of turbulent structures. In J. Phys. Conf. Ser., volume 318, page 042022. IOP Publishing, 2011.
[99] F Ghasempour, R Andersson, and B Andersson. Identification and characterization of three-dimensional turbulent flow structures. AlChE J., 62(4):1265-1277, 2016.
[100] M Farge and K Schneider. Coherent vortex simulation (CVS), a semideterministic turbulence model using wavelets. Flow, Turbulence and Combustion, 66(4):393-426, 2001.
[101] M Farge, G Pellegrino, and K Schneider. Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets. Phys. Rev. Lett., 87(5): 054501, 2001.
[102] K Schneider, M Farge, G Pellegrino, and MM Rogers. Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets. J. Fluid Mech., 534:39-66, 2005.
[103] G Haller and G Yuan. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147(3-4):352-370, 2000.
[104] MA Green, CW Rowley, and G Haller. Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech., 572:111-120, 2007.
[105] A Turiel, J Isern-Fontanet, and E García-Ladona. Wavelet filtering to extract coherent vortices from altimetric data. J. Atmos. Oceanic Technol., 24(12):2103-2119, 2007.
[106] T Miyauchi and M Tanahashi. Coherent fine scale structure in turbulence. In IUTAM Symposium on Geometry and Statistics of Turbulence, pages 67-76. Springer, 2001.
[107] G Samanta, GM Oxberry, AN Beris, RA Handler, and KD Housiadas. Time-evolution K-L analysis of coherent structures based on DNS of turbulent Newtonian and viscoelastic flows. J. Turbul., (9):N41, 2008.
[108] O Grulke, F Greiner, T Klinger, and A Piel. Comparative experimental study of coherent structures in a simple magnetized torus. Plasma Phys. Controlled Fusion, 43(4):525, 2001.
[109] PJ Staplehurst, PA Davidson, and SB Dalziel. Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech., 598: 81-105, 2008.
[110] PA Davidson, PJ Staplehurst, and SB Dalziel. On the evolution of eddies in a rapidly rotating system. J. Fluid Mech., 557:135-144, 2006.
[111] JJ Derksen and HEA Van Den Akker. Multi-scale simulations of stirred liquid-liquid dispersions. Chem. Eng. Res. Des., 85(5):697-702, 2007.
[112] AE Komrakova, Orest Shardt, D Eskin, and JJ Derksen. Lattice Boltzmann simulations of drop deformation and breakup in shear flow. International Journal of Multiphase Flow, 59:24-43, 2014.
[113] AE Komrakova, D Eskin, and JJ Derksen. Numerical study of turbulent liquid-liquid dispersions. AlChE J., 61(8):2618-2633, 2015.
[114] Y Hagiwara, Y Takashina, and M Tanaka. Direct numerical simulation of the basic phase-interactions in liquid turbulent channel flow with immiscible droplets. Nucl. Eng. Des., 175(1-2):49-57, 1997.
[115] NK-R Kevlahan. Rapid distortion of turbulent structures. In Advances in Turbulence IV, pages 411-415. Springer, 1993.
[116] L Scarbolo and A Soldati. Turbulence modulation across the interface of a large deformable drop. J. Turbul., 14(11):27-43, 2013.
[117] A Roccon, M De Paoli, F Zonta, and A Soldati. Viscosity-modulated breakup and coalescence of large drops in bounded turbulence. Phys. Rev. Fluids, 2(8):083603, 2017.
[118] T Iwasaki, K Nishimura, M Tanaka, and Y Hagiwara. Direct numerical simulation of turbulent couette flow with immiscible droplets. Int. J. Heat Fluid Flow, 22(3):332-342, 2001.
[119] T Yuge and Y Hagiwara. The modifications of near-wall turbulence structure and heat transfer by immiscible droplets in turbulent liquidliquid two-phase flow. Int. J. Heat Fluid Flow, 25(3):471-480, 2004.
[120] MR Swift, E Orlandini, WR Osborn, and JM Yeomans. Lattice Boltz-
mann simulations of liquid-gas and binary fluid systems. Phys. Rev. E, 54(5):5041, 1996.
[121] D Jacqmin. Calculation of two-phase Navier-Stokes flows using phasefield modeling. J. Comput. Phys., 155(1):96-127, 1999.
[122] F Magaletti, F Picano, M Chinappi, L Marino, and CM Casciola. The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids. J. Fluid Mech., 714:95-126, 2013.
[123] P Yue, JJ Feng, C Liu, and J Shen. A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech., 515:293317, 2004.
[124] VE Badalassi, HD Ceniceros, and S Banerjee. Computation of multiphase systems with phase field models. J. Comput. Phys., 190(2): 371-397, 2003.
[125] JW Cahn and JE Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 28(2):258-267, 1958.
[126] O Penrose and PC Fife. Thermodynamically consistent models of phasefield type for the kinetic of phase transitions. Physica D, 43(1):44-62, 1990.
[127] AJ Bray. Theory of phase-ordering kinetics. Adv. Phys., 51(2):481-587, 2002.
[128] VM Kendon, ME Cates, I Pagonabarraga, J-C Desplat, and P Bladon. Inertial effects in three-dimensional spinodal decomposition of a sym-
metric binary fluid mixture: a lattice Boltzmann study. J. Fluid Mech., 440:147-203, 2001.
[129] Lattice Boltzmann method: fundamentals and engineering applications with computer codes, author=Mohamad, AA. Springer Science \& Business Media, 2011.
[130] PL Bhatnagar, EP Gross, and M Krook. A model for collision processes in gases. I. Small amplitude processes in charged and neutral onecomponent systems. Phys. Rev., 94(3):511, 1954.
[131] D Zhang, K Papadikis, and S Gu. Three-dimensional multi-relaxation time lattice-Boltzmann model for the drop impact on a dry surface at large density ratio. Int. J. Multiphase Flow, 64:11-18, 2014.
[132] AE Komrakova, D Eskin, and JJ Derksen. Lattice Boltzmann simulations of a single n-butanol drop rising in water. Phys. Fluids, 25(4): 042102, 2013.
[133] KN Premnath and J Abraham. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. J. Comput. Phys., 224(2):539-559, 2007.
[134] D d'Humières. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. London, Ser. A, 360(1792): 437-451, 2002.
[135] H Yu, LS Luo, and SS Girimaji. LES of turbulent square jet flow using an MRT lattice Boltzmann model. Comput. Fluids, 35(8-9):957-965, 2006.
[136] P Lallemand and LS Luo. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E, 61(6):6546, 2000.
[137] TS Lundgren. Linearly forces isotropic turbulence. Technical report, Minnesota Univ Minneapolis, 2003.
[138] JJ Derksen. Flow-induced forces in sphere doublets. J. Fluid Mech., 608:337-356, 2008.
[139] L Valiño, J Martín, and G Házi. Dynamics of isotropic homogeneous turbulence with linear forcing using a lattice Boltzmann method. Flow, turbulence and combustion, 84(2):219, 2010.
[140] SB Pope. Turbulent flows, 2001.
[141] DK Wilson. Three-dimensional correlation and spectral functions for turbulent velocities in homogeneous and surface-blocked boundary layers. Technical report, Army Research Lab Adelphi MD, 1997.
[142] PG Saffman. The large-scale structure of homogeneous turbulence. J. Fluid Mech., 27(3):581-593, 1967.
[143] T Tatsumi. The theory of decay process of incompressible isotropic turbulence. Proc. R. Soc. Lond. A, 239(1216):16-45, 1957.
[144] D Xu and J Chen. Accurate estimate of turbulent dissipation rate using PIV data. Exp. Therm Fluid Sci., 44:662-672, 2013.
[145] D Saha, M Soos, B Luthi, M Holzner, A Liberzon, MU Babler, and W Kinzelbach. Experimental characterization of breakage rate of col-
loidal aggregates in axisymmetric extensional flow. Langmuir, 30(48): 14385-14395, 2014.
[146] S Elghobashi and GC Truesdell. On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A, 5(7):1790-1801, 1993.

Appendix A

MRT implementation

The transformation matrix \boldsymbol{M} is derived as:

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
-30	-11	-11	-11	-11	-11	-11	8	8	8	8	8	8	8	8	8	8	8	8
12	-4	-4	-4	-4	-4	-4	1	1	1	1	1	1	1	1	1	1	1	1
0	1	-1	0	0	0	0	1	-1	1	-1	0	0	0	0	1	-1	1	-1
0	-4	4	0	0	0	0	1	-1	1	-1	0	0	0	0	1	-1	1	-1
0	0	0	1	-1	0	0	1	1	-1	-1	1	-1	1	-1	0	0	0	0
0	0	0	-4	4	0	0	1	1	-1	-1	1	-1	1	-1	0	0	0	0
0	0	0	0	0	1	-1	0	0	0	0	1	1	-1	-1	1	1	-1	-1
0	0	0	0	0	-4	4	0	0	0	0	1	1	-1	-1	1	1	-1	-1
0	2	2	-1	-1	-1	-1	1	1	1	1	-2	-2	-2	-2	1	1	1	1
0	-4	-4	2	2	2	2	1	1	1	1	-2	-2	-2	-2	1	1	1	1
0	0	0	1	1	-1	-1	1	1	1	1	0	0	0	0	-1	-1	-1	-1
0	0	0	-2	-2	2	2	1	1	1	1	0	0	0	0	-1	-1	-1	-1
0	0	0	0	0	0	0	1	-1	-1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	-1	-1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	-1	1
0	0	0	0	0	0	0	1	-1	1	-1	0	0	0	0	-1	1	-1	1
0	0	0	0	0	0	0	-1	-1	1	1	1	-1	1	-1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	-1	-1	1	1	1	1	-1	-1

The 19 orthogonal basis vectors $\varsigma_{q \beta}$ are given:

$$
\begin{align*}
& \varsigma_{0 \beta}=\left\|e_{\beta}\right\| \\
& \varsigma_{1 \beta}=19\left\|e_{\beta}\right\|^{2}-30 \\
& \varsigma_{2 \beta}=\left(21\left\|e_{\beta}\right\|^{4}-53\left\|e_{\beta}\right\|^{2}+24\right) / 2 \\
& \varsigma_{3 \beta}=e_{\beta x} \\
& \varsigma_{5 \beta}=e_{\beta y} \\
& \varsigma_{7 \beta}=e_{\beta z} \\
& \varsigma_{4 \beta}=\left(5\left\|e_{\beta}\right\|^{2}-9\right) e_{\beta x} \\
& \varsigma_{6 \beta}=\left(5\left\|e_{\beta}\right\|^{2}-9\right) e_{\beta y} \\
& \varsigma_{8 \beta}=\left(5\left\|e_{\beta}\right\|^{2}-9\right) e_{\beta z} \\
& \varsigma_{9 \beta}=3 e_{\beta x}^{2}-\left\|e_{\beta}\right\|^{2} \tag{1.1}\\
& \varsigma_{11 \beta}=e_{\beta y}^{2}-e_{\beta z}^{2}[0] \\
& \varsigma_{13 \beta}=e_{\beta x} e_{\beta y} \\
& \varsigma_{14 \beta}=e_{\beta y} e_{\beta z} \\
& \varsigma_{15 \beta}=e_{\beta z} e_{\beta x} \\
& \varsigma_{10 \beta}=\left(3\left\|e_{\beta}\right\|^{2}-5\right)\left(3 e_{\beta x}^{2}-\left\|e_{\beta}\right\|^{2}\right) \\
& \varsigma_{12 \beta}=\left(3\left\|e_{\beta}\right\|^{2}-5\right)\left(e_{\beta y}^{2}-e_{\beta z}^{2}\right) \\
& \varsigma_{16 \beta}=\left(e_{\beta y}^{2}-e_{\beta z}^{2}\right) e_{\beta x} \\
& \varsigma_{17 \beta}=\left(e_{\beta z}^{2}-e_{\beta x}^{2}\right) e_{\beta y} \\
& \varsigma_{18 \beta}=\left(e_{\beta x}^{2}-e_{\beta y}^{2}\right) e_{\beta z} \\
& \varsigma_{1}
\end{align*}
$$

where $\beta \in\{0,1, \ldots, 18\}$.

Appendix B

Procedure and script for 3D fft and energy spectrum

The three dimensional velocity fields u, v, w are inputs, the calculation is in MATLAB. Part of code is referred from the GitHub user 'fdietzsc', the link is: https://github.com/fdietzsc/hita.

```
1 clc
2 clear
3 filepath1='/home/grad1/cheng/CZ Jan ...
    16/twophase/d300c6_case3/velx/';
4 filepath2='/home/gradl/cheng/CZ Jan ...
    16/twophase/d300c6_case3/vely/';
5 filepath3='/home/gradl/cheng/CZ Jan ...
    16/twophase/d300c6_case3/velz/';
6 filepath4='/home/grad1/cheng/CZ Jan ...
    16/twophase/d300c6_case3/energy spectrum/';
7 etak=1; %Kolmogrov scale
```

```
nu=(0.0005*0.1+1-0.0005)*8.3E-003;
epsilon=5.8E-007; %energy dissipation rate
dim=300;
    avespectrum=0;
    counter=0;
    for t=12:1:12
    u=reshape(load([filepath1,'velx',num2str(t,'%04i'),'.dat']),&...
    [dim,dim,dim]);
    v=reshape(load([filepath2,'vely',num2str(t,'%04i'),'.dat']),&...
    [dim,dim,dim]);
    w=reshape(load([filepath3,'velz',num2str(t,'%04i'),'.dat']),&...
    [dim,dim,dim]);
        uu_fft=fftn(u);
    vv_fft=fftn(v);
    ww_fft=fftn(w);
        muu = abs(uu_fft)/length(u)^3;
        mvv = abs(vv_fft)/length(v)^3;
        mww = abs(ww_fft)/length(w)^3;
        muu = muu.^2;
        mvv = mvv.^2;
        mww = mww.^2;
        k_end = (dim)/2;
    rx=[0:1:dim-1] - (dim)/2+1;
    ry=[0:1:dim-1] - (dim)/2+1;
    rz=[0:1:dim-1] - (dim)/2+1;
        R_x=circshift(rx',[(dim)/2+1 1]);
```

```
R_y=circshift(ry',[(dim)/2+1 1]);
```

R_y=circshift(ry',[(dim)/2+1 1]);
R_z=circshift(rz',[(dim)/2+1 1]);
R_z=circshift(rz',[(dim)/2+1 1]);
[X,Y,Z]= meshgrid(R_X,R_Y, R_z);
[X,Y,Z]= meshgrid(R_X,R_Y, R_z);
r=(sqrt(X.^2+Y.^2+Z.^ 2));
r=(sqrt(X.^2+Y.^2+Z.^ 2));
dx=2 *pi/dim;
dx=2 *pi/dim;
k=[1:k_end].*dx;
k=[1:k_end].*dx;
kll=[1:k_end];
kll=[1:k_end];
spectrum=zeros(size(k,2),1);
spectrum=zeros(size(k,2),1);
bin_counter=zeros(size(k,2),1);
bin_counter=zeros(size(k,2),1);
for N=2:k_end-1
for N=2:k_end-1
picker = (r(:,:,:)*dx <= (k(N+1) + k(N))/2) \& ...
picker = (r(:,:,:)*dx <= (k(N+1) + k(N))/2) \& ...
(r(:,:,:)*dx > (k(N) + k(N-1))/2);
(r(:,:,:)*dx > (k(N) + k(N-1))/2);
spectrum(N) = sum(muu(picker))+...
spectrum(N) = sum(muu(picker))+...
sum(mvv(picker))+...
sum(mvv(picker))+...
sum(mww(picker));
sum(mww(picker));
bin_counter(N) = size(find(picker==1),1);
bin_counter(N) = size(find(picker==1),1);
end
end
picker = (r(:,:,:)*dx <= (k(2) + k(1))/2);
picker = (r(:,:,:)*dx <= (k(2) + k(1))/2);
spectrum(1) = sum(muu(picker))+...
spectrum(1) = sum(muu(picker))+...
sum(mvv(picker))+...
sum(mvv(picker))+...
sum(mww(picker));
sum(mww(picker));
bin_counter(1) = size(find(picker==1),1);
bin_counter(1) = size(find(picker==1),1);
picker = (r(:,:,:)*dx > (k(end) + k(end-1))/2 \& ...
picker = (r(:,:,:)*dx > (k(end) + k(end-1))/2 \& ...
r(:,:,:)*dx <= k(end));
r(:,:,:)*dx <= k(end));
spectrum(end) = sum(muu(picker))+...
spectrum(end) = sum(muu(picker))+...
sum(mvv(picker))+...

```
    sum(mvv(picker))+...
```

```
            sum(mww(picker));
        bin_counter(end) = size(find(picker==1),1);
        spectrum = spectrum*2*pi.*k'.^2./(bin_counter.*dx.^ 3);
        avespectrum=avespectrum+spectrum;
        counter=counter+1;
end
avespectrum=avespectrum/counter;
        y = [kll; avespectrum'];
        fid = fopen([filepath4,'average_spectrum.dat'], 'w');
        fprintf(fid, '%15.8E %15.8E\n', y);
        fclose(fid);
        compk=kll;
        kll=kll/(2*pi/etak); %scale kll
energy=avespectrum/(epsilon^(2/3)\staretak^(5/3));
slope1=epsilon^(2/3)*kll.^(-5/3);
scaled=[kll;energy';slope1];
fid = fopen([filepath4,'average_spectrum_scaled.dat'], 'w');
    fprintf(fid, '%15.8E %15.8E %15.8E\n', scaled);
    fclose(fid);
    %-----------------compensated energy spectrum---------------
    compspectrum = avespectrum.*compk'.^(5/3)*epsilon^(-2/3);
    compk=compk*etak;
    compensated = [compk;compspectrum'];
    fid = fopen([filepath4,'average_spectrum_compensated.dat'], ... |
```

```
        'w');
    fprintf(fid, '%15.8E %15.8E\n', compensated);
    fclose(fid);
    %-----------------Dissipation energy spectrum-------------
    dissspectrum = avespectrum.*compk'.^2*nu;
    dissk=compk*etak;
    dissipated = [dissk;dissspectrum'];
    fid = fopen([filepath4,'average_spectrum_dissipated.dat'], ...
        'w');
    fprintf(fid, '%15.8E %15.8E\n', dissipated);
    fclose(fid);
```


Appendix C

Procedure and script for

coherent structures

The simulation parameters are set in the 'simparam' module in FORTRAN 90. In the main program, two subroutines are called: getvelocity.f90 and getq.f90. The getvelocity.f90 extract velocity data from original data file, the getq.f90 generated Q_{n} field from velocity. The main program is:


```
integer,parameter::ni=300,nj=300,nk=300
    real(kind=8), parameter::dx=1.0d0,dy=1.0d0,dz=1.0d0
    !
    ! Liquid parameter
    real(kind=8),parameter::nu=8.296E-003 !viscosity
    !
    end module simparam
    !------------------------------------------
    !-----------------------------------------------
    !----------------- Main program
    !---------------------------------------------
    !---------------------------------------------
program main
use simparam
implicit none
    !-----
integer::ifld
real(kind=8),dimension(:,:,:), allocatable::vx,vy,vz
allocate( vx(ni,nj,nk) )
allocate( vy(ni,nj,nk) )
allocate( vz(ni,nj,nk) )
do ifld=12,12,1
    !--------------------------------------------
    ! Get velocity from VTK file
    !---------------------------------------
    call getvelocity(ifld,vx,vy,vz)
    !----------------------------------------
    ! Calculate q values
    !-------------------------------------------
    call getq(ifld,vx,vy,vz)
    enddo
```

```
4 2 ~ d e a l l o c a t e ( v x )
deallocate(vy)
deallocate(vz)
    end program main
```

The getvelocity.f90 subroutine is:

```
subroutine getvelocity(ifld,vx,vy,vz)
use simparam
implicit none
    integer,intent(inout)::ifld
    real(kind=8),intent(inout)::vx(ni,nj,nk),vy(ni,nj,nk)
    real(kind=8),intent(inout)::vz(ni,nj,nk)
    integer ::jump,i,j,k,p,temp,d0,d1,d2,d3
    character ::store
    real(kind=8), dimension(1:ni*nj*nk)::q
    character(len=71) datfilel
    character(len=67) datfile2,datfile3,datfile4
    datfile1(1:63)='/home/gradi/cheng/CZ Jan ...
        16/twophase/d300c6_case3/paraviewv/vlc' !50+
    datfile1(68:71)='.vtk'
    datfile2(1:59)='/home/gradl/cheng/Cz Jan ...
        16/twophase/d300c6_case3/velx/velx'
    datfile2(64:67)='.dat'
    datfile3(1:59)='/home/gradi/cheng/CZ Jan ...
        16/twophase/d300c6_case3/vely/vely'
    datfile3(64:67)='.dat'
    datfile4(1:59)='/home/gradi/cheng/Cz Jan ...
        16/twophase/d300c6_case3/velz/velz'
    datfile4(64:67)='.dat'
    102 format (e15.8,1X,e15.8,1X,e15.8)
    103 format (A)
    104 format (A,1X,I4,1X,I4,1X,I4)
    105 format (A,1X,I1,1X,I1,1X,I1)
```

```
106 format (A,1X,I8)
    107 format (f6.3)
    108 format (f6.3,1X,f6.3,1X,f6.3)
    if (ifld .lt. 10) then
    d0=0
    d1=0
    d2=0
    d3=ifld
    endif
    !-------
    if ((ifld .ge. 10) .and. (ifld .lt. 100)) then
    d0}=
    d1=0
    d2=inT(ifld/10)
    d3=ifld-d2*10
    endif
    !-------
    if ((ifld .ge. 100) .and. (ifld .lt. 1000)) then
    d0=0
    d1=inT(ifld/100)
    d2=ifld-d1*100
    d2=inT(d2/10)
    d3=ifld-d1*100-d2*10
    endif
!-------
    if (ifld .ge. 1000) then
    d0=inT(ifld/1000)
    d1=ifld-d0*1000
    dl=inT(d1/100)
    d2=ifld-d0*1000-d1*100
```

```
    d2=inT(d2/10)
    d3=ifld-d0*1000-d1*100-d2*10
    endif
    datfile1(64:64)=char(d0+48)
    datfile1(65:65)=char(d1+48)
    datfile1(66:66)=char(d2+48)
    datfilel(67:67)=char(d3+48)
    !-------
    datfile2(60:60)=char(d0+48)
    datfile2(61:61)=char(d1+48)
    datfile2(62:62)=char(d2+48)
    datfile2(63:63)=char(d3+48)
    !-------
    datfile3(60:60)=char(d0+48)
    datfile3(61:61)=char(d1+48)
    datfile3(62:62)=char(d2+48)
    datfile3(63:63)=char(d3+48)
    !-------
    datfile4(60:60)=char(d0+48)
    datfile4(61:61)=char(d1+48)
    datfile4(62:62)=char(d2+48)
    datfile4(63:63)=char(d3+48)
    open(unit=133,file=datfile1,form='formatted',status='unknown')
    open(unit=212,file=datfile2,form='formatted',status='unknown')
    open(unit=213,file=datfile3,form='formatted',status='unknown')
    open(unit=214,file=datfile4,form='formatted',status='unknown')
    do jump=1,9
    read(133,'(A13)') store
    enddo
```

```
87
do k=1,nk
    do j=1,nj
    do i=1,ni
    read(133,102)vx(i,j,k),vy(i,j,k),vz(i,j,k)
    write(212,102) vx(i,j,k)
    write(213,102) vy(i,j,k)
    write(214,102)vz(i,j,k)
    enddo
    enddo
    enddo
98 close(unit=133)
    close(unit=212)
    close(unit=213)
    close(unit=214)
102
1 0 3 ~ e n d ~ s u b r o u t i n e ~ g e t v e l o c i t y
```

The getq.f90 subroutine is:

```
subroutine getq(ifld,vx,vy,vz)
    use simparam
    IMPLICIT NONE
    integer,intent (inout) : :ifld
    real(kind=8),intent(in)::vx(ni,nj,nk),vy(ni,nj,nk),vz(ni,nj,nk)
    integer ::jump,i,j,k,p,temp,ip, jp,kp,d0,d1,d2,d3
    character ::store
    real(kind=8), dimension(1:ni*nj*nk): :q,qq
    real(kind=8) ::omega2,s2, numerator, denominator
    character(len=67) datfile10,datfile11
    datfile10(1:59)='/home/grad1/cheng/CZ Jan ...
        16/onephase/d300b1_case3/qval/qval'
    datfile10(64:67)='.dat'
    datfile11(1:59)='/home/gradl/cheng/CZ Jan ...
        16/onephase/d300b1_case3/qval/qori'
    datfile11(64:67)='.dat'
    101 format (e15.6,1X,e15.6,1X,e15.6)
    102 format (E11.3)
    103 format (A)
    1 0 4 \text { format (A, 1X,I4,1X,I4,1X,I4)}
    105 format (A, 1X,I1,IX,I1,IX,I1)
    106 format (A, 1X, I8)
    107 format (f6.3)
    108 format (f6.3,1X,f6.3,1X,f6.3)
    109 format (f12.3)
```

```
if (ifld .lt. 10) then
    d0=0
    d1=0
    d2=0
    d3=ifld
endif
!-------
if ((ifld .ge. 10) .and. (ifld .lt. 100)) then
    d0}=
    d1=0
    d2=inT(ifld/10)
    d3=ifld-d2*10
endif
!-------
if ((ifld .ge. 100) .and. (ifld .lt. 1000)) then
    d0=0
    d1=inT(ifld/100)
    d2=ifld-d1*100
    d2=inT(d2/10)
    d3=ifld-d1*100-d2*10
endif
!-------
    if (ifld .ge. 1000) then
    d0=inT(ifld/1000)
    d1=ifld-d0*1000
    d1=inT(d1/100)
    d2=ifld-d0*1000-d1*100
    d2=inT(d2/10)
    d3=ifld-d0*1000-d1*100-d2*10
    endif
    !-------
```

```
datfilel0(60:60)=char(d0+48)
datfile10(61:61)=char(d1+48)
datfile10(62:62)=char(d2+48)
datfile10(63:63)=char(d3+48)
!-------
datfile11(60:60)=char(d0+48)
datfile11(61:61)=char(d1+48)
datfile11(62:62)=char(d2+48)
datfile11(63:63)=char(d3+48)
!-------
open(unit=216,file=datfile10,form='formatted',status='unknown')
open(unit=217, file=datfile11,form='formatted', status='unknown')
p=0
do k=1,nk
    kp=k+1
    if (kp.gt.nk) kp=kp-nk
do j=1,nj
    jp=j+1
    if (jp.gt.nj) jp=jp-nj
do i=1,ni
    ip=i+1
    if (ip.gt.ni) ip=ip-ni
    p=p+1
    numerator=-2.0d0*(vx(ip,j,k)-vx(i,j,k))*(vx(ip,j,k)-vx(i,j,k))&
    &/(dx*dx)&
    &-4.0d0*(vx(i,jp,k)-vx(i,j,k))*(vy(ip,j,k)-vy(i,j,k))&
    &/(dy*dx) &
    &-2.0d0*(vy(i,jp,k)-vy(i,j,k))*(vy(i,jp,k)-vy(i,j,k))&
    &/(dy*dy) &
```



```
119 enddo
120
121 do p=1,ni*nj*nk
122 write(216,*)q(p)
123 write(217,*) qq(p)
1 2 4 ~ e n d d o
125
126 close(unit=216)
127 close(unit=217)
128
129 end subroutine getq
```

With the Q_{n} field, the MATLAB code is then used to extract coherent structures:

```
clc
clear
    tic
    filepath1='/home/grad1/cheng/Cz Jan ...
        16/twophase/d300a6_case3/qval/' ;
    filepath2='/home/grad1/cheng/CZ Jan ...
        16/twophase/d300a6_case3/qnum/' ;
    dim=300;
    hh=waitbar(0,'calculating...');
    aa1=22;
    aa2=22;
    interv=1;
    for t=aa1:interv:aa2
    q=reshape(load([filepath1,'qval',num2str(t,'%04i'),'.dat'])...
        ,[dim,dim,dim]); %oringinal q 3d matrix
    qcheck=q;
    qcheck(qcheck>100)=NaN;
    qqq=max(qcheck(:))
    % threshold=0.8*qqq;
    threshold=0.8;
    qboundx (1)=0;
    qboundy(1)=0;
    qboundz(1)=0;
    qboundx (:) = [];
    qboundy(:)=[];
    qboundz(:)=[];
```

```
qnum=zeros(dim,dim,dim);
    qfinal=zeros(dim,dim,dim);
    n=1;
    cutoffvolume=507;
    \(q(q<t h r e s h o l d)=0 ;\)
    qchange=q; \(\quad\) \%changeable q 3d ...
        matrix
    qmax \(=\max (\max (\max (q c h a n g e)))\);
    while qmax \(>=\) threshold
        \([r, c, v]=i n d 2 s u b(s i z e(q c h a n g e)\), find(qchange==qmax));
        for \(i=1: l e n g t h(r)\)
        \%----------the max \(q\) is at point (x,y,z)----------
        \(x=r(i)\);
        \(y=c(i) ;\)
        \(\mathrm{z}=\mathrm{v}\) (i);
```



```
        xloc=x;
        yloc=y;
        zloc=z;
        if qchange(xloc,yloc,zloc)>= threshold
        thismaxpoint=true;
        \%---------------------large ..
            loop----------------------------------1
        while qchange(xloc,yloc,zloc) >= threshold ...
            \%move to +x direction
            qnum(xloc,yloc,zloc)=n; \%marked...
            this point in "nth" vortex
        \(x x=x l o c ; \quad\) opoint ...
            (xloc,yloc,zloc) is regarded as a temporary...
                origin
```

```
yy=yloc;
zz=zloc;
%------litte loop---------------------------
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    xxx=xx;
    YYY=yy;
    zzz=zz;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        zzz=zzz+1; %move to +zzz direction
        if zzz>dim
            zzz=zzz-dim;
        end
    end
    qboundx(end+1)=xxx;
    qboundy (end+1)=yyy;
    if zzz==1
        qboundz(end+1)=dim;
    else
    qboundz(end+1)=zzz-1;
    end
    zzz=zz;
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        zzz=zzz-1; %move to -zzz
        if zzz<1
            zzz=zzz+dim;
        end
```

```
    end
    qboundx(end+1) =xxx;
    qboundy (end+1)=yyy;
    if zzz==dim;
    qboundz (end+1)=1;
    else
    qboundz(end+1)=zzz+1;
    end
    zzz=zz;
    %------------end very little loop-----
    yy=yy+1; %move to +yy direction
    if yy>dim
        yy=yy-dim;
    end
end
qboundx(end+1)=xx;
if yy==1
        qboundy (end+1)=dim;
else
qboundy (end+1)=yy-1;
end
qboundz (end+1)=zz;
yy=yloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        zzz=zzz+1; %move to +zzz direction
```

```
        if zzz>dim
```

 if zzz>dim
 zzz=zzz-dim;
 zzz=zzz-dim;
 end
 end
 end
 end
 qboundx(end+1)=xxx;
 qboundx(end+1)=xxx;
 qboundy (end+1) =yYy;
 qboundy (end+1) =yYy;
 if zzz==1
 if zzz==1
 qboundz(end+1)=dim;
 qboundz(end+1)=dim;
 else
 else
 qboundz (end+1)=zzz-1;
 qboundz (end+1)=zzz-1;
 end
 end
 Z Z Z=Z Z;
 Z Z Z=Z Z;
 while qchange(xxx,yyy,zzz) >= threshold
while qchange(xxx,yyy,zzz) >= threshold
qnum(xXX, YYy, zzz)=n;
qnum(xXX, YYy, zzz)=n;
zzz=zzz-1; %move to -zzz
zzz=zzz-1; %move to -zzz
if zzz<1
if zzz<1
zzz=zzz+dim;
zzz=zzz+dim;
end
end
end
end
qboundx(end+1)=xxx;
qboundx(end+1)=xxx;
qboundy (end+1)=yyy;
qboundy (end+1)=yyy;
if zzz==dim;
if zzz==dim;
qboundz (end+1)=1;
qboundz (end+1)=1;
else
else
qboundz(end+1)=zzz+1;
qboundz(end+1)=zzz+1;
end
end
zzz=zz;
zzz=zz;
%-----------end very little loop-----
%-----------end very little loop-----
YY=yY-1; %move to -yy direction
YY=yY-1; %move to -yy direction
if yY<1

```
if yY<1
```

```
YY=yy+dim;
    end
    end
    qboundx (end+1)=xx;
    if YY==dim
        qboundy (end+1)=1;
else
qboundy (end+1)=yy+1;
end
qboundz (end+1)=zz;
YY=yloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx, Yy,zz)=n;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xXX, YYY, zZz)=n;
        yYy=yyy+1; %move to +yyy direction
        if yyy>dim
            YYy=yyy-dim;
        end
        end
        qboundx (end+1)=xxx;
        if yyy==1
        qboundy (end+1)=dim;
        else
        qboundy (end+1)=yyy-1;
        end
        qboundz (end+1)=zzz;
        YYY=YY;
```

```
    while qchange(xxx,yyy,zzz) >= threshold
```

 while qchange(xxx,yyy,zzz) >= threshold
 qnum(xxx,yyy,zzz)=n;
 qnum(xxx,yyy,zzz)=n;
 yyy=yyy-1; %move to -yyy
 yyy=yyy-1; %move to -yyy
 if yyy<1
 if yyy<1
 yyy=yyy+dim;
 yyy=yyy+dim;
 end
 end
 end
 end
 qboundx(end+1)=xxx;
 qboundx(end+1)=xxx;
 if yyy==dim
 if yyy==dim
 qboundy (end+1)=1;
 qboundy (end+1)=1;
 else
 else
 qboundy(end+1)=yyy+1;
 qboundy(end+1)=yyy+1;
 end
 end
 qboundz(end+1)=zzz;
 qboundz(end+1)=zzz;
 yyy=yy;
 yyy=yy;
 %------------end very little loop-----
 %------------end very little loop-----
 zz=zz+1; %move to +zz direction
 zz=zz+1; %move to +zz direction
 if zz>dim
 if zz>dim
 zz=zz-dim;
 zz=zz-dim;
 end
 end
 end
end
qboundx(end+1)=xx;
qboundx(end+1)=xx;
qboundy (end+1)=yy;
qboundy (end+1)=yy;
if zz==1
if zz==1
qboundz (end+1)=dim;
qboundz (end+1)=dim;
else
else
qboundz (end+1)=zz-1;
qboundz (end+1)=zz-1;
end
end
zz=zloc;
zz=zloc;
while qchange(xx,yy,zz) >= threshold

```
while qchange(xx,yy,zz) >= threshold
```

```
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
    qnum(xxx,yyy,zzz)=n;
    yyy=yyy+1; %move to +yyy direction
    if yyy>dim
        yyy=yyy-dim;
    end
end
qboundx(end+1) =xxx;
if yyy==1
    qboundy (end+1)=dim;
else
qboundy (end+1)=yyy-1;
end
qboundz(end+1)=zzz;
yyy=yy;
while qchange(xxx,yyy,zzz) >= threshold
    qnum(xxx, yYy,zzz)=n;
    yyy=yyy-1; %move to -yyy
    if yyy<1
                yyy=yyy+dim;
    end
end
qboundx(end+1)=xxx;
if yyy==dim
    qboundy (end+1)=1;
else
qboundy(end+1)=yyy+1;
end
```

```
            qboundz(end+1)=zzz;
```

 qboundz(end+1)=zzz;
 YYY=YY;
 YYY=YY;
 %------------end very little loop-----
 %------------end very little loop-----
 zz=zz-1; %move to -zz direction
 zz=zz-1; %move to -zz direction
 if zz<1
 if zz<1
 zz=zz+dim;
 zz=zz+dim;
 end
 end
 end
 end
 qboundx (end+1)=xx;
 qboundx (end+1)=xx;
 qboundy (end+1)=yy;
 qboundy (end+1)=yy;
 if zz==dim;
 if zz==dim;
 qboundz (end+1)=1;
 qboundz (end+1)=1;
 else
 else
 qboundz(end+1)=zz+1;
 qboundz(end+1)=zz+1;
 end
 end
 zz=zloc;
 zz=zloc;
 %----------------------nd little loop------
 %----------------------nd little loop------
 xloc=xloc+1;
 xloc=xloc+1;
 if xloc>dim
 if xloc>dim
 xloc=xloc-dim;
 xloc=xloc-dim;
 end
 end
 end
 end
 if xloc==1
 if xloc==1
 qboundx (end+1)=dim;
 qboundx (end+1)=dim;
 else
 else
 qboundx (end+1)=xloc-1;
 qboundx (end+1)=xloc-1;
 end
 end
 qboundy (end+1)=yloc;
 qboundy (end+1)=yloc;
 qboundz (end+1)=zloc;
 qboundz (end+1)=zloc;
 xloc=x;
 xloc=x;
 %reset xloc to original x (where max q exists)
    ```
    %reset xloc to original x (where max q exists)
```

```
%----------------------------------nd large ...
    loop-----------------
    %----------------------large ...
    loop----------------------------------
    while qchange(xloc,yloc,zloc) >= threshold ...
    %move to -x direction
    qnum(xloc,yloc,zloc)=n;
    %-----litte loop-------------------------
    while qchange(xx,yy,zz) >= threshold
        qnum(xx,yy,zz)=n;
        %----------very little loope-----
        while qchange(xxx,yyy,zzz) >= threshold
            qnum(xxx,yyy,zzz)=n;
        zzz=zzz+1; %move to +zzz direction
        if zzz>dim
            zzz=zzz-dim;
        end
        end
        qboundx(end+1) =xxx;
        qboundy (end+1)=yyy;
        if zzz==1
        qboundz (end+1)=dim;
        else
        qboundz(end+1)=zzz-1;
        end
        zzz=zz;
        while qchange(xxx,yyy,zzz) >= threshold
            qnum(xxx,yyy,zzz)=n;
        zzz=zzz-1; %move to -zzz
```



```
        if zzz<1
            zzz=zzz+dim;
        nd
    end
    qboundx(end+1)=xxx;
    qboundy (end+1)=yyy;
    if zzz==dim
        qboundz (end+1)=1;
    else
    qboundz(end+1)=zzz+1;
    end
    zzz=zz;
    %-----------end very little loop-----
    end
    end
    qboundx (end+1)=xx;
    if yy==1
        qboundy (end+1)=dim;
else
qboundy (end+1)=yy-1;
end
qboundz (end+1)=zz;
yy=yloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
```

```
qnum(xxx, YYy,zzz)=n;
end
qboundx(end+1)=xxx;
qboundy (end+1)=yyy;
if zzz==1
    qboundz (end+1)=dim;
else
qboundz (end+1)=zzz-1;
end
zzz=zz;
while qchange(xxx,yyy,zzz) >= threshold
    qnum(xXx, YYY, zzz)=n;
    zzz=zzz-1; %move to -zzz
    if zzz<1
        zzz=zzz+dim;
    end
end
qboundx (end+1)=xxx;
qboundy (end+1)=yYy;
if zzz==dim
    qboundz (end+1)=1;
else
qboundz (end+1)=zzz+1;
end
zZz=zz;
%------------end very little loop-----
```

```
    yy=yy-1; %move to -yy direction
        if yy<1
        yy=yy+dim;
        end
    end
    qboundx(end+1) =xx;
    if yy==dim
        qboundy (end+1)=1;
    else
    qboundy(end+1)=yy+1;
    end
    qboundz (end+1)=zz;
    yy=yloc;
    while qchange(xx,yy,zz) >= threshold
        qnum(xx,yy,zz)=n;
        %----------very little loope-----
        while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy+1; %move to +yyy direction
        if yyy>dim
            yyy=yyy-dim;
        end
        end
        qboundx(end+1) =xxx;
        if yyy==1;
            qboundy(end+1)=dim;
        else
        qboundy(end+1)=yyy-1;
        end
        qboundz(end+1)=zzz;
```

```
    yyy=yy;
```

 yyy=yy;
 while qchange(xxx,yyy,zzz) >= threshold
 while qchange(xxx,yyy,zzz) >= threshold
 qnum (xxx,yyy,zzz)=n;
 qnum (xxx,yyy,zzz)=n;
 yyy=yyy-1; \%move to -yyy
 yyy=yyy-1; \%move to -yyy
 if \(y y y<1\)
 if \(y y y<1\)
 \(y y y=y y y+d i m ;\)
 \(y y y=y y y+d i m ;\)
 end
 end
 end
 end
 qboundx (end+1) =xxx;
 qboundx (end+1) =xxx;
 if \(y y y==d i m\)
 if \(y y y==d i m\)
 qboundy \((e n d+1)=1\);
 qboundy \((e n d+1)=1\);
 else
 else
 qboundy \((e n d+1)=y y y+1\);
 qboundy \((e n d+1)=y y y+1\);
 end
 end
 qboundz (end+1)=zzz;
 qboundz (end+1)=zzz;
 yyy=yy;
 yyy=yy;
 \%-----------end very little loop-----
 \%-----------end very little loop-----
 zz=zz+1; \%move to +zz direction
 zz=zz+1; \%move to +zz direction
 if zz>dim
 if zz>dim
 \(z z=z z-d i m ;\)
 \(z z=z z-d i m ;\)
 end
 end
 end
 end
 qboundx (end+1)=xx;
 qboundx (end+1)=xx;
 qboundy (end+1) =yy;
 qboundy (end+1) =yy;
 if \(z z==1\)
 if \(z z==1\)
 qboundz (end+1)=dim;
 qboundz (end+1)=dim;
 else
else
qboundz $(e n d+1)=z z-1$;
qboundz $(e n d+1)=z z-1$;
end
end
$\mathrm{zz}=\mathrm{zloc}$;

```
\(\mathrm{zz}=\mathrm{zloc}\);
```

```
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        YYy=yYy+1; %move to +yYy direction
        if yyy>dim
                yyy=yyy-dim;
        end
    end
    qboundx (end+1) =xxx;
    if yyy==1
        qboundy (end+1)=dim;
    else
    qboundy (end+1)=yyy-1;
    end
    qboundz(end+1)=zzz;
    YYy=yy;
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy-1; %move to -yyy
        if yyy<1
                yyy=yyy+dim;
        end
    end
    qboundx(end+1)=xxx;
    if yyy==dim
        qboundy (end+1)=1;
    else
```

```
芯 范 范 品
453
454
```

 qboundy (end+1)=yyy+1;
    ```
        qboundy (end+1)=yyy+1;
        end
        end
        qboundz(end+1)=zzz;
        qboundz(end+1)=zzz;
        yyy=yy;
        yyy=yy;
        %------------end very little loop-----
        %------------end very little loop-----
        zz=zz-1; %move to -zz direction
        zz=zz-1; %move to -zz direction
        if zz<1
        if zz<1
        zz=zz+dim;
        zz=zz+dim;
        end
        end
    end
    end
    qboundx(end+1)=xx;
    qboundx(end+1)=xx;
    qboundy (end+1) =yy;
    qboundy (end+1) =yy;
    if zz==dim
    if zz==dim
        qboundz(end+1)=1;
        qboundz(end+1)=1;
    else
    else
    qboundz (end+1)=zz+1;
    qboundz (end+1)=zz+1;
    end
    end
    zz=zloc;
    zz=zloc;
    %-------------------------------
    %-------------------------------
    xloc=xloc-1;
    xloc=xloc-1;
    if xloc<1
    if xloc<1
        xloc=xloc+dim;
        xloc=xloc+dim;
        end
        end
    end
    end
    if xloc==dim;
    if xloc==dim;
        qboundx (end+1)=1;
        qboundx (end+1)=1;
    else
    else
    qboundx (end+1)=xloc+1;
    qboundx (end+1)=xloc+1;
    end
    end
    qboundy (end+1)=yloc;
    qboundy (end+1)=yloc;
qboundz(end+1)=zloc;
```

qboundz(end+1)=zloc;

```
```

xloc=x;
%reset xloc to original x (where max q exists)
%---------------------------------nd large ...
loop-----------------
%---------------------large ...
loop--------------------------------
while qchange(xloc,yloc,zloc) >= threshold ...
%move to +y direction
qnum(xloc,yloc, zloc)=n;
%-----litte loop--------------------------
while qchange(xx,yy,zz) >= threshold
qnum(xX, YY, zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xXx, YYY, zzz)=n;
zzz=zzz+1; %move to +zzz direction
if zzz>dim
zzz=zzz-dim;
end
end
qboundx(end+1)=xxx;
qboundy (end+1)=yyy;
if zzz==1
qboundz (end+1)=dim;
else
qboundz (end+1)=zzz-1;
end
Z Z Z= Z Z;

```
```

 while qchange(xxx,yyy,zzz) >= threshold
    ```
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        qnum(xxx,yyy,zzz)=n;
        zzz=zzz-1; %move to -zzz
        zzz=zzz-1; %move to -zzz
        if zzz<1
        if zzz<1
            zzz=zzz+dim;
            zzz=zzz+dim;
        end
        end
    end
    end
    qboundx(end+1)=xxx;
    qboundx(end+1)=xxx;
    qboundy (end+1)=yyy;
    qboundy (end+1)=yyy;
    if zzz==dim
    if zzz==dim
        qboundz (end+1)=1;
        qboundz (end+1)=1;
else
else
    qboundz(end+1)=zzz+1;
    qboundz(end+1)=zzz+1;
    end
    end
    zzz=zz;
    zzz=zz;
    %------------end very little loop-----
    %------------end very little loop-----
    xx=xx+1; %move to +xx direction
    xx=xx+1; %move to +xx direction
    if xx>dim
    if xx>dim
        xx=xx-dim;
        xx=xx-dim;
    end
    end
end
end
if }xx==
if }xx==
    qboundx(end+1)=dim;
    qboundx(end+1)=dim;
else
else
qboundx (end+1)=xx-1;
qboundx (end+1)=xx-1;
end
end
qboundy(end+1)=yy;
qboundy(end+1)=yy;
qboundz (end+1)=zz;
qboundz (end+1)=zz;
xx=xloc;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
```

while qchange(xx,yy,zz) >= threshold

```
```

qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
zzz=zzz+1; %move to +zzz direction
if zzz>dim
zzz=zzz-dim;
end
end
qboundx(end+1)=xxx;
qboundy(end+1)=yyy;
if zzz==1
qboundz (end+1)=dim;
else
qboundz (end+1)=zzz-1;
end
zzz=zz;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
zzz=zzz-1; %move to -zzz
if zzz<1
zzz=zzz+dim;
end
end
qboundx(end+1)=xxx;
qboundy (end+1)=yyy;
if zzz==dim
qboundz (end+1)=1;
else
qboundz(end+1)=zzz+1;

```
```

 end
 zzz=zz;
 %-------------end very little loop-----
 xx=xx-1; %move to -xx direction
 if xx<1
 xx=xx+dim;
 end
 end
 if xx==dim
 qboundx (end+1)=1;
 else
 qboundx (end+1)=xx+1;
 end
 qboundy (end+1)=yy;
 qboundz(end+1)=zz;
 xx=xloc;
 while qchange(xx,yy,zz) >= threshold
 qnum(xx,yy,zz)=n;
 %----------very little loope-----
 while qchange(xxx,yyy,zzz) >= threshold
 qnum(xxx,yyy,zzz)=n;
 xxx=xxx+1; %move to +xxx direction
 if xxx>dim
 xxx=xxx-dim;
 end
 end
 if }x\timesx==
 qboundx (end+1)=dim;
 else
 qboundx (end+1)=xxx-1;
    ```
```

 end
 qboundy(end+1)=yyy;
 qboundz(end+1)=zzz;
 xxx=xx;
 while qchange(xxx,yyy,zzz) >= threshold
 qnum(xxx,yyy,zzz)=n;
 xxx=xxx-1; %move to -xxx
 if xxx<1
 xxx=xxx+dim;
 end
 end
 if }xxx==di
 qboundx (end+1)=1;
 else
 qboundx(end+1)=xxx+1;
 end
 qboundy (end+1)=yyy;
 qboundz(end+1)=zzz;
 xxx=xx;
 %-------------end very little loop-----
 zz=zz+1; %move to +zz direction
 if zz>dim
 zz=zz-dim;
 end
 end
qboundx (end+1)=xx;
qboundy (end+1)=yy;
if zz==1
qboundz(end+1)=dim;
else

```
```

qboundz (end+1)=zz-1;
end
zz=zloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx+1; %move to +xxx direction
if xxx>dim
xxx=xxx-dim;
end
end
if }xxx==
qboundx(end+1)=dim;
else
qboundx(end+1)=xxx-1;
end
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx-1; %move to -xxx
if xxx<1
xxx=xxx+dim;
end
end
if xxx==dim

```
```

 qboundx (end+1)=1;
    ```
            qboundx (end+1)=1;
        else
        else
        qboundx(end+1)=xxx+1;
        qboundx(end+1)=xxx+1;
        end
        end
        qboundy(end+1)=yyy;
        qboundy(end+1)=yyy;
        qboundz(end+1)=zzz;
        qboundz(end+1)=zzz;
        xxx=xx;
        xxx=xx;
        %-------------end very little loop-----
        %-------------end very little loop-----
        zz=zz-1; %move to -zz direction
        zz=zz-1; %move to -zz direction
        if zz<1
        if zz<1
        zz=zz+dim;
        zz=zz+dim;
        end
        end
    end
    end
    qboundx (end+1)=xx;
    qboundx (end+1)=xx;
    qboundy (end+1)=yy;
    qboundy (end+1)=yy;
    if zz==dim
    if zz==dim
        qboundz (end+1)=1;
        qboundz (end+1)=1;
    else
    else
    qboundz (end+1)=zz+1;
    qboundz (end+1)=zz+1;
    end
    end
    zz=zloc;
    zz=zloc;
    %-------------------------------
    %-------------------------------
    yloc=yloc+1;
    yloc=yloc+1;
    if yloc>dim
    if yloc>dim
        yloc=yloc-dim;
        yloc=yloc-dim;
        end
        end
    end
    end
qboundx(end+1)=xloc;
qboundx(end+1)=xloc;
if yloc==1
if yloc==1
        qboundy (end+1)=dim;
        qboundy (end+1)=dim;
else
```

else

```
```

 qboundy (end+1)=yloc-1;
 end
 qboundz (end+1)=zloc;
 yloc=y;
 %reset yloc to original y (where max q exists)
 %--------------------------------nd large ...
 loop-----------------
 %-----------------------large ...
 loop-----------------------------------
 while qchange(xloc,yloc,zloc) >= threshold ...
%move to -y direction
qnum(xloc,yloc,zloc)=n;
%-----litte loop--------------------------
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx, yYy,zzz)=n;
zzz=zzz+1; %move to +zzz direction
if zzz>dim
zzz=zzz-dim;
end
end
qboundx(end+1) =xxx;
qboundy (end+1)=yyy;
if zzz==1
qboundz (end+1)=dim;
else
qboundz(end+1)=zzz-1;

```
```

N゙N
724
726
N
729
731
732
737
び

```
```

 end
    ```
    end
    \(z z z=z z ;\)
    \(z z z=z z ;\)
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum (xxx,yyy,zzz)=n;
        qnum (xxx,yyy,zzz)=n;
        \(z z z=z z z-1\); \(\% m o v e\) to -zzz
        \(z z z=z z z-1\); \(\% m o v e\) to -zzz
        if \(z z z<1\)
        if \(z z z<1\)
            zzz=zzz+dim;
            zzz=zzz+dim;
        end
        end
    end
    end
    qboundx (end+1) \(=x x x\);
    qboundx (end+1) \(=x x x\);
    qboundy (end+1) =yyy;
    qboundy (end+1) =yyy;
    if \(z z z==\) dim
    if \(z z z==\) dim
        qboundz \((e n d+1)=1\);
        qboundz \((e n d+1)=1\);
    else
    else
    qboundz (end +1 ) \(=\mathrm{zzz}+1\);
    qboundz (end +1 ) \(=\mathrm{zzz}+1\);
    end
    end
    \(z z z=z z ;\)
    \(z z z=z z ;\)
    \%------------end very little loop-----
    \%------------end very little loop-----
    \(x x=x x+1 ; \quad\) omove to \(+x x\) direction
    \(x x=x x+1 ; \quad\) omove to \(+x x\) direction
    if \(x x>d i m\)
    if \(x x>d i m\)
        \(x x=x x-d i m ;\)
        \(x x=x x-d i m ;\)
    end
    end
    end
    end
    if \(x x==1\)
    if \(x x==1\)
        qboundx (end+1)=dim;
        qboundx (end+1)=dim;
else
else
qboundx \((e n d+1)=x x-1\);
qboundx \((e n d+1)=x x-1\);
end
end
qboundy (end+1) =yy;
qboundy (end+1) =yy;
qboundz \((e n d+1)=z z\);
```

qboundz $(e n d+1)=z z$;

```
```

xx=xloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
zzz=zzz+1; %move to +zzz direction
if zzz>dim
zzz=zzz-dim;
end
end
qboundx(end+1) =xxx;
qboundy (end+1)=yyy;
if zzz==1
qboundz (end+1)=dim;
else
qboundz(end+1)= zzz-1;
end
zzz=zz;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
zzz=zzz-1; %move to -zzz
if zzz<1
zzz=zzz+dim;
end
end
qboundx(end+1)=xxx;
qboundy(end+1)=yyy;
if zzz==dim

```
```

 qboundz (end+1)=1;
    ```
            qboundz (end+1)=1;
    else
    else
    qboundz (end+1)=zzz+1;
    qboundz (end+1)=zzz+1;
    end
    end
    Z Z Z=Z Z;
    Z Z Z=Z Z;
    %-----------end very little loop-----
    %-----------end very little loop-----
    xx=xx-1; %move to -xx direction
    xx=xx-1; %move to -xx direction
    if xx<1
    if xx<1
        xx=xx+dim;
        xx=xx+dim;
    end
    end
end
end
if xx==dim
if xx==dim
    qboundx(end+1)=1;
    qboundx(end+1)=1;
else
else
qboundx (end+1)=xx+1;
qboundx (end+1)=xx+1;
end
end
qboundy (end+1)=yy;
qboundy (end+1)=yy;
qboundz (end+1)=zz;
qboundz (end+1)=zz;
xx=xloc;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
    qnum(xx, yy,zz)=n;
    qnum(xx, yy,zz)=n;
    %----------very little loope-----
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
            qnum(xXx, YYy, zzz)=n;
            qnum(xXx, YYy, zzz)=n;
            xxx=xxx+1; %move to +xxx direction
            xxx=xxx+1; %move to +xxx direction
            if xxx>dim
            if xxx>dim
                xxx=xxx-dim;
                xxx=xxx-dim;
            end
            end
        end
        end
        if }x\timesx==
```

 if }x\timesx==
    ```

```

 qboundx (end+1)=dim;
 else
 qboundx(end+1)=xxx-1;
 end
 qboundy (end+1) =yYy;
 qboundz (end+1)=zzz;
 XXX=XX;
 while qchange(xxx,yyy,zzz) >= threshold
 qnum(xXX, YYY, zZZ)=n;
 xxx=xxx-1; %move to -xxx
 if }x\timesx<
 xxx=xxx+dim;
 end
 end
 if }x\timesx==di
 qboundx (end+1)=1;
 else
 qboundx(end+1)=xxx+1;
 end
 qboundy (end+1)=yyy;
 qboundz (end+1)=zzz;
 xx=xx;
 %------------end very little loop------
 zz=zz+1; %move to +zz direction
 if zz>dim
 zz=zz-dim;
 end
 qboundy (end+1)=yy;

```
```

if zz==1
qboundz(end+1)=dim;
else
qboundz (end+1)=zz-1;
end
zz=zloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx, YY, zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx, yyy, zzz)=n;
xxx=xxx+1; %move to +xxx direction
if xxx>dim
xxx=xxx-dim;
end
end
if }x\timesx==
qboundx(end+1)=dim;
else
qboundx(end+1)=xxx-1;
end
qboundy (end+1)=yУy;
qboundz (end+1)=zzz;
XXX=xX;
while qchange(xxx,yyy,zzz) >= threshold
qnum (xxx, yyy, zzz)=n;
xxx=xxx-1; %move to -xxx
if xXX<1
xxx=xxx+dim;

```
```

8 7 6 ~ e n d
end
if xxx==dim
qboundx (end+1)=1;
else
qboundx(end+1)=xxx+1;
end
qboundy(end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
%-----------end very little loop-----
zz=zz-1; %move to -zz direction
if zz<1
zz=zz+dim;
end
end
qboundx (end+1)=xx;
qboundy (end+1)=yy;
if zz==dim
qboundz (end+1)=1;
else
qboundz (end+1)=zz+1;
end
zz=zloc;
%----------------------nd little loop------
yloc=yloc-1;
if yloc<1
yloc=yloc+dim;
end
end
qboundx(end+1)=xloc;

```
```

 if yloc==dim
 qboundy (end+1)=1;
 else
 qboundy (end+1)=yloc+1;
 end
 qboundz (end+1)=zloc;
 yloc=y;
 %reset yloc to original (where max q exists)
 %----------------------------------nd large ...
 loop------------------
 %---------------------large ...
 loop---------------------------------
 while qchange(xloc,yloc,zloc) >= threshold ...
 %move to +z direction
 qnum(xloc,yloc,zloc)=n;
 %-----litte loop-----------------------------
 while qchange(xx,yy,zz) >= threshold
 qnum(xx,yy,zz)=n;
 %----------very little loope-----
 while qchange(xxx,yyy,zzz) >= threshold
 qnum(xxx,yyy,zzz)=n;
 yyy=yyy+1; %move to +yyy direction
 if yyy>dim
 yyy=yyy-dim;
 end
 end
 qboundx(end+1)=xxx;
 if yyy==1
 qboundy(end+1)=dim;
    ```
```

@\mp@code{@~}
else
end
qboundz(end+1)=zzz;
yyy=yy;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
yyY=yyy-1; %move to -yyy
if yyy<1
yyy=yyy+dim;
end
end
qboundx(end+1)=xxx;
if yyy==dim
qboundy (end+1)=1;
else
qboundy (end+1)=yyy+1;
end
qboundz(end+1)=zzz;
yyy=yy;
%-----------end very little loop-----
xx=xx+1; %move to +xx direction
if xx>dim
xx=xx-dim;
end
end
if }xx==
qboundx(end+1)=dim;
else
qboundx (end+1)=xx-1;

```
```

end
qboundy (end+1)=yy;
qboundz(end+1)=zz;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
yyy=yyy+1; %move to +yyy direction
if yyy>dim
yyy=yyy-dim;
end
end
qboundx(end+1)=xxx;
if yyy==1
qboundy (end+1)=dim;
else
qboundy (end+1)=yyy-1;
end
qboundz(end+1)=zzz;
yyy=yy;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
yyy=yyy-1; %move to -yyy
if yyy<1
yyy=yyy+dim;
end
end

```
```

 qboundx(end+1)=xxx;
    ```
    qboundx(end+1)=xxx;
    if yyy==dim;
    if yyy==dim;
        qboundy (end+1)=1;
        qboundy (end+1)=1;
        else
        else
        qboundy(end+1)=yyy+1;
        qboundy(end+1)=yyy+1;
        end
        end
        qboundz(end+1)=zzz;
        qboundz(end+1)=zzz;
        yyy=yy;
        yyy=yy;
        %-------------end very little loop-----
        %-------------end very little loop-----
        xx=xx-1; %move to -xx direction
        xx=xx-1; %move to -xx direction
        if xx<1
        if xx<1
        xx=xx+dim;
        xx=xx+dim;
    end
    end
end
end
if xx==dim
if xx==dim
    qboundx (end+1)=1;
    qboundx (end+1)=1;
else
else
qboundx(end+1)=xx+1;
qboundx(end+1)=xx+1;
end
end
qboundy (end+1)=yy;
qboundy (end+1)=yy;
qboundz(end+1)=zz;
qboundz(end+1)=zz;
xx=xloc;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        qnum(xxx,yyy,zzz)=n;
        xxx=xxx+1; %move to +xxx direction
        xxx=xxx+1; %move to +xxx direction
        if xxx>dim
        if xxx>dim
                xxx=xxx-dim;
```

 xxx=xxx-dim;
    ```

```

 end
    ```
        end
    end
    end
    if }\textrm{xXX=}=
    if }\textrm{xXX=}=
        qboundx(end+1)=dim;
        qboundx(end+1)=dim;
    else
    else
    qboundx (end+1)=xxx-1;
    qboundx (end+1)=xxx-1;
    end
    end
    qboundy (end+1)=yYY;
    qboundy (end+1)=yYY;
    qboundz(end+1)=zzz;
    qboundz(end+1)=zzz;
    XXX=xX;
    XXX=xX;
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xXx, YYy, zzz)=n;
        qnum(xXx, YYy, zzz)=n;
        xxx=xxx-1; %move to -xxx
        xxx=xxx-1; %move to -xxx
        if }xxx<
        if }xxx<
        xxx=xxx+dim;
        xxx=xxx+dim;
    end
    end
end
if }x\timesx==di
    qboundx (end+1)=1;
else
qboundx(end+1)=xxx+1;
end
qboundy (end+1)=yYy;
qboundz(end+1)=zzz;
XXX=XX;
%------------end very little loop-----
yy=yy+1; %move to +yy direction
if yy>dim
        YY=yy-dim;
end
```

```
end
qboundx (end+1)=xx;
if yy==1
    qboundy (end+1)=dim;
else
qboundy(end+1)=yy-1;
end
qboundz(end+1)=zz;
yy=yloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        xxx=xxx+1; %move to +xxx direction
        if xxx>dim
                xxx=xxx-dim;
        end
    end
    if xxx==1
        qboundx (end+1)=dim;
    else
    qboundx(end+1)=xxx-1;
    end
    qboundy(end+1)=yyy;
    qboundz(end+1)=zzz;
    xxx=xx;
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yYy,zzz)=n;
```

```
            xXX=xXx-1; %move to -xxx
```

 xXX=xXx-1; %move to -xxx
 if xxx<1
 if xxx<1
 xxx=xxx+dim;
 xxx=xxx+dim;
 end
 end
 end
 end
 if }xXX==di
 if }xXX==di
 qboundx (end+1)=1;
 qboundx (end+1)=1;
 else
 else
 qboundx(end+1)=xxx+1;
 qboundx(end+1)=xxx+1;
 end
 end
 qboundy (end+1) =yyy;
 qboundy (end+1) =yyy;
 qboundz (end+1)=zzz;
 qboundz (end+1)=zzz;
 XXX=XX;
 XXX=XX;
 %------------end very little loop-----
 %------------end very little loop-----
 YY=yY-1; %move to -yy direction
 YY=yY-1; %move to -yy direction
 if yy<1
 if yy<1
 yy=yy+dim;
 yy=yy+dim;
 end
 end
 end
end
qboundx (end+1)=xx;
qboundx (end+1)=xx;
if yy==dim
if yy==dim
qboundy (end+1)=1;
qboundy (end+1)=1;
else
else
qboundy (end+1)=yy+1;
qboundy (end+1)=yy+1;
end
end
qboundz(end+1)=zz;
qboundz(end+1)=zz;
yy=yloc;
yy=yloc;
%----------------------nd little loop-------
%----------------------nd little loop-------
zlOC=zlOC+1;
zlOC=zlOC+1;
if zloc>dim
if zloc>dim
zloc=zloc-dim;

```
    zloc=zloc-dim;
```

```
    end
```

 end
 end
 end
 qboundx(end+1)=xloc;
 qboundx(end+1)=xloc;
 qboundy (end+1)=yloc;
 qboundy (end+1)=yloc;
 if zloc==1
 if zloc==1
 qboundz(end+1)=dim;
 qboundz(end+1)=dim;
 else
 else
 qboundz (end+1)=zloc-1;
 qboundz (end+1)=zloc-1;
 end
 end
 zloc=z;
 zloc=z;
 %reset zloc to original z (where max q exists)
 %reset zloc to original z (where max q exists)
 %---------------------------------nd large ...
 %---------------------------------nd large ...
 loop-----------------
 loop-----------------
 %-----------------------large ...
 %-----------------------large ...
 loop------------------------------------
 loop------------------------------------
 while qchange(xloc,yloc,zloc) >= threshold ...
while qchange(xloc,yloc,zloc) >= threshold ...
%move to -z direction
%move to -z direction
qnum(xloc,yloc,zloc)=n;
qnum(xloc,yloc,zloc)=n;
%------litte loop---------------------------
%------litte loop---------------------------
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
qnum(xx,yy,zz)=n;
%----------very little loope-----
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx, yyy,zzz)=n;
qnum(xxx, yyy,zzz)=n;
yyy=yyy+1; %move to +yyy direction
yyy=yyy+1; %move to +yyy direction
if yyy>dim
if yyy>dim
yyy=yyy-dim;
yyy=yyy-dim;
end
end
end

```
        end
```

```
| 
1,150
1155
1156
1,157
161
1162
1,{
```



```
    qboundx (end+1) =xxx;
```

 qboundx (end+1) =xxx;
 if \(y y y==1\)
 if \(y y y==1\)
 qboundy (end+1)=dim;
 qboundy (end+1)=dim;
 else
 else
 qboundy (end+1)=yyy-1;
 qboundy (end+1)=yyy-1;
 end
 end
 qboundz (end+1)=zzz;
 qboundz (end+1)=zzz;
 YYY=yy;
 YYY=yy;
 while qchange(xxx,yyy,zzz) >= threshold
 while qchange(xxx,yyy,zzz) >= threshold
 qnum (xxx,yyy,zzz)=n;
 qnum (xxx,yyy,zzz)=n;
 yyy=yyy-1; \%move to -yyy
 yyy=yyy-1; \%move to -yyy
 if yyy<1
 if yyy<1
 yyy=yyy+dim;
 yyy=yyy+dim;
 end
 end
 end
end
qboundx $(e n d+1)=x x x$;
qboundx $(e n d+1)=x x x$;
if $y y y==d i m$
if $y y y==d i m$
qboundy $(e n d+1)=1$;
qboundy $(e n d+1)=1$;
else
else
qboundy (end+1) =yyy+1;
qboundy (end+1) =yyy+1;
end
end
qboundz $(e n d+1)=z z z$;
qboundz $(e n d+1)=z z z$;
yyy=yy;
yyy=yy;
\%-----------end very little loop-----
\%-----------end very little loop-----
$x x=x x+1 ; \quad$ omove to +xx direction
$x x=x x+1 ; \quad$ omove to +xx direction
if $x x>d i m$
if $x x>d i m$
$x x=x x-d i m ;$
$x x=x x-d i m ;$
end
end
end
end
if $x x==1$

```
if \(x x==1\)
```

```
qboundx (end+1)=dim;
else
    qboundx (end+1)=xx-1;
    end
    qboundy (end+1)=yy;
    qboundz (end+1)=zz;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx, yy,zz)=n;
    %----------very little loope-----
        while qchange(xxx,yyy,zzz) >= threshold
        qnum(xXx, YYY, zZz)=n;
        yyy=yyy+1; %move to +yyy direction
        if yyy>dim
            YYy=yYy-dim;
        end
        end
        qboundx(end+1)=xxx;
        if yyy==1
        qboundy (end+1)=dim;
        else
        qboundy (end+1)=yyy-1;
        end
        qboundz(end+1)=zzz;
        YYY=YY;
        while qchange(xxx,yyy,zzz) >= threshold
            qnum(xxx, yyy, zzz)=n;
            YYY=YYY-1; %move to -YYY
            if yYy<1
```



```
        end
    end
    qboundx(end+1)=sxx;
    if yyy==dim
        qboundy (end+1)=1;
    else
    qboundy(end+1)=yyy+1;
    end
    qboundz(end+1)=zzz;
    yYy=yY;
    xx=xx-1; %move to -xx direction
    if xx<1
        xx=xx+dim;
    end
end
if xx==dim
    qboundx (end+1)=1;
else
qboundx (end+1)=xx+1;
end
qboundy (end+1)=yy;
qboundz(end+1)=zz;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    while qchange(xxx,yyy,zzz) >= threshold
```



```
    qnum(xxx,yyy,zzz)=n;
    xxx=xxx+1; %move to +xxx direction
    if xxx>dim
        xxx=xxx-dim;
    end
end
if }x\timesx==
    qboundx(end+1)=dim;
else
qboundx (end+1) =xxx-1;
end
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
while qchange(xxx,yyy,zzz) >= threshold
    qnum(xxx,yyy,zzz)=n;
    xxx=xxx-1; %move to -xxx
    if xxx<1
        xxx=xxx+dim;
    end
end
if }xxx==di
    qboundx (end+1)=1;
else
qboundx(end+1)=xxx+1;
end
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
%------------end very little loop------
```

```
M
```

```
    yy=yy+1; %move to +yy direction
```

 yy=yy+1; %move to +yy direction
 if yy>dim
 if yy>dim
 yy=yy-dim;
 yy=yy-dim;
 end
 end
 end
 end
 qboundx (end+1) =xx;
 qboundx (end+1) =xx;
 if yy==1
 if yy==1
 qboundy (end+1)=dim;
 qboundy (end+1)=dim;
 else
else
qboundy (end+1)=yy-1;
qboundy (end+1)=yy-1;
end
end
qboundz(end+1)=zz;
qboundz(end+1)=zz;
yy=yloc;
yy=yloc;
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
qnum(xx,yy,zz)=n;
%----------very little loope-----
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
qnum(xxx,yyy,zzz)=n;
xxx=xxx+1; %move to +xxx direction
xxx=xxx+1; %move to +xxx direction
if xxx>dim
if xxx>dim
xxx=xxx-dim;
xxx=xxx-dim;
end
end
end
end
if }xxx==
if }xxx==
qboundx (end+1)=dim;
qboundx (end+1)=dim;
else
else
qboundx(end+1)=xxx-1;
qboundx(end+1)=xxx-1;
end
end
qboundy (end+1)=yyy;
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;

```
        qboundz(end+1)=zzz;
```

```
    XXX=XX;
        while qchange(xxx,yyy,zzz) >= threshold
    qnum(xxx, yyy, zzz)=n;
    xxx=xxx-1; %move to -xxx
    if }xxx<
        xxX=xxx+dim;
    end
end
if xxx==dim
    qboundx (end+1)=1;
else
qboundx(end+1)=xxx+1;
end
qboundy (end+1)=yYy;
qboundz (end+1)=zzz;
XXX=XX;
%-----------end very little loop-----
YY=yY-1; %move to -yy direction
if yy<1
    yy=yy+dim;
end
end
qboundx (end+1) =xx;
if yy==dim
        qboundy (end+1)=1;
else
qboundy (end+1)=yy+1;
end
qboundz (end+1)=zz;
YY=yloc;
```

```
        %------------------------------
```

 %------------------------------
 zloc=zloc-1;
 zloc=zloc-1;
 if zloc<1
 if zloc<1
 zloc=zloc+dim;
 zloc=zloc+dim;
 end
 end
 end
 end
 qboundx(end+1)=xloc;
 qboundx(end+1)=xloc;
 qboundy(end+1)=yloc;
 qboundy(end+1)=yloc;
 if zloc==dim
 if zloc==dim
 qboundz (end+1)=1;
 qboundz (end+1)=1;
 else
 else
 qboundz (end+1)=zloc+1;
 qboundz (end+1)=zloc+1;
 end
 end
 zloc=z; ...
 zloc=z; ...
 %reset zloc to original z (where max q exists)
 %reset zloc to original z (where max q exists)
 %---------------------------------nd large ...
 %---------------------------------nd large ...
 loop-----------------
 loop-----------------
 %---------------till now, part of boundry points ...
 %---------------till now, part of boundry points ...
 are found and recorded, and are marked as 'nth' ...
 are found and recorded, and are marked as 'nth' ...
 in a new matrix ('nth' vortex)
 in a new matrix ('nth' vortex)
 else
 else
 thismaxpoint=false;
 thismaxpoint=false;
 end
 end
 if thismaxpoint == true
 if thismaxpoint == true
 repeatboundlocs(1,1)=0;
 repeatboundlocs(1,1)=0;
 repeatboundlocs(:) = [];
 repeatboundlocs(:) = [];
 repeatboundlocs(1:length(qboundx),:) ...
 repeatboundlocs(1:length(qboundx),:) ...
 =[qboundx (:),qboundy (:),qboundz (:)];
 =[qboundx (:),qboundy (:),qboundz (:)];
 boundlocs(1,1)=0;
boundlocs(1,1)=0;
boundlocs(:)=[];

```
boundlocs(:)=[];
```

```
boundlocs=unique(repeatboundlocs,'rows');
    [row, colum]=size(boundlocs);
tempqboundx (1) =0;
tempqboundx (:) = [];
tempqboundy(1)=0;
tempqboundy (: )= [];
tempqboundz(1)=0;
tempqboundz (:) = [];
tempqboundx(1:length(boundlocs(:,1))) ...
    =boundlocs(:,1);
tempqboundy(1:length(boundlocs(:,2))) ...
    =boundlocs(:,2);
tempqboundz(1:length(boundlocs(:,3))) ...
    =boundlocs(:,3);
tempvolume1=-1;
tempvolume2=-2;
%----------start with found boundary points-------------------
while tempvolume1~=tempvolume2
repeatboundlocs(1:length(qboundx),:) ...
    =[qboundx (:),qboundy(:),qboundz (:)];
boundlocs=unique(repeatboundlocs,'rows');
tempqboundx(1:length(boundlocs(:,1)))=boundlocs(:,1);
tempqboundy(1:length(boundlocs(:,2)))=boundlocs(:,2);
tempqboundz(1:length(boundlocs(:,3)))=boundlocs(:,3);
tempvolume1=tempvolume2;
for boundnums=1:length(tempqboundx)
xloc=tempqboundx(boundnums);
yloc=tempqboundy(boundnums);
zloc=tempqboundz(boundnums);
if qchange(xloc,yloc,zloc)>= threshold
```

```
%---------------------large ...
    loop-------------------------------
    while qchange(xloc,yloc,zloc) >= threshold ...
    %move to +x direction
    qnum(xloc,yloc,zloc)=n; %marked ...
        this point in "nth" vortex
    xx=xloc; %point ...
        (xloc,yloc,zloc) is regarded as a temporary ...
        origin
    yy=yloc;
    zz=zlOC;
    %-----litte loop----------------------------
        while qchange(xx,yy,zz) >= threshold
        qnum(xx, YY,zz)=n;
        XXX=XX;
        YYY=YY;
        ZZZ=ZZ;
        %----------very little loope-----
        while qchange(xXx,yyy,zzz) >= threshold
        qnum(xxx, YYY, zzz)=n;
        zzz=zzz+1; %move to +zzz direction
        if zzz>dim
            zzz=zzz-dim;
        end
        end
        qboundx(end+1)=xxx;
        qboundy (end+1)=yyy;
        if zzz==1
        qboundz (end+1)=dim;
        else
```

```
| 
1420
N
1426
14}
14432
1437
1438
1439
14440
```

```
    qboundz (end +1 ) \(=\mathrm{zzz}-1\);
```

 qboundz (end +1) \(=\mathrm{zzz}-1\);
 end
 end
 \(z z z=z z ;\)
 \(z z z=z z ;\)
 while qchange(xxx,yyy,zzz) >= threshold
 while qchange(xxx,yyy,zzz) >= threshold
 qnum (xxx,yyy,zzz)=n;
 qnum (xxx,yyy,zzz)=n;
 \(z z z=z z z-1\); \(\%\) move to -zzz
 \(z z z=z z z-1\); \(\%\) move to -zzz
 if \(z z z<1\)
 if \(z z z<1\)
 zzz=zzz+dim;
 zzz=zzz+dim;
 end
 end
 end
end
qboundx $(e n d+1)=x x x$;
qboundx $(e n d+1)=x x x$;
qboundy (end+1)=yyy;
qboundy (end+1)=yyy;
if $z z z==$ dim
if $z z z==$ dim
qboundz $(e n d+1)=1$;
qboundz $(e n d+1)=1$;
else
else
q boundz $(e n d+1)=z z z+1$;
q boundz $(e n d+1)=z z z+1$;
end
end
zzz=zz;
zzz=zz;
\%-----------end very little loop-----
\%-----------end very little loop-----
$y y=y y+1 ; \quad$ omove to +yy direction
$y y=y y+1 ; \quad$ omove to +yy direction
if yy>dim
if yy>dim
$y y=y y-d i m ;$
$y y=y y-d i m ;$
end
end
end
end
qboundx (end+1)=xx;
qboundx (end+1)=xx;
if $y y==1$
if $y y==1$
qboundy $(e n d+1)=$ dim;
qboundy $(e n d+1)=$ dim;
else
else
q boundy $(e n d+1)=y y-1$;

```
\(q\) boundy \((e n d+1)=y y-1\);
```

```
end
qboundz(end+1)=zz;
yy=yloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        zzz=zzz+1; %move to +zzz direction
        if zzz>dim
            zzz=zzz-dim;
        end
    end
    qboundx (end+1)=xxx;
    qboundy (end+1)=yyy;
    if zzz==1
        qboundz(end+1)=dim;
    else
    qboundz(end+1)=zzz-1;
    end
    zzz=zz;
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        zzz=zzz-1; %move to -zzz
        if zzz<1
            zzz=zzz+dim;
        end
    end
    qboundx(end+1)=xxx;
```

```
    qboundy (end+1)=yyy;
```

 qboundy (end+1)=yyy;
 if zzz==dim
 if zzz==dim
 qboundz (end+1)=1;
 qboundz (end+1)=1;
 else
 else
 qboundz(end+1)=zzz+1;
 qboundz(end+1)=zzz+1;
 end
 end
 zzz=zz;
 zzz=zz;
 %------------end very little loop-----
 %------------end very little loop-----
 yy=yy-1; %move to -yy direction
 yy=yy-1; %move to -yy direction
 if yy<1
 if yy<1
 yy=yy+dim;
 yy=yy+dim;
 end
 end
 end
end
qboundx (end+1)=xx;
qboundx (end+1)=xx;
if yy==dim
if yy==dim
qboundy (end+1)=1;
qboundy (end+1)=1;
else
else
qboundy (end+1)=yy+1;
qboundy (end+1)=yy+1;
end
end
qboundz(end+1)=zz;
qboundz(end+1)=zz;
yy=yloc;
yy=yloc;
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
qnum(xx,yy,zz)=n;
%----------very little loope-----
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
qnum(xxx,yyy,zzz)=n;
yyy=yyy+1; %move to +yyy direction
yyy=yyy+1; %move to +yyy direction
if yyy>dim
if yyy>dim
yyy=yyy-dim;
yyy=yyy-dim;
end

```
        end
```

```
    end
    qboundx(end+1)=xxx;
    if yyy==1
    qboundy (end+1)=dim;
    else
    qboundy (end+1)=yyy-1;
    end
    qboundz(end+1)=zzz;
    yyy=yy;
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        YYy=yYY-1; %move to -YYy
        if yyy<1
            yyy=yyy+dim;
    end
end
qboundx (end+1) =xxx;
if yyy==dim
    qboundy (end+1)=1;
else
qboundy (end+1)=yyy+1;
end
qboundz(end+1)=zzz;
YYY=yY;
%-------------end very little loop-----
zz=zz+1; %move to +zz direction
if zz>dim
        zz=zz-dim;
    end
end
```

```
qboundx (end+1)=xx;
qboundy (end+1)=yy;
if zz==1
    qboundz (end+1)=dim;
else
qboundz (end+1)=zz-1;
end
zz=zloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy+1; %move to +yyy direction
        if yyy>dim
            yyy=yyy-dim;
        end
        end
        qboundx(end+1)=xxx;
        if yyy==1
        qboundy (end+1)=dim;
        else
        qboundy (end+1)=yyy-1;
        end
        qboundz(end+1)=zzz;
        yyy=yy;
        while qchange(xxx,yyy,zzz) >= threshold
            qnum(xxx,yyy,zzz)=n;
        yyy=yyy-1; %move to -yyy
```



```
        if yyy<1
        YYY=yYy+dim;
        end
    end
    qboundx(end+1)=xxx;
    if yyy==dim
        qboundy (end+1)=1;
    else
    qboundy(end+1)=yyy+1;
    end
    qboundz(end+1)=zzz;
    yyy=yy;
    %------------end very little loop-----
    zz=zz-1; %move to -zz direction
    if zz<1
        zz=zz+dim;
    end
end
qboundx (end+1)=xx;
qboundy(end+1)=yy;
if zz==dim
    qboundz (end+1)=1;
else
qboundz (end+1)=zz+1;
end
zz=zloc;
%-------------------------------
xloc=xloc+1;
if xloc>dim
    xloc=xloc-dim;
end
```

```
    end
    if xloc==1
        qboundx (end+1)=dim;
    else
    qboundx (end+1)=xloc-1;
    end
    qboundy(end+1)=yloc;
    qboundz(end+1)=zloc;
    xloc=tempqboundx(boundnums); ...
                        %reset xloc to ...
    original x (boundry point)
%--------------------------------nd large ...
    loop-----------------
%-----------------------large ...
    loop----------------------------------
while qchange(xloc,yloc,zloc) >= threshold ...
    %move to -x direction
    qnum(xloc,yloc,zloc)=n;
    %-----litte loop---------------------------
    while qchange(xx,yy,zz) >= threshold
        qnum(xx,yy,zz)=n;
        %----------very little loope-----
        while qchange(xxx,yyy,zzz) >= threshold
            qnum(xxx,yyy,zzz)=n;
            zzz=zzz+1; %move to +zzz direction
        if zzz>dim
            zzz=zzz-dim;
        end
        end
        qboundx(end+1) =xxx;
```

```
#
1632
1634
#
```

```
    qboundy (end+1)=yyy;
```

 qboundy (end+1)=yyy;
 if \(z z z==1\)
 if \(z z z==1\)
 qboundz (end+1)=dim;
 qboundz (end+1)=dim;
 else
 else
 qboundz \((e n d+1)=z z z-1\);
 qboundz \((e n d+1)=z z z-1\);
 end
 end
 zzz=zz;
 zzz=zz;
 while qchange(xxx,yyy,zzz) >= threshold
 while qchange(xxx,yyy,zzz) >= threshold
 qnum (xxx,yyy,zzz)=n;
 qnum (xxx,yyy,zzz)=n;
 \(z z z=z z z-1\); \(\% m o v e\) to -zzz
 \(z z z=z z z-1\); \(\% m o v e\) to -zzz
 if \(z z z<1\)
 if \(z z z<1\)
 zzz=zzz+dim;
 zzz=zzz+dim;
 end
 end
 end
end
qboundx (end+1) =xxx;
qboundx (end+1) =xxx;
qboundy (end+1) =yyy;
qboundy (end+1) =yyy;
if $z z z==$ dim
if $z z z==$ dim
qboundz (end+1)=1;
else
qboundz(end+1)=zzz+1;
end
zzz=zz;
%--------------nd very little loop-----
yy=yy+1; %move to +yy direction
if yy>dim
yy=yy-dim;
end
end
qboundx(end+1)=xx;
if yy==1

```
```

 qboundy (end+1)=dim;
    ```
    qboundy (end+1)=dim;
else
else
qboundy (end+1)=yy-1;
qboundy (end+1)=yy-1;
end
end
qboundz(end+1)=zz;
qboundz(end+1)=zz;
Yy=yloc;
Yy=yloc;
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
    qnum(xx, Yy,zz)=n;
    qnum(xx, Yy,zz)=n;
    %----------very little loope-----
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx, yyy, zzz)=n;
        qnum(xxx, yyy, zzz)=n;
        zzz=zzz+1; %move to +zzz direction
        zzz=zzz+1; %move to +zzz direction
        if zzz>dim
        if zzz>dim
            zzz=zzz-dim;
            zzz=zzz-dim;
        end
        end
        end
        end
        qboundx(end+1)=xxx;
        qboundx(end+1)=xxx;
        qboundy (end+1)=yyy;
        qboundy (end+1)=yyy;
        if zzz==1
        if zzz==1
        qboundz (end+1)=dim;
        qboundz (end+1)=dim;
    else
    else
    qboundz (end+1)=zzz-1;
    qboundz (end+1)=zzz-1;
    end
    end
    Z Z Z= z Z;
    Z Z Z= z Z;
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx, yyy, zzz)=n;
        qnum(xxx, yyy, zzz)=n;
        zzz=zzz-1; %move to -zzz
        zzz=zzz-1; %move to -zzz
        if zzz<1
        if zzz<1
            zzz=zzz+dim;
```

 zzz=zzz+dim;
    ```

```

 end
 end
 qboundx(end+1)=xxx;
 qboundy (end+1)=yyy;
 if zzZ==dim
 qboundz (end+1)=1;
 else
 qboundz (end+1)=zzz+1;
 end
 zzz=zz;
 %------------end very little loop-----
 Yy=yy-1; %move to -yy direction
 if yy<1
 yy=yy+dim;
 end
 end
qboundx (end+1)=xx;
if yy==dim
qboundy (end+1)=1;
else
qboundy (end+1)=yy+1;
end
qboundz (end+1)=zz;
YY=yloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx, Yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xXX, YYY, zzz)=n;
YYY=yYY+1; %move to +yYy direction

```
```

 if yyy>dim
 yyy=yyy-dim;
 end
 end
qboundx(end+1)=xxx;
if yyy==1
qboundy (end+1)=dim;
else
qboundy(end+1)=yyy-1;
end
qboundz(end+1)=zzz;
YYY=YY;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
yyy=yyy-1; %move to -yyy
if yyy<1
yyy=yyy+dim;
end
end
qboundx(end+1)=xxx;
if yyy==dim
qboundy (end+1)=1;
else
qboundy(end+1)=yyy+1;
end
qboundz(end+1)=zzz;
yyy=yy;
%------------end very little loop-----
zz=zz+1; %move to +zz direction
if zz>dim

```
```

 zz=zz-dim;
    ```
        zz=zz-dim;
        end
        end
    end
    end
    qboundx (end+1)=xx;
    qboundx (end+1)=xx;
    qboundy(end+1)=yy;
    qboundy(end+1)=yy;
    if zz==1
    if zz==1
        qboundz (end+1)=dim;
else
qboundz (end+1)=zz-1;
end
zz=zloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy+1; %move to +yyy direction
        if yyy>dim
                YYy=yYy-dim;
        end
        end
        qboundx(end+1)=xxx;
        if yyy==1
        qboundy (end+1)=dim;
        else
        qboundy (end+1)=yyy-1;
        end
        qboundz(end+1)=zzz;
        yyy=yy;
```



```
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy-1; %move to -yyy
        if yyy<1
            yyy=yyy+dim;
        end
    end
    qboundx(end+1)=xxx;
    if yyy==dim
    qboundy (end+1)=1;
else
    qboundy(end+1)=yyy+1;
end
    qboundz(end+1)=zzz;
    yyy=yy;
    %------------end very little loop-----
zz=zz-1; %move to -zz direction
if zz<1
    zz=zz+dim;
end
end
qboundx (end+1)=xx;
qboundy (end+1)=yy;
if zz==dim
    qboundz (end+1)=1;
else
qboundz (end+1)=zz+1;
end
zz=zloc;
%-----------------------nd little loop------
xloc=xloc-1;
```



```
        if xloc<1
        xloc=xloc+dim;
        end
    end
    if xloc==dim
        qboundx (end+1)=1;
else
    qboundx (end+1)=xloc+1;
    end
    qboundy (end+1)=yloc;
    qboundz (end+1)=zloc;
    xloc=tempqboundx(boundnums); ...
```

 \%reset ...
 xloc to original \(x\) (where boundry point)
 \%--------------------------------end large ..
 loop--------------------
 \%---------------------large ..

while qchange(xloc,yloc,zloc) >= threshold ...
\%move to +y direction
qnum(xloc, yloc, zloc) $=n$;

while qchange(xx,yy,zz) >= threshold
qnum ($x x, y y, z z)=n$;
\%----------very little loope------
while qchange(xxx,yyy,zzz) >= threshold
qnum (xxx, yyy, zzz) $=n$;
$z z z=z z z+1$; move to +zzz direction
if zzz>dim

```
        zzz=zzz-dim;
```

 zzz=zzz-dim;
 end
 end
 end
 end
 qboundx(end+1)=xxx;
qboundx(end+1)=xxx;
qboundy (end+1)=yyy;
qboundy (end+1)=yyy;
if zzz==1
if zzz==1
qboundz (end+1)=dim;
else
qboundz (end+1)=zzz-1;
end
Z Z Z= Z Z;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xXx, YyY, zzz)=n;
zzz=zzz-1; %move to -zzz
if zzz<1
zzz=zzz+dim;
end
end
qboundx(end+1)=xxx;
qboundy (end+1)=yyy;
if zzz==dim
qboundz (end+1)=1;
else
qboundz(end+1)=zzz+1;
end
zzZ=z Z;
%------------end very little loop-----
xx=xx+1; %move to +xx direction
if xx>dim
xx=xx-dim;

```
```

lend
qnum(xx, YY, zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xXx, Yyy, zzz)=n;
zzz=zzz+1; %move to +zzz direction
if zzz>dim
zzz=zzz-dim;
end
end
qboundx (end+1) =xxx;
qboundy (end+1)=yyy;
if zzz==1
qboundz (end+1)=dim;
else
qboundz (end+1)=zzz-1;
end
Z Z Z= Z Z;
while qchange(xxx,yyy,zzz) >= threshold

```
```

 qnum(xXx, YYY, zzz)=n;
    ```
            qnum(xXx, YYY, zzz)=n;
            zzz=zzz-1; %move to -zzz
            zzz=zzz-1; %move to -zzz
            if zzz<1
            if zzz<1
            zzz=zzz+dim;
            zzz=zzz+dim;
            end
            end
            end
            end
            qboundx(end+1)=xxx;
            qboundx(end+1)=xxx;
            qboundy (end+1)=yyy;
            qboundy (end+1)=yyy;
if zzz==dim
if zzz==dim
            qboundz (end+1)=1;
            qboundz (end+1)=1;
else
else
    qboundz (end+1)=zzz+1;
    qboundz (end+1)=zzz+1;
end
end
    Z Z Z=Z Z;
    Z Z Z=Z Z;
    %------------end very little loop-----
    %------------end very little loop-----
    x=xx-1; %move to -xx direction
    x=xx-1; %move to -xx direction
    if }x\times<
    if }x\times<
        xx=xx+dim;
        xx=xx+dim;
    end
    end
end
end
if }xx==di
if }xx==di
    qboundx (end+1)=1;
    qboundx (end+1)=1;
else
else
qboundx (end+1) =xx+1;
qboundx (end+1) =xx+1;
end
end
qboundy (end+1)=yy;
qboundy (end+1)=yy;
qboundz (end+1)=zz;
qboundz (end+1)=zz;
xx=xloc;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
    qnum(xx, YY, zz)=n;
```

 qnum(xx, YY, zz)=n;
    ```

```

%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx+1; %move to +xxx direction
if xxx>dim
xxx=xxx-dim;
end
end
if xxx==1
qboundx (end+1)=dim;
else
qboundx(end+1)=xxx-1;
end
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx-1; %move to -xxx
if }xxx<
xxx=xxx+dim;
end
end
if xxx==dim
qboundx (end+1)=1;
else
qboundx(end+1)=xxx+1;
end
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;

```
```

 XXX=xX;
    ```
    XXX=xX;
    %------------end very little loop-----
    %------------end very little loop-----
    zz=zz+1; %move to +zz direction
    zz=zz+1; %move to +zz direction
    if zz>dim
    if zz>dim
        zz=zz-dim;
        zz=zz-dim;
    end
    end
end
end
qboundx(end+1)=xx;
qboundx(end+1)=xx;
qboundy (end+1)=yy;
qboundy (end+1)=yy;
if }\textrm{zz}==
if }\textrm{zz}==
    qboundz (end+1)=dim;
    qboundz (end+1)=dim;
else
else
qboundz (end+1)=zz-1;
qboundz (end+1)=zz-1;
end
end
zz=zlOC;
zz=zlOC;
while qchange(xx,yY,zz) >= threshold
while qchange(xx,yY,zz) >= threshold
    qnum(xx, YY, zz)=n;
    qnum(xx, YY, zz)=n;
    %----------very little loope-----
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xXX, YYY, zzz)=n;
        qnum(xXX, YYY, zzz)=n;
        xxx=xxx+1; %move to +xxx direction
        xxx=xxx+1; %move to +xxx direction
        if xxx>dim
        if xxx>dim
                xxX=xxx-dim;
                xxX=xxx-dim;
        end
        end
    end
    end
    if }x\timesx==
    if }x\timesx==
        qboundx (end+1)=dim;
        qboundx (end+1)=dim;
    else
    else
    qboundx(end+1)=xxx-1;
    qboundx(end+1)=xxx-1;
    end
```

 end
    ```
```

 qboundy (end+1)=yyy;
 qboundz(end+1)=zzz;
 xxx=xx;
 while qchange(xxx,yyy,zzz) >= threshold
 qnum(xxx,yyy,zzz)=n;
 xxx=xxx-1; %move to -xxx
 if }xxx<
 xxx=xxx+dim;
 end
 end
 if xxx==dim
 qboundx (end+1)=1;
 else
 qboundx(end+1)=xxx+1;
 end
 qboundy(end+1)=yyy;
 qboundz(end+1)=zzz;
 xxx=xx;
 %------------end very little loop-----
 zz=zz-1; %move to -zz direction
 if zz<1
 zz=zz+dim;
 end
 end
qboundx(end+1)=xx;
qboundy (end+1)=yy;
if zz==dim
qboundz (end+1)=1;
else
qboundz (end+1)=zz+1;

```

```

 end
 zz=zloc;
 %-------------------------------
 yloc=yloc+1;
 if yloc>dim
 yloc=yloc-dim;
 end
 end
qboundx(end+1)=xloc;
if yloc==1
qboundy (end+1)=dim;
else
qboundy (end+1)=yloc-1;
end
q.boundz (end+1)=zloc;
yloc=tempqboundy(boundnums); ...
%reset ...
yloc to original y (where max q exists)
%---------------------------------nd large ...
loop------------------
%----------------------large ...
loop---------------------------------
while qchange(xloc,yloc,zloc) >= threshold ...
%move to -y direction
qnum(xloc,yloc,zloc)=n;
%-----litte loop--------------------------
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------vvery little loope-----

```

```

while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
zzz=zzz+1; %move to +zzz direction
if zzz>dim
zzz=zzz-dim;
end
end
qboundx(end+1)=xxx;
qboundy (end+1)=yyy;
if zzz==1
qboundz (end+1)=dim;
else
qboundz(end+1)=zzz-1;
end
zzz=zz;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
zzz=zzz-1; %move to -zzz
if zzz<1
zzz=zzz+dim;
end
end
qboundx (end+1) = xxx;
qboundy (end+1)=yyy;
if zzz==dim
qboundz (end+1)=1;
else
qboundz(end+1)=zzz+1;
end
zzz=zz;

```
```

 %------------end very little loop-----
 xx=xx+1; %move to +xx direction
 if xx>dim
 xx=xx-dim;
 end
 end
if }xx==
qboundx(end+1)=dim;
else
qboundx (end+1)=xx-1;
end
qboundy (end+1)=yy;
qboundz(end+1)=zz;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
zzz=zzz+1; %move to +zzz direction
if zzz>dim
zzz=zzz-dim;
end
end
qboundx(end+1) =xxx;
qboundy (end+1)=yyy;
if zzz==1
qboundz (end+1)=dim;
else
qboundz(end+1)=zzz-1;

```
```

N~N

```
```

 end
    ```
    end
    Z Z Z= Z Z;
    Z Z Z= Z Z;
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xXX, YYY, zzz)=n;
        qnum(xXX, YYY, zzz)=n;
        zzz=zzz-1; %move to -zzz
        zzz=zzz-1; %move to -zzz
        if zzz<1
        if zzz<1
            zzz=zzz+dim;
            zzz=zzz+dim;
    end
    end
    end
    end
    qboundx(end+1)=xxx;
    qboundx(end+1)=xxx;
    qboundy(end+1)=yyy;
    qboundy(end+1)=yyy;
    if zzz==dim
    if zzz==dim
    qboundz (end+1)=1;
    qboundz (end+1)=1;
    else
    else
    qboundz(end+1)=zzz+1;
    qboundz(end+1)=zzz+1;
    end
    end
    Z Z Z=Z Z;
    Z Z Z=Z Z;
    %------------end very little loop-----
    %------------end very little loop-----
    xx=xx-1; %move to -xx direction
    xx=xx-1; %move to -xx direction
    if xx<1
    if xx<1
        xx=xx+dim;
        xx=xx+dim;
    end
    end
end
end
if xx==dim
if xx==dim
    qboundx (end+1)=1;
    qboundx (end+1)=1;
else
else
qboundx (end+1)=xx+1;
qboundx (end+1)=xx+1;
end
end
qboundy (end+1)=yy;
qboundy (end+1)=yy;
qboundz(end+1)=zz;
```

qboundz(end+1)=zz;

```
```

xx=xloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx+1; %move to +xxx direction
if xxx>dim
xxx=xxx-dim;
end
end
if }xxx==
qboundx(end+1)=dim;
else
qboundx (end+1)=xxx-1;
end
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx-1; %move to -xxx
if xxx<1
xxx=xxx+dim;
end
end
if }xxx==\mathrm{ dim
qboundx (end+1)=1;
else

```
```

 qboundx (end+1) =xxx+1;
    ```
    qboundx (end+1) =xxx+1;
        end
        end
        qboundy (end+1)=yyy;
        qboundy (end+1)=yyy;
        qboundz (end+1)=zzz;
        qboundz (end+1)=zzz;
        XXX=XX;
        XXX=XX;
        %-----------end very little loop-----
        %-----------end very little loop-----
        zz=zz+1; %move to +zz direction
        zz=zz+1; %move to +zz direction
        if zz>dim
        if zz>dim
        zz=zz-dim;
        zz=zz-dim;
    end
    end
end
end
qboundx (end+1)=xx;
qboundx (end+1)=xx;
qboundy (end+1)=yy;
qboundy (end+1)=yy;
if zz==1
if zz==1
    qboundz (end+1)=dim;
    qboundz (end+1)=dim;
else
else
qboundz (end+1)=zz-1;
qboundz (end+1)=zz-1;
end
end
zz=zloc;
zz=zloc;
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
    qnum(xx, yy, zz)=n;
    qnum(xx, yy, zz)=n;
    %----------very little loope-----
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx, yyy, zzz)=n;
        qnum(xxx, yyy, zzz)=n;
        xxx=xxx+1; %move to +xxx direction
        xxx=xxx+1; %move to +xxx direction
        if xxx>dim
        if xxx>dim
                xxx=xxx-dim;
                xxx=xxx-dim;
        end
        end
    end
    end
        if }x\timesx==
```

 if }x\timesx==
    ```
```

 qboundx (end+1)=dim;
    ```
            qboundx (end+1)=dim;
    else
    else
    qboundx(end+1)=xxx-1;
    qboundx(end+1)=xxx-1;
    end
    end
    qboundy(end+1)=yyy;
    qboundy(end+1)=yyy;
    qboundz (end+1)=zzz;
    qboundz (end+1)=zzz;
    XXX=XX;
    XXX=XX;
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xXx, yYy, zzz)=n;
        qnum(xXx, yYy, zzz)=n;
        xxx=xxx-1; %move to -xxx
        xxx=xxx-1; %move to -xxx
        if xxx<1
        if xxx<1
                xxx=xxx+dim;
                xxx=xxx+dim;
        end
        end
    end
    end
    if }x\timesx==di
    if }x\timesx==di
    qboundx (end+1)=1;
    qboundx (end+1)=1;
    else
    else
    qboundx(end+1) =xxx+1;
    qboundx(end+1) =xxx+1;
    end
    end
    qboundy(end+1)=yyy;
    qboundy(end+1)=yyy;
    qboundz (end+1)=zzz;
    qboundz (end+1)=zzz;
    XXX=xX;
    XXX=xX;
    %------------end very little loop-----
    %------------end very little loop-----
    zz=zz-1; %move to -zz direction
    zz=zz-1; %move to -zz direction
    if zz<1
    if zz<1
    zz=zz+dim;
    zz=zz+dim;
    end
    end
end
end
qboundx (end+1) =xx;
qboundx (end+1) =xx;
qboundy (end+1)=yy;
```

qboundy (end+1)=yy;

```

```

 if zz==dim
 qboundz (end+1)=1;
 else
 qboundz (end+1)=zz+1;
 end
 zz=zloc;
 %-----------------------nd little loop------
 yloc=yloc-1;
 if yloc<1
 yloc=yloc+dim;
 end
 end
qboundx(end+1)=xloc;
if yloc==dim
qboundy (end+1)=1;
else
qboundy (end+1)=yloc+1;
end
qboundz (end+1)=zloc;
yloc=tempqboundy(boundnums); ...
%reset ...
yloc to original (where max q exists)
%-------------------------------end large ...
loop-----------------
%-----------------------large ...
loop------------------------------------
while qchange(xloc,yloc,zloc) >= threshold ...
%move to +z direction
qnum(xloc,yloc,zloc)=n;

```
```

%-----litte loop-------------------------
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
YYY=yYY+1; %move to +yYy direction
if yyy>dim
yyy=yyy-dim;
end
end
qboundx(end+1)=xxx;
if yyy==1
qboundy(end+1)=dim;
else
qboundy(end+1)=yyy-1;
end
qboundz(end+1)=zzz;
YYY=YY;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
yyy=yyy-1; %move to -yyy
if yyy<1
yyy=yyy+dim;
end
end
qboundx (end+1) =xxx;
if yyy==dim
qboundy (end+1)=1;
else

```
```

 qboundy (end+1)=yyy+1;
    ```
    qboundy (end+1)=yyy+1;
    end
    end
    qboundz(end+1)=zzz;
    qboundz(end+1)=zzz;
    yyy=yy;
    yyy=yy;
    %------------end very little loop-----
    %------------end very little loop-----
    xx=xx+1; %move to +xx direction
    xx=xx+1; %move to +xx direction
    if xx>dim
    if xx>dim
        xx=xx-dim;
        xx=xx-dim;
    end
    end
end
end
if }xx==
if }xx==
    qboundx(end+1)=dim;
    qboundx(end+1)=dim;
else
else
qboundx (end+1)=xx-1;
qboundx (end+1)=xx-1;
end
end
qboundy (end+1)=yy;
qboundy (end+1)=yy;
qboundz (end+1)=zz;
qboundz (end+1)=zz;
xx=xloc;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
while qchange(xx,yy,zz) >= threshold
    qnum(xx,yy,zz)=n;
    qnum(xx,yy,zz)=n;
    %----------very little loope-----
    %----------very little loope-----
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy+1; %move to +yyy direction
        yyy=yyy+1; %move to +yyy direction
        if yyy>dim
        if yyy>dim
                yyy=yyy-dim;
                yyy=yyy-dim;
        end
        end
    end
    end
    qboundx(end+1) =xxx;
    qboundx(end+1) =xxx;
    if yyy==1
```

 if yyy==1
    ```

```

 qboundy (end+1)=dim;
    ```
        qboundy (end+1)=dim;
    else
    else
    qboundy (end+1)=yyy-1;
    qboundy (end+1)=yyy-1;
    end
    end
    qboundz(end+1)=zzz;
    qboundz(end+1)=zzz;
    yyy=yy;
    yyy=yy;
    while qchange(xxx,yyy,zzz) >= threshold
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy-1; %move to -yyy
        yyy=yyy-1; %move to -yyy
        if yyy<1
        if yyy<1
            yyy=yyy+dim;
            yyy=yyy+dim;
        end
        end
    end
    end
    qboundx(end+1)=xxx;
    qboundx(end+1)=xxx;
    if yyy==dim
    if yyy==dim
        qboundy (end+1)=1;
        qboundy (end+1)=1;
    else
    else
    qboundy(end+1)=yyy+1;
    qboundy(end+1)=yyy+1;
    end
    end
    qboundz(end+1)=zzz;
    qboundz(end+1)=zzz;
    yyy=yy;
    yyy=yy;
    %------------end very little loop-----
    %------------end very little loop-----
    xx=xx-1; %move to -xx direction
    xx=xx-1; %move to -xx direction
    if xx<1
    if xx<1
        xx=xx+dim;
        xx=xx+dim;
    end
    end
end
end
if xx==dim
if xx==dim
    qboundx (end+1)=1;
    qboundx (end+1)=1;
else
```

else

```
```

qboundx (end+1)=xx+1;
end
qboundy (end+1)=yy;
qboundz (end+1)=zz;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx+1; %move to +xxx direction
if xxx>dim
xxx=xxx-dim;
end
end
if }xxx==
qboundx (end+1)=dim;
else
qboundx (end+1)=xxx-1;
end
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx-1; %move to -xxx
if xxx<1
xxx=xxx+dim;
end

```

```

 end
 if }xxx==di
 qboundx (end+1)=1;
 else
 qboundx (end+1)=xxx+1;
 end
 qboundy (end+1)=yyy;
 qboundz(end+1)=zzz;
 XXX=XX;
 %------------end very little loop-----
 yy=yy+1; %move to +yy direction
 if Yy>dim
 yy=yy-dim;
 end
 end
qboundx(end+1)=xx;
if yy==1
qboundy (end+1)=dim;
else
qboundy (end+1)=yy-1;
end
qboundz (end+1)=zz;
Yy=yloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx, YY, zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx, yyy, zzz)=n;
xxx=xxx+1; %move to +xxx direction
if xxx>dim

```
```

 xXX=xXX-dim;
    ```
        xXX=xXX-dim;
        end
        end
end
end
if }x\timesx==
if }x\timesx==
    qboundx (end+1)=dim;
else
qboundx(end+1)=xxx-1;
end
qboundy(end+1)=yyy;
qboundz (end+1)=zzz;
XXX=xX;
while qchange(xxx,yyy,zzz) >= threshold
    qnum(xXx, YyY, zzz)=n;
    xxx=xxx-1; %move to -xxx
    if xxx<1
        xxx=xxx+dim;
    end
end
if xxx==dim
    qboundx (end+1)=1;
else
qboundx (end+1)=xxx+1;
end
qboundy (end+1) =yyy
qboundz(end+1)=zzz;
xxx=xx;
%------------nd very little loop------
yy=yy-1; %move to -yy direction
if yy<1
    yy=yy+dim;
```

```
        end
```

 end
 end
 end
 qboundx (end+1)=xx;
 qboundx (end+1)=xx;
 if yy==dim
 if yy==dim
 qboundy (end+1)=1;
 qboundy (end+1)=1;
 else
 else
 qboundy (end+1)=yy+1;
 qboundy (end+1)=yy+1;
 end
 end
 qboundz(end+1)=zz;
 qboundz(end+1)=zz;
 YY=yloc;
 YY=yloc;
 %---------------------end little loop-------
 %---------------------end little loop-------
 zlOC=zlOC+1;
 zlOC=zlOC+1;
 if zloc>dim
 if zloc>dim
 zloc=zloc-dim;
 zloc=zloc-dim;
 end
 end
 end
end
qboundx(end+1)=xloc;
qboundx(end+1)=xloc;
qboundy (end+1)=yloc;
qboundy (end+1)=yloc;
if zloc==1
if zloc==1
qboundz (end+1)=1;
qboundz (end+1)=1;
else
else
qboundz (end+1)=zloc-1;
qboundz (end+1)=zloc-1;
end
end
zloc=tempqboundz(boundnums); ...
zloc=tempqboundz(boundnums); ...
%reset ...
%reset ...
zloc to original z (where max q exists)
zloc to original z (where max q exists)
%--------------------------------nd large ...
%--------------------------------nd large ...
loop-----------------
loop-----------------
%--------------------large ...
%--------------------large ...
loop--------------------------------

```
    loop--------------------------------
```

```
while qchange(xloc,yloc,zloc) >= threshold ...
    %move to -z direction
    qnum(xloc,yloc,zloc)=n;
    %-----litte loop-------------------------
    while qchange(xx,yy,zz) >= threshold
        qnum(xx,yy,zz)=n;
        %----------very little loope-----
        while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy+1; %move to +yyy direction
        if yyy>dim
                yyy=yyy-dim;
        end
    end
    qboundx(end+1) =xxx;
    if yyy==1
        qboundy (end+1)=dim;
    else
    qboundy (end+1)=yyy-1;
    end
    qboundz(end+1)=zzz;
    yyy=yy;
    while qchange(xxx,yyy,zzz) >= threshold
        qnum(xxx,yyy,zzz)=n;
        yyy=yyy-1; %move to -yyy
        if yyy<1
                yyy=yyy+dim;
        end
    end
```

```
    qboundx(end+1)=xxx;
    if yYy==dim
    qboundy (end+1)=1;
    else
    qboundy (end+1)=yYy+1;
    end
    qboundz (end+1)=zzz;
    YYY=YY;
    %------------end very little loop-----
    xx=xx+1; %move to +xx direction
    if xx>dim
        xx=xx-dim;
    end
end
if }xX==
    qboundx(end+1)=dim;
else
qboundx(end+1)=xx-1;
end
qboundy (end+1)=yy;
qboundz (end+1)=zz;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
    qnum(xx, YY, zz)=n;
    %----------very little loope-----
    while qchange(xXx,YYY,zzz) >= threshold
        qnum(xxx, yyy, zzz)=n;
        yyy=yYy+1; %move to +yyy direction
        if yYy>dim
            YYY=yYY-dim;
```

```
    end
```

 end
 end
end
qboundx(end+1)=xxx;
qboundx(end+1)=xxx;
if YYY==1
if YYY==1
qboundy (end+1)=dim;
qboundy (end+1)=dim;
else
else
qboundy (end+1)=yyy-1;
qboundy (end+1)=yyy-1;
end
end
qboundz (end+1)=zzz;
qboundz (end+1)=zzz;
YYY=yY;
YYY=yY;
while qchange(xxx,yyy,zzz) >= threshold
while qchange(xxx,yyy,zzz) >= threshold
qnum(xXx, YYy, zzz)=n;
qnum(xXx, YYy, zzz)=n;
yYy=yYy-1; %move to -yyy
yYy=yYy-1; %move to -yyy
if yyy<1
if yyy<1
YYY=yYy+dim;
YYY=yYy+dim;
end
end
end
qboundx(end+1) =xxx;
if YYY==dim
qboundy (end+1)=1;
else
qboundy (end+1)=yYy+1;
end
qboundz(end+1)=zzz;
YYY=YY;
%------------end very little loop-----
xx=xx-1; %move to -xx direction
if }x\times<
xx=xx+dim;
end

```
```

end
if xx==dim
qboundx (end+1)=1;
else
qboundx (end+1)=xx+1;
end
qboundy (end+1) =yy;
qboundz(end+1)=zz;
xx=xloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy,zz)=n;
%----------very little loope-----
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx+1; %move to +xxx direction
if xxx>dim
xxx=xxx-dim;
end
end
if xxx==1
qboundx (end+1)=dim;
else
qboundx(end+1)=xxx-1;
end
qboundy(end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yYy,zzz)=n;

```

```

 XXX=XXX-1; %move to -xXx
 if }x\timesx<
 xxx=xxx+dim;
 end
 end
 if }x\timesx==di
 qboundx (end+1)=1;
 else
 qboundx (end+1)=xxx+1;
 end
 qboundy (end+1)=yyy;
 qboundz (end+1)=zzz;
 XXX=XX;
 %------------end very little loop-----
 yy=yy+1; %move to +yy direction
 if yy>dim
 yy=yy-dim;
 end
 end
qboundx (end+1)=xx;
if yy==1
qboundy (end+1)=dim;
else
qboundy (end+1)=yy-1;
end
qboundz(end+1)=zz;
Yy=yloc;
while qchange(xx,yy,zz) >= threshold
qnum(xx,yy, zz)=n;
%----------very little loope-----

```
```

while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx+1; %move to +xxx direction
if xxx>dim
xxx=xxx-dim;
end
end
if }xxx==
qboundx (end+1)=dim;
else
qboundx(end+1)=xxx-1;
end
qboundy (end+1)=yyy;
qboundz(end+1)=zzz;
xxx=xx;
while qchange(xxx,yyy,zzz) >= threshold
qnum(xxx,yyy,zzz)=n;
xxx=xxx-1; %move to -xxx
if xxx<1
xxx=xxx+dim;
end
end
if xxx==dim
qboundx (end+1)=1;
else
qboundx (end+1)=xxx+1;
end
qboundy(end+1)=yyy;

```

```

 qboundz(end+1)=zzz;
 xxx=xx;
 %------------end very little loop-----
 yy=yy-1; %move to -yy direction
 if yy<1
 yy=yy+dim;
 end
 end
 qboundx(end+1)=xx;
 if yy==dim
 qboundy (end+1)=1;
 else
 qboundy (end+1)=yy+1;
 end
 qboundz(end+1)=zz;
 yy=yloc;
 %-----------------------------
 zloc=zloc-1;
 if zloc<1
 zloc=zloc+dim;
 end
 end
qboundx(end+1)=xloc;
qboundy (end+1)=yloc;
if zloc==dim
qboundz (end+1)=1;
else
qboundz (end+1)=zloc+1;
end
zloc=tempqboundz(boundnums); ...

```
                                    \%reset ...
```

 zloc to original z (where max q exists)
 %---------------------------------nd large ...
 loop-----------------
 end
 end
 tempvolume2=sum(qnum(:)==n);
 end
 if tempvolume2 >= cutoffvolume
 disp(['The volume of ',num2str(n),' th vortex is ...
 ',num2str(tempvolume2)])
 [x1,y1,z1]=ind2sub(size(qnum),find(qnum==n));
 for positions=1:length(x1)
 qfinal(xl(positions),yl(positions),zl(positions)) ...
 =q(x1(positions),y1(positions), z1(positions));
 qchange(x1(positions),y1(positions),z1(positions))=0;
 end
 else
 [x1,y1,z1]=ind2sub(size(qnum), find(qnum==n));
 for positions=1:length(x1)
 qnum(x1(positions), y1(positions), z1(positions))=0;
 qchange(x1(positions),y1(positions), z1(positions))=0;
 end
 n=n-1;
 end
 n=n+1;
 end
 qboundx(:) = [];
 qboundy(:)= [];
 qboundz(:)=[];
    ```
```

2721 end
qmax=max(max(max(qchange)));
end
saveqnum=reshape(qnum,[dim^3,1]);
fid = fopen([filepath2,'qnub',num2str(t,'%04i'),'.dat'], 'w');
fprintf(fid, '%8.1f\n', saveqnum);
fclose(fid);
2729 hintnumber=((t-aa1)/interv+1)/((aa2-aa1)/interv+1);
2730 hints=[num2str(hintnumber*100),'% is finished'];
731 waitbar(hintnumber,hh,hints)
% filename=[filepath2,'qnum',num2str(t,'%04i'),'.dat'];
% save(filename,'saveqnum','-ascii')
end
735 toc
2736 close(hh)

```
```

